xref: /illumos-gate/usr/src/uts/common/io/scsi/targets/sd.c (revision 2384d9f8)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 /*
26  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
27  * Copyright (c) 2011 Bayard G. Bell.  All rights reserved.
28  * Copyright (c) 2012 by Delphix. All rights reserved.
29  */
30 /*
31  * Copyright 2011 cyril.galibern@opensvc.com
32  */
33 
34 /*
35  * SCSI disk target driver.
36  */
37 #include <sys/scsi/scsi.h>
38 #include <sys/dkbad.h>
39 #include <sys/dklabel.h>
40 #include <sys/dkio.h>
41 #include <sys/fdio.h>
42 #include <sys/cdio.h>
43 #include <sys/mhd.h>
44 #include <sys/vtoc.h>
45 #include <sys/dktp/fdisk.h>
46 #include <sys/kstat.h>
47 #include <sys/vtrace.h>
48 #include <sys/note.h>
49 #include <sys/thread.h>
50 #include <sys/proc.h>
51 #include <sys/efi_partition.h>
52 #include <sys/var.h>
53 #include <sys/aio_req.h>
54 
55 #ifdef __lock_lint
56 #define	_LP64
57 #define	__amd64
58 #endif
59 
60 #if (defined(__fibre))
61 /* Note: is there a leadville version of the following? */
62 #include <sys/fc4/fcal_linkapp.h>
63 #endif
64 #include <sys/taskq.h>
65 #include <sys/uuid.h>
66 #include <sys/byteorder.h>
67 #include <sys/sdt.h>
68 
69 #include "sd_xbuf.h"
70 
71 #include <sys/scsi/targets/sddef.h>
72 #include <sys/cmlb.h>
73 #include <sys/sysevent/eventdefs.h>
74 #include <sys/sysevent/dev.h>
75 
76 #include <sys/fm/protocol.h>
77 
78 /*
79  * Loadable module info.
80  */
81 #if (defined(__fibre))
82 #define	SD_MODULE_NAME	"SCSI SSA/FCAL Disk Driver"
83 #else /* !__fibre */
84 #define	SD_MODULE_NAME	"SCSI Disk Driver"
85 #endif /* !__fibre */
86 
87 /*
88  * Define the interconnect type, to allow the driver to distinguish
89  * between parallel SCSI (sd) and fibre channel (ssd) behaviors.
90  *
91  * This is really for backward compatibility. In the future, the driver
92  * should actually check the "interconnect-type" property as reported by
93  * the HBA; however at present this property is not defined by all HBAs,
94  * so we will use this #define (1) to permit the driver to run in
95  * backward-compatibility mode; and (2) to print a notification message
96  * if an FC HBA does not support the "interconnect-type" property.  The
97  * behavior of the driver will be to assume parallel SCSI behaviors unless
98  * the "interconnect-type" property is defined by the HBA **AND** has a
99  * value of either INTERCONNECT_FIBRE, INTERCONNECT_SSA, or
100  * INTERCONNECT_FABRIC, in which case the driver will assume Fibre
101  * Channel behaviors (as per the old ssd).  (Note that the
102  * INTERCONNECT_1394 and INTERCONNECT_USB types are not supported and
103  * will result in the driver assuming parallel SCSI behaviors.)
104  *
105  * (see common/sys/scsi/impl/services.h)
106  *
107  * Note: For ssd semantics, don't use INTERCONNECT_FABRIC as the default
108  * since some FC HBAs may already support that, and there is some code in
109  * the driver that already looks for it.  Using INTERCONNECT_FABRIC as the
110  * default would confuse that code, and besides things should work fine
111  * anyways if the FC HBA already reports INTERCONNECT_FABRIC for the
112  * "interconnect_type" property.
113  *
114  */
115 #if (defined(__fibre))
116 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_FIBRE
117 #else
118 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_PARALLEL
119 #endif
120 
121 /*
122  * The name of the driver, established from the module name in _init.
123  */
124 static	char *sd_label			= NULL;
125 
126 /*
127  * Driver name is unfortunately prefixed on some driver.conf properties.
128  */
129 #if (defined(__fibre))
130 #define	sd_max_xfer_size		ssd_max_xfer_size
131 #define	sd_config_list			ssd_config_list
132 static	char *sd_max_xfer_size		= "ssd_max_xfer_size";
133 static	char *sd_config_list		= "ssd-config-list";
134 #else
135 static	char *sd_max_xfer_size		= "sd_max_xfer_size";
136 static	char *sd_config_list		= "sd-config-list";
137 #endif
138 
139 /*
140  * Driver global variables
141  */
142 
143 #if (defined(__fibre))
144 /*
145  * These #defines are to avoid namespace collisions that occur because this
146  * code is currently used to compile two separate driver modules: sd and ssd.
147  * All global variables need to be treated this way (even if declared static)
148  * in order to allow the debugger to resolve the names properly.
149  * It is anticipated that in the near future the ssd module will be obsoleted,
150  * at which time this namespace issue should go away.
151  */
152 #define	sd_state			ssd_state
153 #define	sd_io_time			ssd_io_time
154 #define	sd_failfast_enable		ssd_failfast_enable
155 #define	sd_ua_retry_count		ssd_ua_retry_count
156 #define	sd_report_pfa			ssd_report_pfa
157 #define	sd_max_throttle			ssd_max_throttle
158 #define	sd_min_throttle			ssd_min_throttle
159 #define	sd_rot_delay			ssd_rot_delay
160 
161 #define	sd_retry_on_reservation_conflict	\
162 					ssd_retry_on_reservation_conflict
163 #define	sd_reinstate_resv_delay		ssd_reinstate_resv_delay
164 #define	sd_resv_conflict_name		ssd_resv_conflict_name
165 
166 #define	sd_component_mask		ssd_component_mask
167 #define	sd_level_mask			ssd_level_mask
168 #define	sd_debug_un			ssd_debug_un
169 #define	sd_error_level			ssd_error_level
170 
171 #define	sd_xbuf_active_limit		ssd_xbuf_active_limit
172 #define	sd_xbuf_reserve_limit		ssd_xbuf_reserve_limit
173 
174 #define	sd_tr				ssd_tr
175 #define	sd_reset_throttle_timeout	ssd_reset_throttle_timeout
176 #define	sd_qfull_throttle_timeout	ssd_qfull_throttle_timeout
177 #define	sd_qfull_throttle_enable	ssd_qfull_throttle_enable
178 #define	sd_check_media_time		ssd_check_media_time
179 #define	sd_wait_cmds_complete		ssd_wait_cmds_complete
180 #define	sd_label_mutex			ssd_label_mutex
181 #define	sd_detach_mutex			ssd_detach_mutex
182 #define	sd_log_buf			ssd_log_buf
183 #define	sd_log_mutex			ssd_log_mutex
184 
185 #define	sd_disk_table			ssd_disk_table
186 #define	sd_disk_table_size		ssd_disk_table_size
187 #define	sd_sense_mutex			ssd_sense_mutex
188 #define	sd_cdbtab			ssd_cdbtab
189 
190 #define	sd_cb_ops			ssd_cb_ops
191 #define	sd_ops				ssd_ops
192 #define	sd_additional_codes		ssd_additional_codes
193 #define	sd_tgops			ssd_tgops
194 
195 #define	sd_minor_data			ssd_minor_data
196 #define	sd_minor_data_efi		ssd_minor_data_efi
197 
198 #define	sd_tq				ssd_tq
199 #define	sd_wmr_tq			ssd_wmr_tq
200 #define	sd_taskq_name			ssd_taskq_name
201 #define	sd_wmr_taskq_name		ssd_wmr_taskq_name
202 #define	sd_taskq_minalloc		ssd_taskq_minalloc
203 #define	sd_taskq_maxalloc		ssd_taskq_maxalloc
204 
205 #define	sd_dump_format_string		ssd_dump_format_string
206 
207 #define	sd_iostart_chain		ssd_iostart_chain
208 #define	sd_iodone_chain			ssd_iodone_chain
209 
210 #define	sd_pm_idletime			ssd_pm_idletime
211 
212 #define	sd_force_pm_supported		ssd_force_pm_supported
213 
214 #define	sd_dtype_optical_bind		ssd_dtype_optical_bind
215 
216 #define	sd_ssc_init			ssd_ssc_init
217 #define	sd_ssc_send			ssd_ssc_send
218 #define	sd_ssc_fini			ssd_ssc_fini
219 #define	sd_ssc_assessment		ssd_ssc_assessment
220 #define	sd_ssc_post			ssd_ssc_post
221 #define	sd_ssc_print			ssd_ssc_print
222 #define	sd_ssc_ereport_post		ssd_ssc_ereport_post
223 #define	sd_ssc_set_info			ssd_ssc_set_info
224 #define	sd_ssc_extract_info		ssd_ssc_extract_info
225 
226 #endif
227 
228 #ifdef	SDDEBUG
229 int	sd_force_pm_supported		= 0;
230 #endif	/* SDDEBUG */
231 
232 void *sd_state				= NULL;
233 int sd_io_time				= SD_IO_TIME;
234 int sd_failfast_enable			= 1;
235 int sd_ua_retry_count			= SD_UA_RETRY_COUNT;
236 int sd_report_pfa			= 1;
237 int sd_max_throttle			= SD_MAX_THROTTLE;
238 int sd_min_throttle			= SD_MIN_THROTTLE;
239 int sd_rot_delay			= 4; /* Default 4ms Rotation delay */
240 int sd_qfull_throttle_enable		= TRUE;
241 
242 int sd_retry_on_reservation_conflict	= 1;
243 int sd_reinstate_resv_delay		= SD_REINSTATE_RESV_DELAY;
244 _NOTE(SCHEME_PROTECTS_DATA("safe sharing", sd_reinstate_resv_delay))
245 
246 static int sd_dtype_optical_bind	= -1;
247 
248 /* Note: the following is not a bug, it really is "sd_" and not "ssd_" */
249 static	char *sd_resv_conflict_name	= "sd_retry_on_reservation_conflict";
250 
251 /*
252  * Global data for debug logging. To enable debug printing, sd_component_mask
253  * and sd_level_mask should be set to the desired bit patterns as outlined in
254  * sddef.h.
255  */
256 uint_t	sd_component_mask		= 0x0;
257 uint_t	sd_level_mask			= 0x0;
258 struct	sd_lun *sd_debug_un		= NULL;
259 uint_t	sd_error_level			= SCSI_ERR_RETRYABLE;
260 
261 /* Note: these may go away in the future... */
262 static uint32_t	sd_xbuf_active_limit	= 512;
263 static uint32_t sd_xbuf_reserve_limit	= 16;
264 
265 static struct sd_resv_reclaim_request	sd_tr = { NULL, NULL, NULL, 0, 0, 0 };
266 
267 /*
268  * Timer value used to reset the throttle after it has been reduced
269  * (typically in response to TRAN_BUSY or STATUS_QFULL)
270  */
271 static int sd_reset_throttle_timeout	= SD_RESET_THROTTLE_TIMEOUT;
272 static int sd_qfull_throttle_timeout	= SD_QFULL_THROTTLE_TIMEOUT;
273 
274 /*
275  * Interval value associated with the media change scsi watch.
276  */
277 static int sd_check_media_time		= 3000000;
278 
279 /*
280  * Wait value used for in progress operations during a DDI_SUSPEND
281  */
282 static int sd_wait_cmds_complete	= SD_WAIT_CMDS_COMPLETE;
283 
284 /*
285  * sd_label_mutex protects a static buffer used in the disk label
286  * component of the driver
287  */
288 static kmutex_t sd_label_mutex;
289 
290 /*
291  * sd_detach_mutex protects un_layer_count, un_detach_count, and
292  * un_opens_in_progress in the sd_lun structure.
293  */
294 static kmutex_t sd_detach_mutex;
295 
296 _NOTE(MUTEX_PROTECTS_DATA(sd_detach_mutex,
297 	sd_lun::{un_layer_count un_detach_count un_opens_in_progress}))
298 
299 /*
300  * Global buffer and mutex for debug logging
301  */
302 static char	sd_log_buf[1024];
303 static kmutex_t	sd_log_mutex;
304 
305 /*
306  * Structs and globals for recording attached lun information.
307  * This maintains a chain. Each node in the chain represents a SCSI controller.
308  * The structure records the number of luns attached to each target connected
309  * with the controller.
310  * For parallel scsi device only.
311  */
312 struct sd_scsi_hba_tgt_lun {
313 	struct sd_scsi_hba_tgt_lun	*next;
314 	dev_info_t			*pdip;
315 	int				nlun[NTARGETS_WIDE];
316 };
317 
318 /*
319  * Flag to indicate the lun is attached or detached
320  */
321 #define	SD_SCSI_LUN_ATTACH	0
322 #define	SD_SCSI_LUN_DETACH	1
323 
324 static kmutex_t	sd_scsi_target_lun_mutex;
325 static struct sd_scsi_hba_tgt_lun	*sd_scsi_target_lun_head = NULL;
326 
327 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
328     sd_scsi_hba_tgt_lun::next sd_scsi_hba_tgt_lun::pdip))
329 
330 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
331     sd_scsi_target_lun_head))
332 
333 /*
334  * "Smart" Probe Caching structs, globals, #defines, etc.
335  * For parallel scsi and non-self-identify device only.
336  */
337 
338 /*
339  * The following resources and routines are implemented to support
340  * "smart" probing, which caches the scsi_probe() results in an array,
341  * in order to help avoid long probe times.
342  */
343 struct sd_scsi_probe_cache {
344 	struct	sd_scsi_probe_cache	*next;
345 	dev_info_t	*pdip;
346 	int		cache[NTARGETS_WIDE];
347 };
348 
349 static kmutex_t	sd_scsi_probe_cache_mutex;
350 static struct	sd_scsi_probe_cache *sd_scsi_probe_cache_head = NULL;
351 
352 /*
353  * Really we only need protection on the head of the linked list, but
354  * better safe than sorry.
355  */
356 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
357     sd_scsi_probe_cache::next sd_scsi_probe_cache::pdip))
358 
359 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
360     sd_scsi_probe_cache_head))
361 
362 /*
363  * Power attribute table
364  */
365 static sd_power_attr_ss sd_pwr_ss = {
366 	{ "NAME=spindle-motor", "0=off", "1=on", NULL },
367 	{0, 100},
368 	{30, 0},
369 	{20000, 0}
370 };
371 
372 static sd_power_attr_pc sd_pwr_pc = {
373 	{ "NAME=spindle-motor", "0=stopped", "1=standby", "2=idle",
374 		"3=active", NULL },
375 	{0, 0, 0, 100},
376 	{90, 90, 20, 0},
377 	{15000, 15000, 1000, 0}
378 };
379 
380 /*
381  * Power level to power condition
382  */
383 static int sd_pl2pc[] = {
384 	SD_TARGET_START_VALID,
385 	SD_TARGET_STANDBY,
386 	SD_TARGET_IDLE,
387 	SD_TARGET_ACTIVE
388 };
389 
390 /*
391  * Vendor specific data name property declarations
392  */
393 
394 #if defined(__fibre) || defined(__i386) ||defined(__amd64)
395 
396 static sd_tunables seagate_properties = {
397 	SEAGATE_THROTTLE_VALUE,
398 	0,
399 	0,
400 	0,
401 	0,
402 	0,
403 	0,
404 	0,
405 	0
406 };
407 
408 
409 static sd_tunables fujitsu_properties = {
410 	FUJITSU_THROTTLE_VALUE,
411 	0,
412 	0,
413 	0,
414 	0,
415 	0,
416 	0,
417 	0,
418 	0
419 };
420 
421 static sd_tunables ibm_properties = {
422 	IBM_THROTTLE_VALUE,
423 	0,
424 	0,
425 	0,
426 	0,
427 	0,
428 	0,
429 	0,
430 	0
431 };
432 
433 static sd_tunables purple_properties = {
434 	PURPLE_THROTTLE_VALUE,
435 	0,
436 	0,
437 	PURPLE_BUSY_RETRIES,
438 	PURPLE_RESET_RETRY_COUNT,
439 	PURPLE_RESERVE_RELEASE_TIME,
440 	0,
441 	0,
442 	0
443 };
444 
445 static sd_tunables sve_properties = {
446 	SVE_THROTTLE_VALUE,
447 	0,
448 	0,
449 	SVE_BUSY_RETRIES,
450 	SVE_RESET_RETRY_COUNT,
451 	SVE_RESERVE_RELEASE_TIME,
452 	SVE_MIN_THROTTLE_VALUE,
453 	SVE_DISKSORT_DISABLED_FLAG,
454 	0
455 };
456 
457 static sd_tunables maserati_properties = {
458 	0,
459 	0,
460 	0,
461 	0,
462 	0,
463 	0,
464 	0,
465 	MASERATI_DISKSORT_DISABLED_FLAG,
466 	MASERATI_LUN_RESET_ENABLED_FLAG
467 };
468 
469 static sd_tunables pirus_properties = {
470 	PIRUS_THROTTLE_VALUE,
471 	0,
472 	PIRUS_NRR_COUNT,
473 	PIRUS_BUSY_RETRIES,
474 	PIRUS_RESET_RETRY_COUNT,
475 	0,
476 	PIRUS_MIN_THROTTLE_VALUE,
477 	PIRUS_DISKSORT_DISABLED_FLAG,
478 	PIRUS_LUN_RESET_ENABLED_FLAG
479 };
480 
481 #endif
482 
483 #if (defined(__sparc) && !defined(__fibre)) || \
484 	(defined(__i386) || defined(__amd64))
485 
486 
487 static sd_tunables elite_properties = {
488 	ELITE_THROTTLE_VALUE,
489 	0,
490 	0,
491 	0,
492 	0,
493 	0,
494 	0,
495 	0,
496 	0
497 };
498 
499 static sd_tunables st31200n_properties = {
500 	ST31200N_THROTTLE_VALUE,
501 	0,
502 	0,
503 	0,
504 	0,
505 	0,
506 	0,
507 	0,
508 	0
509 };
510 
511 #endif /* Fibre or not */
512 
513 static sd_tunables lsi_properties_scsi = {
514 	LSI_THROTTLE_VALUE,
515 	0,
516 	LSI_NOTREADY_RETRIES,
517 	0,
518 	0,
519 	0,
520 	0,
521 	0,
522 	0
523 };
524 
525 static sd_tunables symbios_properties = {
526 	SYMBIOS_THROTTLE_VALUE,
527 	0,
528 	SYMBIOS_NOTREADY_RETRIES,
529 	0,
530 	0,
531 	0,
532 	0,
533 	0,
534 	0
535 };
536 
537 static sd_tunables lsi_properties = {
538 	0,
539 	0,
540 	LSI_NOTREADY_RETRIES,
541 	0,
542 	0,
543 	0,
544 	0,
545 	0,
546 	0
547 };
548 
549 static sd_tunables lsi_oem_properties = {
550 	0,
551 	0,
552 	LSI_OEM_NOTREADY_RETRIES,
553 	0,
554 	0,
555 	0,
556 	0,
557 	0,
558 	0,
559 	1
560 };
561 
562 
563 
564 #if (defined(SD_PROP_TST))
565 
566 #define	SD_TST_CTYPE_VAL	CTYPE_CDROM
567 #define	SD_TST_THROTTLE_VAL	16
568 #define	SD_TST_NOTREADY_VAL	12
569 #define	SD_TST_BUSY_VAL		60
570 #define	SD_TST_RST_RETRY_VAL	36
571 #define	SD_TST_RSV_REL_TIME	60
572 
573 static sd_tunables tst_properties = {
574 	SD_TST_THROTTLE_VAL,
575 	SD_TST_CTYPE_VAL,
576 	SD_TST_NOTREADY_VAL,
577 	SD_TST_BUSY_VAL,
578 	SD_TST_RST_RETRY_VAL,
579 	SD_TST_RSV_REL_TIME,
580 	0,
581 	0,
582 	0
583 };
584 #endif
585 
586 /* This is similar to the ANSI toupper implementation */
587 #define	SD_TOUPPER(C)	(((C) >= 'a' && (C) <= 'z') ? (C) - 'a' + 'A' : (C))
588 
589 /*
590  * Static Driver Configuration Table
591  *
592  * This is the table of disks which need throttle adjustment (or, perhaps
593  * something else as defined by the flags at a future time.)  device_id
594  * is a string consisting of concatenated vid (vendor), pid (product/model)
595  * and revision strings as defined in the scsi_inquiry structure.  Offsets of
596  * the parts of the string are as defined by the sizes in the scsi_inquiry
597  * structure.  Device type is searched as far as the device_id string is
598  * defined.  Flags defines which values are to be set in the driver from the
599  * properties list.
600  *
601  * Entries below which begin and end with a "*" are a special case.
602  * These do not have a specific vendor, and the string which follows
603  * can appear anywhere in the 16 byte PID portion of the inquiry data.
604  *
605  * Entries below which begin and end with a " " (blank) are a special
606  * case. The comparison function will treat multiple consecutive blanks
607  * as equivalent to a single blank. For example, this causes a
608  * sd_disk_table entry of " NEC CDROM " to match a device's id string
609  * of  "NEC       CDROM".
610  *
611  * Note: The MD21 controller type has been obsoleted.
612  *	 ST318202F is a Legacy device
613  *	 MAM3182FC, MAM3364FC, MAM3738FC do not appear to have ever been
614  *	 made with an FC connection. The entries here are a legacy.
615  */
616 static sd_disk_config_t sd_disk_table[] = {
617 #if defined(__fibre) || defined(__i386) || defined(__amd64)
618 	{ "SEAGATE ST34371FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
619 	{ "SEAGATE ST19171FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
620 	{ "SEAGATE ST39102FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
621 	{ "SEAGATE ST39103FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
622 	{ "SEAGATE ST118273F", SD_CONF_BSET_THROTTLE, &seagate_properties },
623 	{ "SEAGATE ST318202F", SD_CONF_BSET_THROTTLE, &seagate_properties },
624 	{ "SEAGATE ST318203F", SD_CONF_BSET_THROTTLE, &seagate_properties },
625 	{ "SEAGATE ST136403F", SD_CONF_BSET_THROTTLE, &seagate_properties },
626 	{ "SEAGATE ST318304F", SD_CONF_BSET_THROTTLE, &seagate_properties },
627 	{ "SEAGATE ST336704F", SD_CONF_BSET_THROTTLE, &seagate_properties },
628 	{ "SEAGATE ST373405F", SD_CONF_BSET_THROTTLE, &seagate_properties },
629 	{ "SEAGATE ST336605F", SD_CONF_BSET_THROTTLE, &seagate_properties },
630 	{ "SEAGATE ST336752F", SD_CONF_BSET_THROTTLE, &seagate_properties },
631 	{ "SEAGATE ST318452F", SD_CONF_BSET_THROTTLE, &seagate_properties },
632 	{ "FUJITSU MAG3091F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
633 	{ "FUJITSU MAG3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
634 	{ "FUJITSU MAA3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
635 	{ "FUJITSU MAF3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
636 	{ "FUJITSU MAL3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
637 	{ "FUJITSU MAL3738F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
638 	{ "FUJITSU MAM3182FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
639 	{ "FUJITSU MAM3364FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
640 	{ "FUJITSU MAM3738FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
641 	{ "IBM     DDYFT1835",  SD_CONF_BSET_THROTTLE, &ibm_properties },
642 	{ "IBM     DDYFT3695",  SD_CONF_BSET_THROTTLE, &ibm_properties },
643 	{ "IBM     IC35LF2D2",  SD_CONF_BSET_THROTTLE, &ibm_properties },
644 	{ "IBM     IC35LF2PR",  SD_CONF_BSET_THROTTLE, &ibm_properties },
645 	{ "IBM     1724-100",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
646 	{ "IBM     1726-2xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
647 	{ "IBM     1726-22x",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
648 	{ "IBM     1726-4xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
649 	{ "IBM     1726-42x",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
650 	{ "IBM     1726-3xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
651 	{ "IBM     3526",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
652 	{ "IBM     3542",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
653 	{ "IBM     3552",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
654 	{ "IBM     1722",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
655 	{ "IBM     1742",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
656 	{ "IBM     1815",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
657 	{ "IBM     FAStT",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
658 	{ "IBM     1814",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
659 	{ "IBM     1814-200",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
660 	{ "IBM     1818",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
661 	{ "DELL    MD3000",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
662 	{ "DELL    MD3000i",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
663 	{ "LSI     INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
664 	{ "ENGENIO INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
665 	{ "SGI     TP",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
666 	{ "SGI     IS",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
667 	{ "*CSM100_*",		SD_CONF_BSET_NRR_COUNT |
668 			SD_CONF_BSET_CACHE_IS_NV, &lsi_oem_properties },
669 	{ "*CSM200_*",		SD_CONF_BSET_NRR_COUNT |
670 			SD_CONF_BSET_CACHE_IS_NV, &lsi_oem_properties },
671 	{ "Fujitsu SX300",	SD_CONF_BSET_THROTTLE,  &lsi_oem_properties },
672 	{ "LSI",		SD_CONF_BSET_NRR_COUNT, &lsi_properties },
673 	{ "SUN     T3", SD_CONF_BSET_THROTTLE |
674 			SD_CONF_BSET_BSY_RETRY_COUNT|
675 			SD_CONF_BSET_RST_RETRIES|
676 			SD_CONF_BSET_RSV_REL_TIME,
677 		&purple_properties },
678 	{ "SUN     SESS01", SD_CONF_BSET_THROTTLE |
679 		SD_CONF_BSET_BSY_RETRY_COUNT|
680 		SD_CONF_BSET_RST_RETRIES|
681 		SD_CONF_BSET_RSV_REL_TIME|
682 		SD_CONF_BSET_MIN_THROTTLE|
683 		SD_CONF_BSET_DISKSORT_DISABLED,
684 		&sve_properties },
685 	{ "SUN     T4", SD_CONF_BSET_THROTTLE |
686 			SD_CONF_BSET_BSY_RETRY_COUNT|
687 			SD_CONF_BSET_RST_RETRIES|
688 			SD_CONF_BSET_RSV_REL_TIME,
689 		&purple_properties },
690 	{ "SUN     SVE01", SD_CONF_BSET_DISKSORT_DISABLED |
691 		SD_CONF_BSET_LUN_RESET_ENABLED,
692 		&maserati_properties },
693 	{ "SUN     SE6920", SD_CONF_BSET_THROTTLE |
694 		SD_CONF_BSET_NRR_COUNT|
695 		SD_CONF_BSET_BSY_RETRY_COUNT|
696 		SD_CONF_BSET_RST_RETRIES|
697 		SD_CONF_BSET_MIN_THROTTLE|
698 		SD_CONF_BSET_DISKSORT_DISABLED|
699 		SD_CONF_BSET_LUN_RESET_ENABLED,
700 		&pirus_properties },
701 	{ "SUN     SE6940", SD_CONF_BSET_THROTTLE |
702 		SD_CONF_BSET_NRR_COUNT|
703 		SD_CONF_BSET_BSY_RETRY_COUNT|
704 		SD_CONF_BSET_RST_RETRIES|
705 		SD_CONF_BSET_MIN_THROTTLE|
706 		SD_CONF_BSET_DISKSORT_DISABLED|
707 		SD_CONF_BSET_LUN_RESET_ENABLED,
708 		&pirus_properties },
709 	{ "SUN     StorageTek 6920", SD_CONF_BSET_THROTTLE |
710 		SD_CONF_BSET_NRR_COUNT|
711 		SD_CONF_BSET_BSY_RETRY_COUNT|
712 		SD_CONF_BSET_RST_RETRIES|
713 		SD_CONF_BSET_MIN_THROTTLE|
714 		SD_CONF_BSET_DISKSORT_DISABLED|
715 		SD_CONF_BSET_LUN_RESET_ENABLED,
716 		&pirus_properties },
717 	{ "SUN     StorageTek 6940", SD_CONF_BSET_THROTTLE |
718 		SD_CONF_BSET_NRR_COUNT|
719 		SD_CONF_BSET_BSY_RETRY_COUNT|
720 		SD_CONF_BSET_RST_RETRIES|
721 		SD_CONF_BSET_MIN_THROTTLE|
722 		SD_CONF_BSET_DISKSORT_DISABLED|
723 		SD_CONF_BSET_LUN_RESET_ENABLED,
724 		&pirus_properties },
725 	{ "SUN     PSX1000", SD_CONF_BSET_THROTTLE |
726 		SD_CONF_BSET_NRR_COUNT|
727 		SD_CONF_BSET_BSY_RETRY_COUNT|
728 		SD_CONF_BSET_RST_RETRIES|
729 		SD_CONF_BSET_MIN_THROTTLE|
730 		SD_CONF_BSET_DISKSORT_DISABLED|
731 		SD_CONF_BSET_LUN_RESET_ENABLED,
732 		&pirus_properties },
733 	{ "SUN     SE6330", SD_CONF_BSET_THROTTLE |
734 		SD_CONF_BSET_NRR_COUNT|
735 		SD_CONF_BSET_BSY_RETRY_COUNT|
736 		SD_CONF_BSET_RST_RETRIES|
737 		SD_CONF_BSET_MIN_THROTTLE|
738 		SD_CONF_BSET_DISKSORT_DISABLED|
739 		SD_CONF_BSET_LUN_RESET_ENABLED,
740 		&pirus_properties },
741 	{ "SUN     STK6580_6780", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
742 	{ "SUN     SUN_6180", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
743 	{ "STK     OPENstorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
744 	{ "STK     OpenStorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
745 	{ "STK     BladeCtlr",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
746 	{ "STK     FLEXLINE",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
747 	{ "SYMBIOS", SD_CONF_BSET_NRR_COUNT, &symbios_properties },
748 #endif /* fibre or NON-sparc platforms */
749 #if ((defined(__sparc) && !defined(__fibre)) ||\
750 	(defined(__i386) || defined(__amd64)))
751 	{ "SEAGATE ST42400N", SD_CONF_BSET_THROTTLE, &elite_properties },
752 	{ "SEAGATE ST31200N", SD_CONF_BSET_THROTTLE, &st31200n_properties },
753 	{ "SEAGATE ST41600N", SD_CONF_BSET_TUR_CHECK, NULL },
754 	{ "CONNER  CP30540",  SD_CONF_BSET_NOCACHE,  NULL },
755 	{ "*SUN0104*", SD_CONF_BSET_FAB_DEVID, NULL },
756 	{ "*SUN0207*", SD_CONF_BSET_FAB_DEVID, NULL },
757 	{ "*SUN0327*", SD_CONF_BSET_FAB_DEVID, NULL },
758 	{ "*SUN0340*", SD_CONF_BSET_FAB_DEVID, NULL },
759 	{ "*SUN0424*", SD_CONF_BSET_FAB_DEVID, NULL },
760 	{ "*SUN0669*", SD_CONF_BSET_FAB_DEVID, NULL },
761 	{ "*SUN1.0G*", SD_CONF_BSET_FAB_DEVID, NULL },
762 	{ "SYMBIOS INF-01-00       ", SD_CONF_BSET_FAB_DEVID, NULL },
763 	{ "SYMBIOS", SD_CONF_BSET_THROTTLE|SD_CONF_BSET_NRR_COUNT,
764 	    &symbios_properties },
765 	{ "LSI", SD_CONF_BSET_THROTTLE | SD_CONF_BSET_NRR_COUNT,
766 	    &lsi_properties_scsi },
767 #if defined(__i386) || defined(__amd64)
768 	{ " NEC CD-ROM DRIVE:260 ", (SD_CONF_BSET_PLAYMSF_BCD
769 				    | SD_CONF_BSET_READSUB_BCD
770 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
771 				    | SD_CONF_BSET_NO_READ_HEADER
772 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
773 
774 	{ " NEC CD-ROM DRIVE:270 ", (SD_CONF_BSET_PLAYMSF_BCD
775 				    | SD_CONF_BSET_READSUB_BCD
776 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
777 				    | SD_CONF_BSET_NO_READ_HEADER
778 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
779 #endif /* __i386 || __amd64 */
780 #endif /* sparc NON-fibre or NON-sparc platforms */
781 
782 #if (defined(SD_PROP_TST))
783 	{ "VENDOR  PRODUCT ", (SD_CONF_BSET_THROTTLE
784 				| SD_CONF_BSET_CTYPE
785 				| SD_CONF_BSET_NRR_COUNT
786 				| SD_CONF_BSET_FAB_DEVID
787 				| SD_CONF_BSET_NOCACHE
788 				| SD_CONF_BSET_BSY_RETRY_COUNT
789 				| SD_CONF_BSET_PLAYMSF_BCD
790 				| SD_CONF_BSET_READSUB_BCD
791 				| SD_CONF_BSET_READ_TOC_TRK_BCD
792 				| SD_CONF_BSET_READ_TOC_ADDR_BCD
793 				| SD_CONF_BSET_NO_READ_HEADER
794 				| SD_CONF_BSET_READ_CD_XD4
795 				| SD_CONF_BSET_RST_RETRIES
796 				| SD_CONF_BSET_RSV_REL_TIME
797 				| SD_CONF_BSET_TUR_CHECK), &tst_properties},
798 #endif
799 };
800 
801 static const int sd_disk_table_size =
802 	sizeof (sd_disk_table)/ sizeof (sd_disk_config_t);
803 
804 /*
805  * Emulation mode disk drive VID/PID table
806  */
807 static char sd_flash_dev_table[][25] = {
808 	"ATA     MARVELL SD88SA02",
809 	"MARVELL SD88SA02",
810 	"TOSHIBA THNSNV05",
811 };
812 
813 static const int sd_flash_dev_table_size =
814 	sizeof (sd_flash_dev_table) / sizeof (sd_flash_dev_table[0]);
815 
816 #define	SD_INTERCONNECT_PARALLEL	0
817 #define	SD_INTERCONNECT_FABRIC		1
818 #define	SD_INTERCONNECT_FIBRE		2
819 #define	SD_INTERCONNECT_SSA		3
820 #define	SD_INTERCONNECT_SATA		4
821 #define	SD_INTERCONNECT_SAS		5
822 
823 #define	SD_IS_PARALLEL_SCSI(un)		\
824 	((un)->un_interconnect_type == SD_INTERCONNECT_PARALLEL)
825 #define	SD_IS_SERIAL(un)		\
826 	(((un)->un_interconnect_type == SD_INTERCONNECT_SATA) ||\
827 	((un)->un_interconnect_type == SD_INTERCONNECT_SAS))
828 
829 /*
830  * Definitions used by device id registration routines
831  */
832 #define	VPD_HEAD_OFFSET		3	/* size of head for vpd page */
833 #define	VPD_PAGE_LENGTH		3	/* offset for pge length data */
834 #define	VPD_MODE_PAGE		1	/* offset into vpd pg for "page code" */
835 
836 static kmutex_t sd_sense_mutex = {0};
837 
838 /*
839  * Macros for updates of the driver state
840  */
841 #define	New_state(un, s)        \
842 	(un)->un_last_state = (un)->un_state, (un)->un_state = (s)
843 #define	Restore_state(un)	\
844 	{ uchar_t tmp = (un)->un_last_state; New_state((un), tmp); }
845 
846 static struct sd_cdbinfo sd_cdbtab[] = {
847 	{ CDB_GROUP0, 0x00,	   0x1FFFFF,   0xFF,	    },
848 	{ CDB_GROUP1, SCMD_GROUP1, 0xFFFFFFFF, 0xFFFF,	    },
849 	{ CDB_GROUP5, SCMD_GROUP5, 0xFFFFFFFF, 0xFFFFFFFF,  },
850 	{ CDB_GROUP4, SCMD_GROUP4, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFF, },
851 };
852 
853 /*
854  * Specifies the number of seconds that must have elapsed since the last
855  * cmd. has completed for a device to be declared idle to the PM framework.
856  */
857 static int sd_pm_idletime = 1;
858 
859 /*
860  * Internal function prototypes
861  */
862 
863 #if (defined(__fibre))
864 /*
865  * These #defines are to avoid namespace collisions that occur because this
866  * code is currently used to compile two separate driver modules: sd and ssd.
867  * All function names need to be treated this way (even if declared static)
868  * in order to allow the debugger to resolve the names properly.
869  * It is anticipated that in the near future the ssd module will be obsoleted,
870  * at which time this ugliness should go away.
871  */
872 #define	sd_log_trace			ssd_log_trace
873 #define	sd_log_info			ssd_log_info
874 #define	sd_log_err			ssd_log_err
875 #define	sdprobe				ssdprobe
876 #define	sdinfo				ssdinfo
877 #define	sd_prop_op			ssd_prop_op
878 #define	sd_scsi_probe_cache_init	ssd_scsi_probe_cache_init
879 #define	sd_scsi_probe_cache_fini	ssd_scsi_probe_cache_fini
880 #define	sd_scsi_clear_probe_cache	ssd_scsi_clear_probe_cache
881 #define	sd_scsi_probe_with_cache	ssd_scsi_probe_with_cache
882 #define	sd_scsi_target_lun_init		ssd_scsi_target_lun_init
883 #define	sd_scsi_target_lun_fini		ssd_scsi_target_lun_fini
884 #define	sd_scsi_get_target_lun_count	ssd_scsi_get_target_lun_count
885 #define	sd_scsi_update_lun_on_target	ssd_scsi_update_lun_on_target
886 #define	sd_spin_up_unit			ssd_spin_up_unit
887 #define	sd_enable_descr_sense		ssd_enable_descr_sense
888 #define	sd_reenable_dsense_task		ssd_reenable_dsense_task
889 #define	sd_set_mmc_caps			ssd_set_mmc_caps
890 #define	sd_read_unit_properties		ssd_read_unit_properties
891 #define	sd_process_sdconf_file		ssd_process_sdconf_file
892 #define	sd_process_sdconf_table		ssd_process_sdconf_table
893 #define	sd_sdconf_id_match		ssd_sdconf_id_match
894 #define	sd_blank_cmp			ssd_blank_cmp
895 #define	sd_chk_vers1_data		ssd_chk_vers1_data
896 #define	sd_set_vers1_properties		ssd_set_vers1_properties
897 #define	sd_check_solid_state		ssd_check_solid_state
898 #define	sd_check_emulation_mode		ssd_check_emulation_mode
899 
900 #define	sd_get_physical_geometry	ssd_get_physical_geometry
901 #define	sd_get_virtual_geometry		ssd_get_virtual_geometry
902 #define	sd_update_block_info		ssd_update_block_info
903 #define	sd_register_devid		ssd_register_devid
904 #define	sd_get_devid			ssd_get_devid
905 #define	sd_create_devid			ssd_create_devid
906 #define	sd_write_deviceid		ssd_write_deviceid
907 #define	sd_check_vpd_page_support	ssd_check_vpd_page_support
908 #define	sd_setup_pm			ssd_setup_pm
909 #define	sd_create_pm_components		ssd_create_pm_components
910 #define	sd_ddi_suspend			ssd_ddi_suspend
911 #define	sd_ddi_resume			ssd_ddi_resume
912 #define	sd_pm_state_change		ssd_pm_state_change
913 #define	sdpower				ssdpower
914 #define	sdattach			ssdattach
915 #define	sddetach			ssddetach
916 #define	sd_unit_attach			ssd_unit_attach
917 #define	sd_unit_detach			ssd_unit_detach
918 #define	sd_set_unit_attributes		ssd_set_unit_attributes
919 #define	sd_create_errstats		ssd_create_errstats
920 #define	sd_set_errstats			ssd_set_errstats
921 #define	sd_set_pstats			ssd_set_pstats
922 #define	sddump				ssddump
923 #define	sd_scsi_poll			ssd_scsi_poll
924 #define	sd_send_polled_RQS		ssd_send_polled_RQS
925 #define	sd_ddi_scsi_poll		ssd_ddi_scsi_poll
926 #define	sd_init_event_callbacks		ssd_init_event_callbacks
927 #define	sd_event_callback		ssd_event_callback
928 #define	sd_cache_control		ssd_cache_control
929 #define	sd_get_write_cache_enabled	ssd_get_write_cache_enabled
930 #define	sd_get_nv_sup			ssd_get_nv_sup
931 #define	sd_make_device			ssd_make_device
932 #define	sdopen				ssdopen
933 #define	sdclose				ssdclose
934 #define	sd_ready_and_valid		ssd_ready_and_valid
935 #define	sdmin				ssdmin
936 #define	sdread				ssdread
937 #define	sdwrite				ssdwrite
938 #define	sdaread				ssdaread
939 #define	sdawrite			ssdawrite
940 #define	sdstrategy			ssdstrategy
941 #define	sdioctl				ssdioctl
942 #define	sd_mapblockaddr_iostart		ssd_mapblockaddr_iostart
943 #define	sd_mapblocksize_iostart		ssd_mapblocksize_iostart
944 #define	sd_checksum_iostart		ssd_checksum_iostart
945 #define	sd_checksum_uscsi_iostart	ssd_checksum_uscsi_iostart
946 #define	sd_pm_iostart			ssd_pm_iostart
947 #define	sd_core_iostart			ssd_core_iostart
948 #define	sd_mapblockaddr_iodone		ssd_mapblockaddr_iodone
949 #define	sd_mapblocksize_iodone		ssd_mapblocksize_iodone
950 #define	sd_checksum_iodone		ssd_checksum_iodone
951 #define	sd_checksum_uscsi_iodone	ssd_checksum_uscsi_iodone
952 #define	sd_pm_iodone			ssd_pm_iodone
953 #define	sd_initpkt_for_buf		ssd_initpkt_for_buf
954 #define	sd_destroypkt_for_buf		ssd_destroypkt_for_buf
955 #define	sd_setup_rw_pkt			ssd_setup_rw_pkt
956 #define	sd_setup_next_rw_pkt		ssd_setup_next_rw_pkt
957 #define	sd_buf_iodone			ssd_buf_iodone
958 #define	sd_uscsi_strategy		ssd_uscsi_strategy
959 #define	sd_initpkt_for_uscsi		ssd_initpkt_for_uscsi
960 #define	sd_destroypkt_for_uscsi		ssd_destroypkt_for_uscsi
961 #define	sd_uscsi_iodone			ssd_uscsi_iodone
962 #define	sd_xbuf_strategy		ssd_xbuf_strategy
963 #define	sd_xbuf_init			ssd_xbuf_init
964 #define	sd_pm_entry			ssd_pm_entry
965 #define	sd_pm_exit			ssd_pm_exit
966 
967 #define	sd_pm_idletimeout_handler	ssd_pm_idletimeout_handler
968 #define	sd_pm_timeout_handler		ssd_pm_timeout_handler
969 
970 #define	sd_add_buf_to_waitq		ssd_add_buf_to_waitq
971 #define	sdintr				ssdintr
972 #define	sd_start_cmds			ssd_start_cmds
973 #define	sd_send_scsi_cmd		ssd_send_scsi_cmd
974 #define	sd_bioclone_alloc		ssd_bioclone_alloc
975 #define	sd_bioclone_free		ssd_bioclone_free
976 #define	sd_shadow_buf_alloc		ssd_shadow_buf_alloc
977 #define	sd_shadow_buf_free		ssd_shadow_buf_free
978 #define	sd_print_transport_rejected_message	\
979 					ssd_print_transport_rejected_message
980 #define	sd_retry_command		ssd_retry_command
981 #define	sd_set_retry_bp			ssd_set_retry_bp
982 #define	sd_send_request_sense_command	ssd_send_request_sense_command
983 #define	sd_start_retry_command		ssd_start_retry_command
984 #define	sd_start_direct_priority_command	\
985 					ssd_start_direct_priority_command
986 #define	sd_return_failed_command	ssd_return_failed_command
987 #define	sd_return_failed_command_no_restart	\
988 					ssd_return_failed_command_no_restart
989 #define	sd_return_command		ssd_return_command
990 #define	sd_sync_with_callback		ssd_sync_with_callback
991 #define	sdrunout			ssdrunout
992 #define	sd_mark_rqs_busy		ssd_mark_rqs_busy
993 #define	sd_mark_rqs_idle		ssd_mark_rqs_idle
994 #define	sd_reduce_throttle		ssd_reduce_throttle
995 #define	sd_restore_throttle		ssd_restore_throttle
996 #define	sd_print_incomplete_msg		ssd_print_incomplete_msg
997 #define	sd_init_cdb_limits		ssd_init_cdb_limits
998 #define	sd_pkt_status_good		ssd_pkt_status_good
999 #define	sd_pkt_status_check_condition	ssd_pkt_status_check_condition
1000 #define	sd_pkt_status_busy		ssd_pkt_status_busy
1001 #define	sd_pkt_status_reservation_conflict	\
1002 					ssd_pkt_status_reservation_conflict
1003 #define	sd_pkt_status_qfull		ssd_pkt_status_qfull
1004 #define	sd_handle_request_sense		ssd_handle_request_sense
1005 #define	sd_handle_auto_request_sense	ssd_handle_auto_request_sense
1006 #define	sd_print_sense_failed_msg	ssd_print_sense_failed_msg
1007 #define	sd_validate_sense_data		ssd_validate_sense_data
1008 #define	sd_decode_sense			ssd_decode_sense
1009 #define	sd_print_sense_msg		ssd_print_sense_msg
1010 #define	sd_sense_key_no_sense		ssd_sense_key_no_sense
1011 #define	sd_sense_key_recoverable_error	ssd_sense_key_recoverable_error
1012 #define	sd_sense_key_not_ready		ssd_sense_key_not_ready
1013 #define	sd_sense_key_medium_or_hardware_error	\
1014 					ssd_sense_key_medium_or_hardware_error
1015 #define	sd_sense_key_illegal_request	ssd_sense_key_illegal_request
1016 #define	sd_sense_key_unit_attention	ssd_sense_key_unit_attention
1017 #define	sd_sense_key_fail_command	ssd_sense_key_fail_command
1018 #define	sd_sense_key_blank_check	ssd_sense_key_blank_check
1019 #define	sd_sense_key_aborted_command	ssd_sense_key_aborted_command
1020 #define	sd_sense_key_default		ssd_sense_key_default
1021 #define	sd_print_retry_msg		ssd_print_retry_msg
1022 #define	sd_print_cmd_incomplete_msg	ssd_print_cmd_incomplete_msg
1023 #define	sd_pkt_reason_cmd_incomplete	ssd_pkt_reason_cmd_incomplete
1024 #define	sd_pkt_reason_cmd_tran_err	ssd_pkt_reason_cmd_tran_err
1025 #define	sd_pkt_reason_cmd_reset		ssd_pkt_reason_cmd_reset
1026 #define	sd_pkt_reason_cmd_aborted	ssd_pkt_reason_cmd_aborted
1027 #define	sd_pkt_reason_cmd_timeout	ssd_pkt_reason_cmd_timeout
1028 #define	sd_pkt_reason_cmd_unx_bus_free	ssd_pkt_reason_cmd_unx_bus_free
1029 #define	sd_pkt_reason_cmd_tag_reject	ssd_pkt_reason_cmd_tag_reject
1030 #define	sd_pkt_reason_default		ssd_pkt_reason_default
1031 #define	sd_reset_target			ssd_reset_target
1032 #define	sd_start_stop_unit_callback	ssd_start_stop_unit_callback
1033 #define	sd_start_stop_unit_task		ssd_start_stop_unit_task
1034 #define	sd_taskq_create			ssd_taskq_create
1035 #define	sd_taskq_delete			ssd_taskq_delete
1036 #define	sd_target_change_task		ssd_target_change_task
1037 #define	sd_log_dev_status_event		ssd_log_dev_status_event
1038 #define	sd_log_lun_expansion_event	ssd_log_lun_expansion_event
1039 #define	sd_log_eject_request_event	ssd_log_eject_request_event
1040 #define	sd_media_change_task		ssd_media_change_task
1041 #define	sd_handle_mchange		ssd_handle_mchange
1042 #define	sd_send_scsi_DOORLOCK		ssd_send_scsi_DOORLOCK
1043 #define	sd_send_scsi_READ_CAPACITY	ssd_send_scsi_READ_CAPACITY
1044 #define	sd_send_scsi_READ_CAPACITY_16	ssd_send_scsi_READ_CAPACITY_16
1045 #define	sd_send_scsi_GET_CONFIGURATION	ssd_send_scsi_GET_CONFIGURATION
1046 #define	sd_send_scsi_feature_GET_CONFIGURATION	\
1047 					sd_send_scsi_feature_GET_CONFIGURATION
1048 #define	sd_send_scsi_START_STOP_UNIT	ssd_send_scsi_START_STOP_UNIT
1049 #define	sd_send_scsi_INQUIRY		ssd_send_scsi_INQUIRY
1050 #define	sd_send_scsi_TEST_UNIT_READY	ssd_send_scsi_TEST_UNIT_READY
1051 #define	sd_send_scsi_PERSISTENT_RESERVE_IN	\
1052 					ssd_send_scsi_PERSISTENT_RESERVE_IN
1053 #define	sd_send_scsi_PERSISTENT_RESERVE_OUT	\
1054 					ssd_send_scsi_PERSISTENT_RESERVE_OUT
1055 #define	sd_send_scsi_SYNCHRONIZE_CACHE	ssd_send_scsi_SYNCHRONIZE_CACHE
1056 #define	sd_send_scsi_SYNCHRONIZE_CACHE_biodone	\
1057 					ssd_send_scsi_SYNCHRONIZE_CACHE_biodone
1058 #define	sd_send_scsi_MODE_SENSE		ssd_send_scsi_MODE_SENSE
1059 #define	sd_send_scsi_MODE_SELECT	ssd_send_scsi_MODE_SELECT
1060 #define	sd_send_scsi_RDWR		ssd_send_scsi_RDWR
1061 #define	sd_send_scsi_LOG_SENSE		ssd_send_scsi_LOG_SENSE
1062 #define	sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION	\
1063 				ssd_send_scsi_GET_EVENT_STATUS_NOTIFICATION
1064 #define	sd_gesn_media_data_valid	ssd_gesn_media_data_valid
1065 #define	sd_alloc_rqs			ssd_alloc_rqs
1066 #define	sd_free_rqs			ssd_free_rqs
1067 #define	sd_dump_memory			ssd_dump_memory
1068 #define	sd_get_media_info_com		ssd_get_media_info_com
1069 #define	sd_get_media_info		ssd_get_media_info
1070 #define	sd_get_media_info_ext		ssd_get_media_info_ext
1071 #define	sd_dkio_ctrl_info		ssd_dkio_ctrl_info
1072 #define	sd_nvpair_str_decode		ssd_nvpair_str_decode
1073 #define	sd_strtok_r			ssd_strtok_r
1074 #define	sd_set_properties		ssd_set_properties
1075 #define	sd_get_tunables_from_conf	ssd_get_tunables_from_conf
1076 #define	sd_setup_next_xfer		ssd_setup_next_xfer
1077 #define	sd_dkio_get_temp		ssd_dkio_get_temp
1078 #define	sd_check_mhd			ssd_check_mhd
1079 #define	sd_mhd_watch_cb			ssd_mhd_watch_cb
1080 #define	sd_mhd_watch_incomplete		ssd_mhd_watch_incomplete
1081 #define	sd_sname			ssd_sname
1082 #define	sd_mhd_resvd_recover		ssd_mhd_resvd_recover
1083 #define	sd_resv_reclaim_thread		ssd_resv_reclaim_thread
1084 #define	sd_take_ownership		ssd_take_ownership
1085 #define	sd_reserve_release		ssd_reserve_release
1086 #define	sd_rmv_resv_reclaim_req		ssd_rmv_resv_reclaim_req
1087 #define	sd_mhd_reset_notify_cb		ssd_mhd_reset_notify_cb
1088 #define	sd_persistent_reservation_in_read_keys	\
1089 					ssd_persistent_reservation_in_read_keys
1090 #define	sd_persistent_reservation_in_read_resv	\
1091 					ssd_persistent_reservation_in_read_resv
1092 #define	sd_mhdioc_takeown		ssd_mhdioc_takeown
1093 #define	sd_mhdioc_failfast		ssd_mhdioc_failfast
1094 #define	sd_mhdioc_release		ssd_mhdioc_release
1095 #define	sd_mhdioc_register_devid	ssd_mhdioc_register_devid
1096 #define	sd_mhdioc_inkeys		ssd_mhdioc_inkeys
1097 #define	sd_mhdioc_inresv		ssd_mhdioc_inresv
1098 #define	sr_change_blkmode		ssr_change_blkmode
1099 #define	sr_change_speed			ssr_change_speed
1100 #define	sr_atapi_change_speed		ssr_atapi_change_speed
1101 #define	sr_pause_resume			ssr_pause_resume
1102 #define	sr_play_msf			ssr_play_msf
1103 #define	sr_play_trkind			ssr_play_trkind
1104 #define	sr_read_all_subcodes		ssr_read_all_subcodes
1105 #define	sr_read_subchannel		ssr_read_subchannel
1106 #define	sr_read_tocentry		ssr_read_tocentry
1107 #define	sr_read_tochdr			ssr_read_tochdr
1108 #define	sr_read_cdda			ssr_read_cdda
1109 #define	sr_read_cdxa			ssr_read_cdxa
1110 #define	sr_read_mode1			ssr_read_mode1
1111 #define	sr_read_mode2			ssr_read_mode2
1112 #define	sr_read_cd_mode2		ssr_read_cd_mode2
1113 #define	sr_sector_mode			ssr_sector_mode
1114 #define	sr_eject			ssr_eject
1115 #define	sr_ejected			ssr_ejected
1116 #define	sr_check_wp			ssr_check_wp
1117 #define	sd_watch_request_submit		ssd_watch_request_submit
1118 #define	sd_check_media			ssd_check_media
1119 #define	sd_media_watch_cb		ssd_media_watch_cb
1120 #define	sd_delayed_cv_broadcast		ssd_delayed_cv_broadcast
1121 #define	sr_volume_ctrl			ssr_volume_ctrl
1122 #define	sr_read_sony_session_offset	ssr_read_sony_session_offset
1123 #define	sd_log_page_supported		ssd_log_page_supported
1124 #define	sd_check_for_writable_cd	ssd_check_for_writable_cd
1125 #define	sd_wm_cache_constructor		ssd_wm_cache_constructor
1126 #define	sd_wm_cache_destructor		ssd_wm_cache_destructor
1127 #define	sd_range_lock			ssd_range_lock
1128 #define	sd_get_range			ssd_get_range
1129 #define	sd_free_inlist_wmap		ssd_free_inlist_wmap
1130 #define	sd_range_unlock			ssd_range_unlock
1131 #define	sd_read_modify_write_task	ssd_read_modify_write_task
1132 #define	sddump_do_read_of_rmw		ssddump_do_read_of_rmw
1133 
1134 #define	sd_iostart_chain		ssd_iostart_chain
1135 #define	sd_iodone_chain			ssd_iodone_chain
1136 #define	sd_initpkt_map			ssd_initpkt_map
1137 #define	sd_destroypkt_map		ssd_destroypkt_map
1138 #define	sd_chain_type_map		ssd_chain_type_map
1139 #define	sd_chain_index_map		ssd_chain_index_map
1140 
1141 #define	sd_failfast_flushctl		ssd_failfast_flushctl
1142 #define	sd_failfast_flushq		ssd_failfast_flushq
1143 #define	sd_failfast_flushq_callback	ssd_failfast_flushq_callback
1144 
1145 #define	sd_is_lsi			ssd_is_lsi
1146 #define	sd_tg_rdwr			ssd_tg_rdwr
1147 #define	sd_tg_getinfo			ssd_tg_getinfo
1148 #define	sd_rmw_msg_print_handler	ssd_rmw_msg_print_handler
1149 
1150 #endif	/* #if (defined(__fibre)) */
1151 
1152 
1153 int _init(void);
1154 int _fini(void);
1155 int _info(struct modinfo *modinfop);
1156 
1157 /*PRINTFLIKE3*/
1158 static void sd_log_trace(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1159 /*PRINTFLIKE3*/
1160 static void sd_log_info(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1161 /*PRINTFLIKE3*/
1162 static void sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1163 
1164 static int sdprobe(dev_info_t *devi);
1165 static int sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
1166     void **result);
1167 static int sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1168     int mod_flags, char *name, caddr_t valuep, int *lengthp);
1169 
1170 /*
1171  * Smart probe for parallel scsi
1172  */
1173 static void sd_scsi_probe_cache_init(void);
1174 static void sd_scsi_probe_cache_fini(void);
1175 static void sd_scsi_clear_probe_cache(void);
1176 static int  sd_scsi_probe_with_cache(struct scsi_device *devp, int (*fn)());
1177 
1178 /*
1179  * Attached luns on target for parallel scsi
1180  */
1181 static void sd_scsi_target_lun_init(void);
1182 static void sd_scsi_target_lun_fini(void);
1183 static int  sd_scsi_get_target_lun_count(dev_info_t *dip, int target);
1184 static void sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag);
1185 
1186 static int	sd_spin_up_unit(sd_ssc_t *ssc);
1187 
1188 /*
1189  * Using sd_ssc_init to establish sd_ssc_t struct
1190  * Using sd_ssc_send to send uscsi internal command
1191  * Using sd_ssc_fini to free sd_ssc_t struct
1192  */
1193 static sd_ssc_t *sd_ssc_init(struct sd_lun *un);
1194 static int sd_ssc_send(sd_ssc_t *ssc, struct uscsi_cmd *incmd,
1195     int flag, enum uio_seg dataspace, int path_flag);
1196 static void sd_ssc_fini(sd_ssc_t *ssc);
1197 
1198 /*
1199  * Using sd_ssc_assessment to set correct type-of-assessment
1200  * Using sd_ssc_post to post ereport & system log
1201  *       sd_ssc_post will call sd_ssc_print to print system log
1202  *       sd_ssc_post will call sd_ssd_ereport_post to post ereport
1203  */
1204 static void sd_ssc_assessment(sd_ssc_t *ssc,
1205     enum sd_type_assessment tp_assess);
1206 
1207 static void sd_ssc_post(sd_ssc_t *ssc, enum sd_driver_assessment sd_assess);
1208 static void sd_ssc_print(sd_ssc_t *ssc, int sd_severity);
1209 static void sd_ssc_ereport_post(sd_ssc_t *ssc,
1210     enum sd_driver_assessment drv_assess);
1211 
1212 /*
1213  * Using sd_ssc_set_info to mark an un-decodable-data error.
1214  * Using sd_ssc_extract_info to transfer information from internal
1215  *       data structures to sd_ssc_t.
1216  */
1217 static void sd_ssc_set_info(sd_ssc_t *ssc, int ssc_flags, uint_t comp,
1218     const char *fmt, ...);
1219 static void sd_ssc_extract_info(sd_ssc_t *ssc, struct sd_lun *un,
1220     struct scsi_pkt *pktp, struct buf *bp, struct sd_xbuf *xp);
1221 
1222 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
1223     enum uio_seg dataspace, int path_flag);
1224 
1225 #ifdef _LP64
1226 static void	sd_enable_descr_sense(sd_ssc_t *ssc);
1227 static void	sd_reenable_dsense_task(void *arg);
1228 #endif /* _LP64 */
1229 
1230 static void	sd_set_mmc_caps(sd_ssc_t *ssc);
1231 
1232 static void sd_read_unit_properties(struct sd_lun *un);
1233 static int  sd_process_sdconf_file(struct sd_lun *un);
1234 static void sd_nvpair_str_decode(struct sd_lun *un, char *nvpair_str);
1235 static char *sd_strtok_r(char *string, const char *sepset, char **lasts);
1236 static void sd_set_properties(struct sd_lun *un, char *name, char *value);
1237 static void sd_get_tunables_from_conf(struct sd_lun *un, int flags,
1238     int *data_list, sd_tunables *values);
1239 static void sd_process_sdconf_table(struct sd_lun *un);
1240 static int  sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen);
1241 static int  sd_blank_cmp(struct sd_lun *un, char *id, int idlen);
1242 static int  sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
1243 	int list_len, char *dataname_ptr);
1244 static void sd_set_vers1_properties(struct sd_lun *un, int flags,
1245     sd_tunables *prop_list);
1246 
1247 static void sd_register_devid(sd_ssc_t *ssc, dev_info_t *devi,
1248     int reservation_flag);
1249 static int  sd_get_devid(sd_ssc_t *ssc);
1250 static ddi_devid_t sd_create_devid(sd_ssc_t *ssc);
1251 static int  sd_write_deviceid(sd_ssc_t *ssc);
1252 static int  sd_get_devid_page(struct sd_lun *un, uchar_t *wwn, int *len);
1253 static int  sd_check_vpd_page_support(sd_ssc_t *ssc);
1254 
1255 static void sd_setup_pm(sd_ssc_t *ssc, dev_info_t *devi);
1256 static void sd_create_pm_components(dev_info_t *devi, struct sd_lun *un);
1257 
1258 static int  sd_ddi_suspend(dev_info_t *devi);
1259 static int  sd_ddi_resume(dev_info_t *devi);
1260 static int  sd_pm_state_change(struct sd_lun *un, int level, int flag);
1261 static int  sdpower(dev_info_t *devi, int component, int level);
1262 
1263 static int  sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd);
1264 static int  sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd);
1265 static int  sd_unit_attach(dev_info_t *devi);
1266 static int  sd_unit_detach(dev_info_t *devi);
1267 
1268 static void sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi);
1269 static void sd_create_errstats(struct sd_lun *un, int instance);
1270 static void sd_set_errstats(struct sd_lun *un);
1271 static void sd_set_pstats(struct sd_lun *un);
1272 
1273 static int  sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);
1274 static int  sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pkt);
1275 static int  sd_send_polled_RQS(struct sd_lun *un);
1276 static int  sd_ddi_scsi_poll(struct scsi_pkt *pkt);
1277 
1278 #if (defined(__fibre))
1279 /*
1280  * Event callbacks (photon)
1281  */
1282 static void sd_init_event_callbacks(struct sd_lun *un);
1283 static void  sd_event_callback(dev_info_t *, ddi_eventcookie_t, void *, void *);
1284 #endif
1285 
1286 /*
1287  * Defines for sd_cache_control
1288  */
1289 
1290 #define	SD_CACHE_ENABLE		1
1291 #define	SD_CACHE_DISABLE	0
1292 #define	SD_CACHE_NOCHANGE	-1
1293 
1294 static int   sd_cache_control(sd_ssc_t *ssc, int rcd_flag, int wce_flag);
1295 static int   sd_get_write_cache_enabled(sd_ssc_t *ssc, int *is_enabled);
1296 static void  sd_get_nv_sup(sd_ssc_t *ssc);
1297 static dev_t sd_make_device(dev_info_t *devi);
1298 static void  sd_check_solid_state(sd_ssc_t *ssc);
1299 static void  sd_check_emulation_mode(sd_ssc_t *ssc);
1300 static void  sd_update_block_info(struct sd_lun *un, uint32_t lbasize,
1301 	uint64_t capacity);
1302 
1303 /*
1304  * Driver entry point functions.
1305  */
1306 static int  sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p);
1307 static int  sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p);
1308 static int  sd_ready_and_valid(sd_ssc_t *ssc, int part);
1309 
1310 static void sdmin(struct buf *bp);
1311 static int sdread(dev_t dev, struct uio *uio, cred_t *cred_p);
1312 static int sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p);
1313 static int sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1314 static int sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1315 
1316 static int sdstrategy(struct buf *bp);
1317 static int sdioctl(dev_t, int, intptr_t, int, cred_t *, int *);
1318 
1319 /*
1320  * Function prototypes for layering functions in the iostart chain.
1321  */
1322 static void sd_mapblockaddr_iostart(int index, struct sd_lun *un,
1323 	struct buf *bp);
1324 static void sd_mapblocksize_iostart(int index, struct sd_lun *un,
1325 	struct buf *bp);
1326 static void sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp);
1327 static void sd_checksum_uscsi_iostart(int index, struct sd_lun *un,
1328 	struct buf *bp);
1329 static void sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp);
1330 static void sd_core_iostart(int index, struct sd_lun *un, struct buf *bp);
1331 
1332 /*
1333  * Function prototypes for layering functions in the iodone chain.
1334  */
1335 static void sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp);
1336 static void sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp);
1337 static void sd_mapblockaddr_iodone(int index, struct sd_lun *un,
1338 	struct buf *bp);
1339 static void sd_mapblocksize_iodone(int index, struct sd_lun *un,
1340 	struct buf *bp);
1341 static void sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp);
1342 static void sd_checksum_uscsi_iodone(int index, struct sd_lun *un,
1343 	struct buf *bp);
1344 static void sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp);
1345 
1346 /*
1347  * Prototypes for functions to support buf(9S) based IO.
1348  */
1349 static void sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg);
1350 static int sd_initpkt_for_buf(struct buf *, struct scsi_pkt **);
1351 static void sd_destroypkt_for_buf(struct buf *);
1352 static int sd_setup_rw_pkt(struct sd_lun *un, struct scsi_pkt **pktpp,
1353 	struct buf *bp, int flags,
1354 	int (*callback)(caddr_t), caddr_t callback_arg,
1355 	diskaddr_t lba, uint32_t blockcount);
1356 static int sd_setup_next_rw_pkt(struct sd_lun *un, struct scsi_pkt *pktp,
1357 	struct buf *bp, diskaddr_t lba, uint32_t blockcount);
1358 
1359 /*
1360  * Prototypes for functions to support USCSI IO.
1361  */
1362 static int sd_uscsi_strategy(struct buf *bp);
1363 static int sd_initpkt_for_uscsi(struct buf *, struct scsi_pkt **);
1364 static void sd_destroypkt_for_uscsi(struct buf *);
1365 
1366 static void sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
1367 	uchar_t chain_type, void *pktinfop);
1368 
1369 static int  sd_pm_entry(struct sd_lun *un);
1370 static void sd_pm_exit(struct sd_lun *un);
1371 
1372 static void sd_pm_idletimeout_handler(void *arg);
1373 
1374 /*
1375  * sd_core internal functions (used at the sd_core_io layer).
1376  */
1377 static void sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp);
1378 static void sdintr(struct scsi_pkt *pktp);
1379 static void sd_start_cmds(struct sd_lun *un, struct buf *immed_bp);
1380 
1381 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
1382 	enum uio_seg dataspace, int path_flag);
1383 
1384 static struct buf *sd_bioclone_alloc(struct buf *bp, size_t datalen,
1385 	daddr_t blkno, int (*func)(struct buf *));
1386 static struct buf *sd_shadow_buf_alloc(struct buf *bp, size_t datalen,
1387 	uint_t bflags, daddr_t blkno, int (*func)(struct buf *));
1388 static void sd_bioclone_free(struct buf *bp);
1389 static void sd_shadow_buf_free(struct buf *bp);
1390 
1391 static void sd_print_transport_rejected_message(struct sd_lun *un,
1392 	struct sd_xbuf *xp, int code);
1393 static void sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp,
1394     void *arg, int code);
1395 static void sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp,
1396     void *arg, int code);
1397 static void sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp,
1398     void *arg, int code);
1399 
1400 static void sd_retry_command(struct sd_lun *un, struct buf *bp,
1401 	int retry_check_flag,
1402 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp,
1403 		int c),
1404 	void *user_arg, int failure_code,  clock_t retry_delay,
1405 	void (*statp)(kstat_io_t *));
1406 
1407 static void sd_set_retry_bp(struct sd_lun *un, struct buf *bp,
1408 	clock_t retry_delay, void (*statp)(kstat_io_t *));
1409 
1410 static void sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
1411 	struct scsi_pkt *pktp);
1412 static void sd_start_retry_command(void *arg);
1413 static void sd_start_direct_priority_command(void *arg);
1414 static void sd_return_failed_command(struct sd_lun *un, struct buf *bp,
1415 	int errcode);
1416 static void sd_return_failed_command_no_restart(struct sd_lun *un,
1417 	struct buf *bp, int errcode);
1418 static void sd_return_command(struct sd_lun *un, struct buf *bp);
1419 static void sd_sync_with_callback(struct sd_lun *un);
1420 static int sdrunout(caddr_t arg);
1421 
1422 static void sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp);
1423 static struct buf *sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *xp);
1424 
1425 static void sd_reduce_throttle(struct sd_lun *un, int throttle_type);
1426 static void sd_restore_throttle(void *arg);
1427 
1428 static void sd_init_cdb_limits(struct sd_lun *un);
1429 
1430 static void sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
1431 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1432 
1433 /*
1434  * Error handling functions
1435  */
1436 static void sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
1437 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1438 static void sd_pkt_status_busy(struct sd_lun *un, struct buf *bp,
1439 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1440 static void sd_pkt_status_reservation_conflict(struct sd_lun *un,
1441 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1442 static void sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
1443 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1444 
1445 static void sd_handle_request_sense(struct sd_lun *un, struct buf *bp,
1446 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1447 static void sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
1448 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1449 static int sd_validate_sense_data(struct sd_lun *un, struct buf *bp,
1450 	struct sd_xbuf *xp, size_t actual_len);
1451 static void sd_decode_sense(struct sd_lun *un, struct buf *bp,
1452 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1453 
1454 static void sd_print_sense_msg(struct sd_lun *un, struct buf *bp,
1455 	void *arg, int code);
1456 
1457 static void sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
1458 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1459 static void sd_sense_key_recoverable_error(struct sd_lun *un,
1460 	uint8_t *sense_datap,
1461 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1462 static void sd_sense_key_not_ready(struct sd_lun *un,
1463 	uint8_t *sense_datap,
1464 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1465 static void sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
1466 	uint8_t *sense_datap,
1467 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1468 static void sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
1469 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1470 static void sd_sense_key_unit_attention(struct sd_lun *un,
1471 	uint8_t *sense_datap,
1472 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1473 static void sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
1474 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1475 static void sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
1476 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1477 static void sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
1478 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1479 static void sd_sense_key_default(struct sd_lun *un,
1480 	uint8_t *sense_datap,
1481 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1482 
1483 static void sd_print_retry_msg(struct sd_lun *un, struct buf *bp,
1484 	void *arg, int flag);
1485 
1486 static void sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
1487 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1488 static void sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
1489 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1490 static void sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
1491 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1492 static void sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
1493 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1494 static void sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
1495 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1496 static void sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
1497 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1498 static void sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
1499 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1500 static void sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
1501 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1502 
1503 static void sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp);
1504 
1505 static void sd_start_stop_unit_callback(void *arg);
1506 static void sd_start_stop_unit_task(void *arg);
1507 
1508 static void sd_taskq_create(void);
1509 static void sd_taskq_delete(void);
1510 static void sd_target_change_task(void *arg);
1511 static void sd_log_dev_status_event(struct sd_lun *un, char *esc, int km_flag);
1512 static void sd_log_lun_expansion_event(struct sd_lun *un, int km_flag);
1513 static void sd_log_eject_request_event(struct sd_lun *un, int km_flag);
1514 static void sd_media_change_task(void *arg);
1515 
1516 static int sd_handle_mchange(struct sd_lun *un);
1517 static int sd_send_scsi_DOORLOCK(sd_ssc_t *ssc, int flag, int path_flag);
1518 static int sd_send_scsi_READ_CAPACITY(sd_ssc_t *ssc, uint64_t *capp,
1519 	uint32_t *lbap, int path_flag);
1520 static int sd_send_scsi_READ_CAPACITY_16(sd_ssc_t *ssc, uint64_t *capp,
1521 	uint32_t *lbap, uint32_t *psp, int path_flag);
1522 static int sd_send_scsi_START_STOP_UNIT(sd_ssc_t *ssc, int pc_flag,
1523 	int flag, int path_flag);
1524 static int sd_send_scsi_INQUIRY(sd_ssc_t *ssc, uchar_t *bufaddr,
1525 	size_t buflen, uchar_t evpd, uchar_t page_code, size_t *residp);
1526 static int sd_send_scsi_TEST_UNIT_READY(sd_ssc_t *ssc, int flag);
1527 static int sd_send_scsi_PERSISTENT_RESERVE_IN(sd_ssc_t *ssc,
1528 	uchar_t usr_cmd, uint16_t data_len, uchar_t *data_bufp);
1529 static int sd_send_scsi_PERSISTENT_RESERVE_OUT(sd_ssc_t *ssc,
1530 	uchar_t usr_cmd, uchar_t *usr_bufp);
1531 static int sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un,
1532 	struct dk_callback *dkc);
1533 static int sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp);
1534 static int sd_send_scsi_GET_CONFIGURATION(sd_ssc_t *ssc,
1535 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1536 	uchar_t *bufaddr, uint_t buflen, int path_flag);
1537 static int sd_send_scsi_feature_GET_CONFIGURATION(sd_ssc_t *ssc,
1538 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1539 	uchar_t *bufaddr, uint_t buflen, char feature, int path_flag);
1540 static int sd_send_scsi_MODE_SENSE(sd_ssc_t *ssc, int cdbsize,
1541 	uchar_t *bufaddr, size_t buflen, uchar_t page_code, int path_flag);
1542 static int sd_send_scsi_MODE_SELECT(sd_ssc_t *ssc, int cdbsize,
1543 	uchar_t *bufaddr, size_t buflen, uchar_t save_page, int path_flag);
1544 static int sd_send_scsi_RDWR(sd_ssc_t *ssc, uchar_t cmd, void *bufaddr,
1545 	size_t buflen, daddr_t start_block, int path_flag);
1546 #define	sd_send_scsi_READ(ssc, bufaddr, buflen, start_block, path_flag)	\
1547 	sd_send_scsi_RDWR(ssc, SCMD_READ, bufaddr, buflen, start_block, \
1548 	path_flag)
1549 #define	sd_send_scsi_WRITE(ssc, bufaddr, buflen, start_block, path_flag)\
1550 	sd_send_scsi_RDWR(ssc, SCMD_WRITE, bufaddr, buflen, start_block,\
1551 	path_flag)
1552 
1553 static int sd_send_scsi_LOG_SENSE(sd_ssc_t *ssc, uchar_t *bufaddr,
1554 	uint16_t buflen, uchar_t page_code, uchar_t page_control,
1555 	uint16_t param_ptr, int path_flag);
1556 static int sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION(sd_ssc_t *ssc,
1557 	uchar_t *bufaddr, size_t buflen, uchar_t class_req);
1558 static boolean_t sd_gesn_media_data_valid(uchar_t *data);
1559 
1560 static int  sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un);
1561 static void sd_free_rqs(struct sd_lun *un);
1562 
1563 static void sd_dump_memory(struct sd_lun *un, uint_t comp, char *title,
1564 	uchar_t *data, int len, int fmt);
1565 static void sd_panic_for_res_conflict(struct sd_lun *un);
1566 
1567 /*
1568  * Disk Ioctl Function Prototypes
1569  */
1570 static int sd_get_media_info(dev_t dev, caddr_t arg, int flag);
1571 static int sd_get_media_info_ext(dev_t dev, caddr_t arg, int flag);
1572 static int sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag);
1573 static int sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag);
1574 
1575 /*
1576  * Multi-host Ioctl Prototypes
1577  */
1578 static int sd_check_mhd(dev_t dev, int interval);
1579 static int sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1580 static void sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt);
1581 static char *sd_sname(uchar_t status);
1582 static void sd_mhd_resvd_recover(void *arg);
1583 static void sd_resv_reclaim_thread();
1584 static int sd_take_ownership(dev_t dev, struct mhioctkown *p);
1585 static int sd_reserve_release(dev_t dev, int cmd);
1586 static void sd_rmv_resv_reclaim_req(dev_t dev);
1587 static void sd_mhd_reset_notify_cb(caddr_t arg);
1588 static int sd_persistent_reservation_in_read_keys(struct sd_lun *un,
1589 	mhioc_inkeys_t *usrp, int flag);
1590 static int sd_persistent_reservation_in_read_resv(struct sd_lun *un,
1591 	mhioc_inresvs_t *usrp, int flag);
1592 static int sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag);
1593 static int sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag);
1594 static int sd_mhdioc_release(dev_t dev);
1595 static int sd_mhdioc_register_devid(dev_t dev);
1596 static int sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag);
1597 static int sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag);
1598 
1599 /*
1600  * SCSI removable prototypes
1601  */
1602 static int sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag);
1603 static int sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1604 static int sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1605 static int sr_pause_resume(dev_t dev, int mode);
1606 static int sr_play_msf(dev_t dev, caddr_t data, int flag);
1607 static int sr_play_trkind(dev_t dev, caddr_t data, int flag);
1608 static int sr_read_all_subcodes(dev_t dev, caddr_t data, int flag);
1609 static int sr_read_subchannel(dev_t dev, caddr_t data, int flag);
1610 static int sr_read_tocentry(dev_t dev, caddr_t data, int flag);
1611 static int sr_read_tochdr(dev_t dev, caddr_t data, int flag);
1612 static int sr_read_cdda(dev_t dev, caddr_t data, int flag);
1613 static int sr_read_cdxa(dev_t dev, caddr_t data, int flag);
1614 static int sr_read_mode1(dev_t dev, caddr_t data, int flag);
1615 static int sr_read_mode2(dev_t dev, caddr_t data, int flag);
1616 static int sr_read_cd_mode2(dev_t dev, caddr_t data, int flag);
1617 static int sr_sector_mode(dev_t dev, uint32_t blksize);
1618 static int sr_eject(dev_t dev);
1619 static void sr_ejected(register struct sd_lun *un);
1620 static int sr_check_wp(dev_t dev);
1621 static opaque_t sd_watch_request_submit(struct sd_lun *un);
1622 static int sd_check_media(dev_t dev, enum dkio_state state);
1623 static int sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1624 static void sd_delayed_cv_broadcast(void *arg);
1625 static int sr_volume_ctrl(dev_t dev, caddr_t data, int flag);
1626 static int sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag);
1627 
1628 static int sd_log_page_supported(sd_ssc_t *ssc, int log_page);
1629 
1630 /*
1631  * Function Prototype for the non-512 support (DVDRAM, MO etc.) functions.
1632  */
1633 static void sd_check_for_writable_cd(sd_ssc_t *ssc, int path_flag);
1634 static int sd_wm_cache_constructor(void *wm, void *un, int flags);
1635 static void sd_wm_cache_destructor(void *wm, void *un);
1636 static struct sd_w_map *sd_range_lock(struct sd_lun *un, daddr_t startb,
1637 	daddr_t endb, ushort_t typ);
1638 static struct sd_w_map *sd_get_range(struct sd_lun *un, daddr_t startb,
1639 	daddr_t endb);
1640 static void sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp);
1641 static void sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm);
1642 static void sd_read_modify_write_task(void * arg);
1643 static int
1644 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
1645 	struct buf **bpp);
1646 
1647 
1648 /*
1649  * Function prototypes for failfast support.
1650  */
1651 static void sd_failfast_flushq(struct sd_lun *un);
1652 static int sd_failfast_flushq_callback(struct buf *bp);
1653 
1654 /*
1655  * Function prototypes to check for lsi devices
1656  */
1657 static void sd_is_lsi(struct sd_lun *un);
1658 
1659 /*
1660  * Function prototypes for partial DMA support
1661  */
1662 static int sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
1663 		struct scsi_pkt *pkt, struct sd_xbuf *xp);
1664 
1665 
1666 /* Function prototypes for cmlb */
1667 static int sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr,
1668     diskaddr_t start_block, size_t reqlength, void *tg_cookie);
1669 
1670 static int sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie);
1671 
1672 /*
1673  * For printing RMW warning message timely
1674  */
1675 static void sd_rmw_msg_print_handler(void *arg);
1676 
1677 /*
1678  * Constants for failfast support:
1679  *
1680  * SD_FAILFAST_INACTIVE: Instance is currently in a normal state, with NO
1681  * failfast processing being performed.
1682  *
1683  * SD_FAILFAST_ACTIVE: Instance is in the failfast state and is performing
1684  * failfast processing on all bufs with B_FAILFAST set.
1685  */
1686 
1687 #define	SD_FAILFAST_INACTIVE		0
1688 #define	SD_FAILFAST_ACTIVE		1
1689 
1690 /*
1691  * Bitmask to control behavior of buf(9S) flushes when a transition to
1692  * the failfast state occurs. Optional bits include:
1693  *
1694  * SD_FAILFAST_FLUSH_ALL_BUFS: When set, flush ALL bufs including those that
1695  * do NOT have B_FAILFAST set. When clear, only bufs with B_FAILFAST will
1696  * be flushed.
1697  *
1698  * SD_FAILFAST_FLUSH_ALL_QUEUES: When set, flush any/all other queues in the
1699  * driver, in addition to the regular wait queue. This includes the xbuf
1700  * queues. When clear, only the driver's wait queue will be flushed.
1701  */
1702 #define	SD_FAILFAST_FLUSH_ALL_BUFS	0x01
1703 #define	SD_FAILFAST_FLUSH_ALL_QUEUES	0x02
1704 
1705 /*
1706  * The default behavior is to only flush bufs that have B_FAILFAST set, but
1707  * to flush all queues within the driver.
1708  */
1709 static int sd_failfast_flushctl = SD_FAILFAST_FLUSH_ALL_QUEUES;
1710 
1711 
1712 /*
1713  * SD Testing Fault Injection
1714  */
1715 #ifdef SD_FAULT_INJECTION
1716 static void sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un);
1717 static void sd_faultinjection(struct scsi_pkt *pktp);
1718 static void sd_injection_log(char *buf, struct sd_lun *un);
1719 #endif
1720 
1721 /*
1722  * Device driver ops vector
1723  */
1724 static struct cb_ops sd_cb_ops = {
1725 	sdopen,			/* open */
1726 	sdclose,		/* close */
1727 	sdstrategy,		/* strategy */
1728 	nodev,			/* print */
1729 	sddump,			/* dump */
1730 	sdread,			/* read */
1731 	sdwrite,		/* write */
1732 	sdioctl,		/* ioctl */
1733 	nodev,			/* devmap */
1734 	nodev,			/* mmap */
1735 	nodev,			/* segmap */
1736 	nochpoll,		/* poll */
1737 	sd_prop_op,		/* cb_prop_op */
1738 	0,			/* streamtab  */
1739 	D_64BIT | D_MP | D_NEW | D_HOTPLUG, /* Driver compatibility flags */
1740 	CB_REV,			/* cb_rev */
1741 	sdaread, 		/* async I/O read entry point */
1742 	sdawrite		/* async I/O write entry point */
1743 };
1744 
1745 struct dev_ops sd_ops = {
1746 	DEVO_REV,		/* devo_rev, */
1747 	0,			/* refcnt  */
1748 	sdinfo,			/* info */
1749 	nulldev,		/* identify */
1750 	sdprobe,		/* probe */
1751 	sdattach,		/* attach */
1752 	sddetach,		/* detach */
1753 	nodev,			/* reset */
1754 	&sd_cb_ops,		/* driver operations */
1755 	NULL,			/* bus operations */
1756 	sdpower,		/* power */
1757 	ddi_quiesce_not_needed,		/* quiesce */
1758 };
1759 
1760 /*
1761  * This is the loadable module wrapper.
1762  */
1763 #include <sys/modctl.h>
1764 
1765 #ifndef XPV_HVM_DRIVER
1766 static struct modldrv modldrv = {
1767 	&mod_driverops,		/* Type of module. This one is a driver */
1768 	SD_MODULE_NAME,		/* Module name. */
1769 	&sd_ops			/* driver ops */
1770 };
1771 
1772 static struct modlinkage modlinkage = {
1773 	MODREV_1, &modldrv, NULL
1774 };
1775 
1776 #else /* XPV_HVM_DRIVER */
1777 static struct modlmisc modlmisc = {
1778 	&mod_miscops,		/* Type of module. This one is a misc */
1779 	"HVM " SD_MODULE_NAME,		/* Module name. */
1780 };
1781 
1782 static struct modlinkage modlinkage = {
1783 	MODREV_1, &modlmisc, NULL
1784 };
1785 
1786 #endif /* XPV_HVM_DRIVER */
1787 
1788 static cmlb_tg_ops_t sd_tgops = {
1789 	TG_DK_OPS_VERSION_1,
1790 	sd_tg_rdwr,
1791 	sd_tg_getinfo
1792 };
1793 
1794 static struct scsi_asq_key_strings sd_additional_codes[] = {
1795 	0x81, 0, "Logical Unit is Reserved",
1796 	0x85, 0, "Audio Address Not Valid",
1797 	0xb6, 0, "Media Load Mechanism Failed",
1798 	0xB9, 0, "Audio Play Operation Aborted",
1799 	0xbf, 0, "Buffer Overflow for Read All Subcodes Command",
1800 	0x53, 2, "Medium removal prevented",
1801 	0x6f, 0, "Authentication failed during key exchange",
1802 	0x6f, 1, "Key not present",
1803 	0x6f, 2, "Key not established",
1804 	0x6f, 3, "Read without proper authentication",
1805 	0x6f, 4, "Mismatched region to this logical unit",
1806 	0x6f, 5, "Region reset count error",
1807 	0xffff, 0x0, NULL
1808 };
1809 
1810 
1811 /*
1812  * Struct for passing printing information for sense data messages
1813  */
1814 struct sd_sense_info {
1815 	int	ssi_severity;
1816 	int	ssi_pfa_flag;
1817 };
1818 
1819 /*
1820  * Table of function pointers for iostart-side routines. Separate "chains"
1821  * of layered function calls are formed by placing the function pointers
1822  * sequentially in the desired order. Functions are called according to an
1823  * incrementing table index ordering. The last function in each chain must
1824  * be sd_core_iostart(). The corresponding iodone-side routines are expected
1825  * in the sd_iodone_chain[] array.
1826  *
1827  * Note: It may seem more natural to organize both the iostart and iodone
1828  * functions together, into an array of structures (or some similar
1829  * organization) with a common index, rather than two separate arrays which
1830  * must be maintained in synchronization. The purpose of this division is
1831  * to achieve improved performance: individual arrays allows for more
1832  * effective cache line utilization on certain platforms.
1833  */
1834 
1835 typedef void (*sd_chain_t)(int index, struct sd_lun *un, struct buf *bp);
1836 
1837 
1838 static sd_chain_t sd_iostart_chain[] = {
1839 
1840 	/* Chain for buf IO for disk drive targets (PM enabled) */
1841 	sd_mapblockaddr_iostart,	/* Index: 0 */
1842 	sd_pm_iostart,			/* Index: 1 */
1843 	sd_core_iostart,		/* Index: 2 */
1844 
1845 	/* Chain for buf IO for disk drive targets (PM disabled) */
1846 	sd_mapblockaddr_iostart,	/* Index: 3 */
1847 	sd_core_iostart,		/* Index: 4 */
1848 
1849 	/*
1850 	 * Chain for buf IO for removable-media or large sector size
1851 	 * disk drive targets with RMW needed (PM enabled)
1852 	 */
1853 	sd_mapblockaddr_iostart,	/* Index: 5 */
1854 	sd_mapblocksize_iostart,	/* Index: 6 */
1855 	sd_pm_iostart,			/* Index: 7 */
1856 	sd_core_iostart,		/* Index: 8 */
1857 
1858 	/*
1859 	 * Chain for buf IO for removable-media or large sector size
1860 	 * disk drive targets with RMW needed (PM disabled)
1861 	 */
1862 	sd_mapblockaddr_iostart,	/* Index: 9 */
1863 	sd_mapblocksize_iostart,	/* Index: 10 */
1864 	sd_core_iostart,		/* Index: 11 */
1865 
1866 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1867 	sd_mapblockaddr_iostart,	/* Index: 12 */
1868 	sd_checksum_iostart,		/* Index: 13 */
1869 	sd_pm_iostart,			/* Index: 14 */
1870 	sd_core_iostart,		/* Index: 15 */
1871 
1872 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1873 	sd_mapblockaddr_iostart,	/* Index: 16 */
1874 	sd_checksum_iostart,		/* Index: 17 */
1875 	sd_core_iostart,		/* Index: 18 */
1876 
1877 	/* Chain for USCSI commands (all targets) */
1878 	sd_pm_iostart,			/* Index: 19 */
1879 	sd_core_iostart,		/* Index: 20 */
1880 
1881 	/* Chain for checksumming USCSI commands (all targets) */
1882 	sd_checksum_uscsi_iostart,	/* Index: 21 */
1883 	sd_pm_iostart,			/* Index: 22 */
1884 	sd_core_iostart,		/* Index: 23 */
1885 
1886 	/* Chain for "direct" USCSI commands (all targets) */
1887 	sd_core_iostart,		/* Index: 24 */
1888 
1889 	/* Chain for "direct priority" USCSI commands (all targets) */
1890 	sd_core_iostart,		/* Index: 25 */
1891 
1892 	/*
1893 	 * Chain for buf IO for large sector size disk drive targets
1894 	 * with RMW needed with checksumming (PM enabled)
1895 	 */
1896 	sd_mapblockaddr_iostart,	/* Index: 26 */
1897 	sd_mapblocksize_iostart,	/* Index: 27 */
1898 	sd_checksum_iostart,		/* Index: 28 */
1899 	sd_pm_iostart,			/* Index: 29 */
1900 	sd_core_iostart,		/* Index: 30 */
1901 
1902 	/*
1903 	 * Chain for buf IO for large sector size disk drive targets
1904 	 * with RMW needed with checksumming (PM disabled)
1905 	 */
1906 	sd_mapblockaddr_iostart,	/* Index: 31 */
1907 	sd_mapblocksize_iostart,	/* Index: 32 */
1908 	sd_checksum_iostart,		/* Index: 33 */
1909 	sd_core_iostart,		/* Index: 34 */
1910 
1911 };
1912 
1913 /*
1914  * Macros to locate the first function of each iostart chain in the
1915  * sd_iostart_chain[] array. These are located by the index in the array.
1916  */
1917 #define	SD_CHAIN_DISK_IOSTART			0
1918 #define	SD_CHAIN_DISK_IOSTART_NO_PM		3
1919 #define	SD_CHAIN_MSS_DISK_IOSTART		5
1920 #define	SD_CHAIN_RMMEDIA_IOSTART		5
1921 #define	SD_CHAIN_MSS_DISK_IOSTART_NO_PM		9
1922 #define	SD_CHAIN_RMMEDIA_IOSTART_NO_PM		9
1923 #define	SD_CHAIN_CHKSUM_IOSTART			12
1924 #define	SD_CHAIN_CHKSUM_IOSTART_NO_PM		16
1925 #define	SD_CHAIN_USCSI_CMD_IOSTART		19
1926 #define	SD_CHAIN_USCSI_CHKSUM_IOSTART		21
1927 #define	SD_CHAIN_DIRECT_CMD_IOSTART		24
1928 #define	SD_CHAIN_PRIORITY_CMD_IOSTART		25
1929 #define	SD_CHAIN_MSS_CHKSUM_IOSTART		26
1930 #define	SD_CHAIN_MSS_CHKSUM_IOSTART_NO_PM	31
1931 
1932 
1933 /*
1934  * Table of function pointers for the iodone-side routines for the driver-
1935  * internal layering mechanism.  The calling sequence for iodone routines
1936  * uses a decrementing table index, so the last routine called in a chain
1937  * must be at the lowest array index location for that chain.  The last
1938  * routine for each chain must be either sd_buf_iodone() (for buf(9S) IOs)
1939  * or sd_uscsi_iodone() (for uscsi IOs).  Other than this, the ordering
1940  * of the functions in an iodone side chain must correspond to the ordering
1941  * of the iostart routines for that chain.  Note that there is no iodone
1942  * side routine that corresponds to sd_core_iostart(), so there is no
1943  * entry in the table for this.
1944  */
1945 
1946 static sd_chain_t sd_iodone_chain[] = {
1947 
1948 	/* Chain for buf IO for disk drive targets (PM enabled) */
1949 	sd_buf_iodone,			/* Index: 0 */
1950 	sd_mapblockaddr_iodone,		/* Index: 1 */
1951 	sd_pm_iodone,			/* Index: 2 */
1952 
1953 	/* Chain for buf IO for disk drive targets (PM disabled) */
1954 	sd_buf_iodone,			/* Index: 3 */
1955 	sd_mapblockaddr_iodone,		/* Index: 4 */
1956 
1957 	/*
1958 	 * Chain for buf IO for removable-media or large sector size
1959 	 * disk drive targets with RMW needed (PM enabled)
1960 	 */
1961 	sd_buf_iodone,			/* Index: 5 */
1962 	sd_mapblockaddr_iodone,		/* Index: 6 */
1963 	sd_mapblocksize_iodone,		/* Index: 7 */
1964 	sd_pm_iodone,			/* Index: 8 */
1965 
1966 	/*
1967 	 * Chain for buf IO for removable-media or large sector size
1968 	 * disk drive targets with RMW needed (PM disabled)
1969 	 */
1970 	sd_buf_iodone,			/* Index: 9 */
1971 	sd_mapblockaddr_iodone,		/* Index: 10 */
1972 	sd_mapblocksize_iodone,		/* Index: 11 */
1973 
1974 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1975 	sd_buf_iodone,			/* Index: 12 */
1976 	sd_mapblockaddr_iodone,		/* Index: 13 */
1977 	sd_checksum_iodone,		/* Index: 14 */
1978 	sd_pm_iodone,			/* Index: 15 */
1979 
1980 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1981 	sd_buf_iodone,			/* Index: 16 */
1982 	sd_mapblockaddr_iodone,		/* Index: 17 */
1983 	sd_checksum_iodone,		/* Index: 18 */
1984 
1985 	/* Chain for USCSI commands (non-checksum targets) */
1986 	sd_uscsi_iodone,		/* Index: 19 */
1987 	sd_pm_iodone,			/* Index: 20 */
1988 
1989 	/* Chain for USCSI commands (checksum targets) */
1990 	sd_uscsi_iodone,		/* Index: 21 */
1991 	sd_checksum_uscsi_iodone,	/* Index: 22 */
1992 	sd_pm_iodone,			/* Index: 22 */
1993 
1994 	/* Chain for "direct" USCSI commands (all targets) */
1995 	sd_uscsi_iodone,		/* Index: 24 */
1996 
1997 	/* Chain for "direct priority" USCSI commands (all targets) */
1998 	sd_uscsi_iodone,		/* Index: 25 */
1999 
2000 	/*
2001 	 * Chain for buf IO for large sector size disk drive targets
2002 	 * with checksumming (PM enabled)
2003 	 */
2004 	sd_buf_iodone,			/* Index: 26 */
2005 	sd_mapblockaddr_iodone,		/* Index: 27 */
2006 	sd_mapblocksize_iodone,		/* Index: 28 */
2007 	sd_checksum_iodone,		/* Index: 29 */
2008 	sd_pm_iodone,			/* Index: 30 */
2009 
2010 	/*
2011 	 * Chain for buf IO for large sector size disk drive targets
2012 	 * with checksumming (PM disabled)
2013 	 */
2014 	sd_buf_iodone,			/* Index: 31 */
2015 	sd_mapblockaddr_iodone,		/* Index: 32 */
2016 	sd_mapblocksize_iodone,		/* Index: 33 */
2017 	sd_checksum_iodone,		/* Index: 34 */
2018 };
2019 
2020 
2021 /*
2022  * Macros to locate the "first" function in the sd_iodone_chain[] array for
2023  * each iodone-side chain. These are located by the array index, but as the
2024  * iodone side functions are called in a decrementing-index order, the
2025  * highest index number in each chain must be specified (as these correspond
2026  * to the first function in the iodone chain that will be called by the core
2027  * at IO completion time).
2028  */
2029 
2030 #define	SD_CHAIN_DISK_IODONE			2
2031 #define	SD_CHAIN_DISK_IODONE_NO_PM		4
2032 #define	SD_CHAIN_RMMEDIA_IODONE			8
2033 #define	SD_CHAIN_MSS_DISK_IODONE		8
2034 #define	SD_CHAIN_RMMEDIA_IODONE_NO_PM		11
2035 #define	SD_CHAIN_MSS_DISK_IODONE_NO_PM		11
2036 #define	SD_CHAIN_CHKSUM_IODONE			15
2037 #define	SD_CHAIN_CHKSUM_IODONE_NO_PM		18
2038 #define	SD_CHAIN_USCSI_CMD_IODONE		20
2039 #define	SD_CHAIN_USCSI_CHKSUM_IODONE		22
2040 #define	SD_CHAIN_DIRECT_CMD_IODONE		24
2041 #define	SD_CHAIN_PRIORITY_CMD_IODONE		25
2042 #define	SD_CHAIN_MSS_CHKSUM_IODONE		30
2043 #define	SD_CHAIN_MSS_CHKSUM_IODONE_NO_PM	34
2044 
2045 
2046 
2047 /*
2048  * Array to map a layering chain index to the appropriate initpkt routine.
2049  * The redundant entries are present so that the index used for accessing
2050  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
2051  * with this table as well.
2052  */
2053 typedef int (*sd_initpkt_t)(struct buf *, struct scsi_pkt **);
2054 
2055 static sd_initpkt_t	sd_initpkt_map[] = {
2056 
2057 	/* Chain for buf IO for disk drive targets (PM enabled) */
2058 	sd_initpkt_for_buf,		/* Index: 0 */
2059 	sd_initpkt_for_buf,		/* Index: 1 */
2060 	sd_initpkt_for_buf,		/* Index: 2 */
2061 
2062 	/* Chain for buf IO for disk drive targets (PM disabled) */
2063 	sd_initpkt_for_buf,		/* Index: 3 */
2064 	sd_initpkt_for_buf,		/* Index: 4 */
2065 
2066 	/*
2067 	 * Chain for buf IO for removable-media or large sector size
2068 	 * disk drive targets (PM enabled)
2069 	 */
2070 	sd_initpkt_for_buf,		/* Index: 5 */
2071 	sd_initpkt_for_buf,		/* Index: 6 */
2072 	sd_initpkt_for_buf,		/* Index: 7 */
2073 	sd_initpkt_for_buf,		/* Index: 8 */
2074 
2075 	/*
2076 	 * Chain for buf IO for removable-media or large sector size
2077 	 * disk drive targets (PM disabled)
2078 	 */
2079 	sd_initpkt_for_buf,		/* Index: 9 */
2080 	sd_initpkt_for_buf,		/* Index: 10 */
2081 	sd_initpkt_for_buf,		/* Index: 11 */
2082 
2083 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2084 	sd_initpkt_for_buf,		/* Index: 12 */
2085 	sd_initpkt_for_buf,		/* Index: 13 */
2086 	sd_initpkt_for_buf,		/* Index: 14 */
2087 	sd_initpkt_for_buf,		/* Index: 15 */
2088 
2089 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2090 	sd_initpkt_for_buf,		/* Index: 16 */
2091 	sd_initpkt_for_buf,		/* Index: 17 */
2092 	sd_initpkt_for_buf,		/* Index: 18 */
2093 
2094 	/* Chain for USCSI commands (non-checksum targets) */
2095 	sd_initpkt_for_uscsi,		/* Index: 19 */
2096 	sd_initpkt_for_uscsi,		/* Index: 20 */
2097 
2098 	/* Chain for USCSI commands (checksum targets) */
2099 	sd_initpkt_for_uscsi,		/* Index: 21 */
2100 	sd_initpkt_for_uscsi,		/* Index: 22 */
2101 	sd_initpkt_for_uscsi,		/* Index: 22 */
2102 
2103 	/* Chain for "direct" USCSI commands (all targets) */
2104 	sd_initpkt_for_uscsi,		/* Index: 24 */
2105 
2106 	/* Chain for "direct priority" USCSI commands (all targets) */
2107 	sd_initpkt_for_uscsi,		/* Index: 25 */
2108 
2109 	/*
2110 	 * Chain for buf IO for large sector size disk drive targets
2111 	 * with checksumming (PM enabled)
2112 	 */
2113 	sd_initpkt_for_buf,		/* Index: 26 */
2114 	sd_initpkt_for_buf,		/* Index: 27 */
2115 	sd_initpkt_for_buf,		/* Index: 28 */
2116 	sd_initpkt_for_buf,		/* Index: 29 */
2117 	sd_initpkt_for_buf,		/* Index: 30 */
2118 
2119 	/*
2120 	 * Chain for buf IO for large sector size disk drive targets
2121 	 * with checksumming (PM disabled)
2122 	 */
2123 	sd_initpkt_for_buf,		/* Index: 31 */
2124 	sd_initpkt_for_buf,		/* Index: 32 */
2125 	sd_initpkt_for_buf,		/* Index: 33 */
2126 	sd_initpkt_for_buf,		/* Index: 34 */
2127 };
2128 
2129 
2130 /*
2131  * Array to map a layering chain index to the appropriate destroypktpkt routine.
2132  * The redundant entries are present so that the index used for accessing
2133  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
2134  * with this table as well.
2135  */
2136 typedef void (*sd_destroypkt_t)(struct buf *);
2137 
2138 static sd_destroypkt_t	sd_destroypkt_map[] = {
2139 
2140 	/* Chain for buf IO for disk drive targets (PM enabled) */
2141 	sd_destroypkt_for_buf,		/* Index: 0 */
2142 	sd_destroypkt_for_buf,		/* Index: 1 */
2143 	sd_destroypkt_for_buf,		/* Index: 2 */
2144 
2145 	/* Chain for buf IO for disk drive targets (PM disabled) */
2146 	sd_destroypkt_for_buf,		/* Index: 3 */
2147 	sd_destroypkt_for_buf,		/* Index: 4 */
2148 
2149 	/*
2150 	 * Chain for buf IO for removable-media or large sector size
2151 	 * disk drive targets (PM enabled)
2152 	 */
2153 	sd_destroypkt_for_buf,		/* Index: 5 */
2154 	sd_destroypkt_for_buf,		/* Index: 6 */
2155 	sd_destroypkt_for_buf,		/* Index: 7 */
2156 	sd_destroypkt_for_buf,		/* Index: 8 */
2157 
2158 	/*
2159 	 * Chain for buf IO for removable-media or large sector size
2160 	 * disk drive targets (PM disabled)
2161 	 */
2162 	sd_destroypkt_for_buf,		/* Index: 9 */
2163 	sd_destroypkt_for_buf,		/* Index: 10 */
2164 	sd_destroypkt_for_buf,		/* Index: 11 */
2165 
2166 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2167 	sd_destroypkt_for_buf,		/* Index: 12 */
2168 	sd_destroypkt_for_buf,		/* Index: 13 */
2169 	sd_destroypkt_for_buf,		/* Index: 14 */
2170 	sd_destroypkt_for_buf,		/* Index: 15 */
2171 
2172 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2173 	sd_destroypkt_for_buf,		/* Index: 16 */
2174 	sd_destroypkt_for_buf,		/* Index: 17 */
2175 	sd_destroypkt_for_buf,		/* Index: 18 */
2176 
2177 	/* Chain for USCSI commands (non-checksum targets) */
2178 	sd_destroypkt_for_uscsi,	/* Index: 19 */
2179 	sd_destroypkt_for_uscsi,	/* Index: 20 */
2180 
2181 	/* Chain for USCSI commands (checksum targets) */
2182 	sd_destroypkt_for_uscsi,	/* Index: 21 */
2183 	sd_destroypkt_for_uscsi,	/* Index: 22 */
2184 	sd_destroypkt_for_uscsi,	/* Index: 22 */
2185 
2186 	/* Chain for "direct" USCSI commands (all targets) */
2187 	sd_destroypkt_for_uscsi,	/* Index: 24 */
2188 
2189 	/* Chain for "direct priority" USCSI commands (all targets) */
2190 	sd_destroypkt_for_uscsi,	/* Index: 25 */
2191 
2192 	/*
2193 	 * Chain for buf IO for large sector size disk drive targets
2194 	 * with checksumming (PM disabled)
2195 	 */
2196 	sd_destroypkt_for_buf,		/* Index: 26 */
2197 	sd_destroypkt_for_buf,		/* Index: 27 */
2198 	sd_destroypkt_for_buf,		/* Index: 28 */
2199 	sd_destroypkt_for_buf,		/* Index: 29 */
2200 	sd_destroypkt_for_buf,		/* Index: 30 */
2201 
2202 	/*
2203 	 * Chain for buf IO for large sector size disk drive targets
2204 	 * with checksumming (PM enabled)
2205 	 */
2206 	sd_destroypkt_for_buf,		/* Index: 31 */
2207 	sd_destroypkt_for_buf,		/* Index: 32 */
2208 	sd_destroypkt_for_buf,		/* Index: 33 */
2209 	sd_destroypkt_for_buf,		/* Index: 34 */
2210 };
2211 
2212 
2213 
2214 /*
2215  * Array to map a layering chain index to the appropriate chain "type".
2216  * The chain type indicates a specific property/usage of the chain.
2217  * The redundant entries are present so that the index used for accessing
2218  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
2219  * with this table as well.
2220  */
2221 
2222 #define	SD_CHAIN_NULL			0	/* for the special RQS cmd */
2223 #define	SD_CHAIN_BUFIO			1	/* regular buf IO */
2224 #define	SD_CHAIN_USCSI			2	/* regular USCSI commands */
2225 #define	SD_CHAIN_DIRECT			3	/* uscsi, w/ bypass power mgt */
2226 #define	SD_CHAIN_DIRECT_PRIORITY	4	/* uscsi, w/ bypass power mgt */
2227 						/* (for error recovery) */
2228 
2229 static int sd_chain_type_map[] = {
2230 
2231 	/* Chain for buf IO for disk drive targets (PM enabled) */
2232 	SD_CHAIN_BUFIO,			/* Index: 0 */
2233 	SD_CHAIN_BUFIO,			/* Index: 1 */
2234 	SD_CHAIN_BUFIO,			/* Index: 2 */
2235 
2236 	/* Chain for buf IO for disk drive targets (PM disabled) */
2237 	SD_CHAIN_BUFIO,			/* Index: 3 */
2238 	SD_CHAIN_BUFIO,			/* Index: 4 */
2239 
2240 	/*
2241 	 * Chain for buf IO for removable-media or large sector size
2242 	 * disk drive targets (PM enabled)
2243 	 */
2244 	SD_CHAIN_BUFIO,			/* Index: 5 */
2245 	SD_CHAIN_BUFIO,			/* Index: 6 */
2246 	SD_CHAIN_BUFIO,			/* Index: 7 */
2247 	SD_CHAIN_BUFIO,			/* Index: 8 */
2248 
2249 	/*
2250 	 * Chain for buf IO for removable-media or large sector size
2251 	 * disk drive targets (PM disabled)
2252 	 */
2253 	SD_CHAIN_BUFIO,			/* Index: 9 */
2254 	SD_CHAIN_BUFIO,			/* Index: 10 */
2255 	SD_CHAIN_BUFIO,			/* Index: 11 */
2256 
2257 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2258 	SD_CHAIN_BUFIO,			/* Index: 12 */
2259 	SD_CHAIN_BUFIO,			/* Index: 13 */
2260 	SD_CHAIN_BUFIO,			/* Index: 14 */
2261 	SD_CHAIN_BUFIO,			/* Index: 15 */
2262 
2263 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2264 	SD_CHAIN_BUFIO,			/* Index: 16 */
2265 	SD_CHAIN_BUFIO,			/* Index: 17 */
2266 	SD_CHAIN_BUFIO,			/* Index: 18 */
2267 
2268 	/* Chain for USCSI commands (non-checksum targets) */
2269 	SD_CHAIN_USCSI,			/* Index: 19 */
2270 	SD_CHAIN_USCSI,			/* Index: 20 */
2271 
2272 	/* Chain for USCSI commands (checksum targets) */
2273 	SD_CHAIN_USCSI,			/* Index: 21 */
2274 	SD_CHAIN_USCSI,			/* Index: 22 */
2275 	SD_CHAIN_USCSI,			/* Index: 23 */
2276 
2277 	/* Chain for "direct" USCSI commands (all targets) */
2278 	SD_CHAIN_DIRECT,		/* Index: 24 */
2279 
2280 	/* Chain for "direct priority" USCSI commands (all targets) */
2281 	SD_CHAIN_DIRECT_PRIORITY,	/* Index: 25 */
2282 
2283 	/*
2284 	 * Chain for buf IO for large sector size disk drive targets
2285 	 * with checksumming (PM enabled)
2286 	 */
2287 	SD_CHAIN_BUFIO,			/* Index: 26 */
2288 	SD_CHAIN_BUFIO,			/* Index: 27 */
2289 	SD_CHAIN_BUFIO,			/* Index: 28 */
2290 	SD_CHAIN_BUFIO,			/* Index: 29 */
2291 	SD_CHAIN_BUFIO,			/* Index: 30 */
2292 
2293 	/*
2294 	 * Chain for buf IO for large sector size disk drive targets
2295 	 * with checksumming (PM disabled)
2296 	 */
2297 	SD_CHAIN_BUFIO,			/* Index: 31 */
2298 	SD_CHAIN_BUFIO,			/* Index: 32 */
2299 	SD_CHAIN_BUFIO,			/* Index: 33 */
2300 	SD_CHAIN_BUFIO,			/* Index: 34 */
2301 };
2302 
2303 
2304 /* Macro to return TRUE if the IO has come from the sd_buf_iostart() chain. */
2305 #define	SD_IS_BUFIO(xp)			\
2306 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_BUFIO)
2307 
2308 /* Macro to return TRUE if the IO has come from the "direct priority" chain. */
2309 #define	SD_IS_DIRECT_PRIORITY(xp)	\
2310 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_DIRECT_PRIORITY)
2311 
2312 
2313 
2314 /*
2315  * Struct, array, and macros to map a specific chain to the appropriate
2316  * layering indexes in the sd_iostart_chain[] and sd_iodone_chain[] arrays.
2317  *
2318  * The sd_chain_index_map[] array is used at attach time to set the various
2319  * un_xxx_chain type members of the sd_lun softstate to the specific layering
2320  * chain to be used with the instance. This allows different instances to use
2321  * different chain for buf IO, uscsi IO, etc.. Also, since the xb_chain_iostart
2322  * and xb_chain_iodone index values in the sd_xbuf are initialized to these
2323  * values at sd_xbuf init time, this allows (1) layering chains may be changed
2324  * dynamically & without the use of locking; and (2) a layer may update the
2325  * xb_chain_io[start|done] member in a given xbuf with its current index value,
2326  * to allow for deferred processing of an IO within the same chain from a
2327  * different execution context.
2328  */
2329 
2330 struct sd_chain_index {
2331 	int	sci_iostart_index;
2332 	int	sci_iodone_index;
2333 };
2334 
2335 static struct sd_chain_index	sd_chain_index_map[] = {
2336 	{ SD_CHAIN_DISK_IOSTART,		SD_CHAIN_DISK_IODONE },
2337 	{ SD_CHAIN_DISK_IOSTART_NO_PM,		SD_CHAIN_DISK_IODONE_NO_PM },
2338 	{ SD_CHAIN_RMMEDIA_IOSTART,		SD_CHAIN_RMMEDIA_IODONE },
2339 	{ SD_CHAIN_RMMEDIA_IOSTART_NO_PM,	SD_CHAIN_RMMEDIA_IODONE_NO_PM },
2340 	{ SD_CHAIN_CHKSUM_IOSTART,		SD_CHAIN_CHKSUM_IODONE },
2341 	{ SD_CHAIN_CHKSUM_IOSTART_NO_PM,	SD_CHAIN_CHKSUM_IODONE_NO_PM },
2342 	{ SD_CHAIN_USCSI_CMD_IOSTART,		SD_CHAIN_USCSI_CMD_IODONE },
2343 	{ SD_CHAIN_USCSI_CHKSUM_IOSTART,	SD_CHAIN_USCSI_CHKSUM_IODONE },
2344 	{ SD_CHAIN_DIRECT_CMD_IOSTART,		SD_CHAIN_DIRECT_CMD_IODONE },
2345 	{ SD_CHAIN_PRIORITY_CMD_IOSTART,	SD_CHAIN_PRIORITY_CMD_IODONE },
2346 	{ SD_CHAIN_MSS_CHKSUM_IOSTART,		SD_CHAIN_MSS_CHKSUM_IODONE },
2347 	{ SD_CHAIN_MSS_CHKSUM_IOSTART_NO_PM, SD_CHAIN_MSS_CHKSUM_IODONE_NO_PM },
2348 
2349 };
2350 
2351 
2352 /*
2353  * The following are indexes into the sd_chain_index_map[] array.
2354  */
2355 
2356 /* un->un_buf_chain_type must be set to one of these */
2357 #define	SD_CHAIN_INFO_DISK		0
2358 #define	SD_CHAIN_INFO_DISK_NO_PM	1
2359 #define	SD_CHAIN_INFO_RMMEDIA		2
2360 #define	SD_CHAIN_INFO_MSS_DISK		2
2361 #define	SD_CHAIN_INFO_RMMEDIA_NO_PM	3
2362 #define	SD_CHAIN_INFO_MSS_DSK_NO_PM	3
2363 #define	SD_CHAIN_INFO_CHKSUM		4
2364 #define	SD_CHAIN_INFO_CHKSUM_NO_PM	5
2365 #define	SD_CHAIN_INFO_MSS_DISK_CHKSUM	10
2366 #define	SD_CHAIN_INFO_MSS_DISK_CHKSUM_NO_PM	11
2367 
2368 /* un->un_uscsi_chain_type must be set to one of these */
2369 #define	SD_CHAIN_INFO_USCSI_CMD		6
2370 /* USCSI with PM disabled is the same as DIRECT */
2371 #define	SD_CHAIN_INFO_USCSI_CMD_NO_PM	8
2372 #define	SD_CHAIN_INFO_USCSI_CHKSUM	7
2373 
2374 /* un->un_direct_chain_type must be set to one of these */
2375 #define	SD_CHAIN_INFO_DIRECT_CMD	8
2376 
2377 /* un->un_priority_chain_type must be set to one of these */
2378 #define	SD_CHAIN_INFO_PRIORITY_CMD	9
2379 
2380 /* size for devid inquiries */
2381 #define	MAX_INQUIRY_SIZE		0xF0
2382 
2383 /*
2384  * Macros used by functions to pass a given buf(9S) struct along to the
2385  * next function in the layering chain for further processing.
2386  *
2387  * In the following macros, passing more than three arguments to the called
2388  * routines causes the optimizer for the SPARC compiler to stop doing tail
2389  * call elimination which results in significant performance degradation.
2390  */
2391 #define	SD_BEGIN_IOSTART(index, un, bp)	\
2392 	((*(sd_iostart_chain[index]))(index, un, bp))
2393 
2394 #define	SD_BEGIN_IODONE(index, un, bp)	\
2395 	((*(sd_iodone_chain[index]))(index, un, bp))
2396 
2397 #define	SD_NEXT_IOSTART(index, un, bp)				\
2398 	((*(sd_iostart_chain[(index) + 1]))((index) + 1, un, bp))
2399 
2400 #define	SD_NEXT_IODONE(index, un, bp)				\
2401 	((*(sd_iodone_chain[(index) - 1]))((index) - 1, un, bp))
2402 
2403 /*
2404  *    Function: _init
2405  *
2406  * Description: This is the driver _init(9E) entry point.
2407  *
2408  * Return Code: Returns the value from mod_install(9F) or
2409  *		ddi_soft_state_init(9F) as appropriate.
2410  *
2411  *     Context: Called when driver module loaded.
2412  */
2413 
2414 int
2415 _init(void)
2416 {
2417 	int	err;
2418 
2419 	/* establish driver name from module name */
2420 	sd_label = (char *)mod_modname(&modlinkage);
2421 
2422 #ifndef XPV_HVM_DRIVER
2423 	err = ddi_soft_state_init(&sd_state, sizeof (struct sd_lun),
2424 	    SD_MAXUNIT);
2425 	if (err != 0) {
2426 		return (err);
2427 	}
2428 
2429 #else /* XPV_HVM_DRIVER */
2430 	/* Remove the leading "hvm_" from the module name */
2431 	ASSERT(strncmp(sd_label, "hvm_", strlen("hvm_")) == 0);
2432 	sd_label += strlen("hvm_");
2433 
2434 #endif /* XPV_HVM_DRIVER */
2435 
2436 	mutex_init(&sd_detach_mutex, NULL, MUTEX_DRIVER, NULL);
2437 	mutex_init(&sd_log_mutex,    NULL, MUTEX_DRIVER, NULL);
2438 	mutex_init(&sd_label_mutex,  NULL, MUTEX_DRIVER, NULL);
2439 
2440 	mutex_init(&sd_tr.srq_resv_reclaim_mutex, NULL, MUTEX_DRIVER, NULL);
2441 	cv_init(&sd_tr.srq_resv_reclaim_cv, NULL, CV_DRIVER, NULL);
2442 	cv_init(&sd_tr.srq_inprocess_cv, NULL, CV_DRIVER, NULL);
2443 
2444 	/*
2445 	 * it's ok to init here even for fibre device
2446 	 */
2447 	sd_scsi_probe_cache_init();
2448 
2449 	sd_scsi_target_lun_init();
2450 
2451 	/*
2452 	 * Creating taskq before mod_install ensures that all callers (threads)
2453 	 * that enter the module after a successful mod_install encounter
2454 	 * a valid taskq.
2455 	 */
2456 	sd_taskq_create();
2457 
2458 	err = mod_install(&modlinkage);
2459 	if (err != 0) {
2460 		/* delete taskq if install fails */
2461 		sd_taskq_delete();
2462 
2463 		mutex_destroy(&sd_detach_mutex);
2464 		mutex_destroy(&sd_log_mutex);
2465 		mutex_destroy(&sd_label_mutex);
2466 
2467 		mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2468 		cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2469 		cv_destroy(&sd_tr.srq_inprocess_cv);
2470 
2471 		sd_scsi_probe_cache_fini();
2472 
2473 		sd_scsi_target_lun_fini();
2474 
2475 #ifndef XPV_HVM_DRIVER
2476 		ddi_soft_state_fini(&sd_state);
2477 #endif /* !XPV_HVM_DRIVER */
2478 		return (err);
2479 	}
2480 
2481 	return (err);
2482 }
2483 
2484 
2485 /*
2486  *    Function: _fini
2487  *
2488  * Description: This is the driver _fini(9E) entry point.
2489  *
2490  * Return Code: Returns the value from mod_remove(9F)
2491  *
2492  *     Context: Called when driver module is unloaded.
2493  */
2494 
2495 int
2496 _fini(void)
2497 {
2498 	int err;
2499 
2500 	if ((err = mod_remove(&modlinkage)) != 0) {
2501 		return (err);
2502 	}
2503 
2504 	sd_taskq_delete();
2505 
2506 	mutex_destroy(&sd_detach_mutex);
2507 	mutex_destroy(&sd_log_mutex);
2508 	mutex_destroy(&sd_label_mutex);
2509 	mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2510 
2511 	sd_scsi_probe_cache_fini();
2512 
2513 	sd_scsi_target_lun_fini();
2514 
2515 	cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2516 	cv_destroy(&sd_tr.srq_inprocess_cv);
2517 
2518 #ifndef XPV_HVM_DRIVER
2519 	ddi_soft_state_fini(&sd_state);
2520 #endif /* !XPV_HVM_DRIVER */
2521 
2522 	return (err);
2523 }
2524 
2525 
2526 /*
2527  *    Function: _info
2528  *
2529  * Description: This is the driver _info(9E) entry point.
2530  *
2531  *   Arguments: modinfop - pointer to the driver modinfo structure
2532  *
2533  * Return Code: Returns the value from mod_info(9F).
2534  *
2535  *     Context: Kernel thread context
2536  */
2537 
2538 int
2539 _info(struct modinfo *modinfop)
2540 {
2541 	return (mod_info(&modlinkage, modinfop));
2542 }
2543 
2544 
2545 /*
2546  * The following routines implement the driver message logging facility.
2547  * They provide component- and level- based debug output filtering.
2548  * Output may also be restricted to messages for a single instance by
2549  * specifying a soft state pointer in sd_debug_un. If sd_debug_un is set
2550  * to NULL, then messages for all instances are printed.
2551  *
2552  * These routines have been cloned from each other due to the language
2553  * constraints of macros and variable argument list processing.
2554  */
2555 
2556 
2557 /*
2558  *    Function: sd_log_err
2559  *
2560  * Description: This routine is called by the SD_ERROR macro for debug
2561  *		logging of error conditions.
2562  *
2563  *   Arguments: comp - driver component being logged
2564  *		dev  - pointer to driver info structure
2565  *		fmt  - error string and format to be logged
2566  */
2567 
2568 static void
2569 sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...)
2570 {
2571 	va_list		ap;
2572 	dev_info_t	*dev;
2573 
2574 	ASSERT(un != NULL);
2575 	dev = SD_DEVINFO(un);
2576 	ASSERT(dev != NULL);
2577 
2578 	/*
2579 	 * Filter messages based on the global component and level masks.
2580 	 * Also print if un matches the value of sd_debug_un, or if
2581 	 * sd_debug_un is set to NULL.
2582 	 */
2583 	if ((sd_component_mask & comp) && (sd_level_mask & SD_LOGMASK_ERROR) &&
2584 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2585 		mutex_enter(&sd_log_mutex);
2586 		va_start(ap, fmt);
2587 		(void) vsprintf(sd_log_buf, fmt, ap);
2588 		va_end(ap);
2589 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2590 		mutex_exit(&sd_log_mutex);
2591 	}
2592 #ifdef SD_FAULT_INJECTION
2593 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2594 	if (un->sd_injection_mask & comp) {
2595 		mutex_enter(&sd_log_mutex);
2596 		va_start(ap, fmt);
2597 		(void) vsprintf(sd_log_buf, fmt, ap);
2598 		va_end(ap);
2599 		sd_injection_log(sd_log_buf, un);
2600 		mutex_exit(&sd_log_mutex);
2601 	}
2602 #endif
2603 }
2604 
2605 
2606 /*
2607  *    Function: sd_log_info
2608  *
2609  * Description: This routine is called by the SD_INFO macro for debug
2610  *		logging of general purpose informational conditions.
2611  *
2612  *   Arguments: comp - driver component being logged
2613  *		dev  - pointer to driver info structure
2614  *		fmt  - info string and format to be logged
2615  */
2616 
2617 static void
2618 sd_log_info(uint_t component, struct sd_lun *un, const char *fmt, ...)
2619 {
2620 	va_list		ap;
2621 	dev_info_t	*dev;
2622 
2623 	ASSERT(un != NULL);
2624 	dev = SD_DEVINFO(un);
2625 	ASSERT(dev != NULL);
2626 
2627 	/*
2628 	 * Filter messages based on the global component and level masks.
2629 	 * Also print if un matches the value of sd_debug_un, or if
2630 	 * sd_debug_un is set to NULL.
2631 	 */
2632 	if ((sd_component_mask & component) &&
2633 	    (sd_level_mask & SD_LOGMASK_INFO) &&
2634 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2635 		mutex_enter(&sd_log_mutex);
2636 		va_start(ap, fmt);
2637 		(void) vsprintf(sd_log_buf, fmt, ap);
2638 		va_end(ap);
2639 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2640 		mutex_exit(&sd_log_mutex);
2641 	}
2642 #ifdef SD_FAULT_INJECTION
2643 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2644 	if (un->sd_injection_mask & component) {
2645 		mutex_enter(&sd_log_mutex);
2646 		va_start(ap, fmt);
2647 		(void) vsprintf(sd_log_buf, fmt, ap);
2648 		va_end(ap);
2649 		sd_injection_log(sd_log_buf, un);
2650 		mutex_exit(&sd_log_mutex);
2651 	}
2652 #endif
2653 }
2654 
2655 
2656 /*
2657  *    Function: sd_log_trace
2658  *
2659  * Description: This routine is called by the SD_TRACE macro for debug
2660  *		logging of trace conditions (i.e. function entry/exit).
2661  *
2662  *   Arguments: comp - driver component being logged
2663  *		dev  - pointer to driver info structure
2664  *		fmt  - trace string and format to be logged
2665  */
2666 
2667 static void
2668 sd_log_trace(uint_t component, struct sd_lun *un, const char *fmt, ...)
2669 {
2670 	va_list		ap;
2671 	dev_info_t	*dev;
2672 
2673 	ASSERT(un != NULL);
2674 	dev = SD_DEVINFO(un);
2675 	ASSERT(dev != NULL);
2676 
2677 	/*
2678 	 * Filter messages based on the global component and level masks.
2679 	 * Also print if un matches the value of sd_debug_un, or if
2680 	 * sd_debug_un is set to NULL.
2681 	 */
2682 	if ((sd_component_mask & component) &&
2683 	    (sd_level_mask & SD_LOGMASK_TRACE) &&
2684 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2685 		mutex_enter(&sd_log_mutex);
2686 		va_start(ap, fmt);
2687 		(void) vsprintf(sd_log_buf, fmt, ap);
2688 		va_end(ap);
2689 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2690 		mutex_exit(&sd_log_mutex);
2691 	}
2692 #ifdef SD_FAULT_INJECTION
2693 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2694 	if (un->sd_injection_mask & component) {
2695 		mutex_enter(&sd_log_mutex);
2696 		va_start(ap, fmt);
2697 		(void) vsprintf(sd_log_buf, fmt, ap);
2698 		va_end(ap);
2699 		sd_injection_log(sd_log_buf, un);
2700 		mutex_exit(&sd_log_mutex);
2701 	}
2702 #endif
2703 }
2704 
2705 
2706 /*
2707  *    Function: sdprobe
2708  *
2709  * Description: This is the driver probe(9e) entry point function.
2710  *
2711  *   Arguments: devi - opaque device info handle
2712  *
2713  * Return Code: DDI_PROBE_SUCCESS: If the probe was successful.
2714  *              DDI_PROBE_FAILURE: If the probe failed.
2715  *              DDI_PROBE_PARTIAL: If the instance is not present now,
2716  *				   but may be present in the future.
2717  */
2718 
2719 static int
2720 sdprobe(dev_info_t *devi)
2721 {
2722 	struct scsi_device	*devp;
2723 	int			rval;
2724 #ifndef XPV_HVM_DRIVER
2725 	int			instance = ddi_get_instance(devi);
2726 #endif /* !XPV_HVM_DRIVER */
2727 
2728 	/*
2729 	 * if it wasn't for pln, sdprobe could actually be nulldev
2730 	 * in the "__fibre" case.
2731 	 */
2732 	if (ddi_dev_is_sid(devi) == DDI_SUCCESS) {
2733 		return (DDI_PROBE_DONTCARE);
2734 	}
2735 
2736 	devp = ddi_get_driver_private(devi);
2737 
2738 	if (devp == NULL) {
2739 		/* Ooops... nexus driver is mis-configured... */
2740 		return (DDI_PROBE_FAILURE);
2741 	}
2742 
2743 #ifndef XPV_HVM_DRIVER
2744 	if (ddi_get_soft_state(sd_state, instance) != NULL) {
2745 		return (DDI_PROBE_PARTIAL);
2746 	}
2747 #endif /* !XPV_HVM_DRIVER */
2748 
2749 	/*
2750 	 * Call the SCSA utility probe routine to see if we actually
2751 	 * have a target at this SCSI nexus.
2752 	 */
2753 	switch (sd_scsi_probe_with_cache(devp, NULL_FUNC)) {
2754 	case SCSIPROBE_EXISTS:
2755 		switch (devp->sd_inq->inq_dtype) {
2756 		case DTYPE_DIRECT:
2757 			rval = DDI_PROBE_SUCCESS;
2758 			break;
2759 		case DTYPE_RODIRECT:
2760 			/* CDs etc. Can be removable media */
2761 			rval = DDI_PROBE_SUCCESS;
2762 			break;
2763 		case DTYPE_OPTICAL:
2764 			/*
2765 			 * Rewritable optical driver HP115AA
2766 			 * Can also be removable media
2767 			 */
2768 
2769 			/*
2770 			 * Do not attempt to bind to  DTYPE_OPTICAL if
2771 			 * pre solaris 9 sparc sd behavior is required
2772 			 *
2773 			 * If first time through and sd_dtype_optical_bind
2774 			 * has not been set in /etc/system check properties
2775 			 */
2776 
2777 			if (sd_dtype_optical_bind  < 0) {
2778 				sd_dtype_optical_bind = ddi_prop_get_int
2779 				    (DDI_DEV_T_ANY, devi, 0,
2780 				    "optical-device-bind", 1);
2781 			}
2782 
2783 			if (sd_dtype_optical_bind == 0) {
2784 				rval = DDI_PROBE_FAILURE;
2785 			} else {
2786 				rval = DDI_PROBE_SUCCESS;
2787 			}
2788 			break;
2789 
2790 		case DTYPE_NOTPRESENT:
2791 		default:
2792 			rval = DDI_PROBE_FAILURE;
2793 			break;
2794 		}
2795 		break;
2796 	default:
2797 		rval = DDI_PROBE_PARTIAL;
2798 		break;
2799 	}
2800 
2801 	/*
2802 	 * This routine checks for resource allocation prior to freeing,
2803 	 * so it will take care of the "smart probing" case where a
2804 	 * scsi_probe() may or may not have been issued and will *not*
2805 	 * free previously-freed resources.
2806 	 */
2807 	scsi_unprobe(devp);
2808 	return (rval);
2809 }
2810 
2811 
2812 /*
2813  *    Function: sdinfo
2814  *
2815  * Description: This is the driver getinfo(9e) entry point function.
2816  * 		Given the device number, return the devinfo pointer from
2817  *		the scsi_device structure or the instance number
2818  *		associated with the dev_t.
2819  *
2820  *   Arguments: dip     - pointer to device info structure
2821  *		infocmd - command argument (DDI_INFO_DEVT2DEVINFO,
2822  *			  DDI_INFO_DEVT2INSTANCE)
2823  *		arg     - driver dev_t
2824  *		resultp - user buffer for request response
2825  *
2826  * Return Code: DDI_SUCCESS
2827  *              DDI_FAILURE
2828  */
2829 /* ARGSUSED */
2830 static int
2831 sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
2832 {
2833 	struct sd_lun	*un;
2834 	dev_t		dev;
2835 	int		instance;
2836 	int		error;
2837 
2838 	switch (infocmd) {
2839 	case DDI_INFO_DEVT2DEVINFO:
2840 		dev = (dev_t)arg;
2841 		instance = SDUNIT(dev);
2842 		if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
2843 			return (DDI_FAILURE);
2844 		}
2845 		*result = (void *) SD_DEVINFO(un);
2846 		error = DDI_SUCCESS;
2847 		break;
2848 	case DDI_INFO_DEVT2INSTANCE:
2849 		dev = (dev_t)arg;
2850 		instance = SDUNIT(dev);
2851 		*result = (void *)(uintptr_t)instance;
2852 		error = DDI_SUCCESS;
2853 		break;
2854 	default:
2855 		error = DDI_FAILURE;
2856 	}
2857 	return (error);
2858 }
2859 
2860 /*
2861  *    Function: sd_prop_op
2862  *
2863  * Description: This is the driver prop_op(9e) entry point function.
2864  *		Return the number of blocks for the partition in question
2865  *		or forward the request to the property facilities.
2866  *
2867  *   Arguments: dev       - device number
2868  *		dip       - pointer to device info structure
2869  *		prop_op   - property operator
2870  *		mod_flags - DDI_PROP_DONTPASS, don't pass to parent
2871  *		name      - pointer to property name
2872  *		valuep    - pointer or address of the user buffer
2873  *		lengthp   - property length
2874  *
2875  * Return Code: DDI_PROP_SUCCESS
2876  *              DDI_PROP_NOT_FOUND
2877  *              DDI_PROP_UNDEFINED
2878  *              DDI_PROP_NO_MEMORY
2879  *              DDI_PROP_BUF_TOO_SMALL
2880  */
2881 
2882 static int
2883 sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
2884 	char *name, caddr_t valuep, int *lengthp)
2885 {
2886 	struct sd_lun	*un;
2887 
2888 	if ((un = ddi_get_soft_state(sd_state, ddi_get_instance(dip))) == NULL)
2889 		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
2890 		    name, valuep, lengthp));
2891 
2892 	return (cmlb_prop_op(un->un_cmlbhandle,
2893 	    dev, dip, prop_op, mod_flags, name, valuep, lengthp,
2894 	    SDPART(dev), (void *)SD_PATH_DIRECT));
2895 }
2896 
2897 /*
2898  * The following functions are for smart probing:
2899  * sd_scsi_probe_cache_init()
2900  * sd_scsi_probe_cache_fini()
2901  * sd_scsi_clear_probe_cache()
2902  * sd_scsi_probe_with_cache()
2903  */
2904 
2905 /*
2906  *    Function: sd_scsi_probe_cache_init
2907  *
2908  * Description: Initializes the probe response cache mutex and head pointer.
2909  *
2910  *     Context: Kernel thread context
2911  */
2912 
2913 static void
2914 sd_scsi_probe_cache_init(void)
2915 {
2916 	mutex_init(&sd_scsi_probe_cache_mutex, NULL, MUTEX_DRIVER, NULL);
2917 	sd_scsi_probe_cache_head = NULL;
2918 }
2919 
2920 
2921 /*
2922  *    Function: sd_scsi_probe_cache_fini
2923  *
2924  * Description: Frees all resources associated with the probe response cache.
2925  *
2926  *     Context: Kernel thread context
2927  */
2928 
2929 static void
2930 sd_scsi_probe_cache_fini(void)
2931 {
2932 	struct sd_scsi_probe_cache *cp;
2933 	struct sd_scsi_probe_cache *ncp;
2934 
2935 	/* Clean up our smart probing linked list */
2936 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = ncp) {
2937 		ncp = cp->next;
2938 		kmem_free(cp, sizeof (struct sd_scsi_probe_cache));
2939 	}
2940 	sd_scsi_probe_cache_head = NULL;
2941 	mutex_destroy(&sd_scsi_probe_cache_mutex);
2942 }
2943 
2944 
2945 /*
2946  *    Function: sd_scsi_clear_probe_cache
2947  *
2948  * Description: This routine clears the probe response cache. This is
2949  *		done when open() returns ENXIO so that when deferred
2950  *		attach is attempted (possibly after a device has been
2951  *		turned on) we will retry the probe. Since we don't know
2952  *		which target we failed to open, we just clear the
2953  *		entire cache.
2954  *
2955  *     Context: Kernel thread context
2956  */
2957 
2958 static void
2959 sd_scsi_clear_probe_cache(void)
2960 {
2961 	struct sd_scsi_probe_cache	*cp;
2962 	int				i;
2963 
2964 	mutex_enter(&sd_scsi_probe_cache_mutex);
2965 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2966 		/*
2967 		 * Reset all entries to SCSIPROBE_EXISTS.  This will
2968 		 * force probing to be performed the next time
2969 		 * sd_scsi_probe_with_cache is called.
2970 		 */
2971 		for (i = 0; i < NTARGETS_WIDE; i++) {
2972 			cp->cache[i] = SCSIPROBE_EXISTS;
2973 		}
2974 	}
2975 	mutex_exit(&sd_scsi_probe_cache_mutex);
2976 }
2977 
2978 
2979 /*
2980  *    Function: sd_scsi_probe_with_cache
2981  *
2982  * Description: This routine implements support for a scsi device probe
2983  *		with cache. The driver maintains a cache of the target
2984  *		responses to scsi probes. If we get no response from a
2985  *		target during a probe inquiry, we remember that, and we
2986  *		avoid additional calls to scsi_probe on non-zero LUNs
2987  *		on the same target until the cache is cleared. By doing
2988  *		so we avoid the 1/4 sec selection timeout for nonzero
2989  *		LUNs. lun0 of a target is always probed.
2990  *
2991  *   Arguments: devp     - Pointer to a scsi_device(9S) structure
2992  *              waitfunc - indicates what the allocator routines should
2993  *			   do when resources are not available. This value
2994  *			   is passed on to scsi_probe() when that routine
2995  *			   is called.
2996  *
2997  * Return Code: SCSIPROBE_NORESP if a NORESP in probe response cache;
2998  *		otherwise the value returned by scsi_probe(9F).
2999  *
3000  *     Context: Kernel thread context
3001  */
3002 
3003 static int
3004 sd_scsi_probe_with_cache(struct scsi_device *devp, int (*waitfn)())
3005 {
3006 	struct sd_scsi_probe_cache	*cp;
3007 	dev_info_t	*pdip = ddi_get_parent(devp->sd_dev);
3008 	int		lun, tgt;
3009 
3010 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
3011 	    SCSI_ADDR_PROP_LUN, 0);
3012 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
3013 	    SCSI_ADDR_PROP_TARGET, -1);
3014 
3015 	/* Make sure caching enabled and target in range */
3016 	if ((tgt < 0) || (tgt >= NTARGETS_WIDE)) {
3017 		/* do it the old way (no cache) */
3018 		return (scsi_probe(devp, waitfn));
3019 	}
3020 
3021 	mutex_enter(&sd_scsi_probe_cache_mutex);
3022 
3023 	/* Find the cache for this scsi bus instance */
3024 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
3025 		if (cp->pdip == pdip) {
3026 			break;
3027 		}
3028 	}
3029 
3030 	/* If we can't find a cache for this pdip, create one */
3031 	if (cp == NULL) {
3032 		int i;
3033 
3034 		cp = kmem_zalloc(sizeof (struct sd_scsi_probe_cache),
3035 		    KM_SLEEP);
3036 		cp->pdip = pdip;
3037 		cp->next = sd_scsi_probe_cache_head;
3038 		sd_scsi_probe_cache_head = cp;
3039 		for (i = 0; i < NTARGETS_WIDE; i++) {
3040 			cp->cache[i] = SCSIPROBE_EXISTS;
3041 		}
3042 	}
3043 
3044 	mutex_exit(&sd_scsi_probe_cache_mutex);
3045 
3046 	/* Recompute the cache for this target if LUN zero */
3047 	if (lun == 0) {
3048 		cp->cache[tgt] = SCSIPROBE_EXISTS;
3049 	}
3050 
3051 	/* Don't probe if cache remembers a NORESP from a previous LUN. */
3052 	if (cp->cache[tgt] != SCSIPROBE_EXISTS) {
3053 		return (SCSIPROBE_NORESP);
3054 	}
3055 
3056 	/* Do the actual probe; save & return the result */
3057 	return (cp->cache[tgt] = scsi_probe(devp, waitfn));
3058 }
3059 
3060 
3061 /*
3062  *    Function: sd_scsi_target_lun_init
3063  *
3064  * Description: Initializes the attached lun chain mutex and head pointer.
3065  *
3066  *     Context: Kernel thread context
3067  */
3068 
3069 static void
3070 sd_scsi_target_lun_init(void)
3071 {
3072 	mutex_init(&sd_scsi_target_lun_mutex, NULL, MUTEX_DRIVER, NULL);
3073 	sd_scsi_target_lun_head = NULL;
3074 }
3075 
3076 
3077 /*
3078  *    Function: sd_scsi_target_lun_fini
3079  *
3080  * Description: Frees all resources associated with the attached lun
3081  *              chain
3082  *
3083  *     Context: Kernel thread context
3084  */
3085 
3086 static void
3087 sd_scsi_target_lun_fini(void)
3088 {
3089 	struct sd_scsi_hba_tgt_lun	*cp;
3090 	struct sd_scsi_hba_tgt_lun	*ncp;
3091 
3092 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = ncp) {
3093 		ncp = cp->next;
3094 		kmem_free(cp, sizeof (struct sd_scsi_hba_tgt_lun));
3095 	}
3096 	sd_scsi_target_lun_head = NULL;
3097 	mutex_destroy(&sd_scsi_target_lun_mutex);
3098 }
3099 
3100 
3101 /*
3102  *    Function: sd_scsi_get_target_lun_count
3103  *
3104  * Description: This routine will check in the attached lun chain to see
3105  * 		how many luns are attached on the required SCSI controller
3106  * 		and target. Currently, some capabilities like tagged queue
3107  *		are supported per target based by HBA. So all luns in a
3108  *		target have the same capabilities. Based on this assumption,
3109  * 		sd should only set these capabilities once per target. This
3110  *		function is called when sd needs to decide how many luns
3111  *		already attached on a target.
3112  *
3113  *   Arguments: dip	- Pointer to the system's dev_info_t for the SCSI
3114  *			  controller device.
3115  *              target	- The target ID on the controller's SCSI bus.
3116  *
3117  * Return Code: The number of luns attached on the required target and
3118  *		controller.
3119  *		-1 if target ID is not in parallel SCSI scope or the given
3120  * 		dip is not in the chain.
3121  *
3122  *     Context: Kernel thread context
3123  */
3124 
3125 static int
3126 sd_scsi_get_target_lun_count(dev_info_t *dip, int target)
3127 {
3128 	struct sd_scsi_hba_tgt_lun	*cp;
3129 
3130 	if ((target < 0) || (target >= NTARGETS_WIDE)) {
3131 		return (-1);
3132 	}
3133 
3134 	mutex_enter(&sd_scsi_target_lun_mutex);
3135 
3136 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
3137 		if (cp->pdip == dip) {
3138 			break;
3139 		}
3140 	}
3141 
3142 	mutex_exit(&sd_scsi_target_lun_mutex);
3143 
3144 	if (cp == NULL) {
3145 		return (-1);
3146 	}
3147 
3148 	return (cp->nlun[target]);
3149 }
3150 
3151 
3152 /*
3153  *    Function: sd_scsi_update_lun_on_target
3154  *
3155  * Description: This routine is used to update the attached lun chain when a
3156  *		lun is attached or detached on a target.
3157  *
3158  *   Arguments: dip     - Pointer to the system's dev_info_t for the SCSI
3159  *                        controller device.
3160  *              target  - The target ID on the controller's SCSI bus.
3161  *		flag	- Indicate the lun is attached or detached.
3162  *
3163  *     Context: Kernel thread context
3164  */
3165 
3166 static void
3167 sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag)
3168 {
3169 	struct sd_scsi_hba_tgt_lun	*cp;
3170 
3171 	mutex_enter(&sd_scsi_target_lun_mutex);
3172 
3173 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
3174 		if (cp->pdip == dip) {
3175 			break;
3176 		}
3177 	}
3178 
3179 	if ((cp == NULL) && (flag == SD_SCSI_LUN_ATTACH)) {
3180 		cp = kmem_zalloc(sizeof (struct sd_scsi_hba_tgt_lun),
3181 		    KM_SLEEP);
3182 		cp->pdip = dip;
3183 		cp->next = sd_scsi_target_lun_head;
3184 		sd_scsi_target_lun_head = cp;
3185 	}
3186 
3187 	mutex_exit(&sd_scsi_target_lun_mutex);
3188 
3189 	if (cp != NULL) {
3190 		if (flag == SD_SCSI_LUN_ATTACH) {
3191 			cp->nlun[target] ++;
3192 		} else {
3193 			cp->nlun[target] --;
3194 		}
3195 	}
3196 }
3197 
3198 
3199 /*
3200  *    Function: sd_spin_up_unit
3201  *
3202  * Description: Issues the following commands to spin-up the device:
3203  *		START STOP UNIT, and INQUIRY.
3204  *
3205  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
3206  *                      structure for this target.
3207  *
3208  * Return Code: 0 - success
3209  *		EIO - failure
3210  *		EACCES - reservation conflict
3211  *
3212  *     Context: Kernel thread context
3213  */
3214 
3215 static int
3216 sd_spin_up_unit(sd_ssc_t *ssc)
3217 {
3218 	size_t	resid		= 0;
3219 	int	has_conflict	= FALSE;
3220 	uchar_t *bufaddr;
3221 	int 	status;
3222 	struct sd_lun	*un;
3223 
3224 	ASSERT(ssc != NULL);
3225 	un = ssc->ssc_un;
3226 	ASSERT(un != NULL);
3227 
3228 	/*
3229 	 * Send a throwaway START UNIT command.
3230 	 *
3231 	 * If we fail on this, we don't care presently what precisely
3232 	 * is wrong.  EMC's arrays will also fail this with a check
3233 	 * condition (0x2/0x4/0x3) if the device is "inactive," but
3234 	 * we don't want to fail the attach because it may become
3235 	 * "active" later.
3236 	 * We don't know if power condition is supported or not at
3237 	 * this stage, use START STOP bit.
3238 	 */
3239 	status = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
3240 	    SD_TARGET_START, SD_PATH_DIRECT);
3241 
3242 	if (status != 0) {
3243 		if (status == EACCES)
3244 			has_conflict = TRUE;
3245 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3246 	}
3247 
3248 	/*
3249 	 * Send another INQUIRY command to the target. This is necessary for
3250 	 * non-removable media direct access devices because their INQUIRY data
3251 	 * may not be fully qualified until they are spun up (perhaps via the
3252 	 * START command above).  Note: This seems to be needed for some
3253 	 * legacy devices only.) The INQUIRY command should succeed even if a
3254 	 * Reservation Conflict is present.
3255 	 */
3256 	bufaddr = kmem_zalloc(SUN_INQSIZE, KM_SLEEP);
3257 
3258 	if (sd_send_scsi_INQUIRY(ssc, bufaddr, SUN_INQSIZE, 0, 0, &resid)
3259 	    != 0) {
3260 		kmem_free(bufaddr, SUN_INQSIZE);
3261 		sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
3262 		return (EIO);
3263 	}
3264 
3265 	/*
3266 	 * If we got enough INQUIRY data, copy it over the old INQUIRY data.
3267 	 * Note that this routine does not return a failure here even if the
3268 	 * INQUIRY command did not return any data.  This is a legacy behavior.
3269 	 */
3270 	if ((SUN_INQSIZE - resid) >= SUN_MIN_INQLEN) {
3271 		bcopy(bufaddr, SD_INQUIRY(un), SUN_INQSIZE);
3272 	}
3273 
3274 	kmem_free(bufaddr, SUN_INQSIZE);
3275 
3276 	/* If we hit a reservation conflict above, tell the caller. */
3277 	if (has_conflict == TRUE) {
3278 		return (EACCES);
3279 	}
3280 
3281 	return (0);
3282 }
3283 
3284 #ifdef _LP64
3285 /*
3286  *    Function: sd_enable_descr_sense
3287  *
3288  * Description: This routine attempts to select descriptor sense format
3289  *		using the Control mode page.  Devices that support 64 bit
3290  *		LBAs (for >2TB luns) should also implement descriptor
3291  *		sense data so we will call this function whenever we see
3292  *		a lun larger than 2TB.  If for some reason the device
3293  *		supports 64 bit LBAs but doesn't support descriptor sense
3294  *		presumably the mode select will fail.  Everything will
3295  *		continue to work normally except that we will not get
3296  *		complete sense data for commands that fail with an LBA
3297  *		larger than 32 bits.
3298  *
3299  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
3300  *                      structure for this target.
3301  *
3302  *     Context: Kernel thread context only
3303  */
3304 
3305 static void
3306 sd_enable_descr_sense(sd_ssc_t *ssc)
3307 {
3308 	uchar_t			*header;
3309 	struct mode_control_scsi3 *ctrl_bufp;
3310 	size_t			buflen;
3311 	size_t			bd_len;
3312 	int			status;
3313 	struct sd_lun		*un;
3314 
3315 	ASSERT(ssc != NULL);
3316 	un = ssc->ssc_un;
3317 	ASSERT(un != NULL);
3318 
3319 	/*
3320 	 * Read MODE SENSE page 0xA, Control Mode Page
3321 	 */
3322 	buflen = MODE_HEADER_LENGTH + MODE_BLK_DESC_LENGTH +
3323 	    sizeof (struct mode_control_scsi3);
3324 	header = kmem_zalloc(buflen, KM_SLEEP);
3325 
3326 	status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen,
3327 	    MODEPAGE_CTRL_MODE, SD_PATH_DIRECT);
3328 
3329 	if (status != 0) {
3330 		SD_ERROR(SD_LOG_COMMON, un,
3331 		    "sd_enable_descr_sense: mode sense ctrl page failed\n");
3332 		goto eds_exit;
3333 	}
3334 
3335 	/*
3336 	 * Determine size of Block Descriptors in order to locate
3337 	 * the mode page data. ATAPI devices return 0, SCSI devices
3338 	 * should return MODE_BLK_DESC_LENGTH.
3339 	 */
3340 	bd_len  = ((struct mode_header *)header)->bdesc_length;
3341 
3342 	/* Clear the mode data length field for MODE SELECT */
3343 	((struct mode_header *)header)->length = 0;
3344 
3345 	ctrl_bufp = (struct mode_control_scsi3 *)
3346 	    (header + MODE_HEADER_LENGTH + bd_len);
3347 
3348 	/*
3349 	 * If the page length is smaller than the expected value,
3350 	 * the target device doesn't support D_SENSE. Bail out here.
3351 	 */
3352 	if (ctrl_bufp->mode_page.length <
3353 	    sizeof (struct mode_control_scsi3) - 2) {
3354 		SD_ERROR(SD_LOG_COMMON, un,
3355 		    "sd_enable_descr_sense: enable D_SENSE failed\n");
3356 		goto eds_exit;
3357 	}
3358 
3359 	/*
3360 	 * Clear PS bit for MODE SELECT
3361 	 */
3362 	ctrl_bufp->mode_page.ps = 0;
3363 
3364 	/*
3365 	 * Set D_SENSE to enable descriptor sense format.
3366 	 */
3367 	ctrl_bufp->d_sense = 1;
3368 
3369 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3370 
3371 	/*
3372 	 * Use MODE SELECT to commit the change to the D_SENSE bit
3373 	 */
3374 	status = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, header,
3375 	    buflen, SD_DONTSAVE_PAGE, SD_PATH_DIRECT);
3376 
3377 	if (status != 0) {
3378 		SD_INFO(SD_LOG_COMMON, un,
3379 		    "sd_enable_descr_sense: mode select ctrl page failed\n");
3380 	} else {
3381 		kmem_free(header, buflen);
3382 		return;
3383 	}
3384 
3385 eds_exit:
3386 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3387 	kmem_free(header, buflen);
3388 }
3389 
3390 /*
3391  *    Function: sd_reenable_dsense_task
3392  *
3393  * Description: Re-enable descriptor sense after device or bus reset
3394  *
3395  *     Context: Executes in a taskq() thread context
3396  */
3397 static void
3398 sd_reenable_dsense_task(void *arg)
3399 {
3400 	struct	sd_lun	*un = arg;
3401 	sd_ssc_t	*ssc;
3402 
3403 	ASSERT(un != NULL);
3404 
3405 	ssc = sd_ssc_init(un);
3406 	sd_enable_descr_sense(ssc);
3407 	sd_ssc_fini(ssc);
3408 }
3409 #endif /* _LP64 */
3410 
3411 /*
3412  *    Function: sd_set_mmc_caps
3413  *
3414  * Description: This routine determines if the device is MMC compliant and if
3415  *		the device supports CDDA via a mode sense of the CDVD
3416  *		capabilities mode page. Also checks if the device is a
3417  *		dvdram writable device.
3418  *
3419  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
3420  *                      structure for this target.
3421  *
3422  *     Context: Kernel thread context only
3423  */
3424 
3425 static void
3426 sd_set_mmc_caps(sd_ssc_t *ssc)
3427 {
3428 	struct mode_header_grp2		*sense_mhp;
3429 	uchar_t				*sense_page;
3430 	caddr_t				buf;
3431 	int				bd_len;
3432 	int				status;
3433 	struct uscsi_cmd		com;
3434 	int				rtn;
3435 	uchar_t				*out_data_rw, *out_data_hd;
3436 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3437 	uchar_t				*out_data_gesn;
3438 	int				gesn_len;
3439 	struct sd_lun			*un;
3440 
3441 	ASSERT(ssc != NULL);
3442 	un = ssc->ssc_un;
3443 	ASSERT(un != NULL);
3444 
3445 	/*
3446 	 * The flags which will be set in this function are - mmc compliant,
3447 	 * dvdram writable device, cdda support. Initialize them to FALSE
3448 	 * and if a capability is detected - it will be set to TRUE.
3449 	 */
3450 	un->un_f_mmc_cap = FALSE;
3451 	un->un_f_dvdram_writable_device = FALSE;
3452 	un->un_f_cfg_cdda = FALSE;
3453 
3454 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3455 	status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, (uchar_t *)buf,
3456 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT);
3457 
3458 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3459 
3460 	if (status != 0) {
3461 		/* command failed; just return */
3462 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3463 		return;
3464 	}
3465 	/*
3466 	 * If the mode sense request for the CDROM CAPABILITIES
3467 	 * page (0x2A) succeeds the device is assumed to be MMC.
3468 	 */
3469 	un->un_f_mmc_cap = TRUE;
3470 
3471 	/* See if GET STATUS EVENT NOTIFICATION is supported */
3472 	if (un->un_f_mmc_gesn_polling) {
3473 		gesn_len = SD_GESN_HEADER_LEN + SD_GESN_MEDIA_DATA_LEN;
3474 		out_data_gesn = kmem_zalloc(gesn_len, KM_SLEEP);
3475 
3476 		rtn = sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION(ssc,
3477 		    out_data_gesn, gesn_len, 1 << SD_GESN_MEDIA_CLASS);
3478 
3479 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3480 
3481 		if ((rtn != 0) || !sd_gesn_media_data_valid(out_data_gesn)) {
3482 			un->un_f_mmc_gesn_polling = FALSE;
3483 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3484 			    "sd_set_mmc_caps: gesn not supported "
3485 			    "%d %x %x %x %x\n", rtn,
3486 			    out_data_gesn[0], out_data_gesn[1],
3487 			    out_data_gesn[2], out_data_gesn[3]);
3488 		}
3489 
3490 		kmem_free(out_data_gesn, gesn_len);
3491 	}
3492 
3493 	/* Get to the page data */
3494 	sense_mhp = (struct mode_header_grp2 *)buf;
3495 	bd_len = (sense_mhp->bdesc_length_hi << 8) |
3496 	    sense_mhp->bdesc_length_lo;
3497 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3498 		/*
3499 		 * We did not get back the expected block descriptor
3500 		 * length so we cannot determine if the device supports
3501 		 * CDDA. However, we still indicate the device is MMC
3502 		 * according to the successful response to the page
3503 		 * 0x2A mode sense request.
3504 		 */
3505 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3506 		    "sd_set_mmc_caps: Mode Sense returned "
3507 		    "invalid block descriptor length\n");
3508 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3509 		return;
3510 	}
3511 
3512 	/* See if read CDDA is supported */
3513 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 +
3514 	    bd_len);
3515 	un->un_f_cfg_cdda = (sense_page[5] & 0x01) ? TRUE : FALSE;
3516 
3517 	/* See if writing DVD RAM is supported. */
3518 	un->un_f_dvdram_writable_device = (sense_page[3] & 0x20) ? TRUE : FALSE;
3519 	if (un->un_f_dvdram_writable_device == TRUE) {
3520 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3521 		return;
3522 	}
3523 
3524 	/*
3525 	 * If the device presents DVD or CD capabilities in the mode
3526 	 * page, we can return here since a RRD will not have
3527 	 * these capabilities.
3528 	 */
3529 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3530 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3531 		return;
3532 	}
3533 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3534 
3535 	/*
3536 	 * If un->un_f_dvdram_writable_device is still FALSE,
3537 	 * check for a Removable Rigid Disk (RRD).  A RRD
3538 	 * device is identified by the features RANDOM_WRITABLE and
3539 	 * HARDWARE_DEFECT_MANAGEMENT.
3540 	 */
3541 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3542 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3543 
3544 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_rw,
3545 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3546 	    RANDOM_WRITABLE, SD_PATH_STANDARD);
3547 
3548 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3549 
3550 	if (rtn != 0) {
3551 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3552 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3553 		return;
3554 	}
3555 
3556 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3557 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3558 
3559 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_hd,
3560 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3561 	    HARDWARE_DEFECT_MANAGEMENT, SD_PATH_STANDARD);
3562 
3563 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3564 
3565 	if (rtn == 0) {
3566 		/*
3567 		 * We have good information, check for random writable
3568 		 * and hardware defect features.
3569 		 */
3570 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3571 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT)) {
3572 			un->un_f_dvdram_writable_device = TRUE;
3573 		}
3574 	}
3575 
3576 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3577 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3578 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3579 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3580 }
3581 
3582 /*
3583  *    Function: sd_check_for_writable_cd
3584  *
3585  * Description: This routine determines if the media in the device is
3586  *		writable or not. It uses the get configuration command (0x46)
3587  *		to determine if the media is writable
3588  *
3589  *   Arguments: un - driver soft state (unit) structure
3590  *              path_flag - SD_PATH_DIRECT to use the USCSI "direct"
3591  *                           chain and the normal command waitq, or
3592  *                           SD_PATH_DIRECT_PRIORITY to use the USCSI
3593  *                           "direct" chain and bypass the normal command
3594  *                           waitq.
3595  *
3596  *     Context: Never called at interrupt context.
3597  */
3598 
3599 static void
3600 sd_check_for_writable_cd(sd_ssc_t *ssc, int path_flag)
3601 {
3602 	struct uscsi_cmd		com;
3603 	uchar_t				*out_data;
3604 	uchar_t				*rqbuf;
3605 	int				rtn;
3606 	uchar_t				*out_data_rw, *out_data_hd;
3607 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3608 	struct mode_header_grp2		*sense_mhp;
3609 	uchar_t				*sense_page;
3610 	caddr_t				buf;
3611 	int				bd_len;
3612 	int				status;
3613 	struct sd_lun			*un;
3614 
3615 	ASSERT(ssc != NULL);
3616 	un = ssc->ssc_un;
3617 	ASSERT(un != NULL);
3618 	ASSERT(mutex_owned(SD_MUTEX(un)));
3619 
3620 	/*
3621 	 * Initialize the writable media to false, if configuration info.
3622 	 * tells us otherwise then only we will set it.
3623 	 */
3624 	un->un_f_mmc_writable_media = FALSE;
3625 	mutex_exit(SD_MUTEX(un));
3626 
3627 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
3628 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3629 
3630 	rtn = sd_send_scsi_GET_CONFIGURATION(ssc, &com, rqbuf, SENSE_LENGTH,
3631 	    out_data, SD_PROFILE_HEADER_LEN, path_flag);
3632 
3633 	if (rtn != 0)
3634 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3635 
3636 	mutex_enter(SD_MUTEX(un));
3637 	if (rtn == 0) {
3638 		/*
3639 		 * We have good information, check for writable DVD.
3640 		 */
3641 		if ((out_data[6] == 0) && (out_data[7] == 0x12)) {
3642 			un->un_f_mmc_writable_media = TRUE;
3643 			kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3644 			kmem_free(rqbuf, SENSE_LENGTH);
3645 			return;
3646 		}
3647 	}
3648 
3649 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3650 	kmem_free(rqbuf, SENSE_LENGTH);
3651 
3652 	/*
3653 	 * Determine if this is a RRD type device.
3654 	 */
3655 	mutex_exit(SD_MUTEX(un));
3656 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3657 	status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, (uchar_t *)buf,
3658 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, path_flag);
3659 
3660 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3661 
3662 	mutex_enter(SD_MUTEX(un));
3663 	if (status != 0) {
3664 		/* command failed; just return */
3665 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3666 		return;
3667 	}
3668 
3669 	/* Get to the page data */
3670 	sense_mhp = (struct mode_header_grp2 *)buf;
3671 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
3672 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3673 		/*
3674 		 * We did not get back the expected block descriptor length so
3675 		 * we cannot check the mode page.
3676 		 */
3677 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3678 		    "sd_check_for_writable_cd: Mode Sense returned "
3679 		    "invalid block descriptor length\n");
3680 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3681 		return;
3682 	}
3683 
3684 	/*
3685 	 * If the device presents DVD or CD capabilities in the mode
3686 	 * page, we can return here since a RRD device will not have
3687 	 * these capabilities.
3688 	 */
3689 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 + bd_len);
3690 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3691 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3692 		return;
3693 	}
3694 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3695 
3696 	/*
3697 	 * If un->un_f_mmc_writable_media is still FALSE,
3698 	 * check for RRD type media.  A RRD device is identified
3699 	 * by the features RANDOM_WRITABLE and HARDWARE_DEFECT_MANAGEMENT.
3700 	 */
3701 	mutex_exit(SD_MUTEX(un));
3702 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3703 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3704 
3705 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_rw,
3706 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3707 	    RANDOM_WRITABLE, path_flag);
3708 
3709 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3710 	if (rtn != 0) {
3711 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3712 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3713 		mutex_enter(SD_MUTEX(un));
3714 		return;
3715 	}
3716 
3717 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3718 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3719 
3720 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_hd,
3721 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3722 	    HARDWARE_DEFECT_MANAGEMENT, path_flag);
3723 
3724 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3725 	mutex_enter(SD_MUTEX(un));
3726 	if (rtn == 0) {
3727 		/*
3728 		 * We have good information, check for random writable
3729 		 * and hardware defect features as current.
3730 		 */
3731 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3732 		    (out_data_rw[10] & 0x1) &&
3733 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT) &&
3734 		    (out_data_hd[10] & 0x1)) {
3735 			un->un_f_mmc_writable_media = TRUE;
3736 		}
3737 	}
3738 
3739 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3740 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3741 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3742 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3743 }
3744 
3745 /*
3746  *    Function: sd_read_unit_properties
3747  *
3748  * Description: The following implements a property lookup mechanism.
3749  *		Properties for particular disks (keyed on vendor, model
3750  *		and rev numbers) are sought in the sd.conf file via
3751  *		sd_process_sdconf_file(), and if not found there, are
3752  *		looked for in a list hardcoded in this driver via
3753  *		sd_process_sdconf_table() Once located the properties
3754  *		are used to update the driver unit structure.
3755  *
3756  *   Arguments: un - driver soft state (unit) structure
3757  */
3758 
3759 static void
3760 sd_read_unit_properties(struct sd_lun *un)
3761 {
3762 	/*
3763 	 * sd_process_sdconf_file returns SD_FAILURE if it cannot find
3764 	 * the "sd-config-list" property (from the sd.conf file) or if
3765 	 * there was not a match for the inquiry vid/pid. If this event
3766 	 * occurs the static driver configuration table is searched for
3767 	 * a match.
3768 	 */
3769 	ASSERT(un != NULL);
3770 	if (sd_process_sdconf_file(un) == SD_FAILURE) {
3771 		sd_process_sdconf_table(un);
3772 	}
3773 
3774 	/* check for LSI device */
3775 	sd_is_lsi(un);
3776 
3777 
3778 }
3779 
3780 
3781 /*
3782  *    Function: sd_process_sdconf_file
3783  *
3784  * Description: Use ddi_prop_lookup(9F) to obtain the properties from the
3785  *		driver's config file (ie, sd.conf) and update the driver
3786  *		soft state structure accordingly.
3787  *
3788  *   Arguments: un - driver soft state (unit) structure
3789  *
3790  * Return Code: SD_SUCCESS - The properties were successfully set according
3791  *			     to the driver configuration file.
3792  *		SD_FAILURE - The driver config list was not obtained or
3793  *			     there was no vid/pid match. This indicates that
3794  *			     the static config table should be used.
3795  *
3796  * The config file has a property, "sd-config-list". Currently we support
3797  * two kinds of formats. For both formats, the value of this property
3798  * is a list of duplets:
3799  *
3800  *  sd-config-list=
3801  *	<duplet>,
3802  *	[,<duplet>]*;
3803  *
3804  * For the improved format, where
3805  *
3806  *     <duplet>:= "<vid+pid>","<tunable-list>"
3807  *
3808  * and
3809  *
3810  *     <tunable-list>:=   <tunable> [, <tunable> ]*;
3811  *     <tunable> =        <name> : <value>
3812  *
3813  * The <vid+pid> is the string that is returned by the target device on a
3814  * SCSI inquiry command, the <tunable-list> contains one or more tunables
3815  * to apply to all target devices with the specified <vid+pid>.
3816  *
3817  * Each <tunable> is a "<name> : <value>" pair.
3818  *
3819  * For the old format, the structure of each duplet is as follows:
3820  *
3821  *  <duplet>:= "<vid+pid>","<data-property-name_list>"
3822  *
3823  * The first entry of the duplet is the device ID string (the concatenated
3824  * vid & pid; not to be confused with a device_id).  This is defined in
3825  * the same way as in the sd_disk_table.
3826  *
3827  * The second part of the duplet is a string that identifies a
3828  * data-property-name-list. The data-property-name-list is defined as
3829  * follows:
3830  *
3831  *  <data-property-name-list>:=<data-property-name> [<data-property-name>]
3832  *
3833  * The syntax of <data-property-name> depends on the <version> field.
3834  *
3835  * If version = SD_CONF_VERSION_1 we have the following syntax:
3836  *
3837  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3838  *
3839  * where the prop0 value will be used to set prop0 if bit0 set in the
3840  * flags, prop1 if bit1 set, etc. and N = SD_CONF_MAX_ITEMS -1
3841  *
3842  */
3843 
3844 static int
3845 sd_process_sdconf_file(struct sd_lun *un)
3846 {
3847 	char	**config_list = NULL;
3848 	uint_t	nelements;
3849 	char	*vidptr;
3850 	int	vidlen;
3851 	char	*dnlist_ptr;
3852 	char	*dataname_ptr;
3853 	char	*dataname_lasts;
3854 	int	*data_list = NULL;
3855 	uint_t	data_list_len;
3856 	int	rval = SD_FAILURE;
3857 	int	i;
3858 
3859 	ASSERT(un != NULL);
3860 
3861 	/* Obtain the configuration list associated with the .conf file */
3862 	if (ddi_prop_lookup_string_array(DDI_DEV_T_ANY, SD_DEVINFO(un),
3863 	    DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, sd_config_list,
3864 	    &config_list, &nelements) != DDI_PROP_SUCCESS) {
3865 		return (SD_FAILURE);
3866 	}
3867 
3868 	/*
3869 	 * Compare vids in each duplet to the inquiry vid - if a match is
3870 	 * made, get the data value and update the soft state structure
3871 	 * accordingly.
3872 	 *
3873 	 * Each duplet should show as a pair of strings, return SD_FAILURE
3874 	 * otherwise.
3875 	 */
3876 	if (nelements & 1) {
3877 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3878 		    "sd-config-list should show as pairs of strings.\n");
3879 		if (config_list)
3880 			ddi_prop_free(config_list);
3881 		return (SD_FAILURE);
3882 	}
3883 
3884 	for (i = 0; i < nelements; i += 2) {
3885 		/*
3886 		 * Note: The assumption here is that each vid entry is on
3887 		 * a unique line from its associated duplet.
3888 		 */
3889 		vidptr = config_list[i];
3890 		vidlen = (int)strlen(vidptr);
3891 		if ((vidlen == 0) ||
3892 		    (sd_sdconf_id_match(un, vidptr, vidlen) != SD_SUCCESS)) {
3893 			continue;
3894 		}
3895 
3896 		/*
3897 		 * dnlist contains 1 or more blank separated
3898 		 * data-property-name entries
3899 		 */
3900 		dnlist_ptr = config_list[i + 1];
3901 
3902 		if (strchr(dnlist_ptr, ':') != NULL) {
3903 			/*
3904 			 * Decode the improved format sd-config-list.
3905 			 */
3906 			sd_nvpair_str_decode(un, dnlist_ptr);
3907 		} else {
3908 			/*
3909 			 * The old format sd-config-list, loop through all
3910 			 * data-property-name entries in the
3911 			 * data-property-name-list
3912 			 * setting the properties for each.
3913 			 */
3914 			for (dataname_ptr = sd_strtok_r(dnlist_ptr, " \t",
3915 			    &dataname_lasts); dataname_ptr != NULL;
3916 			    dataname_ptr = sd_strtok_r(NULL, " \t",
3917 			    &dataname_lasts)) {
3918 				int version;
3919 
3920 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
3921 				    "sd_process_sdconf_file: disk:%s, "
3922 				    "data:%s\n", vidptr, dataname_ptr);
3923 
3924 				/* Get the data list */
3925 				if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY,
3926 				    SD_DEVINFO(un), 0, dataname_ptr, &data_list,
3927 				    &data_list_len) != DDI_PROP_SUCCESS) {
3928 					SD_INFO(SD_LOG_ATTACH_DETACH, un,
3929 					    "sd_process_sdconf_file: data "
3930 					    "property (%s) has no value\n",
3931 					    dataname_ptr);
3932 					continue;
3933 				}
3934 
3935 				version = data_list[0];
3936 
3937 				if (version == SD_CONF_VERSION_1) {
3938 					sd_tunables values;
3939 
3940 					/* Set the properties */
3941 					if (sd_chk_vers1_data(un, data_list[1],
3942 					    &data_list[2], data_list_len,
3943 					    dataname_ptr) == SD_SUCCESS) {
3944 						sd_get_tunables_from_conf(un,
3945 						    data_list[1], &data_list[2],
3946 						    &values);
3947 						sd_set_vers1_properties(un,
3948 						    data_list[1], &values);
3949 						rval = SD_SUCCESS;
3950 					} else {
3951 						rval = SD_FAILURE;
3952 					}
3953 				} else {
3954 					scsi_log(SD_DEVINFO(un), sd_label,
3955 					    CE_WARN, "data property %s version "
3956 					    "0x%x is invalid.",
3957 					    dataname_ptr, version);
3958 					rval = SD_FAILURE;
3959 				}
3960 				if (data_list)
3961 					ddi_prop_free(data_list);
3962 			}
3963 		}
3964 	}
3965 
3966 	/* free up the memory allocated by ddi_prop_lookup_string_array(). */
3967 	if (config_list) {
3968 		ddi_prop_free(config_list);
3969 	}
3970 
3971 	return (rval);
3972 }
3973 
3974 /*
3975  *    Function: sd_nvpair_str_decode()
3976  *
3977  * Description: Parse the improved format sd-config-list to get
3978  *    each entry of tunable, which includes a name-value pair.
3979  *    Then call sd_set_properties() to set the property.
3980  *
3981  *   Arguments: un - driver soft state (unit) structure
3982  *    nvpair_str - the tunable list
3983  */
3984 static void
3985 sd_nvpair_str_decode(struct sd_lun *un, char *nvpair_str)
3986 {
3987 	char	*nv, *name, *value, *token;
3988 	char	*nv_lasts, *v_lasts, *x_lasts;
3989 
3990 	for (nv = sd_strtok_r(nvpair_str, ",", &nv_lasts); nv != NULL;
3991 	    nv = sd_strtok_r(NULL, ",", &nv_lasts)) {
3992 		token = sd_strtok_r(nv, ":", &v_lasts);
3993 		name  = sd_strtok_r(token, " \t", &x_lasts);
3994 		token = sd_strtok_r(NULL, ":", &v_lasts);
3995 		value = sd_strtok_r(token, " \t", &x_lasts);
3996 		if (name == NULL || value == NULL) {
3997 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3998 			    "sd_nvpair_str_decode: "
3999 			    "name or value is not valid!\n");
4000 		} else {
4001 			sd_set_properties(un, name, value);
4002 		}
4003 	}
4004 }
4005 
4006 /*
4007  *    Function: sd_strtok_r()
4008  *
4009  * Description: This function uses strpbrk and strspn to break
4010  *    string into tokens on sequentially subsequent calls. Return
4011  *    NULL when no non-separator characters remain. The first
4012  *    argument is NULL for subsequent calls.
4013  */
4014 static char *
4015 sd_strtok_r(char *string, const char *sepset, char **lasts)
4016 {
4017 	char	*q, *r;
4018 
4019 	/* First or subsequent call */
4020 	if (string == NULL)
4021 		string = *lasts;
4022 
4023 	if (string == NULL)
4024 		return (NULL);
4025 
4026 	/* Skip leading separators */
4027 	q = string + strspn(string, sepset);
4028 
4029 	if (*q == '\0')
4030 		return (NULL);
4031 
4032 	if ((r = strpbrk(q, sepset)) == NULL)
4033 		*lasts = NULL;
4034 	else {
4035 		*r = '\0';
4036 		*lasts = r + 1;
4037 	}
4038 	return (q);
4039 }
4040 
4041 /*
4042  *    Function: sd_set_properties()
4043  *
4044  * Description: Set device properties based on the improved
4045  *    format sd-config-list.
4046  *
4047  *   Arguments: un - driver soft state (unit) structure
4048  *    name  - supported tunable name
4049  *    value - tunable value
4050  */
4051 static void
4052 sd_set_properties(struct sd_lun *un, char *name, char *value)
4053 {
4054 	char	*endptr = NULL;
4055 	long	val = 0;
4056 
4057 	if (strcasecmp(name, "cache-nonvolatile") == 0) {
4058 		if (strcasecmp(value, "true") == 0) {
4059 			un->un_f_suppress_cache_flush = TRUE;
4060 		} else if (strcasecmp(value, "false") == 0) {
4061 			un->un_f_suppress_cache_flush = FALSE;
4062 		} else {
4063 			goto value_invalid;
4064 		}
4065 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4066 		    "suppress_cache_flush flag set to %d\n",
4067 		    un->un_f_suppress_cache_flush);
4068 		return;
4069 	}
4070 
4071 	if (strcasecmp(name, "controller-type") == 0) {
4072 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4073 			un->un_ctype = val;
4074 		} else {
4075 			goto value_invalid;
4076 		}
4077 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4078 		    "ctype set to %d\n", un->un_ctype);
4079 		return;
4080 	}
4081 
4082 	if (strcasecmp(name, "delay-busy") == 0) {
4083 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4084 			un->un_busy_timeout = drv_usectohz(val / 1000);
4085 		} else {
4086 			goto value_invalid;
4087 		}
4088 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4089 		    "busy_timeout set to %d\n", un->un_busy_timeout);
4090 		return;
4091 	}
4092 
4093 	if (strcasecmp(name, "disksort") == 0) {
4094 		if (strcasecmp(value, "true") == 0) {
4095 			un->un_f_disksort_disabled = FALSE;
4096 		} else if (strcasecmp(value, "false") == 0) {
4097 			un->un_f_disksort_disabled = TRUE;
4098 		} else {
4099 			goto value_invalid;
4100 		}
4101 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4102 		    "disksort disabled flag set to %d\n",
4103 		    un->un_f_disksort_disabled);
4104 		return;
4105 	}
4106 
4107 	if (strcasecmp(name, "power-condition") == 0) {
4108 		if (strcasecmp(value, "true") == 0) {
4109 			un->un_f_power_condition_disabled = FALSE;
4110 		} else if (strcasecmp(value, "false") == 0) {
4111 			un->un_f_power_condition_disabled = TRUE;
4112 		} else {
4113 			goto value_invalid;
4114 		}
4115 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4116 		    "power condition disabled flag set to %d\n",
4117 		    un->un_f_power_condition_disabled);
4118 		return;
4119 	}
4120 
4121 	if (strcasecmp(name, "timeout-releasereservation") == 0) {
4122 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4123 			un->un_reserve_release_time = val;
4124 		} else {
4125 			goto value_invalid;
4126 		}
4127 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4128 		    "reservation release timeout set to %d\n",
4129 		    un->un_reserve_release_time);
4130 		return;
4131 	}
4132 
4133 	if (strcasecmp(name, "reset-lun") == 0) {
4134 		if (strcasecmp(value, "true") == 0) {
4135 			un->un_f_lun_reset_enabled = TRUE;
4136 		} else if (strcasecmp(value, "false") == 0) {
4137 			un->un_f_lun_reset_enabled = FALSE;
4138 		} else {
4139 			goto value_invalid;
4140 		}
4141 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4142 		    "lun reset enabled flag set to %d\n",
4143 		    un->un_f_lun_reset_enabled);
4144 		return;
4145 	}
4146 
4147 	if (strcasecmp(name, "retries-busy") == 0) {
4148 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4149 			un->un_busy_retry_count = val;
4150 		} else {
4151 			goto value_invalid;
4152 		}
4153 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4154 		    "busy retry count set to %d\n", un->un_busy_retry_count);
4155 		return;
4156 	}
4157 
4158 	if (strcasecmp(name, "retries-timeout") == 0) {
4159 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4160 			un->un_retry_count = val;
4161 		} else {
4162 			goto value_invalid;
4163 		}
4164 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4165 		    "timeout retry count set to %d\n", un->un_retry_count);
4166 		return;
4167 	}
4168 
4169 	if (strcasecmp(name, "retries-notready") == 0) {
4170 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4171 			un->un_notready_retry_count = val;
4172 		} else {
4173 			goto value_invalid;
4174 		}
4175 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4176 		    "notready retry count set to %d\n",
4177 		    un->un_notready_retry_count);
4178 		return;
4179 	}
4180 
4181 	if (strcasecmp(name, "retries-reset") == 0) {
4182 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4183 			un->un_reset_retry_count = val;
4184 		} else {
4185 			goto value_invalid;
4186 		}
4187 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4188 		    "reset retry count set to %d\n",
4189 		    un->un_reset_retry_count);
4190 		return;
4191 	}
4192 
4193 	if (strcasecmp(name, "throttle-max") == 0) {
4194 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4195 			un->un_saved_throttle = un->un_throttle = val;
4196 		} else {
4197 			goto value_invalid;
4198 		}
4199 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4200 		    "throttle set to %d\n", un->un_throttle);
4201 	}
4202 
4203 	if (strcasecmp(name, "throttle-min") == 0) {
4204 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4205 			un->un_min_throttle = val;
4206 		} else {
4207 			goto value_invalid;
4208 		}
4209 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4210 		    "min throttle set to %d\n", un->un_min_throttle);
4211 	}
4212 
4213 	if (strcasecmp(name, "rmw-type") == 0) {
4214 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4215 			un->un_f_rmw_type = val;
4216 		} else {
4217 			goto value_invalid;
4218 		}
4219 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4220 		    "RMW type set to %d\n", un->un_f_rmw_type);
4221 	}
4222 
4223 	if (strcasecmp(name, "physical-block-size") == 0) {
4224 		if (ddi_strtol(value, &endptr, 0, &val) == 0 &&
4225 		    ISP2(val) && val >= un->un_tgt_blocksize &&
4226 		    val >= un->un_sys_blocksize) {
4227 			un->un_phy_blocksize = val;
4228 		} else {
4229 			goto value_invalid;
4230 		}
4231 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4232 		    "physical block size set to %d\n", un->un_phy_blocksize);
4233 	}
4234 
4235 	/*
4236 	 * Validate the throttle values.
4237 	 * If any of the numbers are invalid, set everything to defaults.
4238 	 */
4239 	if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) ||
4240 	    (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) ||
4241 	    (un->un_min_throttle > un->un_throttle)) {
4242 		un->un_saved_throttle = un->un_throttle = sd_max_throttle;
4243 		un->un_min_throttle = sd_min_throttle;
4244 	}
4245 
4246 	if (strcasecmp(name, "mmc-gesn-polling") == 0) {
4247 		if (strcasecmp(value, "true") == 0) {
4248 			un->un_f_mmc_gesn_polling = TRUE;
4249 		} else if (strcasecmp(value, "false") == 0) {
4250 			un->un_f_mmc_gesn_polling = FALSE;
4251 		} else {
4252 			goto value_invalid;
4253 		}
4254 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4255 		    "mmc-gesn-polling set to %d\n",
4256 		    un->un_f_mmc_gesn_polling);
4257 	}
4258 
4259 	return;
4260 
4261 value_invalid:
4262 	SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4263 	    "value of prop %s is invalid\n", name);
4264 }
4265 
4266 /*
4267  *    Function: sd_get_tunables_from_conf()
4268  *
4269  *
4270  *    This function reads the data list from the sd.conf file and pulls
4271  *    the values that can have numeric values as arguments and places
4272  *    the values in the appropriate sd_tunables member.
4273  *    Since the order of the data list members varies across platforms
4274  *    This function reads them from the data list in a platform specific
4275  *    order and places them into the correct sd_tunable member that is
4276  *    consistent across all platforms.
4277  */
4278 static void
4279 sd_get_tunables_from_conf(struct sd_lun *un, int flags, int *data_list,
4280     sd_tunables *values)
4281 {
4282 	int i;
4283 	int mask;
4284 
4285 	bzero(values, sizeof (sd_tunables));
4286 
4287 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
4288 
4289 		mask = 1 << i;
4290 		if (mask > flags) {
4291 			break;
4292 		}
4293 
4294 		switch (mask & flags) {
4295 		case 0:	/* This mask bit not set in flags */
4296 			continue;
4297 		case SD_CONF_BSET_THROTTLE:
4298 			values->sdt_throttle = data_list[i];
4299 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4300 			    "sd_get_tunables_from_conf: throttle = %d\n",
4301 			    values->sdt_throttle);
4302 			break;
4303 		case SD_CONF_BSET_CTYPE:
4304 			values->sdt_ctype = data_list[i];
4305 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4306 			    "sd_get_tunables_from_conf: ctype = %d\n",
4307 			    values->sdt_ctype);
4308 			break;
4309 		case SD_CONF_BSET_NRR_COUNT:
4310 			values->sdt_not_rdy_retries = data_list[i];
4311 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4312 			    "sd_get_tunables_from_conf: not_rdy_retries = %d\n",
4313 			    values->sdt_not_rdy_retries);
4314 			break;
4315 		case SD_CONF_BSET_BSY_RETRY_COUNT:
4316 			values->sdt_busy_retries = data_list[i];
4317 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4318 			    "sd_get_tunables_from_conf: busy_retries = %d\n",
4319 			    values->sdt_busy_retries);
4320 			break;
4321 		case SD_CONF_BSET_RST_RETRIES:
4322 			values->sdt_reset_retries = data_list[i];
4323 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4324 			    "sd_get_tunables_from_conf: reset_retries = %d\n",
4325 			    values->sdt_reset_retries);
4326 			break;
4327 		case SD_CONF_BSET_RSV_REL_TIME:
4328 			values->sdt_reserv_rel_time = data_list[i];
4329 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4330 			    "sd_get_tunables_from_conf: reserv_rel_time = %d\n",
4331 			    values->sdt_reserv_rel_time);
4332 			break;
4333 		case SD_CONF_BSET_MIN_THROTTLE:
4334 			values->sdt_min_throttle = data_list[i];
4335 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4336 			    "sd_get_tunables_from_conf: min_throttle = %d\n",
4337 			    values->sdt_min_throttle);
4338 			break;
4339 		case SD_CONF_BSET_DISKSORT_DISABLED:
4340 			values->sdt_disk_sort_dis = data_list[i];
4341 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4342 			    "sd_get_tunables_from_conf: disk_sort_dis = %d\n",
4343 			    values->sdt_disk_sort_dis);
4344 			break;
4345 		case SD_CONF_BSET_LUN_RESET_ENABLED:
4346 			values->sdt_lun_reset_enable = data_list[i];
4347 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4348 			    "sd_get_tunables_from_conf: lun_reset_enable = %d"
4349 			    "\n", values->sdt_lun_reset_enable);
4350 			break;
4351 		case SD_CONF_BSET_CACHE_IS_NV:
4352 			values->sdt_suppress_cache_flush = data_list[i];
4353 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4354 			    "sd_get_tunables_from_conf: \
4355 			    suppress_cache_flush = %d"
4356 			    "\n", values->sdt_suppress_cache_flush);
4357 			break;
4358 		case SD_CONF_BSET_PC_DISABLED:
4359 			values->sdt_disk_sort_dis = data_list[i];
4360 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4361 			    "sd_get_tunables_from_conf: power_condition_dis = "
4362 			    "%d\n", values->sdt_power_condition_dis);
4363 			break;
4364 		}
4365 	}
4366 }
4367 
4368 /*
4369  *    Function: sd_process_sdconf_table
4370  *
4371  * Description: Search the static configuration table for a match on the
4372  *		inquiry vid/pid and update the driver soft state structure
4373  *		according to the table property values for the device.
4374  *
4375  *		The form of a configuration table entry is:
4376  *		  <vid+pid>,<flags>,<property-data>
4377  *		  "SEAGATE ST42400N",1,0x40000,
4378  *		  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1;
4379  *
4380  *   Arguments: un - driver soft state (unit) structure
4381  */
4382 
4383 static void
4384 sd_process_sdconf_table(struct sd_lun *un)
4385 {
4386 	char	*id = NULL;
4387 	int	table_index;
4388 	int	idlen;
4389 
4390 	ASSERT(un != NULL);
4391 	for (table_index = 0; table_index < sd_disk_table_size;
4392 	    table_index++) {
4393 		id = sd_disk_table[table_index].device_id;
4394 		idlen = strlen(id);
4395 		if (idlen == 0) {
4396 			continue;
4397 		}
4398 
4399 		/*
4400 		 * The static configuration table currently does not
4401 		 * implement version 10 properties. Additionally,
4402 		 * multiple data-property-name entries are not
4403 		 * implemented in the static configuration table.
4404 		 */
4405 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
4406 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4407 			    "sd_process_sdconf_table: disk %s\n", id);
4408 			sd_set_vers1_properties(un,
4409 			    sd_disk_table[table_index].flags,
4410 			    sd_disk_table[table_index].properties);
4411 			break;
4412 		}
4413 	}
4414 }
4415 
4416 
4417 /*
4418  *    Function: sd_sdconf_id_match
4419  *
4420  * Description: This local function implements a case sensitive vid/pid
4421  *		comparison as well as the boundary cases of wild card and
4422  *		multiple blanks.
4423  *
4424  *		Note: An implicit assumption made here is that the scsi
4425  *		inquiry structure will always keep the vid, pid and
4426  *		revision strings in consecutive sequence, so they can be
4427  *		read as a single string. If this assumption is not the
4428  *		case, a separate string, to be used for the check, needs
4429  *		to be built with these strings concatenated.
4430  *
4431  *   Arguments: un - driver soft state (unit) structure
4432  *		id - table or config file vid/pid
4433  *		idlen  - length of the vid/pid (bytes)
4434  *
4435  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
4436  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
4437  */
4438 
4439 static int
4440 sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen)
4441 {
4442 	struct scsi_inquiry	*sd_inq;
4443 	int 			rval = SD_SUCCESS;
4444 
4445 	ASSERT(un != NULL);
4446 	sd_inq = un->un_sd->sd_inq;
4447 	ASSERT(id != NULL);
4448 
4449 	/*
4450 	 * We use the inq_vid as a pointer to a buffer containing the
4451 	 * vid and pid and use the entire vid/pid length of the table
4452 	 * entry for the comparison. This works because the inq_pid
4453 	 * data member follows inq_vid in the scsi_inquiry structure.
4454 	 */
4455 	if (strncasecmp(sd_inq->inq_vid, id, idlen) != 0) {
4456 		/*
4457 		 * The user id string is compared to the inquiry vid/pid
4458 		 * using a case insensitive comparison and ignoring
4459 		 * multiple spaces.
4460 		 */
4461 		rval = sd_blank_cmp(un, id, idlen);
4462 		if (rval != SD_SUCCESS) {
4463 			/*
4464 			 * User id strings that start and end with a "*"
4465 			 * are a special case. These do not have a
4466 			 * specific vendor, and the product string can
4467 			 * appear anywhere in the 16 byte PID portion of
4468 			 * the inquiry data. This is a simple strstr()
4469 			 * type search for the user id in the inquiry data.
4470 			 */
4471 			if ((id[0] == '*') && (id[idlen - 1] == '*')) {
4472 				char	*pidptr = &id[1];
4473 				int	i;
4474 				int	j;
4475 				int	pidstrlen = idlen - 2;
4476 				j = sizeof (SD_INQUIRY(un)->inq_pid) -
4477 				    pidstrlen;
4478 
4479 				if (j < 0) {
4480 					return (SD_FAILURE);
4481 				}
4482 				for (i = 0; i < j; i++) {
4483 					if (bcmp(&SD_INQUIRY(un)->inq_pid[i],
4484 					    pidptr, pidstrlen) == 0) {
4485 						rval = SD_SUCCESS;
4486 						break;
4487 					}
4488 				}
4489 			}
4490 		}
4491 	}
4492 	return (rval);
4493 }
4494 
4495 
4496 /*
4497  *    Function: sd_blank_cmp
4498  *
4499  * Description: If the id string starts and ends with a space, treat
4500  *		multiple consecutive spaces as equivalent to a single
4501  *		space. For example, this causes a sd_disk_table entry
4502  *		of " NEC CDROM " to match a device's id string of
4503  *		"NEC       CDROM".
4504  *
4505  *		Note: The success exit condition for this routine is if
4506  *		the pointer to the table entry is '\0' and the cnt of
4507  *		the inquiry length is zero. This will happen if the inquiry
4508  *		string returned by the device is padded with spaces to be
4509  *		exactly 24 bytes in length (8 byte vid + 16 byte pid). The
4510  *		SCSI spec states that the inquiry string is to be padded with
4511  *		spaces.
4512  *
4513  *   Arguments: un - driver soft state (unit) structure
4514  *		id - table or config file vid/pid
4515  *		idlen  - length of the vid/pid (bytes)
4516  *
4517  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
4518  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
4519  */
4520 
4521 static int
4522 sd_blank_cmp(struct sd_lun *un, char *id, int idlen)
4523 {
4524 	char		*p1;
4525 	char		*p2;
4526 	int		cnt;
4527 	cnt = sizeof (SD_INQUIRY(un)->inq_vid) +
4528 	    sizeof (SD_INQUIRY(un)->inq_pid);
4529 
4530 	ASSERT(un != NULL);
4531 	p2 = un->un_sd->sd_inq->inq_vid;
4532 	ASSERT(id != NULL);
4533 	p1 = id;
4534 
4535 	if ((id[0] == ' ') && (id[idlen - 1] == ' ')) {
4536 		/*
4537 		 * Note: string p1 is terminated by a NUL but string p2
4538 		 * isn't.  The end of p2 is determined by cnt.
4539 		 */
4540 		for (;;) {
4541 			/* skip over any extra blanks in both strings */
4542 			while ((*p1 != '\0') && (*p1 == ' ')) {
4543 				p1++;
4544 			}
4545 			while ((cnt != 0) && (*p2 == ' ')) {
4546 				p2++;
4547 				cnt--;
4548 			}
4549 
4550 			/* compare the two strings */
4551 			if ((cnt == 0) ||
4552 			    (SD_TOUPPER(*p1) != SD_TOUPPER(*p2))) {
4553 				break;
4554 			}
4555 			while ((cnt > 0) &&
4556 			    (SD_TOUPPER(*p1) == SD_TOUPPER(*p2))) {
4557 				p1++;
4558 				p2++;
4559 				cnt--;
4560 			}
4561 		}
4562 	}
4563 
4564 	/* return SD_SUCCESS if both strings match */
4565 	return (((*p1 == '\0') && (cnt == 0)) ? SD_SUCCESS : SD_FAILURE);
4566 }
4567 
4568 
4569 /*
4570  *    Function: sd_chk_vers1_data
4571  *
4572  * Description: Verify the version 1 device properties provided by the
4573  *		user via the configuration file
4574  *
4575  *   Arguments: un	     - driver soft state (unit) structure
4576  *		flags	     - integer mask indicating properties to be set
4577  *		prop_list    - integer list of property values
4578  *		list_len     - number of the elements
4579  *
4580  * Return Code: SD_SUCCESS - Indicates the user provided data is valid
4581  *		SD_FAILURE - Indicates the user provided data is invalid
4582  */
4583 
4584 static int
4585 sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
4586     int list_len, char *dataname_ptr)
4587 {
4588 	int i;
4589 	int mask = 1;
4590 	int index = 0;
4591 
4592 	ASSERT(un != NULL);
4593 
4594 	/* Check for a NULL property name and list */
4595 	if (dataname_ptr == NULL) {
4596 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4597 		    "sd_chk_vers1_data: NULL data property name.");
4598 		return (SD_FAILURE);
4599 	}
4600 	if (prop_list == NULL) {
4601 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4602 		    "sd_chk_vers1_data: %s NULL data property list.",
4603 		    dataname_ptr);
4604 		return (SD_FAILURE);
4605 	}
4606 
4607 	/* Display a warning if undefined bits are set in the flags */
4608 	if (flags & ~SD_CONF_BIT_MASK) {
4609 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4610 		    "sd_chk_vers1_data: invalid bits 0x%x in data list %s. "
4611 		    "Properties not set.",
4612 		    (flags & ~SD_CONF_BIT_MASK), dataname_ptr);
4613 		return (SD_FAILURE);
4614 	}
4615 
4616 	/*
4617 	 * Verify the length of the list by identifying the highest bit set
4618 	 * in the flags and validating that the property list has a length
4619 	 * up to the index of this bit.
4620 	 */
4621 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
4622 		if (flags & mask) {
4623 			index++;
4624 		}
4625 		mask = 1 << i;
4626 	}
4627 	if (list_len < (index + 2)) {
4628 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4629 		    "sd_chk_vers1_data: "
4630 		    "Data property list %s size is incorrect. "
4631 		    "Properties not set.", dataname_ptr);
4632 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, "Size expected: "
4633 		    "version + 1 flagword + %d properties", SD_CONF_MAX_ITEMS);
4634 		return (SD_FAILURE);
4635 	}
4636 	return (SD_SUCCESS);
4637 }
4638 
4639 
4640 /*
4641  *    Function: sd_set_vers1_properties
4642  *
4643  * Description: Set version 1 device properties based on a property list
4644  *		retrieved from the driver configuration file or static
4645  *		configuration table. Version 1 properties have the format:
4646  *
4647  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
4648  *
4649  *		where the prop0 value will be used to set prop0 if bit0
4650  *		is set in the flags
4651  *
4652  *   Arguments: un	     - driver soft state (unit) structure
4653  *		flags	     - integer mask indicating properties to be set
4654  *		prop_list    - integer list of property values
4655  */
4656 
4657 static void
4658 sd_set_vers1_properties(struct sd_lun *un, int flags, sd_tunables *prop_list)
4659 {
4660 	ASSERT(un != NULL);
4661 
4662 	/*
4663 	 * Set the flag to indicate cache is to be disabled. An attempt
4664 	 * to disable the cache via sd_cache_control() will be made
4665 	 * later during attach once the basic initialization is complete.
4666 	 */
4667 	if (flags & SD_CONF_BSET_NOCACHE) {
4668 		un->un_f_opt_disable_cache = TRUE;
4669 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4670 		    "sd_set_vers1_properties: caching disabled flag set\n");
4671 	}
4672 
4673 	/* CD-specific configuration parameters */
4674 	if (flags & SD_CONF_BSET_PLAYMSF_BCD) {
4675 		un->un_f_cfg_playmsf_bcd = TRUE;
4676 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4677 		    "sd_set_vers1_properties: playmsf_bcd set\n");
4678 	}
4679 	if (flags & SD_CONF_BSET_READSUB_BCD) {
4680 		un->un_f_cfg_readsub_bcd = TRUE;
4681 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4682 		    "sd_set_vers1_properties: readsub_bcd set\n");
4683 	}
4684 	if (flags & SD_CONF_BSET_READ_TOC_TRK_BCD) {
4685 		un->un_f_cfg_read_toc_trk_bcd = TRUE;
4686 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4687 		    "sd_set_vers1_properties: read_toc_trk_bcd set\n");
4688 	}
4689 	if (flags & SD_CONF_BSET_READ_TOC_ADDR_BCD) {
4690 		un->un_f_cfg_read_toc_addr_bcd = TRUE;
4691 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4692 		    "sd_set_vers1_properties: read_toc_addr_bcd set\n");
4693 	}
4694 	if (flags & SD_CONF_BSET_NO_READ_HEADER) {
4695 		un->un_f_cfg_no_read_header = TRUE;
4696 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4697 		    "sd_set_vers1_properties: no_read_header set\n");
4698 	}
4699 	if (flags & SD_CONF_BSET_READ_CD_XD4) {
4700 		un->un_f_cfg_read_cd_xd4 = TRUE;
4701 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4702 		    "sd_set_vers1_properties: read_cd_xd4 set\n");
4703 	}
4704 
4705 	/* Support for devices which do not have valid/unique serial numbers */
4706 	if (flags & SD_CONF_BSET_FAB_DEVID) {
4707 		un->un_f_opt_fab_devid = TRUE;
4708 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4709 		    "sd_set_vers1_properties: fab_devid bit set\n");
4710 	}
4711 
4712 	/* Support for user throttle configuration */
4713 	if (flags & SD_CONF_BSET_THROTTLE) {
4714 		ASSERT(prop_list != NULL);
4715 		un->un_saved_throttle = un->un_throttle =
4716 		    prop_list->sdt_throttle;
4717 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4718 		    "sd_set_vers1_properties: throttle set to %d\n",
4719 		    prop_list->sdt_throttle);
4720 	}
4721 
4722 	/* Set the per disk retry count according to the conf file or table. */
4723 	if (flags & SD_CONF_BSET_NRR_COUNT) {
4724 		ASSERT(prop_list != NULL);
4725 		if (prop_list->sdt_not_rdy_retries) {
4726 			un->un_notready_retry_count =
4727 			    prop_list->sdt_not_rdy_retries;
4728 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4729 			    "sd_set_vers1_properties: not ready retry count"
4730 			    " set to %d\n", un->un_notready_retry_count);
4731 		}
4732 	}
4733 
4734 	/* The controller type is reported for generic disk driver ioctls */
4735 	if (flags & SD_CONF_BSET_CTYPE) {
4736 		ASSERT(prop_list != NULL);
4737 		switch (prop_list->sdt_ctype) {
4738 		case CTYPE_CDROM:
4739 			un->un_ctype = prop_list->sdt_ctype;
4740 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4741 			    "sd_set_vers1_properties: ctype set to "
4742 			    "CTYPE_CDROM\n");
4743 			break;
4744 		case CTYPE_CCS:
4745 			un->un_ctype = prop_list->sdt_ctype;
4746 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4747 			    "sd_set_vers1_properties: ctype set to "
4748 			    "CTYPE_CCS\n");
4749 			break;
4750 		case CTYPE_ROD:		/* RW optical */
4751 			un->un_ctype = prop_list->sdt_ctype;
4752 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4753 			    "sd_set_vers1_properties: ctype set to "
4754 			    "CTYPE_ROD\n");
4755 			break;
4756 		default:
4757 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4758 			    "sd_set_vers1_properties: Could not set "
4759 			    "invalid ctype value (%d)",
4760 			    prop_list->sdt_ctype);
4761 		}
4762 	}
4763 
4764 	/* Purple failover timeout */
4765 	if (flags & SD_CONF_BSET_BSY_RETRY_COUNT) {
4766 		ASSERT(prop_list != NULL);
4767 		un->un_busy_retry_count =
4768 		    prop_list->sdt_busy_retries;
4769 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4770 		    "sd_set_vers1_properties: "
4771 		    "busy retry count set to %d\n",
4772 		    un->un_busy_retry_count);
4773 	}
4774 
4775 	/* Purple reset retry count */
4776 	if (flags & SD_CONF_BSET_RST_RETRIES) {
4777 		ASSERT(prop_list != NULL);
4778 		un->un_reset_retry_count =
4779 		    prop_list->sdt_reset_retries;
4780 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4781 		    "sd_set_vers1_properties: "
4782 		    "reset retry count set to %d\n",
4783 		    un->un_reset_retry_count);
4784 	}
4785 
4786 	/* Purple reservation release timeout */
4787 	if (flags & SD_CONF_BSET_RSV_REL_TIME) {
4788 		ASSERT(prop_list != NULL);
4789 		un->un_reserve_release_time =
4790 		    prop_list->sdt_reserv_rel_time;
4791 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4792 		    "sd_set_vers1_properties: "
4793 		    "reservation release timeout set to %d\n",
4794 		    un->un_reserve_release_time);
4795 	}
4796 
4797 	/*
4798 	 * Driver flag telling the driver to verify that no commands are pending
4799 	 * for a device before issuing a Test Unit Ready. This is a workaround
4800 	 * for a firmware bug in some Seagate eliteI drives.
4801 	 */
4802 	if (flags & SD_CONF_BSET_TUR_CHECK) {
4803 		un->un_f_cfg_tur_check = TRUE;
4804 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4805 		    "sd_set_vers1_properties: tur queue check set\n");
4806 	}
4807 
4808 	if (flags & SD_CONF_BSET_MIN_THROTTLE) {
4809 		un->un_min_throttle = prop_list->sdt_min_throttle;
4810 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4811 		    "sd_set_vers1_properties: min throttle set to %d\n",
4812 		    un->un_min_throttle);
4813 	}
4814 
4815 	if (flags & SD_CONF_BSET_DISKSORT_DISABLED) {
4816 		un->un_f_disksort_disabled =
4817 		    (prop_list->sdt_disk_sort_dis != 0) ?
4818 		    TRUE : FALSE;
4819 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4820 		    "sd_set_vers1_properties: disksort disabled "
4821 		    "flag set to %d\n",
4822 		    prop_list->sdt_disk_sort_dis);
4823 	}
4824 
4825 	if (flags & SD_CONF_BSET_LUN_RESET_ENABLED) {
4826 		un->un_f_lun_reset_enabled =
4827 		    (prop_list->sdt_lun_reset_enable != 0) ?
4828 		    TRUE : FALSE;
4829 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4830 		    "sd_set_vers1_properties: lun reset enabled "
4831 		    "flag set to %d\n",
4832 		    prop_list->sdt_lun_reset_enable);
4833 	}
4834 
4835 	if (flags & SD_CONF_BSET_CACHE_IS_NV) {
4836 		un->un_f_suppress_cache_flush =
4837 		    (prop_list->sdt_suppress_cache_flush != 0) ?
4838 		    TRUE : FALSE;
4839 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4840 		    "sd_set_vers1_properties: suppress_cache_flush "
4841 		    "flag set to %d\n",
4842 		    prop_list->sdt_suppress_cache_flush);
4843 	}
4844 
4845 	if (flags & SD_CONF_BSET_PC_DISABLED) {
4846 		un->un_f_power_condition_disabled =
4847 		    (prop_list->sdt_power_condition_dis != 0) ?
4848 		    TRUE : FALSE;
4849 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4850 		    "sd_set_vers1_properties: power_condition_disabled "
4851 		    "flag set to %d\n",
4852 		    prop_list->sdt_power_condition_dis);
4853 	}
4854 
4855 	/*
4856 	 * Validate the throttle values.
4857 	 * If any of the numbers are invalid, set everything to defaults.
4858 	 */
4859 	if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) ||
4860 	    (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) ||
4861 	    (un->un_min_throttle > un->un_throttle)) {
4862 		un->un_saved_throttle = un->un_throttle = sd_max_throttle;
4863 		un->un_min_throttle = sd_min_throttle;
4864 	}
4865 }
4866 
4867 /*
4868  *   Function: sd_is_lsi()
4869  *
4870  *   Description: Check for lsi devices, step through the static device
4871  *	table to match vid/pid.
4872  *
4873  *   Args: un - ptr to sd_lun
4874  *
4875  *   Notes:  When creating new LSI property, need to add the new LSI property
4876  *		to this function.
4877  */
4878 static void
4879 sd_is_lsi(struct sd_lun *un)
4880 {
4881 	char	*id = NULL;
4882 	int	table_index;
4883 	int	idlen;
4884 	void	*prop;
4885 
4886 	ASSERT(un != NULL);
4887 	for (table_index = 0; table_index < sd_disk_table_size;
4888 	    table_index++) {
4889 		id = sd_disk_table[table_index].device_id;
4890 		idlen = strlen(id);
4891 		if (idlen == 0) {
4892 			continue;
4893 		}
4894 
4895 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
4896 			prop = sd_disk_table[table_index].properties;
4897 			if (prop == &lsi_properties ||
4898 			    prop == &lsi_oem_properties ||
4899 			    prop == &lsi_properties_scsi ||
4900 			    prop == &symbios_properties) {
4901 				un->un_f_cfg_is_lsi = TRUE;
4902 			}
4903 			break;
4904 		}
4905 	}
4906 }
4907 
4908 /*
4909  *    Function: sd_get_physical_geometry
4910  *
4911  * Description: Retrieve the MODE SENSE page 3 (Format Device Page) and
4912  *		MODE SENSE page 4 (Rigid Disk Drive Geometry Page) from the
4913  *		target, and use this information to initialize the physical
4914  *		geometry cache specified by pgeom_p.
4915  *
4916  *		MODE SENSE is an optional command, so failure in this case
4917  *		does not necessarily denote an error. We want to use the
4918  *		MODE SENSE commands to derive the physical geometry of the
4919  *		device, but if either command fails, the logical geometry is
4920  *		used as the fallback for disk label geometry in cmlb.
4921  *
4922  *		This requires that un->un_blockcount and un->un_tgt_blocksize
4923  *		have already been initialized for the current target and
4924  *		that the current values be passed as args so that we don't
4925  *		end up ever trying to use -1 as a valid value. This could
4926  *		happen if either value is reset while we're not holding
4927  *		the mutex.
4928  *
4929  *   Arguments: un - driver soft state (unit) structure
4930  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4931  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4932  *			to use the USCSI "direct" chain and bypass the normal
4933  *			command waitq.
4934  *
4935  *     Context: Kernel thread only (can sleep).
4936  */
4937 
4938 static int
4939 sd_get_physical_geometry(struct sd_lun *un, cmlb_geom_t *pgeom_p,
4940 	diskaddr_t capacity, int lbasize, int path_flag)
4941 {
4942 	struct	mode_format	*page3p;
4943 	struct	mode_geometry	*page4p;
4944 	struct	mode_header	*headerp;
4945 	int	sector_size;
4946 	int	nsect;
4947 	int	nhead;
4948 	int	ncyl;
4949 	int	intrlv;
4950 	int	spc;
4951 	diskaddr_t	modesense_capacity;
4952 	int	rpm;
4953 	int	bd_len;
4954 	int	mode_header_length;
4955 	uchar_t	*p3bufp;
4956 	uchar_t	*p4bufp;
4957 	int	cdbsize;
4958 	int 	ret = EIO;
4959 	sd_ssc_t *ssc;
4960 	int	status;
4961 
4962 	ASSERT(un != NULL);
4963 
4964 	if (lbasize == 0) {
4965 		if (ISCD(un)) {
4966 			lbasize = 2048;
4967 		} else {
4968 			lbasize = un->un_sys_blocksize;
4969 		}
4970 	}
4971 	pgeom_p->g_secsize = (unsigned short)lbasize;
4972 
4973 	/*
4974 	 * If the unit is a cd/dvd drive MODE SENSE page three
4975 	 * and MODE SENSE page four are reserved (see SBC spec
4976 	 * and MMC spec). To prevent soft errors just return
4977 	 * using the default LBA size.
4978 	 */
4979 	if (ISCD(un))
4980 		return (ret);
4981 
4982 	cdbsize = (un->un_f_cfg_is_atapi == TRUE) ? CDB_GROUP2 : CDB_GROUP0;
4983 
4984 	/*
4985 	 * Retrieve MODE SENSE page 3 - Format Device Page
4986 	 */
4987 	p3bufp = kmem_zalloc(SD_MODE_SENSE_PAGE3_LENGTH, KM_SLEEP);
4988 	ssc = sd_ssc_init(un);
4989 	status = sd_send_scsi_MODE_SENSE(ssc, cdbsize, p3bufp,
4990 	    SD_MODE_SENSE_PAGE3_LENGTH, SD_MODE_SENSE_PAGE3_CODE, path_flag);
4991 	if (status != 0) {
4992 		SD_ERROR(SD_LOG_COMMON, un,
4993 		    "sd_get_physical_geometry: mode sense page 3 failed\n");
4994 		goto page3_exit;
4995 	}
4996 
4997 	/*
4998 	 * Determine size of Block Descriptors in order to locate the mode
4999 	 * page data.  ATAPI devices return 0, SCSI devices should return
5000 	 * MODE_BLK_DESC_LENGTH.
5001 	 */
5002 	headerp = (struct mode_header *)p3bufp;
5003 	if (un->un_f_cfg_is_atapi == TRUE) {
5004 		struct mode_header_grp2 *mhp =
5005 		    (struct mode_header_grp2 *)headerp;
5006 		mode_header_length = MODE_HEADER_LENGTH_GRP2;
5007 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
5008 	} else {
5009 		mode_header_length = MODE_HEADER_LENGTH;
5010 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
5011 	}
5012 
5013 	if (bd_len > MODE_BLK_DESC_LENGTH) {
5014 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
5015 		    "sd_get_physical_geometry: received unexpected bd_len "
5016 		    "of %d, page3\n", bd_len);
5017 		status = EIO;
5018 		goto page3_exit;
5019 	}
5020 
5021 	page3p = (struct mode_format *)
5022 	    ((caddr_t)headerp + mode_header_length + bd_len);
5023 
5024 	if (page3p->mode_page.code != SD_MODE_SENSE_PAGE3_CODE) {
5025 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
5026 		    "sd_get_physical_geometry: mode sense pg3 code mismatch "
5027 		    "%d\n", page3p->mode_page.code);
5028 		status = EIO;
5029 		goto page3_exit;
5030 	}
5031 
5032 	/*
5033 	 * Use this physical geometry data only if BOTH MODE SENSE commands
5034 	 * complete successfully; otherwise, revert to the logical geometry.
5035 	 * So, we need to save everything in temporary variables.
5036 	 */
5037 	sector_size = BE_16(page3p->data_bytes_sect);
5038 
5039 	/*
5040 	 * 1243403: The NEC D38x7 drives do not support MODE SENSE sector size
5041 	 */
5042 	if (sector_size == 0) {
5043 		sector_size = un->un_sys_blocksize;
5044 	} else {
5045 		sector_size &= ~(un->un_sys_blocksize - 1);
5046 	}
5047 
5048 	nsect  = BE_16(page3p->sect_track);
5049 	intrlv = BE_16(page3p->interleave);
5050 
5051 	SD_INFO(SD_LOG_COMMON, un,
5052 	    "sd_get_physical_geometry: Format Parameters (page 3)\n");
5053 	SD_INFO(SD_LOG_COMMON, un,
5054 	    "   mode page: %d; nsect: %d; sector size: %d;\n",
5055 	    page3p->mode_page.code, nsect, sector_size);
5056 	SD_INFO(SD_LOG_COMMON, un,
5057 	    "   interleave: %d; track skew: %d; cylinder skew: %d;\n", intrlv,
5058 	    BE_16(page3p->track_skew),
5059 	    BE_16(page3p->cylinder_skew));
5060 
5061 	sd_ssc_assessment(ssc, SD_FMT_STANDARD);
5062 
5063 	/*
5064 	 * Retrieve MODE SENSE page 4 - Rigid Disk Drive Geometry Page
5065 	 */
5066 	p4bufp = kmem_zalloc(SD_MODE_SENSE_PAGE4_LENGTH, KM_SLEEP);
5067 	status = sd_send_scsi_MODE_SENSE(ssc, cdbsize, p4bufp,
5068 	    SD_MODE_SENSE_PAGE4_LENGTH, SD_MODE_SENSE_PAGE4_CODE, path_flag);
5069 	if (status != 0) {
5070 		SD_ERROR(SD_LOG_COMMON, un,
5071 		    "sd_get_physical_geometry: mode sense page 4 failed\n");
5072 		goto page4_exit;
5073 	}
5074 
5075 	/*
5076 	 * Determine size of Block Descriptors in order to locate the mode
5077 	 * page data.  ATAPI devices return 0, SCSI devices should return
5078 	 * MODE_BLK_DESC_LENGTH.
5079 	 */
5080 	headerp = (struct mode_header *)p4bufp;
5081 	if (un->un_f_cfg_is_atapi == TRUE) {
5082 		struct mode_header_grp2 *mhp =
5083 		    (struct mode_header_grp2 *)headerp;
5084 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
5085 	} else {
5086 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
5087 	}
5088 
5089 	if (bd_len > MODE_BLK_DESC_LENGTH) {
5090 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
5091 		    "sd_get_physical_geometry: received unexpected bd_len of "
5092 		    "%d, page4\n", bd_len);
5093 		status = EIO;
5094 		goto page4_exit;
5095 	}
5096 
5097 	page4p = (struct mode_geometry *)
5098 	    ((caddr_t)headerp + mode_header_length + bd_len);
5099 
5100 	if (page4p->mode_page.code != SD_MODE_SENSE_PAGE4_CODE) {
5101 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
5102 		    "sd_get_physical_geometry: mode sense pg4 code mismatch "
5103 		    "%d\n", page4p->mode_page.code);
5104 		status = EIO;
5105 		goto page4_exit;
5106 	}
5107 
5108 	/*
5109 	 * Stash the data now, after we know that both commands completed.
5110 	 */
5111 
5112 
5113 	nhead = (int)page4p->heads;	/* uchar, so no conversion needed */
5114 	spc   = nhead * nsect;
5115 	ncyl  = (page4p->cyl_ub << 16) + (page4p->cyl_mb << 8) + page4p->cyl_lb;
5116 	rpm   = BE_16(page4p->rpm);
5117 
5118 	modesense_capacity = spc * ncyl;
5119 
5120 	SD_INFO(SD_LOG_COMMON, un,
5121 	    "sd_get_physical_geometry: Geometry Parameters (page 4)\n");
5122 	SD_INFO(SD_LOG_COMMON, un,
5123 	    "   cylinders: %d; heads: %d; rpm: %d;\n", ncyl, nhead, rpm);
5124 	SD_INFO(SD_LOG_COMMON, un,
5125 	    "   computed capacity(h*s*c): %d;\n", modesense_capacity);
5126 	SD_INFO(SD_LOG_COMMON, un, "   pgeom_p: %p; read cap: %d\n",
5127 	    (void *)pgeom_p, capacity);
5128 
5129 	/*
5130 	 * Compensate if the drive's geometry is not rectangular, i.e.,
5131 	 * the product of C * H * S returned by MODE SENSE >= that returned
5132 	 * by read capacity. This is an idiosyncrasy of the original x86
5133 	 * disk subsystem.
5134 	 */
5135 	if (modesense_capacity >= capacity) {
5136 		SD_INFO(SD_LOG_COMMON, un,
5137 		    "sd_get_physical_geometry: adjusting acyl; "
5138 		    "old: %d; new: %d\n", pgeom_p->g_acyl,
5139 		    (modesense_capacity - capacity + spc - 1) / spc);
5140 		if (sector_size != 0) {
5141 			/* 1243403: NEC D38x7 drives don't support sec size */
5142 			pgeom_p->g_secsize = (unsigned short)sector_size;
5143 		}
5144 		pgeom_p->g_nsect    = (unsigned short)nsect;
5145 		pgeom_p->g_nhead    = (unsigned short)nhead;
5146 		pgeom_p->g_capacity = capacity;
5147 		pgeom_p->g_acyl	    =
5148 		    (modesense_capacity - pgeom_p->g_capacity + spc - 1) / spc;
5149 		pgeom_p->g_ncyl	    = ncyl - pgeom_p->g_acyl;
5150 	}
5151 
5152 	pgeom_p->g_rpm    = (unsigned short)rpm;
5153 	pgeom_p->g_intrlv = (unsigned short)intrlv;
5154 	ret = 0;
5155 
5156 	SD_INFO(SD_LOG_COMMON, un,
5157 	    "sd_get_physical_geometry: mode sense geometry:\n");
5158 	SD_INFO(SD_LOG_COMMON, un,
5159 	    "   nsect: %d; sector size: %d; interlv: %d\n",
5160 	    nsect, sector_size, intrlv);
5161 	SD_INFO(SD_LOG_COMMON, un,
5162 	    "   nhead: %d; ncyl: %d; rpm: %d; capacity(ms): %d\n",
5163 	    nhead, ncyl, rpm, modesense_capacity);
5164 	SD_INFO(SD_LOG_COMMON, un,
5165 	    "sd_get_physical_geometry: (cached)\n");
5166 	SD_INFO(SD_LOG_COMMON, un,
5167 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
5168 	    pgeom_p->g_ncyl,  pgeom_p->g_acyl,
5169 	    pgeom_p->g_nhead, pgeom_p->g_nsect);
5170 	SD_INFO(SD_LOG_COMMON, un,
5171 	    "   lbasize: %d; capacity: %ld; intrlv: %d; rpm: %d\n",
5172 	    pgeom_p->g_secsize, pgeom_p->g_capacity,
5173 	    pgeom_p->g_intrlv, pgeom_p->g_rpm);
5174 	sd_ssc_assessment(ssc, SD_FMT_STANDARD);
5175 
5176 page4_exit:
5177 	kmem_free(p4bufp, SD_MODE_SENSE_PAGE4_LENGTH);
5178 
5179 page3_exit:
5180 	kmem_free(p3bufp, SD_MODE_SENSE_PAGE3_LENGTH);
5181 
5182 	if (status != 0) {
5183 		if (status == EIO) {
5184 			/*
5185 			 * Some disks do not support mode sense(6), we
5186 			 * should ignore this kind of error(sense key is
5187 			 * 0x5 - illegal request).
5188 			 */
5189 			uint8_t *sensep;
5190 			int senlen;
5191 
5192 			sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf;
5193 			senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen -
5194 			    ssc->ssc_uscsi_cmd->uscsi_rqresid);
5195 
5196 			if (senlen > 0 &&
5197 			    scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) {
5198 				sd_ssc_assessment(ssc,
5199 				    SD_FMT_IGNORE_COMPROMISE);
5200 			} else {
5201 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
5202 			}
5203 		} else {
5204 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5205 		}
5206 	}
5207 	sd_ssc_fini(ssc);
5208 	return (ret);
5209 }
5210 
5211 /*
5212  *    Function: sd_get_virtual_geometry
5213  *
5214  * Description: Ask the controller to tell us about the target device.
5215  *
5216  *   Arguments: un - pointer to softstate
5217  *		capacity - disk capacity in #blocks
5218  *		lbasize - disk block size in bytes
5219  *
5220  *     Context: Kernel thread only
5221  */
5222 
5223 static int
5224 sd_get_virtual_geometry(struct sd_lun *un, cmlb_geom_t *lgeom_p,
5225     diskaddr_t capacity, int lbasize)
5226 {
5227 	uint_t	geombuf;
5228 	int	spc;
5229 
5230 	ASSERT(un != NULL);
5231 
5232 	/* Set sector size, and total number of sectors */
5233 	(void) scsi_ifsetcap(SD_ADDRESS(un), "sector-size",   lbasize,  1);
5234 	(void) scsi_ifsetcap(SD_ADDRESS(un), "total-sectors", capacity, 1);
5235 
5236 	/* Let the HBA tell us its geometry */
5237 	geombuf = (uint_t)scsi_ifgetcap(SD_ADDRESS(un), "geometry", 1);
5238 
5239 	/* A value of -1 indicates an undefined "geometry" property */
5240 	if (geombuf == (-1)) {
5241 		return (EINVAL);
5242 	}
5243 
5244 	/* Initialize the logical geometry cache. */
5245 	lgeom_p->g_nhead   = (geombuf >> 16) & 0xffff;
5246 	lgeom_p->g_nsect   = geombuf & 0xffff;
5247 	lgeom_p->g_secsize = un->un_sys_blocksize;
5248 
5249 	spc = lgeom_p->g_nhead * lgeom_p->g_nsect;
5250 
5251 	/*
5252 	 * Note: The driver originally converted the capacity value from
5253 	 * target blocks to system blocks. However, the capacity value passed
5254 	 * to this routine is already in terms of system blocks (this scaling
5255 	 * is done when the READ CAPACITY command is issued and processed).
5256 	 * This 'error' may have gone undetected because the usage of g_ncyl
5257 	 * (which is based upon g_capacity) is very limited within the driver
5258 	 */
5259 	lgeom_p->g_capacity = capacity;
5260 
5261 	/*
5262 	 * Set ncyl to zero if the hba returned a zero nhead or nsect value. The
5263 	 * hba may return zero values if the device has been removed.
5264 	 */
5265 	if (spc == 0) {
5266 		lgeom_p->g_ncyl = 0;
5267 	} else {
5268 		lgeom_p->g_ncyl = lgeom_p->g_capacity / spc;
5269 	}
5270 	lgeom_p->g_acyl = 0;
5271 
5272 	SD_INFO(SD_LOG_COMMON, un, "sd_get_virtual_geometry: (cached)\n");
5273 	return (0);
5274 
5275 }
5276 /*
5277  *    Function: sd_update_block_info
5278  *
5279  * Description: Calculate a byte count to sector count bitshift value
5280  *		from sector size.
5281  *
5282  *   Arguments: un: unit struct.
5283  *		lbasize: new target sector size
5284  *		capacity: new target capacity, ie. block count
5285  *
5286  *     Context: Kernel thread context
5287  */
5288 
5289 static void
5290 sd_update_block_info(struct sd_lun *un, uint32_t lbasize, uint64_t capacity)
5291 {
5292 	if (lbasize != 0) {
5293 		un->un_tgt_blocksize = lbasize;
5294 		un->un_f_tgt_blocksize_is_valid = TRUE;
5295 		if (!un->un_f_has_removable_media) {
5296 			un->un_sys_blocksize = lbasize;
5297 		}
5298 	}
5299 
5300 	if (capacity != 0) {
5301 		un->un_blockcount		= capacity;
5302 		un->un_f_blockcount_is_valid	= TRUE;
5303 
5304 		/*
5305 		 * The capacity has changed so update the errstats.
5306 		 */
5307 		if (un->un_errstats != NULL) {
5308 			struct sd_errstats *stp;
5309 
5310 			capacity *= un->un_sys_blocksize;
5311 			stp = (struct sd_errstats *)un->un_errstats->ks_data;
5312 			if (stp->sd_capacity.value.ui64 < capacity)
5313 				stp->sd_capacity.value.ui64 = capacity;
5314 		}
5315 	}
5316 }
5317 
5318 
5319 /*
5320  *    Function: sd_register_devid
5321  *
5322  * Description: This routine will obtain the device id information from the
5323  *		target, obtain the serial number, and register the device
5324  *		id with the ddi framework.
5325  *
5326  *   Arguments: devi - the system's dev_info_t for the device.
5327  *		un - driver soft state (unit) structure
5328  *		reservation_flag - indicates if a reservation conflict
5329  *		occurred during attach
5330  *
5331  *     Context: Kernel Thread
5332  */
5333 static void
5334 sd_register_devid(sd_ssc_t *ssc, dev_info_t *devi, int reservation_flag)
5335 {
5336 	int		rval		= 0;
5337 	uchar_t		*inq80		= NULL;
5338 	size_t		inq80_len	= MAX_INQUIRY_SIZE;
5339 	size_t		inq80_resid	= 0;
5340 	uchar_t		*inq83		= NULL;
5341 	size_t		inq83_len	= MAX_INQUIRY_SIZE;
5342 	size_t		inq83_resid	= 0;
5343 	int		dlen, len;
5344 	char		*sn;
5345 	struct sd_lun	*un;
5346 
5347 	ASSERT(ssc != NULL);
5348 	un = ssc->ssc_un;
5349 	ASSERT(un != NULL);
5350 	ASSERT(mutex_owned(SD_MUTEX(un)));
5351 	ASSERT((SD_DEVINFO(un)) == devi);
5352 
5353 
5354 	/*
5355 	 * We check the availability of the World Wide Name (0x83) and Unit
5356 	 * Serial Number (0x80) pages in sd_check_vpd_page_support(), and using
5357 	 * un_vpd_page_mask from them, we decide which way to get the WWN.  If
5358 	 * 0x83 is available, that is the best choice.  Our next choice is
5359 	 * 0x80.  If neither are available, we munge the devid from the device
5360 	 * vid/pid/serial # for Sun qualified disks, or use the ddi framework
5361 	 * to fabricate a devid for non-Sun qualified disks.
5362 	 */
5363 	if (sd_check_vpd_page_support(ssc) == 0) {
5364 		/* collect page 80 data if available */
5365 		if (un->un_vpd_page_mask & SD_VPD_UNIT_SERIAL_PG) {
5366 
5367 			mutex_exit(SD_MUTEX(un));
5368 			inq80 = kmem_zalloc(inq80_len, KM_SLEEP);
5369 
5370 			rval = sd_send_scsi_INQUIRY(ssc, inq80, inq80_len,
5371 			    0x01, 0x80, &inq80_resid);
5372 
5373 			if (rval != 0) {
5374 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5375 				kmem_free(inq80, inq80_len);
5376 				inq80 = NULL;
5377 				inq80_len = 0;
5378 			} else if (ddi_prop_exists(
5379 			    DDI_DEV_T_NONE, SD_DEVINFO(un),
5380 			    DDI_PROP_NOTPROM | DDI_PROP_DONTPASS,
5381 			    INQUIRY_SERIAL_NO) == 0) {
5382 				/*
5383 				 * If we don't already have a serial number
5384 				 * property, do quick verify of data returned
5385 				 * and define property.
5386 				 */
5387 				dlen = inq80_len - inq80_resid;
5388 				len = (size_t)inq80[3];
5389 				if ((dlen >= 4) && ((len + 4) <= dlen)) {
5390 					/*
5391 					 * Ensure sn termination, skip leading
5392 					 * blanks, and create property
5393 					 * 'inquiry-serial-no'.
5394 					 */
5395 					sn = (char *)&inq80[4];
5396 					sn[len] = 0;
5397 					while (*sn && (*sn == ' '))
5398 						sn++;
5399 					if (*sn) {
5400 						(void) ddi_prop_update_string(
5401 						    DDI_DEV_T_NONE,
5402 						    SD_DEVINFO(un),
5403 						    INQUIRY_SERIAL_NO, sn);
5404 					}
5405 				}
5406 			}
5407 			mutex_enter(SD_MUTEX(un));
5408 		}
5409 
5410 		/* collect page 83 data if available */
5411 		if (un->un_vpd_page_mask & SD_VPD_DEVID_WWN_PG) {
5412 			mutex_exit(SD_MUTEX(un));
5413 			inq83 = kmem_zalloc(inq83_len, KM_SLEEP);
5414 
5415 			rval = sd_send_scsi_INQUIRY(ssc, inq83, inq83_len,
5416 			    0x01, 0x83, &inq83_resid);
5417 
5418 			if (rval != 0) {
5419 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5420 				kmem_free(inq83, inq83_len);
5421 				inq83 = NULL;
5422 				inq83_len = 0;
5423 			}
5424 			mutex_enter(SD_MUTEX(un));
5425 		}
5426 	}
5427 
5428 	/*
5429 	 * If transport has already registered a devid for this target
5430 	 * then that takes precedence over the driver's determination
5431 	 * of the devid.
5432 	 *
5433 	 * NOTE: The reason this check is done here instead of at the beginning
5434 	 * of the function is to allow the code above to create the
5435 	 * 'inquiry-serial-no' property.
5436 	 */
5437 	if (ddi_devid_get(SD_DEVINFO(un), &un->un_devid) == DDI_SUCCESS) {
5438 		ASSERT(un->un_devid);
5439 		un->un_f_devid_transport_defined = TRUE;
5440 		goto cleanup; /* use devid registered by the transport */
5441 	}
5442 
5443 	/*
5444 	 * This is the case of antiquated Sun disk drives that have the
5445 	 * FAB_DEVID property set in the disk_table.  These drives
5446 	 * manage the devid's by storing them in last 2 available sectors
5447 	 * on the drive and have them fabricated by the ddi layer by calling
5448 	 * ddi_devid_init and passing the DEVID_FAB flag.
5449 	 */
5450 	if (un->un_f_opt_fab_devid == TRUE) {
5451 		/*
5452 		 * Depending on EINVAL isn't reliable, since a reserved disk
5453 		 * may result in invalid geometry, so check to make sure a
5454 		 * reservation conflict did not occur during attach.
5455 		 */
5456 		if ((sd_get_devid(ssc) == EINVAL) &&
5457 		    (reservation_flag != SD_TARGET_IS_RESERVED)) {
5458 			/*
5459 			 * The devid is invalid AND there is no reservation
5460 			 * conflict.  Fabricate a new devid.
5461 			 */
5462 			(void) sd_create_devid(ssc);
5463 		}
5464 
5465 		/* Register the devid if it exists */
5466 		if (un->un_devid != NULL) {
5467 			(void) ddi_devid_register(SD_DEVINFO(un),
5468 			    un->un_devid);
5469 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
5470 			    "sd_register_devid: Devid Fabricated\n");
5471 		}
5472 		goto cleanup;
5473 	}
5474 
5475 	/* encode best devid possible based on data available */
5476 	if (ddi_devid_scsi_encode(DEVID_SCSI_ENCODE_VERSION_LATEST,
5477 	    (char *)ddi_driver_name(SD_DEVINFO(un)),
5478 	    (uchar_t *)SD_INQUIRY(un), sizeof (*SD_INQUIRY(un)),
5479 	    inq80, inq80_len - inq80_resid, inq83, inq83_len -
5480 	    inq83_resid, &un->un_devid) == DDI_SUCCESS) {
5481 
5482 		/* devid successfully encoded, register devid */
5483 		(void) ddi_devid_register(SD_DEVINFO(un), un->un_devid);
5484 
5485 	} else {
5486 		/*
5487 		 * Unable to encode a devid based on data available.
5488 		 * This is not a Sun qualified disk.  Older Sun disk
5489 		 * drives that have the SD_FAB_DEVID property
5490 		 * set in the disk_table and non Sun qualified
5491 		 * disks are treated in the same manner.  These
5492 		 * drives manage the devid's by storing them in
5493 		 * last 2 available sectors on the drive and
5494 		 * have them fabricated by the ddi layer by
5495 		 * calling ddi_devid_init and passing the
5496 		 * DEVID_FAB flag.
5497 		 * Create a fabricate devid only if there's no
5498 		 * fabricate devid existed.
5499 		 */
5500 		if (sd_get_devid(ssc) == EINVAL) {
5501 			(void) sd_create_devid(ssc);
5502 		}
5503 		un->un_f_opt_fab_devid = TRUE;
5504 
5505 		/* Register the devid if it exists */
5506 		if (un->un_devid != NULL) {
5507 			(void) ddi_devid_register(SD_DEVINFO(un),
5508 			    un->un_devid);
5509 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
5510 			    "sd_register_devid: devid fabricated using "
5511 			    "ddi framework\n");
5512 		}
5513 	}
5514 
5515 cleanup:
5516 	/* clean up resources */
5517 	if (inq80 != NULL) {
5518 		kmem_free(inq80, inq80_len);
5519 	}
5520 	if (inq83 != NULL) {
5521 		kmem_free(inq83, inq83_len);
5522 	}
5523 }
5524 
5525 
5526 
5527 /*
5528  *    Function: sd_get_devid
5529  *
5530  * Description: This routine will return 0 if a valid device id has been
5531  *		obtained from the target and stored in the soft state. If a
5532  *		valid device id has not been previously read and stored, a
5533  *		read attempt will be made.
5534  *
5535  *   Arguments: un - driver soft state (unit) structure
5536  *
5537  * Return Code: 0 if we successfully get the device id
5538  *
5539  *     Context: Kernel Thread
5540  */
5541 
5542 static int
5543 sd_get_devid(sd_ssc_t *ssc)
5544 {
5545 	struct dk_devid		*dkdevid;
5546 	ddi_devid_t		tmpid;
5547 	uint_t			*ip;
5548 	size_t			sz;
5549 	diskaddr_t		blk;
5550 	int			status;
5551 	int			chksum;
5552 	int			i;
5553 	size_t			buffer_size;
5554 	struct sd_lun		*un;
5555 
5556 	ASSERT(ssc != NULL);
5557 	un = ssc->ssc_un;
5558 	ASSERT(un != NULL);
5559 	ASSERT(mutex_owned(SD_MUTEX(un)));
5560 
5561 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: entry: un: 0x%p\n",
5562 	    un);
5563 
5564 	if (un->un_devid != NULL) {
5565 		return (0);
5566 	}
5567 
5568 	mutex_exit(SD_MUTEX(un));
5569 	if (cmlb_get_devid_block(un->un_cmlbhandle, &blk,
5570 	    (void *)SD_PATH_DIRECT) != 0) {
5571 		mutex_enter(SD_MUTEX(un));
5572 		return (EINVAL);
5573 	}
5574 
5575 	/*
5576 	 * Read and verify device id, stored in the reserved cylinders at the
5577 	 * end of the disk. Backup label is on the odd sectors of the last
5578 	 * track of the last cylinder. Device id will be on track of the next
5579 	 * to last cylinder.
5580 	 */
5581 	mutex_enter(SD_MUTEX(un));
5582 	buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct dk_devid));
5583 	mutex_exit(SD_MUTEX(un));
5584 	dkdevid = kmem_alloc(buffer_size, KM_SLEEP);
5585 	status = sd_send_scsi_READ(ssc, dkdevid, buffer_size, blk,
5586 	    SD_PATH_DIRECT);
5587 
5588 	if (status != 0) {
5589 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5590 		goto error;
5591 	}
5592 
5593 	/* Validate the revision */
5594 	if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) ||
5595 	    (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) {
5596 		status = EINVAL;
5597 		goto error;
5598 	}
5599 
5600 	/* Calculate the checksum */
5601 	chksum = 0;
5602 	ip = (uint_t *)dkdevid;
5603 	for (i = 0; i < ((DEV_BSIZE - sizeof (int)) / sizeof (int));
5604 	    i++) {
5605 		chksum ^= ip[i];
5606 	}
5607 
5608 	/* Compare the checksums */
5609 	if (DKD_GETCHKSUM(dkdevid) != chksum) {
5610 		status = EINVAL;
5611 		goto error;
5612 	}
5613 
5614 	/* Validate the device id */
5615 	if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) {
5616 		status = EINVAL;
5617 		goto error;
5618 	}
5619 
5620 	/*
5621 	 * Store the device id in the driver soft state
5622 	 */
5623 	sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid);
5624 	tmpid = kmem_alloc(sz, KM_SLEEP);
5625 
5626 	mutex_enter(SD_MUTEX(un));
5627 
5628 	un->un_devid = tmpid;
5629 	bcopy(&dkdevid->dkd_devid, un->un_devid, sz);
5630 
5631 	kmem_free(dkdevid, buffer_size);
5632 
5633 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: exit: un:0x%p\n", un);
5634 
5635 	return (status);
5636 error:
5637 	mutex_enter(SD_MUTEX(un));
5638 	kmem_free(dkdevid, buffer_size);
5639 	return (status);
5640 }
5641 
5642 
5643 /*
5644  *    Function: sd_create_devid
5645  *
5646  * Description: This routine will fabricate the device id and write it
5647  *		to the disk.
5648  *
5649  *   Arguments: un - driver soft state (unit) structure
5650  *
5651  * Return Code: value of the fabricated device id
5652  *
5653  *     Context: Kernel Thread
5654  */
5655 
5656 static ddi_devid_t
5657 sd_create_devid(sd_ssc_t *ssc)
5658 {
5659 	struct sd_lun	*un;
5660 
5661 	ASSERT(ssc != NULL);
5662 	un = ssc->ssc_un;
5663 	ASSERT(un != NULL);
5664 
5665 	/* Fabricate the devid */
5666 	if (ddi_devid_init(SD_DEVINFO(un), DEVID_FAB, 0, NULL, &un->un_devid)
5667 	    == DDI_FAILURE) {
5668 		return (NULL);
5669 	}
5670 
5671 	/* Write the devid to disk */
5672 	if (sd_write_deviceid(ssc) != 0) {
5673 		ddi_devid_free(un->un_devid);
5674 		un->un_devid = NULL;
5675 	}
5676 
5677 	return (un->un_devid);
5678 }
5679 
5680 
5681 /*
5682  *    Function: sd_write_deviceid
5683  *
5684  * Description: This routine will write the device id to the disk
5685  *		reserved sector.
5686  *
5687  *   Arguments: un - driver soft state (unit) structure
5688  *
5689  * Return Code: EINVAL
5690  *		value returned by sd_send_scsi_cmd
5691  *
5692  *     Context: Kernel Thread
5693  */
5694 
5695 static int
5696 sd_write_deviceid(sd_ssc_t *ssc)
5697 {
5698 	struct dk_devid		*dkdevid;
5699 	uchar_t			*buf;
5700 	diskaddr_t		blk;
5701 	uint_t			*ip, chksum;
5702 	int			status;
5703 	int			i;
5704 	struct sd_lun		*un;
5705 
5706 	ASSERT(ssc != NULL);
5707 	un = ssc->ssc_un;
5708 	ASSERT(un != NULL);
5709 	ASSERT(mutex_owned(SD_MUTEX(un)));
5710 
5711 	mutex_exit(SD_MUTEX(un));
5712 	if (cmlb_get_devid_block(un->un_cmlbhandle, &blk,
5713 	    (void *)SD_PATH_DIRECT) != 0) {
5714 		mutex_enter(SD_MUTEX(un));
5715 		return (-1);
5716 	}
5717 
5718 
5719 	/* Allocate the buffer */
5720 	buf = kmem_zalloc(un->un_sys_blocksize, KM_SLEEP);
5721 	dkdevid = (struct dk_devid *)buf;
5722 
5723 	/* Fill in the revision */
5724 	dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB;
5725 	dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB;
5726 
5727 	/* Copy in the device id */
5728 	mutex_enter(SD_MUTEX(un));
5729 	bcopy(un->un_devid, &dkdevid->dkd_devid,
5730 	    ddi_devid_sizeof(un->un_devid));
5731 	mutex_exit(SD_MUTEX(un));
5732 
5733 	/* Calculate the checksum */
5734 	chksum = 0;
5735 	ip = (uint_t *)dkdevid;
5736 	for (i = 0; i < ((DEV_BSIZE - sizeof (int)) / sizeof (int));
5737 	    i++) {
5738 		chksum ^= ip[i];
5739 	}
5740 
5741 	/* Fill-in checksum */
5742 	DKD_FORMCHKSUM(chksum, dkdevid);
5743 
5744 	/* Write the reserved sector */
5745 	status = sd_send_scsi_WRITE(ssc, buf, un->un_sys_blocksize, blk,
5746 	    SD_PATH_DIRECT);
5747 	if (status != 0)
5748 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5749 
5750 	kmem_free(buf, un->un_sys_blocksize);
5751 
5752 	mutex_enter(SD_MUTEX(un));
5753 	return (status);
5754 }
5755 
5756 
5757 /*
5758  *    Function: sd_check_vpd_page_support
5759  *
5760  * Description: This routine sends an inquiry command with the EVPD bit set and
5761  *		a page code of 0x00 to the device. It is used to determine which
5762  *		vital product pages are available to find the devid. We are
5763  *		looking for pages 0x83 0x80 or 0xB1.  If we return a negative 1,
5764  *		the device does not support that command.
5765  *
5766  *   Arguments: un  - driver soft state (unit) structure
5767  *
5768  * Return Code: 0 - success
5769  *		1 - check condition
5770  *
5771  *     Context: This routine can sleep.
5772  */
5773 
5774 static int
5775 sd_check_vpd_page_support(sd_ssc_t *ssc)
5776 {
5777 	uchar_t	*page_list	= NULL;
5778 	uchar_t	page_length	= 0xff;	/* Use max possible length */
5779 	uchar_t	evpd		= 0x01;	/* Set the EVPD bit */
5780 	uchar_t	page_code	= 0x00;	/* Supported VPD Pages */
5781 	int    	rval		= 0;
5782 	int	counter;
5783 	struct sd_lun		*un;
5784 
5785 	ASSERT(ssc != NULL);
5786 	un = ssc->ssc_un;
5787 	ASSERT(un != NULL);
5788 	ASSERT(mutex_owned(SD_MUTEX(un)));
5789 
5790 	mutex_exit(SD_MUTEX(un));
5791 
5792 	/*
5793 	 * We'll set the page length to the maximum to save figuring it out
5794 	 * with an additional call.
5795 	 */
5796 	page_list =  kmem_zalloc(page_length, KM_SLEEP);
5797 
5798 	rval = sd_send_scsi_INQUIRY(ssc, page_list, page_length, evpd,
5799 	    page_code, NULL);
5800 
5801 	if (rval != 0)
5802 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5803 
5804 	mutex_enter(SD_MUTEX(un));
5805 
5806 	/*
5807 	 * Now we must validate that the device accepted the command, as some
5808 	 * drives do not support it.  If the drive does support it, we will
5809 	 * return 0, and the supported pages will be in un_vpd_page_mask.  If
5810 	 * not, we return -1.
5811 	 */
5812 	if ((rval == 0) && (page_list[VPD_MODE_PAGE] == 0x00)) {
5813 		/* Loop to find one of the 2 pages we need */
5814 		counter = 4;  /* Supported pages start at byte 4, with 0x00 */
5815 
5816 		/*
5817 		 * Pages are returned in ascending order, and 0x83 is what we
5818 		 * are hoping for.
5819 		 */
5820 		while ((page_list[counter] <= 0xB1) &&
5821 		    (counter <= (page_list[VPD_PAGE_LENGTH] +
5822 		    VPD_HEAD_OFFSET))) {
5823 			/*
5824 			 * Add 3 because page_list[3] is the number of
5825 			 * pages minus 3
5826 			 */
5827 
5828 			switch (page_list[counter]) {
5829 			case 0x00:
5830 				un->un_vpd_page_mask |= SD_VPD_SUPPORTED_PG;
5831 				break;
5832 			case 0x80:
5833 				un->un_vpd_page_mask |= SD_VPD_UNIT_SERIAL_PG;
5834 				break;
5835 			case 0x81:
5836 				un->un_vpd_page_mask |= SD_VPD_OPERATING_PG;
5837 				break;
5838 			case 0x82:
5839 				un->un_vpd_page_mask |= SD_VPD_ASCII_OP_PG;
5840 				break;
5841 			case 0x83:
5842 				un->un_vpd_page_mask |= SD_VPD_DEVID_WWN_PG;
5843 				break;
5844 			case 0x86:
5845 				un->un_vpd_page_mask |= SD_VPD_EXTENDED_DATA_PG;
5846 				break;
5847 			case 0xB1:
5848 				un->un_vpd_page_mask |= SD_VPD_DEV_CHARACTER_PG;
5849 				break;
5850 			}
5851 			counter++;
5852 		}
5853 
5854 	} else {
5855 		rval = -1;
5856 
5857 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
5858 		    "sd_check_vpd_page_support: This drive does not implement "
5859 		    "VPD pages.\n");
5860 	}
5861 
5862 	kmem_free(page_list, page_length);
5863 
5864 	return (rval);
5865 }
5866 
5867 
5868 /*
5869  *    Function: sd_setup_pm
5870  *
5871  * Description: Initialize Power Management on the device
5872  *
5873  *     Context: Kernel Thread
5874  */
5875 
5876 static void
5877 sd_setup_pm(sd_ssc_t *ssc, dev_info_t *devi)
5878 {
5879 	uint_t		log_page_size;
5880 	uchar_t		*log_page_data;
5881 	int		rval = 0;
5882 	struct sd_lun	*un;
5883 
5884 	ASSERT(ssc != NULL);
5885 	un = ssc->ssc_un;
5886 	ASSERT(un != NULL);
5887 
5888 	/*
5889 	 * Since we are called from attach, holding a mutex for
5890 	 * un is unnecessary. Because some of the routines called
5891 	 * from here require SD_MUTEX to not be held, assert this
5892 	 * right up front.
5893 	 */
5894 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5895 	/*
5896 	 * Since the sd device does not have the 'reg' property,
5897 	 * cpr will not call its DDI_SUSPEND/DDI_RESUME entries.
5898 	 * The following code is to tell cpr that this device
5899 	 * DOES need to be suspended and resumed.
5900 	 */
5901 	(void) ddi_prop_update_string(DDI_DEV_T_NONE, devi,
5902 	    "pm-hardware-state", "needs-suspend-resume");
5903 
5904 	/*
5905 	 * This complies with the new power management framework
5906 	 * for certain desktop machines. Create the pm_components
5907 	 * property as a string array property.
5908 	 * If un_f_pm_supported is TRUE, that means the disk
5909 	 * attached HBA has set the "pm-capable" property and
5910 	 * the value of this property is bigger than 0.
5911 	 */
5912 	if (un->un_f_pm_supported) {
5913 		/*
5914 		 * not all devices have a motor, try it first.
5915 		 * some devices may return ILLEGAL REQUEST, some
5916 		 * will hang
5917 		 * The following START_STOP_UNIT is used to check if target
5918 		 * device has a motor.
5919 		 */
5920 		un->un_f_start_stop_supported = TRUE;
5921 
5922 		if (un->un_f_power_condition_supported) {
5923 			rval = sd_send_scsi_START_STOP_UNIT(ssc,
5924 			    SD_POWER_CONDITION, SD_TARGET_ACTIVE,
5925 			    SD_PATH_DIRECT);
5926 			if (rval != 0) {
5927 				un->un_f_power_condition_supported = FALSE;
5928 			}
5929 		}
5930 		if (!un->un_f_power_condition_supported) {
5931 			rval = sd_send_scsi_START_STOP_UNIT(ssc,
5932 			    SD_START_STOP, SD_TARGET_START, SD_PATH_DIRECT);
5933 		}
5934 		if (rval != 0) {
5935 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5936 			un->un_f_start_stop_supported = FALSE;
5937 		}
5938 
5939 		/*
5940 		 * create pm properties anyways otherwise the parent can't
5941 		 * go to sleep
5942 		 */
5943 		un->un_f_pm_is_enabled = TRUE;
5944 		(void) sd_create_pm_components(devi, un);
5945 
5946 		/*
5947 		 * If it claims that log sense is supported, check it out.
5948 		 */
5949 		if (un->un_f_log_sense_supported) {
5950 			rval = sd_log_page_supported(ssc,
5951 			    START_STOP_CYCLE_PAGE);
5952 			if (rval == 1) {
5953 				/* Page found, use it. */
5954 				un->un_start_stop_cycle_page =
5955 				    START_STOP_CYCLE_PAGE;
5956 			} else {
5957 				/*
5958 				 * Page not found or log sense is not
5959 				 * supported.
5960 				 * Notice we do not check the old style
5961 				 * START_STOP_CYCLE_VU_PAGE because this
5962 				 * code path does not apply to old disks.
5963 				 */
5964 				un->un_f_log_sense_supported = FALSE;
5965 				un->un_f_pm_log_sense_smart = FALSE;
5966 			}
5967 		}
5968 
5969 		return;
5970 	}
5971 
5972 	/*
5973 	 * For the disk whose attached HBA has not set the "pm-capable"
5974 	 * property, check if it supports the power management.
5975 	 */
5976 	if (!un->un_f_log_sense_supported) {
5977 		un->un_power_level = SD_SPINDLE_ON;
5978 		un->un_f_pm_is_enabled = FALSE;
5979 		return;
5980 	}
5981 
5982 	rval = sd_log_page_supported(ssc, START_STOP_CYCLE_PAGE);
5983 
5984 #ifdef	SDDEBUG
5985 	if (sd_force_pm_supported) {
5986 		/* Force a successful result */
5987 		rval = 1;
5988 	}
5989 #endif
5990 
5991 	/*
5992 	 * If the start-stop cycle counter log page is not supported
5993 	 * or if the pm-capable property is set to be false (0),
5994 	 * then we should not create the pm_components property.
5995 	 */
5996 	if (rval == -1) {
5997 		/*
5998 		 * Error.
5999 		 * Reading log sense failed, most likely this is
6000 		 * an older drive that does not support log sense.
6001 		 * If this fails auto-pm is not supported.
6002 		 */
6003 		un->un_power_level = SD_SPINDLE_ON;
6004 		un->un_f_pm_is_enabled = FALSE;
6005 
6006 	} else if (rval == 0) {
6007 		/*
6008 		 * Page not found.
6009 		 * The start stop cycle counter is implemented as page
6010 		 * START_STOP_CYCLE_PAGE_VU_PAGE (0x31) in older disks. For
6011 		 * newer disks it is implemented as START_STOP_CYCLE_PAGE (0xE).
6012 		 */
6013 		if (sd_log_page_supported(ssc, START_STOP_CYCLE_VU_PAGE) == 1) {
6014 			/*
6015 			 * Page found, use this one.
6016 			 */
6017 			un->un_start_stop_cycle_page = START_STOP_CYCLE_VU_PAGE;
6018 			un->un_f_pm_is_enabled = TRUE;
6019 		} else {
6020 			/*
6021 			 * Error or page not found.
6022 			 * auto-pm is not supported for this device.
6023 			 */
6024 			un->un_power_level = SD_SPINDLE_ON;
6025 			un->un_f_pm_is_enabled = FALSE;
6026 		}
6027 	} else {
6028 		/*
6029 		 * Page found, use it.
6030 		 */
6031 		un->un_start_stop_cycle_page = START_STOP_CYCLE_PAGE;
6032 		un->un_f_pm_is_enabled = TRUE;
6033 	}
6034 
6035 
6036 	if (un->un_f_pm_is_enabled == TRUE) {
6037 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
6038 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
6039 
6040 		rval = sd_send_scsi_LOG_SENSE(ssc, log_page_data,
6041 		    log_page_size, un->un_start_stop_cycle_page,
6042 		    0x01, 0, SD_PATH_DIRECT);
6043 
6044 		if (rval != 0) {
6045 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
6046 		}
6047 
6048 #ifdef	SDDEBUG
6049 		if (sd_force_pm_supported) {
6050 			/* Force a successful result */
6051 			rval = 0;
6052 		}
6053 #endif
6054 
6055 		/*
6056 		 * If the Log sense for Page( Start/stop cycle counter page)
6057 		 * succeeds, then power management is supported and we can
6058 		 * enable auto-pm.
6059 		 */
6060 		if (rval == 0)  {
6061 			(void) sd_create_pm_components(devi, un);
6062 		} else {
6063 			un->un_power_level = SD_SPINDLE_ON;
6064 			un->un_f_pm_is_enabled = FALSE;
6065 		}
6066 
6067 		kmem_free(log_page_data, log_page_size);
6068 	}
6069 }
6070 
6071 
6072 /*
6073  *    Function: sd_create_pm_components
6074  *
6075  * Description: Initialize PM property.
6076  *
6077  *     Context: Kernel thread context
6078  */
6079 
6080 static void
6081 sd_create_pm_components(dev_info_t *devi, struct sd_lun *un)
6082 {
6083 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6084 
6085 	if (un->un_f_power_condition_supported) {
6086 		if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi,
6087 		    "pm-components", sd_pwr_pc.pm_comp, 5)
6088 		    != DDI_PROP_SUCCESS) {
6089 			un->un_power_level = SD_SPINDLE_ACTIVE;
6090 			un->un_f_pm_is_enabled = FALSE;
6091 			return;
6092 		}
6093 	} else {
6094 		if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi,
6095 		    "pm-components", sd_pwr_ss.pm_comp, 3)
6096 		    != DDI_PROP_SUCCESS) {
6097 			un->un_power_level = SD_SPINDLE_ON;
6098 			un->un_f_pm_is_enabled = FALSE;
6099 			return;
6100 		}
6101 	}
6102 	/*
6103 	 * When components are initially created they are idle,
6104 	 * power up any non-removables.
6105 	 * Note: the return value of pm_raise_power can't be used
6106 	 * for determining if PM should be enabled for this device.
6107 	 * Even if you check the return values and remove this
6108 	 * property created above, the PM framework will not honor the
6109 	 * change after the first call to pm_raise_power. Hence,
6110 	 * removal of that property does not help if pm_raise_power
6111 	 * fails. In the case of removable media, the start/stop
6112 	 * will fail if the media is not present.
6113 	 */
6114 	if (un->un_f_attach_spinup && (pm_raise_power(SD_DEVINFO(un), 0,
6115 	    SD_PM_STATE_ACTIVE(un)) == DDI_SUCCESS)) {
6116 		mutex_enter(SD_MUTEX(un));
6117 		un->un_power_level = SD_PM_STATE_ACTIVE(un);
6118 		mutex_enter(&un->un_pm_mutex);
6119 		/* Set to on and not busy. */
6120 		un->un_pm_count = 0;
6121 	} else {
6122 		mutex_enter(SD_MUTEX(un));
6123 		un->un_power_level = SD_PM_STATE_STOPPED(un);
6124 		mutex_enter(&un->un_pm_mutex);
6125 		/* Set to off. */
6126 		un->un_pm_count = -1;
6127 	}
6128 	mutex_exit(&un->un_pm_mutex);
6129 	mutex_exit(SD_MUTEX(un));
6130 }
6131 
6132 
6133 /*
6134  *    Function: sd_ddi_suspend
6135  *
6136  * Description: Performs system power-down operations. This includes
6137  *		setting the drive state to indicate its suspended so
6138  *		that no new commands will be accepted. Also, wait for
6139  *		all commands that are in transport or queued to a timer
6140  *		for retry to complete. All timeout threads are cancelled.
6141  *
6142  * Return Code: DDI_FAILURE or DDI_SUCCESS
6143  *
6144  *     Context: Kernel thread context
6145  */
6146 
6147 static int
6148 sd_ddi_suspend(dev_info_t *devi)
6149 {
6150 	struct	sd_lun	*un;
6151 	clock_t		wait_cmds_complete;
6152 
6153 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
6154 	if (un == NULL) {
6155 		return (DDI_FAILURE);
6156 	}
6157 
6158 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: entry\n");
6159 
6160 	mutex_enter(SD_MUTEX(un));
6161 
6162 	/* Return success if the device is already suspended. */
6163 	if (un->un_state == SD_STATE_SUSPENDED) {
6164 		mutex_exit(SD_MUTEX(un));
6165 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6166 		    "device already suspended, exiting\n");
6167 		return (DDI_SUCCESS);
6168 	}
6169 
6170 	/* Return failure if the device is being used by HA */
6171 	if (un->un_resvd_status &
6172 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE)) {
6173 		mutex_exit(SD_MUTEX(un));
6174 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6175 		    "device in use by HA, exiting\n");
6176 		return (DDI_FAILURE);
6177 	}
6178 
6179 	/*
6180 	 * Return failure if the device is in a resource wait
6181 	 * or power changing state.
6182 	 */
6183 	if ((un->un_state == SD_STATE_RWAIT) ||
6184 	    (un->un_state == SD_STATE_PM_CHANGING)) {
6185 		mutex_exit(SD_MUTEX(un));
6186 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6187 		    "device in resource wait state, exiting\n");
6188 		return (DDI_FAILURE);
6189 	}
6190 
6191 
6192 	un->un_save_state = un->un_last_state;
6193 	New_state(un, SD_STATE_SUSPENDED);
6194 
6195 	/*
6196 	 * Wait for all commands that are in transport or queued to a timer
6197 	 * for retry to complete.
6198 	 *
6199 	 * While waiting, no new commands will be accepted or sent because of
6200 	 * the new state we set above.
6201 	 *
6202 	 * Wait till current operation has completed. If we are in the resource
6203 	 * wait state (with an intr outstanding) then we need to wait till the
6204 	 * intr completes and starts the next cmd. We want to wait for
6205 	 * SD_WAIT_CMDS_COMPLETE seconds before failing the DDI_SUSPEND.
6206 	 */
6207 	wait_cmds_complete = ddi_get_lbolt() +
6208 	    (sd_wait_cmds_complete * drv_usectohz(1000000));
6209 
6210 	while (un->un_ncmds_in_transport != 0) {
6211 		/*
6212 		 * Fail if commands do not finish in the specified time.
6213 		 */
6214 		if (cv_timedwait(&un->un_disk_busy_cv, SD_MUTEX(un),
6215 		    wait_cmds_complete) == -1) {
6216 			/*
6217 			 * Undo the state changes made above. Everything
6218 			 * must go back to it's original value.
6219 			 */
6220 			Restore_state(un);
6221 			un->un_last_state = un->un_save_state;
6222 			/* Wake up any threads that might be waiting. */
6223 			cv_broadcast(&un->un_suspend_cv);
6224 			mutex_exit(SD_MUTEX(un));
6225 			SD_ERROR(SD_LOG_IO_PM, un,
6226 			    "sd_ddi_suspend: failed due to outstanding cmds\n");
6227 			SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exiting\n");
6228 			return (DDI_FAILURE);
6229 		}
6230 	}
6231 
6232 	/*
6233 	 * Cancel SCSI watch thread and timeouts, if any are active
6234 	 */
6235 
6236 	if (SD_OK_TO_SUSPEND_SCSI_WATCHER(un)) {
6237 		opaque_t temp_token = un->un_swr_token;
6238 		mutex_exit(SD_MUTEX(un));
6239 		scsi_watch_suspend(temp_token);
6240 		mutex_enter(SD_MUTEX(un));
6241 	}
6242 
6243 	if (un->un_reset_throttle_timeid != NULL) {
6244 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
6245 		un->un_reset_throttle_timeid = NULL;
6246 		mutex_exit(SD_MUTEX(un));
6247 		(void) untimeout(temp_id);
6248 		mutex_enter(SD_MUTEX(un));
6249 	}
6250 
6251 	if (un->un_dcvb_timeid != NULL) {
6252 		timeout_id_t temp_id = un->un_dcvb_timeid;
6253 		un->un_dcvb_timeid = NULL;
6254 		mutex_exit(SD_MUTEX(un));
6255 		(void) untimeout(temp_id);
6256 		mutex_enter(SD_MUTEX(un));
6257 	}
6258 
6259 	mutex_enter(&un->un_pm_mutex);
6260 	if (un->un_pm_timeid != NULL) {
6261 		timeout_id_t temp_id = un->un_pm_timeid;
6262 		un->un_pm_timeid = NULL;
6263 		mutex_exit(&un->un_pm_mutex);
6264 		mutex_exit(SD_MUTEX(un));
6265 		(void) untimeout(temp_id);
6266 		mutex_enter(SD_MUTEX(un));
6267 	} else {
6268 		mutex_exit(&un->un_pm_mutex);
6269 	}
6270 
6271 	if (un->un_rmw_msg_timeid != NULL) {
6272 		timeout_id_t temp_id = un->un_rmw_msg_timeid;
6273 		un->un_rmw_msg_timeid = NULL;
6274 		mutex_exit(SD_MUTEX(un));
6275 		(void) untimeout(temp_id);
6276 		mutex_enter(SD_MUTEX(un));
6277 	}
6278 
6279 	if (un->un_retry_timeid != NULL) {
6280 		timeout_id_t temp_id = un->un_retry_timeid;
6281 		un->un_retry_timeid = NULL;
6282 		mutex_exit(SD_MUTEX(un));
6283 		(void) untimeout(temp_id);
6284 		mutex_enter(SD_MUTEX(un));
6285 
6286 		if (un->un_retry_bp != NULL) {
6287 			un->un_retry_bp->av_forw = un->un_waitq_headp;
6288 			un->un_waitq_headp = un->un_retry_bp;
6289 			if (un->un_waitq_tailp == NULL) {
6290 				un->un_waitq_tailp = un->un_retry_bp;
6291 			}
6292 			un->un_retry_bp = NULL;
6293 			un->un_retry_statp = NULL;
6294 		}
6295 	}
6296 
6297 	if (un->un_direct_priority_timeid != NULL) {
6298 		timeout_id_t temp_id = un->un_direct_priority_timeid;
6299 		un->un_direct_priority_timeid = NULL;
6300 		mutex_exit(SD_MUTEX(un));
6301 		(void) untimeout(temp_id);
6302 		mutex_enter(SD_MUTEX(un));
6303 	}
6304 
6305 	if (un->un_f_is_fibre == TRUE) {
6306 		/*
6307 		 * Remove callbacks for insert and remove events
6308 		 */
6309 		if (un->un_insert_event != NULL) {
6310 			mutex_exit(SD_MUTEX(un));
6311 			(void) ddi_remove_event_handler(un->un_insert_cb_id);
6312 			mutex_enter(SD_MUTEX(un));
6313 			un->un_insert_event = NULL;
6314 		}
6315 
6316 		if (un->un_remove_event != NULL) {
6317 			mutex_exit(SD_MUTEX(un));
6318 			(void) ddi_remove_event_handler(un->un_remove_cb_id);
6319 			mutex_enter(SD_MUTEX(un));
6320 			un->un_remove_event = NULL;
6321 		}
6322 	}
6323 
6324 	mutex_exit(SD_MUTEX(un));
6325 
6326 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exit\n");
6327 
6328 	return (DDI_SUCCESS);
6329 }
6330 
6331 
6332 /*
6333  *    Function: sd_ddi_resume
6334  *
6335  * Description: Performs system power-up operations..
6336  *
6337  * Return Code: DDI_SUCCESS
6338  *		DDI_FAILURE
6339  *
6340  *     Context: Kernel thread context
6341  */
6342 
6343 static int
6344 sd_ddi_resume(dev_info_t *devi)
6345 {
6346 	struct	sd_lun	*un;
6347 
6348 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
6349 	if (un == NULL) {
6350 		return (DDI_FAILURE);
6351 	}
6352 
6353 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: entry\n");
6354 
6355 	mutex_enter(SD_MUTEX(un));
6356 	Restore_state(un);
6357 
6358 	/*
6359 	 * Restore the state which was saved to give the
6360 	 * the right state in un_last_state
6361 	 */
6362 	un->un_last_state = un->un_save_state;
6363 	/*
6364 	 * Note: throttle comes back at full.
6365 	 * Also note: this MUST be done before calling pm_raise_power
6366 	 * otherwise the system can get hung in biowait. The scenario where
6367 	 * this'll happen is under cpr suspend. Writing of the system
6368 	 * state goes through sddump, which writes 0 to un_throttle. If
6369 	 * writing the system state then fails, example if the partition is
6370 	 * too small, then cpr attempts a resume. If throttle isn't restored
6371 	 * from the saved value until after calling pm_raise_power then
6372 	 * cmds sent in sdpower are not transported and sd_send_scsi_cmd hangs
6373 	 * in biowait.
6374 	 */
6375 	un->un_throttle = un->un_saved_throttle;
6376 
6377 	/*
6378 	 * The chance of failure is very rare as the only command done in power
6379 	 * entry point is START command when you transition from 0->1 or
6380 	 * unknown->1. Put it to SPINDLE ON state irrespective of the state at
6381 	 * which suspend was done. Ignore the return value as the resume should
6382 	 * not be failed. In the case of removable media the media need not be
6383 	 * inserted and hence there is a chance that raise power will fail with
6384 	 * media not present.
6385 	 */
6386 	if (un->un_f_attach_spinup) {
6387 		mutex_exit(SD_MUTEX(un));
6388 		(void) pm_raise_power(SD_DEVINFO(un), 0,
6389 		    SD_PM_STATE_ACTIVE(un));
6390 		mutex_enter(SD_MUTEX(un));
6391 	}
6392 
6393 	/*
6394 	 * Don't broadcast to the suspend cv and therefore possibly
6395 	 * start I/O until after power has been restored.
6396 	 */
6397 	cv_broadcast(&un->un_suspend_cv);
6398 	cv_broadcast(&un->un_state_cv);
6399 
6400 	/* restart thread */
6401 	if (SD_OK_TO_RESUME_SCSI_WATCHER(un)) {
6402 		scsi_watch_resume(un->un_swr_token);
6403 	}
6404 
6405 #if (defined(__fibre))
6406 	if (un->un_f_is_fibre == TRUE) {
6407 		/*
6408 		 * Add callbacks for insert and remove events
6409 		 */
6410 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
6411 			sd_init_event_callbacks(un);
6412 		}
6413 	}
6414 #endif
6415 
6416 	/*
6417 	 * Transport any pending commands to the target.
6418 	 *
6419 	 * If this is a low-activity device commands in queue will have to wait
6420 	 * until new commands come in, which may take awhile. Also, we
6421 	 * specifically don't check un_ncmds_in_transport because we know that
6422 	 * there really are no commands in progress after the unit was
6423 	 * suspended and we could have reached the throttle level, been
6424 	 * suspended, and have no new commands coming in for awhile. Highly
6425 	 * unlikely, but so is the low-activity disk scenario.
6426 	 */
6427 	ddi_xbuf_dispatch(un->un_xbuf_attr);
6428 
6429 	sd_start_cmds(un, NULL);
6430 	mutex_exit(SD_MUTEX(un));
6431 
6432 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: exit\n");
6433 
6434 	return (DDI_SUCCESS);
6435 }
6436 
6437 
6438 /*
6439  *    Function: sd_pm_state_change
6440  *
6441  * Description: Change the driver power state.
6442  * 		Someone else is required to actually change the driver
6443  * 		power level.
6444  *
6445  *   Arguments: un - driver soft state (unit) structure
6446  *              level - the power level that is changed to
6447  *              flag - to decide how to change the power state
6448  *
6449  * Return Code: DDI_SUCCESS
6450  *
6451  *     Context: Kernel thread context
6452  */
6453 static int
6454 sd_pm_state_change(struct sd_lun *un, int level, int flag)
6455 {
6456 	ASSERT(un != NULL);
6457 	SD_TRACE(SD_LOG_POWER, un, "sd_pm_state_change: entry\n");
6458 
6459 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6460 	mutex_enter(SD_MUTEX(un));
6461 
6462 	if (flag == SD_PM_STATE_ROLLBACK || SD_PM_IS_IO_CAPABLE(un, level)) {
6463 		un->un_power_level = level;
6464 		ASSERT(!mutex_owned(&un->un_pm_mutex));
6465 		mutex_enter(&un->un_pm_mutex);
6466 		if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
6467 			un->un_pm_count++;
6468 			ASSERT(un->un_pm_count == 0);
6469 		}
6470 		mutex_exit(&un->un_pm_mutex);
6471 	} else {
6472 		/*
6473 		 * Exit if power management is not enabled for this device,
6474 		 * or if the device is being used by HA.
6475 		 */
6476 		if ((un->un_f_pm_is_enabled == FALSE) || (un->un_resvd_status &
6477 		    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE))) {
6478 			mutex_exit(SD_MUTEX(un));
6479 			SD_TRACE(SD_LOG_POWER, un,
6480 			    "sd_pm_state_change: exiting\n");
6481 			return (DDI_FAILURE);
6482 		}
6483 
6484 		SD_INFO(SD_LOG_POWER, un, "sd_pm_state_change: "
6485 		    "un_ncmds_in_driver=%ld\n", un->un_ncmds_in_driver);
6486 
6487 		/*
6488 		 * See if the device is not busy, ie.:
6489 		 *    - we have no commands in the driver for this device
6490 		 *    - not waiting for resources
6491 		 */
6492 		if ((un->un_ncmds_in_driver == 0) &&
6493 		    (un->un_state != SD_STATE_RWAIT)) {
6494 			/*
6495 			 * The device is not busy, so it is OK to go to low
6496 			 * power state. Indicate low power, but rely on someone
6497 			 * else to actually change it.
6498 			 */
6499 			mutex_enter(&un->un_pm_mutex);
6500 			un->un_pm_count = -1;
6501 			mutex_exit(&un->un_pm_mutex);
6502 			un->un_power_level = level;
6503 		}
6504 	}
6505 
6506 	mutex_exit(SD_MUTEX(un));
6507 
6508 	SD_TRACE(SD_LOG_POWER, un, "sd_pm_state_change: exit\n");
6509 
6510 	return (DDI_SUCCESS);
6511 }
6512 
6513 
6514 /*
6515  *    Function: sd_pm_idletimeout_handler
6516  *
6517  * Description: A timer routine that's active only while a device is busy.
6518  *		The purpose is to extend slightly the pm framework's busy
6519  *		view of the device to prevent busy/idle thrashing for
6520  *		back-to-back commands. Do this by comparing the current time
6521  *		to the time at which the last command completed and when the
6522  *		difference is greater than sd_pm_idletime, call
6523  *		pm_idle_component. In addition to indicating idle to the pm
6524  *		framework, update the chain type to again use the internal pm
6525  *		layers of the driver.
6526  *
6527  *   Arguments: arg - driver soft state (unit) structure
6528  *
6529  *     Context: Executes in a timeout(9F) thread context
6530  */
6531 
6532 static void
6533 sd_pm_idletimeout_handler(void *arg)
6534 {
6535 	struct sd_lun *un = arg;
6536 
6537 	time_t	now;
6538 
6539 	mutex_enter(&sd_detach_mutex);
6540 	if (un->un_detach_count != 0) {
6541 		/* Abort if the instance is detaching */
6542 		mutex_exit(&sd_detach_mutex);
6543 		return;
6544 	}
6545 	mutex_exit(&sd_detach_mutex);
6546 
6547 	now = ddi_get_time();
6548 	/*
6549 	 * Grab both mutexes, in the proper order, since we're accessing
6550 	 * both PM and softstate variables.
6551 	 */
6552 	mutex_enter(SD_MUTEX(un));
6553 	mutex_enter(&un->un_pm_mutex);
6554 	if (((now - un->un_pm_idle_time) > sd_pm_idletime) &&
6555 	    (un->un_ncmds_in_driver == 0) && (un->un_pm_count == 0)) {
6556 		/*
6557 		 * Update the chain types.
6558 		 * This takes affect on the next new command received.
6559 		 */
6560 		if (un->un_f_non_devbsize_supported) {
6561 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
6562 		} else {
6563 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
6564 		}
6565 		un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD;
6566 
6567 		SD_TRACE(SD_LOG_IO_PM, un,
6568 		    "sd_pm_idletimeout_handler: idling device\n");
6569 		(void) pm_idle_component(SD_DEVINFO(un), 0);
6570 		un->un_pm_idle_timeid = NULL;
6571 	} else {
6572 		un->un_pm_idle_timeid =
6573 		    timeout(sd_pm_idletimeout_handler, un,
6574 		    (drv_usectohz((clock_t)300000))); /* 300 ms. */
6575 	}
6576 	mutex_exit(&un->un_pm_mutex);
6577 	mutex_exit(SD_MUTEX(un));
6578 }
6579 
6580 
6581 /*
6582  *    Function: sd_pm_timeout_handler
6583  *
6584  * Description: Callback to tell framework we are idle.
6585  *
6586  *     Context: timeout(9f) thread context.
6587  */
6588 
6589 static void
6590 sd_pm_timeout_handler(void *arg)
6591 {
6592 	struct sd_lun *un = arg;
6593 
6594 	(void) pm_idle_component(SD_DEVINFO(un), 0);
6595 	mutex_enter(&un->un_pm_mutex);
6596 	un->un_pm_timeid = NULL;
6597 	mutex_exit(&un->un_pm_mutex);
6598 }
6599 
6600 
6601 /*
6602  *    Function: sdpower
6603  *
6604  * Description: PM entry point.
6605  *
6606  * Return Code: DDI_SUCCESS
6607  *		DDI_FAILURE
6608  *
6609  *     Context: Kernel thread context
6610  */
6611 
6612 static int
6613 sdpower(dev_info_t *devi, int component, int level)
6614 {
6615 	struct sd_lun	*un;
6616 	int		instance;
6617 	int		rval = DDI_SUCCESS;
6618 	uint_t		i, log_page_size, maxcycles, ncycles;
6619 	uchar_t		*log_page_data;
6620 	int		log_sense_page;
6621 	int		medium_present;
6622 	time_t		intvlp;
6623 	struct pm_trans_data	sd_pm_tran_data;
6624 	uchar_t		save_state;
6625 	int		sval;
6626 	uchar_t		state_before_pm;
6627 	int		got_semaphore_here;
6628 	sd_ssc_t	*ssc;
6629 	int	last_power_level;
6630 
6631 	instance = ddi_get_instance(devi);
6632 
6633 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
6634 	    !SD_PM_IS_LEVEL_VALID(un, level) || component != 0) {
6635 		return (DDI_FAILURE);
6636 	}
6637 
6638 	ssc = sd_ssc_init(un);
6639 
6640 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: entry, level = %d\n", level);
6641 
6642 	/*
6643 	 * Must synchronize power down with close.
6644 	 * Attempt to decrement/acquire the open/close semaphore,
6645 	 * but do NOT wait on it. If it's not greater than zero,
6646 	 * ie. it can't be decremented without waiting, then
6647 	 * someone else, either open or close, already has it
6648 	 * and the try returns 0. Use that knowledge here to determine
6649 	 * if it's OK to change the device power level.
6650 	 * Also, only increment it on exit if it was decremented, ie. gotten,
6651 	 * here.
6652 	 */
6653 	got_semaphore_here = sema_tryp(&un->un_semoclose);
6654 
6655 	mutex_enter(SD_MUTEX(un));
6656 
6657 	SD_INFO(SD_LOG_POWER, un, "sdpower: un_ncmds_in_driver = %ld\n",
6658 	    un->un_ncmds_in_driver);
6659 
6660 	/*
6661 	 * If un_ncmds_in_driver is non-zero it indicates commands are
6662 	 * already being processed in the driver, or if the semaphore was
6663 	 * not gotten here it indicates an open or close is being processed.
6664 	 * At the same time somebody is requesting to go to a lower power
6665 	 * that can't perform I/O, which can't happen, therefore we need to
6666 	 * return failure.
6667 	 */
6668 	if ((!SD_PM_IS_IO_CAPABLE(un, level)) &&
6669 	    ((un->un_ncmds_in_driver != 0) || (got_semaphore_here == 0))) {
6670 		mutex_exit(SD_MUTEX(un));
6671 
6672 		if (got_semaphore_here != 0) {
6673 			sema_v(&un->un_semoclose);
6674 		}
6675 		SD_TRACE(SD_LOG_IO_PM, un,
6676 		    "sdpower: exit, device has queued cmds.\n");
6677 
6678 		goto sdpower_failed;
6679 	}
6680 
6681 	/*
6682 	 * if it is OFFLINE that means the disk is completely dead
6683 	 * in our case we have to put the disk in on or off by sending commands
6684 	 * Of course that will fail anyway so return back here.
6685 	 *
6686 	 * Power changes to a device that's OFFLINE or SUSPENDED
6687 	 * are not allowed.
6688 	 */
6689 	if ((un->un_state == SD_STATE_OFFLINE) ||
6690 	    (un->un_state == SD_STATE_SUSPENDED)) {
6691 		mutex_exit(SD_MUTEX(un));
6692 
6693 		if (got_semaphore_here != 0) {
6694 			sema_v(&un->un_semoclose);
6695 		}
6696 		SD_TRACE(SD_LOG_IO_PM, un,
6697 		    "sdpower: exit, device is off-line.\n");
6698 
6699 		goto sdpower_failed;
6700 	}
6701 
6702 	/*
6703 	 * Change the device's state to indicate it's power level
6704 	 * is being changed. Do this to prevent a power off in the
6705 	 * middle of commands, which is especially bad on devices
6706 	 * that are really powered off instead of just spun down.
6707 	 */
6708 	state_before_pm = un->un_state;
6709 	un->un_state = SD_STATE_PM_CHANGING;
6710 
6711 	mutex_exit(SD_MUTEX(un));
6712 
6713 	/*
6714 	 * If log sense command is not supported, bypass the
6715 	 * following checking, otherwise, check the log sense
6716 	 * information for this device.
6717 	 */
6718 	if (SD_PM_STOP_MOTOR_NEEDED(un, level) &&
6719 	    un->un_f_log_sense_supported) {
6720 		/*
6721 		 * Get the log sense information to understand whether the
6722 		 * the powercycle counts have gone beyond the threshhold.
6723 		 */
6724 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
6725 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
6726 
6727 		mutex_enter(SD_MUTEX(un));
6728 		log_sense_page = un->un_start_stop_cycle_page;
6729 		mutex_exit(SD_MUTEX(un));
6730 
6731 		rval = sd_send_scsi_LOG_SENSE(ssc, log_page_data,
6732 		    log_page_size, log_sense_page, 0x01, 0, SD_PATH_DIRECT);
6733 
6734 		if (rval != 0) {
6735 			if (rval == EIO)
6736 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
6737 			else
6738 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
6739 		}
6740 
6741 #ifdef	SDDEBUG
6742 		if (sd_force_pm_supported) {
6743 			/* Force a successful result */
6744 			rval = 0;
6745 		}
6746 #endif
6747 		if (rval != 0) {
6748 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
6749 			    "Log Sense Failed\n");
6750 
6751 			kmem_free(log_page_data, log_page_size);
6752 			/* Cannot support power management on those drives */
6753 
6754 			if (got_semaphore_here != 0) {
6755 				sema_v(&un->un_semoclose);
6756 			}
6757 			/*
6758 			 * On exit put the state back to it's original value
6759 			 * and broadcast to anyone waiting for the power
6760 			 * change completion.
6761 			 */
6762 			mutex_enter(SD_MUTEX(un));
6763 			un->un_state = state_before_pm;
6764 			cv_broadcast(&un->un_suspend_cv);
6765 			mutex_exit(SD_MUTEX(un));
6766 			SD_TRACE(SD_LOG_IO_PM, un,
6767 			    "sdpower: exit, Log Sense Failed.\n");
6768 
6769 			goto sdpower_failed;
6770 		}
6771 
6772 		/*
6773 		 * From the page data - Convert the essential information to
6774 		 * pm_trans_data
6775 		 */
6776 		maxcycles =
6777 		    (log_page_data[0x1c] << 24) | (log_page_data[0x1d] << 16) |
6778 		    (log_page_data[0x1E] << 8)  | log_page_data[0x1F];
6779 
6780 		ncycles =
6781 		    (log_page_data[0x24] << 24) | (log_page_data[0x25] << 16) |
6782 		    (log_page_data[0x26] << 8)  | log_page_data[0x27];
6783 
6784 		if (un->un_f_pm_log_sense_smart) {
6785 			sd_pm_tran_data.un.smart_count.allowed = maxcycles;
6786 			sd_pm_tran_data.un.smart_count.consumed = ncycles;
6787 			sd_pm_tran_data.un.smart_count.flag = 0;
6788 			sd_pm_tran_data.format = DC_SMART_FORMAT;
6789 		} else {
6790 			sd_pm_tran_data.un.scsi_cycles.lifemax = maxcycles;
6791 			sd_pm_tran_data.un.scsi_cycles.ncycles = ncycles;
6792 			for (i = 0; i < DC_SCSI_MFR_LEN; i++) {
6793 				sd_pm_tran_data.un.scsi_cycles.svc_date[i] =
6794 				    log_page_data[8+i];
6795 			}
6796 			sd_pm_tran_data.un.scsi_cycles.flag = 0;
6797 			sd_pm_tran_data.format = DC_SCSI_FORMAT;
6798 		}
6799 
6800 		kmem_free(log_page_data, log_page_size);
6801 
6802 		/*
6803 		 * Call pm_trans_check routine to get the Ok from
6804 		 * the global policy
6805 		 */
6806 		rval = pm_trans_check(&sd_pm_tran_data, &intvlp);
6807 #ifdef	SDDEBUG
6808 		if (sd_force_pm_supported) {
6809 			/* Force a successful result */
6810 			rval = 1;
6811 		}
6812 #endif
6813 		switch (rval) {
6814 		case 0:
6815 			/*
6816 			 * Not Ok to Power cycle or error in parameters passed
6817 			 * Would have given the advised time to consider power
6818 			 * cycle. Based on the new intvlp parameter we are
6819 			 * supposed to pretend we are busy so that pm framework
6820 			 * will never call our power entry point. Because of
6821 			 * that install a timeout handler and wait for the
6822 			 * recommended time to elapse so that power management
6823 			 * can be effective again.
6824 			 *
6825 			 * To effect this behavior, call pm_busy_component to
6826 			 * indicate to the framework this device is busy.
6827 			 * By not adjusting un_pm_count the rest of PM in
6828 			 * the driver will function normally, and independent
6829 			 * of this but because the framework is told the device
6830 			 * is busy it won't attempt powering down until it gets
6831 			 * a matching idle. The timeout handler sends this.
6832 			 * Note: sd_pm_entry can't be called here to do this
6833 			 * because sdpower may have been called as a result
6834 			 * of a call to pm_raise_power from within sd_pm_entry.
6835 			 *
6836 			 * If a timeout handler is already active then
6837 			 * don't install another.
6838 			 */
6839 			mutex_enter(&un->un_pm_mutex);
6840 			if (un->un_pm_timeid == NULL) {
6841 				un->un_pm_timeid =
6842 				    timeout(sd_pm_timeout_handler,
6843 				    un, intvlp * drv_usectohz(1000000));
6844 				mutex_exit(&un->un_pm_mutex);
6845 				(void) pm_busy_component(SD_DEVINFO(un), 0);
6846 			} else {
6847 				mutex_exit(&un->un_pm_mutex);
6848 			}
6849 			if (got_semaphore_here != 0) {
6850 				sema_v(&un->un_semoclose);
6851 			}
6852 			/*
6853 			 * On exit put the state back to it's original value
6854 			 * and broadcast to anyone waiting for the power
6855 			 * change completion.
6856 			 */
6857 			mutex_enter(SD_MUTEX(un));
6858 			un->un_state = state_before_pm;
6859 			cv_broadcast(&un->un_suspend_cv);
6860 			mutex_exit(SD_MUTEX(un));
6861 
6862 			SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, "
6863 			    "trans check Failed, not ok to power cycle.\n");
6864 
6865 			goto sdpower_failed;
6866 		case -1:
6867 			if (got_semaphore_here != 0) {
6868 				sema_v(&un->un_semoclose);
6869 			}
6870 			/*
6871 			 * On exit put the state back to it's original value
6872 			 * and broadcast to anyone waiting for the power
6873 			 * change completion.
6874 			 */
6875 			mutex_enter(SD_MUTEX(un));
6876 			un->un_state = state_before_pm;
6877 			cv_broadcast(&un->un_suspend_cv);
6878 			mutex_exit(SD_MUTEX(un));
6879 			SD_TRACE(SD_LOG_IO_PM, un,
6880 			    "sdpower: exit, trans check command Failed.\n");
6881 
6882 			goto sdpower_failed;
6883 		}
6884 	}
6885 
6886 	if (!SD_PM_IS_IO_CAPABLE(un, level)) {
6887 		/*
6888 		 * Save the last state... if the STOP FAILS we need it
6889 		 * for restoring
6890 		 */
6891 		mutex_enter(SD_MUTEX(un));
6892 		save_state = un->un_last_state;
6893 		last_power_level = un->un_power_level;
6894 		/*
6895 		 * There must not be any cmds. getting processed
6896 		 * in the driver when we get here. Power to the
6897 		 * device is potentially going off.
6898 		 */
6899 		ASSERT(un->un_ncmds_in_driver == 0);
6900 		mutex_exit(SD_MUTEX(un));
6901 
6902 		/*
6903 		 * For now PM suspend the device completely before spindle is
6904 		 * turned off
6905 		 */
6906 		if ((rval = sd_pm_state_change(un, level, SD_PM_STATE_CHANGE))
6907 		    == DDI_FAILURE) {
6908 			if (got_semaphore_here != 0) {
6909 				sema_v(&un->un_semoclose);
6910 			}
6911 			/*
6912 			 * On exit put the state back to it's original value
6913 			 * and broadcast to anyone waiting for the power
6914 			 * change completion.
6915 			 */
6916 			mutex_enter(SD_MUTEX(un));
6917 			un->un_state = state_before_pm;
6918 			un->un_power_level = last_power_level;
6919 			cv_broadcast(&un->un_suspend_cv);
6920 			mutex_exit(SD_MUTEX(un));
6921 			SD_TRACE(SD_LOG_IO_PM, un,
6922 			    "sdpower: exit, PM suspend Failed.\n");
6923 
6924 			goto sdpower_failed;
6925 		}
6926 	}
6927 
6928 	/*
6929 	 * The transition from SPINDLE_OFF to SPINDLE_ON can happen in open,
6930 	 * close, or strategy. Dump no long uses this routine, it uses it's
6931 	 * own code so it can be done in polled mode.
6932 	 */
6933 
6934 	medium_present = TRUE;
6935 
6936 	/*
6937 	 * When powering up, issue a TUR in case the device is at unit
6938 	 * attention.  Don't do retries. Bypass the PM layer, otherwise
6939 	 * a deadlock on un_pm_busy_cv will occur.
6940 	 */
6941 	if (SD_PM_IS_IO_CAPABLE(un, level)) {
6942 		sval = sd_send_scsi_TEST_UNIT_READY(ssc,
6943 		    SD_DONT_RETRY_TUR | SD_BYPASS_PM);
6944 		if (sval != 0)
6945 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
6946 	}
6947 
6948 	if (un->un_f_power_condition_supported) {
6949 		char *pm_condition_name[] = {"STOPPED", "STANDBY",
6950 		    "IDLE", "ACTIVE"};
6951 		SD_TRACE(SD_LOG_IO_PM, un,
6952 		    "sdpower: sending \'%s\' power condition",
6953 		    pm_condition_name[level]);
6954 		sval = sd_send_scsi_START_STOP_UNIT(ssc, SD_POWER_CONDITION,
6955 		    sd_pl2pc[level], SD_PATH_DIRECT);
6956 	} else {
6957 		SD_TRACE(SD_LOG_IO_PM, un, "sdpower: sending \'%s\' unit\n",
6958 		    ((level == SD_SPINDLE_ON) ? "START" : "STOP"));
6959 		sval = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
6960 		    ((level == SD_SPINDLE_ON) ? SD_TARGET_START :
6961 		    SD_TARGET_STOP), SD_PATH_DIRECT);
6962 	}
6963 	if (sval != 0) {
6964 		if (sval == EIO)
6965 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
6966 		else
6967 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
6968 	}
6969 
6970 	/* Command failed, check for media present. */
6971 	if ((sval == ENXIO) && un->un_f_has_removable_media) {
6972 		medium_present = FALSE;
6973 	}
6974 
6975 	/*
6976 	 * The conditions of interest here are:
6977 	 *   if a spindle off with media present fails,
6978 	 *	then restore the state and return an error.
6979 	 *   else if a spindle on fails,
6980 	 *	then return an error (there's no state to restore).
6981 	 * In all other cases we setup for the new state
6982 	 * and return success.
6983 	 */
6984 	if (!SD_PM_IS_IO_CAPABLE(un, level)) {
6985 		if ((medium_present == TRUE) && (sval != 0)) {
6986 			/* The stop command from above failed */
6987 			rval = DDI_FAILURE;
6988 			/*
6989 			 * The stop command failed, and we have media
6990 			 * present. Put the level back by calling the
6991 			 * sd_pm_resume() and set the state back to
6992 			 * it's previous value.
6993 			 */
6994 			(void) sd_pm_state_change(un, last_power_level,
6995 			    SD_PM_STATE_ROLLBACK);
6996 			mutex_enter(SD_MUTEX(un));
6997 			un->un_last_state = save_state;
6998 			mutex_exit(SD_MUTEX(un));
6999 		} else if (un->un_f_monitor_media_state) {
7000 			/*
7001 			 * The stop command from above succeeded.
7002 			 * Terminate watch thread in case of removable media
7003 			 * devices going into low power state. This is as per
7004 			 * the requirements of pm framework, otherwise commands
7005 			 * will be generated for the device (through watch
7006 			 * thread), even when the device is in low power state.
7007 			 */
7008 			mutex_enter(SD_MUTEX(un));
7009 			un->un_f_watcht_stopped = FALSE;
7010 			if (un->un_swr_token != NULL) {
7011 				opaque_t temp_token = un->un_swr_token;
7012 				un->un_f_watcht_stopped = TRUE;
7013 				un->un_swr_token = NULL;
7014 				mutex_exit(SD_MUTEX(un));
7015 				(void) scsi_watch_request_terminate(temp_token,
7016 				    SCSI_WATCH_TERMINATE_ALL_WAIT);
7017 			} else {
7018 				mutex_exit(SD_MUTEX(un));
7019 			}
7020 		}
7021 	} else {
7022 		/*
7023 		 * The level requested is I/O capable.
7024 		 * Legacy behavior: return success on a failed spinup
7025 		 * if there is no media in the drive.
7026 		 * Do this by looking at medium_present here.
7027 		 */
7028 		if ((sval != 0) && medium_present) {
7029 			/* The start command from above failed */
7030 			rval = DDI_FAILURE;
7031 		} else {
7032 			/*
7033 			 * The start command from above succeeded
7034 			 * PM resume the devices now that we have
7035 			 * started the disks
7036 			 */
7037 			(void) sd_pm_state_change(un, level,
7038 			    SD_PM_STATE_CHANGE);
7039 
7040 			/*
7041 			 * Resume the watch thread since it was suspended
7042 			 * when the device went into low power mode.
7043 			 */
7044 			if (un->un_f_monitor_media_state) {
7045 				mutex_enter(SD_MUTEX(un));
7046 				if (un->un_f_watcht_stopped == TRUE) {
7047 					opaque_t temp_token;
7048 
7049 					un->un_f_watcht_stopped = FALSE;
7050 					mutex_exit(SD_MUTEX(un));
7051 					temp_token =
7052 					    sd_watch_request_submit(un);
7053 					mutex_enter(SD_MUTEX(un));
7054 					un->un_swr_token = temp_token;
7055 				}
7056 				mutex_exit(SD_MUTEX(un));
7057 			}
7058 		}
7059 	}
7060 
7061 	if (got_semaphore_here != 0) {
7062 		sema_v(&un->un_semoclose);
7063 	}
7064 	/*
7065 	 * On exit put the state back to it's original value
7066 	 * and broadcast to anyone waiting for the power
7067 	 * change completion.
7068 	 */
7069 	mutex_enter(SD_MUTEX(un));
7070 	un->un_state = state_before_pm;
7071 	cv_broadcast(&un->un_suspend_cv);
7072 	mutex_exit(SD_MUTEX(un));
7073 
7074 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, status = 0x%x\n", rval);
7075 
7076 	sd_ssc_fini(ssc);
7077 	return (rval);
7078 
7079 sdpower_failed:
7080 
7081 	sd_ssc_fini(ssc);
7082 	return (DDI_FAILURE);
7083 }
7084 
7085 
7086 
7087 /*
7088  *    Function: sdattach
7089  *
7090  * Description: Driver's attach(9e) entry point function.
7091  *
7092  *   Arguments: devi - opaque device info handle
7093  *		cmd  - attach  type
7094  *
7095  * Return Code: DDI_SUCCESS
7096  *		DDI_FAILURE
7097  *
7098  *     Context: Kernel thread context
7099  */
7100 
7101 static int
7102 sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd)
7103 {
7104 	switch (cmd) {
7105 	case DDI_ATTACH:
7106 		return (sd_unit_attach(devi));
7107 	case DDI_RESUME:
7108 		return (sd_ddi_resume(devi));
7109 	default:
7110 		break;
7111 	}
7112 	return (DDI_FAILURE);
7113 }
7114 
7115 
7116 /*
7117  *    Function: sddetach
7118  *
7119  * Description: Driver's detach(9E) entry point function.
7120  *
7121  *   Arguments: devi - opaque device info handle
7122  *		cmd  - detach  type
7123  *
7124  * Return Code: DDI_SUCCESS
7125  *		DDI_FAILURE
7126  *
7127  *     Context: Kernel thread context
7128  */
7129 
7130 static int
7131 sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd)
7132 {
7133 	switch (cmd) {
7134 	case DDI_DETACH:
7135 		return (sd_unit_detach(devi));
7136 	case DDI_SUSPEND:
7137 		return (sd_ddi_suspend(devi));
7138 	default:
7139 		break;
7140 	}
7141 	return (DDI_FAILURE);
7142 }
7143 
7144 
7145 /*
7146  *     Function: sd_sync_with_callback
7147  *
7148  *  Description: Prevents sd_unit_attach or sd_unit_detach from freeing the soft
7149  *		 state while the callback routine is active.
7150  *
7151  *    Arguments: un: softstate structure for the instance
7152  *
7153  *	Context: Kernel thread context
7154  */
7155 
7156 static void
7157 sd_sync_with_callback(struct sd_lun *un)
7158 {
7159 	ASSERT(un != NULL);
7160 
7161 	mutex_enter(SD_MUTEX(un));
7162 
7163 	ASSERT(un->un_in_callback >= 0);
7164 
7165 	while (un->un_in_callback > 0) {
7166 		mutex_exit(SD_MUTEX(un));
7167 		delay(2);
7168 		mutex_enter(SD_MUTEX(un));
7169 	}
7170 
7171 	mutex_exit(SD_MUTEX(un));
7172 }
7173 
7174 /*
7175  *    Function: sd_unit_attach
7176  *
7177  * Description: Performs DDI_ATTACH processing for sdattach(). Allocates
7178  *		the soft state structure for the device and performs
7179  *		all necessary structure and device initializations.
7180  *
7181  *   Arguments: devi: the system's dev_info_t for the device.
7182  *
7183  * Return Code: DDI_SUCCESS if attach is successful.
7184  *		DDI_FAILURE if any part of the attach fails.
7185  *
7186  *     Context: Called at attach(9e) time for the DDI_ATTACH flag.
7187  *		Kernel thread context only.  Can sleep.
7188  */
7189 
7190 static int
7191 sd_unit_attach(dev_info_t *devi)
7192 {
7193 	struct	scsi_device	*devp;
7194 	struct	sd_lun		*un;
7195 	char			*variantp;
7196 	char			name_str[48];
7197 	int	reservation_flag = SD_TARGET_IS_UNRESERVED;
7198 	int	instance;
7199 	int	rval;
7200 	int	wc_enabled;
7201 	int	tgt;
7202 	uint64_t	capacity;
7203 	uint_t		lbasize = 0;
7204 	dev_info_t	*pdip = ddi_get_parent(devi);
7205 	int		offbyone = 0;
7206 	int		geom_label_valid = 0;
7207 	sd_ssc_t	*ssc;
7208 	int		status;
7209 	struct sd_fm_internal	*sfip = NULL;
7210 	int		max_xfer_size;
7211 
7212 	/*
7213 	 * Retrieve the target driver's private data area. This was set
7214 	 * up by the HBA.
7215 	 */
7216 	devp = ddi_get_driver_private(devi);
7217 
7218 	/*
7219 	 * Retrieve the target ID of the device.
7220 	 */
7221 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
7222 	    SCSI_ADDR_PROP_TARGET, -1);
7223 
7224 	/*
7225 	 * Since we have no idea what state things were left in by the last
7226 	 * user of the device, set up some 'default' settings, ie. turn 'em
7227 	 * off. The scsi_ifsetcap calls force re-negotiations with the drive.
7228 	 * Do this before the scsi_probe, which sends an inquiry.
7229 	 * This is a fix for bug (4430280).
7230 	 * Of special importance is wide-xfer. The drive could have been left
7231 	 * in wide transfer mode by the last driver to communicate with it,
7232 	 * this includes us. If that's the case, and if the following is not
7233 	 * setup properly or we don't re-negotiate with the drive prior to
7234 	 * transferring data to/from the drive, it causes bus parity errors,
7235 	 * data overruns, and unexpected interrupts. This first occurred when
7236 	 * the fix for bug (4378686) was made.
7237 	 */
7238 	(void) scsi_ifsetcap(&devp->sd_address, "lun-reset", 0, 1);
7239 	(void) scsi_ifsetcap(&devp->sd_address, "wide-xfer", 0, 1);
7240 	(void) scsi_ifsetcap(&devp->sd_address, "auto-rqsense", 0, 1);
7241 
7242 	/*
7243 	 * Currently, scsi_ifsetcap sets tagged-qing capability for all LUNs
7244 	 * on a target. Setting it per lun instance actually sets the
7245 	 * capability of this target, which affects those luns already
7246 	 * attached on the same target. So during attach, we can only disable
7247 	 * this capability only when no other lun has been attached on this
7248 	 * target. By doing this, we assume a target has the same tagged-qing
7249 	 * capability for every lun. The condition can be removed when HBA
7250 	 * is changed to support per lun based tagged-qing capability.
7251 	 */
7252 	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
7253 		(void) scsi_ifsetcap(&devp->sd_address, "tagged-qing", 0, 1);
7254 	}
7255 
7256 	/*
7257 	 * Use scsi_probe() to issue an INQUIRY command to the device.
7258 	 * This call will allocate and fill in the scsi_inquiry structure
7259 	 * and point the sd_inq member of the scsi_device structure to it.
7260 	 * If the attach succeeds, then this memory will not be de-allocated
7261 	 * (via scsi_unprobe()) until the instance is detached.
7262 	 */
7263 	if (scsi_probe(devp, SLEEP_FUNC) != SCSIPROBE_EXISTS) {
7264 		goto probe_failed;
7265 	}
7266 
7267 	/*
7268 	 * Check the device type as specified in the inquiry data and
7269 	 * claim it if it is of a type that we support.
7270 	 */
7271 	switch (devp->sd_inq->inq_dtype) {
7272 	case DTYPE_DIRECT:
7273 		break;
7274 	case DTYPE_RODIRECT:
7275 		break;
7276 	case DTYPE_OPTICAL:
7277 		break;
7278 	case DTYPE_NOTPRESENT:
7279 	default:
7280 		/* Unsupported device type; fail the attach. */
7281 		goto probe_failed;
7282 	}
7283 
7284 	/*
7285 	 * Allocate the soft state structure for this unit.
7286 	 *
7287 	 * We rely upon this memory being set to all zeroes by
7288 	 * ddi_soft_state_zalloc().  We assume that any member of the
7289 	 * soft state structure that is not explicitly initialized by
7290 	 * this routine will have a value of zero.
7291 	 */
7292 	instance = ddi_get_instance(devp->sd_dev);
7293 #ifndef XPV_HVM_DRIVER
7294 	if (ddi_soft_state_zalloc(sd_state, instance) != DDI_SUCCESS) {
7295 		goto probe_failed;
7296 	}
7297 #endif /* !XPV_HVM_DRIVER */
7298 
7299 	/*
7300 	 * Retrieve a pointer to the newly-allocated soft state.
7301 	 *
7302 	 * This should NEVER fail if the ddi_soft_state_zalloc() call above
7303 	 * was successful, unless something has gone horribly wrong and the
7304 	 * ddi's soft state internals are corrupt (in which case it is
7305 	 * probably better to halt here than just fail the attach....)
7306 	 */
7307 	if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
7308 		panic("sd_unit_attach: NULL soft state on instance:0x%x",
7309 		    instance);
7310 		/*NOTREACHED*/
7311 	}
7312 
7313 	/*
7314 	 * Link the back ptr of the driver soft state to the scsi_device
7315 	 * struct for this lun.
7316 	 * Save a pointer to the softstate in the driver-private area of
7317 	 * the scsi_device struct.
7318 	 * Note: We cannot call SD_INFO, SD_TRACE, SD_ERROR, or SD_DIAG until
7319 	 * we first set un->un_sd below.
7320 	 */
7321 	un->un_sd = devp;
7322 	devp->sd_private = (opaque_t)un;
7323 
7324 	/*
7325 	 * The following must be after devp is stored in the soft state struct.
7326 	 */
7327 #ifdef SDDEBUG
7328 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7329 	    "%s_unit_attach: un:0x%p instance:%d\n",
7330 	    ddi_driver_name(devi), un, instance);
7331 #endif
7332 
7333 	/*
7334 	 * Set up the device type and node type (for the minor nodes).
7335 	 * By default we assume that the device can at least support the
7336 	 * Common Command Set. Call it a CD-ROM if it reports itself
7337 	 * as a RODIRECT device.
7338 	 */
7339 	switch (devp->sd_inq->inq_dtype) {
7340 	case DTYPE_RODIRECT:
7341 		un->un_node_type = DDI_NT_CD_CHAN;
7342 		un->un_ctype	 = CTYPE_CDROM;
7343 		break;
7344 	case DTYPE_OPTICAL:
7345 		un->un_node_type = DDI_NT_BLOCK_CHAN;
7346 		un->un_ctype	 = CTYPE_ROD;
7347 		break;
7348 	default:
7349 		un->un_node_type = DDI_NT_BLOCK_CHAN;
7350 		un->un_ctype	 = CTYPE_CCS;
7351 		break;
7352 	}
7353 
7354 	/*
7355 	 * Try to read the interconnect type from the HBA.
7356 	 *
7357 	 * Note: This driver is currently compiled as two binaries, a parallel
7358 	 * scsi version (sd) and a fibre channel version (ssd). All functional
7359 	 * differences are determined at compile time. In the future a single
7360 	 * binary will be provided and the interconnect type will be used to
7361 	 * differentiate between fibre and parallel scsi behaviors. At that time
7362 	 * it will be necessary for all fibre channel HBAs to support this
7363 	 * property.
7364 	 *
7365 	 * set un_f_is_fiber to TRUE ( default fiber )
7366 	 */
7367 	un->un_f_is_fibre = TRUE;
7368 	switch (scsi_ifgetcap(SD_ADDRESS(un), "interconnect-type", -1)) {
7369 	case INTERCONNECT_SSA:
7370 		un->un_interconnect_type = SD_INTERCONNECT_SSA;
7371 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7372 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SSA\n", un);
7373 		break;
7374 	case INTERCONNECT_PARALLEL:
7375 		un->un_f_is_fibre = FALSE;
7376 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
7377 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7378 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_PARALLEL\n", un);
7379 		break;
7380 	case INTERCONNECT_SAS:
7381 		un->un_f_is_fibre = FALSE;
7382 		un->un_interconnect_type = SD_INTERCONNECT_SAS;
7383 		un->un_node_type = DDI_NT_BLOCK_SAS;
7384 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7385 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SAS\n", un);
7386 		break;
7387 	case INTERCONNECT_SATA:
7388 		un->un_f_is_fibre = FALSE;
7389 		un->un_interconnect_type = SD_INTERCONNECT_SATA;
7390 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7391 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SATA\n", un);
7392 		break;
7393 	case INTERCONNECT_FIBRE:
7394 		un->un_interconnect_type = SD_INTERCONNECT_FIBRE;
7395 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7396 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FIBRE\n", un);
7397 		break;
7398 	case INTERCONNECT_FABRIC:
7399 		un->un_interconnect_type = SD_INTERCONNECT_FABRIC;
7400 		un->un_node_type = DDI_NT_BLOCK_FABRIC;
7401 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7402 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FABRIC\n", un);
7403 		break;
7404 	default:
7405 #ifdef SD_DEFAULT_INTERCONNECT_TYPE
7406 		/*
7407 		 * The HBA does not support the "interconnect-type" property
7408 		 * (or did not provide a recognized type).
7409 		 *
7410 		 * Note: This will be obsoleted when a single fibre channel
7411 		 * and parallel scsi driver is delivered. In the meantime the
7412 		 * interconnect type will be set to the platform default.If that
7413 		 * type is not parallel SCSI, it means that we should be
7414 		 * assuming "ssd" semantics. However, here this also means that
7415 		 * the FC HBA is not supporting the "interconnect-type" property
7416 		 * like we expect it to, so log this occurrence.
7417 		 */
7418 		un->un_interconnect_type = SD_DEFAULT_INTERCONNECT_TYPE;
7419 		if (!SD_IS_PARALLEL_SCSI(un)) {
7420 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7421 			    "sd_unit_attach: un:0x%p Assuming "
7422 			    "INTERCONNECT_FIBRE\n", un);
7423 		} else {
7424 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7425 			    "sd_unit_attach: un:0x%p Assuming "
7426 			    "INTERCONNECT_PARALLEL\n", un);
7427 			un->un_f_is_fibre = FALSE;
7428 		}
7429 #else
7430 		/*
7431 		 * Note: This source will be implemented when a single fibre
7432 		 * channel and parallel scsi driver is delivered. The default
7433 		 * will be to assume that if a device does not support the
7434 		 * "interconnect-type" property it is a parallel SCSI HBA and
7435 		 * we will set the interconnect type for parallel scsi.
7436 		 */
7437 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
7438 		un->un_f_is_fibre = FALSE;
7439 #endif
7440 		break;
7441 	}
7442 
7443 	if (un->un_f_is_fibre == TRUE) {
7444 		if (scsi_ifgetcap(SD_ADDRESS(un), "scsi-version", 1) ==
7445 		    SCSI_VERSION_3) {
7446 			switch (un->un_interconnect_type) {
7447 			case SD_INTERCONNECT_FIBRE:
7448 			case SD_INTERCONNECT_SSA:
7449 				un->un_node_type = DDI_NT_BLOCK_WWN;
7450 				break;
7451 			default:
7452 				break;
7453 			}
7454 		}
7455 	}
7456 
7457 	/*
7458 	 * Initialize the Request Sense command for the target
7459 	 */
7460 	if (sd_alloc_rqs(devp, un) != DDI_SUCCESS) {
7461 		goto alloc_rqs_failed;
7462 	}
7463 
7464 	/*
7465 	 * Set un_retry_count with SD_RETRY_COUNT, this is ok for Sparc
7466 	 * with separate binary for sd and ssd.
7467 	 *
7468 	 * x86 has 1 binary, un_retry_count is set base on connection type.
7469 	 * The hardcoded values will go away when Sparc uses 1 binary
7470 	 * for sd and ssd.  This hardcoded values need to match
7471 	 * SD_RETRY_COUNT in sddef.h
7472 	 * The value used is base on interconnect type.
7473 	 * fibre = 3, parallel = 5
7474 	 */
7475 #if defined(__i386) || defined(__amd64)
7476 	un->un_retry_count = un->un_f_is_fibre ? 3 : 5;
7477 #else
7478 	un->un_retry_count = SD_RETRY_COUNT;
7479 #endif
7480 
7481 	/*
7482 	 * Set the per disk retry count to the default number of retries
7483 	 * for disks and CDROMs. This value can be overridden by the
7484 	 * disk property list or an entry in sd.conf.
7485 	 */
7486 	un->un_notready_retry_count =
7487 	    ISCD(un) ? CD_NOT_READY_RETRY_COUNT(un)
7488 	    : DISK_NOT_READY_RETRY_COUNT(un);
7489 
7490 	/*
7491 	 * Set the busy retry count to the default value of un_retry_count.
7492 	 * This can be overridden by entries in sd.conf or the device
7493 	 * config table.
7494 	 */
7495 	un->un_busy_retry_count = un->un_retry_count;
7496 
7497 	/*
7498 	 * Init the reset threshold for retries.  This number determines
7499 	 * how many retries must be performed before a reset can be issued
7500 	 * (for certain error conditions). This can be overridden by entries
7501 	 * in sd.conf or the device config table.
7502 	 */
7503 	un->un_reset_retry_count = (un->un_retry_count / 2);
7504 
7505 	/*
7506 	 * Set the victim_retry_count to the default un_retry_count
7507 	 */
7508 	un->un_victim_retry_count = (2 * un->un_retry_count);
7509 
7510 	/*
7511 	 * Set the reservation release timeout to the default value of
7512 	 * 5 seconds. This can be overridden by entries in ssd.conf or the
7513 	 * device config table.
7514 	 */
7515 	un->un_reserve_release_time = 5;
7516 
7517 	/*
7518 	 * Set up the default maximum transfer size. Note that this may
7519 	 * get updated later in the attach, when setting up default wide
7520 	 * operations for disks.
7521 	 */
7522 #if defined(__i386) || defined(__amd64)
7523 	un->un_max_xfer_size = (uint_t)SD_DEFAULT_MAX_XFER_SIZE;
7524 	un->un_partial_dma_supported = 1;
7525 #else
7526 	un->un_max_xfer_size = (uint_t)maxphys;
7527 #endif
7528 
7529 	/*
7530 	 * Get "allow bus device reset" property (defaults to "enabled" if
7531 	 * the property was not defined). This is to disable bus resets for
7532 	 * certain kinds of error recovery. Note: In the future when a run-time
7533 	 * fibre check is available the soft state flag should default to
7534 	 * enabled.
7535 	 */
7536 	if (un->un_f_is_fibre == TRUE) {
7537 		un->un_f_allow_bus_device_reset = TRUE;
7538 	} else {
7539 		if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
7540 		    "allow-bus-device-reset", 1) != 0) {
7541 			un->un_f_allow_bus_device_reset = TRUE;
7542 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7543 			    "sd_unit_attach: un:0x%p Bus device reset "
7544 			    "enabled\n", un);
7545 		} else {
7546 			un->un_f_allow_bus_device_reset = FALSE;
7547 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7548 			    "sd_unit_attach: un:0x%p Bus device reset "
7549 			    "disabled\n", un);
7550 		}
7551 	}
7552 
7553 	/*
7554 	 * Check if this is an ATAPI device. ATAPI devices use Group 1
7555 	 * Read/Write commands and Group 2 Mode Sense/Select commands.
7556 	 *
7557 	 * Note: The "obsolete" way of doing this is to check for the "atapi"
7558 	 * property. The new "variant" property with a value of "atapi" has been
7559 	 * introduced so that future 'variants' of standard SCSI behavior (like
7560 	 * atapi) could be specified by the underlying HBA drivers by supplying
7561 	 * a new value for the "variant" property, instead of having to define a
7562 	 * new property.
7563 	 */
7564 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "atapi", -1) != -1) {
7565 		un->un_f_cfg_is_atapi = TRUE;
7566 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7567 		    "sd_unit_attach: un:0x%p Atapi device\n", un);
7568 	}
7569 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, 0, "variant",
7570 	    &variantp) == DDI_PROP_SUCCESS) {
7571 		if (strcmp(variantp, "atapi") == 0) {
7572 			un->un_f_cfg_is_atapi = TRUE;
7573 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7574 			    "sd_unit_attach: un:0x%p Atapi device\n", un);
7575 		}
7576 		ddi_prop_free(variantp);
7577 	}
7578 
7579 	un->un_cmd_timeout	= SD_IO_TIME;
7580 
7581 	un->un_busy_timeout  = SD_BSY_TIMEOUT;
7582 
7583 	/* Info on current states, statuses, etc. (Updated frequently) */
7584 	un->un_state		= SD_STATE_NORMAL;
7585 	un->un_last_state	= SD_STATE_NORMAL;
7586 
7587 	/* Control & status info for command throttling */
7588 	un->un_throttle		= sd_max_throttle;
7589 	un->un_saved_throttle	= sd_max_throttle;
7590 	un->un_min_throttle	= sd_min_throttle;
7591 
7592 	if (un->un_f_is_fibre == TRUE) {
7593 		un->un_f_use_adaptive_throttle = TRUE;
7594 	} else {
7595 		un->un_f_use_adaptive_throttle = FALSE;
7596 	}
7597 
7598 	/* Removable media support. */
7599 	cv_init(&un->un_state_cv, NULL, CV_DRIVER, NULL);
7600 	un->un_mediastate		= DKIO_NONE;
7601 	un->un_specified_mediastate	= DKIO_NONE;
7602 
7603 	/* CVs for suspend/resume (PM or DR) */
7604 	cv_init(&un->un_suspend_cv,   NULL, CV_DRIVER, NULL);
7605 	cv_init(&un->un_disk_busy_cv, NULL, CV_DRIVER, NULL);
7606 
7607 	/* Power management support. */
7608 	un->un_power_level = SD_SPINDLE_UNINIT;
7609 
7610 	cv_init(&un->un_wcc_cv,   NULL, CV_DRIVER, NULL);
7611 	un->un_f_wcc_inprog = 0;
7612 
7613 	/*
7614 	 * The open/close semaphore is used to serialize threads executing
7615 	 * in the driver's open & close entry point routines for a given
7616 	 * instance.
7617 	 */
7618 	(void) sema_init(&un->un_semoclose, 1, NULL, SEMA_DRIVER, NULL);
7619 
7620 	/*
7621 	 * The conf file entry and softstate variable is a forceful override,
7622 	 * meaning a non-zero value must be entered to change the default.
7623 	 */
7624 	un->un_f_disksort_disabled = FALSE;
7625 	un->un_f_rmw_type = SD_RMW_TYPE_DEFAULT;
7626 	un->un_f_enable_rmw = FALSE;
7627 
7628 	/*
7629 	 * GET EVENT STATUS NOTIFICATION media polling enabled by default, but
7630 	 * can be overridden via [s]sd-config-list "mmc-gesn-polling" property.
7631 	 */
7632 	un->un_f_mmc_gesn_polling = TRUE;
7633 
7634 	/*
7635 	 * physical sector size defaults to DEV_BSIZE currently. We can
7636 	 * override this value via the driver configuration file so we must
7637 	 * set it before calling sd_read_unit_properties().
7638 	 */
7639 	un->un_phy_blocksize = DEV_BSIZE;
7640 
7641 	/*
7642 	 * Retrieve the properties from the static driver table or the driver
7643 	 * configuration file (.conf) for this unit and update the soft state
7644 	 * for the device as needed for the indicated properties.
7645 	 * Note: the property configuration needs to occur here as some of the
7646 	 * following routines may have dependencies on soft state flags set
7647 	 * as part of the driver property configuration.
7648 	 */
7649 	sd_read_unit_properties(un);
7650 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7651 	    "sd_unit_attach: un:0x%p property configuration complete.\n", un);
7652 
7653 	/*
7654 	 * Only if a device has "hotpluggable" property, it is
7655 	 * treated as hotpluggable device. Otherwise, it is
7656 	 * regarded as non-hotpluggable one.
7657 	 */
7658 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "hotpluggable",
7659 	    -1) != -1) {
7660 		un->un_f_is_hotpluggable = TRUE;
7661 	}
7662 
7663 	/*
7664 	 * set unit's attributes(flags) according to "hotpluggable" and
7665 	 * RMB bit in INQUIRY data.
7666 	 */
7667 	sd_set_unit_attributes(un, devi);
7668 
7669 	/*
7670 	 * By default, we mark the capacity, lbasize, and geometry
7671 	 * as invalid. Only if we successfully read a valid capacity
7672 	 * will we update the un_blockcount and un_tgt_blocksize with the
7673 	 * valid values (the geometry will be validated later).
7674 	 */
7675 	un->un_f_blockcount_is_valid	= FALSE;
7676 	un->un_f_tgt_blocksize_is_valid	= FALSE;
7677 
7678 	/*
7679 	 * Use DEV_BSIZE and DEV_BSHIFT as defaults, until we can determine
7680 	 * otherwise.
7681 	 */
7682 	un->un_tgt_blocksize  = un->un_sys_blocksize  = DEV_BSIZE;
7683 	un->un_blockcount = 0;
7684 
7685 	/*
7686 	 * Set up the per-instance info needed to determine the correct
7687 	 * CDBs and other info for issuing commands to the target.
7688 	 */
7689 	sd_init_cdb_limits(un);
7690 
7691 	/*
7692 	 * Set up the IO chains to use, based upon the target type.
7693 	 */
7694 	if (un->un_f_non_devbsize_supported) {
7695 		un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
7696 	} else {
7697 		un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
7698 	}
7699 	un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
7700 	un->un_direct_chain_type = SD_CHAIN_INFO_DIRECT_CMD;
7701 	un->un_priority_chain_type = SD_CHAIN_INFO_PRIORITY_CMD;
7702 
7703 	un->un_xbuf_attr = ddi_xbuf_attr_create(sizeof (struct sd_xbuf),
7704 	    sd_xbuf_strategy, un, sd_xbuf_active_limit,  sd_xbuf_reserve_limit,
7705 	    ddi_driver_major(devi), DDI_XBUF_QTHREAD_DRIVER);
7706 	ddi_xbuf_attr_register_devinfo(un->un_xbuf_attr, devi);
7707 
7708 
7709 	if (ISCD(un)) {
7710 		un->un_additional_codes = sd_additional_codes;
7711 	} else {
7712 		un->un_additional_codes = NULL;
7713 	}
7714 
7715 	/*
7716 	 * Create the kstats here so they can be available for attach-time
7717 	 * routines that send commands to the unit (either polled or via
7718 	 * sd_send_scsi_cmd).
7719 	 *
7720 	 * Note: This is a critical sequence that needs to be maintained:
7721 	 *	1) Instantiate the kstats here, before any routines using the
7722 	 *	   iopath (i.e. sd_send_scsi_cmd).
7723 	 *	2) Instantiate and initialize the partition stats
7724 	 *	   (sd_set_pstats).
7725 	 *	3) Initialize the error stats (sd_set_errstats), following
7726 	 *	   sd_validate_geometry(),sd_register_devid(),
7727 	 *	   and sd_cache_control().
7728 	 */
7729 
7730 	un->un_stats = kstat_create(sd_label, instance,
7731 	    NULL, "disk", KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT);
7732 	if (un->un_stats != NULL) {
7733 		un->un_stats->ks_lock = SD_MUTEX(un);
7734 		kstat_install(un->un_stats);
7735 	}
7736 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7737 	    "sd_unit_attach: un:0x%p un_stats created\n", un);
7738 
7739 	sd_create_errstats(un, instance);
7740 	if (un->un_errstats == NULL) {
7741 		goto create_errstats_failed;
7742 	}
7743 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7744 	    "sd_unit_attach: un:0x%p errstats created\n", un);
7745 
7746 	/*
7747 	 * The following if/else code was relocated here from below as part
7748 	 * of the fix for bug (4430280). However with the default setup added
7749 	 * on entry to this routine, it's no longer absolutely necessary for
7750 	 * this to be before the call to sd_spin_up_unit.
7751 	 */
7752 	if (SD_IS_PARALLEL_SCSI(un) || SD_IS_SERIAL(un)) {
7753 		int tq_trigger_flag = (((devp->sd_inq->inq_ansi == 4) ||
7754 		    (devp->sd_inq->inq_ansi == 5)) &&
7755 		    devp->sd_inq->inq_bque) || devp->sd_inq->inq_cmdque;
7756 
7757 		/*
7758 		 * If tagged queueing is supported by the target
7759 		 * and by the host adapter then we will enable it
7760 		 */
7761 		un->un_tagflags = 0;
7762 		if ((devp->sd_inq->inq_rdf == RDF_SCSI2) && tq_trigger_flag &&
7763 		    (un->un_f_arq_enabled == TRUE)) {
7764 			if (scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing",
7765 			    1, 1) == 1) {
7766 				un->un_tagflags = FLAG_STAG;
7767 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7768 				    "sd_unit_attach: un:0x%p tag queueing "
7769 				    "enabled\n", un);
7770 			} else if (scsi_ifgetcap(SD_ADDRESS(un),
7771 			    "untagged-qing", 0) == 1) {
7772 				un->un_f_opt_queueing = TRUE;
7773 				un->un_saved_throttle = un->un_throttle =
7774 				    min(un->un_throttle, 3);
7775 			} else {
7776 				un->un_f_opt_queueing = FALSE;
7777 				un->un_saved_throttle = un->un_throttle = 1;
7778 			}
7779 		} else if ((scsi_ifgetcap(SD_ADDRESS(un), "untagged-qing", 0)
7780 		    == 1) && (un->un_f_arq_enabled == TRUE)) {
7781 			/* The Host Adapter supports internal queueing. */
7782 			un->un_f_opt_queueing = TRUE;
7783 			un->un_saved_throttle = un->un_throttle =
7784 			    min(un->un_throttle, 3);
7785 		} else {
7786 			un->un_f_opt_queueing = FALSE;
7787 			un->un_saved_throttle = un->un_throttle = 1;
7788 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7789 			    "sd_unit_attach: un:0x%p no tag queueing\n", un);
7790 		}
7791 
7792 		/*
7793 		 * Enable large transfers for SATA/SAS drives
7794 		 */
7795 		if (SD_IS_SERIAL(un)) {
7796 			un->un_max_xfer_size =
7797 			    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7798 			    sd_max_xfer_size, SD_MAX_XFER_SIZE);
7799 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7800 			    "sd_unit_attach: un:0x%p max transfer "
7801 			    "size=0x%x\n", un, un->un_max_xfer_size);
7802 
7803 		}
7804 
7805 		/* Setup or tear down default wide operations for disks */
7806 
7807 		/*
7808 		 * Note: Legacy: it may be possible for both "sd_max_xfer_size"
7809 		 * and "ssd_max_xfer_size" to exist simultaneously on the same
7810 		 * system and be set to different values. In the future this
7811 		 * code may need to be updated when the ssd module is
7812 		 * obsoleted and removed from the system. (4299588)
7813 		 */
7814 		if (SD_IS_PARALLEL_SCSI(un) &&
7815 		    (devp->sd_inq->inq_rdf == RDF_SCSI2) &&
7816 		    (devp->sd_inq->inq_wbus16 || devp->sd_inq->inq_wbus32)) {
7817 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
7818 			    1, 1) == 1) {
7819 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7820 				    "sd_unit_attach: un:0x%p Wide Transfer "
7821 				    "enabled\n", un);
7822 			}
7823 
7824 			/*
7825 			 * If tagged queuing has also been enabled, then
7826 			 * enable large xfers
7827 			 */
7828 			if (un->un_saved_throttle == sd_max_throttle) {
7829 				un->un_max_xfer_size =
7830 				    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7831 				    sd_max_xfer_size, SD_MAX_XFER_SIZE);
7832 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7833 				    "sd_unit_attach: un:0x%p max transfer "
7834 				    "size=0x%x\n", un, un->un_max_xfer_size);
7835 			}
7836 		} else {
7837 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
7838 			    0, 1) == 1) {
7839 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7840 				    "sd_unit_attach: un:0x%p "
7841 				    "Wide Transfer disabled\n", un);
7842 			}
7843 		}
7844 	} else {
7845 		un->un_tagflags = FLAG_STAG;
7846 		un->un_max_xfer_size = ddi_getprop(DDI_DEV_T_ANY,
7847 		    devi, 0, sd_max_xfer_size, SD_MAX_XFER_SIZE);
7848 	}
7849 
7850 	/*
7851 	 * If this target supports LUN reset, try to enable it.
7852 	 */
7853 	if (un->un_f_lun_reset_enabled) {
7854 		if (scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 1, 1) == 1) {
7855 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
7856 			    "un:0x%p lun_reset capability set\n", un);
7857 		} else {
7858 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
7859 			    "un:0x%p lun-reset capability not set\n", un);
7860 		}
7861 	}
7862 
7863 	/*
7864 	 * Adjust the maximum transfer size. This is to fix
7865 	 * the problem of partial DMA support on SPARC. Some
7866 	 * HBA driver, like aac, has very small dma_attr_maxxfer
7867 	 * size, which requires partial DMA support on SPARC.
7868 	 * In the future the SPARC pci nexus driver may solve
7869 	 * the problem instead of this fix.
7870 	 */
7871 	max_xfer_size = scsi_ifgetcap(SD_ADDRESS(un), "dma-max", 1);
7872 	if ((max_xfer_size > 0) && (max_xfer_size < un->un_max_xfer_size)) {
7873 		/* We need DMA partial even on sparc to ensure sddump() works */
7874 		un->un_max_xfer_size = max_xfer_size;
7875 		if (un->un_partial_dma_supported == 0)
7876 			un->un_partial_dma_supported = 1;
7877 	}
7878 	if (ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
7879 	    DDI_PROP_DONTPASS, "buf_break", 0) == 1) {
7880 		if (ddi_xbuf_attr_setup_brk(un->un_xbuf_attr,
7881 		    un->un_max_xfer_size) == 1) {
7882 			un->un_buf_breakup_supported = 1;
7883 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
7884 			    "un:0x%p Buf breakup enabled\n", un);
7885 		}
7886 	}
7887 
7888 	/*
7889 	 * Set PKT_DMA_PARTIAL flag.
7890 	 */
7891 	if (un->un_partial_dma_supported == 1) {
7892 		un->un_pkt_flags = PKT_DMA_PARTIAL;
7893 	} else {
7894 		un->un_pkt_flags = 0;
7895 	}
7896 
7897 	/* Initialize sd_ssc_t for internal uscsi commands */
7898 	ssc = sd_ssc_init(un);
7899 	scsi_fm_init(devp);
7900 
7901 	/*
7902 	 * Allocate memory for SCSI FMA stuffs.
7903 	 */
7904 	un->un_fm_private =
7905 	    kmem_zalloc(sizeof (struct sd_fm_internal), KM_SLEEP);
7906 	sfip = (struct sd_fm_internal *)un->un_fm_private;
7907 	sfip->fm_ssc.ssc_uscsi_cmd = &sfip->fm_ucmd;
7908 	sfip->fm_ssc.ssc_uscsi_info = &sfip->fm_uinfo;
7909 	sfip->fm_ssc.ssc_un = un;
7910 
7911 	if (ISCD(un) ||
7912 	    un->un_f_has_removable_media ||
7913 	    devp->sd_fm_capable == DDI_FM_NOT_CAPABLE) {
7914 		/*
7915 		 * We don't touch CDROM or the DDI_FM_NOT_CAPABLE device.
7916 		 * Their log are unchanged.
7917 		 */
7918 		sfip->fm_log_level = SD_FM_LOG_NSUP;
7919 	} else {
7920 		/*
7921 		 * If enter here, it should be non-CDROM and FM-capable
7922 		 * device, and it will not keep the old scsi_log as before
7923 		 * in /var/adm/messages. However, the property
7924 		 * "fm-scsi-log" will control whether the FM telemetry will
7925 		 * be logged in /var/adm/messages.
7926 		 */
7927 		int fm_scsi_log;
7928 		fm_scsi_log = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
7929 		    DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, "fm-scsi-log", 0);
7930 
7931 		if (fm_scsi_log)
7932 			sfip->fm_log_level = SD_FM_LOG_EREPORT;
7933 		else
7934 			sfip->fm_log_level = SD_FM_LOG_SILENT;
7935 	}
7936 
7937 	/*
7938 	 * At this point in the attach, we have enough info in the
7939 	 * soft state to be able to issue commands to the target.
7940 	 *
7941 	 * All command paths used below MUST issue their commands as
7942 	 * SD_PATH_DIRECT. This is important as intermediate layers
7943 	 * are not all initialized yet (such as PM).
7944 	 */
7945 
7946 	/*
7947 	 * Send a TEST UNIT READY command to the device. This should clear
7948 	 * any outstanding UNIT ATTENTION that may be present.
7949 	 *
7950 	 * Note: Don't check for success, just track if there is a reservation,
7951 	 * this is a throw away command to clear any unit attentions.
7952 	 *
7953 	 * Note: This MUST be the first command issued to the target during
7954 	 * attach to ensure power on UNIT ATTENTIONS are cleared.
7955 	 * Pass in flag SD_DONT_RETRY_TUR to prevent the long delays associated
7956 	 * with attempts at spinning up a device with no media.
7957 	 */
7958 	status = sd_send_scsi_TEST_UNIT_READY(ssc, SD_DONT_RETRY_TUR);
7959 	if (status != 0) {
7960 		if (status == EACCES)
7961 			reservation_flag = SD_TARGET_IS_RESERVED;
7962 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
7963 	}
7964 
7965 	/*
7966 	 * If the device is NOT a removable media device, attempt to spin
7967 	 * it up (using the START_STOP_UNIT command) and read its capacity
7968 	 * (using the READ CAPACITY command).  Note, however, that either
7969 	 * of these could fail and in some cases we would continue with
7970 	 * the attach despite the failure (see below).
7971 	 */
7972 	if (un->un_f_descr_format_supported) {
7973 
7974 		switch (sd_spin_up_unit(ssc)) {
7975 		case 0:
7976 			/*
7977 			 * Spin-up was successful; now try to read the
7978 			 * capacity.  If successful then save the results
7979 			 * and mark the capacity & lbasize as valid.
7980 			 */
7981 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7982 			    "sd_unit_attach: un:0x%p spin-up successful\n", un);
7983 
7984 			status = sd_send_scsi_READ_CAPACITY(ssc, &capacity,
7985 			    &lbasize, SD_PATH_DIRECT);
7986 
7987 			switch (status) {
7988 			case 0: {
7989 				if (capacity > DK_MAX_BLOCKS) {
7990 #ifdef _LP64
7991 					if ((capacity + 1) >
7992 					    SD_GROUP1_MAX_ADDRESS) {
7993 						/*
7994 						 * Enable descriptor format
7995 						 * sense data so that we can
7996 						 * get 64 bit sense data
7997 						 * fields.
7998 						 */
7999 						sd_enable_descr_sense(ssc);
8000 					}
8001 #else
8002 					/* 32-bit kernels can't handle this */
8003 					scsi_log(SD_DEVINFO(un),
8004 					    sd_label, CE_WARN,
8005 					    "disk has %llu blocks, which "
8006 					    "is too large for a 32-bit "
8007 					    "kernel", capacity);
8008 
8009 #if defined(__i386) || defined(__amd64)
8010 					/*
8011 					 * 1TB disk was treated as (1T - 512)B
8012 					 * in the past, so that it might have
8013 					 * valid VTOC and solaris partitions,
8014 					 * we have to allow it to continue to
8015 					 * work.
8016 					 */
8017 					if (capacity -1 > DK_MAX_BLOCKS)
8018 #endif
8019 					goto spinup_failed;
8020 #endif
8021 				}
8022 
8023 				/*
8024 				 * Here it's not necessary to check the case:
8025 				 * the capacity of the device is bigger than
8026 				 * what the max hba cdb can support. Because
8027 				 * sd_send_scsi_READ_CAPACITY will retrieve
8028 				 * the capacity by sending USCSI command, which
8029 				 * is constrained by the max hba cdb. Actually,
8030 				 * sd_send_scsi_READ_CAPACITY will return
8031 				 * EINVAL when using bigger cdb than required
8032 				 * cdb length. Will handle this case in
8033 				 * "case EINVAL".
8034 				 */
8035 
8036 				/*
8037 				 * The following relies on
8038 				 * sd_send_scsi_READ_CAPACITY never
8039 				 * returning 0 for capacity and/or lbasize.
8040 				 */
8041 				sd_update_block_info(un, lbasize, capacity);
8042 
8043 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8044 				    "sd_unit_attach: un:0x%p capacity = %ld "
8045 				    "blocks; lbasize= %ld.\n", un,
8046 				    un->un_blockcount, un->un_tgt_blocksize);
8047 
8048 				break;
8049 			}
8050 			case EINVAL:
8051 				/*
8052 				 * In the case where the max-cdb-length property
8053 				 * is smaller than the required CDB length for
8054 				 * a SCSI device, a target driver can fail to
8055 				 * attach to that device.
8056 				 */
8057 				scsi_log(SD_DEVINFO(un),
8058 				    sd_label, CE_WARN,
8059 				    "disk capacity is too large "
8060 				    "for current cdb length");
8061 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
8062 
8063 				goto spinup_failed;
8064 			case EACCES:
8065 				/*
8066 				 * Should never get here if the spin-up
8067 				 * succeeded, but code it in anyway.
8068 				 * From here, just continue with the attach...
8069 				 */
8070 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8071 				    "sd_unit_attach: un:0x%p "
8072 				    "sd_send_scsi_READ_CAPACITY "
8073 				    "returned reservation conflict\n", un);
8074 				reservation_flag = SD_TARGET_IS_RESERVED;
8075 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
8076 				break;
8077 			default:
8078 				/*
8079 				 * Likewise, should never get here if the
8080 				 * spin-up succeeded. Just continue with
8081 				 * the attach...
8082 				 */
8083 				if (status == EIO)
8084 					sd_ssc_assessment(ssc,
8085 					    SD_FMT_STATUS_CHECK);
8086 				else
8087 					sd_ssc_assessment(ssc,
8088 					    SD_FMT_IGNORE);
8089 				break;
8090 			}
8091 			break;
8092 		case EACCES:
8093 			/*
8094 			 * Device is reserved by another host.  In this case
8095 			 * we could not spin it up or read the capacity, but
8096 			 * we continue with the attach anyway.
8097 			 */
8098 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8099 			    "sd_unit_attach: un:0x%p spin-up reservation "
8100 			    "conflict.\n", un);
8101 			reservation_flag = SD_TARGET_IS_RESERVED;
8102 			break;
8103 		default:
8104 			/* Fail the attach if the spin-up failed. */
8105 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8106 			    "sd_unit_attach: un:0x%p spin-up failed.", un);
8107 			goto spinup_failed;
8108 		}
8109 
8110 	}
8111 
8112 	/*
8113 	 * Check to see if this is a MMC drive
8114 	 */
8115 	if (ISCD(un)) {
8116 		sd_set_mmc_caps(ssc);
8117 	}
8118 
8119 	/*
8120 	 * Add a zero-length attribute to tell the world we support
8121 	 * kernel ioctls (for layered drivers)
8122 	 */
8123 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
8124 	    DDI_KERNEL_IOCTL, NULL, 0);
8125 
8126 	/*
8127 	 * Add a boolean property to tell the world we support
8128 	 * the B_FAILFAST flag (for layered drivers)
8129 	 */
8130 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
8131 	    "ddi-failfast-supported", NULL, 0);
8132 
8133 	/*
8134 	 * Initialize power management
8135 	 */
8136 	mutex_init(&un->un_pm_mutex, NULL, MUTEX_DRIVER, NULL);
8137 	cv_init(&un->un_pm_busy_cv, NULL, CV_DRIVER, NULL);
8138 	sd_setup_pm(ssc, devi);
8139 	if (un->un_f_pm_is_enabled == FALSE) {
8140 		/*
8141 		 * For performance, point to a jump table that does
8142 		 * not include pm.
8143 		 * The direct and priority chains don't change with PM.
8144 		 *
8145 		 * Note: this is currently done based on individual device
8146 		 * capabilities. When an interface for determining system
8147 		 * power enabled state becomes available, or when additional
8148 		 * layers are added to the command chain, these values will
8149 		 * have to be re-evaluated for correctness.
8150 		 */
8151 		if (un->un_f_non_devbsize_supported) {
8152 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA_NO_PM;
8153 		} else {
8154 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK_NO_PM;
8155 		}
8156 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
8157 	}
8158 
8159 	/*
8160 	 * This property is set to 0 by HA software to avoid retries
8161 	 * on a reserved disk. (The preferred property name is
8162 	 * "retry-on-reservation-conflict") (1189689)
8163 	 *
8164 	 * Note: The use of a global here can have unintended consequences. A
8165 	 * per instance variable is preferable to match the capabilities of
8166 	 * different underlying hba's (4402600)
8167 	 */
8168 	sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, devi,
8169 	    DDI_PROP_DONTPASS, "retry-on-reservation-conflict",
8170 	    sd_retry_on_reservation_conflict);
8171 	if (sd_retry_on_reservation_conflict != 0) {
8172 		sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY,
8173 		    devi, DDI_PROP_DONTPASS, sd_resv_conflict_name,
8174 		    sd_retry_on_reservation_conflict);
8175 	}
8176 
8177 	/* Set up options for QFULL handling. */
8178 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8179 	    "qfull-retries", -1)) != -1) {
8180 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retries",
8181 		    rval, 1);
8182 	}
8183 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8184 	    "qfull-retry-interval", -1)) != -1) {
8185 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retry-interval",
8186 		    rval, 1);
8187 	}
8188 
8189 	/*
8190 	 * This just prints a message that announces the existence of the
8191 	 * device. The message is always printed in the system logfile, but
8192 	 * only appears on the console if the system is booted with the
8193 	 * -v (verbose) argument.
8194 	 */
8195 	ddi_report_dev(devi);
8196 
8197 	un->un_mediastate = DKIO_NONE;
8198 
8199 	/*
8200 	 * Check if this is a SSD(Solid State Drive).
8201 	 */
8202 	sd_check_solid_state(ssc);
8203 
8204 	/*
8205 	 * Check whether the drive is in emulation mode.
8206 	 */
8207 	sd_check_emulation_mode(ssc);
8208 
8209 	cmlb_alloc_handle(&un->un_cmlbhandle);
8210 
8211 #if defined(__i386) || defined(__amd64)
8212 	/*
8213 	 * On x86, compensate for off-by-1 legacy error
8214 	 */
8215 	if (!un->un_f_has_removable_media && !un->un_f_is_hotpluggable &&
8216 	    (lbasize == un->un_sys_blocksize))
8217 		offbyone = CMLB_OFF_BY_ONE;
8218 #endif
8219 
8220 	if (cmlb_attach(devi, &sd_tgops, (int)devp->sd_inq->inq_dtype,
8221 	    VOID2BOOLEAN(un->un_f_has_removable_media != 0),
8222 	    VOID2BOOLEAN(un->un_f_is_hotpluggable != 0),
8223 	    un->un_node_type, offbyone, un->un_cmlbhandle,
8224 	    (void *)SD_PATH_DIRECT) != 0) {
8225 		goto cmlb_attach_failed;
8226 	}
8227 
8228 
8229 	/*
8230 	 * Read and validate the device's geometry (ie, disk label)
8231 	 * A new unformatted drive will not have a valid geometry, but
8232 	 * the driver needs to successfully attach to this device so
8233 	 * the drive can be formatted via ioctls.
8234 	 */
8235 	geom_label_valid = (cmlb_validate(un->un_cmlbhandle, 0,
8236 	    (void *)SD_PATH_DIRECT) == 0) ? 1: 0;
8237 
8238 	mutex_enter(SD_MUTEX(un));
8239 
8240 	/*
8241 	 * Read and initialize the devid for the unit.
8242 	 */
8243 	if (un->un_f_devid_supported) {
8244 		sd_register_devid(ssc, devi, reservation_flag);
8245 	}
8246 	mutex_exit(SD_MUTEX(un));
8247 
8248 #if (defined(__fibre))
8249 	/*
8250 	 * Register callbacks for fibre only.  You can't do this solely
8251 	 * on the basis of the devid_type because this is hba specific.
8252 	 * We need to query our hba capabilities to find out whether to
8253 	 * register or not.
8254 	 */
8255 	if (un->un_f_is_fibre) {
8256 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
8257 			sd_init_event_callbacks(un);
8258 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8259 			    "sd_unit_attach: un:0x%p event callbacks inserted",
8260 			    un);
8261 		}
8262 	}
8263 #endif
8264 
8265 	if (un->un_f_opt_disable_cache == TRUE) {
8266 		/*
8267 		 * Disable both read cache and write cache.  This is
8268 		 * the historic behavior of the keywords in the config file.
8269 		 */
8270 		if (sd_cache_control(ssc, SD_CACHE_DISABLE, SD_CACHE_DISABLE) !=
8271 		    0) {
8272 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8273 			    "sd_unit_attach: un:0x%p Could not disable "
8274 			    "caching", un);
8275 			goto devid_failed;
8276 		}
8277 	}
8278 
8279 	/*
8280 	 * Check the value of the WCE bit now and
8281 	 * set un_f_write_cache_enabled accordingly.
8282 	 */
8283 	(void) sd_get_write_cache_enabled(ssc, &wc_enabled);
8284 	mutex_enter(SD_MUTEX(un));
8285 	un->un_f_write_cache_enabled = (wc_enabled != 0);
8286 	mutex_exit(SD_MUTEX(un));
8287 
8288 	if ((un->un_f_rmw_type != SD_RMW_TYPE_RETURN_ERROR &&
8289 	    un->un_tgt_blocksize != DEV_BSIZE) ||
8290 	    un->un_f_enable_rmw) {
8291 		if (!(un->un_wm_cache)) {
8292 			(void) snprintf(name_str, sizeof (name_str),
8293 			    "%s%d_cache",
8294 			    ddi_driver_name(SD_DEVINFO(un)),
8295 			    ddi_get_instance(SD_DEVINFO(un)));
8296 			un->un_wm_cache = kmem_cache_create(
8297 			    name_str, sizeof (struct sd_w_map),
8298 			    8, sd_wm_cache_constructor,
8299 			    sd_wm_cache_destructor, NULL,
8300 			    (void *)un, NULL, 0);
8301 			if (!(un->un_wm_cache)) {
8302 				goto wm_cache_failed;
8303 			}
8304 		}
8305 	}
8306 
8307 	/*
8308 	 * Check the value of the NV_SUP bit and set
8309 	 * un_f_suppress_cache_flush accordingly.
8310 	 */
8311 	sd_get_nv_sup(ssc);
8312 
8313 	/*
8314 	 * Find out what type of reservation this disk supports.
8315 	 */
8316 	status = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_KEYS, 0, NULL);
8317 
8318 	switch (status) {
8319 	case 0:
8320 		/*
8321 		 * SCSI-3 reservations are supported.
8322 		 */
8323 		un->un_reservation_type = SD_SCSI3_RESERVATION;
8324 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8325 		    "sd_unit_attach: un:0x%p SCSI-3 reservations\n", un);
8326 		break;
8327 	case ENOTSUP:
8328 		/*
8329 		 * The PERSISTENT RESERVE IN command would not be recognized by
8330 		 * a SCSI-2 device, so assume the reservation type is SCSI-2.
8331 		 */
8332 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8333 		    "sd_unit_attach: un:0x%p SCSI-2 reservations\n", un);
8334 		un->un_reservation_type = SD_SCSI2_RESERVATION;
8335 
8336 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
8337 		break;
8338 	default:
8339 		/*
8340 		 * default to SCSI-3 reservations
8341 		 */
8342 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8343 		    "sd_unit_attach: un:0x%p default SCSI3 reservations\n", un);
8344 		un->un_reservation_type = SD_SCSI3_RESERVATION;
8345 
8346 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
8347 		break;
8348 	}
8349 
8350 	/*
8351 	 * Set the pstat and error stat values here, so data obtained during the
8352 	 * previous attach-time routines is available.
8353 	 *
8354 	 * Note: This is a critical sequence that needs to be maintained:
8355 	 *	1) Instantiate the kstats before any routines using the iopath
8356 	 *	   (i.e. sd_send_scsi_cmd).
8357 	 *	2) Initialize the error stats (sd_set_errstats) and partition
8358 	 *	   stats (sd_set_pstats)here, following
8359 	 *	   cmlb_validate_geometry(), sd_register_devid(), and
8360 	 *	   sd_cache_control().
8361 	 */
8362 
8363 	if (un->un_f_pkstats_enabled && geom_label_valid) {
8364 		sd_set_pstats(un);
8365 		SD_TRACE(SD_LOG_IO_PARTITION, un,
8366 		    "sd_unit_attach: un:0x%p pstats created and set\n", un);
8367 	}
8368 
8369 	sd_set_errstats(un);
8370 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8371 	    "sd_unit_attach: un:0x%p errstats set\n", un);
8372 
8373 
8374 	/*
8375 	 * After successfully attaching an instance, we record the information
8376 	 * of how many luns have been attached on the relative target and
8377 	 * controller for parallel SCSI. This information is used when sd tries
8378 	 * to set the tagged queuing capability in HBA.
8379 	 */
8380 	if (SD_IS_PARALLEL_SCSI(un) && (tgt >= 0) && (tgt < NTARGETS_WIDE)) {
8381 		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_ATTACH);
8382 	}
8383 
8384 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8385 	    "sd_unit_attach: un:0x%p exit success\n", un);
8386 
8387 	/* Uninitialize sd_ssc_t pointer */
8388 	sd_ssc_fini(ssc);
8389 
8390 	return (DDI_SUCCESS);
8391 
8392 	/*
8393 	 * An error occurred during the attach; clean up & return failure.
8394 	 */
8395 wm_cache_failed:
8396 devid_failed:
8397 
8398 setup_pm_failed:
8399 	ddi_remove_minor_node(devi, NULL);
8400 
8401 cmlb_attach_failed:
8402 	/*
8403 	 * Cleanup from the scsi_ifsetcap() calls (437868)
8404 	 */
8405 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
8406 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
8407 
8408 	/*
8409 	 * Refer to the comments of setting tagged-qing in the beginning of
8410 	 * sd_unit_attach. We can only disable tagged queuing when there is
8411 	 * no lun attached on the target.
8412 	 */
8413 	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
8414 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
8415 	}
8416 
8417 	if (un->un_f_is_fibre == FALSE) {
8418 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
8419 	}
8420 
8421 spinup_failed:
8422 
8423 	/* Uninitialize sd_ssc_t pointer */
8424 	sd_ssc_fini(ssc);
8425 
8426 	mutex_enter(SD_MUTEX(un));
8427 
8428 	/* Deallocate SCSI FMA memory spaces */
8429 	kmem_free(un->un_fm_private, sizeof (struct sd_fm_internal));
8430 
8431 	/* Cancel callback for SD_PATH_DIRECT_PRIORITY cmd. restart */
8432 	if (un->un_direct_priority_timeid != NULL) {
8433 		timeout_id_t temp_id = un->un_direct_priority_timeid;
8434 		un->un_direct_priority_timeid = NULL;
8435 		mutex_exit(SD_MUTEX(un));
8436 		(void) untimeout(temp_id);
8437 		mutex_enter(SD_MUTEX(un));
8438 	}
8439 
8440 	/* Cancel any pending start/stop timeouts */
8441 	if (un->un_startstop_timeid != NULL) {
8442 		timeout_id_t temp_id = un->un_startstop_timeid;
8443 		un->un_startstop_timeid = NULL;
8444 		mutex_exit(SD_MUTEX(un));
8445 		(void) untimeout(temp_id);
8446 		mutex_enter(SD_MUTEX(un));
8447 	}
8448 
8449 	/* Cancel any pending reset-throttle timeouts */
8450 	if (un->un_reset_throttle_timeid != NULL) {
8451 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
8452 		un->un_reset_throttle_timeid = NULL;
8453 		mutex_exit(SD_MUTEX(un));
8454 		(void) untimeout(temp_id);
8455 		mutex_enter(SD_MUTEX(un));
8456 	}
8457 
8458 	/* Cancel rmw warning message timeouts */
8459 	if (un->un_rmw_msg_timeid != NULL) {
8460 		timeout_id_t temp_id = un->un_rmw_msg_timeid;
8461 		un->un_rmw_msg_timeid = NULL;
8462 		mutex_exit(SD_MUTEX(un));
8463 		(void) untimeout(temp_id);
8464 		mutex_enter(SD_MUTEX(un));
8465 	}
8466 
8467 	/* Cancel any pending retry timeouts */
8468 	if (un->un_retry_timeid != NULL) {
8469 		timeout_id_t temp_id = un->un_retry_timeid;
8470 		un->un_retry_timeid = NULL;
8471 		mutex_exit(SD_MUTEX(un));
8472 		(void) untimeout(temp_id);
8473 		mutex_enter(SD_MUTEX(un));
8474 	}
8475 
8476 	/* Cancel any pending delayed cv broadcast timeouts */
8477 	if (un->un_dcvb_timeid != NULL) {
8478 		timeout_id_t temp_id = un->un_dcvb_timeid;
8479 		un->un_dcvb_timeid = NULL;
8480 		mutex_exit(SD_MUTEX(un));
8481 		(void) untimeout(temp_id);
8482 		mutex_enter(SD_MUTEX(un));
8483 	}
8484 
8485 	mutex_exit(SD_MUTEX(un));
8486 
8487 	/* There should not be any in-progress I/O so ASSERT this check */
8488 	ASSERT(un->un_ncmds_in_transport == 0);
8489 	ASSERT(un->un_ncmds_in_driver == 0);
8490 
8491 	/* Do not free the softstate if the callback routine is active */
8492 	sd_sync_with_callback(un);
8493 
8494 	/*
8495 	 * Partition stats apparently are not used with removables. These would
8496 	 * not have been created during attach, so no need to clean them up...
8497 	 */
8498 	if (un->un_errstats != NULL) {
8499 		kstat_delete(un->un_errstats);
8500 		un->un_errstats = NULL;
8501 	}
8502 
8503 create_errstats_failed:
8504 
8505 	if (un->un_stats != NULL) {
8506 		kstat_delete(un->un_stats);
8507 		un->un_stats = NULL;
8508 	}
8509 
8510 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
8511 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
8512 
8513 	ddi_prop_remove_all(devi);
8514 	sema_destroy(&un->un_semoclose);
8515 	cv_destroy(&un->un_state_cv);
8516 
8517 getrbuf_failed:
8518 
8519 	sd_free_rqs(un);
8520 
8521 alloc_rqs_failed:
8522 
8523 	devp->sd_private = NULL;
8524 	bzero(un, sizeof (struct sd_lun));	/* Clear any stale data! */
8525 
8526 get_softstate_failed:
8527 	/*
8528 	 * Note: the man pages are unclear as to whether or not doing a
8529 	 * ddi_soft_state_free(sd_state, instance) is the right way to
8530 	 * clean up after the ddi_soft_state_zalloc() if the subsequent
8531 	 * ddi_get_soft_state() fails.  The implication seems to be
8532 	 * that the get_soft_state cannot fail if the zalloc succeeds.
8533 	 */
8534 #ifndef XPV_HVM_DRIVER
8535 	ddi_soft_state_free(sd_state, instance);
8536 #endif /* !XPV_HVM_DRIVER */
8537 
8538 probe_failed:
8539 	scsi_unprobe(devp);
8540 
8541 	return (DDI_FAILURE);
8542 }
8543 
8544 
8545 /*
8546  *    Function: sd_unit_detach
8547  *
8548  * Description: Performs DDI_DETACH processing for sddetach().
8549  *
8550  * Return Code: DDI_SUCCESS
8551  *		DDI_FAILURE
8552  *
8553  *     Context: Kernel thread context
8554  */
8555 
8556 static int
8557 sd_unit_detach(dev_info_t *devi)
8558 {
8559 	struct scsi_device	*devp;
8560 	struct sd_lun		*un;
8561 	int			i;
8562 	int			tgt;
8563 	dev_t			dev;
8564 	dev_info_t		*pdip = ddi_get_parent(devi);
8565 #ifndef XPV_HVM_DRIVER
8566 	int			instance = ddi_get_instance(devi);
8567 #endif /* !XPV_HVM_DRIVER */
8568 
8569 	mutex_enter(&sd_detach_mutex);
8570 
8571 	/*
8572 	 * Fail the detach for any of the following:
8573 	 *  - Unable to get the sd_lun struct for the instance
8574 	 *  - A layered driver has an outstanding open on the instance
8575 	 *  - Another thread is already detaching this instance
8576 	 *  - Another thread is currently performing an open
8577 	 */
8578 	devp = ddi_get_driver_private(devi);
8579 	if ((devp == NULL) ||
8580 	    ((un = (struct sd_lun *)devp->sd_private) == NULL) ||
8581 	    (un->un_ncmds_in_driver != 0) || (un->un_layer_count != 0) ||
8582 	    (un->un_detach_count != 0) || (un->un_opens_in_progress != 0)) {
8583 		mutex_exit(&sd_detach_mutex);
8584 		return (DDI_FAILURE);
8585 	}
8586 
8587 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: entry 0x%p\n", un);
8588 
8589 	/*
8590 	 * Mark this instance as currently in a detach, to inhibit any
8591 	 * opens from a layered driver.
8592 	 */
8593 	un->un_detach_count++;
8594 	mutex_exit(&sd_detach_mutex);
8595 
8596 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
8597 	    SCSI_ADDR_PROP_TARGET, -1);
8598 
8599 	dev = sd_make_device(SD_DEVINFO(un));
8600 
8601 #ifndef lint
8602 	_NOTE(COMPETING_THREADS_NOW);
8603 #endif
8604 
8605 	mutex_enter(SD_MUTEX(un));
8606 
8607 	/*
8608 	 * Fail the detach if there are any outstanding layered
8609 	 * opens on this device.
8610 	 */
8611 	for (i = 0; i < NDKMAP; i++) {
8612 		if (un->un_ocmap.lyropen[i] != 0) {
8613 			goto err_notclosed;
8614 		}
8615 	}
8616 
8617 	/*
8618 	 * Verify there are NO outstanding commands issued to this device.
8619 	 * ie, un_ncmds_in_transport == 0.
8620 	 * It's possible to have outstanding commands through the physio
8621 	 * code path, even though everything's closed.
8622 	 */
8623 	if ((un->un_ncmds_in_transport != 0) || (un->un_retry_timeid != NULL) ||
8624 	    (un->un_direct_priority_timeid != NULL) ||
8625 	    (un->un_state == SD_STATE_RWAIT)) {
8626 		mutex_exit(SD_MUTEX(un));
8627 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8628 		    "sd_dr_detach: Detach failure due to outstanding cmds\n");
8629 		goto err_stillbusy;
8630 	}
8631 
8632 	/*
8633 	 * If we have the device reserved, release the reservation.
8634 	 */
8635 	if ((un->un_resvd_status & SD_RESERVE) &&
8636 	    !(un->un_resvd_status & SD_LOST_RESERVE)) {
8637 		mutex_exit(SD_MUTEX(un));
8638 		/*
8639 		 * Note: sd_reserve_release sends a command to the device
8640 		 * via the sd_ioctlcmd() path, and can sleep.
8641 		 */
8642 		if (sd_reserve_release(dev, SD_RELEASE) != 0) {
8643 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8644 			    "sd_dr_detach: Cannot release reservation \n");
8645 		}
8646 	} else {
8647 		mutex_exit(SD_MUTEX(un));
8648 	}
8649 
8650 	/*
8651 	 * Untimeout any reserve recover, throttle reset, restart unit
8652 	 * and delayed broadcast timeout threads. Protect the timeout pointer
8653 	 * from getting nulled by their callback functions.
8654 	 */
8655 	mutex_enter(SD_MUTEX(un));
8656 	if (un->un_resvd_timeid != NULL) {
8657 		timeout_id_t temp_id = un->un_resvd_timeid;
8658 		un->un_resvd_timeid = NULL;
8659 		mutex_exit(SD_MUTEX(un));
8660 		(void) untimeout(temp_id);
8661 		mutex_enter(SD_MUTEX(un));
8662 	}
8663 
8664 	if (un->un_reset_throttle_timeid != NULL) {
8665 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
8666 		un->un_reset_throttle_timeid = NULL;
8667 		mutex_exit(SD_MUTEX(un));
8668 		(void) untimeout(temp_id);
8669 		mutex_enter(SD_MUTEX(un));
8670 	}
8671 
8672 	if (un->un_startstop_timeid != NULL) {
8673 		timeout_id_t temp_id = un->un_startstop_timeid;
8674 		un->un_startstop_timeid = NULL;
8675 		mutex_exit(SD_MUTEX(un));
8676 		(void) untimeout(temp_id);
8677 		mutex_enter(SD_MUTEX(un));
8678 	}
8679 
8680 	if (un->un_rmw_msg_timeid != NULL) {
8681 		timeout_id_t temp_id = un->un_rmw_msg_timeid;
8682 		un->un_rmw_msg_timeid = NULL;
8683 		mutex_exit(SD_MUTEX(un));
8684 		(void) untimeout(temp_id);
8685 		mutex_enter(SD_MUTEX(un));
8686 	}
8687 
8688 	if (un->un_dcvb_timeid != NULL) {
8689 		timeout_id_t temp_id = un->un_dcvb_timeid;
8690 		un->un_dcvb_timeid = NULL;
8691 		mutex_exit(SD_MUTEX(un));
8692 		(void) untimeout(temp_id);
8693 	} else {
8694 		mutex_exit(SD_MUTEX(un));
8695 	}
8696 
8697 	/* Remove any pending reservation reclaim requests for this device */
8698 	sd_rmv_resv_reclaim_req(dev);
8699 
8700 	mutex_enter(SD_MUTEX(un));
8701 
8702 	/* Cancel any pending callbacks for SD_PATH_DIRECT_PRIORITY cmd. */
8703 	if (un->un_direct_priority_timeid != NULL) {
8704 		timeout_id_t temp_id = un->un_direct_priority_timeid;
8705 		un->un_direct_priority_timeid = NULL;
8706 		mutex_exit(SD_MUTEX(un));
8707 		(void) untimeout(temp_id);
8708 		mutex_enter(SD_MUTEX(un));
8709 	}
8710 
8711 	/* Cancel any active multi-host disk watch thread requests */
8712 	if (un->un_mhd_token != NULL) {
8713 		mutex_exit(SD_MUTEX(un));
8714 		 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_mhd_token));
8715 		if (scsi_watch_request_terminate(un->un_mhd_token,
8716 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
8717 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8718 			    "sd_dr_detach: Cannot cancel mhd watch request\n");
8719 			/*
8720 			 * Note: We are returning here after having removed
8721 			 * some driver timeouts above. This is consistent with
8722 			 * the legacy implementation but perhaps the watch
8723 			 * terminate call should be made with the wait flag set.
8724 			 */
8725 			goto err_stillbusy;
8726 		}
8727 		mutex_enter(SD_MUTEX(un));
8728 		un->un_mhd_token = NULL;
8729 	}
8730 
8731 	if (un->un_swr_token != NULL) {
8732 		mutex_exit(SD_MUTEX(un));
8733 		_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_swr_token));
8734 		if (scsi_watch_request_terminate(un->un_swr_token,
8735 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
8736 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8737 			    "sd_dr_detach: Cannot cancel swr watch request\n");
8738 			/*
8739 			 * Note: We are returning here after having removed
8740 			 * some driver timeouts above. This is consistent with
8741 			 * the legacy implementation but perhaps the watch
8742 			 * terminate call should be made with the wait flag set.
8743 			 */
8744 			goto err_stillbusy;
8745 		}
8746 		mutex_enter(SD_MUTEX(un));
8747 		un->un_swr_token = NULL;
8748 	}
8749 
8750 	mutex_exit(SD_MUTEX(un));
8751 
8752 	/*
8753 	 * Clear any scsi_reset_notifies. We clear the reset notifies
8754 	 * if we have not registered one.
8755 	 * Note: The sd_mhd_reset_notify_cb() fn tries to acquire SD_MUTEX!
8756 	 */
8757 	(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
8758 	    sd_mhd_reset_notify_cb, (caddr_t)un);
8759 
8760 	/*
8761 	 * protect the timeout pointers from getting nulled by
8762 	 * their callback functions during the cancellation process.
8763 	 * In such a scenario untimeout can be invoked with a null value.
8764 	 */
8765 	_NOTE(NO_COMPETING_THREADS_NOW);
8766 
8767 	mutex_enter(&un->un_pm_mutex);
8768 	if (un->un_pm_idle_timeid != NULL) {
8769 		timeout_id_t temp_id = un->un_pm_idle_timeid;
8770 		un->un_pm_idle_timeid = NULL;
8771 		mutex_exit(&un->un_pm_mutex);
8772 
8773 		/*
8774 		 * Timeout is active; cancel it.
8775 		 * Note that it'll never be active on a device
8776 		 * that does not support PM therefore we don't
8777 		 * have to check before calling pm_idle_component.
8778 		 */
8779 		(void) untimeout(temp_id);
8780 		(void) pm_idle_component(SD_DEVINFO(un), 0);
8781 		mutex_enter(&un->un_pm_mutex);
8782 	}
8783 
8784 	/*
8785 	 * Check whether there is already a timeout scheduled for power
8786 	 * management. If yes then don't lower the power here, that's.
8787 	 * the timeout handler's job.
8788 	 */
8789 	if (un->un_pm_timeid != NULL) {
8790 		timeout_id_t temp_id = un->un_pm_timeid;
8791 		un->un_pm_timeid = NULL;
8792 		mutex_exit(&un->un_pm_mutex);
8793 		/*
8794 		 * Timeout is active; cancel it.
8795 		 * Note that it'll never be active on a device
8796 		 * that does not support PM therefore we don't
8797 		 * have to check before calling pm_idle_component.
8798 		 */
8799 		(void) untimeout(temp_id);
8800 		(void) pm_idle_component(SD_DEVINFO(un), 0);
8801 
8802 	} else {
8803 		mutex_exit(&un->un_pm_mutex);
8804 		if ((un->un_f_pm_is_enabled == TRUE) &&
8805 		    (pm_lower_power(SD_DEVINFO(un), 0, SD_PM_STATE_STOPPED(un))
8806 		    != DDI_SUCCESS)) {
8807 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8808 		    "sd_dr_detach: Lower power request failed, ignoring.\n");
8809 			/*
8810 			 * Fix for bug: 4297749, item # 13
8811 			 * The above test now includes a check to see if PM is
8812 			 * supported by this device before call
8813 			 * pm_lower_power().
8814 			 * Note, the following is not dead code. The call to
8815 			 * pm_lower_power above will generate a call back into
8816 			 * our sdpower routine which might result in a timeout
8817 			 * handler getting activated. Therefore the following
8818 			 * code is valid and necessary.
8819 			 */
8820 			mutex_enter(&un->un_pm_mutex);
8821 			if (un->un_pm_timeid != NULL) {
8822 				timeout_id_t temp_id = un->un_pm_timeid;
8823 				un->un_pm_timeid = NULL;
8824 				mutex_exit(&un->un_pm_mutex);
8825 				(void) untimeout(temp_id);
8826 				(void) pm_idle_component(SD_DEVINFO(un), 0);
8827 			} else {
8828 				mutex_exit(&un->un_pm_mutex);
8829 			}
8830 		}
8831 	}
8832 
8833 	/*
8834 	 * Cleanup from the scsi_ifsetcap() calls (437868)
8835 	 * Relocated here from above to be after the call to
8836 	 * pm_lower_power, which was getting errors.
8837 	 */
8838 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
8839 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
8840 
8841 	/*
8842 	 * Currently, tagged queuing is supported per target based by HBA.
8843 	 * Setting this per lun instance actually sets the capability of this
8844 	 * target in HBA, which affects those luns already attached on the
8845 	 * same target. So during detach, we can only disable this capability
8846 	 * only when this is the only lun left on this target. By doing
8847 	 * this, we assume a target has the same tagged queuing capability
8848 	 * for every lun. The condition can be removed when HBA is changed to
8849 	 * support per lun based tagged queuing capability.
8850 	 */
8851 	if (sd_scsi_get_target_lun_count(pdip, tgt) <= 1) {
8852 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
8853 	}
8854 
8855 	if (un->un_f_is_fibre == FALSE) {
8856 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
8857 	}
8858 
8859 	/*
8860 	 * Remove any event callbacks, fibre only
8861 	 */
8862 	if (un->un_f_is_fibre == TRUE) {
8863 		if ((un->un_insert_event != NULL) &&
8864 		    (ddi_remove_event_handler(un->un_insert_cb_id) !=
8865 		    DDI_SUCCESS)) {
8866 			/*
8867 			 * Note: We are returning here after having done
8868 			 * substantial cleanup above. This is consistent
8869 			 * with the legacy implementation but this may not
8870 			 * be the right thing to do.
8871 			 */
8872 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8873 			    "sd_dr_detach: Cannot cancel insert event\n");
8874 			goto err_remove_event;
8875 		}
8876 		un->un_insert_event = NULL;
8877 
8878 		if ((un->un_remove_event != NULL) &&
8879 		    (ddi_remove_event_handler(un->un_remove_cb_id) !=
8880 		    DDI_SUCCESS)) {
8881 			/*
8882 			 * Note: We are returning here after having done
8883 			 * substantial cleanup above. This is consistent
8884 			 * with the legacy implementation but this may not
8885 			 * be the right thing to do.
8886 			 */
8887 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8888 			    "sd_dr_detach: Cannot cancel remove event\n");
8889 			goto err_remove_event;
8890 		}
8891 		un->un_remove_event = NULL;
8892 	}
8893 
8894 	/* Do not free the softstate if the callback routine is active */
8895 	sd_sync_with_callback(un);
8896 
8897 	cmlb_detach(un->un_cmlbhandle, (void *)SD_PATH_DIRECT);
8898 	cmlb_free_handle(&un->un_cmlbhandle);
8899 
8900 	/*
8901 	 * Hold the detach mutex here, to make sure that no other threads ever
8902 	 * can access a (partially) freed soft state structure.
8903 	 */
8904 	mutex_enter(&sd_detach_mutex);
8905 
8906 	/*
8907 	 * Clean up the soft state struct.
8908 	 * Cleanup is done in reverse order of allocs/inits.
8909 	 * At this point there should be no competing threads anymore.
8910 	 */
8911 
8912 	scsi_fm_fini(devp);
8913 
8914 	/*
8915 	 * Deallocate memory for SCSI FMA.
8916 	 */
8917 	kmem_free(un->un_fm_private, sizeof (struct sd_fm_internal));
8918 
8919 	/*
8920 	 * Unregister and free device id if it was not registered
8921 	 * by the transport.
8922 	 */
8923 	if (un->un_f_devid_transport_defined == FALSE)
8924 		ddi_devid_unregister(devi);
8925 
8926 	/*
8927 	 * free the devid structure if allocated before (by ddi_devid_init()
8928 	 * or ddi_devid_get()).
8929 	 */
8930 	if (un->un_devid) {
8931 		ddi_devid_free(un->un_devid);
8932 		un->un_devid = NULL;
8933 	}
8934 
8935 	/*
8936 	 * Destroy wmap cache if it exists.
8937 	 */
8938 	if (un->un_wm_cache != NULL) {
8939 		kmem_cache_destroy(un->un_wm_cache);
8940 		un->un_wm_cache = NULL;
8941 	}
8942 
8943 	/*
8944 	 * kstat cleanup is done in detach for all device types (4363169).
8945 	 * We do not want to fail detach if the device kstats are not deleted
8946 	 * since there is a confusion about the devo_refcnt for the device.
8947 	 * We just delete the kstats and let detach complete successfully.
8948 	 */
8949 	if (un->un_stats != NULL) {
8950 		kstat_delete(un->un_stats);
8951 		un->un_stats = NULL;
8952 	}
8953 	if (un->un_errstats != NULL) {
8954 		kstat_delete(un->un_errstats);
8955 		un->un_errstats = NULL;
8956 	}
8957 
8958 	/* Remove partition stats */
8959 	if (un->un_f_pkstats_enabled) {
8960 		for (i = 0; i < NSDMAP; i++) {
8961 			if (un->un_pstats[i] != NULL) {
8962 				kstat_delete(un->un_pstats[i]);
8963 				un->un_pstats[i] = NULL;
8964 			}
8965 		}
8966 	}
8967 
8968 	/* Remove xbuf registration */
8969 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
8970 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
8971 
8972 	/* Remove driver properties */
8973 	ddi_prop_remove_all(devi);
8974 
8975 	mutex_destroy(&un->un_pm_mutex);
8976 	cv_destroy(&un->un_pm_busy_cv);
8977 
8978 	cv_destroy(&un->un_wcc_cv);
8979 
8980 	/* Open/close semaphore */
8981 	sema_destroy(&un->un_semoclose);
8982 
8983 	/* Removable media condvar. */
8984 	cv_destroy(&un->un_state_cv);
8985 
8986 	/* Suspend/resume condvar. */
8987 	cv_destroy(&un->un_suspend_cv);
8988 	cv_destroy(&un->un_disk_busy_cv);
8989 
8990 	sd_free_rqs(un);
8991 
8992 	/* Free up soft state */
8993 	devp->sd_private = NULL;
8994 
8995 	bzero(un, sizeof (struct sd_lun));
8996 #ifndef XPV_HVM_DRIVER
8997 	ddi_soft_state_free(sd_state, instance);
8998 #endif /* !XPV_HVM_DRIVER */
8999 
9000 	mutex_exit(&sd_detach_mutex);
9001 
9002 	/* This frees up the INQUIRY data associated with the device. */
9003 	scsi_unprobe(devp);
9004 
9005 	/*
9006 	 * After successfully detaching an instance, we update the information
9007 	 * of how many luns have been attached in the relative target and
9008 	 * controller for parallel SCSI. This information is used when sd tries
9009 	 * to set the tagged queuing capability in HBA.
9010 	 * Since un has been released, we can't use SD_IS_PARALLEL_SCSI(un) to
9011 	 * check if the device is parallel SCSI. However, we don't need to
9012 	 * check here because we've already checked during attach. No device
9013 	 * that is not parallel SCSI is in the chain.
9014 	 */
9015 	if ((tgt >= 0) && (tgt < NTARGETS_WIDE)) {
9016 		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_DETACH);
9017 	}
9018 
9019 	return (DDI_SUCCESS);
9020 
9021 err_notclosed:
9022 	mutex_exit(SD_MUTEX(un));
9023 
9024 err_stillbusy:
9025 	_NOTE(NO_COMPETING_THREADS_NOW);
9026 
9027 err_remove_event:
9028 	mutex_enter(&sd_detach_mutex);
9029 	un->un_detach_count--;
9030 	mutex_exit(&sd_detach_mutex);
9031 
9032 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: exit failure\n");
9033 	return (DDI_FAILURE);
9034 }
9035 
9036 
9037 /*
9038  *    Function: sd_create_errstats
9039  *
9040  * Description: This routine instantiates the device error stats.
9041  *
9042  *		Note: During attach the stats are instantiated first so they are
9043  *		available for attach-time routines that utilize the driver
9044  *		iopath to send commands to the device. The stats are initialized
9045  *		separately so data obtained during some attach-time routines is
9046  *		available. (4362483)
9047  *
9048  *   Arguments: un - driver soft state (unit) structure
9049  *		instance - driver instance
9050  *
9051  *     Context: Kernel thread context
9052  */
9053 
9054 static void
9055 sd_create_errstats(struct sd_lun *un, int instance)
9056 {
9057 	struct	sd_errstats	*stp;
9058 	char	kstatmodule_err[KSTAT_STRLEN];
9059 	char	kstatname[KSTAT_STRLEN];
9060 	int	ndata = (sizeof (struct sd_errstats) / sizeof (kstat_named_t));
9061 
9062 	ASSERT(un != NULL);
9063 
9064 	if (un->un_errstats != NULL) {
9065 		return;
9066 	}
9067 
9068 	(void) snprintf(kstatmodule_err, sizeof (kstatmodule_err),
9069 	    "%serr", sd_label);
9070 	(void) snprintf(kstatname, sizeof (kstatname),
9071 	    "%s%d,err", sd_label, instance);
9072 
9073 	un->un_errstats = kstat_create(kstatmodule_err, instance, kstatname,
9074 	    "device_error", KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_PERSISTENT);
9075 
9076 	if (un->un_errstats == NULL) {
9077 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9078 		    "sd_create_errstats: Failed kstat_create\n");
9079 		return;
9080 	}
9081 
9082 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
9083 	kstat_named_init(&stp->sd_softerrs,	"Soft Errors",
9084 	    KSTAT_DATA_UINT32);
9085 	kstat_named_init(&stp->sd_harderrs,	"Hard Errors",
9086 	    KSTAT_DATA_UINT32);
9087 	kstat_named_init(&stp->sd_transerrs,	"Transport Errors",
9088 	    KSTAT_DATA_UINT32);
9089 	kstat_named_init(&stp->sd_vid,		"Vendor",
9090 	    KSTAT_DATA_CHAR);
9091 	kstat_named_init(&stp->sd_pid,		"Product",
9092 	    KSTAT_DATA_CHAR);
9093 	kstat_named_init(&stp->sd_revision,	"Revision",
9094 	    KSTAT_DATA_CHAR);
9095 	kstat_named_init(&stp->sd_serial,	"Serial No",
9096 	    KSTAT_DATA_CHAR);
9097 	kstat_named_init(&stp->sd_capacity,	"Size",
9098 	    KSTAT_DATA_ULONGLONG);
9099 	kstat_named_init(&stp->sd_rq_media_err,	"Media Error",
9100 	    KSTAT_DATA_UINT32);
9101 	kstat_named_init(&stp->sd_rq_ntrdy_err,	"Device Not Ready",
9102 	    KSTAT_DATA_UINT32);
9103 	kstat_named_init(&stp->sd_rq_nodev_err,	"No Device",
9104 	    KSTAT_DATA_UINT32);
9105 	kstat_named_init(&stp->sd_rq_recov_err,	"Recoverable",
9106 	    KSTAT_DATA_UINT32);
9107 	kstat_named_init(&stp->sd_rq_illrq_err,	"Illegal Request",
9108 	    KSTAT_DATA_UINT32);
9109 	kstat_named_init(&stp->sd_rq_pfa_err,	"Predictive Failure Analysis",
9110 	    KSTAT_DATA_UINT32);
9111 
9112 	un->un_errstats->ks_private = un;
9113 	un->un_errstats->ks_update  = nulldev;
9114 
9115 	kstat_install(un->un_errstats);
9116 }
9117 
9118 
9119 /*
9120  *    Function: sd_set_errstats
9121  *
9122  * Description: This routine sets the value of the vendor id, product id,
9123  *		revision, serial number, and capacity device error stats.
9124  *
9125  *		Note: During attach the stats are instantiated first so they are
9126  *		available for attach-time routines that utilize the driver
9127  *		iopath to send commands to the device. The stats are initialized
9128  *		separately so data obtained during some attach-time routines is
9129  *		available. (4362483)
9130  *
9131  *   Arguments: un - driver soft state (unit) structure
9132  *
9133  *     Context: Kernel thread context
9134  */
9135 
9136 static void
9137 sd_set_errstats(struct sd_lun *un)
9138 {
9139 	struct	sd_errstats	*stp;
9140 	char 			*sn;
9141 
9142 	ASSERT(un != NULL);
9143 	ASSERT(un->un_errstats != NULL);
9144 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
9145 	ASSERT(stp != NULL);
9146 	(void) strncpy(stp->sd_vid.value.c, un->un_sd->sd_inq->inq_vid, 8);
9147 	(void) strncpy(stp->sd_pid.value.c, un->un_sd->sd_inq->inq_pid, 16);
9148 	(void) strncpy(stp->sd_revision.value.c,
9149 	    un->un_sd->sd_inq->inq_revision, 4);
9150 
9151 	/*
9152 	 * All the errstats are persistent across detach/attach,
9153 	 * so reset all the errstats here in case of the hot
9154 	 * replacement of disk drives, except for not changed
9155 	 * Sun qualified drives.
9156 	 */
9157 	if ((bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) != 0) ||
9158 	    (bcmp(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
9159 	    sizeof (SD_INQUIRY(un)->inq_serial)) != 0)) {
9160 		stp->sd_softerrs.value.ui32 = 0;
9161 		stp->sd_harderrs.value.ui32 = 0;
9162 		stp->sd_transerrs.value.ui32 = 0;
9163 		stp->sd_rq_media_err.value.ui32 = 0;
9164 		stp->sd_rq_ntrdy_err.value.ui32 = 0;
9165 		stp->sd_rq_nodev_err.value.ui32 = 0;
9166 		stp->sd_rq_recov_err.value.ui32 = 0;
9167 		stp->sd_rq_illrq_err.value.ui32 = 0;
9168 		stp->sd_rq_pfa_err.value.ui32 = 0;
9169 	}
9170 
9171 	/*
9172 	 * Set the "Serial No" kstat for Sun qualified drives (indicated by
9173 	 * "SUN" in bytes 25-27 of the inquiry data (bytes 9-11 of the pid)
9174 	 * (4376302))
9175 	 */
9176 	if (bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) == 0) {
9177 		bcopy(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
9178 		    sizeof (SD_INQUIRY(un)->inq_serial));
9179 	} else {
9180 		/*
9181 		 * Set the "Serial No" kstat for non-Sun qualified drives
9182 		 */
9183 		if (ddi_prop_lookup_string(DDI_DEV_T_ANY, SD_DEVINFO(un),
9184 		    DDI_PROP_NOTPROM | DDI_PROP_DONTPASS,
9185 		    INQUIRY_SERIAL_NO, &sn) == DDI_SUCCESS) {
9186 			(void) strlcpy(stp->sd_serial.value.c, sn,
9187 			    sizeof (stp->sd_serial.value.c));
9188 			ddi_prop_free(sn);
9189 		}
9190 	}
9191 
9192 	if (un->un_f_blockcount_is_valid != TRUE) {
9193 		/*
9194 		 * Set capacity error stat to 0 for no media. This ensures
9195 		 * a valid capacity is displayed in response to 'iostat -E'
9196 		 * when no media is present in the device.
9197 		 */
9198 		stp->sd_capacity.value.ui64 = 0;
9199 	} else {
9200 		/*
9201 		 * Multiply un_blockcount by un->un_sys_blocksize to get
9202 		 * capacity.
9203 		 *
9204 		 * Note: for non-512 blocksize devices "un_blockcount" has been
9205 		 * "scaled" in sd_send_scsi_READ_CAPACITY by multiplying by
9206 		 * (un_tgt_blocksize / un->un_sys_blocksize).
9207 		 */
9208 		stp->sd_capacity.value.ui64 = (uint64_t)
9209 		    ((uint64_t)un->un_blockcount * un->un_sys_blocksize);
9210 	}
9211 }
9212 
9213 
9214 /*
9215  *    Function: sd_set_pstats
9216  *
9217  * Description: This routine instantiates and initializes the partition
9218  *              stats for each partition with more than zero blocks.
9219  *		(4363169)
9220  *
9221  *   Arguments: un - driver soft state (unit) structure
9222  *
9223  *     Context: Kernel thread context
9224  */
9225 
9226 static void
9227 sd_set_pstats(struct sd_lun *un)
9228 {
9229 	char	kstatname[KSTAT_STRLEN];
9230 	int	instance;
9231 	int	i;
9232 	diskaddr_t	nblks = 0;
9233 	char	*partname = NULL;
9234 
9235 	ASSERT(un != NULL);
9236 
9237 	instance = ddi_get_instance(SD_DEVINFO(un));
9238 
9239 	/* Note:x86: is this a VTOC8/VTOC16 difference? */
9240 	for (i = 0; i < NSDMAP; i++) {
9241 
9242 		if (cmlb_partinfo(un->un_cmlbhandle, i,
9243 		    &nblks, NULL, &partname, NULL, (void *)SD_PATH_DIRECT) != 0)
9244 			continue;
9245 		mutex_enter(SD_MUTEX(un));
9246 
9247 		if ((un->un_pstats[i] == NULL) &&
9248 		    (nblks != 0)) {
9249 
9250 			(void) snprintf(kstatname, sizeof (kstatname),
9251 			    "%s%d,%s", sd_label, instance,
9252 			    partname);
9253 
9254 			un->un_pstats[i] = kstat_create(sd_label,
9255 			    instance, kstatname, "partition", KSTAT_TYPE_IO,
9256 			    1, KSTAT_FLAG_PERSISTENT);
9257 			if (un->un_pstats[i] != NULL) {
9258 				un->un_pstats[i]->ks_lock = SD_MUTEX(un);
9259 				kstat_install(un->un_pstats[i]);
9260 			}
9261 		}
9262 		mutex_exit(SD_MUTEX(un));
9263 	}
9264 }
9265 
9266 
9267 #if (defined(__fibre))
9268 /*
9269  *    Function: sd_init_event_callbacks
9270  *
9271  * Description: This routine initializes the insertion and removal event
9272  *		callbacks. (fibre only)
9273  *
9274  *   Arguments: un - driver soft state (unit) structure
9275  *
9276  *     Context: Kernel thread context
9277  */
9278 
9279 static void
9280 sd_init_event_callbacks(struct sd_lun *un)
9281 {
9282 	ASSERT(un != NULL);
9283 
9284 	if ((un->un_insert_event == NULL) &&
9285 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_INSERT_EVENT,
9286 	    &un->un_insert_event) == DDI_SUCCESS)) {
9287 		/*
9288 		 * Add the callback for an insertion event
9289 		 */
9290 		(void) ddi_add_event_handler(SD_DEVINFO(un),
9291 		    un->un_insert_event, sd_event_callback, (void *)un,
9292 		    &(un->un_insert_cb_id));
9293 	}
9294 
9295 	if ((un->un_remove_event == NULL) &&
9296 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_REMOVE_EVENT,
9297 	    &un->un_remove_event) == DDI_SUCCESS)) {
9298 		/*
9299 		 * Add the callback for a removal event
9300 		 */
9301 		(void) ddi_add_event_handler(SD_DEVINFO(un),
9302 		    un->un_remove_event, sd_event_callback, (void *)un,
9303 		    &(un->un_remove_cb_id));
9304 	}
9305 }
9306 
9307 
9308 /*
9309  *    Function: sd_event_callback
9310  *
9311  * Description: This routine handles insert/remove events (photon). The
9312  *		state is changed to OFFLINE which can be used to supress
9313  *		error msgs. (fibre only)
9314  *
9315  *   Arguments: un - driver soft state (unit) structure
9316  *
9317  *     Context: Callout thread context
9318  */
9319 /* ARGSUSED */
9320 static void
9321 sd_event_callback(dev_info_t *dip, ddi_eventcookie_t event, void *arg,
9322     void *bus_impldata)
9323 {
9324 	struct sd_lun *un = (struct sd_lun *)arg;
9325 
9326 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_insert_event));
9327 	if (event == un->un_insert_event) {
9328 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: insert event");
9329 		mutex_enter(SD_MUTEX(un));
9330 		if (un->un_state == SD_STATE_OFFLINE) {
9331 			if (un->un_last_state != SD_STATE_SUSPENDED) {
9332 				un->un_state = un->un_last_state;
9333 			} else {
9334 				/*
9335 				 * We have gone through SUSPEND/RESUME while
9336 				 * we were offline. Restore the last state
9337 				 */
9338 				un->un_state = un->un_save_state;
9339 			}
9340 		}
9341 		mutex_exit(SD_MUTEX(un));
9342 
9343 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_remove_event));
9344 	} else if (event == un->un_remove_event) {
9345 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: remove event");
9346 		mutex_enter(SD_MUTEX(un));
9347 		/*
9348 		 * We need to handle an event callback that occurs during
9349 		 * the suspend operation, since we don't prevent it.
9350 		 */
9351 		if (un->un_state != SD_STATE_OFFLINE) {
9352 			if (un->un_state != SD_STATE_SUSPENDED) {
9353 				New_state(un, SD_STATE_OFFLINE);
9354 			} else {
9355 				un->un_last_state = SD_STATE_OFFLINE;
9356 			}
9357 		}
9358 		mutex_exit(SD_MUTEX(un));
9359 	} else {
9360 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
9361 		    "!Unknown event\n");
9362 	}
9363 
9364 }
9365 #endif
9366 
9367 /*
9368  *    Function: sd_cache_control()
9369  *
9370  * Description: This routine is the driver entry point for setting
9371  *		read and write caching by modifying the WCE (write cache
9372  *		enable) and RCD (read cache disable) bits of mode
9373  *		page 8 (MODEPAGE_CACHING).
9374  *
9375  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
9376  *                      structure for this target.
9377  *		rcd_flag - flag for controlling the read cache
9378  *		wce_flag - flag for controlling the write cache
9379  *
9380  * Return Code: EIO
9381  *		code returned by sd_send_scsi_MODE_SENSE and
9382  *		sd_send_scsi_MODE_SELECT
9383  *
9384  *     Context: Kernel Thread
9385  */
9386 
9387 static int
9388 sd_cache_control(sd_ssc_t *ssc, int rcd_flag, int wce_flag)
9389 {
9390 	struct mode_caching	*mode_caching_page;
9391 	uchar_t			*header;
9392 	size_t			buflen;
9393 	int			hdrlen;
9394 	int			bd_len;
9395 	int			rval = 0;
9396 	struct mode_header_grp2	*mhp;
9397 	struct sd_lun		*un;
9398 	int			status;
9399 
9400 	ASSERT(ssc != NULL);
9401 	un = ssc->ssc_un;
9402 	ASSERT(un != NULL);
9403 
9404 	/*
9405 	 * Do a test unit ready, otherwise a mode sense may not work if this
9406 	 * is the first command sent to the device after boot.
9407 	 */
9408 	status = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
9409 	if (status != 0)
9410 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9411 
9412 	if (un->un_f_cfg_is_atapi == TRUE) {
9413 		hdrlen = MODE_HEADER_LENGTH_GRP2;
9414 	} else {
9415 		hdrlen = MODE_HEADER_LENGTH;
9416 	}
9417 
9418 	/*
9419 	 * Allocate memory for the retrieved mode page and its headers.  Set
9420 	 * a pointer to the page itself.  Use mode_cache_scsi3 to insure
9421 	 * we get all of the mode sense data otherwise, the mode select
9422 	 * will fail.  mode_cache_scsi3 is a superset of mode_caching.
9423 	 */
9424 	buflen = hdrlen + MODE_BLK_DESC_LENGTH +
9425 	    sizeof (struct mode_cache_scsi3);
9426 
9427 	header = kmem_zalloc(buflen, KM_SLEEP);
9428 
9429 	/* Get the information from the device. */
9430 	if (un->un_f_cfg_is_atapi == TRUE) {
9431 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, header, buflen,
9432 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9433 	} else {
9434 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen,
9435 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9436 	}
9437 
9438 	if (rval != 0) {
9439 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
9440 		    "sd_cache_control: Mode Sense Failed\n");
9441 		goto mode_sense_failed;
9442 	}
9443 
9444 	/*
9445 	 * Determine size of Block Descriptors in order to locate
9446 	 * the mode page data. ATAPI devices return 0, SCSI devices
9447 	 * should return MODE_BLK_DESC_LENGTH.
9448 	 */
9449 	if (un->un_f_cfg_is_atapi == TRUE) {
9450 		mhp	= (struct mode_header_grp2 *)header;
9451 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
9452 	} else {
9453 		bd_len  = ((struct mode_header *)header)->bdesc_length;
9454 	}
9455 
9456 	if (bd_len > MODE_BLK_DESC_LENGTH) {
9457 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, 0,
9458 		    "sd_cache_control: Mode Sense returned invalid block "
9459 		    "descriptor length\n");
9460 		rval = EIO;
9461 		goto mode_sense_failed;
9462 	}
9463 
9464 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
9465 	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
9466 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
9467 		    "sd_cache_control: Mode Sense caching page code mismatch "
9468 		    "%d\n", mode_caching_page->mode_page.code);
9469 		rval = EIO;
9470 		goto mode_sense_failed;
9471 	}
9472 
9473 	/* Check the relevant bits on successful mode sense. */
9474 	if ((mode_caching_page->rcd && rcd_flag == SD_CACHE_ENABLE) ||
9475 	    (!mode_caching_page->rcd && rcd_flag == SD_CACHE_DISABLE) ||
9476 	    (mode_caching_page->wce && wce_flag == SD_CACHE_DISABLE) ||
9477 	    (!mode_caching_page->wce && wce_flag == SD_CACHE_ENABLE)) {
9478 
9479 		size_t sbuflen;
9480 		uchar_t save_pg;
9481 
9482 		/*
9483 		 * Construct select buffer length based on the
9484 		 * length of the sense data returned.
9485 		 */
9486 		sbuflen =  hdrlen + bd_len +
9487 		    sizeof (struct mode_page) +
9488 		    (int)mode_caching_page->mode_page.length;
9489 
9490 		/*
9491 		 * Set the caching bits as requested.
9492 		 */
9493 		if (rcd_flag == SD_CACHE_ENABLE)
9494 			mode_caching_page->rcd = 0;
9495 		else if (rcd_flag == SD_CACHE_DISABLE)
9496 			mode_caching_page->rcd = 1;
9497 
9498 		if (wce_flag == SD_CACHE_ENABLE)
9499 			mode_caching_page->wce = 1;
9500 		else if (wce_flag == SD_CACHE_DISABLE)
9501 			mode_caching_page->wce = 0;
9502 
9503 		/*
9504 		 * Save the page if the mode sense says the
9505 		 * drive supports it.
9506 		 */
9507 		save_pg = mode_caching_page->mode_page.ps ?
9508 		    SD_SAVE_PAGE : SD_DONTSAVE_PAGE;
9509 
9510 		/* Clear reserved bits before mode select. */
9511 		mode_caching_page->mode_page.ps = 0;
9512 
9513 		/*
9514 		 * Clear out mode header for mode select.
9515 		 * The rest of the retrieved page will be reused.
9516 		 */
9517 		bzero(header, hdrlen);
9518 
9519 		if (un->un_f_cfg_is_atapi == TRUE) {
9520 			mhp = (struct mode_header_grp2 *)header;
9521 			mhp->bdesc_length_hi = bd_len >> 8;
9522 			mhp->bdesc_length_lo = (uchar_t)bd_len & 0xff;
9523 		} else {
9524 			((struct mode_header *)header)->bdesc_length = bd_len;
9525 		}
9526 
9527 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9528 
9529 		/* Issue mode select to change the cache settings */
9530 		if (un->un_f_cfg_is_atapi == TRUE) {
9531 			rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP1, header,
9532 			    sbuflen, save_pg, SD_PATH_DIRECT);
9533 		} else {
9534 			rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, header,
9535 			    sbuflen, save_pg, SD_PATH_DIRECT);
9536 		}
9537 
9538 	}
9539 
9540 
9541 mode_sense_failed:
9542 
9543 	kmem_free(header, buflen);
9544 
9545 	if (rval != 0) {
9546 		if (rval == EIO)
9547 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
9548 		else
9549 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9550 	}
9551 	return (rval);
9552 }
9553 
9554 
9555 /*
9556  *    Function: sd_get_write_cache_enabled()
9557  *
9558  * Description: This routine is the driver entry point for determining if
9559  *		write caching is enabled.  It examines the WCE (write cache
9560  *		enable) bits of mode page 8 (MODEPAGE_CACHING).
9561  *
9562  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
9563  *                      structure for this target.
9564  *		is_enabled - pointer to int where write cache enabled state
9565  *		is returned (non-zero -> write cache enabled)
9566  *
9567  *
9568  * Return Code: EIO
9569  *		code returned by sd_send_scsi_MODE_SENSE
9570  *
9571  *     Context: Kernel Thread
9572  *
9573  * NOTE: If ioctl is added to disable write cache, this sequence should
9574  * be followed so that no locking is required for accesses to
9575  * un->un_f_write_cache_enabled:
9576  * 	do mode select to clear wce
9577  * 	do synchronize cache to flush cache
9578  * 	set un->un_f_write_cache_enabled = FALSE
9579  *
9580  * Conversely, an ioctl to enable the write cache should be done
9581  * in this order:
9582  * 	set un->un_f_write_cache_enabled = TRUE
9583  * 	do mode select to set wce
9584  */
9585 
9586 static int
9587 sd_get_write_cache_enabled(sd_ssc_t *ssc, int *is_enabled)
9588 {
9589 	struct mode_caching	*mode_caching_page;
9590 	uchar_t			*header;
9591 	size_t			buflen;
9592 	int			hdrlen;
9593 	int			bd_len;
9594 	int			rval = 0;
9595 	struct sd_lun		*un;
9596 	int			status;
9597 
9598 	ASSERT(ssc != NULL);
9599 	un = ssc->ssc_un;
9600 	ASSERT(un != NULL);
9601 	ASSERT(is_enabled != NULL);
9602 
9603 	/* in case of error, flag as enabled */
9604 	*is_enabled = TRUE;
9605 
9606 	/*
9607 	 * Do a test unit ready, otherwise a mode sense may not work if this
9608 	 * is the first command sent to the device after boot.
9609 	 */
9610 	status = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
9611 
9612 	if (status != 0)
9613 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9614 
9615 	if (un->un_f_cfg_is_atapi == TRUE) {
9616 		hdrlen = MODE_HEADER_LENGTH_GRP2;
9617 	} else {
9618 		hdrlen = MODE_HEADER_LENGTH;
9619 	}
9620 
9621 	/*
9622 	 * Allocate memory for the retrieved mode page and its headers.  Set
9623 	 * a pointer to the page itself.
9624 	 */
9625 	buflen = hdrlen + MODE_BLK_DESC_LENGTH + sizeof (struct mode_caching);
9626 	header = kmem_zalloc(buflen, KM_SLEEP);
9627 
9628 	/* Get the information from the device. */
9629 	if (un->un_f_cfg_is_atapi == TRUE) {
9630 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, header, buflen,
9631 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9632 	} else {
9633 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen,
9634 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9635 	}
9636 
9637 	if (rval != 0) {
9638 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
9639 		    "sd_get_write_cache_enabled: Mode Sense Failed\n");
9640 		goto mode_sense_failed;
9641 	}
9642 
9643 	/*
9644 	 * Determine size of Block Descriptors in order to locate
9645 	 * the mode page data. ATAPI devices return 0, SCSI devices
9646 	 * should return MODE_BLK_DESC_LENGTH.
9647 	 */
9648 	if (un->un_f_cfg_is_atapi == TRUE) {
9649 		struct mode_header_grp2	*mhp;
9650 		mhp	= (struct mode_header_grp2 *)header;
9651 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
9652 	} else {
9653 		bd_len  = ((struct mode_header *)header)->bdesc_length;
9654 	}
9655 
9656 	if (bd_len > MODE_BLK_DESC_LENGTH) {
9657 		/* FMA should make upset complain here */
9658 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, 0,
9659 		    "sd_get_write_cache_enabled: Mode Sense returned invalid "
9660 		    "block descriptor length\n");
9661 		rval = EIO;
9662 		goto mode_sense_failed;
9663 	}
9664 
9665 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
9666 	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
9667 		/* FMA could make upset complain here */
9668 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
9669 		    "sd_get_write_cache_enabled: Mode Sense caching page "
9670 		    "code mismatch %d\n", mode_caching_page->mode_page.code);
9671 		rval = EIO;
9672 		goto mode_sense_failed;
9673 	}
9674 	*is_enabled = mode_caching_page->wce;
9675 
9676 mode_sense_failed:
9677 	if (rval == 0) {
9678 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
9679 	} else if (rval == EIO) {
9680 		/*
9681 		 * Some disks do not support mode sense(6), we
9682 		 * should ignore this kind of error(sense key is
9683 		 * 0x5 - illegal request).
9684 		 */
9685 		uint8_t *sensep;
9686 		int senlen;
9687 
9688 		sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf;
9689 		senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen -
9690 		    ssc->ssc_uscsi_cmd->uscsi_rqresid);
9691 
9692 		if (senlen > 0 &&
9693 		    scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) {
9694 			sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE);
9695 		} else {
9696 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
9697 		}
9698 	} else {
9699 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9700 	}
9701 	kmem_free(header, buflen);
9702 	return (rval);
9703 }
9704 
9705 /*
9706  *    Function: sd_get_nv_sup()
9707  *
9708  * Description: This routine is the driver entry point for
9709  * determining whether non-volatile cache is supported. This
9710  * determination process works as follows:
9711  *
9712  * 1. sd first queries sd.conf on whether
9713  * suppress_cache_flush bit is set for this device.
9714  *
9715  * 2. if not there, then queries the internal disk table.
9716  *
9717  * 3. if either sd.conf or internal disk table specifies
9718  * cache flush be suppressed, we don't bother checking
9719  * NV_SUP bit.
9720  *
9721  * If SUPPRESS_CACHE_FLUSH bit is not set to 1, sd queries
9722  * the optional INQUIRY VPD page 0x86. If the device
9723  * supports VPD page 0x86, sd examines the NV_SUP
9724  * (non-volatile cache support) bit in the INQUIRY VPD page
9725  * 0x86:
9726  *   o If NV_SUP bit is set, sd assumes the device has a
9727  *   non-volatile cache and set the
9728  *   un_f_sync_nv_supported to TRUE.
9729  *   o Otherwise cache is not non-volatile,
9730  *   un_f_sync_nv_supported is set to FALSE.
9731  *
9732  * Arguments: un - driver soft state (unit) structure
9733  *
9734  * Return Code:
9735  *
9736  *     Context: Kernel Thread
9737  */
9738 
9739 static void
9740 sd_get_nv_sup(sd_ssc_t *ssc)
9741 {
9742 	int		rval		= 0;
9743 	uchar_t		*inq86		= NULL;
9744 	size_t		inq86_len	= MAX_INQUIRY_SIZE;
9745 	size_t		inq86_resid	= 0;
9746 	struct		dk_callback *dkc;
9747 	struct sd_lun	*un;
9748 
9749 	ASSERT(ssc != NULL);
9750 	un = ssc->ssc_un;
9751 	ASSERT(un != NULL);
9752 
9753 	mutex_enter(SD_MUTEX(un));
9754 
9755 	/*
9756 	 * Be conservative on the device's support of
9757 	 * SYNC_NV bit: un_f_sync_nv_supported is
9758 	 * initialized to be false.
9759 	 */
9760 	un->un_f_sync_nv_supported = FALSE;
9761 
9762 	/*
9763 	 * If either sd.conf or internal disk table
9764 	 * specifies cache flush be suppressed, then
9765 	 * we don't bother checking NV_SUP bit.
9766 	 */
9767 	if (un->un_f_suppress_cache_flush == TRUE) {
9768 		mutex_exit(SD_MUTEX(un));
9769 		return;
9770 	}
9771 
9772 	if (sd_check_vpd_page_support(ssc) == 0 &&
9773 	    un->un_vpd_page_mask & SD_VPD_EXTENDED_DATA_PG) {
9774 		mutex_exit(SD_MUTEX(un));
9775 		/* collect page 86 data if available */
9776 		inq86 = kmem_zalloc(inq86_len, KM_SLEEP);
9777 
9778 		rval = sd_send_scsi_INQUIRY(ssc, inq86, inq86_len,
9779 		    0x01, 0x86, &inq86_resid);
9780 
9781 		if (rval == 0 && (inq86_len - inq86_resid > 6)) {
9782 			SD_TRACE(SD_LOG_COMMON, un,
9783 			    "sd_get_nv_sup: \
9784 			    successfully get VPD page: %x \
9785 			    PAGE LENGTH: %x BYTE 6: %x\n",
9786 			    inq86[1], inq86[3], inq86[6]);
9787 
9788 			mutex_enter(SD_MUTEX(un));
9789 			/*
9790 			 * check the value of NV_SUP bit: only if the device
9791 			 * reports NV_SUP bit to be 1, the
9792 			 * un_f_sync_nv_supported bit will be set to true.
9793 			 */
9794 			if (inq86[6] & SD_VPD_NV_SUP) {
9795 				un->un_f_sync_nv_supported = TRUE;
9796 			}
9797 			mutex_exit(SD_MUTEX(un));
9798 		} else if (rval != 0) {
9799 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9800 		}
9801 
9802 		kmem_free(inq86, inq86_len);
9803 	} else {
9804 		mutex_exit(SD_MUTEX(un));
9805 	}
9806 
9807 	/*
9808 	 * Send a SYNC CACHE command to check whether
9809 	 * SYNC_NV bit is supported. This command should have
9810 	 * un_f_sync_nv_supported set to correct value.
9811 	 */
9812 	mutex_enter(SD_MUTEX(un));
9813 	if (un->un_f_sync_nv_supported) {
9814 		mutex_exit(SD_MUTEX(un));
9815 		dkc = kmem_zalloc(sizeof (struct dk_callback), KM_SLEEP);
9816 		dkc->dkc_flag = FLUSH_VOLATILE;
9817 		(void) sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc);
9818 
9819 		/*
9820 		 * Send a TEST UNIT READY command to the device. This should
9821 		 * clear any outstanding UNIT ATTENTION that may be present.
9822 		 */
9823 		rval = sd_send_scsi_TEST_UNIT_READY(ssc, SD_DONT_RETRY_TUR);
9824 		if (rval != 0)
9825 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9826 
9827 		kmem_free(dkc, sizeof (struct dk_callback));
9828 	} else {
9829 		mutex_exit(SD_MUTEX(un));
9830 	}
9831 
9832 	SD_TRACE(SD_LOG_COMMON, un, "sd_get_nv_sup: \
9833 	    un_f_suppress_cache_flush is set to %d\n",
9834 	    un->un_f_suppress_cache_flush);
9835 }
9836 
9837 /*
9838  *    Function: sd_make_device
9839  *
9840  * Description: Utility routine to return the Solaris device number from
9841  *		the data in the device's dev_info structure.
9842  *
9843  * Return Code: The Solaris device number
9844  *
9845  *     Context: Any
9846  */
9847 
9848 static dev_t
9849 sd_make_device(dev_info_t *devi)
9850 {
9851 	return (makedevice(ddi_driver_major(devi),
9852 	    ddi_get_instance(devi) << SDUNIT_SHIFT));
9853 }
9854 
9855 
9856 /*
9857  *    Function: sd_pm_entry
9858  *
9859  * Description: Called at the start of a new command to manage power
9860  *		and busy status of a device. This includes determining whether
9861  *		the current power state of the device is sufficient for
9862  *		performing the command or whether it must be changed.
9863  *		The PM framework is notified appropriately.
9864  *		Only with a return status of DDI_SUCCESS will the
9865  *		component be busy to the framework.
9866  *
9867  *		All callers of sd_pm_entry must check the return status
9868  *		and only call sd_pm_exit it it was DDI_SUCCESS. A status
9869  *		of DDI_FAILURE indicates the device failed to power up.
9870  *		In this case un_pm_count has been adjusted so the result
9871  *		on exit is still powered down, ie. count is less than 0.
9872  *		Calling sd_pm_exit with this count value hits an ASSERT.
9873  *
9874  * Return Code: DDI_SUCCESS or DDI_FAILURE
9875  *
9876  *     Context: Kernel thread context.
9877  */
9878 
9879 static int
9880 sd_pm_entry(struct sd_lun *un)
9881 {
9882 	int return_status = DDI_SUCCESS;
9883 
9884 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9885 	ASSERT(!mutex_owned(&un->un_pm_mutex));
9886 
9887 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: entry\n");
9888 
9889 	if (un->un_f_pm_is_enabled == FALSE) {
9890 		SD_TRACE(SD_LOG_IO_PM, un,
9891 		    "sd_pm_entry: exiting, PM not enabled\n");
9892 		return (return_status);
9893 	}
9894 
9895 	/*
9896 	 * Just increment a counter if PM is enabled. On the transition from
9897 	 * 0 ==> 1, mark the device as busy.  The iodone side will decrement
9898 	 * the count with each IO and mark the device as idle when the count
9899 	 * hits 0.
9900 	 *
9901 	 * If the count is less than 0 the device is powered down. If a powered
9902 	 * down device is successfully powered up then the count must be
9903 	 * incremented to reflect the power up. Note that it'll get incremented
9904 	 * a second time to become busy.
9905 	 *
9906 	 * Because the following has the potential to change the device state
9907 	 * and must release the un_pm_mutex to do so, only one thread can be
9908 	 * allowed through at a time.
9909 	 */
9910 
9911 	mutex_enter(&un->un_pm_mutex);
9912 	while (un->un_pm_busy == TRUE) {
9913 		cv_wait(&un->un_pm_busy_cv, &un->un_pm_mutex);
9914 	}
9915 	un->un_pm_busy = TRUE;
9916 
9917 	if (un->un_pm_count < 1) {
9918 
9919 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: busy component\n");
9920 
9921 		/*
9922 		 * Indicate we are now busy so the framework won't attempt to
9923 		 * power down the device. This call will only fail if either
9924 		 * we passed a bad component number or the device has no
9925 		 * components. Neither of these should ever happen.
9926 		 */
9927 		mutex_exit(&un->un_pm_mutex);
9928 		return_status = pm_busy_component(SD_DEVINFO(un), 0);
9929 		ASSERT(return_status == DDI_SUCCESS);
9930 
9931 		mutex_enter(&un->un_pm_mutex);
9932 
9933 		if (un->un_pm_count < 0) {
9934 			mutex_exit(&un->un_pm_mutex);
9935 
9936 			SD_TRACE(SD_LOG_IO_PM, un,
9937 			    "sd_pm_entry: power up component\n");
9938 
9939 			/*
9940 			 * pm_raise_power will cause sdpower to be called
9941 			 * which brings the device power level to the
9942 			 * desired state, If successful, un_pm_count and
9943 			 * un_power_level will be updated appropriately.
9944 			 */
9945 			return_status = pm_raise_power(SD_DEVINFO(un), 0,
9946 			    SD_PM_STATE_ACTIVE(un));
9947 
9948 			mutex_enter(&un->un_pm_mutex);
9949 
9950 			if (return_status != DDI_SUCCESS) {
9951 				/*
9952 				 * Power up failed.
9953 				 * Idle the device and adjust the count
9954 				 * so the result on exit is that we're
9955 				 * still powered down, ie. count is less than 0.
9956 				 */
9957 				SD_TRACE(SD_LOG_IO_PM, un,
9958 				    "sd_pm_entry: power up failed,"
9959 				    " idle the component\n");
9960 
9961 				(void) pm_idle_component(SD_DEVINFO(un), 0);
9962 				un->un_pm_count--;
9963 			} else {
9964 				/*
9965 				 * Device is powered up, verify the
9966 				 * count is non-negative.
9967 				 * This is debug only.
9968 				 */
9969 				ASSERT(un->un_pm_count == 0);
9970 			}
9971 		}
9972 
9973 		if (return_status == DDI_SUCCESS) {
9974 			/*
9975 			 * For performance, now that the device has been tagged
9976 			 * as busy, and it's known to be powered up, update the
9977 			 * chain types to use jump tables that do not include
9978 			 * pm. This significantly lowers the overhead and
9979 			 * therefore improves performance.
9980 			 */
9981 
9982 			mutex_exit(&un->un_pm_mutex);
9983 			mutex_enter(SD_MUTEX(un));
9984 			SD_TRACE(SD_LOG_IO_PM, un,
9985 			    "sd_pm_entry: changing uscsi_chain_type from %d\n",
9986 			    un->un_uscsi_chain_type);
9987 
9988 			if (un->un_f_non_devbsize_supported) {
9989 				un->un_buf_chain_type =
9990 				    SD_CHAIN_INFO_RMMEDIA_NO_PM;
9991 			} else {
9992 				un->un_buf_chain_type =
9993 				    SD_CHAIN_INFO_DISK_NO_PM;
9994 			}
9995 			un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
9996 
9997 			SD_TRACE(SD_LOG_IO_PM, un,
9998 			    "             changed  uscsi_chain_type to   %d\n",
9999 			    un->un_uscsi_chain_type);
10000 			mutex_exit(SD_MUTEX(un));
10001 			mutex_enter(&un->un_pm_mutex);
10002 
10003 			if (un->un_pm_idle_timeid == NULL) {
10004 				/* 300 ms. */
10005 				un->un_pm_idle_timeid =
10006 				    timeout(sd_pm_idletimeout_handler, un,
10007 				    (drv_usectohz((clock_t)300000)));
10008 				/*
10009 				 * Include an extra call to busy which keeps the
10010 				 * device busy with-respect-to the PM layer
10011 				 * until the timer fires, at which time it'll
10012 				 * get the extra idle call.
10013 				 */
10014 				(void) pm_busy_component(SD_DEVINFO(un), 0);
10015 			}
10016 		}
10017 	}
10018 	un->un_pm_busy = FALSE;
10019 	/* Next... */
10020 	cv_signal(&un->un_pm_busy_cv);
10021 
10022 	un->un_pm_count++;
10023 
10024 	SD_TRACE(SD_LOG_IO_PM, un,
10025 	    "sd_pm_entry: exiting, un_pm_count = %d\n", un->un_pm_count);
10026 
10027 	mutex_exit(&un->un_pm_mutex);
10028 
10029 	return (return_status);
10030 }
10031 
10032 
10033 /*
10034  *    Function: sd_pm_exit
10035  *
10036  * Description: Called at the completion of a command to manage busy
10037  *		status for the device. If the device becomes idle the
10038  *		PM framework is notified.
10039  *
10040  *     Context: Kernel thread context
10041  */
10042 
10043 static void
10044 sd_pm_exit(struct sd_lun *un)
10045 {
10046 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10047 	ASSERT(!mutex_owned(&un->un_pm_mutex));
10048 
10049 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: entry\n");
10050 
10051 	/*
10052 	 * After attach the following flag is only read, so don't
10053 	 * take the penalty of acquiring a mutex for it.
10054 	 */
10055 	if (un->un_f_pm_is_enabled == TRUE) {
10056 
10057 		mutex_enter(&un->un_pm_mutex);
10058 		un->un_pm_count--;
10059 
10060 		SD_TRACE(SD_LOG_IO_PM, un,
10061 		    "sd_pm_exit: un_pm_count = %d\n", un->un_pm_count);
10062 
10063 		ASSERT(un->un_pm_count >= 0);
10064 		if (un->un_pm_count == 0) {
10065 			mutex_exit(&un->un_pm_mutex);
10066 
10067 			SD_TRACE(SD_LOG_IO_PM, un,
10068 			    "sd_pm_exit: idle component\n");
10069 
10070 			(void) pm_idle_component(SD_DEVINFO(un), 0);
10071 
10072 		} else {
10073 			mutex_exit(&un->un_pm_mutex);
10074 		}
10075 	}
10076 
10077 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: exiting\n");
10078 }
10079 
10080 
10081 /*
10082  *    Function: sdopen
10083  *
10084  * Description: Driver's open(9e) entry point function.
10085  *
10086  *   Arguments: dev_i   - pointer to device number
10087  *		flag    - how to open file (FEXCL, FNDELAY, FREAD, FWRITE)
10088  *		otyp    - open type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
10089  *		cred_p  - user credential pointer
10090  *
10091  * Return Code: EINVAL
10092  *		ENXIO
10093  *		EIO
10094  *		EROFS
10095  *		EBUSY
10096  *
10097  *     Context: Kernel thread context
10098  */
10099 /* ARGSUSED */
10100 static int
10101 sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p)
10102 {
10103 	struct sd_lun	*un;
10104 	int		nodelay;
10105 	int		part;
10106 	uint64_t	partmask;
10107 	int		instance;
10108 	dev_t		dev;
10109 	int		rval = EIO;
10110 	diskaddr_t	nblks = 0;
10111 	diskaddr_t	label_cap;
10112 
10113 	/* Validate the open type */
10114 	if (otyp >= OTYPCNT) {
10115 		return (EINVAL);
10116 	}
10117 
10118 	dev = *dev_p;
10119 	instance = SDUNIT(dev);
10120 	mutex_enter(&sd_detach_mutex);
10121 
10122 	/*
10123 	 * Fail the open if there is no softstate for the instance, or
10124 	 * if another thread somewhere is trying to detach the instance.
10125 	 */
10126 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
10127 	    (un->un_detach_count != 0)) {
10128 		mutex_exit(&sd_detach_mutex);
10129 		/*
10130 		 * The probe cache only needs to be cleared when open (9e) fails
10131 		 * with ENXIO (4238046).
10132 		 */
10133 		/*
10134 		 * un-conditionally clearing probe cache is ok with
10135 		 * separate sd/ssd binaries
10136 		 * x86 platform can be an issue with both parallel
10137 		 * and fibre in 1 binary
10138 		 */
10139 		sd_scsi_clear_probe_cache();
10140 		return (ENXIO);
10141 	}
10142 
10143 	/*
10144 	 * The un_layer_count is to prevent another thread in specfs from
10145 	 * trying to detach the instance, which can happen when we are
10146 	 * called from a higher-layer driver instead of thru specfs.
10147 	 * This will not be needed when DDI provides a layered driver
10148 	 * interface that allows specfs to know that an instance is in
10149 	 * use by a layered driver & should not be detached.
10150 	 *
10151 	 * Note: the semantics for layered driver opens are exactly one
10152 	 * close for every open.
10153 	 */
10154 	if (otyp == OTYP_LYR) {
10155 		un->un_layer_count++;
10156 	}
10157 
10158 	/*
10159 	 * Keep a count of the current # of opens in progress. This is because
10160 	 * some layered drivers try to call us as a regular open. This can
10161 	 * cause problems that we cannot prevent, however by keeping this count
10162 	 * we can at least keep our open and detach routines from racing against
10163 	 * each other under such conditions.
10164 	 */
10165 	un->un_opens_in_progress++;
10166 	mutex_exit(&sd_detach_mutex);
10167 
10168 	nodelay  = (flag & (FNDELAY | FNONBLOCK));
10169 	part	 = SDPART(dev);
10170 	partmask = 1 << part;
10171 
10172 	/*
10173 	 * We use a semaphore here in order to serialize
10174 	 * open and close requests on the device.
10175 	 */
10176 	sema_p(&un->un_semoclose);
10177 
10178 	mutex_enter(SD_MUTEX(un));
10179 
10180 	/*
10181 	 * All device accesses go thru sdstrategy() where we check
10182 	 * on suspend status but there could be a scsi_poll command,
10183 	 * which bypasses sdstrategy(), so we need to check pm
10184 	 * status.
10185 	 */
10186 
10187 	if (!nodelay) {
10188 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10189 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10190 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10191 		}
10192 
10193 		mutex_exit(SD_MUTEX(un));
10194 		if (sd_pm_entry(un) != DDI_SUCCESS) {
10195 			rval = EIO;
10196 			SD_ERROR(SD_LOG_OPEN_CLOSE, un,
10197 			    "sdopen: sd_pm_entry failed\n");
10198 			goto open_failed_with_pm;
10199 		}
10200 		mutex_enter(SD_MUTEX(un));
10201 	}
10202 
10203 	/* check for previous exclusive open */
10204 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: un=%p\n", (void *)un);
10205 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
10206 	    "sdopen: exclopen=%x, flag=%x, regopen=%x\n",
10207 	    un->un_exclopen, flag, un->un_ocmap.regopen[otyp]);
10208 
10209 	if (un->un_exclopen & (partmask)) {
10210 		goto excl_open_fail;
10211 	}
10212 
10213 	if (flag & FEXCL) {
10214 		int i;
10215 		if (un->un_ocmap.lyropen[part]) {
10216 			goto excl_open_fail;
10217 		}
10218 		for (i = 0; i < (OTYPCNT - 1); i++) {
10219 			if (un->un_ocmap.regopen[i] & (partmask)) {
10220 				goto excl_open_fail;
10221 			}
10222 		}
10223 	}
10224 
10225 	/*
10226 	 * Check the write permission if this is a removable media device,
10227 	 * NDELAY has not been set, and writable permission is requested.
10228 	 *
10229 	 * Note: If NDELAY was set and this is write-protected media the WRITE
10230 	 * attempt will fail with EIO as part of the I/O processing. This is a
10231 	 * more permissive implementation that allows the open to succeed and
10232 	 * WRITE attempts to fail when appropriate.
10233 	 */
10234 	if (un->un_f_chk_wp_open) {
10235 		if ((flag & FWRITE) && (!nodelay)) {
10236 			mutex_exit(SD_MUTEX(un));
10237 			/*
10238 			 * Defer the check for write permission on writable
10239 			 * DVD drive till sdstrategy and will not fail open even
10240 			 * if FWRITE is set as the device can be writable
10241 			 * depending upon the media and the media can change
10242 			 * after the call to open().
10243 			 */
10244 			if (un->un_f_dvdram_writable_device == FALSE) {
10245 				if (ISCD(un) || sr_check_wp(dev)) {
10246 				rval = EROFS;
10247 				mutex_enter(SD_MUTEX(un));
10248 				SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10249 				    "write to cd or write protected media\n");
10250 				goto open_fail;
10251 				}
10252 			}
10253 			mutex_enter(SD_MUTEX(un));
10254 		}
10255 	}
10256 
10257 	/*
10258 	 * If opening in NDELAY/NONBLOCK mode, just return.
10259 	 * Check if disk is ready and has a valid geometry later.
10260 	 */
10261 	if (!nodelay) {
10262 		sd_ssc_t	*ssc;
10263 
10264 		mutex_exit(SD_MUTEX(un));
10265 		ssc = sd_ssc_init(un);
10266 		rval = sd_ready_and_valid(ssc, part);
10267 		sd_ssc_fini(ssc);
10268 		mutex_enter(SD_MUTEX(un));
10269 		/*
10270 		 * Fail if device is not ready or if the number of disk
10271 		 * blocks is zero or negative for non CD devices.
10272 		 */
10273 
10274 		nblks = 0;
10275 
10276 		if (rval == SD_READY_VALID && (!ISCD(un))) {
10277 			/* if cmlb_partinfo fails, nblks remains 0 */
10278 			mutex_exit(SD_MUTEX(un));
10279 			(void) cmlb_partinfo(un->un_cmlbhandle, part, &nblks,
10280 			    NULL, NULL, NULL, (void *)SD_PATH_DIRECT);
10281 			mutex_enter(SD_MUTEX(un));
10282 		}
10283 
10284 		if ((rval != SD_READY_VALID) ||
10285 		    (!ISCD(un) && nblks <= 0)) {
10286 			rval = un->un_f_has_removable_media ? ENXIO : EIO;
10287 			SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10288 			    "device not ready or invalid disk block value\n");
10289 			goto open_fail;
10290 		}
10291 #if defined(__i386) || defined(__amd64)
10292 	} else {
10293 		uchar_t *cp;
10294 		/*
10295 		 * x86 requires special nodelay handling, so that p0 is
10296 		 * always defined and accessible.
10297 		 * Invalidate geometry only if device is not already open.
10298 		 */
10299 		cp = &un->un_ocmap.chkd[0];
10300 		while (cp < &un->un_ocmap.chkd[OCSIZE]) {
10301 			if (*cp != (uchar_t)0) {
10302 				break;
10303 			}
10304 			cp++;
10305 		}
10306 		if (cp == &un->un_ocmap.chkd[OCSIZE]) {
10307 			mutex_exit(SD_MUTEX(un));
10308 			cmlb_invalidate(un->un_cmlbhandle,
10309 			    (void *)SD_PATH_DIRECT);
10310 			mutex_enter(SD_MUTEX(un));
10311 		}
10312 
10313 #endif
10314 	}
10315 
10316 	if (otyp == OTYP_LYR) {
10317 		un->un_ocmap.lyropen[part]++;
10318 	} else {
10319 		un->un_ocmap.regopen[otyp] |= partmask;
10320 	}
10321 
10322 	/* Set up open and exclusive open flags */
10323 	if (flag & FEXCL) {
10324 		un->un_exclopen |= (partmask);
10325 	}
10326 
10327 	/*
10328 	 * If the lun is EFI labeled and lun capacity is greater than the
10329 	 * capacity contained in the label, log a sys-event to notify the
10330 	 * interested module.
10331 	 * To avoid an infinite loop of logging sys-event, we only log the
10332 	 * event when the lun is not opened in NDELAY mode. The event handler
10333 	 * should open the lun in NDELAY mode.
10334 	 */
10335 	if (!nodelay) {
10336 		mutex_exit(SD_MUTEX(un));
10337 		if (cmlb_efi_label_capacity(un->un_cmlbhandle, &label_cap,
10338 		    (void*)SD_PATH_DIRECT) == 0) {
10339 			mutex_enter(SD_MUTEX(un));
10340 			if (un->un_f_blockcount_is_valid &&
10341 			    un->un_blockcount > label_cap &&
10342 			    un->un_f_expnevent == B_FALSE) {
10343 				un->un_f_expnevent = B_TRUE;
10344 				mutex_exit(SD_MUTEX(un));
10345 				sd_log_lun_expansion_event(un,
10346 				    (nodelay ? KM_NOSLEEP : KM_SLEEP));
10347 				mutex_enter(SD_MUTEX(un));
10348 			}
10349 		} else {
10350 			mutex_enter(SD_MUTEX(un));
10351 		}
10352 	}
10353 
10354 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10355 	    "open of part %d type %d\n", part, otyp);
10356 
10357 	mutex_exit(SD_MUTEX(un));
10358 	if (!nodelay) {
10359 		sd_pm_exit(un);
10360 	}
10361 
10362 	sema_v(&un->un_semoclose);
10363 
10364 	mutex_enter(&sd_detach_mutex);
10365 	un->un_opens_in_progress--;
10366 	mutex_exit(&sd_detach_mutex);
10367 
10368 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: exit success\n");
10369 	return (DDI_SUCCESS);
10370 
10371 excl_open_fail:
10372 	SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: fail exclusive open\n");
10373 	rval = EBUSY;
10374 
10375 open_fail:
10376 	mutex_exit(SD_MUTEX(un));
10377 
10378 	/*
10379 	 * On a failed open we must exit the pm management.
10380 	 */
10381 	if (!nodelay) {
10382 		sd_pm_exit(un);
10383 	}
10384 open_failed_with_pm:
10385 	sema_v(&un->un_semoclose);
10386 
10387 	mutex_enter(&sd_detach_mutex);
10388 	un->un_opens_in_progress--;
10389 	if (otyp == OTYP_LYR) {
10390 		un->un_layer_count--;
10391 	}
10392 	mutex_exit(&sd_detach_mutex);
10393 
10394 	return (rval);
10395 }
10396 
10397 
10398 /*
10399  *    Function: sdclose
10400  *
10401  * Description: Driver's close(9e) entry point function.
10402  *
10403  *   Arguments: dev    - device number
10404  *		flag   - file status flag, informational only
10405  *		otyp   - close type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
10406  *		cred_p - user credential pointer
10407  *
10408  * Return Code: ENXIO
10409  *
10410  *     Context: Kernel thread context
10411  */
10412 /* ARGSUSED */
10413 static int
10414 sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p)
10415 {
10416 	struct sd_lun	*un;
10417 	uchar_t		*cp;
10418 	int		part;
10419 	int		nodelay;
10420 	int		rval = 0;
10421 
10422 	/* Validate the open type */
10423 	if (otyp >= OTYPCNT) {
10424 		return (ENXIO);
10425 	}
10426 
10427 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10428 		return (ENXIO);
10429 	}
10430 
10431 	part = SDPART(dev);
10432 	nodelay = flag & (FNDELAY | FNONBLOCK);
10433 
10434 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
10435 	    "sdclose: close of part %d type %d\n", part, otyp);
10436 
10437 	/*
10438 	 * We use a semaphore here in order to serialize
10439 	 * open and close requests on the device.
10440 	 */
10441 	sema_p(&un->un_semoclose);
10442 
10443 	mutex_enter(SD_MUTEX(un));
10444 
10445 	/* Don't proceed if power is being changed. */
10446 	while (un->un_state == SD_STATE_PM_CHANGING) {
10447 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10448 	}
10449 
10450 	if (un->un_exclopen & (1 << part)) {
10451 		un->un_exclopen &= ~(1 << part);
10452 	}
10453 
10454 	/* Update the open partition map */
10455 	if (otyp == OTYP_LYR) {
10456 		un->un_ocmap.lyropen[part] -= 1;
10457 	} else {
10458 		un->un_ocmap.regopen[otyp] &= ~(1 << part);
10459 	}
10460 
10461 	cp = &un->un_ocmap.chkd[0];
10462 	while (cp < &un->un_ocmap.chkd[OCSIZE]) {
10463 		if (*cp != NULL) {
10464 			break;
10465 		}
10466 		cp++;
10467 	}
10468 
10469 	if (cp == &un->un_ocmap.chkd[OCSIZE]) {
10470 		SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdclose: last close\n");
10471 
10472 		/*
10473 		 * We avoid persistance upon the last close, and set
10474 		 * the throttle back to the maximum.
10475 		 */
10476 		un->un_throttle = un->un_saved_throttle;
10477 
10478 		if (un->un_state == SD_STATE_OFFLINE) {
10479 			if (un->un_f_is_fibre == FALSE) {
10480 				scsi_log(SD_DEVINFO(un), sd_label,
10481 				    CE_WARN, "offline\n");
10482 			}
10483 			mutex_exit(SD_MUTEX(un));
10484 			cmlb_invalidate(un->un_cmlbhandle,
10485 			    (void *)SD_PATH_DIRECT);
10486 			mutex_enter(SD_MUTEX(un));
10487 
10488 		} else {
10489 			/*
10490 			 * Flush any outstanding writes in NVRAM cache.
10491 			 * Note: SYNCHRONIZE CACHE is an optional SCSI-2
10492 			 * cmd, it may not work for non-Pluto devices.
10493 			 * SYNCHRONIZE CACHE is not required for removables,
10494 			 * except DVD-RAM drives.
10495 			 *
10496 			 * Also note: because SYNCHRONIZE CACHE is currently
10497 			 * the only command issued here that requires the
10498 			 * drive be powered up, only do the power up before
10499 			 * sending the Sync Cache command. If additional
10500 			 * commands are added which require a powered up
10501 			 * drive, the following sequence may have to change.
10502 			 *
10503 			 * And finally, note that parallel SCSI on SPARC
10504 			 * only issues a Sync Cache to DVD-RAM, a newly
10505 			 * supported device.
10506 			 */
10507 #if defined(__i386) || defined(__amd64)
10508 			if ((un->un_f_sync_cache_supported &&
10509 			    un->un_f_sync_cache_required) ||
10510 			    un->un_f_dvdram_writable_device == TRUE) {
10511 #else
10512 			if (un->un_f_dvdram_writable_device == TRUE) {
10513 #endif
10514 				mutex_exit(SD_MUTEX(un));
10515 				if (sd_pm_entry(un) == DDI_SUCCESS) {
10516 					rval =
10517 					    sd_send_scsi_SYNCHRONIZE_CACHE(un,
10518 					    NULL);
10519 					/* ignore error if not supported */
10520 					if (rval == ENOTSUP) {
10521 						rval = 0;
10522 					} else if (rval != 0) {
10523 						rval = EIO;
10524 					}
10525 					sd_pm_exit(un);
10526 				} else {
10527 					rval = EIO;
10528 				}
10529 				mutex_enter(SD_MUTEX(un));
10530 			}
10531 
10532 			/*
10533 			 * For devices which supports DOOR_LOCK, send an ALLOW
10534 			 * MEDIA REMOVAL command, but don't get upset if it
10535 			 * fails. We need to raise the power of the drive before
10536 			 * we can call sd_send_scsi_DOORLOCK()
10537 			 */
10538 			if (un->un_f_doorlock_supported) {
10539 				mutex_exit(SD_MUTEX(un));
10540 				if (sd_pm_entry(un) == DDI_SUCCESS) {
10541 					sd_ssc_t	*ssc;
10542 
10543 					ssc = sd_ssc_init(un);
10544 					rval = sd_send_scsi_DOORLOCK(ssc,
10545 					    SD_REMOVAL_ALLOW, SD_PATH_DIRECT);
10546 					if (rval != 0)
10547 						sd_ssc_assessment(ssc,
10548 						    SD_FMT_IGNORE);
10549 					sd_ssc_fini(ssc);
10550 
10551 					sd_pm_exit(un);
10552 					if (ISCD(un) && (rval != 0) &&
10553 					    (nodelay != 0)) {
10554 						rval = ENXIO;
10555 					}
10556 				} else {
10557 					rval = EIO;
10558 				}
10559 				mutex_enter(SD_MUTEX(un));
10560 			}
10561 
10562 			/*
10563 			 * If a device has removable media, invalidate all
10564 			 * parameters related to media, such as geometry,
10565 			 * blocksize, and blockcount.
10566 			 */
10567 			if (un->un_f_has_removable_media) {
10568 				sr_ejected(un);
10569 			}
10570 
10571 			/*
10572 			 * Destroy the cache (if it exists) which was
10573 			 * allocated for the write maps since this is
10574 			 * the last close for this media.
10575 			 */
10576 			if (un->un_wm_cache) {
10577 				/*
10578 				 * Check if there are pending commands.
10579 				 * and if there are give a warning and
10580 				 * do not destroy the cache.
10581 				 */
10582 				if (un->un_ncmds_in_driver > 0) {
10583 					scsi_log(SD_DEVINFO(un),
10584 					    sd_label, CE_WARN,
10585 					    "Unable to clean up memory "
10586 					    "because of pending I/O\n");
10587 				} else {
10588 					kmem_cache_destroy(
10589 					    un->un_wm_cache);
10590 					un->un_wm_cache = NULL;
10591 				}
10592 			}
10593 		}
10594 	}
10595 
10596 	mutex_exit(SD_MUTEX(un));
10597 	sema_v(&un->un_semoclose);
10598 
10599 	if (otyp == OTYP_LYR) {
10600 		mutex_enter(&sd_detach_mutex);
10601 		/*
10602 		 * The detach routine may run when the layer count
10603 		 * drops to zero.
10604 		 */
10605 		un->un_layer_count--;
10606 		mutex_exit(&sd_detach_mutex);
10607 	}
10608 
10609 	return (rval);
10610 }
10611 
10612 
10613 /*
10614  *    Function: sd_ready_and_valid
10615  *
10616  * Description: Test if device is ready and has a valid geometry.
10617  *
10618  *   Arguments: ssc - sd_ssc_t will contain un
10619  *		un  - driver soft state (unit) structure
10620  *
10621  * Return Code: SD_READY_VALID		ready and valid label
10622  *		SD_NOT_READY_VALID	not ready, no label
10623  *		SD_RESERVED_BY_OTHERS	reservation conflict
10624  *
10625  *     Context: Never called at interrupt context.
10626  */
10627 
10628 static int
10629 sd_ready_and_valid(sd_ssc_t *ssc, int part)
10630 {
10631 	struct sd_errstats	*stp;
10632 	uint64_t		capacity;
10633 	uint_t			lbasize;
10634 	int			rval = SD_READY_VALID;
10635 	char			name_str[48];
10636 	boolean_t		is_valid;
10637 	struct sd_lun		*un;
10638 	int			status;
10639 
10640 	ASSERT(ssc != NULL);
10641 	un = ssc->ssc_un;
10642 	ASSERT(un != NULL);
10643 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10644 
10645 	mutex_enter(SD_MUTEX(un));
10646 	/*
10647 	 * If a device has removable media, we must check if media is
10648 	 * ready when checking if this device is ready and valid.
10649 	 */
10650 	if (un->un_f_has_removable_media) {
10651 		mutex_exit(SD_MUTEX(un));
10652 		status = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
10653 
10654 		if (status != 0) {
10655 			rval = SD_NOT_READY_VALID;
10656 			mutex_enter(SD_MUTEX(un));
10657 
10658 			/* Ignore all failed status for removalbe media */
10659 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10660 
10661 			goto done;
10662 		}
10663 
10664 		is_valid = SD_IS_VALID_LABEL(un);
10665 		mutex_enter(SD_MUTEX(un));
10666 		if (!is_valid ||
10667 		    (un->un_f_blockcount_is_valid == FALSE) ||
10668 		    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
10669 
10670 			/* capacity has to be read every open. */
10671 			mutex_exit(SD_MUTEX(un));
10672 			status = sd_send_scsi_READ_CAPACITY(ssc, &capacity,
10673 			    &lbasize, SD_PATH_DIRECT);
10674 
10675 			if (status != 0) {
10676 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10677 
10678 				cmlb_invalidate(un->un_cmlbhandle,
10679 				    (void *)SD_PATH_DIRECT);
10680 				mutex_enter(SD_MUTEX(un));
10681 				rval = SD_NOT_READY_VALID;
10682 
10683 				goto done;
10684 			} else {
10685 				mutex_enter(SD_MUTEX(un));
10686 				sd_update_block_info(un, lbasize, capacity);
10687 			}
10688 		}
10689 
10690 		/*
10691 		 * Check if the media in the device is writable or not.
10692 		 */
10693 		if (!is_valid && ISCD(un)) {
10694 			sd_check_for_writable_cd(ssc, SD_PATH_DIRECT);
10695 		}
10696 
10697 	} else {
10698 		/*
10699 		 * Do a test unit ready to clear any unit attention from non-cd
10700 		 * devices.
10701 		 */
10702 		mutex_exit(SD_MUTEX(un));
10703 
10704 		status = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
10705 		if (status != 0) {
10706 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10707 		}
10708 
10709 		mutex_enter(SD_MUTEX(un));
10710 	}
10711 
10712 
10713 	/*
10714 	 * If this is a non 512 block device, allocate space for
10715 	 * the wmap cache. This is being done here since every time
10716 	 * a media is changed this routine will be called and the
10717 	 * block size is a function of media rather than device.
10718 	 */
10719 	if (((un->un_f_rmw_type != SD_RMW_TYPE_RETURN_ERROR ||
10720 	    un->un_f_non_devbsize_supported) &&
10721 	    un->un_tgt_blocksize != DEV_BSIZE) ||
10722 	    un->un_f_enable_rmw) {
10723 		if (!(un->un_wm_cache)) {
10724 			(void) snprintf(name_str, sizeof (name_str),
10725 			    "%s%d_cache",
10726 			    ddi_driver_name(SD_DEVINFO(un)),
10727 			    ddi_get_instance(SD_DEVINFO(un)));
10728 			un->un_wm_cache = kmem_cache_create(
10729 			    name_str, sizeof (struct sd_w_map),
10730 			    8, sd_wm_cache_constructor,
10731 			    sd_wm_cache_destructor, NULL,
10732 			    (void *)un, NULL, 0);
10733 			if (!(un->un_wm_cache)) {
10734 				rval = ENOMEM;
10735 				goto done;
10736 			}
10737 		}
10738 	}
10739 
10740 	if (un->un_state == SD_STATE_NORMAL) {
10741 		/*
10742 		 * If the target is not yet ready here (defined by a TUR
10743 		 * failure), invalidate the geometry and print an 'offline'
10744 		 * message. This is a legacy message, as the state of the
10745 		 * target is not actually changed to SD_STATE_OFFLINE.
10746 		 *
10747 		 * If the TUR fails for EACCES (Reservation Conflict),
10748 		 * SD_RESERVED_BY_OTHERS will be returned to indicate
10749 		 * reservation conflict. If the TUR fails for other
10750 		 * reasons, SD_NOT_READY_VALID will be returned.
10751 		 */
10752 		int err;
10753 
10754 		mutex_exit(SD_MUTEX(un));
10755 		err = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
10756 		mutex_enter(SD_MUTEX(un));
10757 
10758 		if (err != 0) {
10759 			mutex_exit(SD_MUTEX(un));
10760 			cmlb_invalidate(un->un_cmlbhandle,
10761 			    (void *)SD_PATH_DIRECT);
10762 			mutex_enter(SD_MUTEX(un));
10763 			if (err == EACCES) {
10764 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10765 				    "reservation conflict\n");
10766 				rval = SD_RESERVED_BY_OTHERS;
10767 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10768 			} else {
10769 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10770 				    "drive offline\n");
10771 				rval = SD_NOT_READY_VALID;
10772 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
10773 			}
10774 			goto done;
10775 		}
10776 	}
10777 
10778 	if (un->un_f_format_in_progress == FALSE) {
10779 		mutex_exit(SD_MUTEX(un));
10780 
10781 		(void) cmlb_validate(un->un_cmlbhandle, 0,
10782 		    (void *)SD_PATH_DIRECT);
10783 		if (cmlb_partinfo(un->un_cmlbhandle, part, NULL, NULL, NULL,
10784 		    NULL, (void *) SD_PATH_DIRECT) != 0) {
10785 			rval = SD_NOT_READY_VALID;
10786 			mutex_enter(SD_MUTEX(un));
10787 
10788 			goto done;
10789 		}
10790 		if (un->un_f_pkstats_enabled) {
10791 			sd_set_pstats(un);
10792 			SD_TRACE(SD_LOG_IO_PARTITION, un,
10793 			    "sd_ready_and_valid: un:0x%p pstats created and "
10794 			    "set\n", un);
10795 		}
10796 		mutex_enter(SD_MUTEX(un));
10797 	}
10798 
10799 	/*
10800 	 * If this device supports DOOR_LOCK command, try and send
10801 	 * this command to PREVENT MEDIA REMOVAL, but don't get upset
10802 	 * if it fails. For a CD, however, it is an error
10803 	 */
10804 	if (un->un_f_doorlock_supported) {
10805 		mutex_exit(SD_MUTEX(un));
10806 		status = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT,
10807 		    SD_PATH_DIRECT);
10808 
10809 		if ((status != 0) && ISCD(un)) {
10810 			rval = SD_NOT_READY_VALID;
10811 			mutex_enter(SD_MUTEX(un));
10812 
10813 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10814 
10815 			goto done;
10816 		} else if (status != 0)
10817 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10818 		mutex_enter(SD_MUTEX(un));
10819 	}
10820 
10821 	/* The state has changed, inform the media watch routines */
10822 	un->un_mediastate = DKIO_INSERTED;
10823 	cv_broadcast(&un->un_state_cv);
10824 	rval = SD_READY_VALID;
10825 
10826 done:
10827 
10828 	/*
10829 	 * Initialize the capacity kstat value, if no media previously
10830 	 * (capacity kstat is 0) and a media has been inserted
10831 	 * (un_blockcount > 0).
10832 	 */
10833 	if (un->un_errstats != NULL) {
10834 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
10835 		if ((stp->sd_capacity.value.ui64 == 0) &&
10836 		    (un->un_f_blockcount_is_valid == TRUE)) {
10837 			stp->sd_capacity.value.ui64 =
10838 			    (uint64_t)((uint64_t)un->un_blockcount *
10839 			    un->un_sys_blocksize);
10840 		}
10841 	}
10842 
10843 	mutex_exit(SD_MUTEX(un));
10844 	return (rval);
10845 }
10846 
10847 
10848 /*
10849  *    Function: sdmin
10850  *
10851  * Description: Routine to limit the size of a data transfer. Used in
10852  *		conjunction with physio(9F).
10853  *
10854  *   Arguments: bp - pointer to the indicated buf(9S) struct.
10855  *
10856  *     Context: Kernel thread context.
10857  */
10858 
10859 static void
10860 sdmin(struct buf *bp)
10861 {
10862 	struct sd_lun	*un;
10863 	int		instance;
10864 
10865 	instance = SDUNIT(bp->b_edev);
10866 
10867 	un = ddi_get_soft_state(sd_state, instance);
10868 	ASSERT(un != NULL);
10869 
10870 	/*
10871 	 * We depend on buf breakup to restrict
10872 	 * IO size if it is enabled.
10873 	 */
10874 	if (un->un_buf_breakup_supported) {
10875 		return;
10876 	}
10877 
10878 	if (bp->b_bcount > un->un_max_xfer_size) {
10879 		bp->b_bcount = un->un_max_xfer_size;
10880 	}
10881 }
10882 
10883 
10884 /*
10885  *    Function: sdread
10886  *
10887  * Description: Driver's read(9e) entry point function.
10888  *
10889  *   Arguments: dev   - device number
10890  *		uio   - structure pointer describing where data is to be stored
10891  *			in user's space
10892  *		cred_p  - user credential pointer
10893  *
10894  * Return Code: ENXIO
10895  *		EIO
10896  *		EINVAL
10897  *		value returned by physio
10898  *
10899  *     Context: Kernel thread context.
10900  */
10901 /* ARGSUSED */
10902 static int
10903 sdread(dev_t dev, struct uio *uio, cred_t *cred_p)
10904 {
10905 	struct sd_lun	*un = NULL;
10906 	int		secmask;
10907 	int		err = 0;
10908 	sd_ssc_t	*ssc;
10909 
10910 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10911 		return (ENXIO);
10912 	}
10913 
10914 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10915 
10916 
10917 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
10918 		mutex_enter(SD_MUTEX(un));
10919 		/*
10920 		 * Because the call to sd_ready_and_valid will issue I/O we
10921 		 * must wait here if either the device is suspended or
10922 		 * if it's power level is changing.
10923 		 */
10924 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10925 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10926 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10927 		}
10928 		un->un_ncmds_in_driver++;
10929 		mutex_exit(SD_MUTEX(un));
10930 
10931 		/* Initialize sd_ssc_t for internal uscsi commands */
10932 		ssc = sd_ssc_init(un);
10933 		if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) {
10934 			err = EIO;
10935 		} else {
10936 			err = 0;
10937 		}
10938 		sd_ssc_fini(ssc);
10939 
10940 		mutex_enter(SD_MUTEX(un));
10941 		un->un_ncmds_in_driver--;
10942 		ASSERT(un->un_ncmds_in_driver >= 0);
10943 		mutex_exit(SD_MUTEX(un));
10944 		if (err != 0)
10945 			return (err);
10946 	}
10947 
10948 	/*
10949 	 * Read requests are restricted to multiples of the system block size.
10950 	 */
10951 	if (un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR &&
10952 	    !un->un_f_enable_rmw)
10953 		secmask = un->un_tgt_blocksize - 1;
10954 	else
10955 		secmask = DEV_BSIZE - 1;
10956 
10957 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10958 		SD_ERROR(SD_LOG_READ_WRITE, un,
10959 		    "sdread: file offset not modulo %d\n",
10960 		    secmask + 1);
10961 		err = EINVAL;
10962 	} else if (uio->uio_iov->iov_len & (secmask)) {
10963 		SD_ERROR(SD_LOG_READ_WRITE, un,
10964 		    "sdread: transfer length not modulo %d\n",
10965 		    secmask + 1);
10966 		err = EINVAL;
10967 	} else {
10968 		err = physio(sdstrategy, NULL, dev, B_READ, sdmin, uio);
10969 	}
10970 
10971 	return (err);
10972 }
10973 
10974 
10975 /*
10976  *    Function: sdwrite
10977  *
10978  * Description: Driver's write(9e) entry point function.
10979  *
10980  *   Arguments: dev   - device number
10981  *		uio   - structure pointer describing where data is stored in
10982  *			user's space
10983  *		cred_p  - user credential pointer
10984  *
10985  * Return Code: ENXIO
10986  *		EIO
10987  *		EINVAL
10988  *		value returned by physio
10989  *
10990  *     Context: Kernel thread context.
10991  */
10992 /* ARGSUSED */
10993 static int
10994 sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p)
10995 {
10996 	struct sd_lun	*un = NULL;
10997 	int		secmask;
10998 	int		err = 0;
10999 	sd_ssc_t	*ssc;
11000 
11001 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
11002 		return (ENXIO);
11003 	}
11004 
11005 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11006 
11007 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
11008 		mutex_enter(SD_MUTEX(un));
11009 		/*
11010 		 * Because the call to sd_ready_and_valid will issue I/O we
11011 		 * must wait here if either the device is suspended or
11012 		 * if it's power level is changing.
11013 		 */
11014 		while ((un->un_state == SD_STATE_SUSPENDED) ||
11015 		    (un->un_state == SD_STATE_PM_CHANGING)) {
11016 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11017 		}
11018 		un->un_ncmds_in_driver++;
11019 		mutex_exit(SD_MUTEX(un));
11020 
11021 		/* Initialize sd_ssc_t for internal uscsi commands */
11022 		ssc = sd_ssc_init(un);
11023 		if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) {
11024 			err = EIO;
11025 		} else {
11026 			err = 0;
11027 		}
11028 		sd_ssc_fini(ssc);
11029 
11030 		mutex_enter(SD_MUTEX(un));
11031 		un->un_ncmds_in_driver--;
11032 		ASSERT(un->un_ncmds_in_driver >= 0);
11033 		mutex_exit(SD_MUTEX(un));
11034 		if (err != 0)
11035 			return (err);
11036 	}
11037 
11038 	/*
11039 	 * Write requests are restricted to multiples of the system block size.
11040 	 */
11041 	if (un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR &&
11042 	    !un->un_f_enable_rmw)
11043 		secmask = un->un_tgt_blocksize - 1;
11044 	else
11045 		secmask = DEV_BSIZE - 1;
11046 
11047 	if (uio->uio_loffset & ((offset_t)(secmask))) {
11048 		SD_ERROR(SD_LOG_READ_WRITE, un,
11049 		    "sdwrite: file offset not modulo %d\n",
11050 		    secmask + 1);
11051 		err = EINVAL;
11052 	} else if (uio->uio_iov->iov_len & (secmask)) {
11053 		SD_ERROR(SD_LOG_READ_WRITE, un,
11054 		    "sdwrite: transfer length not modulo %d\n",
11055 		    secmask + 1);
11056 		err = EINVAL;
11057 	} else {
11058 		err = physio(sdstrategy, NULL, dev, B_WRITE, sdmin, uio);
11059 	}
11060 
11061 	return (err);
11062 }
11063 
11064 
11065 /*
11066  *    Function: sdaread
11067  *
11068  * Description: Driver's aread(9e) entry point function.
11069  *
11070  *   Arguments: dev   - device number
11071  *		aio   - structure pointer describing where data is to be stored
11072  *		cred_p  - user credential pointer
11073  *
11074  * Return Code: ENXIO
11075  *		EIO
11076  *		EINVAL
11077  *		value returned by aphysio
11078  *
11079  *     Context: Kernel thread context.
11080  */
11081 /* ARGSUSED */
11082 static int
11083 sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p)
11084 {
11085 	struct sd_lun	*un = NULL;
11086 	struct uio	*uio = aio->aio_uio;
11087 	int		secmask;
11088 	int		err = 0;
11089 	sd_ssc_t	*ssc;
11090 
11091 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
11092 		return (ENXIO);
11093 	}
11094 
11095 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11096 
11097 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
11098 		mutex_enter(SD_MUTEX(un));
11099 		/*
11100 		 * Because the call to sd_ready_and_valid will issue I/O we
11101 		 * must wait here if either the device is suspended or
11102 		 * if it's power level is changing.
11103 		 */
11104 		while ((un->un_state == SD_STATE_SUSPENDED) ||
11105 		    (un->un_state == SD_STATE_PM_CHANGING)) {
11106 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11107 		}
11108 		un->un_ncmds_in_driver++;
11109 		mutex_exit(SD_MUTEX(un));
11110 
11111 		/* Initialize sd_ssc_t for internal uscsi commands */
11112 		ssc = sd_ssc_init(un);
11113 		if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) {
11114 			err = EIO;
11115 		} else {
11116 			err = 0;
11117 		}
11118 		sd_ssc_fini(ssc);
11119 
11120 		mutex_enter(SD_MUTEX(un));
11121 		un->un_ncmds_in_driver--;
11122 		ASSERT(un->un_ncmds_in_driver >= 0);
11123 		mutex_exit(SD_MUTEX(un));
11124 		if (err != 0)
11125 			return (err);
11126 	}
11127 
11128 	/*
11129 	 * Read requests are restricted to multiples of the system block size.
11130 	 */
11131 	if (un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR &&
11132 	    !un->un_f_enable_rmw)
11133 		secmask = un->un_tgt_blocksize - 1;
11134 	else
11135 		secmask = DEV_BSIZE - 1;
11136 
11137 	if (uio->uio_loffset & ((offset_t)(secmask))) {
11138 		SD_ERROR(SD_LOG_READ_WRITE, un,
11139 		    "sdaread: file offset not modulo %d\n",
11140 		    secmask + 1);
11141 		err = EINVAL;
11142 	} else if (uio->uio_iov->iov_len & (secmask)) {
11143 		SD_ERROR(SD_LOG_READ_WRITE, un,
11144 		    "sdaread: transfer length not modulo %d\n",
11145 		    secmask + 1);
11146 		err = EINVAL;
11147 	} else {
11148 		err = aphysio(sdstrategy, anocancel, dev, B_READ, sdmin, aio);
11149 	}
11150 
11151 	return (err);
11152 }
11153 
11154 
11155 /*
11156  *    Function: sdawrite
11157  *
11158  * Description: Driver's awrite(9e) entry point function.
11159  *
11160  *   Arguments: dev   - device number
11161  *		aio   - structure pointer describing where data is stored
11162  *		cred_p  - user credential pointer
11163  *
11164  * Return Code: ENXIO
11165  *		EIO
11166  *		EINVAL
11167  *		value returned by aphysio
11168  *
11169  *     Context: Kernel thread context.
11170  */
11171 /* ARGSUSED */
11172 static int
11173 sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p)
11174 {
11175 	struct sd_lun	*un = NULL;
11176 	struct uio	*uio = aio->aio_uio;
11177 	int		secmask;
11178 	int		err = 0;
11179 	sd_ssc_t	*ssc;
11180 
11181 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
11182 		return (ENXIO);
11183 	}
11184 
11185 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11186 
11187 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
11188 		mutex_enter(SD_MUTEX(un));
11189 		/*
11190 		 * Because the call to sd_ready_and_valid will issue I/O we
11191 		 * must wait here if either the device is suspended or
11192 		 * if it's power level is changing.
11193 		 */
11194 		while ((un->un_state == SD_STATE_SUSPENDED) ||
11195 		    (un->un_state == SD_STATE_PM_CHANGING)) {
11196 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11197 		}
11198 		un->un_ncmds_in_driver++;
11199 		mutex_exit(SD_MUTEX(un));
11200 
11201 		/* Initialize sd_ssc_t for internal uscsi commands */
11202 		ssc = sd_ssc_init(un);
11203 		if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) {
11204 			err = EIO;
11205 		} else {
11206 			err = 0;
11207 		}
11208 		sd_ssc_fini(ssc);
11209 
11210 		mutex_enter(SD_MUTEX(un));
11211 		un->un_ncmds_in_driver--;
11212 		ASSERT(un->un_ncmds_in_driver >= 0);
11213 		mutex_exit(SD_MUTEX(un));
11214 		if (err != 0)
11215 			return (err);
11216 	}
11217 
11218 	/*
11219 	 * Write requests are restricted to multiples of the system block size.
11220 	 */
11221 	if (un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR &&
11222 	    !un->un_f_enable_rmw)
11223 		secmask = un->un_tgt_blocksize - 1;
11224 	else
11225 		secmask = DEV_BSIZE - 1;
11226 
11227 	if (uio->uio_loffset & ((offset_t)(secmask))) {
11228 		SD_ERROR(SD_LOG_READ_WRITE, un,
11229 		    "sdawrite: file offset not modulo %d\n",
11230 		    secmask + 1);
11231 		err = EINVAL;
11232 	} else if (uio->uio_iov->iov_len & (secmask)) {
11233 		SD_ERROR(SD_LOG_READ_WRITE, un,
11234 		    "sdawrite: transfer length not modulo %d\n",
11235 		    secmask + 1);
11236 		err = EINVAL;
11237 	} else {
11238 		err = aphysio(sdstrategy, anocancel, dev, B_WRITE, sdmin, aio);
11239 	}
11240 
11241 	return (err);
11242 }
11243 
11244 
11245 
11246 
11247 
11248 /*
11249  * Driver IO processing follows the following sequence:
11250  *
11251  *     sdioctl(9E)     sdstrategy(9E)         biodone(9F)
11252  *         |                |                     ^
11253  *         v                v                     |
11254  * sd_send_scsi_cmd()  ddi_xbuf_qstrategy()       +-------------------+
11255  *         |                |                     |                   |
11256  *         v                |                     |                   |
11257  * sd_uscsi_strategy() sd_xbuf_strategy()   sd_buf_iodone()   sd_uscsi_iodone()
11258  *         |                |                     ^                   ^
11259  *         v                v                     |                   |
11260  * SD_BEGIN_IOSTART()  SD_BEGIN_IOSTART()         |                   |
11261  *         |                |                     |                   |
11262  *     +---+                |                     +------------+      +-------+
11263  *     |                    |                                  |              |
11264  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
11265  *     |                    v                                  |              |
11266  *     |         sd_mapblockaddr_iostart()           sd_mapblockaddr_iodone() |
11267  *     |                    |                                  ^              |
11268  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
11269  *     |                    v                                  |              |
11270  *     |         sd_mapblocksize_iostart()           sd_mapblocksize_iodone() |
11271  *     |                    |                                  ^              |
11272  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
11273  *     |                    v                                  |              |
11274  *     |           sd_checksum_iostart()               sd_checksum_iodone()   |
11275  *     |                    |                                  ^              |
11276  *     +-> SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()+------------->+
11277  *     |                    v                                  |              |
11278  *     |              sd_pm_iostart()                     sd_pm_iodone()      |
11279  *     |                    |                                  ^              |
11280  *     |                    |                                  |              |
11281  *     +-> SD_NEXT_IOSTART()|               SD_BEGIN_IODONE()--+--------------+
11282  *                          |                           ^
11283  *                          v                           |
11284  *                   sd_core_iostart()                  |
11285  *                          |                           |
11286  *                          |                           +------>(*destroypkt)()
11287  *                          +-> sd_start_cmds() <-+     |           |
11288  *                          |                     |     |           v
11289  *                          |                     |     |  scsi_destroy_pkt(9F)
11290  *                          |                     |     |
11291  *                          +->(*initpkt)()       +- sdintr()
11292  *                          |  |                        |  |
11293  *                          |  +-> scsi_init_pkt(9F)    |  +-> sd_handle_xxx()
11294  *                          |  +-> scsi_setup_cdb(9F)   |
11295  *                          |                           |
11296  *                          +--> scsi_transport(9F)     |
11297  *                                     |                |
11298  *                                     +----> SCSA ---->+
11299  *
11300  *
11301  * This code is based upon the following presumptions:
11302  *
11303  *   - iostart and iodone functions operate on buf(9S) structures. These
11304  *     functions perform the necessary operations on the buf(9S) and pass
11305  *     them along to the next function in the chain by using the macros
11306  *     SD_NEXT_IOSTART() (for iostart side functions) and SD_NEXT_IODONE()
11307  *     (for iodone side functions).
11308  *
11309  *   - The iostart side functions may sleep. The iodone side functions
11310  *     are called under interrupt context and may NOT sleep. Therefore
11311  *     iodone side functions also may not call iostart side functions.
11312  *     (NOTE: iostart side functions should NOT sleep for memory, as
11313  *     this could result in deadlock.)
11314  *
11315  *   - An iostart side function may call its corresponding iodone side
11316  *     function directly (if necessary).
11317  *
11318  *   - In the event of an error, an iostart side function can return a buf(9S)
11319  *     to its caller by calling SD_BEGIN_IODONE() (after setting B_ERROR and
11320  *     b_error in the usual way of course).
11321  *
11322  *   - The taskq mechanism may be used by the iodone side functions to dispatch
11323  *     requests to the iostart side functions.  The iostart side functions in
11324  *     this case would be called under the context of a taskq thread, so it's
11325  *     OK for them to block/sleep/spin in this case.
11326  *
11327  *   - iostart side functions may allocate "shadow" buf(9S) structs and
11328  *     pass them along to the next function in the chain.  The corresponding
11329  *     iodone side functions must coalesce the "shadow" bufs and return
11330  *     the "original" buf to the next higher layer.
11331  *
11332  *   - The b_private field of the buf(9S) struct holds a pointer to
11333  *     an sd_xbuf struct, which contains information needed to
11334  *     construct the scsi_pkt for the command.
11335  *
11336  *   - The SD_MUTEX(un) is NOT held across calls to the next layer. Each
11337  *     layer must acquire & release the SD_MUTEX(un) as needed.
11338  */
11339 
11340 
11341 /*
11342  * Create taskq for all targets in the system. This is created at
11343  * _init(9E) and destroyed at _fini(9E).
11344  *
11345  * Note: here we set the minalloc to a reasonably high number to ensure that
11346  * we will have an adequate supply of task entries available at interrupt time.
11347  * This is used in conjunction with the TASKQ_PREPOPULATE flag in
11348  * sd_create_taskq().  Since we do not want to sleep for allocations at
11349  * interrupt time, set maxalloc equal to minalloc. That way we will just fail
11350  * the command if we ever try to dispatch more than SD_TASKQ_MAXALLOC taskq
11351  * requests any one instant in time.
11352  */
11353 #define	SD_TASKQ_NUMTHREADS	8
11354 #define	SD_TASKQ_MINALLOC	256
11355 #define	SD_TASKQ_MAXALLOC	256
11356 
11357 static taskq_t	*sd_tq = NULL;
11358 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_tq))
11359 
11360 static int	sd_taskq_minalloc = SD_TASKQ_MINALLOC;
11361 static int	sd_taskq_maxalloc = SD_TASKQ_MAXALLOC;
11362 
11363 /*
11364  * The following task queue is being created for the write part of
11365  * read-modify-write of non-512 block size devices.
11366  * Limit the number of threads to 1 for now. This number has been chosen
11367  * considering the fact that it applies only to dvd ram drives/MO drives
11368  * currently. Performance for which is not main criteria at this stage.
11369  * Note: It needs to be explored if we can use a single taskq in future
11370  */
11371 #define	SD_WMR_TASKQ_NUMTHREADS	1
11372 static taskq_t	*sd_wmr_tq = NULL;
11373 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_wmr_tq))
11374 
11375 /*
11376  *    Function: sd_taskq_create
11377  *
11378  * Description: Create taskq thread(s) and preallocate task entries
11379  *
11380  * Return Code: Returns a pointer to the allocated taskq_t.
11381  *
11382  *     Context: Can sleep. Requires blockable context.
11383  *
11384  *       Notes: - The taskq() facility currently is NOT part of the DDI.
11385  *		  (definitely NOT recommeded for 3rd-party drivers!) :-)
11386  *		- taskq_create() will block for memory, also it will panic
11387  *		  if it cannot create the requested number of threads.
11388  *		- Currently taskq_create() creates threads that cannot be
11389  *		  swapped.
11390  *		- We use TASKQ_PREPOPULATE to ensure we have an adequate
11391  *		  supply of taskq entries at interrupt time (ie, so that we
11392  *		  do not have to sleep for memory)
11393  */
11394 
11395 static void
11396 sd_taskq_create(void)
11397 {
11398 	char	taskq_name[TASKQ_NAMELEN];
11399 
11400 	ASSERT(sd_tq == NULL);
11401 	ASSERT(sd_wmr_tq == NULL);
11402 
11403 	(void) snprintf(taskq_name, sizeof (taskq_name),
11404 	    "%s_drv_taskq", sd_label);
11405 	sd_tq = (taskq_create(taskq_name, SD_TASKQ_NUMTHREADS,
11406 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
11407 	    TASKQ_PREPOPULATE));
11408 
11409 	(void) snprintf(taskq_name, sizeof (taskq_name),
11410 	    "%s_rmw_taskq", sd_label);
11411 	sd_wmr_tq = (taskq_create(taskq_name, SD_WMR_TASKQ_NUMTHREADS,
11412 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
11413 	    TASKQ_PREPOPULATE));
11414 }
11415 
11416 
11417 /*
11418  *    Function: sd_taskq_delete
11419  *
11420  * Description: Complementary cleanup routine for sd_taskq_create().
11421  *
11422  *     Context: Kernel thread context.
11423  */
11424 
11425 static void
11426 sd_taskq_delete(void)
11427 {
11428 	ASSERT(sd_tq != NULL);
11429 	ASSERT(sd_wmr_tq != NULL);
11430 	taskq_destroy(sd_tq);
11431 	taskq_destroy(sd_wmr_tq);
11432 	sd_tq = NULL;
11433 	sd_wmr_tq = NULL;
11434 }
11435 
11436 
11437 /*
11438  *    Function: sdstrategy
11439  *
11440  * Description: Driver's strategy (9E) entry point function.
11441  *
11442  *   Arguments: bp - pointer to buf(9S)
11443  *
11444  * Return Code: Always returns zero
11445  *
11446  *     Context: Kernel thread context.
11447  */
11448 
11449 static int
11450 sdstrategy(struct buf *bp)
11451 {
11452 	struct sd_lun *un;
11453 
11454 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
11455 	if (un == NULL) {
11456 		bioerror(bp, EIO);
11457 		bp->b_resid = bp->b_bcount;
11458 		biodone(bp);
11459 		return (0);
11460 	}
11461 
11462 	/* As was done in the past, fail new cmds. if state is dumping. */
11463 	if (un->un_state == SD_STATE_DUMPING) {
11464 		bioerror(bp, ENXIO);
11465 		bp->b_resid = bp->b_bcount;
11466 		biodone(bp);
11467 		return (0);
11468 	}
11469 
11470 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11471 
11472 	/*
11473 	 * Commands may sneak in while we released the mutex in
11474 	 * DDI_SUSPEND, we should block new commands. However, old
11475 	 * commands that are still in the driver at this point should
11476 	 * still be allowed to drain.
11477 	 */
11478 	mutex_enter(SD_MUTEX(un));
11479 	/*
11480 	 * Must wait here if either the device is suspended or
11481 	 * if it's power level is changing.
11482 	 */
11483 	while ((un->un_state == SD_STATE_SUSPENDED) ||
11484 	    (un->un_state == SD_STATE_PM_CHANGING)) {
11485 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11486 	}
11487 
11488 	un->un_ncmds_in_driver++;
11489 
11490 	/*
11491 	 * atapi: Since we are running the CD for now in PIO mode we need to
11492 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
11493 	 * the HBA's init_pkt routine.
11494 	 */
11495 	if (un->un_f_cfg_is_atapi == TRUE) {
11496 		mutex_exit(SD_MUTEX(un));
11497 		bp_mapin(bp);
11498 		mutex_enter(SD_MUTEX(un));
11499 	}
11500 	SD_INFO(SD_LOG_IO, un, "sdstrategy: un_ncmds_in_driver = %ld\n",
11501 	    un->un_ncmds_in_driver);
11502 
11503 	if (bp->b_flags & B_WRITE)
11504 		un->un_f_sync_cache_required = TRUE;
11505 
11506 	mutex_exit(SD_MUTEX(un));
11507 
11508 	/*
11509 	 * This will (eventually) allocate the sd_xbuf area and
11510 	 * call sd_xbuf_strategy().  We just want to return the
11511 	 * result of ddi_xbuf_qstrategy so that we have an opt-
11512 	 * imized tail call which saves us a stack frame.
11513 	 */
11514 	return (ddi_xbuf_qstrategy(bp, un->un_xbuf_attr));
11515 }
11516 
11517 
11518 /*
11519  *    Function: sd_xbuf_strategy
11520  *
11521  * Description: Function for initiating IO operations via the
11522  *		ddi_xbuf_qstrategy() mechanism.
11523  *
11524  *     Context: Kernel thread context.
11525  */
11526 
11527 static void
11528 sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg)
11529 {
11530 	struct sd_lun *un = arg;
11531 
11532 	ASSERT(bp != NULL);
11533 	ASSERT(xp != NULL);
11534 	ASSERT(un != NULL);
11535 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11536 
11537 	/*
11538 	 * Initialize the fields in the xbuf and save a pointer to the
11539 	 * xbuf in bp->b_private.
11540 	 */
11541 	sd_xbuf_init(un, bp, xp, SD_CHAIN_BUFIO, NULL);
11542 
11543 	/* Send the buf down the iostart chain */
11544 	SD_BEGIN_IOSTART(((struct sd_xbuf *)xp)->xb_chain_iostart, un, bp);
11545 }
11546 
11547 
11548 /*
11549  *    Function: sd_xbuf_init
11550  *
11551  * Description: Prepare the given sd_xbuf struct for use.
11552  *
11553  *   Arguments: un - ptr to softstate
11554  *		bp - ptr to associated buf(9S)
11555  *		xp - ptr to associated sd_xbuf
11556  *		chain_type - IO chain type to use:
11557  *			SD_CHAIN_NULL
11558  *			SD_CHAIN_BUFIO
11559  *			SD_CHAIN_USCSI
11560  *			SD_CHAIN_DIRECT
11561  *			SD_CHAIN_DIRECT_PRIORITY
11562  *		pktinfop - ptr to private data struct for scsi_pkt(9S)
11563  *			initialization; may be NULL if none.
11564  *
11565  *     Context: Kernel thread context
11566  */
11567 
11568 static void
11569 sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
11570 	uchar_t chain_type, void *pktinfop)
11571 {
11572 	int index;
11573 
11574 	ASSERT(un != NULL);
11575 	ASSERT(bp != NULL);
11576 	ASSERT(xp != NULL);
11577 
11578 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: buf:0x%p chain type:0x%x\n",
11579 	    bp, chain_type);
11580 
11581 	xp->xb_un	= un;
11582 	xp->xb_pktp	= NULL;
11583 	xp->xb_pktinfo	= pktinfop;
11584 	xp->xb_private	= bp->b_private;
11585 	xp->xb_blkno	= (daddr_t)bp->b_blkno;
11586 
11587 	/*
11588 	 * Set up the iostart and iodone chain indexes in the xbuf, based
11589 	 * upon the specified chain type to use.
11590 	 */
11591 	switch (chain_type) {
11592 	case SD_CHAIN_NULL:
11593 		/*
11594 		 * Fall thru to just use the values for the buf type, even
11595 		 * tho for the NULL chain these values will never be used.
11596 		 */
11597 		/* FALLTHRU */
11598 	case SD_CHAIN_BUFIO:
11599 		index = un->un_buf_chain_type;
11600 		if ((!un->un_f_has_removable_media) &&
11601 		    (un->un_tgt_blocksize != 0) &&
11602 		    (un->un_tgt_blocksize != DEV_BSIZE ||
11603 		    un->un_f_enable_rmw)) {
11604 			int secmask = 0, blknomask = 0;
11605 			if (un->un_f_enable_rmw) {
11606 				blknomask =
11607 				    (un->un_phy_blocksize / DEV_BSIZE) - 1;
11608 				secmask = un->un_phy_blocksize - 1;
11609 			} else {
11610 				blknomask =
11611 				    (un->un_tgt_blocksize / DEV_BSIZE) - 1;
11612 				secmask = un->un_tgt_blocksize - 1;
11613 			}
11614 
11615 			if ((bp->b_lblkno & (blknomask)) ||
11616 			    (bp->b_bcount & (secmask))) {
11617 				if ((un->un_f_rmw_type !=
11618 				    SD_RMW_TYPE_RETURN_ERROR) ||
11619 				    un->un_f_enable_rmw) {
11620 					if (un->un_f_pm_is_enabled == FALSE)
11621 						index =
11622 						    SD_CHAIN_INFO_MSS_DSK_NO_PM;
11623 					else
11624 						index =
11625 						    SD_CHAIN_INFO_MSS_DISK;
11626 				}
11627 			}
11628 		}
11629 		break;
11630 	case SD_CHAIN_USCSI:
11631 		index = un->un_uscsi_chain_type;
11632 		break;
11633 	case SD_CHAIN_DIRECT:
11634 		index = un->un_direct_chain_type;
11635 		break;
11636 	case SD_CHAIN_DIRECT_PRIORITY:
11637 		index = un->un_priority_chain_type;
11638 		break;
11639 	default:
11640 		/* We're really broken if we ever get here... */
11641 		panic("sd_xbuf_init: illegal chain type!");
11642 		/*NOTREACHED*/
11643 	}
11644 
11645 	xp->xb_chain_iostart = sd_chain_index_map[index].sci_iostart_index;
11646 	xp->xb_chain_iodone = sd_chain_index_map[index].sci_iodone_index;
11647 
11648 	/*
11649 	 * It might be a bit easier to simply bzero the entire xbuf above,
11650 	 * but it turns out that since we init a fair number of members anyway,
11651 	 * we save a fair number cycles by doing explicit assignment of zero.
11652 	 */
11653 	xp->xb_pkt_flags	= 0;
11654 	xp->xb_dma_resid	= 0;
11655 	xp->xb_retry_count	= 0;
11656 	xp->xb_victim_retry_count = 0;
11657 	xp->xb_ua_retry_count	= 0;
11658 	xp->xb_nr_retry_count	= 0;
11659 	xp->xb_sense_bp		= NULL;
11660 	xp->xb_sense_status	= 0;
11661 	xp->xb_sense_state	= 0;
11662 	xp->xb_sense_resid	= 0;
11663 	xp->xb_ena		= 0;
11664 
11665 	bp->b_private	= xp;
11666 	bp->b_flags	&= ~(B_DONE | B_ERROR);
11667 	bp->b_resid	= 0;
11668 	bp->av_forw	= NULL;
11669 	bp->av_back	= NULL;
11670 	bioerror(bp, 0);
11671 
11672 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: done.\n");
11673 }
11674 
11675 
11676 /*
11677  *    Function: sd_uscsi_strategy
11678  *
11679  * Description: Wrapper for calling into the USCSI chain via physio(9F)
11680  *
11681  *   Arguments: bp - buf struct ptr
11682  *
11683  * Return Code: Always returns 0
11684  *
11685  *     Context: Kernel thread context
11686  */
11687 
11688 static int
11689 sd_uscsi_strategy(struct buf *bp)
11690 {
11691 	struct sd_lun		*un;
11692 	struct sd_uscsi_info	*uip;
11693 	struct sd_xbuf		*xp;
11694 	uchar_t			chain_type;
11695 	uchar_t			cmd;
11696 
11697 	ASSERT(bp != NULL);
11698 
11699 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
11700 	if (un == NULL) {
11701 		bioerror(bp, EIO);
11702 		bp->b_resid = bp->b_bcount;
11703 		biodone(bp);
11704 		return (0);
11705 	}
11706 
11707 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11708 
11709 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: entry: buf:0x%p\n", bp);
11710 
11711 	/*
11712 	 * A pointer to a struct sd_uscsi_info is expected in bp->b_private
11713 	 */
11714 	ASSERT(bp->b_private != NULL);
11715 	uip = (struct sd_uscsi_info *)bp->b_private;
11716 	cmd = ((struct uscsi_cmd *)(uip->ui_cmdp))->uscsi_cdb[0];
11717 
11718 	mutex_enter(SD_MUTEX(un));
11719 	/*
11720 	 * atapi: Since we are running the CD for now in PIO mode we need to
11721 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
11722 	 * the HBA's init_pkt routine.
11723 	 */
11724 	if (un->un_f_cfg_is_atapi == TRUE) {
11725 		mutex_exit(SD_MUTEX(un));
11726 		bp_mapin(bp);
11727 		mutex_enter(SD_MUTEX(un));
11728 	}
11729 	un->un_ncmds_in_driver++;
11730 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_strategy: un_ncmds_in_driver = %ld\n",
11731 	    un->un_ncmds_in_driver);
11732 
11733 	if ((bp->b_flags & B_WRITE) && (bp->b_bcount != 0) &&
11734 	    (cmd != SCMD_MODE_SELECT) && (cmd != SCMD_MODE_SELECT_G1))
11735 		un->un_f_sync_cache_required = TRUE;
11736 
11737 	mutex_exit(SD_MUTEX(un));
11738 
11739 	switch (uip->ui_flags) {
11740 	case SD_PATH_DIRECT:
11741 		chain_type = SD_CHAIN_DIRECT;
11742 		break;
11743 	case SD_PATH_DIRECT_PRIORITY:
11744 		chain_type = SD_CHAIN_DIRECT_PRIORITY;
11745 		break;
11746 	default:
11747 		chain_type = SD_CHAIN_USCSI;
11748 		break;
11749 	}
11750 
11751 	/*
11752 	 * We may allocate extra buf for external USCSI commands. If the
11753 	 * application asks for bigger than 20-byte sense data via USCSI,
11754 	 * SCSA layer will allocate 252 bytes sense buf for that command.
11755 	 */
11756 	if (((struct uscsi_cmd *)(uip->ui_cmdp))->uscsi_rqlen >
11757 	    SENSE_LENGTH) {
11758 		xp = kmem_zalloc(sizeof (struct sd_xbuf) - SENSE_LENGTH +
11759 		    MAX_SENSE_LENGTH, KM_SLEEP);
11760 	} else {
11761 		xp = kmem_zalloc(sizeof (struct sd_xbuf), KM_SLEEP);
11762 	}
11763 
11764 	sd_xbuf_init(un, bp, xp, chain_type, uip->ui_cmdp);
11765 
11766 	/* Use the index obtained within xbuf_init */
11767 	SD_BEGIN_IOSTART(xp->xb_chain_iostart, un, bp);
11768 
11769 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: exit: buf:0x%p\n", bp);
11770 
11771 	return (0);
11772 }
11773 
11774 /*
11775  *    Function: sd_send_scsi_cmd
11776  *
11777  * Description: Runs a USCSI command for user (when called thru sdioctl),
11778  *		or for the driver
11779  *
11780  *   Arguments: dev - the dev_t for the device
11781  *		incmd - ptr to a valid uscsi_cmd struct
11782  *		flag - bit flag, indicating open settings, 32/64 bit type
11783  *		dataspace - UIO_USERSPACE or UIO_SYSSPACE
11784  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
11785  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
11786  *			to use the USCSI "direct" chain and bypass the normal
11787  *			command waitq.
11788  *
11789  * Return Code: 0 -  successful completion of the given command
11790  *		EIO - scsi_uscsi_handle_command() failed
11791  *		ENXIO  - soft state not found for specified dev
11792  *		EINVAL
11793  *		EFAULT - copyin/copyout error
11794  *		return code of scsi_uscsi_handle_command():
11795  *			EIO
11796  *			ENXIO
11797  *			EACCES
11798  *
11799  *     Context: Waits for command to complete. Can sleep.
11800  */
11801 
11802 static int
11803 sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
11804 	enum uio_seg dataspace, int path_flag)
11805 {
11806 	struct sd_lun	*un;
11807 	sd_ssc_t	*ssc;
11808 	int		rval;
11809 
11810 	un = ddi_get_soft_state(sd_state, SDUNIT(dev));
11811 	if (un == NULL) {
11812 		return (ENXIO);
11813 	}
11814 
11815 	/*
11816 	 * Using sd_ssc_send to handle uscsi cmd
11817 	 */
11818 	ssc = sd_ssc_init(un);
11819 	rval = sd_ssc_send(ssc, incmd, flag, dataspace, path_flag);
11820 	sd_ssc_fini(ssc);
11821 
11822 	return (rval);
11823 }
11824 
11825 /*
11826  *    Function: sd_ssc_init
11827  *
11828  * Description: Uscsi end-user call this function to initialize necessary
11829  *              fields, such as uscsi_cmd and sd_uscsi_info struct.
11830  *
11831  *              The return value of sd_send_scsi_cmd will be treated as a
11832  *              fault in various conditions. Even it is not Zero, some
11833  *              callers may ignore the return value. That is to say, we can
11834  *              not make an accurate assessment in sdintr, since if a
11835  *              command is failed in sdintr it does not mean the caller of
11836  *              sd_send_scsi_cmd will treat it as a real failure.
11837  *
11838  *              To avoid printing too many error logs for a failed uscsi
11839  *              packet that the caller may not treat it as a failure, the
11840  *              sd will keep silent for handling all uscsi commands.
11841  *
11842  *              During detach->attach and attach-open, for some types of
11843  *              problems, the driver should be providing information about
11844  *              the problem encountered. Device use USCSI_SILENT, which
11845  *              suppresses all driver information. The result is that no
11846  *              information about the problem is available. Being
11847  *              completely silent during this time is inappropriate. The
11848  *              driver needs a more selective filter than USCSI_SILENT, so
11849  *              that information related to faults is provided.
11850  *
11851  *              To make the accurate accessment, the caller  of
11852  *              sd_send_scsi_USCSI_CMD should take the ownership and
11853  *              get necessary information to print error messages.
11854  *
11855  *              If we want to print necessary info of uscsi command, we need to
11856  *              keep the uscsi_cmd and sd_uscsi_info till we can make the
11857  *              assessment. We use sd_ssc_init to alloc necessary
11858  *              structs for sending an uscsi command and we are also
11859  *              responsible for free the memory by calling
11860  *              sd_ssc_fini.
11861  *
11862  *              The calling secquences will look like:
11863  *              sd_ssc_init->
11864  *
11865  *                  ...
11866  *
11867  *                  sd_send_scsi_USCSI_CMD->
11868  *                      sd_ssc_send-> - - - sdintr
11869  *                  ...
11870  *
11871  *                  if we think the return value should be treated as a
11872  *                  failure, we make the accessment here and print out
11873  *                  necessary by retrieving uscsi_cmd and sd_uscsi_info'
11874  *
11875  *                  ...
11876  *
11877  *              sd_ssc_fini
11878  *
11879  *
11880  *   Arguments: un - pointer to driver soft state (unit) structure for this
11881  *                   target.
11882  *
11883  * Return code: sd_ssc_t - pointer to allocated sd_ssc_t struct, it contains
11884  *                         uscsi_cmd and sd_uscsi_info.
11885  *                  NULL - if can not alloc memory for sd_ssc_t struct
11886  *
11887  *     Context: Kernel Thread.
11888  */
11889 static sd_ssc_t *
11890 sd_ssc_init(struct sd_lun *un)
11891 {
11892 	sd_ssc_t		*ssc;
11893 	struct uscsi_cmd	*ucmdp;
11894 	struct sd_uscsi_info	*uip;
11895 
11896 	ASSERT(un != NULL);
11897 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11898 
11899 	/*
11900 	 * Allocate sd_ssc_t structure
11901 	 */
11902 	ssc = kmem_zalloc(sizeof (sd_ssc_t), KM_SLEEP);
11903 
11904 	/*
11905 	 * Allocate uscsi_cmd by calling scsi_uscsi_alloc common routine
11906 	 */
11907 	ucmdp = scsi_uscsi_alloc();
11908 
11909 	/*
11910 	 * Allocate sd_uscsi_info structure
11911 	 */
11912 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
11913 
11914 	ssc->ssc_uscsi_cmd = ucmdp;
11915 	ssc->ssc_uscsi_info = uip;
11916 	ssc->ssc_un = un;
11917 
11918 	return (ssc);
11919 }
11920 
11921 /*
11922  * Function: sd_ssc_fini
11923  *
11924  * Description: To free sd_ssc_t and it's hanging off
11925  *
11926  * Arguments: ssc - struct pointer of sd_ssc_t.
11927  */
11928 static void
11929 sd_ssc_fini(sd_ssc_t *ssc)
11930 {
11931 	scsi_uscsi_free(ssc->ssc_uscsi_cmd);
11932 
11933 	if (ssc->ssc_uscsi_info != NULL) {
11934 		kmem_free(ssc->ssc_uscsi_info, sizeof (struct sd_uscsi_info));
11935 		ssc->ssc_uscsi_info = NULL;
11936 	}
11937 
11938 	kmem_free(ssc, sizeof (sd_ssc_t));
11939 	ssc = NULL;
11940 }
11941 
11942 /*
11943  * Function: sd_ssc_send
11944  *
11945  * Description: Runs a USCSI command for user when called through sdioctl,
11946  *              or for the driver.
11947  *
11948  *   Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and
11949  *                    sd_uscsi_info in.
11950  *		incmd - ptr to a valid uscsi_cmd struct
11951  *		flag - bit flag, indicating open settings, 32/64 bit type
11952  *		dataspace - UIO_USERSPACE or UIO_SYSSPACE
11953  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
11954  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
11955  *			to use the USCSI "direct" chain and bypass the normal
11956  *			command waitq.
11957  *
11958  * Return Code: 0 -  successful completion of the given command
11959  *		EIO - scsi_uscsi_handle_command() failed
11960  *		ENXIO  - soft state not found for specified dev
11961  *		ECANCELED - command cancelled due to low power
11962  *		EINVAL
11963  *		EFAULT - copyin/copyout error
11964  *		return code of scsi_uscsi_handle_command():
11965  *			EIO
11966  *			ENXIO
11967  *			EACCES
11968  *
11969  *     Context: Kernel Thread;
11970  *              Waits for command to complete. Can sleep.
11971  */
11972 static int
11973 sd_ssc_send(sd_ssc_t *ssc, struct uscsi_cmd *incmd, int flag,
11974 	enum uio_seg dataspace, int path_flag)
11975 {
11976 	struct sd_uscsi_info	*uip;
11977 	struct uscsi_cmd	*uscmd;
11978 	struct sd_lun		*un;
11979 	dev_t			dev;
11980 
11981 	int	format = 0;
11982 	int	rval;
11983 
11984 	ASSERT(ssc != NULL);
11985 	un = ssc->ssc_un;
11986 	ASSERT(un != NULL);
11987 	uscmd = ssc->ssc_uscsi_cmd;
11988 	ASSERT(uscmd != NULL);
11989 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11990 	if (ssc->ssc_flags & SSC_FLAGS_NEED_ASSESSMENT) {
11991 		/*
11992 		 * If enter here, it indicates that the previous uscsi
11993 		 * command has not been processed by sd_ssc_assessment.
11994 		 * This is violating our rules of FMA telemetry processing.
11995 		 * We should print out this message and the last undisposed
11996 		 * uscsi command.
11997 		 */
11998 		if (uscmd->uscsi_cdb != NULL) {
11999 			SD_INFO(SD_LOG_SDTEST, un,
12000 			    "sd_ssc_send is missing the alternative "
12001 			    "sd_ssc_assessment when running command 0x%x.\n",
12002 			    uscmd->uscsi_cdb[0]);
12003 		}
12004 		/*
12005 		 * Set the ssc_flags to SSC_FLAGS_UNKNOWN, which should be
12006 		 * the initial status.
12007 		 */
12008 		ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
12009 	}
12010 
12011 	/*
12012 	 * We need to make sure sd_ssc_send will have sd_ssc_assessment
12013 	 * followed to avoid missing FMA telemetries.
12014 	 */
12015 	ssc->ssc_flags |= SSC_FLAGS_NEED_ASSESSMENT;
12016 
12017 	/*
12018 	 * if USCSI_PMFAILFAST is set and un is in low power, fail the
12019 	 * command immediately.
12020 	 */
12021 	mutex_enter(SD_MUTEX(un));
12022 	mutex_enter(&un->un_pm_mutex);
12023 	if ((uscmd->uscsi_flags & USCSI_PMFAILFAST) &&
12024 	    SD_DEVICE_IS_IN_LOW_POWER(un)) {
12025 		SD_TRACE(SD_LOG_IO, un, "sd_ssc_send:"
12026 		    "un:0x%p is in low power\n", un);
12027 		mutex_exit(&un->un_pm_mutex);
12028 		mutex_exit(SD_MUTEX(un));
12029 		return (ECANCELED);
12030 	}
12031 	mutex_exit(&un->un_pm_mutex);
12032 	mutex_exit(SD_MUTEX(un));
12033 
12034 #ifdef SDDEBUG
12035 	switch (dataspace) {
12036 	case UIO_USERSPACE:
12037 		SD_TRACE(SD_LOG_IO, un,
12038 		    "sd_ssc_send: entry: un:0x%p UIO_USERSPACE\n", un);
12039 		break;
12040 	case UIO_SYSSPACE:
12041 		SD_TRACE(SD_LOG_IO, un,
12042 		    "sd_ssc_send: entry: un:0x%p UIO_SYSSPACE\n", un);
12043 		break;
12044 	default:
12045 		SD_TRACE(SD_LOG_IO, un,
12046 		    "sd_ssc_send: entry: un:0x%p UNEXPECTED SPACE\n", un);
12047 		break;
12048 	}
12049 #endif
12050 
12051 	rval = scsi_uscsi_copyin((intptr_t)incmd, flag,
12052 	    SD_ADDRESS(un), &uscmd);
12053 	if (rval != 0) {
12054 		SD_TRACE(SD_LOG_IO, un, "sd_sense_scsi_cmd: "
12055 		    "scsi_uscsi_alloc_and_copyin failed\n", un);
12056 		return (rval);
12057 	}
12058 
12059 	if ((uscmd->uscsi_cdb != NULL) &&
12060 	    (uscmd->uscsi_cdb[0] == SCMD_FORMAT)) {
12061 		mutex_enter(SD_MUTEX(un));
12062 		un->un_f_format_in_progress = TRUE;
12063 		mutex_exit(SD_MUTEX(un));
12064 		format = 1;
12065 	}
12066 
12067 	/*
12068 	 * Allocate an sd_uscsi_info struct and fill it with the info
12069 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
12070 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
12071 	 * since we allocate the buf here in this function, we do not
12072 	 * need to preserve the prior contents of b_private.
12073 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
12074 	 */
12075 	uip = ssc->ssc_uscsi_info;
12076 	uip->ui_flags = path_flag;
12077 	uip->ui_cmdp = uscmd;
12078 
12079 	/*
12080 	 * Commands sent with priority are intended for error recovery
12081 	 * situations, and do not have retries performed.
12082 	 */
12083 	if (path_flag == SD_PATH_DIRECT_PRIORITY) {
12084 		uscmd->uscsi_flags |= USCSI_DIAGNOSE;
12085 	}
12086 	uscmd->uscsi_flags &= ~USCSI_NOINTR;
12087 
12088 	dev = SD_GET_DEV(un);
12089 	rval = scsi_uscsi_handle_cmd(dev, dataspace, uscmd,
12090 	    sd_uscsi_strategy, NULL, uip);
12091 
12092 	/*
12093 	 * mark ssc_flags right after handle_cmd to make sure
12094 	 * the uscsi has been sent
12095 	 */
12096 	ssc->ssc_flags |= SSC_FLAGS_CMD_ISSUED;
12097 
12098 #ifdef SDDEBUG
12099 	SD_INFO(SD_LOG_IO, un, "sd_ssc_send: "
12100 	    "uscsi_status: 0x%02x  uscsi_resid:0x%x\n",
12101 	    uscmd->uscsi_status, uscmd->uscsi_resid);
12102 	if (uscmd->uscsi_bufaddr != NULL) {
12103 		SD_INFO(SD_LOG_IO, un, "sd_ssc_send: "
12104 		    "uscmd->uscsi_bufaddr: 0x%p  uscmd->uscsi_buflen:%d\n",
12105 		    uscmd->uscsi_bufaddr, uscmd->uscsi_buflen);
12106 		if (dataspace == UIO_SYSSPACE) {
12107 			SD_DUMP_MEMORY(un, SD_LOG_IO,
12108 			    "data", (uchar_t *)uscmd->uscsi_bufaddr,
12109 			    uscmd->uscsi_buflen, SD_LOG_HEX);
12110 		}
12111 	}
12112 #endif
12113 
12114 	if (format == 1) {
12115 		mutex_enter(SD_MUTEX(un));
12116 		un->un_f_format_in_progress = FALSE;
12117 		mutex_exit(SD_MUTEX(un));
12118 	}
12119 
12120 	(void) scsi_uscsi_copyout((intptr_t)incmd, uscmd);
12121 
12122 	return (rval);
12123 }
12124 
12125 /*
12126  *     Function: sd_ssc_print
12127  *
12128  * Description: Print information available to the console.
12129  *
12130  * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and
12131  *                    sd_uscsi_info in.
12132  *            sd_severity - log level.
12133  *     Context: Kernel thread or interrupt context.
12134  */
12135 static void
12136 sd_ssc_print(sd_ssc_t *ssc, int sd_severity)
12137 {
12138 	struct uscsi_cmd	*ucmdp;
12139 	struct scsi_device	*devp;
12140 	dev_info_t 		*devinfo;
12141 	uchar_t			*sensep;
12142 	int			senlen;
12143 	union scsi_cdb		*cdbp;
12144 	uchar_t			com;
12145 	extern struct scsi_key_strings scsi_cmds[];
12146 
12147 	ASSERT(ssc != NULL);
12148 	ASSERT(ssc->ssc_un != NULL);
12149 
12150 	if (SD_FM_LOG(ssc->ssc_un) != SD_FM_LOG_EREPORT)
12151 		return;
12152 	ucmdp = ssc->ssc_uscsi_cmd;
12153 	devp = SD_SCSI_DEVP(ssc->ssc_un);
12154 	devinfo = SD_DEVINFO(ssc->ssc_un);
12155 	ASSERT(ucmdp != NULL);
12156 	ASSERT(devp != NULL);
12157 	ASSERT(devinfo != NULL);
12158 	sensep = (uint8_t *)ucmdp->uscsi_rqbuf;
12159 	senlen = ucmdp->uscsi_rqlen - ucmdp->uscsi_rqresid;
12160 	cdbp = (union scsi_cdb *)ucmdp->uscsi_cdb;
12161 
12162 	/* In certain case (like DOORLOCK), the cdb could be NULL. */
12163 	if (cdbp == NULL)
12164 		return;
12165 	/* We don't print log if no sense data available. */
12166 	if (senlen == 0)
12167 		sensep = NULL;
12168 	com = cdbp->scc_cmd;
12169 	scsi_generic_errmsg(devp, sd_label, sd_severity, 0, 0, com,
12170 	    scsi_cmds, sensep, ssc->ssc_un->un_additional_codes, NULL);
12171 }
12172 
12173 /*
12174  *     Function: sd_ssc_assessment
12175  *
12176  * Description: We use this function to make an assessment at the point
12177  *              where SD driver may encounter a potential error.
12178  *
12179  * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and
12180  *                  sd_uscsi_info in.
12181  *            tp_assess - a hint of strategy for ereport posting.
12182  *            Possible values of tp_assess include:
12183  *                SD_FMT_IGNORE - we don't post any ereport because we're
12184  *                sure that it is ok to ignore the underlying problems.
12185  *                SD_FMT_IGNORE_COMPROMISE - we don't post any ereport for now
12186  *                but it might be not correct to ignore the underlying hardware
12187  *                error.
12188  *                SD_FMT_STATUS_CHECK - we will post an ereport with the
12189  *                payload driver-assessment of value "fail" or
12190  *                "fatal"(depending on what information we have here). This
12191  *                assessment value is usually set when SD driver think there
12192  *                is a potential error occurred(Typically, when return value
12193  *                of the SCSI command is EIO).
12194  *                SD_FMT_STANDARD - we will post an ereport with the payload
12195  *                driver-assessment of value "info". This assessment value is
12196  *                set when the SCSI command returned successfully and with
12197  *                sense data sent back.
12198  *
12199  *     Context: Kernel thread.
12200  */
12201 static void
12202 sd_ssc_assessment(sd_ssc_t *ssc, enum sd_type_assessment tp_assess)
12203 {
12204 	int senlen = 0;
12205 	struct uscsi_cmd *ucmdp = NULL;
12206 	struct sd_lun *un;
12207 
12208 	ASSERT(ssc != NULL);
12209 	un = ssc->ssc_un;
12210 	ASSERT(un != NULL);
12211 	ucmdp = ssc->ssc_uscsi_cmd;
12212 	ASSERT(ucmdp != NULL);
12213 
12214 	if (ssc->ssc_flags & SSC_FLAGS_NEED_ASSESSMENT) {
12215 		ssc->ssc_flags &= ~SSC_FLAGS_NEED_ASSESSMENT;
12216 	} else {
12217 		/*
12218 		 * If enter here, it indicates that we have a wrong
12219 		 * calling sequence of sd_ssc_send and sd_ssc_assessment,
12220 		 * both of which should be called in a pair in case of
12221 		 * loss of FMA telemetries.
12222 		 */
12223 		if (ucmdp->uscsi_cdb != NULL) {
12224 			SD_INFO(SD_LOG_SDTEST, un,
12225 			    "sd_ssc_assessment is missing the "
12226 			    "alternative sd_ssc_send when running 0x%x, "
12227 			    "or there are superfluous sd_ssc_assessment for "
12228 			    "the same sd_ssc_send.\n",
12229 			    ucmdp->uscsi_cdb[0]);
12230 		}
12231 		/*
12232 		 * Set the ssc_flags to the initial value to avoid passing
12233 		 * down dirty flags to the following sd_ssc_send function.
12234 		 */
12235 		ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
12236 		return;
12237 	}
12238 
12239 	/*
12240 	 * Only handle an issued command which is waiting for assessment.
12241 	 * A command which is not issued will not have
12242 	 * SSC_FLAGS_INVALID_DATA set, so it'ok we just return here.
12243 	 */
12244 	if (!(ssc->ssc_flags & SSC_FLAGS_CMD_ISSUED)) {
12245 		sd_ssc_print(ssc, SCSI_ERR_INFO);
12246 		return;
12247 	} else {
12248 		/*
12249 		 * For an issued command, we should clear this flag in
12250 		 * order to make the sd_ssc_t structure be used off
12251 		 * multiple uscsi commands.
12252 		 */
12253 		ssc->ssc_flags &= ~SSC_FLAGS_CMD_ISSUED;
12254 	}
12255 
12256 	/*
12257 	 * We will not deal with non-retryable(flag USCSI_DIAGNOSE set)
12258 	 * commands here. And we should clear the ssc_flags before return.
12259 	 */
12260 	if (ucmdp->uscsi_flags & USCSI_DIAGNOSE) {
12261 		ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
12262 		return;
12263 	}
12264 
12265 	switch (tp_assess) {
12266 	case SD_FMT_IGNORE:
12267 	case SD_FMT_IGNORE_COMPROMISE:
12268 		break;
12269 	case SD_FMT_STATUS_CHECK:
12270 		/*
12271 		 * For a failed command(including the succeeded command
12272 		 * with invalid data sent back).
12273 		 */
12274 		sd_ssc_post(ssc, SD_FM_DRV_FATAL);
12275 		break;
12276 	case SD_FMT_STANDARD:
12277 		/*
12278 		 * Always for the succeeded commands probably with sense
12279 		 * data sent back.
12280 		 * Limitation:
12281 		 *	We can only handle a succeeded command with sense
12282 		 *	data sent back when auto-request-sense is enabled.
12283 		 */
12284 		senlen = ssc->ssc_uscsi_cmd->uscsi_rqlen -
12285 		    ssc->ssc_uscsi_cmd->uscsi_rqresid;
12286 		if ((ssc->ssc_uscsi_info->ui_pkt_state & STATE_ARQ_DONE) &&
12287 		    (un->un_f_arq_enabled == TRUE) &&
12288 		    senlen > 0 &&
12289 		    ssc->ssc_uscsi_cmd->uscsi_rqbuf != NULL) {
12290 			sd_ssc_post(ssc, SD_FM_DRV_NOTICE);
12291 		}
12292 		break;
12293 	default:
12294 		/*
12295 		 * Should not have other type of assessment.
12296 		 */
12297 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
12298 		    "sd_ssc_assessment got wrong "
12299 		    "sd_type_assessment %d.\n", tp_assess);
12300 		break;
12301 	}
12302 	/*
12303 	 * Clear up the ssc_flags before return.
12304 	 */
12305 	ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
12306 }
12307 
12308 /*
12309  *    Function: sd_ssc_post
12310  *
12311  * Description: 1. read the driver property to get fm-scsi-log flag.
12312  *              2. print log if fm_log_capable is non-zero.
12313  *              3. call sd_ssc_ereport_post to post ereport if possible.
12314  *
12315  *    Context: May be called from kernel thread or interrupt context.
12316  */
12317 static void
12318 sd_ssc_post(sd_ssc_t *ssc, enum sd_driver_assessment sd_assess)
12319 {
12320 	struct sd_lun	*un;
12321 	int		sd_severity;
12322 
12323 	ASSERT(ssc != NULL);
12324 	un = ssc->ssc_un;
12325 	ASSERT(un != NULL);
12326 
12327 	/*
12328 	 * We may enter here from sd_ssc_assessment(for USCSI command) or
12329 	 * by directly called from sdintr context.
12330 	 * We don't handle a non-disk drive(CD-ROM, removable media).
12331 	 * Clear the ssc_flags before return in case we've set
12332 	 * SSC_FLAGS_INVALID_XXX which should be skipped for a non-disk
12333 	 * driver.
12334 	 */
12335 	if (ISCD(un) || un->un_f_has_removable_media) {
12336 		ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
12337 		return;
12338 	}
12339 
12340 	switch (sd_assess) {
12341 		case SD_FM_DRV_FATAL:
12342 			sd_severity = SCSI_ERR_FATAL;
12343 			break;
12344 		case SD_FM_DRV_RECOVERY:
12345 			sd_severity = SCSI_ERR_RECOVERED;
12346 			break;
12347 		case SD_FM_DRV_RETRY:
12348 			sd_severity = SCSI_ERR_RETRYABLE;
12349 			break;
12350 		case SD_FM_DRV_NOTICE:
12351 			sd_severity = SCSI_ERR_INFO;
12352 			break;
12353 		default:
12354 			sd_severity = SCSI_ERR_UNKNOWN;
12355 	}
12356 	/* print log */
12357 	sd_ssc_print(ssc, sd_severity);
12358 
12359 	/* always post ereport */
12360 	sd_ssc_ereport_post(ssc, sd_assess);
12361 }
12362 
12363 /*
12364  *    Function: sd_ssc_set_info
12365  *
12366  * Description: Mark ssc_flags and set ssc_info which would be the
12367  *              payload of uderr ereport. This function will cause
12368  *              sd_ssc_ereport_post to post uderr ereport only.
12369  *              Besides, when ssc_flags == SSC_FLAGS_INVALID_DATA(USCSI),
12370  *              the function will also call SD_ERROR or scsi_log for a
12371  *              CDROM/removable-media/DDI_FM_NOT_CAPABLE device.
12372  *
12373  * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and
12374  *                  sd_uscsi_info in.
12375  *            ssc_flags - indicate the sub-category of a uderr.
12376  *            comp - this argument is meaningful only when
12377  *                   ssc_flags == SSC_FLAGS_INVALID_DATA, and its possible
12378  *                   values include:
12379  *                   > 0, SD_ERROR is used with comp as the driver logging
12380  *                   component;
12381  *                   = 0, scsi-log is used to log error telemetries;
12382  *                   < 0, no log available for this telemetry.
12383  *
12384  *    Context: Kernel thread or interrupt context
12385  */
12386 static void
12387 sd_ssc_set_info(sd_ssc_t *ssc, int ssc_flags, uint_t comp, const char *fmt, ...)
12388 {
12389 	va_list	ap;
12390 
12391 	ASSERT(ssc != NULL);
12392 	ASSERT(ssc->ssc_un != NULL);
12393 
12394 	ssc->ssc_flags |= ssc_flags;
12395 	va_start(ap, fmt);
12396 	(void) vsnprintf(ssc->ssc_info, sizeof (ssc->ssc_info), fmt, ap);
12397 	va_end(ap);
12398 
12399 	/*
12400 	 * If SSC_FLAGS_INVALID_DATA is set, it should be a uscsi command
12401 	 * with invalid data sent back. For non-uscsi command, the
12402 	 * following code will be bypassed.
12403 	 */
12404 	if (ssc_flags & SSC_FLAGS_INVALID_DATA) {
12405 		if (SD_FM_LOG(ssc->ssc_un) == SD_FM_LOG_NSUP) {
12406 			/*
12407 			 * If the error belong to certain component and we
12408 			 * do not want it to show up on the console, we
12409 			 * will use SD_ERROR, otherwise scsi_log is
12410 			 * preferred.
12411 			 */
12412 			if (comp > 0) {
12413 				SD_ERROR(comp, ssc->ssc_un, ssc->ssc_info);
12414 			} else if (comp == 0) {
12415 				scsi_log(SD_DEVINFO(ssc->ssc_un), sd_label,
12416 				    CE_WARN, ssc->ssc_info);
12417 			}
12418 		}
12419 	}
12420 }
12421 
12422 /*
12423  *    Function: sd_buf_iodone
12424  *
12425  * Description: Frees the sd_xbuf & returns the buf to its originator.
12426  *
12427  *     Context: May be called from interrupt context.
12428  */
12429 /* ARGSUSED */
12430 static void
12431 sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp)
12432 {
12433 	struct sd_xbuf *xp;
12434 
12435 	ASSERT(un != NULL);
12436 	ASSERT(bp != NULL);
12437 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12438 
12439 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: entry.\n");
12440 
12441 	xp = SD_GET_XBUF(bp);
12442 	ASSERT(xp != NULL);
12443 
12444 	/* xbuf is gone after this */
12445 	if (ddi_xbuf_done(bp, un->un_xbuf_attr)) {
12446 		mutex_enter(SD_MUTEX(un));
12447 
12448 		/*
12449 		 * Grab time when the cmd completed.
12450 		 * This is used for determining if the system has been
12451 		 * idle long enough to make it idle to the PM framework.
12452 		 * This is for lowering the overhead, and therefore improving
12453 		 * performance per I/O operation.
12454 		 */
12455 		un->un_pm_idle_time = ddi_get_time();
12456 
12457 		un->un_ncmds_in_driver--;
12458 		ASSERT(un->un_ncmds_in_driver >= 0);
12459 		SD_INFO(SD_LOG_IO, un,
12460 		    "sd_buf_iodone: un_ncmds_in_driver = %ld\n",
12461 		    un->un_ncmds_in_driver);
12462 
12463 		mutex_exit(SD_MUTEX(un));
12464 	}
12465 
12466 	biodone(bp);				/* bp is gone after this */
12467 
12468 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: exit.\n");
12469 }
12470 
12471 
12472 /*
12473  *    Function: sd_uscsi_iodone
12474  *
12475  * Description: Frees the sd_xbuf & returns the buf to its originator.
12476  *
12477  *     Context: May be called from interrupt context.
12478  */
12479 /* ARGSUSED */
12480 static void
12481 sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
12482 {
12483 	struct sd_xbuf *xp;
12484 
12485 	ASSERT(un != NULL);
12486 	ASSERT(bp != NULL);
12487 
12488 	xp = SD_GET_XBUF(bp);
12489 	ASSERT(xp != NULL);
12490 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12491 
12492 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: entry.\n");
12493 
12494 	bp->b_private = xp->xb_private;
12495 
12496 	mutex_enter(SD_MUTEX(un));
12497 
12498 	/*
12499 	 * Grab time when the cmd completed.
12500 	 * This is used for determining if the system has been
12501 	 * idle long enough to make it idle to the PM framework.
12502 	 * This is for lowering the overhead, and therefore improving
12503 	 * performance per I/O operation.
12504 	 */
12505 	un->un_pm_idle_time = ddi_get_time();
12506 
12507 	un->un_ncmds_in_driver--;
12508 	ASSERT(un->un_ncmds_in_driver >= 0);
12509 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: un_ncmds_in_driver = %ld\n",
12510 	    un->un_ncmds_in_driver);
12511 
12512 	mutex_exit(SD_MUTEX(un));
12513 
12514 	if (((struct uscsi_cmd *)(xp->xb_pktinfo))->uscsi_rqlen >
12515 	    SENSE_LENGTH) {
12516 		kmem_free(xp, sizeof (struct sd_xbuf) - SENSE_LENGTH +
12517 		    MAX_SENSE_LENGTH);
12518 	} else {
12519 		kmem_free(xp, sizeof (struct sd_xbuf));
12520 	}
12521 
12522 	biodone(bp);
12523 
12524 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: exit.\n");
12525 }
12526 
12527 
12528 /*
12529  *    Function: sd_mapblockaddr_iostart
12530  *
12531  * Description: Verify request lies within the partition limits for
12532  *		the indicated minor device.  Issue "overrun" buf if
12533  *		request would exceed partition range.  Converts
12534  *		partition-relative block address to absolute.
12535  *
12536  *              Upon exit of this function:
12537  *              1.I/O is aligned
12538  *                 xp->xb_blkno represents the absolute sector address
12539  *              2.I/O is misaligned
12540  *                 xp->xb_blkno represents the absolute logical block address
12541  *                 based on DEV_BSIZE. The logical block address will be
12542  *                 converted to physical sector address in sd_mapblocksize_\
12543  *                 iostart.
12544  *              3.I/O is misaligned but is aligned in "overrun" buf
12545  *                 xp->xb_blkno represents the absolute logical block address
12546  *                 based on DEV_BSIZE. The logical block address will be
12547  *                 converted to physical sector address in sd_mapblocksize_\
12548  *                 iostart. But no RMW will be issued in this case.
12549  *
12550  *     Context: Can sleep
12551  *
12552  *      Issues: This follows what the old code did, in terms of accessing
12553  *		some of the partition info in the unit struct without holding
12554  *		the mutext.  This is a general issue, if the partition info
12555  *		can be altered while IO is in progress... as soon as we send
12556  *		a buf, its partitioning can be invalid before it gets to the
12557  *		device.  Probably the right fix is to move partitioning out
12558  *		of the driver entirely.
12559  */
12560 
12561 static void
12562 sd_mapblockaddr_iostart(int index, struct sd_lun *un, struct buf *bp)
12563 {
12564 	diskaddr_t	nblocks;	/* #blocks in the given partition */
12565 	daddr_t	blocknum;	/* Block number specified by the buf */
12566 	size_t	requested_nblocks;
12567 	size_t	available_nblocks;
12568 	int	partition;
12569 	diskaddr_t	partition_offset;
12570 	struct sd_xbuf *xp;
12571 	int secmask = 0, blknomask = 0;
12572 	ushort_t is_aligned = TRUE;
12573 
12574 	ASSERT(un != NULL);
12575 	ASSERT(bp != NULL);
12576 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12577 
12578 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12579 	    "sd_mapblockaddr_iostart: entry: buf:0x%p\n", bp);
12580 
12581 	xp = SD_GET_XBUF(bp);
12582 	ASSERT(xp != NULL);
12583 
12584 	/*
12585 	 * If the geometry is not indicated as valid, attempt to access
12586 	 * the unit & verify the geometry/label. This can be the case for
12587 	 * removable-media devices, of if the device was opened in
12588 	 * NDELAY/NONBLOCK mode.
12589 	 */
12590 	partition = SDPART(bp->b_edev);
12591 
12592 	if (!SD_IS_VALID_LABEL(un)) {
12593 		sd_ssc_t *ssc;
12594 		/*
12595 		 * Initialize sd_ssc_t for internal uscsi commands
12596 		 * In case of potential porformance issue, we need
12597 		 * to alloc memory only if there is invalid label
12598 		 */
12599 		ssc = sd_ssc_init(un);
12600 
12601 		if (sd_ready_and_valid(ssc, partition) != SD_READY_VALID) {
12602 			/*
12603 			 * For removable devices it is possible to start an
12604 			 * I/O without a media by opening the device in nodelay
12605 			 * mode. Also for writable CDs there can be many
12606 			 * scenarios where there is no geometry yet but volume
12607 			 * manager is trying to issue a read() just because
12608 			 * it can see TOC on the CD. So do not print a message
12609 			 * for removables.
12610 			 */
12611 			if (!un->un_f_has_removable_media) {
12612 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
12613 				    "i/o to invalid geometry\n");
12614 			}
12615 			bioerror(bp, EIO);
12616 			bp->b_resid = bp->b_bcount;
12617 			SD_BEGIN_IODONE(index, un, bp);
12618 
12619 			sd_ssc_fini(ssc);
12620 			return;
12621 		}
12622 		sd_ssc_fini(ssc);
12623 	}
12624 
12625 	nblocks = 0;
12626 	(void) cmlb_partinfo(un->un_cmlbhandle, partition,
12627 	    &nblocks, &partition_offset, NULL, NULL, (void *)SD_PATH_DIRECT);
12628 
12629 	if (un->un_f_enable_rmw) {
12630 		blknomask = (un->un_phy_blocksize / DEV_BSIZE) - 1;
12631 		secmask = un->un_phy_blocksize - 1;
12632 	} else {
12633 		blknomask = (un->un_tgt_blocksize / DEV_BSIZE) - 1;
12634 		secmask = un->un_tgt_blocksize - 1;
12635 	}
12636 
12637 	if ((bp->b_lblkno & (blknomask)) || (bp->b_bcount & (secmask))) {
12638 		is_aligned = FALSE;
12639 	}
12640 
12641 	if (!(NOT_DEVBSIZE(un)) || un->un_f_enable_rmw) {
12642 		/*
12643 		 * If I/O is aligned, no need to involve RMW(Read Modify Write)
12644 		 * Convert the logical block number to target's physical sector
12645 		 * number.
12646 		 */
12647 		if (is_aligned) {
12648 			xp->xb_blkno = SD_SYS2TGTBLOCK(un, xp->xb_blkno);
12649 		} else {
12650 			switch (un->un_f_rmw_type) {
12651 			case SD_RMW_TYPE_RETURN_ERROR:
12652 				if (un->un_f_enable_rmw)
12653 					break;
12654 				else {
12655 					bp->b_flags |= B_ERROR;
12656 					goto error_exit;
12657 				}
12658 
12659 			case SD_RMW_TYPE_DEFAULT:
12660 				mutex_enter(SD_MUTEX(un));
12661 				if (!un->un_f_enable_rmw &&
12662 				    un->un_rmw_msg_timeid == NULL) {
12663 					scsi_log(SD_DEVINFO(un), sd_label,
12664 					    CE_WARN, "I/O request is not "
12665 					    "aligned with %d disk sector size. "
12666 					    "It is handled through Read Modify "
12667 					    "Write but the performance is "
12668 					    "very low.\n",
12669 					    un->un_tgt_blocksize);
12670 					un->un_rmw_msg_timeid =
12671 					    timeout(sd_rmw_msg_print_handler,
12672 					    un, SD_RMW_MSG_PRINT_TIMEOUT);
12673 				} else {
12674 					un->un_rmw_incre_count ++;
12675 				}
12676 				mutex_exit(SD_MUTEX(un));
12677 				break;
12678 
12679 			case SD_RMW_TYPE_NO_WARNING:
12680 			default:
12681 				break;
12682 			}
12683 
12684 			nblocks = SD_TGT2SYSBLOCK(un, nblocks);
12685 			partition_offset = SD_TGT2SYSBLOCK(un,
12686 			    partition_offset);
12687 		}
12688 	}
12689 
12690 	/*
12691 	 * blocknum is the starting block number of the request. At this
12692 	 * point it is still relative to the start of the minor device.
12693 	 */
12694 	blocknum = xp->xb_blkno;
12695 
12696 	/*
12697 	 * Legacy: If the starting block number is one past the last block
12698 	 * in the partition, do not set B_ERROR in the buf.
12699 	 */
12700 	if (blocknum == nblocks)  {
12701 		goto error_exit;
12702 	}
12703 
12704 	/*
12705 	 * Confirm that the first block of the request lies within the
12706 	 * partition limits. Also the requested number of bytes must be
12707 	 * a multiple of the system block size.
12708 	 */
12709 	if ((blocknum < 0) || (blocknum >= nblocks) ||
12710 	    ((bp->b_bcount & (DEV_BSIZE - 1)) != 0)) {
12711 		bp->b_flags |= B_ERROR;
12712 		goto error_exit;
12713 	}
12714 
12715 	/*
12716 	 * If the requsted # blocks exceeds the available # blocks, that
12717 	 * is an overrun of the partition.
12718 	 */
12719 	if ((!NOT_DEVBSIZE(un)) && is_aligned) {
12720 		requested_nblocks = SD_BYTES2TGTBLOCKS(un, bp->b_bcount);
12721 	} else {
12722 		requested_nblocks = SD_BYTES2SYSBLOCKS(bp->b_bcount);
12723 	}
12724 
12725 	available_nblocks = (size_t)(nblocks - blocknum);
12726 	ASSERT(nblocks >= blocknum);
12727 
12728 	if (requested_nblocks > available_nblocks) {
12729 		size_t resid;
12730 
12731 		/*
12732 		 * Allocate an "overrun" buf to allow the request to proceed
12733 		 * for the amount of space available in the partition. The
12734 		 * amount not transferred will be added into the b_resid
12735 		 * when the operation is complete. The overrun buf
12736 		 * replaces the original buf here, and the original buf
12737 		 * is saved inside the overrun buf, for later use.
12738 		 */
12739 		if ((!NOT_DEVBSIZE(un)) && is_aligned) {
12740 			resid = SD_TGTBLOCKS2BYTES(un,
12741 			    (offset_t)(requested_nblocks - available_nblocks));
12742 		} else {
12743 			resid = SD_SYSBLOCKS2BYTES(
12744 			    (offset_t)(requested_nblocks - available_nblocks));
12745 		}
12746 
12747 		size_t count = bp->b_bcount - resid;
12748 		/*
12749 		 * Note: count is an unsigned entity thus it'll NEVER
12750 		 * be less than 0 so ASSERT the original values are
12751 		 * correct.
12752 		 */
12753 		ASSERT(bp->b_bcount >= resid);
12754 
12755 		bp = sd_bioclone_alloc(bp, count, blocknum,
12756 		    (int (*)(struct buf *)) sd_mapblockaddr_iodone);
12757 		xp = SD_GET_XBUF(bp); /* Update for 'new' bp! */
12758 		ASSERT(xp != NULL);
12759 	}
12760 
12761 	/* At this point there should be no residual for this buf. */
12762 	ASSERT(bp->b_resid == 0);
12763 
12764 	/* Convert the block number to an absolute address. */
12765 	xp->xb_blkno += partition_offset;
12766 
12767 	SD_NEXT_IOSTART(index, un, bp);
12768 
12769 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12770 	    "sd_mapblockaddr_iostart: exit 0: buf:0x%p\n", bp);
12771 
12772 	return;
12773 
12774 error_exit:
12775 	bp->b_resid = bp->b_bcount;
12776 	SD_BEGIN_IODONE(index, un, bp);
12777 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12778 	    "sd_mapblockaddr_iostart: exit 1: buf:0x%p\n", bp);
12779 }
12780 
12781 
12782 /*
12783  *    Function: sd_mapblockaddr_iodone
12784  *
12785  * Description: Completion-side processing for partition management.
12786  *
12787  *     Context: May be called under interrupt context
12788  */
12789 
12790 static void
12791 sd_mapblockaddr_iodone(int index, struct sd_lun *un, struct buf *bp)
12792 {
12793 	/* int	partition; */	/* Not used, see below. */
12794 	ASSERT(un != NULL);
12795 	ASSERT(bp != NULL);
12796 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12797 
12798 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12799 	    "sd_mapblockaddr_iodone: entry: buf:0x%p\n", bp);
12800 
12801 	if (bp->b_iodone == (int (*)(struct buf *)) sd_mapblockaddr_iodone) {
12802 		/*
12803 		 * We have an "overrun" buf to deal with...
12804 		 */
12805 		struct sd_xbuf	*xp;
12806 		struct buf	*obp;	/* ptr to the original buf */
12807 
12808 		xp = SD_GET_XBUF(bp);
12809 		ASSERT(xp != NULL);
12810 
12811 		/* Retrieve the pointer to the original buf */
12812 		obp = (struct buf *)xp->xb_private;
12813 		ASSERT(obp != NULL);
12814 
12815 		obp->b_resid = obp->b_bcount - (bp->b_bcount - bp->b_resid);
12816 		bioerror(obp, bp->b_error);
12817 
12818 		sd_bioclone_free(bp);
12819 
12820 		/*
12821 		 * Get back the original buf.
12822 		 * Note that since the restoration of xb_blkno below
12823 		 * was removed, the sd_xbuf is not needed.
12824 		 */
12825 		bp = obp;
12826 		/*
12827 		 * xp = SD_GET_XBUF(bp);
12828 		 * ASSERT(xp != NULL);
12829 		 */
12830 	}
12831 
12832 	/*
12833 	 * Convert sd->xb_blkno back to a minor-device relative value.
12834 	 * Note: this has been commented out, as it is not needed in the
12835 	 * current implementation of the driver (ie, since this function
12836 	 * is at the top of the layering chains, so the info will be
12837 	 * discarded) and it is in the "hot" IO path.
12838 	 *
12839 	 * partition = getminor(bp->b_edev) & SDPART_MASK;
12840 	 * xp->xb_blkno -= un->un_offset[partition];
12841 	 */
12842 
12843 	SD_NEXT_IODONE(index, un, bp);
12844 
12845 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12846 	    "sd_mapblockaddr_iodone: exit: buf:0x%p\n", bp);
12847 }
12848 
12849 
12850 /*
12851  *    Function: sd_mapblocksize_iostart
12852  *
12853  * Description: Convert between system block size (un->un_sys_blocksize)
12854  *		and target block size (un->un_tgt_blocksize).
12855  *
12856  *     Context: Can sleep to allocate resources.
12857  *
12858  * Assumptions: A higher layer has already performed any partition validation,
12859  *		and converted the xp->xb_blkno to an absolute value relative
12860  *		to the start of the device.
12861  *
12862  *		It is also assumed that the higher layer has implemented
12863  *		an "overrun" mechanism for the case where the request would
12864  *		read/write beyond the end of a partition.  In this case we
12865  *		assume (and ASSERT) that bp->b_resid == 0.
12866  *
12867  *		Note: The implementation for this routine assumes the target
12868  *		block size remains constant between allocation and transport.
12869  */
12870 
12871 static void
12872 sd_mapblocksize_iostart(int index, struct sd_lun *un, struct buf *bp)
12873 {
12874 	struct sd_mapblocksize_info	*bsp;
12875 	struct sd_xbuf			*xp;
12876 	offset_t first_byte;
12877 	daddr_t	start_block, end_block;
12878 	daddr_t	request_bytes;
12879 	ushort_t is_aligned = FALSE;
12880 
12881 	ASSERT(un != NULL);
12882 	ASSERT(bp != NULL);
12883 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12884 	ASSERT(bp->b_resid == 0);
12885 
12886 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12887 	    "sd_mapblocksize_iostart: entry: buf:0x%p\n", bp);
12888 
12889 	/*
12890 	 * For a non-writable CD, a write request is an error
12891 	 */
12892 	if (ISCD(un) && ((bp->b_flags & B_READ) == 0) &&
12893 	    (un->un_f_mmc_writable_media == FALSE)) {
12894 		bioerror(bp, EIO);
12895 		bp->b_resid = bp->b_bcount;
12896 		SD_BEGIN_IODONE(index, un, bp);
12897 		return;
12898 	}
12899 
12900 	/*
12901 	 * We do not need a shadow buf if the device is using
12902 	 * un->un_sys_blocksize as its block size or if bcount == 0.
12903 	 * In this case there is no layer-private data block allocated.
12904 	 */
12905 	if ((un->un_tgt_blocksize == DEV_BSIZE && !un->un_f_enable_rmw) ||
12906 	    (bp->b_bcount == 0)) {
12907 		goto done;
12908 	}
12909 
12910 #if defined(__i386) || defined(__amd64)
12911 	/* We do not support non-block-aligned transfers for ROD devices */
12912 	ASSERT(!ISROD(un));
12913 #endif
12914 
12915 	xp = SD_GET_XBUF(bp);
12916 	ASSERT(xp != NULL);
12917 
12918 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12919 	    "tgt_blocksize:0x%x sys_blocksize: 0x%x\n",
12920 	    un->un_tgt_blocksize, DEV_BSIZE);
12921 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12922 	    "request start block:0x%x\n", xp->xb_blkno);
12923 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12924 	    "request len:0x%x\n", bp->b_bcount);
12925 
12926 	/*
12927 	 * Allocate the layer-private data area for the mapblocksize layer.
12928 	 * Layers are allowed to use the xp_private member of the sd_xbuf
12929 	 * struct to store the pointer to their layer-private data block, but
12930 	 * each layer also has the responsibility of restoring the prior
12931 	 * contents of xb_private before returning the buf/xbuf to the
12932 	 * higher layer that sent it.
12933 	 *
12934 	 * Here we save the prior contents of xp->xb_private into the
12935 	 * bsp->mbs_oprivate field of our layer-private data area. This value
12936 	 * is restored by sd_mapblocksize_iodone() just prior to freeing up
12937 	 * the layer-private area and returning the buf/xbuf to the layer
12938 	 * that sent it.
12939 	 *
12940 	 * Note that here we use kmem_zalloc for the allocation as there are
12941 	 * parts of the mapblocksize code that expect certain fields to be
12942 	 * zero unless explicitly set to a required value.
12943 	 */
12944 	bsp = kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
12945 	bsp->mbs_oprivate = xp->xb_private;
12946 	xp->xb_private = bsp;
12947 
12948 	/*
12949 	 * This treats the data on the disk (target) as an array of bytes.
12950 	 * first_byte is the byte offset, from the beginning of the device,
12951 	 * to the location of the request. This is converted from a
12952 	 * un->un_sys_blocksize block address to a byte offset, and then back
12953 	 * to a block address based upon a un->un_tgt_blocksize block size.
12954 	 *
12955 	 * xp->xb_blkno should be absolute upon entry into this function,
12956 	 * but, but it is based upon partitions that use the "system"
12957 	 * block size. It must be adjusted to reflect the block size of
12958 	 * the target.
12959 	 *
12960 	 * Note that end_block is actually the block that follows the last
12961 	 * block of the request, but that's what is needed for the computation.
12962 	 */
12963 	first_byte  = SD_SYSBLOCKS2BYTES((offset_t)xp->xb_blkno);
12964 	if (un->un_f_enable_rmw) {
12965 		start_block = xp->xb_blkno =
12966 		    (first_byte / un->un_phy_blocksize) *
12967 		    (un->un_phy_blocksize / DEV_BSIZE);
12968 		end_block   = ((first_byte + bp->b_bcount +
12969 		    un->un_phy_blocksize - 1) / un->un_phy_blocksize) *
12970 		    (un->un_phy_blocksize / DEV_BSIZE);
12971 	} else {
12972 		start_block = xp->xb_blkno = first_byte / un->un_tgt_blocksize;
12973 		end_block   = (first_byte + bp->b_bcount +
12974 		    un->un_tgt_blocksize - 1) / un->un_tgt_blocksize;
12975 	}
12976 
12977 	/* request_bytes is rounded up to a multiple of the target block size */
12978 	request_bytes = (end_block - start_block) * un->un_tgt_blocksize;
12979 
12980 	/*
12981 	 * See if the starting address of the request and the request
12982 	 * length are aligned on a un->un_tgt_blocksize boundary. If aligned
12983 	 * then we do not need to allocate a shadow buf to handle the request.
12984 	 */
12985 	if (un->un_f_enable_rmw) {
12986 		if (((first_byte % un->un_phy_blocksize) == 0) &&
12987 		    ((bp->b_bcount % un->un_phy_blocksize) == 0)) {
12988 			is_aligned = TRUE;
12989 		}
12990 	} else {
12991 		if (((first_byte % un->un_tgt_blocksize) == 0) &&
12992 		    ((bp->b_bcount % un->un_tgt_blocksize) == 0)) {
12993 			is_aligned = TRUE;
12994 		}
12995 	}
12996 
12997 	if ((bp->b_flags & B_READ) == 0) {
12998 		/*
12999 		 * Lock the range for a write operation. An aligned request is
13000 		 * considered a simple write; otherwise the request must be a
13001 		 * read-modify-write.
13002 		 */
13003 		bsp->mbs_wmp = sd_range_lock(un, start_block, end_block - 1,
13004 		    (is_aligned == TRUE) ? SD_WTYPE_SIMPLE : SD_WTYPE_RMW);
13005 	}
13006 
13007 	/*
13008 	 * Alloc a shadow buf if the request is not aligned. Also, this is
13009 	 * where the READ command is generated for a read-modify-write. (The
13010 	 * write phase is deferred until after the read completes.)
13011 	 */
13012 	if (is_aligned == FALSE) {
13013 
13014 		struct sd_mapblocksize_info	*shadow_bsp;
13015 		struct sd_xbuf	*shadow_xp;
13016 		struct buf	*shadow_bp;
13017 
13018 		/*
13019 		 * Allocate the shadow buf and it associated xbuf. Note that
13020 		 * after this call the xb_blkno value in both the original
13021 		 * buf's sd_xbuf _and_ the shadow buf's sd_xbuf will be the
13022 		 * same: absolute relative to the start of the device, and
13023 		 * adjusted for the target block size. The b_blkno in the
13024 		 * shadow buf will also be set to this value. We should never
13025 		 * change b_blkno in the original bp however.
13026 		 *
13027 		 * Note also that the shadow buf will always need to be a
13028 		 * READ command, regardless of whether the incoming command
13029 		 * is a READ or a WRITE.
13030 		 */
13031 		shadow_bp = sd_shadow_buf_alloc(bp, request_bytes, B_READ,
13032 		    xp->xb_blkno,
13033 		    (int (*)(struct buf *)) sd_mapblocksize_iodone);
13034 
13035 		shadow_xp = SD_GET_XBUF(shadow_bp);
13036 
13037 		/*
13038 		 * Allocate the layer-private data for the shadow buf.
13039 		 * (No need to preserve xb_private in the shadow xbuf.)
13040 		 */
13041 		shadow_xp->xb_private = shadow_bsp =
13042 		    kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
13043 
13044 		/*
13045 		 * bsp->mbs_copy_offset is used later by sd_mapblocksize_iodone
13046 		 * to figure out where the start of the user data is (based upon
13047 		 * the system block size) in the data returned by the READ
13048 		 * command (which will be based upon the target blocksize). Note
13049 		 * that this is only really used if the request is unaligned.
13050 		 */
13051 		if (un->un_f_enable_rmw) {
13052 			bsp->mbs_copy_offset = (ssize_t)(first_byte -
13053 			    ((offset_t)xp->xb_blkno * un->un_sys_blocksize));
13054 			ASSERT((bsp->mbs_copy_offset >= 0) &&
13055 			    (bsp->mbs_copy_offset < un->un_phy_blocksize));
13056 		} else {
13057 			bsp->mbs_copy_offset = (ssize_t)(first_byte -
13058 			    ((offset_t)xp->xb_blkno * un->un_tgt_blocksize));
13059 			ASSERT((bsp->mbs_copy_offset >= 0) &&
13060 			    (bsp->mbs_copy_offset < un->un_tgt_blocksize));
13061 		}
13062 
13063 		shadow_bsp->mbs_copy_offset = bsp->mbs_copy_offset;
13064 
13065 		shadow_bsp->mbs_layer_index = bsp->mbs_layer_index = index;
13066 
13067 		/* Transfer the wmap (if any) to the shadow buf */
13068 		shadow_bsp->mbs_wmp = bsp->mbs_wmp;
13069 		bsp->mbs_wmp = NULL;
13070 
13071 		/*
13072 		 * The shadow buf goes on from here in place of the
13073 		 * original buf.
13074 		 */
13075 		shadow_bsp->mbs_orig_bp = bp;
13076 		bp = shadow_bp;
13077 	}
13078 
13079 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
13080 	    "sd_mapblocksize_iostart: tgt start block:0x%x\n", xp->xb_blkno);
13081 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
13082 	    "sd_mapblocksize_iostart: tgt request len:0x%x\n",
13083 	    request_bytes);
13084 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
13085 	    "sd_mapblocksize_iostart: shadow buf:0x%x\n", bp);
13086 
13087 done:
13088 	SD_NEXT_IOSTART(index, un, bp);
13089 
13090 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
13091 	    "sd_mapblocksize_iostart: exit: buf:0x%p\n", bp);
13092 }
13093 
13094 
13095 /*
13096  *    Function: sd_mapblocksize_iodone
13097  *
13098  * Description: Completion side processing for block-size mapping.
13099  *
13100  *     Context: May be called under interrupt context
13101  */
13102 
13103 static void
13104 sd_mapblocksize_iodone(int index, struct sd_lun *un, struct buf *bp)
13105 {
13106 	struct sd_mapblocksize_info	*bsp;
13107 	struct sd_xbuf	*xp;
13108 	struct sd_xbuf	*orig_xp;	/* sd_xbuf for the original buf */
13109 	struct buf	*orig_bp;	/* ptr to the original buf */
13110 	offset_t	shadow_end;
13111 	offset_t	request_end;
13112 	offset_t	shadow_start;
13113 	ssize_t		copy_offset;
13114 	size_t		copy_length;
13115 	size_t		shortfall;
13116 	uint_t		is_write;	/* TRUE if this bp is a WRITE */
13117 	uint_t		has_wmap;	/* TRUE is this bp has a wmap */
13118 
13119 	ASSERT(un != NULL);
13120 	ASSERT(bp != NULL);
13121 
13122 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
13123 	    "sd_mapblocksize_iodone: entry: buf:0x%p\n", bp);
13124 
13125 	/*
13126 	 * There is no shadow buf or layer-private data if the target is
13127 	 * using un->un_sys_blocksize as its block size or if bcount == 0.
13128 	 */
13129 	if ((un->un_tgt_blocksize == DEV_BSIZE && !un->un_f_enable_rmw) ||
13130 	    (bp->b_bcount == 0)) {
13131 		goto exit;
13132 	}
13133 
13134 	xp = SD_GET_XBUF(bp);
13135 	ASSERT(xp != NULL);
13136 
13137 	/* Retrieve the pointer to the layer-private data area from the xbuf. */
13138 	bsp = xp->xb_private;
13139 
13140 	is_write = ((bp->b_flags & B_READ) == 0) ? TRUE : FALSE;
13141 	has_wmap = (bsp->mbs_wmp != NULL) ? TRUE : FALSE;
13142 
13143 	if (is_write) {
13144 		/*
13145 		 * For a WRITE request we must free up the block range that
13146 		 * we have locked up.  This holds regardless of whether this is
13147 		 * an aligned write request or a read-modify-write request.
13148 		 */
13149 		sd_range_unlock(un, bsp->mbs_wmp);
13150 		bsp->mbs_wmp = NULL;
13151 	}
13152 
13153 	if ((bp->b_iodone != (int(*)(struct buf *))sd_mapblocksize_iodone)) {
13154 		/*
13155 		 * An aligned read or write command will have no shadow buf;
13156 		 * there is not much else to do with it.
13157 		 */
13158 		goto done;
13159 	}
13160 
13161 	orig_bp = bsp->mbs_orig_bp;
13162 	ASSERT(orig_bp != NULL);
13163 	orig_xp = SD_GET_XBUF(orig_bp);
13164 	ASSERT(orig_xp != NULL);
13165 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13166 
13167 	if (!is_write && has_wmap) {
13168 		/*
13169 		 * A READ with a wmap means this is the READ phase of a
13170 		 * read-modify-write. If an error occurred on the READ then
13171 		 * we do not proceed with the WRITE phase or copy any data.
13172 		 * Just release the write maps and return with an error.
13173 		 */
13174 		if ((bp->b_resid != 0) || (bp->b_error != 0)) {
13175 			orig_bp->b_resid = orig_bp->b_bcount;
13176 			bioerror(orig_bp, bp->b_error);
13177 			sd_range_unlock(un, bsp->mbs_wmp);
13178 			goto freebuf_done;
13179 		}
13180 	}
13181 
13182 	/*
13183 	 * Here is where we set up to copy the data from the shadow buf
13184 	 * into the space associated with the original buf.
13185 	 *
13186 	 * To deal with the conversion between block sizes, these
13187 	 * computations treat the data as an array of bytes, with the
13188 	 * first byte (byte 0) corresponding to the first byte in the
13189 	 * first block on the disk.
13190 	 */
13191 
13192 	/*
13193 	 * shadow_start and shadow_len indicate the location and size of
13194 	 * the data returned with the shadow IO request.
13195 	 */
13196 	if (un->un_f_enable_rmw) {
13197 		shadow_start  = SD_SYSBLOCKS2BYTES((offset_t)xp->xb_blkno);
13198 	} else {
13199 		shadow_start  = SD_TGTBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
13200 	}
13201 	shadow_end    = shadow_start + bp->b_bcount - bp->b_resid;
13202 
13203 	/*
13204 	 * copy_offset gives the offset (in bytes) from the start of the first
13205 	 * block of the READ request to the beginning of the data.  We retrieve
13206 	 * this value from xb_pktp in the ORIGINAL xbuf, as it has been saved
13207 	 * there by sd_mapblockize_iostart(). copy_length gives the amount of
13208 	 * data to be copied (in bytes).
13209 	 */
13210 	copy_offset  = bsp->mbs_copy_offset;
13211 	if (un->un_f_enable_rmw) {
13212 		ASSERT((copy_offset >= 0) &&
13213 		    (copy_offset < un->un_phy_blocksize));
13214 	} else {
13215 		ASSERT((copy_offset >= 0) &&
13216 		    (copy_offset < un->un_tgt_blocksize));
13217 	}
13218 
13219 	copy_length  = orig_bp->b_bcount;
13220 	request_end  = shadow_start + copy_offset + orig_bp->b_bcount;
13221 
13222 	/*
13223 	 * Set up the resid and error fields of orig_bp as appropriate.
13224 	 */
13225 	if (shadow_end >= request_end) {
13226 		/* We got all the requested data; set resid to zero */
13227 		orig_bp->b_resid = 0;
13228 	} else {
13229 		/*
13230 		 * We failed to get enough data to fully satisfy the original
13231 		 * request. Just copy back whatever data we got and set
13232 		 * up the residual and error code as required.
13233 		 *
13234 		 * 'shortfall' is the amount by which the data received with the
13235 		 * shadow buf has "fallen short" of the requested amount.
13236 		 */
13237 		shortfall = (size_t)(request_end - shadow_end);
13238 
13239 		if (shortfall > orig_bp->b_bcount) {
13240 			/*
13241 			 * We did not get enough data to even partially
13242 			 * fulfill the original request.  The residual is
13243 			 * equal to the amount requested.
13244 			 */
13245 			orig_bp->b_resid = orig_bp->b_bcount;
13246 		} else {
13247 			/*
13248 			 * We did not get all the data that we requested
13249 			 * from the device, but we will try to return what
13250 			 * portion we did get.
13251 			 */
13252 			orig_bp->b_resid = shortfall;
13253 		}
13254 		ASSERT(copy_length >= orig_bp->b_resid);
13255 		copy_length  -= orig_bp->b_resid;
13256 	}
13257 
13258 	/* Propagate the error code from the shadow buf to the original buf */
13259 	bioerror(orig_bp, bp->b_error);
13260 
13261 	if (is_write) {
13262 		goto freebuf_done;	/* No data copying for a WRITE */
13263 	}
13264 
13265 	if (has_wmap) {
13266 		/*
13267 		 * This is a READ command from the READ phase of a
13268 		 * read-modify-write request. We have to copy the data given
13269 		 * by the user OVER the data returned by the READ command,
13270 		 * then convert the command from a READ to a WRITE and send
13271 		 * it back to the target.
13272 		 */
13273 		bcopy(orig_bp->b_un.b_addr, bp->b_un.b_addr + copy_offset,
13274 		    copy_length);
13275 
13276 		bp->b_flags &= ~((int)B_READ);	/* Convert to a WRITE */
13277 
13278 		/*
13279 		 * Dispatch the WRITE command to the taskq thread, which
13280 		 * will in turn send the command to the target. When the
13281 		 * WRITE command completes, we (sd_mapblocksize_iodone())
13282 		 * will get called again as part of the iodone chain
13283 		 * processing for it. Note that we will still be dealing
13284 		 * with the shadow buf at that point.
13285 		 */
13286 		if (taskq_dispatch(sd_wmr_tq, sd_read_modify_write_task, bp,
13287 		    KM_NOSLEEP) != 0) {
13288 			/*
13289 			 * Dispatch was successful so we are done. Return
13290 			 * without going any higher up the iodone chain. Do
13291 			 * not free up any layer-private data until after the
13292 			 * WRITE completes.
13293 			 */
13294 			return;
13295 		}
13296 
13297 		/*
13298 		 * Dispatch of the WRITE command failed; set up the error
13299 		 * condition and send this IO back up the iodone chain.
13300 		 */
13301 		bioerror(orig_bp, EIO);
13302 		orig_bp->b_resid = orig_bp->b_bcount;
13303 
13304 	} else {
13305 		/*
13306 		 * This is a regular READ request (ie, not a RMW). Copy the
13307 		 * data from the shadow buf into the original buf. The
13308 		 * copy_offset compensates for any "misalignment" between the
13309 		 * shadow buf (with its un->un_tgt_blocksize blocks) and the
13310 		 * original buf (with its un->un_sys_blocksize blocks).
13311 		 */
13312 		bcopy(bp->b_un.b_addr + copy_offset, orig_bp->b_un.b_addr,
13313 		    copy_length);
13314 	}
13315 
13316 freebuf_done:
13317 
13318 	/*
13319 	 * At this point we still have both the shadow buf AND the original
13320 	 * buf to deal with, as well as the layer-private data area in each.
13321 	 * Local variables are as follows:
13322 	 *
13323 	 * bp -- points to shadow buf
13324 	 * xp -- points to xbuf of shadow buf
13325 	 * bsp -- points to layer-private data area of shadow buf
13326 	 * orig_bp -- points to original buf
13327 	 *
13328 	 * First free the shadow buf and its associated xbuf, then free the
13329 	 * layer-private data area from the shadow buf. There is no need to
13330 	 * restore xb_private in the shadow xbuf.
13331 	 */
13332 	sd_shadow_buf_free(bp);
13333 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
13334 
13335 	/*
13336 	 * Now update the local variables to point to the original buf, xbuf,
13337 	 * and layer-private area.
13338 	 */
13339 	bp = orig_bp;
13340 	xp = SD_GET_XBUF(bp);
13341 	ASSERT(xp != NULL);
13342 	ASSERT(xp == orig_xp);
13343 	bsp = xp->xb_private;
13344 	ASSERT(bsp != NULL);
13345 
13346 done:
13347 	/*
13348 	 * Restore xb_private to whatever it was set to by the next higher
13349 	 * layer in the chain, then free the layer-private data area.
13350 	 */
13351 	xp->xb_private = bsp->mbs_oprivate;
13352 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
13353 
13354 exit:
13355 	SD_TRACE(SD_LOG_IO_RMMEDIA, SD_GET_UN(bp),
13356 	    "sd_mapblocksize_iodone: calling SD_NEXT_IODONE: buf:0x%p\n", bp);
13357 
13358 	SD_NEXT_IODONE(index, un, bp);
13359 }
13360 
13361 
13362 /*
13363  *    Function: sd_checksum_iostart
13364  *
13365  * Description: A stub function for a layer that's currently not used.
13366  *		For now just a placeholder.
13367  *
13368  *     Context: Kernel thread context
13369  */
13370 
13371 static void
13372 sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp)
13373 {
13374 	ASSERT(un != NULL);
13375 	ASSERT(bp != NULL);
13376 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13377 	SD_NEXT_IOSTART(index, un, bp);
13378 }
13379 
13380 
13381 /*
13382  *    Function: sd_checksum_iodone
13383  *
13384  * Description: A stub function for a layer that's currently not used.
13385  *		For now just a placeholder.
13386  *
13387  *     Context: May be called under interrupt context
13388  */
13389 
13390 static void
13391 sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp)
13392 {
13393 	ASSERT(un != NULL);
13394 	ASSERT(bp != NULL);
13395 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13396 	SD_NEXT_IODONE(index, un, bp);
13397 }
13398 
13399 
13400 /*
13401  *    Function: sd_checksum_uscsi_iostart
13402  *
13403  * Description: A stub function for a layer that's currently not used.
13404  *		For now just a placeholder.
13405  *
13406  *     Context: Kernel thread context
13407  */
13408 
13409 static void
13410 sd_checksum_uscsi_iostart(int index, struct sd_lun *un, struct buf *bp)
13411 {
13412 	ASSERT(un != NULL);
13413 	ASSERT(bp != NULL);
13414 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13415 	SD_NEXT_IOSTART(index, un, bp);
13416 }
13417 
13418 
13419 /*
13420  *    Function: sd_checksum_uscsi_iodone
13421  *
13422  * Description: A stub function for a layer that's currently not used.
13423  *		For now just a placeholder.
13424  *
13425  *     Context: May be called under interrupt context
13426  */
13427 
13428 static void
13429 sd_checksum_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
13430 {
13431 	ASSERT(un != NULL);
13432 	ASSERT(bp != NULL);
13433 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13434 	SD_NEXT_IODONE(index, un, bp);
13435 }
13436 
13437 
13438 /*
13439  *    Function: sd_pm_iostart
13440  *
13441  * Description: iostart-side routine for Power mangement.
13442  *
13443  *     Context: Kernel thread context
13444  */
13445 
13446 static void
13447 sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp)
13448 {
13449 	ASSERT(un != NULL);
13450 	ASSERT(bp != NULL);
13451 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13452 	ASSERT(!mutex_owned(&un->un_pm_mutex));
13453 
13454 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: entry\n");
13455 
13456 	if (sd_pm_entry(un) != DDI_SUCCESS) {
13457 		/*
13458 		 * Set up to return the failed buf back up the 'iodone'
13459 		 * side of the calling chain.
13460 		 */
13461 		bioerror(bp, EIO);
13462 		bp->b_resid = bp->b_bcount;
13463 
13464 		SD_BEGIN_IODONE(index, un, bp);
13465 
13466 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
13467 		return;
13468 	}
13469 
13470 	SD_NEXT_IOSTART(index, un, bp);
13471 
13472 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
13473 }
13474 
13475 
13476 /*
13477  *    Function: sd_pm_iodone
13478  *
13479  * Description: iodone-side routine for power mangement.
13480  *
13481  *     Context: may be called from interrupt context
13482  */
13483 
13484 static void
13485 sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp)
13486 {
13487 	ASSERT(un != NULL);
13488 	ASSERT(bp != NULL);
13489 	ASSERT(!mutex_owned(&un->un_pm_mutex));
13490 
13491 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: entry\n");
13492 
13493 	/*
13494 	 * After attach the following flag is only read, so don't
13495 	 * take the penalty of acquiring a mutex for it.
13496 	 */
13497 	if (un->un_f_pm_is_enabled == TRUE) {
13498 		sd_pm_exit(un);
13499 	}
13500 
13501 	SD_NEXT_IODONE(index, un, bp);
13502 
13503 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: exit\n");
13504 }
13505 
13506 
13507 /*
13508  *    Function: sd_core_iostart
13509  *
13510  * Description: Primary driver function for enqueuing buf(9S) structs from
13511  *		the system and initiating IO to the target device
13512  *
13513  *     Context: Kernel thread context. Can sleep.
13514  *
13515  * Assumptions:  - The given xp->xb_blkno is absolute
13516  *		   (ie, relative to the start of the device).
13517  *		 - The IO is to be done using the native blocksize of
13518  *		   the device, as specified in un->un_tgt_blocksize.
13519  */
13520 /* ARGSUSED */
13521 static void
13522 sd_core_iostart(int index, struct sd_lun *un, struct buf *bp)
13523 {
13524 	struct sd_xbuf *xp;
13525 
13526 	ASSERT(un != NULL);
13527 	ASSERT(bp != NULL);
13528 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13529 	ASSERT(bp->b_resid == 0);
13530 
13531 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: entry: bp:0x%p\n", bp);
13532 
13533 	xp = SD_GET_XBUF(bp);
13534 	ASSERT(xp != NULL);
13535 
13536 	mutex_enter(SD_MUTEX(un));
13537 
13538 	/*
13539 	 * If we are currently in the failfast state, fail any new IO
13540 	 * that has B_FAILFAST set, then return.
13541 	 */
13542 	if ((bp->b_flags & B_FAILFAST) &&
13543 	    (un->un_failfast_state == SD_FAILFAST_ACTIVE)) {
13544 		mutex_exit(SD_MUTEX(un));
13545 		bioerror(bp, EIO);
13546 		bp->b_resid = bp->b_bcount;
13547 		SD_BEGIN_IODONE(index, un, bp);
13548 		return;
13549 	}
13550 
13551 	if (SD_IS_DIRECT_PRIORITY(xp)) {
13552 		/*
13553 		 * Priority command -- transport it immediately.
13554 		 *
13555 		 * Note: We may want to assert that USCSI_DIAGNOSE is set,
13556 		 * because all direct priority commands should be associated
13557 		 * with error recovery actions which we don't want to retry.
13558 		 */
13559 		sd_start_cmds(un, bp);
13560 	} else {
13561 		/*
13562 		 * Normal command -- add it to the wait queue, then start
13563 		 * transporting commands from the wait queue.
13564 		 */
13565 		sd_add_buf_to_waitq(un, bp);
13566 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
13567 		sd_start_cmds(un, NULL);
13568 	}
13569 
13570 	mutex_exit(SD_MUTEX(un));
13571 
13572 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: exit: bp:0x%p\n", bp);
13573 }
13574 
13575 
13576 /*
13577  *    Function: sd_init_cdb_limits
13578  *
13579  * Description: This is to handle scsi_pkt initialization differences
13580  *		between the driver platforms.
13581  *
13582  *		Legacy behaviors:
13583  *
13584  *		If the block number or the sector count exceeds the
13585  *		capabilities of a Group 0 command, shift over to a
13586  *		Group 1 command. We don't blindly use Group 1
13587  *		commands because a) some drives (CDC Wren IVs) get a
13588  *		bit confused, and b) there is probably a fair amount
13589  *		of speed difference for a target to receive and decode
13590  *		a 10 byte command instead of a 6 byte command.
13591  *
13592  *		The xfer time difference of 6 vs 10 byte CDBs is
13593  *		still significant so this code is still worthwhile.
13594  *		10 byte CDBs are very inefficient with the fas HBA driver
13595  *		and older disks. Each CDB byte took 1 usec with some
13596  *		popular disks.
13597  *
13598  *     Context: Must be called at attach time
13599  */
13600 
13601 static void
13602 sd_init_cdb_limits(struct sd_lun *un)
13603 {
13604 	int hba_cdb_limit;
13605 
13606 	/*
13607 	 * Use CDB_GROUP1 commands for most devices except for
13608 	 * parallel SCSI fixed drives in which case we get better
13609 	 * performance using CDB_GROUP0 commands (where applicable).
13610 	 */
13611 	un->un_mincdb = SD_CDB_GROUP1;
13612 #if !defined(__fibre)
13613 	if (!un->un_f_is_fibre && !un->un_f_cfg_is_atapi && !ISROD(un) &&
13614 	    !un->un_f_has_removable_media) {
13615 		un->un_mincdb = SD_CDB_GROUP0;
13616 	}
13617 #endif
13618 
13619 	/*
13620 	 * Try to read the max-cdb-length supported by HBA.
13621 	 */
13622 	un->un_max_hba_cdb = scsi_ifgetcap(SD_ADDRESS(un), "max-cdb-length", 1);
13623 	if (0 >= un->un_max_hba_cdb) {
13624 		un->un_max_hba_cdb = CDB_GROUP4;
13625 		hba_cdb_limit = SD_CDB_GROUP4;
13626 	} else if (0 < un->un_max_hba_cdb &&
13627 	    un->un_max_hba_cdb < CDB_GROUP1) {
13628 		hba_cdb_limit = SD_CDB_GROUP0;
13629 	} else if (CDB_GROUP1 <= un->un_max_hba_cdb &&
13630 	    un->un_max_hba_cdb < CDB_GROUP5) {
13631 		hba_cdb_limit = SD_CDB_GROUP1;
13632 	} else if (CDB_GROUP5 <= un->un_max_hba_cdb &&
13633 	    un->un_max_hba_cdb < CDB_GROUP4) {
13634 		hba_cdb_limit = SD_CDB_GROUP5;
13635 	} else {
13636 		hba_cdb_limit = SD_CDB_GROUP4;
13637 	}
13638 
13639 	/*
13640 	 * Use CDB_GROUP5 commands for removable devices.  Use CDB_GROUP4
13641 	 * commands for fixed disks unless we are building for a 32 bit
13642 	 * kernel.
13643 	 */
13644 #ifdef _LP64
13645 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
13646 	    min(hba_cdb_limit, SD_CDB_GROUP4);
13647 #else
13648 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
13649 	    min(hba_cdb_limit, SD_CDB_GROUP1);
13650 #endif
13651 
13652 	un->un_status_len = (int)((un->un_f_arq_enabled == TRUE)
13653 	    ? sizeof (struct scsi_arq_status) : 1);
13654 	un->un_cmd_timeout = (ushort_t)sd_io_time;
13655 	un->un_uscsi_timeout = ((ISCD(un)) ? 2 : 1) * un->un_cmd_timeout;
13656 }
13657 
13658 
13659 /*
13660  *    Function: sd_initpkt_for_buf
13661  *
13662  * Description: Allocate and initialize for transport a scsi_pkt struct,
13663  *		based upon the info specified in the given buf struct.
13664  *
13665  *		Assumes the xb_blkno in the request is absolute (ie,
13666  *		relative to the start of the device (NOT partition!).
13667  *		Also assumes that the request is using the native block
13668  *		size of the device (as returned by the READ CAPACITY
13669  *		command).
13670  *
13671  * Return Code: SD_PKT_ALLOC_SUCCESS
13672  *		SD_PKT_ALLOC_FAILURE
13673  *		SD_PKT_ALLOC_FAILURE_NO_DMA
13674  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13675  *
13676  *     Context: Kernel thread and may be called from software interrupt context
13677  *		as part of a sdrunout callback. This function may not block or
13678  *		call routines that block
13679  */
13680 
13681 static int
13682 sd_initpkt_for_buf(struct buf *bp, struct scsi_pkt **pktpp)
13683 {
13684 	struct sd_xbuf	*xp;
13685 	struct scsi_pkt *pktp = NULL;
13686 	struct sd_lun	*un;
13687 	size_t		blockcount;
13688 	daddr_t		startblock;
13689 	int		rval;
13690 	int		cmd_flags;
13691 
13692 	ASSERT(bp != NULL);
13693 	ASSERT(pktpp != NULL);
13694 	xp = SD_GET_XBUF(bp);
13695 	ASSERT(xp != NULL);
13696 	un = SD_GET_UN(bp);
13697 	ASSERT(un != NULL);
13698 	ASSERT(mutex_owned(SD_MUTEX(un)));
13699 	ASSERT(bp->b_resid == 0);
13700 
13701 	SD_TRACE(SD_LOG_IO_CORE, un,
13702 	    "sd_initpkt_for_buf: entry: buf:0x%p\n", bp);
13703 
13704 	mutex_exit(SD_MUTEX(un));
13705 
13706 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13707 	if (xp->xb_pkt_flags & SD_XB_DMA_FREED) {
13708 		/*
13709 		 * Already have a scsi_pkt -- just need DMA resources.
13710 		 * We must recompute the CDB in case the mapping returns
13711 		 * a nonzero pkt_resid.
13712 		 * Note: if this is a portion of a PKT_DMA_PARTIAL transfer
13713 		 * that is being retried, the unmap/remap of the DMA resouces
13714 		 * will result in the entire transfer starting over again
13715 		 * from the very first block.
13716 		 */
13717 		ASSERT(xp->xb_pktp != NULL);
13718 		pktp = xp->xb_pktp;
13719 	} else {
13720 		pktp = NULL;
13721 	}
13722 #endif /* __i386 || __amd64 */
13723 
13724 	startblock = xp->xb_blkno;	/* Absolute block num. */
13725 	blockcount = SD_BYTES2TGTBLOCKS(un, bp->b_bcount);
13726 
13727 	cmd_flags = un->un_pkt_flags | (xp->xb_pkt_flags & SD_XB_INITPKT_MASK);
13728 
13729 	/*
13730 	 * sd_setup_rw_pkt will determine the appropriate CDB group to use,
13731 	 * call scsi_init_pkt, and build the CDB.
13732 	 */
13733 	rval = sd_setup_rw_pkt(un, &pktp, bp,
13734 	    cmd_flags, sdrunout, (caddr_t)un,
13735 	    startblock, blockcount);
13736 
13737 	if (rval == 0) {
13738 		/*
13739 		 * Success.
13740 		 *
13741 		 * If partial DMA is being used and required for this transfer.
13742 		 * set it up here.
13743 		 */
13744 		if ((un->un_pkt_flags & PKT_DMA_PARTIAL) != 0 &&
13745 		    (pktp->pkt_resid != 0)) {
13746 
13747 			/*
13748 			 * Save the CDB length and pkt_resid for the
13749 			 * next xfer
13750 			 */
13751 			xp->xb_dma_resid = pktp->pkt_resid;
13752 
13753 			/* rezero resid */
13754 			pktp->pkt_resid = 0;
13755 
13756 		} else {
13757 			xp->xb_dma_resid = 0;
13758 		}
13759 
13760 		pktp->pkt_flags = un->un_tagflags;
13761 		pktp->pkt_time  = un->un_cmd_timeout;
13762 		pktp->pkt_comp  = sdintr;
13763 
13764 		pktp->pkt_private = bp;
13765 		*pktpp = pktp;
13766 
13767 		SD_TRACE(SD_LOG_IO_CORE, un,
13768 		    "sd_initpkt_for_buf: exit: buf:0x%p\n", bp);
13769 
13770 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13771 		xp->xb_pkt_flags &= ~SD_XB_DMA_FREED;
13772 #endif
13773 
13774 		mutex_enter(SD_MUTEX(un));
13775 		return (SD_PKT_ALLOC_SUCCESS);
13776 
13777 	}
13778 
13779 	/*
13780 	 * SD_PKT_ALLOC_FAILURE is the only expected failure code
13781 	 * from sd_setup_rw_pkt.
13782 	 */
13783 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
13784 
13785 	if (rval == SD_PKT_ALLOC_FAILURE) {
13786 		*pktpp = NULL;
13787 		/*
13788 		 * Set the driver state to RWAIT to indicate the driver
13789 		 * is waiting on resource allocations. The driver will not
13790 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
13791 		 */
13792 		mutex_enter(SD_MUTEX(un));
13793 		New_state(un, SD_STATE_RWAIT);
13794 
13795 		SD_ERROR(SD_LOG_IO_CORE, un,
13796 		    "sd_initpkt_for_buf: No pktp. exit bp:0x%p\n", bp);
13797 
13798 		if ((bp->b_flags & B_ERROR) != 0) {
13799 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
13800 		}
13801 		return (SD_PKT_ALLOC_FAILURE);
13802 	} else {
13803 		/*
13804 		 * PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13805 		 *
13806 		 * This should never happen.  Maybe someone messed with the
13807 		 * kernel's minphys?
13808 		 */
13809 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13810 		    "Request rejected: too large for CDB: "
13811 		    "lba:0x%08lx  len:0x%08lx\n", startblock, blockcount);
13812 		SD_ERROR(SD_LOG_IO_CORE, un,
13813 		    "sd_initpkt_for_buf: No cp. exit bp:0x%p\n", bp);
13814 		mutex_enter(SD_MUTEX(un));
13815 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13816 
13817 	}
13818 }
13819 
13820 
13821 /*
13822  *    Function: sd_destroypkt_for_buf
13823  *
13824  * Description: Free the scsi_pkt(9S) for the given bp (buf IO processing).
13825  *
13826  *     Context: Kernel thread or interrupt context
13827  */
13828 
13829 static void
13830 sd_destroypkt_for_buf(struct buf *bp)
13831 {
13832 	ASSERT(bp != NULL);
13833 	ASSERT(SD_GET_UN(bp) != NULL);
13834 
13835 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
13836 	    "sd_destroypkt_for_buf: entry: buf:0x%p\n", bp);
13837 
13838 	ASSERT(SD_GET_PKTP(bp) != NULL);
13839 	scsi_destroy_pkt(SD_GET_PKTP(bp));
13840 
13841 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
13842 	    "sd_destroypkt_for_buf: exit: buf:0x%p\n", bp);
13843 }
13844 
13845 /*
13846  *    Function: sd_setup_rw_pkt
13847  *
13848  * Description: Determines appropriate CDB group for the requested LBA
13849  *		and transfer length, calls scsi_init_pkt, and builds
13850  *		the CDB.  Do not use for partial DMA transfers except
13851  *		for the initial transfer since the CDB size must
13852  *		remain constant.
13853  *
13854  *     Context: Kernel thread and may be called from software interrupt
13855  *		context as part of a sdrunout callback. This function may not
13856  *		block or call routines that block
13857  */
13858 
13859 
13860 int
13861 sd_setup_rw_pkt(struct sd_lun *un,
13862     struct scsi_pkt **pktpp, struct buf *bp, int flags,
13863     int (*callback)(caddr_t), caddr_t callback_arg,
13864     diskaddr_t lba, uint32_t blockcount)
13865 {
13866 	struct scsi_pkt *return_pktp;
13867 	union scsi_cdb *cdbp;
13868 	struct sd_cdbinfo *cp = NULL;
13869 	int i;
13870 
13871 	/*
13872 	 * See which size CDB to use, based upon the request.
13873 	 */
13874 	for (i = un->un_mincdb; i <= un->un_maxcdb; i++) {
13875 
13876 		/*
13877 		 * Check lba and block count against sd_cdbtab limits.
13878 		 * In the partial DMA case, we have to use the same size
13879 		 * CDB for all the transfers.  Check lba + blockcount
13880 		 * against the max LBA so we know that segment of the
13881 		 * transfer can use the CDB we select.
13882 		 */
13883 		if ((lba + blockcount - 1 <= sd_cdbtab[i].sc_maxlba) &&
13884 		    (blockcount <= sd_cdbtab[i].sc_maxlen)) {
13885 
13886 			/*
13887 			 * The command will fit into the CDB type
13888 			 * specified by sd_cdbtab[i].
13889 			 */
13890 			cp = sd_cdbtab + i;
13891 
13892 			/*
13893 			 * Call scsi_init_pkt so we can fill in the
13894 			 * CDB.
13895 			 */
13896 			return_pktp = scsi_init_pkt(SD_ADDRESS(un), *pktpp,
13897 			    bp, cp->sc_grpcode, un->un_status_len, 0,
13898 			    flags, callback, callback_arg);
13899 
13900 			if (return_pktp != NULL) {
13901 
13902 				/*
13903 				 * Return new value of pkt
13904 				 */
13905 				*pktpp = return_pktp;
13906 
13907 				/*
13908 				 * To be safe, zero the CDB insuring there is
13909 				 * no leftover data from a previous command.
13910 				 */
13911 				bzero(return_pktp->pkt_cdbp, cp->sc_grpcode);
13912 
13913 				/*
13914 				 * Handle partial DMA mapping
13915 				 */
13916 				if (return_pktp->pkt_resid != 0) {
13917 
13918 					/*
13919 					 * Not going to xfer as many blocks as
13920 					 * originally expected
13921 					 */
13922 					blockcount -=
13923 					    SD_BYTES2TGTBLOCKS(un,
13924 					    return_pktp->pkt_resid);
13925 				}
13926 
13927 				cdbp = (union scsi_cdb *)return_pktp->pkt_cdbp;
13928 
13929 				/*
13930 				 * Set command byte based on the CDB
13931 				 * type we matched.
13932 				 */
13933 				cdbp->scc_cmd = cp->sc_grpmask |
13934 				    ((bp->b_flags & B_READ) ?
13935 				    SCMD_READ : SCMD_WRITE);
13936 
13937 				SD_FILL_SCSI1_LUN(un, return_pktp);
13938 
13939 				/*
13940 				 * Fill in LBA and length
13941 				 */
13942 				ASSERT((cp->sc_grpcode == CDB_GROUP1) ||
13943 				    (cp->sc_grpcode == CDB_GROUP4) ||
13944 				    (cp->sc_grpcode == CDB_GROUP0) ||
13945 				    (cp->sc_grpcode == CDB_GROUP5));
13946 
13947 				if (cp->sc_grpcode == CDB_GROUP1) {
13948 					FORMG1ADDR(cdbp, lba);
13949 					FORMG1COUNT(cdbp, blockcount);
13950 					return (0);
13951 				} else if (cp->sc_grpcode == CDB_GROUP4) {
13952 					FORMG4LONGADDR(cdbp, lba);
13953 					FORMG4COUNT(cdbp, blockcount);
13954 					return (0);
13955 				} else if (cp->sc_grpcode == CDB_GROUP0) {
13956 					FORMG0ADDR(cdbp, lba);
13957 					FORMG0COUNT(cdbp, blockcount);
13958 					return (0);
13959 				} else if (cp->sc_grpcode == CDB_GROUP5) {
13960 					FORMG5ADDR(cdbp, lba);
13961 					FORMG5COUNT(cdbp, blockcount);
13962 					return (0);
13963 				}
13964 
13965 				/*
13966 				 * It should be impossible to not match one
13967 				 * of the CDB types above, so we should never
13968 				 * reach this point.  Set the CDB command byte
13969 				 * to test-unit-ready to avoid writing
13970 				 * to somewhere we don't intend.
13971 				 */
13972 				cdbp->scc_cmd = SCMD_TEST_UNIT_READY;
13973 				return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13974 			} else {
13975 				/*
13976 				 * Couldn't get scsi_pkt
13977 				 */
13978 				return (SD_PKT_ALLOC_FAILURE);
13979 			}
13980 		}
13981 	}
13982 
13983 	/*
13984 	 * None of the available CDB types were suitable.  This really
13985 	 * should never happen:  on a 64 bit system we support
13986 	 * READ16/WRITE16 which will hold an entire 64 bit disk address
13987 	 * and on a 32 bit system we will refuse to bind to a device
13988 	 * larger than 2TB so addresses will never be larger than 32 bits.
13989 	 */
13990 	return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13991 }
13992 
13993 /*
13994  *    Function: sd_setup_next_rw_pkt
13995  *
13996  * Description: Setup packet for partial DMA transfers, except for the
13997  * 		initial transfer.  sd_setup_rw_pkt should be used for
13998  *		the initial transfer.
13999  *
14000  *     Context: Kernel thread and may be called from interrupt context.
14001  */
14002 
14003 int
14004 sd_setup_next_rw_pkt(struct sd_lun *un,
14005     struct scsi_pkt *pktp, struct buf *bp,
14006     diskaddr_t lba, uint32_t blockcount)
14007 {
14008 	uchar_t com;
14009 	union scsi_cdb *cdbp;
14010 	uchar_t cdb_group_id;
14011 
14012 	ASSERT(pktp != NULL);
14013 	ASSERT(pktp->pkt_cdbp != NULL);
14014 
14015 	cdbp = (union scsi_cdb *)pktp->pkt_cdbp;
14016 	com = cdbp->scc_cmd;
14017 	cdb_group_id = CDB_GROUPID(com);
14018 
14019 	ASSERT((cdb_group_id == CDB_GROUPID_0) ||
14020 	    (cdb_group_id == CDB_GROUPID_1) ||
14021 	    (cdb_group_id == CDB_GROUPID_4) ||
14022 	    (cdb_group_id == CDB_GROUPID_5));
14023 
14024 	/*
14025 	 * Move pkt to the next portion of the xfer.
14026 	 * func is NULL_FUNC so we do not have to release
14027 	 * the disk mutex here.
14028 	 */
14029 	if (scsi_init_pkt(SD_ADDRESS(un), pktp, bp, 0, 0, 0, 0,
14030 	    NULL_FUNC, NULL) == pktp) {
14031 		/* Success.  Handle partial DMA */
14032 		if (pktp->pkt_resid != 0) {
14033 			blockcount -=
14034 			    SD_BYTES2TGTBLOCKS(un, pktp->pkt_resid);
14035 		}
14036 
14037 		cdbp->scc_cmd = com;
14038 		SD_FILL_SCSI1_LUN(un, pktp);
14039 		if (cdb_group_id == CDB_GROUPID_1) {
14040 			FORMG1ADDR(cdbp, lba);
14041 			FORMG1COUNT(cdbp, blockcount);
14042 			return (0);
14043 		} else if (cdb_group_id == CDB_GROUPID_4) {
14044 			FORMG4LONGADDR(cdbp, lba);
14045 			FORMG4COUNT(cdbp, blockcount);
14046 			return (0);
14047 		} else if (cdb_group_id == CDB_GROUPID_0) {
14048 			FORMG0ADDR(cdbp, lba);
14049 			FORMG0COUNT(cdbp, blockcount);
14050 			return (0);
14051 		} else if (cdb_group_id == CDB_GROUPID_5) {
14052 			FORMG5ADDR(cdbp, lba);
14053 			FORMG5COUNT(cdbp, blockcount);
14054 			return (0);
14055 		}
14056 
14057 		/* Unreachable */
14058 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
14059 	}
14060 
14061 	/*
14062 	 * Error setting up next portion of cmd transfer.
14063 	 * Something is definitely very wrong and this
14064 	 * should not happen.
14065 	 */
14066 	return (SD_PKT_ALLOC_FAILURE);
14067 }
14068 
14069 /*
14070  *    Function: sd_initpkt_for_uscsi
14071  *
14072  * Description: Allocate and initialize for transport a scsi_pkt struct,
14073  *		based upon the info specified in the given uscsi_cmd struct.
14074  *
14075  * Return Code: SD_PKT_ALLOC_SUCCESS
14076  *		SD_PKT_ALLOC_FAILURE
14077  *		SD_PKT_ALLOC_FAILURE_NO_DMA
14078  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
14079  *
14080  *     Context: Kernel thread and may be called from software interrupt context
14081  *		as part of a sdrunout callback. This function may not block or
14082  *		call routines that block
14083  */
14084 
14085 static int
14086 sd_initpkt_for_uscsi(struct buf *bp, struct scsi_pkt **pktpp)
14087 {
14088 	struct uscsi_cmd *uscmd;
14089 	struct sd_xbuf	*xp;
14090 	struct scsi_pkt	*pktp;
14091 	struct sd_lun	*un;
14092 	uint32_t	flags = 0;
14093 
14094 	ASSERT(bp != NULL);
14095 	ASSERT(pktpp != NULL);
14096 	xp = SD_GET_XBUF(bp);
14097 	ASSERT(xp != NULL);
14098 	un = SD_GET_UN(bp);
14099 	ASSERT(un != NULL);
14100 	ASSERT(mutex_owned(SD_MUTEX(un)));
14101 
14102 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
14103 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
14104 	ASSERT(uscmd != NULL);
14105 
14106 	SD_TRACE(SD_LOG_IO_CORE, un,
14107 	    "sd_initpkt_for_uscsi: entry: buf:0x%p\n", bp);
14108 
14109 	/*
14110 	 * Allocate the scsi_pkt for the command.
14111 	 * Note: If PKT_DMA_PARTIAL flag is set, scsi_vhci binds a path
14112 	 *	 during scsi_init_pkt time and will continue to use the
14113 	 *	 same path as long as the same scsi_pkt is used without
14114 	 *	 intervening scsi_dma_free(). Since uscsi command does
14115 	 *	 not call scsi_dmafree() before retry failed command, it
14116 	 *	 is necessary to make sure PKT_DMA_PARTIAL flag is NOT
14117 	 *	 set such that scsi_vhci can use other available path for
14118 	 *	 retry. Besides, ucsci command does not allow DMA breakup,
14119 	 *	 so there is no need to set PKT_DMA_PARTIAL flag.
14120 	 */
14121 	if (uscmd->uscsi_rqlen > SENSE_LENGTH) {
14122 		pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
14123 		    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
14124 		    ((int)(uscmd->uscsi_rqlen) + sizeof (struct scsi_arq_status)
14125 		    - sizeof (struct scsi_extended_sense)), 0,
14126 		    (un->un_pkt_flags & ~PKT_DMA_PARTIAL) | PKT_XARQ,
14127 		    sdrunout, (caddr_t)un);
14128 	} else {
14129 		pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
14130 		    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
14131 		    sizeof (struct scsi_arq_status), 0,
14132 		    (un->un_pkt_flags & ~PKT_DMA_PARTIAL),
14133 		    sdrunout, (caddr_t)un);
14134 	}
14135 
14136 	if (pktp == NULL) {
14137 		*pktpp = NULL;
14138 		/*
14139 		 * Set the driver state to RWAIT to indicate the driver
14140 		 * is waiting on resource allocations. The driver will not
14141 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
14142 		 */
14143 		New_state(un, SD_STATE_RWAIT);
14144 
14145 		SD_ERROR(SD_LOG_IO_CORE, un,
14146 		    "sd_initpkt_for_uscsi: No pktp. exit bp:0x%p\n", bp);
14147 
14148 		if ((bp->b_flags & B_ERROR) != 0) {
14149 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
14150 		}
14151 		return (SD_PKT_ALLOC_FAILURE);
14152 	}
14153 
14154 	/*
14155 	 * We do not do DMA breakup for USCSI commands, so return failure
14156 	 * here if all the needed DMA resources were not allocated.
14157 	 */
14158 	if ((un->un_pkt_flags & PKT_DMA_PARTIAL) &&
14159 	    (bp->b_bcount != 0) && (pktp->pkt_resid != 0)) {
14160 		scsi_destroy_pkt(pktp);
14161 		SD_ERROR(SD_LOG_IO_CORE, un, "sd_initpkt_for_uscsi: "
14162 		    "No partial DMA for USCSI. exit: buf:0x%p\n", bp);
14163 		return (SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL);
14164 	}
14165 
14166 	/* Init the cdb from the given uscsi struct */
14167 	(void) scsi_setup_cdb((union scsi_cdb *)pktp->pkt_cdbp,
14168 	    uscmd->uscsi_cdb[0], 0, 0, 0);
14169 
14170 	SD_FILL_SCSI1_LUN(un, pktp);
14171 
14172 	/*
14173 	 * Set up the optional USCSI flags. See the uscsi (7I) man page
14174 	 * for listing of the supported flags.
14175 	 */
14176 
14177 	if (uscmd->uscsi_flags & USCSI_SILENT) {
14178 		flags |= FLAG_SILENT;
14179 	}
14180 
14181 	if (uscmd->uscsi_flags & USCSI_DIAGNOSE) {
14182 		flags |= FLAG_DIAGNOSE;
14183 	}
14184 
14185 	if (uscmd->uscsi_flags & USCSI_ISOLATE) {
14186 		flags |= FLAG_ISOLATE;
14187 	}
14188 
14189 	if (un->un_f_is_fibre == FALSE) {
14190 		if (uscmd->uscsi_flags & USCSI_RENEGOT) {
14191 			flags |= FLAG_RENEGOTIATE_WIDE_SYNC;
14192 		}
14193 	}
14194 
14195 	/*
14196 	 * Set the pkt flags here so we save time later.
14197 	 * Note: These flags are NOT in the uscsi man page!!!
14198 	 */
14199 	if (uscmd->uscsi_flags & USCSI_HEAD) {
14200 		flags |= FLAG_HEAD;
14201 	}
14202 
14203 	if (uscmd->uscsi_flags & USCSI_NOINTR) {
14204 		flags |= FLAG_NOINTR;
14205 	}
14206 
14207 	/*
14208 	 * For tagged queueing, things get a bit complicated.
14209 	 * Check first for head of queue and last for ordered queue.
14210 	 * If neither head nor order, use the default driver tag flags.
14211 	 */
14212 	if ((uscmd->uscsi_flags & USCSI_NOTAG) == 0) {
14213 		if (uscmd->uscsi_flags & USCSI_HTAG) {
14214 			flags |= FLAG_HTAG;
14215 		} else if (uscmd->uscsi_flags & USCSI_OTAG) {
14216 			flags |= FLAG_OTAG;
14217 		} else {
14218 			flags |= un->un_tagflags & FLAG_TAGMASK;
14219 		}
14220 	}
14221 
14222 	if (uscmd->uscsi_flags & USCSI_NODISCON) {
14223 		flags = (flags & ~FLAG_TAGMASK) | FLAG_NODISCON;
14224 	}
14225 
14226 	pktp->pkt_flags = flags;
14227 
14228 	/* Transfer uscsi information to scsi_pkt */
14229 	(void) scsi_uscsi_pktinit(uscmd, pktp);
14230 
14231 	/* Copy the caller's CDB into the pkt... */
14232 	bcopy(uscmd->uscsi_cdb, pktp->pkt_cdbp, uscmd->uscsi_cdblen);
14233 
14234 	if (uscmd->uscsi_timeout == 0) {
14235 		pktp->pkt_time = un->un_uscsi_timeout;
14236 	} else {
14237 		pktp->pkt_time = uscmd->uscsi_timeout;
14238 	}
14239 
14240 	/* need it later to identify USCSI request in sdintr */
14241 	xp->xb_pkt_flags |= SD_XB_USCSICMD;
14242 
14243 	xp->xb_sense_resid = uscmd->uscsi_rqresid;
14244 
14245 	pktp->pkt_private = bp;
14246 	pktp->pkt_comp = sdintr;
14247 	*pktpp = pktp;
14248 
14249 	SD_TRACE(SD_LOG_IO_CORE, un,
14250 	    "sd_initpkt_for_uscsi: exit: buf:0x%p\n", bp);
14251 
14252 	return (SD_PKT_ALLOC_SUCCESS);
14253 }
14254 
14255 
14256 /*
14257  *    Function: sd_destroypkt_for_uscsi
14258  *
14259  * Description: Free the scsi_pkt(9S) struct for the given bp, for uscsi
14260  *		IOs.. Also saves relevant info into the associated uscsi_cmd
14261  *		struct.
14262  *
14263  *     Context: May be called under interrupt context
14264  */
14265 
14266 static void
14267 sd_destroypkt_for_uscsi(struct buf *bp)
14268 {
14269 	struct uscsi_cmd *uscmd;
14270 	struct sd_xbuf	*xp;
14271 	struct scsi_pkt	*pktp;
14272 	struct sd_lun	*un;
14273 	struct sd_uscsi_info *suip;
14274 
14275 	ASSERT(bp != NULL);
14276 	xp = SD_GET_XBUF(bp);
14277 	ASSERT(xp != NULL);
14278 	un = SD_GET_UN(bp);
14279 	ASSERT(un != NULL);
14280 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14281 	pktp = SD_GET_PKTP(bp);
14282 	ASSERT(pktp != NULL);
14283 
14284 	SD_TRACE(SD_LOG_IO_CORE, un,
14285 	    "sd_destroypkt_for_uscsi: entry: buf:0x%p\n", bp);
14286 
14287 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
14288 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
14289 	ASSERT(uscmd != NULL);
14290 
14291 	/* Save the status and the residual into the uscsi_cmd struct */
14292 	uscmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK);
14293 	uscmd->uscsi_resid  = bp->b_resid;
14294 
14295 	/* Transfer scsi_pkt information to uscsi */
14296 	(void) scsi_uscsi_pktfini(pktp, uscmd);
14297 
14298 	/*
14299 	 * If enabled, copy any saved sense data into the area specified
14300 	 * by the uscsi command.
14301 	 */
14302 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
14303 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
14304 		/*
14305 		 * Note: uscmd->uscsi_rqbuf should always point to a buffer
14306 		 * at least SENSE_LENGTH bytes in size (see sd_send_scsi_cmd())
14307 		 */
14308 		uscmd->uscsi_rqstatus = xp->xb_sense_status;
14309 		uscmd->uscsi_rqresid  = xp->xb_sense_resid;
14310 		if (uscmd->uscsi_rqlen > SENSE_LENGTH) {
14311 			bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf,
14312 			    MAX_SENSE_LENGTH);
14313 		} else {
14314 			bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf,
14315 			    SENSE_LENGTH);
14316 		}
14317 	}
14318 	/*
14319 	 * The following assignments are for SCSI FMA.
14320 	 */
14321 	ASSERT(xp->xb_private != NULL);
14322 	suip = (struct sd_uscsi_info *)xp->xb_private;
14323 	suip->ui_pkt_reason = pktp->pkt_reason;
14324 	suip->ui_pkt_state = pktp->pkt_state;
14325 	suip->ui_pkt_statistics = pktp->pkt_statistics;
14326 	suip->ui_lba = (uint64_t)SD_GET_BLKNO(bp);
14327 
14328 	/* We are done with the scsi_pkt; free it now */
14329 	ASSERT(SD_GET_PKTP(bp) != NULL);
14330 	scsi_destroy_pkt(SD_GET_PKTP(bp));
14331 
14332 	SD_TRACE(SD_LOG_IO_CORE, un,
14333 	    "sd_destroypkt_for_uscsi: exit: buf:0x%p\n", bp);
14334 }
14335 
14336 
14337 /*
14338  *    Function: sd_bioclone_alloc
14339  *
14340  * Description: Allocate a buf(9S) and init it as per the given buf
14341  *		and the various arguments.  The associated sd_xbuf
14342  *		struct is (nearly) duplicated.  The struct buf *bp
14343  *		argument is saved in new_xp->xb_private.
14344  *
14345  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
14346  *		datalen - size of data area for the shadow bp
14347  *		blkno - starting LBA
14348  *		func - function pointer for b_iodone in the shadow buf. (May
14349  *			be NULL if none.)
14350  *
14351  * Return Code: Pointer to allocates buf(9S) struct
14352  *
14353  *     Context: Can sleep.
14354  */
14355 
14356 static struct buf *
14357 sd_bioclone_alloc(struct buf *bp, size_t datalen,
14358 	daddr_t blkno, int (*func)(struct buf *))
14359 {
14360 	struct	sd_lun	*un;
14361 	struct	sd_xbuf	*xp;
14362 	struct	sd_xbuf	*new_xp;
14363 	struct	buf	*new_bp;
14364 
14365 	ASSERT(bp != NULL);
14366 	xp = SD_GET_XBUF(bp);
14367 	ASSERT(xp != NULL);
14368 	un = SD_GET_UN(bp);
14369 	ASSERT(un != NULL);
14370 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14371 
14372 	new_bp = bioclone(bp, 0, datalen, SD_GET_DEV(un), blkno, func,
14373 	    NULL, KM_SLEEP);
14374 
14375 	new_bp->b_lblkno	= blkno;
14376 
14377 	/*
14378 	 * Allocate an xbuf for the shadow bp and copy the contents of the
14379 	 * original xbuf into it.
14380 	 */
14381 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
14382 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
14383 
14384 	/*
14385 	 * The given bp is automatically saved in the xb_private member
14386 	 * of the new xbuf.  Callers are allowed to depend on this.
14387 	 */
14388 	new_xp->xb_private = bp;
14389 
14390 	new_bp->b_private  = new_xp;
14391 
14392 	return (new_bp);
14393 }
14394 
14395 /*
14396  *    Function: sd_shadow_buf_alloc
14397  *
14398  * Description: Allocate a buf(9S) and init it as per the given buf
14399  *		and the various arguments.  The associated sd_xbuf
14400  *		struct is (nearly) duplicated.  The struct buf *bp
14401  *		argument is saved in new_xp->xb_private.
14402  *
14403  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
14404  *		datalen - size of data area for the shadow bp
14405  *		bflags - B_READ or B_WRITE (pseudo flag)
14406  *		blkno - starting LBA
14407  *		func - function pointer for b_iodone in the shadow buf. (May
14408  *			be NULL if none.)
14409  *
14410  * Return Code: Pointer to allocates buf(9S) struct
14411  *
14412  *     Context: Can sleep.
14413  */
14414 
14415 static struct buf *
14416 sd_shadow_buf_alloc(struct buf *bp, size_t datalen, uint_t bflags,
14417 	daddr_t blkno, int (*func)(struct buf *))
14418 {
14419 	struct	sd_lun	*un;
14420 	struct	sd_xbuf	*xp;
14421 	struct	sd_xbuf	*new_xp;
14422 	struct	buf	*new_bp;
14423 
14424 	ASSERT(bp != NULL);
14425 	xp = SD_GET_XBUF(bp);
14426 	ASSERT(xp != NULL);
14427 	un = SD_GET_UN(bp);
14428 	ASSERT(un != NULL);
14429 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14430 
14431 	if (bp->b_flags & (B_PAGEIO | B_PHYS)) {
14432 		bp_mapin(bp);
14433 	}
14434 
14435 	bflags &= (B_READ | B_WRITE);
14436 #if defined(__i386) || defined(__amd64)
14437 	new_bp = getrbuf(KM_SLEEP);
14438 	new_bp->b_un.b_addr = kmem_zalloc(datalen, KM_SLEEP);
14439 	new_bp->b_bcount = datalen;
14440 	new_bp->b_flags = bflags |
14441 	    (bp->b_flags & ~(B_PAGEIO | B_PHYS | B_REMAPPED | B_SHADOW));
14442 #else
14443 	new_bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), NULL,
14444 	    datalen, bflags, SLEEP_FUNC, NULL);
14445 #endif
14446 	new_bp->av_forw	= NULL;
14447 	new_bp->av_back	= NULL;
14448 	new_bp->b_dev	= bp->b_dev;
14449 	new_bp->b_blkno	= blkno;
14450 	new_bp->b_iodone = func;
14451 	new_bp->b_edev	= bp->b_edev;
14452 	new_bp->b_resid	= 0;
14453 
14454 	/* We need to preserve the B_FAILFAST flag */
14455 	if (bp->b_flags & B_FAILFAST) {
14456 		new_bp->b_flags |= B_FAILFAST;
14457 	}
14458 
14459 	/*
14460 	 * Allocate an xbuf for the shadow bp and copy the contents of the
14461 	 * original xbuf into it.
14462 	 */
14463 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
14464 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
14465 
14466 	/* Need later to copy data between the shadow buf & original buf! */
14467 	new_xp->xb_pkt_flags |= PKT_CONSISTENT;
14468 
14469 	/*
14470 	 * The given bp is automatically saved in the xb_private member
14471 	 * of the new xbuf.  Callers are allowed to depend on this.
14472 	 */
14473 	new_xp->xb_private = bp;
14474 
14475 	new_bp->b_private  = new_xp;
14476 
14477 	return (new_bp);
14478 }
14479 
14480 /*
14481  *    Function: sd_bioclone_free
14482  *
14483  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations
14484  *		in the larger than partition operation.
14485  *
14486  *     Context: May be called under interrupt context
14487  */
14488 
14489 static void
14490 sd_bioclone_free(struct buf *bp)
14491 {
14492 	struct sd_xbuf	*xp;
14493 
14494 	ASSERT(bp != NULL);
14495 	xp = SD_GET_XBUF(bp);
14496 	ASSERT(xp != NULL);
14497 
14498 	/*
14499 	 * Call bp_mapout() before freeing the buf,  in case a lower
14500 	 * layer or HBA  had done a bp_mapin().  we must do this here
14501 	 * as we are the "originator" of the shadow buf.
14502 	 */
14503 	bp_mapout(bp);
14504 
14505 	/*
14506 	 * Null out b_iodone before freeing the bp, to ensure that the driver
14507 	 * never gets confused by a stale value in this field. (Just a little
14508 	 * extra defensiveness here.)
14509 	 */
14510 	bp->b_iodone = NULL;
14511 
14512 	freerbuf(bp);
14513 
14514 	kmem_free(xp, sizeof (struct sd_xbuf));
14515 }
14516 
14517 /*
14518  *    Function: sd_shadow_buf_free
14519  *
14520  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations.
14521  *
14522  *     Context: May be called under interrupt context
14523  */
14524 
14525 static void
14526 sd_shadow_buf_free(struct buf *bp)
14527 {
14528 	struct sd_xbuf	*xp;
14529 
14530 	ASSERT(bp != NULL);
14531 	xp = SD_GET_XBUF(bp);
14532 	ASSERT(xp != NULL);
14533 
14534 #if defined(__sparc)
14535 	/*
14536 	 * Call bp_mapout() before freeing the buf,  in case a lower
14537 	 * layer or HBA  had done a bp_mapin().  we must do this here
14538 	 * as we are the "originator" of the shadow buf.
14539 	 */
14540 	bp_mapout(bp);
14541 #endif
14542 
14543 	/*
14544 	 * Null out b_iodone before freeing the bp, to ensure that the driver
14545 	 * never gets confused by a stale value in this field. (Just a little
14546 	 * extra defensiveness here.)
14547 	 */
14548 	bp->b_iodone = NULL;
14549 
14550 #if defined(__i386) || defined(__amd64)
14551 	kmem_free(bp->b_un.b_addr, bp->b_bcount);
14552 	freerbuf(bp);
14553 #else
14554 	scsi_free_consistent_buf(bp);
14555 #endif
14556 
14557 	kmem_free(xp, sizeof (struct sd_xbuf));
14558 }
14559 
14560 
14561 /*
14562  *    Function: sd_print_transport_rejected_message
14563  *
14564  * Description: This implements the ludicrously complex rules for printing
14565  *		a "transport rejected" message.  This is to address the
14566  *		specific problem of having a flood of this error message
14567  *		produced when a failover occurs.
14568  *
14569  *     Context: Any.
14570  */
14571 
14572 static void
14573 sd_print_transport_rejected_message(struct sd_lun *un, struct sd_xbuf *xp,
14574 	int code)
14575 {
14576 	ASSERT(un != NULL);
14577 	ASSERT(mutex_owned(SD_MUTEX(un)));
14578 	ASSERT(xp != NULL);
14579 
14580 	/*
14581 	 * Print the "transport rejected" message under the following
14582 	 * conditions:
14583 	 *
14584 	 * - Whenever the SD_LOGMASK_DIAG bit of sd_level_mask is set
14585 	 * - The error code from scsi_transport() is NOT a TRAN_FATAL_ERROR.
14586 	 * - If the error code IS a TRAN_FATAL_ERROR, then the message is
14587 	 *   printed the FIRST time a TRAN_FATAL_ERROR is returned from
14588 	 *   scsi_transport(9F) (which indicates that the target might have
14589 	 *   gone off-line).  This uses the un->un_tran_fatal_count
14590 	 *   count, which is incremented whenever a TRAN_FATAL_ERROR is
14591 	 *   received, and reset to zero whenver a TRAN_ACCEPT is returned
14592 	 *   from scsi_transport().
14593 	 *
14594 	 * The FLAG_SILENT in the scsi_pkt must be CLEARED in ALL of
14595 	 * the preceeding cases in order for the message to be printed.
14596 	 */
14597 	if (((xp->xb_pktp->pkt_flags & FLAG_SILENT) == 0) &&
14598 	    (SD_FM_LOG(un) == SD_FM_LOG_NSUP)) {
14599 		if ((sd_level_mask & SD_LOGMASK_DIAG) ||
14600 		    (code != TRAN_FATAL_ERROR) ||
14601 		    (un->un_tran_fatal_count == 1)) {
14602 			switch (code) {
14603 			case TRAN_BADPKT:
14604 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
14605 				    "transport rejected bad packet\n");
14606 				break;
14607 			case TRAN_FATAL_ERROR:
14608 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
14609 				    "transport rejected fatal error\n");
14610 				break;
14611 			default:
14612 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
14613 				    "transport rejected (%d)\n", code);
14614 				break;
14615 			}
14616 		}
14617 	}
14618 }
14619 
14620 
14621 /*
14622  *    Function: sd_add_buf_to_waitq
14623  *
14624  * Description: Add the given buf(9S) struct to the wait queue for the
14625  *		instance.  If sorting is enabled, then the buf is added
14626  *		to the queue via an elevator sort algorithm (a la
14627  *		disksort(9F)).  The SD_GET_BLKNO(bp) is used as the sort key.
14628  *		If sorting is not enabled, then the buf is just added
14629  *		to the end of the wait queue.
14630  *
14631  * Return Code: void
14632  *
14633  *     Context: Does not sleep/block, therefore technically can be called
14634  *		from any context.  However if sorting is enabled then the
14635  *		execution time is indeterminate, and may take long if
14636  *		the wait queue grows large.
14637  */
14638 
14639 static void
14640 sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp)
14641 {
14642 	struct buf *ap;
14643 
14644 	ASSERT(bp != NULL);
14645 	ASSERT(un != NULL);
14646 	ASSERT(mutex_owned(SD_MUTEX(un)));
14647 
14648 	/* If the queue is empty, add the buf as the only entry & return. */
14649 	if (un->un_waitq_headp == NULL) {
14650 		ASSERT(un->un_waitq_tailp == NULL);
14651 		un->un_waitq_headp = un->un_waitq_tailp = bp;
14652 		bp->av_forw = NULL;
14653 		return;
14654 	}
14655 
14656 	ASSERT(un->un_waitq_tailp != NULL);
14657 
14658 	/*
14659 	 * If sorting is disabled, just add the buf to the tail end of
14660 	 * the wait queue and return.
14661 	 */
14662 	if (un->un_f_disksort_disabled || un->un_f_enable_rmw) {
14663 		un->un_waitq_tailp->av_forw = bp;
14664 		un->un_waitq_tailp = bp;
14665 		bp->av_forw = NULL;
14666 		return;
14667 	}
14668 
14669 	/*
14670 	 * Sort thru the list of requests currently on the wait queue
14671 	 * and add the new buf request at the appropriate position.
14672 	 *
14673 	 * The un->un_waitq_headp is an activity chain pointer on which
14674 	 * we keep two queues, sorted in ascending SD_GET_BLKNO() order. The
14675 	 * first queue holds those requests which are positioned after
14676 	 * the current SD_GET_BLKNO() (in the first request); the second holds
14677 	 * requests which came in after their SD_GET_BLKNO() number was passed.
14678 	 * Thus we implement a one way scan, retracting after reaching
14679 	 * the end of the drive to the first request on the second
14680 	 * queue, at which time it becomes the first queue.
14681 	 * A one-way scan is natural because of the way UNIX read-ahead
14682 	 * blocks are allocated.
14683 	 *
14684 	 * If we lie after the first request, then we must locate the
14685 	 * second request list and add ourselves to it.
14686 	 */
14687 	ap = un->un_waitq_headp;
14688 	if (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap)) {
14689 		while (ap->av_forw != NULL) {
14690 			/*
14691 			 * Look for an "inversion" in the (normally
14692 			 * ascending) block numbers. This indicates
14693 			 * the start of the second request list.
14694 			 */
14695 			if (SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) {
14696 				/*
14697 				 * Search the second request list for the
14698 				 * first request at a larger block number.
14699 				 * We go before that; however if there is
14700 				 * no such request, we go at the end.
14701 				 */
14702 				do {
14703 					if (SD_GET_BLKNO(bp) <
14704 					    SD_GET_BLKNO(ap->av_forw)) {
14705 						goto insert;
14706 					}
14707 					ap = ap->av_forw;
14708 				} while (ap->av_forw != NULL);
14709 				goto insert;		/* after last */
14710 			}
14711 			ap = ap->av_forw;
14712 		}
14713 
14714 		/*
14715 		 * No inversions... we will go after the last, and
14716 		 * be the first request in the second request list.
14717 		 */
14718 		goto insert;
14719 	}
14720 
14721 	/*
14722 	 * Request is at/after the current request...
14723 	 * sort in the first request list.
14724 	 */
14725 	while (ap->av_forw != NULL) {
14726 		/*
14727 		 * We want to go after the current request (1) if
14728 		 * there is an inversion after it (i.e. it is the end
14729 		 * of the first request list), or (2) if the next
14730 		 * request is a larger block no. than our request.
14731 		 */
14732 		if ((SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) ||
14733 		    (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap->av_forw))) {
14734 			goto insert;
14735 		}
14736 		ap = ap->av_forw;
14737 	}
14738 
14739 	/*
14740 	 * Neither a second list nor a larger request, therefore
14741 	 * we go at the end of the first list (which is the same
14742 	 * as the end of the whole schebang).
14743 	 */
14744 insert:
14745 	bp->av_forw = ap->av_forw;
14746 	ap->av_forw = bp;
14747 
14748 	/*
14749 	 * If we inserted onto the tail end of the waitq, make sure the
14750 	 * tail pointer is updated.
14751 	 */
14752 	if (ap == un->un_waitq_tailp) {
14753 		un->un_waitq_tailp = bp;
14754 	}
14755 }
14756 
14757 
14758 /*
14759  *    Function: sd_start_cmds
14760  *
14761  * Description: Remove and transport cmds from the driver queues.
14762  *
14763  *   Arguments: un - pointer to the unit (soft state) struct for the target.
14764  *
14765  *		immed_bp - ptr to a buf to be transported immediately. Only
14766  *		the immed_bp is transported; bufs on the waitq are not
14767  *		processed and the un_retry_bp is not checked.  If immed_bp is
14768  *		NULL, then normal queue processing is performed.
14769  *
14770  *     Context: May be called from kernel thread context, interrupt context,
14771  *		or runout callback context. This function may not block or
14772  *		call routines that block.
14773  */
14774 
14775 static void
14776 sd_start_cmds(struct sd_lun *un, struct buf *immed_bp)
14777 {
14778 	struct	sd_xbuf	*xp;
14779 	struct	buf	*bp;
14780 	void	(*statp)(kstat_io_t *);
14781 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14782 	void	(*saved_statp)(kstat_io_t *);
14783 #endif
14784 	int	rval;
14785 	struct sd_fm_internal *sfip = NULL;
14786 
14787 	ASSERT(un != NULL);
14788 	ASSERT(mutex_owned(SD_MUTEX(un)));
14789 	ASSERT(un->un_ncmds_in_transport >= 0);
14790 	ASSERT(un->un_throttle >= 0);
14791 
14792 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: entry\n");
14793 
14794 	do {
14795 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14796 		saved_statp = NULL;
14797 #endif
14798 
14799 		/*
14800 		 * If we are syncing or dumping, fail the command to
14801 		 * avoid recursively calling back into scsi_transport().
14802 		 * The dump I/O itself uses a separate code path so this
14803 		 * only prevents non-dump I/O from being sent while dumping.
14804 		 * File system sync takes place before dumping begins.
14805 		 * During panic, filesystem I/O is allowed provided
14806 		 * un_in_callback is <= 1.  This is to prevent recursion
14807 		 * such as sd_start_cmds -> scsi_transport -> sdintr ->
14808 		 * sd_start_cmds and so on.  See panic.c for more information
14809 		 * about the states the system can be in during panic.
14810 		 */
14811 		if ((un->un_state == SD_STATE_DUMPING) ||
14812 		    (ddi_in_panic() && (un->un_in_callback > 1))) {
14813 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14814 			    "sd_start_cmds: panicking\n");
14815 			goto exit;
14816 		}
14817 
14818 		if ((bp = immed_bp) != NULL) {
14819 			/*
14820 			 * We have a bp that must be transported immediately.
14821 			 * It's OK to transport the immed_bp here without doing
14822 			 * the throttle limit check because the immed_bp is
14823 			 * always used in a retry/recovery case. This means
14824 			 * that we know we are not at the throttle limit by
14825 			 * virtue of the fact that to get here we must have
14826 			 * already gotten a command back via sdintr(). This also
14827 			 * relies on (1) the command on un_retry_bp preventing
14828 			 * further commands from the waitq from being issued;
14829 			 * and (2) the code in sd_retry_command checking the
14830 			 * throttle limit before issuing a delayed or immediate
14831 			 * retry. This holds even if the throttle limit is
14832 			 * currently ratcheted down from its maximum value.
14833 			 */
14834 			statp = kstat_runq_enter;
14835 			if (bp == un->un_retry_bp) {
14836 				ASSERT((un->un_retry_statp == NULL) ||
14837 				    (un->un_retry_statp == kstat_waitq_enter) ||
14838 				    (un->un_retry_statp ==
14839 				    kstat_runq_back_to_waitq));
14840 				/*
14841 				 * If the waitq kstat was incremented when
14842 				 * sd_set_retry_bp() queued this bp for a retry,
14843 				 * then we must set up statp so that the waitq
14844 				 * count will get decremented correctly below.
14845 				 * Also we must clear un->un_retry_statp to
14846 				 * ensure that we do not act on a stale value
14847 				 * in this field.
14848 				 */
14849 				if ((un->un_retry_statp == kstat_waitq_enter) ||
14850 				    (un->un_retry_statp ==
14851 				    kstat_runq_back_to_waitq)) {
14852 					statp = kstat_waitq_to_runq;
14853 				}
14854 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14855 				saved_statp = un->un_retry_statp;
14856 #endif
14857 				un->un_retry_statp = NULL;
14858 
14859 				SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14860 				    "sd_start_cmds: un:0x%p: GOT retry_bp:0x%p "
14861 				    "un_throttle:%d un_ncmds_in_transport:%d\n",
14862 				    un, un->un_retry_bp, un->un_throttle,
14863 				    un->un_ncmds_in_transport);
14864 			} else {
14865 				SD_TRACE(SD_LOG_IO_CORE, un, "sd_start_cmds: "
14866 				    "processing priority bp:0x%p\n", bp);
14867 			}
14868 
14869 		} else if ((bp = un->un_waitq_headp) != NULL) {
14870 			/*
14871 			 * A command on the waitq is ready to go, but do not
14872 			 * send it if:
14873 			 *
14874 			 * (1) the throttle limit has been reached, or
14875 			 * (2) a retry is pending, or
14876 			 * (3) a START_STOP_UNIT callback pending, or
14877 			 * (4) a callback for a SD_PATH_DIRECT_PRIORITY
14878 			 *	command is pending.
14879 			 *
14880 			 * For all of these conditions, IO processing will
14881 			 * restart after the condition is cleared.
14882 			 */
14883 			if (un->un_ncmds_in_transport >= un->un_throttle) {
14884 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14885 				    "sd_start_cmds: exiting, "
14886 				    "throttle limit reached!\n");
14887 				goto exit;
14888 			}
14889 			if (un->un_retry_bp != NULL) {
14890 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14891 				    "sd_start_cmds: exiting, retry pending!\n");
14892 				goto exit;
14893 			}
14894 			if (un->un_startstop_timeid != NULL) {
14895 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14896 				    "sd_start_cmds: exiting, "
14897 				    "START_STOP pending!\n");
14898 				goto exit;
14899 			}
14900 			if (un->un_direct_priority_timeid != NULL) {
14901 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14902 				    "sd_start_cmds: exiting, "
14903 				    "SD_PATH_DIRECT_PRIORITY cmd. pending!\n");
14904 				goto exit;
14905 			}
14906 
14907 			/* Dequeue the command */
14908 			un->un_waitq_headp = bp->av_forw;
14909 			if (un->un_waitq_headp == NULL) {
14910 				un->un_waitq_tailp = NULL;
14911 			}
14912 			bp->av_forw = NULL;
14913 			statp = kstat_waitq_to_runq;
14914 			SD_TRACE(SD_LOG_IO_CORE, un,
14915 			    "sd_start_cmds: processing waitq bp:0x%p\n", bp);
14916 
14917 		} else {
14918 			/* No work to do so bail out now */
14919 			SD_TRACE(SD_LOG_IO_CORE, un,
14920 			    "sd_start_cmds: no more work, exiting!\n");
14921 			goto exit;
14922 		}
14923 
14924 		/*
14925 		 * Reset the state to normal. This is the mechanism by which
14926 		 * the state transitions from either SD_STATE_RWAIT or
14927 		 * SD_STATE_OFFLINE to SD_STATE_NORMAL.
14928 		 * If state is SD_STATE_PM_CHANGING then this command is
14929 		 * part of the device power control and the state must
14930 		 * not be put back to normal. Doing so would would
14931 		 * allow new commands to proceed when they shouldn't,
14932 		 * the device may be going off.
14933 		 */
14934 		if ((un->un_state != SD_STATE_SUSPENDED) &&
14935 		    (un->un_state != SD_STATE_PM_CHANGING)) {
14936 			New_state(un, SD_STATE_NORMAL);
14937 		}
14938 
14939 		xp = SD_GET_XBUF(bp);
14940 		ASSERT(xp != NULL);
14941 
14942 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14943 		/*
14944 		 * Allocate the scsi_pkt if we need one, or attach DMA
14945 		 * resources if we have a scsi_pkt that needs them. The
14946 		 * latter should only occur for commands that are being
14947 		 * retried.
14948 		 */
14949 		if ((xp->xb_pktp == NULL) ||
14950 		    ((xp->xb_pkt_flags & SD_XB_DMA_FREED) != 0)) {
14951 #else
14952 		if (xp->xb_pktp == NULL) {
14953 #endif
14954 			/*
14955 			 * There is no scsi_pkt allocated for this buf. Call
14956 			 * the initpkt function to allocate & init one.
14957 			 *
14958 			 * The scsi_init_pkt runout callback functionality is
14959 			 * implemented as follows:
14960 			 *
14961 			 * 1) The initpkt function always calls
14962 			 *    scsi_init_pkt(9F) with sdrunout specified as the
14963 			 *    callback routine.
14964 			 * 2) A successful packet allocation is initialized and
14965 			 *    the I/O is transported.
14966 			 * 3) The I/O associated with an allocation resource
14967 			 *    failure is left on its queue to be retried via
14968 			 *    runout or the next I/O.
14969 			 * 4) The I/O associated with a DMA error is removed
14970 			 *    from the queue and failed with EIO. Processing of
14971 			 *    the transport queues is also halted to be
14972 			 *    restarted via runout or the next I/O.
14973 			 * 5) The I/O associated with a CDB size or packet
14974 			 *    size error is removed from the queue and failed
14975 			 *    with EIO. Processing of the transport queues is
14976 			 *    continued.
14977 			 *
14978 			 * Note: there is no interface for canceling a runout
14979 			 * callback. To prevent the driver from detaching or
14980 			 * suspending while a runout is pending the driver
14981 			 * state is set to SD_STATE_RWAIT
14982 			 *
14983 			 * Note: using the scsi_init_pkt callback facility can
14984 			 * result in an I/O request persisting at the head of
14985 			 * the list which cannot be satisfied even after
14986 			 * multiple retries. In the future the driver may
14987 			 * implement some kind of maximum runout count before
14988 			 * failing an I/O.
14989 			 *
14990 			 * Note: the use of funcp below may seem superfluous,
14991 			 * but it helps warlock figure out the correct
14992 			 * initpkt function calls (see [s]sd.wlcmd).
14993 			 */
14994 			struct scsi_pkt	*pktp;
14995 			int (*funcp)(struct buf *bp, struct scsi_pkt **pktp);
14996 
14997 			ASSERT(bp != un->un_rqs_bp);
14998 
14999 			funcp = sd_initpkt_map[xp->xb_chain_iostart];
15000 			switch ((*funcp)(bp, &pktp)) {
15001 			case  SD_PKT_ALLOC_SUCCESS:
15002 				xp->xb_pktp = pktp;
15003 				SD_TRACE(SD_LOG_IO_CORE, un,
15004 				    "sd_start_cmd: SD_PKT_ALLOC_SUCCESS 0x%p\n",
15005 				    pktp);
15006 				goto got_pkt;
15007 
15008 			case SD_PKT_ALLOC_FAILURE:
15009 				/*
15010 				 * Temporary (hopefully) resource depletion.
15011 				 * Since retries and RQS commands always have a
15012 				 * scsi_pkt allocated, these cases should never
15013 				 * get here. So the only cases this needs to
15014 				 * handle is a bp from the waitq (which we put
15015 				 * back onto the waitq for sdrunout), or a bp
15016 				 * sent as an immed_bp (which we just fail).
15017 				 */
15018 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15019 				    "sd_start_cmds: SD_PKT_ALLOC_FAILURE\n");
15020 
15021 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
15022 
15023 				if (bp == immed_bp) {
15024 					/*
15025 					 * If SD_XB_DMA_FREED is clear, then
15026 					 * this is a failure to allocate a
15027 					 * scsi_pkt, and we must fail the
15028 					 * command.
15029 					 */
15030 					if ((xp->xb_pkt_flags &
15031 					    SD_XB_DMA_FREED) == 0) {
15032 						break;
15033 					}
15034 
15035 					/*
15036 					 * If this immediate command is NOT our
15037 					 * un_retry_bp, then we must fail it.
15038 					 */
15039 					if (bp != un->un_retry_bp) {
15040 						break;
15041 					}
15042 
15043 					/*
15044 					 * We get here if this cmd is our
15045 					 * un_retry_bp that was DMAFREED, but
15046 					 * scsi_init_pkt() failed to reallocate
15047 					 * DMA resources when we attempted to
15048 					 * retry it. This can happen when an
15049 					 * mpxio failover is in progress, but
15050 					 * we don't want to just fail the
15051 					 * command in this case.
15052 					 *
15053 					 * Use timeout(9F) to restart it after
15054 					 * a 100ms delay.  We don't want to
15055 					 * let sdrunout() restart it, because
15056 					 * sdrunout() is just supposed to start
15057 					 * commands that are sitting on the
15058 					 * wait queue.  The un_retry_bp stays
15059 					 * set until the command completes, but
15060 					 * sdrunout can be called many times
15061 					 * before that happens.  Since sdrunout
15062 					 * cannot tell if the un_retry_bp is
15063 					 * already in the transport, it could
15064 					 * end up calling scsi_transport() for
15065 					 * the un_retry_bp multiple times.
15066 					 *
15067 					 * Also: don't schedule the callback
15068 					 * if some other callback is already
15069 					 * pending.
15070 					 */
15071 					if (un->un_retry_statp == NULL) {
15072 						/*
15073 						 * restore the kstat pointer to
15074 						 * keep kstat counts coherent
15075 						 * when we do retry the command.
15076 						 */
15077 						un->un_retry_statp =
15078 						    saved_statp;
15079 					}
15080 
15081 					if ((un->un_startstop_timeid == NULL) &&
15082 					    (un->un_retry_timeid == NULL) &&
15083 					    (un->un_direct_priority_timeid ==
15084 					    NULL)) {
15085 
15086 						un->un_retry_timeid =
15087 						    timeout(
15088 						    sd_start_retry_command,
15089 						    un, SD_RESTART_TIMEOUT);
15090 					}
15091 					goto exit;
15092 				}
15093 
15094 #else
15095 				if (bp == immed_bp) {
15096 					break;	/* Just fail the command */
15097 				}
15098 #endif
15099 
15100 				/* Add the buf back to the head of the waitq */
15101 				bp->av_forw = un->un_waitq_headp;
15102 				un->un_waitq_headp = bp;
15103 				if (un->un_waitq_tailp == NULL) {
15104 					un->un_waitq_tailp = bp;
15105 				}
15106 				goto exit;
15107 
15108 			case SD_PKT_ALLOC_FAILURE_NO_DMA:
15109 				/*
15110 				 * HBA DMA resource failure. Fail the command
15111 				 * and continue processing of the queues.
15112 				 */
15113 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15114 				    "sd_start_cmds: "
15115 				    "SD_PKT_ALLOC_FAILURE_NO_DMA\n");
15116 				break;
15117 
15118 			case SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL:
15119 				/*
15120 				 * Note:x86: Partial DMA mapping not supported
15121 				 * for USCSI commands, and all the needed DMA
15122 				 * resources were not allocated.
15123 				 */
15124 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15125 				    "sd_start_cmds: "
15126 				    "SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL\n");
15127 				break;
15128 
15129 			case SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL:
15130 				/*
15131 				 * Note:x86: Request cannot fit into CDB based
15132 				 * on lba and len.
15133 				 */
15134 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15135 				    "sd_start_cmds: "
15136 				    "SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL\n");
15137 				break;
15138 
15139 			default:
15140 				/* Should NEVER get here! */
15141 				panic("scsi_initpkt error");
15142 				/*NOTREACHED*/
15143 			}
15144 
15145 			/*
15146 			 * Fatal error in allocating a scsi_pkt for this buf.
15147 			 * Update kstats & return the buf with an error code.
15148 			 * We must use sd_return_failed_command_no_restart() to
15149 			 * avoid a recursive call back into sd_start_cmds().
15150 			 * However this also means that we must keep processing
15151 			 * the waitq here in order to avoid stalling.
15152 			 */
15153 			if (statp == kstat_waitq_to_runq) {
15154 				SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
15155 			}
15156 			sd_return_failed_command_no_restart(un, bp, EIO);
15157 			if (bp == immed_bp) {
15158 				/* immed_bp is gone by now, so clear this */
15159 				immed_bp = NULL;
15160 			}
15161 			continue;
15162 		}
15163 got_pkt:
15164 		if (bp == immed_bp) {
15165 			/* goto the head of the class.... */
15166 			xp->xb_pktp->pkt_flags |= FLAG_HEAD;
15167 		}
15168 
15169 		un->un_ncmds_in_transport++;
15170 		SD_UPDATE_KSTATS(un, statp, bp);
15171 
15172 		/*
15173 		 * Call scsi_transport() to send the command to the target.
15174 		 * According to SCSA architecture, we must drop the mutex here
15175 		 * before calling scsi_transport() in order to avoid deadlock.
15176 		 * Note that the scsi_pkt's completion routine can be executed
15177 		 * (from interrupt context) even before the call to
15178 		 * scsi_transport() returns.
15179 		 */
15180 		SD_TRACE(SD_LOG_IO_CORE, un,
15181 		    "sd_start_cmds: calling scsi_transport()\n");
15182 		DTRACE_PROBE1(scsi__transport__dispatch, struct buf *, bp);
15183 
15184 		mutex_exit(SD_MUTEX(un));
15185 		rval = scsi_transport(xp->xb_pktp);
15186 		mutex_enter(SD_MUTEX(un));
15187 
15188 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15189 		    "sd_start_cmds: scsi_transport() returned %d\n", rval);
15190 
15191 		switch (rval) {
15192 		case TRAN_ACCEPT:
15193 			/* Clear this with every pkt accepted by the HBA */
15194 			un->un_tran_fatal_count = 0;
15195 			break;	/* Success; try the next cmd (if any) */
15196 
15197 		case TRAN_BUSY:
15198 			un->un_ncmds_in_transport--;
15199 			ASSERT(un->un_ncmds_in_transport >= 0);
15200 
15201 			/*
15202 			 * Don't retry request sense, the sense data
15203 			 * is lost when another request is sent.
15204 			 * Free up the rqs buf and retry
15205 			 * the original failed cmd.  Update kstat.
15206 			 */
15207 			if (bp == un->un_rqs_bp) {
15208 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
15209 				bp = sd_mark_rqs_idle(un, xp);
15210 				sd_retry_command(un, bp, SD_RETRIES_STANDARD,
15211 				    NULL, NULL, EIO, un->un_busy_timeout / 500,
15212 				    kstat_waitq_enter);
15213 				goto exit;
15214 			}
15215 
15216 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
15217 			/*
15218 			 * Free the DMA resources for the  scsi_pkt. This will
15219 			 * allow mpxio to select another path the next time
15220 			 * we call scsi_transport() with this scsi_pkt.
15221 			 * See sdintr() for the rationalization behind this.
15222 			 */
15223 			if ((un->un_f_is_fibre == TRUE) &&
15224 			    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
15225 			    ((xp->xb_pktp->pkt_flags & FLAG_SENSING) == 0)) {
15226 				scsi_dmafree(xp->xb_pktp);
15227 				xp->xb_pkt_flags |= SD_XB_DMA_FREED;
15228 			}
15229 #endif
15230 
15231 			if (SD_IS_DIRECT_PRIORITY(SD_GET_XBUF(bp))) {
15232 				/*
15233 				 * Commands that are SD_PATH_DIRECT_PRIORITY
15234 				 * are for error recovery situations. These do
15235 				 * not use the normal command waitq, so if they
15236 				 * get a TRAN_BUSY we cannot put them back onto
15237 				 * the waitq for later retry. One possible
15238 				 * problem is that there could already be some
15239 				 * other command on un_retry_bp that is waiting
15240 				 * for this one to complete, so we would be
15241 				 * deadlocked if we put this command back onto
15242 				 * the waitq for later retry (since un_retry_bp
15243 				 * must complete before the driver gets back to
15244 				 * commands on the waitq).
15245 				 *
15246 				 * To avoid deadlock we must schedule a callback
15247 				 * that will restart this command after a set
15248 				 * interval.  This should keep retrying for as
15249 				 * long as the underlying transport keeps
15250 				 * returning TRAN_BUSY (just like for other
15251 				 * commands).  Use the same timeout interval as
15252 				 * for the ordinary TRAN_BUSY retry.
15253 				 */
15254 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15255 				    "sd_start_cmds: scsi_transport() returned "
15256 				    "TRAN_BUSY for DIRECT_PRIORITY cmd!\n");
15257 
15258 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
15259 				un->un_direct_priority_timeid =
15260 				    timeout(sd_start_direct_priority_command,
15261 				    bp, un->un_busy_timeout / 500);
15262 
15263 				goto exit;
15264 			}
15265 
15266 			/*
15267 			 * For TRAN_BUSY, we want to reduce the throttle value,
15268 			 * unless we are retrying a command.
15269 			 */
15270 			if (bp != un->un_retry_bp) {
15271 				sd_reduce_throttle(un, SD_THROTTLE_TRAN_BUSY);
15272 			}
15273 
15274 			/*
15275 			 * Set up the bp to be tried again 10 ms later.
15276 			 * Note:x86: Is there a timeout value in the sd_lun
15277 			 * for this condition?
15278 			 */
15279 			sd_set_retry_bp(un, bp, un->un_busy_timeout / 500,
15280 			    kstat_runq_back_to_waitq);
15281 			goto exit;
15282 
15283 		case TRAN_FATAL_ERROR:
15284 			un->un_tran_fatal_count++;
15285 			/* FALLTHRU */
15286 
15287 		case TRAN_BADPKT:
15288 		default:
15289 			un->un_ncmds_in_transport--;
15290 			ASSERT(un->un_ncmds_in_transport >= 0);
15291 
15292 			/*
15293 			 * If this is our REQUEST SENSE command with a
15294 			 * transport error, we must get back the pointers
15295 			 * to the original buf, and mark the REQUEST
15296 			 * SENSE command as "available".
15297 			 */
15298 			if (bp == un->un_rqs_bp) {
15299 				bp = sd_mark_rqs_idle(un, xp);
15300 				xp = SD_GET_XBUF(bp);
15301 			} else {
15302 				/*
15303 				 * Legacy behavior: do not update transport
15304 				 * error count for request sense commands.
15305 				 */
15306 				SD_UPDATE_ERRSTATS(un, sd_transerrs);
15307 			}
15308 
15309 			SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
15310 			sd_print_transport_rejected_message(un, xp, rval);
15311 
15312 			/*
15313 			 * This command will be terminated by SD driver due
15314 			 * to a fatal transport error. We should post
15315 			 * ereport.io.scsi.cmd.disk.tran with driver-assessment
15316 			 * of "fail" for any command to indicate this
15317 			 * situation.
15318 			 */
15319 			if (xp->xb_ena > 0) {
15320 				ASSERT(un->un_fm_private != NULL);
15321 				sfip = un->un_fm_private;
15322 				sfip->fm_ssc.ssc_flags |= SSC_FLAGS_TRAN_ABORT;
15323 				sd_ssc_extract_info(&sfip->fm_ssc, un,
15324 				    xp->xb_pktp, bp, xp);
15325 				sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_FATAL);
15326 			}
15327 
15328 			/*
15329 			 * We must use sd_return_failed_command_no_restart() to
15330 			 * avoid a recursive call back into sd_start_cmds().
15331 			 * However this also means that we must keep processing
15332 			 * the waitq here in order to avoid stalling.
15333 			 */
15334 			sd_return_failed_command_no_restart(un, bp, EIO);
15335 
15336 			/*
15337 			 * Notify any threads waiting in sd_ddi_suspend() that
15338 			 * a command completion has occurred.
15339 			 */
15340 			if (un->un_state == SD_STATE_SUSPENDED) {
15341 				cv_broadcast(&un->un_disk_busy_cv);
15342 			}
15343 
15344 			if (bp == immed_bp) {
15345 				/* immed_bp is gone by now, so clear this */
15346 				immed_bp = NULL;
15347 			}
15348 			break;
15349 		}
15350 
15351 	} while (immed_bp == NULL);
15352 
15353 exit:
15354 	ASSERT(mutex_owned(SD_MUTEX(un)));
15355 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: exit\n");
15356 }
15357 
15358 
15359 /*
15360  *    Function: sd_return_command
15361  *
15362  * Description: Returns a command to its originator (with or without an
15363  *		error).  Also starts commands waiting to be transported
15364  *		to the target.
15365  *
15366  *     Context: May be called from interrupt, kernel, or timeout context
15367  */
15368 
15369 static void
15370 sd_return_command(struct sd_lun *un, struct buf *bp)
15371 {
15372 	struct sd_xbuf *xp;
15373 	struct scsi_pkt *pktp;
15374 	struct sd_fm_internal *sfip;
15375 
15376 	ASSERT(bp != NULL);
15377 	ASSERT(un != NULL);
15378 	ASSERT(mutex_owned(SD_MUTEX(un)));
15379 	ASSERT(bp != un->un_rqs_bp);
15380 	xp = SD_GET_XBUF(bp);
15381 	ASSERT(xp != NULL);
15382 
15383 	pktp = SD_GET_PKTP(bp);
15384 	sfip = (struct sd_fm_internal *)un->un_fm_private;
15385 	ASSERT(sfip != NULL);
15386 
15387 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: entry\n");
15388 
15389 	/*
15390 	 * Note: check for the "sdrestart failed" case.
15391 	 */
15392 	if ((un->un_partial_dma_supported == 1) &&
15393 	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) != SD_XB_USCSICMD) &&
15394 	    (geterror(bp) == 0) && (xp->xb_dma_resid != 0) &&
15395 	    (xp->xb_pktp->pkt_resid == 0)) {
15396 
15397 		if (sd_setup_next_xfer(un, bp, pktp, xp) != 0) {
15398 			/*
15399 			 * Successfully set up next portion of cmd
15400 			 * transfer, try sending it
15401 			 */
15402 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
15403 			    NULL, NULL, 0, (clock_t)0, NULL);
15404 			sd_start_cmds(un, NULL);
15405 			return;	/* Note:x86: need a return here? */
15406 		}
15407 	}
15408 
15409 	/*
15410 	 * If this is the failfast bp, clear it from un_failfast_bp. This
15411 	 * can happen if upon being re-tried the failfast bp either
15412 	 * succeeded or encountered another error (possibly even a different
15413 	 * error than the one that precipitated the failfast state, but in
15414 	 * that case it would have had to exhaust retries as well). Regardless,
15415 	 * this should not occur whenever the instance is in the active
15416 	 * failfast state.
15417 	 */
15418 	if (bp == un->un_failfast_bp) {
15419 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
15420 		un->un_failfast_bp = NULL;
15421 	}
15422 
15423 	/*
15424 	 * Clear the failfast state upon successful completion of ANY cmd.
15425 	 */
15426 	if (bp->b_error == 0) {
15427 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
15428 		/*
15429 		 * If this is a successful command, but used to be retried,
15430 		 * we will take it as a recovered command and post an
15431 		 * ereport with driver-assessment of "recovered".
15432 		 */
15433 		if (xp->xb_ena > 0) {
15434 			sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp);
15435 			sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_RECOVERY);
15436 		}
15437 	} else {
15438 		/*
15439 		 * If this is a failed non-USCSI command we will post an
15440 		 * ereport with driver-assessment set accordingly("fail" or
15441 		 * "fatal").
15442 		 */
15443 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
15444 			sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp);
15445 			sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_FATAL);
15446 		}
15447 	}
15448 
15449 	/*
15450 	 * This is used if the command was retried one or more times. Show that
15451 	 * we are done with it, and allow processing of the waitq to resume.
15452 	 */
15453 	if (bp == un->un_retry_bp) {
15454 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15455 		    "sd_return_command: un:0x%p: "
15456 		    "RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
15457 		un->un_retry_bp = NULL;
15458 		un->un_retry_statp = NULL;
15459 	}
15460 
15461 	SD_UPDATE_RDWR_STATS(un, bp);
15462 	SD_UPDATE_PARTITION_STATS(un, bp);
15463 
15464 	switch (un->un_state) {
15465 	case SD_STATE_SUSPENDED:
15466 		/*
15467 		 * Notify any threads waiting in sd_ddi_suspend() that
15468 		 * a command completion has occurred.
15469 		 */
15470 		cv_broadcast(&un->un_disk_busy_cv);
15471 		break;
15472 	default:
15473 		sd_start_cmds(un, NULL);
15474 		break;
15475 	}
15476 
15477 	/* Return this command up the iodone chain to its originator. */
15478 	mutex_exit(SD_MUTEX(un));
15479 
15480 	(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
15481 	xp->xb_pktp = NULL;
15482 
15483 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
15484 
15485 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15486 	mutex_enter(SD_MUTEX(un));
15487 
15488 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: exit\n");
15489 }
15490 
15491 
15492 /*
15493  *    Function: sd_return_failed_command
15494  *
15495  * Description: Command completion when an error occurred.
15496  *
15497  *     Context: May be called from interrupt context
15498  */
15499 
15500 static void
15501 sd_return_failed_command(struct sd_lun *un, struct buf *bp, int errcode)
15502 {
15503 	ASSERT(bp != NULL);
15504 	ASSERT(un != NULL);
15505 	ASSERT(mutex_owned(SD_MUTEX(un)));
15506 
15507 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15508 	    "sd_return_failed_command: entry\n");
15509 
15510 	/*
15511 	 * b_resid could already be nonzero due to a partial data
15512 	 * transfer, so do not change it here.
15513 	 */
15514 	SD_BIOERROR(bp, errcode);
15515 
15516 	sd_return_command(un, bp);
15517 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15518 	    "sd_return_failed_command: exit\n");
15519 }
15520 
15521 
15522 /*
15523  *    Function: sd_return_failed_command_no_restart
15524  *
15525  * Description: Same as sd_return_failed_command, but ensures that no
15526  *		call back into sd_start_cmds will be issued.
15527  *
15528  *     Context: May be called from interrupt context
15529  */
15530 
15531 static void
15532 sd_return_failed_command_no_restart(struct sd_lun *un, struct buf *bp,
15533 	int errcode)
15534 {
15535 	struct sd_xbuf *xp;
15536 
15537 	ASSERT(bp != NULL);
15538 	ASSERT(un != NULL);
15539 	ASSERT(mutex_owned(SD_MUTEX(un)));
15540 	xp = SD_GET_XBUF(bp);
15541 	ASSERT(xp != NULL);
15542 	ASSERT(errcode != 0);
15543 
15544 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15545 	    "sd_return_failed_command_no_restart: entry\n");
15546 
15547 	/*
15548 	 * b_resid could already be nonzero due to a partial data
15549 	 * transfer, so do not change it here.
15550 	 */
15551 	SD_BIOERROR(bp, errcode);
15552 
15553 	/*
15554 	 * If this is the failfast bp, clear it. This can happen if the
15555 	 * failfast bp encounterd a fatal error when we attempted to
15556 	 * re-try it (such as a scsi_transport(9F) failure).  However
15557 	 * we should NOT be in an active failfast state if the failfast
15558 	 * bp is not NULL.
15559 	 */
15560 	if (bp == un->un_failfast_bp) {
15561 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
15562 		un->un_failfast_bp = NULL;
15563 	}
15564 
15565 	if (bp == un->un_retry_bp) {
15566 		/*
15567 		 * This command was retried one or more times. Show that we are
15568 		 * done with it, and allow processing of the waitq to resume.
15569 		 */
15570 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15571 		    "sd_return_failed_command_no_restart: "
15572 		    " un:0x%p: RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
15573 		un->un_retry_bp = NULL;
15574 		un->un_retry_statp = NULL;
15575 	}
15576 
15577 	SD_UPDATE_RDWR_STATS(un, bp);
15578 	SD_UPDATE_PARTITION_STATS(un, bp);
15579 
15580 	mutex_exit(SD_MUTEX(un));
15581 
15582 	if (xp->xb_pktp != NULL) {
15583 		(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
15584 		xp->xb_pktp = NULL;
15585 	}
15586 
15587 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
15588 
15589 	mutex_enter(SD_MUTEX(un));
15590 
15591 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15592 	    "sd_return_failed_command_no_restart: exit\n");
15593 }
15594 
15595 
15596 /*
15597  *    Function: sd_retry_command
15598  *
15599  * Description: queue up a command for retry, or (optionally) fail it
15600  *		if retry counts are exhausted.
15601  *
15602  *   Arguments: un - Pointer to the sd_lun struct for the target.
15603  *
15604  *		bp - Pointer to the buf for the command to be retried.
15605  *
15606  *		retry_check_flag - Flag to see which (if any) of the retry
15607  *		   counts should be decremented/checked. If the indicated
15608  *		   retry count is exhausted, then the command will not be
15609  *		   retried; it will be failed instead. This should use a
15610  *		   value equal to one of the following:
15611  *
15612  *			SD_RETRIES_NOCHECK
15613  *			SD_RESD_RETRIES_STANDARD
15614  *			SD_RETRIES_VICTIM
15615  *
15616  *		   Optionally may be bitwise-OR'ed with SD_RETRIES_ISOLATE
15617  *		   if the check should be made to see of FLAG_ISOLATE is set
15618  *		   in the pkt. If FLAG_ISOLATE is set, then the command is
15619  *		   not retried, it is simply failed.
15620  *
15621  *		user_funcp - Ptr to function to call before dispatching the
15622  *		   command. May be NULL if no action needs to be performed.
15623  *		   (Primarily intended for printing messages.)
15624  *
15625  *		user_arg - Optional argument to be passed along to
15626  *		   the user_funcp call.
15627  *
15628  *		failure_code - errno return code to set in the bp if the
15629  *		   command is going to be failed.
15630  *
15631  *		retry_delay - Retry delay interval in (clock_t) units. May
15632  *		   be zero which indicates that the retry should be retried
15633  *		   immediately (ie, without an intervening delay).
15634  *
15635  *		statp - Ptr to kstat function to be updated if the command
15636  *		   is queued for a delayed retry. May be NULL if no kstat
15637  *		   update is desired.
15638  *
15639  *     Context: May be called from interrupt context.
15640  */
15641 
15642 static void
15643 sd_retry_command(struct sd_lun *un, struct buf *bp, int retry_check_flag,
15644 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, int
15645 	code), void *user_arg, int failure_code,  clock_t retry_delay,
15646 	void (*statp)(kstat_io_t *))
15647 {
15648 	struct sd_xbuf	*xp;
15649 	struct scsi_pkt	*pktp;
15650 	struct sd_fm_internal *sfip;
15651 
15652 	ASSERT(un != NULL);
15653 	ASSERT(mutex_owned(SD_MUTEX(un)));
15654 	ASSERT(bp != NULL);
15655 	xp = SD_GET_XBUF(bp);
15656 	ASSERT(xp != NULL);
15657 	pktp = SD_GET_PKTP(bp);
15658 	ASSERT(pktp != NULL);
15659 
15660 	sfip = (struct sd_fm_internal *)un->un_fm_private;
15661 	ASSERT(sfip != NULL);
15662 
15663 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
15664 	    "sd_retry_command: entry: bp:0x%p xp:0x%p\n", bp, xp);
15665 
15666 	/*
15667 	 * If we are syncing or dumping, fail the command to avoid
15668 	 * recursively calling back into scsi_transport().
15669 	 */
15670 	if (ddi_in_panic()) {
15671 		goto fail_command_no_log;
15672 	}
15673 
15674 	/*
15675 	 * We should never be be retrying a command with FLAG_DIAGNOSE set, so
15676 	 * log an error and fail the command.
15677 	 */
15678 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
15679 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
15680 		    "ERROR, retrying FLAG_DIAGNOSE command.\n");
15681 		sd_dump_memory(un, SD_LOG_IO, "CDB",
15682 		    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
15683 		sd_dump_memory(un, SD_LOG_IO, "Sense Data",
15684 		    (uchar_t *)xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
15685 		goto fail_command;
15686 	}
15687 
15688 	/*
15689 	 * If we are suspended, then put the command onto head of the
15690 	 * wait queue since we don't want to start more commands, and
15691 	 * clear the un_retry_bp. Next time when we are resumed, will
15692 	 * handle the command in the wait queue.
15693 	 */
15694 	switch (un->un_state) {
15695 	case SD_STATE_SUSPENDED:
15696 	case SD_STATE_DUMPING:
15697 		bp->av_forw = un->un_waitq_headp;
15698 		un->un_waitq_headp = bp;
15699 		if (un->un_waitq_tailp == NULL) {
15700 			un->un_waitq_tailp = bp;
15701 		}
15702 		if (bp == un->un_retry_bp) {
15703 			un->un_retry_bp = NULL;
15704 			un->un_retry_statp = NULL;
15705 		}
15706 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
15707 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: "
15708 		    "exiting; cmd bp:0x%p requeued for SUSPEND/DUMP\n", bp);
15709 		return;
15710 	default:
15711 		break;
15712 	}
15713 
15714 	/*
15715 	 * If the caller wants us to check FLAG_ISOLATE, then see if that
15716 	 * is set; if it is then we do not want to retry the command.
15717 	 * Normally, FLAG_ISOLATE is only used with USCSI cmds.
15718 	 */
15719 	if ((retry_check_flag & SD_RETRIES_ISOLATE) != 0) {
15720 		if ((pktp->pkt_flags & FLAG_ISOLATE) != 0) {
15721 			goto fail_command;
15722 		}
15723 	}
15724 
15725 
15726 	/*
15727 	 * If SD_RETRIES_FAILFAST is set, it indicates that either a
15728 	 * command timeout or a selection timeout has occurred. This means
15729 	 * that we were unable to establish an kind of communication with
15730 	 * the target, and subsequent retries and/or commands are likely
15731 	 * to encounter similar results and take a long time to complete.
15732 	 *
15733 	 * If this is a failfast error condition, we need to update the
15734 	 * failfast state, even if this bp does not have B_FAILFAST set.
15735 	 */
15736 	if (retry_check_flag & SD_RETRIES_FAILFAST) {
15737 		if (un->un_failfast_state == SD_FAILFAST_ACTIVE) {
15738 			ASSERT(un->un_failfast_bp == NULL);
15739 			/*
15740 			 * If we are already in the active failfast state, and
15741 			 * another failfast error condition has been detected,
15742 			 * then fail this command if it has B_FAILFAST set.
15743 			 * If B_FAILFAST is clear, then maintain the legacy
15744 			 * behavior of retrying heroically, even tho this will
15745 			 * take a lot more time to fail the command.
15746 			 */
15747 			if (bp->b_flags & B_FAILFAST) {
15748 				goto fail_command;
15749 			}
15750 		} else {
15751 			/*
15752 			 * We're not in the active failfast state, but we
15753 			 * have a failfast error condition, so we must begin
15754 			 * transition to the next state. We do this regardless
15755 			 * of whether or not this bp has B_FAILFAST set.
15756 			 */
15757 			if (un->un_failfast_bp == NULL) {
15758 				/*
15759 				 * This is the first bp to meet a failfast
15760 				 * condition so save it on un_failfast_bp &
15761 				 * do normal retry processing. Do not enter
15762 				 * active failfast state yet. This marks
15763 				 * entry into the "failfast pending" state.
15764 				 */
15765 				un->un_failfast_bp = bp;
15766 
15767 			} else if (un->un_failfast_bp == bp) {
15768 				/*
15769 				 * This is the second time *this* bp has
15770 				 * encountered a failfast error condition,
15771 				 * so enter active failfast state & flush
15772 				 * queues as appropriate.
15773 				 */
15774 				un->un_failfast_state = SD_FAILFAST_ACTIVE;
15775 				un->un_failfast_bp = NULL;
15776 				sd_failfast_flushq(un);
15777 
15778 				/*
15779 				 * Fail this bp now if B_FAILFAST set;
15780 				 * otherwise continue with retries. (It would
15781 				 * be pretty ironic if this bp succeeded on a
15782 				 * subsequent retry after we just flushed all
15783 				 * the queues).
15784 				 */
15785 				if (bp->b_flags & B_FAILFAST) {
15786 					goto fail_command;
15787 				}
15788 
15789 #if !defined(lint) && !defined(__lint)
15790 			} else {
15791 				/*
15792 				 * If neither of the preceeding conditionals
15793 				 * was true, it means that there is some
15794 				 * *other* bp that has met an inital failfast
15795 				 * condition and is currently either being
15796 				 * retried or is waiting to be retried. In
15797 				 * that case we should perform normal retry
15798 				 * processing on *this* bp, since there is a
15799 				 * chance that the current failfast condition
15800 				 * is transient and recoverable. If that does
15801 				 * not turn out to be the case, then retries
15802 				 * will be cleared when the wait queue is
15803 				 * flushed anyway.
15804 				 */
15805 #endif
15806 			}
15807 		}
15808 	} else {
15809 		/*
15810 		 * SD_RETRIES_FAILFAST is clear, which indicates that we
15811 		 * likely were able to at least establish some level of
15812 		 * communication with the target and subsequent commands
15813 		 * and/or retries are likely to get through to the target,
15814 		 * In this case we want to be aggressive about clearing
15815 		 * the failfast state. Note that this does not affect
15816 		 * the "failfast pending" condition.
15817 		 */
15818 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
15819 	}
15820 
15821 
15822 	/*
15823 	 * Check the specified retry count to see if we can still do
15824 	 * any retries with this pkt before we should fail it.
15825 	 */
15826 	switch (retry_check_flag & SD_RETRIES_MASK) {
15827 	case SD_RETRIES_VICTIM:
15828 		/*
15829 		 * Check the victim retry count. If exhausted, then fall
15830 		 * thru & check against the standard retry count.
15831 		 */
15832 		if (xp->xb_victim_retry_count < un->un_victim_retry_count) {
15833 			/* Increment count & proceed with the retry */
15834 			xp->xb_victim_retry_count++;
15835 			break;
15836 		}
15837 		/* Victim retries exhausted, fall back to std. retries... */
15838 		/* FALLTHRU */
15839 
15840 	case SD_RETRIES_STANDARD:
15841 		if (xp->xb_retry_count >= un->un_retry_count) {
15842 			/* Retries exhausted, fail the command */
15843 			SD_TRACE(SD_LOG_IO_CORE, un,
15844 			    "sd_retry_command: retries exhausted!\n");
15845 			/*
15846 			 * update b_resid for failed SCMD_READ & SCMD_WRITE
15847 			 * commands with nonzero pkt_resid.
15848 			 */
15849 			if ((pktp->pkt_reason == CMD_CMPLT) &&
15850 			    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD) &&
15851 			    (pktp->pkt_resid != 0)) {
15852 				uchar_t op = SD_GET_PKT_OPCODE(pktp) & 0x1F;
15853 				if ((op == SCMD_READ) || (op == SCMD_WRITE)) {
15854 					SD_UPDATE_B_RESID(bp, pktp);
15855 				}
15856 			}
15857 			goto fail_command;
15858 		}
15859 		xp->xb_retry_count++;
15860 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15861 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
15862 		break;
15863 
15864 	case SD_RETRIES_UA:
15865 		if (xp->xb_ua_retry_count >= sd_ua_retry_count) {
15866 			/* Retries exhausted, fail the command */
15867 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15868 			    "Unit Attention retries exhausted. "
15869 			    "Check the target.\n");
15870 			goto fail_command;
15871 		}
15872 		xp->xb_ua_retry_count++;
15873 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15874 		    "sd_retry_command: retry count:%d\n",
15875 		    xp->xb_ua_retry_count);
15876 		break;
15877 
15878 	case SD_RETRIES_BUSY:
15879 		if (xp->xb_retry_count >= un->un_busy_retry_count) {
15880 			/* Retries exhausted, fail the command */
15881 			SD_TRACE(SD_LOG_IO_CORE, un,
15882 			    "sd_retry_command: retries exhausted!\n");
15883 			goto fail_command;
15884 		}
15885 		xp->xb_retry_count++;
15886 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15887 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
15888 		break;
15889 
15890 	case SD_RETRIES_NOCHECK:
15891 	default:
15892 		/* No retry count to check. Just proceed with the retry */
15893 		break;
15894 	}
15895 
15896 	xp->xb_pktp->pkt_flags |= FLAG_HEAD;
15897 
15898 	/*
15899 	 * If this is a non-USCSI command being retried
15900 	 * during execution last time, we should post an ereport with
15901 	 * driver-assessment of the value "retry".
15902 	 * For partial DMA, request sense and STATUS_QFULL, there are no
15903 	 * hardware errors, we bypass ereport posting.
15904 	 */
15905 	if (failure_code != 0) {
15906 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
15907 			sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp);
15908 			sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_RETRY);
15909 		}
15910 	}
15911 
15912 	/*
15913 	 * If we were given a zero timeout, we must attempt to retry the
15914 	 * command immediately (ie, without a delay).
15915 	 */
15916 	if (retry_delay == 0) {
15917 		/*
15918 		 * Check some limiting conditions to see if we can actually
15919 		 * do the immediate retry.  If we cannot, then we must
15920 		 * fall back to queueing up a delayed retry.
15921 		 */
15922 		if (un->un_ncmds_in_transport >= un->un_throttle) {
15923 			/*
15924 			 * We are at the throttle limit for the target,
15925 			 * fall back to delayed retry.
15926 			 */
15927 			retry_delay = un->un_busy_timeout;
15928 			statp = kstat_waitq_enter;
15929 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15930 			    "sd_retry_command: immed. retry hit "
15931 			    "throttle!\n");
15932 		} else {
15933 			/*
15934 			 * We're clear to proceed with the immediate retry.
15935 			 * First call the user-provided function (if any)
15936 			 */
15937 			if (user_funcp != NULL) {
15938 				(*user_funcp)(un, bp, user_arg,
15939 				    SD_IMMEDIATE_RETRY_ISSUED);
15940 #ifdef __lock_lint
15941 				sd_print_incomplete_msg(un, bp, user_arg,
15942 				    SD_IMMEDIATE_RETRY_ISSUED);
15943 				sd_print_cmd_incomplete_msg(un, bp, user_arg,
15944 				    SD_IMMEDIATE_RETRY_ISSUED);
15945 				sd_print_sense_failed_msg(un, bp, user_arg,
15946 				    SD_IMMEDIATE_RETRY_ISSUED);
15947 #endif
15948 			}
15949 
15950 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15951 			    "sd_retry_command: issuing immediate retry\n");
15952 
15953 			/*
15954 			 * Call sd_start_cmds() to transport the command to
15955 			 * the target.
15956 			 */
15957 			sd_start_cmds(un, bp);
15958 
15959 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15960 			    "sd_retry_command exit\n");
15961 			return;
15962 		}
15963 	}
15964 
15965 	/*
15966 	 * Set up to retry the command after a delay.
15967 	 * First call the user-provided function (if any)
15968 	 */
15969 	if (user_funcp != NULL) {
15970 		(*user_funcp)(un, bp, user_arg, SD_DELAYED_RETRY_ISSUED);
15971 	}
15972 
15973 	sd_set_retry_bp(un, bp, retry_delay, statp);
15974 
15975 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
15976 	return;
15977 
15978 fail_command:
15979 
15980 	if (user_funcp != NULL) {
15981 		(*user_funcp)(un, bp, user_arg, SD_NO_RETRY_ISSUED);
15982 	}
15983 
15984 fail_command_no_log:
15985 
15986 	SD_INFO(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15987 	    "sd_retry_command: returning failed command\n");
15988 
15989 	sd_return_failed_command(un, bp, failure_code);
15990 
15991 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
15992 }
15993 
15994 
15995 /*
15996  *    Function: sd_set_retry_bp
15997  *
15998  * Description: Set up the given bp for retry.
15999  *
16000  *   Arguments: un - ptr to associated softstate
16001  *		bp - ptr to buf(9S) for the command
16002  *		retry_delay - time interval before issuing retry (may be 0)
16003  *		statp - optional pointer to kstat function
16004  *
16005  *     Context: May be called under interrupt context
16006  */
16007 
16008 static void
16009 sd_set_retry_bp(struct sd_lun *un, struct buf *bp, clock_t retry_delay,
16010 	void (*statp)(kstat_io_t *))
16011 {
16012 	ASSERT(un != NULL);
16013 	ASSERT(mutex_owned(SD_MUTEX(un)));
16014 	ASSERT(bp != NULL);
16015 
16016 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
16017 	    "sd_set_retry_bp: entry: un:0x%p bp:0x%p\n", un, bp);
16018 
16019 	/*
16020 	 * Indicate that the command is being retried. This will not allow any
16021 	 * other commands on the wait queue to be transported to the target
16022 	 * until this command has been completed (success or failure). The
16023 	 * "retry command" is not transported to the target until the given
16024 	 * time delay expires, unless the user specified a 0 retry_delay.
16025 	 *
16026 	 * Note: the timeout(9F) callback routine is what actually calls
16027 	 * sd_start_cmds() to transport the command, with the exception of a
16028 	 * zero retry_delay. The only current implementor of a zero retry delay
16029 	 * is the case where a START_STOP_UNIT is sent to spin-up a device.
16030 	 */
16031 	if (un->un_retry_bp == NULL) {
16032 		ASSERT(un->un_retry_statp == NULL);
16033 		un->un_retry_bp = bp;
16034 
16035 		/*
16036 		 * If the user has not specified a delay the command should
16037 		 * be queued and no timeout should be scheduled.
16038 		 */
16039 		if (retry_delay == 0) {
16040 			/*
16041 			 * Save the kstat pointer that will be used in the
16042 			 * call to SD_UPDATE_KSTATS() below, so that
16043 			 * sd_start_cmds() can correctly decrement the waitq
16044 			 * count when it is time to transport this command.
16045 			 */
16046 			un->un_retry_statp = statp;
16047 			goto done;
16048 		}
16049 	}
16050 
16051 	if (un->un_retry_bp == bp) {
16052 		/*
16053 		 * Save the kstat pointer that will be used in the call to
16054 		 * SD_UPDATE_KSTATS() below, so that sd_start_cmds() can
16055 		 * correctly decrement the waitq count when it is time to
16056 		 * transport this command.
16057 		 */
16058 		un->un_retry_statp = statp;
16059 
16060 		/*
16061 		 * Schedule a timeout if:
16062 		 *   1) The user has specified a delay.
16063 		 *   2) There is not a START_STOP_UNIT callback pending.
16064 		 *
16065 		 * If no delay has been specified, then it is up to the caller
16066 		 * to ensure that IO processing continues without stalling.
16067 		 * Effectively, this means that the caller will issue the
16068 		 * required call to sd_start_cmds(). The START_STOP_UNIT
16069 		 * callback does this after the START STOP UNIT command has
16070 		 * completed. In either of these cases we should not schedule
16071 		 * a timeout callback here.  Also don't schedule the timeout if
16072 		 * an SD_PATH_DIRECT_PRIORITY command is waiting to restart.
16073 		 */
16074 		if ((retry_delay != 0) && (un->un_startstop_timeid == NULL) &&
16075 		    (un->un_direct_priority_timeid == NULL)) {
16076 			un->un_retry_timeid =
16077 			    timeout(sd_start_retry_command, un, retry_delay);
16078 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16079 			    "sd_set_retry_bp: setting timeout: un: 0x%p"
16080 			    " bp:0x%p un_retry_timeid:0x%p\n",
16081 			    un, bp, un->un_retry_timeid);
16082 		}
16083 	} else {
16084 		/*
16085 		 * We only get in here if there is already another command
16086 		 * waiting to be retried.  In this case, we just put the
16087 		 * given command onto the wait queue, so it can be transported
16088 		 * after the current retry command has completed.
16089 		 *
16090 		 * Also we have to make sure that if the command at the head
16091 		 * of the wait queue is the un_failfast_bp, that we do not
16092 		 * put ahead of it any other commands that are to be retried.
16093 		 */
16094 		if ((un->un_failfast_bp != NULL) &&
16095 		    (un->un_failfast_bp == un->un_waitq_headp)) {
16096 			/*
16097 			 * Enqueue this command AFTER the first command on
16098 			 * the wait queue (which is also un_failfast_bp).
16099 			 */
16100 			bp->av_forw = un->un_waitq_headp->av_forw;
16101 			un->un_waitq_headp->av_forw = bp;
16102 			if (un->un_waitq_headp == un->un_waitq_tailp) {
16103 				un->un_waitq_tailp = bp;
16104 			}
16105 		} else {
16106 			/* Enqueue this command at the head of the waitq. */
16107 			bp->av_forw = un->un_waitq_headp;
16108 			un->un_waitq_headp = bp;
16109 			if (un->un_waitq_tailp == NULL) {
16110 				un->un_waitq_tailp = bp;
16111 			}
16112 		}
16113 
16114 		if (statp == NULL) {
16115 			statp = kstat_waitq_enter;
16116 		}
16117 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16118 		    "sd_set_retry_bp: un:0x%p already delayed retry\n", un);
16119 	}
16120 
16121 done:
16122 	if (statp != NULL) {
16123 		SD_UPDATE_KSTATS(un, statp, bp);
16124 	}
16125 
16126 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16127 	    "sd_set_retry_bp: exit un:0x%p\n", un);
16128 }
16129 
16130 
16131 /*
16132  *    Function: sd_start_retry_command
16133  *
16134  * Description: Start the command that has been waiting on the target's
16135  *		retry queue.  Called from timeout(9F) context after the
16136  *		retry delay interval has expired.
16137  *
16138  *   Arguments: arg - pointer to associated softstate for the device.
16139  *
16140  *     Context: timeout(9F) thread context.  May not sleep.
16141  */
16142 
16143 static void
16144 sd_start_retry_command(void *arg)
16145 {
16146 	struct sd_lun *un = arg;
16147 
16148 	ASSERT(un != NULL);
16149 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16150 
16151 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16152 	    "sd_start_retry_command: entry\n");
16153 
16154 	mutex_enter(SD_MUTEX(un));
16155 
16156 	un->un_retry_timeid = NULL;
16157 
16158 	if (un->un_retry_bp != NULL) {
16159 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16160 		    "sd_start_retry_command: un:0x%p STARTING bp:0x%p\n",
16161 		    un, un->un_retry_bp);
16162 		sd_start_cmds(un, un->un_retry_bp);
16163 	}
16164 
16165 	mutex_exit(SD_MUTEX(un));
16166 
16167 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16168 	    "sd_start_retry_command: exit\n");
16169 }
16170 
16171 /*
16172  *    Function: sd_rmw_msg_print_handler
16173  *
16174  * Description: If RMW mode is enabled and warning message is triggered
16175  *              print I/O count during a fixed interval.
16176  *
16177  *   Arguments: arg - pointer to associated softstate for the device.
16178  *
16179  *     Context: timeout(9F) thread context. May not sleep.
16180  */
16181 static void
16182 sd_rmw_msg_print_handler(void *arg)
16183 {
16184 	struct sd_lun *un = arg;
16185 
16186 	ASSERT(un != NULL);
16187 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16188 
16189 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16190 	    "sd_rmw_msg_print_handler: entry\n");
16191 
16192 	mutex_enter(SD_MUTEX(un));
16193 
16194 	if (un->un_rmw_incre_count > 0) {
16195 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16196 		    "%"PRIu64" I/O requests are not aligned with %d disk "
16197 		    "sector size in %ld seconds. They are handled through "
16198 		    "Read Modify Write but the performance is very low!\n",
16199 		    un->un_rmw_incre_count, un->un_tgt_blocksize,
16200 		    drv_hztousec(SD_RMW_MSG_PRINT_TIMEOUT) / 1000000);
16201 		un->un_rmw_incre_count = 0;
16202 		un->un_rmw_msg_timeid = timeout(sd_rmw_msg_print_handler,
16203 		    un, SD_RMW_MSG_PRINT_TIMEOUT);
16204 	} else {
16205 		un->un_rmw_msg_timeid = NULL;
16206 	}
16207 
16208 	mutex_exit(SD_MUTEX(un));
16209 
16210 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16211 	    "sd_rmw_msg_print_handler: exit\n");
16212 }
16213 
16214 /*
16215  *    Function: sd_start_direct_priority_command
16216  *
16217  * Description: Used to re-start an SD_PATH_DIRECT_PRIORITY command that had
16218  *		received TRAN_BUSY when we called scsi_transport() to send it
16219  *		to the underlying HBA. This function is called from timeout(9F)
16220  *		context after the delay interval has expired.
16221  *
16222  *   Arguments: arg - pointer to associated buf(9S) to be restarted.
16223  *
16224  *     Context: timeout(9F) thread context.  May not sleep.
16225  */
16226 
16227 static void
16228 sd_start_direct_priority_command(void *arg)
16229 {
16230 	struct buf	*priority_bp = arg;
16231 	struct sd_lun	*un;
16232 
16233 	ASSERT(priority_bp != NULL);
16234 	un = SD_GET_UN(priority_bp);
16235 	ASSERT(un != NULL);
16236 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16237 
16238 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16239 	    "sd_start_direct_priority_command: entry\n");
16240 
16241 	mutex_enter(SD_MUTEX(un));
16242 	un->un_direct_priority_timeid = NULL;
16243 	sd_start_cmds(un, priority_bp);
16244 	mutex_exit(SD_MUTEX(un));
16245 
16246 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16247 	    "sd_start_direct_priority_command: exit\n");
16248 }
16249 
16250 
16251 /*
16252  *    Function: sd_send_request_sense_command
16253  *
16254  * Description: Sends a REQUEST SENSE command to the target
16255  *
16256  *     Context: May be called from interrupt context.
16257  */
16258 
16259 static void
16260 sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
16261 	struct scsi_pkt *pktp)
16262 {
16263 	ASSERT(bp != NULL);
16264 	ASSERT(un != NULL);
16265 	ASSERT(mutex_owned(SD_MUTEX(un)));
16266 
16267 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_send_request_sense_command: "
16268 	    "entry: buf:0x%p\n", bp);
16269 
16270 	/*
16271 	 * If we are syncing or dumping, then fail the command to avoid a
16272 	 * recursive callback into scsi_transport(). Also fail the command
16273 	 * if we are suspended (legacy behavior).
16274 	 */
16275 	if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) ||
16276 	    (un->un_state == SD_STATE_DUMPING)) {
16277 		sd_return_failed_command(un, bp, EIO);
16278 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16279 		    "sd_send_request_sense_command: syncing/dumping, exit\n");
16280 		return;
16281 	}
16282 
16283 	/*
16284 	 * Retry the failed command and don't issue the request sense if:
16285 	 *    1) the sense buf is busy
16286 	 *    2) we have 1 or more outstanding commands on the target
16287 	 *    (the sense data will be cleared or invalidated any way)
16288 	 *
16289 	 * Note: There could be an issue with not checking a retry limit here,
16290 	 * the problem is determining which retry limit to check.
16291 	 */
16292 	if ((un->un_sense_isbusy != 0) || (un->un_ncmds_in_transport > 0)) {
16293 		/* Don't retry if the command is flagged as non-retryable */
16294 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
16295 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
16296 			    NULL, NULL, 0, un->un_busy_timeout,
16297 			    kstat_waitq_enter);
16298 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16299 			    "sd_send_request_sense_command: "
16300 			    "at full throttle, retrying exit\n");
16301 		} else {
16302 			sd_return_failed_command(un, bp, EIO);
16303 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16304 			    "sd_send_request_sense_command: "
16305 			    "at full throttle, non-retryable exit\n");
16306 		}
16307 		return;
16308 	}
16309 
16310 	sd_mark_rqs_busy(un, bp);
16311 	sd_start_cmds(un, un->un_rqs_bp);
16312 
16313 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16314 	    "sd_send_request_sense_command: exit\n");
16315 }
16316 
16317 
16318 /*
16319  *    Function: sd_mark_rqs_busy
16320  *
16321  * Description: Indicate that the request sense bp for this instance is
16322  *		in use.
16323  *
16324  *     Context: May be called under interrupt context
16325  */
16326 
16327 static void
16328 sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp)
16329 {
16330 	struct sd_xbuf	*sense_xp;
16331 
16332 	ASSERT(un != NULL);
16333 	ASSERT(bp != NULL);
16334 	ASSERT(mutex_owned(SD_MUTEX(un)));
16335 	ASSERT(un->un_sense_isbusy == 0);
16336 
16337 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: entry: "
16338 	    "buf:0x%p xp:0x%p un:0x%p\n", bp, SD_GET_XBUF(bp), un);
16339 
16340 	sense_xp = SD_GET_XBUF(un->un_rqs_bp);
16341 	ASSERT(sense_xp != NULL);
16342 
16343 	SD_INFO(SD_LOG_IO, un,
16344 	    "sd_mark_rqs_busy: entry: sense_xp:0x%p\n", sense_xp);
16345 
16346 	ASSERT(sense_xp->xb_pktp != NULL);
16347 	ASSERT((sense_xp->xb_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD))
16348 	    == (FLAG_SENSING | FLAG_HEAD));
16349 
16350 	un->un_sense_isbusy = 1;
16351 	un->un_rqs_bp->b_resid = 0;
16352 	sense_xp->xb_pktp->pkt_resid  = 0;
16353 	sense_xp->xb_pktp->pkt_reason = 0;
16354 
16355 	/* So we can get back the bp at interrupt time! */
16356 	sense_xp->xb_sense_bp = bp;
16357 
16358 	bzero(un->un_rqs_bp->b_un.b_addr, SENSE_LENGTH);
16359 
16360 	/*
16361 	 * Mark this buf as awaiting sense data. (This is already set in
16362 	 * the pkt_flags for the RQS packet.)
16363 	 */
16364 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags |= FLAG_SENSING;
16365 
16366 	/* Request sense down same path */
16367 	if (scsi_pkt_allocated_correctly((SD_GET_XBUF(bp))->xb_pktp) &&
16368 	    ((SD_GET_XBUF(bp))->xb_pktp)->pkt_path_instance)
16369 		sense_xp->xb_pktp->pkt_path_instance =
16370 		    ((SD_GET_XBUF(bp))->xb_pktp)->pkt_path_instance;
16371 
16372 	sense_xp->xb_retry_count	= 0;
16373 	sense_xp->xb_victim_retry_count = 0;
16374 	sense_xp->xb_ua_retry_count	= 0;
16375 	sense_xp->xb_nr_retry_count 	= 0;
16376 	sense_xp->xb_dma_resid  = 0;
16377 
16378 	/* Clean up the fields for auto-request sense */
16379 	sense_xp->xb_sense_status = 0;
16380 	sense_xp->xb_sense_state  = 0;
16381 	sense_xp->xb_sense_resid  = 0;
16382 	bzero(sense_xp->xb_sense_data, sizeof (sense_xp->xb_sense_data));
16383 
16384 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: exit\n");
16385 }
16386 
16387 
16388 /*
16389  *    Function: sd_mark_rqs_idle
16390  *
16391  * Description: SD_MUTEX must be held continuously through this routine
16392  *		to prevent reuse of the rqs struct before the caller can
16393  *		complete it's processing.
16394  *
16395  * Return Code: Pointer to the RQS buf
16396  *
16397  *     Context: May be called under interrupt context
16398  */
16399 
16400 static struct buf *
16401 sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *sense_xp)
16402 {
16403 	struct buf *bp;
16404 	ASSERT(un != NULL);
16405 	ASSERT(sense_xp != NULL);
16406 	ASSERT(mutex_owned(SD_MUTEX(un)));
16407 	ASSERT(un->un_sense_isbusy != 0);
16408 
16409 	un->un_sense_isbusy = 0;
16410 	bp = sense_xp->xb_sense_bp;
16411 	sense_xp->xb_sense_bp = NULL;
16412 
16413 	/* This pkt is no longer interested in getting sense data */
16414 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags &= ~FLAG_SENSING;
16415 
16416 	return (bp);
16417 }
16418 
16419 
16420 
16421 /*
16422  *    Function: sd_alloc_rqs
16423  *
16424  * Description: Set up the unit to receive auto request sense data
16425  *
16426  * Return Code: DDI_SUCCESS or DDI_FAILURE
16427  *
16428  *     Context: Called under attach(9E) context
16429  */
16430 
16431 static int
16432 sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un)
16433 {
16434 	struct sd_xbuf *xp;
16435 
16436 	ASSERT(un != NULL);
16437 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16438 	ASSERT(un->un_rqs_bp == NULL);
16439 	ASSERT(un->un_rqs_pktp == NULL);
16440 
16441 	/*
16442 	 * First allocate the required buf and scsi_pkt structs, then set up
16443 	 * the CDB in the scsi_pkt for a REQUEST SENSE command.
16444 	 */
16445 	un->un_rqs_bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL,
16446 	    MAX_SENSE_LENGTH, B_READ, SLEEP_FUNC, NULL);
16447 	if (un->un_rqs_bp == NULL) {
16448 		return (DDI_FAILURE);
16449 	}
16450 
16451 	un->un_rqs_pktp = scsi_init_pkt(&devp->sd_address, NULL, un->un_rqs_bp,
16452 	    CDB_GROUP0, 1, 0, PKT_CONSISTENT, SLEEP_FUNC, NULL);
16453 
16454 	if (un->un_rqs_pktp == NULL) {
16455 		sd_free_rqs(un);
16456 		return (DDI_FAILURE);
16457 	}
16458 
16459 	/* Set up the CDB in the scsi_pkt for a REQUEST SENSE command. */
16460 	(void) scsi_setup_cdb((union scsi_cdb *)un->un_rqs_pktp->pkt_cdbp,
16461 	    SCMD_REQUEST_SENSE, 0, MAX_SENSE_LENGTH, 0);
16462 
16463 	SD_FILL_SCSI1_LUN(un, un->un_rqs_pktp);
16464 
16465 	/* Set up the other needed members in the ARQ scsi_pkt. */
16466 	un->un_rqs_pktp->pkt_comp   = sdintr;
16467 	un->un_rqs_pktp->pkt_time   = sd_io_time;
16468 	un->un_rqs_pktp->pkt_flags |=
16469 	    (FLAG_SENSING | FLAG_HEAD);	/* (1222170) */
16470 
16471 	/*
16472 	 * Allocate  & init the sd_xbuf struct for the RQS command. Do not
16473 	 * provide any intpkt, destroypkt routines as we take care of
16474 	 * scsi_pkt allocation/freeing here and in sd_free_rqs().
16475 	 */
16476 	xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
16477 	sd_xbuf_init(un, un->un_rqs_bp, xp, SD_CHAIN_NULL, NULL);
16478 	xp->xb_pktp = un->un_rqs_pktp;
16479 	SD_INFO(SD_LOG_ATTACH_DETACH, un,
16480 	    "sd_alloc_rqs: un 0x%p, rqs  xp 0x%p,  pkt 0x%p,  buf 0x%p\n",
16481 	    un, xp, un->un_rqs_pktp, un->un_rqs_bp);
16482 
16483 	/*
16484 	 * Save the pointer to the request sense private bp so it can
16485 	 * be retrieved in sdintr.
16486 	 */
16487 	un->un_rqs_pktp->pkt_private = un->un_rqs_bp;
16488 	ASSERT(un->un_rqs_bp->b_private == xp);
16489 
16490 	/*
16491 	 * See if the HBA supports auto-request sense for the specified
16492 	 * target/lun. If it does, then try to enable it (if not already
16493 	 * enabled).
16494 	 *
16495 	 * Note: For some HBAs (ifp & sf), scsi_ifsetcap will always return
16496 	 * failure, while for other HBAs (pln) scsi_ifsetcap will always
16497 	 * return success.  However, in both of these cases ARQ is always
16498 	 * enabled and scsi_ifgetcap will always return true. The best approach
16499 	 * is to issue the scsi_ifgetcap() first, then try the scsi_ifsetcap().
16500 	 *
16501 	 * The 3rd case is the HBA (adp) always return enabled on
16502 	 * scsi_ifgetgetcap even when it's not enable, the best approach
16503 	 * is issue a scsi_ifsetcap then a scsi_ifgetcap
16504 	 * Note: this case is to circumvent the Adaptec bug. (x86 only)
16505 	 */
16506 
16507 	if (un->un_f_is_fibre == TRUE) {
16508 		un->un_f_arq_enabled = TRUE;
16509 	} else {
16510 #if defined(__i386) || defined(__amd64)
16511 		/*
16512 		 * Circumvent the Adaptec bug, remove this code when
16513 		 * the bug is fixed
16514 		 */
16515 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1);
16516 #endif
16517 		switch (scsi_ifgetcap(SD_ADDRESS(un), "auto-rqsense", 1)) {
16518 		case 0:
16519 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
16520 			    "sd_alloc_rqs: HBA supports ARQ\n");
16521 			/*
16522 			 * ARQ is supported by this HBA but currently is not
16523 			 * enabled. Attempt to enable it and if successful then
16524 			 * mark this instance as ARQ enabled.
16525 			 */
16526 			if (scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1)
16527 			    == 1) {
16528 				/* Successfully enabled ARQ in the HBA */
16529 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
16530 				    "sd_alloc_rqs: ARQ enabled\n");
16531 				un->un_f_arq_enabled = TRUE;
16532 			} else {
16533 				/* Could not enable ARQ in the HBA */
16534 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
16535 				    "sd_alloc_rqs: failed ARQ enable\n");
16536 				un->un_f_arq_enabled = FALSE;
16537 			}
16538 			break;
16539 		case 1:
16540 			/*
16541 			 * ARQ is supported by this HBA and is already enabled.
16542 			 * Just mark ARQ as enabled for this instance.
16543 			 */
16544 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
16545 			    "sd_alloc_rqs: ARQ already enabled\n");
16546 			un->un_f_arq_enabled = TRUE;
16547 			break;
16548 		default:
16549 			/*
16550 			 * ARQ is not supported by this HBA; disable it for this
16551 			 * instance.
16552 			 */
16553 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
16554 			    "sd_alloc_rqs: HBA does not support ARQ\n");
16555 			un->un_f_arq_enabled = FALSE;
16556 			break;
16557 		}
16558 	}
16559 
16560 	return (DDI_SUCCESS);
16561 }
16562 
16563 
16564 /*
16565  *    Function: sd_free_rqs
16566  *
16567  * Description: Cleanup for the pre-instance RQS command.
16568  *
16569  *     Context: Kernel thread context
16570  */
16571 
16572 static void
16573 sd_free_rqs(struct sd_lun *un)
16574 {
16575 	ASSERT(un != NULL);
16576 
16577 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: entry\n");
16578 
16579 	/*
16580 	 * If consistent memory is bound to a scsi_pkt, the pkt
16581 	 * has to be destroyed *before* freeing the consistent memory.
16582 	 * Don't change the sequence of this operations.
16583 	 * scsi_destroy_pkt() might access memory, which isn't allowed,
16584 	 * after it was freed in scsi_free_consistent_buf().
16585 	 */
16586 	if (un->un_rqs_pktp != NULL) {
16587 		scsi_destroy_pkt(un->un_rqs_pktp);
16588 		un->un_rqs_pktp = NULL;
16589 	}
16590 
16591 	if (un->un_rqs_bp != NULL) {
16592 		struct sd_xbuf *xp = SD_GET_XBUF(un->un_rqs_bp);
16593 		if (xp != NULL) {
16594 			kmem_free(xp, sizeof (struct sd_xbuf));
16595 		}
16596 		scsi_free_consistent_buf(un->un_rqs_bp);
16597 		un->un_rqs_bp = NULL;
16598 	}
16599 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: exit\n");
16600 }
16601 
16602 
16603 
16604 /*
16605  *    Function: sd_reduce_throttle
16606  *
16607  * Description: Reduces the maximum # of outstanding commands on a
16608  *		target to the current number of outstanding commands.
16609  *		Queues a tiemout(9F) callback to restore the limit
16610  *		after a specified interval has elapsed.
16611  *		Typically used when we get a TRAN_BUSY return code
16612  *		back from scsi_transport().
16613  *
16614  *   Arguments: un - ptr to the sd_lun softstate struct
16615  *		throttle_type: SD_THROTTLE_TRAN_BUSY or SD_THROTTLE_QFULL
16616  *
16617  *     Context: May be called from interrupt context
16618  */
16619 
16620 static void
16621 sd_reduce_throttle(struct sd_lun *un, int throttle_type)
16622 {
16623 	ASSERT(un != NULL);
16624 	ASSERT(mutex_owned(SD_MUTEX(un)));
16625 	ASSERT(un->un_ncmds_in_transport >= 0);
16626 
16627 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
16628 	    "entry: un:0x%p un_throttle:%d un_ncmds_in_transport:%d\n",
16629 	    un, un->un_throttle, un->un_ncmds_in_transport);
16630 
16631 	if (un->un_throttle > 1) {
16632 		if (un->un_f_use_adaptive_throttle == TRUE) {
16633 			switch (throttle_type) {
16634 			case SD_THROTTLE_TRAN_BUSY:
16635 				if (un->un_busy_throttle == 0) {
16636 					un->un_busy_throttle = un->un_throttle;
16637 				}
16638 				break;
16639 			case SD_THROTTLE_QFULL:
16640 				un->un_busy_throttle = 0;
16641 				break;
16642 			default:
16643 				ASSERT(FALSE);
16644 			}
16645 
16646 			if (un->un_ncmds_in_transport > 0) {
16647 				un->un_throttle = un->un_ncmds_in_transport;
16648 			}
16649 
16650 		} else {
16651 			if (un->un_ncmds_in_transport == 0) {
16652 				un->un_throttle = 1;
16653 			} else {
16654 				un->un_throttle = un->un_ncmds_in_transport;
16655 			}
16656 		}
16657 	}
16658 
16659 	/* Reschedule the timeout if none is currently active */
16660 	if (un->un_reset_throttle_timeid == NULL) {
16661 		un->un_reset_throttle_timeid = timeout(sd_restore_throttle,
16662 		    un, SD_THROTTLE_RESET_INTERVAL);
16663 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16664 		    "sd_reduce_throttle: timeout scheduled!\n");
16665 	}
16666 
16667 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
16668 	    "exit: un:0x%p un_throttle:%d\n", un, un->un_throttle);
16669 }
16670 
16671 
16672 
16673 /*
16674  *    Function: sd_restore_throttle
16675  *
16676  * Description: Callback function for timeout(9F).  Resets the current
16677  *		value of un->un_throttle to its default.
16678  *
16679  *   Arguments: arg - pointer to associated softstate for the device.
16680  *
16681  *     Context: May be called from interrupt context
16682  */
16683 
16684 static void
16685 sd_restore_throttle(void *arg)
16686 {
16687 	struct sd_lun	*un = arg;
16688 
16689 	ASSERT(un != NULL);
16690 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16691 
16692 	mutex_enter(SD_MUTEX(un));
16693 
16694 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
16695 	    "entry: un:0x%p un_throttle:%d\n", un, un->un_throttle);
16696 
16697 	un->un_reset_throttle_timeid = NULL;
16698 
16699 	if (un->un_f_use_adaptive_throttle == TRUE) {
16700 		/*
16701 		 * If un_busy_throttle is nonzero, then it contains the
16702 		 * value that un_throttle was when we got a TRAN_BUSY back
16703 		 * from scsi_transport(). We want to revert back to this
16704 		 * value.
16705 		 *
16706 		 * In the QFULL case, the throttle limit will incrementally
16707 		 * increase until it reaches max throttle.
16708 		 */
16709 		if (un->un_busy_throttle > 0) {
16710 			un->un_throttle = un->un_busy_throttle;
16711 			un->un_busy_throttle = 0;
16712 		} else {
16713 			/*
16714 			 * increase throttle by 10% open gate slowly, schedule
16715 			 * another restore if saved throttle has not been
16716 			 * reached
16717 			 */
16718 			short throttle;
16719 			if (sd_qfull_throttle_enable) {
16720 				throttle = un->un_throttle +
16721 				    max((un->un_throttle / 10), 1);
16722 				un->un_throttle =
16723 				    (throttle < un->un_saved_throttle) ?
16724 				    throttle : un->un_saved_throttle;
16725 				if (un->un_throttle < un->un_saved_throttle) {
16726 					un->un_reset_throttle_timeid =
16727 					    timeout(sd_restore_throttle,
16728 					    un,
16729 					    SD_QFULL_THROTTLE_RESET_INTERVAL);
16730 				}
16731 			}
16732 		}
16733 
16734 		/*
16735 		 * If un_throttle has fallen below the low-water mark, we
16736 		 * restore the maximum value here (and allow it to ratchet
16737 		 * down again if necessary).
16738 		 */
16739 		if (un->un_throttle < un->un_min_throttle) {
16740 			un->un_throttle = un->un_saved_throttle;
16741 		}
16742 	} else {
16743 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
16744 		    "restoring limit from 0x%x to 0x%x\n",
16745 		    un->un_throttle, un->un_saved_throttle);
16746 		un->un_throttle = un->un_saved_throttle;
16747 	}
16748 
16749 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
16750 	    "sd_restore_throttle: calling sd_start_cmds!\n");
16751 
16752 	sd_start_cmds(un, NULL);
16753 
16754 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
16755 	    "sd_restore_throttle: exit: un:0x%p un_throttle:%d\n",
16756 	    un, un->un_throttle);
16757 
16758 	mutex_exit(SD_MUTEX(un));
16759 
16760 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: exit\n");
16761 }
16762 
16763 /*
16764  *    Function: sdrunout
16765  *
16766  * Description: Callback routine for scsi_init_pkt when a resource allocation
16767  *		fails.
16768  *
16769  *   Arguments: arg - a pointer to the sd_lun unit struct for the particular
16770  *		soft state instance.
16771  *
16772  * Return Code: The scsi_init_pkt routine allows for the callback function to
16773  *		return a 0 indicating the callback should be rescheduled or a 1
16774  *		indicating not to reschedule. This routine always returns 1
16775  *		because the driver always provides a callback function to
16776  *		scsi_init_pkt. This results in a callback always being scheduled
16777  *		(via the scsi_init_pkt callback implementation) if a resource
16778  *		failure occurs.
16779  *
16780  *     Context: This callback function may not block or call routines that block
16781  *
16782  *        Note: Using the scsi_init_pkt callback facility can result in an I/O
16783  *		request persisting at the head of the list which cannot be
16784  *		satisfied even after multiple retries. In the future the driver
16785  *		may implement some time of maximum runout count before failing
16786  *		an I/O.
16787  */
16788 
16789 static int
16790 sdrunout(caddr_t arg)
16791 {
16792 	struct sd_lun	*un = (struct sd_lun *)arg;
16793 
16794 	ASSERT(un != NULL);
16795 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16796 
16797 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: entry\n");
16798 
16799 	mutex_enter(SD_MUTEX(un));
16800 	sd_start_cmds(un, NULL);
16801 	mutex_exit(SD_MUTEX(un));
16802 	/*
16803 	 * This callback routine always returns 1 (i.e. do not reschedule)
16804 	 * because we always specify sdrunout as the callback handler for
16805 	 * scsi_init_pkt inside the call to sd_start_cmds.
16806 	 */
16807 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: exit\n");
16808 	return (1);
16809 }
16810 
16811 
16812 /*
16813  *    Function: sdintr
16814  *
16815  * Description: Completion callback routine for scsi_pkt(9S) structs
16816  *		sent to the HBA driver via scsi_transport(9F).
16817  *
16818  *     Context: Interrupt context
16819  */
16820 
16821 static void
16822 sdintr(struct scsi_pkt *pktp)
16823 {
16824 	struct buf	*bp;
16825 	struct sd_xbuf	*xp;
16826 	struct sd_lun	*un;
16827 	size_t		actual_len;
16828 	sd_ssc_t	*sscp;
16829 
16830 	ASSERT(pktp != NULL);
16831 	bp = (struct buf *)pktp->pkt_private;
16832 	ASSERT(bp != NULL);
16833 	xp = SD_GET_XBUF(bp);
16834 	ASSERT(xp != NULL);
16835 	ASSERT(xp->xb_pktp != NULL);
16836 	un = SD_GET_UN(bp);
16837 	ASSERT(un != NULL);
16838 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16839 
16840 #ifdef SD_FAULT_INJECTION
16841 
16842 	SD_INFO(SD_LOG_IOERR, un, "sdintr: sdintr calling Fault injection\n");
16843 	/* SD FaultInjection */
16844 	sd_faultinjection(pktp);
16845 
16846 #endif /* SD_FAULT_INJECTION */
16847 
16848 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: entry: buf:0x%p,"
16849 	    " xp:0x%p, un:0x%p\n", bp, xp, un);
16850 
16851 	mutex_enter(SD_MUTEX(un));
16852 
16853 	ASSERT(un->un_fm_private != NULL);
16854 	sscp = &((struct sd_fm_internal *)(un->un_fm_private))->fm_ssc;
16855 	ASSERT(sscp != NULL);
16856 
16857 	/* Reduce the count of the #commands currently in transport */
16858 	un->un_ncmds_in_transport--;
16859 	ASSERT(un->un_ncmds_in_transport >= 0);
16860 
16861 	/* Increment counter to indicate that the callback routine is active */
16862 	un->un_in_callback++;
16863 
16864 	SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
16865 
16866 #ifdef	SDDEBUG
16867 	if (bp == un->un_retry_bp) {
16868 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sdintr: "
16869 		    "un:0x%p: GOT retry_bp:0x%p un_ncmds_in_transport:%d\n",
16870 		    un, un->un_retry_bp, un->un_ncmds_in_transport);
16871 	}
16872 #endif
16873 
16874 	/*
16875 	 * If pkt_reason is CMD_DEV_GONE, fail the command, and update the media
16876 	 * state if needed.
16877 	 */
16878 	if (pktp->pkt_reason == CMD_DEV_GONE) {
16879 		/* Prevent multiple console messages for the same failure. */
16880 		if (un->un_last_pkt_reason != CMD_DEV_GONE) {
16881 			un->un_last_pkt_reason = CMD_DEV_GONE;
16882 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16883 			    "Command failed to complete...Device is gone\n");
16884 		}
16885 		if (un->un_mediastate != DKIO_DEV_GONE) {
16886 			un->un_mediastate = DKIO_DEV_GONE;
16887 			cv_broadcast(&un->un_state_cv);
16888 		}
16889 		/*
16890 		 * If the command happens to be the REQUEST SENSE command,
16891 		 * free up the rqs buf and fail the original command.
16892 		 */
16893 		if (bp == un->un_rqs_bp) {
16894 			bp = sd_mark_rqs_idle(un, xp);
16895 		}
16896 		sd_return_failed_command(un, bp, EIO);
16897 		goto exit;
16898 	}
16899 
16900 	if (pktp->pkt_state & STATE_XARQ_DONE) {
16901 		SD_TRACE(SD_LOG_COMMON, un,
16902 		    "sdintr: extra sense data received. pkt=%p\n", pktp);
16903 	}
16904 
16905 	/*
16906 	 * First see if the pkt has auto-request sense data with it....
16907 	 * Look at the packet state first so we don't take a performance
16908 	 * hit looking at the arq enabled flag unless absolutely necessary.
16909 	 */
16910 	if ((pktp->pkt_state & STATE_ARQ_DONE) &&
16911 	    (un->un_f_arq_enabled == TRUE)) {
16912 		/*
16913 		 * The HBA did an auto request sense for this command so check
16914 		 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
16915 		 * driver command that should not be retried.
16916 		 */
16917 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
16918 			/*
16919 			 * Save the relevant sense info into the xp for the
16920 			 * original cmd.
16921 			 */
16922 			struct scsi_arq_status *asp;
16923 			asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
16924 			xp->xb_sense_status =
16925 			    *((uchar_t *)(&(asp->sts_rqpkt_status)));
16926 			xp->xb_sense_state  = asp->sts_rqpkt_state;
16927 			xp->xb_sense_resid  = asp->sts_rqpkt_resid;
16928 			if (pktp->pkt_state & STATE_XARQ_DONE) {
16929 				actual_len = MAX_SENSE_LENGTH -
16930 				    xp->xb_sense_resid;
16931 				bcopy(&asp->sts_sensedata, xp->xb_sense_data,
16932 				    MAX_SENSE_LENGTH);
16933 			} else {
16934 				if (xp->xb_sense_resid > SENSE_LENGTH) {
16935 					actual_len = MAX_SENSE_LENGTH -
16936 					    xp->xb_sense_resid;
16937 				} else {
16938 					actual_len = SENSE_LENGTH -
16939 					    xp->xb_sense_resid;
16940 				}
16941 				if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
16942 					if ((((struct uscsi_cmd *)
16943 					    (xp->xb_pktinfo))->uscsi_rqlen) >
16944 					    actual_len) {
16945 						xp->xb_sense_resid =
16946 						    (((struct uscsi_cmd *)
16947 						    (xp->xb_pktinfo))->
16948 						    uscsi_rqlen) - actual_len;
16949 					} else {
16950 						xp->xb_sense_resid = 0;
16951 					}
16952 				}
16953 				bcopy(&asp->sts_sensedata, xp->xb_sense_data,
16954 				    SENSE_LENGTH);
16955 			}
16956 
16957 			/* fail the command */
16958 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16959 			    "sdintr: arq done and FLAG_DIAGNOSE set\n");
16960 			sd_return_failed_command(un, bp, EIO);
16961 			goto exit;
16962 		}
16963 
16964 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
16965 		/*
16966 		 * We want to either retry or fail this command, so free
16967 		 * the DMA resources here.  If we retry the command then
16968 		 * the DMA resources will be reallocated in sd_start_cmds().
16969 		 * Note that when PKT_DMA_PARTIAL is used, this reallocation
16970 		 * causes the *entire* transfer to start over again from the
16971 		 * beginning of the request, even for PARTIAL chunks that
16972 		 * have already transferred successfully.
16973 		 */
16974 		if ((un->un_f_is_fibre == TRUE) &&
16975 		    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
16976 		    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
16977 			scsi_dmafree(pktp);
16978 			xp->xb_pkt_flags |= SD_XB_DMA_FREED;
16979 		}
16980 #endif
16981 
16982 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16983 		    "sdintr: arq done, sd_handle_auto_request_sense\n");
16984 
16985 		sd_handle_auto_request_sense(un, bp, xp, pktp);
16986 		goto exit;
16987 	}
16988 
16989 	/* Next see if this is the REQUEST SENSE pkt for the instance */
16990 	if (pktp->pkt_flags & FLAG_SENSING)  {
16991 		/* This pktp is from the unit's REQUEST_SENSE command */
16992 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16993 		    "sdintr: sd_handle_request_sense\n");
16994 		sd_handle_request_sense(un, bp, xp, pktp);
16995 		goto exit;
16996 	}
16997 
16998 	/*
16999 	 * Check to see if the command successfully completed as requested;
17000 	 * this is the most common case (and also the hot performance path).
17001 	 *
17002 	 * Requirements for successful completion are:
17003 	 * pkt_reason is CMD_CMPLT and packet status is status good.
17004 	 * In addition:
17005 	 * - A residual of zero indicates successful completion no matter what
17006 	 *   the command is.
17007 	 * - If the residual is not zero and the command is not a read or
17008 	 *   write, then it's still defined as successful completion. In other
17009 	 *   words, if the command is a read or write the residual must be
17010 	 *   zero for successful completion.
17011 	 * - If the residual is not zero and the command is a read or
17012 	 *   write, and it's a USCSICMD, then it's still defined as
17013 	 *   successful completion.
17014 	 */
17015 	if ((pktp->pkt_reason == CMD_CMPLT) &&
17016 	    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD)) {
17017 
17018 		/*
17019 		 * Since this command is returned with a good status, we
17020 		 * can reset the count for Sonoma failover.
17021 		 */
17022 		un->un_sonoma_failure_count = 0;
17023 
17024 		/*
17025 		 * Return all USCSI commands on good status
17026 		 */
17027 		if (pktp->pkt_resid == 0) {
17028 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17029 			    "sdintr: returning command for resid == 0\n");
17030 		} else if (((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_READ) &&
17031 		    ((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_WRITE)) {
17032 			SD_UPDATE_B_RESID(bp, pktp);
17033 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17034 			    "sdintr: returning command for resid != 0\n");
17035 		} else if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
17036 			SD_UPDATE_B_RESID(bp, pktp);
17037 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17038 			    "sdintr: returning uscsi command\n");
17039 		} else {
17040 			goto not_successful;
17041 		}
17042 		sd_return_command(un, bp);
17043 
17044 		/*
17045 		 * Decrement counter to indicate that the callback routine
17046 		 * is done.
17047 		 */
17048 		un->un_in_callback--;
17049 		ASSERT(un->un_in_callback >= 0);
17050 		mutex_exit(SD_MUTEX(un));
17051 
17052 		return;
17053 	}
17054 
17055 not_successful:
17056 
17057 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
17058 	/*
17059 	 * The following is based upon knowledge of the underlying transport
17060 	 * and its use of DMA resources.  This code should be removed when
17061 	 * PKT_DMA_PARTIAL support is taken out of the disk driver in favor
17062 	 * of the new PKT_CMD_BREAKUP protocol. See also sd_initpkt_for_buf()
17063 	 * and sd_start_cmds().
17064 	 *
17065 	 * Free any DMA resources associated with this command if there
17066 	 * is a chance it could be retried or enqueued for later retry.
17067 	 * If we keep the DMA binding then mpxio cannot reissue the
17068 	 * command on another path whenever a path failure occurs.
17069 	 *
17070 	 * Note that when PKT_DMA_PARTIAL is used, free/reallocation
17071 	 * causes the *entire* transfer to start over again from the
17072 	 * beginning of the request, even for PARTIAL chunks that
17073 	 * have already transferred successfully.
17074 	 *
17075 	 * This is only done for non-uscsi commands (and also skipped for the
17076 	 * driver's internal RQS command). Also just do this for Fibre Channel
17077 	 * devices as these are the only ones that support mpxio.
17078 	 */
17079 	if ((un->un_f_is_fibre == TRUE) &&
17080 	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
17081 	    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
17082 		scsi_dmafree(pktp);
17083 		xp->xb_pkt_flags |= SD_XB_DMA_FREED;
17084 	}
17085 #endif
17086 
17087 	/*
17088 	 * The command did not successfully complete as requested so check
17089 	 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
17090 	 * driver command that should not be retried so just return. If
17091 	 * FLAG_DIAGNOSE is not set the error will be processed below.
17092 	 */
17093 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
17094 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17095 		    "sdintr: FLAG_DIAGNOSE: sd_return_failed_command\n");
17096 		/*
17097 		 * Issue a request sense if a check condition caused the error
17098 		 * (we handle the auto request sense case above), otherwise
17099 		 * just fail the command.
17100 		 */
17101 		if ((pktp->pkt_reason == CMD_CMPLT) &&
17102 		    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK)) {
17103 			sd_send_request_sense_command(un, bp, pktp);
17104 		} else {
17105 			sd_return_failed_command(un, bp, EIO);
17106 		}
17107 		goto exit;
17108 	}
17109 
17110 	/*
17111 	 * The command did not successfully complete as requested so process
17112 	 * the error, retry, and/or attempt recovery.
17113 	 */
17114 	switch (pktp->pkt_reason) {
17115 	case CMD_CMPLT:
17116 		switch (SD_GET_PKT_STATUS(pktp)) {
17117 		case STATUS_GOOD:
17118 			/*
17119 			 * The command completed successfully with a non-zero
17120 			 * residual
17121 			 */
17122 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17123 			    "sdintr: STATUS_GOOD \n");
17124 			sd_pkt_status_good(un, bp, xp, pktp);
17125 			break;
17126 
17127 		case STATUS_CHECK:
17128 		case STATUS_TERMINATED:
17129 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17130 			    "sdintr: STATUS_TERMINATED | STATUS_CHECK\n");
17131 			sd_pkt_status_check_condition(un, bp, xp, pktp);
17132 			break;
17133 
17134 		case STATUS_BUSY:
17135 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17136 			    "sdintr: STATUS_BUSY\n");
17137 			sd_pkt_status_busy(un, bp, xp, pktp);
17138 			break;
17139 
17140 		case STATUS_RESERVATION_CONFLICT:
17141 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17142 			    "sdintr: STATUS_RESERVATION_CONFLICT\n");
17143 			sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
17144 			break;
17145 
17146 		case STATUS_QFULL:
17147 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17148 			    "sdintr: STATUS_QFULL\n");
17149 			sd_pkt_status_qfull(un, bp, xp, pktp);
17150 			break;
17151 
17152 		case STATUS_MET:
17153 		case STATUS_INTERMEDIATE:
17154 		case STATUS_SCSI2:
17155 		case STATUS_INTERMEDIATE_MET:
17156 		case STATUS_ACA_ACTIVE:
17157 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17158 			    "Unexpected SCSI status received: 0x%x\n",
17159 			    SD_GET_PKT_STATUS(pktp));
17160 			/*
17161 			 * Mark the ssc_flags when detected invalid status
17162 			 * code for non-USCSI command.
17163 			 */
17164 			if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
17165 				sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_STATUS,
17166 				    0, "stat-code");
17167 			}
17168 			sd_return_failed_command(un, bp, EIO);
17169 			break;
17170 
17171 		default:
17172 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17173 			    "Invalid SCSI status received: 0x%x\n",
17174 			    SD_GET_PKT_STATUS(pktp));
17175 			if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
17176 				sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_STATUS,
17177 				    0, "stat-code");
17178 			}
17179 			sd_return_failed_command(un, bp, EIO);
17180 			break;
17181 
17182 		}
17183 		break;
17184 
17185 	case CMD_INCOMPLETE:
17186 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17187 		    "sdintr:  CMD_INCOMPLETE\n");
17188 		sd_pkt_reason_cmd_incomplete(un, bp, xp, pktp);
17189 		break;
17190 	case CMD_TRAN_ERR:
17191 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17192 		    "sdintr: CMD_TRAN_ERR\n");
17193 		sd_pkt_reason_cmd_tran_err(un, bp, xp, pktp);
17194 		break;
17195 	case CMD_RESET:
17196 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17197 		    "sdintr: CMD_RESET \n");
17198 		sd_pkt_reason_cmd_reset(un, bp, xp, pktp);
17199 		break;
17200 	case CMD_ABORTED:
17201 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17202 		    "sdintr: CMD_ABORTED \n");
17203 		sd_pkt_reason_cmd_aborted(un, bp, xp, pktp);
17204 		break;
17205 	case CMD_TIMEOUT:
17206 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17207 		    "sdintr: CMD_TIMEOUT\n");
17208 		sd_pkt_reason_cmd_timeout(un, bp, xp, pktp);
17209 		break;
17210 	case CMD_UNX_BUS_FREE:
17211 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17212 		    "sdintr: CMD_UNX_BUS_FREE \n");
17213 		sd_pkt_reason_cmd_unx_bus_free(un, bp, xp, pktp);
17214 		break;
17215 	case CMD_TAG_REJECT:
17216 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17217 		    "sdintr: CMD_TAG_REJECT\n");
17218 		sd_pkt_reason_cmd_tag_reject(un, bp, xp, pktp);
17219 		break;
17220 	default:
17221 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17222 		    "sdintr: default\n");
17223 		/*
17224 		 * Mark the ssc_flags for detecting invliad pkt_reason.
17225 		 */
17226 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
17227 			sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_PKT_REASON,
17228 			    0, "pkt-reason");
17229 		}
17230 		sd_pkt_reason_default(un, bp, xp, pktp);
17231 		break;
17232 	}
17233 
17234 exit:
17235 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: exit\n");
17236 
17237 	/* Decrement counter to indicate that the callback routine is done. */
17238 	un->un_in_callback--;
17239 	ASSERT(un->un_in_callback >= 0);
17240 
17241 	/*
17242 	 * At this point, the pkt has been dispatched, ie, it is either
17243 	 * being re-tried or has been returned to its caller and should
17244 	 * not be referenced.
17245 	 */
17246 
17247 	mutex_exit(SD_MUTEX(un));
17248 }
17249 
17250 
17251 /*
17252  *    Function: sd_print_incomplete_msg
17253  *
17254  * Description: Prints the error message for a CMD_INCOMPLETE error.
17255  *
17256  *   Arguments: un - ptr to associated softstate for the device.
17257  *		bp - ptr to the buf(9S) for the command.
17258  *		arg - message string ptr
17259  *		code - SD_DELAYED_RETRY_ISSUED, SD_IMMEDIATE_RETRY_ISSUED,
17260  *			or SD_NO_RETRY_ISSUED.
17261  *
17262  *     Context: May be called under interrupt context
17263  */
17264 
17265 static void
17266 sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
17267 {
17268 	struct scsi_pkt	*pktp;
17269 	char	*msgp;
17270 	char	*cmdp = arg;
17271 
17272 	ASSERT(un != NULL);
17273 	ASSERT(mutex_owned(SD_MUTEX(un)));
17274 	ASSERT(bp != NULL);
17275 	ASSERT(arg != NULL);
17276 	pktp = SD_GET_PKTP(bp);
17277 	ASSERT(pktp != NULL);
17278 
17279 	switch (code) {
17280 	case SD_DELAYED_RETRY_ISSUED:
17281 	case SD_IMMEDIATE_RETRY_ISSUED:
17282 		msgp = "retrying";
17283 		break;
17284 	case SD_NO_RETRY_ISSUED:
17285 	default:
17286 		msgp = "giving up";
17287 		break;
17288 	}
17289 
17290 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
17291 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17292 		    "incomplete %s- %s\n", cmdp, msgp);
17293 	}
17294 }
17295 
17296 
17297 
17298 /*
17299  *    Function: sd_pkt_status_good
17300  *
17301  * Description: Processing for a STATUS_GOOD code in pkt_status.
17302  *
17303  *     Context: May be called under interrupt context
17304  */
17305 
17306 static void
17307 sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
17308 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17309 {
17310 	char	*cmdp;
17311 
17312 	ASSERT(un != NULL);
17313 	ASSERT(mutex_owned(SD_MUTEX(un)));
17314 	ASSERT(bp != NULL);
17315 	ASSERT(xp != NULL);
17316 	ASSERT(pktp != NULL);
17317 	ASSERT(pktp->pkt_reason == CMD_CMPLT);
17318 	ASSERT(SD_GET_PKT_STATUS(pktp) == STATUS_GOOD);
17319 	ASSERT(pktp->pkt_resid != 0);
17320 
17321 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: entry\n");
17322 
17323 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17324 	switch (SD_GET_PKT_OPCODE(pktp) & 0x1F) {
17325 	case SCMD_READ:
17326 		cmdp = "read";
17327 		break;
17328 	case SCMD_WRITE:
17329 		cmdp = "write";
17330 		break;
17331 	default:
17332 		SD_UPDATE_B_RESID(bp, pktp);
17333 		sd_return_command(un, bp);
17334 		SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
17335 		return;
17336 	}
17337 
17338 	/*
17339 	 * See if we can retry the read/write, preferrably immediately.
17340 	 * If retries are exhaused, then sd_retry_command() will update
17341 	 * the b_resid count.
17342 	 */
17343 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_incomplete_msg,
17344 	    cmdp, EIO, (clock_t)0, NULL);
17345 
17346 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
17347 }
17348 
17349 
17350 
17351 
17352 
17353 /*
17354  *    Function: sd_handle_request_sense
17355  *
17356  * Description: Processing for non-auto Request Sense command.
17357  *
17358  *   Arguments: un - ptr to associated softstate
17359  *		sense_bp - ptr to buf(9S) for the RQS command
17360  *		sense_xp - ptr to the sd_xbuf for the RQS command
17361  *		sense_pktp - ptr to the scsi_pkt(9S) for the RQS command
17362  *
17363  *     Context: May be called under interrupt context
17364  */
17365 
17366 static void
17367 sd_handle_request_sense(struct sd_lun *un, struct buf *sense_bp,
17368 	struct sd_xbuf *sense_xp, struct scsi_pkt *sense_pktp)
17369 {
17370 	struct buf	*cmd_bp;	/* buf for the original command */
17371 	struct sd_xbuf	*cmd_xp;	/* sd_xbuf for the original command */
17372 	struct scsi_pkt *cmd_pktp;	/* pkt for the original command */
17373 	size_t		actual_len;	/* actual sense data length */
17374 
17375 	ASSERT(un != NULL);
17376 	ASSERT(mutex_owned(SD_MUTEX(un)));
17377 	ASSERT(sense_bp != NULL);
17378 	ASSERT(sense_xp != NULL);
17379 	ASSERT(sense_pktp != NULL);
17380 
17381 	/*
17382 	 * Note the sense_bp, sense_xp, and sense_pktp here are for the
17383 	 * RQS command and not the original command.
17384 	 */
17385 	ASSERT(sense_pktp == un->un_rqs_pktp);
17386 	ASSERT(sense_bp   == un->un_rqs_bp);
17387 	ASSERT((sense_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) ==
17388 	    (FLAG_SENSING | FLAG_HEAD));
17389 	ASSERT((((SD_GET_XBUF(sense_xp->xb_sense_bp))->xb_pktp->pkt_flags) &
17390 	    FLAG_SENSING) == FLAG_SENSING);
17391 
17392 	/* These are the bp, xp, and pktp for the original command */
17393 	cmd_bp = sense_xp->xb_sense_bp;
17394 	cmd_xp = SD_GET_XBUF(cmd_bp);
17395 	cmd_pktp = SD_GET_PKTP(cmd_bp);
17396 
17397 	if (sense_pktp->pkt_reason != CMD_CMPLT) {
17398 		/*
17399 		 * The REQUEST SENSE command failed.  Release the REQUEST
17400 		 * SENSE command for re-use, get back the bp for the original
17401 		 * command, and attempt to re-try the original command if
17402 		 * FLAG_DIAGNOSE is not set in the original packet.
17403 		 */
17404 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
17405 		if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
17406 			cmd_bp = sd_mark_rqs_idle(un, sense_xp);
17407 			sd_retry_command(un, cmd_bp, SD_RETRIES_STANDARD,
17408 			    NULL, NULL, EIO, (clock_t)0, NULL);
17409 			return;
17410 		}
17411 	}
17412 
17413 	/*
17414 	 * Save the relevant sense info into the xp for the original cmd.
17415 	 *
17416 	 * Note: if the request sense failed the state info will be zero
17417 	 * as set in sd_mark_rqs_busy()
17418 	 */
17419 	cmd_xp->xb_sense_status = *(sense_pktp->pkt_scbp);
17420 	cmd_xp->xb_sense_state  = sense_pktp->pkt_state;
17421 	actual_len = MAX_SENSE_LENGTH - sense_pktp->pkt_resid;
17422 	if ((cmd_xp->xb_pkt_flags & SD_XB_USCSICMD) &&
17423 	    (((struct uscsi_cmd *)cmd_xp->xb_pktinfo)->uscsi_rqlen >
17424 	    SENSE_LENGTH)) {
17425 		bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data,
17426 		    MAX_SENSE_LENGTH);
17427 		cmd_xp->xb_sense_resid = sense_pktp->pkt_resid;
17428 	} else {
17429 		bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data,
17430 		    SENSE_LENGTH);
17431 		if (actual_len < SENSE_LENGTH) {
17432 			cmd_xp->xb_sense_resid = SENSE_LENGTH - actual_len;
17433 		} else {
17434 			cmd_xp->xb_sense_resid = 0;
17435 		}
17436 	}
17437 
17438 	/*
17439 	 *  Free up the RQS command....
17440 	 *  NOTE:
17441 	 *	Must do this BEFORE calling sd_validate_sense_data!
17442 	 *	sd_validate_sense_data may return the original command in
17443 	 *	which case the pkt will be freed and the flags can no
17444 	 *	longer be touched.
17445 	 *	SD_MUTEX is held through this process until the command
17446 	 *	is dispatched based upon the sense data, so there are
17447 	 *	no race conditions.
17448 	 */
17449 	(void) sd_mark_rqs_idle(un, sense_xp);
17450 
17451 	/*
17452 	 * For a retryable command see if we have valid sense data, if so then
17453 	 * turn it over to sd_decode_sense() to figure out the right course of
17454 	 * action. Just fail a non-retryable command.
17455 	 */
17456 	if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
17457 		if (sd_validate_sense_data(un, cmd_bp, cmd_xp, actual_len) ==
17458 		    SD_SENSE_DATA_IS_VALID) {
17459 			sd_decode_sense(un, cmd_bp, cmd_xp, cmd_pktp);
17460 		}
17461 	} else {
17462 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Failed CDB",
17463 		    (uchar_t *)cmd_pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
17464 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Sense Data",
17465 		    (uchar_t *)cmd_xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
17466 		sd_return_failed_command(un, cmd_bp, EIO);
17467 	}
17468 }
17469 
17470 
17471 
17472 
17473 /*
17474  *    Function: sd_handle_auto_request_sense
17475  *
17476  * Description: Processing for auto-request sense information.
17477  *
17478  *   Arguments: un - ptr to associated softstate
17479  *		bp - ptr to buf(9S) for the command
17480  *		xp - ptr to the sd_xbuf for the command
17481  *		pktp - ptr to the scsi_pkt(9S) for the command
17482  *
17483  *     Context: May be called under interrupt context
17484  */
17485 
17486 static void
17487 sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
17488 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17489 {
17490 	struct scsi_arq_status *asp;
17491 	size_t actual_len;
17492 
17493 	ASSERT(un != NULL);
17494 	ASSERT(mutex_owned(SD_MUTEX(un)));
17495 	ASSERT(bp != NULL);
17496 	ASSERT(xp != NULL);
17497 	ASSERT(pktp != NULL);
17498 	ASSERT(pktp != un->un_rqs_pktp);
17499 	ASSERT(bp   != un->un_rqs_bp);
17500 
17501 	/*
17502 	 * For auto-request sense, we get a scsi_arq_status back from
17503 	 * the HBA, with the sense data in the sts_sensedata member.
17504 	 * The pkt_scbp of the packet points to this scsi_arq_status.
17505 	 */
17506 	asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
17507 
17508 	if (asp->sts_rqpkt_reason != CMD_CMPLT) {
17509 		/*
17510 		 * The auto REQUEST SENSE failed; see if we can re-try
17511 		 * the original command.
17512 		 */
17513 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17514 		    "auto request sense failed (reason=%s)\n",
17515 		    scsi_rname(asp->sts_rqpkt_reason));
17516 
17517 		sd_reset_target(un, pktp);
17518 
17519 		sd_retry_command(un, bp, SD_RETRIES_STANDARD,
17520 		    NULL, NULL, EIO, (clock_t)0, NULL);
17521 		return;
17522 	}
17523 
17524 	/* Save the relevant sense info into the xp for the original cmd. */
17525 	xp->xb_sense_status = *((uchar_t *)(&(asp->sts_rqpkt_status)));
17526 	xp->xb_sense_state  = asp->sts_rqpkt_state;
17527 	xp->xb_sense_resid  = asp->sts_rqpkt_resid;
17528 	if (xp->xb_sense_state & STATE_XARQ_DONE) {
17529 		actual_len = MAX_SENSE_LENGTH - xp->xb_sense_resid;
17530 		bcopy(&asp->sts_sensedata, xp->xb_sense_data,
17531 		    MAX_SENSE_LENGTH);
17532 	} else {
17533 		if (xp->xb_sense_resid > SENSE_LENGTH) {
17534 			actual_len = MAX_SENSE_LENGTH - xp->xb_sense_resid;
17535 		} else {
17536 			actual_len = SENSE_LENGTH - xp->xb_sense_resid;
17537 		}
17538 		if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
17539 			if ((((struct uscsi_cmd *)
17540 			    (xp->xb_pktinfo))->uscsi_rqlen) > actual_len) {
17541 				xp->xb_sense_resid = (((struct uscsi_cmd *)
17542 				    (xp->xb_pktinfo))->uscsi_rqlen) -
17543 				    actual_len;
17544 			} else {
17545 				xp->xb_sense_resid = 0;
17546 			}
17547 		}
17548 		bcopy(&asp->sts_sensedata, xp->xb_sense_data, SENSE_LENGTH);
17549 	}
17550 
17551 	/*
17552 	 * See if we have valid sense data, if so then turn it over to
17553 	 * sd_decode_sense() to figure out the right course of action.
17554 	 */
17555 	if (sd_validate_sense_data(un, bp, xp, actual_len) ==
17556 	    SD_SENSE_DATA_IS_VALID) {
17557 		sd_decode_sense(un, bp, xp, pktp);
17558 	}
17559 }
17560 
17561 
17562 /*
17563  *    Function: sd_print_sense_failed_msg
17564  *
17565  * Description: Print log message when RQS has failed.
17566  *
17567  *   Arguments: un - ptr to associated softstate
17568  *		bp - ptr to buf(9S) for the command
17569  *		arg - generic message string ptr
17570  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
17571  *			or SD_NO_RETRY_ISSUED
17572  *
17573  *     Context: May be called from interrupt context
17574  */
17575 
17576 static void
17577 sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, void *arg,
17578 	int code)
17579 {
17580 	char	*msgp = arg;
17581 
17582 	ASSERT(un != NULL);
17583 	ASSERT(mutex_owned(SD_MUTEX(un)));
17584 	ASSERT(bp != NULL);
17585 
17586 	if ((code == SD_NO_RETRY_ISSUED) && (msgp != NULL)) {
17587 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, msgp);
17588 	}
17589 }
17590 
17591 
17592 /*
17593  *    Function: sd_validate_sense_data
17594  *
17595  * Description: Check the given sense data for validity.
17596  *		If the sense data is not valid, the command will
17597  *		be either failed or retried!
17598  *
17599  * Return Code: SD_SENSE_DATA_IS_INVALID
17600  *		SD_SENSE_DATA_IS_VALID
17601  *
17602  *     Context: May be called from interrupt context
17603  */
17604 
17605 static int
17606 sd_validate_sense_data(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
17607 	size_t actual_len)
17608 {
17609 	struct scsi_extended_sense *esp;
17610 	struct	scsi_pkt *pktp;
17611 	char	*msgp = NULL;
17612 	sd_ssc_t *sscp;
17613 
17614 	ASSERT(un != NULL);
17615 	ASSERT(mutex_owned(SD_MUTEX(un)));
17616 	ASSERT(bp != NULL);
17617 	ASSERT(bp != un->un_rqs_bp);
17618 	ASSERT(xp != NULL);
17619 	ASSERT(un->un_fm_private != NULL);
17620 
17621 	pktp = SD_GET_PKTP(bp);
17622 	ASSERT(pktp != NULL);
17623 
17624 	sscp = &((struct sd_fm_internal *)(un->un_fm_private))->fm_ssc;
17625 	ASSERT(sscp != NULL);
17626 
17627 	/*
17628 	 * Check the status of the RQS command (auto or manual).
17629 	 */
17630 	switch (xp->xb_sense_status & STATUS_MASK) {
17631 	case STATUS_GOOD:
17632 		break;
17633 
17634 	case STATUS_RESERVATION_CONFLICT:
17635 		sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
17636 		return (SD_SENSE_DATA_IS_INVALID);
17637 
17638 	case STATUS_BUSY:
17639 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17640 		    "Busy Status on REQUEST SENSE\n");
17641 		sd_retry_command(un, bp, SD_RETRIES_BUSY, NULL,
17642 		    NULL, EIO, un->un_busy_timeout / 500, kstat_waitq_enter);
17643 		return (SD_SENSE_DATA_IS_INVALID);
17644 
17645 	case STATUS_QFULL:
17646 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17647 		    "QFULL Status on REQUEST SENSE\n");
17648 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL,
17649 		    NULL, EIO, un->un_busy_timeout / 500, kstat_waitq_enter);
17650 		return (SD_SENSE_DATA_IS_INVALID);
17651 
17652 	case STATUS_CHECK:
17653 	case STATUS_TERMINATED:
17654 		msgp = "Check Condition on REQUEST SENSE\n";
17655 		goto sense_failed;
17656 
17657 	default:
17658 		msgp = "Not STATUS_GOOD on REQUEST_SENSE\n";
17659 		goto sense_failed;
17660 	}
17661 
17662 	/*
17663 	 * See if we got the minimum required amount of sense data.
17664 	 * Note: We are assuming the returned sense data is SENSE_LENGTH bytes
17665 	 * or less.
17666 	 */
17667 	if (((xp->xb_sense_state & STATE_XFERRED_DATA) == 0) ||
17668 	    (actual_len == 0)) {
17669 		msgp = "Request Sense couldn't get sense data\n";
17670 		goto sense_failed;
17671 	}
17672 
17673 	if (actual_len < SUN_MIN_SENSE_LENGTH) {
17674 		msgp = "Not enough sense information\n";
17675 		/* Mark the ssc_flags for detecting invalid sense data */
17676 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
17677 			sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE, 0,
17678 			    "sense-data");
17679 		}
17680 		goto sense_failed;
17681 	}
17682 
17683 	/*
17684 	 * We require the extended sense data
17685 	 */
17686 	esp = (struct scsi_extended_sense *)xp->xb_sense_data;
17687 	if (esp->es_class != CLASS_EXTENDED_SENSE) {
17688 		if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
17689 			static char tmp[8];
17690 			static char buf[148];
17691 			char *p = (char *)(xp->xb_sense_data);
17692 			int i;
17693 
17694 			mutex_enter(&sd_sense_mutex);
17695 			(void) strcpy(buf, "undecodable sense information:");
17696 			for (i = 0; i < actual_len; i++) {
17697 				(void) sprintf(tmp, " 0x%x", *(p++)&0xff);
17698 				(void) strcpy(&buf[strlen(buf)], tmp);
17699 			}
17700 			i = strlen(buf);
17701 			(void) strcpy(&buf[i], "-(assumed fatal)\n");
17702 
17703 			if (SD_FM_LOG(un) == SD_FM_LOG_NSUP) {
17704 				scsi_log(SD_DEVINFO(un), sd_label,
17705 				    CE_WARN, buf);
17706 			}
17707 			mutex_exit(&sd_sense_mutex);
17708 		}
17709 
17710 		/* Mark the ssc_flags for detecting invalid sense data */
17711 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
17712 			sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE, 0,
17713 			    "sense-data");
17714 		}
17715 
17716 		/* Note: Legacy behavior, fail the command with no retry */
17717 		sd_return_failed_command(un, bp, EIO);
17718 		return (SD_SENSE_DATA_IS_INVALID);
17719 	}
17720 
17721 	/*
17722 	 * Check that es_code is valid (es_class concatenated with es_code
17723 	 * make up the "response code" field.  es_class will always be 7, so
17724 	 * make sure es_code is 0, 1, 2, 3 or 0xf.  es_code will indicate the
17725 	 * format.
17726 	 */
17727 	if ((esp->es_code != CODE_FMT_FIXED_CURRENT) &&
17728 	    (esp->es_code != CODE_FMT_FIXED_DEFERRED) &&
17729 	    (esp->es_code != CODE_FMT_DESCR_CURRENT) &&
17730 	    (esp->es_code != CODE_FMT_DESCR_DEFERRED) &&
17731 	    (esp->es_code != CODE_FMT_VENDOR_SPECIFIC)) {
17732 		/* Mark the ssc_flags for detecting invalid sense data */
17733 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
17734 			sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE, 0,
17735 			    "sense-data");
17736 		}
17737 		goto sense_failed;
17738 	}
17739 
17740 	return (SD_SENSE_DATA_IS_VALID);
17741 
17742 sense_failed:
17743 	/*
17744 	 * If the request sense failed (for whatever reason), attempt
17745 	 * to retry the original command.
17746 	 */
17747 #if defined(__i386) || defined(__amd64)
17748 	/*
17749 	 * SD_RETRY_DELAY is conditionally compile (#if fibre) in
17750 	 * sddef.h for Sparc platform, and x86 uses 1 binary
17751 	 * for both SCSI/FC.
17752 	 * The SD_RETRY_DELAY value need to be adjusted here
17753 	 * when SD_RETRY_DELAY change in sddef.h
17754 	 */
17755 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
17756 	    sd_print_sense_failed_msg, msgp, EIO,
17757 	    un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, NULL);
17758 #else
17759 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
17760 	    sd_print_sense_failed_msg, msgp, EIO, SD_RETRY_DELAY, NULL);
17761 #endif
17762 
17763 	return (SD_SENSE_DATA_IS_INVALID);
17764 }
17765 
17766 /*
17767  *    Function: sd_decode_sense
17768  *
17769  * Description: Take recovery action(s) when SCSI Sense Data is received.
17770  *
17771  *     Context: Interrupt context.
17772  */
17773 
17774 static void
17775 sd_decode_sense(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
17776 	struct scsi_pkt *pktp)
17777 {
17778 	uint8_t sense_key;
17779 
17780 	ASSERT(un != NULL);
17781 	ASSERT(mutex_owned(SD_MUTEX(un)));
17782 	ASSERT(bp != NULL);
17783 	ASSERT(bp != un->un_rqs_bp);
17784 	ASSERT(xp != NULL);
17785 	ASSERT(pktp != NULL);
17786 
17787 	sense_key = scsi_sense_key(xp->xb_sense_data);
17788 
17789 	switch (sense_key) {
17790 	case KEY_NO_SENSE:
17791 		sd_sense_key_no_sense(un, bp, xp, pktp);
17792 		break;
17793 	case KEY_RECOVERABLE_ERROR:
17794 		sd_sense_key_recoverable_error(un, xp->xb_sense_data,
17795 		    bp, xp, pktp);
17796 		break;
17797 	case KEY_NOT_READY:
17798 		sd_sense_key_not_ready(un, xp->xb_sense_data,
17799 		    bp, xp, pktp);
17800 		break;
17801 	case KEY_MEDIUM_ERROR:
17802 	case KEY_HARDWARE_ERROR:
17803 		sd_sense_key_medium_or_hardware_error(un,
17804 		    xp->xb_sense_data, bp, xp, pktp);
17805 		break;
17806 	case KEY_ILLEGAL_REQUEST:
17807 		sd_sense_key_illegal_request(un, bp, xp, pktp);
17808 		break;
17809 	case KEY_UNIT_ATTENTION:
17810 		sd_sense_key_unit_attention(un, xp->xb_sense_data,
17811 		    bp, xp, pktp);
17812 		break;
17813 	case KEY_WRITE_PROTECT:
17814 	case KEY_VOLUME_OVERFLOW:
17815 	case KEY_MISCOMPARE:
17816 		sd_sense_key_fail_command(un, bp, xp, pktp);
17817 		break;
17818 	case KEY_BLANK_CHECK:
17819 		sd_sense_key_blank_check(un, bp, xp, pktp);
17820 		break;
17821 	case KEY_ABORTED_COMMAND:
17822 		sd_sense_key_aborted_command(un, bp, xp, pktp);
17823 		break;
17824 	case KEY_VENDOR_UNIQUE:
17825 	case KEY_COPY_ABORTED:
17826 	case KEY_EQUAL:
17827 	case KEY_RESERVED:
17828 	default:
17829 		sd_sense_key_default(un, xp->xb_sense_data,
17830 		    bp, xp, pktp);
17831 		break;
17832 	}
17833 }
17834 
17835 
17836 /*
17837  *    Function: sd_dump_memory
17838  *
17839  * Description: Debug logging routine to print the contents of a user provided
17840  *		buffer. The output of the buffer is broken up into 256 byte
17841  *		segments due to a size constraint of the scsi_log.
17842  *		implementation.
17843  *
17844  *   Arguments: un - ptr to softstate
17845  *		comp - component mask
17846  *		title - "title" string to preceed data when printed
17847  *		data - ptr to data block to be printed
17848  *		len - size of data block to be printed
17849  *		fmt - SD_LOG_HEX (use 0x%02x format) or SD_LOG_CHAR (use %c)
17850  *
17851  *     Context: May be called from interrupt context
17852  */
17853 
17854 #define	SD_DUMP_MEMORY_BUF_SIZE	256
17855 
17856 static char *sd_dump_format_string[] = {
17857 		" 0x%02x",
17858 		" %c"
17859 };
17860 
17861 static void
17862 sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, uchar_t *data,
17863     int len, int fmt)
17864 {
17865 	int	i, j;
17866 	int	avail_count;
17867 	int	start_offset;
17868 	int	end_offset;
17869 	size_t	entry_len;
17870 	char	*bufp;
17871 	char	*local_buf;
17872 	char	*format_string;
17873 
17874 	ASSERT((fmt == SD_LOG_HEX) || (fmt == SD_LOG_CHAR));
17875 
17876 	/*
17877 	 * In the debug version of the driver, this function is called from a
17878 	 * number of places which are NOPs in the release driver.
17879 	 * The debug driver therefore has additional methods of filtering
17880 	 * debug output.
17881 	 */
17882 #ifdef SDDEBUG
17883 	/*
17884 	 * In the debug version of the driver we can reduce the amount of debug
17885 	 * messages by setting sd_error_level to something other than
17886 	 * SCSI_ERR_ALL and clearing bits in sd_level_mask and
17887 	 * sd_component_mask.
17888 	 */
17889 	if (((sd_level_mask & (SD_LOGMASK_DUMP_MEM | SD_LOGMASK_DIAG)) == 0) ||
17890 	    (sd_error_level != SCSI_ERR_ALL)) {
17891 		return;
17892 	}
17893 	if (((sd_component_mask & comp) == 0) ||
17894 	    (sd_error_level != SCSI_ERR_ALL)) {
17895 		return;
17896 	}
17897 #else
17898 	if (sd_error_level != SCSI_ERR_ALL) {
17899 		return;
17900 	}
17901 #endif
17902 
17903 	local_buf = kmem_zalloc(SD_DUMP_MEMORY_BUF_SIZE, KM_SLEEP);
17904 	bufp = local_buf;
17905 	/*
17906 	 * Available length is the length of local_buf[], minus the
17907 	 * length of the title string, minus one for the ":", minus
17908 	 * one for the newline, minus one for the NULL terminator.
17909 	 * This gives the #bytes available for holding the printed
17910 	 * values from the given data buffer.
17911 	 */
17912 	if (fmt == SD_LOG_HEX) {
17913 		format_string = sd_dump_format_string[0];
17914 	} else /* SD_LOG_CHAR */ {
17915 		format_string = sd_dump_format_string[1];
17916 	}
17917 	/*
17918 	 * Available count is the number of elements from the given
17919 	 * data buffer that we can fit into the available length.
17920 	 * This is based upon the size of the format string used.
17921 	 * Make one entry and find it's size.
17922 	 */
17923 	(void) sprintf(bufp, format_string, data[0]);
17924 	entry_len = strlen(bufp);
17925 	avail_count = (SD_DUMP_MEMORY_BUF_SIZE - strlen(title) - 3) / entry_len;
17926 
17927 	j = 0;
17928 	while (j < len) {
17929 		bufp = local_buf;
17930 		bzero(bufp, SD_DUMP_MEMORY_BUF_SIZE);
17931 		start_offset = j;
17932 
17933 		end_offset = start_offset + avail_count;
17934 
17935 		(void) sprintf(bufp, "%s:", title);
17936 		bufp += strlen(bufp);
17937 		for (i = start_offset; ((i < end_offset) && (j < len));
17938 		    i++, j++) {
17939 			(void) sprintf(bufp, format_string, data[i]);
17940 			bufp += entry_len;
17941 		}
17942 		(void) sprintf(bufp, "\n");
17943 
17944 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, "%s", local_buf);
17945 	}
17946 	kmem_free(local_buf, SD_DUMP_MEMORY_BUF_SIZE);
17947 }
17948 
17949 /*
17950  *    Function: sd_print_sense_msg
17951  *
17952  * Description: Log a message based upon the given sense data.
17953  *
17954  *   Arguments: un - ptr to associated softstate
17955  *		bp - ptr to buf(9S) for the command
17956  *		arg - ptr to associate sd_sense_info struct
17957  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
17958  *			or SD_NO_RETRY_ISSUED
17959  *
17960  *     Context: May be called from interrupt context
17961  */
17962 
17963 static void
17964 sd_print_sense_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
17965 {
17966 	struct sd_xbuf	*xp;
17967 	struct scsi_pkt	*pktp;
17968 	uint8_t *sensep;
17969 	daddr_t request_blkno;
17970 	diskaddr_t err_blkno;
17971 	int severity;
17972 	int pfa_flag;
17973 	extern struct scsi_key_strings scsi_cmds[];
17974 
17975 	ASSERT(un != NULL);
17976 	ASSERT(mutex_owned(SD_MUTEX(un)));
17977 	ASSERT(bp != NULL);
17978 	xp = SD_GET_XBUF(bp);
17979 	ASSERT(xp != NULL);
17980 	pktp = SD_GET_PKTP(bp);
17981 	ASSERT(pktp != NULL);
17982 	ASSERT(arg != NULL);
17983 
17984 	severity = ((struct sd_sense_info *)(arg))->ssi_severity;
17985 	pfa_flag = ((struct sd_sense_info *)(arg))->ssi_pfa_flag;
17986 
17987 	if ((code == SD_DELAYED_RETRY_ISSUED) ||
17988 	    (code == SD_IMMEDIATE_RETRY_ISSUED)) {
17989 		severity = SCSI_ERR_RETRYABLE;
17990 	}
17991 
17992 	/* Use absolute block number for the request block number */
17993 	request_blkno = xp->xb_blkno;
17994 
17995 	/*
17996 	 * Now try to get the error block number from the sense data
17997 	 */
17998 	sensep = xp->xb_sense_data;
17999 
18000 	if (scsi_sense_info_uint64(sensep, SENSE_LENGTH,
18001 	    (uint64_t *)&err_blkno)) {
18002 		/*
18003 		 * We retrieved the error block number from the information
18004 		 * portion of the sense data.
18005 		 *
18006 		 * For USCSI commands we are better off using the error
18007 		 * block no. as the requested block no. (This is the best
18008 		 * we can estimate.)
18009 		 */
18010 		if ((SD_IS_BUFIO(xp) == FALSE) &&
18011 		    ((pktp->pkt_flags & FLAG_SILENT) == 0)) {
18012 			request_blkno = err_blkno;
18013 		}
18014 	} else {
18015 		/*
18016 		 * Without the es_valid bit set (for fixed format) or an
18017 		 * information descriptor (for descriptor format) we cannot
18018 		 * be certain of the error blkno, so just use the
18019 		 * request_blkno.
18020 		 */
18021 		err_blkno = (diskaddr_t)request_blkno;
18022 	}
18023 
18024 	/*
18025 	 * The following will log the buffer contents for the release driver
18026 	 * if the SD_LOGMASK_DIAG bit of sd_level_mask is set, or the error
18027 	 * level is set to verbose.
18028 	 */
18029 	sd_dump_memory(un, SD_LOG_IO, "Failed CDB",
18030 	    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
18031 	sd_dump_memory(un, SD_LOG_IO, "Sense Data",
18032 	    (uchar_t *)sensep, SENSE_LENGTH, SD_LOG_HEX);
18033 
18034 	if (pfa_flag == FALSE) {
18035 		/* This is normally only set for USCSI */
18036 		if ((pktp->pkt_flags & FLAG_SILENT) != 0) {
18037 			return;
18038 		}
18039 
18040 		if ((SD_IS_BUFIO(xp) == TRUE) &&
18041 		    (((sd_level_mask & SD_LOGMASK_DIAG) == 0) &&
18042 		    (severity < sd_error_level))) {
18043 			return;
18044 		}
18045 	}
18046 	/*
18047 	 * Check for Sonoma Failover and keep a count of how many failed I/O's
18048 	 */
18049 	if ((SD_IS_LSI(un)) &&
18050 	    (scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) &&
18051 	    (scsi_sense_asc(sensep) == 0x94) &&
18052 	    (scsi_sense_ascq(sensep) == 0x01)) {
18053 		un->un_sonoma_failure_count++;
18054 		if (un->un_sonoma_failure_count > 1) {
18055 			return;
18056 		}
18057 	}
18058 
18059 	if (SD_FM_LOG(un) == SD_FM_LOG_NSUP ||
18060 	    ((scsi_sense_key(sensep) == KEY_RECOVERABLE_ERROR) &&
18061 	    (pktp->pkt_resid == 0))) {
18062 		scsi_vu_errmsg(SD_SCSI_DEVP(un), pktp, sd_label, severity,
18063 		    request_blkno, err_blkno, scsi_cmds,
18064 		    (struct scsi_extended_sense *)sensep,
18065 		    un->un_additional_codes, NULL);
18066 	}
18067 }
18068 
18069 /*
18070  *    Function: sd_sense_key_no_sense
18071  *
18072  * Description: Recovery action when sense data was not received.
18073  *
18074  *     Context: May be called from interrupt context
18075  */
18076 
18077 static void
18078 sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
18079 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18080 {
18081 	struct sd_sense_info	si;
18082 
18083 	ASSERT(un != NULL);
18084 	ASSERT(mutex_owned(SD_MUTEX(un)));
18085 	ASSERT(bp != NULL);
18086 	ASSERT(xp != NULL);
18087 	ASSERT(pktp != NULL);
18088 
18089 	si.ssi_severity = SCSI_ERR_FATAL;
18090 	si.ssi_pfa_flag = FALSE;
18091 
18092 	SD_UPDATE_ERRSTATS(un, sd_softerrs);
18093 
18094 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18095 	    &si, EIO, (clock_t)0, NULL);
18096 }
18097 
18098 
18099 /*
18100  *    Function: sd_sense_key_recoverable_error
18101  *
18102  * Description: Recovery actions for a SCSI "Recovered Error" sense key.
18103  *
18104  *     Context: May be called from interrupt context
18105  */
18106 
18107 static void
18108 sd_sense_key_recoverable_error(struct sd_lun *un,
18109 	uint8_t *sense_datap,
18110 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18111 {
18112 	struct sd_sense_info	si;
18113 	uint8_t asc = scsi_sense_asc(sense_datap);
18114 
18115 	ASSERT(un != NULL);
18116 	ASSERT(mutex_owned(SD_MUTEX(un)));
18117 	ASSERT(bp != NULL);
18118 	ASSERT(xp != NULL);
18119 	ASSERT(pktp != NULL);
18120 
18121 	/*
18122 	 * 0x5D: FAILURE PREDICTION THRESHOLD EXCEEDED
18123 	 */
18124 	if ((asc == 0x5D) && (sd_report_pfa != 0)) {
18125 		SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
18126 		si.ssi_severity = SCSI_ERR_INFO;
18127 		si.ssi_pfa_flag = TRUE;
18128 	} else {
18129 		SD_UPDATE_ERRSTATS(un, sd_softerrs);
18130 		SD_UPDATE_ERRSTATS(un, sd_rq_recov_err);
18131 		si.ssi_severity = SCSI_ERR_RECOVERED;
18132 		si.ssi_pfa_flag = FALSE;
18133 	}
18134 
18135 	if (pktp->pkt_resid == 0) {
18136 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18137 		sd_return_command(un, bp);
18138 		return;
18139 	}
18140 
18141 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18142 	    &si, EIO, (clock_t)0, NULL);
18143 }
18144 
18145 
18146 
18147 
18148 /*
18149  *    Function: sd_sense_key_not_ready
18150  *
18151  * Description: Recovery actions for a SCSI "Not Ready" sense key.
18152  *
18153  *     Context: May be called from interrupt context
18154  */
18155 
18156 static void
18157 sd_sense_key_not_ready(struct sd_lun *un,
18158 	uint8_t *sense_datap,
18159 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18160 {
18161 	struct sd_sense_info	si;
18162 	uint8_t asc = scsi_sense_asc(sense_datap);
18163 	uint8_t ascq = scsi_sense_ascq(sense_datap);
18164 
18165 	ASSERT(un != NULL);
18166 	ASSERT(mutex_owned(SD_MUTEX(un)));
18167 	ASSERT(bp != NULL);
18168 	ASSERT(xp != NULL);
18169 	ASSERT(pktp != NULL);
18170 
18171 	si.ssi_severity = SCSI_ERR_FATAL;
18172 	si.ssi_pfa_flag = FALSE;
18173 
18174 	/*
18175 	 * Update error stats after first NOT READY error. Disks may have
18176 	 * been powered down and may need to be restarted.  For CDROMs,
18177 	 * report NOT READY errors only if media is present.
18178 	 */
18179 	if ((ISCD(un) && (asc == 0x3A)) ||
18180 	    (xp->xb_nr_retry_count > 0)) {
18181 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
18182 		SD_UPDATE_ERRSTATS(un, sd_rq_ntrdy_err);
18183 	}
18184 
18185 	/*
18186 	 * Just fail if the "not ready" retry limit has been reached.
18187 	 */
18188 	if (xp->xb_nr_retry_count >= un->un_notready_retry_count) {
18189 		/* Special check for error message printing for removables. */
18190 		if (un->un_f_has_removable_media && (asc == 0x04) &&
18191 		    (ascq >= 0x04)) {
18192 			si.ssi_severity = SCSI_ERR_ALL;
18193 		}
18194 		goto fail_command;
18195 	}
18196 
18197 	/*
18198 	 * Check the ASC and ASCQ in the sense data as needed, to determine
18199 	 * what to do.
18200 	 */
18201 	switch (asc) {
18202 	case 0x04:	/* LOGICAL UNIT NOT READY */
18203 		/*
18204 		 * disk drives that don't spin up result in a very long delay
18205 		 * in format without warning messages. We will log a message
18206 		 * if the error level is set to verbose.
18207 		 */
18208 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
18209 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18210 			    "logical unit not ready, resetting disk\n");
18211 		}
18212 
18213 		/*
18214 		 * There are different requirements for CDROMs and disks for
18215 		 * the number of retries.  If a CD-ROM is giving this, it is
18216 		 * probably reading TOC and is in the process of getting
18217 		 * ready, so we should keep on trying for a long time to make
18218 		 * sure that all types of media are taken in account (for
18219 		 * some media the drive takes a long time to read TOC).  For
18220 		 * disks we do not want to retry this too many times as this
18221 		 * can cause a long hang in format when the drive refuses to
18222 		 * spin up (a very common failure).
18223 		 */
18224 		switch (ascq) {
18225 		case 0x00:  /* LUN NOT READY, CAUSE NOT REPORTABLE */
18226 			/*
18227 			 * Disk drives frequently refuse to spin up which
18228 			 * results in a very long hang in format without
18229 			 * warning messages.
18230 			 *
18231 			 * Note: This code preserves the legacy behavior of
18232 			 * comparing xb_nr_retry_count against zero for fibre
18233 			 * channel targets instead of comparing against the
18234 			 * un_reset_retry_count value.  The reason for this
18235 			 * discrepancy has been so utterly lost beneath the
18236 			 * Sands of Time that even Indiana Jones could not
18237 			 * find it.
18238 			 */
18239 			if (un->un_f_is_fibre == TRUE) {
18240 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
18241 				    (xp->xb_nr_retry_count > 0)) &&
18242 				    (un->un_startstop_timeid == NULL)) {
18243 					scsi_log(SD_DEVINFO(un), sd_label,
18244 					    CE_WARN, "logical unit not ready, "
18245 					    "resetting disk\n");
18246 					sd_reset_target(un, pktp);
18247 				}
18248 			} else {
18249 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
18250 				    (xp->xb_nr_retry_count >
18251 				    un->un_reset_retry_count)) &&
18252 				    (un->un_startstop_timeid == NULL)) {
18253 					scsi_log(SD_DEVINFO(un), sd_label,
18254 					    CE_WARN, "logical unit not ready, "
18255 					    "resetting disk\n");
18256 					sd_reset_target(un, pktp);
18257 				}
18258 			}
18259 			break;
18260 
18261 		case 0x01:  /* LUN IS IN PROCESS OF BECOMING READY */
18262 			/*
18263 			 * If the target is in the process of becoming
18264 			 * ready, just proceed with the retry. This can
18265 			 * happen with CD-ROMs that take a long time to
18266 			 * read TOC after a power cycle or reset.
18267 			 */
18268 			goto do_retry;
18269 
18270 		case 0x02:  /* LUN NOT READY, INITITIALIZING CMD REQUIRED */
18271 			break;
18272 
18273 		case 0x03:  /* LUN NOT READY, MANUAL INTERVENTION REQUIRED */
18274 			/*
18275 			 * Retries cannot help here so just fail right away.
18276 			 */
18277 			goto fail_command;
18278 
18279 		case 0x88:
18280 			/*
18281 			 * Vendor-unique code for T3/T4: it indicates a
18282 			 * path problem in a mutipathed config, but as far as
18283 			 * the target driver is concerned it equates to a fatal
18284 			 * error, so we should just fail the command right away
18285 			 * (without printing anything to the console). If this
18286 			 * is not a T3/T4, fall thru to the default recovery
18287 			 * action.
18288 			 * T3/T4 is FC only, don't need to check is_fibre
18289 			 */
18290 			if (SD_IS_T3(un) || SD_IS_T4(un)) {
18291 				sd_return_failed_command(un, bp, EIO);
18292 				return;
18293 			}
18294 			/* FALLTHRU */
18295 
18296 		case 0x04:  /* LUN NOT READY, FORMAT IN PROGRESS */
18297 		case 0x05:  /* LUN NOT READY, REBUILD IN PROGRESS */
18298 		case 0x06:  /* LUN NOT READY, RECALCULATION IN PROGRESS */
18299 		case 0x07:  /* LUN NOT READY, OPERATION IN PROGRESS */
18300 		case 0x08:  /* LUN NOT READY, LONG WRITE IN PROGRESS */
18301 		default:    /* Possible future codes in SCSI spec? */
18302 			/*
18303 			 * For removable-media devices, do not retry if
18304 			 * ASCQ > 2 as these result mostly from USCSI commands
18305 			 * on MMC devices issued to check status of an
18306 			 * operation initiated in immediate mode.  Also for
18307 			 * ASCQ >= 4 do not print console messages as these
18308 			 * mainly represent a user-initiated operation
18309 			 * instead of a system failure.
18310 			 */
18311 			if (un->un_f_has_removable_media) {
18312 				si.ssi_severity = SCSI_ERR_ALL;
18313 				goto fail_command;
18314 			}
18315 			break;
18316 		}
18317 
18318 		/*
18319 		 * As part of our recovery attempt for the NOT READY
18320 		 * condition, we issue a START STOP UNIT command. However
18321 		 * we want to wait for a short delay before attempting this
18322 		 * as there may still be more commands coming back from the
18323 		 * target with the check condition. To do this we use
18324 		 * timeout(9F) to call sd_start_stop_unit_callback() after
18325 		 * the delay interval expires. (sd_start_stop_unit_callback()
18326 		 * dispatches sd_start_stop_unit_task(), which will issue
18327 		 * the actual START STOP UNIT command. The delay interval
18328 		 * is one-half of the delay that we will use to retry the
18329 		 * command that generated the NOT READY condition.
18330 		 *
18331 		 * Note that we could just dispatch sd_start_stop_unit_task()
18332 		 * from here and allow it to sleep for the delay interval,
18333 		 * but then we would be tying up the taskq thread
18334 		 * uncesessarily for the duration of the delay.
18335 		 *
18336 		 * Do not issue the START STOP UNIT if the current command
18337 		 * is already a START STOP UNIT.
18338 		 */
18339 		if (pktp->pkt_cdbp[0] == SCMD_START_STOP) {
18340 			break;
18341 		}
18342 
18343 		/*
18344 		 * Do not schedule the timeout if one is already pending.
18345 		 */
18346 		if (un->un_startstop_timeid != NULL) {
18347 			SD_INFO(SD_LOG_ERROR, un,
18348 			    "sd_sense_key_not_ready: restart already issued to"
18349 			    " %s%d\n", ddi_driver_name(SD_DEVINFO(un)),
18350 			    ddi_get_instance(SD_DEVINFO(un)));
18351 			break;
18352 		}
18353 
18354 		/*
18355 		 * Schedule the START STOP UNIT command, then queue the command
18356 		 * for a retry.
18357 		 *
18358 		 * Note: A timeout is not scheduled for this retry because we
18359 		 * want the retry to be serial with the START_STOP_UNIT. The
18360 		 * retry will be started when the START_STOP_UNIT is completed
18361 		 * in sd_start_stop_unit_task.
18362 		 */
18363 		un->un_startstop_timeid = timeout(sd_start_stop_unit_callback,
18364 		    un, un->un_busy_timeout / 2);
18365 		xp->xb_nr_retry_count++;
18366 		sd_set_retry_bp(un, bp, 0, kstat_waitq_enter);
18367 		return;
18368 
18369 	case 0x05:	/* LOGICAL UNIT DOES NOT RESPOND TO SELECTION */
18370 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
18371 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18372 			    "unit does not respond to selection\n");
18373 		}
18374 		break;
18375 
18376 	case 0x3A:	/* MEDIUM NOT PRESENT */
18377 		if (sd_error_level >= SCSI_ERR_FATAL) {
18378 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18379 			    "Caddy not inserted in drive\n");
18380 		}
18381 
18382 		sr_ejected(un);
18383 		un->un_mediastate = DKIO_EJECTED;
18384 		/* The state has changed, inform the media watch routines */
18385 		cv_broadcast(&un->un_state_cv);
18386 		/* Just fail if no media is present in the drive. */
18387 		goto fail_command;
18388 
18389 	default:
18390 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
18391 			scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
18392 			    "Unit not Ready. Additional sense code 0x%x\n",
18393 			    asc);
18394 		}
18395 		break;
18396 	}
18397 
18398 do_retry:
18399 
18400 	/*
18401 	 * Retry the command, as some targets may report NOT READY for
18402 	 * several seconds after being reset.
18403 	 */
18404 	xp->xb_nr_retry_count++;
18405 	si.ssi_severity = SCSI_ERR_RETRYABLE;
18406 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
18407 	    &si, EIO, un->un_busy_timeout, NULL);
18408 
18409 	return;
18410 
18411 fail_command:
18412 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18413 	sd_return_failed_command(un, bp, EIO);
18414 }
18415 
18416 
18417 
18418 /*
18419  *    Function: sd_sense_key_medium_or_hardware_error
18420  *
18421  * Description: Recovery actions for a SCSI "Medium Error" or "Hardware Error"
18422  *		sense key.
18423  *
18424  *     Context: May be called from interrupt context
18425  */
18426 
18427 static void
18428 sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
18429 	uint8_t *sense_datap,
18430 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18431 {
18432 	struct sd_sense_info	si;
18433 	uint8_t sense_key = scsi_sense_key(sense_datap);
18434 	uint8_t asc = scsi_sense_asc(sense_datap);
18435 
18436 	ASSERT(un != NULL);
18437 	ASSERT(mutex_owned(SD_MUTEX(un)));
18438 	ASSERT(bp != NULL);
18439 	ASSERT(xp != NULL);
18440 	ASSERT(pktp != NULL);
18441 
18442 	si.ssi_severity = SCSI_ERR_FATAL;
18443 	si.ssi_pfa_flag = FALSE;
18444 
18445 	if (sense_key == KEY_MEDIUM_ERROR) {
18446 		SD_UPDATE_ERRSTATS(un, sd_rq_media_err);
18447 	}
18448 
18449 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18450 
18451 	if ((un->un_reset_retry_count != 0) &&
18452 	    (xp->xb_retry_count == un->un_reset_retry_count)) {
18453 		mutex_exit(SD_MUTEX(un));
18454 		/* Do NOT do a RESET_ALL here: too intrusive. (4112858) */
18455 		if (un->un_f_allow_bus_device_reset == TRUE) {
18456 
18457 			boolean_t try_resetting_target = B_TRUE;
18458 
18459 			/*
18460 			 * We need to be able to handle specific ASC when we are
18461 			 * handling a KEY_HARDWARE_ERROR. In particular
18462 			 * taking the default action of resetting the target may
18463 			 * not be the appropriate way to attempt recovery.
18464 			 * Resetting a target because of a single LUN failure
18465 			 * victimizes all LUNs on that target.
18466 			 *
18467 			 * This is true for the LSI arrays, if an LSI
18468 			 * array controller returns an ASC of 0x84 (LUN Dead) we
18469 			 * should trust it.
18470 			 */
18471 
18472 			if (sense_key == KEY_HARDWARE_ERROR) {
18473 				switch (asc) {
18474 				case 0x84:
18475 					if (SD_IS_LSI(un)) {
18476 						try_resetting_target = B_FALSE;
18477 					}
18478 					break;
18479 				default:
18480 					break;
18481 				}
18482 			}
18483 
18484 			if (try_resetting_target == B_TRUE) {
18485 				int reset_retval = 0;
18486 				if (un->un_f_lun_reset_enabled == TRUE) {
18487 					SD_TRACE(SD_LOG_IO_CORE, un,
18488 					    "sd_sense_key_medium_or_hardware_"
18489 					    "error: issuing RESET_LUN\n");
18490 					reset_retval =
18491 					    scsi_reset(SD_ADDRESS(un),
18492 					    RESET_LUN);
18493 				}
18494 				if (reset_retval == 0) {
18495 					SD_TRACE(SD_LOG_IO_CORE, un,
18496 					    "sd_sense_key_medium_or_hardware_"
18497 					    "error: issuing RESET_TARGET\n");
18498 					(void) scsi_reset(SD_ADDRESS(un),
18499 					    RESET_TARGET);
18500 				}
18501 			}
18502 		}
18503 		mutex_enter(SD_MUTEX(un));
18504 	}
18505 
18506 	/*
18507 	 * This really ought to be a fatal error, but we will retry anyway
18508 	 * as some drives report this as a spurious error.
18509 	 */
18510 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18511 	    &si, EIO, (clock_t)0, NULL);
18512 }
18513 
18514 
18515 
18516 /*
18517  *    Function: sd_sense_key_illegal_request
18518  *
18519  * Description: Recovery actions for a SCSI "Illegal Request" sense key.
18520  *
18521  *     Context: May be called from interrupt context
18522  */
18523 
18524 static void
18525 sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
18526 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18527 {
18528 	struct sd_sense_info	si;
18529 
18530 	ASSERT(un != NULL);
18531 	ASSERT(mutex_owned(SD_MUTEX(un)));
18532 	ASSERT(bp != NULL);
18533 	ASSERT(xp != NULL);
18534 	ASSERT(pktp != NULL);
18535 
18536 	SD_UPDATE_ERRSTATS(un, sd_rq_illrq_err);
18537 
18538 	si.ssi_severity = SCSI_ERR_INFO;
18539 	si.ssi_pfa_flag = FALSE;
18540 
18541 	/* Pointless to retry if the target thinks it's an illegal request */
18542 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18543 	sd_return_failed_command(un, bp, EIO);
18544 }
18545 
18546 
18547 
18548 
18549 /*
18550  *    Function: sd_sense_key_unit_attention
18551  *
18552  * Description: Recovery actions for a SCSI "Unit Attention" sense key.
18553  *
18554  *     Context: May be called from interrupt context
18555  */
18556 
18557 static void
18558 sd_sense_key_unit_attention(struct sd_lun *un,
18559 	uint8_t *sense_datap,
18560 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18561 {
18562 	/*
18563 	 * For UNIT ATTENTION we allow retries for one minute. Devices
18564 	 * like Sonoma can return UNIT ATTENTION close to a minute
18565 	 * under certain conditions.
18566 	 */
18567 	int	retry_check_flag = SD_RETRIES_UA;
18568 	boolean_t	kstat_updated = B_FALSE;
18569 	struct	sd_sense_info		si;
18570 	uint8_t asc = scsi_sense_asc(sense_datap);
18571 	uint8_t	ascq = scsi_sense_ascq(sense_datap);
18572 
18573 	ASSERT(un != NULL);
18574 	ASSERT(mutex_owned(SD_MUTEX(un)));
18575 	ASSERT(bp != NULL);
18576 	ASSERT(xp != NULL);
18577 	ASSERT(pktp != NULL);
18578 
18579 	si.ssi_severity = SCSI_ERR_INFO;
18580 	si.ssi_pfa_flag = FALSE;
18581 
18582 
18583 	switch (asc) {
18584 	case 0x5D:  /* FAILURE PREDICTION THRESHOLD EXCEEDED */
18585 		if (sd_report_pfa != 0) {
18586 			SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
18587 			si.ssi_pfa_flag = TRUE;
18588 			retry_check_flag = SD_RETRIES_STANDARD;
18589 			goto do_retry;
18590 		}
18591 
18592 		break;
18593 
18594 	case 0x29:  /* POWER ON, RESET, OR BUS DEVICE RESET OCCURRED */
18595 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
18596 			un->un_resvd_status |=
18597 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
18598 		}
18599 #ifdef _LP64
18600 		if (un->un_blockcount + 1 > SD_GROUP1_MAX_ADDRESS) {
18601 			if (taskq_dispatch(sd_tq, sd_reenable_dsense_task,
18602 			    un, KM_NOSLEEP) == 0) {
18603 				/*
18604 				 * If we can't dispatch the task we'll just
18605 				 * live without descriptor sense.  We can
18606 				 * try again on the next "unit attention"
18607 				 */
18608 				SD_ERROR(SD_LOG_ERROR, un,
18609 				    "sd_sense_key_unit_attention: "
18610 				    "Could not dispatch "
18611 				    "sd_reenable_dsense_task\n");
18612 			}
18613 		}
18614 #endif /* _LP64 */
18615 		/* FALLTHRU */
18616 
18617 	case 0x28: /* NOT READY TO READY CHANGE, MEDIUM MAY HAVE CHANGED */
18618 		if (!un->un_f_has_removable_media) {
18619 			break;
18620 		}
18621 
18622 		/*
18623 		 * When we get a unit attention from a removable-media device,
18624 		 * it may be in a state that will take a long time to recover
18625 		 * (e.g., from a reset).  Since we are executing in interrupt
18626 		 * context here, we cannot wait around for the device to come
18627 		 * back. So hand this command off to sd_media_change_task()
18628 		 * for deferred processing under taskq thread context. (Note
18629 		 * that the command still may be failed if a problem is
18630 		 * encountered at a later time.)
18631 		 */
18632 		if (taskq_dispatch(sd_tq, sd_media_change_task, pktp,
18633 		    KM_NOSLEEP) == 0) {
18634 			/*
18635 			 * Cannot dispatch the request so fail the command.
18636 			 */
18637 			SD_UPDATE_ERRSTATS(un, sd_harderrs);
18638 			SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
18639 			si.ssi_severity = SCSI_ERR_FATAL;
18640 			sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18641 			sd_return_failed_command(un, bp, EIO);
18642 		}
18643 
18644 		/*
18645 		 * If failed to dispatch sd_media_change_task(), we already
18646 		 * updated kstat. If succeed to dispatch sd_media_change_task(),
18647 		 * we should update kstat later if it encounters an error. So,
18648 		 * we update kstat_updated flag here.
18649 		 */
18650 		kstat_updated = B_TRUE;
18651 
18652 		/*
18653 		 * Either the command has been successfully dispatched to a
18654 		 * task Q for retrying, or the dispatch failed. In either case
18655 		 * do NOT retry again by calling sd_retry_command. This sets up
18656 		 * two retries of the same command and when one completes and
18657 		 * frees the resources the other will access freed memory,
18658 		 * a bad thing.
18659 		 */
18660 		return;
18661 
18662 	default:
18663 		break;
18664 	}
18665 
18666 	/*
18667 	 * ASC  ASCQ
18668 	 *  2A   09	Capacity data has changed
18669 	 *  2A   01	Mode parameters changed
18670 	 *  3F   0E	Reported luns data has changed
18671 	 * Arrays that support logical unit expansion should report
18672 	 * capacity changes(2Ah/09). Mode parameters changed and
18673 	 * reported luns data has changed are the approximation.
18674 	 */
18675 	if (((asc == 0x2a) && (ascq == 0x09)) ||
18676 	    ((asc == 0x2a) && (ascq == 0x01)) ||
18677 	    ((asc == 0x3f) && (ascq == 0x0e))) {
18678 		if (taskq_dispatch(sd_tq, sd_target_change_task, un,
18679 		    KM_NOSLEEP) == 0) {
18680 			SD_ERROR(SD_LOG_ERROR, un,
18681 			    "sd_sense_key_unit_attention: "
18682 			    "Could not dispatch sd_target_change_task\n");
18683 		}
18684 	}
18685 
18686 	/*
18687 	 * Update kstat if we haven't done that.
18688 	 */
18689 	if (!kstat_updated) {
18690 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
18691 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
18692 	}
18693 
18694 do_retry:
18695 	sd_retry_command(un, bp, retry_check_flag, sd_print_sense_msg, &si,
18696 	    EIO, SD_UA_RETRY_DELAY, NULL);
18697 }
18698 
18699 
18700 
18701 /*
18702  *    Function: sd_sense_key_fail_command
18703  *
18704  * Description: Use to fail a command when we don't like the sense key that
18705  *		was returned.
18706  *
18707  *     Context: May be called from interrupt context
18708  */
18709 
18710 static void
18711 sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
18712 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18713 {
18714 	struct sd_sense_info	si;
18715 
18716 	ASSERT(un != NULL);
18717 	ASSERT(mutex_owned(SD_MUTEX(un)));
18718 	ASSERT(bp != NULL);
18719 	ASSERT(xp != NULL);
18720 	ASSERT(pktp != NULL);
18721 
18722 	si.ssi_severity = SCSI_ERR_FATAL;
18723 	si.ssi_pfa_flag = FALSE;
18724 
18725 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18726 	sd_return_failed_command(un, bp, EIO);
18727 }
18728 
18729 
18730 
18731 /*
18732  *    Function: sd_sense_key_blank_check
18733  *
18734  * Description: Recovery actions for a SCSI "Blank Check" sense key.
18735  *		Has no monetary connotation.
18736  *
18737  *     Context: May be called from interrupt context
18738  */
18739 
18740 static void
18741 sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
18742 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18743 {
18744 	struct sd_sense_info	si;
18745 
18746 	ASSERT(un != NULL);
18747 	ASSERT(mutex_owned(SD_MUTEX(un)));
18748 	ASSERT(bp != NULL);
18749 	ASSERT(xp != NULL);
18750 	ASSERT(pktp != NULL);
18751 
18752 	/*
18753 	 * Blank check is not fatal for removable devices, therefore
18754 	 * it does not require a console message.
18755 	 */
18756 	si.ssi_severity = (un->un_f_has_removable_media) ? SCSI_ERR_ALL :
18757 	    SCSI_ERR_FATAL;
18758 	si.ssi_pfa_flag = FALSE;
18759 
18760 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18761 	sd_return_failed_command(un, bp, EIO);
18762 }
18763 
18764 
18765 
18766 
18767 /*
18768  *    Function: sd_sense_key_aborted_command
18769  *
18770  * Description: Recovery actions for a SCSI "Aborted Command" sense key.
18771  *
18772  *     Context: May be called from interrupt context
18773  */
18774 
18775 static void
18776 sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
18777 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18778 {
18779 	struct sd_sense_info	si;
18780 
18781 	ASSERT(un != NULL);
18782 	ASSERT(mutex_owned(SD_MUTEX(un)));
18783 	ASSERT(bp != NULL);
18784 	ASSERT(xp != NULL);
18785 	ASSERT(pktp != NULL);
18786 
18787 	si.ssi_severity = SCSI_ERR_FATAL;
18788 	si.ssi_pfa_flag = FALSE;
18789 
18790 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18791 
18792 	/*
18793 	 * This really ought to be a fatal error, but we will retry anyway
18794 	 * as some drives report this as a spurious error.
18795 	 */
18796 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18797 	    &si, EIO, drv_usectohz(100000), NULL);
18798 }
18799 
18800 
18801 
18802 /*
18803  *    Function: sd_sense_key_default
18804  *
18805  * Description: Default recovery action for several SCSI sense keys (basically
18806  *		attempts a retry).
18807  *
18808  *     Context: May be called from interrupt context
18809  */
18810 
18811 static void
18812 sd_sense_key_default(struct sd_lun *un,
18813 	uint8_t *sense_datap,
18814 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18815 {
18816 	struct sd_sense_info	si;
18817 	uint8_t sense_key = scsi_sense_key(sense_datap);
18818 
18819 	ASSERT(un != NULL);
18820 	ASSERT(mutex_owned(SD_MUTEX(un)));
18821 	ASSERT(bp != NULL);
18822 	ASSERT(xp != NULL);
18823 	ASSERT(pktp != NULL);
18824 
18825 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18826 
18827 	/*
18828 	 * Undecoded sense key.	Attempt retries and hope that will fix
18829 	 * the problem.  Otherwise, we're dead.
18830 	 */
18831 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
18832 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18833 		    "Unhandled Sense Key '%s'\n", sense_keys[sense_key]);
18834 	}
18835 
18836 	si.ssi_severity = SCSI_ERR_FATAL;
18837 	si.ssi_pfa_flag = FALSE;
18838 
18839 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18840 	    &si, EIO, (clock_t)0, NULL);
18841 }
18842 
18843 
18844 
18845 /*
18846  *    Function: sd_print_retry_msg
18847  *
18848  * Description: Print a message indicating the retry action being taken.
18849  *
18850  *   Arguments: un - ptr to associated softstate
18851  *		bp - ptr to buf(9S) for the command
18852  *		arg - not used.
18853  *		flag - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
18854  *			or SD_NO_RETRY_ISSUED
18855  *
18856  *     Context: May be called from interrupt context
18857  */
18858 /* ARGSUSED */
18859 static void
18860 sd_print_retry_msg(struct sd_lun *un, struct buf *bp, void *arg, int flag)
18861 {
18862 	struct sd_xbuf	*xp;
18863 	struct scsi_pkt *pktp;
18864 	char *reasonp;
18865 	char *msgp;
18866 
18867 	ASSERT(un != NULL);
18868 	ASSERT(mutex_owned(SD_MUTEX(un)));
18869 	ASSERT(bp != NULL);
18870 	pktp = SD_GET_PKTP(bp);
18871 	ASSERT(pktp != NULL);
18872 	xp = SD_GET_XBUF(bp);
18873 	ASSERT(xp != NULL);
18874 
18875 	ASSERT(!mutex_owned(&un->un_pm_mutex));
18876 	mutex_enter(&un->un_pm_mutex);
18877 	if ((un->un_state == SD_STATE_SUSPENDED) ||
18878 	    (SD_DEVICE_IS_IN_LOW_POWER(un)) ||
18879 	    (pktp->pkt_flags & FLAG_SILENT)) {
18880 		mutex_exit(&un->un_pm_mutex);
18881 		goto update_pkt_reason;
18882 	}
18883 	mutex_exit(&un->un_pm_mutex);
18884 
18885 	/*
18886 	 * Suppress messages if they are all the same pkt_reason; with
18887 	 * TQ, many (up to 256) are returned with the same pkt_reason.
18888 	 * If we are in panic, then suppress the retry messages.
18889 	 */
18890 	switch (flag) {
18891 	case SD_NO_RETRY_ISSUED:
18892 		msgp = "giving up";
18893 		break;
18894 	case SD_IMMEDIATE_RETRY_ISSUED:
18895 	case SD_DELAYED_RETRY_ISSUED:
18896 		if (ddi_in_panic() || (un->un_state == SD_STATE_OFFLINE) ||
18897 		    ((pktp->pkt_reason == un->un_last_pkt_reason) &&
18898 		    (sd_error_level != SCSI_ERR_ALL))) {
18899 			return;
18900 		}
18901 		msgp = "retrying command";
18902 		break;
18903 	default:
18904 		goto update_pkt_reason;
18905 	}
18906 
18907 	reasonp = (((pktp->pkt_statistics & STAT_PERR) != 0) ? "parity error" :
18908 	    scsi_rname(pktp->pkt_reason));
18909 
18910 	if (SD_FM_LOG(un) == SD_FM_LOG_NSUP) {
18911 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18912 		    "SCSI transport failed: reason '%s': %s\n", reasonp, msgp);
18913 	}
18914 
18915 update_pkt_reason:
18916 	/*
18917 	 * Update un->un_last_pkt_reason with the value in pktp->pkt_reason.
18918 	 * This is to prevent multiple console messages for the same failure
18919 	 * condition.  Note that un->un_last_pkt_reason is NOT restored if &
18920 	 * when the command is retried successfully because there still may be
18921 	 * more commands coming back with the same value of pktp->pkt_reason.
18922 	 */
18923 	if ((pktp->pkt_reason != CMD_CMPLT) || (xp->xb_retry_count == 0)) {
18924 		un->un_last_pkt_reason = pktp->pkt_reason;
18925 	}
18926 }
18927 
18928 
18929 /*
18930  *    Function: sd_print_cmd_incomplete_msg
18931  *
18932  * Description: Message logging fn. for a SCSA "CMD_INCOMPLETE" pkt_reason.
18933  *
18934  *   Arguments: un - ptr to associated softstate
18935  *		bp - ptr to buf(9S) for the command
18936  *		arg - passed to sd_print_retry_msg()
18937  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
18938  *			or SD_NO_RETRY_ISSUED
18939  *
18940  *     Context: May be called from interrupt context
18941  */
18942 
18943 static void
18944 sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg,
18945 	int code)
18946 {
18947 	dev_info_t	*dip;
18948 
18949 	ASSERT(un != NULL);
18950 	ASSERT(mutex_owned(SD_MUTEX(un)));
18951 	ASSERT(bp != NULL);
18952 
18953 	switch (code) {
18954 	case SD_NO_RETRY_ISSUED:
18955 		/* Command was failed. Someone turned off this target? */
18956 		if (un->un_state != SD_STATE_OFFLINE) {
18957 			/*
18958 			 * Suppress message if we are detaching and
18959 			 * device has been disconnected
18960 			 * Note that DEVI_IS_DEVICE_REMOVED is a consolidation
18961 			 * private interface and not part of the DDI
18962 			 */
18963 			dip = un->un_sd->sd_dev;
18964 			if (!(DEVI_IS_DETACHING(dip) &&
18965 			    DEVI_IS_DEVICE_REMOVED(dip))) {
18966 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18967 				"disk not responding to selection\n");
18968 			}
18969 			New_state(un, SD_STATE_OFFLINE);
18970 		}
18971 		break;
18972 
18973 	case SD_DELAYED_RETRY_ISSUED:
18974 	case SD_IMMEDIATE_RETRY_ISSUED:
18975 	default:
18976 		/* Command was successfully queued for retry */
18977 		sd_print_retry_msg(un, bp, arg, code);
18978 		break;
18979 	}
18980 }
18981 
18982 
18983 /*
18984  *    Function: sd_pkt_reason_cmd_incomplete
18985  *
18986  * Description: Recovery actions for a SCSA "CMD_INCOMPLETE" pkt_reason.
18987  *
18988  *     Context: May be called from interrupt context
18989  */
18990 
18991 static void
18992 sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
18993 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18994 {
18995 	int flag = SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE;
18996 
18997 	ASSERT(un != NULL);
18998 	ASSERT(mutex_owned(SD_MUTEX(un)));
18999 	ASSERT(bp != NULL);
19000 	ASSERT(xp != NULL);
19001 	ASSERT(pktp != NULL);
19002 
19003 	/* Do not do a reset if selection did not complete */
19004 	/* Note: Should this not just check the bit? */
19005 	if (pktp->pkt_state != STATE_GOT_BUS) {
19006 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
19007 		sd_reset_target(un, pktp);
19008 	}
19009 
19010 	/*
19011 	 * If the target was not successfully selected, then set
19012 	 * SD_RETRIES_FAILFAST to indicate that we lost communication
19013 	 * with the target, and further retries and/or commands are
19014 	 * likely to take a long time.
19015 	 */
19016 	if ((pktp->pkt_state & STATE_GOT_TARGET) == 0) {
19017 		flag |= SD_RETRIES_FAILFAST;
19018 	}
19019 
19020 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19021 
19022 	sd_retry_command(un, bp, flag,
19023 	    sd_print_cmd_incomplete_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19024 }
19025 
19026 
19027 
19028 /*
19029  *    Function: sd_pkt_reason_cmd_tran_err
19030  *
19031  * Description: Recovery actions for a SCSA "CMD_TRAN_ERR" pkt_reason.
19032  *
19033  *     Context: May be called from interrupt context
19034  */
19035 
19036 static void
19037 sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
19038 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19039 {
19040 	ASSERT(un != NULL);
19041 	ASSERT(mutex_owned(SD_MUTEX(un)));
19042 	ASSERT(bp != NULL);
19043 	ASSERT(xp != NULL);
19044 	ASSERT(pktp != NULL);
19045 
19046 	/*
19047 	 * Do not reset if we got a parity error, or if
19048 	 * selection did not complete.
19049 	 */
19050 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
19051 	/* Note: Should this not just check the bit for pkt_state? */
19052 	if (((pktp->pkt_statistics & STAT_PERR) == 0) &&
19053 	    (pktp->pkt_state != STATE_GOT_BUS)) {
19054 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
19055 		sd_reset_target(un, pktp);
19056 	}
19057 
19058 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19059 
19060 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
19061 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19062 }
19063 
19064 
19065 
19066 /*
19067  *    Function: sd_pkt_reason_cmd_reset
19068  *
19069  * Description: Recovery actions for a SCSA "CMD_RESET" pkt_reason.
19070  *
19071  *     Context: May be called from interrupt context
19072  */
19073 
19074 static void
19075 sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
19076 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19077 {
19078 	ASSERT(un != NULL);
19079 	ASSERT(mutex_owned(SD_MUTEX(un)));
19080 	ASSERT(bp != NULL);
19081 	ASSERT(xp != NULL);
19082 	ASSERT(pktp != NULL);
19083 
19084 	/* The target may still be running the command, so try to reset. */
19085 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
19086 	sd_reset_target(un, pktp);
19087 
19088 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19089 
19090 	/*
19091 	 * If pkt_reason is CMD_RESET chances are that this pkt got
19092 	 * reset because another target on this bus caused it. The target
19093 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
19094 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
19095 	 */
19096 
19097 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
19098 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19099 }
19100 
19101 
19102 
19103 
19104 /*
19105  *    Function: sd_pkt_reason_cmd_aborted
19106  *
19107  * Description: Recovery actions for a SCSA "CMD_ABORTED" pkt_reason.
19108  *
19109  *     Context: May be called from interrupt context
19110  */
19111 
19112 static void
19113 sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
19114 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19115 {
19116 	ASSERT(un != NULL);
19117 	ASSERT(mutex_owned(SD_MUTEX(un)));
19118 	ASSERT(bp != NULL);
19119 	ASSERT(xp != NULL);
19120 	ASSERT(pktp != NULL);
19121 
19122 	/* The target may still be running the command, so try to reset. */
19123 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
19124 	sd_reset_target(un, pktp);
19125 
19126 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19127 
19128 	/*
19129 	 * If pkt_reason is CMD_ABORTED chances are that this pkt got
19130 	 * aborted because another target on this bus caused it. The target
19131 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
19132 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
19133 	 */
19134 
19135 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
19136 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19137 }
19138 
19139 
19140 
19141 /*
19142  *    Function: sd_pkt_reason_cmd_timeout
19143  *
19144  * Description: Recovery actions for a SCSA "CMD_TIMEOUT" pkt_reason.
19145  *
19146  *     Context: May be called from interrupt context
19147  */
19148 
19149 static void
19150 sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
19151 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19152 {
19153 	ASSERT(un != NULL);
19154 	ASSERT(mutex_owned(SD_MUTEX(un)));
19155 	ASSERT(bp != NULL);
19156 	ASSERT(xp != NULL);
19157 	ASSERT(pktp != NULL);
19158 
19159 
19160 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
19161 	sd_reset_target(un, pktp);
19162 
19163 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19164 
19165 	/*
19166 	 * A command timeout indicates that we could not establish
19167 	 * communication with the target, so set SD_RETRIES_FAILFAST
19168 	 * as further retries/commands are likely to take a long time.
19169 	 */
19170 	sd_retry_command(un, bp,
19171 	    (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE | SD_RETRIES_FAILFAST),
19172 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19173 }
19174 
19175 
19176 
19177 /*
19178  *    Function: sd_pkt_reason_cmd_unx_bus_free
19179  *
19180  * Description: Recovery actions for a SCSA "CMD_UNX_BUS_FREE" pkt_reason.
19181  *
19182  *     Context: May be called from interrupt context
19183  */
19184 
19185 static void
19186 sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
19187 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19188 {
19189 	void (*funcp)(struct sd_lun *un, struct buf *bp, void *arg, int code);
19190 
19191 	ASSERT(un != NULL);
19192 	ASSERT(mutex_owned(SD_MUTEX(un)));
19193 	ASSERT(bp != NULL);
19194 	ASSERT(xp != NULL);
19195 	ASSERT(pktp != NULL);
19196 
19197 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
19198 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19199 
19200 	funcp = ((pktp->pkt_statistics & STAT_PERR) == 0) ?
19201 	    sd_print_retry_msg : NULL;
19202 
19203 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
19204 	    funcp, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19205 }
19206 
19207 
19208 /*
19209  *    Function: sd_pkt_reason_cmd_tag_reject
19210  *
19211  * Description: Recovery actions for a SCSA "CMD_TAG_REJECT" pkt_reason.
19212  *
19213  *     Context: May be called from interrupt context
19214  */
19215 
19216 static void
19217 sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
19218 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19219 {
19220 	ASSERT(un != NULL);
19221 	ASSERT(mutex_owned(SD_MUTEX(un)));
19222 	ASSERT(bp != NULL);
19223 	ASSERT(xp != NULL);
19224 	ASSERT(pktp != NULL);
19225 
19226 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
19227 	pktp->pkt_flags = 0;
19228 	un->un_tagflags = 0;
19229 	if (un->un_f_opt_queueing == TRUE) {
19230 		un->un_throttle = min(un->un_throttle, 3);
19231 	} else {
19232 		un->un_throttle = 1;
19233 	}
19234 	mutex_exit(SD_MUTEX(un));
19235 	(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
19236 	mutex_enter(SD_MUTEX(un));
19237 
19238 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19239 
19240 	/* Legacy behavior not to check retry counts here. */
19241 	sd_retry_command(un, bp, (SD_RETRIES_NOCHECK | SD_RETRIES_ISOLATE),
19242 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19243 }
19244 
19245 
19246 /*
19247  *    Function: sd_pkt_reason_default
19248  *
19249  * Description: Default recovery actions for SCSA pkt_reason values that
19250  *		do not have more explicit recovery actions.
19251  *
19252  *     Context: May be called from interrupt context
19253  */
19254 
19255 static void
19256 sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
19257 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19258 {
19259 	ASSERT(un != NULL);
19260 	ASSERT(mutex_owned(SD_MUTEX(un)));
19261 	ASSERT(bp != NULL);
19262 	ASSERT(xp != NULL);
19263 	ASSERT(pktp != NULL);
19264 
19265 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
19266 	sd_reset_target(un, pktp);
19267 
19268 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19269 
19270 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
19271 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19272 }
19273 
19274 
19275 
19276 /*
19277  *    Function: sd_pkt_status_check_condition
19278  *
19279  * Description: Recovery actions for a "STATUS_CHECK" SCSI command status.
19280  *
19281  *     Context: May be called from interrupt context
19282  */
19283 
19284 static void
19285 sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
19286 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19287 {
19288 	ASSERT(un != NULL);
19289 	ASSERT(mutex_owned(SD_MUTEX(un)));
19290 	ASSERT(bp != NULL);
19291 	ASSERT(xp != NULL);
19292 	ASSERT(pktp != NULL);
19293 
19294 	SD_TRACE(SD_LOG_IO, un, "sd_pkt_status_check_condition: "
19295 	    "entry: buf:0x%p xp:0x%p\n", bp, xp);
19296 
19297 	/*
19298 	 * If ARQ is NOT enabled, then issue a REQUEST SENSE command (the
19299 	 * command will be retried after the request sense). Otherwise, retry
19300 	 * the command. Note: we are issuing the request sense even though the
19301 	 * retry limit may have been reached for the failed command.
19302 	 */
19303 	if (un->un_f_arq_enabled == FALSE) {
19304 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
19305 		    "no ARQ, sending request sense command\n");
19306 		sd_send_request_sense_command(un, bp, pktp);
19307 	} else {
19308 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
19309 		    "ARQ,retrying request sense command\n");
19310 #if defined(__i386) || defined(__amd64)
19311 		/*
19312 		 * The SD_RETRY_DELAY value need to be adjusted here
19313 		 * when SD_RETRY_DELAY change in sddef.h
19314 		 */
19315 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
19316 		    un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0,
19317 		    NULL);
19318 #else
19319 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL,
19320 		    EIO, SD_RETRY_DELAY, NULL);
19321 #endif
19322 	}
19323 
19324 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: exit\n");
19325 }
19326 
19327 
19328 /*
19329  *    Function: sd_pkt_status_busy
19330  *
19331  * Description: Recovery actions for a "STATUS_BUSY" SCSI command status.
19332  *
19333  *     Context: May be called from interrupt context
19334  */
19335 
19336 static void
19337 sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
19338 	struct scsi_pkt *pktp)
19339 {
19340 	ASSERT(un != NULL);
19341 	ASSERT(mutex_owned(SD_MUTEX(un)));
19342 	ASSERT(bp != NULL);
19343 	ASSERT(xp != NULL);
19344 	ASSERT(pktp != NULL);
19345 
19346 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19347 	    "sd_pkt_status_busy: entry\n");
19348 
19349 	/* If retries are exhausted, just fail the command. */
19350 	if (xp->xb_retry_count >= un->un_busy_retry_count) {
19351 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
19352 		    "device busy too long\n");
19353 		sd_return_failed_command(un, bp, EIO);
19354 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19355 		    "sd_pkt_status_busy: exit\n");
19356 		return;
19357 	}
19358 	xp->xb_retry_count++;
19359 
19360 	/*
19361 	 * Try to reset the target. However, we do not want to perform
19362 	 * more than one reset if the device continues to fail. The reset
19363 	 * will be performed when the retry count reaches the reset
19364 	 * threshold.  This threshold should be set such that at least
19365 	 * one retry is issued before the reset is performed.
19366 	 */
19367 	if (xp->xb_retry_count ==
19368 	    ((un->un_reset_retry_count < 2) ? 2 : un->un_reset_retry_count)) {
19369 		int rval = 0;
19370 		mutex_exit(SD_MUTEX(un));
19371 		if (un->un_f_allow_bus_device_reset == TRUE) {
19372 			/*
19373 			 * First try to reset the LUN; if we cannot then
19374 			 * try to reset the target.
19375 			 */
19376 			if (un->un_f_lun_reset_enabled == TRUE) {
19377 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19378 				    "sd_pkt_status_busy: RESET_LUN\n");
19379 				rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
19380 			}
19381 			if (rval == 0) {
19382 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19383 				    "sd_pkt_status_busy: RESET_TARGET\n");
19384 				rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
19385 			}
19386 		}
19387 		if (rval == 0) {
19388 			/*
19389 			 * If the RESET_LUN and/or RESET_TARGET failed,
19390 			 * try RESET_ALL
19391 			 */
19392 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19393 			    "sd_pkt_status_busy: RESET_ALL\n");
19394 			rval = scsi_reset(SD_ADDRESS(un), RESET_ALL);
19395 		}
19396 		mutex_enter(SD_MUTEX(un));
19397 		if (rval == 0) {
19398 			/*
19399 			 * The RESET_LUN, RESET_TARGET, and/or RESET_ALL failed.
19400 			 * At this point we give up & fail the command.
19401 			 */
19402 			sd_return_failed_command(un, bp, EIO);
19403 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19404 			    "sd_pkt_status_busy: exit (failed cmd)\n");
19405 			return;
19406 		}
19407 	}
19408 
19409 	/*
19410 	 * Retry the command. Be sure to specify SD_RETRIES_NOCHECK as
19411 	 * we have already checked the retry counts above.
19412 	 */
19413 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL,
19414 	    EIO, un->un_busy_timeout, NULL);
19415 
19416 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19417 	    "sd_pkt_status_busy: exit\n");
19418 }
19419 
19420 
19421 /*
19422  *    Function: sd_pkt_status_reservation_conflict
19423  *
19424  * Description: Recovery actions for a "STATUS_RESERVATION_CONFLICT" SCSI
19425  *		command status.
19426  *
19427  *     Context: May be called from interrupt context
19428  */
19429 
19430 static void
19431 sd_pkt_status_reservation_conflict(struct sd_lun *un, struct buf *bp,
19432 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19433 {
19434 	ASSERT(un != NULL);
19435 	ASSERT(mutex_owned(SD_MUTEX(un)));
19436 	ASSERT(bp != NULL);
19437 	ASSERT(xp != NULL);
19438 	ASSERT(pktp != NULL);
19439 
19440 	/*
19441 	 * If the command was PERSISTENT_RESERVATION_[IN|OUT] then reservation
19442 	 * conflict could be due to various reasons like incorrect keys, not
19443 	 * registered or not reserved etc. So, we return EACCES to the caller.
19444 	 */
19445 	if (un->un_reservation_type == SD_SCSI3_RESERVATION) {
19446 		int cmd = SD_GET_PKT_OPCODE(pktp);
19447 		if ((cmd == SCMD_PERSISTENT_RESERVE_IN) ||
19448 		    (cmd == SCMD_PERSISTENT_RESERVE_OUT)) {
19449 			sd_return_failed_command(un, bp, EACCES);
19450 			return;
19451 		}
19452 	}
19453 
19454 	un->un_resvd_status |= SD_RESERVATION_CONFLICT;
19455 
19456 	if ((un->un_resvd_status & SD_FAILFAST) != 0) {
19457 		if (sd_failfast_enable != 0) {
19458 			/* By definition, we must panic here.... */
19459 			sd_panic_for_res_conflict(un);
19460 			/*NOTREACHED*/
19461 		}
19462 		SD_ERROR(SD_LOG_IO, un,
19463 		    "sd_handle_resv_conflict: Disk Reserved\n");
19464 		sd_return_failed_command(un, bp, EACCES);
19465 		return;
19466 	}
19467 
19468 	/*
19469 	 * 1147670: retry only if sd_retry_on_reservation_conflict
19470 	 * property is set (default is 1). Retries will not succeed
19471 	 * on a disk reserved by another initiator. HA systems
19472 	 * may reset this via sd.conf to avoid these retries.
19473 	 *
19474 	 * Note: The legacy return code for this failure is EIO, however EACCES
19475 	 * seems more appropriate for a reservation conflict.
19476 	 */
19477 	if (sd_retry_on_reservation_conflict == 0) {
19478 		SD_ERROR(SD_LOG_IO, un,
19479 		    "sd_handle_resv_conflict: Device Reserved\n");
19480 		sd_return_failed_command(un, bp, EIO);
19481 		return;
19482 	}
19483 
19484 	/*
19485 	 * Retry the command if we can.
19486 	 *
19487 	 * Note: The legacy return code for this failure is EIO, however EACCES
19488 	 * seems more appropriate for a reservation conflict.
19489 	 */
19490 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
19491 	    (clock_t)2, NULL);
19492 }
19493 
19494 
19495 
19496 /*
19497  *    Function: sd_pkt_status_qfull
19498  *
19499  * Description: Handle a QUEUE FULL condition from the target.  This can
19500  *		occur if the HBA does not handle the queue full condition.
19501  *		(Basically this means third-party HBAs as Sun HBAs will
19502  *		handle the queue full condition.)  Note that if there are
19503  *		some commands already in the transport, then the queue full
19504  *		has occurred because the queue for this nexus is actually
19505  *		full. If there are no commands in the transport, then the
19506  *		queue full is resulting from some other initiator or lun
19507  *		consuming all the resources at the target.
19508  *
19509  *     Context: May be called from interrupt context
19510  */
19511 
19512 static void
19513 sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
19514 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19515 {
19516 	ASSERT(un != NULL);
19517 	ASSERT(mutex_owned(SD_MUTEX(un)));
19518 	ASSERT(bp != NULL);
19519 	ASSERT(xp != NULL);
19520 	ASSERT(pktp != NULL);
19521 
19522 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19523 	    "sd_pkt_status_qfull: entry\n");
19524 
19525 	/*
19526 	 * Just lower the QFULL throttle and retry the command.  Note that
19527 	 * we do not limit the number of retries here.
19528 	 */
19529 	sd_reduce_throttle(un, SD_THROTTLE_QFULL);
19530 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 0,
19531 	    SD_RESTART_TIMEOUT, NULL);
19532 
19533 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19534 	    "sd_pkt_status_qfull: exit\n");
19535 }
19536 
19537 
19538 /*
19539  *    Function: sd_reset_target
19540  *
19541  * Description: Issue a scsi_reset(9F), with either RESET_LUN,
19542  *		RESET_TARGET, or RESET_ALL.
19543  *
19544  *     Context: May be called under interrupt context.
19545  */
19546 
19547 static void
19548 sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp)
19549 {
19550 	int rval = 0;
19551 
19552 	ASSERT(un != NULL);
19553 	ASSERT(mutex_owned(SD_MUTEX(un)));
19554 	ASSERT(pktp != NULL);
19555 
19556 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: entry\n");
19557 
19558 	/*
19559 	 * No need to reset if the transport layer has already done so.
19560 	 */
19561 	if ((pktp->pkt_statistics &
19562 	    (STAT_BUS_RESET | STAT_DEV_RESET | STAT_ABORTED)) != 0) {
19563 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19564 		    "sd_reset_target: no reset\n");
19565 		return;
19566 	}
19567 
19568 	mutex_exit(SD_MUTEX(un));
19569 
19570 	if (un->un_f_allow_bus_device_reset == TRUE) {
19571 		if (un->un_f_lun_reset_enabled == TRUE) {
19572 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19573 			    "sd_reset_target: RESET_LUN\n");
19574 			rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
19575 		}
19576 		if (rval == 0) {
19577 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19578 			    "sd_reset_target: RESET_TARGET\n");
19579 			rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
19580 		}
19581 	}
19582 
19583 	if (rval == 0) {
19584 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19585 		    "sd_reset_target: RESET_ALL\n");
19586 		(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
19587 	}
19588 
19589 	mutex_enter(SD_MUTEX(un));
19590 
19591 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: exit\n");
19592 }
19593 
19594 /*
19595  *    Function: sd_target_change_task
19596  *
19597  * Description: Handle dynamic target change
19598  *
19599  *     Context: Executes in a taskq() thread context
19600  */
19601 static void
19602 sd_target_change_task(void *arg)
19603 {
19604 	struct sd_lun		*un = arg;
19605 	uint64_t		capacity;
19606 	diskaddr_t		label_cap;
19607 	uint_t			lbasize;
19608 	sd_ssc_t		*ssc;
19609 
19610 	ASSERT(un != NULL);
19611 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19612 
19613 	if ((un->un_f_blockcount_is_valid == FALSE) ||
19614 	    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
19615 		return;
19616 	}
19617 
19618 	ssc = sd_ssc_init(un);
19619 
19620 	if (sd_send_scsi_READ_CAPACITY(ssc, &capacity,
19621 	    &lbasize, SD_PATH_DIRECT) != 0) {
19622 		SD_ERROR(SD_LOG_ERROR, un,
19623 		    "sd_target_change_task: fail to read capacity\n");
19624 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
19625 		goto task_exit;
19626 	}
19627 
19628 	mutex_enter(SD_MUTEX(un));
19629 	if (capacity <= un->un_blockcount) {
19630 		mutex_exit(SD_MUTEX(un));
19631 		goto task_exit;
19632 	}
19633 
19634 	sd_update_block_info(un, lbasize, capacity);
19635 	mutex_exit(SD_MUTEX(un));
19636 
19637 	/*
19638 	 * If lun is EFI labeled and lun capacity is greater than the
19639 	 * capacity contained in the label, log a sys event.
19640 	 */
19641 	if (cmlb_efi_label_capacity(un->un_cmlbhandle, &label_cap,
19642 	    (void*)SD_PATH_DIRECT) == 0) {
19643 		mutex_enter(SD_MUTEX(un));
19644 		if (un->un_f_blockcount_is_valid &&
19645 		    un->un_blockcount > label_cap) {
19646 			mutex_exit(SD_MUTEX(un));
19647 			sd_log_lun_expansion_event(un, KM_SLEEP);
19648 		} else {
19649 			mutex_exit(SD_MUTEX(un));
19650 		}
19651 	}
19652 
19653 task_exit:
19654 	sd_ssc_fini(ssc);
19655 }
19656 
19657 
19658 /*
19659  *    Function: sd_log_dev_status_event
19660  *
19661  * Description: Log EC_dev_status sysevent
19662  *
19663  *     Context: Never called from interrupt context
19664  */
19665 static void
19666 sd_log_dev_status_event(struct sd_lun *un, char *esc, int km_flag)
19667 {
19668 	int err;
19669 	char			*path;
19670 	nvlist_t		*attr_list;
19671 
19672 	/* Allocate and build sysevent attribute list */
19673 	err = nvlist_alloc(&attr_list, NV_UNIQUE_NAME_TYPE, km_flag);
19674 	if (err != 0) {
19675 		SD_ERROR(SD_LOG_ERROR, un,
19676 		    "sd_log_dev_status_event: fail to allocate space\n");
19677 		return;
19678 	}
19679 
19680 	path = kmem_alloc(MAXPATHLEN, km_flag);
19681 	if (path == NULL) {
19682 		nvlist_free(attr_list);
19683 		SD_ERROR(SD_LOG_ERROR, un,
19684 		    "sd_log_dev_status_event: fail to allocate space\n");
19685 		return;
19686 	}
19687 	/*
19688 	 * Add path attribute to identify the lun.
19689 	 * We are using minor node 'a' as the sysevent attribute.
19690 	 */
19691 	(void) snprintf(path, MAXPATHLEN, "/devices");
19692 	(void) ddi_pathname(SD_DEVINFO(un), path + strlen(path));
19693 	(void) snprintf(path + strlen(path), MAXPATHLEN - strlen(path),
19694 	    ":a");
19695 
19696 	err = nvlist_add_string(attr_list, DEV_PHYS_PATH, path);
19697 	if (err != 0) {
19698 		nvlist_free(attr_list);
19699 		kmem_free(path, MAXPATHLEN);
19700 		SD_ERROR(SD_LOG_ERROR, un,
19701 		    "sd_log_dev_status_event: fail to add attribute\n");
19702 		return;
19703 	}
19704 
19705 	/* Log dynamic lun expansion sysevent */
19706 	err = ddi_log_sysevent(SD_DEVINFO(un), SUNW_VENDOR, EC_DEV_STATUS,
19707 	    esc, attr_list, NULL, km_flag);
19708 	if (err != DDI_SUCCESS) {
19709 		SD_ERROR(SD_LOG_ERROR, un,
19710 		    "sd_log_dev_status_event: fail to log sysevent\n");
19711 	}
19712 
19713 	nvlist_free(attr_list);
19714 	kmem_free(path, MAXPATHLEN);
19715 }
19716 
19717 
19718 /*
19719  *    Function: sd_log_lun_expansion_event
19720  *
19721  * Description: Log lun expansion sys event
19722  *
19723  *     Context: Never called from interrupt context
19724  */
19725 static void
19726 sd_log_lun_expansion_event(struct sd_lun *un, int km_flag)
19727 {
19728 	sd_log_dev_status_event(un, ESC_DEV_DLE, km_flag);
19729 }
19730 
19731 
19732 /*
19733  *    Function: sd_log_eject_request_event
19734  *
19735  * Description: Log eject request sysevent
19736  *
19737  *     Context: Never called from interrupt context
19738  */
19739 static void
19740 sd_log_eject_request_event(struct sd_lun *un, int km_flag)
19741 {
19742 	sd_log_dev_status_event(un, ESC_DEV_EJECT_REQUEST, km_flag);
19743 }
19744 
19745 
19746 /*
19747  *    Function: sd_media_change_task
19748  *
19749  * Description: Recovery action for CDROM to become available.
19750  *
19751  *     Context: Executes in a taskq() thread context
19752  */
19753 
19754 static void
19755 sd_media_change_task(void *arg)
19756 {
19757 	struct	scsi_pkt	*pktp = arg;
19758 	struct	sd_lun		*un;
19759 	struct	buf		*bp;
19760 	struct	sd_xbuf		*xp;
19761 	int	err		= 0;
19762 	int	retry_count	= 0;
19763 	int	retry_limit	= SD_UNIT_ATTENTION_RETRY/10;
19764 	struct	sd_sense_info	si;
19765 
19766 	ASSERT(pktp != NULL);
19767 	bp = (struct buf *)pktp->pkt_private;
19768 	ASSERT(bp != NULL);
19769 	xp = SD_GET_XBUF(bp);
19770 	ASSERT(xp != NULL);
19771 	un = SD_GET_UN(bp);
19772 	ASSERT(un != NULL);
19773 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19774 	ASSERT(un->un_f_monitor_media_state);
19775 
19776 	si.ssi_severity = SCSI_ERR_INFO;
19777 	si.ssi_pfa_flag = FALSE;
19778 
19779 	/*
19780 	 * When a reset is issued on a CDROM, it takes a long time to
19781 	 * recover. First few attempts to read capacity and other things
19782 	 * related to handling unit attention fail (with a ASC 0x4 and
19783 	 * ASCQ 0x1). In that case we want to do enough retries and we want
19784 	 * to limit the retries in other cases of genuine failures like
19785 	 * no media in drive.
19786 	 */
19787 	while (retry_count++ < retry_limit) {
19788 		if ((err = sd_handle_mchange(un)) == 0) {
19789 			break;
19790 		}
19791 		if (err == EAGAIN) {
19792 			retry_limit = SD_UNIT_ATTENTION_RETRY;
19793 		}
19794 		/* Sleep for 0.5 sec. & try again */
19795 		delay(drv_usectohz(500000));
19796 	}
19797 
19798 	/*
19799 	 * Dispatch (retry or fail) the original command here,
19800 	 * along with appropriate console messages....
19801 	 *
19802 	 * Must grab the mutex before calling sd_retry_command,
19803 	 * sd_print_sense_msg and sd_return_failed_command.
19804 	 */
19805 	mutex_enter(SD_MUTEX(un));
19806 	if (err != SD_CMD_SUCCESS) {
19807 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
19808 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
19809 		si.ssi_severity = SCSI_ERR_FATAL;
19810 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
19811 		sd_return_failed_command(un, bp, EIO);
19812 	} else {
19813 		sd_retry_command(un, bp, SD_RETRIES_UA, sd_print_sense_msg,
19814 		    &si, EIO, (clock_t)0, NULL);
19815 	}
19816 	mutex_exit(SD_MUTEX(un));
19817 }
19818 
19819 
19820 
19821 /*
19822  *    Function: sd_handle_mchange
19823  *
19824  * Description: Perform geometry validation & other recovery when CDROM
19825  *		has been removed from drive.
19826  *
19827  * Return Code: 0 for success
19828  *		errno-type return code of either sd_send_scsi_DOORLOCK() or
19829  *		sd_send_scsi_READ_CAPACITY()
19830  *
19831  *     Context: Executes in a taskq() thread context
19832  */
19833 
19834 static int
19835 sd_handle_mchange(struct sd_lun *un)
19836 {
19837 	uint64_t	capacity;
19838 	uint32_t	lbasize;
19839 	int		rval;
19840 	sd_ssc_t	*ssc;
19841 
19842 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19843 	ASSERT(un->un_f_monitor_media_state);
19844 
19845 	ssc = sd_ssc_init(un);
19846 	rval = sd_send_scsi_READ_CAPACITY(ssc, &capacity, &lbasize,
19847 	    SD_PATH_DIRECT_PRIORITY);
19848 
19849 	if (rval != 0)
19850 		goto failed;
19851 
19852 	mutex_enter(SD_MUTEX(un));
19853 	sd_update_block_info(un, lbasize, capacity);
19854 
19855 	if (un->un_errstats != NULL) {
19856 		struct	sd_errstats *stp =
19857 		    (struct sd_errstats *)un->un_errstats->ks_data;
19858 		stp->sd_capacity.value.ui64 = (uint64_t)
19859 		    ((uint64_t)un->un_blockcount *
19860 		    (uint64_t)un->un_tgt_blocksize);
19861 	}
19862 
19863 	/*
19864 	 * Check if the media in the device is writable or not
19865 	 */
19866 	if (ISCD(un)) {
19867 		sd_check_for_writable_cd(ssc, SD_PATH_DIRECT_PRIORITY);
19868 	}
19869 
19870 	/*
19871 	 * Note: Maybe let the strategy/partitioning chain worry about getting
19872 	 * valid geometry.
19873 	 */
19874 	mutex_exit(SD_MUTEX(un));
19875 	cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY);
19876 
19877 
19878 	if (cmlb_validate(un->un_cmlbhandle, 0,
19879 	    (void *)SD_PATH_DIRECT_PRIORITY) != 0) {
19880 		sd_ssc_fini(ssc);
19881 		return (EIO);
19882 	} else {
19883 		if (un->un_f_pkstats_enabled) {
19884 			sd_set_pstats(un);
19885 			SD_TRACE(SD_LOG_IO_PARTITION, un,
19886 			    "sd_handle_mchange: un:0x%p pstats created and "
19887 			    "set\n", un);
19888 		}
19889 	}
19890 
19891 	/*
19892 	 * Try to lock the door
19893 	 */
19894 	rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT,
19895 	    SD_PATH_DIRECT_PRIORITY);
19896 failed:
19897 	if (rval != 0)
19898 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
19899 	sd_ssc_fini(ssc);
19900 	return (rval);
19901 }
19902 
19903 
19904 /*
19905  *    Function: sd_send_scsi_DOORLOCK
19906  *
19907  * Description: Issue the scsi DOOR LOCK command
19908  *
19909  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
19910  *                      structure for this target.
19911  *		flag  - SD_REMOVAL_ALLOW
19912  *			SD_REMOVAL_PREVENT
19913  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19914  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19915  *			to use the USCSI "direct" chain and bypass the normal
19916  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
19917  *			command is issued as part of an error recovery action.
19918  *
19919  * Return Code: 0   - Success
19920  *		errno return code from sd_ssc_send()
19921  *
19922  *     Context: Can sleep.
19923  */
19924 
19925 static int
19926 sd_send_scsi_DOORLOCK(sd_ssc_t *ssc, int flag, int path_flag)
19927 {
19928 	struct scsi_extended_sense	sense_buf;
19929 	union scsi_cdb		cdb;
19930 	struct uscsi_cmd	ucmd_buf;
19931 	int			status;
19932 	struct sd_lun		*un;
19933 
19934 	ASSERT(ssc != NULL);
19935 	un = ssc->ssc_un;
19936 	ASSERT(un != NULL);
19937 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19938 
19939 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_DOORLOCK: entry: un:0x%p\n", un);
19940 
19941 	/* already determined doorlock is not supported, fake success */
19942 	if (un->un_f_doorlock_supported == FALSE) {
19943 		return (0);
19944 	}
19945 
19946 	/*
19947 	 * If we are ejecting and see an SD_REMOVAL_PREVENT
19948 	 * ignore the command so we can complete the eject
19949 	 * operation.
19950 	 */
19951 	if (flag == SD_REMOVAL_PREVENT) {
19952 		mutex_enter(SD_MUTEX(un));
19953 		if (un->un_f_ejecting == TRUE) {
19954 			mutex_exit(SD_MUTEX(un));
19955 			return (EAGAIN);
19956 		}
19957 		mutex_exit(SD_MUTEX(un));
19958 	}
19959 
19960 	bzero(&cdb, sizeof (cdb));
19961 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19962 
19963 	cdb.scc_cmd = SCMD_DOORLOCK;
19964 	cdb.cdb_opaque[4] = (uchar_t)flag;
19965 
19966 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19967 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19968 	ucmd_buf.uscsi_bufaddr	= NULL;
19969 	ucmd_buf.uscsi_buflen	= 0;
19970 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19971 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
19972 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
19973 	ucmd_buf.uscsi_timeout	= 15;
19974 
19975 	SD_TRACE(SD_LOG_IO, un,
19976 	    "sd_send_scsi_DOORLOCK: returning sd_ssc_send\n");
19977 
19978 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
19979 	    UIO_SYSSPACE, path_flag);
19980 
19981 	if (status == 0)
19982 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
19983 
19984 	if ((status == EIO) && (ucmd_buf.uscsi_status == STATUS_CHECK) &&
19985 	    (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19986 	    (scsi_sense_key((uint8_t *)&sense_buf) == KEY_ILLEGAL_REQUEST)) {
19987 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
19988 
19989 		/* fake success and skip subsequent doorlock commands */
19990 		un->un_f_doorlock_supported = FALSE;
19991 		return (0);
19992 	}
19993 
19994 	return (status);
19995 }
19996 
19997 /*
19998  *    Function: sd_send_scsi_READ_CAPACITY
19999  *
20000  * Description: This routine uses the scsi READ CAPACITY command to determine
20001  *		the device capacity in number of blocks and the device native
20002  *		block size. If this function returns a failure, then the
20003  *		values in *capp and *lbap are undefined.  If the capacity
20004  *		returned is 0xffffffff then the lun is too large for a
20005  *		normal READ CAPACITY command and the results of a
20006  *		READ CAPACITY 16 will be used instead.
20007  *
20008  *   Arguments: ssc   - ssc contains ptr to soft state struct for the target
20009  *		capp - ptr to unsigned 64-bit variable to receive the
20010  *			capacity value from the command.
20011  *		lbap - ptr to unsigned 32-bit varaible to receive the
20012  *			block size value from the command
20013  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20014  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20015  *			to use the USCSI "direct" chain and bypass the normal
20016  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
20017  *			command is issued as part of an error recovery action.
20018  *
20019  * Return Code: 0   - Success
20020  *		EIO - IO error
20021  *		EACCES - Reservation conflict detected
20022  *		EAGAIN - Device is becoming ready
20023  *		errno return code from sd_ssc_send()
20024  *
20025  *     Context: Can sleep.  Blocks until command completes.
20026  */
20027 
20028 #define	SD_CAPACITY_SIZE	sizeof (struct scsi_capacity)
20029 
20030 static int
20031 sd_send_scsi_READ_CAPACITY(sd_ssc_t *ssc, uint64_t *capp, uint32_t *lbap,
20032 	int path_flag)
20033 {
20034 	struct	scsi_extended_sense	sense_buf;
20035 	struct	uscsi_cmd	ucmd_buf;
20036 	union	scsi_cdb	cdb;
20037 	uint32_t		*capacity_buf;
20038 	uint64_t		capacity;
20039 	uint32_t		lbasize;
20040 	uint32_t		pbsize;
20041 	int			status;
20042 	struct sd_lun		*un;
20043 
20044 	ASSERT(ssc != NULL);
20045 
20046 	un = ssc->ssc_un;
20047 	ASSERT(un != NULL);
20048 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20049 	ASSERT(capp != NULL);
20050 	ASSERT(lbap != NULL);
20051 
20052 	SD_TRACE(SD_LOG_IO, un,
20053 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
20054 
20055 	/*
20056 	 * First send a READ_CAPACITY command to the target.
20057 	 * (This command is mandatory under SCSI-2.)
20058 	 *
20059 	 * Set up the CDB for the READ_CAPACITY command.  The Partial
20060 	 * Medium Indicator bit is cleared.  The address field must be
20061 	 * zero if the PMI bit is zero.
20062 	 */
20063 	bzero(&cdb, sizeof (cdb));
20064 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20065 
20066 	capacity_buf = kmem_zalloc(SD_CAPACITY_SIZE, KM_SLEEP);
20067 
20068 	cdb.scc_cmd = SCMD_READ_CAPACITY;
20069 
20070 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20071 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
20072 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity_buf;
20073 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_SIZE;
20074 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20075 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
20076 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20077 	ucmd_buf.uscsi_timeout	= 60;
20078 
20079 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20080 	    UIO_SYSSPACE, path_flag);
20081 
20082 	switch (status) {
20083 	case 0:
20084 		/* Return failure if we did not get valid capacity data. */
20085 		if (ucmd_buf.uscsi_resid != 0) {
20086 			sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
20087 			    "sd_send_scsi_READ_CAPACITY received invalid "
20088 			    "capacity data");
20089 			kmem_free(capacity_buf, SD_CAPACITY_SIZE);
20090 			return (EIO);
20091 		}
20092 		/*
20093 		 * Read capacity and block size from the READ CAPACITY 10 data.
20094 		 * This data may be adjusted later due to device specific
20095 		 * issues.
20096 		 *
20097 		 * According to the SCSI spec, the READ CAPACITY 10
20098 		 * command returns the following:
20099 		 *
20100 		 *  bytes 0-3: Maximum logical block address available.
20101 		 *		(MSB in byte:0 & LSB in byte:3)
20102 		 *
20103 		 *  bytes 4-7: Block length in bytes
20104 		 *		(MSB in byte:4 & LSB in byte:7)
20105 		 *
20106 		 */
20107 		capacity = BE_32(capacity_buf[0]);
20108 		lbasize = BE_32(capacity_buf[1]);
20109 
20110 		/*
20111 		 * Done with capacity_buf
20112 		 */
20113 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
20114 
20115 		/*
20116 		 * if the reported capacity is set to all 0xf's, then
20117 		 * this disk is too large and requires SBC-2 commands.
20118 		 * Reissue the request using READ CAPACITY 16.
20119 		 */
20120 		if (capacity == 0xffffffff) {
20121 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
20122 			status = sd_send_scsi_READ_CAPACITY_16(ssc, &capacity,
20123 			    &lbasize, &pbsize, path_flag);
20124 			if (status != 0) {
20125 				return (status);
20126 			} else {
20127 				goto rc16_done;
20128 			}
20129 		}
20130 		break;	/* Success! */
20131 	case EIO:
20132 		switch (ucmd_buf.uscsi_status) {
20133 		case STATUS_RESERVATION_CONFLICT:
20134 			status = EACCES;
20135 			break;
20136 		case STATUS_CHECK:
20137 			/*
20138 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
20139 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
20140 			 */
20141 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20142 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
20143 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
20144 				kmem_free(capacity_buf, SD_CAPACITY_SIZE);
20145 				return (EAGAIN);
20146 			}
20147 			break;
20148 		default:
20149 			break;
20150 		}
20151 		/* FALLTHRU */
20152 	default:
20153 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
20154 		return (status);
20155 	}
20156 
20157 	/*
20158 	 * Some ATAPI CD-ROM drives report inaccurate LBA size values
20159 	 * (2352 and 0 are common) so for these devices always force the value
20160 	 * to 2048 as required by the ATAPI specs.
20161 	 */
20162 	if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) {
20163 		lbasize = 2048;
20164 	}
20165 
20166 	/*
20167 	 * Get the maximum LBA value from the READ CAPACITY data.
20168 	 * Here we assume that the Partial Medium Indicator (PMI) bit
20169 	 * was cleared when issuing the command. This means that the LBA
20170 	 * returned from the device is the LBA of the last logical block
20171 	 * on the logical unit.  The actual logical block count will be
20172 	 * this value plus one.
20173 	 */
20174 	capacity += 1;
20175 
20176 	/*
20177 	 * Currently, for removable media, the capacity is saved in terms
20178 	 * of un->un_sys_blocksize, so scale the capacity value to reflect this.
20179 	 */
20180 	if (un->un_f_has_removable_media)
20181 		capacity *= (lbasize / un->un_sys_blocksize);
20182 
20183 rc16_done:
20184 
20185 	/*
20186 	 * Copy the values from the READ CAPACITY command into the space
20187 	 * provided by the caller.
20188 	 */
20189 	*capp = capacity;
20190 	*lbap = lbasize;
20191 
20192 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY: "
20193 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
20194 
20195 	/*
20196 	 * Both the lbasize and capacity from the device must be nonzero,
20197 	 * otherwise we assume that the values are not valid and return
20198 	 * failure to the caller. (4203735)
20199 	 */
20200 	if ((capacity == 0) || (lbasize == 0)) {
20201 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
20202 		    "sd_send_scsi_READ_CAPACITY received invalid value "
20203 		    "capacity %llu lbasize %d", capacity, lbasize);
20204 		return (EIO);
20205 	}
20206 	sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20207 	return (0);
20208 }
20209 
20210 /*
20211  *    Function: sd_send_scsi_READ_CAPACITY_16
20212  *
20213  * Description: This routine uses the scsi READ CAPACITY 16 command to
20214  *		determine the device capacity in number of blocks and the
20215  *		device native block size.  If this function returns a failure,
20216  *		then the values in *capp and *lbap are undefined.
20217  *		This routine should be called by sd_send_scsi_READ_CAPACITY
20218  *              which will apply any device specific adjustments to capacity
20219  *              and lbasize. One exception is it is also called by
20220  *              sd_get_media_info_ext. In that function, there is no need to
20221  *              adjust the capacity and lbasize.
20222  *
20223  *   Arguments: ssc   - ssc contains ptr to soft state struct for the target
20224  *		capp - ptr to unsigned 64-bit variable to receive the
20225  *			capacity value from the command.
20226  *		lbap - ptr to unsigned 32-bit varaible to receive the
20227  *			block size value from the command
20228  *              psp  - ptr to unsigned 32-bit variable to receive the
20229  *                      physical block size value from the command
20230  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20231  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20232  *			to use the USCSI "direct" chain and bypass the normal
20233  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when
20234  *			this command is issued as part of an error recovery
20235  *			action.
20236  *
20237  * Return Code: 0   - Success
20238  *		EIO - IO error
20239  *		EACCES - Reservation conflict detected
20240  *		EAGAIN - Device is becoming ready
20241  *		errno return code from sd_ssc_send()
20242  *
20243  *     Context: Can sleep.  Blocks until command completes.
20244  */
20245 
20246 #define	SD_CAPACITY_16_SIZE	sizeof (struct scsi_capacity_16)
20247 
20248 static int
20249 sd_send_scsi_READ_CAPACITY_16(sd_ssc_t *ssc, uint64_t *capp,
20250 	uint32_t *lbap, uint32_t *psp, int path_flag)
20251 {
20252 	struct	scsi_extended_sense	sense_buf;
20253 	struct	uscsi_cmd	ucmd_buf;
20254 	union	scsi_cdb	cdb;
20255 	uint64_t		*capacity16_buf;
20256 	uint64_t		capacity;
20257 	uint32_t		lbasize;
20258 	uint32_t		pbsize;
20259 	uint32_t		lbpb_exp;
20260 	int			status;
20261 	struct sd_lun		*un;
20262 
20263 	ASSERT(ssc != NULL);
20264 
20265 	un = ssc->ssc_un;
20266 	ASSERT(un != NULL);
20267 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20268 	ASSERT(capp != NULL);
20269 	ASSERT(lbap != NULL);
20270 
20271 	SD_TRACE(SD_LOG_IO, un,
20272 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
20273 
20274 	/*
20275 	 * First send a READ_CAPACITY_16 command to the target.
20276 	 *
20277 	 * Set up the CDB for the READ_CAPACITY_16 command.  The Partial
20278 	 * Medium Indicator bit is cleared.  The address field must be
20279 	 * zero if the PMI bit is zero.
20280 	 */
20281 	bzero(&cdb, sizeof (cdb));
20282 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20283 
20284 	capacity16_buf = kmem_zalloc(SD_CAPACITY_16_SIZE, KM_SLEEP);
20285 
20286 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20287 	ucmd_buf.uscsi_cdblen	= CDB_GROUP4;
20288 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity16_buf;
20289 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_16_SIZE;
20290 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20291 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
20292 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20293 	ucmd_buf.uscsi_timeout	= 60;
20294 
20295 	/*
20296 	 * Read Capacity (16) is a Service Action In command.  One
20297 	 * command byte (0x9E) is overloaded for multiple operations,
20298 	 * with the second CDB byte specifying the desired operation
20299 	 */
20300 	cdb.scc_cmd = SCMD_SVC_ACTION_IN_G4;
20301 	cdb.cdb_opaque[1] = SSVC_ACTION_READ_CAPACITY_G4;
20302 
20303 	/*
20304 	 * Fill in allocation length field
20305 	 */
20306 	FORMG4COUNT(&cdb, ucmd_buf.uscsi_buflen);
20307 
20308 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20309 	    UIO_SYSSPACE, path_flag);
20310 
20311 	switch (status) {
20312 	case 0:
20313 		/* Return failure if we did not get valid capacity data. */
20314 		if (ucmd_buf.uscsi_resid > 20) {
20315 			sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
20316 			    "sd_send_scsi_READ_CAPACITY_16 received invalid "
20317 			    "capacity data");
20318 			kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
20319 			return (EIO);
20320 		}
20321 
20322 		/*
20323 		 * Read capacity and block size from the READ CAPACITY 16 data.
20324 		 * This data may be adjusted later due to device specific
20325 		 * issues.
20326 		 *
20327 		 * According to the SCSI spec, the READ CAPACITY 16
20328 		 * command returns the following:
20329 		 *
20330 		 *  bytes 0-7: Maximum logical block address available.
20331 		 *		(MSB in byte:0 & LSB in byte:7)
20332 		 *
20333 		 *  bytes 8-11: Block length in bytes
20334 		 *		(MSB in byte:8 & LSB in byte:11)
20335 		 *
20336 		 *  byte 13: LOGICAL BLOCKS PER PHYSICAL BLOCK EXPONENT
20337 		 */
20338 		capacity = BE_64(capacity16_buf[0]);
20339 		lbasize = BE_32(*(uint32_t *)&capacity16_buf[1]);
20340 		lbpb_exp = (BE_64(capacity16_buf[1]) >> 16) & 0x0f;
20341 
20342 		pbsize = lbasize << lbpb_exp;
20343 
20344 		/*
20345 		 * Done with capacity16_buf
20346 		 */
20347 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
20348 
20349 		/*
20350 		 * if the reported capacity is set to all 0xf's, then
20351 		 * this disk is too large.  This could only happen with
20352 		 * a device that supports LBAs larger than 64 bits which
20353 		 * are not defined by any current T10 standards.
20354 		 */
20355 		if (capacity == 0xffffffffffffffff) {
20356 			sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
20357 			    "disk is too large");
20358 			return (EIO);
20359 		}
20360 		break;	/* Success! */
20361 	case EIO:
20362 		switch (ucmd_buf.uscsi_status) {
20363 		case STATUS_RESERVATION_CONFLICT:
20364 			status = EACCES;
20365 			break;
20366 		case STATUS_CHECK:
20367 			/*
20368 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
20369 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
20370 			 */
20371 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20372 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
20373 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
20374 				kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
20375 				return (EAGAIN);
20376 			}
20377 			break;
20378 		default:
20379 			break;
20380 		}
20381 		/* FALLTHRU */
20382 	default:
20383 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
20384 		return (status);
20385 	}
20386 
20387 	/*
20388 	 * Some ATAPI CD-ROM drives report inaccurate LBA size values
20389 	 * (2352 and 0 are common) so for these devices always force the value
20390 	 * to 2048 as required by the ATAPI specs.
20391 	 */
20392 	if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) {
20393 		lbasize = 2048;
20394 	}
20395 
20396 	/*
20397 	 * Get the maximum LBA value from the READ CAPACITY 16 data.
20398 	 * Here we assume that the Partial Medium Indicator (PMI) bit
20399 	 * was cleared when issuing the command. This means that the LBA
20400 	 * returned from the device is the LBA of the last logical block
20401 	 * on the logical unit.  The actual logical block count will be
20402 	 * this value plus one.
20403 	 */
20404 	capacity += 1;
20405 
20406 	/*
20407 	 * Currently, for removable media, the capacity is saved in terms
20408 	 * of un->un_sys_blocksize, so scale the capacity value to reflect this.
20409 	 */
20410 	if (un->un_f_has_removable_media)
20411 		capacity *= (lbasize / un->un_sys_blocksize);
20412 
20413 	*capp = capacity;
20414 	*lbap = lbasize;
20415 	*psp = pbsize;
20416 
20417 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY_16: "
20418 	    "capacity:0x%llx  lbasize:0x%x, pbsize: 0x%x\n",
20419 	    capacity, lbasize, pbsize);
20420 
20421 	if ((capacity == 0) || (lbasize == 0) || (pbsize == 0)) {
20422 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
20423 		    "sd_send_scsi_READ_CAPACITY_16 received invalid value "
20424 		    "capacity %llu lbasize %d pbsize %d", capacity, lbasize);
20425 		return (EIO);
20426 	}
20427 
20428 	sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20429 	return (0);
20430 }
20431 
20432 
20433 /*
20434  *    Function: sd_send_scsi_START_STOP_UNIT
20435  *
20436  * Description: Issue a scsi START STOP UNIT command to the target.
20437  *
20438  *   Arguments: ssc    - ssc contatins pointer to driver soft state (unit)
20439  *                       structure for this target.
20440  *      pc_flag - SD_POWER_CONDITION
20441  *                SD_START_STOP
20442  *		flag  - SD_TARGET_START
20443  *			SD_TARGET_STOP
20444  *			SD_TARGET_EJECT
20445  *			SD_TARGET_CLOSE
20446  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20447  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20448  *			to use the USCSI "direct" chain and bypass the normal
20449  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
20450  *			command is issued as part of an error recovery action.
20451  *
20452  * Return Code: 0   - Success
20453  *		EIO - IO error
20454  *		EACCES - Reservation conflict detected
20455  *		ENXIO  - Not Ready, medium not present
20456  *		errno return code from sd_ssc_send()
20457  *
20458  *     Context: Can sleep.
20459  */
20460 
20461 static int
20462 sd_send_scsi_START_STOP_UNIT(sd_ssc_t *ssc, int pc_flag, int flag,
20463     int path_flag)
20464 {
20465 	struct	scsi_extended_sense	sense_buf;
20466 	union scsi_cdb		cdb;
20467 	struct uscsi_cmd	ucmd_buf;
20468 	int			status;
20469 	struct sd_lun		*un;
20470 
20471 	ASSERT(ssc != NULL);
20472 	un = ssc->ssc_un;
20473 	ASSERT(un != NULL);
20474 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20475 
20476 	SD_TRACE(SD_LOG_IO, un,
20477 	    "sd_send_scsi_START_STOP_UNIT: entry: un:0x%p\n", un);
20478 
20479 	if (un->un_f_check_start_stop &&
20480 	    (pc_flag == SD_START_STOP) &&
20481 	    ((flag == SD_TARGET_START) || (flag == SD_TARGET_STOP)) &&
20482 	    (un->un_f_start_stop_supported != TRUE)) {
20483 		return (0);
20484 	}
20485 
20486 	/*
20487 	 * If we are performing an eject operation and
20488 	 * we receive any command other than SD_TARGET_EJECT
20489 	 * we should immediately return.
20490 	 */
20491 	if (flag != SD_TARGET_EJECT) {
20492 		mutex_enter(SD_MUTEX(un));
20493 		if (un->un_f_ejecting == TRUE) {
20494 			mutex_exit(SD_MUTEX(un));
20495 			return (EAGAIN);
20496 		}
20497 		mutex_exit(SD_MUTEX(un));
20498 	}
20499 
20500 	bzero(&cdb, sizeof (cdb));
20501 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20502 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20503 
20504 	cdb.scc_cmd = SCMD_START_STOP;
20505 	cdb.cdb_opaque[4] = (pc_flag == SD_POWER_CONDITION) ?
20506 	    (uchar_t)(flag << 4) : (uchar_t)flag;
20507 
20508 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20509 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
20510 	ucmd_buf.uscsi_bufaddr	= NULL;
20511 	ucmd_buf.uscsi_buflen	= 0;
20512 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20513 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20514 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
20515 	ucmd_buf.uscsi_timeout	= 200;
20516 
20517 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20518 	    UIO_SYSSPACE, path_flag);
20519 
20520 	switch (status) {
20521 	case 0:
20522 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20523 		break;	/* Success! */
20524 	case EIO:
20525 		switch (ucmd_buf.uscsi_status) {
20526 		case STATUS_RESERVATION_CONFLICT:
20527 			status = EACCES;
20528 			break;
20529 		case STATUS_CHECK:
20530 			if (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) {
20531 				switch (scsi_sense_key(
20532 				    (uint8_t *)&sense_buf)) {
20533 				case KEY_ILLEGAL_REQUEST:
20534 					status = ENOTSUP;
20535 					break;
20536 				case KEY_NOT_READY:
20537 					if (scsi_sense_asc(
20538 					    (uint8_t *)&sense_buf)
20539 					    == 0x3A) {
20540 						status = ENXIO;
20541 					}
20542 					break;
20543 				default:
20544 					break;
20545 				}
20546 			}
20547 			break;
20548 		default:
20549 			break;
20550 		}
20551 		break;
20552 	default:
20553 		break;
20554 	}
20555 
20556 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_START_STOP_UNIT: exit\n");
20557 
20558 	return (status);
20559 }
20560 
20561 
20562 /*
20563  *    Function: sd_start_stop_unit_callback
20564  *
20565  * Description: timeout(9F) callback to begin recovery process for a
20566  *		device that has spun down.
20567  *
20568  *   Arguments: arg - pointer to associated softstate struct.
20569  *
20570  *     Context: Executes in a timeout(9F) thread context
20571  */
20572 
20573 static void
20574 sd_start_stop_unit_callback(void *arg)
20575 {
20576 	struct sd_lun	*un = arg;
20577 	ASSERT(un != NULL);
20578 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20579 
20580 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_callback: entry\n");
20581 
20582 	(void) taskq_dispatch(sd_tq, sd_start_stop_unit_task, un, KM_NOSLEEP);
20583 }
20584 
20585 
20586 /*
20587  *    Function: sd_start_stop_unit_task
20588  *
20589  * Description: Recovery procedure when a drive is spun down.
20590  *
20591  *   Arguments: arg - pointer to associated softstate struct.
20592  *
20593  *     Context: Executes in a taskq() thread context
20594  */
20595 
20596 static void
20597 sd_start_stop_unit_task(void *arg)
20598 {
20599 	struct sd_lun	*un = arg;
20600 	sd_ssc_t	*ssc;
20601 	int		power_level;
20602 	int		rval;
20603 
20604 	ASSERT(un != NULL);
20605 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20606 
20607 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: entry\n");
20608 
20609 	/*
20610 	 * Some unformatted drives report not ready error, no need to
20611 	 * restart if format has been initiated.
20612 	 */
20613 	mutex_enter(SD_MUTEX(un));
20614 	if (un->un_f_format_in_progress == TRUE) {
20615 		mutex_exit(SD_MUTEX(un));
20616 		return;
20617 	}
20618 	mutex_exit(SD_MUTEX(un));
20619 
20620 	ssc = sd_ssc_init(un);
20621 	/*
20622 	 * When a START STOP command is issued from here, it is part of a
20623 	 * failure recovery operation and must be issued before any other
20624 	 * commands, including any pending retries. Thus it must be sent
20625 	 * using SD_PATH_DIRECT_PRIORITY. It doesn't matter if the spin up
20626 	 * succeeds or not, we will start I/O after the attempt.
20627 	 * If power condition is supported and the current power level
20628 	 * is capable of performing I/O, we should set the power condition
20629 	 * to that level. Otherwise, set the power condition to ACTIVE.
20630 	 */
20631 	if (un->un_f_power_condition_supported) {
20632 		mutex_enter(SD_MUTEX(un));
20633 		ASSERT(SD_PM_IS_LEVEL_VALID(un, un->un_power_level));
20634 		power_level = sd_pwr_pc.ran_perf[un->un_power_level]
20635 		    > 0 ? un->un_power_level : SD_SPINDLE_ACTIVE;
20636 		mutex_exit(SD_MUTEX(un));
20637 		rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_POWER_CONDITION,
20638 		    sd_pl2pc[power_level], SD_PATH_DIRECT_PRIORITY);
20639 	} else {
20640 		rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
20641 		    SD_TARGET_START, SD_PATH_DIRECT_PRIORITY);
20642 	}
20643 
20644 	if (rval != 0)
20645 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
20646 	sd_ssc_fini(ssc);
20647 	/*
20648 	 * The above call blocks until the START_STOP_UNIT command completes.
20649 	 * Now that it has completed, we must re-try the original IO that
20650 	 * received the NOT READY condition in the first place. There are
20651 	 * three possible conditions here:
20652 	 *
20653 	 *  (1) The original IO is on un_retry_bp.
20654 	 *  (2) The original IO is on the regular wait queue, and un_retry_bp
20655 	 *	is NULL.
20656 	 *  (3) The original IO is on the regular wait queue, and un_retry_bp
20657 	 *	points to some other, unrelated bp.
20658 	 *
20659 	 * For each case, we must call sd_start_cmds() with un_retry_bp
20660 	 * as the argument. If un_retry_bp is NULL, this will initiate
20661 	 * processing of the regular wait queue.  If un_retry_bp is not NULL,
20662 	 * then this will process the bp on un_retry_bp. That may or may not
20663 	 * be the original IO, but that does not matter: the important thing
20664 	 * is to keep the IO processing going at this point.
20665 	 *
20666 	 * Note: This is a very specific error recovery sequence associated
20667 	 * with a drive that is not spun up. We attempt a START_STOP_UNIT and
20668 	 * serialize the I/O with completion of the spin-up.
20669 	 */
20670 	mutex_enter(SD_MUTEX(un));
20671 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
20672 	    "sd_start_stop_unit_task: un:0x%p starting bp:0x%p\n",
20673 	    un, un->un_retry_bp);
20674 	un->un_startstop_timeid = NULL;	/* Timeout is no longer pending */
20675 	sd_start_cmds(un, un->un_retry_bp);
20676 	mutex_exit(SD_MUTEX(un));
20677 
20678 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: exit\n");
20679 }
20680 
20681 
20682 /*
20683  *    Function: sd_send_scsi_INQUIRY
20684  *
20685  * Description: Issue the scsi INQUIRY command.
20686  *
20687  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
20688  *                      structure for this target.
20689  *		bufaddr
20690  *		buflen
20691  *		evpd
20692  *		page_code
20693  *		page_length
20694  *
20695  * Return Code: 0   - Success
20696  *		errno return code from sd_ssc_send()
20697  *
20698  *     Context: Can sleep. Does not return until command is completed.
20699  */
20700 
20701 static int
20702 sd_send_scsi_INQUIRY(sd_ssc_t *ssc, uchar_t *bufaddr, size_t buflen,
20703 	uchar_t evpd, uchar_t page_code, size_t *residp)
20704 {
20705 	union scsi_cdb		cdb;
20706 	struct uscsi_cmd	ucmd_buf;
20707 	int			status;
20708 	struct sd_lun		*un;
20709 
20710 	ASSERT(ssc != NULL);
20711 	un = ssc->ssc_un;
20712 	ASSERT(un != NULL);
20713 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20714 	ASSERT(bufaddr != NULL);
20715 
20716 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: entry: un:0x%p\n", un);
20717 
20718 	bzero(&cdb, sizeof (cdb));
20719 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20720 	bzero(bufaddr, buflen);
20721 
20722 	cdb.scc_cmd = SCMD_INQUIRY;
20723 	cdb.cdb_opaque[1] = evpd;
20724 	cdb.cdb_opaque[2] = page_code;
20725 	FORMG0COUNT(&cdb, buflen);
20726 
20727 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20728 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
20729 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
20730 	ucmd_buf.uscsi_buflen	= buflen;
20731 	ucmd_buf.uscsi_rqbuf	= NULL;
20732 	ucmd_buf.uscsi_rqlen	= 0;
20733 	ucmd_buf.uscsi_flags	= USCSI_READ | USCSI_SILENT;
20734 	ucmd_buf.uscsi_timeout	= 200;	/* Excessive legacy value */
20735 
20736 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20737 	    UIO_SYSSPACE, SD_PATH_DIRECT);
20738 
20739 	/*
20740 	 * Only handle status == 0, the upper-level caller
20741 	 * will put different assessment based on the context.
20742 	 */
20743 	if (status == 0)
20744 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20745 
20746 	if ((status == 0) && (residp != NULL)) {
20747 		*residp = ucmd_buf.uscsi_resid;
20748 	}
20749 
20750 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: exit\n");
20751 
20752 	return (status);
20753 }
20754 
20755 
20756 /*
20757  *    Function: sd_send_scsi_TEST_UNIT_READY
20758  *
20759  * Description: Issue the scsi TEST UNIT READY command.
20760  *		This routine can be told to set the flag USCSI_DIAGNOSE to
20761  *		prevent retrying failed commands. Use this when the intent
20762  *		is either to check for device readiness, to clear a Unit
20763  *		Attention, or to clear any outstanding sense data.
20764  *		However under specific conditions the expected behavior
20765  *		is for retries to bring a device ready, so use the flag
20766  *		with caution.
20767  *
20768  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
20769  *                      structure for this target.
20770  *		flag:   SD_CHECK_FOR_MEDIA: return ENXIO if no media present
20771  *			SD_DONT_RETRY_TUR: include uscsi flag USCSI_DIAGNOSE.
20772  *			0: dont check for media present, do retries on cmd.
20773  *
20774  * Return Code: 0   - Success
20775  *		EIO - IO error
20776  *		EACCES - Reservation conflict detected
20777  *		ENXIO  - Not Ready, medium not present
20778  *		errno return code from sd_ssc_send()
20779  *
20780  *     Context: Can sleep. Does not return until command is completed.
20781  */
20782 
20783 static int
20784 sd_send_scsi_TEST_UNIT_READY(sd_ssc_t *ssc, int flag)
20785 {
20786 	struct	scsi_extended_sense	sense_buf;
20787 	union scsi_cdb		cdb;
20788 	struct uscsi_cmd	ucmd_buf;
20789 	int			status;
20790 	struct sd_lun		*un;
20791 
20792 	ASSERT(ssc != NULL);
20793 	un = ssc->ssc_un;
20794 	ASSERT(un != NULL);
20795 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20796 
20797 	SD_TRACE(SD_LOG_IO, un,
20798 	    "sd_send_scsi_TEST_UNIT_READY: entry: un:0x%p\n", un);
20799 
20800 	/*
20801 	 * Some Seagate elite1 TQ devices get hung with disconnect/reconnect
20802 	 * timeouts when they receive a TUR and the queue is not empty. Check
20803 	 * the configuration flag set during attach (indicating the drive has
20804 	 * this firmware bug) and un_ncmds_in_transport before issuing the
20805 	 * TUR. If there are
20806 	 * pending commands return success, this is a bit arbitrary but is ok
20807 	 * for non-removables (i.e. the eliteI disks) and non-clustering
20808 	 * configurations.
20809 	 */
20810 	if (un->un_f_cfg_tur_check == TRUE) {
20811 		mutex_enter(SD_MUTEX(un));
20812 		if (un->un_ncmds_in_transport != 0) {
20813 			mutex_exit(SD_MUTEX(un));
20814 			return (0);
20815 		}
20816 		mutex_exit(SD_MUTEX(un));
20817 	}
20818 
20819 	bzero(&cdb, sizeof (cdb));
20820 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20821 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20822 
20823 	cdb.scc_cmd = SCMD_TEST_UNIT_READY;
20824 
20825 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20826 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
20827 	ucmd_buf.uscsi_bufaddr	= NULL;
20828 	ucmd_buf.uscsi_buflen	= 0;
20829 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20830 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20831 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
20832 
20833 	/* Use flag USCSI_DIAGNOSE to prevent retries if it fails. */
20834 	if ((flag & SD_DONT_RETRY_TUR) != 0) {
20835 		ucmd_buf.uscsi_flags |= USCSI_DIAGNOSE;
20836 	}
20837 	ucmd_buf.uscsi_timeout	= 60;
20838 
20839 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20840 	    UIO_SYSSPACE, ((flag & SD_BYPASS_PM) ? SD_PATH_DIRECT :
20841 	    SD_PATH_STANDARD));
20842 
20843 	switch (status) {
20844 	case 0:
20845 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20846 		break;	/* Success! */
20847 	case EIO:
20848 		switch (ucmd_buf.uscsi_status) {
20849 		case STATUS_RESERVATION_CONFLICT:
20850 			status = EACCES;
20851 			break;
20852 		case STATUS_CHECK:
20853 			if ((flag & SD_CHECK_FOR_MEDIA) == 0) {
20854 				break;
20855 			}
20856 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20857 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
20858 			    KEY_NOT_READY) &&
20859 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x3A)) {
20860 				status = ENXIO;
20861 			}
20862 			break;
20863 		default:
20864 			break;
20865 		}
20866 		break;
20867 	default:
20868 		break;
20869 	}
20870 
20871 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_TEST_UNIT_READY: exit\n");
20872 
20873 	return (status);
20874 }
20875 
20876 /*
20877  *    Function: sd_send_scsi_PERSISTENT_RESERVE_IN
20878  *
20879  * Description: Issue the scsi PERSISTENT RESERVE IN command.
20880  *
20881  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
20882  *                      structure for this target.
20883  *
20884  * Return Code: 0   - Success
20885  *		EACCES
20886  *		ENOTSUP
20887  *		errno return code from sd_ssc_send()
20888  *
20889  *     Context: Can sleep. Does not return until command is completed.
20890  */
20891 
20892 static int
20893 sd_send_scsi_PERSISTENT_RESERVE_IN(sd_ssc_t *ssc, uchar_t  usr_cmd,
20894 	uint16_t data_len, uchar_t *data_bufp)
20895 {
20896 	struct scsi_extended_sense	sense_buf;
20897 	union scsi_cdb		cdb;
20898 	struct uscsi_cmd	ucmd_buf;
20899 	int			status;
20900 	int			no_caller_buf = FALSE;
20901 	struct sd_lun		*un;
20902 
20903 	ASSERT(ssc != NULL);
20904 	un = ssc->ssc_un;
20905 	ASSERT(un != NULL);
20906 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20907 	ASSERT((usr_cmd == SD_READ_KEYS) || (usr_cmd == SD_READ_RESV));
20908 
20909 	SD_TRACE(SD_LOG_IO, un,
20910 	    "sd_send_scsi_PERSISTENT_RESERVE_IN: entry: un:0x%p\n", un);
20911 
20912 	bzero(&cdb, sizeof (cdb));
20913 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20914 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20915 	if (data_bufp == NULL) {
20916 		/* Allocate a default buf if the caller did not give one */
20917 		ASSERT(data_len == 0);
20918 		data_len  = MHIOC_RESV_KEY_SIZE;
20919 		data_bufp = kmem_zalloc(MHIOC_RESV_KEY_SIZE, KM_SLEEP);
20920 		no_caller_buf = TRUE;
20921 	}
20922 
20923 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_IN;
20924 	cdb.cdb_opaque[1] = usr_cmd;
20925 	FORMG1COUNT(&cdb, data_len);
20926 
20927 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20928 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
20929 	ucmd_buf.uscsi_bufaddr	= (caddr_t)data_bufp;
20930 	ucmd_buf.uscsi_buflen	= data_len;
20931 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20932 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20933 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20934 	ucmd_buf.uscsi_timeout	= 60;
20935 
20936 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20937 	    UIO_SYSSPACE, SD_PATH_STANDARD);
20938 
20939 	switch (status) {
20940 	case 0:
20941 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20942 
20943 		break;	/* Success! */
20944 	case EIO:
20945 		switch (ucmd_buf.uscsi_status) {
20946 		case STATUS_RESERVATION_CONFLICT:
20947 			status = EACCES;
20948 			break;
20949 		case STATUS_CHECK:
20950 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20951 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
20952 			    KEY_ILLEGAL_REQUEST)) {
20953 				status = ENOTSUP;
20954 			}
20955 			break;
20956 		default:
20957 			break;
20958 		}
20959 		break;
20960 	default:
20961 		break;
20962 	}
20963 
20964 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_IN: exit\n");
20965 
20966 	if (no_caller_buf == TRUE) {
20967 		kmem_free(data_bufp, data_len);
20968 	}
20969 
20970 	return (status);
20971 }
20972 
20973 
20974 /*
20975  *    Function: sd_send_scsi_PERSISTENT_RESERVE_OUT
20976  *
20977  * Description: This routine is the driver entry point for handling CD-ROM
20978  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS,
20979  *		MHIOCGRP_INRESV) by sending the SCSI-3 PROUT commands to the
20980  *		device.
20981  *
20982  *   Arguments: ssc  -  ssc contains un - pointer to soft state struct
20983  *                      for the target.
20984  *		usr_cmd SCSI-3 reservation facility command (one of
20985  *			SD_SCSI3_REGISTER, SD_SCSI3_RESERVE, SD_SCSI3_RELEASE,
20986  *			SD_SCSI3_PREEMPTANDABORT, SD_SCSI3_CLEAR)
20987  *		usr_bufp - user provided pointer register, reserve descriptor or
20988  *			preempt and abort structure (mhioc_register_t,
20989  *                      mhioc_resv_desc_t, mhioc_preemptandabort_t)
20990  *
20991  * Return Code: 0   - Success
20992  *		EACCES
20993  *		ENOTSUP
20994  *		errno return code from sd_ssc_send()
20995  *
20996  *     Context: Can sleep. Does not return until command is completed.
20997  */
20998 
20999 static int
21000 sd_send_scsi_PERSISTENT_RESERVE_OUT(sd_ssc_t *ssc, uchar_t usr_cmd,
21001 	uchar_t	*usr_bufp)
21002 {
21003 	struct scsi_extended_sense	sense_buf;
21004 	union scsi_cdb		cdb;
21005 	struct uscsi_cmd	ucmd_buf;
21006 	int			status;
21007 	uchar_t			data_len = sizeof (sd_prout_t);
21008 	sd_prout_t		*prp;
21009 	struct sd_lun		*un;
21010 
21011 	ASSERT(ssc != NULL);
21012 	un = ssc->ssc_un;
21013 	ASSERT(un != NULL);
21014 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21015 	ASSERT(data_len == 24);	/* required by scsi spec */
21016 
21017 	SD_TRACE(SD_LOG_IO, un,
21018 	    "sd_send_scsi_PERSISTENT_RESERVE_OUT: entry: un:0x%p\n", un);
21019 
21020 	if (usr_bufp == NULL) {
21021 		return (EINVAL);
21022 	}
21023 
21024 	bzero(&cdb, sizeof (cdb));
21025 	bzero(&ucmd_buf, sizeof (ucmd_buf));
21026 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
21027 	prp = kmem_zalloc(data_len, KM_SLEEP);
21028 
21029 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_OUT;
21030 	cdb.cdb_opaque[1] = usr_cmd;
21031 	FORMG1COUNT(&cdb, data_len);
21032 
21033 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
21034 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
21035 	ucmd_buf.uscsi_bufaddr	= (caddr_t)prp;
21036 	ucmd_buf.uscsi_buflen	= data_len;
21037 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
21038 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
21039 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
21040 	ucmd_buf.uscsi_timeout	= 60;
21041 
21042 	switch (usr_cmd) {
21043 	case SD_SCSI3_REGISTER: {
21044 		mhioc_register_t *ptr = (mhioc_register_t *)usr_bufp;
21045 
21046 		bcopy(ptr->oldkey.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
21047 		bcopy(ptr->newkey.key, prp->service_key,
21048 		    MHIOC_RESV_KEY_SIZE);
21049 		prp->aptpl = ptr->aptpl;
21050 		break;
21051 	}
21052 	case SD_SCSI3_CLEAR: {
21053 		mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp;
21054 
21055 		bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
21056 		break;
21057 	}
21058 	case SD_SCSI3_RESERVE:
21059 	case SD_SCSI3_RELEASE: {
21060 		mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp;
21061 
21062 		bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
21063 		prp->scope_address = BE_32(ptr->scope_specific_addr);
21064 		cdb.cdb_opaque[2] = ptr->type;
21065 		break;
21066 	}
21067 	case SD_SCSI3_PREEMPTANDABORT: {
21068 		mhioc_preemptandabort_t *ptr =
21069 		    (mhioc_preemptandabort_t *)usr_bufp;
21070 
21071 		bcopy(ptr->resvdesc.key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
21072 		bcopy(ptr->victim_key.key, prp->service_key,
21073 		    MHIOC_RESV_KEY_SIZE);
21074 		prp->scope_address = BE_32(ptr->resvdesc.scope_specific_addr);
21075 		cdb.cdb_opaque[2] = ptr->resvdesc.type;
21076 		ucmd_buf.uscsi_flags |= USCSI_HEAD;
21077 		break;
21078 	}
21079 	case SD_SCSI3_REGISTERANDIGNOREKEY:
21080 	{
21081 		mhioc_registerandignorekey_t *ptr;
21082 		ptr = (mhioc_registerandignorekey_t *)usr_bufp;
21083 		bcopy(ptr->newkey.key,
21084 		    prp->service_key, MHIOC_RESV_KEY_SIZE);
21085 		prp->aptpl = ptr->aptpl;
21086 		break;
21087 	}
21088 	default:
21089 		ASSERT(FALSE);
21090 		break;
21091 	}
21092 
21093 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
21094 	    UIO_SYSSPACE, SD_PATH_STANDARD);
21095 
21096 	switch (status) {
21097 	case 0:
21098 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
21099 		break;	/* Success! */
21100 	case EIO:
21101 		switch (ucmd_buf.uscsi_status) {
21102 		case STATUS_RESERVATION_CONFLICT:
21103 			status = EACCES;
21104 			break;
21105 		case STATUS_CHECK:
21106 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
21107 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
21108 			    KEY_ILLEGAL_REQUEST)) {
21109 				status = ENOTSUP;
21110 			}
21111 			break;
21112 		default:
21113 			break;
21114 		}
21115 		break;
21116 	default:
21117 		break;
21118 	}
21119 
21120 	kmem_free(prp, data_len);
21121 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_OUT: exit\n");
21122 	return (status);
21123 }
21124 
21125 
21126 /*
21127  *    Function: sd_send_scsi_SYNCHRONIZE_CACHE
21128  *
21129  * Description: Issues a scsi SYNCHRONIZE CACHE command to the target
21130  *
21131  *   Arguments: un - pointer to the target's soft state struct
21132  *              dkc - pointer to the callback structure
21133  *
21134  * Return Code: 0 - success
21135  *		errno-type error code
21136  *
21137  *     Context: kernel thread context only.
21138  *
21139  *  _______________________________________________________________
21140  * | dkc_flag &   | dkc_callback | DKIOCFLUSHWRITECACHE            |
21141  * |FLUSH_VOLATILE|              | operation                       |
21142  * |______________|______________|_________________________________|
21143  * | 0            | NULL         | Synchronous flush on both       |
21144  * |              |              | volatile and non-volatile cache |
21145  * |______________|______________|_________________________________|
21146  * | 1            | NULL         | Synchronous flush on volatile   |
21147  * |              |              | cache; disk drivers may suppress|
21148  * |              |              | flush if disk table indicates   |
21149  * |              |              | non-volatile cache              |
21150  * |______________|______________|_________________________________|
21151  * | 0            | !NULL        | Asynchronous flush on both      |
21152  * |              |              | volatile and non-volatile cache;|
21153  * |______________|______________|_________________________________|
21154  * | 1            | !NULL        | Asynchronous flush on volatile  |
21155  * |              |              | cache; disk drivers may suppress|
21156  * |              |              | flush if disk table indicates   |
21157  * |              |              | non-volatile cache              |
21158  * |______________|______________|_________________________________|
21159  *
21160  */
21161 
21162 static int
21163 sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un, struct dk_callback *dkc)
21164 {
21165 	struct sd_uscsi_info	*uip;
21166 	struct uscsi_cmd	*uscmd;
21167 	union scsi_cdb		*cdb;
21168 	struct buf		*bp;
21169 	int			rval = 0;
21170 	int			is_async;
21171 
21172 	SD_TRACE(SD_LOG_IO, un,
21173 	    "sd_send_scsi_SYNCHRONIZE_CACHE: entry: un:0x%p\n", un);
21174 
21175 	ASSERT(un != NULL);
21176 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21177 
21178 	if (dkc == NULL || dkc->dkc_callback == NULL) {
21179 		is_async = FALSE;
21180 	} else {
21181 		is_async = TRUE;
21182 	}
21183 
21184 	mutex_enter(SD_MUTEX(un));
21185 	/* check whether cache flush should be suppressed */
21186 	if (un->un_f_suppress_cache_flush == TRUE) {
21187 		mutex_exit(SD_MUTEX(un));
21188 		/*
21189 		 * suppress the cache flush if the device is told to do
21190 		 * so by sd.conf or disk table
21191 		 */
21192 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_SYNCHRONIZE_CACHE: \
21193 		    skip the cache flush since suppress_cache_flush is %d!\n",
21194 		    un->un_f_suppress_cache_flush);
21195 
21196 		if (is_async == TRUE) {
21197 			/* invoke callback for asynchronous flush */
21198 			(*dkc->dkc_callback)(dkc->dkc_cookie, 0);
21199 		}
21200 		return (rval);
21201 	}
21202 	mutex_exit(SD_MUTEX(un));
21203 
21204 	/*
21205 	 * check dkc_flag & FLUSH_VOLATILE so SYNC_NV bit can be
21206 	 * set properly
21207 	 */
21208 	cdb = kmem_zalloc(CDB_GROUP1, KM_SLEEP);
21209 	cdb->scc_cmd = SCMD_SYNCHRONIZE_CACHE;
21210 
21211 	mutex_enter(SD_MUTEX(un));
21212 	if (dkc != NULL && un->un_f_sync_nv_supported &&
21213 	    (dkc->dkc_flag & FLUSH_VOLATILE)) {
21214 		/*
21215 		 * if the device supports SYNC_NV bit, turn on
21216 		 * the SYNC_NV bit to only flush volatile cache
21217 		 */
21218 		cdb->cdb_un.tag |= SD_SYNC_NV_BIT;
21219 	}
21220 	mutex_exit(SD_MUTEX(un));
21221 
21222 	/*
21223 	 * First get some memory for the uscsi_cmd struct and cdb
21224 	 * and initialize for SYNCHRONIZE_CACHE cmd.
21225 	 */
21226 	uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
21227 	uscmd->uscsi_cdblen = CDB_GROUP1;
21228 	uscmd->uscsi_cdb = (caddr_t)cdb;
21229 	uscmd->uscsi_bufaddr = NULL;
21230 	uscmd->uscsi_buflen = 0;
21231 	uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
21232 	uscmd->uscsi_rqlen = SENSE_LENGTH;
21233 	uscmd->uscsi_rqresid = SENSE_LENGTH;
21234 	uscmd->uscsi_flags = USCSI_RQENABLE | USCSI_SILENT;
21235 	uscmd->uscsi_timeout = sd_io_time;
21236 
21237 	/*
21238 	 * Allocate an sd_uscsi_info struct and fill it with the info
21239 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
21240 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
21241 	 * since we allocate the buf here in this function, we do not
21242 	 * need to preserve the prior contents of b_private.
21243 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
21244 	 */
21245 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
21246 	uip->ui_flags = SD_PATH_DIRECT;
21247 	uip->ui_cmdp  = uscmd;
21248 
21249 	bp = getrbuf(KM_SLEEP);
21250 	bp->b_private = uip;
21251 
21252 	/*
21253 	 * Setup buffer to carry uscsi request.
21254 	 */
21255 	bp->b_flags  = B_BUSY;
21256 	bp->b_bcount = 0;
21257 	bp->b_blkno  = 0;
21258 
21259 	if (is_async == TRUE) {
21260 		bp->b_iodone = sd_send_scsi_SYNCHRONIZE_CACHE_biodone;
21261 		uip->ui_dkc = *dkc;
21262 	}
21263 
21264 	bp->b_edev = SD_GET_DEV(un);
21265 	bp->b_dev = cmpdev(bp->b_edev);	/* maybe unnecessary? */
21266 
21267 	/*
21268 	 * Unset un_f_sync_cache_required flag
21269 	 */
21270 	mutex_enter(SD_MUTEX(un));
21271 	un->un_f_sync_cache_required = FALSE;
21272 	mutex_exit(SD_MUTEX(un));
21273 
21274 	(void) sd_uscsi_strategy(bp);
21275 
21276 	/*
21277 	 * If synchronous request, wait for completion
21278 	 * If async just return and let b_iodone callback
21279 	 * cleanup.
21280 	 * NOTE: On return, u_ncmds_in_driver will be decremented,
21281 	 * but it was also incremented in sd_uscsi_strategy(), so
21282 	 * we should be ok.
21283 	 */
21284 	if (is_async == FALSE) {
21285 		(void) biowait(bp);
21286 		rval = sd_send_scsi_SYNCHRONIZE_CACHE_biodone(bp);
21287 	}
21288 
21289 	return (rval);
21290 }
21291 
21292 
21293 static int
21294 sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp)
21295 {
21296 	struct sd_uscsi_info *uip;
21297 	struct uscsi_cmd *uscmd;
21298 	uint8_t *sense_buf;
21299 	struct sd_lun *un;
21300 	int status;
21301 	union scsi_cdb *cdb;
21302 
21303 	uip = (struct sd_uscsi_info *)(bp->b_private);
21304 	ASSERT(uip != NULL);
21305 
21306 	uscmd = uip->ui_cmdp;
21307 	ASSERT(uscmd != NULL);
21308 
21309 	sense_buf = (uint8_t *)uscmd->uscsi_rqbuf;
21310 	ASSERT(sense_buf != NULL);
21311 
21312 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
21313 	ASSERT(un != NULL);
21314 
21315 	cdb = (union scsi_cdb *)uscmd->uscsi_cdb;
21316 
21317 	status = geterror(bp);
21318 	switch (status) {
21319 	case 0:
21320 		break;	/* Success! */
21321 	case EIO:
21322 		switch (uscmd->uscsi_status) {
21323 		case STATUS_RESERVATION_CONFLICT:
21324 			/* Ignore reservation conflict */
21325 			status = 0;
21326 			goto done;
21327 
21328 		case STATUS_CHECK:
21329 			if ((uscmd->uscsi_rqstatus == STATUS_GOOD) &&
21330 			    (scsi_sense_key(sense_buf) ==
21331 			    KEY_ILLEGAL_REQUEST)) {
21332 				/* Ignore Illegal Request error */
21333 				if (cdb->cdb_un.tag&SD_SYNC_NV_BIT) {
21334 					mutex_enter(SD_MUTEX(un));
21335 					un->un_f_sync_nv_supported = FALSE;
21336 					mutex_exit(SD_MUTEX(un));
21337 					status = 0;
21338 					SD_TRACE(SD_LOG_IO, un,
21339 					    "un_f_sync_nv_supported \
21340 					    is set to false.\n");
21341 					goto done;
21342 				}
21343 
21344 				mutex_enter(SD_MUTEX(un));
21345 				un->un_f_sync_cache_supported = FALSE;
21346 				mutex_exit(SD_MUTEX(un));
21347 				SD_TRACE(SD_LOG_IO, un,
21348 				    "sd_send_scsi_SYNCHRONIZE_CACHE_biodone: \
21349 				    un_f_sync_cache_supported set to false \
21350 				    with asc = %x, ascq = %x\n",
21351 				    scsi_sense_asc(sense_buf),
21352 				    scsi_sense_ascq(sense_buf));
21353 				status = ENOTSUP;
21354 				goto done;
21355 			}
21356 			break;
21357 		default:
21358 			break;
21359 		}
21360 		/* FALLTHRU */
21361 	default:
21362 		/*
21363 		 * Turn on the un_f_sync_cache_required flag
21364 		 * since the SYNC CACHE command failed
21365 		 */
21366 		mutex_enter(SD_MUTEX(un));
21367 		un->un_f_sync_cache_required = TRUE;
21368 		mutex_exit(SD_MUTEX(un));
21369 
21370 		/*
21371 		 * Don't log an error message if this device
21372 		 * has removable media.
21373 		 */
21374 		if (!un->un_f_has_removable_media) {
21375 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
21376 			    "SYNCHRONIZE CACHE command failed (%d)\n", status);
21377 		}
21378 		break;
21379 	}
21380 
21381 done:
21382 	if (uip->ui_dkc.dkc_callback != NULL) {
21383 		(*uip->ui_dkc.dkc_callback)(uip->ui_dkc.dkc_cookie, status);
21384 	}
21385 
21386 	ASSERT((bp->b_flags & B_REMAPPED) == 0);
21387 	freerbuf(bp);
21388 	kmem_free(uip, sizeof (struct sd_uscsi_info));
21389 	kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH);
21390 	kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen);
21391 	kmem_free(uscmd, sizeof (struct uscsi_cmd));
21392 
21393 	return (status);
21394 }
21395 
21396 
21397 /*
21398  *    Function: sd_send_scsi_GET_CONFIGURATION
21399  *
21400  * Description: Issues the get configuration command to the device.
21401  *		Called from sd_check_for_writable_cd & sd_get_media_info
21402  *		caller needs to ensure that buflen = SD_PROFILE_HEADER_LEN
21403  *   Arguments: ssc
21404  *		ucmdbuf
21405  *		rqbuf
21406  *		rqbuflen
21407  *		bufaddr
21408  *		buflen
21409  *		path_flag
21410  *
21411  * Return Code: 0   - Success
21412  *		errno return code from sd_ssc_send()
21413  *
21414  *     Context: Can sleep. Does not return until command is completed.
21415  *
21416  */
21417 
21418 static int
21419 sd_send_scsi_GET_CONFIGURATION(sd_ssc_t *ssc, struct uscsi_cmd *ucmdbuf,
21420 	uchar_t *rqbuf, uint_t rqbuflen, uchar_t *bufaddr, uint_t buflen,
21421 	int path_flag)
21422 {
21423 	char	cdb[CDB_GROUP1];
21424 	int	status;
21425 	struct sd_lun	*un;
21426 
21427 	ASSERT(ssc != NULL);
21428 	un = ssc->ssc_un;
21429 	ASSERT(un != NULL);
21430 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21431 	ASSERT(bufaddr != NULL);
21432 	ASSERT(ucmdbuf != NULL);
21433 	ASSERT(rqbuf != NULL);
21434 
21435 	SD_TRACE(SD_LOG_IO, un,
21436 	    "sd_send_scsi_GET_CONFIGURATION: entry: un:0x%p\n", un);
21437 
21438 	bzero(cdb, sizeof (cdb));
21439 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
21440 	bzero(rqbuf, rqbuflen);
21441 	bzero(bufaddr, buflen);
21442 
21443 	/*
21444 	 * Set up cdb field for the get configuration command.
21445 	 */
21446 	cdb[0] = SCMD_GET_CONFIGURATION;
21447 	cdb[1] = 0x02;  /* Requested Type */
21448 	cdb[8] = SD_PROFILE_HEADER_LEN;
21449 	ucmdbuf->uscsi_cdb = cdb;
21450 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
21451 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
21452 	ucmdbuf->uscsi_buflen = buflen;
21453 	ucmdbuf->uscsi_timeout = sd_io_time;
21454 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
21455 	ucmdbuf->uscsi_rqlen = rqbuflen;
21456 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
21457 
21458 	status = sd_ssc_send(ssc, ucmdbuf, FKIOCTL,
21459 	    UIO_SYSSPACE, path_flag);
21460 
21461 	switch (status) {
21462 	case 0:
21463 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
21464 		break;  /* Success! */
21465 	case EIO:
21466 		switch (ucmdbuf->uscsi_status) {
21467 		case STATUS_RESERVATION_CONFLICT:
21468 			status = EACCES;
21469 			break;
21470 		default:
21471 			break;
21472 		}
21473 		break;
21474 	default:
21475 		break;
21476 	}
21477 
21478 	if (status == 0) {
21479 		SD_DUMP_MEMORY(un, SD_LOG_IO,
21480 		    "sd_send_scsi_GET_CONFIGURATION: data",
21481 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
21482 	}
21483 
21484 	SD_TRACE(SD_LOG_IO, un,
21485 	    "sd_send_scsi_GET_CONFIGURATION: exit\n");
21486 
21487 	return (status);
21488 }
21489 
21490 /*
21491  *    Function: sd_send_scsi_feature_GET_CONFIGURATION
21492  *
21493  * Description: Issues the get configuration command to the device to
21494  *              retrieve a specific feature. Called from
21495  *		sd_check_for_writable_cd & sd_set_mmc_caps.
21496  *   Arguments: ssc
21497  *              ucmdbuf
21498  *              rqbuf
21499  *              rqbuflen
21500  *              bufaddr
21501  *              buflen
21502  *		feature
21503  *
21504  * Return Code: 0   - Success
21505  *              errno return code from sd_ssc_send()
21506  *
21507  *     Context: Can sleep. Does not return until command is completed.
21508  *
21509  */
21510 static int
21511 sd_send_scsi_feature_GET_CONFIGURATION(sd_ssc_t *ssc,
21512 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
21513 	uchar_t *bufaddr, uint_t buflen, char feature, int path_flag)
21514 {
21515 	char    cdb[CDB_GROUP1];
21516 	int	status;
21517 	struct sd_lun	*un;
21518 
21519 	ASSERT(ssc != NULL);
21520 	un = ssc->ssc_un;
21521 	ASSERT(un != NULL);
21522 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21523 	ASSERT(bufaddr != NULL);
21524 	ASSERT(ucmdbuf != NULL);
21525 	ASSERT(rqbuf != NULL);
21526 
21527 	SD_TRACE(SD_LOG_IO, un,
21528 	    "sd_send_scsi_feature_GET_CONFIGURATION: entry: un:0x%p\n", un);
21529 
21530 	bzero(cdb, sizeof (cdb));
21531 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
21532 	bzero(rqbuf, rqbuflen);
21533 	bzero(bufaddr, buflen);
21534 
21535 	/*
21536 	 * Set up cdb field for the get configuration command.
21537 	 */
21538 	cdb[0] = SCMD_GET_CONFIGURATION;
21539 	cdb[1] = 0x02;  /* Requested Type */
21540 	cdb[3] = feature;
21541 	cdb[8] = buflen;
21542 	ucmdbuf->uscsi_cdb = cdb;
21543 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
21544 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
21545 	ucmdbuf->uscsi_buflen = buflen;
21546 	ucmdbuf->uscsi_timeout = sd_io_time;
21547 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
21548 	ucmdbuf->uscsi_rqlen = rqbuflen;
21549 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
21550 
21551 	status = sd_ssc_send(ssc, ucmdbuf, FKIOCTL,
21552 	    UIO_SYSSPACE, path_flag);
21553 
21554 	switch (status) {
21555 	case 0:
21556 
21557 		break;  /* Success! */
21558 	case EIO:
21559 		switch (ucmdbuf->uscsi_status) {
21560 		case STATUS_RESERVATION_CONFLICT:
21561 			status = EACCES;
21562 			break;
21563 		default:
21564 			break;
21565 		}
21566 		break;
21567 	default:
21568 		break;
21569 	}
21570 
21571 	if (status == 0) {
21572 		SD_DUMP_MEMORY(un, SD_LOG_IO,
21573 		    "sd_send_scsi_feature_GET_CONFIGURATION: data",
21574 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
21575 	}
21576 
21577 	SD_TRACE(SD_LOG_IO, un,
21578 	    "sd_send_scsi_feature_GET_CONFIGURATION: exit\n");
21579 
21580 	return (status);
21581 }
21582 
21583 
21584 /*
21585  *    Function: sd_send_scsi_MODE_SENSE
21586  *
21587  * Description: Utility function for issuing a scsi MODE SENSE command.
21588  *		Note: This routine uses a consistent implementation for Group0,
21589  *		Group1, and Group2 commands across all platforms. ATAPI devices
21590  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
21591  *
21592  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
21593  *                      structure for this target.
21594  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
21595  *			  CDB_GROUP[1|2] (10 byte).
21596  *		bufaddr - buffer for page data retrieved from the target.
21597  *		buflen - size of page to be retrieved.
21598  *		page_code - page code of data to be retrieved from the target.
21599  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
21600  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
21601  *			to use the USCSI "direct" chain and bypass the normal
21602  *			command waitq.
21603  *
21604  * Return Code: 0   - Success
21605  *		errno return code from sd_ssc_send()
21606  *
21607  *     Context: Can sleep. Does not return until command is completed.
21608  */
21609 
21610 static int
21611 sd_send_scsi_MODE_SENSE(sd_ssc_t *ssc, int cdbsize, uchar_t *bufaddr,
21612 	size_t buflen,  uchar_t page_code, int path_flag)
21613 {
21614 	struct	scsi_extended_sense	sense_buf;
21615 	union scsi_cdb		cdb;
21616 	struct uscsi_cmd	ucmd_buf;
21617 	int			status;
21618 	int			headlen;
21619 	struct sd_lun		*un;
21620 
21621 	ASSERT(ssc != NULL);
21622 	un = ssc->ssc_un;
21623 	ASSERT(un != NULL);
21624 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21625 	ASSERT(bufaddr != NULL);
21626 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
21627 	    (cdbsize == CDB_GROUP2));
21628 
21629 	SD_TRACE(SD_LOG_IO, un,
21630 	    "sd_send_scsi_MODE_SENSE: entry: un:0x%p\n", un);
21631 
21632 	bzero(&cdb, sizeof (cdb));
21633 	bzero(&ucmd_buf, sizeof (ucmd_buf));
21634 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
21635 	bzero(bufaddr, buflen);
21636 
21637 	if (cdbsize == CDB_GROUP0) {
21638 		cdb.scc_cmd = SCMD_MODE_SENSE;
21639 		cdb.cdb_opaque[2] = page_code;
21640 		FORMG0COUNT(&cdb, buflen);
21641 		headlen = MODE_HEADER_LENGTH;
21642 	} else {
21643 		cdb.scc_cmd = SCMD_MODE_SENSE_G1;
21644 		cdb.cdb_opaque[2] = page_code;
21645 		FORMG1COUNT(&cdb, buflen);
21646 		headlen = MODE_HEADER_LENGTH_GRP2;
21647 	}
21648 
21649 	ASSERT(headlen <= buflen);
21650 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
21651 
21652 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
21653 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
21654 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
21655 	ucmd_buf.uscsi_buflen	= buflen;
21656 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
21657 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
21658 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
21659 	ucmd_buf.uscsi_timeout	= 60;
21660 
21661 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
21662 	    UIO_SYSSPACE, path_flag);
21663 
21664 	switch (status) {
21665 	case 0:
21666 		/*
21667 		 * sr_check_wp() uses 0x3f page code and check the header of
21668 		 * mode page to determine if target device is write-protected.
21669 		 * But some USB devices return 0 bytes for 0x3f page code. For
21670 		 * this case, make sure that mode page header is returned at
21671 		 * least.
21672 		 */
21673 		if (buflen - ucmd_buf.uscsi_resid <  headlen) {
21674 			status = EIO;
21675 			sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
21676 			    "mode page header is not returned");
21677 		}
21678 		break;	/* Success! */
21679 	case EIO:
21680 		switch (ucmd_buf.uscsi_status) {
21681 		case STATUS_RESERVATION_CONFLICT:
21682 			status = EACCES;
21683 			break;
21684 		default:
21685 			break;
21686 		}
21687 		break;
21688 	default:
21689 		break;
21690 	}
21691 
21692 	if (status == 0) {
21693 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SENSE: data",
21694 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
21695 	}
21696 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SENSE: exit\n");
21697 
21698 	return (status);
21699 }
21700 
21701 
21702 /*
21703  *    Function: sd_send_scsi_MODE_SELECT
21704  *
21705  * Description: Utility function for issuing a scsi MODE SELECT command.
21706  *		Note: This routine uses a consistent implementation for Group0,
21707  *		Group1, and Group2 commands across all platforms. ATAPI devices
21708  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
21709  *
21710  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
21711  *                      structure for this target.
21712  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
21713  *			  CDB_GROUP[1|2] (10 byte).
21714  *		bufaddr - buffer for page data retrieved from the target.
21715  *		buflen - size of page to be retrieved.
21716  *		save_page - boolean to determin if SP bit should be set.
21717  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
21718  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
21719  *			to use the USCSI "direct" chain and bypass the normal
21720  *			command waitq.
21721  *
21722  * Return Code: 0   - Success
21723  *		errno return code from sd_ssc_send()
21724  *
21725  *     Context: Can sleep. Does not return until command is completed.
21726  */
21727 
21728 static int
21729 sd_send_scsi_MODE_SELECT(sd_ssc_t *ssc, int cdbsize, uchar_t *bufaddr,
21730 	size_t buflen,  uchar_t save_page, int path_flag)
21731 {
21732 	struct	scsi_extended_sense	sense_buf;
21733 	union scsi_cdb		cdb;
21734 	struct uscsi_cmd	ucmd_buf;
21735 	int			status;
21736 	struct sd_lun		*un;
21737 
21738 	ASSERT(ssc != NULL);
21739 	un = ssc->ssc_un;
21740 	ASSERT(un != NULL);
21741 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21742 	ASSERT(bufaddr != NULL);
21743 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
21744 	    (cdbsize == CDB_GROUP2));
21745 
21746 	SD_TRACE(SD_LOG_IO, un,
21747 	    "sd_send_scsi_MODE_SELECT: entry: un:0x%p\n", un);
21748 
21749 	bzero(&cdb, sizeof (cdb));
21750 	bzero(&ucmd_buf, sizeof (ucmd_buf));
21751 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
21752 
21753 	/* Set the PF bit for many third party drives */
21754 	cdb.cdb_opaque[1] = 0x10;
21755 
21756 	/* Set the savepage(SP) bit if given */
21757 	if (save_page == SD_SAVE_PAGE) {
21758 		cdb.cdb_opaque[1] |= 0x01;
21759 	}
21760 
21761 	if (cdbsize == CDB_GROUP0) {
21762 		cdb.scc_cmd = SCMD_MODE_SELECT;
21763 		FORMG0COUNT(&cdb, buflen);
21764 	} else {
21765 		cdb.scc_cmd = SCMD_MODE_SELECT_G1;
21766 		FORMG1COUNT(&cdb, buflen);
21767 	}
21768 
21769 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
21770 
21771 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
21772 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
21773 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
21774 	ucmd_buf.uscsi_buflen	= buflen;
21775 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
21776 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
21777 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
21778 	ucmd_buf.uscsi_timeout	= 60;
21779 
21780 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
21781 	    UIO_SYSSPACE, path_flag);
21782 
21783 	switch (status) {
21784 	case 0:
21785 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
21786 		break;	/* Success! */
21787 	case EIO:
21788 		switch (ucmd_buf.uscsi_status) {
21789 		case STATUS_RESERVATION_CONFLICT:
21790 			status = EACCES;
21791 			break;
21792 		default:
21793 			break;
21794 		}
21795 		break;
21796 	default:
21797 		break;
21798 	}
21799 
21800 	if (status == 0) {
21801 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SELECT: data",
21802 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
21803 	}
21804 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SELECT: exit\n");
21805 
21806 	return (status);
21807 }
21808 
21809 
21810 /*
21811  *    Function: sd_send_scsi_RDWR
21812  *
21813  * Description: Issue a scsi READ or WRITE command with the given parameters.
21814  *
21815  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
21816  *                      structure for this target.
21817  *		cmd:	 SCMD_READ or SCMD_WRITE
21818  *		bufaddr: Address of caller's buffer to receive the RDWR data
21819  *		buflen:  Length of caller's buffer receive the RDWR data.
21820  *		start_block: Block number for the start of the RDWR operation.
21821  *			 (Assumes target-native block size.)
21822  *		residp:  Pointer to variable to receive the redisual of the
21823  *			 RDWR operation (may be NULL of no residual requested).
21824  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
21825  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
21826  *			to use the USCSI "direct" chain and bypass the normal
21827  *			command waitq.
21828  *
21829  * Return Code: 0   - Success
21830  *		errno return code from sd_ssc_send()
21831  *
21832  *     Context: Can sleep. Does not return until command is completed.
21833  */
21834 
21835 static int
21836 sd_send_scsi_RDWR(sd_ssc_t *ssc, uchar_t cmd, void *bufaddr,
21837 	size_t buflen, daddr_t start_block, int path_flag)
21838 {
21839 	struct	scsi_extended_sense	sense_buf;
21840 	union scsi_cdb		cdb;
21841 	struct uscsi_cmd	ucmd_buf;
21842 	uint32_t		block_count;
21843 	int			status;
21844 	int			cdbsize;
21845 	uchar_t			flag;
21846 	struct sd_lun		*un;
21847 
21848 	ASSERT(ssc != NULL);
21849 	un = ssc->ssc_un;
21850 	ASSERT(un != NULL);
21851 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21852 	ASSERT(bufaddr != NULL);
21853 	ASSERT((cmd == SCMD_READ) || (cmd == SCMD_WRITE));
21854 
21855 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: entry: un:0x%p\n", un);
21856 
21857 	if (un->un_f_tgt_blocksize_is_valid != TRUE) {
21858 		return (EINVAL);
21859 	}
21860 
21861 	mutex_enter(SD_MUTEX(un));
21862 	block_count = SD_BYTES2TGTBLOCKS(un, buflen);
21863 	mutex_exit(SD_MUTEX(un));
21864 
21865 	flag = (cmd == SCMD_READ) ? USCSI_READ : USCSI_WRITE;
21866 
21867 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_RDWR: "
21868 	    "bufaddr:0x%p buflen:0x%x start_block:0x%p block_count:0x%x\n",
21869 	    bufaddr, buflen, start_block, block_count);
21870 
21871 	bzero(&cdb, sizeof (cdb));
21872 	bzero(&ucmd_buf, sizeof (ucmd_buf));
21873 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
21874 
21875 	/* Compute CDB size to use */
21876 	if (start_block > 0xffffffff)
21877 		cdbsize = CDB_GROUP4;
21878 	else if ((start_block & 0xFFE00000) ||
21879 	    (un->un_f_cfg_is_atapi == TRUE))
21880 		cdbsize = CDB_GROUP1;
21881 	else
21882 		cdbsize = CDB_GROUP0;
21883 
21884 	switch (cdbsize) {
21885 	case CDB_GROUP0:	/* 6-byte CDBs */
21886 		cdb.scc_cmd = cmd;
21887 		FORMG0ADDR(&cdb, start_block);
21888 		FORMG0COUNT(&cdb, block_count);
21889 		break;
21890 	case CDB_GROUP1:	/* 10-byte CDBs */
21891 		cdb.scc_cmd = cmd | SCMD_GROUP1;
21892 		FORMG1ADDR(&cdb, start_block);
21893 		FORMG1COUNT(&cdb, block_count);
21894 		break;
21895 	case CDB_GROUP4:	/* 16-byte CDBs */
21896 		cdb.scc_cmd = cmd | SCMD_GROUP4;
21897 		FORMG4LONGADDR(&cdb, (uint64_t)start_block);
21898 		FORMG4COUNT(&cdb, block_count);
21899 		break;
21900 	case CDB_GROUP5:	/* 12-byte CDBs (currently unsupported) */
21901 	default:
21902 		/* All others reserved */
21903 		return (EINVAL);
21904 	}
21905 
21906 	/* Set LUN bit(s) in CDB if this is a SCSI-1 device */
21907 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
21908 
21909 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
21910 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
21911 	ucmd_buf.uscsi_bufaddr	= bufaddr;
21912 	ucmd_buf.uscsi_buflen	= buflen;
21913 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
21914 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
21915 	ucmd_buf.uscsi_flags	= flag | USCSI_RQENABLE | USCSI_SILENT;
21916 	ucmd_buf.uscsi_timeout	= 60;
21917 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
21918 	    UIO_SYSSPACE, path_flag);
21919 
21920 	switch (status) {
21921 	case 0:
21922 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
21923 		break;	/* Success! */
21924 	case EIO:
21925 		switch (ucmd_buf.uscsi_status) {
21926 		case STATUS_RESERVATION_CONFLICT:
21927 			status = EACCES;
21928 			break;
21929 		default:
21930 			break;
21931 		}
21932 		break;
21933 	default:
21934 		break;
21935 	}
21936 
21937 	if (status == 0) {
21938 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_RDWR: data",
21939 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
21940 	}
21941 
21942 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: exit\n");
21943 
21944 	return (status);
21945 }
21946 
21947 
21948 /*
21949  *    Function: sd_send_scsi_LOG_SENSE
21950  *
21951  * Description: Issue a scsi LOG_SENSE command with the given parameters.
21952  *
21953  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
21954  *                      structure for this target.
21955  *
21956  * Return Code: 0   - Success
21957  *		errno return code from sd_ssc_send()
21958  *
21959  *     Context: Can sleep. Does not return until command is completed.
21960  */
21961 
21962 static int
21963 sd_send_scsi_LOG_SENSE(sd_ssc_t *ssc, uchar_t *bufaddr, uint16_t buflen,
21964 	uchar_t page_code, uchar_t page_control, uint16_t param_ptr,
21965 	int path_flag)
21966 
21967 {
21968 	struct scsi_extended_sense	sense_buf;
21969 	union scsi_cdb		cdb;
21970 	struct uscsi_cmd	ucmd_buf;
21971 	int			status;
21972 	struct sd_lun		*un;
21973 
21974 	ASSERT(ssc != NULL);
21975 	un = ssc->ssc_un;
21976 	ASSERT(un != NULL);
21977 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21978 
21979 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: entry: un:0x%p\n", un);
21980 
21981 	bzero(&cdb, sizeof (cdb));
21982 	bzero(&ucmd_buf, sizeof (ucmd_buf));
21983 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
21984 
21985 	cdb.scc_cmd = SCMD_LOG_SENSE_G1;
21986 	cdb.cdb_opaque[2] = (page_control << 6) | page_code;
21987 	cdb.cdb_opaque[5] = (uchar_t)((param_ptr & 0xFF00) >> 8);
21988 	cdb.cdb_opaque[6] = (uchar_t)(param_ptr  & 0x00FF);
21989 	FORMG1COUNT(&cdb, buflen);
21990 
21991 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
21992 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
21993 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
21994 	ucmd_buf.uscsi_buflen	= buflen;
21995 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
21996 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
21997 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
21998 	ucmd_buf.uscsi_timeout	= 60;
21999 
22000 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
22001 	    UIO_SYSSPACE, path_flag);
22002 
22003 	switch (status) {
22004 	case 0:
22005 		break;
22006 	case EIO:
22007 		switch (ucmd_buf.uscsi_status) {
22008 		case STATUS_RESERVATION_CONFLICT:
22009 			status = EACCES;
22010 			break;
22011 		case STATUS_CHECK:
22012 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
22013 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
22014 				KEY_ILLEGAL_REQUEST) &&
22015 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x24)) {
22016 				/*
22017 				 * ASC 0x24: INVALID FIELD IN CDB
22018 				 */
22019 				switch (page_code) {
22020 				case START_STOP_CYCLE_PAGE:
22021 					/*
22022 					 * The start stop cycle counter is
22023 					 * implemented as page 0x31 in earlier
22024 					 * generation disks. In new generation
22025 					 * disks the start stop cycle counter is
22026 					 * implemented as page 0xE. To properly
22027 					 * handle this case if an attempt for
22028 					 * log page 0xE is made and fails we
22029 					 * will try again using page 0x31.
22030 					 *
22031 					 * Network storage BU committed to
22032 					 * maintain the page 0x31 for this
22033 					 * purpose and will not have any other
22034 					 * page implemented with page code 0x31
22035 					 * until all disks transition to the
22036 					 * standard page.
22037 					 */
22038 					mutex_enter(SD_MUTEX(un));
22039 					un->un_start_stop_cycle_page =
22040 					    START_STOP_CYCLE_VU_PAGE;
22041 					cdb.cdb_opaque[2] =
22042 					    (char)(page_control << 6) |
22043 					    un->un_start_stop_cycle_page;
22044 					mutex_exit(SD_MUTEX(un));
22045 					sd_ssc_assessment(ssc, SD_FMT_IGNORE);
22046 					status = sd_ssc_send(
22047 					    ssc, &ucmd_buf, FKIOCTL,
22048 					    UIO_SYSSPACE, path_flag);
22049 
22050 					break;
22051 				case TEMPERATURE_PAGE:
22052 					status = ENOTTY;
22053 					break;
22054 				default:
22055 					break;
22056 				}
22057 			}
22058 			break;
22059 		default:
22060 			break;
22061 		}
22062 		break;
22063 	default:
22064 		break;
22065 	}
22066 
22067 	if (status == 0) {
22068 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
22069 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_LOG_SENSE: data",
22070 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
22071 	}
22072 
22073 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: exit\n");
22074 
22075 	return (status);
22076 }
22077 
22078 
22079 /*
22080  *    Function: sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION
22081  *
22082  * Description: Issue the scsi GET EVENT STATUS NOTIFICATION command.
22083  *
22084  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
22085  *                      structure for this target.
22086  *		bufaddr
22087  *		buflen
22088  *		class_req
22089  *
22090  * Return Code: 0   - Success
22091  *		errno return code from sd_ssc_send()
22092  *
22093  *     Context: Can sleep. Does not return until command is completed.
22094  */
22095 
22096 static int
22097 sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION(sd_ssc_t *ssc, uchar_t *bufaddr,
22098 	size_t buflen, uchar_t class_req)
22099 {
22100 	union scsi_cdb		cdb;
22101 	struct uscsi_cmd	ucmd_buf;
22102 	int			status;
22103 	struct sd_lun		*un;
22104 
22105 	ASSERT(ssc != NULL);
22106 	un = ssc->ssc_un;
22107 	ASSERT(un != NULL);
22108 	ASSERT(!mutex_owned(SD_MUTEX(un)));
22109 	ASSERT(bufaddr != NULL);
22110 
22111 	SD_TRACE(SD_LOG_IO, un,
22112 	    "sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION: entry: un:0x%p\n", un);
22113 
22114 	bzero(&cdb, sizeof (cdb));
22115 	bzero(&ucmd_buf, sizeof (ucmd_buf));
22116 	bzero(bufaddr, buflen);
22117 
22118 	cdb.scc_cmd = SCMD_GET_EVENT_STATUS_NOTIFICATION;
22119 	cdb.cdb_opaque[1] = 1; /* polled */
22120 	cdb.cdb_opaque[4] = class_req;
22121 	FORMG1COUNT(&cdb, buflen);
22122 
22123 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
22124 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
22125 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
22126 	ucmd_buf.uscsi_buflen	= buflen;
22127 	ucmd_buf.uscsi_rqbuf	= NULL;
22128 	ucmd_buf.uscsi_rqlen	= 0;
22129 	ucmd_buf.uscsi_flags	= USCSI_READ | USCSI_SILENT;
22130 	ucmd_buf.uscsi_timeout	= 60;
22131 
22132 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
22133 	    UIO_SYSSPACE, SD_PATH_DIRECT);
22134 
22135 	/*
22136 	 * Only handle status == 0, the upper-level caller
22137 	 * will put different assessment based on the context.
22138 	 */
22139 	if (status == 0) {
22140 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
22141 
22142 		if (ucmd_buf.uscsi_resid != 0) {
22143 			status = EIO;
22144 		}
22145 	}
22146 
22147 	SD_TRACE(SD_LOG_IO, un,
22148 	    "sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION: exit\n");
22149 
22150 	return (status);
22151 }
22152 
22153 
22154 static boolean_t
22155 sd_gesn_media_data_valid(uchar_t *data)
22156 {
22157 	uint16_t			len;
22158 
22159 	len = (data[1] << 8) | data[0];
22160 	return ((len >= 6) &&
22161 	    ((data[2] & SD_GESN_HEADER_NEA) == 0) &&
22162 	    ((data[2] & SD_GESN_HEADER_CLASS) == SD_GESN_MEDIA_CLASS) &&
22163 	    ((data[3] & (1 << SD_GESN_MEDIA_CLASS)) != 0));
22164 }
22165 
22166 
22167 /*
22168  *    Function: sdioctl
22169  *
22170  * Description: Driver's ioctl(9e) entry point function.
22171  *
22172  *   Arguments: dev     - device number
22173  *		cmd     - ioctl operation to be performed
22174  *		arg     - user argument, contains data to be set or reference
22175  *			  parameter for get
22176  *		flag    - bit flag, indicating open settings, 32/64 bit type
22177  *		cred_p  - user credential pointer
22178  *		rval_p  - calling process return value (OPT)
22179  *
22180  * Return Code: EINVAL
22181  *		ENOTTY
22182  *		ENXIO
22183  *		EIO
22184  *		EFAULT
22185  *		ENOTSUP
22186  *		EPERM
22187  *
22188  *     Context: Called from the device switch at normal priority.
22189  */
22190 
22191 static int
22192 sdioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cred_p, int *rval_p)
22193 {
22194 	struct sd_lun	*un = NULL;
22195 	int		err = 0;
22196 	int		i = 0;
22197 	cred_t		*cr;
22198 	int		tmprval = EINVAL;
22199 	boolean_t	is_valid;
22200 	sd_ssc_t	*ssc;
22201 
22202 	/*
22203 	 * All device accesses go thru sdstrategy where we check on suspend
22204 	 * status
22205 	 */
22206 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22207 		return (ENXIO);
22208 	}
22209 
22210 	ASSERT(!mutex_owned(SD_MUTEX(un)));
22211 
22212 	/* Initialize sd_ssc_t for internal uscsi commands */
22213 	ssc = sd_ssc_init(un);
22214 
22215 	is_valid = SD_IS_VALID_LABEL(un);
22216 
22217 	/*
22218 	 * Moved this wait from sd_uscsi_strategy to here for
22219 	 * reasons of deadlock prevention. Internal driver commands,
22220 	 * specifically those to change a devices power level, result
22221 	 * in a call to sd_uscsi_strategy.
22222 	 */
22223 	mutex_enter(SD_MUTEX(un));
22224 	while ((un->un_state == SD_STATE_SUSPENDED) ||
22225 	    (un->un_state == SD_STATE_PM_CHANGING)) {
22226 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
22227 	}
22228 	/*
22229 	 * Twiddling the counter here protects commands from now
22230 	 * through to the top of sd_uscsi_strategy. Without the
22231 	 * counter inc. a power down, for example, could get in
22232 	 * after the above check for state is made and before
22233 	 * execution gets to the top of sd_uscsi_strategy.
22234 	 * That would cause problems.
22235 	 */
22236 	un->un_ncmds_in_driver++;
22237 
22238 	if (!is_valid &&
22239 	    (flag & (FNDELAY | FNONBLOCK))) {
22240 		switch (cmd) {
22241 		case DKIOCGGEOM:	/* SD_PATH_DIRECT */
22242 		case DKIOCGVTOC:
22243 		case DKIOCGEXTVTOC:
22244 		case DKIOCGAPART:
22245 		case DKIOCPARTINFO:
22246 		case DKIOCEXTPARTINFO:
22247 		case DKIOCSGEOM:
22248 		case DKIOCSAPART:
22249 		case DKIOCGETEFI:
22250 		case DKIOCPARTITION:
22251 		case DKIOCSVTOC:
22252 		case DKIOCSEXTVTOC:
22253 		case DKIOCSETEFI:
22254 		case DKIOCGMBOOT:
22255 		case DKIOCSMBOOT:
22256 		case DKIOCG_PHYGEOM:
22257 		case DKIOCG_VIRTGEOM:
22258 #if defined(__i386) || defined(__amd64)
22259 		case DKIOCSETEXTPART:
22260 #endif
22261 			/* let cmlb handle it */
22262 			goto skip_ready_valid;
22263 
22264 		case CDROMPAUSE:
22265 		case CDROMRESUME:
22266 		case CDROMPLAYMSF:
22267 		case CDROMPLAYTRKIND:
22268 		case CDROMREADTOCHDR:
22269 		case CDROMREADTOCENTRY:
22270 		case CDROMSTOP:
22271 		case CDROMSTART:
22272 		case CDROMVOLCTRL:
22273 		case CDROMSUBCHNL:
22274 		case CDROMREADMODE2:
22275 		case CDROMREADMODE1:
22276 		case CDROMREADOFFSET:
22277 		case CDROMSBLKMODE:
22278 		case CDROMGBLKMODE:
22279 		case CDROMGDRVSPEED:
22280 		case CDROMSDRVSPEED:
22281 		case CDROMCDDA:
22282 		case CDROMCDXA:
22283 		case CDROMSUBCODE:
22284 			if (!ISCD(un)) {
22285 				un->un_ncmds_in_driver--;
22286 				ASSERT(un->un_ncmds_in_driver >= 0);
22287 				mutex_exit(SD_MUTEX(un));
22288 				err = ENOTTY;
22289 				goto done_without_assess;
22290 			}
22291 			break;
22292 		case FDEJECT:
22293 		case DKIOCEJECT:
22294 		case CDROMEJECT:
22295 			if (!un->un_f_eject_media_supported) {
22296 				un->un_ncmds_in_driver--;
22297 				ASSERT(un->un_ncmds_in_driver >= 0);
22298 				mutex_exit(SD_MUTEX(un));
22299 				err = ENOTTY;
22300 				goto done_without_assess;
22301 			}
22302 			break;
22303 		case DKIOCFLUSHWRITECACHE:
22304 			mutex_exit(SD_MUTEX(un));
22305 			err = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
22306 			if (err != 0) {
22307 				mutex_enter(SD_MUTEX(un));
22308 				un->un_ncmds_in_driver--;
22309 				ASSERT(un->un_ncmds_in_driver >= 0);
22310 				mutex_exit(SD_MUTEX(un));
22311 				err = EIO;
22312 				goto done_quick_assess;
22313 			}
22314 			mutex_enter(SD_MUTEX(un));
22315 			/* FALLTHROUGH */
22316 		case DKIOCREMOVABLE:
22317 		case DKIOCHOTPLUGGABLE:
22318 		case DKIOCINFO:
22319 		case DKIOCGMEDIAINFO:
22320 		case DKIOCGMEDIAINFOEXT:
22321 		case MHIOCENFAILFAST:
22322 		case MHIOCSTATUS:
22323 		case MHIOCTKOWN:
22324 		case MHIOCRELEASE:
22325 		case MHIOCGRP_INKEYS:
22326 		case MHIOCGRP_INRESV:
22327 		case MHIOCGRP_REGISTER:
22328 		case MHIOCGRP_CLEAR:
22329 		case MHIOCGRP_RESERVE:
22330 		case MHIOCGRP_PREEMPTANDABORT:
22331 		case MHIOCGRP_REGISTERANDIGNOREKEY:
22332 		case CDROMCLOSETRAY:
22333 		case USCSICMD:
22334 			goto skip_ready_valid;
22335 		default:
22336 			break;
22337 		}
22338 
22339 		mutex_exit(SD_MUTEX(un));
22340 		err = sd_ready_and_valid(ssc, SDPART(dev));
22341 		mutex_enter(SD_MUTEX(un));
22342 
22343 		if (err != SD_READY_VALID) {
22344 			switch (cmd) {
22345 			case DKIOCSTATE:
22346 			case CDROMGDRVSPEED:
22347 			case CDROMSDRVSPEED:
22348 			case FDEJECT:	/* for eject command */
22349 			case DKIOCEJECT:
22350 			case CDROMEJECT:
22351 			case DKIOCREMOVABLE:
22352 			case DKIOCHOTPLUGGABLE:
22353 				break;
22354 			default:
22355 				if (un->un_f_has_removable_media) {
22356 					err = ENXIO;
22357 				} else {
22358 				/* Do not map SD_RESERVED_BY_OTHERS to EIO */
22359 					if (err == SD_RESERVED_BY_OTHERS) {
22360 						err = EACCES;
22361 					} else {
22362 						err = EIO;
22363 					}
22364 				}
22365 				un->un_ncmds_in_driver--;
22366 				ASSERT(un->un_ncmds_in_driver >= 0);
22367 				mutex_exit(SD_MUTEX(un));
22368 
22369 				goto done_without_assess;
22370 			}
22371 		}
22372 	}
22373 
22374 skip_ready_valid:
22375 	mutex_exit(SD_MUTEX(un));
22376 
22377 	switch (cmd) {
22378 	case DKIOCINFO:
22379 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCINFO\n");
22380 		err = sd_dkio_ctrl_info(dev, (caddr_t)arg, flag);
22381 		break;
22382 
22383 	case DKIOCGMEDIAINFO:
22384 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFO\n");
22385 		err = sd_get_media_info(dev, (caddr_t)arg, flag);
22386 		break;
22387 
22388 	case DKIOCGMEDIAINFOEXT:
22389 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFOEXT\n");
22390 		err = sd_get_media_info_ext(dev, (caddr_t)arg, flag);
22391 		break;
22392 
22393 	case DKIOCGGEOM:
22394 	case DKIOCGVTOC:
22395 	case DKIOCGEXTVTOC:
22396 	case DKIOCGAPART:
22397 	case DKIOCPARTINFO:
22398 	case DKIOCEXTPARTINFO:
22399 	case DKIOCSGEOM:
22400 	case DKIOCSAPART:
22401 	case DKIOCGETEFI:
22402 	case DKIOCPARTITION:
22403 	case DKIOCSVTOC:
22404 	case DKIOCSEXTVTOC:
22405 	case DKIOCSETEFI:
22406 	case DKIOCGMBOOT:
22407 	case DKIOCSMBOOT:
22408 	case DKIOCG_PHYGEOM:
22409 	case DKIOCG_VIRTGEOM:
22410 #if defined(__i386) || defined(__amd64)
22411 	case DKIOCSETEXTPART:
22412 #endif
22413 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOC %d\n", cmd);
22414 
22415 		/* TUR should spin up */
22416 
22417 		if (un->un_f_has_removable_media)
22418 			err = sd_send_scsi_TEST_UNIT_READY(ssc,
22419 			    SD_CHECK_FOR_MEDIA);
22420 
22421 		else
22422 			err = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
22423 
22424 		if (err != 0)
22425 			goto done_with_assess;
22426 
22427 		err = cmlb_ioctl(un->un_cmlbhandle, dev,
22428 		    cmd, arg, flag, cred_p, rval_p, (void *)SD_PATH_DIRECT);
22429 
22430 		if ((err == 0) &&
22431 		    ((cmd == DKIOCSETEFI) ||
22432 		    (un->un_f_pkstats_enabled) &&
22433 		    (cmd == DKIOCSAPART || cmd == DKIOCSVTOC ||
22434 		    cmd == DKIOCSEXTVTOC))) {
22435 
22436 			tmprval = cmlb_validate(un->un_cmlbhandle, CMLB_SILENT,
22437 			    (void *)SD_PATH_DIRECT);
22438 			if ((tmprval == 0) && un->un_f_pkstats_enabled) {
22439 				sd_set_pstats(un);
22440 				SD_TRACE(SD_LOG_IO_PARTITION, un,
22441 				    "sd_ioctl: un:0x%p pstats created and "
22442 				    "set\n", un);
22443 			}
22444 		}
22445 
22446 		if ((cmd == DKIOCSVTOC || cmd == DKIOCSEXTVTOC) ||
22447 		    ((cmd == DKIOCSETEFI) && (tmprval == 0))) {
22448 
22449 			mutex_enter(SD_MUTEX(un));
22450 			if (un->un_f_devid_supported &&
22451 			    (un->un_f_opt_fab_devid == TRUE)) {
22452 				if (un->un_devid == NULL) {
22453 					sd_register_devid(ssc, SD_DEVINFO(un),
22454 					    SD_TARGET_IS_UNRESERVED);
22455 				} else {
22456 					/*
22457 					 * The device id for this disk
22458 					 * has been fabricated. The
22459 					 * device id must be preserved
22460 					 * by writing it back out to
22461 					 * disk.
22462 					 */
22463 					if (sd_write_deviceid(ssc) != 0) {
22464 						ddi_devid_free(un->un_devid);
22465 						un->un_devid = NULL;
22466 					}
22467 				}
22468 			}
22469 			mutex_exit(SD_MUTEX(un));
22470 		}
22471 
22472 		break;
22473 
22474 	case DKIOCLOCK:
22475 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCLOCK\n");
22476 		err = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT,
22477 		    SD_PATH_STANDARD);
22478 		goto done_with_assess;
22479 
22480 	case DKIOCUNLOCK:
22481 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCUNLOCK\n");
22482 		err = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_ALLOW,
22483 		    SD_PATH_STANDARD);
22484 		goto done_with_assess;
22485 
22486 	case DKIOCSTATE: {
22487 		enum dkio_state		state;
22488 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSTATE\n");
22489 
22490 		if (ddi_copyin((void *)arg, &state, sizeof (int), flag) != 0) {
22491 			err = EFAULT;
22492 		} else {
22493 			err = sd_check_media(dev, state);
22494 			if (err == 0) {
22495 				if (ddi_copyout(&un->un_mediastate, (void *)arg,
22496 				    sizeof (int), flag) != 0)
22497 					err = EFAULT;
22498 			}
22499 		}
22500 		break;
22501 	}
22502 
22503 	case DKIOCREMOVABLE:
22504 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREMOVABLE\n");
22505 		i = un->un_f_has_removable_media ? 1 : 0;
22506 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
22507 			err = EFAULT;
22508 		} else {
22509 			err = 0;
22510 		}
22511 		break;
22512 
22513 	case DKIOCHOTPLUGGABLE:
22514 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCHOTPLUGGABLE\n");
22515 		i = un->un_f_is_hotpluggable ? 1 : 0;
22516 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
22517 			err = EFAULT;
22518 		} else {
22519 			err = 0;
22520 		}
22521 		break;
22522 
22523 	case DKIOCREADONLY:
22524 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREADONLY\n");
22525 		i = 0;
22526 		if ((ISCD(un) && !un->un_f_mmc_writable_media) ||
22527 		    (sr_check_wp(dev) != 0)) {
22528 			i = 1;
22529 		}
22530 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
22531 			err = EFAULT;
22532 		} else {
22533 			err = 0;
22534 		}
22535 		break;
22536 
22537 	case DKIOCGTEMPERATURE:
22538 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGTEMPERATURE\n");
22539 		err = sd_dkio_get_temp(dev, (caddr_t)arg, flag);
22540 		break;
22541 
22542 	case MHIOCENFAILFAST:
22543 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCENFAILFAST\n");
22544 		if ((err = drv_priv(cred_p)) == 0) {
22545 			err = sd_mhdioc_failfast(dev, (caddr_t)arg, flag);
22546 		}
22547 		break;
22548 
22549 	case MHIOCTKOWN:
22550 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCTKOWN\n");
22551 		if ((err = drv_priv(cred_p)) == 0) {
22552 			err = sd_mhdioc_takeown(dev, (caddr_t)arg, flag);
22553 		}
22554 		break;
22555 
22556 	case MHIOCRELEASE:
22557 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCRELEASE\n");
22558 		if ((err = drv_priv(cred_p)) == 0) {
22559 			err = sd_mhdioc_release(dev);
22560 		}
22561 		break;
22562 
22563 	case MHIOCSTATUS:
22564 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCSTATUS\n");
22565 		if ((err = drv_priv(cred_p)) == 0) {
22566 			switch (sd_send_scsi_TEST_UNIT_READY(ssc, 0)) {
22567 			case 0:
22568 				err = 0;
22569 				break;
22570 			case EACCES:
22571 				*rval_p = 1;
22572 				err = 0;
22573 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
22574 				break;
22575 			default:
22576 				err = EIO;
22577 				goto done_with_assess;
22578 			}
22579 		}
22580 		break;
22581 
22582 	case MHIOCQRESERVE:
22583 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCQRESERVE\n");
22584 		if ((err = drv_priv(cred_p)) == 0) {
22585 			err = sd_reserve_release(dev, SD_RESERVE);
22586 		}
22587 		break;
22588 
22589 	case MHIOCREREGISTERDEVID:
22590 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCREREGISTERDEVID\n");
22591 		if (drv_priv(cred_p) == EPERM) {
22592 			err = EPERM;
22593 		} else if (!un->un_f_devid_supported) {
22594 			err = ENOTTY;
22595 		} else {
22596 			err = sd_mhdioc_register_devid(dev);
22597 		}
22598 		break;
22599 
22600 	case MHIOCGRP_INKEYS:
22601 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INKEYS\n");
22602 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
22603 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22604 				err = ENOTSUP;
22605 			} else {
22606 				err = sd_mhdioc_inkeys(dev, (caddr_t)arg,
22607 				    flag);
22608 			}
22609 		}
22610 		break;
22611 
22612 	case MHIOCGRP_INRESV:
22613 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INRESV\n");
22614 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
22615 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22616 				err = ENOTSUP;
22617 			} else {
22618 				err = sd_mhdioc_inresv(dev, (caddr_t)arg, flag);
22619 			}
22620 		}
22621 		break;
22622 
22623 	case MHIOCGRP_REGISTER:
22624 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTER\n");
22625 		if ((err = drv_priv(cred_p)) != EPERM) {
22626 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22627 				err = ENOTSUP;
22628 			} else if (arg != NULL) {
22629 				mhioc_register_t reg;
22630 				if (ddi_copyin((void *)arg, &reg,
22631 				    sizeof (mhioc_register_t), flag) != 0) {
22632 					err = EFAULT;
22633 				} else {
22634 					err =
22635 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
22636 					    ssc, SD_SCSI3_REGISTER,
22637 					    (uchar_t *)&reg);
22638 					if (err != 0)
22639 						goto done_with_assess;
22640 				}
22641 			}
22642 		}
22643 		break;
22644 
22645 	case MHIOCGRP_CLEAR:
22646 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_CLEAR\n");
22647 		if ((err = drv_priv(cred_p)) != EPERM) {
22648 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22649 				err = ENOTSUP;
22650 			} else if (arg != NULL) {
22651 				mhioc_register_t reg;
22652 				if (ddi_copyin((void *)arg, &reg,
22653 				    sizeof (mhioc_register_t), flag) != 0) {
22654 					err = EFAULT;
22655 				} else {
22656 					err =
22657 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
22658 					    ssc, SD_SCSI3_CLEAR,
22659 					    (uchar_t *)&reg);
22660 					if (err != 0)
22661 						goto done_with_assess;
22662 				}
22663 			}
22664 		}
22665 		break;
22666 
22667 	case MHIOCGRP_RESERVE:
22668 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_RESERVE\n");
22669 		if ((err = drv_priv(cred_p)) != EPERM) {
22670 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22671 				err = ENOTSUP;
22672 			} else if (arg != NULL) {
22673 				mhioc_resv_desc_t resv_desc;
22674 				if (ddi_copyin((void *)arg, &resv_desc,
22675 				    sizeof (mhioc_resv_desc_t), flag) != 0) {
22676 					err = EFAULT;
22677 				} else {
22678 					err =
22679 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
22680 					    ssc, SD_SCSI3_RESERVE,
22681 					    (uchar_t *)&resv_desc);
22682 					if (err != 0)
22683 						goto done_with_assess;
22684 				}
22685 			}
22686 		}
22687 		break;
22688 
22689 	case MHIOCGRP_PREEMPTANDABORT:
22690 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n");
22691 		if ((err = drv_priv(cred_p)) != EPERM) {
22692 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22693 				err = ENOTSUP;
22694 			} else if (arg != NULL) {
22695 				mhioc_preemptandabort_t preempt_abort;
22696 				if (ddi_copyin((void *)arg, &preempt_abort,
22697 				    sizeof (mhioc_preemptandabort_t),
22698 				    flag) != 0) {
22699 					err = EFAULT;
22700 				} else {
22701 					err =
22702 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
22703 					    ssc, SD_SCSI3_PREEMPTANDABORT,
22704 					    (uchar_t *)&preempt_abort);
22705 					if (err != 0)
22706 						goto done_with_assess;
22707 				}
22708 			}
22709 		}
22710 		break;
22711 
22712 	case MHIOCGRP_REGISTERANDIGNOREKEY:
22713 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTERANDIGNOREKEY\n");
22714 		if ((err = drv_priv(cred_p)) != EPERM) {
22715 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22716 				err = ENOTSUP;
22717 			} else if (arg != NULL) {
22718 				mhioc_registerandignorekey_t r_and_i;
22719 				if (ddi_copyin((void *)arg, (void *)&r_and_i,
22720 				    sizeof (mhioc_registerandignorekey_t),
22721 				    flag) != 0) {
22722 					err = EFAULT;
22723 				} else {
22724 					err =
22725 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
22726 					    ssc, SD_SCSI3_REGISTERANDIGNOREKEY,
22727 					    (uchar_t *)&r_and_i);
22728 					if (err != 0)
22729 						goto done_with_assess;
22730 				}
22731 			}
22732 		}
22733 		break;
22734 
22735 	case USCSICMD:
22736 		SD_TRACE(SD_LOG_IOCTL, un, "USCSICMD\n");
22737 		cr = ddi_get_cred();
22738 		if ((drv_priv(cred_p) != 0) && (drv_priv(cr) != 0)) {
22739 			err = EPERM;
22740 		} else {
22741 			enum uio_seg	uioseg;
22742 
22743 			uioseg = (flag & FKIOCTL) ? UIO_SYSSPACE :
22744 			    UIO_USERSPACE;
22745 			if (un->un_f_format_in_progress == TRUE) {
22746 				err = EAGAIN;
22747 				break;
22748 			}
22749 
22750 			err = sd_ssc_send(ssc,
22751 			    (struct uscsi_cmd *)arg,
22752 			    flag, uioseg, SD_PATH_STANDARD);
22753 			if (err != 0)
22754 				goto done_with_assess;
22755 			else
22756 				sd_ssc_assessment(ssc, SD_FMT_STANDARD);
22757 		}
22758 		break;
22759 
22760 	case CDROMPAUSE:
22761 	case CDROMRESUME:
22762 		SD_TRACE(SD_LOG_IOCTL, un, "PAUSE-RESUME\n");
22763 		if (!ISCD(un)) {
22764 			err = ENOTTY;
22765 		} else {
22766 			err = sr_pause_resume(dev, cmd);
22767 		}
22768 		break;
22769 
22770 	case CDROMPLAYMSF:
22771 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYMSF\n");
22772 		if (!ISCD(un)) {
22773 			err = ENOTTY;
22774 		} else {
22775 			err = sr_play_msf(dev, (caddr_t)arg, flag);
22776 		}
22777 		break;
22778 
22779 	case CDROMPLAYTRKIND:
22780 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYTRKIND\n");
22781 #if defined(__i386) || defined(__amd64)
22782 		/*
22783 		 * not supported on ATAPI CD drives, use CDROMPLAYMSF instead
22784 		 */
22785 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
22786 #else
22787 		if (!ISCD(un)) {
22788 #endif
22789 			err = ENOTTY;
22790 		} else {
22791 			err = sr_play_trkind(dev, (caddr_t)arg, flag);
22792 		}
22793 		break;
22794 
22795 	case CDROMREADTOCHDR:
22796 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCHDR\n");
22797 		if (!ISCD(un)) {
22798 			err = ENOTTY;
22799 		} else {
22800 			err = sr_read_tochdr(dev, (caddr_t)arg, flag);
22801 		}
22802 		break;
22803 
22804 	case CDROMREADTOCENTRY:
22805 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCENTRY\n");
22806 		if (!ISCD(un)) {
22807 			err = ENOTTY;
22808 		} else {
22809 			err = sr_read_tocentry(dev, (caddr_t)arg, flag);
22810 		}
22811 		break;
22812 
22813 	case CDROMSTOP:
22814 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTOP\n");
22815 		if (!ISCD(un)) {
22816 			err = ENOTTY;
22817 		} else {
22818 			err = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
22819 			    SD_TARGET_STOP, SD_PATH_STANDARD);
22820 			goto done_with_assess;
22821 		}
22822 		break;
22823 
22824 	case CDROMSTART:
22825 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTART\n");
22826 		if (!ISCD(un)) {
22827 			err = ENOTTY;
22828 		} else {
22829 			err = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
22830 			    SD_TARGET_START, SD_PATH_STANDARD);
22831 			goto done_with_assess;
22832 		}
22833 		break;
22834 
22835 	case CDROMCLOSETRAY:
22836 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCLOSETRAY\n");
22837 		if (!ISCD(un)) {
22838 			err = ENOTTY;
22839 		} else {
22840 			err = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
22841 			    SD_TARGET_CLOSE, SD_PATH_STANDARD);
22842 			goto done_with_assess;
22843 		}
22844 		break;
22845 
22846 	case FDEJECT:	/* for eject command */
22847 	case DKIOCEJECT:
22848 	case CDROMEJECT:
22849 		SD_TRACE(SD_LOG_IOCTL, un, "EJECT\n");
22850 		if (!un->un_f_eject_media_supported) {
22851 			err = ENOTTY;
22852 		} else {
22853 			err = sr_eject(dev);
22854 		}
22855 		break;
22856 
22857 	case CDROMVOLCTRL:
22858 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMVOLCTRL\n");
22859 		if (!ISCD(un)) {
22860 			err = ENOTTY;
22861 		} else {
22862 			err = sr_volume_ctrl(dev, (caddr_t)arg, flag);
22863 		}
22864 		break;
22865 
22866 	case CDROMSUBCHNL:
22867 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCHNL\n");
22868 		if (!ISCD(un)) {
22869 			err = ENOTTY;
22870 		} else {
22871 			err = sr_read_subchannel(dev, (caddr_t)arg, flag);
22872 		}
22873 		break;
22874 
22875 	case CDROMREADMODE2:
22876 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE2\n");
22877 		if (!ISCD(un)) {
22878 			err = ENOTTY;
22879 		} else if (un->un_f_cfg_is_atapi == TRUE) {
22880 			/*
22881 			 * If the drive supports READ CD, use that instead of
22882 			 * switching the LBA size via a MODE SELECT
22883 			 * Block Descriptor
22884 			 */
22885 			err = sr_read_cd_mode2(dev, (caddr_t)arg, flag);
22886 		} else {
22887 			err = sr_read_mode2(dev, (caddr_t)arg, flag);
22888 		}
22889 		break;
22890 
22891 	case CDROMREADMODE1:
22892 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE1\n");
22893 		if (!ISCD(un)) {
22894 			err = ENOTTY;
22895 		} else {
22896 			err = sr_read_mode1(dev, (caddr_t)arg, flag);
22897 		}
22898 		break;
22899 
22900 	case CDROMREADOFFSET:
22901 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADOFFSET\n");
22902 		if (!ISCD(un)) {
22903 			err = ENOTTY;
22904 		} else {
22905 			err = sr_read_sony_session_offset(dev, (caddr_t)arg,
22906 			    flag);
22907 		}
22908 		break;
22909 
22910 	case CDROMSBLKMODE:
22911 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSBLKMODE\n");
22912 		/*
22913 		 * There is no means of changing block size in case of atapi
22914 		 * drives, thus return ENOTTY if drive type is atapi
22915 		 */
22916 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
22917 			err = ENOTTY;
22918 		} else if (un->un_f_mmc_cap == TRUE) {
22919 
22920 			/*
22921 			 * MMC Devices do not support changing the
22922 			 * logical block size
22923 			 *
22924 			 * Note: EINVAL is being returned instead of ENOTTY to
22925 			 * maintain consistancy with the original mmc
22926 			 * driver update.
22927 			 */
22928 			err = EINVAL;
22929 		} else {
22930 			mutex_enter(SD_MUTEX(un));
22931 			if ((!(un->un_exclopen & (1<<SDPART(dev)))) ||
22932 			    (un->un_ncmds_in_transport > 0)) {
22933 				mutex_exit(SD_MUTEX(un));
22934 				err = EINVAL;
22935 			} else {
22936 				mutex_exit(SD_MUTEX(un));
22937 				err = sr_change_blkmode(dev, cmd, arg, flag);
22938 			}
22939 		}
22940 		break;
22941 
22942 	case CDROMGBLKMODE:
22943 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMGBLKMODE\n");
22944 		if (!ISCD(un)) {
22945 			err = ENOTTY;
22946 		} else if ((un->un_f_cfg_is_atapi != FALSE) &&
22947 		    (un->un_f_blockcount_is_valid != FALSE)) {
22948 			/*
22949 			 * Drive is an ATAPI drive so return target block
22950 			 * size for ATAPI drives since we cannot change the
22951 			 * blocksize on ATAPI drives. Used primarily to detect
22952 			 * if an ATAPI cdrom is present.
22953 			 */
22954 			if (ddi_copyout(&un->un_tgt_blocksize, (void *)arg,
22955 			    sizeof (int), flag) != 0) {
22956 				err = EFAULT;
22957 			} else {
22958 				err = 0;
22959 			}
22960 
22961 		} else {
22962 			/*
22963 			 * Drive supports changing block sizes via a Mode
22964 			 * Select.
22965 			 */
22966 			err = sr_change_blkmode(dev, cmd, arg, flag);
22967 		}
22968 		break;
22969 
22970 	case CDROMGDRVSPEED:
22971 	case CDROMSDRVSPEED:
22972 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMXDRVSPEED\n");
22973 		if (!ISCD(un)) {
22974 			err = ENOTTY;
22975 		} else if (un->un_f_mmc_cap == TRUE) {
22976 			/*
22977 			 * Note: In the future the driver implementation
22978 			 * for getting and
22979 			 * setting cd speed should entail:
22980 			 * 1) If non-mmc try the Toshiba mode page
22981 			 *    (sr_change_speed)
22982 			 * 2) If mmc but no support for Real Time Streaming try
22983 			 *    the SET CD SPEED (0xBB) command
22984 			 *   (sr_atapi_change_speed)
22985 			 * 3) If mmc and support for Real Time Streaming
22986 			 *    try the GET PERFORMANCE and SET STREAMING
22987 			 *    commands (not yet implemented, 4380808)
22988 			 */
22989 			/*
22990 			 * As per recent MMC spec, CD-ROM speed is variable
22991 			 * and changes with LBA. Since there is no such
22992 			 * things as drive speed now, fail this ioctl.
22993 			 *
22994 			 * Note: EINVAL is returned for consistancy of original
22995 			 * implementation which included support for getting
22996 			 * the drive speed of mmc devices but not setting
22997 			 * the drive speed. Thus EINVAL would be returned
22998 			 * if a set request was made for an mmc device.
22999 			 * We no longer support get or set speed for
23000 			 * mmc but need to remain consistent with regard
23001 			 * to the error code returned.
23002 			 */
23003 			err = EINVAL;
23004 		} else if (un->un_f_cfg_is_atapi == TRUE) {
23005 			err = sr_atapi_change_speed(dev, cmd, arg, flag);
23006 		} else {
23007 			err = sr_change_speed(dev, cmd, arg, flag);
23008 		}
23009 		break;
23010 
23011 	case CDROMCDDA:
23012 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDDA\n");
23013 		if (!ISCD(un)) {
23014 			err = ENOTTY;
23015 		} else {
23016 			err = sr_read_cdda(dev, (void *)arg, flag);
23017 		}
23018 		break;
23019 
23020 	case CDROMCDXA:
23021 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDXA\n");
23022 		if (!ISCD(un)) {
23023 			err = ENOTTY;
23024 		} else {
23025 			err = sr_read_cdxa(dev, (caddr_t)arg, flag);
23026 		}
23027 		break;
23028 
23029 	case CDROMSUBCODE:
23030 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCODE\n");
23031 		if (!ISCD(un)) {
23032 			err = ENOTTY;
23033 		} else {
23034 			err = sr_read_all_subcodes(dev, (caddr_t)arg, flag);
23035 		}
23036 		break;
23037 
23038 
23039 #ifdef SDDEBUG
23040 /* RESET/ABORTS testing ioctls */
23041 	case DKIOCRESET: {
23042 		int	reset_level;
23043 
23044 		if (ddi_copyin((void *)arg, &reset_level, sizeof (int), flag)) {
23045 			err = EFAULT;
23046 		} else {
23047 			SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCRESET: "
23048 			    "reset_level = 0x%lx\n", reset_level);
23049 			if (scsi_reset(SD_ADDRESS(un), reset_level)) {
23050 				err = 0;
23051 			} else {
23052 				err = EIO;
23053 			}
23054 		}
23055 		break;
23056 	}
23057 
23058 	case DKIOCABORT:
23059 		SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCABORT:\n");
23060 		if (scsi_abort(SD_ADDRESS(un), NULL)) {
23061 			err = 0;
23062 		} else {
23063 			err = EIO;
23064 		}
23065 		break;
23066 #endif
23067 
23068 #ifdef SD_FAULT_INJECTION
23069 /* SDIOC FaultInjection testing ioctls */
23070 	case SDIOCSTART:
23071 	case SDIOCSTOP:
23072 	case SDIOCINSERTPKT:
23073 	case SDIOCINSERTXB:
23074 	case SDIOCINSERTUN:
23075 	case SDIOCINSERTARQ:
23076 	case SDIOCPUSH:
23077 	case SDIOCRETRIEVE:
23078 	case SDIOCRUN:
23079 		SD_INFO(SD_LOG_SDTEST, un, "sdioctl:"
23080 		    "SDIOC detected cmd:0x%X:\n", cmd);
23081 		/* call error generator */
23082 		sd_faultinjection_ioctl(cmd, arg, un);
23083 		err = 0;
23084 		break;
23085 
23086 #endif /* SD_FAULT_INJECTION */
23087 
23088 	case DKIOCFLUSHWRITECACHE:
23089 		{
23090 			struct dk_callback *dkc = (struct dk_callback *)arg;
23091 
23092 			mutex_enter(SD_MUTEX(un));
23093 			if (!un->un_f_sync_cache_supported ||
23094 			    !un->un_f_write_cache_enabled) {
23095 				err = un->un_f_sync_cache_supported ?
23096 				    0 : ENOTSUP;
23097 				mutex_exit(SD_MUTEX(un));
23098 				if ((flag & FKIOCTL) && dkc != NULL &&
23099 				    dkc->dkc_callback != NULL) {
23100 					(*dkc->dkc_callback)(dkc->dkc_cookie,
23101 					    err);
23102 					/*
23103 					 * Did callback and reported error.
23104 					 * Since we did a callback, ioctl
23105 					 * should return 0.
23106 					 */
23107 					err = 0;
23108 				}
23109 				break;
23110 			}
23111 			mutex_exit(SD_MUTEX(un));
23112 
23113 			if ((flag & FKIOCTL) && dkc != NULL &&
23114 			    dkc->dkc_callback != NULL) {
23115 				/* async SYNC CACHE request */
23116 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc);
23117 			} else {
23118 				/* synchronous SYNC CACHE request */
23119 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL);
23120 			}
23121 		}
23122 		break;
23123 
23124 	case DKIOCGETWCE: {
23125 
23126 		int wce;
23127 
23128 		if ((err = sd_get_write_cache_enabled(ssc, &wce)) != 0) {
23129 			break;
23130 		}
23131 
23132 		if (ddi_copyout(&wce, (void *)arg, sizeof (wce), flag)) {
23133 			err = EFAULT;
23134 		}
23135 		break;
23136 	}
23137 
23138 	case DKIOCSETWCE: {
23139 
23140 		int wce, sync_supported;
23141 		int cur_wce = 0;
23142 
23143 		if (ddi_copyin((void *)arg, &wce, sizeof (wce), flag)) {
23144 			err = EFAULT;
23145 			break;
23146 		}
23147 
23148 		/*
23149 		 * Synchronize multiple threads trying to enable
23150 		 * or disable the cache via the un_f_wcc_cv
23151 		 * condition variable.
23152 		 */
23153 		mutex_enter(SD_MUTEX(un));
23154 
23155 		/*
23156 		 * Don't allow the cache to be enabled if the
23157 		 * config file has it disabled.
23158 		 */
23159 		if (un->un_f_opt_disable_cache && wce) {
23160 			mutex_exit(SD_MUTEX(un));
23161 			err = EINVAL;
23162 			break;
23163 		}
23164 
23165 		/*
23166 		 * Wait for write cache change in progress
23167 		 * bit to be clear before proceeding.
23168 		 */
23169 		while (un->un_f_wcc_inprog)
23170 			cv_wait(&un->un_wcc_cv, SD_MUTEX(un));
23171 
23172 		un->un_f_wcc_inprog = 1;
23173 
23174 		mutex_exit(SD_MUTEX(un));
23175 
23176 		/*
23177 		 * Get the current write cache state
23178 		 */
23179 		if ((err = sd_get_write_cache_enabled(ssc, &cur_wce)) != 0) {
23180 			mutex_enter(SD_MUTEX(un));
23181 			un->un_f_wcc_inprog = 0;
23182 			cv_broadcast(&un->un_wcc_cv);
23183 			mutex_exit(SD_MUTEX(un));
23184 			break;
23185 		}
23186 
23187 		mutex_enter(SD_MUTEX(un));
23188 		un->un_f_write_cache_enabled = (cur_wce != 0);
23189 
23190 		if (un->un_f_write_cache_enabled && wce == 0) {
23191 			/*
23192 			 * Disable the write cache.  Don't clear
23193 			 * un_f_write_cache_enabled until after
23194 			 * the mode select and flush are complete.
23195 			 */
23196 			sync_supported = un->un_f_sync_cache_supported;
23197 
23198 			/*
23199 			 * If cache flush is suppressed, we assume that the
23200 			 * controller firmware will take care of managing the
23201 			 * write cache for us: no need to explicitly
23202 			 * disable it.
23203 			 */
23204 			if (!un->un_f_suppress_cache_flush) {
23205 				mutex_exit(SD_MUTEX(un));
23206 				if ((err = sd_cache_control(ssc,
23207 				    SD_CACHE_NOCHANGE,
23208 				    SD_CACHE_DISABLE)) == 0 &&
23209 				    sync_supported) {
23210 					err = sd_send_scsi_SYNCHRONIZE_CACHE(un,
23211 					    NULL);
23212 				}
23213 			} else {
23214 				mutex_exit(SD_MUTEX(un));
23215 			}
23216 
23217 			mutex_enter(SD_MUTEX(un));
23218 			if (err == 0) {
23219 				un->un_f_write_cache_enabled = 0;
23220 			}
23221 
23222 		} else if (!un->un_f_write_cache_enabled && wce != 0) {
23223 			/*
23224 			 * Set un_f_write_cache_enabled first, so there is
23225 			 * no window where the cache is enabled, but the
23226 			 * bit says it isn't.
23227 			 */
23228 			un->un_f_write_cache_enabled = 1;
23229 
23230 			/*
23231 			 * If cache flush is suppressed, we assume that the
23232 			 * controller firmware will take care of managing the
23233 			 * write cache for us: no need to explicitly
23234 			 * enable it.
23235 			 */
23236 			if (!un->un_f_suppress_cache_flush) {
23237 				mutex_exit(SD_MUTEX(un));
23238 				err = sd_cache_control(ssc, SD_CACHE_NOCHANGE,
23239 				    SD_CACHE_ENABLE);
23240 			} else {
23241 				mutex_exit(SD_MUTEX(un));
23242 			}
23243 
23244 			mutex_enter(SD_MUTEX(un));
23245 
23246 			if (err) {
23247 				un->un_f_write_cache_enabled = 0;
23248 			}
23249 		}
23250 
23251 		un->un_f_wcc_inprog = 0;
23252 		cv_broadcast(&un->un_wcc_cv);
23253 		mutex_exit(SD_MUTEX(un));
23254 		break;
23255 	}
23256 
23257 	default:
23258 		err = ENOTTY;
23259 		break;
23260 	}
23261 	mutex_enter(SD_MUTEX(un));
23262 	un->un_ncmds_in_driver--;
23263 	ASSERT(un->un_ncmds_in_driver >= 0);
23264 	mutex_exit(SD_MUTEX(un));
23265 
23266 
23267 done_without_assess:
23268 	sd_ssc_fini(ssc);
23269 
23270 	SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err);
23271 	return (err);
23272 
23273 done_with_assess:
23274 	mutex_enter(SD_MUTEX(un));
23275 	un->un_ncmds_in_driver--;
23276 	ASSERT(un->un_ncmds_in_driver >= 0);
23277 	mutex_exit(SD_MUTEX(un));
23278 
23279 done_quick_assess:
23280 	if (err != 0)
23281 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23282 	/* Uninitialize sd_ssc_t pointer */
23283 	sd_ssc_fini(ssc);
23284 
23285 	SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err);
23286 	return (err);
23287 }
23288 
23289 
23290 /*
23291  *    Function: sd_dkio_ctrl_info
23292  *
23293  * Description: This routine is the driver entry point for handling controller
23294  *		information ioctl requests (DKIOCINFO).
23295  *
23296  *   Arguments: dev  - the device number
23297  *		arg  - pointer to user provided dk_cinfo structure
23298  *		       specifying the controller type and attributes.
23299  *		flag - this argument is a pass through to ddi_copyxxx()
23300  *		       directly from the mode argument of ioctl().
23301  *
23302  * Return Code: 0
23303  *		EFAULT
23304  *		ENXIO
23305  */
23306 
23307 static int
23308 sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag)
23309 {
23310 	struct sd_lun	*un = NULL;
23311 	struct dk_cinfo	*info;
23312 	dev_info_t	*pdip;
23313 	int		lun, tgt;
23314 
23315 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23316 		return (ENXIO);
23317 	}
23318 
23319 	info = (struct dk_cinfo *)
23320 	    kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP);
23321 
23322 	switch (un->un_ctype) {
23323 	case CTYPE_CDROM:
23324 		info->dki_ctype = DKC_CDROM;
23325 		break;
23326 	default:
23327 		info->dki_ctype = DKC_SCSI_CCS;
23328 		break;
23329 	}
23330 	pdip = ddi_get_parent(SD_DEVINFO(un));
23331 	info->dki_cnum = ddi_get_instance(pdip);
23332 	if (strlen(ddi_get_name(pdip)) < DK_DEVLEN) {
23333 		(void) strcpy(info->dki_cname, ddi_get_name(pdip));
23334 	} else {
23335 		(void) strncpy(info->dki_cname, ddi_node_name(pdip),
23336 		    DK_DEVLEN - 1);
23337 	}
23338 
23339 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
23340 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_LUN, 0);
23341 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
23342 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_TARGET, 0);
23343 
23344 	/* Unit Information */
23345 	info->dki_unit = ddi_get_instance(SD_DEVINFO(un));
23346 	info->dki_slave = ((tgt << 3) | lun);
23347 	(void) strncpy(info->dki_dname, ddi_driver_name(SD_DEVINFO(un)),
23348 	    DK_DEVLEN - 1);
23349 	info->dki_flags = DKI_FMTVOL;
23350 	info->dki_partition = SDPART(dev);
23351 
23352 	/* Max Transfer size of this device in blocks */
23353 	info->dki_maxtransfer = un->un_max_xfer_size / un->un_sys_blocksize;
23354 	info->dki_addr = 0;
23355 	info->dki_space = 0;
23356 	info->dki_prio = 0;
23357 	info->dki_vec = 0;
23358 
23359 	if (ddi_copyout(info, arg, sizeof (struct dk_cinfo), flag) != 0) {
23360 		kmem_free(info, sizeof (struct dk_cinfo));
23361 		return (EFAULT);
23362 	} else {
23363 		kmem_free(info, sizeof (struct dk_cinfo));
23364 		return (0);
23365 	}
23366 }
23367 
23368 /*
23369  *    Function: sd_get_media_info_com
23370  *
23371  * Description: This routine returns the information required to populate
23372  *		the fields for the dk_minfo/dk_minfo_ext structures.
23373  *
23374  *   Arguments: dev		- the device number
23375  *		dki_media_type	- media_type
23376  *		dki_lbsize	- logical block size
23377  *		dki_capacity	- capacity in blocks
23378  *		dki_pbsize	- physical block size (if requested)
23379  *
23380  * Return Code: 0
23381  *		EACCESS
23382  *		EFAULT
23383  *		ENXIO
23384  *		EIO
23385  */
23386 static int
23387 sd_get_media_info_com(dev_t dev, uint_t *dki_media_type, uint_t *dki_lbsize,
23388 	diskaddr_t *dki_capacity, uint_t *dki_pbsize)
23389 {
23390 	struct sd_lun		*un = NULL;
23391 	struct uscsi_cmd	com;
23392 	struct scsi_inquiry	*sinq;
23393 	u_longlong_t		media_capacity;
23394 	uint64_t		capacity;
23395 	uint_t			lbasize;
23396 	uint_t			pbsize;
23397 	uchar_t			*out_data;
23398 	uchar_t			*rqbuf;
23399 	int			rval = 0;
23400 	int			rtn;
23401 	sd_ssc_t		*ssc;
23402 
23403 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
23404 	    (un->un_state == SD_STATE_OFFLINE)) {
23405 		return (ENXIO);
23406 	}
23407 
23408 	SD_TRACE(SD_LOG_IOCTL_DKIO, un, "sd_get_media_info_com: entry\n");
23409 
23410 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
23411 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
23412 	ssc = sd_ssc_init(un);
23413 
23414 	/* Issue a TUR to determine if the drive is ready with media present */
23415 	rval = sd_send_scsi_TEST_UNIT_READY(ssc, SD_CHECK_FOR_MEDIA);
23416 	if (rval == ENXIO) {
23417 		goto done;
23418 	} else if (rval != 0) {
23419 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23420 	}
23421 
23422 	/* Now get configuration data */
23423 	if (ISCD(un)) {
23424 		*dki_media_type = DK_CDROM;
23425 
23426 		/* Allow SCMD_GET_CONFIGURATION to MMC devices only */
23427 		if (un->un_f_mmc_cap == TRUE) {
23428 			rtn = sd_send_scsi_GET_CONFIGURATION(ssc, &com, rqbuf,
23429 			    SENSE_LENGTH, out_data, SD_PROFILE_HEADER_LEN,
23430 			    SD_PATH_STANDARD);
23431 
23432 			if (rtn) {
23433 				/*
23434 				 * We ignore all failures for CD and need to
23435 				 * put the assessment before processing code
23436 				 * to avoid missing assessment for FMA.
23437 				 */
23438 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23439 				/*
23440 				 * Failed for other than an illegal request
23441 				 * or command not supported
23442 				 */
23443 				if ((com.uscsi_status == STATUS_CHECK) &&
23444 				    (com.uscsi_rqstatus == STATUS_GOOD)) {
23445 					if ((rqbuf[2] != KEY_ILLEGAL_REQUEST) ||
23446 					    (rqbuf[12] != 0x20)) {
23447 						rval = EIO;
23448 						goto no_assessment;
23449 					}
23450 				}
23451 			} else {
23452 				/*
23453 				 * The GET CONFIGURATION command succeeded
23454 				 * so set the media type according to the
23455 				 * returned data
23456 				 */
23457 				*dki_media_type = out_data[6];
23458 				*dki_media_type <<= 8;
23459 				*dki_media_type |= out_data[7];
23460 			}
23461 		}
23462 	} else {
23463 		/*
23464 		 * The profile list is not available, so we attempt to identify
23465 		 * the media type based on the inquiry data
23466 		 */
23467 		sinq = un->un_sd->sd_inq;
23468 		if ((sinq->inq_dtype == DTYPE_DIRECT) ||
23469 		    (sinq->inq_dtype == DTYPE_OPTICAL)) {
23470 			/* This is a direct access device  or optical disk */
23471 			*dki_media_type = DK_FIXED_DISK;
23472 
23473 			if ((bcmp(sinq->inq_vid, "IOMEGA", 6) == 0) ||
23474 			    (bcmp(sinq->inq_vid, "iomega", 6) == 0)) {
23475 				if ((bcmp(sinq->inq_pid, "ZIP", 3) == 0)) {
23476 					*dki_media_type = DK_ZIP;
23477 				} else if (
23478 				    (bcmp(sinq->inq_pid, "jaz", 3) == 0)) {
23479 					*dki_media_type = DK_JAZ;
23480 				}
23481 			}
23482 		} else {
23483 			/*
23484 			 * Not a CD, direct access or optical disk so return
23485 			 * unknown media
23486 			 */
23487 			*dki_media_type = DK_UNKNOWN;
23488 		}
23489 	}
23490 
23491 	/*
23492 	 * Now read the capacity so we can provide the lbasize,
23493 	 * pbsize and capacity.
23494 	 */
23495 	if (dki_pbsize && un->un_f_descr_format_supported) {
23496 		rval = sd_send_scsi_READ_CAPACITY_16(ssc, &capacity, &lbasize,
23497 		    &pbsize, SD_PATH_DIRECT);
23498 
23499 		/*
23500 		 * Override the physical blocksize if the instance already
23501 		 * has a larger value.
23502 		 */
23503 		pbsize = MAX(pbsize, un->un_phy_blocksize);
23504 	}
23505 
23506 	if (dki_pbsize == NULL || rval != 0 ||
23507 	    !un->un_f_descr_format_supported) {
23508 		rval = sd_send_scsi_READ_CAPACITY(ssc, &capacity, &lbasize,
23509 		    SD_PATH_DIRECT);
23510 
23511 		switch (rval) {
23512 		case 0:
23513 			if (un->un_f_enable_rmw &&
23514 			    un->un_phy_blocksize != 0) {
23515 				pbsize = un->un_phy_blocksize;
23516 			} else {
23517 				pbsize = lbasize;
23518 			}
23519 			media_capacity = capacity;
23520 
23521 			/*
23522 			 * sd_send_scsi_READ_CAPACITY() reports capacity in
23523 			 * un->un_sys_blocksize chunks. So we need to convert
23524 			 * it into cap.lbsize chunks.
23525 			 */
23526 			if (un->un_f_has_removable_media) {
23527 				media_capacity *= un->un_sys_blocksize;
23528 				media_capacity /= lbasize;
23529 			}
23530 			break;
23531 		case EACCES:
23532 			rval = EACCES;
23533 			goto done;
23534 		default:
23535 			rval = EIO;
23536 			goto done;
23537 		}
23538 	} else {
23539 		if (un->un_f_enable_rmw &&
23540 		    !ISP2(pbsize % DEV_BSIZE)) {
23541 			pbsize = SSD_SECSIZE;
23542 		} else if (!ISP2(lbasize % DEV_BSIZE) ||
23543 		    !ISP2(pbsize % DEV_BSIZE)) {
23544 			pbsize = lbasize = DEV_BSIZE;
23545 		}
23546 		media_capacity = capacity;
23547 	}
23548 
23549 	/*
23550 	 * If lun is expanded dynamically, update the un structure.
23551 	 */
23552 	mutex_enter(SD_MUTEX(un));
23553 	if ((un->un_f_blockcount_is_valid == TRUE) &&
23554 	    (un->un_f_tgt_blocksize_is_valid == TRUE) &&
23555 	    (capacity > un->un_blockcount)) {
23556 		un->un_f_expnevent = B_FALSE;
23557 		sd_update_block_info(un, lbasize, capacity);
23558 	}
23559 	mutex_exit(SD_MUTEX(un));
23560 
23561 	*dki_lbsize = lbasize;
23562 	*dki_capacity = media_capacity;
23563 	if (dki_pbsize)
23564 		*dki_pbsize = pbsize;
23565 
23566 done:
23567 	if (rval != 0) {
23568 		if (rval == EIO)
23569 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
23570 		else
23571 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23572 	}
23573 no_assessment:
23574 	sd_ssc_fini(ssc);
23575 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
23576 	kmem_free(rqbuf, SENSE_LENGTH);
23577 	return (rval);
23578 }
23579 
23580 /*
23581  *    Function: sd_get_media_info
23582  *
23583  * Description: This routine is the driver entry point for handling ioctl
23584  *		requests for the media type or command set profile used by the
23585  *		drive to operate on the media (DKIOCGMEDIAINFO).
23586  *
23587  *   Arguments: dev	- the device number
23588  *		arg	- pointer to user provided dk_minfo structure
23589  *			  specifying the media type, logical block size and
23590  *			  drive capacity.
23591  *		flag	- this argument is a pass through to ddi_copyxxx()
23592  *			  directly from the mode argument of ioctl().
23593  *
23594  * Return Code: returns the value from sd_get_media_info_com
23595  */
23596 static int
23597 sd_get_media_info(dev_t dev, caddr_t arg, int flag)
23598 {
23599 	struct dk_minfo		mi;
23600 	int			rval;
23601 
23602 	rval = sd_get_media_info_com(dev, &mi.dki_media_type,
23603 	    &mi.dki_lbsize, &mi.dki_capacity, NULL);
23604 
23605 	if (rval)
23606 		return (rval);
23607 	if (ddi_copyout(&mi, arg, sizeof (struct dk_minfo), flag))
23608 		rval = EFAULT;
23609 	return (rval);
23610 }
23611 
23612 /*
23613  *    Function: sd_get_media_info_ext
23614  *
23615  * Description: This routine is the driver entry point for handling ioctl
23616  *		requests for the media type or command set profile used by the
23617  *		drive to operate on the media (DKIOCGMEDIAINFOEXT). The
23618  *		difference this ioctl and DKIOCGMEDIAINFO is the return value
23619  *		of this ioctl contains both logical block size and physical
23620  *		block size.
23621  *
23622  *
23623  *   Arguments: dev	- the device number
23624  *		arg	- pointer to user provided dk_minfo_ext structure
23625  *			  specifying the media type, logical block size,
23626  *			  physical block size and disk capacity.
23627  *		flag	- this argument is a pass through to ddi_copyxxx()
23628  *			  directly from the mode argument of ioctl().
23629  *
23630  * Return Code: returns the value from sd_get_media_info_com
23631  */
23632 static int
23633 sd_get_media_info_ext(dev_t dev, caddr_t arg, int flag)
23634 {
23635 	struct dk_minfo_ext	mie;
23636 	int			rval = 0;
23637 
23638 	rval = sd_get_media_info_com(dev, &mie.dki_media_type,
23639 	    &mie.dki_lbsize, &mie.dki_capacity, &mie.dki_pbsize);
23640 
23641 	if (rval)
23642 		return (rval);
23643 	if (ddi_copyout(&mie, arg, sizeof (struct dk_minfo_ext), flag))
23644 		rval = EFAULT;
23645 	return (rval);
23646 
23647 }
23648 
23649 /*
23650  *    Function: sd_watch_request_submit
23651  *
23652  * Description: Call scsi_watch_request_submit or scsi_mmc_watch_request_submit
23653  *		depending on which is supported by device.
23654  */
23655 static opaque_t
23656 sd_watch_request_submit(struct sd_lun *un)
23657 {
23658 	dev_t			dev;
23659 
23660 	/* All submissions are unified to use same device number */
23661 	dev = sd_make_device(SD_DEVINFO(un));
23662 
23663 	if (un->un_f_mmc_cap && un->un_f_mmc_gesn_polling) {
23664 		return (scsi_mmc_watch_request_submit(SD_SCSI_DEVP(un),
23665 		    sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb,
23666 		    (caddr_t)dev));
23667 	} else {
23668 		return (scsi_watch_request_submit(SD_SCSI_DEVP(un),
23669 		    sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb,
23670 		    (caddr_t)dev));
23671 	}
23672 }
23673 
23674 
23675 /*
23676  *    Function: sd_check_media
23677  *
23678  * Description: This utility routine implements the functionality for the
23679  *		DKIOCSTATE ioctl. This ioctl blocks the user thread until the
23680  *		driver state changes from that specified by the user
23681  *		(inserted or ejected). For example, if the user specifies
23682  *		DKIO_EJECTED and the current media state is inserted this
23683  *		routine will immediately return DKIO_INSERTED. However, if the
23684  *		current media state is not inserted the user thread will be
23685  *		blocked until the drive state changes. If DKIO_NONE is specified
23686  *		the user thread will block until a drive state change occurs.
23687  *
23688  *   Arguments: dev  - the device number
23689  *		state  - user pointer to a dkio_state, updated with the current
23690  *			drive state at return.
23691  *
23692  * Return Code: ENXIO
23693  *		EIO
23694  *		EAGAIN
23695  *		EINTR
23696  */
23697 
23698 static int
23699 sd_check_media(dev_t dev, enum dkio_state state)
23700 {
23701 	struct sd_lun		*un = NULL;
23702 	enum dkio_state		prev_state;
23703 	opaque_t		token = NULL;
23704 	int			rval = 0;
23705 	sd_ssc_t		*ssc;
23706 
23707 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23708 		return (ENXIO);
23709 	}
23710 
23711 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: entry\n");
23712 
23713 	ssc = sd_ssc_init(un);
23714 
23715 	mutex_enter(SD_MUTEX(un));
23716 
23717 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: "
23718 	    "state=%x, mediastate=%x\n", state, un->un_mediastate);
23719 
23720 	prev_state = un->un_mediastate;
23721 
23722 	/* is there anything to do? */
23723 	if (state == un->un_mediastate || un->un_mediastate == DKIO_NONE) {
23724 		/*
23725 		 * submit the request to the scsi_watch service;
23726 		 * scsi_media_watch_cb() does the real work
23727 		 */
23728 		mutex_exit(SD_MUTEX(un));
23729 
23730 		/*
23731 		 * This change handles the case where a scsi watch request is
23732 		 * added to a device that is powered down. To accomplish this
23733 		 * we power up the device before adding the scsi watch request,
23734 		 * since the scsi watch sends a TUR directly to the device
23735 		 * which the device cannot handle if it is powered down.
23736 		 */
23737 		if (sd_pm_entry(un) != DDI_SUCCESS) {
23738 			mutex_enter(SD_MUTEX(un));
23739 			goto done;
23740 		}
23741 
23742 		token = sd_watch_request_submit(un);
23743 
23744 		sd_pm_exit(un);
23745 
23746 		mutex_enter(SD_MUTEX(un));
23747 		if (token == NULL) {
23748 			rval = EAGAIN;
23749 			goto done;
23750 		}
23751 
23752 		/*
23753 		 * This is a special case IOCTL that doesn't return
23754 		 * until the media state changes. Routine sdpower
23755 		 * knows about and handles this so don't count it
23756 		 * as an active cmd in the driver, which would
23757 		 * keep the device busy to the pm framework.
23758 		 * If the count isn't decremented the device can't
23759 		 * be powered down.
23760 		 */
23761 		un->un_ncmds_in_driver--;
23762 		ASSERT(un->un_ncmds_in_driver >= 0);
23763 
23764 		/*
23765 		 * if a prior request had been made, this will be the same
23766 		 * token, as scsi_watch was designed that way.
23767 		 */
23768 		un->un_swr_token = token;
23769 		un->un_specified_mediastate = state;
23770 
23771 		/*
23772 		 * now wait for media change
23773 		 * we will not be signalled unless mediastate == state but it is
23774 		 * still better to test for this condition, since there is a
23775 		 * 2 sec cv_broadcast delay when mediastate == DKIO_INSERTED
23776 		 */
23777 		SD_TRACE(SD_LOG_COMMON, un,
23778 		    "sd_check_media: waiting for media state change\n");
23779 		while (un->un_mediastate == state) {
23780 			if (cv_wait_sig(&un->un_state_cv, SD_MUTEX(un)) == 0) {
23781 				SD_TRACE(SD_LOG_COMMON, un,
23782 				    "sd_check_media: waiting for media state "
23783 				    "was interrupted\n");
23784 				un->un_ncmds_in_driver++;
23785 				rval = EINTR;
23786 				goto done;
23787 			}
23788 			SD_TRACE(SD_LOG_COMMON, un,
23789 			    "sd_check_media: received signal, state=%x\n",
23790 			    un->un_mediastate);
23791 		}
23792 		/*
23793 		 * Inc the counter to indicate the device once again
23794 		 * has an active outstanding cmd.
23795 		 */
23796 		un->un_ncmds_in_driver++;
23797 	}
23798 
23799 	/* invalidate geometry */
23800 	if (prev_state == DKIO_INSERTED && un->un_mediastate == DKIO_EJECTED) {
23801 		sr_ejected(un);
23802 	}
23803 
23804 	if (un->un_mediastate == DKIO_INSERTED && prev_state != DKIO_INSERTED) {
23805 		uint64_t	capacity;
23806 		uint_t		lbasize;
23807 
23808 		SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: media inserted\n");
23809 		mutex_exit(SD_MUTEX(un));
23810 		/*
23811 		 * Since the following routines use SD_PATH_DIRECT, we must
23812 		 * call PM directly before the upcoming disk accesses. This
23813 		 * may cause the disk to be power/spin up.
23814 		 */
23815 
23816 		if (sd_pm_entry(un) == DDI_SUCCESS) {
23817 			rval = sd_send_scsi_READ_CAPACITY(ssc,
23818 			    &capacity, &lbasize, SD_PATH_DIRECT);
23819 			if (rval != 0) {
23820 				sd_pm_exit(un);
23821 				if (rval == EIO)
23822 					sd_ssc_assessment(ssc,
23823 					    SD_FMT_STATUS_CHECK);
23824 				else
23825 					sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23826 				mutex_enter(SD_MUTEX(un));
23827 				goto done;
23828 			}
23829 		} else {
23830 			rval = EIO;
23831 			mutex_enter(SD_MUTEX(un));
23832 			goto done;
23833 		}
23834 		mutex_enter(SD_MUTEX(un));
23835 
23836 		sd_update_block_info(un, lbasize, capacity);
23837 
23838 		/*
23839 		 *  Check if the media in the device is writable or not
23840 		 */
23841 		if (ISCD(un)) {
23842 			sd_check_for_writable_cd(ssc, SD_PATH_DIRECT);
23843 		}
23844 
23845 		mutex_exit(SD_MUTEX(un));
23846 		cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT);
23847 		if ((cmlb_validate(un->un_cmlbhandle, 0,
23848 		    (void *)SD_PATH_DIRECT) == 0) && un->un_f_pkstats_enabled) {
23849 			sd_set_pstats(un);
23850 			SD_TRACE(SD_LOG_IO_PARTITION, un,
23851 			    "sd_check_media: un:0x%p pstats created and "
23852 			    "set\n", un);
23853 		}
23854 
23855 		rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT,
23856 		    SD_PATH_DIRECT);
23857 
23858 		sd_pm_exit(un);
23859 
23860 		if (rval != 0) {
23861 			if (rval == EIO)
23862 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
23863 			else
23864 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23865 		}
23866 
23867 		mutex_enter(SD_MUTEX(un));
23868 	}
23869 done:
23870 	sd_ssc_fini(ssc);
23871 	un->un_f_watcht_stopped = FALSE;
23872 	if (token != NULL && un->un_swr_token != NULL) {
23873 		/*
23874 		 * Use of this local token and the mutex ensures that we avoid
23875 		 * some race conditions associated with terminating the
23876 		 * scsi watch.
23877 		 */
23878 		token = un->un_swr_token;
23879 		mutex_exit(SD_MUTEX(un));
23880 		(void) scsi_watch_request_terminate(token,
23881 		    SCSI_WATCH_TERMINATE_WAIT);
23882 		if (scsi_watch_get_ref_count(token) == 0) {
23883 			mutex_enter(SD_MUTEX(un));
23884 			un->un_swr_token = (opaque_t)NULL;
23885 		} else {
23886 			mutex_enter(SD_MUTEX(un));
23887 		}
23888 	}
23889 
23890 	/*
23891 	 * Update the capacity kstat value, if no media previously
23892 	 * (capacity kstat is 0) and a media has been inserted
23893 	 * (un_f_blockcount_is_valid == TRUE)
23894 	 */
23895 	if (un->un_errstats) {
23896 		struct sd_errstats	*stp = NULL;
23897 
23898 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
23899 		if ((stp->sd_capacity.value.ui64 == 0) &&
23900 		    (un->un_f_blockcount_is_valid == TRUE)) {
23901 			stp->sd_capacity.value.ui64 =
23902 			    (uint64_t)((uint64_t)un->un_blockcount *
23903 			    un->un_sys_blocksize);
23904 		}
23905 	}
23906 	mutex_exit(SD_MUTEX(un));
23907 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: done\n");
23908 	return (rval);
23909 }
23910 
23911 
23912 /*
23913  *    Function: sd_delayed_cv_broadcast
23914  *
23915  * Description: Delayed cv_broadcast to allow for target to recover from media
23916  *		insertion.
23917  *
23918  *   Arguments: arg - driver soft state (unit) structure
23919  */
23920 
23921 static void
23922 sd_delayed_cv_broadcast(void *arg)
23923 {
23924 	struct sd_lun *un = arg;
23925 
23926 	SD_TRACE(SD_LOG_COMMON, un, "sd_delayed_cv_broadcast\n");
23927 
23928 	mutex_enter(SD_MUTEX(un));
23929 	un->un_dcvb_timeid = NULL;
23930 	cv_broadcast(&un->un_state_cv);
23931 	mutex_exit(SD_MUTEX(un));
23932 }
23933 
23934 
23935 /*
23936  *    Function: sd_media_watch_cb
23937  *
23938  * Description: Callback routine used for support of the DKIOCSTATE ioctl. This
23939  *		routine processes the TUR sense data and updates the driver
23940  *		state if a transition has occurred. The user thread
23941  *		(sd_check_media) is then signalled.
23942  *
23943  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
23944  *			among multiple watches that share this callback function
23945  *		resultp - scsi watch facility result packet containing scsi
23946  *			  packet, status byte and sense data
23947  *
23948  * Return Code: 0 for success, -1 for failure
23949  */
23950 
23951 static int
23952 sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
23953 {
23954 	struct sd_lun			*un;
23955 	struct scsi_status		*statusp = resultp->statusp;
23956 	uint8_t				*sensep = (uint8_t *)resultp->sensep;
23957 	enum dkio_state			state = DKIO_NONE;
23958 	dev_t				dev = (dev_t)arg;
23959 	uchar_t				actual_sense_length;
23960 	uint8_t				skey, asc, ascq;
23961 
23962 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23963 		return (-1);
23964 	}
23965 	actual_sense_length = resultp->actual_sense_length;
23966 
23967 	mutex_enter(SD_MUTEX(un));
23968 	SD_TRACE(SD_LOG_COMMON, un,
23969 	    "sd_media_watch_cb: status=%x, sensep=%p, len=%x\n",
23970 	    *((char *)statusp), (void *)sensep, actual_sense_length);
23971 
23972 	if (resultp->pkt->pkt_reason == CMD_DEV_GONE) {
23973 		un->un_mediastate = DKIO_DEV_GONE;
23974 		cv_broadcast(&un->un_state_cv);
23975 		mutex_exit(SD_MUTEX(un));
23976 
23977 		return (0);
23978 	}
23979 
23980 	if (un->un_f_mmc_cap && un->un_f_mmc_gesn_polling) {
23981 		if (sd_gesn_media_data_valid(resultp->mmc_data)) {
23982 			if ((resultp->mmc_data[5] &
23983 			    SD_GESN_MEDIA_EVENT_STATUS_PRESENT) != 0) {
23984 				state = DKIO_INSERTED;
23985 			} else {
23986 				state = DKIO_EJECTED;
23987 			}
23988 			if ((resultp->mmc_data[4] & SD_GESN_MEDIA_EVENT_CODE) ==
23989 			    SD_GESN_MEDIA_EVENT_EJECTREQUEST) {
23990 				sd_log_eject_request_event(un, KM_NOSLEEP);
23991 			}
23992 		}
23993 	} else if (sensep != NULL) {
23994 		/*
23995 		 * If there was a check condition then sensep points to valid
23996 		 * sense data. If status was not a check condition but a
23997 		 * reservation or busy status then the new state is DKIO_NONE.
23998 		 */
23999 		skey = scsi_sense_key(sensep);
24000 		asc = scsi_sense_asc(sensep);
24001 		ascq = scsi_sense_ascq(sensep);
24002 
24003 		SD_INFO(SD_LOG_COMMON, un,
24004 		    "sd_media_watch_cb: sense KEY=%x, ASC=%x, ASCQ=%x\n",
24005 		    skey, asc, ascq);
24006 		/* This routine only uses up to 13 bytes of sense data. */
24007 		if (actual_sense_length >= 13) {
24008 			if (skey == KEY_UNIT_ATTENTION) {
24009 				if (asc == 0x28) {
24010 					state = DKIO_INSERTED;
24011 				}
24012 			} else if (skey == KEY_NOT_READY) {
24013 				/*
24014 				 * Sense data of 02/06/00 means that the
24015 				 * drive could not read the media (No
24016 				 * reference position found). In this case
24017 				 * to prevent a hang on the DKIOCSTATE IOCTL
24018 				 * we set the media state to DKIO_INSERTED.
24019 				 */
24020 				if (asc == 0x06 && ascq == 0x00)
24021 					state = DKIO_INSERTED;
24022 
24023 				/*
24024 				 * if 02/04/02  means that the host
24025 				 * should send start command. Explicitly
24026 				 * leave the media state as is
24027 				 * (inserted) as the media is inserted
24028 				 * and host has stopped device for PM
24029 				 * reasons. Upon next true read/write
24030 				 * to this media will bring the
24031 				 * device to the right state good for
24032 				 * media access.
24033 				 */
24034 				if (asc == 0x3a) {
24035 					state = DKIO_EJECTED;
24036 				} else {
24037 					/*
24038 					 * If the drive is busy with an
24039 					 * operation or long write, keep the
24040 					 * media in an inserted state.
24041 					 */
24042 
24043 					if ((asc == 0x04) &&
24044 					    ((ascq == 0x02) ||
24045 					    (ascq == 0x07) ||
24046 					    (ascq == 0x08))) {
24047 						state = DKIO_INSERTED;
24048 					}
24049 				}
24050 			} else if (skey == KEY_NO_SENSE) {
24051 				if ((asc == 0x00) && (ascq == 0x00)) {
24052 					/*
24053 					 * Sense Data 00/00/00 does not provide
24054 					 * any information about the state of
24055 					 * the media. Ignore it.
24056 					 */
24057 					mutex_exit(SD_MUTEX(un));
24058 					return (0);
24059 				}
24060 			}
24061 		}
24062 	} else if ((*((char *)statusp) == STATUS_GOOD) &&
24063 	    (resultp->pkt->pkt_reason == CMD_CMPLT)) {
24064 		state = DKIO_INSERTED;
24065 	}
24066 
24067 	SD_TRACE(SD_LOG_COMMON, un,
24068 	    "sd_media_watch_cb: state=%x, specified=%x\n",
24069 	    state, un->un_specified_mediastate);
24070 
24071 	/*
24072 	 * now signal the waiting thread if this is *not* the specified state;
24073 	 * delay the signal if the state is DKIO_INSERTED to allow the target
24074 	 * to recover
24075 	 */
24076 	if (state != un->un_specified_mediastate) {
24077 		un->un_mediastate = state;
24078 		if (state == DKIO_INSERTED) {
24079 			/*
24080 			 * delay the signal to give the drive a chance
24081 			 * to do what it apparently needs to do
24082 			 */
24083 			SD_TRACE(SD_LOG_COMMON, un,
24084 			    "sd_media_watch_cb: delayed cv_broadcast\n");
24085 			if (un->un_dcvb_timeid == NULL) {
24086 				un->un_dcvb_timeid =
24087 				    timeout(sd_delayed_cv_broadcast, un,
24088 				    drv_usectohz((clock_t)MEDIA_ACCESS_DELAY));
24089 			}
24090 		} else {
24091 			SD_TRACE(SD_LOG_COMMON, un,
24092 			    "sd_media_watch_cb: immediate cv_broadcast\n");
24093 			cv_broadcast(&un->un_state_cv);
24094 		}
24095 	}
24096 	mutex_exit(SD_MUTEX(un));
24097 	return (0);
24098 }
24099 
24100 
24101 /*
24102  *    Function: sd_dkio_get_temp
24103  *
24104  * Description: This routine is the driver entry point for handling ioctl
24105  *		requests to get the disk temperature.
24106  *
24107  *   Arguments: dev  - the device number
24108  *		arg  - pointer to user provided dk_temperature structure.
24109  *		flag - this argument is a pass through to ddi_copyxxx()
24110  *		       directly from the mode argument of ioctl().
24111  *
24112  * Return Code: 0
24113  *		EFAULT
24114  *		ENXIO
24115  *		EAGAIN
24116  */
24117 
24118 static int
24119 sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag)
24120 {
24121 	struct sd_lun		*un = NULL;
24122 	struct dk_temperature	*dktemp = NULL;
24123 	uchar_t			*temperature_page;
24124 	int			rval = 0;
24125 	int			path_flag = SD_PATH_STANDARD;
24126 	sd_ssc_t		*ssc;
24127 
24128 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24129 		return (ENXIO);
24130 	}
24131 
24132 	ssc = sd_ssc_init(un);
24133 	dktemp = kmem_zalloc(sizeof (struct dk_temperature), KM_SLEEP);
24134 
24135 	/* copyin the disk temp argument to get the user flags */
24136 	if (ddi_copyin((void *)arg, dktemp,
24137 	    sizeof (struct dk_temperature), flag) != 0) {
24138 		rval = EFAULT;
24139 		goto done;
24140 	}
24141 
24142 	/* Initialize the temperature to invalid. */
24143 	dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
24144 	dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
24145 
24146 	/*
24147 	 * Note: Investigate removing the "bypass pm" semantic.
24148 	 * Can we just bypass PM always?
24149 	 */
24150 	if (dktemp->dkt_flags & DKT_BYPASS_PM) {
24151 		path_flag = SD_PATH_DIRECT;
24152 		ASSERT(!mutex_owned(&un->un_pm_mutex));
24153 		mutex_enter(&un->un_pm_mutex);
24154 		if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
24155 			/*
24156 			 * If DKT_BYPASS_PM is set, and the drive happens to be
24157 			 * in low power mode, we can not wake it up, Need to
24158 			 * return EAGAIN.
24159 			 */
24160 			mutex_exit(&un->un_pm_mutex);
24161 			rval = EAGAIN;
24162 			goto done;
24163 		} else {
24164 			/*
24165 			 * Indicate to PM the device is busy. This is required
24166 			 * to avoid a race - i.e. the ioctl is issuing a
24167 			 * command and the pm framework brings down the device
24168 			 * to low power mode (possible power cut-off on some
24169 			 * platforms).
24170 			 */
24171 			mutex_exit(&un->un_pm_mutex);
24172 			if (sd_pm_entry(un) != DDI_SUCCESS) {
24173 				rval = EAGAIN;
24174 				goto done;
24175 			}
24176 		}
24177 	}
24178 
24179 	temperature_page = kmem_zalloc(TEMPERATURE_PAGE_SIZE, KM_SLEEP);
24180 
24181 	rval = sd_send_scsi_LOG_SENSE(ssc, temperature_page,
24182 	    TEMPERATURE_PAGE_SIZE, TEMPERATURE_PAGE, 1, 0, path_flag);
24183 	if (rval != 0)
24184 		goto done2;
24185 
24186 	/*
24187 	 * For the current temperature verify that the parameter length is 0x02
24188 	 * and the parameter code is 0x00
24189 	 */
24190 	if ((temperature_page[7] == 0x02) && (temperature_page[4] == 0x00) &&
24191 	    (temperature_page[5] == 0x00)) {
24192 		if (temperature_page[9] == 0xFF) {
24193 			dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
24194 		} else {
24195 			dktemp->dkt_cur_temp = (short)(temperature_page[9]);
24196 		}
24197 	}
24198 
24199 	/*
24200 	 * For the reference temperature verify that the parameter
24201 	 * length is 0x02 and the parameter code is 0x01
24202 	 */
24203 	if ((temperature_page[13] == 0x02) && (temperature_page[10] == 0x00) &&
24204 	    (temperature_page[11] == 0x01)) {
24205 		if (temperature_page[15] == 0xFF) {
24206 			dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
24207 		} else {
24208 			dktemp->dkt_ref_temp = (short)(temperature_page[15]);
24209 		}
24210 	}
24211 
24212 	/* Do the copyout regardless of the temperature commands status. */
24213 	if (ddi_copyout(dktemp, (void *)arg, sizeof (struct dk_temperature),
24214 	    flag) != 0) {
24215 		rval = EFAULT;
24216 		goto done1;
24217 	}
24218 
24219 done2:
24220 	if (rval != 0) {
24221 		if (rval == EIO)
24222 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
24223 		else
24224 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
24225 	}
24226 done1:
24227 	if (path_flag == SD_PATH_DIRECT) {
24228 		sd_pm_exit(un);
24229 	}
24230 
24231 	kmem_free(temperature_page, TEMPERATURE_PAGE_SIZE);
24232 done:
24233 	sd_ssc_fini(ssc);
24234 	if (dktemp != NULL) {
24235 		kmem_free(dktemp, sizeof (struct dk_temperature));
24236 	}
24237 
24238 	return (rval);
24239 }
24240 
24241 
24242 /*
24243  *    Function: sd_log_page_supported
24244  *
24245  * Description: This routine uses sd_send_scsi_LOG_SENSE to find the list of
24246  *		supported log pages.
24247  *
24248  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
24249  *                      structure for this target.
24250  *		log_page -
24251  *
24252  * Return Code: -1 - on error (log sense is optional and may not be supported).
24253  *		0  - log page not found.
24254  *  		1  - log page found.
24255  */
24256 
24257 static int
24258 sd_log_page_supported(sd_ssc_t *ssc, int log_page)
24259 {
24260 	uchar_t *log_page_data;
24261 	int	i;
24262 	int	match = 0;
24263 	int	log_size;
24264 	int	status = 0;
24265 	struct sd_lun	*un;
24266 
24267 	ASSERT(ssc != NULL);
24268 	un = ssc->ssc_un;
24269 	ASSERT(un != NULL);
24270 
24271 	log_page_data = kmem_zalloc(0xFF, KM_SLEEP);
24272 
24273 	status = sd_send_scsi_LOG_SENSE(ssc, log_page_data, 0xFF, 0, 0x01, 0,
24274 	    SD_PATH_DIRECT);
24275 
24276 	if (status != 0) {
24277 		if (status == EIO) {
24278 			/*
24279 			 * Some disks do not support log sense, we
24280 			 * should ignore this kind of error(sense key is
24281 			 * 0x5 - illegal request).
24282 			 */
24283 			uint8_t *sensep;
24284 			int senlen;
24285 
24286 			sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf;
24287 			senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen -
24288 			    ssc->ssc_uscsi_cmd->uscsi_rqresid);
24289 
24290 			if (senlen > 0 &&
24291 			    scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) {
24292 				sd_ssc_assessment(ssc,
24293 				    SD_FMT_IGNORE_COMPROMISE);
24294 			} else {
24295 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
24296 			}
24297 		} else {
24298 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
24299 		}
24300 
24301 		SD_ERROR(SD_LOG_COMMON, un,
24302 		    "sd_log_page_supported: failed log page retrieval\n");
24303 		kmem_free(log_page_data, 0xFF);
24304 		return (-1);
24305 	}
24306 
24307 	log_size = log_page_data[3];
24308 
24309 	/*
24310 	 * The list of supported log pages start from the fourth byte. Check
24311 	 * until we run out of log pages or a match is found.
24312 	 */
24313 	for (i = 4; (i < (log_size + 4)) && !match; i++) {
24314 		if (log_page_data[i] == log_page) {
24315 			match++;
24316 		}
24317 	}
24318 	kmem_free(log_page_data, 0xFF);
24319 	return (match);
24320 }
24321 
24322 
24323 /*
24324  *    Function: sd_mhdioc_failfast
24325  *
24326  * Description: This routine is the driver entry point for handling ioctl
24327  *		requests to enable/disable the multihost failfast option.
24328  *		(MHIOCENFAILFAST)
24329  *
24330  *   Arguments: dev	- the device number
24331  *		arg	- user specified probing interval.
24332  *		flag	- this argument is a pass through to ddi_copyxxx()
24333  *			  directly from the mode argument of ioctl().
24334  *
24335  * Return Code: 0
24336  *		EFAULT
24337  *		ENXIO
24338  */
24339 
24340 static int
24341 sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag)
24342 {
24343 	struct sd_lun	*un = NULL;
24344 	int		mh_time;
24345 	int		rval = 0;
24346 
24347 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24348 		return (ENXIO);
24349 	}
24350 
24351 	if (ddi_copyin((void *)arg, &mh_time, sizeof (int), flag))
24352 		return (EFAULT);
24353 
24354 	if (mh_time) {
24355 		mutex_enter(SD_MUTEX(un));
24356 		un->un_resvd_status |= SD_FAILFAST;
24357 		mutex_exit(SD_MUTEX(un));
24358 		/*
24359 		 * If mh_time is INT_MAX, then this ioctl is being used for
24360 		 * SCSI-3 PGR purposes, and we don't need to spawn watch thread.
24361 		 */
24362 		if (mh_time != INT_MAX) {
24363 			rval = sd_check_mhd(dev, mh_time);
24364 		}
24365 	} else {
24366 		(void) sd_check_mhd(dev, 0);
24367 		mutex_enter(SD_MUTEX(un));
24368 		un->un_resvd_status &= ~SD_FAILFAST;
24369 		mutex_exit(SD_MUTEX(un));
24370 	}
24371 	return (rval);
24372 }
24373 
24374 
24375 /*
24376  *    Function: sd_mhdioc_takeown
24377  *
24378  * Description: This routine is the driver entry point for handling ioctl
24379  *		requests to forcefully acquire exclusive access rights to the
24380  *		multihost disk (MHIOCTKOWN).
24381  *
24382  *   Arguments: dev	- the device number
24383  *		arg	- user provided structure specifying the delay
24384  *			  parameters in milliseconds
24385  *		flag	- this argument is a pass through to ddi_copyxxx()
24386  *			  directly from the mode argument of ioctl().
24387  *
24388  * Return Code: 0
24389  *		EFAULT
24390  *		ENXIO
24391  */
24392 
24393 static int
24394 sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag)
24395 {
24396 	struct sd_lun		*un = NULL;
24397 	struct mhioctkown	*tkown = NULL;
24398 	int			rval = 0;
24399 
24400 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24401 		return (ENXIO);
24402 	}
24403 
24404 	if (arg != NULL) {
24405 		tkown = (struct mhioctkown *)
24406 		    kmem_zalloc(sizeof (struct mhioctkown), KM_SLEEP);
24407 		rval = ddi_copyin(arg, tkown, sizeof (struct mhioctkown), flag);
24408 		if (rval != 0) {
24409 			rval = EFAULT;
24410 			goto error;
24411 		}
24412 	}
24413 
24414 	rval = sd_take_ownership(dev, tkown);
24415 	mutex_enter(SD_MUTEX(un));
24416 	if (rval == 0) {
24417 		un->un_resvd_status |= SD_RESERVE;
24418 		if (tkown != NULL && tkown->reinstate_resv_delay != 0) {
24419 			sd_reinstate_resv_delay =
24420 			    tkown->reinstate_resv_delay * 1000;
24421 		} else {
24422 			sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY;
24423 		}
24424 		/*
24425 		 * Give the scsi_watch routine interval set by
24426 		 * the MHIOCENFAILFAST ioctl precedence here.
24427 		 */
24428 		if ((un->un_resvd_status & SD_FAILFAST) == 0) {
24429 			mutex_exit(SD_MUTEX(un));
24430 			(void) sd_check_mhd(dev, sd_reinstate_resv_delay/1000);
24431 			SD_TRACE(SD_LOG_IOCTL_MHD, un,
24432 			    "sd_mhdioc_takeown : %d\n",
24433 			    sd_reinstate_resv_delay);
24434 		} else {
24435 			mutex_exit(SD_MUTEX(un));
24436 		}
24437 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_NOTIFY,
24438 		    sd_mhd_reset_notify_cb, (caddr_t)un);
24439 	} else {
24440 		un->un_resvd_status &= ~SD_RESERVE;
24441 		mutex_exit(SD_MUTEX(un));
24442 	}
24443 
24444 error:
24445 	if (tkown != NULL) {
24446 		kmem_free(tkown, sizeof (struct mhioctkown));
24447 	}
24448 	return (rval);
24449 }
24450 
24451 
24452 /*
24453  *    Function: sd_mhdioc_release
24454  *
24455  * Description: This routine is the driver entry point for handling ioctl
24456  *		requests to release exclusive access rights to the multihost
24457  *		disk (MHIOCRELEASE).
24458  *
24459  *   Arguments: dev	- the device number
24460  *
24461  * Return Code: 0
24462  *		ENXIO
24463  */
24464 
24465 static int
24466 sd_mhdioc_release(dev_t dev)
24467 {
24468 	struct sd_lun		*un = NULL;
24469 	timeout_id_t		resvd_timeid_save;
24470 	int			resvd_status_save;
24471 	int			rval = 0;
24472 
24473 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24474 		return (ENXIO);
24475 	}
24476 
24477 	mutex_enter(SD_MUTEX(un));
24478 	resvd_status_save = un->un_resvd_status;
24479 	un->un_resvd_status &=
24480 	    ~(SD_RESERVE | SD_LOST_RESERVE | SD_WANT_RESERVE);
24481 	if (un->un_resvd_timeid) {
24482 		resvd_timeid_save = un->un_resvd_timeid;
24483 		un->un_resvd_timeid = NULL;
24484 		mutex_exit(SD_MUTEX(un));
24485 		(void) untimeout(resvd_timeid_save);
24486 	} else {
24487 		mutex_exit(SD_MUTEX(un));
24488 	}
24489 
24490 	/*
24491 	 * destroy any pending timeout thread that may be attempting to
24492 	 * reinstate reservation on this device.
24493 	 */
24494 	sd_rmv_resv_reclaim_req(dev);
24495 
24496 	if ((rval = sd_reserve_release(dev, SD_RELEASE)) == 0) {
24497 		mutex_enter(SD_MUTEX(un));
24498 		if ((un->un_mhd_token) &&
24499 		    ((un->un_resvd_status & SD_FAILFAST) == 0)) {
24500 			mutex_exit(SD_MUTEX(un));
24501 			(void) sd_check_mhd(dev, 0);
24502 		} else {
24503 			mutex_exit(SD_MUTEX(un));
24504 		}
24505 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
24506 		    sd_mhd_reset_notify_cb, (caddr_t)un);
24507 	} else {
24508 		/*
24509 		 * sd_mhd_watch_cb will restart the resvd recover timeout thread
24510 		 */
24511 		mutex_enter(SD_MUTEX(un));
24512 		un->un_resvd_status = resvd_status_save;
24513 		mutex_exit(SD_MUTEX(un));
24514 	}
24515 	return (rval);
24516 }
24517 
24518 
24519 /*
24520  *    Function: sd_mhdioc_register_devid
24521  *
24522  * Description: This routine is the driver entry point for handling ioctl
24523  *		requests to register the device id (MHIOCREREGISTERDEVID).
24524  *
24525  *		Note: The implementation for this ioctl has been updated to
24526  *		be consistent with the original PSARC case (1999/357)
24527  *		(4375899, 4241671, 4220005)
24528  *
24529  *   Arguments: dev	- the device number
24530  *
24531  * Return Code: 0
24532  *		ENXIO
24533  */
24534 
24535 static int
24536 sd_mhdioc_register_devid(dev_t dev)
24537 {
24538 	struct sd_lun	*un = NULL;
24539 	int		rval = 0;
24540 	sd_ssc_t	*ssc;
24541 
24542 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24543 		return (ENXIO);
24544 	}
24545 
24546 	ASSERT(!mutex_owned(SD_MUTEX(un)));
24547 
24548 	mutex_enter(SD_MUTEX(un));
24549 
24550 	/* If a devid already exists, de-register it */
24551 	if (un->un_devid != NULL) {
24552 		ddi_devid_unregister(SD_DEVINFO(un));
24553 		/*
24554 		 * After unregister devid, needs to free devid memory
24555 		 */
24556 		ddi_devid_free(un->un_devid);
24557 		un->un_devid = NULL;
24558 	}
24559 
24560 	/* Check for reservation conflict */
24561 	mutex_exit(SD_MUTEX(un));
24562 	ssc = sd_ssc_init(un);
24563 	rval = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
24564 	mutex_enter(SD_MUTEX(un));
24565 
24566 	switch (rval) {
24567 	case 0:
24568 		sd_register_devid(ssc, SD_DEVINFO(un), SD_TARGET_IS_UNRESERVED);
24569 		break;
24570 	case EACCES:
24571 		break;
24572 	default:
24573 		rval = EIO;
24574 	}
24575 
24576 	mutex_exit(SD_MUTEX(un));
24577 	if (rval != 0) {
24578 		if (rval == EIO)
24579 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
24580 		else
24581 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
24582 	}
24583 	sd_ssc_fini(ssc);
24584 	return (rval);
24585 }
24586 
24587 
24588 /*
24589  *    Function: sd_mhdioc_inkeys
24590  *
24591  * Description: This routine is the driver entry point for handling ioctl
24592  *		requests to issue the SCSI-3 Persistent In Read Keys command
24593  *		to the device (MHIOCGRP_INKEYS).
24594  *
24595  *   Arguments: dev	- the device number
24596  *		arg	- user provided in_keys structure
24597  *		flag	- this argument is a pass through to ddi_copyxxx()
24598  *			  directly from the mode argument of ioctl().
24599  *
24600  * Return Code: code returned by sd_persistent_reservation_in_read_keys()
24601  *		ENXIO
24602  *		EFAULT
24603  */
24604 
24605 static int
24606 sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag)
24607 {
24608 	struct sd_lun		*un;
24609 	mhioc_inkeys_t		inkeys;
24610 	int			rval = 0;
24611 
24612 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24613 		return (ENXIO);
24614 	}
24615 
24616 #ifdef _MULTI_DATAMODEL
24617 	switch (ddi_model_convert_from(flag & FMODELS)) {
24618 	case DDI_MODEL_ILP32: {
24619 		struct mhioc_inkeys32	inkeys32;
24620 
24621 		if (ddi_copyin(arg, &inkeys32,
24622 		    sizeof (struct mhioc_inkeys32), flag) != 0) {
24623 			return (EFAULT);
24624 		}
24625 		inkeys.li = (mhioc_key_list_t *)(uintptr_t)inkeys32.li;
24626 		if ((rval = sd_persistent_reservation_in_read_keys(un,
24627 		    &inkeys, flag)) != 0) {
24628 			return (rval);
24629 		}
24630 		inkeys32.generation = inkeys.generation;
24631 		if (ddi_copyout(&inkeys32, arg, sizeof (struct mhioc_inkeys32),
24632 		    flag) != 0) {
24633 			return (EFAULT);
24634 		}
24635 		break;
24636 	}
24637 	case DDI_MODEL_NONE:
24638 		if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t),
24639 		    flag) != 0) {
24640 			return (EFAULT);
24641 		}
24642 		if ((rval = sd_persistent_reservation_in_read_keys(un,
24643 		    &inkeys, flag)) != 0) {
24644 			return (rval);
24645 		}
24646 		if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t),
24647 		    flag) != 0) {
24648 			return (EFAULT);
24649 		}
24650 		break;
24651 	}
24652 
24653 #else /* ! _MULTI_DATAMODEL */
24654 
24655 	if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), flag) != 0) {
24656 		return (EFAULT);
24657 	}
24658 	rval = sd_persistent_reservation_in_read_keys(un, &inkeys, flag);
24659 	if (rval != 0) {
24660 		return (rval);
24661 	}
24662 	if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), flag) != 0) {
24663 		return (EFAULT);
24664 	}
24665 
24666 #endif /* _MULTI_DATAMODEL */
24667 
24668 	return (rval);
24669 }
24670 
24671 
24672 /*
24673  *    Function: sd_mhdioc_inresv
24674  *
24675  * Description: This routine is the driver entry point for handling ioctl
24676  *		requests to issue the SCSI-3 Persistent In Read Reservations
24677  *		command to the device (MHIOCGRP_INKEYS).
24678  *
24679  *   Arguments: dev	- the device number
24680  *		arg	- user provided in_resv structure
24681  *		flag	- this argument is a pass through to ddi_copyxxx()
24682  *			  directly from the mode argument of ioctl().
24683  *
24684  * Return Code: code returned by sd_persistent_reservation_in_read_resv()
24685  *		ENXIO
24686  *		EFAULT
24687  */
24688 
24689 static int
24690 sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag)
24691 {
24692 	struct sd_lun		*un;
24693 	mhioc_inresvs_t		inresvs;
24694 	int			rval = 0;
24695 
24696 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24697 		return (ENXIO);
24698 	}
24699 
24700 #ifdef _MULTI_DATAMODEL
24701 
24702 	switch (ddi_model_convert_from(flag & FMODELS)) {
24703 	case DDI_MODEL_ILP32: {
24704 		struct mhioc_inresvs32	inresvs32;
24705 
24706 		if (ddi_copyin(arg, &inresvs32,
24707 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
24708 			return (EFAULT);
24709 		}
24710 		inresvs.li = (mhioc_resv_desc_list_t *)(uintptr_t)inresvs32.li;
24711 		if ((rval = sd_persistent_reservation_in_read_resv(un,
24712 		    &inresvs, flag)) != 0) {
24713 			return (rval);
24714 		}
24715 		inresvs32.generation = inresvs.generation;
24716 		if (ddi_copyout(&inresvs32, arg,
24717 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
24718 			return (EFAULT);
24719 		}
24720 		break;
24721 	}
24722 	case DDI_MODEL_NONE:
24723 		if (ddi_copyin(arg, &inresvs,
24724 		    sizeof (mhioc_inresvs_t), flag) != 0) {
24725 			return (EFAULT);
24726 		}
24727 		if ((rval = sd_persistent_reservation_in_read_resv(un,
24728 		    &inresvs, flag)) != 0) {
24729 			return (rval);
24730 		}
24731 		if (ddi_copyout(&inresvs, arg,
24732 		    sizeof (mhioc_inresvs_t), flag) != 0) {
24733 			return (EFAULT);
24734 		}
24735 		break;
24736 	}
24737 
24738 #else /* ! _MULTI_DATAMODEL */
24739 
24740 	if (ddi_copyin(arg, &inresvs, sizeof (mhioc_inresvs_t), flag) != 0) {
24741 		return (EFAULT);
24742 	}
24743 	rval = sd_persistent_reservation_in_read_resv(un, &inresvs, flag);
24744 	if (rval != 0) {
24745 		return (rval);
24746 	}
24747 	if (ddi_copyout(&inresvs, arg, sizeof (mhioc_inresvs_t), flag)) {
24748 		return (EFAULT);
24749 	}
24750 
24751 #endif /* ! _MULTI_DATAMODEL */
24752 
24753 	return (rval);
24754 }
24755 
24756 
24757 /*
24758  * The following routines support the clustering functionality described below
24759  * and implement lost reservation reclaim functionality.
24760  *
24761  * Clustering
24762  * ----------
24763  * The clustering code uses two different, independent forms of SCSI
24764  * reservation. Traditional SCSI-2 Reserve/Release and the newer SCSI-3
24765  * Persistent Group Reservations. For any particular disk, it will use either
24766  * SCSI-2 or SCSI-3 PGR but never both at the same time for the same disk.
24767  *
24768  * SCSI-2
24769  * The cluster software takes ownership of a multi-hosted disk by issuing the
24770  * MHIOCTKOWN ioctl to the disk driver. It releases ownership by issuing the
24771  * MHIOCRELEASE ioctl.  Closely related is the MHIOCENFAILFAST ioctl -- a
24772  * cluster, just after taking ownership of the disk with the MHIOCTKOWN ioctl
24773  * then issues the MHIOCENFAILFAST ioctl.  This ioctl "enables failfast" in the
24774  * driver. The meaning of failfast is that if the driver (on this host) ever
24775  * encounters the scsi error return code RESERVATION_CONFLICT from the device,
24776  * it should immediately panic the host. The motivation for this ioctl is that
24777  * if this host does encounter reservation conflict, the underlying cause is
24778  * that some other host of the cluster has decided that this host is no longer
24779  * in the cluster and has seized control of the disks for itself. Since this
24780  * host is no longer in the cluster, it ought to panic itself. The
24781  * MHIOCENFAILFAST ioctl does two things:
24782  *	(a) it sets a flag that will cause any returned RESERVATION_CONFLICT
24783  *      error to panic the host
24784  *      (b) it sets up a periodic timer to test whether this host still has
24785  *      "access" (in that no other host has reserved the device):  if the
24786  *      periodic timer gets RESERVATION_CONFLICT, the host is panicked. The
24787  *      purpose of that periodic timer is to handle scenarios where the host is
24788  *      otherwise temporarily quiescent, temporarily doing no real i/o.
24789  * The MHIOCTKOWN ioctl will "break" a reservation that is held by another host,
24790  * by issuing a SCSI Bus Device Reset.  It will then issue a SCSI Reserve for
24791  * the device itself.
24792  *
24793  * SCSI-3 PGR
24794  * A direct semantic implementation of the SCSI-3 Persistent Reservation
24795  * facility is supported through the shared multihost disk ioctls
24796  * (MHIOCGRP_INKEYS, MHIOCGRP_INRESV, MHIOCGRP_REGISTER, MHIOCGRP_RESERVE,
24797  * MHIOCGRP_PREEMPTANDABORT, MHIOCGRP_CLEAR)
24798  *
24799  * Reservation Reclaim:
24800  * --------------------
24801  * To support the lost reservation reclaim operations this driver creates a
24802  * single thread to handle reinstating reservations on all devices that have
24803  * lost reservations sd_resv_reclaim_requests are logged for all devices that
24804  * have LOST RESERVATIONS when the scsi watch facility callsback sd_mhd_watch_cb
24805  * and the reservation reclaim thread loops through the requests to regain the
24806  * lost reservations.
24807  */
24808 
24809 /*
24810  *    Function: sd_check_mhd()
24811  *
24812  * Description: This function sets up and submits a scsi watch request or
24813  *		terminates an existing watch request. This routine is used in
24814  *		support of reservation reclaim.
24815  *
24816  *   Arguments: dev    - the device 'dev_t' is used for context to discriminate
24817  *			 among multiple watches that share the callback function
24818  *		interval - the number of microseconds specifying the watch
24819  *			   interval for issuing TEST UNIT READY commands. If
24820  *			   set to 0 the watch should be terminated. If the
24821  *			   interval is set to 0 and if the device is required
24822  *			   to hold reservation while disabling failfast, the
24823  *			   watch is restarted with an interval of
24824  *			   reinstate_resv_delay.
24825  *
24826  * Return Code: 0	   - Successful submit/terminate of scsi watch request
24827  *		ENXIO      - Indicates an invalid device was specified
24828  *		EAGAIN     - Unable to submit the scsi watch request
24829  */
24830 
24831 static int
24832 sd_check_mhd(dev_t dev, int interval)
24833 {
24834 	struct sd_lun	*un;
24835 	opaque_t	token;
24836 
24837 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24838 		return (ENXIO);
24839 	}
24840 
24841 	/* is this a watch termination request? */
24842 	if (interval == 0) {
24843 		mutex_enter(SD_MUTEX(un));
24844 		/* if there is an existing watch task then terminate it */
24845 		if (un->un_mhd_token) {
24846 			token = un->un_mhd_token;
24847 			un->un_mhd_token = NULL;
24848 			mutex_exit(SD_MUTEX(un));
24849 			(void) scsi_watch_request_terminate(token,
24850 			    SCSI_WATCH_TERMINATE_ALL_WAIT);
24851 			mutex_enter(SD_MUTEX(un));
24852 		} else {
24853 			mutex_exit(SD_MUTEX(un));
24854 			/*
24855 			 * Note: If we return here we don't check for the
24856 			 * failfast case. This is the original legacy
24857 			 * implementation but perhaps we should be checking
24858 			 * the failfast case.
24859 			 */
24860 			return (0);
24861 		}
24862 		/*
24863 		 * If the device is required to hold reservation while
24864 		 * disabling failfast, we need to restart the scsi_watch
24865 		 * routine with an interval of reinstate_resv_delay.
24866 		 */
24867 		if (un->un_resvd_status & SD_RESERVE) {
24868 			interval = sd_reinstate_resv_delay/1000;
24869 		} else {
24870 			/* no failfast so bail */
24871 			mutex_exit(SD_MUTEX(un));
24872 			return (0);
24873 		}
24874 		mutex_exit(SD_MUTEX(un));
24875 	}
24876 
24877 	/*
24878 	 * adjust minimum time interval to 1 second,
24879 	 * and convert from msecs to usecs
24880 	 */
24881 	if (interval > 0 && interval < 1000) {
24882 		interval = 1000;
24883 	}
24884 	interval *= 1000;
24885 
24886 	/*
24887 	 * submit the request to the scsi_watch service
24888 	 */
24889 	token = scsi_watch_request_submit(SD_SCSI_DEVP(un), interval,
24890 	    SENSE_LENGTH, sd_mhd_watch_cb, (caddr_t)dev);
24891 	if (token == NULL) {
24892 		return (EAGAIN);
24893 	}
24894 
24895 	/*
24896 	 * save token for termination later on
24897 	 */
24898 	mutex_enter(SD_MUTEX(un));
24899 	un->un_mhd_token = token;
24900 	mutex_exit(SD_MUTEX(un));
24901 	return (0);
24902 }
24903 
24904 
24905 /*
24906  *    Function: sd_mhd_watch_cb()
24907  *
24908  * Description: This function is the call back function used by the scsi watch
24909  *		facility. The scsi watch facility sends the "Test Unit Ready"
24910  *		and processes the status. If applicable (i.e. a "Unit Attention"
24911  *		status and automatic "Request Sense" not used) the scsi watch
24912  *		facility will send a "Request Sense" and retrieve the sense data
24913  *		to be passed to this callback function. In either case the
24914  *		automatic "Request Sense" or the facility submitting one, this
24915  *		callback is passed the status and sense data.
24916  *
24917  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
24918  *			among multiple watches that share this callback function
24919  *		resultp - scsi watch facility result packet containing scsi
24920  *			  packet, status byte and sense data
24921  *
24922  * Return Code: 0 - continue the watch task
24923  *		non-zero - terminate the watch task
24924  */
24925 
24926 static int
24927 sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
24928 {
24929 	struct sd_lun			*un;
24930 	struct scsi_status		*statusp;
24931 	uint8_t				*sensep;
24932 	struct scsi_pkt			*pkt;
24933 	uchar_t				actual_sense_length;
24934 	dev_t  				dev = (dev_t)arg;
24935 
24936 	ASSERT(resultp != NULL);
24937 	statusp			= resultp->statusp;
24938 	sensep			= (uint8_t *)resultp->sensep;
24939 	pkt			= resultp->pkt;
24940 	actual_sense_length	= resultp->actual_sense_length;
24941 
24942 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24943 		return (ENXIO);
24944 	}
24945 
24946 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
24947 	    "sd_mhd_watch_cb: reason '%s', status '%s'\n",
24948 	    scsi_rname(pkt->pkt_reason), sd_sname(*((unsigned char *)statusp)));
24949 
24950 	/* Begin processing of the status and/or sense data */
24951 	if (pkt->pkt_reason != CMD_CMPLT) {
24952 		/* Handle the incomplete packet */
24953 		sd_mhd_watch_incomplete(un, pkt);
24954 		return (0);
24955 	} else if (*((unsigned char *)statusp) != STATUS_GOOD) {
24956 		if (*((unsigned char *)statusp)
24957 		    == STATUS_RESERVATION_CONFLICT) {
24958 			/*
24959 			 * Handle a reservation conflict by panicking if
24960 			 * configured for failfast or by logging the conflict
24961 			 * and updating the reservation status
24962 			 */
24963 			mutex_enter(SD_MUTEX(un));
24964 			if ((un->un_resvd_status & SD_FAILFAST) &&
24965 			    (sd_failfast_enable)) {
24966 				sd_panic_for_res_conflict(un);
24967 				/*NOTREACHED*/
24968 			}
24969 			SD_INFO(SD_LOG_IOCTL_MHD, un,
24970 			    "sd_mhd_watch_cb: Reservation Conflict\n");
24971 			un->un_resvd_status |= SD_RESERVATION_CONFLICT;
24972 			mutex_exit(SD_MUTEX(un));
24973 		}
24974 	}
24975 
24976 	if (sensep != NULL) {
24977 		if (actual_sense_length >= (SENSE_LENGTH - 2)) {
24978 			mutex_enter(SD_MUTEX(un));
24979 			if ((scsi_sense_asc(sensep) ==
24980 			    SD_SCSI_RESET_SENSE_CODE) &&
24981 			    (un->un_resvd_status & SD_RESERVE)) {
24982 				/*
24983 				 * The additional sense code indicates a power
24984 				 * on or bus device reset has occurred; update
24985 				 * the reservation status.
24986 				 */
24987 				un->un_resvd_status |=
24988 				    (SD_LOST_RESERVE | SD_WANT_RESERVE);
24989 				SD_INFO(SD_LOG_IOCTL_MHD, un,
24990 				    "sd_mhd_watch_cb: Lost Reservation\n");
24991 			}
24992 		} else {
24993 			return (0);
24994 		}
24995 	} else {
24996 		mutex_enter(SD_MUTEX(un));
24997 	}
24998 
24999 	if ((un->un_resvd_status & SD_RESERVE) &&
25000 	    (un->un_resvd_status & SD_LOST_RESERVE)) {
25001 		if (un->un_resvd_status & SD_WANT_RESERVE) {
25002 			/*
25003 			 * A reset occurred in between the last probe and this
25004 			 * one so if a timeout is pending cancel it.
25005 			 */
25006 			if (un->un_resvd_timeid) {
25007 				timeout_id_t temp_id = un->un_resvd_timeid;
25008 				un->un_resvd_timeid = NULL;
25009 				mutex_exit(SD_MUTEX(un));
25010 				(void) untimeout(temp_id);
25011 				mutex_enter(SD_MUTEX(un));
25012 			}
25013 			un->un_resvd_status &= ~SD_WANT_RESERVE;
25014 		}
25015 		if (un->un_resvd_timeid == 0) {
25016 			/* Schedule a timeout to handle the lost reservation */
25017 			un->un_resvd_timeid = timeout(sd_mhd_resvd_recover,
25018 			    (void *)dev,
25019 			    drv_usectohz(sd_reinstate_resv_delay));
25020 		}
25021 	}
25022 	mutex_exit(SD_MUTEX(un));
25023 	return (0);
25024 }
25025 
25026 
25027 /*
25028  *    Function: sd_mhd_watch_incomplete()
25029  *
25030  * Description: This function is used to find out why a scsi pkt sent by the
25031  *		scsi watch facility was not completed. Under some scenarios this
25032  *		routine will return. Otherwise it will send a bus reset to see
25033  *		if the drive is still online.
25034  *
25035  *   Arguments: un  - driver soft state (unit) structure
25036  *		pkt - incomplete scsi pkt
25037  */
25038 
25039 static void
25040 sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt)
25041 {
25042 	int	be_chatty;
25043 	int	perr;
25044 
25045 	ASSERT(pkt != NULL);
25046 	ASSERT(un != NULL);
25047 	be_chatty	= (!(pkt->pkt_flags & FLAG_SILENT));
25048 	perr		= (pkt->pkt_statistics & STAT_PERR);
25049 
25050 	mutex_enter(SD_MUTEX(un));
25051 	if (un->un_state == SD_STATE_DUMPING) {
25052 		mutex_exit(SD_MUTEX(un));
25053 		return;
25054 	}
25055 
25056 	switch (pkt->pkt_reason) {
25057 	case CMD_UNX_BUS_FREE:
25058 		/*
25059 		 * If we had a parity error that caused the target to drop BSY*,
25060 		 * don't be chatty about it.
25061 		 */
25062 		if (perr && be_chatty) {
25063 			be_chatty = 0;
25064 		}
25065 		break;
25066 	case CMD_TAG_REJECT:
25067 		/*
25068 		 * The SCSI-2 spec states that a tag reject will be sent by the
25069 		 * target if tagged queuing is not supported. A tag reject may
25070 		 * also be sent during certain initialization periods or to
25071 		 * control internal resources. For the latter case the target
25072 		 * may also return Queue Full.
25073 		 *
25074 		 * If this driver receives a tag reject from a target that is
25075 		 * going through an init period or controlling internal
25076 		 * resources tagged queuing will be disabled. This is a less
25077 		 * than optimal behavior but the driver is unable to determine
25078 		 * the target state and assumes tagged queueing is not supported
25079 		 */
25080 		pkt->pkt_flags = 0;
25081 		un->un_tagflags = 0;
25082 
25083 		if (un->un_f_opt_queueing == TRUE) {
25084 			un->un_throttle = min(un->un_throttle, 3);
25085 		} else {
25086 			un->un_throttle = 1;
25087 		}
25088 		mutex_exit(SD_MUTEX(un));
25089 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
25090 		mutex_enter(SD_MUTEX(un));
25091 		break;
25092 	case CMD_INCOMPLETE:
25093 		/*
25094 		 * The transport stopped with an abnormal state, fallthrough and
25095 		 * reset the target and/or bus unless selection did not complete
25096 		 * (indicated by STATE_GOT_BUS) in which case we don't want to
25097 		 * go through a target/bus reset
25098 		 */
25099 		if (pkt->pkt_state == STATE_GOT_BUS) {
25100 			break;
25101 		}
25102 		/*FALLTHROUGH*/
25103 
25104 	case CMD_TIMEOUT:
25105 	default:
25106 		/*
25107 		 * The lun may still be running the command, so a lun reset
25108 		 * should be attempted. If the lun reset fails or cannot be
25109 		 * issued, than try a target reset. Lastly try a bus reset.
25110 		 */
25111 		if ((pkt->pkt_statistics &
25112 		    (STAT_BUS_RESET|STAT_DEV_RESET|STAT_ABORTED)) == 0) {
25113 			int reset_retval = 0;
25114 			mutex_exit(SD_MUTEX(un));
25115 			if (un->un_f_allow_bus_device_reset == TRUE) {
25116 				if (un->un_f_lun_reset_enabled == TRUE) {
25117 					reset_retval =
25118 					    scsi_reset(SD_ADDRESS(un),
25119 					    RESET_LUN);
25120 				}
25121 				if (reset_retval == 0) {
25122 					reset_retval =
25123 					    scsi_reset(SD_ADDRESS(un),
25124 					    RESET_TARGET);
25125 				}
25126 			}
25127 			if (reset_retval == 0) {
25128 				(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
25129 			}
25130 			mutex_enter(SD_MUTEX(un));
25131 		}
25132 		break;
25133 	}
25134 
25135 	/* A device/bus reset has occurred; update the reservation status. */
25136 	if ((pkt->pkt_reason == CMD_RESET) || (pkt->pkt_statistics &
25137 	    (STAT_BUS_RESET | STAT_DEV_RESET))) {
25138 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
25139 			un->un_resvd_status |=
25140 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
25141 			SD_INFO(SD_LOG_IOCTL_MHD, un,
25142 			    "sd_mhd_watch_incomplete: Lost Reservation\n");
25143 		}
25144 	}
25145 
25146 	/*
25147 	 * The disk has been turned off; Update the device state.
25148 	 *
25149 	 * Note: Should we be offlining the disk here?
25150 	 */
25151 	if (pkt->pkt_state == STATE_GOT_BUS) {
25152 		SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_watch_incomplete: "
25153 		    "Disk not responding to selection\n");
25154 		if (un->un_state != SD_STATE_OFFLINE) {
25155 			New_state(un, SD_STATE_OFFLINE);
25156 		}
25157 	} else if (be_chatty) {
25158 		/*
25159 		 * suppress messages if they are all the same pkt reason;
25160 		 * with TQ, many (up to 256) are returned with the same
25161 		 * pkt_reason
25162 		 */
25163 		if (pkt->pkt_reason != un->un_last_pkt_reason) {
25164 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25165 			    "sd_mhd_watch_incomplete: "
25166 			    "SCSI transport failed: reason '%s'\n",
25167 			    scsi_rname(pkt->pkt_reason));
25168 		}
25169 	}
25170 	un->un_last_pkt_reason = pkt->pkt_reason;
25171 	mutex_exit(SD_MUTEX(un));
25172 }
25173 
25174 
25175 /*
25176  *    Function: sd_sname()
25177  *
25178  * Description: This is a simple little routine to return a string containing
25179  *		a printable description of command status byte for use in
25180  *		logging.
25181  *
25182  *   Arguments: status - pointer to a status byte
25183  *
25184  * Return Code: char * - string containing status description.
25185  */
25186 
25187 static char *
25188 sd_sname(uchar_t status)
25189 {
25190 	switch (status & STATUS_MASK) {
25191 	case STATUS_GOOD:
25192 		return ("good status");
25193 	case STATUS_CHECK:
25194 		return ("check condition");
25195 	case STATUS_MET:
25196 		return ("condition met");
25197 	case STATUS_BUSY:
25198 		return ("busy");
25199 	case STATUS_INTERMEDIATE:
25200 		return ("intermediate");
25201 	case STATUS_INTERMEDIATE_MET:
25202 		return ("intermediate - condition met");
25203 	case STATUS_RESERVATION_CONFLICT:
25204 		return ("reservation_conflict");
25205 	case STATUS_TERMINATED:
25206 		return ("command terminated");
25207 	case STATUS_QFULL:
25208 		return ("queue full");
25209 	default:
25210 		return ("<unknown status>");
25211 	}
25212 }
25213 
25214 
25215 /*
25216  *    Function: sd_mhd_resvd_recover()
25217  *
25218  * Description: This function adds a reservation entry to the
25219  *		sd_resv_reclaim_request list and signals the reservation
25220  *		reclaim thread that there is work pending. If the reservation
25221  *		reclaim thread has not been previously created this function
25222  *		will kick it off.
25223  *
25224  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
25225  *			among multiple watches that share this callback function
25226  *
25227  *     Context: This routine is called by timeout() and is run in interrupt
25228  *		context. It must not sleep or call other functions which may
25229  *		sleep.
25230  */
25231 
25232 static void
25233 sd_mhd_resvd_recover(void *arg)
25234 {
25235 	dev_t			dev = (dev_t)arg;
25236 	struct sd_lun		*un;
25237 	struct sd_thr_request	*sd_treq = NULL;
25238 	struct sd_thr_request	*sd_cur = NULL;
25239 	struct sd_thr_request	*sd_prev = NULL;
25240 	int			already_there = 0;
25241 
25242 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25243 		return;
25244 	}
25245 
25246 	mutex_enter(SD_MUTEX(un));
25247 	un->un_resvd_timeid = NULL;
25248 	if (un->un_resvd_status & SD_WANT_RESERVE) {
25249 		/*
25250 		 * There was a reset so don't issue the reserve, allow the
25251 		 * sd_mhd_watch_cb callback function to notice this and
25252 		 * reschedule the timeout for reservation.
25253 		 */
25254 		mutex_exit(SD_MUTEX(un));
25255 		return;
25256 	}
25257 	mutex_exit(SD_MUTEX(un));
25258 
25259 	/*
25260 	 * Add this device to the sd_resv_reclaim_request list and the
25261 	 * sd_resv_reclaim_thread should take care of the rest.
25262 	 *
25263 	 * Note: We can't sleep in this context so if the memory allocation
25264 	 * fails allow the sd_mhd_watch_cb callback function to notice this and
25265 	 * reschedule the timeout for reservation.  (4378460)
25266 	 */
25267 	sd_treq = (struct sd_thr_request *)
25268 	    kmem_zalloc(sizeof (struct sd_thr_request), KM_NOSLEEP);
25269 	if (sd_treq == NULL) {
25270 		return;
25271 	}
25272 
25273 	sd_treq->sd_thr_req_next = NULL;
25274 	sd_treq->dev = dev;
25275 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25276 	if (sd_tr.srq_thr_req_head == NULL) {
25277 		sd_tr.srq_thr_req_head = sd_treq;
25278 	} else {
25279 		sd_cur = sd_prev = sd_tr.srq_thr_req_head;
25280 		for (; sd_cur != NULL; sd_cur = sd_cur->sd_thr_req_next) {
25281 			if (sd_cur->dev == dev) {
25282 				/*
25283 				 * already in Queue so don't log
25284 				 * another request for the device
25285 				 */
25286 				already_there = 1;
25287 				break;
25288 			}
25289 			sd_prev = sd_cur;
25290 		}
25291 		if (!already_there) {
25292 			SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_resvd_recover: "
25293 			    "logging request for %lx\n", dev);
25294 			sd_prev->sd_thr_req_next = sd_treq;
25295 		} else {
25296 			kmem_free(sd_treq, sizeof (struct sd_thr_request));
25297 		}
25298 	}
25299 
25300 	/*
25301 	 * Create a kernel thread to do the reservation reclaim and free up this
25302 	 * thread. We cannot block this thread while we go away to do the
25303 	 * reservation reclaim
25304 	 */
25305 	if (sd_tr.srq_resv_reclaim_thread == NULL)
25306 		sd_tr.srq_resv_reclaim_thread = thread_create(NULL, 0,
25307 		    sd_resv_reclaim_thread, NULL,
25308 		    0, &p0, TS_RUN, v.v_maxsyspri - 2);
25309 
25310 	/* Tell the reservation reclaim thread that it has work to do */
25311 	cv_signal(&sd_tr.srq_resv_reclaim_cv);
25312 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25313 }
25314 
25315 /*
25316  *    Function: sd_resv_reclaim_thread()
25317  *
25318  * Description: This function implements the reservation reclaim operations
25319  *
25320  *   Arguments: arg - the device 'dev_t' is used for context to discriminate
25321  *		      among multiple watches that share this callback function
25322  */
25323 
25324 static void
25325 sd_resv_reclaim_thread()
25326 {
25327 	struct sd_lun		*un;
25328 	struct sd_thr_request	*sd_mhreq;
25329 
25330 	/* Wait for work */
25331 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25332 	if (sd_tr.srq_thr_req_head == NULL) {
25333 		cv_wait(&sd_tr.srq_resv_reclaim_cv,
25334 		    &sd_tr.srq_resv_reclaim_mutex);
25335 	}
25336 
25337 	/* Loop while we have work */
25338 	while ((sd_tr.srq_thr_cur_req = sd_tr.srq_thr_req_head) != NULL) {
25339 		un = ddi_get_soft_state(sd_state,
25340 		    SDUNIT(sd_tr.srq_thr_cur_req->dev));
25341 		if (un == NULL) {
25342 			/*
25343 			 * softstate structure is NULL so just
25344 			 * dequeue the request and continue
25345 			 */
25346 			sd_tr.srq_thr_req_head =
25347 			    sd_tr.srq_thr_cur_req->sd_thr_req_next;
25348 			kmem_free(sd_tr.srq_thr_cur_req,
25349 			    sizeof (struct sd_thr_request));
25350 			continue;
25351 		}
25352 
25353 		/* dequeue the request */
25354 		sd_mhreq = sd_tr.srq_thr_cur_req;
25355 		sd_tr.srq_thr_req_head =
25356 		    sd_tr.srq_thr_cur_req->sd_thr_req_next;
25357 		mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25358 
25359 		/*
25360 		 * Reclaim reservation only if SD_RESERVE is still set. There
25361 		 * may have been a call to MHIOCRELEASE before we got here.
25362 		 */
25363 		mutex_enter(SD_MUTEX(un));
25364 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
25365 			/*
25366 			 * Note: The SD_LOST_RESERVE flag is cleared before
25367 			 * reclaiming the reservation. If this is done after the
25368 			 * call to sd_reserve_release a reservation loss in the
25369 			 * window between pkt completion of reserve cmd and
25370 			 * mutex_enter below may not be recognized
25371 			 */
25372 			un->un_resvd_status &= ~SD_LOST_RESERVE;
25373 			mutex_exit(SD_MUTEX(un));
25374 
25375 			if (sd_reserve_release(sd_mhreq->dev,
25376 			    SD_RESERVE) == 0) {
25377 				mutex_enter(SD_MUTEX(un));
25378 				un->un_resvd_status |= SD_RESERVE;
25379 				mutex_exit(SD_MUTEX(un));
25380 				SD_INFO(SD_LOG_IOCTL_MHD, un,
25381 				    "sd_resv_reclaim_thread: "
25382 				    "Reservation Recovered\n");
25383 			} else {
25384 				mutex_enter(SD_MUTEX(un));
25385 				un->un_resvd_status |= SD_LOST_RESERVE;
25386 				mutex_exit(SD_MUTEX(un));
25387 				SD_INFO(SD_LOG_IOCTL_MHD, un,
25388 				    "sd_resv_reclaim_thread: Failed "
25389 				    "Reservation Recovery\n");
25390 			}
25391 		} else {
25392 			mutex_exit(SD_MUTEX(un));
25393 		}
25394 		mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25395 		ASSERT(sd_mhreq == sd_tr.srq_thr_cur_req);
25396 		kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
25397 		sd_mhreq = sd_tr.srq_thr_cur_req = NULL;
25398 		/*
25399 		 * wakeup the destroy thread if anyone is waiting on
25400 		 * us to complete.
25401 		 */
25402 		cv_signal(&sd_tr.srq_inprocess_cv);
25403 		SD_TRACE(SD_LOG_IOCTL_MHD, un,
25404 		    "sd_resv_reclaim_thread: cv_signalling current request \n");
25405 	}
25406 
25407 	/*
25408 	 * cleanup the sd_tr structure now that this thread will not exist
25409 	 */
25410 	ASSERT(sd_tr.srq_thr_req_head == NULL);
25411 	ASSERT(sd_tr.srq_thr_cur_req == NULL);
25412 	sd_tr.srq_resv_reclaim_thread = NULL;
25413 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25414 	thread_exit();
25415 }
25416 
25417 
25418 /*
25419  *    Function: sd_rmv_resv_reclaim_req()
25420  *
25421  * Description: This function removes any pending reservation reclaim requests
25422  *		for the specified device.
25423  *
25424  *   Arguments: dev - the device 'dev_t'
25425  */
25426 
25427 static void
25428 sd_rmv_resv_reclaim_req(dev_t dev)
25429 {
25430 	struct sd_thr_request *sd_mhreq;
25431 	struct sd_thr_request *sd_prev;
25432 
25433 	/* Remove a reservation reclaim request from the list */
25434 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25435 	if (sd_tr.srq_thr_cur_req && sd_tr.srq_thr_cur_req->dev == dev) {
25436 		/*
25437 		 * We are attempting to reinstate reservation for
25438 		 * this device. We wait for sd_reserve_release()
25439 		 * to return before we return.
25440 		 */
25441 		cv_wait(&sd_tr.srq_inprocess_cv,
25442 		    &sd_tr.srq_resv_reclaim_mutex);
25443 	} else {
25444 		sd_prev = sd_mhreq = sd_tr.srq_thr_req_head;
25445 		if (sd_mhreq && sd_mhreq->dev == dev) {
25446 			sd_tr.srq_thr_req_head = sd_mhreq->sd_thr_req_next;
25447 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
25448 			mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25449 			return;
25450 		}
25451 		for (; sd_mhreq != NULL; sd_mhreq = sd_mhreq->sd_thr_req_next) {
25452 			if (sd_mhreq && sd_mhreq->dev == dev) {
25453 				break;
25454 			}
25455 			sd_prev = sd_mhreq;
25456 		}
25457 		if (sd_mhreq != NULL) {
25458 			sd_prev->sd_thr_req_next = sd_mhreq->sd_thr_req_next;
25459 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
25460 		}
25461 	}
25462 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25463 }
25464 
25465 
25466 /*
25467  *    Function: sd_mhd_reset_notify_cb()
25468  *
25469  * Description: This is a call back function for scsi_reset_notify. This
25470  *		function updates the softstate reserved status and logs the
25471  *		reset. The driver scsi watch facility callback function
25472  *		(sd_mhd_watch_cb) and reservation reclaim thread functionality
25473  *		will reclaim the reservation.
25474  *
25475  *   Arguments: arg  - driver soft state (unit) structure
25476  */
25477 
25478 static void
25479 sd_mhd_reset_notify_cb(caddr_t arg)
25480 {
25481 	struct sd_lun *un = (struct sd_lun *)arg;
25482 
25483 	mutex_enter(SD_MUTEX(un));
25484 	if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
25485 		un->un_resvd_status |= (SD_LOST_RESERVE | SD_WANT_RESERVE);
25486 		SD_INFO(SD_LOG_IOCTL_MHD, un,
25487 		    "sd_mhd_reset_notify_cb: Lost Reservation\n");
25488 	}
25489 	mutex_exit(SD_MUTEX(un));
25490 }
25491 
25492 
25493 /*
25494  *    Function: sd_take_ownership()
25495  *
25496  * Description: This routine implements an algorithm to achieve a stable
25497  *		reservation on disks which don't implement priority reserve,
25498  *		and makes sure that other host lose re-reservation attempts.
25499  *		This algorithm contains of a loop that keeps issuing the RESERVE
25500  *		for some period of time (min_ownership_delay, default 6 seconds)
25501  *		During that loop, it looks to see if there has been a bus device
25502  *		reset or bus reset (both of which cause an existing reservation
25503  *		to be lost). If the reservation is lost issue RESERVE until a
25504  *		period of min_ownership_delay with no resets has gone by, or
25505  *		until max_ownership_delay has expired. This loop ensures that
25506  *		the host really did manage to reserve the device, in spite of
25507  *		resets. The looping for min_ownership_delay (default six
25508  *		seconds) is important to early generation clustering products,
25509  *		Solstice HA 1.x and Sun Cluster 2.x. Those products use an
25510  *		MHIOCENFAILFAST periodic timer of two seconds. By having
25511  *		MHIOCTKOWN issue Reserves in a loop for six seconds, and having
25512  *		MHIOCENFAILFAST poll every two seconds, the idea is that by the
25513  *		time the MHIOCTKOWN ioctl returns, the other host (if any) will
25514  *		have already noticed, via the MHIOCENFAILFAST polling, that it
25515  *		no longer "owns" the disk and will have panicked itself.  Thus,
25516  *		the host issuing the MHIOCTKOWN is assured (with timing
25517  *		dependencies) that by the time it actually starts to use the
25518  *		disk for real work, the old owner is no longer accessing it.
25519  *
25520  *		min_ownership_delay is the minimum amount of time for which the
25521  *		disk must be reserved continuously devoid of resets before the
25522  *		MHIOCTKOWN ioctl will return success.
25523  *
25524  *		max_ownership_delay indicates the amount of time by which the
25525  *		take ownership should succeed or timeout with an error.
25526  *
25527  *   Arguments: dev - the device 'dev_t'
25528  *		*p  - struct containing timing info.
25529  *
25530  * Return Code: 0 for success or error code
25531  */
25532 
25533 static int
25534 sd_take_ownership(dev_t dev, struct mhioctkown *p)
25535 {
25536 	struct sd_lun	*un;
25537 	int		rval;
25538 	int		err;
25539 	int		reservation_count   = 0;
25540 	int		min_ownership_delay =  6000000; /* in usec */
25541 	int		max_ownership_delay = 30000000; /* in usec */
25542 	clock_t		start_time;	/* starting time of this algorithm */
25543 	clock_t		end_time;	/* time limit for giving up */
25544 	clock_t		ownership_time;	/* time limit for stable ownership */
25545 	clock_t		current_time;
25546 	clock_t		previous_current_time;
25547 
25548 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25549 		return (ENXIO);
25550 	}
25551 
25552 	/*
25553 	 * Attempt a device reservation. A priority reservation is requested.
25554 	 */
25555 	if ((rval = sd_reserve_release(dev, SD_PRIORITY_RESERVE))
25556 	    != SD_SUCCESS) {
25557 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
25558 		    "sd_take_ownership: return(1)=%d\n", rval);
25559 		return (rval);
25560 	}
25561 
25562 	/* Update the softstate reserved status to indicate the reservation */
25563 	mutex_enter(SD_MUTEX(un));
25564 	un->un_resvd_status |= SD_RESERVE;
25565 	un->un_resvd_status &=
25566 	    ~(SD_LOST_RESERVE | SD_WANT_RESERVE | SD_RESERVATION_CONFLICT);
25567 	mutex_exit(SD_MUTEX(un));
25568 
25569 	if (p != NULL) {
25570 		if (p->min_ownership_delay != 0) {
25571 			min_ownership_delay = p->min_ownership_delay * 1000;
25572 		}
25573 		if (p->max_ownership_delay != 0) {
25574 			max_ownership_delay = p->max_ownership_delay * 1000;
25575 		}
25576 	}
25577 	SD_INFO(SD_LOG_IOCTL_MHD, un,
25578 	    "sd_take_ownership: min, max delays: %d, %d\n",
25579 	    min_ownership_delay, max_ownership_delay);
25580 
25581 	start_time = ddi_get_lbolt();
25582 	current_time	= start_time;
25583 	ownership_time	= current_time + drv_usectohz(min_ownership_delay);
25584 	end_time	= start_time + drv_usectohz(max_ownership_delay);
25585 
25586 	while (current_time - end_time < 0) {
25587 		delay(drv_usectohz(500000));
25588 
25589 		if ((err = sd_reserve_release(dev, SD_RESERVE)) != 0) {
25590 			if ((sd_reserve_release(dev, SD_RESERVE)) != 0) {
25591 				mutex_enter(SD_MUTEX(un));
25592 				rval = (un->un_resvd_status &
25593 				    SD_RESERVATION_CONFLICT) ? EACCES : EIO;
25594 				mutex_exit(SD_MUTEX(un));
25595 				break;
25596 			}
25597 		}
25598 		previous_current_time = current_time;
25599 		current_time = ddi_get_lbolt();
25600 		mutex_enter(SD_MUTEX(un));
25601 		if (err || (un->un_resvd_status & SD_LOST_RESERVE)) {
25602 			ownership_time = ddi_get_lbolt() +
25603 			    drv_usectohz(min_ownership_delay);
25604 			reservation_count = 0;
25605 		} else {
25606 			reservation_count++;
25607 		}
25608 		un->un_resvd_status |= SD_RESERVE;
25609 		un->un_resvd_status &= ~(SD_LOST_RESERVE | SD_WANT_RESERVE);
25610 		mutex_exit(SD_MUTEX(un));
25611 
25612 		SD_INFO(SD_LOG_IOCTL_MHD, un,
25613 		    "sd_take_ownership: ticks for loop iteration=%ld, "
25614 		    "reservation=%s\n", (current_time - previous_current_time),
25615 		    reservation_count ? "ok" : "reclaimed");
25616 
25617 		if (current_time - ownership_time >= 0 &&
25618 		    reservation_count >= 4) {
25619 			rval = 0; /* Achieved a stable ownership */
25620 			break;
25621 		}
25622 		if (current_time - end_time >= 0) {
25623 			rval = EACCES; /* No ownership in max possible time */
25624 			break;
25625 		}
25626 	}
25627 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
25628 	    "sd_take_ownership: return(2)=%d\n", rval);
25629 	return (rval);
25630 }
25631 
25632 
25633 /*
25634  *    Function: sd_reserve_release()
25635  *
25636  * Description: This function builds and sends scsi RESERVE, RELEASE, and
25637  *		PRIORITY RESERVE commands based on a user specified command type
25638  *
25639  *   Arguments: dev - the device 'dev_t'
25640  *		cmd - user specified command type; one of SD_PRIORITY_RESERVE,
25641  *		      SD_RESERVE, SD_RELEASE
25642  *
25643  * Return Code: 0 or Error Code
25644  */
25645 
25646 static int
25647 sd_reserve_release(dev_t dev, int cmd)
25648 {
25649 	struct uscsi_cmd	*com = NULL;
25650 	struct sd_lun		*un = NULL;
25651 	char			cdb[CDB_GROUP0];
25652 	int			rval;
25653 
25654 	ASSERT((cmd == SD_RELEASE) || (cmd == SD_RESERVE) ||
25655 	    (cmd == SD_PRIORITY_RESERVE));
25656 
25657 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25658 		return (ENXIO);
25659 	}
25660 
25661 	/* instantiate and initialize the command and cdb */
25662 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25663 	bzero(cdb, CDB_GROUP0);
25664 	com->uscsi_flags   = USCSI_SILENT;
25665 	com->uscsi_timeout = un->un_reserve_release_time;
25666 	com->uscsi_cdblen  = CDB_GROUP0;
25667 	com->uscsi_cdb	   = cdb;
25668 	if (cmd == SD_RELEASE) {
25669 		cdb[0] = SCMD_RELEASE;
25670 	} else {
25671 		cdb[0] = SCMD_RESERVE;
25672 	}
25673 
25674 	/* Send the command. */
25675 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
25676 	    SD_PATH_STANDARD);
25677 
25678 	/*
25679 	 * "break" a reservation that is held by another host, by issuing a
25680 	 * reset if priority reserve is desired, and we could not get the
25681 	 * device.
25682 	 */
25683 	if ((cmd == SD_PRIORITY_RESERVE) &&
25684 	    (rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
25685 		/*
25686 		 * First try to reset the LUN. If we cannot, then try a target
25687 		 * reset, followed by a bus reset if the target reset fails.
25688 		 */
25689 		int reset_retval = 0;
25690 		if (un->un_f_lun_reset_enabled == TRUE) {
25691 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
25692 		}
25693 		if (reset_retval == 0) {
25694 			/* The LUN reset either failed or was not issued */
25695 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
25696 		}
25697 		if ((reset_retval == 0) &&
25698 		    (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0)) {
25699 			rval = EIO;
25700 			kmem_free(com, sizeof (*com));
25701 			return (rval);
25702 		}
25703 
25704 		bzero(com, sizeof (struct uscsi_cmd));
25705 		com->uscsi_flags   = USCSI_SILENT;
25706 		com->uscsi_cdb	   = cdb;
25707 		com->uscsi_cdblen  = CDB_GROUP0;
25708 		com->uscsi_timeout = 5;
25709 
25710 		/*
25711 		 * Reissue the last reserve command, this time without request
25712 		 * sense.  Assume that it is just a regular reserve command.
25713 		 */
25714 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
25715 		    SD_PATH_STANDARD);
25716 	}
25717 
25718 	/* Return an error if still getting a reservation conflict. */
25719 	if ((rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
25720 		rval = EACCES;
25721 	}
25722 
25723 	kmem_free(com, sizeof (*com));
25724 	return (rval);
25725 }
25726 
25727 
25728 #define	SD_NDUMP_RETRIES	12
25729 /*
25730  *	System Crash Dump routine
25731  */
25732 
25733 static int
25734 sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
25735 {
25736 	int		instance;
25737 	int		partition;
25738 	int		i;
25739 	int		err;
25740 	struct sd_lun	*un;
25741 	struct scsi_pkt *wr_pktp;
25742 	struct buf	*wr_bp;
25743 	struct buf	wr_buf;
25744 	daddr_t		tgt_byte_offset; /* rmw - byte offset for target */
25745 	daddr_t		tgt_blkno;	/* rmw - blkno for target */
25746 	size_t		tgt_byte_count; /* rmw -  # of bytes to xfer */
25747 	size_t		tgt_nblk; /* rmw -  # of tgt blks to xfer */
25748 	size_t		io_start_offset;
25749 	int		doing_rmw = FALSE;
25750 	int		rval;
25751 	ssize_t		dma_resid;
25752 	daddr_t		oblkno;
25753 	diskaddr_t	nblks = 0;
25754 	diskaddr_t	start_block;
25755 
25756 	instance = SDUNIT(dev);
25757 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
25758 	    !SD_IS_VALID_LABEL(un) || ISCD(un)) {
25759 		return (ENXIO);
25760 	}
25761 
25762 	_NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*un))
25763 
25764 	SD_TRACE(SD_LOG_DUMP, un, "sddump: entry\n");
25765 
25766 	partition = SDPART(dev);
25767 	SD_INFO(SD_LOG_DUMP, un, "sddump: partition = %d\n", partition);
25768 
25769 	if (!(NOT_DEVBSIZE(un))) {
25770 		int secmask = 0;
25771 		int blknomask = 0;
25772 
25773 		blknomask = (un->un_tgt_blocksize / DEV_BSIZE) - 1;
25774 		secmask = un->un_tgt_blocksize - 1;
25775 
25776 		if (blkno & blknomask) {
25777 			SD_TRACE(SD_LOG_DUMP, un,
25778 			    "sddump: dump start block not modulo %d\n",
25779 			    un->un_tgt_blocksize);
25780 			return (EINVAL);
25781 		}
25782 
25783 		if ((nblk * DEV_BSIZE) & secmask) {
25784 			SD_TRACE(SD_LOG_DUMP, un,
25785 			    "sddump: dump length not modulo %d\n",
25786 			    un->un_tgt_blocksize);
25787 			return (EINVAL);
25788 		}
25789 
25790 	}
25791 
25792 	/* Validate blocks to dump at against partition size. */
25793 
25794 	(void) cmlb_partinfo(un->un_cmlbhandle, partition,
25795 	    &nblks, &start_block, NULL, NULL, (void *)SD_PATH_DIRECT);
25796 
25797 	if (NOT_DEVBSIZE(un)) {
25798 		if ((blkno + nblk) > nblks) {
25799 			SD_TRACE(SD_LOG_DUMP, un,
25800 			    "sddump: dump range larger than partition: "
25801 			    "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n",
25802 			    blkno, nblk, nblks);
25803 			return (EINVAL);
25804 		}
25805 	} else {
25806 		if (((blkno / (un->un_tgt_blocksize / DEV_BSIZE)) +
25807 		    (nblk / (un->un_tgt_blocksize / DEV_BSIZE))) > nblks) {
25808 			SD_TRACE(SD_LOG_DUMP, un,
25809 			    "sddump: dump range larger than partition: "
25810 			    "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n",
25811 			    blkno, nblk, nblks);
25812 			return (EINVAL);
25813 		}
25814 	}
25815 
25816 	mutex_enter(&un->un_pm_mutex);
25817 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
25818 		struct scsi_pkt *start_pktp;
25819 
25820 		mutex_exit(&un->un_pm_mutex);
25821 
25822 		/*
25823 		 * use pm framework to power on HBA 1st
25824 		 */
25825 		(void) pm_raise_power(SD_DEVINFO(un), 0,
25826 		    SD_PM_STATE_ACTIVE(un));
25827 
25828 		/*
25829 		 * Dump no long uses sdpower to power on a device, it's
25830 		 * in-line here so it can be done in polled mode.
25831 		 */
25832 
25833 		SD_INFO(SD_LOG_DUMP, un, "sddump: starting device\n");
25834 
25835 		start_pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, NULL,
25836 		    CDB_GROUP0, un->un_status_len, 0, 0, NULL_FUNC, NULL);
25837 
25838 		if (start_pktp == NULL) {
25839 			/* We were not given a SCSI packet, fail. */
25840 			return (EIO);
25841 		}
25842 		bzero(start_pktp->pkt_cdbp, CDB_GROUP0);
25843 		start_pktp->pkt_cdbp[0] = SCMD_START_STOP;
25844 		start_pktp->pkt_cdbp[4] = SD_TARGET_START;
25845 		start_pktp->pkt_flags = FLAG_NOINTR;
25846 
25847 		mutex_enter(SD_MUTEX(un));
25848 		SD_FILL_SCSI1_LUN(un, start_pktp);
25849 		mutex_exit(SD_MUTEX(un));
25850 		/*
25851 		 * Scsi_poll returns 0 (success) if the command completes and
25852 		 * the status block is STATUS_GOOD.
25853 		 */
25854 		if (sd_scsi_poll(un, start_pktp) != 0) {
25855 			scsi_destroy_pkt(start_pktp);
25856 			return (EIO);
25857 		}
25858 		scsi_destroy_pkt(start_pktp);
25859 		(void) sd_pm_state_change(un, SD_PM_STATE_ACTIVE(un),
25860 		    SD_PM_STATE_CHANGE);
25861 	} else {
25862 		mutex_exit(&un->un_pm_mutex);
25863 	}
25864 
25865 	mutex_enter(SD_MUTEX(un));
25866 	un->un_throttle = 0;
25867 
25868 	/*
25869 	 * The first time through, reset the specific target device.
25870 	 * However, when cpr calls sddump we know that sd is in a
25871 	 * a good state so no bus reset is required.
25872 	 * Clear sense data via Request Sense cmd.
25873 	 * In sddump we don't care about allow_bus_device_reset anymore
25874 	 */
25875 
25876 	if ((un->un_state != SD_STATE_SUSPENDED) &&
25877 	    (un->un_state != SD_STATE_DUMPING)) {
25878 
25879 		New_state(un, SD_STATE_DUMPING);
25880 
25881 		if (un->un_f_is_fibre == FALSE) {
25882 			mutex_exit(SD_MUTEX(un));
25883 			/*
25884 			 * Attempt a bus reset for parallel scsi.
25885 			 *
25886 			 * Note: A bus reset is required because on some host
25887 			 * systems (i.e. E420R) a bus device reset is
25888 			 * insufficient to reset the state of the target.
25889 			 *
25890 			 * Note: Don't issue the reset for fibre-channel,
25891 			 * because this tends to hang the bus (loop) for
25892 			 * too long while everyone is logging out and in
25893 			 * and the deadman timer for dumping will fire
25894 			 * before the dump is complete.
25895 			 */
25896 			if (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0) {
25897 				mutex_enter(SD_MUTEX(un));
25898 				Restore_state(un);
25899 				mutex_exit(SD_MUTEX(un));
25900 				return (EIO);
25901 			}
25902 
25903 			/* Delay to give the device some recovery time. */
25904 			drv_usecwait(10000);
25905 
25906 			if (sd_send_polled_RQS(un) == SD_FAILURE) {
25907 				SD_INFO(SD_LOG_DUMP, un,
25908 				    "sddump: sd_send_polled_RQS failed\n");
25909 			}
25910 			mutex_enter(SD_MUTEX(un));
25911 		}
25912 	}
25913 
25914 	/*
25915 	 * Convert the partition-relative block number to a
25916 	 * disk physical block number.
25917 	 */
25918 	if (NOT_DEVBSIZE(un)) {
25919 		blkno += start_block;
25920 	} else {
25921 		blkno = blkno / (un->un_tgt_blocksize / DEV_BSIZE);
25922 		blkno += start_block;
25923 	}
25924 
25925 	SD_INFO(SD_LOG_DUMP, un, "sddump: disk blkno = 0x%x\n", blkno);
25926 
25927 
25928 	/*
25929 	 * Check if the device has a non-512 block size.
25930 	 */
25931 	wr_bp = NULL;
25932 	if (NOT_DEVBSIZE(un)) {
25933 		tgt_byte_offset = blkno * un->un_sys_blocksize;
25934 		tgt_byte_count = nblk * un->un_sys_blocksize;
25935 		if ((tgt_byte_offset % un->un_tgt_blocksize) ||
25936 		    (tgt_byte_count % un->un_tgt_blocksize)) {
25937 			doing_rmw = TRUE;
25938 			/*
25939 			 * Calculate the block number and number of block
25940 			 * in terms of the media block size.
25941 			 */
25942 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
25943 			tgt_nblk =
25944 			    ((tgt_byte_offset + tgt_byte_count +
25945 			    (un->un_tgt_blocksize - 1)) /
25946 			    un->un_tgt_blocksize) - tgt_blkno;
25947 
25948 			/*
25949 			 * Invoke the routine which is going to do read part
25950 			 * of read-modify-write.
25951 			 * Note that this routine returns a pointer to
25952 			 * a valid bp in wr_bp.
25953 			 */
25954 			err = sddump_do_read_of_rmw(un, tgt_blkno, tgt_nblk,
25955 			    &wr_bp);
25956 			if (err) {
25957 				mutex_exit(SD_MUTEX(un));
25958 				return (err);
25959 			}
25960 			/*
25961 			 * Offset is being calculated as -
25962 			 * (original block # * system block size) -
25963 			 * (new block # * target block size)
25964 			 */
25965 			io_start_offset =
25966 			    ((uint64_t)(blkno * un->un_sys_blocksize)) -
25967 			    ((uint64_t)(tgt_blkno * un->un_tgt_blocksize));
25968 
25969 			ASSERT((io_start_offset >= 0) &&
25970 			    (io_start_offset < un->un_tgt_blocksize));
25971 			/*
25972 			 * Do the modify portion of read modify write.
25973 			 */
25974 			bcopy(addr, &wr_bp->b_un.b_addr[io_start_offset],
25975 			    (size_t)nblk * un->un_sys_blocksize);
25976 		} else {
25977 			doing_rmw = FALSE;
25978 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
25979 			tgt_nblk = tgt_byte_count / un->un_tgt_blocksize;
25980 		}
25981 
25982 		/* Convert blkno and nblk to target blocks */
25983 		blkno = tgt_blkno;
25984 		nblk = tgt_nblk;
25985 	} else {
25986 		wr_bp = &wr_buf;
25987 		bzero(wr_bp, sizeof (struct buf));
25988 		wr_bp->b_flags		= B_BUSY;
25989 		wr_bp->b_un.b_addr	= addr;
25990 		wr_bp->b_bcount		= nblk << DEV_BSHIFT;
25991 		wr_bp->b_resid		= 0;
25992 	}
25993 
25994 	mutex_exit(SD_MUTEX(un));
25995 
25996 	/*
25997 	 * Obtain a SCSI packet for the write command.
25998 	 * It should be safe to call the allocator here without
25999 	 * worrying about being locked for DVMA mapping because
26000 	 * the address we're passed is already a DVMA mapping
26001 	 *
26002 	 * We are also not going to worry about semaphore ownership
26003 	 * in the dump buffer. Dumping is single threaded at present.
26004 	 */
26005 
26006 	wr_pktp = NULL;
26007 
26008 	dma_resid = wr_bp->b_bcount;
26009 	oblkno = blkno;
26010 
26011 	if (!(NOT_DEVBSIZE(un))) {
26012 		nblk = nblk / (un->un_tgt_blocksize / DEV_BSIZE);
26013 	}
26014 
26015 	while (dma_resid != 0) {
26016 
26017 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
26018 		wr_bp->b_flags &= ~B_ERROR;
26019 
26020 		if (un->un_partial_dma_supported == 1) {
26021 			blkno = oblkno +
26022 			    ((wr_bp->b_bcount - dma_resid) /
26023 			    un->un_tgt_blocksize);
26024 			nblk = dma_resid / un->un_tgt_blocksize;
26025 
26026 			if (wr_pktp) {
26027 				/*
26028 				 * Partial DMA transfers after initial transfer
26029 				 */
26030 				rval = sd_setup_next_rw_pkt(un, wr_pktp, wr_bp,
26031 				    blkno, nblk);
26032 			} else {
26033 				/* Initial transfer */
26034 				rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
26035 				    un->un_pkt_flags, NULL_FUNC, NULL,
26036 				    blkno, nblk);
26037 			}
26038 		} else {
26039 			rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
26040 			    0, NULL_FUNC, NULL, blkno, nblk);
26041 		}
26042 
26043 		if (rval == 0) {
26044 			/* We were given a SCSI packet, continue. */
26045 			break;
26046 		}
26047 
26048 		if (i == 0) {
26049 			if (wr_bp->b_flags & B_ERROR) {
26050 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26051 				    "no resources for dumping; "
26052 				    "error code: 0x%x, retrying",
26053 				    geterror(wr_bp));
26054 			} else {
26055 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26056 				    "no resources for dumping; retrying");
26057 			}
26058 		} else if (i != (SD_NDUMP_RETRIES - 1)) {
26059 			if (wr_bp->b_flags & B_ERROR) {
26060 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26061 				    "no resources for dumping; error code: "
26062 				    "0x%x, retrying\n", geterror(wr_bp));
26063 			}
26064 		} else {
26065 			if (wr_bp->b_flags & B_ERROR) {
26066 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26067 				    "no resources for dumping; "
26068 				    "error code: 0x%x, retries failed, "
26069 				    "giving up.\n", geterror(wr_bp));
26070 			} else {
26071 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26072 				    "no resources for dumping; "
26073 				    "retries failed, giving up.\n");
26074 			}
26075 			mutex_enter(SD_MUTEX(un));
26076 			Restore_state(un);
26077 			if (NOT_DEVBSIZE(un) && (doing_rmw == TRUE)) {
26078 				mutex_exit(SD_MUTEX(un));
26079 				scsi_free_consistent_buf(wr_bp);
26080 			} else {
26081 				mutex_exit(SD_MUTEX(un));
26082 			}
26083 			return (EIO);
26084 		}
26085 		drv_usecwait(10000);
26086 	}
26087 
26088 	if (un->un_partial_dma_supported == 1) {
26089 		/*
26090 		 * save the resid from PARTIAL_DMA
26091 		 */
26092 		dma_resid = wr_pktp->pkt_resid;
26093 		if (dma_resid != 0)
26094 			nblk -= SD_BYTES2TGTBLOCKS(un, dma_resid);
26095 		wr_pktp->pkt_resid = 0;
26096 	} else {
26097 		dma_resid = 0;
26098 	}
26099 
26100 	/* SunBug 1222170 */
26101 	wr_pktp->pkt_flags = FLAG_NOINTR;
26102 
26103 	err = EIO;
26104 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
26105 
26106 		/*
26107 		 * Scsi_poll returns 0 (success) if the command completes and
26108 		 * the status block is STATUS_GOOD.  We should only check
26109 		 * errors if this condition is not true.  Even then we should
26110 		 * send our own request sense packet only if we have a check
26111 		 * condition and auto request sense has not been performed by
26112 		 * the hba.
26113 		 */
26114 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending write\n");
26115 
26116 		if ((sd_scsi_poll(un, wr_pktp) == 0) &&
26117 		    (wr_pktp->pkt_resid == 0)) {
26118 			err = SD_SUCCESS;
26119 			break;
26120 		}
26121 
26122 		/*
26123 		 * Check CMD_DEV_GONE 1st, give up if device is gone.
26124 		 */
26125 		if (wr_pktp->pkt_reason == CMD_DEV_GONE) {
26126 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26127 			    "Error while dumping state...Device is gone\n");
26128 			break;
26129 		}
26130 
26131 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_CHECK) {
26132 			SD_INFO(SD_LOG_DUMP, un,
26133 			    "sddump: write failed with CHECK, try # %d\n", i);
26134 			if (((wr_pktp->pkt_state & STATE_ARQ_DONE) == 0)) {
26135 				(void) sd_send_polled_RQS(un);
26136 			}
26137 
26138 			continue;
26139 		}
26140 
26141 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_BUSY) {
26142 			int reset_retval = 0;
26143 
26144 			SD_INFO(SD_LOG_DUMP, un,
26145 			    "sddump: write failed with BUSY, try # %d\n", i);
26146 
26147 			if (un->un_f_lun_reset_enabled == TRUE) {
26148 				reset_retval = scsi_reset(SD_ADDRESS(un),
26149 				    RESET_LUN);
26150 			}
26151 			if (reset_retval == 0) {
26152 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
26153 			}
26154 			(void) sd_send_polled_RQS(un);
26155 
26156 		} else {
26157 			SD_INFO(SD_LOG_DUMP, un,
26158 			    "sddump: write failed with 0x%x, try # %d\n",
26159 			    SD_GET_PKT_STATUS(wr_pktp), i);
26160 			mutex_enter(SD_MUTEX(un));
26161 			sd_reset_target(un, wr_pktp);
26162 			mutex_exit(SD_MUTEX(un));
26163 		}
26164 
26165 		/*
26166 		 * If we are not getting anywhere with lun/target resets,
26167 		 * let's reset the bus.
26168 		 */
26169 		if (i == SD_NDUMP_RETRIES/2) {
26170 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
26171 			(void) sd_send_polled_RQS(un);
26172 		}
26173 	}
26174 	}
26175 
26176 	scsi_destroy_pkt(wr_pktp);
26177 	mutex_enter(SD_MUTEX(un));
26178 	if ((NOT_DEVBSIZE(un)) && (doing_rmw == TRUE)) {
26179 		mutex_exit(SD_MUTEX(un));
26180 		scsi_free_consistent_buf(wr_bp);
26181 	} else {
26182 		mutex_exit(SD_MUTEX(un));
26183 	}
26184 	SD_TRACE(SD_LOG_DUMP, un, "sddump: exit: err = %d\n", err);
26185 	return (err);
26186 }
26187 
26188 /*
26189  *    Function: sd_scsi_poll()
26190  *
26191  * Description: This is a wrapper for the scsi_poll call.
26192  *
26193  *   Arguments: sd_lun - The unit structure
26194  *              scsi_pkt - The scsi packet being sent to the device.
26195  *
26196  * Return Code: 0 - Command completed successfully with good status
26197  *             -1 - Command failed.  This could indicate a check condition
26198  *                  or other status value requiring recovery action.
26199  *
26200  * NOTE: This code is only called off sddump().
26201  */
26202 
26203 static int
26204 sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pktp)
26205 {
26206 	int status;
26207 
26208 	ASSERT(un != NULL);
26209 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26210 	ASSERT(pktp != NULL);
26211 
26212 	status = SD_SUCCESS;
26213 
26214 	if (scsi_ifgetcap(&pktp->pkt_address, "tagged-qing", 1) == 1) {
26215 		pktp->pkt_flags |= un->un_tagflags;
26216 		pktp->pkt_flags &= ~FLAG_NODISCON;
26217 	}
26218 
26219 	status = sd_ddi_scsi_poll(pktp);
26220 	/*
26221 	 * Scsi_poll returns 0 (success) if the command completes and the
26222 	 * status block is STATUS_GOOD.  We should only check errors if this
26223 	 * condition is not true.  Even then we should send our own request
26224 	 * sense packet only if we have a check condition and auto
26225 	 * request sense has not been performed by the hba.
26226 	 * Don't get RQS data if pkt_reason is CMD_DEV_GONE.
26227 	 */
26228 	if ((status != SD_SUCCESS) &&
26229 	    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK) &&
26230 	    (pktp->pkt_state & STATE_ARQ_DONE) == 0 &&
26231 	    (pktp->pkt_reason != CMD_DEV_GONE))
26232 		(void) sd_send_polled_RQS(un);
26233 
26234 	return (status);
26235 }
26236 
26237 /*
26238  *    Function: sd_send_polled_RQS()
26239  *
26240  * Description: This sends the request sense command to a device.
26241  *
26242  *   Arguments: sd_lun - The unit structure
26243  *
26244  * Return Code: 0 - Command completed successfully with good status
26245  *             -1 - Command failed.
26246  *
26247  */
26248 
26249 static int
26250 sd_send_polled_RQS(struct sd_lun *un)
26251 {
26252 	int	ret_val;
26253 	struct	scsi_pkt	*rqs_pktp;
26254 	struct	buf		*rqs_bp;
26255 
26256 	ASSERT(un != NULL);
26257 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26258 
26259 	ret_val = SD_SUCCESS;
26260 
26261 	rqs_pktp = un->un_rqs_pktp;
26262 	rqs_bp	 = un->un_rqs_bp;
26263 
26264 	mutex_enter(SD_MUTEX(un));
26265 
26266 	if (un->un_sense_isbusy) {
26267 		ret_val = SD_FAILURE;
26268 		mutex_exit(SD_MUTEX(un));
26269 		return (ret_val);
26270 	}
26271 
26272 	/*
26273 	 * If the request sense buffer (and packet) is not in use,
26274 	 * let's set the un_sense_isbusy and send our packet
26275 	 */
26276 	un->un_sense_isbusy 	= 1;
26277 	rqs_pktp->pkt_resid  	= 0;
26278 	rqs_pktp->pkt_reason 	= 0;
26279 	rqs_pktp->pkt_flags |= FLAG_NOINTR;
26280 	bzero(rqs_bp->b_un.b_addr, SENSE_LENGTH);
26281 
26282 	mutex_exit(SD_MUTEX(un));
26283 
26284 	SD_INFO(SD_LOG_COMMON, un, "sd_send_polled_RQS: req sense buf at"
26285 	    " 0x%p\n", rqs_bp->b_un.b_addr);
26286 
26287 	/*
26288 	 * Can't send this to sd_scsi_poll, we wrap ourselves around the
26289 	 * axle - it has a call into us!
26290 	 */
26291 	if ((ret_val = sd_ddi_scsi_poll(rqs_pktp)) != 0) {
26292 		SD_INFO(SD_LOG_COMMON, un,
26293 		    "sd_send_polled_RQS: RQS failed\n");
26294 	}
26295 
26296 	SD_DUMP_MEMORY(un, SD_LOG_COMMON, "sd_send_polled_RQS:",
26297 	    (uchar_t *)rqs_bp->b_un.b_addr, SENSE_LENGTH, SD_LOG_HEX);
26298 
26299 	mutex_enter(SD_MUTEX(un));
26300 	un->un_sense_isbusy = 0;
26301 	mutex_exit(SD_MUTEX(un));
26302 
26303 	return (ret_val);
26304 }
26305 
26306 /*
26307  * Defines needed for localized version of the scsi_poll routine.
26308  */
26309 #define	CSEC		10000			/* usecs */
26310 #define	SEC_TO_CSEC	(1000000/CSEC)
26311 
26312 /*
26313  *    Function: sd_ddi_scsi_poll()
26314  *
26315  * Description: Localized version of the scsi_poll routine.  The purpose is to
26316  *		send a scsi_pkt to a device as a polled command.  This version
26317  *		is to ensure more robust handling of transport errors.
26318  *		Specifically this routine cures not ready, coming ready
26319  *		transition for power up and reset of sonoma's.  This can take
26320  *		up to 45 seconds for power-on and 20 seconds for reset of a
26321  * 		sonoma lun.
26322  *
26323  *   Arguments: scsi_pkt - The scsi_pkt being sent to a device
26324  *
26325  * Return Code: 0 - Command completed successfully with good status
26326  *             -1 - Command failed.
26327  *
26328  * NOTE: This code is almost identical to scsi_poll, however before 6668774 can
26329  * be fixed (removing this code), we need to determine how to handle the
26330  * KEY_UNIT_ATTENTION condition below in conditions not as limited as sddump().
26331  *
26332  * NOTE: This code is only called off sddump().
26333  */
26334 static int
26335 sd_ddi_scsi_poll(struct scsi_pkt *pkt)
26336 {
26337 	int			rval = -1;
26338 	int			savef;
26339 	long			savet;
26340 	void			(*savec)();
26341 	int			timeout;
26342 	int			busy_count;
26343 	int			poll_delay;
26344 	int			rc;
26345 	uint8_t			*sensep;
26346 	struct scsi_arq_status	*arqstat;
26347 	extern int		do_polled_io;
26348 
26349 	ASSERT(pkt->pkt_scbp);
26350 
26351 	/*
26352 	 * save old flags..
26353 	 */
26354 	savef = pkt->pkt_flags;
26355 	savec = pkt->pkt_comp;
26356 	savet = pkt->pkt_time;
26357 
26358 	pkt->pkt_flags |= FLAG_NOINTR;
26359 
26360 	/*
26361 	 * XXX there is nothing in the SCSA spec that states that we should not
26362 	 * do a callback for polled cmds; however, removing this will break sd
26363 	 * and probably other target drivers
26364 	 */
26365 	pkt->pkt_comp = NULL;
26366 
26367 	/*
26368 	 * we don't like a polled command without timeout.
26369 	 * 60 seconds seems long enough.
26370 	 */
26371 	if (pkt->pkt_time == 0)
26372 		pkt->pkt_time = SCSI_POLL_TIMEOUT;
26373 
26374 	/*
26375 	 * Send polled cmd.
26376 	 *
26377 	 * We do some error recovery for various errors.  Tran_busy,
26378 	 * queue full, and non-dispatched commands are retried every 10 msec.
26379 	 * as they are typically transient failures.  Busy status and Not
26380 	 * Ready are retried every second as this status takes a while to
26381 	 * change.
26382 	 */
26383 	timeout = pkt->pkt_time * SEC_TO_CSEC;
26384 
26385 	for (busy_count = 0; busy_count < timeout; busy_count++) {
26386 		/*
26387 		 * Initialize pkt status variables.
26388 		 */
26389 		*pkt->pkt_scbp = pkt->pkt_reason = pkt->pkt_state = 0;
26390 
26391 		if ((rc = scsi_transport(pkt)) != TRAN_ACCEPT) {
26392 			if (rc != TRAN_BUSY) {
26393 				/* Transport failed - give up. */
26394 				break;
26395 			} else {
26396 				/* Transport busy - try again. */
26397 				poll_delay = 1 * CSEC;		/* 10 msec. */
26398 			}
26399 		} else {
26400 			/*
26401 			 * Transport accepted - check pkt status.
26402 			 */
26403 			rc = (*pkt->pkt_scbp) & STATUS_MASK;
26404 			if ((pkt->pkt_reason == CMD_CMPLT) &&
26405 			    (rc == STATUS_CHECK) &&
26406 			    (pkt->pkt_state & STATE_ARQ_DONE)) {
26407 				arqstat =
26408 				    (struct scsi_arq_status *)(pkt->pkt_scbp);
26409 				sensep = (uint8_t *)&arqstat->sts_sensedata;
26410 			} else {
26411 				sensep = NULL;
26412 			}
26413 
26414 			if ((pkt->pkt_reason == CMD_CMPLT) &&
26415 			    (rc == STATUS_GOOD)) {
26416 				/* No error - we're done */
26417 				rval = 0;
26418 				break;
26419 
26420 			} else if (pkt->pkt_reason == CMD_DEV_GONE) {
26421 				/* Lost connection - give up */
26422 				break;
26423 
26424 			} else if ((pkt->pkt_reason == CMD_INCOMPLETE) &&
26425 			    (pkt->pkt_state == 0)) {
26426 				/* Pkt not dispatched - try again. */
26427 				poll_delay = 1 * CSEC;		/* 10 msec. */
26428 
26429 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
26430 			    (rc == STATUS_QFULL)) {
26431 				/* Queue full - try again. */
26432 				poll_delay = 1 * CSEC;		/* 10 msec. */
26433 
26434 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
26435 			    (rc == STATUS_BUSY)) {
26436 				/* Busy - try again. */
26437 				poll_delay = 100 * CSEC;	/* 1 sec. */
26438 				busy_count += (SEC_TO_CSEC - 1);
26439 
26440 			} else if ((sensep != NULL) &&
26441 			    (scsi_sense_key(sensep) == KEY_UNIT_ATTENTION)) {
26442 				/*
26443 				 * Unit Attention - try again.
26444 				 * Pretend it took 1 sec.
26445 				 * NOTE: 'continue' avoids poll_delay
26446 				 */
26447 				busy_count += (SEC_TO_CSEC - 1);
26448 				continue;
26449 
26450 			} else if ((sensep != NULL) &&
26451 			    (scsi_sense_key(sensep) == KEY_NOT_READY) &&
26452 			    (scsi_sense_asc(sensep) == 0x04) &&
26453 			    (scsi_sense_ascq(sensep) == 0x01)) {
26454 				/*
26455 				 * Not ready -> ready - try again.
26456 				 * 04h/01h: LUN IS IN PROCESS OF BECOMING READY
26457 				 * ...same as STATUS_BUSY
26458 				 */
26459 				poll_delay = 100 * CSEC;	/* 1 sec. */
26460 				busy_count += (SEC_TO_CSEC - 1);
26461 
26462 			} else {
26463 				/* BAD status - give up. */
26464 				break;
26465 			}
26466 		}
26467 
26468 		if (((curthread->t_flag & T_INTR_THREAD) == 0) &&
26469 		    !do_polled_io) {
26470 			delay(drv_usectohz(poll_delay));
26471 		} else {
26472 			/* we busy wait during cpr_dump or interrupt threads */
26473 			drv_usecwait(poll_delay);
26474 		}
26475 	}
26476 
26477 	pkt->pkt_flags = savef;
26478 	pkt->pkt_comp = savec;
26479 	pkt->pkt_time = savet;
26480 
26481 	/* return on error */
26482 	if (rval)
26483 		return (rval);
26484 
26485 	/*
26486 	 * This is not a performance critical code path.
26487 	 *
26488 	 * As an accommodation for scsi_poll callers, to avoid ddi_dma_sync()
26489 	 * issues associated with looking at DMA memory prior to
26490 	 * scsi_pkt_destroy(), we scsi_sync_pkt() prior to return.
26491 	 */
26492 	scsi_sync_pkt(pkt);
26493 	return (0);
26494 }
26495 
26496 
26497 
26498 /*
26499  *    Function: sd_persistent_reservation_in_read_keys
26500  *
26501  * Description: This routine is the driver entry point for handling CD-ROM
26502  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS)
26503  *		by sending the SCSI-3 PRIN commands to the device.
26504  *		Processes the read keys command response by copying the
26505  *		reservation key information into the user provided buffer.
26506  *		Support for the 32/64 bit _MULTI_DATAMODEL is implemented.
26507  *
26508  *   Arguments: un   -  Pointer to soft state struct for the target.
26509  *		usrp -	user provided pointer to multihost Persistent In Read
26510  *			Keys structure (mhioc_inkeys_t)
26511  *		flag -	this argument is a pass through to ddi_copyxxx()
26512  *			directly from the mode argument of ioctl().
26513  *
26514  * Return Code: 0   - Success
26515  *		EACCES
26516  *		ENOTSUP
26517  *		errno return code from sd_send_scsi_cmd()
26518  *
26519  *     Context: Can sleep. Does not return until command is completed.
26520  */
26521 
26522 static int
26523 sd_persistent_reservation_in_read_keys(struct sd_lun *un,
26524     mhioc_inkeys_t *usrp, int flag)
26525 {
26526 #ifdef _MULTI_DATAMODEL
26527 	struct mhioc_key_list32	li32;
26528 #endif
26529 	sd_prin_readkeys_t	*in;
26530 	mhioc_inkeys_t		*ptr;
26531 	mhioc_key_list_t	li;
26532 	uchar_t			*data_bufp;
26533 	int 			data_len;
26534 	int			rval = 0;
26535 	size_t			copysz;
26536 	sd_ssc_t		*ssc;
26537 
26538 	if ((ptr = (mhioc_inkeys_t *)usrp) == NULL) {
26539 		return (EINVAL);
26540 	}
26541 	bzero(&li, sizeof (mhioc_key_list_t));
26542 
26543 	ssc = sd_ssc_init(un);
26544 
26545 	/*
26546 	 * Get the listsize from user
26547 	 */
26548 #ifdef _MULTI_DATAMODEL
26549 
26550 	switch (ddi_model_convert_from(flag & FMODELS)) {
26551 	case DDI_MODEL_ILP32:
26552 		copysz = sizeof (struct mhioc_key_list32);
26553 		if (ddi_copyin(ptr->li, &li32, copysz, flag)) {
26554 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26555 			    "sd_persistent_reservation_in_read_keys: "
26556 			    "failed ddi_copyin: mhioc_key_list32_t\n");
26557 			rval = EFAULT;
26558 			goto done;
26559 		}
26560 		li.listsize = li32.listsize;
26561 		li.list = (mhioc_resv_key_t *)(uintptr_t)li32.list;
26562 		break;
26563 
26564 	case DDI_MODEL_NONE:
26565 		copysz = sizeof (mhioc_key_list_t);
26566 		if (ddi_copyin(ptr->li, &li, copysz, flag)) {
26567 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26568 			    "sd_persistent_reservation_in_read_keys: "
26569 			    "failed ddi_copyin: mhioc_key_list_t\n");
26570 			rval = EFAULT;
26571 			goto done;
26572 		}
26573 		break;
26574 	}
26575 
26576 #else /* ! _MULTI_DATAMODEL */
26577 	copysz = sizeof (mhioc_key_list_t);
26578 	if (ddi_copyin(ptr->li, &li, copysz, flag)) {
26579 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26580 		    "sd_persistent_reservation_in_read_keys: "
26581 		    "failed ddi_copyin: mhioc_key_list_t\n");
26582 		rval = EFAULT;
26583 		goto done;
26584 	}
26585 #endif
26586 
26587 	data_len  = li.listsize * MHIOC_RESV_KEY_SIZE;
26588 	data_len += (sizeof (sd_prin_readkeys_t) - sizeof (caddr_t));
26589 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
26590 
26591 	rval = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_KEYS,
26592 	    data_len, data_bufp);
26593 	if (rval != 0) {
26594 		if (rval == EIO)
26595 			sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE);
26596 		else
26597 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
26598 		goto done;
26599 	}
26600 	in = (sd_prin_readkeys_t *)data_bufp;
26601 	ptr->generation = BE_32(in->generation);
26602 	li.listlen = BE_32(in->len) / MHIOC_RESV_KEY_SIZE;
26603 
26604 	/*
26605 	 * Return the min(listsize, listlen) keys
26606 	 */
26607 #ifdef _MULTI_DATAMODEL
26608 
26609 	switch (ddi_model_convert_from(flag & FMODELS)) {
26610 	case DDI_MODEL_ILP32:
26611 		li32.listlen = li.listlen;
26612 		if (ddi_copyout(&li32, ptr->li, copysz, flag)) {
26613 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26614 			    "sd_persistent_reservation_in_read_keys: "
26615 			    "failed ddi_copyout: mhioc_key_list32_t\n");
26616 			rval = EFAULT;
26617 			goto done;
26618 		}
26619 		break;
26620 
26621 	case DDI_MODEL_NONE:
26622 		if (ddi_copyout(&li, ptr->li, copysz, flag)) {
26623 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26624 			    "sd_persistent_reservation_in_read_keys: "
26625 			    "failed ddi_copyout: mhioc_key_list_t\n");
26626 			rval = EFAULT;
26627 			goto done;
26628 		}
26629 		break;
26630 	}
26631 
26632 #else /* ! _MULTI_DATAMODEL */
26633 
26634 	if (ddi_copyout(&li, ptr->li, copysz, flag)) {
26635 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26636 		    "sd_persistent_reservation_in_read_keys: "
26637 		    "failed ddi_copyout: mhioc_key_list_t\n");
26638 		rval = EFAULT;
26639 		goto done;
26640 	}
26641 
26642 #endif /* _MULTI_DATAMODEL */
26643 
26644 	copysz = min(li.listlen * MHIOC_RESV_KEY_SIZE,
26645 	    li.listsize * MHIOC_RESV_KEY_SIZE);
26646 	if (ddi_copyout(&in->keylist, li.list, copysz, flag)) {
26647 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26648 		    "sd_persistent_reservation_in_read_keys: "
26649 		    "failed ddi_copyout: keylist\n");
26650 		rval = EFAULT;
26651 	}
26652 done:
26653 	sd_ssc_fini(ssc);
26654 	kmem_free(data_bufp, data_len);
26655 	return (rval);
26656 }
26657 
26658 
26659 /*
26660  *    Function: sd_persistent_reservation_in_read_resv
26661  *
26662  * Description: This routine is the driver entry point for handling CD-ROM
26663  *		multi-host persistent reservation requests (MHIOCGRP_INRESV)
26664  *		by sending the SCSI-3 PRIN commands to the device.
26665  *		Process the read persistent reservations command response by
26666  *		copying the reservation information into the user provided
26667  *		buffer. Support for the 32/64 _MULTI_DATAMODEL is implemented.
26668  *
26669  *   Arguments: un   -  Pointer to soft state struct for the target.
26670  *		usrp -	user provided pointer to multihost Persistent In Read
26671  *			Keys structure (mhioc_inkeys_t)
26672  *		flag -	this argument is a pass through to ddi_copyxxx()
26673  *			directly from the mode argument of ioctl().
26674  *
26675  * Return Code: 0   - Success
26676  *		EACCES
26677  *		ENOTSUP
26678  *		errno return code from sd_send_scsi_cmd()
26679  *
26680  *     Context: Can sleep. Does not return until command is completed.
26681  */
26682 
26683 static int
26684 sd_persistent_reservation_in_read_resv(struct sd_lun *un,
26685     mhioc_inresvs_t *usrp, int flag)
26686 {
26687 #ifdef _MULTI_DATAMODEL
26688 	struct mhioc_resv_desc_list32 resvlist32;
26689 #endif
26690 	sd_prin_readresv_t	*in;
26691 	mhioc_inresvs_t		*ptr;
26692 	sd_readresv_desc_t	*readresv_ptr;
26693 	mhioc_resv_desc_list_t	resvlist;
26694 	mhioc_resv_desc_t 	resvdesc;
26695 	uchar_t			*data_bufp = NULL;
26696 	int 			data_len;
26697 	int			rval = 0;
26698 	int			i;
26699 	size_t			copysz;
26700 	mhioc_resv_desc_t	*bufp;
26701 	sd_ssc_t		*ssc;
26702 
26703 	if ((ptr = usrp) == NULL) {
26704 		return (EINVAL);
26705 	}
26706 
26707 	ssc = sd_ssc_init(un);
26708 
26709 	/*
26710 	 * Get the listsize from user
26711 	 */
26712 #ifdef _MULTI_DATAMODEL
26713 	switch (ddi_model_convert_from(flag & FMODELS)) {
26714 	case DDI_MODEL_ILP32:
26715 		copysz = sizeof (struct mhioc_resv_desc_list32);
26716 		if (ddi_copyin(ptr->li, &resvlist32, copysz, flag)) {
26717 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26718 			    "sd_persistent_reservation_in_read_resv: "
26719 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
26720 			rval = EFAULT;
26721 			goto done;
26722 		}
26723 		resvlist.listsize = resvlist32.listsize;
26724 		resvlist.list = (mhioc_resv_desc_t *)(uintptr_t)resvlist32.list;
26725 		break;
26726 
26727 	case DDI_MODEL_NONE:
26728 		copysz = sizeof (mhioc_resv_desc_list_t);
26729 		if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
26730 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26731 			    "sd_persistent_reservation_in_read_resv: "
26732 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
26733 			rval = EFAULT;
26734 			goto done;
26735 		}
26736 		break;
26737 	}
26738 #else /* ! _MULTI_DATAMODEL */
26739 	copysz = sizeof (mhioc_resv_desc_list_t);
26740 	if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
26741 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26742 		    "sd_persistent_reservation_in_read_resv: "
26743 		    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
26744 		rval = EFAULT;
26745 		goto done;
26746 	}
26747 #endif /* ! _MULTI_DATAMODEL */
26748 
26749 	data_len  = resvlist.listsize * SCSI3_RESV_DESC_LEN;
26750 	data_len += (sizeof (sd_prin_readresv_t) - sizeof (caddr_t));
26751 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
26752 
26753 	rval = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_RESV,
26754 	    data_len, data_bufp);
26755 	if (rval != 0) {
26756 		if (rval == EIO)
26757 			sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE);
26758 		else
26759 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
26760 		goto done;
26761 	}
26762 	in = (sd_prin_readresv_t *)data_bufp;
26763 	ptr->generation = BE_32(in->generation);
26764 	resvlist.listlen = BE_32(in->len) / SCSI3_RESV_DESC_LEN;
26765 
26766 	/*
26767 	 * Return the min(listsize, listlen( keys
26768 	 */
26769 #ifdef _MULTI_DATAMODEL
26770 
26771 	switch (ddi_model_convert_from(flag & FMODELS)) {
26772 	case DDI_MODEL_ILP32:
26773 		resvlist32.listlen = resvlist.listlen;
26774 		if (ddi_copyout(&resvlist32, ptr->li, copysz, flag)) {
26775 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26776 			    "sd_persistent_reservation_in_read_resv: "
26777 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
26778 			rval = EFAULT;
26779 			goto done;
26780 		}
26781 		break;
26782 
26783 	case DDI_MODEL_NONE:
26784 		if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
26785 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26786 			    "sd_persistent_reservation_in_read_resv: "
26787 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
26788 			rval = EFAULT;
26789 			goto done;
26790 		}
26791 		break;
26792 	}
26793 
26794 #else /* ! _MULTI_DATAMODEL */
26795 
26796 	if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
26797 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26798 		    "sd_persistent_reservation_in_read_resv: "
26799 		    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
26800 		rval = EFAULT;
26801 		goto done;
26802 	}
26803 
26804 #endif /* ! _MULTI_DATAMODEL */
26805 
26806 	readresv_ptr = (sd_readresv_desc_t *)&in->readresv_desc;
26807 	bufp = resvlist.list;
26808 	copysz = sizeof (mhioc_resv_desc_t);
26809 	for (i = 0; i < min(resvlist.listlen, resvlist.listsize);
26810 	    i++, readresv_ptr++, bufp++) {
26811 
26812 		bcopy(&readresv_ptr->resvkey, &resvdesc.key,
26813 		    MHIOC_RESV_KEY_SIZE);
26814 		resvdesc.type  = readresv_ptr->type;
26815 		resvdesc.scope = readresv_ptr->scope;
26816 		resvdesc.scope_specific_addr =
26817 		    BE_32(readresv_ptr->scope_specific_addr);
26818 
26819 		if (ddi_copyout(&resvdesc, bufp, copysz, flag)) {
26820 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26821 			    "sd_persistent_reservation_in_read_resv: "
26822 			    "failed ddi_copyout: resvlist\n");
26823 			rval = EFAULT;
26824 			goto done;
26825 		}
26826 	}
26827 done:
26828 	sd_ssc_fini(ssc);
26829 	/* only if data_bufp is allocated, we need to free it */
26830 	if (data_bufp) {
26831 		kmem_free(data_bufp, data_len);
26832 	}
26833 	return (rval);
26834 }
26835 
26836 
26837 /*
26838  *    Function: sr_change_blkmode()
26839  *
26840  * Description: This routine is the driver entry point for handling CD-ROM
26841  *		block mode ioctl requests. Support for returning and changing
26842  *		the current block size in use by the device is implemented. The
26843  *		LBA size is changed via a MODE SELECT Block Descriptor.
26844  *
26845  *		This routine issues a mode sense with an allocation length of
26846  *		12 bytes for the mode page header and a single block descriptor.
26847  *
26848  *   Arguments: dev - the device 'dev_t'
26849  *		cmd - the request type; one of CDROMGBLKMODE (get) or
26850  *		      CDROMSBLKMODE (set)
26851  *		data - current block size or requested block size
26852  *		flag - this argument is a pass through to ddi_copyxxx() directly
26853  *		       from the mode argument of ioctl().
26854  *
26855  * Return Code: the code returned by sd_send_scsi_cmd()
26856  *		EINVAL if invalid arguments are provided
26857  *		EFAULT if ddi_copyxxx() fails
26858  *		ENXIO if fail ddi_get_soft_state
26859  *		EIO if invalid mode sense block descriptor length
26860  *
26861  */
26862 
26863 static int
26864 sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag)
26865 {
26866 	struct sd_lun			*un = NULL;
26867 	struct mode_header		*sense_mhp, *select_mhp;
26868 	struct block_descriptor		*sense_desc, *select_desc;
26869 	int				current_bsize;
26870 	int				rval = EINVAL;
26871 	uchar_t				*sense = NULL;
26872 	uchar_t				*select = NULL;
26873 	sd_ssc_t			*ssc;
26874 
26875 	ASSERT((cmd == CDROMGBLKMODE) || (cmd == CDROMSBLKMODE));
26876 
26877 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26878 		return (ENXIO);
26879 	}
26880 
26881 	/*
26882 	 * The block length is changed via the Mode Select block descriptor, the
26883 	 * "Read/Write Error Recovery" mode page (0x1) contents are not actually
26884 	 * required as part of this routine. Therefore the mode sense allocation
26885 	 * length is specified to be the length of a mode page header and a
26886 	 * block descriptor.
26887 	 */
26888 	sense = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
26889 
26890 	ssc = sd_ssc_init(un);
26891 	rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense,
26892 	    BUFLEN_CHG_BLK_MODE, MODEPAGE_ERR_RECOV, SD_PATH_STANDARD);
26893 	sd_ssc_fini(ssc);
26894 	if (rval != 0) {
26895 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26896 		    "sr_change_blkmode: Mode Sense Failed\n");
26897 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
26898 		return (rval);
26899 	}
26900 
26901 	/* Check the block descriptor len to handle only 1 block descriptor */
26902 	sense_mhp = (struct mode_header *)sense;
26903 	if ((sense_mhp->bdesc_length == 0) ||
26904 	    (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH)) {
26905 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26906 		    "sr_change_blkmode: Mode Sense returned invalid block"
26907 		    " descriptor length\n");
26908 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
26909 		return (EIO);
26910 	}
26911 	sense_desc = (struct block_descriptor *)(sense + MODE_HEADER_LENGTH);
26912 	current_bsize = ((sense_desc->blksize_hi << 16) |
26913 	    (sense_desc->blksize_mid << 8) | sense_desc->blksize_lo);
26914 
26915 	/* Process command */
26916 	switch (cmd) {
26917 	case CDROMGBLKMODE:
26918 		/* Return the block size obtained during the mode sense */
26919 		if (ddi_copyout(&current_bsize, (void *)data,
26920 		    sizeof (int), flag) != 0)
26921 			rval = EFAULT;
26922 		break;
26923 	case CDROMSBLKMODE:
26924 		/* Validate the requested block size */
26925 		switch (data) {
26926 		case CDROM_BLK_512:
26927 		case CDROM_BLK_1024:
26928 		case CDROM_BLK_2048:
26929 		case CDROM_BLK_2056:
26930 		case CDROM_BLK_2336:
26931 		case CDROM_BLK_2340:
26932 		case CDROM_BLK_2352:
26933 		case CDROM_BLK_2368:
26934 		case CDROM_BLK_2448:
26935 		case CDROM_BLK_2646:
26936 		case CDROM_BLK_2647:
26937 			break;
26938 		default:
26939 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26940 			    "sr_change_blkmode: "
26941 			    "Block Size '%ld' Not Supported\n", data);
26942 			kmem_free(sense, BUFLEN_CHG_BLK_MODE);
26943 			return (EINVAL);
26944 		}
26945 
26946 		/*
26947 		 * The current block size matches the requested block size so
26948 		 * there is no need to send the mode select to change the size
26949 		 */
26950 		if (current_bsize == data) {
26951 			break;
26952 		}
26953 
26954 		/* Build the select data for the requested block size */
26955 		select = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
26956 		select_mhp = (struct mode_header *)select;
26957 		select_desc =
26958 		    (struct block_descriptor *)(select + MODE_HEADER_LENGTH);
26959 		/*
26960 		 * The LBA size is changed via the block descriptor, so the
26961 		 * descriptor is built according to the user data
26962 		 */
26963 		select_mhp->bdesc_length = MODE_BLK_DESC_LENGTH;
26964 		select_desc->blksize_hi  = (char)(((data) & 0x00ff0000) >> 16);
26965 		select_desc->blksize_mid = (char)(((data) & 0x0000ff00) >> 8);
26966 		select_desc->blksize_lo  = (char)((data) & 0x000000ff);
26967 
26968 		/* Send the mode select for the requested block size */
26969 		ssc = sd_ssc_init(un);
26970 		rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0,
26971 		    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
26972 		    SD_PATH_STANDARD);
26973 		sd_ssc_fini(ssc);
26974 		if (rval != 0) {
26975 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26976 			    "sr_change_blkmode: Mode Select Failed\n");
26977 			/*
26978 			 * The mode select failed for the requested block size,
26979 			 * so reset the data for the original block size and
26980 			 * send it to the target. The error is indicated by the
26981 			 * return value for the failed mode select.
26982 			 */
26983 			select_desc->blksize_hi  = sense_desc->blksize_hi;
26984 			select_desc->blksize_mid = sense_desc->blksize_mid;
26985 			select_desc->blksize_lo  = sense_desc->blksize_lo;
26986 			ssc = sd_ssc_init(un);
26987 			(void) sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0,
26988 			    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
26989 			    SD_PATH_STANDARD);
26990 			sd_ssc_fini(ssc);
26991 		} else {
26992 			ASSERT(!mutex_owned(SD_MUTEX(un)));
26993 			mutex_enter(SD_MUTEX(un));
26994 			sd_update_block_info(un, (uint32_t)data, 0);
26995 			mutex_exit(SD_MUTEX(un));
26996 		}
26997 		break;
26998 	default:
26999 		/* should not reach here, but check anyway */
27000 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27001 		    "sr_change_blkmode: Command '%x' Not Supported\n", cmd);
27002 		rval = EINVAL;
27003 		break;
27004 	}
27005 
27006 	if (select) {
27007 		kmem_free(select, BUFLEN_CHG_BLK_MODE);
27008 	}
27009 	if (sense) {
27010 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
27011 	}
27012 	return (rval);
27013 }
27014 
27015 
27016 /*
27017  * Note: The following sr_change_speed() and sr_atapi_change_speed() routines
27018  * implement driver support for getting and setting the CD speed. The command
27019  * set used will be based on the device type. If the device has not been
27020  * identified as MMC the Toshiba vendor specific mode page will be used. If
27021  * the device is MMC but does not support the Real Time Streaming feature
27022  * the SET CD SPEED command will be used to set speed and mode page 0x2A will
27023  * be used to read the speed.
27024  */
27025 
27026 /*
27027  *    Function: sr_change_speed()
27028  *
27029  * Description: This routine is the driver entry point for handling CD-ROM
27030  *		drive speed ioctl requests for devices supporting the Toshiba
27031  *		vendor specific drive speed mode page. Support for returning
27032  *		and changing the current drive speed in use by the device is
27033  *		implemented.
27034  *
27035  *   Arguments: dev - the device 'dev_t'
27036  *		cmd - the request type; one of CDROMGDRVSPEED (get) or
27037  *		      CDROMSDRVSPEED (set)
27038  *		data - current drive speed or requested drive speed
27039  *		flag - this argument is a pass through to ddi_copyxxx() directly
27040  *		       from the mode argument of ioctl().
27041  *
27042  * Return Code: the code returned by sd_send_scsi_cmd()
27043  *		EINVAL if invalid arguments are provided
27044  *		EFAULT if ddi_copyxxx() fails
27045  *		ENXIO if fail ddi_get_soft_state
27046  *		EIO if invalid mode sense block descriptor length
27047  */
27048 
27049 static int
27050 sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
27051 {
27052 	struct sd_lun			*un = NULL;
27053 	struct mode_header		*sense_mhp, *select_mhp;
27054 	struct mode_speed		*sense_page, *select_page;
27055 	int				current_speed;
27056 	int				rval = EINVAL;
27057 	int				bd_len;
27058 	uchar_t				*sense = NULL;
27059 	uchar_t				*select = NULL;
27060 	sd_ssc_t			*ssc;
27061 
27062 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
27063 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27064 		return (ENXIO);
27065 	}
27066 
27067 	/*
27068 	 * Note: The drive speed is being modified here according to a Toshiba
27069 	 * vendor specific mode page (0x31).
27070 	 */
27071 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
27072 
27073 	ssc = sd_ssc_init(un);
27074 	rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense,
27075 	    BUFLEN_MODE_CDROM_SPEED, CDROM_MODE_SPEED,
27076 	    SD_PATH_STANDARD);
27077 	sd_ssc_fini(ssc);
27078 	if (rval != 0) {
27079 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27080 		    "sr_change_speed: Mode Sense Failed\n");
27081 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27082 		return (rval);
27083 	}
27084 	sense_mhp  = (struct mode_header *)sense;
27085 
27086 	/* Check the block descriptor len to handle only 1 block descriptor */
27087 	bd_len = sense_mhp->bdesc_length;
27088 	if (bd_len > MODE_BLK_DESC_LENGTH) {
27089 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27090 		    "sr_change_speed: Mode Sense returned invalid block "
27091 		    "descriptor length\n");
27092 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27093 		return (EIO);
27094 	}
27095 
27096 	sense_page = (struct mode_speed *)
27097 	    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
27098 	current_speed = sense_page->speed;
27099 
27100 	/* Process command */
27101 	switch (cmd) {
27102 	case CDROMGDRVSPEED:
27103 		/* Return the drive speed obtained during the mode sense */
27104 		if (current_speed == 0x2) {
27105 			current_speed = CDROM_TWELVE_SPEED;
27106 		}
27107 		if (ddi_copyout(&current_speed, (void *)data,
27108 		    sizeof (int), flag) != 0) {
27109 			rval = EFAULT;
27110 		}
27111 		break;
27112 	case CDROMSDRVSPEED:
27113 		/* Validate the requested drive speed */
27114 		switch ((uchar_t)data) {
27115 		case CDROM_TWELVE_SPEED:
27116 			data = 0x2;
27117 			/*FALLTHROUGH*/
27118 		case CDROM_NORMAL_SPEED:
27119 		case CDROM_DOUBLE_SPEED:
27120 		case CDROM_QUAD_SPEED:
27121 		case CDROM_MAXIMUM_SPEED:
27122 			break;
27123 		default:
27124 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27125 			    "sr_change_speed: "
27126 			    "Drive Speed '%d' Not Supported\n", (uchar_t)data);
27127 			kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27128 			return (EINVAL);
27129 		}
27130 
27131 		/*
27132 		 * The current drive speed matches the requested drive speed so
27133 		 * there is no need to send the mode select to change the speed
27134 		 */
27135 		if (current_speed == data) {
27136 			break;
27137 		}
27138 
27139 		/* Build the select data for the requested drive speed */
27140 		select = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
27141 		select_mhp = (struct mode_header *)select;
27142 		select_mhp->bdesc_length = 0;
27143 		select_page =
27144 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
27145 		select_page =
27146 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
27147 		select_page->mode_page.code = CDROM_MODE_SPEED;
27148 		select_page->mode_page.length = 2;
27149 		select_page->speed = (uchar_t)data;
27150 
27151 		/* Send the mode select for the requested block size */
27152 		ssc = sd_ssc_init(un);
27153 		rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select,
27154 		    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
27155 		    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
27156 		sd_ssc_fini(ssc);
27157 		if (rval != 0) {
27158 			/*
27159 			 * The mode select failed for the requested drive speed,
27160 			 * so reset the data for the original drive speed and
27161 			 * send it to the target. The error is indicated by the
27162 			 * return value for the failed mode select.
27163 			 */
27164 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27165 			    "sr_drive_speed: Mode Select Failed\n");
27166 			select_page->speed = sense_page->speed;
27167 			ssc = sd_ssc_init(un);
27168 			(void) sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select,
27169 			    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
27170 			    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
27171 			sd_ssc_fini(ssc);
27172 		}
27173 		break;
27174 	default:
27175 		/* should not reach here, but check anyway */
27176 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27177 		    "sr_change_speed: Command '%x' Not Supported\n", cmd);
27178 		rval = EINVAL;
27179 		break;
27180 	}
27181 
27182 	if (select) {
27183 		kmem_free(select, BUFLEN_MODE_CDROM_SPEED);
27184 	}
27185 	if (sense) {
27186 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27187 	}
27188 
27189 	return (rval);
27190 }
27191 
27192 
27193 /*
27194  *    Function: sr_atapi_change_speed()
27195  *
27196  * Description: This routine is the driver entry point for handling CD-ROM
27197  *		drive speed ioctl requests for MMC devices that do not support
27198  *		the Real Time Streaming feature (0x107).
27199  *
27200  *		Note: This routine will use the SET SPEED command which may not
27201  *		be supported by all devices.
27202  *
27203  *   Arguments: dev- the device 'dev_t'
27204  *		cmd- the request type; one of CDROMGDRVSPEED (get) or
27205  *		     CDROMSDRVSPEED (set)
27206  *		data- current drive speed or requested drive speed
27207  *		flag- this argument is a pass through to ddi_copyxxx() directly
27208  *		      from the mode argument of ioctl().
27209  *
27210  * Return Code: the code returned by sd_send_scsi_cmd()
27211  *		EINVAL if invalid arguments are provided
27212  *		EFAULT if ddi_copyxxx() fails
27213  *		ENXIO if fail ddi_get_soft_state
27214  *		EIO if invalid mode sense block descriptor length
27215  */
27216 
27217 static int
27218 sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
27219 {
27220 	struct sd_lun			*un;
27221 	struct uscsi_cmd		*com = NULL;
27222 	struct mode_header_grp2		*sense_mhp;
27223 	uchar_t				*sense_page;
27224 	uchar_t				*sense = NULL;
27225 	char				cdb[CDB_GROUP5];
27226 	int				bd_len;
27227 	int				current_speed = 0;
27228 	int				max_speed = 0;
27229 	int				rval;
27230 	sd_ssc_t			*ssc;
27231 
27232 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
27233 
27234 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27235 		return (ENXIO);
27236 	}
27237 
27238 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
27239 
27240 	ssc = sd_ssc_init(un);
27241 	rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense,
27242 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP,
27243 	    SD_PATH_STANDARD);
27244 	sd_ssc_fini(ssc);
27245 	if (rval != 0) {
27246 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27247 		    "sr_atapi_change_speed: Mode Sense Failed\n");
27248 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27249 		return (rval);
27250 	}
27251 
27252 	/* Check the block descriptor len to handle only 1 block descriptor */
27253 	sense_mhp = (struct mode_header_grp2 *)sense;
27254 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
27255 	if (bd_len > MODE_BLK_DESC_LENGTH) {
27256 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27257 		    "sr_atapi_change_speed: Mode Sense returned invalid "
27258 		    "block descriptor length\n");
27259 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27260 		return (EIO);
27261 	}
27262 
27263 	/* Calculate the current and maximum drive speeds */
27264 	sense_page = (uchar_t *)(sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
27265 	current_speed = (sense_page[14] << 8) | sense_page[15];
27266 	max_speed = (sense_page[8] << 8) | sense_page[9];
27267 
27268 	/* Process the command */
27269 	switch (cmd) {
27270 	case CDROMGDRVSPEED:
27271 		current_speed /= SD_SPEED_1X;
27272 		if (ddi_copyout(&current_speed, (void *)data,
27273 		    sizeof (int), flag) != 0)
27274 			rval = EFAULT;
27275 		break;
27276 	case CDROMSDRVSPEED:
27277 		/* Convert the speed code to KB/sec */
27278 		switch ((uchar_t)data) {
27279 		case CDROM_NORMAL_SPEED:
27280 			current_speed = SD_SPEED_1X;
27281 			break;
27282 		case CDROM_DOUBLE_SPEED:
27283 			current_speed = 2 * SD_SPEED_1X;
27284 			break;
27285 		case CDROM_QUAD_SPEED:
27286 			current_speed = 4 * SD_SPEED_1X;
27287 			break;
27288 		case CDROM_TWELVE_SPEED:
27289 			current_speed = 12 * SD_SPEED_1X;
27290 			break;
27291 		case CDROM_MAXIMUM_SPEED:
27292 			current_speed = 0xffff;
27293 			break;
27294 		default:
27295 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27296 			    "sr_atapi_change_speed: invalid drive speed %d\n",
27297 			    (uchar_t)data);
27298 			kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27299 			return (EINVAL);
27300 		}
27301 
27302 		/* Check the request against the drive's max speed. */
27303 		if (current_speed != 0xffff) {
27304 			if (current_speed > max_speed) {
27305 				kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27306 				return (EINVAL);
27307 			}
27308 		}
27309 
27310 		/*
27311 		 * Build and send the SET SPEED command
27312 		 *
27313 		 * Note: The SET SPEED (0xBB) command used in this routine is
27314 		 * obsolete per the SCSI MMC spec but still supported in the
27315 		 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
27316 		 * therefore the command is still implemented in this routine.
27317 		 */
27318 		bzero(cdb, sizeof (cdb));
27319 		cdb[0] = (char)SCMD_SET_CDROM_SPEED;
27320 		cdb[2] = (uchar_t)(current_speed >> 8);
27321 		cdb[3] = (uchar_t)current_speed;
27322 		com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27323 		com->uscsi_cdb	   = (caddr_t)cdb;
27324 		com->uscsi_cdblen  = CDB_GROUP5;
27325 		com->uscsi_bufaddr = NULL;
27326 		com->uscsi_buflen  = 0;
27327 		com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT;
27328 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, 0, SD_PATH_STANDARD);
27329 		break;
27330 	default:
27331 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27332 		    "sr_atapi_change_speed: Command '%x' Not Supported\n", cmd);
27333 		rval = EINVAL;
27334 	}
27335 
27336 	if (sense) {
27337 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27338 	}
27339 	if (com) {
27340 		kmem_free(com, sizeof (*com));
27341 	}
27342 	return (rval);
27343 }
27344 
27345 
27346 /*
27347  *    Function: sr_pause_resume()
27348  *
27349  * Description: This routine is the driver entry point for handling CD-ROM
27350  *		pause/resume ioctl requests. This only affects the audio play
27351  *		operation.
27352  *
27353  *   Arguments: dev - the device 'dev_t'
27354  *		cmd - the request type; one of CDROMPAUSE or CDROMRESUME, used
27355  *		      for setting the resume bit of the cdb.
27356  *
27357  * Return Code: the code returned by sd_send_scsi_cmd()
27358  *		EINVAL if invalid mode specified
27359  *
27360  */
27361 
27362 static int
27363 sr_pause_resume(dev_t dev, int cmd)
27364 {
27365 	struct sd_lun		*un;
27366 	struct uscsi_cmd	*com;
27367 	char			cdb[CDB_GROUP1];
27368 	int			rval;
27369 
27370 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27371 		return (ENXIO);
27372 	}
27373 
27374 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27375 	bzero(cdb, CDB_GROUP1);
27376 	cdb[0] = SCMD_PAUSE_RESUME;
27377 	switch (cmd) {
27378 	case CDROMRESUME:
27379 		cdb[8] = 1;
27380 		break;
27381 	case CDROMPAUSE:
27382 		cdb[8] = 0;
27383 		break;
27384 	default:
27385 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_pause_resume:"
27386 		    " Command '%x' Not Supported\n", cmd);
27387 		rval = EINVAL;
27388 		goto done;
27389 	}
27390 
27391 	com->uscsi_cdb    = cdb;
27392 	com->uscsi_cdblen = CDB_GROUP1;
27393 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
27394 
27395 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27396 	    SD_PATH_STANDARD);
27397 
27398 done:
27399 	kmem_free(com, sizeof (*com));
27400 	return (rval);
27401 }
27402 
27403 
27404 /*
27405  *    Function: sr_play_msf()
27406  *
27407  * Description: This routine is the driver entry point for handling CD-ROM
27408  *		ioctl requests to output the audio signals at the specified
27409  *		starting address and continue the audio play until the specified
27410  *		ending address (CDROMPLAYMSF) The address is in Minute Second
27411  *		Frame (MSF) format.
27412  *
27413  *   Arguments: dev	- the device 'dev_t'
27414  *		data	- pointer to user provided audio msf structure,
27415  *		          specifying start/end addresses.
27416  *		flag	- this argument is a pass through to ddi_copyxxx()
27417  *		          directly from the mode argument of ioctl().
27418  *
27419  * Return Code: the code returned by sd_send_scsi_cmd()
27420  *		EFAULT if ddi_copyxxx() fails
27421  *		ENXIO if fail ddi_get_soft_state
27422  *		EINVAL if data pointer is NULL
27423  */
27424 
27425 static int
27426 sr_play_msf(dev_t dev, caddr_t data, int flag)
27427 {
27428 	struct sd_lun		*un;
27429 	struct uscsi_cmd	*com;
27430 	struct cdrom_msf	msf_struct;
27431 	struct cdrom_msf	*msf = &msf_struct;
27432 	char			cdb[CDB_GROUP1];
27433 	int			rval;
27434 
27435 	if (data == NULL) {
27436 		return (EINVAL);
27437 	}
27438 
27439 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27440 		return (ENXIO);
27441 	}
27442 
27443 	if (ddi_copyin(data, msf, sizeof (struct cdrom_msf), flag)) {
27444 		return (EFAULT);
27445 	}
27446 
27447 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27448 	bzero(cdb, CDB_GROUP1);
27449 	cdb[0] = SCMD_PLAYAUDIO_MSF;
27450 	if (un->un_f_cfg_playmsf_bcd == TRUE) {
27451 		cdb[3] = BYTE_TO_BCD(msf->cdmsf_min0);
27452 		cdb[4] = BYTE_TO_BCD(msf->cdmsf_sec0);
27453 		cdb[5] = BYTE_TO_BCD(msf->cdmsf_frame0);
27454 		cdb[6] = BYTE_TO_BCD(msf->cdmsf_min1);
27455 		cdb[7] = BYTE_TO_BCD(msf->cdmsf_sec1);
27456 		cdb[8] = BYTE_TO_BCD(msf->cdmsf_frame1);
27457 	} else {
27458 		cdb[3] = msf->cdmsf_min0;
27459 		cdb[4] = msf->cdmsf_sec0;
27460 		cdb[5] = msf->cdmsf_frame0;
27461 		cdb[6] = msf->cdmsf_min1;
27462 		cdb[7] = msf->cdmsf_sec1;
27463 		cdb[8] = msf->cdmsf_frame1;
27464 	}
27465 	com->uscsi_cdb    = cdb;
27466 	com->uscsi_cdblen = CDB_GROUP1;
27467 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
27468 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27469 	    SD_PATH_STANDARD);
27470 	kmem_free(com, sizeof (*com));
27471 	return (rval);
27472 }
27473 
27474 
27475 /*
27476  *    Function: sr_play_trkind()
27477  *
27478  * Description: This routine is the driver entry point for handling CD-ROM
27479  *		ioctl requests to output the audio signals at the specified
27480  *		starting address and continue the audio play until the specified
27481  *		ending address (CDROMPLAYTRKIND). The address is in Track Index
27482  *		format.
27483  *
27484  *   Arguments: dev	- the device 'dev_t'
27485  *		data	- pointer to user provided audio track/index structure,
27486  *		          specifying start/end addresses.
27487  *		flag	- this argument is a pass through to ddi_copyxxx()
27488  *		          directly from the mode argument of ioctl().
27489  *
27490  * Return Code: the code returned by sd_send_scsi_cmd()
27491  *		EFAULT if ddi_copyxxx() fails
27492  *		ENXIO if fail ddi_get_soft_state
27493  *		EINVAL if data pointer is NULL
27494  */
27495 
27496 static int
27497 sr_play_trkind(dev_t dev, caddr_t data, int flag)
27498 {
27499 	struct cdrom_ti		ti_struct;
27500 	struct cdrom_ti		*ti = &ti_struct;
27501 	struct uscsi_cmd	*com = NULL;
27502 	char			cdb[CDB_GROUP1];
27503 	int			rval;
27504 
27505 	if (data == NULL) {
27506 		return (EINVAL);
27507 	}
27508 
27509 	if (ddi_copyin(data, ti, sizeof (struct cdrom_ti), flag)) {
27510 		return (EFAULT);
27511 	}
27512 
27513 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27514 	bzero(cdb, CDB_GROUP1);
27515 	cdb[0] = SCMD_PLAYAUDIO_TI;
27516 	cdb[4] = ti->cdti_trk0;
27517 	cdb[5] = ti->cdti_ind0;
27518 	cdb[7] = ti->cdti_trk1;
27519 	cdb[8] = ti->cdti_ind1;
27520 	com->uscsi_cdb    = cdb;
27521 	com->uscsi_cdblen = CDB_GROUP1;
27522 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
27523 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27524 	    SD_PATH_STANDARD);
27525 	kmem_free(com, sizeof (*com));
27526 	return (rval);
27527 }
27528 
27529 
27530 /*
27531  *    Function: sr_read_all_subcodes()
27532  *
27533  * Description: This routine is the driver entry point for handling CD-ROM
27534  *		ioctl requests to return raw subcode data while the target is
27535  *		playing audio (CDROMSUBCODE).
27536  *
27537  *   Arguments: dev	- the device 'dev_t'
27538  *		data	- pointer to user provided cdrom subcode structure,
27539  *		          specifying the transfer length and address.
27540  *		flag	- this argument is a pass through to ddi_copyxxx()
27541  *		          directly from the mode argument of ioctl().
27542  *
27543  * Return Code: the code returned by sd_send_scsi_cmd()
27544  *		EFAULT if ddi_copyxxx() fails
27545  *		ENXIO if fail ddi_get_soft_state
27546  *		EINVAL if data pointer is NULL
27547  */
27548 
27549 static int
27550 sr_read_all_subcodes(dev_t dev, caddr_t data, int flag)
27551 {
27552 	struct sd_lun		*un = NULL;
27553 	struct uscsi_cmd	*com = NULL;
27554 	struct cdrom_subcode	*subcode = NULL;
27555 	int			rval;
27556 	size_t			buflen;
27557 	char			cdb[CDB_GROUP5];
27558 
27559 #ifdef _MULTI_DATAMODEL
27560 	/* To support ILP32 applications in an LP64 world */
27561 	struct cdrom_subcode32		cdrom_subcode32;
27562 	struct cdrom_subcode32		*cdsc32 = &cdrom_subcode32;
27563 #endif
27564 	if (data == NULL) {
27565 		return (EINVAL);
27566 	}
27567 
27568 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27569 		return (ENXIO);
27570 	}
27571 
27572 	subcode = kmem_zalloc(sizeof (struct cdrom_subcode), KM_SLEEP);
27573 
27574 #ifdef _MULTI_DATAMODEL
27575 	switch (ddi_model_convert_from(flag & FMODELS)) {
27576 	case DDI_MODEL_ILP32:
27577 		if (ddi_copyin(data, cdsc32, sizeof (*cdsc32), flag)) {
27578 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27579 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
27580 			kmem_free(subcode, sizeof (struct cdrom_subcode));
27581 			return (EFAULT);
27582 		}
27583 		/* Convert the ILP32 uscsi data from the application to LP64 */
27584 		cdrom_subcode32tocdrom_subcode(cdsc32, subcode);
27585 		break;
27586 	case DDI_MODEL_NONE:
27587 		if (ddi_copyin(data, subcode,
27588 		    sizeof (struct cdrom_subcode), flag)) {
27589 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27590 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
27591 			kmem_free(subcode, sizeof (struct cdrom_subcode));
27592 			return (EFAULT);
27593 		}
27594 		break;
27595 	}
27596 #else /* ! _MULTI_DATAMODEL */
27597 	if (ddi_copyin(data, subcode, sizeof (struct cdrom_subcode), flag)) {
27598 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27599 		    "sr_read_all_subcodes: ddi_copyin Failed\n");
27600 		kmem_free(subcode, sizeof (struct cdrom_subcode));
27601 		return (EFAULT);
27602 	}
27603 #endif /* _MULTI_DATAMODEL */
27604 
27605 	/*
27606 	 * Since MMC-2 expects max 3 bytes for length, check if the
27607 	 * length input is greater than 3 bytes
27608 	 */
27609 	if ((subcode->cdsc_length & 0xFF000000) != 0) {
27610 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27611 		    "sr_read_all_subcodes: "
27612 		    "cdrom transfer length too large: %d (limit %d)\n",
27613 		    subcode->cdsc_length, 0xFFFFFF);
27614 		kmem_free(subcode, sizeof (struct cdrom_subcode));
27615 		return (EINVAL);
27616 	}
27617 
27618 	buflen = CDROM_BLK_SUBCODE * subcode->cdsc_length;
27619 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27620 	bzero(cdb, CDB_GROUP5);
27621 
27622 	if (un->un_f_mmc_cap == TRUE) {
27623 		cdb[0] = (char)SCMD_READ_CD;
27624 		cdb[2] = (char)0xff;
27625 		cdb[3] = (char)0xff;
27626 		cdb[4] = (char)0xff;
27627 		cdb[5] = (char)0xff;
27628 		cdb[6] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
27629 		cdb[7] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
27630 		cdb[8] = ((subcode->cdsc_length) & 0x000000ff);
27631 		cdb[10] = 1;
27632 	} else {
27633 		/*
27634 		 * Note: A vendor specific command (0xDF) is being used her to
27635 		 * request a read of all subcodes.
27636 		 */
27637 		cdb[0] = (char)SCMD_READ_ALL_SUBCODES;
27638 		cdb[6] = (((subcode->cdsc_length) & 0xff000000) >> 24);
27639 		cdb[7] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
27640 		cdb[8] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
27641 		cdb[9] = ((subcode->cdsc_length) & 0x000000ff);
27642 	}
27643 	com->uscsi_cdb	   = cdb;
27644 	com->uscsi_cdblen  = CDB_GROUP5;
27645 	com->uscsi_bufaddr = (caddr_t)subcode->cdsc_addr;
27646 	com->uscsi_buflen  = buflen;
27647 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27648 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
27649 	    SD_PATH_STANDARD);
27650 	kmem_free(subcode, sizeof (struct cdrom_subcode));
27651 	kmem_free(com, sizeof (*com));
27652 	return (rval);
27653 }
27654 
27655 
27656 /*
27657  *    Function: sr_read_subchannel()
27658  *
27659  * Description: This routine is the driver entry point for handling CD-ROM
27660  *		ioctl requests to return the Q sub-channel data of the CD
27661  *		current position block. (CDROMSUBCHNL) The data includes the
27662  *		track number, index number, absolute CD-ROM address (LBA or MSF
27663  *		format per the user) , track relative CD-ROM address (LBA or MSF
27664  *		format per the user), control data and audio status.
27665  *
27666  *   Arguments: dev	- the device 'dev_t'
27667  *		data	- pointer to user provided cdrom sub-channel structure
27668  *		flag	- this argument is a pass through to ddi_copyxxx()
27669  *		          directly from the mode argument of ioctl().
27670  *
27671  * Return Code: the code returned by sd_send_scsi_cmd()
27672  *		EFAULT if ddi_copyxxx() fails
27673  *		ENXIO if fail ddi_get_soft_state
27674  *		EINVAL if data pointer is NULL
27675  */
27676 
27677 static int
27678 sr_read_subchannel(dev_t dev, caddr_t data, int flag)
27679 {
27680 	struct sd_lun		*un;
27681 	struct uscsi_cmd	*com;
27682 	struct cdrom_subchnl	subchanel;
27683 	struct cdrom_subchnl	*subchnl = &subchanel;
27684 	char			cdb[CDB_GROUP1];
27685 	caddr_t			buffer;
27686 	int			rval;
27687 
27688 	if (data == NULL) {
27689 		return (EINVAL);
27690 	}
27691 
27692 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27693 	    (un->un_state == SD_STATE_OFFLINE)) {
27694 		return (ENXIO);
27695 	}
27696 
27697 	if (ddi_copyin(data, subchnl, sizeof (struct cdrom_subchnl), flag)) {
27698 		return (EFAULT);
27699 	}
27700 
27701 	buffer = kmem_zalloc((size_t)16, KM_SLEEP);
27702 	bzero(cdb, CDB_GROUP1);
27703 	cdb[0] = SCMD_READ_SUBCHANNEL;
27704 	/* Set the MSF bit based on the user requested address format */
27705 	cdb[1] = (subchnl->cdsc_format & CDROM_LBA) ? 0 : 0x02;
27706 	/*
27707 	 * Set the Q bit in byte 2 to indicate that Q sub-channel data be
27708 	 * returned
27709 	 */
27710 	cdb[2] = 0x40;
27711 	/*
27712 	 * Set byte 3 to specify the return data format. A value of 0x01
27713 	 * indicates that the CD-ROM current position should be returned.
27714 	 */
27715 	cdb[3] = 0x01;
27716 	cdb[8] = 0x10;
27717 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27718 	com->uscsi_cdb	   = cdb;
27719 	com->uscsi_cdblen  = CDB_GROUP1;
27720 	com->uscsi_bufaddr = buffer;
27721 	com->uscsi_buflen  = 16;
27722 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27723 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27724 	    SD_PATH_STANDARD);
27725 	if (rval != 0) {
27726 		kmem_free(buffer, 16);
27727 		kmem_free(com, sizeof (*com));
27728 		return (rval);
27729 	}
27730 
27731 	/* Process the returned Q sub-channel data */
27732 	subchnl->cdsc_audiostatus = buffer[1];
27733 	subchnl->cdsc_adr	= (buffer[5] & 0xF0) >> 4;
27734 	subchnl->cdsc_ctrl	= (buffer[5] & 0x0F);
27735 	subchnl->cdsc_trk	= buffer[6];
27736 	subchnl->cdsc_ind	= buffer[7];
27737 	if (subchnl->cdsc_format & CDROM_LBA) {
27738 		subchnl->cdsc_absaddr.lba =
27739 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
27740 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
27741 		subchnl->cdsc_reladdr.lba =
27742 		    ((uchar_t)buffer[12] << 24) + ((uchar_t)buffer[13] << 16) +
27743 		    ((uchar_t)buffer[14] << 8) + ((uchar_t)buffer[15]);
27744 	} else if (un->un_f_cfg_readsub_bcd == TRUE) {
27745 		subchnl->cdsc_absaddr.msf.minute = BCD_TO_BYTE(buffer[9]);
27746 		subchnl->cdsc_absaddr.msf.second = BCD_TO_BYTE(buffer[10]);
27747 		subchnl->cdsc_absaddr.msf.frame  = BCD_TO_BYTE(buffer[11]);
27748 		subchnl->cdsc_reladdr.msf.minute = BCD_TO_BYTE(buffer[13]);
27749 		subchnl->cdsc_reladdr.msf.second = BCD_TO_BYTE(buffer[14]);
27750 		subchnl->cdsc_reladdr.msf.frame  = BCD_TO_BYTE(buffer[15]);
27751 	} else {
27752 		subchnl->cdsc_absaddr.msf.minute = buffer[9];
27753 		subchnl->cdsc_absaddr.msf.second = buffer[10];
27754 		subchnl->cdsc_absaddr.msf.frame  = buffer[11];
27755 		subchnl->cdsc_reladdr.msf.minute = buffer[13];
27756 		subchnl->cdsc_reladdr.msf.second = buffer[14];
27757 		subchnl->cdsc_reladdr.msf.frame  = buffer[15];
27758 	}
27759 	kmem_free(buffer, 16);
27760 	kmem_free(com, sizeof (*com));
27761 	if (ddi_copyout(subchnl, data, sizeof (struct cdrom_subchnl), flag)
27762 	    != 0) {
27763 		return (EFAULT);
27764 	}
27765 	return (rval);
27766 }
27767 
27768 
27769 /*
27770  *    Function: sr_read_tocentry()
27771  *
27772  * Description: This routine is the driver entry point for handling CD-ROM
27773  *		ioctl requests to read from the Table of Contents (TOC)
27774  *		(CDROMREADTOCENTRY). This routine provides the ADR and CTRL
27775  *		fields, the starting address (LBA or MSF format per the user)
27776  *		and the data mode if the user specified track is a data track.
27777  *
27778  *		Note: The READ HEADER (0x44) command used in this routine is
27779  *		obsolete per the SCSI MMC spec but still supported in the
27780  *		MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
27781  *		therefore the command is still implemented in this routine.
27782  *
27783  *   Arguments: dev	- the device 'dev_t'
27784  *		data	- pointer to user provided toc entry structure,
27785  *			  specifying the track # and the address format
27786  *			  (LBA or MSF).
27787  *		flag	- this argument is a pass through to ddi_copyxxx()
27788  *		          directly from the mode argument of ioctl().
27789  *
27790  * Return Code: the code returned by sd_send_scsi_cmd()
27791  *		EFAULT if ddi_copyxxx() fails
27792  *		ENXIO if fail ddi_get_soft_state
27793  *		EINVAL if data pointer is NULL
27794  */
27795 
27796 static int
27797 sr_read_tocentry(dev_t dev, caddr_t data, int flag)
27798 {
27799 	struct sd_lun		*un = NULL;
27800 	struct uscsi_cmd	*com;
27801 	struct cdrom_tocentry	toc_entry;
27802 	struct cdrom_tocentry	*entry = &toc_entry;
27803 	caddr_t			buffer;
27804 	int			rval;
27805 	char			cdb[CDB_GROUP1];
27806 
27807 	if (data == NULL) {
27808 		return (EINVAL);
27809 	}
27810 
27811 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27812 	    (un->un_state == SD_STATE_OFFLINE)) {
27813 		return (ENXIO);
27814 	}
27815 
27816 	if (ddi_copyin(data, entry, sizeof (struct cdrom_tocentry), flag)) {
27817 		return (EFAULT);
27818 	}
27819 
27820 	/* Validate the requested track and address format */
27821 	if (!(entry->cdte_format & (CDROM_LBA | CDROM_MSF))) {
27822 		return (EINVAL);
27823 	}
27824 
27825 	if (entry->cdte_track == 0) {
27826 		return (EINVAL);
27827 	}
27828 
27829 	buffer = kmem_zalloc((size_t)12, KM_SLEEP);
27830 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27831 	bzero(cdb, CDB_GROUP1);
27832 
27833 	cdb[0] = SCMD_READ_TOC;
27834 	/* Set the MSF bit based on the user requested address format  */
27835 	cdb[1] = ((entry->cdte_format & CDROM_LBA) ? 0 : 2);
27836 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
27837 		cdb[6] = BYTE_TO_BCD(entry->cdte_track);
27838 	} else {
27839 		cdb[6] = entry->cdte_track;
27840 	}
27841 
27842 	/*
27843 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
27844 	 * (4 byte TOC response header + 8 byte track descriptor)
27845 	 */
27846 	cdb[8] = 12;
27847 	com->uscsi_cdb	   = cdb;
27848 	com->uscsi_cdblen  = CDB_GROUP1;
27849 	com->uscsi_bufaddr = buffer;
27850 	com->uscsi_buflen  = 0x0C;
27851 	com->uscsi_flags   = (USCSI_DIAGNOSE | USCSI_SILENT | USCSI_READ);
27852 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27853 	    SD_PATH_STANDARD);
27854 	if (rval != 0) {
27855 		kmem_free(buffer, 12);
27856 		kmem_free(com, sizeof (*com));
27857 		return (rval);
27858 	}
27859 
27860 	/* Process the toc entry */
27861 	entry->cdte_adr		= (buffer[5] & 0xF0) >> 4;
27862 	entry->cdte_ctrl	= (buffer[5] & 0x0F);
27863 	if (entry->cdte_format & CDROM_LBA) {
27864 		entry->cdte_addr.lba =
27865 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
27866 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
27867 	} else if (un->un_f_cfg_read_toc_addr_bcd == TRUE) {
27868 		entry->cdte_addr.msf.minute	= BCD_TO_BYTE(buffer[9]);
27869 		entry->cdte_addr.msf.second	= BCD_TO_BYTE(buffer[10]);
27870 		entry->cdte_addr.msf.frame	= BCD_TO_BYTE(buffer[11]);
27871 		/*
27872 		 * Send a READ TOC command using the LBA address format to get
27873 		 * the LBA for the track requested so it can be used in the
27874 		 * READ HEADER request
27875 		 *
27876 		 * Note: The MSF bit of the READ HEADER command specifies the
27877 		 * output format. The block address specified in that command
27878 		 * must be in LBA format.
27879 		 */
27880 		cdb[1] = 0;
27881 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27882 		    SD_PATH_STANDARD);
27883 		if (rval != 0) {
27884 			kmem_free(buffer, 12);
27885 			kmem_free(com, sizeof (*com));
27886 			return (rval);
27887 		}
27888 	} else {
27889 		entry->cdte_addr.msf.minute	= buffer[9];
27890 		entry->cdte_addr.msf.second	= buffer[10];
27891 		entry->cdte_addr.msf.frame	= buffer[11];
27892 		/*
27893 		 * Send a READ TOC command using the LBA address format to get
27894 		 * the LBA for the track requested so it can be used in the
27895 		 * READ HEADER request
27896 		 *
27897 		 * Note: The MSF bit of the READ HEADER command specifies the
27898 		 * output format. The block address specified in that command
27899 		 * must be in LBA format.
27900 		 */
27901 		cdb[1] = 0;
27902 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27903 		    SD_PATH_STANDARD);
27904 		if (rval != 0) {
27905 			kmem_free(buffer, 12);
27906 			kmem_free(com, sizeof (*com));
27907 			return (rval);
27908 		}
27909 	}
27910 
27911 	/*
27912 	 * Build and send the READ HEADER command to determine the data mode of
27913 	 * the user specified track.
27914 	 */
27915 	if ((entry->cdte_ctrl & CDROM_DATA_TRACK) &&
27916 	    (entry->cdte_track != CDROM_LEADOUT)) {
27917 		bzero(cdb, CDB_GROUP1);
27918 		cdb[0] = SCMD_READ_HEADER;
27919 		cdb[2] = buffer[8];
27920 		cdb[3] = buffer[9];
27921 		cdb[4] = buffer[10];
27922 		cdb[5] = buffer[11];
27923 		cdb[8] = 0x08;
27924 		com->uscsi_buflen = 0x08;
27925 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27926 		    SD_PATH_STANDARD);
27927 		if (rval == 0) {
27928 			entry->cdte_datamode = buffer[0];
27929 		} else {
27930 			/*
27931 			 * READ HEADER command failed, since this is
27932 			 * obsoleted in one spec, its better to return
27933 			 * -1 for an invlid track so that we can still
27934 			 * receive the rest of the TOC data.
27935 			 */
27936 			entry->cdte_datamode = (uchar_t)-1;
27937 		}
27938 	} else {
27939 		entry->cdte_datamode = (uchar_t)-1;
27940 	}
27941 
27942 	kmem_free(buffer, 12);
27943 	kmem_free(com, sizeof (*com));
27944 	if (ddi_copyout(entry, data, sizeof (struct cdrom_tocentry), flag) != 0)
27945 		return (EFAULT);
27946 
27947 	return (rval);
27948 }
27949 
27950 
27951 /*
27952  *    Function: sr_read_tochdr()
27953  *
27954  * Description: This routine is the driver entry point for handling CD-ROM
27955  * 		ioctl requests to read the Table of Contents (TOC) header
27956  *		(CDROMREADTOHDR). The TOC header consists of the disk starting
27957  *		and ending track numbers
27958  *
27959  *   Arguments: dev	- the device 'dev_t'
27960  *		data	- pointer to user provided toc header structure,
27961  *			  specifying the starting and ending track numbers.
27962  *		flag	- this argument is a pass through to ddi_copyxxx()
27963  *			  directly from the mode argument of ioctl().
27964  *
27965  * Return Code: the code returned by sd_send_scsi_cmd()
27966  *		EFAULT if ddi_copyxxx() fails
27967  *		ENXIO if fail ddi_get_soft_state
27968  *		EINVAL if data pointer is NULL
27969  */
27970 
27971 static int
27972 sr_read_tochdr(dev_t dev, caddr_t data, int flag)
27973 {
27974 	struct sd_lun		*un;
27975 	struct uscsi_cmd	*com;
27976 	struct cdrom_tochdr	toc_header;
27977 	struct cdrom_tochdr	*hdr = &toc_header;
27978 	char			cdb[CDB_GROUP1];
27979 	int			rval;
27980 	caddr_t			buffer;
27981 
27982 	if (data == NULL) {
27983 		return (EINVAL);
27984 	}
27985 
27986 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27987 	    (un->un_state == SD_STATE_OFFLINE)) {
27988 		return (ENXIO);
27989 	}
27990 
27991 	buffer = kmem_zalloc(4, KM_SLEEP);
27992 	bzero(cdb, CDB_GROUP1);
27993 	cdb[0] = SCMD_READ_TOC;
27994 	/*
27995 	 * Specifying a track number of 0x00 in the READ TOC command indicates
27996 	 * that the TOC header should be returned
27997 	 */
27998 	cdb[6] = 0x00;
27999 	/*
28000 	 * Bytes 7 & 8 are the 4 byte allocation length for TOC header.
28001 	 * (2 byte data len + 1 byte starting track # + 1 byte ending track #)
28002 	 */
28003 	cdb[8] = 0x04;
28004 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28005 	com->uscsi_cdb	   = cdb;
28006 	com->uscsi_cdblen  = CDB_GROUP1;
28007 	com->uscsi_bufaddr = buffer;
28008 	com->uscsi_buflen  = 0x04;
28009 	com->uscsi_timeout = 300;
28010 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28011 
28012 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
28013 	    SD_PATH_STANDARD);
28014 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
28015 		hdr->cdth_trk0 = BCD_TO_BYTE(buffer[2]);
28016 		hdr->cdth_trk1 = BCD_TO_BYTE(buffer[3]);
28017 	} else {
28018 		hdr->cdth_trk0 = buffer[2];
28019 		hdr->cdth_trk1 = buffer[3];
28020 	}
28021 	kmem_free(buffer, 4);
28022 	kmem_free(com, sizeof (*com));
28023 	if (ddi_copyout(hdr, data, sizeof (struct cdrom_tochdr), flag) != 0) {
28024 		return (EFAULT);
28025 	}
28026 	return (rval);
28027 }
28028 
28029 
28030 /*
28031  * Note: The following sr_read_mode1(), sr_read_cd_mode2(), sr_read_mode2(),
28032  * sr_read_cdda(), sr_read_cdxa(), routines implement driver support for
28033  * handling CDROMREAD ioctl requests for mode 1 user data, mode 2 user data,
28034  * digital audio and extended architecture digital audio. These modes are
28035  * defined in the IEC908 (Red Book), ISO10149 (Yellow Book), and the SCSI3
28036  * MMC specs.
28037  *
28038  * In addition to support for the various data formats these routines also
28039  * include support for devices that implement only the direct access READ
28040  * commands (0x08, 0x28), devices that implement the READ_CD commands
28041  * (0xBE, 0xD4), and devices that implement the vendor unique READ CDDA and
28042  * READ CDXA commands (0xD8, 0xDB)
28043  */
28044 
28045 /*
28046  *    Function: sr_read_mode1()
28047  *
28048  * Description: This routine is the driver entry point for handling CD-ROM
28049  *		ioctl read mode1 requests (CDROMREADMODE1).
28050  *
28051  *   Arguments: dev	- the device 'dev_t'
28052  *		data	- pointer to user provided cd read structure specifying
28053  *			  the lba buffer address and length.
28054  *		flag	- this argument is a pass through to ddi_copyxxx()
28055  *			  directly from the mode argument of ioctl().
28056  *
28057  * Return Code: the code returned by sd_send_scsi_cmd()
28058  *		EFAULT if ddi_copyxxx() fails
28059  *		ENXIO if fail ddi_get_soft_state
28060  *		EINVAL if data pointer is NULL
28061  */
28062 
28063 static int
28064 sr_read_mode1(dev_t dev, caddr_t data, int flag)
28065 {
28066 	struct sd_lun		*un;
28067 	struct cdrom_read	mode1_struct;
28068 	struct cdrom_read	*mode1 = &mode1_struct;
28069 	int			rval;
28070 	sd_ssc_t		*ssc;
28071 
28072 #ifdef _MULTI_DATAMODEL
28073 	/* To support ILP32 applications in an LP64 world */
28074 	struct cdrom_read32	cdrom_read32;
28075 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
28076 #endif /* _MULTI_DATAMODEL */
28077 
28078 	if (data == NULL) {
28079 		return (EINVAL);
28080 	}
28081 
28082 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28083 	    (un->un_state == SD_STATE_OFFLINE)) {
28084 		return (ENXIO);
28085 	}
28086 
28087 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28088 	    "sd_read_mode1: entry: un:0x%p\n", un);
28089 
28090 #ifdef _MULTI_DATAMODEL
28091 	switch (ddi_model_convert_from(flag & FMODELS)) {
28092 	case DDI_MODEL_ILP32:
28093 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
28094 			return (EFAULT);
28095 		}
28096 		/* Convert the ILP32 uscsi data from the application to LP64 */
28097 		cdrom_read32tocdrom_read(cdrd32, mode1);
28098 		break;
28099 	case DDI_MODEL_NONE:
28100 		if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
28101 			return (EFAULT);
28102 		}
28103 	}
28104 #else /* ! _MULTI_DATAMODEL */
28105 	if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
28106 		return (EFAULT);
28107 	}
28108 #endif /* _MULTI_DATAMODEL */
28109 
28110 	ssc = sd_ssc_init(un);
28111 	rval = sd_send_scsi_READ(ssc, mode1->cdread_bufaddr,
28112 	    mode1->cdread_buflen, mode1->cdread_lba, SD_PATH_STANDARD);
28113 	sd_ssc_fini(ssc);
28114 
28115 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28116 	    "sd_read_mode1: exit: un:0x%p\n", un);
28117 
28118 	return (rval);
28119 }
28120 
28121 
28122 /*
28123  *    Function: sr_read_cd_mode2()
28124  *
28125  * Description: This routine is the driver entry point for handling CD-ROM
28126  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
28127  *		support the READ CD (0xBE) command or the 1st generation
28128  *		READ CD (0xD4) command.
28129  *
28130  *   Arguments: dev	- the device 'dev_t'
28131  *		data	- pointer to user provided cd read structure specifying
28132  *			  the lba buffer address and length.
28133  *		flag	- this argument is a pass through to ddi_copyxxx()
28134  *			  directly from the mode argument of ioctl().
28135  *
28136  * Return Code: the code returned by sd_send_scsi_cmd()
28137  *		EFAULT if ddi_copyxxx() fails
28138  *		ENXIO if fail ddi_get_soft_state
28139  *		EINVAL if data pointer is NULL
28140  */
28141 
28142 static int
28143 sr_read_cd_mode2(dev_t dev, caddr_t data, int flag)
28144 {
28145 	struct sd_lun		*un;
28146 	struct uscsi_cmd	*com;
28147 	struct cdrom_read	mode2_struct;
28148 	struct cdrom_read	*mode2 = &mode2_struct;
28149 	uchar_t			cdb[CDB_GROUP5];
28150 	int			nblocks;
28151 	int			rval;
28152 #ifdef _MULTI_DATAMODEL
28153 	/*  To support ILP32 applications in an LP64 world */
28154 	struct cdrom_read32	cdrom_read32;
28155 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
28156 #endif /* _MULTI_DATAMODEL */
28157 
28158 	if (data == NULL) {
28159 		return (EINVAL);
28160 	}
28161 
28162 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28163 	    (un->un_state == SD_STATE_OFFLINE)) {
28164 		return (ENXIO);
28165 	}
28166 
28167 #ifdef _MULTI_DATAMODEL
28168 	switch (ddi_model_convert_from(flag & FMODELS)) {
28169 	case DDI_MODEL_ILP32:
28170 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
28171 			return (EFAULT);
28172 		}
28173 		/* Convert the ILP32 uscsi data from the application to LP64 */
28174 		cdrom_read32tocdrom_read(cdrd32, mode2);
28175 		break;
28176 	case DDI_MODEL_NONE:
28177 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
28178 			return (EFAULT);
28179 		}
28180 		break;
28181 	}
28182 
28183 #else /* ! _MULTI_DATAMODEL */
28184 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
28185 		return (EFAULT);
28186 	}
28187 #endif /* _MULTI_DATAMODEL */
28188 
28189 	bzero(cdb, sizeof (cdb));
28190 	if (un->un_f_cfg_read_cd_xd4 == TRUE) {
28191 		/* Read command supported by 1st generation atapi drives */
28192 		cdb[0] = SCMD_READ_CDD4;
28193 	} else {
28194 		/* Universal CD Access Command */
28195 		cdb[0] = SCMD_READ_CD;
28196 	}
28197 
28198 	/*
28199 	 * Set expected sector type to: 2336s byte, Mode 2 Yellow Book
28200 	 */
28201 	cdb[1] = CDROM_SECTOR_TYPE_MODE2;
28202 
28203 	/* set the start address */
28204 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 24) & 0XFF);
28205 	cdb[3] = (uchar_t)((mode2->cdread_lba >> 16) & 0XFF);
28206 	cdb[4] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
28207 	cdb[5] = (uchar_t)(mode2->cdread_lba & 0xFF);
28208 
28209 	/* set the transfer length */
28210 	nblocks = mode2->cdread_buflen / 2336;
28211 	cdb[6] = (uchar_t)(nblocks >> 16);
28212 	cdb[7] = (uchar_t)(nblocks >> 8);
28213 	cdb[8] = (uchar_t)nblocks;
28214 
28215 	/* set the filter bits */
28216 	cdb[9] = CDROM_READ_CD_USERDATA;
28217 
28218 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28219 	com->uscsi_cdb = (caddr_t)cdb;
28220 	com->uscsi_cdblen = sizeof (cdb);
28221 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
28222 	com->uscsi_buflen = mode2->cdread_buflen;
28223 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28224 
28225 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
28226 	    SD_PATH_STANDARD);
28227 	kmem_free(com, sizeof (*com));
28228 	return (rval);
28229 }
28230 
28231 
28232 /*
28233  *    Function: sr_read_mode2()
28234  *
28235  * Description: This routine is the driver entry point for handling CD-ROM
28236  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
28237  *		do not support the READ CD (0xBE) command.
28238  *
28239  *   Arguments: dev	- the device 'dev_t'
28240  *		data	- pointer to user provided cd read structure specifying
28241  *			  the lba buffer address and length.
28242  *		flag	- this argument is a pass through to ddi_copyxxx()
28243  *			  directly from the mode argument of ioctl().
28244  *
28245  * Return Code: the code returned by sd_send_scsi_cmd()
28246  *		EFAULT if ddi_copyxxx() fails
28247  *		ENXIO if fail ddi_get_soft_state
28248  *		EINVAL if data pointer is NULL
28249  *		EIO if fail to reset block size
28250  *		EAGAIN if commands are in progress in the driver
28251  */
28252 
28253 static int
28254 sr_read_mode2(dev_t dev, caddr_t data, int flag)
28255 {
28256 	struct sd_lun		*un;
28257 	struct cdrom_read	mode2_struct;
28258 	struct cdrom_read	*mode2 = &mode2_struct;
28259 	int			rval;
28260 	uint32_t		restore_blksize;
28261 	struct uscsi_cmd	*com;
28262 	uchar_t			cdb[CDB_GROUP0];
28263 	int			nblocks;
28264 
28265 #ifdef _MULTI_DATAMODEL
28266 	/* To support ILP32 applications in an LP64 world */
28267 	struct cdrom_read32	cdrom_read32;
28268 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
28269 #endif /* _MULTI_DATAMODEL */
28270 
28271 	if (data == NULL) {
28272 		return (EINVAL);
28273 	}
28274 
28275 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28276 	    (un->un_state == SD_STATE_OFFLINE)) {
28277 		return (ENXIO);
28278 	}
28279 
28280 	/*
28281 	 * Because this routine will update the device and driver block size
28282 	 * being used we want to make sure there are no commands in progress.
28283 	 * If commands are in progress the user will have to try again.
28284 	 *
28285 	 * We check for 1 instead of 0 because we increment un_ncmds_in_driver
28286 	 * in sdioctl to protect commands from sdioctl through to the top of
28287 	 * sd_uscsi_strategy. See sdioctl for details.
28288 	 */
28289 	mutex_enter(SD_MUTEX(un));
28290 	if (un->un_ncmds_in_driver != 1) {
28291 		mutex_exit(SD_MUTEX(un));
28292 		return (EAGAIN);
28293 	}
28294 	mutex_exit(SD_MUTEX(un));
28295 
28296 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28297 	    "sd_read_mode2: entry: un:0x%p\n", un);
28298 
28299 #ifdef _MULTI_DATAMODEL
28300 	switch (ddi_model_convert_from(flag & FMODELS)) {
28301 	case DDI_MODEL_ILP32:
28302 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
28303 			return (EFAULT);
28304 		}
28305 		/* Convert the ILP32 uscsi data from the application to LP64 */
28306 		cdrom_read32tocdrom_read(cdrd32, mode2);
28307 		break;
28308 	case DDI_MODEL_NONE:
28309 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
28310 			return (EFAULT);
28311 		}
28312 		break;
28313 	}
28314 #else /* ! _MULTI_DATAMODEL */
28315 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag)) {
28316 		return (EFAULT);
28317 	}
28318 #endif /* _MULTI_DATAMODEL */
28319 
28320 	/* Store the current target block size for restoration later */
28321 	restore_blksize = un->un_tgt_blocksize;
28322 
28323 	/* Change the device and soft state target block size to 2336 */
28324 	if (sr_sector_mode(dev, SD_MODE2_BLKSIZE) != 0) {
28325 		rval = EIO;
28326 		goto done;
28327 	}
28328 
28329 
28330 	bzero(cdb, sizeof (cdb));
28331 
28332 	/* set READ operation */
28333 	cdb[0] = SCMD_READ;
28334 
28335 	/* adjust lba for 2kbyte blocks from 512 byte blocks */
28336 	mode2->cdread_lba >>= 2;
28337 
28338 	/* set the start address */
28339 	cdb[1] = (uchar_t)((mode2->cdread_lba >> 16) & 0X1F);
28340 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
28341 	cdb[3] = (uchar_t)(mode2->cdread_lba & 0xFF);
28342 
28343 	/* set the transfer length */
28344 	nblocks = mode2->cdread_buflen / 2336;
28345 	cdb[4] = (uchar_t)nblocks & 0xFF;
28346 
28347 	/* build command */
28348 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28349 	com->uscsi_cdb = (caddr_t)cdb;
28350 	com->uscsi_cdblen = sizeof (cdb);
28351 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
28352 	com->uscsi_buflen = mode2->cdread_buflen;
28353 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28354 
28355 	/*
28356 	 * Issue SCSI command with user space address for read buffer.
28357 	 *
28358 	 * This sends the command through main channel in the driver.
28359 	 *
28360 	 * Since this is accessed via an IOCTL call, we go through the
28361 	 * standard path, so that if the device was powered down, then
28362 	 * it would be 'awakened' to handle the command.
28363 	 */
28364 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
28365 	    SD_PATH_STANDARD);
28366 
28367 	kmem_free(com, sizeof (*com));
28368 
28369 	/* Restore the device and soft state target block size */
28370 	if (sr_sector_mode(dev, restore_blksize) != 0) {
28371 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28372 		    "can't do switch back to mode 1\n");
28373 		/*
28374 		 * If sd_send_scsi_READ succeeded we still need to report
28375 		 * an error because we failed to reset the block size
28376 		 */
28377 		if (rval == 0) {
28378 			rval = EIO;
28379 		}
28380 	}
28381 
28382 done:
28383 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28384 	    "sd_read_mode2: exit: un:0x%p\n", un);
28385 
28386 	return (rval);
28387 }
28388 
28389 
28390 /*
28391  *    Function: sr_sector_mode()
28392  *
28393  * Description: This utility function is used by sr_read_mode2 to set the target
28394  *		block size based on the user specified size. This is a legacy
28395  *		implementation based upon a vendor specific mode page
28396  *
28397  *   Arguments: dev	- the device 'dev_t'
28398  *		data	- flag indicating if block size is being set to 2336 or
28399  *			  512.
28400  *
28401  * Return Code: the code returned by sd_send_scsi_cmd()
28402  *		EFAULT if ddi_copyxxx() fails
28403  *		ENXIO if fail ddi_get_soft_state
28404  *		EINVAL if data pointer is NULL
28405  */
28406 
28407 static int
28408 sr_sector_mode(dev_t dev, uint32_t blksize)
28409 {
28410 	struct sd_lun	*un;
28411 	uchar_t		*sense;
28412 	uchar_t		*select;
28413 	int		rval;
28414 	sd_ssc_t	*ssc;
28415 
28416 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28417 	    (un->un_state == SD_STATE_OFFLINE)) {
28418 		return (ENXIO);
28419 	}
28420 
28421 	sense = kmem_zalloc(20, KM_SLEEP);
28422 
28423 	/* Note: This is a vendor specific mode page (0x81) */
28424 	ssc = sd_ssc_init(un);
28425 	rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, 20, 0x81,
28426 	    SD_PATH_STANDARD);
28427 	sd_ssc_fini(ssc);
28428 	if (rval != 0) {
28429 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
28430 		    "sr_sector_mode: Mode Sense failed\n");
28431 		kmem_free(sense, 20);
28432 		return (rval);
28433 	}
28434 	select = kmem_zalloc(20, KM_SLEEP);
28435 	select[3] = 0x08;
28436 	select[10] = ((blksize >> 8) & 0xff);
28437 	select[11] = (blksize & 0xff);
28438 	select[12] = 0x01;
28439 	select[13] = 0x06;
28440 	select[14] = sense[14];
28441 	select[15] = sense[15];
28442 	if (blksize == SD_MODE2_BLKSIZE) {
28443 		select[14] |= 0x01;
28444 	}
28445 
28446 	ssc = sd_ssc_init(un);
28447 	rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select, 20,
28448 	    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
28449 	sd_ssc_fini(ssc);
28450 	if (rval != 0) {
28451 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
28452 		    "sr_sector_mode: Mode Select failed\n");
28453 	} else {
28454 		/*
28455 		 * Only update the softstate block size if we successfully
28456 		 * changed the device block mode.
28457 		 */
28458 		mutex_enter(SD_MUTEX(un));
28459 		sd_update_block_info(un, blksize, 0);
28460 		mutex_exit(SD_MUTEX(un));
28461 	}
28462 	kmem_free(sense, 20);
28463 	kmem_free(select, 20);
28464 	return (rval);
28465 }
28466 
28467 
28468 /*
28469  *    Function: sr_read_cdda()
28470  *
28471  * Description: This routine is the driver entry point for handling CD-ROM
28472  *		ioctl requests to return CD-DA or subcode data. (CDROMCDDA) If
28473  *		the target supports CDDA these requests are handled via a vendor
28474  *		specific command (0xD8) If the target does not support CDDA
28475  *		these requests are handled via the READ CD command (0xBE).
28476  *
28477  *   Arguments: dev	- the device 'dev_t'
28478  *		data	- pointer to user provided CD-DA structure specifying
28479  *			  the track starting address, transfer length, and
28480  *			  subcode options.
28481  *		flag	- this argument is a pass through to ddi_copyxxx()
28482  *			  directly from the mode argument of ioctl().
28483  *
28484  * Return Code: the code returned by sd_send_scsi_cmd()
28485  *		EFAULT if ddi_copyxxx() fails
28486  *		ENXIO if fail ddi_get_soft_state
28487  *		EINVAL if invalid arguments are provided
28488  *		ENOTTY
28489  */
28490 
28491 static int
28492 sr_read_cdda(dev_t dev, caddr_t data, int flag)
28493 {
28494 	struct sd_lun			*un;
28495 	struct uscsi_cmd		*com;
28496 	struct cdrom_cdda		*cdda;
28497 	int				rval;
28498 	size_t				buflen;
28499 	char				cdb[CDB_GROUP5];
28500 
28501 #ifdef _MULTI_DATAMODEL
28502 	/* To support ILP32 applications in an LP64 world */
28503 	struct cdrom_cdda32	cdrom_cdda32;
28504 	struct cdrom_cdda32	*cdda32 = &cdrom_cdda32;
28505 #endif /* _MULTI_DATAMODEL */
28506 
28507 	if (data == NULL) {
28508 		return (EINVAL);
28509 	}
28510 
28511 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28512 		return (ENXIO);
28513 	}
28514 
28515 	cdda = kmem_zalloc(sizeof (struct cdrom_cdda), KM_SLEEP);
28516 
28517 #ifdef _MULTI_DATAMODEL
28518 	switch (ddi_model_convert_from(flag & FMODELS)) {
28519 	case DDI_MODEL_ILP32:
28520 		if (ddi_copyin(data, cdda32, sizeof (*cdda32), flag)) {
28521 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28522 			    "sr_read_cdda: ddi_copyin Failed\n");
28523 			kmem_free(cdda, sizeof (struct cdrom_cdda));
28524 			return (EFAULT);
28525 		}
28526 		/* Convert the ILP32 uscsi data from the application to LP64 */
28527 		cdrom_cdda32tocdrom_cdda(cdda32, cdda);
28528 		break;
28529 	case DDI_MODEL_NONE:
28530 		if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
28531 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28532 			    "sr_read_cdda: ddi_copyin Failed\n");
28533 			kmem_free(cdda, sizeof (struct cdrom_cdda));
28534 			return (EFAULT);
28535 		}
28536 		break;
28537 	}
28538 #else /* ! _MULTI_DATAMODEL */
28539 	if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
28540 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28541 		    "sr_read_cdda: ddi_copyin Failed\n");
28542 		kmem_free(cdda, sizeof (struct cdrom_cdda));
28543 		return (EFAULT);
28544 	}
28545 #endif /* _MULTI_DATAMODEL */
28546 
28547 	/*
28548 	 * Since MMC-2 expects max 3 bytes for length, check if the
28549 	 * length input is greater than 3 bytes
28550 	 */
28551 	if ((cdda->cdda_length & 0xFF000000) != 0) {
28552 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdda: "
28553 		    "cdrom transfer length too large: %d (limit %d)\n",
28554 		    cdda->cdda_length, 0xFFFFFF);
28555 		kmem_free(cdda, sizeof (struct cdrom_cdda));
28556 		return (EINVAL);
28557 	}
28558 
28559 	switch (cdda->cdda_subcode) {
28560 	case CDROM_DA_NO_SUBCODE:
28561 		buflen = CDROM_BLK_2352 * cdda->cdda_length;
28562 		break;
28563 	case CDROM_DA_SUBQ:
28564 		buflen = CDROM_BLK_2368 * cdda->cdda_length;
28565 		break;
28566 	case CDROM_DA_ALL_SUBCODE:
28567 		buflen = CDROM_BLK_2448 * cdda->cdda_length;
28568 		break;
28569 	case CDROM_DA_SUBCODE_ONLY:
28570 		buflen = CDROM_BLK_SUBCODE * cdda->cdda_length;
28571 		break;
28572 	default:
28573 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28574 		    "sr_read_cdda: Subcode '0x%x' Not Supported\n",
28575 		    cdda->cdda_subcode);
28576 		kmem_free(cdda, sizeof (struct cdrom_cdda));
28577 		return (EINVAL);
28578 	}
28579 
28580 	/* Build and send the command */
28581 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28582 	bzero(cdb, CDB_GROUP5);
28583 
28584 	if (un->un_f_cfg_cdda == TRUE) {
28585 		cdb[0] = (char)SCMD_READ_CD;
28586 		cdb[1] = 0x04;
28587 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
28588 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
28589 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
28590 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
28591 		cdb[6] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
28592 		cdb[7] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
28593 		cdb[8] = ((cdda->cdda_length) & 0x000000ff);
28594 		cdb[9] = 0x10;
28595 		switch (cdda->cdda_subcode) {
28596 		case CDROM_DA_NO_SUBCODE :
28597 			cdb[10] = 0x0;
28598 			break;
28599 		case CDROM_DA_SUBQ :
28600 			cdb[10] = 0x2;
28601 			break;
28602 		case CDROM_DA_ALL_SUBCODE :
28603 			cdb[10] = 0x1;
28604 			break;
28605 		case CDROM_DA_SUBCODE_ONLY :
28606 			/* FALLTHROUGH */
28607 		default :
28608 			kmem_free(cdda, sizeof (struct cdrom_cdda));
28609 			kmem_free(com, sizeof (*com));
28610 			return (ENOTTY);
28611 		}
28612 	} else {
28613 		cdb[0] = (char)SCMD_READ_CDDA;
28614 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
28615 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
28616 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
28617 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
28618 		cdb[6] = (((cdda->cdda_length) & 0xff000000) >> 24);
28619 		cdb[7] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
28620 		cdb[8] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
28621 		cdb[9] = ((cdda->cdda_length) & 0x000000ff);
28622 		cdb[10] = cdda->cdda_subcode;
28623 	}
28624 
28625 	com->uscsi_cdb = cdb;
28626 	com->uscsi_cdblen = CDB_GROUP5;
28627 	com->uscsi_bufaddr = (caddr_t)cdda->cdda_data;
28628 	com->uscsi_buflen = buflen;
28629 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28630 
28631 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
28632 	    SD_PATH_STANDARD);
28633 
28634 	kmem_free(cdda, sizeof (struct cdrom_cdda));
28635 	kmem_free(com, sizeof (*com));
28636 	return (rval);
28637 }
28638 
28639 
28640 /*
28641  *    Function: sr_read_cdxa()
28642  *
28643  * Description: This routine is the driver entry point for handling CD-ROM
28644  *		ioctl requests to return CD-XA (Extended Architecture) data.
28645  *		(CDROMCDXA).
28646  *
28647  *   Arguments: dev	- the device 'dev_t'
28648  *		data	- pointer to user provided CD-XA structure specifying
28649  *			  the data starting address, transfer length, and format
28650  *		flag	- this argument is a pass through to ddi_copyxxx()
28651  *			  directly from the mode argument of ioctl().
28652  *
28653  * Return Code: the code returned by sd_send_scsi_cmd()
28654  *		EFAULT if ddi_copyxxx() fails
28655  *		ENXIO if fail ddi_get_soft_state
28656  *		EINVAL if data pointer is NULL
28657  */
28658 
28659 static int
28660 sr_read_cdxa(dev_t dev, caddr_t data, int flag)
28661 {
28662 	struct sd_lun		*un;
28663 	struct uscsi_cmd	*com;
28664 	struct cdrom_cdxa	*cdxa;
28665 	int			rval;
28666 	size_t			buflen;
28667 	char			cdb[CDB_GROUP5];
28668 	uchar_t			read_flags;
28669 
28670 #ifdef _MULTI_DATAMODEL
28671 	/* To support ILP32 applications in an LP64 world */
28672 	struct cdrom_cdxa32		cdrom_cdxa32;
28673 	struct cdrom_cdxa32		*cdxa32 = &cdrom_cdxa32;
28674 #endif /* _MULTI_DATAMODEL */
28675 
28676 	if (data == NULL) {
28677 		return (EINVAL);
28678 	}
28679 
28680 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28681 		return (ENXIO);
28682 	}
28683 
28684 	cdxa = kmem_zalloc(sizeof (struct cdrom_cdxa), KM_SLEEP);
28685 
28686 #ifdef _MULTI_DATAMODEL
28687 	switch (ddi_model_convert_from(flag & FMODELS)) {
28688 	case DDI_MODEL_ILP32:
28689 		if (ddi_copyin(data, cdxa32, sizeof (*cdxa32), flag)) {
28690 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28691 			return (EFAULT);
28692 		}
28693 		/*
28694 		 * Convert the ILP32 uscsi data from the
28695 		 * application to LP64 for internal use.
28696 		 */
28697 		cdrom_cdxa32tocdrom_cdxa(cdxa32, cdxa);
28698 		break;
28699 	case DDI_MODEL_NONE:
28700 		if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
28701 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28702 			return (EFAULT);
28703 		}
28704 		break;
28705 	}
28706 #else /* ! _MULTI_DATAMODEL */
28707 	if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
28708 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28709 		return (EFAULT);
28710 	}
28711 #endif /* _MULTI_DATAMODEL */
28712 
28713 	/*
28714 	 * Since MMC-2 expects max 3 bytes for length, check if the
28715 	 * length input is greater than 3 bytes
28716 	 */
28717 	if ((cdxa->cdxa_length & 0xFF000000) != 0) {
28718 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdxa: "
28719 		    "cdrom transfer length too large: %d (limit %d)\n",
28720 		    cdxa->cdxa_length, 0xFFFFFF);
28721 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28722 		return (EINVAL);
28723 	}
28724 
28725 	switch (cdxa->cdxa_format) {
28726 	case CDROM_XA_DATA:
28727 		buflen = CDROM_BLK_2048 * cdxa->cdxa_length;
28728 		read_flags = 0x10;
28729 		break;
28730 	case CDROM_XA_SECTOR_DATA:
28731 		buflen = CDROM_BLK_2352 * cdxa->cdxa_length;
28732 		read_flags = 0xf8;
28733 		break;
28734 	case CDROM_XA_DATA_W_ERROR:
28735 		buflen = CDROM_BLK_2646 * cdxa->cdxa_length;
28736 		read_flags = 0xfc;
28737 		break;
28738 	default:
28739 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28740 		    "sr_read_cdxa: Format '0x%x' Not Supported\n",
28741 		    cdxa->cdxa_format);
28742 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28743 		return (EINVAL);
28744 	}
28745 
28746 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28747 	bzero(cdb, CDB_GROUP5);
28748 	if (un->un_f_mmc_cap == TRUE) {
28749 		cdb[0] = (char)SCMD_READ_CD;
28750 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
28751 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
28752 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
28753 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
28754 		cdb[6] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
28755 		cdb[7] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
28756 		cdb[8] = ((cdxa->cdxa_length) & 0x000000ff);
28757 		cdb[9] = (char)read_flags;
28758 	} else {
28759 		/*
28760 		 * Note: A vendor specific command (0xDB) is being used her to
28761 		 * request a read of all subcodes.
28762 		 */
28763 		cdb[0] = (char)SCMD_READ_CDXA;
28764 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
28765 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
28766 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
28767 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
28768 		cdb[6] = (((cdxa->cdxa_length) & 0xff000000) >> 24);
28769 		cdb[7] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
28770 		cdb[8] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
28771 		cdb[9] = ((cdxa->cdxa_length) & 0x000000ff);
28772 		cdb[10] = cdxa->cdxa_format;
28773 	}
28774 	com->uscsi_cdb	   = cdb;
28775 	com->uscsi_cdblen  = CDB_GROUP5;
28776 	com->uscsi_bufaddr = (caddr_t)cdxa->cdxa_data;
28777 	com->uscsi_buflen  = buflen;
28778 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28779 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
28780 	    SD_PATH_STANDARD);
28781 	kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28782 	kmem_free(com, sizeof (*com));
28783 	return (rval);
28784 }
28785 
28786 
28787 /*
28788  *    Function: sr_eject()
28789  *
28790  * Description: This routine is the driver entry point for handling CD-ROM
28791  *		eject ioctl requests (FDEJECT, DKIOCEJECT, CDROMEJECT)
28792  *
28793  *   Arguments: dev	- the device 'dev_t'
28794  *
28795  * Return Code: the code returned by sd_send_scsi_cmd()
28796  */
28797 
28798 static int
28799 sr_eject(dev_t dev)
28800 {
28801 	struct sd_lun	*un;
28802 	int		rval;
28803 	sd_ssc_t	*ssc;
28804 
28805 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28806 	    (un->un_state == SD_STATE_OFFLINE)) {
28807 		return (ENXIO);
28808 	}
28809 
28810 	/*
28811 	 * To prevent race conditions with the eject
28812 	 * command, keep track of an eject command as
28813 	 * it progresses. If we are already handling
28814 	 * an eject command in the driver for the given
28815 	 * unit and another request to eject is received
28816 	 * immediately return EAGAIN so we don't lose
28817 	 * the command if the current eject command fails.
28818 	 */
28819 	mutex_enter(SD_MUTEX(un));
28820 	if (un->un_f_ejecting == TRUE) {
28821 		mutex_exit(SD_MUTEX(un));
28822 		return (EAGAIN);
28823 	}
28824 	un->un_f_ejecting = TRUE;
28825 	mutex_exit(SD_MUTEX(un));
28826 
28827 	ssc = sd_ssc_init(un);
28828 	rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_ALLOW,
28829 	    SD_PATH_STANDARD);
28830 	sd_ssc_fini(ssc);
28831 
28832 	if (rval != 0) {
28833 		mutex_enter(SD_MUTEX(un));
28834 		un->un_f_ejecting = FALSE;
28835 		mutex_exit(SD_MUTEX(un));
28836 		return (rval);
28837 	}
28838 
28839 	ssc = sd_ssc_init(un);
28840 	rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
28841 	    SD_TARGET_EJECT, SD_PATH_STANDARD);
28842 	sd_ssc_fini(ssc);
28843 
28844 	if (rval == 0) {
28845 		mutex_enter(SD_MUTEX(un));
28846 		sr_ejected(un);
28847 		un->un_mediastate = DKIO_EJECTED;
28848 		un->un_f_ejecting = FALSE;
28849 		cv_broadcast(&un->un_state_cv);
28850 		mutex_exit(SD_MUTEX(un));
28851 	} else {
28852 		mutex_enter(SD_MUTEX(un));
28853 		un->un_f_ejecting = FALSE;
28854 		mutex_exit(SD_MUTEX(un));
28855 	}
28856 	return (rval);
28857 }
28858 
28859 
28860 /*
28861  *    Function: sr_ejected()
28862  *
28863  * Description: This routine updates the soft state structure to invalidate the
28864  *		geometry information after the media has been ejected or a
28865  *		media eject has been detected.
28866  *
28867  *   Arguments: un - driver soft state (unit) structure
28868  */
28869 
28870 static void
28871 sr_ejected(struct sd_lun *un)
28872 {
28873 	struct sd_errstats *stp;
28874 
28875 	ASSERT(un != NULL);
28876 	ASSERT(mutex_owned(SD_MUTEX(un)));
28877 
28878 	un->un_f_blockcount_is_valid	= FALSE;
28879 	un->un_f_tgt_blocksize_is_valid	= FALSE;
28880 	mutex_exit(SD_MUTEX(un));
28881 	cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY);
28882 	mutex_enter(SD_MUTEX(un));
28883 
28884 	if (un->un_errstats != NULL) {
28885 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
28886 		stp->sd_capacity.value.ui64 = 0;
28887 	}
28888 }
28889 
28890 
28891 /*
28892  *    Function: sr_check_wp()
28893  *
28894  * Description: This routine checks the write protection of a removable
28895  *      media disk and hotpluggable devices via the write protect bit of
28896  *      the Mode Page Header device specific field. Some devices choke
28897  *      on unsupported mode page. In order to workaround this issue,
28898  *      this routine has been implemented to use 0x3f mode page(request
28899  *      for all pages) for all device types.
28900  *
28901  *   Arguments: dev             - the device 'dev_t'
28902  *
28903  * Return Code: int indicating if the device is write protected (1) or not (0)
28904  *
28905  *     Context: Kernel thread.
28906  *
28907  */
28908 
28909 static int
28910 sr_check_wp(dev_t dev)
28911 {
28912 	struct sd_lun	*un;
28913 	uchar_t		device_specific;
28914 	uchar_t		*sense;
28915 	int		hdrlen;
28916 	int		rval = FALSE;
28917 	int		status;
28918 	sd_ssc_t	*ssc;
28919 
28920 	/*
28921 	 * Note: The return codes for this routine should be reworked to
28922 	 * properly handle the case of a NULL softstate.
28923 	 */
28924 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28925 		return (FALSE);
28926 	}
28927 
28928 	if (un->un_f_cfg_is_atapi == TRUE) {
28929 		/*
28930 		 * The mode page contents are not required; set the allocation
28931 		 * length for the mode page header only
28932 		 */
28933 		hdrlen = MODE_HEADER_LENGTH_GRP2;
28934 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
28935 		ssc = sd_ssc_init(un);
28936 		status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense, hdrlen,
28937 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD);
28938 		sd_ssc_fini(ssc);
28939 		if (status != 0)
28940 			goto err_exit;
28941 		device_specific =
28942 		    ((struct mode_header_grp2 *)sense)->device_specific;
28943 	} else {
28944 		hdrlen = MODE_HEADER_LENGTH;
28945 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
28946 		ssc = sd_ssc_init(un);
28947 		status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, hdrlen,
28948 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD);
28949 		sd_ssc_fini(ssc);
28950 		if (status != 0)
28951 			goto err_exit;
28952 		device_specific =
28953 		    ((struct mode_header *)sense)->device_specific;
28954 	}
28955 
28956 
28957 	/*
28958 	 * Write protect mode sense failed; not all disks
28959 	 * understand this query. Return FALSE assuming that
28960 	 * these devices are not writable.
28961 	 */
28962 	if (device_specific & WRITE_PROTECT) {
28963 		rval = TRUE;
28964 	}
28965 
28966 err_exit:
28967 	kmem_free(sense, hdrlen);
28968 	return (rval);
28969 }
28970 
28971 /*
28972  *    Function: sr_volume_ctrl()
28973  *
28974  * Description: This routine is the driver entry point for handling CD-ROM
28975  *		audio output volume ioctl requests. (CDROMVOLCTRL)
28976  *
28977  *   Arguments: dev	- the device 'dev_t'
28978  *		data	- pointer to user audio volume control structure
28979  *		flag	- this argument is a pass through to ddi_copyxxx()
28980  *			  directly from the mode argument of ioctl().
28981  *
28982  * Return Code: the code returned by sd_send_scsi_cmd()
28983  *		EFAULT if ddi_copyxxx() fails
28984  *		ENXIO if fail ddi_get_soft_state
28985  *		EINVAL if data pointer is NULL
28986  *
28987  */
28988 
28989 static int
28990 sr_volume_ctrl(dev_t dev, caddr_t data, int flag)
28991 {
28992 	struct sd_lun		*un;
28993 	struct cdrom_volctrl    volume;
28994 	struct cdrom_volctrl    *vol = &volume;
28995 	uchar_t			*sense_page;
28996 	uchar_t			*select_page;
28997 	uchar_t			*sense;
28998 	uchar_t			*select;
28999 	int			sense_buflen;
29000 	int			select_buflen;
29001 	int			rval;
29002 	sd_ssc_t		*ssc;
29003 
29004 	if (data == NULL) {
29005 		return (EINVAL);
29006 	}
29007 
29008 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
29009 	    (un->un_state == SD_STATE_OFFLINE)) {
29010 		return (ENXIO);
29011 	}
29012 
29013 	if (ddi_copyin(data, vol, sizeof (struct cdrom_volctrl), flag)) {
29014 		return (EFAULT);
29015 	}
29016 
29017 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
29018 		struct mode_header_grp2		*sense_mhp;
29019 		struct mode_header_grp2		*select_mhp;
29020 		int				bd_len;
29021 
29022 		sense_buflen = MODE_PARAM_LENGTH_GRP2 + MODEPAGE_AUDIO_CTRL_LEN;
29023 		select_buflen = MODE_HEADER_LENGTH_GRP2 +
29024 		    MODEPAGE_AUDIO_CTRL_LEN;
29025 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
29026 		select = kmem_zalloc(select_buflen, KM_SLEEP);
29027 		ssc = sd_ssc_init(un);
29028 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense,
29029 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
29030 		    SD_PATH_STANDARD);
29031 		sd_ssc_fini(ssc);
29032 
29033 		if (rval != 0) {
29034 			SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
29035 			    "sr_volume_ctrl: Mode Sense Failed\n");
29036 			kmem_free(sense, sense_buflen);
29037 			kmem_free(select, select_buflen);
29038 			return (rval);
29039 		}
29040 		sense_mhp = (struct mode_header_grp2 *)sense;
29041 		select_mhp = (struct mode_header_grp2 *)select;
29042 		bd_len = (sense_mhp->bdesc_length_hi << 8) |
29043 		    sense_mhp->bdesc_length_lo;
29044 		if (bd_len > MODE_BLK_DESC_LENGTH) {
29045 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29046 			    "sr_volume_ctrl: Mode Sense returned invalid "
29047 			    "block descriptor length\n");
29048 			kmem_free(sense, sense_buflen);
29049 			kmem_free(select, select_buflen);
29050 			return (EIO);
29051 		}
29052 		sense_page = (uchar_t *)
29053 		    (sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
29054 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH_GRP2);
29055 		select_mhp->length_msb = 0;
29056 		select_mhp->length_lsb = 0;
29057 		select_mhp->bdesc_length_hi = 0;
29058 		select_mhp->bdesc_length_lo = 0;
29059 	} else {
29060 		struct mode_header		*sense_mhp, *select_mhp;
29061 
29062 		sense_buflen = MODE_PARAM_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
29063 		select_buflen = MODE_HEADER_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
29064 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
29065 		select = kmem_zalloc(select_buflen, KM_SLEEP);
29066 		ssc = sd_ssc_init(un);
29067 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense,
29068 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
29069 		    SD_PATH_STANDARD);
29070 		sd_ssc_fini(ssc);
29071 
29072 		if (rval != 0) {
29073 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29074 			    "sr_volume_ctrl: Mode Sense Failed\n");
29075 			kmem_free(sense, sense_buflen);
29076 			kmem_free(select, select_buflen);
29077 			return (rval);
29078 		}
29079 		sense_mhp  = (struct mode_header *)sense;
29080 		select_mhp = (struct mode_header *)select;
29081 		if (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH) {
29082 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29083 			    "sr_volume_ctrl: Mode Sense returned invalid "
29084 			    "block descriptor length\n");
29085 			kmem_free(sense, sense_buflen);
29086 			kmem_free(select, select_buflen);
29087 			return (EIO);
29088 		}
29089 		sense_page = (uchar_t *)
29090 		    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
29091 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH);
29092 		select_mhp->length = 0;
29093 		select_mhp->bdesc_length = 0;
29094 	}
29095 	/*
29096 	 * Note: An audio control data structure could be created and overlayed
29097 	 * on the following in place of the array indexing method implemented.
29098 	 */
29099 
29100 	/* Build the select data for the user volume data */
29101 	select_page[0] = MODEPAGE_AUDIO_CTRL;
29102 	select_page[1] = 0xE;
29103 	/* Set the immediate bit */
29104 	select_page[2] = 0x04;
29105 	/* Zero out reserved fields */
29106 	select_page[3] = 0x00;
29107 	select_page[4] = 0x00;
29108 	/* Return sense data for fields not to be modified */
29109 	select_page[5] = sense_page[5];
29110 	select_page[6] = sense_page[6];
29111 	select_page[7] = sense_page[7];
29112 	/* Set the user specified volume levels for channel 0 and 1 */
29113 	select_page[8] = 0x01;
29114 	select_page[9] = vol->channel0;
29115 	select_page[10] = 0x02;
29116 	select_page[11] = vol->channel1;
29117 	/* Channel 2 and 3 are currently unsupported so return the sense data */
29118 	select_page[12] = sense_page[12];
29119 	select_page[13] = sense_page[13];
29120 	select_page[14] = sense_page[14];
29121 	select_page[15] = sense_page[15];
29122 
29123 	ssc = sd_ssc_init(un);
29124 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
29125 		rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP1, select,
29126 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
29127 	} else {
29128 		rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select,
29129 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
29130 	}
29131 	sd_ssc_fini(ssc);
29132 
29133 	kmem_free(sense, sense_buflen);
29134 	kmem_free(select, select_buflen);
29135 	return (rval);
29136 }
29137 
29138 
29139 /*
29140  *    Function: sr_read_sony_session_offset()
29141  *
29142  * Description: This routine is the driver entry point for handling CD-ROM
29143  *		ioctl requests for session offset information. (CDROMREADOFFSET)
29144  *		The address of the first track in the last session of a
29145  *		multi-session CD-ROM is returned
29146  *
29147  *		Note: This routine uses a vendor specific key value in the
29148  *		command control field without implementing any vendor check here
29149  *		or in the ioctl routine.
29150  *
29151  *   Arguments: dev	- the device 'dev_t'
29152  *		data	- pointer to an int to hold the requested address
29153  *		flag	- this argument is a pass through to ddi_copyxxx()
29154  *			  directly from the mode argument of ioctl().
29155  *
29156  * Return Code: the code returned by sd_send_scsi_cmd()
29157  *		EFAULT if ddi_copyxxx() fails
29158  *		ENXIO if fail ddi_get_soft_state
29159  *		EINVAL if data pointer is NULL
29160  */
29161 
29162 static int
29163 sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag)
29164 {
29165 	struct sd_lun		*un;
29166 	struct uscsi_cmd	*com;
29167 	caddr_t			buffer;
29168 	char			cdb[CDB_GROUP1];
29169 	int			session_offset = 0;
29170 	int			rval;
29171 
29172 	if (data == NULL) {
29173 		return (EINVAL);
29174 	}
29175 
29176 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
29177 	    (un->un_state == SD_STATE_OFFLINE)) {
29178 		return (ENXIO);
29179 	}
29180 
29181 	buffer = kmem_zalloc((size_t)SONY_SESSION_OFFSET_LEN, KM_SLEEP);
29182 	bzero(cdb, CDB_GROUP1);
29183 	cdb[0] = SCMD_READ_TOC;
29184 	/*
29185 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
29186 	 * (4 byte TOC response header + 8 byte response data)
29187 	 */
29188 	cdb[8] = SONY_SESSION_OFFSET_LEN;
29189 	/* Byte 9 is the control byte. A vendor specific value is used */
29190 	cdb[9] = SONY_SESSION_OFFSET_KEY;
29191 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
29192 	com->uscsi_cdb = cdb;
29193 	com->uscsi_cdblen = CDB_GROUP1;
29194 	com->uscsi_bufaddr = buffer;
29195 	com->uscsi_buflen = SONY_SESSION_OFFSET_LEN;
29196 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
29197 
29198 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
29199 	    SD_PATH_STANDARD);
29200 	if (rval != 0) {
29201 		kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
29202 		kmem_free(com, sizeof (*com));
29203 		return (rval);
29204 	}
29205 	if (buffer[1] == SONY_SESSION_OFFSET_VALID) {
29206 		session_offset =
29207 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
29208 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
29209 		/*
29210 		 * Offset returned offset in current lbasize block's. Convert to
29211 		 * 2k block's to return to the user
29212 		 */
29213 		if (un->un_tgt_blocksize == CDROM_BLK_512) {
29214 			session_offset >>= 2;
29215 		} else if (un->un_tgt_blocksize == CDROM_BLK_1024) {
29216 			session_offset >>= 1;
29217 		}
29218 	}
29219 
29220 	if (ddi_copyout(&session_offset, data, sizeof (int), flag) != 0) {
29221 		rval = EFAULT;
29222 	}
29223 
29224 	kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
29225 	kmem_free(com, sizeof (*com));
29226 	return (rval);
29227 }
29228 
29229 
29230 /*
29231  *    Function: sd_wm_cache_constructor()
29232  *
29233  * Description: Cache Constructor for the wmap cache for the read/modify/write
29234  * 		devices.
29235  *
29236  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
29237  *		un	- sd_lun structure for the device.
29238  *		flag	- the km flags passed to constructor
29239  *
29240  * Return Code: 0 on success.
29241  *		-1 on failure.
29242  */
29243 
29244 /*ARGSUSED*/
29245 static int
29246 sd_wm_cache_constructor(void *wm, void *un, int flags)
29247 {
29248 	bzero(wm, sizeof (struct sd_w_map));
29249 	cv_init(&((struct sd_w_map *)wm)->wm_avail, NULL, CV_DRIVER, NULL);
29250 	return (0);
29251 }
29252 
29253 
29254 /*
29255  *    Function: sd_wm_cache_destructor()
29256  *
29257  * Description: Cache destructor for the wmap cache for the read/modify/write
29258  * 		devices.
29259  *
29260  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
29261  *		un	- sd_lun structure for the device.
29262  */
29263 /*ARGSUSED*/
29264 static void
29265 sd_wm_cache_destructor(void *wm, void *un)
29266 {
29267 	cv_destroy(&((struct sd_w_map *)wm)->wm_avail);
29268 }
29269 
29270 
29271 /*
29272  *    Function: sd_range_lock()
29273  *
29274  * Description: Lock the range of blocks specified as parameter to ensure
29275  *		that read, modify write is atomic and no other i/o writes
29276  *		to the same location. The range is specified in terms
29277  *		of start and end blocks. Block numbers are the actual
29278  *		media block numbers and not system.
29279  *
29280  *   Arguments: un	- sd_lun structure for the device.
29281  *		startb - The starting block number
29282  *		endb - The end block number
29283  *		typ - type of i/o - simple/read_modify_write
29284  *
29285  * Return Code: wm  - pointer to the wmap structure.
29286  *
29287  *     Context: This routine can sleep.
29288  */
29289 
29290 static struct sd_w_map *
29291 sd_range_lock(struct sd_lun *un, daddr_t startb, daddr_t endb, ushort_t typ)
29292 {
29293 	struct sd_w_map *wmp = NULL;
29294 	struct sd_w_map *sl_wmp = NULL;
29295 	struct sd_w_map *tmp_wmp;
29296 	wm_state state = SD_WM_CHK_LIST;
29297 
29298 
29299 	ASSERT(un != NULL);
29300 	ASSERT(!mutex_owned(SD_MUTEX(un)));
29301 
29302 	mutex_enter(SD_MUTEX(un));
29303 
29304 	while (state != SD_WM_DONE) {
29305 
29306 		switch (state) {
29307 		case SD_WM_CHK_LIST:
29308 			/*
29309 			 * This is the starting state. Check the wmap list
29310 			 * to see if the range is currently available.
29311 			 */
29312 			if (!(typ & SD_WTYPE_RMW) && !(un->un_rmw_count)) {
29313 				/*
29314 				 * If this is a simple write and no rmw
29315 				 * i/o is pending then try to lock the
29316 				 * range as the range should be available.
29317 				 */
29318 				state = SD_WM_LOCK_RANGE;
29319 			} else {
29320 				tmp_wmp = sd_get_range(un, startb, endb);
29321 				if (tmp_wmp != NULL) {
29322 					if ((wmp != NULL) && ONLIST(un, wmp)) {
29323 						/*
29324 						 * Should not keep onlist wmps
29325 						 * while waiting this macro
29326 						 * will also do wmp = NULL;
29327 						 */
29328 						FREE_ONLIST_WMAP(un, wmp);
29329 					}
29330 					/*
29331 					 * sl_wmp is the wmap on which wait
29332 					 * is done, since the tmp_wmp points
29333 					 * to the inuse wmap, set sl_wmp to
29334 					 * tmp_wmp and change the state to sleep
29335 					 */
29336 					sl_wmp = tmp_wmp;
29337 					state = SD_WM_WAIT_MAP;
29338 				} else {
29339 					state = SD_WM_LOCK_RANGE;
29340 				}
29341 
29342 			}
29343 			break;
29344 
29345 		case SD_WM_LOCK_RANGE:
29346 			ASSERT(un->un_wm_cache);
29347 			/*
29348 			 * The range need to be locked, try to get a wmap.
29349 			 * First attempt it with NO_SLEEP, want to avoid a sleep
29350 			 * if possible as we will have to release the sd mutex
29351 			 * if we have to sleep.
29352 			 */
29353 			if (wmp == NULL)
29354 				wmp = kmem_cache_alloc(un->un_wm_cache,
29355 				    KM_NOSLEEP);
29356 			if (wmp == NULL) {
29357 				mutex_exit(SD_MUTEX(un));
29358 				_NOTE(DATA_READABLE_WITHOUT_LOCK
29359 				    (sd_lun::un_wm_cache))
29360 				wmp = kmem_cache_alloc(un->un_wm_cache,
29361 				    KM_SLEEP);
29362 				mutex_enter(SD_MUTEX(un));
29363 				/*
29364 				 * we released the mutex so recheck and go to
29365 				 * check list state.
29366 				 */
29367 				state = SD_WM_CHK_LIST;
29368 			} else {
29369 				/*
29370 				 * We exit out of state machine since we
29371 				 * have the wmap. Do the housekeeping first.
29372 				 * place the wmap on the wmap list if it is not
29373 				 * on it already and then set the state to done.
29374 				 */
29375 				wmp->wm_start = startb;
29376 				wmp->wm_end = endb;
29377 				wmp->wm_flags = typ | SD_WM_BUSY;
29378 				if (typ & SD_WTYPE_RMW) {
29379 					un->un_rmw_count++;
29380 				}
29381 				/*
29382 				 * If not already on the list then link
29383 				 */
29384 				if (!ONLIST(un, wmp)) {
29385 					wmp->wm_next = un->un_wm;
29386 					wmp->wm_prev = NULL;
29387 					if (wmp->wm_next)
29388 						wmp->wm_next->wm_prev = wmp;
29389 					un->un_wm = wmp;
29390 				}
29391 				state = SD_WM_DONE;
29392 			}
29393 			break;
29394 
29395 		case SD_WM_WAIT_MAP:
29396 			ASSERT(sl_wmp->wm_flags & SD_WM_BUSY);
29397 			/*
29398 			 * Wait is done on sl_wmp, which is set in the
29399 			 * check_list state.
29400 			 */
29401 			sl_wmp->wm_wanted_count++;
29402 			cv_wait(&sl_wmp->wm_avail, SD_MUTEX(un));
29403 			sl_wmp->wm_wanted_count--;
29404 			/*
29405 			 * We can reuse the memory from the completed sl_wmp
29406 			 * lock range for our new lock, but only if noone is
29407 			 * waiting for it.
29408 			 */
29409 			ASSERT(!(sl_wmp->wm_flags & SD_WM_BUSY));
29410 			if (sl_wmp->wm_wanted_count == 0) {
29411 				if (wmp != NULL)
29412 					CHK_N_FREEWMP(un, wmp);
29413 				wmp = sl_wmp;
29414 			}
29415 			sl_wmp = NULL;
29416 			/*
29417 			 * After waking up, need to recheck for availability of
29418 			 * range.
29419 			 */
29420 			state = SD_WM_CHK_LIST;
29421 			break;
29422 
29423 		default:
29424 			panic("sd_range_lock: "
29425 			    "Unknown state %d in sd_range_lock", state);
29426 			/*NOTREACHED*/
29427 		} /* switch(state) */
29428 
29429 	} /* while(state != SD_WM_DONE) */
29430 
29431 	mutex_exit(SD_MUTEX(un));
29432 
29433 	ASSERT(wmp != NULL);
29434 
29435 	return (wmp);
29436 }
29437 
29438 
29439 /*
29440  *    Function: sd_get_range()
29441  *
29442  * Description: Find if there any overlapping I/O to this one
29443  *		Returns the write-map of 1st such I/O, NULL otherwise.
29444  *
29445  *   Arguments: un	- sd_lun structure for the device.
29446  *		startb - The starting block number
29447  *		endb - The end block number
29448  *
29449  * Return Code: wm  - pointer to the wmap structure.
29450  */
29451 
29452 static struct sd_w_map *
29453 sd_get_range(struct sd_lun *un, daddr_t startb, daddr_t endb)
29454 {
29455 	struct sd_w_map *wmp;
29456 
29457 	ASSERT(un != NULL);
29458 
29459 	for (wmp = un->un_wm; wmp != NULL; wmp = wmp->wm_next) {
29460 		if (!(wmp->wm_flags & SD_WM_BUSY)) {
29461 			continue;
29462 		}
29463 		if ((startb >= wmp->wm_start) && (startb <= wmp->wm_end)) {
29464 			break;
29465 		}
29466 		if ((endb >= wmp->wm_start) && (endb <= wmp->wm_end)) {
29467 			break;
29468 		}
29469 	}
29470 
29471 	return (wmp);
29472 }
29473 
29474 
29475 /*
29476  *    Function: sd_free_inlist_wmap()
29477  *
29478  * Description: Unlink and free a write map struct.
29479  *
29480  *   Arguments: un      - sd_lun structure for the device.
29481  *		wmp	- sd_w_map which needs to be unlinked.
29482  */
29483 
29484 static void
29485 sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp)
29486 {
29487 	ASSERT(un != NULL);
29488 
29489 	if (un->un_wm == wmp) {
29490 		un->un_wm = wmp->wm_next;
29491 	} else {
29492 		wmp->wm_prev->wm_next = wmp->wm_next;
29493 	}
29494 
29495 	if (wmp->wm_next) {
29496 		wmp->wm_next->wm_prev = wmp->wm_prev;
29497 	}
29498 
29499 	wmp->wm_next = wmp->wm_prev = NULL;
29500 
29501 	kmem_cache_free(un->un_wm_cache, wmp);
29502 }
29503 
29504 
29505 /*
29506  *    Function: sd_range_unlock()
29507  *
29508  * Description: Unlock the range locked by wm.
29509  *		Free write map if nobody else is waiting on it.
29510  *
29511  *   Arguments: un      - sd_lun structure for the device.
29512  *              wmp     - sd_w_map which needs to be unlinked.
29513  */
29514 
29515 static void
29516 sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm)
29517 {
29518 	ASSERT(un != NULL);
29519 	ASSERT(wm != NULL);
29520 	ASSERT(!mutex_owned(SD_MUTEX(un)));
29521 
29522 	mutex_enter(SD_MUTEX(un));
29523 
29524 	if (wm->wm_flags & SD_WTYPE_RMW) {
29525 		un->un_rmw_count--;
29526 	}
29527 
29528 	if (wm->wm_wanted_count) {
29529 		wm->wm_flags = 0;
29530 		/*
29531 		 * Broadcast that the wmap is available now.
29532 		 */
29533 		cv_broadcast(&wm->wm_avail);
29534 	} else {
29535 		/*
29536 		 * If no one is waiting on the map, it should be free'ed.
29537 		 */
29538 		sd_free_inlist_wmap(un, wm);
29539 	}
29540 
29541 	mutex_exit(SD_MUTEX(un));
29542 }
29543 
29544 
29545 /*
29546  *    Function: sd_read_modify_write_task
29547  *
29548  * Description: Called from a taskq thread to initiate the write phase of
29549  *		a read-modify-write request.  This is used for targets where
29550  *		un->un_sys_blocksize != un->un_tgt_blocksize.
29551  *
29552  *   Arguments: arg - a pointer to the buf(9S) struct for the write command.
29553  *
29554  *     Context: Called under taskq thread context.
29555  */
29556 
29557 static void
29558 sd_read_modify_write_task(void *arg)
29559 {
29560 	struct sd_mapblocksize_info	*bsp;
29561 	struct buf	*bp;
29562 	struct sd_xbuf	*xp;
29563 	struct sd_lun	*un;
29564 
29565 	bp = arg;	/* The bp is given in arg */
29566 	ASSERT(bp != NULL);
29567 
29568 	/* Get the pointer to the layer-private data struct */
29569 	xp = SD_GET_XBUF(bp);
29570 	ASSERT(xp != NULL);
29571 	bsp = xp->xb_private;
29572 	ASSERT(bsp != NULL);
29573 
29574 	un = SD_GET_UN(bp);
29575 	ASSERT(un != NULL);
29576 	ASSERT(!mutex_owned(SD_MUTEX(un)));
29577 
29578 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
29579 	    "sd_read_modify_write_task: entry: buf:0x%p\n", bp);
29580 
29581 	/*
29582 	 * This is the write phase of a read-modify-write request, called
29583 	 * under the context of a taskq thread in response to the completion
29584 	 * of the read portion of the rmw request completing under interrupt
29585 	 * context. The write request must be sent from here down the iostart
29586 	 * chain as if it were being sent from sd_mapblocksize_iostart(), so
29587 	 * we use the layer index saved in the layer-private data area.
29588 	 */
29589 	SD_NEXT_IOSTART(bsp->mbs_layer_index, un, bp);
29590 
29591 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
29592 	    "sd_read_modify_write_task: exit: buf:0x%p\n", bp);
29593 }
29594 
29595 
29596 /*
29597  *    Function: sddump_do_read_of_rmw()
29598  *
29599  * Description: This routine will be called from sddump, If sddump is called
29600  *		with an I/O which not aligned on device blocksize boundary
29601  *		then the write has to be converted to read-modify-write.
29602  *		Do the read part here in order to keep sddump simple.
29603  *		Note - That the sd_mutex is held across the call to this
29604  *		routine.
29605  *
29606  *   Arguments: un	- sd_lun
29607  *		blkno	- block number in terms of media block size.
29608  *		nblk	- number of blocks.
29609  *		bpp	- pointer to pointer to the buf structure. On return
29610  *			from this function, *bpp points to the valid buffer
29611  *			to which the write has to be done.
29612  *
29613  * Return Code: 0 for success or errno-type return code
29614  */
29615 
29616 static int
29617 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
29618 	struct buf **bpp)
29619 {
29620 	int err;
29621 	int i;
29622 	int rval;
29623 	struct buf *bp;
29624 	struct scsi_pkt *pkt = NULL;
29625 	uint32_t target_blocksize;
29626 
29627 	ASSERT(un != NULL);
29628 	ASSERT(mutex_owned(SD_MUTEX(un)));
29629 
29630 	target_blocksize = un->un_tgt_blocksize;
29631 
29632 	mutex_exit(SD_MUTEX(un));
29633 
29634 	bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), (struct buf *)NULL,
29635 	    (size_t)(nblk * target_blocksize), B_READ, NULL_FUNC, NULL);
29636 	if (bp == NULL) {
29637 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29638 		    "no resources for dumping; giving up");
29639 		err = ENOMEM;
29640 		goto done;
29641 	}
29642 
29643 	rval = sd_setup_rw_pkt(un, &pkt, bp, 0, NULL_FUNC, NULL,
29644 	    blkno, nblk);
29645 	if (rval != 0) {
29646 		scsi_free_consistent_buf(bp);
29647 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29648 		    "no resources for dumping; giving up");
29649 		err = ENOMEM;
29650 		goto done;
29651 	}
29652 
29653 	pkt->pkt_flags |= FLAG_NOINTR;
29654 
29655 	err = EIO;
29656 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
29657 
29658 		/*
29659 		 * Scsi_poll returns 0 (success) if the command completes and
29660 		 * the status block is STATUS_GOOD.  We should only check
29661 		 * errors if this condition is not true.  Even then we should
29662 		 * send our own request sense packet only if we have a check
29663 		 * condition and auto request sense has not been performed by
29664 		 * the hba.
29665 		 */
29666 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending read\n");
29667 
29668 		if ((sd_scsi_poll(un, pkt) == 0) && (pkt->pkt_resid == 0)) {
29669 			err = 0;
29670 			break;
29671 		}
29672 
29673 		/*
29674 		 * Check CMD_DEV_GONE 1st, give up if device is gone,
29675 		 * no need to read RQS data.
29676 		 */
29677 		if (pkt->pkt_reason == CMD_DEV_GONE) {
29678 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29679 			    "Error while dumping state with rmw..."
29680 			    "Device is gone\n");
29681 			break;
29682 		}
29683 
29684 		if (SD_GET_PKT_STATUS(pkt) == STATUS_CHECK) {
29685 			SD_INFO(SD_LOG_DUMP, un,
29686 			    "sddump: read failed with CHECK, try # %d\n", i);
29687 			if (((pkt->pkt_state & STATE_ARQ_DONE) == 0)) {
29688 				(void) sd_send_polled_RQS(un);
29689 			}
29690 
29691 			continue;
29692 		}
29693 
29694 		if (SD_GET_PKT_STATUS(pkt) == STATUS_BUSY) {
29695 			int reset_retval = 0;
29696 
29697 			SD_INFO(SD_LOG_DUMP, un,
29698 			    "sddump: read failed with BUSY, try # %d\n", i);
29699 
29700 			if (un->un_f_lun_reset_enabled == TRUE) {
29701 				reset_retval = scsi_reset(SD_ADDRESS(un),
29702 				    RESET_LUN);
29703 			}
29704 			if (reset_retval == 0) {
29705 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
29706 			}
29707 			(void) sd_send_polled_RQS(un);
29708 
29709 		} else {
29710 			SD_INFO(SD_LOG_DUMP, un,
29711 			    "sddump: read failed with 0x%x, try # %d\n",
29712 			    SD_GET_PKT_STATUS(pkt), i);
29713 			mutex_enter(SD_MUTEX(un));
29714 			sd_reset_target(un, pkt);
29715 			mutex_exit(SD_MUTEX(un));
29716 		}
29717 
29718 		/*
29719 		 * If we are not getting anywhere with lun/target resets,
29720 		 * let's reset the bus.
29721 		 */
29722 		if (i > SD_NDUMP_RETRIES/2) {
29723 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
29724 			(void) sd_send_polled_RQS(un);
29725 		}
29726 
29727 	}
29728 	scsi_destroy_pkt(pkt);
29729 
29730 	if (err != 0) {
29731 		scsi_free_consistent_buf(bp);
29732 		*bpp = NULL;
29733 	} else {
29734 		*bpp = bp;
29735 	}
29736 
29737 done:
29738 	mutex_enter(SD_MUTEX(un));
29739 	return (err);
29740 }
29741 
29742 
29743 /*
29744  *    Function: sd_failfast_flushq
29745  *
29746  * Description: Take all bp's on the wait queue that have B_FAILFAST set
29747  *		in b_flags and move them onto the failfast queue, then kick
29748  *		off a thread to return all bp's on the failfast queue to
29749  *		their owners with an error set.
29750  *
29751  *   Arguments: un - pointer to the soft state struct for the instance.
29752  *
29753  *     Context: may execute in interrupt context.
29754  */
29755 
29756 static void
29757 sd_failfast_flushq(struct sd_lun *un)
29758 {
29759 	struct buf *bp;
29760 	struct buf *next_waitq_bp;
29761 	struct buf *prev_waitq_bp = NULL;
29762 
29763 	ASSERT(un != NULL);
29764 	ASSERT(mutex_owned(SD_MUTEX(un)));
29765 	ASSERT(un->un_failfast_state == SD_FAILFAST_ACTIVE);
29766 	ASSERT(un->un_failfast_bp == NULL);
29767 
29768 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
29769 	    "sd_failfast_flushq: entry: un:0x%p\n", un);
29770 
29771 	/*
29772 	 * Check if we should flush all bufs when entering failfast state, or
29773 	 * just those with B_FAILFAST set.
29774 	 */
29775 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) {
29776 		/*
29777 		 * Move *all* bp's on the wait queue to the failfast flush
29778 		 * queue, including those that do NOT have B_FAILFAST set.
29779 		 */
29780 		if (un->un_failfast_headp == NULL) {
29781 			ASSERT(un->un_failfast_tailp == NULL);
29782 			un->un_failfast_headp = un->un_waitq_headp;
29783 		} else {
29784 			ASSERT(un->un_failfast_tailp != NULL);
29785 			un->un_failfast_tailp->av_forw = un->un_waitq_headp;
29786 		}
29787 
29788 		un->un_failfast_tailp = un->un_waitq_tailp;
29789 
29790 		/* update kstat for each bp moved out of the waitq */
29791 		for (bp = un->un_waitq_headp; bp != NULL; bp = bp->av_forw) {
29792 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
29793 		}
29794 
29795 		/* empty the waitq */
29796 		un->un_waitq_headp = un->un_waitq_tailp = NULL;
29797 
29798 	} else {
29799 		/*
29800 		 * Go thru the wait queue, pick off all entries with
29801 		 * B_FAILFAST set, and move these onto the failfast queue.
29802 		 */
29803 		for (bp = un->un_waitq_headp; bp != NULL; bp = next_waitq_bp) {
29804 			/*
29805 			 * Save the pointer to the next bp on the wait queue,
29806 			 * so we get to it on the next iteration of this loop.
29807 			 */
29808 			next_waitq_bp = bp->av_forw;
29809 
29810 			/*
29811 			 * If this bp from the wait queue does NOT have
29812 			 * B_FAILFAST set, just move on to the next element
29813 			 * in the wait queue. Note, this is the only place
29814 			 * where it is correct to set prev_waitq_bp.
29815 			 */
29816 			if ((bp->b_flags & B_FAILFAST) == 0) {
29817 				prev_waitq_bp = bp;
29818 				continue;
29819 			}
29820 
29821 			/*
29822 			 * Remove the bp from the wait queue.
29823 			 */
29824 			if (bp == un->un_waitq_headp) {
29825 				/* The bp is the first element of the waitq. */
29826 				un->un_waitq_headp = next_waitq_bp;
29827 				if (un->un_waitq_headp == NULL) {
29828 					/* The wait queue is now empty */
29829 					un->un_waitq_tailp = NULL;
29830 				}
29831 			} else {
29832 				/*
29833 				 * The bp is either somewhere in the middle
29834 				 * or at the end of the wait queue.
29835 				 */
29836 				ASSERT(un->un_waitq_headp != NULL);
29837 				ASSERT(prev_waitq_bp != NULL);
29838 				ASSERT((prev_waitq_bp->b_flags & B_FAILFAST)
29839 				    == 0);
29840 				if (bp == un->un_waitq_tailp) {
29841 					/* bp is the last entry on the waitq. */
29842 					ASSERT(next_waitq_bp == NULL);
29843 					un->un_waitq_tailp = prev_waitq_bp;
29844 				}
29845 				prev_waitq_bp->av_forw = next_waitq_bp;
29846 			}
29847 			bp->av_forw = NULL;
29848 
29849 			/*
29850 			 * update kstat since the bp is moved out of
29851 			 * the waitq
29852 			 */
29853 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
29854 
29855 			/*
29856 			 * Now put the bp onto the failfast queue.
29857 			 */
29858 			if (un->un_failfast_headp == NULL) {
29859 				/* failfast queue is currently empty */
29860 				ASSERT(un->un_failfast_tailp == NULL);
29861 				un->un_failfast_headp =
29862 				    un->un_failfast_tailp = bp;
29863 			} else {
29864 				/* Add the bp to the end of the failfast q */
29865 				ASSERT(un->un_failfast_tailp != NULL);
29866 				ASSERT(un->un_failfast_tailp->b_flags &
29867 				    B_FAILFAST);
29868 				un->un_failfast_tailp->av_forw = bp;
29869 				un->un_failfast_tailp = bp;
29870 			}
29871 		}
29872 	}
29873 
29874 	/*
29875 	 * Now return all bp's on the failfast queue to their owners.
29876 	 */
29877 	while ((bp = un->un_failfast_headp) != NULL) {
29878 
29879 		un->un_failfast_headp = bp->av_forw;
29880 		if (un->un_failfast_headp == NULL) {
29881 			un->un_failfast_tailp = NULL;
29882 		}
29883 
29884 		/*
29885 		 * We want to return the bp with a failure error code, but
29886 		 * we do not want a call to sd_start_cmds() to occur here,
29887 		 * so use sd_return_failed_command_no_restart() instead of
29888 		 * sd_return_failed_command().
29889 		 */
29890 		sd_return_failed_command_no_restart(un, bp, EIO);
29891 	}
29892 
29893 	/* Flush the xbuf queues if required. */
29894 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_QUEUES) {
29895 		ddi_xbuf_flushq(un->un_xbuf_attr, sd_failfast_flushq_callback);
29896 	}
29897 
29898 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
29899 	    "sd_failfast_flushq: exit: un:0x%p\n", un);
29900 }
29901 
29902 
29903 /*
29904  *    Function: sd_failfast_flushq_callback
29905  *
29906  * Description: Return TRUE if the given bp meets the criteria for failfast
29907  *		flushing. Used with ddi_xbuf_flushq(9F).
29908  *
29909  *   Arguments: bp - ptr to buf struct to be examined.
29910  *
29911  *     Context: Any
29912  */
29913 
29914 static int
29915 sd_failfast_flushq_callback(struct buf *bp)
29916 {
29917 	/*
29918 	 * Return TRUE if (1) we want to flush ALL bufs when the failfast
29919 	 * state is entered; OR (2) the given bp has B_FAILFAST set.
29920 	 */
29921 	return (((sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) ||
29922 	    (bp->b_flags & B_FAILFAST)) ? TRUE : FALSE);
29923 }
29924 
29925 
29926 
29927 /*
29928  * Function: sd_setup_next_xfer
29929  *
29930  * Description: Prepare next I/O operation using DMA_PARTIAL
29931  *
29932  */
29933 
29934 static int
29935 sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
29936     struct scsi_pkt *pkt, struct sd_xbuf *xp)
29937 {
29938 	ssize_t	num_blks_not_xfered;
29939 	daddr_t	strt_blk_num;
29940 	ssize_t	bytes_not_xfered;
29941 	int	rval;
29942 
29943 	ASSERT(pkt->pkt_resid == 0);
29944 
29945 	/*
29946 	 * Calculate next block number and amount to be transferred.
29947 	 *
29948 	 * How much data NOT transfered to the HBA yet.
29949 	 */
29950 	bytes_not_xfered = xp->xb_dma_resid;
29951 
29952 	/*
29953 	 * figure how many blocks NOT transfered to the HBA yet.
29954 	 */
29955 	num_blks_not_xfered = SD_BYTES2TGTBLOCKS(un, bytes_not_xfered);
29956 
29957 	/*
29958 	 * set starting block number to the end of what WAS transfered.
29959 	 */
29960 	strt_blk_num = xp->xb_blkno +
29961 	    SD_BYTES2TGTBLOCKS(un, bp->b_bcount - bytes_not_xfered);
29962 
29963 	/*
29964 	 * Move pkt to the next portion of the xfer.  sd_setup_next_rw_pkt
29965 	 * will call scsi_initpkt with NULL_FUNC so we do not have to release
29966 	 * the disk mutex here.
29967 	 */
29968 	rval = sd_setup_next_rw_pkt(un, pkt, bp,
29969 	    strt_blk_num, num_blks_not_xfered);
29970 
29971 	if (rval == 0) {
29972 
29973 		/*
29974 		 * Success.
29975 		 *
29976 		 * Adjust things if there are still more blocks to be
29977 		 * transfered.
29978 		 */
29979 		xp->xb_dma_resid = pkt->pkt_resid;
29980 		pkt->pkt_resid = 0;
29981 
29982 		return (1);
29983 	}
29984 
29985 	/*
29986 	 * There's really only one possible return value from
29987 	 * sd_setup_next_rw_pkt which occurs when scsi_init_pkt
29988 	 * returns NULL.
29989 	 */
29990 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
29991 
29992 	bp->b_resid = bp->b_bcount;
29993 	bp->b_flags |= B_ERROR;
29994 
29995 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29996 	    "Error setting up next portion of DMA transfer\n");
29997 
29998 	return (0);
29999 }
30000 
30001 /*
30002  *    Function: sd_panic_for_res_conflict
30003  *
30004  * Description: Call panic with a string formatted with "Reservation Conflict"
30005  *		and a human readable identifier indicating the SD instance
30006  *		that experienced the reservation conflict.
30007  *
30008  *   Arguments: un - pointer to the soft state struct for the instance.
30009  *
30010  *     Context: may execute in interrupt context.
30011  */
30012 
30013 #define	SD_RESV_CONFLICT_FMT_LEN 40
30014 void
30015 sd_panic_for_res_conflict(struct sd_lun *un)
30016 {
30017 	char panic_str[SD_RESV_CONFLICT_FMT_LEN+MAXPATHLEN];
30018 	char path_str[MAXPATHLEN];
30019 
30020 	(void) snprintf(panic_str, sizeof (panic_str),
30021 	    "Reservation Conflict\nDisk: %s",
30022 	    ddi_pathname(SD_DEVINFO(un), path_str));
30023 
30024 	panic(panic_str);
30025 }
30026 
30027 /*
30028  * Note: The following sd_faultinjection_ioctl( ) routines implement
30029  * driver support for handling fault injection for error analysis
30030  * causing faults in multiple layers of the driver.
30031  *
30032  */
30033 
30034 #ifdef SD_FAULT_INJECTION
30035 static uint_t   sd_fault_injection_on = 0;
30036 
30037 /*
30038  *    Function: sd_faultinjection_ioctl()
30039  *
30040  * Description: This routine is the driver entry point for handling
30041  *              faultinjection ioctls to inject errors into the
30042  *              layer model
30043  *
30044  *   Arguments: cmd	- the ioctl cmd received
30045  *		arg	- the arguments from user and returns
30046  */
30047 
30048 static void
30049 sd_faultinjection_ioctl(int cmd, intptr_t arg,  struct sd_lun *un) {
30050 
30051 	uint_t i = 0;
30052 	uint_t rval;
30053 
30054 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl: entry\n");
30055 
30056 	mutex_enter(SD_MUTEX(un));
30057 
30058 	switch (cmd) {
30059 	case SDIOCRUN:
30060 		/* Allow pushed faults to be injected */
30061 		SD_INFO(SD_LOG_SDTEST, un,
30062 		    "sd_faultinjection_ioctl: Injecting Fault Run\n");
30063 
30064 		sd_fault_injection_on = 1;
30065 
30066 		SD_INFO(SD_LOG_IOERR, un,
30067 		    "sd_faultinjection_ioctl: run finished\n");
30068 		break;
30069 
30070 	case SDIOCSTART:
30071 		/* Start Injection Session */
30072 		SD_INFO(SD_LOG_SDTEST, un,
30073 		    "sd_faultinjection_ioctl: Injecting Fault Start\n");
30074 
30075 		sd_fault_injection_on = 0;
30076 		un->sd_injection_mask = 0xFFFFFFFF;
30077 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
30078 			un->sd_fi_fifo_pkt[i] = NULL;
30079 			un->sd_fi_fifo_xb[i] = NULL;
30080 			un->sd_fi_fifo_un[i] = NULL;
30081 			un->sd_fi_fifo_arq[i] = NULL;
30082 		}
30083 		un->sd_fi_fifo_start = 0;
30084 		un->sd_fi_fifo_end = 0;
30085 
30086 		mutex_enter(&(un->un_fi_mutex));
30087 		un->sd_fi_log[0] = '\0';
30088 		un->sd_fi_buf_len = 0;
30089 		mutex_exit(&(un->un_fi_mutex));
30090 
30091 		SD_INFO(SD_LOG_IOERR, un,
30092 		    "sd_faultinjection_ioctl: start finished\n");
30093 		break;
30094 
30095 	case SDIOCSTOP:
30096 		/* Stop Injection Session */
30097 		SD_INFO(SD_LOG_SDTEST, un,
30098 		    "sd_faultinjection_ioctl: Injecting Fault Stop\n");
30099 		sd_fault_injection_on = 0;
30100 		un->sd_injection_mask = 0x0;
30101 
30102 		/* Empty stray or unuseds structs from fifo */
30103 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
30104 			if (un->sd_fi_fifo_pkt[i] != NULL) {
30105 				kmem_free(un->sd_fi_fifo_pkt[i],
30106 				    sizeof (struct sd_fi_pkt));
30107 			}
30108 			if (un->sd_fi_fifo_xb[i] != NULL) {
30109 				kmem_free(un->sd_fi_fifo_xb[i],
30110 				    sizeof (struct sd_fi_xb));
30111 			}
30112 			if (un->sd_fi_fifo_un[i] != NULL) {
30113 				kmem_free(un->sd_fi_fifo_un[i],
30114 				    sizeof (struct sd_fi_un));
30115 			}
30116 			if (un->sd_fi_fifo_arq[i] != NULL) {
30117 				kmem_free(un->sd_fi_fifo_arq[i],
30118 				    sizeof (struct sd_fi_arq));
30119 			}
30120 			un->sd_fi_fifo_pkt[i] = NULL;
30121 			un->sd_fi_fifo_un[i] = NULL;
30122 			un->sd_fi_fifo_xb[i] = NULL;
30123 			un->sd_fi_fifo_arq[i] = NULL;
30124 		}
30125 		un->sd_fi_fifo_start = 0;
30126 		un->sd_fi_fifo_end = 0;
30127 
30128 		SD_INFO(SD_LOG_IOERR, un,
30129 		    "sd_faultinjection_ioctl: stop finished\n");
30130 		break;
30131 
30132 	case SDIOCINSERTPKT:
30133 		/* Store a packet struct to be pushed onto fifo */
30134 		SD_INFO(SD_LOG_SDTEST, un,
30135 		    "sd_faultinjection_ioctl: Injecting Fault Insert Pkt\n");
30136 
30137 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30138 
30139 		sd_fault_injection_on = 0;
30140 
30141 		/* No more that SD_FI_MAX_ERROR allowed in Queue */
30142 		if (un->sd_fi_fifo_pkt[i] != NULL) {
30143 			kmem_free(un->sd_fi_fifo_pkt[i],
30144 			    sizeof (struct sd_fi_pkt));
30145 		}
30146 		if (arg != NULL) {
30147 			un->sd_fi_fifo_pkt[i] =
30148 			    kmem_alloc(sizeof (struct sd_fi_pkt), KM_NOSLEEP);
30149 			if (un->sd_fi_fifo_pkt[i] == NULL) {
30150 				/* Alloc failed don't store anything */
30151 				break;
30152 			}
30153 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_pkt[i],
30154 			    sizeof (struct sd_fi_pkt), 0);
30155 			if (rval == -1) {
30156 				kmem_free(un->sd_fi_fifo_pkt[i],
30157 				    sizeof (struct sd_fi_pkt));
30158 				un->sd_fi_fifo_pkt[i] = NULL;
30159 			}
30160 		} else {
30161 			SD_INFO(SD_LOG_IOERR, un,
30162 			    "sd_faultinjection_ioctl: pkt null\n");
30163 		}
30164 		break;
30165 
30166 	case SDIOCINSERTXB:
30167 		/* Store a xb struct to be pushed onto fifo */
30168 		SD_INFO(SD_LOG_SDTEST, un,
30169 		    "sd_faultinjection_ioctl: Injecting Fault Insert XB\n");
30170 
30171 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30172 
30173 		sd_fault_injection_on = 0;
30174 
30175 		if (un->sd_fi_fifo_xb[i] != NULL) {
30176 			kmem_free(un->sd_fi_fifo_xb[i],
30177 			    sizeof (struct sd_fi_xb));
30178 			un->sd_fi_fifo_xb[i] = NULL;
30179 		}
30180 		if (arg != NULL) {
30181 			un->sd_fi_fifo_xb[i] =
30182 			    kmem_alloc(sizeof (struct sd_fi_xb), KM_NOSLEEP);
30183 			if (un->sd_fi_fifo_xb[i] == NULL) {
30184 				/* Alloc failed don't store anything */
30185 				break;
30186 			}
30187 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_xb[i],
30188 			    sizeof (struct sd_fi_xb), 0);
30189 
30190 			if (rval == -1) {
30191 				kmem_free(un->sd_fi_fifo_xb[i],
30192 				    sizeof (struct sd_fi_xb));
30193 				un->sd_fi_fifo_xb[i] = NULL;
30194 			}
30195 		} else {
30196 			SD_INFO(SD_LOG_IOERR, un,
30197 			    "sd_faultinjection_ioctl: xb null\n");
30198 		}
30199 		break;
30200 
30201 	case SDIOCINSERTUN:
30202 		/* Store a un struct to be pushed onto fifo */
30203 		SD_INFO(SD_LOG_SDTEST, un,
30204 		    "sd_faultinjection_ioctl: Injecting Fault Insert UN\n");
30205 
30206 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30207 
30208 		sd_fault_injection_on = 0;
30209 
30210 		if (un->sd_fi_fifo_un[i] != NULL) {
30211 			kmem_free(un->sd_fi_fifo_un[i],
30212 			    sizeof (struct sd_fi_un));
30213 			un->sd_fi_fifo_un[i] = NULL;
30214 		}
30215 		if (arg != NULL) {
30216 			un->sd_fi_fifo_un[i] =
30217 			    kmem_alloc(sizeof (struct sd_fi_un), KM_NOSLEEP);
30218 			if (un->sd_fi_fifo_un[i] == NULL) {
30219 				/* Alloc failed don't store anything */
30220 				break;
30221 			}
30222 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_un[i],
30223 			    sizeof (struct sd_fi_un), 0);
30224 			if (rval == -1) {
30225 				kmem_free(un->sd_fi_fifo_un[i],
30226 				    sizeof (struct sd_fi_un));
30227 				un->sd_fi_fifo_un[i] = NULL;
30228 			}
30229 
30230 		} else {
30231 			SD_INFO(SD_LOG_IOERR, un,
30232 			    "sd_faultinjection_ioctl: un null\n");
30233 		}
30234 
30235 		break;
30236 
30237 	case SDIOCINSERTARQ:
30238 		/* Store a arq struct to be pushed onto fifo */
30239 		SD_INFO(SD_LOG_SDTEST, un,
30240 		    "sd_faultinjection_ioctl: Injecting Fault Insert ARQ\n");
30241 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30242 
30243 		sd_fault_injection_on = 0;
30244 
30245 		if (un->sd_fi_fifo_arq[i] != NULL) {
30246 			kmem_free(un->sd_fi_fifo_arq[i],
30247 			    sizeof (struct sd_fi_arq));
30248 			un->sd_fi_fifo_arq[i] = NULL;
30249 		}
30250 		if (arg != NULL) {
30251 			un->sd_fi_fifo_arq[i] =
30252 			    kmem_alloc(sizeof (struct sd_fi_arq), KM_NOSLEEP);
30253 			if (un->sd_fi_fifo_arq[i] == NULL) {
30254 				/* Alloc failed don't store anything */
30255 				break;
30256 			}
30257 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_arq[i],
30258 			    sizeof (struct sd_fi_arq), 0);
30259 			if (rval == -1) {
30260 				kmem_free(un->sd_fi_fifo_arq[i],
30261 				    sizeof (struct sd_fi_arq));
30262 				un->sd_fi_fifo_arq[i] = NULL;
30263 			}
30264 
30265 		} else {
30266 			SD_INFO(SD_LOG_IOERR, un,
30267 			    "sd_faultinjection_ioctl: arq null\n");
30268 		}
30269 
30270 		break;
30271 
30272 	case SDIOCPUSH:
30273 		/* Push stored xb, pkt, un, and arq onto fifo */
30274 		sd_fault_injection_on = 0;
30275 
30276 		if (arg != NULL) {
30277 			rval = ddi_copyin((void *)arg, &i, sizeof (uint_t), 0);
30278 			if (rval != -1 &&
30279 			    un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
30280 				un->sd_fi_fifo_end += i;
30281 			}
30282 		} else {
30283 			SD_INFO(SD_LOG_IOERR, un,
30284 			    "sd_faultinjection_ioctl: push arg null\n");
30285 			if (un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
30286 				un->sd_fi_fifo_end++;
30287 			}
30288 		}
30289 		SD_INFO(SD_LOG_IOERR, un,
30290 		    "sd_faultinjection_ioctl: push to end=%d\n",
30291 		    un->sd_fi_fifo_end);
30292 		break;
30293 
30294 	case SDIOCRETRIEVE:
30295 		/* Return buffer of log from Injection session */
30296 		SD_INFO(SD_LOG_SDTEST, un,
30297 		    "sd_faultinjection_ioctl: Injecting Fault Retreive");
30298 
30299 		sd_fault_injection_on = 0;
30300 
30301 		mutex_enter(&(un->un_fi_mutex));
30302 		rval = ddi_copyout(un->sd_fi_log, (void *)arg,
30303 		    un->sd_fi_buf_len+1, 0);
30304 		mutex_exit(&(un->un_fi_mutex));
30305 
30306 		if (rval == -1) {
30307 			/*
30308 			 * arg is possibly invalid setting
30309 			 * it to NULL for return
30310 			 */
30311 			arg = NULL;
30312 		}
30313 		break;
30314 	}
30315 
30316 	mutex_exit(SD_MUTEX(un));
30317 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl:"
30318 			    " exit\n");
30319 }
30320 
30321 
30322 /*
30323  *    Function: sd_injection_log()
30324  *
30325  * Description: This routine adds buff to the already existing injection log
30326  *              for retrieval via faultinjection_ioctl for use in fault
30327  *              detection and recovery
30328  *
30329  *   Arguments: buf - the string to add to the log
30330  */
30331 
30332 static void
30333 sd_injection_log(char *buf, struct sd_lun *un)
30334 {
30335 	uint_t len;
30336 
30337 	ASSERT(un != NULL);
30338 	ASSERT(buf != NULL);
30339 
30340 	mutex_enter(&(un->un_fi_mutex));
30341 
30342 	len = min(strlen(buf), 255);
30343 	/* Add logged value to Injection log to be returned later */
30344 	if (len + un->sd_fi_buf_len < SD_FI_MAX_BUF) {
30345 		uint_t	offset = strlen((char *)un->sd_fi_log);
30346 		char *destp = (char *)un->sd_fi_log + offset;
30347 		int i;
30348 		for (i = 0; i < len; i++) {
30349 			*destp++ = *buf++;
30350 		}
30351 		un->sd_fi_buf_len += len;
30352 		un->sd_fi_log[un->sd_fi_buf_len] = '\0';
30353 	}
30354 
30355 	mutex_exit(&(un->un_fi_mutex));
30356 }
30357 
30358 
30359 /*
30360  *    Function: sd_faultinjection()
30361  *
30362  * Description: This routine takes the pkt and changes its
30363  *		content based on error injection scenerio.
30364  *
30365  *   Arguments: pktp	- packet to be changed
30366  */
30367 
30368 static void
30369 sd_faultinjection(struct scsi_pkt *pktp)
30370 {
30371 	uint_t i;
30372 	struct sd_fi_pkt *fi_pkt;
30373 	struct sd_fi_xb *fi_xb;
30374 	struct sd_fi_un *fi_un;
30375 	struct sd_fi_arq *fi_arq;
30376 	struct buf *bp;
30377 	struct sd_xbuf *xb;
30378 	struct sd_lun *un;
30379 
30380 	ASSERT(pktp != NULL);
30381 
30382 	/* pull bp xb and un from pktp */
30383 	bp = (struct buf *)pktp->pkt_private;
30384 	xb = SD_GET_XBUF(bp);
30385 	un = SD_GET_UN(bp);
30386 
30387 	ASSERT(un != NULL);
30388 
30389 	mutex_enter(SD_MUTEX(un));
30390 
30391 	SD_TRACE(SD_LOG_SDTEST, un,
30392 	    "sd_faultinjection: entry Injection from sdintr\n");
30393 
30394 	/* if injection is off return */
30395 	if (sd_fault_injection_on == 0 ||
30396 	    un->sd_fi_fifo_start == un->sd_fi_fifo_end) {
30397 		mutex_exit(SD_MUTEX(un));
30398 		return;
30399 	}
30400 
30401 	SD_INFO(SD_LOG_SDTEST, un,
30402 	    "sd_faultinjection: is working for copying\n");
30403 
30404 	/* take next set off fifo */
30405 	i = un->sd_fi_fifo_start % SD_FI_MAX_ERROR;
30406 
30407 	fi_pkt = un->sd_fi_fifo_pkt[i];
30408 	fi_xb = un->sd_fi_fifo_xb[i];
30409 	fi_un = un->sd_fi_fifo_un[i];
30410 	fi_arq = un->sd_fi_fifo_arq[i];
30411 
30412 
30413 	/* set variables accordingly */
30414 	/* set pkt if it was on fifo */
30415 	if (fi_pkt != NULL) {
30416 		SD_CONDSET(pktp, pkt, pkt_flags, "pkt_flags");
30417 		SD_CONDSET(*pktp, pkt, pkt_scbp, "pkt_scbp");
30418 		if (fi_pkt->pkt_cdbp != 0xff)
30419 			SD_CONDSET(*pktp, pkt, pkt_cdbp, "pkt_cdbp");
30420 		SD_CONDSET(pktp, pkt, pkt_state, "pkt_state");
30421 		SD_CONDSET(pktp, pkt, pkt_statistics, "pkt_statistics");
30422 		SD_CONDSET(pktp, pkt, pkt_reason, "pkt_reason");
30423 
30424 	}
30425 	/* set xb if it was on fifo */
30426 	if (fi_xb != NULL) {
30427 		SD_CONDSET(xb, xb, xb_blkno, "xb_blkno");
30428 		SD_CONDSET(xb, xb, xb_dma_resid, "xb_dma_resid");
30429 		if (fi_xb->xb_retry_count != 0)
30430 			SD_CONDSET(xb, xb, xb_retry_count, "xb_retry_count");
30431 		SD_CONDSET(xb, xb, xb_victim_retry_count,
30432 		    "xb_victim_retry_count");
30433 		SD_CONDSET(xb, xb, xb_sense_status, "xb_sense_status");
30434 		SD_CONDSET(xb, xb, xb_sense_state, "xb_sense_state");
30435 		SD_CONDSET(xb, xb, xb_sense_resid, "xb_sense_resid");
30436 
30437 		/* copy in block data from sense */
30438 		/*
30439 		 * if (fi_xb->xb_sense_data[0] != -1) {
30440 		 *	bcopy(fi_xb->xb_sense_data, xb->xb_sense_data,
30441 		 *	SENSE_LENGTH);
30442 		 * }
30443 		 */
30444 		bcopy(fi_xb->xb_sense_data, xb->xb_sense_data, SENSE_LENGTH);
30445 
30446 		/* copy in extended sense codes */
30447 		SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data),
30448 		    xb, es_code, "es_code");
30449 		SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data),
30450 		    xb, es_key, "es_key");
30451 		SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data),
30452 		    xb, es_add_code, "es_add_code");
30453 		SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data),
30454 		    xb, es_qual_code, "es_qual_code");
30455 		struct scsi_extended_sense *esp;
30456 		esp = (struct scsi_extended_sense *)xb->xb_sense_data;
30457 		esp->es_class = CLASS_EXTENDED_SENSE;
30458 	}
30459 
30460 	/* set un if it was on fifo */
30461 	if (fi_un != NULL) {
30462 		SD_CONDSET(un->un_sd->sd_inq, un, inq_rmb, "inq_rmb");
30463 		SD_CONDSET(un, un, un_ctype, "un_ctype");
30464 		SD_CONDSET(un, un, un_reset_retry_count,
30465 		    "un_reset_retry_count");
30466 		SD_CONDSET(un, un, un_reservation_type, "un_reservation_type");
30467 		SD_CONDSET(un, un, un_resvd_status, "un_resvd_status");
30468 		SD_CONDSET(un, un, un_f_arq_enabled, "un_f_arq_enabled");
30469 		SD_CONDSET(un, un, un_f_allow_bus_device_reset,
30470 		    "un_f_allow_bus_device_reset");
30471 		SD_CONDSET(un, un, un_f_opt_queueing, "un_f_opt_queueing");
30472 
30473 	}
30474 
30475 	/* copy in auto request sense if it was on fifo */
30476 	if (fi_arq != NULL) {
30477 		bcopy(fi_arq, pktp->pkt_scbp, sizeof (struct sd_fi_arq));
30478 	}
30479 
30480 	/* free structs */
30481 	if (un->sd_fi_fifo_pkt[i] != NULL) {
30482 		kmem_free(un->sd_fi_fifo_pkt[i], sizeof (struct sd_fi_pkt));
30483 	}
30484 	if (un->sd_fi_fifo_xb[i] != NULL) {
30485 		kmem_free(un->sd_fi_fifo_xb[i], sizeof (struct sd_fi_xb));
30486 	}
30487 	if (un->sd_fi_fifo_un[i] != NULL) {
30488 		kmem_free(un->sd_fi_fifo_un[i], sizeof (struct sd_fi_un));
30489 	}
30490 	if (un->sd_fi_fifo_arq[i] != NULL) {
30491 		kmem_free(un->sd_fi_fifo_arq[i], sizeof (struct sd_fi_arq));
30492 	}
30493 
30494 	/*
30495 	 * kmem_free does not gurantee to set to NULL
30496 	 * since we uses these to determine if we set
30497 	 * values or not lets confirm they are always
30498 	 * NULL after free
30499 	 */
30500 	un->sd_fi_fifo_pkt[i] = NULL;
30501 	un->sd_fi_fifo_un[i] = NULL;
30502 	un->sd_fi_fifo_xb[i] = NULL;
30503 	un->sd_fi_fifo_arq[i] = NULL;
30504 
30505 	un->sd_fi_fifo_start++;
30506 
30507 	mutex_exit(SD_MUTEX(un));
30508 
30509 	SD_INFO(SD_LOG_SDTEST, un, "sd_faultinjection: exit\n");
30510 }
30511 
30512 #endif /* SD_FAULT_INJECTION */
30513 
30514 /*
30515  * This routine is invoked in sd_unit_attach(). Before calling it, the
30516  * properties in conf file should be processed already, and "hotpluggable"
30517  * property was processed also.
30518  *
30519  * The sd driver distinguishes 3 different type of devices: removable media,
30520  * non-removable media, and hotpluggable. Below the differences are defined:
30521  *
30522  * 1. Device ID
30523  *
30524  *     The device ID of a device is used to identify this device. Refer to
30525  *     ddi_devid_register(9F).
30526  *
30527  *     For a non-removable media disk device which can provide 0x80 or 0x83
30528  *     VPD page (refer to INQUIRY command of SCSI SPC specification), a unique
30529  *     device ID is created to identify this device. For other non-removable
30530  *     media devices, a default device ID is created only if this device has
30531  *     at least 2 alter cylinders. Otherwise, this device has no devid.
30532  *
30533  *     -------------------------------------------------------
30534  *     removable media   hotpluggable  | Can Have Device ID
30535  *     -------------------------------------------------------
30536  *         false             false     |     Yes
30537  *         false             true      |     Yes
30538  *         true                x       |     No
30539  *     ------------------------------------------------------
30540  *
30541  *
30542  * 2. SCSI group 4 commands
30543  *
30544  *     In SCSI specs, only some commands in group 4 command set can use
30545  *     8-byte addresses that can be used to access >2TB storage spaces.
30546  *     Other commands have no such capability. Without supporting group4,
30547  *     it is impossible to make full use of storage spaces of a disk with
30548  *     capacity larger than 2TB.
30549  *
30550  *     -----------------------------------------------
30551  *     removable media   hotpluggable   LP64  |  Group
30552  *     -----------------------------------------------
30553  *           false          false       false |   1
30554  *           false          false       true  |   4
30555  *           false          true        false |   1
30556  *           false          true        true  |   4
30557  *           true             x           x   |   5
30558  *     -----------------------------------------------
30559  *
30560  *
30561  * 3. Check for VTOC Label
30562  *
30563  *     If a direct-access disk has no EFI label, sd will check if it has a
30564  *     valid VTOC label. Now, sd also does that check for removable media
30565  *     and hotpluggable devices.
30566  *
30567  *     --------------------------------------------------------------
30568  *     Direct-Access   removable media    hotpluggable |  Check Label
30569  *     -------------------------------------------------------------
30570  *         false          false           false        |   No
30571  *         false          false           true         |   No
30572  *         false          true            false        |   Yes
30573  *         false          true            true         |   Yes
30574  *         true            x                x          |   Yes
30575  *     --------------------------------------------------------------
30576  *
30577  *
30578  * 4. Building default VTOC label
30579  *
30580  *     As section 3 says, sd checks if some kinds of devices have VTOC label.
30581  *     If those devices have no valid VTOC label, sd(7d) will attempt to
30582  *     create default VTOC for them. Currently sd creates default VTOC label
30583  *     for all devices on x86 platform (VTOC_16), but only for removable
30584  *     media devices on SPARC (VTOC_8).
30585  *
30586  *     -----------------------------------------------------------
30587  *       removable media hotpluggable platform   |   Default Label
30588  *     -----------------------------------------------------------
30589  *             false          false    sparc     |     No
30590  *             false          true      x86      |     Yes
30591  *             false          true     sparc     |     Yes
30592  *             true             x        x       |     Yes
30593  *     ----------------------------------------------------------
30594  *
30595  *
30596  * 5. Supported blocksizes of target devices
30597  *
30598  *     Sd supports non-512-byte blocksize for removable media devices only.
30599  *     For other devices, only 512-byte blocksize is supported. This may be
30600  *     changed in near future because some RAID devices require non-512-byte
30601  *     blocksize
30602  *
30603  *     -----------------------------------------------------------
30604  *     removable media    hotpluggable    | non-512-byte blocksize
30605  *     -----------------------------------------------------------
30606  *           false          false         |   No
30607  *           false          true          |   No
30608  *           true             x           |   Yes
30609  *     -----------------------------------------------------------
30610  *
30611  *
30612  * 6. Automatic mount & unmount
30613  *
30614  *     Sd(7d) driver provides DKIOCREMOVABLE ioctl. This ioctl is used to query
30615  *     if a device is removable media device. It return 1 for removable media
30616  *     devices, and 0 for others.
30617  *
30618  *     The automatic mounting subsystem should distinguish between the types
30619  *     of devices and apply automounting policies to each.
30620  *
30621  *
30622  * 7. fdisk partition management
30623  *
30624  *     Fdisk is traditional partition method on x86 platform. Sd(7d) driver
30625  *     just supports fdisk partitions on x86 platform. On sparc platform, sd
30626  *     doesn't support fdisk partitions at all. Note: pcfs(7fs) can recognize
30627  *     fdisk partitions on both x86 and SPARC platform.
30628  *
30629  *     -----------------------------------------------------------
30630  *       platform   removable media  USB/1394  |  fdisk supported
30631  *     -----------------------------------------------------------
30632  *        x86         X               X        |       true
30633  *     ------------------------------------------------------------
30634  *        sparc       X               X        |       false
30635  *     ------------------------------------------------------------
30636  *
30637  *
30638  * 8. MBOOT/MBR
30639  *
30640  *     Although sd(7d) doesn't support fdisk on SPARC platform, it does support
30641  *     read/write mboot for removable media devices on sparc platform.
30642  *
30643  *     -----------------------------------------------------------
30644  *       platform   removable media  USB/1394  |  mboot supported
30645  *     -----------------------------------------------------------
30646  *        x86         X               X        |       true
30647  *     ------------------------------------------------------------
30648  *        sparc      false           false     |       false
30649  *        sparc      false           true      |       true
30650  *        sparc      true            false     |       true
30651  *        sparc      true            true      |       true
30652  *     ------------------------------------------------------------
30653  *
30654  *
30655  * 9.  error handling during opening device
30656  *
30657  *     If failed to open a disk device, an errno is returned. For some kinds
30658  *     of errors, different errno is returned depending on if this device is
30659  *     a removable media device. This brings USB/1394 hard disks in line with
30660  *     expected hard disk behavior. It is not expected that this breaks any
30661  *     application.
30662  *
30663  *     ------------------------------------------------------
30664  *       removable media    hotpluggable   |  errno
30665  *     ------------------------------------------------------
30666  *             false          false        |   EIO
30667  *             false          true         |   EIO
30668  *             true             x          |   ENXIO
30669  *     ------------------------------------------------------
30670  *
30671  *
30672  * 11. ioctls: DKIOCEJECT, CDROMEJECT
30673  *
30674  *     These IOCTLs are applicable only to removable media devices.
30675  *
30676  *     -----------------------------------------------------------
30677  *       removable media    hotpluggable   |DKIOCEJECT, CDROMEJECT
30678  *     -----------------------------------------------------------
30679  *             false          false        |     No
30680  *             false          true         |     No
30681  *             true            x           |     Yes
30682  *     -----------------------------------------------------------
30683  *
30684  *
30685  * 12. Kstats for partitions
30686  *
30687  *     sd creates partition kstat for non-removable media devices. USB and
30688  *     Firewire hard disks now have partition kstats
30689  *
30690  *      ------------------------------------------------------
30691  *       removable media    hotpluggable   |   kstat
30692  *      ------------------------------------------------------
30693  *             false          false        |    Yes
30694  *             false          true         |    Yes
30695  *             true             x          |    No
30696  *       ------------------------------------------------------
30697  *
30698  *
30699  * 13. Removable media & hotpluggable properties
30700  *
30701  *     Sd driver creates a "removable-media" property for removable media
30702  *     devices. Parent nexus drivers create a "hotpluggable" property if
30703  *     it supports hotplugging.
30704  *
30705  *     ---------------------------------------------------------------------
30706  *     removable media   hotpluggable |  "removable-media"   " hotpluggable"
30707  *     ---------------------------------------------------------------------
30708  *       false            false       |    No                   No
30709  *       false            true        |    No                   Yes
30710  *       true             false       |    Yes                  No
30711  *       true             true        |    Yes                  Yes
30712  *     ---------------------------------------------------------------------
30713  *
30714  *
30715  * 14. Power Management
30716  *
30717  *     sd only power manages removable media devices or devices that support
30718  *     LOG_SENSE or have a "pm-capable" property  (PSARC/2002/250)
30719  *
30720  *     A parent nexus that supports hotplugging can also set "pm-capable"
30721  *     if the disk can be power managed.
30722  *
30723  *     ------------------------------------------------------------
30724  *       removable media hotpluggable pm-capable  |   power manage
30725  *     ------------------------------------------------------------
30726  *             false          false     false     |     No
30727  *             false          false     true      |     Yes
30728  *             false          true      false     |     No
30729  *             false          true      true      |     Yes
30730  *             true             x        x        |     Yes
30731  *     ------------------------------------------------------------
30732  *
30733  *      USB and firewire hard disks can now be power managed independently
30734  *      of the framebuffer
30735  *
30736  *
30737  * 15. Support for USB disks with capacity larger than 1TB
30738  *
30739  *     Currently, sd doesn't permit a fixed disk device with capacity
30740  *     larger than 1TB to be used in a 32-bit operating system environment.
30741  *     However, sd doesn't do that for removable media devices. Instead, it
30742  *     assumes that removable media devices cannot have a capacity larger
30743  *     than 1TB. Therefore, using those devices on 32-bit system is partially
30744  *     supported, which can cause some unexpected results.
30745  *
30746  *     ---------------------------------------------------------------------
30747  *       removable media    USB/1394 | Capacity > 1TB |   Used in 32-bit env
30748  *     ---------------------------------------------------------------------
30749  *             false          false  |   true         |     no
30750  *             false          true   |   true         |     no
30751  *             true           false  |   true         |     Yes
30752  *             true           true   |   true         |     Yes
30753  *     ---------------------------------------------------------------------
30754  *
30755  *
30756  * 16. Check write-protection at open time
30757  *
30758  *     When a removable media device is being opened for writing without NDELAY
30759  *     flag, sd will check if this device is writable. If attempting to open
30760  *     without NDELAY flag a write-protected device, this operation will abort.
30761  *
30762  *     ------------------------------------------------------------
30763  *       removable media    USB/1394   |   WP Check
30764  *     ------------------------------------------------------------
30765  *             false          false    |     No
30766  *             false          true     |     No
30767  *             true           false    |     Yes
30768  *             true           true     |     Yes
30769  *     ------------------------------------------------------------
30770  *
30771  *
30772  * 17. syslog when corrupted VTOC is encountered
30773  *
30774  *      Currently, if an invalid VTOC is encountered, sd only print syslog
30775  *      for fixed SCSI disks.
30776  *     ------------------------------------------------------------
30777  *       removable media    USB/1394   |   print syslog
30778  *     ------------------------------------------------------------
30779  *             false          false    |     Yes
30780  *             false          true     |     No
30781  *             true           false    |     No
30782  *             true           true     |     No
30783  *     ------------------------------------------------------------
30784  */
30785 static void
30786 sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi)
30787 {
30788 	int	pm_cap;
30789 
30790 	ASSERT(un->un_sd);
30791 	ASSERT(un->un_sd->sd_inq);
30792 
30793 	/*
30794 	 * Enable SYNC CACHE support for all devices.
30795 	 */
30796 	un->un_f_sync_cache_supported = TRUE;
30797 
30798 	/*
30799 	 * Set the sync cache required flag to false.
30800 	 * This would ensure that there is no SYNC CACHE
30801 	 * sent when there are no writes
30802 	 */
30803 	un->un_f_sync_cache_required = FALSE;
30804 
30805 	if (un->un_sd->sd_inq->inq_rmb) {
30806 		/*
30807 		 * The media of this device is removable. And for this kind
30808 		 * of devices, it is possible to change medium after opening
30809 		 * devices. Thus we should support this operation.
30810 		 */
30811 		un->un_f_has_removable_media = TRUE;
30812 
30813 		/*
30814 		 * support non-512-byte blocksize of removable media devices
30815 		 */
30816 		un->un_f_non_devbsize_supported = TRUE;
30817 
30818 		/*
30819 		 * Assume that all removable media devices support DOOR_LOCK
30820 		 */
30821 		un->un_f_doorlock_supported = TRUE;
30822 
30823 		/*
30824 		 * For a removable media device, it is possible to be opened
30825 		 * with NDELAY flag when there is no media in drive, in this
30826 		 * case we don't care if device is writable. But if without
30827 		 * NDELAY flag, we need to check if media is write-protected.
30828 		 */
30829 		un->un_f_chk_wp_open = TRUE;
30830 
30831 		/*
30832 		 * need to start a SCSI watch thread to monitor media state,
30833 		 * when media is being inserted or ejected, notify syseventd.
30834 		 */
30835 		un->un_f_monitor_media_state = TRUE;
30836 
30837 		/*
30838 		 * Some devices don't support START_STOP_UNIT command.
30839 		 * Therefore, we'd better check if a device supports it
30840 		 * before sending it.
30841 		 */
30842 		un->un_f_check_start_stop = TRUE;
30843 
30844 		/*
30845 		 * support eject media ioctl:
30846 		 *		FDEJECT, DKIOCEJECT, CDROMEJECT
30847 		 */
30848 		un->un_f_eject_media_supported = TRUE;
30849 
30850 		/*
30851 		 * Because many removable-media devices don't support
30852 		 * LOG_SENSE, we couldn't use this command to check if
30853 		 * a removable media device support power-management.
30854 		 * We assume that they support power-management via
30855 		 * START_STOP_UNIT command and can be spun up and down
30856 		 * without limitations.
30857 		 */
30858 		un->un_f_pm_supported = TRUE;
30859 
30860 		/*
30861 		 * Need to create a zero length (Boolean) property
30862 		 * removable-media for the removable media devices.
30863 		 * Note that the return value of the property is not being
30864 		 * checked, since if unable to create the property
30865 		 * then do not want the attach to fail altogether. Consistent
30866 		 * with other property creation in attach.
30867 		 */
30868 		(void) ddi_prop_create(DDI_DEV_T_NONE, devi,
30869 		    DDI_PROP_CANSLEEP, "removable-media", NULL, 0);
30870 
30871 	} else {
30872 		/*
30873 		 * create device ID for device
30874 		 */
30875 		un->un_f_devid_supported = TRUE;
30876 
30877 		/*
30878 		 * Spin up non-removable-media devices once it is attached
30879 		 */
30880 		un->un_f_attach_spinup = TRUE;
30881 
30882 		/*
30883 		 * According to SCSI specification, Sense data has two kinds of
30884 		 * format: fixed format, and descriptor format. At present, we
30885 		 * don't support descriptor format sense data for removable
30886 		 * media.
30887 		 */
30888 		if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) {
30889 			un->un_f_descr_format_supported = TRUE;
30890 		}
30891 
30892 		/*
30893 		 * kstats are created only for non-removable media devices.
30894 		 *
30895 		 * Set this in sd.conf to 0 in order to disable kstats.  The
30896 		 * default is 1, so they are enabled by default.
30897 		 */
30898 		un->un_f_pkstats_enabled = (ddi_prop_get_int(DDI_DEV_T_ANY,
30899 		    SD_DEVINFO(un), DDI_PROP_DONTPASS,
30900 		    "enable-partition-kstats", 1));
30901 
30902 		/*
30903 		 * Check if HBA has set the "pm-capable" property.
30904 		 * If "pm-capable" exists and is non-zero then we can
30905 		 * power manage the device without checking the start/stop
30906 		 * cycle count log sense page.
30907 		 *
30908 		 * If "pm-capable" exists and is set to be false (0),
30909 		 * then we should not power manage the device.
30910 		 *
30911 		 * If "pm-capable" doesn't exist then pm_cap will
30912 		 * be set to SD_PM_CAPABLE_UNDEFINED (-1).  In this case,
30913 		 * sd will check the start/stop cycle count log sense page
30914 		 * and power manage the device if the cycle count limit has
30915 		 * not been exceeded.
30916 		 */
30917 		pm_cap = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
30918 		    DDI_PROP_DONTPASS, "pm-capable", SD_PM_CAPABLE_UNDEFINED);
30919 		if (SD_PM_CAPABLE_IS_UNDEFINED(pm_cap)) {
30920 			un->un_f_log_sense_supported = TRUE;
30921 			if (!un->un_f_power_condition_disabled &&
30922 			    SD_INQUIRY(un)->inq_ansi == 6) {
30923 				un->un_f_power_condition_supported = TRUE;
30924 			}
30925 		} else {
30926 			/*
30927 			 * pm-capable property exists.
30928 			 *
30929 			 * Convert "TRUE" values for pm_cap to
30930 			 * SD_PM_CAPABLE_IS_TRUE to make it easier to check
30931 			 * later. "TRUE" values are any values defined in
30932 			 * inquiry.h.
30933 			 */
30934 			if (SD_PM_CAPABLE_IS_FALSE(pm_cap)) {
30935 				un->un_f_log_sense_supported = FALSE;
30936 			} else {
30937 				/* SD_PM_CAPABLE_IS_TRUE case */
30938 				un->un_f_pm_supported = TRUE;
30939 				if (!un->un_f_power_condition_disabled &&
30940 				    SD_PM_CAPABLE_IS_SPC_4(pm_cap)) {
30941 					un->un_f_power_condition_supported =
30942 					    TRUE;
30943 				}
30944 				if (SD_PM_CAP_LOG_SUPPORTED(pm_cap)) {
30945 					un->un_f_log_sense_supported = TRUE;
30946 					un->un_f_pm_log_sense_smart =
30947 					    SD_PM_CAP_SMART_LOG(pm_cap);
30948 				}
30949 			}
30950 
30951 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
30952 			    "sd_unit_attach: un:0x%p pm-capable "
30953 			    "property set to %d.\n", un, un->un_f_pm_supported);
30954 		}
30955 	}
30956 
30957 	if (un->un_f_is_hotpluggable) {
30958 
30959 		/*
30960 		 * Have to watch hotpluggable devices as well, since
30961 		 * that's the only way for userland applications to
30962 		 * detect hot removal while device is busy/mounted.
30963 		 */
30964 		un->un_f_monitor_media_state = TRUE;
30965 
30966 		un->un_f_check_start_stop = TRUE;
30967 
30968 	}
30969 }
30970 
30971 /*
30972  * sd_tg_rdwr:
30973  * Provides rdwr access for cmlb via sd_tgops. The start_block is
30974  * in sys block size, req_length in bytes.
30975  *
30976  */
30977 static int
30978 sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr,
30979     diskaddr_t start_block, size_t reqlength, void *tg_cookie)
30980 {
30981 	struct sd_lun *un;
30982 	int path_flag = (int)(uintptr_t)tg_cookie;
30983 	char *dkl = NULL;
30984 	diskaddr_t real_addr = start_block;
30985 	diskaddr_t first_byte, end_block;
30986 
30987 	size_t	buffer_size = reqlength;
30988 	int rval = 0;
30989 	diskaddr_t	cap;
30990 	uint32_t	lbasize;
30991 	sd_ssc_t	*ssc;
30992 
30993 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
30994 	if (un == NULL)
30995 		return (ENXIO);
30996 
30997 	if (cmd != TG_READ && cmd != TG_WRITE)
30998 		return (EINVAL);
30999 
31000 	ssc = sd_ssc_init(un);
31001 	mutex_enter(SD_MUTEX(un));
31002 	if (un->un_f_tgt_blocksize_is_valid == FALSE) {
31003 		mutex_exit(SD_MUTEX(un));
31004 		rval = sd_send_scsi_READ_CAPACITY(ssc, (uint64_t *)&cap,
31005 		    &lbasize, path_flag);
31006 		if (rval != 0)
31007 			goto done1;
31008 		mutex_enter(SD_MUTEX(un));
31009 		sd_update_block_info(un, lbasize, cap);
31010 		if ((un->un_f_tgt_blocksize_is_valid == FALSE)) {
31011 			mutex_exit(SD_MUTEX(un));
31012 			rval = EIO;
31013 			goto done;
31014 		}
31015 	}
31016 
31017 	if (NOT_DEVBSIZE(un)) {
31018 		/*
31019 		 * sys_blocksize != tgt_blocksize, need to re-adjust
31020 		 * blkno and save the index to beginning of dk_label
31021 		 */
31022 		first_byte  = SD_SYSBLOCKS2BYTES(start_block);
31023 		real_addr = first_byte / un->un_tgt_blocksize;
31024 
31025 		end_block = (first_byte + reqlength +
31026 		    un->un_tgt_blocksize - 1) / un->un_tgt_blocksize;
31027 
31028 		/* round up buffer size to multiple of target block size */
31029 		buffer_size = (end_block - real_addr) * un->un_tgt_blocksize;
31030 
31031 		SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_tg_rdwr",
31032 		    "label_addr: 0x%x allocation size: 0x%x\n",
31033 		    real_addr, buffer_size);
31034 
31035 		if (((first_byte % un->un_tgt_blocksize) != 0) ||
31036 		    (reqlength % un->un_tgt_blocksize) != 0)
31037 			/* the request is not aligned */
31038 			dkl = kmem_zalloc(buffer_size, KM_SLEEP);
31039 	}
31040 
31041 	/*
31042 	 * The MMC standard allows READ CAPACITY to be
31043 	 * inaccurate by a bounded amount (in the interest of
31044 	 * response latency).  As a result, failed READs are
31045 	 * commonplace (due to the reading of metadata and not
31046 	 * data). Depending on the per-Vendor/drive Sense data,
31047 	 * the failed READ can cause many (unnecessary) retries.
31048 	 */
31049 
31050 	if (ISCD(un) && (cmd == TG_READ) &&
31051 	    (un->un_f_blockcount_is_valid == TRUE) &&
31052 	    ((start_block == (un->un_blockcount - 1))||
31053 	    (start_block == (un->un_blockcount - 2)))) {
31054 			path_flag = SD_PATH_DIRECT_PRIORITY;
31055 	}
31056 
31057 	mutex_exit(SD_MUTEX(un));
31058 	if (cmd == TG_READ) {
31059 		rval = sd_send_scsi_READ(ssc, (dkl != NULL)? dkl: bufaddr,
31060 		    buffer_size, real_addr, path_flag);
31061 		if (dkl != NULL)
31062 			bcopy(dkl + SD_TGTBYTEOFFSET(un, start_block,
31063 			    real_addr), bufaddr, reqlength);
31064 	} else {
31065 		if (dkl) {
31066 			rval = sd_send_scsi_READ(ssc, dkl, buffer_size,
31067 			    real_addr, path_flag);
31068 			if (rval) {
31069 				goto done1;
31070 			}
31071 			bcopy(bufaddr, dkl + SD_TGTBYTEOFFSET(un, start_block,
31072 			    real_addr), reqlength);
31073 		}
31074 		rval = sd_send_scsi_WRITE(ssc, (dkl != NULL)? dkl: bufaddr,
31075 		    buffer_size, real_addr, path_flag);
31076 	}
31077 
31078 done1:
31079 	if (dkl != NULL)
31080 		kmem_free(dkl, buffer_size);
31081 
31082 	if (rval != 0) {
31083 		if (rval == EIO)
31084 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
31085 		else
31086 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
31087 	}
31088 done:
31089 	sd_ssc_fini(ssc);
31090 	return (rval);
31091 }
31092 
31093 
31094 static int
31095 sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie)
31096 {
31097 
31098 	struct sd_lun *un;
31099 	diskaddr_t	cap;
31100 	uint32_t	lbasize;
31101 	int		path_flag = (int)(uintptr_t)tg_cookie;
31102 	int		ret = 0;
31103 
31104 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
31105 	if (un == NULL)
31106 		return (ENXIO);
31107 
31108 	switch (cmd) {
31109 	case TG_GETPHYGEOM:
31110 	case TG_GETVIRTGEOM:
31111 	case TG_GETCAPACITY:
31112 	case TG_GETBLOCKSIZE:
31113 		mutex_enter(SD_MUTEX(un));
31114 
31115 		if ((un->un_f_blockcount_is_valid == TRUE) &&
31116 		    (un->un_f_tgt_blocksize_is_valid == TRUE)) {
31117 			cap = un->un_blockcount;
31118 			lbasize = un->un_tgt_blocksize;
31119 			mutex_exit(SD_MUTEX(un));
31120 		} else {
31121 			sd_ssc_t	*ssc;
31122 			mutex_exit(SD_MUTEX(un));
31123 			ssc = sd_ssc_init(un);
31124 			ret = sd_send_scsi_READ_CAPACITY(ssc, (uint64_t *)&cap,
31125 			    &lbasize, path_flag);
31126 			if (ret != 0) {
31127 				if (ret == EIO)
31128 					sd_ssc_assessment(ssc,
31129 					    SD_FMT_STATUS_CHECK);
31130 				else
31131 					sd_ssc_assessment(ssc,
31132 					    SD_FMT_IGNORE);
31133 				sd_ssc_fini(ssc);
31134 				return (ret);
31135 			}
31136 			sd_ssc_fini(ssc);
31137 			mutex_enter(SD_MUTEX(un));
31138 			sd_update_block_info(un, lbasize, cap);
31139 			if ((un->un_f_blockcount_is_valid == FALSE) ||
31140 			    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
31141 				mutex_exit(SD_MUTEX(un));
31142 				return (EIO);
31143 			}
31144 			mutex_exit(SD_MUTEX(un));
31145 		}
31146 
31147 		if (cmd == TG_GETCAPACITY) {
31148 			*(diskaddr_t *)arg = cap;
31149 			return (0);
31150 		}
31151 
31152 		if (cmd == TG_GETBLOCKSIZE) {
31153 			*(uint32_t *)arg = lbasize;
31154 			return (0);
31155 		}
31156 
31157 		if (cmd == TG_GETPHYGEOM)
31158 			ret = sd_get_physical_geometry(un, (cmlb_geom_t *)arg,
31159 			    cap, lbasize, path_flag);
31160 		else
31161 			/* TG_GETVIRTGEOM */
31162 			ret = sd_get_virtual_geometry(un,
31163 			    (cmlb_geom_t *)arg, cap, lbasize);
31164 
31165 		return (ret);
31166 
31167 	case TG_GETATTR:
31168 		mutex_enter(SD_MUTEX(un));
31169 		((tg_attribute_t *)arg)->media_is_writable =
31170 		    un->un_f_mmc_writable_media;
31171 		((tg_attribute_t *)arg)->media_is_solid_state =
31172 		    un->un_f_is_solid_state;
31173 		mutex_exit(SD_MUTEX(un));
31174 		return (0);
31175 	default:
31176 		return (ENOTTY);
31177 
31178 	}
31179 }
31180 
31181 /*
31182  *    Function: sd_ssc_ereport_post
31183  *
31184  * Description: Will be called when SD driver need to post an ereport.
31185  *
31186  *    Context: Kernel thread or interrupt context.
31187  */
31188 
31189 #define	DEVID_IF_KNOWN(d) "devid", DATA_TYPE_STRING, (d) ? (d) : "unknown"
31190 
31191 static void
31192 sd_ssc_ereport_post(sd_ssc_t *ssc, enum sd_driver_assessment drv_assess)
31193 {
31194 	int uscsi_path_instance = 0;
31195 	uchar_t	uscsi_pkt_reason;
31196 	uint32_t uscsi_pkt_state;
31197 	uint32_t uscsi_pkt_statistics;
31198 	uint64_t uscsi_ena;
31199 	uchar_t op_code;
31200 	uint8_t *sensep;
31201 	union scsi_cdb *cdbp;
31202 	uint_t cdblen = 0;
31203 	uint_t senlen = 0;
31204 	struct sd_lun *un;
31205 	dev_info_t *dip;
31206 	char *devid;
31207 	int ssc_invalid_flags = SSC_FLAGS_INVALID_PKT_REASON |
31208 	    SSC_FLAGS_INVALID_STATUS |
31209 	    SSC_FLAGS_INVALID_SENSE |
31210 	    SSC_FLAGS_INVALID_DATA;
31211 	char assessment[16];
31212 
31213 	ASSERT(ssc != NULL);
31214 	ASSERT(ssc->ssc_uscsi_cmd != NULL);
31215 	ASSERT(ssc->ssc_uscsi_info != NULL);
31216 
31217 	un = ssc->ssc_un;
31218 	ASSERT(un != NULL);
31219 
31220 	dip = un->un_sd->sd_dev;
31221 
31222 	/*
31223 	 * Get the devid:
31224 	 *	devid will only be passed to non-transport error reports.
31225 	 */
31226 	devid = DEVI(dip)->devi_devid_str;
31227 
31228 	/*
31229 	 * If we are syncing or dumping, the command will not be executed
31230 	 * so we bypass this situation.
31231 	 */
31232 	if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) ||
31233 	    (un->un_state == SD_STATE_DUMPING))
31234 		return;
31235 
31236 	uscsi_pkt_reason = ssc->ssc_uscsi_info->ui_pkt_reason;
31237 	uscsi_path_instance = ssc->ssc_uscsi_cmd->uscsi_path_instance;
31238 	uscsi_pkt_state = ssc->ssc_uscsi_info->ui_pkt_state;
31239 	uscsi_pkt_statistics = ssc->ssc_uscsi_info->ui_pkt_statistics;
31240 	uscsi_ena = ssc->ssc_uscsi_info->ui_ena;
31241 
31242 	sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf;
31243 	cdbp = (union scsi_cdb *)ssc->ssc_uscsi_cmd->uscsi_cdb;
31244 
31245 	/* In rare cases, EG:DOORLOCK, the cdb could be NULL */
31246 	if (cdbp == NULL) {
31247 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
31248 		    "sd_ssc_ereport_post meet empty cdb\n");
31249 		return;
31250 	}
31251 
31252 	op_code = cdbp->scc_cmd;
31253 
31254 	cdblen = (int)ssc->ssc_uscsi_cmd->uscsi_cdblen;
31255 	senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen -
31256 	    ssc->ssc_uscsi_cmd->uscsi_rqresid);
31257 
31258 	if (senlen > 0)
31259 		ASSERT(sensep != NULL);
31260 
31261 	/*
31262 	 * Initialize drv_assess to corresponding values.
31263 	 * SD_FM_DRV_FATAL will be mapped to "fail" or "fatal" depending
31264 	 * on the sense-key returned back.
31265 	 */
31266 	switch (drv_assess) {
31267 		case SD_FM_DRV_RECOVERY:
31268 			(void) sprintf(assessment, "%s", "recovered");
31269 			break;
31270 		case SD_FM_DRV_RETRY:
31271 			(void) sprintf(assessment, "%s", "retry");
31272 			break;
31273 		case SD_FM_DRV_NOTICE:
31274 			(void) sprintf(assessment, "%s", "info");
31275 			break;
31276 		case SD_FM_DRV_FATAL:
31277 		default:
31278 			(void) sprintf(assessment, "%s", "unknown");
31279 	}
31280 	/*
31281 	 * If drv_assess == SD_FM_DRV_RECOVERY, this should be a recovered
31282 	 * command, we will post ereport.io.scsi.cmd.disk.recovered.
31283 	 * driver-assessment will always be "recovered" here.
31284 	 */
31285 	if (drv_assess == SD_FM_DRV_RECOVERY) {
31286 		scsi_fm_ereport_post(un->un_sd, uscsi_path_instance, NULL,
31287 		    "cmd.disk.recovered", uscsi_ena, devid, NULL,
31288 		    DDI_NOSLEEP, NULL,
31289 		    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
31290 		    DEVID_IF_KNOWN(devid),
31291 		    "driver-assessment", DATA_TYPE_STRING, assessment,
31292 		    "op-code", DATA_TYPE_UINT8, op_code,
31293 		    "cdb", DATA_TYPE_UINT8_ARRAY,
31294 		    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
31295 		    "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason,
31296 		    "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state,
31297 		    "pkt-stats", DATA_TYPE_UINT32, uscsi_pkt_statistics,
31298 		    NULL);
31299 		return;
31300 	}
31301 
31302 	/*
31303 	 * If there is un-expected/un-decodable data, we should post
31304 	 * ereport.io.scsi.cmd.disk.dev.uderr.
31305 	 * driver-assessment will be set based on parameter drv_assess.
31306 	 * SSC_FLAGS_INVALID_SENSE - invalid sense data sent back.
31307 	 * SSC_FLAGS_INVALID_PKT_REASON - invalid pkt-reason encountered.
31308 	 * SSC_FLAGS_INVALID_STATUS - invalid stat-code encountered.
31309 	 * SSC_FLAGS_INVALID_DATA - invalid data sent back.
31310 	 */
31311 	if (ssc->ssc_flags & ssc_invalid_flags) {
31312 		if (ssc->ssc_flags & SSC_FLAGS_INVALID_SENSE) {
31313 			scsi_fm_ereport_post(un->un_sd, uscsi_path_instance,
31314 			    NULL, "cmd.disk.dev.uderr", uscsi_ena, devid,
31315 			    NULL, DDI_NOSLEEP, NULL,
31316 			    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
31317 			    DEVID_IF_KNOWN(devid),
31318 			    "driver-assessment", DATA_TYPE_STRING,
31319 			    drv_assess == SD_FM_DRV_FATAL ?
31320 			    "fail" : assessment,
31321 			    "op-code", DATA_TYPE_UINT8, op_code,
31322 			    "cdb", DATA_TYPE_UINT8_ARRAY,
31323 			    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
31324 			    "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason,
31325 			    "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state,
31326 			    "pkt-stats", DATA_TYPE_UINT32,
31327 			    uscsi_pkt_statistics,
31328 			    "stat-code", DATA_TYPE_UINT8,
31329 			    ssc->ssc_uscsi_cmd->uscsi_status,
31330 			    "un-decode-info", DATA_TYPE_STRING,
31331 			    ssc->ssc_info,
31332 			    "un-decode-value", DATA_TYPE_UINT8_ARRAY,
31333 			    senlen, sensep,
31334 			    NULL);
31335 		} else {
31336 			/*
31337 			 * For other type of invalid data, the
31338 			 * un-decode-value field would be empty because the
31339 			 * un-decodable content could be seen from upper
31340 			 * level payload or inside un-decode-info.
31341 			 */
31342 			scsi_fm_ereport_post(un->un_sd, uscsi_path_instance,
31343 			    NULL,
31344 			    "cmd.disk.dev.uderr", uscsi_ena, devid,
31345 			    NULL, DDI_NOSLEEP, NULL,
31346 			    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
31347 			    DEVID_IF_KNOWN(devid),
31348 			    "driver-assessment", DATA_TYPE_STRING,
31349 			    drv_assess == SD_FM_DRV_FATAL ?
31350 			    "fail" : assessment,
31351 			    "op-code", DATA_TYPE_UINT8, op_code,
31352 			    "cdb", DATA_TYPE_UINT8_ARRAY,
31353 			    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
31354 			    "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason,
31355 			    "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state,
31356 			    "pkt-stats", DATA_TYPE_UINT32,
31357 			    uscsi_pkt_statistics,
31358 			    "stat-code", DATA_TYPE_UINT8,
31359 			    ssc->ssc_uscsi_cmd->uscsi_status,
31360 			    "un-decode-info", DATA_TYPE_STRING,
31361 			    ssc->ssc_info,
31362 			    "un-decode-value", DATA_TYPE_UINT8_ARRAY,
31363 			    0, NULL,
31364 			    NULL);
31365 		}
31366 		ssc->ssc_flags &= ~ssc_invalid_flags;
31367 		return;
31368 	}
31369 
31370 	if (uscsi_pkt_reason != CMD_CMPLT ||
31371 	    (ssc->ssc_flags & SSC_FLAGS_TRAN_ABORT)) {
31372 		/*
31373 		 * pkt-reason != CMD_CMPLT or SSC_FLAGS_TRAN_ABORT was
31374 		 * set inside sd_start_cmds due to errors(bad packet or
31375 		 * fatal transport error), we should take it as a
31376 		 * transport error, so we post ereport.io.scsi.cmd.disk.tran.
31377 		 * driver-assessment will be set based on drv_assess.
31378 		 * We will set devid to NULL because it is a transport
31379 		 * error.
31380 		 */
31381 		if (ssc->ssc_flags & SSC_FLAGS_TRAN_ABORT)
31382 			ssc->ssc_flags &= ~SSC_FLAGS_TRAN_ABORT;
31383 
31384 		scsi_fm_ereport_post(un->un_sd, uscsi_path_instance, NULL,
31385 		    "cmd.disk.tran", uscsi_ena, NULL, NULL, DDI_NOSLEEP, NULL,
31386 		    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
31387 		    DEVID_IF_KNOWN(devid),
31388 		    "driver-assessment", DATA_TYPE_STRING,
31389 		    drv_assess == SD_FM_DRV_FATAL ? "fail" : assessment,
31390 		    "op-code", DATA_TYPE_UINT8, op_code,
31391 		    "cdb", DATA_TYPE_UINT8_ARRAY,
31392 		    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
31393 		    "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason,
31394 		    "pkt-state", DATA_TYPE_UINT8, uscsi_pkt_state,
31395 		    "pkt-stats", DATA_TYPE_UINT32, uscsi_pkt_statistics,
31396 		    NULL);
31397 	} else {
31398 		/*
31399 		 * If we got here, we have a completed command, and we need
31400 		 * to further investigate the sense data to see what kind
31401 		 * of ereport we should post.
31402 		 * Post ereport.io.scsi.cmd.disk.dev.rqs.merr
31403 		 * if sense-key == 0x3.
31404 		 * Post ereport.io.scsi.cmd.disk.dev.rqs.derr otherwise.
31405 		 * driver-assessment will be set based on the parameter
31406 		 * drv_assess.
31407 		 */
31408 		if (senlen > 0) {
31409 			/*
31410 			 * Here we have sense data available.
31411 			 */
31412 			uint8_t sense_key;
31413 			sense_key = scsi_sense_key(sensep);
31414 			if (sense_key == 0x3) {
31415 				/*
31416 				 * sense-key == 0x3(medium error),
31417 				 * driver-assessment should be "fatal" if
31418 				 * drv_assess is SD_FM_DRV_FATAL.
31419 				 */
31420 				scsi_fm_ereport_post(un->un_sd,
31421 				    uscsi_path_instance, NULL,
31422 				    "cmd.disk.dev.rqs.merr",
31423 				    uscsi_ena, devid, NULL, DDI_NOSLEEP, NULL,
31424 				    FM_VERSION, DATA_TYPE_UINT8,
31425 				    FM_EREPORT_VERS0,
31426 				    DEVID_IF_KNOWN(devid),
31427 				    "driver-assessment",
31428 				    DATA_TYPE_STRING,
31429 				    drv_assess == SD_FM_DRV_FATAL ?
31430 				    "fatal" : assessment,
31431 				    "op-code",
31432 				    DATA_TYPE_UINT8, op_code,
31433 				    "cdb",
31434 				    DATA_TYPE_UINT8_ARRAY, cdblen,
31435 				    ssc->ssc_uscsi_cmd->uscsi_cdb,
31436 				    "pkt-reason",
31437 				    DATA_TYPE_UINT8, uscsi_pkt_reason,
31438 				    "pkt-state",
31439 				    DATA_TYPE_UINT8, uscsi_pkt_state,
31440 				    "pkt-stats",
31441 				    DATA_TYPE_UINT32,
31442 				    uscsi_pkt_statistics,
31443 				    "stat-code",
31444 				    DATA_TYPE_UINT8,
31445 				    ssc->ssc_uscsi_cmd->uscsi_status,
31446 				    "key",
31447 				    DATA_TYPE_UINT8,
31448 				    scsi_sense_key(sensep),
31449 				    "asc",
31450 				    DATA_TYPE_UINT8,
31451 				    scsi_sense_asc(sensep),
31452 				    "ascq",
31453 				    DATA_TYPE_UINT8,
31454 				    scsi_sense_ascq(sensep),
31455 				    "sense-data",
31456 				    DATA_TYPE_UINT8_ARRAY,
31457 				    senlen, sensep,
31458 				    "lba",
31459 				    DATA_TYPE_UINT64,
31460 				    ssc->ssc_uscsi_info->ui_lba,
31461 				    NULL);
31462 				} else {
31463 					/*
31464 					 * if sense-key == 0x4(hardware
31465 					 * error), driver-assessment should
31466 					 * be "fatal" if drv_assess is
31467 					 * SD_FM_DRV_FATAL.
31468 					 */
31469 					scsi_fm_ereport_post(un->un_sd,
31470 					    uscsi_path_instance, NULL,
31471 					    "cmd.disk.dev.rqs.derr",
31472 					    uscsi_ena, devid,
31473 					    NULL, DDI_NOSLEEP, NULL,
31474 					    FM_VERSION,
31475 					    DATA_TYPE_UINT8, FM_EREPORT_VERS0,
31476 					    DEVID_IF_KNOWN(devid),
31477 					    "driver-assessment",
31478 					    DATA_TYPE_STRING,
31479 					    drv_assess == SD_FM_DRV_FATAL ?
31480 					    (sense_key == 0x4 ?
31481 					    "fatal" : "fail") : assessment,
31482 					    "op-code",
31483 					    DATA_TYPE_UINT8, op_code,
31484 					    "cdb",
31485 					    DATA_TYPE_UINT8_ARRAY, cdblen,
31486 					    ssc->ssc_uscsi_cmd->uscsi_cdb,
31487 					    "pkt-reason",
31488 					    DATA_TYPE_UINT8, uscsi_pkt_reason,
31489 					    "pkt-state",
31490 					    DATA_TYPE_UINT8, uscsi_pkt_state,
31491 					    "pkt-stats",
31492 					    DATA_TYPE_UINT32,
31493 					    uscsi_pkt_statistics,
31494 					    "stat-code",
31495 					    DATA_TYPE_UINT8,
31496 					    ssc->ssc_uscsi_cmd->uscsi_status,
31497 					    "key",
31498 					    DATA_TYPE_UINT8,
31499 					    scsi_sense_key(sensep),
31500 					    "asc",
31501 					    DATA_TYPE_UINT8,
31502 					    scsi_sense_asc(sensep),
31503 					    "ascq",
31504 					    DATA_TYPE_UINT8,
31505 					    scsi_sense_ascq(sensep),
31506 					    "sense-data",
31507 					    DATA_TYPE_UINT8_ARRAY,
31508 					    senlen, sensep,
31509 					    NULL);
31510 				}
31511 		} else {
31512 			/*
31513 			 * For stat_code == STATUS_GOOD, this is not a
31514 			 * hardware error.
31515 			 */
31516 			if (ssc->ssc_uscsi_cmd->uscsi_status == STATUS_GOOD)
31517 				return;
31518 
31519 			/*
31520 			 * Post ereport.io.scsi.cmd.disk.dev.serr if we got the
31521 			 * stat-code but with sense data unavailable.
31522 			 * driver-assessment will be set based on parameter
31523 			 * drv_assess.
31524 			 */
31525 			scsi_fm_ereport_post(un->un_sd, uscsi_path_instance,
31526 			    NULL,
31527 			    "cmd.disk.dev.serr", uscsi_ena,
31528 			    devid, NULL, DDI_NOSLEEP, NULL,
31529 			    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
31530 			    DEVID_IF_KNOWN(devid),
31531 			    "driver-assessment", DATA_TYPE_STRING,
31532 			    drv_assess == SD_FM_DRV_FATAL ? "fail" : assessment,
31533 			    "op-code", DATA_TYPE_UINT8, op_code,
31534 			    "cdb",
31535 			    DATA_TYPE_UINT8_ARRAY,
31536 			    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
31537 			    "pkt-reason",
31538 			    DATA_TYPE_UINT8, uscsi_pkt_reason,
31539 			    "pkt-state",
31540 			    DATA_TYPE_UINT8, uscsi_pkt_state,
31541 			    "pkt-stats",
31542 			    DATA_TYPE_UINT32, uscsi_pkt_statistics,
31543 			    "stat-code",
31544 			    DATA_TYPE_UINT8,
31545 			    ssc->ssc_uscsi_cmd->uscsi_status,
31546 			    NULL);
31547 		}
31548 	}
31549 }
31550 
31551 /*
31552  *     Function: sd_ssc_extract_info
31553  *
31554  * Description: Extract information available to help generate ereport.
31555  *
31556  *     Context: Kernel thread or interrupt context.
31557  */
31558 static void
31559 sd_ssc_extract_info(sd_ssc_t *ssc, struct sd_lun *un, struct scsi_pkt *pktp,
31560     struct buf *bp, struct sd_xbuf *xp)
31561 {
31562 	size_t senlen = 0;
31563 	union scsi_cdb *cdbp;
31564 	int path_instance;
31565 	/*
31566 	 * Need scsi_cdb_size array to determine the cdb length.
31567 	 */
31568 	extern uchar_t	scsi_cdb_size[];
31569 
31570 	ASSERT(un != NULL);
31571 	ASSERT(pktp != NULL);
31572 	ASSERT(bp != NULL);
31573 	ASSERT(xp != NULL);
31574 	ASSERT(ssc != NULL);
31575 	ASSERT(mutex_owned(SD_MUTEX(un)));
31576 
31577 	/*
31578 	 * Transfer the cdb buffer pointer here.
31579 	 */
31580 	cdbp = (union scsi_cdb *)pktp->pkt_cdbp;
31581 
31582 	ssc->ssc_uscsi_cmd->uscsi_cdblen = scsi_cdb_size[GETGROUP(cdbp)];
31583 	ssc->ssc_uscsi_cmd->uscsi_cdb = (caddr_t)cdbp;
31584 
31585 	/*
31586 	 * Transfer the sense data buffer pointer if sense data is available,
31587 	 * calculate the sense data length first.
31588 	 */
31589 	if ((xp->xb_sense_state & STATE_XARQ_DONE) ||
31590 	    (xp->xb_sense_state & STATE_ARQ_DONE)) {
31591 		/*
31592 		 * For arq case, we will enter here.
31593 		 */
31594 		if (xp->xb_sense_state & STATE_XARQ_DONE) {
31595 			senlen = MAX_SENSE_LENGTH - xp->xb_sense_resid;
31596 		} else {
31597 			senlen = SENSE_LENGTH;
31598 		}
31599 	} else {
31600 		/*
31601 		 * For non-arq case, we will enter this branch.
31602 		 */
31603 		if (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK &&
31604 		    (xp->xb_sense_state & STATE_XFERRED_DATA)) {
31605 			senlen = SENSE_LENGTH - xp->xb_sense_resid;
31606 		}
31607 
31608 	}
31609 
31610 	ssc->ssc_uscsi_cmd->uscsi_rqlen = (senlen & 0xff);
31611 	ssc->ssc_uscsi_cmd->uscsi_rqresid = 0;
31612 	ssc->ssc_uscsi_cmd->uscsi_rqbuf = (caddr_t)xp->xb_sense_data;
31613 
31614 	ssc->ssc_uscsi_cmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK);
31615 
31616 	/*
31617 	 * Only transfer path_instance when scsi_pkt was properly allocated.
31618 	 */
31619 	path_instance = pktp->pkt_path_instance;
31620 	if (scsi_pkt_allocated_correctly(pktp) && path_instance)
31621 		ssc->ssc_uscsi_cmd->uscsi_path_instance = path_instance;
31622 	else
31623 		ssc->ssc_uscsi_cmd->uscsi_path_instance = 0;
31624 
31625 	/*
31626 	 * Copy in the other fields we may need when posting ereport.
31627 	 */
31628 	ssc->ssc_uscsi_info->ui_pkt_reason = pktp->pkt_reason;
31629 	ssc->ssc_uscsi_info->ui_pkt_state = pktp->pkt_state;
31630 	ssc->ssc_uscsi_info->ui_pkt_statistics = pktp->pkt_statistics;
31631 	ssc->ssc_uscsi_info->ui_lba = (uint64_t)SD_GET_BLKNO(bp);
31632 
31633 	/*
31634 	 * For partially read/write command, we will not create ena
31635 	 * in case of a successful command be reconized as recovered.
31636 	 */
31637 	if ((pktp->pkt_reason == CMD_CMPLT) &&
31638 	    (ssc->ssc_uscsi_cmd->uscsi_status == STATUS_GOOD) &&
31639 	    (senlen == 0)) {
31640 		return;
31641 	}
31642 
31643 	/*
31644 	 * To associate ereports of a single command execution flow, we
31645 	 * need a shared ena for a specific command.
31646 	 */
31647 	if (xp->xb_ena == 0)
31648 		xp->xb_ena = fm_ena_generate(0, FM_ENA_FMT1);
31649 	ssc->ssc_uscsi_info->ui_ena = xp->xb_ena;
31650 }
31651 
31652 
31653 /*
31654  *     Function: sd_check_solid_state
31655  *
31656  * Description: Query the optional INQUIRY VPD page 0xb1. If the device
31657  *              supports VPD page 0xb1, sd examines the MEDIUM ROTATION
31658  *              RATE. If the MEDIUM ROTATION RATE is 1, sd assumes the
31659  *              device is a solid state drive.
31660  *
31661  *     Context: Kernel thread or interrupt context.
31662  */
31663 
31664 static void
31665 sd_check_solid_state(sd_ssc_t *ssc)
31666 {
31667 	int		rval		= 0;
31668 	uchar_t		*inqb1		= NULL;
31669 	size_t		inqb1_len	= MAX_INQUIRY_SIZE;
31670 	size_t		inqb1_resid	= 0;
31671 	struct sd_lun	*un;
31672 
31673 	ASSERT(ssc != NULL);
31674 	un = ssc->ssc_un;
31675 	ASSERT(un != NULL);
31676 	ASSERT(!mutex_owned(SD_MUTEX(un)));
31677 
31678 	mutex_enter(SD_MUTEX(un));
31679 	un->un_f_is_solid_state = FALSE;
31680 
31681 	if (ISCD(un)) {
31682 		mutex_exit(SD_MUTEX(un));
31683 		return;
31684 	}
31685 
31686 	if (sd_check_vpd_page_support(ssc) == 0 &&
31687 	    un->un_vpd_page_mask & SD_VPD_DEV_CHARACTER_PG) {
31688 		mutex_exit(SD_MUTEX(un));
31689 		/* collect page b1 data */
31690 		inqb1 = kmem_zalloc(inqb1_len, KM_SLEEP);
31691 
31692 		rval = sd_send_scsi_INQUIRY(ssc, inqb1, inqb1_len,
31693 		    0x01, 0xB1, &inqb1_resid);
31694 
31695 		if (rval == 0 && (inqb1_len - inqb1_resid > 5)) {
31696 			SD_TRACE(SD_LOG_COMMON, un,
31697 			    "sd_check_solid_state: \
31698 			    successfully get VPD page: %x \
31699 			    PAGE LENGTH: %x BYTE 4: %x \
31700 			    BYTE 5: %x", inqb1[1], inqb1[3], inqb1[4],
31701 			    inqb1[5]);
31702 
31703 			mutex_enter(SD_MUTEX(un));
31704 			/*
31705 			 * Check the MEDIUM ROTATION RATE. If it is set
31706 			 * to 1, the device is a solid state drive.
31707 			 */
31708 			if (inqb1[4] == 0 && inqb1[5] == 1) {
31709 				un->un_f_is_solid_state = TRUE;
31710 				/* solid state drives don't need disksort */
31711 				un->un_f_disksort_disabled = TRUE;
31712 			}
31713 			mutex_exit(SD_MUTEX(un));
31714 		} else if (rval != 0) {
31715 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
31716 		}
31717 
31718 		kmem_free(inqb1, inqb1_len);
31719 	} else {
31720 		mutex_exit(SD_MUTEX(un));
31721 	}
31722 }
31723 
31724 /*
31725  *	Function: sd_check_emulation_mode
31726  *
31727  *   Description: Check whether the SSD is at emulation mode
31728  *		  by issuing READ_CAPACITY_16 to see whether
31729  *		  we can get physical block size of the drive.
31730  *
31731  *	 Context: Kernel thread or interrupt context.
31732  */
31733 
31734 static void
31735 sd_check_emulation_mode(sd_ssc_t *ssc)
31736 {
31737 	int		rval = 0;
31738 	uint64_t	capacity;
31739 	uint_t		lbasize;
31740 	uint_t		pbsize;
31741 	int		i;
31742 	int		devid_len;
31743 	struct sd_lun	*un;
31744 
31745 	ASSERT(ssc != NULL);
31746 	un = ssc->ssc_un;
31747 	ASSERT(un != NULL);
31748 	ASSERT(!mutex_owned(SD_MUTEX(un)));
31749 
31750 	mutex_enter(SD_MUTEX(un));
31751 	if (ISCD(un)) {
31752 		mutex_exit(SD_MUTEX(un));
31753 		return;
31754 	}
31755 
31756 	if (un->un_f_descr_format_supported) {
31757 		mutex_exit(SD_MUTEX(un));
31758 		rval = sd_send_scsi_READ_CAPACITY_16(ssc, &capacity, &lbasize,
31759 		    &pbsize, SD_PATH_DIRECT);
31760 		mutex_enter(SD_MUTEX(un));
31761 
31762 		if (rval != 0) {
31763 			un->un_phy_blocksize = DEV_BSIZE;
31764 		} else {
31765 			if (!ISP2(pbsize % DEV_BSIZE) || pbsize == 0) {
31766 				un->un_phy_blocksize = DEV_BSIZE;
31767 			} else if (pbsize > un->un_phy_blocksize) {
31768 				/*
31769 				 * Don't reset the physical blocksize
31770 				 * unless we've detected a larger value.
31771 				 */
31772 				un->un_phy_blocksize = pbsize;
31773 			}
31774 		}
31775 	}
31776 
31777 	for (i = 0; i < sd_flash_dev_table_size; i++) {
31778 		devid_len = (int)strlen(sd_flash_dev_table[i]);
31779 		if (sd_sdconf_id_match(un, sd_flash_dev_table[i], devid_len)
31780 		    == SD_SUCCESS) {
31781 			un->un_phy_blocksize = SSD_SECSIZE;
31782 			if (un->un_f_is_solid_state &&
31783 			    un->un_phy_blocksize != un->un_tgt_blocksize)
31784 				un->un_f_enable_rmw = TRUE;
31785 		}
31786 	}
31787 
31788 	mutex_exit(SD_MUTEX(un));
31789 }
31790