xref: /illumos-gate/usr/src/uts/common/io/scsi/targets/sd.c (revision 2350e483)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * SCSI disk target driver.
30  */
31 #include <sys/scsi/scsi.h>
32 #include <sys/dkbad.h>
33 #include <sys/dklabel.h>
34 #include <sys/dkio.h>
35 #include <sys/fdio.h>
36 #include <sys/cdio.h>
37 #include <sys/mhd.h>
38 #include <sys/vtoc.h>
39 #include <sys/dktp/fdisk.h>
40 #include <sys/kstat.h>
41 #include <sys/vtrace.h>
42 #include <sys/note.h>
43 #include <sys/thread.h>
44 #include <sys/proc.h>
45 #include <sys/efi_partition.h>
46 #include <sys/var.h>
47 #include <sys/aio_req.h>
48 
49 #ifdef __lock_lint
50 #define	_LP64
51 #define	__amd64
52 #endif
53 
54 #if (defined(__fibre))
55 /* Note: is there a leadville version of the following? */
56 #include <sys/fc4/fcal_linkapp.h>
57 #endif
58 #include <sys/taskq.h>
59 #include <sys/uuid.h>
60 #include <sys/byteorder.h>
61 #include <sys/sdt.h>
62 
63 #include "sd_xbuf.h"
64 
65 #include <sys/scsi/targets/sddef.h>
66 #include <sys/cmlb.h>
67 
68 
69 /*
70  * Loadable module info.
71  */
72 #if (defined(__fibre))
73 #define	SD_MODULE_NAME	"SCSI SSA/FCAL Disk Driver %I%"
74 char _depends_on[]	= "misc/scsi misc/cmlb drv/fcp";
75 #else
76 #define	SD_MODULE_NAME	"SCSI Disk Driver %I%"
77 char _depends_on[]	= "misc/scsi misc/cmlb";
78 #endif
79 
80 /*
81  * Define the interconnect type, to allow the driver to distinguish
82  * between parallel SCSI (sd) and fibre channel (ssd) behaviors.
83  *
84  * This is really for backward compatibility. In the future, the driver
85  * should actually check the "interconnect-type" property as reported by
86  * the HBA; however at present this property is not defined by all HBAs,
87  * so we will use this #define (1) to permit the driver to run in
88  * backward-compatibility mode; and (2) to print a notification message
89  * if an FC HBA does not support the "interconnect-type" property.  The
90  * behavior of the driver will be to assume parallel SCSI behaviors unless
91  * the "interconnect-type" property is defined by the HBA **AND** has a
92  * value of either INTERCONNECT_FIBRE, INTERCONNECT_SSA, or
93  * INTERCONNECT_FABRIC, in which case the driver will assume Fibre
94  * Channel behaviors (as per the old ssd).  (Note that the
95  * INTERCONNECT_1394 and INTERCONNECT_USB types are not supported and
96  * will result in the driver assuming parallel SCSI behaviors.)
97  *
98  * (see common/sys/scsi/impl/services.h)
99  *
100  * Note: For ssd semantics, don't use INTERCONNECT_FABRIC as the default
101  * since some FC HBAs may already support that, and there is some code in
102  * the driver that already looks for it.  Using INTERCONNECT_FABRIC as the
103  * default would confuse that code, and besides things should work fine
104  * anyways if the FC HBA already reports INTERCONNECT_FABRIC for the
105  * "interconnect_type" property.
106  *
107  */
108 #if (defined(__fibre))
109 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_FIBRE
110 #else
111 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_PARALLEL
112 #endif
113 
114 /*
115  * The name of the driver, established from the module name in _init.
116  */
117 static	char *sd_label			= NULL;
118 
119 /*
120  * Driver name is unfortunately prefixed on some driver.conf properties.
121  */
122 #if (defined(__fibre))
123 #define	sd_max_xfer_size		ssd_max_xfer_size
124 #define	sd_config_list			ssd_config_list
125 static	char *sd_max_xfer_size		= "ssd_max_xfer_size";
126 static	char *sd_config_list		= "ssd-config-list";
127 #else
128 static	char *sd_max_xfer_size		= "sd_max_xfer_size";
129 static	char *sd_config_list		= "sd-config-list";
130 #endif
131 
132 /*
133  * Driver global variables
134  */
135 
136 #if (defined(__fibre))
137 /*
138  * These #defines are to avoid namespace collisions that occur because this
139  * code is currently used to compile two separate driver modules: sd and ssd.
140  * All global variables need to be treated this way (even if declared static)
141  * in order to allow the debugger to resolve the names properly.
142  * It is anticipated that in the near future the ssd module will be obsoleted,
143  * at which time this namespace issue should go away.
144  */
145 #define	sd_state			ssd_state
146 #define	sd_io_time			ssd_io_time
147 #define	sd_failfast_enable		ssd_failfast_enable
148 #define	sd_ua_retry_count		ssd_ua_retry_count
149 #define	sd_report_pfa			ssd_report_pfa
150 #define	sd_max_throttle			ssd_max_throttle
151 #define	sd_min_throttle			ssd_min_throttle
152 #define	sd_rot_delay			ssd_rot_delay
153 
154 #define	sd_retry_on_reservation_conflict	\
155 					ssd_retry_on_reservation_conflict
156 #define	sd_reinstate_resv_delay		ssd_reinstate_resv_delay
157 #define	sd_resv_conflict_name		ssd_resv_conflict_name
158 
159 #define	sd_component_mask		ssd_component_mask
160 #define	sd_level_mask			ssd_level_mask
161 #define	sd_debug_un			ssd_debug_un
162 #define	sd_error_level			ssd_error_level
163 
164 #define	sd_xbuf_active_limit		ssd_xbuf_active_limit
165 #define	sd_xbuf_reserve_limit		ssd_xbuf_reserve_limit
166 
167 #define	sd_tr				ssd_tr
168 #define	sd_reset_throttle_timeout	ssd_reset_throttle_timeout
169 #define	sd_qfull_throttle_timeout	ssd_qfull_throttle_timeout
170 #define	sd_qfull_throttle_enable	ssd_qfull_throttle_enable
171 #define	sd_check_media_time		ssd_check_media_time
172 #define	sd_wait_cmds_complete		ssd_wait_cmds_complete
173 #define	sd_label_mutex			ssd_label_mutex
174 #define	sd_detach_mutex			ssd_detach_mutex
175 #define	sd_log_buf			ssd_log_buf
176 #define	sd_log_mutex			ssd_log_mutex
177 
178 #define	sd_disk_table			ssd_disk_table
179 #define	sd_disk_table_size		ssd_disk_table_size
180 #define	sd_sense_mutex			ssd_sense_mutex
181 #define	sd_cdbtab			ssd_cdbtab
182 
183 #define	sd_cb_ops			ssd_cb_ops
184 #define	sd_ops				ssd_ops
185 #define	sd_additional_codes		ssd_additional_codes
186 #define	sd_tgops			ssd_tgops
187 
188 #define	sd_minor_data			ssd_minor_data
189 #define	sd_minor_data_efi		ssd_minor_data_efi
190 
191 #define	sd_tq				ssd_tq
192 #define	sd_wmr_tq			ssd_wmr_tq
193 #define	sd_taskq_name			ssd_taskq_name
194 #define	sd_wmr_taskq_name		ssd_wmr_taskq_name
195 #define	sd_taskq_minalloc		ssd_taskq_minalloc
196 #define	sd_taskq_maxalloc		ssd_taskq_maxalloc
197 
198 #define	sd_dump_format_string		ssd_dump_format_string
199 
200 #define	sd_iostart_chain		ssd_iostart_chain
201 #define	sd_iodone_chain			ssd_iodone_chain
202 
203 #define	sd_pm_idletime			ssd_pm_idletime
204 
205 #define	sd_force_pm_supported		ssd_force_pm_supported
206 
207 #define	sd_dtype_optical_bind		ssd_dtype_optical_bind
208 
209 #endif
210 
211 
212 #ifdef	SDDEBUG
213 int	sd_force_pm_supported		= 0;
214 #endif	/* SDDEBUG */
215 
216 void *sd_state				= NULL;
217 int sd_io_time				= SD_IO_TIME;
218 int sd_failfast_enable			= 1;
219 int sd_ua_retry_count			= SD_UA_RETRY_COUNT;
220 int sd_report_pfa			= 1;
221 int sd_max_throttle			= SD_MAX_THROTTLE;
222 int sd_min_throttle			= SD_MIN_THROTTLE;
223 int sd_rot_delay			= 4; /* Default 4ms Rotation delay */
224 int sd_qfull_throttle_enable		= TRUE;
225 
226 int sd_retry_on_reservation_conflict	= 1;
227 int sd_reinstate_resv_delay		= SD_REINSTATE_RESV_DELAY;
228 _NOTE(SCHEME_PROTECTS_DATA("safe sharing", sd_reinstate_resv_delay))
229 
230 static int sd_dtype_optical_bind	= -1;
231 
232 /* Note: the following is not a bug, it really is "sd_" and not "ssd_" */
233 static	char *sd_resv_conflict_name	= "sd_retry_on_reservation_conflict";
234 
235 /*
236  * Global data for debug logging. To enable debug printing, sd_component_mask
237  * and sd_level_mask should be set to the desired bit patterns as outlined in
238  * sddef.h.
239  */
240 uint_t	sd_component_mask		= 0x0;
241 uint_t	sd_level_mask			= 0x0;
242 struct	sd_lun *sd_debug_un		= NULL;
243 uint_t	sd_error_level			= SCSI_ERR_RETRYABLE;
244 
245 /* Note: these may go away in the future... */
246 static uint32_t	sd_xbuf_active_limit	= 512;
247 static uint32_t sd_xbuf_reserve_limit	= 16;
248 
249 static struct sd_resv_reclaim_request	sd_tr = { NULL, NULL, NULL, 0, 0, 0 };
250 
251 /*
252  * Timer value used to reset the throttle after it has been reduced
253  * (typically in response to TRAN_BUSY or STATUS_QFULL)
254  */
255 static int sd_reset_throttle_timeout	= SD_RESET_THROTTLE_TIMEOUT;
256 static int sd_qfull_throttle_timeout	= SD_QFULL_THROTTLE_TIMEOUT;
257 
258 /*
259  * Interval value associated with the media change scsi watch.
260  */
261 static int sd_check_media_time		= 3000000;
262 
263 /*
264  * Wait value used for in progress operations during a DDI_SUSPEND
265  */
266 static int sd_wait_cmds_complete	= SD_WAIT_CMDS_COMPLETE;
267 
268 /*
269  * sd_label_mutex protects a static buffer used in the disk label
270  * component of the driver
271  */
272 static kmutex_t sd_label_mutex;
273 
274 /*
275  * sd_detach_mutex protects un_layer_count, un_detach_count, and
276  * un_opens_in_progress in the sd_lun structure.
277  */
278 static kmutex_t sd_detach_mutex;
279 
280 _NOTE(MUTEX_PROTECTS_DATA(sd_detach_mutex,
281 	sd_lun::{un_layer_count un_detach_count un_opens_in_progress}))
282 
283 /*
284  * Global buffer and mutex for debug logging
285  */
286 static char	sd_log_buf[1024];
287 static kmutex_t	sd_log_mutex;
288 
289 /*
290  * Structs and globals for recording attached lun information.
291  * This maintains a chain. Each node in the chain represents a SCSI controller.
292  * The structure records the number of luns attached to each target connected
293  * with the controller.
294  * For parallel scsi device only.
295  */
296 struct sd_scsi_hba_tgt_lun {
297 	struct sd_scsi_hba_tgt_lun	*next;
298 	dev_info_t			*pdip;
299 	int				nlun[NTARGETS_WIDE];
300 };
301 
302 /*
303  * Flag to indicate the lun is attached or detached
304  */
305 #define	SD_SCSI_LUN_ATTACH	0
306 #define	SD_SCSI_LUN_DETACH	1
307 
308 static kmutex_t	sd_scsi_target_lun_mutex;
309 static struct sd_scsi_hba_tgt_lun	*sd_scsi_target_lun_head = NULL;
310 
311 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
312     sd_scsi_hba_tgt_lun::next sd_scsi_hba_tgt_lun::pdip))
313 
314 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
315     sd_scsi_target_lun_head))
316 
317 /*
318  * "Smart" Probe Caching structs, globals, #defines, etc.
319  * For parallel scsi and non-self-identify device only.
320  */
321 
322 /*
323  * The following resources and routines are implemented to support
324  * "smart" probing, which caches the scsi_probe() results in an array,
325  * in order to help avoid long probe times.
326  */
327 struct sd_scsi_probe_cache {
328 	struct	sd_scsi_probe_cache	*next;
329 	dev_info_t	*pdip;
330 	int		cache[NTARGETS_WIDE];
331 };
332 
333 static kmutex_t	sd_scsi_probe_cache_mutex;
334 static struct	sd_scsi_probe_cache *sd_scsi_probe_cache_head = NULL;
335 
336 /*
337  * Really we only need protection on the head of the linked list, but
338  * better safe than sorry.
339  */
340 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
341     sd_scsi_probe_cache::next sd_scsi_probe_cache::pdip))
342 
343 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
344     sd_scsi_probe_cache_head))
345 
346 
347 /*
348  * Vendor specific data name property declarations
349  */
350 
351 #if defined(__fibre) || defined(__i386) ||defined(__amd64)
352 
353 static sd_tunables seagate_properties = {
354 	SEAGATE_THROTTLE_VALUE,
355 	0,
356 	0,
357 	0,
358 	0,
359 	0,
360 	0,
361 	0,
362 	0
363 };
364 
365 
366 static sd_tunables fujitsu_properties = {
367 	FUJITSU_THROTTLE_VALUE,
368 	0,
369 	0,
370 	0,
371 	0,
372 	0,
373 	0,
374 	0,
375 	0
376 };
377 
378 static sd_tunables ibm_properties = {
379 	IBM_THROTTLE_VALUE,
380 	0,
381 	0,
382 	0,
383 	0,
384 	0,
385 	0,
386 	0,
387 	0
388 };
389 
390 static sd_tunables purple_properties = {
391 	PURPLE_THROTTLE_VALUE,
392 	0,
393 	0,
394 	PURPLE_BUSY_RETRIES,
395 	PURPLE_RESET_RETRY_COUNT,
396 	PURPLE_RESERVE_RELEASE_TIME,
397 	0,
398 	0,
399 	0
400 };
401 
402 static sd_tunables sve_properties = {
403 	SVE_THROTTLE_VALUE,
404 	0,
405 	0,
406 	SVE_BUSY_RETRIES,
407 	SVE_RESET_RETRY_COUNT,
408 	SVE_RESERVE_RELEASE_TIME,
409 	SVE_MIN_THROTTLE_VALUE,
410 	SVE_DISKSORT_DISABLED_FLAG,
411 	0
412 };
413 
414 static sd_tunables maserati_properties = {
415 	0,
416 	0,
417 	0,
418 	0,
419 	0,
420 	0,
421 	0,
422 	MASERATI_DISKSORT_DISABLED_FLAG,
423 	MASERATI_LUN_RESET_ENABLED_FLAG
424 };
425 
426 static sd_tunables pirus_properties = {
427 	PIRUS_THROTTLE_VALUE,
428 	0,
429 	PIRUS_NRR_COUNT,
430 	PIRUS_BUSY_RETRIES,
431 	PIRUS_RESET_RETRY_COUNT,
432 	0,
433 	PIRUS_MIN_THROTTLE_VALUE,
434 	PIRUS_DISKSORT_DISABLED_FLAG,
435 	PIRUS_LUN_RESET_ENABLED_FLAG
436 };
437 
438 #endif
439 
440 #if (defined(__sparc) && !defined(__fibre)) || \
441 	(defined(__i386) || defined(__amd64))
442 
443 
444 static sd_tunables elite_properties = {
445 	ELITE_THROTTLE_VALUE,
446 	0,
447 	0,
448 	0,
449 	0,
450 	0,
451 	0,
452 	0,
453 	0
454 };
455 
456 static sd_tunables st31200n_properties = {
457 	ST31200N_THROTTLE_VALUE,
458 	0,
459 	0,
460 	0,
461 	0,
462 	0,
463 	0,
464 	0,
465 	0
466 };
467 
468 #endif /* Fibre or not */
469 
470 static sd_tunables lsi_properties_scsi = {
471 	LSI_THROTTLE_VALUE,
472 	0,
473 	LSI_NOTREADY_RETRIES,
474 	0,
475 	0,
476 	0,
477 	0,
478 	0,
479 	0
480 };
481 
482 static sd_tunables symbios_properties = {
483 	SYMBIOS_THROTTLE_VALUE,
484 	0,
485 	SYMBIOS_NOTREADY_RETRIES,
486 	0,
487 	0,
488 	0,
489 	0,
490 	0,
491 	0
492 };
493 
494 static sd_tunables lsi_properties = {
495 	0,
496 	0,
497 	LSI_NOTREADY_RETRIES,
498 	0,
499 	0,
500 	0,
501 	0,
502 	0,
503 	0
504 };
505 
506 static sd_tunables lsi_oem_properties = {
507 	0,
508 	0,
509 	LSI_OEM_NOTREADY_RETRIES,
510 	0,
511 	0,
512 	0,
513 	0,
514 	0,
515 	0,
516 	1
517 };
518 
519 
520 
521 #if (defined(SD_PROP_TST))
522 
523 #define	SD_TST_CTYPE_VAL	CTYPE_CDROM
524 #define	SD_TST_THROTTLE_VAL	16
525 #define	SD_TST_NOTREADY_VAL	12
526 #define	SD_TST_BUSY_VAL		60
527 #define	SD_TST_RST_RETRY_VAL	36
528 #define	SD_TST_RSV_REL_TIME	60
529 
530 static sd_tunables tst_properties = {
531 	SD_TST_THROTTLE_VAL,
532 	SD_TST_CTYPE_VAL,
533 	SD_TST_NOTREADY_VAL,
534 	SD_TST_BUSY_VAL,
535 	SD_TST_RST_RETRY_VAL,
536 	SD_TST_RSV_REL_TIME,
537 	0,
538 	0,
539 	0
540 };
541 #endif
542 
543 /* This is similar to the ANSI toupper implementation */
544 #define	SD_TOUPPER(C)	(((C) >= 'a' && (C) <= 'z') ? (C) - 'a' + 'A' : (C))
545 
546 /*
547  * Static Driver Configuration Table
548  *
549  * This is the table of disks which need throttle adjustment (or, perhaps
550  * something else as defined by the flags at a future time.)  device_id
551  * is a string consisting of concatenated vid (vendor), pid (product/model)
552  * and revision strings as defined in the scsi_inquiry structure.  Offsets of
553  * the parts of the string are as defined by the sizes in the scsi_inquiry
554  * structure.  Device type is searched as far as the device_id string is
555  * defined.  Flags defines which values are to be set in the driver from the
556  * properties list.
557  *
558  * Entries below which begin and end with a "*" are a special case.
559  * These do not have a specific vendor, and the string which follows
560  * can appear anywhere in the 16 byte PID portion of the inquiry data.
561  *
562  * Entries below which begin and end with a " " (blank) are a special
563  * case. The comparison function will treat multiple consecutive blanks
564  * as equivalent to a single blank. For example, this causes a
565  * sd_disk_table entry of " NEC CDROM " to match a device's id string
566  * of  "NEC       CDROM".
567  *
568  * Note: The MD21 controller type has been obsoleted.
569  *	 ST318202F is a Legacy device
570  *	 MAM3182FC, MAM3364FC, MAM3738FC do not appear to have ever been
571  *	 made with an FC connection. The entries here are a legacy.
572  */
573 static sd_disk_config_t sd_disk_table[] = {
574 #if defined(__fibre) || defined(__i386) || defined(__amd64)
575 	{ "SEAGATE ST34371FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
576 	{ "SEAGATE ST19171FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
577 	{ "SEAGATE ST39102FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
578 	{ "SEAGATE ST39103FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
579 	{ "SEAGATE ST118273F", SD_CONF_BSET_THROTTLE, &seagate_properties },
580 	{ "SEAGATE ST318202F", SD_CONF_BSET_THROTTLE, &seagate_properties },
581 	{ "SEAGATE ST318203F", SD_CONF_BSET_THROTTLE, &seagate_properties },
582 	{ "SEAGATE ST136403F", SD_CONF_BSET_THROTTLE, &seagate_properties },
583 	{ "SEAGATE ST318304F", SD_CONF_BSET_THROTTLE, &seagate_properties },
584 	{ "SEAGATE ST336704F", SD_CONF_BSET_THROTTLE, &seagate_properties },
585 	{ "SEAGATE ST373405F", SD_CONF_BSET_THROTTLE, &seagate_properties },
586 	{ "SEAGATE ST336605F", SD_CONF_BSET_THROTTLE, &seagate_properties },
587 	{ "SEAGATE ST336752F", SD_CONF_BSET_THROTTLE, &seagate_properties },
588 	{ "SEAGATE ST318452F", SD_CONF_BSET_THROTTLE, &seagate_properties },
589 	{ "FUJITSU MAG3091F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
590 	{ "FUJITSU MAG3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
591 	{ "FUJITSU MAA3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
592 	{ "FUJITSU MAF3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
593 	{ "FUJITSU MAL3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
594 	{ "FUJITSU MAL3738F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
595 	{ "FUJITSU MAM3182FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
596 	{ "FUJITSU MAM3364FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
597 	{ "FUJITSU MAM3738FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
598 	{ "IBM     DDYFT1835",  SD_CONF_BSET_THROTTLE, &ibm_properties },
599 	{ "IBM     DDYFT3695",  SD_CONF_BSET_THROTTLE, &ibm_properties },
600 	{ "IBM     IC35LF2D2",  SD_CONF_BSET_THROTTLE, &ibm_properties },
601 	{ "IBM     IC35LF2PR",  SD_CONF_BSET_THROTTLE, &ibm_properties },
602 	{ "IBM     1724-100",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
603 	{ "IBM     1726-2xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
604 	{ "IBM     1726-22x",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
605 	{ "IBM     1726-4xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
606 	{ "IBM     1726-42x",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
607 	{ "IBM     1726-3xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
608 	{ "IBM     3526",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
609 	{ "IBM     3542",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
610 	{ "IBM     3552",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
611 	{ "IBM     1722",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
612 	{ "IBM     1742",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
613 	{ "IBM     1815",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
614 	{ "IBM     FAStT",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
615 	{ "IBM     1814",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
616 	{ "IBM     1814-200",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
617 	{ "LSI     INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
618 	{ "ENGENIO INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
619 	{ "SGI     TP",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
620 	{ "SGI     IS",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
621 	{ "*CSM100_*",		SD_CONF_BSET_NRR_COUNT |
622 			SD_CONF_BSET_CACHE_IS_NV, &lsi_oem_properties },
623 	{ "*CSM200_*",		SD_CONF_BSET_NRR_COUNT |
624 			SD_CONF_BSET_CACHE_IS_NV, &lsi_oem_properties },
625 	{ "Fujitsu SX300",	SD_CONF_BSET_THROTTLE,  &lsi_oem_properties },
626 	{ "LSI",		SD_CONF_BSET_NRR_COUNT, &lsi_properties },
627 	{ "SUN     T3", SD_CONF_BSET_THROTTLE |
628 			SD_CONF_BSET_BSY_RETRY_COUNT|
629 			SD_CONF_BSET_RST_RETRIES|
630 			SD_CONF_BSET_RSV_REL_TIME,
631 		&purple_properties },
632 	{ "SUN     SESS01", SD_CONF_BSET_THROTTLE |
633 		SD_CONF_BSET_BSY_RETRY_COUNT|
634 		SD_CONF_BSET_RST_RETRIES|
635 		SD_CONF_BSET_RSV_REL_TIME|
636 		SD_CONF_BSET_MIN_THROTTLE|
637 		SD_CONF_BSET_DISKSORT_DISABLED,
638 		&sve_properties },
639 	{ "SUN     T4", SD_CONF_BSET_THROTTLE |
640 			SD_CONF_BSET_BSY_RETRY_COUNT|
641 			SD_CONF_BSET_RST_RETRIES|
642 			SD_CONF_BSET_RSV_REL_TIME,
643 		&purple_properties },
644 	{ "SUN     SVE01", SD_CONF_BSET_DISKSORT_DISABLED |
645 		SD_CONF_BSET_LUN_RESET_ENABLED,
646 		&maserati_properties },
647 	{ "SUN     SE6920", SD_CONF_BSET_THROTTLE |
648 		SD_CONF_BSET_NRR_COUNT|
649 		SD_CONF_BSET_BSY_RETRY_COUNT|
650 		SD_CONF_BSET_RST_RETRIES|
651 		SD_CONF_BSET_MIN_THROTTLE|
652 		SD_CONF_BSET_DISKSORT_DISABLED|
653 		SD_CONF_BSET_LUN_RESET_ENABLED,
654 		&pirus_properties },
655 	{ "SUN     SE6940", SD_CONF_BSET_THROTTLE |
656 		SD_CONF_BSET_NRR_COUNT|
657 		SD_CONF_BSET_BSY_RETRY_COUNT|
658 		SD_CONF_BSET_RST_RETRIES|
659 		SD_CONF_BSET_MIN_THROTTLE|
660 		SD_CONF_BSET_DISKSORT_DISABLED|
661 		SD_CONF_BSET_LUN_RESET_ENABLED,
662 		&pirus_properties },
663 	{ "SUN     StorageTek 6920", SD_CONF_BSET_THROTTLE |
664 		SD_CONF_BSET_NRR_COUNT|
665 		SD_CONF_BSET_BSY_RETRY_COUNT|
666 		SD_CONF_BSET_RST_RETRIES|
667 		SD_CONF_BSET_MIN_THROTTLE|
668 		SD_CONF_BSET_DISKSORT_DISABLED|
669 		SD_CONF_BSET_LUN_RESET_ENABLED,
670 		&pirus_properties },
671 	{ "SUN     StorageTek 6940", SD_CONF_BSET_THROTTLE |
672 		SD_CONF_BSET_NRR_COUNT|
673 		SD_CONF_BSET_BSY_RETRY_COUNT|
674 		SD_CONF_BSET_RST_RETRIES|
675 		SD_CONF_BSET_MIN_THROTTLE|
676 		SD_CONF_BSET_DISKSORT_DISABLED|
677 		SD_CONF_BSET_LUN_RESET_ENABLED,
678 		&pirus_properties },
679 	{ "SUN     PSX1000", SD_CONF_BSET_THROTTLE |
680 		SD_CONF_BSET_NRR_COUNT|
681 		SD_CONF_BSET_BSY_RETRY_COUNT|
682 		SD_CONF_BSET_RST_RETRIES|
683 		SD_CONF_BSET_MIN_THROTTLE|
684 		SD_CONF_BSET_DISKSORT_DISABLED|
685 		SD_CONF_BSET_LUN_RESET_ENABLED,
686 		&pirus_properties },
687 	{ "SUN     SE6330", SD_CONF_BSET_THROTTLE |
688 		SD_CONF_BSET_NRR_COUNT|
689 		SD_CONF_BSET_BSY_RETRY_COUNT|
690 		SD_CONF_BSET_RST_RETRIES|
691 		SD_CONF_BSET_MIN_THROTTLE|
692 		SD_CONF_BSET_DISKSORT_DISABLED|
693 		SD_CONF_BSET_LUN_RESET_ENABLED,
694 		&pirus_properties },
695 	{ "STK     OPENstorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
696 	{ "STK     OpenStorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
697 	{ "STK     BladeCtlr",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
698 	{ "STK     FLEXLINE",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
699 	{ "SYMBIOS", SD_CONF_BSET_NRR_COUNT, &symbios_properties },
700 #endif /* fibre or NON-sparc platforms */
701 #if ((defined(__sparc) && !defined(__fibre)) ||\
702 	(defined(__i386) || defined(__amd64)))
703 	{ "SEAGATE ST42400N", SD_CONF_BSET_THROTTLE, &elite_properties },
704 	{ "SEAGATE ST31200N", SD_CONF_BSET_THROTTLE, &st31200n_properties },
705 	{ "SEAGATE ST41600N", SD_CONF_BSET_TUR_CHECK, NULL },
706 	{ "CONNER  CP30540",  SD_CONF_BSET_NOCACHE,  NULL },
707 	{ "*SUN0104*", SD_CONF_BSET_FAB_DEVID, NULL },
708 	{ "*SUN0207*", SD_CONF_BSET_FAB_DEVID, NULL },
709 	{ "*SUN0327*", SD_CONF_BSET_FAB_DEVID, NULL },
710 	{ "*SUN0340*", SD_CONF_BSET_FAB_DEVID, NULL },
711 	{ "*SUN0424*", SD_CONF_BSET_FAB_DEVID, NULL },
712 	{ "*SUN0669*", SD_CONF_BSET_FAB_DEVID, NULL },
713 	{ "*SUN1.0G*", SD_CONF_BSET_FAB_DEVID, NULL },
714 	{ "SYMBIOS INF-01-00       ", SD_CONF_BSET_FAB_DEVID, NULL },
715 	{ "SYMBIOS", SD_CONF_BSET_THROTTLE|SD_CONF_BSET_NRR_COUNT,
716 	    &symbios_properties },
717 	{ "LSI", SD_CONF_BSET_THROTTLE | SD_CONF_BSET_NRR_COUNT,
718 	    &lsi_properties_scsi },
719 #if defined(__i386) || defined(__amd64)
720 	{ " NEC CD-ROM DRIVE:260 ", (SD_CONF_BSET_PLAYMSF_BCD
721 				    | SD_CONF_BSET_READSUB_BCD
722 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
723 				    | SD_CONF_BSET_NO_READ_HEADER
724 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
725 
726 	{ " NEC CD-ROM DRIVE:270 ", (SD_CONF_BSET_PLAYMSF_BCD
727 				    | SD_CONF_BSET_READSUB_BCD
728 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
729 				    | SD_CONF_BSET_NO_READ_HEADER
730 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
731 #endif /* __i386 || __amd64 */
732 #endif /* sparc NON-fibre or NON-sparc platforms */
733 
734 #if (defined(SD_PROP_TST))
735 	{ "VENDOR  PRODUCT ", (SD_CONF_BSET_THROTTLE
736 				| SD_CONF_BSET_CTYPE
737 				| SD_CONF_BSET_NRR_COUNT
738 				| SD_CONF_BSET_FAB_DEVID
739 				| SD_CONF_BSET_NOCACHE
740 				| SD_CONF_BSET_BSY_RETRY_COUNT
741 				| SD_CONF_BSET_PLAYMSF_BCD
742 				| SD_CONF_BSET_READSUB_BCD
743 				| SD_CONF_BSET_READ_TOC_TRK_BCD
744 				| SD_CONF_BSET_READ_TOC_ADDR_BCD
745 				| SD_CONF_BSET_NO_READ_HEADER
746 				| SD_CONF_BSET_READ_CD_XD4
747 				| SD_CONF_BSET_RST_RETRIES
748 				| SD_CONF_BSET_RSV_REL_TIME
749 				| SD_CONF_BSET_TUR_CHECK), &tst_properties},
750 #endif
751 };
752 
753 static const int sd_disk_table_size =
754 	sizeof (sd_disk_table)/ sizeof (sd_disk_config_t);
755 
756 
757 
758 #define	SD_INTERCONNECT_PARALLEL	0
759 #define	SD_INTERCONNECT_FABRIC		1
760 #define	SD_INTERCONNECT_FIBRE		2
761 #define	SD_INTERCONNECT_SSA		3
762 #define	SD_INTERCONNECT_SATA		4
763 #define	SD_IS_PARALLEL_SCSI(un)		\
764 	((un)->un_interconnect_type == SD_INTERCONNECT_PARALLEL)
765 #define	SD_IS_SERIAL(un)		\
766 	((un)->un_interconnect_type == SD_INTERCONNECT_SATA)
767 
768 /*
769  * Definitions used by device id registration routines
770  */
771 #define	VPD_HEAD_OFFSET		3	/* size of head for vpd page */
772 #define	VPD_PAGE_LENGTH		3	/* offset for pge length data */
773 #define	VPD_MODE_PAGE		1	/* offset into vpd pg for "page code" */
774 
775 static kmutex_t sd_sense_mutex = {0};
776 
777 /*
778  * Macros for updates of the driver state
779  */
780 #define	New_state(un, s)        \
781 	(un)->un_last_state = (un)->un_state, (un)->un_state = (s)
782 #define	Restore_state(un)	\
783 	{ uchar_t tmp = (un)->un_last_state; New_state((un), tmp); }
784 
785 static struct sd_cdbinfo sd_cdbtab[] = {
786 	{ CDB_GROUP0, 0x00,	   0x1FFFFF,   0xFF,	    },
787 	{ CDB_GROUP1, SCMD_GROUP1, 0xFFFFFFFF, 0xFFFF,	    },
788 	{ CDB_GROUP5, SCMD_GROUP5, 0xFFFFFFFF, 0xFFFFFFFF,  },
789 	{ CDB_GROUP4, SCMD_GROUP4, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFF, },
790 };
791 
792 /*
793  * Specifies the number of seconds that must have elapsed since the last
794  * cmd. has completed for a device to be declared idle to the PM framework.
795  */
796 static int sd_pm_idletime = 1;
797 
798 /*
799  * Internal function prototypes
800  */
801 
802 #if (defined(__fibre))
803 /*
804  * These #defines are to avoid namespace collisions that occur because this
805  * code is currently used to compile two separate driver modules: sd and ssd.
806  * All function names need to be treated this way (even if declared static)
807  * in order to allow the debugger to resolve the names properly.
808  * It is anticipated that in the near future the ssd module will be obsoleted,
809  * at which time this ugliness should go away.
810  */
811 #define	sd_log_trace			ssd_log_trace
812 #define	sd_log_info			ssd_log_info
813 #define	sd_log_err			ssd_log_err
814 #define	sdprobe				ssdprobe
815 #define	sdinfo				ssdinfo
816 #define	sd_prop_op			ssd_prop_op
817 #define	sd_scsi_probe_cache_init	ssd_scsi_probe_cache_init
818 #define	sd_scsi_probe_cache_fini	ssd_scsi_probe_cache_fini
819 #define	sd_scsi_clear_probe_cache	ssd_scsi_clear_probe_cache
820 #define	sd_scsi_probe_with_cache	ssd_scsi_probe_with_cache
821 #define	sd_scsi_target_lun_init		ssd_scsi_target_lun_init
822 #define	sd_scsi_target_lun_fini		ssd_scsi_target_lun_fini
823 #define	sd_scsi_get_target_lun_count	ssd_scsi_get_target_lun_count
824 #define	sd_scsi_update_lun_on_target	ssd_scsi_update_lun_on_target
825 #define	sd_spin_up_unit			ssd_spin_up_unit
826 #define	sd_enable_descr_sense		ssd_enable_descr_sense
827 #define	sd_reenable_dsense_task		ssd_reenable_dsense_task
828 #define	sd_set_mmc_caps			ssd_set_mmc_caps
829 #define	sd_read_unit_properties		ssd_read_unit_properties
830 #define	sd_process_sdconf_file		ssd_process_sdconf_file
831 #define	sd_process_sdconf_table		ssd_process_sdconf_table
832 #define	sd_sdconf_id_match		ssd_sdconf_id_match
833 #define	sd_blank_cmp			ssd_blank_cmp
834 #define	sd_chk_vers1_data		ssd_chk_vers1_data
835 #define	sd_set_vers1_properties		ssd_set_vers1_properties
836 
837 #define	sd_get_physical_geometry	ssd_get_physical_geometry
838 #define	sd_get_virtual_geometry		ssd_get_virtual_geometry
839 #define	sd_update_block_info		ssd_update_block_info
840 #define	sd_register_devid		ssd_register_devid
841 #define	sd_get_devid			ssd_get_devid
842 #define	sd_create_devid			ssd_create_devid
843 #define	sd_write_deviceid		ssd_write_deviceid
844 #define	sd_check_vpd_page_support	ssd_check_vpd_page_support
845 #define	sd_setup_pm			ssd_setup_pm
846 #define	sd_create_pm_components		ssd_create_pm_components
847 #define	sd_ddi_suspend			ssd_ddi_suspend
848 #define	sd_ddi_pm_suspend		ssd_ddi_pm_suspend
849 #define	sd_ddi_resume			ssd_ddi_resume
850 #define	sd_ddi_pm_resume		ssd_ddi_pm_resume
851 #define	sdpower				ssdpower
852 #define	sdattach			ssdattach
853 #define	sddetach			ssddetach
854 #define	sd_unit_attach			ssd_unit_attach
855 #define	sd_unit_detach			ssd_unit_detach
856 #define	sd_set_unit_attributes		ssd_set_unit_attributes
857 #define	sd_create_errstats		ssd_create_errstats
858 #define	sd_set_errstats			ssd_set_errstats
859 #define	sd_set_pstats			ssd_set_pstats
860 #define	sddump				ssddump
861 #define	sd_scsi_poll			ssd_scsi_poll
862 #define	sd_send_polled_RQS		ssd_send_polled_RQS
863 #define	sd_ddi_scsi_poll		ssd_ddi_scsi_poll
864 #define	sd_init_event_callbacks		ssd_init_event_callbacks
865 #define	sd_event_callback		ssd_event_callback
866 #define	sd_cache_control		ssd_cache_control
867 #define	sd_get_write_cache_enabled	ssd_get_write_cache_enabled
868 #define	sd_get_nv_sup			ssd_get_nv_sup
869 #define	sd_make_device			ssd_make_device
870 #define	sdopen				ssdopen
871 #define	sdclose				ssdclose
872 #define	sd_ready_and_valid		ssd_ready_and_valid
873 #define	sdmin				ssdmin
874 #define	sdread				ssdread
875 #define	sdwrite				ssdwrite
876 #define	sdaread				ssdaread
877 #define	sdawrite			ssdawrite
878 #define	sdstrategy			ssdstrategy
879 #define	sdioctl				ssdioctl
880 #define	sd_mapblockaddr_iostart		ssd_mapblockaddr_iostart
881 #define	sd_mapblocksize_iostart		ssd_mapblocksize_iostart
882 #define	sd_checksum_iostart		ssd_checksum_iostart
883 #define	sd_checksum_uscsi_iostart	ssd_checksum_uscsi_iostart
884 #define	sd_pm_iostart			ssd_pm_iostart
885 #define	sd_core_iostart			ssd_core_iostart
886 #define	sd_mapblockaddr_iodone		ssd_mapblockaddr_iodone
887 #define	sd_mapblocksize_iodone		ssd_mapblocksize_iodone
888 #define	sd_checksum_iodone		ssd_checksum_iodone
889 #define	sd_checksum_uscsi_iodone	ssd_checksum_uscsi_iodone
890 #define	sd_pm_iodone			ssd_pm_iodone
891 #define	sd_initpkt_for_buf		ssd_initpkt_for_buf
892 #define	sd_destroypkt_for_buf		ssd_destroypkt_for_buf
893 #define	sd_setup_rw_pkt			ssd_setup_rw_pkt
894 #define	sd_setup_next_rw_pkt		ssd_setup_next_rw_pkt
895 #define	sd_buf_iodone			ssd_buf_iodone
896 #define	sd_uscsi_strategy		ssd_uscsi_strategy
897 #define	sd_initpkt_for_uscsi		ssd_initpkt_for_uscsi
898 #define	sd_destroypkt_for_uscsi		ssd_destroypkt_for_uscsi
899 #define	sd_uscsi_iodone			ssd_uscsi_iodone
900 #define	sd_xbuf_strategy		ssd_xbuf_strategy
901 #define	sd_xbuf_init			ssd_xbuf_init
902 #define	sd_pm_entry			ssd_pm_entry
903 #define	sd_pm_exit			ssd_pm_exit
904 
905 #define	sd_pm_idletimeout_handler	ssd_pm_idletimeout_handler
906 #define	sd_pm_timeout_handler		ssd_pm_timeout_handler
907 
908 #define	sd_add_buf_to_waitq		ssd_add_buf_to_waitq
909 #define	sdintr				ssdintr
910 #define	sd_start_cmds			ssd_start_cmds
911 #define	sd_send_scsi_cmd		ssd_send_scsi_cmd
912 #define	sd_bioclone_alloc		ssd_bioclone_alloc
913 #define	sd_bioclone_free		ssd_bioclone_free
914 #define	sd_shadow_buf_alloc		ssd_shadow_buf_alloc
915 #define	sd_shadow_buf_free		ssd_shadow_buf_free
916 #define	sd_print_transport_rejected_message	\
917 					ssd_print_transport_rejected_message
918 #define	sd_retry_command		ssd_retry_command
919 #define	sd_set_retry_bp			ssd_set_retry_bp
920 #define	sd_send_request_sense_command	ssd_send_request_sense_command
921 #define	sd_start_retry_command		ssd_start_retry_command
922 #define	sd_start_direct_priority_command	\
923 					ssd_start_direct_priority_command
924 #define	sd_return_failed_command	ssd_return_failed_command
925 #define	sd_return_failed_command_no_restart	\
926 					ssd_return_failed_command_no_restart
927 #define	sd_return_command		ssd_return_command
928 #define	sd_sync_with_callback		ssd_sync_with_callback
929 #define	sdrunout			ssdrunout
930 #define	sd_mark_rqs_busy		ssd_mark_rqs_busy
931 #define	sd_mark_rqs_idle		ssd_mark_rqs_idle
932 #define	sd_reduce_throttle		ssd_reduce_throttle
933 #define	sd_restore_throttle		ssd_restore_throttle
934 #define	sd_print_incomplete_msg		ssd_print_incomplete_msg
935 #define	sd_init_cdb_limits		ssd_init_cdb_limits
936 #define	sd_pkt_status_good		ssd_pkt_status_good
937 #define	sd_pkt_status_check_condition	ssd_pkt_status_check_condition
938 #define	sd_pkt_status_busy		ssd_pkt_status_busy
939 #define	sd_pkt_status_reservation_conflict	\
940 					ssd_pkt_status_reservation_conflict
941 #define	sd_pkt_status_qfull		ssd_pkt_status_qfull
942 #define	sd_handle_request_sense		ssd_handle_request_sense
943 #define	sd_handle_auto_request_sense	ssd_handle_auto_request_sense
944 #define	sd_print_sense_failed_msg	ssd_print_sense_failed_msg
945 #define	sd_validate_sense_data		ssd_validate_sense_data
946 #define	sd_decode_sense			ssd_decode_sense
947 #define	sd_print_sense_msg		ssd_print_sense_msg
948 #define	sd_sense_key_no_sense		ssd_sense_key_no_sense
949 #define	sd_sense_key_recoverable_error	ssd_sense_key_recoverable_error
950 #define	sd_sense_key_not_ready		ssd_sense_key_not_ready
951 #define	sd_sense_key_medium_or_hardware_error	\
952 					ssd_sense_key_medium_or_hardware_error
953 #define	sd_sense_key_illegal_request	ssd_sense_key_illegal_request
954 #define	sd_sense_key_unit_attention	ssd_sense_key_unit_attention
955 #define	sd_sense_key_fail_command	ssd_sense_key_fail_command
956 #define	sd_sense_key_blank_check	ssd_sense_key_blank_check
957 #define	sd_sense_key_aborted_command	ssd_sense_key_aborted_command
958 #define	sd_sense_key_default		ssd_sense_key_default
959 #define	sd_print_retry_msg		ssd_print_retry_msg
960 #define	sd_print_cmd_incomplete_msg	ssd_print_cmd_incomplete_msg
961 #define	sd_pkt_reason_cmd_incomplete	ssd_pkt_reason_cmd_incomplete
962 #define	sd_pkt_reason_cmd_tran_err	ssd_pkt_reason_cmd_tran_err
963 #define	sd_pkt_reason_cmd_reset		ssd_pkt_reason_cmd_reset
964 #define	sd_pkt_reason_cmd_aborted	ssd_pkt_reason_cmd_aborted
965 #define	sd_pkt_reason_cmd_timeout	ssd_pkt_reason_cmd_timeout
966 #define	sd_pkt_reason_cmd_unx_bus_free	ssd_pkt_reason_cmd_unx_bus_free
967 #define	sd_pkt_reason_cmd_tag_reject	ssd_pkt_reason_cmd_tag_reject
968 #define	sd_pkt_reason_default		ssd_pkt_reason_default
969 #define	sd_reset_target			ssd_reset_target
970 #define	sd_start_stop_unit_callback	ssd_start_stop_unit_callback
971 #define	sd_start_stop_unit_task		ssd_start_stop_unit_task
972 #define	sd_taskq_create			ssd_taskq_create
973 #define	sd_taskq_delete			ssd_taskq_delete
974 #define	sd_media_change_task		ssd_media_change_task
975 #define	sd_handle_mchange		ssd_handle_mchange
976 #define	sd_send_scsi_DOORLOCK		ssd_send_scsi_DOORLOCK
977 #define	sd_send_scsi_READ_CAPACITY	ssd_send_scsi_READ_CAPACITY
978 #define	sd_send_scsi_READ_CAPACITY_16	ssd_send_scsi_READ_CAPACITY_16
979 #define	sd_send_scsi_GET_CONFIGURATION	ssd_send_scsi_GET_CONFIGURATION
980 #define	sd_send_scsi_feature_GET_CONFIGURATION	\
981 					sd_send_scsi_feature_GET_CONFIGURATION
982 #define	sd_send_scsi_START_STOP_UNIT	ssd_send_scsi_START_STOP_UNIT
983 #define	sd_send_scsi_INQUIRY		ssd_send_scsi_INQUIRY
984 #define	sd_send_scsi_TEST_UNIT_READY	ssd_send_scsi_TEST_UNIT_READY
985 #define	sd_send_scsi_PERSISTENT_RESERVE_IN	\
986 					ssd_send_scsi_PERSISTENT_RESERVE_IN
987 #define	sd_send_scsi_PERSISTENT_RESERVE_OUT	\
988 					ssd_send_scsi_PERSISTENT_RESERVE_OUT
989 #define	sd_send_scsi_SYNCHRONIZE_CACHE	ssd_send_scsi_SYNCHRONIZE_CACHE
990 #define	sd_send_scsi_SYNCHRONIZE_CACHE_biodone	\
991 					ssd_send_scsi_SYNCHRONIZE_CACHE_biodone
992 #define	sd_send_scsi_MODE_SENSE		ssd_send_scsi_MODE_SENSE
993 #define	sd_send_scsi_MODE_SELECT	ssd_send_scsi_MODE_SELECT
994 #define	sd_send_scsi_RDWR		ssd_send_scsi_RDWR
995 #define	sd_send_scsi_LOG_SENSE		ssd_send_scsi_LOG_SENSE
996 #define	sd_alloc_rqs			ssd_alloc_rqs
997 #define	sd_free_rqs			ssd_free_rqs
998 #define	sd_dump_memory			ssd_dump_memory
999 #define	sd_get_media_info		ssd_get_media_info
1000 #define	sd_dkio_ctrl_info		ssd_dkio_ctrl_info
1001 #define	sd_get_tunables_from_conf	ssd_get_tunables_from_conf
1002 #define	sd_setup_next_xfer		ssd_setup_next_xfer
1003 #define	sd_dkio_get_temp		ssd_dkio_get_temp
1004 #define	sd_check_mhd			ssd_check_mhd
1005 #define	sd_mhd_watch_cb			ssd_mhd_watch_cb
1006 #define	sd_mhd_watch_incomplete		ssd_mhd_watch_incomplete
1007 #define	sd_sname			ssd_sname
1008 #define	sd_mhd_resvd_recover		ssd_mhd_resvd_recover
1009 #define	sd_resv_reclaim_thread		ssd_resv_reclaim_thread
1010 #define	sd_take_ownership		ssd_take_ownership
1011 #define	sd_reserve_release		ssd_reserve_release
1012 #define	sd_rmv_resv_reclaim_req		ssd_rmv_resv_reclaim_req
1013 #define	sd_mhd_reset_notify_cb		ssd_mhd_reset_notify_cb
1014 #define	sd_persistent_reservation_in_read_keys	\
1015 					ssd_persistent_reservation_in_read_keys
1016 #define	sd_persistent_reservation_in_read_resv	\
1017 					ssd_persistent_reservation_in_read_resv
1018 #define	sd_mhdioc_takeown		ssd_mhdioc_takeown
1019 #define	sd_mhdioc_failfast		ssd_mhdioc_failfast
1020 #define	sd_mhdioc_release		ssd_mhdioc_release
1021 #define	sd_mhdioc_register_devid	ssd_mhdioc_register_devid
1022 #define	sd_mhdioc_inkeys		ssd_mhdioc_inkeys
1023 #define	sd_mhdioc_inresv		ssd_mhdioc_inresv
1024 #define	sr_change_blkmode		ssr_change_blkmode
1025 #define	sr_change_speed			ssr_change_speed
1026 #define	sr_atapi_change_speed		ssr_atapi_change_speed
1027 #define	sr_pause_resume			ssr_pause_resume
1028 #define	sr_play_msf			ssr_play_msf
1029 #define	sr_play_trkind			ssr_play_trkind
1030 #define	sr_read_all_subcodes		ssr_read_all_subcodes
1031 #define	sr_read_subchannel		ssr_read_subchannel
1032 #define	sr_read_tocentry		ssr_read_tocentry
1033 #define	sr_read_tochdr			ssr_read_tochdr
1034 #define	sr_read_cdda			ssr_read_cdda
1035 #define	sr_read_cdxa			ssr_read_cdxa
1036 #define	sr_read_mode1			ssr_read_mode1
1037 #define	sr_read_mode2			ssr_read_mode2
1038 #define	sr_read_cd_mode2		ssr_read_cd_mode2
1039 #define	sr_sector_mode			ssr_sector_mode
1040 #define	sr_eject			ssr_eject
1041 #define	sr_ejected			ssr_ejected
1042 #define	sr_check_wp			ssr_check_wp
1043 #define	sd_check_media			ssd_check_media
1044 #define	sd_media_watch_cb		ssd_media_watch_cb
1045 #define	sd_delayed_cv_broadcast		ssd_delayed_cv_broadcast
1046 #define	sr_volume_ctrl			ssr_volume_ctrl
1047 #define	sr_read_sony_session_offset	ssr_read_sony_session_offset
1048 #define	sd_log_page_supported		ssd_log_page_supported
1049 #define	sd_check_for_writable_cd	ssd_check_for_writable_cd
1050 #define	sd_wm_cache_constructor		ssd_wm_cache_constructor
1051 #define	sd_wm_cache_destructor		ssd_wm_cache_destructor
1052 #define	sd_range_lock			ssd_range_lock
1053 #define	sd_get_range			ssd_get_range
1054 #define	sd_free_inlist_wmap		ssd_free_inlist_wmap
1055 #define	sd_range_unlock			ssd_range_unlock
1056 #define	sd_read_modify_write_task	ssd_read_modify_write_task
1057 #define	sddump_do_read_of_rmw		ssddump_do_read_of_rmw
1058 
1059 #define	sd_iostart_chain		ssd_iostart_chain
1060 #define	sd_iodone_chain			ssd_iodone_chain
1061 #define	sd_initpkt_map			ssd_initpkt_map
1062 #define	sd_destroypkt_map		ssd_destroypkt_map
1063 #define	sd_chain_type_map		ssd_chain_type_map
1064 #define	sd_chain_index_map		ssd_chain_index_map
1065 
1066 #define	sd_failfast_flushctl		ssd_failfast_flushctl
1067 #define	sd_failfast_flushq		ssd_failfast_flushq
1068 #define	sd_failfast_flushq_callback	ssd_failfast_flushq_callback
1069 
1070 #define	sd_is_lsi			ssd_is_lsi
1071 #define	sd_tg_rdwr			ssd_tg_rdwr
1072 #define	sd_tg_getinfo			ssd_tg_getinfo
1073 
1074 #endif	/* #if (defined(__fibre)) */
1075 
1076 
1077 int _init(void);
1078 int _fini(void);
1079 int _info(struct modinfo *modinfop);
1080 
1081 /*PRINTFLIKE3*/
1082 static void sd_log_trace(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1083 /*PRINTFLIKE3*/
1084 static void sd_log_info(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1085 /*PRINTFLIKE3*/
1086 static void sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1087 
1088 static int sdprobe(dev_info_t *devi);
1089 static int sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
1090     void **result);
1091 static int sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1092     int mod_flags, char *name, caddr_t valuep, int *lengthp);
1093 
1094 /*
1095  * Smart probe for parallel scsi
1096  */
1097 static void sd_scsi_probe_cache_init(void);
1098 static void sd_scsi_probe_cache_fini(void);
1099 static void sd_scsi_clear_probe_cache(void);
1100 static int  sd_scsi_probe_with_cache(struct scsi_device *devp, int (*fn)());
1101 
1102 /*
1103  * Attached luns on target for parallel scsi
1104  */
1105 static void sd_scsi_target_lun_init(void);
1106 static void sd_scsi_target_lun_fini(void);
1107 static int  sd_scsi_get_target_lun_count(dev_info_t *dip, int target);
1108 static void sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag);
1109 
1110 static int	sd_spin_up_unit(struct sd_lun *un);
1111 #ifdef _LP64
1112 static void	sd_enable_descr_sense(struct sd_lun *un);
1113 static void	sd_reenable_dsense_task(void *arg);
1114 #endif /* _LP64 */
1115 
1116 static void	sd_set_mmc_caps(struct sd_lun *un);
1117 
1118 static void sd_read_unit_properties(struct sd_lun *un);
1119 static int  sd_process_sdconf_file(struct sd_lun *un);
1120 static void sd_get_tunables_from_conf(struct sd_lun *un, int flags,
1121     int *data_list, sd_tunables *values);
1122 static void sd_process_sdconf_table(struct sd_lun *un);
1123 static int  sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen);
1124 static int  sd_blank_cmp(struct sd_lun *un, char *id, int idlen);
1125 static int  sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
1126 	int list_len, char *dataname_ptr);
1127 static void sd_set_vers1_properties(struct sd_lun *un, int flags,
1128     sd_tunables *prop_list);
1129 
1130 static void sd_register_devid(struct sd_lun *un, dev_info_t *devi,
1131     int reservation_flag);
1132 static int  sd_get_devid(struct sd_lun *un);
1133 static ddi_devid_t sd_create_devid(struct sd_lun *un);
1134 static int  sd_write_deviceid(struct sd_lun *un);
1135 static int  sd_get_devid_page(struct sd_lun *un, uchar_t *wwn, int *len);
1136 static int  sd_check_vpd_page_support(struct sd_lun *un);
1137 
1138 static void sd_setup_pm(struct sd_lun *un, dev_info_t *devi);
1139 static void sd_create_pm_components(dev_info_t *devi, struct sd_lun *un);
1140 
1141 static int  sd_ddi_suspend(dev_info_t *devi);
1142 static int  sd_ddi_pm_suspend(struct sd_lun *un);
1143 static int  sd_ddi_resume(dev_info_t *devi);
1144 static int  sd_ddi_pm_resume(struct sd_lun *un);
1145 static int  sdpower(dev_info_t *devi, int component, int level);
1146 
1147 static int  sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd);
1148 static int  sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd);
1149 static int  sd_unit_attach(dev_info_t *devi);
1150 static int  sd_unit_detach(dev_info_t *devi);
1151 
1152 static void sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi);
1153 static void sd_create_errstats(struct sd_lun *un, int instance);
1154 static void sd_set_errstats(struct sd_lun *un);
1155 static void sd_set_pstats(struct sd_lun *un);
1156 
1157 static int  sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);
1158 static int  sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pkt);
1159 static int  sd_send_polled_RQS(struct sd_lun *un);
1160 static int  sd_ddi_scsi_poll(struct scsi_pkt *pkt);
1161 
1162 #if (defined(__fibre))
1163 /*
1164  * Event callbacks (photon)
1165  */
1166 static void sd_init_event_callbacks(struct sd_lun *un);
1167 static void  sd_event_callback(dev_info_t *, ddi_eventcookie_t, void *, void *);
1168 #endif
1169 
1170 /*
1171  * Defines for sd_cache_control
1172  */
1173 
1174 #define	SD_CACHE_ENABLE		1
1175 #define	SD_CACHE_DISABLE	0
1176 #define	SD_CACHE_NOCHANGE	-1
1177 
1178 static int   sd_cache_control(struct sd_lun *un, int rcd_flag, int wce_flag);
1179 static int   sd_get_write_cache_enabled(struct sd_lun *un, int *is_enabled);
1180 static void  sd_get_nv_sup(struct sd_lun *un);
1181 static dev_t sd_make_device(dev_info_t *devi);
1182 
1183 static void  sd_update_block_info(struct sd_lun *un, uint32_t lbasize,
1184 	uint64_t capacity);
1185 
1186 /*
1187  * Driver entry point functions.
1188  */
1189 static int  sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p);
1190 static int  sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p);
1191 static int  sd_ready_and_valid(struct sd_lun *un);
1192 
1193 static void sdmin(struct buf *bp);
1194 static int sdread(dev_t dev, struct uio *uio, cred_t *cred_p);
1195 static int sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p);
1196 static int sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1197 static int sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1198 
1199 static int sdstrategy(struct buf *bp);
1200 static int sdioctl(dev_t, int, intptr_t, int, cred_t *, int *);
1201 
1202 /*
1203  * Function prototypes for layering functions in the iostart chain.
1204  */
1205 static void sd_mapblockaddr_iostart(int index, struct sd_lun *un,
1206 	struct buf *bp);
1207 static void sd_mapblocksize_iostart(int index, struct sd_lun *un,
1208 	struct buf *bp);
1209 static void sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp);
1210 static void sd_checksum_uscsi_iostart(int index, struct sd_lun *un,
1211 	struct buf *bp);
1212 static void sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp);
1213 static void sd_core_iostart(int index, struct sd_lun *un, struct buf *bp);
1214 
1215 /*
1216  * Function prototypes for layering functions in the iodone chain.
1217  */
1218 static void sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp);
1219 static void sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp);
1220 static void sd_mapblockaddr_iodone(int index, struct sd_lun *un,
1221 	struct buf *bp);
1222 static void sd_mapblocksize_iodone(int index, struct sd_lun *un,
1223 	struct buf *bp);
1224 static void sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp);
1225 static void sd_checksum_uscsi_iodone(int index, struct sd_lun *un,
1226 	struct buf *bp);
1227 static void sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp);
1228 
1229 /*
1230  * Prototypes for functions to support buf(9S) based IO.
1231  */
1232 static void sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg);
1233 static int sd_initpkt_for_buf(struct buf *, struct scsi_pkt **);
1234 static void sd_destroypkt_for_buf(struct buf *);
1235 static int sd_setup_rw_pkt(struct sd_lun *un, struct scsi_pkt **pktpp,
1236 	struct buf *bp, int flags,
1237 	int (*callback)(caddr_t), caddr_t callback_arg,
1238 	diskaddr_t lba, uint32_t blockcount);
1239 static int sd_setup_next_rw_pkt(struct sd_lun *un, struct scsi_pkt *pktp,
1240 	struct buf *bp, diskaddr_t lba, uint32_t blockcount);
1241 
1242 /*
1243  * Prototypes for functions to support USCSI IO.
1244  */
1245 static int sd_uscsi_strategy(struct buf *bp);
1246 static int sd_initpkt_for_uscsi(struct buf *, struct scsi_pkt **);
1247 static void sd_destroypkt_for_uscsi(struct buf *);
1248 
1249 static void sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
1250 	uchar_t chain_type, void *pktinfop);
1251 
1252 static int  sd_pm_entry(struct sd_lun *un);
1253 static void sd_pm_exit(struct sd_lun *un);
1254 
1255 static void sd_pm_idletimeout_handler(void *arg);
1256 
1257 /*
1258  * sd_core internal functions (used at the sd_core_io layer).
1259  */
1260 static void sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp);
1261 static void sdintr(struct scsi_pkt *pktp);
1262 static void sd_start_cmds(struct sd_lun *un, struct buf *immed_bp);
1263 
1264 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
1265 	enum uio_seg dataspace, int path_flag);
1266 
1267 static struct buf *sd_bioclone_alloc(struct buf *bp, size_t datalen,
1268 	daddr_t blkno, int (*func)(struct buf *));
1269 static struct buf *sd_shadow_buf_alloc(struct buf *bp, size_t datalen,
1270 	uint_t bflags, daddr_t blkno, int (*func)(struct buf *));
1271 static void sd_bioclone_free(struct buf *bp);
1272 static void sd_shadow_buf_free(struct buf *bp);
1273 
1274 static void sd_print_transport_rejected_message(struct sd_lun *un,
1275 	struct sd_xbuf *xp, int code);
1276 static void sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp,
1277     void *arg, int code);
1278 static void sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp,
1279     void *arg, int code);
1280 static void sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp,
1281     void *arg, int code);
1282 
1283 static void sd_retry_command(struct sd_lun *un, struct buf *bp,
1284 	int retry_check_flag,
1285 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp,
1286 		int c),
1287 	void *user_arg, int failure_code,  clock_t retry_delay,
1288 	void (*statp)(kstat_io_t *));
1289 
1290 static void sd_set_retry_bp(struct sd_lun *un, struct buf *bp,
1291 	clock_t retry_delay, void (*statp)(kstat_io_t *));
1292 
1293 static void sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
1294 	struct scsi_pkt *pktp);
1295 static void sd_start_retry_command(void *arg);
1296 static void sd_start_direct_priority_command(void *arg);
1297 static void sd_return_failed_command(struct sd_lun *un, struct buf *bp,
1298 	int errcode);
1299 static void sd_return_failed_command_no_restart(struct sd_lun *un,
1300 	struct buf *bp, int errcode);
1301 static void sd_return_command(struct sd_lun *un, struct buf *bp);
1302 static void sd_sync_with_callback(struct sd_lun *un);
1303 static int sdrunout(caddr_t arg);
1304 
1305 static void sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp);
1306 static struct buf *sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *xp);
1307 
1308 static void sd_reduce_throttle(struct sd_lun *un, int throttle_type);
1309 static void sd_restore_throttle(void *arg);
1310 
1311 static void sd_init_cdb_limits(struct sd_lun *un);
1312 
1313 static void sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
1314 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1315 
1316 /*
1317  * Error handling functions
1318  */
1319 static void sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
1320 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1321 static void sd_pkt_status_busy(struct sd_lun *un, struct buf *bp,
1322 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1323 static void sd_pkt_status_reservation_conflict(struct sd_lun *un,
1324 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1325 static void sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
1326 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1327 
1328 static void sd_handle_request_sense(struct sd_lun *un, struct buf *bp,
1329 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1330 static void sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
1331 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1332 static int sd_validate_sense_data(struct sd_lun *un, struct buf *bp,
1333 	struct sd_xbuf *xp, size_t actual_len);
1334 static void sd_decode_sense(struct sd_lun *un, struct buf *bp,
1335 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1336 
1337 static void sd_print_sense_msg(struct sd_lun *un, struct buf *bp,
1338 	void *arg, int code);
1339 
1340 static void sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
1341 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1342 static void sd_sense_key_recoverable_error(struct sd_lun *un,
1343 	uint8_t *sense_datap,
1344 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1345 static void sd_sense_key_not_ready(struct sd_lun *un,
1346 	uint8_t *sense_datap,
1347 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1348 static void sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
1349 	uint8_t *sense_datap,
1350 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1351 static void sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
1352 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1353 static void sd_sense_key_unit_attention(struct sd_lun *un,
1354 	uint8_t *sense_datap,
1355 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1356 static void sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
1357 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1358 static void sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
1359 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1360 static void sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
1361 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1362 static void sd_sense_key_default(struct sd_lun *un,
1363 	uint8_t *sense_datap,
1364 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1365 
1366 static void sd_print_retry_msg(struct sd_lun *un, struct buf *bp,
1367 	void *arg, int flag);
1368 
1369 static void sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
1370 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1371 static void sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
1372 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1373 static void sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
1374 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1375 static void sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
1376 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1377 static void sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
1378 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1379 static void sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
1380 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1381 static void sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
1382 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1383 static void sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
1384 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1385 
1386 static void sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp);
1387 
1388 static void sd_start_stop_unit_callback(void *arg);
1389 static void sd_start_stop_unit_task(void *arg);
1390 
1391 static void sd_taskq_create(void);
1392 static void sd_taskq_delete(void);
1393 static void sd_media_change_task(void *arg);
1394 
1395 static int sd_handle_mchange(struct sd_lun *un);
1396 static int sd_send_scsi_DOORLOCK(struct sd_lun *un, int flag, int path_flag);
1397 static int sd_send_scsi_READ_CAPACITY(struct sd_lun *un, uint64_t *capp,
1398 	uint32_t *lbap, int path_flag);
1399 static int sd_send_scsi_READ_CAPACITY_16(struct sd_lun *un, uint64_t *capp,
1400 	uint32_t *lbap, int path_flag);
1401 static int sd_send_scsi_START_STOP_UNIT(struct sd_lun *un, int flag,
1402 	int path_flag);
1403 static int sd_send_scsi_INQUIRY(struct sd_lun *un, uchar_t *bufaddr,
1404 	size_t buflen, uchar_t evpd, uchar_t page_code, size_t *residp);
1405 static int sd_send_scsi_TEST_UNIT_READY(struct sd_lun *un, int flag);
1406 static int sd_send_scsi_PERSISTENT_RESERVE_IN(struct sd_lun *un,
1407 	uchar_t usr_cmd, uint16_t data_len, uchar_t *data_bufp);
1408 static int sd_send_scsi_PERSISTENT_RESERVE_OUT(struct sd_lun *un,
1409 	uchar_t usr_cmd, uchar_t *usr_bufp);
1410 static int sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un,
1411 	struct dk_callback *dkc);
1412 static int sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp);
1413 static int sd_send_scsi_GET_CONFIGURATION(struct sd_lun *un,
1414 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1415 	uchar_t *bufaddr, uint_t buflen, int path_flag);
1416 static int sd_send_scsi_feature_GET_CONFIGURATION(struct sd_lun *un,
1417 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1418 	uchar_t *bufaddr, uint_t buflen, char feature, int path_flag);
1419 static int sd_send_scsi_MODE_SENSE(struct sd_lun *un, int cdbsize,
1420 	uchar_t *bufaddr, size_t buflen, uchar_t page_code, int path_flag);
1421 static int sd_send_scsi_MODE_SELECT(struct sd_lun *un, int cdbsize,
1422 	uchar_t *bufaddr, size_t buflen, uchar_t save_page, int path_flag);
1423 static int sd_send_scsi_RDWR(struct sd_lun *un, uchar_t cmd, void *bufaddr,
1424 	size_t buflen, daddr_t start_block, int path_flag);
1425 #define	sd_send_scsi_READ(un, bufaddr, buflen, start_block, path_flag)	\
1426 	sd_send_scsi_RDWR(un, SCMD_READ, bufaddr, buflen, start_block, \
1427 	path_flag)
1428 #define	sd_send_scsi_WRITE(un, bufaddr, buflen, start_block, path_flag)	\
1429 	sd_send_scsi_RDWR(un, SCMD_WRITE, bufaddr, buflen, start_block,\
1430 	path_flag)
1431 
1432 static int sd_send_scsi_LOG_SENSE(struct sd_lun *un, uchar_t *bufaddr,
1433 	uint16_t buflen, uchar_t page_code, uchar_t page_control,
1434 	uint16_t param_ptr, int path_flag);
1435 
1436 static int  sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un);
1437 static void sd_free_rqs(struct sd_lun *un);
1438 
1439 static void sd_dump_memory(struct sd_lun *un, uint_t comp, char *title,
1440 	uchar_t *data, int len, int fmt);
1441 static void sd_panic_for_res_conflict(struct sd_lun *un);
1442 
1443 /*
1444  * Disk Ioctl Function Prototypes
1445  */
1446 static int sd_get_media_info(dev_t dev, caddr_t arg, int flag);
1447 static int sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag);
1448 static int sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag);
1449 
1450 /*
1451  * Multi-host Ioctl Prototypes
1452  */
1453 static int sd_check_mhd(dev_t dev, int interval);
1454 static int sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1455 static void sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt);
1456 static char *sd_sname(uchar_t status);
1457 static void sd_mhd_resvd_recover(void *arg);
1458 static void sd_resv_reclaim_thread();
1459 static int sd_take_ownership(dev_t dev, struct mhioctkown *p);
1460 static int sd_reserve_release(dev_t dev, int cmd);
1461 static void sd_rmv_resv_reclaim_req(dev_t dev);
1462 static void sd_mhd_reset_notify_cb(caddr_t arg);
1463 static int sd_persistent_reservation_in_read_keys(struct sd_lun *un,
1464 	mhioc_inkeys_t *usrp, int flag);
1465 static int sd_persistent_reservation_in_read_resv(struct sd_lun *un,
1466 	mhioc_inresvs_t *usrp, int flag);
1467 static int sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag);
1468 static int sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag);
1469 static int sd_mhdioc_release(dev_t dev);
1470 static int sd_mhdioc_register_devid(dev_t dev);
1471 static int sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag);
1472 static int sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag);
1473 
1474 /*
1475  * SCSI removable prototypes
1476  */
1477 static int sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag);
1478 static int sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1479 static int sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1480 static int sr_pause_resume(dev_t dev, int mode);
1481 static int sr_play_msf(dev_t dev, caddr_t data, int flag);
1482 static int sr_play_trkind(dev_t dev, caddr_t data, int flag);
1483 static int sr_read_all_subcodes(dev_t dev, caddr_t data, int flag);
1484 static int sr_read_subchannel(dev_t dev, caddr_t data, int flag);
1485 static int sr_read_tocentry(dev_t dev, caddr_t data, int flag);
1486 static int sr_read_tochdr(dev_t dev, caddr_t data, int flag);
1487 static int sr_read_cdda(dev_t dev, caddr_t data, int flag);
1488 static int sr_read_cdxa(dev_t dev, caddr_t data, int flag);
1489 static int sr_read_mode1(dev_t dev, caddr_t data, int flag);
1490 static int sr_read_mode2(dev_t dev, caddr_t data, int flag);
1491 static int sr_read_cd_mode2(dev_t dev, caddr_t data, int flag);
1492 static int sr_sector_mode(dev_t dev, uint32_t blksize);
1493 static int sr_eject(dev_t dev);
1494 static void sr_ejected(register struct sd_lun *un);
1495 static int sr_check_wp(dev_t dev);
1496 static int sd_check_media(dev_t dev, enum dkio_state state);
1497 static int sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1498 static void sd_delayed_cv_broadcast(void *arg);
1499 static int sr_volume_ctrl(dev_t dev, caddr_t data, int flag);
1500 static int sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag);
1501 
1502 static int sd_log_page_supported(struct sd_lun *un, int log_page);
1503 
1504 /*
1505  * Function Prototype for the non-512 support (DVDRAM, MO etc.) functions.
1506  */
1507 static void sd_check_for_writable_cd(struct sd_lun *un, int path_flag);
1508 static int sd_wm_cache_constructor(void *wm, void *un, int flags);
1509 static void sd_wm_cache_destructor(void *wm, void *un);
1510 static struct sd_w_map *sd_range_lock(struct sd_lun *un, daddr_t startb,
1511 	daddr_t endb, ushort_t typ);
1512 static struct sd_w_map *sd_get_range(struct sd_lun *un, daddr_t startb,
1513 	daddr_t endb);
1514 static void sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp);
1515 static void sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm);
1516 static void sd_read_modify_write_task(void * arg);
1517 static int
1518 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
1519 	struct buf **bpp);
1520 
1521 
1522 /*
1523  * Function prototypes for failfast support.
1524  */
1525 static void sd_failfast_flushq(struct sd_lun *un);
1526 static int sd_failfast_flushq_callback(struct buf *bp);
1527 
1528 /*
1529  * Function prototypes to check for lsi devices
1530  */
1531 static void sd_is_lsi(struct sd_lun *un);
1532 
1533 /*
1534  * Function prototypes for partial DMA support
1535  */
1536 static int sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
1537 		struct scsi_pkt *pkt, struct sd_xbuf *xp);
1538 
1539 
1540 /* Function prototypes for cmlb */
1541 static int sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr,
1542     diskaddr_t start_block, size_t reqlength, void *tg_cookie);
1543 
1544 static int sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie);
1545 
1546 /*
1547  * Constants for failfast support:
1548  *
1549  * SD_FAILFAST_INACTIVE: Instance is currently in a normal state, with NO
1550  * failfast processing being performed.
1551  *
1552  * SD_FAILFAST_ACTIVE: Instance is in the failfast state and is performing
1553  * failfast processing on all bufs with B_FAILFAST set.
1554  */
1555 
1556 #define	SD_FAILFAST_INACTIVE		0
1557 #define	SD_FAILFAST_ACTIVE		1
1558 
1559 /*
1560  * Bitmask to control behavior of buf(9S) flushes when a transition to
1561  * the failfast state occurs. Optional bits include:
1562  *
1563  * SD_FAILFAST_FLUSH_ALL_BUFS: When set, flush ALL bufs including those that
1564  * do NOT have B_FAILFAST set. When clear, only bufs with B_FAILFAST will
1565  * be flushed.
1566  *
1567  * SD_FAILFAST_FLUSH_ALL_QUEUES: When set, flush any/all other queues in the
1568  * driver, in addition to the regular wait queue. This includes the xbuf
1569  * queues. When clear, only the driver's wait queue will be flushed.
1570  */
1571 #define	SD_FAILFAST_FLUSH_ALL_BUFS	0x01
1572 #define	SD_FAILFAST_FLUSH_ALL_QUEUES	0x02
1573 
1574 /*
1575  * The default behavior is to only flush bufs that have B_FAILFAST set, but
1576  * to flush all queues within the driver.
1577  */
1578 static int sd_failfast_flushctl = SD_FAILFAST_FLUSH_ALL_QUEUES;
1579 
1580 
1581 /*
1582  * SD Testing Fault Injection
1583  */
1584 #ifdef SD_FAULT_INJECTION
1585 static void sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un);
1586 static void sd_faultinjection(struct scsi_pkt *pktp);
1587 static void sd_injection_log(char *buf, struct sd_lun *un);
1588 #endif
1589 
1590 /*
1591  * Device driver ops vector
1592  */
1593 static struct cb_ops sd_cb_ops = {
1594 	sdopen,			/* open */
1595 	sdclose,		/* close */
1596 	sdstrategy,		/* strategy */
1597 	nodev,			/* print */
1598 	sddump,			/* dump */
1599 	sdread,			/* read */
1600 	sdwrite,		/* write */
1601 	sdioctl,		/* ioctl */
1602 	nodev,			/* devmap */
1603 	nodev,			/* mmap */
1604 	nodev,			/* segmap */
1605 	nochpoll,		/* poll */
1606 	sd_prop_op,		/* cb_prop_op */
1607 	0,			/* streamtab  */
1608 	D_64BIT | D_MP | D_NEW | D_HOTPLUG, /* Driver compatibility flags */
1609 	CB_REV,			/* cb_rev */
1610 	sdaread, 		/* async I/O read entry point */
1611 	sdawrite		/* async I/O write entry point */
1612 };
1613 
1614 static struct dev_ops sd_ops = {
1615 	DEVO_REV,		/* devo_rev, */
1616 	0,			/* refcnt  */
1617 	sdinfo,			/* info */
1618 	nulldev,		/* identify */
1619 	sdprobe,		/* probe */
1620 	sdattach,		/* attach */
1621 	sddetach,		/* detach */
1622 	nodev,			/* reset */
1623 	&sd_cb_ops,		/* driver operations */
1624 	NULL,			/* bus operations */
1625 	sdpower			/* power */
1626 };
1627 
1628 
1629 /*
1630  * This is the loadable module wrapper.
1631  */
1632 #include <sys/modctl.h>
1633 
1634 static struct modldrv modldrv = {
1635 	&mod_driverops,		/* Type of module. This one is a driver */
1636 	SD_MODULE_NAME,		/* Module name. */
1637 	&sd_ops			/* driver ops */
1638 };
1639 
1640 
1641 static struct modlinkage modlinkage = {
1642 	MODREV_1,
1643 	&modldrv,
1644 	NULL
1645 };
1646 
1647 static cmlb_tg_ops_t sd_tgops = {
1648 	TG_DK_OPS_VERSION_1,
1649 	sd_tg_rdwr,
1650 	sd_tg_getinfo
1651 	};
1652 
1653 static struct scsi_asq_key_strings sd_additional_codes[] = {
1654 	0x81, 0, "Logical Unit is Reserved",
1655 	0x85, 0, "Audio Address Not Valid",
1656 	0xb6, 0, "Media Load Mechanism Failed",
1657 	0xB9, 0, "Audio Play Operation Aborted",
1658 	0xbf, 0, "Buffer Overflow for Read All Subcodes Command",
1659 	0x53, 2, "Medium removal prevented",
1660 	0x6f, 0, "Authentication failed during key exchange",
1661 	0x6f, 1, "Key not present",
1662 	0x6f, 2, "Key not established",
1663 	0x6f, 3, "Read without proper authentication",
1664 	0x6f, 4, "Mismatched region to this logical unit",
1665 	0x6f, 5, "Region reset count error",
1666 	0xffff, 0x0, NULL
1667 };
1668 
1669 
1670 /*
1671  * Struct for passing printing information for sense data messages
1672  */
1673 struct sd_sense_info {
1674 	int	ssi_severity;
1675 	int	ssi_pfa_flag;
1676 };
1677 
1678 /*
1679  * Table of function pointers for iostart-side routines. Separate "chains"
1680  * of layered function calls are formed by placing the function pointers
1681  * sequentially in the desired order. Functions are called according to an
1682  * incrementing table index ordering. The last function in each chain must
1683  * be sd_core_iostart(). The corresponding iodone-side routines are expected
1684  * in the sd_iodone_chain[] array.
1685  *
1686  * Note: It may seem more natural to organize both the iostart and iodone
1687  * functions together, into an array of structures (or some similar
1688  * organization) with a common index, rather than two separate arrays which
1689  * must be maintained in synchronization. The purpose of this division is
1690  * to achieve improved performance: individual arrays allows for more
1691  * effective cache line utilization on certain platforms.
1692  */
1693 
1694 typedef void (*sd_chain_t)(int index, struct sd_lun *un, struct buf *bp);
1695 
1696 
1697 static sd_chain_t sd_iostart_chain[] = {
1698 
1699 	/* Chain for buf IO for disk drive targets (PM enabled) */
1700 	sd_mapblockaddr_iostart,	/* Index: 0 */
1701 	sd_pm_iostart,			/* Index: 1 */
1702 	sd_core_iostart,		/* Index: 2 */
1703 
1704 	/* Chain for buf IO for disk drive targets (PM disabled) */
1705 	sd_mapblockaddr_iostart,	/* Index: 3 */
1706 	sd_core_iostart,		/* Index: 4 */
1707 
1708 	/* Chain for buf IO for removable-media targets (PM enabled) */
1709 	sd_mapblockaddr_iostart,	/* Index: 5 */
1710 	sd_mapblocksize_iostart,	/* Index: 6 */
1711 	sd_pm_iostart,			/* Index: 7 */
1712 	sd_core_iostart,		/* Index: 8 */
1713 
1714 	/* Chain for buf IO for removable-media targets (PM disabled) */
1715 	sd_mapblockaddr_iostart,	/* Index: 9 */
1716 	sd_mapblocksize_iostart,	/* Index: 10 */
1717 	sd_core_iostart,		/* Index: 11 */
1718 
1719 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1720 	sd_mapblockaddr_iostart,	/* Index: 12 */
1721 	sd_checksum_iostart,		/* Index: 13 */
1722 	sd_pm_iostart,			/* Index: 14 */
1723 	sd_core_iostart,		/* Index: 15 */
1724 
1725 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1726 	sd_mapblockaddr_iostart,	/* Index: 16 */
1727 	sd_checksum_iostart,		/* Index: 17 */
1728 	sd_core_iostart,		/* Index: 18 */
1729 
1730 	/* Chain for USCSI commands (all targets) */
1731 	sd_pm_iostart,			/* Index: 19 */
1732 	sd_core_iostart,		/* Index: 20 */
1733 
1734 	/* Chain for checksumming USCSI commands (all targets) */
1735 	sd_checksum_uscsi_iostart,	/* Index: 21 */
1736 	sd_pm_iostart,			/* Index: 22 */
1737 	sd_core_iostart,		/* Index: 23 */
1738 
1739 	/* Chain for "direct" USCSI commands (all targets) */
1740 	sd_core_iostart,		/* Index: 24 */
1741 
1742 	/* Chain for "direct priority" USCSI commands (all targets) */
1743 	sd_core_iostart,		/* Index: 25 */
1744 };
1745 
1746 /*
1747  * Macros to locate the first function of each iostart chain in the
1748  * sd_iostart_chain[] array. These are located by the index in the array.
1749  */
1750 #define	SD_CHAIN_DISK_IOSTART			0
1751 #define	SD_CHAIN_DISK_IOSTART_NO_PM		3
1752 #define	SD_CHAIN_RMMEDIA_IOSTART		5
1753 #define	SD_CHAIN_RMMEDIA_IOSTART_NO_PM		9
1754 #define	SD_CHAIN_CHKSUM_IOSTART			12
1755 #define	SD_CHAIN_CHKSUM_IOSTART_NO_PM		16
1756 #define	SD_CHAIN_USCSI_CMD_IOSTART		19
1757 #define	SD_CHAIN_USCSI_CHKSUM_IOSTART		21
1758 #define	SD_CHAIN_DIRECT_CMD_IOSTART		24
1759 #define	SD_CHAIN_PRIORITY_CMD_IOSTART		25
1760 
1761 
1762 /*
1763  * Table of function pointers for the iodone-side routines for the driver-
1764  * internal layering mechanism.  The calling sequence for iodone routines
1765  * uses a decrementing table index, so the last routine called in a chain
1766  * must be at the lowest array index location for that chain.  The last
1767  * routine for each chain must be either sd_buf_iodone() (for buf(9S) IOs)
1768  * or sd_uscsi_iodone() (for uscsi IOs).  Other than this, the ordering
1769  * of the functions in an iodone side chain must correspond to the ordering
1770  * of the iostart routines for that chain.  Note that there is no iodone
1771  * side routine that corresponds to sd_core_iostart(), so there is no
1772  * entry in the table for this.
1773  */
1774 
1775 static sd_chain_t sd_iodone_chain[] = {
1776 
1777 	/* Chain for buf IO for disk drive targets (PM enabled) */
1778 	sd_buf_iodone,			/* Index: 0 */
1779 	sd_mapblockaddr_iodone,		/* Index: 1 */
1780 	sd_pm_iodone,			/* Index: 2 */
1781 
1782 	/* Chain for buf IO for disk drive targets (PM disabled) */
1783 	sd_buf_iodone,			/* Index: 3 */
1784 	sd_mapblockaddr_iodone,		/* Index: 4 */
1785 
1786 	/* Chain for buf IO for removable-media targets (PM enabled) */
1787 	sd_buf_iodone,			/* Index: 5 */
1788 	sd_mapblockaddr_iodone,		/* Index: 6 */
1789 	sd_mapblocksize_iodone,		/* Index: 7 */
1790 	sd_pm_iodone,			/* Index: 8 */
1791 
1792 	/* Chain for buf IO for removable-media targets (PM disabled) */
1793 	sd_buf_iodone,			/* Index: 9 */
1794 	sd_mapblockaddr_iodone,		/* Index: 10 */
1795 	sd_mapblocksize_iodone,		/* Index: 11 */
1796 
1797 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1798 	sd_buf_iodone,			/* Index: 12 */
1799 	sd_mapblockaddr_iodone,		/* Index: 13 */
1800 	sd_checksum_iodone,		/* Index: 14 */
1801 	sd_pm_iodone,			/* Index: 15 */
1802 
1803 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1804 	sd_buf_iodone,			/* Index: 16 */
1805 	sd_mapblockaddr_iodone,		/* Index: 17 */
1806 	sd_checksum_iodone,		/* Index: 18 */
1807 
1808 	/* Chain for USCSI commands (non-checksum targets) */
1809 	sd_uscsi_iodone,		/* Index: 19 */
1810 	sd_pm_iodone,			/* Index: 20 */
1811 
1812 	/* Chain for USCSI commands (checksum targets) */
1813 	sd_uscsi_iodone,		/* Index: 21 */
1814 	sd_checksum_uscsi_iodone,	/* Index: 22 */
1815 	sd_pm_iodone,			/* Index: 22 */
1816 
1817 	/* Chain for "direct" USCSI commands (all targets) */
1818 	sd_uscsi_iodone,		/* Index: 24 */
1819 
1820 	/* Chain for "direct priority" USCSI commands (all targets) */
1821 	sd_uscsi_iodone,		/* Index: 25 */
1822 };
1823 
1824 
1825 /*
1826  * Macros to locate the "first" function in the sd_iodone_chain[] array for
1827  * each iodone-side chain. These are located by the array index, but as the
1828  * iodone side functions are called in a decrementing-index order, the
1829  * highest index number in each chain must be specified (as these correspond
1830  * to the first function in the iodone chain that will be called by the core
1831  * at IO completion time).
1832  */
1833 
1834 #define	SD_CHAIN_DISK_IODONE			2
1835 #define	SD_CHAIN_DISK_IODONE_NO_PM		4
1836 #define	SD_CHAIN_RMMEDIA_IODONE			8
1837 #define	SD_CHAIN_RMMEDIA_IODONE_NO_PM		11
1838 #define	SD_CHAIN_CHKSUM_IODONE			15
1839 #define	SD_CHAIN_CHKSUM_IODONE_NO_PM		18
1840 #define	SD_CHAIN_USCSI_CMD_IODONE		20
1841 #define	SD_CHAIN_USCSI_CHKSUM_IODONE		22
1842 #define	SD_CHAIN_DIRECT_CMD_IODONE		24
1843 #define	SD_CHAIN_PRIORITY_CMD_IODONE		25
1844 
1845 
1846 
1847 
1848 /*
1849  * Array to map a layering chain index to the appropriate initpkt routine.
1850  * The redundant entries are present so that the index used for accessing
1851  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1852  * with this table as well.
1853  */
1854 typedef int (*sd_initpkt_t)(struct buf *, struct scsi_pkt **);
1855 
1856 static sd_initpkt_t	sd_initpkt_map[] = {
1857 
1858 	/* Chain for buf IO for disk drive targets (PM enabled) */
1859 	sd_initpkt_for_buf,		/* Index: 0 */
1860 	sd_initpkt_for_buf,		/* Index: 1 */
1861 	sd_initpkt_for_buf,		/* Index: 2 */
1862 
1863 	/* Chain for buf IO for disk drive targets (PM disabled) */
1864 	sd_initpkt_for_buf,		/* Index: 3 */
1865 	sd_initpkt_for_buf,		/* Index: 4 */
1866 
1867 	/* Chain for buf IO for removable-media targets (PM enabled) */
1868 	sd_initpkt_for_buf,		/* Index: 5 */
1869 	sd_initpkt_for_buf,		/* Index: 6 */
1870 	sd_initpkt_for_buf,		/* Index: 7 */
1871 	sd_initpkt_for_buf,		/* Index: 8 */
1872 
1873 	/* Chain for buf IO for removable-media targets (PM disabled) */
1874 	sd_initpkt_for_buf,		/* Index: 9 */
1875 	sd_initpkt_for_buf,		/* Index: 10 */
1876 	sd_initpkt_for_buf,		/* Index: 11 */
1877 
1878 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1879 	sd_initpkt_for_buf,		/* Index: 12 */
1880 	sd_initpkt_for_buf,		/* Index: 13 */
1881 	sd_initpkt_for_buf,		/* Index: 14 */
1882 	sd_initpkt_for_buf,		/* Index: 15 */
1883 
1884 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1885 	sd_initpkt_for_buf,		/* Index: 16 */
1886 	sd_initpkt_for_buf,		/* Index: 17 */
1887 	sd_initpkt_for_buf,		/* Index: 18 */
1888 
1889 	/* Chain for USCSI commands (non-checksum targets) */
1890 	sd_initpkt_for_uscsi,		/* Index: 19 */
1891 	sd_initpkt_for_uscsi,		/* Index: 20 */
1892 
1893 	/* Chain for USCSI commands (checksum targets) */
1894 	sd_initpkt_for_uscsi,		/* Index: 21 */
1895 	sd_initpkt_for_uscsi,		/* Index: 22 */
1896 	sd_initpkt_for_uscsi,		/* Index: 22 */
1897 
1898 	/* Chain for "direct" USCSI commands (all targets) */
1899 	sd_initpkt_for_uscsi,		/* Index: 24 */
1900 
1901 	/* Chain for "direct priority" USCSI commands (all targets) */
1902 	sd_initpkt_for_uscsi,		/* Index: 25 */
1903 
1904 };
1905 
1906 
1907 /*
1908  * Array to map a layering chain index to the appropriate destroypktpkt routine.
1909  * The redundant entries are present so that the index used for accessing
1910  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1911  * with this table as well.
1912  */
1913 typedef void (*sd_destroypkt_t)(struct buf *);
1914 
1915 static sd_destroypkt_t	sd_destroypkt_map[] = {
1916 
1917 	/* Chain for buf IO for disk drive targets (PM enabled) */
1918 	sd_destroypkt_for_buf,		/* Index: 0 */
1919 	sd_destroypkt_for_buf,		/* Index: 1 */
1920 	sd_destroypkt_for_buf,		/* Index: 2 */
1921 
1922 	/* Chain for buf IO for disk drive targets (PM disabled) */
1923 	sd_destroypkt_for_buf,		/* Index: 3 */
1924 	sd_destroypkt_for_buf,		/* Index: 4 */
1925 
1926 	/* Chain for buf IO for removable-media targets (PM enabled) */
1927 	sd_destroypkt_for_buf,		/* Index: 5 */
1928 	sd_destroypkt_for_buf,		/* Index: 6 */
1929 	sd_destroypkt_for_buf,		/* Index: 7 */
1930 	sd_destroypkt_for_buf,		/* Index: 8 */
1931 
1932 	/* Chain for buf IO for removable-media targets (PM disabled) */
1933 	sd_destroypkt_for_buf,		/* Index: 9 */
1934 	sd_destroypkt_for_buf,		/* Index: 10 */
1935 	sd_destroypkt_for_buf,		/* Index: 11 */
1936 
1937 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1938 	sd_destroypkt_for_buf,		/* Index: 12 */
1939 	sd_destroypkt_for_buf,		/* Index: 13 */
1940 	sd_destroypkt_for_buf,		/* Index: 14 */
1941 	sd_destroypkt_for_buf,		/* Index: 15 */
1942 
1943 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1944 	sd_destroypkt_for_buf,		/* Index: 16 */
1945 	sd_destroypkt_for_buf,		/* Index: 17 */
1946 	sd_destroypkt_for_buf,		/* Index: 18 */
1947 
1948 	/* Chain for USCSI commands (non-checksum targets) */
1949 	sd_destroypkt_for_uscsi,	/* Index: 19 */
1950 	sd_destroypkt_for_uscsi,	/* Index: 20 */
1951 
1952 	/* Chain for USCSI commands (checksum targets) */
1953 	sd_destroypkt_for_uscsi,	/* Index: 21 */
1954 	sd_destroypkt_for_uscsi,	/* Index: 22 */
1955 	sd_destroypkt_for_uscsi,	/* Index: 22 */
1956 
1957 	/* Chain for "direct" USCSI commands (all targets) */
1958 	sd_destroypkt_for_uscsi,	/* Index: 24 */
1959 
1960 	/* Chain for "direct priority" USCSI commands (all targets) */
1961 	sd_destroypkt_for_uscsi,	/* Index: 25 */
1962 
1963 };
1964 
1965 
1966 
1967 /*
1968  * Array to map a layering chain index to the appropriate chain "type".
1969  * The chain type indicates a specific property/usage of the chain.
1970  * The redundant entries are present so that the index used for accessing
1971  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1972  * with this table as well.
1973  */
1974 
1975 #define	SD_CHAIN_NULL			0	/* for the special RQS cmd */
1976 #define	SD_CHAIN_BUFIO			1	/* regular buf IO */
1977 #define	SD_CHAIN_USCSI			2	/* regular USCSI commands */
1978 #define	SD_CHAIN_DIRECT			3	/* uscsi, w/ bypass power mgt */
1979 #define	SD_CHAIN_DIRECT_PRIORITY	4	/* uscsi, w/ bypass power mgt */
1980 						/* (for error recovery) */
1981 
1982 static int sd_chain_type_map[] = {
1983 
1984 	/* Chain for buf IO for disk drive targets (PM enabled) */
1985 	SD_CHAIN_BUFIO,			/* Index: 0 */
1986 	SD_CHAIN_BUFIO,			/* Index: 1 */
1987 	SD_CHAIN_BUFIO,			/* Index: 2 */
1988 
1989 	/* Chain for buf IO for disk drive targets (PM disabled) */
1990 	SD_CHAIN_BUFIO,			/* Index: 3 */
1991 	SD_CHAIN_BUFIO,			/* Index: 4 */
1992 
1993 	/* Chain for buf IO for removable-media targets (PM enabled) */
1994 	SD_CHAIN_BUFIO,			/* Index: 5 */
1995 	SD_CHAIN_BUFIO,			/* Index: 6 */
1996 	SD_CHAIN_BUFIO,			/* Index: 7 */
1997 	SD_CHAIN_BUFIO,			/* Index: 8 */
1998 
1999 	/* Chain for buf IO for removable-media targets (PM disabled) */
2000 	SD_CHAIN_BUFIO,			/* Index: 9 */
2001 	SD_CHAIN_BUFIO,			/* Index: 10 */
2002 	SD_CHAIN_BUFIO,			/* Index: 11 */
2003 
2004 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2005 	SD_CHAIN_BUFIO,			/* Index: 12 */
2006 	SD_CHAIN_BUFIO,			/* Index: 13 */
2007 	SD_CHAIN_BUFIO,			/* Index: 14 */
2008 	SD_CHAIN_BUFIO,			/* Index: 15 */
2009 
2010 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2011 	SD_CHAIN_BUFIO,			/* Index: 16 */
2012 	SD_CHAIN_BUFIO,			/* Index: 17 */
2013 	SD_CHAIN_BUFIO,			/* Index: 18 */
2014 
2015 	/* Chain for USCSI commands (non-checksum targets) */
2016 	SD_CHAIN_USCSI,			/* Index: 19 */
2017 	SD_CHAIN_USCSI,			/* Index: 20 */
2018 
2019 	/* Chain for USCSI commands (checksum targets) */
2020 	SD_CHAIN_USCSI,			/* Index: 21 */
2021 	SD_CHAIN_USCSI,			/* Index: 22 */
2022 	SD_CHAIN_USCSI,			/* Index: 22 */
2023 
2024 	/* Chain for "direct" USCSI commands (all targets) */
2025 	SD_CHAIN_DIRECT,		/* Index: 24 */
2026 
2027 	/* Chain for "direct priority" USCSI commands (all targets) */
2028 	SD_CHAIN_DIRECT_PRIORITY,	/* Index: 25 */
2029 };
2030 
2031 
2032 /* Macro to return TRUE if the IO has come from the sd_buf_iostart() chain. */
2033 #define	SD_IS_BUFIO(xp)			\
2034 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_BUFIO)
2035 
2036 /* Macro to return TRUE if the IO has come from the "direct priority" chain. */
2037 #define	SD_IS_DIRECT_PRIORITY(xp)	\
2038 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_DIRECT_PRIORITY)
2039 
2040 
2041 
2042 /*
2043  * Struct, array, and macros to map a specific chain to the appropriate
2044  * layering indexes in the sd_iostart_chain[] and sd_iodone_chain[] arrays.
2045  *
2046  * The sd_chain_index_map[] array is used at attach time to set the various
2047  * un_xxx_chain type members of the sd_lun softstate to the specific layering
2048  * chain to be used with the instance. This allows different instances to use
2049  * different chain for buf IO, uscsi IO, etc.. Also, since the xb_chain_iostart
2050  * and xb_chain_iodone index values in the sd_xbuf are initialized to these
2051  * values at sd_xbuf init time, this allows (1) layering chains may be changed
2052  * dynamically & without the use of locking; and (2) a layer may update the
2053  * xb_chain_io[start|done] member in a given xbuf with its current index value,
2054  * to allow for deferred processing of an IO within the same chain from a
2055  * different execution context.
2056  */
2057 
2058 struct sd_chain_index {
2059 	int	sci_iostart_index;
2060 	int	sci_iodone_index;
2061 };
2062 
2063 static struct sd_chain_index	sd_chain_index_map[] = {
2064 	{ SD_CHAIN_DISK_IOSTART,		SD_CHAIN_DISK_IODONE },
2065 	{ SD_CHAIN_DISK_IOSTART_NO_PM,		SD_CHAIN_DISK_IODONE_NO_PM },
2066 	{ SD_CHAIN_RMMEDIA_IOSTART,		SD_CHAIN_RMMEDIA_IODONE },
2067 	{ SD_CHAIN_RMMEDIA_IOSTART_NO_PM,	SD_CHAIN_RMMEDIA_IODONE_NO_PM },
2068 	{ SD_CHAIN_CHKSUM_IOSTART,		SD_CHAIN_CHKSUM_IODONE },
2069 	{ SD_CHAIN_CHKSUM_IOSTART_NO_PM,	SD_CHAIN_CHKSUM_IODONE_NO_PM },
2070 	{ SD_CHAIN_USCSI_CMD_IOSTART,		SD_CHAIN_USCSI_CMD_IODONE },
2071 	{ SD_CHAIN_USCSI_CHKSUM_IOSTART,	SD_CHAIN_USCSI_CHKSUM_IODONE },
2072 	{ SD_CHAIN_DIRECT_CMD_IOSTART,		SD_CHAIN_DIRECT_CMD_IODONE },
2073 	{ SD_CHAIN_PRIORITY_CMD_IOSTART,	SD_CHAIN_PRIORITY_CMD_IODONE },
2074 };
2075 
2076 
2077 /*
2078  * The following are indexes into the sd_chain_index_map[] array.
2079  */
2080 
2081 /* un->un_buf_chain_type must be set to one of these */
2082 #define	SD_CHAIN_INFO_DISK		0
2083 #define	SD_CHAIN_INFO_DISK_NO_PM	1
2084 #define	SD_CHAIN_INFO_RMMEDIA		2
2085 #define	SD_CHAIN_INFO_RMMEDIA_NO_PM	3
2086 #define	SD_CHAIN_INFO_CHKSUM		4
2087 #define	SD_CHAIN_INFO_CHKSUM_NO_PM	5
2088 
2089 /* un->un_uscsi_chain_type must be set to one of these */
2090 #define	SD_CHAIN_INFO_USCSI_CMD		6
2091 /* USCSI with PM disabled is the same as DIRECT */
2092 #define	SD_CHAIN_INFO_USCSI_CMD_NO_PM	8
2093 #define	SD_CHAIN_INFO_USCSI_CHKSUM	7
2094 
2095 /* un->un_direct_chain_type must be set to one of these */
2096 #define	SD_CHAIN_INFO_DIRECT_CMD	8
2097 
2098 /* un->un_priority_chain_type must be set to one of these */
2099 #define	SD_CHAIN_INFO_PRIORITY_CMD	9
2100 
2101 /* size for devid inquiries */
2102 #define	MAX_INQUIRY_SIZE		0xF0
2103 
2104 /*
2105  * Macros used by functions to pass a given buf(9S) struct along to the
2106  * next function in the layering chain for further processing.
2107  *
2108  * In the following macros, passing more than three arguments to the called
2109  * routines causes the optimizer for the SPARC compiler to stop doing tail
2110  * call elimination which results in significant performance degradation.
2111  */
2112 #define	SD_BEGIN_IOSTART(index, un, bp)	\
2113 	((*(sd_iostart_chain[index]))(index, un, bp))
2114 
2115 #define	SD_BEGIN_IODONE(index, un, bp)	\
2116 	((*(sd_iodone_chain[index]))(index, un, bp))
2117 
2118 #define	SD_NEXT_IOSTART(index, un, bp)				\
2119 	((*(sd_iostart_chain[(index) + 1]))((index) + 1, un, bp))
2120 
2121 #define	SD_NEXT_IODONE(index, un, bp)				\
2122 	((*(sd_iodone_chain[(index) - 1]))((index) - 1, un, bp))
2123 
2124 /*
2125  *    Function: _init
2126  *
2127  * Description: This is the driver _init(9E) entry point.
2128  *
2129  * Return Code: Returns the value from mod_install(9F) or
2130  *		ddi_soft_state_init(9F) as appropriate.
2131  *
2132  *     Context: Called when driver module loaded.
2133  */
2134 
2135 int
2136 _init(void)
2137 {
2138 	int	err;
2139 
2140 	/* establish driver name from module name */
2141 	sd_label = mod_modname(&modlinkage);
2142 
2143 	err = ddi_soft_state_init(&sd_state, sizeof (struct sd_lun),
2144 	    SD_MAXUNIT);
2145 
2146 	if (err != 0) {
2147 		return (err);
2148 	}
2149 
2150 	mutex_init(&sd_detach_mutex, NULL, MUTEX_DRIVER, NULL);
2151 	mutex_init(&sd_log_mutex,    NULL, MUTEX_DRIVER, NULL);
2152 	mutex_init(&sd_label_mutex,  NULL, MUTEX_DRIVER, NULL);
2153 
2154 	mutex_init(&sd_tr.srq_resv_reclaim_mutex, NULL, MUTEX_DRIVER, NULL);
2155 	cv_init(&sd_tr.srq_resv_reclaim_cv, NULL, CV_DRIVER, NULL);
2156 	cv_init(&sd_tr.srq_inprocess_cv, NULL, CV_DRIVER, NULL);
2157 
2158 	/*
2159 	 * it's ok to init here even for fibre device
2160 	 */
2161 	sd_scsi_probe_cache_init();
2162 
2163 	sd_scsi_target_lun_init();
2164 
2165 	/*
2166 	 * Creating taskq before mod_install ensures that all callers (threads)
2167 	 * that enter the module after a successfull mod_install encounter
2168 	 * a valid taskq.
2169 	 */
2170 	sd_taskq_create();
2171 
2172 	err = mod_install(&modlinkage);
2173 	if (err != 0) {
2174 		/* delete taskq if install fails */
2175 		sd_taskq_delete();
2176 
2177 		mutex_destroy(&sd_detach_mutex);
2178 		mutex_destroy(&sd_log_mutex);
2179 		mutex_destroy(&sd_label_mutex);
2180 
2181 		mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2182 		cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2183 		cv_destroy(&sd_tr.srq_inprocess_cv);
2184 
2185 		sd_scsi_probe_cache_fini();
2186 
2187 		sd_scsi_target_lun_fini();
2188 
2189 		ddi_soft_state_fini(&sd_state);
2190 		return (err);
2191 	}
2192 
2193 	return (err);
2194 }
2195 
2196 
2197 /*
2198  *    Function: _fini
2199  *
2200  * Description: This is the driver _fini(9E) entry point.
2201  *
2202  * Return Code: Returns the value from mod_remove(9F)
2203  *
2204  *     Context: Called when driver module is unloaded.
2205  */
2206 
2207 int
2208 _fini(void)
2209 {
2210 	int err;
2211 
2212 	if ((err = mod_remove(&modlinkage)) != 0) {
2213 		return (err);
2214 	}
2215 
2216 	sd_taskq_delete();
2217 
2218 	mutex_destroy(&sd_detach_mutex);
2219 	mutex_destroy(&sd_log_mutex);
2220 	mutex_destroy(&sd_label_mutex);
2221 	mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2222 
2223 	sd_scsi_probe_cache_fini();
2224 
2225 	sd_scsi_target_lun_fini();
2226 
2227 	cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2228 	cv_destroy(&sd_tr.srq_inprocess_cv);
2229 
2230 	ddi_soft_state_fini(&sd_state);
2231 
2232 	return (err);
2233 }
2234 
2235 
2236 /*
2237  *    Function: _info
2238  *
2239  * Description: This is the driver _info(9E) entry point.
2240  *
2241  *   Arguments: modinfop - pointer to the driver modinfo structure
2242  *
2243  * Return Code: Returns the value from mod_info(9F).
2244  *
2245  *     Context: Kernel thread context
2246  */
2247 
2248 int
2249 _info(struct modinfo *modinfop)
2250 {
2251 	return (mod_info(&modlinkage, modinfop));
2252 }
2253 
2254 
2255 /*
2256  * The following routines implement the driver message logging facility.
2257  * They provide component- and level- based debug output filtering.
2258  * Output may also be restricted to messages for a single instance by
2259  * specifying a soft state pointer in sd_debug_un. If sd_debug_un is set
2260  * to NULL, then messages for all instances are printed.
2261  *
2262  * These routines have been cloned from each other due to the language
2263  * constraints of macros and variable argument list processing.
2264  */
2265 
2266 
2267 /*
2268  *    Function: sd_log_err
2269  *
2270  * Description: This routine is called by the SD_ERROR macro for debug
2271  *		logging of error conditions.
2272  *
2273  *   Arguments: comp - driver component being logged
2274  *		dev  - pointer to driver info structure
2275  *		fmt  - error string and format to be logged
2276  */
2277 
2278 static void
2279 sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...)
2280 {
2281 	va_list		ap;
2282 	dev_info_t	*dev;
2283 
2284 	ASSERT(un != NULL);
2285 	dev = SD_DEVINFO(un);
2286 	ASSERT(dev != NULL);
2287 
2288 	/*
2289 	 * Filter messages based on the global component and level masks.
2290 	 * Also print if un matches the value of sd_debug_un, or if
2291 	 * sd_debug_un is set to NULL.
2292 	 */
2293 	if ((sd_component_mask & comp) && (sd_level_mask & SD_LOGMASK_ERROR) &&
2294 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2295 		mutex_enter(&sd_log_mutex);
2296 		va_start(ap, fmt);
2297 		(void) vsprintf(sd_log_buf, fmt, ap);
2298 		va_end(ap);
2299 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2300 		mutex_exit(&sd_log_mutex);
2301 	}
2302 #ifdef SD_FAULT_INJECTION
2303 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2304 	if (un->sd_injection_mask & comp) {
2305 		mutex_enter(&sd_log_mutex);
2306 		va_start(ap, fmt);
2307 		(void) vsprintf(sd_log_buf, fmt, ap);
2308 		va_end(ap);
2309 		sd_injection_log(sd_log_buf, un);
2310 		mutex_exit(&sd_log_mutex);
2311 	}
2312 #endif
2313 }
2314 
2315 
2316 /*
2317  *    Function: sd_log_info
2318  *
2319  * Description: This routine is called by the SD_INFO macro for debug
2320  *		logging of general purpose informational conditions.
2321  *
2322  *   Arguments: comp - driver component being logged
2323  *		dev  - pointer to driver info structure
2324  *		fmt  - info string and format to be logged
2325  */
2326 
2327 static void
2328 sd_log_info(uint_t component, struct sd_lun *un, const char *fmt, ...)
2329 {
2330 	va_list		ap;
2331 	dev_info_t	*dev;
2332 
2333 	ASSERT(un != NULL);
2334 	dev = SD_DEVINFO(un);
2335 	ASSERT(dev != NULL);
2336 
2337 	/*
2338 	 * Filter messages based on the global component and level masks.
2339 	 * Also print if un matches the value of sd_debug_un, or if
2340 	 * sd_debug_un is set to NULL.
2341 	 */
2342 	if ((sd_component_mask & component) &&
2343 	    (sd_level_mask & SD_LOGMASK_INFO) &&
2344 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2345 		mutex_enter(&sd_log_mutex);
2346 		va_start(ap, fmt);
2347 		(void) vsprintf(sd_log_buf, fmt, ap);
2348 		va_end(ap);
2349 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2350 		mutex_exit(&sd_log_mutex);
2351 	}
2352 #ifdef SD_FAULT_INJECTION
2353 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2354 	if (un->sd_injection_mask & component) {
2355 		mutex_enter(&sd_log_mutex);
2356 		va_start(ap, fmt);
2357 		(void) vsprintf(sd_log_buf, fmt, ap);
2358 		va_end(ap);
2359 		sd_injection_log(sd_log_buf, un);
2360 		mutex_exit(&sd_log_mutex);
2361 	}
2362 #endif
2363 }
2364 
2365 
2366 /*
2367  *    Function: sd_log_trace
2368  *
2369  * Description: This routine is called by the SD_TRACE macro for debug
2370  *		logging of trace conditions (i.e. function entry/exit).
2371  *
2372  *   Arguments: comp - driver component being logged
2373  *		dev  - pointer to driver info structure
2374  *		fmt  - trace string and format to be logged
2375  */
2376 
2377 static void
2378 sd_log_trace(uint_t component, struct sd_lun *un, const char *fmt, ...)
2379 {
2380 	va_list		ap;
2381 	dev_info_t	*dev;
2382 
2383 	ASSERT(un != NULL);
2384 	dev = SD_DEVINFO(un);
2385 	ASSERT(dev != NULL);
2386 
2387 	/*
2388 	 * Filter messages based on the global component and level masks.
2389 	 * Also print if un matches the value of sd_debug_un, or if
2390 	 * sd_debug_un is set to NULL.
2391 	 */
2392 	if ((sd_component_mask & component) &&
2393 	    (sd_level_mask & SD_LOGMASK_TRACE) &&
2394 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2395 		mutex_enter(&sd_log_mutex);
2396 		va_start(ap, fmt);
2397 		(void) vsprintf(sd_log_buf, fmt, ap);
2398 		va_end(ap);
2399 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2400 		mutex_exit(&sd_log_mutex);
2401 	}
2402 #ifdef SD_FAULT_INJECTION
2403 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2404 	if (un->sd_injection_mask & component) {
2405 		mutex_enter(&sd_log_mutex);
2406 		va_start(ap, fmt);
2407 		(void) vsprintf(sd_log_buf, fmt, ap);
2408 		va_end(ap);
2409 		sd_injection_log(sd_log_buf, un);
2410 		mutex_exit(&sd_log_mutex);
2411 	}
2412 #endif
2413 }
2414 
2415 
2416 /*
2417  *    Function: sdprobe
2418  *
2419  * Description: This is the driver probe(9e) entry point function.
2420  *
2421  *   Arguments: devi - opaque device info handle
2422  *
2423  * Return Code: DDI_PROBE_SUCCESS: If the probe was successful.
2424  *              DDI_PROBE_FAILURE: If the probe failed.
2425  *              DDI_PROBE_PARTIAL: If the instance is not present now,
2426  *				   but may be present in the future.
2427  */
2428 
2429 static int
2430 sdprobe(dev_info_t *devi)
2431 {
2432 	struct scsi_device	*devp;
2433 	int			rval;
2434 	int			instance;
2435 
2436 	/*
2437 	 * if it wasn't for pln, sdprobe could actually be nulldev
2438 	 * in the "__fibre" case.
2439 	 */
2440 	if (ddi_dev_is_sid(devi) == DDI_SUCCESS) {
2441 		return (DDI_PROBE_DONTCARE);
2442 	}
2443 
2444 	devp = ddi_get_driver_private(devi);
2445 
2446 	if (devp == NULL) {
2447 		/* Ooops... nexus driver is mis-configured... */
2448 		return (DDI_PROBE_FAILURE);
2449 	}
2450 
2451 	instance = ddi_get_instance(devi);
2452 
2453 	if (ddi_get_soft_state(sd_state, instance) != NULL) {
2454 		return (DDI_PROBE_PARTIAL);
2455 	}
2456 
2457 	/*
2458 	 * Call the SCSA utility probe routine to see if we actually
2459 	 * have a target at this SCSI nexus.
2460 	 */
2461 	switch (sd_scsi_probe_with_cache(devp, NULL_FUNC)) {
2462 	case SCSIPROBE_EXISTS:
2463 		switch (devp->sd_inq->inq_dtype) {
2464 		case DTYPE_DIRECT:
2465 			rval = DDI_PROBE_SUCCESS;
2466 			break;
2467 		case DTYPE_RODIRECT:
2468 			/* CDs etc. Can be removable media */
2469 			rval = DDI_PROBE_SUCCESS;
2470 			break;
2471 		case DTYPE_OPTICAL:
2472 			/*
2473 			 * Rewritable optical driver HP115AA
2474 			 * Can also be removable media
2475 			 */
2476 
2477 			/*
2478 			 * Do not attempt to bind to  DTYPE_OPTICAL if
2479 			 * pre solaris 9 sparc sd behavior is required
2480 			 *
2481 			 * If first time through and sd_dtype_optical_bind
2482 			 * has not been set in /etc/system check properties
2483 			 */
2484 
2485 			if (sd_dtype_optical_bind  < 0) {
2486 				sd_dtype_optical_bind = ddi_prop_get_int
2487 				    (DDI_DEV_T_ANY, devi, 0,
2488 				    "optical-device-bind", 1);
2489 			}
2490 
2491 			if (sd_dtype_optical_bind == 0) {
2492 				rval = DDI_PROBE_FAILURE;
2493 			} else {
2494 				rval = DDI_PROBE_SUCCESS;
2495 			}
2496 			break;
2497 
2498 		case DTYPE_NOTPRESENT:
2499 		default:
2500 			rval = DDI_PROBE_FAILURE;
2501 			break;
2502 		}
2503 		break;
2504 	default:
2505 		rval = DDI_PROBE_PARTIAL;
2506 		break;
2507 	}
2508 
2509 	/*
2510 	 * This routine checks for resource allocation prior to freeing,
2511 	 * so it will take care of the "smart probing" case where a
2512 	 * scsi_probe() may or may not have been issued and will *not*
2513 	 * free previously-freed resources.
2514 	 */
2515 	scsi_unprobe(devp);
2516 	return (rval);
2517 }
2518 
2519 
2520 /*
2521  *    Function: sdinfo
2522  *
2523  * Description: This is the driver getinfo(9e) entry point function.
2524  * 		Given the device number, return the devinfo pointer from
2525  *		the scsi_device structure or the instance number
2526  *		associated with the dev_t.
2527  *
2528  *   Arguments: dip     - pointer to device info structure
2529  *		infocmd - command argument (DDI_INFO_DEVT2DEVINFO,
2530  *			  DDI_INFO_DEVT2INSTANCE)
2531  *		arg     - driver dev_t
2532  *		resultp - user buffer for request response
2533  *
2534  * Return Code: DDI_SUCCESS
2535  *              DDI_FAILURE
2536  */
2537 /* ARGSUSED */
2538 static int
2539 sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
2540 {
2541 	struct sd_lun	*un;
2542 	dev_t		dev;
2543 	int		instance;
2544 	int		error;
2545 
2546 	switch (infocmd) {
2547 	case DDI_INFO_DEVT2DEVINFO:
2548 		dev = (dev_t)arg;
2549 		instance = SDUNIT(dev);
2550 		if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
2551 			return (DDI_FAILURE);
2552 		}
2553 		*result = (void *) SD_DEVINFO(un);
2554 		error = DDI_SUCCESS;
2555 		break;
2556 	case DDI_INFO_DEVT2INSTANCE:
2557 		dev = (dev_t)arg;
2558 		instance = SDUNIT(dev);
2559 		*result = (void *)(uintptr_t)instance;
2560 		error = DDI_SUCCESS;
2561 		break;
2562 	default:
2563 		error = DDI_FAILURE;
2564 	}
2565 	return (error);
2566 }
2567 
2568 /*
2569  *    Function: sd_prop_op
2570  *
2571  * Description: This is the driver prop_op(9e) entry point function.
2572  *		Return the number of blocks for the partition in question
2573  *		or forward the request to the property facilities.
2574  *
2575  *   Arguments: dev       - device number
2576  *		dip       - pointer to device info structure
2577  *		prop_op   - property operator
2578  *		mod_flags - DDI_PROP_DONTPASS, don't pass to parent
2579  *		name      - pointer to property name
2580  *		valuep    - pointer or address of the user buffer
2581  *		lengthp   - property length
2582  *
2583  * Return Code: DDI_PROP_SUCCESS
2584  *              DDI_PROP_NOT_FOUND
2585  *              DDI_PROP_UNDEFINED
2586  *              DDI_PROP_NO_MEMORY
2587  *              DDI_PROP_BUF_TOO_SMALL
2588  */
2589 
2590 static int
2591 sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
2592 	char *name, caddr_t valuep, int *lengthp)
2593 {
2594 	int		instance = ddi_get_instance(dip);
2595 	struct sd_lun	*un;
2596 	uint64_t	nblocks64;
2597 	uint_t		dblk;
2598 
2599 	/*
2600 	 * Our dynamic properties are all device specific and size oriented.
2601 	 * Requests issued under conditions where size is valid are passed
2602 	 * to ddi_prop_op_nblocks with the size information, otherwise the
2603 	 * request is passed to ddi_prop_op. Size depends on valid geometry.
2604 	 */
2605 	un = ddi_get_soft_state(sd_state, instance);
2606 	if ((dev == DDI_DEV_T_ANY) || (un == NULL)) {
2607 		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
2608 		    name, valuep, lengthp));
2609 	} else if (!SD_IS_VALID_LABEL(un)) {
2610 		return (ddi_prop_op(dev, dip, prop_op, mod_flags, name,
2611 		    valuep, lengthp));
2612 	}
2613 
2614 	/* get nblocks value */
2615 	ASSERT(!mutex_owned(SD_MUTEX(un)));
2616 
2617 	(void) cmlb_partinfo(un->un_cmlbhandle, SDPART(dev),
2618 	    (diskaddr_t *)&nblocks64, NULL, NULL, NULL, (void *)SD_PATH_DIRECT);
2619 
2620 	/* report size in target size blocks */
2621 	dblk = un->un_tgt_blocksize / un->un_sys_blocksize;
2622 	return (ddi_prop_op_nblocks_blksize(dev, dip, prop_op, mod_flags,
2623 	    name, valuep, lengthp, nblocks64 / dblk, un->un_tgt_blocksize));
2624 }
2625 
2626 /*
2627  * The following functions are for smart probing:
2628  * sd_scsi_probe_cache_init()
2629  * sd_scsi_probe_cache_fini()
2630  * sd_scsi_clear_probe_cache()
2631  * sd_scsi_probe_with_cache()
2632  */
2633 
2634 /*
2635  *    Function: sd_scsi_probe_cache_init
2636  *
2637  * Description: Initializes the probe response cache mutex and head pointer.
2638  *
2639  *     Context: Kernel thread context
2640  */
2641 
2642 static void
2643 sd_scsi_probe_cache_init(void)
2644 {
2645 	mutex_init(&sd_scsi_probe_cache_mutex, NULL, MUTEX_DRIVER, NULL);
2646 	sd_scsi_probe_cache_head = NULL;
2647 }
2648 
2649 
2650 /*
2651  *    Function: sd_scsi_probe_cache_fini
2652  *
2653  * Description: Frees all resources associated with the probe response cache.
2654  *
2655  *     Context: Kernel thread context
2656  */
2657 
2658 static void
2659 sd_scsi_probe_cache_fini(void)
2660 {
2661 	struct sd_scsi_probe_cache *cp;
2662 	struct sd_scsi_probe_cache *ncp;
2663 
2664 	/* Clean up our smart probing linked list */
2665 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = ncp) {
2666 		ncp = cp->next;
2667 		kmem_free(cp, sizeof (struct sd_scsi_probe_cache));
2668 	}
2669 	sd_scsi_probe_cache_head = NULL;
2670 	mutex_destroy(&sd_scsi_probe_cache_mutex);
2671 }
2672 
2673 
2674 /*
2675  *    Function: sd_scsi_clear_probe_cache
2676  *
2677  * Description: This routine clears the probe response cache. This is
2678  *		done when open() returns ENXIO so that when deferred
2679  *		attach is attempted (possibly after a device has been
2680  *		turned on) we will retry the probe. Since we don't know
2681  *		which target we failed to open, we just clear the
2682  *		entire cache.
2683  *
2684  *     Context: Kernel thread context
2685  */
2686 
2687 static void
2688 sd_scsi_clear_probe_cache(void)
2689 {
2690 	struct sd_scsi_probe_cache	*cp;
2691 	int				i;
2692 
2693 	mutex_enter(&sd_scsi_probe_cache_mutex);
2694 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2695 		/*
2696 		 * Reset all entries to SCSIPROBE_EXISTS.  This will
2697 		 * force probing to be performed the next time
2698 		 * sd_scsi_probe_with_cache is called.
2699 		 */
2700 		for (i = 0; i < NTARGETS_WIDE; i++) {
2701 			cp->cache[i] = SCSIPROBE_EXISTS;
2702 		}
2703 	}
2704 	mutex_exit(&sd_scsi_probe_cache_mutex);
2705 }
2706 
2707 
2708 /*
2709  *    Function: sd_scsi_probe_with_cache
2710  *
2711  * Description: This routine implements support for a scsi device probe
2712  *		with cache. The driver maintains a cache of the target
2713  *		responses to scsi probes. If we get no response from a
2714  *		target during a probe inquiry, we remember that, and we
2715  *		avoid additional calls to scsi_probe on non-zero LUNs
2716  *		on the same target until the cache is cleared. By doing
2717  *		so we avoid the 1/4 sec selection timeout for nonzero
2718  *		LUNs. lun0 of a target is always probed.
2719  *
2720  *   Arguments: devp     - Pointer to a scsi_device(9S) structure
2721  *              waitfunc - indicates what the allocator routines should
2722  *			   do when resources are not available. This value
2723  *			   is passed on to scsi_probe() when that routine
2724  *			   is called.
2725  *
2726  * Return Code: SCSIPROBE_NORESP if a NORESP in probe response cache;
2727  *		otherwise the value returned by scsi_probe(9F).
2728  *
2729  *     Context: Kernel thread context
2730  */
2731 
2732 static int
2733 sd_scsi_probe_with_cache(struct scsi_device *devp, int (*waitfn)())
2734 {
2735 	struct sd_scsi_probe_cache	*cp;
2736 	dev_info_t	*pdip = ddi_get_parent(devp->sd_dev);
2737 	int		lun, tgt;
2738 
2739 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2740 	    SCSI_ADDR_PROP_LUN, 0);
2741 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2742 	    SCSI_ADDR_PROP_TARGET, -1);
2743 
2744 	/* Make sure caching enabled and target in range */
2745 	if ((tgt < 0) || (tgt >= NTARGETS_WIDE)) {
2746 		/* do it the old way (no cache) */
2747 		return (scsi_probe(devp, waitfn));
2748 	}
2749 
2750 	mutex_enter(&sd_scsi_probe_cache_mutex);
2751 
2752 	/* Find the cache for this scsi bus instance */
2753 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2754 		if (cp->pdip == pdip) {
2755 			break;
2756 		}
2757 	}
2758 
2759 	/* If we can't find a cache for this pdip, create one */
2760 	if (cp == NULL) {
2761 		int i;
2762 
2763 		cp = kmem_zalloc(sizeof (struct sd_scsi_probe_cache),
2764 		    KM_SLEEP);
2765 		cp->pdip = pdip;
2766 		cp->next = sd_scsi_probe_cache_head;
2767 		sd_scsi_probe_cache_head = cp;
2768 		for (i = 0; i < NTARGETS_WIDE; i++) {
2769 			cp->cache[i] = SCSIPROBE_EXISTS;
2770 		}
2771 	}
2772 
2773 	mutex_exit(&sd_scsi_probe_cache_mutex);
2774 
2775 	/* Recompute the cache for this target if LUN zero */
2776 	if (lun == 0) {
2777 		cp->cache[tgt] = SCSIPROBE_EXISTS;
2778 	}
2779 
2780 	/* Don't probe if cache remembers a NORESP from a previous LUN. */
2781 	if (cp->cache[tgt] != SCSIPROBE_EXISTS) {
2782 		return (SCSIPROBE_NORESP);
2783 	}
2784 
2785 	/* Do the actual probe; save & return the result */
2786 	return (cp->cache[tgt] = scsi_probe(devp, waitfn));
2787 }
2788 
2789 
2790 /*
2791  *    Function: sd_scsi_target_lun_init
2792  *
2793  * Description: Initializes the attached lun chain mutex and head pointer.
2794  *
2795  *     Context: Kernel thread context
2796  */
2797 
2798 static void
2799 sd_scsi_target_lun_init(void)
2800 {
2801 	mutex_init(&sd_scsi_target_lun_mutex, NULL, MUTEX_DRIVER, NULL);
2802 	sd_scsi_target_lun_head = NULL;
2803 }
2804 
2805 
2806 /*
2807  *    Function: sd_scsi_target_lun_fini
2808  *
2809  * Description: Frees all resources associated with the attached lun
2810  *              chain
2811  *
2812  *     Context: Kernel thread context
2813  */
2814 
2815 static void
2816 sd_scsi_target_lun_fini(void)
2817 {
2818 	struct sd_scsi_hba_tgt_lun	*cp;
2819 	struct sd_scsi_hba_tgt_lun	*ncp;
2820 
2821 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = ncp) {
2822 		ncp = cp->next;
2823 		kmem_free(cp, sizeof (struct sd_scsi_hba_tgt_lun));
2824 	}
2825 	sd_scsi_target_lun_head = NULL;
2826 	mutex_destroy(&sd_scsi_target_lun_mutex);
2827 }
2828 
2829 
2830 /*
2831  *    Function: sd_scsi_get_target_lun_count
2832  *
2833  * Description: This routine will check in the attached lun chain to see
2834  * 		how many luns are attached on the required SCSI controller
2835  * 		and target. Currently, some capabilities like tagged queue
2836  *		are supported per target based by HBA. So all luns in a
2837  *		target have the same capabilities. Based on this assumption,
2838  * 		sd should only set these capabilities once per target. This
2839  *		function is called when sd needs to decide how many luns
2840  *		already attached on a target.
2841  *
2842  *   Arguments: dip	- Pointer to the system's dev_info_t for the SCSI
2843  *			  controller device.
2844  *              target	- The target ID on the controller's SCSI bus.
2845  *
2846  * Return Code: The number of luns attached on the required target and
2847  *		controller.
2848  *		-1 if target ID is not in parallel SCSI scope or the given
2849  * 		dip is not in the chain.
2850  *
2851  *     Context: Kernel thread context
2852  */
2853 
2854 static int
2855 sd_scsi_get_target_lun_count(dev_info_t *dip, int target)
2856 {
2857 	struct sd_scsi_hba_tgt_lun	*cp;
2858 
2859 	if ((target < 0) || (target >= NTARGETS_WIDE)) {
2860 		return (-1);
2861 	}
2862 
2863 	mutex_enter(&sd_scsi_target_lun_mutex);
2864 
2865 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
2866 		if (cp->pdip == dip) {
2867 			break;
2868 		}
2869 	}
2870 
2871 	mutex_exit(&sd_scsi_target_lun_mutex);
2872 
2873 	if (cp == NULL) {
2874 		return (-1);
2875 	}
2876 
2877 	return (cp->nlun[target]);
2878 }
2879 
2880 
2881 /*
2882  *    Function: sd_scsi_update_lun_on_target
2883  *
2884  * Description: This routine is used to update the attached lun chain when a
2885  *		lun is attached or detached on a target.
2886  *
2887  *   Arguments: dip     - Pointer to the system's dev_info_t for the SCSI
2888  *                        controller device.
2889  *              target  - The target ID on the controller's SCSI bus.
2890  *		flag	- Indicate the lun is attached or detached.
2891  *
2892  *     Context: Kernel thread context
2893  */
2894 
2895 static void
2896 sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag)
2897 {
2898 	struct sd_scsi_hba_tgt_lun	*cp;
2899 
2900 	mutex_enter(&sd_scsi_target_lun_mutex);
2901 
2902 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
2903 		if (cp->pdip == dip) {
2904 			break;
2905 		}
2906 	}
2907 
2908 	if ((cp == NULL) && (flag == SD_SCSI_LUN_ATTACH)) {
2909 		cp = kmem_zalloc(sizeof (struct sd_scsi_hba_tgt_lun),
2910 		    KM_SLEEP);
2911 		cp->pdip = dip;
2912 		cp->next = sd_scsi_target_lun_head;
2913 		sd_scsi_target_lun_head = cp;
2914 	}
2915 
2916 	mutex_exit(&sd_scsi_target_lun_mutex);
2917 
2918 	if (cp != NULL) {
2919 		if (flag == SD_SCSI_LUN_ATTACH) {
2920 			cp->nlun[target] ++;
2921 		} else {
2922 			cp->nlun[target] --;
2923 		}
2924 	}
2925 }
2926 
2927 
2928 /*
2929  *    Function: sd_spin_up_unit
2930  *
2931  * Description: Issues the following commands to spin-up the device:
2932  *		START STOP UNIT, and INQUIRY.
2933  *
2934  *   Arguments: un - driver soft state (unit) structure
2935  *
2936  * Return Code: 0 - success
2937  *		EIO - failure
2938  *		EACCES - reservation conflict
2939  *
2940  *     Context: Kernel thread context
2941  */
2942 
2943 static int
2944 sd_spin_up_unit(struct sd_lun *un)
2945 {
2946 	size_t	resid		= 0;
2947 	int	has_conflict	= FALSE;
2948 	uchar_t *bufaddr;
2949 
2950 	ASSERT(un != NULL);
2951 
2952 	/*
2953 	 * Send a throwaway START UNIT command.
2954 	 *
2955 	 * If we fail on this, we don't care presently what precisely
2956 	 * is wrong.  EMC's arrays will also fail this with a check
2957 	 * condition (0x2/0x4/0x3) if the device is "inactive," but
2958 	 * we don't want to fail the attach because it may become
2959 	 * "active" later.
2960 	 */
2961 	if (sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START, SD_PATH_DIRECT)
2962 	    == EACCES)
2963 		has_conflict = TRUE;
2964 
2965 	/*
2966 	 * Send another INQUIRY command to the target. This is necessary for
2967 	 * non-removable media direct access devices because their INQUIRY data
2968 	 * may not be fully qualified until they are spun up (perhaps via the
2969 	 * START command above).  Note: This seems to be needed for some
2970 	 * legacy devices only.) The INQUIRY command should succeed even if a
2971 	 * Reservation Conflict is present.
2972 	 */
2973 	bufaddr = kmem_zalloc(SUN_INQSIZE, KM_SLEEP);
2974 	if (sd_send_scsi_INQUIRY(un, bufaddr, SUN_INQSIZE, 0, 0, &resid) != 0) {
2975 		kmem_free(bufaddr, SUN_INQSIZE);
2976 		return (EIO);
2977 	}
2978 
2979 	/*
2980 	 * If we got enough INQUIRY data, copy it over the old INQUIRY data.
2981 	 * Note that this routine does not return a failure here even if the
2982 	 * INQUIRY command did not return any data.  This is a legacy behavior.
2983 	 */
2984 	if ((SUN_INQSIZE - resid) >= SUN_MIN_INQLEN) {
2985 		bcopy(bufaddr, SD_INQUIRY(un), SUN_INQSIZE);
2986 	}
2987 
2988 	kmem_free(bufaddr, SUN_INQSIZE);
2989 
2990 	/* If we hit a reservation conflict above, tell the caller. */
2991 	if (has_conflict == TRUE) {
2992 		return (EACCES);
2993 	}
2994 
2995 	return (0);
2996 }
2997 
2998 #ifdef _LP64
2999 /*
3000  *    Function: sd_enable_descr_sense
3001  *
3002  * Description: This routine attempts to select descriptor sense format
3003  *		using the Control mode page.  Devices that support 64 bit
3004  *		LBAs (for >2TB luns) should also implement descriptor
3005  *		sense data so we will call this function whenever we see
3006  *		a lun larger than 2TB.  If for some reason the device
3007  *		supports 64 bit LBAs but doesn't support descriptor sense
3008  *		presumably the mode select will fail.  Everything will
3009  *		continue to work normally except that we will not get
3010  *		complete sense data for commands that fail with an LBA
3011  *		larger than 32 bits.
3012  *
3013  *   Arguments: un - driver soft state (unit) structure
3014  *
3015  *     Context: Kernel thread context only
3016  */
3017 
3018 static void
3019 sd_enable_descr_sense(struct sd_lun *un)
3020 {
3021 	uchar_t			*header;
3022 	struct mode_control_scsi3 *ctrl_bufp;
3023 	size_t			buflen;
3024 	size_t			bd_len;
3025 
3026 	/*
3027 	 * Read MODE SENSE page 0xA, Control Mode Page
3028 	 */
3029 	buflen = MODE_HEADER_LENGTH + MODE_BLK_DESC_LENGTH +
3030 	    sizeof (struct mode_control_scsi3);
3031 	header = kmem_zalloc(buflen, KM_SLEEP);
3032 	if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
3033 	    MODEPAGE_CTRL_MODE, SD_PATH_DIRECT) != 0) {
3034 		SD_ERROR(SD_LOG_COMMON, un,
3035 		    "sd_enable_descr_sense: mode sense ctrl page failed\n");
3036 		goto eds_exit;
3037 	}
3038 
3039 	/*
3040 	 * Determine size of Block Descriptors in order to locate
3041 	 * the mode page data. ATAPI devices return 0, SCSI devices
3042 	 * should return MODE_BLK_DESC_LENGTH.
3043 	 */
3044 	bd_len  = ((struct mode_header *)header)->bdesc_length;
3045 
3046 	/* Clear the mode data length field for MODE SELECT */
3047 	((struct mode_header *)header)->length = 0;
3048 
3049 	ctrl_bufp = (struct mode_control_scsi3 *)
3050 	    (header + MODE_HEADER_LENGTH + bd_len);
3051 
3052 	/*
3053 	 * If the page length is smaller than the expected value,
3054 	 * the target device doesn't support D_SENSE. Bail out here.
3055 	 */
3056 	if (ctrl_bufp->mode_page.length <
3057 	    sizeof (struct mode_control_scsi3) - 2) {
3058 		SD_ERROR(SD_LOG_COMMON, un,
3059 		    "sd_enable_descr_sense: enable D_SENSE failed\n");
3060 		goto eds_exit;
3061 	}
3062 
3063 	/*
3064 	 * Clear PS bit for MODE SELECT
3065 	 */
3066 	ctrl_bufp->mode_page.ps = 0;
3067 
3068 	/*
3069 	 * Set D_SENSE to enable descriptor sense format.
3070 	 */
3071 	ctrl_bufp->d_sense = 1;
3072 
3073 	/*
3074 	 * Use MODE SELECT to commit the change to the D_SENSE bit
3075 	 */
3076 	if (sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, header,
3077 	    buflen, SD_DONTSAVE_PAGE, SD_PATH_DIRECT) != 0) {
3078 		SD_INFO(SD_LOG_COMMON, un,
3079 		    "sd_enable_descr_sense: mode select ctrl page failed\n");
3080 		goto eds_exit;
3081 	}
3082 
3083 eds_exit:
3084 	kmem_free(header, buflen);
3085 }
3086 
3087 /*
3088  *    Function: sd_reenable_dsense_task
3089  *
3090  * Description: Re-enable descriptor sense after device or bus reset
3091  *
3092  *     Context: Executes in a taskq() thread context
3093  */
3094 static void
3095 sd_reenable_dsense_task(void *arg)
3096 {
3097 	struct	sd_lun	*un = arg;
3098 
3099 	ASSERT(un != NULL);
3100 	sd_enable_descr_sense(un);
3101 }
3102 #endif /* _LP64 */
3103 
3104 /*
3105  *    Function: sd_set_mmc_caps
3106  *
3107  * Description: This routine determines if the device is MMC compliant and if
3108  *		the device supports CDDA via a mode sense of the CDVD
3109  *		capabilities mode page. Also checks if the device is a
3110  *		dvdram writable device.
3111  *
3112  *   Arguments: un - driver soft state (unit) structure
3113  *
3114  *     Context: Kernel thread context only
3115  */
3116 
3117 static void
3118 sd_set_mmc_caps(struct sd_lun *un)
3119 {
3120 	struct mode_header_grp2		*sense_mhp;
3121 	uchar_t				*sense_page;
3122 	caddr_t				buf;
3123 	int				bd_len;
3124 	int				status;
3125 	struct uscsi_cmd		com;
3126 	int				rtn;
3127 	uchar_t				*out_data_rw, *out_data_hd;
3128 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3129 
3130 	ASSERT(un != NULL);
3131 
3132 	/*
3133 	 * The flags which will be set in this function are - mmc compliant,
3134 	 * dvdram writable device, cdda support. Initialize them to FALSE
3135 	 * and if a capability is detected - it will be set to TRUE.
3136 	 */
3137 	un->un_f_mmc_cap = FALSE;
3138 	un->un_f_dvdram_writable_device = FALSE;
3139 	un->un_f_cfg_cdda = FALSE;
3140 
3141 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3142 	status = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, (uchar_t *)buf,
3143 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT);
3144 
3145 	if (status != 0) {
3146 		/* command failed; just return */
3147 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3148 		return;
3149 	}
3150 	/*
3151 	 * If the mode sense request for the CDROM CAPABILITIES
3152 	 * page (0x2A) succeeds the device is assumed to be MMC.
3153 	 */
3154 	un->un_f_mmc_cap = TRUE;
3155 
3156 	/* Get to the page data */
3157 	sense_mhp = (struct mode_header_grp2 *)buf;
3158 	bd_len = (sense_mhp->bdesc_length_hi << 8) |
3159 	    sense_mhp->bdesc_length_lo;
3160 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3161 		/*
3162 		 * We did not get back the expected block descriptor
3163 		 * length so we cannot determine if the device supports
3164 		 * CDDA. However, we still indicate the device is MMC
3165 		 * according to the successful response to the page
3166 		 * 0x2A mode sense request.
3167 		 */
3168 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3169 		    "sd_set_mmc_caps: Mode Sense returned "
3170 		    "invalid block descriptor length\n");
3171 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3172 		return;
3173 	}
3174 
3175 	/* See if read CDDA is supported */
3176 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 +
3177 	    bd_len);
3178 	un->un_f_cfg_cdda = (sense_page[5] & 0x01) ? TRUE : FALSE;
3179 
3180 	/* See if writing DVD RAM is supported. */
3181 	un->un_f_dvdram_writable_device = (sense_page[3] & 0x20) ? TRUE : FALSE;
3182 	if (un->un_f_dvdram_writable_device == TRUE) {
3183 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3184 		return;
3185 	}
3186 
3187 	/*
3188 	 * If the device presents DVD or CD capabilities in the mode
3189 	 * page, we can return here since a RRD will not have
3190 	 * these capabilities.
3191 	 */
3192 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3193 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3194 		return;
3195 	}
3196 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3197 
3198 	/*
3199 	 * If un->un_f_dvdram_writable_device is still FALSE,
3200 	 * check for a Removable Rigid Disk (RRD).  A RRD
3201 	 * device is identified by the features RANDOM_WRITABLE and
3202 	 * HARDWARE_DEFECT_MANAGEMENT.
3203 	 */
3204 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3205 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3206 
3207 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_rw,
3208 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3209 	    RANDOM_WRITABLE, SD_PATH_STANDARD);
3210 	if (rtn != 0) {
3211 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3212 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3213 		return;
3214 	}
3215 
3216 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3217 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3218 
3219 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_hd,
3220 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3221 	    HARDWARE_DEFECT_MANAGEMENT, SD_PATH_STANDARD);
3222 	if (rtn == 0) {
3223 		/*
3224 		 * We have good information, check for random writable
3225 		 * and hardware defect features.
3226 		 */
3227 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3228 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT)) {
3229 			un->un_f_dvdram_writable_device = TRUE;
3230 		}
3231 	}
3232 
3233 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3234 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3235 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3236 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3237 }
3238 
3239 /*
3240  *    Function: sd_check_for_writable_cd
3241  *
3242  * Description: This routine determines if the media in the device is
3243  *		writable or not. It uses the get configuration command (0x46)
3244  *		to determine if the media is writable
3245  *
3246  *   Arguments: un - driver soft state (unit) structure
3247  *              path_flag - SD_PATH_DIRECT to use the USCSI "direct"
3248  *                           chain and the normal command waitq, or
3249  *                           SD_PATH_DIRECT_PRIORITY to use the USCSI
3250  *                           "direct" chain and bypass the normal command
3251  *                           waitq.
3252  *
3253  *     Context: Never called at interrupt context.
3254  */
3255 
3256 static void
3257 sd_check_for_writable_cd(struct sd_lun *un, int path_flag)
3258 {
3259 	struct uscsi_cmd		com;
3260 	uchar_t				*out_data;
3261 	uchar_t				*rqbuf;
3262 	int				rtn;
3263 	uchar_t				*out_data_rw, *out_data_hd;
3264 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3265 	struct mode_header_grp2		*sense_mhp;
3266 	uchar_t				*sense_page;
3267 	caddr_t				buf;
3268 	int				bd_len;
3269 	int				status;
3270 
3271 	ASSERT(un != NULL);
3272 	ASSERT(mutex_owned(SD_MUTEX(un)));
3273 
3274 	/*
3275 	 * Initialize the writable media to false, if configuration info.
3276 	 * tells us otherwise then only we will set it.
3277 	 */
3278 	un->un_f_mmc_writable_media = FALSE;
3279 	mutex_exit(SD_MUTEX(un));
3280 
3281 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
3282 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3283 
3284 	rtn = sd_send_scsi_GET_CONFIGURATION(un, &com, rqbuf, SENSE_LENGTH,
3285 	    out_data, SD_PROFILE_HEADER_LEN, path_flag);
3286 
3287 	mutex_enter(SD_MUTEX(un));
3288 	if (rtn == 0) {
3289 		/*
3290 		 * We have good information, check for writable DVD.
3291 		 */
3292 		if ((out_data[6] == 0) && (out_data[7] == 0x12)) {
3293 			un->un_f_mmc_writable_media = TRUE;
3294 			kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3295 			kmem_free(rqbuf, SENSE_LENGTH);
3296 			return;
3297 		}
3298 	}
3299 
3300 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3301 	kmem_free(rqbuf, SENSE_LENGTH);
3302 
3303 	/*
3304 	 * Determine if this is a RRD type device.
3305 	 */
3306 	mutex_exit(SD_MUTEX(un));
3307 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3308 	status = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, (uchar_t *)buf,
3309 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, path_flag);
3310 	mutex_enter(SD_MUTEX(un));
3311 	if (status != 0) {
3312 		/* command failed; just return */
3313 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3314 		return;
3315 	}
3316 
3317 	/* Get to the page data */
3318 	sense_mhp = (struct mode_header_grp2 *)buf;
3319 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
3320 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3321 		/*
3322 		 * We did not get back the expected block descriptor length so
3323 		 * we cannot check the mode page.
3324 		 */
3325 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3326 		    "sd_check_for_writable_cd: Mode Sense returned "
3327 		    "invalid block descriptor length\n");
3328 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3329 		return;
3330 	}
3331 
3332 	/*
3333 	 * If the device presents DVD or CD capabilities in the mode
3334 	 * page, we can return here since a RRD device will not have
3335 	 * these capabilities.
3336 	 */
3337 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 + bd_len);
3338 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3339 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3340 		return;
3341 	}
3342 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3343 
3344 	/*
3345 	 * If un->un_f_mmc_writable_media is still FALSE,
3346 	 * check for RRD type media.  A RRD device is identified
3347 	 * by the features RANDOM_WRITABLE and HARDWARE_DEFECT_MANAGEMENT.
3348 	 */
3349 	mutex_exit(SD_MUTEX(un));
3350 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3351 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3352 
3353 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_rw,
3354 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3355 	    RANDOM_WRITABLE, path_flag);
3356 	if (rtn != 0) {
3357 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3358 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3359 		mutex_enter(SD_MUTEX(un));
3360 		return;
3361 	}
3362 
3363 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3364 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3365 
3366 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_hd,
3367 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3368 	    HARDWARE_DEFECT_MANAGEMENT, path_flag);
3369 	mutex_enter(SD_MUTEX(un));
3370 	if (rtn == 0) {
3371 		/*
3372 		 * We have good information, check for random writable
3373 		 * and hardware defect features as current.
3374 		 */
3375 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3376 		    (out_data_rw[10] & 0x1) &&
3377 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT) &&
3378 		    (out_data_hd[10] & 0x1)) {
3379 			un->un_f_mmc_writable_media = TRUE;
3380 		}
3381 	}
3382 
3383 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3384 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3385 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3386 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3387 }
3388 
3389 /*
3390  *    Function: sd_read_unit_properties
3391  *
3392  * Description: The following implements a property lookup mechanism.
3393  *		Properties for particular disks (keyed on vendor, model
3394  *		and rev numbers) are sought in the sd.conf file via
3395  *		sd_process_sdconf_file(), and if not found there, are
3396  *		looked for in a list hardcoded in this driver via
3397  *		sd_process_sdconf_table() Once located the properties
3398  *		are used to update the driver unit structure.
3399  *
3400  *   Arguments: un - driver soft state (unit) structure
3401  */
3402 
3403 static void
3404 sd_read_unit_properties(struct sd_lun *un)
3405 {
3406 	/*
3407 	 * sd_process_sdconf_file returns SD_FAILURE if it cannot find
3408 	 * the "sd-config-list" property (from the sd.conf file) or if
3409 	 * there was not a match for the inquiry vid/pid. If this event
3410 	 * occurs the static driver configuration table is searched for
3411 	 * a match.
3412 	 */
3413 	ASSERT(un != NULL);
3414 	if (sd_process_sdconf_file(un) == SD_FAILURE) {
3415 		sd_process_sdconf_table(un);
3416 	}
3417 
3418 	/* check for LSI device */
3419 	sd_is_lsi(un);
3420 
3421 
3422 }
3423 
3424 
3425 /*
3426  *    Function: sd_process_sdconf_file
3427  *
3428  * Description: Use ddi_getlongprop to obtain the properties from the
3429  *		driver's config file (ie, sd.conf) and update the driver
3430  *		soft state structure accordingly.
3431  *
3432  *   Arguments: un - driver soft state (unit) structure
3433  *
3434  * Return Code: SD_SUCCESS - The properties were successfully set according
3435  *			     to the driver configuration file.
3436  *		SD_FAILURE - The driver config list was not obtained or
3437  *			     there was no vid/pid match. This indicates that
3438  *			     the static config table should be used.
3439  *
3440  * The config file has a property, "sd-config-list", which consists of
3441  * one or more duplets as follows:
3442  *
3443  *  sd-config-list=
3444  *	<duplet>,
3445  *	[<duplet>,]
3446  *	[<duplet>];
3447  *
3448  * The structure of each duplet is as follows:
3449  *
3450  *  <duplet>:= <vid+pid>,<data-property-name_list>
3451  *
3452  * The first entry of the duplet is the device ID string (the concatenated
3453  * vid & pid; not to be confused with a device_id).  This is defined in
3454  * the same way as in the sd_disk_table.
3455  *
3456  * The second part of the duplet is a string that identifies a
3457  * data-property-name-list. The data-property-name-list is defined as
3458  * follows:
3459  *
3460  *  <data-property-name-list>:=<data-property-name> [<data-property-name>]
3461  *
3462  * The syntax of <data-property-name> depends on the <version> field.
3463  *
3464  * If version = SD_CONF_VERSION_1 we have the following syntax:
3465  *
3466  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3467  *
3468  * where the prop0 value will be used to set prop0 if bit0 set in the
3469  * flags, prop1 if bit1 set, etc. and N = SD_CONF_MAX_ITEMS -1
3470  *
3471  */
3472 
3473 static int
3474 sd_process_sdconf_file(struct sd_lun *un)
3475 {
3476 	char	*config_list = NULL;
3477 	int	config_list_len;
3478 	int	len;
3479 	int	dupletlen = 0;
3480 	char	*vidptr;
3481 	int	vidlen;
3482 	char	*dnlist_ptr;
3483 	char	*dataname_ptr;
3484 	int	dnlist_len;
3485 	int	dataname_len;
3486 	int	*data_list;
3487 	int	data_list_len;
3488 	int	rval = SD_FAILURE;
3489 	int	i;
3490 
3491 	ASSERT(un != NULL);
3492 
3493 	/* Obtain the configuration list associated with the .conf file */
3494 	if (ddi_getlongprop(DDI_DEV_T_ANY, SD_DEVINFO(un), DDI_PROP_DONTPASS,
3495 	    sd_config_list, (caddr_t)&config_list, &config_list_len)
3496 	    != DDI_PROP_SUCCESS) {
3497 		return (SD_FAILURE);
3498 	}
3499 
3500 	/*
3501 	 * Compare vids in each duplet to the inquiry vid - if a match is
3502 	 * made, get the data value and update the soft state structure
3503 	 * accordingly.
3504 	 *
3505 	 * Note: This algorithm is complex and difficult to maintain. It should
3506 	 * be replaced with a more robust implementation.
3507 	 */
3508 	for (len = config_list_len, vidptr = config_list; len > 0;
3509 	    vidptr += dupletlen, len -= dupletlen) {
3510 		/*
3511 		 * Note: The assumption here is that each vid entry is on
3512 		 * a unique line from its associated duplet.
3513 		 */
3514 		vidlen = dupletlen = (int)strlen(vidptr);
3515 		if ((vidlen == 0) ||
3516 		    (sd_sdconf_id_match(un, vidptr, vidlen) != SD_SUCCESS)) {
3517 			dupletlen++;
3518 			continue;
3519 		}
3520 
3521 		/*
3522 		 * dnlist contains 1 or more blank separated
3523 		 * data-property-name entries
3524 		 */
3525 		dnlist_ptr = vidptr + vidlen + 1;
3526 		dnlist_len = (int)strlen(dnlist_ptr);
3527 		dupletlen += dnlist_len + 2;
3528 
3529 		/*
3530 		 * Set a pointer for the first data-property-name
3531 		 * entry in the list
3532 		 */
3533 		dataname_ptr = dnlist_ptr;
3534 		dataname_len = 0;
3535 
3536 		/*
3537 		 * Loop through all data-property-name entries in the
3538 		 * data-property-name-list setting the properties for each.
3539 		 */
3540 		while (dataname_len < dnlist_len) {
3541 			int version;
3542 
3543 			/*
3544 			 * Determine the length of the current
3545 			 * data-property-name entry by indexing until a
3546 			 * blank or NULL is encountered. When the space is
3547 			 * encountered reset it to a NULL for compliance
3548 			 * with ddi_getlongprop().
3549 			 */
3550 			for (i = 0; ((dataname_ptr[i] != ' ') &&
3551 			    (dataname_ptr[i] != '\0')); i++) {
3552 				;
3553 			}
3554 
3555 			dataname_len += i;
3556 			/* If not null terminated, Make it so */
3557 			if (dataname_ptr[i] == ' ') {
3558 				dataname_ptr[i] = '\0';
3559 			}
3560 			dataname_len++;
3561 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3562 			    "sd_process_sdconf_file: disk:%s, data:%s\n",
3563 			    vidptr, dataname_ptr);
3564 
3565 			/* Get the data list */
3566 			if (ddi_getlongprop(DDI_DEV_T_ANY, SD_DEVINFO(un), 0,
3567 			    dataname_ptr, (caddr_t)&data_list, &data_list_len)
3568 			    != DDI_PROP_SUCCESS) {
3569 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
3570 				    "sd_process_sdconf_file: data property (%s)"
3571 				    " has no value\n", dataname_ptr);
3572 				dataname_ptr = dnlist_ptr + dataname_len;
3573 				continue;
3574 			}
3575 
3576 			version = data_list[0];
3577 
3578 			if (version == SD_CONF_VERSION_1) {
3579 				sd_tunables values;
3580 
3581 				/* Set the properties */
3582 				if (sd_chk_vers1_data(un, data_list[1],
3583 				    &data_list[2], data_list_len, dataname_ptr)
3584 				    == SD_SUCCESS) {
3585 					sd_get_tunables_from_conf(un,
3586 					    data_list[1], &data_list[2],
3587 					    &values);
3588 					sd_set_vers1_properties(un,
3589 					    data_list[1], &values);
3590 					rval = SD_SUCCESS;
3591 				} else {
3592 					rval = SD_FAILURE;
3593 				}
3594 			} else {
3595 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3596 				    "data property %s version 0x%x is invalid.",
3597 				    dataname_ptr, version);
3598 				rval = SD_FAILURE;
3599 			}
3600 			kmem_free(data_list, data_list_len);
3601 			dataname_ptr = dnlist_ptr + dataname_len;
3602 		}
3603 	}
3604 
3605 	/* free up the memory allocated by ddi_getlongprop */
3606 	if (config_list) {
3607 		kmem_free(config_list, config_list_len);
3608 	}
3609 
3610 	return (rval);
3611 }
3612 
3613 /*
3614  *    Function: sd_get_tunables_from_conf()
3615  *
3616  *
3617  *    This function reads the data list from the sd.conf file and pulls
3618  *    the values that can have numeric values as arguments and places
3619  *    the values in the appropriate sd_tunables member.
3620  *    Since the order of the data list members varies across platforms
3621  *    This function reads them from the data list in a platform specific
3622  *    order and places them into the correct sd_tunable member that is
3623  *    consistent across all platforms.
3624  */
3625 static void
3626 sd_get_tunables_from_conf(struct sd_lun *un, int flags, int *data_list,
3627     sd_tunables *values)
3628 {
3629 	int i;
3630 	int mask;
3631 
3632 	bzero(values, sizeof (sd_tunables));
3633 
3634 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
3635 
3636 		mask = 1 << i;
3637 		if (mask > flags) {
3638 			break;
3639 		}
3640 
3641 		switch (mask & flags) {
3642 		case 0:	/* This mask bit not set in flags */
3643 			continue;
3644 		case SD_CONF_BSET_THROTTLE:
3645 			values->sdt_throttle = data_list[i];
3646 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3647 			    "sd_get_tunables_from_conf: throttle = %d\n",
3648 			    values->sdt_throttle);
3649 			break;
3650 		case SD_CONF_BSET_CTYPE:
3651 			values->sdt_ctype = data_list[i];
3652 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3653 			    "sd_get_tunables_from_conf: ctype = %d\n",
3654 			    values->sdt_ctype);
3655 			break;
3656 		case SD_CONF_BSET_NRR_COUNT:
3657 			values->sdt_not_rdy_retries = data_list[i];
3658 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3659 			    "sd_get_tunables_from_conf: not_rdy_retries = %d\n",
3660 			    values->sdt_not_rdy_retries);
3661 			break;
3662 		case SD_CONF_BSET_BSY_RETRY_COUNT:
3663 			values->sdt_busy_retries = data_list[i];
3664 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3665 			    "sd_get_tunables_from_conf: busy_retries = %d\n",
3666 			    values->sdt_busy_retries);
3667 			break;
3668 		case SD_CONF_BSET_RST_RETRIES:
3669 			values->sdt_reset_retries = data_list[i];
3670 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3671 			    "sd_get_tunables_from_conf: reset_retries = %d\n",
3672 			    values->sdt_reset_retries);
3673 			break;
3674 		case SD_CONF_BSET_RSV_REL_TIME:
3675 			values->sdt_reserv_rel_time = data_list[i];
3676 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3677 			    "sd_get_tunables_from_conf: reserv_rel_time = %d\n",
3678 			    values->sdt_reserv_rel_time);
3679 			break;
3680 		case SD_CONF_BSET_MIN_THROTTLE:
3681 			values->sdt_min_throttle = data_list[i];
3682 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3683 			    "sd_get_tunables_from_conf: min_throttle = %d\n",
3684 			    values->sdt_min_throttle);
3685 			break;
3686 		case SD_CONF_BSET_DISKSORT_DISABLED:
3687 			values->sdt_disk_sort_dis = data_list[i];
3688 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3689 			    "sd_get_tunables_from_conf: disk_sort_dis = %d\n",
3690 			    values->sdt_disk_sort_dis);
3691 			break;
3692 		case SD_CONF_BSET_LUN_RESET_ENABLED:
3693 			values->sdt_lun_reset_enable = data_list[i];
3694 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3695 			    "sd_get_tunables_from_conf: lun_reset_enable = %d"
3696 			    "\n", values->sdt_lun_reset_enable);
3697 			break;
3698 		case SD_CONF_BSET_CACHE_IS_NV:
3699 			values->sdt_suppress_cache_flush = data_list[i];
3700 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3701 			    "sd_get_tunables_from_conf: \
3702 			    suppress_cache_flush = %d"
3703 			    "\n", values->sdt_suppress_cache_flush);
3704 			break;
3705 		}
3706 	}
3707 }
3708 
3709 /*
3710  *    Function: sd_process_sdconf_table
3711  *
3712  * Description: Search the static configuration table for a match on the
3713  *		inquiry vid/pid and update the driver soft state structure
3714  *		according to the table property values for the device.
3715  *
3716  *		The form of a configuration table entry is:
3717  *		  <vid+pid>,<flags>,<property-data>
3718  *		  "SEAGATE ST42400N",1,0x40000,
3719  *		  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1;
3720  *
3721  *   Arguments: un - driver soft state (unit) structure
3722  */
3723 
3724 static void
3725 sd_process_sdconf_table(struct sd_lun *un)
3726 {
3727 	char	*id = NULL;
3728 	int	table_index;
3729 	int	idlen;
3730 
3731 	ASSERT(un != NULL);
3732 	for (table_index = 0; table_index < sd_disk_table_size;
3733 	    table_index++) {
3734 		id = sd_disk_table[table_index].device_id;
3735 		idlen = strlen(id);
3736 		if (idlen == 0) {
3737 			continue;
3738 		}
3739 
3740 		/*
3741 		 * The static configuration table currently does not
3742 		 * implement version 10 properties. Additionally,
3743 		 * multiple data-property-name entries are not
3744 		 * implemented in the static configuration table.
3745 		 */
3746 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
3747 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3748 			    "sd_process_sdconf_table: disk %s\n", id);
3749 			sd_set_vers1_properties(un,
3750 			    sd_disk_table[table_index].flags,
3751 			    sd_disk_table[table_index].properties);
3752 			break;
3753 		}
3754 	}
3755 }
3756 
3757 
3758 /*
3759  *    Function: sd_sdconf_id_match
3760  *
3761  * Description: This local function implements a case sensitive vid/pid
3762  *		comparison as well as the boundary cases of wild card and
3763  *		multiple blanks.
3764  *
3765  *		Note: An implicit assumption made here is that the scsi
3766  *		inquiry structure will always keep the vid, pid and
3767  *		revision strings in consecutive sequence, so they can be
3768  *		read as a single string. If this assumption is not the
3769  *		case, a separate string, to be used for the check, needs
3770  *		to be built with these strings concatenated.
3771  *
3772  *   Arguments: un - driver soft state (unit) structure
3773  *		id - table or config file vid/pid
3774  *		idlen  - length of the vid/pid (bytes)
3775  *
3776  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
3777  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
3778  */
3779 
3780 static int
3781 sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen)
3782 {
3783 	struct scsi_inquiry	*sd_inq;
3784 	int 			rval = SD_SUCCESS;
3785 
3786 	ASSERT(un != NULL);
3787 	sd_inq = un->un_sd->sd_inq;
3788 	ASSERT(id != NULL);
3789 
3790 	/*
3791 	 * We use the inq_vid as a pointer to a buffer containing the
3792 	 * vid and pid and use the entire vid/pid length of the table
3793 	 * entry for the comparison. This works because the inq_pid
3794 	 * data member follows inq_vid in the scsi_inquiry structure.
3795 	 */
3796 	if (strncasecmp(sd_inq->inq_vid, id, idlen) != 0) {
3797 		/*
3798 		 * The user id string is compared to the inquiry vid/pid
3799 		 * using a case insensitive comparison and ignoring
3800 		 * multiple spaces.
3801 		 */
3802 		rval = sd_blank_cmp(un, id, idlen);
3803 		if (rval != SD_SUCCESS) {
3804 			/*
3805 			 * User id strings that start and end with a "*"
3806 			 * are a special case. These do not have a
3807 			 * specific vendor, and the product string can
3808 			 * appear anywhere in the 16 byte PID portion of
3809 			 * the inquiry data. This is a simple strstr()
3810 			 * type search for the user id in the inquiry data.
3811 			 */
3812 			if ((id[0] == '*') && (id[idlen - 1] == '*')) {
3813 				char	*pidptr = &id[1];
3814 				int	i;
3815 				int	j;
3816 				int	pidstrlen = idlen - 2;
3817 				j = sizeof (SD_INQUIRY(un)->inq_pid) -
3818 				    pidstrlen;
3819 
3820 				if (j < 0) {
3821 					return (SD_FAILURE);
3822 				}
3823 				for (i = 0; i < j; i++) {
3824 					if (bcmp(&SD_INQUIRY(un)->inq_pid[i],
3825 					    pidptr, pidstrlen) == 0) {
3826 						rval = SD_SUCCESS;
3827 						break;
3828 					}
3829 				}
3830 			}
3831 		}
3832 	}
3833 	return (rval);
3834 }
3835 
3836 
3837 /*
3838  *    Function: sd_blank_cmp
3839  *
3840  * Description: If the id string starts and ends with a space, treat
3841  *		multiple consecutive spaces as equivalent to a single
3842  *		space. For example, this causes a sd_disk_table entry
3843  *		of " NEC CDROM " to match a device's id string of
3844  *		"NEC       CDROM".
3845  *
3846  *		Note: The success exit condition for this routine is if
3847  *		the pointer to the table entry is '\0' and the cnt of
3848  *		the inquiry length is zero. This will happen if the inquiry
3849  *		string returned by the device is padded with spaces to be
3850  *		exactly 24 bytes in length (8 byte vid + 16 byte pid). The
3851  *		SCSI spec states that the inquiry string is to be padded with
3852  *		spaces.
3853  *
3854  *   Arguments: un - driver soft state (unit) structure
3855  *		id - table or config file vid/pid
3856  *		idlen  - length of the vid/pid (bytes)
3857  *
3858  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
3859  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
3860  */
3861 
3862 static int
3863 sd_blank_cmp(struct sd_lun *un, char *id, int idlen)
3864 {
3865 	char		*p1;
3866 	char		*p2;
3867 	int		cnt;
3868 	cnt = sizeof (SD_INQUIRY(un)->inq_vid) +
3869 	    sizeof (SD_INQUIRY(un)->inq_pid);
3870 
3871 	ASSERT(un != NULL);
3872 	p2 = un->un_sd->sd_inq->inq_vid;
3873 	ASSERT(id != NULL);
3874 	p1 = id;
3875 
3876 	if ((id[0] == ' ') && (id[idlen - 1] == ' ')) {
3877 		/*
3878 		 * Note: string p1 is terminated by a NUL but string p2
3879 		 * isn't.  The end of p2 is determined by cnt.
3880 		 */
3881 		for (;;) {
3882 			/* skip over any extra blanks in both strings */
3883 			while ((*p1 != '\0') && (*p1 == ' ')) {
3884 				p1++;
3885 			}
3886 			while ((cnt != 0) && (*p2 == ' ')) {
3887 				p2++;
3888 				cnt--;
3889 			}
3890 
3891 			/* compare the two strings */
3892 			if ((cnt == 0) ||
3893 			    (SD_TOUPPER(*p1) != SD_TOUPPER(*p2))) {
3894 				break;
3895 			}
3896 			while ((cnt > 0) &&
3897 			    (SD_TOUPPER(*p1) == SD_TOUPPER(*p2))) {
3898 				p1++;
3899 				p2++;
3900 				cnt--;
3901 			}
3902 		}
3903 	}
3904 
3905 	/* return SD_SUCCESS if both strings match */
3906 	return (((*p1 == '\0') && (cnt == 0)) ? SD_SUCCESS : SD_FAILURE);
3907 }
3908 
3909 
3910 /*
3911  *    Function: sd_chk_vers1_data
3912  *
3913  * Description: Verify the version 1 device properties provided by the
3914  *		user via the configuration file
3915  *
3916  *   Arguments: un	     - driver soft state (unit) structure
3917  *		flags	     - integer mask indicating properties to be set
3918  *		prop_list    - integer list of property values
3919  *		list_len     - length of user provided data
3920  *
3921  * Return Code: SD_SUCCESS - Indicates the user provided data is valid
3922  *		SD_FAILURE - Indicates the user provided data is invalid
3923  */
3924 
3925 static int
3926 sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
3927     int list_len, char *dataname_ptr)
3928 {
3929 	int i;
3930 	int mask = 1;
3931 	int index = 0;
3932 
3933 	ASSERT(un != NULL);
3934 
3935 	/* Check for a NULL property name and list */
3936 	if (dataname_ptr == NULL) {
3937 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3938 		    "sd_chk_vers1_data: NULL data property name.");
3939 		return (SD_FAILURE);
3940 	}
3941 	if (prop_list == NULL) {
3942 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3943 		    "sd_chk_vers1_data: %s NULL data property list.",
3944 		    dataname_ptr);
3945 		return (SD_FAILURE);
3946 	}
3947 
3948 	/* Display a warning if undefined bits are set in the flags */
3949 	if (flags & ~SD_CONF_BIT_MASK) {
3950 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3951 		    "sd_chk_vers1_data: invalid bits 0x%x in data list %s. "
3952 		    "Properties not set.",
3953 		    (flags & ~SD_CONF_BIT_MASK), dataname_ptr);
3954 		return (SD_FAILURE);
3955 	}
3956 
3957 	/*
3958 	 * Verify the length of the list by identifying the highest bit set
3959 	 * in the flags and validating that the property list has a length
3960 	 * up to the index of this bit.
3961 	 */
3962 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
3963 		if (flags & mask) {
3964 			index++;
3965 		}
3966 		mask = 1 << i;
3967 	}
3968 	if ((list_len / sizeof (int)) < (index + 2)) {
3969 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3970 		    "sd_chk_vers1_data: "
3971 		    "Data property list %s size is incorrect. "
3972 		    "Properties not set.", dataname_ptr);
3973 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, "Size expected: "
3974 		    "version + 1 flagword + %d properties", SD_CONF_MAX_ITEMS);
3975 		return (SD_FAILURE);
3976 	}
3977 	return (SD_SUCCESS);
3978 }
3979 
3980 
3981 /*
3982  *    Function: sd_set_vers1_properties
3983  *
3984  * Description: Set version 1 device properties based on a property list
3985  *		retrieved from the driver configuration file or static
3986  *		configuration table. Version 1 properties have the format:
3987  *
3988  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3989  *
3990  *		where the prop0 value will be used to set prop0 if bit0
3991  *		is set in the flags
3992  *
3993  *   Arguments: un	     - driver soft state (unit) structure
3994  *		flags	     - integer mask indicating properties to be set
3995  *		prop_list    - integer list of property values
3996  */
3997 
3998 static void
3999 sd_set_vers1_properties(struct sd_lun *un, int flags, sd_tunables *prop_list)
4000 {
4001 	ASSERT(un != NULL);
4002 
4003 	/*
4004 	 * Set the flag to indicate cache is to be disabled. An attempt
4005 	 * to disable the cache via sd_cache_control() will be made
4006 	 * later during attach once the basic initialization is complete.
4007 	 */
4008 	if (flags & SD_CONF_BSET_NOCACHE) {
4009 		un->un_f_opt_disable_cache = TRUE;
4010 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4011 		    "sd_set_vers1_properties: caching disabled flag set\n");
4012 	}
4013 
4014 	/* CD-specific configuration parameters */
4015 	if (flags & SD_CONF_BSET_PLAYMSF_BCD) {
4016 		un->un_f_cfg_playmsf_bcd = TRUE;
4017 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4018 		    "sd_set_vers1_properties: playmsf_bcd set\n");
4019 	}
4020 	if (flags & SD_CONF_BSET_READSUB_BCD) {
4021 		un->un_f_cfg_readsub_bcd = TRUE;
4022 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4023 		    "sd_set_vers1_properties: readsub_bcd set\n");
4024 	}
4025 	if (flags & SD_CONF_BSET_READ_TOC_TRK_BCD) {
4026 		un->un_f_cfg_read_toc_trk_bcd = TRUE;
4027 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4028 		    "sd_set_vers1_properties: read_toc_trk_bcd set\n");
4029 	}
4030 	if (flags & SD_CONF_BSET_READ_TOC_ADDR_BCD) {
4031 		un->un_f_cfg_read_toc_addr_bcd = TRUE;
4032 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4033 		    "sd_set_vers1_properties: read_toc_addr_bcd set\n");
4034 	}
4035 	if (flags & SD_CONF_BSET_NO_READ_HEADER) {
4036 		un->un_f_cfg_no_read_header = TRUE;
4037 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4038 		    "sd_set_vers1_properties: no_read_header set\n");
4039 	}
4040 	if (flags & SD_CONF_BSET_READ_CD_XD4) {
4041 		un->un_f_cfg_read_cd_xd4 = TRUE;
4042 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4043 		    "sd_set_vers1_properties: read_cd_xd4 set\n");
4044 	}
4045 
4046 	/* Support for devices which do not have valid/unique serial numbers */
4047 	if (flags & SD_CONF_BSET_FAB_DEVID) {
4048 		un->un_f_opt_fab_devid = TRUE;
4049 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4050 		    "sd_set_vers1_properties: fab_devid bit set\n");
4051 	}
4052 
4053 	/* Support for user throttle configuration */
4054 	if (flags & SD_CONF_BSET_THROTTLE) {
4055 		ASSERT(prop_list != NULL);
4056 		un->un_saved_throttle = un->un_throttle =
4057 		    prop_list->sdt_throttle;
4058 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4059 		    "sd_set_vers1_properties: throttle set to %d\n",
4060 		    prop_list->sdt_throttle);
4061 	}
4062 
4063 	/* Set the per disk retry count according to the conf file or table. */
4064 	if (flags & SD_CONF_BSET_NRR_COUNT) {
4065 		ASSERT(prop_list != NULL);
4066 		if (prop_list->sdt_not_rdy_retries) {
4067 			un->un_notready_retry_count =
4068 			    prop_list->sdt_not_rdy_retries;
4069 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4070 			    "sd_set_vers1_properties: not ready retry count"
4071 			    " set to %d\n", un->un_notready_retry_count);
4072 		}
4073 	}
4074 
4075 	/* The controller type is reported for generic disk driver ioctls */
4076 	if (flags & SD_CONF_BSET_CTYPE) {
4077 		ASSERT(prop_list != NULL);
4078 		switch (prop_list->sdt_ctype) {
4079 		case CTYPE_CDROM:
4080 			un->un_ctype = prop_list->sdt_ctype;
4081 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4082 			    "sd_set_vers1_properties: ctype set to "
4083 			    "CTYPE_CDROM\n");
4084 			break;
4085 		case CTYPE_CCS:
4086 			un->un_ctype = prop_list->sdt_ctype;
4087 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4088 			    "sd_set_vers1_properties: ctype set to "
4089 			    "CTYPE_CCS\n");
4090 			break;
4091 		case CTYPE_ROD:		/* RW optical */
4092 			un->un_ctype = prop_list->sdt_ctype;
4093 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4094 			    "sd_set_vers1_properties: ctype set to "
4095 			    "CTYPE_ROD\n");
4096 			break;
4097 		default:
4098 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4099 			    "sd_set_vers1_properties: Could not set "
4100 			    "invalid ctype value (%d)",
4101 			    prop_list->sdt_ctype);
4102 		}
4103 	}
4104 
4105 	/* Purple failover timeout */
4106 	if (flags & SD_CONF_BSET_BSY_RETRY_COUNT) {
4107 		ASSERT(prop_list != NULL);
4108 		un->un_busy_retry_count =
4109 		    prop_list->sdt_busy_retries;
4110 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4111 		    "sd_set_vers1_properties: "
4112 		    "busy retry count set to %d\n",
4113 		    un->un_busy_retry_count);
4114 	}
4115 
4116 	/* Purple reset retry count */
4117 	if (flags & SD_CONF_BSET_RST_RETRIES) {
4118 		ASSERT(prop_list != NULL);
4119 		un->un_reset_retry_count =
4120 		    prop_list->sdt_reset_retries;
4121 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4122 		    "sd_set_vers1_properties: "
4123 		    "reset retry count set to %d\n",
4124 		    un->un_reset_retry_count);
4125 	}
4126 
4127 	/* Purple reservation release timeout */
4128 	if (flags & SD_CONF_BSET_RSV_REL_TIME) {
4129 		ASSERT(prop_list != NULL);
4130 		un->un_reserve_release_time =
4131 		    prop_list->sdt_reserv_rel_time;
4132 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4133 		    "sd_set_vers1_properties: "
4134 		    "reservation release timeout set to %d\n",
4135 		    un->un_reserve_release_time);
4136 	}
4137 
4138 	/*
4139 	 * Driver flag telling the driver to verify that no commands are pending
4140 	 * for a device before issuing a Test Unit Ready. This is a workaround
4141 	 * for a firmware bug in some Seagate eliteI drives.
4142 	 */
4143 	if (flags & SD_CONF_BSET_TUR_CHECK) {
4144 		un->un_f_cfg_tur_check = TRUE;
4145 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4146 		    "sd_set_vers1_properties: tur queue check set\n");
4147 	}
4148 
4149 	if (flags & SD_CONF_BSET_MIN_THROTTLE) {
4150 		un->un_min_throttle = prop_list->sdt_min_throttle;
4151 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4152 		    "sd_set_vers1_properties: min throttle set to %d\n",
4153 		    un->un_min_throttle);
4154 	}
4155 
4156 	if (flags & SD_CONF_BSET_DISKSORT_DISABLED) {
4157 		un->un_f_disksort_disabled =
4158 		    (prop_list->sdt_disk_sort_dis != 0) ?
4159 		    TRUE : FALSE;
4160 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4161 		    "sd_set_vers1_properties: disksort disabled "
4162 		    "flag set to %d\n",
4163 		    prop_list->sdt_disk_sort_dis);
4164 	}
4165 
4166 	if (flags & SD_CONF_BSET_LUN_RESET_ENABLED) {
4167 		un->un_f_lun_reset_enabled =
4168 		    (prop_list->sdt_lun_reset_enable != 0) ?
4169 		    TRUE : FALSE;
4170 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4171 		    "sd_set_vers1_properties: lun reset enabled "
4172 		    "flag set to %d\n",
4173 		    prop_list->sdt_lun_reset_enable);
4174 	}
4175 
4176 	if (flags & SD_CONF_BSET_CACHE_IS_NV) {
4177 		un->un_f_suppress_cache_flush =
4178 		    (prop_list->sdt_suppress_cache_flush != 0) ?
4179 		    TRUE : FALSE;
4180 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4181 		    "sd_set_vers1_properties: suppress_cache_flush "
4182 		    "flag set to %d\n",
4183 		    prop_list->sdt_suppress_cache_flush);
4184 	}
4185 
4186 	/*
4187 	 * Validate the throttle values.
4188 	 * If any of the numbers are invalid, set everything to defaults.
4189 	 */
4190 	if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) ||
4191 	    (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) ||
4192 	    (un->un_min_throttle > un->un_throttle)) {
4193 		un->un_saved_throttle = un->un_throttle = sd_max_throttle;
4194 		un->un_min_throttle = sd_min_throttle;
4195 	}
4196 }
4197 
4198 /*
4199  *   Function: sd_is_lsi()
4200  *
4201  *   Description: Check for lsi devices, step through the static device
4202  *	table to match vid/pid.
4203  *
4204  *   Args: un - ptr to sd_lun
4205  *
4206  *   Notes:  When creating new LSI property, need to add the new LSI property
4207  *		to this function.
4208  */
4209 static void
4210 sd_is_lsi(struct sd_lun *un)
4211 {
4212 	char	*id = NULL;
4213 	int	table_index;
4214 	int	idlen;
4215 	void	*prop;
4216 
4217 	ASSERT(un != NULL);
4218 	for (table_index = 0; table_index < sd_disk_table_size;
4219 	    table_index++) {
4220 		id = sd_disk_table[table_index].device_id;
4221 		idlen = strlen(id);
4222 		if (idlen == 0) {
4223 			continue;
4224 		}
4225 
4226 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
4227 			prop = sd_disk_table[table_index].properties;
4228 			if (prop == &lsi_properties ||
4229 			    prop == &lsi_oem_properties ||
4230 			    prop == &lsi_properties_scsi ||
4231 			    prop == &symbios_properties) {
4232 				un->un_f_cfg_is_lsi = TRUE;
4233 			}
4234 			break;
4235 		}
4236 	}
4237 }
4238 
4239 /*
4240  *    Function: sd_get_physical_geometry
4241  *
4242  * Description: Retrieve the MODE SENSE page 3 (Format Device Page) and
4243  *		MODE SENSE page 4 (Rigid Disk Drive Geometry Page) from the
4244  *		target, and use this information to initialize the physical
4245  *		geometry cache specified by pgeom_p.
4246  *
4247  *		MODE SENSE is an optional command, so failure in this case
4248  *		does not necessarily denote an error. We want to use the
4249  *		MODE SENSE commands to derive the physical geometry of the
4250  *		device, but if either command fails, the logical geometry is
4251  *		used as the fallback for disk label geometry in cmlb.
4252  *
4253  *		This requires that un->un_blockcount and un->un_tgt_blocksize
4254  *		have already been initialized for the current target and
4255  *		that the current values be passed as args so that we don't
4256  *		end up ever trying to use -1 as a valid value. This could
4257  *		happen if either value is reset while we're not holding
4258  *		the mutex.
4259  *
4260  *   Arguments: un - driver soft state (unit) structure
4261  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4262  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4263  *			to use the USCSI "direct" chain and bypass the normal
4264  *			command waitq.
4265  *
4266  *     Context: Kernel thread only (can sleep).
4267  */
4268 
4269 static int
4270 sd_get_physical_geometry(struct sd_lun *un, cmlb_geom_t *pgeom_p,
4271 	diskaddr_t capacity, int lbasize, int path_flag)
4272 {
4273 	struct	mode_format	*page3p;
4274 	struct	mode_geometry	*page4p;
4275 	struct	mode_header	*headerp;
4276 	int	sector_size;
4277 	int	nsect;
4278 	int	nhead;
4279 	int	ncyl;
4280 	int	intrlv;
4281 	int	spc;
4282 	diskaddr_t	modesense_capacity;
4283 	int	rpm;
4284 	int	bd_len;
4285 	int	mode_header_length;
4286 	uchar_t	*p3bufp;
4287 	uchar_t	*p4bufp;
4288 	int	cdbsize;
4289 	int 	ret = EIO;
4290 
4291 	ASSERT(un != NULL);
4292 
4293 	if (lbasize == 0) {
4294 		if (ISCD(un)) {
4295 			lbasize = 2048;
4296 		} else {
4297 			lbasize = un->un_sys_blocksize;
4298 		}
4299 	}
4300 	pgeom_p->g_secsize = (unsigned short)lbasize;
4301 
4302 	/*
4303 	 * If the unit is a cd/dvd drive MODE SENSE page three
4304 	 * and MODE SENSE page four are reserved (see SBC spec
4305 	 * and MMC spec). To prevent soft errors just return
4306 	 * using the default LBA size.
4307 	 */
4308 	if (ISCD(un))
4309 		return (ret);
4310 
4311 	cdbsize = (un->un_f_cfg_is_atapi == TRUE) ? CDB_GROUP2 : CDB_GROUP0;
4312 
4313 	/*
4314 	 * Retrieve MODE SENSE page 3 - Format Device Page
4315 	 */
4316 	p3bufp = kmem_zalloc(SD_MODE_SENSE_PAGE3_LENGTH, KM_SLEEP);
4317 	if (sd_send_scsi_MODE_SENSE(un, cdbsize, p3bufp,
4318 	    SD_MODE_SENSE_PAGE3_LENGTH, SD_MODE_SENSE_PAGE3_CODE, path_flag)
4319 	    != 0) {
4320 		SD_ERROR(SD_LOG_COMMON, un,
4321 		    "sd_get_physical_geometry: mode sense page 3 failed\n");
4322 		goto page3_exit;
4323 	}
4324 
4325 	/*
4326 	 * Determine size of Block Descriptors in order to locate the mode
4327 	 * page data.  ATAPI devices return 0, SCSI devices should return
4328 	 * MODE_BLK_DESC_LENGTH.
4329 	 */
4330 	headerp = (struct mode_header *)p3bufp;
4331 	if (un->un_f_cfg_is_atapi == TRUE) {
4332 		struct mode_header_grp2 *mhp =
4333 		    (struct mode_header_grp2 *)headerp;
4334 		mode_header_length = MODE_HEADER_LENGTH_GRP2;
4335 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
4336 	} else {
4337 		mode_header_length = MODE_HEADER_LENGTH;
4338 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
4339 	}
4340 
4341 	if (bd_len > MODE_BLK_DESC_LENGTH) {
4342 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4343 		    "received unexpected bd_len of %d, page3\n", bd_len);
4344 		goto page3_exit;
4345 	}
4346 
4347 	page3p = (struct mode_format *)
4348 	    ((caddr_t)headerp + mode_header_length + bd_len);
4349 
4350 	if (page3p->mode_page.code != SD_MODE_SENSE_PAGE3_CODE) {
4351 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4352 		    "mode sense pg3 code mismatch %d\n",
4353 		    page3p->mode_page.code);
4354 		goto page3_exit;
4355 	}
4356 
4357 	/*
4358 	 * Use this physical geometry data only if BOTH MODE SENSE commands
4359 	 * complete successfully; otherwise, revert to the logical geometry.
4360 	 * So, we need to save everything in temporary variables.
4361 	 */
4362 	sector_size = BE_16(page3p->data_bytes_sect);
4363 
4364 	/*
4365 	 * 1243403: The NEC D38x7 drives do not support MODE SENSE sector size
4366 	 */
4367 	if (sector_size == 0) {
4368 		sector_size = un->un_sys_blocksize;
4369 	} else {
4370 		sector_size &= ~(un->un_sys_blocksize - 1);
4371 	}
4372 
4373 	nsect  = BE_16(page3p->sect_track);
4374 	intrlv = BE_16(page3p->interleave);
4375 
4376 	SD_INFO(SD_LOG_COMMON, un,
4377 	    "sd_get_physical_geometry: Format Parameters (page 3)\n");
4378 	SD_INFO(SD_LOG_COMMON, un,
4379 	    "   mode page: %d; nsect: %d; sector size: %d;\n",
4380 	    page3p->mode_page.code, nsect, sector_size);
4381 	SD_INFO(SD_LOG_COMMON, un,
4382 	    "   interleave: %d; track skew: %d; cylinder skew: %d;\n", intrlv,
4383 	    BE_16(page3p->track_skew),
4384 	    BE_16(page3p->cylinder_skew));
4385 
4386 
4387 	/*
4388 	 * Retrieve MODE SENSE page 4 - Rigid Disk Drive Geometry Page
4389 	 */
4390 	p4bufp = kmem_zalloc(SD_MODE_SENSE_PAGE4_LENGTH, KM_SLEEP);
4391 	if (sd_send_scsi_MODE_SENSE(un, cdbsize, p4bufp,
4392 	    SD_MODE_SENSE_PAGE4_LENGTH, SD_MODE_SENSE_PAGE4_CODE, path_flag)
4393 	    != 0) {
4394 		SD_ERROR(SD_LOG_COMMON, un,
4395 		    "sd_get_physical_geometry: mode sense page 4 failed\n");
4396 		goto page4_exit;
4397 	}
4398 
4399 	/*
4400 	 * Determine size of Block Descriptors in order to locate the mode
4401 	 * page data.  ATAPI devices return 0, SCSI devices should return
4402 	 * MODE_BLK_DESC_LENGTH.
4403 	 */
4404 	headerp = (struct mode_header *)p4bufp;
4405 	if (un->un_f_cfg_is_atapi == TRUE) {
4406 		struct mode_header_grp2 *mhp =
4407 		    (struct mode_header_grp2 *)headerp;
4408 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
4409 	} else {
4410 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
4411 	}
4412 
4413 	if (bd_len > MODE_BLK_DESC_LENGTH) {
4414 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4415 		    "received unexpected bd_len of %d, page4\n", bd_len);
4416 		goto page4_exit;
4417 	}
4418 
4419 	page4p = (struct mode_geometry *)
4420 	    ((caddr_t)headerp + mode_header_length + bd_len);
4421 
4422 	if (page4p->mode_page.code != SD_MODE_SENSE_PAGE4_CODE) {
4423 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4424 		    "mode sense pg4 code mismatch %d\n",
4425 		    page4p->mode_page.code);
4426 		goto page4_exit;
4427 	}
4428 
4429 	/*
4430 	 * Stash the data now, after we know that both commands completed.
4431 	 */
4432 
4433 
4434 	nhead = (int)page4p->heads;	/* uchar, so no conversion needed */
4435 	spc   = nhead * nsect;
4436 	ncyl  = (page4p->cyl_ub << 16) + (page4p->cyl_mb << 8) + page4p->cyl_lb;
4437 	rpm   = BE_16(page4p->rpm);
4438 
4439 	modesense_capacity = spc * ncyl;
4440 
4441 	SD_INFO(SD_LOG_COMMON, un,
4442 	    "sd_get_physical_geometry: Geometry Parameters (page 4)\n");
4443 	SD_INFO(SD_LOG_COMMON, un,
4444 	    "   cylinders: %d; heads: %d; rpm: %d;\n", ncyl, nhead, rpm);
4445 	SD_INFO(SD_LOG_COMMON, un,
4446 	    "   computed capacity(h*s*c): %d;\n", modesense_capacity);
4447 	SD_INFO(SD_LOG_COMMON, un, "   pgeom_p: %p; read cap: %d\n",
4448 	    (void *)pgeom_p, capacity);
4449 
4450 	/*
4451 	 * Compensate if the drive's geometry is not rectangular, i.e.,
4452 	 * the product of C * H * S returned by MODE SENSE >= that returned
4453 	 * by read capacity. This is an idiosyncrasy of the original x86
4454 	 * disk subsystem.
4455 	 */
4456 	if (modesense_capacity >= capacity) {
4457 		SD_INFO(SD_LOG_COMMON, un,
4458 		    "sd_get_physical_geometry: adjusting acyl; "
4459 		    "old: %d; new: %d\n", pgeom_p->g_acyl,
4460 		    (modesense_capacity - capacity + spc - 1) / spc);
4461 		if (sector_size != 0) {
4462 			/* 1243403: NEC D38x7 drives don't support sec size */
4463 			pgeom_p->g_secsize = (unsigned short)sector_size;
4464 		}
4465 		pgeom_p->g_nsect    = (unsigned short)nsect;
4466 		pgeom_p->g_nhead    = (unsigned short)nhead;
4467 		pgeom_p->g_capacity = capacity;
4468 		pgeom_p->g_acyl	    =
4469 		    (modesense_capacity - pgeom_p->g_capacity + spc - 1) / spc;
4470 		pgeom_p->g_ncyl	    = ncyl - pgeom_p->g_acyl;
4471 	}
4472 
4473 	pgeom_p->g_rpm    = (unsigned short)rpm;
4474 	pgeom_p->g_intrlv = (unsigned short)intrlv;
4475 	ret = 0;
4476 
4477 	SD_INFO(SD_LOG_COMMON, un,
4478 	    "sd_get_physical_geometry: mode sense geometry:\n");
4479 	SD_INFO(SD_LOG_COMMON, un,
4480 	    "   nsect: %d; sector size: %d; interlv: %d\n",
4481 	    nsect, sector_size, intrlv);
4482 	SD_INFO(SD_LOG_COMMON, un,
4483 	    "   nhead: %d; ncyl: %d; rpm: %d; capacity(ms): %d\n",
4484 	    nhead, ncyl, rpm, modesense_capacity);
4485 	SD_INFO(SD_LOG_COMMON, un,
4486 	    "sd_get_physical_geometry: (cached)\n");
4487 	SD_INFO(SD_LOG_COMMON, un,
4488 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
4489 	    pgeom_p->g_ncyl,  pgeom_p->g_acyl,
4490 	    pgeom_p->g_nhead, pgeom_p->g_nsect);
4491 	SD_INFO(SD_LOG_COMMON, un,
4492 	    "   lbasize: %d; capacity: %ld; intrlv: %d; rpm: %d\n",
4493 	    pgeom_p->g_secsize, pgeom_p->g_capacity,
4494 	    pgeom_p->g_intrlv, pgeom_p->g_rpm);
4495 
4496 page4_exit:
4497 	kmem_free(p4bufp, SD_MODE_SENSE_PAGE4_LENGTH);
4498 page3_exit:
4499 	kmem_free(p3bufp, SD_MODE_SENSE_PAGE3_LENGTH);
4500 
4501 	return (ret);
4502 }
4503 
4504 /*
4505  *    Function: sd_get_virtual_geometry
4506  *
4507  * Description: Ask the controller to tell us about the target device.
4508  *
4509  *   Arguments: un - pointer to softstate
4510  *		capacity - disk capacity in #blocks
4511  *		lbasize - disk block size in bytes
4512  *
4513  *     Context: Kernel thread only
4514  */
4515 
4516 static int
4517 sd_get_virtual_geometry(struct sd_lun *un, cmlb_geom_t *lgeom_p,
4518     diskaddr_t capacity, int lbasize)
4519 {
4520 	uint_t	geombuf;
4521 	int	spc;
4522 
4523 	ASSERT(un != NULL);
4524 
4525 	/* Set sector size, and total number of sectors */
4526 	(void) scsi_ifsetcap(SD_ADDRESS(un), "sector-size",   lbasize,  1);
4527 	(void) scsi_ifsetcap(SD_ADDRESS(un), "total-sectors", capacity, 1);
4528 
4529 	/* Let the HBA tell us its geometry */
4530 	geombuf = (uint_t)scsi_ifgetcap(SD_ADDRESS(un), "geometry", 1);
4531 
4532 	/* A value of -1 indicates an undefined "geometry" property */
4533 	if (geombuf == (-1)) {
4534 		return (EINVAL);
4535 	}
4536 
4537 	/* Initialize the logical geometry cache. */
4538 	lgeom_p->g_nhead   = (geombuf >> 16) & 0xffff;
4539 	lgeom_p->g_nsect   = geombuf & 0xffff;
4540 	lgeom_p->g_secsize = un->un_sys_blocksize;
4541 
4542 	spc = lgeom_p->g_nhead * lgeom_p->g_nsect;
4543 
4544 	/*
4545 	 * Note: The driver originally converted the capacity value from
4546 	 * target blocks to system blocks. However, the capacity value passed
4547 	 * to this routine is already in terms of system blocks (this scaling
4548 	 * is done when the READ CAPACITY command is issued and processed).
4549 	 * This 'error' may have gone undetected because the usage of g_ncyl
4550 	 * (which is based upon g_capacity) is very limited within the driver
4551 	 */
4552 	lgeom_p->g_capacity = capacity;
4553 
4554 	/*
4555 	 * Set ncyl to zero if the hba returned a zero nhead or nsect value. The
4556 	 * hba may return zero values if the device has been removed.
4557 	 */
4558 	if (spc == 0) {
4559 		lgeom_p->g_ncyl = 0;
4560 	} else {
4561 		lgeom_p->g_ncyl = lgeom_p->g_capacity / spc;
4562 	}
4563 	lgeom_p->g_acyl = 0;
4564 
4565 	SD_INFO(SD_LOG_COMMON, un, "sd_get_virtual_geometry: (cached)\n");
4566 	return (0);
4567 
4568 }
4569 /*
4570  *    Function: sd_update_block_info
4571  *
4572  * Description: Calculate a byte count to sector count bitshift value
4573  *		from sector size.
4574  *
4575  *   Arguments: un: unit struct.
4576  *		lbasize: new target sector size
4577  *		capacity: new target capacity, ie. block count
4578  *
4579  *     Context: Kernel thread context
4580  */
4581 
4582 static void
4583 sd_update_block_info(struct sd_lun *un, uint32_t lbasize, uint64_t capacity)
4584 {
4585 	uint_t		dblk;
4586 
4587 	if (lbasize != 0) {
4588 		un->un_tgt_blocksize = lbasize;
4589 		un->un_f_tgt_blocksize_is_valid	= TRUE;
4590 	}
4591 
4592 	if (capacity != 0) {
4593 		un->un_blockcount		= capacity;
4594 		un->un_f_blockcount_is_valid	= TRUE;
4595 	}
4596 
4597 	/*
4598 	 * Update device capacity properties.
4599 	 *
4600 	 *   'device-nblocks'	number of blocks in target's units
4601 	 *   'device-blksize'	data bearing size of target's block
4602 	 *
4603 	 * NOTE: math is complicated by the fact that un_tgt_blocksize may
4604 	 * not be a power of two for checksumming disks with 520/528 byte
4605 	 * sectors.
4606 	 */
4607 	if (un->un_f_tgt_blocksize_is_valid &&
4608 	    un->un_f_blockcount_is_valid &&
4609 	    un->un_sys_blocksize) {
4610 		dblk = un->un_tgt_blocksize / un->un_sys_blocksize;
4611 		(void) ddi_prop_update_int64(DDI_DEV_T_NONE, SD_DEVINFO(un),
4612 		    "device-nblocks", un->un_blockcount / dblk);
4613 		/*
4614 		 * To save memory, only define "device-blksize" when its
4615 		 * value is differnet than the default DEV_BSIZE value.
4616 		 */
4617 		if ((un->un_sys_blocksize * dblk) != DEV_BSIZE)
4618 			(void) ddi_prop_update_int(DDI_DEV_T_NONE,
4619 			    SD_DEVINFO(un), "device-blksize",
4620 			    un->un_sys_blocksize * dblk);
4621 	}
4622 }
4623 
4624 
4625 /*
4626  *    Function: sd_register_devid
4627  *
4628  * Description: This routine will obtain the device id information from the
4629  *		target, obtain the serial number, and register the device
4630  *		id with the ddi framework.
4631  *
4632  *   Arguments: devi - the system's dev_info_t for the device.
4633  *		un - driver soft state (unit) structure
4634  *		reservation_flag - indicates if a reservation conflict
4635  *		occurred during attach
4636  *
4637  *     Context: Kernel Thread
4638  */
4639 static void
4640 sd_register_devid(struct sd_lun *un, dev_info_t *devi, int reservation_flag)
4641 {
4642 	int		rval		= 0;
4643 	uchar_t		*inq80		= NULL;
4644 	size_t		inq80_len	= MAX_INQUIRY_SIZE;
4645 	size_t		inq80_resid	= 0;
4646 	uchar_t		*inq83		= NULL;
4647 	size_t		inq83_len	= MAX_INQUIRY_SIZE;
4648 	size_t		inq83_resid	= 0;
4649 	int		dlen, len;
4650 	char		*sn;
4651 
4652 	ASSERT(un != NULL);
4653 	ASSERT(mutex_owned(SD_MUTEX(un)));
4654 	ASSERT((SD_DEVINFO(un)) == devi);
4655 
4656 	/*
4657 	 * If transport has already registered a devid for this target
4658 	 * then that takes precedence over the driver's determination
4659 	 * of the devid.
4660 	 */
4661 	if (ddi_devid_get(SD_DEVINFO(un), &un->un_devid) == DDI_SUCCESS) {
4662 		ASSERT(un->un_devid);
4663 		return; /* use devid registered by the transport */
4664 	}
4665 
4666 	/*
4667 	 * This is the case of antiquated Sun disk drives that have the
4668 	 * FAB_DEVID property set in the disk_table.  These drives
4669 	 * manage the devid's by storing them in last 2 available sectors
4670 	 * on the drive and have them fabricated by the ddi layer by calling
4671 	 * ddi_devid_init and passing the DEVID_FAB flag.
4672 	 */
4673 	if (un->un_f_opt_fab_devid == TRUE) {
4674 		/*
4675 		 * Depending on EINVAL isn't reliable, since a reserved disk
4676 		 * may result in invalid geometry, so check to make sure a
4677 		 * reservation conflict did not occur during attach.
4678 		 */
4679 		if ((sd_get_devid(un) == EINVAL) &&
4680 		    (reservation_flag != SD_TARGET_IS_RESERVED)) {
4681 			/*
4682 			 * The devid is invalid AND there is no reservation
4683 			 * conflict.  Fabricate a new devid.
4684 			 */
4685 			(void) sd_create_devid(un);
4686 		}
4687 
4688 		/* Register the devid if it exists */
4689 		if (un->un_devid != NULL) {
4690 			(void) ddi_devid_register(SD_DEVINFO(un),
4691 			    un->un_devid);
4692 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4693 			    "sd_register_devid: Devid Fabricated\n");
4694 		}
4695 		return;
4696 	}
4697 
4698 	/*
4699 	 * We check the availibility of the World Wide Name (0x83) and Unit
4700 	 * Serial Number (0x80) pages in sd_check_vpd_page_support(), and using
4701 	 * un_vpd_page_mask from them, we decide which way to get the WWN.  If
4702 	 * 0x83 is availible, that is the best choice.  Our next choice is
4703 	 * 0x80.  If neither are availible, we munge the devid from the device
4704 	 * vid/pid/serial # for Sun qualified disks, or use the ddi framework
4705 	 * to fabricate a devid for non-Sun qualified disks.
4706 	 */
4707 	if (sd_check_vpd_page_support(un) == 0) {
4708 		/* collect page 80 data if available */
4709 		if (un->un_vpd_page_mask & SD_VPD_UNIT_SERIAL_PG) {
4710 
4711 			mutex_exit(SD_MUTEX(un));
4712 			inq80 = kmem_zalloc(inq80_len, KM_SLEEP);
4713 			rval = sd_send_scsi_INQUIRY(un, inq80, inq80_len,
4714 			    0x01, 0x80, &inq80_resid);
4715 
4716 			if (rval != 0) {
4717 				kmem_free(inq80, inq80_len);
4718 				inq80 = NULL;
4719 				inq80_len = 0;
4720 			} else if (ddi_prop_exists(
4721 			    DDI_DEV_T_NONE, SD_DEVINFO(un),
4722 			    DDI_PROP_NOTPROM | DDI_PROP_DONTPASS,
4723 			    INQUIRY_SERIAL_NO) == 0) {
4724 				/*
4725 				 * If we don't already have a serial number
4726 				 * property, do quick verify of data returned
4727 				 * and define property.
4728 				 */
4729 				dlen = inq80_len - inq80_resid;
4730 				len = (size_t)inq80[3];
4731 				if ((dlen >= 4) && ((len + 4) <= dlen)) {
4732 					/*
4733 					 * Ensure sn termination, skip leading
4734 					 * blanks, and create property
4735 					 * 'inquiry-serial-no'.
4736 					 */
4737 					sn = (char *)&inq80[4];
4738 					sn[len] = 0;
4739 					while (*sn && (*sn == ' '))
4740 						sn++;
4741 					if (*sn) {
4742 						(void) ddi_prop_update_string(
4743 						    DDI_DEV_T_NONE,
4744 						    SD_DEVINFO(un),
4745 						    INQUIRY_SERIAL_NO, sn);
4746 					}
4747 				}
4748 			}
4749 			mutex_enter(SD_MUTEX(un));
4750 		}
4751 
4752 		/* collect page 83 data if available */
4753 		if (un->un_vpd_page_mask & SD_VPD_DEVID_WWN_PG) {
4754 			mutex_exit(SD_MUTEX(un));
4755 			inq83 = kmem_zalloc(inq83_len, KM_SLEEP);
4756 			rval = sd_send_scsi_INQUIRY(un, inq83, inq83_len,
4757 			    0x01, 0x83, &inq83_resid);
4758 
4759 			if (rval != 0) {
4760 				kmem_free(inq83, inq83_len);
4761 				inq83 = NULL;
4762 				inq83_len = 0;
4763 			}
4764 			mutex_enter(SD_MUTEX(un));
4765 		}
4766 	}
4767 
4768 	/* encode best devid possible based on data available */
4769 	if (ddi_devid_scsi_encode(DEVID_SCSI_ENCODE_VERSION_LATEST,
4770 	    (char *)ddi_driver_name(SD_DEVINFO(un)),
4771 	    (uchar_t *)SD_INQUIRY(un), sizeof (*SD_INQUIRY(un)),
4772 	    inq80, inq80_len - inq80_resid, inq83, inq83_len -
4773 	    inq83_resid, &un->un_devid) == DDI_SUCCESS) {
4774 
4775 		/* devid successfully encoded, register devid */
4776 		(void) ddi_devid_register(SD_DEVINFO(un), un->un_devid);
4777 
4778 	} else {
4779 		/*
4780 		 * Unable to encode a devid based on data available.
4781 		 * This is not a Sun qualified disk.  Older Sun disk
4782 		 * drives that have the SD_FAB_DEVID property
4783 		 * set in the disk_table and non Sun qualified
4784 		 * disks are treated in the same manner.  These
4785 		 * drives manage the devid's by storing them in
4786 		 * last 2 available sectors on the drive and
4787 		 * have them fabricated by the ddi layer by
4788 		 * calling ddi_devid_init and passing the
4789 		 * DEVID_FAB flag.
4790 		 * Create a fabricate devid only if there's no
4791 		 * fabricate devid existed.
4792 		 */
4793 		if (sd_get_devid(un) == EINVAL) {
4794 			(void) sd_create_devid(un);
4795 		}
4796 		un->un_f_opt_fab_devid = TRUE;
4797 
4798 		/* Register the devid if it exists */
4799 		if (un->un_devid != NULL) {
4800 			(void) ddi_devid_register(SD_DEVINFO(un),
4801 			    un->un_devid);
4802 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4803 			    "sd_register_devid: devid fabricated using "
4804 			    "ddi framework\n");
4805 		}
4806 	}
4807 
4808 	/* clean up resources */
4809 	if (inq80 != NULL) {
4810 		kmem_free(inq80, inq80_len);
4811 	}
4812 	if (inq83 != NULL) {
4813 		kmem_free(inq83, inq83_len);
4814 	}
4815 }
4816 
4817 
4818 
4819 /*
4820  *    Function: sd_get_devid
4821  *
4822  * Description: This routine will return 0 if a valid device id has been
4823  *		obtained from the target and stored in the soft state. If a
4824  *		valid device id has not been previously read and stored, a
4825  *		read attempt will be made.
4826  *
4827  *   Arguments: un - driver soft state (unit) structure
4828  *
4829  * Return Code: 0 if we successfully get the device id
4830  *
4831  *     Context: Kernel Thread
4832  */
4833 
4834 static int
4835 sd_get_devid(struct sd_lun *un)
4836 {
4837 	struct dk_devid		*dkdevid;
4838 	ddi_devid_t		tmpid;
4839 	uint_t			*ip;
4840 	size_t			sz;
4841 	diskaddr_t		blk;
4842 	int			status;
4843 	int			chksum;
4844 	int			i;
4845 	size_t			buffer_size;
4846 
4847 	ASSERT(un != NULL);
4848 	ASSERT(mutex_owned(SD_MUTEX(un)));
4849 
4850 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: entry: un: 0x%p\n",
4851 	    un);
4852 
4853 	if (un->un_devid != NULL) {
4854 		return (0);
4855 	}
4856 
4857 	mutex_exit(SD_MUTEX(un));
4858 	if (cmlb_get_devid_block(un->un_cmlbhandle, &blk,
4859 	    (void *)SD_PATH_DIRECT) != 0) {
4860 		mutex_enter(SD_MUTEX(un));
4861 		return (EINVAL);
4862 	}
4863 
4864 	/*
4865 	 * Read and verify device id, stored in the reserved cylinders at the
4866 	 * end of the disk. Backup label is on the odd sectors of the last
4867 	 * track of the last cylinder. Device id will be on track of the next
4868 	 * to last cylinder.
4869 	 */
4870 	mutex_enter(SD_MUTEX(un));
4871 	buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct dk_devid));
4872 	mutex_exit(SD_MUTEX(un));
4873 	dkdevid = kmem_alloc(buffer_size, KM_SLEEP);
4874 	status = sd_send_scsi_READ(un, dkdevid, buffer_size, blk,
4875 	    SD_PATH_DIRECT);
4876 	if (status != 0) {
4877 		goto error;
4878 	}
4879 
4880 	/* Validate the revision */
4881 	if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) ||
4882 	    (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) {
4883 		status = EINVAL;
4884 		goto error;
4885 	}
4886 
4887 	/* Calculate the checksum */
4888 	chksum = 0;
4889 	ip = (uint_t *)dkdevid;
4890 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
4891 	    i++) {
4892 		chksum ^= ip[i];
4893 	}
4894 
4895 	/* Compare the checksums */
4896 	if (DKD_GETCHKSUM(dkdevid) != chksum) {
4897 		status = EINVAL;
4898 		goto error;
4899 	}
4900 
4901 	/* Validate the device id */
4902 	if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) {
4903 		status = EINVAL;
4904 		goto error;
4905 	}
4906 
4907 	/*
4908 	 * Store the device id in the driver soft state
4909 	 */
4910 	sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid);
4911 	tmpid = kmem_alloc(sz, KM_SLEEP);
4912 
4913 	mutex_enter(SD_MUTEX(un));
4914 
4915 	un->un_devid = tmpid;
4916 	bcopy(&dkdevid->dkd_devid, un->un_devid, sz);
4917 
4918 	kmem_free(dkdevid, buffer_size);
4919 
4920 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: exit: un:0x%p\n", un);
4921 
4922 	return (status);
4923 error:
4924 	mutex_enter(SD_MUTEX(un));
4925 	kmem_free(dkdevid, buffer_size);
4926 	return (status);
4927 }
4928 
4929 
4930 /*
4931  *    Function: sd_create_devid
4932  *
4933  * Description: This routine will fabricate the device id and write it
4934  *		to the disk.
4935  *
4936  *   Arguments: un - driver soft state (unit) structure
4937  *
4938  * Return Code: value of the fabricated device id
4939  *
4940  *     Context: Kernel Thread
4941  */
4942 
4943 static ddi_devid_t
4944 sd_create_devid(struct sd_lun *un)
4945 {
4946 	ASSERT(un != NULL);
4947 
4948 	/* Fabricate the devid */
4949 	if (ddi_devid_init(SD_DEVINFO(un), DEVID_FAB, 0, NULL, &un->un_devid)
4950 	    == DDI_FAILURE) {
4951 		return (NULL);
4952 	}
4953 
4954 	/* Write the devid to disk */
4955 	if (sd_write_deviceid(un) != 0) {
4956 		ddi_devid_free(un->un_devid);
4957 		un->un_devid = NULL;
4958 	}
4959 
4960 	return (un->un_devid);
4961 }
4962 
4963 
4964 /*
4965  *    Function: sd_write_deviceid
4966  *
4967  * Description: This routine will write the device id to the disk
4968  *		reserved sector.
4969  *
4970  *   Arguments: un - driver soft state (unit) structure
4971  *
4972  * Return Code: EINVAL
4973  *		value returned by sd_send_scsi_cmd
4974  *
4975  *     Context: Kernel Thread
4976  */
4977 
4978 static int
4979 sd_write_deviceid(struct sd_lun *un)
4980 {
4981 	struct dk_devid		*dkdevid;
4982 	diskaddr_t		blk;
4983 	uint_t			*ip, chksum;
4984 	int			status;
4985 	int			i;
4986 
4987 	ASSERT(mutex_owned(SD_MUTEX(un)));
4988 
4989 	mutex_exit(SD_MUTEX(un));
4990 	if (cmlb_get_devid_block(un->un_cmlbhandle, &blk,
4991 	    (void *)SD_PATH_DIRECT) != 0) {
4992 		mutex_enter(SD_MUTEX(un));
4993 		return (-1);
4994 	}
4995 
4996 
4997 	/* Allocate the buffer */
4998 	dkdevid = kmem_zalloc(un->un_sys_blocksize, KM_SLEEP);
4999 
5000 	/* Fill in the revision */
5001 	dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB;
5002 	dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB;
5003 
5004 	/* Copy in the device id */
5005 	mutex_enter(SD_MUTEX(un));
5006 	bcopy(un->un_devid, &dkdevid->dkd_devid,
5007 	    ddi_devid_sizeof(un->un_devid));
5008 	mutex_exit(SD_MUTEX(un));
5009 
5010 	/* Calculate the checksum */
5011 	chksum = 0;
5012 	ip = (uint_t *)dkdevid;
5013 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
5014 	    i++) {
5015 		chksum ^= ip[i];
5016 	}
5017 
5018 	/* Fill-in checksum */
5019 	DKD_FORMCHKSUM(chksum, dkdevid);
5020 
5021 	/* Write the reserved sector */
5022 	status = sd_send_scsi_WRITE(un, dkdevid, un->un_sys_blocksize, blk,
5023 	    SD_PATH_DIRECT);
5024 
5025 	kmem_free(dkdevid, un->un_sys_blocksize);
5026 
5027 	mutex_enter(SD_MUTEX(un));
5028 	return (status);
5029 }
5030 
5031 
5032 /*
5033  *    Function: sd_check_vpd_page_support
5034  *
5035  * Description: This routine sends an inquiry command with the EVPD bit set and
5036  *		a page code of 0x00 to the device. It is used to determine which
5037  *		vital product pages are availible to find the devid. We are
5038  *		looking for pages 0x83 or 0x80.  If we return a negative 1, the
5039  *		device does not support that command.
5040  *
5041  *   Arguments: un  - driver soft state (unit) structure
5042  *
5043  * Return Code: 0 - success
5044  *		1 - check condition
5045  *
5046  *     Context: This routine can sleep.
5047  */
5048 
5049 static int
5050 sd_check_vpd_page_support(struct sd_lun *un)
5051 {
5052 	uchar_t	*page_list	= NULL;
5053 	uchar_t	page_length	= 0xff;	/* Use max possible length */
5054 	uchar_t	evpd		= 0x01;	/* Set the EVPD bit */
5055 	uchar_t	page_code	= 0x00;	/* Supported VPD Pages */
5056 	int    	rval		= 0;
5057 	int	counter;
5058 
5059 	ASSERT(un != NULL);
5060 	ASSERT(mutex_owned(SD_MUTEX(un)));
5061 
5062 	mutex_exit(SD_MUTEX(un));
5063 
5064 	/*
5065 	 * We'll set the page length to the maximum to save figuring it out
5066 	 * with an additional call.
5067 	 */
5068 	page_list =  kmem_zalloc(page_length, KM_SLEEP);
5069 
5070 	rval = sd_send_scsi_INQUIRY(un, page_list, page_length, evpd,
5071 	    page_code, NULL);
5072 
5073 	mutex_enter(SD_MUTEX(un));
5074 
5075 	/*
5076 	 * Now we must validate that the device accepted the command, as some
5077 	 * drives do not support it.  If the drive does support it, we will
5078 	 * return 0, and the supported pages will be in un_vpd_page_mask.  If
5079 	 * not, we return -1.
5080 	 */
5081 	if ((rval == 0) && (page_list[VPD_MODE_PAGE] == 0x00)) {
5082 		/* Loop to find one of the 2 pages we need */
5083 		counter = 4;  /* Supported pages start at byte 4, with 0x00 */
5084 
5085 		/*
5086 		 * Pages are returned in ascending order, and 0x83 is what we
5087 		 * are hoping for.
5088 		 */
5089 		while ((page_list[counter] <= 0x86) &&
5090 		    (counter <= (page_list[VPD_PAGE_LENGTH] +
5091 		    VPD_HEAD_OFFSET))) {
5092 			/*
5093 			 * Add 3 because page_list[3] is the number of
5094 			 * pages minus 3
5095 			 */
5096 
5097 			switch (page_list[counter]) {
5098 			case 0x00:
5099 				un->un_vpd_page_mask |= SD_VPD_SUPPORTED_PG;
5100 				break;
5101 			case 0x80:
5102 				un->un_vpd_page_mask |= SD_VPD_UNIT_SERIAL_PG;
5103 				break;
5104 			case 0x81:
5105 				un->un_vpd_page_mask |= SD_VPD_OPERATING_PG;
5106 				break;
5107 			case 0x82:
5108 				un->un_vpd_page_mask |= SD_VPD_ASCII_OP_PG;
5109 				break;
5110 			case 0x83:
5111 				un->un_vpd_page_mask |= SD_VPD_DEVID_WWN_PG;
5112 				break;
5113 			case 0x86:
5114 				un->un_vpd_page_mask |= SD_VPD_EXTENDED_DATA_PG;
5115 				break;
5116 			}
5117 			counter++;
5118 		}
5119 
5120 	} else {
5121 		rval = -1;
5122 
5123 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
5124 		    "sd_check_vpd_page_support: This drive does not implement "
5125 		    "VPD pages.\n");
5126 	}
5127 
5128 	kmem_free(page_list, page_length);
5129 
5130 	return (rval);
5131 }
5132 
5133 
5134 /*
5135  *    Function: sd_setup_pm
5136  *
5137  * Description: Initialize Power Management on the device
5138  *
5139  *     Context: Kernel Thread
5140  */
5141 
5142 static void
5143 sd_setup_pm(struct sd_lun *un, dev_info_t *devi)
5144 {
5145 	uint_t	log_page_size;
5146 	uchar_t	*log_page_data;
5147 	int	rval;
5148 
5149 	/*
5150 	 * Since we are called from attach, holding a mutex for
5151 	 * un is unnecessary. Because some of the routines called
5152 	 * from here require SD_MUTEX to not be held, assert this
5153 	 * right up front.
5154 	 */
5155 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5156 	/*
5157 	 * Since the sd device does not have the 'reg' property,
5158 	 * cpr will not call its DDI_SUSPEND/DDI_RESUME entries.
5159 	 * The following code is to tell cpr that this device
5160 	 * DOES need to be suspended and resumed.
5161 	 */
5162 	(void) ddi_prop_update_string(DDI_DEV_T_NONE, devi,
5163 	    "pm-hardware-state", "needs-suspend-resume");
5164 
5165 	/*
5166 	 * This complies with the new power management framework
5167 	 * for certain desktop machines. Create the pm_components
5168 	 * property as a string array property.
5169 	 */
5170 	if (un->un_f_pm_supported) {
5171 		/*
5172 		 * not all devices have a motor, try it first.
5173 		 * some devices may return ILLEGAL REQUEST, some
5174 		 * will hang
5175 		 * The following START_STOP_UNIT is used to check if target
5176 		 * device has a motor.
5177 		 */
5178 		un->un_f_start_stop_supported = TRUE;
5179 		if (sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
5180 		    SD_PATH_DIRECT) != 0) {
5181 			un->un_f_start_stop_supported = FALSE;
5182 		}
5183 
5184 		/*
5185 		 * create pm properties anyways otherwise the parent can't
5186 		 * go to sleep
5187 		 */
5188 		(void) sd_create_pm_components(devi, un);
5189 		un->un_f_pm_is_enabled = TRUE;
5190 		return;
5191 	}
5192 
5193 	if (!un->un_f_log_sense_supported) {
5194 		un->un_power_level = SD_SPINDLE_ON;
5195 		un->un_f_pm_is_enabled = FALSE;
5196 		return;
5197 	}
5198 
5199 	rval = sd_log_page_supported(un, START_STOP_CYCLE_PAGE);
5200 
5201 #ifdef	SDDEBUG
5202 	if (sd_force_pm_supported) {
5203 		/* Force a successful result */
5204 		rval = 1;
5205 	}
5206 #endif
5207 
5208 	/*
5209 	 * If the start-stop cycle counter log page is not supported
5210 	 * or if the pm-capable property is SD_PM_CAPABLE_FALSE (0)
5211 	 * then we should not create the pm_components property.
5212 	 */
5213 	if (rval == -1) {
5214 		/*
5215 		 * Error.
5216 		 * Reading log sense failed, most likely this is
5217 		 * an older drive that does not support log sense.
5218 		 * If this fails auto-pm is not supported.
5219 		 */
5220 		un->un_power_level = SD_SPINDLE_ON;
5221 		un->un_f_pm_is_enabled = FALSE;
5222 
5223 	} else if (rval == 0) {
5224 		/*
5225 		 * Page not found.
5226 		 * The start stop cycle counter is implemented as page
5227 		 * START_STOP_CYCLE_PAGE_VU_PAGE (0x31) in older disks. For
5228 		 * newer disks it is implemented as START_STOP_CYCLE_PAGE (0xE).
5229 		 */
5230 		if (sd_log_page_supported(un, START_STOP_CYCLE_VU_PAGE) == 1) {
5231 			/*
5232 			 * Page found, use this one.
5233 			 */
5234 			un->un_start_stop_cycle_page = START_STOP_CYCLE_VU_PAGE;
5235 			un->un_f_pm_is_enabled = TRUE;
5236 		} else {
5237 			/*
5238 			 * Error or page not found.
5239 			 * auto-pm is not supported for this device.
5240 			 */
5241 			un->un_power_level = SD_SPINDLE_ON;
5242 			un->un_f_pm_is_enabled = FALSE;
5243 		}
5244 	} else {
5245 		/*
5246 		 * Page found, use it.
5247 		 */
5248 		un->un_start_stop_cycle_page = START_STOP_CYCLE_PAGE;
5249 		un->un_f_pm_is_enabled = TRUE;
5250 	}
5251 
5252 
5253 	if (un->un_f_pm_is_enabled == TRUE) {
5254 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
5255 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
5256 
5257 		rval = sd_send_scsi_LOG_SENSE(un, log_page_data,
5258 		    log_page_size, un->un_start_stop_cycle_page,
5259 		    0x01, 0, SD_PATH_DIRECT);
5260 #ifdef	SDDEBUG
5261 		if (sd_force_pm_supported) {
5262 			/* Force a successful result */
5263 			rval = 0;
5264 		}
5265 #endif
5266 
5267 		/*
5268 		 * If the Log sense for Page( Start/stop cycle counter page)
5269 		 * succeeds, then power managment is supported and we can
5270 		 * enable auto-pm.
5271 		 */
5272 		if (rval == 0)  {
5273 			(void) sd_create_pm_components(devi, un);
5274 		} else {
5275 			un->un_power_level = SD_SPINDLE_ON;
5276 			un->un_f_pm_is_enabled = FALSE;
5277 		}
5278 
5279 		kmem_free(log_page_data, log_page_size);
5280 	}
5281 }
5282 
5283 
5284 /*
5285  *    Function: sd_create_pm_components
5286  *
5287  * Description: Initialize PM property.
5288  *
5289  *     Context: Kernel thread context
5290  */
5291 
5292 static void
5293 sd_create_pm_components(dev_info_t *devi, struct sd_lun *un)
5294 {
5295 	char *pm_comp[] = { "NAME=spindle-motor", "0=off", "1=on", NULL };
5296 
5297 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5298 
5299 	if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi,
5300 	    "pm-components", pm_comp, 3) == DDI_PROP_SUCCESS) {
5301 		/*
5302 		 * When components are initially created they are idle,
5303 		 * power up any non-removables.
5304 		 * Note: the return value of pm_raise_power can't be used
5305 		 * for determining if PM should be enabled for this device.
5306 		 * Even if you check the return values and remove this
5307 		 * property created above, the PM framework will not honor the
5308 		 * change after the first call to pm_raise_power. Hence,
5309 		 * removal of that property does not help if pm_raise_power
5310 		 * fails. In the case of removable media, the start/stop
5311 		 * will fail if the media is not present.
5312 		 */
5313 		if (un->un_f_attach_spinup && (pm_raise_power(SD_DEVINFO(un), 0,
5314 		    SD_SPINDLE_ON) == DDI_SUCCESS)) {
5315 			mutex_enter(SD_MUTEX(un));
5316 			un->un_power_level = SD_SPINDLE_ON;
5317 			mutex_enter(&un->un_pm_mutex);
5318 			/* Set to on and not busy. */
5319 			un->un_pm_count = 0;
5320 		} else {
5321 			mutex_enter(SD_MUTEX(un));
5322 			un->un_power_level = SD_SPINDLE_OFF;
5323 			mutex_enter(&un->un_pm_mutex);
5324 			/* Set to off. */
5325 			un->un_pm_count = -1;
5326 		}
5327 		mutex_exit(&un->un_pm_mutex);
5328 		mutex_exit(SD_MUTEX(un));
5329 	} else {
5330 		un->un_power_level = SD_SPINDLE_ON;
5331 		un->un_f_pm_is_enabled = FALSE;
5332 	}
5333 }
5334 
5335 
5336 /*
5337  *    Function: sd_ddi_suspend
5338  *
5339  * Description: Performs system power-down operations. This includes
5340  *		setting the drive state to indicate its suspended so
5341  *		that no new commands will be accepted. Also, wait for
5342  *		all commands that are in transport or queued to a timer
5343  *		for retry to complete. All timeout threads are cancelled.
5344  *
5345  * Return Code: DDI_FAILURE or DDI_SUCCESS
5346  *
5347  *     Context: Kernel thread context
5348  */
5349 
5350 static int
5351 sd_ddi_suspend(dev_info_t *devi)
5352 {
5353 	struct	sd_lun	*un;
5354 	clock_t		wait_cmds_complete;
5355 
5356 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
5357 	if (un == NULL) {
5358 		return (DDI_FAILURE);
5359 	}
5360 
5361 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: entry\n");
5362 
5363 	mutex_enter(SD_MUTEX(un));
5364 
5365 	/* Return success if the device is already suspended. */
5366 	if (un->un_state == SD_STATE_SUSPENDED) {
5367 		mutex_exit(SD_MUTEX(un));
5368 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
5369 		    "device already suspended, exiting\n");
5370 		return (DDI_SUCCESS);
5371 	}
5372 
5373 	/* Return failure if the device is being used by HA */
5374 	if (un->un_resvd_status &
5375 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE)) {
5376 		mutex_exit(SD_MUTEX(un));
5377 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
5378 		    "device in use by HA, exiting\n");
5379 		return (DDI_FAILURE);
5380 	}
5381 
5382 	/*
5383 	 * Return failure if the device is in a resource wait
5384 	 * or power changing state.
5385 	 */
5386 	if ((un->un_state == SD_STATE_RWAIT) ||
5387 	    (un->un_state == SD_STATE_PM_CHANGING)) {
5388 		mutex_exit(SD_MUTEX(un));
5389 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
5390 		    "device in resource wait state, exiting\n");
5391 		return (DDI_FAILURE);
5392 	}
5393 
5394 
5395 	un->un_save_state = un->un_last_state;
5396 	New_state(un, SD_STATE_SUSPENDED);
5397 
5398 	/*
5399 	 * Wait for all commands that are in transport or queued to a timer
5400 	 * for retry to complete.
5401 	 *
5402 	 * While waiting, no new commands will be accepted or sent because of
5403 	 * the new state we set above.
5404 	 *
5405 	 * Wait till current operation has completed. If we are in the resource
5406 	 * wait state (with an intr outstanding) then we need to wait till the
5407 	 * intr completes and starts the next cmd. We want to wait for
5408 	 * SD_WAIT_CMDS_COMPLETE seconds before failing the DDI_SUSPEND.
5409 	 */
5410 	wait_cmds_complete = ddi_get_lbolt() +
5411 	    (sd_wait_cmds_complete * drv_usectohz(1000000));
5412 
5413 	while (un->un_ncmds_in_transport != 0) {
5414 		/*
5415 		 * Fail if commands do not finish in the specified time.
5416 		 */
5417 		if (cv_timedwait(&un->un_disk_busy_cv, SD_MUTEX(un),
5418 		    wait_cmds_complete) == -1) {
5419 			/*
5420 			 * Undo the state changes made above. Everything
5421 			 * must go back to it's original value.
5422 			 */
5423 			Restore_state(un);
5424 			un->un_last_state = un->un_save_state;
5425 			/* Wake up any threads that might be waiting. */
5426 			cv_broadcast(&un->un_suspend_cv);
5427 			mutex_exit(SD_MUTEX(un));
5428 			SD_ERROR(SD_LOG_IO_PM, un,
5429 			    "sd_ddi_suspend: failed due to outstanding cmds\n");
5430 			SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exiting\n");
5431 			return (DDI_FAILURE);
5432 		}
5433 	}
5434 
5435 	/*
5436 	 * Cancel SCSI watch thread and timeouts, if any are active
5437 	 */
5438 
5439 	if (SD_OK_TO_SUSPEND_SCSI_WATCHER(un)) {
5440 		opaque_t temp_token = un->un_swr_token;
5441 		mutex_exit(SD_MUTEX(un));
5442 		scsi_watch_suspend(temp_token);
5443 		mutex_enter(SD_MUTEX(un));
5444 	}
5445 
5446 	if (un->un_reset_throttle_timeid != NULL) {
5447 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
5448 		un->un_reset_throttle_timeid = NULL;
5449 		mutex_exit(SD_MUTEX(un));
5450 		(void) untimeout(temp_id);
5451 		mutex_enter(SD_MUTEX(un));
5452 	}
5453 
5454 	if (un->un_dcvb_timeid != NULL) {
5455 		timeout_id_t temp_id = un->un_dcvb_timeid;
5456 		un->un_dcvb_timeid = NULL;
5457 		mutex_exit(SD_MUTEX(un));
5458 		(void) untimeout(temp_id);
5459 		mutex_enter(SD_MUTEX(un));
5460 	}
5461 
5462 	mutex_enter(&un->un_pm_mutex);
5463 	if (un->un_pm_timeid != NULL) {
5464 		timeout_id_t temp_id = un->un_pm_timeid;
5465 		un->un_pm_timeid = NULL;
5466 		mutex_exit(&un->un_pm_mutex);
5467 		mutex_exit(SD_MUTEX(un));
5468 		(void) untimeout(temp_id);
5469 		mutex_enter(SD_MUTEX(un));
5470 	} else {
5471 		mutex_exit(&un->un_pm_mutex);
5472 	}
5473 
5474 	if (un->un_retry_timeid != NULL) {
5475 		timeout_id_t temp_id = un->un_retry_timeid;
5476 		un->un_retry_timeid = NULL;
5477 		mutex_exit(SD_MUTEX(un));
5478 		(void) untimeout(temp_id);
5479 		mutex_enter(SD_MUTEX(un));
5480 	}
5481 
5482 	if (un->un_direct_priority_timeid != NULL) {
5483 		timeout_id_t temp_id = un->un_direct_priority_timeid;
5484 		un->un_direct_priority_timeid = NULL;
5485 		mutex_exit(SD_MUTEX(un));
5486 		(void) untimeout(temp_id);
5487 		mutex_enter(SD_MUTEX(un));
5488 	}
5489 
5490 	if (un->un_f_is_fibre == TRUE) {
5491 		/*
5492 		 * Remove callbacks for insert and remove events
5493 		 */
5494 		if (un->un_insert_event != NULL) {
5495 			mutex_exit(SD_MUTEX(un));
5496 			(void) ddi_remove_event_handler(un->un_insert_cb_id);
5497 			mutex_enter(SD_MUTEX(un));
5498 			un->un_insert_event = NULL;
5499 		}
5500 
5501 		if (un->un_remove_event != NULL) {
5502 			mutex_exit(SD_MUTEX(un));
5503 			(void) ddi_remove_event_handler(un->un_remove_cb_id);
5504 			mutex_enter(SD_MUTEX(un));
5505 			un->un_remove_event = NULL;
5506 		}
5507 	}
5508 
5509 	mutex_exit(SD_MUTEX(un));
5510 
5511 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exit\n");
5512 
5513 	return (DDI_SUCCESS);
5514 }
5515 
5516 
5517 /*
5518  *    Function: sd_ddi_pm_suspend
5519  *
5520  * Description: Set the drive state to low power.
5521  *		Someone else is required to actually change the drive
5522  *		power level.
5523  *
5524  *   Arguments: un - driver soft state (unit) structure
5525  *
5526  * Return Code: DDI_FAILURE or DDI_SUCCESS
5527  *
5528  *     Context: Kernel thread context
5529  */
5530 
5531 static int
5532 sd_ddi_pm_suspend(struct sd_lun *un)
5533 {
5534 	ASSERT(un != NULL);
5535 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: entry\n");
5536 
5537 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5538 	mutex_enter(SD_MUTEX(un));
5539 
5540 	/*
5541 	 * Exit if power management is not enabled for this device, or if
5542 	 * the device is being used by HA.
5543 	 */
5544 	if ((un->un_f_pm_is_enabled == FALSE) || (un->un_resvd_status &
5545 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE))) {
5546 		mutex_exit(SD_MUTEX(un));
5547 		SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exiting\n");
5548 		return (DDI_SUCCESS);
5549 	}
5550 
5551 	SD_INFO(SD_LOG_POWER, un, "sd_ddi_pm_suspend: un_ncmds_in_driver=%ld\n",
5552 	    un->un_ncmds_in_driver);
5553 
5554 	/*
5555 	 * See if the device is not busy, ie.:
5556 	 *    - we have no commands in the driver for this device
5557 	 *    - not waiting for resources
5558 	 */
5559 	if ((un->un_ncmds_in_driver == 0) &&
5560 	    (un->un_state != SD_STATE_RWAIT)) {
5561 		/*
5562 		 * The device is not busy, so it is OK to go to low power state.
5563 		 * Indicate low power, but rely on someone else to actually
5564 		 * change it.
5565 		 */
5566 		mutex_enter(&un->un_pm_mutex);
5567 		un->un_pm_count = -1;
5568 		mutex_exit(&un->un_pm_mutex);
5569 		un->un_power_level = SD_SPINDLE_OFF;
5570 	}
5571 
5572 	mutex_exit(SD_MUTEX(un));
5573 
5574 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exit\n");
5575 
5576 	return (DDI_SUCCESS);
5577 }
5578 
5579 
5580 /*
5581  *    Function: sd_ddi_resume
5582  *
5583  * Description: Performs system power-up operations..
5584  *
5585  * Return Code: DDI_SUCCESS
5586  *		DDI_FAILURE
5587  *
5588  *     Context: Kernel thread context
5589  */
5590 
5591 static int
5592 sd_ddi_resume(dev_info_t *devi)
5593 {
5594 	struct	sd_lun	*un;
5595 
5596 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
5597 	if (un == NULL) {
5598 		return (DDI_FAILURE);
5599 	}
5600 
5601 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: entry\n");
5602 
5603 	mutex_enter(SD_MUTEX(un));
5604 	Restore_state(un);
5605 
5606 	/*
5607 	 * Restore the state which was saved to give the
5608 	 * the right state in un_last_state
5609 	 */
5610 	un->un_last_state = un->un_save_state;
5611 	/*
5612 	 * Note: throttle comes back at full.
5613 	 * Also note: this MUST be done before calling pm_raise_power
5614 	 * otherwise the system can get hung in biowait. The scenario where
5615 	 * this'll happen is under cpr suspend. Writing of the system
5616 	 * state goes through sddump, which writes 0 to un_throttle. If
5617 	 * writing the system state then fails, example if the partition is
5618 	 * too small, then cpr attempts a resume. If throttle isn't restored
5619 	 * from the saved value until after calling pm_raise_power then
5620 	 * cmds sent in sdpower are not transported and sd_send_scsi_cmd hangs
5621 	 * in biowait.
5622 	 */
5623 	un->un_throttle = un->un_saved_throttle;
5624 
5625 	/*
5626 	 * The chance of failure is very rare as the only command done in power
5627 	 * entry point is START command when you transition from 0->1 or
5628 	 * unknown->1. Put it to SPINDLE ON state irrespective of the state at
5629 	 * which suspend was done. Ignore the return value as the resume should
5630 	 * not be failed. In the case of removable media the media need not be
5631 	 * inserted and hence there is a chance that raise power will fail with
5632 	 * media not present.
5633 	 */
5634 	if (un->un_f_attach_spinup) {
5635 		mutex_exit(SD_MUTEX(un));
5636 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
5637 		mutex_enter(SD_MUTEX(un));
5638 	}
5639 
5640 	/*
5641 	 * Don't broadcast to the suspend cv and therefore possibly
5642 	 * start I/O until after power has been restored.
5643 	 */
5644 	cv_broadcast(&un->un_suspend_cv);
5645 	cv_broadcast(&un->un_state_cv);
5646 
5647 	/* restart thread */
5648 	if (SD_OK_TO_RESUME_SCSI_WATCHER(un)) {
5649 		scsi_watch_resume(un->un_swr_token);
5650 	}
5651 
5652 #if (defined(__fibre))
5653 	if (un->un_f_is_fibre == TRUE) {
5654 		/*
5655 		 * Add callbacks for insert and remove events
5656 		 */
5657 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
5658 			sd_init_event_callbacks(un);
5659 		}
5660 	}
5661 #endif
5662 
5663 	/*
5664 	 * Transport any pending commands to the target.
5665 	 *
5666 	 * If this is a low-activity device commands in queue will have to wait
5667 	 * until new commands come in, which may take awhile. Also, we
5668 	 * specifically don't check un_ncmds_in_transport because we know that
5669 	 * there really are no commands in progress after the unit was
5670 	 * suspended and we could have reached the throttle level, been
5671 	 * suspended, and have no new commands coming in for awhile. Highly
5672 	 * unlikely, but so is the low-activity disk scenario.
5673 	 */
5674 	ddi_xbuf_dispatch(un->un_xbuf_attr);
5675 
5676 	sd_start_cmds(un, NULL);
5677 	mutex_exit(SD_MUTEX(un));
5678 
5679 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: exit\n");
5680 
5681 	return (DDI_SUCCESS);
5682 }
5683 
5684 
5685 /*
5686  *    Function: sd_ddi_pm_resume
5687  *
5688  * Description: Set the drive state to powered on.
5689  *		Someone else is required to actually change the drive
5690  *		power level.
5691  *
5692  *   Arguments: un - driver soft state (unit) structure
5693  *
5694  * Return Code: DDI_SUCCESS
5695  *
5696  *     Context: Kernel thread context
5697  */
5698 
5699 static int
5700 sd_ddi_pm_resume(struct sd_lun *un)
5701 {
5702 	ASSERT(un != NULL);
5703 
5704 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5705 	mutex_enter(SD_MUTEX(un));
5706 	un->un_power_level = SD_SPINDLE_ON;
5707 
5708 	ASSERT(!mutex_owned(&un->un_pm_mutex));
5709 	mutex_enter(&un->un_pm_mutex);
5710 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
5711 		un->un_pm_count++;
5712 		ASSERT(un->un_pm_count == 0);
5713 		/*
5714 		 * Note: no longer do the cv_broadcast on un_suspend_cv. The
5715 		 * un_suspend_cv is for a system resume, not a power management
5716 		 * device resume. (4297749)
5717 		 *	 cv_broadcast(&un->un_suspend_cv);
5718 		 */
5719 	}
5720 	mutex_exit(&un->un_pm_mutex);
5721 	mutex_exit(SD_MUTEX(un));
5722 
5723 	return (DDI_SUCCESS);
5724 }
5725 
5726 
5727 /*
5728  *    Function: sd_pm_idletimeout_handler
5729  *
5730  * Description: A timer routine that's active only while a device is busy.
5731  *		The purpose is to extend slightly the pm framework's busy
5732  *		view of the device to prevent busy/idle thrashing for
5733  *		back-to-back commands. Do this by comparing the current time
5734  *		to the time at which the last command completed and when the
5735  *		difference is greater than sd_pm_idletime, call
5736  *		pm_idle_component. In addition to indicating idle to the pm
5737  *		framework, update the chain type to again use the internal pm
5738  *		layers of the driver.
5739  *
5740  *   Arguments: arg - driver soft state (unit) structure
5741  *
5742  *     Context: Executes in a timeout(9F) thread context
5743  */
5744 
5745 static void
5746 sd_pm_idletimeout_handler(void *arg)
5747 {
5748 	struct sd_lun *un = arg;
5749 
5750 	time_t	now;
5751 
5752 	mutex_enter(&sd_detach_mutex);
5753 	if (un->un_detach_count != 0) {
5754 		/* Abort if the instance is detaching */
5755 		mutex_exit(&sd_detach_mutex);
5756 		return;
5757 	}
5758 	mutex_exit(&sd_detach_mutex);
5759 
5760 	now = ddi_get_time();
5761 	/*
5762 	 * Grab both mutexes, in the proper order, since we're accessing
5763 	 * both PM and softstate variables.
5764 	 */
5765 	mutex_enter(SD_MUTEX(un));
5766 	mutex_enter(&un->un_pm_mutex);
5767 	if (((now - un->un_pm_idle_time) > sd_pm_idletime) &&
5768 	    (un->un_ncmds_in_driver == 0) && (un->un_pm_count == 0)) {
5769 		/*
5770 		 * Update the chain types.
5771 		 * This takes affect on the next new command received.
5772 		 */
5773 		if (un->un_f_non_devbsize_supported) {
5774 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
5775 		} else {
5776 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
5777 		}
5778 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
5779 
5780 		SD_TRACE(SD_LOG_IO_PM, un,
5781 		    "sd_pm_idletimeout_handler: idling device\n");
5782 		(void) pm_idle_component(SD_DEVINFO(un), 0);
5783 		un->un_pm_idle_timeid = NULL;
5784 	} else {
5785 		un->un_pm_idle_timeid =
5786 		    timeout(sd_pm_idletimeout_handler, un,
5787 		    (drv_usectohz((clock_t)300000))); /* 300 ms. */
5788 	}
5789 	mutex_exit(&un->un_pm_mutex);
5790 	mutex_exit(SD_MUTEX(un));
5791 }
5792 
5793 
5794 /*
5795  *    Function: sd_pm_timeout_handler
5796  *
5797  * Description: Callback to tell framework we are idle.
5798  *
5799  *     Context: timeout(9f) thread context.
5800  */
5801 
5802 static void
5803 sd_pm_timeout_handler(void *arg)
5804 {
5805 	struct sd_lun *un = arg;
5806 
5807 	(void) pm_idle_component(SD_DEVINFO(un), 0);
5808 	mutex_enter(&un->un_pm_mutex);
5809 	un->un_pm_timeid = NULL;
5810 	mutex_exit(&un->un_pm_mutex);
5811 }
5812 
5813 
5814 /*
5815  *    Function: sdpower
5816  *
5817  * Description: PM entry point.
5818  *
5819  * Return Code: DDI_SUCCESS
5820  *		DDI_FAILURE
5821  *
5822  *     Context: Kernel thread context
5823  */
5824 
5825 static int
5826 sdpower(dev_info_t *devi, int component, int level)
5827 {
5828 	struct sd_lun	*un;
5829 	int		instance;
5830 	int		rval = DDI_SUCCESS;
5831 	uint_t		i, log_page_size, maxcycles, ncycles;
5832 	uchar_t		*log_page_data;
5833 	int		log_sense_page;
5834 	int		medium_present;
5835 	time_t		intvlp;
5836 	dev_t		dev;
5837 	struct pm_trans_data	sd_pm_tran_data;
5838 	uchar_t		save_state;
5839 	int		sval;
5840 	uchar_t		state_before_pm;
5841 	int		got_semaphore_here;
5842 
5843 	instance = ddi_get_instance(devi);
5844 
5845 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
5846 	    (SD_SPINDLE_OFF > level) || (level > SD_SPINDLE_ON) ||
5847 	    component != 0) {
5848 		return (DDI_FAILURE);
5849 	}
5850 
5851 	dev = sd_make_device(SD_DEVINFO(un));
5852 
5853 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: entry, level = %d\n", level);
5854 
5855 	/*
5856 	 * Must synchronize power down with close.
5857 	 * Attempt to decrement/acquire the open/close semaphore,
5858 	 * but do NOT wait on it. If it's not greater than zero,
5859 	 * ie. it can't be decremented without waiting, then
5860 	 * someone else, either open or close, already has it
5861 	 * and the try returns 0. Use that knowledge here to determine
5862 	 * if it's OK to change the device power level.
5863 	 * Also, only increment it on exit if it was decremented, ie. gotten,
5864 	 * here.
5865 	 */
5866 	got_semaphore_here = sema_tryp(&un->un_semoclose);
5867 
5868 	mutex_enter(SD_MUTEX(un));
5869 
5870 	SD_INFO(SD_LOG_POWER, un, "sdpower: un_ncmds_in_driver = %ld\n",
5871 	    un->un_ncmds_in_driver);
5872 
5873 	/*
5874 	 * If un_ncmds_in_driver is non-zero it indicates commands are
5875 	 * already being processed in the driver, or if the semaphore was
5876 	 * not gotten here it indicates an open or close is being processed.
5877 	 * At the same time somebody is requesting to go low power which
5878 	 * can't happen, therefore we need to return failure.
5879 	 */
5880 	if ((level == SD_SPINDLE_OFF) &&
5881 	    ((un->un_ncmds_in_driver != 0) || (got_semaphore_here == 0))) {
5882 		mutex_exit(SD_MUTEX(un));
5883 
5884 		if (got_semaphore_here != 0) {
5885 			sema_v(&un->un_semoclose);
5886 		}
5887 		SD_TRACE(SD_LOG_IO_PM, un,
5888 		    "sdpower: exit, device has queued cmds.\n");
5889 		return (DDI_FAILURE);
5890 	}
5891 
5892 	/*
5893 	 * if it is OFFLINE that means the disk is completely dead
5894 	 * in our case we have to put the disk in on or off by sending commands
5895 	 * Of course that will fail anyway so return back here.
5896 	 *
5897 	 * Power changes to a device that's OFFLINE or SUSPENDED
5898 	 * are not allowed.
5899 	 */
5900 	if ((un->un_state == SD_STATE_OFFLINE) ||
5901 	    (un->un_state == SD_STATE_SUSPENDED)) {
5902 		mutex_exit(SD_MUTEX(un));
5903 
5904 		if (got_semaphore_here != 0) {
5905 			sema_v(&un->un_semoclose);
5906 		}
5907 		SD_TRACE(SD_LOG_IO_PM, un,
5908 		    "sdpower: exit, device is off-line.\n");
5909 		return (DDI_FAILURE);
5910 	}
5911 
5912 	/*
5913 	 * Change the device's state to indicate it's power level
5914 	 * is being changed. Do this to prevent a power off in the
5915 	 * middle of commands, which is especially bad on devices
5916 	 * that are really powered off instead of just spun down.
5917 	 */
5918 	state_before_pm = un->un_state;
5919 	un->un_state = SD_STATE_PM_CHANGING;
5920 
5921 	mutex_exit(SD_MUTEX(un));
5922 
5923 	/*
5924 	 * If "pm-capable" property is set to TRUE by HBA drivers,
5925 	 * bypass the following checking, otherwise, check the log
5926 	 * sense information for this device
5927 	 */
5928 	if ((level == SD_SPINDLE_OFF) && un->un_f_log_sense_supported) {
5929 		/*
5930 		 * Get the log sense information to understand whether the
5931 		 * the powercycle counts have gone beyond the threshhold.
5932 		 */
5933 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
5934 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
5935 
5936 		mutex_enter(SD_MUTEX(un));
5937 		log_sense_page = un->un_start_stop_cycle_page;
5938 		mutex_exit(SD_MUTEX(un));
5939 
5940 		rval = sd_send_scsi_LOG_SENSE(un, log_page_data,
5941 		    log_page_size, log_sense_page, 0x01, 0, SD_PATH_DIRECT);
5942 #ifdef	SDDEBUG
5943 		if (sd_force_pm_supported) {
5944 			/* Force a successful result */
5945 			rval = 0;
5946 		}
5947 #endif
5948 		if (rval != 0) {
5949 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5950 			    "Log Sense Failed\n");
5951 			kmem_free(log_page_data, log_page_size);
5952 			/* Cannot support power management on those drives */
5953 
5954 			if (got_semaphore_here != 0) {
5955 				sema_v(&un->un_semoclose);
5956 			}
5957 			/*
5958 			 * On exit put the state back to it's original value
5959 			 * and broadcast to anyone waiting for the power
5960 			 * change completion.
5961 			 */
5962 			mutex_enter(SD_MUTEX(un));
5963 			un->un_state = state_before_pm;
5964 			cv_broadcast(&un->un_suspend_cv);
5965 			mutex_exit(SD_MUTEX(un));
5966 			SD_TRACE(SD_LOG_IO_PM, un,
5967 			    "sdpower: exit, Log Sense Failed.\n");
5968 			return (DDI_FAILURE);
5969 		}
5970 
5971 		/*
5972 		 * From the page data - Convert the essential information to
5973 		 * pm_trans_data
5974 		 */
5975 		maxcycles =
5976 		    (log_page_data[0x1c] << 24) | (log_page_data[0x1d] << 16) |
5977 		    (log_page_data[0x1E] << 8)  | log_page_data[0x1F];
5978 
5979 		sd_pm_tran_data.un.scsi_cycles.lifemax = maxcycles;
5980 
5981 		ncycles =
5982 		    (log_page_data[0x24] << 24) | (log_page_data[0x25] << 16) |
5983 		    (log_page_data[0x26] << 8)  | log_page_data[0x27];
5984 
5985 		sd_pm_tran_data.un.scsi_cycles.ncycles = ncycles;
5986 
5987 		for (i = 0; i < DC_SCSI_MFR_LEN; i++) {
5988 			sd_pm_tran_data.un.scsi_cycles.svc_date[i] =
5989 			    log_page_data[8+i];
5990 		}
5991 
5992 		kmem_free(log_page_data, log_page_size);
5993 
5994 		/*
5995 		 * Call pm_trans_check routine to get the Ok from
5996 		 * the global policy
5997 		 */
5998 
5999 		sd_pm_tran_data.format = DC_SCSI_FORMAT;
6000 		sd_pm_tran_data.un.scsi_cycles.flag = 0;
6001 
6002 		rval = pm_trans_check(&sd_pm_tran_data, &intvlp);
6003 #ifdef	SDDEBUG
6004 		if (sd_force_pm_supported) {
6005 			/* Force a successful result */
6006 			rval = 1;
6007 		}
6008 #endif
6009 		switch (rval) {
6010 		case 0:
6011 			/*
6012 			 * Not Ok to Power cycle or error in parameters passed
6013 			 * Would have given the advised time to consider power
6014 			 * cycle. Based on the new intvlp parameter we are
6015 			 * supposed to pretend we are busy so that pm framework
6016 			 * will never call our power entry point. Because of
6017 			 * that install a timeout handler and wait for the
6018 			 * recommended time to elapse so that power management
6019 			 * can be effective again.
6020 			 *
6021 			 * To effect this behavior, call pm_busy_component to
6022 			 * indicate to the framework this device is busy.
6023 			 * By not adjusting un_pm_count the rest of PM in
6024 			 * the driver will function normally, and independant
6025 			 * of this but because the framework is told the device
6026 			 * is busy it won't attempt powering down until it gets
6027 			 * a matching idle. The timeout handler sends this.
6028 			 * Note: sd_pm_entry can't be called here to do this
6029 			 * because sdpower may have been called as a result
6030 			 * of a call to pm_raise_power from within sd_pm_entry.
6031 			 *
6032 			 * If a timeout handler is already active then
6033 			 * don't install another.
6034 			 */
6035 			mutex_enter(&un->un_pm_mutex);
6036 			if (un->un_pm_timeid == NULL) {
6037 				un->un_pm_timeid =
6038 				    timeout(sd_pm_timeout_handler,
6039 				    un, intvlp * drv_usectohz(1000000));
6040 				mutex_exit(&un->un_pm_mutex);
6041 				(void) pm_busy_component(SD_DEVINFO(un), 0);
6042 			} else {
6043 				mutex_exit(&un->un_pm_mutex);
6044 			}
6045 			if (got_semaphore_here != 0) {
6046 				sema_v(&un->un_semoclose);
6047 			}
6048 			/*
6049 			 * On exit put the state back to it's original value
6050 			 * and broadcast to anyone waiting for the power
6051 			 * change completion.
6052 			 */
6053 			mutex_enter(SD_MUTEX(un));
6054 			un->un_state = state_before_pm;
6055 			cv_broadcast(&un->un_suspend_cv);
6056 			mutex_exit(SD_MUTEX(un));
6057 
6058 			SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, "
6059 			    "trans check Failed, not ok to power cycle.\n");
6060 			return (DDI_FAILURE);
6061 
6062 		case -1:
6063 			if (got_semaphore_here != 0) {
6064 				sema_v(&un->un_semoclose);
6065 			}
6066 			/*
6067 			 * On exit put the state back to it's original value
6068 			 * and broadcast to anyone waiting for the power
6069 			 * change completion.
6070 			 */
6071 			mutex_enter(SD_MUTEX(un));
6072 			un->un_state = state_before_pm;
6073 			cv_broadcast(&un->un_suspend_cv);
6074 			mutex_exit(SD_MUTEX(un));
6075 			SD_TRACE(SD_LOG_IO_PM, un,
6076 			    "sdpower: exit, trans check command Failed.\n");
6077 			return (DDI_FAILURE);
6078 		}
6079 	}
6080 
6081 	if (level == SD_SPINDLE_OFF) {
6082 		/*
6083 		 * Save the last state... if the STOP FAILS we need it
6084 		 * for restoring
6085 		 */
6086 		mutex_enter(SD_MUTEX(un));
6087 		save_state = un->un_last_state;
6088 		/*
6089 		 * There must not be any cmds. getting processed
6090 		 * in the driver when we get here. Power to the
6091 		 * device is potentially going off.
6092 		 */
6093 		ASSERT(un->un_ncmds_in_driver == 0);
6094 		mutex_exit(SD_MUTEX(un));
6095 
6096 		/*
6097 		 * For now suspend the device completely before spindle is
6098 		 * turned off
6099 		 */
6100 		if ((rval = sd_ddi_pm_suspend(un)) == DDI_FAILURE) {
6101 			if (got_semaphore_here != 0) {
6102 				sema_v(&un->un_semoclose);
6103 			}
6104 			/*
6105 			 * On exit put the state back to it's original value
6106 			 * and broadcast to anyone waiting for the power
6107 			 * change completion.
6108 			 */
6109 			mutex_enter(SD_MUTEX(un));
6110 			un->un_state = state_before_pm;
6111 			cv_broadcast(&un->un_suspend_cv);
6112 			mutex_exit(SD_MUTEX(un));
6113 			SD_TRACE(SD_LOG_IO_PM, un,
6114 			    "sdpower: exit, PM suspend Failed.\n");
6115 			return (DDI_FAILURE);
6116 		}
6117 	}
6118 
6119 	/*
6120 	 * The transition from SPINDLE_OFF to SPINDLE_ON can happen in open,
6121 	 * close, or strategy. Dump no long uses this routine, it uses it's
6122 	 * own code so it can be done in polled mode.
6123 	 */
6124 
6125 	medium_present = TRUE;
6126 
6127 	/*
6128 	 * When powering up, issue a TUR in case the device is at unit
6129 	 * attention.  Don't do retries. Bypass the PM layer, otherwise
6130 	 * a deadlock on un_pm_busy_cv will occur.
6131 	 */
6132 	if (level == SD_SPINDLE_ON) {
6133 		(void) sd_send_scsi_TEST_UNIT_READY(un,
6134 		    SD_DONT_RETRY_TUR | SD_BYPASS_PM);
6135 	}
6136 
6137 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: sending \'%s\' unit\n",
6138 	    ((level == SD_SPINDLE_ON) ? "START" : "STOP"));
6139 
6140 	sval = sd_send_scsi_START_STOP_UNIT(un,
6141 	    ((level == SD_SPINDLE_ON) ? SD_TARGET_START : SD_TARGET_STOP),
6142 	    SD_PATH_DIRECT);
6143 	/* Command failed, check for media present. */
6144 	if ((sval == ENXIO) && un->un_f_has_removable_media) {
6145 		medium_present = FALSE;
6146 	}
6147 
6148 	/*
6149 	 * The conditions of interest here are:
6150 	 *   if a spindle off with media present fails,
6151 	 *	then restore the state and return an error.
6152 	 *   else if a spindle on fails,
6153 	 *	then return an error (there's no state to restore).
6154 	 * In all other cases we setup for the new state
6155 	 * and return success.
6156 	 */
6157 	switch (level) {
6158 	case SD_SPINDLE_OFF:
6159 		if ((medium_present == TRUE) && (sval != 0)) {
6160 			/* The stop command from above failed */
6161 			rval = DDI_FAILURE;
6162 			/*
6163 			 * The stop command failed, and we have media
6164 			 * present. Put the level back by calling the
6165 			 * sd_pm_resume() and set the state back to
6166 			 * it's previous value.
6167 			 */
6168 			(void) sd_ddi_pm_resume(un);
6169 			mutex_enter(SD_MUTEX(un));
6170 			un->un_last_state = save_state;
6171 			mutex_exit(SD_MUTEX(un));
6172 			break;
6173 		}
6174 		/*
6175 		 * The stop command from above succeeded.
6176 		 */
6177 		if (un->un_f_monitor_media_state) {
6178 			/*
6179 			 * Terminate watch thread in case of removable media
6180 			 * devices going into low power state. This is as per
6181 			 * the requirements of pm framework, otherwise commands
6182 			 * will be generated for the device (through watch
6183 			 * thread), even when the device is in low power state.
6184 			 */
6185 			mutex_enter(SD_MUTEX(un));
6186 			un->un_f_watcht_stopped = FALSE;
6187 			if (un->un_swr_token != NULL) {
6188 				opaque_t temp_token = un->un_swr_token;
6189 				un->un_f_watcht_stopped = TRUE;
6190 				un->un_swr_token = NULL;
6191 				mutex_exit(SD_MUTEX(un));
6192 				(void) scsi_watch_request_terminate(temp_token,
6193 				    SCSI_WATCH_TERMINATE_WAIT);
6194 			} else {
6195 				mutex_exit(SD_MUTEX(un));
6196 			}
6197 		}
6198 		break;
6199 
6200 	default:	/* The level requested is spindle on... */
6201 		/*
6202 		 * Legacy behavior: return success on a failed spinup
6203 		 * if there is no media in the drive.
6204 		 * Do this by looking at medium_present here.
6205 		 */
6206 		if ((sval != 0) && medium_present) {
6207 			/* The start command from above failed */
6208 			rval = DDI_FAILURE;
6209 			break;
6210 		}
6211 		/*
6212 		 * The start command from above succeeded
6213 		 * Resume the devices now that we have
6214 		 * started the disks
6215 		 */
6216 		(void) sd_ddi_pm_resume(un);
6217 
6218 		/*
6219 		 * Resume the watch thread since it was suspended
6220 		 * when the device went into low power mode.
6221 		 */
6222 		if (un->un_f_monitor_media_state) {
6223 			mutex_enter(SD_MUTEX(un));
6224 			if (un->un_f_watcht_stopped == TRUE) {
6225 				opaque_t temp_token;
6226 
6227 				un->un_f_watcht_stopped = FALSE;
6228 				mutex_exit(SD_MUTEX(un));
6229 				temp_token = scsi_watch_request_submit(
6230 				    SD_SCSI_DEVP(un),
6231 				    sd_check_media_time,
6232 				    SENSE_LENGTH, sd_media_watch_cb,
6233 				    (caddr_t)dev);
6234 				mutex_enter(SD_MUTEX(un));
6235 				un->un_swr_token = temp_token;
6236 			}
6237 			mutex_exit(SD_MUTEX(un));
6238 		}
6239 	}
6240 	if (got_semaphore_here != 0) {
6241 		sema_v(&un->un_semoclose);
6242 	}
6243 	/*
6244 	 * On exit put the state back to it's original value
6245 	 * and broadcast to anyone waiting for the power
6246 	 * change completion.
6247 	 */
6248 	mutex_enter(SD_MUTEX(un));
6249 	un->un_state = state_before_pm;
6250 	cv_broadcast(&un->un_suspend_cv);
6251 	mutex_exit(SD_MUTEX(un));
6252 
6253 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, status = 0x%x\n", rval);
6254 
6255 	return (rval);
6256 }
6257 
6258 
6259 
6260 /*
6261  *    Function: sdattach
6262  *
6263  * Description: Driver's attach(9e) entry point function.
6264  *
6265  *   Arguments: devi - opaque device info handle
6266  *		cmd  - attach  type
6267  *
6268  * Return Code: DDI_SUCCESS
6269  *		DDI_FAILURE
6270  *
6271  *     Context: Kernel thread context
6272  */
6273 
6274 static int
6275 sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd)
6276 {
6277 	switch (cmd) {
6278 	case DDI_ATTACH:
6279 		return (sd_unit_attach(devi));
6280 	case DDI_RESUME:
6281 		return (sd_ddi_resume(devi));
6282 	default:
6283 		break;
6284 	}
6285 	return (DDI_FAILURE);
6286 }
6287 
6288 
6289 /*
6290  *    Function: sddetach
6291  *
6292  * Description: Driver's detach(9E) entry point function.
6293  *
6294  *   Arguments: devi - opaque device info handle
6295  *		cmd  - detach  type
6296  *
6297  * Return Code: DDI_SUCCESS
6298  *		DDI_FAILURE
6299  *
6300  *     Context: Kernel thread context
6301  */
6302 
6303 static int
6304 sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd)
6305 {
6306 	switch (cmd) {
6307 	case DDI_DETACH:
6308 		return (sd_unit_detach(devi));
6309 	case DDI_SUSPEND:
6310 		return (sd_ddi_suspend(devi));
6311 	default:
6312 		break;
6313 	}
6314 	return (DDI_FAILURE);
6315 }
6316 
6317 
6318 /*
6319  *     Function: sd_sync_with_callback
6320  *
6321  *  Description: Prevents sd_unit_attach or sd_unit_detach from freeing the soft
6322  *		 state while the callback routine is active.
6323  *
6324  *    Arguments: un: softstate structure for the instance
6325  *
6326  *	Context: Kernel thread context
6327  */
6328 
6329 static void
6330 sd_sync_with_callback(struct sd_lun *un)
6331 {
6332 	ASSERT(un != NULL);
6333 
6334 	mutex_enter(SD_MUTEX(un));
6335 
6336 	ASSERT(un->un_in_callback >= 0);
6337 
6338 	while (un->un_in_callback > 0) {
6339 		mutex_exit(SD_MUTEX(un));
6340 		delay(2);
6341 		mutex_enter(SD_MUTEX(un));
6342 	}
6343 
6344 	mutex_exit(SD_MUTEX(un));
6345 }
6346 
6347 /*
6348  *    Function: sd_unit_attach
6349  *
6350  * Description: Performs DDI_ATTACH processing for sdattach(). Allocates
6351  *		the soft state structure for the device and performs
6352  *		all necessary structure and device initializations.
6353  *
6354  *   Arguments: devi: the system's dev_info_t for the device.
6355  *
6356  * Return Code: DDI_SUCCESS if attach is successful.
6357  *		DDI_FAILURE if any part of the attach fails.
6358  *
6359  *     Context: Called at attach(9e) time for the DDI_ATTACH flag.
6360  *		Kernel thread context only.  Can sleep.
6361  */
6362 
6363 static int
6364 sd_unit_attach(dev_info_t *devi)
6365 {
6366 	struct	scsi_device	*devp;
6367 	struct	sd_lun		*un;
6368 	char			*variantp;
6369 	int	reservation_flag = SD_TARGET_IS_UNRESERVED;
6370 	int	instance;
6371 	int	rval;
6372 	int	wc_enabled;
6373 	int	tgt;
6374 	uint64_t	capacity;
6375 	uint_t		lbasize = 0;
6376 	dev_info_t	*pdip = ddi_get_parent(devi);
6377 	int		offbyone = 0;
6378 	int		geom_label_valid = 0;
6379 #if defined(__sparc)
6380 	int		max_xfer_size;
6381 #endif
6382 
6383 	/*
6384 	 * Retrieve the target driver's private data area. This was set
6385 	 * up by the HBA.
6386 	 */
6387 	devp = ddi_get_driver_private(devi);
6388 
6389 	/*
6390 	 * Retrieve the target ID of the device.
6391 	 */
6392 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
6393 	    SCSI_ADDR_PROP_TARGET, -1);
6394 
6395 	/*
6396 	 * Since we have no idea what state things were left in by the last
6397 	 * user of the device, set up some 'default' settings, ie. turn 'em
6398 	 * off. The scsi_ifsetcap calls force re-negotiations with the drive.
6399 	 * Do this before the scsi_probe, which sends an inquiry.
6400 	 * This is a fix for bug (4430280).
6401 	 * Of special importance is wide-xfer. The drive could have been left
6402 	 * in wide transfer mode by the last driver to communicate with it,
6403 	 * this includes us. If that's the case, and if the following is not
6404 	 * setup properly or we don't re-negotiate with the drive prior to
6405 	 * transferring data to/from the drive, it causes bus parity errors,
6406 	 * data overruns, and unexpected interrupts. This first occurred when
6407 	 * the fix for bug (4378686) was made.
6408 	 */
6409 	(void) scsi_ifsetcap(&devp->sd_address, "lun-reset", 0, 1);
6410 	(void) scsi_ifsetcap(&devp->sd_address, "wide-xfer", 0, 1);
6411 	(void) scsi_ifsetcap(&devp->sd_address, "auto-rqsense", 0, 1);
6412 
6413 	/*
6414 	 * Currently, scsi_ifsetcap sets tagged-qing capability for all LUNs
6415 	 * on a target. Setting it per lun instance actually sets the
6416 	 * capability of this target, which affects those luns already
6417 	 * attached on the same target. So during attach, we can only disable
6418 	 * this capability only when no other lun has been attached on this
6419 	 * target. By doing this, we assume a target has the same tagged-qing
6420 	 * capability for every lun. The condition can be removed when HBA
6421 	 * is changed to support per lun based tagged-qing capability.
6422 	 */
6423 	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
6424 		(void) scsi_ifsetcap(&devp->sd_address, "tagged-qing", 0, 1);
6425 	}
6426 
6427 	/*
6428 	 * Use scsi_probe() to issue an INQUIRY command to the device.
6429 	 * This call will allocate and fill in the scsi_inquiry structure
6430 	 * and point the sd_inq member of the scsi_device structure to it.
6431 	 * If the attach succeeds, then this memory will not be de-allocated
6432 	 * (via scsi_unprobe()) until the instance is detached.
6433 	 */
6434 	if (scsi_probe(devp, SLEEP_FUNC) != SCSIPROBE_EXISTS) {
6435 		goto probe_failed;
6436 	}
6437 
6438 	/*
6439 	 * Check the device type as specified in the inquiry data and
6440 	 * claim it if it is of a type that we support.
6441 	 */
6442 	switch (devp->sd_inq->inq_dtype) {
6443 	case DTYPE_DIRECT:
6444 		break;
6445 	case DTYPE_RODIRECT:
6446 		break;
6447 	case DTYPE_OPTICAL:
6448 		break;
6449 	case DTYPE_NOTPRESENT:
6450 	default:
6451 		/* Unsupported device type; fail the attach. */
6452 		goto probe_failed;
6453 	}
6454 
6455 	/*
6456 	 * Allocate the soft state structure for this unit.
6457 	 *
6458 	 * We rely upon this memory being set to all zeroes by
6459 	 * ddi_soft_state_zalloc().  We assume that any member of the
6460 	 * soft state structure that is not explicitly initialized by
6461 	 * this routine will have a value of zero.
6462 	 */
6463 	instance = ddi_get_instance(devp->sd_dev);
6464 	if (ddi_soft_state_zalloc(sd_state, instance) != DDI_SUCCESS) {
6465 		goto probe_failed;
6466 	}
6467 
6468 	/*
6469 	 * Retrieve a pointer to the newly-allocated soft state.
6470 	 *
6471 	 * This should NEVER fail if the ddi_soft_state_zalloc() call above
6472 	 * was successful, unless something has gone horribly wrong and the
6473 	 * ddi's soft state internals are corrupt (in which case it is
6474 	 * probably better to halt here than just fail the attach....)
6475 	 */
6476 	if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
6477 		panic("sd_unit_attach: NULL soft state on instance:0x%x",
6478 		    instance);
6479 		/*NOTREACHED*/
6480 	}
6481 
6482 	/*
6483 	 * Link the back ptr of the driver soft state to the scsi_device
6484 	 * struct for this lun.
6485 	 * Save a pointer to the softstate in the driver-private area of
6486 	 * the scsi_device struct.
6487 	 * Note: We cannot call SD_INFO, SD_TRACE, SD_ERROR, or SD_DIAG until
6488 	 * we first set un->un_sd below.
6489 	 */
6490 	un->un_sd = devp;
6491 	devp->sd_private = (opaque_t)un;
6492 
6493 	/*
6494 	 * The following must be after devp is stored in the soft state struct.
6495 	 */
6496 #ifdef SDDEBUG
6497 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
6498 	    "%s_unit_attach: un:0x%p instance:%d\n",
6499 	    ddi_driver_name(devi), un, instance);
6500 #endif
6501 
6502 	/*
6503 	 * Set up the device type and node type (for the minor nodes).
6504 	 * By default we assume that the device can at least support the
6505 	 * Common Command Set. Call it a CD-ROM if it reports itself
6506 	 * as a RODIRECT device.
6507 	 */
6508 	switch (devp->sd_inq->inq_dtype) {
6509 	case DTYPE_RODIRECT:
6510 		un->un_node_type = DDI_NT_CD_CHAN;
6511 		un->un_ctype	 = CTYPE_CDROM;
6512 		break;
6513 	case DTYPE_OPTICAL:
6514 		un->un_node_type = DDI_NT_BLOCK_CHAN;
6515 		un->un_ctype	 = CTYPE_ROD;
6516 		break;
6517 	default:
6518 		un->un_node_type = DDI_NT_BLOCK_CHAN;
6519 		un->un_ctype	 = CTYPE_CCS;
6520 		break;
6521 	}
6522 
6523 	/*
6524 	 * Try to read the interconnect type from the HBA.
6525 	 *
6526 	 * Note: This driver is currently compiled as two binaries, a parallel
6527 	 * scsi version (sd) and a fibre channel version (ssd). All functional
6528 	 * differences are determined at compile time. In the future a single
6529 	 * binary will be provided and the inteconnect type will be used to
6530 	 * differentiate between fibre and parallel scsi behaviors. At that time
6531 	 * it will be necessary for all fibre channel HBAs to support this
6532 	 * property.
6533 	 *
6534 	 * set un_f_is_fiber to TRUE ( default fiber )
6535 	 */
6536 	un->un_f_is_fibre = TRUE;
6537 	switch (scsi_ifgetcap(SD_ADDRESS(un), "interconnect-type", -1)) {
6538 	case INTERCONNECT_SSA:
6539 		un->un_interconnect_type = SD_INTERCONNECT_SSA;
6540 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6541 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SSA\n", un);
6542 		break;
6543 	case INTERCONNECT_PARALLEL:
6544 		un->un_f_is_fibre = FALSE;
6545 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
6546 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6547 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_PARALLEL\n", un);
6548 		break;
6549 	case INTERCONNECT_SATA:
6550 		un->un_f_is_fibre = FALSE;
6551 		un->un_interconnect_type = SD_INTERCONNECT_SATA;
6552 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6553 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SATA\n", un);
6554 		break;
6555 	case INTERCONNECT_FIBRE:
6556 		un->un_interconnect_type = SD_INTERCONNECT_FIBRE;
6557 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6558 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FIBRE\n", un);
6559 		break;
6560 	case INTERCONNECT_FABRIC:
6561 		un->un_interconnect_type = SD_INTERCONNECT_FABRIC;
6562 		un->un_node_type = DDI_NT_BLOCK_FABRIC;
6563 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6564 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FABRIC\n", un);
6565 		break;
6566 	default:
6567 #ifdef SD_DEFAULT_INTERCONNECT_TYPE
6568 		/*
6569 		 * The HBA does not support the "interconnect-type" property
6570 		 * (or did not provide a recognized type).
6571 		 *
6572 		 * Note: This will be obsoleted when a single fibre channel
6573 		 * and parallel scsi driver is delivered. In the meantime the
6574 		 * interconnect type will be set to the platform default.If that
6575 		 * type is not parallel SCSI, it means that we should be
6576 		 * assuming "ssd" semantics. However, here this also means that
6577 		 * the FC HBA is not supporting the "interconnect-type" property
6578 		 * like we expect it to, so log this occurrence.
6579 		 */
6580 		un->un_interconnect_type = SD_DEFAULT_INTERCONNECT_TYPE;
6581 		if (!SD_IS_PARALLEL_SCSI(un)) {
6582 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6583 			    "sd_unit_attach: un:0x%p Assuming "
6584 			    "INTERCONNECT_FIBRE\n", un);
6585 		} else {
6586 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6587 			    "sd_unit_attach: un:0x%p Assuming "
6588 			    "INTERCONNECT_PARALLEL\n", un);
6589 			un->un_f_is_fibre = FALSE;
6590 		}
6591 #else
6592 		/*
6593 		 * Note: This source will be implemented when a single fibre
6594 		 * channel and parallel scsi driver is delivered. The default
6595 		 * will be to assume that if a device does not support the
6596 		 * "interconnect-type" property it is a parallel SCSI HBA and
6597 		 * we will set the interconnect type for parallel scsi.
6598 		 */
6599 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
6600 		un->un_f_is_fibre = FALSE;
6601 #endif
6602 		break;
6603 	}
6604 
6605 	if (un->un_f_is_fibre == TRUE) {
6606 		if (scsi_ifgetcap(SD_ADDRESS(un), "scsi-version", 1) ==
6607 		    SCSI_VERSION_3) {
6608 			switch (un->un_interconnect_type) {
6609 			case SD_INTERCONNECT_FIBRE:
6610 			case SD_INTERCONNECT_SSA:
6611 				un->un_node_type = DDI_NT_BLOCK_WWN;
6612 				break;
6613 			default:
6614 				break;
6615 			}
6616 		}
6617 	}
6618 
6619 	/*
6620 	 * Initialize the Request Sense command for the target
6621 	 */
6622 	if (sd_alloc_rqs(devp, un) != DDI_SUCCESS) {
6623 		goto alloc_rqs_failed;
6624 	}
6625 
6626 	/*
6627 	 * Set un_retry_count with SD_RETRY_COUNT, this is ok for Sparc
6628 	 * with separate binary for sd and ssd.
6629 	 *
6630 	 * x86 has 1 binary, un_retry_count is set base on connection type.
6631 	 * The hardcoded values will go away when Sparc uses 1 binary
6632 	 * for sd and ssd.  This hardcoded values need to match
6633 	 * SD_RETRY_COUNT in sddef.h
6634 	 * The value used is base on interconnect type.
6635 	 * fibre = 3, parallel = 5
6636 	 */
6637 #if defined(__i386) || defined(__amd64)
6638 	un->un_retry_count = un->un_f_is_fibre ? 3 : 5;
6639 #else
6640 	un->un_retry_count = SD_RETRY_COUNT;
6641 #endif
6642 
6643 	/*
6644 	 * Set the per disk retry count to the default number of retries
6645 	 * for disks and CDROMs. This value can be overridden by the
6646 	 * disk property list or an entry in sd.conf.
6647 	 */
6648 	un->un_notready_retry_count =
6649 	    ISCD(un) ? CD_NOT_READY_RETRY_COUNT(un)
6650 	    : DISK_NOT_READY_RETRY_COUNT(un);
6651 
6652 	/*
6653 	 * Set the busy retry count to the default value of un_retry_count.
6654 	 * This can be overridden by entries in sd.conf or the device
6655 	 * config table.
6656 	 */
6657 	un->un_busy_retry_count = un->un_retry_count;
6658 
6659 	/*
6660 	 * Init the reset threshold for retries.  This number determines
6661 	 * how many retries must be performed before a reset can be issued
6662 	 * (for certain error conditions). This can be overridden by entries
6663 	 * in sd.conf or the device config table.
6664 	 */
6665 	un->un_reset_retry_count = (un->un_retry_count / 2);
6666 
6667 	/*
6668 	 * Set the victim_retry_count to the default un_retry_count
6669 	 */
6670 	un->un_victim_retry_count = (2 * un->un_retry_count);
6671 
6672 	/*
6673 	 * Set the reservation release timeout to the default value of
6674 	 * 5 seconds. This can be overridden by entries in ssd.conf or the
6675 	 * device config table.
6676 	 */
6677 	un->un_reserve_release_time = 5;
6678 
6679 	/*
6680 	 * Set up the default maximum transfer size. Note that this may
6681 	 * get updated later in the attach, when setting up default wide
6682 	 * operations for disks.
6683 	 */
6684 #if defined(__i386) || defined(__amd64)
6685 	un->un_max_xfer_size = (uint_t)SD_DEFAULT_MAX_XFER_SIZE;
6686 	un->un_partial_dma_supported = 1;
6687 #else
6688 	un->un_max_xfer_size = (uint_t)maxphys;
6689 #endif
6690 
6691 	/*
6692 	 * Get "allow bus device reset" property (defaults to "enabled" if
6693 	 * the property was not defined). This is to disable bus resets for
6694 	 * certain kinds of error recovery. Note: In the future when a run-time
6695 	 * fibre check is available the soft state flag should default to
6696 	 * enabled.
6697 	 */
6698 	if (un->un_f_is_fibre == TRUE) {
6699 		un->un_f_allow_bus_device_reset = TRUE;
6700 	} else {
6701 		if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
6702 		    "allow-bus-device-reset", 1) != 0) {
6703 			un->un_f_allow_bus_device_reset = TRUE;
6704 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6705 			    "sd_unit_attach: un:0x%p Bus device reset "
6706 			    "enabled\n", un);
6707 		} else {
6708 			un->un_f_allow_bus_device_reset = FALSE;
6709 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6710 			    "sd_unit_attach: un:0x%p Bus device reset "
6711 			    "disabled\n", un);
6712 		}
6713 	}
6714 
6715 	/*
6716 	 * Check if this is an ATAPI device. ATAPI devices use Group 1
6717 	 * Read/Write commands and Group 2 Mode Sense/Select commands.
6718 	 *
6719 	 * Note: The "obsolete" way of doing this is to check for the "atapi"
6720 	 * property. The new "variant" property with a value of "atapi" has been
6721 	 * introduced so that future 'variants' of standard SCSI behavior (like
6722 	 * atapi) could be specified by the underlying HBA drivers by supplying
6723 	 * a new value for the "variant" property, instead of having to define a
6724 	 * new property.
6725 	 */
6726 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "atapi", -1) != -1) {
6727 		un->un_f_cfg_is_atapi = TRUE;
6728 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6729 		    "sd_unit_attach: un:0x%p Atapi device\n", un);
6730 	}
6731 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, 0, "variant",
6732 	    &variantp) == DDI_PROP_SUCCESS) {
6733 		if (strcmp(variantp, "atapi") == 0) {
6734 			un->un_f_cfg_is_atapi = TRUE;
6735 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6736 			    "sd_unit_attach: un:0x%p Atapi device\n", un);
6737 		}
6738 		ddi_prop_free(variantp);
6739 	}
6740 
6741 	un->un_cmd_timeout	= SD_IO_TIME;
6742 
6743 	/* Info on current states, statuses, etc. (Updated frequently) */
6744 	un->un_state		= SD_STATE_NORMAL;
6745 	un->un_last_state	= SD_STATE_NORMAL;
6746 
6747 	/* Control & status info for command throttling */
6748 	un->un_throttle		= sd_max_throttle;
6749 	un->un_saved_throttle	= sd_max_throttle;
6750 	un->un_min_throttle	= sd_min_throttle;
6751 
6752 	if (un->un_f_is_fibre == TRUE) {
6753 		un->un_f_use_adaptive_throttle = TRUE;
6754 	} else {
6755 		un->un_f_use_adaptive_throttle = FALSE;
6756 	}
6757 
6758 	/* Removable media support. */
6759 	cv_init(&un->un_state_cv, NULL, CV_DRIVER, NULL);
6760 	un->un_mediastate		= DKIO_NONE;
6761 	un->un_specified_mediastate	= DKIO_NONE;
6762 
6763 	/* CVs for suspend/resume (PM or DR) */
6764 	cv_init(&un->un_suspend_cv,   NULL, CV_DRIVER, NULL);
6765 	cv_init(&un->un_disk_busy_cv, NULL, CV_DRIVER, NULL);
6766 
6767 	/* Power management support. */
6768 	un->un_power_level = SD_SPINDLE_UNINIT;
6769 
6770 	cv_init(&un->un_wcc_cv,   NULL, CV_DRIVER, NULL);
6771 	un->un_f_wcc_inprog = 0;
6772 
6773 	/*
6774 	 * The open/close semaphore is used to serialize threads executing
6775 	 * in the driver's open & close entry point routines for a given
6776 	 * instance.
6777 	 */
6778 	(void) sema_init(&un->un_semoclose, 1, NULL, SEMA_DRIVER, NULL);
6779 
6780 	/*
6781 	 * The conf file entry and softstate variable is a forceful override,
6782 	 * meaning a non-zero value must be entered to change the default.
6783 	 */
6784 	un->un_f_disksort_disabled = FALSE;
6785 
6786 	/*
6787 	 * Retrieve the properties from the static driver table or the driver
6788 	 * configuration file (.conf) for this unit and update the soft state
6789 	 * for the device as needed for the indicated properties.
6790 	 * Note: the property configuration needs to occur here as some of the
6791 	 * following routines may have dependancies on soft state flags set
6792 	 * as part of the driver property configuration.
6793 	 */
6794 	sd_read_unit_properties(un);
6795 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
6796 	    "sd_unit_attach: un:0x%p property configuration complete.\n", un);
6797 
6798 	/*
6799 	 * Only if a device has "hotpluggable" property, it is
6800 	 * treated as hotpluggable device. Otherwise, it is
6801 	 * regarded as non-hotpluggable one.
6802 	 */
6803 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "hotpluggable",
6804 	    -1) != -1) {
6805 		un->un_f_is_hotpluggable = TRUE;
6806 	}
6807 
6808 	/*
6809 	 * set unit's attributes(flags) according to "hotpluggable" and
6810 	 * RMB bit in INQUIRY data.
6811 	 */
6812 	sd_set_unit_attributes(un, devi);
6813 
6814 	/*
6815 	 * By default, we mark the capacity, lbasize, and geometry
6816 	 * as invalid. Only if we successfully read a valid capacity
6817 	 * will we update the un_blockcount and un_tgt_blocksize with the
6818 	 * valid values (the geometry will be validated later).
6819 	 */
6820 	un->un_f_blockcount_is_valid	= FALSE;
6821 	un->un_f_tgt_blocksize_is_valid	= FALSE;
6822 
6823 	/*
6824 	 * Use DEV_BSIZE and DEV_BSHIFT as defaults, until we can determine
6825 	 * otherwise.
6826 	 */
6827 	un->un_tgt_blocksize  = un->un_sys_blocksize  = DEV_BSIZE;
6828 	un->un_blockcount = 0;
6829 
6830 	/*
6831 	 * Set up the per-instance info needed to determine the correct
6832 	 * CDBs and other info for issuing commands to the target.
6833 	 */
6834 	sd_init_cdb_limits(un);
6835 
6836 	/*
6837 	 * Set up the IO chains to use, based upon the target type.
6838 	 */
6839 	if (un->un_f_non_devbsize_supported) {
6840 		un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
6841 	} else {
6842 		un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
6843 	}
6844 	un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
6845 	un->un_direct_chain_type = SD_CHAIN_INFO_DIRECT_CMD;
6846 	un->un_priority_chain_type = SD_CHAIN_INFO_PRIORITY_CMD;
6847 
6848 	un->un_xbuf_attr = ddi_xbuf_attr_create(sizeof (struct sd_xbuf),
6849 	    sd_xbuf_strategy, un, sd_xbuf_active_limit,  sd_xbuf_reserve_limit,
6850 	    ddi_driver_major(devi), DDI_XBUF_QTHREAD_DRIVER);
6851 	ddi_xbuf_attr_register_devinfo(un->un_xbuf_attr, devi);
6852 
6853 
6854 	if (ISCD(un)) {
6855 		un->un_additional_codes = sd_additional_codes;
6856 	} else {
6857 		un->un_additional_codes = NULL;
6858 	}
6859 
6860 	/*
6861 	 * Create the kstats here so they can be available for attach-time
6862 	 * routines that send commands to the unit (either polled or via
6863 	 * sd_send_scsi_cmd).
6864 	 *
6865 	 * Note: This is a critical sequence that needs to be maintained:
6866 	 *	1) Instantiate the kstats here, before any routines using the
6867 	 *	   iopath (i.e. sd_send_scsi_cmd).
6868 	 *	2) Instantiate and initialize the partition stats
6869 	 *	   (sd_set_pstats).
6870 	 *	3) Initialize the error stats (sd_set_errstats), following
6871 	 *	   sd_validate_geometry(),sd_register_devid(),
6872 	 *	   and sd_cache_control().
6873 	 */
6874 
6875 	un->un_stats = kstat_create(sd_label, instance,
6876 	    NULL, "disk", KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT);
6877 	if (un->un_stats != NULL) {
6878 		un->un_stats->ks_lock = SD_MUTEX(un);
6879 		kstat_install(un->un_stats);
6880 	}
6881 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
6882 	    "sd_unit_attach: un:0x%p un_stats created\n", un);
6883 
6884 	sd_create_errstats(un, instance);
6885 	if (un->un_errstats == NULL) {
6886 		goto create_errstats_failed;
6887 	}
6888 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
6889 	    "sd_unit_attach: un:0x%p errstats created\n", un);
6890 
6891 	/*
6892 	 * The following if/else code was relocated here from below as part
6893 	 * of the fix for bug (4430280). However with the default setup added
6894 	 * on entry to this routine, it's no longer absolutely necessary for
6895 	 * this to be before the call to sd_spin_up_unit.
6896 	 */
6897 	if (SD_IS_PARALLEL_SCSI(un) || SD_IS_SERIAL(un)) {
6898 		int tq_trigger_flag = (((devp->sd_inq->inq_ansi == 4) ||
6899 		    (devp->sd_inq->inq_ansi == 5)) &&
6900 		    devp->sd_inq->inq_bque) || devp->sd_inq->inq_cmdque;
6901 
6902 		/*
6903 		 * If tagged queueing is supported by the target
6904 		 * and by the host adapter then we will enable it
6905 		 */
6906 		un->un_tagflags = 0;
6907 		if ((devp->sd_inq->inq_rdf == RDF_SCSI2) && tq_trigger_flag &&
6908 		    (un->un_f_arq_enabled == TRUE)) {
6909 			if (scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing",
6910 			    1, 1) == 1) {
6911 				un->un_tagflags = FLAG_STAG;
6912 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
6913 				    "sd_unit_attach: un:0x%p tag queueing "
6914 				    "enabled\n", un);
6915 			} else if (scsi_ifgetcap(SD_ADDRESS(un),
6916 			    "untagged-qing", 0) == 1) {
6917 				un->un_f_opt_queueing = TRUE;
6918 				un->un_saved_throttle = un->un_throttle =
6919 				    min(un->un_throttle, 3);
6920 			} else {
6921 				un->un_f_opt_queueing = FALSE;
6922 				un->un_saved_throttle = un->un_throttle = 1;
6923 			}
6924 		} else if ((scsi_ifgetcap(SD_ADDRESS(un), "untagged-qing", 0)
6925 		    == 1) && (un->un_f_arq_enabled == TRUE)) {
6926 			/* The Host Adapter supports internal queueing. */
6927 			un->un_f_opt_queueing = TRUE;
6928 			un->un_saved_throttle = un->un_throttle =
6929 			    min(un->un_throttle, 3);
6930 		} else {
6931 			un->un_f_opt_queueing = FALSE;
6932 			un->un_saved_throttle = un->un_throttle = 1;
6933 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6934 			    "sd_unit_attach: un:0x%p no tag queueing\n", un);
6935 		}
6936 
6937 		/*
6938 		 * Enable large transfers for SATA/SAS drives
6939 		 */
6940 		if (SD_IS_SERIAL(un)) {
6941 			un->un_max_xfer_size =
6942 			    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
6943 			    sd_max_xfer_size, SD_MAX_XFER_SIZE);
6944 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6945 			    "sd_unit_attach: un:0x%p max transfer "
6946 			    "size=0x%x\n", un, un->un_max_xfer_size);
6947 
6948 		}
6949 
6950 		/* Setup or tear down default wide operations for disks */
6951 
6952 		/*
6953 		 * Note: Legacy: it may be possible for both "sd_max_xfer_size"
6954 		 * and "ssd_max_xfer_size" to exist simultaneously on the same
6955 		 * system and be set to different values. In the future this
6956 		 * code may need to be updated when the ssd module is
6957 		 * obsoleted and removed from the system. (4299588)
6958 		 */
6959 		if (SD_IS_PARALLEL_SCSI(un) &&
6960 		    (devp->sd_inq->inq_rdf == RDF_SCSI2) &&
6961 		    (devp->sd_inq->inq_wbus16 || devp->sd_inq->inq_wbus32)) {
6962 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
6963 			    1, 1) == 1) {
6964 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
6965 				    "sd_unit_attach: un:0x%p Wide Transfer "
6966 				    "enabled\n", un);
6967 			}
6968 
6969 			/*
6970 			 * If tagged queuing has also been enabled, then
6971 			 * enable large xfers
6972 			 */
6973 			if (un->un_saved_throttle == sd_max_throttle) {
6974 				un->un_max_xfer_size =
6975 				    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
6976 				    sd_max_xfer_size, SD_MAX_XFER_SIZE);
6977 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
6978 				    "sd_unit_attach: un:0x%p max transfer "
6979 				    "size=0x%x\n", un, un->un_max_xfer_size);
6980 			}
6981 		} else {
6982 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
6983 			    0, 1) == 1) {
6984 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
6985 				    "sd_unit_attach: un:0x%p "
6986 				    "Wide Transfer disabled\n", un);
6987 			}
6988 		}
6989 	} else {
6990 		un->un_tagflags = FLAG_STAG;
6991 		un->un_max_xfer_size = ddi_getprop(DDI_DEV_T_ANY,
6992 		    devi, 0, sd_max_xfer_size, SD_MAX_XFER_SIZE);
6993 	}
6994 
6995 	/*
6996 	 * If this target supports LUN reset, try to enable it.
6997 	 */
6998 	if (un->un_f_lun_reset_enabled) {
6999 		if (scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 1, 1) == 1) {
7000 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
7001 			    "un:0x%p lun_reset capability set\n", un);
7002 		} else {
7003 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
7004 			    "un:0x%p lun-reset capability not set\n", un);
7005 		}
7006 	}
7007 
7008 	/*
7009 	 * Adjust the maximum transfer size. This is to fix
7010 	 * the problem of partial DMA support on SPARC. Some
7011 	 * HBA driver, like aac, has very small dma_attr_maxxfer
7012 	 * size, which requires partial DMA support on SPARC.
7013 	 * In the future the SPARC pci nexus driver may solve
7014 	 * the problem instead of this fix.
7015 	 */
7016 #if defined(__sparc)
7017 	max_xfer_size = scsi_ifgetcap(SD_ADDRESS(un), "dma-max", 1);
7018 	if ((max_xfer_size > 0) && (max_xfer_size < un->un_max_xfer_size)) {
7019 		un->un_max_xfer_size = max_xfer_size;
7020 		un->un_partial_dma_supported = 1;
7021 	}
7022 #endif
7023 
7024 	/*
7025 	 * Set PKT_DMA_PARTIAL flag.
7026 	 */
7027 	if (un->un_partial_dma_supported == 1) {
7028 		un->un_pkt_flags = PKT_DMA_PARTIAL;
7029 	} else {
7030 		un->un_pkt_flags = 0;
7031 	}
7032 
7033 	/*
7034 	 * At this point in the attach, we have enough info in the
7035 	 * soft state to be able to issue commands to the target.
7036 	 *
7037 	 * All command paths used below MUST issue their commands as
7038 	 * SD_PATH_DIRECT. This is important as intermediate layers
7039 	 * are not all initialized yet (such as PM).
7040 	 */
7041 
7042 	/*
7043 	 * Send a TEST UNIT READY command to the device. This should clear
7044 	 * any outstanding UNIT ATTENTION that may be present.
7045 	 *
7046 	 * Note: Don't check for success, just track if there is a reservation,
7047 	 * this is a throw away command to clear any unit attentions.
7048 	 *
7049 	 * Note: This MUST be the first command issued to the target during
7050 	 * attach to ensure power on UNIT ATTENTIONS are cleared.
7051 	 * Pass in flag SD_DONT_RETRY_TUR to prevent the long delays associated
7052 	 * with attempts at spinning up a device with no media.
7053 	 */
7054 	if (sd_send_scsi_TEST_UNIT_READY(un, SD_DONT_RETRY_TUR) == EACCES) {
7055 		reservation_flag = SD_TARGET_IS_RESERVED;
7056 	}
7057 
7058 	/*
7059 	 * If the device is NOT a removable media device, attempt to spin
7060 	 * it up (using the START_STOP_UNIT command) and read its capacity
7061 	 * (using the READ CAPACITY command).  Note, however, that either
7062 	 * of these could fail and in some cases we would continue with
7063 	 * the attach despite the failure (see below).
7064 	 */
7065 	if (un->un_f_descr_format_supported) {
7066 		switch (sd_spin_up_unit(un)) {
7067 		case 0:
7068 			/*
7069 			 * Spin-up was successful; now try to read the
7070 			 * capacity.  If successful then save the results
7071 			 * and mark the capacity & lbasize as valid.
7072 			 */
7073 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7074 			    "sd_unit_attach: un:0x%p spin-up successful\n", un);
7075 
7076 			switch (sd_send_scsi_READ_CAPACITY(un, &capacity,
7077 			    &lbasize, SD_PATH_DIRECT)) {
7078 			case 0: {
7079 				if (capacity > DK_MAX_BLOCKS) {
7080 #ifdef _LP64
7081 					if (capacity + 1 >
7082 					    SD_GROUP1_MAX_ADDRESS) {
7083 						/*
7084 						 * Enable descriptor format
7085 						 * sense data so that we can
7086 						 * get 64 bit sense data
7087 						 * fields.
7088 						 */
7089 						sd_enable_descr_sense(un);
7090 					}
7091 #else
7092 					/* 32-bit kernels can't handle this */
7093 					scsi_log(SD_DEVINFO(un),
7094 					    sd_label, CE_WARN,
7095 					    "disk has %llu blocks, which "
7096 					    "is too large for a 32-bit "
7097 					    "kernel", capacity);
7098 
7099 #if defined(__i386) || defined(__amd64)
7100 					/*
7101 					 * 1TB disk was treated as (1T - 512)B
7102 					 * in the past, so that it might have
7103 					 * valid VTOC and solaris partitions,
7104 					 * we have to allow it to continue to
7105 					 * work.
7106 					 */
7107 					if (capacity -1 > DK_MAX_BLOCKS)
7108 #endif
7109 					goto spinup_failed;
7110 #endif
7111 				}
7112 
7113 				/*
7114 				 * Here it's not necessary to check the case:
7115 				 * the capacity of the device is bigger than
7116 				 * what the max hba cdb can support. Because
7117 				 * sd_send_scsi_READ_CAPACITY will retrieve
7118 				 * the capacity by sending USCSI command, which
7119 				 * is constrained by the max hba cdb. Actually,
7120 				 * sd_send_scsi_READ_CAPACITY will return
7121 				 * EINVAL when using bigger cdb than required
7122 				 * cdb length. Will handle this case in
7123 				 * "case EINVAL".
7124 				 */
7125 
7126 				/*
7127 				 * The following relies on
7128 				 * sd_send_scsi_READ_CAPACITY never
7129 				 * returning 0 for capacity and/or lbasize.
7130 				 */
7131 				sd_update_block_info(un, lbasize, capacity);
7132 
7133 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7134 				    "sd_unit_attach: un:0x%p capacity = %ld "
7135 				    "blocks; lbasize= %ld.\n", un,
7136 				    un->un_blockcount, un->un_tgt_blocksize);
7137 
7138 				break;
7139 			}
7140 			case EINVAL:
7141 				/*
7142 				 * In the case where the max-cdb-length property
7143 				 * is smaller than the required CDB length for
7144 				 * a SCSI device, a target driver can fail to
7145 				 * attach to that device.
7146 				 */
7147 				scsi_log(SD_DEVINFO(un),
7148 				    sd_label, CE_WARN,
7149 				    "disk capacity is too large "
7150 				    "for current cdb length");
7151 				goto spinup_failed;
7152 			case EACCES:
7153 				/*
7154 				 * Should never get here if the spin-up
7155 				 * succeeded, but code it in anyway.
7156 				 * From here, just continue with the attach...
7157 				 */
7158 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7159 				    "sd_unit_attach: un:0x%p "
7160 				    "sd_send_scsi_READ_CAPACITY "
7161 				    "returned reservation conflict\n", un);
7162 				reservation_flag = SD_TARGET_IS_RESERVED;
7163 				break;
7164 			default:
7165 				/*
7166 				 * Likewise, should never get here if the
7167 				 * spin-up succeeded. Just continue with
7168 				 * the attach...
7169 				 */
7170 				break;
7171 			}
7172 			break;
7173 		case EACCES:
7174 			/*
7175 			 * Device is reserved by another host.  In this case
7176 			 * we could not spin it up or read the capacity, but
7177 			 * we continue with the attach anyway.
7178 			 */
7179 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7180 			    "sd_unit_attach: un:0x%p spin-up reservation "
7181 			    "conflict.\n", un);
7182 			reservation_flag = SD_TARGET_IS_RESERVED;
7183 			break;
7184 		default:
7185 			/* Fail the attach if the spin-up failed. */
7186 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7187 			    "sd_unit_attach: un:0x%p spin-up failed.", un);
7188 			goto spinup_failed;
7189 		}
7190 	}
7191 
7192 	/*
7193 	 * Check to see if this is a MMC drive
7194 	 */
7195 	if (ISCD(un)) {
7196 		sd_set_mmc_caps(un);
7197 	}
7198 
7199 
7200 	/*
7201 	 * Add a zero-length attribute to tell the world we support
7202 	 * kernel ioctls (for layered drivers)
7203 	 */
7204 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
7205 	    DDI_KERNEL_IOCTL, NULL, 0);
7206 
7207 	/*
7208 	 * Add a boolean property to tell the world we support
7209 	 * the B_FAILFAST flag (for layered drivers)
7210 	 */
7211 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
7212 	    "ddi-failfast-supported", NULL, 0);
7213 
7214 	/*
7215 	 * Initialize power management
7216 	 */
7217 	mutex_init(&un->un_pm_mutex, NULL, MUTEX_DRIVER, NULL);
7218 	cv_init(&un->un_pm_busy_cv, NULL, CV_DRIVER, NULL);
7219 	sd_setup_pm(un, devi);
7220 	if (un->un_f_pm_is_enabled == FALSE) {
7221 		/*
7222 		 * For performance, point to a jump table that does
7223 		 * not include pm.
7224 		 * The direct and priority chains don't change with PM.
7225 		 *
7226 		 * Note: this is currently done based on individual device
7227 		 * capabilities. When an interface for determining system
7228 		 * power enabled state becomes available, or when additional
7229 		 * layers are added to the command chain, these values will
7230 		 * have to be re-evaluated for correctness.
7231 		 */
7232 		if (un->un_f_non_devbsize_supported) {
7233 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA_NO_PM;
7234 		} else {
7235 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK_NO_PM;
7236 		}
7237 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
7238 	}
7239 
7240 	/*
7241 	 * This property is set to 0 by HA software to avoid retries
7242 	 * on a reserved disk. (The preferred property name is
7243 	 * "retry-on-reservation-conflict") (1189689)
7244 	 *
7245 	 * Note: The use of a global here can have unintended consequences. A
7246 	 * per instance variable is preferrable to match the capabilities of
7247 	 * different underlying hba's (4402600)
7248 	 */
7249 	sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, devi,
7250 	    DDI_PROP_DONTPASS, "retry-on-reservation-conflict",
7251 	    sd_retry_on_reservation_conflict);
7252 	if (sd_retry_on_reservation_conflict != 0) {
7253 		sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY,
7254 		    devi, DDI_PROP_DONTPASS, sd_resv_conflict_name,
7255 		    sd_retry_on_reservation_conflict);
7256 	}
7257 
7258 	/* Set up options for QFULL handling. */
7259 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7260 	    "qfull-retries", -1)) != -1) {
7261 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retries",
7262 		    rval, 1);
7263 	}
7264 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7265 	    "qfull-retry-interval", -1)) != -1) {
7266 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retry-interval",
7267 		    rval, 1);
7268 	}
7269 
7270 	/*
7271 	 * This just prints a message that announces the existence of the
7272 	 * device. The message is always printed in the system logfile, but
7273 	 * only appears on the console if the system is booted with the
7274 	 * -v (verbose) argument.
7275 	 */
7276 	ddi_report_dev(devi);
7277 
7278 	un->un_mediastate = DKIO_NONE;
7279 
7280 	cmlb_alloc_handle(&un->un_cmlbhandle);
7281 
7282 #if defined(__i386) || defined(__amd64)
7283 	/*
7284 	 * On x86, compensate for off-by-1 legacy error
7285 	 */
7286 	if (!un->un_f_has_removable_media && !un->un_f_is_hotpluggable &&
7287 	    (lbasize == un->un_sys_blocksize))
7288 		offbyone = CMLB_OFF_BY_ONE;
7289 #endif
7290 
7291 	if (cmlb_attach(devi, &sd_tgops, (int)devp->sd_inq->inq_dtype,
7292 	    un->un_f_has_removable_media, un->un_f_is_hotpluggable,
7293 	    un->un_node_type, offbyone, un->un_cmlbhandle,
7294 	    (void *)SD_PATH_DIRECT) != 0) {
7295 		goto cmlb_attach_failed;
7296 	}
7297 
7298 
7299 	/*
7300 	 * Read and validate the device's geometry (ie, disk label)
7301 	 * A new unformatted drive will not have a valid geometry, but
7302 	 * the driver needs to successfully attach to this device so
7303 	 * the drive can be formatted via ioctls.
7304 	 */
7305 	geom_label_valid = (cmlb_validate(un->un_cmlbhandle, 0,
7306 	    (void *)SD_PATH_DIRECT) == 0) ? 1: 0;
7307 
7308 	mutex_enter(SD_MUTEX(un));
7309 
7310 	/*
7311 	 * Read and initialize the devid for the unit.
7312 	 */
7313 	if (un->un_f_devid_supported) {
7314 		sd_register_devid(un, devi, reservation_flag);
7315 	}
7316 	mutex_exit(SD_MUTEX(un));
7317 
7318 #if (defined(__fibre))
7319 	/*
7320 	 * Register callbacks for fibre only.  You can't do this soley
7321 	 * on the basis of the devid_type because this is hba specific.
7322 	 * We need to query our hba capabilities to find out whether to
7323 	 * register or not.
7324 	 */
7325 	if (un->un_f_is_fibre) {
7326 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
7327 			sd_init_event_callbacks(un);
7328 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7329 			    "sd_unit_attach: un:0x%p event callbacks inserted",
7330 			    un);
7331 		}
7332 	}
7333 #endif
7334 
7335 	if (un->un_f_opt_disable_cache == TRUE) {
7336 		/*
7337 		 * Disable both read cache and write cache.  This is
7338 		 * the historic behavior of the keywords in the config file.
7339 		 */
7340 		if (sd_cache_control(un, SD_CACHE_DISABLE, SD_CACHE_DISABLE) !=
7341 		    0) {
7342 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7343 			    "sd_unit_attach: un:0x%p Could not disable "
7344 			    "caching", un);
7345 			goto devid_failed;
7346 		}
7347 	}
7348 
7349 	/*
7350 	 * Check the value of the WCE bit now and
7351 	 * set un_f_write_cache_enabled accordingly.
7352 	 */
7353 	(void) sd_get_write_cache_enabled(un, &wc_enabled);
7354 	mutex_enter(SD_MUTEX(un));
7355 	un->un_f_write_cache_enabled = (wc_enabled != 0);
7356 	mutex_exit(SD_MUTEX(un));
7357 
7358 	/*
7359 	 * Check the value of the NV_SUP bit and set
7360 	 * un_f_suppress_cache_flush accordingly.
7361 	 */
7362 	sd_get_nv_sup(un);
7363 
7364 	/*
7365 	 * Find out what type of reservation this disk supports.
7366 	 */
7367 	switch (sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_KEYS, 0, NULL)) {
7368 	case 0:
7369 		/*
7370 		 * SCSI-3 reservations are supported.
7371 		 */
7372 		un->un_reservation_type = SD_SCSI3_RESERVATION;
7373 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7374 		    "sd_unit_attach: un:0x%p SCSI-3 reservations\n", un);
7375 		break;
7376 	case ENOTSUP:
7377 		/*
7378 		 * The PERSISTENT RESERVE IN command would not be recognized by
7379 		 * a SCSI-2 device, so assume the reservation type is SCSI-2.
7380 		 */
7381 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7382 		    "sd_unit_attach: un:0x%p SCSI-2 reservations\n", un);
7383 		un->un_reservation_type = SD_SCSI2_RESERVATION;
7384 		break;
7385 	default:
7386 		/*
7387 		 * default to SCSI-3 reservations
7388 		 */
7389 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7390 		    "sd_unit_attach: un:0x%p default SCSI3 reservations\n", un);
7391 		un->un_reservation_type = SD_SCSI3_RESERVATION;
7392 		break;
7393 	}
7394 
7395 	/*
7396 	 * Set the pstat and error stat values here, so data obtained during the
7397 	 * previous attach-time routines is available.
7398 	 *
7399 	 * Note: This is a critical sequence that needs to be maintained:
7400 	 *	1) Instantiate the kstats before any routines using the iopath
7401 	 *	   (i.e. sd_send_scsi_cmd).
7402 	 *	2) Initialize the error stats (sd_set_errstats) and partition
7403 	 *	   stats (sd_set_pstats)here, following
7404 	 *	   cmlb_validate_geometry(), sd_register_devid(), and
7405 	 *	   sd_cache_control().
7406 	 */
7407 
7408 	if (un->un_f_pkstats_enabled && geom_label_valid) {
7409 		sd_set_pstats(un);
7410 		SD_TRACE(SD_LOG_IO_PARTITION, un,
7411 		    "sd_unit_attach: un:0x%p pstats created and set\n", un);
7412 	}
7413 
7414 	sd_set_errstats(un);
7415 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7416 	    "sd_unit_attach: un:0x%p errstats set\n", un);
7417 
7418 
7419 	/*
7420 	 * After successfully attaching an instance, we record the information
7421 	 * of how many luns have been attached on the relative target and
7422 	 * controller for parallel SCSI. This information is used when sd tries
7423 	 * to set the tagged queuing capability in HBA.
7424 	 */
7425 	if (SD_IS_PARALLEL_SCSI(un) && (tgt >= 0) && (tgt < NTARGETS_WIDE)) {
7426 		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_ATTACH);
7427 	}
7428 
7429 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7430 	    "sd_unit_attach: un:0x%p exit success\n", un);
7431 
7432 	return (DDI_SUCCESS);
7433 
7434 	/*
7435 	 * An error occurred during the attach; clean up & return failure.
7436 	 */
7437 
7438 devid_failed:
7439 
7440 setup_pm_failed:
7441 	ddi_remove_minor_node(devi, NULL);
7442 
7443 cmlb_attach_failed:
7444 	/*
7445 	 * Cleanup from the scsi_ifsetcap() calls (437868)
7446 	 */
7447 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
7448 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
7449 
7450 	/*
7451 	 * Refer to the comments of setting tagged-qing in the beginning of
7452 	 * sd_unit_attach. We can only disable tagged queuing when there is
7453 	 * no lun attached on the target.
7454 	 */
7455 	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
7456 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
7457 	}
7458 
7459 	if (un->un_f_is_fibre == FALSE) {
7460 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
7461 	}
7462 
7463 spinup_failed:
7464 
7465 	mutex_enter(SD_MUTEX(un));
7466 
7467 	/* Cancel callback for SD_PATH_DIRECT_PRIORITY cmd. restart */
7468 	if (un->un_direct_priority_timeid != NULL) {
7469 		timeout_id_t temp_id = un->un_direct_priority_timeid;
7470 		un->un_direct_priority_timeid = NULL;
7471 		mutex_exit(SD_MUTEX(un));
7472 		(void) untimeout(temp_id);
7473 		mutex_enter(SD_MUTEX(un));
7474 	}
7475 
7476 	/* Cancel any pending start/stop timeouts */
7477 	if (un->un_startstop_timeid != NULL) {
7478 		timeout_id_t temp_id = un->un_startstop_timeid;
7479 		un->un_startstop_timeid = NULL;
7480 		mutex_exit(SD_MUTEX(un));
7481 		(void) untimeout(temp_id);
7482 		mutex_enter(SD_MUTEX(un));
7483 	}
7484 
7485 	/* Cancel any pending reset-throttle timeouts */
7486 	if (un->un_reset_throttle_timeid != NULL) {
7487 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
7488 		un->un_reset_throttle_timeid = NULL;
7489 		mutex_exit(SD_MUTEX(un));
7490 		(void) untimeout(temp_id);
7491 		mutex_enter(SD_MUTEX(un));
7492 	}
7493 
7494 	/* Cancel any pending retry timeouts */
7495 	if (un->un_retry_timeid != NULL) {
7496 		timeout_id_t temp_id = un->un_retry_timeid;
7497 		un->un_retry_timeid = NULL;
7498 		mutex_exit(SD_MUTEX(un));
7499 		(void) untimeout(temp_id);
7500 		mutex_enter(SD_MUTEX(un));
7501 	}
7502 
7503 	/* Cancel any pending delayed cv broadcast timeouts */
7504 	if (un->un_dcvb_timeid != NULL) {
7505 		timeout_id_t temp_id = un->un_dcvb_timeid;
7506 		un->un_dcvb_timeid = NULL;
7507 		mutex_exit(SD_MUTEX(un));
7508 		(void) untimeout(temp_id);
7509 		mutex_enter(SD_MUTEX(un));
7510 	}
7511 
7512 	mutex_exit(SD_MUTEX(un));
7513 
7514 	/* There should not be any in-progress I/O so ASSERT this check */
7515 	ASSERT(un->un_ncmds_in_transport == 0);
7516 	ASSERT(un->un_ncmds_in_driver == 0);
7517 
7518 	/* Do not free the softstate if the callback routine is active */
7519 	sd_sync_with_callback(un);
7520 
7521 	/*
7522 	 * Partition stats apparently are not used with removables. These would
7523 	 * not have been created during attach, so no need to clean them up...
7524 	 */
7525 	if (un->un_errstats != NULL) {
7526 		kstat_delete(un->un_errstats);
7527 		un->un_errstats = NULL;
7528 	}
7529 
7530 create_errstats_failed:
7531 
7532 	if (un->un_stats != NULL) {
7533 		kstat_delete(un->un_stats);
7534 		un->un_stats = NULL;
7535 	}
7536 
7537 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
7538 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
7539 
7540 	ddi_prop_remove_all(devi);
7541 	sema_destroy(&un->un_semoclose);
7542 	cv_destroy(&un->un_state_cv);
7543 
7544 getrbuf_failed:
7545 
7546 	sd_free_rqs(un);
7547 
7548 alloc_rqs_failed:
7549 
7550 	devp->sd_private = NULL;
7551 	bzero(un, sizeof (struct sd_lun));	/* Clear any stale data! */
7552 
7553 get_softstate_failed:
7554 	/*
7555 	 * Note: the man pages are unclear as to whether or not doing a
7556 	 * ddi_soft_state_free(sd_state, instance) is the right way to
7557 	 * clean up after the ddi_soft_state_zalloc() if the subsequent
7558 	 * ddi_get_soft_state() fails.  The implication seems to be
7559 	 * that the get_soft_state cannot fail if the zalloc succeeds.
7560 	 */
7561 	ddi_soft_state_free(sd_state, instance);
7562 
7563 probe_failed:
7564 	scsi_unprobe(devp);
7565 
7566 	return (DDI_FAILURE);
7567 }
7568 
7569 
7570 /*
7571  *    Function: sd_unit_detach
7572  *
7573  * Description: Performs DDI_DETACH processing for sddetach().
7574  *
7575  * Return Code: DDI_SUCCESS
7576  *		DDI_FAILURE
7577  *
7578  *     Context: Kernel thread context
7579  */
7580 
7581 static int
7582 sd_unit_detach(dev_info_t *devi)
7583 {
7584 	struct scsi_device	*devp;
7585 	struct sd_lun		*un;
7586 	int			i;
7587 	int			tgt;
7588 	dev_t			dev;
7589 	dev_info_t		*pdip = ddi_get_parent(devi);
7590 	int			instance = ddi_get_instance(devi);
7591 
7592 	mutex_enter(&sd_detach_mutex);
7593 
7594 	/*
7595 	 * Fail the detach for any of the following:
7596 	 *  - Unable to get the sd_lun struct for the instance
7597 	 *  - A layered driver has an outstanding open on the instance
7598 	 *  - Another thread is already detaching this instance
7599 	 *  - Another thread is currently performing an open
7600 	 */
7601 	devp = ddi_get_driver_private(devi);
7602 	if ((devp == NULL) ||
7603 	    ((un = (struct sd_lun *)devp->sd_private) == NULL) ||
7604 	    (un->un_ncmds_in_driver != 0) || (un->un_layer_count != 0) ||
7605 	    (un->un_detach_count != 0) || (un->un_opens_in_progress != 0)) {
7606 		mutex_exit(&sd_detach_mutex);
7607 		return (DDI_FAILURE);
7608 	}
7609 
7610 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: entry 0x%p\n", un);
7611 
7612 	/*
7613 	 * Mark this instance as currently in a detach, to inhibit any
7614 	 * opens from a layered driver.
7615 	 */
7616 	un->un_detach_count++;
7617 	mutex_exit(&sd_detach_mutex);
7618 
7619 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
7620 	    SCSI_ADDR_PROP_TARGET, -1);
7621 
7622 	dev = sd_make_device(SD_DEVINFO(un));
7623 
7624 #ifndef lint
7625 	_NOTE(COMPETING_THREADS_NOW);
7626 #endif
7627 
7628 	mutex_enter(SD_MUTEX(un));
7629 
7630 	/*
7631 	 * Fail the detach if there are any outstanding layered
7632 	 * opens on this device.
7633 	 */
7634 	for (i = 0; i < NDKMAP; i++) {
7635 		if (un->un_ocmap.lyropen[i] != 0) {
7636 			goto err_notclosed;
7637 		}
7638 	}
7639 
7640 	/*
7641 	 * Verify there are NO outstanding commands issued to this device.
7642 	 * ie, un_ncmds_in_transport == 0.
7643 	 * It's possible to have outstanding commands through the physio
7644 	 * code path, even though everything's closed.
7645 	 */
7646 	if ((un->un_ncmds_in_transport != 0) || (un->un_retry_timeid != NULL) ||
7647 	    (un->un_direct_priority_timeid != NULL) ||
7648 	    (un->un_state == SD_STATE_RWAIT)) {
7649 		mutex_exit(SD_MUTEX(un));
7650 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7651 		    "sd_dr_detach: Detach failure due to outstanding cmds\n");
7652 		goto err_stillbusy;
7653 	}
7654 
7655 	/*
7656 	 * If we have the device reserved, release the reservation.
7657 	 */
7658 	if ((un->un_resvd_status & SD_RESERVE) &&
7659 	    !(un->un_resvd_status & SD_LOST_RESERVE)) {
7660 		mutex_exit(SD_MUTEX(un));
7661 		/*
7662 		 * Note: sd_reserve_release sends a command to the device
7663 		 * via the sd_ioctlcmd() path, and can sleep.
7664 		 */
7665 		if (sd_reserve_release(dev, SD_RELEASE) != 0) {
7666 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7667 			    "sd_dr_detach: Cannot release reservation \n");
7668 		}
7669 	} else {
7670 		mutex_exit(SD_MUTEX(un));
7671 	}
7672 
7673 	/*
7674 	 * Untimeout any reserve recover, throttle reset, restart unit
7675 	 * and delayed broadcast timeout threads. Protect the timeout pointer
7676 	 * from getting nulled by their callback functions.
7677 	 */
7678 	mutex_enter(SD_MUTEX(un));
7679 	if (un->un_resvd_timeid != NULL) {
7680 		timeout_id_t temp_id = un->un_resvd_timeid;
7681 		un->un_resvd_timeid = NULL;
7682 		mutex_exit(SD_MUTEX(un));
7683 		(void) untimeout(temp_id);
7684 		mutex_enter(SD_MUTEX(un));
7685 	}
7686 
7687 	if (un->un_reset_throttle_timeid != NULL) {
7688 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
7689 		un->un_reset_throttle_timeid = NULL;
7690 		mutex_exit(SD_MUTEX(un));
7691 		(void) untimeout(temp_id);
7692 		mutex_enter(SD_MUTEX(un));
7693 	}
7694 
7695 	if (un->un_startstop_timeid != NULL) {
7696 		timeout_id_t temp_id = un->un_startstop_timeid;
7697 		un->un_startstop_timeid = NULL;
7698 		mutex_exit(SD_MUTEX(un));
7699 		(void) untimeout(temp_id);
7700 		mutex_enter(SD_MUTEX(un));
7701 	}
7702 
7703 	if (un->un_dcvb_timeid != NULL) {
7704 		timeout_id_t temp_id = un->un_dcvb_timeid;
7705 		un->un_dcvb_timeid = NULL;
7706 		mutex_exit(SD_MUTEX(un));
7707 		(void) untimeout(temp_id);
7708 	} else {
7709 		mutex_exit(SD_MUTEX(un));
7710 	}
7711 
7712 	/* Remove any pending reservation reclaim requests for this device */
7713 	sd_rmv_resv_reclaim_req(dev);
7714 
7715 	mutex_enter(SD_MUTEX(un));
7716 
7717 	/* Cancel any pending callbacks for SD_PATH_DIRECT_PRIORITY cmd. */
7718 	if (un->un_direct_priority_timeid != NULL) {
7719 		timeout_id_t temp_id = un->un_direct_priority_timeid;
7720 		un->un_direct_priority_timeid = NULL;
7721 		mutex_exit(SD_MUTEX(un));
7722 		(void) untimeout(temp_id);
7723 		mutex_enter(SD_MUTEX(un));
7724 	}
7725 
7726 	/* Cancel any active multi-host disk watch thread requests */
7727 	if (un->un_mhd_token != NULL) {
7728 		mutex_exit(SD_MUTEX(un));
7729 		 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_mhd_token));
7730 		if (scsi_watch_request_terminate(un->un_mhd_token,
7731 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
7732 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7733 			    "sd_dr_detach: Cannot cancel mhd watch request\n");
7734 			/*
7735 			 * Note: We are returning here after having removed
7736 			 * some driver timeouts above. This is consistent with
7737 			 * the legacy implementation but perhaps the watch
7738 			 * terminate call should be made with the wait flag set.
7739 			 */
7740 			goto err_stillbusy;
7741 		}
7742 		mutex_enter(SD_MUTEX(un));
7743 		un->un_mhd_token = NULL;
7744 	}
7745 
7746 	if (un->un_swr_token != NULL) {
7747 		mutex_exit(SD_MUTEX(un));
7748 		_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_swr_token));
7749 		if (scsi_watch_request_terminate(un->un_swr_token,
7750 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
7751 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7752 			    "sd_dr_detach: Cannot cancel swr watch request\n");
7753 			/*
7754 			 * Note: We are returning here after having removed
7755 			 * some driver timeouts above. This is consistent with
7756 			 * the legacy implementation but perhaps the watch
7757 			 * terminate call should be made with the wait flag set.
7758 			 */
7759 			goto err_stillbusy;
7760 		}
7761 		mutex_enter(SD_MUTEX(un));
7762 		un->un_swr_token = NULL;
7763 	}
7764 
7765 	mutex_exit(SD_MUTEX(un));
7766 
7767 	/*
7768 	 * Clear any scsi_reset_notifies. We clear the reset notifies
7769 	 * if we have not registered one.
7770 	 * Note: The sd_mhd_reset_notify_cb() fn tries to acquire SD_MUTEX!
7771 	 */
7772 	(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
7773 	    sd_mhd_reset_notify_cb, (caddr_t)un);
7774 
7775 	/*
7776 	 * protect the timeout pointers from getting nulled by
7777 	 * their callback functions during the cancellation process.
7778 	 * In such a scenario untimeout can be invoked with a null value.
7779 	 */
7780 	_NOTE(NO_COMPETING_THREADS_NOW);
7781 
7782 	mutex_enter(&un->un_pm_mutex);
7783 	if (un->un_pm_idle_timeid != NULL) {
7784 		timeout_id_t temp_id = un->un_pm_idle_timeid;
7785 		un->un_pm_idle_timeid = NULL;
7786 		mutex_exit(&un->un_pm_mutex);
7787 
7788 		/*
7789 		 * Timeout is active; cancel it.
7790 		 * Note that it'll never be active on a device
7791 		 * that does not support PM therefore we don't
7792 		 * have to check before calling pm_idle_component.
7793 		 */
7794 		(void) untimeout(temp_id);
7795 		(void) pm_idle_component(SD_DEVINFO(un), 0);
7796 		mutex_enter(&un->un_pm_mutex);
7797 	}
7798 
7799 	/*
7800 	 * Check whether there is already a timeout scheduled for power
7801 	 * management. If yes then don't lower the power here, that's.
7802 	 * the timeout handler's job.
7803 	 */
7804 	if (un->un_pm_timeid != NULL) {
7805 		timeout_id_t temp_id = un->un_pm_timeid;
7806 		un->un_pm_timeid = NULL;
7807 		mutex_exit(&un->un_pm_mutex);
7808 		/*
7809 		 * Timeout is active; cancel it.
7810 		 * Note that it'll never be active on a device
7811 		 * that does not support PM therefore we don't
7812 		 * have to check before calling pm_idle_component.
7813 		 */
7814 		(void) untimeout(temp_id);
7815 		(void) pm_idle_component(SD_DEVINFO(un), 0);
7816 
7817 	} else {
7818 		mutex_exit(&un->un_pm_mutex);
7819 		if ((un->un_f_pm_is_enabled == TRUE) &&
7820 		    (pm_lower_power(SD_DEVINFO(un), 0, SD_SPINDLE_OFF) !=
7821 		    DDI_SUCCESS)) {
7822 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7823 		    "sd_dr_detach: Lower power request failed, ignoring.\n");
7824 			/*
7825 			 * Fix for bug: 4297749, item # 13
7826 			 * The above test now includes a check to see if PM is
7827 			 * supported by this device before call
7828 			 * pm_lower_power().
7829 			 * Note, the following is not dead code. The call to
7830 			 * pm_lower_power above will generate a call back into
7831 			 * our sdpower routine which might result in a timeout
7832 			 * handler getting activated. Therefore the following
7833 			 * code is valid and necessary.
7834 			 */
7835 			mutex_enter(&un->un_pm_mutex);
7836 			if (un->un_pm_timeid != NULL) {
7837 				timeout_id_t temp_id = un->un_pm_timeid;
7838 				un->un_pm_timeid = NULL;
7839 				mutex_exit(&un->un_pm_mutex);
7840 				(void) untimeout(temp_id);
7841 				(void) pm_idle_component(SD_DEVINFO(un), 0);
7842 			} else {
7843 				mutex_exit(&un->un_pm_mutex);
7844 			}
7845 		}
7846 	}
7847 
7848 	/*
7849 	 * Cleanup from the scsi_ifsetcap() calls (437868)
7850 	 * Relocated here from above to be after the call to
7851 	 * pm_lower_power, which was getting errors.
7852 	 */
7853 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
7854 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
7855 
7856 	/*
7857 	 * Currently, tagged queuing is supported per target based by HBA.
7858 	 * Setting this per lun instance actually sets the capability of this
7859 	 * target in HBA, which affects those luns already attached on the
7860 	 * same target. So during detach, we can only disable this capability
7861 	 * only when this is the only lun left on this target. By doing
7862 	 * this, we assume a target has the same tagged queuing capability
7863 	 * for every lun. The condition can be removed when HBA is changed to
7864 	 * support per lun based tagged queuing capability.
7865 	 */
7866 	if (sd_scsi_get_target_lun_count(pdip, tgt) <= 1) {
7867 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
7868 	}
7869 
7870 	if (un->un_f_is_fibre == FALSE) {
7871 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
7872 	}
7873 
7874 	/*
7875 	 * Remove any event callbacks, fibre only
7876 	 */
7877 	if (un->un_f_is_fibre == TRUE) {
7878 		if ((un->un_insert_event != NULL) &&
7879 		    (ddi_remove_event_handler(un->un_insert_cb_id) !=
7880 		    DDI_SUCCESS)) {
7881 			/*
7882 			 * Note: We are returning here after having done
7883 			 * substantial cleanup above. This is consistent
7884 			 * with the legacy implementation but this may not
7885 			 * be the right thing to do.
7886 			 */
7887 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7888 			    "sd_dr_detach: Cannot cancel insert event\n");
7889 			goto err_remove_event;
7890 		}
7891 		un->un_insert_event = NULL;
7892 
7893 		if ((un->un_remove_event != NULL) &&
7894 		    (ddi_remove_event_handler(un->un_remove_cb_id) !=
7895 		    DDI_SUCCESS)) {
7896 			/*
7897 			 * Note: We are returning here after having done
7898 			 * substantial cleanup above. This is consistent
7899 			 * with the legacy implementation but this may not
7900 			 * be the right thing to do.
7901 			 */
7902 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7903 			    "sd_dr_detach: Cannot cancel remove event\n");
7904 			goto err_remove_event;
7905 		}
7906 		un->un_remove_event = NULL;
7907 	}
7908 
7909 	/* Do not free the softstate if the callback routine is active */
7910 	sd_sync_with_callback(un);
7911 
7912 	cmlb_detach(un->un_cmlbhandle, (void *)SD_PATH_DIRECT);
7913 	cmlb_free_handle(&un->un_cmlbhandle);
7914 
7915 	/*
7916 	 * Hold the detach mutex here, to make sure that no other threads ever
7917 	 * can access a (partially) freed soft state structure.
7918 	 */
7919 	mutex_enter(&sd_detach_mutex);
7920 
7921 	/*
7922 	 * Clean up the soft state struct.
7923 	 * Cleanup is done in reverse order of allocs/inits.
7924 	 * At this point there should be no competing threads anymore.
7925 	 */
7926 
7927 	/* Unregister and free device id. */
7928 	ddi_devid_unregister(devi);
7929 	if (un->un_devid) {
7930 		ddi_devid_free(un->un_devid);
7931 		un->un_devid = NULL;
7932 	}
7933 
7934 	/*
7935 	 * Destroy wmap cache if it exists.
7936 	 */
7937 	if (un->un_wm_cache != NULL) {
7938 		kmem_cache_destroy(un->un_wm_cache);
7939 		un->un_wm_cache = NULL;
7940 	}
7941 
7942 	/*
7943 	 * kstat cleanup is done in detach for all device types (4363169).
7944 	 * We do not want to fail detach if the device kstats are not deleted
7945 	 * since there is a confusion about the devo_refcnt for the device.
7946 	 * We just delete the kstats and let detach complete successfully.
7947 	 */
7948 	if (un->un_stats != NULL) {
7949 		kstat_delete(un->un_stats);
7950 		un->un_stats = NULL;
7951 	}
7952 	if (un->un_errstats != NULL) {
7953 		kstat_delete(un->un_errstats);
7954 		un->un_errstats = NULL;
7955 	}
7956 
7957 	/* Remove partition stats */
7958 	if (un->un_f_pkstats_enabled) {
7959 		for (i = 0; i < NSDMAP; i++) {
7960 			if (un->un_pstats[i] != NULL) {
7961 				kstat_delete(un->un_pstats[i]);
7962 				un->un_pstats[i] = NULL;
7963 			}
7964 		}
7965 	}
7966 
7967 	/* Remove xbuf registration */
7968 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
7969 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
7970 
7971 	/* Remove driver properties */
7972 	ddi_prop_remove_all(devi);
7973 
7974 	mutex_destroy(&un->un_pm_mutex);
7975 	cv_destroy(&un->un_pm_busy_cv);
7976 
7977 	cv_destroy(&un->un_wcc_cv);
7978 
7979 	/* Open/close semaphore */
7980 	sema_destroy(&un->un_semoclose);
7981 
7982 	/* Removable media condvar. */
7983 	cv_destroy(&un->un_state_cv);
7984 
7985 	/* Suspend/resume condvar. */
7986 	cv_destroy(&un->un_suspend_cv);
7987 	cv_destroy(&un->un_disk_busy_cv);
7988 
7989 	sd_free_rqs(un);
7990 
7991 	/* Free up soft state */
7992 	devp->sd_private = NULL;
7993 
7994 	bzero(un, sizeof (struct sd_lun));
7995 	ddi_soft_state_free(sd_state, instance);
7996 
7997 	mutex_exit(&sd_detach_mutex);
7998 
7999 	/* This frees up the INQUIRY data associated with the device. */
8000 	scsi_unprobe(devp);
8001 
8002 	/*
8003 	 * After successfully detaching an instance, we update the information
8004 	 * of how many luns have been attached in the relative target and
8005 	 * controller for parallel SCSI. This information is used when sd tries
8006 	 * to set the tagged queuing capability in HBA.
8007 	 * Since un has been released, we can't use SD_IS_PARALLEL_SCSI(un) to
8008 	 * check if the device is parallel SCSI. However, we don't need to
8009 	 * check here because we've already checked during attach. No device
8010 	 * that is not parallel SCSI is in the chain.
8011 	 */
8012 	if ((tgt >= 0) && (tgt < NTARGETS_WIDE)) {
8013 		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_DETACH);
8014 	}
8015 
8016 	return (DDI_SUCCESS);
8017 
8018 err_notclosed:
8019 	mutex_exit(SD_MUTEX(un));
8020 
8021 err_stillbusy:
8022 	_NOTE(NO_COMPETING_THREADS_NOW);
8023 
8024 err_remove_event:
8025 	mutex_enter(&sd_detach_mutex);
8026 	un->un_detach_count--;
8027 	mutex_exit(&sd_detach_mutex);
8028 
8029 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: exit failure\n");
8030 	return (DDI_FAILURE);
8031 }
8032 
8033 
8034 /*
8035  *    Function: sd_create_errstats
8036  *
8037  * Description: This routine instantiates the device error stats.
8038  *
8039  *		Note: During attach the stats are instantiated first so they are
8040  *		available for attach-time routines that utilize the driver
8041  *		iopath to send commands to the device. The stats are initialized
8042  *		separately so data obtained during some attach-time routines is
8043  *		available. (4362483)
8044  *
8045  *   Arguments: un - driver soft state (unit) structure
8046  *		instance - driver instance
8047  *
8048  *     Context: Kernel thread context
8049  */
8050 
8051 static void
8052 sd_create_errstats(struct sd_lun *un, int instance)
8053 {
8054 	struct	sd_errstats	*stp;
8055 	char	kstatmodule_err[KSTAT_STRLEN];
8056 	char	kstatname[KSTAT_STRLEN];
8057 	int	ndata = (sizeof (struct sd_errstats) / sizeof (kstat_named_t));
8058 
8059 	ASSERT(un != NULL);
8060 
8061 	if (un->un_errstats != NULL) {
8062 		return;
8063 	}
8064 
8065 	(void) snprintf(kstatmodule_err, sizeof (kstatmodule_err),
8066 	    "%serr", sd_label);
8067 	(void) snprintf(kstatname, sizeof (kstatname),
8068 	    "%s%d,err", sd_label, instance);
8069 
8070 	un->un_errstats = kstat_create(kstatmodule_err, instance, kstatname,
8071 	    "device_error", KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_PERSISTENT);
8072 
8073 	if (un->un_errstats == NULL) {
8074 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8075 		    "sd_create_errstats: Failed kstat_create\n");
8076 		return;
8077 	}
8078 
8079 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
8080 	kstat_named_init(&stp->sd_softerrs,	"Soft Errors",
8081 	    KSTAT_DATA_UINT32);
8082 	kstat_named_init(&stp->sd_harderrs,	"Hard Errors",
8083 	    KSTAT_DATA_UINT32);
8084 	kstat_named_init(&stp->sd_transerrs,	"Transport Errors",
8085 	    KSTAT_DATA_UINT32);
8086 	kstat_named_init(&stp->sd_vid,		"Vendor",
8087 	    KSTAT_DATA_CHAR);
8088 	kstat_named_init(&stp->sd_pid,		"Product",
8089 	    KSTAT_DATA_CHAR);
8090 	kstat_named_init(&stp->sd_revision,	"Revision",
8091 	    KSTAT_DATA_CHAR);
8092 	kstat_named_init(&stp->sd_serial,	"Serial No",
8093 	    KSTAT_DATA_CHAR);
8094 	kstat_named_init(&stp->sd_capacity,	"Size",
8095 	    KSTAT_DATA_ULONGLONG);
8096 	kstat_named_init(&stp->sd_rq_media_err,	"Media Error",
8097 	    KSTAT_DATA_UINT32);
8098 	kstat_named_init(&stp->sd_rq_ntrdy_err,	"Device Not Ready",
8099 	    KSTAT_DATA_UINT32);
8100 	kstat_named_init(&stp->sd_rq_nodev_err,	"No Device",
8101 	    KSTAT_DATA_UINT32);
8102 	kstat_named_init(&stp->sd_rq_recov_err,	"Recoverable",
8103 	    KSTAT_DATA_UINT32);
8104 	kstat_named_init(&stp->sd_rq_illrq_err,	"Illegal Request",
8105 	    KSTAT_DATA_UINT32);
8106 	kstat_named_init(&stp->sd_rq_pfa_err,	"Predictive Failure Analysis",
8107 	    KSTAT_DATA_UINT32);
8108 
8109 	un->un_errstats->ks_private = un;
8110 	un->un_errstats->ks_update  = nulldev;
8111 
8112 	kstat_install(un->un_errstats);
8113 }
8114 
8115 
8116 /*
8117  *    Function: sd_set_errstats
8118  *
8119  * Description: This routine sets the value of the vendor id, product id,
8120  *		revision, serial number, and capacity device error stats.
8121  *
8122  *		Note: During attach the stats are instantiated first so they are
8123  *		available for attach-time routines that utilize the driver
8124  *		iopath to send commands to the device. The stats are initialized
8125  *		separately so data obtained during some attach-time routines is
8126  *		available. (4362483)
8127  *
8128  *   Arguments: un - driver soft state (unit) structure
8129  *
8130  *     Context: Kernel thread context
8131  */
8132 
8133 static void
8134 sd_set_errstats(struct sd_lun *un)
8135 {
8136 	struct	sd_errstats	*stp;
8137 
8138 	ASSERT(un != NULL);
8139 	ASSERT(un->un_errstats != NULL);
8140 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
8141 	ASSERT(stp != NULL);
8142 	(void) strncpy(stp->sd_vid.value.c, un->un_sd->sd_inq->inq_vid, 8);
8143 	(void) strncpy(stp->sd_pid.value.c, un->un_sd->sd_inq->inq_pid, 16);
8144 	(void) strncpy(stp->sd_revision.value.c,
8145 	    un->un_sd->sd_inq->inq_revision, 4);
8146 
8147 	/*
8148 	 * All the errstats are persistent across detach/attach,
8149 	 * so reset all the errstats here in case of the hot
8150 	 * replacement of disk drives, except for not changed
8151 	 * Sun qualified drives.
8152 	 */
8153 	if ((bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) != 0) ||
8154 	    (bcmp(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
8155 	    sizeof (SD_INQUIRY(un)->inq_serial)) != 0)) {
8156 		stp->sd_softerrs.value.ui32 = 0;
8157 		stp->sd_harderrs.value.ui32 = 0;
8158 		stp->sd_transerrs.value.ui32 = 0;
8159 		stp->sd_rq_media_err.value.ui32 = 0;
8160 		stp->sd_rq_ntrdy_err.value.ui32 = 0;
8161 		stp->sd_rq_nodev_err.value.ui32 = 0;
8162 		stp->sd_rq_recov_err.value.ui32 = 0;
8163 		stp->sd_rq_illrq_err.value.ui32 = 0;
8164 		stp->sd_rq_pfa_err.value.ui32 = 0;
8165 	}
8166 
8167 	/*
8168 	 * Set the "Serial No" kstat for Sun qualified drives (indicated by
8169 	 * "SUN" in bytes 25-27 of the inquiry data (bytes 9-11 of the pid)
8170 	 * (4376302))
8171 	 */
8172 	if (bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) == 0) {
8173 		bcopy(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
8174 		    sizeof (SD_INQUIRY(un)->inq_serial));
8175 	}
8176 
8177 	if (un->un_f_blockcount_is_valid != TRUE) {
8178 		/*
8179 		 * Set capacity error stat to 0 for no media. This ensures
8180 		 * a valid capacity is displayed in response to 'iostat -E'
8181 		 * when no media is present in the device.
8182 		 */
8183 		stp->sd_capacity.value.ui64 = 0;
8184 	} else {
8185 		/*
8186 		 * Multiply un_blockcount by un->un_sys_blocksize to get
8187 		 * capacity.
8188 		 *
8189 		 * Note: for non-512 blocksize devices "un_blockcount" has been
8190 		 * "scaled" in sd_send_scsi_READ_CAPACITY by multiplying by
8191 		 * (un_tgt_blocksize / un->un_sys_blocksize).
8192 		 */
8193 		stp->sd_capacity.value.ui64 = (uint64_t)
8194 		    ((uint64_t)un->un_blockcount * un->un_sys_blocksize);
8195 	}
8196 }
8197 
8198 
8199 /*
8200  *    Function: sd_set_pstats
8201  *
8202  * Description: This routine instantiates and initializes the partition
8203  *              stats for each partition with more than zero blocks.
8204  *		(4363169)
8205  *
8206  *   Arguments: un - driver soft state (unit) structure
8207  *
8208  *     Context: Kernel thread context
8209  */
8210 
8211 static void
8212 sd_set_pstats(struct sd_lun *un)
8213 {
8214 	char	kstatname[KSTAT_STRLEN];
8215 	int	instance;
8216 	int	i;
8217 	diskaddr_t	nblks = 0;
8218 	char	*partname = NULL;
8219 
8220 	ASSERT(un != NULL);
8221 
8222 	instance = ddi_get_instance(SD_DEVINFO(un));
8223 
8224 	/* Note:x86: is this a VTOC8/VTOC16 difference? */
8225 	for (i = 0; i < NSDMAP; i++) {
8226 
8227 		if (cmlb_partinfo(un->un_cmlbhandle, i,
8228 		    &nblks, NULL, &partname, NULL, (void *)SD_PATH_DIRECT) != 0)
8229 			continue;
8230 		mutex_enter(SD_MUTEX(un));
8231 
8232 		if ((un->un_pstats[i] == NULL) &&
8233 		    (nblks != 0)) {
8234 
8235 			(void) snprintf(kstatname, sizeof (kstatname),
8236 			    "%s%d,%s", sd_label, instance,
8237 			    partname);
8238 
8239 			un->un_pstats[i] = kstat_create(sd_label,
8240 			    instance, kstatname, "partition", KSTAT_TYPE_IO,
8241 			    1, KSTAT_FLAG_PERSISTENT);
8242 			if (un->un_pstats[i] != NULL) {
8243 				un->un_pstats[i]->ks_lock = SD_MUTEX(un);
8244 				kstat_install(un->un_pstats[i]);
8245 			}
8246 		}
8247 		mutex_exit(SD_MUTEX(un));
8248 	}
8249 }
8250 
8251 
8252 #if (defined(__fibre))
8253 /*
8254  *    Function: sd_init_event_callbacks
8255  *
8256  * Description: This routine initializes the insertion and removal event
8257  *		callbacks. (fibre only)
8258  *
8259  *   Arguments: un - driver soft state (unit) structure
8260  *
8261  *     Context: Kernel thread context
8262  */
8263 
8264 static void
8265 sd_init_event_callbacks(struct sd_lun *un)
8266 {
8267 	ASSERT(un != NULL);
8268 
8269 	if ((un->un_insert_event == NULL) &&
8270 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_INSERT_EVENT,
8271 	    &un->un_insert_event) == DDI_SUCCESS)) {
8272 		/*
8273 		 * Add the callback for an insertion event
8274 		 */
8275 		(void) ddi_add_event_handler(SD_DEVINFO(un),
8276 		    un->un_insert_event, sd_event_callback, (void *)un,
8277 		    &(un->un_insert_cb_id));
8278 	}
8279 
8280 	if ((un->un_remove_event == NULL) &&
8281 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_REMOVE_EVENT,
8282 	    &un->un_remove_event) == DDI_SUCCESS)) {
8283 		/*
8284 		 * Add the callback for a removal event
8285 		 */
8286 		(void) ddi_add_event_handler(SD_DEVINFO(un),
8287 		    un->un_remove_event, sd_event_callback, (void *)un,
8288 		    &(un->un_remove_cb_id));
8289 	}
8290 }
8291 
8292 
8293 /*
8294  *    Function: sd_event_callback
8295  *
8296  * Description: This routine handles insert/remove events (photon). The
8297  *		state is changed to OFFLINE which can be used to supress
8298  *		error msgs. (fibre only)
8299  *
8300  *   Arguments: un - driver soft state (unit) structure
8301  *
8302  *     Context: Callout thread context
8303  */
8304 /* ARGSUSED */
8305 static void
8306 sd_event_callback(dev_info_t *dip, ddi_eventcookie_t event, void *arg,
8307     void *bus_impldata)
8308 {
8309 	struct sd_lun *un = (struct sd_lun *)arg;
8310 
8311 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_insert_event));
8312 	if (event == un->un_insert_event) {
8313 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: insert event");
8314 		mutex_enter(SD_MUTEX(un));
8315 		if (un->un_state == SD_STATE_OFFLINE) {
8316 			if (un->un_last_state != SD_STATE_SUSPENDED) {
8317 				un->un_state = un->un_last_state;
8318 			} else {
8319 				/*
8320 				 * We have gone through SUSPEND/RESUME while
8321 				 * we were offline. Restore the last state
8322 				 */
8323 				un->un_state = un->un_save_state;
8324 			}
8325 		}
8326 		mutex_exit(SD_MUTEX(un));
8327 
8328 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_remove_event));
8329 	} else if (event == un->un_remove_event) {
8330 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: remove event");
8331 		mutex_enter(SD_MUTEX(un));
8332 		/*
8333 		 * We need to handle an event callback that occurs during
8334 		 * the suspend operation, since we don't prevent it.
8335 		 */
8336 		if (un->un_state != SD_STATE_OFFLINE) {
8337 			if (un->un_state != SD_STATE_SUSPENDED) {
8338 				New_state(un, SD_STATE_OFFLINE);
8339 			} else {
8340 				un->un_last_state = SD_STATE_OFFLINE;
8341 			}
8342 		}
8343 		mutex_exit(SD_MUTEX(un));
8344 	} else {
8345 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
8346 		    "!Unknown event\n");
8347 	}
8348 
8349 }
8350 #endif
8351 
8352 /*
8353  *    Function: sd_cache_control()
8354  *
8355  * Description: This routine is the driver entry point for setting
8356  *		read and write caching by modifying the WCE (write cache
8357  *		enable) and RCD (read cache disable) bits of mode
8358  *		page 8 (MODEPAGE_CACHING).
8359  *
8360  *   Arguments: un - driver soft state (unit) structure
8361  *		rcd_flag - flag for controlling the read cache
8362  *		wce_flag - flag for controlling the write cache
8363  *
8364  * Return Code: EIO
8365  *		code returned by sd_send_scsi_MODE_SENSE and
8366  *		sd_send_scsi_MODE_SELECT
8367  *
8368  *     Context: Kernel Thread
8369  */
8370 
8371 static int
8372 sd_cache_control(struct sd_lun *un, int rcd_flag, int wce_flag)
8373 {
8374 	struct mode_caching	*mode_caching_page;
8375 	uchar_t			*header;
8376 	size_t			buflen;
8377 	int			hdrlen;
8378 	int			bd_len;
8379 	int			rval = 0;
8380 	struct mode_header_grp2	*mhp;
8381 
8382 	ASSERT(un != NULL);
8383 
8384 	/*
8385 	 * Do a test unit ready, otherwise a mode sense may not work if this
8386 	 * is the first command sent to the device after boot.
8387 	 */
8388 	(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
8389 
8390 	if (un->un_f_cfg_is_atapi == TRUE) {
8391 		hdrlen = MODE_HEADER_LENGTH_GRP2;
8392 	} else {
8393 		hdrlen = MODE_HEADER_LENGTH;
8394 	}
8395 
8396 	/*
8397 	 * Allocate memory for the retrieved mode page and its headers.  Set
8398 	 * a pointer to the page itself.  Use mode_cache_scsi3 to insure
8399 	 * we get all of the mode sense data otherwise, the mode select
8400 	 * will fail.  mode_cache_scsi3 is a superset of mode_caching.
8401 	 */
8402 	buflen = hdrlen + MODE_BLK_DESC_LENGTH +
8403 	    sizeof (struct mode_cache_scsi3);
8404 
8405 	header = kmem_zalloc(buflen, KM_SLEEP);
8406 
8407 	/* Get the information from the device. */
8408 	if (un->un_f_cfg_is_atapi == TRUE) {
8409 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, header, buflen,
8410 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
8411 	} else {
8412 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
8413 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
8414 	}
8415 	if (rval != 0) {
8416 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
8417 		    "sd_cache_control: Mode Sense Failed\n");
8418 		kmem_free(header, buflen);
8419 		return (rval);
8420 	}
8421 
8422 	/*
8423 	 * Determine size of Block Descriptors in order to locate
8424 	 * the mode page data. ATAPI devices return 0, SCSI devices
8425 	 * should return MODE_BLK_DESC_LENGTH.
8426 	 */
8427 	if (un->un_f_cfg_is_atapi == TRUE) {
8428 		mhp	= (struct mode_header_grp2 *)header;
8429 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
8430 	} else {
8431 		bd_len  = ((struct mode_header *)header)->bdesc_length;
8432 	}
8433 
8434 	if (bd_len > MODE_BLK_DESC_LENGTH) {
8435 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
8436 		    "sd_cache_control: Mode Sense returned invalid "
8437 		    "block descriptor length\n");
8438 		kmem_free(header, buflen);
8439 		return (EIO);
8440 	}
8441 
8442 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
8443 	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
8444 		SD_ERROR(SD_LOG_COMMON, un, "sd_cache_control: Mode Sense"
8445 		    " caching page code mismatch %d\n",
8446 		    mode_caching_page->mode_page.code);
8447 		kmem_free(header, buflen);
8448 		return (EIO);
8449 	}
8450 
8451 	/* Check the relevant bits on successful mode sense. */
8452 	if ((mode_caching_page->rcd && rcd_flag == SD_CACHE_ENABLE) ||
8453 	    (!mode_caching_page->rcd && rcd_flag == SD_CACHE_DISABLE) ||
8454 	    (mode_caching_page->wce && wce_flag == SD_CACHE_DISABLE) ||
8455 	    (!mode_caching_page->wce && wce_flag == SD_CACHE_ENABLE)) {
8456 
8457 		size_t sbuflen;
8458 		uchar_t save_pg;
8459 
8460 		/*
8461 		 * Construct select buffer length based on the
8462 		 * length of the sense data returned.
8463 		 */
8464 		sbuflen =  hdrlen + MODE_BLK_DESC_LENGTH +
8465 		    sizeof (struct mode_page) +
8466 		    (int)mode_caching_page->mode_page.length;
8467 
8468 		/*
8469 		 * Set the caching bits as requested.
8470 		 */
8471 		if (rcd_flag == SD_CACHE_ENABLE)
8472 			mode_caching_page->rcd = 0;
8473 		else if (rcd_flag == SD_CACHE_DISABLE)
8474 			mode_caching_page->rcd = 1;
8475 
8476 		if (wce_flag == SD_CACHE_ENABLE)
8477 			mode_caching_page->wce = 1;
8478 		else if (wce_flag == SD_CACHE_DISABLE)
8479 			mode_caching_page->wce = 0;
8480 
8481 		/*
8482 		 * Save the page if the mode sense says the
8483 		 * drive supports it.
8484 		 */
8485 		save_pg = mode_caching_page->mode_page.ps ?
8486 		    SD_SAVE_PAGE : SD_DONTSAVE_PAGE;
8487 
8488 		/* Clear reserved bits before mode select. */
8489 		mode_caching_page->mode_page.ps = 0;
8490 
8491 		/*
8492 		 * Clear out mode header for mode select.
8493 		 * The rest of the retrieved page will be reused.
8494 		 */
8495 		bzero(header, hdrlen);
8496 
8497 		if (un->un_f_cfg_is_atapi == TRUE) {
8498 			mhp = (struct mode_header_grp2 *)header;
8499 			mhp->bdesc_length_hi = bd_len >> 8;
8500 			mhp->bdesc_length_lo = (uchar_t)bd_len & 0xff;
8501 		} else {
8502 			((struct mode_header *)header)->bdesc_length = bd_len;
8503 		}
8504 
8505 		/* Issue mode select to change the cache settings */
8506 		if (un->un_f_cfg_is_atapi == TRUE) {
8507 			rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP1, header,
8508 			    sbuflen, save_pg, SD_PATH_DIRECT);
8509 		} else {
8510 			rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, header,
8511 			    sbuflen, save_pg, SD_PATH_DIRECT);
8512 		}
8513 	}
8514 
8515 	kmem_free(header, buflen);
8516 	return (rval);
8517 }
8518 
8519 
8520 /*
8521  *    Function: sd_get_write_cache_enabled()
8522  *
8523  * Description: This routine is the driver entry point for determining if
8524  *		write caching is enabled.  It examines the WCE (write cache
8525  *		enable) bits of mode page 8 (MODEPAGE_CACHING).
8526  *
8527  *   Arguments: un - driver soft state (unit) structure
8528  *		is_enabled - pointer to int where write cache enabled state
8529  *		is returned (non-zero -> write cache enabled)
8530  *
8531  *
8532  * Return Code: EIO
8533  *		code returned by sd_send_scsi_MODE_SENSE
8534  *
8535  *     Context: Kernel Thread
8536  *
8537  * NOTE: If ioctl is added to disable write cache, this sequence should
8538  * be followed so that no locking is required for accesses to
8539  * un->un_f_write_cache_enabled:
8540  * 	do mode select to clear wce
8541  * 	do synchronize cache to flush cache
8542  * 	set un->un_f_write_cache_enabled = FALSE
8543  *
8544  * Conversely, an ioctl to enable the write cache should be done
8545  * in this order:
8546  * 	set un->un_f_write_cache_enabled = TRUE
8547  * 	do mode select to set wce
8548  */
8549 
8550 static int
8551 sd_get_write_cache_enabled(struct sd_lun *un, int *is_enabled)
8552 {
8553 	struct mode_caching	*mode_caching_page;
8554 	uchar_t			*header;
8555 	size_t			buflen;
8556 	int			hdrlen;
8557 	int			bd_len;
8558 	int			rval = 0;
8559 
8560 	ASSERT(un != NULL);
8561 	ASSERT(is_enabled != NULL);
8562 
8563 	/* in case of error, flag as enabled */
8564 	*is_enabled = TRUE;
8565 
8566 	/*
8567 	 * Do a test unit ready, otherwise a mode sense may not work if this
8568 	 * is the first command sent to the device after boot.
8569 	 */
8570 	(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
8571 
8572 	if (un->un_f_cfg_is_atapi == TRUE) {
8573 		hdrlen = MODE_HEADER_LENGTH_GRP2;
8574 	} else {
8575 		hdrlen = MODE_HEADER_LENGTH;
8576 	}
8577 
8578 	/*
8579 	 * Allocate memory for the retrieved mode page and its headers.  Set
8580 	 * a pointer to the page itself.
8581 	 */
8582 	buflen = hdrlen + MODE_BLK_DESC_LENGTH + sizeof (struct mode_caching);
8583 	header = kmem_zalloc(buflen, KM_SLEEP);
8584 
8585 	/* Get the information from the device. */
8586 	if (un->un_f_cfg_is_atapi == TRUE) {
8587 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, header, buflen,
8588 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
8589 	} else {
8590 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
8591 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
8592 	}
8593 	if (rval != 0) {
8594 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
8595 		    "sd_get_write_cache_enabled: Mode Sense Failed\n");
8596 		kmem_free(header, buflen);
8597 		return (rval);
8598 	}
8599 
8600 	/*
8601 	 * Determine size of Block Descriptors in order to locate
8602 	 * the mode page data. ATAPI devices return 0, SCSI devices
8603 	 * should return MODE_BLK_DESC_LENGTH.
8604 	 */
8605 	if (un->un_f_cfg_is_atapi == TRUE) {
8606 		struct mode_header_grp2	*mhp;
8607 		mhp	= (struct mode_header_grp2 *)header;
8608 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
8609 	} else {
8610 		bd_len  = ((struct mode_header *)header)->bdesc_length;
8611 	}
8612 
8613 	if (bd_len > MODE_BLK_DESC_LENGTH) {
8614 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
8615 		    "sd_get_write_cache_enabled: Mode Sense returned invalid "
8616 		    "block descriptor length\n");
8617 		kmem_free(header, buflen);
8618 		return (EIO);
8619 	}
8620 
8621 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
8622 	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
8623 		SD_ERROR(SD_LOG_COMMON, un, "sd_cache_control: Mode Sense"
8624 		    " caching page code mismatch %d\n",
8625 		    mode_caching_page->mode_page.code);
8626 		kmem_free(header, buflen);
8627 		return (EIO);
8628 	}
8629 	*is_enabled = mode_caching_page->wce;
8630 
8631 	kmem_free(header, buflen);
8632 	return (0);
8633 }
8634 
8635 /*
8636  *    Function: sd_get_nv_sup()
8637  *
8638  * Description: This routine is the driver entry point for
8639  * determining whether non-volatile cache is supported. This
8640  * determination process works as follows:
8641  *
8642  * 1. sd first queries sd.conf on whether
8643  * suppress_cache_flush bit is set for this device.
8644  *
8645  * 2. if not there, then queries the internal disk table.
8646  *
8647  * 3. if either sd.conf or internal disk table specifies
8648  * cache flush be suppressed, we don't bother checking
8649  * NV_SUP bit.
8650  *
8651  * If SUPPRESS_CACHE_FLUSH bit is not set to 1, sd queries
8652  * the optional INQUIRY VPD page 0x86. If the device
8653  * supports VPD page 0x86, sd examines the NV_SUP
8654  * (non-volatile cache support) bit in the INQUIRY VPD page
8655  * 0x86:
8656  *   o If NV_SUP bit is set, sd assumes the device has a
8657  *   non-volatile cache and set the
8658  *   un_f_sync_nv_supported to TRUE.
8659  *   o Otherwise cache is not non-volatile,
8660  *   un_f_sync_nv_supported is set to FALSE.
8661  *
8662  * Arguments: un - driver soft state (unit) structure
8663  *
8664  * Return Code:
8665  *
8666  *     Context: Kernel Thread
8667  */
8668 
8669 static void
8670 sd_get_nv_sup(struct sd_lun *un)
8671 {
8672 	int		rval		= 0;
8673 	uchar_t		*inq86		= NULL;
8674 	size_t		inq86_len	= MAX_INQUIRY_SIZE;
8675 	size_t		inq86_resid	= 0;
8676 	struct		dk_callback *dkc;
8677 
8678 	ASSERT(un != NULL);
8679 
8680 	mutex_enter(SD_MUTEX(un));
8681 
8682 	/*
8683 	 * Be conservative on the device's support of
8684 	 * SYNC_NV bit: un_f_sync_nv_supported is
8685 	 * initialized to be false.
8686 	 */
8687 	un->un_f_sync_nv_supported = FALSE;
8688 
8689 	/*
8690 	 * If either sd.conf or internal disk table
8691 	 * specifies cache flush be suppressed, then
8692 	 * we don't bother checking NV_SUP bit.
8693 	 */
8694 	if (un->un_f_suppress_cache_flush == TRUE) {
8695 		mutex_exit(SD_MUTEX(un));
8696 		return;
8697 	}
8698 
8699 	if (sd_check_vpd_page_support(un) == 0 &&
8700 	    un->un_vpd_page_mask & SD_VPD_EXTENDED_DATA_PG) {
8701 		mutex_exit(SD_MUTEX(un));
8702 		/* collect page 86 data if available */
8703 		inq86 = kmem_zalloc(inq86_len, KM_SLEEP);
8704 		rval = sd_send_scsi_INQUIRY(un, inq86, inq86_len,
8705 		    0x01, 0x86, &inq86_resid);
8706 
8707 		if (rval == 0 && (inq86_len - inq86_resid > 6)) {
8708 			SD_TRACE(SD_LOG_COMMON, un,
8709 			    "sd_get_nv_sup: \
8710 			    successfully get VPD page: %x \
8711 			    PAGE LENGTH: %x BYTE 6: %x\n",
8712 			    inq86[1], inq86[3], inq86[6]);
8713 
8714 			mutex_enter(SD_MUTEX(un));
8715 			/*
8716 			 * check the value of NV_SUP bit: only if the device
8717 			 * reports NV_SUP bit to be 1, the
8718 			 * un_f_sync_nv_supported bit will be set to true.
8719 			 */
8720 			if (inq86[6] & SD_VPD_NV_SUP) {
8721 				un->un_f_sync_nv_supported = TRUE;
8722 			}
8723 			mutex_exit(SD_MUTEX(un));
8724 		}
8725 		kmem_free(inq86, inq86_len);
8726 	} else {
8727 		mutex_exit(SD_MUTEX(un));
8728 	}
8729 
8730 	/*
8731 	 * Send a SYNC CACHE command to check whether
8732 	 * SYNC_NV bit is supported. This command should have
8733 	 * un_f_sync_nv_supported set to correct value.
8734 	 */
8735 	mutex_enter(SD_MUTEX(un));
8736 	if (un->un_f_sync_nv_supported) {
8737 		mutex_exit(SD_MUTEX(un));
8738 		dkc = kmem_zalloc(sizeof (struct dk_callback), KM_SLEEP);
8739 		dkc->dkc_flag = FLUSH_VOLATILE;
8740 		(void) sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc);
8741 
8742 		/*
8743 		 * Send a TEST UNIT READY command to the device. This should
8744 		 * clear any outstanding UNIT ATTENTION that may be present.
8745 		 */
8746 		(void) sd_send_scsi_TEST_UNIT_READY(un, SD_DONT_RETRY_TUR);
8747 
8748 		kmem_free(dkc, sizeof (struct dk_callback));
8749 	} else {
8750 		mutex_exit(SD_MUTEX(un));
8751 	}
8752 
8753 	SD_TRACE(SD_LOG_COMMON, un, "sd_get_nv_sup: \
8754 	    un_f_suppress_cache_flush is set to %d\n",
8755 	    un->un_f_suppress_cache_flush);
8756 }
8757 
8758 /*
8759  *    Function: sd_make_device
8760  *
8761  * Description: Utility routine to return the Solaris device number from
8762  *		the data in the device's dev_info structure.
8763  *
8764  * Return Code: The Solaris device number
8765  *
8766  *     Context: Any
8767  */
8768 
8769 static dev_t
8770 sd_make_device(dev_info_t *devi)
8771 {
8772 	return (makedevice(ddi_name_to_major(ddi_get_name(devi)),
8773 	    ddi_get_instance(devi) << SDUNIT_SHIFT));
8774 }
8775 
8776 
8777 /*
8778  *    Function: sd_pm_entry
8779  *
8780  * Description: Called at the start of a new command to manage power
8781  *		and busy status of a device. This includes determining whether
8782  *		the current power state of the device is sufficient for
8783  *		performing the command or whether it must be changed.
8784  *		The PM framework is notified appropriately.
8785  *		Only with a return status of DDI_SUCCESS will the
8786  *		component be busy to the framework.
8787  *
8788  *		All callers of sd_pm_entry must check the return status
8789  *		and only call sd_pm_exit it it was DDI_SUCCESS. A status
8790  *		of DDI_FAILURE indicates the device failed to power up.
8791  *		In this case un_pm_count has been adjusted so the result
8792  *		on exit is still powered down, ie. count is less than 0.
8793  *		Calling sd_pm_exit with this count value hits an ASSERT.
8794  *
8795  * Return Code: DDI_SUCCESS or DDI_FAILURE
8796  *
8797  *     Context: Kernel thread context.
8798  */
8799 
8800 static int
8801 sd_pm_entry(struct sd_lun *un)
8802 {
8803 	int return_status = DDI_SUCCESS;
8804 
8805 	ASSERT(!mutex_owned(SD_MUTEX(un)));
8806 	ASSERT(!mutex_owned(&un->un_pm_mutex));
8807 
8808 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: entry\n");
8809 
8810 	if (un->un_f_pm_is_enabled == FALSE) {
8811 		SD_TRACE(SD_LOG_IO_PM, un,
8812 		    "sd_pm_entry: exiting, PM not enabled\n");
8813 		return (return_status);
8814 	}
8815 
8816 	/*
8817 	 * Just increment a counter if PM is enabled. On the transition from
8818 	 * 0 ==> 1, mark the device as busy.  The iodone side will decrement
8819 	 * the count with each IO and mark the device as idle when the count
8820 	 * hits 0.
8821 	 *
8822 	 * If the count is less than 0 the device is powered down. If a powered
8823 	 * down device is successfully powered up then the count must be
8824 	 * incremented to reflect the power up. Note that it'll get incremented
8825 	 * a second time to become busy.
8826 	 *
8827 	 * Because the following has the potential to change the device state
8828 	 * and must release the un_pm_mutex to do so, only one thread can be
8829 	 * allowed through at a time.
8830 	 */
8831 
8832 	mutex_enter(&un->un_pm_mutex);
8833 	while (un->un_pm_busy == TRUE) {
8834 		cv_wait(&un->un_pm_busy_cv, &un->un_pm_mutex);
8835 	}
8836 	un->un_pm_busy = TRUE;
8837 
8838 	if (un->un_pm_count < 1) {
8839 
8840 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: busy component\n");
8841 
8842 		/*
8843 		 * Indicate we are now busy so the framework won't attempt to
8844 		 * power down the device. This call will only fail if either
8845 		 * we passed a bad component number or the device has no
8846 		 * components. Neither of these should ever happen.
8847 		 */
8848 		mutex_exit(&un->un_pm_mutex);
8849 		return_status = pm_busy_component(SD_DEVINFO(un), 0);
8850 		ASSERT(return_status == DDI_SUCCESS);
8851 
8852 		mutex_enter(&un->un_pm_mutex);
8853 
8854 		if (un->un_pm_count < 0) {
8855 			mutex_exit(&un->un_pm_mutex);
8856 
8857 			SD_TRACE(SD_LOG_IO_PM, un,
8858 			    "sd_pm_entry: power up component\n");
8859 
8860 			/*
8861 			 * pm_raise_power will cause sdpower to be called
8862 			 * which brings the device power level to the
8863 			 * desired state, ON in this case. If successful,
8864 			 * un_pm_count and un_power_level will be updated
8865 			 * appropriately.
8866 			 */
8867 			return_status = pm_raise_power(SD_DEVINFO(un), 0,
8868 			    SD_SPINDLE_ON);
8869 
8870 			mutex_enter(&un->un_pm_mutex);
8871 
8872 			if (return_status != DDI_SUCCESS) {
8873 				/*
8874 				 * Power up failed.
8875 				 * Idle the device and adjust the count
8876 				 * so the result on exit is that we're
8877 				 * still powered down, ie. count is less than 0.
8878 				 */
8879 				SD_TRACE(SD_LOG_IO_PM, un,
8880 				    "sd_pm_entry: power up failed,"
8881 				    " idle the component\n");
8882 
8883 				(void) pm_idle_component(SD_DEVINFO(un), 0);
8884 				un->un_pm_count--;
8885 			} else {
8886 				/*
8887 				 * Device is powered up, verify the
8888 				 * count is non-negative.
8889 				 * This is debug only.
8890 				 */
8891 				ASSERT(un->un_pm_count == 0);
8892 			}
8893 		}
8894 
8895 		if (return_status == DDI_SUCCESS) {
8896 			/*
8897 			 * For performance, now that the device has been tagged
8898 			 * as busy, and it's known to be powered up, update the
8899 			 * chain types to use jump tables that do not include
8900 			 * pm. This significantly lowers the overhead and
8901 			 * therefore improves performance.
8902 			 */
8903 
8904 			mutex_exit(&un->un_pm_mutex);
8905 			mutex_enter(SD_MUTEX(un));
8906 			SD_TRACE(SD_LOG_IO_PM, un,
8907 			    "sd_pm_entry: changing uscsi_chain_type from %d\n",
8908 			    un->un_uscsi_chain_type);
8909 
8910 			if (un->un_f_non_devbsize_supported) {
8911 				un->un_buf_chain_type =
8912 				    SD_CHAIN_INFO_RMMEDIA_NO_PM;
8913 			} else {
8914 				un->un_buf_chain_type =
8915 				    SD_CHAIN_INFO_DISK_NO_PM;
8916 			}
8917 			un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
8918 
8919 			SD_TRACE(SD_LOG_IO_PM, un,
8920 			    "             changed  uscsi_chain_type to   %d\n",
8921 			    un->un_uscsi_chain_type);
8922 			mutex_exit(SD_MUTEX(un));
8923 			mutex_enter(&un->un_pm_mutex);
8924 
8925 			if (un->un_pm_idle_timeid == NULL) {
8926 				/* 300 ms. */
8927 				un->un_pm_idle_timeid =
8928 				    timeout(sd_pm_idletimeout_handler, un,
8929 				    (drv_usectohz((clock_t)300000)));
8930 				/*
8931 				 * Include an extra call to busy which keeps the
8932 				 * device busy with-respect-to the PM layer
8933 				 * until the timer fires, at which time it'll
8934 				 * get the extra idle call.
8935 				 */
8936 				(void) pm_busy_component(SD_DEVINFO(un), 0);
8937 			}
8938 		}
8939 	}
8940 	un->un_pm_busy = FALSE;
8941 	/* Next... */
8942 	cv_signal(&un->un_pm_busy_cv);
8943 
8944 	un->un_pm_count++;
8945 
8946 	SD_TRACE(SD_LOG_IO_PM, un,
8947 	    "sd_pm_entry: exiting, un_pm_count = %d\n", un->un_pm_count);
8948 
8949 	mutex_exit(&un->un_pm_mutex);
8950 
8951 	return (return_status);
8952 }
8953 
8954 
8955 /*
8956  *    Function: sd_pm_exit
8957  *
8958  * Description: Called at the completion of a command to manage busy
8959  *		status for the device. If the device becomes idle the
8960  *		PM framework is notified.
8961  *
8962  *     Context: Kernel thread context
8963  */
8964 
8965 static void
8966 sd_pm_exit(struct sd_lun *un)
8967 {
8968 	ASSERT(!mutex_owned(SD_MUTEX(un)));
8969 	ASSERT(!mutex_owned(&un->un_pm_mutex));
8970 
8971 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: entry\n");
8972 
8973 	/*
8974 	 * After attach the following flag is only read, so don't
8975 	 * take the penalty of acquiring a mutex for it.
8976 	 */
8977 	if (un->un_f_pm_is_enabled == TRUE) {
8978 
8979 		mutex_enter(&un->un_pm_mutex);
8980 		un->un_pm_count--;
8981 
8982 		SD_TRACE(SD_LOG_IO_PM, un,
8983 		    "sd_pm_exit: un_pm_count = %d\n", un->un_pm_count);
8984 
8985 		ASSERT(un->un_pm_count >= 0);
8986 		if (un->un_pm_count == 0) {
8987 			mutex_exit(&un->un_pm_mutex);
8988 
8989 			SD_TRACE(SD_LOG_IO_PM, un,
8990 			    "sd_pm_exit: idle component\n");
8991 
8992 			(void) pm_idle_component(SD_DEVINFO(un), 0);
8993 
8994 		} else {
8995 			mutex_exit(&un->un_pm_mutex);
8996 		}
8997 	}
8998 
8999 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: exiting\n");
9000 }
9001 
9002 
9003 /*
9004  *    Function: sdopen
9005  *
9006  * Description: Driver's open(9e) entry point function.
9007  *
9008  *   Arguments: dev_i   - pointer to device number
9009  *		flag    - how to open file (FEXCL, FNDELAY, FREAD, FWRITE)
9010  *		otyp    - open type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
9011  *		cred_p  - user credential pointer
9012  *
9013  * Return Code: EINVAL
9014  *		ENXIO
9015  *		EIO
9016  *		EROFS
9017  *		EBUSY
9018  *
9019  *     Context: Kernel thread context
9020  */
9021 /* ARGSUSED */
9022 static int
9023 sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p)
9024 {
9025 	struct sd_lun	*un;
9026 	int		nodelay;
9027 	int		part;
9028 	uint64_t	partmask;
9029 	int		instance;
9030 	dev_t		dev;
9031 	int		rval = EIO;
9032 	diskaddr_t	nblks = 0;
9033 
9034 	/* Validate the open type */
9035 	if (otyp >= OTYPCNT) {
9036 		return (EINVAL);
9037 	}
9038 
9039 	dev = *dev_p;
9040 	instance = SDUNIT(dev);
9041 	mutex_enter(&sd_detach_mutex);
9042 
9043 	/*
9044 	 * Fail the open if there is no softstate for the instance, or
9045 	 * if another thread somewhere is trying to detach the instance.
9046 	 */
9047 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
9048 	    (un->un_detach_count != 0)) {
9049 		mutex_exit(&sd_detach_mutex);
9050 		/*
9051 		 * The probe cache only needs to be cleared when open (9e) fails
9052 		 * with ENXIO (4238046).
9053 		 */
9054 		/*
9055 		 * un-conditionally clearing probe cache is ok with
9056 		 * separate sd/ssd binaries
9057 		 * x86 platform can be an issue with both parallel
9058 		 * and fibre in 1 binary
9059 		 */
9060 		sd_scsi_clear_probe_cache();
9061 		return (ENXIO);
9062 	}
9063 
9064 	/*
9065 	 * The un_layer_count is to prevent another thread in specfs from
9066 	 * trying to detach the instance, which can happen when we are
9067 	 * called from a higher-layer driver instead of thru specfs.
9068 	 * This will not be needed when DDI provides a layered driver
9069 	 * interface that allows specfs to know that an instance is in
9070 	 * use by a layered driver & should not be detached.
9071 	 *
9072 	 * Note: the semantics for layered driver opens are exactly one
9073 	 * close for every open.
9074 	 */
9075 	if (otyp == OTYP_LYR) {
9076 		un->un_layer_count++;
9077 	}
9078 
9079 	/*
9080 	 * Keep a count of the current # of opens in progress. This is because
9081 	 * some layered drivers try to call us as a regular open. This can
9082 	 * cause problems that we cannot prevent, however by keeping this count
9083 	 * we can at least keep our open and detach routines from racing against
9084 	 * each other under such conditions.
9085 	 */
9086 	un->un_opens_in_progress++;
9087 	mutex_exit(&sd_detach_mutex);
9088 
9089 	nodelay  = (flag & (FNDELAY | FNONBLOCK));
9090 	part	 = SDPART(dev);
9091 	partmask = 1 << part;
9092 
9093 	/*
9094 	 * We use a semaphore here in order to serialize
9095 	 * open and close requests on the device.
9096 	 */
9097 	sema_p(&un->un_semoclose);
9098 
9099 	mutex_enter(SD_MUTEX(un));
9100 
9101 	/*
9102 	 * All device accesses go thru sdstrategy() where we check
9103 	 * on suspend status but there could be a scsi_poll command,
9104 	 * which bypasses sdstrategy(), so we need to check pm
9105 	 * status.
9106 	 */
9107 
9108 	if (!nodelay) {
9109 		while ((un->un_state == SD_STATE_SUSPENDED) ||
9110 		    (un->un_state == SD_STATE_PM_CHANGING)) {
9111 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9112 		}
9113 
9114 		mutex_exit(SD_MUTEX(un));
9115 		if (sd_pm_entry(un) != DDI_SUCCESS) {
9116 			rval = EIO;
9117 			SD_ERROR(SD_LOG_OPEN_CLOSE, un,
9118 			    "sdopen: sd_pm_entry failed\n");
9119 			goto open_failed_with_pm;
9120 		}
9121 		mutex_enter(SD_MUTEX(un));
9122 	}
9123 
9124 	/* check for previous exclusive open */
9125 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: un=%p\n", (void *)un);
9126 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
9127 	    "sdopen: exclopen=%x, flag=%x, regopen=%x\n",
9128 	    un->un_exclopen, flag, un->un_ocmap.regopen[otyp]);
9129 
9130 	if (un->un_exclopen & (partmask)) {
9131 		goto excl_open_fail;
9132 	}
9133 
9134 	if (flag & FEXCL) {
9135 		int i;
9136 		if (un->un_ocmap.lyropen[part]) {
9137 			goto excl_open_fail;
9138 		}
9139 		for (i = 0; i < (OTYPCNT - 1); i++) {
9140 			if (un->un_ocmap.regopen[i] & (partmask)) {
9141 				goto excl_open_fail;
9142 			}
9143 		}
9144 	}
9145 
9146 	/*
9147 	 * Check the write permission if this is a removable media device,
9148 	 * NDELAY has not been set, and writable permission is requested.
9149 	 *
9150 	 * Note: If NDELAY was set and this is write-protected media the WRITE
9151 	 * attempt will fail with EIO as part of the I/O processing. This is a
9152 	 * more permissive implementation that allows the open to succeed and
9153 	 * WRITE attempts to fail when appropriate.
9154 	 */
9155 	if (un->un_f_chk_wp_open) {
9156 		if ((flag & FWRITE) && (!nodelay)) {
9157 			mutex_exit(SD_MUTEX(un));
9158 			/*
9159 			 * Defer the check for write permission on writable
9160 			 * DVD drive till sdstrategy and will not fail open even
9161 			 * if FWRITE is set as the device can be writable
9162 			 * depending upon the media and the media can change
9163 			 * after the call to open().
9164 			 */
9165 			if (un->un_f_dvdram_writable_device == FALSE) {
9166 				if (ISCD(un) || sr_check_wp(dev)) {
9167 				rval = EROFS;
9168 				mutex_enter(SD_MUTEX(un));
9169 				SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
9170 				    "write to cd or write protected media\n");
9171 				goto open_fail;
9172 				}
9173 			}
9174 			mutex_enter(SD_MUTEX(un));
9175 		}
9176 	}
9177 
9178 	/*
9179 	 * If opening in NDELAY/NONBLOCK mode, just return.
9180 	 * Check if disk is ready and has a valid geometry later.
9181 	 */
9182 	if (!nodelay) {
9183 		mutex_exit(SD_MUTEX(un));
9184 		rval = sd_ready_and_valid(un);
9185 		mutex_enter(SD_MUTEX(un));
9186 		/*
9187 		 * Fail if device is not ready or if the number of disk
9188 		 * blocks is zero or negative for non CD devices.
9189 		 */
9190 
9191 		nblks = 0;
9192 
9193 		if (rval == SD_READY_VALID && (!ISCD(un))) {
9194 			/* if cmlb_partinfo fails, nblks remains 0 */
9195 			mutex_exit(SD_MUTEX(un));
9196 			(void) cmlb_partinfo(un->un_cmlbhandle, part, &nblks,
9197 			    NULL, NULL, NULL, (void *)SD_PATH_DIRECT);
9198 			mutex_enter(SD_MUTEX(un));
9199 		}
9200 
9201 		if ((rval != SD_READY_VALID) ||
9202 		    (!ISCD(un) && nblks <= 0)) {
9203 			rval = un->un_f_has_removable_media ? ENXIO : EIO;
9204 			SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
9205 			    "device not ready or invalid disk block value\n");
9206 			goto open_fail;
9207 		}
9208 #if defined(__i386) || defined(__amd64)
9209 	} else {
9210 		uchar_t *cp;
9211 		/*
9212 		 * x86 requires special nodelay handling, so that p0 is
9213 		 * always defined and accessible.
9214 		 * Invalidate geometry only if device is not already open.
9215 		 */
9216 		cp = &un->un_ocmap.chkd[0];
9217 		while (cp < &un->un_ocmap.chkd[OCSIZE]) {
9218 			if (*cp != (uchar_t)0) {
9219 				break;
9220 			}
9221 			cp++;
9222 		}
9223 		if (cp == &un->un_ocmap.chkd[OCSIZE]) {
9224 			mutex_exit(SD_MUTEX(un));
9225 			cmlb_invalidate(un->un_cmlbhandle,
9226 			    (void *)SD_PATH_DIRECT);
9227 			mutex_enter(SD_MUTEX(un));
9228 		}
9229 
9230 #endif
9231 	}
9232 
9233 	if (otyp == OTYP_LYR) {
9234 		un->un_ocmap.lyropen[part]++;
9235 	} else {
9236 		un->un_ocmap.regopen[otyp] |= partmask;
9237 	}
9238 
9239 	/* Set up open and exclusive open flags */
9240 	if (flag & FEXCL) {
9241 		un->un_exclopen |= (partmask);
9242 	}
9243 
9244 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: "
9245 	    "open of part %d type %d\n", part, otyp);
9246 
9247 	mutex_exit(SD_MUTEX(un));
9248 	if (!nodelay) {
9249 		sd_pm_exit(un);
9250 	}
9251 
9252 	sema_v(&un->un_semoclose);
9253 
9254 	mutex_enter(&sd_detach_mutex);
9255 	un->un_opens_in_progress--;
9256 	mutex_exit(&sd_detach_mutex);
9257 
9258 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: exit success\n");
9259 	return (DDI_SUCCESS);
9260 
9261 excl_open_fail:
9262 	SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: fail exclusive open\n");
9263 	rval = EBUSY;
9264 
9265 open_fail:
9266 	mutex_exit(SD_MUTEX(un));
9267 
9268 	/*
9269 	 * On a failed open we must exit the pm management.
9270 	 */
9271 	if (!nodelay) {
9272 		sd_pm_exit(un);
9273 	}
9274 open_failed_with_pm:
9275 	sema_v(&un->un_semoclose);
9276 
9277 	mutex_enter(&sd_detach_mutex);
9278 	un->un_opens_in_progress--;
9279 	if (otyp == OTYP_LYR) {
9280 		un->un_layer_count--;
9281 	}
9282 	mutex_exit(&sd_detach_mutex);
9283 
9284 	return (rval);
9285 }
9286 
9287 
9288 /*
9289  *    Function: sdclose
9290  *
9291  * Description: Driver's close(9e) entry point function.
9292  *
9293  *   Arguments: dev    - device number
9294  *		flag   - file status flag, informational only
9295  *		otyp   - close type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
9296  *		cred_p - user credential pointer
9297  *
9298  * Return Code: ENXIO
9299  *
9300  *     Context: Kernel thread context
9301  */
9302 /* ARGSUSED */
9303 static int
9304 sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p)
9305 {
9306 	struct sd_lun	*un;
9307 	uchar_t		*cp;
9308 	int		part;
9309 	int		nodelay;
9310 	int		rval = 0;
9311 
9312 	/* Validate the open type */
9313 	if (otyp >= OTYPCNT) {
9314 		return (ENXIO);
9315 	}
9316 
9317 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9318 		return (ENXIO);
9319 	}
9320 
9321 	part = SDPART(dev);
9322 	nodelay = flag & (FNDELAY | FNONBLOCK);
9323 
9324 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
9325 	    "sdclose: close of part %d type %d\n", part, otyp);
9326 
9327 	/*
9328 	 * We use a semaphore here in order to serialize
9329 	 * open and close requests on the device.
9330 	 */
9331 	sema_p(&un->un_semoclose);
9332 
9333 	mutex_enter(SD_MUTEX(un));
9334 
9335 	/* Don't proceed if power is being changed. */
9336 	while (un->un_state == SD_STATE_PM_CHANGING) {
9337 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9338 	}
9339 
9340 	if (un->un_exclopen & (1 << part)) {
9341 		un->un_exclopen &= ~(1 << part);
9342 	}
9343 
9344 	/* Update the open partition map */
9345 	if (otyp == OTYP_LYR) {
9346 		un->un_ocmap.lyropen[part] -= 1;
9347 	} else {
9348 		un->un_ocmap.regopen[otyp] &= ~(1 << part);
9349 	}
9350 
9351 	cp = &un->un_ocmap.chkd[0];
9352 	while (cp < &un->un_ocmap.chkd[OCSIZE]) {
9353 		if (*cp != NULL) {
9354 			break;
9355 		}
9356 		cp++;
9357 	}
9358 
9359 	if (cp == &un->un_ocmap.chkd[OCSIZE]) {
9360 		SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdclose: last close\n");
9361 
9362 		/*
9363 		 * We avoid persistance upon the last close, and set
9364 		 * the throttle back to the maximum.
9365 		 */
9366 		un->un_throttle = un->un_saved_throttle;
9367 
9368 		if (un->un_state == SD_STATE_OFFLINE) {
9369 			if (un->un_f_is_fibre == FALSE) {
9370 				scsi_log(SD_DEVINFO(un), sd_label,
9371 				    CE_WARN, "offline\n");
9372 			}
9373 			mutex_exit(SD_MUTEX(un));
9374 			cmlb_invalidate(un->un_cmlbhandle,
9375 			    (void *)SD_PATH_DIRECT);
9376 			mutex_enter(SD_MUTEX(un));
9377 
9378 		} else {
9379 			/*
9380 			 * Flush any outstanding writes in NVRAM cache.
9381 			 * Note: SYNCHRONIZE CACHE is an optional SCSI-2
9382 			 * cmd, it may not work for non-Pluto devices.
9383 			 * SYNCHRONIZE CACHE is not required for removables,
9384 			 * except DVD-RAM drives.
9385 			 *
9386 			 * Also note: because SYNCHRONIZE CACHE is currently
9387 			 * the only command issued here that requires the
9388 			 * drive be powered up, only do the power up before
9389 			 * sending the Sync Cache command. If additional
9390 			 * commands are added which require a powered up
9391 			 * drive, the following sequence may have to change.
9392 			 *
9393 			 * And finally, note that parallel SCSI on SPARC
9394 			 * only issues a Sync Cache to DVD-RAM, a newly
9395 			 * supported device.
9396 			 */
9397 #if defined(__i386) || defined(__amd64)
9398 			if (un->un_f_sync_cache_supported ||
9399 			    un->un_f_dvdram_writable_device == TRUE) {
9400 #else
9401 			if (un->un_f_dvdram_writable_device == TRUE) {
9402 #endif
9403 				mutex_exit(SD_MUTEX(un));
9404 				if (sd_pm_entry(un) == DDI_SUCCESS) {
9405 					rval =
9406 					    sd_send_scsi_SYNCHRONIZE_CACHE(un,
9407 					    NULL);
9408 					/* ignore error if not supported */
9409 					if (rval == ENOTSUP) {
9410 						rval = 0;
9411 					} else if (rval != 0) {
9412 						rval = EIO;
9413 					}
9414 					sd_pm_exit(un);
9415 				} else {
9416 					rval = EIO;
9417 				}
9418 				mutex_enter(SD_MUTEX(un));
9419 			}
9420 
9421 			/*
9422 			 * For devices which supports DOOR_LOCK, send an ALLOW
9423 			 * MEDIA REMOVAL command, but don't get upset if it
9424 			 * fails. We need to raise the power of the drive before
9425 			 * we can call sd_send_scsi_DOORLOCK()
9426 			 */
9427 			if (un->un_f_doorlock_supported) {
9428 				mutex_exit(SD_MUTEX(un));
9429 				if (sd_pm_entry(un) == DDI_SUCCESS) {
9430 					rval = sd_send_scsi_DOORLOCK(un,
9431 					    SD_REMOVAL_ALLOW, SD_PATH_DIRECT);
9432 
9433 					sd_pm_exit(un);
9434 					if (ISCD(un) && (rval != 0) &&
9435 					    (nodelay != 0)) {
9436 						rval = ENXIO;
9437 					}
9438 				} else {
9439 					rval = EIO;
9440 				}
9441 				mutex_enter(SD_MUTEX(un));
9442 			}
9443 
9444 			/*
9445 			 * If a device has removable media, invalidate all
9446 			 * parameters related to media, such as geometry,
9447 			 * blocksize, and blockcount.
9448 			 */
9449 			if (un->un_f_has_removable_media) {
9450 				sr_ejected(un);
9451 			}
9452 
9453 			/*
9454 			 * Destroy the cache (if it exists) which was
9455 			 * allocated for the write maps since this is
9456 			 * the last close for this media.
9457 			 */
9458 			if (un->un_wm_cache) {
9459 				/*
9460 				 * Check if there are pending commands.
9461 				 * and if there are give a warning and
9462 				 * do not destroy the cache.
9463 				 */
9464 				if (un->un_ncmds_in_driver > 0) {
9465 					scsi_log(SD_DEVINFO(un),
9466 					    sd_label, CE_WARN,
9467 					    "Unable to clean up memory "
9468 					    "because of pending I/O\n");
9469 				} else {
9470 					kmem_cache_destroy(
9471 					    un->un_wm_cache);
9472 					un->un_wm_cache = NULL;
9473 				}
9474 			}
9475 		}
9476 	}
9477 
9478 	mutex_exit(SD_MUTEX(un));
9479 	sema_v(&un->un_semoclose);
9480 
9481 	if (otyp == OTYP_LYR) {
9482 		mutex_enter(&sd_detach_mutex);
9483 		/*
9484 		 * The detach routine may run when the layer count
9485 		 * drops to zero.
9486 		 */
9487 		un->un_layer_count--;
9488 		mutex_exit(&sd_detach_mutex);
9489 	}
9490 
9491 	return (rval);
9492 }
9493 
9494 
9495 /*
9496  *    Function: sd_ready_and_valid
9497  *
9498  * Description: Test if device is ready and has a valid geometry.
9499  *
9500  *   Arguments: dev - device number
9501  *		un  - driver soft state (unit) structure
9502  *
9503  * Return Code: SD_READY_VALID		ready and valid label
9504  *		SD_NOT_READY_VALID	not ready, no label
9505  *		SD_RESERVED_BY_OTHERS	reservation conflict
9506  *
9507  *     Context: Never called at interrupt context.
9508  */
9509 
9510 static int
9511 sd_ready_and_valid(struct sd_lun *un)
9512 {
9513 	struct sd_errstats	*stp;
9514 	uint64_t		capacity;
9515 	uint_t			lbasize;
9516 	int			rval = SD_READY_VALID;
9517 	char			name_str[48];
9518 	int			is_valid;
9519 
9520 	ASSERT(un != NULL);
9521 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9522 
9523 	mutex_enter(SD_MUTEX(un));
9524 	/*
9525 	 * If a device has removable media, we must check if media is
9526 	 * ready when checking if this device is ready and valid.
9527 	 */
9528 	if (un->un_f_has_removable_media) {
9529 		mutex_exit(SD_MUTEX(un));
9530 		if (sd_send_scsi_TEST_UNIT_READY(un, 0) != 0) {
9531 			rval = SD_NOT_READY_VALID;
9532 			mutex_enter(SD_MUTEX(un));
9533 			goto done;
9534 		}
9535 
9536 		is_valid = SD_IS_VALID_LABEL(un);
9537 		mutex_enter(SD_MUTEX(un));
9538 		if (!is_valid ||
9539 		    (un->un_f_blockcount_is_valid == FALSE) ||
9540 		    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
9541 
9542 			/* capacity has to be read every open. */
9543 			mutex_exit(SD_MUTEX(un));
9544 			if (sd_send_scsi_READ_CAPACITY(un, &capacity,
9545 			    &lbasize, SD_PATH_DIRECT) != 0) {
9546 				cmlb_invalidate(un->un_cmlbhandle,
9547 				    (void *)SD_PATH_DIRECT);
9548 				mutex_enter(SD_MUTEX(un));
9549 				rval = SD_NOT_READY_VALID;
9550 				goto done;
9551 			} else {
9552 				mutex_enter(SD_MUTEX(un));
9553 				sd_update_block_info(un, lbasize, capacity);
9554 			}
9555 		}
9556 
9557 		/*
9558 		 * Check if the media in the device is writable or not.
9559 		 */
9560 		if (!is_valid && ISCD(un)) {
9561 			sd_check_for_writable_cd(un, SD_PATH_DIRECT);
9562 		}
9563 
9564 	} else {
9565 		/*
9566 		 * Do a test unit ready to clear any unit attention from non-cd
9567 		 * devices.
9568 		 */
9569 		mutex_exit(SD_MUTEX(un));
9570 		(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
9571 		mutex_enter(SD_MUTEX(un));
9572 	}
9573 
9574 
9575 	/*
9576 	 * If this is a non 512 block device, allocate space for
9577 	 * the wmap cache. This is being done here since every time
9578 	 * a media is changed this routine will be called and the
9579 	 * block size is a function of media rather than device.
9580 	 */
9581 	if (un->un_f_non_devbsize_supported && NOT_DEVBSIZE(un)) {
9582 		if (!(un->un_wm_cache)) {
9583 			(void) snprintf(name_str, sizeof (name_str),
9584 			    "%s%d_cache",
9585 			    ddi_driver_name(SD_DEVINFO(un)),
9586 			    ddi_get_instance(SD_DEVINFO(un)));
9587 			un->un_wm_cache = kmem_cache_create(
9588 			    name_str, sizeof (struct sd_w_map),
9589 			    8, sd_wm_cache_constructor,
9590 			    sd_wm_cache_destructor, NULL,
9591 			    (void *)un, NULL, 0);
9592 			if (!(un->un_wm_cache)) {
9593 					rval = ENOMEM;
9594 					goto done;
9595 			}
9596 		}
9597 	}
9598 
9599 	if (un->un_state == SD_STATE_NORMAL) {
9600 		/*
9601 		 * If the target is not yet ready here (defined by a TUR
9602 		 * failure), invalidate the geometry and print an 'offline'
9603 		 * message. This is a legacy message, as the state of the
9604 		 * target is not actually changed to SD_STATE_OFFLINE.
9605 		 *
9606 		 * If the TUR fails for EACCES (Reservation Conflict),
9607 		 * SD_RESERVED_BY_OTHERS will be returned to indicate
9608 		 * reservation conflict. If the TUR fails for other
9609 		 * reasons, SD_NOT_READY_VALID will be returned.
9610 		 */
9611 		int err;
9612 
9613 		mutex_exit(SD_MUTEX(un));
9614 		err = sd_send_scsi_TEST_UNIT_READY(un, 0);
9615 		mutex_enter(SD_MUTEX(un));
9616 
9617 		if (err != 0) {
9618 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
9619 			    "offline or reservation conflict\n");
9620 			mutex_exit(SD_MUTEX(un));
9621 			cmlb_invalidate(un->un_cmlbhandle,
9622 			    (void *)SD_PATH_DIRECT);
9623 			mutex_enter(SD_MUTEX(un));
9624 			if (err == EACCES) {
9625 				rval = SD_RESERVED_BY_OTHERS;
9626 			} else {
9627 				rval = SD_NOT_READY_VALID;
9628 			}
9629 			goto done;
9630 		}
9631 	}
9632 
9633 	if (un->un_f_format_in_progress == FALSE) {
9634 		mutex_exit(SD_MUTEX(un));
9635 		if (cmlb_validate(un->un_cmlbhandle, 0,
9636 		    (void *)SD_PATH_DIRECT) != 0) {
9637 			rval = SD_NOT_READY_VALID;
9638 			mutex_enter(SD_MUTEX(un));
9639 			goto done;
9640 		}
9641 		if (un->un_f_pkstats_enabled) {
9642 			sd_set_pstats(un);
9643 			SD_TRACE(SD_LOG_IO_PARTITION, un,
9644 			    "sd_ready_and_valid: un:0x%p pstats created and "
9645 			    "set\n", un);
9646 		}
9647 		mutex_enter(SD_MUTEX(un));
9648 	}
9649 
9650 	/*
9651 	 * If this device supports DOOR_LOCK command, try and send
9652 	 * this command to PREVENT MEDIA REMOVAL, but don't get upset
9653 	 * if it fails. For a CD, however, it is an error
9654 	 */
9655 	if (un->un_f_doorlock_supported) {
9656 		mutex_exit(SD_MUTEX(un));
9657 		if ((sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
9658 		    SD_PATH_DIRECT) != 0) && ISCD(un)) {
9659 			rval = SD_NOT_READY_VALID;
9660 			mutex_enter(SD_MUTEX(un));
9661 			goto done;
9662 		}
9663 		mutex_enter(SD_MUTEX(un));
9664 	}
9665 
9666 	/* The state has changed, inform the media watch routines */
9667 	un->un_mediastate = DKIO_INSERTED;
9668 	cv_broadcast(&un->un_state_cv);
9669 	rval = SD_READY_VALID;
9670 
9671 done:
9672 
9673 	/*
9674 	 * Initialize the capacity kstat value, if no media previously
9675 	 * (capacity kstat is 0) and a media has been inserted
9676 	 * (un_blockcount > 0).
9677 	 */
9678 	if (un->un_errstats != NULL) {
9679 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
9680 		if ((stp->sd_capacity.value.ui64 == 0) &&
9681 		    (un->un_f_blockcount_is_valid == TRUE)) {
9682 			stp->sd_capacity.value.ui64 =
9683 			    (uint64_t)((uint64_t)un->un_blockcount *
9684 			    un->un_sys_blocksize);
9685 		}
9686 	}
9687 
9688 	mutex_exit(SD_MUTEX(un));
9689 	return (rval);
9690 }
9691 
9692 
9693 /*
9694  *    Function: sdmin
9695  *
9696  * Description: Routine to limit the size of a data transfer. Used in
9697  *		conjunction with physio(9F).
9698  *
9699  *   Arguments: bp - pointer to the indicated buf(9S) struct.
9700  *
9701  *     Context: Kernel thread context.
9702  */
9703 
9704 static void
9705 sdmin(struct buf *bp)
9706 {
9707 	struct sd_lun	*un;
9708 	int		instance;
9709 
9710 	instance = SDUNIT(bp->b_edev);
9711 
9712 	un = ddi_get_soft_state(sd_state, instance);
9713 	ASSERT(un != NULL);
9714 
9715 	if (bp->b_bcount > un->un_max_xfer_size) {
9716 		bp->b_bcount = un->un_max_xfer_size;
9717 	}
9718 }
9719 
9720 
9721 /*
9722  *    Function: sdread
9723  *
9724  * Description: Driver's read(9e) entry point function.
9725  *
9726  *   Arguments: dev   - device number
9727  *		uio   - structure pointer describing where data is to be stored
9728  *			in user's space
9729  *		cred_p  - user credential pointer
9730  *
9731  * Return Code: ENXIO
9732  *		EIO
9733  *		EINVAL
9734  *		value returned by physio
9735  *
9736  *     Context: Kernel thread context.
9737  */
9738 /* ARGSUSED */
9739 static int
9740 sdread(dev_t dev, struct uio *uio, cred_t *cred_p)
9741 {
9742 	struct sd_lun	*un = NULL;
9743 	int		secmask;
9744 	int		err;
9745 
9746 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9747 		return (ENXIO);
9748 	}
9749 
9750 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9751 
9752 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
9753 		mutex_enter(SD_MUTEX(un));
9754 		/*
9755 		 * Because the call to sd_ready_and_valid will issue I/O we
9756 		 * must wait here if either the device is suspended or
9757 		 * if it's power level is changing.
9758 		 */
9759 		while ((un->un_state == SD_STATE_SUSPENDED) ||
9760 		    (un->un_state == SD_STATE_PM_CHANGING)) {
9761 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9762 		}
9763 		un->un_ncmds_in_driver++;
9764 		mutex_exit(SD_MUTEX(un));
9765 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
9766 			mutex_enter(SD_MUTEX(un));
9767 			un->un_ncmds_in_driver--;
9768 			ASSERT(un->un_ncmds_in_driver >= 0);
9769 			mutex_exit(SD_MUTEX(un));
9770 			return (EIO);
9771 		}
9772 		mutex_enter(SD_MUTEX(un));
9773 		un->un_ncmds_in_driver--;
9774 		ASSERT(un->un_ncmds_in_driver >= 0);
9775 		mutex_exit(SD_MUTEX(un));
9776 	}
9777 
9778 	/*
9779 	 * Read requests are restricted to multiples of the system block size.
9780 	 */
9781 	secmask = un->un_sys_blocksize - 1;
9782 
9783 	if (uio->uio_loffset & ((offset_t)(secmask))) {
9784 		SD_ERROR(SD_LOG_READ_WRITE, un,
9785 		    "sdread: file offset not modulo %d\n",
9786 		    un->un_sys_blocksize);
9787 		err = EINVAL;
9788 	} else if (uio->uio_iov->iov_len & (secmask)) {
9789 		SD_ERROR(SD_LOG_READ_WRITE, un,
9790 		    "sdread: transfer length not modulo %d\n",
9791 		    un->un_sys_blocksize);
9792 		err = EINVAL;
9793 	} else {
9794 		err = physio(sdstrategy, NULL, dev, B_READ, sdmin, uio);
9795 	}
9796 	return (err);
9797 }
9798 
9799 
9800 /*
9801  *    Function: sdwrite
9802  *
9803  * Description: Driver's write(9e) entry point function.
9804  *
9805  *   Arguments: dev   - device number
9806  *		uio   - structure pointer describing where data is stored in
9807  *			user's space
9808  *		cred_p  - user credential pointer
9809  *
9810  * Return Code: ENXIO
9811  *		EIO
9812  *		EINVAL
9813  *		value returned by physio
9814  *
9815  *     Context: Kernel thread context.
9816  */
9817 /* ARGSUSED */
9818 static int
9819 sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p)
9820 {
9821 	struct sd_lun	*un = NULL;
9822 	int		secmask;
9823 	int		err;
9824 
9825 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9826 		return (ENXIO);
9827 	}
9828 
9829 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9830 
9831 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
9832 		mutex_enter(SD_MUTEX(un));
9833 		/*
9834 		 * Because the call to sd_ready_and_valid will issue I/O we
9835 		 * must wait here if either the device is suspended or
9836 		 * if it's power level is changing.
9837 		 */
9838 		while ((un->un_state == SD_STATE_SUSPENDED) ||
9839 		    (un->un_state == SD_STATE_PM_CHANGING)) {
9840 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9841 		}
9842 		un->un_ncmds_in_driver++;
9843 		mutex_exit(SD_MUTEX(un));
9844 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
9845 			mutex_enter(SD_MUTEX(un));
9846 			un->un_ncmds_in_driver--;
9847 			ASSERT(un->un_ncmds_in_driver >= 0);
9848 			mutex_exit(SD_MUTEX(un));
9849 			return (EIO);
9850 		}
9851 		mutex_enter(SD_MUTEX(un));
9852 		un->un_ncmds_in_driver--;
9853 		ASSERT(un->un_ncmds_in_driver >= 0);
9854 		mutex_exit(SD_MUTEX(un));
9855 	}
9856 
9857 	/*
9858 	 * Write requests are restricted to multiples of the system block size.
9859 	 */
9860 	secmask = un->un_sys_blocksize - 1;
9861 
9862 	if (uio->uio_loffset & ((offset_t)(secmask))) {
9863 		SD_ERROR(SD_LOG_READ_WRITE, un,
9864 		    "sdwrite: file offset not modulo %d\n",
9865 		    un->un_sys_blocksize);
9866 		err = EINVAL;
9867 	} else if (uio->uio_iov->iov_len & (secmask)) {
9868 		SD_ERROR(SD_LOG_READ_WRITE, un,
9869 		    "sdwrite: transfer length not modulo %d\n",
9870 		    un->un_sys_blocksize);
9871 		err = EINVAL;
9872 	} else {
9873 		err = physio(sdstrategy, NULL, dev, B_WRITE, sdmin, uio);
9874 	}
9875 	return (err);
9876 }
9877 
9878 
9879 /*
9880  *    Function: sdaread
9881  *
9882  * Description: Driver's aread(9e) entry point function.
9883  *
9884  *   Arguments: dev   - device number
9885  *		aio   - structure pointer describing where data is to be stored
9886  *		cred_p  - user credential pointer
9887  *
9888  * Return Code: ENXIO
9889  *		EIO
9890  *		EINVAL
9891  *		value returned by aphysio
9892  *
9893  *     Context: Kernel thread context.
9894  */
9895 /* ARGSUSED */
9896 static int
9897 sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p)
9898 {
9899 	struct sd_lun	*un = NULL;
9900 	struct uio	*uio = aio->aio_uio;
9901 	int		secmask;
9902 	int		err;
9903 
9904 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9905 		return (ENXIO);
9906 	}
9907 
9908 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9909 
9910 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
9911 		mutex_enter(SD_MUTEX(un));
9912 		/*
9913 		 * Because the call to sd_ready_and_valid will issue I/O we
9914 		 * must wait here if either the device is suspended or
9915 		 * if it's power level is changing.
9916 		 */
9917 		while ((un->un_state == SD_STATE_SUSPENDED) ||
9918 		    (un->un_state == SD_STATE_PM_CHANGING)) {
9919 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9920 		}
9921 		un->un_ncmds_in_driver++;
9922 		mutex_exit(SD_MUTEX(un));
9923 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
9924 			mutex_enter(SD_MUTEX(un));
9925 			un->un_ncmds_in_driver--;
9926 			ASSERT(un->un_ncmds_in_driver >= 0);
9927 			mutex_exit(SD_MUTEX(un));
9928 			return (EIO);
9929 		}
9930 		mutex_enter(SD_MUTEX(un));
9931 		un->un_ncmds_in_driver--;
9932 		ASSERT(un->un_ncmds_in_driver >= 0);
9933 		mutex_exit(SD_MUTEX(un));
9934 	}
9935 
9936 	/*
9937 	 * Read requests are restricted to multiples of the system block size.
9938 	 */
9939 	secmask = un->un_sys_blocksize - 1;
9940 
9941 	if (uio->uio_loffset & ((offset_t)(secmask))) {
9942 		SD_ERROR(SD_LOG_READ_WRITE, un,
9943 		    "sdaread: file offset not modulo %d\n",
9944 		    un->un_sys_blocksize);
9945 		err = EINVAL;
9946 	} else if (uio->uio_iov->iov_len & (secmask)) {
9947 		SD_ERROR(SD_LOG_READ_WRITE, un,
9948 		    "sdaread: transfer length not modulo %d\n",
9949 		    un->un_sys_blocksize);
9950 		err = EINVAL;
9951 	} else {
9952 		err = aphysio(sdstrategy, anocancel, dev, B_READ, sdmin, aio);
9953 	}
9954 	return (err);
9955 }
9956 
9957 
9958 /*
9959  *    Function: sdawrite
9960  *
9961  * Description: Driver's awrite(9e) entry point function.
9962  *
9963  *   Arguments: dev   - device number
9964  *		aio   - structure pointer describing where data is stored
9965  *		cred_p  - user credential pointer
9966  *
9967  * Return Code: ENXIO
9968  *		EIO
9969  *		EINVAL
9970  *		value returned by aphysio
9971  *
9972  *     Context: Kernel thread context.
9973  */
9974 /* ARGSUSED */
9975 static int
9976 sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p)
9977 {
9978 	struct sd_lun	*un = NULL;
9979 	struct uio	*uio = aio->aio_uio;
9980 	int		secmask;
9981 	int		err;
9982 
9983 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9984 		return (ENXIO);
9985 	}
9986 
9987 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9988 
9989 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
9990 		mutex_enter(SD_MUTEX(un));
9991 		/*
9992 		 * Because the call to sd_ready_and_valid will issue I/O we
9993 		 * must wait here if either the device is suspended or
9994 		 * if it's power level is changing.
9995 		 */
9996 		while ((un->un_state == SD_STATE_SUSPENDED) ||
9997 		    (un->un_state == SD_STATE_PM_CHANGING)) {
9998 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9999 		}
10000 		un->un_ncmds_in_driver++;
10001 		mutex_exit(SD_MUTEX(un));
10002 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
10003 			mutex_enter(SD_MUTEX(un));
10004 			un->un_ncmds_in_driver--;
10005 			ASSERT(un->un_ncmds_in_driver >= 0);
10006 			mutex_exit(SD_MUTEX(un));
10007 			return (EIO);
10008 		}
10009 		mutex_enter(SD_MUTEX(un));
10010 		un->un_ncmds_in_driver--;
10011 		ASSERT(un->un_ncmds_in_driver >= 0);
10012 		mutex_exit(SD_MUTEX(un));
10013 	}
10014 
10015 	/*
10016 	 * Write requests are restricted to multiples of the system block size.
10017 	 */
10018 	secmask = un->un_sys_blocksize - 1;
10019 
10020 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10021 		SD_ERROR(SD_LOG_READ_WRITE, un,
10022 		    "sdawrite: file offset not modulo %d\n",
10023 		    un->un_sys_blocksize);
10024 		err = EINVAL;
10025 	} else if (uio->uio_iov->iov_len & (secmask)) {
10026 		SD_ERROR(SD_LOG_READ_WRITE, un,
10027 		    "sdawrite: transfer length not modulo %d\n",
10028 		    un->un_sys_blocksize);
10029 		err = EINVAL;
10030 	} else {
10031 		err = aphysio(sdstrategy, anocancel, dev, B_WRITE, sdmin, aio);
10032 	}
10033 	return (err);
10034 }
10035 
10036 
10037 
10038 
10039 
10040 /*
10041  * Driver IO processing follows the following sequence:
10042  *
10043  *     sdioctl(9E)     sdstrategy(9E)         biodone(9F)
10044  *         |                |                     ^
10045  *         v                v                     |
10046  * sd_send_scsi_cmd()  ddi_xbuf_qstrategy()       +-------------------+
10047  *         |                |                     |                   |
10048  *         v                |                     |                   |
10049  * sd_uscsi_strategy() sd_xbuf_strategy()   sd_buf_iodone()   sd_uscsi_iodone()
10050  *         |                |                     ^                   ^
10051  *         v                v                     |                   |
10052  * SD_BEGIN_IOSTART()  SD_BEGIN_IOSTART()         |                   |
10053  *         |                |                     |                   |
10054  *     +---+                |                     +------------+      +-------+
10055  *     |                    |                                  |              |
10056  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
10057  *     |                    v                                  |              |
10058  *     |         sd_mapblockaddr_iostart()           sd_mapblockaddr_iodone() |
10059  *     |                    |                                  ^              |
10060  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
10061  *     |                    v                                  |              |
10062  *     |         sd_mapblocksize_iostart()           sd_mapblocksize_iodone() |
10063  *     |                    |                                  ^              |
10064  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
10065  *     |                    v                                  |              |
10066  *     |           sd_checksum_iostart()               sd_checksum_iodone()   |
10067  *     |                    |                                  ^              |
10068  *     +-> SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()+------------->+
10069  *     |                    v                                  |              |
10070  *     |              sd_pm_iostart()                     sd_pm_iodone()      |
10071  *     |                    |                                  ^              |
10072  *     |                    |                                  |              |
10073  *     +-> SD_NEXT_IOSTART()|               SD_BEGIN_IODONE()--+--------------+
10074  *                          |                           ^
10075  *                          v                           |
10076  *                   sd_core_iostart()                  |
10077  *                          |                           |
10078  *                          |                           +------>(*destroypkt)()
10079  *                          +-> sd_start_cmds() <-+     |           |
10080  *                          |                     |     |           v
10081  *                          |                     |     |  scsi_destroy_pkt(9F)
10082  *                          |                     |     |
10083  *                          +->(*initpkt)()       +- sdintr()
10084  *                          |  |                        |  |
10085  *                          |  +-> scsi_init_pkt(9F)    |  +-> sd_handle_xxx()
10086  *                          |  +-> scsi_setup_cdb(9F)   |
10087  *                          |                           |
10088  *                          +--> scsi_transport(9F)     |
10089  *                                     |                |
10090  *                                     +----> SCSA ---->+
10091  *
10092  *
10093  * This code is based upon the following presumptions:
10094  *
10095  *   - iostart and iodone functions operate on buf(9S) structures. These
10096  *     functions perform the necessary operations on the buf(9S) and pass
10097  *     them along to the next function in the chain by using the macros
10098  *     SD_NEXT_IOSTART() (for iostart side functions) and SD_NEXT_IODONE()
10099  *     (for iodone side functions).
10100  *
10101  *   - The iostart side functions may sleep. The iodone side functions
10102  *     are called under interrupt context and may NOT sleep. Therefore
10103  *     iodone side functions also may not call iostart side functions.
10104  *     (NOTE: iostart side functions should NOT sleep for memory, as
10105  *     this could result in deadlock.)
10106  *
10107  *   - An iostart side function may call its corresponding iodone side
10108  *     function directly (if necessary).
10109  *
10110  *   - In the event of an error, an iostart side function can return a buf(9S)
10111  *     to its caller by calling SD_BEGIN_IODONE() (after setting B_ERROR and
10112  *     b_error in the usual way of course).
10113  *
10114  *   - The taskq mechanism may be used by the iodone side functions to dispatch
10115  *     requests to the iostart side functions.  The iostart side functions in
10116  *     this case would be called under the context of a taskq thread, so it's
10117  *     OK for them to block/sleep/spin in this case.
10118  *
10119  *   - iostart side functions may allocate "shadow" buf(9S) structs and
10120  *     pass them along to the next function in the chain.  The corresponding
10121  *     iodone side functions must coalesce the "shadow" bufs and return
10122  *     the "original" buf to the next higher layer.
10123  *
10124  *   - The b_private field of the buf(9S) struct holds a pointer to
10125  *     an sd_xbuf struct, which contains information needed to
10126  *     construct the scsi_pkt for the command.
10127  *
10128  *   - The SD_MUTEX(un) is NOT held across calls to the next layer. Each
10129  *     layer must acquire & release the SD_MUTEX(un) as needed.
10130  */
10131 
10132 
10133 /*
10134  * Create taskq for all targets in the system. This is created at
10135  * _init(9E) and destroyed at _fini(9E).
10136  *
10137  * Note: here we set the minalloc to a reasonably high number to ensure that
10138  * we will have an adequate supply of task entries available at interrupt time.
10139  * This is used in conjunction with the TASKQ_PREPOPULATE flag in
10140  * sd_create_taskq().  Since we do not want to sleep for allocations at
10141  * interrupt time, set maxalloc equal to minalloc. That way we will just fail
10142  * the command if we ever try to dispatch more than SD_TASKQ_MAXALLOC taskq
10143  * requests any one instant in time.
10144  */
10145 #define	SD_TASKQ_NUMTHREADS	8
10146 #define	SD_TASKQ_MINALLOC	256
10147 #define	SD_TASKQ_MAXALLOC	256
10148 
10149 static taskq_t	*sd_tq = NULL;
10150 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_tq))
10151 
10152 static int	sd_taskq_minalloc = SD_TASKQ_MINALLOC;
10153 static int	sd_taskq_maxalloc = SD_TASKQ_MAXALLOC;
10154 
10155 /*
10156  * The following task queue is being created for the write part of
10157  * read-modify-write of non-512 block size devices.
10158  * Limit the number of threads to 1 for now. This number has been chosen
10159  * considering the fact that it applies only to dvd ram drives/MO drives
10160  * currently. Performance for which is not main criteria at this stage.
10161  * Note: It needs to be explored if we can use a single taskq in future
10162  */
10163 #define	SD_WMR_TASKQ_NUMTHREADS	1
10164 static taskq_t	*sd_wmr_tq = NULL;
10165 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_wmr_tq))
10166 
10167 /*
10168  *    Function: sd_taskq_create
10169  *
10170  * Description: Create taskq thread(s) and preallocate task entries
10171  *
10172  * Return Code: Returns a pointer to the allocated taskq_t.
10173  *
10174  *     Context: Can sleep. Requires blockable context.
10175  *
10176  *       Notes: - The taskq() facility currently is NOT part of the DDI.
10177  *		  (definitely NOT recommeded for 3rd-party drivers!) :-)
10178  *		- taskq_create() will block for memory, also it will panic
10179  *		  if it cannot create the requested number of threads.
10180  *		- Currently taskq_create() creates threads that cannot be
10181  *		  swapped.
10182  *		- We use TASKQ_PREPOPULATE to ensure we have an adequate
10183  *		  supply of taskq entries at interrupt time (ie, so that we
10184  *		  do not have to sleep for memory)
10185  */
10186 
10187 static void
10188 sd_taskq_create(void)
10189 {
10190 	char	taskq_name[TASKQ_NAMELEN];
10191 
10192 	ASSERT(sd_tq == NULL);
10193 	ASSERT(sd_wmr_tq == NULL);
10194 
10195 	(void) snprintf(taskq_name, sizeof (taskq_name),
10196 	    "%s_drv_taskq", sd_label);
10197 	sd_tq = (taskq_create(taskq_name, SD_TASKQ_NUMTHREADS,
10198 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
10199 	    TASKQ_PREPOPULATE));
10200 
10201 	(void) snprintf(taskq_name, sizeof (taskq_name),
10202 	    "%s_rmw_taskq", sd_label);
10203 	sd_wmr_tq = (taskq_create(taskq_name, SD_WMR_TASKQ_NUMTHREADS,
10204 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
10205 	    TASKQ_PREPOPULATE));
10206 }
10207 
10208 
10209 /*
10210  *    Function: sd_taskq_delete
10211  *
10212  * Description: Complementary cleanup routine for sd_taskq_create().
10213  *
10214  *     Context: Kernel thread context.
10215  */
10216 
10217 static void
10218 sd_taskq_delete(void)
10219 {
10220 	ASSERT(sd_tq != NULL);
10221 	ASSERT(sd_wmr_tq != NULL);
10222 	taskq_destroy(sd_tq);
10223 	taskq_destroy(sd_wmr_tq);
10224 	sd_tq = NULL;
10225 	sd_wmr_tq = NULL;
10226 }
10227 
10228 
10229 /*
10230  *    Function: sdstrategy
10231  *
10232  * Description: Driver's strategy (9E) entry point function.
10233  *
10234  *   Arguments: bp - pointer to buf(9S)
10235  *
10236  * Return Code: Always returns zero
10237  *
10238  *     Context: Kernel thread context.
10239  */
10240 
10241 static int
10242 sdstrategy(struct buf *bp)
10243 {
10244 	struct sd_lun *un;
10245 
10246 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
10247 	if (un == NULL) {
10248 		bioerror(bp, EIO);
10249 		bp->b_resid = bp->b_bcount;
10250 		biodone(bp);
10251 		return (0);
10252 	}
10253 	/* As was done in the past, fail new cmds. if state is dumping. */
10254 	if (un->un_state == SD_STATE_DUMPING) {
10255 		bioerror(bp, ENXIO);
10256 		bp->b_resid = bp->b_bcount;
10257 		biodone(bp);
10258 		return (0);
10259 	}
10260 
10261 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10262 
10263 	/*
10264 	 * Commands may sneak in while we released the mutex in
10265 	 * DDI_SUSPEND, we should block new commands. However, old
10266 	 * commands that are still in the driver at this point should
10267 	 * still be allowed to drain.
10268 	 */
10269 	mutex_enter(SD_MUTEX(un));
10270 	/*
10271 	 * Must wait here if either the device is suspended or
10272 	 * if it's power level is changing.
10273 	 */
10274 	while ((un->un_state == SD_STATE_SUSPENDED) ||
10275 	    (un->un_state == SD_STATE_PM_CHANGING)) {
10276 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10277 	}
10278 
10279 	un->un_ncmds_in_driver++;
10280 
10281 	/*
10282 	 * atapi: Since we are running the CD for now in PIO mode we need to
10283 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
10284 	 * the HBA's init_pkt routine.
10285 	 */
10286 	if (un->un_f_cfg_is_atapi == TRUE) {
10287 		mutex_exit(SD_MUTEX(un));
10288 		bp_mapin(bp);
10289 		mutex_enter(SD_MUTEX(un));
10290 	}
10291 	SD_INFO(SD_LOG_IO, un, "sdstrategy: un_ncmds_in_driver = %ld\n",
10292 	    un->un_ncmds_in_driver);
10293 
10294 	mutex_exit(SD_MUTEX(un));
10295 
10296 	/*
10297 	 * This will (eventually) allocate the sd_xbuf area and
10298 	 * call sd_xbuf_strategy().  We just want to return the
10299 	 * result of ddi_xbuf_qstrategy so that we have an opt-
10300 	 * imized tail call which saves us a stack frame.
10301 	 */
10302 	return (ddi_xbuf_qstrategy(bp, un->un_xbuf_attr));
10303 }
10304 
10305 
10306 /*
10307  *    Function: sd_xbuf_strategy
10308  *
10309  * Description: Function for initiating IO operations via the
10310  *		ddi_xbuf_qstrategy() mechanism.
10311  *
10312  *     Context: Kernel thread context.
10313  */
10314 
10315 static void
10316 sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg)
10317 {
10318 	struct sd_lun *un = arg;
10319 
10320 	ASSERT(bp != NULL);
10321 	ASSERT(xp != NULL);
10322 	ASSERT(un != NULL);
10323 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10324 
10325 	/*
10326 	 * Initialize the fields in the xbuf and save a pointer to the
10327 	 * xbuf in bp->b_private.
10328 	 */
10329 	sd_xbuf_init(un, bp, xp, SD_CHAIN_BUFIO, NULL);
10330 
10331 	/* Send the buf down the iostart chain */
10332 	SD_BEGIN_IOSTART(((struct sd_xbuf *)xp)->xb_chain_iostart, un, bp);
10333 }
10334 
10335 
10336 /*
10337  *    Function: sd_xbuf_init
10338  *
10339  * Description: Prepare the given sd_xbuf struct for use.
10340  *
10341  *   Arguments: un - ptr to softstate
10342  *		bp - ptr to associated buf(9S)
10343  *		xp - ptr to associated sd_xbuf
10344  *		chain_type - IO chain type to use:
10345  *			SD_CHAIN_NULL
10346  *			SD_CHAIN_BUFIO
10347  *			SD_CHAIN_USCSI
10348  *			SD_CHAIN_DIRECT
10349  *			SD_CHAIN_DIRECT_PRIORITY
10350  *		pktinfop - ptr to private data struct for scsi_pkt(9S)
10351  *			initialization; may be NULL if none.
10352  *
10353  *     Context: Kernel thread context
10354  */
10355 
10356 static void
10357 sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
10358 	uchar_t chain_type, void *pktinfop)
10359 {
10360 	int index;
10361 
10362 	ASSERT(un != NULL);
10363 	ASSERT(bp != NULL);
10364 	ASSERT(xp != NULL);
10365 
10366 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: buf:0x%p chain type:0x%x\n",
10367 	    bp, chain_type);
10368 
10369 	xp->xb_un	= un;
10370 	xp->xb_pktp	= NULL;
10371 	xp->xb_pktinfo	= pktinfop;
10372 	xp->xb_private	= bp->b_private;
10373 	xp->xb_blkno	= (daddr_t)bp->b_blkno;
10374 
10375 	/*
10376 	 * Set up the iostart and iodone chain indexes in the xbuf, based
10377 	 * upon the specified chain type to use.
10378 	 */
10379 	switch (chain_type) {
10380 	case SD_CHAIN_NULL:
10381 		/*
10382 		 * Fall thru to just use the values for the buf type, even
10383 		 * tho for the NULL chain these values will never be used.
10384 		 */
10385 		/* FALLTHRU */
10386 	case SD_CHAIN_BUFIO:
10387 		index = un->un_buf_chain_type;
10388 		break;
10389 	case SD_CHAIN_USCSI:
10390 		index = un->un_uscsi_chain_type;
10391 		break;
10392 	case SD_CHAIN_DIRECT:
10393 		index = un->un_direct_chain_type;
10394 		break;
10395 	case SD_CHAIN_DIRECT_PRIORITY:
10396 		index = un->un_priority_chain_type;
10397 		break;
10398 	default:
10399 		/* We're really broken if we ever get here... */
10400 		panic("sd_xbuf_init: illegal chain type!");
10401 		/*NOTREACHED*/
10402 	}
10403 
10404 	xp->xb_chain_iostart = sd_chain_index_map[index].sci_iostart_index;
10405 	xp->xb_chain_iodone = sd_chain_index_map[index].sci_iodone_index;
10406 
10407 	/*
10408 	 * It might be a bit easier to simply bzero the entire xbuf above,
10409 	 * but it turns out that since we init a fair number of members anyway,
10410 	 * we save a fair number cycles by doing explicit assignment of zero.
10411 	 */
10412 	xp->xb_pkt_flags	= 0;
10413 	xp->xb_dma_resid	= 0;
10414 	xp->xb_retry_count	= 0;
10415 	xp->xb_victim_retry_count = 0;
10416 	xp->xb_ua_retry_count	= 0;
10417 	xp->xb_nr_retry_count	= 0;
10418 	xp->xb_sense_bp		= NULL;
10419 	xp->xb_sense_status	= 0;
10420 	xp->xb_sense_state	= 0;
10421 	xp->xb_sense_resid	= 0;
10422 
10423 	bp->b_private	= xp;
10424 	bp->b_flags	&= ~(B_DONE | B_ERROR);
10425 	bp->b_resid	= 0;
10426 	bp->av_forw	= NULL;
10427 	bp->av_back	= NULL;
10428 	bioerror(bp, 0);
10429 
10430 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: done.\n");
10431 }
10432 
10433 
10434 /*
10435  *    Function: sd_uscsi_strategy
10436  *
10437  * Description: Wrapper for calling into the USCSI chain via physio(9F)
10438  *
10439  *   Arguments: bp - buf struct ptr
10440  *
10441  * Return Code: Always returns 0
10442  *
10443  *     Context: Kernel thread context
10444  */
10445 
10446 static int
10447 sd_uscsi_strategy(struct buf *bp)
10448 {
10449 	struct sd_lun		*un;
10450 	struct sd_uscsi_info	*uip;
10451 	struct sd_xbuf		*xp;
10452 	uchar_t			chain_type;
10453 
10454 	ASSERT(bp != NULL);
10455 
10456 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
10457 	if (un == NULL) {
10458 		bioerror(bp, EIO);
10459 		bp->b_resid = bp->b_bcount;
10460 		biodone(bp);
10461 		return (0);
10462 	}
10463 
10464 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10465 
10466 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: entry: buf:0x%p\n", bp);
10467 
10468 	mutex_enter(SD_MUTEX(un));
10469 	/*
10470 	 * atapi: Since we are running the CD for now in PIO mode we need to
10471 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
10472 	 * the HBA's init_pkt routine.
10473 	 */
10474 	if (un->un_f_cfg_is_atapi == TRUE) {
10475 		mutex_exit(SD_MUTEX(un));
10476 		bp_mapin(bp);
10477 		mutex_enter(SD_MUTEX(un));
10478 	}
10479 	un->un_ncmds_in_driver++;
10480 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_strategy: un_ncmds_in_driver = %ld\n",
10481 	    un->un_ncmds_in_driver);
10482 	mutex_exit(SD_MUTEX(un));
10483 
10484 	/*
10485 	 * A pointer to a struct sd_uscsi_info is expected in bp->b_private
10486 	 */
10487 	ASSERT(bp->b_private != NULL);
10488 	uip = (struct sd_uscsi_info *)bp->b_private;
10489 
10490 	switch (uip->ui_flags) {
10491 	case SD_PATH_DIRECT:
10492 		chain_type = SD_CHAIN_DIRECT;
10493 		break;
10494 	case SD_PATH_DIRECT_PRIORITY:
10495 		chain_type = SD_CHAIN_DIRECT_PRIORITY;
10496 		break;
10497 	default:
10498 		chain_type = SD_CHAIN_USCSI;
10499 		break;
10500 	}
10501 
10502 	/*
10503 	 * We may allocate extra buf for external USCSI commands. If the
10504 	 * application asks for bigger than 20-byte sense data via USCSI,
10505 	 * SCSA layer will allocate 252 bytes sense buf for that command.
10506 	 */
10507 	if (((struct uscsi_cmd *)(uip->ui_cmdp))->uscsi_rqlen >
10508 	    SENSE_LENGTH) {
10509 		xp = kmem_zalloc(sizeof (struct sd_xbuf) - SENSE_LENGTH +
10510 		    MAX_SENSE_LENGTH, KM_SLEEP);
10511 	} else {
10512 		xp = kmem_zalloc(sizeof (struct sd_xbuf), KM_SLEEP);
10513 	}
10514 
10515 	sd_xbuf_init(un, bp, xp, chain_type, uip->ui_cmdp);
10516 
10517 	/* Use the index obtained within xbuf_init */
10518 	SD_BEGIN_IOSTART(xp->xb_chain_iostart, un, bp);
10519 
10520 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: exit: buf:0x%p\n", bp);
10521 
10522 	return (0);
10523 }
10524 
10525 /*
10526  *    Function: sd_send_scsi_cmd
10527  *
10528  * Description: Runs a USCSI command for user (when called thru sdioctl),
10529  *		or for the driver
10530  *
10531  *   Arguments: dev - the dev_t for the device
10532  *		incmd - ptr to a valid uscsi_cmd struct
10533  *		flag - bit flag, indicating open settings, 32/64 bit type
10534  *		dataspace - UIO_USERSPACE or UIO_SYSSPACE
10535  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
10536  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
10537  *			to use the USCSI "direct" chain and bypass the normal
10538  *			command waitq.
10539  *
10540  * Return Code: 0 -  successful completion of the given command
10541  *		EIO - scsi_uscsi_handle_command() failed
10542  *		ENXIO  - soft state not found for specified dev
10543  *		EINVAL
10544  *		EFAULT - copyin/copyout error
10545  *		return code of scsi_uscsi_handle_command():
10546  *			EIO
10547  *			ENXIO
10548  *			EACCES
10549  *
10550  *     Context: Waits for command to complete. Can sleep.
10551  */
10552 
10553 static int
10554 sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
10555 	enum uio_seg dataspace, int path_flag)
10556 {
10557 	struct sd_uscsi_info	*uip;
10558 	struct uscsi_cmd	*uscmd;
10559 	struct sd_lun	*un;
10560 	int	format = 0;
10561 	int	rval;
10562 
10563 	un = ddi_get_soft_state(sd_state, SDUNIT(dev));
10564 	if (un == NULL) {
10565 		return (ENXIO);
10566 	}
10567 
10568 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10569 
10570 #ifdef SDDEBUG
10571 	switch (dataspace) {
10572 	case UIO_USERSPACE:
10573 		SD_TRACE(SD_LOG_IO, un,
10574 		    "sd_send_scsi_cmd: entry: un:0x%p UIO_USERSPACE\n", un);
10575 		break;
10576 	case UIO_SYSSPACE:
10577 		SD_TRACE(SD_LOG_IO, un,
10578 		    "sd_send_scsi_cmd: entry: un:0x%p UIO_SYSSPACE\n", un);
10579 		break;
10580 	default:
10581 		SD_TRACE(SD_LOG_IO, un,
10582 		    "sd_send_scsi_cmd: entry: un:0x%p UNEXPECTED SPACE\n", un);
10583 		break;
10584 	}
10585 #endif
10586 
10587 	rval = scsi_uscsi_alloc_and_copyin((intptr_t)incmd, flag,
10588 	    SD_ADDRESS(un), &uscmd);
10589 	if (rval != 0) {
10590 		SD_TRACE(SD_LOG_IO, un, "sd_sense_scsi_cmd: "
10591 		    "scsi_uscsi_alloc_and_copyin failed\n", un);
10592 		return (rval);
10593 	}
10594 
10595 	if ((uscmd->uscsi_cdb != NULL) &&
10596 	    (uscmd->uscsi_cdb[0] == SCMD_FORMAT)) {
10597 		mutex_enter(SD_MUTEX(un));
10598 		un->un_f_format_in_progress = TRUE;
10599 		mutex_exit(SD_MUTEX(un));
10600 		format = 1;
10601 	}
10602 
10603 	/*
10604 	 * Allocate an sd_uscsi_info struct and fill it with the info
10605 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
10606 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
10607 	 * since we allocate the buf here in this function, we do not
10608 	 * need to preserve the prior contents of b_private.
10609 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
10610 	 */
10611 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
10612 	uip->ui_flags = path_flag;
10613 	uip->ui_cmdp = uscmd;
10614 
10615 	/*
10616 	 * Commands sent with priority are intended for error recovery
10617 	 * situations, and do not have retries performed.
10618 	 */
10619 	if (path_flag == SD_PATH_DIRECT_PRIORITY) {
10620 		uscmd->uscsi_flags |= USCSI_DIAGNOSE;
10621 	}
10622 	uscmd->uscsi_flags &= ~USCSI_NOINTR;
10623 
10624 	rval = scsi_uscsi_handle_cmd(dev, dataspace, uscmd,
10625 	    sd_uscsi_strategy, NULL, uip);
10626 
10627 #ifdef SDDEBUG
10628 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
10629 	    "uscsi_status: 0x%02x  uscsi_resid:0x%x\n",
10630 	    uscmd->uscsi_status, uscmd->uscsi_resid);
10631 	if (uscmd->uscsi_bufaddr != NULL) {
10632 		SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
10633 		    "uscmd->uscsi_bufaddr: 0x%p  uscmd->uscsi_buflen:%d\n",
10634 		    uscmd->uscsi_bufaddr, uscmd->uscsi_buflen);
10635 		if (dataspace == UIO_SYSSPACE) {
10636 			SD_DUMP_MEMORY(un, SD_LOG_IO,
10637 			    "data", (uchar_t *)uscmd->uscsi_bufaddr,
10638 			    uscmd->uscsi_buflen, SD_LOG_HEX);
10639 		}
10640 	}
10641 #endif
10642 
10643 	if (format == 1) {
10644 		mutex_enter(SD_MUTEX(un));
10645 		un->un_f_format_in_progress = FALSE;
10646 		mutex_exit(SD_MUTEX(un));
10647 	}
10648 
10649 	(void) scsi_uscsi_copyout_and_free((intptr_t)incmd, uscmd);
10650 	kmem_free(uip, sizeof (struct sd_uscsi_info));
10651 
10652 	return (rval);
10653 }
10654 
10655 
10656 /*
10657  *    Function: sd_buf_iodone
10658  *
10659  * Description: Frees the sd_xbuf & returns the buf to its originator.
10660  *
10661  *     Context: May be called from interrupt context.
10662  */
10663 /* ARGSUSED */
10664 static void
10665 sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp)
10666 {
10667 	struct sd_xbuf *xp;
10668 
10669 	ASSERT(un != NULL);
10670 	ASSERT(bp != NULL);
10671 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10672 
10673 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: entry.\n");
10674 
10675 	xp = SD_GET_XBUF(bp);
10676 	ASSERT(xp != NULL);
10677 
10678 	mutex_enter(SD_MUTEX(un));
10679 
10680 	/*
10681 	 * Grab time when the cmd completed.
10682 	 * This is used for determining if the system has been
10683 	 * idle long enough to make it idle to the PM framework.
10684 	 * This is for lowering the overhead, and therefore improving
10685 	 * performance per I/O operation.
10686 	 */
10687 	un->un_pm_idle_time = ddi_get_time();
10688 
10689 	un->un_ncmds_in_driver--;
10690 	ASSERT(un->un_ncmds_in_driver >= 0);
10691 	SD_INFO(SD_LOG_IO, un, "sd_buf_iodone: un_ncmds_in_driver = %ld\n",
10692 	    un->un_ncmds_in_driver);
10693 
10694 	mutex_exit(SD_MUTEX(un));
10695 
10696 	ddi_xbuf_done(bp, un->un_xbuf_attr);	/* xbuf is gone after this */
10697 	biodone(bp);				/* bp is gone after this */
10698 
10699 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: exit.\n");
10700 }
10701 
10702 
10703 /*
10704  *    Function: sd_uscsi_iodone
10705  *
10706  * Description: Frees the sd_xbuf & returns the buf to its originator.
10707  *
10708  *     Context: May be called from interrupt context.
10709  */
10710 /* ARGSUSED */
10711 static void
10712 sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
10713 {
10714 	struct sd_xbuf *xp;
10715 
10716 	ASSERT(un != NULL);
10717 	ASSERT(bp != NULL);
10718 
10719 	xp = SD_GET_XBUF(bp);
10720 	ASSERT(xp != NULL);
10721 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10722 
10723 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: entry.\n");
10724 
10725 	bp->b_private = xp->xb_private;
10726 
10727 	mutex_enter(SD_MUTEX(un));
10728 
10729 	/*
10730 	 * Grab time when the cmd completed.
10731 	 * This is used for determining if the system has been
10732 	 * idle long enough to make it idle to the PM framework.
10733 	 * This is for lowering the overhead, and therefore improving
10734 	 * performance per I/O operation.
10735 	 */
10736 	un->un_pm_idle_time = ddi_get_time();
10737 
10738 	un->un_ncmds_in_driver--;
10739 	ASSERT(un->un_ncmds_in_driver >= 0);
10740 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: un_ncmds_in_driver = %ld\n",
10741 	    un->un_ncmds_in_driver);
10742 
10743 	mutex_exit(SD_MUTEX(un));
10744 
10745 	if (((struct uscsi_cmd *)(xp->xb_pktinfo))->uscsi_rqlen >
10746 	    SENSE_LENGTH) {
10747 		kmem_free(xp, sizeof (struct sd_xbuf) - SENSE_LENGTH +
10748 		    MAX_SENSE_LENGTH);
10749 	} else {
10750 		kmem_free(xp, sizeof (struct sd_xbuf));
10751 	}
10752 
10753 	biodone(bp);
10754 
10755 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: exit.\n");
10756 }
10757 
10758 
10759 /*
10760  *    Function: sd_mapblockaddr_iostart
10761  *
10762  * Description: Verify request lies within the partition limits for
10763  *		the indicated minor device.  Issue "overrun" buf if
10764  *		request would exceed partition range.  Converts
10765  *		partition-relative block address to absolute.
10766  *
10767  *     Context: Can sleep
10768  *
10769  *      Issues: This follows what the old code did, in terms of accessing
10770  *		some of the partition info in the unit struct without holding
10771  *		the mutext.  This is a general issue, if the partition info
10772  *		can be altered while IO is in progress... as soon as we send
10773  *		a buf, its partitioning can be invalid before it gets to the
10774  *		device.  Probably the right fix is to move partitioning out
10775  *		of the driver entirely.
10776  */
10777 
10778 static void
10779 sd_mapblockaddr_iostart(int index, struct sd_lun *un, struct buf *bp)
10780 {
10781 	diskaddr_t	nblocks;	/* #blocks in the given partition */
10782 	daddr_t	blocknum;	/* Block number specified by the buf */
10783 	size_t	requested_nblocks;
10784 	size_t	available_nblocks;
10785 	int	partition;
10786 	diskaddr_t	partition_offset;
10787 	struct sd_xbuf *xp;
10788 
10789 
10790 	ASSERT(un != NULL);
10791 	ASSERT(bp != NULL);
10792 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10793 
10794 	SD_TRACE(SD_LOG_IO_PARTITION, un,
10795 	    "sd_mapblockaddr_iostart: entry: buf:0x%p\n", bp);
10796 
10797 	xp = SD_GET_XBUF(bp);
10798 	ASSERT(xp != NULL);
10799 
10800 	/*
10801 	 * If the geometry is not indicated as valid, attempt to access
10802 	 * the unit & verify the geometry/label. This can be the case for
10803 	 * removable-media devices, of if the device was opened in
10804 	 * NDELAY/NONBLOCK mode.
10805 	 */
10806 	if (!SD_IS_VALID_LABEL(un) &&
10807 	    (sd_ready_and_valid(un) != SD_READY_VALID)) {
10808 		/*
10809 		 * For removable devices it is possible to start an I/O
10810 		 * without a media by opening the device in nodelay mode.
10811 		 * Also for writable CDs there can be many scenarios where
10812 		 * there is no geometry yet but volume manager is trying to
10813 		 * issue a read() just because it can see TOC on the CD. So
10814 		 * do not print a message for removables.
10815 		 */
10816 		if (!un->un_f_has_removable_media) {
10817 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10818 			    "i/o to invalid geometry\n");
10819 		}
10820 		bioerror(bp, EIO);
10821 		bp->b_resid = bp->b_bcount;
10822 		SD_BEGIN_IODONE(index, un, bp);
10823 		return;
10824 	}
10825 
10826 	partition = SDPART(bp->b_edev);
10827 
10828 	nblocks = 0;
10829 	(void) cmlb_partinfo(un->un_cmlbhandle, partition,
10830 	    &nblocks, &partition_offset, NULL, NULL, (void *)SD_PATH_DIRECT);
10831 
10832 	/*
10833 	 * blocknum is the starting block number of the request. At this
10834 	 * point it is still relative to the start of the minor device.
10835 	 */
10836 	blocknum = xp->xb_blkno;
10837 
10838 	/*
10839 	 * Legacy: If the starting block number is one past the last block
10840 	 * in the partition, do not set B_ERROR in the buf.
10841 	 */
10842 	if (blocknum == nblocks)  {
10843 		goto error_exit;
10844 	}
10845 
10846 	/*
10847 	 * Confirm that the first block of the request lies within the
10848 	 * partition limits. Also the requested number of bytes must be
10849 	 * a multiple of the system block size.
10850 	 */
10851 	if ((blocknum < 0) || (blocknum >= nblocks) ||
10852 	    ((bp->b_bcount & (un->un_sys_blocksize - 1)) != 0)) {
10853 		bp->b_flags |= B_ERROR;
10854 		goto error_exit;
10855 	}
10856 
10857 	/*
10858 	 * If the requsted # blocks exceeds the available # blocks, that
10859 	 * is an overrun of the partition.
10860 	 */
10861 	requested_nblocks = SD_BYTES2SYSBLOCKS(un, bp->b_bcount);
10862 	available_nblocks = (size_t)(nblocks - blocknum);
10863 	ASSERT(nblocks >= blocknum);
10864 
10865 	if (requested_nblocks > available_nblocks) {
10866 		/*
10867 		 * Allocate an "overrun" buf to allow the request to proceed
10868 		 * for the amount of space available in the partition. The
10869 		 * amount not transferred will be added into the b_resid
10870 		 * when the operation is complete. The overrun buf
10871 		 * replaces the original buf here, and the original buf
10872 		 * is saved inside the overrun buf, for later use.
10873 		 */
10874 		size_t resid = SD_SYSBLOCKS2BYTES(un,
10875 		    (offset_t)(requested_nblocks - available_nblocks));
10876 		size_t count = bp->b_bcount - resid;
10877 		/*
10878 		 * Note: count is an unsigned entity thus it'll NEVER
10879 		 * be less than 0 so ASSERT the original values are
10880 		 * correct.
10881 		 */
10882 		ASSERT(bp->b_bcount >= resid);
10883 
10884 		bp = sd_bioclone_alloc(bp, count, blocknum,
10885 		    (int (*)(struct buf *)) sd_mapblockaddr_iodone);
10886 		xp = SD_GET_XBUF(bp); /* Update for 'new' bp! */
10887 		ASSERT(xp != NULL);
10888 	}
10889 
10890 	/* At this point there should be no residual for this buf. */
10891 	ASSERT(bp->b_resid == 0);
10892 
10893 	/* Convert the block number to an absolute address. */
10894 	xp->xb_blkno += partition_offset;
10895 
10896 	SD_NEXT_IOSTART(index, un, bp);
10897 
10898 	SD_TRACE(SD_LOG_IO_PARTITION, un,
10899 	    "sd_mapblockaddr_iostart: exit 0: buf:0x%p\n", bp);
10900 
10901 	return;
10902 
10903 error_exit:
10904 	bp->b_resid = bp->b_bcount;
10905 	SD_BEGIN_IODONE(index, un, bp);
10906 	SD_TRACE(SD_LOG_IO_PARTITION, un,
10907 	    "sd_mapblockaddr_iostart: exit 1: buf:0x%p\n", bp);
10908 }
10909 
10910 
10911 /*
10912  *    Function: sd_mapblockaddr_iodone
10913  *
10914  * Description: Completion-side processing for partition management.
10915  *
10916  *     Context: May be called under interrupt context
10917  */
10918 
10919 static void
10920 sd_mapblockaddr_iodone(int index, struct sd_lun *un, struct buf *bp)
10921 {
10922 	/* int	partition; */	/* Not used, see below. */
10923 	ASSERT(un != NULL);
10924 	ASSERT(bp != NULL);
10925 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10926 
10927 	SD_TRACE(SD_LOG_IO_PARTITION, un,
10928 	    "sd_mapblockaddr_iodone: entry: buf:0x%p\n", bp);
10929 
10930 	if (bp->b_iodone == (int (*)(struct buf *)) sd_mapblockaddr_iodone) {
10931 		/*
10932 		 * We have an "overrun" buf to deal with...
10933 		 */
10934 		struct sd_xbuf	*xp;
10935 		struct buf	*obp;	/* ptr to the original buf */
10936 
10937 		xp = SD_GET_XBUF(bp);
10938 		ASSERT(xp != NULL);
10939 
10940 		/* Retrieve the pointer to the original buf */
10941 		obp = (struct buf *)xp->xb_private;
10942 		ASSERT(obp != NULL);
10943 
10944 		obp->b_resid = obp->b_bcount - (bp->b_bcount - bp->b_resid);
10945 		bioerror(obp, bp->b_error);
10946 
10947 		sd_bioclone_free(bp);
10948 
10949 		/*
10950 		 * Get back the original buf.
10951 		 * Note that since the restoration of xb_blkno below
10952 		 * was removed, the sd_xbuf is not needed.
10953 		 */
10954 		bp = obp;
10955 		/*
10956 		 * xp = SD_GET_XBUF(bp);
10957 		 * ASSERT(xp != NULL);
10958 		 */
10959 	}
10960 
10961 	/*
10962 	 * Convert sd->xb_blkno back to a minor-device relative value.
10963 	 * Note: this has been commented out, as it is not needed in the
10964 	 * current implementation of the driver (ie, since this function
10965 	 * is at the top of the layering chains, so the info will be
10966 	 * discarded) and it is in the "hot" IO path.
10967 	 *
10968 	 * partition = getminor(bp->b_edev) & SDPART_MASK;
10969 	 * xp->xb_blkno -= un->un_offset[partition];
10970 	 */
10971 
10972 	SD_NEXT_IODONE(index, un, bp);
10973 
10974 	SD_TRACE(SD_LOG_IO_PARTITION, un,
10975 	    "sd_mapblockaddr_iodone: exit: buf:0x%p\n", bp);
10976 }
10977 
10978 
10979 /*
10980  *    Function: sd_mapblocksize_iostart
10981  *
10982  * Description: Convert between system block size (un->un_sys_blocksize)
10983  *		and target block size (un->un_tgt_blocksize).
10984  *
10985  *     Context: Can sleep to allocate resources.
10986  *
10987  * Assumptions: A higher layer has already performed any partition validation,
10988  *		and converted the xp->xb_blkno to an absolute value relative
10989  *		to the start of the device.
10990  *
10991  *		It is also assumed that the higher layer has implemented
10992  *		an "overrun" mechanism for the case where the request would
10993  *		read/write beyond the end of a partition.  In this case we
10994  *		assume (and ASSERT) that bp->b_resid == 0.
10995  *
10996  *		Note: The implementation for this routine assumes the target
10997  *		block size remains constant between allocation and transport.
10998  */
10999 
11000 static void
11001 sd_mapblocksize_iostart(int index, struct sd_lun *un, struct buf *bp)
11002 {
11003 	struct sd_mapblocksize_info	*bsp;
11004 	struct sd_xbuf			*xp;
11005 	offset_t first_byte;
11006 	daddr_t	start_block, end_block;
11007 	daddr_t	request_bytes;
11008 	ushort_t is_aligned = FALSE;
11009 
11010 	ASSERT(un != NULL);
11011 	ASSERT(bp != NULL);
11012 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11013 	ASSERT(bp->b_resid == 0);
11014 
11015 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
11016 	    "sd_mapblocksize_iostart: entry: buf:0x%p\n", bp);
11017 
11018 	/*
11019 	 * For a non-writable CD, a write request is an error
11020 	 */
11021 	if (ISCD(un) && ((bp->b_flags & B_READ) == 0) &&
11022 	    (un->un_f_mmc_writable_media == FALSE)) {
11023 		bioerror(bp, EIO);
11024 		bp->b_resid = bp->b_bcount;
11025 		SD_BEGIN_IODONE(index, un, bp);
11026 		return;
11027 	}
11028 
11029 	/*
11030 	 * We do not need a shadow buf if the device is using
11031 	 * un->un_sys_blocksize as its block size or if bcount == 0.
11032 	 * In this case there is no layer-private data block allocated.
11033 	 */
11034 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
11035 	    (bp->b_bcount == 0)) {
11036 		goto done;
11037 	}
11038 
11039 #if defined(__i386) || defined(__amd64)
11040 	/* We do not support non-block-aligned transfers for ROD devices */
11041 	ASSERT(!ISROD(un));
11042 #endif
11043 
11044 	xp = SD_GET_XBUF(bp);
11045 	ASSERT(xp != NULL);
11046 
11047 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
11048 	    "tgt_blocksize:0x%x sys_blocksize: 0x%x\n",
11049 	    un->un_tgt_blocksize, un->un_sys_blocksize);
11050 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
11051 	    "request start block:0x%x\n", xp->xb_blkno);
11052 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
11053 	    "request len:0x%x\n", bp->b_bcount);
11054 
11055 	/*
11056 	 * Allocate the layer-private data area for the mapblocksize layer.
11057 	 * Layers are allowed to use the xp_private member of the sd_xbuf
11058 	 * struct to store the pointer to their layer-private data block, but
11059 	 * each layer also has the responsibility of restoring the prior
11060 	 * contents of xb_private before returning the buf/xbuf to the
11061 	 * higher layer that sent it.
11062 	 *
11063 	 * Here we save the prior contents of xp->xb_private into the
11064 	 * bsp->mbs_oprivate field of our layer-private data area. This value
11065 	 * is restored by sd_mapblocksize_iodone() just prior to freeing up
11066 	 * the layer-private area and returning the buf/xbuf to the layer
11067 	 * that sent it.
11068 	 *
11069 	 * Note that here we use kmem_zalloc for the allocation as there are
11070 	 * parts of the mapblocksize code that expect certain fields to be
11071 	 * zero unless explicitly set to a required value.
11072 	 */
11073 	bsp = kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
11074 	bsp->mbs_oprivate = xp->xb_private;
11075 	xp->xb_private = bsp;
11076 
11077 	/*
11078 	 * This treats the data on the disk (target) as an array of bytes.
11079 	 * first_byte is the byte offset, from the beginning of the device,
11080 	 * to the location of the request. This is converted from a
11081 	 * un->un_sys_blocksize block address to a byte offset, and then back
11082 	 * to a block address based upon a un->un_tgt_blocksize block size.
11083 	 *
11084 	 * xp->xb_blkno should be absolute upon entry into this function,
11085 	 * but, but it is based upon partitions that use the "system"
11086 	 * block size. It must be adjusted to reflect the block size of
11087 	 * the target.
11088 	 *
11089 	 * Note that end_block is actually the block that follows the last
11090 	 * block of the request, but that's what is needed for the computation.
11091 	 */
11092 	first_byte  = SD_SYSBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
11093 	start_block = xp->xb_blkno = first_byte / un->un_tgt_blocksize;
11094 	end_block   = (first_byte + bp->b_bcount + un->un_tgt_blocksize - 1) /
11095 	    un->un_tgt_blocksize;
11096 
11097 	/* request_bytes is rounded up to a multiple of the target block size */
11098 	request_bytes = (end_block - start_block) * un->un_tgt_blocksize;
11099 
11100 	/*
11101 	 * See if the starting address of the request and the request
11102 	 * length are aligned on a un->un_tgt_blocksize boundary. If aligned
11103 	 * then we do not need to allocate a shadow buf to handle the request.
11104 	 */
11105 	if (((first_byte   % un->un_tgt_blocksize) == 0) &&
11106 	    ((bp->b_bcount % un->un_tgt_blocksize) == 0)) {
11107 		is_aligned = TRUE;
11108 	}
11109 
11110 	if ((bp->b_flags & B_READ) == 0) {
11111 		/*
11112 		 * Lock the range for a write operation. An aligned request is
11113 		 * considered a simple write; otherwise the request must be a
11114 		 * read-modify-write.
11115 		 */
11116 		bsp->mbs_wmp = sd_range_lock(un, start_block, end_block - 1,
11117 		    (is_aligned == TRUE) ? SD_WTYPE_SIMPLE : SD_WTYPE_RMW);
11118 	}
11119 
11120 	/*
11121 	 * Alloc a shadow buf if the request is not aligned. Also, this is
11122 	 * where the READ command is generated for a read-modify-write. (The
11123 	 * write phase is deferred until after the read completes.)
11124 	 */
11125 	if (is_aligned == FALSE) {
11126 
11127 		struct sd_mapblocksize_info	*shadow_bsp;
11128 		struct sd_xbuf	*shadow_xp;
11129 		struct buf	*shadow_bp;
11130 
11131 		/*
11132 		 * Allocate the shadow buf and it associated xbuf. Note that
11133 		 * after this call the xb_blkno value in both the original
11134 		 * buf's sd_xbuf _and_ the shadow buf's sd_xbuf will be the
11135 		 * same: absolute relative to the start of the device, and
11136 		 * adjusted for the target block size. The b_blkno in the
11137 		 * shadow buf will also be set to this value. We should never
11138 		 * change b_blkno in the original bp however.
11139 		 *
11140 		 * Note also that the shadow buf will always need to be a
11141 		 * READ command, regardless of whether the incoming command
11142 		 * is a READ or a WRITE.
11143 		 */
11144 		shadow_bp = sd_shadow_buf_alloc(bp, request_bytes, B_READ,
11145 		    xp->xb_blkno,
11146 		    (int (*)(struct buf *)) sd_mapblocksize_iodone);
11147 
11148 		shadow_xp = SD_GET_XBUF(shadow_bp);
11149 
11150 		/*
11151 		 * Allocate the layer-private data for the shadow buf.
11152 		 * (No need to preserve xb_private in the shadow xbuf.)
11153 		 */
11154 		shadow_xp->xb_private = shadow_bsp =
11155 		    kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
11156 
11157 		/*
11158 		 * bsp->mbs_copy_offset is used later by sd_mapblocksize_iodone
11159 		 * to figure out where the start of the user data is (based upon
11160 		 * the system block size) in the data returned by the READ
11161 		 * command (which will be based upon the target blocksize). Note
11162 		 * that this is only really used if the request is unaligned.
11163 		 */
11164 		bsp->mbs_copy_offset = (ssize_t)(first_byte -
11165 		    ((offset_t)xp->xb_blkno * un->un_tgt_blocksize));
11166 		ASSERT((bsp->mbs_copy_offset >= 0) &&
11167 		    (bsp->mbs_copy_offset < un->un_tgt_blocksize));
11168 
11169 		shadow_bsp->mbs_copy_offset = bsp->mbs_copy_offset;
11170 
11171 		shadow_bsp->mbs_layer_index = bsp->mbs_layer_index = index;
11172 
11173 		/* Transfer the wmap (if any) to the shadow buf */
11174 		shadow_bsp->mbs_wmp = bsp->mbs_wmp;
11175 		bsp->mbs_wmp = NULL;
11176 
11177 		/*
11178 		 * The shadow buf goes on from here in place of the
11179 		 * original buf.
11180 		 */
11181 		shadow_bsp->mbs_orig_bp = bp;
11182 		bp = shadow_bp;
11183 	}
11184 
11185 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
11186 	    "sd_mapblocksize_iostart: tgt start block:0x%x\n", xp->xb_blkno);
11187 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
11188 	    "sd_mapblocksize_iostart: tgt request len:0x%x\n",
11189 	    request_bytes);
11190 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
11191 	    "sd_mapblocksize_iostart: shadow buf:0x%x\n", bp);
11192 
11193 done:
11194 	SD_NEXT_IOSTART(index, un, bp);
11195 
11196 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
11197 	    "sd_mapblocksize_iostart: exit: buf:0x%p\n", bp);
11198 }
11199 
11200 
11201 /*
11202  *    Function: sd_mapblocksize_iodone
11203  *
11204  * Description: Completion side processing for block-size mapping.
11205  *
11206  *     Context: May be called under interrupt context
11207  */
11208 
11209 static void
11210 sd_mapblocksize_iodone(int index, struct sd_lun *un, struct buf *bp)
11211 {
11212 	struct sd_mapblocksize_info	*bsp;
11213 	struct sd_xbuf	*xp;
11214 	struct sd_xbuf	*orig_xp;	/* sd_xbuf for the original buf */
11215 	struct buf	*orig_bp;	/* ptr to the original buf */
11216 	offset_t	shadow_end;
11217 	offset_t	request_end;
11218 	offset_t	shadow_start;
11219 	ssize_t		copy_offset;
11220 	size_t		copy_length;
11221 	size_t		shortfall;
11222 	uint_t		is_write;	/* TRUE if this bp is a WRITE */
11223 	uint_t		has_wmap;	/* TRUE is this bp has a wmap */
11224 
11225 	ASSERT(un != NULL);
11226 	ASSERT(bp != NULL);
11227 
11228 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
11229 	    "sd_mapblocksize_iodone: entry: buf:0x%p\n", bp);
11230 
11231 	/*
11232 	 * There is no shadow buf or layer-private data if the target is
11233 	 * using un->un_sys_blocksize as its block size or if bcount == 0.
11234 	 */
11235 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
11236 	    (bp->b_bcount == 0)) {
11237 		goto exit;
11238 	}
11239 
11240 	xp = SD_GET_XBUF(bp);
11241 	ASSERT(xp != NULL);
11242 
11243 	/* Retrieve the pointer to the layer-private data area from the xbuf. */
11244 	bsp = xp->xb_private;
11245 
11246 	is_write = ((bp->b_flags & B_READ) == 0) ? TRUE : FALSE;
11247 	has_wmap = (bsp->mbs_wmp != NULL) ? TRUE : FALSE;
11248 
11249 	if (is_write) {
11250 		/*
11251 		 * For a WRITE request we must free up the block range that
11252 		 * we have locked up.  This holds regardless of whether this is
11253 		 * an aligned write request or a read-modify-write request.
11254 		 */
11255 		sd_range_unlock(un, bsp->mbs_wmp);
11256 		bsp->mbs_wmp = NULL;
11257 	}
11258 
11259 	if ((bp->b_iodone != (int(*)(struct buf *))sd_mapblocksize_iodone)) {
11260 		/*
11261 		 * An aligned read or write command will have no shadow buf;
11262 		 * there is not much else to do with it.
11263 		 */
11264 		goto done;
11265 	}
11266 
11267 	orig_bp = bsp->mbs_orig_bp;
11268 	ASSERT(orig_bp != NULL);
11269 	orig_xp = SD_GET_XBUF(orig_bp);
11270 	ASSERT(orig_xp != NULL);
11271 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11272 
11273 	if (!is_write && has_wmap) {
11274 		/*
11275 		 * A READ with a wmap means this is the READ phase of a
11276 		 * read-modify-write. If an error occurred on the READ then
11277 		 * we do not proceed with the WRITE phase or copy any data.
11278 		 * Just release the write maps and return with an error.
11279 		 */
11280 		if ((bp->b_resid != 0) || (bp->b_error != 0)) {
11281 			orig_bp->b_resid = orig_bp->b_bcount;
11282 			bioerror(orig_bp, bp->b_error);
11283 			sd_range_unlock(un, bsp->mbs_wmp);
11284 			goto freebuf_done;
11285 		}
11286 	}
11287 
11288 	/*
11289 	 * Here is where we set up to copy the data from the shadow buf
11290 	 * into the space associated with the original buf.
11291 	 *
11292 	 * To deal with the conversion between block sizes, these
11293 	 * computations treat the data as an array of bytes, with the
11294 	 * first byte (byte 0) corresponding to the first byte in the
11295 	 * first block on the disk.
11296 	 */
11297 
11298 	/*
11299 	 * shadow_start and shadow_len indicate the location and size of
11300 	 * the data returned with the shadow IO request.
11301 	 */
11302 	shadow_start  = SD_TGTBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
11303 	shadow_end    = shadow_start + bp->b_bcount - bp->b_resid;
11304 
11305 	/*
11306 	 * copy_offset gives the offset (in bytes) from the start of the first
11307 	 * block of the READ request to the beginning of the data.  We retrieve
11308 	 * this value from xb_pktp in the ORIGINAL xbuf, as it has been saved
11309 	 * there by sd_mapblockize_iostart(). copy_length gives the amount of
11310 	 * data to be copied (in bytes).
11311 	 */
11312 	copy_offset  = bsp->mbs_copy_offset;
11313 	ASSERT((copy_offset >= 0) && (copy_offset < un->un_tgt_blocksize));
11314 	copy_length  = orig_bp->b_bcount;
11315 	request_end  = shadow_start + copy_offset + orig_bp->b_bcount;
11316 
11317 	/*
11318 	 * Set up the resid and error fields of orig_bp as appropriate.
11319 	 */
11320 	if (shadow_end >= request_end) {
11321 		/* We got all the requested data; set resid to zero */
11322 		orig_bp->b_resid = 0;
11323 	} else {
11324 		/*
11325 		 * We failed to get enough data to fully satisfy the original
11326 		 * request. Just copy back whatever data we got and set
11327 		 * up the residual and error code as required.
11328 		 *
11329 		 * 'shortfall' is the amount by which the data received with the
11330 		 * shadow buf has "fallen short" of the requested amount.
11331 		 */
11332 		shortfall = (size_t)(request_end - shadow_end);
11333 
11334 		if (shortfall > orig_bp->b_bcount) {
11335 			/*
11336 			 * We did not get enough data to even partially
11337 			 * fulfill the original request.  The residual is
11338 			 * equal to the amount requested.
11339 			 */
11340 			orig_bp->b_resid = orig_bp->b_bcount;
11341 		} else {
11342 			/*
11343 			 * We did not get all the data that we requested
11344 			 * from the device, but we will try to return what
11345 			 * portion we did get.
11346 			 */
11347 			orig_bp->b_resid = shortfall;
11348 		}
11349 		ASSERT(copy_length >= orig_bp->b_resid);
11350 		copy_length  -= orig_bp->b_resid;
11351 	}
11352 
11353 	/* Propagate the error code from the shadow buf to the original buf */
11354 	bioerror(orig_bp, bp->b_error);
11355 
11356 	if (is_write) {
11357 		goto freebuf_done;	/* No data copying for a WRITE */
11358 	}
11359 
11360 	if (has_wmap) {
11361 		/*
11362 		 * This is a READ command from the READ phase of a
11363 		 * read-modify-write request. We have to copy the data given
11364 		 * by the user OVER the data returned by the READ command,
11365 		 * then convert the command from a READ to a WRITE and send
11366 		 * it back to the target.
11367 		 */
11368 		bcopy(orig_bp->b_un.b_addr, bp->b_un.b_addr + copy_offset,
11369 		    copy_length);
11370 
11371 		bp->b_flags &= ~((int)B_READ);	/* Convert to a WRITE */
11372 
11373 		/*
11374 		 * Dispatch the WRITE command to the taskq thread, which
11375 		 * will in turn send the command to the target. When the
11376 		 * WRITE command completes, we (sd_mapblocksize_iodone())
11377 		 * will get called again as part of the iodone chain
11378 		 * processing for it. Note that we will still be dealing
11379 		 * with the shadow buf at that point.
11380 		 */
11381 		if (taskq_dispatch(sd_wmr_tq, sd_read_modify_write_task, bp,
11382 		    KM_NOSLEEP) != 0) {
11383 			/*
11384 			 * Dispatch was successful so we are done. Return
11385 			 * without going any higher up the iodone chain. Do
11386 			 * not free up any layer-private data until after the
11387 			 * WRITE completes.
11388 			 */
11389 			return;
11390 		}
11391 
11392 		/*
11393 		 * Dispatch of the WRITE command failed; set up the error
11394 		 * condition and send this IO back up the iodone chain.
11395 		 */
11396 		bioerror(orig_bp, EIO);
11397 		orig_bp->b_resid = orig_bp->b_bcount;
11398 
11399 	} else {
11400 		/*
11401 		 * This is a regular READ request (ie, not a RMW). Copy the
11402 		 * data from the shadow buf into the original buf. The
11403 		 * copy_offset compensates for any "misalignment" between the
11404 		 * shadow buf (with its un->un_tgt_blocksize blocks) and the
11405 		 * original buf (with its un->un_sys_blocksize blocks).
11406 		 */
11407 		bcopy(bp->b_un.b_addr + copy_offset, orig_bp->b_un.b_addr,
11408 		    copy_length);
11409 	}
11410 
11411 freebuf_done:
11412 
11413 	/*
11414 	 * At this point we still have both the shadow buf AND the original
11415 	 * buf to deal with, as well as the layer-private data area in each.
11416 	 * Local variables are as follows:
11417 	 *
11418 	 * bp -- points to shadow buf
11419 	 * xp -- points to xbuf of shadow buf
11420 	 * bsp -- points to layer-private data area of shadow buf
11421 	 * orig_bp -- points to original buf
11422 	 *
11423 	 * First free the shadow buf and its associated xbuf, then free the
11424 	 * layer-private data area from the shadow buf. There is no need to
11425 	 * restore xb_private in the shadow xbuf.
11426 	 */
11427 	sd_shadow_buf_free(bp);
11428 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
11429 
11430 	/*
11431 	 * Now update the local variables to point to the original buf, xbuf,
11432 	 * and layer-private area.
11433 	 */
11434 	bp = orig_bp;
11435 	xp = SD_GET_XBUF(bp);
11436 	ASSERT(xp != NULL);
11437 	ASSERT(xp == orig_xp);
11438 	bsp = xp->xb_private;
11439 	ASSERT(bsp != NULL);
11440 
11441 done:
11442 	/*
11443 	 * Restore xb_private to whatever it was set to by the next higher
11444 	 * layer in the chain, then free the layer-private data area.
11445 	 */
11446 	xp->xb_private = bsp->mbs_oprivate;
11447 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
11448 
11449 exit:
11450 	SD_TRACE(SD_LOG_IO_RMMEDIA, SD_GET_UN(bp),
11451 	    "sd_mapblocksize_iodone: calling SD_NEXT_IODONE: buf:0x%p\n", bp);
11452 
11453 	SD_NEXT_IODONE(index, un, bp);
11454 }
11455 
11456 
11457 /*
11458  *    Function: sd_checksum_iostart
11459  *
11460  * Description: A stub function for a layer that's currently not used.
11461  *		For now just a placeholder.
11462  *
11463  *     Context: Kernel thread context
11464  */
11465 
11466 static void
11467 sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp)
11468 {
11469 	ASSERT(un != NULL);
11470 	ASSERT(bp != NULL);
11471 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11472 	SD_NEXT_IOSTART(index, un, bp);
11473 }
11474 
11475 
11476 /*
11477  *    Function: sd_checksum_iodone
11478  *
11479  * Description: A stub function for a layer that's currently not used.
11480  *		For now just a placeholder.
11481  *
11482  *     Context: May be called under interrupt context
11483  */
11484 
11485 static void
11486 sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp)
11487 {
11488 	ASSERT(un != NULL);
11489 	ASSERT(bp != NULL);
11490 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11491 	SD_NEXT_IODONE(index, un, bp);
11492 }
11493 
11494 
11495 /*
11496  *    Function: sd_checksum_uscsi_iostart
11497  *
11498  * Description: A stub function for a layer that's currently not used.
11499  *		For now just a placeholder.
11500  *
11501  *     Context: Kernel thread context
11502  */
11503 
11504 static void
11505 sd_checksum_uscsi_iostart(int index, struct sd_lun *un, struct buf *bp)
11506 {
11507 	ASSERT(un != NULL);
11508 	ASSERT(bp != NULL);
11509 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11510 	SD_NEXT_IOSTART(index, un, bp);
11511 }
11512 
11513 
11514 /*
11515  *    Function: sd_checksum_uscsi_iodone
11516  *
11517  * Description: A stub function for a layer that's currently not used.
11518  *		For now just a placeholder.
11519  *
11520  *     Context: May be called under interrupt context
11521  */
11522 
11523 static void
11524 sd_checksum_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
11525 {
11526 	ASSERT(un != NULL);
11527 	ASSERT(bp != NULL);
11528 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11529 	SD_NEXT_IODONE(index, un, bp);
11530 }
11531 
11532 
11533 /*
11534  *    Function: sd_pm_iostart
11535  *
11536  * Description: iostart-side routine for Power mangement.
11537  *
11538  *     Context: Kernel thread context
11539  */
11540 
11541 static void
11542 sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp)
11543 {
11544 	ASSERT(un != NULL);
11545 	ASSERT(bp != NULL);
11546 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11547 	ASSERT(!mutex_owned(&un->un_pm_mutex));
11548 
11549 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: entry\n");
11550 
11551 	if (sd_pm_entry(un) != DDI_SUCCESS) {
11552 		/*
11553 		 * Set up to return the failed buf back up the 'iodone'
11554 		 * side of the calling chain.
11555 		 */
11556 		bioerror(bp, EIO);
11557 		bp->b_resid = bp->b_bcount;
11558 
11559 		SD_BEGIN_IODONE(index, un, bp);
11560 
11561 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
11562 		return;
11563 	}
11564 
11565 	SD_NEXT_IOSTART(index, un, bp);
11566 
11567 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
11568 }
11569 
11570 
11571 /*
11572  *    Function: sd_pm_iodone
11573  *
11574  * Description: iodone-side routine for power mangement.
11575  *
11576  *     Context: may be called from interrupt context
11577  */
11578 
11579 static void
11580 sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp)
11581 {
11582 	ASSERT(un != NULL);
11583 	ASSERT(bp != NULL);
11584 	ASSERT(!mutex_owned(&un->un_pm_mutex));
11585 
11586 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: entry\n");
11587 
11588 	/*
11589 	 * After attach the following flag is only read, so don't
11590 	 * take the penalty of acquiring a mutex for it.
11591 	 */
11592 	if (un->un_f_pm_is_enabled == TRUE) {
11593 		sd_pm_exit(un);
11594 	}
11595 
11596 	SD_NEXT_IODONE(index, un, bp);
11597 
11598 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: exit\n");
11599 }
11600 
11601 
11602 /*
11603  *    Function: sd_core_iostart
11604  *
11605  * Description: Primary driver function for enqueuing buf(9S) structs from
11606  *		the system and initiating IO to the target device
11607  *
11608  *     Context: Kernel thread context. Can sleep.
11609  *
11610  * Assumptions:  - The given xp->xb_blkno is absolute
11611  *		   (ie, relative to the start of the device).
11612  *		 - The IO is to be done using the native blocksize of
11613  *		   the device, as specified in un->un_tgt_blocksize.
11614  */
11615 /* ARGSUSED */
11616 static void
11617 sd_core_iostart(int index, struct sd_lun *un, struct buf *bp)
11618 {
11619 	struct sd_xbuf *xp;
11620 
11621 	ASSERT(un != NULL);
11622 	ASSERT(bp != NULL);
11623 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11624 	ASSERT(bp->b_resid == 0);
11625 
11626 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: entry: bp:0x%p\n", bp);
11627 
11628 	xp = SD_GET_XBUF(bp);
11629 	ASSERT(xp != NULL);
11630 
11631 	mutex_enter(SD_MUTEX(un));
11632 
11633 	/*
11634 	 * If we are currently in the failfast state, fail any new IO
11635 	 * that has B_FAILFAST set, then return.
11636 	 */
11637 	if ((bp->b_flags & B_FAILFAST) &&
11638 	    (un->un_failfast_state == SD_FAILFAST_ACTIVE)) {
11639 		mutex_exit(SD_MUTEX(un));
11640 		bioerror(bp, EIO);
11641 		bp->b_resid = bp->b_bcount;
11642 		SD_BEGIN_IODONE(index, un, bp);
11643 		return;
11644 	}
11645 
11646 	if (SD_IS_DIRECT_PRIORITY(xp)) {
11647 		/*
11648 		 * Priority command -- transport it immediately.
11649 		 *
11650 		 * Note: We may want to assert that USCSI_DIAGNOSE is set,
11651 		 * because all direct priority commands should be associated
11652 		 * with error recovery actions which we don't want to retry.
11653 		 */
11654 		sd_start_cmds(un, bp);
11655 	} else {
11656 		/*
11657 		 * Normal command -- add it to the wait queue, then start
11658 		 * transporting commands from the wait queue.
11659 		 */
11660 		sd_add_buf_to_waitq(un, bp);
11661 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
11662 		sd_start_cmds(un, NULL);
11663 	}
11664 
11665 	mutex_exit(SD_MUTEX(un));
11666 
11667 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: exit: bp:0x%p\n", bp);
11668 }
11669 
11670 
11671 /*
11672  *    Function: sd_init_cdb_limits
11673  *
11674  * Description: This is to handle scsi_pkt initialization differences
11675  *		between the driver platforms.
11676  *
11677  *		Legacy behaviors:
11678  *
11679  *		If the block number or the sector count exceeds the
11680  *		capabilities of a Group 0 command, shift over to a
11681  *		Group 1 command. We don't blindly use Group 1
11682  *		commands because a) some drives (CDC Wren IVs) get a
11683  *		bit confused, and b) there is probably a fair amount
11684  *		of speed difference for a target to receive and decode
11685  *		a 10 byte command instead of a 6 byte command.
11686  *
11687  *		The xfer time difference of 6 vs 10 byte CDBs is
11688  *		still significant so this code is still worthwhile.
11689  *		10 byte CDBs are very inefficient with the fas HBA driver
11690  *		and older disks. Each CDB byte took 1 usec with some
11691  *		popular disks.
11692  *
11693  *     Context: Must be called at attach time
11694  */
11695 
11696 static void
11697 sd_init_cdb_limits(struct sd_lun *un)
11698 {
11699 	int hba_cdb_limit;
11700 
11701 	/*
11702 	 * Use CDB_GROUP1 commands for most devices except for
11703 	 * parallel SCSI fixed drives in which case we get better
11704 	 * performance using CDB_GROUP0 commands (where applicable).
11705 	 */
11706 	un->un_mincdb = SD_CDB_GROUP1;
11707 #if !defined(__fibre)
11708 	if (!un->un_f_is_fibre && !un->un_f_cfg_is_atapi && !ISROD(un) &&
11709 	    !un->un_f_has_removable_media) {
11710 		un->un_mincdb = SD_CDB_GROUP0;
11711 	}
11712 #endif
11713 
11714 	/*
11715 	 * Try to read the max-cdb-length supported by HBA.
11716 	 */
11717 	un->un_max_hba_cdb = scsi_ifgetcap(SD_ADDRESS(un), "max-cdb-length", 1);
11718 	if (0 >= un->un_max_hba_cdb) {
11719 		un->un_max_hba_cdb = CDB_GROUP4;
11720 		hba_cdb_limit = SD_CDB_GROUP4;
11721 	} else if (0 < un->un_max_hba_cdb &&
11722 	    un->un_max_hba_cdb < CDB_GROUP1) {
11723 		hba_cdb_limit = SD_CDB_GROUP0;
11724 	} else if (CDB_GROUP1 <= un->un_max_hba_cdb &&
11725 	    un->un_max_hba_cdb < CDB_GROUP5) {
11726 		hba_cdb_limit = SD_CDB_GROUP1;
11727 	} else if (CDB_GROUP5 <= un->un_max_hba_cdb &&
11728 	    un->un_max_hba_cdb < CDB_GROUP4) {
11729 		hba_cdb_limit = SD_CDB_GROUP5;
11730 	} else {
11731 		hba_cdb_limit = SD_CDB_GROUP4;
11732 	}
11733 
11734 	/*
11735 	 * Use CDB_GROUP5 commands for removable devices.  Use CDB_GROUP4
11736 	 * commands for fixed disks unless we are building for a 32 bit
11737 	 * kernel.
11738 	 */
11739 #ifdef _LP64
11740 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
11741 	    min(hba_cdb_limit, SD_CDB_GROUP4);
11742 #else
11743 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
11744 	    min(hba_cdb_limit, SD_CDB_GROUP1);
11745 #endif
11746 
11747 	un->un_status_len = (int)((un->un_f_arq_enabled == TRUE)
11748 	    ? sizeof (struct scsi_arq_status) : 1);
11749 	un->un_cmd_timeout = (ushort_t)sd_io_time;
11750 	un->un_uscsi_timeout = ((ISCD(un)) ? 2 : 1) * un->un_cmd_timeout;
11751 }
11752 
11753 
11754 /*
11755  *    Function: sd_initpkt_for_buf
11756  *
11757  * Description: Allocate and initialize for transport a scsi_pkt struct,
11758  *		based upon the info specified in the given buf struct.
11759  *
11760  *		Assumes the xb_blkno in the request is absolute (ie,
11761  *		relative to the start of the device (NOT partition!).
11762  *		Also assumes that the request is using the native block
11763  *		size of the device (as returned by the READ CAPACITY
11764  *		command).
11765  *
11766  * Return Code: SD_PKT_ALLOC_SUCCESS
11767  *		SD_PKT_ALLOC_FAILURE
11768  *		SD_PKT_ALLOC_FAILURE_NO_DMA
11769  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
11770  *
11771  *     Context: Kernel thread and may be called from software interrupt context
11772  *		as part of a sdrunout callback. This function may not block or
11773  *		call routines that block
11774  */
11775 
11776 static int
11777 sd_initpkt_for_buf(struct buf *bp, struct scsi_pkt **pktpp)
11778 {
11779 	struct sd_xbuf	*xp;
11780 	struct scsi_pkt *pktp = NULL;
11781 	struct sd_lun	*un;
11782 	size_t		blockcount;
11783 	daddr_t		startblock;
11784 	int		rval;
11785 	int		cmd_flags;
11786 
11787 	ASSERT(bp != NULL);
11788 	ASSERT(pktpp != NULL);
11789 	xp = SD_GET_XBUF(bp);
11790 	ASSERT(xp != NULL);
11791 	un = SD_GET_UN(bp);
11792 	ASSERT(un != NULL);
11793 	ASSERT(mutex_owned(SD_MUTEX(un)));
11794 	ASSERT(bp->b_resid == 0);
11795 
11796 	SD_TRACE(SD_LOG_IO_CORE, un,
11797 	    "sd_initpkt_for_buf: entry: buf:0x%p\n", bp);
11798 
11799 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
11800 	if (xp->xb_pkt_flags & SD_XB_DMA_FREED) {
11801 		/*
11802 		 * Already have a scsi_pkt -- just need DMA resources.
11803 		 * We must recompute the CDB in case the mapping returns
11804 		 * a nonzero pkt_resid.
11805 		 * Note: if this is a portion of a PKT_DMA_PARTIAL transfer
11806 		 * that is being retried, the unmap/remap of the DMA resouces
11807 		 * will result in the entire transfer starting over again
11808 		 * from the very first block.
11809 		 */
11810 		ASSERT(xp->xb_pktp != NULL);
11811 		pktp = xp->xb_pktp;
11812 	} else {
11813 		pktp = NULL;
11814 	}
11815 #endif /* __i386 || __amd64 */
11816 
11817 	startblock = xp->xb_blkno;	/* Absolute block num. */
11818 	blockcount = SD_BYTES2TGTBLOCKS(un, bp->b_bcount);
11819 
11820 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
11821 
11822 	cmd_flags = un->un_pkt_flags | (xp->xb_pkt_flags & SD_XB_INITPKT_MASK);
11823 
11824 #else
11825 
11826 	cmd_flags = un->un_pkt_flags | xp->xb_pkt_flags;
11827 
11828 #endif
11829 
11830 	/*
11831 	 * sd_setup_rw_pkt will determine the appropriate CDB group to use,
11832 	 * call scsi_init_pkt, and build the CDB.
11833 	 */
11834 	rval = sd_setup_rw_pkt(un, &pktp, bp,
11835 	    cmd_flags, sdrunout, (caddr_t)un,
11836 	    startblock, blockcount);
11837 
11838 	if (rval == 0) {
11839 		/*
11840 		 * Success.
11841 		 *
11842 		 * If partial DMA is being used and required for this transfer.
11843 		 * set it up here.
11844 		 */
11845 		if ((un->un_pkt_flags & PKT_DMA_PARTIAL) != 0 &&
11846 		    (pktp->pkt_resid != 0)) {
11847 
11848 			/*
11849 			 * Save the CDB length and pkt_resid for the
11850 			 * next xfer
11851 			 */
11852 			xp->xb_dma_resid = pktp->pkt_resid;
11853 
11854 			/* rezero resid */
11855 			pktp->pkt_resid = 0;
11856 
11857 		} else {
11858 			xp->xb_dma_resid = 0;
11859 		}
11860 
11861 		pktp->pkt_flags = un->un_tagflags;
11862 		pktp->pkt_time  = un->un_cmd_timeout;
11863 		pktp->pkt_comp  = sdintr;
11864 
11865 		pktp->pkt_private = bp;
11866 		*pktpp = pktp;
11867 
11868 		SD_TRACE(SD_LOG_IO_CORE, un,
11869 		    "sd_initpkt_for_buf: exit: buf:0x%p\n", bp);
11870 
11871 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
11872 		xp->xb_pkt_flags &= ~SD_XB_DMA_FREED;
11873 #endif
11874 
11875 		return (SD_PKT_ALLOC_SUCCESS);
11876 
11877 	}
11878 
11879 	/*
11880 	 * SD_PKT_ALLOC_FAILURE is the only expected failure code
11881 	 * from sd_setup_rw_pkt.
11882 	 */
11883 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
11884 
11885 	if (rval == SD_PKT_ALLOC_FAILURE) {
11886 		*pktpp = NULL;
11887 		/*
11888 		 * Set the driver state to RWAIT to indicate the driver
11889 		 * is waiting on resource allocations. The driver will not
11890 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
11891 		 */
11892 		New_state(un, SD_STATE_RWAIT);
11893 
11894 		SD_ERROR(SD_LOG_IO_CORE, un,
11895 		    "sd_initpkt_for_buf: No pktp. exit bp:0x%p\n", bp);
11896 
11897 		if ((bp->b_flags & B_ERROR) != 0) {
11898 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
11899 		}
11900 		return (SD_PKT_ALLOC_FAILURE);
11901 	} else {
11902 		/*
11903 		 * PKT_ALLOC_FAILURE_CDB_TOO_SMALL
11904 		 *
11905 		 * This should never happen.  Maybe someone messed with the
11906 		 * kernel's minphys?
11907 		 */
11908 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
11909 		    "Request rejected: too large for CDB: "
11910 		    "lba:0x%08lx  len:0x%08lx\n", startblock, blockcount);
11911 		SD_ERROR(SD_LOG_IO_CORE, un,
11912 		    "sd_initpkt_for_buf: No cp. exit bp:0x%p\n", bp);
11913 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
11914 
11915 	}
11916 }
11917 
11918 
11919 /*
11920  *    Function: sd_destroypkt_for_buf
11921  *
11922  * Description: Free the scsi_pkt(9S) for the given bp (buf IO processing).
11923  *
11924  *     Context: Kernel thread or interrupt context
11925  */
11926 
11927 static void
11928 sd_destroypkt_for_buf(struct buf *bp)
11929 {
11930 	ASSERT(bp != NULL);
11931 	ASSERT(SD_GET_UN(bp) != NULL);
11932 
11933 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
11934 	    "sd_destroypkt_for_buf: entry: buf:0x%p\n", bp);
11935 
11936 	ASSERT(SD_GET_PKTP(bp) != NULL);
11937 	scsi_destroy_pkt(SD_GET_PKTP(bp));
11938 
11939 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
11940 	    "sd_destroypkt_for_buf: exit: buf:0x%p\n", bp);
11941 }
11942 
11943 /*
11944  *    Function: sd_setup_rw_pkt
11945  *
11946  * Description: Determines appropriate CDB group for the requested LBA
11947  *		and transfer length, calls scsi_init_pkt, and builds
11948  *		the CDB.  Do not use for partial DMA transfers except
11949  *		for the initial transfer since the CDB size must
11950  *		remain constant.
11951  *
11952  *     Context: Kernel thread and may be called from software interrupt
11953  *		context as part of a sdrunout callback. This function may not
11954  *		block or call routines that block
11955  */
11956 
11957 
11958 int
11959 sd_setup_rw_pkt(struct sd_lun *un,
11960     struct scsi_pkt **pktpp, struct buf *bp, int flags,
11961     int (*callback)(caddr_t), caddr_t callback_arg,
11962     diskaddr_t lba, uint32_t blockcount)
11963 {
11964 	struct scsi_pkt *return_pktp;
11965 	union scsi_cdb *cdbp;
11966 	struct sd_cdbinfo *cp = NULL;
11967 	int i;
11968 
11969 	/*
11970 	 * See which size CDB to use, based upon the request.
11971 	 */
11972 	for (i = un->un_mincdb; i <= un->un_maxcdb; i++) {
11973 
11974 		/*
11975 		 * Check lba and block count against sd_cdbtab limits.
11976 		 * In the partial DMA case, we have to use the same size
11977 		 * CDB for all the transfers.  Check lba + blockcount
11978 		 * against the max LBA so we know that segment of the
11979 		 * transfer can use the CDB we select.
11980 		 */
11981 		if ((lba + blockcount - 1 <= sd_cdbtab[i].sc_maxlba) &&
11982 		    (blockcount <= sd_cdbtab[i].sc_maxlen)) {
11983 
11984 			/*
11985 			 * The command will fit into the CDB type
11986 			 * specified by sd_cdbtab[i].
11987 			 */
11988 			cp = sd_cdbtab + i;
11989 
11990 			/*
11991 			 * Call scsi_init_pkt so we can fill in the
11992 			 * CDB.
11993 			 */
11994 			return_pktp = scsi_init_pkt(SD_ADDRESS(un), *pktpp,
11995 			    bp, cp->sc_grpcode, un->un_status_len, 0,
11996 			    flags, callback, callback_arg);
11997 
11998 			if (return_pktp != NULL) {
11999 
12000 				/*
12001 				 * Return new value of pkt
12002 				 */
12003 				*pktpp = return_pktp;
12004 
12005 				/*
12006 				 * To be safe, zero the CDB insuring there is
12007 				 * no leftover data from a previous command.
12008 				 */
12009 				bzero(return_pktp->pkt_cdbp, cp->sc_grpcode);
12010 
12011 				/*
12012 				 * Handle partial DMA mapping
12013 				 */
12014 				if (return_pktp->pkt_resid != 0) {
12015 
12016 					/*
12017 					 * Not going to xfer as many blocks as
12018 					 * originally expected
12019 					 */
12020 					blockcount -=
12021 					    SD_BYTES2TGTBLOCKS(un,
12022 					    return_pktp->pkt_resid);
12023 				}
12024 
12025 				cdbp = (union scsi_cdb *)return_pktp->pkt_cdbp;
12026 
12027 				/*
12028 				 * Set command byte based on the CDB
12029 				 * type we matched.
12030 				 */
12031 				cdbp->scc_cmd = cp->sc_grpmask |
12032 				    ((bp->b_flags & B_READ) ?
12033 				    SCMD_READ : SCMD_WRITE);
12034 
12035 				SD_FILL_SCSI1_LUN(un, return_pktp);
12036 
12037 				/*
12038 				 * Fill in LBA and length
12039 				 */
12040 				ASSERT((cp->sc_grpcode == CDB_GROUP1) ||
12041 				    (cp->sc_grpcode == CDB_GROUP4) ||
12042 				    (cp->sc_grpcode == CDB_GROUP0) ||
12043 				    (cp->sc_grpcode == CDB_GROUP5));
12044 
12045 				if (cp->sc_grpcode == CDB_GROUP1) {
12046 					FORMG1ADDR(cdbp, lba);
12047 					FORMG1COUNT(cdbp, blockcount);
12048 					return (0);
12049 				} else if (cp->sc_grpcode == CDB_GROUP4) {
12050 					FORMG4LONGADDR(cdbp, lba);
12051 					FORMG4COUNT(cdbp, blockcount);
12052 					return (0);
12053 				} else if (cp->sc_grpcode == CDB_GROUP0) {
12054 					FORMG0ADDR(cdbp, lba);
12055 					FORMG0COUNT(cdbp, blockcount);
12056 					return (0);
12057 				} else if (cp->sc_grpcode == CDB_GROUP5) {
12058 					FORMG5ADDR(cdbp, lba);
12059 					FORMG5COUNT(cdbp, blockcount);
12060 					return (0);
12061 				}
12062 
12063 				/*
12064 				 * It should be impossible to not match one
12065 				 * of the CDB types above, so we should never
12066 				 * reach this point.  Set the CDB command byte
12067 				 * to test-unit-ready to avoid writing
12068 				 * to somewhere we don't intend.
12069 				 */
12070 				cdbp->scc_cmd = SCMD_TEST_UNIT_READY;
12071 				return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
12072 			} else {
12073 				/*
12074 				 * Couldn't get scsi_pkt
12075 				 */
12076 				return (SD_PKT_ALLOC_FAILURE);
12077 			}
12078 		}
12079 	}
12080 
12081 	/*
12082 	 * None of the available CDB types were suitable.  This really
12083 	 * should never happen:  on a 64 bit system we support
12084 	 * READ16/WRITE16 which will hold an entire 64 bit disk address
12085 	 * and on a 32 bit system we will refuse to bind to a device
12086 	 * larger than 2TB so addresses will never be larger than 32 bits.
12087 	 */
12088 	return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
12089 }
12090 
12091 /*
12092  *    Function: sd_setup_next_rw_pkt
12093  *
12094  * Description: Setup packet for partial DMA transfers, except for the
12095  * 		initial transfer.  sd_setup_rw_pkt should be used for
12096  *		the initial transfer.
12097  *
12098  *     Context: Kernel thread and may be called from interrupt context.
12099  */
12100 
12101 int
12102 sd_setup_next_rw_pkt(struct sd_lun *un,
12103     struct scsi_pkt *pktp, struct buf *bp,
12104     diskaddr_t lba, uint32_t blockcount)
12105 {
12106 	uchar_t com;
12107 	union scsi_cdb *cdbp;
12108 	uchar_t cdb_group_id;
12109 
12110 	ASSERT(pktp != NULL);
12111 	ASSERT(pktp->pkt_cdbp != NULL);
12112 
12113 	cdbp = (union scsi_cdb *)pktp->pkt_cdbp;
12114 	com = cdbp->scc_cmd;
12115 	cdb_group_id = CDB_GROUPID(com);
12116 
12117 	ASSERT((cdb_group_id == CDB_GROUPID_0) ||
12118 	    (cdb_group_id == CDB_GROUPID_1) ||
12119 	    (cdb_group_id == CDB_GROUPID_4) ||
12120 	    (cdb_group_id == CDB_GROUPID_5));
12121 
12122 	/*
12123 	 * Move pkt to the next portion of the xfer.
12124 	 * func is NULL_FUNC so we do not have to release
12125 	 * the disk mutex here.
12126 	 */
12127 	if (scsi_init_pkt(SD_ADDRESS(un), pktp, bp, 0, 0, 0, 0,
12128 	    NULL_FUNC, NULL) == pktp) {
12129 		/* Success.  Handle partial DMA */
12130 		if (pktp->pkt_resid != 0) {
12131 			blockcount -=
12132 			    SD_BYTES2TGTBLOCKS(un, pktp->pkt_resid);
12133 		}
12134 
12135 		cdbp->scc_cmd = com;
12136 		SD_FILL_SCSI1_LUN(un, pktp);
12137 		if (cdb_group_id == CDB_GROUPID_1) {
12138 			FORMG1ADDR(cdbp, lba);
12139 			FORMG1COUNT(cdbp, blockcount);
12140 			return (0);
12141 		} else if (cdb_group_id == CDB_GROUPID_4) {
12142 			FORMG4LONGADDR(cdbp, lba);
12143 			FORMG4COUNT(cdbp, blockcount);
12144 			return (0);
12145 		} else if (cdb_group_id == CDB_GROUPID_0) {
12146 			FORMG0ADDR(cdbp, lba);
12147 			FORMG0COUNT(cdbp, blockcount);
12148 			return (0);
12149 		} else if (cdb_group_id == CDB_GROUPID_5) {
12150 			FORMG5ADDR(cdbp, lba);
12151 			FORMG5COUNT(cdbp, blockcount);
12152 			return (0);
12153 		}
12154 
12155 		/* Unreachable */
12156 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
12157 	}
12158 
12159 	/*
12160 	 * Error setting up next portion of cmd transfer.
12161 	 * Something is definitely very wrong and this
12162 	 * should not happen.
12163 	 */
12164 	return (SD_PKT_ALLOC_FAILURE);
12165 }
12166 
12167 /*
12168  *    Function: sd_initpkt_for_uscsi
12169  *
12170  * Description: Allocate and initialize for transport a scsi_pkt struct,
12171  *		based upon the info specified in the given uscsi_cmd struct.
12172  *
12173  * Return Code: SD_PKT_ALLOC_SUCCESS
12174  *		SD_PKT_ALLOC_FAILURE
12175  *		SD_PKT_ALLOC_FAILURE_NO_DMA
12176  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
12177  *
12178  *     Context: Kernel thread and may be called from software interrupt context
12179  *		as part of a sdrunout callback. This function may not block or
12180  *		call routines that block
12181  */
12182 
12183 static int
12184 sd_initpkt_for_uscsi(struct buf *bp, struct scsi_pkt **pktpp)
12185 {
12186 	struct uscsi_cmd *uscmd;
12187 	struct sd_xbuf	*xp;
12188 	struct scsi_pkt	*pktp;
12189 	struct sd_lun	*un;
12190 	uint32_t	flags = 0;
12191 
12192 	ASSERT(bp != NULL);
12193 	ASSERT(pktpp != NULL);
12194 	xp = SD_GET_XBUF(bp);
12195 	ASSERT(xp != NULL);
12196 	un = SD_GET_UN(bp);
12197 	ASSERT(un != NULL);
12198 	ASSERT(mutex_owned(SD_MUTEX(un)));
12199 
12200 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
12201 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
12202 	ASSERT(uscmd != NULL);
12203 
12204 	SD_TRACE(SD_LOG_IO_CORE, un,
12205 	    "sd_initpkt_for_uscsi: entry: buf:0x%p\n", bp);
12206 
12207 	/*
12208 	 * Allocate the scsi_pkt for the command.
12209 	 * Note: If PKT_DMA_PARTIAL flag is set, scsi_vhci binds a path
12210 	 *	 during scsi_init_pkt time and will continue to use the
12211 	 *	 same path as long as the same scsi_pkt is used without
12212 	 *	 intervening scsi_dma_free(). Since uscsi command does
12213 	 *	 not call scsi_dmafree() before retry failed command, it
12214 	 *	 is necessary to make sure PKT_DMA_PARTIAL flag is NOT
12215 	 *	 set such that scsi_vhci can use other available path for
12216 	 *	 retry. Besides, ucsci command does not allow DMA breakup,
12217 	 *	 so there is no need to set PKT_DMA_PARTIAL flag.
12218 	 */
12219 	if (uscmd->uscsi_rqlen > SENSE_LENGTH) {
12220 		pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
12221 		    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
12222 		    ((int)(uscmd->uscsi_rqlen) + sizeof (struct scsi_arq_status)
12223 		    - sizeof (struct scsi_extended_sense)), 0,
12224 		    (un->un_pkt_flags & ~PKT_DMA_PARTIAL) | PKT_XARQ,
12225 		    sdrunout, (caddr_t)un);
12226 	} else {
12227 		pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
12228 		    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
12229 		    sizeof (struct scsi_arq_status), 0,
12230 		    (un->un_pkt_flags & ~PKT_DMA_PARTIAL),
12231 		    sdrunout, (caddr_t)un);
12232 	}
12233 
12234 	if (pktp == NULL) {
12235 		*pktpp = NULL;
12236 		/*
12237 		 * Set the driver state to RWAIT to indicate the driver
12238 		 * is waiting on resource allocations. The driver will not
12239 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
12240 		 */
12241 		New_state(un, SD_STATE_RWAIT);
12242 
12243 		SD_ERROR(SD_LOG_IO_CORE, un,
12244 		    "sd_initpkt_for_uscsi: No pktp. exit bp:0x%p\n", bp);
12245 
12246 		if ((bp->b_flags & B_ERROR) != 0) {
12247 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
12248 		}
12249 		return (SD_PKT_ALLOC_FAILURE);
12250 	}
12251 
12252 	/*
12253 	 * We do not do DMA breakup for USCSI commands, so return failure
12254 	 * here if all the needed DMA resources were not allocated.
12255 	 */
12256 	if ((un->un_pkt_flags & PKT_DMA_PARTIAL) &&
12257 	    (bp->b_bcount != 0) && (pktp->pkt_resid != 0)) {
12258 		scsi_destroy_pkt(pktp);
12259 		SD_ERROR(SD_LOG_IO_CORE, un, "sd_initpkt_for_uscsi: "
12260 		    "No partial DMA for USCSI. exit: buf:0x%p\n", bp);
12261 		return (SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL);
12262 	}
12263 
12264 	/* Init the cdb from the given uscsi struct */
12265 	(void) scsi_setup_cdb((union scsi_cdb *)pktp->pkt_cdbp,
12266 	    uscmd->uscsi_cdb[0], 0, 0, 0);
12267 
12268 	SD_FILL_SCSI1_LUN(un, pktp);
12269 
12270 	/*
12271 	 * Set up the optional USCSI flags. See the uscsi (7I) man page
12272 	 * for listing of the supported flags.
12273 	 */
12274 
12275 	if (uscmd->uscsi_flags & USCSI_SILENT) {
12276 		flags |= FLAG_SILENT;
12277 	}
12278 
12279 	if (uscmd->uscsi_flags & USCSI_DIAGNOSE) {
12280 		flags |= FLAG_DIAGNOSE;
12281 	}
12282 
12283 	if (uscmd->uscsi_flags & USCSI_ISOLATE) {
12284 		flags |= FLAG_ISOLATE;
12285 	}
12286 
12287 	if (un->un_f_is_fibre == FALSE) {
12288 		if (uscmd->uscsi_flags & USCSI_RENEGOT) {
12289 			flags |= FLAG_RENEGOTIATE_WIDE_SYNC;
12290 		}
12291 	}
12292 
12293 	/*
12294 	 * Set the pkt flags here so we save time later.
12295 	 * Note: These flags are NOT in the uscsi man page!!!
12296 	 */
12297 	if (uscmd->uscsi_flags & USCSI_HEAD) {
12298 		flags |= FLAG_HEAD;
12299 	}
12300 
12301 	if (uscmd->uscsi_flags & USCSI_NOINTR) {
12302 		flags |= FLAG_NOINTR;
12303 	}
12304 
12305 	/*
12306 	 * For tagged queueing, things get a bit complicated.
12307 	 * Check first for head of queue and last for ordered queue.
12308 	 * If neither head nor order, use the default driver tag flags.
12309 	 */
12310 	if ((uscmd->uscsi_flags & USCSI_NOTAG) == 0) {
12311 		if (uscmd->uscsi_flags & USCSI_HTAG) {
12312 			flags |= FLAG_HTAG;
12313 		} else if (uscmd->uscsi_flags & USCSI_OTAG) {
12314 			flags |= FLAG_OTAG;
12315 		} else {
12316 			flags |= un->un_tagflags & FLAG_TAGMASK;
12317 		}
12318 	}
12319 
12320 	if (uscmd->uscsi_flags & USCSI_NODISCON) {
12321 		flags = (flags & ~FLAG_TAGMASK) | FLAG_NODISCON;
12322 	}
12323 
12324 	pktp->pkt_flags = flags;
12325 
12326 	/* Copy the caller's CDB into the pkt... */
12327 	bcopy(uscmd->uscsi_cdb, pktp->pkt_cdbp, uscmd->uscsi_cdblen);
12328 
12329 	if (uscmd->uscsi_timeout == 0) {
12330 		pktp->pkt_time = un->un_uscsi_timeout;
12331 	} else {
12332 		pktp->pkt_time = uscmd->uscsi_timeout;
12333 	}
12334 
12335 	/* need it later to identify USCSI request in sdintr */
12336 	xp->xb_pkt_flags |= SD_XB_USCSICMD;
12337 
12338 	xp->xb_sense_resid = uscmd->uscsi_rqresid;
12339 
12340 	pktp->pkt_private = bp;
12341 	pktp->pkt_comp = sdintr;
12342 	*pktpp = pktp;
12343 
12344 	SD_TRACE(SD_LOG_IO_CORE, un,
12345 	    "sd_initpkt_for_uscsi: exit: buf:0x%p\n", bp);
12346 
12347 	return (SD_PKT_ALLOC_SUCCESS);
12348 }
12349 
12350 
12351 /*
12352  *    Function: sd_destroypkt_for_uscsi
12353  *
12354  * Description: Free the scsi_pkt(9S) struct for the given bp, for uscsi
12355  *		IOs.. Also saves relevant info into the associated uscsi_cmd
12356  *		struct.
12357  *
12358  *     Context: May be called under interrupt context
12359  */
12360 
12361 static void
12362 sd_destroypkt_for_uscsi(struct buf *bp)
12363 {
12364 	struct uscsi_cmd *uscmd;
12365 	struct sd_xbuf	*xp;
12366 	struct scsi_pkt	*pktp;
12367 	struct sd_lun	*un;
12368 
12369 	ASSERT(bp != NULL);
12370 	xp = SD_GET_XBUF(bp);
12371 	ASSERT(xp != NULL);
12372 	un = SD_GET_UN(bp);
12373 	ASSERT(un != NULL);
12374 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12375 	pktp = SD_GET_PKTP(bp);
12376 	ASSERT(pktp != NULL);
12377 
12378 	SD_TRACE(SD_LOG_IO_CORE, un,
12379 	    "sd_destroypkt_for_uscsi: entry: buf:0x%p\n", bp);
12380 
12381 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
12382 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
12383 	ASSERT(uscmd != NULL);
12384 
12385 	/* Save the status and the residual into the uscsi_cmd struct */
12386 	uscmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK);
12387 	uscmd->uscsi_resid  = bp->b_resid;
12388 
12389 	/*
12390 	 * If enabled, copy any saved sense data into the area specified
12391 	 * by the uscsi command.
12392 	 */
12393 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
12394 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
12395 		/*
12396 		 * Note: uscmd->uscsi_rqbuf should always point to a buffer
12397 		 * at least SENSE_LENGTH bytes in size (see sd_send_scsi_cmd())
12398 		 */
12399 		uscmd->uscsi_rqstatus = xp->xb_sense_status;
12400 		uscmd->uscsi_rqresid  = xp->xb_sense_resid;
12401 		if (uscmd->uscsi_rqlen > SENSE_LENGTH) {
12402 			bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf,
12403 			    MAX_SENSE_LENGTH);
12404 		} else {
12405 			bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf,
12406 			    SENSE_LENGTH);
12407 		}
12408 	}
12409 
12410 	/* We are done with the scsi_pkt; free it now */
12411 	ASSERT(SD_GET_PKTP(bp) != NULL);
12412 	scsi_destroy_pkt(SD_GET_PKTP(bp));
12413 
12414 	SD_TRACE(SD_LOG_IO_CORE, un,
12415 	    "sd_destroypkt_for_uscsi: exit: buf:0x%p\n", bp);
12416 }
12417 
12418 
12419 /*
12420  *    Function: sd_bioclone_alloc
12421  *
12422  * Description: Allocate a buf(9S) and init it as per the given buf
12423  *		and the various arguments.  The associated sd_xbuf
12424  *		struct is (nearly) duplicated.  The struct buf *bp
12425  *		argument is saved in new_xp->xb_private.
12426  *
12427  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
12428  *		datalen - size of data area for the shadow bp
12429  *		blkno - starting LBA
12430  *		func - function pointer for b_iodone in the shadow buf. (May
12431  *			be NULL if none.)
12432  *
12433  * Return Code: Pointer to allocates buf(9S) struct
12434  *
12435  *     Context: Can sleep.
12436  */
12437 
12438 static struct buf *
12439 sd_bioclone_alloc(struct buf *bp, size_t datalen,
12440 	daddr_t blkno, int (*func)(struct buf *))
12441 {
12442 	struct	sd_lun	*un;
12443 	struct	sd_xbuf	*xp;
12444 	struct	sd_xbuf	*new_xp;
12445 	struct	buf	*new_bp;
12446 
12447 	ASSERT(bp != NULL);
12448 	xp = SD_GET_XBUF(bp);
12449 	ASSERT(xp != NULL);
12450 	un = SD_GET_UN(bp);
12451 	ASSERT(un != NULL);
12452 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12453 
12454 	new_bp = bioclone(bp, 0, datalen, SD_GET_DEV(un), blkno, func,
12455 	    NULL, KM_SLEEP);
12456 
12457 	new_bp->b_lblkno	= blkno;
12458 
12459 	/*
12460 	 * Allocate an xbuf for the shadow bp and copy the contents of the
12461 	 * original xbuf into it.
12462 	 */
12463 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
12464 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
12465 
12466 	/*
12467 	 * The given bp is automatically saved in the xb_private member
12468 	 * of the new xbuf.  Callers are allowed to depend on this.
12469 	 */
12470 	new_xp->xb_private = bp;
12471 
12472 	new_bp->b_private  = new_xp;
12473 
12474 	return (new_bp);
12475 }
12476 
12477 /*
12478  *    Function: sd_shadow_buf_alloc
12479  *
12480  * Description: Allocate a buf(9S) and init it as per the given buf
12481  *		and the various arguments.  The associated sd_xbuf
12482  *		struct is (nearly) duplicated.  The struct buf *bp
12483  *		argument is saved in new_xp->xb_private.
12484  *
12485  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
12486  *		datalen - size of data area for the shadow bp
12487  *		bflags - B_READ or B_WRITE (pseudo flag)
12488  *		blkno - starting LBA
12489  *		func - function pointer for b_iodone in the shadow buf. (May
12490  *			be NULL if none.)
12491  *
12492  * Return Code: Pointer to allocates buf(9S) struct
12493  *
12494  *     Context: Can sleep.
12495  */
12496 
12497 static struct buf *
12498 sd_shadow_buf_alloc(struct buf *bp, size_t datalen, uint_t bflags,
12499 	daddr_t blkno, int (*func)(struct buf *))
12500 {
12501 	struct	sd_lun	*un;
12502 	struct	sd_xbuf	*xp;
12503 	struct	sd_xbuf	*new_xp;
12504 	struct	buf	*new_bp;
12505 
12506 	ASSERT(bp != NULL);
12507 	xp = SD_GET_XBUF(bp);
12508 	ASSERT(xp != NULL);
12509 	un = SD_GET_UN(bp);
12510 	ASSERT(un != NULL);
12511 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12512 
12513 	if (bp->b_flags & (B_PAGEIO | B_PHYS)) {
12514 		bp_mapin(bp);
12515 	}
12516 
12517 	bflags &= (B_READ | B_WRITE);
12518 #if defined(__i386) || defined(__amd64)
12519 	new_bp = getrbuf(KM_SLEEP);
12520 	new_bp->b_un.b_addr = kmem_zalloc(datalen, KM_SLEEP);
12521 	new_bp->b_bcount = datalen;
12522 	new_bp->b_flags = bflags |
12523 	    (bp->b_flags & ~(B_PAGEIO | B_PHYS | B_REMAPPED | B_SHADOW));
12524 #else
12525 	new_bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), NULL,
12526 	    datalen, bflags, SLEEP_FUNC, NULL);
12527 #endif
12528 	new_bp->av_forw	= NULL;
12529 	new_bp->av_back	= NULL;
12530 	new_bp->b_dev	= bp->b_dev;
12531 	new_bp->b_blkno	= blkno;
12532 	new_bp->b_iodone = func;
12533 	new_bp->b_edev	= bp->b_edev;
12534 	new_bp->b_resid	= 0;
12535 
12536 	/* We need to preserve the B_FAILFAST flag */
12537 	if (bp->b_flags & B_FAILFAST) {
12538 		new_bp->b_flags |= B_FAILFAST;
12539 	}
12540 
12541 	/*
12542 	 * Allocate an xbuf for the shadow bp and copy the contents of the
12543 	 * original xbuf into it.
12544 	 */
12545 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
12546 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
12547 
12548 	/* Need later to copy data between the shadow buf & original buf! */
12549 	new_xp->xb_pkt_flags |= PKT_CONSISTENT;
12550 
12551 	/*
12552 	 * The given bp is automatically saved in the xb_private member
12553 	 * of the new xbuf.  Callers are allowed to depend on this.
12554 	 */
12555 	new_xp->xb_private = bp;
12556 
12557 	new_bp->b_private  = new_xp;
12558 
12559 	return (new_bp);
12560 }
12561 
12562 /*
12563  *    Function: sd_bioclone_free
12564  *
12565  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations
12566  *		in the larger than partition operation.
12567  *
12568  *     Context: May be called under interrupt context
12569  */
12570 
12571 static void
12572 sd_bioclone_free(struct buf *bp)
12573 {
12574 	struct sd_xbuf	*xp;
12575 
12576 	ASSERT(bp != NULL);
12577 	xp = SD_GET_XBUF(bp);
12578 	ASSERT(xp != NULL);
12579 
12580 	/*
12581 	 * Call bp_mapout() before freeing the buf,  in case a lower
12582 	 * layer or HBA  had done a bp_mapin().  we must do this here
12583 	 * as we are the "originator" of the shadow buf.
12584 	 */
12585 	bp_mapout(bp);
12586 
12587 	/*
12588 	 * Null out b_iodone before freeing the bp, to ensure that the driver
12589 	 * never gets confused by a stale value in this field. (Just a little
12590 	 * extra defensiveness here.)
12591 	 */
12592 	bp->b_iodone = NULL;
12593 
12594 	freerbuf(bp);
12595 
12596 	kmem_free(xp, sizeof (struct sd_xbuf));
12597 }
12598 
12599 /*
12600  *    Function: sd_shadow_buf_free
12601  *
12602  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations.
12603  *
12604  *     Context: May be called under interrupt context
12605  */
12606 
12607 static void
12608 sd_shadow_buf_free(struct buf *bp)
12609 {
12610 	struct sd_xbuf	*xp;
12611 
12612 	ASSERT(bp != NULL);
12613 	xp = SD_GET_XBUF(bp);
12614 	ASSERT(xp != NULL);
12615 
12616 #if defined(__sparc)
12617 	/*
12618 	 * Call bp_mapout() before freeing the buf,  in case a lower
12619 	 * layer or HBA  had done a bp_mapin().  we must do this here
12620 	 * as we are the "originator" of the shadow buf.
12621 	 */
12622 	bp_mapout(bp);
12623 #endif
12624 
12625 	/*
12626 	 * Null out b_iodone before freeing the bp, to ensure that the driver
12627 	 * never gets confused by a stale value in this field. (Just a little
12628 	 * extra defensiveness here.)
12629 	 */
12630 	bp->b_iodone = NULL;
12631 
12632 #if defined(__i386) || defined(__amd64)
12633 	kmem_free(bp->b_un.b_addr, bp->b_bcount);
12634 	freerbuf(bp);
12635 #else
12636 	scsi_free_consistent_buf(bp);
12637 #endif
12638 
12639 	kmem_free(xp, sizeof (struct sd_xbuf));
12640 }
12641 
12642 
12643 /*
12644  *    Function: sd_print_transport_rejected_message
12645  *
12646  * Description: This implements the ludicrously complex rules for printing
12647  *		a "transport rejected" message.  This is to address the
12648  *		specific problem of having a flood of this error message
12649  *		produced when a failover occurs.
12650  *
12651  *     Context: Any.
12652  */
12653 
12654 static void
12655 sd_print_transport_rejected_message(struct sd_lun *un, struct sd_xbuf *xp,
12656 	int code)
12657 {
12658 	ASSERT(un != NULL);
12659 	ASSERT(mutex_owned(SD_MUTEX(un)));
12660 	ASSERT(xp != NULL);
12661 
12662 	/*
12663 	 * Print the "transport rejected" message under the following
12664 	 * conditions:
12665 	 *
12666 	 * - Whenever the SD_LOGMASK_DIAG bit of sd_level_mask is set
12667 	 * - The error code from scsi_transport() is NOT a TRAN_FATAL_ERROR.
12668 	 * - If the error code IS a TRAN_FATAL_ERROR, then the message is
12669 	 *   printed the FIRST time a TRAN_FATAL_ERROR is returned from
12670 	 *   scsi_transport(9F) (which indicates that the target might have
12671 	 *   gone off-line).  This uses the un->un_tran_fatal_count
12672 	 *   count, which is incremented whenever a TRAN_FATAL_ERROR is
12673 	 *   received, and reset to zero whenver a TRAN_ACCEPT is returned
12674 	 *   from scsi_transport().
12675 	 *
12676 	 * The FLAG_SILENT in the scsi_pkt must be CLEARED in ALL of
12677 	 * the preceeding cases in order for the message to be printed.
12678 	 */
12679 	if ((xp->xb_pktp->pkt_flags & FLAG_SILENT) == 0) {
12680 		if ((sd_level_mask & SD_LOGMASK_DIAG) ||
12681 		    (code != TRAN_FATAL_ERROR) ||
12682 		    (un->un_tran_fatal_count == 1)) {
12683 			switch (code) {
12684 			case TRAN_BADPKT:
12685 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
12686 				    "transport rejected bad packet\n");
12687 				break;
12688 			case TRAN_FATAL_ERROR:
12689 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
12690 				    "transport rejected fatal error\n");
12691 				break;
12692 			default:
12693 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
12694 				    "transport rejected (%d)\n", code);
12695 				break;
12696 			}
12697 		}
12698 	}
12699 }
12700 
12701 
12702 /*
12703  *    Function: sd_add_buf_to_waitq
12704  *
12705  * Description: Add the given buf(9S) struct to the wait queue for the
12706  *		instance.  If sorting is enabled, then the buf is added
12707  *		to the queue via an elevator sort algorithm (a la
12708  *		disksort(9F)).  The SD_GET_BLKNO(bp) is used as the sort key.
12709  *		If sorting is not enabled, then the buf is just added
12710  *		to the end of the wait queue.
12711  *
12712  * Return Code: void
12713  *
12714  *     Context: Does not sleep/block, therefore technically can be called
12715  *		from any context.  However if sorting is enabled then the
12716  *		execution time is indeterminate, and may take long if
12717  *		the wait queue grows large.
12718  */
12719 
12720 static void
12721 sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp)
12722 {
12723 	struct buf *ap;
12724 
12725 	ASSERT(bp != NULL);
12726 	ASSERT(un != NULL);
12727 	ASSERT(mutex_owned(SD_MUTEX(un)));
12728 
12729 	/* If the queue is empty, add the buf as the only entry & return. */
12730 	if (un->un_waitq_headp == NULL) {
12731 		ASSERT(un->un_waitq_tailp == NULL);
12732 		un->un_waitq_headp = un->un_waitq_tailp = bp;
12733 		bp->av_forw = NULL;
12734 		return;
12735 	}
12736 
12737 	ASSERT(un->un_waitq_tailp != NULL);
12738 
12739 	/*
12740 	 * If sorting is disabled, just add the buf to the tail end of
12741 	 * the wait queue and return.
12742 	 */
12743 	if (un->un_f_disksort_disabled) {
12744 		un->un_waitq_tailp->av_forw = bp;
12745 		un->un_waitq_tailp = bp;
12746 		bp->av_forw = NULL;
12747 		return;
12748 	}
12749 
12750 	/*
12751 	 * Sort thru the list of requests currently on the wait queue
12752 	 * and add the new buf request at the appropriate position.
12753 	 *
12754 	 * The un->un_waitq_headp is an activity chain pointer on which
12755 	 * we keep two queues, sorted in ascending SD_GET_BLKNO() order. The
12756 	 * first queue holds those requests which are positioned after
12757 	 * the current SD_GET_BLKNO() (in the first request); the second holds
12758 	 * requests which came in after their SD_GET_BLKNO() number was passed.
12759 	 * Thus we implement a one way scan, retracting after reaching
12760 	 * the end of the drive to the first request on the second
12761 	 * queue, at which time it becomes the first queue.
12762 	 * A one-way scan is natural because of the way UNIX read-ahead
12763 	 * blocks are allocated.
12764 	 *
12765 	 * If we lie after the first request, then we must locate the
12766 	 * second request list and add ourselves to it.
12767 	 */
12768 	ap = un->un_waitq_headp;
12769 	if (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap)) {
12770 		while (ap->av_forw != NULL) {
12771 			/*
12772 			 * Look for an "inversion" in the (normally
12773 			 * ascending) block numbers. This indicates
12774 			 * the start of the second request list.
12775 			 */
12776 			if (SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) {
12777 				/*
12778 				 * Search the second request list for the
12779 				 * first request at a larger block number.
12780 				 * We go before that; however if there is
12781 				 * no such request, we go at the end.
12782 				 */
12783 				do {
12784 					if (SD_GET_BLKNO(bp) <
12785 					    SD_GET_BLKNO(ap->av_forw)) {
12786 						goto insert;
12787 					}
12788 					ap = ap->av_forw;
12789 				} while (ap->av_forw != NULL);
12790 				goto insert;		/* after last */
12791 			}
12792 			ap = ap->av_forw;
12793 		}
12794 
12795 		/*
12796 		 * No inversions... we will go after the last, and
12797 		 * be the first request in the second request list.
12798 		 */
12799 		goto insert;
12800 	}
12801 
12802 	/*
12803 	 * Request is at/after the current request...
12804 	 * sort in the first request list.
12805 	 */
12806 	while (ap->av_forw != NULL) {
12807 		/*
12808 		 * We want to go after the current request (1) if
12809 		 * there is an inversion after it (i.e. it is the end
12810 		 * of the first request list), or (2) if the next
12811 		 * request is a larger block no. than our request.
12812 		 */
12813 		if ((SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) ||
12814 		    (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap->av_forw))) {
12815 			goto insert;
12816 		}
12817 		ap = ap->av_forw;
12818 	}
12819 
12820 	/*
12821 	 * Neither a second list nor a larger request, therefore
12822 	 * we go at the end of the first list (which is the same
12823 	 * as the end of the whole schebang).
12824 	 */
12825 insert:
12826 	bp->av_forw = ap->av_forw;
12827 	ap->av_forw = bp;
12828 
12829 	/*
12830 	 * If we inserted onto the tail end of the waitq, make sure the
12831 	 * tail pointer is updated.
12832 	 */
12833 	if (ap == un->un_waitq_tailp) {
12834 		un->un_waitq_tailp = bp;
12835 	}
12836 }
12837 
12838 
12839 /*
12840  *    Function: sd_start_cmds
12841  *
12842  * Description: Remove and transport cmds from the driver queues.
12843  *
12844  *   Arguments: un - pointer to the unit (soft state) struct for the target.
12845  *
12846  *		immed_bp - ptr to a buf to be transported immediately. Only
12847  *		the immed_bp is transported; bufs on the waitq are not
12848  *		processed and the un_retry_bp is not checked.  If immed_bp is
12849  *		NULL, then normal queue processing is performed.
12850  *
12851  *     Context: May be called from kernel thread context, interrupt context,
12852  *		or runout callback context. This function may not block or
12853  *		call routines that block.
12854  */
12855 
12856 static void
12857 sd_start_cmds(struct sd_lun *un, struct buf *immed_bp)
12858 {
12859 	struct	sd_xbuf	*xp;
12860 	struct	buf	*bp;
12861 	void	(*statp)(kstat_io_t *);
12862 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12863 	void	(*saved_statp)(kstat_io_t *);
12864 #endif
12865 	int	rval;
12866 
12867 	ASSERT(un != NULL);
12868 	ASSERT(mutex_owned(SD_MUTEX(un)));
12869 	ASSERT(un->un_ncmds_in_transport >= 0);
12870 	ASSERT(un->un_throttle >= 0);
12871 
12872 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: entry\n");
12873 
12874 	do {
12875 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12876 		saved_statp = NULL;
12877 #endif
12878 
12879 		/*
12880 		 * If we are syncing or dumping, fail the command to
12881 		 * avoid recursively calling back into scsi_transport().
12882 		 * The dump I/O itself uses a separate code path so this
12883 		 * only prevents non-dump I/O from being sent while dumping.
12884 		 * File system sync takes place before dumping begins.
12885 		 * During panic, filesystem I/O is allowed provided
12886 		 * un_in_callback is <= 1.  This is to prevent recursion
12887 		 * such as sd_start_cmds -> scsi_transport -> sdintr ->
12888 		 * sd_start_cmds and so on.  See panic.c for more information
12889 		 * about the states the system can be in during panic.
12890 		 */
12891 		if ((un->un_state == SD_STATE_DUMPING) ||
12892 		    (ddi_in_panic() && (un->un_in_callback > 1))) {
12893 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12894 			    "sd_start_cmds: panicking\n");
12895 			goto exit;
12896 		}
12897 
12898 		if ((bp = immed_bp) != NULL) {
12899 			/*
12900 			 * We have a bp that must be transported immediately.
12901 			 * It's OK to transport the immed_bp here without doing
12902 			 * the throttle limit check because the immed_bp is
12903 			 * always used in a retry/recovery case. This means
12904 			 * that we know we are not at the throttle limit by
12905 			 * virtue of the fact that to get here we must have
12906 			 * already gotten a command back via sdintr(). This also
12907 			 * relies on (1) the command on un_retry_bp preventing
12908 			 * further commands from the waitq from being issued;
12909 			 * and (2) the code in sd_retry_command checking the
12910 			 * throttle limit before issuing a delayed or immediate
12911 			 * retry. This holds even if the throttle limit is
12912 			 * currently ratcheted down from its maximum value.
12913 			 */
12914 			statp = kstat_runq_enter;
12915 			if (bp == un->un_retry_bp) {
12916 				ASSERT((un->un_retry_statp == NULL) ||
12917 				    (un->un_retry_statp == kstat_waitq_enter) ||
12918 				    (un->un_retry_statp ==
12919 				    kstat_runq_back_to_waitq));
12920 				/*
12921 				 * If the waitq kstat was incremented when
12922 				 * sd_set_retry_bp() queued this bp for a retry,
12923 				 * then we must set up statp so that the waitq
12924 				 * count will get decremented correctly below.
12925 				 * Also we must clear un->un_retry_statp to
12926 				 * ensure that we do not act on a stale value
12927 				 * in this field.
12928 				 */
12929 				if ((un->un_retry_statp == kstat_waitq_enter) ||
12930 				    (un->un_retry_statp ==
12931 				    kstat_runq_back_to_waitq)) {
12932 					statp = kstat_waitq_to_runq;
12933 				}
12934 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12935 				saved_statp = un->un_retry_statp;
12936 #endif
12937 				un->un_retry_statp = NULL;
12938 
12939 				SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
12940 				    "sd_start_cmds: un:0x%p: GOT retry_bp:0x%p "
12941 				    "un_throttle:%d un_ncmds_in_transport:%d\n",
12942 				    un, un->un_retry_bp, un->un_throttle,
12943 				    un->un_ncmds_in_transport);
12944 			} else {
12945 				SD_TRACE(SD_LOG_IO_CORE, un, "sd_start_cmds: "
12946 				    "processing priority bp:0x%p\n", bp);
12947 			}
12948 
12949 		} else if ((bp = un->un_waitq_headp) != NULL) {
12950 			/*
12951 			 * A command on the waitq is ready to go, but do not
12952 			 * send it if:
12953 			 *
12954 			 * (1) the throttle limit has been reached, or
12955 			 * (2) a retry is pending, or
12956 			 * (3) a START_STOP_UNIT callback pending, or
12957 			 * (4) a callback for a SD_PATH_DIRECT_PRIORITY
12958 			 *	command is pending.
12959 			 *
12960 			 * For all of these conditions, IO processing will
12961 			 * restart after the condition is cleared.
12962 			 */
12963 			if (un->un_ncmds_in_transport >= un->un_throttle) {
12964 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12965 				    "sd_start_cmds: exiting, "
12966 				    "throttle limit reached!\n");
12967 				goto exit;
12968 			}
12969 			if (un->un_retry_bp != NULL) {
12970 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12971 				    "sd_start_cmds: exiting, retry pending!\n");
12972 				goto exit;
12973 			}
12974 			if (un->un_startstop_timeid != NULL) {
12975 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12976 				    "sd_start_cmds: exiting, "
12977 				    "START_STOP pending!\n");
12978 				goto exit;
12979 			}
12980 			if (un->un_direct_priority_timeid != NULL) {
12981 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12982 				    "sd_start_cmds: exiting, "
12983 				    "SD_PATH_DIRECT_PRIORITY cmd. pending!\n");
12984 				goto exit;
12985 			}
12986 
12987 			/* Dequeue the command */
12988 			un->un_waitq_headp = bp->av_forw;
12989 			if (un->un_waitq_headp == NULL) {
12990 				un->un_waitq_tailp = NULL;
12991 			}
12992 			bp->av_forw = NULL;
12993 			statp = kstat_waitq_to_runq;
12994 			SD_TRACE(SD_LOG_IO_CORE, un,
12995 			    "sd_start_cmds: processing waitq bp:0x%p\n", bp);
12996 
12997 		} else {
12998 			/* No work to do so bail out now */
12999 			SD_TRACE(SD_LOG_IO_CORE, un,
13000 			    "sd_start_cmds: no more work, exiting!\n");
13001 			goto exit;
13002 		}
13003 
13004 		/*
13005 		 * Reset the state to normal. This is the mechanism by which
13006 		 * the state transitions from either SD_STATE_RWAIT or
13007 		 * SD_STATE_OFFLINE to SD_STATE_NORMAL.
13008 		 * If state is SD_STATE_PM_CHANGING then this command is
13009 		 * part of the device power control and the state must
13010 		 * not be put back to normal. Doing so would would
13011 		 * allow new commands to proceed when they shouldn't,
13012 		 * the device may be going off.
13013 		 */
13014 		if ((un->un_state != SD_STATE_SUSPENDED) &&
13015 		    (un->un_state != SD_STATE_PM_CHANGING)) {
13016 			New_state(un, SD_STATE_NORMAL);
13017 		}
13018 
13019 		xp = SD_GET_XBUF(bp);
13020 		ASSERT(xp != NULL);
13021 
13022 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13023 		/*
13024 		 * Allocate the scsi_pkt if we need one, or attach DMA
13025 		 * resources if we have a scsi_pkt that needs them. The
13026 		 * latter should only occur for commands that are being
13027 		 * retried.
13028 		 */
13029 		if ((xp->xb_pktp == NULL) ||
13030 		    ((xp->xb_pkt_flags & SD_XB_DMA_FREED) != 0)) {
13031 #else
13032 		if (xp->xb_pktp == NULL) {
13033 #endif
13034 			/*
13035 			 * There is no scsi_pkt allocated for this buf. Call
13036 			 * the initpkt function to allocate & init one.
13037 			 *
13038 			 * The scsi_init_pkt runout callback functionality is
13039 			 * implemented as follows:
13040 			 *
13041 			 * 1) The initpkt function always calls
13042 			 *    scsi_init_pkt(9F) with sdrunout specified as the
13043 			 *    callback routine.
13044 			 * 2) A successful packet allocation is initialized and
13045 			 *    the I/O is transported.
13046 			 * 3) The I/O associated with an allocation resource
13047 			 *    failure is left on its queue to be retried via
13048 			 *    runout or the next I/O.
13049 			 * 4) The I/O associated with a DMA error is removed
13050 			 *    from the queue and failed with EIO. Processing of
13051 			 *    the transport queues is also halted to be
13052 			 *    restarted via runout or the next I/O.
13053 			 * 5) The I/O associated with a CDB size or packet
13054 			 *    size error is removed from the queue and failed
13055 			 *    with EIO. Processing of the transport queues is
13056 			 *    continued.
13057 			 *
13058 			 * Note: there is no interface for canceling a runout
13059 			 * callback. To prevent the driver from detaching or
13060 			 * suspending while a runout is pending the driver
13061 			 * state is set to SD_STATE_RWAIT
13062 			 *
13063 			 * Note: using the scsi_init_pkt callback facility can
13064 			 * result in an I/O request persisting at the head of
13065 			 * the list which cannot be satisfied even after
13066 			 * multiple retries. In the future the driver may
13067 			 * implement some kind of maximum runout count before
13068 			 * failing an I/O.
13069 			 *
13070 			 * Note: the use of funcp below may seem superfluous,
13071 			 * but it helps warlock figure out the correct
13072 			 * initpkt function calls (see [s]sd.wlcmd).
13073 			 */
13074 			struct scsi_pkt	*pktp;
13075 			int (*funcp)(struct buf *bp, struct scsi_pkt **pktp);
13076 
13077 			ASSERT(bp != un->un_rqs_bp);
13078 
13079 			funcp = sd_initpkt_map[xp->xb_chain_iostart];
13080 			switch ((*funcp)(bp, &pktp)) {
13081 			case  SD_PKT_ALLOC_SUCCESS:
13082 				xp->xb_pktp = pktp;
13083 				SD_TRACE(SD_LOG_IO_CORE, un,
13084 				    "sd_start_cmd: SD_PKT_ALLOC_SUCCESS 0x%p\n",
13085 				    pktp);
13086 				goto got_pkt;
13087 
13088 			case SD_PKT_ALLOC_FAILURE:
13089 				/*
13090 				 * Temporary (hopefully) resource depletion.
13091 				 * Since retries and RQS commands always have a
13092 				 * scsi_pkt allocated, these cases should never
13093 				 * get here. So the only cases this needs to
13094 				 * handle is a bp from the waitq (which we put
13095 				 * back onto the waitq for sdrunout), or a bp
13096 				 * sent as an immed_bp (which we just fail).
13097 				 */
13098 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13099 				    "sd_start_cmds: SD_PKT_ALLOC_FAILURE\n");
13100 
13101 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13102 
13103 				if (bp == immed_bp) {
13104 					/*
13105 					 * If SD_XB_DMA_FREED is clear, then
13106 					 * this is a failure to allocate a
13107 					 * scsi_pkt, and we must fail the
13108 					 * command.
13109 					 */
13110 					if ((xp->xb_pkt_flags &
13111 					    SD_XB_DMA_FREED) == 0) {
13112 						break;
13113 					}
13114 
13115 					/*
13116 					 * If this immediate command is NOT our
13117 					 * un_retry_bp, then we must fail it.
13118 					 */
13119 					if (bp != un->un_retry_bp) {
13120 						break;
13121 					}
13122 
13123 					/*
13124 					 * We get here if this cmd is our
13125 					 * un_retry_bp that was DMAFREED, but
13126 					 * scsi_init_pkt() failed to reallocate
13127 					 * DMA resources when we attempted to
13128 					 * retry it. This can happen when an
13129 					 * mpxio failover is in progress, but
13130 					 * we don't want to just fail the
13131 					 * command in this case.
13132 					 *
13133 					 * Use timeout(9F) to restart it after
13134 					 * a 100ms delay.  We don't want to
13135 					 * let sdrunout() restart it, because
13136 					 * sdrunout() is just supposed to start
13137 					 * commands that are sitting on the
13138 					 * wait queue.  The un_retry_bp stays
13139 					 * set until the command completes, but
13140 					 * sdrunout can be called many times
13141 					 * before that happens.  Since sdrunout
13142 					 * cannot tell if the un_retry_bp is
13143 					 * already in the transport, it could
13144 					 * end up calling scsi_transport() for
13145 					 * the un_retry_bp multiple times.
13146 					 *
13147 					 * Also: don't schedule the callback
13148 					 * if some other callback is already
13149 					 * pending.
13150 					 */
13151 					if (un->un_retry_statp == NULL) {
13152 						/*
13153 						 * restore the kstat pointer to
13154 						 * keep kstat counts coherent
13155 						 * when we do retry the command.
13156 						 */
13157 						un->un_retry_statp =
13158 						    saved_statp;
13159 					}
13160 
13161 					if ((un->un_startstop_timeid == NULL) &&
13162 					    (un->un_retry_timeid == NULL) &&
13163 					    (un->un_direct_priority_timeid ==
13164 					    NULL)) {
13165 
13166 						un->un_retry_timeid =
13167 						    timeout(
13168 						    sd_start_retry_command,
13169 						    un, SD_RESTART_TIMEOUT);
13170 					}
13171 					goto exit;
13172 				}
13173 
13174 #else
13175 				if (bp == immed_bp) {
13176 					break;	/* Just fail the command */
13177 				}
13178 #endif
13179 
13180 				/* Add the buf back to the head of the waitq */
13181 				bp->av_forw = un->un_waitq_headp;
13182 				un->un_waitq_headp = bp;
13183 				if (un->un_waitq_tailp == NULL) {
13184 					un->un_waitq_tailp = bp;
13185 				}
13186 				goto exit;
13187 
13188 			case SD_PKT_ALLOC_FAILURE_NO_DMA:
13189 				/*
13190 				 * HBA DMA resource failure. Fail the command
13191 				 * and continue processing of the queues.
13192 				 */
13193 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13194 				    "sd_start_cmds: "
13195 				    "SD_PKT_ALLOC_FAILURE_NO_DMA\n");
13196 				break;
13197 
13198 			case SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL:
13199 				/*
13200 				 * Note:x86: Partial DMA mapping not supported
13201 				 * for USCSI commands, and all the needed DMA
13202 				 * resources were not allocated.
13203 				 */
13204 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13205 				    "sd_start_cmds: "
13206 				    "SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL\n");
13207 				break;
13208 
13209 			case SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL:
13210 				/*
13211 				 * Note:x86: Request cannot fit into CDB based
13212 				 * on lba and len.
13213 				 */
13214 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13215 				    "sd_start_cmds: "
13216 				    "SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL\n");
13217 				break;
13218 
13219 			default:
13220 				/* Should NEVER get here! */
13221 				panic("scsi_initpkt error");
13222 				/*NOTREACHED*/
13223 			}
13224 
13225 			/*
13226 			 * Fatal error in allocating a scsi_pkt for this buf.
13227 			 * Update kstats & return the buf with an error code.
13228 			 * We must use sd_return_failed_command_no_restart() to
13229 			 * avoid a recursive call back into sd_start_cmds().
13230 			 * However this also means that we must keep processing
13231 			 * the waitq here in order to avoid stalling.
13232 			 */
13233 			if (statp == kstat_waitq_to_runq) {
13234 				SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
13235 			}
13236 			sd_return_failed_command_no_restart(un, bp, EIO);
13237 			if (bp == immed_bp) {
13238 				/* immed_bp is gone by now, so clear this */
13239 				immed_bp = NULL;
13240 			}
13241 			continue;
13242 		}
13243 got_pkt:
13244 		if (bp == immed_bp) {
13245 			/* goto the head of the class.... */
13246 			xp->xb_pktp->pkt_flags |= FLAG_HEAD;
13247 		}
13248 
13249 		un->un_ncmds_in_transport++;
13250 		SD_UPDATE_KSTATS(un, statp, bp);
13251 
13252 		/*
13253 		 * Call scsi_transport() to send the command to the target.
13254 		 * According to SCSA architecture, we must drop the mutex here
13255 		 * before calling scsi_transport() in order to avoid deadlock.
13256 		 * Note that the scsi_pkt's completion routine can be executed
13257 		 * (from interrupt context) even before the call to
13258 		 * scsi_transport() returns.
13259 		 */
13260 		SD_TRACE(SD_LOG_IO_CORE, un,
13261 		    "sd_start_cmds: calling scsi_transport()\n");
13262 		DTRACE_PROBE1(scsi__transport__dispatch, struct buf *, bp);
13263 
13264 		mutex_exit(SD_MUTEX(un));
13265 		rval = scsi_transport(xp->xb_pktp);
13266 		mutex_enter(SD_MUTEX(un));
13267 
13268 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13269 		    "sd_start_cmds: scsi_transport() returned %d\n", rval);
13270 
13271 		switch (rval) {
13272 		case TRAN_ACCEPT:
13273 			/* Clear this with every pkt accepted by the HBA */
13274 			un->un_tran_fatal_count = 0;
13275 			break;	/* Success; try the next cmd (if any) */
13276 
13277 		case TRAN_BUSY:
13278 			un->un_ncmds_in_transport--;
13279 			ASSERT(un->un_ncmds_in_transport >= 0);
13280 
13281 			/*
13282 			 * Don't retry request sense, the sense data
13283 			 * is lost when another request is sent.
13284 			 * Free up the rqs buf and retry
13285 			 * the original failed cmd.  Update kstat.
13286 			 */
13287 			if (bp == un->un_rqs_bp) {
13288 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
13289 				bp = sd_mark_rqs_idle(un, xp);
13290 				sd_retry_command(un, bp, SD_RETRIES_STANDARD,
13291 				    NULL, NULL, EIO, SD_BSY_TIMEOUT / 500,
13292 				    kstat_waitq_enter);
13293 				goto exit;
13294 			}
13295 
13296 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13297 			/*
13298 			 * Free the DMA resources for the  scsi_pkt. This will
13299 			 * allow mpxio to select another path the next time
13300 			 * we call scsi_transport() with this scsi_pkt.
13301 			 * See sdintr() for the rationalization behind this.
13302 			 */
13303 			if ((un->un_f_is_fibre == TRUE) &&
13304 			    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
13305 			    ((xp->xb_pktp->pkt_flags & FLAG_SENSING) == 0)) {
13306 				scsi_dmafree(xp->xb_pktp);
13307 				xp->xb_pkt_flags |= SD_XB_DMA_FREED;
13308 			}
13309 #endif
13310 
13311 			if (SD_IS_DIRECT_PRIORITY(SD_GET_XBUF(bp))) {
13312 				/*
13313 				 * Commands that are SD_PATH_DIRECT_PRIORITY
13314 				 * are for error recovery situations. These do
13315 				 * not use the normal command waitq, so if they
13316 				 * get a TRAN_BUSY we cannot put them back onto
13317 				 * the waitq for later retry. One possible
13318 				 * problem is that there could already be some
13319 				 * other command on un_retry_bp that is waiting
13320 				 * for this one to complete, so we would be
13321 				 * deadlocked if we put this command back onto
13322 				 * the waitq for later retry (since un_retry_bp
13323 				 * must complete before the driver gets back to
13324 				 * commands on the waitq).
13325 				 *
13326 				 * To avoid deadlock we must schedule a callback
13327 				 * that will restart this command after a set
13328 				 * interval.  This should keep retrying for as
13329 				 * long as the underlying transport keeps
13330 				 * returning TRAN_BUSY (just like for other
13331 				 * commands).  Use the same timeout interval as
13332 				 * for the ordinary TRAN_BUSY retry.
13333 				 */
13334 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13335 				    "sd_start_cmds: scsi_transport() returned "
13336 				    "TRAN_BUSY for DIRECT_PRIORITY cmd!\n");
13337 
13338 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
13339 				un->un_direct_priority_timeid =
13340 				    timeout(sd_start_direct_priority_command,
13341 				    bp, SD_BSY_TIMEOUT / 500);
13342 
13343 				goto exit;
13344 			}
13345 
13346 			/*
13347 			 * For TRAN_BUSY, we want to reduce the throttle value,
13348 			 * unless we are retrying a command.
13349 			 */
13350 			if (bp != un->un_retry_bp) {
13351 				sd_reduce_throttle(un, SD_THROTTLE_TRAN_BUSY);
13352 			}
13353 
13354 			/*
13355 			 * Set up the bp to be tried again 10 ms later.
13356 			 * Note:x86: Is there a timeout value in the sd_lun
13357 			 * for this condition?
13358 			 */
13359 			sd_set_retry_bp(un, bp, SD_BSY_TIMEOUT / 500,
13360 			    kstat_runq_back_to_waitq);
13361 			goto exit;
13362 
13363 		case TRAN_FATAL_ERROR:
13364 			un->un_tran_fatal_count++;
13365 			/* FALLTHRU */
13366 
13367 		case TRAN_BADPKT:
13368 		default:
13369 			un->un_ncmds_in_transport--;
13370 			ASSERT(un->un_ncmds_in_transport >= 0);
13371 
13372 			/*
13373 			 * If this is our REQUEST SENSE command with a
13374 			 * transport error, we must get back the pointers
13375 			 * to the original buf, and mark the REQUEST
13376 			 * SENSE command as "available".
13377 			 */
13378 			if (bp == un->un_rqs_bp) {
13379 				bp = sd_mark_rqs_idle(un, xp);
13380 				xp = SD_GET_XBUF(bp);
13381 			} else {
13382 				/*
13383 				 * Legacy behavior: do not update transport
13384 				 * error count for request sense commands.
13385 				 */
13386 				SD_UPDATE_ERRSTATS(un, sd_transerrs);
13387 			}
13388 
13389 			SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
13390 			sd_print_transport_rejected_message(un, xp, rval);
13391 
13392 			/*
13393 			 * We must use sd_return_failed_command_no_restart() to
13394 			 * avoid a recursive call back into sd_start_cmds().
13395 			 * However this also means that we must keep processing
13396 			 * the waitq here in order to avoid stalling.
13397 			 */
13398 			sd_return_failed_command_no_restart(un, bp, EIO);
13399 
13400 			/*
13401 			 * Notify any threads waiting in sd_ddi_suspend() that
13402 			 * a command completion has occurred.
13403 			 */
13404 			if (un->un_state == SD_STATE_SUSPENDED) {
13405 				cv_broadcast(&un->un_disk_busy_cv);
13406 			}
13407 
13408 			if (bp == immed_bp) {
13409 				/* immed_bp is gone by now, so clear this */
13410 				immed_bp = NULL;
13411 			}
13412 			break;
13413 		}
13414 
13415 	} while (immed_bp == NULL);
13416 
13417 exit:
13418 	ASSERT(mutex_owned(SD_MUTEX(un)));
13419 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: exit\n");
13420 }
13421 
13422 
13423 /*
13424  *    Function: sd_return_command
13425  *
13426  * Description: Returns a command to its originator (with or without an
13427  *		error).  Also starts commands waiting to be transported
13428  *		to the target.
13429  *
13430  *     Context: May be called from interrupt, kernel, or timeout context
13431  */
13432 
13433 static void
13434 sd_return_command(struct sd_lun *un, struct buf *bp)
13435 {
13436 	struct sd_xbuf *xp;
13437 	struct scsi_pkt *pktp;
13438 
13439 	ASSERT(bp != NULL);
13440 	ASSERT(un != NULL);
13441 	ASSERT(mutex_owned(SD_MUTEX(un)));
13442 	ASSERT(bp != un->un_rqs_bp);
13443 	xp = SD_GET_XBUF(bp);
13444 	ASSERT(xp != NULL);
13445 
13446 	pktp = SD_GET_PKTP(bp);
13447 
13448 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: entry\n");
13449 
13450 	/*
13451 	 * Note: check for the "sdrestart failed" case.
13452 	 */
13453 	if ((un->un_partial_dma_supported == 1) &&
13454 	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) != SD_XB_USCSICMD) &&
13455 	    (geterror(bp) == 0) && (xp->xb_dma_resid != 0) &&
13456 	    (xp->xb_pktp->pkt_resid == 0)) {
13457 
13458 		if (sd_setup_next_xfer(un, bp, pktp, xp) != 0) {
13459 			/*
13460 			 * Successfully set up next portion of cmd
13461 			 * transfer, try sending it
13462 			 */
13463 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
13464 			    NULL, NULL, 0, (clock_t)0, NULL);
13465 			sd_start_cmds(un, NULL);
13466 			return;	/* Note:x86: need a return here? */
13467 		}
13468 	}
13469 
13470 	/*
13471 	 * If this is the failfast bp, clear it from un_failfast_bp. This
13472 	 * can happen if upon being re-tried the failfast bp either
13473 	 * succeeded or encountered another error (possibly even a different
13474 	 * error than the one that precipitated the failfast state, but in
13475 	 * that case it would have had to exhaust retries as well). Regardless,
13476 	 * this should not occur whenever the instance is in the active
13477 	 * failfast state.
13478 	 */
13479 	if (bp == un->un_failfast_bp) {
13480 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
13481 		un->un_failfast_bp = NULL;
13482 	}
13483 
13484 	/*
13485 	 * Clear the failfast state upon successful completion of ANY cmd.
13486 	 */
13487 	if (bp->b_error == 0) {
13488 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
13489 	}
13490 
13491 	/*
13492 	 * This is used if the command was retried one or more times. Show that
13493 	 * we are done with it, and allow processing of the waitq to resume.
13494 	 */
13495 	if (bp == un->un_retry_bp) {
13496 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13497 		    "sd_return_command: un:0x%p: "
13498 		    "RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
13499 		un->un_retry_bp = NULL;
13500 		un->un_retry_statp = NULL;
13501 	}
13502 
13503 	SD_UPDATE_RDWR_STATS(un, bp);
13504 	SD_UPDATE_PARTITION_STATS(un, bp);
13505 
13506 	switch (un->un_state) {
13507 	case SD_STATE_SUSPENDED:
13508 		/*
13509 		 * Notify any threads waiting in sd_ddi_suspend() that
13510 		 * a command completion has occurred.
13511 		 */
13512 		cv_broadcast(&un->un_disk_busy_cv);
13513 		break;
13514 	default:
13515 		sd_start_cmds(un, NULL);
13516 		break;
13517 	}
13518 
13519 	/* Return this command up the iodone chain to its originator. */
13520 	mutex_exit(SD_MUTEX(un));
13521 
13522 	(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
13523 	xp->xb_pktp = NULL;
13524 
13525 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
13526 
13527 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13528 	mutex_enter(SD_MUTEX(un));
13529 
13530 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: exit\n");
13531 }
13532 
13533 
13534 /*
13535  *    Function: sd_return_failed_command
13536  *
13537  * Description: Command completion when an error occurred.
13538  *
13539  *     Context: May be called from interrupt context
13540  */
13541 
13542 static void
13543 sd_return_failed_command(struct sd_lun *un, struct buf *bp, int errcode)
13544 {
13545 	ASSERT(bp != NULL);
13546 	ASSERT(un != NULL);
13547 	ASSERT(mutex_owned(SD_MUTEX(un)));
13548 
13549 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13550 	    "sd_return_failed_command: entry\n");
13551 
13552 	/*
13553 	 * b_resid could already be nonzero due to a partial data
13554 	 * transfer, so do not change it here.
13555 	 */
13556 	SD_BIOERROR(bp, errcode);
13557 
13558 	sd_return_command(un, bp);
13559 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13560 	    "sd_return_failed_command: exit\n");
13561 }
13562 
13563 
13564 /*
13565  *    Function: sd_return_failed_command_no_restart
13566  *
13567  * Description: Same as sd_return_failed_command, but ensures that no
13568  *		call back into sd_start_cmds will be issued.
13569  *
13570  *     Context: May be called from interrupt context
13571  */
13572 
13573 static void
13574 sd_return_failed_command_no_restart(struct sd_lun *un, struct buf *bp,
13575 	int errcode)
13576 {
13577 	struct sd_xbuf *xp;
13578 
13579 	ASSERT(bp != NULL);
13580 	ASSERT(un != NULL);
13581 	ASSERT(mutex_owned(SD_MUTEX(un)));
13582 	xp = SD_GET_XBUF(bp);
13583 	ASSERT(xp != NULL);
13584 	ASSERT(errcode != 0);
13585 
13586 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13587 	    "sd_return_failed_command_no_restart: entry\n");
13588 
13589 	/*
13590 	 * b_resid could already be nonzero due to a partial data
13591 	 * transfer, so do not change it here.
13592 	 */
13593 	SD_BIOERROR(bp, errcode);
13594 
13595 	/*
13596 	 * If this is the failfast bp, clear it. This can happen if the
13597 	 * failfast bp encounterd a fatal error when we attempted to
13598 	 * re-try it (such as a scsi_transport(9F) failure).  However
13599 	 * we should NOT be in an active failfast state if the failfast
13600 	 * bp is not NULL.
13601 	 */
13602 	if (bp == un->un_failfast_bp) {
13603 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
13604 		un->un_failfast_bp = NULL;
13605 	}
13606 
13607 	if (bp == un->un_retry_bp) {
13608 		/*
13609 		 * This command was retried one or more times. Show that we are
13610 		 * done with it, and allow processing of the waitq to resume.
13611 		 */
13612 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13613 		    "sd_return_failed_command_no_restart: "
13614 		    " un:0x%p: RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
13615 		un->un_retry_bp = NULL;
13616 		un->un_retry_statp = NULL;
13617 	}
13618 
13619 	SD_UPDATE_RDWR_STATS(un, bp);
13620 	SD_UPDATE_PARTITION_STATS(un, bp);
13621 
13622 	mutex_exit(SD_MUTEX(un));
13623 
13624 	if (xp->xb_pktp != NULL) {
13625 		(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
13626 		xp->xb_pktp = NULL;
13627 	}
13628 
13629 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
13630 
13631 	mutex_enter(SD_MUTEX(un));
13632 
13633 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13634 	    "sd_return_failed_command_no_restart: exit\n");
13635 }
13636 
13637 
13638 /*
13639  *    Function: sd_retry_command
13640  *
13641  * Description: queue up a command for retry, or (optionally) fail it
13642  *		if retry counts are exhausted.
13643  *
13644  *   Arguments: un - Pointer to the sd_lun struct for the target.
13645  *
13646  *		bp - Pointer to the buf for the command to be retried.
13647  *
13648  *		retry_check_flag - Flag to see which (if any) of the retry
13649  *		   counts should be decremented/checked. If the indicated
13650  *		   retry count is exhausted, then the command will not be
13651  *		   retried; it will be failed instead. This should use a
13652  *		   value equal to one of the following:
13653  *
13654  *			SD_RETRIES_NOCHECK
13655  *			SD_RESD_RETRIES_STANDARD
13656  *			SD_RETRIES_VICTIM
13657  *
13658  *		   Optionally may be bitwise-OR'ed with SD_RETRIES_ISOLATE
13659  *		   if the check should be made to see of FLAG_ISOLATE is set
13660  *		   in the pkt. If FLAG_ISOLATE is set, then the command is
13661  *		   not retried, it is simply failed.
13662  *
13663  *		user_funcp - Ptr to function to call before dispatching the
13664  *		   command. May be NULL if no action needs to be performed.
13665  *		   (Primarily intended for printing messages.)
13666  *
13667  *		user_arg - Optional argument to be passed along to
13668  *		   the user_funcp call.
13669  *
13670  *		failure_code - errno return code to set in the bp if the
13671  *		   command is going to be failed.
13672  *
13673  *		retry_delay - Retry delay interval in (clock_t) units. May
13674  *		   be zero which indicates that the retry should be retried
13675  *		   immediately (ie, without an intervening delay).
13676  *
13677  *		statp - Ptr to kstat function to be updated if the command
13678  *		   is queued for a delayed retry. May be NULL if no kstat
13679  *		   update is desired.
13680  *
13681  *     Context: May be called from interrupt context.
13682  */
13683 
13684 static void
13685 sd_retry_command(struct sd_lun *un, struct buf *bp, int retry_check_flag,
13686 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, int
13687 	code), void *user_arg, int failure_code,  clock_t retry_delay,
13688 	void (*statp)(kstat_io_t *))
13689 {
13690 	struct sd_xbuf	*xp;
13691 	struct scsi_pkt	*pktp;
13692 
13693 	ASSERT(un != NULL);
13694 	ASSERT(mutex_owned(SD_MUTEX(un)));
13695 	ASSERT(bp != NULL);
13696 	xp = SD_GET_XBUF(bp);
13697 	ASSERT(xp != NULL);
13698 	pktp = SD_GET_PKTP(bp);
13699 	ASSERT(pktp != NULL);
13700 
13701 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
13702 	    "sd_retry_command: entry: bp:0x%p xp:0x%p\n", bp, xp);
13703 
13704 	/*
13705 	 * If we are syncing or dumping, fail the command to avoid
13706 	 * recursively calling back into scsi_transport().
13707 	 */
13708 	if (ddi_in_panic()) {
13709 		goto fail_command_no_log;
13710 	}
13711 
13712 	/*
13713 	 * We should never be be retrying a command with FLAG_DIAGNOSE set, so
13714 	 * log an error and fail the command.
13715 	 */
13716 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
13717 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
13718 		    "ERROR, retrying FLAG_DIAGNOSE command.\n");
13719 		sd_dump_memory(un, SD_LOG_IO, "CDB",
13720 		    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
13721 		sd_dump_memory(un, SD_LOG_IO, "Sense Data",
13722 		    (uchar_t *)xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
13723 		goto fail_command;
13724 	}
13725 
13726 	/*
13727 	 * If we are suspended, then put the command onto head of the
13728 	 * wait queue since we don't want to start more commands, and
13729 	 * clear the un_retry_bp. Next time when we are resumed, will
13730 	 * handle the command in the wait queue.
13731 	 */
13732 	switch (un->un_state) {
13733 	case SD_STATE_SUSPENDED:
13734 	case SD_STATE_DUMPING:
13735 		bp->av_forw = un->un_waitq_headp;
13736 		un->un_waitq_headp = bp;
13737 		if (un->un_waitq_tailp == NULL) {
13738 			un->un_waitq_tailp = bp;
13739 		}
13740 		if (bp == un->un_retry_bp) {
13741 			un->un_retry_bp = NULL;
13742 			un->un_retry_statp = NULL;
13743 		}
13744 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
13745 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: "
13746 		    "exiting; cmd bp:0x%p requeued for SUSPEND/DUMP\n", bp);
13747 		return;
13748 	default:
13749 		break;
13750 	}
13751 
13752 	/*
13753 	 * If the caller wants us to check FLAG_ISOLATE, then see if that
13754 	 * is set; if it is then we do not want to retry the command.
13755 	 * Normally, FLAG_ISOLATE is only used with USCSI cmds.
13756 	 */
13757 	if ((retry_check_flag & SD_RETRIES_ISOLATE) != 0) {
13758 		if ((pktp->pkt_flags & FLAG_ISOLATE) != 0) {
13759 			goto fail_command;
13760 		}
13761 	}
13762 
13763 
13764 	/*
13765 	 * If SD_RETRIES_FAILFAST is set, it indicates that either a
13766 	 * command timeout or a selection timeout has occurred. This means
13767 	 * that we were unable to establish an kind of communication with
13768 	 * the target, and subsequent retries and/or commands are likely
13769 	 * to encounter similar results and take a long time to complete.
13770 	 *
13771 	 * If this is a failfast error condition, we need to update the
13772 	 * failfast state, even if this bp does not have B_FAILFAST set.
13773 	 */
13774 	if (retry_check_flag & SD_RETRIES_FAILFAST) {
13775 		if (un->un_failfast_state == SD_FAILFAST_ACTIVE) {
13776 			ASSERT(un->un_failfast_bp == NULL);
13777 			/*
13778 			 * If we are already in the active failfast state, and
13779 			 * another failfast error condition has been detected,
13780 			 * then fail this command if it has B_FAILFAST set.
13781 			 * If B_FAILFAST is clear, then maintain the legacy
13782 			 * behavior of retrying heroically, even tho this will
13783 			 * take a lot more time to fail the command.
13784 			 */
13785 			if (bp->b_flags & B_FAILFAST) {
13786 				goto fail_command;
13787 			}
13788 		} else {
13789 			/*
13790 			 * We're not in the active failfast state, but we
13791 			 * have a failfast error condition, so we must begin
13792 			 * transition to the next state. We do this regardless
13793 			 * of whether or not this bp has B_FAILFAST set.
13794 			 */
13795 			if (un->un_failfast_bp == NULL) {
13796 				/*
13797 				 * This is the first bp to meet a failfast
13798 				 * condition so save it on un_failfast_bp &
13799 				 * do normal retry processing. Do not enter
13800 				 * active failfast state yet. This marks
13801 				 * entry into the "failfast pending" state.
13802 				 */
13803 				un->un_failfast_bp = bp;
13804 
13805 			} else if (un->un_failfast_bp == bp) {
13806 				/*
13807 				 * This is the second time *this* bp has
13808 				 * encountered a failfast error condition,
13809 				 * so enter active failfast state & flush
13810 				 * queues as appropriate.
13811 				 */
13812 				un->un_failfast_state = SD_FAILFAST_ACTIVE;
13813 				un->un_failfast_bp = NULL;
13814 				sd_failfast_flushq(un);
13815 
13816 				/*
13817 				 * Fail this bp now if B_FAILFAST set;
13818 				 * otherwise continue with retries. (It would
13819 				 * be pretty ironic if this bp succeeded on a
13820 				 * subsequent retry after we just flushed all
13821 				 * the queues).
13822 				 */
13823 				if (bp->b_flags & B_FAILFAST) {
13824 					goto fail_command;
13825 				}
13826 
13827 #if !defined(lint) && !defined(__lint)
13828 			} else {
13829 				/*
13830 				 * If neither of the preceeding conditionals
13831 				 * was true, it means that there is some
13832 				 * *other* bp that has met an inital failfast
13833 				 * condition and is currently either being
13834 				 * retried or is waiting to be retried. In
13835 				 * that case we should perform normal retry
13836 				 * processing on *this* bp, since there is a
13837 				 * chance that the current failfast condition
13838 				 * is transient and recoverable. If that does
13839 				 * not turn out to be the case, then retries
13840 				 * will be cleared when the wait queue is
13841 				 * flushed anyway.
13842 				 */
13843 #endif
13844 			}
13845 		}
13846 	} else {
13847 		/*
13848 		 * SD_RETRIES_FAILFAST is clear, which indicates that we
13849 		 * likely were able to at least establish some level of
13850 		 * communication with the target and subsequent commands
13851 		 * and/or retries are likely to get through to the target,
13852 		 * In this case we want to be aggressive about clearing
13853 		 * the failfast state. Note that this does not affect
13854 		 * the "failfast pending" condition.
13855 		 */
13856 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
13857 	}
13858 
13859 
13860 	/*
13861 	 * Check the specified retry count to see if we can still do
13862 	 * any retries with this pkt before we should fail it.
13863 	 */
13864 	switch (retry_check_flag & SD_RETRIES_MASK) {
13865 	case SD_RETRIES_VICTIM:
13866 		/*
13867 		 * Check the victim retry count. If exhausted, then fall
13868 		 * thru & check against the standard retry count.
13869 		 */
13870 		if (xp->xb_victim_retry_count < un->un_victim_retry_count) {
13871 			/* Increment count & proceed with the retry */
13872 			xp->xb_victim_retry_count++;
13873 			break;
13874 		}
13875 		/* Victim retries exhausted, fall back to std. retries... */
13876 		/* FALLTHRU */
13877 
13878 	case SD_RETRIES_STANDARD:
13879 		if (xp->xb_retry_count >= un->un_retry_count) {
13880 			/* Retries exhausted, fail the command */
13881 			SD_TRACE(SD_LOG_IO_CORE, un,
13882 			    "sd_retry_command: retries exhausted!\n");
13883 			/*
13884 			 * update b_resid for failed SCMD_READ & SCMD_WRITE
13885 			 * commands with nonzero pkt_resid.
13886 			 */
13887 			if ((pktp->pkt_reason == CMD_CMPLT) &&
13888 			    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD) &&
13889 			    (pktp->pkt_resid != 0)) {
13890 				uchar_t op = SD_GET_PKT_OPCODE(pktp) & 0x1F;
13891 				if ((op == SCMD_READ) || (op == SCMD_WRITE)) {
13892 					SD_UPDATE_B_RESID(bp, pktp);
13893 				}
13894 			}
13895 			goto fail_command;
13896 		}
13897 		xp->xb_retry_count++;
13898 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13899 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
13900 		break;
13901 
13902 	case SD_RETRIES_UA:
13903 		if (xp->xb_ua_retry_count >= sd_ua_retry_count) {
13904 			/* Retries exhausted, fail the command */
13905 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13906 			    "Unit Attention retries exhausted. "
13907 			    "Check the target.\n");
13908 			goto fail_command;
13909 		}
13910 		xp->xb_ua_retry_count++;
13911 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13912 		    "sd_retry_command: retry count:%d\n",
13913 		    xp->xb_ua_retry_count);
13914 		break;
13915 
13916 	case SD_RETRIES_BUSY:
13917 		if (xp->xb_retry_count >= un->un_busy_retry_count) {
13918 			/* Retries exhausted, fail the command */
13919 			SD_TRACE(SD_LOG_IO_CORE, un,
13920 			    "sd_retry_command: retries exhausted!\n");
13921 			goto fail_command;
13922 		}
13923 		xp->xb_retry_count++;
13924 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13925 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
13926 		break;
13927 
13928 	case SD_RETRIES_NOCHECK:
13929 	default:
13930 		/* No retry count to check. Just proceed with the retry */
13931 		break;
13932 	}
13933 
13934 	xp->xb_pktp->pkt_flags |= FLAG_HEAD;
13935 
13936 	/*
13937 	 * If we were given a zero timeout, we must attempt to retry the
13938 	 * command immediately (ie, without a delay).
13939 	 */
13940 	if (retry_delay == 0) {
13941 		/*
13942 		 * Check some limiting conditions to see if we can actually
13943 		 * do the immediate retry.  If we cannot, then we must
13944 		 * fall back to queueing up a delayed retry.
13945 		 */
13946 		if (un->un_ncmds_in_transport >= un->un_throttle) {
13947 			/*
13948 			 * We are at the throttle limit for the target,
13949 			 * fall back to delayed retry.
13950 			 */
13951 			retry_delay = SD_BSY_TIMEOUT;
13952 			statp = kstat_waitq_enter;
13953 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13954 			    "sd_retry_command: immed. retry hit "
13955 			    "throttle!\n");
13956 		} else {
13957 			/*
13958 			 * We're clear to proceed with the immediate retry.
13959 			 * First call the user-provided function (if any)
13960 			 */
13961 			if (user_funcp != NULL) {
13962 				(*user_funcp)(un, bp, user_arg,
13963 				    SD_IMMEDIATE_RETRY_ISSUED);
13964 #ifdef __lock_lint
13965 				sd_print_incomplete_msg(un, bp, user_arg,
13966 				    SD_IMMEDIATE_RETRY_ISSUED);
13967 				sd_print_cmd_incomplete_msg(un, bp, user_arg,
13968 				    SD_IMMEDIATE_RETRY_ISSUED);
13969 				sd_print_sense_failed_msg(un, bp, user_arg,
13970 				    SD_IMMEDIATE_RETRY_ISSUED);
13971 #endif
13972 			}
13973 
13974 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13975 			    "sd_retry_command: issuing immediate retry\n");
13976 
13977 			/*
13978 			 * Call sd_start_cmds() to transport the command to
13979 			 * the target.
13980 			 */
13981 			sd_start_cmds(un, bp);
13982 
13983 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13984 			    "sd_retry_command exit\n");
13985 			return;
13986 		}
13987 	}
13988 
13989 	/*
13990 	 * Set up to retry the command after a delay.
13991 	 * First call the user-provided function (if any)
13992 	 */
13993 	if (user_funcp != NULL) {
13994 		(*user_funcp)(un, bp, user_arg, SD_DELAYED_RETRY_ISSUED);
13995 	}
13996 
13997 	sd_set_retry_bp(un, bp, retry_delay, statp);
13998 
13999 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
14000 	return;
14001 
14002 fail_command:
14003 
14004 	if (user_funcp != NULL) {
14005 		(*user_funcp)(un, bp, user_arg, SD_NO_RETRY_ISSUED);
14006 	}
14007 
14008 fail_command_no_log:
14009 
14010 	SD_INFO(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14011 	    "sd_retry_command: returning failed command\n");
14012 
14013 	sd_return_failed_command(un, bp, failure_code);
14014 
14015 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
14016 }
14017 
14018 
14019 /*
14020  *    Function: sd_set_retry_bp
14021  *
14022  * Description: Set up the given bp for retry.
14023  *
14024  *   Arguments: un - ptr to associated softstate
14025  *		bp - ptr to buf(9S) for the command
14026  *		retry_delay - time interval before issuing retry (may be 0)
14027  *		statp - optional pointer to kstat function
14028  *
14029  *     Context: May be called under interrupt context
14030  */
14031 
14032 static void
14033 sd_set_retry_bp(struct sd_lun *un, struct buf *bp, clock_t retry_delay,
14034 	void (*statp)(kstat_io_t *))
14035 {
14036 	ASSERT(un != NULL);
14037 	ASSERT(mutex_owned(SD_MUTEX(un)));
14038 	ASSERT(bp != NULL);
14039 
14040 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14041 	    "sd_set_retry_bp: entry: un:0x%p bp:0x%p\n", un, bp);
14042 
14043 	/*
14044 	 * Indicate that the command is being retried. This will not allow any
14045 	 * other commands on the wait queue to be transported to the target
14046 	 * until this command has been completed (success or failure). The
14047 	 * "retry command" is not transported to the target until the given
14048 	 * time delay expires, unless the user specified a 0 retry_delay.
14049 	 *
14050 	 * Note: the timeout(9F) callback routine is what actually calls
14051 	 * sd_start_cmds() to transport the command, with the exception of a
14052 	 * zero retry_delay. The only current implementor of a zero retry delay
14053 	 * is the case where a START_STOP_UNIT is sent to spin-up a device.
14054 	 */
14055 	if (un->un_retry_bp == NULL) {
14056 		ASSERT(un->un_retry_statp == NULL);
14057 		un->un_retry_bp = bp;
14058 
14059 		/*
14060 		 * If the user has not specified a delay the command should
14061 		 * be queued and no timeout should be scheduled.
14062 		 */
14063 		if (retry_delay == 0) {
14064 			/*
14065 			 * Save the kstat pointer that will be used in the
14066 			 * call to SD_UPDATE_KSTATS() below, so that
14067 			 * sd_start_cmds() can correctly decrement the waitq
14068 			 * count when it is time to transport this command.
14069 			 */
14070 			un->un_retry_statp = statp;
14071 			goto done;
14072 		}
14073 	}
14074 
14075 	if (un->un_retry_bp == bp) {
14076 		/*
14077 		 * Save the kstat pointer that will be used in the call to
14078 		 * SD_UPDATE_KSTATS() below, so that sd_start_cmds() can
14079 		 * correctly decrement the waitq count when it is time to
14080 		 * transport this command.
14081 		 */
14082 		un->un_retry_statp = statp;
14083 
14084 		/*
14085 		 * Schedule a timeout if:
14086 		 *   1) The user has specified a delay.
14087 		 *   2) There is not a START_STOP_UNIT callback pending.
14088 		 *
14089 		 * If no delay has been specified, then it is up to the caller
14090 		 * to ensure that IO processing continues without stalling.
14091 		 * Effectively, this means that the caller will issue the
14092 		 * required call to sd_start_cmds(). The START_STOP_UNIT
14093 		 * callback does this after the START STOP UNIT command has
14094 		 * completed. In either of these cases we should not schedule
14095 		 * a timeout callback here.  Also don't schedule the timeout if
14096 		 * an SD_PATH_DIRECT_PRIORITY command is waiting to restart.
14097 		 */
14098 		if ((retry_delay != 0) && (un->un_startstop_timeid == NULL) &&
14099 		    (un->un_direct_priority_timeid == NULL)) {
14100 			un->un_retry_timeid =
14101 			    timeout(sd_start_retry_command, un, retry_delay);
14102 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14103 			    "sd_set_retry_bp: setting timeout: un: 0x%p"
14104 			    " bp:0x%p un_retry_timeid:0x%p\n",
14105 			    un, bp, un->un_retry_timeid);
14106 		}
14107 	} else {
14108 		/*
14109 		 * We only get in here if there is already another command
14110 		 * waiting to be retried.  In this case, we just put the
14111 		 * given command onto the wait queue, so it can be transported
14112 		 * after the current retry command has completed.
14113 		 *
14114 		 * Also we have to make sure that if the command at the head
14115 		 * of the wait queue is the un_failfast_bp, that we do not
14116 		 * put ahead of it any other commands that are to be retried.
14117 		 */
14118 		if ((un->un_failfast_bp != NULL) &&
14119 		    (un->un_failfast_bp == un->un_waitq_headp)) {
14120 			/*
14121 			 * Enqueue this command AFTER the first command on
14122 			 * the wait queue (which is also un_failfast_bp).
14123 			 */
14124 			bp->av_forw = un->un_waitq_headp->av_forw;
14125 			un->un_waitq_headp->av_forw = bp;
14126 			if (un->un_waitq_headp == un->un_waitq_tailp) {
14127 				un->un_waitq_tailp = bp;
14128 			}
14129 		} else {
14130 			/* Enqueue this command at the head of the waitq. */
14131 			bp->av_forw = un->un_waitq_headp;
14132 			un->un_waitq_headp = bp;
14133 			if (un->un_waitq_tailp == NULL) {
14134 				un->un_waitq_tailp = bp;
14135 			}
14136 		}
14137 
14138 		if (statp == NULL) {
14139 			statp = kstat_waitq_enter;
14140 		}
14141 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14142 		    "sd_set_retry_bp: un:0x%p already delayed retry\n", un);
14143 	}
14144 
14145 done:
14146 	if (statp != NULL) {
14147 		SD_UPDATE_KSTATS(un, statp, bp);
14148 	}
14149 
14150 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14151 	    "sd_set_retry_bp: exit un:0x%p\n", un);
14152 }
14153 
14154 
14155 /*
14156  *    Function: sd_start_retry_command
14157  *
14158  * Description: Start the command that has been waiting on the target's
14159  *		retry queue.  Called from timeout(9F) context after the
14160  *		retry delay interval has expired.
14161  *
14162  *   Arguments: arg - pointer to associated softstate for the device.
14163  *
14164  *     Context: timeout(9F) thread context.  May not sleep.
14165  */
14166 
14167 static void
14168 sd_start_retry_command(void *arg)
14169 {
14170 	struct sd_lun *un = arg;
14171 
14172 	ASSERT(un != NULL);
14173 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14174 
14175 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14176 	    "sd_start_retry_command: entry\n");
14177 
14178 	mutex_enter(SD_MUTEX(un));
14179 
14180 	un->un_retry_timeid = NULL;
14181 
14182 	if (un->un_retry_bp != NULL) {
14183 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14184 		    "sd_start_retry_command: un:0x%p STARTING bp:0x%p\n",
14185 		    un, un->un_retry_bp);
14186 		sd_start_cmds(un, un->un_retry_bp);
14187 	}
14188 
14189 	mutex_exit(SD_MUTEX(un));
14190 
14191 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14192 	    "sd_start_retry_command: exit\n");
14193 }
14194 
14195 
14196 /*
14197  *    Function: sd_start_direct_priority_command
14198  *
14199  * Description: Used to re-start an SD_PATH_DIRECT_PRIORITY command that had
14200  *		received TRAN_BUSY when we called scsi_transport() to send it
14201  *		to the underlying HBA. This function is called from timeout(9F)
14202  *		context after the delay interval has expired.
14203  *
14204  *   Arguments: arg - pointer to associated buf(9S) to be restarted.
14205  *
14206  *     Context: timeout(9F) thread context.  May not sleep.
14207  */
14208 
14209 static void
14210 sd_start_direct_priority_command(void *arg)
14211 {
14212 	struct buf	*priority_bp = arg;
14213 	struct sd_lun	*un;
14214 
14215 	ASSERT(priority_bp != NULL);
14216 	un = SD_GET_UN(priority_bp);
14217 	ASSERT(un != NULL);
14218 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14219 
14220 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14221 	    "sd_start_direct_priority_command: entry\n");
14222 
14223 	mutex_enter(SD_MUTEX(un));
14224 	un->un_direct_priority_timeid = NULL;
14225 	sd_start_cmds(un, priority_bp);
14226 	mutex_exit(SD_MUTEX(un));
14227 
14228 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14229 	    "sd_start_direct_priority_command: exit\n");
14230 }
14231 
14232 
14233 /*
14234  *    Function: sd_send_request_sense_command
14235  *
14236  * Description: Sends a REQUEST SENSE command to the target
14237  *
14238  *     Context: May be called from interrupt context.
14239  */
14240 
14241 static void
14242 sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
14243 	struct scsi_pkt *pktp)
14244 {
14245 	ASSERT(bp != NULL);
14246 	ASSERT(un != NULL);
14247 	ASSERT(mutex_owned(SD_MUTEX(un)));
14248 
14249 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_send_request_sense_command: "
14250 	    "entry: buf:0x%p\n", bp);
14251 
14252 	/*
14253 	 * If we are syncing or dumping, then fail the command to avoid a
14254 	 * recursive callback into scsi_transport(). Also fail the command
14255 	 * if we are suspended (legacy behavior).
14256 	 */
14257 	if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) ||
14258 	    (un->un_state == SD_STATE_DUMPING)) {
14259 		sd_return_failed_command(un, bp, EIO);
14260 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14261 		    "sd_send_request_sense_command: syncing/dumping, exit\n");
14262 		return;
14263 	}
14264 
14265 	/*
14266 	 * Retry the failed command and don't issue the request sense if:
14267 	 *    1) the sense buf is busy
14268 	 *    2) we have 1 or more outstanding commands on the target
14269 	 *    (the sense data will be cleared or invalidated any way)
14270 	 *
14271 	 * Note: There could be an issue with not checking a retry limit here,
14272 	 * the problem is determining which retry limit to check.
14273 	 */
14274 	if ((un->un_sense_isbusy != 0) || (un->un_ncmds_in_transport > 0)) {
14275 		/* Don't retry if the command is flagged as non-retryable */
14276 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
14277 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
14278 			    NULL, NULL, 0, SD_BSY_TIMEOUT, kstat_waitq_enter);
14279 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14280 			    "sd_send_request_sense_command: "
14281 			    "at full throttle, retrying exit\n");
14282 		} else {
14283 			sd_return_failed_command(un, bp, EIO);
14284 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14285 			    "sd_send_request_sense_command: "
14286 			    "at full throttle, non-retryable exit\n");
14287 		}
14288 		return;
14289 	}
14290 
14291 	sd_mark_rqs_busy(un, bp);
14292 	sd_start_cmds(un, un->un_rqs_bp);
14293 
14294 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14295 	    "sd_send_request_sense_command: exit\n");
14296 }
14297 
14298 
14299 /*
14300  *    Function: sd_mark_rqs_busy
14301  *
14302  * Description: Indicate that the request sense bp for this instance is
14303  *		in use.
14304  *
14305  *     Context: May be called under interrupt context
14306  */
14307 
14308 static void
14309 sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp)
14310 {
14311 	struct sd_xbuf	*sense_xp;
14312 
14313 	ASSERT(un != NULL);
14314 	ASSERT(bp != NULL);
14315 	ASSERT(mutex_owned(SD_MUTEX(un)));
14316 	ASSERT(un->un_sense_isbusy == 0);
14317 
14318 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: entry: "
14319 	    "buf:0x%p xp:0x%p un:0x%p\n", bp, SD_GET_XBUF(bp), un);
14320 
14321 	sense_xp = SD_GET_XBUF(un->un_rqs_bp);
14322 	ASSERT(sense_xp != NULL);
14323 
14324 	SD_INFO(SD_LOG_IO, un,
14325 	    "sd_mark_rqs_busy: entry: sense_xp:0x%p\n", sense_xp);
14326 
14327 	ASSERT(sense_xp->xb_pktp != NULL);
14328 	ASSERT((sense_xp->xb_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD))
14329 	    == (FLAG_SENSING | FLAG_HEAD));
14330 
14331 	un->un_sense_isbusy = 1;
14332 	un->un_rqs_bp->b_resid = 0;
14333 	sense_xp->xb_pktp->pkt_resid  = 0;
14334 	sense_xp->xb_pktp->pkt_reason = 0;
14335 
14336 	/* So we can get back the bp at interrupt time! */
14337 	sense_xp->xb_sense_bp = bp;
14338 
14339 	bzero(un->un_rqs_bp->b_un.b_addr, SENSE_LENGTH);
14340 
14341 	/*
14342 	 * Mark this buf as awaiting sense data. (This is already set in
14343 	 * the pkt_flags for the RQS packet.)
14344 	 */
14345 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags |= FLAG_SENSING;
14346 
14347 	sense_xp->xb_retry_count	= 0;
14348 	sense_xp->xb_victim_retry_count = 0;
14349 	sense_xp->xb_ua_retry_count	= 0;
14350 	sense_xp->xb_nr_retry_count 	= 0;
14351 	sense_xp->xb_dma_resid  = 0;
14352 
14353 	/* Clean up the fields for auto-request sense */
14354 	sense_xp->xb_sense_status = 0;
14355 	sense_xp->xb_sense_state  = 0;
14356 	sense_xp->xb_sense_resid  = 0;
14357 	bzero(sense_xp->xb_sense_data, sizeof (sense_xp->xb_sense_data));
14358 
14359 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: exit\n");
14360 }
14361 
14362 
14363 /*
14364  *    Function: sd_mark_rqs_idle
14365  *
14366  * Description: SD_MUTEX must be held continuously through this routine
14367  *		to prevent reuse of the rqs struct before the caller can
14368  *		complete it's processing.
14369  *
14370  * Return Code: Pointer to the RQS buf
14371  *
14372  *     Context: May be called under interrupt context
14373  */
14374 
14375 static struct buf *
14376 sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *sense_xp)
14377 {
14378 	struct buf *bp;
14379 	ASSERT(un != NULL);
14380 	ASSERT(sense_xp != NULL);
14381 	ASSERT(mutex_owned(SD_MUTEX(un)));
14382 	ASSERT(un->un_sense_isbusy != 0);
14383 
14384 	un->un_sense_isbusy = 0;
14385 	bp = sense_xp->xb_sense_bp;
14386 	sense_xp->xb_sense_bp = NULL;
14387 
14388 	/* This pkt is no longer interested in getting sense data */
14389 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags &= ~FLAG_SENSING;
14390 
14391 	return (bp);
14392 }
14393 
14394 
14395 
14396 /*
14397  *    Function: sd_alloc_rqs
14398  *
14399  * Description: Set up the unit to receive auto request sense data
14400  *
14401  * Return Code: DDI_SUCCESS or DDI_FAILURE
14402  *
14403  *     Context: Called under attach(9E) context
14404  */
14405 
14406 static int
14407 sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un)
14408 {
14409 	struct sd_xbuf *xp;
14410 
14411 	ASSERT(un != NULL);
14412 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14413 	ASSERT(un->un_rqs_bp == NULL);
14414 	ASSERT(un->un_rqs_pktp == NULL);
14415 
14416 	/*
14417 	 * First allocate the required buf and scsi_pkt structs, then set up
14418 	 * the CDB in the scsi_pkt for a REQUEST SENSE command.
14419 	 */
14420 	un->un_rqs_bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL,
14421 	    MAX_SENSE_LENGTH, B_READ, SLEEP_FUNC, NULL);
14422 	if (un->un_rqs_bp == NULL) {
14423 		return (DDI_FAILURE);
14424 	}
14425 
14426 	un->un_rqs_pktp = scsi_init_pkt(&devp->sd_address, NULL, un->un_rqs_bp,
14427 	    CDB_GROUP0, 1, 0, PKT_CONSISTENT, SLEEP_FUNC, NULL);
14428 
14429 	if (un->un_rqs_pktp == NULL) {
14430 		sd_free_rqs(un);
14431 		return (DDI_FAILURE);
14432 	}
14433 
14434 	/* Set up the CDB in the scsi_pkt for a REQUEST SENSE command. */
14435 	(void) scsi_setup_cdb((union scsi_cdb *)un->un_rqs_pktp->pkt_cdbp,
14436 	    SCMD_REQUEST_SENSE, 0, MAX_SENSE_LENGTH, 0);
14437 
14438 	SD_FILL_SCSI1_LUN(un, un->un_rqs_pktp);
14439 
14440 	/* Set up the other needed members in the ARQ scsi_pkt. */
14441 	un->un_rqs_pktp->pkt_comp   = sdintr;
14442 	un->un_rqs_pktp->pkt_time   = sd_io_time;
14443 	un->un_rqs_pktp->pkt_flags |=
14444 	    (FLAG_SENSING | FLAG_HEAD);	/* (1222170) */
14445 
14446 	/*
14447 	 * Allocate  & init the sd_xbuf struct for the RQS command. Do not
14448 	 * provide any intpkt, destroypkt routines as we take care of
14449 	 * scsi_pkt allocation/freeing here and in sd_free_rqs().
14450 	 */
14451 	xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
14452 	sd_xbuf_init(un, un->un_rqs_bp, xp, SD_CHAIN_NULL, NULL);
14453 	xp->xb_pktp = un->un_rqs_pktp;
14454 	SD_INFO(SD_LOG_ATTACH_DETACH, un,
14455 	    "sd_alloc_rqs: un 0x%p, rqs  xp 0x%p,  pkt 0x%p,  buf 0x%p\n",
14456 	    un, xp, un->un_rqs_pktp, un->un_rqs_bp);
14457 
14458 	/*
14459 	 * Save the pointer to the request sense private bp so it can
14460 	 * be retrieved in sdintr.
14461 	 */
14462 	un->un_rqs_pktp->pkt_private = un->un_rqs_bp;
14463 	ASSERT(un->un_rqs_bp->b_private == xp);
14464 
14465 	/*
14466 	 * See if the HBA supports auto-request sense for the specified
14467 	 * target/lun. If it does, then try to enable it (if not already
14468 	 * enabled).
14469 	 *
14470 	 * Note: For some HBAs (ifp & sf), scsi_ifsetcap will always return
14471 	 * failure, while for other HBAs (pln) scsi_ifsetcap will always
14472 	 * return success.  However, in both of these cases ARQ is always
14473 	 * enabled and scsi_ifgetcap will always return true. The best approach
14474 	 * is to issue the scsi_ifgetcap() first, then try the scsi_ifsetcap().
14475 	 *
14476 	 * The 3rd case is the HBA (adp) always return enabled on
14477 	 * scsi_ifgetgetcap even when it's not enable, the best approach
14478 	 * is issue a scsi_ifsetcap then a scsi_ifgetcap
14479 	 * Note: this case is to circumvent the Adaptec bug. (x86 only)
14480 	 */
14481 
14482 	if (un->un_f_is_fibre == TRUE) {
14483 		un->un_f_arq_enabled = TRUE;
14484 	} else {
14485 #if defined(__i386) || defined(__amd64)
14486 		/*
14487 		 * Circumvent the Adaptec bug, remove this code when
14488 		 * the bug is fixed
14489 		 */
14490 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1);
14491 #endif
14492 		switch (scsi_ifgetcap(SD_ADDRESS(un), "auto-rqsense", 1)) {
14493 		case 0:
14494 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
14495 			    "sd_alloc_rqs: HBA supports ARQ\n");
14496 			/*
14497 			 * ARQ is supported by this HBA but currently is not
14498 			 * enabled. Attempt to enable it and if successful then
14499 			 * mark this instance as ARQ enabled.
14500 			 */
14501 			if (scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1)
14502 			    == 1) {
14503 				/* Successfully enabled ARQ in the HBA */
14504 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
14505 				    "sd_alloc_rqs: ARQ enabled\n");
14506 				un->un_f_arq_enabled = TRUE;
14507 			} else {
14508 				/* Could not enable ARQ in the HBA */
14509 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
14510 				    "sd_alloc_rqs: failed ARQ enable\n");
14511 				un->un_f_arq_enabled = FALSE;
14512 			}
14513 			break;
14514 		case 1:
14515 			/*
14516 			 * ARQ is supported by this HBA and is already enabled.
14517 			 * Just mark ARQ as enabled for this instance.
14518 			 */
14519 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
14520 			    "sd_alloc_rqs: ARQ already enabled\n");
14521 			un->un_f_arq_enabled = TRUE;
14522 			break;
14523 		default:
14524 			/*
14525 			 * ARQ is not supported by this HBA; disable it for this
14526 			 * instance.
14527 			 */
14528 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
14529 			    "sd_alloc_rqs: HBA does not support ARQ\n");
14530 			un->un_f_arq_enabled = FALSE;
14531 			break;
14532 		}
14533 	}
14534 
14535 	return (DDI_SUCCESS);
14536 }
14537 
14538 
14539 /*
14540  *    Function: sd_free_rqs
14541  *
14542  * Description: Cleanup for the pre-instance RQS command.
14543  *
14544  *     Context: Kernel thread context
14545  */
14546 
14547 static void
14548 sd_free_rqs(struct sd_lun *un)
14549 {
14550 	ASSERT(un != NULL);
14551 
14552 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: entry\n");
14553 
14554 	/*
14555 	 * If consistent memory is bound to a scsi_pkt, the pkt
14556 	 * has to be destroyed *before* freeing the consistent memory.
14557 	 * Don't change the sequence of this operations.
14558 	 * scsi_destroy_pkt() might access memory, which isn't allowed,
14559 	 * after it was freed in scsi_free_consistent_buf().
14560 	 */
14561 	if (un->un_rqs_pktp != NULL) {
14562 		scsi_destroy_pkt(un->un_rqs_pktp);
14563 		un->un_rqs_pktp = NULL;
14564 	}
14565 
14566 	if (un->un_rqs_bp != NULL) {
14567 		struct sd_xbuf *xp = SD_GET_XBUF(un->un_rqs_bp);
14568 		if (xp != NULL) {
14569 			kmem_free(xp, sizeof (struct sd_xbuf));
14570 		}
14571 		scsi_free_consistent_buf(un->un_rqs_bp);
14572 		un->un_rqs_bp = NULL;
14573 	}
14574 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: exit\n");
14575 }
14576 
14577 
14578 
14579 /*
14580  *    Function: sd_reduce_throttle
14581  *
14582  * Description: Reduces the maximum # of outstanding commands on a
14583  *		target to the current number of outstanding commands.
14584  *		Queues a tiemout(9F) callback to restore the limit
14585  *		after a specified interval has elapsed.
14586  *		Typically used when we get a TRAN_BUSY return code
14587  *		back from scsi_transport().
14588  *
14589  *   Arguments: un - ptr to the sd_lun softstate struct
14590  *		throttle_type: SD_THROTTLE_TRAN_BUSY or SD_THROTTLE_QFULL
14591  *
14592  *     Context: May be called from interrupt context
14593  */
14594 
14595 static void
14596 sd_reduce_throttle(struct sd_lun *un, int throttle_type)
14597 {
14598 	ASSERT(un != NULL);
14599 	ASSERT(mutex_owned(SD_MUTEX(un)));
14600 	ASSERT(un->un_ncmds_in_transport >= 0);
14601 
14602 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
14603 	    "entry: un:0x%p un_throttle:%d un_ncmds_in_transport:%d\n",
14604 	    un, un->un_throttle, un->un_ncmds_in_transport);
14605 
14606 	if (un->un_throttle > 1) {
14607 		if (un->un_f_use_adaptive_throttle == TRUE) {
14608 			switch (throttle_type) {
14609 			case SD_THROTTLE_TRAN_BUSY:
14610 				if (un->un_busy_throttle == 0) {
14611 					un->un_busy_throttle = un->un_throttle;
14612 				}
14613 				break;
14614 			case SD_THROTTLE_QFULL:
14615 				un->un_busy_throttle = 0;
14616 				break;
14617 			default:
14618 				ASSERT(FALSE);
14619 			}
14620 
14621 			if (un->un_ncmds_in_transport > 0) {
14622 				un->un_throttle = un->un_ncmds_in_transport;
14623 			}
14624 
14625 		} else {
14626 			if (un->un_ncmds_in_transport == 0) {
14627 				un->un_throttle = 1;
14628 			} else {
14629 				un->un_throttle = un->un_ncmds_in_transport;
14630 			}
14631 		}
14632 	}
14633 
14634 	/* Reschedule the timeout if none is currently active */
14635 	if (un->un_reset_throttle_timeid == NULL) {
14636 		un->un_reset_throttle_timeid = timeout(sd_restore_throttle,
14637 		    un, SD_THROTTLE_RESET_INTERVAL);
14638 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14639 		    "sd_reduce_throttle: timeout scheduled!\n");
14640 	}
14641 
14642 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
14643 	    "exit: un:0x%p un_throttle:%d\n", un, un->un_throttle);
14644 }
14645 
14646 
14647 
14648 /*
14649  *    Function: sd_restore_throttle
14650  *
14651  * Description: Callback function for timeout(9F).  Resets the current
14652  *		value of un->un_throttle to its default.
14653  *
14654  *   Arguments: arg - pointer to associated softstate for the device.
14655  *
14656  *     Context: May be called from interrupt context
14657  */
14658 
14659 static void
14660 sd_restore_throttle(void *arg)
14661 {
14662 	struct sd_lun	*un = arg;
14663 
14664 	ASSERT(un != NULL);
14665 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14666 
14667 	mutex_enter(SD_MUTEX(un));
14668 
14669 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
14670 	    "entry: un:0x%p un_throttle:%d\n", un, un->un_throttle);
14671 
14672 	un->un_reset_throttle_timeid = NULL;
14673 
14674 	if (un->un_f_use_adaptive_throttle == TRUE) {
14675 		/*
14676 		 * If un_busy_throttle is nonzero, then it contains the
14677 		 * value that un_throttle was when we got a TRAN_BUSY back
14678 		 * from scsi_transport(). We want to revert back to this
14679 		 * value.
14680 		 *
14681 		 * In the QFULL case, the throttle limit will incrementally
14682 		 * increase until it reaches max throttle.
14683 		 */
14684 		if (un->un_busy_throttle > 0) {
14685 			un->un_throttle = un->un_busy_throttle;
14686 			un->un_busy_throttle = 0;
14687 		} else {
14688 			/*
14689 			 * increase throttle by 10% open gate slowly, schedule
14690 			 * another restore if saved throttle has not been
14691 			 * reached
14692 			 */
14693 			short throttle;
14694 			if (sd_qfull_throttle_enable) {
14695 				throttle = un->un_throttle +
14696 				    max((un->un_throttle / 10), 1);
14697 				un->un_throttle =
14698 				    (throttle < un->un_saved_throttle) ?
14699 				    throttle : un->un_saved_throttle;
14700 				if (un->un_throttle < un->un_saved_throttle) {
14701 					un->un_reset_throttle_timeid =
14702 					    timeout(sd_restore_throttle,
14703 					    un,
14704 					    SD_QFULL_THROTTLE_RESET_INTERVAL);
14705 				}
14706 			}
14707 		}
14708 
14709 		/*
14710 		 * If un_throttle has fallen below the low-water mark, we
14711 		 * restore the maximum value here (and allow it to ratchet
14712 		 * down again if necessary).
14713 		 */
14714 		if (un->un_throttle < un->un_min_throttle) {
14715 			un->un_throttle = un->un_saved_throttle;
14716 		}
14717 	} else {
14718 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
14719 		    "restoring limit from 0x%x to 0x%x\n",
14720 		    un->un_throttle, un->un_saved_throttle);
14721 		un->un_throttle = un->un_saved_throttle;
14722 	}
14723 
14724 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14725 	    "sd_restore_throttle: calling sd_start_cmds!\n");
14726 
14727 	sd_start_cmds(un, NULL);
14728 
14729 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14730 	    "sd_restore_throttle: exit: un:0x%p un_throttle:%d\n",
14731 	    un, un->un_throttle);
14732 
14733 	mutex_exit(SD_MUTEX(un));
14734 
14735 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: exit\n");
14736 }
14737 
14738 /*
14739  *    Function: sdrunout
14740  *
14741  * Description: Callback routine for scsi_init_pkt when a resource allocation
14742  *		fails.
14743  *
14744  *   Arguments: arg - a pointer to the sd_lun unit struct for the particular
14745  *		soft state instance.
14746  *
14747  * Return Code: The scsi_init_pkt routine allows for the callback function to
14748  *		return a 0 indicating the callback should be rescheduled or a 1
14749  *		indicating not to reschedule. This routine always returns 1
14750  *		because the driver always provides a callback function to
14751  *		scsi_init_pkt. This results in a callback always being scheduled
14752  *		(via the scsi_init_pkt callback implementation) if a resource
14753  *		failure occurs.
14754  *
14755  *     Context: This callback function may not block or call routines that block
14756  *
14757  *        Note: Using the scsi_init_pkt callback facility can result in an I/O
14758  *		request persisting at the head of the list which cannot be
14759  *		satisfied even after multiple retries. In the future the driver
14760  *		may implement some time of maximum runout count before failing
14761  *		an I/O.
14762  */
14763 
14764 static int
14765 sdrunout(caddr_t arg)
14766 {
14767 	struct sd_lun	*un = (struct sd_lun *)arg;
14768 
14769 	ASSERT(un != NULL);
14770 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14771 
14772 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: entry\n");
14773 
14774 	mutex_enter(SD_MUTEX(un));
14775 	sd_start_cmds(un, NULL);
14776 	mutex_exit(SD_MUTEX(un));
14777 	/*
14778 	 * This callback routine always returns 1 (i.e. do not reschedule)
14779 	 * because we always specify sdrunout as the callback handler for
14780 	 * scsi_init_pkt inside the call to sd_start_cmds.
14781 	 */
14782 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: exit\n");
14783 	return (1);
14784 }
14785 
14786 
14787 /*
14788  *    Function: sdintr
14789  *
14790  * Description: Completion callback routine for scsi_pkt(9S) structs
14791  *		sent to the HBA driver via scsi_transport(9F).
14792  *
14793  *     Context: Interrupt context
14794  */
14795 
14796 static void
14797 sdintr(struct scsi_pkt *pktp)
14798 {
14799 	struct buf	*bp;
14800 	struct sd_xbuf	*xp;
14801 	struct sd_lun	*un;
14802 	size_t		actual_len;
14803 
14804 	ASSERT(pktp != NULL);
14805 	bp = (struct buf *)pktp->pkt_private;
14806 	ASSERT(bp != NULL);
14807 	xp = SD_GET_XBUF(bp);
14808 	ASSERT(xp != NULL);
14809 	ASSERT(xp->xb_pktp != NULL);
14810 	un = SD_GET_UN(bp);
14811 	ASSERT(un != NULL);
14812 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14813 
14814 #ifdef SD_FAULT_INJECTION
14815 
14816 	SD_INFO(SD_LOG_IOERR, un, "sdintr: sdintr calling Fault injection\n");
14817 	/* SD FaultInjection */
14818 	sd_faultinjection(pktp);
14819 
14820 #endif /* SD_FAULT_INJECTION */
14821 
14822 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: entry: buf:0x%p,"
14823 	    " xp:0x%p, un:0x%p\n", bp, xp, un);
14824 
14825 	mutex_enter(SD_MUTEX(un));
14826 
14827 	/* Reduce the count of the #commands currently in transport */
14828 	un->un_ncmds_in_transport--;
14829 	ASSERT(un->un_ncmds_in_transport >= 0);
14830 
14831 	/* Increment counter to indicate that the callback routine is active */
14832 	un->un_in_callback++;
14833 
14834 	SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
14835 
14836 #ifdef	SDDEBUG
14837 	if (bp == un->un_retry_bp) {
14838 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sdintr: "
14839 		    "un:0x%p: GOT retry_bp:0x%p un_ncmds_in_transport:%d\n",
14840 		    un, un->un_retry_bp, un->un_ncmds_in_transport);
14841 	}
14842 #endif
14843 
14844 	/*
14845 	 * If pkt_reason is CMD_DEV_GONE, fail the command, and update the media
14846 	 * state if needed.
14847 	 */
14848 	if (pktp->pkt_reason == CMD_DEV_GONE) {
14849 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
14850 		    "Command failed to complete...Device is gone\n");
14851 		if (un->un_mediastate != DKIO_DEV_GONE) {
14852 			un->un_mediastate = DKIO_DEV_GONE;
14853 			cv_broadcast(&un->un_state_cv);
14854 		}
14855 		sd_return_failed_command(un, bp, EIO);
14856 		goto exit;
14857 	}
14858 
14859 	if (pktp->pkt_state & STATE_XARQ_DONE) {
14860 		SD_TRACE(SD_LOG_COMMON, un,
14861 		    "sdintr: extra sense data received. pkt=%p\n", pktp);
14862 	}
14863 
14864 	/*
14865 	 * First see if the pkt has auto-request sense data with it....
14866 	 * Look at the packet state first so we don't take a performance
14867 	 * hit looking at the arq enabled flag unless absolutely necessary.
14868 	 */
14869 	if ((pktp->pkt_state & STATE_ARQ_DONE) &&
14870 	    (un->un_f_arq_enabled == TRUE)) {
14871 		/*
14872 		 * The HBA did an auto request sense for this command so check
14873 		 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
14874 		 * driver command that should not be retried.
14875 		 */
14876 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
14877 			/*
14878 			 * Save the relevant sense info into the xp for the
14879 			 * original cmd.
14880 			 */
14881 			struct scsi_arq_status *asp;
14882 			asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
14883 			xp->xb_sense_status =
14884 			    *((uchar_t *)(&(asp->sts_rqpkt_status)));
14885 			xp->xb_sense_state  = asp->sts_rqpkt_state;
14886 			xp->xb_sense_resid  = asp->sts_rqpkt_resid;
14887 			if (pktp->pkt_state & STATE_XARQ_DONE) {
14888 				actual_len = MAX_SENSE_LENGTH -
14889 				    xp->xb_sense_resid;
14890 				bcopy(&asp->sts_sensedata, xp->xb_sense_data,
14891 				    MAX_SENSE_LENGTH);
14892 			} else {
14893 				if (xp->xb_sense_resid > SENSE_LENGTH) {
14894 					actual_len = MAX_SENSE_LENGTH -
14895 					    xp->xb_sense_resid;
14896 				} else {
14897 					actual_len = SENSE_LENGTH -
14898 					    xp->xb_sense_resid;
14899 				}
14900 				if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
14901 					xp->xb_sense_resid =
14902 					    (int)(((struct uscsi_cmd *)
14903 					    (xp->xb_pktinfo))->
14904 					    uscsi_rqlen) - actual_len;
14905 				}
14906 				bcopy(&asp->sts_sensedata, xp->xb_sense_data,
14907 				    SENSE_LENGTH);
14908 			}
14909 
14910 			/* fail the command */
14911 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14912 			    "sdintr: arq done and FLAG_DIAGNOSE set\n");
14913 			sd_return_failed_command(un, bp, EIO);
14914 			goto exit;
14915 		}
14916 
14917 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
14918 		/*
14919 		 * We want to either retry or fail this command, so free
14920 		 * the DMA resources here.  If we retry the command then
14921 		 * the DMA resources will be reallocated in sd_start_cmds().
14922 		 * Note that when PKT_DMA_PARTIAL is used, this reallocation
14923 		 * causes the *entire* transfer to start over again from the
14924 		 * beginning of the request, even for PARTIAL chunks that
14925 		 * have already transferred successfully.
14926 		 */
14927 		if ((un->un_f_is_fibre == TRUE) &&
14928 		    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
14929 		    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
14930 			scsi_dmafree(pktp);
14931 			xp->xb_pkt_flags |= SD_XB_DMA_FREED;
14932 		}
14933 #endif
14934 
14935 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14936 		    "sdintr: arq done, sd_handle_auto_request_sense\n");
14937 
14938 		sd_handle_auto_request_sense(un, bp, xp, pktp);
14939 		goto exit;
14940 	}
14941 
14942 	/* Next see if this is the REQUEST SENSE pkt for the instance */
14943 	if (pktp->pkt_flags & FLAG_SENSING)  {
14944 		/* This pktp is from the unit's REQUEST_SENSE command */
14945 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14946 		    "sdintr: sd_handle_request_sense\n");
14947 		sd_handle_request_sense(un, bp, xp, pktp);
14948 		goto exit;
14949 	}
14950 
14951 	/*
14952 	 * Check to see if the command successfully completed as requested;
14953 	 * this is the most common case (and also the hot performance path).
14954 	 *
14955 	 * Requirements for successful completion are:
14956 	 * pkt_reason is CMD_CMPLT and packet status is status good.
14957 	 * In addition:
14958 	 * - A residual of zero indicates successful completion no matter what
14959 	 *   the command is.
14960 	 * - If the residual is not zero and the command is not a read or
14961 	 *   write, then it's still defined as successful completion. In other
14962 	 *   words, if the command is a read or write the residual must be
14963 	 *   zero for successful completion.
14964 	 * - If the residual is not zero and the command is a read or
14965 	 *   write, and it's a USCSICMD, then it's still defined as
14966 	 *   successful completion.
14967 	 */
14968 	if ((pktp->pkt_reason == CMD_CMPLT) &&
14969 	    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD)) {
14970 
14971 		/*
14972 		 * Since this command is returned with a good status, we
14973 		 * can reset the count for Sonoma failover.
14974 		 */
14975 		un->un_sonoma_failure_count = 0;
14976 
14977 		/*
14978 		 * Return all USCSI commands on good status
14979 		 */
14980 		if (pktp->pkt_resid == 0) {
14981 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14982 			    "sdintr: returning command for resid == 0\n");
14983 		} else if (((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_READ) &&
14984 		    ((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_WRITE)) {
14985 			SD_UPDATE_B_RESID(bp, pktp);
14986 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14987 			    "sdintr: returning command for resid != 0\n");
14988 		} else if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
14989 			SD_UPDATE_B_RESID(bp, pktp);
14990 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14991 			    "sdintr: returning uscsi command\n");
14992 		} else {
14993 			goto not_successful;
14994 		}
14995 		sd_return_command(un, bp);
14996 
14997 		/*
14998 		 * Decrement counter to indicate that the callback routine
14999 		 * is done.
15000 		 */
15001 		un->un_in_callback--;
15002 		ASSERT(un->un_in_callback >= 0);
15003 		mutex_exit(SD_MUTEX(un));
15004 
15005 		return;
15006 	}
15007 
15008 not_successful:
15009 
15010 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
15011 	/*
15012 	 * The following is based upon knowledge of the underlying transport
15013 	 * and its use of DMA resources.  This code should be removed when
15014 	 * PKT_DMA_PARTIAL support is taken out of the disk driver in favor
15015 	 * of the new PKT_CMD_BREAKUP protocol. See also sd_initpkt_for_buf()
15016 	 * and sd_start_cmds().
15017 	 *
15018 	 * Free any DMA resources associated with this command if there
15019 	 * is a chance it could be retried or enqueued for later retry.
15020 	 * If we keep the DMA binding then mpxio cannot reissue the
15021 	 * command on another path whenever a path failure occurs.
15022 	 *
15023 	 * Note that when PKT_DMA_PARTIAL is used, free/reallocation
15024 	 * causes the *entire* transfer to start over again from the
15025 	 * beginning of the request, even for PARTIAL chunks that
15026 	 * have already transferred successfully.
15027 	 *
15028 	 * This is only done for non-uscsi commands (and also skipped for the
15029 	 * driver's internal RQS command). Also just do this for Fibre Channel
15030 	 * devices as these are the only ones that support mpxio.
15031 	 */
15032 	if ((un->un_f_is_fibre == TRUE) &&
15033 	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
15034 	    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
15035 		scsi_dmafree(pktp);
15036 		xp->xb_pkt_flags |= SD_XB_DMA_FREED;
15037 	}
15038 #endif
15039 
15040 	/*
15041 	 * The command did not successfully complete as requested so check
15042 	 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
15043 	 * driver command that should not be retried so just return. If
15044 	 * FLAG_DIAGNOSE is not set the error will be processed below.
15045 	 */
15046 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
15047 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15048 		    "sdintr: FLAG_DIAGNOSE: sd_return_failed_command\n");
15049 		/*
15050 		 * Issue a request sense if a check condition caused the error
15051 		 * (we handle the auto request sense case above), otherwise
15052 		 * just fail the command.
15053 		 */
15054 		if ((pktp->pkt_reason == CMD_CMPLT) &&
15055 		    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK)) {
15056 			sd_send_request_sense_command(un, bp, pktp);
15057 		} else {
15058 			sd_return_failed_command(un, bp, EIO);
15059 		}
15060 		goto exit;
15061 	}
15062 
15063 	/*
15064 	 * The command did not successfully complete as requested so process
15065 	 * the error, retry, and/or attempt recovery.
15066 	 */
15067 	switch (pktp->pkt_reason) {
15068 	case CMD_CMPLT:
15069 		switch (SD_GET_PKT_STATUS(pktp)) {
15070 		case STATUS_GOOD:
15071 			/*
15072 			 * The command completed successfully with a non-zero
15073 			 * residual
15074 			 */
15075 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15076 			    "sdintr: STATUS_GOOD \n");
15077 			sd_pkt_status_good(un, bp, xp, pktp);
15078 			break;
15079 
15080 		case STATUS_CHECK:
15081 		case STATUS_TERMINATED:
15082 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15083 			    "sdintr: STATUS_TERMINATED | STATUS_CHECK\n");
15084 			sd_pkt_status_check_condition(un, bp, xp, pktp);
15085 			break;
15086 
15087 		case STATUS_BUSY:
15088 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15089 			    "sdintr: STATUS_BUSY\n");
15090 			sd_pkt_status_busy(un, bp, xp, pktp);
15091 			break;
15092 
15093 		case STATUS_RESERVATION_CONFLICT:
15094 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15095 			    "sdintr: STATUS_RESERVATION_CONFLICT\n");
15096 			sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
15097 			break;
15098 
15099 		case STATUS_QFULL:
15100 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15101 			    "sdintr: STATUS_QFULL\n");
15102 			sd_pkt_status_qfull(un, bp, xp, pktp);
15103 			break;
15104 
15105 		case STATUS_MET:
15106 		case STATUS_INTERMEDIATE:
15107 		case STATUS_SCSI2:
15108 		case STATUS_INTERMEDIATE_MET:
15109 		case STATUS_ACA_ACTIVE:
15110 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
15111 			    "Unexpected SCSI status received: 0x%x\n",
15112 			    SD_GET_PKT_STATUS(pktp));
15113 			sd_return_failed_command(un, bp, EIO);
15114 			break;
15115 
15116 		default:
15117 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
15118 			    "Invalid SCSI status received: 0x%x\n",
15119 			    SD_GET_PKT_STATUS(pktp));
15120 			sd_return_failed_command(un, bp, EIO);
15121 			break;
15122 
15123 		}
15124 		break;
15125 
15126 	case CMD_INCOMPLETE:
15127 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15128 		    "sdintr:  CMD_INCOMPLETE\n");
15129 		sd_pkt_reason_cmd_incomplete(un, bp, xp, pktp);
15130 		break;
15131 	case CMD_TRAN_ERR:
15132 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15133 		    "sdintr: CMD_TRAN_ERR\n");
15134 		sd_pkt_reason_cmd_tran_err(un, bp, xp, pktp);
15135 		break;
15136 	case CMD_RESET:
15137 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15138 		    "sdintr: CMD_RESET \n");
15139 		sd_pkt_reason_cmd_reset(un, bp, xp, pktp);
15140 		break;
15141 	case CMD_ABORTED:
15142 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15143 		    "sdintr: CMD_ABORTED \n");
15144 		sd_pkt_reason_cmd_aborted(un, bp, xp, pktp);
15145 		break;
15146 	case CMD_TIMEOUT:
15147 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15148 		    "sdintr: CMD_TIMEOUT\n");
15149 		sd_pkt_reason_cmd_timeout(un, bp, xp, pktp);
15150 		break;
15151 	case CMD_UNX_BUS_FREE:
15152 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15153 		    "sdintr: CMD_UNX_BUS_FREE \n");
15154 		sd_pkt_reason_cmd_unx_bus_free(un, bp, xp, pktp);
15155 		break;
15156 	case CMD_TAG_REJECT:
15157 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15158 		    "sdintr: CMD_TAG_REJECT\n");
15159 		sd_pkt_reason_cmd_tag_reject(un, bp, xp, pktp);
15160 		break;
15161 	default:
15162 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15163 		    "sdintr: default\n");
15164 		sd_pkt_reason_default(un, bp, xp, pktp);
15165 		break;
15166 	}
15167 
15168 exit:
15169 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: exit\n");
15170 
15171 	/* Decrement counter to indicate that the callback routine is done. */
15172 	un->un_in_callback--;
15173 	ASSERT(un->un_in_callback >= 0);
15174 
15175 	/*
15176 	 * At this point, the pkt has been dispatched, ie, it is either
15177 	 * being re-tried or has been returned to its caller and should
15178 	 * not be referenced.
15179 	 */
15180 
15181 	mutex_exit(SD_MUTEX(un));
15182 }
15183 
15184 
15185 /*
15186  *    Function: sd_print_incomplete_msg
15187  *
15188  * Description: Prints the error message for a CMD_INCOMPLETE error.
15189  *
15190  *   Arguments: un - ptr to associated softstate for the device.
15191  *		bp - ptr to the buf(9S) for the command.
15192  *		arg - message string ptr
15193  *		code - SD_DELAYED_RETRY_ISSUED, SD_IMMEDIATE_RETRY_ISSUED,
15194  *			or SD_NO_RETRY_ISSUED.
15195  *
15196  *     Context: May be called under interrupt context
15197  */
15198 
15199 static void
15200 sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
15201 {
15202 	struct scsi_pkt	*pktp;
15203 	char	*msgp;
15204 	char	*cmdp = arg;
15205 
15206 	ASSERT(un != NULL);
15207 	ASSERT(mutex_owned(SD_MUTEX(un)));
15208 	ASSERT(bp != NULL);
15209 	ASSERT(arg != NULL);
15210 	pktp = SD_GET_PKTP(bp);
15211 	ASSERT(pktp != NULL);
15212 
15213 	switch (code) {
15214 	case SD_DELAYED_RETRY_ISSUED:
15215 	case SD_IMMEDIATE_RETRY_ISSUED:
15216 		msgp = "retrying";
15217 		break;
15218 	case SD_NO_RETRY_ISSUED:
15219 	default:
15220 		msgp = "giving up";
15221 		break;
15222 	}
15223 
15224 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
15225 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15226 		    "incomplete %s- %s\n", cmdp, msgp);
15227 	}
15228 }
15229 
15230 
15231 
15232 /*
15233  *    Function: sd_pkt_status_good
15234  *
15235  * Description: Processing for a STATUS_GOOD code in pkt_status.
15236  *
15237  *     Context: May be called under interrupt context
15238  */
15239 
15240 static void
15241 sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
15242 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
15243 {
15244 	char	*cmdp;
15245 
15246 	ASSERT(un != NULL);
15247 	ASSERT(mutex_owned(SD_MUTEX(un)));
15248 	ASSERT(bp != NULL);
15249 	ASSERT(xp != NULL);
15250 	ASSERT(pktp != NULL);
15251 	ASSERT(pktp->pkt_reason == CMD_CMPLT);
15252 	ASSERT(SD_GET_PKT_STATUS(pktp) == STATUS_GOOD);
15253 	ASSERT(pktp->pkt_resid != 0);
15254 
15255 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: entry\n");
15256 
15257 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
15258 	switch (SD_GET_PKT_OPCODE(pktp) & 0x1F) {
15259 	case SCMD_READ:
15260 		cmdp = "read";
15261 		break;
15262 	case SCMD_WRITE:
15263 		cmdp = "write";
15264 		break;
15265 	default:
15266 		SD_UPDATE_B_RESID(bp, pktp);
15267 		sd_return_command(un, bp);
15268 		SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
15269 		return;
15270 	}
15271 
15272 	/*
15273 	 * See if we can retry the read/write, preferrably immediately.
15274 	 * If retries are exhaused, then sd_retry_command() will update
15275 	 * the b_resid count.
15276 	 */
15277 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_incomplete_msg,
15278 	    cmdp, EIO, (clock_t)0, NULL);
15279 
15280 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
15281 }
15282 
15283 
15284 
15285 
15286 
15287 /*
15288  *    Function: sd_handle_request_sense
15289  *
15290  * Description: Processing for non-auto Request Sense command.
15291  *
15292  *   Arguments: un - ptr to associated softstate
15293  *		sense_bp - ptr to buf(9S) for the RQS command
15294  *		sense_xp - ptr to the sd_xbuf for the RQS command
15295  *		sense_pktp - ptr to the scsi_pkt(9S) for the RQS command
15296  *
15297  *     Context: May be called under interrupt context
15298  */
15299 
15300 static void
15301 sd_handle_request_sense(struct sd_lun *un, struct buf *sense_bp,
15302 	struct sd_xbuf *sense_xp, struct scsi_pkt *sense_pktp)
15303 {
15304 	struct buf	*cmd_bp;	/* buf for the original command */
15305 	struct sd_xbuf	*cmd_xp;	/* sd_xbuf for the original command */
15306 	struct scsi_pkt *cmd_pktp;	/* pkt for the original command */
15307 	size_t		actual_len;	/* actual sense data length */
15308 
15309 	ASSERT(un != NULL);
15310 	ASSERT(mutex_owned(SD_MUTEX(un)));
15311 	ASSERT(sense_bp != NULL);
15312 	ASSERT(sense_xp != NULL);
15313 	ASSERT(sense_pktp != NULL);
15314 
15315 	/*
15316 	 * Note the sense_bp, sense_xp, and sense_pktp here are for the
15317 	 * RQS command and not the original command.
15318 	 */
15319 	ASSERT(sense_pktp == un->un_rqs_pktp);
15320 	ASSERT(sense_bp   == un->un_rqs_bp);
15321 	ASSERT((sense_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) ==
15322 	    (FLAG_SENSING | FLAG_HEAD));
15323 	ASSERT((((SD_GET_XBUF(sense_xp->xb_sense_bp))->xb_pktp->pkt_flags) &
15324 	    FLAG_SENSING) == FLAG_SENSING);
15325 
15326 	/* These are the bp, xp, and pktp for the original command */
15327 	cmd_bp = sense_xp->xb_sense_bp;
15328 	cmd_xp = SD_GET_XBUF(cmd_bp);
15329 	cmd_pktp = SD_GET_PKTP(cmd_bp);
15330 
15331 	if (sense_pktp->pkt_reason != CMD_CMPLT) {
15332 		/*
15333 		 * The REQUEST SENSE command failed.  Release the REQUEST
15334 		 * SENSE command for re-use, get back the bp for the original
15335 		 * command, and attempt to re-try the original command if
15336 		 * FLAG_DIAGNOSE is not set in the original packet.
15337 		 */
15338 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
15339 		if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
15340 			cmd_bp = sd_mark_rqs_idle(un, sense_xp);
15341 			sd_retry_command(un, cmd_bp, SD_RETRIES_STANDARD,
15342 			    NULL, NULL, EIO, (clock_t)0, NULL);
15343 			return;
15344 		}
15345 	}
15346 
15347 	/*
15348 	 * Save the relevant sense info into the xp for the original cmd.
15349 	 *
15350 	 * Note: if the request sense failed the state info will be zero
15351 	 * as set in sd_mark_rqs_busy()
15352 	 */
15353 	cmd_xp->xb_sense_status = *(sense_pktp->pkt_scbp);
15354 	cmd_xp->xb_sense_state  = sense_pktp->pkt_state;
15355 	actual_len = MAX_SENSE_LENGTH - sense_pktp->pkt_resid;
15356 	if ((cmd_xp->xb_pkt_flags & SD_XB_USCSICMD) &&
15357 	    (((struct uscsi_cmd *)cmd_xp->xb_pktinfo)->uscsi_rqlen >
15358 	    SENSE_LENGTH)) {
15359 		bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data,
15360 		    MAX_SENSE_LENGTH);
15361 		cmd_xp->xb_sense_resid = sense_pktp->pkt_resid;
15362 	} else {
15363 		bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data,
15364 		    SENSE_LENGTH);
15365 		if (actual_len < SENSE_LENGTH) {
15366 			cmd_xp->xb_sense_resid = SENSE_LENGTH - actual_len;
15367 		} else {
15368 			cmd_xp->xb_sense_resid = 0;
15369 		}
15370 	}
15371 
15372 	/*
15373 	 *  Free up the RQS command....
15374 	 *  NOTE:
15375 	 *	Must do this BEFORE calling sd_validate_sense_data!
15376 	 *	sd_validate_sense_data may return the original command in
15377 	 *	which case the pkt will be freed and the flags can no
15378 	 *	longer be touched.
15379 	 *	SD_MUTEX is held through this process until the command
15380 	 *	is dispatched based upon the sense data, so there are
15381 	 *	no race conditions.
15382 	 */
15383 	(void) sd_mark_rqs_idle(un, sense_xp);
15384 
15385 	/*
15386 	 * For a retryable command see if we have valid sense data, if so then
15387 	 * turn it over to sd_decode_sense() to figure out the right course of
15388 	 * action. Just fail a non-retryable command.
15389 	 */
15390 	if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
15391 		if (sd_validate_sense_data(un, cmd_bp, cmd_xp, actual_len) ==
15392 		    SD_SENSE_DATA_IS_VALID) {
15393 			sd_decode_sense(un, cmd_bp, cmd_xp, cmd_pktp);
15394 		}
15395 	} else {
15396 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Failed CDB",
15397 		    (uchar_t *)cmd_pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
15398 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Sense Data",
15399 		    (uchar_t *)cmd_xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
15400 		sd_return_failed_command(un, cmd_bp, EIO);
15401 	}
15402 }
15403 
15404 
15405 
15406 
15407 /*
15408  *    Function: sd_handle_auto_request_sense
15409  *
15410  * Description: Processing for auto-request sense information.
15411  *
15412  *   Arguments: un - ptr to associated softstate
15413  *		bp - ptr to buf(9S) for the command
15414  *		xp - ptr to the sd_xbuf for the command
15415  *		pktp - ptr to the scsi_pkt(9S) for the command
15416  *
15417  *     Context: May be called under interrupt context
15418  */
15419 
15420 static void
15421 sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
15422 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
15423 {
15424 	struct scsi_arq_status *asp;
15425 	size_t actual_len;
15426 
15427 	ASSERT(un != NULL);
15428 	ASSERT(mutex_owned(SD_MUTEX(un)));
15429 	ASSERT(bp != NULL);
15430 	ASSERT(xp != NULL);
15431 	ASSERT(pktp != NULL);
15432 	ASSERT(pktp != un->un_rqs_pktp);
15433 	ASSERT(bp   != un->un_rqs_bp);
15434 
15435 	/*
15436 	 * For auto-request sense, we get a scsi_arq_status back from
15437 	 * the HBA, with the sense data in the sts_sensedata member.
15438 	 * The pkt_scbp of the packet points to this scsi_arq_status.
15439 	 */
15440 	asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
15441 
15442 	if (asp->sts_rqpkt_reason != CMD_CMPLT) {
15443 		/*
15444 		 * The auto REQUEST SENSE failed; see if we can re-try
15445 		 * the original command.
15446 		 */
15447 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15448 		    "auto request sense failed (reason=%s)\n",
15449 		    scsi_rname(asp->sts_rqpkt_reason));
15450 
15451 		sd_reset_target(un, pktp);
15452 
15453 		sd_retry_command(un, bp, SD_RETRIES_STANDARD,
15454 		    NULL, NULL, EIO, (clock_t)0, NULL);
15455 		return;
15456 	}
15457 
15458 	/* Save the relevant sense info into the xp for the original cmd. */
15459 	xp->xb_sense_status = *((uchar_t *)(&(asp->sts_rqpkt_status)));
15460 	xp->xb_sense_state  = asp->sts_rqpkt_state;
15461 	xp->xb_sense_resid  = asp->sts_rqpkt_resid;
15462 	if (xp->xb_sense_state & STATE_XARQ_DONE) {
15463 		actual_len = MAX_SENSE_LENGTH - xp->xb_sense_resid;
15464 		bcopy(&asp->sts_sensedata, xp->xb_sense_data,
15465 		    MAX_SENSE_LENGTH);
15466 	} else {
15467 		if (xp->xb_sense_resid > SENSE_LENGTH) {
15468 			actual_len = MAX_SENSE_LENGTH - xp->xb_sense_resid;
15469 		} else {
15470 			actual_len = SENSE_LENGTH - xp->xb_sense_resid;
15471 		}
15472 		if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
15473 			xp->xb_sense_resid = (int)(((struct uscsi_cmd *)
15474 			    (xp->xb_pktinfo))->uscsi_rqlen) - actual_len;
15475 		}
15476 		bcopy(&asp->sts_sensedata, xp->xb_sense_data, SENSE_LENGTH);
15477 	}
15478 
15479 	/*
15480 	 * See if we have valid sense data, if so then turn it over to
15481 	 * sd_decode_sense() to figure out the right course of action.
15482 	 */
15483 	if (sd_validate_sense_data(un, bp, xp, actual_len) ==
15484 	    SD_SENSE_DATA_IS_VALID) {
15485 		sd_decode_sense(un, bp, xp, pktp);
15486 	}
15487 }
15488 
15489 
15490 /*
15491  *    Function: sd_print_sense_failed_msg
15492  *
15493  * Description: Print log message when RQS has failed.
15494  *
15495  *   Arguments: un - ptr to associated softstate
15496  *		bp - ptr to buf(9S) for the command
15497  *		arg - generic message string ptr
15498  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
15499  *			or SD_NO_RETRY_ISSUED
15500  *
15501  *     Context: May be called from interrupt context
15502  */
15503 
15504 static void
15505 sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, void *arg,
15506 	int code)
15507 {
15508 	char	*msgp = arg;
15509 
15510 	ASSERT(un != NULL);
15511 	ASSERT(mutex_owned(SD_MUTEX(un)));
15512 	ASSERT(bp != NULL);
15513 
15514 	if ((code == SD_NO_RETRY_ISSUED) && (msgp != NULL)) {
15515 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, msgp);
15516 	}
15517 }
15518 
15519 
15520 /*
15521  *    Function: sd_validate_sense_data
15522  *
15523  * Description: Check the given sense data for validity.
15524  *		If the sense data is not valid, the command will
15525  *		be either failed or retried!
15526  *
15527  * Return Code: SD_SENSE_DATA_IS_INVALID
15528  *		SD_SENSE_DATA_IS_VALID
15529  *
15530  *     Context: May be called from interrupt context
15531  */
15532 
15533 static int
15534 sd_validate_sense_data(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
15535 	size_t actual_len)
15536 {
15537 	struct scsi_extended_sense *esp;
15538 	struct	scsi_pkt *pktp;
15539 	char	*msgp = NULL;
15540 
15541 	ASSERT(un != NULL);
15542 	ASSERT(mutex_owned(SD_MUTEX(un)));
15543 	ASSERT(bp != NULL);
15544 	ASSERT(bp != un->un_rqs_bp);
15545 	ASSERT(xp != NULL);
15546 
15547 	pktp = SD_GET_PKTP(bp);
15548 	ASSERT(pktp != NULL);
15549 
15550 	/*
15551 	 * Check the status of the RQS command (auto or manual).
15552 	 */
15553 	switch (xp->xb_sense_status & STATUS_MASK) {
15554 	case STATUS_GOOD:
15555 		break;
15556 
15557 	case STATUS_RESERVATION_CONFLICT:
15558 		sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
15559 		return (SD_SENSE_DATA_IS_INVALID);
15560 
15561 	case STATUS_BUSY:
15562 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15563 		    "Busy Status on REQUEST SENSE\n");
15564 		sd_retry_command(un, bp, SD_RETRIES_BUSY, NULL,
15565 		    NULL, EIO, SD_BSY_TIMEOUT / 500, kstat_waitq_enter);
15566 		return (SD_SENSE_DATA_IS_INVALID);
15567 
15568 	case STATUS_QFULL:
15569 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15570 		    "QFULL Status on REQUEST SENSE\n");
15571 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL,
15572 		    NULL, EIO, SD_BSY_TIMEOUT / 500, kstat_waitq_enter);
15573 		return (SD_SENSE_DATA_IS_INVALID);
15574 
15575 	case STATUS_CHECK:
15576 	case STATUS_TERMINATED:
15577 		msgp = "Check Condition on REQUEST SENSE\n";
15578 		goto sense_failed;
15579 
15580 	default:
15581 		msgp = "Not STATUS_GOOD on REQUEST_SENSE\n";
15582 		goto sense_failed;
15583 	}
15584 
15585 	/*
15586 	 * See if we got the minimum required amount of sense data.
15587 	 * Note: We are assuming the returned sense data is SENSE_LENGTH bytes
15588 	 * or less.
15589 	 */
15590 	if (((xp->xb_sense_state & STATE_XFERRED_DATA) == 0) ||
15591 	    (actual_len == 0)) {
15592 		msgp = "Request Sense couldn't get sense data\n";
15593 		goto sense_failed;
15594 	}
15595 
15596 	if (actual_len < SUN_MIN_SENSE_LENGTH) {
15597 		msgp = "Not enough sense information\n";
15598 		goto sense_failed;
15599 	}
15600 
15601 	/*
15602 	 * We require the extended sense data
15603 	 */
15604 	esp = (struct scsi_extended_sense *)xp->xb_sense_data;
15605 	if (esp->es_class != CLASS_EXTENDED_SENSE) {
15606 		if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
15607 			static char tmp[8];
15608 			static char buf[148];
15609 			char *p = (char *)(xp->xb_sense_data);
15610 			int i;
15611 
15612 			mutex_enter(&sd_sense_mutex);
15613 			(void) strcpy(buf, "undecodable sense information:");
15614 			for (i = 0; i < actual_len; i++) {
15615 				(void) sprintf(tmp, " 0x%x", *(p++)&0xff);
15616 				(void) strcpy(&buf[strlen(buf)], tmp);
15617 			}
15618 			i = strlen(buf);
15619 			(void) strcpy(&buf[i], "-(assumed fatal)\n");
15620 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, buf);
15621 			mutex_exit(&sd_sense_mutex);
15622 		}
15623 		/* Note: Legacy behavior, fail the command with no retry */
15624 		sd_return_failed_command(un, bp, EIO);
15625 		return (SD_SENSE_DATA_IS_INVALID);
15626 	}
15627 
15628 	/*
15629 	 * Check that es_code is valid (es_class concatenated with es_code
15630 	 * make up the "response code" field.  es_class will always be 7, so
15631 	 * make sure es_code is 0, 1, 2, 3 or 0xf.  es_code will indicate the
15632 	 * format.
15633 	 */
15634 	if ((esp->es_code != CODE_FMT_FIXED_CURRENT) &&
15635 	    (esp->es_code != CODE_FMT_FIXED_DEFERRED) &&
15636 	    (esp->es_code != CODE_FMT_DESCR_CURRENT) &&
15637 	    (esp->es_code != CODE_FMT_DESCR_DEFERRED) &&
15638 	    (esp->es_code != CODE_FMT_VENDOR_SPECIFIC)) {
15639 		goto sense_failed;
15640 	}
15641 
15642 	return (SD_SENSE_DATA_IS_VALID);
15643 
15644 sense_failed:
15645 	/*
15646 	 * If the request sense failed (for whatever reason), attempt
15647 	 * to retry the original command.
15648 	 */
15649 #if defined(__i386) || defined(__amd64)
15650 	/*
15651 	 * SD_RETRY_DELAY is conditionally compile (#if fibre) in
15652 	 * sddef.h for Sparc platform, and x86 uses 1 binary
15653 	 * for both SCSI/FC.
15654 	 * The SD_RETRY_DELAY value need to be adjusted here
15655 	 * when SD_RETRY_DELAY change in sddef.h
15656 	 */
15657 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
15658 	    sd_print_sense_failed_msg, msgp, EIO,
15659 	    un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, NULL);
15660 #else
15661 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
15662 	    sd_print_sense_failed_msg, msgp, EIO, SD_RETRY_DELAY, NULL);
15663 #endif
15664 
15665 	return (SD_SENSE_DATA_IS_INVALID);
15666 }
15667 
15668 
15669 
15670 /*
15671  *    Function: sd_decode_sense
15672  *
15673  * Description: Take recovery action(s) when SCSI Sense Data is received.
15674  *
15675  *     Context: Interrupt context.
15676  */
15677 
15678 static void
15679 sd_decode_sense(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
15680 	struct scsi_pkt *pktp)
15681 {
15682 	uint8_t sense_key;
15683 
15684 	ASSERT(un != NULL);
15685 	ASSERT(mutex_owned(SD_MUTEX(un)));
15686 	ASSERT(bp != NULL);
15687 	ASSERT(bp != un->un_rqs_bp);
15688 	ASSERT(xp != NULL);
15689 	ASSERT(pktp != NULL);
15690 
15691 	sense_key = scsi_sense_key(xp->xb_sense_data);
15692 
15693 	switch (sense_key) {
15694 	case KEY_NO_SENSE:
15695 		sd_sense_key_no_sense(un, bp, xp, pktp);
15696 		break;
15697 	case KEY_RECOVERABLE_ERROR:
15698 		sd_sense_key_recoverable_error(un, xp->xb_sense_data,
15699 		    bp, xp, pktp);
15700 		break;
15701 	case KEY_NOT_READY:
15702 		sd_sense_key_not_ready(un, xp->xb_sense_data,
15703 		    bp, xp, pktp);
15704 		break;
15705 	case KEY_MEDIUM_ERROR:
15706 	case KEY_HARDWARE_ERROR:
15707 		sd_sense_key_medium_or_hardware_error(un,
15708 		    xp->xb_sense_data, bp, xp, pktp);
15709 		break;
15710 	case KEY_ILLEGAL_REQUEST:
15711 		sd_sense_key_illegal_request(un, bp, xp, pktp);
15712 		break;
15713 	case KEY_UNIT_ATTENTION:
15714 		sd_sense_key_unit_attention(un, xp->xb_sense_data,
15715 		    bp, xp, pktp);
15716 		break;
15717 	case KEY_WRITE_PROTECT:
15718 	case KEY_VOLUME_OVERFLOW:
15719 	case KEY_MISCOMPARE:
15720 		sd_sense_key_fail_command(un, bp, xp, pktp);
15721 		break;
15722 	case KEY_BLANK_CHECK:
15723 		sd_sense_key_blank_check(un, bp, xp, pktp);
15724 		break;
15725 	case KEY_ABORTED_COMMAND:
15726 		sd_sense_key_aborted_command(un, bp, xp, pktp);
15727 		break;
15728 	case KEY_VENDOR_UNIQUE:
15729 	case KEY_COPY_ABORTED:
15730 	case KEY_EQUAL:
15731 	case KEY_RESERVED:
15732 	default:
15733 		sd_sense_key_default(un, xp->xb_sense_data,
15734 		    bp, xp, pktp);
15735 		break;
15736 	}
15737 }
15738 
15739 
15740 /*
15741  *    Function: sd_dump_memory
15742  *
15743  * Description: Debug logging routine to print the contents of a user provided
15744  *		buffer. The output of the buffer is broken up into 256 byte
15745  *		segments due to a size constraint of the scsi_log.
15746  *		implementation.
15747  *
15748  *   Arguments: un - ptr to softstate
15749  *		comp - component mask
15750  *		title - "title" string to preceed data when printed
15751  *		data - ptr to data block to be printed
15752  *		len - size of data block to be printed
15753  *		fmt - SD_LOG_HEX (use 0x%02x format) or SD_LOG_CHAR (use %c)
15754  *
15755  *     Context: May be called from interrupt context
15756  */
15757 
15758 #define	SD_DUMP_MEMORY_BUF_SIZE	256
15759 
15760 static char *sd_dump_format_string[] = {
15761 		" 0x%02x",
15762 		" %c"
15763 };
15764 
15765 static void
15766 sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, uchar_t *data,
15767     int len, int fmt)
15768 {
15769 	int	i, j;
15770 	int	avail_count;
15771 	int	start_offset;
15772 	int	end_offset;
15773 	size_t	entry_len;
15774 	char	*bufp;
15775 	char	*local_buf;
15776 	char	*format_string;
15777 
15778 	ASSERT((fmt == SD_LOG_HEX) || (fmt == SD_LOG_CHAR));
15779 
15780 	/*
15781 	 * In the debug version of the driver, this function is called from a
15782 	 * number of places which are NOPs in the release driver.
15783 	 * The debug driver therefore has additional methods of filtering
15784 	 * debug output.
15785 	 */
15786 #ifdef SDDEBUG
15787 	/*
15788 	 * In the debug version of the driver we can reduce the amount of debug
15789 	 * messages by setting sd_error_level to something other than
15790 	 * SCSI_ERR_ALL and clearing bits in sd_level_mask and
15791 	 * sd_component_mask.
15792 	 */
15793 	if (((sd_level_mask & (SD_LOGMASK_DUMP_MEM | SD_LOGMASK_DIAG)) == 0) ||
15794 	    (sd_error_level != SCSI_ERR_ALL)) {
15795 		return;
15796 	}
15797 	if (((sd_component_mask & comp) == 0) ||
15798 	    (sd_error_level != SCSI_ERR_ALL)) {
15799 		return;
15800 	}
15801 #else
15802 	if (sd_error_level != SCSI_ERR_ALL) {
15803 		return;
15804 	}
15805 #endif
15806 
15807 	local_buf = kmem_zalloc(SD_DUMP_MEMORY_BUF_SIZE, KM_SLEEP);
15808 	bufp = local_buf;
15809 	/*
15810 	 * Available length is the length of local_buf[], minus the
15811 	 * length of the title string, minus one for the ":", minus
15812 	 * one for the newline, minus one for the NULL terminator.
15813 	 * This gives the #bytes available for holding the printed
15814 	 * values from the given data buffer.
15815 	 */
15816 	if (fmt == SD_LOG_HEX) {
15817 		format_string = sd_dump_format_string[0];
15818 	} else /* SD_LOG_CHAR */ {
15819 		format_string = sd_dump_format_string[1];
15820 	}
15821 	/*
15822 	 * Available count is the number of elements from the given
15823 	 * data buffer that we can fit into the available length.
15824 	 * This is based upon the size of the format string used.
15825 	 * Make one entry and find it's size.
15826 	 */
15827 	(void) sprintf(bufp, format_string, data[0]);
15828 	entry_len = strlen(bufp);
15829 	avail_count = (SD_DUMP_MEMORY_BUF_SIZE - strlen(title) - 3) / entry_len;
15830 
15831 	j = 0;
15832 	while (j < len) {
15833 		bufp = local_buf;
15834 		bzero(bufp, SD_DUMP_MEMORY_BUF_SIZE);
15835 		start_offset = j;
15836 
15837 		end_offset = start_offset + avail_count;
15838 
15839 		(void) sprintf(bufp, "%s:", title);
15840 		bufp += strlen(bufp);
15841 		for (i = start_offset; ((i < end_offset) && (j < len));
15842 		    i++, j++) {
15843 			(void) sprintf(bufp, format_string, data[i]);
15844 			bufp += entry_len;
15845 		}
15846 		(void) sprintf(bufp, "\n");
15847 
15848 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, "%s", local_buf);
15849 	}
15850 	kmem_free(local_buf, SD_DUMP_MEMORY_BUF_SIZE);
15851 }
15852 
15853 /*
15854  *    Function: sd_print_sense_msg
15855  *
15856  * Description: Log a message based upon the given sense data.
15857  *
15858  *   Arguments: un - ptr to associated softstate
15859  *		bp - ptr to buf(9S) for the command
15860  *		arg - ptr to associate sd_sense_info struct
15861  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
15862  *			or SD_NO_RETRY_ISSUED
15863  *
15864  *     Context: May be called from interrupt context
15865  */
15866 
15867 static void
15868 sd_print_sense_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
15869 {
15870 	struct sd_xbuf	*xp;
15871 	struct scsi_pkt	*pktp;
15872 	uint8_t *sensep;
15873 	daddr_t request_blkno;
15874 	diskaddr_t err_blkno;
15875 	int severity;
15876 	int pfa_flag;
15877 	extern struct scsi_key_strings scsi_cmds[];
15878 
15879 	ASSERT(un != NULL);
15880 	ASSERT(mutex_owned(SD_MUTEX(un)));
15881 	ASSERT(bp != NULL);
15882 	xp = SD_GET_XBUF(bp);
15883 	ASSERT(xp != NULL);
15884 	pktp = SD_GET_PKTP(bp);
15885 	ASSERT(pktp != NULL);
15886 	ASSERT(arg != NULL);
15887 
15888 	severity = ((struct sd_sense_info *)(arg))->ssi_severity;
15889 	pfa_flag = ((struct sd_sense_info *)(arg))->ssi_pfa_flag;
15890 
15891 	if ((code == SD_DELAYED_RETRY_ISSUED) ||
15892 	    (code == SD_IMMEDIATE_RETRY_ISSUED)) {
15893 		severity = SCSI_ERR_RETRYABLE;
15894 	}
15895 
15896 	/* Use absolute block number for the request block number */
15897 	request_blkno = xp->xb_blkno;
15898 
15899 	/*
15900 	 * Now try to get the error block number from the sense data
15901 	 */
15902 	sensep = xp->xb_sense_data;
15903 
15904 	if (scsi_sense_info_uint64(sensep, SENSE_LENGTH,
15905 	    (uint64_t *)&err_blkno)) {
15906 		/*
15907 		 * We retrieved the error block number from the information
15908 		 * portion of the sense data.
15909 		 *
15910 		 * For USCSI commands we are better off using the error
15911 		 * block no. as the requested block no. (This is the best
15912 		 * we can estimate.)
15913 		 */
15914 		if ((SD_IS_BUFIO(xp) == FALSE) &&
15915 		    ((pktp->pkt_flags & FLAG_SILENT) == 0)) {
15916 			request_blkno = err_blkno;
15917 		}
15918 	} else {
15919 		/*
15920 		 * Without the es_valid bit set (for fixed format) or an
15921 		 * information descriptor (for descriptor format) we cannot
15922 		 * be certain of the error blkno, so just use the
15923 		 * request_blkno.
15924 		 */
15925 		err_blkno = (diskaddr_t)request_blkno;
15926 	}
15927 
15928 	/*
15929 	 * The following will log the buffer contents for the release driver
15930 	 * if the SD_LOGMASK_DIAG bit of sd_level_mask is set, or the error
15931 	 * level is set to verbose.
15932 	 */
15933 	sd_dump_memory(un, SD_LOG_IO, "Failed CDB",
15934 	    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
15935 	sd_dump_memory(un, SD_LOG_IO, "Sense Data",
15936 	    (uchar_t *)sensep, SENSE_LENGTH, SD_LOG_HEX);
15937 
15938 	if (pfa_flag == FALSE) {
15939 		/* This is normally only set for USCSI */
15940 		if ((pktp->pkt_flags & FLAG_SILENT) != 0) {
15941 			return;
15942 		}
15943 
15944 		if ((SD_IS_BUFIO(xp) == TRUE) &&
15945 		    (((sd_level_mask & SD_LOGMASK_DIAG) == 0) &&
15946 		    (severity < sd_error_level))) {
15947 			return;
15948 		}
15949 	}
15950 
15951 	/*
15952 	 * Check for Sonoma Failover and keep a count of how many failed I/O's
15953 	 */
15954 	if ((SD_IS_LSI(un)) &&
15955 	    (scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) &&
15956 	    (scsi_sense_asc(sensep) == 0x94) &&
15957 	    (scsi_sense_ascq(sensep) == 0x01)) {
15958 		un->un_sonoma_failure_count++;
15959 		if (un->un_sonoma_failure_count > 1) {
15960 			return;
15961 		}
15962 	}
15963 
15964 	scsi_vu_errmsg(SD_SCSI_DEVP(un), pktp, sd_label, severity,
15965 	    request_blkno, err_blkno, scsi_cmds,
15966 	    (struct scsi_extended_sense *)sensep,
15967 	    un->un_additional_codes, NULL);
15968 }
15969 
15970 /*
15971  *    Function: sd_sense_key_no_sense
15972  *
15973  * Description: Recovery action when sense data was not received.
15974  *
15975  *     Context: May be called from interrupt context
15976  */
15977 
15978 static void
15979 sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
15980 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
15981 {
15982 	struct sd_sense_info	si;
15983 
15984 	ASSERT(un != NULL);
15985 	ASSERT(mutex_owned(SD_MUTEX(un)));
15986 	ASSERT(bp != NULL);
15987 	ASSERT(xp != NULL);
15988 	ASSERT(pktp != NULL);
15989 
15990 	si.ssi_severity = SCSI_ERR_FATAL;
15991 	si.ssi_pfa_flag = FALSE;
15992 
15993 	SD_UPDATE_ERRSTATS(un, sd_softerrs);
15994 
15995 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
15996 	    &si, EIO, (clock_t)0, NULL);
15997 }
15998 
15999 
16000 /*
16001  *    Function: sd_sense_key_recoverable_error
16002  *
16003  * Description: Recovery actions for a SCSI "Recovered Error" sense key.
16004  *
16005  *     Context: May be called from interrupt context
16006  */
16007 
16008 static void
16009 sd_sense_key_recoverable_error(struct sd_lun *un,
16010 	uint8_t *sense_datap,
16011 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
16012 {
16013 	struct sd_sense_info	si;
16014 	uint8_t asc = scsi_sense_asc(sense_datap);
16015 
16016 	ASSERT(un != NULL);
16017 	ASSERT(mutex_owned(SD_MUTEX(un)));
16018 	ASSERT(bp != NULL);
16019 	ASSERT(xp != NULL);
16020 	ASSERT(pktp != NULL);
16021 
16022 	/*
16023 	 * 0x5D: FAILURE PREDICTION THRESHOLD EXCEEDED
16024 	 */
16025 	if ((asc == 0x5D) && (sd_report_pfa != 0)) {
16026 		SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
16027 		si.ssi_severity = SCSI_ERR_INFO;
16028 		si.ssi_pfa_flag = TRUE;
16029 	} else {
16030 		SD_UPDATE_ERRSTATS(un, sd_softerrs);
16031 		SD_UPDATE_ERRSTATS(un, sd_rq_recov_err);
16032 		si.ssi_severity = SCSI_ERR_RECOVERED;
16033 		si.ssi_pfa_flag = FALSE;
16034 	}
16035 
16036 	if (pktp->pkt_resid == 0) {
16037 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16038 		sd_return_command(un, bp);
16039 		return;
16040 	}
16041 
16042 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
16043 	    &si, EIO, (clock_t)0, NULL);
16044 }
16045 
16046 
16047 
16048 
16049 /*
16050  *    Function: sd_sense_key_not_ready
16051  *
16052  * Description: Recovery actions for a SCSI "Not Ready" sense key.
16053  *
16054  *     Context: May be called from interrupt context
16055  */
16056 
16057 static void
16058 sd_sense_key_not_ready(struct sd_lun *un,
16059 	uint8_t *sense_datap,
16060 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
16061 {
16062 	struct sd_sense_info	si;
16063 	uint8_t asc = scsi_sense_asc(sense_datap);
16064 	uint8_t ascq = scsi_sense_ascq(sense_datap);
16065 
16066 	ASSERT(un != NULL);
16067 	ASSERT(mutex_owned(SD_MUTEX(un)));
16068 	ASSERT(bp != NULL);
16069 	ASSERT(xp != NULL);
16070 	ASSERT(pktp != NULL);
16071 
16072 	si.ssi_severity = SCSI_ERR_FATAL;
16073 	si.ssi_pfa_flag = FALSE;
16074 
16075 	/*
16076 	 * Update error stats after first NOT READY error. Disks may have
16077 	 * been powered down and may need to be restarted.  For CDROMs,
16078 	 * report NOT READY errors only if media is present.
16079 	 */
16080 	if ((ISCD(un) && (asc == 0x3A)) ||
16081 	    (xp->xb_nr_retry_count > 0)) {
16082 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
16083 		SD_UPDATE_ERRSTATS(un, sd_rq_ntrdy_err);
16084 	}
16085 
16086 	/*
16087 	 * Just fail if the "not ready" retry limit has been reached.
16088 	 */
16089 	if (xp->xb_nr_retry_count >= un->un_notready_retry_count) {
16090 		/* Special check for error message printing for removables. */
16091 		if (un->un_f_has_removable_media && (asc == 0x04) &&
16092 		    (ascq >= 0x04)) {
16093 			si.ssi_severity = SCSI_ERR_ALL;
16094 		}
16095 		goto fail_command;
16096 	}
16097 
16098 	/*
16099 	 * Check the ASC and ASCQ in the sense data as needed, to determine
16100 	 * what to do.
16101 	 */
16102 	switch (asc) {
16103 	case 0x04:	/* LOGICAL UNIT NOT READY */
16104 		/*
16105 		 * disk drives that don't spin up result in a very long delay
16106 		 * in format without warning messages. We will log a message
16107 		 * if the error level is set to verbose.
16108 		 */
16109 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
16110 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16111 			    "logical unit not ready, resetting disk\n");
16112 		}
16113 
16114 		/*
16115 		 * There are different requirements for CDROMs and disks for
16116 		 * the number of retries.  If a CD-ROM is giving this, it is
16117 		 * probably reading TOC and is in the process of getting
16118 		 * ready, so we should keep on trying for a long time to make
16119 		 * sure that all types of media are taken in account (for
16120 		 * some media the drive takes a long time to read TOC).  For
16121 		 * disks we do not want to retry this too many times as this
16122 		 * can cause a long hang in format when the drive refuses to
16123 		 * spin up (a very common failure).
16124 		 */
16125 		switch (ascq) {
16126 		case 0x00:  /* LUN NOT READY, CAUSE NOT REPORTABLE */
16127 			/*
16128 			 * Disk drives frequently refuse to spin up which
16129 			 * results in a very long hang in format without
16130 			 * warning messages.
16131 			 *
16132 			 * Note: This code preserves the legacy behavior of
16133 			 * comparing xb_nr_retry_count against zero for fibre
16134 			 * channel targets instead of comparing against the
16135 			 * un_reset_retry_count value.  The reason for this
16136 			 * discrepancy has been so utterly lost beneath the
16137 			 * Sands of Time that even Indiana Jones could not
16138 			 * find it.
16139 			 */
16140 			if (un->un_f_is_fibre == TRUE) {
16141 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
16142 				    (xp->xb_nr_retry_count > 0)) &&
16143 				    (un->un_startstop_timeid == NULL)) {
16144 					scsi_log(SD_DEVINFO(un), sd_label,
16145 					    CE_WARN, "logical unit not ready, "
16146 					    "resetting disk\n");
16147 					sd_reset_target(un, pktp);
16148 				}
16149 			} else {
16150 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
16151 				    (xp->xb_nr_retry_count >
16152 				    un->un_reset_retry_count)) &&
16153 				    (un->un_startstop_timeid == NULL)) {
16154 					scsi_log(SD_DEVINFO(un), sd_label,
16155 					    CE_WARN, "logical unit not ready, "
16156 					    "resetting disk\n");
16157 					sd_reset_target(un, pktp);
16158 				}
16159 			}
16160 			break;
16161 
16162 		case 0x01:  /* LUN IS IN PROCESS OF BECOMING READY */
16163 			/*
16164 			 * If the target is in the process of becoming
16165 			 * ready, just proceed with the retry. This can
16166 			 * happen with CD-ROMs that take a long time to
16167 			 * read TOC after a power cycle or reset.
16168 			 */
16169 			goto do_retry;
16170 
16171 		case 0x02:  /* LUN NOT READY, INITITIALIZING CMD REQUIRED */
16172 			break;
16173 
16174 		case 0x03:  /* LUN NOT READY, MANUAL INTERVENTION REQUIRED */
16175 			/*
16176 			 * Retries cannot help here so just fail right away.
16177 			 */
16178 			goto fail_command;
16179 
16180 		case 0x88:
16181 			/*
16182 			 * Vendor-unique code for T3/T4: it indicates a
16183 			 * path problem in a mutipathed config, but as far as
16184 			 * the target driver is concerned it equates to a fatal
16185 			 * error, so we should just fail the command right away
16186 			 * (without printing anything to the console). If this
16187 			 * is not a T3/T4, fall thru to the default recovery
16188 			 * action.
16189 			 * T3/T4 is FC only, don't need to check is_fibre
16190 			 */
16191 			if (SD_IS_T3(un) || SD_IS_T4(un)) {
16192 				sd_return_failed_command(un, bp, EIO);
16193 				return;
16194 			}
16195 			/* FALLTHRU */
16196 
16197 		case 0x04:  /* LUN NOT READY, FORMAT IN PROGRESS */
16198 		case 0x05:  /* LUN NOT READY, REBUILD IN PROGRESS */
16199 		case 0x06:  /* LUN NOT READY, RECALCULATION IN PROGRESS */
16200 		case 0x07:  /* LUN NOT READY, OPERATION IN PROGRESS */
16201 		case 0x08:  /* LUN NOT READY, LONG WRITE IN PROGRESS */
16202 		default:    /* Possible future codes in SCSI spec? */
16203 			/*
16204 			 * For removable-media devices, do not retry if
16205 			 * ASCQ > 2 as these result mostly from USCSI commands
16206 			 * on MMC devices issued to check status of an
16207 			 * operation initiated in immediate mode.  Also for
16208 			 * ASCQ >= 4 do not print console messages as these
16209 			 * mainly represent a user-initiated operation
16210 			 * instead of a system failure.
16211 			 */
16212 			if (un->un_f_has_removable_media) {
16213 				si.ssi_severity = SCSI_ERR_ALL;
16214 				goto fail_command;
16215 			}
16216 			break;
16217 		}
16218 
16219 		/*
16220 		 * As part of our recovery attempt for the NOT READY
16221 		 * condition, we issue a START STOP UNIT command. However
16222 		 * we want to wait for a short delay before attempting this
16223 		 * as there may still be more commands coming back from the
16224 		 * target with the check condition. To do this we use
16225 		 * timeout(9F) to call sd_start_stop_unit_callback() after
16226 		 * the delay interval expires. (sd_start_stop_unit_callback()
16227 		 * dispatches sd_start_stop_unit_task(), which will issue
16228 		 * the actual START STOP UNIT command. The delay interval
16229 		 * is one-half of the delay that we will use to retry the
16230 		 * command that generated the NOT READY condition.
16231 		 *
16232 		 * Note that we could just dispatch sd_start_stop_unit_task()
16233 		 * from here and allow it to sleep for the delay interval,
16234 		 * but then we would be tying up the taskq thread
16235 		 * uncesessarily for the duration of the delay.
16236 		 *
16237 		 * Do not issue the START STOP UNIT if the current command
16238 		 * is already a START STOP UNIT.
16239 		 */
16240 		if (pktp->pkt_cdbp[0] == SCMD_START_STOP) {
16241 			break;
16242 		}
16243 
16244 		/*
16245 		 * Do not schedule the timeout if one is already pending.
16246 		 */
16247 		if (un->un_startstop_timeid != NULL) {
16248 			SD_INFO(SD_LOG_ERROR, un,
16249 			    "sd_sense_key_not_ready: restart already issued to"
16250 			    " %s%d\n", ddi_driver_name(SD_DEVINFO(un)),
16251 			    ddi_get_instance(SD_DEVINFO(un)));
16252 			break;
16253 		}
16254 
16255 		/*
16256 		 * Schedule the START STOP UNIT command, then queue the command
16257 		 * for a retry.
16258 		 *
16259 		 * Note: A timeout is not scheduled for this retry because we
16260 		 * want the retry to be serial with the START_STOP_UNIT. The
16261 		 * retry will be started when the START_STOP_UNIT is completed
16262 		 * in sd_start_stop_unit_task.
16263 		 */
16264 		un->un_startstop_timeid = timeout(sd_start_stop_unit_callback,
16265 		    un, SD_BSY_TIMEOUT / 2);
16266 		xp->xb_nr_retry_count++;
16267 		sd_set_retry_bp(un, bp, 0, kstat_waitq_enter);
16268 		return;
16269 
16270 	case 0x05:	/* LOGICAL UNIT DOES NOT RESPOND TO SELECTION */
16271 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
16272 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16273 			    "unit does not respond to selection\n");
16274 		}
16275 		break;
16276 
16277 	case 0x3A:	/* MEDIUM NOT PRESENT */
16278 		if (sd_error_level >= SCSI_ERR_FATAL) {
16279 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16280 			    "Caddy not inserted in drive\n");
16281 		}
16282 
16283 		sr_ejected(un);
16284 		un->un_mediastate = DKIO_EJECTED;
16285 		/* The state has changed, inform the media watch routines */
16286 		cv_broadcast(&un->un_state_cv);
16287 		/* Just fail if no media is present in the drive. */
16288 		goto fail_command;
16289 
16290 	default:
16291 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
16292 			scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
16293 			    "Unit not Ready. Additional sense code 0x%x\n",
16294 			    asc);
16295 		}
16296 		break;
16297 	}
16298 
16299 do_retry:
16300 
16301 	/*
16302 	 * Retry the command, as some targets may report NOT READY for
16303 	 * several seconds after being reset.
16304 	 */
16305 	xp->xb_nr_retry_count++;
16306 	si.ssi_severity = SCSI_ERR_RETRYABLE;
16307 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
16308 	    &si, EIO, SD_BSY_TIMEOUT, NULL);
16309 
16310 	return;
16311 
16312 fail_command:
16313 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16314 	sd_return_failed_command(un, bp, EIO);
16315 }
16316 
16317 
16318 
16319 /*
16320  *    Function: sd_sense_key_medium_or_hardware_error
16321  *
16322  * Description: Recovery actions for a SCSI "Medium Error" or "Hardware Error"
16323  *		sense key.
16324  *
16325  *     Context: May be called from interrupt context
16326  */
16327 
16328 static void
16329 sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
16330 	uint8_t *sense_datap,
16331 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
16332 {
16333 	struct sd_sense_info	si;
16334 	uint8_t sense_key = scsi_sense_key(sense_datap);
16335 	uint8_t asc = scsi_sense_asc(sense_datap);
16336 
16337 	ASSERT(un != NULL);
16338 	ASSERT(mutex_owned(SD_MUTEX(un)));
16339 	ASSERT(bp != NULL);
16340 	ASSERT(xp != NULL);
16341 	ASSERT(pktp != NULL);
16342 
16343 	si.ssi_severity = SCSI_ERR_FATAL;
16344 	si.ssi_pfa_flag = FALSE;
16345 
16346 	if (sense_key == KEY_MEDIUM_ERROR) {
16347 		SD_UPDATE_ERRSTATS(un, sd_rq_media_err);
16348 	}
16349 
16350 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16351 
16352 	if ((un->un_reset_retry_count != 0) &&
16353 	    (xp->xb_retry_count == un->un_reset_retry_count)) {
16354 		mutex_exit(SD_MUTEX(un));
16355 		/* Do NOT do a RESET_ALL here: too intrusive. (4112858) */
16356 		if (un->un_f_allow_bus_device_reset == TRUE) {
16357 
16358 			boolean_t try_resetting_target = B_TRUE;
16359 
16360 			/*
16361 			 * We need to be able to handle specific ASC when we are
16362 			 * handling a KEY_HARDWARE_ERROR. In particular
16363 			 * taking the default action of resetting the target may
16364 			 * not be the appropriate way to attempt recovery.
16365 			 * Resetting a target because of a single LUN failure
16366 			 * victimizes all LUNs on that target.
16367 			 *
16368 			 * This is true for the LSI arrays, if an LSI
16369 			 * array controller returns an ASC of 0x84 (LUN Dead) we
16370 			 * should trust it.
16371 			 */
16372 
16373 			if (sense_key == KEY_HARDWARE_ERROR) {
16374 				switch (asc) {
16375 				case 0x84:
16376 					if (SD_IS_LSI(un)) {
16377 						try_resetting_target = B_FALSE;
16378 					}
16379 					break;
16380 				default:
16381 					break;
16382 				}
16383 			}
16384 
16385 			if (try_resetting_target == B_TRUE) {
16386 				int reset_retval = 0;
16387 				if (un->un_f_lun_reset_enabled == TRUE) {
16388 					SD_TRACE(SD_LOG_IO_CORE, un,
16389 					    "sd_sense_key_medium_or_hardware_"
16390 					    "error: issuing RESET_LUN\n");
16391 					reset_retval =
16392 					    scsi_reset(SD_ADDRESS(un),
16393 					    RESET_LUN);
16394 				}
16395 				if (reset_retval == 0) {
16396 					SD_TRACE(SD_LOG_IO_CORE, un,
16397 					    "sd_sense_key_medium_or_hardware_"
16398 					    "error: issuing RESET_TARGET\n");
16399 					(void) scsi_reset(SD_ADDRESS(un),
16400 					    RESET_TARGET);
16401 				}
16402 			}
16403 		}
16404 		mutex_enter(SD_MUTEX(un));
16405 	}
16406 
16407 	/*
16408 	 * This really ought to be a fatal error, but we will retry anyway
16409 	 * as some drives report this as a spurious error.
16410 	 */
16411 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
16412 	    &si, EIO, (clock_t)0, NULL);
16413 }
16414 
16415 
16416 
16417 /*
16418  *    Function: sd_sense_key_illegal_request
16419  *
16420  * Description: Recovery actions for a SCSI "Illegal Request" sense key.
16421  *
16422  *     Context: May be called from interrupt context
16423  */
16424 
16425 static void
16426 sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
16427 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16428 {
16429 	struct sd_sense_info	si;
16430 
16431 	ASSERT(un != NULL);
16432 	ASSERT(mutex_owned(SD_MUTEX(un)));
16433 	ASSERT(bp != NULL);
16434 	ASSERT(xp != NULL);
16435 	ASSERT(pktp != NULL);
16436 
16437 	SD_UPDATE_ERRSTATS(un, sd_rq_illrq_err);
16438 
16439 	si.ssi_severity = SCSI_ERR_INFO;
16440 	si.ssi_pfa_flag = FALSE;
16441 
16442 	/* Pointless to retry if the target thinks it's an illegal request */
16443 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16444 	sd_return_failed_command(un, bp, EIO);
16445 }
16446 
16447 
16448 
16449 
16450 /*
16451  *    Function: sd_sense_key_unit_attention
16452  *
16453  * Description: Recovery actions for a SCSI "Unit Attention" sense key.
16454  *
16455  *     Context: May be called from interrupt context
16456  */
16457 
16458 static void
16459 sd_sense_key_unit_attention(struct sd_lun *un,
16460 	uint8_t *sense_datap,
16461 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
16462 {
16463 	/*
16464 	 * For UNIT ATTENTION we allow retries for one minute. Devices
16465 	 * like Sonoma can return UNIT ATTENTION close to a minute
16466 	 * under certain conditions.
16467 	 */
16468 	int	retry_check_flag = SD_RETRIES_UA;
16469 	boolean_t	kstat_updated = B_FALSE;
16470 	struct	sd_sense_info		si;
16471 	uint8_t asc = scsi_sense_asc(sense_datap);
16472 
16473 	ASSERT(un != NULL);
16474 	ASSERT(mutex_owned(SD_MUTEX(un)));
16475 	ASSERT(bp != NULL);
16476 	ASSERT(xp != NULL);
16477 	ASSERT(pktp != NULL);
16478 
16479 	si.ssi_severity = SCSI_ERR_INFO;
16480 	si.ssi_pfa_flag = FALSE;
16481 
16482 
16483 	switch (asc) {
16484 	case 0x5D:  /* FAILURE PREDICTION THRESHOLD EXCEEDED */
16485 		if (sd_report_pfa != 0) {
16486 			SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
16487 			si.ssi_pfa_flag = TRUE;
16488 			retry_check_flag = SD_RETRIES_STANDARD;
16489 			goto do_retry;
16490 		}
16491 
16492 		break;
16493 
16494 	case 0x29:  /* POWER ON, RESET, OR BUS DEVICE RESET OCCURRED */
16495 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
16496 			un->un_resvd_status |=
16497 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
16498 		}
16499 #ifdef _LP64
16500 		if (un->un_blockcount + 1 > SD_GROUP1_MAX_ADDRESS) {
16501 			if (taskq_dispatch(sd_tq, sd_reenable_dsense_task,
16502 			    un, KM_NOSLEEP) == 0) {
16503 				/*
16504 				 * If we can't dispatch the task we'll just
16505 				 * live without descriptor sense.  We can
16506 				 * try again on the next "unit attention"
16507 				 */
16508 				SD_ERROR(SD_LOG_ERROR, un,
16509 				    "sd_sense_key_unit_attention: "
16510 				    "Could not dispatch "
16511 				    "sd_reenable_dsense_task\n");
16512 			}
16513 		}
16514 #endif /* _LP64 */
16515 		/* FALLTHRU */
16516 
16517 	case 0x28: /* NOT READY TO READY CHANGE, MEDIUM MAY HAVE CHANGED */
16518 		if (!un->un_f_has_removable_media) {
16519 			break;
16520 		}
16521 
16522 		/*
16523 		 * When we get a unit attention from a removable-media device,
16524 		 * it may be in a state that will take a long time to recover
16525 		 * (e.g., from a reset).  Since we are executing in interrupt
16526 		 * context here, we cannot wait around for the device to come
16527 		 * back. So hand this command off to sd_media_change_task()
16528 		 * for deferred processing under taskq thread context. (Note
16529 		 * that the command still may be failed if a problem is
16530 		 * encountered at a later time.)
16531 		 */
16532 		if (taskq_dispatch(sd_tq, sd_media_change_task, pktp,
16533 		    KM_NOSLEEP) == 0) {
16534 			/*
16535 			 * Cannot dispatch the request so fail the command.
16536 			 */
16537 			SD_UPDATE_ERRSTATS(un, sd_harderrs);
16538 			SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
16539 			si.ssi_severity = SCSI_ERR_FATAL;
16540 			sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16541 			sd_return_failed_command(un, bp, EIO);
16542 		}
16543 
16544 		/*
16545 		 * If failed to dispatch sd_media_change_task(), we already
16546 		 * updated kstat. If succeed to dispatch sd_media_change_task(),
16547 		 * we should update kstat later if it encounters an error. So,
16548 		 * we update kstat_updated flag here.
16549 		 */
16550 		kstat_updated = B_TRUE;
16551 
16552 		/*
16553 		 * Either the command has been successfully dispatched to a
16554 		 * task Q for retrying, or the dispatch failed. In either case
16555 		 * do NOT retry again by calling sd_retry_command. This sets up
16556 		 * two retries of the same command and when one completes and
16557 		 * frees the resources the other will access freed memory,
16558 		 * a bad thing.
16559 		 */
16560 		return;
16561 
16562 	default:
16563 		break;
16564 	}
16565 
16566 	/*
16567 	 * Update kstat if we haven't done that.
16568 	 */
16569 	if (!kstat_updated) {
16570 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
16571 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
16572 	}
16573 
16574 do_retry:
16575 	sd_retry_command(un, bp, retry_check_flag, sd_print_sense_msg, &si,
16576 	    EIO, SD_UA_RETRY_DELAY, NULL);
16577 }
16578 
16579 
16580 
16581 /*
16582  *    Function: sd_sense_key_fail_command
16583  *
16584  * Description: Use to fail a command when we don't like the sense key that
16585  *		was returned.
16586  *
16587  *     Context: May be called from interrupt context
16588  */
16589 
16590 static void
16591 sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
16592 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16593 {
16594 	struct sd_sense_info	si;
16595 
16596 	ASSERT(un != NULL);
16597 	ASSERT(mutex_owned(SD_MUTEX(un)));
16598 	ASSERT(bp != NULL);
16599 	ASSERT(xp != NULL);
16600 	ASSERT(pktp != NULL);
16601 
16602 	si.ssi_severity = SCSI_ERR_FATAL;
16603 	si.ssi_pfa_flag = FALSE;
16604 
16605 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16606 	sd_return_failed_command(un, bp, EIO);
16607 }
16608 
16609 
16610 
16611 /*
16612  *    Function: sd_sense_key_blank_check
16613  *
16614  * Description: Recovery actions for a SCSI "Blank Check" sense key.
16615  *		Has no monetary connotation.
16616  *
16617  *     Context: May be called from interrupt context
16618  */
16619 
16620 static void
16621 sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
16622 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16623 {
16624 	struct sd_sense_info	si;
16625 
16626 	ASSERT(un != NULL);
16627 	ASSERT(mutex_owned(SD_MUTEX(un)));
16628 	ASSERT(bp != NULL);
16629 	ASSERT(xp != NULL);
16630 	ASSERT(pktp != NULL);
16631 
16632 	/*
16633 	 * Blank check is not fatal for removable devices, therefore
16634 	 * it does not require a console message.
16635 	 */
16636 	si.ssi_severity = (un->un_f_has_removable_media) ? SCSI_ERR_ALL :
16637 	    SCSI_ERR_FATAL;
16638 	si.ssi_pfa_flag = FALSE;
16639 
16640 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16641 	sd_return_failed_command(un, bp, EIO);
16642 }
16643 
16644 
16645 
16646 
16647 /*
16648  *    Function: sd_sense_key_aborted_command
16649  *
16650  * Description: Recovery actions for a SCSI "Aborted Command" sense key.
16651  *
16652  *     Context: May be called from interrupt context
16653  */
16654 
16655 static void
16656 sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
16657 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16658 {
16659 	struct sd_sense_info	si;
16660 
16661 	ASSERT(un != NULL);
16662 	ASSERT(mutex_owned(SD_MUTEX(un)));
16663 	ASSERT(bp != NULL);
16664 	ASSERT(xp != NULL);
16665 	ASSERT(pktp != NULL);
16666 
16667 	si.ssi_severity = SCSI_ERR_FATAL;
16668 	si.ssi_pfa_flag = FALSE;
16669 
16670 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16671 
16672 	/*
16673 	 * This really ought to be a fatal error, but we will retry anyway
16674 	 * as some drives report this as a spurious error.
16675 	 */
16676 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
16677 	    &si, EIO, drv_usectohz(100000), NULL);
16678 }
16679 
16680 
16681 
16682 /*
16683  *    Function: sd_sense_key_default
16684  *
16685  * Description: Default recovery action for several SCSI sense keys (basically
16686  *		attempts a retry).
16687  *
16688  *     Context: May be called from interrupt context
16689  */
16690 
16691 static void
16692 sd_sense_key_default(struct sd_lun *un,
16693 	uint8_t *sense_datap,
16694 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
16695 {
16696 	struct sd_sense_info	si;
16697 	uint8_t sense_key = scsi_sense_key(sense_datap);
16698 
16699 	ASSERT(un != NULL);
16700 	ASSERT(mutex_owned(SD_MUTEX(un)));
16701 	ASSERT(bp != NULL);
16702 	ASSERT(xp != NULL);
16703 	ASSERT(pktp != NULL);
16704 
16705 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16706 
16707 	/*
16708 	 * Undecoded sense key.	Attempt retries and hope that will fix
16709 	 * the problem.  Otherwise, we're dead.
16710 	 */
16711 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
16712 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16713 		    "Unhandled Sense Key '%s'\n", sense_keys[sense_key]);
16714 	}
16715 
16716 	si.ssi_severity = SCSI_ERR_FATAL;
16717 	si.ssi_pfa_flag = FALSE;
16718 
16719 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
16720 	    &si, EIO, (clock_t)0, NULL);
16721 }
16722 
16723 
16724 
16725 /*
16726  *    Function: sd_print_retry_msg
16727  *
16728  * Description: Print a message indicating the retry action being taken.
16729  *
16730  *   Arguments: un - ptr to associated softstate
16731  *		bp - ptr to buf(9S) for the command
16732  *		arg - not used.
16733  *		flag - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
16734  *			or SD_NO_RETRY_ISSUED
16735  *
16736  *     Context: May be called from interrupt context
16737  */
16738 /* ARGSUSED */
16739 static void
16740 sd_print_retry_msg(struct sd_lun *un, struct buf *bp, void *arg, int flag)
16741 {
16742 	struct sd_xbuf	*xp;
16743 	struct scsi_pkt *pktp;
16744 	char *reasonp;
16745 	char *msgp;
16746 
16747 	ASSERT(un != NULL);
16748 	ASSERT(mutex_owned(SD_MUTEX(un)));
16749 	ASSERT(bp != NULL);
16750 	pktp = SD_GET_PKTP(bp);
16751 	ASSERT(pktp != NULL);
16752 	xp = SD_GET_XBUF(bp);
16753 	ASSERT(xp != NULL);
16754 
16755 	ASSERT(!mutex_owned(&un->un_pm_mutex));
16756 	mutex_enter(&un->un_pm_mutex);
16757 	if ((un->un_state == SD_STATE_SUSPENDED) ||
16758 	    (SD_DEVICE_IS_IN_LOW_POWER(un)) ||
16759 	    (pktp->pkt_flags & FLAG_SILENT)) {
16760 		mutex_exit(&un->un_pm_mutex);
16761 		goto update_pkt_reason;
16762 	}
16763 	mutex_exit(&un->un_pm_mutex);
16764 
16765 	/*
16766 	 * Suppress messages if they are all the same pkt_reason; with
16767 	 * TQ, many (up to 256) are returned with the same pkt_reason.
16768 	 * If we are in panic, then suppress the retry messages.
16769 	 */
16770 	switch (flag) {
16771 	case SD_NO_RETRY_ISSUED:
16772 		msgp = "giving up";
16773 		break;
16774 	case SD_IMMEDIATE_RETRY_ISSUED:
16775 	case SD_DELAYED_RETRY_ISSUED:
16776 		if (ddi_in_panic() || (un->un_state == SD_STATE_OFFLINE) ||
16777 		    ((pktp->pkt_reason == un->un_last_pkt_reason) &&
16778 		    (sd_error_level != SCSI_ERR_ALL))) {
16779 			return;
16780 		}
16781 		msgp = "retrying command";
16782 		break;
16783 	default:
16784 		goto update_pkt_reason;
16785 	}
16786 
16787 	reasonp = (((pktp->pkt_statistics & STAT_PERR) != 0) ? "parity error" :
16788 	    scsi_rname(pktp->pkt_reason));
16789 
16790 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16791 	    "SCSI transport failed: reason '%s': %s\n", reasonp, msgp);
16792 
16793 update_pkt_reason:
16794 	/*
16795 	 * Update un->un_last_pkt_reason with the value in pktp->pkt_reason.
16796 	 * This is to prevent multiple console messages for the same failure
16797 	 * condition.  Note that un->un_last_pkt_reason is NOT restored if &
16798 	 * when the command is retried successfully because there still may be
16799 	 * more commands coming back with the same value of pktp->pkt_reason.
16800 	 */
16801 	if ((pktp->pkt_reason != CMD_CMPLT) || (xp->xb_retry_count == 0)) {
16802 		un->un_last_pkt_reason = pktp->pkt_reason;
16803 	}
16804 }
16805 
16806 
16807 /*
16808  *    Function: sd_print_cmd_incomplete_msg
16809  *
16810  * Description: Message logging fn. for a SCSA "CMD_INCOMPLETE" pkt_reason.
16811  *
16812  *   Arguments: un - ptr to associated softstate
16813  *		bp - ptr to buf(9S) for the command
16814  *		arg - passed to sd_print_retry_msg()
16815  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
16816  *			or SD_NO_RETRY_ISSUED
16817  *
16818  *     Context: May be called from interrupt context
16819  */
16820 
16821 static void
16822 sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg,
16823 	int code)
16824 {
16825 	dev_info_t	*dip;
16826 
16827 	ASSERT(un != NULL);
16828 	ASSERT(mutex_owned(SD_MUTEX(un)));
16829 	ASSERT(bp != NULL);
16830 
16831 	switch (code) {
16832 	case SD_NO_RETRY_ISSUED:
16833 		/* Command was failed. Someone turned off this target? */
16834 		if (un->un_state != SD_STATE_OFFLINE) {
16835 			/*
16836 			 * Suppress message if we are detaching and
16837 			 * device has been disconnected
16838 			 * Note that DEVI_IS_DEVICE_REMOVED is a consolidation
16839 			 * private interface and not part of the DDI
16840 			 */
16841 			dip = un->un_sd->sd_dev;
16842 			if (!(DEVI_IS_DETACHING(dip) &&
16843 			    DEVI_IS_DEVICE_REMOVED(dip))) {
16844 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16845 				"disk not responding to selection\n");
16846 			}
16847 			New_state(un, SD_STATE_OFFLINE);
16848 		}
16849 		break;
16850 
16851 	case SD_DELAYED_RETRY_ISSUED:
16852 	case SD_IMMEDIATE_RETRY_ISSUED:
16853 	default:
16854 		/* Command was successfully queued for retry */
16855 		sd_print_retry_msg(un, bp, arg, code);
16856 		break;
16857 	}
16858 }
16859 
16860 
16861 /*
16862  *    Function: sd_pkt_reason_cmd_incomplete
16863  *
16864  * Description: Recovery actions for a SCSA "CMD_INCOMPLETE" pkt_reason.
16865  *
16866  *     Context: May be called from interrupt context
16867  */
16868 
16869 static void
16870 sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
16871 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16872 {
16873 	int flag = SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE;
16874 
16875 	ASSERT(un != NULL);
16876 	ASSERT(mutex_owned(SD_MUTEX(un)));
16877 	ASSERT(bp != NULL);
16878 	ASSERT(xp != NULL);
16879 	ASSERT(pktp != NULL);
16880 
16881 	/* Do not do a reset if selection did not complete */
16882 	/* Note: Should this not just check the bit? */
16883 	if (pktp->pkt_state != STATE_GOT_BUS) {
16884 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
16885 		sd_reset_target(un, pktp);
16886 	}
16887 
16888 	/*
16889 	 * If the target was not successfully selected, then set
16890 	 * SD_RETRIES_FAILFAST to indicate that we lost communication
16891 	 * with the target, and further retries and/or commands are
16892 	 * likely to take a long time.
16893 	 */
16894 	if ((pktp->pkt_state & STATE_GOT_TARGET) == 0) {
16895 		flag |= SD_RETRIES_FAILFAST;
16896 	}
16897 
16898 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
16899 
16900 	sd_retry_command(un, bp, flag,
16901 	    sd_print_cmd_incomplete_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
16902 }
16903 
16904 
16905 
16906 /*
16907  *    Function: sd_pkt_reason_cmd_tran_err
16908  *
16909  * Description: Recovery actions for a SCSA "CMD_TRAN_ERR" pkt_reason.
16910  *
16911  *     Context: May be called from interrupt context
16912  */
16913 
16914 static void
16915 sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
16916 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16917 {
16918 	ASSERT(un != NULL);
16919 	ASSERT(mutex_owned(SD_MUTEX(un)));
16920 	ASSERT(bp != NULL);
16921 	ASSERT(xp != NULL);
16922 	ASSERT(pktp != NULL);
16923 
16924 	/*
16925 	 * Do not reset if we got a parity error, or if
16926 	 * selection did not complete.
16927 	 */
16928 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16929 	/* Note: Should this not just check the bit for pkt_state? */
16930 	if (((pktp->pkt_statistics & STAT_PERR) == 0) &&
16931 	    (pktp->pkt_state != STATE_GOT_BUS)) {
16932 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
16933 		sd_reset_target(un, pktp);
16934 	}
16935 
16936 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
16937 
16938 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
16939 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
16940 }
16941 
16942 
16943 
16944 /*
16945  *    Function: sd_pkt_reason_cmd_reset
16946  *
16947  * Description: Recovery actions for a SCSA "CMD_RESET" pkt_reason.
16948  *
16949  *     Context: May be called from interrupt context
16950  */
16951 
16952 static void
16953 sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
16954 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16955 {
16956 	ASSERT(un != NULL);
16957 	ASSERT(mutex_owned(SD_MUTEX(un)));
16958 	ASSERT(bp != NULL);
16959 	ASSERT(xp != NULL);
16960 	ASSERT(pktp != NULL);
16961 
16962 	/* The target may still be running the command, so try to reset. */
16963 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
16964 	sd_reset_target(un, pktp);
16965 
16966 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
16967 
16968 	/*
16969 	 * If pkt_reason is CMD_RESET chances are that this pkt got
16970 	 * reset because another target on this bus caused it. The target
16971 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
16972 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
16973 	 */
16974 
16975 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
16976 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
16977 }
16978 
16979 
16980 
16981 
16982 /*
16983  *    Function: sd_pkt_reason_cmd_aborted
16984  *
16985  * Description: Recovery actions for a SCSA "CMD_ABORTED" pkt_reason.
16986  *
16987  *     Context: May be called from interrupt context
16988  */
16989 
16990 static void
16991 sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
16992 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16993 {
16994 	ASSERT(un != NULL);
16995 	ASSERT(mutex_owned(SD_MUTEX(un)));
16996 	ASSERT(bp != NULL);
16997 	ASSERT(xp != NULL);
16998 	ASSERT(pktp != NULL);
16999 
17000 	/* The target may still be running the command, so try to reset. */
17001 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
17002 	sd_reset_target(un, pktp);
17003 
17004 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
17005 
17006 	/*
17007 	 * If pkt_reason is CMD_ABORTED chances are that this pkt got
17008 	 * aborted because another target on this bus caused it. The target
17009 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
17010 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
17011 	 */
17012 
17013 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
17014 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
17015 }
17016 
17017 
17018 
17019 /*
17020  *    Function: sd_pkt_reason_cmd_timeout
17021  *
17022  * Description: Recovery actions for a SCSA "CMD_TIMEOUT" pkt_reason.
17023  *
17024  *     Context: May be called from interrupt context
17025  */
17026 
17027 static void
17028 sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
17029 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17030 {
17031 	ASSERT(un != NULL);
17032 	ASSERT(mutex_owned(SD_MUTEX(un)));
17033 	ASSERT(bp != NULL);
17034 	ASSERT(xp != NULL);
17035 	ASSERT(pktp != NULL);
17036 
17037 
17038 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
17039 	sd_reset_target(un, pktp);
17040 
17041 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
17042 
17043 	/*
17044 	 * A command timeout indicates that we could not establish
17045 	 * communication with the target, so set SD_RETRIES_FAILFAST
17046 	 * as further retries/commands are likely to take a long time.
17047 	 */
17048 	sd_retry_command(un, bp,
17049 	    (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE | SD_RETRIES_FAILFAST),
17050 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
17051 }
17052 
17053 
17054 
17055 /*
17056  *    Function: sd_pkt_reason_cmd_unx_bus_free
17057  *
17058  * Description: Recovery actions for a SCSA "CMD_UNX_BUS_FREE" pkt_reason.
17059  *
17060  *     Context: May be called from interrupt context
17061  */
17062 
17063 static void
17064 sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
17065 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17066 {
17067 	void (*funcp)(struct sd_lun *un, struct buf *bp, void *arg, int code);
17068 
17069 	ASSERT(un != NULL);
17070 	ASSERT(mutex_owned(SD_MUTEX(un)));
17071 	ASSERT(bp != NULL);
17072 	ASSERT(xp != NULL);
17073 	ASSERT(pktp != NULL);
17074 
17075 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17076 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
17077 
17078 	funcp = ((pktp->pkt_statistics & STAT_PERR) == 0) ?
17079 	    sd_print_retry_msg : NULL;
17080 
17081 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
17082 	    funcp, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
17083 }
17084 
17085 
17086 /*
17087  *    Function: sd_pkt_reason_cmd_tag_reject
17088  *
17089  * Description: Recovery actions for a SCSA "CMD_TAG_REJECT" pkt_reason.
17090  *
17091  *     Context: May be called from interrupt context
17092  */
17093 
17094 static void
17095 sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
17096 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17097 {
17098 	ASSERT(un != NULL);
17099 	ASSERT(mutex_owned(SD_MUTEX(un)));
17100 	ASSERT(bp != NULL);
17101 	ASSERT(xp != NULL);
17102 	ASSERT(pktp != NULL);
17103 
17104 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17105 	pktp->pkt_flags = 0;
17106 	un->un_tagflags = 0;
17107 	if (un->un_f_opt_queueing == TRUE) {
17108 		un->un_throttle = min(un->un_throttle, 3);
17109 	} else {
17110 		un->un_throttle = 1;
17111 	}
17112 	mutex_exit(SD_MUTEX(un));
17113 	(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
17114 	mutex_enter(SD_MUTEX(un));
17115 
17116 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
17117 
17118 	/* Legacy behavior not to check retry counts here. */
17119 	sd_retry_command(un, bp, (SD_RETRIES_NOCHECK | SD_RETRIES_ISOLATE),
17120 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
17121 }
17122 
17123 
17124 /*
17125  *    Function: sd_pkt_reason_default
17126  *
17127  * Description: Default recovery actions for SCSA pkt_reason values that
17128  *		do not have more explicit recovery actions.
17129  *
17130  *     Context: May be called from interrupt context
17131  */
17132 
17133 static void
17134 sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
17135 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17136 {
17137 	ASSERT(un != NULL);
17138 	ASSERT(mutex_owned(SD_MUTEX(un)));
17139 	ASSERT(bp != NULL);
17140 	ASSERT(xp != NULL);
17141 	ASSERT(pktp != NULL);
17142 
17143 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
17144 	sd_reset_target(un, pktp);
17145 
17146 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
17147 
17148 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
17149 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
17150 }
17151 
17152 
17153 
17154 /*
17155  *    Function: sd_pkt_status_check_condition
17156  *
17157  * Description: Recovery actions for a "STATUS_CHECK" SCSI command status.
17158  *
17159  *     Context: May be called from interrupt context
17160  */
17161 
17162 static void
17163 sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
17164 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17165 {
17166 	ASSERT(un != NULL);
17167 	ASSERT(mutex_owned(SD_MUTEX(un)));
17168 	ASSERT(bp != NULL);
17169 	ASSERT(xp != NULL);
17170 	ASSERT(pktp != NULL);
17171 
17172 	SD_TRACE(SD_LOG_IO, un, "sd_pkt_status_check_condition: "
17173 	    "entry: buf:0x%p xp:0x%p\n", bp, xp);
17174 
17175 	/*
17176 	 * If ARQ is NOT enabled, then issue a REQUEST SENSE command (the
17177 	 * command will be retried after the request sense). Otherwise, retry
17178 	 * the command. Note: we are issuing the request sense even though the
17179 	 * retry limit may have been reached for the failed command.
17180 	 */
17181 	if (un->un_f_arq_enabled == FALSE) {
17182 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
17183 		    "no ARQ, sending request sense command\n");
17184 		sd_send_request_sense_command(un, bp, pktp);
17185 	} else {
17186 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
17187 		    "ARQ,retrying request sense command\n");
17188 #if defined(__i386) || defined(__amd64)
17189 		/*
17190 		 * The SD_RETRY_DELAY value need to be adjusted here
17191 		 * when SD_RETRY_DELAY change in sddef.h
17192 		 */
17193 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
17194 		    un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0,
17195 		    NULL);
17196 #else
17197 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL,
17198 		    EIO, SD_RETRY_DELAY, NULL);
17199 #endif
17200 	}
17201 
17202 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: exit\n");
17203 }
17204 
17205 
17206 /*
17207  *    Function: sd_pkt_status_busy
17208  *
17209  * Description: Recovery actions for a "STATUS_BUSY" SCSI command status.
17210  *
17211  *     Context: May be called from interrupt context
17212  */
17213 
17214 static void
17215 sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
17216 	struct scsi_pkt *pktp)
17217 {
17218 	ASSERT(un != NULL);
17219 	ASSERT(mutex_owned(SD_MUTEX(un)));
17220 	ASSERT(bp != NULL);
17221 	ASSERT(xp != NULL);
17222 	ASSERT(pktp != NULL);
17223 
17224 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17225 	    "sd_pkt_status_busy: entry\n");
17226 
17227 	/* If retries are exhausted, just fail the command. */
17228 	if (xp->xb_retry_count >= un->un_busy_retry_count) {
17229 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17230 		    "device busy too long\n");
17231 		sd_return_failed_command(un, bp, EIO);
17232 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17233 		    "sd_pkt_status_busy: exit\n");
17234 		return;
17235 	}
17236 	xp->xb_retry_count++;
17237 
17238 	/*
17239 	 * Try to reset the target. However, we do not want to perform
17240 	 * more than one reset if the device continues to fail. The reset
17241 	 * will be performed when the retry count reaches the reset
17242 	 * threshold.  This threshold should be set such that at least
17243 	 * one retry is issued before the reset is performed.
17244 	 */
17245 	if (xp->xb_retry_count ==
17246 	    ((un->un_reset_retry_count < 2) ? 2 : un->un_reset_retry_count)) {
17247 		int rval = 0;
17248 		mutex_exit(SD_MUTEX(un));
17249 		if (un->un_f_allow_bus_device_reset == TRUE) {
17250 			/*
17251 			 * First try to reset the LUN; if we cannot then
17252 			 * try to reset the target.
17253 			 */
17254 			if (un->un_f_lun_reset_enabled == TRUE) {
17255 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17256 				    "sd_pkt_status_busy: RESET_LUN\n");
17257 				rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
17258 			}
17259 			if (rval == 0) {
17260 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17261 				    "sd_pkt_status_busy: RESET_TARGET\n");
17262 				rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
17263 			}
17264 		}
17265 		if (rval == 0) {
17266 			/*
17267 			 * If the RESET_LUN and/or RESET_TARGET failed,
17268 			 * try RESET_ALL
17269 			 */
17270 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17271 			    "sd_pkt_status_busy: RESET_ALL\n");
17272 			rval = scsi_reset(SD_ADDRESS(un), RESET_ALL);
17273 		}
17274 		mutex_enter(SD_MUTEX(un));
17275 		if (rval == 0) {
17276 			/*
17277 			 * The RESET_LUN, RESET_TARGET, and/or RESET_ALL failed.
17278 			 * At this point we give up & fail the command.
17279 			 */
17280 			sd_return_failed_command(un, bp, EIO);
17281 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17282 			    "sd_pkt_status_busy: exit (failed cmd)\n");
17283 			return;
17284 		}
17285 	}
17286 
17287 	/*
17288 	 * Retry the command. Be sure to specify SD_RETRIES_NOCHECK as
17289 	 * we have already checked the retry counts above.
17290 	 */
17291 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL,
17292 	    EIO, SD_BSY_TIMEOUT, NULL);
17293 
17294 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17295 	    "sd_pkt_status_busy: exit\n");
17296 }
17297 
17298 
17299 /*
17300  *    Function: sd_pkt_status_reservation_conflict
17301  *
17302  * Description: Recovery actions for a "STATUS_RESERVATION_CONFLICT" SCSI
17303  *		command status.
17304  *
17305  *     Context: May be called from interrupt context
17306  */
17307 
17308 static void
17309 sd_pkt_status_reservation_conflict(struct sd_lun *un, struct buf *bp,
17310 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17311 {
17312 	ASSERT(un != NULL);
17313 	ASSERT(mutex_owned(SD_MUTEX(un)));
17314 	ASSERT(bp != NULL);
17315 	ASSERT(xp != NULL);
17316 	ASSERT(pktp != NULL);
17317 
17318 	/*
17319 	 * If the command was PERSISTENT_RESERVATION_[IN|OUT] then reservation
17320 	 * conflict could be due to various reasons like incorrect keys, not
17321 	 * registered or not reserved etc. So, we return EACCES to the caller.
17322 	 */
17323 	if (un->un_reservation_type == SD_SCSI3_RESERVATION) {
17324 		int cmd = SD_GET_PKT_OPCODE(pktp);
17325 		if ((cmd == SCMD_PERSISTENT_RESERVE_IN) ||
17326 		    (cmd == SCMD_PERSISTENT_RESERVE_OUT)) {
17327 			sd_return_failed_command(un, bp, EACCES);
17328 			return;
17329 		}
17330 	}
17331 
17332 	un->un_resvd_status |= SD_RESERVATION_CONFLICT;
17333 
17334 	if ((un->un_resvd_status & SD_FAILFAST) != 0) {
17335 		if (sd_failfast_enable != 0) {
17336 			/* By definition, we must panic here.... */
17337 			sd_panic_for_res_conflict(un);
17338 			/*NOTREACHED*/
17339 		}
17340 		SD_ERROR(SD_LOG_IO, un,
17341 		    "sd_handle_resv_conflict: Disk Reserved\n");
17342 		sd_return_failed_command(un, bp, EACCES);
17343 		return;
17344 	}
17345 
17346 	/*
17347 	 * 1147670: retry only if sd_retry_on_reservation_conflict
17348 	 * property is set (default is 1). Retries will not succeed
17349 	 * on a disk reserved by another initiator. HA systems
17350 	 * may reset this via sd.conf to avoid these retries.
17351 	 *
17352 	 * Note: The legacy return code for this failure is EIO, however EACCES
17353 	 * seems more appropriate for a reservation conflict.
17354 	 */
17355 	if (sd_retry_on_reservation_conflict == 0) {
17356 		SD_ERROR(SD_LOG_IO, un,
17357 		    "sd_handle_resv_conflict: Device Reserved\n");
17358 		sd_return_failed_command(un, bp, EIO);
17359 		return;
17360 	}
17361 
17362 	/*
17363 	 * Retry the command if we can.
17364 	 *
17365 	 * Note: The legacy return code for this failure is EIO, however EACCES
17366 	 * seems more appropriate for a reservation conflict.
17367 	 */
17368 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
17369 	    (clock_t)2, NULL);
17370 }
17371 
17372 
17373 
17374 /*
17375  *    Function: sd_pkt_status_qfull
17376  *
17377  * Description: Handle a QUEUE FULL condition from the target.  This can
17378  *		occur if the HBA does not handle the queue full condition.
17379  *		(Basically this means third-party HBAs as Sun HBAs will
17380  *		handle the queue full condition.)  Note that if there are
17381  *		some commands already in the transport, then the queue full
17382  *		has occurred because the queue for this nexus is actually
17383  *		full. If there are no commands in the transport, then the
17384  *		queue full is resulting from some other initiator or lun
17385  *		consuming all the resources at the target.
17386  *
17387  *     Context: May be called from interrupt context
17388  */
17389 
17390 static void
17391 sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
17392 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17393 {
17394 	ASSERT(un != NULL);
17395 	ASSERT(mutex_owned(SD_MUTEX(un)));
17396 	ASSERT(bp != NULL);
17397 	ASSERT(xp != NULL);
17398 	ASSERT(pktp != NULL);
17399 
17400 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17401 	    "sd_pkt_status_qfull: entry\n");
17402 
17403 	/*
17404 	 * Just lower the QFULL throttle and retry the command.  Note that
17405 	 * we do not limit the number of retries here.
17406 	 */
17407 	sd_reduce_throttle(un, SD_THROTTLE_QFULL);
17408 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 0,
17409 	    SD_RESTART_TIMEOUT, NULL);
17410 
17411 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17412 	    "sd_pkt_status_qfull: exit\n");
17413 }
17414 
17415 
17416 /*
17417  *    Function: sd_reset_target
17418  *
17419  * Description: Issue a scsi_reset(9F), with either RESET_LUN,
17420  *		RESET_TARGET, or RESET_ALL.
17421  *
17422  *     Context: May be called under interrupt context.
17423  */
17424 
17425 static void
17426 sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp)
17427 {
17428 	int rval = 0;
17429 
17430 	ASSERT(un != NULL);
17431 	ASSERT(mutex_owned(SD_MUTEX(un)));
17432 	ASSERT(pktp != NULL);
17433 
17434 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: entry\n");
17435 
17436 	/*
17437 	 * No need to reset if the transport layer has already done so.
17438 	 */
17439 	if ((pktp->pkt_statistics &
17440 	    (STAT_BUS_RESET | STAT_DEV_RESET | STAT_ABORTED)) != 0) {
17441 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17442 		    "sd_reset_target: no reset\n");
17443 		return;
17444 	}
17445 
17446 	mutex_exit(SD_MUTEX(un));
17447 
17448 	if (un->un_f_allow_bus_device_reset == TRUE) {
17449 		if (un->un_f_lun_reset_enabled == TRUE) {
17450 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17451 			    "sd_reset_target: RESET_LUN\n");
17452 			rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
17453 		}
17454 		if (rval == 0) {
17455 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17456 			    "sd_reset_target: RESET_TARGET\n");
17457 			rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
17458 		}
17459 	}
17460 
17461 	if (rval == 0) {
17462 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17463 		    "sd_reset_target: RESET_ALL\n");
17464 		(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
17465 	}
17466 
17467 	mutex_enter(SD_MUTEX(un));
17468 
17469 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: exit\n");
17470 }
17471 
17472 
17473 /*
17474  *    Function: sd_media_change_task
17475  *
17476  * Description: Recovery action for CDROM to become available.
17477  *
17478  *     Context: Executes in a taskq() thread context
17479  */
17480 
17481 static void
17482 sd_media_change_task(void *arg)
17483 {
17484 	struct	scsi_pkt	*pktp = arg;
17485 	struct	sd_lun		*un;
17486 	struct	buf		*bp;
17487 	struct	sd_xbuf		*xp;
17488 	int	err		= 0;
17489 	int	retry_count	= 0;
17490 	int	retry_limit	= SD_UNIT_ATTENTION_RETRY/10;
17491 	struct	sd_sense_info	si;
17492 
17493 	ASSERT(pktp != NULL);
17494 	bp = (struct buf *)pktp->pkt_private;
17495 	ASSERT(bp != NULL);
17496 	xp = SD_GET_XBUF(bp);
17497 	ASSERT(xp != NULL);
17498 	un = SD_GET_UN(bp);
17499 	ASSERT(un != NULL);
17500 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17501 	ASSERT(un->un_f_monitor_media_state);
17502 
17503 	si.ssi_severity = SCSI_ERR_INFO;
17504 	si.ssi_pfa_flag = FALSE;
17505 
17506 	/*
17507 	 * When a reset is issued on a CDROM, it takes a long time to
17508 	 * recover. First few attempts to read capacity and other things
17509 	 * related to handling unit attention fail (with a ASC 0x4 and
17510 	 * ASCQ 0x1). In that case we want to do enough retries and we want
17511 	 * to limit the retries in other cases of genuine failures like
17512 	 * no media in drive.
17513 	 */
17514 	while (retry_count++ < retry_limit) {
17515 		if ((err = sd_handle_mchange(un)) == 0) {
17516 			break;
17517 		}
17518 		if (err == EAGAIN) {
17519 			retry_limit = SD_UNIT_ATTENTION_RETRY;
17520 		}
17521 		/* Sleep for 0.5 sec. & try again */
17522 		delay(drv_usectohz(500000));
17523 	}
17524 
17525 	/*
17526 	 * Dispatch (retry or fail) the original command here,
17527 	 * along with appropriate console messages....
17528 	 *
17529 	 * Must grab the mutex before calling sd_retry_command,
17530 	 * sd_print_sense_msg and sd_return_failed_command.
17531 	 */
17532 	mutex_enter(SD_MUTEX(un));
17533 	if (err != SD_CMD_SUCCESS) {
17534 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
17535 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
17536 		si.ssi_severity = SCSI_ERR_FATAL;
17537 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17538 		sd_return_failed_command(un, bp, EIO);
17539 	} else {
17540 		sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
17541 		    &si, EIO, (clock_t)0, NULL);
17542 	}
17543 	mutex_exit(SD_MUTEX(un));
17544 }
17545 
17546 
17547 
17548 /*
17549  *    Function: sd_handle_mchange
17550  *
17551  * Description: Perform geometry validation & other recovery when CDROM
17552  *		has been removed from drive.
17553  *
17554  * Return Code: 0 for success
17555  *		errno-type return code of either sd_send_scsi_DOORLOCK() or
17556  *		sd_send_scsi_READ_CAPACITY()
17557  *
17558  *     Context: Executes in a taskq() thread context
17559  */
17560 
17561 static int
17562 sd_handle_mchange(struct sd_lun *un)
17563 {
17564 	uint64_t	capacity;
17565 	uint32_t	lbasize;
17566 	int		rval;
17567 
17568 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17569 	ASSERT(un->un_f_monitor_media_state);
17570 
17571 	if ((rval = sd_send_scsi_READ_CAPACITY(un, &capacity, &lbasize,
17572 	    SD_PATH_DIRECT_PRIORITY)) != 0) {
17573 		return (rval);
17574 	}
17575 
17576 	mutex_enter(SD_MUTEX(un));
17577 	sd_update_block_info(un, lbasize, capacity);
17578 
17579 	if (un->un_errstats != NULL) {
17580 		struct	sd_errstats *stp =
17581 		    (struct sd_errstats *)un->un_errstats->ks_data;
17582 		stp->sd_capacity.value.ui64 = (uint64_t)
17583 		    ((uint64_t)un->un_blockcount *
17584 		    (uint64_t)un->un_tgt_blocksize);
17585 	}
17586 
17587 
17588 	/*
17589 	 * Check if the media in the device is writable or not
17590 	 */
17591 	if (ISCD(un))
17592 		sd_check_for_writable_cd(un, SD_PATH_DIRECT_PRIORITY);
17593 
17594 	/*
17595 	 * Note: Maybe let the strategy/partitioning chain worry about getting
17596 	 * valid geometry.
17597 	 */
17598 	mutex_exit(SD_MUTEX(un));
17599 	cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY);
17600 
17601 
17602 	if (cmlb_validate(un->un_cmlbhandle, 0,
17603 	    (void *)SD_PATH_DIRECT_PRIORITY) != 0) {
17604 		return (EIO);
17605 	} else {
17606 		if (un->un_f_pkstats_enabled) {
17607 			sd_set_pstats(un);
17608 			SD_TRACE(SD_LOG_IO_PARTITION, un,
17609 			    "sd_handle_mchange: un:0x%p pstats created and "
17610 			    "set\n", un);
17611 		}
17612 	}
17613 
17614 
17615 	/*
17616 	 * Try to lock the door
17617 	 */
17618 	return (sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
17619 	    SD_PATH_DIRECT_PRIORITY));
17620 }
17621 
17622 
17623 /*
17624  *    Function: sd_send_scsi_DOORLOCK
17625  *
17626  * Description: Issue the scsi DOOR LOCK command
17627  *
17628  *   Arguments: un    - pointer to driver soft state (unit) structure for
17629  *			this target.
17630  *		flag  - SD_REMOVAL_ALLOW
17631  *			SD_REMOVAL_PREVENT
17632  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
17633  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
17634  *			to use the USCSI "direct" chain and bypass the normal
17635  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
17636  *			command is issued as part of an error recovery action.
17637  *
17638  * Return Code: 0   - Success
17639  *		errno return code from sd_send_scsi_cmd()
17640  *
17641  *     Context: Can sleep.
17642  */
17643 
17644 static int
17645 sd_send_scsi_DOORLOCK(struct sd_lun *un, int flag, int path_flag)
17646 {
17647 	union scsi_cdb		cdb;
17648 	struct uscsi_cmd	ucmd_buf;
17649 	struct scsi_extended_sense	sense_buf;
17650 	int			status;
17651 
17652 	ASSERT(un != NULL);
17653 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17654 
17655 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_DOORLOCK: entry: un:0x%p\n", un);
17656 
17657 	/* already determined doorlock is not supported, fake success */
17658 	if (un->un_f_doorlock_supported == FALSE) {
17659 		return (0);
17660 	}
17661 
17662 	/*
17663 	 * If we are ejecting and see an SD_REMOVAL_PREVENT
17664 	 * ignore the command so we can complete the eject
17665 	 * operation.
17666 	 */
17667 	if (flag == SD_REMOVAL_PREVENT) {
17668 		mutex_enter(SD_MUTEX(un));
17669 		if (un->un_f_ejecting == TRUE) {
17670 			mutex_exit(SD_MUTEX(un));
17671 			return (EAGAIN);
17672 		}
17673 		mutex_exit(SD_MUTEX(un));
17674 	}
17675 
17676 	bzero(&cdb, sizeof (cdb));
17677 	bzero(&ucmd_buf, sizeof (ucmd_buf));
17678 
17679 	cdb.scc_cmd = SCMD_DOORLOCK;
17680 	cdb.cdb_opaque[4] = (uchar_t)flag;
17681 
17682 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
17683 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
17684 	ucmd_buf.uscsi_bufaddr	= NULL;
17685 	ucmd_buf.uscsi_buflen	= 0;
17686 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
17687 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
17688 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
17689 	ucmd_buf.uscsi_timeout	= 15;
17690 
17691 	SD_TRACE(SD_LOG_IO, un,
17692 	    "sd_send_scsi_DOORLOCK: returning sd_send_scsi_cmd()\n");
17693 
17694 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
17695 	    UIO_SYSSPACE, path_flag);
17696 
17697 	if ((status == EIO) && (ucmd_buf.uscsi_status == STATUS_CHECK) &&
17698 	    (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
17699 	    (scsi_sense_key((uint8_t *)&sense_buf) == KEY_ILLEGAL_REQUEST)) {
17700 		/* fake success and skip subsequent doorlock commands */
17701 		un->un_f_doorlock_supported = FALSE;
17702 		return (0);
17703 	}
17704 
17705 	return (status);
17706 }
17707 
17708 /*
17709  *    Function: sd_send_scsi_READ_CAPACITY
17710  *
17711  * Description: This routine uses the scsi READ CAPACITY command to determine
17712  *		the device capacity in number of blocks and the device native
17713  *		block size. If this function returns a failure, then the
17714  *		values in *capp and *lbap are undefined.  If the capacity
17715  *		returned is 0xffffffff then the lun is too large for a
17716  *		normal READ CAPACITY command and the results of a
17717  *		READ CAPACITY 16 will be used instead.
17718  *
17719  *   Arguments: un   - ptr to soft state struct for the target
17720  *		capp - ptr to unsigned 64-bit variable to receive the
17721  *			capacity value from the command.
17722  *		lbap - ptr to unsigned 32-bit varaible to receive the
17723  *			block size value from the command
17724  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
17725  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
17726  *			to use the USCSI "direct" chain and bypass the normal
17727  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
17728  *			command is issued as part of an error recovery action.
17729  *
17730  * Return Code: 0   - Success
17731  *		EIO - IO error
17732  *		EACCES - Reservation conflict detected
17733  *		EAGAIN - Device is becoming ready
17734  *		errno return code from sd_send_scsi_cmd()
17735  *
17736  *     Context: Can sleep.  Blocks until command completes.
17737  */
17738 
17739 #define	SD_CAPACITY_SIZE	sizeof (struct scsi_capacity)
17740 
17741 static int
17742 sd_send_scsi_READ_CAPACITY(struct sd_lun *un, uint64_t *capp, uint32_t *lbap,
17743 	int path_flag)
17744 {
17745 	struct	scsi_extended_sense	sense_buf;
17746 	struct	uscsi_cmd	ucmd_buf;
17747 	union	scsi_cdb	cdb;
17748 	uint32_t		*capacity_buf;
17749 	uint64_t		capacity;
17750 	uint32_t		lbasize;
17751 	int			status;
17752 
17753 	ASSERT(un != NULL);
17754 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17755 	ASSERT(capp != NULL);
17756 	ASSERT(lbap != NULL);
17757 
17758 	SD_TRACE(SD_LOG_IO, un,
17759 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
17760 
17761 	/*
17762 	 * First send a READ_CAPACITY command to the target.
17763 	 * (This command is mandatory under SCSI-2.)
17764 	 *
17765 	 * Set up the CDB for the READ_CAPACITY command.  The Partial
17766 	 * Medium Indicator bit is cleared.  The address field must be
17767 	 * zero if the PMI bit is zero.
17768 	 */
17769 	bzero(&cdb, sizeof (cdb));
17770 	bzero(&ucmd_buf, sizeof (ucmd_buf));
17771 
17772 	capacity_buf = kmem_zalloc(SD_CAPACITY_SIZE, KM_SLEEP);
17773 
17774 	cdb.scc_cmd = SCMD_READ_CAPACITY;
17775 
17776 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
17777 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
17778 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity_buf;
17779 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_SIZE;
17780 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
17781 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
17782 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
17783 	ucmd_buf.uscsi_timeout	= 60;
17784 
17785 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
17786 	    UIO_SYSSPACE, path_flag);
17787 
17788 	switch (status) {
17789 	case 0:
17790 		/* Return failure if we did not get valid capacity data. */
17791 		if (ucmd_buf.uscsi_resid != 0) {
17792 			kmem_free(capacity_buf, SD_CAPACITY_SIZE);
17793 			return (EIO);
17794 		}
17795 
17796 		/*
17797 		 * Read capacity and block size from the READ CAPACITY 10 data.
17798 		 * This data may be adjusted later due to device specific
17799 		 * issues.
17800 		 *
17801 		 * According to the SCSI spec, the READ CAPACITY 10
17802 		 * command returns the following:
17803 		 *
17804 		 *  bytes 0-3: Maximum logical block address available.
17805 		 *		(MSB in byte:0 & LSB in byte:3)
17806 		 *
17807 		 *  bytes 4-7: Block length in bytes
17808 		 *		(MSB in byte:4 & LSB in byte:7)
17809 		 *
17810 		 */
17811 		capacity = BE_32(capacity_buf[0]);
17812 		lbasize = BE_32(capacity_buf[1]);
17813 
17814 		/*
17815 		 * Done with capacity_buf
17816 		 */
17817 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
17818 
17819 		/*
17820 		 * if the reported capacity is set to all 0xf's, then
17821 		 * this disk is too large and requires SBC-2 commands.
17822 		 * Reissue the request using READ CAPACITY 16.
17823 		 */
17824 		if (capacity == 0xffffffff) {
17825 			status = sd_send_scsi_READ_CAPACITY_16(un, &capacity,
17826 			    &lbasize, path_flag);
17827 			if (status != 0) {
17828 				return (status);
17829 			}
17830 		}
17831 		break;	/* Success! */
17832 	case EIO:
17833 		switch (ucmd_buf.uscsi_status) {
17834 		case STATUS_RESERVATION_CONFLICT:
17835 			status = EACCES;
17836 			break;
17837 		case STATUS_CHECK:
17838 			/*
17839 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
17840 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
17841 			 */
17842 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
17843 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
17844 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
17845 				kmem_free(capacity_buf, SD_CAPACITY_SIZE);
17846 				return (EAGAIN);
17847 			}
17848 			break;
17849 		default:
17850 			break;
17851 		}
17852 		/* FALLTHRU */
17853 	default:
17854 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
17855 		return (status);
17856 	}
17857 
17858 	/*
17859 	 * Some ATAPI CD-ROM drives report inaccurate LBA size values
17860 	 * (2352 and 0 are common) so for these devices always force the value
17861 	 * to 2048 as required by the ATAPI specs.
17862 	 */
17863 	if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) {
17864 		lbasize = 2048;
17865 	}
17866 
17867 	/*
17868 	 * Get the maximum LBA value from the READ CAPACITY data.
17869 	 * Here we assume that the Partial Medium Indicator (PMI) bit
17870 	 * was cleared when issuing the command. This means that the LBA
17871 	 * returned from the device is the LBA of the last logical block
17872 	 * on the logical unit.  The actual logical block count will be
17873 	 * this value plus one.
17874 	 *
17875 	 * Currently the capacity is saved in terms of un->un_sys_blocksize,
17876 	 * so scale the capacity value to reflect this.
17877 	 */
17878 	capacity = (capacity + 1) * (lbasize / un->un_sys_blocksize);
17879 
17880 	/*
17881 	 * Copy the values from the READ CAPACITY command into the space
17882 	 * provided by the caller.
17883 	 */
17884 	*capp = capacity;
17885 	*lbap = lbasize;
17886 
17887 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY: "
17888 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
17889 
17890 	/*
17891 	 * Both the lbasize and capacity from the device must be nonzero,
17892 	 * otherwise we assume that the values are not valid and return
17893 	 * failure to the caller. (4203735)
17894 	 */
17895 	if ((capacity == 0) || (lbasize == 0)) {
17896 		return (EIO);
17897 	}
17898 
17899 	return (0);
17900 }
17901 
17902 /*
17903  *    Function: sd_send_scsi_READ_CAPACITY_16
17904  *
17905  * Description: This routine uses the scsi READ CAPACITY 16 command to
17906  *		determine the device capacity in number of blocks and the
17907  *		device native block size.  If this function returns a failure,
17908  *		then the values in *capp and *lbap are undefined.
17909  *		This routine should always be called by
17910  *		sd_send_scsi_READ_CAPACITY which will appy any device
17911  *		specific adjustments to capacity and lbasize.
17912  *
17913  *   Arguments: un   - ptr to soft state struct for the target
17914  *		capp - ptr to unsigned 64-bit variable to receive the
17915  *			capacity value from the command.
17916  *		lbap - ptr to unsigned 32-bit varaible to receive the
17917  *			block size value from the command
17918  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
17919  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
17920  *			to use the USCSI "direct" chain and bypass the normal
17921  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when
17922  *			this command is issued as part of an error recovery
17923  *			action.
17924  *
17925  * Return Code: 0   - Success
17926  *		EIO - IO error
17927  *		EACCES - Reservation conflict detected
17928  *		EAGAIN - Device is becoming ready
17929  *		errno return code from sd_send_scsi_cmd()
17930  *
17931  *     Context: Can sleep.  Blocks until command completes.
17932  */
17933 
17934 #define	SD_CAPACITY_16_SIZE	sizeof (struct scsi_capacity_16)
17935 
17936 static int
17937 sd_send_scsi_READ_CAPACITY_16(struct sd_lun *un, uint64_t *capp,
17938 	uint32_t *lbap, int path_flag)
17939 {
17940 	struct	scsi_extended_sense	sense_buf;
17941 	struct	uscsi_cmd	ucmd_buf;
17942 	union	scsi_cdb	cdb;
17943 	uint64_t		*capacity16_buf;
17944 	uint64_t		capacity;
17945 	uint32_t		lbasize;
17946 	int			status;
17947 
17948 	ASSERT(un != NULL);
17949 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17950 	ASSERT(capp != NULL);
17951 	ASSERT(lbap != NULL);
17952 
17953 	SD_TRACE(SD_LOG_IO, un,
17954 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
17955 
17956 	/*
17957 	 * First send a READ_CAPACITY_16 command to the target.
17958 	 *
17959 	 * Set up the CDB for the READ_CAPACITY_16 command.  The Partial
17960 	 * Medium Indicator bit is cleared.  The address field must be
17961 	 * zero if the PMI bit is zero.
17962 	 */
17963 	bzero(&cdb, sizeof (cdb));
17964 	bzero(&ucmd_buf, sizeof (ucmd_buf));
17965 
17966 	capacity16_buf = kmem_zalloc(SD_CAPACITY_16_SIZE, KM_SLEEP);
17967 
17968 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
17969 	ucmd_buf.uscsi_cdblen	= CDB_GROUP4;
17970 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity16_buf;
17971 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_16_SIZE;
17972 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
17973 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
17974 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
17975 	ucmd_buf.uscsi_timeout	= 60;
17976 
17977 	/*
17978 	 * Read Capacity (16) is a Service Action In command.  One
17979 	 * command byte (0x9E) is overloaded for multiple operations,
17980 	 * with the second CDB byte specifying the desired operation
17981 	 */
17982 	cdb.scc_cmd = SCMD_SVC_ACTION_IN_G4;
17983 	cdb.cdb_opaque[1] = SSVC_ACTION_READ_CAPACITY_G4;
17984 
17985 	/*
17986 	 * Fill in allocation length field
17987 	 */
17988 	FORMG4COUNT(&cdb, ucmd_buf.uscsi_buflen);
17989 
17990 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
17991 	    UIO_SYSSPACE, path_flag);
17992 
17993 	switch (status) {
17994 	case 0:
17995 		/* Return failure if we did not get valid capacity data. */
17996 		if (ucmd_buf.uscsi_resid > 20) {
17997 			kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
17998 			return (EIO);
17999 		}
18000 
18001 		/*
18002 		 * Read capacity and block size from the READ CAPACITY 10 data.
18003 		 * This data may be adjusted later due to device specific
18004 		 * issues.
18005 		 *
18006 		 * According to the SCSI spec, the READ CAPACITY 10
18007 		 * command returns the following:
18008 		 *
18009 		 *  bytes 0-7: Maximum logical block address available.
18010 		 *		(MSB in byte:0 & LSB in byte:7)
18011 		 *
18012 		 *  bytes 8-11: Block length in bytes
18013 		 *		(MSB in byte:8 & LSB in byte:11)
18014 		 *
18015 		 */
18016 		capacity = BE_64(capacity16_buf[0]);
18017 		lbasize = BE_32(*(uint32_t *)&capacity16_buf[1]);
18018 
18019 		/*
18020 		 * Done with capacity16_buf
18021 		 */
18022 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
18023 
18024 		/*
18025 		 * if the reported capacity is set to all 0xf's, then
18026 		 * this disk is too large.  This could only happen with
18027 		 * a device that supports LBAs larger than 64 bits which
18028 		 * are not defined by any current T10 standards.
18029 		 */
18030 		if (capacity == 0xffffffffffffffff) {
18031 			return (EIO);
18032 		}
18033 		break;	/* Success! */
18034 	case EIO:
18035 		switch (ucmd_buf.uscsi_status) {
18036 		case STATUS_RESERVATION_CONFLICT:
18037 			status = EACCES;
18038 			break;
18039 		case STATUS_CHECK:
18040 			/*
18041 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
18042 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
18043 			 */
18044 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
18045 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
18046 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
18047 				kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
18048 				return (EAGAIN);
18049 			}
18050 			break;
18051 		default:
18052 			break;
18053 		}
18054 		/* FALLTHRU */
18055 	default:
18056 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
18057 		return (status);
18058 	}
18059 
18060 	*capp = capacity;
18061 	*lbap = lbasize;
18062 
18063 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY_16: "
18064 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
18065 
18066 	return (0);
18067 }
18068 
18069 
18070 /*
18071  *    Function: sd_send_scsi_START_STOP_UNIT
18072  *
18073  * Description: Issue a scsi START STOP UNIT command to the target.
18074  *
18075  *   Arguments: un    - pointer to driver soft state (unit) structure for
18076  *			this target.
18077  *		flag  - SD_TARGET_START
18078  *			SD_TARGET_STOP
18079  *			SD_TARGET_EJECT
18080  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
18081  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
18082  *			to use the USCSI "direct" chain and bypass the normal
18083  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
18084  *			command is issued as part of an error recovery action.
18085  *
18086  * Return Code: 0   - Success
18087  *		EIO - IO error
18088  *		EACCES - Reservation conflict detected
18089  *		ENXIO  - Not Ready, medium not present
18090  *		errno return code from sd_send_scsi_cmd()
18091  *
18092  *     Context: Can sleep.
18093  */
18094 
18095 static int
18096 sd_send_scsi_START_STOP_UNIT(struct sd_lun *un, int flag, int path_flag)
18097 {
18098 	struct	scsi_extended_sense	sense_buf;
18099 	union scsi_cdb		cdb;
18100 	struct uscsi_cmd	ucmd_buf;
18101 	int			status;
18102 
18103 	ASSERT(un != NULL);
18104 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18105 
18106 	SD_TRACE(SD_LOG_IO, un,
18107 	    "sd_send_scsi_START_STOP_UNIT: entry: un:0x%p\n", un);
18108 
18109 	if (un->un_f_check_start_stop &&
18110 	    ((flag == SD_TARGET_START) || (flag == SD_TARGET_STOP)) &&
18111 	    (un->un_f_start_stop_supported != TRUE)) {
18112 		return (0);
18113 	}
18114 
18115 	/*
18116 	 * If we are performing an eject operation and
18117 	 * we receive any command other than SD_TARGET_EJECT
18118 	 * we should immediately return.
18119 	 */
18120 	if (flag != SD_TARGET_EJECT) {
18121 		mutex_enter(SD_MUTEX(un));
18122 		if (un->un_f_ejecting == TRUE) {
18123 			mutex_exit(SD_MUTEX(un));
18124 			return (EAGAIN);
18125 		}
18126 		mutex_exit(SD_MUTEX(un));
18127 	}
18128 
18129 	bzero(&cdb, sizeof (cdb));
18130 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18131 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
18132 
18133 	cdb.scc_cmd = SCMD_START_STOP;
18134 	cdb.cdb_opaque[4] = (uchar_t)flag;
18135 
18136 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18137 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
18138 	ucmd_buf.uscsi_bufaddr	= NULL;
18139 	ucmd_buf.uscsi_buflen	= 0;
18140 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18141 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
18142 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
18143 	ucmd_buf.uscsi_timeout	= 200;
18144 
18145 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18146 	    UIO_SYSSPACE, path_flag);
18147 
18148 	switch (status) {
18149 	case 0:
18150 		break;	/* Success! */
18151 	case EIO:
18152 		switch (ucmd_buf.uscsi_status) {
18153 		case STATUS_RESERVATION_CONFLICT:
18154 			status = EACCES;
18155 			break;
18156 		case STATUS_CHECK:
18157 			if (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) {
18158 				switch (scsi_sense_key(
18159 				    (uint8_t *)&sense_buf)) {
18160 				case KEY_ILLEGAL_REQUEST:
18161 					status = ENOTSUP;
18162 					break;
18163 				case KEY_NOT_READY:
18164 					if (scsi_sense_asc(
18165 					    (uint8_t *)&sense_buf)
18166 					    == 0x3A) {
18167 						status = ENXIO;
18168 					}
18169 					break;
18170 				default:
18171 					break;
18172 				}
18173 			}
18174 			break;
18175 		default:
18176 			break;
18177 		}
18178 		break;
18179 	default:
18180 		break;
18181 	}
18182 
18183 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_START_STOP_UNIT: exit\n");
18184 
18185 	return (status);
18186 }
18187 
18188 
18189 /*
18190  *    Function: sd_start_stop_unit_callback
18191  *
18192  * Description: timeout(9F) callback to begin recovery process for a
18193  *		device that has spun down.
18194  *
18195  *   Arguments: arg - pointer to associated softstate struct.
18196  *
18197  *     Context: Executes in a timeout(9F) thread context
18198  */
18199 
18200 static void
18201 sd_start_stop_unit_callback(void *arg)
18202 {
18203 	struct sd_lun	*un = arg;
18204 	ASSERT(un != NULL);
18205 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18206 
18207 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_callback: entry\n");
18208 
18209 	(void) taskq_dispatch(sd_tq, sd_start_stop_unit_task, un, KM_NOSLEEP);
18210 }
18211 
18212 
18213 /*
18214  *    Function: sd_start_stop_unit_task
18215  *
18216  * Description: Recovery procedure when a drive is spun down.
18217  *
18218  *   Arguments: arg - pointer to associated softstate struct.
18219  *
18220  *     Context: Executes in a taskq() thread context
18221  */
18222 
18223 static void
18224 sd_start_stop_unit_task(void *arg)
18225 {
18226 	struct sd_lun	*un = arg;
18227 
18228 	ASSERT(un != NULL);
18229 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18230 
18231 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: entry\n");
18232 
18233 	/*
18234 	 * Some unformatted drives report not ready error, no need to
18235 	 * restart if format has been initiated.
18236 	 */
18237 	mutex_enter(SD_MUTEX(un));
18238 	if (un->un_f_format_in_progress == TRUE) {
18239 		mutex_exit(SD_MUTEX(un));
18240 		return;
18241 	}
18242 	mutex_exit(SD_MUTEX(un));
18243 
18244 	/*
18245 	 * When a START STOP command is issued from here, it is part of a
18246 	 * failure recovery operation and must be issued before any other
18247 	 * commands, including any pending retries. Thus it must be sent
18248 	 * using SD_PATH_DIRECT_PRIORITY. It doesn't matter if the spin up
18249 	 * succeeds or not, we will start I/O after the attempt.
18250 	 */
18251 	(void) sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
18252 	    SD_PATH_DIRECT_PRIORITY);
18253 
18254 	/*
18255 	 * The above call blocks until the START_STOP_UNIT command completes.
18256 	 * Now that it has completed, we must re-try the original IO that
18257 	 * received the NOT READY condition in the first place. There are
18258 	 * three possible conditions here:
18259 	 *
18260 	 *  (1) The original IO is on un_retry_bp.
18261 	 *  (2) The original IO is on the regular wait queue, and un_retry_bp
18262 	 *	is NULL.
18263 	 *  (3) The original IO is on the regular wait queue, and un_retry_bp
18264 	 *	points to some other, unrelated bp.
18265 	 *
18266 	 * For each case, we must call sd_start_cmds() with un_retry_bp
18267 	 * as the argument. If un_retry_bp is NULL, this will initiate
18268 	 * processing of the regular wait queue.  If un_retry_bp is not NULL,
18269 	 * then this will process the bp on un_retry_bp. That may or may not
18270 	 * be the original IO, but that does not matter: the important thing
18271 	 * is to keep the IO processing going at this point.
18272 	 *
18273 	 * Note: This is a very specific error recovery sequence associated
18274 	 * with a drive that is not spun up. We attempt a START_STOP_UNIT and
18275 	 * serialize the I/O with completion of the spin-up.
18276 	 */
18277 	mutex_enter(SD_MUTEX(un));
18278 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18279 	    "sd_start_stop_unit_task: un:0x%p starting bp:0x%p\n",
18280 	    un, un->un_retry_bp);
18281 	un->un_startstop_timeid = NULL;	/* Timeout is no longer pending */
18282 	sd_start_cmds(un, un->un_retry_bp);
18283 	mutex_exit(SD_MUTEX(un));
18284 
18285 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: exit\n");
18286 }
18287 
18288 
18289 /*
18290  *    Function: sd_send_scsi_INQUIRY
18291  *
18292  * Description: Issue the scsi INQUIRY command.
18293  *
18294  *   Arguments: un
18295  *		bufaddr
18296  *		buflen
18297  *		evpd
18298  *		page_code
18299  *		page_length
18300  *
18301  * Return Code: 0   - Success
18302  *		errno return code from sd_send_scsi_cmd()
18303  *
18304  *     Context: Can sleep. Does not return until command is completed.
18305  */
18306 
18307 static int
18308 sd_send_scsi_INQUIRY(struct sd_lun *un, uchar_t *bufaddr, size_t buflen,
18309 	uchar_t evpd, uchar_t page_code, size_t *residp)
18310 {
18311 	union scsi_cdb		cdb;
18312 	struct uscsi_cmd	ucmd_buf;
18313 	int			status;
18314 
18315 	ASSERT(un != NULL);
18316 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18317 	ASSERT(bufaddr != NULL);
18318 
18319 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: entry: un:0x%p\n", un);
18320 
18321 	bzero(&cdb, sizeof (cdb));
18322 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18323 	bzero(bufaddr, buflen);
18324 
18325 	cdb.scc_cmd = SCMD_INQUIRY;
18326 	cdb.cdb_opaque[1] = evpd;
18327 	cdb.cdb_opaque[2] = page_code;
18328 	FORMG0COUNT(&cdb, buflen);
18329 
18330 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18331 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
18332 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
18333 	ucmd_buf.uscsi_buflen	= buflen;
18334 	ucmd_buf.uscsi_rqbuf	= NULL;
18335 	ucmd_buf.uscsi_rqlen	= 0;
18336 	ucmd_buf.uscsi_flags	= USCSI_READ | USCSI_SILENT;
18337 	ucmd_buf.uscsi_timeout	= 200;	/* Excessive legacy value */
18338 
18339 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18340 	    UIO_SYSSPACE, SD_PATH_DIRECT);
18341 
18342 	if ((status == 0) && (residp != NULL)) {
18343 		*residp = ucmd_buf.uscsi_resid;
18344 	}
18345 
18346 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: exit\n");
18347 
18348 	return (status);
18349 }
18350 
18351 
18352 /*
18353  *    Function: sd_send_scsi_TEST_UNIT_READY
18354  *
18355  * Description: Issue the scsi TEST UNIT READY command.
18356  *		This routine can be told to set the flag USCSI_DIAGNOSE to
18357  *		prevent retrying failed commands. Use this when the intent
18358  *		is either to check for device readiness, to clear a Unit
18359  *		Attention, or to clear any outstanding sense data.
18360  *		However under specific conditions the expected behavior
18361  *		is for retries to bring a device ready, so use the flag
18362  *		with caution.
18363  *
18364  *   Arguments: un
18365  *		flag:   SD_CHECK_FOR_MEDIA: return ENXIO if no media present
18366  *			SD_DONT_RETRY_TUR: include uscsi flag USCSI_DIAGNOSE.
18367  *			0: dont check for media present, do retries on cmd.
18368  *
18369  * Return Code: 0   - Success
18370  *		EIO - IO error
18371  *		EACCES - Reservation conflict detected
18372  *		ENXIO  - Not Ready, medium not present
18373  *		errno return code from sd_send_scsi_cmd()
18374  *
18375  *     Context: Can sleep. Does not return until command is completed.
18376  */
18377 
18378 static int
18379 sd_send_scsi_TEST_UNIT_READY(struct sd_lun *un, int flag)
18380 {
18381 	struct	scsi_extended_sense	sense_buf;
18382 	union scsi_cdb		cdb;
18383 	struct uscsi_cmd	ucmd_buf;
18384 	int			status;
18385 
18386 	ASSERT(un != NULL);
18387 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18388 
18389 	SD_TRACE(SD_LOG_IO, un,
18390 	    "sd_send_scsi_TEST_UNIT_READY: entry: un:0x%p\n", un);
18391 
18392 	/*
18393 	 * Some Seagate elite1 TQ devices get hung with disconnect/reconnect
18394 	 * timeouts when they receive a TUR and the queue is not empty. Check
18395 	 * the configuration flag set during attach (indicating the drive has
18396 	 * this firmware bug) and un_ncmds_in_transport before issuing the
18397 	 * TUR. If there are
18398 	 * pending commands return success, this is a bit arbitrary but is ok
18399 	 * for non-removables (i.e. the eliteI disks) and non-clustering
18400 	 * configurations.
18401 	 */
18402 	if (un->un_f_cfg_tur_check == TRUE) {
18403 		mutex_enter(SD_MUTEX(un));
18404 		if (un->un_ncmds_in_transport != 0) {
18405 			mutex_exit(SD_MUTEX(un));
18406 			return (0);
18407 		}
18408 		mutex_exit(SD_MUTEX(un));
18409 	}
18410 
18411 	bzero(&cdb, sizeof (cdb));
18412 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18413 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
18414 
18415 	cdb.scc_cmd = SCMD_TEST_UNIT_READY;
18416 
18417 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18418 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
18419 	ucmd_buf.uscsi_bufaddr	= NULL;
18420 	ucmd_buf.uscsi_buflen	= 0;
18421 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18422 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
18423 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
18424 
18425 	/* Use flag USCSI_DIAGNOSE to prevent retries if it fails. */
18426 	if ((flag & SD_DONT_RETRY_TUR) != 0) {
18427 		ucmd_buf.uscsi_flags |= USCSI_DIAGNOSE;
18428 	}
18429 	ucmd_buf.uscsi_timeout	= 60;
18430 
18431 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18432 	    UIO_SYSSPACE, ((flag & SD_BYPASS_PM) ? SD_PATH_DIRECT :
18433 	    SD_PATH_STANDARD));
18434 
18435 	switch (status) {
18436 	case 0:
18437 		break;	/* Success! */
18438 	case EIO:
18439 		switch (ucmd_buf.uscsi_status) {
18440 		case STATUS_RESERVATION_CONFLICT:
18441 			status = EACCES;
18442 			break;
18443 		case STATUS_CHECK:
18444 			if ((flag & SD_CHECK_FOR_MEDIA) == 0) {
18445 				break;
18446 			}
18447 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
18448 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
18449 			    KEY_NOT_READY) &&
18450 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x3A)) {
18451 				status = ENXIO;
18452 			}
18453 			break;
18454 		default:
18455 			break;
18456 		}
18457 		break;
18458 	default:
18459 		break;
18460 	}
18461 
18462 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_TEST_UNIT_READY: exit\n");
18463 
18464 	return (status);
18465 }
18466 
18467 
18468 /*
18469  *    Function: sd_send_scsi_PERSISTENT_RESERVE_IN
18470  *
18471  * Description: Issue the scsi PERSISTENT RESERVE IN command.
18472  *
18473  *   Arguments: un
18474  *
18475  * Return Code: 0   - Success
18476  *		EACCES
18477  *		ENOTSUP
18478  *		errno return code from sd_send_scsi_cmd()
18479  *
18480  *     Context: Can sleep. Does not return until command is completed.
18481  */
18482 
18483 static int
18484 sd_send_scsi_PERSISTENT_RESERVE_IN(struct sd_lun *un, uchar_t  usr_cmd,
18485 	uint16_t data_len, uchar_t *data_bufp)
18486 {
18487 	struct scsi_extended_sense	sense_buf;
18488 	union scsi_cdb		cdb;
18489 	struct uscsi_cmd	ucmd_buf;
18490 	int			status;
18491 	int			no_caller_buf = FALSE;
18492 
18493 	ASSERT(un != NULL);
18494 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18495 	ASSERT((usr_cmd == SD_READ_KEYS) || (usr_cmd == SD_READ_RESV));
18496 
18497 	SD_TRACE(SD_LOG_IO, un,
18498 	    "sd_send_scsi_PERSISTENT_RESERVE_IN: entry: un:0x%p\n", un);
18499 
18500 	bzero(&cdb, sizeof (cdb));
18501 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18502 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
18503 	if (data_bufp == NULL) {
18504 		/* Allocate a default buf if the caller did not give one */
18505 		ASSERT(data_len == 0);
18506 		data_len  = MHIOC_RESV_KEY_SIZE;
18507 		data_bufp = kmem_zalloc(MHIOC_RESV_KEY_SIZE, KM_SLEEP);
18508 		no_caller_buf = TRUE;
18509 	}
18510 
18511 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_IN;
18512 	cdb.cdb_opaque[1] = usr_cmd;
18513 	FORMG1COUNT(&cdb, data_len);
18514 
18515 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18516 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
18517 	ucmd_buf.uscsi_bufaddr	= (caddr_t)data_bufp;
18518 	ucmd_buf.uscsi_buflen	= data_len;
18519 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18520 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
18521 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
18522 	ucmd_buf.uscsi_timeout	= 60;
18523 
18524 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18525 	    UIO_SYSSPACE, SD_PATH_STANDARD);
18526 
18527 	switch (status) {
18528 	case 0:
18529 		break;	/* Success! */
18530 	case EIO:
18531 		switch (ucmd_buf.uscsi_status) {
18532 		case STATUS_RESERVATION_CONFLICT:
18533 			status = EACCES;
18534 			break;
18535 		case STATUS_CHECK:
18536 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
18537 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
18538 			    KEY_ILLEGAL_REQUEST)) {
18539 				status = ENOTSUP;
18540 			}
18541 			break;
18542 		default:
18543 			break;
18544 		}
18545 		break;
18546 	default:
18547 		break;
18548 	}
18549 
18550 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_IN: exit\n");
18551 
18552 	if (no_caller_buf == TRUE) {
18553 		kmem_free(data_bufp, data_len);
18554 	}
18555 
18556 	return (status);
18557 }
18558 
18559 
18560 /*
18561  *    Function: sd_send_scsi_PERSISTENT_RESERVE_OUT
18562  *
18563  * Description: This routine is the driver entry point for handling CD-ROM
18564  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS,
18565  *		MHIOCGRP_INRESV) by sending the SCSI-3 PROUT commands to the
18566  *		device.
18567  *
18568  *   Arguments: un  -   Pointer to soft state struct for the target.
18569  *		usr_cmd SCSI-3 reservation facility command (one of
18570  *			SD_SCSI3_REGISTER, SD_SCSI3_RESERVE, SD_SCSI3_RELEASE,
18571  *			SD_SCSI3_PREEMPTANDABORT)
18572  *		usr_bufp - user provided pointer register, reserve descriptor or
18573  *			preempt and abort structure (mhioc_register_t,
18574  *                      mhioc_resv_desc_t, mhioc_preemptandabort_t)
18575  *
18576  * Return Code: 0   - Success
18577  *		EACCES
18578  *		ENOTSUP
18579  *		errno return code from sd_send_scsi_cmd()
18580  *
18581  *     Context: Can sleep. Does not return until command is completed.
18582  */
18583 
18584 static int
18585 sd_send_scsi_PERSISTENT_RESERVE_OUT(struct sd_lun *un, uchar_t usr_cmd,
18586 	uchar_t	*usr_bufp)
18587 {
18588 	struct scsi_extended_sense	sense_buf;
18589 	union scsi_cdb		cdb;
18590 	struct uscsi_cmd	ucmd_buf;
18591 	int			status;
18592 	uchar_t			data_len = sizeof (sd_prout_t);
18593 	sd_prout_t		*prp;
18594 
18595 	ASSERT(un != NULL);
18596 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18597 	ASSERT(data_len == 24);	/* required by scsi spec */
18598 
18599 	SD_TRACE(SD_LOG_IO, un,
18600 	    "sd_send_scsi_PERSISTENT_RESERVE_OUT: entry: un:0x%p\n", un);
18601 
18602 	if (usr_bufp == NULL) {
18603 		return (EINVAL);
18604 	}
18605 
18606 	bzero(&cdb, sizeof (cdb));
18607 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18608 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
18609 	prp = kmem_zalloc(data_len, KM_SLEEP);
18610 
18611 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_OUT;
18612 	cdb.cdb_opaque[1] = usr_cmd;
18613 	FORMG1COUNT(&cdb, data_len);
18614 
18615 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18616 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
18617 	ucmd_buf.uscsi_bufaddr	= (caddr_t)prp;
18618 	ucmd_buf.uscsi_buflen	= data_len;
18619 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18620 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
18621 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
18622 	ucmd_buf.uscsi_timeout	= 60;
18623 
18624 	switch (usr_cmd) {
18625 	case SD_SCSI3_REGISTER: {
18626 		mhioc_register_t *ptr = (mhioc_register_t *)usr_bufp;
18627 
18628 		bcopy(ptr->oldkey.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
18629 		bcopy(ptr->newkey.key, prp->service_key,
18630 		    MHIOC_RESV_KEY_SIZE);
18631 		prp->aptpl = ptr->aptpl;
18632 		break;
18633 	}
18634 	case SD_SCSI3_RESERVE:
18635 	case SD_SCSI3_RELEASE: {
18636 		mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp;
18637 
18638 		bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
18639 		prp->scope_address = BE_32(ptr->scope_specific_addr);
18640 		cdb.cdb_opaque[2] = ptr->type;
18641 		break;
18642 	}
18643 	case SD_SCSI3_PREEMPTANDABORT: {
18644 		mhioc_preemptandabort_t *ptr =
18645 		    (mhioc_preemptandabort_t *)usr_bufp;
18646 
18647 		bcopy(ptr->resvdesc.key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
18648 		bcopy(ptr->victim_key.key, prp->service_key,
18649 		    MHIOC_RESV_KEY_SIZE);
18650 		prp->scope_address = BE_32(ptr->resvdesc.scope_specific_addr);
18651 		cdb.cdb_opaque[2] = ptr->resvdesc.type;
18652 		ucmd_buf.uscsi_flags |= USCSI_HEAD;
18653 		break;
18654 	}
18655 	case SD_SCSI3_REGISTERANDIGNOREKEY:
18656 	{
18657 		mhioc_registerandignorekey_t *ptr;
18658 		ptr = (mhioc_registerandignorekey_t *)usr_bufp;
18659 		bcopy(ptr->newkey.key,
18660 		    prp->service_key, MHIOC_RESV_KEY_SIZE);
18661 		prp->aptpl = ptr->aptpl;
18662 		break;
18663 	}
18664 	default:
18665 		ASSERT(FALSE);
18666 		break;
18667 	}
18668 
18669 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18670 	    UIO_SYSSPACE, SD_PATH_STANDARD);
18671 
18672 	switch (status) {
18673 	case 0:
18674 		break;	/* Success! */
18675 	case EIO:
18676 		switch (ucmd_buf.uscsi_status) {
18677 		case STATUS_RESERVATION_CONFLICT:
18678 			status = EACCES;
18679 			break;
18680 		case STATUS_CHECK:
18681 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
18682 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
18683 			    KEY_ILLEGAL_REQUEST)) {
18684 				status = ENOTSUP;
18685 			}
18686 			break;
18687 		default:
18688 			break;
18689 		}
18690 		break;
18691 	default:
18692 		break;
18693 	}
18694 
18695 	kmem_free(prp, data_len);
18696 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_OUT: exit\n");
18697 	return (status);
18698 }
18699 
18700 
18701 /*
18702  *    Function: sd_send_scsi_SYNCHRONIZE_CACHE
18703  *
18704  * Description: Issues a scsi SYNCHRONIZE CACHE command to the target
18705  *
18706  *   Arguments: un - pointer to the target's soft state struct
18707  *              dkc - pointer to the callback structure
18708  *
18709  * Return Code: 0 - success
18710  *		errno-type error code
18711  *
18712  *     Context: kernel thread context only.
18713  *
18714  *  _______________________________________________________________
18715  * | dkc_flag &   | dkc_callback | DKIOCFLUSHWRITECACHE            |
18716  * |FLUSH_VOLATILE|              | operation                       |
18717  * |______________|______________|_________________________________|
18718  * | 0            | NULL         | Synchronous flush on both       |
18719  * |              |              | volatile and non-volatile cache |
18720  * |______________|______________|_________________________________|
18721  * | 1            | NULL         | Synchronous flush on volatile   |
18722  * |              |              | cache; disk drivers may suppress|
18723  * |              |              | flush if disk table indicates   |
18724  * |              |              | non-volatile cache              |
18725  * |______________|______________|_________________________________|
18726  * | 0            | !NULL        | Asynchronous flush on both      |
18727  * |              |              | volatile and non-volatile cache;|
18728  * |______________|______________|_________________________________|
18729  * | 1            | !NULL        | Asynchronous flush on volatile  |
18730  * |              |              | cache; disk drivers may suppress|
18731  * |              |              | flush if disk table indicates   |
18732  * |              |              | non-volatile cache              |
18733  * |______________|______________|_________________________________|
18734  *
18735  */
18736 
18737 static int
18738 sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un, struct dk_callback *dkc)
18739 {
18740 	struct sd_uscsi_info	*uip;
18741 	struct uscsi_cmd	*uscmd;
18742 	union scsi_cdb		*cdb;
18743 	struct buf		*bp;
18744 	int			rval = 0;
18745 	int			is_async;
18746 
18747 	SD_TRACE(SD_LOG_IO, un,
18748 	    "sd_send_scsi_SYNCHRONIZE_CACHE: entry: un:0x%p\n", un);
18749 
18750 	ASSERT(un != NULL);
18751 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18752 
18753 	if (dkc == NULL || dkc->dkc_callback == NULL) {
18754 		is_async = FALSE;
18755 	} else {
18756 		is_async = TRUE;
18757 	}
18758 
18759 	mutex_enter(SD_MUTEX(un));
18760 	/* check whether cache flush should be suppressed */
18761 	if (un->un_f_suppress_cache_flush == TRUE) {
18762 		mutex_exit(SD_MUTEX(un));
18763 		/*
18764 		 * suppress the cache flush if the device is told to do
18765 		 * so by sd.conf or disk table
18766 		 */
18767 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_SYNCHRONIZE_CACHE: \
18768 		    skip the cache flush since suppress_cache_flush is %d!\n",
18769 		    un->un_f_suppress_cache_flush);
18770 
18771 		if (is_async == TRUE) {
18772 			/* invoke callback for asynchronous flush */
18773 			(*dkc->dkc_callback)(dkc->dkc_cookie, 0);
18774 		}
18775 		return (rval);
18776 	}
18777 	mutex_exit(SD_MUTEX(un));
18778 
18779 	/*
18780 	 * check dkc_flag & FLUSH_VOLATILE so SYNC_NV bit can be
18781 	 * set properly
18782 	 */
18783 	cdb = kmem_zalloc(CDB_GROUP1, KM_SLEEP);
18784 	cdb->scc_cmd = SCMD_SYNCHRONIZE_CACHE;
18785 
18786 	mutex_enter(SD_MUTEX(un));
18787 	if (dkc != NULL && un->un_f_sync_nv_supported &&
18788 	    (dkc->dkc_flag & FLUSH_VOLATILE)) {
18789 		/*
18790 		 * if the device supports SYNC_NV bit, turn on
18791 		 * the SYNC_NV bit to only flush volatile cache
18792 		 */
18793 		cdb->cdb_un.tag |= SD_SYNC_NV_BIT;
18794 	}
18795 	mutex_exit(SD_MUTEX(un));
18796 
18797 	/*
18798 	 * First get some memory for the uscsi_cmd struct and cdb
18799 	 * and initialize for SYNCHRONIZE_CACHE cmd.
18800 	 */
18801 	uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
18802 	uscmd->uscsi_cdblen = CDB_GROUP1;
18803 	uscmd->uscsi_cdb = (caddr_t)cdb;
18804 	uscmd->uscsi_bufaddr = NULL;
18805 	uscmd->uscsi_buflen = 0;
18806 	uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
18807 	uscmd->uscsi_rqlen = SENSE_LENGTH;
18808 	uscmd->uscsi_rqresid = SENSE_LENGTH;
18809 	uscmd->uscsi_flags = USCSI_RQENABLE | USCSI_SILENT;
18810 	uscmd->uscsi_timeout = sd_io_time;
18811 
18812 	/*
18813 	 * Allocate an sd_uscsi_info struct and fill it with the info
18814 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
18815 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
18816 	 * since we allocate the buf here in this function, we do not
18817 	 * need to preserve the prior contents of b_private.
18818 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
18819 	 */
18820 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
18821 	uip->ui_flags = SD_PATH_DIRECT;
18822 	uip->ui_cmdp  = uscmd;
18823 
18824 	bp = getrbuf(KM_SLEEP);
18825 	bp->b_private = uip;
18826 
18827 	/*
18828 	 * Setup buffer to carry uscsi request.
18829 	 */
18830 	bp->b_flags  = B_BUSY;
18831 	bp->b_bcount = 0;
18832 	bp->b_blkno  = 0;
18833 
18834 	if (is_async == TRUE) {
18835 		bp->b_iodone = sd_send_scsi_SYNCHRONIZE_CACHE_biodone;
18836 		uip->ui_dkc = *dkc;
18837 	}
18838 
18839 	bp->b_edev = SD_GET_DEV(un);
18840 	bp->b_dev = cmpdev(bp->b_edev);	/* maybe unnecessary? */
18841 
18842 	(void) sd_uscsi_strategy(bp);
18843 
18844 	/*
18845 	 * If synchronous request, wait for completion
18846 	 * If async just return and let b_iodone callback
18847 	 * cleanup.
18848 	 * NOTE: On return, u_ncmds_in_driver will be decremented,
18849 	 * but it was also incremented in sd_uscsi_strategy(), so
18850 	 * we should be ok.
18851 	 */
18852 	if (is_async == FALSE) {
18853 		(void) biowait(bp);
18854 		rval = sd_send_scsi_SYNCHRONIZE_CACHE_biodone(bp);
18855 	}
18856 
18857 	return (rval);
18858 }
18859 
18860 
18861 static int
18862 sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp)
18863 {
18864 	struct sd_uscsi_info *uip;
18865 	struct uscsi_cmd *uscmd;
18866 	uint8_t *sense_buf;
18867 	struct sd_lun *un;
18868 	int status;
18869 	union scsi_cdb *cdb;
18870 
18871 	uip = (struct sd_uscsi_info *)(bp->b_private);
18872 	ASSERT(uip != NULL);
18873 
18874 	uscmd = uip->ui_cmdp;
18875 	ASSERT(uscmd != NULL);
18876 
18877 	sense_buf = (uint8_t *)uscmd->uscsi_rqbuf;
18878 	ASSERT(sense_buf != NULL);
18879 
18880 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
18881 	ASSERT(un != NULL);
18882 
18883 	cdb = (union scsi_cdb *)uscmd->uscsi_cdb;
18884 
18885 	status = geterror(bp);
18886 	switch (status) {
18887 	case 0:
18888 		break;	/* Success! */
18889 	case EIO:
18890 		switch (uscmd->uscsi_status) {
18891 		case STATUS_RESERVATION_CONFLICT:
18892 			/* Ignore reservation conflict */
18893 			status = 0;
18894 			goto done;
18895 
18896 		case STATUS_CHECK:
18897 			if ((uscmd->uscsi_rqstatus == STATUS_GOOD) &&
18898 			    (scsi_sense_key(sense_buf) ==
18899 			    KEY_ILLEGAL_REQUEST)) {
18900 				/* Ignore Illegal Request error */
18901 				if (cdb->cdb_un.tag|SD_SYNC_NV_BIT) {
18902 					mutex_enter(SD_MUTEX(un));
18903 					un->un_f_sync_nv_supported = FALSE;
18904 					mutex_exit(SD_MUTEX(un));
18905 					status = 0;
18906 					SD_TRACE(SD_LOG_IO, un,
18907 					    "un_f_sync_nv_supported \
18908 					    is set to false.\n");
18909 					goto done;
18910 				}
18911 
18912 				mutex_enter(SD_MUTEX(un));
18913 				un->un_f_sync_cache_supported = FALSE;
18914 				mutex_exit(SD_MUTEX(un));
18915 				SD_TRACE(SD_LOG_IO, un,
18916 				    "sd_send_scsi_SYNCHRONIZE_CACHE_biodone: \
18917 				    un_f_sync_cache_supported set to false \
18918 				    with asc = %x, ascq = %x\n",
18919 				    scsi_sense_asc(sense_buf),
18920 				    scsi_sense_ascq(sense_buf));
18921 				status = ENOTSUP;
18922 				goto done;
18923 			}
18924 			break;
18925 		default:
18926 			break;
18927 		}
18928 		/* FALLTHRU */
18929 	default:
18930 		/*
18931 		 * Don't log an error message if this device
18932 		 * has removable media.
18933 		 */
18934 		if (!un->un_f_has_removable_media) {
18935 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18936 			    "SYNCHRONIZE CACHE command failed (%d)\n", status);
18937 		}
18938 		break;
18939 	}
18940 
18941 done:
18942 	if (uip->ui_dkc.dkc_callback != NULL) {
18943 		(*uip->ui_dkc.dkc_callback)(uip->ui_dkc.dkc_cookie, status);
18944 	}
18945 
18946 	ASSERT((bp->b_flags & B_REMAPPED) == 0);
18947 	freerbuf(bp);
18948 	kmem_free(uip, sizeof (struct sd_uscsi_info));
18949 	kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH);
18950 	kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen);
18951 	kmem_free(uscmd, sizeof (struct uscsi_cmd));
18952 
18953 	return (status);
18954 }
18955 
18956 
18957 /*
18958  *    Function: sd_send_scsi_GET_CONFIGURATION
18959  *
18960  * Description: Issues the get configuration command to the device.
18961  *		Called from sd_check_for_writable_cd & sd_get_media_info
18962  *		caller needs to ensure that buflen = SD_PROFILE_HEADER_LEN
18963  *   Arguments: un
18964  *		ucmdbuf
18965  *		rqbuf
18966  *		rqbuflen
18967  *		bufaddr
18968  *		buflen
18969  *		path_flag
18970  *
18971  * Return Code: 0   - Success
18972  *		errno return code from sd_send_scsi_cmd()
18973  *
18974  *     Context: Can sleep. Does not return until command is completed.
18975  *
18976  */
18977 
18978 static int
18979 sd_send_scsi_GET_CONFIGURATION(struct sd_lun *un, struct uscsi_cmd *ucmdbuf,
18980 	uchar_t *rqbuf, uint_t rqbuflen, uchar_t *bufaddr, uint_t buflen,
18981 	int path_flag)
18982 {
18983 	char	cdb[CDB_GROUP1];
18984 	int	status;
18985 
18986 	ASSERT(un != NULL);
18987 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18988 	ASSERT(bufaddr != NULL);
18989 	ASSERT(ucmdbuf != NULL);
18990 	ASSERT(rqbuf != NULL);
18991 
18992 	SD_TRACE(SD_LOG_IO, un,
18993 	    "sd_send_scsi_GET_CONFIGURATION: entry: un:0x%p\n", un);
18994 
18995 	bzero(cdb, sizeof (cdb));
18996 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
18997 	bzero(rqbuf, rqbuflen);
18998 	bzero(bufaddr, buflen);
18999 
19000 	/*
19001 	 * Set up cdb field for the get configuration command.
19002 	 */
19003 	cdb[0] = SCMD_GET_CONFIGURATION;
19004 	cdb[1] = 0x02;  /* Requested Type */
19005 	cdb[8] = SD_PROFILE_HEADER_LEN;
19006 	ucmdbuf->uscsi_cdb = cdb;
19007 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
19008 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
19009 	ucmdbuf->uscsi_buflen = buflen;
19010 	ucmdbuf->uscsi_timeout = sd_io_time;
19011 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
19012 	ucmdbuf->uscsi_rqlen = rqbuflen;
19013 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
19014 
19015 	status = sd_send_scsi_cmd(SD_GET_DEV(un), ucmdbuf, FKIOCTL,
19016 	    UIO_SYSSPACE, path_flag);
19017 
19018 	switch (status) {
19019 	case 0:
19020 		break;  /* Success! */
19021 	case EIO:
19022 		switch (ucmdbuf->uscsi_status) {
19023 		case STATUS_RESERVATION_CONFLICT:
19024 			status = EACCES;
19025 			break;
19026 		default:
19027 			break;
19028 		}
19029 		break;
19030 	default:
19031 		break;
19032 	}
19033 
19034 	if (status == 0) {
19035 		SD_DUMP_MEMORY(un, SD_LOG_IO,
19036 		    "sd_send_scsi_GET_CONFIGURATION: data",
19037 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
19038 	}
19039 
19040 	SD_TRACE(SD_LOG_IO, un,
19041 	    "sd_send_scsi_GET_CONFIGURATION: exit\n");
19042 
19043 	return (status);
19044 }
19045 
19046 /*
19047  *    Function: sd_send_scsi_feature_GET_CONFIGURATION
19048  *
19049  * Description: Issues the get configuration command to the device to
19050  *              retrieve a specific feature. Called from
19051  *		sd_check_for_writable_cd & sd_set_mmc_caps.
19052  *   Arguments: un
19053  *              ucmdbuf
19054  *              rqbuf
19055  *              rqbuflen
19056  *              bufaddr
19057  *              buflen
19058  *		feature
19059  *
19060  * Return Code: 0   - Success
19061  *              errno return code from sd_send_scsi_cmd()
19062  *
19063  *     Context: Can sleep. Does not return until command is completed.
19064  *
19065  */
19066 static int
19067 sd_send_scsi_feature_GET_CONFIGURATION(struct sd_lun *un,
19068 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
19069 	uchar_t *bufaddr, uint_t buflen, char feature, int path_flag)
19070 {
19071 	char    cdb[CDB_GROUP1];
19072 	int	status;
19073 
19074 	ASSERT(un != NULL);
19075 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19076 	ASSERT(bufaddr != NULL);
19077 	ASSERT(ucmdbuf != NULL);
19078 	ASSERT(rqbuf != NULL);
19079 
19080 	SD_TRACE(SD_LOG_IO, un,
19081 	    "sd_send_scsi_feature_GET_CONFIGURATION: entry: un:0x%p\n", un);
19082 
19083 	bzero(cdb, sizeof (cdb));
19084 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
19085 	bzero(rqbuf, rqbuflen);
19086 	bzero(bufaddr, buflen);
19087 
19088 	/*
19089 	 * Set up cdb field for the get configuration command.
19090 	 */
19091 	cdb[0] = SCMD_GET_CONFIGURATION;
19092 	cdb[1] = 0x02;  /* Requested Type */
19093 	cdb[3] = feature;
19094 	cdb[8] = buflen;
19095 	ucmdbuf->uscsi_cdb = cdb;
19096 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
19097 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
19098 	ucmdbuf->uscsi_buflen = buflen;
19099 	ucmdbuf->uscsi_timeout = sd_io_time;
19100 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
19101 	ucmdbuf->uscsi_rqlen = rqbuflen;
19102 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
19103 
19104 	status = sd_send_scsi_cmd(SD_GET_DEV(un), ucmdbuf, FKIOCTL,
19105 	    UIO_SYSSPACE, path_flag);
19106 
19107 	switch (status) {
19108 	case 0:
19109 		break;  /* Success! */
19110 	case EIO:
19111 		switch (ucmdbuf->uscsi_status) {
19112 		case STATUS_RESERVATION_CONFLICT:
19113 			status = EACCES;
19114 			break;
19115 		default:
19116 			break;
19117 		}
19118 		break;
19119 	default:
19120 		break;
19121 	}
19122 
19123 	if (status == 0) {
19124 		SD_DUMP_MEMORY(un, SD_LOG_IO,
19125 		    "sd_send_scsi_feature_GET_CONFIGURATION: data",
19126 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
19127 	}
19128 
19129 	SD_TRACE(SD_LOG_IO, un,
19130 	    "sd_send_scsi_feature_GET_CONFIGURATION: exit\n");
19131 
19132 	return (status);
19133 }
19134 
19135 
19136 /*
19137  *    Function: sd_send_scsi_MODE_SENSE
19138  *
19139  * Description: Utility function for issuing a scsi MODE SENSE command.
19140  *		Note: This routine uses a consistent implementation for Group0,
19141  *		Group1, and Group2 commands across all platforms. ATAPI devices
19142  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
19143  *
19144  *   Arguments: un - pointer to the softstate struct for the target.
19145  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
19146  *			  CDB_GROUP[1|2] (10 byte).
19147  *		bufaddr - buffer for page data retrieved from the target.
19148  *		buflen - size of page to be retrieved.
19149  *		page_code - page code of data to be retrieved from the target.
19150  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19151  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19152  *			to use the USCSI "direct" chain and bypass the normal
19153  *			command waitq.
19154  *
19155  * Return Code: 0   - Success
19156  *		errno return code from sd_send_scsi_cmd()
19157  *
19158  *     Context: Can sleep. Does not return until command is completed.
19159  */
19160 
19161 static int
19162 sd_send_scsi_MODE_SENSE(struct sd_lun *un, int cdbsize, uchar_t *bufaddr,
19163 	size_t buflen,  uchar_t page_code, int path_flag)
19164 {
19165 	struct	scsi_extended_sense	sense_buf;
19166 	union scsi_cdb		cdb;
19167 	struct uscsi_cmd	ucmd_buf;
19168 	int			status;
19169 	int			headlen;
19170 
19171 	ASSERT(un != NULL);
19172 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19173 	ASSERT(bufaddr != NULL);
19174 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
19175 	    (cdbsize == CDB_GROUP2));
19176 
19177 	SD_TRACE(SD_LOG_IO, un,
19178 	    "sd_send_scsi_MODE_SENSE: entry: un:0x%p\n", un);
19179 
19180 	bzero(&cdb, sizeof (cdb));
19181 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19182 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19183 	bzero(bufaddr, buflen);
19184 
19185 	if (cdbsize == CDB_GROUP0) {
19186 		cdb.scc_cmd = SCMD_MODE_SENSE;
19187 		cdb.cdb_opaque[2] = page_code;
19188 		FORMG0COUNT(&cdb, buflen);
19189 		headlen = MODE_HEADER_LENGTH;
19190 	} else {
19191 		cdb.scc_cmd = SCMD_MODE_SENSE_G1;
19192 		cdb.cdb_opaque[2] = page_code;
19193 		FORMG1COUNT(&cdb, buflen);
19194 		headlen = MODE_HEADER_LENGTH_GRP2;
19195 	}
19196 
19197 	ASSERT(headlen <= buflen);
19198 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
19199 
19200 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19201 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
19202 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
19203 	ucmd_buf.uscsi_buflen	= buflen;
19204 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19205 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19206 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19207 	ucmd_buf.uscsi_timeout	= 60;
19208 
19209 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
19210 	    UIO_SYSSPACE, path_flag);
19211 
19212 	switch (status) {
19213 	case 0:
19214 		/*
19215 		 * sr_check_wp() uses 0x3f page code and check the header of
19216 		 * mode page to determine if target device is write-protected.
19217 		 * But some USB devices return 0 bytes for 0x3f page code. For
19218 		 * this case, make sure that mode page header is returned at
19219 		 * least.
19220 		 */
19221 		if (buflen - ucmd_buf.uscsi_resid <  headlen)
19222 			status = EIO;
19223 		break;	/* Success! */
19224 	case EIO:
19225 		switch (ucmd_buf.uscsi_status) {
19226 		case STATUS_RESERVATION_CONFLICT:
19227 			status = EACCES;
19228 			break;
19229 		default:
19230 			break;
19231 		}
19232 		break;
19233 	default:
19234 		break;
19235 	}
19236 
19237 	if (status == 0) {
19238 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SENSE: data",
19239 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
19240 	}
19241 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SENSE: exit\n");
19242 
19243 	return (status);
19244 }
19245 
19246 
19247 /*
19248  *    Function: sd_send_scsi_MODE_SELECT
19249  *
19250  * Description: Utility function for issuing a scsi MODE SELECT command.
19251  *		Note: This routine uses a consistent implementation for Group0,
19252  *		Group1, and Group2 commands across all platforms. ATAPI devices
19253  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
19254  *
19255  *   Arguments: un - pointer to the softstate struct for the target.
19256  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
19257  *			  CDB_GROUP[1|2] (10 byte).
19258  *		bufaddr - buffer for page data retrieved from the target.
19259  *		buflen - size of page to be retrieved.
19260  *		save_page - boolean to determin if SP bit should be set.
19261  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19262  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19263  *			to use the USCSI "direct" chain and bypass the normal
19264  *			command waitq.
19265  *
19266  * Return Code: 0   - Success
19267  *		errno return code from sd_send_scsi_cmd()
19268  *
19269  *     Context: Can sleep. Does not return until command is completed.
19270  */
19271 
19272 static int
19273 sd_send_scsi_MODE_SELECT(struct sd_lun *un, int cdbsize, uchar_t *bufaddr,
19274 	size_t buflen,  uchar_t save_page, int path_flag)
19275 {
19276 	struct	scsi_extended_sense	sense_buf;
19277 	union scsi_cdb		cdb;
19278 	struct uscsi_cmd	ucmd_buf;
19279 	int			status;
19280 
19281 	ASSERT(un != NULL);
19282 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19283 	ASSERT(bufaddr != NULL);
19284 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
19285 	    (cdbsize == CDB_GROUP2));
19286 
19287 	SD_TRACE(SD_LOG_IO, un,
19288 	    "sd_send_scsi_MODE_SELECT: entry: un:0x%p\n", un);
19289 
19290 	bzero(&cdb, sizeof (cdb));
19291 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19292 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19293 
19294 	/* Set the PF bit for many third party drives */
19295 	cdb.cdb_opaque[1] = 0x10;
19296 
19297 	/* Set the savepage(SP) bit if given */
19298 	if (save_page == SD_SAVE_PAGE) {
19299 		cdb.cdb_opaque[1] |= 0x01;
19300 	}
19301 
19302 	if (cdbsize == CDB_GROUP0) {
19303 		cdb.scc_cmd = SCMD_MODE_SELECT;
19304 		FORMG0COUNT(&cdb, buflen);
19305 	} else {
19306 		cdb.scc_cmd = SCMD_MODE_SELECT_G1;
19307 		FORMG1COUNT(&cdb, buflen);
19308 	}
19309 
19310 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
19311 
19312 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19313 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
19314 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
19315 	ucmd_buf.uscsi_buflen	= buflen;
19316 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19317 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19318 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
19319 	ucmd_buf.uscsi_timeout	= 60;
19320 
19321 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
19322 	    UIO_SYSSPACE, path_flag);
19323 
19324 	switch (status) {
19325 	case 0:
19326 		break;	/* Success! */
19327 	case EIO:
19328 		switch (ucmd_buf.uscsi_status) {
19329 		case STATUS_RESERVATION_CONFLICT:
19330 			status = EACCES;
19331 			break;
19332 		default:
19333 			break;
19334 		}
19335 		break;
19336 	default:
19337 		break;
19338 	}
19339 
19340 	if (status == 0) {
19341 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SELECT: data",
19342 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
19343 	}
19344 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SELECT: exit\n");
19345 
19346 	return (status);
19347 }
19348 
19349 
19350 /*
19351  *    Function: sd_send_scsi_RDWR
19352  *
19353  * Description: Issue a scsi READ or WRITE command with the given parameters.
19354  *
19355  *   Arguments: un:      Pointer to the sd_lun struct for the target.
19356  *		cmd:	 SCMD_READ or SCMD_WRITE
19357  *		bufaddr: Address of caller's buffer to receive the RDWR data
19358  *		buflen:  Length of caller's buffer receive the RDWR data.
19359  *		start_block: Block number for the start of the RDWR operation.
19360  *			 (Assumes target-native block size.)
19361  *		residp:  Pointer to variable to receive the redisual of the
19362  *			 RDWR operation (may be NULL of no residual requested).
19363  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19364  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19365  *			to use the USCSI "direct" chain and bypass the normal
19366  *			command waitq.
19367  *
19368  * Return Code: 0   - Success
19369  *		errno return code from sd_send_scsi_cmd()
19370  *
19371  *     Context: Can sleep. Does not return until command is completed.
19372  */
19373 
19374 static int
19375 sd_send_scsi_RDWR(struct sd_lun *un, uchar_t cmd, void *bufaddr,
19376 	size_t buflen, daddr_t start_block, int path_flag)
19377 {
19378 	struct	scsi_extended_sense	sense_buf;
19379 	union scsi_cdb		cdb;
19380 	struct uscsi_cmd	ucmd_buf;
19381 	uint32_t		block_count;
19382 	int			status;
19383 	int			cdbsize;
19384 	uchar_t			flag;
19385 
19386 	ASSERT(un != NULL);
19387 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19388 	ASSERT(bufaddr != NULL);
19389 	ASSERT((cmd == SCMD_READ) || (cmd == SCMD_WRITE));
19390 
19391 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: entry: un:0x%p\n", un);
19392 
19393 	if (un->un_f_tgt_blocksize_is_valid != TRUE) {
19394 		return (EINVAL);
19395 	}
19396 
19397 	mutex_enter(SD_MUTEX(un));
19398 	block_count = SD_BYTES2TGTBLOCKS(un, buflen);
19399 	mutex_exit(SD_MUTEX(un));
19400 
19401 	flag = (cmd == SCMD_READ) ? USCSI_READ : USCSI_WRITE;
19402 
19403 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_RDWR: "
19404 	    "bufaddr:0x%p buflen:0x%x start_block:0x%p block_count:0x%x\n",
19405 	    bufaddr, buflen, start_block, block_count);
19406 
19407 	bzero(&cdb, sizeof (cdb));
19408 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19409 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19410 
19411 	/* Compute CDB size to use */
19412 	if (start_block > 0xffffffff)
19413 		cdbsize = CDB_GROUP4;
19414 	else if ((start_block & 0xFFE00000) ||
19415 	    (un->un_f_cfg_is_atapi == TRUE))
19416 		cdbsize = CDB_GROUP1;
19417 	else
19418 		cdbsize = CDB_GROUP0;
19419 
19420 	switch (cdbsize) {
19421 	case CDB_GROUP0:	/* 6-byte CDBs */
19422 		cdb.scc_cmd = cmd;
19423 		FORMG0ADDR(&cdb, start_block);
19424 		FORMG0COUNT(&cdb, block_count);
19425 		break;
19426 	case CDB_GROUP1:	/* 10-byte CDBs */
19427 		cdb.scc_cmd = cmd | SCMD_GROUP1;
19428 		FORMG1ADDR(&cdb, start_block);
19429 		FORMG1COUNT(&cdb, block_count);
19430 		break;
19431 	case CDB_GROUP4:	/* 16-byte CDBs */
19432 		cdb.scc_cmd = cmd | SCMD_GROUP4;
19433 		FORMG4LONGADDR(&cdb, (uint64_t)start_block);
19434 		FORMG4COUNT(&cdb, block_count);
19435 		break;
19436 	case CDB_GROUP5:	/* 12-byte CDBs (currently unsupported) */
19437 	default:
19438 		/* All others reserved */
19439 		return (EINVAL);
19440 	}
19441 
19442 	/* Set LUN bit(s) in CDB if this is a SCSI-1 device */
19443 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
19444 
19445 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19446 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
19447 	ucmd_buf.uscsi_bufaddr	= bufaddr;
19448 	ucmd_buf.uscsi_buflen	= buflen;
19449 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19450 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19451 	ucmd_buf.uscsi_flags	= flag | USCSI_RQENABLE | USCSI_SILENT;
19452 	ucmd_buf.uscsi_timeout	= 60;
19453 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
19454 	    UIO_SYSSPACE, path_flag);
19455 	switch (status) {
19456 	case 0:
19457 		break;	/* Success! */
19458 	case EIO:
19459 		switch (ucmd_buf.uscsi_status) {
19460 		case STATUS_RESERVATION_CONFLICT:
19461 			status = EACCES;
19462 			break;
19463 		default:
19464 			break;
19465 		}
19466 		break;
19467 	default:
19468 		break;
19469 	}
19470 
19471 	if (status == 0) {
19472 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_RDWR: data",
19473 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
19474 	}
19475 
19476 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: exit\n");
19477 
19478 	return (status);
19479 }
19480 
19481 
19482 /*
19483  *    Function: sd_send_scsi_LOG_SENSE
19484  *
19485  * Description: Issue a scsi LOG_SENSE command with the given parameters.
19486  *
19487  *   Arguments: un:      Pointer to the sd_lun struct for the target.
19488  *
19489  * Return Code: 0   - Success
19490  *		errno return code from sd_send_scsi_cmd()
19491  *
19492  *     Context: Can sleep. Does not return until command is completed.
19493  */
19494 
19495 static int
19496 sd_send_scsi_LOG_SENSE(struct sd_lun *un, uchar_t *bufaddr, uint16_t buflen,
19497 	uchar_t page_code, uchar_t page_control, uint16_t param_ptr,
19498 	int path_flag)
19499 
19500 {
19501 	struct	scsi_extended_sense	sense_buf;
19502 	union scsi_cdb		cdb;
19503 	struct uscsi_cmd	ucmd_buf;
19504 	int			status;
19505 
19506 	ASSERT(un != NULL);
19507 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19508 
19509 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: entry: un:0x%p\n", un);
19510 
19511 	bzero(&cdb, sizeof (cdb));
19512 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19513 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19514 
19515 	cdb.scc_cmd = SCMD_LOG_SENSE_G1;
19516 	cdb.cdb_opaque[2] = (page_control << 6) | page_code;
19517 	cdb.cdb_opaque[5] = (uchar_t)((param_ptr & 0xFF00) >> 8);
19518 	cdb.cdb_opaque[6] = (uchar_t)(param_ptr  & 0x00FF);
19519 	FORMG1COUNT(&cdb, buflen);
19520 
19521 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19522 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
19523 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
19524 	ucmd_buf.uscsi_buflen	= buflen;
19525 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19526 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19527 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19528 	ucmd_buf.uscsi_timeout	= 60;
19529 
19530 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
19531 	    UIO_SYSSPACE, path_flag);
19532 
19533 	switch (status) {
19534 	case 0:
19535 		break;
19536 	case EIO:
19537 		switch (ucmd_buf.uscsi_status) {
19538 		case STATUS_RESERVATION_CONFLICT:
19539 			status = EACCES;
19540 			break;
19541 		case STATUS_CHECK:
19542 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19543 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
19544 				KEY_ILLEGAL_REQUEST) &&
19545 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x24)) {
19546 				/*
19547 				 * ASC 0x24: INVALID FIELD IN CDB
19548 				 */
19549 				switch (page_code) {
19550 				case START_STOP_CYCLE_PAGE:
19551 					/*
19552 					 * The start stop cycle counter is
19553 					 * implemented as page 0x31 in earlier
19554 					 * generation disks. In new generation
19555 					 * disks the start stop cycle counter is
19556 					 * implemented as page 0xE. To properly
19557 					 * handle this case if an attempt for
19558 					 * log page 0xE is made and fails we
19559 					 * will try again using page 0x31.
19560 					 *
19561 					 * Network storage BU committed to
19562 					 * maintain the page 0x31 for this
19563 					 * purpose and will not have any other
19564 					 * page implemented with page code 0x31
19565 					 * until all disks transition to the
19566 					 * standard page.
19567 					 */
19568 					mutex_enter(SD_MUTEX(un));
19569 					un->un_start_stop_cycle_page =
19570 					    START_STOP_CYCLE_VU_PAGE;
19571 					cdb.cdb_opaque[2] =
19572 					    (char)(page_control << 6) |
19573 					    un->un_start_stop_cycle_page;
19574 					mutex_exit(SD_MUTEX(un));
19575 					status = sd_send_scsi_cmd(
19576 					    SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
19577 					    UIO_SYSSPACE, path_flag);
19578 
19579 					break;
19580 				case TEMPERATURE_PAGE:
19581 					status = ENOTTY;
19582 					break;
19583 				default:
19584 					break;
19585 				}
19586 			}
19587 			break;
19588 		default:
19589 			break;
19590 		}
19591 		break;
19592 	default:
19593 		break;
19594 	}
19595 
19596 	if (status == 0) {
19597 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_LOG_SENSE: data",
19598 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
19599 	}
19600 
19601 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: exit\n");
19602 
19603 	return (status);
19604 }
19605 
19606 
19607 /*
19608  *    Function: sdioctl
19609  *
19610  * Description: Driver's ioctl(9e) entry point function.
19611  *
19612  *   Arguments: dev     - device number
19613  *		cmd     - ioctl operation to be performed
19614  *		arg     - user argument, contains data to be set or reference
19615  *			  parameter for get
19616  *		flag    - bit flag, indicating open settings, 32/64 bit type
19617  *		cred_p  - user credential pointer
19618  *		rval_p  - calling process return value (OPT)
19619  *
19620  * Return Code: EINVAL
19621  *		ENOTTY
19622  *		ENXIO
19623  *		EIO
19624  *		EFAULT
19625  *		ENOTSUP
19626  *		EPERM
19627  *
19628  *     Context: Called from the device switch at normal priority.
19629  */
19630 
19631 static int
19632 sdioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cred_p, int *rval_p)
19633 {
19634 	struct sd_lun	*un = NULL;
19635 	int		err = 0;
19636 	int		i = 0;
19637 	cred_t		*cr;
19638 	int		tmprval = EINVAL;
19639 	int 		is_valid;
19640 
19641 	/*
19642 	 * All device accesses go thru sdstrategy where we check on suspend
19643 	 * status
19644 	 */
19645 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
19646 		return (ENXIO);
19647 	}
19648 
19649 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19650 
19651 
19652 	is_valid = SD_IS_VALID_LABEL(un);
19653 
19654 	/*
19655 	 * Moved this wait from sd_uscsi_strategy to here for
19656 	 * reasons of deadlock prevention. Internal driver commands,
19657 	 * specifically those to change a devices power level, result
19658 	 * in a call to sd_uscsi_strategy.
19659 	 */
19660 	mutex_enter(SD_MUTEX(un));
19661 	while ((un->un_state == SD_STATE_SUSPENDED) ||
19662 	    (un->un_state == SD_STATE_PM_CHANGING)) {
19663 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
19664 	}
19665 	/*
19666 	 * Twiddling the counter here protects commands from now
19667 	 * through to the top of sd_uscsi_strategy. Without the
19668 	 * counter inc. a power down, for example, could get in
19669 	 * after the above check for state is made and before
19670 	 * execution gets to the top of sd_uscsi_strategy.
19671 	 * That would cause problems.
19672 	 */
19673 	un->un_ncmds_in_driver++;
19674 
19675 	if (!is_valid &&
19676 	    (flag & (FNDELAY | FNONBLOCK))) {
19677 		switch (cmd) {
19678 		case DKIOCGGEOM:	/* SD_PATH_DIRECT */
19679 		case DKIOCGVTOC:
19680 		case DKIOCGAPART:
19681 		case DKIOCPARTINFO:
19682 		case DKIOCSGEOM:
19683 		case DKIOCSAPART:
19684 		case DKIOCGETEFI:
19685 		case DKIOCPARTITION:
19686 		case DKIOCSVTOC:
19687 		case DKIOCSETEFI:
19688 		case DKIOCGMBOOT:
19689 		case DKIOCSMBOOT:
19690 		case DKIOCG_PHYGEOM:
19691 		case DKIOCG_VIRTGEOM:
19692 			/* let cmlb handle it */
19693 			goto skip_ready_valid;
19694 
19695 		case CDROMPAUSE:
19696 		case CDROMRESUME:
19697 		case CDROMPLAYMSF:
19698 		case CDROMPLAYTRKIND:
19699 		case CDROMREADTOCHDR:
19700 		case CDROMREADTOCENTRY:
19701 		case CDROMSTOP:
19702 		case CDROMSTART:
19703 		case CDROMVOLCTRL:
19704 		case CDROMSUBCHNL:
19705 		case CDROMREADMODE2:
19706 		case CDROMREADMODE1:
19707 		case CDROMREADOFFSET:
19708 		case CDROMSBLKMODE:
19709 		case CDROMGBLKMODE:
19710 		case CDROMGDRVSPEED:
19711 		case CDROMSDRVSPEED:
19712 		case CDROMCDDA:
19713 		case CDROMCDXA:
19714 		case CDROMSUBCODE:
19715 			if (!ISCD(un)) {
19716 				un->un_ncmds_in_driver--;
19717 				ASSERT(un->un_ncmds_in_driver >= 0);
19718 				mutex_exit(SD_MUTEX(un));
19719 				return (ENOTTY);
19720 			}
19721 			break;
19722 		case FDEJECT:
19723 		case DKIOCEJECT:
19724 		case CDROMEJECT:
19725 			if (!un->un_f_eject_media_supported) {
19726 				un->un_ncmds_in_driver--;
19727 				ASSERT(un->un_ncmds_in_driver >= 0);
19728 				mutex_exit(SD_MUTEX(un));
19729 				return (ENOTTY);
19730 			}
19731 			break;
19732 		case DKIOCFLUSHWRITECACHE:
19733 			mutex_exit(SD_MUTEX(un));
19734 			err = sd_send_scsi_TEST_UNIT_READY(un, 0);
19735 			if (err != 0) {
19736 				mutex_enter(SD_MUTEX(un));
19737 				un->un_ncmds_in_driver--;
19738 				ASSERT(un->un_ncmds_in_driver >= 0);
19739 				mutex_exit(SD_MUTEX(un));
19740 				return (EIO);
19741 			}
19742 			mutex_enter(SD_MUTEX(un));
19743 			/* FALLTHROUGH */
19744 		case DKIOCREMOVABLE:
19745 		case DKIOCHOTPLUGGABLE:
19746 		case DKIOCINFO:
19747 		case DKIOCGMEDIAINFO:
19748 		case MHIOCENFAILFAST:
19749 		case MHIOCSTATUS:
19750 		case MHIOCTKOWN:
19751 		case MHIOCRELEASE:
19752 		case MHIOCGRP_INKEYS:
19753 		case MHIOCGRP_INRESV:
19754 		case MHIOCGRP_REGISTER:
19755 		case MHIOCGRP_RESERVE:
19756 		case MHIOCGRP_PREEMPTANDABORT:
19757 		case MHIOCGRP_REGISTERANDIGNOREKEY:
19758 		case CDROMCLOSETRAY:
19759 		case USCSICMD:
19760 			goto skip_ready_valid;
19761 		default:
19762 			break;
19763 		}
19764 
19765 		mutex_exit(SD_MUTEX(un));
19766 		err = sd_ready_and_valid(un);
19767 		mutex_enter(SD_MUTEX(un));
19768 
19769 		if (err != SD_READY_VALID) {
19770 			switch (cmd) {
19771 			case DKIOCSTATE:
19772 			case CDROMGDRVSPEED:
19773 			case CDROMSDRVSPEED:
19774 			case FDEJECT:	/* for eject command */
19775 			case DKIOCEJECT:
19776 			case CDROMEJECT:
19777 			case DKIOCREMOVABLE:
19778 			case DKIOCHOTPLUGGABLE:
19779 				break;
19780 			default:
19781 				if (un->un_f_has_removable_media) {
19782 					err = ENXIO;
19783 				} else {
19784 				/* Do not map SD_RESERVED_BY_OTHERS to EIO */
19785 					if (err == SD_RESERVED_BY_OTHERS) {
19786 						err = EACCES;
19787 					} else {
19788 						err = EIO;
19789 					}
19790 				}
19791 				un->un_ncmds_in_driver--;
19792 				ASSERT(un->un_ncmds_in_driver >= 0);
19793 				mutex_exit(SD_MUTEX(un));
19794 				return (err);
19795 			}
19796 		}
19797 	}
19798 
19799 skip_ready_valid:
19800 	mutex_exit(SD_MUTEX(un));
19801 
19802 	switch (cmd) {
19803 	case DKIOCINFO:
19804 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCINFO\n");
19805 		err = sd_dkio_ctrl_info(dev, (caddr_t)arg, flag);
19806 		break;
19807 
19808 	case DKIOCGMEDIAINFO:
19809 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFO\n");
19810 		err = sd_get_media_info(dev, (caddr_t)arg, flag);
19811 		break;
19812 
19813 	case DKIOCGGEOM:
19814 	case DKIOCGVTOC:
19815 	case DKIOCGAPART:
19816 	case DKIOCPARTINFO:
19817 	case DKIOCSGEOM:
19818 	case DKIOCSAPART:
19819 	case DKIOCGETEFI:
19820 	case DKIOCPARTITION:
19821 	case DKIOCSVTOC:
19822 	case DKIOCSETEFI:
19823 	case DKIOCGMBOOT:
19824 	case DKIOCSMBOOT:
19825 	case DKIOCG_PHYGEOM:
19826 	case DKIOCG_VIRTGEOM:
19827 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOC %d\n", cmd);
19828 
19829 		/* TUR should spin up */
19830 
19831 		if (un->un_f_has_removable_media)
19832 			err = sd_send_scsi_TEST_UNIT_READY(un,
19833 			    SD_CHECK_FOR_MEDIA);
19834 		else
19835 			err = sd_send_scsi_TEST_UNIT_READY(un, 0);
19836 
19837 		if (err != 0)
19838 			break;
19839 
19840 		err = cmlb_ioctl(un->un_cmlbhandle, dev,
19841 		    cmd, arg, flag, cred_p, rval_p, (void *)SD_PATH_DIRECT);
19842 
19843 		if ((err == 0) &&
19844 		    ((cmd == DKIOCSETEFI) ||
19845 		    (un->un_f_pkstats_enabled) &&
19846 		    (cmd == DKIOCSAPART || cmd == DKIOCSVTOC))) {
19847 
19848 			tmprval = cmlb_validate(un->un_cmlbhandle, CMLB_SILENT,
19849 			    (void *)SD_PATH_DIRECT);
19850 			if ((tmprval == 0) && un->un_f_pkstats_enabled) {
19851 				sd_set_pstats(un);
19852 				SD_TRACE(SD_LOG_IO_PARTITION, un,
19853 				    "sd_ioctl: un:0x%p pstats created and "
19854 				    "set\n", un);
19855 			}
19856 		}
19857 
19858 		if ((cmd == DKIOCSVTOC) ||
19859 		    ((cmd == DKIOCSETEFI) && (tmprval == 0))) {
19860 
19861 			mutex_enter(SD_MUTEX(un));
19862 			if (un->un_f_devid_supported &&
19863 			    (un->un_f_opt_fab_devid == TRUE)) {
19864 				if (un->un_devid == NULL) {
19865 					sd_register_devid(un, SD_DEVINFO(un),
19866 					    SD_TARGET_IS_UNRESERVED);
19867 				} else {
19868 					/*
19869 					 * The device id for this disk
19870 					 * has been fabricated. The
19871 					 * device id must be preserved
19872 					 * by writing it back out to
19873 					 * disk.
19874 					 */
19875 					if (sd_write_deviceid(un) != 0) {
19876 						ddi_devid_free(un->un_devid);
19877 						un->un_devid = NULL;
19878 					}
19879 				}
19880 			}
19881 			mutex_exit(SD_MUTEX(un));
19882 		}
19883 
19884 		break;
19885 
19886 	case DKIOCLOCK:
19887 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCLOCK\n");
19888 		err = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
19889 		    SD_PATH_STANDARD);
19890 		break;
19891 
19892 	case DKIOCUNLOCK:
19893 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCUNLOCK\n");
19894 		err = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_ALLOW,
19895 		    SD_PATH_STANDARD);
19896 		break;
19897 
19898 	case DKIOCSTATE: {
19899 		enum dkio_state		state;
19900 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSTATE\n");
19901 
19902 		if (ddi_copyin((void *)arg, &state, sizeof (int), flag) != 0) {
19903 			err = EFAULT;
19904 		} else {
19905 			err = sd_check_media(dev, state);
19906 			if (err == 0) {
19907 				if (ddi_copyout(&un->un_mediastate, (void *)arg,
19908 				    sizeof (int), flag) != 0)
19909 					err = EFAULT;
19910 			}
19911 		}
19912 		break;
19913 	}
19914 
19915 	case DKIOCREMOVABLE:
19916 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREMOVABLE\n");
19917 		i = un->un_f_has_removable_media ? 1 : 0;
19918 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
19919 			err = EFAULT;
19920 		} else {
19921 			err = 0;
19922 		}
19923 		break;
19924 
19925 	case DKIOCHOTPLUGGABLE:
19926 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCHOTPLUGGABLE\n");
19927 		i = un->un_f_is_hotpluggable ? 1 : 0;
19928 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
19929 			err = EFAULT;
19930 		} else {
19931 			err = 0;
19932 		}
19933 		break;
19934 
19935 	case DKIOCGTEMPERATURE:
19936 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGTEMPERATURE\n");
19937 		err = sd_dkio_get_temp(dev, (caddr_t)arg, flag);
19938 		break;
19939 
19940 	case MHIOCENFAILFAST:
19941 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCENFAILFAST\n");
19942 		if ((err = drv_priv(cred_p)) == 0) {
19943 			err = sd_mhdioc_failfast(dev, (caddr_t)arg, flag);
19944 		}
19945 		break;
19946 
19947 	case MHIOCTKOWN:
19948 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCTKOWN\n");
19949 		if ((err = drv_priv(cred_p)) == 0) {
19950 			err = sd_mhdioc_takeown(dev, (caddr_t)arg, flag);
19951 		}
19952 		break;
19953 
19954 	case MHIOCRELEASE:
19955 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCRELEASE\n");
19956 		if ((err = drv_priv(cred_p)) == 0) {
19957 			err = sd_mhdioc_release(dev);
19958 		}
19959 		break;
19960 
19961 	case MHIOCSTATUS:
19962 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCSTATUS\n");
19963 		if ((err = drv_priv(cred_p)) == 0) {
19964 			switch (sd_send_scsi_TEST_UNIT_READY(un, 0)) {
19965 			case 0:
19966 				err = 0;
19967 				break;
19968 			case EACCES:
19969 				*rval_p = 1;
19970 				err = 0;
19971 				break;
19972 			default:
19973 				err = EIO;
19974 				break;
19975 			}
19976 		}
19977 		break;
19978 
19979 	case MHIOCQRESERVE:
19980 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCQRESERVE\n");
19981 		if ((err = drv_priv(cred_p)) == 0) {
19982 			err = sd_reserve_release(dev, SD_RESERVE);
19983 		}
19984 		break;
19985 
19986 	case MHIOCREREGISTERDEVID:
19987 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCREREGISTERDEVID\n");
19988 		if (drv_priv(cred_p) == EPERM) {
19989 			err = EPERM;
19990 		} else if (!un->un_f_devid_supported) {
19991 			err = ENOTTY;
19992 		} else {
19993 			err = sd_mhdioc_register_devid(dev);
19994 		}
19995 		break;
19996 
19997 	case MHIOCGRP_INKEYS:
19998 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INKEYS\n");
19999 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
20000 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20001 				err = ENOTSUP;
20002 			} else {
20003 				err = sd_mhdioc_inkeys(dev, (caddr_t)arg,
20004 				    flag);
20005 			}
20006 		}
20007 		break;
20008 
20009 	case MHIOCGRP_INRESV:
20010 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INRESV\n");
20011 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
20012 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20013 				err = ENOTSUP;
20014 			} else {
20015 				err = sd_mhdioc_inresv(dev, (caddr_t)arg, flag);
20016 			}
20017 		}
20018 		break;
20019 
20020 	case MHIOCGRP_REGISTER:
20021 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTER\n");
20022 		if ((err = drv_priv(cred_p)) != EPERM) {
20023 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20024 				err = ENOTSUP;
20025 			} else if (arg != NULL) {
20026 				mhioc_register_t reg;
20027 				if (ddi_copyin((void *)arg, &reg,
20028 				    sizeof (mhioc_register_t), flag) != 0) {
20029 					err = EFAULT;
20030 				} else {
20031 					err =
20032 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
20033 					    un, SD_SCSI3_REGISTER,
20034 					    (uchar_t *)&reg);
20035 				}
20036 			}
20037 		}
20038 		break;
20039 
20040 	case MHIOCGRP_RESERVE:
20041 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_RESERVE\n");
20042 		if ((err = drv_priv(cred_p)) != EPERM) {
20043 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20044 				err = ENOTSUP;
20045 			} else if (arg != NULL) {
20046 				mhioc_resv_desc_t resv_desc;
20047 				if (ddi_copyin((void *)arg, &resv_desc,
20048 				    sizeof (mhioc_resv_desc_t), flag) != 0) {
20049 					err = EFAULT;
20050 				} else {
20051 					err =
20052 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
20053 					    un, SD_SCSI3_RESERVE,
20054 					    (uchar_t *)&resv_desc);
20055 				}
20056 			}
20057 		}
20058 		break;
20059 
20060 	case MHIOCGRP_PREEMPTANDABORT:
20061 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n");
20062 		if ((err = drv_priv(cred_p)) != EPERM) {
20063 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20064 				err = ENOTSUP;
20065 			} else if (arg != NULL) {
20066 				mhioc_preemptandabort_t preempt_abort;
20067 				if (ddi_copyin((void *)arg, &preempt_abort,
20068 				    sizeof (mhioc_preemptandabort_t),
20069 				    flag) != 0) {
20070 					err = EFAULT;
20071 				} else {
20072 					err =
20073 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
20074 					    un, SD_SCSI3_PREEMPTANDABORT,
20075 					    (uchar_t *)&preempt_abort);
20076 				}
20077 			}
20078 		}
20079 		break;
20080 
20081 	case MHIOCGRP_REGISTERANDIGNOREKEY:
20082 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTERANDIGNOREKEY\n");
20083 		if ((err = drv_priv(cred_p)) != EPERM) {
20084 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20085 				err = ENOTSUP;
20086 			} else if (arg != NULL) {
20087 				mhioc_registerandignorekey_t r_and_i;
20088 				if (ddi_copyin((void *)arg, (void *)&r_and_i,
20089 				    sizeof (mhioc_registerandignorekey_t),
20090 				    flag) != 0) {
20091 					err = EFAULT;
20092 				} else {
20093 					err =
20094 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
20095 					    un, SD_SCSI3_REGISTERANDIGNOREKEY,
20096 					    (uchar_t *)&r_and_i);
20097 				}
20098 			}
20099 		}
20100 		break;
20101 
20102 	case USCSICMD:
20103 		SD_TRACE(SD_LOG_IOCTL, un, "USCSICMD\n");
20104 		cr = ddi_get_cred();
20105 		if ((drv_priv(cred_p) != 0) && (drv_priv(cr) != 0)) {
20106 			err = EPERM;
20107 		} else {
20108 			enum uio_seg	uioseg;
20109 			uioseg = (flag & FKIOCTL) ? UIO_SYSSPACE :
20110 			    UIO_USERSPACE;
20111 			if (un->un_f_format_in_progress == TRUE) {
20112 				err = EAGAIN;
20113 				break;
20114 			}
20115 			err = sd_send_scsi_cmd(dev, (struct uscsi_cmd *)arg,
20116 			    flag, uioseg, SD_PATH_STANDARD);
20117 		}
20118 		break;
20119 
20120 	case CDROMPAUSE:
20121 	case CDROMRESUME:
20122 		SD_TRACE(SD_LOG_IOCTL, un, "PAUSE-RESUME\n");
20123 		if (!ISCD(un)) {
20124 			err = ENOTTY;
20125 		} else {
20126 			err = sr_pause_resume(dev, cmd);
20127 		}
20128 		break;
20129 
20130 	case CDROMPLAYMSF:
20131 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYMSF\n");
20132 		if (!ISCD(un)) {
20133 			err = ENOTTY;
20134 		} else {
20135 			err = sr_play_msf(dev, (caddr_t)arg, flag);
20136 		}
20137 		break;
20138 
20139 	case CDROMPLAYTRKIND:
20140 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYTRKIND\n");
20141 #if defined(__i386) || defined(__amd64)
20142 		/*
20143 		 * not supported on ATAPI CD drives, use CDROMPLAYMSF instead
20144 		 */
20145 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
20146 #else
20147 		if (!ISCD(un)) {
20148 #endif
20149 			err = ENOTTY;
20150 		} else {
20151 			err = sr_play_trkind(dev, (caddr_t)arg, flag);
20152 		}
20153 		break;
20154 
20155 	case CDROMREADTOCHDR:
20156 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCHDR\n");
20157 		if (!ISCD(un)) {
20158 			err = ENOTTY;
20159 		} else {
20160 			err = sr_read_tochdr(dev, (caddr_t)arg, flag);
20161 		}
20162 		break;
20163 
20164 	case CDROMREADTOCENTRY:
20165 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCENTRY\n");
20166 		if (!ISCD(un)) {
20167 			err = ENOTTY;
20168 		} else {
20169 			err = sr_read_tocentry(dev, (caddr_t)arg, flag);
20170 		}
20171 		break;
20172 
20173 	case CDROMSTOP:
20174 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTOP\n");
20175 		if (!ISCD(un)) {
20176 			err = ENOTTY;
20177 		} else {
20178 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_STOP,
20179 			    SD_PATH_STANDARD);
20180 		}
20181 		break;
20182 
20183 	case CDROMSTART:
20184 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTART\n");
20185 		if (!ISCD(un)) {
20186 			err = ENOTTY;
20187 		} else {
20188 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
20189 			    SD_PATH_STANDARD);
20190 		}
20191 		break;
20192 
20193 	case CDROMCLOSETRAY:
20194 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCLOSETRAY\n");
20195 		if (!ISCD(un)) {
20196 			err = ENOTTY;
20197 		} else {
20198 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_CLOSE,
20199 			    SD_PATH_STANDARD);
20200 		}
20201 		break;
20202 
20203 	case FDEJECT:	/* for eject command */
20204 	case DKIOCEJECT:
20205 	case CDROMEJECT:
20206 		SD_TRACE(SD_LOG_IOCTL, un, "EJECT\n");
20207 		if (!un->un_f_eject_media_supported) {
20208 			err = ENOTTY;
20209 		} else {
20210 			err = sr_eject(dev);
20211 		}
20212 		break;
20213 
20214 	case CDROMVOLCTRL:
20215 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMVOLCTRL\n");
20216 		if (!ISCD(un)) {
20217 			err = ENOTTY;
20218 		} else {
20219 			err = sr_volume_ctrl(dev, (caddr_t)arg, flag);
20220 		}
20221 		break;
20222 
20223 	case CDROMSUBCHNL:
20224 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCHNL\n");
20225 		if (!ISCD(un)) {
20226 			err = ENOTTY;
20227 		} else {
20228 			err = sr_read_subchannel(dev, (caddr_t)arg, flag);
20229 		}
20230 		break;
20231 
20232 	case CDROMREADMODE2:
20233 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE2\n");
20234 		if (!ISCD(un)) {
20235 			err = ENOTTY;
20236 		} else if (un->un_f_cfg_is_atapi == TRUE) {
20237 			/*
20238 			 * If the drive supports READ CD, use that instead of
20239 			 * switching the LBA size via a MODE SELECT
20240 			 * Block Descriptor
20241 			 */
20242 			err = sr_read_cd_mode2(dev, (caddr_t)arg, flag);
20243 		} else {
20244 			err = sr_read_mode2(dev, (caddr_t)arg, flag);
20245 		}
20246 		break;
20247 
20248 	case CDROMREADMODE1:
20249 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE1\n");
20250 		if (!ISCD(un)) {
20251 			err = ENOTTY;
20252 		} else {
20253 			err = sr_read_mode1(dev, (caddr_t)arg, flag);
20254 		}
20255 		break;
20256 
20257 	case CDROMREADOFFSET:
20258 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADOFFSET\n");
20259 		if (!ISCD(un)) {
20260 			err = ENOTTY;
20261 		} else {
20262 			err = sr_read_sony_session_offset(dev, (caddr_t)arg,
20263 			    flag);
20264 		}
20265 		break;
20266 
20267 	case CDROMSBLKMODE:
20268 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSBLKMODE\n");
20269 		/*
20270 		 * There is no means of changing block size in case of atapi
20271 		 * drives, thus return ENOTTY if drive type is atapi
20272 		 */
20273 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
20274 			err = ENOTTY;
20275 		} else if (un->un_f_mmc_cap == TRUE) {
20276 
20277 			/*
20278 			 * MMC Devices do not support changing the
20279 			 * logical block size
20280 			 *
20281 			 * Note: EINVAL is being returned instead of ENOTTY to
20282 			 * maintain consistancy with the original mmc
20283 			 * driver update.
20284 			 */
20285 			err = EINVAL;
20286 		} else {
20287 			mutex_enter(SD_MUTEX(un));
20288 			if ((!(un->un_exclopen & (1<<SDPART(dev)))) ||
20289 			    (un->un_ncmds_in_transport > 0)) {
20290 				mutex_exit(SD_MUTEX(un));
20291 				err = EINVAL;
20292 			} else {
20293 				mutex_exit(SD_MUTEX(un));
20294 				err = sr_change_blkmode(dev, cmd, arg, flag);
20295 			}
20296 		}
20297 		break;
20298 
20299 	case CDROMGBLKMODE:
20300 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMGBLKMODE\n");
20301 		if (!ISCD(un)) {
20302 			err = ENOTTY;
20303 		} else if ((un->un_f_cfg_is_atapi != FALSE) &&
20304 		    (un->un_f_blockcount_is_valid != FALSE)) {
20305 			/*
20306 			 * Drive is an ATAPI drive so return target block
20307 			 * size for ATAPI drives since we cannot change the
20308 			 * blocksize on ATAPI drives. Used primarily to detect
20309 			 * if an ATAPI cdrom is present.
20310 			 */
20311 			if (ddi_copyout(&un->un_tgt_blocksize, (void *)arg,
20312 			    sizeof (int), flag) != 0) {
20313 				err = EFAULT;
20314 			} else {
20315 				err = 0;
20316 			}
20317 
20318 		} else {
20319 			/*
20320 			 * Drive supports changing block sizes via a Mode
20321 			 * Select.
20322 			 */
20323 			err = sr_change_blkmode(dev, cmd, arg, flag);
20324 		}
20325 		break;
20326 
20327 	case CDROMGDRVSPEED:
20328 	case CDROMSDRVSPEED:
20329 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMXDRVSPEED\n");
20330 		if (!ISCD(un)) {
20331 			err = ENOTTY;
20332 		} else if (un->un_f_mmc_cap == TRUE) {
20333 			/*
20334 			 * Note: In the future the driver implementation
20335 			 * for getting and
20336 			 * setting cd speed should entail:
20337 			 * 1) If non-mmc try the Toshiba mode page
20338 			 *    (sr_change_speed)
20339 			 * 2) If mmc but no support for Real Time Streaming try
20340 			 *    the SET CD SPEED (0xBB) command
20341 			 *   (sr_atapi_change_speed)
20342 			 * 3) If mmc and support for Real Time Streaming
20343 			 *    try the GET PERFORMANCE and SET STREAMING
20344 			 *    commands (not yet implemented, 4380808)
20345 			 */
20346 			/*
20347 			 * As per recent MMC spec, CD-ROM speed is variable
20348 			 * and changes with LBA. Since there is no such
20349 			 * things as drive speed now, fail this ioctl.
20350 			 *
20351 			 * Note: EINVAL is returned for consistancy of original
20352 			 * implementation which included support for getting
20353 			 * the drive speed of mmc devices but not setting
20354 			 * the drive speed. Thus EINVAL would be returned
20355 			 * if a set request was made for an mmc device.
20356 			 * We no longer support get or set speed for
20357 			 * mmc but need to remain consistent with regard
20358 			 * to the error code returned.
20359 			 */
20360 			err = EINVAL;
20361 		} else if (un->un_f_cfg_is_atapi == TRUE) {
20362 			err = sr_atapi_change_speed(dev, cmd, arg, flag);
20363 		} else {
20364 			err = sr_change_speed(dev, cmd, arg, flag);
20365 		}
20366 		break;
20367 
20368 	case CDROMCDDA:
20369 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDDA\n");
20370 		if (!ISCD(un)) {
20371 			err = ENOTTY;
20372 		} else {
20373 			err = sr_read_cdda(dev, (void *)arg, flag);
20374 		}
20375 		break;
20376 
20377 	case CDROMCDXA:
20378 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDXA\n");
20379 		if (!ISCD(un)) {
20380 			err = ENOTTY;
20381 		} else {
20382 			err = sr_read_cdxa(dev, (caddr_t)arg, flag);
20383 		}
20384 		break;
20385 
20386 	case CDROMSUBCODE:
20387 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCODE\n");
20388 		if (!ISCD(un)) {
20389 			err = ENOTTY;
20390 		} else {
20391 			err = sr_read_all_subcodes(dev, (caddr_t)arg, flag);
20392 		}
20393 		break;
20394 
20395 
20396 #ifdef SDDEBUG
20397 /* RESET/ABORTS testing ioctls */
20398 	case DKIOCRESET: {
20399 		int	reset_level;
20400 
20401 		if (ddi_copyin((void *)arg, &reset_level, sizeof (int), flag)) {
20402 			err = EFAULT;
20403 		} else {
20404 			SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCRESET: "
20405 			    "reset_level = 0x%lx\n", reset_level);
20406 			if (scsi_reset(SD_ADDRESS(un), reset_level)) {
20407 				err = 0;
20408 			} else {
20409 				err = EIO;
20410 			}
20411 		}
20412 		break;
20413 	}
20414 
20415 	case DKIOCABORT:
20416 		SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCABORT:\n");
20417 		if (scsi_abort(SD_ADDRESS(un), NULL)) {
20418 			err = 0;
20419 		} else {
20420 			err = EIO;
20421 		}
20422 		break;
20423 #endif
20424 
20425 #ifdef SD_FAULT_INJECTION
20426 /* SDIOC FaultInjection testing ioctls */
20427 	case SDIOCSTART:
20428 	case SDIOCSTOP:
20429 	case SDIOCINSERTPKT:
20430 	case SDIOCINSERTXB:
20431 	case SDIOCINSERTUN:
20432 	case SDIOCINSERTARQ:
20433 	case SDIOCPUSH:
20434 	case SDIOCRETRIEVE:
20435 	case SDIOCRUN:
20436 		SD_INFO(SD_LOG_SDTEST, un, "sdioctl:"
20437 		    "SDIOC detected cmd:0x%X:\n", cmd);
20438 		/* call error generator */
20439 		sd_faultinjection_ioctl(cmd, arg, un);
20440 		err = 0;
20441 		break;
20442 
20443 #endif /* SD_FAULT_INJECTION */
20444 
20445 	case DKIOCFLUSHWRITECACHE:
20446 		{
20447 			struct dk_callback *dkc = (struct dk_callback *)arg;
20448 
20449 			mutex_enter(SD_MUTEX(un));
20450 			if (!un->un_f_sync_cache_supported ||
20451 			    !un->un_f_write_cache_enabled) {
20452 				err = un->un_f_sync_cache_supported ?
20453 				    0 : ENOTSUP;
20454 				mutex_exit(SD_MUTEX(un));
20455 				if ((flag & FKIOCTL) && dkc != NULL &&
20456 				    dkc->dkc_callback != NULL) {
20457 					(*dkc->dkc_callback)(dkc->dkc_cookie,
20458 					    err);
20459 					/*
20460 					 * Did callback and reported error.
20461 					 * Since we did a callback, ioctl
20462 					 * should return 0.
20463 					 */
20464 					err = 0;
20465 				}
20466 				break;
20467 			}
20468 			mutex_exit(SD_MUTEX(un));
20469 
20470 			if ((flag & FKIOCTL) && dkc != NULL &&
20471 			    dkc->dkc_callback != NULL) {
20472 				/* async SYNC CACHE request */
20473 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc);
20474 			} else {
20475 				/* synchronous SYNC CACHE request */
20476 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL);
20477 			}
20478 		}
20479 		break;
20480 
20481 	case DKIOCGETWCE: {
20482 
20483 		int wce;
20484 
20485 		if ((err = sd_get_write_cache_enabled(un, &wce)) != 0) {
20486 			break;
20487 		}
20488 
20489 		if (ddi_copyout(&wce, (void *)arg, sizeof (wce), flag)) {
20490 			err = EFAULT;
20491 		}
20492 		break;
20493 	}
20494 
20495 	case DKIOCSETWCE: {
20496 
20497 		int wce, sync_supported;
20498 
20499 		if (ddi_copyin((void *)arg, &wce, sizeof (wce), flag)) {
20500 			err = EFAULT;
20501 			break;
20502 		}
20503 
20504 		/*
20505 		 * Synchronize multiple threads trying to enable
20506 		 * or disable the cache via the un_f_wcc_cv
20507 		 * condition variable.
20508 		 */
20509 		mutex_enter(SD_MUTEX(un));
20510 
20511 		/*
20512 		 * Don't allow the cache to be enabled if the
20513 		 * config file has it disabled.
20514 		 */
20515 		if (un->un_f_opt_disable_cache && wce) {
20516 			mutex_exit(SD_MUTEX(un));
20517 			err = EINVAL;
20518 			break;
20519 		}
20520 
20521 		/*
20522 		 * Wait for write cache change in progress
20523 		 * bit to be clear before proceeding.
20524 		 */
20525 		while (un->un_f_wcc_inprog)
20526 			cv_wait(&un->un_wcc_cv, SD_MUTEX(un));
20527 
20528 		un->un_f_wcc_inprog = 1;
20529 
20530 		if (un->un_f_write_cache_enabled && wce == 0) {
20531 			/*
20532 			 * Disable the write cache.  Don't clear
20533 			 * un_f_write_cache_enabled until after
20534 			 * the mode select and flush are complete.
20535 			 */
20536 			sync_supported = un->un_f_sync_cache_supported;
20537 
20538 			/*
20539 			 * If cache flush is suppressed, we assume that the
20540 			 * controller firmware will take care of managing the
20541 			 * write cache for us: no need to explicitly
20542 			 * disable it.
20543 			 */
20544 			if (!un->un_f_suppress_cache_flush) {
20545 				mutex_exit(SD_MUTEX(un));
20546 				if ((err = sd_cache_control(un,
20547 				    SD_CACHE_NOCHANGE,
20548 				    SD_CACHE_DISABLE)) == 0 &&
20549 				    sync_supported) {
20550 					err = sd_send_scsi_SYNCHRONIZE_CACHE(un,
20551 					    NULL);
20552 				}
20553 			} else {
20554 				mutex_exit(SD_MUTEX(un));
20555 			}
20556 
20557 			mutex_enter(SD_MUTEX(un));
20558 			if (err == 0) {
20559 				un->un_f_write_cache_enabled = 0;
20560 			}
20561 
20562 		} else if (!un->un_f_write_cache_enabled && wce != 0) {
20563 			/*
20564 			 * Set un_f_write_cache_enabled first, so there is
20565 			 * no window where the cache is enabled, but the
20566 			 * bit says it isn't.
20567 			 */
20568 			un->un_f_write_cache_enabled = 1;
20569 
20570 			/*
20571 			 * If cache flush is suppressed, we assume that the
20572 			 * controller firmware will take care of managing the
20573 			 * write cache for us: no need to explicitly
20574 			 * enable it.
20575 			 */
20576 			if (!un->un_f_suppress_cache_flush) {
20577 				mutex_exit(SD_MUTEX(un));
20578 				err = sd_cache_control(un, SD_CACHE_NOCHANGE,
20579 				    SD_CACHE_ENABLE);
20580 			} else {
20581 				mutex_exit(SD_MUTEX(un));
20582 			}
20583 
20584 			mutex_enter(SD_MUTEX(un));
20585 
20586 			if (err) {
20587 				un->un_f_write_cache_enabled = 0;
20588 			}
20589 		}
20590 
20591 		un->un_f_wcc_inprog = 0;
20592 		cv_broadcast(&un->un_wcc_cv);
20593 		mutex_exit(SD_MUTEX(un));
20594 		break;
20595 	}
20596 
20597 	default:
20598 		err = ENOTTY;
20599 		break;
20600 	}
20601 	mutex_enter(SD_MUTEX(un));
20602 	un->un_ncmds_in_driver--;
20603 	ASSERT(un->un_ncmds_in_driver >= 0);
20604 	mutex_exit(SD_MUTEX(un));
20605 
20606 	SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err);
20607 	return (err);
20608 }
20609 
20610 
20611 /*
20612  *    Function: sd_dkio_ctrl_info
20613  *
20614  * Description: This routine is the driver entry point for handling controller
20615  *		information ioctl requests (DKIOCINFO).
20616  *
20617  *   Arguments: dev  - the device number
20618  *		arg  - pointer to user provided dk_cinfo structure
20619  *		       specifying the controller type and attributes.
20620  *		flag - this argument is a pass through to ddi_copyxxx()
20621  *		       directly from the mode argument of ioctl().
20622  *
20623  * Return Code: 0
20624  *		EFAULT
20625  *		ENXIO
20626  */
20627 
20628 static int
20629 sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag)
20630 {
20631 	struct sd_lun	*un = NULL;
20632 	struct dk_cinfo	*info;
20633 	dev_info_t	*pdip;
20634 	int		lun, tgt;
20635 
20636 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
20637 		return (ENXIO);
20638 	}
20639 
20640 	info = (struct dk_cinfo *)
20641 	    kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP);
20642 
20643 	switch (un->un_ctype) {
20644 	case CTYPE_CDROM:
20645 		info->dki_ctype = DKC_CDROM;
20646 		break;
20647 	default:
20648 		info->dki_ctype = DKC_SCSI_CCS;
20649 		break;
20650 	}
20651 	pdip = ddi_get_parent(SD_DEVINFO(un));
20652 	info->dki_cnum = ddi_get_instance(pdip);
20653 	if (strlen(ddi_get_name(pdip)) < DK_DEVLEN) {
20654 		(void) strcpy(info->dki_cname, ddi_get_name(pdip));
20655 	} else {
20656 		(void) strncpy(info->dki_cname, ddi_node_name(pdip),
20657 		    DK_DEVLEN - 1);
20658 	}
20659 
20660 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
20661 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_LUN, 0);
20662 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
20663 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_TARGET, 0);
20664 
20665 	/* Unit Information */
20666 	info->dki_unit = ddi_get_instance(SD_DEVINFO(un));
20667 	info->dki_slave = ((tgt << 3) | lun);
20668 	(void) strncpy(info->dki_dname, ddi_driver_name(SD_DEVINFO(un)),
20669 	    DK_DEVLEN - 1);
20670 	info->dki_flags = DKI_FMTVOL;
20671 	info->dki_partition = SDPART(dev);
20672 
20673 	/* Max Transfer size of this device in blocks */
20674 	info->dki_maxtransfer = un->un_max_xfer_size / un->un_sys_blocksize;
20675 	info->dki_addr = 0;
20676 	info->dki_space = 0;
20677 	info->dki_prio = 0;
20678 	info->dki_vec = 0;
20679 
20680 	if (ddi_copyout(info, arg, sizeof (struct dk_cinfo), flag) != 0) {
20681 		kmem_free(info, sizeof (struct dk_cinfo));
20682 		return (EFAULT);
20683 	} else {
20684 		kmem_free(info, sizeof (struct dk_cinfo));
20685 		return (0);
20686 	}
20687 }
20688 
20689 
20690 /*
20691  *    Function: sd_get_media_info
20692  *
20693  * Description: This routine is the driver entry point for handling ioctl
20694  *		requests for the media type or command set profile used by the
20695  *		drive to operate on the media (DKIOCGMEDIAINFO).
20696  *
20697  *   Arguments: dev	- the device number
20698  *		arg	- pointer to user provided dk_minfo structure
20699  *			  specifying the media type, logical block size and
20700  *			  drive capacity.
20701  *		flag	- this argument is a pass through to ddi_copyxxx()
20702  *			  directly from the mode argument of ioctl().
20703  *
20704  * Return Code: 0
20705  *		EACCESS
20706  *		EFAULT
20707  *		ENXIO
20708  *		EIO
20709  */
20710 
20711 static int
20712 sd_get_media_info(dev_t dev, caddr_t arg, int flag)
20713 {
20714 	struct sd_lun		*un = NULL;
20715 	struct uscsi_cmd	com;
20716 	struct scsi_inquiry	*sinq;
20717 	struct dk_minfo		media_info;
20718 	u_longlong_t		media_capacity;
20719 	uint64_t		capacity;
20720 	uint_t			lbasize;
20721 	uchar_t			*out_data;
20722 	uchar_t			*rqbuf;
20723 	int			rval = 0;
20724 	int			rtn;
20725 
20726 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
20727 	    (un->un_state == SD_STATE_OFFLINE)) {
20728 		return (ENXIO);
20729 	}
20730 
20731 	SD_TRACE(SD_LOG_IOCTL_DKIO, un, "sd_get_media_info: entry\n");
20732 
20733 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
20734 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
20735 
20736 	/* Issue a TUR to determine if the drive is ready with media present */
20737 	rval = sd_send_scsi_TEST_UNIT_READY(un, SD_CHECK_FOR_MEDIA);
20738 	if (rval == ENXIO) {
20739 		goto done;
20740 	}
20741 
20742 	/* Now get configuration data */
20743 	if (ISCD(un)) {
20744 		media_info.dki_media_type = DK_CDROM;
20745 
20746 		/* Allow SCMD_GET_CONFIGURATION to MMC devices only */
20747 		if (un->un_f_mmc_cap == TRUE) {
20748 			rtn = sd_send_scsi_GET_CONFIGURATION(un, &com, rqbuf,
20749 			    SENSE_LENGTH, out_data, SD_PROFILE_HEADER_LEN,
20750 			    SD_PATH_STANDARD);
20751 
20752 			if (rtn) {
20753 				/*
20754 				 * Failed for other than an illegal request
20755 				 * or command not supported
20756 				 */
20757 				if ((com.uscsi_status == STATUS_CHECK) &&
20758 				    (com.uscsi_rqstatus == STATUS_GOOD)) {
20759 					if ((rqbuf[2] != KEY_ILLEGAL_REQUEST) ||
20760 					    (rqbuf[12] != 0x20)) {
20761 						rval = EIO;
20762 						goto done;
20763 					}
20764 				}
20765 			} else {
20766 				/*
20767 				 * The GET CONFIGURATION command succeeded
20768 				 * so set the media type according to the
20769 				 * returned data
20770 				 */
20771 				media_info.dki_media_type = out_data[6];
20772 				media_info.dki_media_type <<= 8;
20773 				media_info.dki_media_type |= out_data[7];
20774 			}
20775 		}
20776 	} else {
20777 		/*
20778 		 * The profile list is not available, so we attempt to identify
20779 		 * the media type based on the inquiry data
20780 		 */
20781 		sinq = un->un_sd->sd_inq;
20782 		if ((sinq->inq_dtype == DTYPE_DIRECT) ||
20783 		    (sinq->inq_dtype == DTYPE_OPTICAL)) {
20784 			/* This is a direct access device  or optical disk */
20785 			media_info.dki_media_type = DK_FIXED_DISK;
20786 
20787 			if ((bcmp(sinq->inq_vid, "IOMEGA", 6) == 0) ||
20788 			    (bcmp(sinq->inq_vid, "iomega", 6) == 0)) {
20789 				if ((bcmp(sinq->inq_pid, "ZIP", 3) == 0)) {
20790 					media_info.dki_media_type = DK_ZIP;
20791 				} else if (
20792 				    (bcmp(sinq->inq_pid, "jaz", 3) == 0)) {
20793 					media_info.dki_media_type = DK_JAZ;
20794 				}
20795 			}
20796 		} else {
20797 			/*
20798 			 * Not a CD, direct access or optical disk so return
20799 			 * unknown media
20800 			 */
20801 			media_info.dki_media_type = DK_UNKNOWN;
20802 		}
20803 	}
20804 
20805 	/* Now read the capacity so we can provide the lbasize and capacity */
20806 	switch (sd_send_scsi_READ_CAPACITY(un, &capacity, &lbasize,
20807 	    SD_PATH_DIRECT)) {
20808 	case 0:
20809 		break;
20810 	case EACCES:
20811 		rval = EACCES;
20812 		goto done;
20813 	default:
20814 		rval = EIO;
20815 		goto done;
20816 	}
20817 
20818 	media_info.dki_lbsize = lbasize;
20819 	media_capacity = capacity;
20820 
20821 	/*
20822 	 * sd_send_scsi_READ_CAPACITY() reports capacity in
20823 	 * un->un_sys_blocksize chunks. So we need to convert it into
20824 	 * cap.lbasize chunks.
20825 	 */
20826 	media_capacity *= un->un_sys_blocksize;
20827 	media_capacity /= lbasize;
20828 	media_info.dki_capacity = media_capacity;
20829 
20830 	if (ddi_copyout(&media_info, arg, sizeof (struct dk_minfo), flag)) {
20831 		rval = EFAULT;
20832 		/* Put goto. Anybody might add some code below in future */
20833 		goto done;
20834 	}
20835 done:
20836 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
20837 	kmem_free(rqbuf, SENSE_LENGTH);
20838 	return (rval);
20839 }
20840 
20841 
20842 /*
20843  *    Function: sd_check_media
20844  *
20845  * Description: This utility routine implements the functionality for the
20846  *		DKIOCSTATE ioctl. This ioctl blocks the user thread until the
20847  *		driver state changes from that specified by the user
20848  *		(inserted or ejected). For example, if the user specifies
20849  *		DKIO_EJECTED and the current media state is inserted this
20850  *		routine will immediately return DKIO_INSERTED. However, if the
20851  *		current media state is not inserted the user thread will be
20852  *		blocked until the drive state changes. If DKIO_NONE is specified
20853  *		the user thread will block until a drive state change occurs.
20854  *
20855  *   Arguments: dev  - the device number
20856  *		state  - user pointer to a dkio_state, updated with the current
20857  *			drive state at return.
20858  *
20859  * Return Code: ENXIO
20860  *		EIO
20861  *		EAGAIN
20862  *		EINTR
20863  */
20864 
20865 static int
20866 sd_check_media(dev_t dev, enum dkio_state state)
20867 {
20868 	struct sd_lun		*un = NULL;
20869 	enum dkio_state		prev_state;
20870 	opaque_t		token = NULL;
20871 	int			rval = 0;
20872 
20873 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
20874 		return (ENXIO);
20875 	}
20876 
20877 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: entry\n");
20878 
20879 	mutex_enter(SD_MUTEX(un));
20880 
20881 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: "
20882 	    "state=%x, mediastate=%x\n", state, un->un_mediastate);
20883 
20884 	prev_state = un->un_mediastate;
20885 
20886 	/* is there anything to do? */
20887 	if (state == un->un_mediastate || un->un_mediastate == DKIO_NONE) {
20888 		/*
20889 		 * submit the request to the scsi_watch service;
20890 		 * scsi_media_watch_cb() does the real work
20891 		 */
20892 		mutex_exit(SD_MUTEX(un));
20893 
20894 		/*
20895 		 * This change handles the case where a scsi watch request is
20896 		 * added to a device that is powered down. To accomplish this
20897 		 * we power up the device before adding the scsi watch request,
20898 		 * since the scsi watch sends a TUR directly to the device
20899 		 * which the device cannot handle if it is powered down.
20900 		 */
20901 		if (sd_pm_entry(un) != DDI_SUCCESS) {
20902 			mutex_enter(SD_MUTEX(un));
20903 			goto done;
20904 		}
20905 
20906 		token = scsi_watch_request_submit(SD_SCSI_DEVP(un),
20907 		    sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb,
20908 		    (caddr_t)dev);
20909 
20910 		sd_pm_exit(un);
20911 
20912 		mutex_enter(SD_MUTEX(un));
20913 		if (token == NULL) {
20914 			rval = EAGAIN;
20915 			goto done;
20916 		}
20917 
20918 		/*
20919 		 * This is a special case IOCTL that doesn't return
20920 		 * until the media state changes. Routine sdpower
20921 		 * knows about and handles this so don't count it
20922 		 * as an active cmd in the driver, which would
20923 		 * keep the device busy to the pm framework.
20924 		 * If the count isn't decremented the device can't
20925 		 * be powered down.
20926 		 */
20927 		un->un_ncmds_in_driver--;
20928 		ASSERT(un->un_ncmds_in_driver >= 0);
20929 
20930 		/*
20931 		 * if a prior request had been made, this will be the same
20932 		 * token, as scsi_watch was designed that way.
20933 		 */
20934 		un->un_swr_token = token;
20935 		un->un_specified_mediastate = state;
20936 
20937 		/*
20938 		 * now wait for media change
20939 		 * we will not be signalled unless mediastate == state but it is
20940 		 * still better to test for this condition, since there is a
20941 		 * 2 sec cv_broadcast delay when mediastate == DKIO_INSERTED
20942 		 */
20943 		SD_TRACE(SD_LOG_COMMON, un,
20944 		    "sd_check_media: waiting for media state change\n");
20945 		while (un->un_mediastate == state) {
20946 			if (cv_wait_sig(&un->un_state_cv, SD_MUTEX(un)) == 0) {
20947 				SD_TRACE(SD_LOG_COMMON, un,
20948 				    "sd_check_media: waiting for media state "
20949 				    "was interrupted\n");
20950 				un->un_ncmds_in_driver++;
20951 				rval = EINTR;
20952 				goto done;
20953 			}
20954 			SD_TRACE(SD_LOG_COMMON, un,
20955 			    "sd_check_media: received signal, state=%x\n",
20956 			    un->un_mediastate);
20957 		}
20958 		/*
20959 		 * Inc the counter to indicate the device once again
20960 		 * has an active outstanding cmd.
20961 		 */
20962 		un->un_ncmds_in_driver++;
20963 	}
20964 
20965 	/* invalidate geometry */
20966 	if (prev_state == DKIO_INSERTED && un->un_mediastate == DKIO_EJECTED) {
20967 		sr_ejected(un);
20968 	}
20969 
20970 	if (un->un_mediastate == DKIO_INSERTED && prev_state != DKIO_INSERTED) {
20971 		uint64_t	capacity;
20972 		uint_t		lbasize;
20973 
20974 		SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: media inserted\n");
20975 		mutex_exit(SD_MUTEX(un));
20976 		/*
20977 		 * Since the following routines use SD_PATH_DIRECT, we must
20978 		 * call PM directly before the upcoming disk accesses. This
20979 		 * may cause the disk to be power/spin up.
20980 		 */
20981 
20982 		if (sd_pm_entry(un) == DDI_SUCCESS) {
20983 			rval = sd_send_scsi_READ_CAPACITY(un,
20984 			    &capacity,
20985 			    &lbasize, SD_PATH_DIRECT);
20986 			if (rval != 0) {
20987 				sd_pm_exit(un);
20988 				mutex_enter(SD_MUTEX(un));
20989 				goto done;
20990 			}
20991 		} else {
20992 			rval = EIO;
20993 			mutex_enter(SD_MUTEX(un));
20994 			goto done;
20995 		}
20996 		mutex_enter(SD_MUTEX(un));
20997 
20998 		sd_update_block_info(un, lbasize, capacity);
20999 
21000 		/*
21001 		 *  Check if the media in the device is writable or not
21002 		 */
21003 		if (ISCD(un))
21004 			sd_check_for_writable_cd(un, SD_PATH_DIRECT);
21005 
21006 		mutex_exit(SD_MUTEX(un));
21007 		cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT);
21008 		if ((cmlb_validate(un->un_cmlbhandle, 0,
21009 		    (void *)SD_PATH_DIRECT) == 0) && un->un_f_pkstats_enabled) {
21010 			sd_set_pstats(un);
21011 			SD_TRACE(SD_LOG_IO_PARTITION, un,
21012 			    "sd_check_media: un:0x%p pstats created and "
21013 			    "set\n", un);
21014 		}
21015 
21016 		rval = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
21017 		    SD_PATH_DIRECT);
21018 		sd_pm_exit(un);
21019 
21020 		mutex_enter(SD_MUTEX(un));
21021 	}
21022 done:
21023 	un->un_f_watcht_stopped = FALSE;
21024 	if (un->un_swr_token) {
21025 		/*
21026 		 * Use of this local token and the mutex ensures that we avoid
21027 		 * some race conditions associated with terminating the
21028 		 * scsi watch.
21029 		 */
21030 		token = un->un_swr_token;
21031 		un->un_swr_token = (opaque_t)NULL;
21032 		mutex_exit(SD_MUTEX(un));
21033 		(void) scsi_watch_request_terminate(token,
21034 		    SCSI_WATCH_TERMINATE_WAIT);
21035 		mutex_enter(SD_MUTEX(un));
21036 	}
21037 
21038 	/*
21039 	 * Update the capacity kstat value, if no media previously
21040 	 * (capacity kstat is 0) and a media has been inserted
21041 	 * (un_f_blockcount_is_valid == TRUE)
21042 	 */
21043 	if (un->un_errstats) {
21044 		struct sd_errstats	*stp = NULL;
21045 
21046 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
21047 		if ((stp->sd_capacity.value.ui64 == 0) &&
21048 		    (un->un_f_blockcount_is_valid == TRUE)) {
21049 			stp->sd_capacity.value.ui64 =
21050 			    (uint64_t)((uint64_t)un->un_blockcount *
21051 			    un->un_sys_blocksize);
21052 		}
21053 	}
21054 	mutex_exit(SD_MUTEX(un));
21055 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: done\n");
21056 	return (rval);
21057 }
21058 
21059 
21060 /*
21061  *    Function: sd_delayed_cv_broadcast
21062  *
21063  * Description: Delayed cv_broadcast to allow for target to recover from media
21064  *		insertion.
21065  *
21066  *   Arguments: arg - driver soft state (unit) structure
21067  */
21068 
21069 static void
21070 sd_delayed_cv_broadcast(void *arg)
21071 {
21072 	struct sd_lun *un = arg;
21073 
21074 	SD_TRACE(SD_LOG_COMMON, un, "sd_delayed_cv_broadcast\n");
21075 
21076 	mutex_enter(SD_MUTEX(un));
21077 	un->un_dcvb_timeid = NULL;
21078 	cv_broadcast(&un->un_state_cv);
21079 	mutex_exit(SD_MUTEX(un));
21080 }
21081 
21082 
21083 /*
21084  *    Function: sd_media_watch_cb
21085  *
21086  * Description: Callback routine used for support of the DKIOCSTATE ioctl. This
21087  *		routine processes the TUR sense data and updates the driver
21088  *		state if a transition has occurred. The user thread
21089  *		(sd_check_media) is then signalled.
21090  *
21091  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
21092  *			among multiple watches that share this callback function
21093  *		resultp - scsi watch facility result packet containing scsi
21094  *			  packet, status byte and sense data
21095  *
21096  * Return Code: 0 for success, -1 for failure
21097  */
21098 
21099 static int
21100 sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
21101 {
21102 	struct sd_lun			*un;
21103 	struct scsi_status		*statusp = resultp->statusp;
21104 	uint8_t				*sensep = (uint8_t *)resultp->sensep;
21105 	enum dkio_state			state = DKIO_NONE;
21106 	dev_t				dev = (dev_t)arg;
21107 	uchar_t				actual_sense_length;
21108 	uint8_t				skey, asc, ascq;
21109 
21110 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21111 		return (-1);
21112 	}
21113 	actual_sense_length = resultp->actual_sense_length;
21114 
21115 	mutex_enter(SD_MUTEX(un));
21116 	SD_TRACE(SD_LOG_COMMON, un,
21117 	    "sd_media_watch_cb: status=%x, sensep=%p, len=%x\n",
21118 	    *((char *)statusp), (void *)sensep, actual_sense_length);
21119 
21120 	if (resultp->pkt->pkt_reason == CMD_DEV_GONE) {
21121 		un->un_mediastate = DKIO_DEV_GONE;
21122 		cv_broadcast(&un->un_state_cv);
21123 		mutex_exit(SD_MUTEX(un));
21124 
21125 		return (0);
21126 	}
21127 
21128 	/*
21129 	 * If there was a check condition then sensep points to valid sense data
21130 	 * If status was not a check condition but a reservation or busy status
21131 	 * then the new state is DKIO_NONE
21132 	 */
21133 	if (sensep != NULL) {
21134 		skey = scsi_sense_key(sensep);
21135 		asc = scsi_sense_asc(sensep);
21136 		ascq = scsi_sense_ascq(sensep);
21137 
21138 		SD_INFO(SD_LOG_COMMON, un,
21139 		    "sd_media_watch_cb: sense KEY=%x, ASC=%x, ASCQ=%x\n",
21140 		    skey, asc, ascq);
21141 		/* This routine only uses up to 13 bytes of sense data. */
21142 		if (actual_sense_length >= 13) {
21143 			if (skey == KEY_UNIT_ATTENTION) {
21144 				if (asc == 0x28) {
21145 					state = DKIO_INSERTED;
21146 				}
21147 			} else if (skey == KEY_NOT_READY) {
21148 				/*
21149 				 * if 02/04/02  means that the host
21150 				 * should send start command. Explicitly
21151 				 * leave the media state as is
21152 				 * (inserted) as the media is inserted
21153 				 * and host has stopped device for PM
21154 				 * reasons. Upon next true read/write
21155 				 * to this media will bring the
21156 				 * device to the right state good for
21157 				 * media access.
21158 				 */
21159 				if (asc == 0x3a) {
21160 					state = DKIO_EJECTED;
21161 				} else {
21162 					/*
21163 					 * If the drive is busy with an
21164 					 * operation or long write, keep the
21165 					 * media in an inserted state.
21166 					 */
21167 
21168 					if ((asc == 0x04) &&
21169 					    ((ascq == 0x02) ||
21170 					    (ascq == 0x07) ||
21171 					    (ascq == 0x08))) {
21172 						state = DKIO_INSERTED;
21173 					}
21174 				}
21175 			} else if (skey == KEY_NO_SENSE) {
21176 				if ((asc == 0x00) && (ascq == 0x00)) {
21177 					/*
21178 					 * Sense Data 00/00/00 does not provide
21179 					 * any information about the state of
21180 					 * the media. Ignore it.
21181 					 */
21182 					mutex_exit(SD_MUTEX(un));
21183 					return (0);
21184 				}
21185 			}
21186 		}
21187 	} else if ((*((char *)statusp) == STATUS_GOOD) &&
21188 	    (resultp->pkt->pkt_reason == CMD_CMPLT)) {
21189 		state = DKIO_INSERTED;
21190 	}
21191 
21192 	SD_TRACE(SD_LOG_COMMON, un,
21193 	    "sd_media_watch_cb: state=%x, specified=%x\n",
21194 	    state, un->un_specified_mediastate);
21195 
21196 	/*
21197 	 * now signal the waiting thread if this is *not* the specified state;
21198 	 * delay the signal if the state is DKIO_INSERTED to allow the target
21199 	 * to recover
21200 	 */
21201 	if (state != un->un_specified_mediastate) {
21202 		un->un_mediastate = state;
21203 		if (state == DKIO_INSERTED) {
21204 			/*
21205 			 * delay the signal to give the drive a chance
21206 			 * to do what it apparently needs to do
21207 			 */
21208 			SD_TRACE(SD_LOG_COMMON, un,
21209 			    "sd_media_watch_cb: delayed cv_broadcast\n");
21210 			if (un->un_dcvb_timeid == NULL) {
21211 				un->un_dcvb_timeid =
21212 				    timeout(sd_delayed_cv_broadcast, un,
21213 				    drv_usectohz((clock_t)MEDIA_ACCESS_DELAY));
21214 			}
21215 		} else {
21216 			SD_TRACE(SD_LOG_COMMON, un,
21217 			    "sd_media_watch_cb: immediate cv_broadcast\n");
21218 			cv_broadcast(&un->un_state_cv);
21219 		}
21220 	}
21221 	mutex_exit(SD_MUTEX(un));
21222 	return (0);
21223 }
21224 
21225 
21226 /*
21227  *    Function: sd_dkio_get_temp
21228  *
21229  * Description: This routine is the driver entry point for handling ioctl
21230  *		requests to get the disk temperature.
21231  *
21232  *   Arguments: dev  - the device number
21233  *		arg  - pointer to user provided dk_temperature structure.
21234  *		flag - this argument is a pass through to ddi_copyxxx()
21235  *		       directly from the mode argument of ioctl().
21236  *
21237  * Return Code: 0
21238  *		EFAULT
21239  *		ENXIO
21240  *		EAGAIN
21241  */
21242 
21243 static int
21244 sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag)
21245 {
21246 	struct sd_lun		*un = NULL;
21247 	struct dk_temperature	*dktemp = NULL;
21248 	uchar_t			*temperature_page;
21249 	int			rval = 0;
21250 	int			path_flag = SD_PATH_STANDARD;
21251 
21252 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21253 		return (ENXIO);
21254 	}
21255 
21256 	dktemp = kmem_zalloc(sizeof (struct dk_temperature), KM_SLEEP);
21257 
21258 	/* copyin the disk temp argument to get the user flags */
21259 	if (ddi_copyin((void *)arg, dktemp,
21260 	    sizeof (struct dk_temperature), flag) != 0) {
21261 		rval = EFAULT;
21262 		goto done;
21263 	}
21264 
21265 	/* Initialize the temperature to invalid. */
21266 	dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
21267 	dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
21268 
21269 	/*
21270 	 * Note: Investigate removing the "bypass pm" semantic.
21271 	 * Can we just bypass PM always?
21272 	 */
21273 	if (dktemp->dkt_flags & DKT_BYPASS_PM) {
21274 		path_flag = SD_PATH_DIRECT;
21275 		ASSERT(!mutex_owned(&un->un_pm_mutex));
21276 		mutex_enter(&un->un_pm_mutex);
21277 		if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
21278 			/*
21279 			 * If DKT_BYPASS_PM is set, and the drive happens to be
21280 			 * in low power mode, we can not wake it up, Need to
21281 			 * return EAGAIN.
21282 			 */
21283 			mutex_exit(&un->un_pm_mutex);
21284 			rval = EAGAIN;
21285 			goto done;
21286 		} else {
21287 			/*
21288 			 * Indicate to PM the device is busy. This is required
21289 			 * to avoid a race - i.e. the ioctl is issuing a
21290 			 * command and the pm framework brings down the device
21291 			 * to low power mode (possible power cut-off on some
21292 			 * platforms).
21293 			 */
21294 			mutex_exit(&un->un_pm_mutex);
21295 			if (sd_pm_entry(un) != DDI_SUCCESS) {
21296 				rval = EAGAIN;
21297 				goto done;
21298 			}
21299 		}
21300 	}
21301 
21302 	temperature_page = kmem_zalloc(TEMPERATURE_PAGE_SIZE, KM_SLEEP);
21303 
21304 	if ((rval = sd_send_scsi_LOG_SENSE(un, temperature_page,
21305 	    TEMPERATURE_PAGE_SIZE, TEMPERATURE_PAGE, 1, 0, path_flag)) != 0) {
21306 		goto done2;
21307 	}
21308 
21309 	/*
21310 	 * For the current temperature verify that the parameter length is 0x02
21311 	 * and the parameter code is 0x00
21312 	 */
21313 	if ((temperature_page[7] == 0x02) && (temperature_page[4] == 0x00) &&
21314 	    (temperature_page[5] == 0x00)) {
21315 		if (temperature_page[9] == 0xFF) {
21316 			dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
21317 		} else {
21318 			dktemp->dkt_cur_temp = (short)(temperature_page[9]);
21319 		}
21320 	}
21321 
21322 	/*
21323 	 * For the reference temperature verify that the parameter
21324 	 * length is 0x02 and the parameter code is 0x01
21325 	 */
21326 	if ((temperature_page[13] == 0x02) && (temperature_page[10] == 0x00) &&
21327 	    (temperature_page[11] == 0x01)) {
21328 		if (temperature_page[15] == 0xFF) {
21329 			dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
21330 		} else {
21331 			dktemp->dkt_ref_temp = (short)(temperature_page[15]);
21332 		}
21333 	}
21334 
21335 	/* Do the copyout regardless of the temperature commands status. */
21336 	if (ddi_copyout(dktemp, (void *)arg, sizeof (struct dk_temperature),
21337 	    flag) != 0) {
21338 		rval = EFAULT;
21339 	}
21340 
21341 done2:
21342 	if (path_flag == SD_PATH_DIRECT) {
21343 		sd_pm_exit(un);
21344 	}
21345 
21346 	kmem_free(temperature_page, TEMPERATURE_PAGE_SIZE);
21347 done:
21348 	if (dktemp != NULL) {
21349 		kmem_free(dktemp, sizeof (struct dk_temperature));
21350 	}
21351 
21352 	return (rval);
21353 }
21354 
21355 
21356 /*
21357  *    Function: sd_log_page_supported
21358  *
21359  * Description: This routine uses sd_send_scsi_LOG_SENSE to find the list of
21360  *		supported log pages.
21361  *
21362  *   Arguments: un -
21363  *		log_page -
21364  *
21365  * Return Code: -1 - on error (log sense is optional and may not be supported).
21366  *		0  - log page not found.
21367  *  		1  - log page found.
21368  */
21369 
21370 static int
21371 sd_log_page_supported(struct sd_lun *un, int log_page)
21372 {
21373 	uchar_t *log_page_data;
21374 	int	i;
21375 	int	match = 0;
21376 	int	log_size;
21377 
21378 	log_page_data = kmem_zalloc(0xFF, KM_SLEEP);
21379 
21380 	if (sd_send_scsi_LOG_SENSE(un, log_page_data, 0xFF, 0, 0x01, 0,
21381 	    SD_PATH_DIRECT) != 0) {
21382 		SD_ERROR(SD_LOG_COMMON, un,
21383 		    "sd_log_page_supported: failed log page retrieval\n");
21384 		kmem_free(log_page_data, 0xFF);
21385 		return (-1);
21386 	}
21387 	log_size = log_page_data[3];
21388 
21389 	/*
21390 	 * The list of supported log pages start from the fourth byte. Check
21391 	 * until we run out of log pages or a match is found.
21392 	 */
21393 	for (i = 4; (i < (log_size + 4)) && !match; i++) {
21394 		if (log_page_data[i] == log_page) {
21395 			match++;
21396 		}
21397 	}
21398 	kmem_free(log_page_data, 0xFF);
21399 	return (match);
21400 }
21401 
21402 
21403 /*
21404  *    Function: sd_mhdioc_failfast
21405  *
21406  * Description: This routine is the driver entry point for handling ioctl
21407  *		requests to enable/disable the multihost failfast option.
21408  *		(MHIOCENFAILFAST)
21409  *
21410  *   Arguments: dev	- the device number
21411  *		arg	- user specified probing interval.
21412  *		flag	- this argument is a pass through to ddi_copyxxx()
21413  *			  directly from the mode argument of ioctl().
21414  *
21415  * Return Code: 0
21416  *		EFAULT
21417  *		ENXIO
21418  */
21419 
21420 static int
21421 sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag)
21422 {
21423 	struct sd_lun	*un = NULL;
21424 	int		mh_time;
21425 	int		rval = 0;
21426 
21427 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21428 		return (ENXIO);
21429 	}
21430 
21431 	if (ddi_copyin((void *)arg, &mh_time, sizeof (int), flag))
21432 		return (EFAULT);
21433 
21434 	if (mh_time) {
21435 		mutex_enter(SD_MUTEX(un));
21436 		un->un_resvd_status |= SD_FAILFAST;
21437 		mutex_exit(SD_MUTEX(un));
21438 		/*
21439 		 * If mh_time is INT_MAX, then this ioctl is being used for
21440 		 * SCSI-3 PGR purposes, and we don't need to spawn watch thread.
21441 		 */
21442 		if (mh_time != INT_MAX) {
21443 			rval = sd_check_mhd(dev, mh_time);
21444 		}
21445 	} else {
21446 		(void) sd_check_mhd(dev, 0);
21447 		mutex_enter(SD_MUTEX(un));
21448 		un->un_resvd_status &= ~SD_FAILFAST;
21449 		mutex_exit(SD_MUTEX(un));
21450 	}
21451 	return (rval);
21452 }
21453 
21454 
21455 /*
21456  *    Function: sd_mhdioc_takeown
21457  *
21458  * Description: This routine is the driver entry point for handling ioctl
21459  *		requests to forcefully acquire exclusive access rights to the
21460  *		multihost disk (MHIOCTKOWN).
21461  *
21462  *   Arguments: dev	- the device number
21463  *		arg	- user provided structure specifying the delay
21464  *			  parameters in milliseconds
21465  *		flag	- this argument is a pass through to ddi_copyxxx()
21466  *			  directly from the mode argument of ioctl().
21467  *
21468  * Return Code: 0
21469  *		EFAULT
21470  *		ENXIO
21471  */
21472 
21473 static int
21474 sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag)
21475 {
21476 	struct sd_lun		*un = NULL;
21477 	struct mhioctkown	*tkown = NULL;
21478 	int			rval = 0;
21479 
21480 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21481 		return (ENXIO);
21482 	}
21483 
21484 	if (arg != NULL) {
21485 		tkown = (struct mhioctkown *)
21486 		    kmem_zalloc(sizeof (struct mhioctkown), KM_SLEEP);
21487 		rval = ddi_copyin(arg, tkown, sizeof (struct mhioctkown), flag);
21488 		if (rval != 0) {
21489 			rval = EFAULT;
21490 			goto error;
21491 		}
21492 	}
21493 
21494 	rval = sd_take_ownership(dev, tkown);
21495 	mutex_enter(SD_MUTEX(un));
21496 	if (rval == 0) {
21497 		un->un_resvd_status |= SD_RESERVE;
21498 		if (tkown != NULL && tkown->reinstate_resv_delay != 0) {
21499 			sd_reinstate_resv_delay =
21500 			    tkown->reinstate_resv_delay * 1000;
21501 		} else {
21502 			sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY;
21503 		}
21504 		/*
21505 		 * Give the scsi_watch routine interval set by
21506 		 * the MHIOCENFAILFAST ioctl precedence here.
21507 		 */
21508 		if ((un->un_resvd_status & SD_FAILFAST) == 0) {
21509 			mutex_exit(SD_MUTEX(un));
21510 			(void) sd_check_mhd(dev, sd_reinstate_resv_delay/1000);
21511 			SD_TRACE(SD_LOG_IOCTL_MHD, un,
21512 			    "sd_mhdioc_takeown : %d\n",
21513 			    sd_reinstate_resv_delay);
21514 		} else {
21515 			mutex_exit(SD_MUTEX(un));
21516 		}
21517 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_NOTIFY,
21518 		    sd_mhd_reset_notify_cb, (caddr_t)un);
21519 	} else {
21520 		un->un_resvd_status &= ~SD_RESERVE;
21521 		mutex_exit(SD_MUTEX(un));
21522 	}
21523 
21524 error:
21525 	if (tkown != NULL) {
21526 		kmem_free(tkown, sizeof (struct mhioctkown));
21527 	}
21528 	return (rval);
21529 }
21530 
21531 
21532 /*
21533  *    Function: sd_mhdioc_release
21534  *
21535  * Description: This routine is the driver entry point for handling ioctl
21536  *		requests to release exclusive access rights to the multihost
21537  *		disk (MHIOCRELEASE).
21538  *
21539  *   Arguments: dev	- the device number
21540  *
21541  * Return Code: 0
21542  *		ENXIO
21543  */
21544 
21545 static int
21546 sd_mhdioc_release(dev_t dev)
21547 {
21548 	struct sd_lun		*un = NULL;
21549 	timeout_id_t		resvd_timeid_save;
21550 	int			resvd_status_save;
21551 	int			rval = 0;
21552 
21553 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21554 		return (ENXIO);
21555 	}
21556 
21557 	mutex_enter(SD_MUTEX(un));
21558 	resvd_status_save = un->un_resvd_status;
21559 	un->un_resvd_status &=
21560 	    ~(SD_RESERVE | SD_LOST_RESERVE | SD_WANT_RESERVE);
21561 	if (un->un_resvd_timeid) {
21562 		resvd_timeid_save = un->un_resvd_timeid;
21563 		un->un_resvd_timeid = NULL;
21564 		mutex_exit(SD_MUTEX(un));
21565 		(void) untimeout(resvd_timeid_save);
21566 	} else {
21567 		mutex_exit(SD_MUTEX(un));
21568 	}
21569 
21570 	/*
21571 	 * destroy any pending timeout thread that may be attempting to
21572 	 * reinstate reservation on this device.
21573 	 */
21574 	sd_rmv_resv_reclaim_req(dev);
21575 
21576 	if ((rval = sd_reserve_release(dev, SD_RELEASE)) == 0) {
21577 		mutex_enter(SD_MUTEX(un));
21578 		if ((un->un_mhd_token) &&
21579 		    ((un->un_resvd_status & SD_FAILFAST) == 0)) {
21580 			mutex_exit(SD_MUTEX(un));
21581 			(void) sd_check_mhd(dev, 0);
21582 		} else {
21583 			mutex_exit(SD_MUTEX(un));
21584 		}
21585 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
21586 		    sd_mhd_reset_notify_cb, (caddr_t)un);
21587 	} else {
21588 		/*
21589 		 * sd_mhd_watch_cb will restart the resvd recover timeout thread
21590 		 */
21591 		mutex_enter(SD_MUTEX(un));
21592 		un->un_resvd_status = resvd_status_save;
21593 		mutex_exit(SD_MUTEX(un));
21594 	}
21595 	return (rval);
21596 }
21597 
21598 
21599 /*
21600  *    Function: sd_mhdioc_register_devid
21601  *
21602  * Description: This routine is the driver entry point for handling ioctl
21603  *		requests to register the device id (MHIOCREREGISTERDEVID).
21604  *
21605  *		Note: The implementation for this ioctl has been updated to
21606  *		be consistent with the original PSARC case (1999/357)
21607  *		(4375899, 4241671, 4220005)
21608  *
21609  *   Arguments: dev	- the device number
21610  *
21611  * Return Code: 0
21612  *		ENXIO
21613  */
21614 
21615 static int
21616 sd_mhdioc_register_devid(dev_t dev)
21617 {
21618 	struct sd_lun	*un = NULL;
21619 	int		rval = 0;
21620 
21621 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21622 		return (ENXIO);
21623 	}
21624 
21625 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21626 
21627 	mutex_enter(SD_MUTEX(un));
21628 
21629 	/* If a devid already exists, de-register it */
21630 	if (un->un_devid != NULL) {
21631 		ddi_devid_unregister(SD_DEVINFO(un));
21632 		/*
21633 		 * After unregister devid, needs to free devid memory
21634 		 */
21635 		ddi_devid_free(un->un_devid);
21636 		un->un_devid = NULL;
21637 	}
21638 
21639 	/* Check for reservation conflict */
21640 	mutex_exit(SD_MUTEX(un));
21641 	rval = sd_send_scsi_TEST_UNIT_READY(un, 0);
21642 	mutex_enter(SD_MUTEX(un));
21643 
21644 	switch (rval) {
21645 	case 0:
21646 		sd_register_devid(un, SD_DEVINFO(un), SD_TARGET_IS_UNRESERVED);
21647 		break;
21648 	case EACCES:
21649 		break;
21650 	default:
21651 		rval = EIO;
21652 	}
21653 
21654 	mutex_exit(SD_MUTEX(un));
21655 	return (rval);
21656 }
21657 
21658 
21659 /*
21660  *    Function: sd_mhdioc_inkeys
21661  *
21662  * Description: This routine is the driver entry point for handling ioctl
21663  *		requests to issue the SCSI-3 Persistent In Read Keys command
21664  *		to the device (MHIOCGRP_INKEYS).
21665  *
21666  *   Arguments: dev	- the device number
21667  *		arg	- user provided in_keys structure
21668  *		flag	- this argument is a pass through to ddi_copyxxx()
21669  *			  directly from the mode argument of ioctl().
21670  *
21671  * Return Code: code returned by sd_persistent_reservation_in_read_keys()
21672  *		ENXIO
21673  *		EFAULT
21674  */
21675 
21676 static int
21677 sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag)
21678 {
21679 	struct sd_lun		*un;
21680 	mhioc_inkeys_t		inkeys;
21681 	int			rval = 0;
21682 
21683 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21684 		return (ENXIO);
21685 	}
21686 
21687 #ifdef _MULTI_DATAMODEL
21688 	switch (ddi_model_convert_from(flag & FMODELS)) {
21689 	case DDI_MODEL_ILP32: {
21690 		struct mhioc_inkeys32	inkeys32;
21691 
21692 		if (ddi_copyin(arg, &inkeys32,
21693 		    sizeof (struct mhioc_inkeys32), flag) != 0) {
21694 			return (EFAULT);
21695 		}
21696 		inkeys.li = (mhioc_key_list_t *)(uintptr_t)inkeys32.li;
21697 		if ((rval = sd_persistent_reservation_in_read_keys(un,
21698 		    &inkeys, flag)) != 0) {
21699 			return (rval);
21700 		}
21701 		inkeys32.generation = inkeys.generation;
21702 		if (ddi_copyout(&inkeys32, arg, sizeof (struct mhioc_inkeys32),
21703 		    flag) != 0) {
21704 			return (EFAULT);
21705 		}
21706 		break;
21707 	}
21708 	case DDI_MODEL_NONE:
21709 		if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t),
21710 		    flag) != 0) {
21711 			return (EFAULT);
21712 		}
21713 		if ((rval = sd_persistent_reservation_in_read_keys(un,
21714 		    &inkeys, flag)) != 0) {
21715 			return (rval);
21716 		}
21717 		if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t),
21718 		    flag) != 0) {
21719 			return (EFAULT);
21720 		}
21721 		break;
21722 	}
21723 
21724 #else /* ! _MULTI_DATAMODEL */
21725 
21726 	if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), flag) != 0) {
21727 		return (EFAULT);
21728 	}
21729 	rval = sd_persistent_reservation_in_read_keys(un, &inkeys, flag);
21730 	if (rval != 0) {
21731 		return (rval);
21732 	}
21733 	if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), flag) != 0) {
21734 		return (EFAULT);
21735 	}
21736 
21737 #endif /* _MULTI_DATAMODEL */
21738 
21739 	return (rval);
21740 }
21741 
21742 
21743 /*
21744  *    Function: sd_mhdioc_inresv
21745  *
21746  * Description: This routine is the driver entry point for handling ioctl
21747  *		requests to issue the SCSI-3 Persistent In Read Reservations
21748  *		command to the device (MHIOCGRP_INKEYS).
21749  *
21750  *   Arguments: dev	- the device number
21751  *		arg	- user provided in_resv structure
21752  *		flag	- this argument is a pass through to ddi_copyxxx()
21753  *			  directly from the mode argument of ioctl().
21754  *
21755  * Return Code: code returned by sd_persistent_reservation_in_read_resv()
21756  *		ENXIO
21757  *		EFAULT
21758  */
21759 
21760 static int
21761 sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag)
21762 {
21763 	struct sd_lun		*un;
21764 	mhioc_inresvs_t		inresvs;
21765 	int			rval = 0;
21766 
21767 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21768 		return (ENXIO);
21769 	}
21770 
21771 #ifdef _MULTI_DATAMODEL
21772 
21773 	switch (ddi_model_convert_from(flag & FMODELS)) {
21774 	case DDI_MODEL_ILP32: {
21775 		struct mhioc_inresvs32	inresvs32;
21776 
21777 		if (ddi_copyin(arg, &inresvs32,
21778 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
21779 			return (EFAULT);
21780 		}
21781 		inresvs.li = (mhioc_resv_desc_list_t *)(uintptr_t)inresvs32.li;
21782 		if ((rval = sd_persistent_reservation_in_read_resv(un,
21783 		    &inresvs, flag)) != 0) {
21784 			return (rval);
21785 		}
21786 		inresvs32.generation = inresvs.generation;
21787 		if (ddi_copyout(&inresvs32, arg,
21788 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
21789 			return (EFAULT);
21790 		}
21791 		break;
21792 	}
21793 	case DDI_MODEL_NONE:
21794 		if (ddi_copyin(arg, &inresvs,
21795 		    sizeof (mhioc_inresvs_t), flag) != 0) {
21796 			return (EFAULT);
21797 		}
21798 		if ((rval = sd_persistent_reservation_in_read_resv(un,
21799 		    &inresvs, flag)) != 0) {
21800 			return (rval);
21801 		}
21802 		if (ddi_copyout(&inresvs, arg,
21803 		    sizeof (mhioc_inresvs_t), flag) != 0) {
21804 			return (EFAULT);
21805 		}
21806 		break;
21807 	}
21808 
21809 #else /* ! _MULTI_DATAMODEL */
21810 
21811 	if (ddi_copyin(arg, &inresvs, sizeof (mhioc_inresvs_t), flag) != 0) {
21812 		return (EFAULT);
21813 	}
21814 	rval = sd_persistent_reservation_in_read_resv(un, &inresvs, flag);
21815 	if (rval != 0) {
21816 		return (rval);
21817 	}
21818 	if (ddi_copyout(&inresvs, arg, sizeof (mhioc_inresvs_t), flag)) {
21819 		return (EFAULT);
21820 	}
21821 
21822 #endif /* ! _MULTI_DATAMODEL */
21823 
21824 	return (rval);
21825 }
21826 
21827 
21828 /*
21829  * The following routines support the clustering functionality described below
21830  * and implement lost reservation reclaim functionality.
21831  *
21832  * Clustering
21833  * ----------
21834  * The clustering code uses two different, independent forms of SCSI
21835  * reservation. Traditional SCSI-2 Reserve/Release and the newer SCSI-3
21836  * Persistent Group Reservations. For any particular disk, it will use either
21837  * SCSI-2 or SCSI-3 PGR but never both at the same time for the same disk.
21838  *
21839  * SCSI-2
21840  * The cluster software takes ownership of a multi-hosted disk by issuing the
21841  * MHIOCTKOWN ioctl to the disk driver. It releases ownership by issuing the
21842  * MHIOCRELEASE ioctl.  Closely related is the MHIOCENFAILFAST ioctl -- a
21843  * cluster, just after taking ownership of the disk with the MHIOCTKOWN ioctl
21844  * then issues the MHIOCENFAILFAST ioctl.  This ioctl "enables failfast" in the
21845  * driver. The meaning of failfast is that if the driver (on this host) ever
21846  * encounters the scsi error return code RESERVATION_CONFLICT from the device,
21847  * it should immediately panic the host. The motivation for this ioctl is that
21848  * if this host does encounter reservation conflict, the underlying cause is
21849  * that some other host of the cluster has decided that this host is no longer
21850  * in the cluster and has seized control of the disks for itself. Since this
21851  * host is no longer in the cluster, it ought to panic itself. The
21852  * MHIOCENFAILFAST ioctl does two things:
21853  *	(a) it sets a flag that will cause any returned RESERVATION_CONFLICT
21854  *      error to panic the host
21855  *      (b) it sets up a periodic timer to test whether this host still has
21856  *      "access" (in that no other host has reserved the device):  if the
21857  *      periodic timer gets RESERVATION_CONFLICT, the host is panicked. The
21858  *      purpose of that periodic timer is to handle scenarios where the host is
21859  *      otherwise temporarily quiescent, temporarily doing no real i/o.
21860  * The MHIOCTKOWN ioctl will "break" a reservation that is held by another host,
21861  * by issuing a SCSI Bus Device Reset.  It will then issue a SCSI Reserve for
21862  * the device itself.
21863  *
21864  * SCSI-3 PGR
21865  * A direct semantic implementation of the SCSI-3 Persistent Reservation
21866  * facility is supported through the shared multihost disk ioctls
21867  * (MHIOCGRP_INKEYS, MHIOCGRP_INRESV, MHIOCGRP_REGISTER, MHIOCGRP_RESERVE,
21868  * MHIOCGRP_PREEMPTANDABORT)
21869  *
21870  * Reservation Reclaim:
21871  * --------------------
21872  * To support the lost reservation reclaim operations this driver creates a
21873  * single thread to handle reinstating reservations on all devices that have
21874  * lost reservations sd_resv_reclaim_requests are logged for all devices that
21875  * have LOST RESERVATIONS when the scsi watch facility callsback sd_mhd_watch_cb
21876  * and the reservation reclaim thread loops through the requests to regain the
21877  * lost reservations.
21878  */
21879 
21880 /*
21881  *    Function: sd_check_mhd()
21882  *
21883  * Description: This function sets up and submits a scsi watch request or
21884  *		terminates an existing watch request. This routine is used in
21885  *		support of reservation reclaim.
21886  *
21887  *   Arguments: dev    - the device 'dev_t' is used for context to discriminate
21888  *			 among multiple watches that share the callback function
21889  *		interval - the number of microseconds specifying the watch
21890  *			   interval for issuing TEST UNIT READY commands. If
21891  *			   set to 0 the watch should be terminated. If the
21892  *			   interval is set to 0 and if the device is required
21893  *			   to hold reservation while disabling failfast, the
21894  *			   watch is restarted with an interval of
21895  *			   reinstate_resv_delay.
21896  *
21897  * Return Code: 0	   - Successful submit/terminate of scsi watch request
21898  *		ENXIO      - Indicates an invalid device was specified
21899  *		EAGAIN     - Unable to submit the scsi watch request
21900  */
21901 
21902 static int
21903 sd_check_mhd(dev_t dev, int interval)
21904 {
21905 	struct sd_lun	*un;
21906 	opaque_t	token;
21907 
21908 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21909 		return (ENXIO);
21910 	}
21911 
21912 	/* is this a watch termination request? */
21913 	if (interval == 0) {
21914 		mutex_enter(SD_MUTEX(un));
21915 		/* if there is an existing watch task then terminate it */
21916 		if (un->un_mhd_token) {
21917 			token = un->un_mhd_token;
21918 			un->un_mhd_token = NULL;
21919 			mutex_exit(SD_MUTEX(un));
21920 			(void) scsi_watch_request_terminate(token,
21921 			    SCSI_WATCH_TERMINATE_WAIT);
21922 			mutex_enter(SD_MUTEX(un));
21923 		} else {
21924 			mutex_exit(SD_MUTEX(un));
21925 			/*
21926 			 * Note: If we return here we don't check for the
21927 			 * failfast case. This is the original legacy
21928 			 * implementation but perhaps we should be checking
21929 			 * the failfast case.
21930 			 */
21931 			return (0);
21932 		}
21933 		/*
21934 		 * If the device is required to hold reservation while
21935 		 * disabling failfast, we need to restart the scsi_watch
21936 		 * routine with an interval of reinstate_resv_delay.
21937 		 */
21938 		if (un->un_resvd_status & SD_RESERVE) {
21939 			interval = sd_reinstate_resv_delay/1000;
21940 		} else {
21941 			/* no failfast so bail */
21942 			mutex_exit(SD_MUTEX(un));
21943 			return (0);
21944 		}
21945 		mutex_exit(SD_MUTEX(un));
21946 	}
21947 
21948 	/*
21949 	 * adjust minimum time interval to 1 second,
21950 	 * and convert from msecs to usecs
21951 	 */
21952 	if (interval > 0 && interval < 1000) {
21953 		interval = 1000;
21954 	}
21955 	interval *= 1000;
21956 
21957 	/*
21958 	 * submit the request to the scsi_watch service
21959 	 */
21960 	token = scsi_watch_request_submit(SD_SCSI_DEVP(un), interval,
21961 	    SENSE_LENGTH, sd_mhd_watch_cb, (caddr_t)dev);
21962 	if (token == NULL) {
21963 		return (EAGAIN);
21964 	}
21965 
21966 	/*
21967 	 * save token for termination later on
21968 	 */
21969 	mutex_enter(SD_MUTEX(un));
21970 	un->un_mhd_token = token;
21971 	mutex_exit(SD_MUTEX(un));
21972 	return (0);
21973 }
21974 
21975 
21976 /*
21977  *    Function: sd_mhd_watch_cb()
21978  *
21979  * Description: This function is the call back function used by the scsi watch
21980  *		facility. The scsi watch facility sends the "Test Unit Ready"
21981  *		and processes the status. If applicable (i.e. a "Unit Attention"
21982  *		status and automatic "Request Sense" not used) the scsi watch
21983  *		facility will send a "Request Sense" and retrieve the sense data
21984  *		to be passed to this callback function. In either case the
21985  *		automatic "Request Sense" or the facility submitting one, this
21986  *		callback is passed the status and sense data.
21987  *
21988  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
21989  *			among multiple watches that share this callback function
21990  *		resultp - scsi watch facility result packet containing scsi
21991  *			  packet, status byte and sense data
21992  *
21993  * Return Code: 0 - continue the watch task
21994  *		non-zero - terminate the watch task
21995  */
21996 
21997 static int
21998 sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
21999 {
22000 	struct sd_lun			*un;
22001 	struct scsi_status		*statusp;
22002 	uint8_t				*sensep;
22003 	struct scsi_pkt			*pkt;
22004 	uchar_t				actual_sense_length;
22005 	dev_t  				dev = (dev_t)arg;
22006 
22007 	ASSERT(resultp != NULL);
22008 	statusp			= resultp->statusp;
22009 	sensep			= (uint8_t *)resultp->sensep;
22010 	pkt			= resultp->pkt;
22011 	actual_sense_length	= resultp->actual_sense_length;
22012 
22013 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22014 		return (ENXIO);
22015 	}
22016 
22017 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
22018 	    "sd_mhd_watch_cb: reason '%s', status '%s'\n",
22019 	    scsi_rname(pkt->pkt_reason), sd_sname(*((unsigned char *)statusp)));
22020 
22021 	/* Begin processing of the status and/or sense data */
22022 	if (pkt->pkt_reason != CMD_CMPLT) {
22023 		/* Handle the incomplete packet */
22024 		sd_mhd_watch_incomplete(un, pkt);
22025 		return (0);
22026 	} else if (*((unsigned char *)statusp) != STATUS_GOOD) {
22027 		if (*((unsigned char *)statusp)
22028 		    == STATUS_RESERVATION_CONFLICT) {
22029 			/*
22030 			 * Handle a reservation conflict by panicking if
22031 			 * configured for failfast or by logging the conflict
22032 			 * and updating the reservation status
22033 			 */
22034 			mutex_enter(SD_MUTEX(un));
22035 			if ((un->un_resvd_status & SD_FAILFAST) &&
22036 			    (sd_failfast_enable)) {
22037 				sd_panic_for_res_conflict(un);
22038 				/*NOTREACHED*/
22039 			}
22040 			SD_INFO(SD_LOG_IOCTL_MHD, un,
22041 			    "sd_mhd_watch_cb: Reservation Conflict\n");
22042 			un->un_resvd_status |= SD_RESERVATION_CONFLICT;
22043 			mutex_exit(SD_MUTEX(un));
22044 		}
22045 	}
22046 
22047 	if (sensep != NULL) {
22048 		if (actual_sense_length >= (SENSE_LENGTH - 2)) {
22049 			mutex_enter(SD_MUTEX(un));
22050 			if ((scsi_sense_asc(sensep) ==
22051 			    SD_SCSI_RESET_SENSE_CODE) &&
22052 			    (un->un_resvd_status & SD_RESERVE)) {
22053 				/*
22054 				 * The additional sense code indicates a power
22055 				 * on or bus device reset has occurred; update
22056 				 * the reservation status.
22057 				 */
22058 				un->un_resvd_status |=
22059 				    (SD_LOST_RESERVE | SD_WANT_RESERVE);
22060 				SD_INFO(SD_LOG_IOCTL_MHD, un,
22061 				    "sd_mhd_watch_cb: Lost Reservation\n");
22062 			}
22063 		} else {
22064 			return (0);
22065 		}
22066 	} else {
22067 		mutex_enter(SD_MUTEX(un));
22068 	}
22069 
22070 	if ((un->un_resvd_status & SD_RESERVE) &&
22071 	    (un->un_resvd_status & SD_LOST_RESERVE)) {
22072 		if (un->un_resvd_status & SD_WANT_RESERVE) {
22073 			/*
22074 			 * A reset occurred in between the last probe and this
22075 			 * one so if a timeout is pending cancel it.
22076 			 */
22077 			if (un->un_resvd_timeid) {
22078 				timeout_id_t temp_id = un->un_resvd_timeid;
22079 				un->un_resvd_timeid = NULL;
22080 				mutex_exit(SD_MUTEX(un));
22081 				(void) untimeout(temp_id);
22082 				mutex_enter(SD_MUTEX(un));
22083 			}
22084 			un->un_resvd_status &= ~SD_WANT_RESERVE;
22085 		}
22086 		if (un->un_resvd_timeid == 0) {
22087 			/* Schedule a timeout to handle the lost reservation */
22088 			un->un_resvd_timeid = timeout(sd_mhd_resvd_recover,
22089 			    (void *)dev,
22090 			    drv_usectohz(sd_reinstate_resv_delay));
22091 		}
22092 	}
22093 	mutex_exit(SD_MUTEX(un));
22094 	return (0);
22095 }
22096 
22097 
22098 /*
22099  *    Function: sd_mhd_watch_incomplete()
22100  *
22101  * Description: This function is used to find out why a scsi pkt sent by the
22102  *		scsi watch facility was not completed. Under some scenarios this
22103  *		routine will return. Otherwise it will send a bus reset to see
22104  *		if the drive is still online.
22105  *
22106  *   Arguments: un  - driver soft state (unit) structure
22107  *		pkt - incomplete scsi pkt
22108  */
22109 
22110 static void
22111 sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt)
22112 {
22113 	int	be_chatty;
22114 	int	perr;
22115 
22116 	ASSERT(pkt != NULL);
22117 	ASSERT(un != NULL);
22118 	be_chatty	= (!(pkt->pkt_flags & FLAG_SILENT));
22119 	perr		= (pkt->pkt_statistics & STAT_PERR);
22120 
22121 	mutex_enter(SD_MUTEX(un));
22122 	if (un->un_state == SD_STATE_DUMPING) {
22123 		mutex_exit(SD_MUTEX(un));
22124 		return;
22125 	}
22126 
22127 	switch (pkt->pkt_reason) {
22128 	case CMD_UNX_BUS_FREE:
22129 		/*
22130 		 * If we had a parity error that caused the target to drop BSY*,
22131 		 * don't be chatty about it.
22132 		 */
22133 		if (perr && be_chatty) {
22134 			be_chatty = 0;
22135 		}
22136 		break;
22137 	case CMD_TAG_REJECT:
22138 		/*
22139 		 * The SCSI-2 spec states that a tag reject will be sent by the
22140 		 * target if tagged queuing is not supported. A tag reject may
22141 		 * also be sent during certain initialization periods or to
22142 		 * control internal resources. For the latter case the target
22143 		 * may also return Queue Full.
22144 		 *
22145 		 * If this driver receives a tag reject from a target that is
22146 		 * going through an init period or controlling internal
22147 		 * resources tagged queuing will be disabled. This is a less
22148 		 * than optimal behavior but the driver is unable to determine
22149 		 * the target state and assumes tagged queueing is not supported
22150 		 */
22151 		pkt->pkt_flags = 0;
22152 		un->un_tagflags = 0;
22153 
22154 		if (un->un_f_opt_queueing == TRUE) {
22155 			un->un_throttle = min(un->un_throttle, 3);
22156 		} else {
22157 			un->un_throttle = 1;
22158 		}
22159 		mutex_exit(SD_MUTEX(un));
22160 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
22161 		mutex_enter(SD_MUTEX(un));
22162 		break;
22163 	case CMD_INCOMPLETE:
22164 		/*
22165 		 * The transport stopped with an abnormal state, fallthrough and
22166 		 * reset the target and/or bus unless selection did not complete
22167 		 * (indicated by STATE_GOT_BUS) in which case we don't want to
22168 		 * go through a target/bus reset
22169 		 */
22170 		if (pkt->pkt_state == STATE_GOT_BUS) {
22171 			break;
22172 		}
22173 		/*FALLTHROUGH*/
22174 
22175 	case CMD_TIMEOUT:
22176 	default:
22177 		/*
22178 		 * The lun may still be running the command, so a lun reset
22179 		 * should be attempted. If the lun reset fails or cannot be
22180 		 * issued, than try a target reset. Lastly try a bus reset.
22181 		 */
22182 		if ((pkt->pkt_statistics &
22183 		    (STAT_BUS_RESET|STAT_DEV_RESET|STAT_ABORTED)) == 0) {
22184 			int reset_retval = 0;
22185 			mutex_exit(SD_MUTEX(un));
22186 			if (un->un_f_allow_bus_device_reset == TRUE) {
22187 				if (un->un_f_lun_reset_enabled == TRUE) {
22188 					reset_retval =
22189 					    scsi_reset(SD_ADDRESS(un),
22190 					    RESET_LUN);
22191 				}
22192 				if (reset_retval == 0) {
22193 					reset_retval =
22194 					    scsi_reset(SD_ADDRESS(un),
22195 					    RESET_TARGET);
22196 				}
22197 			}
22198 			if (reset_retval == 0) {
22199 				(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
22200 			}
22201 			mutex_enter(SD_MUTEX(un));
22202 		}
22203 		break;
22204 	}
22205 
22206 	/* A device/bus reset has occurred; update the reservation status. */
22207 	if ((pkt->pkt_reason == CMD_RESET) || (pkt->pkt_statistics &
22208 	    (STAT_BUS_RESET | STAT_DEV_RESET))) {
22209 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
22210 			un->un_resvd_status |=
22211 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
22212 			SD_INFO(SD_LOG_IOCTL_MHD, un,
22213 			    "sd_mhd_watch_incomplete: Lost Reservation\n");
22214 		}
22215 	}
22216 
22217 	/*
22218 	 * The disk has been turned off; Update the device state.
22219 	 *
22220 	 * Note: Should we be offlining the disk here?
22221 	 */
22222 	if (pkt->pkt_state == STATE_GOT_BUS) {
22223 		SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_watch_incomplete: "
22224 		    "Disk not responding to selection\n");
22225 		if (un->un_state != SD_STATE_OFFLINE) {
22226 			New_state(un, SD_STATE_OFFLINE);
22227 		}
22228 	} else if (be_chatty) {
22229 		/*
22230 		 * suppress messages if they are all the same pkt reason;
22231 		 * with TQ, many (up to 256) are returned with the same
22232 		 * pkt_reason
22233 		 */
22234 		if (pkt->pkt_reason != un->un_last_pkt_reason) {
22235 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
22236 			    "sd_mhd_watch_incomplete: "
22237 			    "SCSI transport failed: reason '%s'\n",
22238 			    scsi_rname(pkt->pkt_reason));
22239 		}
22240 	}
22241 	un->un_last_pkt_reason = pkt->pkt_reason;
22242 	mutex_exit(SD_MUTEX(un));
22243 }
22244 
22245 
22246 /*
22247  *    Function: sd_sname()
22248  *
22249  * Description: This is a simple little routine to return a string containing
22250  *		a printable description of command status byte for use in
22251  *		logging.
22252  *
22253  *   Arguments: status - pointer to a status byte
22254  *
22255  * Return Code: char * - string containing status description.
22256  */
22257 
22258 static char *
22259 sd_sname(uchar_t status)
22260 {
22261 	switch (status & STATUS_MASK) {
22262 	case STATUS_GOOD:
22263 		return ("good status");
22264 	case STATUS_CHECK:
22265 		return ("check condition");
22266 	case STATUS_MET:
22267 		return ("condition met");
22268 	case STATUS_BUSY:
22269 		return ("busy");
22270 	case STATUS_INTERMEDIATE:
22271 		return ("intermediate");
22272 	case STATUS_INTERMEDIATE_MET:
22273 		return ("intermediate - condition met");
22274 	case STATUS_RESERVATION_CONFLICT:
22275 		return ("reservation_conflict");
22276 	case STATUS_TERMINATED:
22277 		return ("command terminated");
22278 	case STATUS_QFULL:
22279 		return ("queue full");
22280 	default:
22281 		return ("<unknown status>");
22282 	}
22283 }
22284 
22285 
22286 /*
22287  *    Function: sd_mhd_resvd_recover()
22288  *
22289  * Description: This function adds a reservation entry to the
22290  *		sd_resv_reclaim_request list and signals the reservation
22291  *		reclaim thread that there is work pending. If the reservation
22292  *		reclaim thread has not been previously created this function
22293  *		will kick it off.
22294  *
22295  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
22296  *			among multiple watches that share this callback function
22297  *
22298  *     Context: This routine is called by timeout() and is run in interrupt
22299  *		context. It must not sleep or call other functions which may
22300  *		sleep.
22301  */
22302 
22303 static void
22304 sd_mhd_resvd_recover(void *arg)
22305 {
22306 	dev_t			dev = (dev_t)arg;
22307 	struct sd_lun		*un;
22308 	struct sd_thr_request	*sd_treq = NULL;
22309 	struct sd_thr_request	*sd_cur = NULL;
22310 	struct sd_thr_request	*sd_prev = NULL;
22311 	int			already_there = 0;
22312 
22313 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22314 		return;
22315 	}
22316 
22317 	mutex_enter(SD_MUTEX(un));
22318 	un->un_resvd_timeid = NULL;
22319 	if (un->un_resvd_status & SD_WANT_RESERVE) {
22320 		/*
22321 		 * There was a reset so don't issue the reserve, allow the
22322 		 * sd_mhd_watch_cb callback function to notice this and
22323 		 * reschedule the timeout for reservation.
22324 		 */
22325 		mutex_exit(SD_MUTEX(un));
22326 		return;
22327 	}
22328 	mutex_exit(SD_MUTEX(un));
22329 
22330 	/*
22331 	 * Add this device to the sd_resv_reclaim_request list and the
22332 	 * sd_resv_reclaim_thread should take care of the rest.
22333 	 *
22334 	 * Note: We can't sleep in this context so if the memory allocation
22335 	 * fails allow the sd_mhd_watch_cb callback function to notice this and
22336 	 * reschedule the timeout for reservation.  (4378460)
22337 	 */
22338 	sd_treq = (struct sd_thr_request *)
22339 	    kmem_zalloc(sizeof (struct sd_thr_request), KM_NOSLEEP);
22340 	if (sd_treq == NULL) {
22341 		return;
22342 	}
22343 
22344 	sd_treq->sd_thr_req_next = NULL;
22345 	sd_treq->dev = dev;
22346 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
22347 	if (sd_tr.srq_thr_req_head == NULL) {
22348 		sd_tr.srq_thr_req_head = sd_treq;
22349 	} else {
22350 		sd_cur = sd_prev = sd_tr.srq_thr_req_head;
22351 		for (; sd_cur != NULL; sd_cur = sd_cur->sd_thr_req_next) {
22352 			if (sd_cur->dev == dev) {
22353 				/*
22354 				 * already in Queue so don't log
22355 				 * another request for the device
22356 				 */
22357 				already_there = 1;
22358 				break;
22359 			}
22360 			sd_prev = sd_cur;
22361 		}
22362 		if (!already_there) {
22363 			SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_resvd_recover: "
22364 			    "logging request for %lx\n", dev);
22365 			sd_prev->sd_thr_req_next = sd_treq;
22366 		} else {
22367 			kmem_free(sd_treq, sizeof (struct sd_thr_request));
22368 		}
22369 	}
22370 
22371 	/*
22372 	 * Create a kernel thread to do the reservation reclaim and free up this
22373 	 * thread. We cannot block this thread while we go away to do the
22374 	 * reservation reclaim
22375 	 */
22376 	if (sd_tr.srq_resv_reclaim_thread == NULL)
22377 		sd_tr.srq_resv_reclaim_thread = thread_create(NULL, 0,
22378 		    sd_resv_reclaim_thread, NULL,
22379 		    0, &p0, TS_RUN, v.v_maxsyspri - 2);
22380 
22381 	/* Tell the reservation reclaim thread that it has work to do */
22382 	cv_signal(&sd_tr.srq_resv_reclaim_cv);
22383 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
22384 }
22385 
22386 /*
22387  *    Function: sd_resv_reclaim_thread()
22388  *
22389  * Description: This function implements the reservation reclaim operations
22390  *
22391  *   Arguments: arg - the device 'dev_t' is used for context to discriminate
22392  *		      among multiple watches that share this callback function
22393  */
22394 
22395 static void
22396 sd_resv_reclaim_thread()
22397 {
22398 	struct sd_lun		*un;
22399 	struct sd_thr_request	*sd_mhreq;
22400 
22401 	/* Wait for work */
22402 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
22403 	if (sd_tr.srq_thr_req_head == NULL) {
22404 		cv_wait(&sd_tr.srq_resv_reclaim_cv,
22405 		    &sd_tr.srq_resv_reclaim_mutex);
22406 	}
22407 
22408 	/* Loop while we have work */
22409 	while ((sd_tr.srq_thr_cur_req = sd_tr.srq_thr_req_head) != NULL) {
22410 		un = ddi_get_soft_state(sd_state,
22411 		    SDUNIT(sd_tr.srq_thr_cur_req->dev));
22412 		if (un == NULL) {
22413 			/*
22414 			 * softstate structure is NULL so just
22415 			 * dequeue the request and continue
22416 			 */
22417 			sd_tr.srq_thr_req_head =
22418 			    sd_tr.srq_thr_cur_req->sd_thr_req_next;
22419 			kmem_free(sd_tr.srq_thr_cur_req,
22420 			    sizeof (struct sd_thr_request));
22421 			continue;
22422 		}
22423 
22424 		/* dequeue the request */
22425 		sd_mhreq = sd_tr.srq_thr_cur_req;
22426 		sd_tr.srq_thr_req_head =
22427 		    sd_tr.srq_thr_cur_req->sd_thr_req_next;
22428 		mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
22429 
22430 		/*
22431 		 * Reclaim reservation only if SD_RESERVE is still set. There
22432 		 * may have been a call to MHIOCRELEASE before we got here.
22433 		 */
22434 		mutex_enter(SD_MUTEX(un));
22435 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
22436 			/*
22437 			 * Note: The SD_LOST_RESERVE flag is cleared before
22438 			 * reclaiming the reservation. If this is done after the
22439 			 * call to sd_reserve_release a reservation loss in the
22440 			 * window between pkt completion of reserve cmd and
22441 			 * mutex_enter below may not be recognized
22442 			 */
22443 			un->un_resvd_status &= ~SD_LOST_RESERVE;
22444 			mutex_exit(SD_MUTEX(un));
22445 
22446 			if (sd_reserve_release(sd_mhreq->dev,
22447 			    SD_RESERVE) == 0) {
22448 				mutex_enter(SD_MUTEX(un));
22449 				un->un_resvd_status |= SD_RESERVE;
22450 				mutex_exit(SD_MUTEX(un));
22451 				SD_INFO(SD_LOG_IOCTL_MHD, un,
22452 				    "sd_resv_reclaim_thread: "
22453 				    "Reservation Recovered\n");
22454 			} else {
22455 				mutex_enter(SD_MUTEX(un));
22456 				un->un_resvd_status |= SD_LOST_RESERVE;
22457 				mutex_exit(SD_MUTEX(un));
22458 				SD_INFO(SD_LOG_IOCTL_MHD, un,
22459 				    "sd_resv_reclaim_thread: Failed "
22460 				    "Reservation Recovery\n");
22461 			}
22462 		} else {
22463 			mutex_exit(SD_MUTEX(un));
22464 		}
22465 		mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
22466 		ASSERT(sd_mhreq == sd_tr.srq_thr_cur_req);
22467 		kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
22468 		sd_mhreq = sd_tr.srq_thr_cur_req = NULL;
22469 		/*
22470 		 * wakeup the destroy thread if anyone is waiting on
22471 		 * us to complete.
22472 		 */
22473 		cv_signal(&sd_tr.srq_inprocess_cv);
22474 		SD_TRACE(SD_LOG_IOCTL_MHD, un,
22475 		    "sd_resv_reclaim_thread: cv_signalling current request \n");
22476 	}
22477 
22478 	/*
22479 	 * cleanup the sd_tr structure now that this thread will not exist
22480 	 */
22481 	ASSERT(sd_tr.srq_thr_req_head == NULL);
22482 	ASSERT(sd_tr.srq_thr_cur_req == NULL);
22483 	sd_tr.srq_resv_reclaim_thread = NULL;
22484 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
22485 	thread_exit();
22486 }
22487 
22488 
22489 /*
22490  *    Function: sd_rmv_resv_reclaim_req()
22491  *
22492  * Description: This function removes any pending reservation reclaim requests
22493  *		for the specified device.
22494  *
22495  *   Arguments: dev - the device 'dev_t'
22496  */
22497 
22498 static void
22499 sd_rmv_resv_reclaim_req(dev_t dev)
22500 {
22501 	struct sd_thr_request *sd_mhreq;
22502 	struct sd_thr_request *sd_prev;
22503 
22504 	/* Remove a reservation reclaim request from the list */
22505 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
22506 	if (sd_tr.srq_thr_cur_req && sd_tr.srq_thr_cur_req->dev == dev) {
22507 		/*
22508 		 * We are attempting to reinstate reservation for
22509 		 * this device. We wait for sd_reserve_release()
22510 		 * to return before we return.
22511 		 */
22512 		cv_wait(&sd_tr.srq_inprocess_cv,
22513 		    &sd_tr.srq_resv_reclaim_mutex);
22514 	} else {
22515 		sd_prev = sd_mhreq = sd_tr.srq_thr_req_head;
22516 		if (sd_mhreq && sd_mhreq->dev == dev) {
22517 			sd_tr.srq_thr_req_head = sd_mhreq->sd_thr_req_next;
22518 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
22519 			mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
22520 			return;
22521 		}
22522 		for (; sd_mhreq != NULL; sd_mhreq = sd_mhreq->sd_thr_req_next) {
22523 			if (sd_mhreq && sd_mhreq->dev == dev) {
22524 				break;
22525 			}
22526 			sd_prev = sd_mhreq;
22527 		}
22528 		if (sd_mhreq != NULL) {
22529 			sd_prev->sd_thr_req_next = sd_mhreq->sd_thr_req_next;
22530 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
22531 		}
22532 	}
22533 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
22534 }
22535 
22536 
22537 /*
22538  *    Function: sd_mhd_reset_notify_cb()
22539  *
22540  * Description: This is a call back function for scsi_reset_notify. This
22541  *		function updates the softstate reserved status and logs the
22542  *		reset. The driver scsi watch facility callback function
22543  *		(sd_mhd_watch_cb) and reservation reclaim thread functionality
22544  *		will reclaim the reservation.
22545  *
22546  *   Arguments: arg  - driver soft state (unit) structure
22547  */
22548 
22549 static void
22550 sd_mhd_reset_notify_cb(caddr_t arg)
22551 {
22552 	struct sd_lun *un = (struct sd_lun *)arg;
22553 
22554 	mutex_enter(SD_MUTEX(un));
22555 	if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
22556 		un->un_resvd_status |= (SD_LOST_RESERVE | SD_WANT_RESERVE);
22557 		SD_INFO(SD_LOG_IOCTL_MHD, un,
22558 		    "sd_mhd_reset_notify_cb: Lost Reservation\n");
22559 	}
22560 	mutex_exit(SD_MUTEX(un));
22561 }
22562 
22563 
22564 /*
22565  *    Function: sd_take_ownership()
22566  *
22567  * Description: This routine implements an algorithm to achieve a stable
22568  *		reservation on disks which don't implement priority reserve,
22569  *		and makes sure that other host lose re-reservation attempts.
22570  *		This algorithm contains of a loop that keeps issuing the RESERVE
22571  *		for some period of time (min_ownership_delay, default 6 seconds)
22572  *		During that loop, it looks to see if there has been a bus device
22573  *		reset or bus reset (both of which cause an existing reservation
22574  *		to be lost). If the reservation is lost issue RESERVE until a
22575  *		period of min_ownership_delay with no resets has gone by, or
22576  *		until max_ownership_delay has expired. This loop ensures that
22577  *		the host really did manage to reserve the device, in spite of
22578  *		resets. The looping for min_ownership_delay (default six
22579  *		seconds) is important to early generation clustering products,
22580  *		Solstice HA 1.x and Sun Cluster 2.x. Those products use an
22581  *		MHIOCENFAILFAST periodic timer of two seconds. By having
22582  *		MHIOCTKOWN issue Reserves in a loop for six seconds, and having
22583  *		MHIOCENFAILFAST poll every two seconds, the idea is that by the
22584  *		time the MHIOCTKOWN ioctl returns, the other host (if any) will
22585  *		have already noticed, via the MHIOCENFAILFAST polling, that it
22586  *		no longer "owns" the disk and will have panicked itself.  Thus,
22587  *		the host issuing the MHIOCTKOWN is assured (with timing
22588  *		dependencies) that by the time it actually starts to use the
22589  *		disk for real work, the old owner is no longer accessing it.
22590  *
22591  *		min_ownership_delay is the minimum amount of time for which the
22592  *		disk must be reserved continuously devoid of resets before the
22593  *		MHIOCTKOWN ioctl will return success.
22594  *
22595  *		max_ownership_delay indicates the amount of time by which the
22596  *		take ownership should succeed or timeout with an error.
22597  *
22598  *   Arguments: dev - the device 'dev_t'
22599  *		*p  - struct containing timing info.
22600  *
22601  * Return Code: 0 for success or error code
22602  */
22603 
22604 static int
22605 sd_take_ownership(dev_t dev, struct mhioctkown *p)
22606 {
22607 	struct sd_lun	*un;
22608 	int		rval;
22609 	int		err;
22610 	int		reservation_count   = 0;
22611 	int		min_ownership_delay =  6000000; /* in usec */
22612 	int		max_ownership_delay = 30000000; /* in usec */
22613 	clock_t		start_time;	/* starting time of this algorithm */
22614 	clock_t		end_time;	/* time limit for giving up */
22615 	clock_t		ownership_time;	/* time limit for stable ownership */
22616 	clock_t		current_time;
22617 	clock_t		previous_current_time;
22618 
22619 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22620 		return (ENXIO);
22621 	}
22622 
22623 	/*
22624 	 * Attempt a device reservation. A priority reservation is requested.
22625 	 */
22626 	if ((rval = sd_reserve_release(dev, SD_PRIORITY_RESERVE))
22627 	    != SD_SUCCESS) {
22628 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
22629 		    "sd_take_ownership: return(1)=%d\n", rval);
22630 		return (rval);
22631 	}
22632 
22633 	/* Update the softstate reserved status to indicate the reservation */
22634 	mutex_enter(SD_MUTEX(un));
22635 	un->un_resvd_status |= SD_RESERVE;
22636 	un->un_resvd_status &=
22637 	    ~(SD_LOST_RESERVE | SD_WANT_RESERVE | SD_RESERVATION_CONFLICT);
22638 	mutex_exit(SD_MUTEX(un));
22639 
22640 	if (p != NULL) {
22641 		if (p->min_ownership_delay != 0) {
22642 			min_ownership_delay = p->min_ownership_delay * 1000;
22643 		}
22644 		if (p->max_ownership_delay != 0) {
22645 			max_ownership_delay = p->max_ownership_delay * 1000;
22646 		}
22647 	}
22648 	SD_INFO(SD_LOG_IOCTL_MHD, un,
22649 	    "sd_take_ownership: min, max delays: %d, %d\n",
22650 	    min_ownership_delay, max_ownership_delay);
22651 
22652 	start_time = ddi_get_lbolt();
22653 	current_time	= start_time;
22654 	ownership_time	= current_time + drv_usectohz(min_ownership_delay);
22655 	end_time	= start_time + drv_usectohz(max_ownership_delay);
22656 
22657 	while (current_time - end_time < 0) {
22658 		delay(drv_usectohz(500000));
22659 
22660 		if ((err = sd_reserve_release(dev, SD_RESERVE)) != 0) {
22661 			if ((sd_reserve_release(dev, SD_RESERVE)) != 0) {
22662 				mutex_enter(SD_MUTEX(un));
22663 				rval = (un->un_resvd_status &
22664 				    SD_RESERVATION_CONFLICT) ? EACCES : EIO;
22665 				mutex_exit(SD_MUTEX(un));
22666 				break;
22667 			}
22668 		}
22669 		previous_current_time = current_time;
22670 		current_time = ddi_get_lbolt();
22671 		mutex_enter(SD_MUTEX(un));
22672 		if (err || (un->un_resvd_status & SD_LOST_RESERVE)) {
22673 			ownership_time = ddi_get_lbolt() +
22674 			    drv_usectohz(min_ownership_delay);
22675 			reservation_count = 0;
22676 		} else {
22677 			reservation_count++;
22678 		}
22679 		un->un_resvd_status |= SD_RESERVE;
22680 		un->un_resvd_status &= ~(SD_LOST_RESERVE | SD_WANT_RESERVE);
22681 		mutex_exit(SD_MUTEX(un));
22682 
22683 		SD_INFO(SD_LOG_IOCTL_MHD, un,
22684 		    "sd_take_ownership: ticks for loop iteration=%ld, "
22685 		    "reservation=%s\n", (current_time - previous_current_time),
22686 		    reservation_count ? "ok" : "reclaimed");
22687 
22688 		if (current_time - ownership_time >= 0 &&
22689 		    reservation_count >= 4) {
22690 			rval = 0; /* Achieved a stable ownership */
22691 			break;
22692 		}
22693 		if (current_time - end_time >= 0) {
22694 			rval = EACCES; /* No ownership in max possible time */
22695 			break;
22696 		}
22697 	}
22698 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
22699 	    "sd_take_ownership: return(2)=%d\n", rval);
22700 	return (rval);
22701 }
22702 
22703 
22704 /*
22705  *    Function: sd_reserve_release()
22706  *
22707  * Description: This function builds and sends scsi RESERVE, RELEASE, and
22708  *		PRIORITY RESERVE commands based on a user specified command type
22709  *
22710  *   Arguments: dev - the device 'dev_t'
22711  *		cmd - user specified command type; one of SD_PRIORITY_RESERVE,
22712  *		      SD_RESERVE, SD_RELEASE
22713  *
22714  * Return Code: 0 or Error Code
22715  */
22716 
22717 static int
22718 sd_reserve_release(dev_t dev, int cmd)
22719 {
22720 	struct uscsi_cmd	*com = NULL;
22721 	struct sd_lun		*un = NULL;
22722 	char			cdb[CDB_GROUP0];
22723 	int			rval;
22724 
22725 	ASSERT((cmd == SD_RELEASE) || (cmd == SD_RESERVE) ||
22726 	    (cmd == SD_PRIORITY_RESERVE));
22727 
22728 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22729 		return (ENXIO);
22730 	}
22731 
22732 	/* instantiate and initialize the command and cdb */
22733 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
22734 	bzero(cdb, CDB_GROUP0);
22735 	com->uscsi_flags   = USCSI_SILENT;
22736 	com->uscsi_timeout = un->un_reserve_release_time;
22737 	com->uscsi_cdblen  = CDB_GROUP0;
22738 	com->uscsi_cdb	   = cdb;
22739 	if (cmd == SD_RELEASE) {
22740 		cdb[0] = SCMD_RELEASE;
22741 	} else {
22742 		cdb[0] = SCMD_RESERVE;
22743 	}
22744 
22745 	/* Send the command. */
22746 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
22747 	    SD_PATH_STANDARD);
22748 
22749 	/*
22750 	 * "break" a reservation that is held by another host, by issuing a
22751 	 * reset if priority reserve is desired, and we could not get the
22752 	 * device.
22753 	 */
22754 	if ((cmd == SD_PRIORITY_RESERVE) &&
22755 	    (rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
22756 		/*
22757 		 * First try to reset the LUN. If we cannot, then try a target
22758 		 * reset, followed by a bus reset if the target reset fails.
22759 		 */
22760 		int reset_retval = 0;
22761 		if (un->un_f_lun_reset_enabled == TRUE) {
22762 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
22763 		}
22764 		if (reset_retval == 0) {
22765 			/* The LUN reset either failed or was not issued */
22766 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
22767 		}
22768 		if ((reset_retval == 0) &&
22769 		    (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0)) {
22770 			rval = EIO;
22771 			kmem_free(com, sizeof (*com));
22772 			return (rval);
22773 		}
22774 
22775 		bzero(com, sizeof (struct uscsi_cmd));
22776 		com->uscsi_flags   = USCSI_SILENT;
22777 		com->uscsi_cdb	   = cdb;
22778 		com->uscsi_cdblen  = CDB_GROUP0;
22779 		com->uscsi_timeout = 5;
22780 
22781 		/*
22782 		 * Reissue the last reserve command, this time without request
22783 		 * sense.  Assume that it is just a regular reserve command.
22784 		 */
22785 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
22786 		    SD_PATH_STANDARD);
22787 	}
22788 
22789 	/* Return an error if still getting a reservation conflict. */
22790 	if ((rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
22791 		rval = EACCES;
22792 	}
22793 
22794 	kmem_free(com, sizeof (*com));
22795 	return (rval);
22796 }
22797 
22798 
22799 #define	SD_NDUMP_RETRIES	12
22800 /*
22801  *	System Crash Dump routine
22802  */
22803 
22804 static int
22805 sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
22806 {
22807 	int		instance;
22808 	int		partition;
22809 	int		i;
22810 	int		err;
22811 	struct sd_lun	*un;
22812 	struct scsi_pkt *wr_pktp;
22813 	struct buf	*wr_bp;
22814 	struct buf	wr_buf;
22815 	daddr_t		tgt_byte_offset; /* rmw - byte offset for target */
22816 	daddr_t		tgt_blkno;	/* rmw - blkno for target */
22817 	size_t		tgt_byte_count; /* rmw -  # of bytes to xfer */
22818 	size_t		tgt_nblk; /* rmw -  # of tgt blks to xfer */
22819 	size_t		io_start_offset;
22820 	int		doing_rmw = FALSE;
22821 	int		rval;
22822 	ssize_t		dma_resid;
22823 	daddr_t		oblkno;
22824 	diskaddr_t	nblks = 0;
22825 	diskaddr_t	start_block;
22826 
22827 	instance = SDUNIT(dev);
22828 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
22829 	    !SD_IS_VALID_LABEL(un) || ISCD(un)) {
22830 		return (ENXIO);
22831 	}
22832 
22833 	_NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*un))
22834 
22835 	SD_TRACE(SD_LOG_DUMP, un, "sddump: entry\n");
22836 
22837 	partition = SDPART(dev);
22838 	SD_INFO(SD_LOG_DUMP, un, "sddump: partition = %d\n", partition);
22839 
22840 	/* Validate blocks to dump at against partition size. */
22841 
22842 	(void) cmlb_partinfo(un->un_cmlbhandle, partition,
22843 	    &nblks, &start_block, NULL, NULL, (void *)SD_PATH_DIRECT);
22844 
22845 	if ((blkno + nblk) > nblks) {
22846 		SD_TRACE(SD_LOG_DUMP, un,
22847 		    "sddump: dump range larger than partition: "
22848 		    "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n",
22849 		    blkno, nblk, nblks);
22850 		return (EINVAL);
22851 	}
22852 
22853 	mutex_enter(&un->un_pm_mutex);
22854 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
22855 		struct scsi_pkt *start_pktp;
22856 
22857 		mutex_exit(&un->un_pm_mutex);
22858 
22859 		/*
22860 		 * use pm framework to power on HBA 1st
22861 		 */
22862 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
22863 
22864 		/*
22865 		 * Dump no long uses sdpower to power on a device, it's
22866 		 * in-line here so it can be done in polled mode.
22867 		 */
22868 
22869 		SD_INFO(SD_LOG_DUMP, un, "sddump: starting device\n");
22870 
22871 		start_pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, NULL,
22872 		    CDB_GROUP0, un->un_status_len, 0, 0, NULL_FUNC, NULL);
22873 
22874 		if (start_pktp == NULL) {
22875 			/* We were not given a SCSI packet, fail. */
22876 			return (EIO);
22877 		}
22878 		bzero(start_pktp->pkt_cdbp, CDB_GROUP0);
22879 		start_pktp->pkt_cdbp[0] = SCMD_START_STOP;
22880 		start_pktp->pkt_cdbp[4] = SD_TARGET_START;
22881 		start_pktp->pkt_flags = FLAG_NOINTR;
22882 
22883 		mutex_enter(SD_MUTEX(un));
22884 		SD_FILL_SCSI1_LUN(un, start_pktp);
22885 		mutex_exit(SD_MUTEX(un));
22886 		/*
22887 		 * Scsi_poll returns 0 (success) if the command completes and
22888 		 * the status block is STATUS_GOOD.
22889 		 */
22890 		if (sd_scsi_poll(un, start_pktp) != 0) {
22891 			scsi_destroy_pkt(start_pktp);
22892 			return (EIO);
22893 		}
22894 		scsi_destroy_pkt(start_pktp);
22895 		(void) sd_ddi_pm_resume(un);
22896 	} else {
22897 		mutex_exit(&un->un_pm_mutex);
22898 	}
22899 
22900 	mutex_enter(SD_MUTEX(un));
22901 	un->un_throttle = 0;
22902 
22903 	/*
22904 	 * The first time through, reset the specific target device.
22905 	 * However, when cpr calls sddump we know that sd is in a
22906 	 * a good state so no bus reset is required.
22907 	 * Clear sense data via Request Sense cmd.
22908 	 * In sddump we don't care about allow_bus_device_reset anymore
22909 	 */
22910 
22911 	if ((un->un_state != SD_STATE_SUSPENDED) &&
22912 	    (un->un_state != SD_STATE_DUMPING)) {
22913 
22914 		New_state(un, SD_STATE_DUMPING);
22915 
22916 		if (un->un_f_is_fibre == FALSE) {
22917 			mutex_exit(SD_MUTEX(un));
22918 			/*
22919 			 * Attempt a bus reset for parallel scsi.
22920 			 *
22921 			 * Note: A bus reset is required because on some host
22922 			 * systems (i.e. E420R) a bus device reset is
22923 			 * insufficient to reset the state of the target.
22924 			 *
22925 			 * Note: Don't issue the reset for fibre-channel,
22926 			 * because this tends to hang the bus (loop) for
22927 			 * too long while everyone is logging out and in
22928 			 * and the deadman timer for dumping will fire
22929 			 * before the dump is complete.
22930 			 */
22931 			if (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0) {
22932 				mutex_enter(SD_MUTEX(un));
22933 				Restore_state(un);
22934 				mutex_exit(SD_MUTEX(un));
22935 				return (EIO);
22936 			}
22937 
22938 			/* Delay to give the device some recovery time. */
22939 			drv_usecwait(10000);
22940 
22941 			if (sd_send_polled_RQS(un) == SD_FAILURE) {
22942 				SD_INFO(SD_LOG_DUMP, un,
22943 				    "sddump: sd_send_polled_RQS failed\n");
22944 			}
22945 			mutex_enter(SD_MUTEX(un));
22946 		}
22947 	}
22948 
22949 	/*
22950 	 * Convert the partition-relative block number to a
22951 	 * disk physical block number.
22952 	 */
22953 	blkno += start_block;
22954 
22955 	SD_INFO(SD_LOG_DUMP, un, "sddump: disk blkno = 0x%x\n", blkno);
22956 
22957 
22958 	/*
22959 	 * Check if the device has a non-512 block size.
22960 	 */
22961 	wr_bp = NULL;
22962 	if (NOT_DEVBSIZE(un)) {
22963 		tgt_byte_offset = blkno * un->un_sys_blocksize;
22964 		tgt_byte_count = nblk * un->un_sys_blocksize;
22965 		if ((tgt_byte_offset % un->un_tgt_blocksize) ||
22966 		    (tgt_byte_count % un->un_tgt_blocksize)) {
22967 			doing_rmw = TRUE;
22968 			/*
22969 			 * Calculate the block number and number of block
22970 			 * in terms of the media block size.
22971 			 */
22972 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
22973 			tgt_nblk =
22974 			    ((tgt_byte_offset + tgt_byte_count +
22975 			    (un->un_tgt_blocksize - 1)) /
22976 			    un->un_tgt_blocksize) - tgt_blkno;
22977 
22978 			/*
22979 			 * Invoke the routine which is going to do read part
22980 			 * of read-modify-write.
22981 			 * Note that this routine returns a pointer to
22982 			 * a valid bp in wr_bp.
22983 			 */
22984 			err = sddump_do_read_of_rmw(un, tgt_blkno, tgt_nblk,
22985 			    &wr_bp);
22986 			if (err) {
22987 				mutex_exit(SD_MUTEX(un));
22988 				return (err);
22989 			}
22990 			/*
22991 			 * Offset is being calculated as -
22992 			 * (original block # * system block size) -
22993 			 * (new block # * target block size)
22994 			 */
22995 			io_start_offset =
22996 			    ((uint64_t)(blkno * un->un_sys_blocksize)) -
22997 			    ((uint64_t)(tgt_blkno * un->un_tgt_blocksize));
22998 
22999 			ASSERT((io_start_offset >= 0) &&
23000 			    (io_start_offset < un->un_tgt_blocksize));
23001 			/*
23002 			 * Do the modify portion of read modify write.
23003 			 */
23004 			bcopy(addr, &wr_bp->b_un.b_addr[io_start_offset],
23005 			    (size_t)nblk * un->un_sys_blocksize);
23006 		} else {
23007 			doing_rmw = FALSE;
23008 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
23009 			tgt_nblk = tgt_byte_count / un->un_tgt_blocksize;
23010 		}
23011 
23012 		/* Convert blkno and nblk to target blocks */
23013 		blkno = tgt_blkno;
23014 		nblk = tgt_nblk;
23015 	} else {
23016 		wr_bp = &wr_buf;
23017 		bzero(wr_bp, sizeof (struct buf));
23018 		wr_bp->b_flags		= B_BUSY;
23019 		wr_bp->b_un.b_addr	= addr;
23020 		wr_bp->b_bcount		= nblk << DEV_BSHIFT;
23021 		wr_bp->b_resid		= 0;
23022 	}
23023 
23024 	mutex_exit(SD_MUTEX(un));
23025 
23026 	/*
23027 	 * Obtain a SCSI packet for the write command.
23028 	 * It should be safe to call the allocator here without
23029 	 * worrying about being locked for DVMA mapping because
23030 	 * the address we're passed is already a DVMA mapping
23031 	 *
23032 	 * We are also not going to worry about semaphore ownership
23033 	 * in the dump buffer. Dumping is single threaded at present.
23034 	 */
23035 
23036 	wr_pktp = NULL;
23037 
23038 	dma_resid = wr_bp->b_bcount;
23039 	oblkno = blkno;
23040 
23041 	while (dma_resid != 0) {
23042 
23043 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
23044 		wr_bp->b_flags &= ~B_ERROR;
23045 
23046 		if (un->un_partial_dma_supported == 1) {
23047 			blkno = oblkno +
23048 			    ((wr_bp->b_bcount - dma_resid) /
23049 			    un->un_tgt_blocksize);
23050 			nblk = dma_resid / un->un_tgt_blocksize;
23051 
23052 			if (wr_pktp) {
23053 				/*
23054 				 * Partial DMA transfers after initial transfer
23055 				 */
23056 				rval = sd_setup_next_rw_pkt(un, wr_pktp, wr_bp,
23057 				    blkno, nblk);
23058 			} else {
23059 				/* Initial transfer */
23060 				rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
23061 				    un->un_pkt_flags, NULL_FUNC, NULL,
23062 				    blkno, nblk);
23063 			}
23064 		} else {
23065 			rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
23066 			    0, NULL_FUNC, NULL, blkno, nblk);
23067 		}
23068 
23069 		if (rval == 0) {
23070 			/* We were given a SCSI packet, continue. */
23071 			break;
23072 		}
23073 
23074 		if (i == 0) {
23075 			if (wr_bp->b_flags & B_ERROR) {
23076 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23077 				    "no resources for dumping; "
23078 				    "error code: 0x%x, retrying",
23079 				    geterror(wr_bp));
23080 			} else {
23081 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23082 				    "no resources for dumping; retrying");
23083 			}
23084 		} else if (i != (SD_NDUMP_RETRIES - 1)) {
23085 			if (wr_bp->b_flags & B_ERROR) {
23086 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
23087 				    "no resources for dumping; error code: "
23088 				    "0x%x, retrying\n", geterror(wr_bp));
23089 			}
23090 		} else {
23091 			if (wr_bp->b_flags & B_ERROR) {
23092 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
23093 				    "no resources for dumping; "
23094 				    "error code: 0x%x, retries failed, "
23095 				    "giving up.\n", geterror(wr_bp));
23096 			} else {
23097 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
23098 				    "no resources for dumping; "
23099 				    "retries failed, giving up.\n");
23100 			}
23101 			mutex_enter(SD_MUTEX(un));
23102 			Restore_state(un);
23103 			if (NOT_DEVBSIZE(un) && (doing_rmw == TRUE)) {
23104 				mutex_exit(SD_MUTEX(un));
23105 				scsi_free_consistent_buf(wr_bp);
23106 			} else {
23107 				mutex_exit(SD_MUTEX(un));
23108 			}
23109 			return (EIO);
23110 		}
23111 		drv_usecwait(10000);
23112 	}
23113 
23114 	if (un->un_partial_dma_supported == 1) {
23115 		/*
23116 		 * save the resid from PARTIAL_DMA
23117 		 */
23118 		dma_resid = wr_pktp->pkt_resid;
23119 		if (dma_resid != 0)
23120 			nblk -= SD_BYTES2TGTBLOCKS(un, dma_resid);
23121 		wr_pktp->pkt_resid = 0;
23122 	} else {
23123 		dma_resid = 0;
23124 	}
23125 
23126 	/* SunBug 1222170 */
23127 	wr_pktp->pkt_flags = FLAG_NOINTR;
23128 
23129 	err = EIO;
23130 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
23131 
23132 		/*
23133 		 * Scsi_poll returns 0 (success) if the command completes and
23134 		 * the status block is STATUS_GOOD.  We should only check
23135 		 * errors if this condition is not true.  Even then we should
23136 		 * send our own request sense packet only if we have a check
23137 		 * condition and auto request sense has not been performed by
23138 		 * the hba.
23139 		 */
23140 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending write\n");
23141 
23142 		if ((sd_scsi_poll(un, wr_pktp) == 0) &&
23143 		    (wr_pktp->pkt_resid == 0)) {
23144 			err = SD_SUCCESS;
23145 			break;
23146 		}
23147 
23148 		/*
23149 		 * Check CMD_DEV_GONE 1st, give up if device is gone.
23150 		 */
23151 		if (wr_pktp->pkt_reason == CMD_DEV_GONE) {
23152 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23153 			    "Error while dumping state...Device is gone\n");
23154 			break;
23155 		}
23156 
23157 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_CHECK) {
23158 			SD_INFO(SD_LOG_DUMP, un,
23159 			    "sddump: write failed with CHECK, try # %d\n", i);
23160 			if (((wr_pktp->pkt_state & STATE_ARQ_DONE) == 0)) {
23161 				(void) sd_send_polled_RQS(un);
23162 			}
23163 
23164 			continue;
23165 		}
23166 
23167 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_BUSY) {
23168 			int reset_retval = 0;
23169 
23170 			SD_INFO(SD_LOG_DUMP, un,
23171 			    "sddump: write failed with BUSY, try # %d\n", i);
23172 
23173 			if (un->un_f_lun_reset_enabled == TRUE) {
23174 				reset_retval = scsi_reset(SD_ADDRESS(un),
23175 				    RESET_LUN);
23176 			}
23177 			if (reset_retval == 0) {
23178 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
23179 			}
23180 			(void) sd_send_polled_RQS(un);
23181 
23182 		} else {
23183 			SD_INFO(SD_LOG_DUMP, un,
23184 			    "sddump: write failed with 0x%x, try # %d\n",
23185 			    SD_GET_PKT_STATUS(wr_pktp), i);
23186 			mutex_enter(SD_MUTEX(un));
23187 			sd_reset_target(un, wr_pktp);
23188 			mutex_exit(SD_MUTEX(un));
23189 		}
23190 
23191 		/*
23192 		 * If we are not getting anywhere with lun/target resets,
23193 		 * let's reset the bus.
23194 		 */
23195 		if (i == SD_NDUMP_RETRIES/2) {
23196 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
23197 			(void) sd_send_polled_RQS(un);
23198 		}
23199 	}
23200 	}
23201 
23202 	scsi_destroy_pkt(wr_pktp);
23203 	mutex_enter(SD_MUTEX(un));
23204 	if ((NOT_DEVBSIZE(un)) && (doing_rmw == TRUE)) {
23205 		mutex_exit(SD_MUTEX(un));
23206 		scsi_free_consistent_buf(wr_bp);
23207 	} else {
23208 		mutex_exit(SD_MUTEX(un));
23209 	}
23210 	SD_TRACE(SD_LOG_DUMP, un, "sddump: exit: err = %d\n", err);
23211 	return (err);
23212 }
23213 
23214 /*
23215  *    Function: sd_scsi_poll()
23216  *
23217  * Description: This is a wrapper for the scsi_poll call.
23218  *
23219  *   Arguments: sd_lun - The unit structure
23220  *              scsi_pkt - The scsi packet being sent to the device.
23221  *
23222  * Return Code: 0 - Command completed successfully with good status
23223  *             -1 - Command failed.  This could indicate a check condition
23224  *                  or other status value requiring recovery action.
23225  *
23226  */
23227 
23228 static int
23229 sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pktp)
23230 {
23231 	int status;
23232 
23233 	ASSERT(un != NULL);
23234 	ASSERT(!mutex_owned(SD_MUTEX(un)));
23235 	ASSERT(pktp != NULL);
23236 
23237 	status = SD_SUCCESS;
23238 
23239 	if (scsi_ifgetcap(&pktp->pkt_address, "tagged-qing", 1) == 1) {
23240 		pktp->pkt_flags |= un->un_tagflags;
23241 		pktp->pkt_flags &= ~FLAG_NODISCON;
23242 	}
23243 
23244 	status = sd_ddi_scsi_poll(pktp);
23245 	/*
23246 	 * Scsi_poll returns 0 (success) if the command completes and the
23247 	 * status block is STATUS_GOOD.  We should only check errors if this
23248 	 * condition is not true.  Even then we should send our own request
23249 	 * sense packet only if we have a check condition and auto
23250 	 * request sense has not been performed by the hba.
23251 	 * Don't get RQS data if pkt_reason is CMD_DEV_GONE.
23252 	 */
23253 	if ((status != SD_SUCCESS) &&
23254 	    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK) &&
23255 	    (pktp->pkt_state & STATE_ARQ_DONE) == 0 &&
23256 	    (pktp->pkt_reason != CMD_DEV_GONE))
23257 		(void) sd_send_polled_RQS(un);
23258 
23259 	return (status);
23260 }
23261 
23262 /*
23263  *    Function: sd_send_polled_RQS()
23264  *
23265  * Description: This sends the request sense command to a device.
23266  *
23267  *   Arguments: sd_lun - The unit structure
23268  *
23269  * Return Code: 0 - Command completed successfully with good status
23270  *             -1 - Command failed.
23271  *
23272  */
23273 
23274 static int
23275 sd_send_polled_RQS(struct sd_lun *un)
23276 {
23277 	int	ret_val;
23278 	struct	scsi_pkt	*rqs_pktp;
23279 	struct	buf		*rqs_bp;
23280 
23281 	ASSERT(un != NULL);
23282 	ASSERT(!mutex_owned(SD_MUTEX(un)));
23283 
23284 	ret_val = SD_SUCCESS;
23285 
23286 	rqs_pktp = un->un_rqs_pktp;
23287 	rqs_bp	 = un->un_rqs_bp;
23288 
23289 	mutex_enter(SD_MUTEX(un));
23290 
23291 	if (un->un_sense_isbusy) {
23292 		ret_val = SD_FAILURE;
23293 		mutex_exit(SD_MUTEX(un));
23294 		return (ret_val);
23295 	}
23296 
23297 	/*
23298 	 * If the request sense buffer (and packet) is not in use,
23299 	 * let's set the un_sense_isbusy and send our packet
23300 	 */
23301 	un->un_sense_isbusy 	= 1;
23302 	rqs_pktp->pkt_resid  	= 0;
23303 	rqs_pktp->pkt_reason 	= 0;
23304 	rqs_pktp->pkt_flags |= FLAG_NOINTR;
23305 	bzero(rqs_bp->b_un.b_addr, SENSE_LENGTH);
23306 
23307 	mutex_exit(SD_MUTEX(un));
23308 
23309 	SD_INFO(SD_LOG_COMMON, un, "sd_send_polled_RQS: req sense buf at"
23310 	    " 0x%p\n", rqs_bp->b_un.b_addr);
23311 
23312 	/*
23313 	 * Can't send this to sd_scsi_poll, we wrap ourselves around the
23314 	 * axle - it has a call into us!
23315 	 */
23316 	if ((ret_val = sd_ddi_scsi_poll(rqs_pktp)) != 0) {
23317 		SD_INFO(SD_LOG_COMMON, un,
23318 		    "sd_send_polled_RQS: RQS failed\n");
23319 	}
23320 
23321 	SD_DUMP_MEMORY(un, SD_LOG_COMMON, "sd_send_polled_RQS:",
23322 	    (uchar_t *)rqs_bp->b_un.b_addr, SENSE_LENGTH, SD_LOG_HEX);
23323 
23324 	mutex_enter(SD_MUTEX(un));
23325 	un->un_sense_isbusy = 0;
23326 	mutex_exit(SD_MUTEX(un));
23327 
23328 	return (ret_val);
23329 }
23330 
23331 /*
23332  * Defines needed for localized version of the scsi_poll routine.
23333  */
23334 #define	SD_CSEC		10000			/* usecs */
23335 #define	SD_SEC_TO_CSEC	(1000000/SD_CSEC)
23336 
23337 
23338 /*
23339  *    Function: sd_ddi_scsi_poll()
23340  *
23341  * Description: Localized version of the scsi_poll routine.  The purpose is to
23342  *		send a scsi_pkt to a device as a polled command.  This version
23343  *		is to ensure more robust handling of transport errors.
23344  *		Specifically this routine cures not ready, coming ready
23345  *		transition for power up and reset of sonoma's.  This can take
23346  *		up to 45 seconds for power-on and 20 seconds for reset of a
23347  * 		sonoma lun.
23348  *
23349  *   Arguments: scsi_pkt - The scsi_pkt being sent to a device
23350  *
23351  * Return Code: 0 - Command completed successfully with good status
23352  *             -1 - Command failed.
23353  *
23354  */
23355 
23356 static int
23357 sd_ddi_scsi_poll(struct scsi_pkt *pkt)
23358 {
23359 	int busy_count;
23360 	int timeout;
23361 	int rval = SD_FAILURE;
23362 	int savef;
23363 	uint8_t *sensep;
23364 	long savet;
23365 	void (*savec)();
23366 	/*
23367 	 * The following is defined in machdep.c and is used in determining if
23368 	 * the scsi transport system will do polled I/O instead of interrupt
23369 	 * I/O when called from xx_dump().
23370 	 */
23371 	extern int do_polled_io;
23372 
23373 	/*
23374 	 * save old flags in pkt, to restore at end
23375 	 */
23376 	savef = pkt->pkt_flags;
23377 	savec = pkt->pkt_comp;
23378 	savet = pkt->pkt_time;
23379 
23380 	pkt->pkt_flags |= FLAG_NOINTR;
23381 
23382 	/*
23383 	 * XXX there is nothing in the SCSA spec that states that we should not
23384 	 * do a callback for polled cmds; however, removing this will break sd
23385 	 * and probably other target drivers
23386 	 */
23387 	pkt->pkt_comp = NULL;
23388 
23389 	/*
23390 	 * we don't like a polled command without timeout.
23391 	 * 60 seconds seems long enough.
23392 	 */
23393 	if (pkt->pkt_time == 0) {
23394 		pkt->pkt_time = SCSI_POLL_TIMEOUT;
23395 	}
23396 
23397 	/*
23398 	 * Send polled cmd.
23399 	 *
23400 	 * We do some error recovery for various errors.  Tran_busy,
23401 	 * queue full, and non-dispatched commands are retried every 10 msec.
23402 	 * as they are typically transient failures.  Busy status and Not
23403 	 * Ready are retried every second as this status takes a while to
23404 	 * change.  Unit attention is retried for pkt_time (60) times
23405 	 * with no delay.
23406 	 */
23407 	timeout = pkt->pkt_time * SD_SEC_TO_CSEC;
23408 
23409 	for (busy_count = 0; busy_count < timeout; busy_count++) {
23410 		int rc;
23411 		int poll_delay;
23412 
23413 		/*
23414 		 * Initialize pkt status variables.
23415 		 */
23416 		*pkt->pkt_scbp = pkt->pkt_reason = pkt->pkt_state = 0;
23417 
23418 		if ((rc = scsi_transport(pkt)) != TRAN_ACCEPT) {
23419 			if (rc != TRAN_BUSY) {
23420 				/* Transport failed - give up. */
23421 				break;
23422 			} else {
23423 				/* Transport busy - try again. */
23424 				poll_delay = 1 * SD_CSEC; /* 10 msec */
23425 			}
23426 		} else {
23427 			/*
23428 			 * Transport accepted - check pkt status.
23429 			 */
23430 			rc = (*pkt->pkt_scbp) & STATUS_MASK;
23431 			if (pkt->pkt_reason == CMD_CMPLT &&
23432 			    rc == STATUS_CHECK &&
23433 			    pkt->pkt_state & STATE_ARQ_DONE) {
23434 				struct scsi_arq_status *arqstat =
23435 				    (struct scsi_arq_status *)(pkt->pkt_scbp);
23436 
23437 				sensep = (uint8_t *)&arqstat->sts_sensedata;
23438 			} else {
23439 				sensep = NULL;
23440 			}
23441 
23442 			if ((pkt->pkt_reason == CMD_CMPLT) &&
23443 			    (rc == STATUS_GOOD)) {
23444 				/* No error - we're done */
23445 				rval = SD_SUCCESS;
23446 				break;
23447 
23448 			} else if (pkt->pkt_reason == CMD_DEV_GONE) {
23449 				/* Lost connection - give up */
23450 				break;
23451 
23452 			} else if ((pkt->pkt_reason == CMD_INCOMPLETE) &&
23453 			    (pkt->pkt_state == 0)) {
23454 				/* Pkt not dispatched - try again. */
23455 				poll_delay = 1 * SD_CSEC; /* 10 msec. */
23456 
23457 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
23458 			    (rc == STATUS_QFULL)) {
23459 				/* Queue full - try again. */
23460 				poll_delay = 1 * SD_CSEC; /* 10 msec. */
23461 
23462 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
23463 			    (rc == STATUS_BUSY)) {
23464 				/* Busy - try again. */
23465 				poll_delay = 100 * SD_CSEC; /* 1 sec. */
23466 				busy_count += (SD_SEC_TO_CSEC - 1);
23467 
23468 			} else if ((sensep != NULL) &&
23469 			    (scsi_sense_key(sensep) ==
23470 			    KEY_UNIT_ATTENTION)) {
23471 				/* Unit Attention - try again */
23472 				busy_count += (SD_SEC_TO_CSEC - 1); /* 1 */
23473 				continue;
23474 
23475 			} else if ((sensep != NULL) &&
23476 			    (scsi_sense_key(sensep) == KEY_NOT_READY) &&
23477 			    (scsi_sense_asc(sensep) == 0x04) &&
23478 			    (scsi_sense_ascq(sensep) == 0x01)) {
23479 				/* Not ready -> ready - try again. */
23480 				poll_delay = 100 * SD_CSEC; /* 1 sec. */
23481 				busy_count += (SD_SEC_TO_CSEC - 1);
23482 
23483 			} else {
23484 				/* BAD status - give up. */
23485 				break;
23486 			}
23487 		}
23488 
23489 		if ((curthread->t_flag & T_INTR_THREAD) == 0 &&
23490 		    !do_polled_io) {
23491 			delay(drv_usectohz(poll_delay));
23492 		} else {
23493 			/* we busy wait during cpr_dump or interrupt threads */
23494 			drv_usecwait(poll_delay);
23495 		}
23496 	}
23497 
23498 	pkt->pkt_flags = savef;
23499 	pkt->pkt_comp = savec;
23500 	pkt->pkt_time = savet;
23501 	return (rval);
23502 }
23503 
23504 
23505 /*
23506  *    Function: sd_persistent_reservation_in_read_keys
23507  *
23508  * Description: This routine is the driver entry point for handling CD-ROM
23509  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS)
23510  *		by sending the SCSI-3 PRIN commands to the device.
23511  *		Processes the read keys command response by copying the
23512  *		reservation key information into the user provided buffer.
23513  *		Support for the 32/64 bit _MULTI_DATAMODEL is implemented.
23514  *
23515  *   Arguments: un   -  Pointer to soft state struct for the target.
23516  *		usrp -	user provided pointer to multihost Persistent In Read
23517  *			Keys structure (mhioc_inkeys_t)
23518  *		flag -	this argument is a pass through to ddi_copyxxx()
23519  *			directly from the mode argument of ioctl().
23520  *
23521  * Return Code: 0   - Success
23522  *		EACCES
23523  *		ENOTSUP
23524  *		errno return code from sd_send_scsi_cmd()
23525  *
23526  *     Context: Can sleep. Does not return until command is completed.
23527  */
23528 
23529 static int
23530 sd_persistent_reservation_in_read_keys(struct sd_lun *un,
23531     mhioc_inkeys_t *usrp, int flag)
23532 {
23533 #ifdef _MULTI_DATAMODEL
23534 	struct mhioc_key_list32	li32;
23535 #endif
23536 	sd_prin_readkeys_t	*in;
23537 	mhioc_inkeys_t		*ptr;
23538 	mhioc_key_list_t	li;
23539 	uchar_t			*data_bufp;
23540 	int 			data_len;
23541 	int			rval;
23542 	size_t			copysz;
23543 
23544 	if ((ptr = (mhioc_inkeys_t *)usrp) == NULL) {
23545 		return (EINVAL);
23546 	}
23547 	bzero(&li, sizeof (mhioc_key_list_t));
23548 
23549 	/*
23550 	 * Get the listsize from user
23551 	 */
23552 #ifdef _MULTI_DATAMODEL
23553 
23554 	switch (ddi_model_convert_from(flag & FMODELS)) {
23555 	case DDI_MODEL_ILP32:
23556 		copysz = sizeof (struct mhioc_key_list32);
23557 		if (ddi_copyin(ptr->li, &li32, copysz, flag)) {
23558 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23559 			    "sd_persistent_reservation_in_read_keys: "
23560 			    "failed ddi_copyin: mhioc_key_list32_t\n");
23561 			rval = EFAULT;
23562 			goto done;
23563 		}
23564 		li.listsize = li32.listsize;
23565 		li.list = (mhioc_resv_key_t *)(uintptr_t)li32.list;
23566 		break;
23567 
23568 	case DDI_MODEL_NONE:
23569 		copysz = sizeof (mhioc_key_list_t);
23570 		if (ddi_copyin(ptr->li, &li, copysz, flag)) {
23571 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23572 			    "sd_persistent_reservation_in_read_keys: "
23573 			    "failed ddi_copyin: mhioc_key_list_t\n");
23574 			rval = EFAULT;
23575 			goto done;
23576 		}
23577 		break;
23578 	}
23579 
23580 #else /* ! _MULTI_DATAMODEL */
23581 	copysz = sizeof (mhioc_key_list_t);
23582 	if (ddi_copyin(ptr->li, &li, copysz, flag)) {
23583 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
23584 		    "sd_persistent_reservation_in_read_keys: "
23585 		    "failed ddi_copyin: mhioc_key_list_t\n");
23586 		rval = EFAULT;
23587 		goto done;
23588 	}
23589 #endif
23590 
23591 	data_len  = li.listsize * MHIOC_RESV_KEY_SIZE;
23592 	data_len += (sizeof (sd_prin_readkeys_t) - sizeof (caddr_t));
23593 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
23594 
23595 	if ((rval = sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_KEYS,
23596 	    data_len, data_bufp)) != 0) {
23597 		goto done;
23598 	}
23599 	in = (sd_prin_readkeys_t *)data_bufp;
23600 	ptr->generation = BE_32(in->generation);
23601 	li.listlen = BE_32(in->len) / MHIOC_RESV_KEY_SIZE;
23602 
23603 	/*
23604 	 * Return the min(listsize, listlen) keys
23605 	 */
23606 #ifdef _MULTI_DATAMODEL
23607 
23608 	switch (ddi_model_convert_from(flag & FMODELS)) {
23609 	case DDI_MODEL_ILP32:
23610 		li32.listlen = li.listlen;
23611 		if (ddi_copyout(&li32, ptr->li, copysz, flag)) {
23612 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23613 			    "sd_persistent_reservation_in_read_keys: "
23614 			    "failed ddi_copyout: mhioc_key_list32_t\n");
23615 			rval = EFAULT;
23616 			goto done;
23617 		}
23618 		break;
23619 
23620 	case DDI_MODEL_NONE:
23621 		if (ddi_copyout(&li, ptr->li, copysz, flag)) {
23622 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23623 			    "sd_persistent_reservation_in_read_keys: "
23624 			    "failed ddi_copyout: mhioc_key_list_t\n");
23625 			rval = EFAULT;
23626 			goto done;
23627 		}
23628 		break;
23629 	}
23630 
23631 #else /* ! _MULTI_DATAMODEL */
23632 
23633 	if (ddi_copyout(&li, ptr->li, copysz, flag)) {
23634 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
23635 		    "sd_persistent_reservation_in_read_keys: "
23636 		    "failed ddi_copyout: mhioc_key_list_t\n");
23637 		rval = EFAULT;
23638 		goto done;
23639 	}
23640 
23641 #endif /* _MULTI_DATAMODEL */
23642 
23643 	copysz = min(li.listlen * MHIOC_RESV_KEY_SIZE,
23644 	    li.listsize * MHIOC_RESV_KEY_SIZE);
23645 	if (ddi_copyout(&in->keylist, li.list, copysz, flag)) {
23646 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
23647 		    "sd_persistent_reservation_in_read_keys: "
23648 		    "failed ddi_copyout: keylist\n");
23649 		rval = EFAULT;
23650 	}
23651 done:
23652 	kmem_free(data_bufp, data_len);
23653 	return (rval);
23654 }
23655 
23656 
23657 /*
23658  *    Function: sd_persistent_reservation_in_read_resv
23659  *
23660  * Description: This routine is the driver entry point for handling CD-ROM
23661  *		multi-host persistent reservation requests (MHIOCGRP_INRESV)
23662  *		by sending the SCSI-3 PRIN commands to the device.
23663  *		Process the read persistent reservations command response by
23664  *		copying the reservation information into the user provided
23665  *		buffer. Support for the 32/64 _MULTI_DATAMODEL is implemented.
23666  *
23667  *   Arguments: un   -  Pointer to soft state struct for the target.
23668  *		usrp -	user provided pointer to multihost Persistent In Read
23669  *			Keys structure (mhioc_inkeys_t)
23670  *		flag -	this argument is a pass through to ddi_copyxxx()
23671  *			directly from the mode argument of ioctl().
23672  *
23673  * Return Code: 0   - Success
23674  *		EACCES
23675  *		ENOTSUP
23676  *		errno return code from sd_send_scsi_cmd()
23677  *
23678  *     Context: Can sleep. Does not return until command is completed.
23679  */
23680 
23681 static int
23682 sd_persistent_reservation_in_read_resv(struct sd_lun *un,
23683     mhioc_inresvs_t *usrp, int flag)
23684 {
23685 #ifdef _MULTI_DATAMODEL
23686 	struct mhioc_resv_desc_list32 resvlist32;
23687 #endif
23688 	sd_prin_readresv_t	*in;
23689 	mhioc_inresvs_t		*ptr;
23690 	sd_readresv_desc_t	*readresv_ptr;
23691 	mhioc_resv_desc_list_t	resvlist;
23692 	mhioc_resv_desc_t 	resvdesc;
23693 	uchar_t			*data_bufp;
23694 	int 			data_len;
23695 	int			rval;
23696 	int			i;
23697 	size_t			copysz;
23698 	mhioc_resv_desc_t	*bufp;
23699 
23700 	if ((ptr = usrp) == NULL) {
23701 		return (EINVAL);
23702 	}
23703 
23704 	/*
23705 	 * Get the listsize from user
23706 	 */
23707 #ifdef _MULTI_DATAMODEL
23708 	switch (ddi_model_convert_from(flag & FMODELS)) {
23709 	case DDI_MODEL_ILP32:
23710 		copysz = sizeof (struct mhioc_resv_desc_list32);
23711 		if (ddi_copyin(ptr->li, &resvlist32, copysz, flag)) {
23712 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23713 			    "sd_persistent_reservation_in_read_resv: "
23714 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
23715 			rval = EFAULT;
23716 			goto done;
23717 		}
23718 		resvlist.listsize = resvlist32.listsize;
23719 		resvlist.list = (mhioc_resv_desc_t *)(uintptr_t)resvlist32.list;
23720 		break;
23721 
23722 	case DDI_MODEL_NONE:
23723 		copysz = sizeof (mhioc_resv_desc_list_t);
23724 		if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
23725 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23726 			    "sd_persistent_reservation_in_read_resv: "
23727 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
23728 			rval = EFAULT;
23729 			goto done;
23730 		}
23731 		break;
23732 	}
23733 #else /* ! _MULTI_DATAMODEL */
23734 	copysz = sizeof (mhioc_resv_desc_list_t);
23735 	if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
23736 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
23737 		    "sd_persistent_reservation_in_read_resv: "
23738 		    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
23739 		rval = EFAULT;
23740 		goto done;
23741 	}
23742 #endif /* ! _MULTI_DATAMODEL */
23743 
23744 	data_len  = resvlist.listsize * SCSI3_RESV_DESC_LEN;
23745 	data_len += (sizeof (sd_prin_readresv_t) - sizeof (caddr_t));
23746 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
23747 
23748 	if ((rval = sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_RESV,
23749 	    data_len, data_bufp)) != 0) {
23750 		goto done;
23751 	}
23752 	in = (sd_prin_readresv_t *)data_bufp;
23753 	ptr->generation = BE_32(in->generation);
23754 	resvlist.listlen = BE_32(in->len) / SCSI3_RESV_DESC_LEN;
23755 
23756 	/*
23757 	 * Return the min(listsize, listlen( keys
23758 	 */
23759 #ifdef _MULTI_DATAMODEL
23760 
23761 	switch (ddi_model_convert_from(flag & FMODELS)) {
23762 	case DDI_MODEL_ILP32:
23763 		resvlist32.listlen = resvlist.listlen;
23764 		if (ddi_copyout(&resvlist32, ptr->li, copysz, flag)) {
23765 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23766 			    "sd_persistent_reservation_in_read_resv: "
23767 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
23768 			rval = EFAULT;
23769 			goto done;
23770 		}
23771 		break;
23772 
23773 	case DDI_MODEL_NONE:
23774 		if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
23775 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23776 			    "sd_persistent_reservation_in_read_resv: "
23777 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
23778 			rval = EFAULT;
23779 			goto done;
23780 		}
23781 		break;
23782 	}
23783 
23784 #else /* ! _MULTI_DATAMODEL */
23785 
23786 	if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
23787 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
23788 		    "sd_persistent_reservation_in_read_resv: "
23789 		    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
23790 		rval = EFAULT;
23791 		goto done;
23792 	}
23793 
23794 #endif /* ! _MULTI_DATAMODEL */
23795 
23796 	readresv_ptr = (sd_readresv_desc_t *)&in->readresv_desc;
23797 	bufp = resvlist.list;
23798 	copysz = sizeof (mhioc_resv_desc_t);
23799 	for (i = 0; i < min(resvlist.listlen, resvlist.listsize);
23800 	    i++, readresv_ptr++, bufp++) {
23801 
23802 		bcopy(&readresv_ptr->resvkey, &resvdesc.key,
23803 		    MHIOC_RESV_KEY_SIZE);
23804 		resvdesc.type  = readresv_ptr->type;
23805 		resvdesc.scope = readresv_ptr->scope;
23806 		resvdesc.scope_specific_addr =
23807 		    BE_32(readresv_ptr->scope_specific_addr);
23808 
23809 		if (ddi_copyout(&resvdesc, bufp, copysz, flag)) {
23810 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23811 			    "sd_persistent_reservation_in_read_resv: "
23812 			    "failed ddi_copyout: resvlist\n");
23813 			rval = EFAULT;
23814 			goto done;
23815 		}
23816 	}
23817 done:
23818 	kmem_free(data_bufp, data_len);
23819 	return (rval);
23820 }
23821 
23822 
23823 /*
23824  *    Function: sr_change_blkmode()
23825  *
23826  * Description: This routine is the driver entry point for handling CD-ROM
23827  *		block mode ioctl requests. Support for returning and changing
23828  *		the current block size in use by the device is implemented. The
23829  *		LBA size is changed via a MODE SELECT Block Descriptor.
23830  *
23831  *		This routine issues a mode sense with an allocation length of
23832  *		12 bytes for the mode page header and a single block descriptor.
23833  *
23834  *   Arguments: dev - the device 'dev_t'
23835  *		cmd - the request type; one of CDROMGBLKMODE (get) or
23836  *		      CDROMSBLKMODE (set)
23837  *		data - current block size or requested block size
23838  *		flag - this argument is a pass through to ddi_copyxxx() directly
23839  *		       from the mode argument of ioctl().
23840  *
23841  * Return Code: the code returned by sd_send_scsi_cmd()
23842  *		EINVAL if invalid arguments are provided
23843  *		EFAULT if ddi_copyxxx() fails
23844  *		ENXIO if fail ddi_get_soft_state
23845  *		EIO if invalid mode sense block descriptor length
23846  *
23847  */
23848 
23849 static int
23850 sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag)
23851 {
23852 	struct sd_lun			*un = NULL;
23853 	struct mode_header		*sense_mhp, *select_mhp;
23854 	struct block_descriptor		*sense_desc, *select_desc;
23855 	int				current_bsize;
23856 	int				rval = EINVAL;
23857 	uchar_t				*sense = NULL;
23858 	uchar_t				*select = NULL;
23859 
23860 	ASSERT((cmd == CDROMGBLKMODE) || (cmd == CDROMSBLKMODE));
23861 
23862 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23863 		return (ENXIO);
23864 	}
23865 
23866 	/*
23867 	 * The block length is changed via the Mode Select block descriptor, the
23868 	 * "Read/Write Error Recovery" mode page (0x1) contents are not actually
23869 	 * required as part of this routine. Therefore the mode sense allocation
23870 	 * length is specified to be the length of a mode page header and a
23871 	 * block descriptor.
23872 	 */
23873 	sense = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
23874 
23875 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
23876 	    BUFLEN_CHG_BLK_MODE, MODEPAGE_ERR_RECOV, SD_PATH_STANDARD)) != 0) {
23877 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23878 		    "sr_change_blkmode: Mode Sense Failed\n");
23879 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
23880 		return (rval);
23881 	}
23882 
23883 	/* Check the block descriptor len to handle only 1 block descriptor */
23884 	sense_mhp = (struct mode_header *)sense;
23885 	if ((sense_mhp->bdesc_length == 0) ||
23886 	    (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH)) {
23887 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23888 		    "sr_change_blkmode: Mode Sense returned invalid block"
23889 		    " descriptor length\n");
23890 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
23891 		return (EIO);
23892 	}
23893 	sense_desc = (struct block_descriptor *)(sense + MODE_HEADER_LENGTH);
23894 	current_bsize = ((sense_desc->blksize_hi << 16) |
23895 	    (sense_desc->blksize_mid << 8) | sense_desc->blksize_lo);
23896 
23897 	/* Process command */
23898 	switch (cmd) {
23899 	case CDROMGBLKMODE:
23900 		/* Return the block size obtained during the mode sense */
23901 		if (ddi_copyout(&current_bsize, (void *)data,
23902 		    sizeof (int), flag) != 0)
23903 			rval = EFAULT;
23904 		break;
23905 	case CDROMSBLKMODE:
23906 		/* Validate the requested block size */
23907 		switch (data) {
23908 		case CDROM_BLK_512:
23909 		case CDROM_BLK_1024:
23910 		case CDROM_BLK_2048:
23911 		case CDROM_BLK_2056:
23912 		case CDROM_BLK_2336:
23913 		case CDROM_BLK_2340:
23914 		case CDROM_BLK_2352:
23915 		case CDROM_BLK_2368:
23916 		case CDROM_BLK_2448:
23917 		case CDROM_BLK_2646:
23918 		case CDROM_BLK_2647:
23919 			break;
23920 		default:
23921 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23922 			    "sr_change_blkmode: "
23923 			    "Block Size '%ld' Not Supported\n", data);
23924 			kmem_free(sense, BUFLEN_CHG_BLK_MODE);
23925 			return (EINVAL);
23926 		}
23927 
23928 		/*
23929 		 * The current block size matches the requested block size so
23930 		 * there is no need to send the mode select to change the size
23931 		 */
23932 		if (current_bsize == data) {
23933 			break;
23934 		}
23935 
23936 		/* Build the select data for the requested block size */
23937 		select = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
23938 		select_mhp = (struct mode_header *)select;
23939 		select_desc =
23940 		    (struct block_descriptor *)(select + MODE_HEADER_LENGTH);
23941 		/*
23942 		 * The LBA size is changed via the block descriptor, so the
23943 		 * descriptor is built according to the user data
23944 		 */
23945 		select_mhp->bdesc_length = MODE_BLK_DESC_LENGTH;
23946 		select_desc->blksize_hi  = (char)(((data) & 0x00ff0000) >> 16);
23947 		select_desc->blksize_mid = (char)(((data) & 0x0000ff00) >> 8);
23948 		select_desc->blksize_lo  = (char)((data) & 0x000000ff);
23949 
23950 		/* Send the mode select for the requested block size */
23951 		if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0,
23952 		    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
23953 		    SD_PATH_STANDARD)) != 0) {
23954 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23955 			    "sr_change_blkmode: Mode Select Failed\n");
23956 			/*
23957 			 * The mode select failed for the requested block size,
23958 			 * so reset the data for the original block size and
23959 			 * send it to the target. The error is indicated by the
23960 			 * return value for the failed mode select.
23961 			 */
23962 			select_desc->blksize_hi  = sense_desc->blksize_hi;
23963 			select_desc->blksize_mid = sense_desc->blksize_mid;
23964 			select_desc->blksize_lo  = sense_desc->blksize_lo;
23965 			(void) sd_send_scsi_MODE_SELECT(un, CDB_GROUP0,
23966 			    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
23967 			    SD_PATH_STANDARD);
23968 		} else {
23969 			ASSERT(!mutex_owned(SD_MUTEX(un)));
23970 			mutex_enter(SD_MUTEX(un));
23971 			sd_update_block_info(un, (uint32_t)data, 0);
23972 			mutex_exit(SD_MUTEX(un));
23973 		}
23974 		break;
23975 	default:
23976 		/* should not reach here, but check anyway */
23977 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23978 		    "sr_change_blkmode: Command '%x' Not Supported\n", cmd);
23979 		rval = EINVAL;
23980 		break;
23981 	}
23982 
23983 	if (select) {
23984 		kmem_free(select, BUFLEN_CHG_BLK_MODE);
23985 	}
23986 	if (sense) {
23987 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
23988 	}
23989 	return (rval);
23990 }
23991 
23992 
23993 /*
23994  * Note: The following sr_change_speed() and sr_atapi_change_speed() routines
23995  * implement driver support for getting and setting the CD speed. The command
23996  * set used will be based on the device type. If the device has not been
23997  * identified as MMC the Toshiba vendor specific mode page will be used. If
23998  * the device is MMC but does not support the Real Time Streaming feature
23999  * the SET CD SPEED command will be used to set speed and mode page 0x2A will
24000  * be used to read the speed.
24001  */
24002 
24003 /*
24004  *    Function: sr_change_speed()
24005  *
24006  * Description: This routine is the driver entry point for handling CD-ROM
24007  *		drive speed ioctl requests for devices supporting the Toshiba
24008  *		vendor specific drive speed mode page. Support for returning
24009  *		and changing the current drive speed in use by the device is
24010  *		implemented.
24011  *
24012  *   Arguments: dev - the device 'dev_t'
24013  *		cmd - the request type; one of CDROMGDRVSPEED (get) or
24014  *		      CDROMSDRVSPEED (set)
24015  *		data - current drive speed or requested drive speed
24016  *		flag - this argument is a pass through to ddi_copyxxx() directly
24017  *		       from the mode argument of ioctl().
24018  *
24019  * Return Code: the code returned by sd_send_scsi_cmd()
24020  *		EINVAL if invalid arguments are provided
24021  *		EFAULT if ddi_copyxxx() fails
24022  *		ENXIO if fail ddi_get_soft_state
24023  *		EIO if invalid mode sense block descriptor length
24024  */
24025 
24026 static int
24027 sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
24028 {
24029 	struct sd_lun			*un = NULL;
24030 	struct mode_header		*sense_mhp, *select_mhp;
24031 	struct mode_speed		*sense_page, *select_page;
24032 	int				current_speed;
24033 	int				rval = EINVAL;
24034 	int				bd_len;
24035 	uchar_t				*sense = NULL;
24036 	uchar_t				*select = NULL;
24037 
24038 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
24039 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24040 		return (ENXIO);
24041 	}
24042 
24043 	/*
24044 	 * Note: The drive speed is being modified here according to a Toshiba
24045 	 * vendor specific mode page (0x31).
24046 	 */
24047 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
24048 
24049 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
24050 	    BUFLEN_MODE_CDROM_SPEED, CDROM_MODE_SPEED,
24051 	    SD_PATH_STANDARD)) != 0) {
24052 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24053 		    "sr_change_speed: Mode Sense Failed\n");
24054 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
24055 		return (rval);
24056 	}
24057 	sense_mhp  = (struct mode_header *)sense;
24058 
24059 	/* Check the block descriptor len to handle only 1 block descriptor */
24060 	bd_len = sense_mhp->bdesc_length;
24061 	if (bd_len > MODE_BLK_DESC_LENGTH) {
24062 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24063 		    "sr_change_speed: Mode Sense returned invalid block "
24064 		    "descriptor length\n");
24065 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
24066 		return (EIO);
24067 	}
24068 
24069 	sense_page = (struct mode_speed *)
24070 	    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
24071 	current_speed = sense_page->speed;
24072 
24073 	/* Process command */
24074 	switch (cmd) {
24075 	case CDROMGDRVSPEED:
24076 		/* Return the drive speed obtained during the mode sense */
24077 		if (current_speed == 0x2) {
24078 			current_speed = CDROM_TWELVE_SPEED;
24079 		}
24080 		if (ddi_copyout(&current_speed, (void *)data,
24081 		    sizeof (int), flag) != 0) {
24082 			rval = EFAULT;
24083 		}
24084 		break;
24085 	case CDROMSDRVSPEED:
24086 		/* Validate the requested drive speed */
24087 		switch ((uchar_t)data) {
24088 		case CDROM_TWELVE_SPEED:
24089 			data = 0x2;
24090 			/*FALLTHROUGH*/
24091 		case CDROM_NORMAL_SPEED:
24092 		case CDROM_DOUBLE_SPEED:
24093 		case CDROM_QUAD_SPEED:
24094 		case CDROM_MAXIMUM_SPEED:
24095 			break;
24096 		default:
24097 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24098 			    "sr_change_speed: "
24099 			    "Drive Speed '%d' Not Supported\n", (uchar_t)data);
24100 			kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
24101 			return (EINVAL);
24102 		}
24103 
24104 		/*
24105 		 * The current drive speed matches the requested drive speed so
24106 		 * there is no need to send the mode select to change the speed
24107 		 */
24108 		if (current_speed == data) {
24109 			break;
24110 		}
24111 
24112 		/* Build the select data for the requested drive speed */
24113 		select = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
24114 		select_mhp = (struct mode_header *)select;
24115 		select_mhp->bdesc_length = 0;
24116 		select_page =
24117 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
24118 		select_page =
24119 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
24120 		select_page->mode_page.code = CDROM_MODE_SPEED;
24121 		select_page->mode_page.length = 2;
24122 		select_page->speed = (uchar_t)data;
24123 
24124 		/* Send the mode select for the requested block size */
24125 		if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
24126 		    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
24127 		    SD_DONTSAVE_PAGE, SD_PATH_STANDARD)) != 0) {
24128 			/*
24129 			 * The mode select failed for the requested drive speed,
24130 			 * so reset the data for the original drive speed and
24131 			 * send it to the target. The error is indicated by the
24132 			 * return value for the failed mode select.
24133 			 */
24134 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24135 			    "sr_drive_speed: Mode Select Failed\n");
24136 			select_page->speed = sense_page->speed;
24137 			(void) sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
24138 			    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
24139 			    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
24140 		}
24141 		break;
24142 	default:
24143 		/* should not reach here, but check anyway */
24144 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24145 		    "sr_change_speed: Command '%x' Not Supported\n", cmd);
24146 		rval = EINVAL;
24147 		break;
24148 	}
24149 
24150 	if (select) {
24151 		kmem_free(select, BUFLEN_MODE_CDROM_SPEED);
24152 	}
24153 	if (sense) {
24154 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
24155 	}
24156 
24157 	return (rval);
24158 }
24159 
24160 
24161 /*
24162  *    Function: sr_atapi_change_speed()
24163  *
24164  * Description: This routine is the driver entry point for handling CD-ROM
24165  *		drive speed ioctl requests for MMC devices that do not support
24166  *		the Real Time Streaming feature (0x107).
24167  *
24168  *		Note: This routine will use the SET SPEED command which may not
24169  *		be supported by all devices.
24170  *
24171  *   Arguments: dev- the device 'dev_t'
24172  *		cmd- the request type; one of CDROMGDRVSPEED (get) or
24173  *		     CDROMSDRVSPEED (set)
24174  *		data- current drive speed or requested drive speed
24175  *		flag- this argument is a pass through to ddi_copyxxx() directly
24176  *		      from the mode argument of ioctl().
24177  *
24178  * Return Code: the code returned by sd_send_scsi_cmd()
24179  *		EINVAL if invalid arguments are provided
24180  *		EFAULT if ddi_copyxxx() fails
24181  *		ENXIO if fail ddi_get_soft_state
24182  *		EIO if invalid mode sense block descriptor length
24183  */
24184 
24185 static int
24186 sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
24187 {
24188 	struct sd_lun			*un;
24189 	struct uscsi_cmd		*com = NULL;
24190 	struct mode_header_grp2		*sense_mhp;
24191 	uchar_t				*sense_page;
24192 	uchar_t				*sense = NULL;
24193 	char				cdb[CDB_GROUP5];
24194 	int				bd_len;
24195 	int				current_speed = 0;
24196 	int				max_speed = 0;
24197 	int				rval;
24198 
24199 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
24200 
24201 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24202 		return (ENXIO);
24203 	}
24204 
24205 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
24206 
24207 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense,
24208 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP,
24209 	    SD_PATH_STANDARD)) != 0) {
24210 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24211 		    "sr_atapi_change_speed: Mode Sense Failed\n");
24212 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
24213 		return (rval);
24214 	}
24215 
24216 	/* Check the block descriptor len to handle only 1 block descriptor */
24217 	sense_mhp = (struct mode_header_grp2 *)sense;
24218 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
24219 	if (bd_len > MODE_BLK_DESC_LENGTH) {
24220 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24221 		    "sr_atapi_change_speed: Mode Sense returned invalid "
24222 		    "block descriptor length\n");
24223 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
24224 		return (EIO);
24225 	}
24226 
24227 	/* Calculate the current and maximum drive speeds */
24228 	sense_page = (uchar_t *)(sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
24229 	current_speed = (sense_page[14] << 8) | sense_page[15];
24230 	max_speed = (sense_page[8] << 8) | sense_page[9];
24231 
24232 	/* Process the command */
24233 	switch (cmd) {
24234 	case CDROMGDRVSPEED:
24235 		current_speed /= SD_SPEED_1X;
24236 		if (ddi_copyout(&current_speed, (void *)data,
24237 		    sizeof (int), flag) != 0)
24238 			rval = EFAULT;
24239 		break;
24240 	case CDROMSDRVSPEED:
24241 		/* Convert the speed code to KB/sec */
24242 		switch ((uchar_t)data) {
24243 		case CDROM_NORMAL_SPEED:
24244 			current_speed = SD_SPEED_1X;
24245 			break;
24246 		case CDROM_DOUBLE_SPEED:
24247 			current_speed = 2 * SD_SPEED_1X;
24248 			break;
24249 		case CDROM_QUAD_SPEED:
24250 			current_speed = 4 * SD_SPEED_1X;
24251 			break;
24252 		case CDROM_TWELVE_SPEED:
24253 			current_speed = 12 * SD_SPEED_1X;
24254 			break;
24255 		case CDROM_MAXIMUM_SPEED:
24256 			current_speed = 0xffff;
24257 			break;
24258 		default:
24259 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24260 			    "sr_atapi_change_speed: invalid drive speed %d\n",
24261 			    (uchar_t)data);
24262 			kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
24263 			return (EINVAL);
24264 		}
24265 
24266 		/* Check the request against the drive's max speed. */
24267 		if (current_speed != 0xffff) {
24268 			if (current_speed > max_speed) {
24269 				kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
24270 				return (EINVAL);
24271 			}
24272 		}
24273 
24274 		/*
24275 		 * Build and send the SET SPEED command
24276 		 *
24277 		 * Note: The SET SPEED (0xBB) command used in this routine is
24278 		 * obsolete per the SCSI MMC spec but still supported in the
24279 		 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
24280 		 * therefore the command is still implemented in this routine.
24281 		 */
24282 		bzero(cdb, sizeof (cdb));
24283 		cdb[0] = (char)SCMD_SET_CDROM_SPEED;
24284 		cdb[2] = (uchar_t)(current_speed >> 8);
24285 		cdb[3] = (uchar_t)current_speed;
24286 		com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24287 		com->uscsi_cdb	   = (caddr_t)cdb;
24288 		com->uscsi_cdblen  = CDB_GROUP5;
24289 		com->uscsi_bufaddr = NULL;
24290 		com->uscsi_buflen  = 0;
24291 		com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT;
24292 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, 0, SD_PATH_STANDARD);
24293 		break;
24294 	default:
24295 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24296 		    "sr_atapi_change_speed: Command '%x' Not Supported\n", cmd);
24297 		rval = EINVAL;
24298 	}
24299 
24300 	if (sense) {
24301 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
24302 	}
24303 	if (com) {
24304 		kmem_free(com, sizeof (*com));
24305 	}
24306 	return (rval);
24307 }
24308 
24309 
24310 /*
24311  *    Function: sr_pause_resume()
24312  *
24313  * Description: This routine is the driver entry point for handling CD-ROM
24314  *		pause/resume ioctl requests. This only affects the audio play
24315  *		operation.
24316  *
24317  *   Arguments: dev - the device 'dev_t'
24318  *		cmd - the request type; one of CDROMPAUSE or CDROMRESUME, used
24319  *		      for setting the resume bit of the cdb.
24320  *
24321  * Return Code: the code returned by sd_send_scsi_cmd()
24322  *		EINVAL if invalid mode specified
24323  *
24324  */
24325 
24326 static int
24327 sr_pause_resume(dev_t dev, int cmd)
24328 {
24329 	struct sd_lun		*un;
24330 	struct uscsi_cmd	*com;
24331 	char			cdb[CDB_GROUP1];
24332 	int			rval;
24333 
24334 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24335 		return (ENXIO);
24336 	}
24337 
24338 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24339 	bzero(cdb, CDB_GROUP1);
24340 	cdb[0] = SCMD_PAUSE_RESUME;
24341 	switch (cmd) {
24342 	case CDROMRESUME:
24343 		cdb[8] = 1;
24344 		break;
24345 	case CDROMPAUSE:
24346 		cdb[8] = 0;
24347 		break;
24348 	default:
24349 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_pause_resume:"
24350 		    " Command '%x' Not Supported\n", cmd);
24351 		rval = EINVAL;
24352 		goto done;
24353 	}
24354 
24355 	com->uscsi_cdb    = cdb;
24356 	com->uscsi_cdblen = CDB_GROUP1;
24357 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
24358 
24359 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24360 	    SD_PATH_STANDARD);
24361 
24362 done:
24363 	kmem_free(com, sizeof (*com));
24364 	return (rval);
24365 }
24366 
24367 
24368 /*
24369  *    Function: sr_play_msf()
24370  *
24371  * Description: This routine is the driver entry point for handling CD-ROM
24372  *		ioctl requests to output the audio signals at the specified
24373  *		starting address and continue the audio play until the specified
24374  *		ending address (CDROMPLAYMSF) The address is in Minute Second
24375  *		Frame (MSF) format.
24376  *
24377  *   Arguments: dev	- the device 'dev_t'
24378  *		data	- pointer to user provided audio msf structure,
24379  *		          specifying start/end addresses.
24380  *		flag	- this argument is a pass through to ddi_copyxxx()
24381  *		          directly from the mode argument of ioctl().
24382  *
24383  * Return Code: the code returned by sd_send_scsi_cmd()
24384  *		EFAULT if ddi_copyxxx() fails
24385  *		ENXIO if fail ddi_get_soft_state
24386  *		EINVAL if data pointer is NULL
24387  */
24388 
24389 static int
24390 sr_play_msf(dev_t dev, caddr_t data, int flag)
24391 {
24392 	struct sd_lun		*un;
24393 	struct uscsi_cmd	*com;
24394 	struct cdrom_msf	msf_struct;
24395 	struct cdrom_msf	*msf = &msf_struct;
24396 	char			cdb[CDB_GROUP1];
24397 	int			rval;
24398 
24399 	if (data == NULL) {
24400 		return (EINVAL);
24401 	}
24402 
24403 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24404 		return (ENXIO);
24405 	}
24406 
24407 	if (ddi_copyin(data, msf, sizeof (struct cdrom_msf), flag)) {
24408 		return (EFAULT);
24409 	}
24410 
24411 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24412 	bzero(cdb, CDB_GROUP1);
24413 	cdb[0] = SCMD_PLAYAUDIO_MSF;
24414 	if (un->un_f_cfg_playmsf_bcd == TRUE) {
24415 		cdb[3] = BYTE_TO_BCD(msf->cdmsf_min0);
24416 		cdb[4] = BYTE_TO_BCD(msf->cdmsf_sec0);
24417 		cdb[5] = BYTE_TO_BCD(msf->cdmsf_frame0);
24418 		cdb[6] = BYTE_TO_BCD(msf->cdmsf_min1);
24419 		cdb[7] = BYTE_TO_BCD(msf->cdmsf_sec1);
24420 		cdb[8] = BYTE_TO_BCD(msf->cdmsf_frame1);
24421 	} else {
24422 		cdb[3] = msf->cdmsf_min0;
24423 		cdb[4] = msf->cdmsf_sec0;
24424 		cdb[5] = msf->cdmsf_frame0;
24425 		cdb[6] = msf->cdmsf_min1;
24426 		cdb[7] = msf->cdmsf_sec1;
24427 		cdb[8] = msf->cdmsf_frame1;
24428 	}
24429 	com->uscsi_cdb    = cdb;
24430 	com->uscsi_cdblen = CDB_GROUP1;
24431 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
24432 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24433 	    SD_PATH_STANDARD);
24434 	kmem_free(com, sizeof (*com));
24435 	return (rval);
24436 }
24437 
24438 
24439 /*
24440  *    Function: sr_play_trkind()
24441  *
24442  * Description: This routine is the driver entry point for handling CD-ROM
24443  *		ioctl requests to output the audio signals at the specified
24444  *		starting address and continue the audio play until the specified
24445  *		ending address (CDROMPLAYTRKIND). The address is in Track Index
24446  *		format.
24447  *
24448  *   Arguments: dev	- the device 'dev_t'
24449  *		data	- pointer to user provided audio track/index structure,
24450  *		          specifying start/end addresses.
24451  *		flag	- this argument is a pass through to ddi_copyxxx()
24452  *		          directly from the mode argument of ioctl().
24453  *
24454  * Return Code: the code returned by sd_send_scsi_cmd()
24455  *		EFAULT if ddi_copyxxx() fails
24456  *		ENXIO if fail ddi_get_soft_state
24457  *		EINVAL if data pointer is NULL
24458  */
24459 
24460 static int
24461 sr_play_trkind(dev_t dev, caddr_t data, int flag)
24462 {
24463 	struct cdrom_ti		ti_struct;
24464 	struct cdrom_ti		*ti = &ti_struct;
24465 	struct uscsi_cmd	*com = NULL;
24466 	char			cdb[CDB_GROUP1];
24467 	int			rval;
24468 
24469 	if (data == NULL) {
24470 		return (EINVAL);
24471 	}
24472 
24473 	if (ddi_copyin(data, ti, sizeof (struct cdrom_ti), flag)) {
24474 		return (EFAULT);
24475 	}
24476 
24477 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24478 	bzero(cdb, CDB_GROUP1);
24479 	cdb[0] = SCMD_PLAYAUDIO_TI;
24480 	cdb[4] = ti->cdti_trk0;
24481 	cdb[5] = ti->cdti_ind0;
24482 	cdb[7] = ti->cdti_trk1;
24483 	cdb[8] = ti->cdti_ind1;
24484 	com->uscsi_cdb    = cdb;
24485 	com->uscsi_cdblen = CDB_GROUP1;
24486 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
24487 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24488 	    SD_PATH_STANDARD);
24489 	kmem_free(com, sizeof (*com));
24490 	return (rval);
24491 }
24492 
24493 
24494 /*
24495  *    Function: sr_read_all_subcodes()
24496  *
24497  * Description: This routine is the driver entry point for handling CD-ROM
24498  *		ioctl requests to return raw subcode data while the target is
24499  *		playing audio (CDROMSUBCODE).
24500  *
24501  *   Arguments: dev	- the device 'dev_t'
24502  *		data	- pointer to user provided cdrom subcode structure,
24503  *		          specifying the transfer length and address.
24504  *		flag	- this argument is a pass through to ddi_copyxxx()
24505  *		          directly from the mode argument of ioctl().
24506  *
24507  * Return Code: the code returned by sd_send_scsi_cmd()
24508  *		EFAULT if ddi_copyxxx() fails
24509  *		ENXIO if fail ddi_get_soft_state
24510  *		EINVAL if data pointer is NULL
24511  */
24512 
24513 static int
24514 sr_read_all_subcodes(dev_t dev, caddr_t data, int flag)
24515 {
24516 	struct sd_lun		*un = NULL;
24517 	struct uscsi_cmd	*com = NULL;
24518 	struct cdrom_subcode	*subcode = NULL;
24519 	int			rval;
24520 	size_t			buflen;
24521 	char			cdb[CDB_GROUP5];
24522 
24523 #ifdef _MULTI_DATAMODEL
24524 	/* To support ILP32 applications in an LP64 world */
24525 	struct cdrom_subcode32		cdrom_subcode32;
24526 	struct cdrom_subcode32		*cdsc32 = &cdrom_subcode32;
24527 #endif
24528 	if (data == NULL) {
24529 		return (EINVAL);
24530 	}
24531 
24532 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24533 		return (ENXIO);
24534 	}
24535 
24536 	subcode = kmem_zalloc(sizeof (struct cdrom_subcode), KM_SLEEP);
24537 
24538 #ifdef _MULTI_DATAMODEL
24539 	switch (ddi_model_convert_from(flag & FMODELS)) {
24540 	case DDI_MODEL_ILP32:
24541 		if (ddi_copyin(data, cdsc32, sizeof (*cdsc32), flag)) {
24542 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24543 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
24544 			kmem_free(subcode, sizeof (struct cdrom_subcode));
24545 			return (EFAULT);
24546 		}
24547 		/* Convert the ILP32 uscsi data from the application to LP64 */
24548 		cdrom_subcode32tocdrom_subcode(cdsc32, subcode);
24549 		break;
24550 	case DDI_MODEL_NONE:
24551 		if (ddi_copyin(data, subcode,
24552 		    sizeof (struct cdrom_subcode), flag)) {
24553 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24554 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
24555 			kmem_free(subcode, sizeof (struct cdrom_subcode));
24556 			return (EFAULT);
24557 		}
24558 		break;
24559 	}
24560 #else /* ! _MULTI_DATAMODEL */
24561 	if (ddi_copyin(data, subcode, sizeof (struct cdrom_subcode), flag)) {
24562 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24563 		    "sr_read_all_subcodes: ddi_copyin Failed\n");
24564 		kmem_free(subcode, sizeof (struct cdrom_subcode));
24565 		return (EFAULT);
24566 	}
24567 #endif /* _MULTI_DATAMODEL */
24568 
24569 	/*
24570 	 * Since MMC-2 expects max 3 bytes for length, check if the
24571 	 * length input is greater than 3 bytes
24572 	 */
24573 	if ((subcode->cdsc_length & 0xFF000000) != 0) {
24574 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24575 		    "sr_read_all_subcodes: "
24576 		    "cdrom transfer length too large: %d (limit %d)\n",
24577 		    subcode->cdsc_length, 0xFFFFFF);
24578 		kmem_free(subcode, sizeof (struct cdrom_subcode));
24579 		return (EINVAL);
24580 	}
24581 
24582 	buflen = CDROM_BLK_SUBCODE * subcode->cdsc_length;
24583 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24584 	bzero(cdb, CDB_GROUP5);
24585 
24586 	if (un->un_f_mmc_cap == TRUE) {
24587 		cdb[0] = (char)SCMD_READ_CD;
24588 		cdb[2] = (char)0xff;
24589 		cdb[3] = (char)0xff;
24590 		cdb[4] = (char)0xff;
24591 		cdb[5] = (char)0xff;
24592 		cdb[6] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
24593 		cdb[7] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
24594 		cdb[8] = ((subcode->cdsc_length) & 0x000000ff);
24595 		cdb[10] = 1;
24596 	} else {
24597 		/*
24598 		 * Note: A vendor specific command (0xDF) is being used her to
24599 		 * request a read of all subcodes.
24600 		 */
24601 		cdb[0] = (char)SCMD_READ_ALL_SUBCODES;
24602 		cdb[6] = (((subcode->cdsc_length) & 0xff000000) >> 24);
24603 		cdb[7] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
24604 		cdb[8] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
24605 		cdb[9] = ((subcode->cdsc_length) & 0x000000ff);
24606 	}
24607 	com->uscsi_cdb	   = cdb;
24608 	com->uscsi_cdblen  = CDB_GROUP5;
24609 	com->uscsi_bufaddr = (caddr_t)subcode->cdsc_addr;
24610 	com->uscsi_buflen  = buflen;
24611 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
24612 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
24613 	    SD_PATH_STANDARD);
24614 	kmem_free(subcode, sizeof (struct cdrom_subcode));
24615 	kmem_free(com, sizeof (*com));
24616 	return (rval);
24617 }
24618 
24619 
24620 /*
24621  *    Function: sr_read_subchannel()
24622  *
24623  * Description: This routine is the driver entry point for handling CD-ROM
24624  *		ioctl requests to return the Q sub-channel data of the CD
24625  *		current position block. (CDROMSUBCHNL) The data includes the
24626  *		track number, index number, absolute CD-ROM address (LBA or MSF
24627  *		format per the user) , track relative CD-ROM address (LBA or MSF
24628  *		format per the user), control data and audio status.
24629  *
24630  *   Arguments: dev	- the device 'dev_t'
24631  *		data	- pointer to user provided cdrom sub-channel structure
24632  *		flag	- this argument is a pass through to ddi_copyxxx()
24633  *		          directly from the mode argument of ioctl().
24634  *
24635  * Return Code: the code returned by sd_send_scsi_cmd()
24636  *		EFAULT if ddi_copyxxx() fails
24637  *		ENXIO if fail ddi_get_soft_state
24638  *		EINVAL if data pointer is NULL
24639  */
24640 
24641 static int
24642 sr_read_subchannel(dev_t dev, caddr_t data, int flag)
24643 {
24644 	struct sd_lun		*un;
24645 	struct uscsi_cmd	*com;
24646 	struct cdrom_subchnl	subchanel;
24647 	struct cdrom_subchnl	*subchnl = &subchanel;
24648 	char			cdb[CDB_GROUP1];
24649 	caddr_t			buffer;
24650 	int			rval;
24651 
24652 	if (data == NULL) {
24653 		return (EINVAL);
24654 	}
24655 
24656 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
24657 	    (un->un_state == SD_STATE_OFFLINE)) {
24658 		return (ENXIO);
24659 	}
24660 
24661 	if (ddi_copyin(data, subchnl, sizeof (struct cdrom_subchnl), flag)) {
24662 		return (EFAULT);
24663 	}
24664 
24665 	buffer = kmem_zalloc((size_t)16, KM_SLEEP);
24666 	bzero(cdb, CDB_GROUP1);
24667 	cdb[0] = SCMD_READ_SUBCHANNEL;
24668 	/* Set the MSF bit based on the user requested address format */
24669 	cdb[1] = (subchnl->cdsc_format & CDROM_LBA) ? 0 : 0x02;
24670 	/*
24671 	 * Set the Q bit in byte 2 to indicate that Q sub-channel data be
24672 	 * returned
24673 	 */
24674 	cdb[2] = 0x40;
24675 	/*
24676 	 * Set byte 3 to specify the return data format. A value of 0x01
24677 	 * indicates that the CD-ROM current position should be returned.
24678 	 */
24679 	cdb[3] = 0x01;
24680 	cdb[8] = 0x10;
24681 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24682 	com->uscsi_cdb	   = cdb;
24683 	com->uscsi_cdblen  = CDB_GROUP1;
24684 	com->uscsi_bufaddr = buffer;
24685 	com->uscsi_buflen  = 16;
24686 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
24687 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24688 	    SD_PATH_STANDARD);
24689 	if (rval != 0) {
24690 		kmem_free(buffer, 16);
24691 		kmem_free(com, sizeof (*com));
24692 		return (rval);
24693 	}
24694 
24695 	/* Process the returned Q sub-channel data */
24696 	subchnl->cdsc_audiostatus = buffer[1];
24697 	subchnl->cdsc_adr	= (buffer[5] & 0xF0);
24698 	subchnl->cdsc_ctrl	= (buffer[5] & 0x0F);
24699 	subchnl->cdsc_trk	= buffer[6];
24700 	subchnl->cdsc_ind	= buffer[7];
24701 	if (subchnl->cdsc_format & CDROM_LBA) {
24702 		subchnl->cdsc_absaddr.lba =
24703 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
24704 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
24705 		subchnl->cdsc_reladdr.lba =
24706 		    ((uchar_t)buffer[12] << 24) + ((uchar_t)buffer[13] << 16) +
24707 		    ((uchar_t)buffer[14] << 8) + ((uchar_t)buffer[15]);
24708 	} else if (un->un_f_cfg_readsub_bcd == TRUE) {
24709 		subchnl->cdsc_absaddr.msf.minute = BCD_TO_BYTE(buffer[9]);
24710 		subchnl->cdsc_absaddr.msf.second = BCD_TO_BYTE(buffer[10]);
24711 		subchnl->cdsc_absaddr.msf.frame  = BCD_TO_BYTE(buffer[11]);
24712 		subchnl->cdsc_reladdr.msf.minute = BCD_TO_BYTE(buffer[13]);
24713 		subchnl->cdsc_reladdr.msf.second = BCD_TO_BYTE(buffer[14]);
24714 		subchnl->cdsc_reladdr.msf.frame  = BCD_TO_BYTE(buffer[15]);
24715 	} else {
24716 		subchnl->cdsc_absaddr.msf.minute = buffer[9];
24717 		subchnl->cdsc_absaddr.msf.second = buffer[10];
24718 		subchnl->cdsc_absaddr.msf.frame  = buffer[11];
24719 		subchnl->cdsc_reladdr.msf.minute = buffer[13];
24720 		subchnl->cdsc_reladdr.msf.second = buffer[14];
24721 		subchnl->cdsc_reladdr.msf.frame  = buffer[15];
24722 	}
24723 	kmem_free(buffer, 16);
24724 	kmem_free(com, sizeof (*com));
24725 	if (ddi_copyout(subchnl, data, sizeof (struct cdrom_subchnl), flag)
24726 	    != 0) {
24727 		return (EFAULT);
24728 	}
24729 	return (rval);
24730 }
24731 
24732 
24733 /*
24734  *    Function: sr_read_tocentry()
24735  *
24736  * Description: This routine is the driver entry point for handling CD-ROM
24737  *		ioctl requests to read from the Table of Contents (TOC)
24738  *		(CDROMREADTOCENTRY). This routine provides the ADR and CTRL
24739  *		fields, the starting address (LBA or MSF format per the user)
24740  *		and the data mode if the user specified track is a data track.
24741  *
24742  *		Note: The READ HEADER (0x44) command used in this routine is
24743  *		obsolete per the SCSI MMC spec but still supported in the
24744  *		MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
24745  *		therefore the command is still implemented in this routine.
24746  *
24747  *   Arguments: dev	- the device 'dev_t'
24748  *		data	- pointer to user provided toc entry structure,
24749  *			  specifying the track # and the address format
24750  *			  (LBA or MSF).
24751  *		flag	- this argument is a pass through to ddi_copyxxx()
24752  *		          directly from the mode argument of ioctl().
24753  *
24754  * Return Code: the code returned by sd_send_scsi_cmd()
24755  *		EFAULT if ddi_copyxxx() fails
24756  *		ENXIO if fail ddi_get_soft_state
24757  *		EINVAL if data pointer is NULL
24758  */
24759 
24760 static int
24761 sr_read_tocentry(dev_t dev, caddr_t data, int flag)
24762 {
24763 	struct sd_lun		*un = NULL;
24764 	struct uscsi_cmd	*com;
24765 	struct cdrom_tocentry	toc_entry;
24766 	struct cdrom_tocentry	*entry = &toc_entry;
24767 	caddr_t			buffer;
24768 	int			rval;
24769 	char			cdb[CDB_GROUP1];
24770 
24771 	if (data == NULL) {
24772 		return (EINVAL);
24773 	}
24774 
24775 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
24776 	    (un->un_state == SD_STATE_OFFLINE)) {
24777 		return (ENXIO);
24778 	}
24779 
24780 	if (ddi_copyin(data, entry, sizeof (struct cdrom_tocentry), flag)) {
24781 		return (EFAULT);
24782 	}
24783 
24784 	/* Validate the requested track and address format */
24785 	if (!(entry->cdte_format & (CDROM_LBA | CDROM_MSF))) {
24786 		return (EINVAL);
24787 	}
24788 
24789 	if (entry->cdte_track == 0) {
24790 		return (EINVAL);
24791 	}
24792 
24793 	buffer = kmem_zalloc((size_t)12, KM_SLEEP);
24794 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24795 	bzero(cdb, CDB_GROUP1);
24796 
24797 	cdb[0] = SCMD_READ_TOC;
24798 	/* Set the MSF bit based on the user requested address format  */
24799 	cdb[1] = ((entry->cdte_format & CDROM_LBA) ? 0 : 2);
24800 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
24801 		cdb[6] = BYTE_TO_BCD(entry->cdte_track);
24802 	} else {
24803 		cdb[6] = entry->cdte_track;
24804 	}
24805 
24806 	/*
24807 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
24808 	 * (4 byte TOC response header + 8 byte track descriptor)
24809 	 */
24810 	cdb[8] = 12;
24811 	com->uscsi_cdb	   = cdb;
24812 	com->uscsi_cdblen  = CDB_GROUP1;
24813 	com->uscsi_bufaddr = buffer;
24814 	com->uscsi_buflen  = 0x0C;
24815 	com->uscsi_flags   = (USCSI_DIAGNOSE | USCSI_SILENT | USCSI_READ);
24816 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24817 	    SD_PATH_STANDARD);
24818 	if (rval != 0) {
24819 		kmem_free(buffer, 12);
24820 		kmem_free(com, sizeof (*com));
24821 		return (rval);
24822 	}
24823 
24824 	/* Process the toc entry */
24825 	entry->cdte_adr		= (buffer[5] & 0xF0) >> 4;
24826 	entry->cdte_ctrl	= (buffer[5] & 0x0F);
24827 	if (entry->cdte_format & CDROM_LBA) {
24828 		entry->cdte_addr.lba =
24829 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
24830 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
24831 	} else if (un->un_f_cfg_read_toc_addr_bcd == TRUE) {
24832 		entry->cdte_addr.msf.minute	= BCD_TO_BYTE(buffer[9]);
24833 		entry->cdte_addr.msf.second	= BCD_TO_BYTE(buffer[10]);
24834 		entry->cdte_addr.msf.frame	= BCD_TO_BYTE(buffer[11]);
24835 		/*
24836 		 * Send a READ TOC command using the LBA address format to get
24837 		 * the LBA for the track requested so it can be used in the
24838 		 * READ HEADER request
24839 		 *
24840 		 * Note: The MSF bit of the READ HEADER command specifies the
24841 		 * output format. The block address specified in that command
24842 		 * must be in LBA format.
24843 		 */
24844 		cdb[1] = 0;
24845 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24846 		    SD_PATH_STANDARD);
24847 		if (rval != 0) {
24848 			kmem_free(buffer, 12);
24849 			kmem_free(com, sizeof (*com));
24850 			return (rval);
24851 		}
24852 	} else {
24853 		entry->cdte_addr.msf.minute	= buffer[9];
24854 		entry->cdte_addr.msf.second	= buffer[10];
24855 		entry->cdte_addr.msf.frame	= buffer[11];
24856 		/*
24857 		 * Send a READ TOC command using the LBA address format to get
24858 		 * the LBA for the track requested so it can be used in the
24859 		 * READ HEADER request
24860 		 *
24861 		 * Note: The MSF bit of the READ HEADER command specifies the
24862 		 * output format. The block address specified in that command
24863 		 * must be in LBA format.
24864 		 */
24865 		cdb[1] = 0;
24866 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24867 		    SD_PATH_STANDARD);
24868 		if (rval != 0) {
24869 			kmem_free(buffer, 12);
24870 			kmem_free(com, sizeof (*com));
24871 			return (rval);
24872 		}
24873 	}
24874 
24875 	/*
24876 	 * Build and send the READ HEADER command to determine the data mode of
24877 	 * the user specified track.
24878 	 */
24879 	if ((entry->cdte_ctrl & CDROM_DATA_TRACK) &&
24880 	    (entry->cdte_track != CDROM_LEADOUT)) {
24881 		bzero(cdb, CDB_GROUP1);
24882 		cdb[0] = SCMD_READ_HEADER;
24883 		cdb[2] = buffer[8];
24884 		cdb[3] = buffer[9];
24885 		cdb[4] = buffer[10];
24886 		cdb[5] = buffer[11];
24887 		cdb[8] = 0x08;
24888 		com->uscsi_buflen = 0x08;
24889 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24890 		    SD_PATH_STANDARD);
24891 		if (rval == 0) {
24892 			entry->cdte_datamode = buffer[0];
24893 		} else {
24894 			/*
24895 			 * READ HEADER command failed, since this is
24896 			 * obsoleted in one spec, its better to return
24897 			 * -1 for an invlid track so that we can still
24898 			 * receive the rest of the TOC data.
24899 			 */
24900 			entry->cdte_datamode = (uchar_t)-1;
24901 		}
24902 	} else {
24903 		entry->cdte_datamode = (uchar_t)-1;
24904 	}
24905 
24906 	kmem_free(buffer, 12);
24907 	kmem_free(com, sizeof (*com));
24908 	if (ddi_copyout(entry, data, sizeof (struct cdrom_tocentry), flag) != 0)
24909 		return (EFAULT);
24910 
24911 	return (rval);
24912 }
24913 
24914 
24915 /*
24916  *    Function: sr_read_tochdr()
24917  *
24918  * Description: This routine is the driver entry point for handling CD-ROM
24919  * 		ioctl requests to read the Table of Contents (TOC) header
24920  *		(CDROMREADTOHDR). The TOC header consists of the disk starting
24921  *		and ending track numbers
24922  *
24923  *   Arguments: dev	- the device 'dev_t'
24924  *		data	- pointer to user provided toc header structure,
24925  *			  specifying the starting and ending track numbers.
24926  *		flag	- this argument is a pass through to ddi_copyxxx()
24927  *			  directly from the mode argument of ioctl().
24928  *
24929  * Return Code: the code returned by sd_send_scsi_cmd()
24930  *		EFAULT if ddi_copyxxx() fails
24931  *		ENXIO if fail ddi_get_soft_state
24932  *		EINVAL if data pointer is NULL
24933  */
24934 
24935 static int
24936 sr_read_tochdr(dev_t dev, caddr_t data, int flag)
24937 {
24938 	struct sd_lun		*un;
24939 	struct uscsi_cmd	*com;
24940 	struct cdrom_tochdr	toc_header;
24941 	struct cdrom_tochdr	*hdr = &toc_header;
24942 	char			cdb[CDB_GROUP1];
24943 	int			rval;
24944 	caddr_t			buffer;
24945 
24946 	if (data == NULL) {
24947 		return (EINVAL);
24948 	}
24949 
24950 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
24951 	    (un->un_state == SD_STATE_OFFLINE)) {
24952 		return (ENXIO);
24953 	}
24954 
24955 	buffer = kmem_zalloc(4, KM_SLEEP);
24956 	bzero(cdb, CDB_GROUP1);
24957 	cdb[0] = SCMD_READ_TOC;
24958 	/*
24959 	 * Specifying a track number of 0x00 in the READ TOC command indicates
24960 	 * that the TOC header should be returned
24961 	 */
24962 	cdb[6] = 0x00;
24963 	/*
24964 	 * Bytes 7 & 8 are the 4 byte allocation length for TOC header.
24965 	 * (2 byte data len + 1 byte starting track # + 1 byte ending track #)
24966 	 */
24967 	cdb[8] = 0x04;
24968 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24969 	com->uscsi_cdb	   = cdb;
24970 	com->uscsi_cdblen  = CDB_GROUP1;
24971 	com->uscsi_bufaddr = buffer;
24972 	com->uscsi_buflen  = 0x04;
24973 	com->uscsi_timeout = 300;
24974 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
24975 
24976 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24977 	    SD_PATH_STANDARD);
24978 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
24979 		hdr->cdth_trk0 = BCD_TO_BYTE(buffer[2]);
24980 		hdr->cdth_trk1 = BCD_TO_BYTE(buffer[3]);
24981 	} else {
24982 		hdr->cdth_trk0 = buffer[2];
24983 		hdr->cdth_trk1 = buffer[3];
24984 	}
24985 	kmem_free(buffer, 4);
24986 	kmem_free(com, sizeof (*com));
24987 	if (ddi_copyout(hdr, data, sizeof (struct cdrom_tochdr), flag) != 0) {
24988 		return (EFAULT);
24989 	}
24990 	return (rval);
24991 }
24992 
24993 
24994 /*
24995  * Note: The following sr_read_mode1(), sr_read_cd_mode2(), sr_read_mode2(),
24996  * sr_read_cdda(), sr_read_cdxa(), routines implement driver support for
24997  * handling CDROMREAD ioctl requests for mode 1 user data, mode 2 user data,
24998  * digital audio and extended architecture digital audio. These modes are
24999  * defined in the IEC908 (Red Book), ISO10149 (Yellow Book), and the SCSI3
25000  * MMC specs.
25001  *
25002  * In addition to support for the various data formats these routines also
25003  * include support for devices that implement only the direct access READ
25004  * commands (0x08, 0x28), devices that implement the READ_CD commands
25005  * (0xBE, 0xD4), and devices that implement the vendor unique READ CDDA and
25006  * READ CDXA commands (0xD8, 0xDB)
25007  */
25008 
25009 /*
25010  *    Function: sr_read_mode1()
25011  *
25012  * Description: This routine is the driver entry point for handling CD-ROM
25013  *		ioctl read mode1 requests (CDROMREADMODE1).
25014  *
25015  *   Arguments: dev	- the device 'dev_t'
25016  *		data	- pointer to user provided cd read structure specifying
25017  *			  the lba buffer address and length.
25018  *		flag	- this argument is a pass through to ddi_copyxxx()
25019  *			  directly from the mode argument of ioctl().
25020  *
25021  * Return Code: the code returned by sd_send_scsi_cmd()
25022  *		EFAULT if ddi_copyxxx() fails
25023  *		ENXIO if fail ddi_get_soft_state
25024  *		EINVAL if data pointer is NULL
25025  */
25026 
25027 static int
25028 sr_read_mode1(dev_t dev, caddr_t data, int flag)
25029 {
25030 	struct sd_lun		*un;
25031 	struct cdrom_read	mode1_struct;
25032 	struct cdrom_read	*mode1 = &mode1_struct;
25033 	int			rval;
25034 #ifdef _MULTI_DATAMODEL
25035 	/* To support ILP32 applications in an LP64 world */
25036 	struct cdrom_read32	cdrom_read32;
25037 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
25038 #endif /* _MULTI_DATAMODEL */
25039 
25040 	if (data == NULL) {
25041 		return (EINVAL);
25042 	}
25043 
25044 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25045 	    (un->un_state == SD_STATE_OFFLINE)) {
25046 		return (ENXIO);
25047 	}
25048 
25049 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
25050 	    "sd_read_mode1: entry: un:0x%p\n", un);
25051 
25052 #ifdef _MULTI_DATAMODEL
25053 	switch (ddi_model_convert_from(flag & FMODELS)) {
25054 	case DDI_MODEL_ILP32:
25055 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
25056 			return (EFAULT);
25057 		}
25058 		/* Convert the ILP32 uscsi data from the application to LP64 */
25059 		cdrom_read32tocdrom_read(cdrd32, mode1);
25060 		break;
25061 	case DDI_MODEL_NONE:
25062 		if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
25063 			return (EFAULT);
25064 		}
25065 	}
25066 #else /* ! _MULTI_DATAMODEL */
25067 	if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
25068 		return (EFAULT);
25069 	}
25070 #endif /* _MULTI_DATAMODEL */
25071 
25072 	rval = sd_send_scsi_READ(un, mode1->cdread_bufaddr,
25073 	    mode1->cdread_buflen, mode1->cdread_lba, SD_PATH_STANDARD);
25074 
25075 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
25076 	    "sd_read_mode1: exit: un:0x%p\n", un);
25077 
25078 	return (rval);
25079 }
25080 
25081 
25082 /*
25083  *    Function: sr_read_cd_mode2()
25084  *
25085  * Description: This routine is the driver entry point for handling CD-ROM
25086  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
25087  *		support the READ CD (0xBE) command or the 1st generation
25088  *		READ CD (0xD4) command.
25089  *
25090  *   Arguments: dev	- the device 'dev_t'
25091  *		data	- pointer to user provided cd read structure specifying
25092  *			  the lba buffer address and length.
25093  *		flag	- this argument is a pass through to ddi_copyxxx()
25094  *			  directly from the mode argument of ioctl().
25095  *
25096  * Return Code: the code returned by sd_send_scsi_cmd()
25097  *		EFAULT if ddi_copyxxx() fails
25098  *		ENXIO if fail ddi_get_soft_state
25099  *		EINVAL if data pointer is NULL
25100  */
25101 
25102 static int
25103 sr_read_cd_mode2(dev_t dev, caddr_t data, int flag)
25104 {
25105 	struct sd_lun		*un;
25106 	struct uscsi_cmd	*com;
25107 	struct cdrom_read	mode2_struct;
25108 	struct cdrom_read	*mode2 = &mode2_struct;
25109 	uchar_t			cdb[CDB_GROUP5];
25110 	int			nblocks;
25111 	int			rval;
25112 #ifdef _MULTI_DATAMODEL
25113 	/*  To support ILP32 applications in an LP64 world */
25114 	struct cdrom_read32	cdrom_read32;
25115 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
25116 #endif /* _MULTI_DATAMODEL */
25117 
25118 	if (data == NULL) {
25119 		return (EINVAL);
25120 	}
25121 
25122 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25123 	    (un->un_state == SD_STATE_OFFLINE)) {
25124 		return (ENXIO);
25125 	}
25126 
25127 #ifdef _MULTI_DATAMODEL
25128 	switch (ddi_model_convert_from(flag & FMODELS)) {
25129 	case DDI_MODEL_ILP32:
25130 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
25131 			return (EFAULT);
25132 		}
25133 		/* Convert the ILP32 uscsi data from the application to LP64 */
25134 		cdrom_read32tocdrom_read(cdrd32, mode2);
25135 		break;
25136 	case DDI_MODEL_NONE:
25137 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
25138 			return (EFAULT);
25139 		}
25140 		break;
25141 	}
25142 
25143 #else /* ! _MULTI_DATAMODEL */
25144 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
25145 		return (EFAULT);
25146 	}
25147 #endif /* _MULTI_DATAMODEL */
25148 
25149 	bzero(cdb, sizeof (cdb));
25150 	if (un->un_f_cfg_read_cd_xd4 == TRUE) {
25151 		/* Read command supported by 1st generation atapi drives */
25152 		cdb[0] = SCMD_READ_CDD4;
25153 	} else {
25154 		/* Universal CD Access Command */
25155 		cdb[0] = SCMD_READ_CD;
25156 	}
25157 
25158 	/*
25159 	 * Set expected sector type to: 2336s byte, Mode 2 Yellow Book
25160 	 */
25161 	cdb[1] = CDROM_SECTOR_TYPE_MODE2;
25162 
25163 	/* set the start address */
25164 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 24) & 0XFF);
25165 	cdb[3] = (uchar_t)((mode2->cdread_lba >> 16) & 0XFF);
25166 	cdb[4] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
25167 	cdb[5] = (uchar_t)(mode2->cdread_lba & 0xFF);
25168 
25169 	/* set the transfer length */
25170 	nblocks = mode2->cdread_buflen / 2336;
25171 	cdb[6] = (uchar_t)(nblocks >> 16);
25172 	cdb[7] = (uchar_t)(nblocks >> 8);
25173 	cdb[8] = (uchar_t)nblocks;
25174 
25175 	/* set the filter bits */
25176 	cdb[9] = CDROM_READ_CD_USERDATA;
25177 
25178 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25179 	com->uscsi_cdb = (caddr_t)cdb;
25180 	com->uscsi_cdblen = sizeof (cdb);
25181 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
25182 	com->uscsi_buflen = mode2->cdread_buflen;
25183 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
25184 
25185 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
25186 	    SD_PATH_STANDARD);
25187 	kmem_free(com, sizeof (*com));
25188 	return (rval);
25189 }
25190 
25191 
25192 /*
25193  *    Function: sr_read_mode2()
25194  *
25195  * Description: This routine is the driver entry point for handling CD-ROM
25196  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
25197  *		do not support the READ CD (0xBE) command.
25198  *
25199  *   Arguments: dev	- the device 'dev_t'
25200  *		data	- pointer to user provided cd read structure specifying
25201  *			  the lba buffer address and length.
25202  *		flag	- this argument is a pass through to ddi_copyxxx()
25203  *			  directly from the mode argument of ioctl().
25204  *
25205  * Return Code: the code returned by sd_send_scsi_cmd()
25206  *		EFAULT if ddi_copyxxx() fails
25207  *		ENXIO if fail ddi_get_soft_state
25208  *		EINVAL if data pointer is NULL
25209  *		EIO if fail to reset block size
25210  *		EAGAIN if commands are in progress in the driver
25211  */
25212 
25213 static int
25214 sr_read_mode2(dev_t dev, caddr_t data, int flag)
25215 {
25216 	struct sd_lun		*un;
25217 	struct cdrom_read	mode2_struct;
25218 	struct cdrom_read	*mode2 = &mode2_struct;
25219 	int			rval;
25220 	uint32_t		restore_blksize;
25221 	struct uscsi_cmd	*com;
25222 	uchar_t			cdb[CDB_GROUP0];
25223 	int			nblocks;
25224 
25225 #ifdef _MULTI_DATAMODEL
25226 	/* To support ILP32 applications in an LP64 world */
25227 	struct cdrom_read32	cdrom_read32;
25228 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
25229 #endif /* _MULTI_DATAMODEL */
25230 
25231 	if (data == NULL) {
25232 		return (EINVAL);
25233 	}
25234 
25235 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25236 	    (un->un_state == SD_STATE_OFFLINE)) {
25237 		return (ENXIO);
25238 	}
25239 
25240 	/*
25241 	 * Because this routine will update the device and driver block size
25242 	 * being used we want to make sure there are no commands in progress.
25243 	 * If commands are in progress the user will have to try again.
25244 	 *
25245 	 * We check for 1 instead of 0 because we increment un_ncmds_in_driver
25246 	 * in sdioctl to protect commands from sdioctl through to the top of
25247 	 * sd_uscsi_strategy. See sdioctl for details.
25248 	 */
25249 	mutex_enter(SD_MUTEX(un));
25250 	if (un->un_ncmds_in_driver != 1) {
25251 		mutex_exit(SD_MUTEX(un));
25252 		return (EAGAIN);
25253 	}
25254 	mutex_exit(SD_MUTEX(un));
25255 
25256 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
25257 	    "sd_read_mode2: entry: un:0x%p\n", un);
25258 
25259 #ifdef _MULTI_DATAMODEL
25260 	switch (ddi_model_convert_from(flag & FMODELS)) {
25261 	case DDI_MODEL_ILP32:
25262 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
25263 			return (EFAULT);
25264 		}
25265 		/* Convert the ILP32 uscsi data from the application to LP64 */
25266 		cdrom_read32tocdrom_read(cdrd32, mode2);
25267 		break;
25268 	case DDI_MODEL_NONE:
25269 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
25270 			return (EFAULT);
25271 		}
25272 		break;
25273 	}
25274 #else /* ! _MULTI_DATAMODEL */
25275 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag)) {
25276 		return (EFAULT);
25277 	}
25278 #endif /* _MULTI_DATAMODEL */
25279 
25280 	/* Store the current target block size for restoration later */
25281 	restore_blksize = un->un_tgt_blocksize;
25282 
25283 	/* Change the device and soft state target block size to 2336 */
25284 	if (sr_sector_mode(dev, SD_MODE2_BLKSIZE) != 0) {
25285 		rval = EIO;
25286 		goto done;
25287 	}
25288 
25289 
25290 	bzero(cdb, sizeof (cdb));
25291 
25292 	/* set READ operation */
25293 	cdb[0] = SCMD_READ;
25294 
25295 	/* adjust lba for 2kbyte blocks from 512 byte blocks */
25296 	mode2->cdread_lba >>= 2;
25297 
25298 	/* set the start address */
25299 	cdb[1] = (uchar_t)((mode2->cdread_lba >> 16) & 0X1F);
25300 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
25301 	cdb[3] = (uchar_t)(mode2->cdread_lba & 0xFF);
25302 
25303 	/* set the transfer length */
25304 	nblocks = mode2->cdread_buflen / 2336;
25305 	cdb[4] = (uchar_t)nblocks & 0xFF;
25306 
25307 	/* build command */
25308 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25309 	com->uscsi_cdb = (caddr_t)cdb;
25310 	com->uscsi_cdblen = sizeof (cdb);
25311 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
25312 	com->uscsi_buflen = mode2->cdread_buflen;
25313 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
25314 
25315 	/*
25316 	 * Issue SCSI command with user space address for read buffer.
25317 	 *
25318 	 * This sends the command through main channel in the driver.
25319 	 *
25320 	 * Since this is accessed via an IOCTL call, we go through the
25321 	 * standard path, so that if the device was powered down, then
25322 	 * it would be 'awakened' to handle the command.
25323 	 */
25324 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
25325 	    SD_PATH_STANDARD);
25326 
25327 	kmem_free(com, sizeof (*com));
25328 
25329 	/* Restore the device and soft state target block size */
25330 	if (sr_sector_mode(dev, restore_blksize) != 0) {
25331 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25332 		    "can't do switch back to mode 1\n");
25333 		/*
25334 		 * If sd_send_scsi_READ succeeded we still need to report
25335 		 * an error because we failed to reset the block size
25336 		 */
25337 		if (rval == 0) {
25338 			rval = EIO;
25339 		}
25340 	}
25341 
25342 done:
25343 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
25344 	    "sd_read_mode2: exit: un:0x%p\n", un);
25345 
25346 	return (rval);
25347 }
25348 
25349 
25350 /*
25351  *    Function: sr_sector_mode()
25352  *
25353  * Description: This utility function is used by sr_read_mode2 to set the target
25354  *		block size based on the user specified size. This is a legacy
25355  *		implementation based upon a vendor specific mode page
25356  *
25357  *   Arguments: dev	- the device 'dev_t'
25358  *		data	- flag indicating if block size is being set to 2336 or
25359  *			  512.
25360  *
25361  * Return Code: the code returned by sd_send_scsi_cmd()
25362  *		EFAULT if ddi_copyxxx() fails
25363  *		ENXIO if fail ddi_get_soft_state
25364  *		EINVAL if data pointer is NULL
25365  */
25366 
25367 static int
25368 sr_sector_mode(dev_t dev, uint32_t blksize)
25369 {
25370 	struct sd_lun	*un;
25371 	uchar_t		*sense;
25372 	uchar_t		*select;
25373 	int		rval;
25374 
25375 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25376 	    (un->un_state == SD_STATE_OFFLINE)) {
25377 		return (ENXIO);
25378 	}
25379 
25380 	sense = kmem_zalloc(20, KM_SLEEP);
25381 
25382 	/* Note: This is a vendor specific mode page (0x81) */
25383 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, 20, 0x81,
25384 	    SD_PATH_STANDARD)) != 0) {
25385 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
25386 		    "sr_sector_mode: Mode Sense failed\n");
25387 		kmem_free(sense, 20);
25388 		return (rval);
25389 	}
25390 	select = kmem_zalloc(20, KM_SLEEP);
25391 	select[3] = 0x08;
25392 	select[10] = ((blksize >> 8) & 0xff);
25393 	select[11] = (blksize & 0xff);
25394 	select[12] = 0x01;
25395 	select[13] = 0x06;
25396 	select[14] = sense[14];
25397 	select[15] = sense[15];
25398 	if (blksize == SD_MODE2_BLKSIZE) {
25399 		select[14] |= 0x01;
25400 	}
25401 
25402 	if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select, 20,
25403 	    SD_DONTSAVE_PAGE, SD_PATH_STANDARD)) != 0) {
25404 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
25405 		    "sr_sector_mode: Mode Select failed\n");
25406 	} else {
25407 		/*
25408 		 * Only update the softstate block size if we successfully
25409 		 * changed the device block mode.
25410 		 */
25411 		mutex_enter(SD_MUTEX(un));
25412 		sd_update_block_info(un, blksize, 0);
25413 		mutex_exit(SD_MUTEX(un));
25414 	}
25415 	kmem_free(sense, 20);
25416 	kmem_free(select, 20);
25417 	return (rval);
25418 }
25419 
25420 
25421 /*
25422  *    Function: sr_read_cdda()
25423  *
25424  * Description: This routine is the driver entry point for handling CD-ROM
25425  *		ioctl requests to return CD-DA or subcode data. (CDROMCDDA) If
25426  *		the target supports CDDA these requests are handled via a vendor
25427  *		specific command (0xD8) If the target does not support CDDA
25428  *		these requests are handled via the READ CD command (0xBE).
25429  *
25430  *   Arguments: dev	- the device 'dev_t'
25431  *		data	- pointer to user provided CD-DA structure specifying
25432  *			  the track starting address, transfer length, and
25433  *			  subcode options.
25434  *		flag	- this argument is a pass through to ddi_copyxxx()
25435  *			  directly from the mode argument of ioctl().
25436  *
25437  * Return Code: the code returned by sd_send_scsi_cmd()
25438  *		EFAULT if ddi_copyxxx() fails
25439  *		ENXIO if fail ddi_get_soft_state
25440  *		EINVAL if invalid arguments are provided
25441  *		ENOTTY
25442  */
25443 
25444 static int
25445 sr_read_cdda(dev_t dev, caddr_t data, int flag)
25446 {
25447 	struct sd_lun			*un;
25448 	struct uscsi_cmd		*com;
25449 	struct cdrom_cdda		*cdda;
25450 	int				rval;
25451 	size_t				buflen;
25452 	char				cdb[CDB_GROUP5];
25453 
25454 #ifdef _MULTI_DATAMODEL
25455 	/* To support ILP32 applications in an LP64 world */
25456 	struct cdrom_cdda32	cdrom_cdda32;
25457 	struct cdrom_cdda32	*cdda32 = &cdrom_cdda32;
25458 #endif /* _MULTI_DATAMODEL */
25459 
25460 	if (data == NULL) {
25461 		return (EINVAL);
25462 	}
25463 
25464 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25465 		return (ENXIO);
25466 	}
25467 
25468 	cdda = kmem_zalloc(sizeof (struct cdrom_cdda), KM_SLEEP);
25469 
25470 #ifdef _MULTI_DATAMODEL
25471 	switch (ddi_model_convert_from(flag & FMODELS)) {
25472 	case DDI_MODEL_ILP32:
25473 		if (ddi_copyin(data, cdda32, sizeof (*cdda32), flag)) {
25474 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25475 			    "sr_read_cdda: ddi_copyin Failed\n");
25476 			kmem_free(cdda, sizeof (struct cdrom_cdda));
25477 			return (EFAULT);
25478 		}
25479 		/* Convert the ILP32 uscsi data from the application to LP64 */
25480 		cdrom_cdda32tocdrom_cdda(cdda32, cdda);
25481 		break;
25482 	case DDI_MODEL_NONE:
25483 		if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
25484 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25485 			    "sr_read_cdda: ddi_copyin Failed\n");
25486 			kmem_free(cdda, sizeof (struct cdrom_cdda));
25487 			return (EFAULT);
25488 		}
25489 		break;
25490 	}
25491 #else /* ! _MULTI_DATAMODEL */
25492 	if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
25493 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25494 		    "sr_read_cdda: ddi_copyin Failed\n");
25495 		kmem_free(cdda, sizeof (struct cdrom_cdda));
25496 		return (EFAULT);
25497 	}
25498 #endif /* _MULTI_DATAMODEL */
25499 
25500 	/*
25501 	 * Since MMC-2 expects max 3 bytes for length, check if the
25502 	 * length input is greater than 3 bytes
25503 	 */
25504 	if ((cdda->cdda_length & 0xFF000000) != 0) {
25505 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdda: "
25506 		    "cdrom transfer length too large: %d (limit %d)\n",
25507 		    cdda->cdda_length, 0xFFFFFF);
25508 		kmem_free(cdda, sizeof (struct cdrom_cdda));
25509 		return (EINVAL);
25510 	}
25511 
25512 	switch (cdda->cdda_subcode) {
25513 	case CDROM_DA_NO_SUBCODE:
25514 		buflen = CDROM_BLK_2352 * cdda->cdda_length;
25515 		break;
25516 	case CDROM_DA_SUBQ:
25517 		buflen = CDROM_BLK_2368 * cdda->cdda_length;
25518 		break;
25519 	case CDROM_DA_ALL_SUBCODE:
25520 		buflen = CDROM_BLK_2448 * cdda->cdda_length;
25521 		break;
25522 	case CDROM_DA_SUBCODE_ONLY:
25523 		buflen = CDROM_BLK_SUBCODE * cdda->cdda_length;
25524 		break;
25525 	default:
25526 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25527 		    "sr_read_cdda: Subcode '0x%x' Not Supported\n",
25528 		    cdda->cdda_subcode);
25529 		kmem_free(cdda, sizeof (struct cdrom_cdda));
25530 		return (EINVAL);
25531 	}
25532 
25533 	/* Build and send the command */
25534 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25535 	bzero(cdb, CDB_GROUP5);
25536 
25537 	if (un->un_f_cfg_cdda == TRUE) {
25538 		cdb[0] = (char)SCMD_READ_CD;
25539 		cdb[1] = 0x04;
25540 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
25541 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
25542 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
25543 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
25544 		cdb[6] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
25545 		cdb[7] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
25546 		cdb[8] = ((cdda->cdda_length) & 0x000000ff);
25547 		cdb[9] = 0x10;
25548 		switch (cdda->cdda_subcode) {
25549 		case CDROM_DA_NO_SUBCODE :
25550 			cdb[10] = 0x0;
25551 			break;
25552 		case CDROM_DA_SUBQ :
25553 			cdb[10] = 0x2;
25554 			break;
25555 		case CDROM_DA_ALL_SUBCODE :
25556 			cdb[10] = 0x1;
25557 			break;
25558 		case CDROM_DA_SUBCODE_ONLY :
25559 			/* FALLTHROUGH */
25560 		default :
25561 			kmem_free(cdda, sizeof (struct cdrom_cdda));
25562 			kmem_free(com, sizeof (*com));
25563 			return (ENOTTY);
25564 		}
25565 	} else {
25566 		cdb[0] = (char)SCMD_READ_CDDA;
25567 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
25568 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
25569 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
25570 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
25571 		cdb[6] = (((cdda->cdda_length) & 0xff000000) >> 24);
25572 		cdb[7] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
25573 		cdb[8] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
25574 		cdb[9] = ((cdda->cdda_length) & 0x000000ff);
25575 		cdb[10] = cdda->cdda_subcode;
25576 	}
25577 
25578 	com->uscsi_cdb = cdb;
25579 	com->uscsi_cdblen = CDB_GROUP5;
25580 	com->uscsi_bufaddr = (caddr_t)cdda->cdda_data;
25581 	com->uscsi_buflen = buflen;
25582 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
25583 
25584 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
25585 	    SD_PATH_STANDARD);
25586 
25587 	kmem_free(cdda, sizeof (struct cdrom_cdda));
25588 	kmem_free(com, sizeof (*com));
25589 	return (rval);
25590 }
25591 
25592 
25593 /*
25594  *    Function: sr_read_cdxa()
25595  *
25596  * Description: This routine is the driver entry point for handling CD-ROM
25597  *		ioctl requests to return CD-XA (Extended Architecture) data.
25598  *		(CDROMCDXA).
25599  *
25600  *   Arguments: dev	- the device 'dev_t'
25601  *		data	- pointer to user provided CD-XA structure specifying
25602  *			  the data starting address, transfer length, and format
25603  *		flag	- this argument is a pass through to ddi_copyxxx()
25604  *			  directly from the mode argument of ioctl().
25605  *
25606  * Return Code: the code returned by sd_send_scsi_cmd()
25607  *		EFAULT if ddi_copyxxx() fails
25608  *		ENXIO if fail ddi_get_soft_state
25609  *		EINVAL if data pointer is NULL
25610  */
25611 
25612 static int
25613 sr_read_cdxa(dev_t dev, caddr_t data, int flag)
25614 {
25615 	struct sd_lun		*un;
25616 	struct uscsi_cmd	*com;
25617 	struct cdrom_cdxa	*cdxa;
25618 	int			rval;
25619 	size_t			buflen;
25620 	char			cdb[CDB_GROUP5];
25621 	uchar_t			read_flags;
25622 
25623 #ifdef _MULTI_DATAMODEL
25624 	/* To support ILP32 applications in an LP64 world */
25625 	struct cdrom_cdxa32		cdrom_cdxa32;
25626 	struct cdrom_cdxa32		*cdxa32 = &cdrom_cdxa32;
25627 #endif /* _MULTI_DATAMODEL */
25628 
25629 	if (data == NULL) {
25630 		return (EINVAL);
25631 	}
25632 
25633 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25634 		return (ENXIO);
25635 	}
25636 
25637 	cdxa = kmem_zalloc(sizeof (struct cdrom_cdxa), KM_SLEEP);
25638 
25639 #ifdef _MULTI_DATAMODEL
25640 	switch (ddi_model_convert_from(flag & FMODELS)) {
25641 	case DDI_MODEL_ILP32:
25642 		if (ddi_copyin(data, cdxa32, sizeof (*cdxa32), flag)) {
25643 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25644 			return (EFAULT);
25645 		}
25646 		/*
25647 		 * Convert the ILP32 uscsi data from the
25648 		 * application to LP64 for internal use.
25649 		 */
25650 		cdrom_cdxa32tocdrom_cdxa(cdxa32, cdxa);
25651 		break;
25652 	case DDI_MODEL_NONE:
25653 		if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
25654 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25655 			return (EFAULT);
25656 		}
25657 		break;
25658 	}
25659 #else /* ! _MULTI_DATAMODEL */
25660 	if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
25661 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25662 		return (EFAULT);
25663 	}
25664 #endif /* _MULTI_DATAMODEL */
25665 
25666 	/*
25667 	 * Since MMC-2 expects max 3 bytes for length, check if the
25668 	 * length input is greater than 3 bytes
25669 	 */
25670 	if ((cdxa->cdxa_length & 0xFF000000) != 0) {
25671 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdxa: "
25672 		    "cdrom transfer length too large: %d (limit %d)\n",
25673 		    cdxa->cdxa_length, 0xFFFFFF);
25674 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25675 		return (EINVAL);
25676 	}
25677 
25678 	switch (cdxa->cdxa_format) {
25679 	case CDROM_XA_DATA:
25680 		buflen = CDROM_BLK_2048 * cdxa->cdxa_length;
25681 		read_flags = 0x10;
25682 		break;
25683 	case CDROM_XA_SECTOR_DATA:
25684 		buflen = CDROM_BLK_2352 * cdxa->cdxa_length;
25685 		read_flags = 0xf8;
25686 		break;
25687 	case CDROM_XA_DATA_W_ERROR:
25688 		buflen = CDROM_BLK_2646 * cdxa->cdxa_length;
25689 		read_flags = 0xfc;
25690 		break;
25691 	default:
25692 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25693 		    "sr_read_cdxa: Format '0x%x' Not Supported\n",
25694 		    cdxa->cdxa_format);
25695 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25696 		return (EINVAL);
25697 	}
25698 
25699 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25700 	bzero(cdb, CDB_GROUP5);
25701 	if (un->un_f_mmc_cap == TRUE) {
25702 		cdb[0] = (char)SCMD_READ_CD;
25703 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
25704 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
25705 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
25706 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
25707 		cdb[6] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
25708 		cdb[7] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
25709 		cdb[8] = ((cdxa->cdxa_length) & 0x000000ff);
25710 		cdb[9] = (char)read_flags;
25711 	} else {
25712 		/*
25713 		 * Note: A vendor specific command (0xDB) is being used her to
25714 		 * request a read of all subcodes.
25715 		 */
25716 		cdb[0] = (char)SCMD_READ_CDXA;
25717 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
25718 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
25719 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
25720 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
25721 		cdb[6] = (((cdxa->cdxa_length) & 0xff000000) >> 24);
25722 		cdb[7] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
25723 		cdb[8] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
25724 		cdb[9] = ((cdxa->cdxa_length) & 0x000000ff);
25725 		cdb[10] = cdxa->cdxa_format;
25726 	}
25727 	com->uscsi_cdb	   = cdb;
25728 	com->uscsi_cdblen  = CDB_GROUP5;
25729 	com->uscsi_bufaddr = (caddr_t)cdxa->cdxa_data;
25730 	com->uscsi_buflen  = buflen;
25731 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
25732 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
25733 	    SD_PATH_STANDARD);
25734 	kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25735 	kmem_free(com, sizeof (*com));
25736 	return (rval);
25737 }
25738 
25739 
25740 /*
25741  *    Function: sr_eject()
25742  *
25743  * Description: This routine is the driver entry point for handling CD-ROM
25744  *		eject ioctl requests (FDEJECT, DKIOCEJECT, CDROMEJECT)
25745  *
25746  *   Arguments: dev	- the device 'dev_t'
25747  *
25748  * Return Code: the code returned by sd_send_scsi_cmd()
25749  */
25750 
25751 static int
25752 sr_eject(dev_t dev)
25753 {
25754 	struct sd_lun	*un;
25755 	int		rval;
25756 
25757 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25758 	    (un->un_state == SD_STATE_OFFLINE)) {
25759 		return (ENXIO);
25760 	}
25761 
25762 	/*
25763 	 * To prevent race conditions with the eject
25764 	 * command, keep track of an eject command as
25765 	 * it progresses. If we are already handling
25766 	 * an eject command in the driver for the given
25767 	 * unit and another request to eject is received
25768 	 * immediately return EAGAIN so we don't lose
25769 	 * the command if the current eject command fails.
25770 	 */
25771 	mutex_enter(SD_MUTEX(un));
25772 	if (un->un_f_ejecting == TRUE) {
25773 		mutex_exit(SD_MUTEX(un));
25774 		return (EAGAIN);
25775 	}
25776 	un->un_f_ejecting = TRUE;
25777 	mutex_exit(SD_MUTEX(un));
25778 
25779 	if ((rval = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_ALLOW,
25780 	    SD_PATH_STANDARD)) != 0) {
25781 		mutex_enter(SD_MUTEX(un));
25782 		un->un_f_ejecting = FALSE;
25783 		mutex_exit(SD_MUTEX(un));
25784 		return (rval);
25785 	}
25786 
25787 	rval = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_EJECT,
25788 	    SD_PATH_STANDARD);
25789 
25790 	if (rval == 0) {
25791 		mutex_enter(SD_MUTEX(un));
25792 		sr_ejected(un);
25793 		un->un_mediastate = DKIO_EJECTED;
25794 		un->un_f_ejecting = FALSE;
25795 		cv_broadcast(&un->un_state_cv);
25796 		mutex_exit(SD_MUTEX(un));
25797 	} else {
25798 		mutex_enter(SD_MUTEX(un));
25799 		un->un_f_ejecting = FALSE;
25800 		mutex_exit(SD_MUTEX(un));
25801 	}
25802 	return (rval);
25803 }
25804 
25805 
25806 /*
25807  *    Function: sr_ejected()
25808  *
25809  * Description: This routine updates the soft state structure to invalidate the
25810  *		geometry information after the media has been ejected or a
25811  *		media eject has been detected.
25812  *
25813  *   Arguments: un - driver soft state (unit) structure
25814  */
25815 
25816 static void
25817 sr_ejected(struct sd_lun *un)
25818 {
25819 	struct sd_errstats *stp;
25820 
25821 	ASSERT(un != NULL);
25822 	ASSERT(mutex_owned(SD_MUTEX(un)));
25823 
25824 	un->un_f_blockcount_is_valid	= FALSE;
25825 	un->un_f_tgt_blocksize_is_valid	= FALSE;
25826 	mutex_exit(SD_MUTEX(un));
25827 	cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY);
25828 	mutex_enter(SD_MUTEX(un));
25829 
25830 	if (un->un_errstats != NULL) {
25831 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
25832 		stp->sd_capacity.value.ui64 = 0;
25833 	}
25834 
25835 	/* remove "capacity-of-device" properties */
25836 	(void) ddi_prop_remove(DDI_DEV_T_NONE, SD_DEVINFO(un),
25837 	    "device-nblocks");
25838 	(void) ddi_prop_remove(DDI_DEV_T_NONE, SD_DEVINFO(un),
25839 	    "device-blksize");
25840 }
25841 
25842 
25843 /*
25844  *    Function: sr_check_wp()
25845  *
25846  * Description: This routine checks the write protection of a removable
25847  *      media disk and hotpluggable devices via the write protect bit of
25848  *      the Mode Page Header device specific field. Some devices choke
25849  *      on unsupported mode page. In order to workaround this issue,
25850  *      this routine has been implemented to use 0x3f mode page(request
25851  *      for all pages) for all device types.
25852  *
25853  *   Arguments: dev		- the device 'dev_t'
25854  *
25855  * Return Code: int indicating if the device is write protected (1) or not (0)
25856  *
25857  *     Context: Kernel thread.
25858  *
25859  */
25860 
25861 static int
25862 sr_check_wp(dev_t dev)
25863 {
25864 	struct sd_lun	*un;
25865 	uchar_t		device_specific;
25866 	uchar_t		*sense;
25867 	int		hdrlen;
25868 	int		rval = FALSE;
25869 
25870 	/*
25871 	 * Note: The return codes for this routine should be reworked to
25872 	 * properly handle the case of a NULL softstate.
25873 	 */
25874 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25875 		return (FALSE);
25876 	}
25877 
25878 	if (un->un_f_cfg_is_atapi == TRUE) {
25879 		/*
25880 		 * The mode page contents are not required; set the allocation
25881 		 * length for the mode page header only
25882 		 */
25883 		hdrlen = MODE_HEADER_LENGTH_GRP2;
25884 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
25885 		if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense, hdrlen,
25886 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD) != 0)
25887 			goto err_exit;
25888 		device_specific =
25889 		    ((struct mode_header_grp2 *)sense)->device_specific;
25890 	} else {
25891 		hdrlen = MODE_HEADER_LENGTH;
25892 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
25893 		if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, hdrlen,
25894 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD) != 0)
25895 			goto err_exit;
25896 		device_specific =
25897 		    ((struct mode_header *)sense)->device_specific;
25898 	}
25899 
25900 	/*
25901 	 * Write protect mode sense failed; not all disks
25902 	 * understand this query. Return FALSE assuming that
25903 	 * these devices are not writable.
25904 	 */
25905 	if (device_specific & WRITE_PROTECT) {
25906 		rval = TRUE;
25907 	}
25908 
25909 err_exit:
25910 	kmem_free(sense, hdrlen);
25911 	return (rval);
25912 }
25913 
25914 /*
25915  *    Function: sr_volume_ctrl()
25916  *
25917  * Description: This routine is the driver entry point for handling CD-ROM
25918  *		audio output volume ioctl requests. (CDROMVOLCTRL)
25919  *
25920  *   Arguments: dev	- the device 'dev_t'
25921  *		data	- pointer to user audio volume control structure
25922  *		flag	- this argument is a pass through to ddi_copyxxx()
25923  *			  directly from the mode argument of ioctl().
25924  *
25925  * Return Code: the code returned by sd_send_scsi_cmd()
25926  *		EFAULT if ddi_copyxxx() fails
25927  *		ENXIO if fail ddi_get_soft_state
25928  *		EINVAL if data pointer is NULL
25929  *
25930  */
25931 
25932 static int
25933 sr_volume_ctrl(dev_t dev, caddr_t data, int flag)
25934 {
25935 	struct sd_lun		*un;
25936 	struct cdrom_volctrl    volume;
25937 	struct cdrom_volctrl    *vol = &volume;
25938 	uchar_t			*sense_page;
25939 	uchar_t			*select_page;
25940 	uchar_t			*sense;
25941 	uchar_t			*select;
25942 	int			sense_buflen;
25943 	int			select_buflen;
25944 	int			rval;
25945 
25946 	if (data == NULL) {
25947 		return (EINVAL);
25948 	}
25949 
25950 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25951 	    (un->un_state == SD_STATE_OFFLINE)) {
25952 		return (ENXIO);
25953 	}
25954 
25955 	if (ddi_copyin(data, vol, sizeof (struct cdrom_volctrl), flag)) {
25956 		return (EFAULT);
25957 	}
25958 
25959 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
25960 		struct mode_header_grp2		*sense_mhp;
25961 		struct mode_header_grp2		*select_mhp;
25962 		int				bd_len;
25963 
25964 		sense_buflen = MODE_PARAM_LENGTH_GRP2 + MODEPAGE_AUDIO_CTRL_LEN;
25965 		select_buflen = MODE_HEADER_LENGTH_GRP2 +
25966 		    MODEPAGE_AUDIO_CTRL_LEN;
25967 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
25968 		select = kmem_zalloc(select_buflen, KM_SLEEP);
25969 		if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense,
25970 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
25971 		    SD_PATH_STANDARD)) != 0) {
25972 			SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
25973 			    "sr_volume_ctrl: Mode Sense Failed\n");
25974 			kmem_free(sense, sense_buflen);
25975 			kmem_free(select, select_buflen);
25976 			return (rval);
25977 		}
25978 		sense_mhp = (struct mode_header_grp2 *)sense;
25979 		select_mhp = (struct mode_header_grp2 *)select;
25980 		bd_len = (sense_mhp->bdesc_length_hi << 8) |
25981 		    sense_mhp->bdesc_length_lo;
25982 		if (bd_len > MODE_BLK_DESC_LENGTH) {
25983 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25984 			    "sr_volume_ctrl: Mode Sense returned invalid "
25985 			    "block descriptor length\n");
25986 			kmem_free(sense, sense_buflen);
25987 			kmem_free(select, select_buflen);
25988 			return (EIO);
25989 		}
25990 		sense_page = (uchar_t *)
25991 		    (sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
25992 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH_GRP2);
25993 		select_mhp->length_msb = 0;
25994 		select_mhp->length_lsb = 0;
25995 		select_mhp->bdesc_length_hi = 0;
25996 		select_mhp->bdesc_length_lo = 0;
25997 	} else {
25998 		struct mode_header		*sense_mhp, *select_mhp;
25999 
26000 		sense_buflen = MODE_PARAM_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
26001 		select_buflen = MODE_HEADER_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
26002 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
26003 		select = kmem_zalloc(select_buflen, KM_SLEEP);
26004 		if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
26005 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
26006 		    SD_PATH_STANDARD)) != 0) {
26007 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26008 			    "sr_volume_ctrl: Mode Sense Failed\n");
26009 			kmem_free(sense, sense_buflen);
26010 			kmem_free(select, select_buflen);
26011 			return (rval);
26012 		}
26013 		sense_mhp  = (struct mode_header *)sense;
26014 		select_mhp = (struct mode_header *)select;
26015 		if (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH) {
26016 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26017 			    "sr_volume_ctrl: Mode Sense returned invalid "
26018 			    "block descriptor length\n");
26019 			kmem_free(sense, sense_buflen);
26020 			kmem_free(select, select_buflen);
26021 			return (EIO);
26022 		}
26023 		sense_page = (uchar_t *)
26024 		    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
26025 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH);
26026 		select_mhp->length = 0;
26027 		select_mhp->bdesc_length = 0;
26028 	}
26029 	/*
26030 	 * Note: An audio control data structure could be created and overlayed
26031 	 * on the following in place of the array indexing method implemented.
26032 	 */
26033 
26034 	/* Build the select data for the user volume data */
26035 	select_page[0] = MODEPAGE_AUDIO_CTRL;
26036 	select_page[1] = 0xE;
26037 	/* Set the immediate bit */
26038 	select_page[2] = 0x04;
26039 	/* Zero out reserved fields */
26040 	select_page[3] = 0x00;
26041 	select_page[4] = 0x00;
26042 	/* Return sense data for fields not to be modified */
26043 	select_page[5] = sense_page[5];
26044 	select_page[6] = sense_page[6];
26045 	select_page[7] = sense_page[7];
26046 	/* Set the user specified volume levels for channel 0 and 1 */
26047 	select_page[8] = 0x01;
26048 	select_page[9] = vol->channel0;
26049 	select_page[10] = 0x02;
26050 	select_page[11] = vol->channel1;
26051 	/* Channel 2 and 3 are currently unsupported so return the sense data */
26052 	select_page[12] = sense_page[12];
26053 	select_page[13] = sense_page[13];
26054 	select_page[14] = sense_page[14];
26055 	select_page[15] = sense_page[15];
26056 
26057 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
26058 		rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP1, select,
26059 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
26060 	} else {
26061 		rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
26062 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
26063 	}
26064 
26065 	kmem_free(sense, sense_buflen);
26066 	kmem_free(select, select_buflen);
26067 	return (rval);
26068 }
26069 
26070 
26071 /*
26072  *    Function: sr_read_sony_session_offset()
26073  *
26074  * Description: This routine is the driver entry point for handling CD-ROM
26075  *		ioctl requests for session offset information. (CDROMREADOFFSET)
26076  *		The address of the first track in the last session of a
26077  *		multi-session CD-ROM is returned
26078  *
26079  *		Note: This routine uses a vendor specific key value in the
26080  *		command control field without implementing any vendor check here
26081  *		or in the ioctl routine.
26082  *
26083  *   Arguments: dev	- the device 'dev_t'
26084  *		data	- pointer to an int to hold the requested address
26085  *		flag	- this argument is a pass through to ddi_copyxxx()
26086  *			  directly from the mode argument of ioctl().
26087  *
26088  * Return Code: the code returned by sd_send_scsi_cmd()
26089  *		EFAULT if ddi_copyxxx() fails
26090  *		ENXIO if fail ddi_get_soft_state
26091  *		EINVAL if data pointer is NULL
26092  */
26093 
26094 static int
26095 sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag)
26096 {
26097 	struct sd_lun		*un;
26098 	struct uscsi_cmd	*com;
26099 	caddr_t			buffer;
26100 	char			cdb[CDB_GROUP1];
26101 	int			session_offset = 0;
26102 	int			rval;
26103 
26104 	if (data == NULL) {
26105 		return (EINVAL);
26106 	}
26107 
26108 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
26109 	    (un->un_state == SD_STATE_OFFLINE)) {
26110 		return (ENXIO);
26111 	}
26112 
26113 	buffer = kmem_zalloc((size_t)SONY_SESSION_OFFSET_LEN, KM_SLEEP);
26114 	bzero(cdb, CDB_GROUP1);
26115 	cdb[0] = SCMD_READ_TOC;
26116 	/*
26117 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
26118 	 * (4 byte TOC response header + 8 byte response data)
26119 	 */
26120 	cdb[8] = SONY_SESSION_OFFSET_LEN;
26121 	/* Byte 9 is the control byte. A vendor specific value is used */
26122 	cdb[9] = SONY_SESSION_OFFSET_KEY;
26123 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26124 	com->uscsi_cdb = cdb;
26125 	com->uscsi_cdblen = CDB_GROUP1;
26126 	com->uscsi_bufaddr = buffer;
26127 	com->uscsi_buflen = SONY_SESSION_OFFSET_LEN;
26128 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
26129 
26130 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
26131 	    SD_PATH_STANDARD);
26132 	if (rval != 0) {
26133 		kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
26134 		kmem_free(com, sizeof (*com));
26135 		return (rval);
26136 	}
26137 	if (buffer[1] == SONY_SESSION_OFFSET_VALID) {
26138 		session_offset =
26139 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
26140 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
26141 		/*
26142 		 * Offset returned offset in current lbasize block's. Convert to
26143 		 * 2k block's to return to the user
26144 		 */
26145 		if (un->un_tgt_blocksize == CDROM_BLK_512) {
26146 			session_offset >>= 2;
26147 		} else if (un->un_tgt_blocksize == CDROM_BLK_1024) {
26148 			session_offset >>= 1;
26149 		}
26150 	}
26151 
26152 	if (ddi_copyout(&session_offset, data, sizeof (int), flag) != 0) {
26153 		rval = EFAULT;
26154 	}
26155 
26156 	kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
26157 	kmem_free(com, sizeof (*com));
26158 	return (rval);
26159 }
26160 
26161 
26162 /*
26163  *    Function: sd_wm_cache_constructor()
26164  *
26165  * Description: Cache Constructor for the wmap cache for the read/modify/write
26166  * 		devices.
26167  *
26168  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
26169  *		un	- sd_lun structure for the device.
26170  *		flag	- the km flags passed to constructor
26171  *
26172  * Return Code: 0 on success.
26173  *		-1 on failure.
26174  */
26175 
26176 /*ARGSUSED*/
26177 static int
26178 sd_wm_cache_constructor(void *wm, void *un, int flags)
26179 {
26180 	bzero(wm, sizeof (struct sd_w_map));
26181 	cv_init(&((struct sd_w_map *)wm)->wm_avail, NULL, CV_DRIVER, NULL);
26182 	return (0);
26183 }
26184 
26185 
26186 /*
26187  *    Function: sd_wm_cache_destructor()
26188  *
26189  * Description: Cache destructor for the wmap cache for the read/modify/write
26190  * 		devices.
26191  *
26192  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
26193  *		un	- sd_lun structure for the device.
26194  */
26195 /*ARGSUSED*/
26196 static void
26197 sd_wm_cache_destructor(void *wm, void *un)
26198 {
26199 	cv_destroy(&((struct sd_w_map *)wm)->wm_avail);
26200 }
26201 
26202 
26203 /*
26204  *    Function: sd_range_lock()
26205  *
26206  * Description: Lock the range of blocks specified as parameter to ensure
26207  *		that read, modify write is atomic and no other i/o writes
26208  *		to the same location. The range is specified in terms
26209  *		of start and end blocks. Block numbers are the actual
26210  *		media block numbers and not system.
26211  *
26212  *   Arguments: un	- sd_lun structure for the device.
26213  *		startb - The starting block number
26214  *		endb - The end block number
26215  *		typ - type of i/o - simple/read_modify_write
26216  *
26217  * Return Code: wm  - pointer to the wmap structure.
26218  *
26219  *     Context: This routine can sleep.
26220  */
26221 
26222 static struct sd_w_map *
26223 sd_range_lock(struct sd_lun *un, daddr_t startb, daddr_t endb, ushort_t typ)
26224 {
26225 	struct sd_w_map *wmp = NULL;
26226 	struct sd_w_map *sl_wmp = NULL;
26227 	struct sd_w_map *tmp_wmp;
26228 	wm_state state = SD_WM_CHK_LIST;
26229 
26230 
26231 	ASSERT(un != NULL);
26232 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26233 
26234 	mutex_enter(SD_MUTEX(un));
26235 
26236 	while (state != SD_WM_DONE) {
26237 
26238 		switch (state) {
26239 		case SD_WM_CHK_LIST:
26240 			/*
26241 			 * This is the starting state. Check the wmap list
26242 			 * to see if the range is currently available.
26243 			 */
26244 			if (!(typ & SD_WTYPE_RMW) && !(un->un_rmw_count)) {
26245 				/*
26246 				 * If this is a simple write and no rmw
26247 				 * i/o is pending then try to lock the
26248 				 * range as the range should be available.
26249 				 */
26250 				state = SD_WM_LOCK_RANGE;
26251 			} else {
26252 				tmp_wmp = sd_get_range(un, startb, endb);
26253 				if (tmp_wmp != NULL) {
26254 					if ((wmp != NULL) && ONLIST(un, wmp)) {
26255 						/*
26256 						 * Should not keep onlist wmps
26257 						 * while waiting this macro
26258 						 * will also do wmp = NULL;
26259 						 */
26260 						FREE_ONLIST_WMAP(un, wmp);
26261 					}
26262 					/*
26263 					 * sl_wmp is the wmap on which wait
26264 					 * is done, since the tmp_wmp points
26265 					 * to the inuse wmap, set sl_wmp to
26266 					 * tmp_wmp and change the state to sleep
26267 					 */
26268 					sl_wmp = tmp_wmp;
26269 					state = SD_WM_WAIT_MAP;
26270 				} else {
26271 					state = SD_WM_LOCK_RANGE;
26272 				}
26273 
26274 			}
26275 			break;
26276 
26277 		case SD_WM_LOCK_RANGE:
26278 			ASSERT(un->un_wm_cache);
26279 			/*
26280 			 * The range need to be locked, try to get a wmap.
26281 			 * First attempt it with NO_SLEEP, want to avoid a sleep
26282 			 * if possible as we will have to release the sd mutex
26283 			 * if we have to sleep.
26284 			 */
26285 			if (wmp == NULL)
26286 				wmp = kmem_cache_alloc(un->un_wm_cache,
26287 				    KM_NOSLEEP);
26288 			if (wmp == NULL) {
26289 				mutex_exit(SD_MUTEX(un));
26290 				_NOTE(DATA_READABLE_WITHOUT_LOCK
26291 				    (sd_lun::un_wm_cache))
26292 				wmp = kmem_cache_alloc(un->un_wm_cache,
26293 				    KM_SLEEP);
26294 				mutex_enter(SD_MUTEX(un));
26295 				/*
26296 				 * we released the mutex so recheck and go to
26297 				 * check list state.
26298 				 */
26299 				state = SD_WM_CHK_LIST;
26300 			} else {
26301 				/*
26302 				 * We exit out of state machine since we
26303 				 * have the wmap. Do the housekeeping first.
26304 				 * place the wmap on the wmap list if it is not
26305 				 * on it already and then set the state to done.
26306 				 */
26307 				wmp->wm_start = startb;
26308 				wmp->wm_end = endb;
26309 				wmp->wm_flags = typ | SD_WM_BUSY;
26310 				if (typ & SD_WTYPE_RMW) {
26311 					un->un_rmw_count++;
26312 				}
26313 				/*
26314 				 * If not already on the list then link
26315 				 */
26316 				if (!ONLIST(un, wmp)) {
26317 					wmp->wm_next = un->un_wm;
26318 					wmp->wm_prev = NULL;
26319 					if (wmp->wm_next)
26320 						wmp->wm_next->wm_prev = wmp;
26321 					un->un_wm = wmp;
26322 				}
26323 				state = SD_WM_DONE;
26324 			}
26325 			break;
26326 
26327 		case SD_WM_WAIT_MAP:
26328 			ASSERT(sl_wmp->wm_flags & SD_WM_BUSY);
26329 			/*
26330 			 * Wait is done on sl_wmp, which is set in the
26331 			 * check_list state.
26332 			 */
26333 			sl_wmp->wm_wanted_count++;
26334 			cv_wait(&sl_wmp->wm_avail, SD_MUTEX(un));
26335 			sl_wmp->wm_wanted_count--;
26336 			/*
26337 			 * We can reuse the memory from the completed sl_wmp
26338 			 * lock range for our new lock, but only if noone is
26339 			 * waiting for it.
26340 			 */
26341 			ASSERT(!(sl_wmp->wm_flags & SD_WM_BUSY));
26342 			if (sl_wmp->wm_wanted_count == 0) {
26343 				if (wmp != NULL)
26344 					CHK_N_FREEWMP(un, wmp);
26345 				wmp = sl_wmp;
26346 			}
26347 			sl_wmp = NULL;
26348 			/*
26349 			 * After waking up, need to recheck for availability of
26350 			 * range.
26351 			 */
26352 			state = SD_WM_CHK_LIST;
26353 			break;
26354 
26355 		default:
26356 			panic("sd_range_lock: "
26357 			    "Unknown state %d in sd_range_lock", state);
26358 			/*NOTREACHED*/
26359 		} /* switch(state) */
26360 
26361 	} /* while(state != SD_WM_DONE) */
26362 
26363 	mutex_exit(SD_MUTEX(un));
26364 
26365 	ASSERT(wmp != NULL);
26366 
26367 	return (wmp);
26368 }
26369 
26370 
26371 /*
26372  *    Function: sd_get_range()
26373  *
26374  * Description: Find if there any overlapping I/O to this one
26375  *		Returns the write-map of 1st such I/O, NULL otherwise.
26376  *
26377  *   Arguments: un	- sd_lun structure for the device.
26378  *		startb - The starting block number
26379  *		endb - The end block number
26380  *
26381  * Return Code: wm  - pointer to the wmap structure.
26382  */
26383 
26384 static struct sd_w_map *
26385 sd_get_range(struct sd_lun *un, daddr_t startb, daddr_t endb)
26386 {
26387 	struct sd_w_map *wmp;
26388 
26389 	ASSERT(un != NULL);
26390 
26391 	for (wmp = un->un_wm; wmp != NULL; wmp = wmp->wm_next) {
26392 		if (!(wmp->wm_flags & SD_WM_BUSY)) {
26393 			continue;
26394 		}
26395 		if ((startb >= wmp->wm_start) && (startb <= wmp->wm_end)) {
26396 			break;
26397 		}
26398 		if ((endb >= wmp->wm_start) && (endb <= wmp->wm_end)) {
26399 			break;
26400 		}
26401 	}
26402 
26403 	return (wmp);
26404 }
26405 
26406 
26407 /*
26408  *    Function: sd_free_inlist_wmap()
26409  *
26410  * Description: Unlink and free a write map struct.
26411  *
26412  *   Arguments: un      - sd_lun structure for the device.
26413  *		wmp	- sd_w_map which needs to be unlinked.
26414  */
26415 
26416 static void
26417 sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp)
26418 {
26419 	ASSERT(un != NULL);
26420 
26421 	if (un->un_wm == wmp) {
26422 		un->un_wm = wmp->wm_next;
26423 	} else {
26424 		wmp->wm_prev->wm_next = wmp->wm_next;
26425 	}
26426 
26427 	if (wmp->wm_next) {
26428 		wmp->wm_next->wm_prev = wmp->wm_prev;
26429 	}
26430 
26431 	wmp->wm_next = wmp->wm_prev = NULL;
26432 
26433 	kmem_cache_free(un->un_wm_cache, wmp);
26434 }
26435 
26436 
26437 /*
26438  *    Function: sd_range_unlock()
26439  *
26440  * Description: Unlock the range locked by wm.
26441  *		Free write map if nobody else is waiting on it.
26442  *
26443  *   Arguments: un      - sd_lun structure for the device.
26444  *              wmp     - sd_w_map which needs to be unlinked.
26445  */
26446 
26447 static void
26448 sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm)
26449 {
26450 	ASSERT(un != NULL);
26451 	ASSERT(wm != NULL);
26452 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26453 
26454 	mutex_enter(SD_MUTEX(un));
26455 
26456 	if (wm->wm_flags & SD_WTYPE_RMW) {
26457 		un->un_rmw_count--;
26458 	}
26459 
26460 	if (wm->wm_wanted_count) {
26461 		wm->wm_flags = 0;
26462 		/*
26463 		 * Broadcast that the wmap is available now.
26464 		 */
26465 		cv_broadcast(&wm->wm_avail);
26466 	} else {
26467 		/*
26468 		 * If no one is waiting on the map, it should be free'ed.
26469 		 */
26470 		sd_free_inlist_wmap(un, wm);
26471 	}
26472 
26473 	mutex_exit(SD_MUTEX(un));
26474 }
26475 
26476 
26477 /*
26478  *    Function: sd_read_modify_write_task
26479  *
26480  * Description: Called from a taskq thread to initiate the write phase of
26481  *		a read-modify-write request.  This is used for targets where
26482  *		un->un_sys_blocksize != un->un_tgt_blocksize.
26483  *
26484  *   Arguments: arg - a pointer to the buf(9S) struct for the write command.
26485  *
26486  *     Context: Called under taskq thread context.
26487  */
26488 
26489 static void
26490 sd_read_modify_write_task(void *arg)
26491 {
26492 	struct sd_mapblocksize_info	*bsp;
26493 	struct buf	*bp;
26494 	struct sd_xbuf	*xp;
26495 	struct sd_lun	*un;
26496 
26497 	bp = arg;	/* The bp is given in arg */
26498 	ASSERT(bp != NULL);
26499 
26500 	/* Get the pointer to the layer-private data struct */
26501 	xp = SD_GET_XBUF(bp);
26502 	ASSERT(xp != NULL);
26503 	bsp = xp->xb_private;
26504 	ASSERT(bsp != NULL);
26505 
26506 	un = SD_GET_UN(bp);
26507 	ASSERT(un != NULL);
26508 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26509 
26510 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
26511 	    "sd_read_modify_write_task: entry: buf:0x%p\n", bp);
26512 
26513 	/*
26514 	 * This is the write phase of a read-modify-write request, called
26515 	 * under the context of a taskq thread in response to the completion
26516 	 * of the read portion of the rmw request completing under interrupt
26517 	 * context. The write request must be sent from here down the iostart
26518 	 * chain as if it were being sent from sd_mapblocksize_iostart(), so
26519 	 * we use the layer index saved in the layer-private data area.
26520 	 */
26521 	SD_NEXT_IOSTART(bsp->mbs_layer_index, un, bp);
26522 
26523 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
26524 	    "sd_read_modify_write_task: exit: buf:0x%p\n", bp);
26525 }
26526 
26527 
26528 /*
26529  *    Function: sddump_do_read_of_rmw()
26530  *
26531  * Description: This routine will be called from sddump, If sddump is called
26532  *		with an I/O which not aligned on device blocksize boundary
26533  *		then the write has to be converted to read-modify-write.
26534  *		Do the read part here in order to keep sddump simple.
26535  *		Note - That the sd_mutex is held across the call to this
26536  *		routine.
26537  *
26538  *   Arguments: un	- sd_lun
26539  *		blkno	- block number in terms of media block size.
26540  *		nblk	- number of blocks.
26541  *		bpp	- pointer to pointer to the buf structure. On return
26542  *			from this function, *bpp points to the valid buffer
26543  *			to which the write has to be done.
26544  *
26545  * Return Code: 0 for success or errno-type return code
26546  */
26547 
26548 static int
26549 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
26550 	struct buf **bpp)
26551 {
26552 	int err;
26553 	int i;
26554 	int rval;
26555 	struct buf *bp;
26556 	struct scsi_pkt *pkt = NULL;
26557 	uint32_t target_blocksize;
26558 
26559 	ASSERT(un != NULL);
26560 	ASSERT(mutex_owned(SD_MUTEX(un)));
26561 
26562 	target_blocksize = un->un_tgt_blocksize;
26563 
26564 	mutex_exit(SD_MUTEX(un));
26565 
26566 	bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), (struct buf *)NULL,
26567 	    (size_t)(nblk * target_blocksize), B_READ, NULL_FUNC, NULL);
26568 	if (bp == NULL) {
26569 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26570 		    "no resources for dumping; giving up");
26571 		err = ENOMEM;
26572 		goto done;
26573 	}
26574 
26575 	rval = sd_setup_rw_pkt(un, &pkt, bp, 0, NULL_FUNC, NULL,
26576 	    blkno, nblk);
26577 	if (rval != 0) {
26578 		scsi_free_consistent_buf(bp);
26579 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26580 		    "no resources for dumping; giving up");
26581 		err = ENOMEM;
26582 		goto done;
26583 	}
26584 
26585 	pkt->pkt_flags |= FLAG_NOINTR;
26586 
26587 	err = EIO;
26588 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
26589 
26590 		/*
26591 		 * Scsi_poll returns 0 (success) if the command completes and
26592 		 * the status block is STATUS_GOOD.  We should only check
26593 		 * errors if this condition is not true.  Even then we should
26594 		 * send our own request sense packet only if we have a check
26595 		 * condition and auto request sense has not been performed by
26596 		 * the hba.
26597 		 */
26598 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending read\n");
26599 
26600 		if ((sd_scsi_poll(un, pkt) == 0) && (pkt->pkt_resid == 0)) {
26601 			err = 0;
26602 			break;
26603 		}
26604 
26605 		/*
26606 		 * Check CMD_DEV_GONE 1st, give up if device is gone,
26607 		 * no need to read RQS data.
26608 		 */
26609 		if (pkt->pkt_reason == CMD_DEV_GONE) {
26610 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26611 			    "Error while dumping state with rmw..."
26612 			    "Device is gone\n");
26613 			break;
26614 		}
26615 
26616 		if (SD_GET_PKT_STATUS(pkt) == STATUS_CHECK) {
26617 			SD_INFO(SD_LOG_DUMP, un,
26618 			    "sddump: read failed with CHECK, try # %d\n", i);
26619 			if (((pkt->pkt_state & STATE_ARQ_DONE) == 0)) {
26620 				(void) sd_send_polled_RQS(un);
26621 			}
26622 
26623 			continue;
26624 		}
26625 
26626 		if (SD_GET_PKT_STATUS(pkt) == STATUS_BUSY) {
26627 			int reset_retval = 0;
26628 
26629 			SD_INFO(SD_LOG_DUMP, un,
26630 			    "sddump: read failed with BUSY, try # %d\n", i);
26631 
26632 			if (un->un_f_lun_reset_enabled == TRUE) {
26633 				reset_retval = scsi_reset(SD_ADDRESS(un),
26634 				    RESET_LUN);
26635 			}
26636 			if (reset_retval == 0) {
26637 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
26638 			}
26639 			(void) sd_send_polled_RQS(un);
26640 
26641 		} else {
26642 			SD_INFO(SD_LOG_DUMP, un,
26643 			    "sddump: read failed with 0x%x, try # %d\n",
26644 			    SD_GET_PKT_STATUS(pkt), i);
26645 			mutex_enter(SD_MUTEX(un));
26646 			sd_reset_target(un, pkt);
26647 			mutex_exit(SD_MUTEX(un));
26648 		}
26649 
26650 		/*
26651 		 * If we are not getting anywhere with lun/target resets,
26652 		 * let's reset the bus.
26653 		 */
26654 		if (i > SD_NDUMP_RETRIES/2) {
26655 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
26656 			(void) sd_send_polled_RQS(un);
26657 		}
26658 
26659 	}
26660 	scsi_destroy_pkt(pkt);
26661 
26662 	if (err != 0) {
26663 		scsi_free_consistent_buf(bp);
26664 		*bpp = NULL;
26665 	} else {
26666 		*bpp = bp;
26667 	}
26668 
26669 done:
26670 	mutex_enter(SD_MUTEX(un));
26671 	return (err);
26672 }
26673 
26674 
26675 /*
26676  *    Function: sd_failfast_flushq
26677  *
26678  * Description: Take all bp's on the wait queue that have B_FAILFAST set
26679  *		in b_flags and move them onto the failfast queue, then kick
26680  *		off a thread to return all bp's on the failfast queue to
26681  *		their owners with an error set.
26682  *
26683  *   Arguments: un - pointer to the soft state struct for the instance.
26684  *
26685  *     Context: may execute in interrupt context.
26686  */
26687 
26688 static void
26689 sd_failfast_flushq(struct sd_lun *un)
26690 {
26691 	struct buf *bp;
26692 	struct buf *next_waitq_bp;
26693 	struct buf *prev_waitq_bp = NULL;
26694 
26695 	ASSERT(un != NULL);
26696 	ASSERT(mutex_owned(SD_MUTEX(un)));
26697 	ASSERT(un->un_failfast_state == SD_FAILFAST_ACTIVE);
26698 	ASSERT(un->un_failfast_bp == NULL);
26699 
26700 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
26701 	    "sd_failfast_flushq: entry: un:0x%p\n", un);
26702 
26703 	/*
26704 	 * Check if we should flush all bufs when entering failfast state, or
26705 	 * just those with B_FAILFAST set.
26706 	 */
26707 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) {
26708 		/*
26709 		 * Move *all* bp's on the wait queue to the failfast flush
26710 		 * queue, including those that do NOT have B_FAILFAST set.
26711 		 */
26712 		if (un->un_failfast_headp == NULL) {
26713 			ASSERT(un->un_failfast_tailp == NULL);
26714 			un->un_failfast_headp = un->un_waitq_headp;
26715 		} else {
26716 			ASSERT(un->un_failfast_tailp != NULL);
26717 			un->un_failfast_tailp->av_forw = un->un_waitq_headp;
26718 		}
26719 
26720 		un->un_failfast_tailp = un->un_waitq_tailp;
26721 
26722 		/* update kstat for each bp moved out of the waitq */
26723 		for (bp = un->un_waitq_headp; bp != NULL; bp = bp->av_forw) {
26724 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
26725 		}
26726 
26727 		/* empty the waitq */
26728 		un->un_waitq_headp = un->un_waitq_tailp = NULL;
26729 
26730 	} else {
26731 		/*
26732 		 * Go thru the wait queue, pick off all entries with
26733 		 * B_FAILFAST set, and move these onto the failfast queue.
26734 		 */
26735 		for (bp = un->un_waitq_headp; bp != NULL; bp = next_waitq_bp) {
26736 			/*
26737 			 * Save the pointer to the next bp on the wait queue,
26738 			 * so we get to it on the next iteration of this loop.
26739 			 */
26740 			next_waitq_bp = bp->av_forw;
26741 
26742 			/*
26743 			 * If this bp from the wait queue does NOT have
26744 			 * B_FAILFAST set, just move on to the next element
26745 			 * in the wait queue. Note, this is the only place
26746 			 * where it is correct to set prev_waitq_bp.
26747 			 */
26748 			if ((bp->b_flags & B_FAILFAST) == 0) {
26749 				prev_waitq_bp = bp;
26750 				continue;
26751 			}
26752 
26753 			/*
26754 			 * Remove the bp from the wait queue.
26755 			 */
26756 			if (bp == un->un_waitq_headp) {
26757 				/* The bp is the first element of the waitq. */
26758 				un->un_waitq_headp = next_waitq_bp;
26759 				if (un->un_waitq_headp == NULL) {
26760 					/* The wait queue is now empty */
26761 					un->un_waitq_tailp = NULL;
26762 				}
26763 			} else {
26764 				/*
26765 				 * The bp is either somewhere in the middle
26766 				 * or at the end of the wait queue.
26767 				 */
26768 				ASSERT(un->un_waitq_headp != NULL);
26769 				ASSERT(prev_waitq_bp != NULL);
26770 				ASSERT((prev_waitq_bp->b_flags & B_FAILFAST)
26771 				    == 0);
26772 				if (bp == un->un_waitq_tailp) {
26773 					/* bp is the last entry on the waitq. */
26774 					ASSERT(next_waitq_bp == NULL);
26775 					un->un_waitq_tailp = prev_waitq_bp;
26776 				}
26777 				prev_waitq_bp->av_forw = next_waitq_bp;
26778 			}
26779 			bp->av_forw = NULL;
26780 
26781 			/*
26782 			 * update kstat since the bp is moved out of
26783 			 * the waitq
26784 			 */
26785 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
26786 
26787 			/*
26788 			 * Now put the bp onto the failfast queue.
26789 			 */
26790 			if (un->un_failfast_headp == NULL) {
26791 				/* failfast queue is currently empty */
26792 				ASSERT(un->un_failfast_tailp == NULL);
26793 				un->un_failfast_headp =
26794 				    un->un_failfast_tailp = bp;
26795 			} else {
26796 				/* Add the bp to the end of the failfast q */
26797 				ASSERT(un->un_failfast_tailp != NULL);
26798 				ASSERT(un->un_failfast_tailp->b_flags &
26799 				    B_FAILFAST);
26800 				un->un_failfast_tailp->av_forw = bp;
26801 				un->un_failfast_tailp = bp;
26802 			}
26803 		}
26804 	}
26805 
26806 	/*
26807 	 * Now return all bp's on the failfast queue to their owners.
26808 	 */
26809 	while ((bp = un->un_failfast_headp) != NULL) {
26810 
26811 		un->un_failfast_headp = bp->av_forw;
26812 		if (un->un_failfast_headp == NULL) {
26813 			un->un_failfast_tailp = NULL;
26814 		}
26815 
26816 		/*
26817 		 * We want to return the bp with a failure error code, but
26818 		 * we do not want a call to sd_start_cmds() to occur here,
26819 		 * so use sd_return_failed_command_no_restart() instead of
26820 		 * sd_return_failed_command().
26821 		 */
26822 		sd_return_failed_command_no_restart(un, bp, EIO);
26823 	}
26824 
26825 	/* Flush the xbuf queues if required. */
26826 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_QUEUES) {
26827 		ddi_xbuf_flushq(un->un_xbuf_attr, sd_failfast_flushq_callback);
26828 	}
26829 
26830 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
26831 	    "sd_failfast_flushq: exit: un:0x%p\n", un);
26832 }
26833 
26834 
26835 /*
26836  *    Function: sd_failfast_flushq_callback
26837  *
26838  * Description: Return TRUE if the given bp meets the criteria for failfast
26839  *		flushing. Used with ddi_xbuf_flushq(9F).
26840  *
26841  *   Arguments: bp - ptr to buf struct to be examined.
26842  *
26843  *     Context: Any
26844  */
26845 
26846 static int
26847 sd_failfast_flushq_callback(struct buf *bp)
26848 {
26849 	/*
26850 	 * Return TRUE if (1) we want to flush ALL bufs when the failfast
26851 	 * state is entered; OR (2) the given bp has B_FAILFAST set.
26852 	 */
26853 	return (((sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) ||
26854 	    (bp->b_flags & B_FAILFAST)) ? TRUE : FALSE);
26855 }
26856 
26857 
26858 
26859 /*
26860  * Function: sd_setup_next_xfer
26861  *
26862  * Description: Prepare next I/O operation using DMA_PARTIAL
26863  *
26864  */
26865 
26866 static int
26867 sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
26868     struct scsi_pkt *pkt, struct sd_xbuf *xp)
26869 {
26870 	ssize_t	num_blks_not_xfered;
26871 	daddr_t	strt_blk_num;
26872 	ssize_t	bytes_not_xfered;
26873 	int	rval;
26874 
26875 	ASSERT(pkt->pkt_resid == 0);
26876 
26877 	/*
26878 	 * Calculate next block number and amount to be transferred.
26879 	 *
26880 	 * How much data NOT transfered to the HBA yet.
26881 	 */
26882 	bytes_not_xfered = xp->xb_dma_resid;
26883 
26884 	/*
26885 	 * figure how many blocks NOT transfered to the HBA yet.
26886 	 */
26887 	num_blks_not_xfered = SD_BYTES2TGTBLOCKS(un, bytes_not_xfered);
26888 
26889 	/*
26890 	 * set starting block number to the end of what WAS transfered.
26891 	 */
26892 	strt_blk_num = xp->xb_blkno +
26893 	    SD_BYTES2TGTBLOCKS(un, bp->b_bcount - bytes_not_xfered);
26894 
26895 	/*
26896 	 * Move pkt to the next portion of the xfer.  sd_setup_next_rw_pkt
26897 	 * will call scsi_initpkt with NULL_FUNC so we do not have to release
26898 	 * the disk mutex here.
26899 	 */
26900 	rval = sd_setup_next_rw_pkt(un, pkt, bp,
26901 	    strt_blk_num, num_blks_not_xfered);
26902 
26903 	if (rval == 0) {
26904 
26905 		/*
26906 		 * Success.
26907 		 *
26908 		 * Adjust things if there are still more blocks to be
26909 		 * transfered.
26910 		 */
26911 		xp->xb_dma_resid = pkt->pkt_resid;
26912 		pkt->pkt_resid = 0;
26913 
26914 		return (1);
26915 	}
26916 
26917 	/*
26918 	 * There's really only one possible return value from
26919 	 * sd_setup_next_rw_pkt which occurs when scsi_init_pkt
26920 	 * returns NULL.
26921 	 */
26922 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
26923 
26924 	bp->b_resid = bp->b_bcount;
26925 	bp->b_flags |= B_ERROR;
26926 
26927 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26928 	    "Error setting up next portion of DMA transfer\n");
26929 
26930 	return (0);
26931 }
26932 
26933 /*
26934  *    Function: sd_panic_for_res_conflict
26935  *
26936  * Description: Call panic with a string formatted with "Reservation Conflict"
26937  *		and a human readable identifier indicating the SD instance
26938  *		that experienced the reservation conflict.
26939  *
26940  *   Arguments: un - pointer to the soft state struct for the instance.
26941  *
26942  *     Context: may execute in interrupt context.
26943  */
26944 
26945 #define	SD_RESV_CONFLICT_FMT_LEN 40
26946 void
26947 sd_panic_for_res_conflict(struct sd_lun *un)
26948 {
26949 	char panic_str[SD_RESV_CONFLICT_FMT_LEN+MAXPATHLEN];
26950 	char path_str[MAXPATHLEN];
26951 
26952 	(void) snprintf(panic_str, sizeof (panic_str),
26953 	    "Reservation Conflict\nDisk: %s",
26954 	    ddi_pathname(SD_DEVINFO(un), path_str));
26955 
26956 	panic(panic_str);
26957 }
26958 
26959 /*
26960  * Note: The following sd_faultinjection_ioctl( ) routines implement
26961  * driver support for handling fault injection for error analysis
26962  * causing faults in multiple layers of the driver.
26963  *
26964  */
26965 
26966 #ifdef SD_FAULT_INJECTION
26967 static uint_t   sd_fault_injection_on = 0;
26968 
26969 /*
26970  *    Function: sd_faultinjection_ioctl()
26971  *
26972  * Description: This routine is the driver entry point for handling
26973  *              faultinjection ioctls to inject errors into the
26974  *              layer model
26975  *
26976  *   Arguments: cmd	- the ioctl cmd received
26977  *		arg	- the arguments from user and returns
26978  */
26979 
26980 static void
26981 sd_faultinjection_ioctl(int cmd, intptr_t arg,  struct sd_lun *un) {
26982 
26983 	uint_t i;
26984 	uint_t rval;
26985 
26986 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl: entry\n");
26987 
26988 	mutex_enter(SD_MUTEX(un));
26989 
26990 	switch (cmd) {
26991 	case SDIOCRUN:
26992 		/* Allow pushed faults to be injected */
26993 		SD_INFO(SD_LOG_SDTEST, un,
26994 		    "sd_faultinjection_ioctl: Injecting Fault Run\n");
26995 
26996 		sd_fault_injection_on = 1;
26997 
26998 		SD_INFO(SD_LOG_IOERR, un,
26999 		    "sd_faultinjection_ioctl: run finished\n");
27000 		break;
27001 
27002 	case SDIOCSTART:
27003 		/* Start Injection Session */
27004 		SD_INFO(SD_LOG_SDTEST, un,
27005 		    "sd_faultinjection_ioctl: Injecting Fault Start\n");
27006 
27007 		sd_fault_injection_on = 0;
27008 		un->sd_injection_mask = 0xFFFFFFFF;
27009 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
27010 			un->sd_fi_fifo_pkt[i] = NULL;
27011 			un->sd_fi_fifo_xb[i] = NULL;
27012 			un->sd_fi_fifo_un[i] = NULL;
27013 			un->sd_fi_fifo_arq[i] = NULL;
27014 		}
27015 		un->sd_fi_fifo_start = 0;
27016 		un->sd_fi_fifo_end = 0;
27017 
27018 		mutex_enter(&(un->un_fi_mutex));
27019 		un->sd_fi_log[0] = '\0';
27020 		un->sd_fi_buf_len = 0;
27021 		mutex_exit(&(un->un_fi_mutex));
27022 
27023 		SD_INFO(SD_LOG_IOERR, un,
27024 		    "sd_faultinjection_ioctl: start finished\n");
27025 		break;
27026 
27027 	case SDIOCSTOP:
27028 		/* Stop Injection Session */
27029 		SD_INFO(SD_LOG_SDTEST, un,
27030 		    "sd_faultinjection_ioctl: Injecting Fault Stop\n");
27031 		sd_fault_injection_on = 0;
27032 		un->sd_injection_mask = 0x0;
27033 
27034 		/* Empty stray or unuseds structs from fifo */
27035 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
27036 			if (un->sd_fi_fifo_pkt[i] != NULL) {
27037 				kmem_free(un->sd_fi_fifo_pkt[i],
27038 				    sizeof (struct sd_fi_pkt));
27039 			}
27040 			if (un->sd_fi_fifo_xb[i] != NULL) {
27041 				kmem_free(un->sd_fi_fifo_xb[i],
27042 				    sizeof (struct sd_fi_xb));
27043 			}
27044 			if (un->sd_fi_fifo_un[i] != NULL) {
27045 				kmem_free(un->sd_fi_fifo_un[i],
27046 				    sizeof (struct sd_fi_un));
27047 			}
27048 			if (un->sd_fi_fifo_arq[i] != NULL) {
27049 				kmem_free(un->sd_fi_fifo_arq[i],
27050 				    sizeof (struct sd_fi_arq));
27051 			}
27052 			un->sd_fi_fifo_pkt[i] = NULL;
27053 			un->sd_fi_fifo_un[i] = NULL;
27054 			un->sd_fi_fifo_xb[i] = NULL;
27055 			un->sd_fi_fifo_arq[i] = NULL;
27056 		}
27057 		un->sd_fi_fifo_start = 0;
27058 		un->sd_fi_fifo_end = 0;
27059 
27060 		SD_INFO(SD_LOG_IOERR, un,
27061 		    "sd_faultinjection_ioctl: stop finished\n");
27062 		break;
27063 
27064 	case SDIOCINSERTPKT:
27065 		/* Store a packet struct to be pushed onto fifo */
27066 		SD_INFO(SD_LOG_SDTEST, un,
27067 		    "sd_faultinjection_ioctl: Injecting Fault Insert Pkt\n");
27068 
27069 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
27070 
27071 		sd_fault_injection_on = 0;
27072 
27073 		/* No more that SD_FI_MAX_ERROR allowed in Queue */
27074 		if (un->sd_fi_fifo_pkt[i] != NULL) {
27075 			kmem_free(un->sd_fi_fifo_pkt[i],
27076 			    sizeof (struct sd_fi_pkt));
27077 		}
27078 		if (arg != NULL) {
27079 			un->sd_fi_fifo_pkt[i] =
27080 			    kmem_alloc(sizeof (struct sd_fi_pkt), KM_NOSLEEP);
27081 			if (un->sd_fi_fifo_pkt[i] == NULL) {
27082 				/* Alloc failed don't store anything */
27083 				break;
27084 			}
27085 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_pkt[i],
27086 			    sizeof (struct sd_fi_pkt), 0);
27087 			if (rval == -1) {
27088 				kmem_free(un->sd_fi_fifo_pkt[i],
27089 				    sizeof (struct sd_fi_pkt));
27090 				un->sd_fi_fifo_pkt[i] = NULL;
27091 			}
27092 		} else {
27093 			SD_INFO(SD_LOG_IOERR, un,
27094 			    "sd_faultinjection_ioctl: pkt null\n");
27095 		}
27096 		break;
27097 
27098 	case SDIOCINSERTXB:
27099 		/* Store a xb struct to be pushed onto fifo */
27100 		SD_INFO(SD_LOG_SDTEST, un,
27101 		    "sd_faultinjection_ioctl: Injecting Fault Insert XB\n");
27102 
27103 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
27104 
27105 		sd_fault_injection_on = 0;
27106 
27107 		if (un->sd_fi_fifo_xb[i] != NULL) {
27108 			kmem_free(un->sd_fi_fifo_xb[i],
27109 			    sizeof (struct sd_fi_xb));
27110 			un->sd_fi_fifo_xb[i] = NULL;
27111 		}
27112 		if (arg != NULL) {
27113 			un->sd_fi_fifo_xb[i] =
27114 			    kmem_alloc(sizeof (struct sd_fi_xb), KM_NOSLEEP);
27115 			if (un->sd_fi_fifo_xb[i] == NULL) {
27116 				/* Alloc failed don't store anything */
27117 				break;
27118 			}
27119 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_xb[i],
27120 			    sizeof (struct sd_fi_xb), 0);
27121 
27122 			if (rval == -1) {
27123 				kmem_free(un->sd_fi_fifo_xb[i],
27124 				    sizeof (struct sd_fi_xb));
27125 				un->sd_fi_fifo_xb[i] = NULL;
27126 			}
27127 		} else {
27128 			SD_INFO(SD_LOG_IOERR, un,
27129 			    "sd_faultinjection_ioctl: xb null\n");
27130 		}
27131 		break;
27132 
27133 	case SDIOCINSERTUN:
27134 		/* Store a un struct to be pushed onto fifo */
27135 		SD_INFO(SD_LOG_SDTEST, un,
27136 		    "sd_faultinjection_ioctl: Injecting Fault Insert UN\n");
27137 
27138 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
27139 
27140 		sd_fault_injection_on = 0;
27141 
27142 		if (un->sd_fi_fifo_un[i] != NULL) {
27143 			kmem_free(un->sd_fi_fifo_un[i],
27144 			    sizeof (struct sd_fi_un));
27145 			un->sd_fi_fifo_un[i] = NULL;
27146 		}
27147 		if (arg != NULL) {
27148 			un->sd_fi_fifo_un[i] =
27149 			    kmem_alloc(sizeof (struct sd_fi_un), KM_NOSLEEP);
27150 			if (un->sd_fi_fifo_un[i] == NULL) {
27151 				/* Alloc failed don't store anything */
27152 				break;
27153 			}
27154 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_un[i],
27155 			    sizeof (struct sd_fi_un), 0);
27156 			if (rval == -1) {
27157 				kmem_free(un->sd_fi_fifo_un[i],
27158 				    sizeof (struct sd_fi_un));
27159 				un->sd_fi_fifo_un[i] = NULL;
27160 			}
27161 
27162 		} else {
27163 			SD_INFO(SD_LOG_IOERR, un,
27164 			    "sd_faultinjection_ioctl: un null\n");
27165 		}
27166 
27167 		break;
27168 
27169 	case SDIOCINSERTARQ:
27170 		/* Store a arq struct to be pushed onto fifo */
27171 		SD_INFO(SD_LOG_SDTEST, un,
27172 		    "sd_faultinjection_ioctl: Injecting Fault Insert ARQ\n");
27173 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
27174 
27175 		sd_fault_injection_on = 0;
27176 
27177 		if (un->sd_fi_fifo_arq[i] != NULL) {
27178 			kmem_free(un->sd_fi_fifo_arq[i],
27179 			    sizeof (struct sd_fi_arq));
27180 			un->sd_fi_fifo_arq[i] = NULL;
27181 		}
27182 		if (arg != NULL) {
27183 			un->sd_fi_fifo_arq[i] =
27184 			    kmem_alloc(sizeof (struct sd_fi_arq), KM_NOSLEEP);
27185 			if (un->sd_fi_fifo_arq[i] == NULL) {
27186 				/* Alloc failed don't store anything */
27187 				break;
27188 			}
27189 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_arq[i],
27190 			    sizeof (struct sd_fi_arq), 0);
27191 			if (rval == -1) {
27192 				kmem_free(un->sd_fi_fifo_arq[i],
27193 				    sizeof (struct sd_fi_arq));
27194 				un->sd_fi_fifo_arq[i] = NULL;
27195 			}
27196 
27197 		} else {
27198 			SD_INFO(SD_LOG_IOERR, un,
27199 			    "sd_faultinjection_ioctl: arq null\n");
27200 		}
27201 
27202 		break;
27203 
27204 	case SDIOCPUSH:
27205 		/* Push stored xb, pkt, un, and arq onto fifo */
27206 		sd_fault_injection_on = 0;
27207 
27208 		if (arg != NULL) {
27209 			rval = ddi_copyin((void *)arg, &i, sizeof (uint_t), 0);
27210 			if (rval != -1 &&
27211 			    un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
27212 				un->sd_fi_fifo_end += i;
27213 			}
27214 		} else {
27215 			SD_INFO(SD_LOG_IOERR, un,
27216 			    "sd_faultinjection_ioctl: push arg null\n");
27217 			if (un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
27218 				un->sd_fi_fifo_end++;
27219 			}
27220 		}
27221 		SD_INFO(SD_LOG_IOERR, un,
27222 		    "sd_faultinjection_ioctl: push to end=%d\n",
27223 		    un->sd_fi_fifo_end);
27224 		break;
27225 
27226 	case SDIOCRETRIEVE:
27227 		/* Return buffer of log from Injection session */
27228 		SD_INFO(SD_LOG_SDTEST, un,
27229 		    "sd_faultinjection_ioctl: Injecting Fault Retreive");
27230 
27231 		sd_fault_injection_on = 0;
27232 
27233 		mutex_enter(&(un->un_fi_mutex));
27234 		rval = ddi_copyout(un->sd_fi_log, (void *)arg,
27235 		    un->sd_fi_buf_len+1, 0);
27236 		mutex_exit(&(un->un_fi_mutex));
27237 
27238 		if (rval == -1) {
27239 			/*
27240 			 * arg is possibly invalid setting
27241 			 * it to NULL for return
27242 			 */
27243 			arg = NULL;
27244 		}
27245 		break;
27246 	}
27247 
27248 	mutex_exit(SD_MUTEX(un));
27249 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl:"
27250 			    " exit\n");
27251 }
27252 
27253 
27254 /*
27255  *    Function: sd_injection_log()
27256  *
27257  * Description: This routine adds buff to the already existing injection log
27258  *              for retrieval via faultinjection_ioctl for use in fault
27259  *              detection and recovery
27260  *
27261  *   Arguments: buf - the string to add to the log
27262  */
27263 
27264 static void
27265 sd_injection_log(char *buf, struct sd_lun *un)
27266 {
27267 	uint_t len;
27268 
27269 	ASSERT(un != NULL);
27270 	ASSERT(buf != NULL);
27271 
27272 	mutex_enter(&(un->un_fi_mutex));
27273 
27274 	len = min(strlen(buf), 255);
27275 	/* Add logged value to Injection log to be returned later */
27276 	if (len + un->sd_fi_buf_len < SD_FI_MAX_BUF) {
27277 		uint_t	offset = strlen((char *)un->sd_fi_log);
27278 		char *destp = (char *)un->sd_fi_log + offset;
27279 		int i;
27280 		for (i = 0; i < len; i++) {
27281 			*destp++ = *buf++;
27282 		}
27283 		un->sd_fi_buf_len += len;
27284 		un->sd_fi_log[un->sd_fi_buf_len] = '\0';
27285 	}
27286 
27287 	mutex_exit(&(un->un_fi_mutex));
27288 }
27289 
27290 
27291 /*
27292  *    Function: sd_faultinjection()
27293  *
27294  * Description: This routine takes the pkt and changes its
27295  *		content based on error injection scenerio.
27296  *
27297  *   Arguments: pktp	- packet to be changed
27298  */
27299 
27300 static void
27301 sd_faultinjection(struct scsi_pkt *pktp)
27302 {
27303 	uint_t i;
27304 	struct sd_fi_pkt *fi_pkt;
27305 	struct sd_fi_xb *fi_xb;
27306 	struct sd_fi_un *fi_un;
27307 	struct sd_fi_arq *fi_arq;
27308 	struct buf *bp;
27309 	struct sd_xbuf *xb;
27310 	struct sd_lun *un;
27311 
27312 	ASSERT(pktp != NULL);
27313 
27314 	/* pull bp xb and un from pktp */
27315 	bp = (struct buf *)pktp->pkt_private;
27316 	xb = SD_GET_XBUF(bp);
27317 	un = SD_GET_UN(bp);
27318 
27319 	ASSERT(un != NULL);
27320 
27321 	mutex_enter(SD_MUTEX(un));
27322 
27323 	SD_TRACE(SD_LOG_SDTEST, un,
27324 	    "sd_faultinjection: entry Injection from sdintr\n");
27325 
27326 	/* if injection is off return */
27327 	if (sd_fault_injection_on == 0 ||
27328 	    un->sd_fi_fifo_start == un->sd_fi_fifo_end) {
27329 		mutex_exit(SD_MUTEX(un));
27330 		return;
27331 	}
27332 
27333 
27334 	/* take next set off fifo */
27335 	i = un->sd_fi_fifo_start % SD_FI_MAX_ERROR;
27336 
27337 	fi_pkt = un->sd_fi_fifo_pkt[i];
27338 	fi_xb = un->sd_fi_fifo_xb[i];
27339 	fi_un = un->sd_fi_fifo_un[i];
27340 	fi_arq = un->sd_fi_fifo_arq[i];
27341 
27342 
27343 	/* set variables accordingly */
27344 	/* set pkt if it was on fifo */
27345 	if (fi_pkt != NULL) {
27346 		SD_CONDSET(pktp, pkt, pkt_flags, "pkt_flags");
27347 		SD_CONDSET(*pktp, pkt, pkt_scbp, "pkt_scbp");
27348 		SD_CONDSET(*pktp, pkt, pkt_cdbp, "pkt_cdbp");
27349 		SD_CONDSET(pktp, pkt, pkt_state, "pkt_state");
27350 		SD_CONDSET(pktp, pkt, pkt_statistics, "pkt_statistics");
27351 		SD_CONDSET(pktp, pkt, pkt_reason, "pkt_reason");
27352 
27353 	}
27354 
27355 	/* set xb if it was on fifo */
27356 	if (fi_xb != NULL) {
27357 		SD_CONDSET(xb, xb, xb_blkno, "xb_blkno");
27358 		SD_CONDSET(xb, xb, xb_dma_resid, "xb_dma_resid");
27359 		SD_CONDSET(xb, xb, xb_retry_count, "xb_retry_count");
27360 		SD_CONDSET(xb, xb, xb_victim_retry_count,
27361 		    "xb_victim_retry_count");
27362 		SD_CONDSET(xb, xb, xb_sense_status, "xb_sense_status");
27363 		SD_CONDSET(xb, xb, xb_sense_state, "xb_sense_state");
27364 		SD_CONDSET(xb, xb, xb_sense_resid, "xb_sense_resid");
27365 
27366 		/* copy in block data from sense */
27367 		if (fi_xb->xb_sense_data[0] != -1) {
27368 			bcopy(fi_xb->xb_sense_data, xb->xb_sense_data,
27369 			    SENSE_LENGTH);
27370 		}
27371 
27372 		/* copy in extended sense codes */
27373 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_code,
27374 		    "es_code");
27375 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_key,
27376 		    "es_key");
27377 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_add_code,
27378 		    "es_add_code");
27379 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb,
27380 		    es_qual_code, "es_qual_code");
27381 	}
27382 
27383 	/* set un if it was on fifo */
27384 	if (fi_un != NULL) {
27385 		SD_CONDSET(un->un_sd->sd_inq, un, inq_rmb, "inq_rmb");
27386 		SD_CONDSET(un, un, un_ctype, "un_ctype");
27387 		SD_CONDSET(un, un, un_reset_retry_count,
27388 		    "un_reset_retry_count");
27389 		SD_CONDSET(un, un, un_reservation_type, "un_reservation_type");
27390 		SD_CONDSET(un, un, un_resvd_status, "un_resvd_status");
27391 		SD_CONDSET(un, un, un_f_arq_enabled, "un_f_arq_enabled");
27392 		SD_CONDSET(un, un, un_f_allow_bus_device_reset,
27393 		    "un_f_allow_bus_device_reset");
27394 		SD_CONDSET(un, un, un_f_opt_queueing, "un_f_opt_queueing");
27395 
27396 	}
27397 
27398 	/* copy in auto request sense if it was on fifo */
27399 	if (fi_arq != NULL) {
27400 		bcopy(fi_arq, pktp->pkt_scbp, sizeof (struct sd_fi_arq));
27401 	}
27402 
27403 	/* free structs */
27404 	if (un->sd_fi_fifo_pkt[i] != NULL) {
27405 		kmem_free(un->sd_fi_fifo_pkt[i], sizeof (struct sd_fi_pkt));
27406 	}
27407 	if (un->sd_fi_fifo_xb[i] != NULL) {
27408 		kmem_free(un->sd_fi_fifo_xb[i], sizeof (struct sd_fi_xb));
27409 	}
27410 	if (un->sd_fi_fifo_un[i] != NULL) {
27411 		kmem_free(un->sd_fi_fifo_un[i], sizeof (struct sd_fi_un));
27412 	}
27413 	if (un->sd_fi_fifo_arq[i] != NULL) {
27414 		kmem_free(un->sd_fi_fifo_arq[i], sizeof (struct sd_fi_arq));
27415 	}
27416 
27417 	/*
27418 	 * kmem_free does not gurantee to set to NULL
27419 	 * since we uses these to determine if we set
27420 	 * values or not lets confirm they are always
27421 	 * NULL after free
27422 	 */
27423 	un->sd_fi_fifo_pkt[i] = NULL;
27424 	un->sd_fi_fifo_un[i] = NULL;
27425 	un->sd_fi_fifo_xb[i] = NULL;
27426 	un->sd_fi_fifo_arq[i] = NULL;
27427 
27428 	un->sd_fi_fifo_start++;
27429 
27430 	mutex_exit(SD_MUTEX(un));
27431 
27432 	SD_TRACE(SD_LOG_SDTEST, un, "sd_faultinjection: exit\n");
27433 }
27434 
27435 #endif /* SD_FAULT_INJECTION */
27436 
27437 /*
27438  * This routine is invoked in sd_unit_attach(). Before calling it, the
27439  * properties in conf file should be processed already, and "hotpluggable"
27440  * property was processed also.
27441  *
27442  * The sd driver distinguishes 3 different type of devices: removable media,
27443  * non-removable media, and hotpluggable. Below the differences are defined:
27444  *
27445  * 1. Device ID
27446  *
27447  *     The device ID of a device is used to identify this device. Refer to
27448  *     ddi_devid_register(9F).
27449  *
27450  *     For a non-removable media disk device which can provide 0x80 or 0x83
27451  *     VPD page (refer to INQUIRY command of SCSI SPC specification), a unique
27452  *     device ID is created to identify this device. For other non-removable
27453  *     media devices, a default device ID is created only if this device has
27454  *     at least 2 alter cylinders. Otherwise, this device has no devid.
27455  *
27456  *     -------------------------------------------------------
27457  *     removable media   hotpluggable  | Can Have Device ID
27458  *     -------------------------------------------------------
27459  *         false             false     |     Yes
27460  *         false             true      |     Yes
27461  *         true                x       |     No
27462  *     ------------------------------------------------------
27463  *
27464  *
27465  * 2. SCSI group 4 commands
27466  *
27467  *     In SCSI specs, only some commands in group 4 command set can use
27468  *     8-byte addresses that can be used to access >2TB storage spaces.
27469  *     Other commands have no such capability. Without supporting group4,
27470  *     it is impossible to make full use of storage spaces of a disk with
27471  *     capacity larger than 2TB.
27472  *
27473  *     -----------------------------------------------
27474  *     removable media   hotpluggable   LP64  |  Group
27475  *     -----------------------------------------------
27476  *           false          false       false |   1
27477  *           false          false       true  |   4
27478  *           false          true        false |   1
27479  *           false          true        true  |   4
27480  *           true             x           x   |   5
27481  *     -----------------------------------------------
27482  *
27483  *
27484  * 3. Check for VTOC Label
27485  *
27486  *     If a direct-access disk has no EFI label, sd will check if it has a
27487  *     valid VTOC label. Now, sd also does that check for removable media
27488  *     and hotpluggable devices.
27489  *
27490  *     --------------------------------------------------------------
27491  *     Direct-Access   removable media    hotpluggable |  Check Label
27492  *     -------------------------------------------------------------
27493  *         false          false           false        |   No
27494  *         false          false           true         |   No
27495  *         false          true            false        |   Yes
27496  *         false          true            true         |   Yes
27497  *         true            x                x          |   Yes
27498  *     --------------------------------------------------------------
27499  *
27500  *
27501  * 4. Building default VTOC label
27502  *
27503  *     As section 3 says, sd checks if some kinds of devices have VTOC label.
27504  *     If those devices have no valid VTOC label, sd(7d) will attempt to
27505  *     create default VTOC for them. Currently sd creates default VTOC label
27506  *     for all devices on x86 platform (VTOC_16), but only for removable
27507  *     media devices on SPARC (VTOC_8).
27508  *
27509  *     -----------------------------------------------------------
27510  *       removable media hotpluggable platform   |   Default Label
27511  *     -----------------------------------------------------------
27512  *             false          false    sparc     |     No
27513  *             false          true      x86      |     Yes
27514  *             false          true     sparc     |     Yes
27515  *             true             x        x       |     Yes
27516  *     ----------------------------------------------------------
27517  *
27518  *
27519  * 5. Supported blocksizes of target devices
27520  *
27521  *     Sd supports non-512-byte blocksize for removable media devices only.
27522  *     For other devices, only 512-byte blocksize is supported. This may be
27523  *     changed in near future because some RAID devices require non-512-byte
27524  *     blocksize
27525  *
27526  *     -----------------------------------------------------------
27527  *     removable media    hotpluggable    | non-512-byte blocksize
27528  *     -----------------------------------------------------------
27529  *           false          false         |   No
27530  *           false          true          |   No
27531  *           true             x           |   Yes
27532  *     -----------------------------------------------------------
27533  *
27534  *
27535  * 6. Automatic mount & unmount
27536  *
27537  *     Sd(7d) driver provides DKIOCREMOVABLE ioctl. This ioctl is used to query
27538  *     if a device is removable media device. It return 1 for removable media
27539  *     devices, and 0 for others.
27540  *
27541  *     The automatic mounting subsystem should distinguish between the types
27542  *     of devices and apply automounting policies to each.
27543  *
27544  *
27545  * 7. fdisk partition management
27546  *
27547  *     Fdisk is traditional partition method on x86 platform. Sd(7d) driver
27548  *     just supports fdisk partitions on x86 platform. On sparc platform, sd
27549  *     doesn't support fdisk partitions at all. Note: pcfs(7fs) can recognize
27550  *     fdisk partitions on both x86 and SPARC platform.
27551  *
27552  *     -----------------------------------------------------------
27553  *       platform   removable media  USB/1394  |  fdisk supported
27554  *     -----------------------------------------------------------
27555  *        x86         X               X        |       true
27556  *     ------------------------------------------------------------
27557  *        sparc       X               X        |       false
27558  *     ------------------------------------------------------------
27559  *
27560  *
27561  * 8. MBOOT/MBR
27562  *
27563  *     Although sd(7d) doesn't support fdisk on SPARC platform, it does support
27564  *     read/write mboot for removable media devices on sparc platform.
27565  *
27566  *     -----------------------------------------------------------
27567  *       platform   removable media  USB/1394  |  mboot supported
27568  *     -----------------------------------------------------------
27569  *        x86         X               X        |       true
27570  *     ------------------------------------------------------------
27571  *        sparc      false           false     |       false
27572  *        sparc      false           true      |       true
27573  *        sparc      true            false     |       true
27574  *        sparc      true            true      |       true
27575  *     ------------------------------------------------------------
27576  *
27577  *
27578  * 9.  error handling during opening device
27579  *
27580  *     If failed to open a disk device, an errno is returned. For some kinds
27581  *     of errors, different errno is returned depending on if this device is
27582  *     a removable media device. This brings USB/1394 hard disks in line with
27583  *     expected hard disk behavior. It is not expected that this breaks any
27584  *     application.
27585  *
27586  *     ------------------------------------------------------
27587  *       removable media    hotpluggable   |  errno
27588  *     ------------------------------------------------------
27589  *             false          false        |   EIO
27590  *             false          true         |   EIO
27591  *             true             x          |   ENXIO
27592  *     ------------------------------------------------------
27593  *
27594  *
27595  * 11. ioctls: DKIOCEJECT, CDROMEJECT
27596  *
27597  *     These IOCTLs are applicable only to removable media devices.
27598  *
27599  *     -----------------------------------------------------------
27600  *       removable media    hotpluggable   |DKIOCEJECT, CDROMEJECT
27601  *     -----------------------------------------------------------
27602  *             false          false        |     No
27603  *             false          true         |     No
27604  *             true            x           |     Yes
27605  *     -----------------------------------------------------------
27606  *
27607  *
27608  * 12. Kstats for partitions
27609  *
27610  *     sd creates partition kstat for non-removable media devices. USB and
27611  *     Firewire hard disks now have partition kstats
27612  *
27613  *      ------------------------------------------------------
27614  *       removable media    hotpluggable   |   kstat
27615  *      ------------------------------------------------------
27616  *             false          false        |    Yes
27617  *             false          true         |    Yes
27618  *             true             x          |    No
27619  *       ------------------------------------------------------
27620  *
27621  *
27622  * 13. Removable media & hotpluggable properties
27623  *
27624  *     Sd driver creates a "removable-media" property for removable media
27625  *     devices. Parent nexus drivers create a "hotpluggable" property if
27626  *     it supports hotplugging.
27627  *
27628  *     ---------------------------------------------------------------------
27629  *     removable media   hotpluggable |  "removable-media"   " hotpluggable"
27630  *     ---------------------------------------------------------------------
27631  *       false            false       |    No                   No
27632  *       false            true        |    No                   Yes
27633  *       true             false       |    Yes                  No
27634  *       true             true        |    Yes                  Yes
27635  *     ---------------------------------------------------------------------
27636  *
27637  *
27638  * 14. Power Management
27639  *
27640  *     sd only power manages removable media devices or devices that support
27641  *     LOG_SENSE or have a "pm-capable" property  (PSARC/2002/250)
27642  *
27643  *     A parent nexus that supports hotplugging can also set "pm-capable"
27644  *     if the disk can be power managed.
27645  *
27646  *     ------------------------------------------------------------
27647  *       removable media hotpluggable pm-capable  |   power manage
27648  *     ------------------------------------------------------------
27649  *             false          false     false     |     No
27650  *             false          false     true      |     Yes
27651  *             false          true      false     |     No
27652  *             false          true      true      |     Yes
27653  *             true             x        x        |     Yes
27654  *     ------------------------------------------------------------
27655  *
27656  *      USB and firewire hard disks can now be power managed independently
27657  *      of the framebuffer
27658  *
27659  *
27660  * 15. Support for USB disks with capacity larger than 1TB
27661  *
27662  *     Currently, sd doesn't permit a fixed disk device with capacity
27663  *     larger than 1TB to be used in a 32-bit operating system environment.
27664  *     However, sd doesn't do that for removable media devices. Instead, it
27665  *     assumes that removable media devices cannot have a capacity larger
27666  *     than 1TB. Therefore, using those devices on 32-bit system is partially
27667  *     supported, which can cause some unexpected results.
27668  *
27669  *     ---------------------------------------------------------------------
27670  *       removable media    USB/1394 | Capacity > 1TB |   Used in 32-bit env
27671  *     ---------------------------------------------------------------------
27672  *             false          false  |   true         |     no
27673  *             false          true   |   true         |     no
27674  *             true           false  |   true         |     Yes
27675  *             true           true   |   true         |     Yes
27676  *     ---------------------------------------------------------------------
27677  *
27678  *
27679  * 16. Check write-protection at open time
27680  *
27681  *     When a removable media device is being opened for writing without NDELAY
27682  *     flag, sd will check if this device is writable. If attempting to open
27683  *     without NDELAY flag a write-protected device, this operation will abort.
27684  *
27685  *     ------------------------------------------------------------
27686  *       removable media    USB/1394   |   WP Check
27687  *     ------------------------------------------------------------
27688  *             false          false    |     No
27689  *             false          true     |     No
27690  *             true           false    |     Yes
27691  *             true           true     |     Yes
27692  *     ------------------------------------------------------------
27693  *
27694  *
27695  * 17. syslog when corrupted VTOC is encountered
27696  *
27697  *      Currently, if an invalid VTOC is encountered, sd only print syslog
27698  *      for fixed SCSI disks.
27699  *     ------------------------------------------------------------
27700  *       removable media    USB/1394   |   print syslog
27701  *     ------------------------------------------------------------
27702  *             false          false    |     Yes
27703  *             false          true     |     No
27704  *             true           false    |     No
27705  *             true           true     |     No
27706  *     ------------------------------------------------------------
27707  */
27708 static void
27709 sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi)
27710 {
27711 	int	pm_capable_prop;
27712 
27713 	ASSERT(un->un_sd);
27714 	ASSERT(un->un_sd->sd_inq);
27715 
27716 	/*
27717 	 * Enable SYNC CACHE support for all devices.
27718 	 */
27719 	un->un_f_sync_cache_supported = TRUE;
27720 
27721 	if (un->un_sd->sd_inq->inq_rmb) {
27722 		/*
27723 		 * The media of this device is removable. And for this kind
27724 		 * of devices, it is possible to change medium after opening
27725 		 * devices. Thus we should support this operation.
27726 		 */
27727 		un->un_f_has_removable_media = TRUE;
27728 
27729 		/*
27730 		 * support non-512-byte blocksize of removable media devices
27731 		 */
27732 		un->un_f_non_devbsize_supported = TRUE;
27733 
27734 		/*
27735 		 * Assume that all removable media devices support DOOR_LOCK
27736 		 */
27737 		un->un_f_doorlock_supported = TRUE;
27738 
27739 		/*
27740 		 * For a removable media device, it is possible to be opened
27741 		 * with NDELAY flag when there is no media in drive, in this
27742 		 * case we don't care if device is writable. But if without
27743 		 * NDELAY flag, we need to check if media is write-protected.
27744 		 */
27745 		un->un_f_chk_wp_open = TRUE;
27746 
27747 		/*
27748 		 * need to start a SCSI watch thread to monitor media state,
27749 		 * when media is being inserted or ejected, notify syseventd.
27750 		 */
27751 		un->un_f_monitor_media_state = TRUE;
27752 
27753 		/*
27754 		 * Some devices don't support START_STOP_UNIT command.
27755 		 * Therefore, we'd better check if a device supports it
27756 		 * before sending it.
27757 		 */
27758 		un->un_f_check_start_stop = TRUE;
27759 
27760 		/*
27761 		 * support eject media ioctl:
27762 		 *		FDEJECT, DKIOCEJECT, CDROMEJECT
27763 		 */
27764 		un->un_f_eject_media_supported = TRUE;
27765 
27766 		/*
27767 		 * Because many removable-media devices don't support
27768 		 * LOG_SENSE, we couldn't use this command to check if
27769 		 * a removable media device support power-management.
27770 		 * We assume that they support power-management via
27771 		 * START_STOP_UNIT command and can be spun up and down
27772 		 * without limitations.
27773 		 */
27774 		un->un_f_pm_supported = TRUE;
27775 
27776 		/*
27777 		 * Need to create a zero length (Boolean) property
27778 		 * removable-media for the removable media devices.
27779 		 * Note that the return value of the property is not being
27780 		 * checked, since if unable to create the property
27781 		 * then do not want the attach to fail altogether. Consistent
27782 		 * with other property creation in attach.
27783 		 */
27784 		(void) ddi_prop_create(DDI_DEV_T_NONE, devi,
27785 		    DDI_PROP_CANSLEEP, "removable-media", NULL, 0);
27786 
27787 	} else {
27788 		/*
27789 		 * create device ID for device
27790 		 */
27791 		un->un_f_devid_supported = TRUE;
27792 
27793 		/*
27794 		 * Spin up non-removable-media devices once it is attached
27795 		 */
27796 		un->un_f_attach_spinup = TRUE;
27797 
27798 		/*
27799 		 * According to SCSI specification, Sense data has two kinds of
27800 		 * format: fixed format, and descriptor format. At present, we
27801 		 * don't support descriptor format sense data for removable
27802 		 * media.
27803 		 */
27804 		if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) {
27805 			un->un_f_descr_format_supported = TRUE;
27806 		}
27807 
27808 		/*
27809 		 * kstats are created only for non-removable media devices.
27810 		 *
27811 		 * Set this in sd.conf to 0 in order to disable kstats.  The
27812 		 * default is 1, so they are enabled by default.
27813 		 */
27814 		un->un_f_pkstats_enabled = (ddi_prop_get_int(DDI_DEV_T_ANY,
27815 		    SD_DEVINFO(un), DDI_PROP_DONTPASS,
27816 		    "enable-partition-kstats", 1));
27817 
27818 		/*
27819 		 * Check if HBA has set the "pm-capable" property.
27820 		 * If "pm-capable" exists and is non-zero then we can
27821 		 * power manage the device without checking the start/stop
27822 		 * cycle count log sense page.
27823 		 *
27824 		 * If "pm-capable" exists and is SD_PM_CAPABLE_FALSE (0)
27825 		 * then we should not power manage the device.
27826 		 *
27827 		 * If "pm-capable" doesn't exist then pm_capable_prop will
27828 		 * be set to SD_PM_CAPABLE_UNDEFINED (-1).  In this case,
27829 		 * sd will check the start/stop cycle count log sense page
27830 		 * and power manage the device if the cycle count limit has
27831 		 * not been exceeded.
27832 		 */
27833 		pm_capable_prop = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
27834 		    DDI_PROP_DONTPASS, "pm-capable", SD_PM_CAPABLE_UNDEFINED);
27835 		if (pm_capable_prop == SD_PM_CAPABLE_UNDEFINED) {
27836 			un->un_f_log_sense_supported = TRUE;
27837 		} else {
27838 			/*
27839 			 * pm-capable property exists.
27840 			 *
27841 			 * Convert "TRUE" values for pm_capable_prop to
27842 			 * SD_PM_CAPABLE_TRUE (1) to make it easier to check
27843 			 * later. "TRUE" values are any values except
27844 			 * SD_PM_CAPABLE_FALSE (0) and
27845 			 * SD_PM_CAPABLE_UNDEFINED (-1)
27846 			 */
27847 			if (pm_capable_prop == SD_PM_CAPABLE_FALSE) {
27848 				un->un_f_log_sense_supported = FALSE;
27849 			} else {
27850 				un->un_f_pm_supported = TRUE;
27851 			}
27852 
27853 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
27854 			    "sd_unit_attach: un:0x%p pm-capable "
27855 			    "property set to %d.\n", un, un->un_f_pm_supported);
27856 		}
27857 	}
27858 
27859 	if (un->un_f_is_hotpluggable) {
27860 
27861 		/*
27862 		 * Have to watch hotpluggable devices as well, since
27863 		 * that's the only way for userland applications to
27864 		 * detect hot removal while device is busy/mounted.
27865 		 */
27866 		un->un_f_monitor_media_state = TRUE;
27867 
27868 		un->un_f_check_start_stop = TRUE;
27869 
27870 	}
27871 }
27872 
27873 /*
27874  * sd_tg_rdwr:
27875  * Provides rdwr access for cmlb via sd_tgops. The start_block is
27876  * in sys block size, req_length in bytes.
27877  *
27878  */
27879 static int
27880 sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr,
27881     diskaddr_t start_block, size_t reqlength, void *tg_cookie)
27882 {
27883 	struct sd_lun *un;
27884 	int path_flag = (int)(uintptr_t)tg_cookie;
27885 	char *dkl = NULL;
27886 	diskaddr_t real_addr = start_block;
27887 	diskaddr_t first_byte, end_block;
27888 
27889 	size_t	buffer_size = reqlength;
27890 	int rval;
27891 	diskaddr_t	cap;
27892 	uint32_t	lbasize;
27893 
27894 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
27895 	if (un == NULL)
27896 		return (ENXIO);
27897 
27898 	if (cmd != TG_READ && cmd != TG_WRITE)
27899 		return (EINVAL);
27900 
27901 	mutex_enter(SD_MUTEX(un));
27902 	if (un->un_f_tgt_blocksize_is_valid == FALSE) {
27903 		mutex_exit(SD_MUTEX(un));
27904 		rval = sd_send_scsi_READ_CAPACITY(un, (uint64_t *)&cap,
27905 		    &lbasize, path_flag);
27906 		if (rval != 0)
27907 			return (rval);
27908 		mutex_enter(SD_MUTEX(un));
27909 		sd_update_block_info(un, lbasize, cap);
27910 		if ((un->un_f_tgt_blocksize_is_valid == FALSE)) {
27911 			mutex_exit(SD_MUTEX(un));
27912 			return (EIO);
27913 		}
27914 	}
27915 
27916 	if (NOT_DEVBSIZE(un)) {
27917 		/*
27918 		 * sys_blocksize != tgt_blocksize, need to re-adjust
27919 		 * blkno and save the index to beginning of dk_label
27920 		 */
27921 		first_byte  = SD_SYSBLOCKS2BYTES(un, start_block);
27922 		real_addr = first_byte / un->un_tgt_blocksize;
27923 
27924 		end_block = (first_byte + reqlength +
27925 		    un->un_tgt_blocksize - 1) / un->un_tgt_blocksize;
27926 
27927 		/* round up buffer size to multiple of target block size */
27928 		buffer_size = (end_block - real_addr) * un->un_tgt_blocksize;
27929 
27930 		SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_tg_rdwr",
27931 		    "label_addr: 0x%x allocation size: 0x%x\n",
27932 		    real_addr, buffer_size);
27933 
27934 		if (((first_byte % un->un_tgt_blocksize) != 0) ||
27935 		    (reqlength % un->un_tgt_blocksize) != 0)
27936 			/* the request is not aligned */
27937 			dkl = kmem_zalloc(buffer_size, KM_SLEEP);
27938 	}
27939 
27940 	/*
27941 	 * The MMC standard allows READ CAPACITY to be
27942 	 * inaccurate by a bounded amount (in the interest of
27943 	 * response latency).  As a result, failed READs are
27944 	 * commonplace (due to the reading of metadata and not
27945 	 * data). Depending on the per-Vendor/drive Sense data,
27946 	 * the failed READ can cause many (unnecessary) retries.
27947 	 */
27948 
27949 	if (ISCD(un) && (cmd == TG_READ) &&
27950 	    (un->un_f_blockcount_is_valid == TRUE) &&
27951 	    ((start_block == (un->un_blockcount - 1))||
27952 	    (start_block == (un->un_blockcount - 2)))) {
27953 			path_flag = SD_PATH_DIRECT_PRIORITY;
27954 	}
27955 
27956 	mutex_exit(SD_MUTEX(un));
27957 	if (cmd == TG_READ) {
27958 		rval = sd_send_scsi_READ(un, (dkl != NULL)? dkl: bufaddr,
27959 		    buffer_size, real_addr, path_flag);
27960 		if (dkl != NULL)
27961 			bcopy(dkl + SD_TGTBYTEOFFSET(un, start_block,
27962 			    real_addr), bufaddr, reqlength);
27963 	} else {
27964 		if (dkl) {
27965 			rval = sd_send_scsi_READ(un, dkl, buffer_size,
27966 			    real_addr, path_flag);
27967 			if (rval) {
27968 				kmem_free(dkl, buffer_size);
27969 				return (rval);
27970 			}
27971 			bcopy(bufaddr, dkl + SD_TGTBYTEOFFSET(un, start_block,
27972 			    real_addr), reqlength);
27973 		}
27974 		rval = sd_send_scsi_WRITE(un, (dkl != NULL)? dkl: bufaddr,
27975 		    buffer_size, real_addr, path_flag);
27976 	}
27977 
27978 	if (dkl != NULL)
27979 		kmem_free(dkl, buffer_size);
27980 
27981 	return (rval);
27982 }
27983 
27984 
27985 static int
27986 sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie)
27987 {
27988 
27989 	struct sd_lun *un;
27990 	diskaddr_t	cap;
27991 	uint32_t	lbasize;
27992 	int		path_flag = (int)(uintptr_t)tg_cookie;
27993 	int		ret = 0;
27994 
27995 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
27996 	if (un == NULL)
27997 		return (ENXIO);
27998 
27999 	switch (cmd) {
28000 	case TG_GETPHYGEOM:
28001 	case TG_GETVIRTGEOM:
28002 	case TG_GETCAPACITY:
28003 	case  TG_GETBLOCKSIZE:
28004 		mutex_enter(SD_MUTEX(un));
28005 
28006 		if ((un->un_f_blockcount_is_valid == TRUE) &&
28007 		    (un->un_f_tgt_blocksize_is_valid == TRUE)) {
28008 			cap = un->un_blockcount;
28009 			lbasize = un->un_tgt_blocksize;
28010 			mutex_exit(SD_MUTEX(un));
28011 		} else {
28012 			mutex_exit(SD_MUTEX(un));
28013 			ret = sd_send_scsi_READ_CAPACITY(un, (uint64_t *)&cap,
28014 			    &lbasize, path_flag);
28015 			if (ret != 0)
28016 				return (ret);
28017 			mutex_enter(SD_MUTEX(un));
28018 			sd_update_block_info(un, lbasize, cap);
28019 			if ((un->un_f_blockcount_is_valid == FALSE) ||
28020 			    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
28021 				mutex_exit(SD_MUTEX(un));
28022 				return (EIO);
28023 			}
28024 			mutex_exit(SD_MUTEX(un));
28025 		}
28026 
28027 		if (cmd == TG_GETCAPACITY) {
28028 			*(diskaddr_t *)arg = cap;
28029 			return (0);
28030 		}
28031 
28032 		if (cmd == TG_GETBLOCKSIZE) {
28033 			*(uint32_t *)arg = lbasize;
28034 			return (0);
28035 		}
28036 
28037 		if (cmd == TG_GETPHYGEOM)
28038 			ret = sd_get_physical_geometry(un, (cmlb_geom_t *)arg,
28039 			    cap, lbasize, path_flag);
28040 		else
28041 			/* TG_GETVIRTGEOM */
28042 			ret = sd_get_virtual_geometry(un,
28043 			    (cmlb_geom_t *)arg, cap, lbasize);
28044 
28045 		return (ret);
28046 
28047 	case TG_GETATTR:
28048 		mutex_enter(SD_MUTEX(un));
28049 		((tg_attribute_t *)arg)->media_is_writable =
28050 		    un->un_f_mmc_writable_media;
28051 		mutex_exit(SD_MUTEX(un));
28052 		return (0);
28053 	default:
28054 		return (ENOTTY);
28055 
28056 	}
28057 
28058 }
28059