xref: /illumos-gate/usr/src/uts/common/io/scsi/targets/sd.c (revision 06270499)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * SCSI disk target driver.
29  */
30 #include <sys/scsi/scsi.h>
31 #include <sys/dkbad.h>
32 #include <sys/dklabel.h>
33 #include <sys/dkio.h>
34 #include <sys/fdio.h>
35 #include <sys/cdio.h>
36 #include <sys/mhd.h>
37 #include <sys/vtoc.h>
38 #include <sys/dktp/fdisk.h>
39 #include <sys/kstat.h>
40 #include <sys/vtrace.h>
41 #include <sys/note.h>
42 #include <sys/thread.h>
43 #include <sys/proc.h>
44 #include <sys/efi_partition.h>
45 #include <sys/var.h>
46 #include <sys/aio_req.h>
47 
48 #ifdef __lock_lint
49 #define	_LP64
50 #define	__amd64
51 #endif
52 
53 #if (defined(__fibre))
54 /* Note: is there a leadville version of the following? */
55 #include <sys/fc4/fcal_linkapp.h>
56 #endif
57 #include <sys/taskq.h>
58 #include <sys/uuid.h>
59 #include <sys/byteorder.h>
60 #include <sys/sdt.h>
61 
62 #include "sd_xbuf.h"
63 
64 #include <sys/scsi/targets/sddef.h>
65 #include <sys/cmlb.h>
66 #include <sys/sysevent/eventdefs.h>
67 #include <sys/sysevent/dev.h>
68 
69 #include <sys/fm/protocol.h>
70 
71 /*
72  * Loadable module info.
73  */
74 #if (defined(__fibre))
75 #define	SD_MODULE_NAME	"SCSI SSA/FCAL Disk Driver"
76 char _depends_on[]	= "misc/scsi misc/cmlb drv/fcp";
77 #else /* !__fibre */
78 #define	SD_MODULE_NAME	"SCSI Disk Driver"
79 char _depends_on[]	= "misc/scsi misc/cmlb";
80 #endif /* !__fibre */
81 
82 /*
83  * Define the interconnect type, to allow the driver to distinguish
84  * between parallel SCSI (sd) and fibre channel (ssd) behaviors.
85  *
86  * This is really for backward compatibility. In the future, the driver
87  * should actually check the "interconnect-type" property as reported by
88  * the HBA; however at present this property is not defined by all HBAs,
89  * so we will use this #define (1) to permit the driver to run in
90  * backward-compatibility mode; and (2) to print a notification message
91  * if an FC HBA does not support the "interconnect-type" property.  The
92  * behavior of the driver will be to assume parallel SCSI behaviors unless
93  * the "interconnect-type" property is defined by the HBA **AND** has a
94  * value of either INTERCONNECT_FIBRE, INTERCONNECT_SSA, or
95  * INTERCONNECT_FABRIC, in which case the driver will assume Fibre
96  * Channel behaviors (as per the old ssd).  (Note that the
97  * INTERCONNECT_1394 and INTERCONNECT_USB types are not supported and
98  * will result in the driver assuming parallel SCSI behaviors.)
99  *
100  * (see common/sys/scsi/impl/services.h)
101  *
102  * Note: For ssd semantics, don't use INTERCONNECT_FABRIC as the default
103  * since some FC HBAs may already support that, and there is some code in
104  * the driver that already looks for it.  Using INTERCONNECT_FABRIC as the
105  * default would confuse that code, and besides things should work fine
106  * anyways if the FC HBA already reports INTERCONNECT_FABRIC for the
107  * "interconnect_type" property.
108  *
109  */
110 #if (defined(__fibre))
111 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_FIBRE
112 #else
113 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_PARALLEL
114 #endif
115 
116 /*
117  * The name of the driver, established from the module name in _init.
118  */
119 static	char *sd_label			= NULL;
120 
121 /*
122  * Driver name is unfortunately prefixed on some driver.conf properties.
123  */
124 #if (defined(__fibre))
125 #define	sd_max_xfer_size		ssd_max_xfer_size
126 #define	sd_config_list			ssd_config_list
127 static	char *sd_max_xfer_size		= "ssd_max_xfer_size";
128 static	char *sd_config_list		= "ssd-config-list";
129 #else
130 static	char *sd_max_xfer_size		= "sd_max_xfer_size";
131 static	char *sd_config_list		= "sd-config-list";
132 #endif
133 
134 /*
135  * Driver global variables
136  */
137 
138 #if (defined(__fibre))
139 /*
140  * These #defines are to avoid namespace collisions that occur because this
141  * code is currently used to compile two separate driver modules: sd and ssd.
142  * All global variables need to be treated this way (even if declared static)
143  * in order to allow the debugger to resolve the names properly.
144  * It is anticipated that in the near future the ssd module will be obsoleted,
145  * at which time this namespace issue should go away.
146  */
147 #define	sd_state			ssd_state
148 #define	sd_io_time			ssd_io_time
149 #define	sd_failfast_enable		ssd_failfast_enable
150 #define	sd_ua_retry_count		ssd_ua_retry_count
151 #define	sd_report_pfa			ssd_report_pfa
152 #define	sd_max_throttle			ssd_max_throttle
153 #define	sd_min_throttle			ssd_min_throttle
154 #define	sd_rot_delay			ssd_rot_delay
155 
156 #define	sd_retry_on_reservation_conflict	\
157 					ssd_retry_on_reservation_conflict
158 #define	sd_reinstate_resv_delay		ssd_reinstate_resv_delay
159 #define	sd_resv_conflict_name		ssd_resv_conflict_name
160 
161 #define	sd_component_mask		ssd_component_mask
162 #define	sd_level_mask			ssd_level_mask
163 #define	sd_debug_un			ssd_debug_un
164 #define	sd_error_level			ssd_error_level
165 
166 #define	sd_xbuf_active_limit		ssd_xbuf_active_limit
167 #define	sd_xbuf_reserve_limit		ssd_xbuf_reserve_limit
168 
169 #define	sd_tr				ssd_tr
170 #define	sd_reset_throttle_timeout	ssd_reset_throttle_timeout
171 #define	sd_qfull_throttle_timeout	ssd_qfull_throttle_timeout
172 #define	sd_qfull_throttle_enable	ssd_qfull_throttle_enable
173 #define	sd_check_media_time		ssd_check_media_time
174 #define	sd_wait_cmds_complete		ssd_wait_cmds_complete
175 #define	sd_label_mutex			ssd_label_mutex
176 #define	sd_detach_mutex			ssd_detach_mutex
177 #define	sd_log_buf			ssd_log_buf
178 #define	sd_log_mutex			ssd_log_mutex
179 
180 #define	sd_disk_table			ssd_disk_table
181 #define	sd_disk_table_size		ssd_disk_table_size
182 #define	sd_sense_mutex			ssd_sense_mutex
183 #define	sd_cdbtab			ssd_cdbtab
184 
185 #define	sd_cb_ops			ssd_cb_ops
186 #define	sd_ops				ssd_ops
187 #define	sd_additional_codes		ssd_additional_codes
188 #define	sd_tgops			ssd_tgops
189 
190 #define	sd_minor_data			ssd_minor_data
191 #define	sd_minor_data_efi		ssd_minor_data_efi
192 
193 #define	sd_tq				ssd_tq
194 #define	sd_wmr_tq			ssd_wmr_tq
195 #define	sd_taskq_name			ssd_taskq_name
196 #define	sd_wmr_taskq_name		ssd_wmr_taskq_name
197 #define	sd_taskq_minalloc		ssd_taskq_minalloc
198 #define	sd_taskq_maxalloc		ssd_taskq_maxalloc
199 
200 #define	sd_dump_format_string		ssd_dump_format_string
201 
202 #define	sd_iostart_chain		ssd_iostart_chain
203 #define	sd_iodone_chain			ssd_iodone_chain
204 
205 #define	sd_pm_idletime			ssd_pm_idletime
206 
207 #define	sd_force_pm_supported		ssd_force_pm_supported
208 
209 #define	sd_dtype_optical_bind		ssd_dtype_optical_bind
210 
211 #define	sd_ssc_init			ssd_ssc_init
212 #define	sd_ssc_send			ssd_ssc_send
213 #define	sd_ssc_fini			ssd_ssc_fini
214 #define	sd_ssc_assessment		ssd_ssc_assessment
215 #define	sd_ssc_post			ssd_ssc_post
216 #define	sd_ssc_print			ssd_ssc_print
217 #define	sd_ssc_ereport_post		ssd_ssc_ereport_post
218 #define	sd_ssc_set_info			ssd_ssc_set_info
219 #define	sd_ssc_extract_info		ssd_ssc_extract_info
220 
221 #endif
222 
223 #ifdef	SDDEBUG
224 int	sd_force_pm_supported		= 0;
225 #endif	/* SDDEBUG */
226 
227 void *sd_state				= NULL;
228 int sd_io_time				= SD_IO_TIME;
229 int sd_failfast_enable			= 1;
230 int sd_ua_retry_count			= SD_UA_RETRY_COUNT;
231 int sd_report_pfa			= 1;
232 int sd_max_throttle			= SD_MAX_THROTTLE;
233 int sd_min_throttle			= SD_MIN_THROTTLE;
234 int sd_rot_delay			= 4; /* Default 4ms Rotation delay */
235 int sd_qfull_throttle_enable		= TRUE;
236 
237 int sd_retry_on_reservation_conflict	= 1;
238 int sd_reinstate_resv_delay		= SD_REINSTATE_RESV_DELAY;
239 _NOTE(SCHEME_PROTECTS_DATA("safe sharing", sd_reinstate_resv_delay))
240 
241 static int sd_dtype_optical_bind	= -1;
242 
243 /* Note: the following is not a bug, it really is "sd_" and not "ssd_" */
244 static	char *sd_resv_conflict_name	= "sd_retry_on_reservation_conflict";
245 
246 /*
247  * Global data for debug logging. To enable debug printing, sd_component_mask
248  * and sd_level_mask should be set to the desired bit patterns as outlined in
249  * sddef.h.
250  */
251 uint_t	sd_component_mask		= 0x0;
252 uint_t	sd_level_mask			= 0x0;
253 struct	sd_lun *sd_debug_un		= NULL;
254 uint_t	sd_error_level			= SCSI_ERR_RETRYABLE;
255 
256 /* Note: these may go away in the future... */
257 static uint32_t	sd_xbuf_active_limit	= 512;
258 static uint32_t sd_xbuf_reserve_limit	= 16;
259 
260 static struct sd_resv_reclaim_request	sd_tr = { NULL, NULL, NULL, 0, 0, 0 };
261 
262 /*
263  * Timer value used to reset the throttle after it has been reduced
264  * (typically in response to TRAN_BUSY or STATUS_QFULL)
265  */
266 static int sd_reset_throttle_timeout	= SD_RESET_THROTTLE_TIMEOUT;
267 static int sd_qfull_throttle_timeout	= SD_QFULL_THROTTLE_TIMEOUT;
268 
269 /*
270  * Interval value associated with the media change scsi watch.
271  */
272 static int sd_check_media_time		= 3000000;
273 
274 /*
275  * Wait value used for in progress operations during a DDI_SUSPEND
276  */
277 static int sd_wait_cmds_complete	= SD_WAIT_CMDS_COMPLETE;
278 
279 /*
280  * sd_label_mutex protects a static buffer used in the disk label
281  * component of the driver
282  */
283 static kmutex_t sd_label_mutex;
284 
285 /*
286  * sd_detach_mutex protects un_layer_count, un_detach_count, and
287  * un_opens_in_progress in the sd_lun structure.
288  */
289 static kmutex_t sd_detach_mutex;
290 
291 _NOTE(MUTEX_PROTECTS_DATA(sd_detach_mutex,
292 	sd_lun::{un_layer_count un_detach_count un_opens_in_progress}))
293 
294 /*
295  * Global buffer and mutex for debug logging
296  */
297 static char	sd_log_buf[1024];
298 static kmutex_t	sd_log_mutex;
299 
300 /*
301  * Structs and globals for recording attached lun information.
302  * This maintains a chain. Each node in the chain represents a SCSI controller.
303  * The structure records the number of luns attached to each target connected
304  * with the controller.
305  * For parallel scsi device only.
306  */
307 struct sd_scsi_hba_tgt_lun {
308 	struct sd_scsi_hba_tgt_lun	*next;
309 	dev_info_t			*pdip;
310 	int				nlun[NTARGETS_WIDE];
311 };
312 
313 /*
314  * Flag to indicate the lun is attached or detached
315  */
316 #define	SD_SCSI_LUN_ATTACH	0
317 #define	SD_SCSI_LUN_DETACH	1
318 
319 static kmutex_t	sd_scsi_target_lun_mutex;
320 static struct sd_scsi_hba_tgt_lun	*sd_scsi_target_lun_head = NULL;
321 
322 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
323     sd_scsi_hba_tgt_lun::next sd_scsi_hba_tgt_lun::pdip))
324 
325 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
326     sd_scsi_target_lun_head))
327 
328 /*
329  * "Smart" Probe Caching structs, globals, #defines, etc.
330  * For parallel scsi and non-self-identify device only.
331  */
332 
333 /*
334  * The following resources and routines are implemented to support
335  * "smart" probing, which caches the scsi_probe() results in an array,
336  * in order to help avoid long probe times.
337  */
338 struct sd_scsi_probe_cache {
339 	struct	sd_scsi_probe_cache	*next;
340 	dev_info_t	*pdip;
341 	int		cache[NTARGETS_WIDE];
342 };
343 
344 static kmutex_t	sd_scsi_probe_cache_mutex;
345 static struct	sd_scsi_probe_cache *sd_scsi_probe_cache_head = NULL;
346 
347 /*
348  * Really we only need protection on the head of the linked list, but
349  * better safe than sorry.
350  */
351 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
352     sd_scsi_probe_cache::next sd_scsi_probe_cache::pdip))
353 
354 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
355     sd_scsi_probe_cache_head))
356 
357 /*
358  * Power attribute table
359  */
360 static sd_power_attr_ss sd_pwr_ss = {
361 	{ "NAME=spindle-motor", "0=off", "1=on", NULL },
362 	{0, 100},
363 	{30, 0},
364 	{20000, 0}
365 };
366 
367 static sd_power_attr_pc sd_pwr_pc = {
368 	{ "NAME=spindle-motor", "0=stopped", "1=standby", "2=idle",
369 		"3=active", NULL },
370 	{0, 0, 0, 100},
371 	{90, 90, 20, 0},
372 	{15000, 15000, 1000, 0}
373 };
374 
375 /*
376  * Power level to power condition
377  */
378 static int sd_pl2pc[] = {
379 	SD_TARGET_START_VALID,
380 	SD_TARGET_STANDBY,
381 	SD_TARGET_IDLE,
382 	SD_TARGET_ACTIVE
383 };
384 
385 /*
386  * Vendor specific data name property declarations
387  */
388 
389 #if defined(__fibre) || defined(__i386) ||defined(__amd64)
390 
391 static sd_tunables seagate_properties = {
392 	SEAGATE_THROTTLE_VALUE,
393 	0,
394 	0,
395 	0,
396 	0,
397 	0,
398 	0,
399 	0,
400 	0
401 };
402 
403 
404 static sd_tunables fujitsu_properties = {
405 	FUJITSU_THROTTLE_VALUE,
406 	0,
407 	0,
408 	0,
409 	0,
410 	0,
411 	0,
412 	0,
413 	0
414 };
415 
416 static sd_tunables ibm_properties = {
417 	IBM_THROTTLE_VALUE,
418 	0,
419 	0,
420 	0,
421 	0,
422 	0,
423 	0,
424 	0,
425 	0
426 };
427 
428 static sd_tunables purple_properties = {
429 	PURPLE_THROTTLE_VALUE,
430 	0,
431 	0,
432 	PURPLE_BUSY_RETRIES,
433 	PURPLE_RESET_RETRY_COUNT,
434 	PURPLE_RESERVE_RELEASE_TIME,
435 	0,
436 	0,
437 	0
438 };
439 
440 static sd_tunables sve_properties = {
441 	SVE_THROTTLE_VALUE,
442 	0,
443 	0,
444 	SVE_BUSY_RETRIES,
445 	SVE_RESET_RETRY_COUNT,
446 	SVE_RESERVE_RELEASE_TIME,
447 	SVE_MIN_THROTTLE_VALUE,
448 	SVE_DISKSORT_DISABLED_FLAG,
449 	0
450 };
451 
452 static sd_tunables maserati_properties = {
453 	0,
454 	0,
455 	0,
456 	0,
457 	0,
458 	0,
459 	0,
460 	MASERATI_DISKSORT_DISABLED_FLAG,
461 	MASERATI_LUN_RESET_ENABLED_FLAG
462 };
463 
464 static sd_tunables pirus_properties = {
465 	PIRUS_THROTTLE_VALUE,
466 	0,
467 	PIRUS_NRR_COUNT,
468 	PIRUS_BUSY_RETRIES,
469 	PIRUS_RESET_RETRY_COUNT,
470 	0,
471 	PIRUS_MIN_THROTTLE_VALUE,
472 	PIRUS_DISKSORT_DISABLED_FLAG,
473 	PIRUS_LUN_RESET_ENABLED_FLAG
474 };
475 
476 #endif
477 
478 #if (defined(__sparc) && !defined(__fibre)) || \
479 	(defined(__i386) || defined(__amd64))
480 
481 
482 static sd_tunables elite_properties = {
483 	ELITE_THROTTLE_VALUE,
484 	0,
485 	0,
486 	0,
487 	0,
488 	0,
489 	0,
490 	0,
491 	0
492 };
493 
494 static sd_tunables st31200n_properties = {
495 	ST31200N_THROTTLE_VALUE,
496 	0,
497 	0,
498 	0,
499 	0,
500 	0,
501 	0,
502 	0,
503 	0
504 };
505 
506 #endif /* Fibre or not */
507 
508 static sd_tunables lsi_properties_scsi = {
509 	LSI_THROTTLE_VALUE,
510 	0,
511 	LSI_NOTREADY_RETRIES,
512 	0,
513 	0,
514 	0,
515 	0,
516 	0,
517 	0
518 };
519 
520 static sd_tunables symbios_properties = {
521 	SYMBIOS_THROTTLE_VALUE,
522 	0,
523 	SYMBIOS_NOTREADY_RETRIES,
524 	0,
525 	0,
526 	0,
527 	0,
528 	0,
529 	0
530 };
531 
532 static sd_tunables lsi_properties = {
533 	0,
534 	0,
535 	LSI_NOTREADY_RETRIES,
536 	0,
537 	0,
538 	0,
539 	0,
540 	0,
541 	0
542 };
543 
544 static sd_tunables lsi_oem_properties = {
545 	0,
546 	0,
547 	LSI_OEM_NOTREADY_RETRIES,
548 	0,
549 	0,
550 	0,
551 	0,
552 	0,
553 	0,
554 	1
555 };
556 
557 
558 
559 #if (defined(SD_PROP_TST))
560 
561 #define	SD_TST_CTYPE_VAL	CTYPE_CDROM
562 #define	SD_TST_THROTTLE_VAL	16
563 #define	SD_TST_NOTREADY_VAL	12
564 #define	SD_TST_BUSY_VAL		60
565 #define	SD_TST_RST_RETRY_VAL	36
566 #define	SD_TST_RSV_REL_TIME	60
567 
568 static sd_tunables tst_properties = {
569 	SD_TST_THROTTLE_VAL,
570 	SD_TST_CTYPE_VAL,
571 	SD_TST_NOTREADY_VAL,
572 	SD_TST_BUSY_VAL,
573 	SD_TST_RST_RETRY_VAL,
574 	SD_TST_RSV_REL_TIME,
575 	0,
576 	0,
577 	0
578 };
579 #endif
580 
581 /* This is similar to the ANSI toupper implementation */
582 #define	SD_TOUPPER(C)	(((C) >= 'a' && (C) <= 'z') ? (C) - 'a' + 'A' : (C))
583 
584 /*
585  * Static Driver Configuration Table
586  *
587  * This is the table of disks which need throttle adjustment (or, perhaps
588  * something else as defined by the flags at a future time.)  device_id
589  * is a string consisting of concatenated vid (vendor), pid (product/model)
590  * and revision strings as defined in the scsi_inquiry structure.  Offsets of
591  * the parts of the string are as defined by the sizes in the scsi_inquiry
592  * structure.  Device type is searched as far as the device_id string is
593  * defined.  Flags defines which values are to be set in the driver from the
594  * properties list.
595  *
596  * Entries below which begin and end with a "*" are a special case.
597  * These do not have a specific vendor, and the string which follows
598  * can appear anywhere in the 16 byte PID portion of the inquiry data.
599  *
600  * Entries below which begin and end with a " " (blank) are a special
601  * case. The comparison function will treat multiple consecutive blanks
602  * as equivalent to a single blank. For example, this causes a
603  * sd_disk_table entry of " NEC CDROM " to match a device's id string
604  * of  "NEC       CDROM".
605  *
606  * Note: The MD21 controller type has been obsoleted.
607  *	 ST318202F is a Legacy device
608  *	 MAM3182FC, MAM3364FC, MAM3738FC do not appear to have ever been
609  *	 made with an FC connection. The entries here are a legacy.
610  */
611 static sd_disk_config_t sd_disk_table[] = {
612 #if defined(__fibre) || defined(__i386) || defined(__amd64)
613 	{ "SEAGATE ST34371FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
614 	{ "SEAGATE ST19171FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
615 	{ "SEAGATE ST39102FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
616 	{ "SEAGATE ST39103FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
617 	{ "SEAGATE ST118273F", SD_CONF_BSET_THROTTLE, &seagate_properties },
618 	{ "SEAGATE ST318202F", SD_CONF_BSET_THROTTLE, &seagate_properties },
619 	{ "SEAGATE ST318203F", SD_CONF_BSET_THROTTLE, &seagate_properties },
620 	{ "SEAGATE ST136403F", SD_CONF_BSET_THROTTLE, &seagate_properties },
621 	{ "SEAGATE ST318304F", SD_CONF_BSET_THROTTLE, &seagate_properties },
622 	{ "SEAGATE ST336704F", SD_CONF_BSET_THROTTLE, &seagate_properties },
623 	{ "SEAGATE ST373405F", SD_CONF_BSET_THROTTLE, &seagate_properties },
624 	{ "SEAGATE ST336605F", SD_CONF_BSET_THROTTLE, &seagate_properties },
625 	{ "SEAGATE ST336752F", SD_CONF_BSET_THROTTLE, &seagate_properties },
626 	{ "SEAGATE ST318452F", SD_CONF_BSET_THROTTLE, &seagate_properties },
627 	{ "FUJITSU MAG3091F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
628 	{ "FUJITSU MAG3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
629 	{ "FUJITSU MAA3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
630 	{ "FUJITSU MAF3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
631 	{ "FUJITSU MAL3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
632 	{ "FUJITSU MAL3738F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
633 	{ "FUJITSU MAM3182FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
634 	{ "FUJITSU MAM3364FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
635 	{ "FUJITSU MAM3738FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
636 	{ "IBM     DDYFT1835",  SD_CONF_BSET_THROTTLE, &ibm_properties },
637 	{ "IBM     DDYFT3695",  SD_CONF_BSET_THROTTLE, &ibm_properties },
638 	{ "IBM     IC35LF2D2",  SD_CONF_BSET_THROTTLE, &ibm_properties },
639 	{ "IBM     IC35LF2PR",  SD_CONF_BSET_THROTTLE, &ibm_properties },
640 	{ "IBM     1724-100",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
641 	{ "IBM     1726-2xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
642 	{ "IBM     1726-22x",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
643 	{ "IBM     1726-4xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
644 	{ "IBM     1726-42x",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
645 	{ "IBM     1726-3xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
646 	{ "IBM     3526",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
647 	{ "IBM     3542",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
648 	{ "IBM     3552",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
649 	{ "IBM     1722",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
650 	{ "IBM     1742",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
651 	{ "IBM     1815",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
652 	{ "IBM     FAStT",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
653 	{ "IBM     1814",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
654 	{ "IBM     1814-200",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
655 	{ "IBM     1818",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
656 	{ "DELL    MD3000",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
657 	{ "DELL    MD3000i",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
658 	{ "LSI     INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
659 	{ "ENGENIO INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
660 	{ "SGI     TP",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
661 	{ "SGI     IS",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
662 	{ "*CSM100_*",		SD_CONF_BSET_NRR_COUNT |
663 			SD_CONF_BSET_CACHE_IS_NV, &lsi_oem_properties },
664 	{ "*CSM200_*",		SD_CONF_BSET_NRR_COUNT |
665 			SD_CONF_BSET_CACHE_IS_NV, &lsi_oem_properties },
666 	{ "Fujitsu SX300",	SD_CONF_BSET_THROTTLE,  &lsi_oem_properties },
667 	{ "LSI",		SD_CONF_BSET_NRR_COUNT, &lsi_properties },
668 	{ "SUN     T3", SD_CONF_BSET_THROTTLE |
669 			SD_CONF_BSET_BSY_RETRY_COUNT|
670 			SD_CONF_BSET_RST_RETRIES|
671 			SD_CONF_BSET_RSV_REL_TIME,
672 		&purple_properties },
673 	{ "SUN     SESS01", SD_CONF_BSET_THROTTLE |
674 		SD_CONF_BSET_BSY_RETRY_COUNT|
675 		SD_CONF_BSET_RST_RETRIES|
676 		SD_CONF_BSET_RSV_REL_TIME|
677 		SD_CONF_BSET_MIN_THROTTLE|
678 		SD_CONF_BSET_DISKSORT_DISABLED,
679 		&sve_properties },
680 	{ "SUN     T4", SD_CONF_BSET_THROTTLE |
681 			SD_CONF_BSET_BSY_RETRY_COUNT|
682 			SD_CONF_BSET_RST_RETRIES|
683 			SD_CONF_BSET_RSV_REL_TIME,
684 		&purple_properties },
685 	{ "SUN     SVE01", SD_CONF_BSET_DISKSORT_DISABLED |
686 		SD_CONF_BSET_LUN_RESET_ENABLED,
687 		&maserati_properties },
688 	{ "SUN     SE6920", SD_CONF_BSET_THROTTLE |
689 		SD_CONF_BSET_NRR_COUNT|
690 		SD_CONF_BSET_BSY_RETRY_COUNT|
691 		SD_CONF_BSET_RST_RETRIES|
692 		SD_CONF_BSET_MIN_THROTTLE|
693 		SD_CONF_BSET_DISKSORT_DISABLED|
694 		SD_CONF_BSET_LUN_RESET_ENABLED,
695 		&pirus_properties },
696 	{ "SUN     SE6940", SD_CONF_BSET_THROTTLE |
697 		SD_CONF_BSET_NRR_COUNT|
698 		SD_CONF_BSET_BSY_RETRY_COUNT|
699 		SD_CONF_BSET_RST_RETRIES|
700 		SD_CONF_BSET_MIN_THROTTLE|
701 		SD_CONF_BSET_DISKSORT_DISABLED|
702 		SD_CONF_BSET_LUN_RESET_ENABLED,
703 		&pirus_properties },
704 	{ "SUN     StorageTek 6920", SD_CONF_BSET_THROTTLE |
705 		SD_CONF_BSET_NRR_COUNT|
706 		SD_CONF_BSET_BSY_RETRY_COUNT|
707 		SD_CONF_BSET_RST_RETRIES|
708 		SD_CONF_BSET_MIN_THROTTLE|
709 		SD_CONF_BSET_DISKSORT_DISABLED|
710 		SD_CONF_BSET_LUN_RESET_ENABLED,
711 		&pirus_properties },
712 	{ "SUN     StorageTek 6940", SD_CONF_BSET_THROTTLE |
713 		SD_CONF_BSET_NRR_COUNT|
714 		SD_CONF_BSET_BSY_RETRY_COUNT|
715 		SD_CONF_BSET_RST_RETRIES|
716 		SD_CONF_BSET_MIN_THROTTLE|
717 		SD_CONF_BSET_DISKSORT_DISABLED|
718 		SD_CONF_BSET_LUN_RESET_ENABLED,
719 		&pirus_properties },
720 	{ "SUN     PSX1000", SD_CONF_BSET_THROTTLE |
721 		SD_CONF_BSET_NRR_COUNT|
722 		SD_CONF_BSET_BSY_RETRY_COUNT|
723 		SD_CONF_BSET_RST_RETRIES|
724 		SD_CONF_BSET_MIN_THROTTLE|
725 		SD_CONF_BSET_DISKSORT_DISABLED|
726 		SD_CONF_BSET_LUN_RESET_ENABLED,
727 		&pirus_properties },
728 	{ "SUN     SE6330", SD_CONF_BSET_THROTTLE |
729 		SD_CONF_BSET_NRR_COUNT|
730 		SD_CONF_BSET_BSY_RETRY_COUNT|
731 		SD_CONF_BSET_RST_RETRIES|
732 		SD_CONF_BSET_MIN_THROTTLE|
733 		SD_CONF_BSET_DISKSORT_DISABLED|
734 		SD_CONF_BSET_LUN_RESET_ENABLED,
735 		&pirus_properties },
736 	{ "SUN     STK6580_6780", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
737 	{ "SUN     SUN_6180", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
738 	{ "STK     OPENstorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
739 	{ "STK     OpenStorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
740 	{ "STK     BladeCtlr",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
741 	{ "STK     FLEXLINE",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
742 	{ "SYMBIOS", SD_CONF_BSET_NRR_COUNT, &symbios_properties },
743 #endif /* fibre or NON-sparc platforms */
744 #if ((defined(__sparc) && !defined(__fibre)) ||\
745 	(defined(__i386) || defined(__amd64)))
746 	{ "SEAGATE ST42400N", SD_CONF_BSET_THROTTLE, &elite_properties },
747 	{ "SEAGATE ST31200N", SD_CONF_BSET_THROTTLE, &st31200n_properties },
748 	{ "SEAGATE ST41600N", SD_CONF_BSET_TUR_CHECK, NULL },
749 	{ "CONNER  CP30540",  SD_CONF_BSET_NOCACHE,  NULL },
750 	{ "*SUN0104*", SD_CONF_BSET_FAB_DEVID, NULL },
751 	{ "*SUN0207*", SD_CONF_BSET_FAB_DEVID, NULL },
752 	{ "*SUN0327*", SD_CONF_BSET_FAB_DEVID, NULL },
753 	{ "*SUN0340*", SD_CONF_BSET_FAB_DEVID, NULL },
754 	{ "*SUN0424*", SD_CONF_BSET_FAB_DEVID, NULL },
755 	{ "*SUN0669*", SD_CONF_BSET_FAB_DEVID, NULL },
756 	{ "*SUN1.0G*", SD_CONF_BSET_FAB_DEVID, NULL },
757 	{ "SYMBIOS INF-01-00       ", SD_CONF_BSET_FAB_DEVID, NULL },
758 	{ "SYMBIOS", SD_CONF_BSET_THROTTLE|SD_CONF_BSET_NRR_COUNT,
759 	    &symbios_properties },
760 	{ "LSI", SD_CONF_BSET_THROTTLE | SD_CONF_BSET_NRR_COUNT,
761 	    &lsi_properties_scsi },
762 #if defined(__i386) || defined(__amd64)
763 	{ " NEC CD-ROM DRIVE:260 ", (SD_CONF_BSET_PLAYMSF_BCD
764 				    | SD_CONF_BSET_READSUB_BCD
765 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
766 				    | SD_CONF_BSET_NO_READ_HEADER
767 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
768 
769 	{ " NEC CD-ROM DRIVE:270 ", (SD_CONF_BSET_PLAYMSF_BCD
770 				    | SD_CONF_BSET_READSUB_BCD
771 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
772 				    | SD_CONF_BSET_NO_READ_HEADER
773 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
774 #endif /* __i386 || __amd64 */
775 #endif /* sparc NON-fibre or NON-sparc platforms */
776 
777 #if (defined(SD_PROP_TST))
778 	{ "VENDOR  PRODUCT ", (SD_CONF_BSET_THROTTLE
779 				| SD_CONF_BSET_CTYPE
780 				| SD_CONF_BSET_NRR_COUNT
781 				| SD_CONF_BSET_FAB_DEVID
782 				| SD_CONF_BSET_NOCACHE
783 				| SD_CONF_BSET_BSY_RETRY_COUNT
784 				| SD_CONF_BSET_PLAYMSF_BCD
785 				| SD_CONF_BSET_READSUB_BCD
786 				| SD_CONF_BSET_READ_TOC_TRK_BCD
787 				| SD_CONF_BSET_READ_TOC_ADDR_BCD
788 				| SD_CONF_BSET_NO_READ_HEADER
789 				| SD_CONF_BSET_READ_CD_XD4
790 				| SD_CONF_BSET_RST_RETRIES
791 				| SD_CONF_BSET_RSV_REL_TIME
792 				| SD_CONF_BSET_TUR_CHECK), &tst_properties},
793 #endif
794 };
795 
796 static const int sd_disk_table_size =
797 	sizeof (sd_disk_table)/ sizeof (sd_disk_config_t);
798 
799 
800 
801 #define	SD_INTERCONNECT_PARALLEL	0
802 #define	SD_INTERCONNECT_FABRIC		1
803 #define	SD_INTERCONNECT_FIBRE		2
804 #define	SD_INTERCONNECT_SSA		3
805 #define	SD_INTERCONNECT_SATA		4
806 #define	SD_INTERCONNECT_SAS		5
807 
808 #define	SD_IS_PARALLEL_SCSI(un)		\
809 	((un)->un_interconnect_type == SD_INTERCONNECT_PARALLEL)
810 #define	SD_IS_SERIAL(un)		\
811 	(((un)->un_interconnect_type == SD_INTERCONNECT_SATA) ||\
812 	((un)->un_interconnect_type == SD_INTERCONNECT_SAS))
813 
814 /*
815  * Definitions used by device id registration routines
816  */
817 #define	VPD_HEAD_OFFSET		3	/* size of head for vpd page */
818 #define	VPD_PAGE_LENGTH		3	/* offset for pge length data */
819 #define	VPD_MODE_PAGE		1	/* offset into vpd pg for "page code" */
820 
821 static kmutex_t sd_sense_mutex = {0};
822 
823 /*
824  * Macros for updates of the driver state
825  */
826 #define	New_state(un, s)        \
827 	(un)->un_last_state = (un)->un_state, (un)->un_state = (s)
828 #define	Restore_state(un)	\
829 	{ uchar_t tmp = (un)->un_last_state; New_state((un), tmp); }
830 
831 static struct sd_cdbinfo sd_cdbtab[] = {
832 	{ CDB_GROUP0, 0x00,	   0x1FFFFF,   0xFF,	    },
833 	{ CDB_GROUP1, SCMD_GROUP1, 0xFFFFFFFF, 0xFFFF,	    },
834 	{ CDB_GROUP5, SCMD_GROUP5, 0xFFFFFFFF, 0xFFFFFFFF,  },
835 	{ CDB_GROUP4, SCMD_GROUP4, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFF, },
836 };
837 
838 /*
839  * Specifies the number of seconds that must have elapsed since the last
840  * cmd. has completed for a device to be declared idle to the PM framework.
841  */
842 static int sd_pm_idletime = 1;
843 
844 /*
845  * Internal function prototypes
846  */
847 
848 #if (defined(__fibre))
849 /*
850  * These #defines are to avoid namespace collisions that occur because this
851  * code is currently used to compile two separate driver modules: sd and ssd.
852  * All function names need to be treated this way (even if declared static)
853  * in order to allow the debugger to resolve the names properly.
854  * It is anticipated that in the near future the ssd module will be obsoleted,
855  * at which time this ugliness should go away.
856  */
857 #define	sd_log_trace			ssd_log_trace
858 #define	sd_log_info			ssd_log_info
859 #define	sd_log_err			ssd_log_err
860 #define	sdprobe				ssdprobe
861 #define	sdinfo				ssdinfo
862 #define	sd_prop_op			ssd_prop_op
863 #define	sd_scsi_probe_cache_init	ssd_scsi_probe_cache_init
864 #define	sd_scsi_probe_cache_fini	ssd_scsi_probe_cache_fini
865 #define	sd_scsi_clear_probe_cache	ssd_scsi_clear_probe_cache
866 #define	sd_scsi_probe_with_cache	ssd_scsi_probe_with_cache
867 #define	sd_scsi_target_lun_init		ssd_scsi_target_lun_init
868 #define	sd_scsi_target_lun_fini		ssd_scsi_target_lun_fini
869 #define	sd_scsi_get_target_lun_count	ssd_scsi_get_target_lun_count
870 #define	sd_scsi_update_lun_on_target	ssd_scsi_update_lun_on_target
871 #define	sd_spin_up_unit			ssd_spin_up_unit
872 #define	sd_enable_descr_sense		ssd_enable_descr_sense
873 #define	sd_reenable_dsense_task		ssd_reenable_dsense_task
874 #define	sd_set_mmc_caps			ssd_set_mmc_caps
875 #define	sd_read_unit_properties		ssd_read_unit_properties
876 #define	sd_process_sdconf_file		ssd_process_sdconf_file
877 #define	sd_process_sdconf_table		ssd_process_sdconf_table
878 #define	sd_sdconf_id_match		ssd_sdconf_id_match
879 #define	sd_blank_cmp			ssd_blank_cmp
880 #define	sd_chk_vers1_data		ssd_chk_vers1_data
881 #define	sd_set_vers1_properties		ssd_set_vers1_properties
882 
883 #define	sd_get_physical_geometry	ssd_get_physical_geometry
884 #define	sd_get_virtual_geometry		ssd_get_virtual_geometry
885 #define	sd_update_block_info		ssd_update_block_info
886 #define	sd_register_devid		ssd_register_devid
887 #define	sd_get_devid			ssd_get_devid
888 #define	sd_create_devid			ssd_create_devid
889 #define	sd_write_deviceid		ssd_write_deviceid
890 #define	sd_check_vpd_page_support	ssd_check_vpd_page_support
891 #define	sd_setup_pm			ssd_setup_pm
892 #define	sd_create_pm_components		ssd_create_pm_components
893 #define	sd_ddi_suspend			ssd_ddi_suspend
894 #define	sd_ddi_resume			ssd_ddi_resume
895 #define	sd_pm_state_change		ssd_pm_state_change
896 #define	sdpower				ssdpower
897 #define	sdattach			ssdattach
898 #define	sddetach			ssddetach
899 #define	sd_unit_attach			ssd_unit_attach
900 #define	sd_unit_detach			ssd_unit_detach
901 #define	sd_set_unit_attributes		ssd_set_unit_attributes
902 #define	sd_create_errstats		ssd_create_errstats
903 #define	sd_set_errstats			ssd_set_errstats
904 #define	sd_set_pstats			ssd_set_pstats
905 #define	sddump				ssddump
906 #define	sd_scsi_poll			ssd_scsi_poll
907 #define	sd_send_polled_RQS		ssd_send_polled_RQS
908 #define	sd_ddi_scsi_poll		ssd_ddi_scsi_poll
909 #define	sd_init_event_callbacks		ssd_init_event_callbacks
910 #define	sd_event_callback		ssd_event_callback
911 #define	sd_cache_control		ssd_cache_control
912 #define	sd_get_write_cache_enabled	ssd_get_write_cache_enabled
913 #define	sd_get_nv_sup			ssd_get_nv_sup
914 #define	sd_make_device			ssd_make_device
915 #define	sdopen				ssdopen
916 #define	sdclose				ssdclose
917 #define	sd_ready_and_valid		ssd_ready_and_valid
918 #define	sdmin				ssdmin
919 #define	sdread				ssdread
920 #define	sdwrite				ssdwrite
921 #define	sdaread				ssdaread
922 #define	sdawrite			ssdawrite
923 #define	sdstrategy			ssdstrategy
924 #define	sdioctl				ssdioctl
925 #define	sd_mapblockaddr_iostart		ssd_mapblockaddr_iostart
926 #define	sd_mapblocksize_iostart		ssd_mapblocksize_iostart
927 #define	sd_checksum_iostart		ssd_checksum_iostart
928 #define	sd_checksum_uscsi_iostart	ssd_checksum_uscsi_iostart
929 #define	sd_pm_iostart			ssd_pm_iostart
930 #define	sd_core_iostart			ssd_core_iostart
931 #define	sd_mapblockaddr_iodone		ssd_mapblockaddr_iodone
932 #define	sd_mapblocksize_iodone		ssd_mapblocksize_iodone
933 #define	sd_checksum_iodone		ssd_checksum_iodone
934 #define	sd_checksum_uscsi_iodone	ssd_checksum_uscsi_iodone
935 #define	sd_pm_iodone			ssd_pm_iodone
936 #define	sd_initpkt_for_buf		ssd_initpkt_for_buf
937 #define	sd_destroypkt_for_buf		ssd_destroypkt_for_buf
938 #define	sd_setup_rw_pkt			ssd_setup_rw_pkt
939 #define	sd_setup_next_rw_pkt		ssd_setup_next_rw_pkt
940 #define	sd_buf_iodone			ssd_buf_iodone
941 #define	sd_uscsi_strategy		ssd_uscsi_strategy
942 #define	sd_initpkt_for_uscsi		ssd_initpkt_for_uscsi
943 #define	sd_destroypkt_for_uscsi		ssd_destroypkt_for_uscsi
944 #define	sd_uscsi_iodone			ssd_uscsi_iodone
945 #define	sd_xbuf_strategy		ssd_xbuf_strategy
946 #define	sd_xbuf_init			ssd_xbuf_init
947 #define	sd_pm_entry			ssd_pm_entry
948 #define	sd_pm_exit			ssd_pm_exit
949 
950 #define	sd_pm_idletimeout_handler	ssd_pm_idletimeout_handler
951 #define	sd_pm_timeout_handler		ssd_pm_timeout_handler
952 
953 #define	sd_add_buf_to_waitq		ssd_add_buf_to_waitq
954 #define	sdintr				ssdintr
955 #define	sd_start_cmds			ssd_start_cmds
956 #define	sd_send_scsi_cmd		ssd_send_scsi_cmd
957 #define	sd_bioclone_alloc		ssd_bioclone_alloc
958 #define	sd_bioclone_free		ssd_bioclone_free
959 #define	sd_shadow_buf_alloc		ssd_shadow_buf_alloc
960 #define	sd_shadow_buf_free		ssd_shadow_buf_free
961 #define	sd_print_transport_rejected_message	\
962 					ssd_print_transport_rejected_message
963 #define	sd_retry_command		ssd_retry_command
964 #define	sd_set_retry_bp			ssd_set_retry_bp
965 #define	sd_send_request_sense_command	ssd_send_request_sense_command
966 #define	sd_start_retry_command		ssd_start_retry_command
967 #define	sd_start_direct_priority_command	\
968 					ssd_start_direct_priority_command
969 #define	sd_return_failed_command	ssd_return_failed_command
970 #define	sd_return_failed_command_no_restart	\
971 					ssd_return_failed_command_no_restart
972 #define	sd_return_command		ssd_return_command
973 #define	sd_sync_with_callback		ssd_sync_with_callback
974 #define	sdrunout			ssdrunout
975 #define	sd_mark_rqs_busy		ssd_mark_rqs_busy
976 #define	sd_mark_rqs_idle		ssd_mark_rqs_idle
977 #define	sd_reduce_throttle		ssd_reduce_throttle
978 #define	sd_restore_throttle		ssd_restore_throttle
979 #define	sd_print_incomplete_msg		ssd_print_incomplete_msg
980 #define	sd_init_cdb_limits		ssd_init_cdb_limits
981 #define	sd_pkt_status_good		ssd_pkt_status_good
982 #define	sd_pkt_status_check_condition	ssd_pkt_status_check_condition
983 #define	sd_pkt_status_busy		ssd_pkt_status_busy
984 #define	sd_pkt_status_reservation_conflict	\
985 					ssd_pkt_status_reservation_conflict
986 #define	sd_pkt_status_qfull		ssd_pkt_status_qfull
987 #define	sd_handle_request_sense		ssd_handle_request_sense
988 #define	sd_handle_auto_request_sense	ssd_handle_auto_request_sense
989 #define	sd_print_sense_failed_msg	ssd_print_sense_failed_msg
990 #define	sd_validate_sense_data		ssd_validate_sense_data
991 #define	sd_decode_sense			ssd_decode_sense
992 #define	sd_print_sense_msg		ssd_print_sense_msg
993 #define	sd_sense_key_no_sense		ssd_sense_key_no_sense
994 #define	sd_sense_key_recoverable_error	ssd_sense_key_recoverable_error
995 #define	sd_sense_key_not_ready		ssd_sense_key_not_ready
996 #define	sd_sense_key_medium_or_hardware_error	\
997 					ssd_sense_key_medium_or_hardware_error
998 #define	sd_sense_key_illegal_request	ssd_sense_key_illegal_request
999 #define	sd_sense_key_unit_attention	ssd_sense_key_unit_attention
1000 #define	sd_sense_key_fail_command	ssd_sense_key_fail_command
1001 #define	sd_sense_key_blank_check	ssd_sense_key_blank_check
1002 #define	sd_sense_key_aborted_command	ssd_sense_key_aborted_command
1003 #define	sd_sense_key_default		ssd_sense_key_default
1004 #define	sd_print_retry_msg		ssd_print_retry_msg
1005 #define	sd_print_cmd_incomplete_msg	ssd_print_cmd_incomplete_msg
1006 #define	sd_pkt_reason_cmd_incomplete	ssd_pkt_reason_cmd_incomplete
1007 #define	sd_pkt_reason_cmd_tran_err	ssd_pkt_reason_cmd_tran_err
1008 #define	sd_pkt_reason_cmd_reset		ssd_pkt_reason_cmd_reset
1009 #define	sd_pkt_reason_cmd_aborted	ssd_pkt_reason_cmd_aborted
1010 #define	sd_pkt_reason_cmd_timeout	ssd_pkt_reason_cmd_timeout
1011 #define	sd_pkt_reason_cmd_unx_bus_free	ssd_pkt_reason_cmd_unx_bus_free
1012 #define	sd_pkt_reason_cmd_tag_reject	ssd_pkt_reason_cmd_tag_reject
1013 #define	sd_pkt_reason_default		ssd_pkt_reason_default
1014 #define	sd_reset_target			ssd_reset_target
1015 #define	sd_start_stop_unit_callback	ssd_start_stop_unit_callback
1016 #define	sd_start_stop_unit_task		ssd_start_stop_unit_task
1017 #define	sd_taskq_create			ssd_taskq_create
1018 #define	sd_taskq_delete			ssd_taskq_delete
1019 #define	sd_target_change_task		ssd_target_change_task
1020 #define	sd_log_lun_expansion_event	ssd_log_lun_expansion_event
1021 #define	sd_media_change_task		ssd_media_change_task
1022 #define	sd_handle_mchange		ssd_handle_mchange
1023 #define	sd_send_scsi_DOORLOCK		ssd_send_scsi_DOORLOCK
1024 #define	sd_send_scsi_READ_CAPACITY	ssd_send_scsi_READ_CAPACITY
1025 #define	sd_send_scsi_READ_CAPACITY_16	ssd_send_scsi_READ_CAPACITY_16
1026 #define	sd_send_scsi_GET_CONFIGURATION	ssd_send_scsi_GET_CONFIGURATION
1027 #define	sd_send_scsi_feature_GET_CONFIGURATION	\
1028 					sd_send_scsi_feature_GET_CONFIGURATION
1029 #define	sd_send_scsi_START_STOP_UNIT	ssd_send_scsi_START_STOP_UNIT
1030 #define	sd_send_scsi_INQUIRY		ssd_send_scsi_INQUIRY
1031 #define	sd_send_scsi_TEST_UNIT_READY	ssd_send_scsi_TEST_UNIT_READY
1032 #define	sd_send_scsi_PERSISTENT_RESERVE_IN	\
1033 					ssd_send_scsi_PERSISTENT_RESERVE_IN
1034 #define	sd_send_scsi_PERSISTENT_RESERVE_OUT	\
1035 					ssd_send_scsi_PERSISTENT_RESERVE_OUT
1036 #define	sd_send_scsi_SYNCHRONIZE_CACHE	ssd_send_scsi_SYNCHRONIZE_CACHE
1037 #define	sd_send_scsi_SYNCHRONIZE_CACHE_biodone	\
1038 					ssd_send_scsi_SYNCHRONIZE_CACHE_biodone
1039 #define	sd_send_scsi_MODE_SENSE		ssd_send_scsi_MODE_SENSE
1040 #define	sd_send_scsi_MODE_SELECT	ssd_send_scsi_MODE_SELECT
1041 #define	sd_send_scsi_RDWR		ssd_send_scsi_RDWR
1042 #define	sd_send_scsi_LOG_SENSE		ssd_send_scsi_LOG_SENSE
1043 #define	sd_alloc_rqs			ssd_alloc_rqs
1044 #define	sd_free_rqs			ssd_free_rqs
1045 #define	sd_dump_memory			ssd_dump_memory
1046 #define	sd_get_media_info		ssd_get_media_info
1047 #define	sd_get_media_info_ext		ssd_get_media_info_ext
1048 #define	sd_dkio_ctrl_info		ssd_dkio_ctrl_info
1049 #define	sd_nvpair_str_decode		ssd_nvpair_str_decode
1050 #define	sd_strtok_r			ssd_strtok_r
1051 #define	sd_set_properties		ssd_set_properties
1052 #define	sd_get_tunables_from_conf	ssd_get_tunables_from_conf
1053 #define	sd_setup_next_xfer		ssd_setup_next_xfer
1054 #define	sd_dkio_get_temp		ssd_dkio_get_temp
1055 #define	sd_check_mhd			ssd_check_mhd
1056 #define	sd_mhd_watch_cb			ssd_mhd_watch_cb
1057 #define	sd_mhd_watch_incomplete		ssd_mhd_watch_incomplete
1058 #define	sd_sname			ssd_sname
1059 #define	sd_mhd_resvd_recover		ssd_mhd_resvd_recover
1060 #define	sd_resv_reclaim_thread		ssd_resv_reclaim_thread
1061 #define	sd_take_ownership		ssd_take_ownership
1062 #define	sd_reserve_release		ssd_reserve_release
1063 #define	sd_rmv_resv_reclaim_req		ssd_rmv_resv_reclaim_req
1064 #define	sd_mhd_reset_notify_cb		ssd_mhd_reset_notify_cb
1065 #define	sd_persistent_reservation_in_read_keys	\
1066 					ssd_persistent_reservation_in_read_keys
1067 #define	sd_persistent_reservation_in_read_resv	\
1068 					ssd_persistent_reservation_in_read_resv
1069 #define	sd_mhdioc_takeown		ssd_mhdioc_takeown
1070 #define	sd_mhdioc_failfast		ssd_mhdioc_failfast
1071 #define	sd_mhdioc_release		ssd_mhdioc_release
1072 #define	sd_mhdioc_register_devid	ssd_mhdioc_register_devid
1073 #define	sd_mhdioc_inkeys		ssd_mhdioc_inkeys
1074 #define	sd_mhdioc_inresv		ssd_mhdioc_inresv
1075 #define	sr_change_blkmode		ssr_change_blkmode
1076 #define	sr_change_speed			ssr_change_speed
1077 #define	sr_atapi_change_speed		ssr_atapi_change_speed
1078 #define	sr_pause_resume			ssr_pause_resume
1079 #define	sr_play_msf			ssr_play_msf
1080 #define	sr_play_trkind			ssr_play_trkind
1081 #define	sr_read_all_subcodes		ssr_read_all_subcodes
1082 #define	sr_read_subchannel		ssr_read_subchannel
1083 #define	sr_read_tocentry		ssr_read_tocentry
1084 #define	sr_read_tochdr			ssr_read_tochdr
1085 #define	sr_read_cdda			ssr_read_cdda
1086 #define	sr_read_cdxa			ssr_read_cdxa
1087 #define	sr_read_mode1			ssr_read_mode1
1088 #define	sr_read_mode2			ssr_read_mode2
1089 #define	sr_read_cd_mode2		ssr_read_cd_mode2
1090 #define	sr_sector_mode			ssr_sector_mode
1091 #define	sr_eject			ssr_eject
1092 #define	sr_ejected			ssr_ejected
1093 #define	sr_check_wp			ssr_check_wp
1094 #define	sd_check_media			ssd_check_media
1095 #define	sd_media_watch_cb		ssd_media_watch_cb
1096 #define	sd_delayed_cv_broadcast		ssd_delayed_cv_broadcast
1097 #define	sr_volume_ctrl			ssr_volume_ctrl
1098 #define	sr_read_sony_session_offset	ssr_read_sony_session_offset
1099 #define	sd_log_page_supported		ssd_log_page_supported
1100 #define	sd_check_for_writable_cd	ssd_check_for_writable_cd
1101 #define	sd_wm_cache_constructor		ssd_wm_cache_constructor
1102 #define	sd_wm_cache_destructor		ssd_wm_cache_destructor
1103 #define	sd_range_lock			ssd_range_lock
1104 #define	sd_get_range			ssd_get_range
1105 #define	sd_free_inlist_wmap		ssd_free_inlist_wmap
1106 #define	sd_range_unlock			ssd_range_unlock
1107 #define	sd_read_modify_write_task	ssd_read_modify_write_task
1108 #define	sddump_do_read_of_rmw		ssddump_do_read_of_rmw
1109 
1110 #define	sd_iostart_chain		ssd_iostart_chain
1111 #define	sd_iodone_chain			ssd_iodone_chain
1112 #define	sd_initpkt_map			ssd_initpkt_map
1113 #define	sd_destroypkt_map		ssd_destroypkt_map
1114 #define	sd_chain_type_map		ssd_chain_type_map
1115 #define	sd_chain_index_map		ssd_chain_index_map
1116 
1117 #define	sd_failfast_flushctl		ssd_failfast_flushctl
1118 #define	sd_failfast_flushq		ssd_failfast_flushq
1119 #define	sd_failfast_flushq_callback	ssd_failfast_flushq_callback
1120 
1121 #define	sd_is_lsi			ssd_is_lsi
1122 #define	sd_tg_rdwr			ssd_tg_rdwr
1123 #define	sd_tg_getinfo			ssd_tg_getinfo
1124 #define	sd_rmw_msg_print_handler	ssd_rmw_msg_print_handler
1125 
1126 #endif	/* #if (defined(__fibre)) */
1127 
1128 
1129 int _init(void);
1130 int _fini(void);
1131 int _info(struct modinfo *modinfop);
1132 
1133 /*PRINTFLIKE3*/
1134 static void sd_log_trace(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1135 /*PRINTFLIKE3*/
1136 static void sd_log_info(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1137 /*PRINTFLIKE3*/
1138 static void sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1139 
1140 static int sdprobe(dev_info_t *devi);
1141 static int sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
1142     void **result);
1143 static int sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1144     int mod_flags, char *name, caddr_t valuep, int *lengthp);
1145 
1146 /*
1147  * Smart probe for parallel scsi
1148  */
1149 static void sd_scsi_probe_cache_init(void);
1150 static void sd_scsi_probe_cache_fini(void);
1151 static void sd_scsi_clear_probe_cache(void);
1152 static int  sd_scsi_probe_with_cache(struct scsi_device *devp, int (*fn)());
1153 
1154 /*
1155  * Attached luns on target for parallel scsi
1156  */
1157 static void sd_scsi_target_lun_init(void);
1158 static void sd_scsi_target_lun_fini(void);
1159 static int  sd_scsi_get_target_lun_count(dev_info_t *dip, int target);
1160 static void sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag);
1161 
1162 static int	sd_spin_up_unit(sd_ssc_t *ssc);
1163 
1164 /*
1165  * Using sd_ssc_init to establish sd_ssc_t struct
1166  * Using sd_ssc_send to send uscsi internal command
1167  * Using sd_ssc_fini to free sd_ssc_t struct
1168  */
1169 static sd_ssc_t *sd_ssc_init(struct sd_lun *un);
1170 static int sd_ssc_send(sd_ssc_t *ssc, struct uscsi_cmd *incmd,
1171     int flag, enum uio_seg dataspace, int path_flag);
1172 static void sd_ssc_fini(sd_ssc_t *ssc);
1173 
1174 /*
1175  * Using sd_ssc_assessment to set correct type-of-assessment
1176  * Using sd_ssc_post to post ereport & system log
1177  *       sd_ssc_post will call sd_ssc_print to print system log
1178  *       sd_ssc_post will call sd_ssd_ereport_post to post ereport
1179  */
1180 static void sd_ssc_assessment(sd_ssc_t *ssc,
1181     enum sd_type_assessment tp_assess);
1182 
1183 static void sd_ssc_post(sd_ssc_t *ssc, enum sd_driver_assessment sd_assess);
1184 static void sd_ssc_print(sd_ssc_t *ssc, int sd_severity);
1185 static void sd_ssc_ereport_post(sd_ssc_t *ssc,
1186     enum sd_driver_assessment drv_assess);
1187 
1188 /*
1189  * Using sd_ssc_set_info to mark an un-decodable-data error.
1190  * Using sd_ssc_extract_info to transfer information from internal
1191  *       data structures to sd_ssc_t.
1192  */
1193 static void sd_ssc_set_info(sd_ssc_t *ssc, int ssc_flags, uint_t comp,
1194     const char *fmt, ...);
1195 static void sd_ssc_extract_info(sd_ssc_t *ssc, struct sd_lun *un,
1196     struct scsi_pkt *pktp, struct buf *bp, struct sd_xbuf *xp);
1197 
1198 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
1199     enum uio_seg dataspace, int path_flag);
1200 
1201 #ifdef _LP64
1202 static void	sd_enable_descr_sense(sd_ssc_t *ssc);
1203 static void	sd_reenable_dsense_task(void *arg);
1204 #endif /* _LP64 */
1205 
1206 static void	sd_set_mmc_caps(sd_ssc_t *ssc);
1207 
1208 static void sd_read_unit_properties(struct sd_lun *un);
1209 static int  sd_process_sdconf_file(struct sd_lun *un);
1210 static void sd_nvpair_str_decode(struct sd_lun *un, char *nvpair_str);
1211 static char *sd_strtok_r(char *string, const char *sepset, char **lasts);
1212 static void sd_set_properties(struct sd_lun *un, char *name, char *value);
1213 static void sd_get_tunables_from_conf(struct sd_lun *un, int flags,
1214     int *data_list, sd_tunables *values);
1215 static void sd_process_sdconf_table(struct sd_lun *un);
1216 static int  sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen);
1217 static int  sd_blank_cmp(struct sd_lun *un, char *id, int idlen);
1218 static int  sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
1219 	int list_len, char *dataname_ptr);
1220 static void sd_set_vers1_properties(struct sd_lun *un, int flags,
1221     sd_tunables *prop_list);
1222 
1223 static void sd_register_devid(sd_ssc_t *ssc, dev_info_t *devi,
1224     int reservation_flag);
1225 static int  sd_get_devid(sd_ssc_t *ssc);
1226 static ddi_devid_t sd_create_devid(sd_ssc_t *ssc);
1227 static int  sd_write_deviceid(sd_ssc_t *ssc);
1228 static int  sd_get_devid_page(struct sd_lun *un, uchar_t *wwn, int *len);
1229 static int  sd_check_vpd_page_support(sd_ssc_t *ssc);
1230 
1231 static void sd_setup_pm(sd_ssc_t *ssc, dev_info_t *devi);
1232 static void sd_create_pm_components(dev_info_t *devi, struct sd_lun *un);
1233 
1234 static int  sd_ddi_suspend(dev_info_t *devi);
1235 static int  sd_ddi_resume(dev_info_t *devi);
1236 static int  sd_pm_state_change(struct sd_lun *un, int level, int flag);
1237 static int  sdpower(dev_info_t *devi, int component, int level);
1238 
1239 static int  sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd);
1240 static int  sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd);
1241 static int  sd_unit_attach(dev_info_t *devi);
1242 static int  sd_unit_detach(dev_info_t *devi);
1243 
1244 static void sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi);
1245 static void sd_create_errstats(struct sd_lun *un, int instance);
1246 static void sd_set_errstats(struct sd_lun *un);
1247 static void sd_set_pstats(struct sd_lun *un);
1248 
1249 static int  sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);
1250 static int  sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pkt);
1251 static int  sd_send_polled_RQS(struct sd_lun *un);
1252 static int  sd_ddi_scsi_poll(struct scsi_pkt *pkt);
1253 
1254 #if (defined(__fibre))
1255 /*
1256  * Event callbacks (photon)
1257  */
1258 static void sd_init_event_callbacks(struct sd_lun *un);
1259 static void  sd_event_callback(dev_info_t *, ddi_eventcookie_t, void *, void *);
1260 #endif
1261 
1262 /*
1263  * Defines for sd_cache_control
1264  */
1265 
1266 #define	SD_CACHE_ENABLE		1
1267 #define	SD_CACHE_DISABLE	0
1268 #define	SD_CACHE_NOCHANGE	-1
1269 
1270 static int   sd_cache_control(sd_ssc_t *ssc, int rcd_flag, int wce_flag);
1271 static int   sd_get_write_cache_enabled(sd_ssc_t *ssc, int *is_enabled);
1272 static void  sd_get_nv_sup(sd_ssc_t *ssc);
1273 static dev_t sd_make_device(dev_info_t *devi);
1274 
1275 static void  sd_update_block_info(struct sd_lun *un, uint32_t lbasize,
1276 	uint64_t capacity);
1277 
1278 /*
1279  * Driver entry point functions.
1280  */
1281 static int  sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p);
1282 static int  sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p);
1283 static int  sd_ready_and_valid(sd_ssc_t *ssc, int part);
1284 
1285 static void sdmin(struct buf *bp);
1286 static int sdread(dev_t dev, struct uio *uio, cred_t *cred_p);
1287 static int sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p);
1288 static int sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1289 static int sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1290 
1291 static int sdstrategy(struct buf *bp);
1292 static int sdioctl(dev_t, int, intptr_t, int, cred_t *, int *);
1293 
1294 /*
1295  * Function prototypes for layering functions in the iostart chain.
1296  */
1297 static void sd_mapblockaddr_iostart(int index, struct sd_lun *un,
1298 	struct buf *bp);
1299 static void sd_mapblocksize_iostart(int index, struct sd_lun *un,
1300 	struct buf *bp);
1301 static void sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp);
1302 static void sd_checksum_uscsi_iostart(int index, struct sd_lun *un,
1303 	struct buf *bp);
1304 static void sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp);
1305 static void sd_core_iostart(int index, struct sd_lun *un, struct buf *bp);
1306 
1307 /*
1308  * Function prototypes for layering functions in the iodone chain.
1309  */
1310 static void sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp);
1311 static void sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp);
1312 static void sd_mapblockaddr_iodone(int index, struct sd_lun *un,
1313 	struct buf *bp);
1314 static void sd_mapblocksize_iodone(int index, struct sd_lun *un,
1315 	struct buf *bp);
1316 static void sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp);
1317 static void sd_checksum_uscsi_iodone(int index, struct sd_lun *un,
1318 	struct buf *bp);
1319 static void sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp);
1320 
1321 /*
1322  * Prototypes for functions to support buf(9S) based IO.
1323  */
1324 static void sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg);
1325 static int sd_initpkt_for_buf(struct buf *, struct scsi_pkt **);
1326 static void sd_destroypkt_for_buf(struct buf *);
1327 static int sd_setup_rw_pkt(struct sd_lun *un, struct scsi_pkt **pktpp,
1328 	struct buf *bp, int flags,
1329 	int (*callback)(caddr_t), caddr_t callback_arg,
1330 	diskaddr_t lba, uint32_t blockcount);
1331 static int sd_setup_next_rw_pkt(struct sd_lun *un, struct scsi_pkt *pktp,
1332 	struct buf *bp, diskaddr_t lba, uint32_t blockcount);
1333 
1334 /*
1335  * Prototypes for functions to support USCSI IO.
1336  */
1337 static int sd_uscsi_strategy(struct buf *bp);
1338 static int sd_initpkt_for_uscsi(struct buf *, struct scsi_pkt **);
1339 static void sd_destroypkt_for_uscsi(struct buf *);
1340 
1341 static void sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
1342 	uchar_t chain_type, void *pktinfop);
1343 
1344 static int  sd_pm_entry(struct sd_lun *un);
1345 static void sd_pm_exit(struct sd_lun *un);
1346 
1347 static void sd_pm_idletimeout_handler(void *arg);
1348 
1349 /*
1350  * sd_core internal functions (used at the sd_core_io layer).
1351  */
1352 static void sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp);
1353 static void sdintr(struct scsi_pkt *pktp);
1354 static void sd_start_cmds(struct sd_lun *un, struct buf *immed_bp);
1355 
1356 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
1357 	enum uio_seg dataspace, int path_flag);
1358 
1359 static struct buf *sd_bioclone_alloc(struct buf *bp, size_t datalen,
1360 	daddr_t blkno, int (*func)(struct buf *));
1361 static struct buf *sd_shadow_buf_alloc(struct buf *bp, size_t datalen,
1362 	uint_t bflags, daddr_t blkno, int (*func)(struct buf *));
1363 static void sd_bioclone_free(struct buf *bp);
1364 static void sd_shadow_buf_free(struct buf *bp);
1365 
1366 static void sd_print_transport_rejected_message(struct sd_lun *un,
1367 	struct sd_xbuf *xp, int code);
1368 static void sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp,
1369     void *arg, int code);
1370 static void sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp,
1371     void *arg, int code);
1372 static void sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp,
1373     void *arg, int code);
1374 
1375 static void sd_retry_command(struct sd_lun *un, struct buf *bp,
1376 	int retry_check_flag,
1377 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp,
1378 		int c),
1379 	void *user_arg, int failure_code,  clock_t retry_delay,
1380 	void (*statp)(kstat_io_t *));
1381 
1382 static void sd_set_retry_bp(struct sd_lun *un, struct buf *bp,
1383 	clock_t retry_delay, void (*statp)(kstat_io_t *));
1384 
1385 static void sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
1386 	struct scsi_pkt *pktp);
1387 static void sd_start_retry_command(void *arg);
1388 static void sd_start_direct_priority_command(void *arg);
1389 static void sd_return_failed_command(struct sd_lun *un, struct buf *bp,
1390 	int errcode);
1391 static void sd_return_failed_command_no_restart(struct sd_lun *un,
1392 	struct buf *bp, int errcode);
1393 static void sd_return_command(struct sd_lun *un, struct buf *bp);
1394 static void sd_sync_with_callback(struct sd_lun *un);
1395 static int sdrunout(caddr_t arg);
1396 
1397 static void sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp);
1398 static struct buf *sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *xp);
1399 
1400 static void sd_reduce_throttle(struct sd_lun *un, int throttle_type);
1401 static void sd_restore_throttle(void *arg);
1402 
1403 static void sd_init_cdb_limits(struct sd_lun *un);
1404 
1405 static void sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
1406 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1407 
1408 /*
1409  * Error handling functions
1410  */
1411 static void sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
1412 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1413 static void sd_pkt_status_busy(struct sd_lun *un, struct buf *bp,
1414 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1415 static void sd_pkt_status_reservation_conflict(struct sd_lun *un,
1416 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1417 static void sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
1418 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1419 
1420 static void sd_handle_request_sense(struct sd_lun *un, struct buf *bp,
1421 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1422 static void sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
1423 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1424 static int sd_validate_sense_data(struct sd_lun *un, struct buf *bp,
1425 	struct sd_xbuf *xp, size_t actual_len);
1426 static void sd_decode_sense(struct sd_lun *un, struct buf *bp,
1427 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1428 
1429 static void sd_print_sense_msg(struct sd_lun *un, struct buf *bp,
1430 	void *arg, int code);
1431 
1432 static void sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
1433 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1434 static void sd_sense_key_recoverable_error(struct sd_lun *un,
1435 	uint8_t *sense_datap,
1436 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1437 static void sd_sense_key_not_ready(struct sd_lun *un,
1438 	uint8_t *sense_datap,
1439 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1440 static void sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
1441 	uint8_t *sense_datap,
1442 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1443 static void sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
1444 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1445 static void sd_sense_key_unit_attention(struct sd_lun *un,
1446 	uint8_t *sense_datap,
1447 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1448 static void sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
1449 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1450 static void sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
1451 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1452 static void sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
1453 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1454 static void sd_sense_key_default(struct sd_lun *un,
1455 	uint8_t *sense_datap,
1456 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1457 
1458 static void sd_print_retry_msg(struct sd_lun *un, struct buf *bp,
1459 	void *arg, int flag);
1460 
1461 static void sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
1462 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1463 static void sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
1464 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1465 static void sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
1466 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1467 static void sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
1468 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1469 static void sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
1470 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1471 static void sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
1472 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1473 static void sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
1474 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1475 static void sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
1476 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1477 
1478 static void sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp);
1479 
1480 static void sd_start_stop_unit_callback(void *arg);
1481 static void sd_start_stop_unit_task(void *arg);
1482 
1483 static void sd_taskq_create(void);
1484 static void sd_taskq_delete(void);
1485 static void sd_target_change_task(void *arg);
1486 static void sd_log_lun_expansion_event(struct sd_lun *un, int km_flag);
1487 static void sd_media_change_task(void *arg);
1488 
1489 static int sd_handle_mchange(struct sd_lun *un);
1490 static int sd_send_scsi_DOORLOCK(sd_ssc_t *ssc, int flag, int path_flag);
1491 static int sd_send_scsi_READ_CAPACITY(sd_ssc_t *ssc, uint64_t *capp,
1492 	uint32_t *lbap, int path_flag);
1493 static int sd_send_scsi_READ_CAPACITY_16(sd_ssc_t *ssc, uint64_t *capp,
1494 	uint32_t *lbap, uint32_t *psp, int path_flag);
1495 static int sd_send_scsi_START_STOP_UNIT(sd_ssc_t *ssc, int pc_flag,
1496 	int flag, int path_flag);
1497 static int sd_send_scsi_INQUIRY(sd_ssc_t *ssc, uchar_t *bufaddr,
1498 	size_t buflen, uchar_t evpd, uchar_t page_code, size_t *residp);
1499 static int sd_send_scsi_TEST_UNIT_READY(sd_ssc_t *ssc, int flag);
1500 static int sd_send_scsi_PERSISTENT_RESERVE_IN(sd_ssc_t *ssc,
1501 	uchar_t usr_cmd, uint16_t data_len, uchar_t *data_bufp);
1502 static int sd_send_scsi_PERSISTENT_RESERVE_OUT(sd_ssc_t *ssc,
1503 	uchar_t usr_cmd, uchar_t *usr_bufp);
1504 static int sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un,
1505 	struct dk_callback *dkc);
1506 static int sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp);
1507 static int sd_send_scsi_GET_CONFIGURATION(sd_ssc_t *ssc,
1508 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1509 	uchar_t *bufaddr, uint_t buflen, int path_flag);
1510 static int sd_send_scsi_feature_GET_CONFIGURATION(sd_ssc_t *ssc,
1511 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1512 	uchar_t *bufaddr, uint_t buflen, char feature, int path_flag);
1513 static int sd_send_scsi_MODE_SENSE(sd_ssc_t *ssc, int cdbsize,
1514 	uchar_t *bufaddr, size_t buflen, uchar_t page_code, int path_flag);
1515 static int sd_send_scsi_MODE_SELECT(sd_ssc_t *ssc, int cdbsize,
1516 	uchar_t *bufaddr, size_t buflen, uchar_t save_page, int path_flag);
1517 static int sd_send_scsi_RDWR(sd_ssc_t *ssc, uchar_t cmd, void *bufaddr,
1518 	size_t buflen, daddr_t start_block, int path_flag);
1519 #define	sd_send_scsi_READ(ssc, bufaddr, buflen, start_block, path_flag)	\
1520 	sd_send_scsi_RDWR(ssc, SCMD_READ, bufaddr, buflen, start_block, \
1521 	path_flag)
1522 #define	sd_send_scsi_WRITE(ssc, bufaddr, buflen, start_block, path_flag)\
1523 	sd_send_scsi_RDWR(ssc, SCMD_WRITE, bufaddr, buflen, start_block,\
1524 	path_flag)
1525 
1526 static int sd_send_scsi_LOG_SENSE(sd_ssc_t *ssc, uchar_t *bufaddr,
1527 	uint16_t buflen, uchar_t page_code, uchar_t page_control,
1528 	uint16_t param_ptr, int path_flag);
1529 
1530 static int  sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un);
1531 static void sd_free_rqs(struct sd_lun *un);
1532 
1533 static void sd_dump_memory(struct sd_lun *un, uint_t comp, char *title,
1534 	uchar_t *data, int len, int fmt);
1535 static void sd_panic_for_res_conflict(struct sd_lun *un);
1536 
1537 /*
1538  * Disk Ioctl Function Prototypes
1539  */
1540 static int sd_get_media_info(dev_t dev, caddr_t arg, int flag);
1541 static int sd_get_media_info_ext(dev_t dev, caddr_t arg, int flag);
1542 static int sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag);
1543 static int sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag);
1544 
1545 /*
1546  * Multi-host Ioctl Prototypes
1547  */
1548 static int sd_check_mhd(dev_t dev, int interval);
1549 static int sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1550 static void sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt);
1551 static char *sd_sname(uchar_t status);
1552 static void sd_mhd_resvd_recover(void *arg);
1553 static void sd_resv_reclaim_thread();
1554 static int sd_take_ownership(dev_t dev, struct mhioctkown *p);
1555 static int sd_reserve_release(dev_t dev, int cmd);
1556 static void sd_rmv_resv_reclaim_req(dev_t dev);
1557 static void sd_mhd_reset_notify_cb(caddr_t arg);
1558 static int sd_persistent_reservation_in_read_keys(struct sd_lun *un,
1559 	mhioc_inkeys_t *usrp, int flag);
1560 static int sd_persistent_reservation_in_read_resv(struct sd_lun *un,
1561 	mhioc_inresvs_t *usrp, int flag);
1562 static int sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag);
1563 static int sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag);
1564 static int sd_mhdioc_release(dev_t dev);
1565 static int sd_mhdioc_register_devid(dev_t dev);
1566 static int sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag);
1567 static int sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag);
1568 
1569 /*
1570  * SCSI removable prototypes
1571  */
1572 static int sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag);
1573 static int sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1574 static int sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1575 static int sr_pause_resume(dev_t dev, int mode);
1576 static int sr_play_msf(dev_t dev, caddr_t data, int flag);
1577 static int sr_play_trkind(dev_t dev, caddr_t data, int flag);
1578 static int sr_read_all_subcodes(dev_t dev, caddr_t data, int flag);
1579 static int sr_read_subchannel(dev_t dev, caddr_t data, int flag);
1580 static int sr_read_tocentry(dev_t dev, caddr_t data, int flag);
1581 static int sr_read_tochdr(dev_t dev, caddr_t data, int flag);
1582 static int sr_read_cdda(dev_t dev, caddr_t data, int flag);
1583 static int sr_read_cdxa(dev_t dev, caddr_t data, int flag);
1584 static int sr_read_mode1(dev_t dev, caddr_t data, int flag);
1585 static int sr_read_mode2(dev_t dev, caddr_t data, int flag);
1586 static int sr_read_cd_mode2(dev_t dev, caddr_t data, int flag);
1587 static int sr_sector_mode(dev_t dev, uint32_t blksize);
1588 static int sr_eject(dev_t dev);
1589 static void sr_ejected(register struct sd_lun *un);
1590 static int sr_check_wp(dev_t dev);
1591 static int sd_check_media(dev_t dev, enum dkio_state state);
1592 static int sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1593 static void sd_delayed_cv_broadcast(void *arg);
1594 static int sr_volume_ctrl(dev_t dev, caddr_t data, int flag);
1595 static int sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag);
1596 
1597 static int sd_log_page_supported(sd_ssc_t *ssc, int log_page);
1598 
1599 /*
1600  * Function Prototype for the non-512 support (DVDRAM, MO etc.) functions.
1601  */
1602 static void sd_check_for_writable_cd(sd_ssc_t *ssc, int path_flag);
1603 static int sd_wm_cache_constructor(void *wm, void *un, int flags);
1604 static void sd_wm_cache_destructor(void *wm, void *un);
1605 static struct sd_w_map *sd_range_lock(struct sd_lun *un, daddr_t startb,
1606 	daddr_t endb, ushort_t typ);
1607 static struct sd_w_map *sd_get_range(struct sd_lun *un, daddr_t startb,
1608 	daddr_t endb);
1609 static void sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp);
1610 static void sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm);
1611 static void sd_read_modify_write_task(void * arg);
1612 static int
1613 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
1614 	struct buf **bpp);
1615 
1616 
1617 /*
1618  * Function prototypes for failfast support.
1619  */
1620 static void sd_failfast_flushq(struct sd_lun *un);
1621 static int sd_failfast_flushq_callback(struct buf *bp);
1622 
1623 /*
1624  * Function prototypes to check for lsi devices
1625  */
1626 static void sd_is_lsi(struct sd_lun *un);
1627 
1628 /*
1629  * Function prototypes for partial DMA support
1630  */
1631 static int sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
1632 		struct scsi_pkt *pkt, struct sd_xbuf *xp);
1633 
1634 
1635 /* Function prototypes for cmlb */
1636 static int sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr,
1637     diskaddr_t start_block, size_t reqlength, void *tg_cookie);
1638 
1639 static int sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie);
1640 
1641 /*
1642  * For printing RMW warning message timely
1643  */
1644 static void sd_rmw_msg_print_handler(void *arg);
1645 
1646 /*
1647  * Constants for failfast support:
1648  *
1649  * SD_FAILFAST_INACTIVE: Instance is currently in a normal state, with NO
1650  * failfast processing being performed.
1651  *
1652  * SD_FAILFAST_ACTIVE: Instance is in the failfast state and is performing
1653  * failfast processing on all bufs with B_FAILFAST set.
1654  */
1655 
1656 #define	SD_FAILFAST_INACTIVE		0
1657 #define	SD_FAILFAST_ACTIVE		1
1658 
1659 /*
1660  * Bitmask to control behavior of buf(9S) flushes when a transition to
1661  * the failfast state occurs. Optional bits include:
1662  *
1663  * SD_FAILFAST_FLUSH_ALL_BUFS: When set, flush ALL bufs including those that
1664  * do NOT have B_FAILFAST set. When clear, only bufs with B_FAILFAST will
1665  * be flushed.
1666  *
1667  * SD_FAILFAST_FLUSH_ALL_QUEUES: When set, flush any/all other queues in the
1668  * driver, in addition to the regular wait queue. This includes the xbuf
1669  * queues. When clear, only the driver's wait queue will be flushed.
1670  */
1671 #define	SD_FAILFAST_FLUSH_ALL_BUFS	0x01
1672 #define	SD_FAILFAST_FLUSH_ALL_QUEUES	0x02
1673 
1674 /*
1675  * The default behavior is to only flush bufs that have B_FAILFAST set, but
1676  * to flush all queues within the driver.
1677  */
1678 static int sd_failfast_flushctl = SD_FAILFAST_FLUSH_ALL_QUEUES;
1679 
1680 
1681 /*
1682  * SD Testing Fault Injection
1683  */
1684 #ifdef SD_FAULT_INJECTION
1685 static void sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un);
1686 static void sd_faultinjection(struct scsi_pkt *pktp);
1687 static void sd_injection_log(char *buf, struct sd_lun *un);
1688 #endif
1689 
1690 /*
1691  * Device driver ops vector
1692  */
1693 static struct cb_ops sd_cb_ops = {
1694 	sdopen,			/* open */
1695 	sdclose,		/* close */
1696 	sdstrategy,		/* strategy */
1697 	nodev,			/* print */
1698 	sddump,			/* dump */
1699 	sdread,			/* read */
1700 	sdwrite,		/* write */
1701 	sdioctl,		/* ioctl */
1702 	nodev,			/* devmap */
1703 	nodev,			/* mmap */
1704 	nodev,			/* segmap */
1705 	nochpoll,		/* poll */
1706 	sd_prop_op,		/* cb_prop_op */
1707 	0,			/* streamtab  */
1708 	D_64BIT | D_MP | D_NEW | D_HOTPLUG, /* Driver compatibility flags */
1709 	CB_REV,			/* cb_rev */
1710 	sdaread, 		/* async I/O read entry point */
1711 	sdawrite		/* async I/O write entry point */
1712 };
1713 
1714 struct dev_ops sd_ops = {
1715 	DEVO_REV,		/* devo_rev, */
1716 	0,			/* refcnt  */
1717 	sdinfo,			/* info */
1718 	nulldev,		/* identify */
1719 	sdprobe,		/* probe */
1720 	sdattach,		/* attach */
1721 	sddetach,		/* detach */
1722 	nodev,			/* reset */
1723 	&sd_cb_ops,		/* driver operations */
1724 	NULL,			/* bus operations */
1725 	sdpower,		/* power */
1726 	ddi_quiesce_not_needed,		/* quiesce */
1727 };
1728 
1729 /*
1730  * This is the loadable module wrapper.
1731  */
1732 #include <sys/modctl.h>
1733 
1734 #ifndef XPV_HVM_DRIVER
1735 static struct modldrv modldrv = {
1736 	&mod_driverops,		/* Type of module. This one is a driver */
1737 	SD_MODULE_NAME,		/* Module name. */
1738 	&sd_ops			/* driver ops */
1739 };
1740 
1741 static struct modlinkage modlinkage = {
1742 	MODREV_1, &modldrv, NULL
1743 };
1744 
1745 #else /* XPV_HVM_DRIVER */
1746 static struct modlmisc modlmisc = {
1747 	&mod_miscops,		/* Type of module. This one is a misc */
1748 	"HVM " SD_MODULE_NAME,		/* Module name. */
1749 };
1750 
1751 static struct modlinkage modlinkage = {
1752 	MODREV_1, &modlmisc, NULL
1753 };
1754 
1755 #endif /* XPV_HVM_DRIVER */
1756 
1757 static cmlb_tg_ops_t sd_tgops = {
1758 	TG_DK_OPS_VERSION_1,
1759 	sd_tg_rdwr,
1760 	sd_tg_getinfo
1761 };
1762 
1763 static struct scsi_asq_key_strings sd_additional_codes[] = {
1764 	0x81, 0, "Logical Unit is Reserved",
1765 	0x85, 0, "Audio Address Not Valid",
1766 	0xb6, 0, "Media Load Mechanism Failed",
1767 	0xB9, 0, "Audio Play Operation Aborted",
1768 	0xbf, 0, "Buffer Overflow for Read All Subcodes Command",
1769 	0x53, 2, "Medium removal prevented",
1770 	0x6f, 0, "Authentication failed during key exchange",
1771 	0x6f, 1, "Key not present",
1772 	0x6f, 2, "Key not established",
1773 	0x6f, 3, "Read without proper authentication",
1774 	0x6f, 4, "Mismatched region to this logical unit",
1775 	0x6f, 5, "Region reset count error",
1776 	0xffff, 0x0, NULL
1777 };
1778 
1779 
1780 /*
1781  * Struct for passing printing information for sense data messages
1782  */
1783 struct sd_sense_info {
1784 	int	ssi_severity;
1785 	int	ssi_pfa_flag;
1786 };
1787 
1788 /*
1789  * Table of function pointers for iostart-side routines. Separate "chains"
1790  * of layered function calls are formed by placing the function pointers
1791  * sequentially in the desired order. Functions are called according to an
1792  * incrementing table index ordering. The last function in each chain must
1793  * be sd_core_iostart(). The corresponding iodone-side routines are expected
1794  * in the sd_iodone_chain[] array.
1795  *
1796  * Note: It may seem more natural to organize both the iostart and iodone
1797  * functions together, into an array of structures (or some similar
1798  * organization) with a common index, rather than two separate arrays which
1799  * must be maintained in synchronization. The purpose of this division is
1800  * to achieve improved performance: individual arrays allows for more
1801  * effective cache line utilization on certain platforms.
1802  */
1803 
1804 typedef void (*sd_chain_t)(int index, struct sd_lun *un, struct buf *bp);
1805 
1806 
1807 static sd_chain_t sd_iostart_chain[] = {
1808 
1809 	/* Chain for buf IO for disk drive targets (PM enabled) */
1810 	sd_mapblockaddr_iostart,	/* Index: 0 */
1811 	sd_pm_iostart,			/* Index: 1 */
1812 	sd_core_iostart,		/* Index: 2 */
1813 
1814 	/* Chain for buf IO for disk drive targets (PM disabled) */
1815 	sd_mapblockaddr_iostart,	/* Index: 3 */
1816 	sd_core_iostart,		/* Index: 4 */
1817 
1818 	/*
1819 	 * Chain for buf IO for removable-media or large sector size
1820 	 * disk drive targets with RMW needed (PM enabled)
1821 	 */
1822 	sd_mapblockaddr_iostart,	/* Index: 5 */
1823 	sd_mapblocksize_iostart,	/* Index: 6 */
1824 	sd_pm_iostart,			/* Index: 7 */
1825 	sd_core_iostart,		/* Index: 8 */
1826 
1827 	/*
1828 	 * Chain for buf IO for removable-media or large sector size
1829 	 * disk drive targets with RMW needed (PM disabled)
1830 	 */
1831 	sd_mapblockaddr_iostart,	/* Index: 9 */
1832 	sd_mapblocksize_iostart,	/* Index: 10 */
1833 	sd_core_iostart,		/* Index: 11 */
1834 
1835 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1836 	sd_mapblockaddr_iostart,	/* Index: 12 */
1837 	sd_checksum_iostart,		/* Index: 13 */
1838 	sd_pm_iostart,			/* Index: 14 */
1839 	sd_core_iostart,		/* Index: 15 */
1840 
1841 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1842 	sd_mapblockaddr_iostart,	/* Index: 16 */
1843 	sd_checksum_iostart,		/* Index: 17 */
1844 	sd_core_iostart,		/* Index: 18 */
1845 
1846 	/* Chain for USCSI commands (all targets) */
1847 	sd_pm_iostart,			/* Index: 19 */
1848 	sd_core_iostart,		/* Index: 20 */
1849 
1850 	/* Chain for checksumming USCSI commands (all targets) */
1851 	sd_checksum_uscsi_iostart,	/* Index: 21 */
1852 	sd_pm_iostart,			/* Index: 22 */
1853 	sd_core_iostart,		/* Index: 23 */
1854 
1855 	/* Chain for "direct" USCSI commands (all targets) */
1856 	sd_core_iostart,		/* Index: 24 */
1857 
1858 	/* Chain for "direct priority" USCSI commands (all targets) */
1859 	sd_core_iostart,		/* Index: 25 */
1860 
1861 	/*
1862 	 * Chain for buf IO for large sector size disk drive targets
1863 	 * with RMW needed with checksumming (PM enabled)
1864 	 */
1865 	sd_mapblockaddr_iostart,	/* Index: 26 */
1866 	sd_mapblocksize_iostart,	/* Index: 27 */
1867 	sd_checksum_iostart,		/* Index: 28 */
1868 	sd_pm_iostart,			/* Index: 29 */
1869 	sd_core_iostart,		/* Index: 30 */
1870 
1871 	/*
1872 	 * Chain for buf IO for large sector size disk drive targets
1873 	 * with RMW needed with checksumming (PM disabled)
1874 	 */
1875 	sd_mapblockaddr_iostart,	/* Index: 31 */
1876 	sd_mapblocksize_iostart,	/* Index: 32 */
1877 	sd_checksum_iostart,		/* Index: 33 */
1878 	sd_core_iostart,		/* Index: 34 */
1879 
1880 };
1881 
1882 /*
1883  * Macros to locate the first function of each iostart chain in the
1884  * sd_iostart_chain[] array. These are located by the index in the array.
1885  */
1886 #define	SD_CHAIN_DISK_IOSTART			0
1887 #define	SD_CHAIN_DISK_IOSTART_NO_PM		3
1888 #define	SD_CHAIN_MSS_DISK_IOSTART		5
1889 #define	SD_CHAIN_RMMEDIA_IOSTART		5
1890 #define	SD_CHAIN_MSS_DISK_IOSTART_NO_PM		9
1891 #define	SD_CHAIN_RMMEDIA_IOSTART_NO_PM		9
1892 #define	SD_CHAIN_CHKSUM_IOSTART			12
1893 #define	SD_CHAIN_CHKSUM_IOSTART_NO_PM		16
1894 #define	SD_CHAIN_USCSI_CMD_IOSTART		19
1895 #define	SD_CHAIN_USCSI_CHKSUM_IOSTART		21
1896 #define	SD_CHAIN_DIRECT_CMD_IOSTART		24
1897 #define	SD_CHAIN_PRIORITY_CMD_IOSTART		25
1898 #define	SD_CHAIN_MSS_CHKSUM_IOSTART		26
1899 #define	SD_CHAIN_MSS_CHKSUM_IOSTART_NO_PM	31
1900 
1901 
1902 /*
1903  * Table of function pointers for the iodone-side routines for the driver-
1904  * internal layering mechanism.  The calling sequence for iodone routines
1905  * uses a decrementing table index, so the last routine called in a chain
1906  * must be at the lowest array index location for that chain.  The last
1907  * routine for each chain must be either sd_buf_iodone() (for buf(9S) IOs)
1908  * or sd_uscsi_iodone() (for uscsi IOs).  Other than this, the ordering
1909  * of the functions in an iodone side chain must correspond to the ordering
1910  * of the iostart routines for that chain.  Note that there is no iodone
1911  * side routine that corresponds to sd_core_iostart(), so there is no
1912  * entry in the table for this.
1913  */
1914 
1915 static sd_chain_t sd_iodone_chain[] = {
1916 
1917 	/* Chain for buf IO for disk drive targets (PM enabled) */
1918 	sd_buf_iodone,			/* Index: 0 */
1919 	sd_mapblockaddr_iodone,		/* Index: 1 */
1920 	sd_pm_iodone,			/* Index: 2 */
1921 
1922 	/* Chain for buf IO for disk drive targets (PM disabled) */
1923 	sd_buf_iodone,			/* Index: 3 */
1924 	sd_mapblockaddr_iodone,		/* Index: 4 */
1925 
1926 	/*
1927 	 * Chain for buf IO for removable-media or large sector size
1928 	 * disk drive targets with RMW needed (PM enabled)
1929 	 */
1930 	sd_buf_iodone,			/* Index: 5 */
1931 	sd_mapblockaddr_iodone,		/* Index: 6 */
1932 	sd_mapblocksize_iodone,		/* Index: 7 */
1933 	sd_pm_iodone,			/* Index: 8 */
1934 
1935 	/*
1936 	 * Chain for buf IO for removable-media or large sector size
1937 	 * disk drive targets with RMW needed (PM disabled)
1938 	 */
1939 	sd_buf_iodone,			/* Index: 9 */
1940 	sd_mapblockaddr_iodone,		/* Index: 10 */
1941 	sd_mapblocksize_iodone,		/* Index: 11 */
1942 
1943 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1944 	sd_buf_iodone,			/* Index: 12 */
1945 	sd_mapblockaddr_iodone,		/* Index: 13 */
1946 	sd_checksum_iodone,		/* Index: 14 */
1947 	sd_pm_iodone,			/* Index: 15 */
1948 
1949 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1950 	sd_buf_iodone,			/* Index: 16 */
1951 	sd_mapblockaddr_iodone,		/* Index: 17 */
1952 	sd_checksum_iodone,		/* Index: 18 */
1953 
1954 	/* Chain for USCSI commands (non-checksum targets) */
1955 	sd_uscsi_iodone,		/* Index: 19 */
1956 	sd_pm_iodone,			/* Index: 20 */
1957 
1958 	/* Chain for USCSI commands (checksum targets) */
1959 	sd_uscsi_iodone,		/* Index: 21 */
1960 	sd_checksum_uscsi_iodone,	/* Index: 22 */
1961 	sd_pm_iodone,			/* Index: 22 */
1962 
1963 	/* Chain for "direct" USCSI commands (all targets) */
1964 	sd_uscsi_iodone,		/* Index: 24 */
1965 
1966 	/* Chain for "direct priority" USCSI commands (all targets) */
1967 	sd_uscsi_iodone,		/* Index: 25 */
1968 
1969 	/*
1970 	 * Chain for buf IO for large sector size disk drive targets
1971 	 * with checksumming (PM enabled)
1972 	 */
1973 	sd_buf_iodone,			/* Index: 26 */
1974 	sd_mapblockaddr_iodone,		/* Index: 27 */
1975 	sd_mapblocksize_iodone,		/* Index: 28 */
1976 	sd_checksum_iodone,		/* Index: 29 */
1977 	sd_pm_iodone,			/* Index: 30 */
1978 
1979 	/*
1980 	 * Chain for buf IO for large sector size disk drive targets
1981 	 * with checksumming (PM disabled)
1982 	 */
1983 	sd_buf_iodone,			/* Index: 31 */
1984 	sd_mapblockaddr_iodone,		/* Index: 32 */
1985 	sd_mapblocksize_iodone,		/* Index: 33 */
1986 	sd_checksum_iodone,		/* Index: 34 */
1987 };
1988 
1989 
1990 /*
1991  * Macros to locate the "first" function in the sd_iodone_chain[] array for
1992  * each iodone-side chain. These are located by the array index, but as the
1993  * iodone side functions are called in a decrementing-index order, the
1994  * highest index number in each chain must be specified (as these correspond
1995  * to the first function in the iodone chain that will be called by the core
1996  * at IO completion time).
1997  */
1998 
1999 #define	SD_CHAIN_DISK_IODONE			2
2000 #define	SD_CHAIN_DISK_IODONE_NO_PM		4
2001 #define	SD_CHAIN_RMMEDIA_IODONE			8
2002 #define	SD_CHAIN_MSS_DISK_IODONE		8
2003 #define	SD_CHAIN_RMMEDIA_IODONE_NO_PM		11
2004 #define	SD_CHAIN_MSS_DISK_IODONE_NO_PM		11
2005 #define	SD_CHAIN_CHKSUM_IODONE			15
2006 #define	SD_CHAIN_CHKSUM_IODONE_NO_PM		18
2007 #define	SD_CHAIN_USCSI_CMD_IODONE		20
2008 #define	SD_CHAIN_USCSI_CHKSUM_IODONE		22
2009 #define	SD_CHAIN_DIRECT_CMD_IODONE		24
2010 #define	SD_CHAIN_PRIORITY_CMD_IODONE		25
2011 #define	SD_CHAIN_MSS_CHKSUM_IODONE		30
2012 #define	SD_CHAIN_MSS_CHKSUM_IODONE_NO_PM	34
2013 
2014 
2015 
2016 /*
2017  * Array to map a layering chain index to the appropriate initpkt routine.
2018  * The redundant entries are present so that the index used for accessing
2019  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
2020  * with this table as well.
2021  */
2022 typedef int (*sd_initpkt_t)(struct buf *, struct scsi_pkt **);
2023 
2024 static sd_initpkt_t	sd_initpkt_map[] = {
2025 
2026 	/* Chain for buf IO for disk drive targets (PM enabled) */
2027 	sd_initpkt_for_buf,		/* Index: 0 */
2028 	sd_initpkt_for_buf,		/* Index: 1 */
2029 	sd_initpkt_for_buf,		/* Index: 2 */
2030 
2031 	/* Chain for buf IO for disk drive targets (PM disabled) */
2032 	sd_initpkt_for_buf,		/* Index: 3 */
2033 	sd_initpkt_for_buf,		/* Index: 4 */
2034 
2035 	/*
2036 	 * Chain for buf IO for removable-media or large sector size
2037 	 * disk drive targets (PM enabled)
2038 	 */
2039 	sd_initpkt_for_buf,		/* Index: 5 */
2040 	sd_initpkt_for_buf,		/* Index: 6 */
2041 	sd_initpkt_for_buf,		/* Index: 7 */
2042 	sd_initpkt_for_buf,		/* Index: 8 */
2043 
2044 	/*
2045 	 * Chain for buf IO for removable-media or large sector size
2046 	 * disk drive targets (PM disabled)
2047 	 */
2048 	sd_initpkt_for_buf,		/* Index: 9 */
2049 	sd_initpkt_for_buf,		/* Index: 10 */
2050 	sd_initpkt_for_buf,		/* Index: 11 */
2051 
2052 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2053 	sd_initpkt_for_buf,		/* Index: 12 */
2054 	sd_initpkt_for_buf,		/* Index: 13 */
2055 	sd_initpkt_for_buf,		/* Index: 14 */
2056 	sd_initpkt_for_buf,		/* Index: 15 */
2057 
2058 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2059 	sd_initpkt_for_buf,		/* Index: 16 */
2060 	sd_initpkt_for_buf,		/* Index: 17 */
2061 	sd_initpkt_for_buf,		/* Index: 18 */
2062 
2063 	/* Chain for USCSI commands (non-checksum targets) */
2064 	sd_initpkt_for_uscsi,		/* Index: 19 */
2065 	sd_initpkt_for_uscsi,		/* Index: 20 */
2066 
2067 	/* Chain for USCSI commands (checksum targets) */
2068 	sd_initpkt_for_uscsi,		/* Index: 21 */
2069 	sd_initpkt_for_uscsi,		/* Index: 22 */
2070 	sd_initpkt_for_uscsi,		/* Index: 22 */
2071 
2072 	/* Chain for "direct" USCSI commands (all targets) */
2073 	sd_initpkt_for_uscsi,		/* Index: 24 */
2074 
2075 	/* Chain for "direct priority" USCSI commands (all targets) */
2076 	sd_initpkt_for_uscsi,		/* Index: 25 */
2077 
2078 	/*
2079 	 * Chain for buf IO for large sector size disk drive targets
2080 	 * with checksumming (PM enabled)
2081 	 */
2082 	sd_initpkt_for_buf,		/* Index: 26 */
2083 	sd_initpkt_for_buf,		/* Index: 27 */
2084 	sd_initpkt_for_buf,		/* Index: 28 */
2085 	sd_initpkt_for_buf,		/* Index: 29 */
2086 	sd_initpkt_for_buf,		/* Index: 30 */
2087 
2088 	/*
2089 	 * Chain for buf IO for large sector size disk drive targets
2090 	 * with checksumming (PM disabled)
2091 	 */
2092 	sd_initpkt_for_buf,		/* Index: 31 */
2093 	sd_initpkt_for_buf,		/* Index: 32 */
2094 	sd_initpkt_for_buf,		/* Index: 33 */
2095 	sd_initpkt_for_buf,		/* Index: 34 */
2096 };
2097 
2098 
2099 /*
2100  * Array to map a layering chain index to the appropriate destroypktpkt routine.
2101  * The redundant entries are present so that the index used for accessing
2102  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
2103  * with this table as well.
2104  */
2105 typedef void (*sd_destroypkt_t)(struct buf *);
2106 
2107 static sd_destroypkt_t	sd_destroypkt_map[] = {
2108 
2109 	/* Chain for buf IO for disk drive targets (PM enabled) */
2110 	sd_destroypkt_for_buf,		/* Index: 0 */
2111 	sd_destroypkt_for_buf,		/* Index: 1 */
2112 	sd_destroypkt_for_buf,		/* Index: 2 */
2113 
2114 	/* Chain for buf IO for disk drive targets (PM disabled) */
2115 	sd_destroypkt_for_buf,		/* Index: 3 */
2116 	sd_destroypkt_for_buf,		/* Index: 4 */
2117 
2118 	/*
2119 	 * Chain for buf IO for removable-media or large sector size
2120 	 * disk drive targets (PM enabled)
2121 	 */
2122 	sd_destroypkt_for_buf,		/* Index: 5 */
2123 	sd_destroypkt_for_buf,		/* Index: 6 */
2124 	sd_destroypkt_for_buf,		/* Index: 7 */
2125 	sd_destroypkt_for_buf,		/* Index: 8 */
2126 
2127 	/*
2128 	 * Chain for buf IO for removable-media or large sector size
2129 	 * disk drive targets (PM disabled)
2130 	 */
2131 	sd_destroypkt_for_buf,		/* Index: 9 */
2132 	sd_destroypkt_for_buf,		/* Index: 10 */
2133 	sd_destroypkt_for_buf,		/* Index: 11 */
2134 
2135 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2136 	sd_destroypkt_for_buf,		/* Index: 12 */
2137 	sd_destroypkt_for_buf,		/* Index: 13 */
2138 	sd_destroypkt_for_buf,		/* Index: 14 */
2139 	sd_destroypkt_for_buf,		/* Index: 15 */
2140 
2141 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2142 	sd_destroypkt_for_buf,		/* Index: 16 */
2143 	sd_destroypkt_for_buf,		/* Index: 17 */
2144 	sd_destroypkt_for_buf,		/* Index: 18 */
2145 
2146 	/* Chain for USCSI commands (non-checksum targets) */
2147 	sd_destroypkt_for_uscsi,	/* Index: 19 */
2148 	sd_destroypkt_for_uscsi,	/* Index: 20 */
2149 
2150 	/* Chain for USCSI commands (checksum targets) */
2151 	sd_destroypkt_for_uscsi,	/* Index: 21 */
2152 	sd_destroypkt_for_uscsi,	/* Index: 22 */
2153 	sd_destroypkt_for_uscsi,	/* Index: 22 */
2154 
2155 	/* Chain for "direct" USCSI commands (all targets) */
2156 	sd_destroypkt_for_uscsi,	/* Index: 24 */
2157 
2158 	/* Chain for "direct priority" USCSI commands (all targets) */
2159 	sd_destroypkt_for_uscsi,	/* Index: 25 */
2160 
2161 	/*
2162 	 * Chain for buf IO for large sector size disk drive targets
2163 	 * with checksumming (PM disabled)
2164 	 */
2165 	sd_destroypkt_for_buf,		/* Index: 26 */
2166 	sd_destroypkt_for_buf,		/* Index: 27 */
2167 	sd_destroypkt_for_buf,		/* Index: 28 */
2168 	sd_destroypkt_for_buf,		/* Index: 29 */
2169 	sd_destroypkt_for_buf,		/* Index: 30 */
2170 
2171 	/*
2172 	 * Chain for buf IO for large sector size disk drive targets
2173 	 * with checksumming (PM enabled)
2174 	 */
2175 	sd_destroypkt_for_buf,		/* Index: 31 */
2176 	sd_destroypkt_for_buf,		/* Index: 32 */
2177 	sd_destroypkt_for_buf,		/* Index: 33 */
2178 	sd_destroypkt_for_buf,		/* Index: 34 */
2179 };
2180 
2181 
2182 
2183 /*
2184  * Array to map a layering chain index to the appropriate chain "type".
2185  * The chain type indicates a specific property/usage of the chain.
2186  * The redundant entries are present so that the index used for accessing
2187  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
2188  * with this table as well.
2189  */
2190 
2191 #define	SD_CHAIN_NULL			0	/* for the special RQS cmd */
2192 #define	SD_CHAIN_BUFIO			1	/* regular buf IO */
2193 #define	SD_CHAIN_USCSI			2	/* regular USCSI commands */
2194 #define	SD_CHAIN_DIRECT			3	/* uscsi, w/ bypass power mgt */
2195 #define	SD_CHAIN_DIRECT_PRIORITY	4	/* uscsi, w/ bypass power mgt */
2196 						/* (for error recovery) */
2197 
2198 static int sd_chain_type_map[] = {
2199 
2200 	/* Chain for buf IO for disk drive targets (PM enabled) */
2201 	SD_CHAIN_BUFIO,			/* Index: 0 */
2202 	SD_CHAIN_BUFIO,			/* Index: 1 */
2203 	SD_CHAIN_BUFIO,			/* Index: 2 */
2204 
2205 	/* Chain for buf IO for disk drive targets (PM disabled) */
2206 	SD_CHAIN_BUFIO,			/* Index: 3 */
2207 	SD_CHAIN_BUFIO,			/* Index: 4 */
2208 
2209 	/*
2210 	 * Chain for buf IO for removable-media or large sector size
2211 	 * disk drive targets (PM enabled)
2212 	 */
2213 	SD_CHAIN_BUFIO,			/* Index: 5 */
2214 	SD_CHAIN_BUFIO,			/* Index: 6 */
2215 	SD_CHAIN_BUFIO,			/* Index: 7 */
2216 	SD_CHAIN_BUFIO,			/* Index: 8 */
2217 
2218 	/*
2219 	 * Chain for buf IO for removable-media or large sector size
2220 	 * disk drive targets (PM disabled)
2221 	 */
2222 	SD_CHAIN_BUFIO,			/* Index: 9 */
2223 	SD_CHAIN_BUFIO,			/* Index: 10 */
2224 	SD_CHAIN_BUFIO,			/* Index: 11 */
2225 
2226 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2227 	SD_CHAIN_BUFIO,			/* Index: 12 */
2228 	SD_CHAIN_BUFIO,			/* Index: 13 */
2229 	SD_CHAIN_BUFIO,			/* Index: 14 */
2230 	SD_CHAIN_BUFIO,			/* Index: 15 */
2231 
2232 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2233 	SD_CHAIN_BUFIO,			/* Index: 16 */
2234 	SD_CHAIN_BUFIO,			/* Index: 17 */
2235 	SD_CHAIN_BUFIO,			/* Index: 18 */
2236 
2237 	/* Chain for USCSI commands (non-checksum targets) */
2238 	SD_CHAIN_USCSI,			/* Index: 19 */
2239 	SD_CHAIN_USCSI,			/* Index: 20 */
2240 
2241 	/* Chain for USCSI commands (checksum targets) */
2242 	SD_CHAIN_USCSI,			/* Index: 21 */
2243 	SD_CHAIN_USCSI,			/* Index: 22 */
2244 	SD_CHAIN_USCSI,			/* Index: 23 */
2245 
2246 	/* Chain for "direct" USCSI commands (all targets) */
2247 	SD_CHAIN_DIRECT,		/* Index: 24 */
2248 
2249 	/* Chain for "direct priority" USCSI commands (all targets) */
2250 	SD_CHAIN_DIRECT_PRIORITY,	/* Index: 25 */
2251 
2252 	/*
2253 	 * Chain for buf IO for large sector size disk drive targets
2254 	 * with checksumming (PM enabled)
2255 	 */
2256 	SD_CHAIN_BUFIO,			/* Index: 26 */
2257 	SD_CHAIN_BUFIO,			/* Index: 27 */
2258 	SD_CHAIN_BUFIO,			/* Index: 28 */
2259 	SD_CHAIN_BUFIO,			/* Index: 29 */
2260 	SD_CHAIN_BUFIO,			/* Index: 30 */
2261 
2262 	/*
2263 	 * Chain for buf IO for large sector size disk drive targets
2264 	 * with checksumming (PM disabled)
2265 	 */
2266 	SD_CHAIN_BUFIO,			/* Index: 31 */
2267 	SD_CHAIN_BUFIO,			/* Index: 32 */
2268 	SD_CHAIN_BUFIO,			/* Index: 33 */
2269 	SD_CHAIN_BUFIO,			/* Index: 34 */
2270 };
2271 
2272 
2273 /* Macro to return TRUE if the IO has come from the sd_buf_iostart() chain. */
2274 #define	SD_IS_BUFIO(xp)			\
2275 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_BUFIO)
2276 
2277 /* Macro to return TRUE if the IO has come from the "direct priority" chain. */
2278 #define	SD_IS_DIRECT_PRIORITY(xp)	\
2279 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_DIRECT_PRIORITY)
2280 
2281 
2282 
2283 /*
2284  * Struct, array, and macros to map a specific chain to the appropriate
2285  * layering indexes in the sd_iostart_chain[] and sd_iodone_chain[] arrays.
2286  *
2287  * The sd_chain_index_map[] array is used at attach time to set the various
2288  * un_xxx_chain type members of the sd_lun softstate to the specific layering
2289  * chain to be used with the instance. This allows different instances to use
2290  * different chain for buf IO, uscsi IO, etc.. Also, since the xb_chain_iostart
2291  * and xb_chain_iodone index values in the sd_xbuf are initialized to these
2292  * values at sd_xbuf init time, this allows (1) layering chains may be changed
2293  * dynamically & without the use of locking; and (2) a layer may update the
2294  * xb_chain_io[start|done] member in a given xbuf with its current index value,
2295  * to allow for deferred processing of an IO within the same chain from a
2296  * different execution context.
2297  */
2298 
2299 struct sd_chain_index {
2300 	int	sci_iostart_index;
2301 	int	sci_iodone_index;
2302 };
2303 
2304 static struct sd_chain_index	sd_chain_index_map[] = {
2305 	{ SD_CHAIN_DISK_IOSTART,		SD_CHAIN_DISK_IODONE },
2306 	{ SD_CHAIN_DISK_IOSTART_NO_PM,		SD_CHAIN_DISK_IODONE_NO_PM },
2307 	{ SD_CHAIN_RMMEDIA_IOSTART,		SD_CHAIN_RMMEDIA_IODONE },
2308 	{ SD_CHAIN_RMMEDIA_IOSTART_NO_PM,	SD_CHAIN_RMMEDIA_IODONE_NO_PM },
2309 	{ SD_CHAIN_CHKSUM_IOSTART,		SD_CHAIN_CHKSUM_IODONE },
2310 	{ SD_CHAIN_CHKSUM_IOSTART_NO_PM,	SD_CHAIN_CHKSUM_IODONE_NO_PM },
2311 	{ SD_CHAIN_USCSI_CMD_IOSTART,		SD_CHAIN_USCSI_CMD_IODONE },
2312 	{ SD_CHAIN_USCSI_CHKSUM_IOSTART,	SD_CHAIN_USCSI_CHKSUM_IODONE },
2313 	{ SD_CHAIN_DIRECT_CMD_IOSTART,		SD_CHAIN_DIRECT_CMD_IODONE },
2314 	{ SD_CHAIN_PRIORITY_CMD_IOSTART,	SD_CHAIN_PRIORITY_CMD_IODONE },
2315 	{ SD_CHAIN_MSS_CHKSUM_IOSTART,		SD_CHAIN_MSS_CHKSUM_IODONE },
2316 	{ SD_CHAIN_MSS_CHKSUM_IOSTART_NO_PM, SD_CHAIN_MSS_CHKSUM_IODONE_NO_PM },
2317 
2318 };
2319 
2320 
2321 /*
2322  * The following are indexes into the sd_chain_index_map[] array.
2323  */
2324 
2325 /* un->un_buf_chain_type must be set to one of these */
2326 #define	SD_CHAIN_INFO_DISK		0
2327 #define	SD_CHAIN_INFO_DISK_NO_PM	1
2328 #define	SD_CHAIN_INFO_RMMEDIA		2
2329 #define	SD_CHAIN_INFO_MSS_DISK		2
2330 #define	SD_CHAIN_INFO_RMMEDIA_NO_PM	3
2331 #define	SD_CHAIN_INFO_MSS_DSK_NO_PM	3
2332 #define	SD_CHAIN_INFO_CHKSUM		4
2333 #define	SD_CHAIN_INFO_CHKSUM_NO_PM	5
2334 #define	SD_CHAIN_INFO_MSS_DISK_CHKSUM	10
2335 #define	SD_CHAIN_INFO_MSS_DISK_CHKSUM_NO_PM	11
2336 
2337 /* un->un_uscsi_chain_type must be set to one of these */
2338 #define	SD_CHAIN_INFO_USCSI_CMD		6
2339 /* USCSI with PM disabled is the same as DIRECT */
2340 #define	SD_CHAIN_INFO_USCSI_CMD_NO_PM	8
2341 #define	SD_CHAIN_INFO_USCSI_CHKSUM	7
2342 
2343 /* un->un_direct_chain_type must be set to one of these */
2344 #define	SD_CHAIN_INFO_DIRECT_CMD	8
2345 
2346 /* un->un_priority_chain_type must be set to one of these */
2347 #define	SD_CHAIN_INFO_PRIORITY_CMD	9
2348 
2349 /* size for devid inquiries */
2350 #define	MAX_INQUIRY_SIZE		0xF0
2351 
2352 /*
2353  * Macros used by functions to pass a given buf(9S) struct along to the
2354  * next function in the layering chain for further processing.
2355  *
2356  * In the following macros, passing more than three arguments to the called
2357  * routines causes the optimizer for the SPARC compiler to stop doing tail
2358  * call elimination which results in significant performance degradation.
2359  */
2360 #define	SD_BEGIN_IOSTART(index, un, bp)	\
2361 	((*(sd_iostart_chain[index]))(index, un, bp))
2362 
2363 #define	SD_BEGIN_IODONE(index, un, bp)	\
2364 	((*(sd_iodone_chain[index]))(index, un, bp))
2365 
2366 #define	SD_NEXT_IOSTART(index, un, bp)				\
2367 	((*(sd_iostart_chain[(index) + 1]))((index) + 1, un, bp))
2368 
2369 #define	SD_NEXT_IODONE(index, un, bp)				\
2370 	((*(sd_iodone_chain[(index) - 1]))((index) - 1, un, bp))
2371 
2372 /*
2373  *    Function: _init
2374  *
2375  * Description: This is the driver _init(9E) entry point.
2376  *
2377  * Return Code: Returns the value from mod_install(9F) or
2378  *		ddi_soft_state_init(9F) as appropriate.
2379  *
2380  *     Context: Called when driver module loaded.
2381  */
2382 
2383 int
2384 _init(void)
2385 {
2386 	int	err;
2387 
2388 	/* establish driver name from module name */
2389 	sd_label = (char *)mod_modname(&modlinkage);
2390 
2391 #ifndef XPV_HVM_DRIVER
2392 	err = ddi_soft_state_init(&sd_state, sizeof (struct sd_lun),
2393 	    SD_MAXUNIT);
2394 	if (err != 0) {
2395 		return (err);
2396 	}
2397 
2398 #else /* XPV_HVM_DRIVER */
2399 	/* Remove the leading "hvm_" from the module name */
2400 	ASSERT(strncmp(sd_label, "hvm_", strlen("hvm_")) == 0);
2401 	sd_label += strlen("hvm_");
2402 
2403 #endif /* XPV_HVM_DRIVER */
2404 
2405 	mutex_init(&sd_detach_mutex, NULL, MUTEX_DRIVER, NULL);
2406 	mutex_init(&sd_log_mutex,    NULL, MUTEX_DRIVER, NULL);
2407 	mutex_init(&sd_label_mutex,  NULL, MUTEX_DRIVER, NULL);
2408 
2409 	mutex_init(&sd_tr.srq_resv_reclaim_mutex, NULL, MUTEX_DRIVER, NULL);
2410 	cv_init(&sd_tr.srq_resv_reclaim_cv, NULL, CV_DRIVER, NULL);
2411 	cv_init(&sd_tr.srq_inprocess_cv, NULL, CV_DRIVER, NULL);
2412 
2413 	/*
2414 	 * it's ok to init here even for fibre device
2415 	 */
2416 	sd_scsi_probe_cache_init();
2417 
2418 	sd_scsi_target_lun_init();
2419 
2420 	/*
2421 	 * Creating taskq before mod_install ensures that all callers (threads)
2422 	 * that enter the module after a successful mod_install encounter
2423 	 * a valid taskq.
2424 	 */
2425 	sd_taskq_create();
2426 
2427 	err = mod_install(&modlinkage);
2428 	if (err != 0) {
2429 		/* delete taskq if install fails */
2430 		sd_taskq_delete();
2431 
2432 		mutex_destroy(&sd_detach_mutex);
2433 		mutex_destroy(&sd_log_mutex);
2434 		mutex_destroy(&sd_label_mutex);
2435 
2436 		mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2437 		cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2438 		cv_destroy(&sd_tr.srq_inprocess_cv);
2439 
2440 		sd_scsi_probe_cache_fini();
2441 
2442 		sd_scsi_target_lun_fini();
2443 
2444 #ifndef XPV_HVM_DRIVER
2445 		ddi_soft_state_fini(&sd_state);
2446 #endif /* !XPV_HVM_DRIVER */
2447 		return (err);
2448 	}
2449 
2450 	return (err);
2451 }
2452 
2453 
2454 /*
2455  *    Function: _fini
2456  *
2457  * Description: This is the driver _fini(9E) entry point.
2458  *
2459  * Return Code: Returns the value from mod_remove(9F)
2460  *
2461  *     Context: Called when driver module is unloaded.
2462  */
2463 
2464 int
2465 _fini(void)
2466 {
2467 	int err;
2468 
2469 	if ((err = mod_remove(&modlinkage)) != 0) {
2470 		return (err);
2471 	}
2472 
2473 	sd_taskq_delete();
2474 
2475 	mutex_destroy(&sd_detach_mutex);
2476 	mutex_destroy(&sd_log_mutex);
2477 	mutex_destroy(&sd_label_mutex);
2478 	mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2479 
2480 	sd_scsi_probe_cache_fini();
2481 
2482 	sd_scsi_target_lun_fini();
2483 
2484 	cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2485 	cv_destroy(&sd_tr.srq_inprocess_cv);
2486 
2487 #ifndef XPV_HVM_DRIVER
2488 	ddi_soft_state_fini(&sd_state);
2489 #endif /* !XPV_HVM_DRIVER */
2490 
2491 	return (err);
2492 }
2493 
2494 
2495 /*
2496  *    Function: _info
2497  *
2498  * Description: This is the driver _info(9E) entry point.
2499  *
2500  *   Arguments: modinfop - pointer to the driver modinfo structure
2501  *
2502  * Return Code: Returns the value from mod_info(9F).
2503  *
2504  *     Context: Kernel thread context
2505  */
2506 
2507 int
2508 _info(struct modinfo *modinfop)
2509 {
2510 	return (mod_info(&modlinkage, modinfop));
2511 }
2512 
2513 
2514 /*
2515  * The following routines implement the driver message logging facility.
2516  * They provide component- and level- based debug output filtering.
2517  * Output may also be restricted to messages for a single instance by
2518  * specifying a soft state pointer in sd_debug_un. If sd_debug_un is set
2519  * to NULL, then messages for all instances are printed.
2520  *
2521  * These routines have been cloned from each other due to the language
2522  * constraints of macros and variable argument list processing.
2523  */
2524 
2525 
2526 /*
2527  *    Function: sd_log_err
2528  *
2529  * Description: This routine is called by the SD_ERROR macro for debug
2530  *		logging of error conditions.
2531  *
2532  *   Arguments: comp - driver component being logged
2533  *		dev  - pointer to driver info structure
2534  *		fmt  - error string and format to be logged
2535  */
2536 
2537 static void
2538 sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...)
2539 {
2540 	va_list		ap;
2541 	dev_info_t	*dev;
2542 
2543 	ASSERT(un != NULL);
2544 	dev = SD_DEVINFO(un);
2545 	ASSERT(dev != NULL);
2546 
2547 	/*
2548 	 * Filter messages based on the global component and level masks.
2549 	 * Also print if un matches the value of sd_debug_un, or if
2550 	 * sd_debug_un is set to NULL.
2551 	 */
2552 	if ((sd_component_mask & comp) && (sd_level_mask & SD_LOGMASK_ERROR) &&
2553 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2554 		mutex_enter(&sd_log_mutex);
2555 		va_start(ap, fmt);
2556 		(void) vsprintf(sd_log_buf, fmt, ap);
2557 		va_end(ap);
2558 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2559 		mutex_exit(&sd_log_mutex);
2560 	}
2561 #ifdef SD_FAULT_INJECTION
2562 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2563 	if (un->sd_injection_mask & comp) {
2564 		mutex_enter(&sd_log_mutex);
2565 		va_start(ap, fmt);
2566 		(void) vsprintf(sd_log_buf, fmt, ap);
2567 		va_end(ap);
2568 		sd_injection_log(sd_log_buf, un);
2569 		mutex_exit(&sd_log_mutex);
2570 	}
2571 #endif
2572 }
2573 
2574 
2575 /*
2576  *    Function: sd_log_info
2577  *
2578  * Description: This routine is called by the SD_INFO macro for debug
2579  *		logging of general purpose informational conditions.
2580  *
2581  *   Arguments: comp - driver component being logged
2582  *		dev  - pointer to driver info structure
2583  *		fmt  - info string and format to be logged
2584  */
2585 
2586 static void
2587 sd_log_info(uint_t component, struct sd_lun *un, const char *fmt, ...)
2588 {
2589 	va_list		ap;
2590 	dev_info_t	*dev;
2591 
2592 	ASSERT(un != NULL);
2593 	dev = SD_DEVINFO(un);
2594 	ASSERT(dev != NULL);
2595 
2596 	/*
2597 	 * Filter messages based on the global component and level masks.
2598 	 * Also print if un matches the value of sd_debug_un, or if
2599 	 * sd_debug_un is set to NULL.
2600 	 */
2601 	if ((sd_component_mask & component) &&
2602 	    (sd_level_mask & SD_LOGMASK_INFO) &&
2603 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2604 		mutex_enter(&sd_log_mutex);
2605 		va_start(ap, fmt);
2606 		(void) vsprintf(sd_log_buf, fmt, ap);
2607 		va_end(ap);
2608 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2609 		mutex_exit(&sd_log_mutex);
2610 	}
2611 #ifdef SD_FAULT_INJECTION
2612 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2613 	if (un->sd_injection_mask & component) {
2614 		mutex_enter(&sd_log_mutex);
2615 		va_start(ap, fmt);
2616 		(void) vsprintf(sd_log_buf, fmt, ap);
2617 		va_end(ap);
2618 		sd_injection_log(sd_log_buf, un);
2619 		mutex_exit(&sd_log_mutex);
2620 	}
2621 #endif
2622 }
2623 
2624 
2625 /*
2626  *    Function: sd_log_trace
2627  *
2628  * Description: This routine is called by the SD_TRACE macro for debug
2629  *		logging of trace conditions (i.e. function entry/exit).
2630  *
2631  *   Arguments: comp - driver component being logged
2632  *		dev  - pointer to driver info structure
2633  *		fmt  - trace string and format to be logged
2634  */
2635 
2636 static void
2637 sd_log_trace(uint_t component, struct sd_lun *un, const char *fmt, ...)
2638 {
2639 	va_list		ap;
2640 	dev_info_t	*dev;
2641 
2642 	ASSERT(un != NULL);
2643 	dev = SD_DEVINFO(un);
2644 	ASSERT(dev != NULL);
2645 
2646 	/*
2647 	 * Filter messages based on the global component and level masks.
2648 	 * Also print if un matches the value of sd_debug_un, or if
2649 	 * sd_debug_un is set to NULL.
2650 	 */
2651 	if ((sd_component_mask & component) &&
2652 	    (sd_level_mask & SD_LOGMASK_TRACE) &&
2653 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2654 		mutex_enter(&sd_log_mutex);
2655 		va_start(ap, fmt);
2656 		(void) vsprintf(sd_log_buf, fmt, ap);
2657 		va_end(ap);
2658 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2659 		mutex_exit(&sd_log_mutex);
2660 	}
2661 #ifdef SD_FAULT_INJECTION
2662 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2663 	if (un->sd_injection_mask & component) {
2664 		mutex_enter(&sd_log_mutex);
2665 		va_start(ap, fmt);
2666 		(void) vsprintf(sd_log_buf, fmt, ap);
2667 		va_end(ap);
2668 		sd_injection_log(sd_log_buf, un);
2669 		mutex_exit(&sd_log_mutex);
2670 	}
2671 #endif
2672 }
2673 
2674 
2675 /*
2676  *    Function: sdprobe
2677  *
2678  * Description: This is the driver probe(9e) entry point function.
2679  *
2680  *   Arguments: devi - opaque device info handle
2681  *
2682  * Return Code: DDI_PROBE_SUCCESS: If the probe was successful.
2683  *              DDI_PROBE_FAILURE: If the probe failed.
2684  *              DDI_PROBE_PARTIAL: If the instance is not present now,
2685  *				   but may be present in the future.
2686  */
2687 
2688 static int
2689 sdprobe(dev_info_t *devi)
2690 {
2691 	struct scsi_device	*devp;
2692 	int			rval;
2693 #ifndef XPV_HVM_DRIVER
2694 	int			instance = ddi_get_instance(devi);
2695 #endif /* !XPV_HVM_DRIVER */
2696 
2697 	/*
2698 	 * if it wasn't for pln, sdprobe could actually be nulldev
2699 	 * in the "__fibre" case.
2700 	 */
2701 	if (ddi_dev_is_sid(devi) == DDI_SUCCESS) {
2702 		return (DDI_PROBE_DONTCARE);
2703 	}
2704 
2705 	devp = ddi_get_driver_private(devi);
2706 
2707 	if (devp == NULL) {
2708 		/* Ooops... nexus driver is mis-configured... */
2709 		return (DDI_PROBE_FAILURE);
2710 	}
2711 
2712 #ifndef XPV_HVM_DRIVER
2713 	if (ddi_get_soft_state(sd_state, instance) != NULL) {
2714 		return (DDI_PROBE_PARTIAL);
2715 	}
2716 #endif /* !XPV_HVM_DRIVER */
2717 
2718 	/*
2719 	 * Call the SCSA utility probe routine to see if we actually
2720 	 * have a target at this SCSI nexus.
2721 	 */
2722 	switch (sd_scsi_probe_with_cache(devp, NULL_FUNC)) {
2723 	case SCSIPROBE_EXISTS:
2724 		switch (devp->sd_inq->inq_dtype) {
2725 		case DTYPE_DIRECT:
2726 			rval = DDI_PROBE_SUCCESS;
2727 			break;
2728 		case DTYPE_RODIRECT:
2729 			/* CDs etc. Can be removable media */
2730 			rval = DDI_PROBE_SUCCESS;
2731 			break;
2732 		case DTYPE_OPTICAL:
2733 			/*
2734 			 * Rewritable optical driver HP115AA
2735 			 * Can also be removable media
2736 			 */
2737 
2738 			/*
2739 			 * Do not attempt to bind to  DTYPE_OPTICAL if
2740 			 * pre solaris 9 sparc sd behavior is required
2741 			 *
2742 			 * If first time through and sd_dtype_optical_bind
2743 			 * has not been set in /etc/system check properties
2744 			 */
2745 
2746 			if (sd_dtype_optical_bind  < 0) {
2747 				sd_dtype_optical_bind = ddi_prop_get_int
2748 				    (DDI_DEV_T_ANY, devi, 0,
2749 				    "optical-device-bind", 1);
2750 			}
2751 
2752 			if (sd_dtype_optical_bind == 0) {
2753 				rval = DDI_PROBE_FAILURE;
2754 			} else {
2755 				rval = DDI_PROBE_SUCCESS;
2756 			}
2757 			break;
2758 
2759 		case DTYPE_NOTPRESENT:
2760 		default:
2761 			rval = DDI_PROBE_FAILURE;
2762 			break;
2763 		}
2764 		break;
2765 	default:
2766 		rval = DDI_PROBE_PARTIAL;
2767 		break;
2768 	}
2769 
2770 	/*
2771 	 * This routine checks for resource allocation prior to freeing,
2772 	 * so it will take care of the "smart probing" case where a
2773 	 * scsi_probe() may or may not have been issued and will *not*
2774 	 * free previously-freed resources.
2775 	 */
2776 	scsi_unprobe(devp);
2777 	return (rval);
2778 }
2779 
2780 
2781 /*
2782  *    Function: sdinfo
2783  *
2784  * Description: This is the driver getinfo(9e) entry point function.
2785  * 		Given the device number, return the devinfo pointer from
2786  *		the scsi_device structure or the instance number
2787  *		associated with the dev_t.
2788  *
2789  *   Arguments: dip     - pointer to device info structure
2790  *		infocmd - command argument (DDI_INFO_DEVT2DEVINFO,
2791  *			  DDI_INFO_DEVT2INSTANCE)
2792  *		arg     - driver dev_t
2793  *		resultp - user buffer for request response
2794  *
2795  * Return Code: DDI_SUCCESS
2796  *              DDI_FAILURE
2797  */
2798 /* ARGSUSED */
2799 static int
2800 sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
2801 {
2802 	struct sd_lun	*un;
2803 	dev_t		dev;
2804 	int		instance;
2805 	int		error;
2806 
2807 	switch (infocmd) {
2808 	case DDI_INFO_DEVT2DEVINFO:
2809 		dev = (dev_t)arg;
2810 		instance = SDUNIT(dev);
2811 		if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
2812 			return (DDI_FAILURE);
2813 		}
2814 		*result = (void *) SD_DEVINFO(un);
2815 		error = DDI_SUCCESS;
2816 		break;
2817 	case DDI_INFO_DEVT2INSTANCE:
2818 		dev = (dev_t)arg;
2819 		instance = SDUNIT(dev);
2820 		*result = (void *)(uintptr_t)instance;
2821 		error = DDI_SUCCESS;
2822 		break;
2823 	default:
2824 		error = DDI_FAILURE;
2825 	}
2826 	return (error);
2827 }
2828 
2829 /*
2830  *    Function: sd_prop_op
2831  *
2832  * Description: This is the driver prop_op(9e) entry point function.
2833  *		Return the number of blocks for the partition in question
2834  *		or forward the request to the property facilities.
2835  *
2836  *   Arguments: dev       - device number
2837  *		dip       - pointer to device info structure
2838  *		prop_op   - property operator
2839  *		mod_flags - DDI_PROP_DONTPASS, don't pass to parent
2840  *		name      - pointer to property name
2841  *		valuep    - pointer or address of the user buffer
2842  *		lengthp   - property length
2843  *
2844  * Return Code: DDI_PROP_SUCCESS
2845  *              DDI_PROP_NOT_FOUND
2846  *              DDI_PROP_UNDEFINED
2847  *              DDI_PROP_NO_MEMORY
2848  *              DDI_PROP_BUF_TOO_SMALL
2849  */
2850 
2851 static int
2852 sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
2853 	char *name, caddr_t valuep, int *lengthp)
2854 {
2855 	struct sd_lun	*un;
2856 
2857 	if ((un = ddi_get_soft_state(sd_state, ddi_get_instance(dip))) == NULL)
2858 		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
2859 		    name, valuep, lengthp));
2860 
2861 	return (cmlb_prop_op(un->un_cmlbhandle,
2862 	    dev, dip, prop_op, mod_flags, name, valuep, lengthp,
2863 	    SDPART(dev), (void *)SD_PATH_DIRECT));
2864 }
2865 
2866 /*
2867  * The following functions are for smart probing:
2868  * sd_scsi_probe_cache_init()
2869  * sd_scsi_probe_cache_fini()
2870  * sd_scsi_clear_probe_cache()
2871  * sd_scsi_probe_with_cache()
2872  */
2873 
2874 /*
2875  *    Function: sd_scsi_probe_cache_init
2876  *
2877  * Description: Initializes the probe response cache mutex and head pointer.
2878  *
2879  *     Context: Kernel thread context
2880  */
2881 
2882 static void
2883 sd_scsi_probe_cache_init(void)
2884 {
2885 	mutex_init(&sd_scsi_probe_cache_mutex, NULL, MUTEX_DRIVER, NULL);
2886 	sd_scsi_probe_cache_head = NULL;
2887 }
2888 
2889 
2890 /*
2891  *    Function: sd_scsi_probe_cache_fini
2892  *
2893  * Description: Frees all resources associated with the probe response cache.
2894  *
2895  *     Context: Kernel thread context
2896  */
2897 
2898 static void
2899 sd_scsi_probe_cache_fini(void)
2900 {
2901 	struct sd_scsi_probe_cache *cp;
2902 	struct sd_scsi_probe_cache *ncp;
2903 
2904 	/* Clean up our smart probing linked list */
2905 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = ncp) {
2906 		ncp = cp->next;
2907 		kmem_free(cp, sizeof (struct sd_scsi_probe_cache));
2908 	}
2909 	sd_scsi_probe_cache_head = NULL;
2910 	mutex_destroy(&sd_scsi_probe_cache_mutex);
2911 }
2912 
2913 
2914 /*
2915  *    Function: sd_scsi_clear_probe_cache
2916  *
2917  * Description: This routine clears the probe response cache. This is
2918  *		done when open() returns ENXIO so that when deferred
2919  *		attach is attempted (possibly after a device has been
2920  *		turned on) we will retry the probe. Since we don't know
2921  *		which target we failed to open, we just clear the
2922  *		entire cache.
2923  *
2924  *     Context: Kernel thread context
2925  */
2926 
2927 static void
2928 sd_scsi_clear_probe_cache(void)
2929 {
2930 	struct sd_scsi_probe_cache	*cp;
2931 	int				i;
2932 
2933 	mutex_enter(&sd_scsi_probe_cache_mutex);
2934 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2935 		/*
2936 		 * Reset all entries to SCSIPROBE_EXISTS.  This will
2937 		 * force probing to be performed the next time
2938 		 * sd_scsi_probe_with_cache is called.
2939 		 */
2940 		for (i = 0; i < NTARGETS_WIDE; i++) {
2941 			cp->cache[i] = SCSIPROBE_EXISTS;
2942 		}
2943 	}
2944 	mutex_exit(&sd_scsi_probe_cache_mutex);
2945 }
2946 
2947 
2948 /*
2949  *    Function: sd_scsi_probe_with_cache
2950  *
2951  * Description: This routine implements support for a scsi device probe
2952  *		with cache. The driver maintains a cache of the target
2953  *		responses to scsi probes. If we get no response from a
2954  *		target during a probe inquiry, we remember that, and we
2955  *		avoid additional calls to scsi_probe on non-zero LUNs
2956  *		on the same target until the cache is cleared. By doing
2957  *		so we avoid the 1/4 sec selection timeout for nonzero
2958  *		LUNs. lun0 of a target is always probed.
2959  *
2960  *   Arguments: devp     - Pointer to a scsi_device(9S) structure
2961  *              waitfunc - indicates what the allocator routines should
2962  *			   do when resources are not available. This value
2963  *			   is passed on to scsi_probe() when that routine
2964  *			   is called.
2965  *
2966  * Return Code: SCSIPROBE_NORESP if a NORESP in probe response cache;
2967  *		otherwise the value returned by scsi_probe(9F).
2968  *
2969  *     Context: Kernel thread context
2970  */
2971 
2972 static int
2973 sd_scsi_probe_with_cache(struct scsi_device *devp, int (*waitfn)())
2974 {
2975 	struct sd_scsi_probe_cache	*cp;
2976 	dev_info_t	*pdip = ddi_get_parent(devp->sd_dev);
2977 	int		lun, tgt;
2978 
2979 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2980 	    SCSI_ADDR_PROP_LUN, 0);
2981 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2982 	    SCSI_ADDR_PROP_TARGET, -1);
2983 
2984 	/* Make sure caching enabled and target in range */
2985 	if ((tgt < 0) || (tgt >= NTARGETS_WIDE)) {
2986 		/* do it the old way (no cache) */
2987 		return (scsi_probe(devp, waitfn));
2988 	}
2989 
2990 	mutex_enter(&sd_scsi_probe_cache_mutex);
2991 
2992 	/* Find the cache for this scsi bus instance */
2993 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2994 		if (cp->pdip == pdip) {
2995 			break;
2996 		}
2997 	}
2998 
2999 	/* If we can't find a cache for this pdip, create one */
3000 	if (cp == NULL) {
3001 		int i;
3002 
3003 		cp = kmem_zalloc(sizeof (struct sd_scsi_probe_cache),
3004 		    KM_SLEEP);
3005 		cp->pdip = pdip;
3006 		cp->next = sd_scsi_probe_cache_head;
3007 		sd_scsi_probe_cache_head = cp;
3008 		for (i = 0; i < NTARGETS_WIDE; i++) {
3009 			cp->cache[i] = SCSIPROBE_EXISTS;
3010 		}
3011 	}
3012 
3013 	mutex_exit(&sd_scsi_probe_cache_mutex);
3014 
3015 	/* Recompute the cache for this target if LUN zero */
3016 	if (lun == 0) {
3017 		cp->cache[tgt] = SCSIPROBE_EXISTS;
3018 	}
3019 
3020 	/* Don't probe if cache remembers a NORESP from a previous LUN. */
3021 	if (cp->cache[tgt] != SCSIPROBE_EXISTS) {
3022 		return (SCSIPROBE_NORESP);
3023 	}
3024 
3025 	/* Do the actual probe; save & return the result */
3026 	return (cp->cache[tgt] = scsi_probe(devp, waitfn));
3027 }
3028 
3029 
3030 /*
3031  *    Function: sd_scsi_target_lun_init
3032  *
3033  * Description: Initializes the attached lun chain mutex and head pointer.
3034  *
3035  *     Context: Kernel thread context
3036  */
3037 
3038 static void
3039 sd_scsi_target_lun_init(void)
3040 {
3041 	mutex_init(&sd_scsi_target_lun_mutex, NULL, MUTEX_DRIVER, NULL);
3042 	sd_scsi_target_lun_head = NULL;
3043 }
3044 
3045 
3046 /*
3047  *    Function: sd_scsi_target_lun_fini
3048  *
3049  * Description: Frees all resources associated with the attached lun
3050  *              chain
3051  *
3052  *     Context: Kernel thread context
3053  */
3054 
3055 static void
3056 sd_scsi_target_lun_fini(void)
3057 {
3058 	struct sd_scsi_hba_tgt_lun	*cp;
3059 	struct sd_scsi_hba_tgt_lun	*ncp;
3060 
3061 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = ncp) {
3062 		ncp = cp->next;
3063 		kmem_free(cp, sizeof (struct sd_scsi_hba_tgt_lun));
3064 	}
3065 	sd_scsi_target_lun_head = NULL;
3066 	mutex_destroy(&sd_scsi_target_lun_mutex);
3067 }
3068 
3069 
3070 /*
3071  *    Function: sd_scsi_get_target_lun_count
3072  *
3073  * Description: This routine will check in the attached lun chain to see
3074  * 		how many luns are attached on the required SCSI controller
3075  * 		and target. Currently, some capabilities like tagged queue
3076  *		are supported per target based by HBA. So all luns in a
3077  *		target have the same capabilities. Based on this assumption,
3078  * 		sd should only set these capabilities once per target. This
3079  *		function is called when sd needs to decide how many luns
3080  *		already attached on a target.
3081  *
3082  *   Arguments: dip	- Pointer to the system's dev_info_t for the SCSI
3083  *			  controller device.
3084  *              target	- The target ID on the controller's SCSI bus.
3085  *
3086  * Return Code: The number of luns attached on the required target and
3087  *		controller.
3088  *		-1 if target ID is not in parallel SCSI scope or the given
3089  * 		dip is not in the chain.
3090  *
3091  *     Context: Kernel thread context
3092  */
3093 
3094 static int
3095 sd_scsi_get_target_lun_count(dev_info_t *dip, int target)
3096 {
3097 	struct sd_scsi_hba_tgt_lun	*cp;
3098 
3099 	if ((target < 0) || (target >= NTARGETS_WIDE)) {
3100 		return (-1);
3101 	}
3102 
3103 	mutex_enter(&sd_scsi_target_lun_mutex);
3104 
3105 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
3106 		if (cp->pdip == dip) {
3107 			break;
3108 		}
3109 	}
3110 
3111 	mutex_exit(&sd_scsi_target_lun_mutex);
3112 
3113 	if (cp == NULL) {
3114 		return (-1);
3115 	}
3116 
3117 	return (cp->nlun[target]);
3118 }
3119 
3120 
3121 /*
3122  *    Function: sd_scsi_update_lun_on_target
3123  *
3124  * Description: This routine is used to update the attached lun chain when a
3125  *		lun is attached or detached on a target.
3126  *
3127  *   Arguments: dip     - Pointer to the system's dev_info_t for the SCSI
3128  *                        controller device.
3129  *              target  - The target ID on the controller's SCSI bus.
3130  *		flag	- Indicate the lun is attached or detached.
3131  *
3132  *     Context: Kernel thread context
3133  */
3134 
3135 static void
3136 sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag)
3137 {
3138 	struct sd_scsi_hba_tgt_lun	*cp;
3139 
3140 	mutex_enter(&sd_scsi_target_lun_mutex);
3141 
3142 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
3143 		if (cp->pdip == dip) {
3144 			break;
3145 		}
3146 	}
3147 
3148 	if ((cp == NULL) && (flag == SD_SCSI_LUN_ATTACH)) {
3149 		cp = kmem_zalloc(sizeof (struct sd_scsi_hba_tgt_lun),
3150 		    KM_SLEEP);
3151 		cp->pdip = dip;
3152 		cp->next = sd_scsi_target_lun_head;
3153 		sd_scsi_target_lun_head = cp;
3154 	}
3155 
3156 	mutex_exit(&sd_scsi_target_lun_mutex);
3157 
3158 	if (cp != NULL) {
3159 		if (flag == SD_SCSI_LUN_ATTACH) {
3160 			cp->nlun[target] ++;
3161 		} else {
3162 			cp->nlun[target] --;
3163 		}
3164 	}
3165 }
3166 
3167 
3168 /*
3169  *    Function: sd_spin_up_unit
3170  *
3171  * Description: Issues the following commands to spin-up the device:
3172  *		START STOP UNIT, and INQUIRY.
3173  *
3174  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
3175  *                      structure for this target.
3176  *
3177  * Return Code: 0 - success
3178  *		EIO - failure
3179  *		EACCES - reservation conflict
3180  *
3181  *     Context: Kernel thread context
3182  */
3183 
3184 static int
3185 sd_spin_up_unit(sd_ssc_t *ssc)
3186 {
3187 	size_t	resid		= 0;
3188 	int	has_conflict	= FALSE;
3189 	uchar_t *bufaddr;
3190 	int 	status;
3191 	struct sd_lun	*un;
3192 
3193 	ASSERT(ssc != NULL);
3194 	un = ssc->ssc_un;
3195 	ASSERT(un != NULL);
3196 
3197 	/*
3198 	 * Send a throwaway START UNIT command.
3199 	 *
3200 	 * If we fail on this, we don't care presently what precisely
3201 	 * is wrong.  EMC's arrays will also fail this with a check
3202 	 * condition (0x2/0x4/0x3) if the device is "inactive," but
3203 	 * we don't want to fail the attach because it may become
3204 	 * "active" later.
3205 	 * We don't know if power condition is supported or not at
3206 	 * this stage, use START STOP bit.
3207 	 */
3208 	status = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
3209 	    SD_TARGET_START, SD_PATH_DIRECT);
3210 
3211 	if (status != 0) {
3212 		if (status == EACCES)
3213 			has_conflict = TRUE;
3214 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3215 	}
3216 
3217 	/*
3218 	 * Send another INQUIRY command to the target. This is necessary for
3219 	 * non-removable media direct access devices because their INQUIRY data
3220 	 * may not be fully qualified until they are spun up (perhaps via the
3221 	 * START command above).  Note: This seems to be needed for some
3222 	 * legacy devices only.) The INQUIRY command should succeed even if a
3223 	 * Reservation Conflict is present.
3224 	 */
3225 	bufaddr = kmem_zalloc(SUN_INQSIZE, KM_SLEEP);
3226 
3227 	if (sd_send_scsi_INQUIRY(ssc, bufaddr, SUN_INQSIZE, 0, 0, &resid)
3228 	    != 0) {
3229 		kmem_free(bufaddr, SUN_INQSIZE);
3230 		sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
3231 		return (EIO);
3232 	}
3233 
3234 	/*
3235 	 * If we got enough INQUIRY data, copy it over the old INQUIRY data.
3236 	 * Note that this routine does not return a failure here even if the
3237 	 * INQUIRY command did not return any data.  This is a legacy behavior.
3238 	 */
3239 	if ((SUN_INQSIZE - resid) >= SUN_MIN_INQLEN) {
3240 		bcopy(bufaddr, SD_INQUIRY(un), SUN_INQSIZE);
3241 	}
3242 
3243 	kmem_free(bufaddr, SUN_INQSIZE);
3244 
3245 	/* If we hit a reservation conflict above, tell the caller. */
3246 	if (has_conflict == TRUE) {
3247 		return (EACCES);
3248 	}
3249 
3250 	return (0);
3251 }
3252 
3253 #ifdef _LP64
3254 /*
3255  *    Function: sd_enable_descr_sense
3256  *
3257  * Description: This routine attempts to select descriptor sense format
3258  *		using the Control mode page.  Devices that support 64 bit
3259  *		LBAs (for >2TB luns) should also implement descriptor
3260  *		sense data so we will call this function whenever we see
3261  *		a lun larger than 2TB.  If for some reason the device
3262  *		supports 64 bit LBAs but doesn't support descriptor sense
3263  *		presumably the mode select will fail.  Everything will
3264  *		continue to work normally except that we will not get
3265  *		complete sense data for commands that fail with an LBA
3266  *		larger than 32 bits.
3267  *
3268  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
3269  *                      structure for this target.
3270  *
3271  *     Context: Kernel thread context only
3272  */
3273 
3274 static void
3275 sd_enable_descr_sense(sd_ssc_t *ssc)
3276 {
3277 	uchar_t			*header;
3278 	struct mode_control_scsi3 *ctrl_bufp;
3279 	size_t			buflen;
3280 	size_t			bd_len;
3281 	int			status;
3282 	struct sd_lun		*un;
3283 
3284 	ASSERT(ssc != NULL);
3285 	un = ssc->ssc_un;
3286 	ASSERT(un != NULL);
3287 
3288 	/*
3289 	 * Read MODE SENSE page 0xA, Control Mode Page
3290 	 */
3291 	buflen = MODE_HEADER_LENGTH + MODE_BLK_DESC_LENGTH +
3292 	    sizeof (struct mode_control_scsi3);
3293 	header = kmem_zalloc(buflen, KM_SLEEP);
3294 
3295 	status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen,
3296 	    MODEPAGE_CTRL_MODE, SD_PATH_DIRECT);
3297 
3298 	if (status != 0) {
3299 		SD_ERROR(SD_LOG_COMMON, un,
3300 		    "sd_enable_descr_sense: mode sense ctrl page failed\n");
3301 		goto eds_exit;
3302 	}
3303 
3304 	/*
3305 	 * Determine size of Block Descriptors in order to locate
3306 	 * the mode page data. ATAPI devices return 0, SCSI devices
3307 	 * should return MODE_BLK_DESC_LENGTH.
3308 	 */
3309 	bd_len  = ((struct mode_header *)header)->bdesc_length;
3310 
3311 	/* Clear the mode data length field for MODE SELECT */
3312 	((struct mode_header *)header)->length = 0;
3313 
3314 	ctrl_bufp = (struct mode_control_scsi3 *)
3315 	    (header + MODE_HEADER_LENGTH + bd_len);
3316 
3317 	/*
3318 	 * If the page length is smaller than the expected value,
3319 	 * the target device doesn't support D_SENSE. Bail out here.
3320 	 */
3321 	if (ctrl_bufp->mode_page.length <
3322 	    sizeof (struct mode_control_scsi3) - 2) {
3323 		SD_ERROR(SD_LOG_COMMON, un,
3324 		    "sd_enable_descr_sense: enable D_SENSE failed\n");
3325 		goto eds_exit;
3326 	}
3327 
3328 	/*
3329 	 * Clear PS bit for MODE SELECT
3330 	 */
3331 	ctrl_bufp->mode_page.ps = 0;
3332 
3333 	/*
3334 	 * Set D_SENSE to enable descriptor sense format.
3335 	 */
3336 	ctrl_bufp->d_sense = 1;
3337 
3338 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3339 
3340 	/*
3341 	 * Use MODE SELECT to commit the change to the D_SENSE bit
3342 	 */
3343 	status = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, header,
3344 	    buflen, SD_DONTSAVE_PAGE, SD_PATH_DIRECT);
3345 
3346 	if (status != 0) {
3347 		SD_INFO(SD_LOG_COMMON, un,
3348 		    "sd_enable_descr_sense: mode select ctrl page failed\n");
3349 	} else {
3350 		kmem_free(header, buflen);
3351 		return;
3352 	}
3353 
3354 eds_exit:
3355 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3356 	kmem_free(header, buflen);
3357 }
3358 
3359 /*
3360  *    Function: sd_reenable_dsense_task
3361  *
3362  * Description: Re-enable descriptor sense after device or bus reset
3363  *
3364  *     Context: Executes in a taskq() thread context
3365  */
3366 static void
3367 sd_reenable_dsense_task(void *arg)
3368 {
3369 	struct	sd_lun	*un = arg;
3370 	sd_ssc_t	*ssc;
3371 
3372 	ASSERT(un != NULL);
3373 
3374 	ssc = sd_ssc_init(un);
3375 	sd_enable_descr_sense(ssc);
3376 	sd_ssc_fini(ssc);
3377 }
3378 #endif /* _LP64 */
3379 
3380 /*
3381  *    Function: sd_set_mmc_caps
3382  *
3383  * Description: This routine determines if the device is MMC compliant and if
3384  *		the device supports CDDA via a mode sense of the CDVD
3385  *		capabilities mode page. Also checks if the device is a
3386  *		dvdram writable device.
3387  *
3388  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
3389  *                      structure for this target.
3390  *
3391  *     Context: Kernel thread context only
3392  */
3393 
3394 static void
3395 sd_set_mmc_caps(sd_ssc_t *ssc)
3396 {
3397 	struct mode_header_grp2		*sense_mhp;
3398 	uchar_t				*sense_page;
3399 	caddr_t				buf;
3400 	int				bd_len;
3401 	int				status;
3402 	struct uscsi_cmd		com;
3403 	int				rtn;
3404 	uchar_t				*out_data_rw, *out_data_hd;
3405 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3406 	struct sd_lun			*un;
3407 
3408 	ASSERT(ssc != NULL);
3409 	un = ssc->ssc_un;
3410 	ASSERT(un != NULL);
3411 
3412 	/*
3413 	 * The flags which will be set in this function are - mmc compliant,
3414 	 * dvdram writable device, cdda support. Initialize them to FALSE
3415 	 * and if a capability is detected - it will be set to TRUE.
3416 	 */
3417 	un->un_f_mmc_cap = FALSE;
3418 	un->un_f_dvdram_writable_device = FALSE;
3419 	un->un_f_cfg_cdda = FALSE;
3420 
3421 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3422 	status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, (uchar_t *)buf,
3423 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT);
3424 
3425 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3426 
3427 	if (status != 0) {
3428 		/* command failed; just return */
3429 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3430 		return;
3431 	}
3432 	/*
3433 	 * If the mode sense request for the CDROM CAPABILITIES
3434 	 * page (0x2A) succeeds the device is assumed to be MMC.
3435 	 */
3436 	un->un_f_mmc_cap = TRUE;
3437 
3438 	/* Get to the page data */
3439 	sense_mhp = (struct mode_header_grp2 *)buf;
3440 	bd_len = (sense_mhp->bdesc_length_hi << 8) |
3441 	    sense_mhp->bdesc_length_lo;
3442 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3443 		/*
3444 		 * We did not get back the expected block descriptor
3445 		 * length so we cannot determine if the device supports
3446 		 * CDDA. However, we still indicate the device is MMC
3447 		 * according to the successful response to the page
3448 		 * 0x2A mode sense request.
3449 		 */
3450 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3451 		    "sd_set_mmc_caps: Mode Sense returned "
3452 		    "invalid block descriptor length\n");
3453 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3454 		return;
3455 	}
3456 
3457 	/* See if read CDDA is supported */
3458 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 +
3459 	    bd_len);
3460 	un->un_f_cfg_cdda = (sense_page[5] & 0x01) ? TRUE : FALSE;
3461 
3462 	/* See if writing DVD RAM is supported. */
3463 	un->un_f_dvdram_writable_device = (sense_page[3] & 0x20) ? TRUE : FALSE;
3464 	if (un->un_f_dvdram_writable_device == TRUE) {
3465 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3466 		return;
3467 	}
3468 
3469 	/*
3470 	 * If the device presents DVD or CD capabilities in the mode
3471 	 * page, we can return here since a RRD will not have
3472 	 * these capabilities.
3473 	 */
3474 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3475 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3476 		return;
3477 	}
3478 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3479 
3480 	/*
3481 	 * If un->un_f_dvdram_writable_device is still FALSE,
3482 	 * check for a Removable Rigid Disk (RRD).  A RRD
3483 	 * device is identified by the features RANDOM_WRITABLE and
3484 	 * HARDWARE_DEFECT_MANAGEMENT.
3485 	 */
3486 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3487 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3488 
3489 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_rw,
3490 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3491 	    RANDOM_WRITABLE, SD_PATH_STANDARD);
3492 
3493 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3494 
3495 	if (rtn != 0) {
3496 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3497 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3498 		return;
3499 	}
3500 
3501 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3502 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3503 
3504 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_hd,
3505 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3506 	    HARDWARE_DEFECT_MANAGEMENT, SD_PATH_STANDARD);
3507 
3508 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3509 
3510 	if (rtn == 0) {
3511 		/*
3512 		 * We have good information, check for random writable
3513 		 * and hardware defect features.
3514 		 */
3515 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3516 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT)) {
3517 			un->un_f_dvdram_writable_device = TRUE;
3518 		}
3519 	}
3520 
3521 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3522 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3523 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3524 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3525 }
3526 
3527 /*
3528  *    Function: sd_check_for_writable_cd
3529  *
3530  * Description: This routine determines if the media in the device is
3531  *		writable or not. It uses the get configuration command (0x46)
3532  *		to determine if the media is writable
3533  *
3534  *   Arguments: un - driver soft state (unit) structure
3535  *              path_flag - SD_PATH_DIRECT to use the USCSI "direct"
3536  *                           chain and the normal command waitq, or
3537  *                           SD_PATH_DIRECT_PRIORITY to use the USCSI
3538  *                           "direct" chain and bypass the normal command
3539  *                           waitq.
3540  *
3541  *     Context: Never called at interrupt context.
3542  */
3543 
3544 static void
3545 sd_check_for_writable_cd(sd_ssc_t *ssc, int path_flag)
3546 {
3547 	struct uscsi_cmd		com;
3548 	uchar_t				*out_data;
3549 	uchar_t				*rqbuf;
3550 	int				rtn;
3551 	uchar_t				*out_data_rw, *out_data_hd;
3552 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3553 	struct mode_header_grp2		*sense_mhp;
3554 	uchar_t				*sense_page;
3555 	caddr_t				buf;
3556 	int				bd_len;
3557 	int				status;
3558 	struct sd_lun			*un;
3559 
3560 	ASSERT(ssc != NULL);
3561 	un = ssc->ssc_un;
3562 	ASSERT(un != NULL);
3563 	ASSERT(mutex_owned(SD_MUTEX(un)));
3564 
3565 	/*
3566 	 * Initialize the writable media to false, if configuration info.
3567 	 * tells us otherwise then only we will set it.
3568 	 */
3569 	un->un_f_mmc_writable_media = FALSE;
3570 	mutex_exit(SD_MUTEX(un));
3571 
3572 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
3573 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3574 
3575 	rtn = sd_send_scsi_GET_CONFIGURATION(ssc, &com, rqbuf, SENSE_LENGTH,
3576 	    out_data, SD_PROFILE_HEADER_LEN, path_flag);
3577 
3578 	if (rtn != 0)
3579 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3580 
3581 	mutex_enter(SD_MUTEX(un));
3582 	if (rtn == 0) {
3583 		/*
3584 		 * We have good information, check for writable DVD.
3585 		 */
3586 		if ((out_data[6] == 0) && (out_data[7] == 0x12)) {
3587 			un->un_f_mmc_writable_media = TRUE;
3588 			kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3589 			kmem_free(rqbuf, SENSE_LENGTH);
3590 			return;
3591 		}
3592 	}
3593 
3594 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3595 	kmem_free(rqbuf, SENSE_LENGTH);
3596 
3597 	/*
3598 	 * Determine if this is a RRD type device.
3599 	 */
3600 	mutex_exit(SD_MUTEX(un));
3601 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3602 	status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, (uchar_t *)buf,
3603 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, path_flag);
3604 
3605 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3606 
3607 	mutex_enter(SD_MUTEX(un));
3608 	if (status != 0) {
3609 		/* command failed; just return */
3610 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3611 		return;
3612 	}
3613 
3614 	/* Get to the page data */
3615 	sense_mhp = (struct mode_header_grp2 *)buf;
3616 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
3617 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3618 		/*
3619 		 * We did not get back the expected block descriptor length so
3620 		 * we cannot check the mode page.
3621 		 */
3622 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3623 		    "sd_check_for_writable_cd: Mode Sense returned "
3624 		    "invalid block descriptor length\n");
3625 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3626 		return;
3627 	}
3628 
3629 	/*
3630 	 * If the device presents DVD or CD capabilities in the mode
3631 	 * page, we can return here since a RRD device will not have
3632 	 * these capabilities.
3633 	 */
3634 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 + bd_len);
3635 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3636 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3637 		return;
3638 	}
3639 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3640 
3641 	/*
3642 	 * If un->un_f_mmc_writable_media is still FALSE,
3643 	 * check for RRD type media.  A RRD device is identified
3644 	 * by the features RANDOM_WRITABLE and HARDWARE_DEFECT_MANAGEMENT.
3645 	 */
3646 	mutex_exit(SD_MUTEX(un));
3647 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3648 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3649 
3650 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_rw,
3651 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3652 	    RANDOM_WRITABLE, path_flag);
3653 
3654 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3655 	if (rtn != 0) {
3656 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3657 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3658 		mutex_enter(SD_MUTEX(un));
3659 		return;
3660 	}
3661 
3662 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3663 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3664 
3665 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_hd,
3666 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3667 	    HARDWARE_DEFECT_MANAGEMENT, path_flag);
3668 
3669 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3670 	mutex_enter(SD_MUTEX(un));
3671 	if (rtn == 0) {
3672 		/*
3673 		 * We have good information, check for random writable
3674 		 * and hardware defect features as current.
3675 		 */
3676 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3677 		    (out_data_rw[10] & 0x1) &&
3678 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT) &&
3679 		    (out_data_hd[10] & 0x1)) {
3680 			un->un_f_mmc_writable_media = TRUE;
3681 		}
3682 	}
3683 
3684 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3685 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3686 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3687 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3688 }
3689 
3690 /*
3691  *    Function: sd_read_unit_properties
3692  *
3693  * Description: The following implements a property lookup mechanism.
3694  *		Properties for particular disks (keyed on vendor, model
3695  *		and rev numbers) are sought in the sd.conf file via
3696  *		sd_process_sdconf_file(), and if not found there, are
3697  *		looked for in a list hardcoded in this driver via
3698  *		sd_process_sdconf_table() Once located the properties
3699  *		are used to update the driver unit structure.
3700  *
3701  *   Arguments: un - driver soft state (unit) structure
3702  */
3703 
3704 static void
3705 sd_read_unit_properties(struct sd_lun *un)
3706 {
3707 	/*
3708 	 * sd_process_sdconf_file returns SD_FAILURE if it cannot find
3709 	 * the "sd-config-list" property (from the sd.conf file) or if
3710 	 * there was not a match for the inquiry vid/pid. If this event
3711 	 * occurs the static driver configuration table is searched for
3712 	 * a match.
3713 	 */
3714 	ASSERT(un != NULL);
3715 	if (sd_process_sdconf_file(un) == SD_FAILURE) {
3716 		sd_process_sdconf_table(un);
3717 	}
3718 
3719 	/* check for LSI device */
3720 	sd_is_lsi(un);
3721 
3722 
3723 }
3724 
3725 
3726 /*
3727  *    Function: sd_process_sdconf_file
3728  *
3729  * Description: Use ddi_prop_lookup(9F) to obtain the properties from the
3730  *		driver's config file (ie, sd.conf) and update the driver
3731  *		soft state structure accordingly.
3732  *
3733  *   Arguments: un - driver soft state (unit) structure
3734  *
3735  * Return Code: SD_SUCCESS - The properties were successfully set according
3736  *			     to the driver configuration file.
3737  *		SD_FAILURE - The driver config list was not obtained or
3738  *			     there was no vid/pid match. This indicates that
3739  *			     the static config table should be used.
3740  *
3741  * The config file has a property, "sd-config-list". Currently we support
3742  * two kinds of formats. For both formats, the value of this property
3743  * is a list of duplets:
3744  *
3745  *  sd-config-list=
3746  *	<duplet>,
3747  *	[,<duplet>]*;
3748  *
3749  * For the improved format, where
3750  *
3751  *     <duplet>:= "<vid+pid>","<tunable-list>"
3752  *
3753  * and
3754  *
3755  *     <tunable-list>:=   <tunable> [, <tunable> ]*;
3756  *     <tunable> =        <name> : <value>
3757  *
3758  * The <vid+pid> is the string that is returned by the target device on a
3759  * SCSI inquiry command, the <tunable-list> contains one or more tunables
3760  * to apply to all target devices with the specified <vid+pid>.
3761  *
3762  * Each <tunable> is a "<name> : <value>" pair.
3763  *
3764  * For the old format, the structure of each duplet is as follows:
3765  *
3766  *  <duplet>:= "<vid+pid>","<data-property-name_list>"
3767  *
3768  * The first entry of the duplet is the device ID string (the concatenated
3769  * vid & pid; not to be confused with a device_id).  This is defined in
3770  * the same way as in the sd_disk_table.
3771  *
3772  * The second part of the duplet is a string that identifies a
3773  * data-property-name-list. The data-property-name-list is defined as
3774  * follows:
3775  *
3776  *  <data-property-name-list>:=<data-property-name> [<data-property-name>]
3777  *
3778  * The syntax of <data-property-name> depends on the <version> field.
3779  *
3780  * If version = SD_CONF_VERSION_1 we have the following syntax:
3781  *
3782  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3783  *
3784  * where the prop0 value will be used to set prop0 if bit0 set in the
3785  * flags, prop1 if bit1 set, etc. and N = SD_CONF_MAX_ITEMS -1
3786  *
3787  */
3788 
3789 static int
3790 sd_process_sdconf_file(struct sd_lun *un)
3791 {
3792 	char	**config_list = NULL;
3793 	uint_t	nelements;
3794 	char	*vidptr;
3795 	int	vidlen;
3796 	char	*dnlist_ptr;
3797 	char	*dataname_ptr;
3798 	char	*dataname_lasts;
3799 	int	*data_list = NULL;
3800 	uint_t	data_list_len;
3801 	int	rval = SD_FAILURE;
3802 	int	i;
3803 
3804 	ASSERT(un != NULL);
3805 
3806 	/* Obtain the configuration list associated with the .conf file */
3807 	if (ddi_prop_lookup_string_array(DDI_DEV_T_ANY, SD_DEVINFO(un),
3808 	    DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, sd_config_list,
3809 	    &config_list, &nelements) != DDI_PROP_SUCCESS) {
3810 		return (SD_FAILURE);
3811 	}
3812 
3813 	/*
3814 	 * Compare vids in each duplet to the inquiry vid - if a match is
3815 	 * made, get the data value and update the soft state structure
3816 	 * accordingly.
3817 	 *
3818 	 * Each duplet should show as a pair of strings, return SD_FAILURE
3819 	 * otherwise.
3820 	 */
3821 	if (nelements & 1) {
3822 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3823 		    "sd-config-list should show as pairs of strings.\n");
3824 		if (config_list)
3825 			ddi_prop_free(config_list);
3826 		return (SD_FAILURE);
3827 	}
3828 
3829 	for (i = 0; i < nelements; i += 2) {
3830 		/*
3831 		 * Note: The assumption here is that each vid entry is on
3832 		 * a unique line from its associated duplet.
3833 		 */
3834 		vidptr = config_list[i];
3835 		vidlen = (int)strlen(vidptr);
3836 		if ((vidlen == 0) ||
3837 		    (sd_sdconf_id_match(un, vidptr, vidlen) != SD_SUCCESS)) {
3838 			continue;
3839 		}
3840 
3841 		/*
3842 		 * dnlist contains 1 or more blank separated
3843 		 * data-property-name entries
3844 		 */
3845 		dnlist_ptr = config_list[i + 1];
3846 
3847 		if (strchr(dnlist_ptr, ':') != NULL) {
3848 			/*
3849 			 * Decode the improved format sd-config-list.
3850 			 */
3851 			sd_nvpair_str_decode(un, dnlist_ptr);
3852 		} else {
3853 			/*
3854 			 * The old format sd-config-list, loop through all
3855 			 * data-property-name entries in the
3856 			 * data-property-name-list
3857 			 * setting the properties for each.
3858 			 */
3859 			for (dataname_ptr = sd_strtok_r(dnlist_ptr, " \t",
3860 			    &dataname_lasts); dataname_ptr != NULL;
3861 			    dataname_ptr = sd_strtok_r(NULL, " \t",
3862 			    &dataname_lasts)) {
3863 				int version;
3864 
3865 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
3866 				    "sd_process_sdconf_file: disk:%s, "
3867 				    "data:%s\n", vidptr, dataname_ptr);
3868 
3869 				/* Get the data list */
3870 				if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY,
3871 				    SD_DEVINFO(un), 0, dataname_ptr, &data_list,
3872 				    &data_list_len) != DDI_PROP_SUCCESS) {
3873 					SD_INFO(SD_LOG_ATTACH_DETACH, un,
3874 					    "sd_process_sdconf_file: data "
3875 					    "property (%s) has no value\n",
3876 					    dataname_ptr);
3877 					continue;
3878 				}
3879 
3880 				version = data_list[0];
3881 
3882 				if (version == SD_CONF_VERSION_1) {
3883 					sd_tunables values;
3884 
3885 					/* Set the properties */
3886 					if (sd_chk_vers1_data(un, data_list[1],
3887 					    &data_list[2], data_list_len,
3888 					    dataname_ptr) == SD_SUCCESS) {
3889 						sd_get_tunables_from_conf(un,
3890 						    data_list[1], &data_list[2],
3891 						    &values);
3892 						sd_set_vers1_properties(un,
3893 						    data_list[1], &values);
3894 						rval = SD_SUCCESS;
3895 					} else {
3896 						rval = SD_FAILURE;
3897 					}
3898 				} else {
3899 					scsi_log(SD_DEVINFO(un), sd_label,
3900 					    CE_WARN, "data property %s version "
3901 					    "0x%x is invalid.",
3902 					    dataname_ptr, version);
3903 					rval = SD_FAILURE;
3904 				}
3905 				if (data_list)
3906 					ddi_prop_free(data_list);
3907 			}
3908 		}
3909 	}
3910 
3911 	/* free up the memory allocated by ddi_prop_lookup_string_array(). */
3912 	if (config_list) {
3913 		ddi_prop_free(config_list);
3914 	}
3915 
3916 	return (rval);
3917 }
3918 
3919 /*
3920  *    Function: sd_nvpair_str_decode()
3921  *
3922  * Description: Parse the improved format sd-config-list to get
3923  *    each entry of tunable, which includes a name-value pair.
3924  *    Then call sd_set_properties() to set the property.
3925  *
3926  *   Arguments: un - driver soft state (unit) structure
3927  *    nvpair_str - the tunable list
3928  */
3929 static void
3930 sd_nvpair_str_decode(struct sd_lun *un, char *nvpair_str)
3931 {
3932 	char	*nv, *name, *value, *token;
3933 	char	*nv_lasts, *v_lasts, *x_lasts;
3934 
3935 	for (nv = sd_strtok_r(nvpair_str, ",", &nv_lasts); nv != NULL;
3936 	    nv = sd_strtok_r(NULL, ",", &nv_lasts)) {
3937 		token = sd_strtok_r(nv, ":", &v_lasts);
3938 		name  = sd_strtok_r(token, " \t", &x_lasts);
3939 		token = sd_strtok_r(NULL, ":", &v_lasts);
3940 		value = sd_strtok_r(token, " \t", &x_lasts);
3941 		if (name == NULL || value == NULL) {
3942 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3943 			    "sd_nvpair_str_decode: "
3944 			    "name or value is not valid!\n");
3945 		} else {
3946 			sd_set_properties(un, name, value);
3947 		}
3948 	}
3949 }
3950 
3951 /*
3952  *    Function: sd_strtok_r()
3953  *
3954  * Description: This function uses strpbrk and strspn to break
3955  *    string into tokens on sequentially subsequent calls. Return
3956  *    NULL when no non-separator characters remain. The first
3957  *    argument is NULL for subsequent calls.
3958  */
3959 static char *
3960 sd_strtok_r(char *string, const char *sepset, char **lasts)
3961 {
3962 	char	*q, *r;
3963 
3964 	/* First or subsequent call */
3965 	if (string == NULL)
3966 		string = *lasts;
3967 
3968 	if (string == NULL)
3969 		return (NULL);
3970 
3971 	/* Skip leading separators */
3972 	q = string + strspn(string, sepset);
3973 
3974 	if (*q == '\0')
3975 		return (NULL);
3976 
3977 	if ((r = strpbrk(q, sepset)) == NULL)
3978 		*lasts = NULL;
3979 	else {
3980 		*r = '\0';
3981 		*lasts = r + 1;
3982 	}
3983 	return (q);
3984 }
3985 
3986 /*
3987  *    Function: sd_set_properties()
3988  *
3989  * Description: Set device properties based on the improved
3990  *    format sd-config-list.
3991  *
3992  *   Arguments: un - driver soft state (unit) structure
3993  *    name  - supported tunable name
3994  *    value - tunable value
3995  */
3996 static void
3997 sd_set_properties(struct sd_lun *un, char *name, char *value)
3998 {
3999 	char	*endptr = NULL;
4000 	long	val = 0;
4001 
4002 	if (strcasecmp(name, "cache-nonvolatile") == 0) {
4003 		if (strcasecmp(value, "true") == 0) {
4004 			un->un_f_suppress_cache_flush = TRUE;
4005 		} else if (strcasecmp(value, "false") == 0) {
4006 			un->un_f_suppress_cache_flush = FALSE;
4007 		} else {
4008 			goto value_invalid;
4009 		}
4010 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4011 		    "suppress_cache_flush flag set to %d\n",
4012 		    un->un_f_suppress_cache_flush);
4013 		return;
4014 	}
4015 
4016 	if (strcasecmp(name, "controller-type") == 0) {
4017 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4018 			un->un_ctype = val;
4019 		} else {
4020 			goto value_invalid;
4021 		}
4022 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4023 		    "ctype set to %d\n", un->un_ctype);
4024 		return;
4025 	}
4026 
4027 	if (strcasecmp(name, "delay-busy") == 0) {
4028 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4029 			un->un_busy_timeout = drv_usectohz(val / 1000);
4030 		} else {
4031 			goto value_invalid;
4032 		}
4033 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4034 		    "busy_timeout set to %d\n", un->un_busy_timeout);
4035 		return;
4036 	}
4037 
4038 	if (strcasecmp(name, "disksort") == 0) {
4039 		if (strcasecmp(value, "true") == 0) {
4040 			un->un_f_disksort_disabled = FALSE;
4041 		} else if (strcasecmp(value, "false") == 0) {
4042 			un->un_f_disksort_disabled = TRUE;
4043 		} else {
4044 			goto value_invalid;
4045 		}
4046 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4047 		    "disksort disabled flag set to %d\n",
4048 		    un->un_f_disksort_disabled);
4049 		return;
4050 	}
4051 
4052 	if (strcasecmp(name, "power-condition") == 0) {
4053 		if (strcasecmp(value, "true") == 0) {
4054 			un->un_f_power_condition_disabled = FALSE;
4055 		} else if (strcasecmp(value, "false") == 0) {
4056 			un->un_f_power_condition_disabled = TRUE;
4057 		} else {
4058 			goto value_invalid;
4059 		}
4060 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4061 		    "power condition disabled flag set to %d\n",
4062 		    un->un_f_power_condition_disabled);
4063 		return;
4064 	}
4065 
4066 	if (strcasecmp(name, "timeout-releasereservation") == 0) {
4067 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4068 			un->un_reserve_release_time = val;
4069 		} else {
4070 			goto value_invalid;
4071 		}
4072 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4073 		    "reservation release timeout set to %d\n",
4074 		    un->un_reserve_release_time);
4075 		return;
4076 	}
4077 
4078 	if (strcasecmp(name, "reset-lun") == 0) {
4079 		if (strcasecmp(value, "true") == 0) {
4080 			un->un_f_lun_reset_enabled = TRUE;
4081 		} else if (strcasecmp(value, "false") == 0) {
4082 			un->un_f_lun_reset_enabled = FALSE;
4083 		} else {
4084 			goto value_invalid;
4085 		}
4086 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4087 		    "lun reset enabled flag set to %d\n",
4088 		    un->un_f_lun_reset_enabled);
4089 		return;
4090 	}
4091 
4092 	if (strcasecmp(name, "retries-busy") == 0) {
4093 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4094 			un->un_busy_retry_count = val;
4095 		} else {
4096 			goto value_invalid;
4097 		}
4098 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4099 		    "busy retry count set to %d\n", un->un_busy_retry_count);
4100 		return;
4101 	}
4102 
4103 	if (strcasecmp(name, "retries-timeout") == 0) {
4104 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4105 			un->un_retry_count = val;
4106 		} else {
4107 			goto value_invalid;
4108 		}
4109 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4110 		    "timeout retry count set to %d\n", un->un_retry_count);
4111 		return;
4112 	}
4113 
4114 	if (strcasecmp(name, "retries-notready") == 0) {
4115 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4116 			un->un_notready_retry_count = val;
4117 		} else {
4118 			goto value_invalid;
4119 		}
4120 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4121 		    "notready retry count set to %d\n",
4122 		    un->un_notready_retry_count);
4123 		return;
4124 	}
4125 
4126 	if (strcasecmp(name, "retries-reset") == 0) {
4127 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4128 			un->un_reset_retry_count = val;
4129 		} else {
4130 			goto value_invalid;
4131 		}
4132 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4133 		    "reset retry count set to %d\n",
4134 		    un->un_reset_retry_count);
4135 		return;
4136 	}
4137 
4138 	if (strcasecmp(name, "throttle-max") == 0) {
4139 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4140 			un->un_saved_throttle = un->un_throttle = val;
4141 		} else {
4142 			goto value_invalid;
4143 		}
4144 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4145 		    "throttle set to %d\n", un->un_throttle);
4146 	}
4147 
4148 	if (strcasecmp(name, "throttle-min") == 0) {
4149 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4150 			un->un_min_throttle = val;
4151 		} else {
4152 			goto value_invalid;
4153 		}
4154 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4155 		    "min throttle set to %d\n", un->un_min_throttle);
4156 	}
4157 
4158 	if (strcasecmp(name, "rmw-type") == 0) {
4159 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4160 			un->un_f_rmw_type = val;
4161 		} else {
4162 			goto value_invalid;
4163 		}
4164 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4165 		    "RMW type set to %d\n", un->un_f_rmw_type);
4166 	}
4167 
4168 	/*
4169 	 * Validate the throttle values.
4170 	 * If any of the numbers are invalid, set everything to defaults.
4171 	 */
4172 	if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) ||
4173 	    (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) ||
4174 	    (un->un_min_throttle > un->un_throttle)) {
4175 		un->un_saved_throttle = un->un_throttle = sd_max_throttle;
4176 		un->un_min_throttle = sd_min_throttle;
4177 	}
4178 	return;
4179 
4180 value_invalid:
4181 	SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4182 	    "value of prop %s is invalid\n", name);
4183 }
4184 
4185 /*
4186  *    Function: sd_get_tunables_from_conf()
4187  *
4188  *
4189  *    This function reads the data list from the sd.conf file and pulls
4190  *    the values that can have numeric values as arguments and places
4191  *    the values in the appropriate sd_tunables member.
4192  *    Since the order of the data list members varies across platforms
4193  *    This function reads them from the data list in a platform specific
4194  *    order and places them into the correct sd_tunable member that is
4195  *    consistent across all platforms.
4196  */
4197 static void
4198 sd_get_tunables_from_conf(struct sd_lun *un, int flags, int *data_list,
4199     sd_tunables *values)
4200 {
4201 	int i;
4202 	int mask;
4203 
4204 	bzero(values, sizeof (sd_tunables));
4205 
4206 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
4207 
4208 		mask = 1 << i;
4209 		if (mask > flags) {
4210 			break;
4211 		}
4212 
4213 		switch (mask & flags) {
4214 		case 0:	/* This mask bit not set in flags */
4215 			continue;
4216 		case SD_CONF_BSET_THROTTLE:
4217 			values->sdt_throttle = data_list[i];
4218 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4219 			    "sd_get_tunables_from_conf: throttle = %d\n",
4220 			    values->sdt_throttle);
4221 			break;
4222 		case SD_CONF_BSET_CTYPE:
4223 			values->sdt_ctype = data_list[i];
4224 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4225 			    "sd_get_tunables_from_conf: ctype = %d\n",
4226 			    values->sdt_ctype);
4227 			break;
4228 		case SD_CONF_BSET_NRR_COUNT:
4229 			values->sdt_not_rdy_retries = data_list[i];
4230 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4231 			    "sd_get_tunables_from_conf: not_rdy_retries = %d\n",
4232 			    values->sdt_not_rdy_retries);
4233 			break;
4234 		case SD_CONF_BSET_BSY_RETRY_COUNT:
4235 			values->sdt_busy_retries = data_list[i];
4236 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4237 			    "sd_get_tunables_from_conf: busy_retries = %d\n",
4238 			    values->sdt_busy_retries);
4239 			break;
4240 		case SD_CONF_BSET_RST_RETRIES:
4241 			values->sdt_reset_retries = data_list[i];
4242 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4243 			    "sd_get_tunables_from_conf: reset_retries = %d\n",
4244 			    values->sdt_reset_retries);
4245 			break;
4246 		case SD_CONF_BSET_RSV_REL_TIME:
4247 			values->sdt_reserv_rel_time = data_list[i];
4248 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4249 			    "sd_get_tunables_from_conf: reserv_rel_time = %d\n",
4250 			    values->sdt_reserv_rel_time);
4251 			break;
4252 		case SD_CONF_BSET_MIN_THROTTLE:
4253 			values->sdt_min_throttle = data_list[i];
4254 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4255 			    "sd_get_tunables_from_conf: min_throttle = %d\n",
4256 			    values->sdt_min_throttle);
4257 			break;
4258 		case SD_CONF_BSET_DISKSORT_DISABLED:
4259 			values->sdt_disk_sort_dis = data_list[i];
4260 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4261 			    "sd_get_tunables_from_conf: disk_sort_dis = %d\n",
4262 			    values->sdt_disk_sort_dis);
4263 			break;
4264 		case SD_CONF_BSET_LUN_RESET_ENABLED:
4265 			values->sdt_lun_reset_enable = data_list[i];
4266 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4267 			    "sd_get_tunables_from_conf: lun_reset_enable = %d"
4268 			    "\n", values->sdt_lun_reset_enable);
4269 			break;
4270 		case SD_CONF_BSET_CACHE_IS_NV:
4271 			values->sdt_suppress_cache_flush = data_list[i];
4272 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4273 			    "sd_get_tunables_from_conf: \
4274 			    suppress_cache_flush = %d"
4275 			    "\n", values->sdt_suppress_cache_flush);
4276 			break;
4277 		case SD_CONF_BSET_PC_DISABLED:
4278 			values->sdt_disk_sort_dis = data_list[i];
4279 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4280 			    "sd_get_tunables_from_conf: power_condition_dis = "
4281 			    "%d\n", values->sdt_power_condition_dis);
4282 			break;
4283 		}
4284 	}
4285 }
4286 
4287 /*
4288  *    Function: sd_process_sdconf_table
4289  *
4290  * Description: Search the static configuration table for a match on the
4291  *		inquiry vid/pid and update the driver soft state structure
4292  *		according to the table property values for the device.
4293  *
4294  *		The form of a configuration table entry is:
4295  *		  <vid+pid>,<flags>,<property-data>
4296  *		  "SEAGATE ST42400N",1,0x40000,
4297  *		  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1;
4298  *
4299  *   Arguments: un - driver soft state (unit) structure
4300  */
4301 
4302 static void
4303 sd_process_sdconf_table(struct sd_lun *un)
4304 {
4305 	char	*id = NULL;
4306 	int	table_index;
4307 	int	idlen;
4308 
4309 	ASSERT(un != NULL);
4310 	for (table_index = 0; table_index < sd_disk_table_size;
4311 	    table_index++) {
4312 		id = sd_disk_table[table_index].device_id;
4313 		idlen = strlen(id);
4314 		if (idlen == 0) {
4315 			continue;
4316 		}
4317 
4318 		/*
4319 		 * The static configuration table currently does not
4320 		 * implement version 10 properties. Additionally,
4321 		 * multiple data-property-name entries are not
4322 		 * implemented in the static configuration table.
4323 		 */
4324 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
4325 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4326 			    "sd_process_sdconf_table: disk %s\n", id);
4327 			sd_set_vers1_properties(un,
4328 			    sd_disk_table[table_index].flags,
4329 			    sd_disk_table[table_index].properties);
4330 			break;
4331 		}
4332 	}
4333 }
4334 
4335 
4336 /*
4337  *    Function: sd_sdconf_id_match
4338  *
4339  * Description: This local function implements a case sensitive vid/pid
4340  *		comparison as well as the boundary cases of wild card and
4341  *		multiple blanks.
4342  *
4343  *		Note: An implicit assumption made here is that the scsi
4344  *		inquiry structure will always keep the vid, pid and
4345  *		revision strings in consecutive sequence, so they can be
4346  *		read as a single string. If this assumption is not the
4347  *		case, a separate string, to be used for the check, needs
4348  *		to be built with these strings concatenated.
4349  *
4350  *   Arguments: un - driver soft state (unit) structure
4351  *		id - table or config file vid/pid
4352  *		idlen  - length of the vid/pid (bytes)
4353  *
4354  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
4355  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
4356  */
4357 
4358 static int
4359 sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen)
4360 {
4361 	struct scsi_inquiry	*sd_inq;
4362 	int 			rval = SD_SUCCESS;
4363 
4364 	ASSERT(un != NULL);
4365 	sd_inq = un->un_sd->sd_inq;
4366 	ASSERT(id != NULL);
4367 
4368 	/*
4369 	 * We use the inq_vid as a pointer to a buffer containing the
4370 	 * vid and pid and use the entire vid/pid length of the table
4371 	 * entry for the comparison. This works because the inq_pid
4372 	 * data member follows inq_vid in the scsi_inquiry structure.
4373 	 */
4374 	if (strncasecmp(sd_inq->inq_vid, id, idlen) != 0) {
4375 		/*
4376 		 * The user id string is compared to the inquiry vid/pid
4377 		 * using a case insensitive comparison and ignoring
4378 		 * multiple spaces.
4379 		 */
4380 		rval = sd_blank_cmp(un, id, idlen);
4381 		if (rval != SD_SUCCESS) {
4382 			/*
4383 			 * User id strings that start and end with a "*"
4384 			 * are a special case. These do not have a
4385 			 * specific vendor, and the product string can
4386 			 * appear anywhere in the 16 byte PID portion of
4387 			 * the inquiry data. This is a simple strstr()
4388 			 * type search for the user id in the inquiry data.
4389 			 */
4390 			if ((id[0] == '*') && (id[idlen - 1] == '*')) {
4391 				char	*pidptr = &id[1];
4392 				int	i;
4393 				int	j;
4394 				int	pidstrlen = idlen - 2;
4395 				j = sizeof (SD_INQUIRY(un)->inq_pid) -
4396 				    pidstrlen;
4397 
4398 				if (j < 0) {
4399 					return (SD_FAILURE);
4400 				}
4401 				for (i = 0; i < j; i++) {
4402 					if (bcmp(&SD_INQUIRY(un)->inq_pid[i],
4403 					    pidptr, pidstrlen) == 0) {
4404 						rval = SD_SUCCESS;
4405 						break;
4406 					}
4407 				}
4408 			}
4409 		}
4410 	}
4411 	return (rval);
4412 }
4413 
4414 
4415 /*
4416  *    Function: sd_blank_cmp
4417  *
4418  * Description: If the id string starts and ends with a space, treat
4419  *		multiple consecutive spaces as equivalent to a single
4420  *		space. For example, this causes a sd_disk_table entry
4421  *		of " NEC CDROM " to match a device's id string of
4422  *		"NEC       CDROM".
4423  *
4424  *		Note: The success exit condition for this routine is if
4425  *		the pointer to the table entry is '\0' and the cnt of
4426  *		the inquiry length is zero. This will happen if the inquiry
4427  *		string returned by the device is padded with spaces to be
4428  *		exactly 24 bytes in length (8 byte vid + 16 byte pid). The
4429  *		SCSI spec states that the inquiry string is to be padded with
4430  *		spaces.
4431  *
4432  *   Arguments: un - driver soft state (unit) structure
4433  *		id - table or config file vid/pid
4434  *		idlen  - length of the vid/pid (bytes)
4435  *
4436  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
4437  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
4438  */
4439 
4440 static int
4441 sd_blank_cmp(struct sd_lun *un, char *id, int idlen)
4442 {
4443 	char		*p1;
4444 	char		*p2;
4445 	int		cnt;
4446 	cnt = sizeof (SD_INQUIRY(un)->inq_vid) +
4447 	    sizeof (SD_INQUIRY(un)->inq_pid);
4448 
4449 	ASSERT(un != NULL);
4450 	p2 = un->un_sd->sd_inq->inq_vid;
4451 	ASSERT(id != NULL);
4452 	p1 = id;
4453 
4454 	if ((id[0] == ' ') && (id[idlen - 1] == ' ')) {
4455 		/*
4456 		 * Note: string p1 is terminated by a NUL but string p2
4457 		 * isn't.  The end of p2 is determined by cnt.
4458 		 */
4459 		for (;;) {
4460 			/* skip over any extra blanks in both strings */
4461 			while ((*p1 != '\0') && (*p1 == ' ')) {
4462 				p1++;
4463 			}
4464 			while ((cnt != 0) && (*p2 == ' ')) {
4465 				p2++;
4466 				cnt--;
4467 			}
4468 
4469 			/* compare the two strings */
4470 			if ((cnt == 0) ||
4471 			    (SD_TOUPPER(*p1) != SD_TOUPPER(*p2))) {
4472 				break;
4473 			}
4474 			while ((cnt > 0) &&
4475 			    (SD_TOUPPER(*p1) == SD_TOUPPER(*p2))) {
4476 				p1++;
4477 				p2++;
4478 				cnt--;
4479 			}
4480 		}
4481 	}
4482 
4483 	/* return SD_SUCCESS if both strings match */
4484 	return (((*p1 == '\0') && (cnt == 0)) ? SD_SUCCESS : SD_FAILURE);
4485 }
4486 
4487 
4488 /*
4489  *    Function: sd_chk_vers1_data
4490  *
4491  * Description: Verify the version 1 device properties provided by the
4492  *		user via the configuration file
4493  *
4494  *   Arguments: un	     - driver soft state (unit) structure
4495  *		flags	     - integer mask indicating properties to be set
4496  *		prop_list    - integer list of property values
4497  *		list_len     - number of the elements
4498  *
4499  * Return Code: SD_SUCCESS - Indicates the user provided data is valid
4500  *		SD_FAILURE - Indicates the user provided data is invalid
4501  */
4502 
4503 static int
4504 sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
4505     int list_len, char *dataname_ptr)
4506 {
4507 	int i;
4508 	int mask = 1;
4509 	int index = 0;
4510 
4511 	ASSERT(un != NULL);
4512 
4513 	/* Check for a NULL property name and list */
4514 	if (dataname_ptr == NULL) {
4515 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4516 		    "sd_chk_vers1_data: NULL data property name.");
4517 		return (SD_FAILURE);
4518 	}
4519 	if (prop_list == NULL) {
4520 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4521 		    "sd_chk_vers1_data: %s NULL data property list.",
4522 		    dataname_ptr);
4523 		return (SD_FAILURE);
4524 	}
4525 
4526 	/* Display a warning if undefined bits are set in the flags */
4527 	if (flags & ~SD_CONF_BIT_MASK) {
4528 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4529 		    "sd_chk_vers1_data: invalid bits 0x%x in data list %s. "
4530 		    "Properties not set.",
4531 		    (flags & ~SD_CONF_BIT_MASK), dataname_ptr);
4532 		return (SD_FAILURE);
4533 	}
4534 
4535 	/*
4536 	 * Verify the length of the list by identifying the highest bit set
4537 	 * in the flags and validating that the property list has a length
4538 	 * up to the index of this bit.
4539 	 */
4540 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
4541 		if (flags & mask) {
4542 			index++;
4543 		}
4544 		mask = 1 << i;
4545 	}
4546 	if (list_len < (index + 2)) {
4547 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4548 		    "sd_chk_vers1_data: "
4549 		    "Data property list %s size is incorrect. "
4550 		    "Properties not set.", dataname_ptr);
4551 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, "Size expected: "
4552 		    "version + 1 flagword + %d properties", SD_CONF_MAX_ITEMS);
4553 		return (SD_FAILURE);
4554 	}
4555 	return (SD_SUCCESS);
4556 }
4557 
4558 
4559 /*
4560  *    Function: sd_set_vers1_properties
4561  *
4562  * Description: Set version 1 device properties based on a property list
4563  *		retrieved from the driver configuration file or static
4564  *		configuration table. Version 1 properties have the format:
4565  *
4566  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
4567  *
4568  *		where the prop0 value will be used to set prop0 if bit0
4569  *		is set in the flags
4570  *
4571  *   Arguments: un	     - driver soft state (unit) structure
4572  *		flags	     - integer mask indicating properties to be set
4573  *		prop_list    - integer list of property values
4574  */
4575 
4576 static void
4577 sd_set_vers1_properties(struct sd_lun *un, int flags, sd_tunables *prop_list)
4578 {
4579 	ASSERT(un != NULL);
4580 
4581 	/*
4582 	 * Set the flag to indicate cache is to be disabled. An attempt
4583 	 * to disable the cache via sd_cache_control() will be made
4584 	 * later during attach once the basic initialization is complete.
4585 	 */
4586 	if (flags & SD_CONF_BSET_NOCACHE) {
4587 		un->un_f_opt_disable_cache = TRUE;
4588 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4589 		    "sd_set_vers1_properties: caching disabled flag set\n");
4590 	}
4591 
4592 	/* CD-specific configuration parameters */
4593 	if (flags & SD_CONF_BSET_PLAYMSF_BCD) {
4594 		un->un_f_cfg_playmsf_bcd = TRUE;
4595 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4596 		    "sd_set_vers1_properties: playmsf_bcd set\n");
4597 	}
4598 	if (flags & SD_CONF_BSET_READSUB_BCD) {
4599 		un->un_f_cfg_readsub_bcd = TRUE;
4600 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4601 		    "sd_set_vers1_properties: readsub_bcd set\n");
4602 	}
4603 	if (flags & SD_CONF_BSET_READ_TOC_TRK_BCD) {
4604 		un->un_f_cfg_read_toc_trk_bcd = TRUE;
4605 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4606 		    "sd_set_vers1_properties: read_toc_trk_bcd set\n");
4607 	}
4608 	if (flags & SD_CONF_BSET_READ_TOC_ADDR_BCD) {
4609 		un->un_f_cfg_read_toc_addr_bcd = TRUE;
4610 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4611 		    "sd_set_vers1_properties: read_toc_addr_bcd set\n");
4612 	}
4613 	if (flags & SD_CONF_BSET_NO_READ_HEADER) {
4614 		un->un_f_cfg_no_read_header = TRUE;
4615 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4616 		    "sd_set_vers1_properties: no_read_header set\n");
4617 	}
4618 	if (flags & SD_CONF_BSET_READ_CD_XD4) {
4619 		un->un_f_cfg_read_cd_xd4 = TRUE;
4620 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4621 		    "sd_set_vers1_properties: read_cd_xd4 set\n");
4622 	}
4623 
4624 	/* Support for devices which do not have valid/unique serial numbers */
4625 	if (flags & SD_CONF_BSET_FAB_DEVID) {
4626 		un->un_f_opt_fab_devid = TRUE;
4627 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4628 		    "sd_set_vers1_properties: fab_devid bit set\n");
4629 	}
4630 
4631 	/* Support for user throttle configuration */
4632 	if (flags & SD_CONF_BSET_THROTTLE) {
4633 		ASSERT(prop_list != NULL);
4634 		un->un_saved_throttle = un->un_throttle =
4635 		    prop_list->sdt_throttle;
4636 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4637 		    "sd_set_vers1_properties: throttle set to %d\n",
4638 		    prop_list->sdt_throttle);
4639 	}
4640 
4641 	/* Set the per disk retry count according to the conf file or table. */
4642 	if (flags & SD_CONF_BSET_NRR_COUNT) {
4643 		ASSERT(prop_list != NULL);
4644 		if (prop_list->sdt_not_rdy_retries) {
4645 			un->un_notready_retry_count =
4646 			    prop_list->sdt_not_rdy_retries;
4647 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4648 			    "sd_set_vers1_properties: not ready retry count"
4649 			    " set to %d\n", un->un_notready_retry_count);
4650 		}
4651 	}
4652 
4653 	/* The controller type is reported for generic disk driver ioctls */
4654 	if (flags & SD_CONF_BSET_CTYPE) {
4655 		ASSERT(prop_list != NULL);
4656 		switch (prop_list->sdt_ctype) {
4657 		case CTYPE_CDROM:
4658 			un->un_ctype = prop_list->sdt_ctype;
4659 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4660 			    "sd_set_vers1_properties: ctype set to "
4661 			    "CTYPE_CDROM\n");
4662 			break;
4663 		case CTYPE_CCS:
4664 			un->un_ctype = prop_list->sdt_ctype;
4665 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4666 			    "sd_set_vers1_properties: ctype set to "
4667 			    "CTYPE_CCS\n");
4668 			break;
4669 		case CTYPE_ROD:		/* RW optical */
4670 			un->un_ctype = prop_list->sdt_ctype;
4671 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4672 			    "sd_set_vers1_properties: ctype set to "
4673 			    "CTYPE_ROD\n");
4674 			break;
4675 		default:
4676 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4677 			    "sd_set_vers1_properties: Could not set "
4678 			    "invalid ctype value (%d)",
4679 			    prop_list->sdt_ctype);
4680 		}
4681 	}
4682 
4683 	/* Purple failover timeout */
4684 	if (flags & SD_CONF_BSET_BSY_RETRY_COUNT) {
4685 		ASSERT(prop_list != NULL);
4686 		un->un_busy_retry_count =
4687 		    prop_list->sdt_busy_retries;
4688 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4689 		    "sd_set_vers1_properties: "
4690 		    "busy retry count set to %d\n",
4691 		    un->un_busy_retry_count);
4692 	}
4693 
4694 	/* Purple reset retry count */
4695 	if (flags & SD_CONF_BSET_RST_RETRIES) {
4696 		ASSERT(prop_list != NULL);
4697 		un->un_reset_retry_count =
4698 		    prop_list->sdt_reset_retries;
4699 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4700 		    "sd_set_vers1_properties: "
4701 		    "reset retry count set to %d\n",
4702 		    un->un_reset_retry_count);
4703 	}
4704 
4705 	/* Purple reservation release timeout */
4706 	if (flags & SD_CONF_BSET_RSV_REL_TIME) {
4707 		ASSERT(prop_list != NULL);
4708 		un->un_reserve_release_time =
4709 		    prop_list->sdt_reserv_rel_time;
4710 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4711 		    "sd_set_vers1_properties: "
4712 		    "reservation release timeout set to %d\n",
4713 		    un->un_reserve_release_time);
4714 	}
4715 
4716 	/*
4717 	 * Driver flag telling the driver to verify that no commands are pending
4718 	 * for a device before issuing a Test Unit Ready. This is a workaround
4719 	 * for a firmware bug in some Seagate eliteI drives.
4720 	 */
4721 	if (flags & SD_CONF_BSET_TUR_CHECK) {
4722 		un->un_f_cfg_tur_check = TRUE;
4723 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4724 		    "sd_set_vers1_properties: tur queue check set\n");
4725 	}
4726 
4727 	if (flags & SD_CONF_BSET_MIN_THROTTLE) {
4728 		un->un_min_throttle = prop_list->sdt_min_throttle;
4729 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4730 		    "sd_set_vers1_properties: min throttle set to %d\n",
4731 		    un->un_min_throttle);
4732 	}
4733 
4734 	if (flags & SD_CONF_BSET_DISKSORT_DISABLED) {
4735 		un->un_f_disksort_disabled =
4736 		    (prop_list->sdt_disk_sort_dis != 0) ?
4737 		    TRUE : FALSE;
4738 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4739 		    "sd_set_vers1_properties: disksort disabled "
4740 		    "flag set to %d\n",
4741 		    prop_list->sdt_disk_sort_dis);
4742 	}
4743 
4744 	if (flags & SD_CONF_BSET_LUN_RESET_ENABLED) {
4745 		un->un_f_lun_reset_enabled =
4746 		    (prop_list->sdt_lun_reset_enable != 0) ?
4747 		    TRUE : FALSE;
4748 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4749 		    "sd_set_vers1_properties: lun reset enabled "
4750 		    "flag set to %d\n",
4751 		    prop_list->sdt_lun_reset_enable);
4752 	}
4753 
4754 	if (flags & SD_CONF_BSET_CACHE_IS_NV) {
4755 		un->un_f_suppress_cache_flush =
4756 		    (prop_list->sdt_suppress_cache_flush != 0) ?
4757 		    TRUE : FALSE;
4758 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4759 		    "sd_set_vers1_properties: suppress_cache_flush "
4760 		    "flag set to %d\n",
4761 		    prop_list->sdt_suppress_cache_flush);
4762 	}
4763 
4764 	if (flags & SD_CONF_BSET_PC_DISABLED) {
4765 		un->un_f_power_condition_disabled =
4766 		    (prop_list->sdt_power_condition_dis != 0) ?
4767 		    TRUE : FALSE;
4768 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4769 		    "sd_set_vers1_properties: power_condition_disabled "
4770 		    "flag set to %d\n",
4771 		    prop_list->sdt_power_condition_dis);
4772 	}
4773 
4774 	/*
4775 	 * Validate the throttle values.
4776 	 * If any of the numbers are invalid, set everything to defaults.
4777 	 */
4778 	if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) ||
4779 	    (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) ||
4780 	    (un->un_min_throttle > un->un_throttle)) {
4781 		un->un_saved_throttle = un->un_throttle = sd_max_throttle;
4782 		un->un_min_throttle = sd_min_throttle;
4783 	}
4784 }
4785 
4786 /*
4787  *   Function: sd_is_lsi()
4788  *
4789  *   Description: Check for lsi devices, step through the static device
4790  *	table to match vid/pid.
4791  *
4792  *   Args: un - ptr to sd_lun
4793  *
4794  *   Notes:  When creating new LSI property, need to add the new LSI property
4795  *		to this function.
4796  */
4797 static void
4798 sd_is_lsi(struct sd_lun *un)
4799 {
4800 	char	*id = NULL;
4801 	int	table_index;
4802 	int	idlen;
4803 	void	*prop;
4804 
4805 	ASSERT(un != NULL);
4806 	for (table_index = 0; table_index < sd_disk_table_size;
4807 	    table_index++) {
4808 		id = sd_disk_table[table_index].device_id;
4809 		idlen = strlen(id);
4810 		if (idlen == 0) {
4811 			continue;
4812 		}
4813 
4814 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
4815 			prop = sd_disk_table[table_index].properties;
4816 			if (prop == &lsi_properties ||
4817 			    prop == &lsi_oem_properties ||
4818 			    prop == &lsi_properties_scsi ||
4819 			    prop == &symbios_properties) {
4820 				un->un_f_cfg_is_lsi = TRUE;
4821 			}
4822 			break;
4823 		}
4824 	}
4825 }
4826 
4827 /*
4828  *    Function: sd_get_physical_geometry
4829  *
4830  * Description: Retrieve the MODE SENSE page 3 (Format Device Page) and
4831  *		MODE SENSE page 4 (Rigid Disk Drive Geometry Page) from the
4832  *		target, and use this information to initialize the physical
4833  *		geometry cache specified by pgeom_p.
4834  *
4835  *		MODE SENSE is an optional command, so failure in this case
4836  *		does not necessarily denote an error. We want to use the
4837  *		MODE SENSE commands to derive the physical geometry of the
4838  *		device, but if either command fails, the logical geometry is
4839  *		used as the fallback for disk label geometry in cmlb.
4840  *
4841  *		This requires that un->un_blockcount and un->un_tgt_blocksize
4842  *		have already been initialized for the current target and
4843  *		that the current values be passed as args so that we don't
4844  *		end up ever trying to use -1 as a valid value. This could
4845  *		happen if either value is reset while we're not holding
4846  *		the mutex.
4847  *
4848  *   Arguments: un - driver soft state (unit) structure
4849  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4850  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4851  *			to use the USCSI "direct" chain and bypass the normal
4852  *			command waitq.
4853  *
4854  *     Context: Kernel thread only (can sleep).
4855  */
4856 
4857 static int
4858 sd_get_physical_geometry(struct sd_lun *un, cmlb_geom_t *pgeom_p,
4859 	diskaddr_t capacity, int lbasize, int path_flag)
4860 {
4861 	struct	mode_format	*page3p;
4862 	struct	mode_geometry	*page4p;
4863 	struct	mode_header	*headerp;
4864 	int	sector_size;
4865 	int	nsect;
4866 	int	nhead;
4867 	int	ncyl;
4868 	int	intrlv;
4869 	int	spc;
4870 	diskaddr_t	modesense_capacity;
4871 	int	rpm;
4872 	int	bd_len;
4873 	int	mode_header_length;
4874 	uchar_t	*p3bufp;
4875 	uchar_t	*p4bufp;
4876 	int	cdbsize;
4877 	int 	ret = EIO;
4878 	sd_ssc_t *ssc;
4879 	int	status;
4880 
4881 	ASSERT(un != NULL);
4882 
4883 	if (lbasize == 0) {
4884 		if (ISCD(un)) {
4885 			lbasize = 2048;
4886 		} else {
4887 			lbasize = un->un_sys_blocksize;
4888 		}
4889 	}
4890 	pgeom_p->g_secsize = (unsigned short)lbasize;
4891 
4892 	/*
4893 	 * If the unit is a cd/dvd drive MODE SENSE page three
4894 	 * and MODE SENSE page four are reserved (see SBC spec
4895 	 * and MMC spec). To prevent soft errors just return
4896 	 * using the default LBA size.
4897 	 */
4898 	if (ISCD(un))
4899 		return (ret);
4900 
4901 	cdbsize = (un->un_f_cfg_is_atapi == TRUE) ? CDB_GROUP2 : CDB_GROUP0;
4902 
4903 	/*
4904 	 * Retrieve MODE SENSE page 3 - Format Device Page
4905 	 */
4906 	p3bufp = kmem_zalloc(SD_MODE_SENSE_PAGE3_LENGTH, KM_SLEEP);
4907 	ssc = sd_ssc_init(un);
4908 	status = sd_send_scsi_MODE_SENSE(ssc, cdbsize, p3bufp,
4909 	    SD_MODE_SENSE_PAGE3_LENGTH, SD_MODE_SENSE_PAGE3_CODE, path_flag);
4910 	if (status != 0) {
4911 		SD_ERROR(SD_LOG_COMMON, un,
4912 		    "sd_get_physical_geometry: mode sense page 3 failed\n");
4913 		goto page3_exit;
4914 	}
4915 
4916 	/*
4917 	 * Determine size of Block Descriptors in order to locate the mode
4918 	 * page data.  ATAPI devices return 0, SCSI devices should return
4919 	 * MODE_BLK_DESC_LENGTH.
4920 	 */
4921 	headerp = (struct mode_header *)p3bufp;
4922 	if (un->un_f_cfg_is_atapi == TRUE) {
4923 		struct mode_header_grp2 *mhp =
4924 		    (struct mode_header_grp2 *)headerp;
4925 		mode_header_length = MODE_HEADER_LENGTH_GRP2;
4926 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
4927 	} else {
4928 		mode_header_length = MODE_HEADER_LENGTH;
4929 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
4930 	}
4931 
4932 	if (bd_len > MODE_BLK_DESC_LENGTH) {
4933 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
4934 		    "sd_get_physical_geometry: received unexpected bd_len "
4935 		    "of %d, page3\n", bd_len);
4936 		status = EIO;
4937 		goto page3_exit;
4938 	}
4939 
4940 	page3p = (struct mode_format *)
4941 	    ((caddr_t)headerp + mode_header_length + bd_len);
4942 
4943 	if (page3p->mode_page.code != SD_MODE_SENSE_PAGE3_CODE) {
4944 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
4945 		    "sd_get_physical_geometry: mode sense pg3 code mismatch "
4946 		    "%d\n", page3p->mode_page.code);
4947 		status = EIO;
4948 		goto page3_exit;
4949 	}
4950 
4951 	/*
4952 	 * Use this physical geometry data only if BOTH MODE SENSE commands
4953 	 * complete successfully; otherwise, revert to the logical geometry.
4954 	 * So, we need to save everything in temporary variables.
4955 	 */
4956 	sector_size = BE_16(page3p->data_bytes_sect);
4957 
4958 	/*
4959 	 * 1243403: The NEC D38x7 drives do not support MODE SENSE sector size
4960 	 */
4961 	if (sector_size == 0) {
4962 		sector_size = un->un_sys_blocksize;
4963 	} else {
4964 		sector_size &= ~(un->un_sys_blocksize - 1);
4965 	}
4966 
4967 	nsect  = BE_16(page3p->sect_track);
4968 	intrlv = BE_16(page3p->interleave);
4969 
4970 	SD_INFO(SD_LOG_COMMON, un,
4971 	    "sd_get_physical_geometry: Format Parameters (page 3)\n");
4972 	SD_INFO(SD_LOG_COMMON, un,
4973 	    "   mode page: %d; nsect: %d; sector size: %d;\n",
4974 	    page3p->mode_page.code, nsect, sector_size);
4975 	SD_INFO(SD_LOG_COMMON, un,
4976 	    "   interleave: %d; track skew: %d; cylinder skew: %d;\n", intrlv,
4977 	    BE_16(page3p->track_skew),
4978 	    BE_16(page3p->cylinder_skew));
4979 
4980 	sd_ssc_assessment(ssc, SD_FMT_STANDARD);
4981 
4982 	/*
4983 	 * Retrieve MODE SENSE page 4 - Rigid Disk Drive Geometry Page
4984 	 */
4985 	p4bufp = kmem_zalloc(SD_MODE_SENSE_PAGE4_LENGTH, KM_SLEEP);
4986 	status = sd_send_scsi_MODE_SENSE(ssc, cdbsize, p4bufp,
4987 	    SD_MODE_SENSE_PAGE4_LENGTH, SD_MODE_SENSE_PAGE4_CODE, path_flag);
4988 	if (status != 0) {
4989 		SD_ERROR(SD_LOG_COMMON, un,
4990 		    "sd_get_physical_geometry: mode sense page 4 failed\n");
4991 		goto page4_exit;
4992 	}
4993 
4994 	/*
4995 	 * Determine size of Block Descriptors in order to locate the mode
4996 	 * page data.  ATAPI devices return 0, SCSI devices should return
4997 	 * MODE_BLK_DESC_LENGTH.
4998 	 */
4999 	headerp = (struct mode_header *)p4bufp;
5000 	if (un->un_f_cfg_is_atapi == TRUE) {
5001 		struct mode_header_grp2 *mhp =
5002 		    (struct mode_header_grp2 *)headerp;
5003 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
5004 	} else {
5005 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
5006 	}
5007 
5008 	if (bd_len > MODE_BLK_DESC_LENGTH) {
5009 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
5010 		    "sd_get_physical_geometry: received unexpected bd_len of "
5011 		    "%d, page4\n", bd_len);
5012 		status = EIO;
5013 		goto page4_exit;
5014 	}
5015 
5016 	page4p = (struct mode_geometry *)
5017 	    ((caddr_t)headerp + mode_header_length + bd_len);
5018 
5019 	if (page4p->mode_page.code != SD_MODE_SENSE_PAGE4_CODE) {
5020 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
5021 		    "sd_get_physical_geometry: mode sense pg4 code mismatch "
5022 		    "%d\n", page4p->mode_page.code);
5023 		status = EIO;
5024 		goto page4_exit;
5025 	}
5026 
5027 	/*
5028 	 * Stash the data now, after we know that both commands completed.
5029 	 */
5030 
5031 
5032 	nhead = (int)page4p->heads;	/* uchar, so no conversion needed */
5033 	spc   = nhead * nsect;
5034 	ncyl  = (page4p->cyl_ub << 16) + (page4p->cyl_mb << 8) + page4p->cyl_lb;
5035 	rpm   = BE_16(page4p->rpm);
5036 
5037 	modesense_capacity = spc * ncyl;
5038 
5039 	SD_INFO(SD_LOG_COMMON, un,
5040 	    "sd_get_physical_geometry: Geometry Parameters (page 4)\n");
5041 	SD_INFO(SD_LOG_COMMON, un,
5042 	    "   cylinders: %d; heads: %d; rpm: %d;\n", ncyl, nhead, rpm);
5043 	SD_INFO(SD_LOG_COMMON, un,
5044 	    "   computed capacity(h*s*c): %d;\n", modesense_capacity);
5045 	SD_INFO(SD_LOG_COMMON, un, "   pgeom_p: %p; read cap: %d\n",
5046 	    (void *)pgeom_p, capacity);
5047 
5048 	/*
5049 	 * Compensate if the drive's geometry is not rectangular, i.e.,
5050 	 * the product of C * H * S returned by MODE SENSE >= that returned
5051 	 * by read capacity. This is an idiosyncrasy of the original x86
5052 	 * disk subsystem.
5053 	 */
5054 	if (modesense_capacity >= capacity) {
5055 		SD_INFO(SD_LOG_COMMON, un,
5056 		    "sd_get_physical_geometry: adjusting acyl; "
5057 		    "old: %d; new: %d\n", pgeom_p->g_acyl,
5058 		    (modesense_capacity - capacity + spc - 1) / spc);
5059 		if (sector_size != 0) {
5060 			/* 1243403: NEC D38x7 drives don't support sec size */
5061 			pgeom_p->g_secsize = (unsigned short)sector_size;
5062 		}
5063 		pgeom_p->g_nsect    = (unsigned short)nsect;
5064 		pgeom_p->g_nhead    = (unsigned short)nhead;
5065 		pgeom_p->g_capacity = capacity;
5066 		pgeom_p->g_acyl	    =
5067 		    (modesense_capacity - pgeom_p->g_capacity + spc - 1) / spc;
5068 		pgeom_p->g_ncyl	    = ncyl - pgeom_p->g_acyl;
5069 	}
5070 
5071 	pgeom_p->g_rpm    = (unsigned short)rpm;
5072 	pgeom_p->g_intrlv = (unsigned short)intrlv;
5073 	ret = 0;
5074 
5075 	SD_INFO(SD_LOG_COMMON, un,
5076 	    "sd_get_physical_geometry: mode sense geometry:\n");
5077 	SD_INFO(SD_LOG_COMMON, un,
5078 	    "   nsect: %d; sector size: %d; interlv: %d\n",
5079 	    nsect, sector_size, intrlv);
5080 	SD_INFO(SD_LOG_COMMON, un,
5081 	    "   nhead: %d; ncyl: %d; rpm: %d; capacity(ms): %d\n",
5082 	    nhead, ncyl, rpm, modesense_capacity);
5083 	SD_INFO(SD_LOG_COMMON, un,
5084 	    "sd_get_physical_geometry: (cached)\n");
5085 	SD_INFO(SD_LOG_COMMON, un,
5086 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
5087 	    pgeom_p->g_ncyl,  pgeom_p->g_acyl,
5088 	    pgeom_p->g_nhead, pgeom_p->g_nsect);
5089 	SD_INFO(SD_LOG_COMMON, un,
5090 	    "   lbasize: %d; capacity: %ld; intrlv: %d; rpm: %d\n",
5091 	    pgeom_p->g_secsize, pgeom_p->g_capacity,
5092 	    pgeom_p->g_intrlv, pgeom_p->g_rpm);
5093 	sd_ssc_assessment(ssc, SD_FMT_STANDARD);
5094 
5095 page4_exit:
5096 	kmem_free(p4bufp, SD_MODE_SENSE_PAGE4_LENGTH);
5097 
5098 page3_exit:
5099 	kmem_free(p3bufp, SD_MODE_SENSE_PAGE3_LENGTH);
5100 
5101 	if (status != 0) {
5102 		if (status == EIO) {
5103 			/*
5104 			 * Some disks do not support mode sense(6), we
5105 			 * should ignore this kind of error(sense key is
5106 			 * 0x5 - illegal request).
5107 			 */
5108 			uint8_t *sensep;
5109 			int senlen;
5110 
5111 			sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf;
5112 			senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen -
5113 			    ssc->ssc_uscsi_cmd->uscsi_rqresid);
5114 
5115 			if (senlen > 0 &&
5116 			    scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) {
5117 				sd_ssc_assessment(ssc,
5118 				    SD_FMT_IGNORE_COMPROMISE);
5119 			} else {
5120 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
5121 			}
5122 		} else {
5123 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5124 		}
5125 	}
5126 	sd_ssc_fini(ssc);
5127 	return (ret);
5128 }
5129 
5130 /*
5131  *    Function: sd_get_virtual_geometry
5132  *
5133  * Description: Ask the controller to tell us about the target device.
5134  *
5135  *   Arguments: un - pointer to softstate
5136  *		capacity - disk capacity in #blocks
5137  *		lbasize - disk block size in bytes
5138  *
5139  *     Context: Kernel thread only
5140  */
5141 
5142 static int
5143 sd_get_virtual_geometry(struct sd_lun *un, cmlb_geom_t *lgeom_p,
5144     diskaddr_t capacity, int lbasize)
5145 {
5146 	uint_t	geombuf;
5147 	int	spc;
5148 
5149 	ASSERT(un != NULL);
5150 
5151 	/* Set sector size, and total number of sectors */
5152 	(void) scsi_ifsetcap(SD_ADDRESS(un), "sector-size",   lbasize,  1);
5153 	(void) scsi_ifsetcap(SD_ADDRESS(un), "total-sectors", capacity, 1);
5154 
5155 	/* Let the HBA tell us its geometry */
5156 	geombuf = (uint_t)scsi_ifgetcap(SD_ADDRESS(un), "geometry", 1);
5157 
5158 	/* A value of -1 indicates an undefined "geometry" property */
5159 	if (geombuf == (-1)) {
5160 		return (EINVAL);
5161 	}
5162 
5163 	/* Initialize the logical geometry cache. */
5164 	lgeom_p->g_nhead   = (geombuf >> 16) & 0xffff;
5165 	lgeom_p->g_nsect   = geombuf & 0xffff;
5166 	lgeom_p->g_secsize = un->un_sys_blocksize;
5167 
5168 	spc = lgeom_p->g_nhead * lgeom_p->g_nsect;
5169 
5170 	/*
5171 	 * Note: The driver originally converted the capacity value from
5172 	 * target blocks to system blocks. However, the capacity value passed
5173 	 * to this routine is already in terms of system blocks (this scaling
5174 	 * is done when the READ CAPACITY command is issued and processed).
5175 	 * This 'error' may have gone undetected because the usage of g_ncyl
5176 	 * (which is based upon g_capacity) is very limited within the driver
5177 	 */
5178 	lgeom_p->g_capacity = capacity;
5179 
5180 	/*
5181 	 * Set ncyl to zero if the hba returned a zero nhead or nsect value. The
5182 	 * hba may return zero values if the device has been removed.
5183 	 */
5184 	if (spc == 0) {
5185 		lgeom_p->g_ncyl = 0;
5186 	} else {
5187 		lgeom_p->g_ncyl = lgeom_p->g_capacity / spc;
5188 	}
5189 	lgeom_p->g_acyl = 0;
5190 
5191 	SD_INFO(SD_LOG_COMMON, un, "sd_get_virtual_geometry: (cached)\n");
5192 	return (0);
5193 
5194 }
5195 /*
5196  *    Function: sd_update_block_info
5197  *
5198  * Description: Calculate a byte count to sector count bitshift value
5199  *		from sector size.
5200  *
5201  *   Arguments: un: unit struct.
5202  *		lbasize: new target sector size
5203  *		capacity: new target capacity, ie. block count
5204  *
5205  *     Context: Kernel thread context
5206  */
5207 
5208 static void
5209 sd_update_block_info(struct sd_lun *un, uint32_t lbasize, uint64_t capacity)
5210 {
5211 	if (lbasize != 0) {
5212 		un->un_tgt_blocksize = lbasize;
5213 		un->un_f_tgt_blocksize_is_valid = TRUE;
5214 		if (!un->un_f_has_removable_media) {
5215 			un->un_sys_blocksize = lbasize;
5216 		}
5217 	}
5218 
5219 	if (capacity != 0) {
5220 		un->un_blockcount		= capacity;
5221 		un->un_f_blockcount_is_valid	= TRUE;
5222 	}
5223 }
5224 
5225 
5226 /*
5227  *    Function: sd_register_devid
5228  *
5229  * Description: This routine will obtain the device id information from the
5230  *		target, obtain the serial number, and register the device
5231  *		id with the ddi framework.
5232  *
5233  *   Arguments: devi - the system's dev_info_t for the device.
5234  *		un - driver soft state (unit) structure
5235  *		reservation_flag - indicates if a reservation conflict
5236  *		occurred during attach
5237  *
5238  *     Context: Kernel Thread
5239  */
5240 static void
5241 sd_register_devid(sd_ssc_t *ssc, dev_info_t *devi, int reservation_flag)
5242 {
5243 	int		rval		= 0;
5244 	uchar_t		*inq80		= NULL;
5245 	size_t		inq80_len	= MAX_INQUIRY_SIZE;
5246 	size_t		inq80_resid	= 0;
5247 	uchar_t		*inq83		= NULL;
5248 	size_t		inq83_len	= MAX_INQUIRY_SIZE;
5249 	size_t		inq83_resid	= 0;
5250 	int		dlen, len;
5251 	char		*sn;
5252 	struct sd_lun	*un;
5253 
5254 	ASSERT(ssc != NULL);
5255 	un = ssc->ssc_un;
5256 	ASSERT(un != NULL);
5257 	ASSERT(mutex_owned(SD_MUTEX(un)));
5258 	ASSERT((SD_DEVINFO(un)) == devi);
5259 
5260 
5261 	/*
5262 	 * We check the availability of the World Wide Name (0x83) and Unit
5263 	 * Serial Number (0x80) pages in sd_check_vpd_page_support(), and using
5264 	 * un_vpd_page_mask from them, we decide which way to get the WWN.  If
5265 	 * 0x83 is available, that is the best choice.  Our next choice is
5266 	 * 0x80.  If neither are available, we munge the devid from the device
5267 	 * vid/pid/serial # for Sun qualified disks, or use the ddi framework
5268 	 * to fabricate a devid for non-Sun qualified disks.
5269 	 */
5270 	if (sd_check_vpd_page_support(ssc) == 0) {
5271 		/* collect page 80 data if available */
5272 		if (un->un_vpd_page_mask & SD_VPD_UNIT_SERIAL_PG) {
5273 
5274 			mutex_exit(SD_MUTEX(un));
5275 			inq80 = kmem_zalloc(inq80_len, KM_SLEEP);
5276 
5277 			rval = sd_send_scsi_INQUIRY(ssc, inq80, inq80_len,
5278 			    0x01, 0x80, &inq80_resid);
5279 
5280 			if (rval != 0) {
5281 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5282 				kmem_free(inq80, inq80_len);
5283 				inq80 = NULL;
5284 				inq80_len = 0;
5285 			} else if (ddi_prop_exists(
5286 			    DDI_DEV_T_NONE, SD_DEVINFO(un),
5287 			    DDI_PROP_NOTPROM | DDI_PROP_DONTPASS,
5288 			    INQUIRY_SERIAL_NO) == 0) {
5289 				/*
5290 				 * If we don't already have a serial number
5291 				 * property, do quick verify of data returned
5292 				 * and define property.
5293 				 */
5294 				dlen = inq80_len - inq80_resid;
5295 				len = (size_t)inq80[3];
5296 				if ((dlen >= 4) && ((len + 4) <= dlen)) {
5297 					/*
5298 					 * Ensure sn termination, skip leading
5299 					 * blanks, and create property
5300 					 * 'inquiry-serial-no'.
5301 					 */
5302 					sn = (char *)&inq80[4];
5303 					sn[len] = 0;
5304 					while (*sn && (*sn == ' '))
5305 						sn++;
5306 					if (*sn) {
5307 						(void) ddi_prop_update_string(
5308 						    DDI_DEV_T_NONE,
5309 						    SD_DEVINFO(un),
5310 						    INQUIRY_SERIAL_NO, sn);
5311 					}
5312 				}
5313 			}
5314 			mutex_enter(SD_MUTEX(un));
5315 		}
5316 
5317 		/* collect page 83 data if available */
5318 		if (un->un_vpd_page_mask & SD_VPD_DEVID_WWN_PG) {
5319 			mutex_exit(SD_MUTEX(un));
5320 			inq83 = kmem_zalloc(inq83_len, KM_SLEEP);
5321 
5322 			rval = sd_send_scsi_INQUIRY(ssc, inq83, inq83_len,
5323 			    0x01, 0x83, &inq83_resid);
5324 
5325 			if (rval != 0) {
5326 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5327 				kmem_free(inq83, inq83_len);
5328 				inq83 = NULL;
5329 				inq83_len = 0;
5330 			}
5331 			mutex_enter(SD_MUTEX(un));
5332 		}
5333 	}
5334 
5335 	/*
5336 	 * If transport has already registered a devid for this target
5337 	 * then that takes precedence over the driver's determination
5338 	 * of the devid.
5339 	 *
5340 	 * NOTE: The reason this check is done here instead of at the beginning
5341 	 * of the function is to allow the code above to create the
5342 	 * 'inquiry-serial-no' property.
5343 	 */
5344 	if (ddi_devid_get(SD_DEVINFO(un), &un->un_devid) == DDI_SUCCESS) {
5345 		ASSERT(un->un_devid);
5346 		un->un_f_devid_transport_defined = TRUE;
5347 		goto cleanup; /* use devid registered by the transport */
5348 	}
5349 
5350 	/*
5351 	 * This is the case of antiquated Sun disk drives that have the
5352 	 * FAB_DEVID property set in the disk_table.  These drives
5353 	 * manage the devid's by storing them in last 2 available sectors
5354 	 * on the drive and have them fabricated by the ddi layer by calling
5355 	 * ddi_devid_init and passing the DEVID_FAB flag.
5356 	 */
5357 	if (un->un_f_opt_fab_devid == TRUE) {
5358 		/*
5359 		 * Depending on EINVAL isn't reliable, since a reserved disk
5360 		 * may result in invalid geometry, so check to make sure a
5361 		 * reservation conflict did not occur during attach.
5362 		 */
5363 		if ((sd_get_devid(ssc) == EINVAL) &&
5364 		    (reservation_flag != SD_TARGET_IS_RESERVED)) {
5365 			/*
5366 			 * The devid is invalid AND there is no reservation
5367 			 * conflict.  Fabricate a new devid.
5368 			 */
5369 			(void) sd_create_devid(ssc);
5370 		}
5371 
5372 		/* Register the devid if it exists */
5373 		if (un->un_devid != NULL) {
5374 			(void) ddi_devid_register(SD_DEVINFO(un),
5375 			    un->un_devid);
5376 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
5377 			    "sd_register_devid: Devid Fabricated\n");
5378 		}
5379 		goto cleanup;
5380 	}
5381 
5382 	/* encode best devid possible based on data available */
5383 	if (ddi_devid_scsi_encode(DEVID_SCSI_ENCODE_VERSION_LATEST,
5384 	    (char *)ddi_driver_name(SD_DEVINFO(un)),
5385 	    (uchar_t *)SD_INQUIRY(un), sizeof (*SD_INQUIRY(un)),
5386 	    inq80, inq80_len - inq80_resid, inq83, inq83_len -
5387 	    inq83_resid, &un->un_devid) == DDI_SUCCESS) {
5388 
5389 		/* devid successfully encoded, register devid */
5390 		(void) ddi_devid_register(SD_DEVINFO(un), un->un_devid);
5391 
5392 	} else {
5393 		/*
5394 		 * Unable to encode a devid based on data available.
5395 		 * This is not a Sun qualified disk.  Older Sun disk
5396 		 * drives that have the SD_FAB_DEVID property
5397 		 * set in the disk_table and non Sun qualified
5398 		 * disks are treated in the same manner.  These
5399 		 * drives manage the devid's by storing them in
5400 		 * last 2 available sectors on the drive and
5401 		 * have them fabricated by the ddi layer by
5402 		 * calling ddi_devid_init and passing the
5403 		 * DEVID_FAB flag.
5404 		 * Create a fabricate devid only if there's no
5405 		 * fabricate devid existed.
5406 		 */
5407 		if (sd_get_devid(ssc) == EINVAL) {
5408 			(void) sd_create_devid(ssc);
5409 		}
5410 		un->un_f_opt_fab_devid = TRUE;
5411 
5412 		/* Register the devid if it exists */
5413 		if (un->un_devid != NULL) {
5414 			(void) ddi_devid_register(SD_DEVINFO(un),
5415 			    un->un_devid);
5416 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
5417 			    "sd_register_devid: devid fabricated using "
5418 			    "ddi framework\n");
5419 		}
5420 	}
5421 
5422 cleanup:
5423 	/* clean up resources */
5424 	if (inq80 != NULL) {
5425 		kmem_free(inq80, inq80_len);
5426 	}
5427 	if (inq83 != NULL) {
5428 		kmem_free(inq83, inq83_len);
5429 	}
5430 }
5431 
5432 
5433 
5434 /*
5435  *    Function: sd_get_devid
5436  *
5437  * Description: This routine will return 0 if a valid device id has been
5438  *		obtained from the target and stored in the soft state. If a
5439  *		valid device id has not been previously read and stored, a
5440  *		read attempt will be made.
5441  *
5442  *   Arguments: un - driver soft state (unit) structure
5443  *
5444  * Return Code: 0 if we successfully get the device id
5445  *
5446  *     Context: Kernel Thread
5447  */
5448 
5449 static int
5450 sd_get_devid(sd_ssc_t *ssc)
5451 {
5452 	struct dk_devid		*dkdevid;
5453 	ddi_devid_t		tmpid;
5454 	uint_t			*ip;
5455 	size_t			sz;
5456 	diskaddr_t		blk;
5457 	int			status;
5458 	int			chksum;
5459 	int			i;
5460 	size_t			buffer_size;
5461 	struct sd_lun		*un;
5462 
5463 	ASSERT(ssc != NULL);
5464 	un = ssc->ssc_un;
5465 	ASSERT(un != NULL);
5466 	ASSERT(mutex_owned(SD_MUTEX(un)));
5467 
5468 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: entry: un: 0x%p\n",
5469 	    un);
5470 
5471 	if (un->un_devid != NULL) {
5472 		return (0);
5473 	}
5474 
5475 	mutex_exit(SD_MUTEX(un));
5476 	if (cmlb_get_devid_block(un->un_cmlbhandle, &blk,
5477 	    (void *)SD_PATH_DIRECT) != 0) {
5478 		mutex_enter(SD_MUTEX(un));
5479 		return (EINVAL);
5480 	}
5481 
5482 	/*
5483 	 * Read and verify device id, stored in the reserved cylinders at the
5484 	 * end of the disk. Backup label is on the odd sectors of the last
5485 	 * track of the last cylinder. Device id will be on track of the next
5486 	 * to last cylinder.
5487 	 */
5488 	mutex_enter(SD_MUTEX(un));
5489 	buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct dk_devid));
5490 	mutex_exit(SD_MUTEX(un));
5491 	dkdevid = kmem_alloc(buffer_size, KM_SLEEP);
5492 	status = sd_send_scsi_READ(ssc, dkdevid, buffer_size, blk,
5493 	    SD_PATH_DIRECT);
5494 
5495 	if (status != 0) {
5496 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5497 		goto error;
5498 	}
5499 
5500 	/* Validate the revision */
5501 	if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) ||
5502 	    (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) {
5503 		status = EINVAL;
5504 		goto error;
5505 	}
5506 
5507 	/* Calculate the checksum */
5508 	chksum = 0;
5509 	ip = (uint_t *)dkdevid;
5510 	for (i = 0; i < ((DEV_BSIZE - sizeof (int)) / sizeof (int));
5511 	    i++) {
5512 		chksum ^= ip[i];
5513 	}
5514 
5515 	/* Compare the checksums */
5516 	if (DKD_GETCHKSUM(dkdevid) != chksum) {
5517 		status = EINVAL;
5518 		goto error;
5519 	}
5520 
5521 	/* Validate the device id */
5522 	if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) {
5523 		status = EINVAL;
5524 		goto error;
5525 	}
5526 
5527 	/*
5528 	 * Store the device id in the driver soft state
5529 	 */
5530 	sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid);
5531 	tmpid = kmem_alloc(sz, KM_SLEEP);
5532 
5533 	mutex_enter(SD_MUTEX(un));
5534 
5535 	un->un_devid = tmpid;
5536 	bcopy(&dkdevid->dkd_devid, un->un_devid, sz);
5537 
5538 	kmem_free(dkdevid, buffer_size);
5539 
5540 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: exit: un:0x%p\n", un);
5541 
5542 	return (status);
5543 error:
5544 	mutex_enter(SD_MUTEX(un));
5545 	kmem_free(dkdevid, buffer_size);
5546 	return (status);
5547 }
5548 
5549 
5550 /*
5551  *    Function: sd_create_devid
5552  *
5553  * Description: This routine will fabricate the device id and write it
5554  *		to the disk.
5555  *
5556  *   Arguments: un - driver soft state (unit) structure
5557  *
5558  * Return Code: value of the fabricated device id
5559  *
5560  *     Context: Kernel Thread
5561  */
5562 
5563 static ddi_devid_t
5564 sd_create_devid(sd_ssc_t *ssc)
5565 {
5566 	struct sd_lun	*un;
5567 
5568 	ASSERT(ssc != NULL);
5569 	un = ssc->ssc_un;
5570 	ASSERT(un != NULL);
5571 
5572 	/* Fabricate the devid */
5573 	if (ddi_devid_init(SD_DEVINFO(un), DEVID_FAB, 0, NULL, &un->un_devid)
5574 	    == DDI_FAILURE) {
5575 		return (NULL);
5576 	}
5577 
5578 	/* Write the devid to disk */
5579 	if (sd_write_deviceid(ssc) != 0) {
5580 		ddi_devid_free(un->un_devid);
5581 		un->un_devid = NULL;
5582 	}
5583 
5584 	return (un->un_devid);
5585 }
5586 
5587 
5588 /*
5589  *    Function: sd_write_deviceid
5590  *
5591  * Description: This routine will write the device id to the disk
5592  *		reserved sector.
5593  *
5594  *   Arguments: un - driver soft state (unit) structure
5595  *
5596  * Return Code: EINVAL
5597  *		value returned by sd_send_scsi_cmd
5598  *
5599  *     Context: Kernel Thread
5600  */
5601 
5602 static int
5603 sd_write_deviceid(sd_ssc_t *ssc)
5604 {
5605 	struct dk_devid		*dkdevid;
5606 	uchar_t			*buf;
5607 	diskaddr_t		blk;
5608 	uint_t			*ip, chksum;
5609 	int			status;
5610 	int			i;
5611 	struct sd_lun		*un;
5612 
5613 	ASSERT(ssc != NULL);
5614 	un = ssc->ssc_un;
5615 	ASSERT(un != NULL);
5616 	ASSERT(mutex_owned(SD_MUTEX(un)));
5617 
5618 	mutex_exit(SD_MUTEX(un));
5619 	if (cmlb_get_devid_block(un->un_cmlbhandle, &blk,
5620 	    (void *)SD_PATH_DIRECT) != 0) {
5621 		mutex_enter(SD_MUTEX(un));
5622 		return (-1);
5623 	}
5624 
5625 
5626 	/* Allocate the buffer */
5627 	buf = kmem_zalloc(un->un_sys_blocksize, KM_SLEEP);
5628 	dkdevid = (struct dk_devid *)buf;
5629 
5630 	/* Fill in the revision */
5631 	dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB;
5632 	dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB;
5633 
5634 	/* Copy in the device id */
5635 	mutex_enter(SD_MUTEX(un));
5636 	bcopy(un->un_devid, &dkdevid->dkd_devid,
5637 	    ddi_devid_sizeof(un->un_devid));
5638 	mutex_exit(SD_MUTEX(un));
5639 
5640 	/* Calculate the checksum */
5641 	chksum = 0;
5642 	ip = (uint_t *)dkdevid;
5643 	for (i = 0; i < ((DEV_BSIZE - sizeof (int)) / sizeof (int));
5644 	    i++) {
5645 		chksum ^= ip[i];
5646 	}
5647 
5648 	/* Fill-in checksum */
5649 	DKD_FORMCHKSUM(chksum, dkdevid);
5650 
5651 	/* Write the reserved sector */
5652 	status = sd_send_scsi_WRITE(ssc, buf, un->un_sys_blocksize, blk,
5653 	    SD_PATH_DIRECT);
5654 	if (status != 0)
5655 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5656 
5657 	kmem_free(buf, un->un_sys_blocksize);
5658 
5659 	mutex_enter(SD_MUTEX(un));
5660 	return (status);
5661 }
5662 
5663 
5664 /*
5665  *    Function: sd_check_vpd_page_support
5666  *
5667  * Description: This routine sends an inquiry command with the EVPD bit set and
5668  *		a page code of 0x00 to the device. It is used to determine which
5669  *		vital product pages are available to find the devid. We are
5670  *		looking for pages 0x83 or 0x80.  If we return a negative 1, the
5671  *		device does not support that command.
5672  *
5673  *   Arguments: un  - driver soft state (unit) structure
5674  *
5675  * Return Code: 0 - success
5676  *		1 - check condition
5677  *
5678  *     Context: This routine can sleep.
5679  */
5680 
5681 static int
5682 sd_check_vpd_page_support(sd_ssc_t *ssc)
5683 {
5684 	uchar_t	*page_list	= NULL;
5685 	uchar_t	page_length	= 0xff;	/* Use max possible length */
5686 	uchar_t	evpd		= 0x01;	/* Set the EVPD bit */
5687 	uchar_t	page_code	= 0x00;	/* Supported VPD Pages */
5688 	int    	rval		= 0;
5689 	int	counter;
5690 	struct sd_lun		*un;
5691 
5692 	ASSERT(ssc != NULL);
5693 	un = ssc->ssc_un;
5694 	ASSERT(un != NULL);
5695 	ASSERT(mutex_owned(SD_MUTEX(un)));
5696 
5697 	mutex_exit(SD_MUTEX(un));
5698 
5699 	/*
5700 	 * We'll set the page length to the maximum to save figuring it out
5701 	 * with an additional call.
5702 	 */
5703 	page_list =  kmem_zalloc(page_length, KM_SLEEP);
5704 
5705 	rval = sd_send_scsi_INQUIRY(ssc, page_list, page_length, evpd,
5706 	    page_code, NULL);
5707 
5708 	if (rval != 0)
5709 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5710 
5711 	mutex_enter(SD_MUTEX(un));
5712 
5713 	/*
5714 	 * Now we must validate that the device accepted the command, as some
5715 	 * drives do not support it.  If the drive does support it, we will
5716 	 * return 0, and the supported pages will be in un_vpd_page_mask.  If
5717 	 * not, we return -1.
5718 	 */
5719 	if ((rval == 0) && (page_list[VPD_MODE_PAGE] == 0x00)) {
5720 		/* Loop to find one of the 2 pages we need */
5721 		counter = 4;  /* Supported pages start at byte 4, with 0x00 */
5722 
5723 		/*
5724 		 * Pages are returned in ascending order, and 0x83 is what we
5725 		 * are hoping for.
5726 		 */
5727 		while ((page_list[counter] <= 0x86) &&
5728 		    (counter <= (page_list[VPD_PAGE_LENGTH] +
5729 		    VPD_HEAD_OFFSET))) {
5730 			/*
5731 			 * Add 3 because page_list[3] is the number of
5732 			 * pages minus 3
5733 			 */
5734 
5735 			switch (page_list[counter]) {
5736 			case 0x00:
5737 				un->un_vpd_page_mask |= SD_VPD_SUPPORTED_PG;
5738 				break;
5739 			case 0x80:
5740 				un->un_vpd_page_mask |= SD_VPD_UNIT_SERIAL_PG;
5741 				break;
5742 			case 0x81:
5743 				un->un_vpd_page_mask |= SD_VPD_OPERATING_PG;
5744 				break;
5745 			case 0x82:
5746 				un->un_vpd_page_mask |= SD_VPD_ASCII_OP_PG;
5747 				break;
5748 			case 0x83:
5749 				un->un_vpd_page_mask |= SD_VPD_DEVID_WWN_PG;
5750 				break;
5751 			case 0x86:
5752 				un->un_vpd_page_mask |= SD_VPD_EXTENDED_DATA_PG;
5753 				break;
5754 			}
5755 			counter++;
5756 		}
5757 
5758 	} else {
5759 		rval = -1;
5760 
5761 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
5762 		    "sd_check_vpd_page_support: This drive does not implement "
5763 		    "VPD pages.\n");
5764 	}
5765 
5766 	kmem_free(page_list, page_length);
5767 
5768 	return (rval);
5769 }
5770 
5771 
5772 /*
5773  *    Function: sd_setup_pm
5774  *
5775  * Description: Initialize Power Management on the device
5776  *
5777  *     Context: Kernel Thread
5778  */
5779 
5780 static void
5781 sd_setup_pm(sd_ssc_t *ssc, dev_info_t *devi)
5782 {
5783 	uint_t		log_page_size;
5784 	uchar_t		*log_page_data;
5785 	int		rval = 0;
5786 	struct sd_lun	*un;
5787 
5788 	ASSERT(ssc != NULL);
5789 	un = ssc->ssc_un;
5790 	ASSERT(un != NULL);
5791 
5792 	/*
5793 	 * Since we are called from attach, holding a mutex for
5794 	 * un is unnecessary. Because some of the routines called
5795 	 * from here require SD_MUTEX to not be held, assert this
5796 	 * right up front.
5797 	 */
5798 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5799 	/*
5800 	 * Since the sd device does not have the 'reg' property,
5801 	 * cpr will not call its DDI_SUSPEND/DDI_RESUME entries.
5802 	 * The following code is to tell cpr that this device
5803 	 * DOES need to be suspended and resumed.
5804 	 */
5805 	(void) ddi_prop_update_string(DDI_DEV_T_NONE, devi,
5806 	    "pm-hardware-state", "needs-suspend-resume");
5807 
5808 	/*
5809 	 * This complies with the new power management framework
5810 	 * for certain desktop machines. Create the pm_components
5811 	 * property as a string array property.
5812 	 * If un_f_pm_supported is TRUE, that means the disk
5813 	 * attached HBA has set the "pm-capable" property and
5814 	 * the value of this property is bigger than 0.
5815 	 */
5816 	if (un->un_f_pm_supported) {
5817 		/*
5818 		 * not all devices have a motor, try it first.
5819 		 * some devices may return ILLEGAL REQUEST, some
5820 		 * will hang
5821 		 * The following START_STOP_UNIT is used to check if target
5822 		 * device has a motor.
5823 		 */
5824 		un->un_f_start_stop_supported = TRUE;
5825 
5826 		if (un->un_f_power_condition_supported) {
5827 			rval = sd_send_scsi_START_STOP_UNIT(ssc,
5828 			    SD_POWER_CONDITION, SD_TARGET_ACTIVE,
5829 			    SD_PATH_DIRECT);
5830 			if (rval != 0) {
5831 				un->un_f_power_condition_supported = FALSE;
5832 			}
5833 		}
5834 		if (!un->un_f_power_condition_supported) {
5835 			rval = sd_send_scsi_START_STOP_UNIT(ssc,
5836 			    SD_START_STOP, SD_TARGET_START, SD_PATH_DIRECT);
5837 		}
5838 		if (rval != 0) {
5839 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5840 			un->un_f_start_stop_supported = FALSE;
5841 		}
5842 
5843 		/*
5844 		 * create pm properties anyways otherwise the parent can't
5845 		 * go to sleep
5846 		 */
5847 		un->un_f_pm_is_enabled = TRUE;
5848 		(void) sd_create_pm_components(devi, un);
5849 
5850 		/*
5851 		 * If it claims that log sense is supported, check it out.
5852 		 */
5853 		if (un->un_f_log_sense_supported) {
5854 			rval = sd_log_page_supported(ssc,
5855 			    START_STOP_CYCLE_PAGE);
5856 			if (rval == 1) {
5857 				/* Page found, use it. */
5858 				un->un_start_stop_cycle_page =
5859 				    START_STOP_CYCLE_PAGE;
5860 			} else {
5861 				/*
5862 				 * Page not found or log sense is not
5863 				 * supported.
5864 				 * Notice we do not check the old style
5865 				 * START_STOP_CYCLE_VU_PAGE because this
5866 				 * code path does not apply to old disks.
5867 				 */
5868 				un->un_f_log_sense_supported = FALSE;
5869 				un->un_f_pm_log_sense_smart = FALSE;
5870 			}
5871 		}
5872 
5873 		return;
5874 	}
5875 
5876 	/*
5877 	 * For the disk whose attached HBA has not set the "pm-capable"
5878 	 * property, check if it supports the power management.
5879 	 */
5880 	if (!un->un_f_log_sense_supported) {
5881 		un->un_power_level = SD_SPINDLE_ON;
5882 		un->un_f_pm_is_enabled = FALSE;
5883 		return;
5884 	}
5885 
5886 	rval = sd_log_page_supported(ssc, START_STOP_CYCLE_PAGE);
5887 
5888 #ifdef	SDDEBUG
5889 	if (sd_force_pm_supported) {
5890 		/* Force a successful result */
5891 		rval = 1;
5892 	}
5893 #endif
5894 
5895 	/*
5896 	 * If the start-stop cycle counter log page is not supported
5897 	 * or if the pm-capable property is set to be false (0),
5898 	 * then we should not create the pm_components property.
5899 	 */
5900 	if (rval == -1) {
5901 		/*
5902 		 * Error.
5903 		 * Reading log sense failed, most likely this is
5904 		 * an older drive that does not support log sense.
5905 		 * If this fails auto-pm is not supported.
5906 		 */
5907 		un->un_power_level = SD_SPINDLE_ON;
5908 		un->un_f_pm_is_enabled = FALSE;
5909 
5910 	} else if (rval == 0) {
5911 		/*
5912 		 * Page not found.
5913 		 * The start stop cycle counter is implemented as page
5914 		 * START_STOP_CYCLE_PAGE_VU_PAGE (0x31) in older disks. For
5915 		 * newer disks it is implemented as START_STOP_CYCLE_PAGE (0xE).
5916 		 */
5917 		if (sd_log_page_supported(ssc, START_STOP_CYCLE_VU_PAGE) == 1) {
5918 			/*
5919 			 * Page found, use this one.
5920 			 */
5921 			un->un_start_stop_cycle_page = START_STOP_CYCLE_VU_PAGE;
5922 			un->un_f_pm_is_enabled = TRUE;
5923 		} else {
5924 			/*
5925 			 * Error or page not found.
5926 			 * auto-pm is not supported for this device.
5927 			 */
5928 			un->un_power_level = SD_SPINDLE_ON;
5929 			un->un_f_pm_is_enabled = FALSE;
5930 		}
5931 	} else {
5932 		/*
5933 		 * Page found, use it.
5934 		 */
5935 		un->un_start_stop_cycle_page = START_STOP_CYCLE_PAGE;
5936 		un->un_f_pm_is_enabled = TRUE;
5937 	}
5938 
5939 
5940 	if (un->un_f_pm_is_enabled == TRUE) {
5941 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
5942 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
5943 
5944 		rval = sd_send_scsi_LOG_SENSE(ssc, log_page_data,
5945 		    log_page_size, un->un_start_stop_cycle_page,
5946 		    0x01, 0, SD_PATH_DIRECT);
5947 
5948 		if (rval != 0) {
5949 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5950 		}
5951 
5952 #ifdef	SDDEBUG
5953 		if (sd_force_pm_supported) {
5954 			/* Force a successful result */
5955 			rval = 0;
5956 		}
5957 #endif
5958 
5959 		/*
5960 		 * If the Log sense for Page( Start/stop cycle counter page)
5961 		 * succeeds, then power management is supported and we can
5962 		 * enable auto-pm.
5963 		 */
5964 		if (rval == 0)  {
5965 			(void) sd_create_pm_components(devi, un);
5966 		} else {
5967 			un->un_power_level = SD_SPINDLE_ON;
5968 			un->un_f_pm_is_enabled = FALSE;
5969 		}
5970 
5971 		kmem_free(log_page_data, log_page_size);
5972 	}
5973 }
5974 
5975 
5976 /*
5977  *    Function: sd_create_pm_components
5978  *
5979  * Description: Initialize PM property.
5980  *
5981  *     Context: Kernel thread context
5982  */
5983 
5984 static void
5985 sd_create_pm_components(dev_info_t *devi, struct sd_lun *un)
5986 {
5987 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5988 
5989 	if (un->un_f_power_condition_supported) {
5990 		if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi,
5991 		    "pm-components", sd_pwr_pc.pm_comp, 5)
5992 		    != DDI_PROP_SUCCESS) {
5993 			un->un_power_level = SD_SPINDLE_ACTIVE;
5994 			un->un_f_pm_is_enabled = FALSE;
5995 			return;
5996 		}
5997 	} else {
5998 		if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi,
5999 		    "pm-components", sd_pwr_ss.pm_comp, 3)
6000 		    != DDI_PROP_SUCCESS) {
6001 			un->un_power_level = SD_SPINDLE_ON;
6002 			un->un_f_pm_is_enabled = FALSE;
6003 			return;
6004 		}
6005 	}
6006 	/*
6007 	 * When components are initially created they are idle,
6008 	 * power up any non-removables.
6009 	 * Note: the return value of pm_raise_power can't be used
6010 	 * for determining if PM should be enabled for this device.
6011 	 * Even if you check the return values and remove this
6012 	 * property created above, the PM framework will not honor the
6013 	 * change after the first call to pm_raise_power. Hence,
6014 	 * removal of that property does not help if pm_raise_power
6015 	 * fails. In the case of removable media, the start/stop
6016 	 * will fail if the media is not present.
6017 	 */
6018 	if (un->un_f_attach_spinup && (pm_raise_power(SD_DEVINFO(un), 0,
6019 	    SD_PM_STATE_ACTIVE(un)) == DDI_SUCCESS)) {
6020 		mutex_enter(SD_MUTEX(un));
6021 		un->un_power_level = SD_PM_STATE_ACTIVE(un);
6022 		mutex_enter(&un->un_pm_mutex);
6023 		/* Set to on and not busy. */
6024 		un->un_pm_count = 0;
6025 	} else {
6026 		mutex_enter(SD_MUTEX(un));
6027 		un->un_power_level = SD_PM_STATE_STOPPED(un);
6028 		mutex_enter(&un->un_pm_mutex);
6029 		/* Set to off. */
6030 		un->un_pm_count = -1;
6031 	}
6032 	mutex_exit(&un->un_pm_mutex);
6033 	mutex_exit(SD_MUTEX(un));
6034 }
6035 
6036 
6037 /*
6038  *    Function: sd_ddi_suspend
6039  *
6040  * Description: Performs system power-down operations. This includes
6041  *		setting the drive state to indicate its suspended so
6042  *		that no new commands will be accepted. Also, wait for
6043  *		all commands that are in transport or queued to a timer
6044  *		for retry to complete. All timeout threads are cancelled.
6045  *
6046  * Return Code: DDI_FAILURE or DDI_SUCCESS
6047  *
6048  *     Context: Kernel thread context
6049  */
6050 
6051 static int
6052 sd_ddi_suspend(dev_info_t *devi)
6053 {
6054 	struct	sd_lun	*un;
6055 	clock_t		wait_cmds_complete;
6056 
6057 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
6058 	if (un == NULL) {
6059 		return (DDI_FAILURE);
6060 	}
6061 
6062 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: entry\n");
6063 
6064 	mutex_enter(SD_MUTEX(un));
6065 
6066 	/* Return success if the device is already suspended. */
6067 	if (un->un_state == SD_STATE_SUSPENDED) {
6068 		mutex_exit(SD_MUTEX(un));
6069 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6070 		    "device already suspended, exiting\n");
6071 		return (DDI_SUCCESS);
6072 	}
6073 
6074 	/* Return failure if the device is being used by HA */
6075 	if (un->un_resvd_status &
6076 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE)) {
6077 		mutex_exit(SD_MUTEX(un));
6078 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6079 		    "device in use by HA, exiting\n");
6080 		return (DDI_FAILURE);
6081 	}
6082 
6083 	/*
6084 	 * Return failure if the device is in a resource wait
6085 	 * or power changing state.
6086 	 */
6087 	if ((un->un_state == SD_STATE_RWAIT) ||
6088 	    (un->un_state == SD_STATE_PM_CHANGING)) {
6089 		mutex_exit(SD_MUTEX(un));
6090 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6091 		    "device in resource wait state, exiting\n");
6092 		return (DDI_FAILURE);
6093 	}
6094 
6095 
6096 	un->un_save_state = un->un_last_state;
6097 	New_state(un, SD_STATE_SUSPENDED);
6098 
6099 	/*
6100 	 * Wait for all commands that are in transport or queued to a timer
6101 	 * for retry to complete.
6102 	 *
6103 	 * While waiting, no new commands will be accepted or sent because of
6104 	 * the new state we set above.
6105 	 *
6106 	 * Wait till current operation has completed. If we are in the resource
6107 	 * wait state (with an intr outstanding) then we need to wait till the
6108 	 * intr completes and starts the next cmd. We want to wait for
6109 	 * SD_WAIT_CMDS_COMPLETE seconds before failing the DDI_SUSPEND.
6110 	 */
6111 	wait_cmds_complete = ddi_get_lbolt() +
6112 	    (sd_wait_cmds_complete * drv_usectohz(1000000));
6113 
6114 	while (un->un_ncmds_in_transport != 0) {
6115 		/*
6116 		 * Fail if commands do not finish in the specified time.
6117 		 */
6118 		if (cv_timedwait(&un->un_disk_busy_cv, SD_MUTEX(un),
6119 		    wait_cmds_complete) == -1) {
6120 			/*
6121 			 * Undo the state changes made above. Everything
6122 			 * must go back to it's original value.
6123 			 */
6124 			Restore_state(un);
6125 			un->un_last_state = un->un_save_state;
6126 			/* Wake up any threads that might be waiting. */
6127 			cv_broadcast(&un->un_suspend_cv);
6128 			mutex_exit(SD_MUTEX(un));
6129 			SD_ERROR(SD_LOG_IO_PM, un,
6130 			    "sd_ddi_suspend: failed due to outstanding cmds\n");
6131 			SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exiting\n");
6132 			return (DDI_FAILURE);
6133 		}
6134 	}
6135 
6136 	/*
6137 	 * Cancel SCSI watch thread and timeouts, if any are active
6138 	 */
6139 
6140 	if (SD_OK_TO_SUSPEND_SCSI_WATCHER(un)) {
6141 		opaque_t temp_token = un->un_swr_token;
6142 		mutex_exit(SD_MUTEX(un));
6143 		scsi_watch_suspend(temp_token);
6144 		mutex_enter(SD_MUTEX(un));
6145 	}
6146 
6147 	if (un->un_reset_throttle_timeid != NULL) {
6148 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
6149 		un->un_reset_throttle_timeid = NULL;
6150 		mutex_exit(SD_MUTEX(un));
6151 		(void) untimeout(temp_id);
6152 		mutex_enter(SD_MUTEX(un));
6153 	}
6154 
6155 	if (un->un_dcvb_timeid != NULL) {
6156 		timeout_id_t temp_id = un->un_dcvb_timeid;
6157 		un->un_dcvb_timeid = NULL;
6158 		mutex_exit(SD_MUTEX(un));
6159 		(void) untimeout(temp_id);
6160 		mutex_enter(SD_MUTEX(un));
6161 	}
6162 
6163 	mutex_enter(&un->un_pm_mutex);
6164 	if (un->un_pm_timeid != NULL) {
6165 		timeout_id_t temp_id = un->un_pm_timeid;
6166 		un->un_pm_timeid = NULL;
6167 		mutex_exit(&un->un_pm_mutex);
6168 		mutex_exit(SD_MUTEX(un));
6169 		(void) untimeout(temp_id);
6170 		mutex_enter(SD_MUTEX(un));
6171 	} else {
6172 		mutex_exit(&un->un_pm_mutex);
6173 	}
6174 
6175 	if (un->un_rmw_msg_timeid != NULL) {
6176 		timeout_id_t temp_id = un->un_rmw_msg_timeid;
6177 		un->un_rmw_msg_timeid = NULL;
6178 		mutex_exit(SD_MUTEX(un));
6179 		(void) untimeout(temp_id);
6180 		mutex_enter(SD_MUTEX(un));
6181 	}
6182 
6183 	if (un->un_retry_timeid != NULL) {
6184 		timeout_id_t temp_id = un->un_retry_timeid;
6185 		un->un_retry_timeid = NULL;
6186 		mutex_exit(SD_MUTEX(un));
6187 		(void) untimeout(temp_id);
6188 		mutex_enter(SD_MUTEX(un));
6189 
6190 		if (un->un_retry_bp != NULL) {
6191 			un->un_retry_bp->av_forw = un->un_waitq_headp;
6192 			un->un_waitq_headp = un->un_retry_bp;
6193 			if (un->un_waitq_tailp == NULL) {
6194 				un->un_waitq_tailp = un->un_retry_bp;
6195 			}
6196 			un->un_retry_bp = NULL;
6197 			un->un_retry_statp = NULL;
6198 		}
6199 	}
6200 
6201 	if (un->un_direct_priority_timeid != NULL) {
6202 		timeout_id_t temp_id = un->un_direct_priority_timeid;
6203 		un->un_direct_priority_timeid = NULL;
6204 		mutex_exit(SD_MUTEX(un));
6205 		(void) untimeout(temp_id);
6206 		mutex_enter(SD_MUTEX(un));
6207 	}
6208 
6209 	if (un->un_f_is_fibre == TRUE) {
6210 		/*
6211 		 * Remove callbacks for insert and remove events
6212 		 */
6213 		if (un->un_insert_event != NULL) {
6214 			mutex_exit(SD_MUTEX(un));
6215 			(void) ddi_remove_event_handler(un->un_insert_cb_id);
6216 			mutex_enter(SD_MUTEX(un));
6217 			un->un_insert_event = NULL;
6218 		}
6219 
6220 		if (un->un_remove_event != NULL) {
6221 			mutex_exit(SD_MUTEX(un));
6222 			(void) ddi_remove_event_handler(un->un_remove_cb_id);
6223 			mutex_enter(SD_MUTEX(un));
6224 			un->un_remove_event = NULL;
6225 		}
6226 	}
6227 
6228 	mutex_exit(SD_MUTEX(un));
6229 
6230 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exit\n");
6231 
6232 	return (DDI_SUCCESS);
6233 }
6234 
6235 
6236 /*
6237  *    Function: sd_ddi_resume
6238  *
6239  * Description: Performs system power-up operations..
6240  *
6241  * Return Code: DDI_SUCCESS
6242  *		DDI_FAILURE
6243  *
6244  *     Context: Kernel thread context
6245  */
6246 
6247 static int
6248 sd_ddi_resume(dev_info_t *devi)
6249 {
6250 	struct	sd_lun	*un;
6251 
6252 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
6253 	if (un == NULL) {
6254 		return (DDI_FAILURE);
6255 	}
6256 
6257 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: entry\n");
6258 
6259 	mutex_enter(SD_MUTEX(un));
6260 	Restore_state(un);
6261 
6262 	/*
6263 	 * Restore the state which was saved to give the
6264 	 * the right state in un_last_state
6265 	 */
6266 	un->un_last_state = un->un_save_state;
6267 	/*
6268 	 * Note: throttle comes back at full.
6269 	 * Also note: this MUST be done before calling pm_raise_power
6270 	 * otherwise the system can get hung in biowait. The scenario where
6271 	 * this'll happen is under cpr suspend. Writing of the system
6272 	 * state goes through sddump, which writes 0 to un_throttle. If
6273 	 * writing the system state then fails, example if the partition is
6274 	 * too small, then cpr attempts a resume. If throttle isn't restored
6275 	 * from the saved value until after calling pm_raise_power then
6276 	 * cmds sent in sdpower are not transported and sd_send_scsi_cmd hangs
6277 	 * in biowait.
6278 	 */
6279 	un->un_throttle = un->un_saved_throttle;
6280 
6281 	/*
6282 	 * The chance of failure is very rare as the only command done in power
6283 	 * entry point is START command when you transition from 0->1 or
6284 	 * unknown->1. Put it to SPINDLE ON state irrespective of the state at
6285 	 * which suspend was done. Ignore the return value as the resume should
6286 	 * not be failed. In the case of removable media the media need not be
6287 	 * inserted and hence there is a chance that raise power will fail with
6288 	 * media not present.
6289 	 */
6290 	if (un->un_f_attach_spinup) {
6291 		mutex_exit(SD_MUTEX(un));
6292 		(void) pm_raise_power(SD_DEVINFO(un), 0,
6293 		    SD_PM_STATE_ACTIVE(un));
6294 		mutex_enter(SD_MUTEX(un));
6295 	}
6296 
6297 	/*
6298 	 * Don't broadcast to the suspend cv and therefore possibly
6299 	 * start I/O until after power has been restored.
6300 	 */
6301 	cv_broadcast(&un->un_suspend_cv);
6302 	cv_broadcast(&un->un_state_cv);
6303 
6304 	/* restart thread */
6305 	if (SD_OK_TO_RESUME_SCSI_WATCHER(un)) {
6306 		scsi_watch_resume(un->un_swr_token);
6307 	}
6308 
6309 #if (defined(__fibre))
6310 	if (un->un_f_is_fibre == TRUE) {
6311 		/*
6312 		 * Add callbacks for insert and remove events
6313 		 */
6314 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
6315 			sd_init_event_callbacks(un);
6316 		}
6317 	}
6318 #endif
6319 
6320 	/*
6321 	 * Transport any pending commands to the target.
6322 	 *
6323 	 * If this is a low-activity device commands in queue will have to wait
6324 	 * until new commands come in, which may take awhile. Also, we
6325 	 * specifically don't check un_ncmds_in_transport because we know that
6326 	 * there really are no commands in progress after the unit was
6327 	 * suspended and we could have reached the throttle level, been
6328 	 * suspended, and have no new commands coming in for awhile. Highly
6329 	 * unlikely, but so is the low-activity disk scenario.
6330 	 */
6331 	ddi_xbuf_dispatch(un->un_xbuf_attr);
6332 
6333 	sd_start_cmds(un, NULL);
6334 	mutex_exit(SD_MUTEX(un));
6335 
6336 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: exit\n");
6337 
6338 	return (DDI_SUCCESS);
6339 }
6340 
6341 
6342 /*
6343  *    Function: sd_pm_state_change
6344  *
6345  * Description: Change the driver power state.
6346  * 		Someone else is required to actually change the driver
6347  * 		power level.
6348  *
6349  *   Arguments: un - driver soft state (unit) structure
6350  *              level - the power level that is changed to
6351  *              flag - to decide how to change the power state
6352  *
6353  * Return Code: DDI_SUCCESS
6354  *
6355  *     Context: Kernel thread context
6356  */
6357 static int
6358 sd_pm_state_change(struct sd_lun *un, int level, int flag)
6359 {
6360 	ASSERT(un != NULL);
6361 	SD_TRACE(SD_LOG_POWER, un, "sd_pm_state_change: entry\n");
6362 
6363 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6364 	mutex_enter(SD_MUTEX(un));
6365 
6366 	if (flag == SD_PM_STATE_ROLLBACK || SD_PM_IS_IO_CAPABLE(un, level)) {
6367 		un->un_power_level = level;
6368 		ASSERT(!mutex_owned(&un->un_pm_mutex));
6369 		mutex_enter(&un->un_pm_mutex);
6370 		if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
6371 			un->un_pm_count++;
6372 			ASSERT(un->un_pm_count == 0);
6373 		}
6374 		mutex_exit(&un->un_pm_mutex);
6375 	} else {
6376 		/*
6377 		 * Exit if power management is not enabled for this device,
6378 		 * or if the device is being used by HA.
6379 		 */
6380 		if ((un->un_f_pm_is_enabled == FALSE) || (un->un_resvd_status &
6381 		    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE))) {
6382 			mutex_exit(SD_MUTEX(un));
6383 			SD_TRACE(SD_LOG_POWER, un,
6384 			    "sd_pm_state_change: exiting\n");
6385 			return (DDI_FAILURE);
6386 		}
6387 
6388 		SD_INFO(SD_LOG_POWER, un, "sd_pm_state_change: "
6389 		    "un_ncmds_in_driver=%ld\n", un->un_ncmds_in_driver);
6390 
6391 		/*
6392 		 * See if the device is not busy, ie.:
6393 		 *    - we have no commands in the driver for this device
6394 		 *    - not waiting for resources
6395 		 */
6396 		if ((un->un_ncmds_in_driver == 0) &&
6397 		    (un->un_state != SD_STATE_RWAIT)) {
6398 			/*
6399 			 * The device is not busy, so it is OK to go to low
6400 			 * power state. Indicate low power, but rely on someone
6401 			 * else to actually change it.
6402 			 */
6403 			mutex_enter(&un->un_pm_mutex);
6404 			un->un_pm_count = -1;
6405 			mutex_exit(&un->un_pm_mutex);
6406 			un->un_power_level = level;
6407 		}
6408 	}
6409 
6410 	mutex_exit(SD_MUTEX(un));
6411 
6412 	SD_TRACE(SD_LOG_POWER, un, "sd_pm_state_change: exit\n");
6413 
6414 	return (DDI_SUCCESS);
6415 }
6416 
6417 
6418 /*
6419  *    Function: sd_pm_idletimeout_handler
6420  *
6421  * Description: A timer routine that's active only while a device is busy.
6422  *		The purpose is to extend slightly the pm framework's busy
6423  *		view of the device to prevent busy/idle thrashing for
6424  *		back-to-back commands. Do this by comparing the current time
6425  *		to the time at which the last command completed and when the
6426  *		difference is greater than sd_pm_idletime, call
6427  *		pm_idle_component. In addition to indicating idle to the pm
6428  *		framework, update the chain type to again use the internal pm
6429  *		layers of the driver.
6430  *
6431  *   Arguments: arg - driver soft state (unit) structure
6432  *
6433  *     Context: Executes in a timeout(9F) thread context
6434  */
6435 
6436 static void
6437 sd_pm_idletimeout_handler(void *arg)
6438 {
6439 	struct sd_lun *un = arg;
6440 
6441 	time_t	now;
6442 
6443 	mutex_enter(&sd_detach_mutex);
6444 	if (un->un_detach_count != 0) {
6445 		/* Abort if the instance is detaching */
6446 		mutex_exit(&sd_detach_mutex);
6447 		return;
6448 	}
6449 	mutex_exit(&sd_detach_mutex);
6450 
6451 	now = ddi_get_time();
6452 	/*
6453 	 * Grab both mutexes, in the proper order, since we're accessing
6454 	 * both PM and softstate variables.
6455 	 */
6456 	mutex_enter(SD_MUTEX(un));
6457 	mutex_enter(&un->un_pm_mutex);
6458 	if (((now - un->un_pm_idle_time) > sd_pm_idletime) &&
6459 	    (un->un_ncmds_in_driver == 0) && (un->un_pm_count == 0)) {
6460 		/*
6461 		 * Update the chain types.
6462 		 * This takes affect on the next new command received.
6463 		 */
6464 		if (un->un_f_non_devbsize_supported) {
6465 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
6466 		} else {
6467 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
6468 		}
6469 		un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD;
6470 
6471 		SD_TRACE(SD_LOG_IO_PM, un,
6472 		    "sd_pm_idletimeout_handler: idling device\n");
6473 		(void) pm_idle_component(SD_DEVINFO(un), 0);
6474 		un->un_pm_idle_timeid = NULL;
6475 	} else {
6476 		un->un_pm_idle_timeid =
6477 		    timeout(sd_pm_idletimeout_handler, un,
6478 		    (drv_usectohz((clock_t)300000))); /* 300 ms. */
6479 	}
6480 	mutex_exit(&un->un_pm_mutex);
6481 	mutex_exit(SD_MUTEX(un));
6482 }
6483 
6484 
6485 /*
6486  *    Function: sd_pm_timeout_handler
6487  *
6488  * Description: Callback to tell framework we are idle.
6489  *
6490  *     Context: timeout(9f) thread context.
6491  */
6492 
6493 static void
6494 sd_pm_timeout_handler(void *arg)
6495 {
6496 	struct sd_lun *un = arg;
6497 
6498 	(void) pm_idle_component(SD_DEVINFO(un), 0);
6499 	mutex_enter(&un->un_pm_mutex);
6500 	un->un_pm_timeid = NULL;
6501 	mutex_exit(&un->un_pm_mutex);
6502 }
6503 
6504 
6505 /*
6506  *    Function: sdpower
6507  *
6508  * Description: PM entry point.
6509  *
6510  * Return Code: DDI_SUCCESS
6511  *		DDI_FAILURE
6512  *
6513  *     Context: Kernel thread context
6514  */
6515 
6516 static int
6517 sdpower(dev_info_t *devi, int component, int level)
6518 {
6519 	struct sd_lun	*un;
6520 	int		instance;
6521 	int		rval = DDI_SUCCESS;
6522 	uint_t		i, log_page_size, maxcycles, ncycles;
6523 	uchar_t		*log_page_data;
6524 	int		log_sense_page;
6525 	int		medium_present;
6526 	time_t		intvlp;
6527 	dev_t		dev;
6528 	struct pm_trans_data	sd_pm_tran_data;
6529 	uchar_t		save_state;
6530 	int		sval;
6531 	uchar_t		state_before_pm;
6532 	int		got_semaphore_here;
6533 	sd_ssc_t	*ssc;
6534 	int	last_power_level;
6535 
6536 	instance = ddi_get_instance(devi);
6537 
6538 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
6539 	    !SD_PM_IS_LEVEL_VALID(un, level) || component != 0) {
6540 		return (DDI_FAILURE);
6541 	}
6542 
6543 	dev = sd_make_device(SD_DEVINFO(un));
6544 	ssc = sd_ssc_init(un);
6545 
6546 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: entry, level = %d\n", level);
6547 
6548 	/*
6549 	 * Must synchronize power down with close.
6550 	 * Attempt to decrement/acquire the open/close semaphore,
6551 	 * but do NOT wait on it. If it's not greater than zero,
6552 	 * ie. it can't be decremented without waiting, then
6553 	 * someone else, either open or close, already has it
6554 	 * and the try returns 0. Use that knowledge here to determine
6555 	 * if it's OK to change the device power level.
6556 	 * Also, only increment it on exit if it was decremented, ie. gotten,
6557 	 * here.
6558 	 */
6559 	got_semaphore_here = sema_tryp(&un->un_semoclose);
6560 
6561 	mutex_enter(SD_MUTEX(un));
6562 
6563 	SD_INFO(SD_LOG_POWER, un, "sdpower: un_ncmds_in_driver = %ld\n",
6564 	    un->un_ncmds_in_driver);
6565 
6566 	/*
6567 	 * If un_ncmds_in_driver is non-zero it indicates commands are
6568 	 * already being processed in the driver, or if the semaphore was
6569 	 * not gotten here it indicates an open or close is being processed.
6570 	 * At the same time somebody is requesting to go to a lower power
6571 	 * that can't perform I/O, which can't happen, therefore we need to
6572 	 * return failure.
6573 	 */
6574 	if ((!SD_PM_IS_IO_CAPABLE(un, level)) &&
6575 	    ((un->un_ncmds_in_driver != 0) || (got_semaphore_here == 0))) {
6576 		mutex_exit(SD_MUTEX(un));
6577 
6578 		if (got_semaphore_here != 0) {
6579 			sema_v(&un->un_semoclose);
6580 		}
6581 		SD_TRACE(SD_LOG_IO_PM, un,
6582 		    "sdpower: exit, device has queued cmds.\n");
6583 
6584 		goto sdpower_failed;
6585 	}
6586 
6587 	/*
6588 	 * if it is OFFLINE that means the disk is completely dead
6589 	 * in our case we have to put the disk in on or off by sending commands
6590 	 * Of course that will fail anyway so return back here.
6591 	 *
6592 	 * Power changes to a device that's OFFLINE or SUSPENDED
6593 	 * are not allowed.
6594 	 */
6595 	if ((un->un_state == SD_STATE_OFFLINE) ||
6596 	    (un->un_state == SD_STATE_SUSPENDED)) {
6597 		mutex_exit(SD_MUTEX(un));
6598 
6599 		if (got_semaphore_here != 0) {
6600 			sema_v(&un->un_semoclose);
6601 		}
6602 		SD_TRACE(SD_LOG_IO_PM, un,
6603 		    "sdpower: exit, device is off-line.\n");
6604 
6605 		goto sdpower_failed;
6606 	}
6607 
6608 	/*
6609 	 * Change the device's state to indicate it's power level
6610 	 * is being changed. Do this to prevent a power off in the
6611 	 * middle of commands, which is especially bad on devices
6612 	 * that are really powered off instead of just spun down.
6613 	 */
6614 	state_before_pm = un->un_state;
6615 	un->un_state = SD_STATE_PM_CHANGING;
6616 
6617 	mutex_exit(SD_MUTEX(un));
6618 
6619 	/*
6620 	 * If log sense command is not supported, bypass the
6621 	 * following checking, otherwise, check the log sense
6622 	 * information for this device.
6623 	 */
6624 	if (SD_PM_STOP_MOTOR_NEEDED(un, level) &&
6625 	    un->un_f_log_sense_supported) {
6626 		/*
6627 		 * Get the log sense information to understand whether the
6628 		 * the powercycle counts have gone beyond the threshhold.
6629 		 */
6630 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
6631 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
6632 
6633 		mutex_enter(SD_MUTEX(un));
6634 		log_sense_page = un->un_start_stop_cycle_page;
6635 		mutex_exit(SD_MUTEX(un));
6636 
6637 		rval = sd_send_scsi_LOG_SENSE(ssc, log_page_data,
6638 		    log_page_size, log_sense_page, 0x01, 0, SD_PATH_DIRECT);
6639 
6640 		if (rval != 0) {
6641 			if (rval == EIO)
6642 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
6643 			else
6644 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
6645 		}
6646 
6647 #ifdef	SDDEBUG
6648 		if (sd_force_pm_supported) {
6649 			/* Force a successful result */
6650 			rval = 0;
6651 		}
6652 #endif
6653 		if (rval != 0) {
6654 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
6655 			    "Log Sense Failed\n");
6656 
6657 			kmem_free(log_page_data, log_page_size);
6658 			/* Cannot support power management on those drives */
6659 
6660 			if (got_semaphore_here != 0) {
6661 				sema_v(&un->un_semoclose);
6662 			}
6663 			/*
6664 			 * On exit put the state back to it's original value
6665 			 * and broadcast to anyone waiting for the power
6666 			 * change completion.
6667 			 */
6668 			mutex_enter(SD_MUTEX(un));
6669 			un->un_state = state_before_pm;
6670 			cv_broadcast(&un->un_suspend_cv);
6671 			mutex_exit(SD_MUTEX(un));
6672 			SD_TRACE(SD_LOG_IO_PM, un,
6673 			    "sdpower: exit, Log Sense Failed.\n");
6674 
6675 			goto sdpower_failed;
6676 		}
6677 
6678 		/*
6679 		 * From the page data - Convert the essential information to
6680 		 * pm_trans_data
6681 		 */
6682 		maxcycles =
6683 		    (log_page_data[0x1c] << 24) | (log_page_data[0x1d] << 16) |
6684 		    (log_page_data[0x1E] << 8)  | log_page_data[0x1F];
6685 
6686 		ncycles =
6687 		    (log_page_data[0x24] << 24) | (log_page_data[0x25] << 16) |
6688 		    (log_page_data[0x26] << 8)  | log_page_data[0x27];
6689 
6690 		if (un->un_f_pm_log_sense_smart) {
6691 			sd_pm_tran_data.un.smart_count.allowed = maxcycles;
6692 			sd_pm_tran_data.un.smart_count.consumed = ncycles;
6693 			sd_pm_tran_data.un.smart_count.flag = 0;
6694 			sd_pm_tran_data.format = DC_SMART_FORMAT;
6695 		} else {
6696 			sd_pm_tran_data.un.scsi_cycles.lifemax = maxcycles;
6697 			sd_pm_tran_data.un.scsi_cycles.ncycles = ncycles;
6698 			for (i = 0; i < DC_SCSI_MFR_LEN; i++) {
6699 				sd_pm_tran_data.un.scsi_cycles.svc_date[i] =
6700 				    log_page_data[8+i];
6701 			}
6702 			sd_pm_tran_data.un.scsi_cycles.flag = 0;
6703 			sd_pm_tran_data.format = DC_SCSI_FORMAT;
6704 		}
6705 
6706 		kmem_free(log_page_data, log_page_size);
6707 
6708 		/*
6709 		 * Call pm_trans_check routine to get the Ok from
6710 		 * the global policy
6711 		 */
6712 		rval = pm_trans_check(&sd_pm_tran_data, &intvlp);
6713 #ifdef	SDDEBUG
6714 		if (sd_force_pm_supported) {
6715 			/* Force a successful result */
6716 			rval = 1;
6717 		}
6718 #endif
6719 		switch (rval) {
6720 		case 0:
6721 			/*
6722 			 * Not Ok to Power cycle or error in parameters passed
6723 			 * Would have given the advised time to consider power
6724 			 * cycle. Based on the new intvlp parameter we are
6725 			 * supposed to pretend we are busy so that pm framework
6726 			 * will never call our power entry point. Because of
6727 			 * that install a timeout handler and wait for the
6728 			 * recommended time to elapse so that power management
6729 			 * can be effective again.
6730 			 *
6731 			 * To effect this behavior, call pm_busy_component to
6732 			 * indicate to the framework this device is busy.
6733 			 * By not adjusting un_pm_count the rest of PM in
6734 			 * the driver will function normally, and independent
6735 			 * of this but because the framework is told the device
6736 			 * is busy it won't attempt powering down until it gets
6737 			 * a matching idle. The timeout handler sends this.
6738 			 * Note: sd_pm_entry can't be called here to do this
6739 			 * because sdpower may have been called as a result
6740 			 * of a call to pm_raise_power from within sd_pm_entry.
6741 			 *
6742 			 * If a timeout handler is already active then
6743 			 * don't install another.
6744 			 */
6745 			mutex_enter(&un->un_pm_mutex);
6746 			if (un->un_pm_timeid == NULL) {
6747 				un->un_pm_timeid =
6748 				    timeout(sd_pm_timeout_handler,
6749 				    un, intvlp * drv_usectohz(1000000));
6750 				mutex_exit(&un->un_pm_mutex);
6751 				(void) pm_busy_component(SD_DEVINFO(un), 0);
6752 			} else {
6753 				mutex_exit(&un->un_pm_mutex);
6754 			}
6755 			if (got_semaphore_here != 0) {
6756 				sema_v(&un->un_semoclose);
6757 			}
6758 			/*
6759 			 * On exit put the state back to it's original value
6760 			 * and broadcast to anyone waiting for the power
6761 			 * change completion.
6762 			 */
6763 			mutex_enter(SD_MUTEX(un));
6764 			un->un_state = state_before_pm;
6765 			cv_broadcast(&un->un_suspend_cv);
6766 			mutex_exit(SD_MUTEX(un));
6767 
6768 			SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, "
6769 			    "trans check Failed, not ok to power cycle.\n");
6770 
6771 			goto sdpower_failed;
6772 		case -1:
6773 			if (got_semaphore_here != 0) {
6774 				sema_v(&un->un_semoclose);
6775 			}
6776 			/*
6777 			 * On exit put the state back to it's original value
6778 			 * and broadcast to anyone waiting for the power
6779 			 * change completion.
6780 			 */
6781 			mutex_enter(SD_MUTEX(un));
6782 			un->un_state = state_before_pm;
6783 			cv_broadcast(&un->un_suspend_cv);
6784 			mutex_exit(SD_MUTEX(un));
6785 			SD_TRACE(SD_LOG_IO_PM, un,
6786 			    "sdpower: exit, trans check command Failed.\n");
6787 
6788 			goto sdpower_failed;
6789 		}
6790 	}
6791 
6792 	if (!SD_PM_IS_IO_CAPABLE(un, level)) {
6793 		/*
6794 		 * Save the last state... if the STOP FAILS we need it
6795 		 * for restoring
6796 		 */
6797 		mutex_enter(SD_MUTEX(un));
6798 		save_state = un->un_last_state;
6799 		last_power_level = un->un_power_level;
6800 		/*
6801 		 * There must not be any cmds. getting processed
6802 		 * in the driver when we get here. Power to the
6803 		 * device is potentially going off.
6804 		 */
6805 		ASSERT(un->un_ncmds_in_driver == 0);
6806 		mutex_exit(SD_MUTEX(un));
6807 
6808 		/*
6809 		 * For now PM suspend the device completely before spindle is
6810 		 * turned off
6811 		 */
6812 		if ((rval = sd_pm_state_change(un, level, SD_PM_STATE_CHANGE))
6813 		    == DDI_FAILURE) {
6814 			if (got_semaphore_here != 0) {
6815 				sema_v(&un->un_semoclose);
6816 			}
6817 			/*
6818 			 * On exit put the state back to it's original value
6819 			 * and broadcast to anyone waiting for the power
6820 			 * change completion.
6821 			 */
6822 			mutex_enter(SD_MUTEX(un));
6823 			un->un_state = state_before_pm;
6824 			un->un_power_level = last_power_level;
6825 			cv_broadcast(&un->un_suspend_cv);
6826 			mutex_exit(SD_MUTEX(un));
6827 			SD_TRACE(SD_LOG_IO_PM, un,
6828 			    "sdpower: exit, PM suspend Failed.\n");
6829 
6830 			goto sdpower_failed;
6831 		}
6832 	}
6833 
6834 	/*
6835 	 * The transition from SPINDLE_OFF to SPINDLE_ON can happen in open,
6836 	 * close, or strategy. Dump no long uses this routine, it uses it's
6837 	 * own code so it can be done in polled mode.
6838 	 */
6839 
6840 	medium_present = TRUE;
6841 
6842 	/*
6843 	 * When powering up, issue a TUR in case the device is at unit
6844 	 * attention.  Don't do retries. Bypass the PM layer, otherwise
6845 	 * a deadlock on un_pm_busy_cv will occur.
6846 	 */
6847 	if (SD_PM_IS_IO_CAPABLE(un, level)) {
6848 		sval = sd_send_scsi_TEST_UNIT_READY(ssc,
6849 		    SD_DONT_RETRY_TUR | SD_BYPASS_PM);
6850 		if (sval != 0)
6851 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
6852 	}
6853 
6854 	if (un->un_f_power_condition_supported) {
6855 		char *pm_condition_name[] = {"STOPPED", "STANDBY",
6856 		    "IDLE", "ACTIVE"};
6857 		SD_TRACE(SD_LOG_IO_PM, un,
6858 		    "sdpower: sending \'%s\' power condition",
6859 		    pm_condition_name[level]);
6860 		sval = sd_send_scsi_START_STOP_UNIT(ssc, SD_POWER_CONDITION,
6861 		    sd_pl2pc[level], SD_PATH_DIRECT);
6862 	} else {
6863 		SD_TRACE(SD_LOG_IO_PM, un, "sdpower: sending \'%s\' unit\n",
6864 		    ((level == SD_SPINDLE_ON) ? "START" : "STOP"));
6865 		sval = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
6866 		    ((level == SD_SPINDLE_ON) ? SD_TARGET_START :
6867 		    SD_TARGET_STOP), SD_PATH_DIRECT);
6868 	}
6869 	if (sval != 0) {
6870 		if (sval == EIO)
6871 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
6872 		else
6873 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
6874 	}
6875 
6876 	/* Command failed, check for media present. */
6877 	if ((sval == ENXIO) && un->un_f_has_removable_media) {
6878 		medium_present = FALSE;
6879 	}
6880 
6881 	/*
6882 	 * The conditions of interest here are:
6883 	 *   if a spindle off with media present fails,
6884 	 *	then restore the state and return an error.
6885 	 *   else if a spindle on fails,
6886 	 *	then return an error (there's no state to restore).
6887 	 * In all other cases we setup for the new state
6888 	 * and return success.
6889 	 */
6890 	if (!SD_PM_IS_IO_CAPABLE(un, level)) {
6891 		if ((medium_present == TRUE) && (sval != 0)) {
6892 			/* The stop command from above failed */
6893 			rval = DDI_FAILURE;
6894 			/*
6895 			 * The stop command failed, and we have media
6896 			 * present. Put the level back by calling the
6897 			 * sd_pm_resume() and set the state back to
6898 			 * it's previous value.
6899 			 */
6900 			(void) sd_pm_state_change(un, last_power_level,
6901 			    SD_PM_STATE_ROLLBACK);
6902 			mutex_enter(SD_MUTEX(un));
6903 			un->un_last_state = save_state;
6904 			mutex_exit(SD_MUTEX(un));
6905 		} else if (un->un_f_monitor_media_state) {
6906 			/*
6907 			 * The stop command from above succeeded.
6908 			 * Terminate watch thread in case of removable media
6909 			 * devices going into low power state. This is as per
6910 			 * the requirements of pm framework, otherwise commands
6911 			 * will be generated for the device (through watch
6912 			 * thread), even when the device is in low power state.
6913 			 */
6914 			mutex_enter(SD_MUTEX(un));
6915 			un->un_f_watcht_stopped = FALSE;
6916 			if (un->un_swr_token != NULL) {
6917 				opaque_t temp_token = un->un_swr_token;
6918 				un->un_f_watcht_stopped = TRUE;
6919 				un->un_swr_token = NULL;
6920 				mutex_exit(SD_MUTEX(un));
6921 				(void) scsi_watch_request_terminate(temp_token,
6922 				    SCSI_WATCH_TERMINATE_ALL_WAIT);
6923 			} else {
6924 				mutex_exit(SD_MUTEX(un));
6925 			}
6926 		}
6927 	} else {
6928 		/*
6929 		 * The level requested is I/O capable.
6930 		 * Legacy behavior: return success on a failed spinup
6931 		 * if there is no media in the drive.
6932 		 * Do this by looking at medium_present here.
6933 		 */
6934 		if ((sval != 0) && medium_present) {
6935 			/* The start command from above failed */
6936 			rval = DDI_FAILURE;
6937 		} else {
6938 			/*
6939 			 * The start command from above succeeded
6940 			 * PM resume the devices now that we have
6941 			 * started the disks
6942 			 */
6943 			(void) sd_pm_state_change(un, level,
6944 			    SD_PM_STATE_CHANGE);
6945 
6946 			/*
6947 			 * Resume the watch thread since it was suspended
6948 			 * when the device went into low power mode.
6949 			 */
6950 			if (un->un_f_monitor_media_state) {
6951 				mutex_enter(SD_MUTEX(un));
6952 				if (un->un_f_watcht_stopped == TRUE) {
6953 					opaque_t temp_token;
6954 
6955 					un->un_f_watcht_stopped = FALSE;
6956 					mutex_exit(SD_MUTEX(un));
6957 					temp_token = scsi_watch_request_submit(
6958 					    SD_SCSI_DEVP(un),
6959 					    sd_check_media_time,
6960 					    SENSE_LENGTH, sd_media_watch_cb,
6961 					    (caddr_t)dev);
6962 					mutex_enter(SD_MUTEX(un));
6963 					un->un_swr_token = temp_token;
6964 				}
6965 				mutex_exit(SD_MUTEX(un));
6966 			}
6967 		}
6968 	}
6969 
6970 	if (got_semaphore_here != 0) {
6971 		sema_v(&un->un_semoclose);
6972 	}
6973 	/*
6974 	 * On exit put the state back to it's original value
6975 	 * and broadcast to anyone waiting for the power
6976 	 * change completion.
6977 	 */
6978 	mutex_enter(SD_MUTEX(un));
6979 	un->un_state = state_before_pm;
6980 	cv_broadcast(&un->un_suspend_cv);
6981 	mutex_exit(SD_MUTEX(un));
6982 
6983 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, status = 0x%x\n", rval);
6984 
6985 	sd_ssc_fini(ssc);
6986 	return (rval);
6987 
6988 sdpower_failed:
6989 
6990 	sd_ssc_fini(ssc);
6991 	return (DDI_FAILURE);
6992 }
6993 
6994 
6995 
6996 /*
6997  *    Function: sdattach
6998  *
6999  * Description: Driver's attach(9e) entry point function.
7000  *
7001  *   Arguments: devi - opaque device info handle
7002  *		cmd  - attach  type
7003  *
7004  * Return Code: DDI_SUCCESS
7005  *		DDI_FAILURE
7006  *
7007  *     Context: Kernel thread context
7008  */
7009 
7010 static int
7011 sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd)
7012 {
7013 	switch (cmd) {
7014 	case DDI_ATTACH:
7015 		return (sd_unit_attach(devi));
7016 	case DDI_RESUME:
7017 		return (sd_ddi_resume(devi));
7018 	default:
7019 		break;
7020 	}
7021 	return (DDI_FAILURE);
7022 }
7023 
7024 
7025 /*
7026  *    Function: sddetach
7027  *
7028  * Description: Driver's detach(9E) entry point function.
7029  *
7030  *   Arguments: devi - opaque device info handle
7031  *		cmd  - detach  type
7032  *
7033  * Return Code: DDI_SUCCESS
7034  *		DDI_FAILURE
7035  *
7036  *     Context: Kernel thread context
7037  */
7038 
7039 static int
7040 sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd)
7041 {
7042 	switch (cmd) {
7043 	case DDI_DETACH:
7044 		return (sd_unit_detach(devi));
7045 	case DDI_SUSPEND:
7046 		return (sd_ddi_suspend(devi));
7047 	default:
7048 		break;
7049 	}
7050 	return (DDI_FAILURE);
7051 }
7052 
7053 
7054 /*
7055  *     Function: sd_sync_with_callback
7056  *
7057  *  Description: Prevents sd_unit_attach or sd_unit_detach from freeing the soft
7058  *		 state while the callback routine is active.
7059  *
7060  *    Arguments: un: softstate structure for the instance
7061  *
7062  *	Context: Kernel thread context
7063  */
7064 
7065 static void
7066 sd_sync_with_callback(struct sd_lun *un)
7067 {
7068 	ASSERT(un != NULL);
7069 
7070 	mutex_enter(SD_MUTEX(un));
7071 
7072 	ASSERT(un->un_in_callback >= 0);
7073 
7074 	while (un->un_in_callback > 0) {
7075 		mutex_exit(SD_MUTEX(un));
7076 		delay(2);
7077 		mutex_enter(SD_MUTEX(un));
7078 	}
7079 
7080 	mutex_exit(SD_MUTEX(un));
7081 }
7082 
7083 /*
7084  *    Function: sd_unit_attach
7085  *
7086  * Description: Performs DDI_ATTACH processing for sdattach(). Allocates
7087  *		the soft state structure for the device and performs
7088  *		all necessary structure and device initializations.
7089  *
7090  *   Arguments: devi: the system's dev_info_t for the device.
7091  *
7092  * Return Code: DDI_SUCCESS if attach is successful.
7093  *		DDI_FAILURE if any part of the attach fails.
7094  *
7095  *     Context: Called at attach(9e) time for the DDI_ATTACH flag.
7096  *		Kernel thread context only.  Can sleep.
7097  */
7098 
7099 static int
7100 sd_unit_attach(dev_info_t *devi)
7101 {
7102 	struct	scsi_device	*devp;
7103 	struct	sd_lun		*un;
7104 	char			*variantp;
7105 	char			name_str[48];
7106 	int	reservation_flag = SD_TARGET_IS_UNRESERVED;
7107 	int	instance;
7108 	int	rval;
7109 	int	wc_enabled;
7110 	int	tgt;
7111 	uint64_t	capacity;
7112 	uint_t		lbasize = 0;
7113 	dev_info_t	*pdip = ddi_get_parent(devi);
7114 	int		offbyone = 0;
7115 	int		geom_label_valid = 0;
7116 	sd_ssc_t	*ssc;
7117 	int		status;
7118 	struct sd_fm_internal	*sfip = NULL;
7119 	int		max_xfer_size;
7120 
7121 	/*
7122 	 * Retrieve the target driver's private data area. This was set
7123 	 * up by the HBA.
7124 	 */
7125 	devp = ddi_get_driver_private(devi);
7126 
7127 	/*
7128 	 * Retrieve the target ID of the device.
7129 	 */
7130 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
7131 	    SCSI_ADDR_PROP_TARGET, -1);
7132 
7133 	/*
7134 	 * Since we have no idea what state things were left in by the last
7135 	 * user of the device, set up some 'default' settings, ie. turn 'em
7136 	 * off. The scsi_ifsetcap calls force re-negotiations with the drive.
7137 	 * Do this before the scsi_probe, which sends an inquiry.
7138 	 * This is a fix for bug (4430280).
7139 	 * Of special importance is wide-xfer. The drive could have been left
7140 	 * in wide transfer mode by the last driver to communicate with it,
7141 	 * this includes us. If that's the case, and if the following is not
7142 	 * setup properly or we don't re-negotiate with the drive prior to
7143 	 * transferring data to/from the drive, it causes bus parity errors,
7144 	 * data overruns, and unexpected interrupts. This first occurred when
7145 	 * the fix for bug (4378686) was made.
7146 	 */
7147 	(void) scsi_ifsetcap(&devp->sd_address, "lun-reset", 0, 1);
7148 	(void) scsi_ifsetcap(&devp->sd_address, "wide-xfer", 0, 1);
7149 	(void) scsi_ifsetcap(&devp->sd_address, "auto-rqsense", 0, 1);
7150 
7151 	/*
7152 	 * Currently, scsi_ifsetcap sets tagged-qing capability for all LUNs
7153 	 * on a target. Setting it per lun instance actually sets the
7154 	 * capability of this target, which affects those luns already
7155 	 * attached on the same target. So during attach, we can only disable
7156 	 * this capability only when no other lun has been attached on this
7157 	 * target. By doing this, we assume a target has the same tagged-qing
7158 	 * capability for every lun. The condition can be removed when HBA
7159 	 * is changed to support per lun based tagged-qing capability.
7160 	 */
7161 	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
7162 		(void) scsi_ifsetcap(&devp->sd_address, "tagged-qing", 0, 1);
7163 	}
7164 
7165 	/*
7166 	 * Use scsi_probe() to issue an INQUIRY command to the device.
7167 	 * This call will allocate and fill in the scsi_inquiry structure
7168 	 * and point the sd_inq member of the scsi_device structure to it.
7169 	 * If the attach succeeds, then this memory will not be de-allocated
7170 	 * (via scsi_unprobe()) until the instance is detached.
7171 	 */
7172 	if (scsi_probe(devp, SLEEP_FUNC) != SCSIPROBE_EXISTS) {
7173 		goto probe_failed;
7174 	}
7175 
7176 	/*
7177 	 * Check the device type as specified in the inquiry data and
7178 	 * claim it if it is of a type that we support.
7179 	 */
7180 	switch (devp->sd_inq->inq_dtype) {
7181 	case DTYPE_DIRECT:
7182 		break;
7183 	case DTYPE_RODIRECT:
7184 		break;
7185 	case DTYPE_OPTICAL:
7186 		break;
7187 	case DTYPE_NOTPRESENT:
7188 	default:
7189 		/* Unsupported device type; fail the attach. */
7190 		goto probe_failed;
7191 	}
7192 
7193 	/*
7194 	 * Allocate the soft state structure for this unit.
7195 	 *
7196 	 * We rely upon this memory being set to all zeroes by
7197 	 * ddi_soft_state_zalloc().  We assume that any member of the
7198 	 * soft state structure that is not explicitly initialized by
7199 	 * this routine will have a value of zero.
7200 	 */
7201 	instance = ddi_get_instance(devp->sd_dev);
7202 #ifndef XPV_HVM_DRIVER
7203 	if (ddi_soft_state_zalloc(sd_state, instance) != DDI_SUCCESS) {
7204 		goto probe_failed;
7205 	}
7206 #endif /* !XPV_HVM_DRIVER */
7207 
7208 	/*
7209 	 * Retrieve a pointer to the newly-allocated soft state.
7210 	 *
7211 	 * This should NEVER fail if the ddi_soft_state_zalloc() call above
7212 	 * was successful, unless something has gone horribly wrong and the
7213 	 * ddi's soft state internals are corrupt (in which case it is
7214 	 * probably better to halt here than just fail the attach....)
7215 	 */
7216 	if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
7217 		panic("sd_unit_attach: NULL soft state on instance:0x%x",
7218 		    instance);
7219 		/*NOTREACHED*/
7220 	}
7221 
7222 	/*
7223 	 * Link the back ptr of the driver soft state to the scsi_device
7224 	 * struct for this lun.
7225 	 * Save a pointer to the softstate in the driver-private area of
7226 	 * the scsi_device struct.
7227 	 * Note: We cannot call SD_INFO, SD_TRACE, SD_ERROR, or SD_DIAG until
7228 	 * we first set un->un_sd below.
7229 	 */
7230 	un->un_sd = devp;
7231 	devp->sd_private = (opaque_t)un;
7232 
7233 	/*
7234 	 * The following must be after devp is stored in the soft state struct.
7235 	 */
7236 #ifdef SDDEBUG
7237 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7238 	    "%s_unit_attach: un:0x%p instance:%d\n",
7239 	    ddi_driver_name(devi), un, instance);
7240 #endif
7241 
7242 	/*
7243 	 * Set up the device type and node type (for the minor nodes).
7244 	 * By default we assume that the device can at least support the
7245 	 * Common Command Set. Call it a CD-ROM if it reports itself
7246 	 * as a RODIRECT device.
7247 	 */
7248 	switch (devp->sd_inq->inq_dtype) {
7249 	case DTYPE_RODIRECT:
7250 		un->un_node_type = DDI_NT_CD_CHAN;
7251 		un->un_ctype	 = CTYPE_CDROM;
7252 		break;
7253 	case DTYPE_OPTICAL:
7254 		un->un_node_type = DDI_NT_BLOCK_CHAN;
7255 		un->un_ctype	 = CTYPE_ROD;
7256 		break;
7257 	default:
7258 		un->un_node_type = DDI_NT_BLOCK_CHAN;
7259 		un->un_ctype	 = CTYPE_CCS;
7260 		break;
7261 	}
7262 
7263 	/*
7264 	 * Try to read the interconnect type from the HBA.
7265 	 *
7266 	 * Note: This driver is currently compiled as two binaries, a parallel
7267 	 * scsi version (sd) and a fibre channel version (ssd). All functional
7268 	 * differences are determined at compile time. In the future a single
7269 	 * binary will be provided and the interconnect type will be used to
7270 	 * differentiate between fibre and parallel scsi behaviors. At that time
7271 	 * it will be necessary for all fibre channel HBAs to support this
7272 	 * property.
7273 	 *
7274 	 * set un_f_is_fiber to TRUE ( default fiber )
7275 	 */
7276 	un->un_f_is_fibre = TRUE;
7277 	switch (scsi_ifgetcap(SD_ADDRESS(un), "interconnect-type", -1)) {
7278 	case INTERCONNECT_SSA:
7279 		un->un_interconnect_type = SD_INTERCONNECT_SSA;
7280 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7281 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SSA\n", un);
7282 		break;
7283 	case INTERCONNECT_PARALLEL:
7284 		un->un_f_is_fibre = FALSE;
7285 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
7286 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7287 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_PARALLEL\n", un);
7288 		break;
7289 	case INTERCONNECT_SAS:
7290 		un->un_f_is_fibre = FALSE;
7291 		un->un_interconnect_type = SD_INTERCONNECT_SAS;
7292 		un->un_node_type = DDI_NT_BLOCK_SAS;
7293 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7294 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SAS\n", un);
7295 		break;
7296 	case INTERCONNECT_SATA:
7297 		un->un_f_is_fibre = FALSE;
7298 		un->un_interconnect_type = SD_INTERCONNECT_SATA;
7299 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7300 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SATA\n", un);
7301 		break;
7302 	case INTERCONNECT_FIBRE:
7303 		un->un_interconnect_type = SD_INTERCONNECT_FIBRE;
7304 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7305 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FIBRE\n", un);
7306 		break;
7307 	case INTERCONNECT_FABRIC:
7308 		un->un_interconnect_type = SD_INTERCONNECT_FABRIC;
7309 		un->un_node_type = DDI_NT_BLOCK_FABRIC;
7310 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7311 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FABRIC\n", un);
7312 		break;
7313 	default:
7314 #ifdef SD_DEFAULT_INTERCONNECT_TYPE
7315 		/*
7316 		 * The HBA does not support the "interconnect-type" property
7317 		 * (or did not provide a recognized type).
7318 		 *
7319 		 * Note: This will be obsoleted when a single fibre channel
7320 		 * and parallel scsi driver is delivered. In the meantime the
7321 		 * interconnect type will be set to the platform default.If that
7322 		 * type is not parallel SCSI, it means that we should be
7323 		 * assuming "ssd" semantics. However, here this also means that
7324 		 * the FC HBA is not supporting the "interconnect-type" property
7325 		 * like we expect it to, so log this occurrence.
7326 		 */
7327 		un->un_interconnect_type = SD_DEFAULT_INTERCONNECT_TYPE;
7328 		if (!SD_IS_PARALLEL_SCSI(un)) {
7329 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7330 			    "sd_unit_attach: un:0x%p Assuming "
7331 			    "INTERCONNECT_FIBRE\n", un);
7332 		} else {
7333 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7334 			    "sd_unit_attach: un:0x%p Assuming "
7335 			    "INTERCONNECT_PARALLEL\n", un);
7336 			un->un_f_is_fibre = FALSE;
7337 		}
7338 #else
7339 		/*
7340 		 * Note: This source will be implemented when a single fibre
7341 		 * channel and parallel scsi driver is delivered. The default
7342 		 * will be to assume that if a device does not support the
7343 		 * "interconnect-type" property it is a parallel SCSI HBA and
7344 		 * we will set the interconnect type for parallel scsi.
7345 		 */
7346 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
7347 		un->un_f_is_fibre = FALSE;
7348 #endif
7349 		break;
7350 	}
7351 
7352 	if (un->un_f_is_fibre == TRUE) {
7353 		if (scsi_ifgetcap(SD_ADDRESS(un), "scsi-version", 1) ==
7354 		    SCSI_VERSION_3) {
7355 			switch (un->un_interconnect_type) {
7356 			case SD_INTERCONNECT_FIBRE:
7357 			case SD_INTERCONNECT_SSA:
7358 				un->un_node_type = DDI_NT_BLOCK_WWN;
7359 				break;
7360 			default:
7361 				break;
7362 			}
7363 		}
7364 	}
7365 
7366 	/*
7367 	 * Initialize the Request Sense command for the target
7368 	 */
7369 	if (sd_alloc_rqs(devp, un) != DDI_SUCCESS) {
7370 		goto alloc_rqs_failed;
7371 	}
7372 
7373 	/*
7374 	 * Set un_retry_count with SD_RETRY_COUNT, this is ok for Sparc
7375 	 * with separate binary for sd and ssd.
7376 	 *
7377 	 * x86 has 1 binary, un_retry_count is set base on connection type.
7378 	 * The hardcoded values will go away when Sparc uses 1 binary
7379 	 * for sd and ssd.  This hardcoded values need to match
7380 	 * SD_RETRY_COUNT in sddef.h
7381 	 * The value used is base on interconnect type.
7382 	 * fibre = 3, parallel = 5
7383 	 */
7384 #if defined(__i386) || defined(__amd64)
7385 	un->un_retry_count = un->un_f_is_fibre ? 3 : 5;
7386 #else
7387 	un->un_retry_count = SD_RETRY_COUNT;
7388 #endif
7389 
7390 	/*
7391 	 * Set the per disk retry count to the default number of retries
7392 	 * for disks and CDROMs. This value can be overridden by the
7393 	 * disk property list or an entry in sd.conf.
7394 	 */
7395 	un->un_notready_retry_count =
7396 	    ISCD(un) ? CD_NOT_READY_RETRY_COUNT(un)
7397 	    : DISK_NOT_READY_RETRY_COUNT(un);
7398 
7399 	/*
7400 	 * Set the busy retry count to the default value of un_retry_count.
7401 	 * This can be overridden by entries in sd.conf or the device
7402 	 * config table.
7403 	 */
7404 	un->un_busy_retry_count = un->un_retry_count;
7405 
7406 	/*
7407 	 * Init the reset threshold for retries.  This number determines
7408 	 * how many retries must be performed before a reset can be issued
7409 	 * (for certain error conditions). This can be overridden by entries
7410 	 * in sd.conf or the device config table.
7411 	 */
7412 	un->un_reset_retry_count = (un->un_retry_count / 2);
7413 
7414 	/*
7415 	 * Set the victim_retry_count to the default un_retry_count
7416 	 */
7417 	un->un_victim_retry_count = (2 * un->un_retry_count);
7418 
7419 	/*
7420 	 * Set the reservation release timeout to the default value of
7421 	 * 5 seconds. This can be overridden by entries in ssd.conf or the
7422 	 * device config table.
7423 	 */
7424 	un->un_reserve_release_time = 5;
7425 
7426 	/*
7427 	 * Set up the default maximum transfer size. Note that this may
7428 	 * get updated later in the attach, when setting up default wide
7429 	 * operations for disks.
7430 	 */
7431 #if defined(__i386) || defined(__amd64)
7432 	un->un_max_xfer_size = (uint_t)SD_DEFAULT_MAX_XFER_SIZE;
7433 	un->un_partial_dma_supported = 1;
7434 #else
7435 	un->un_max_xfer_size = (uint_t)maxphys;
7436 #endif
7437 
7438 	/*
7439 	 * Get "allow bus device reset" property (defaults to "enabled" if
7440 	 * the property was not defined). This is to disable bus resets for
7441 	 * certain kinds of error recovery. Note: In the future when a run-time
7442 	 * fibre check is available the soft state flag should default to
7443 	 * enabled.
7444 	 */
7445 	if (un->un_f_is_fibre == TRUE) {
7446 		un->un_f_allow_bus_device_reset = TRUE;
7447 	} else {
7448 		if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
7449 		    "allow-bus-device-reset", 1) != 0) {
7450 			un->un_f_allow_bus_device_reset = TRUE;
7451 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7452 			    "sd_unit_attach: un:0x%p Bus device reset "
7453 			    "enabled\n", un);
7454 		} else {
7455 			un->un_f_allow_bus_device_reset = FALSE;
7456 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7457 			    "sd_unit_attach: un:0x%p Bus device reset "
7458 			    "disabled\n", un);
7459 		}
7460 	}
7461 
7462 	/*
7463 	 * Check if this is an ATAPI device. ATAPI devices use Group 1
7464 	 * Read/Write commands and Group 2 Mode Sense/Select commands.
7465 	 *
7466 	 * Note: The "obsolete" way of doing this is to check for the "atapi"
7467 	 * property. The new "variant" property with a value of "atapi" has been
7468 	 * introduced so that future 'variants' of standard SCSI behavior (like
7469 	 * atapi) could be specified by the underlying HBA drivers by supplying
7470 	 * a new value for the "variant" property, instead of having to define a
7471 	 * new property.
7472 	 */
7473 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "atapi", -1) != -1) {
7474 		un->un_f_cfg_is_atapi = TRUE;
7475 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7476 		    "sd_unit_attach: un:0x%p Atapi device\n", un);
7477 	}
7478 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, 0, "variant",
7479 	    &variantp) == DDI_PROP_SUCCESS) {
7480 		if (strcmp(variantp, "atapi") == 0) {
7481 			un->un_f_cfg_is_atapi = TRUE;
7482 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7483 			    "sd_unit_attach: un:0x%p Atapi device\n", un);
7484 		}
7485 		ddi_prop_free(variantp);
7486 	}
7487 
7488 	un->un_cmd_timeout	= SD_IO_TIME;
7489 
7490 	un->un_busy_timeout  = SD_BSY_TIMEOUT;
7491 
7492 	/* Info on current states, statuses, etc. (Updated frequently) */
7493 	un->un_state		= SD_STATE_NORMAL;
7494 	un->un_last_state	= SD_STATE_NORMAL;
7495 
7496 	/* Control & status info for command throttling */
7497 	un->un_throttle		= sd_max_throttle;
7498 	un->un_saved_throttle	= sd_max_throttle;
7499 	un->un_min_throttle	= sd_min_throttle;
7500 
7501 	if (un->un_f_is_fibre == TRUE) {
7502 		un->un_f_use_adaptive_throttle = TRUE;
7503 	} else {
7504 		un->un_f_use_adaptive_throttle = FALSE;
7505 	}
7506 
7507 	/* Removable media support. */
7508 	cv_init(&un->un_state_cv, NULL, CV_DRIVER, NULL);
7509 	un->un_mediastate		= DKIO_NONE;
7510 	un->un_specified_mediastate	= DKIO_NONE;
7511 
7512 	/* CVs for suspend/resume (PM or DR) */
7513 	cv_init(&un->un_suspend_cv,   NULL, CV_DRIVER, NULL);
7514 	cv_init(&un->un_disk_busy_cv, NULL, CV_DRIVER, NULL);
7515 
7516 	/* Power management support. */
7517 	un->un_power_level = SD_SPINDLE_UNINIT;
7518 
7519 	cv_init(&un->un_wcc_cv,   NULL, CV_DRIVER, NULL);
7520 	un->un_f_wcc_inprog = 0;
7521 
7522 	/*
7523 	 * The open/close semaphore is used to serialize threads executing
7524 	 * in the driver's open & close entry point routines for a given
7525 	 * instance.
7526 	 */
7527 	(void) sema_init(&un->un_semoclose, 1, NULL, SEMA_DRIVER, NULL);
7528 
7529 	/*
7530 	 * The conf file entry and softstate variable is a forceful override,
7531 	 * meaning a non-zero value must be entered to change the default.
7532 	 */
7533 	un->un_f_disksort_disabled = FALSE;
7534 	un->un_f_rmw_type = SD_RMW_TYPE_DEFAULT;
7535 
7536 	/*
7537 	 * Retrieve the properties from the static driver table or the driver
7538 	 * configuration file (.conf) for this unit and update the soft state
7539 	 * for the device as needed for the indicated properties.
7540 	 * Note: the property configuration needs to occur here as some of the
7541 	 * following routines may have dependencies on soft state flags set
7542 	 * as part of the driver property configuration.
7543 	 */
7544 	sd_read_unit_properties(un);
7545 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7546 	    "sd_unit_attach: un:0x%p property configuration complete.\n", un);
7547 
7548 	/*
7549 	 * Only if a device has "hotpluggable" property, it is
7550 	 * treated as hotpluggable device. Otherwise, it is
7551 	 * regarded as non-hotpluggable one.
7552 	 */
7553 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "hotpluggable",
7554 	    -1) != -1) {
7555 		un->un_f_is_hotpluggable = TRUE;
7556 	}
7557 
7558 	/*
7559 	 * set unit's attributes(flags) according to "hotpluggable" and
7560 	 * RMB bit in INQUIRY data.
7561 	 */
7562 	sd_set_unit_attributes(un, devi);
7563 
7564 	/*
7565 	 * By default, we mark the capacity, lbasize, and geometry
7566 	 * as invalid. Only if we successfully read a valid capacity
7567 	 * will we update the un_blockcount and un_tgt_blocksize with the
7568 	 * valid values (the geometry will be validated later).
7569 	 */
7570 	un->un_f_blockcount_is_valid	= FALSE;
7571 	un->un_f_tgt_blocksize_is_valid	= FALSE;
7572 
7573 	/*
7574 	 * Use DEV_BSIZE and DEV_BSHIFT as defaults, until we can determine
7575 	 * otherwise.
7576 	 */
7577 	un->un_tgt_blocksize  = un->un_sys_blocksize  = DEV_BSIZE;
7578 	un->un_blockcount = 0;
7579 
7580 	/*
7581 	 * Set up the per-instance info needed to determine the correct
7582 	 * CDBs and other info for issuing commands to the target.
7583 	 */
7584 	sd_init_cdb_limits(un);
7585 
7586 	/*
7587 	 * Set up the IO chains to use, based upon the target type.
7588 	 */
7589 	if (un->un_f_non_devbsize_supported) {
7590 		un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
7591 	} else {
7592 		un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
7593 	}
7594 	un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
7595 	un->un_direct_chain_type = SD_CHAIN_INFO_DIRECT_CMD;
7596 	un->un_priority_chain_type = SD_CHAIN_INFO_PRIORITY_CMD;
7597 
7598 	un->un_xbuf_attr = ddi_xbuf_attr_create(sizeof (struct sd_xbuf),
7599 	    sd_xbuf_strategy, un, sd_xbuf_active_limit,  sd_xbuf_reserve_limit,
7600 	    ddi_driver_major(devi), DDI_XBUF_QTHREAD_DRIVER);
7601 	ddi_xbuf_attr_register_devinfo(un->un_xbuf_attr, devi);
7602 
7603 
7604 	if (ISCD(un)) {
7605 		un->un_additional_codes = sd_additional_codes;
7606 	} else {
7607 		un->un_additional_codes = NULL;
7608 	}
7609 
7610 	/*
7611 	 * Create the kstats here so they can be available for attach-time
7612 	 * routines that send commands to the unit (either polled or via
7613 	 * sd_send_scsi_cmd).
7614 	 *
7615 	 * Note: This is a critical sequence that needs to be maintained:
7616 	 *	1) Instantiate the kstats here, before any routines using the
7617 	 *	   iopath (i.e. sd_send_scsi_cmd).
7618 	 *	2) Instantiate and initialize the partition stats
7619 	 *	   (sd_set_pstats).
7620 	 *	3) Initialize the error stats (sd_set_errstats), following
7621 	 *	   sd_validate_geometry(),sd_register_devid(),
7622 	 *	   and sd_cache_control().
7623 	 */
7624 
7625 	un->un_stats = kstat_create(sd_label, instance,
7626 	    NULL, "disk", KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT);
7627 	if (un->un_stats != NULL) {
7628 		un->un_stats->ks_lock = SD_MUTEX(un);
7629 		kstat_install(un->un_stats);
7630 	}
7631 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7632 	    "sd_unit_attach: un:0x%p un_stats created\n", un);
7633 
7634 	sd_create_errstats(un, instance);
7635 	if (un->un_errstats == NULL) {
7636 		goto create_errstats_failed;
7637 	}
7638 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7639 	    "sd_unit_attach: un:0x%p errstats created\n", un);
7640 
7641 	/*
7642 	 * The following if/else code was relocated here from below as part
7643 	 * of the fix for bug (4430280). However with the default setup added
7644 	 * on entry to this routine, it's no longer absolutely necessary for
7645 	 * this to be before the call to sd_spin_up_unit.
7646 	 */
7647 	if (SD_IS_PARALLEL_SCSI(un) || SD_IS_SERIAL(un)) {
7648 		int tq_trigger_flag = (((devp->sd_inq->inq_ansi == 4) ||
7649 		    (devp->sd_inq->inq_ansi == 5)) &&
7650 		    devp->sd_inq->inq_bque) || devp->sd_inq->inq_cmdque;
7651 
7652 		/*
7653 		 * If tagged queueing is supported by the target
7654 		 * and by the host adapter then we will enable it
7655 		 */
7656 		un->un_tagflags = 0;
7657 		if ((devp->sd_inq->inq_rdf == RDF_SCSI2) && tq_trigger_flag &&
7658 		    (un->un_f_arq_enabled == TRUE)) {
7659 			if (scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing",
7660 			    1, 1) == 1) {
7661 				un->un_tagflags = FLAG_STAG;
7662 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7663 				    "sd_unit_attach: un:0x%p tag queueing "
7664 				    "enabled\n", un);
7665 			} else if (scsi_ifgetcap(SD_ADDRESS(un),
7666 			    "untagged-qing", 0) == 1) {
7667 				un->un_f_opt_queueing = TRUE;
7668 				un->un_saved_throttle = un->un_throttle =
7669 				    min(un->un_throttle, 3);
7670 			} else {
7671 				un->un_f_opt_queueing = FALSE;
7672 				un->un_saved_throttle = un->un_throttle = 1;
7673 			}
7674 		} else if ((scsi_ifgetcap(SD_ADDRESS(un), "untagged-qing", 0)
7675 		    == 1) && (un->un_f_arq_enabled == TRUE)) {
7676 			/* The Host Adapter supports internal queueing. */
7677 			un->un_f_opt_queueing = TRUE;
7678 			un->un_saved_throttle = un->un_throttle =
7679 			    min(un->un_throttle, 3);
7680 		} else {
7681 			un->un_f_opt_queueing = FALSE;
7682 			un->un_saved_throttle = un->un_throttle = 1;
7683 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7684 			    "sd_unit_attach: un:0x%p no tag queueing\n", un);
7685 		}
7686 
7687 		/*
7688 		 * Enable large transfers for SATA/SAS drives
7689 		 */
7690 		if (SD_IS_SERIAL(un)) {
7691 			un->un_max_xfer_size =
7692 			    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7693 			    sd_max_xfer_size, SD_MAX_XFER_SIZE);
7694 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7695 			    "sd_unit_attach: un:0x%p max transfer "
7696 			    "size=0x%x\n", un, un->un_max_xfer_size);
7697 
7698 		}
7699 
7700 		/* Setup or tear down default wide operations for disks */
7701 
7702 		/*
7703 		 * Note: Legacy: it may be possible for both "sd_max_xfer_size"
7704 		 * and "ssd_max_xfer_size" to exist simultaneously on the same
7705 		 * system and be set to different values. In the future this
7706 		 * code may need to be updated when the ssd module is
7707 		 * obsoleted and removed from the system. (4299588)
7708 		 */
7709 		if (SD_IS_PARALLEL_SCSI(un) &&
7710 		    (devp->sd_inq->inq_rdf == RDF_SCSI2) &&
7711 		    (devp->sd_inq->inq_wbus16 || devp->sd_inq->inq_wbus32)) {
7712 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
7713 			    1, 1) == 1) {
7714 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7715 				    "sd_unit_attach: un:0x%p Wide Transfer "
7716 				    "enabled\n", un);
7717 			}
7718 
7719 			/*
7720 			 * If tagged queuing has also been enabled, then
7721 			 * enable large xfers
7722 			 */
7723 			if (un->un_saved_throttle == sd_max_throttle) {
7724 				un->un_max_xfer_size =
7725 				    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7726 				    sd_max_xfer_size, SD_MAX_XFER_SIZE);
7727 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7728 				    "sd_unit_attach: un:0x%p max transfer "
7729 				    "size=0x%x\n", un, un->un_max_xfer_size);
7730 			}
7731 		} else {
7732 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
7733 			    0, 1) == 1) {
7734 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7735 				    "sd_unit_attach: un:0x%p "
7736 				    "Wide Transfer disabled\n", un);
7737 			}
7738 		}
7739 	} else {
7740 		un->un_tagflags = FLAG_STAG;
7741 		un->un_max_xfer_size = ddi_getprop(DDI_DEV_T_ANY,
7742 		    devi, 0, sd_max_xfer_size, SD_MAX_XFER_SIZE);
7743 	}
7744 
7745 	/*
7746 	 * If this target supports LUN reset, try to enable it.
7747 	 */
7748 	if (un->un_f_lun_reset_enabled) {
7749 		if (scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 1, 1) == 1) {
7750 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
7751 			    "un:0x%p lun_reset capability set\n", un);
7752 		} else {
7753 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
7754 			    "un:0x%p lun-reset capability not set\n", un);
7755 		}
7756 	}
7757 
7758 	/*
7759 	 * Adjust the maximum transfer size. This is to fix
7760 	 * the problem of partial DMA support on SPARC. Some
7761 	 * HBA driver, like aac, has very small dma_attr_maxxfer
7762 	 * size, which requires partial DMA support on SPARC.
7763 	 * In the future the SPARC pci nexus driver may solve
7764 	 * the problem instead of this fix.
7765 	 */
7766 	max_xfer_size = scsi_ifgetcap(SD_ADDRESS(un), "dma-max", 1);
7767 	if ((max_xfer_size > 0) && (max_xfer_size < un->un_max_xfer_size)) {
7768 		/* We need DMA partial even on sparc to ensure sddump() works */
7769 		un->un_max_xfer_size = max_xfer_size;
7770 		if (un->un_partial_dma_supported == 0)
7771 			un->un_partial_dma_supported = 1;
7772 	}
7773 	if (ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
7774 	    DDI_PROP_DONTPASS, "buf_break", 0) == 1) {
7775 		if (ddi_xbuf_attr_setup_brk(un->un_xbuf_attr,
7776 		    un->un_max_xfer_size) == 1) {
7777 			un->un_buf_breakup_supported = 1;
7778 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
7779 			    "un:0x%p Buf breakup enabled\n", un);
7780 		}
7781 	}
7782 
7783 	/*
7784 	 * Set PKT_DMA_PARTIAL flag.
7785 	 */
7786 	if (un->un_partial_dma_supported == 1) {
7787 		un->un_pkt_flags = PKT_DMA_PARTIAL;
7788 	} else {
7789 		un->un_pkt_flags = 0;
7790 	}
7791 
7792 	/* Initialize sd_ssc_t for internal uscsi commands */
7793 	ssc = sd_ssc_init(un);
7794 	scsi_fm_init(devp);
7795 
7796 	/*
7797 	 * Allocate memory for SCSI FMA stuffs.
7798 	 */
7799 	un->un_fm_private =
7800 	    kmem_zalloc(sizeof (struct sd_fm_internal), KM_SLEEP);
7801 	sfip = (struct sd_fm_internal *)un->un_fm_private;
7802 	sfip->fm_ssc.ssc_uscsi_cmd = &sfip->fm_ucmd;
7803 	sfip->fm_ssc.ssc_uscsi_info = &sfip->fm_uinfo;
7804 	sfip->fm_ssc.ssc_un = un;
7805 
7806 	if (ISCD(un) ||
7807 	    un->un_f_has_removable_media ||
7808 	    devp->sd_fm_capable == DDI_FM_NOT_CAPABLE) {
7809 		/*
7810 		 * We don't touch CDROM or the DDI_FM_NOT_CAPABLE device.
7811 		 * Their log are unchanged.
7812 		 */
7813 		sfip->fm_log_level = SD_FM_LOG_NSUP;
7814 	} else {
7815 		/*
7816 		 * If enter here, it should be non-CDROM and FM-capable
7817 		 * device, and it will not keep the old scsi_log as before
7818 		 * in /var/adm/messages. However, the property
7819 		 * "fm-scsi-log" will control whether the FM telemetry will
7820 		 * be logged in /var/adm/messages.
7821 		 */
7822 		int fm_scsi_log;
7823 		fm_scsi_log = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
7824 		    DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, "fm-scsi-log", 0);
7825 
7826 		if (fm_scsi_log)
7827 			sfip->fm_log_level = SD_FM_LOG_EREPORT;
7828 		else
7829 			sfip->fm_log_level = SD_FM_LOG_SILENT;
7830 	}
7831 
7832 	/*
7833 	 * At this point in the attach, we have enough info in the
7834 	 * soft state to be able to issue commands to the target.
7835 	 *
7836 	 * All command paths used below MUST issue their commands as
7837 	 * SD_PATH_DIRECT. This is important as intermediate layers
7838 	 * are not all initialized yet (such as PM).
7839 	 */
7840 
7841 	/*
7842 	 * Send a TEST UNIT READY command to the device. This should clear
7843 	 * any outstanding UNIT ATTENTION that may be present.
7844 	 *
7845 	 * Note: Don't check for success, just track if there is a reservation,
7846 	 * this is a throw away command to clear any unit attentions.
7847 	 *
7848 	 * Note: This MUST be the first command issued to the target during
7849 	 * attach to ensure power on UNIT ATTENTIONS are cleared.
7850 	 * Pass in flag SD_DONT_RETRY_TUR to prevent the long delays associated
7851 	 * with attempts at spinning up a device with no media.
7852 	 */
7853 	status = sd_send_scsi_TEST_UNIT_READY(ssc, SD_DONT_RETRY_TUR);
7854 	if (status != 0) {
7855 		if (status == EACCES)
7856 			reservation_flag = SD_TARGET_IS_RESERVED;
7857 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
7858 	}
7859 
7860 	/*
7861 	 * If the device is NOT a removable media device, attempt to spin
7862 	 * it up (using the START_STOP_UNIT command) and read its capacity
7863 	 * (using the READ CAPACITY command).  Note, however, that either
7864 	 * of these could fail and in some cases we would continue with
7865 	 * the attach despite the failure (see below).
7866 	 */
7867 	if (un->un_f_descr_format_supported) {
7868 
7869 		switch (sd_spin_up_unit(ssc)) {
7870 		case 0:
7871 			/*
7872 			 * Spin-up was successful; now try to read the
7873 			 * capacity.  If successful then save the results
7874 			 * and mark the capacity & lbasize as valid.
7875 			 */
7876 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7877 			    "sd_unit_attach: un:0x%p spin-up successful\n", un);
7878 
7879 			status = sd_send_scsi_READ_CAPACITY(ssc, &capacity,
7880 			    &lbasize, SD_PATH_DIRECT);
7881 
7882 			switch (status) {
7883 			case 0: {
7884 				if (capacity > DK_MAX_BLOCKS) {
7885 #ifdef _LP64
7886 					if ((capacity + 1) >
7887 					    SD_GROUP1_MAX_ADDRESS) {
7888 						/*
7889 						 * Enable descriptor format
7890 						 * sense data so that we can
7891 						 * get 64 bit sense data
7892 						 * fields.
7893 						 */
7894 						sd_enable_descr_sense(ssc);
7895 					}
7896 #else
7897 					/* 32-bit kernels can't handle this */
7898 					scsi_log(SD_DEVINFO(un),
7899 					    sd_label, CE_WARN,
7900 					    "disk has %llu blocks, which "
7901 					    "is too large for a 32-bit "
7902 					    "kernel", capacity);
7903 
7904 #if defined(__i386) || defined(__amd64)
7905 					/*
7906 					 * 1TB disk was treated as (1T - 512)B
7907 					 * in the past, so that it might have
7908 					 * valid VTOC and solaris partitions,
7909 					 * we have to allow it to continue to
7910 					 * work.
7911 					 */
7912 					if (capacity -1 > DK_MAX_BLOCKS)
7913 #endif
7914 					goto spinup_failed;
7915 #endif
7916 				}
7917 
7918 				/*
7919 				 * Here it's not necessary to check the case:
7920 				 * the capacity of the device is bigger than
7921 				 * what the max hba cdb can support. Because
7922 				 * sd_send_scsi_READ_CAPACITY will retrieve
7923 				 * the capacity by sending USCSI command, which
7924 				 * is constrained by the max hba cdb. Actually,
7925 				 * sd_send_scsi_READ_CAPACITY will return
7926 				 * EINVAL when using bigger cdb than required
7927 				 * cdb length. Will handle this case in
7928 				 * "case EINVAL".
7929 				 */
7930 
7931 				/*
7932 				 * The following relies on
7933 				 * sd_send_scsi_READ_CAPACITY never
7934 				 * returning 0 for capacity and/or lbasize.
7935 				 */
7936 				sd_update_block_info(un, lbasize, capacity);
7937 
7938 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7939 				    "sd_unit_attach: un:0x%p capacity = %ld "
7940 				    "blocks; lbasize= %ld.\n", un,
7941 				    un->un_blockcount, un->un_tgt_blocksize);
7942 
7943 				break;
7944 			}
7945 			case EINVAL:
7946 				/*
7947 				 * In the case where the max-cdb-length property
7948 				 * is smaller than the required CDB length for
7949 				 * a SCSI device, a target driver can fail to
7950 				 * attach to that device.
7951 				 */
7952 				scsi_log(SD_DEVINFO(un),
7953 				    sd_label, CE_WARN,
7954 				    "disk capacity is too large "
7955 				    "for current cdb length");
7956 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
7957 
7958 				goto spinup_failed;
7959 			case EACCES:
7960 				/*
7961 				 * Should never get here if the spin-up
7962 				 * succeeded, but code it in anyway.
7963 				 * From here, just continue with the attach...
7964 				 */
7965 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7966 				    "sd_unit_attach: un:0x%p "
7967 				    "sd_send_scsi_READ_CAPACITY "
7968 				    "returned reservation conflict\n", un);
7969 				reservation_flag = SD_TARGET_IS_RESERVED;
7970 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
7971 				break;
7972 			default:
7973 				/*
7974 				 * Likewise, should never get here if the
7975 				 * spin-up succeeded. Just continue with
7976 				 * the attach...
7977 				 */
7978 				if (status == EIO)
7979 					sd_ssc_assessment(ssc,
7980 					    SD_FMT_STATUS_CHECK);
7981 				else
7982 					sd_ssc_assessment(ssc,
7983 					    SD_FMT_IGNORE);
7984 				break;
7985 			}
7986 			break;
7987 		case EACCES:
7988 			/*
7989 			 * Device is reserved by another host.  In this case
7990 			 * we could not spin it up or read the capacity, but
7991 			 * we continue with the attach anyway.
7992 			 */
7993 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7994 			    "sd_unit_attach: un:0x%p spin-up reservation "
7995 			    "conflict.\n", un);
7996 			reservation_flag = SD_TARGET_IS_RESERVED;
7997 			break;
7998 		default:
7999 			/* Fail the attach if the spin-up failed. */
8000 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8001 			    "sd_unit_attach: un:0x%p spin-up failed.", un);
8002 			goto spinup_failed;
8003 		}
8004 
8005 	}
8006 
8007 	/*
8008 	 * Check to see if this is a MMC drive
8009 	 */
8010 	if (ISCD(un)) {
8011 		sd_set_mmc_caps(ssc);
8012 	}
8013 
8014 
8015 	/*
8016 	 * Add a zero-length attribute to tell the world we support
8017 	 * kernel ioctls (for layered drivers)
8018 	 */
8019 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
8020 	    DDI_KERNEL_IOCTL, NULL, 0);
8021 
8022 	/*
8023 	 * Add a boolean property to tell the world we support
8024 	 * the B_FAILFAST flag (for layered drivers)
8025 	 */
8026 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
8027 	    "ddi-failfast-supported", NULL, 0);
8028 
8029 	/*
8030 	 * Initialize power management
8031 	 */
8032 	mutex_init(&un->un_pm_mutex, NULL, MUTEX_DRIVER, NULL);
8033 	cv_init(&un->un_pm_busy_cv, NULL, CV_DRIVER, NULL);
8034 	sd_setup_pm(ssc, devi);
8035 	if (un->un_f_pm_is_enabled == FALSE) {
8036 		/*
8037 		 * For performance, point to a jump table that does
8038 		 * not include pm.
8039 		 * The direct and priority chains don't change with PM.
8040 		 *
8041 		 * Note: this is currently done based on individual device
8042 		 * capabilities. When an interface for determining system
8043 		 * power enabled state becomes available, or when additional
8044 		 * layers are added to the command chain, these values will
8045 		 * have to be re-evaluated for correctness.
8046 		 */
8047 		if (un->un_f_non_devbsize_supported) {
8048 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA_NO_PM;
8049 		} else {
8050 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK_NO_PM;
8051 		}
8052 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
8053 	}
8054 
8055 	/*
8056 	 * This property is set to 0 by HA software to avoid retries
8057 	 * on a reserved disk. (The preferred property name is
8058 	 * "retry-on-reservation-conflict") (1189689)
8059 	 *
8060 	 * Note: The use of a global here can have unintended consequences. A
8061 	 * per instance variable is preferable to match the capabilities of
8062 	 * different underlying hba's (4402600)
8063 	 */
8064 	sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, devi,
8065 	    DDI_PROP_DONTPASS, "retry-on-reservation-conflict",
8066 	    sd_retry_on_reservation_conflict);
8067 	if (sd_retry_on_reservation_conflict != 0) {
8068 		sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY,
8069 		    devi, DDI_PROP_DONTPASS, sd_resv_conflict_name,
8070 		    sd_retry_on_reservation_conflict);
8071 	}
8072 
8073 	/* Set up options for QFULL handling. */
8074 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8075 	    "qfull-retries", -1)) != -1) {
8076 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retries",
8077 		    rval, 1);
8078 	}
8079 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8080 	    "qfull-retry-interval", -1)) != -1) {
8081 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retry-interval",
8082 		    rval, 1);
8083 	}
8084 
8085 	/*
8086 	 * This just prints a message that announces the existence of the
8087 	 * device. The message is always printed in the system logfile, but
8088 	 * only appears on the console if the system is booted with the
8089 	 * -v (verbose) argument.
8090 	 */
8091 	ddi_report_dev(devi);
8092 
8093 	un->un_mediastate = DKIO_NONE;
8094 
8095 	cmlb_alloc_handle(&un->un_cmlbhandle);
8096 
8097 #if defined(__i386) || defined(__amd64)
8098 	/*
8099 	 * On x86, compensate for off-by-1 legacy error
8100 	 */
8101 	if (!un->un_f_has_removable_media && !un->un_f_is_hotpluggable &&
8102 	    (lbasize == un->un_sys_blocksize))
8103 		offbyone = CMLB_OFF_BY_ONE;
8104 #endif
8105 
8106 	if (cmlb_attach(devi, &sd_tgops, (int)devp->sd_inq->inq_dtype,
8107 	    VOID2BOOLEAN(un->un_f_has_removable_media != 0),
8108 	    VOID2BOOLEAN(un->un_f_is_hotpluggable != 0),
8109 	    un->un_node_type, offbyone, un->un_cmlbhandle,
8110 	    (void *)SD_PATH_DIRECT) != 0) {
8111 		goto cmlb_attach_failed;
8112 	}
8113 
8114 
8115 	/*
8116 	 * Read and validate the device's geometry (ie, disk label)
8117 	 * A new unformatted drive will not have a valid geometry, but
8118 	 * the driver needs to successfully attach to this device so
8119 	 * the drive can be formatted via ioctls.
8120 	 */
8121 	geom_label_valid = (cmlb_validate(un->un_cmlbhandle, 0,
8122 	    (void *)SD_PATH_DIRECT) == 0) ? 1: 0;
8123 
8124 	mutex_enter(SD_MUTEX(un));
8125 
8126 	/*
8127 	 * Read and initialize the devid for the unit.
8128 	 */
8129 	if (un->un_f_devid_supported) {
8130 		sd_register_devid(ssc, devi, reservation_flag);
8131 	}
8132 	mutex_exit(SD_MUTEX(un));
8133 
8134 #if (defined(__fibre))
8135 	/*
8136 	 * Register callbacks for fibre only.  You can't do this solely
8137 	 * on the basis of the devid_type because this is hba specific.
8138 	 * We need to query our hba capabilities to find out whether to
8139 	 * register or not.
8140 	 */
8141 	if (un->un_f_is_fibre) {
8142 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
8143 			sd_init_event_callbacks(un);
8144 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8145 			    "sd_unit_attach: un:0x%p event callbacks inserted",
8146 			    un);
8147 		}
8148 	}
8149 #endif
8150 
8151 	if (un->un_f_opt_disable_cache == TRUE) {
8152 		/*
8153 		 * Disable both read cache and write cache.  This is
8154 		 * the historic behavior of the keywords in the config file.
8155 		 */
8156 		if (sd_cache_control(ssc, SD_CACHE_DISABLE, SD_CACHE_DISABLE) !=
8157 		    0) {
8158 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8159 			    "sd_unit_attach: un:0x%p Could not disable "
8160 			    "caching", un);
8161 			goto devid_failed;
8162 		}
8163 	}
8164 
8165 	/*
8166 	 * Check the value of the WCE bit now and
8167 	 * set un_f_write_cache_enabled accordingly.
8168 	 */
8169 	(void) sd_get_write_cache_enabled(ssc, &wc_enabled);
8170 	mutex_enter(SD_MUTEX(un));
8171 	un->un_f_write_cache_enabled = (wc_enabled != 0);
8172 	mutex_exit(SD_MUTEX(un));
8173 
8174 	if (un->un_f_rmw_type != SD_RMW_TYPE_RETURN_ERROR &&
8175 	    un->un_tgt_blocksize != DEV_BSIZE) {
8176 		if (!(un->un_wm_cache)) {
8177 			(void) snprintf(name_str, sizeof (name_str),
8178 			    "%s%d_cache",
8179 			    ddi_driver_name(SD_DEVINFO(un)),
8180 			    ddi_get_instance(SD_DEVINFO(un)));
8181 			un->un_wm_cache = kmem_cache_create(
8182 			    name_str, sizeof (struct sd_w_map),
8183 			    8, sd_wm_cache_constructor,
8184 			    sd_wm_cache_destructor, NULL,
8185 			    (void *)un, NULL, 0);
8186 			if (!(un->un_wm_cache)) {
8187 				goto wm_cache_failed;
8188 			}
8189 		}
8190 	}
8191 
8192 	/*
8193 	 * Check the value of the NV_SUP bit and set
8194 	 * un_f_suppress_cache_flush accordingly.
8195 	 */
8196 	sd_get_nv_sup(ssc);
8197 
8198 	/*
8199 	 * Find out what type of reservation this disk supports.
8200 	 */
8201 	status = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_KEYS, 0, NULL);
8202 
8203 	switch (status) {
8204 	case 0:
8205 		/*
8206 		 * SCSI-3 reservations are supported.
8207 		 */
8208 		un->un_reservation_type = SD_SCSI3_RESERVATION;
8209 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8210 		    "sd_unit_attach: un:0x%p SCSI-3 reservations\n", un);
8211 		break;
8212 	case ENOTSUP:
8213 		/*
8214 		 * The PERSISTENT RESERVE IN command would not be recognized by
8215 		 * a SCSI-2 device, so assume the reservation type is SCSI-2.
8216 		 */
8217 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8218 		    "sd_unit_attach: un:0x%p SCSI-2 reservations\n", un);
8219 		un->un_reservation_type = SD_SCSI2_RESERVATION;
8220 
8221 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
8222 		break;
8223 	default:
8224 		/*
8225 		 * default to SCSI-3 reservations
8226 		 */
8227 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8228 		    "sd_unit_attach: un:0x%p default SCSI3 reservations\n", un);
8229 		un->un_reservation_type = SD_SCSI3_RESERVATION;
8230 
8231 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
8232 		break;
8233 	}
8234 
8235 	/*
8236 	 * Set the pstat and error stat values here, so data obtained during the
8237 	 * previous attach-time routines is available.
8238 	 *
8239 	 * Note: This is a critical sequence that needs to be maintained:
8240 	 *	1) Instantiate the kstats before any routines using the iopath
8241 	 *	   (i.e. sd_send_scsi_cmd).
8242 	 *	2) Initialize the error stats (sd_set_errstats) and partition
8243 	 *	   stats (sd_set_pstats)here, following
8244 	 *	   cmlb_validate_geometry(), sd_register_devid(), and
8245 	 *	   sd_cache_control().
8246 	 */
8247 
8248 	if (un->un_f_pkstats_enabled && geom_label_valid) {
8249 		sd_set_pstats(un);
8250 		SD_TRACE(SD_LOG_IO_PARTITION, un,
8251 		    "sd_unit_attach: un:0x%p pstats created and set\n", un);
8252 	}
8253 
8254 	sd_set_errstats(un);
8255 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8256 	    "sd_unit_attach: un:0x%p errstats set\n", un);
8257 
8258 
8259 	/*
8260 	 * After successfully attaching an instance, we record the information
8261 	 * of how many luns have been attached on the relative target and
8262 	 * controller for parallel SCSI. This information is used when sd tries
8263 	 * to set the tagged queuing capability in HBA.
8264 	 */
8265 	if (SD_IS_PARALLEL_SCSI(un) && (tgt >= 0) && (tgt < NTARGETS_WIDE)) {
8266 		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_ATTACH);
8267 	}
8268 
8269 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8270 	    "sd_unit_attach: un:0x%p exit success\n", un);
8271 
8272 	/* Uninitialize sd_ssc_t pointer */
8273 	sd_ssc_fini(ssc);
8274 
8275 	return (DDI_SUCCESS);
8276 
8277 	/*
8278 	 * An error occurred during the attach; clean up & return failure.
8279 	 */
8280 wm_cache_failed:
8281 devid_failed:
8282 
8283 setup_pm_failed:
8284 	ddi_remove_minor_node(devi, NULL);
8285 
8286 cmlb_attach_failed:
8287 	/*
8288 	 * Cleanup from the scsi_ifsetcap() calls (437868)
8289 	 */
8290 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
8291 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
8292 
8293 	/*
8294 	 * Refer to the comments of setting tagged-qing in the beginning of
8295 	 * sd_unit_attach. We can only disable tagged queuing when there is
8296 	 * no lun attached on the target.
8297 	 */
8298 	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
8299 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
8300 	}
8301 
8302 	if (un->un_f_is_fibre == FALSE) {
8303 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
8304 	}
8305 
8306 spinup_failed:
8307 
8308 	/* Uninitialize sd_ssc_t pointer */
8309 	sd_ssc_fini(ssc);
8310 
8311 	mutex_enter(SD_MUTEX(un));
8312 
8313 	/* Deallocate SCSI FMA memory spaces */
8314 	kmem_free(un->un_fm_private, sizeof (struct sd_fm_internal));
8315 
8316 	/* Cancel callback for SD_PATH_DIRECT_PRIORITY cmd. restart */
8317 	if (un->un_direct_priority_timeid != NULL) {
8318 		timeout_id_t temp_id = un->un_direct_priority_timeid;
8319 		un->un_direct_priority_timeid = NULL;
8320 		mutex_exit(SD_MUTEX(un));
8321 		(void) untimeout(temp_id);
8322 		mutex_enter(SD_MUTEX(un));
8323 	}
8324 
8325 	/* Cancel any pending start/stop timeouts */
8326 	if (un->un_startstop_timeid != NULL) {
8327 		timeout_id_t temp_id = un->un_startstop_timeid;
8328 		un->un_startstop_timeid = NULL;
8329 		mutex_exit(SD_MUTEX(un));
8330 		(void) untimeout(temp_id);
8331 		mutex_enter(SD_MUTEX(un));
8332 	}
8333 
8334 	/* Cancel any pending reset-throttle timeouts */
8335 	if (un->un_reset_throttle_timeid != NULL) {
8336 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
8337 		un->un_reset_throttle_timeid = NULL;
8338 		mutex_exit(SD_MUTEX(un));
8339 		(void) untimeout(temp_id);
8340 		mutex_enter(SD_MUTEX(un));
8341 	}
8342 
8343 	/* Cancel rmw warning message timeouts */
8344 	if (un->un_rmw_msg_timeid != NULL) {
8345 		timeout_id_t temp_id = un->un_rmw_msg_timeid;
8346 		un->un_rmw_msg_timeid = NULL;
8347 		mutex_exit(SD_MUTEX(un));
8348 		(void) untimeout(temp_id);
8349 		mutex_enter(SD_MUTEX(un));
8350 	}
8351 
8352 	/* Cancel any pending retry timeouts */
8353 	if (un->un_retry_timeid != NULL) {
8354 		timeout_id_t temp_id = un->un_retry_timeid;
8355 		un->un_retry_timeid = NULL;
8356 		mutex_exit(SD_MUTEX(un));
8357 		(void) untimeout(temp_id);
8358 		mutex_enter(SD_MUTEX(un));
8359 	}
8360 
8361 	/* Cancel any pending delayed cv broadcast timeouts */
8362 	if (un->un_dcvb_timeid != NULL) {
8363 		timeout_id_t temp_id = un->un_dcvb_timeid;
8364 		un->un_dcvb_timeid = NULL;
8365 		mutex_exit(SD_MUTEX(un));
8366 		(void) untimeout(temp_id);
8367 		mutex_enter(SD_MUTEX(un));
8368 	}
8369 
8370 	mutex_exit(SD_MUTEX(un));
8371 
8372 	/* There should not be any in-progress I/O so ASSERT this check */
8373 	ASSERT(un->un_ncmds_in_transport == 0);
8374 	ASSERT(un->un_ncmds_in_driver == 0);
8375 
8376 	/* Do not free the softstate if the callback routine is active */
8377 	sd_sync_with_callback(un);
8378 
8379 	/*
8380 	 * Partition stats apparently are not used with removables. These would
8381 	 * not have been created during attach, so no need to clean them up...
8382 	 */
8383 	if (un->un_errstats != NULL) {
8384 		kstat_delete(un->un_errstats);
8385 		un->un_errstats = NULL;
8386 	}
8387 
8388 create_errstats_failed:
8389 
8390 	if (un->un_stats != NULL) {
8391 		kstat_delete(un->un_stats);
8392 		un->un_stats = NULL;
8393 	}
8394 
8395 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
8396 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
8397 
8398 	ddi_prop_remove_all(devi);
8399 	sema_destroy(&un->un_semoclose);
8400 	cv_destroy(&un->un_state_cv);
8401 
8402 getrbuf_failed:
8403 
8404 	sd_free_rqs(un);
8405 
8406 alloc_rqs_failed:
8407 
8408 	devp->sd_private = NULL;
8409 	bzero(un, sizeof (struct sd_lun));	/* Clear any stale data! */
8410 
8411 get_softstate_failed:
8412 	/*
8413 	 * Note: the man pages are unclear as to whether or not doing a
8414 	 * ddi_soft_state_free(sd_state, instance) is the right way to
8415 	 * clean up after the ddi_soft_state_zalloc() if the subsequent
8416 	 * ddi_get_soft_state() fails.  The implication seems to be
8417 	 * that the get_soft_state cannot fail if the zalloc succeeds.
8418 	 */
8419 #ifndef XPV_HVM_DRIVER
8420 	ddi_soft_state_free(sd_state, instance);
8421 #endif /* !XPV_HVM_DRIVER */
8422 
8423 probe_failed:
8424 	scsi_unprobe(devp);
8425 
8426 	return (DDI_FAILURE);
8427 }
8428 
8429 
8430 /*
8431  *    Function: sd_unit_detach
8432  *
8433  * Description: Performs DDI_DETACH processing for sddetach().
8434  *
8435  * Return Code: DDI_SUCCESS
8436  *		DDI_FAILURE
8437  *
8438  *     Context: Kernel thread context
8439  */
8440 
8441 static int
8442 sd_unit_detach(dev_info_t *devi)
8443 {
8444 	struct scsi_device	*devp;
8445 	struct sd_lun		*un;
8446 	int			i;
8447 	int			tgt;
8448 	dev_t			dev;
8449 	dev_info_t		*pdip = ddi_get_parent(devi);
8450 #ifndef XPV_HVM_DRIVER
8451 	int			instance = ddi_get_instance(devi);
8452 #endif /* !XPV_HVM_DRIVER */
8453 
8454 	mutex_enter(&sd_detach_mutex);
8455 
8456 	/*
8457 	 * Fail the detach for any of the following:
8458 	 *  - Unable to get the sd_lun struct for the instance
8459 	 *  - A layered driver has an outstanding open on the instance
8460 	 *  - Another thread is already detaching this instance
8461 	 *  - Another thread is currently performing an open
8462 	 */
8463 	devp = ddi_get_driver_private(devi);
8464 	if ((devp == NULL) ||
8465 	    ((un = (struct sd_lun *)devp->sd_private) == NULL) ||
8466 	    (un->un_ncmds_in_driver != 0) || (un->un_layer_count != 0) ||
8467 	    (un->un_detach_count != 0) || (un->un_opens_in_progress != 0)) {
8468 		mutex_exit(&sd_detach_mutex);
8469 		return (DDI_FAILURE);
8470 	}
8471 
8472 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: entry 0x%p\n", un);
8473 
8474 	/*
8475 	 * Mark this instance as currently in a detach, to inhibit any
8476 	 * opens from a layered driver.
8477 	 */
8478 	un->un_detach_count++;
8479 	mutex_exit(&sd_detach_mutex);
8480 
8481 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
8482 	    SCSI_ADDR_PROP_TARGET, -1);
8483 
8484 	dev = sd_make_device(SD_DEVINFO(un));
8485 
8486 #ifndef lint
8487 	_NOTE(COMPETING_THREADS_NOW);
8488 #endif
8489 
8490 	mutex_enter(SD_MUTEX(un));
8491 
8492 	/*
8493 	 * Fail the detach if there are any outstanding layered
8494 	 * opens on this device.
8495 	 */
8496 	for (i = 0; i < NDKMAP; i++) {
8497 		if (un->un_ocmap.lyropen[i] != 0) {
8498 			goto err_notclosed;
8499 		}
8500 	}
8501 
8502 	/*
8503 	 * Verify there are NO outstanding commands issued to this device.
8504 	 * ie, un_ncmds_in_transport == 0.
8505 	 * It's possible to have outstanding commands through the physio
8506 	 * code path, even though everything's closed.
8507 	 */
8508 	if ((un->un_ncmds_in_transport != 0) || (un->un_retry_timeid != NULL) ||
8509 	    (un->un_direct_priority_timeid != NULL) ||
8510 	    (un->un_state == SD_STATE_RWAIT)) {
8511 		mutex_exit(SD_MUTEX(un));
8512 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8513 		    "sd_dr_detach: Detach failure due to outstanding cmds\n");
8514 		goto err_stillbusy;
8515 	}
8516 
8517 	/*
8518 	 * If we have the device reserved, release the reservation.
8519 	 */
8520 	if ((un->un_resvd_status & SD_RESERVE) &&
8521 	    !(un->un_resvd_status & SD_LOST_RESERVE)) {
8522 		mutex_exit(SD_MUTEX(un));
8523 		/*
8524 		 * Note: sd_reserve_release sends a command to the device
8525 		 * via the sd_ioctlcmd() path, and can sleep.
8526 		 */
8527 		if (sd_reserve_release(dev, SD_RELEASE) != 0) {
8528 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8529 			    "sd_dr_detach: Cannot release reservation \n");
8530 		}
8531 	} else {
8532 		mutex_exit(SD_MUTEX(un));
8533 	}
8534 
8535 	/*
8536 	 * Untimeout any reserve recover, throttle reset, restart unit
8537 	 * and delayed broadcast timeout threads. Protect the timeout pointer
8538 	 * from getting nulled by their callback functions.
8539 	 */
8540 	mutex_enter(SD_MUTEX(un));
8541 	if (un->un_resvd_timeid != NULL) {
8542 		timeout_id_t temp_id = un->un_resvd_timeid;
8543 		un->un_resvd_timeid = NULL;
8544 		mutex_exit(SD_MUTEX(un));
8545 		(void) untimeout(temp_id);
8546 		mutex_enter(SD_MUTEX(un));
8547 	}
8548 
8549 	if (un->un_reset_throttle_timeid != NULL) {
8550 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
8551 		un->un_reset_throttle_timeid = NULL;
8552 		mutex_exit(SD_MUTEX(un));
8553 		(void) untimeout(temp_id);
8554 		mutex_enter(SD_MUTEX(un));
8555 	}
8556 
8557 	if (un->un_startstop_timeid != NULL) {
8558 		timeout_id_t temp_id = un->un_startstop_timeid;
8559 		un->un_startstop_timeid = NULL;
8560 		mutex_exit(SD_MUTEX(un));
8561 		(void) untimeout(temp_id);
8562 		mutex_enter(SD_MUTEX(un));
8563 	}
8564 
8565 	if (un->un_rmw_msg_timeid != NULL) {
8566 		timeout_id_t temp_id = un->un_rmw_msg_timeid;
8567 		un->un_rmw_msg_timeid = NULL;
8568 		mutex_exit(SD_MUTEX(un));
8569 		(void) untimeout(temp_id);
8570 		mutex_enter(SD_MUTEX(un));
8571 	}
8572 
8573 	if (un->un_dcvb_timeid != NULL) {
8574 		timeout_id_t temp_id = un->un_dcvb_timeid;
8575 		un->un_dcvb_timeid = NULL;
8576 		mutex_exit(SD_MUTEX(un));
8577 		(void) untimeout(temp_id);
8578 	} else {
8579 		mutex_exit(SD_MUTEX(un));
8580 	}
8581 
8582 	/* Remove any pending reservation reclaim requests for this device */
8583 	sd_rmv_resv_reclaim_req(dev);
8584 
8585 	mutex_enter(SD_MUTEX(un));
8586 
8587 	/* Cancel any pending callbacks for SD_PATH_DIRECT_PRIORITY cmd. */
8588 	if (un->un_direct_priority_timeid != NULL) {
8589 		timeout_id_t temp_id = un->un_direct_priority_timeid;
8590 		un->un_direct_priority_timeid = NULL;
8591 		mutex_exit(SD_MUTEX(un));
8592 		(void) untimeout(temp_id);
8593 		mutex_enter(SD_MUTEX(un));
8594 	}
8595 
8596 	/* Cancel any active multi-host disk watch thread requests */
8597 	if (un->un_mhd_token != NULL) {
8598 		mutex_exit(SD_MUTEX(un));
8599 		 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_mhd_token));
8600 		if (scsi_watch_request_terminate(un->un_mhd_token,
8601 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
8602 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8603 			    "sd_dr_detach: Cannot cancel mhd watch request\n");
8604 			/*
8605 			 * Note: We are returning here after having removed
8606 			 * some driver timeouts above. This is consistent with
8607 			 * the legacy implementation but perhaps the watch
8608 			 * terminate call should be made with the wait flag set.
8609 			 */
8610 			goto err_stillbusy;
8611 		}
8612 		mutex_enter(SD_MUTEX(un));
8613 		un->un_mhd_token = NULL;
8614 	}
8615 
8616 	if (un->un_swr_token != NULL) {
8617 		mutex_exit(SD_MUTEX(un));
8618 		_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_swr_token));
8619 		if (scsi_watch_request_terminate(un->un_swr_token,
8620 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
8621 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8622 			    "sd_dr_detach: Cannot cancel swr watch request\n");
8623 			/*
8624 			 * Note: We are returning here after having removed
8625 			 * some driver timeouts above. This is consistent with
8626 			 * the legacy implementation but perhaps the watch
8627 			 * terminate call should be made with the wait flag set.
8628 			 */
8629 			goto err_stillbusy;
8630 		}
8631 		mutex_enter(SD_MUTEX(un));
8632 		un->un_swr_token = NULL;
8633 	}
8634 
8635 	mutex_exit(SD_MUTEX(un));
8636 
8637 	/*
8638 	 * Clear any scsi_reset_notifies. We clear the reset notifies
8639 	 * if we have not registered one.
8640 	 * Note: The sd_mhd_reset_notify_cb() fn tries to acquire SD_MUTEX!
8641 	 */
8642 	(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
8643 	    sd_mhd_reset_notify_cb, (caddr_t)un);
8644 
8645 	/*
8646 	 * protect the timeout pointers from getting nulled by
8647 	 * their callback functions during the cancellation process.
8648 	 * In such a scenario untimeout can be invoked with a null value.
8649 	 */
8650 	_NOTE(NO_COMPETING_THREADS_NOW);
8651 
8652 	mutex_enter(&un->un_pm_mutex);
8653 	if (un->un_pm_idle_timeid != NULL) {
8654 		timeout_id_t temp_id = un->un_pm_idle_timeid;
8655 		un->un_pm_idle_timeid = NULL;
8656 		mutex_exit(&un->un_pm_mutex);
8657 
8658 		/*
8659 		 * Timeout is active; cancel it.
8660 		 * Note that it'll never be active on a device
8661 		 * that does not support PM therefore we don't
8662 		 * have to check before calling pm_idle_component.
8663 		 */
8664 		(void) untimeout(temp_id);
8665 		(void) pm_idle_component(SD_DEVINFO(un), 0);
8666 		mutex_enter(&un->un_pm_mutex);
8667 	}
8668 
8669 	/*
8670 	 * Check whether there is already a timeout scheduled for power
8671 	 * management. If yes then don't lower the power here, that's.
8672 	 * the timeout handler's job.
8673 	 */
8674 	if (un->un_pm_timeid != NULL) {
8675 		timeout_id_t temp_id = un->un_pm_timeid;
8676 		un->un_pm_timeid = NULL;
8677 		mutex_exit(&un->un_pm_mutex);
8678 		/*
8679 		 * Timeout is active; cancel it.
8680 		 * Note that it'll never be active on a device
8681 		 * that does not support PM therefore we don't
8682 		 * have to check before calling pm_idle_component.
8683 		 */
8684 		(void) untimeout(temp_id);
8685 		(void) pm_idle_component(SD_DEVINFO(un), 0);
8686 
8687 	} else {
8688 		mutex_exit(&un->un_pm_mutex);
8689 		if ((un->un_f_pm_is_enabled == TRUE) &&
8690 		    (pm_lower_power(SD_DEVINFO(un), 0, SD_PM_STATE_STOPPED(un))
8691 		    != DDI_SUCCESS)) {
8692 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8693 		    "sd_dr_detach: Lower power request failed, ignoring.\n");
8694 			/*
8695 			 * Fix for bug: 4297749, item # 13
8696 			 * The above test now includes a check to see if PM is
8697 			 * supported by this device before call
8698 			 * pm_lower_power().
8699 			 * Note, the following is not dead code. The call to
8700 			 * pm_lower_power above will generate a call back into
8701 			 * our sdpower routine which might result in a timeout
8702 			 * handler getting activated. Therefore the following
8703 			 * code is valid and necessary.
8704 			 */
8705 			mutex_enter(&un->un_pm_mutex);
8706 			if (un->un_pm_timeid != NULL) {
8707 				timeout_id_t temp_id = un->un_pm_timeid;
8708 				un->un_pm_timeid = NULL;
8709 				mutex_exit(&un->un_pm_mutex);
8710 				(void) untimeout(temp_id);
8711 				(void) pm_idle_component(SD_DEVINFO(un), 0);
8712 			} else {
8713 				mutex_exit(&un->un_pm_mutex);
8714 			}
8715 		}
8716 	}
8717 
8718 	/*
8719 	 * Cleanup from the scsi_ifsetcap() calls (437868)
8720 	 * Relocated here from above to be after the call to
8721 	 * pm_lower_power, which was getting errors.
8722 	 */
8723 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
8724 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
8725 
8726 	/*
8727 	 * Currently, tagged queuing is supported per target based by HBA.
8728 	 * Setting this per lun instance actually sets the capability of this
8729 	 * target in HBA, which affects those luns already attached on the
8730 	 * same target. So during detach, we can only disable this capability
8731 	 * only when this is the only lun left on this target. By doing
8732 	 * this, we assume a target has the same tagged queuing capability
8733 	 * for every lun. The condition can be removed when HBA is changed to
8734 	 * support per lun based tagged queuing capability.
8735 	 */
8736 	if (sd_scsi_get_target_lun_count(pdip, tgt) <= 1) {
8737 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
8738 	}
8739 
8740 	if (un->un_f_is_fibre == FALSE) {
8741 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
8742 	}
8743 
8744 	/*
8745 	 * Remove any event callbacks, fibre only
8746 	 */
8747 	if (un->un_f_is_fibre == TRUE) {
8748 		if ((un->un_insert_event != NULL) &&
8749 		    (ddi_remove_event_handler(un->un_insert_cb_id) !=
8750 		    DDI_SUCCESS)) {
8751 			/*
8752 			 * Note: We are returning here after having done
8753 			 * substantial cleanup above. This is consistent
8754 			 * with the legacy implementation but this may not
8755 			 * be the right thing to do.
8756 			 */
8757 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8758 			    "sd_dr_detach: Cannot cancel insert event\n");
8759 			goto err_remove_event;
8760 		}
8761 		un->un_insert_event = NULL;
8762 
8763 		if ((un->un_remove_event != NULL) &&
8764 		    (ddi_remove_event_handler(un->un_remove_cb_id) !=
8765 		    DDI_SUCCESS)) {
8766 			/*
8767 			 * Note: We are returning here after having done
8768 			 * substantial cleanup above. This is consistent
8769 			 * with the legacy implementation but this may not
8770 			 * be the right thing to do.
8771 			 */
8772 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8773 			    "sd_dr_detach: Cannot cancel remove event\n");
8774 			goto err_remove_event;
8775 		}
8776 		un->un_remove_event = NULL;
8777 	}
8778 
8779 	/* Do not free the softstate if the callback routine is active */
8780 	sd_sync_with_callback(un);
8781 
8782 	cmlb_detach(un->un_cmlbhandle, (void *)SD_PATH_DIRECT);
8783 	cmlb_free_handle(&un->un_cmlbhandle);
8784 
8785 	/*
8786 	 * Hold the detach mutex here, to make sure that no other threads ever
8787 	 * can access a (partially) freed soft state structure.
8788 	 */
8789 	mutex_enter(&sd_detach_mutex);
8790 
8791 	/*
8792 	 * Clean up the soft state struct.
8793 	 * Cleanup is done in reverse order of allocs/inits.
8794 	 * At this point there should be no competing threads anymore.
8795 	 */
8796 
8797 	scsi_fm_fini(devp);
8798 
8799 	/*
8800 	 * Deallocate memory for SCSI FMA.
8801 	 */
8802 	kmem_free(un->un_fm_private, sizeof (struct sd_fm_internal));
8803 
8804 	/*
8805 	 * Unregister and free device id if it was not registered
8806 	 * by the transport.
8807 	 */
8808 	if (un->un_f_devid_transport_defined == FALSE)
8809 		ddi_devid_unregister(devi);
8810 
8811 	/*
8812 	 * free the devid structure if allocated before (by ddi_devid_init()
8813 	 * or ddi_devid_get()).
8814 	 */
8815 	if (un->un_devid) {
8816 		ddi_devid_free(un->un_devid);
8817 		un->un_devid = NULL;
8818 	}
8819 
8820 	/*
8821 	 * Destroy wmap cache if it exists.
8822 	 */
8823 	if (un->un_wm_cache != NULL) {
8824 		kmem_cache_destroy(un->un_wm_cache);
8825 		un->un_wm_cache = NULL;
8826 	}
8827 
8828 	/*
8829 	 * kstat cleanup is done in detach for all device types (4363169).
8830 	 * We do not want to fail detach if the device kstats are not deleted
8831 	 * since there is a confusion about the devo_refcnt for the device.
8832 	 * We just delete the kstats and let detach complete successfully.
8833 	 */
8834 	if (un->un_stats != NULL) {
8835 		kstat_delete(un->un_stats);
8836 		un->un_stats = NULL;
8837 	}
8838 	if (un->un_errstats != NULL) {
8839 		kstat_delete(un->un_errstats);
8840 		un->un_errstats = NULL;
8841 	}
8842 
8843 	/* Remove partition stats */
8844 	if (un->un_f_pkstats_enabled) {
8845 		for (i = 0; i < NSDMAP; i++) {
8846 			if (un->un_pstats[i] != NULL) {
8847 				kstat_delete(un->un_pstats[i]);
8848 				un->un_pstats[i] = NULL;
8849 			}
8850 		}
8851 	}
8852 
8853 	/* Remove xbuf registration */
8854 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
8855 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
8856 
8857 	/* Remove driver properties */
8858 	ddi_prop_remove_all(devi);
8859 
8860 	mutex_destroy(&un->un_pm_mutex);
8861 	cv_destroy(&un->un_pm_busy_cv);
8862 
8863 	cv_destroy(&un->un_wcc_cv);
8864 
8865 	/* Open/close semaphore */
8866 	sema_destroy(&un->un_semoclose);
8867 
8868 	/* Removable media condvar. */
8869 	cv_destroy(&un->un_state_cv);
8870 
8871 	/* Suspend/resume condvar. */
8872 	cv_destroy(&un->un_suspend_cv);
8873 	cv_destroy(&un->un_disk_busy_cv);
8874 
8875 	sd_free_rqs(un);
8876 
8877 	/* Free up soft state */
8878 	devp->sd_private = NULL;
8879 
8880 	bzero(un, sizeof (struct sd_lun));
8881 #ifndef XPV_HVM_DRIVER
8882 	ddi_soft_state_free(sd_state, instance);
8883 #endif /* !XPV_HVM_DRIVER */
8884 
8885 	mutex_exit(&sd_detach_mutex);
8886 
8887 	/* This frees up the INQUIRY data associated with the device. */
8888 	scsi_unprobe(devp);
8889 
8890 	/*
8891 	 * After successfully detaching an instance, we update the information
8892 	 * of how many luns have been attached in the relative target and
8893 	 * controller for parallel SCSI. This information is used when sd tries
8894 	 * to set the tagged queuing capability in HBA.
8895 	 * Since un has been released, we can't use SD_IS_PARALLEL_SCSI(un) to
8896 	 * check if the device is parallel SCSI. However, we don't need to
8897 	 * check here because we've already checked during attach. No device
8898 	 * that is not parallel SCSI is in the chain.
8899 	 */
8900 	if ((tgt >= 0) && (tgt < NTARGETS_WIDE)) {
8901 		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_DETACH);
8902 	}
8903 
8904 	return (DDI_SUCCESS);
8905 
8906 err_notclosed:
8907 	mutex_exit(SD_MUTEX(un));
8908 
8909 err_stillbusy:
8910 	_NOTE(NO_COMPETING_THREADS_NOW);
8911 
8912 err_remove_event:
8913 	mutex_enter(&sd_detach_mutex);
8914 	un->un_detach_count--;
8915 	mutex_exit(&sd_detach_mutex);
8916 
8917 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: exit failure\n");
8918 	return (DDI_FAILURE);
8919 }
8920 
8921 
8922 /*
8923  *    Function: sd_create_errstats
8924  *
8925  * Description: This routine instantiates the device error stats.
8926  *
8927  *		Note: During attach the stats are instantiated first so they are
8928  *		available for attach-time routines that utilize the driver
8929  *		iopath to send commands to the device. The stats are initialized
8930  *		separately so data obtained during some attach-time routines is
8931  *		available. (4362483)
8932  *
8933  *   Arguments: un - driver soft state (unit) structure
8934  *		instance - driver instance
8935  *
8936  *     Context: Kernel thread context
8937  */
8938 
8939 static void
8940 sd_create_errstats(struct sd_lun *un, int instance)
8941 {
8942 	struct	sd_errstats	*stp;
8943 	char	kstatmodule_err[KSTAT_STRLEN];
8944 	char	kstatname[KSTAT_STRLEN];
8945 	int	ndata = (sizeof (struct sd_errstats) / sizeof (kstat_named_t));
8946 
8947 	ASSERT(un != NULL);
8948 
8949 	if (un->un_errstats != NULL) {
8950 		return;
8951 	}
8952 
8953 	(void) snprintf(kstatmodule_err, sizeof (kstatmodule_err),
8954 	    "%serr", sd_label);
8955 	(void) snprintf(kstatname, sizeof (kstatname),
8956 	    "%s%d,err", sd_label, instance);
8957 
8958 	un->un_errstats = kstat_create(kstatmodule_err, instance, kstatname,
8959 	    "device_error", KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_PERSISTENT);
8960 
8961 	if (un->un_errstats == NULL) {
8962 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8963 		    "sd_create_errstats: Failed kstat_create\n");
8964 		return;
8965 	}
8966 
8967 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
8968 	kstat_named_init(&stp->sd_softerrs,	"Soft Errors",
8969 	    KSTAT_DATA_UINT32);
8970 	kstat_named_init(&stp->sd_harderrs,	"Hard Errors",
8971 	    KSTAT_DATA_UINT32);
8972 	kstat_named_init(&stp->sd_transerrs,	"Transport Errors",
8973 	    KSTAT_DATA_UINT32);
8974 	kstat_named_init(&stp->sd_vid,		"Vendor",
8975 	    KSTAT_DATA_CHAR);
8976 	kstat_named_init(&stp->sd_pid,		"Product",
8977 	    KSTAT_DATA_CHAR);
8978 	kstat_named_init(&stp->sd_revision,	"Revision",
8979 	    KSTAT_DATA_CHAR);
8980 	kstat_named_init(&stp->sd_serial,	"Serial No",
8981 	    KSTAT_DATA_CHAR);
8982 	kstat_named_init(&stp->sd_capacity,	"Size",
8983 	    KSTAT_DATA_ULONGLONG);
8984 	kstat_named_init(&stp->sd_rq_media_err,	"Media Error",
8985 	    KSTAT_DATA_UINT32);
8986 	kstat_named_init(&stp->sd_rq_ntrdy_err,	"Device Not Ready",
8987 	    KSTAT_DATA_UINT32);
8988 	kstat_named_init(&stp->sd_rq_nodev_err,	"No Device",
8989 	    KSTAT_DATA_UINT32);
8990 	kstat_named_init(&stp->sd_rq_recov_err,	"Recoverable",
8991 	    KSTAT_DATA_UINT32);
8992 	kstat_named_init(&stp->sd_rq_illrq_err,	"Illegal Request",
8993 	    KSTAT_DATA_UINT32);
8994 	kstat_named_init(&stp->sd_rq_pfa_err,	"Predictive Failure Analysis",
8995 	    KSTAT_DATA_UINT32);
8996 
8997 	un->un_errstats->ks_private = un;
8998 	un->un_errstats->ks_update  = nulldev;
8999 
9000 	kstat_install(un->un_errstats);
9001 }
9002 
9003 
9004 /*
9005  *    Function: sd_set_errstats
9006  *
9007  * Description: This routine sets the value of the vendor id, product id,
9008  *		revision, serial number, and capacity device error stats.
9009  *
9010  *		Note: During attach the stats are instantiated first so they are
9011  *		available for attach-time routines that utilize the driver
9012  *		iopath to send commands to the device. The stats are initialized
9013  *		separately so data obtained during some attach-time routines is
9014  *		available. (4362483)
9015  *
9016  *   Arguments: un - driver soft state (unit) structure
9017  *
9018  *     Context: Kernel thread context
9019  */
9020 
9021 static void
9022 sd_set_errstats(struct sd_lun *un)
9023 {
9024 	struct	sd_errstats	*stp;
9025 
9026 	ASSERT(un != NULL);
9027 	ASSERT(un->un_errstats != NULL);
9028 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
9029 	ASSERT(stp != NULL);
9030 	(void) strncpy(stp->sd_vid.value.c, un->un_sd->sd_inq->inq_vid, 8);
9031 	(void) strncpy(stp->sd_pid.value.c, un->un_sd->sd_inq->inq_pid, 16);
9032 	(void) strncpy(stp->sd_revision.value.c,
9033 	    un->un_sd->sd_inq->inq_revision, 4);
9034 
9035 	/*
9036 	 * All the errstats are persistent across detach/attach,
9037 	 * so reset all the errstats here in case of the hot
9038 	 * replacement of disk drives, except for not changed
9039 	 * Sun qualified drives.
9040 	 */
9041 	if ((bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) != 0) ||
9042 	    (bcmp(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
9043 	    sizeof (SD_INQUIRY(un)->inq_serial)) != 0)) {
9044 		stp->sd_softerrs.value.ui32 = 0;
9045 		stp->sd_harderrs.value.ui32 = 0;
9046 		stp->sd_transerrs.value.ui32 = 0;
9047 		stp->sd_rq_media_err.value.ui32 = 0;
9048 		stp->sd_rq_ntrdy_err.value.ui32 = 0;
9049 		stp->sd_rq_nodev_err.value.ui32 = 0;
9050 		stp->sd_rq_recov_err.value.ui32 = 0;
9051 		stp->sd_rq_illrq_err.value.ui32 = 0;
9052 		stp->sd_rq_pfa_err.value.ui32 = 0;
9053 	}
9054 
9055 	/*
9056 	 * Set the "Serial No" kstat for Sun qualified drives (indicated by
9057 	 * "SUN" in bytes 25-27 of the inquiry data (bytes 9-11 of the pid)
9058 	 * (4376302))
9059 	 */
9060 	if (bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) == 0) {
9061 		bcopy(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
9062 		    sizeof (SD_INQUIRY(un)->inq_serial));
9063 	}
9064 
9065 	if (un->un_f_blockcount_is_valid != TRUE) {
9066 		/*
9067 		 * Set capacity error stat to 0 for no media. This ensures
9068 		 * a valid capacity is displayed in response to 'iostat -E'
9069 		 * when no media is present in the device.
9070 		 */
9071 		stp->sd_capacity.value.ui64 = 0;
9072 	} else {
9073 		/*
9074 		 * Multiply un_blockcount by un->un_sys_blocksize to get
9075 		 * capacity.
9076 		 *
9077 		 * Note: for non-512 blocksize devices "un_blockcount" has been
9078 		 * "scaled" in sd_send_scsi_READ_CAPACITY by multiplying by
9079 		 * (un_tgt_blocksize / un->un_sys_blocksize).
9080 		 */
9081 		stp->sd_capacity.value.ui64 = (uint64_t)
9082 		    ((uint64_t)un->un_blockcount * un->un_sys_blocksize);
9083 	}
9084 }
9085 
9086 
9087 /*
9088  *    Function: sd_set_pstats
9089  *
9090  * Description: This routine instantiates and initializes the partition
9091  *              stats for each partition with more than zero blocks.
9092  *		(4363169)
9093  *
9094  *   Arguments: un - driver soft state (unit) structure
9095  *
9096  *     Context: Kernel thread context
9097  */
9098 
9099 static void
9100 sd_set_pstats(struct sd_lun *un)
9101 {
9102 	char	kstatname[KSTAT_STRLEN];
9103 	int	instance;
9104 	int	i;
9105 	diskaddr_t	nblks = 0;
9106 	char	*partname = NULL;
9107 
9108 	ASSERT(un != NULL);
9109 
9110 	instance = ddi_get_instance(SD_DEVINFO(un));
9111 
9112 	/* Note:x86: is this a VTOC8/VTOC16 difference? */
9113 	for (i = 0; i < NSDMAP; i++) {
9114 
9115 		if (cmlb_partinfo(un->un_cmlbhandle, i,
9116 		    &nblks, NULL, &partname, NULL, (void *)SD_PATH_DIRECT) != 0)
9117 			continue;
9118 		mutex_enter(SD_MUTEX(un));
9119 
9120 		if ((un->un_pstats[i] == NULL) &&
9121 		    (nblks != 0)) {
9122 
9123 			(void) snprintf(kstatname, sizeof (kstatname),
9124 			    "%s%d,%s", sd_label, instance,
9125 			    partname);
9126 
9127 			un->un_pstats[i] = kstat_create(sd_label,
9128 			    instance, kstatname, "partition", KSTAT_TYPE_IO,
9129 			    1, KSTAT_FLAG_PERSISTENT);
9130 			if (un->un_pstats[i] != NULL) {
9131 				un->un_pstats[i]->ks_lock = SD_MUTEX(un);
9132 				kstat_install(un->un_pstats[i]);
9133 			}
9134 		}
9135 		mutex_exit(SD_MUTEX(un));
9136 	}
9137 }
9138 
9139 
9140 #if (defined(__fibre))
9141 /*
9142  *    Function: sd_init_event_callbacks
9143  *
9144  * Description: This routine initializes the insertion and removal event
9145  *		callbacks. (fibre only)
9146  *
9147  *   Arguments: un - driver soft state (unit) structure
9148  *
9149  *     Context: Kernel thread context
9150  */
9151 
9152 static void
9153 sd_init_event_callbacks(struct sd_lun *un)
9154 {
9155 	ASSERT(un != NULL);
9156 
9157 	if ((un->un_insert_event == NULL) &&
9158 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_INSERT_EVENT,
9159 	    &un->un_insert_event) == DDI_SUCCESS)) {
9160 		/*
9161 		 * Add the callback for an insertion event
9162 		 */
9163 		(void) ddi_add_event_handler(SD_DEVINFO(un),
9164 		    un->un_insert_event, sd_event_callback, (void *)un,
9165 		    &(un->un_insert_cb_id));
9166 	}
9167 
9168 	if ((un->un_remove_event == NULL) &&
9169 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_REMOVE_EVENT,
9170 	    &un->un_remove_event) == DDI_SUCCESS)) {
9171 		/*
9172 		 * Add the callback for a removal event
9173 		 */
9174 		(void) ddi_add_event_handler(SD_DEVINFO(un),
9175 		    un->un_remove_event, sd_event_callback, (void *)un,
9176 		    &(un->un_remove_cb_id));
9177 	}
9178 }
9179 
9180 
9181 /*
9182  *    Function: sd_event_callback
9183  *
9184  * Description: This routine handles insert/remove events (photon). The
9185  *		state is changed to OFFLINE which can be used to supress
9186  *		error msgs. (fibre only)
9187  *
9188  *   Arguments: un - driver soft state (unit) structure
9189  *
9190  *     Context: Callout thread context
9191  */
9192 /* ARGSUSED */
9193 static void
9194 sd_event_callback(dev_info_t *dip, ddi_eventcookie_t event, void *arg,
9195     void *bus_impldata)
9196 {
9197 	struct sd_lun *un = (struct sd_lun *)arg;
9198 
9199 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_insert_event));
9200 	if (event == un->un_insert_event) {
9201 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: insert event");
9202 		mutex_enter(SD_MUTEX(un));
9203 		if (un->un_state == SD_STATE_OFFLINE) {
9204 			if (un->un_last_state != SD_STATE_SUSPENDED) {
9205 				un->un_state = un->un_last_state;
9206 			} else {
9207 				/*
9208 				 * We have gone through SUSPEND/RESUME while
9209 				 * we were offline. Restore the last state
9210 				 */
9211 				un->un_state = un->un_save_state;
9212 			}
9213 		}
9214 		mutex_exit(SD_MUTEX(un));
9215 
9216 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_remove_event));
9217 	} else if (event == un->un_remove_event) {
9218 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: remove event");
9219 		mutex_enter(SD_MUTEX(un));
9220 		/*
9221 		 * We need to handle an event callback that occurs during
9222 		 * the suspend operation, since we don't prevent it.
9223 		 */
9224 		if (un->un_state != SD_STATE_OFFLINE) {
9225 			if (un->un_state != SD_STATE_SUSPENDED) {
9226 				New_state(un, SD_STATE_OFFLINE);
9227 			} else {
9228 				un->un_last_state = SD_STATE_OFFLINE;
9229 			}
9230 		}
9231 		mutex_exit(SD_MUTEX(un));
9232 	} else {
9233 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
9234 		    "!Unknown event\n");
9235 	}
9236 
9237 }
9238 #endif
9239 
9240 /*
9241  *    Function: sd_cache_control()
9242  *
9243  * Description: This routine is the driver entry point for setting
9244  *		read and write caching by modifying the WCE (write cache
9245  *		enable) and RCD (read cache disable) bits of mode
9246  *		page 8 (MODEPAGE_CACHING).
9247  *
9248  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
9249  *                      structure for this target.
9250  *		rcd_flag - flag for controlling the read cache
9251  *		wce_flag - flag for controlling the write cache
9252  *
9253  * Return Code: EIO
9254  *		code returned by sd_send_scsi_MODE_SENSE and
9255  *		sd_send_scsi_MODE_SELECT
9256  *
9257  *     Context: Kernel Thread
9258  */
9259 
9260 static int
9261 sd_cache_control(sd_ssc_t *ssc, int rcd_flag, int wce_flag)
9262 {
9263 	struct mode_caching	*mode_caching_page;
9264 	uchar_t			*header;
9265 	size_t			buflen;
9266 	int			hdrlen;
9267 	int			bd_len;
9268 	int			rval = 0;
9269 	struct mode_header_grp2	*mhp;
9270 	struct sd_lun		*un;
9271 	int			status;
9272 
9273 	ASSERT(ssc != NULL);
9274 	un = ssc->ssc_un;
9275 	ASSERT(un != NULL);
9276 
9277 	/*
9278 	 * Do a test unit ready, otherwise a mode sense may not work if this
9279 	 * is the first command sent to the device after boot.
9280 	 */
9281 	status = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
9282 	if (status != 0)
9283 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9284 
9285 	if (un->un_f_cfg_is_atapi == TRUE) {
9286 		hdrlen = MODE_HEADER_LENGTH_GRP2;
9287 	} else {
9288 		hdrlen = MODE_HEADER_LENGTH;
9289 	}
9290 
9291 	/*
9292 	 * Allocate memory for the retrieved mode page and its headers.  Set
9293 	 * a pointer to the page itself.  Use mode_cache_scsi3 to insure
9294 	 * we get all of the mode sense data otherwise, the mode select
9295 	 * will fail.  mode_cache_scsi3 is a superset of mode_caching.
9296 	 */
9297 	buflen = hdrlen + MODE_BLK_DESC_LENGTH +
9298 	    sizeof (struct mode_cache_scsi3);
9299 
9300 	header = kmem_zalloc(buflen, KM_SLEEP);
9301 
9302 	/* Get the information from the device. */
9303 	if (un->un_f_cfg_is_atapi == TRUE) {
9304 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, header, buflen,
9305 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9306 	} else {
9307 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen,
9308 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9309 	}
9310 
9311 	if (rval != 0) {
9312 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
9313 		    "sd_cache_control: Mode Sense Failed\n");
9314 		goto mode_sense_failed;
9315 	}
9316 
9317 	/*
9318 	 * Determine size of Block Descriptors in order to locate
9319 	 * the mode page data. ATAPI devices return 0, SCSI devices
9320 	 * should return MODE_BLK_DESC_LENGTH.
9321 	 */
9322 	if (un->un_f_cfg_is_atapi == TRUE) {
9323 		mhp	= (struct mode_header_grp2 *)header;
9324 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
9325 	} else {
9326 		bd_len  = ((struct mode_header *)header)->bdesc_length;
9327 	}
9328 
9329 	if (bd_len > MODE_BLK_DESC_LENGTH) {
9330 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, 0,
9331 		    "sd_cache_control: Mode Sense returned invalid block "
9332 		    "descriptor length\n");
9333 		rval = EIO;
9334 		goto mode_sense_failed;
9335 	}
9336 
9337 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
9338 	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
9339 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
9340 		    "sd_cache_control: Mode Sense caching page code mismatch "
9341 		    "%d\n", mode_caching_page->mode_page.code);
9342 		rval = EIO;
9343 		goto mode_sense_failed;
9344 	}
9345 
9346 	/* Check the relevant bits on successful mode sense. */
9347 	if ((mode_caching_page->rcd && rcd_flag == SD_CACHE_ENABLE) ||
9348 	    (!mode_caching_page->rcd && rcd_flag == SD_CACHE_DISABLE) ||
9349 	    (mode_caching_page->wce && wce_flag == SD_CACHE_DISABLE) ||
9350 	    (!mode_caching_page->wce && wce_flag == SD_CACHE_ENABLE)) {
9351 
9352 		size_t sbuflen;
9353 		uchar_t save_pg;
9354 
9355 		/*
9356 		 * Construct select buffer length based on the
9357 		 * length of the sense data returned.
9358 		 */
9359 		sbuflen =  hdrlen + bd_len +
9360 		    sizeof (struct mode_page) +
9361 		    (int)mode_caching_page->mode_page.length;
9362 
9363 		/*
9364 		 * Set the caching bits as requested.
9365 		 */
9366 		if (rcd_flag == SD_CACHE_ENABLE)
9367 			mode_caching_page->rcd = 0;
9368 		else if (rcd_flag == SD_CACHE_DISABLE)
9369 			mode_caching_page->rcd = 1;
9370 
9371 		if (wce_flag == SD_CACHE_ENABLE)
9372 			mode_caching_page->wce = 1;
9373 		else if (wce_flag == SD_CACHE_DISABLE)
9374 			mode_caching_page->wce = 0;
9375 
9376 		/*
9377 		 * Save the page if the mode sense says the
9378 		 * drive supports it.
9379 		 */
9380 		save_pg = mode_caching_page->mode_page.ps ?
9381 		    SD_SAVE_PAGE : SD_DONTSAVE_PAGE;
9382 
9383 		/* Clear reserved bits before mode select. */
9384 		mode_caching_page->mode_page.ps = 0;
9385 
9386 		/*
9387 		 * Clear out mode header for mode select.
9388 		 * The rest of the retrieved page will be reused.
9389 		 */
9390 		bzero(header, hdrlen);
9391 
9392 		if (un->un_f_cfg_is_atapi == TRUE) {
9393 			mhp = (struct mode_header_grp2 *)header;
9394 			mhp->bdesc_length_hi = bd_len >> 8;
9395 			mhp->bdesc_length_lo = (uchar_t)bd_len & 0xff;
9396 		} else {
9397 			((struct mode_header *)header)->bdesc_length = bd_len;
9398 		}
9399 
9400 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9401 
9402 		/* Issue mode select to change the cache settings */
9403 		if (un->un_f_cfg_is_atapi == TRUE) {
9404 			rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP1, header,
9405 			    sbuflen, save_pg, SD_PATH_DIRECT);
9406 		} else {
9407 			rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, header,
9408 			    sbuflen, save_pg, SD_PATH_DIRECT);
9409 		}
9410 
9411 	}
9412 
9413 
9414 mode_sense_failed:
9415 
9416 	kmem_free(header, buflen);
9417 
9418 	if (rval != 0) {
9419 		if (rval == EIO)
9420 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
9421 		else
9422 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9423 	}
9424 	return (rval);
9425 }
9426 
9427 
9428 /*
9429  *    Function: sd_get_write_cache_enabled()
9430  *
9431  * Description: This routine is the driver entry point for determining if
9432  *		write caching is enabled.  It examines the WCE (write cache
9433  *		enable) bits of mode page 8 (MODEPAGE_CACHING).
9434  *
9435  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
9436  *                      structure for this target.
9437  *		is_enabled - pointer to int where write cache enabled state
9438  *		is returned (non-zero -> write cache enabled)
9439  *
9440  *
9441  * Return Code: EIO
9442  *		code returned by sd_send_scsi_MODE_SENSE
9443  *
9444  *     Context: Kernel Thread
9445  *
9446  * NOTE: If ioctl is added to disable write cache, this sequence should
9447  * be followed so that no locking is required for accesses to
9448  * un->un_f_write_cache_enabled:
9449  * 	do mode select to clear wce
9450  * 	do synchronize cache to flush cache
9451  * 	set un->un_f_write_cache_enabled = FALSE
9452  *
9453  * Conversely, an ioctl to enable the write cache should be done
9454  * in this order:
9455  * 	set un->un_f_write_cache_enabled = TRUE
9456  * 	do mode select to set wce
9457  */
9458 
9459 static int
9460 sd_get_write_cache_enabled(sd_ssc_t *ssc, int *is_enabled)
9461 {
9462 	struct mode_caching	*mode_caching_page;
9463 	uchar_t			*header;
9464 	size_t			buflen;
9465 	int			hdrlen;
9466 	int			bd_len;
9467 	int			rval = 0;
9468 	struct sd_lun		*un;
9469 	int			status;
9470 
9471 	ASSERT(ssc != NULL);
9472 	un = ssc->ssc_un;
9473 	ASSERT(un != NULL);
9474 	ASSERT(is_enabled != NULL);
9475 
9476 	/* in case of error, flag as enabled */
9477 	*is_enabled = TRUE;
9478 
9479 	/*
9480 	 * Do a test unit ready, otherwise a mode sense may not work if this
9481 	 * is the first command sent to the device after boot.
9482 	 */
9483 	status = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
9484 
9485 	if (status != 0)
9486 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9487 
9488 	if (un->un_f_cfg_is_atapi == TRUE) {
9489 		hdrlen = MODE_HEADER_LENGTH_GRP2;
9490 	} else {
9491 		hdrlen = MODE_HEADER_LENGTH;
9492 	}
9493 
9494 	/*
9495 	 * Allocate memory for the retrieved mode page and its headers.  Set
9496 	 * a pointer to the page itself.
9497 	 */
9498 	buflen = hdrlen + MODE_BLK_DESC_LENGTH + sizeof (struct mode_caching);
9499 	header = kmem_zalloc(buflen, KM_SLEEP);
9500 
9501 	/* Get the information from the device. */
9502 	if (un->un_f_cfg_is_atapi == TRUE) {
9503 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, header, buflen,
9504 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9505 	} else {
9506 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen,
9507 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9508 	}
9509 
9510 	if (rval != 0) {
9511 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
9512 		    "sd_get_write_cache_enabled: Mode Sense Failed\n");
9513 		goto mode_sense_failed;
9514 	}
9515 
9516 	/*
9517 	 * Determine size of Block Descriptors in order to locate
9518 	 * the mode page data. ATAPI devices return 0, SCSI devices
9519 	 * should return MODE_BLK_DESC_LENGTH.
9520 	 */
9521 	if (un->un_f_cfg_is_atapi == TRUE) {
9522 		struct mode_header_grp2	*mhp;
9523 		mhp	= (struct mode_header_grp2 *)header;
9524 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
9525 	} else {
9526 		bd_len  = ((struct mode_header *)header)->bdesc_length;
9527 	}
9528 
9529 	if (bd_len > MODE_BLK_DESC_LENGTH) {
9530 		/* FMA should make upset complain here */
9531 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, 0,
9532 		    "sd_get_write_cache_enabled: Mode Sense returned invalid "
9533 		    "block descriptor length\n");
9534 		rval = EIO;
9535 		goto mode_sense_failed;
9536 	}
9537 
9538 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
9539 	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
9540 		/* FMA could make upset complain here */
9541 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
9542 		    "sd_get_write_cache_enabled: Mode Sense caching page "
9543 		    "code mismatch %d\n", mode_caching_page->mode_page.code);
9544 		rval = EIO;
9545 		goto mode_sense_failed;
9546 	}
9547 	*is_enabled = mode_caching_page->wce;
9548 
9549 mode_sense_failed:
9550 	if (rval == 0) {
9551 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
9552 	} else if (rval == EIO) {
9553 		/*
9554 		 * Some disks do not support mode sense(6), we
9555 		 * should ignore this kind of error(sense key is
9556 		 * 0x5 - illegal request).
9557 		 */
9558 		uint8_t *sensep;
9559 		int senlen;
9560 
9561 		sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf;
9562 		senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen -
9563 		    ssc->ssc_uscsi_cmd->uscsi_rqresid);
9564 
9565 		if (senlen > 0 &&
9566 		    scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) {
9567 			sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE);
9568 		} else {
9569 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
9570 		}
9571 	} else {
9572 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9573 	}
9574 	kmem_free(header, buflen);
9575 	return (rval);
9576 }
9577 
9578 /*
9579  *    Function: sd_get_nv_sup()
9580  *
9581  * Description: This routine is the driver entry point for
9582  * determining whether non-volatile cache is supported. This
9583  * determination process works as follows:
9584  *
9585  * 1. sd first queries sd.conf on whether
9586  * suppress_cache_flush bit is set for this device.
9587  *
9588  * 2. if not there, then queries the internal disk table.
9589  *
9590  * 3. if either sd.conf or internal disk table specifies
9591  * cache flush be suppressed, we don't bother checking
9592  * NV_SUP bit.
9593  *
9594  * If SUPPRESS_CACHE_FLUSH bit is not set to 1, sd queries
9595  * the optional INQUIRY VPD page 0x86. If the device
9596  * supports VPD page 0x86, sd examines the NV_SUP
9597  * (non-volatile cache support) bit in the INQUIRY VPD page
9598  * 0x86:
9599  *   o If NV_SUP bit is set, sd assumes the device has a
9600  *   non-volatile cache and set the
9601  *   un_f_sync_nv_supported to TRUE.
9602  *   o Otherwise cache is not non-volatile,
9603  *   un_f_sync_nv_supported is set to FALSE.
9604  *
9605  * Arguments: un - driver soft state (unit) structure
9606  *
9607  * Return Code:
9608  *
9609  *     Context: Kernel Thread
9610  */
9611 
9612 static void
9613 sd_get_nv_sup(sd_ssc_t *ssc)
9614 {
9615 	int		rval		= 0;
9616 	uchar_t		*inq86		= NULL;
9617 	size_t		inq86_len	= MAX_INQUIRY_SIZE;
9618 	size_t		inq86_resid	= 0;
9619 	struct		dk_callback *dkc;
9620 	struct sd_lun	*un;
9621 
9622 	ASSERT(ssc != NULL);
9623 	un = ssc->ssc_un;
9624 	ASSERT(un != NULL);
9625 
9626 	mutex_enter(SD_MUTEX(un));
9627 
9628 	/*
9629 	 * Be conservative on the device's support of
9630 	 * SYNC_NV bit: un_f_sync_nv_supported is
9631 	 * initialized to be false.
9632 	 */
9633 	un->un_f_sync_nv_supported = FALSE;
9634 
9635 	/*
9636 	 * If either sd.conf or internal disk table
9637 	 * specifies cache flush be suppressed, then
9638 	 * we don't bother checking NV_SUP bit.
9639 	 */
9640 	if (un->un_f_suppress_cache_flush == TRUE) {
9641 		mutex_exit(SD_MUTEX(un));
9642 		return;
9643 	}
9644 
9645 	if (sd_check_vpd_page_support(ssc) == 0 &&
9646 	    un->un_vpd_page_mask & SD_VPD_EXTENDED_DATA_PG) {
9647 		mutex_exit(SD_MUTEX(un));
9648 		/* collect page 86 data if available */
9649 		inq86 = kmem_zalloc(inq86_len, KM_SLEEP);
9650 
9651 		rval = sd_send_scsi_INQUIRY(ssc, inq86, inq86_len,
9652 		    0x01, 0x86, &inq86_resid);
9653 
9654 		if (rval == 0 && (inq86_len - inq86_resid > 6)) {
9655 			SD_TRACE(SD_LOG_COMMON, un,
9656 			    "sd_get_nv_sup: \
9657 			    successfully get VPD page: %x \
9658 			    PAGE LENGTH: %x BYTE 6: %x\n",
9659 			    inq86[1], inq86[3], inq86[6]);
9660 
9661 			mutex_enter(SD_MUTEX(un));
9662 			/*
9663 			 * check the value of NV_SUP bit: only if the device
9664 			 * reports NV_SUP bit to be 1, the
9665 			 * un_f_sync_nv_supported bit will be set to true.
9666 			 */
9667 			if (inq86[6] & SD_VPD_NV_SUP) {
9668 				un->un_f_sync_nv_supported = TRUE;
9669 			}
9670 			mutex_exit(SD_MUTEX(un));
9671 		} else if (rval != 0) {
9672 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9673 		}
9674 
9675 		kmem_free(inq86, inq86_len);
9676 	} else {
9677 		mutex_exit(SD_MUTEX(un));
9678 	}
9679 
9680 	/*
9681 	 * Send a SYNC CACHE command to check whether
9682 	 * SYNC_NV bit is supported. This command should have
9683 	 * un_f_sync_nv_supported set to correct value.
9684 	 */
9685 	mutex_enter(SD_MUTEX(un));
9686 	if (un->un_f_sync_nv_supported) {
9687 		mutex_exit(SD_MUTEX(un));
9688 		dkc = kmem_zalloc(sizeof (struct dk_callback), KM_SLEEP);
9689 		dkc->dkc_flag = FLUSH_VOLATILE;
9690 		(void) sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc);
9691 
9692 		/*
9693 		 * Send a TEST UNIT READY command to the device. This should
9694 		 * clear any outstanding UNIT ATTENTION that may be present.
9695 		 */
9696 		rval = sd_send_scsi_TEST_UNIT_READY(ssc, SD_DONT_RETRY_TUR);
9697 		if (rval != 0)
9698 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9699 
9700 		kmem_free(dkc, sizeof (struct dk_callback));
9701 	} else {
9702 		mutex_exit(SD_MUTEX(un));
9703 	}
9704 
9705 	SD_TRACE(SD_LOG_COMMON, un, "sd_get_nv_sup: \
9706 	    un_f_suppress_cache_flush is set to %d\n",
9707 	    un->un_f_suppress_cache_flush);
9708 }
9709 
9710 /*
9711  *    Function: sd_make_device
9712  *
9713  * Description: Utility routine to return the Solaris device number from
9714  *		the data in the device's dev_info structure.
9715  *
9716  * Return Code: The Solaris device number
9717  *
9718  *     Context: Any
9719  */
9720 
9721 static dev_t
9722 sd_make_device(dev_info_t *devi)
9723 {
9724 	return (makedevice(ddi_driver_major(devi),
9725 	    ddi_get_instance(devi) << SDUNIT_SHIFT));
9726 }
9727 
9728 
9729 /*
9730  *    Function: sd_pm_entry
9731  *
9732  * Description: Called at the start of a new command to manage power
9733  *		and busy status of a device. This includes determining whether
9734  *		the current power state of the device is sufficient for
9735  *		performing the command or whether it must be changed.
9736  *		The PM framework is notified appropriately.
9737  *		Only with a return status of DDI_SUCCESS will the
9738  *		component be busy to the framework.
9739  *
9740  *		All callers of sd_pm_entry must check the return status
9741  *		and only call sd_pm_exit it it was DDI_SUCCESS. A status
9742  *		of DDI_FAILURE indicates the device failed to power up.
9743  *		In this case un_pm_count has been adjusted so the result
9744  *		on exit is still powered down, ie. count is less than 0.
9745  *		Calling sd_pm_exit with this count value hits an ASSERT.
9746  *
9747  * Return Code: DDI_SUCCESS or DDI_FAILURE
9748  *
9749  *     Context: Kernel thread context.
9750  */
9751 
9752 static int
9753 sd_pm_entry(struct sd_lun *un)
9754 {
9755 	int return_status = DDI_SUCCESS;
9756 
9757 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9758 	ASSERT(!mutex_owned(&un->un_pm_mutex));
9759 
9760 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: entry\n");
9761 
9762 	if (un->un_f_pm_is_enabled == FALSE) {
9763 		SD_TRACE(SD_LOG_IO_PM, un,
9764 		    "sd_pm_entry: exiting, PM not enabled\n");
9765 		return (return_status);
9766 	}
9767 
9768 	/*
9769 	 * Just increment a counter if PM is enabled. On the transition from
9770 	 * 0 ==> 1, mark the device as busy.  The iodone side will decrement
9771 	 * the count with each IO and mark the device as idle when the count
9772 	 * hits 0.
9773 	 *
9774 	 * If the count is less than 0 the device is powered down. If a powered
9775 	 * down device is successfully powered up then the count must be
9776 	 * incremented to reflect the power up. Note that it'll get incremented
9777 	 * a second time to become busy.
9778 	 *
9779 	 * Because the following has the potential to change the device state
9780 	 * and must release the un_pm_mutex to do so, only one thread can be
9781 	 * allowed through at a time.
9782 	 */
9783 
9784 	mutex_enter(&un->un_pm_mutex);
9785 	while (un->un_pm_busy == TRUE) {
9786 		cv_wait(&un->un_pm_busy_cv, &un->un_pm_mutex);
9787 	}
9788 	un->un_pm_busy = TRUE;
9789 
9790 	if (un->un_pm_count < 1) {
9791 
9792 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: busy component\n");
9793 
9794 		/*
9795 		 * Indicate we are now busy so the framework won't attempt to
9796 		 * power down the device. This call will only fail if either
9797 		 * we passed a bad component number or the device has no
9798 		 * components. Neither of these should ever happen.
9799 		 */
9800 		mutex_exit(&un->un_pm_mutex);
9801 		return_status = pm_busy_component(SD_DEVINFO(un), 0);
9802 		ASSERT(return_status == DDI_SUCCESS);
9803 
9804 		mutex_enter(&un->un_pm_mutex);
9805 
9806 		if (un->un_pm_count < 0) {
9807 			mutex_exit(&un->un_pm_mutex);
9808 
9809 			SD_TRACE(SD_LOG_IO_PM, un,
9810 			    "sd_pm_entry: power up component\n");
9811 
9812 			/*
9813 			 * pm_raise_power will cause sdpower to be called
9814 			 * which brings the device power level to the
9815 			 * desired state, If successful, un_pm_count and
9816 			 * un_power_level will be updated appropriately.
9817 			 */
9818 			return_status = pm_raise_power(SD_DEVINFO(un), 0,
9819 			    SD_PM_STATE_ACTIVE(un));
9820 
9821 			mutex_enter(&un->un_pm_mutex);
9822 
9823 			if (return_status != DDI_SUCCESS) {
9824 				/*
9825 				 * Power up failed.
9826 				 * Idle the device and adjust the count
9827 				 * so the result on exit is that we're
9828 				 * still powered down, ie. count is less than 0.
9829 				 */
9830 				SD_TRACE(SD_LOG_IO_PM, un,
9831 				    "sd_pm_entry: power up failed,"
9832 				    " idle the component\n");
9833 
9834 				(void) pm_idle_component(SD_DEVINFO(un), 0);
9835 				un->un_pm_count--;
9836 			} else {
9837 				/*
9838 				 * Device is powered up, verify the
9839 				 * count is non-negative.
9840 				 * This is debug only.
9841 				 */
9842 				ASSERT(un->un_pm_count == 0);
9843 			}
9844 		}
9845 
9846 		if (return_status == DDI_SUCCESS) {
9847 			/*
9848 			 * For performance, now that the device has been tagged
9849 			 * as busy, and it's known to be powered up, update the
9850 			 * chain types to use jump tables that do not include
9851 			 * pm. This significantly lowers the overhead and
9852 			 * therefore improves performance.
9853 			 */
9854 
9855 			mutex_exit(&un->un_pm_mutex);
9856 			mutex_enter(SD_MUTEX(un));
9857 			SD_TRACE(SD_LOG_IO_PM, un,
9858 			    "sd_pm_entry: changing uscsi_chain_type from %d\n",
9859 			    un->un_uscsi_chain_type);
9860 
9861 			if (un->un_f_non_devbsize_supported) {
9862 				un->un_buf_chain_type =
9863 				    SD_CHAIN_INFO_RMMEDIA_NO_PM;
9864 			} else {
9865 				un->un_buf_chain_type =
9866 				    SD_CHAIN_INFO_DISK_NO_PM;
9867 			}
9868 			un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
9869 
9870 			SD_TRACE(SD_LOG_IO_PM, un,
9871 			    "             changed  uscsi_chain_type to   %d\n",
9872 			    un->un_uscsi_chain_type);
9873 			mutex_exit(SD_MUTEX(un));
9874 			mutex_enter(&un->un_pm_mutex);
9875 
9876 			if (un->un_pm_idle_timeid == NULL) {
9877 				/* 300 ms. */
9878 				un->un_pm_idle_timeid =
9879 				    timeout(sd_pm_idletimeout_handler, un,
9880 				    (drv_usectohz((clock_t)300000)));
9881 				/*
9882 				 * Include an extra call to busy which keeps the
9883 				 * device busy with-respect-to the PM layer
9884 				 * until the timer fires, at which time it'll
9885 				 * get the extra idle call.
9886 				 */
9887 				(void) pm_busy_component(SD_DEVINFO(un), 0);
9888 			}
9889 		}
9890 	}
9891 	un->un_pm_busy = FALSE;
9892 	/* Next... */
9893 	cv_signal(&un->un_pm_busy_cv);
9894 
9895 	un->un_pm_count++;
9896 
9897 	SD_TRACE(SD_LOG_IO_PM, un,
9898 	    "sd_pm_entry: exiting, un_pm_count = %d\n", un->un_pm_count);
9899 
9900 	mutex_exit(&un->un_pm_mutex);
9901 
9902 	return (return_status);
9903 }
9904 
9905 
9906 /*
9907  *    Function: sd_pm_exit
9908  *
9909  * Description: Called at the completion of a command to manage busy
9910  *		status for the device. If the device becomes idle the
9911  *		PM framework is notified.
9912  *
9913  *     Context: Kernel thread context
9914  */
9915 
9916 static void
9917 sd_pm_exit(struct sd_lun *un)
9918 {
9919 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9920 	ASSERT(!mutex_owned(&un->un_pm_mutex));
9921 
9922 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: entry\n");
9923 
9924 	/*
9925 	 * After attach the following flag is only read, so don't
9926 	 * take the penalty of acquiring a mutex for it.
9927 	 */
9928 	if (un->un_f_pm_is_enabled == TRUE) {
9929 
9930 		mutex_enter(&un->un_pm_mutex);
9931 		un->un_pm_count--;
9932 
9933 		SD_TRACE(SD_LOG_IO_PM, un,
9934 		    "sd_pm_exit: un_pm_count = %d\n", un->un_pm_count);
9935 
9936 		ASSERT(un->un_pm_count >= 0);
9937 		if (un->un_pm_count == 0) {
9938 			mutex_exit(&un->un_pm_mutex);
9939 
9940 			SD_TRACE(SD_LOG_IO_PM, un,
9941 			    "sd_pm_exit: idle component\n");
9942 
9943 			(void) pm_idle_component(SD_DEVINFO(un), 0);
9944 
9945 		} else {
9946 			mutex_exit(&un->un_pm_mutex);
9947 		}
9948 	}
9949 
9950 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: exiting\n");
9951 }
9952 
9953 
9954 /*
9955  *    Function: sdopen
9956  *
9957  * Description: Driver's open(9e) entry point function.
9958  *
9959  *   Arguments: dev_i   - pointer to device number
9960  *		flag    - how to open file (FEXCL, FNDELAY, FREAD, FWRITE)
9961  *		otyp    - open type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
9962  *		cred_p  - user credential pointer
9963  *
9964  * Return Code: EINVAL
9965  *		ENXIO
9966  *		EIO
9967  *		EROFS
9968  *		EBUSY
9969  *
9970  *     Context: Kernel thread context
9971  */
9972 /* ARGSUSED */
9973 static int
9974 sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p)
9975 {
9976 	struct sd_lun	*un;
9977 	int		nodelay;
9978 	int		part;
9979 	uint64_t	partmask;
9980 	int		instance;
9981 	dev_t		dev;
9982 	int		rval = EIO;
9983 	diskaddr_t	nblks = 0;
9984 	diskaddr_t	label_cap;
9985 
9986 	/* Validate the open type */
9987 	if (otyp >= OTYPCNT) {
9988 		return (EINVAL);
9989 	}
9990 
9991 	dev = *dev_p;
9992 	instance = SDUNIT(dev);
9993 	mutex_enter(&sd_detach_mutex);
9994 
9995 	/*
9996 	 * Fail the open if there is no softstate for the instance, or
9997 	 * if another thread somewhere is trying to detach the instance.
9998 	 */
9999 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
10000 	    (un->un_detach_count != 0)) {
10001 		mutex_exit(&sd_detach_mutex);
10002 		/*
10003 		 * The probe cache only needs to be cleared when open (9e) fails
10004 		 * with ENXIO (4238046).
10005 		 */
10006 		/*
10007 		 * un-conditionally clearing probe cache is ok with
10008 		 * separate sd/ssd binaries
10009 		 * x86 platform can be an issue with both parallel
10010 		 * and fibre in 1 binary
10011 		 */
10012 		sd_scsi_clear_probe_cache();
10013 		return (ENXIO);
10014 	}
10015 
10016 	/*
10017 	 * The un_layer_count is to prevent another thread in specfs from
10018 	 * trying to detach the instance, which can happen when we are
10019 	 * called from a higher-layer driver instead of thru specfs.
10020 	 * This will not be needed when DDI provides a layered driver
10021 	 * interface that allows specfs to know that an instance is in
10022 	 * use by a layered driver & should not be detached.
10023 	 *
10024 	 * Note: the semantics for layered driver opens are exactly one
10025 	 * close for every open.
10026 	 */
10027 	if (otyp == OTYP_LYR) {
10028 		un->un_layer_count++;
10029 	}
10030 
10031 	/*
10032 	 * Keep a count of the current # of opens in progress. This is because
10033 	 * some layered drivers try to call us as a regular open. This can
10034 	 * cause problems that we cannot prevent, however by keeping this count
10035 	 * we can at least keep our open and detach routines from racing against
10036 	 * each other under such conditions.
10037 	 */
10038 	un->un_opens_in_progress++;
10039 	mutex_exit(&sd_detach_mutex);
10040 
10041 	nodelay  = (flag & (FNDELAY | FNONBLOCK));
10042 	part	 = SDPART(dev);
10043 	partmask = 1 << part;
10044 
10045 	/*
10046 	 * We use a semaphore here in order to serialize
10047 	 * open and close requests on the device.
10048 	 */
10049 	sema_p(&un->un_semoclose);
10050 
10051 	mutex_enter(SD_MUTEX(un));
10052 
10053 	/*
10054 	 * All device accesses go thru sdstrategy() where we check
10055 	 * on suspend status but there could be a scsi_poll command,
10056 	 * which bypasses sdstrategy(), so we need to check pm
10057 	 * status.
10058 	 */
10059 
10060 	if (!nodelay) {
10061 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10062 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10063 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10064 		}
10065 
10066 		mutex_exit(SD_MUTEX(un));
10067 		if (sd_pm_entry(un) != DDI_SUCCESS) {
10068 			rval = EIO;
10069 			SD_ERROR(SD_LOG_OPEN_CLOSE, un,
10070 			    "sdopen: sd_pm_entry failed\n");
10071 			goto open_failed_with_pm;
10072 		}
10073 		mutex_enter(SD_MUTEX(un));
10074 	}
10075 
10076 	/* check for previous exclusive open */
10077 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: un=%p\n", (void *)un);
10078 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
10079 	    "sdopen: exclopen=%x, flag=%x, regopen=%x\n",
10080 	    un->un_exclopen, flag, un->un_ocmap.regopen[otyp]);
10081 
10082 	if (un->un_exclopen & (partmask)) {
10083 		goto excl_open_fail;
10084 	}
10085 
10086 	if (flag & FEXCL) {
10087 		int i;
10088 		if (un->un_ocmap.lyropen[part]) {
10089 			goto excl_open_fail;
10090 		}
10091 		for (i = 0; i < (OTYPCNT - 1); i++) {
10092 			if (un->un_ocmap.regopen[i] & (partmask)) {
10093 				goto excl_open_fail;
10094 			}
10095 		}
10096 	}
10097 
10098 	/*
10099 	 * Check the write permission if this is a removable media device,
10100 	 * NDELAY has not been set, and writable permission is requested.
10101 	 *
10102 	 * Note: If NDELAY was set and this is write-protected media the WRITE
10103 	 * attempt will fail with EIO as part of the I/O processing. This is a
10104 	 * more permissive implementation that allows the open to succeed and
10105 	 * WRITE attempts to fail when appropriate.
10106 	 */
10107 	if (un->un_f_chk_wp_open) {
10108 		if ((flag & FWRITE) && (!nodelay)) {
10109 			mutex_exit(SD_MUTEX(un));
10110 			/*
10111 			 * Defer the check for write permission on writable
10112 			 * DVD drive till sdstrategy and will not fail open even
10113 			 * if FWRITE is set as the device can be writable
10114 			 * depending upon the media and the media can change
10115 			 * after the call to open().
10116 			 */
10117 			if (un->un_f_dvdram_writable_device == FALSE) {
10118 				if (ISCD(un) || sr_check_wp(dev)) {
10119 				rval = EROFS;
10120 				mutex_enter(SD_MUTEX(un));
10121 				SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10122 				    "write to cd or write protected media\n");
10123 				goto open_fail;
10124 				}
10125 			}
10126 			mutex_enter(SD_MUTEX(un));
10127 		}
10128 	}
10129 
10130 	/*
10131 	 * If opening in NDELAY/NONBLOCK mode, just return.
10132 	 * Check if disk is ready and has a valid geometry later.
10133 	 */
10134 	if (!nodelay) {
10135 		sd_ssc_t	*ssc;
10136 
10137 		mutex_exit(SD_MUTEX(un));
10138 		ssc = sd_ssc_init(un);
10139 		rval = sd_ready_and_valid(ssc, part);
10140 		sd_ssc_fini(ssc);
10141 		mutex_enter(SD_MUTEX(un));
10142 		/*
10143 		 * Fail if device is not ready or if the number of disk
10144 		 * blocks is zero or negative for non CD devices.
10145 		 */
10146 
10147 		nblks = 0;
10148 
10149 		if (rval == SD_READY_VALID && (!ISCD(un))) {
10150 			/* if cmlb_partinfo fails, nblks remains 0 */
10151 			mutex_exit(SD_MUTEX(un));
10152 			(void) cmlb_partinfo(un->un_cmlbhandle, part, &nblks,
10153 			    NULL, NULL, NULL, (void *)SD_PATH_DIRECT);
10154 			mutex_enter(SD_MUTEX(un));
10155 		}
10156 
10157 		if ((rval != SD_READY_VALID) ||
10158 		    (!ISCD(un) && nblks <= 0)) {
10159 			rval = un->un_f_has_removable_media ? ENXIO : EIO;
10160 			SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10161 			    "device not ready or invalid disk block value\n");
10162 			goto open_fail;
10163 		}
10164 #if defined(__i386) || defined(__amd64)
10165 	} else {
10166 		uchar_t *cp;
10167 		/*
10168 		 * x86 requires special nodelay handling, so that p0 is
10169 		 * always defined and accessible.
10170 		 * Invalidate geometry only if device is not already open.
10171 		 */
10172 		cp = &un->un_ocmap.chkd[0];
10173 		while (cp < &un->un_ocmap.chkd[OCSIZE]) {
10174 			if (*cp != (uchar_t)0) {
10175 				break;
10176 			}
10177 			cp++;
10178 		}
10179 		if (cp == &un->un_ocmap.chkd[OCSIZE]) {
10180 			mutex_exit(SD_MUTEX(un));
10181 			cmlb_invalidate(un->un_cmlbhandle,
10182 			    (void *)SD_PATH_DIRECT);
10183 			mutex_enter(SD_MUTEX(un));
10184 		}
10185 
10186 #endif
10187 	}
10188 
10189 	if (otyp == OTYP_LYR) {
10190 		un->un_ocmap.lyropen[part]++;
10191 	} else {
10192 		un->un_ocmap.regopen[otyp] |= partmask;
10193 	}
10194 
10195 	/* Set up open and exclusive open flags */
10196 	if (flag & FEXCL) {
10197 		un->un_exclopen |= (partmask);
10198 	}
10199 
10200 	/*
10201 	 * If the lun is EFI labeled and lun capacity is greater than the
10202 	 * capacity contained in the label, log a sys-event to notify the
10203 	 * interested module.
10204 	 * To avoid an infinite loop of logging sys-event, we only log the
10205 	 * event when the lun is not opened in NDELAY mode. The event handler
10206 	 * should open the lun in NDELAY mode.
10207 	 */
10208 	if (!(flag & FNDELAY)) {
10209 		mutex_exit(SD_MUTEX(un));
10210 		if (cmlb_efi_label_capacity(un->un_cmlbhandle, &label_cap,
10211 		    (void*)SD_PATH_DIRECT) == 0) {
10212 			mutex_enter(SD_MUTEX(un));
10213 			if (un->un_f_blockcount_is_valid &&
10214 			    un->un_blockcount > label_cap) {
10215 				mutex_exit(SD_MUTEX(un));
10216 				sd_log_lun_expansion_event(un,
10217 				    (nodelay ? KM_NOSLEEP : KM_SLEEP));
10218 				mutex_enter(SD_MUTEX(un));
10219 			}
10220 		} else {
10221 			mutex_enter(SD_MUTEX(un));
10222 		}
10223 	}
10224 
10225 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10226 	    "open of part %d type %d\n", part, otyp);
10227 
10228 	mutex_exit(SD_MUTEX(un));
10229 	if (!nodelay) {
10230 		sd_pm_exit(un);
10231 	}
10232 
10233 	sema_v(&un->un_semoclose);
10234 
10235 	mutex_enter(&sd_detach_mutex);
10236 	un->un_opens_in_progress--;
10237 	mutex_exit(&sd_detach_mutex);
10238 
10239 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: exit success\n");
10240 	return (DDI_SUCCESS);
10241 
10242 excl_open_fail:
10243 	SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: fail exclusive open\n");
10244 	rval = EBUSY;
10245 
10246 open_fail:
10247 	mutex_exit(SD_MUTEX(un));
10248 
10249 	/*
10250 	 * On a failed open we must exit the pm management.
10251 	 */
10252 	if (!nodelay) {
10253 		sd_pm_exit(un);
10254 	}
10255 open_failed_with_pm:
10256 	sema_v(&un->un_semoclose);
10257 
10258 	mutex_enter(&sd_detach_mutex);
10259 	un->un_opens_in_progress--;
10260 	if (otyp == OTYP_LYR) {
10261 		un->un_layer_count--;
10262 	}
10263 	mutex_exit(&sd_detach_mutex);
10264 
10265 	return (rval);
10266 }
10267 
10268 
10269 /*
10270  *    Function: sdclose
10271  *
10272  * Description: Driver's close(9e) entry point function.
10273  *
10274  *   Arguments: dev    - device number
10275  *		flag   - file status flag, informational only
10276  *		otyp   - close type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
10277  *		cred_p - user credential pointer
10278  *
10279  * Return Code: ENXIO
10280  *
10281  *     Context: Kernel thread context
10282  */
10283 /* ARGSUSED */
10284 static int
10285 sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p)
10286 {
10287 	struct sd_lun	*un;
10288 	uchar_t		*cp;
10289 	int		part;
10290 	int		nodelay;
10291 	int		rval = 0;
10292 
10293 	/* Validate the open type */
10294 	if (otyp >= OTYPCNT) {
10295 		return (ENXIO);
10296 	}
10297 
10298 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10299 		return (ENXIO);
10300 	}
10301 
10302 	part = SDPART(dev);
10303 	nodelay = flag & (FNDELAY | FNONBLOCK);
10304 
10305 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
10306 	    "sdclose: close of part %d type %d\n", part, otyp);
10307 
10308 	/*
10309 	 * We use a semaphore here in order to serialize
10310 	 * open and close requests on the device.
10311 	 */
10312 	sema_p(&un->un_semoclose);
10313 
10314 	mutex_enter(SD_MUTEX(un));
10315 
10316 	/* Don't proceed if power is being changed. */
10317 	while (un->un_state == SD_STATE_PM_CHANGING) {
10318 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10319 	}
10320 
10321 	if (un->un_exclopen & (1 << part)) {
10322 		un->un_exclopen &= ~(1 << part);
10323 	}
10324 
10325 	/* Update the open partition map */
10326 	if (otyp == OTYP_LYR) {
10327 		un->un_ocmap.lyropen[part] -= 1;
10328 	} else {
10329 		un->un_ocmap.regopen[otyp] &= ~(1 << part);
10330 	}
10331 
10332 	cp = &un->un_ocmap.chkd[0];
10333 	while (cp < &un->un_ocmap.chkd[OCSIZE]) {
10334 		if (*cp != NULL) {
10335 			break;
10336 		}
10337 		cp++;
10338 	}
10339 
10340 	if (cp == &un->un_ocmap.chkd[OCSIZE]) {
10341 		SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdclose: last close\n");
10342 
10343 		/*
10344 		 * We avoid persistance upon the last close, and set
10345 		 * the throttle back to the maximum.
10346 		 */
10347 		un->un_throttle = un->un_saved_throttle;
10348 
10349 		if (un->un_state == SD_STATE_OFFLINE) {
10350 			if (un->un_f_is_fibre == FALSE) {
10351 				scsi_log(SD_DEVINFO(un), sd_label,
10352 				    CE_WARN, "offline\n");
10353 			}
10354 			mutex_exit(SD_MUTEX(un));
10355 			cmlb_invalidate(un->un_cmlbhandle,
10356 			    (void *)SD_PATH_DIRECT);
10357 			mutex_enter(SD_MUTEX(un));
10358 
10359 		} else {
10360 			/*
10361 			 * Flush any outstanding writes in NVRAM cache.
10362 			 * Note: SYNCHRONIZE CACHE is an optional SCSI-2
10363 			 * cmd, it may not work for non-Pluto devices.
10364 			 * SYNCHRONIZE CACHE is not required for removables,
10365 			 * except DVD-RAM drives.
10366 			 *
10367 			 * Also note: because SYNCHRONIZE CACHE is currently
10368 			 * the only command issued here that requires the
10369 			 * drive be powered up, only do the power up before
10370 			 * sending the Sync Cache command. If additional
10371 			 * commands are added which require a powered up
10372 			 * drive, the following sequence may have to change.
10373 			 *
10374 			 * And finally, note that parallel SCSI on SPARC
10375 			 * only issues a Sync Cache to DVD-RAM, a newly
10376 			 * supported device.
10377 			 */
10378 #if defined(__i386) || defined(__amd64)
10379 			if ((un->un_f_sync_cache_supported &&
10380 			    un->un_f_sync_cache_required) ||
10381 			    un->un_f_dvdram_writable_device == TRUE) {
10382 #else
10383 			if (un->un_f_dvdram_writable_device == TRUE) {
10384 #endif
10385 				mutex_exit(SD_MUTEX(un));
10386 				if (sd_pm_entry(un) == DDI_SUCCESS) {
10387 					rval =
10388 					    sd_send_scsi_SYNCHRONIZE_CACHE(un,
10389 					    NULL);
10390 					/* ignore error if not supported */
10391 					if (rval == ENOTSUP) {
10392 						rval = 0;
10393 					} else if (rval != 0) {
10394 						rval = EIO;
10395 					}
10396 					sd_pm_exit(un);
10397 				} else {
10398 					rval = EIO;
10399 				}
10400 				mutex_enter(SD_MUTEX(un));
10401 			}
10402 
10403 			/*
10404 			 * For devices which supports DOOR_LOCK, send an ALLOW
10405 			 * MEDIA REMOVAL command, but don't get upset if it
10406 			 * fails. We need to raise the power of the drive before
10407 			 * we can call sd_send_scsi_DOORLOCK()
10408 			 */
10409 			if (un->un_f_doorlock_supported) {
10410 				mutex_exit(SD_MUTEX(un));
10411 				if (sd_pm_entry(un) == DDI_SUCCESS) {
10412 					sd_ssc_t	*ssc;
10413 
10414 					ssc = sd_ssc_init(un);
10415 					rval = sd_send_scsi_DOORLOCK(ssc,
10416 					    SD_REMOVAL_ALLOW, SD_PATH_DIRECT);
10417 					if (rval != 0)
10418 						sd_ssc_assessment(ssc,
10419 						    SD_FMT_IGNORE);
10420 					sd_ssc_fini(ssc);
10421 
10422 					sd_pm_exit(un);
10423 					if (ISCD(un) && (rval != 0) &&
10424 					    (nodelay != 0)) {
10425 						rval = ENXIO;
10426 					}
10427 				} else {
10428 					rval = EIO;
10429 				}
10430 				mutex_enter(SD_MUTEX(un));
10431 			}
10432 
10433 			/*
10434 			 * If a device has removable media, invalidate all
10435 			 * parameters related to media, such as geometry,
10436 			 * blocksize, and blockcount.
10437 			 */
10438 			if (un->un_f_has_removable_media) {
10439 				sr_ejected(un);
10440 			}
10441 
10442 			/*
10443 			 * Destroy the cache (if it exists) which was
10444 			 * allocated for the write maps since this is
10445 			 * the last close for this media.
10446 			 */
10447 			if (un->un_wm_cache) {
10448 				/*
10449 				 * Check if there are pending commands.
10450 				 * and if there are give a warning and
10451 				 * do not destroy the cache.
10452 				 */
10453 				if (un->un_ncmds_in_driver > 0) {
10454 					scsi_log(SD_DEVINFO(un),
10455 					    sd_label, CE_WARN,
10456 					    "Unable to clean up memory "
10457 					    "because of pending I/O\n");
10458 				} else {
10459 					kmem_cache_destroy(
10460 					    un->un_wm_cache);
10461 					un->un_wm_cache = NULL;
10462 				}
10463 			}
10464 		}
10465 	}
10466 
10467 	mutex_exit(SD_MUTEX(un));
10468 	sema_v(&un->un_semoclose);
10469 
10470 	if (otyp == OTYP_LYR) {
10471 		mutex_enter(&sd_detach_mutex);
10472 		/*
10473 		 * The detach routine may run when the layer count
10474 		 * drops to zero.
10475 		 */
10476 		un->un_layer_count--;
10477 		mutex_exit(&sd_detach_mutex);
10478 	}
10479 
10480 	return (rval);
10481 }
10482 
10483 
10484 /*
10485  *    Function: sd_ready_and_valid
10486  *
10487  * Description: Test if device is ready and has a valid geometry.
10488  *
10489  *   Arguments: ssc - sd_ssc_t will contain un
10490  *		un  - driver soft state (unit) structure
10491  *
10492  * Return Code: SD_READY_VALID		ready and valid label
10493  *		SD_NOT_READY_VALID	not ready, no label
10494  *		SD_RESERVED_BY_OTHERS	reservation conflict
10495  *
10496  *     Context: Never called at interrupt context.
10497  */
10498 
10499 static int
10500 sd_ready_and_valid(sd_ssc_t *ssc, int part)
10501 {
10502 	struct sd_errstats	*stp;
10503 	uint64_t		capacity;
10504 	uint_t			lbasize;
10505 	int			rval = SD_READY_VALID;
10506 	char			name_str[48];
10507 	boolean_t		is_valid;
10508 	struct sd_lun		*un;
10509 	int			status;
10510 
10511 	ASSERT(ssc != NULL);
10512 	un = ssc->ssc_un;
10513 	ASSERT(un != NULL);
10514 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10515 
10516 	mutex_enter(SD_MUTEX(un));
10517 	/*
10518 	 * If a device has removable media, we must check if media is
10519 	 * ready when checking if this device is ready and valid.
10520 	 */
10521 	if (un->un_f_has_removable_media) {
10522 		mutex_exit(SD_MUTEX(un));
10523 		status = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
10524 
10525 		if (status != 0) {
10526 			rval = SD_NOT_READY_VALID;
10527 			mutex_enter(SD_MUTEX(un));
10528 
10529 			/* Ignore all failed status for removalbe media */
10530 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10531 
10532 			goto done;
10533 		}
10534 
10535 		is_valid = SD_IS_VALID_LABEL(un);
10536 		mutex_enter(SD_MUTEX(un));
10537 		if (!is_valid ||
10538 		    (un->un_f_blockcount_is_valid == FALSE) ||
10539 		    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
10540 
10541 			/* capacity has to be read every open. */
10542 			mutex_exit(SD_MUTEX(un));
10543 			status = sd_send_scsi_READ_CAPACITY(ssc, &capacity,
10544 			    &lbasize, SD_PATH_DIRECT);
10545 
10546 			if (status != 0) {
10547 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10548 
10549 				cmlb_invalidate(un->un_cmlbhandle,
10550 				    (void *)SD_PATH_DIRECT);
10551 				mutex_enter(SD_MUTEX(un));
10552 				rval = SD_NOT_READY_VALID;
10553 
10554 				goto done;
10555 			} else {
10556 				mutex_enter(SD_MUTEX(un));
10557 				sd_update_block_info(un, lbasize, capacity);
10558 			}
10559 		}
10560 
10561 		/*
10562 		 * Check if the media in the device is writable or not.
10563 		 */
10564 		if (!is_valid && ISCD(un)) {
10565 			sd_check_for_writable_cd(ssc, SD_PATH_DIRECT);
10566 		}
10567 
10568 	} else {
10569 		/*
10570 		 * Do a test unit ready to clear any unit attention from non-cd
10571 		 * devices.
10572 		 */
10573 		mutex_exit(SD_MUTEX(un));
10574 
10575 		status = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
10576 		if (status != 0) {
10577 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10578 		}
10579 
10580 		mutex_enter(SD_MUTEX(un));
10581 	}
10582 
10583 
10584 	/*
10585 	 * If this is a non 512 block device, allocate space for
10586 	 * the wmap cache. This is being done here since every time
10587 	 * a media is changed this routine will be called and the
10588 	 * block size is a function of media rather than device.
10589 	 */
10590 	if ((un->un_f_rmw_type != SD_RMW_TYPE_RETURN_ERROR ||
10591 	    un->un_f_non_devbsize_supported) &&
10592 	    un->un_tgt_blocksize != DEV_BSIZE) {
10593 		if (!(un->un_wm_cache)) {
10594 			(void) snprintf(name_str, sizeof (name_str),
10595 			    "%s%d_cache",
10596 			    ddi_driver_name(SD_DEVINFO(un)),
10597 			    ddi_get_instance(SD_DEVINFO(un)));
10598 			un->un_wm_cache = kmem_cache_create(
10599 			    name_str, sizeof (struct sd_w_map),
10600 			    8, sd_wm_cache_constructor,
10601 			    sd_wm_cache_destructor, NULL,
10602 			    (void *)un, NULL, 0);
10603 			if (!(un->un_wm_cache)) {
10604 				rval = ENOMEM;
10605 				goto done;
10606 			}
10607 		}
10608 	}
10609 
10610 	if (un->un_state == SD_STATE_NORMAL) {
10611 		/*
10612 		 * If the target is not yet ready here (defined by a TUR
10613 		 * failure), invalidate the geometry and print an 'offline'
10614 		 * message. This is a legacy message, as the state of the
10615 		 * target is not actually changed to SD_STATE_OFFLINE.
10616 		 *
10617 		 * If the TUR fails for EACCES (Reservation Conflict),
10618 		 * SD_RESERVED_BY_OTHERS will be returned to indicate
10619 		 * reservation conflict. If the TUR fails for other
10620 		 * reasons, SD_NOT_READY_VALID will be returned.
10621 		 */
10622 		int err;
10623 
10624 		mutex_exit(SD_MUTEX(un));
10625 		err = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
10626 		mutex_enter(SD_MUTEX(un));
10627 
10628 		if (err != 0) {
10629 			mutex_exit(SD_MUTEX(un));
10630 			cmlb_invalidate(un->un_cmlbhandle,
10631 			    (void *)SD_PATH_DIRECT);
10632 			mutex_enter(SD_MUTEX(un));
10633 			if (err == EACCES) {
10634 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10635 				    "reservation conflict\n");
10636 				rval = SD_RESERVED_BY_OTHERS;
10637 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10638 			} else {
10639 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10640 				    "drive offline\n");
10641 				rval = SD_NOT_READY_VALID;
10642 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
10643 			}
10644 			goto done;
10645 		}
10646 	}
10647 
10648 	if (un->un_f_format_in_progress == FALSE) {
10649 		mutex_exit(SD_MUTEX(un));
10650 
10651 		(void) cmlb_validate(un->un_cmlbhandle, 0,
10652 		    (void *)SD_PATH_DIRECT);
10653 		if (cmlb_partinfo(un->un_cmlbhandle, part, NULL, NULL, NULL,
10654 		    NULL, (void *) SD_PATH_DIRECT) != 0) {
10655 			rval = SD_NOT_READY_VALID;
10656 			mutex_enter(SD_MUTEX(un));
10657 
10658 			goto done;
10659 		}
10660 		if (un->un_f_pkstats_enabled) {
10661 			sd_set_pstats(un);
10662 			SD_TRACE(SD_LOG_IO_PARTITION, un,
10663 			    "sd_ready_and_valid: un:0x%p pstats created and "
10664 			    "set\n", un);
10665 		}
10666 		mutex_enter(SD_MUTEX(un));
10667 	}
10668 
10669 	/*
10670 	 * If this device supports DOOR_LOCK command, try and send
10671 	 * this command to PREVENT MEDIA REMOVAL, but don't get upset
10672 	 * if it fails. For a CD, however, it is an error
10673 	 */
10674 	if (un->un_f_doorlock_supported) {
10675 		mutex_exit(SD_MUTEX(un));
10676 		status = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT,
10677 		    SD_PATH_DIRECT);
10678 
10679 		if ((status != 0) && ISCD(un)) {
10680 			rval = SD_NOT_READY_VALID;
10681 			mutex_enter(SD_MUTEX(un));
10682 
10683 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10684 
10685 			goto done;
10686 		} else if (status != 0)
10687 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10688 		mutex_enter(SD_MUTEX(un));
10689 	}
10690 
10691 	/* The state has changed, inform the media watch routines */
10692 	un->un_mediastate = DKIO_INSERTED;
10693 	cv_broadcast(&un->un_state_cv);
10694 	rval = SD_READY_VALID;
10695 
10696 done:
10697 
10698 	/*
10699 	 * Initialize the capacity kstat value, if no media previously
10700 	 * (capacity kstat is 0) and a media has been inserted
10701 	 * (un_blockcount > 0).
10702 	 */
10703 	if (un->un_errstats != NULL) {
10704 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
10705 		if ((stp->sd_capacity.value.ui64 == 0) &&
10706 		    (un->un_f_blockcount_is_valid == TRUE)) {
10707 			stp->sd_capacity.value.ui64 =
10708 			    (uint64_t)((uint64_t)un->un_blockcount *
10709 			    un->un_sys_blocksize);
10710 		}
10711 	}
10712 
10713 	mutex_exit(SD_MUTEX(un));
10714 	return (rval);
10715 }
10716 
10717 
10718 /*
10719  *    Function: sdmin
10720  *
10721  * Description: Routine to limit the size of a data transfer. Used in
10722  *		conjunction with physio(9F).
10723  *
10724  *   Arguments: bp - pointer to the indicated buf(9S) struct.
10725  *
10726  *     Context: Kernel thread context.
10727  */
10728 
10729 static void
10730 sdmin(struct buf *bp)
10731 {
10732 	struct sd_lun	*un;
10733 	int		instance;
10734 
10735 	instance = SDUNIT(bp->b_edev);
10736 
10737 	un = ddi_get_soft_state(sd_state, instance);
10738 	ASSERT(un != NULL);
10739 
10740 	/*
10741 	 * We depend on DMA partial or buf breakup to restrict
10742 	 * IO size if any of them enabled.
10743 	 */
10744 	if (un->un_partial_dma_supported ||
10745 	    un->un_buf_breakup_supported) {
10746 		return;
10747 	}
10748 
10749 	if (bp->b_bcount > un->un_max_xfer_size) {
10750 		bp->b_bcount = un->un_max_xfer_size;
10751 	}
10752 }
10753 
10754 
10755 /*
10756  *    Function: sdread
10757  *
10758  * Description: Driver's read(9e) entry point function.
10759  *
10760  *   Arguments: dev   - device number
10761  *		uio   - structure pointer describing where data is to be stored
10762  *			in user's space
10763  *		cred_p  - user credential pointer
10764  *
10765  * Return Code: ENXIO
10766  *		EIO
10767  *		EINVAL
10768  *		value returned by physio
10769  *
10770  *     Context: Kernel thread context.
10771  */
10772 /* ARGSUSED */
10773 static int
10774 sdread(dev_t dev, struct uio *uio, cred_t *cred_p)
10775 {
10776 	struct sd_lun	*un = NULL;
10777 	int		secmask;
10778 	int		err = 0;
10779 	sd_ssc_t	*ssc;
10780 
10781 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10782 		return (ENXIO);
10783 	}
10784 
10785 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10786 
10787 
10788 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
10789 		mutex_enter(SD_MUTEX(un));
10790 		/*
10791 		 * Because the call to sd_ready_and_valid will issue I/O we
10792 		 * must wait here if either the device is suspended or
10793 		 * if it's power level is changing.
10794 		 */
10795 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10796 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10797 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10798 		}
10799 		un->un_ncmds_in_driver++;
10800 		mutex_exit(SD_MUTEX(un));
10801 
10802 		/* Initialize sd_ssc_t for internal uscsi commands */
10803 		ssc = sd_ssc_init(un);
10804 		if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) {
10805 			err = EIO;
10806 		} else {
10807 			err = 0;
10808 		}
10809 		sd_ssc_fini(ssc);
10810 
10811 		mutex_enter(SD_MUTEX(un));
10812 		un->un_ncmds_in_driver--;
10813 		ASSERT(un->un_ncmds_in_driver >= 0);
10814 		mutex_exit(SD_MUTEX(un));
10815 		if (err != 0)
10816 			return (err);
10817 	}
10818 
10819 	/*
10820 	 * Read requests are restricted to multiples of the system block size.
10821 	 */
10822 	if (un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR)
10823 		secmask = un->un_tgt_blocksize - 1;
10824 	else
10825 		secmask = DEV_BSIZE - 1;
10826 
10827 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10828 		SD_ERROR(SD_LOG_READ_WRITE, un,
10829 		    "sdread: file offset not modulo %d\n",
10830 		    secmask + 1);
10831 		err = EINVAL;
10832 	} else if (uio->uio_iov->iov_len & (secmask)) {
10833 		SD_ERROR(SD_LOG_READ_WRITE, un,
10834 		    "sdread: transfer length not modulo %d\n",
10835 		    secmask + 1);
10836 		err = EINVAL;
10837 	} else {
10838 		err = physio(sdstrategy, NULL, dev, B_READ, sdmin, uio);
10839 	}
10840 
10841 	return (err);
10842 }
10843 
10844 
10845 /*
10846  *    Function: sdwrite
10847  *
10848  * Description: Driver's write(9e) entry point function.
10849  *
10850  *   Arguments: dev   - device number
10851  *		uio   - structure pointer describing where data is stored in
10852  *			user's space
10853  *		cred_p  - user credential pointer
10854  *
10855  * Return Code: ENXIO
10856  *		EIO
10857  *		EINVAL
10858  *		value returned by physio
10859  *
10860  *     Context: Kernel thread context.
10861  */
10862 /* ARGSUSED */
10863 static int
10864 sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p)
10865 {
10866 	struct sd_lun	*un = NULL;
10867 	int		secmask;
10868 	int		err = 0;
10869 	sd_ssc_t	*ssc;
10870 
10871 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10872 		return (ENXIO);
10873 	}
10874 
10875 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10876 
10877 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
10878 		mutex_enter(SD_MUTEX(un));
10879 		/*
10880 		 * Because the call to sd_ready_and_valid will issue I/O we
10881 		 * must wait here if either the device is suspended or
10882 		 * if it's power level is changing.
10883 		 */
10884 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10885 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10886 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10887 		}
10888 		un->un_ncmds_in_driver++;
10889 		mutex_exit(SD_MUTEX(un));
10890 
10891 		/* Initialize sd_ssc_t for internal uscsi commands */
10892 		ssc = sd_ssc_init(un);
10893 		if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) {
10894 			err = EIO;
10895 		} else {
10896 			err = 0;
10897 		}
10898 		sd_ssc_fini(ssc);
10899 
10900 		mutex_enter(SD_MUTEX(un));
10901 		un->un_ncmds_in_driver--;
10902 		ASSERT(un->un_ncmds_in_driver >= 0);
10903 		mutex_exit(SD_MUTEX(un));
10904 		if (err != 0)
10905 			return (err);
10906 	}
10907 
10908 	/*
10909 	 * Write requests are restricted to multiples of the system block size.
10910 	 */
10911 	if (un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR)
10912 		secmask = un->un_tgt_blocksize - 1;
10913 	else
10914 		secmask = DEV_BSIZE - 1;
10915 
10916 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10917 		SD_ERROR(SD_LOG_READ_WRITE, un,
10918 		    "sdwrite: file offset not modulo %d\n",
10919 		    secmask + 1);
10920 		err = EINVAL;
10921 	} else if (uio->uio_iov->iov_len & (secmask)) {
10922 		SD_ERROR(SD_LOG_READ_WRITE, un,
10923 		    "sdwrite: transfer length not modulo %d\n",
10924 		    secmask + 1);
10925 		err = EINVAL;
10926 	} else {
10927 		err = physio(sdstrategy, NULL, dev, B_WRITE, sdmin, uio);
10928 	}
10929 
10930 	return (err);
10931 }
10932 
10933 
10934 /*
10935  *    Function: sdaread
10936  *
10937  * Description: Driver's aread(9e) entry point function.
10938  *
10939  *   Arguments: dev   - device number
10940  *		aio   - structure pointer describing where data is to be stored
10941  *		cred_p  - user credential pointer
10942  *
10943  * Return Code: ENXIO
10944  *		EIO
10945  *		EINVAL
10946  *		value returned by aphysio
10947  *
10948  *     Context: Kernel thread context.
10949  */
10950 /* ARGSUSED */
10951 static int
10952 sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p)
10953 {
10954 	struct sd_lun	*un = NULL;
10955 	struct uio	*uio = aio->aio_uio;
10956 	int		secmask;
10957 	int		err = 0;
10958 	sd_ssc_t	*ssc;
10959 
10960 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10961 		return (ENXIO);
10962 	}
10963 
10964 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10965 
10966 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
10967 		mutex_enter(SD_MUTEX(un));
10968 		/*
10969 		 * Because the call to sd_ready_and_valid will issue I/O we
10970 		 * must wait here if either the device is suspended or
10971 		 * if it's power level is changing.
10972 		 */
10973 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10974 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10975 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10976 		}
10977 		un->un_ncmds_in_driver++;
10978 		mutex_exit(SD_MUTEX(un));
10979 
10980 		/* Initialize sd_ssc_t for internal uscsi commands */
10981 		ssc = sd_ssc_init(un);
10982 		if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) {
10983 			err = EIO;
10984 		} else {
10985 			err = 0;
10986 		}
10987 		sd_ssc_fini(ssc);
10988 
10989 		mutex_enter(SD_MUTEX(un));
10990 		un->un_ncmds_in_driver--;
10991 		ASSERT(un->un_ncmds_in_driver >= 0);
10992 		mutex_exit(SD_MUTEX(un));
10993 		if (err != 0)
10994 			return (err);
10995 	}
10996 
10997 	/*
10998 	 * Read requests are restricted to multiples of the system block size.
10999 	 */
11000 	if (un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR)
11001 		secmask = un->un_tgt_blocksize - 1;
11002 	else
11003 		secmask = DEV_BSIZE - 1;
11004 
11005 	if (uio->uio_loffset & ((offset_t)(secmask))) {
11006 		SD_ERROR(SD_LOG_READ_WRITE, un,
11007 		    "sdaread: file offset not modulo %d\n",
11008 		    secmask + 1);
11009 		err = EINVAL;
11010 	} else if (uio->uio_iov->iov_len & (secmask)) {
11011 		SD_ERROR(SD_LOG_READ_WRITE, un,
11012 		    "sdaread: transfer length not modulo %d\n",
11013 		    secmask + 1);
11014 		err = EINVAL;
11015 	} else {
11016 		err = aphysio(sdstrategy, anocancel, dev, B_READ, sdmin, aio);
11017 	}
11018 
11019 	return (err);
11020 }
11021 
11022 
11023 /*
11024  *    Function: sdawrite
11025  *
11026  * Description: Driver's awrite(9e) entry point function.
11027  *
11028  *   Arguments: dev   - device number
11029  *		aio   - structure pointer describing where data is stored
11030  *		cred_p  - user credential pointer
11031  *
11032  * Return Code: ENXIO
11033  *		EIO
11034  *		EINVAL
11035  *		value returned by aphysio
11036  *
11037  *     Context: Kernel thread context.
11038  */
11039 /* ARGSUSED */
11040 static int
11041 sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p)
11042 {
11043 	struct sd_lun	*un = NULL;
11044 	struct uio	*uio = aio->aio_uio;
11045 	int		secmask;
11046 	int		err = 0;
11047 	sd_ssc_t	*ssc;
11048 
11049 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
11050 		return (ENXIO);
11051 	}
11052 
11053 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11054 
11055 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
11056 		mutex_enter(SD_MUTEX(un));
11057 		/*
11058 		 * Because the call to sd_ready_and_valid will issue I/O we
11059 		 * must wait here if either the device is suspended or
11060 		 * if it's power level is changing.
11061 		 */
11062 		while ((un->un_state == SD_STATE_SUSPENDED) ||
11063 		    (un->un_state == SD_STATE_PM_CHANGING)) {
11064 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11065 		}
11066 		un->un_ncmds_in_driver++;
11067 		mutex_exit(SD_MUTEX(un));
11068 
11069 		/* Initialize sd_ssc_t for internal uscsi commands */
11070 		ssc = sd_ssc_init(un);
11071 		if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) {
11072 			err = EIO;
11073 		} else {
11074 			err = 0;
11075 		}
11076 		sd_ssc_fini(ssc);
11077 
11078 		mutex_enter(SD_MUTEX(un));
11079 		un->un_ncmds_in_driver--;
11080 		ASSERT(un->un_ncmds_in_driver >= 0);
11081 		mutex_exit(SD_MUTEX(un));
11082 		if (err != 0)
11083 			return (err);
11084 	}
11085 
11086 	/*
11087 	 * Write requests are restricted to multiples of the system block size.
11088 	 */
11089 	if (un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR)
11090 		secmask = un->un_tgt_blocksize - 1;
11091 	else
11092 		secmask = DEV_BSIZE - 1;
11093 
11094 	if (uio->uio_loffset & ((offset_t)(secmask))) {
11095 		SD_ERROR(SD_LOG_READ_WRITE, un,
11096 		    "sdawrite: file offset not modulo %d\n",
11097 		    secmask + 1);
11098 		err = EINVAL;
11099 	} else if (uio->uio_iov->iov_len & (secmask)) {
11100 		SD_ERROR(SD_LOG_READ_WRITE, un,
11101 		    "sdawrite: transfer length not modulo %d\n",
11102 		    secmask + 1);
11103 		err = EINVAL;
11104 	} else {
11105 		err = aphysio(sdstrategy, anocancel, dev, B_WRITE, sdmin, aio);
11106 	}
11107 
11108 	return (err);
11109 }
11110 
11111 
11112 
11113 
11114 
11115 /*
11116  * Driver IO processing follows the following sequence:
11117  *
11118  *     sdioctl(9E)     sdstrategy(9E)         biodone(9F)
11119  *         |                |                     ^
11120  *         v                v                     |
11121  * sd_send_scsi_cmd()  ddi_xbuf_qstrategy()       +-------------------+
11122  *         |                |                     |                   |
11123  *         v                |                     |                   |
11124  * sd_uscsi_strategy() sd_xbuf_strategy()   sd_buf_iodone()   sd_uscsi_iodone()
11125  *         |                |                     ^                   ^
11126  *         v                v                     |                   |
11127  * SD_BEGIN_IOSTART()  SD_BEGIN_IOSTART()         |                   |
11128  *         |                |                     |                   |
11129  *     +---+                |                     +------------+      +-------+
11130  *     |                    |                                  |              |
11131  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
11132  *     |                    v                                  |              |
11133  *     |         sd_mapblockaddr_iostart()           sd_mapblockaddr_iodone() |
11134  *     |                    |                                  ^              |
11135  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
11136  *     |                    v                                  |              |
11137  *     |         sd_mapblocksize_iostart()           sd_mapblocksize_iodone() |
11138  *     |                    |                                  ^              |
11139  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
11140  *     |                    v                                  |              |
11141  *     |           sd_checksum_iostart()               sd_checksum_iodone()   |
11142  *     |                    |                                  ^              |
11143  *     +-> SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()+------------->+
11144  *     |                    v                                  |              |
11145  *     |              sd_pm_iostart()                     sd_pm_iodone()      |
11146  *     |                    |                                  ^              |
11147  *     |                    |                                  |              |
11148  *     +-> SD_NEXT_IOSTART()|               SD_BEGIN_IODONE()--+--------------+
11149  *                          |                           ^
11150  *                          v                           |
11151  *                   sd_core_iostart()                  |
11152  *                          |                           |
11153  *                          |                           +------>(*destroypkt)()
11154  *                          +-> sd_start_cmds() <-+     |           |
11155  *                          |                     |     |           v
11156  *                          |                     |     |  scsi_destroy_pkt(9F)
11157  *                          |                     |     |
11158  *                          +->(*initpkt)()       +- sdintr()
11159  *                          |  |                        |  |
11160  *                          |  +-> scsi_init_pkt(9F)    |  +-> sd_handle_xxx()
11161  *                          |  +-> scsi_setup_cdb(9F)   |
11162  *                          |                           |
11163  *                          +--> scsi_transport(9F)     |
11164  *                                     |                |
11165  *                                     +----> SCSA ---->+
11166  *
11167  *
11168  * This code is based upon the following presumptions:
11169  *
11170  *   - iostart and iodone functions operate on buf(9S) structures. These
11171  *     functions perform the necessary operations on the buf(9S) and pass
11172  *     them along to the next function in the chain by using the macros
11173  *     SD_NEXT_IOSTART() (for iostart side functions) and SD_NEXT_IODONE()
11174  *     (for iodone side functions).
11175  *
11176  *   - The iostart side functions may sleep. The iodone side functions
11177  *     are called under interrupt context and may NOT sleep. Therefore
11178  *     iodone side functions also may not call iostart side functions.
11179  *     (NOTE: iostart side functions should NOT sleep for memory, as
11180  *     this could result in deadlock.)
11181  *
11182  *   - An iostart side function may call its corresponding iodone side
11183  *     function directly (if necessary).
11184  *
11185  *   - In the event of an error, an iostart side function can return a buf(9S)
11186  *     to its caller by calling SD_BEGIN_IODONE() (after setting B_ERROR and
11187  *     b_error in the usual way of course).
11188  *
11189  *   - The taskq mechanism may be used by the iodone side functions to dispatch
11190  *     requests to the iostart side functions.  The iostart side functions in
11191  *     this case would be called under the context of a taskq thread, so it's
11192  *     OK for them to block/sleep/spin in this case.
11193  *
11194  *   - iostart side functions may allocate "shadow" buf(9S) structs and
11195  *     pass them along to the next function in the chain.  The corresponding
11196  *     iodone side functions must coalesce the "shadow" bufs and return
11197  *     the "original" buf to the next higher layer.
11198  *
11199  *   - The b_private field of the buf(9S) struct holds a pointer to
11200  *     an sd_xbuf struct, which contains information needed to
11201  *     construct the scsi_pkt for the command.
11202  *
11203  *   - The SD_MUTEX(un) is NOT held across calls to the next layer. Each
11204  *     layer must acquire & release the SD_MUTEX(un) as needed.
11205  */
11206 
11207 
11208 /*
11209  * Create taskq for all targets in the system. This is created at
11210  * _init(9E) and destroyed at _fini(9E).
11211  *
11212  * Note: here we set the minalloc to a reasonably high number to ensure that
11213  * we will have an adequate supply of task entries available at interrupt time.
11214  * This is used in conjunction with the TASKQ_PREPOPULATE flag in
11215  * sd_create_taskq().  Since we do not want to sleep for allocations at
11216  * interrupt time, set maxalloc equal to minalloc. That way we will just fail
11217  * the command if we ever try to dispatch more than SD_TASKQ_MAXALLOC taskq
11218  * requests any one instant in time.
11219  */
11220 #define	SD_TASKQ_NUMTHREADS	8
11221 #define	SD_TASKQ_MINALLOC	256
11222 #define	SD_TASKQ_MAXALLOC	256
11223 
11224 static taskq_t	*sd_tq = NULL;
11225 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_tq))
11226 
11227 static int	sd_taskq_minalloc = SD_TASKQ_MINALLOC;
11228 static int	sd_taskq_maxalloc = SD_TASKQ_MAXALLOC;
11229 
11230 /*
11231  * The following task queue is being created for the write part of
11232  * read-modify-write of non-512 block size devices.
11233  * Limit the number of threads to 1 for now. This number has been chosen
11234  * considering the fact that it applies only to dvd ram drives/MO drives
11235  * currently. Performance for which is not main criteria at this stage.
11236  * Note: It needs to be explored if we can use a single taskq in future
11237  */
11238 #define	SD_WMR_TASKQ_NUMTHREADS	1
11239 static taskq_t	*sd_wmr_tq = NULL;
11240 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_wmr_tq))
11241 
11242 /*
11243  *    Function: sd_taskq_create
11244  *
11245  * Description: Create taskq thread(s) and preallocate task entries
11246  *
11247  * Return Code: Returns a pointer to the allocated taskq_t.
11248  *
11249  *     Context: Can sleep. Requires blockable context.
11250  *
11251  *       Notes: - The taskq() facility currently is NOT part of the DDI.
11252  *		  (definitely NOT recommeded for 3rd-party drivers!) :-)
11253  *		- taskq_create() will block for memory, also it will panic
11254  *		  if it cannot create the requested number of threads.
11255  *		- Currently taskq_create() creates threads that cannot be
11256  *		  swapped.
11257  *		- We use TASKQ_PREPOPULATE to ensure we have an adequate
11258  *		  supply of taskq entries at interrupt time (ie, so that we
11259  *		  do not have to sleep for memory)
11260  */
11261 
11262 static void
11263 sd_taskq_create(void)
11264 {
11265 	char	taskq_name[TASKQ_NAMELEN];
11266 
11267 	ASSERT(sd_tq == NULL);
11268 	ASSERT(sd_wmr_tq == NULL);
11269 
11270 	(void) snprintf(taskq_name, sizeof (taskq_name),
11271 	    "%s_drv_taskq", sd_label);
11272 	sd_tq = (taskq_create(taskq_name, SD_TASKQ_NUMTHREADS,
11273 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
11274 	    TASKQ_PREPOPULATE));
11275 
11276 	(void) snprintf(taskq_name, sizeof (taskq_name),
11277 	    "%s_rmw_taskq", sd_label);
11278 	sd_wmr_tq = (taskq_create(taskq_name, SD_WMR_TASKQ_NUMTHREADS,
11279 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
11280 	    TASKQ_PREPOPULATE));
11281 }
11282 
11283 
11284 /*
11285  *    Function: sd_taskq_delete
11286  *
11287  * Description: Complementary cleanup routine for sd_taskq_create().
11288  *
11289  *     Context: Kernel thread context.
11290  */
11291 
11292 static void
11293 sd_taskq_delete(void)
11294 {
11295 	ASSERT(sd_tq != NULL);
11296 	ASSERT(sd_wmr_tq != NULL);
11297 	taskq_destroy(sd_tq);
11298 	taskq_destroy(sd_wmr_tq);
11299 	sd_tq = NULL;
11300 	sd_wmr_tq = NULL;
11301 }
11302 
11303 
11304 /*
11305  *    Function: sdstrategy
11306  *
11307  * Description: Driver's strategy (9E) entry point function.
11308  *
11309  *   Arguments: bp - pointer to buf(9S)
11310  *
11311  * Return Code: Always returns zero
11312  *
11313  *     Context: Kernel thread context.
11314  */
11315 
11316 static int
11317 sdstrategy(struct buf *bp)
11318 {
11319 	struct sd_lun *un;
11320 
11321 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
11322 	if (un == NULL) {
11323 		bioerror(bp, EIO);
11324 		bp->b_resid = bp->b_bcount;
11325 		biodone(bp);
11326 		return (0);
11327 	}
11328 
11329 	/* As was done in the past, fail new cmds. if state is dumping. */
11330 	if (un->un_state == SD_STATE_DUMPING) {
11331 		bioerror(bp, ENXIO);
11332 		bp->b_resid = bp->b_bcount;
11333 		biodone(bp);
11334 		return (0);
11335 	}
11336 
11337 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11338 
11339 	/*
11340 	 * Commands may sneak in while we released the mutex in
11341 	 * DDI_SUSPEND, we should block new commands. However, old
11342 	 * commands that are still in the driver at this point should
11343 	 * still be allowed to drain.
11344 	 */
11345 	mutex_enter(SD_MUTEX(un));
11346 	/*
11347 	 * Must wait here if either the device is suspended or
11348 	 * if it's power level is changing.
11349 	 */
11350 	while ((un->un_state == SD_STATE_SUSPENDED) ||
11351 	    (un->un_state == SD_STATE_PM_CHANGING)) {
11352 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11353 	}
11354 
11355 	un->un_ncmds_in_driver++;
11356 
11357 	/*
11358 	 * atapi: Since we are running the CD for now in PIO mode we need to
11359 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
11360 	 * the HBA's init_pkt routine.
11361 	 */
11362 	if (un->un_f_cfg_is_atapi == TRUE) {
11363 		mutex_exit(SD_MUTEX(un));
11364 		bp_mapin(bp);
11365 		mutex_enter(SD_MUTEX(un));
11366 	}
11367 	SD_INFO(SD_LOG_IO, un, "sdstrategy: un_ncmds_in_driver = %ld\n",
11368 	    un->un_ncmds_in_driver);
11369 
11370 	if (bp->b_flags & B_WRITE)
11371 		un->un_f_sync_cache_required = TRUE;
11372 
11373 	mutex_exit(SD_MUTEX(un));
11374 
11375 	/*
11376 	 * This will (eventually) allocate the sd_xbuf area and
11377 	 * call sd_xbuf_strategy().  We just want to return the
11378 	 * result of ddi_xbuf_qstrategy so that we have an opt-
11379 	 * imized tail call which saves us a stack frame.
11380 	 */
11381 	return (ddi_xbuf_qstrategy(bp, un->un_xbuf_attr));
11382 }
11383 
11384 
11385 /*
11386  *    Function: sd_xbuf_strategy
11387  *
11388  * Description: Function for initiating IO operations via the
11389  *		ddi_xbuf_qstrategy() mechanism.
11390  *
11391  *     Context: Kernel thread context.
11392  */
11393 
11394 static void
11395 sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg)
11396 {
11397 	struct sd_lun *un = arg;
11398 
11399 	ASSERT(bp != NULL);
11400 	ASSERT(xp != NULL);
11401 	ASSERT(un != NULL);
11402 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11403 
11404 	/*
11405 	 * Initialize the fields in the xbuf and save a pointer to the
11406 	 * xbuf in bp->b_private.
11407 	 */
11408 	sd_xbuf_init(un, bp, xp, SD_CHAIN_BUFIO, NULL);
11409 
11410 	/* Send the buf down the iostart chain */
11411 	SD_BEGIN_IOSTART(((struct sd_xbuf *)xp)->xb_chain_iostart, un, bp);
11412 }
11413 
11414 
11415 /*
11416  *    Function: sd_xbuf_init
11417  *
11418  * Description: Prepare the given sd_xbuf struct for use.
11419  *
11420  *   Arguments: un - ptr to softstate
11421  *		bp - ptr to associated buf(9S)
11422  *		xp - ptr to associated sd_xbuf
11423  *		chain_type - IO chain type to use:
11424  *			SD_CHAIN_NULL
11425  *			SD_CHAIN_BUFIO
11426  *			SD_CHAIN_USCSI
11427  *			SD_CHAIN_DIRECT
11428  *			SD_CHAIN_DIRECT_PRIORITY
11429  *		pktinfop - ptr to private data struct for scsi_pkt(9S)
11430  *			initialization; may be NULL if none.
11431  *
11432  *     Context: Kernel thread context
11433  */
11434 
11435 static void
11436 sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
11437 	uchar_t chain_type, void *pktinfop)
11438 {
11439 	int index;
11440 
11441 	ASSERT(un != NULL);
11442 	ASSERT(bp != NULL);
11443 	ASSERT(xp != NULL);
11444 
11445 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: buf:0x%p chain type:0x%x\n",
11446 	    bp, chain_type);
11447 
11448 	xp->xb_un	= un;
11449 	xp->xb_pktp	= NULL;
11450 	xp->xb_pktinfo	= pktinfop;
11451 	xp->xb_private	= bp->b_private;
11452 	xp->xb_blkno	= (daddr_t)bp->b_blkno;
11453 
11454 	/*
11455 	 * Set up the iostart and iodone chain indexes in the xbuf, based
11456 	 * upon the specified chain type to use.
11457 	 */
11458 	switch (chain_type) {
11459 	case SD_CHAIN_NULL:
11460 		/*
11461 		 * Fall thru to just use the values for the buf type, even
11462 		 * tho for the NULL chain these values will never be used.
11463 		 */
11464 		/* FALLTHRU */
11465 	case SD_CHAIN_BUFIO:
11466 		index = un->un_buf_chain_type;
11467 		if ((!un->un_f_has_removable_media) &&
11468 		    (un->un_tgt_blocksize != 0) &&
11469 		    (un->un_tgt_blocksize != DEV_BSIZE)) {
11470 			int secmask = 0, blknomask = 0;
11471 			blknomask =
11472 			    (un->un_tgt_blocksize / DEV_BSIZE) - 1;
11473 			secmask = un->un_tgt_blocksize - 1;
11474 
11475 			if ((bp->b_lblkno & (blknomask)) ||
11476 			    (bp->b_bcount & (secmask))) {
11477 				if (un->un_f_rmw_type !=
11478 				    SD_RMW_TYPE_RETURN_ERROR) {
11479 					if (un->un_f_pm_is_enabled == FALSE)
11480 						index =
11481 						    SD_CHAIN_INFO_MSS_DSK_NO_PM;
11482 					else
11483 						index =
11484 						    SD_CHAIN_INFO_MSS_DISK;
11485 				}
11486 			}
11487 		}
11488 		break;
11489 	case SD_CHAIN_USCSI:
11490 		index = un->un_uscsi_chain_type;
11491 		break;
11492 	case SD_CHAIN_DIRECT:
11493 		index = un->un_direct_chain_type;
11494 		break;
11495 	case SD_CHAIN_DIRECT_PRIORITY:
11496 		index = un->un_priority_chain_type;
11497 		break;
11498 	default:
11499 		/* We're really broken if we ever get here... */
11500 		panic("sd_xbuf_init: illegal chain type!");
11501 		/*NOTREACHED*/
11502 	}
11503 
11504 	xp->xb_chain_iostart = sd_chain_index_map[index].sci_iostart_index;
11505 	xp->xb_chain_iodone = sd_chain_index_map[index].sci_iodone_index;
11506 
11507 	/*
11508 	 * It might be a bit easier to simply bzero the entire xbuf above,
11509 	 * but it turns out that since we init a fair number of members anyway,
11510 	 * we save a fair number cycles by doing explicit assignment of zero.
11511 	 */
11512 	xp->xb_pkt_flags	= 0;
11513 	xp->xb_dma_resid	= 0;
11514 	xp->xb_retry_count	= 0;
11515 	xp->xb_victim_retry_count = 0;
11516 	xp->xb_ua_retry_count	= 0;
11517 	xp->xb_nr_retry_count	= 0;
11518 	xp->xb_sense_bp		= NULL;
11519 	xp->xb_sense_status	= 0;
11520 	xp->xb_sense_state	= 0;
11521 	xp->xb_sense_resid	= 0;
11522 	xp->xb_ena		= 0;
11523 
11524 	bp->b_private	= xp;
11525 	bp->b_flags	&= ~(B_DONE | B_ERROR);
11526 	bp->b_resid	= 0;
11527 	bp->av_forw	= NULL;
11528 	bp->av_back	= NULL;
11529 	bioerror(bp, 0);
11530 
11531 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: done.\n");
11532 }
11533 
11534 
11535 /*
11536  *    Function: sd_uscsi_strategy
11537  *
11538  * Description: Wrapper for calling into the USCSI chain via physio(9F)
11539  *
11540  *   Arguments: bp - buf struct ptr
11541  *
11542  * Return Code: Always returns 0
11543  *
11544  *     Context: Kernel thread context
11545  */
11546 
11547 static int
11548 sd_uscsi_strategy(struct buf *bp)
11549 {
11550 	struct sd_lun		*un;
11551 	struct sd_uscsi_info	*uip;
11552 	struct sd_xbuf		*xp;
11553 	uchar_t			chain_type;
11554 	uchar_t			cmd;
11555 
11556 	ASSERT(bp != NULL);
11557 
11558 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
11559 	if (un == NULL) {
11560 		bioerror(bp, EIO);
11561 		bp->b_resid = bp->b_bcount;
11562 		biodone(bp);
11563 		return (0);
11564 	}
11565 
11566 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11567 
11568 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: entry: buf:0x%p\n", bp);
11569 
11570 	/*
11571 	 * A pointer to a struct sd_uscsi_info is expected in bp->b_private
11572 	 */
11573 	ASSERT(bp->b_private != NULL);
11574 	uip = (struct sd_uscsi_info *)bp->b_private;
11575 	cmd = ((struct uscsi_cmd *)(uip->ui_cmdp))->uscsi_cdb[0];
11576 
11577 	mutex_enter(SD_MUTEX(un));
11578 	/*
11579 	 * atapi: Since we are running the CD for now in PIO mode we need to
11580 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
11581 	 * the HBA's init_pkt routine.
11582 	 */
11583 	if (un->un_f_cfg_is_atapi == TRUE) {
11584 		mutex_exit(SD_MUTEX(un));
11585 		bp_mapin(bp);
11586 		mutex_enter(SD_MUTEX(un));
11587 	}
11588 	un->un_ncmds_in_driver++;
11589 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_strategy: un_ncmds_in_driver = %ld\n",
11590 	    un->un_ncmds_in_driver);
11591 
11592 	if ((bp->b_flags & B_WRITE) && (bp->b_bcount != 0) &&
11593 	    (cmd != SCMD_MODE_SELECT) && (cmd != SCMD_MODE_SELECT_G1))
11594 		un->un_f_sync_cache_required = TRUE;
11595 
11596 	mutex_exit(SD_MUTEX(un));
11597 
11598 	switch (uip->ui_flags) {
11599 	case SD_PATH_DIRECT:
11600 		chain_type = SD_CHAIN_DIRECT;
11601 		break;
11602 	case SD_PATH_DIRECT_PRIORITY:
11603 		chain_type = SD_CHAIN_DIRECT_PRIORITY;
11604 		break;
11605 	default:
11606 		chain_type = SD_CHAIN_USCSI;
11607 		break;
11608 	}
11609 
11610 	/*
11611 	 * We may allocate extra buf for external USCSI commands. If the
11612 	 * application asks for bigger than 20-byte sense data via USCSI,
11613 	 * SCSA layer will allocate 252 bytes sense buf for that command.
11614 	 */
11615 	if (((struct uscsi_cmd *)(uip->ui_cmdp))->uscsi_rqlen >
11616 	    SENSE_LENGTH) {
11617 		xp = kmem_zalloc(sizeof (struct sd_xbuf) - SENSE_LENGTH +
11618 		    MAX_SENSE_LENGTH, KM_SLEEP);
11619 	} else {
11620 		xp = kmem_zalloc(sizeof (struct sd_xbuf), KM_SLEEP);
11621 	}
11622 
11623 	sd_xbuf_init(un, bp, xp, chain_type, uip->ui_cmdp);
11624 
11625 	/* Use the index obtained within xbuf_init */
11626 	SD_BEGIN_IOSTART(xp->xb_chain_iostart, un, bp);
11627 
11628 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: exit: buf:0x%p\n", bp);
11629 
11630 	return (0);
11631 }
11632 
11633 /*
11634  *    Function: sd_send_scsi_cmd
11635  *
11636  * Description: Runs a USCSI command for user (when called thru sdioctl),
11637  *		or for the driver
11638  *
11639  *   Arguments: dev - the dev_t for the device
11640  *		incmd - ptr to a valid uscsi_cmd struct
11641  *		flag - bit flag, indicating open settings, 32/64 bit type
11642  *		dataspace - UIO_USERSPACE or UIO_SYSSPACE
11643  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
11644  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
11645  *			to use the USCSI "direct" chain and bypass the normal
11646  *			command waitq.
11647  *
11648  * Return Code: 0 -  successful completion of the given command
11649  *		EIO - scsi_uscsi_handle_command() failed
11650  *		ENXIO  - soft state not found for specified dev
11651  *		EINVAL
11652  *		EFAULT - copyin/copyout error
11653  *		return code of scsi_uscsi_handle_command():
11654  *			EIO
11655  *			ENXIO
11656  *			EACCES
11657  *
11658  *     Context: Waits for command to complete. Can sleep.
11659  */
11660 
11661 static int
11662 sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
11663 	enum uio_seg dataspace, int path_flag)
11664 {
11665 	struct sd_lun	*un;
11666 	sd_ssc_t	*ssc;
11667 	int		rval;
11668 
11669 	un = ddi_get_soft_state(sd_state, SDUNIT(dev));
11670 	if (un == NULL) {
11671 		return (ENXIO);
11672 	}
11673 
11674 	/*
11675 	 * Using sd_ssc_send to handle uscsi cmd
11676 	 */
11677 	ssc = sd_ssc_init(un);
11678 	rval = sd_ssc_send(ssc, incmd, flag, dataspace, path_flag);
11679 	sd_ssc_fini(ssc);
11680 
11681 	return (rval);
11682 }
11683 
11684 /*
11685  *    Function: sd_ssc_init
11686  *
11687  * Description: Uscsi end-user call this function to initialize necessary
11688  *              fields, such as uscsi_cmd and sd_uscsi_info struct.
11689  *
11690  *              The return value of sd_send_scsi_cmd will be treated as a
11691  *              fault in various conditions. Even it is not Zero, some
11692  *              callers may ignore the return value. That is to say, we can
11693  *              not make an accurate assessment in sdintr, since if a
11694  *              command is failed in sdintr it does not mean the caller of
11695  *              sd_send_scsi_cmd will treat it as a real failure.
11696  *
11697  *              To avoid printing too many error logs for a failed uscsi
11698  *              packet that the caller may not treat it as a failure, the
11699  *              sd will keep silent for handling all uscsi commands.
11700  *
11701  *              During detach->attach and attach-open, for some types of
11702  *              problems, the driver should be providing information about
11703  *              the problem encountered. Device use USCSI_SILENT, which
11704  *              suppresses all driver information. The result is that no
11705  *              information about the problem is available. Being
11706  *              completely silent during this time is inappropriate. The
11707  *              driver needs a more selective filter than USCSI_SILENT, so
11708  *              that information related to faults is provided.
11709  *
11710  *              To make the accurate accessment, the caller  of
11711  *              sd_send_scsi_USCSI_CMD should take the ownership and
11712  *              get necessary information to print error messages.
11713  *
11714  *              If we want to print necessary info of uscsi command, we need to
11715  *              keep the uscsi_cmd and sd_uscsi_info till we can make the
11716  *              assessment. We use sd_ssc_init to alloc necessary
11717  *              structs for sending an uscsi command and we are also
11718  *              responsible for free the memory by calling
11719  *              sd_ssc_fini.
11720  *
11721  *              The calling secquences will look like:
11722  *              sd_ssc_init->
11723  *
11724  *                  ...
11725  *
11726  *                  sd_send_scsi_USCSI_CMD->
11727  *                      sd_ssc_send-> - - - sdintr
11728  *                  ...
11729  *
11730  *                  if we think the return value should be treated as a
11731  *                  failure, we make the accessment here and print out
11732  *                  necessary by retrieving uscsi_cmd and sd_uscsi_info'
11733  *
11734  *                  ...
11735  *
11736  *              sd_ssc_fini
11737  *
11738  *
11739  *   Arguments: un - pointer to driver soft state (unit) structure for this
11740  *                   target.
11741  *
11742  * Return code: sd_ssc_t - pointer to allocated sd_ssc_t struct, it contains
11743  *                         uscsi_cmd and sd_uscsi_info.
11744  *                  NULL - if can not alloc memory for sd_ssc_t struct
11745  *
11746  *     Context: Kernel Thread.
11747  */
11748 static sd_ssc_t *
11749 sd_ssc_init(struct sd_lun *un)
11750 {
11751 	sd_ssc_t		*ssc;
11752 	struct uscsi_cmd	*ucmdp;
11753 	struct sd_uscsi_info	*uip;
11754 
11755 	ASSERT(un != NULL);
11756 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11757 
11758 	/*
11759 	 * Allocate sd_ssc_t structure
11760 	 */
11761 	ssc = kmem_zalloc(sizeof (sd_ssc_t), KM_SLEEP);
11762 
11763 	/*
11764 	 * Allocate uscsi_cmd by calling scsi_uscsi_alloc common routine
11765 	 */
11766 	ucmdp = scsi_uscsi_alloc();
11767 
11768 	/*
11769 	 * Allocate sd_uscsi_info structure
11770 	 */
11771 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
11772 
11773 	ssc->ssc_uscsi_cmd = ucmdp;
11774 	ssc->ssc_uscsi_info = uip;
11775 	ssc->ssc_un = un;
11776 
11777 	return (ssc);
11778 }
11779 
11780 /*
11781  * Function: sd_ssc_fini
11782  *
11783  * Description: To free sd_ssc_t and it's hanging off
11784  *
11785  * Arguments: ssc - struct pointer of sd_ssc_t.
11786  */
11787 static void
11788 sd_ssc_fini(sd_ssc_t *ssc)
11789 {
11790 	scsi_uscsi_free(ssc->ssc_uscsi_cmd);
11791 
11792 	if (ssc->ssc_uscsi_info != NULL) {
11793 		kmem_free(ssc->ssc_uscsi_info, sizeof (struct sd_uscsi_info));
11794 		ssc->ssc_uscsi_info = NULL;
11795 	}
11796 
11797 	kmem_free(ssc, sizeof (sd_ssc_t));
11798 	ssc = NULL;
11799 }
11800 
11801 /*
11802  * Function: sd_ssc_send
11803  *
11804  * Description: Runs a USCSI command for user when called through sdioctl,
11805  *              or for the driver.
11806  *
11807  *   Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and
11808  *                    sd_uscsi_info in.
11809  *		incmd - ptr to a valid uscsi_cmd struct
11810  *		flag - bit flag, indicating open settings, 32/64 bit type
11811  *		dataspace - UIO_USERSPACE or UIO_SYSSPACE
11812  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
11813  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
11814  *			to use the USCSI "direct" chain and bypass the normal
11815  *			command waitq.
11816  *
11817  * Return Code: 0 -  successful completion of the given command
11818  *		EIO - scsi_uscsi_handle_command() failed
11819  *		ENXIO  - soft state not found for specified dev
11820  *		ECANCELED - command cancelled due to low power
11821  *		EINVAL
11822  *		EFAULT - copyin/copyout error
11823  *		return code of scsi_uscsi_handle_command():
11824  *			EIO
11825  *			ENXIO
11826  *			EACCES
11827  *
11828  *     Context: Kernel Thread;
11829  *              Waits for command to complete. Can sleep.
11830  */
11831 static int
11832 sd_ssc_send(sd_ssc_t *ssc, struct uscsi_cmd *incmd, int flag,
11833 	enum uio_seg dataspace, int path_flag)
11834 {
11835 	struct sd_uscsi_info	*uip;
11836 	struct uscsi_cmd	*uscmd;
11837 	struct sd_lun		*un;
11838 	dev_t			dev;
11839 
11840 	int	format = 0;
11841 	int	rval;
11842 
11843 	ASSERT(ssc != NULL);
11844 	un = ssc->ssc_un;
11845 	ASSERT(un != NULL);
11846 	uscmd = ssc->ssc_uscsi_cmd;
11847 	ASSERT(uscmd != NULL);
11848 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11849 	if (ssc->ssc_flags & SSC_FLAGS_NEED_ASSESSMENT) {
11850 		/*
11851 		 * If enter here, it indicates that the previous uscsi
11852 		 * command has not been processed by sd_ssc_assessment.
11853 		 * This is violating our rules of FMA telemetry processing.
11854 		 * We should print out this message and the last undisposed
11855 		 * uscsi command.
11856 		 */
11857 		if (uscmd->uscsi_cdb != NULL) {
11858 			SD_INFO(SD_LOG_SDTEST, un,
11859 			    "sd_ssc_send is missing the alternative "
11860 			    "sd_ssc_assessment when running command 0x%x.\n",
11861 			    uscmd->uscsi_cdb[0]);
11862 		}
11863 		/*
11864 		 * Set the ssc_flags to SSC_FLAGS_UNKNOWN, which should be
11865 		 * the initial status.
11866 		 */
11867 		ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
11868 	}
11869 
11870 	/*
11871 	 * We need to make sure sd_ssc_send will have sd_ssc_assessment
11872 	 * followed to avoid missing FMA telemetries.
11873 	 */
11874 	ssc->ssc_flags |= SSC_FLAGS_NEED_ASSESSMENT;
11875 
11876 	/*
11877 	 * if USCSI_PMFAILFAST is set and un is in low power, fail the
11878 	 * command immediately.
11879 	 */
11880 	mutex_enter(SD_MUTEX(un));
11881 	mutex_enter(&un->un_pm_mutex);
11882 	if ((uscmd->uscsi_flags & USCSI_PMFAILFAST) &&
11883 	    SD_DEVICE_IS_IN_LOW_POWER(un)) {
11884 		SD_TRACE(SD_LOG_IO, un, "sd_ssc_send:"
11885 		    "un:0x%p is in low power\n", un);
11886 		mutex_exit(&un->un_pm_mutex);
11887 		mutex_exit(SD_MUTEX(un));
11888 		return (ECANCELED);
11889 	}
11890 	mutex_exit(&un->un_pm_mutex);
11891 	mutex_exit(SD_MUTEX(un));
11892 
11893 #ifdef SDDEBUG
11894 	switch (dataspace) {
11895 	case UIO_USERSPACE:
11896 		SD_TRACE(SD_LOG_IO, un,
11897 		    "sd_ssc_send: entry: un:0x%p UIO_USERSPACE\n", un);
11898 		break;
11899 	case UIO_SYSSPACE:
11900 		SD_TRACE(SD_LOG_IO, un,
11901 		    "sd_ssc_send: entry: un:0x%p UIO_SYSSPACE\n", un);
11902 		break;
11903 	default:
11904 		SD_TRACE(SD_LOG_IO, un,
11905 		    "sd_ssc_send: entry: un:0x%p UNEXPECTED SPACE\n", un);
11906 		break;
11907 	}
11908 #endif
11909 
11910 	rval = scsi_uscsi_copyin((intptr_t)incmd, flag,
11911 	    SD_ADDRESS(un), &uscmd);
11912 	if (rval != 0) {
11913 		SD_TRACE(SD_LOG_IO, un, "sd_sense_scsi_cmd: "
11914 		    "scsi_uscsi_alloc_and_copyin failed\n", un);
11915 		return (rval);
11916 	}
11917 
11918 	if ((uscmd->uscsi_cdb != NULL) &&
11919 	    (uscmd->uscsi_cdb[0] == SCMD_FORMAT)) {
11920 		mutex_enter(SD_MUTEX(un));
11921 		un->un_f_format_in_progress = TRUE;
11922 		mutex_exit(SD_MUTEX(un));
11923 		format = 1;
11924 	}
11925 
11926 	/*
11927 	 * Allocate an sd_uscsi_info struct and fill it with the info
11928 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
11929 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
11930 	 * since we allocate the buf here in this function, we do not
11931 	 * need to preserve the prior contents of b_private.
11932 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
11933 	 */
11934 	uip = ssc->ssc_uscsi_info;
11935 	uip->ui_flags = path_flag;
11936 	uip->ui_cmdp = uscmd;
11937 
11938 	/*
11939 	 * Commands sent with priority are intended for error recovery
11940 	 * situations, and do not have retries performed.
11941 	 */
11942 	if (path_flag == SD_PATH_DIRECT_PRIORITY) {
11943 		uscmd->uscsi_flags |= USCSI_DIAGNOSE;
11944 	}
11945 	uscmd->uscsi_flags &= ~USCSI_NOINTR;
11946 
11947 	dev = SD_GET_DEV(un);
11948 	rval = scsi_uscsi_handle_cmd(dev, dataspace, uscmd,
11949 	    sd_uscsi_strategy, NULL, uip);
11950 
11951 	/*
11952 	 * mark ssc_flags right after handle_cmd to make sure
11953 	 * the uscsi has been sent
11954 	 */
11955 	ssc->ssc_flags |= SSC_FLAGS_CMD_ISSUED;
11956 
11957 #ifdef SDDEBUG
11958 	SD_INFO(SD_LOG_IO, un, "sd_ssc_send: "
11959 	    "uscsi_status: 0x%02x  uscsi_resid:0x%x\n",
11960 	    uscmd->uscsi_status, uscmd->uscsi_resid);
11961 	if (uscmd->uscsi_bufaddr != NULL) {
11962 		SD_INFO(SD_LOG_IO, un, "sd_ssc_send: "
11963 		    "uscmd->uscsi_bufaddr: 0x%p  uscmd->uscsi_buflen:%d\n",
11964 		    uscmd->uscsi_bufaddr, uscmd->uscsi_buflen);
11965 		if (dataspace == UIO_SYSSPACE) {
11966 			SD_DUMP_MEMORY(un, SD_LOG_IO,
11967 			    "data", (uchar_t *)uscmd->uscsi_bufaddr,
11968 			    uscmd->uscsi_buflen, SD_LOG_HEX);
11969 		}
11970 	}
11971 #endif
11972 
11973 	if (format == 1) {
11974 		mutex_enter(SD_MUTEX(un));
11975 		un->un_f_format_in_progress = FALSE;
11976 		mutex_exit(SD_MUTEX(un));
11977 	}
11978 
11979 	(void) scsi_uscsi_copyout((intptr_t)incmd, uscmd);
11980 
11981 	return (rval);
11982 }
11983 
11984 /*
11985  *     Function: sd_ssc_print
11986  *
11987  * Description: Print information available to the console.
11988  *
11989  * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and
11990  *                    sd_uscsi_info in.
11991  *            sd_severity - log level.
11992  *     Context: Kernel thread or interrupt context.
11993  */
11994 static void
11995 sd_ssc_print(sd_ssc_t *ssc, int sd_severity)
11996 {
11997 	struct uscsi_cmd	*ucmdp;
11998 	struct scsi_device	*devp;
11999 	dev_info_t 		*devinfo;
12000 	uchar_t			*sensep;
12001 	int			senlen;
12002 	union scsi_cdb		*cdbp;
12003 	uchar_t			com;
12004 	extern struct scsi_key_strings scsi_cmds[];
12005 
12006 	ASSERT(ssc != NULL);
12007 	ASSERT(ssc->ssc_un != NULL);
12008 
12009 	if (SD_FM_LOG(ssc->ssc_un) != SD_FM_LOG_EREPORT)
12010 		return;
12011 	ucmdp = ssc->ssc_uscsi_cmd;
12012 	devp = SD_SCSI_DEVP(ssc->ssc_un);
12013 	devinfo = SD_DEVINFO(ssc->ssc_un);
12014 	ASSERT(ucmdp != NULL);
12015 	ASSERT(devp != NULL);
12016 	ASSERT(devinfo != NULL);
12017 	sensep = (uint8_t *)ucmdp->uscsi_rqbuf;
12018 	senlen = ucmdp->uscsi_rqlen - ucmdp->uscsi_rqresid;
12019 	cdbp = (union scsi_cdb *)ucmdp->uscsi_cdb;
12020 
12021 	/* In certain case (like DOORLOCK), the cdb could be NULL. */
12022 	if (cdbp == NULL)
12023 		return;
12024 	/* We don't print log if no sense data available. */
12025 	if (senlen == 0)
12026 		sensep = NULL;
12027 	com = cdbp->scc_cmd;
12028 	scsi_generic_errmsg(devp, sd_label, sd_severity, 0, 0, com,
12029 	    scsi_cmds, sensep, ssc->ssc_un->un_additional_codes, NULL);
12030 }
12031 
12032 /*
12033  *     Function: sd_ssc_assessment
12034  *
12035  * Description: We use this function to make an assessment at the point
12036  *              where SD driver may encounter a potential error.
12037  *
12038  * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and
12039  *                  sd_uscsi_info in.
12040  *            tp_assess - a hint of strategy for ereport posting.
12041  *            Possible values of tp_assess include:
12042  *                SD_FMT_IGNORE - we don't post any ereport because we're
12043  *                sure that it is ok to ignore the underlying problems.
12044  *                SD_FMT_IGNORE_COMPROMISE - we don't post any ereport for now
12045  *                but it might be not correct to ignore the underlying hardware
12046  *                error.
12047  *                SD_FMT_STATUS_CHECK - we will post an ereport with the
12048  *                payload driver-assessment of value "fail" or
12049  *                "fatal"(depending on what information we have here). This
12050  *                assessment value is usually set when SD driver think there
12051  *                is a potential error occurred(Typically, when return value
12052  *                of the SCSI command is EIO).
12053  *                SD_FMT_STANDARD - we will post an ereport with the payload
12054  *                driver-assessment of value "info". This assessment value is
12055  *                set when the SCSI command returned successfully and with
12056  *                sense data sent back.
12057  *
12058  *     Context: Kernel thread.
12059  */
12060 static void
12061 sd_ssc_assessment(sd_ssc_t *ssc, enum sd_type_assessment tp_assess)
12062 {
12063 	int senlen = 0;
12064 	struct uscsi_cmd *ucmdp = NULL;
12065 	struct sd_lun *un;
12066 
12067 	ASSERT(ssc != NULL);
12068 	un = ssc->ssc_un;
12069 	ASSERT(un != NULL);
12070 	ucmdp = ssc->ssc_uscsi_cmd;
12071 	ASSERT(ucmdp != NULL);
12072 
12073 	if (ssc->ssc_flags & SSC_FLAGS_NEED_ASSESSMENT) {
12074 		ssc->ssc_flags &= ~SSC_FLAGS_NEED_ASSESSMENT;
12075 	} else {
12076 		/*
12077 		 * If enter here, it indicates that we have a wrong
12078 		 * calling sequence of sd_ssc_send and sd_ssc_assessment,
12079 		 * both of which should be called in a pair in case of
12080 		 * loss of FMA telemetries.
12081 		 */
12082 		if (ucmdp->uscsi_cdb != NULL) {
12083 			SD_INFO(SD_LOG_SDTEST, un,
12084 			    "sd_ssc_assessment is missing the "
12085 			    "alternative sd_ssc_send when running 0x%x, "
12086 			    "or there are superfluous sd_ssc_assessment for "
12087 			    "the same sd_ssc_send.\n",
12088 			    ucmdp->uscsi_cdb[0]);
12089 		}
12090 		/*
12091 		 * Set the ssc_flags to the initial value to avoid passing
12092 		 * down dirty flags to the following sd_ssc_send function.
12093 		 */
12094 		ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
12095 		return;
12096 	}
12097 
12098 	/*
12099 	 * Only handle an issued command which is waiting for assessment.
12100 	 * A command which is not issued will not have
12101 	 * SSC_FLAGS_INVALID_DATA set, so it'ok we just return here.
12102 	 */
12103 	if (!(ssc->ssc_flags & SSC_FLAGS_CMD_ISSUED)) {
12104 		sd_ssc_print(ssc, SCSI_ERR_INFO);
12105 		return;
12106 	} else {
12107 		/*
12108 		 * For an issued command, we should clear this flag in
12109 		 * order to make the sd_ssc_t structure be used off
12110 		 * multiple uscsi commands.
12111 		 */
12112 		ssc->ssc_flags &= ~SSC_FLAGS_CMD_ISSUED;
12113 	}
12114 
12115 	/*
12116 	 * We will not deal with non-retryable(flag USCSI_DIAGNOSE set)
12117 	 * commands here. And we should clear the ssc_flags before return.
12118 	 */
12119 	if (ucmdp->uscsi_flags & USCSI_DIAGNOSE) {
12120 		ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
12121 		return;
12122 	}
12123 
12124 	switch (tp_assess) {
12125 	case SD_FMT_IGNORE:
12126 	case SD_FMT_IGNORE_COMPROMISE:
12127 		break;
12128 	case SD_FMT_STATUS_CHECK:
12129 		/*
12130 		 * For a failed command(including the succeeded command
12131 		 * with invalid data sent back).
12132 		 */
12133 		sd_ssc_post(ssc, SD_FM_DRV_FATAL);
12134 		break;
12135 	case SD_FMT_STANDARD:
12136 		/*
12137 		 * Always for the succeeded commands probably with sense
12138 		 * data sent back.
12139 		 * Limitation:
12140 		 *	We can only handle a succeeded command with sense
12141 		 *	data sent back when auto-request-sense is enabled.
12142 		 */
12143 		senlen = ssc->ssc_uscsi_cmd->uscsi_rqlen -
12144 		    ssc->ssc_uscsi_cmd->uscsi_rqresid;
12145 		if ((ssc->ssc_uscsi_info->ui_pkt_state & STATE_ARQ_DONE) &&
12146 		    (un->un_f_arq_enabled == TRUE) &&
12147 		    senlen > 0 &&
12148 		    ssc->ssc_uscsi_cmd->uscsi_rqbuf != NULL) {
12149 			sd_ssc_post(ssc, SD_FM_DRV_NOTICE);
12150 		}
12151 		break;
12152 	default:
12153 		/*
12154 		 * Should not have other type of assessment.
12155 		 */
12156 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
12157 		    "sd_ssc_assessment got wrong "
12158 		    "sd_type_assessment %d.\n", tp_assess);
12159 		break;
12160 	}
12161 	/*
12162 	 * Clear up the ssc_flags before return.
12163 	 */
12164 	ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
12165 }
12166 
12167 /*
12168  *    Function: sd_ssc_post
12169  *
12170  * Description: 1. read the driver property to get fm-scsi-log flag.
12171  *              2. print log if fm_log_capable is non-zero.
12172  *              3. call sd_ssc_ereport_post to post ereport if possible.
12173  *
12174  *    Context: May be called from kernel thread or interrupt context.
12175  */
12176 static void
12177 sd_ssc_post(sd_ssc_t *ssc, enum sd_driver_assessment sd_assess)
12178 {
12179 	struct sd_lun	*un;
12180 	int		sd_severity;
12181 
12182 	ASSERT(ssc != NULL);
12183 	un = ssc->ssc_un;
12184 	ASSERT(un != NULL);
12185 
12186 	/*
12187 	 * We may enter here from sd_ssc_assessment(for USCSI command) or
12188 	 * by directly called from sdintr context.
12189 	 * We don't handle a non-disk drive(CD-ROM, removable media).
12190 	 * Clear the ssc_flags before return in case we've set
12191 	 * SSC_FLAGS_INVALID_XXX which should be skipped for a non-disk
12192 	 * driver.
12193 	 */
12194 	if (ISCD(un) || un->un_f_has_removable_media) {
12195 		ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
12196 		return;
12197 	}
12198 
12199 	switch (sd_assess) {
12200 		case SD_FM_DRV_FATAL:
12201 			sd_severity = SCSI_ERR_FATAL;
12202 			break;
12203 		case SD_FM_DRV_RECOVERY:
12204 			sd_severity = SCSI_ERR_RECOVERED;
12205 			break;
12206 		case SD_FM_DRV_RETRY:
12207 			sd_severity = SCSI_ERR_RETRYABLE;
12208 			break;
12209 		case SD_FM_DRV_NOTICE:
12210 			sd_severity = SCSI_ERR_INFO;
12211 			break;
12212 		default:
12213 			sd_severity = SCSI_ERR_UNKNOWN;
12214 	}
12215 	/* print log */
12216 	sd_ssc_print(ssc, sd_severity);
12217 
12218 	/* always post ereport */
12219 	sd_ssc_ereport_post(ssc, sd_assess);
12220 }
12221 
12222 /*
12223  *    Function: sd_ssc_set_info
12224  *
12225  * Description: Mark ssc_flags and set ssc_info which would be the
12226  *              payload of uderr ereport. This function will cause
12227  *              sd_ssc_ereport_post to post uderr ereport only.
12228  *              Besides, when ssc_flags == SSC_FLAGS_INVALID_DATA(USCSI),
12229  *              the function will also call SD_ERROR or scsi_log for a
12230  *              CDROM/removable-media/DDI_FM_NOT_CAPABLE device.
12231  *
12232  * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and
12233  *                  sd_uscsi_info in.
12234  *            ssc_flags - indicate the sub-category of a uderr.
12235  *            comp - this argument is meaningful only when
12236  *                   ssc_flags == SSC_FLAGS_INVALID_DATA, and its possible
12237  *                   values include:
12238  *                   > 0, SD_ERROR is used with comp as the driver logging
12239  *                   component;
12240  *                   = 0, scsi-log is used to log error telemetries;
12241  *                   < 0, no log available for this telemetry.
12242  *
12243  *    Context: Kernel thread or interrupt context
12244  */
12245 static void
12246 sd_ssc_set_info(sd_ssc_t *ssc, int ssc_flags, uint_t comp, const char *fmt, ...)
12247 {
12248 	va_list	ap;
12249 
12250 	ASSERT(ssc != NULL);
12251 	ASSERT(ssc->ssc_un != NULL);
12252 
12253 	ssc->ssc_flags |= ssc_flags;
12254 	va_start(ap, fmt);
12255 	(void) vsnprintf(ssc->ssc_info, sizeof (ssc->ssc_info), fmt, ap);
12256 	va_end(ap);
12257 
12258 	/*
12259 	 * If SSC_FLAGS_INVALID_DATA is set, it should be a uscsi command
12260 	 * with invalid data sent back. For non-uscsi command, the
12261 	 * following code will be bypassed.
12262 	 */
12263 	if (ssc_flags & SSC_FLAGS_INVALID_DATA) {
12264 		if (SD_FM_LOG(ssc->ssc_un) == SD_FM_LOG_NSUP) {
12265 			/*
12266 			 * If the error belong to certain component and we
12267 			 * do not want it to show up on the console, we
12268 			 * will use SD_ERROR, otherwise scsi_log is
12269 			 * preferred.
12270 			 */
12271 			if (comp > 0) {
12272 				SD_ERROR(comp, ssc->ssc_un, ssc->ssc_info);
12273 			} else if (comp == 0) {
12274 				scsi_log(SD_DEVINFO(ssc->ssc_un), sd_label,
12275 				    CE_WARN, ssc->ssc_info);
12276 			}
12277 		}
12278 	}
12279 }
12280 
12281 /*
12282  *    Function: sd_buf_iodone
12283  *
12284  * Description: Frees the sd_xbuf & returns the buf to its originator.
12285  *
12286  *     Context: May be called from interrupt context.
12287  */
12288 /* ARGSUSED */
12289 static void
12290 sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp)
12291 {
12292 	struct sd_xbuf *xp;
12293 
12294 	ASSERT(un != NULL);
12295 	ASSERT(bp != NULL);
12296 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12297 
12298 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: entry.\n");
12299 
12300 	xp = SD_GET_XBUF(bp);
12301 	ASSERT(xp != NULL);
12302 
12303 	/* xbuf is gone after this */
12304 	if (ddi_xbuf_done(bp, un->un_xbuf_attr)) {
12305 		mutex_enter(SD_MUTEX(un));
12306 
12307 		/*
12308 		 * Grab time when the cmd completed.
12309 		 * This is used for determining if the system has been
12310 		 * idle long enough to make it idle to the PM framework.
12311 		 * This is for lowering the overhead, and therefore improving
12312 		 * performance per I/O operation.
12313 		 */
12314 		un->un_pm_idle_time = ddi_get_time();
12315 
12316 		un->un_ncmds_in_driver--;
12317 		ASSERT(un->un_ncmds_in_driver >= 0);
12318 		SD_INFO(SD_LOG_IO, un,
12319 		    "sd_buf_iodone: un_ncmds_in_driver = %ld\n",
12320 		    un->un_ncmds_in_driver);
12321 
12322 		mutex_exit(SD_MUTEX(un));
12323 	}
12324 
12325 	biodone(bp);				/* bp is gone after this */
12326 
12327 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: exit.\n");
12328 }
12329 
12330 
12331 /*
12332  *    Function: sd_uscsi_iodone
12333  *
12334  * Description: Frees the sd_xbuf & returns the buf to its originator.
12335  *
12336  *     Context: May be called from interrupt context.
12337  */
12338 /* ARGSUSED */
12339 static void
12340 sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
12341 {
12342 	struct sd_xbuf *xp;
12343 
12344 	ASSERT(un != NULL);
12345 	ASSERT(bp != NULL);
12346 
12347 	xp = SD_GET_XBUF(bp);
12348 	ASSERT(xp != NULL);
12349 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12350 
12351 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: entry.\n");
12352 
12353 	bp->b_private = xp->xb_private;
12354 
12355 	mutex_enter(SD_MUTEX(un));
12356 
12357 	/*
12358 	 * Grab time when the cmd completed.
12359 	 * This is used for determining if the system has been
12360 	 * idle long enough to make it idle to the PM framework.
12361 	 * This is for lowering the overhead, and therefore improving
12362 	 * performance per I/O operation.
12363 	 */
12364 	un->un_pm_idle_time = ddi_get_time();
12365 
12366 	un->un_ncmds_in_driver--;
12367 	ASSERT(un->un_ncmds_in_driver >= 0);
12368 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: un_ncmds_in_driver = %ld\n",
12369 	    un->un_ncmds_in_driver);
12370 
12371 	mutex_exit(SD_MUTEX(un));
12372 
12373 	if (((struct uscsi_cmd *)(xp->xb_pktinfo))->uscsi_rqlen >
12374 	    SENSE_LENGTH) {
12375 		kmem_free(xp, sizeof (struct sd_xbuf) - SENSE_LENGTH +
12376 		    MAX_SENSE_LENGTH);
12377 	} else {
12378 		kmem_free(xp, sizeof (struct sd_xbuf));
12379 	}
12380 
12381 	biodone(bp);
12382 
12383 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: exit.\n");
12384 }
12385 
12386 
12387 /*
12388  *    Function: sd_mapblockaddr_iostart
12389  *
12390  * Description: Verify request lies within the partition limits for
12391  *		the indicated minor device.  Issue "overrun" buf if
12392  *		request would exceed partition range.  Converts
12393  *		partition-relative block address to absolute.
12394  *
12395  *              Upon exit of this function:
12396  *              1.I/O is aligned
12397  *                 xp->xb_blkno represents the absolute sector address
12398  *              2.I/O is misaligned
12399  *                 xp->xb_blkno represents the absolute logical block address
12400  *                 based on DEV_BSIZE. The logical block address will be
12401  *                 converted to physical sector address in sd_mapblocksize_\
12402  *                 iostart.
12403  *              3.I/O is misaligned but is aligned in "overrun" buf
12404  *                 xp->xb_blkno represents the absolute logical block address
12405  *                 based on DEV_BSIZE. The logical block address will be
12406  *                 converted to physical sector address in sd_mapblocksize_\
12407  *                 iostart. But no RMW will be issued in this case.
12408  *
12409  *     Context: Can sleep
12410  *
12411  *      Issues: This follows what the old code did, in terms of accessing
12412  *		some of the partition info in the unit struct without holding
12413  *		the mutext.  This is a general issue, if the partition info
12414  *		can be altered while IO is in progress... as soon as we send
12415  *		a buf, its partitioning can be invalid before it gets to the
12416  *		device.  Probably the right fix is to move partitioning out
12417  *		of the driver entirely.
12418  */
12419 
12420 static void
12421 sd_mapblockaddr_iostart(int index, struct sd_lun *un, struct buf *bp)
12422 {
12423 	diskaddr_t	nblocks;	/* #blocks in the given partition */
12424 	daddr_t	blocknum;	/* Block number specified by the buf */
12425 	size_t	requested_nblocks;
12426 	size_t	available_nblocks;
12427 	int	partition;
12428 	diskaddr_t	partition_offset;
12429 	struct sd_xbuf *xp;
12430 	int secmask = 0, blknomask = 0;
12431 	ushort_t is_aligned = TRUE;
12432 
12433 	ASSERT(un != NULL);
12434 	ASSERT(bp != NULL);
12435 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12436 
12437 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12438 	    "sd_mapblockaddr_iostart: entry: buf:0x%p\n", bp);
12439 
12440 	xp = SD_GET_XBUF(bp);
12441 	ASSERT(xp != NULL);
12442 
12443 	/*
12444 	 * If the geometry is not indicated as valid, attempt to access
12445 	 * the unit & verify the geometry/label. This can be the case for
12446 	 * removable-media devices, of if the device was opened in
12447 	 * NDELAY/NONBLOCK mode.
12448 	 */
12449 	partition = SDPART(bp->b_edev);
12450 
12451 	if (!SD_IS_VALID_LABEL(un)) {
12452 		sd_ssc_t *ssc;
12453 		/*
12454 		 * Initialize sd_ssc_t for internal uscsi commands
12455 		 * In case of potential porformance issue, we need
12456 		 * to alloc memory only if there is invalid label
12457 		 */
12458 		ssc = sd_ssc_init(un);
12459 
12460 		if (sd_ready_and_valid(ssc, partition) != SD_READY_VALID) {
12461 			/*
12462 			 * For removable devices it is possible to start an
12463 			 * I/O without a media by opening the device in nodelay
12464 			 * mode. Also for writable CDs there can be many
12465 			 * scenarios where there is no geometry yet but volume
12466 			 * manager is trying to issue a read() just because
12467 			 * it can see TOC on the CD. So do not print a message
12468 			 * for removables.
12469 			 */
12470 			if (!un->un_f_has_removable_media) {
12471 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
12472 				    "i/o to invalid geometry\n");
12473 			}
12474 			bioerror(bp, EIO);
12475 			bp->b_resid = bp->b_bcount;
12476 			SD_BEGIN_IODONE(index, un, bp);
12477 
12478 			sd_ssc_fini(ssc);
12479 			return;
12480 		}
12481 		sd_ssc_fini(ssc);
12482 	}
12483 
12484 	nblocks = 0;
12485 	(void) cmlb_partinfo(un->un_cmlbhandle, partition,
12486 	    &nblocks, &partition_offset, NULL, NULL, (void *)SD_PATH_DIRECT);
12487 
12488 	blknomask = (un->un_tgt_blocksize / DEV_BSIZE) - 1;
12489 	secmask = un->un_tgt_blocksize - 1;
12490 
12491 	if ((bp->b_lblkno & (blknomask)) || (bp->b_bcount & (secmask))) {
12492 		is_aligned = FALSE;
12493 	}
12494 
12495 	if (!(NOT_DEVBSIZE(un))) {
12496 		/*
12497 		 * If I/O is aligned, no need to involve RMW(Read Modify Write)
12498 		 * Convert the logical block number to target's physical sector
12499 		 * number.
12500 		 */
12501 		if (is_aligned) {
12502 			xp->xb_blkno = SD_SYS2TGTBLOCK(un, xp->xb_blkno);
12503 		} else {
12504 			switch (un->un_f_rmw_type) {
12505 			case SD_RMW_TYPE_RETURN_ERROR:
12506 				bp->b_flags |= B_ERROR;
12507 				goto error_exit;
12508 
12509 			case SD_RMW_TYPE_DEFAULT:
12510 				mutex_enter(SD_MUTEX(un));
12511 				if (un->un_rmw_msg_timeid == NULL) {
12512 					scsi_log(SD_DEVINFO(un), sd_label,
12513 					    CE_WARN, "I/O request is not "
12514 					    "aligned with %d disk sector size. "
12515 					    "It is handled through Read Modify "
12516 					    "Write but the performance is "
12517 					    "very low.\n",
12518 					    un->un_tgt_blocksize);
12519 					un->un_rmw_msg_timeid =
12520 					    timeout(sd_rmw_msg_print_handler,
12521 					    un, SD_RMW_MSG_PRINT_TIMEOUT);
12522 				} else {
12523 					un->un_rmw_incre_count ++;
12524 				}
12525 				mutex_exit(SD_MUTEX(un));
12526 				break;
12527 
12528 			case SD_RMW_TYPE_NO_WARNING:
12529 			default:
12530 				break;
12531 			}
12532 
12533 			nblocks = SD_TGT2SYSBLOCK(un, nblocks);
12534 			partition_offset = SD_TGT2SYSBLOCK(un,
12535 			    partition_offset);
12536 		}
12537 	}
12538 
12539 	/*
12540 	 * blocknum is the starting block number of the request. At this
12541 	 * point it is still relative to the start of the minor device.
12542 	 */
12543 	blocknum = xp->xb_blkno;
12544 
12545 	/*
12546 	 * Legacy: If the starting block number is one past the last block
12547 	 * in the partition, do not set B_ERROR in the buf.
12548 	 */
12549 	if (blocknum == nblocks)  {
12550 		goto error_exit;
12551 	}
12552 
12553 	/*
12554 	 * Confirm that the first block of the request lies within the
12555 	 * partition limits. Also the requested number of bytes must be
12556 	 * a multiple of the system block size.
12557 	 */
12558 	if ((blocknum < 0) || (blocknum >= nblocks) ||
12559 	    ((bp->b_bcount & (DEV_BSIZE - 1)) != 0)) {
12560 		bp->b_flags |= B_ERROR;
12561 		goto error_exit;
12562 	}
12563 
12564 	/*
12565 	 * If the requsted # blocks exceeds the available # blocks, that
12566 	 * is an overrun of the partition.
12567 	 */
12568 	if ((!NOT_DEVBSIZE(un)) && is_aligned) {
12569 		requested_nblocks = SD_BYTES2TGTBLOCKS(un, bp->b_bcount);
12570 	} else {
12571 		requested_nblocks = SD_BYTES2SYSBLOCKS(bp->b_bcount);
12572 	}
12573 
12574 	available_nblocks = (size_t)(nblocks - blocknum);
12575 	ASSERT(nblocks >= blocknum);
12576 
12577 	if (requested_nblocks > available_nblocks) {
12578 		size_t resid;
12579 
12580 		/*
12581 		 * Allocate an "overrun" buf to allow the request to proceed
12582 		 * for the amount of space available in the partition. The
12583 		 * amount not transferred will be added into the b_resid
12584 		 * when the operation is complete. The overrun buf
12585 		 * replaces the original buf here, and the original buf
12586 		 * is saved inside the overrun buf, for later use.
12587 		 */
12588 		if ((!NOT_DEVBSIZE(un)) && is_aligned) {
12589 			resid = SD_TGTBLOCKS2BYTES(un,
12590 			    (offset_t)(requested_nblocks - available_nblocks));
12591 		} else {
12592 			resid = SD_SYSBLOCKS2BYTES(
12593 			    (offset_t)(requested_nblocks - available_nblocks));
12594 		}
12595 
12596 		size_t count = bp->b_bcount - resid;
12597 		/*
12598 		 * Note: count is an unsigned entity thus it'll NEVER
12599 		 * be less than 0 so ASSERT the original values are
12600 		 * correct.
12601 		 */
12602 		ASSERT(bp->b_bcount >= resid);
12603 
12604 		bp = sd_bioclone_alloc(bp, count, blocknum,
12605 		    (int (*)(struct buf *)) sd_mapblockaddr_iodone);
12606 		xp = SD_GET_XBUF(bp); /* Update for 'new' bp! */
12607 		ASSERT(xp != NULL);
12608 	}
12609 
12610 	/* At this point there should be no residual for this buf. */
12611 	ASSERT(bp->b_resid == 0);
12612 
12613 	/* Convert the block number to an absolute address. */
12614 	xp->xb_blkno += partition_offset;
12615 
12616 	SD_NEXT_IOSTART(index, un, bp);
12617 
12618 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12619 	    "sd_mapblockaddr_iostart: exit 0: buf:0x%p\n", bp);
12620 
12621 	return;
12622 
12623 error_exit:
12624 	bp->b_resid = bp->b_bcount;
12625 	SD_BEGIN_IODONE(index, un, bp);
12626 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12627 	    "sd_mapblockaddr_iostart: exit 1: buf:0x%p\n", bp);
12628 }
12629 
12630 
12631 /*
12632  *    Function: sd_mapblockaddr_iodone
12633  *
12634  * Description: Completion-side processing for partition management.
12635  *
12636  *     Context: May be called under interrupt context
12637  */
12638 
12639 static void
12640 sd_mapblockaddr_iodone(int index, struct sd_lun *un, struct buf *bp)
12641 {
12642 	/* int	partition; */	/* Not used, see below. */
12643 	ASSERT(un != NULL);
12644 	ASSERT(bp != NULL);
12645 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12646 
12647 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12648 	    "sd_mapblockaddr_iodone: entry: buf:0x%p\n", bp);
12649 
12650 	if (bp->b_iodone == (int (*)(struct buf *)) sd_mapblockaddr_iodone) {
12651 		/*
12652 		 * We have an "overrun" buf to deal with...
12653 		 */
12654 		struct sd_xbuf	*xp;
12655 		struct buf	*obp;	/* ptr to the original buf */
12656 
12657 		xp = SD_GET_XBUF(bp);
12658 		ASSERT(xp != NULL);
12659 
12660 		/* Retrieve the pointer to the original buf */
12661 		obp = (struct buf *)xp->xb_private;
12662 		ASSERT(obp != NULL);
12663 
12664 		obp->b_resid = obp->b_bcount - (bp->b_bcount - bp->b_resid);
12665 		bioerror(obp, bp->b_error);
12666 
12667 		sd_bioclone_free(bp);
12668 
12669 		/*
12670 		 * Get back the original buf.
12671 		 * Note that since the restoration of xb_blkno below
12672 		 * was removed, the sd_xbuf is not needed.
12673 		 */
12674 		bp = obp;
12675 		/*
12676 		 * xp = SD_GET_XBUF(bp);
12677 		 * ASSERT(xp != NULL);
12678 		 */
12679 	}
12680 
12681 	/*
12682 	 * Convert sd->xb_blkno back to a minor-device relative value.
12683 	 * Note: this has been commented out, as it is not needed in the
12684 	 * current implementation of the driver (ie, since this function
12685 	 * is at the top of the layering chains, so the info will be
12686 	 * discarded) and it is in the "hot" IO path.
12687 	 *
12688 	 * partition = getminor(bp->b_edev) & SDPART_MASK;
12689 	 * xp->xb_blkno -= un->un_offset[partition];
12690 	 */
12691 
12692 	SD_NEXT_IODONE(index, un, bp);
12693 
12694 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12695 	    "sd_mapblockaddr_iodone: exit: buf:0x%p\n", bp);
12696 }
12697 
12698 
12699 /*
12700  *    Function: sd_mapblocksize_iostart
12701  *
12702  * Description: Convert between system block size (un->un_sys_blocksize)
12703  *		and target block size (un->un_tgt_blocksize).
12704  *
12705  *     Context: Can sleep to allocate resources.
12706  *
12707  * Assumptions: A higher layer has already performed any partition validation,
12708  *		and converted the xp->xb_blkno to an absolute value relative
12709  *		to the start of the device.
12710  *
12711  *		It is also assumed that the higher layer has implemented
12712  *		an "overrun" mechanism for the case where the request would
12713  *		read/write beyond the end of a partition.  In this case we
12714  *		assume (and ASSERT) that bp->b_resid == 0.
12715  *
12716  *		Note: The implementation for this routine assumes the target
12717  *		block size remains constant between allocation and transport.
12718  */
12719 
12720 static void
12721 sd_mapblocksize_iostart(int index, struct sd_lun *un, struct buf *bp)
12722 {
12723 	struct sd_mapblocksize_info	*bsp;
12724 	struct sd_xbuf			*xp;
12725 	offset_t first_byte;
12726 	daddr_t	start_block, end_block;
12727 	daddr_t	request_bytes;
12728 	ushort_t is_aligned = FALSE;
12729 
12730 	ASSERT(un != NULL);
12731 	ASSERT(bp != NULL);
12732 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12733 	ASSERT(bp->b_resid == 0);
12734 
12735 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12736 	    "sd_mapblocksize_iostart: entry: buf:0x%p\n", bp);
12737 
12738 	/*
12739 	 * For a non-writable CD, a write request is an error
12740 	 */
12741 	if (ISCD(un) && ((bp->b_flags & B_READ) == 0) &&
12742 	    (un->un_f_mmc_writable_media == FALSE)) {
12743 		bioerror(bp, EIO);
12744 		bp->b_resid = bp->b_bcount;
12745 		SD_BEGIN_IODONE(index, un, bp);
12746 		return;
12747 	}
12748 
12749 	/*
12750 	 * We do not need a shadow buf if the device is using
12751 	 * un->un_sys_blocksize as its block size or if bcount == 0.
12752 	 * In this case there is no layer-private data block allocated.
12753 	 */
12754 	if ((un->un_tgt_blocksize == DEV_BSIZE) ||
12755 	    (bp->b_bcount == 0)) {
12756 		goto done;
12757 	}
12758 
12759 #if defined(__i386) || defined(__amd64)
12760 	/* We do not support non-block-aligned transfers for ROD devices */
12761 	ASSERT(!ISROD(un));
12762 #endif
12763 
12764 	xp = SD_GET_XBUF(bp);
12765 	ASSERT(xp != NULL);
12766 
12767 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12768 	    "tgt_blocksize:0x%x sys_blocksize: 0x%x\n",
12769 	    un->un_tgt_blocksize, DEV_BSIZE);
12770 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12771 	    "request start block:0x%x\n", xp->xb_blkno);
12772 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12773 	    "request len:0x%x\n", bp->b_bcount);
12774 
12775 	/*
12776 	 * Allocate the layer-private data area for the mapblocksize layer.
12777 	 * Layers are allowed to use the xp_private member of the sd_xbuf
12778 	 * struct to store the pointer to their layer-private data block, but
12779 	 * each layer also has the responsibility of restoring the prior
12780 	 * contents of xb_private before returning the buf/xbuf to the
12781 	 * higher layer that sent it.
12782 	 *
12783 	 * Here we save the prior contents of xp->xb_private into the
12784 	 * bsp->mbs_oprivate field of our layer-private data area. This value
12785 	 * is restored by sd_mapblocksize_iodone() just prior to freeing up
12786 	 * the layer-private area and returning the buf/xbuf to the layer
12787 	 * that sent it.
12788 	 *
12789 	 * Note that here we use kmem_zalloc for the allocation as there are
12790 	 * parts of the mapblocksize code that expect certain fields to be
12791 	 * zero unless explicitly set to a required value.
12792 	 */
12793 	bsp = kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
12794 	bsp->mbs_oprivate = xp->xb_private;
12795 	xp->xb_private = bsp;
12796 
12797 	/*
12798 	 * This treats the data on the disk (target) as an array of bytes.
12799 	 * first_byte is the byte offset, from the beginning of the device,
12800 	 * to the location of the request. This is converted from a
12801 	 * un->un_sys_blocksize block address to a byte offset, and then back
12802 	 * to a block address based upon a un->un_tgt_blocksize block size.
12803 	 *
12804 	 * xp->xb_blkno should be absolute upon entry into this function,
12805 	 * but, but it is based upon partitions that use the "system"
12806 	 * block size. It must be adjusted to reflect the block size of
12807 	 * the target.
12808 	 *
12809 	 * Note that end_block is actually the block that follows the last
12810 	 * block of the request, but that's what is needed for the computation.
12811 	 */
12812 	first_byte  = SD_SYSBLOCKS2BYTES((offset_t)xp->xb_blkno);
12813 	start_block = xp->xb_blkno = first_byte / un->un_tgt_blocksize;
12814 	end_block   = (first_byte + bp->b_bcount + un->un_tgt_blocksize - 1) /
12815 	    un->un_tgt_blocksize;
12816 
12817 	/* request_bytes is rounded up to a multiple of the target block size */
12818 	request_bytes = (end_block - start_block) * un->un_tgt_blocksize;
12819 
12820 	/*
12821 	 * See if the starting address of the request and the request
12822 	 * length are aligned on a un->un_tgt_blocksize boundary. If aligned
12823 	 * then we do not need to allocate a shadow buf to handle the request.
12824 	 */
12825 	if (((first_byte   % un->un_tgt_blocksize) == 0) &&
12826 	    ((bp->b_bcount % un->un_tgt_blocksize) == 0)) {
12827 		is_aligned = TRUE;
12828 	}
12829 
12830 	if ((bp->b_flags & B_READ) == 0) {
12831 		/*
12832 		 * Lock the range for a write operation. An aligned request is
12833 		 * considered a simple write; otherwise the request must be a
12834 		 * read-modify-write.
12835 		 */
12836 		bsp->mbs_wmp = sd_range_lock(un, start_block, end_block - 1,
12837 		    (is_aligned == TRUE) ? SD_WTYPE_SIMPLE : SD_WTYPE_RMW);
12838 	}
12839 
12840 	/*
12841 	 * Alloc a shadow buf if the request is not aligned. Also, this is
12842 	 * where the READ command is generated for a read-modify-write. (The
12843 	 * write phase is deferred until after the read completes.)
12844 	 */
12845 	if (is_aligned == FALSE) {
12846 
12847 		struct sd_mapblocksize_info	*shadow_bsp;
12848 		struct sd_xbuf	*shadow_xp;
12849 		struct buf	*shadow_bp;
12850 
12851 		/*
12852 		 * Allocate the shadow buf and it associated xbuf. Note that
12853 		 * after this call the xb_blkno value in both the original
12854 		 * buf's sd_xbuf _and_ the shadow buf's sd_xbuf will be the
12855 		 * same: absolute relative to the start of the device, and
12856 		 * adjusted for the target block size. The b_blkno in the
12857 		 * shadow buf will also be set to this value. We should never
12858 		 * change b_blkno in the original bp however.
12859 		 *
12860 		 * Note also that the shadow buf will always need to be a
12861 		 * READ command, regardless of whether the incoming command
12862 		 * is a READ or a WRITE.
12863 		 */
12864 		shadow_bp = sd_shadow_buf_alloc(bp, request_bytes, B_READ,
12865 		    xp->xb_blkno,
12866 		    (int (*)(struct buf *)) sd_mapblocksize_iodone);
12867 
12868 		shadow_xp = SD_GET_XBUF(shadow_bp);
12869 
12870 		/*
12871 		 * Allocate the layer-private data for the shadow buf.
12872 		 * (No need to preserve xb_private in the shadow xbuf.)
12873 		 */
12874 		shadow_xp->xb_private = shadow_bsp =
12875 		    kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
12876 
12877 		/*
12878 		 * bsp->mbs_copy_offset is used later by sd_mapblocksize_iodone
12879 		 * to figure out where the start of the user data is (based upon
12880 		 * the system block size) in the data returned by the READ
12881 		 * command (which will be based upon the target blocksize). Note
12882 		 * that this is only really used if the request is unaligned.
12883 		 */
12884 		bsp->mbs_copy_offset = (ssize_t)(first_byte -
12885 		    ((offset_t)xp->xb_blkno * un->un_tgt_blocksize));
12886 		ASSERT((bsp->mbs_copy_offset >= 0) &&
12887 		    (bsp->mbs_copy_offset < un->un_tgt_blocksize));
12888 
12889 		shadow_bsp->mbs_copy_offset = bsp->mbs_copy_offset;
12890 
12891 		shadow_bsp->mbs_layer_index = bsp->mbs_layer_index = index;
12892 
12893 		/* Transfer the wmap (if any) to the shadow buf */
12894 		shadow_bsp->mbs_wmp = bsp->mbs_wmp;
12895 		bsp->mbs_wmp = NULL;
12896 
12897 		/*
12898 		 * The shadow buf goes on from here in place of the
12899 		 * original buf.
12900 		 */
12901 		shadow_bsp->mbs_orig_bp = bp;
12902 		bp = shadow_bp;
12903 	}
12904 
12905 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
12906 	    "sd_mapblocksize_iostart: tgt start block:0x%x\n", xp->xb_blkno);
12907 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
12908 	    "sd_mapblocksize_iostart: tgt request len:0x%x\n",
12909 	    request_bytes);
12910 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
12911 	    "sd_mapblocksize_iostart: shadow buf:0x%x\n", bp);
12912 
12913 done:
12914 	SD_NEXT_IOSTART(index, un, bp);
12915 
12916 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12917 	    "sd_mapblocksize_iostart: exit: buf:0x%p\n", bp);
12918 }
12919 
12920 
12921 /*
12922  *    Function: sd_mapblocksize_iodone
12923  *
12924  * Description: Completion side processing for block-size mapping.
12925  *
12926  *     Context: May be called under interrupt context
12927  */
12928 
12929 static void
12930 sd_mapblocksize_iodone(int index, struct sd_lun *un, struct buf *bp)
12931 {
12932 	struct sd_mapblocksize_info	*bsp;
12933 	struct sd_xbuf	*xp;
12934 	struct sd_xbuf	*orig_xp;	/* sd_xbuf for the original buf */
12935 	struct buf	*orig_bp;	/* ptr to the original buf */
12936 	offset_t	shadow_end;
12937 	offset_t	request_end;
12938 	offset_t	shadow_start;
12939 	ssize_t		copy_offset;
12940 	size_t		copy_length;
12941 	size_t		shortfall;
12942 	uint_t		is_write;	/* TRUE if this bp is a WRITE */
12943 	uint_t		has_wmap;	/* TRUE is this bp has a wmap */
12944 
12945 	ASSERT(un != NULL);
12946 	ASSERT(bp != NULL);
12947 
12948 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12949 	    "sd_mapblocksize_iodone: entry: buf:0x%p\n", bp);
12950 
12951 	/*
12952 	 * There is no shadow buf or layer-private data if the target is
12953 	 * using un->un_sys_blocksize as its block size or if bcount == 0.
12954 	 */
12955 	if ((un->un_tgt_blocksize == DEV_BSIZE) ||
12956 	    (bp->b_bcount == 0)) {
12957 		goto exit;
12958 	}
12959 
12960 	xp = SD_GET_XBUF(bp);
12961 	ASSERT(xp != NULL);
12962 
12963 	/* Retrieve the pointer to the layer-private data area from the xbuf. */
12964 	bsp = xp->xb_private;
12965 
12966 	is_write = ((bp->b_flags & B_READ) == 0) ? TRUE : FALSE;
12967 	has_wmap = (bsp->mbs_wmp != NULL) ? TRUE : FALSE;
12968 
12969 	if (is_write) {
12970 		/*
12971 		 * For a WRITE request we must free up the block range that
12972 		 * we have locked up.  This holds regardless of whether this is
12973 		 * an aligned write request or a read-modify-write request.
12974 		 */
12975 		sd_range_unlock(un, bsp->mbs_wmp);
12976 		bsp->mbs_wmp = NULL;
12977 	}
12978 
12979 	if ((bp->b_iodone != (int(*)(struct buf *))sd_mapblocksize_iodone)) {
12980 		/*
12981 		 * An aligned read or write command will have no shadow buf;
12982 		 * there is not much else to do with it.
12983 		 */
12984 		goto done;
12985 	}
12986 
12987 	orig_bp = bsp->mbs_orig_bp;
12988 	ASSERT(orig_bp != NULL);
12989 	orig_xp = SD_GET_XBUF(orig_bp);
12990 	ASSERT(orig_xp != NULL);
12991 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12992 
12993 	if (!is_write && has_wmap) {
12994 		/*
12995 		 * A READ with a wmap means this is the READ phase of a
12996 		 * read-modify-write. If an error occurred on the READ then
12997 		 * we do not proceed with the WRITE phase or copy any data.
12998 		 * Just release the write maps and return with an error.
12999 		 */
13000 		if ((bp->b_resid != 0) || (bp->b_error != 0)) {
13001 			orig_bp->b_resid = orig_bp->b_bcount;
13002 			bioerror(orig_bp, bp->b_error);
13003 			sd_range_unlock(un, bsp->mbs_wmp);
13004 			goto freebuf_done;
13005 		}
13006 	}
13007 
13008 	/*
13009 	 * Here is where we set up to copy the data from the shadow buf
13010 	 * into the space associated with the original buf.
13011 	 *
13012 	 * To deal with the conversion between block sizes, these
13013 	 * computations treat the data as an array of bytes, with the
13014 	 * first byte (byte 0) corresponding to the first byte in the
13015 	 * first block on the disk.
13016 	 */
13017 
13018 	/*
13019 	 * shadow_start and shadow_len indicate the location and size of
13020 	 * the data returned with the shadow IO request.
13021 	 */
13022 	shadow_start  = SD_TGTBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
13023 	shadow_end    = shadow_start + bp->b_bcount - bp->b_resid;
13024 
13025 	/*
13026 	 * copy_offset gives the offset (in bytes) from the start of the first
13027 	 * block of the READ request to the beginning of the data.  We retrieve
13028 	 * this value from xb_pktp in the ORIGINAL xbuf, as it has been saved
13029 	 * there by sd_mapblockize_iostart(). copy_length gives the amount of
13030 	 * data to be copied (in bytes).
13031 	 */
13032 	copy_offset  = bsp->mbs_copy_offset;
13033 	ASSERT((copy_offset >= 0) && (copy_offset < un->un_tgt_blocksize));
13034 	copy_length  = orig_bp->b_bcount;
13035 	request_end  = shadow_start + copy_offset + orig_bp->b_bcount;
13036 
13037 	/*
13038 	 * Set up the resid and error fields of orig_bp as appropriate.
13039 	 */
13040 	if (shadow_end >= request_end) {
13041 		/* We got all the requested data; set resid to zero */
13042 		orig_bp->b_resid = 0;
13043 	} else {
13044 		/*
13045 		 * We failed to get enough data to fully satisfy the original
13046 		 * request. Just copy back whatever data we got and set
13047 		 * up the residual and error code as required.
13048 		 *
13049 		 * 'shortfall' is the amount by which the data received with the
13050 		 * shadow buf has "fallen short" of the requested amount.
13051 		 */
13052 		shortfall = (size_t)(request_end - shadow_end);
13053 
13054 		if (shortfall > orig_bp->b_bcount) {
13055 			/*
13056 			 * We did not get enough data to even partially
13057 			 * fulfill the original request.  The residual is
13058 			 * equal to the amount requested.
13059 			 */
13060 			orig_bp->b_resid = orig_bp->b_bcount;
13061 		} else {
13062 			/*
13063 			 * We did not get all the data that we requested
13064 			 * from the device, but we will try to return what
13065 			 * portion we did get.
13066 			 */
13067 			orig_bp->b_resid = shortfall;
13068 		}
13069 		ASSERT(copy_length >= orig_bp->b_resid);
13070 		copy_length  -= orig_bp->b_resid;
13071 	}
13072 
13073 	/* Propagate the error code from the shadow buf to the original buf */
13074 	bioerror(orig_bp, bp->b_error);
13075 
13076 	if (is_write) {
13077 		goto freebuf_done;	/* No data copying for a WRITE */
13078 	}
13079 
13080 	if (has_wmap) {
13081 		/*
13082 		 * This is a READ command from the READ phase of a
13083 		 * read-modify-write request. We have to copy the data given
13084 		 * by the user OVER the data returned by the READ command,
13085 		 * then convert the command from a READ to a WRITE and send
13086 		 * it back to the target.
13087 		 */
13088 		bcopy(orig_bp->b_un.b_addr, bp->b_un.b_addr + copy_offset,
13089 		    copy_length);
13090 
13091 		bp->b_flags &= ~((int)B_READ);	/* Convert to a WRITE */
13092 
13093 		/*
13094 		 * Dispatch the WRITE command to the taskq thread, which
13095 		 * will in turn send the command to the target. When the
13096 		 * WRITE command completes, we (sd_mapblocksize_iodone())
13097 		 * will get called again as part of the iodone chain
13098 		 * processing for it. Note that we will still be dealing
13099 		 * with the shadow buf at that point.
13100 		 */
13101 		if (taskq_dispatch(sd_wmr_tq, sd_read_modify_write_task, bp,
13102 		    KM_NOSLEEP) != 0) {
13103 			/*
13104 			 * Dispatch was successful so we are done. Return
13105 			 * without going any higher up the iodone chain. Do
13106 			 * not free up any layer-private data until after the
13107 			 * WRITE completes.
13108 			 */
13109 			return;
13110 		}
13111 
13112 		/*
13113 		 * Dispatch of the WRITE command failed; set up the error
13114 		 * condition and send this IO back up the iodone chain.
13115 		 */
13116 		bioerror(orig_bp, EIO);
13117 		orig_bp->b_resid = orig_bp->b_bcount;
13118 
13119 	} else {
13120 		/*
13121 		 * This is a regular READ request (ie, not a RMW). Copy the
13122 		 * data from the shadow buf into the original buf. The
13123 		 * copy_offset compensates for any "misalignment" between the
13124 		 * shadow buf (with its un->un_tgt_blocksize blocks) and the
13125 		 * original buf (with its un->un_sys_blocksize blocks).
13126 		 */
13127 		bcopy(bp->b_un.b_addr + copy_offset, orig_bp->b_un.b_addr,
13128 		    copy_length);
13129 	}
13130 
13131 freebuf_done:
13132 
13133 	/*
13134 	 * At this point we still have both the shadow buf AND the original
13135 	 * buf to deal with, as well as the layer-private data area in each.
13136 	 * Local variables are as follows:
13137 	 *
13138 	 * bp -- points to shadow buf
13139 	 * xp -- points to xbuf of shadow buf
13140 	 * bsp -- points to layer-private data area of shadow buf
13141 	 * orig_bp -- points to original buf
13142 	 *
13143 	 * First free the shadow buf and its associated xbuf, then free the
13144 	 * layer-private data area from the shadow buf. There is no need to
13145 	 * restore xb_private in the shadow xbuf.
13146 	 */
13147 	sd_shadow_buf_free(bp);
13148 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
13149 
13150 	/*
13151 	 * Now update the local variables to point to the original buf, xbuf,
13152 	 * and layer-private area.
13153 	 */
13154 	bp = orig_bp;
13155 	xp = SD_GET_XBUF(bp);
13156 	ASSERT(xp != NULL);
13157 	ASSERT(xp == orig_xp);
13158 	bsp = xp->xb_private;
13159 	ASSERT(bsp != NULL);
13160 
13161 done:
13162 	/*
13163 	 * Restore xb_private to whatever it was set to by the next higher
13164 	 * layer in the chain, then free the layer-private data area.
13165 	 */
13166 	xp->xb_private = bsp->mbs_oprivate;
13167 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
13168 
13169 exit:
13170 	SD_TRACE(SD_LOG_IO_RMMEDIA, SD_GET_UN(bp),
13171 	    "sd_mapblocksize_iodone: calling SD_NEXT_IODONE: buf:0x%p\n", bp);
13172 
13173 	SD_NEXT_IODONE(index, un, bp);
13174 }
13175 
13176 
13177 /*
13178  *    Function: sd_checksum_iostart
13179  *
13180  * Description: A stub function for a layer that's currently not used.
13181  *		For now just a placeholder.
13182  *
13183  *     Context: Kernel thread context
13184  */
13185 
13186 static void
13187 sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp)
13188 {
13189 	ASSERT(un != NULL);
13190 	ASSERT(bp != NULL);
13191 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13192 	SD_NEXT_IOSTART(index, un, bp);
13193 }
13194 
13195 
13196 /*
13197  *    Function: sd_checksum_iodone
13198  *
13199  * Description: A stub function for a layer that's currently not used.
13200  *		For now just a placeholder.
13201  *
13202  *     Context: May be called under interrupt context
13203  */
13204 
13205 static void
13206 sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp)
13207 {
13208 	ASSERT(un != NULL);
13209 	ASSERT(bp != NULL);
13210 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13211 	SD_NEXT_IODONE(index, un, bp);
13212 }
13213 
13214 
13215 /*
13216  *    Function: sd_checksum_uscsi_iostart
13217  *
13218  * Description: A stub function for a layer that's currently not used.
13219  *		For now just a placeholder.
13220  *
13221  *     Context: Kernel thread context
13222  */
13223 
13224 static void
13225 sd_checksum_uscsi_iostart(int index, struct sd_lun *un, struct buf *bp)
13226 {
13227 	ASSERT(un != NULL);
13228 	ASSERT(bp != NULL);
13229 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13230 	SD_NEXT_IOSTART(index, un, bp);
13231 }
13232 
13233 
13234 /*
13235  *    Function: sd_checksum_uscsi_iodone
13236  *
13237  * Description: A stub function for a layer that's currently not used.
13238  *		For now just a placeholder.
13239  *
13240  *     Context: May be called under interrupt context
13241  */
13242 
13243 static void
13244 sd_checksum_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
13245 {
13246 	ASSERT(un != NULL);
13247 	ASSERT(bp != NULL);
13248 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13249 	SD_NEXT_IODONE(index, un, bp);
13250 }
13251 
13252 
13253 /*
13254  *    Function: sd_pm_iostart
13255  *
13256  * Description: iostart-side routine for Power mangement.
13257  *
13258  *     Context: Kernel thread context
13259  */
13260 
13261 static void
13262 sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp)
13263 {
13264 	ASSERT(un != NULL);
13265 	ASSERT(bp != NULL);
13266 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13267 	ASSERT(!mutex_owned(&un->un_pm_mutex));
13268 
13269 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: entry\n");
13270 
13271 	if (sd_pm_entry(un) != DDI_SUCCESS) {
13272 		/*
13273 		 * Set up to return the failed buf back up the 'iodone'
13274 		 * side of the calling chain.
13275 		 */
13276 		bioerror(bp, EIO);
13277 		bp->b_resid = bp->b_bcount;
13278 
13279 		SD_BEGIN_IODONE(index, un, bp);
13280 
13281 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
13282 		return;
13283 	}
13284 
13285 	SD_NEXT_IOSTART(index, un, bp);
13286 
13287 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
13288 }
13289 
13290 
13291 /*
13292  *    Function: sd_pm_iodone
13293  *
13294  * Description: iodone-side routine for power mangement.
13295  *
13296  *     Context: may be called from interrupt context
13297  */
13298 
13299 static void
13300 sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp)
13301 {
13302 	ASSERT(un != NULL);
13303 	ASSERT(bp != NULL);
13304 	ASSERT(!mutex_owned(&un->un_pm_mutex));
13305 
13306 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: entry\n");
13307 
13308 	/*
13309 	 * After attach the following flag is only read, so don't
13310 	 * take the penalty of acquiring a mutex for it.
13311 	 */
13312 	if (un->un_f_pm_is_enabled == TRUE) {
13313 		sd_pm_exit(un);
13314 	}
13315 
13316 	SD_NEXT_IODONE(index, un, bp);
13317 
13318 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: exit\n");
13319 }
13320 
13321 
13322 /*
13323  *    Function: sd_core_iostart
13324  *
13325  * Description: Primary driver function for enqueuing buf(9S) structs from
13326  *		the system and initiating IO to the target device
13327  *
13328  *     Context: Kernel thread context. Can sleep.
13329  *
13330  * Assumptions:  - The given xp->xb_blkno is absolute
13331  *		   (ie, relative to the start of the device).
13332  *		 - The IO is to be done using the native blocksize of
13333  *		   the device, as specified in un->un_tgt_blocksize.
13334  */
13335 /* ARGSUSED */
13336 static void
13337 sd_core_iostart(int index, struct sd_lun *un, struct buf *bp)
13338 {
13339 	struct sd_xbuf *xp;
13340 
13341 	ASSERT(un != NULL);
13342 	ASSERT(bp != NULL);
13343 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13344 	ASSERT(bp->b_resid == 0);
13345 
13346 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: entry: bp:0x%p\n", bp);
13347 
13348 	xp = SD_GET_XBUF(bp);
13349 	ASSERT(xp != NULL);
13350 
13351 	mutex_enter(SD_MUTEX(un));
13352 
13353 	/*
13354 	 * If we are currently in the failfast state, fail any new IO
13355 	 * that has B_FAILFAST set, then return.
13356 	 */
13357 	if ((bp->b_flags & B_FAILFAST) &&
13358 	    (un->un_failfast_state == SD_FAILFAST_ACTIVE)) {
13359 		mutex_exit(SD_MUTEX(un));
13360 		bioerror(bp, EIO);
13361 		bp->b_resid = bp->b_bcount;
13362 		SD_BEGIN_IODONE(index, un, bp);
13363 		return;
13364 	}
13365 
13366 	if (SD_IS_DIRECT_PRIORITY(xp)) {
13367 		/*
13368 		 * Priority command -- transport it immediately.
13369 		 *
13370 		 * Note: We may want to assert that USCSI_DIAGNOSE is set,
13371 		 * because all direct priority commands should be associated
13372 		 * with error recovery actions which we don't want to retry.
13373 		 */
13374 		sd_start_cmds(un, bp);
13375 	} else {
13376 		/*
13377 		 * Normal command -- add it to the wait queue, then start
13378 		 * transporting commands from the wait queue.
13379 		 */
13380 		sd_add_buf_to_waitq(un, bp);
13381 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
13382 		sd_start_cmds(un, NULL);
13383 	}
13384 
13385 	mutex_exit(SD_MUTEX(un));
13386 
13387 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: exit: bp:0x%p\n", bp);
13388 }
13389 
13390 
13391 /*
13392  *    Function: sd_init_cdb_limits
13393  *
13394  * Description: This is to handle scsi_pkt initialization differences
13395  *		between the driver platforms.
13396  *
13397  *		Legacy behaviors:
13398  *
13399  *		If the block number or the sector count exceeds the
13400  *		capabilities of a Group 0 command, shift over to a
13401  *		Group 1 command. We don't blindly use Group 1
13402  *		commands because a) some drives (CDC Wren IVs) get a
13403  *		bit confused, and b) there is probably a fair amount
13404  *		of speed difference for a target to receive and decode
13405  *		a 10 byte command instead of a 6 byte command.
13406  *
13407  *		The xfer time difference of 6 vs 10 byte CDBs is
13408  *		still significant so this code is still worthwhile.
13409  *		10 byte CDBs are very inefficient with the fas HBA driver
13410  *		and older disks. Each CDB byte took 1 usec with some
13411  *		popular disks.
13412  *
13413  *     Context: Must be called at attach time
13414  */
13415 
13416 static void
13417 sd_init_cdb_limits(struct sd_lun *un)
13418 {
13419 	int hba_cdb_limit;
13420 
13421 	/*
13422 	 * Use CDB_GROUP1 commands for most devices except for
13423 	 * parallel SCSI fixed drives in which case we get better
13424 	 * performance using CDB_GROUP0 commands (where applicable).
13425 	 */
13426 	un->un_mincdb = SD_CDB_GROUP1;
13427 #if !defined(__fibre)
13428 	if (!un->un_f_is_fibre && !un->un_f_cfg_is_atapi && !ISROD(un) &&
13429 	    !un->un_f_has_removable_media) {
13430 		un->un_mincdb = SD_CDB_GROUP0;
13431 	}
13432 #endif
13433 
13434 	/*
13435 	 * Try to read the max-cdb-length supported by HBA.
13436 	 */
13437 	un->un_max_hba_cdb = scsi_ifgetcap(SD_ADDRESS(un), "max-cdb-length", 1);
13438 	if (0 >= un->un_max_hba_cdb) {
13439 		un->un_max_hba_cdb = CDB_GROUP4;
13440 		hba_cdb_limit = SD_CDB_GROUP4;
13441 	} else if (0 < un->un_max_hba_cdb &&
13442 	    un->un_max_hba_cdb < CDB_GROUP1) {
13443 		hba_cdb_limit = SD_CDB_GROUP0;
13444 	} else if (CDB_GROUP1 <= un->un_max_hba_cdb &&
13445 	    un->un_max_hba_cdb < CDB_GROUP5) {
13446 		hba_cdb_limit = SD_CDB_GROUP1;
13447 	} else if (CDB_GROUP5 <= un->un_max_hba_cdb &&
13448 	    un->un_max_hba_cdb < CDB_GROUP4) {
13449 		hba_cdb_limit = SD_CDB_GROUP5;
13450 	} else {
13451 		hba_cdb_limit = SD_CDB_GROUP4;
13452 	}
13453 
13454 	/*
13455 	 * Use CDB_GROUP5 commands for removable devices.  Use CDB_GROUP4
13456 	 * commands for fixed disks unless we are building for a 32 bit
13457 	 * kernel.
13458 	 */
13459 #ifdef _LP64
13460 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
13461 	    min(hba_cdb_limit, SD_CDB_GROUP4);
13462 #else
13463 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
13464 	    min(hba_cdb_limit, SD_CDB_GROUP1);
13465 #endif
13466 
13467 	un->un_status_len = (int)((un->un_f_arq_enabled == TRUE)
13468 	    ? sizeof (struct scsi_arq_status) : 1);
13469 	un->un_cmd_timeout = (ushort_t)sd_io_time;
13470 	un->un_uscsi_timeout = ((ISCD(un)) ? 2 : 1) * un->un_cmd_timeout;
13471 }
13472 
13473 
13474 /*
13475  *    Function: sd_initpkt_for_buf
13476  *
13477  * Description: Allocate and initialize for transport a scsi_pkt struct,
13478  *		based upon the info specified in the given buf struct.
13479  *
13480  *		Assumes the xb_blkno in the request is absolute (ie,
13481  *		relative to the start of the device (NOT partition!).
13482  *		Also assumes that the request is using the native block
13483  *		size of the device (as returned by the READ CAPACITY
13484  *		command).
13485  *
13486  * Return Code: SD_PKT_ALLOC_SUCCESS
13487  *		SD_PKT_ALLOC_FAILURE
13488  *		SD_PKT_ALLOC_FAILURE_NO_DMA
13489  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13490  *
13491  *     Context: Kernel thread and may be called from software interrupt context
13492  *		as part of a sdrunout callback. This function may not block or
13493  *		call routines that block
13494  */
13495 
13496 static int
13497 sd_initpkt_for_buf(struct buf *bp, struct scsi_pkt **pktpp)
13498 {
13499 	struct sd_xbuf	*xp;
13500 	struct scsi_pkt *pktp = NULL;
13501 	struct sd_lun	*un;
13502 	size_t		blockcount;
13503 	daddr_t		startblock;
13504 	int		rval;
13505 	int		cmd_flags;
13506 
13507 	ASSERT(bp != NULL);
13508 	ASSERT(pktpp != NULL);
13509 	xp = SD_GET_XBUF(bp);
13510 	ASSERT(xp != NULL);
13511 	un = SD_GET_UN(bp);
13512 	ASSERT(un != NULL);
13513 	ASSERT(mutex_owned(SD_MUTEX(un)));
13514 	ASSERT(bp->b_resid == 0);
13515 
13516 	SD_TRACE(SD_LOG_IO_CORE, un,
13517 	    "sd_initpkt_for_buf: entry: buf:0x%p\n", bp);
13518 
13519 	mutex_exit(SD_MUTEX(un));
13520 
13521 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13522 	if (xp->xb_pkt_flags & SD_XB_DMA_FREED) {
13523 		/*
13524 		 * Already have a scsi_pkt -- just need DMA resources.
13525 		 * We must recompute the CDB in case the mapping returns
13526 		 * a nonzero pkt_resid.
13527 		 * Note: if this is a portion of a PKT_DMA_PARTIAL transfer
13528 		 * that is being retried, the unmap/remap of the DMA resouces
13529 		 * will result in the entire transfer starting over again
13530 		 * from the very first block.
13531 		 */
13532 		ASSERT(xp->xb_pktp != NULL);
13533 		pktp = xp->xb_pktp;
13534 	} else {
13535 		pktp = NULL;
13536 	}
13537 #endif /* __i386 || __amd64 */
13538 
13539 	startblock = xp->xb_blkno;	/* Absolute block num. */
13540 	blockcount = SD_BYTES2TGTBLOCKS(un, bp->b_bcount);
13541 
13542 	cmd_flags = un->un_pkt_flags | (xp->xb_pkt_flags & SD_XB_INITPKT_MASK);
13543 
13544 	/*
13545 	 * sd_setup_rw_pkt will determine the appropriate CDB group to use,
13546 	 * call scsi_init_pkt, and build the CDB.
13547 	 */
13548 	rval = sd_setup_rw_pkt(un, &pktp, bp,
13549 	    cmd_flags, sdrunout, (caddr_t)un,
13550 	    startblock, blockcount);
13551 
13552 	if (rval == 0) {
13553 		/*
13554 		 * Success.
13555 		 *
13556 		 * If partial DMA is being used and required for this transfer.
13557 		 * set it up here.
13558 		 */
13559 		if ((un->un_pkt_flags & PKT_DMA_PARTIAL) != 0 &&
13560 		    (pktp->pkt_resid != 0)) {
13561 
13562 			/*
13563 			 * Save the CDB length and pkt_resid for the
13564 			 * next xfer
13565 			 */
13566 			xp->xb_dma_resid = pktp->pkt_resid;
13567 
13568 			/* rezero resid */
13569 			pktp->pkt_resid = 0;
13570 
13571 		} else {
13572 			xp->xb_dma_resid = 0;
13573 		}
13574 
13575 		pktp->pkt_flags = un->un_tagflags;
13576 		pktp->pkt_time  = un->un_cmd_timeout;
13577 		pktp->pkt_comp  = sdintr;
13578 
13579 		pktp->pkt_private = bp;
13580 		*pktpp = pktp;
13581 
13582 		SD_TRACE(SD_LOG_IO_CORE, un,
13583 		    "sd_initpkt_for_buf: exit: buf:0x%p\n", bp);
13584 
13585 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13586 		xp->xb_pkt_flags &= ~SD_XB_DMA_FREED;
13587 #endif
13588 
13589 		mutex_enter(SD_MUTEX(un));
13590 		return (SD_PKT_ALLOC_SUCCESS);
13591 
13592 	}
13593 
13594 	/*
13595 	 * SD_PKT_ALLOC_FAILURE is the only expected failure code
13596 	 * from sd_setup_rw_pkt.
13597 	 */
13598 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
13599 
13600 	if (rval == SD_PKT_ALLOC_FAILURE) {
13601 		*pktpp = NULL;
13602 		/*
13603 		 * Set the driver state to RWAIT to indicate the driver
13604 		 * is waiting on resource allocations. The driver will not
13605 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
13606 		 */
13607 		mutex_enter(SD_MUTEX(un));
13608 		New_state(un, SD_STATE_RWAIT);
13609 
13610 		SD_ERROR(SD_LOG_IO_CORE, un,
13611 		    "sd_initpkt_for_buf: No pktp. exit bp:0x%p\n", bp);
13612 
13613 		if ((bp->b_flags & B_ERROR) != 0) {
13614 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
13615 		}
13616 		return (SD_PKT_ALLOC_FAILURE);
13617 	} else {
13618 		/*
13619 		 * PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13620 		 *
13621 		 * This should never happen.  Maybe someone messed with the
13622 		 * kernel's minphys?
13623 		 */
13624 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13625 		    "Request rejected: too large for CDB: "
13626 		    "lba:0x%08lx  len:0x%08lx\n", startblock, blockcount);
13627 		SD_ERROR(SD_LOG_IO_CORE, un,
13628 		    "sd_initpkt_for_buf: No cp. exit bp:0x%p\n", bp);
13629 		mutex_enter(SD_MUTEX(un));
13630 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13631 
13632 	}
13633 }
13634 
13635 
13636 /*
13637  *    Function: sd_destroypkt_for_buf
13638  *
13639  * Description: Free the scsi_pkt(9S) for the given bp (buf IO processing).
13640  *
13641  *     Context: Kernel thread or interrupt context
13642  */
13643 
13644 static void
13645 sd_destroypkt_for_buf(struct buf *bp)
13646 {
13647 	ASSERT(bp != NULL);
13648 	ASSERT(SD_GET_UN(bp) != NULL);
13649 
13650 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
13651 	    "sd_destroypkt_for_buf: entry: buf:0x%p\n", bp);
13652 
13653 	ASSERT(SD_GET_PKTP(bp) != NULL);
13654 	scsi_destroy_pkt(SD_GET_PKTP(bp));
13655 
13656 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
13657 	    "sd_destroypkt_for_buf: exit: buf:0x%p\n", bp);
13658 }
13659 
13660 /*
13661  *    Function: sd_setup_rw_pkt
13662  *
13663  * Description: Determines appropriate CDB group for the requested LBA
13664  *		and transfer length, calls scsi_init_pkt, and builds
13665  *		the CDB.  Do not use for partial DMA transfers except
13666  *		for the initial transfer since the CDB size must
13667  *		remain constant.
13668  *
13669  *     Context: Kernel thread and may be called from software interrupt
13670  *		context as part of a sdrunout callback. This function may not
13671  *		block or call routines that block
13672  */
13673 
13674 
13675 int
13676 sd_setup_rw_pkt(struct sd_lun *un,
13677     struct scsi_pkt **pktpp, struct buf *bp, int flags,
13678     int (*callback)(caddr_t), caddr_t callback_arg,
13679     diskaddr_t lba, uint32_t blockcount)
13680 {
13681 	struct scsi_pkt *return_pktp;
13682 	union scsi_cdb *cdbp;
13683 	struct sd_cdbinfo *cp = NULL;
13684 	int i;
13685 
13686 	/*
13687 	 * See which size CDB to use, based upon the request.
13688 	 */
13689 	for (i = un->un_mincdb; i <= un->un_maxcdb; i++) {
13690 
13691 		/*
13692 		 * Check lba and block count against sd_cdbtab limits.
13693 		 * In the partial DMA case, we have to use the same size
13694 		 * CDB for all the transfers.  Check lba + blockcount
13695 		 * against the max LBA so we know that segment of the
13696 		 * transfer can use the CDB we select.
13697 		 */
13698 		if ((lba + blockcount - 1 <= sd_cdbtab[i].sc_maxlba) &&
13699 		    (blockcount <= sd_cdbtab[i].sc_maxlen)) {
13700 
13701 			/*
13702 			 * The command will fit into the CDB type
13703 			 * specified by sd_cdbtab[i].
13704 			 */
13705 			cp = sd_cdbtab + i;
13706 
13707 			/*
13708 			 * Call scsi_init_pkt so we can fill in the
13709 			 * CDB.
13710 			 */
13711 			return_pktp = scsi_init_pkt(SD_ADDRESS(un), *pktpp,
13712 			    bp, cp->sc_grpcode, un->un_status_len, 0,
13713 			    flags, callback, callback_arg);
13714 
13715 			if (return_pktp != NULL) {
13716 
13717 				/*
13718 				 * Return new value of pkt
13719 				 */
13720 				*pktpp = return_pktp;
13721 
13722 				/*
13723 				 * To be safe, zero the CDB insuring there is
13724 				 * no leftover data from a previous command.
13725 				 */
13726 				bzero(return_pktp->pkt_cdbp, cp->sc_grpcode);
13727 
13728 				/*
13729 				 * Handle partial DMA mapping
13730 				 */
13731 				if (return_pktp->pkt_resid != 0) {
13732 
13733 					/*
13734 					 * Not going to xfer as many blocks as
13735 					 * originally expected
13736 					 */
13737 					blockcount -=
13738 					    SD_BYTES2TGTBLOCKS(un,
13739 					    return_pktp->pkt_resid);
13740 				}
13741 
13742 				cdbp = (union scsi_cdb *)return_pktp->pkt_cdbp;
13743 
13744 				/*
13745 				 * Set command byte based on the CDB
13746 				 * type we matched.
13747 				 */
13748 				cdbp->scc_cmd = cp->sc_grpmask |
13749 				    ((bp->b_flags & B_READ) ?
13750 				    SCMD_READ : SCMD_WRITE);
13751 
13752 				SD_FILL_SCSI1_LUN(un, return_pktp);
13753 
13754 				/*
13755 				 * Fill in LBA and length
13756 				 */
13757 				ASSERT((cp->sc_grpcode == CDB_GROUP1) ||
13758 				    (cp->sc_grpcode == CDB_GROUP4) ||
13759 				    (cp->sc_grpcode == CDB_GROUP0) ||
13760 				    (cp->sc_grpcode == CDB_GROUP5));
13761 
13762 				if (cp->sc_grpcode == CDB_GROUP1) {
13763 					FORMG1ADDR(cdbp, lba);
13764 					FORMG1COUNT(cdbp, blockcount);
13765 					return (0);
13766 				} else if (cp->sc_grpcode == CDB_GROUP4) {
13767 					FORMG4LONGADDR(cdbp, lba);
13768 					FORMG4COUNT(cdbp, blockcount);
13769 					return (0);
13770 				} else if (cp->sc_grpcode == CDB_GROUP0) {
13771 					FORMG0ADDR(cdbp, lba);
13772 					FORMG0COUNT(cdbp, blockcount);
13773 					return (0);
13774 				} else if (cp->sc_grpcode == CDB_GROUP5) {
13775 					FORMG5ADDR(cdbp, lba);
13776 					FORMG5COUNT(cdbp, blockcount);
13777 					return (0);
13778 				}
13779 
13780 				/*
13781 				 * It should be impossible to not match one
13782 				 * of the CDB types above, so we should never
13783 				 * reach this point.  Set the CDB command byte
13784 				 * to test-unit-ready to avoid writing
13785 				 * to somewhere we don't intend.
13786 				 */
13787 				cdbp->scc_cmd = SCMD_TEST_UNIT_READY;
13788 				return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13789 			} else {
13790 				/*
13791 				 * Couldn't get scsi_pkt
13792 				 */
13793 				return (SD_PKT_ALLOC_FAILURE);
13794 			}
13795 		}
13796 	}
13797 
13798 	/*
13799 	 * None of the available CDB types were suitable.  This really
13800 	 * should never happen:  on a 64 bit system we support
13801 	 * READ16/WRITE16 which will hold an entire 64 bit disk address
13802 	 * and on a 32 bit system we will refuse to bind to a device
13803 	 * larger than 2TB so addresses will never be larger than 32 bits.
13804 	 */
13805 	return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13806 }
13807 
13808 /*
13809  *    Function: sd_setup_next_rw_pkt
13810  *
13811  * Description: Setup packet for partial DMA transfers, except for the
13812  * 		initial transfer.  sd_setup_rw_pkt should be used for
13813  *		the initial transfer.
13814  *
13815  *     Context: Kernel thread and may be called from interrupt context.
13816  */
13817 
13818 int
13819 sd_setup_next_rw_pkt(struct sd_lun *un,
13820     struct scsi_pkt *pktp, struct buf *bp,
13821     diskaddr_t lba, uint32_t blockcount)
13822 {
13823 	uchar_t com;
13824 	union scsi_cdb *cdbp;
13825 	uchar_t cdb_group_id;
13826 
13827 	ASSERT(pktp != NULL);
13828 	ASSERT(pktp->pkt_cdbp != NULL);
13829 
13830 	cdbp = (union scsi_cdb *)pktp->pkt_cdbp;
13831 	com = cdbp->scc_cmd;
13832 	cdb_group_id = CDB_GROUPID(com);
13833 
13834 	ASSERT((cdb_group_id == CDB_GROUPID_0) ||
13835 	    (cdb_group_id == CDB_GROUPID_1) ||
13836 	    (cdb_group_id == CDB_GROUPID_4) ||
13837 	    (cdb_group_id == CDB_GROUPID_5));
13838 
13839 	/*
13840 	 * Move pkt to the next portion of the xfer.
13841 	 * func is NULL_FUNC so we do not have to release
13842 	 * the disk mutex here.
13843 	 */
13844 	if (scsi_init_pkt(SD_ADDRESS(un), pktp, bp, 0, 0, 0, 0,
13845 	    NULL_FUNC, NULL) == pktp) {
13846 		/* Success.  Handle partial DMA */
13847 		if (pktp->pkt_resid != 0) {
13848 			blockcount -=
13849 			    SD_BYTES2TGTBLOCKS(un, pktp->pkt_resid);
13850 		}
13851 
13852 		cdbp->scc_cmd = com;
13853 		SD_FILL_SCSI1_LUN(un, pktp);
13854 		if (cdb_group_id == CDB_GROUPID_1) {
13855 			FORMG1ADDR(cdbp, lba);
13856 			FORMG1COUNT(cdbp, blockcount);
13857 			return (0);
13858 		} else if (cdb_group_id == CDB_GROUPID_4) {
13859 			FORMG4LONGADDR(cdbp, lba);
13860 			FORMG4COUNT(cdbp, blockcount);
13861 			return (0);
13862 		} else if (cdb_group_id == CDB_GROUPID_0) {
13863 			FORMG0ADDR(cdbp, lba);
13864 			FORMG0COUNT(cdbp, blockcount);
13865 			return (0);
13866 		} else if (cdb_group_id == CDB_GROUPID_5) {
13867 			FORMG5ADDR(cdbp, lba);
13868 			FORMG5COUNT(cdbp, blockcount);
13869 			return (0);
13870 		}
13871 
13872 		/* Unreachable */
13873 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13874 	}
13875 
13876 	/*
13877 	 * Error setting up next portion of cmd transfer.
13878 	 * Something is definitely very wrong and this
13879 	 * should not happen.
13880 	 */
13881 	return (SD_PKT_ALLOC_FAILURE);
13882 }
13883 
13884 /*
13885  *    Function: sd_initpkt_for_uscsi
13886  *
13887  * Description: Allocate and initialize for transport a scsi_pkt struct,
13888  *		based upon the info specified in the given uscsi_cmd struct.
13889  *
13890  * Return Code: SD_PKT_ALLOC_SUCCESS
13891  *		SD_PKT_ALLOC_FAILURE
13892  *		SD_PKT_ALLOC_FAILURE_NO_DMA
13893  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13894  *
13895  *     Context: Kernel thread and may be called from software interrupt context
13896  *		as part of a sdrunout callback. This function may not block or
13897  *		call routines that block
13898  */
13899 
13900 static int
13901 sd_initpkt_for_uscsi(struct buf *bp, struct scsi_pkt **pktpp)
13902 {
13903 	struct uscsi_cmd *uscmd;
13904 	struct sd_xbuf	*xp;
13905 	struct scsi_pkt	*pktp;
13906 	struct sd_lun	*un;
13907 	uint32_t	flags = 0;
13908 
13909 	ASSERT(bp != NULL);
13910 	ASSERT(pktpp != NULL);
13911 	xp = SD_GET_XBUF(bp);
13912 	ASSERT(xp != NULL);
13913 	un = SD_GET_UN(bp);
13914 	ASSERT(un != NULL);
13915 	ASSERT(mutex_owned(SD_MUTEX(un)));
13916 
13917 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
13918 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
13919 	ASSERT(uscmd != NULL);
13920 
13921 	SD_TRACE(SD_LOG_IO_CORE, un,
13922 	    "sd_initpkt_for_uscsi: entry: buf:0x%p\n", bp);
13923 
13924 	/*
13925 	 * Allocate the scsi_pkt for the command.
13926 	 * Note: If PKT_DMA_PARTIAL flag is set, scsi_vhci binds a path
13927 	 *	 during scsi_init_pkt time and will continue to use the
13928 	 *	 same path as long as the same scsi_pkt is used without
13929 	 *	 intervening scsi_dma_free(). Since uscsi command does
13930 	 *	 not call scsi_dmafree() before retry failed command, it
13931 	 *	 is necessary to make sure PKT_DMA_PARTIAL flag is NOT
13932 	 *	 set such that scsi_vhci can use other available path for
13933 	 *	 retry. Besides, ucsci command does not allow DMA breakup,
13934 	 *	 so there is no need to set PKT_DMA_PARTIAL flag.
13935 	 */
13936 	if (uscmd->uscsi_rqlen > SENSE_LENGTH) {
13937 		pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
13938 		    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
13939 		    ((int)(uscmd->uscsi_rqlen) + sizeof (struct scsi_arq_status)
13940 		    - sizeof (struct scsi_extended_sense)), 0,
13941 		    (un->un_pkt_flags & ~PKT_DMA_PARTIAL) | PKT_XARQ,
13942 		    sdrunout, (caddr_t)un);
13943 	} else {
13944 		pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
13945 		    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
13946 		    sizeof (struct scsi_arq_status), 0,
13947 		    (un->un_pkt_flags & ~PKT_DMA_PARTIAL),
13948 		    sdrunout, (caddr_t)un);
13949 	}
13950 
13951 	if (pktp == NULL) {
13952 		*pktpp = NULL;
13953 		/*
13954 		 * Set the driver state to RWAIT to indicate the driver
13955 		 * is waiting on resource allocations. The driver will not
13956 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
13957 		 */
13958 		New_state(un, SD_STATE_RWAIT);
13959 
13960 		SD_ERROR(SD_LOG_IO_CORE, un,
13961 		    "sd_initpkt_for_uscsi: No pktp. exit bp:0x%p\n", bp);
13962 
13963 		if ((bp->b_flags & B_ERROR) != 0) {
13964 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
13965 		}
13966 		return (SD_PKT_ALLOC_FAILURE);
13967 	}
13968 
13969 	/*
13970 	 * We do not do DMA breakup for USCSI commands, so return failure
13971 	 * here if all the needed DMA resources were not allocated.
13972 	 */
13973 	if ((un->un_pkt_flags & PKT_DMA_PARTIAL) &&
13974 	    (bp->b_bcount != 0) && (pktp->pkt_resid != 0)) {
13975 		scsi_destroy_pkt(pktp);
13976 		SD_ERROR(SD_LOG_IO_CORE, un, "sd_initpkt_for_uscsi: "
13977 		    "No partial DMA for USCSI. exit: buf:0x%p\n", bp);
13978 		return (SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL);
13979 	}
13980 
13981 	/* Init the cdb from the given uscsi struct */
13982 	(void) scsi_setup_cdb((union scsi_cdb *)pktp->pkt_cdbp,
13983 	    uscmd->uscsi_cdb[0], 0, 0, 0);
13984 
13985 	SD_FILL_SCSI1_LUN(un, pktp);
13986 
13987 	/*
13988 	 * Set up the optional USCSI flags. See the uscsi (7I) man page
13989 	 * for listing of the supported flags.
13990 	 */
13991 
13992 	if (uscmd->uscsi_flags & USCSI_SILENT) {
13993 		flags |= FLAG_SILENT;
13994 	}
13995 
13996 	if (uscmd->uscsi_flags & USCSI_DIAGNOSE) {
13997 		flags |= FLAG_DIAGNOSE;
13998 	}
13999 
14000 	if (uscmd->uscsi_flags & USCSI_ISOLATE) {
14001 		flags |= FLAG_ISOLATE;
14002 	}
14003 
14004 	if (un->un_f_is_fibre == FALSE) {
14005 		if (uscmd->uscsi_flags & USCSI_RENEGOT) {
14006 			flags |= FLAG_RENEGOTIATE_WIDE_SYNC;
14007 		}
14008 	}
14009 
14010 	/*
14011 	 * Set the pkt flags here so we save time later.
14012 	 * Note: These flags are NOT in the uscsi man page!!!
14013 	 */
14014 	if (uscmd->uscsi_flags & USCSI_HEAD) {
14015 		flags |= FLAG_HEAD;
14016 	}
14017 
14018 	if (uscmd->uscsi_flags & USCSI_NOINTR) {
14019 		flags |= FLAG_NOINTR;
14020 	}
14021 
14022 	/*
14023 	 * For tagged queueing, things get a bit complicated.
14024 	 * Check first for head of queue and last for ordered queue.
14025 	 * If neither head nor order, use the default driver tag flags.
14026 	 */
14027 	if ((uscmd->uscsi_flags & USCSI_NOTAG) == 0) {
14028 		if (uscmd->uscsi_flags & USCSI_HTAG) {
14029 			flags |= FLAG_HTAG;
14030 		} else if (uscmd->uscsi_flags & USCSI_OTAG) {
14031 			flags |= FLAG_OTAG;
14032 		} else {
14033 			flags |= un->un_tagflags & FLAG_TAGMASK;
14034 		}
14035 	}
14036 
14037 	if (uscmd->uscsi_flags & USCSI_NODISCON) {
14038 		flags = (flags & ~FLAG_TAGMASK) | FLAG_NODISCON;
14039 	}
14040 
14041 	pktp->pkt_flags = flags;
14042 
14043 	/* Transfer uscsi information to scsi_pkt */
14044 	(void) scsi_uscsi_pktinit(uscmd, pktp);
14045 
14046 	/* Copy the caller's CDB into the pkt... */
14047 	bcopy(uscmd->uscsi_cdb, pktp->pkt_cdbp, uscmd->uscsi_cdblen);
14048 
14049 	if (uscmd->uscsi_timeout == 0) {
14050 		pktp->pkt_time = un->un_uscsi_timeout;
14051 	} else {
14052 		pktp->pkt_time = uscmd->uscsi_timeout;
14053 	}
14054 
14055 	/* need it later to identify USCSI request in sdintr */
14056 	xp->xb_pkt_flags |= SD_XB_USCSICMD;
14057 
14058 	xp->xb_sense_resid = uscmd->uscsi_rqresid;
14059 
14060 	pktp->pkt_private = bp;
14061 	pktp->pkt_comp = sdintr;
14062 	*pktpp = pktp;
14063 
14064 	SD_TRACE(SD_LOG_IO_CORE, un,
14065 	    "sd_initpkt_for_uscsi: exit: buf:0x%p\n", bp);
14066 
14067 	return (SD_PKT_ALLOC_SUCCESS);
14068 }
14069 
14070 
14071 /*
14072  *    Function: sd_destroypkt_for_uscsi
14073  *
14074  * Description: Free the scsi_pkt(9S) struct for the given bp, for uscsi
14075  *		IOs.. Also saves relevant info into the associated uscsi_cmd
14076  *		struct.
14077  *
14078  *     Context: May be called under interrupt context
14079  */
14080 
14081 static void
14082 sd_destroypkt_for_uscsi(struct buf *bp)
14083 {
14084 	struct uscsi_cmd *uscmd;
14085 	struct sd_xbuf	*xp;
14086 	struct scsi_pkt	*pktp;
14087 	struct sd_lun	*un;
14088 	struct sd_uscsi_info *suip;
14089 
14090 	ASSERT(bp != NULL);
14091 	xp = SD_GET_XBUF(bp);
14092 	ASSERT(xp != NULL);
14093 	un = SD_GET_UN(bp);
14094 	ASSERT(un != NULL);
14095 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14096 	pktp = SD_GET_PKTP(bp);
14097 	ASSERT(pktp != NULL);
14098 
14099 	SD_TRACE(SD_LOG_IO_CORE, un,
14100 	    "sd_destroypkt_for_uscsi: entry: buf:0x%p\n", bp);
14101 
14102 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
14103 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
14104 	ASSERT(uscmd != NULL);
14105 
14106 	/* Save the status and the residual into the uscsi_cmd struct */
14107 	uscmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK);
14108 	uscmd->uscsi_resid  = bp->b_resid;
14109 
14110 	/* Transfer scsi_pkt information to uscsi */
14111 	(void) scsi_uscsi_pktfini(pktp, uscmd);
14112 
14113 	/*
14114 	 * If enabled, copy any saved sense data into the area specified
14115 	 * by the uscsi command.
14116 	 */
14117 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
14118 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
14119 		/*
14120 		 * Note: uscmd->uscsi_rqbuf should always point to a buffer
14121 		 * at least SENSE_LENGTH bytes in size (see sd_send_scsi_cmd())
14122 		 */
14123 		uscmd->uscsi_rqstatus = xp->xb_sense_status;
14124 		uscmd->uscsi_rqresid  = xp->xb_sense_resid;
14125 		if (uscmd->uscsi_rqlen > SENSE_LENGTH) {
14126 			bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf,
14127 			    MAX_SENSE_LENGTH);
14128 		} else {
14129 			bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf,
14130 			    SENSE_LENGTH);
14131 		}
14132 	}
14133 	/*
14134 	 * The following assignments are for SCSI FMA.
14135 	 */
14136 	ASSERT(xp->xb_private != NULL);
14137 	suip = (struct sd_uscsi_info *)xp->xb_private;
14138 	suip->ui_pkt_reason = pktp->pkt_reason;
14139 	suip->ui_pkt_state = pktp->pkt_state;
14140 	suip->ui_pkt_statistics = pktp->pkt_statistics;
14141 	suip->ui_lba = (uint64_t)SD_GET_BLKNO(bp);
14142 
14143 	/* We are done with the scsi_pkt; free it now */
14144 	ASSERT(SD_GET_PKTP(bp) != NULL);
14145 	scsi_destroy_pkt(SD_GET_PKTP(bp));
14146 
14147 	SD_TRACE(SD_LOG_IO_CORE, un,
14148 	    "sd_destroypkt_for_uscsi: exit: buf:0x%p\n", bp);
14149 }
14150 
14151 
14152 /*
14153  *    Function: sd_bioclone_alloc
14154  *
14155  * Description: Allocate a buf(9S) and init it as per the given buf
14156  *		and the various arguments.  The associated sd_xbuf
14157  *		struct is (nearly) duplicated.  The struct buf *bp
14158  *		argument is saved in new_xp->xb_private.
14159  *
14160  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
14161  *		datalen - size of data area for the shadow bp
14162  *		blkno - starting LBA
14163  *		func - function pointer for b_iodone in the shadow buf. (May
14164  *			be NULL if none.)
14165  *
14166  * Return Code: Pointer to allocates buf(9S) struct
14167  *
14168  *     Context: Can sleep.
14169  */
14170 
14171 static struct buf *
14172 sd_bioclone_alloc(struct buf *bp, size_t datalen,
14173 	daddr_t blkno, int (*func)(struct buf *))
14174 {
14175 	struct	sd_lun	*un;
14176 	struct	sd_xbuf	*xp;
14177 	struct	sd_xbuf	*new_xp;
14178 	struct	buf	*new_bp;
14179 
14180 	ASSERT(bp != NULL);
14181 	xp = SD_GET_XBUF(bp);
14182 	ASSERT(xp != NULL);
14183 	un = SD_GET_UN(bp);
14184 	ASSERT(un != NULL);
14185 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14186 
14187 	new_bp = bioclone(bp, 0, datalen, SD_GET_DEV(un), blkno, func,
14188 	    NULL, KM_SLEEP);
14189 
14190 	new_bp->b_lblkno	= blkno;
14191 
14192 	/*
14193 	 * Allocate an xbuf for the shadow bp and copy the contents of the
14194 	 * original xbuf into it.
14195 	 */
14196 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
14197 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
14198 
14199 	/*
14200 	 * The given bp is automatically saved in the xb_private member
14201 	 * of the new xbuf.  Callers are allowed to depend on this.
14202 	 */
14203 	new_xp->xb_private = bp;
14204 
14205 	new_bp->b_private  = new_xp;
14206 
14207 	return (new_bp);
14208 }
14209 
14210 /*
14211  *    Function: sd_shadow_buf_alloc
14212  *
14213  * Description: Allocate a buf(9S) and init it as per the given buf
14214  *		and the various arguments.  The associated sd_xbuf
14215  *		struct is (nearly) duplicated.  The struct buf *bp
14216  *		argument is saved in new_xp->xb_private.
14217  *
14218  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
14219  *		datalen - size of data area for the shadow bp
14220  *		bflags - B_READ or B_WRITE (pseudo flag)
14221  *		blkno - starting LBA
14222  *		func - function pointer for b_iodone in the shadow buf. (May
14223  *			be NULL if none.)
14224  *
14225  * Return Code: Pointer to allocates buf(9S) struct
14226  *
14227  *     Context: Can sleep.
14228  */
14229 
14230 static struct buf *
14231 sd_shadow_buf_alloc(struct buf *bp, size_t datalen, uint_t bflags,
14232 	daddr_t blkno, int (*func)(struct buf *))
14233 {
14234 	struct	sd_lun	*un;
14235 	struct	sd_xbuf	*xp;
14236 	struct	sd_xbuf	*new_xp;
14237 	struct	buf	*new_bp;
14238 
14239 	ASSERT(bp != NULL);
14240 	xp = SD_GET_XBUF(bp);
14241 	ASSERT(xp != NULL);
14242 	un = SD_GET_UN(bp);
14243 	ASSERT(un != NULL);
14244 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14245 
14246 	if (bp->b_flags & (B_PAGEIO | B_PHYS)) {
14247 		bp_mapin(bp);
14248 	}
14249 
14250 	bflags &= (B_READ | B_WRITE);
14251 #if defined(__i386) || defined(__amd64)
14252 	new_bp = getrbuf(KM_SLEEP);
14253 	new_bp->b_un.b_addr = kmem_zalloc(datalen, KM_SLEEP);
14254 	new_bp->b_bcount = datalen;
14255 	new_bp->b_flags = bflags |
14256 	    (bp->b_flags & ~(B_PAGEIO | B_PHYS | B_REMAPPED | B_SHADOW));
14257 #else
14258 	new_bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), NULL,
14259 	    datalen, bflags, SLEEP_FUNC, NULL);
14260 #endif
14261 	new_bp->av_forw	= NULL;
14262 	new_bp->av_back	= NULL;
14263 	new_bp->b_dev	= bp->b_dev;
14264 	new_bp->b_blkno	= blkno;
14265 	new_bp->b_iodone = func;
14266 	new_bp->b_edev	= bp->b_edev;
14267 	new_bp->b_resid	= 0;
14268 
14269 	/* We need to preserve the B_FAILFAST flag */
14270 	if (bp->b_flags & B_FAILFAST) {
14271 		new_bp->b_flags |= B_FAILFAST;
14272 	}
14273 
14274 	/*
14275 	 * Allocate an xbuf for the shadow bp and copy the contents of the
14276 	 * original xbuf into it.
14277 	 */
14278 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
14279 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
14280 
14281 	/* Need later to copy data between the shadow buf & original buf! */
14282 	new_xp->xb_pkt_flags |= PKT_CONSISTENT;
14283 
14284 	/*
14285 	 * The given bp is automatically saved in the xb_private member
14286 	 * of the new xbuf.  Callers are allowed to depend on this.
14287 	 */
14288 	new_xp->xb_private = bp;
14289 
14290 	new_bp->b_private  = new_xp;
14291 
14292 	return (new_bp);
14293 }
14294 
14295 /*
14296  *    Function: sd_bioclone_free
14297  *
14298  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations
14299  *		in the larger than partition operation.
14300  *
14301  *     Context: May be called under interrupt context
14302  */
14303 
14304 static void
14305 sd_bioclone_free(struct buf *bp)
14306 {
14307 	struct sd_xbuf	*xp;
14308 
14309 	ASSERT(bp != NULL);
14310 	xp = SD_GET_XBUF(bp);
14311 	ASSERT(xp != NULL);
14312 
14313 	/*
14314 	 * Call bp_mapout() before freeing the buf,  in case a lower
14315 	 * layer or HBA  had done a bp_mapin().  we must do this here
14316 	 * as we are the "originator" of the shadow buf.
14317 	 */
14318 	bp_mapout(bp);
14319 
14320 	/*
14321 	 * Null out b_iodone before freeing the bp, to ensure that the driver
14322 	 * never gets confused by a stale value in this field. (Just a little
14323 	 * extra defensiveness here.)
14324 	 */
14325 	bp->b_iodone = NULL;
14326 
14327 	freerbuf(bp);
14328 
14329 	kmem_free(xp, sizeof (struct sd_xbuf));
14330 }
14331 
14332 /*
14333  *    Function: sd_shadow_buf_free
14334  *
14335  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations.
14336  *
14337  *     Context: May be called under interrupt context
14338  */
14339 
14340 static void
14341 sd_shadow_buf_free(struct buf *bp)
14342 {
14343 	struct sd_xbuf	*xp;
14344 
14345 	ASSERT(bp != NULL);
14346 	xp = SD_GET_XBUF(bp);
14347 	ASSERT(xp != NULL);
14348 
14349 #if defined(__sparc)
14350 	/*
14351 	 * Call bp_mapout() before freeing the buf,  in case a lower
14352 	 * layer or HBA  had done a bp_mapin().  we must do this here
14353 	 * as we are the "originator" of the shadow buf.
14354 	 */
14355 	bp_mapout(bp);
14356 #endif
14357 
14358 	/*
14359 	 * Null out b_iodone before freeing the bp, to ensure that the driver
14360 	 * never gets confused by a stale value in this field. (Just a little
14361 	 * extra defensiveness here.)
14362 	 */
14363 	bp->b_iodone = NULL;
14364 
14365 #if defined(__i386) || defined(__amd64)
14366 	kmem_free(bp->b_un.b_addr, bp->b_bcount);
14367 	freerbuf(bp);
14368 #else
14369 	scsi_free_consistent_buf(bp);
14370 #endif
14371 
14372 	kmem_free(xp, sizeof (struct sd_xbuf));
14373 }
14374 
14375 
14376 /*
14377  *    Function: sd_print_transport_rejected_message
14378  *
14379  * Description: This implements the ludicrously complex rules for printing
14380  *		a "transport rejected" message.  This is to address the
14381  *		specific problem of having a flood of this error message
14382  *		produced when a failover occurs.
14383  *
14384  *     Context: Any.
14385  */
14386 
14387 static void
14388 sd_print_transport_rejected_message(struct sd_lun *un, struct sd_xbuf *xp,
14389 	int code)
14390 {
14391 	ASSERT(un != NULL);
14392 	ASSERT(mutex_owned(SD_MUTEX(un)));
14393 	ASSERT(xp != NULL);
14394 
14395 	/*
14396 	 * Print the "transport rejected" message under the following
14397 	 * conditions:
14398 	 *
14399 	 * - Whenever the SD_LOGMASK_DIAG bit of sd_level_mask is set
14400 	 * - The error code from scsi_transport() is NOT a TRAN_FATAL_ERROR.
14401 	 * - If the error code IS a TRAN_FATAL_ERROR, then the message is
14402 	 *   printed the FIRST time a TRAN_FATAL_ERROR is returned from
14403 	 *   scsi_transport(9F) (which indicates that the target might have
14404 	 *   gone off-line).  This uses the un->un_tran_fatal_count
14405 	 *   count, which is incremented whenever a TRAN_FATAL_ERROR is
14406 	 *   received, and reset to zero whenver a TRAN_ACCEPT is returned
14407 	 *   from scsi_transport().
14408 	 *
14409 	 * The FLAG_SILENT in the scsi_pkt must be CLEARED in ALL of
14410 	 * the preceeding cases in order for the message to be printed.
14411 	 */
14412 	if (((xp->xb_pktp->pkt_flags & FLAG_SILENT) == 0) &&
14413 	    (SD_FM_LOG(un) == SD_FM_LOG_NSUP)) {
14414 		if ((sd_level_mask & SD_LOGMASK_DIAG) ||
14415 		    (code != TRAN_FATAL_ERROR) ||
14416 		    (un->un_tran_fatal_count == 1)) {
14417 			switch (code) {
14418 			case TRAN_BADPKT:
14419 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
14420 				    "transport rejected bad packet\n");
14421 				break;
14422 			case TRAN_FATAL_ERROR:
14423 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
14424 				    "transport rejected fatal error\n");
14425 				break;
14426 			default:
14427 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
14428 				    "transport rejected (%d)\n", code);
14429 				break;
14430 			}
14431 		}
14432 	}
14433 }
14434 
14435 
14436 /*
14437  *    Function: sd_add_buf_to_waitq
14438  *
14439  * Description: Add the given buf(9S) struct to the wait queue for the
14440  *		instance.  If sorting is enabled, then the buf is added
14441  *		to the queue via an elevator sort algorithm (a la
14442  *		disksort(9F)).  The SD_GET_BLKNO(bp) is used as the sort key.
14443  *		If sorting is not enabled, then the buf is just added
14444  *		to the end of the wait queue.
14445  *
14446  * Return Code: void
14447  *
14448  *     Context: Does not sleep/block, therefore technically can be called
14449  *		from any context.  However if sorting is enabled then the
14450  *		execution time is indeterminate, and may take long if
14451  *		the wait queue grows large.
14452  */
14453 
14454 static void
14455 sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp)
14456 {
14457 	struct buf *ap;
14458 
14459 	ASSERT(bp != NULL);
14460 	ASSERT(un != NULL);
14461 	ASSERT(mutex_owned(SD_MUTEX(un)));
14462 
14463 	/* If the queue is empty, add the buf as the only entry & return. */
14464 	if (un->un_waitq_headp == NULL) {
14465 		ASSERT(un->un_waitq_tailp == NULL);
14466 		un->un_waitq_headp = un->un_waitq_tailp = bp;
14467 		bp->av_forw = NULL;
14468 		return;
14469 	}
14470 
14471 	ASSERT(un->un_waitq_tailp != NULL);
14472 
14473 	/*
14474 	 * If sorting is disabled, just add the buf to the tail end of
14475 	 * the wait queue and return.
14476 	 */
14477 	if (un->un_f_disksort_disabled) {
14478 		un->un_waitq_tailp->av_forw = bp;
14479 		un->un_waitq_tailp = bp;
14480 		bp->av_forw = NULL;
14481 		return;
14482 	}
14483 
14484 	/*
14485 	 * Sort thru the list of requests currently on the wait queue
14486 	 * and add the new buf request at the appropriate position.
14487 	 *
14488 	 * The un->un_waitq_headp is an activity chain pointer on which
14489 	 * we keep two queues, sorted in ascending SD_GET_BLKNO() order. The
14490 	 * first queue holds those requests which are positioned after
14491 	 * the current SD_GET_BLKNO() (in the first request); the second holds
14492 	 * requests which came in after their SD_GET_BLKNO() number was passed.
14493 	 * Thus we implement a one way scan, retracting after reaching
14494 	 * the end of the drive to the first request on the second
14495 	 * queue, at which time it becomes the first queue.
14496 	 * A one-way scan is natural because of the way UNIX read-ahead
14497 	 * blocks are allocated.
14498 	 *
14499 	 * If we lie after the first request, then we must locate the
14500 	 * second request list and add ourselves to it.
14501 	 */
14502 	ap = un->un_waitq_headp;
14503 	if (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap)) {
14504 		while (ap->av_forw != NULL) {
14505 			/*
14506 			 * Look for an "inversion" in the (normally
14507 			 * ascending) block numbers. This indicates
14508 			 * the start of the second request list.
14509 			 */
14510 			if (SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) {
14511 				/*
14512 				 * Search the second request list for the
14513 				 * first request at a larger block number.
14514 				 * We go before that; however if there is
14515 				 * no such request, we go at the end.
14516 				 */
14517 				do {
14518 					if (SD_GET_BLKNO(bp) <
14519 					    SD_GET_BLKNO(ap->av_forw)) {
14520 						goto insert;
14521 					}
14522 					ap = ap->av_forw;
14523 				} while (ap->av_forw != NULL);
14524 				goto insert;		/* after last */
14525 			}
14526 			ap = ap->av_forw;
14527 		}
14528 
14529 		/*
14530 		 * No inversions... we will go after the last, and
14531 		 * be the first request in the second request list.
14532 		 */
14533 		goto insert;
14534 	}
14535 
14536 	/*
14537 	 * Request is at/after the current request...
14538 	 * sort in the first request list.
14539 	 */
14540 	while (ap->av_forw != NULL) {
14541 		/*
14542 		 * We want to go after the current request (1) if
14543 		 * there is an inversion after it (i.e. it is the end
14544 		 * of the first request list), or (2) if the next
14545 		 * request is a larger block no. than our request.
14546 		 */
14547 		if ((SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) ||
14548 		    (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap->av_forw))) {
14549 			goto insert;
14550 		}
14551 		ap = ap->av_forw;
14552 	}
14553 
14554 	/*
14555 	 * Neither a second list nor a larger request, therefore
14556 	 * we go at the end of the first list (which is the same
14557 	 * as the end of the whole schebang).
14558 	 */
14559 insert:
14560 	bp->av_forw = ap->av_forw;
14561 	ap->av_forw = bp;
14562 
14563 	/*
14564 	 * If we inserted onto the tail end of the waitq, make sure the
14565 	 * tail pointer is updated.
14566 	 */
14567 	if (ap == un->un_waitq_tailp) {
14568 		un->un_waitq_tailp = bp;
14569 	}
14570 }
14571 
14572 
14573 /*
14574  *    Function: sd_start_cmds
14575  *
14576  * Description: Remove and transport cmds from the driver queues.
14577  *
14578  *   Arguments: un - pointer to the unit (soft state) struct for the target.
14579  *
14580  *		immed_bp - ptr to a buf to be transported immediately. Only
14581  *		the immed_bp is transported; bufs on the waitq are not
14582  *		processed and the un_retry_bp is not checked.  If immed_bp is
14583  *		NULL, then normal queue processing is performed.
14584  *
14585  *     Context: May be called from kernel thread context, interrupt context,
14586  *		or runout callback context. This function may not block or
14587  *		call routines that block.
14588  */
14589 
14590 static void
14591 sd_start_cmds(struct sd_lun *un, struct buf *immed_bp)
14592 {
14593 	struct	sd_xbuf	*xp;
14594 	struct	buf	*bp;
14595 	void	(*statp)(kstat_io_t *);
14596 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14597 	void	(*saved_statp)(kstat_io_t *);
14598 #endif
14599 	int	rval;
14600 	struct sd_fm_internal *sfip = NULL;
14601 
14602 	ASSERT(un != NULL);
14603 	ASSERT(mutex_owned(SD_MUTEX(un)));
14604 	ASSERT(un->un_ncmds_in_transport >= 0);
14605 	ASSERT(un->un_throttle >= 0);
14606 
14607 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: entry\n");
14608 
14609 	do {
14610 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14611 		saved_statp = NULL;
14612 #endif
14613 
14614 		/*
14615 		 * If we are syncing or dumping, fail the command to
14616 		 * avoid recursively calling back into scsi_transport().
14617 		 * The dump I/O itself uses a separate code path so this
14618 		 * only prevents non-dump I/O from being sent while dumping.
14619 		 * File system sync takes place before dumping begins.
14620 		 * During panic, filesystem I/O is allowed provided
14621 		 * un_in_callback is <= 1.  This is to prevent recursion
14622 		 * such as sd_start_cmds -> scsi_transport -> sdintr ->
14623 		 * sd_start_cmds and so on.  See panic.c for more information
14624 		 * about the states the system can be in during panic.
14625 		 */
14626 		if ((un->un_state == SD_STATE_DUMPING) ||
14627 		    (ddi_in_panic() && (un->un_in_callback > 1))) {
14628 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14629 			    "sd_start_cmds: panicking\n");
14630 			goto exit;
14631 		}
14632 
14633 		if ((bp = immed_bp) != NULL) {
14634 			/*
14635 			 * We have a bp that must be transported immediately.
14636 			 * It's OK to transport the immed_bp here without doing
14637 			 * the throttle limit check because the immed_bp is
14638 			 * always used in a retry/recovery case. This means
14639 			 * that we know we are not at the throttle limit by
14640 			 * virtue of the fact that to get here we must have
14641 			 * already gotten a command back via sdintr(). This also
14642 			 * relies on (1) the command on un_retry_bp preventing
14643 			 * further commands from the waitq from being issued;
14644 			 * and (2) the code in sd_retry_command checking the
14645 			 * throttle limit before issuing a delayed or immediate
14646 			 * retry. This holds even if the throttle limit is
14647 			 * currently ratcheted down from its maximum value.
14648 			 */
14649 			statp = kstat_runq_enter;
14650 			if (bp == un->un_retry_bp) {
14651 				ASSERT((un->un_retry_statp == NULL) ||
14652 				    (un->un_retry_statp == kstat_waitq_enter) ||
14653 				    (un->un_retry_statp ==
14654 				    kstat_runq_back_to_waitq));
14655 				/*
14656 				 * If the waitq kstat was incremented when
14657 				 * sd_set_retry_bp() queued this bp for a retry,
14658 				 * then we must set up statp so that the waitq
14659 				 * count will get decremented correctly below.
14660 				 * Also we must clear un->un_retry_statp to
14661 				 * ensure that we do not act on a stale value
14662 				 * in this field.
14663 				 */
14664 				if ((un->un_retry_statp == kstat_waitq_enter) ||
14665 				    (un->un_retry_statp ==
14666 				    kstat_runq_back_to_waitq)) {
14667 					statp = kstat_waitq_to_runq;
14668 				}
14669 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14670 				saved_statp = un->un_retry_statp;
14671 #endif
14672 				un->un_retry_statp = NULL;
14673 
14674 				SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14675 				    "sd_start_cmds: un:0x%p: GOT retry_bp:0x%p "
14676 				    "un_throttle:%d un_ncmds_in_transport:%d\n",
14677 				    un, un->un_retry_bp, un->un_throttle,
14678 				    un->un_ncmds_in_transport);
14679 			} else {
14680 				SD_TRACE(SD_LOG_IO_CORE, un, "sd_start_cmds: "
14681 				    "processing priority bp:0x%p\n", bp);
14682 			}
14683 
14684 		} else if ((bp = un->un_waitq_headp) != NULL) {
14685 			/*
14686 			 * A command on the waitq is ready to go, but do not
14687 			 * send it if:
14688 			 *
14689 			 * (1) the throttle limit has been reached, or
14690 			 * (2) a retry is pending, or
14691 			 * (3) a START_STOP_UNIT callback pending, or
14692 			 * (4) a callback for a SD_PATH_DIRECT_PRIORITY
14693 			 *	command is pending.
14694 			 *
14695 			 * For all of these conditions, IO processing will
14696 			 * restart after the condition is cleared.
14697 			 */
14698 			if (un->un_ncmds_in_transport >= un->un_throttle) {
14699 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14700 				    "sd_start_cmds: exiting, "
14701 				    "throttle limit reached!\n");
14702 				goto exit;
14703 			}
14704 			if (un->un_retry_bp != NULL) {
14705 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14706 				    "sd_start_cmds: exiting, retry pending!\n");
14707 				goto exit;
14708 			}
14709 			if (un->un_startstop_timeid != NULL) {
14710 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14711 				    "sd_start_cmds: exiting, "
14712 				    "START_STOP pending!\n");
14713 				goto exit;
14714 			}
14715 			if (un->un_direct_priority_timeid != NULL) {
14716 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14717 				    "sd_start_cmds: exiting, "
14718 				    "SD_PATH_DIRECT_PRIORITY cmd. pending!\n");
14719 				goto exit;
14720 			}
14721 
14722 			/* Dequeue the command */
14723 			un->un_waitq_headp = bp->av_forw;
14724 			if (un->un_waitq_headp == NULL) {
14725 				un->un_waitq_tailp = NULL;
14726 			}
14727 			bp->av_forw = NULL;
14728 			statp = kstat_waitq_to_runq;
14729 			SD_TRACE(SD_LOG_IO_CORE, un,
14730 			    "sd_start_cmds: processing waitq bp:0x%p\n", bp);
14731 
14732 		} else {
14733 			/* No work to do so bail out now */
14734 			SD_TRACE(SD_LOG_IO_CORE, un,
14735 			    "sd_start_cmds: no more work, exiting!\n");
14736 			goto exit;
14737 		}
14738 
14739 		/*
14740 		 * Reset the state to normal. This is the mechanism by which
14741 		 * the state transitions from either SD_STATE_RWAIT or
14742 		 * SD_STATE_OFFLINE to SD_STATE_NORMAL.
14743 		 * If state is SD_STATE_PM_CHANGING then this command is
14744 		 * part of the device power control and the state must
14745 		 * not be put back to normal. Doing so would would
14746 		 * allow new commands to proceed when they shouldn't,
14747 		 * the device may be going off.
14748 		 */
14749 		if ((un->un_state != SD_STATE_SUSPENDED) &&
14750 		    (un->un_state != SD_STATE_PM_CHANGING)) {
14751 			New_state(un, SD_STATE_NORMAL);
14752 		}
14753 
14754 		xp = SD_GET_XBUF(bp);
14755 		ASSERT(xp != NULL);
14756 
14757 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14758 		/*
14759 		 * Allocate the scsi_pkt if we need one, or attach DMA
14760 		 * resources if we have a scsi_pkt that needs them. The
14761 		 * latter should only occur for commands that are being
14762 		 * retried.
14763 		 */
14764 		if ((xp->xb_pktp == NULL) ||
14765 		    ((xp->xb_pkt_flags & SD_XB_DMA_FREED) != 0)) {
14766 #else
14767 		if (xp->xb_pktp == NULL) {
14768 #endif
14769 			/*
14770 			 * There is no scsi_pkt allocated for this buf. Call
14771 			 * the initpkt function to allocate & init one.
14772 			 *
14773 			 * The scsi_init_pkt runout callback functionality is
14774 			 * implemented as follows:
14775 			 *
14776 			 * 1) The initpkt function always calls
14777 			 *    scsi_init_pkt(9F) with sdrunout specified as the
14778 			 *    callback routine.
14779 			 * 2) A successful packet allocation is initialized and
14780 			 *    the I/O is transported.
14781 			 * 3) The I/O associated with an allocation resource
14782 			 *    failure is left on its queue to be retried via
14783 			 *    runout or the next I/O.
14784 			 * 4) The I/O associated with a DMA error is removed
14785 			 *    from the queue and failed with EIO. Processing of
14786 			 *    the transport queues is also halted to be
14787 			 *    restarted via runout or the next I/O.
14788 			 * 5) The I/O associated with a CDB size or packet
14789 			 *    size error is removed from the queue and failed
14790 			 *    with EIO. Processing of the transport queues is
14791 			 *    continued.
14792 			 *
14793 			 * Note: there is no interface for canceling a runout
14794 			 * callback. To prevent the driver from detaching or
14795 			 * suspending while a runout is pending the driver
14796 			 * state is set to SD_STATE_RWAIT
14797 			 *
14798 			 * Note: using the scsi_init_pkt callback facility can
14799 			 * result in an I/O request persisting at the head of
14800 			 * the list which cannot be satisfied even after
14801 			 * multiple retries. In the future the driver may
14802 			 * implement some kind of maximum runout count before
14803 			 * failing an I/O.
14804 			 *
14805 			 * Note: the use of funcp below may seem superfluous,
14806 			 * but it helps warlock figure out the correct
14807 			 * initpkt function calls (see [s]sd.wlcmd).
14808 			 */
14809 			struct scsi_pkt	*pktp;
14810 			int (*funcp)(struct buf *bp, struct scsi_pkt **pktp);
14811 
14812 			ASSERT(bp != un->un_rqs_bp);
14813 
14814 			funcp = sd_initpkt_map[xp->xb_chain_iostart];
14815 			switch ((*funcp)(bp, &pktp)) {
14816 			case  SD_PKT_ALLOC_SUCCESS:
14817 				xp->xb_pktp = pktp;
14818 				SD_TRACE(SD_LOG_IO_CORE, un,
14819 				    "sd_start_cmd: SD_PKT_ALLOC_SUCCESS 0x%p\n",
14820 				    pktp);
14821 				goto got_pkt;
14822 
14823 			case SD_PKT_ALLOC_FAILURE:
14824 				/*
14825 				 * Temporary (hopefully) resource depletion.
14826 				 * Since retries and RQS commands always have a
14827 				 * scsi_pkt allocated, these cases should never
14828 				 * get here. So the only cases this needs to
14829 				 * handle is a bp from the waitq (which we put
14830 				 * back onto the waitq for sdrunout), or a bp
14831 				 * sent as an immed_bp (which we just fail).
14832 				 */
14833 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14834 				    "sd_start_cmds: SD_PKT_ALLOC_FAILURE\n");
14835 
14836 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14837 
14838 				if (bp == immed_bp) {
14839 					/*
14840 					 * If SD_XB_DMA_FREED is clear, then
14841 					 * this is a failure to allocate a
14842 					 * scsi_pkt, and we must fail the
14843 					 * command.
14844 					 */
14845 					if ((xp->xb_pkt_flags &
14846 					    SD_XB_DMA_FREED) == 0) {
14847 						break;
14848 					}
14849 
14850 					/*
14851 					 * If this immediate command is NOT our
14852 					 * un_retry_bp, then we must fail it.
14853 					 */
14854 					if (bp != un->un_retry_bp) {
14855 						break;
14856 					}
14857 
14858 					/*
14859 					 * We get here if this cmd is our
14860 					 * un_retry_bp that was DMAFREED, but
14861 					 * scsi_init_pkt() failed to reallocate
14862 					 * DMA resources when we attempted to
14863 					 * retry it. This can happen when an
14864 					 * mpxio failover is in progress, but
14865 					 * we don't want to just fail the
14866 					 * command in this case.
14867 					 *
14868 					 * Use timeout(9F) to restart it after
14869 					 * a 100ms delay.  We don't want to
14870 					 * let sdrunout() restart it, because
14871 					 * sdrunout() is just supposed to start
14872 					 * commands that are sitting on the
14873 					 * wait queue.  The un_retry_bp stays
14874 					 * set until the command completes, but
14875 					 * sdrunout can be called many times
14876 					 * before that happens.  Since sdrunout
14877 					 * cannot tell if the un_retry_bp is
14878 					 * already in the transport, it could
14879 					 * end up calling scsi_transport() for
14880 					 * the un_retry_bp multiple times.
14881 					 *
14882 					 * Also: don't schedule the callback
14883 					 * if some other callback is already
14884 					 * pending.
14885 					 */
14886 					if (un->un_retry_statp == NULL) {
14887 						/*
14888 						 * restore the kstat pointer to
14889 						 * keep kstat counts coherent
14890 						 * when we do retry the command.
14891 						 */
14892 						un->un_retry_statp =
14893 						    saved_statp;
14894 					}
14895 
14896 					if ((un->un_startstop_timeid == NULL) &&
14897 					    (un->un_retry_timeid == NULL) &&
14898 					    (un->un_direct_priority_timeid ==
14899 					    NULL)) {
14900 
14901 						un->un_retry_timeid =
14902 						    timeout(
14903 						    sd_start_retry_command,
14904 						    un, SD_RESTART_TIMEOUT);
14905 					}
14906 					goto exit;
14907 				}
14908 
14909 #else
14910 				if (bp == immed_bp) {
14911 					break;	/* Just fail the command */
14912 				}
14913 #endif
14914 
14915 				/* Add the buf back to the head of the waitq */
14916 				bp->av_forw = un->un_waitq_headp;
14917 				un->un_waitq_headp = bp;
14918 				if (un->un_waitq_tailp == NULL) {
14919 					un->un_waitq_tailp = bp;
14920 				}
14921 				goto exit;
14922 
14923 			case SD_PKT_ALLOC_FAILURE_NO_DMA:
14924 				/*
14925 				 * HBA DMA resource failure. Fail the command
14926 				 * and continue processing of the queues.
14927 				 */
14928 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14929 				    "sd_start_cmds: "
14930 				    "SD_PKT_ALLOC_FAILURE_NO_DMA\n");
14931 				break;
14932 
14933 			case SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL:
14934 				/*
14935 				 * Note:x86: Partial DMA mapping not supported
14936 				 * for USCSI commands, and all the needed DMA
14937 				 * resources were not allocated.
14938 				 */
14939 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14940 				    "sd_start_cmds: "
14941 				    "SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL\n");
14942 				break;
14943 
14944 			case SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL:
14945 				/*
14946 				 * Note:x86: Request cannot fit into CDB based
14947 				 * on lba and len.
14948 				 */
14949 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14950 				    "sd_start_cmds: "
14951 				    "SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL\n");
14952 				break;
14953 
14954 			default:
14955 				/* Should NEVER get here! */
14956 				panic("scsi_initpkt error");
14957 				/*NOTREACHED*/
14958 			}
14959 
14960 			/*
14961 			 * Fatal error in allocating a scsi_pkt for this buf.
14962 			 * Update kstats & return the buf with an error code.
14963 			 * We must use sd_return_failed_command_no_restart() to
14964 			 * avoid a recursive call back into sd_start_cmds().
14965 			 * However this also means that we must keep processing
14966 			 * the waitq here in order to avoid stalling.
14967 			 */
14968 			if (statp == kstat_waitq_to_runq) {
14969 				SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
14970 			}
14971 			sd_return_failed_command_no_restart(un, bp, EIO);
14972 			if (bp == immed_bp) {
14973 				/* immed_bp is gone by now, so clear this */
14974 				immed_bp = NULL;
14975 			}
14976 			continue;
14977 		}
14978 got_pkt:
14979 		if (bp == immed_bp) {
14980 			/* goto the head of the class.... */
14981 			xp->xb_pktp->pkt_flags |= FLAG_HEAD;
14982 		}
14983 
14984 		un->un_ncmds_in_transport++;
14985 		SD_UPDATE_KSTATS(un, statp, bp);
14986 
14987 		/*
14988 		 * Call scsi_transport() to send the command to the target.
14989 		 * According to SCSA architecture, we must drop the mutex here
14990 		 * before calling scsi_transport() in order to avoid deadlock.
14991 		 * Note that the scsi_pkt's completion routine can be executed
14992 		 * (from interrupt context) even before the call to
14993 		 * scsi_transport() returns.
14994 		 */
14995 		SD_TRACE(SD_LOG_IO_CORE, un,
14996 		    "sd_start_cmds: calling scsi_transport()\n");
14997 		DTRACE_PROBE1(scsi__transport__dispatch, struct buf *, bp);
14998 
14999 		mutex_exit(SD_MUTEX(un));
15000 		rval = scsi_transport(xp->xb_pktp);
15001 		mutex_enter(SD_MUTEX(un));
15002 
15003 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15004 		    "sd_start_cmds: scsi_transport() returned %d\n", rval);
15005 
15006 		switch (rval) {
15007 		case TRAN_ACCEPT:
15008 			/* Clear this with every pkt accepted by the HBA */
15009 			un->un_tran_fatal_count = 0;
15010 			break;	/* Success; try the next cmd (if any) */
15011 
15012 		case TRAN_BUSY:
15013 			un->un_ncmds_in_transport--;
15014 			ASSERT(un->un_ncmds_in_transport >= 0);
15015 
15016 			/*
15017 			 * Don't retry request sense, the sense data
15018 			 * is lost when another request is sent.
15019 			 * Free up the rqs buf and retry
15020 			 * the original failed cmd.  Update kstat.
15021 			 */
15022 			if (bp == un->un_rqs_bp) {
15023 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
15024 				bp = sd_mark_rqs_idle(un, xp);
15025 				sd_retry_command(un, bp, SD_RETRIES_STANDARD,
15026 				    NULL, NULL, EIO, un->un_busy_timeout / 500,
15027 				    kstat_waitq_enter);
15028 				goto exit;
15029 			}
15030 
15031 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
15032 			/*
15033 			 * Free the DMA resources for the  scsi_pkt. This will
15034 			 * allow mpxio to select another path the next time
15035 			 * we call scsi_transport() with this scsi_pkt.
15036 			 * See sdintr() for the rationalization behind this.
15037 			 */
15038 			if ((un->un_f_is_fibre == TRUE) &&
15039 			    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
15040 			    ((xp->xb_pktp->pkt_flags & FLAG_SENSING) == 0)) {
15041 				scsi_dmafree(xp->xb_pktp);
15042 				xp->xb_pkt_flags |= SD_XB_DMA_FREED;
15043 			}
15044 #endif
15045 
15046 			if (SD_IS_DIRECT_PRIORITY(SD_GET_XBUF(bp))) {
15047 				/*
15048 				 * Commands that are SD_PATH_DIRECT_PRIORITY
15049 				 * are for error recovery situations. These do
15050 				 * not use the normal command waitq, so if they
15051 				 * get a TRAN_BUSY we cannot put them back onto
15052 				 * the waitq for later retry. One possible
15053 				 * problem is that there could already be some
15054 				 * other command on un_retry_bp that is waiting
15055 				 * for this one to complete, so we would be
15056 				 * deadlocked if we put this command back onto
15057 				 * the waitq for later retry (since un_retry_bp
15058 				 * must complete before the driver gets back to
15059 				 * commands on the waitq).
15060 				 *
15061 				 * To avoid deadlock we must schedule a callback
15062 				 * that will restart this command after a set
15063 				 * interval.  This should keep retrying for as
15064 				 * long as the underlying transport keeps
15065 				 * returning TRAN_BUSY (just like for other
15066 				 * commands).  Use the same timeout interval as
15067 				 * for the ordinary TRAN_BUSY retry.
15068 				 */
15069 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15070 				    "sd_start_cmds: scsi_transport() returned "
15071 				    "TRAN_BUSY for DIRECT_PRIORITY cmd!\n");
15072 
15073 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
15074 				un->un_direct_priority_timeid =
15075 				    timeout(sd_start_direct_priority_command,
15076 				    bp, un->un_busy_timeout / 500);
15077 
15078 				goto exit;
15079 			}
15080 
15081 			/*
15082 			 * For TRAN_BUSY, we want to reduce the throttle value,
15083 			 * unless we are retrying a command.
15084 			 */
15085 			if (bp != un->un_retry_bp) {
15086 				sd_reduce_throttle(un, SD_THROTTLE_TRAN_BUSY);
15087 			}
15088 
15089 			/*
15090 			 * Set up the bp to be tried again 10 ms later.
15091 			 * Note:x86: Is there a timeout value in the sd_lun
15092 			 * for this condition?
15093 			 */
15094 			sd_set_retry_bp(un, bp, un->un_busy_timeout / 500,
15095 			    kstat_runq_back_to_waitq);
15096 			goto exit;
15097 
15098 		case TRAN_FATAL_ERROR:
15099 			un->un_tran_fatal_count++;
15100 			/* FALLTHRU */
15101 
15102 		case TRAN_BADPKT:
15103 		default:
15104 			un->un_ncmds_in_transport--;
15105 			ASSERT(un->un_ncmds_in_transport >= 0);
15106 
15107 			/*
15108 			 * If this is our REQUEST SENSE command with a
15109 			 * transport error, we must get back the pointers
15110 			 * to the original buf, and mark the REQUEST
15111 			 * SENSE command as "available".
15112 			 */
15113 			if (bp == un->un_rqs_bp) {
15114 				bp = sd_mark_rqs_idle(un, xp);
15115 				xp = SD_GET_XBUF(bp);
15116 			} else {
15117 				/*
15118 				 * Legacy behavior: do not update transport
15119 				 * error count for request sense commands.
15120 				 */
15121 				SD_UPDATE_ERRSTATS(un, sd_transerrs);
15122 			}
15123 
15124 			SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
15125 			sd_print_transport_rejected_message(un, xp, rval);
15126 
15127 			/*
15128 			 * This command will be terminated by SD driver due
15129 			 * to a fatal transport error. We should post
15130 			 * ereport.io.scsi.cmd.disk.tran with driver-assessment
15131 			 * of "fail" for any command to indicate this
15132 			 * situation.
15133 			 */
15134 			if (xp->xb_ena > 0) {
15135 				ASSERT(un->un_fm_private != NULL);
15136 				sfip = un->un_fm_private;
15137 				sfip->fm_ssc.ssc_flags |= SSC_FLAGS_TRAN_ABORT;
15138 				sd_ssc_extract_info(&sfip->fm_ssc, un,
15139 				    xp->xb_pktp, bp, xp);
15140 				sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_FATAL);
15141 			}
15142 
15143 			/*
15144 			 * We must use sd_return_failed_command_no_restart() to
15145 			 * avoid a recursive call back into sd_start_cmds().
15146 			 * However this also means that we must keep processing
15147 			 * the waitq here in order to avoid stalling.
15148 			 */
15149 			sd_return_failed_command_no_restart(un, bp, EIO);
15150 
15151 			/*
15152 			 * Notify any threads waiting in sd_ddi_suspend() that
15153 			 * a command completion has occurred.
15154 			 */
15155 			if (un->un_state == SD_STATE_SUSPENDED) {
15156 				cv_broadcast(&un->un_disk_busy_cv);
15157 			}
15158 
15159 			if (bp == immed_bp) {
15160 				/* immed_bp is gone by now, so clear this */
15161 				immed_bp = NULL;
15162 			}
15163 			break;
15164 		}
15165 
15166 	} while (immed_bp == NULL);
15167 
15168 exit:
15169 	ASSERT(mutex_owned(SD_MUTEX(un)));
15170 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: exit\n");
15171 }
15172 
15173 
15174 /*
15175  *    Function: sd_return_command
15176  *
15177  * Description: Returns a command to its originator (with or without an
15178  *		error).  Also starts commands waiting to be transported
15179  *		to the target.
15180  *
15181  *     Context: May be called from interrupt, kernel, or timeout context
15182  */
15183 
15184 static void
15185 sd_return_command(struct sd_lun *un, struct buf *bp)
15186 {
15187 	struct sd_xbuf *xp;
15188 	struct scsi_pkt *pktp;
15189 	struct sd_fm_internal *sfip;
15190 
15191 	ASSERT(bp != NULL);
15192 	ASSERT(un != NULL);
15193 	ASSERT(mutex_owned(SD_MUTEX(un)));
15194 	ASSERT(bp != un->un_rqs_bp);
15195 	xp = SD_GET_XBUF(bp);
15196 	ASSERT(xp != NULL);
15197 
15198 	pktp = SD_GET_PKTP(bp);
15199 	sfip = (struct sd_fm_internal *)un->un_fm_private;
15200 	ASSERT(sfip != NULL);
15201 
15202 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: entry\n");
15203 
15204 	/*
15205 	 * Note: check for the "sdrestart failed" case.
15206 	 */
15207 	if ((un->un_partial_dma_supported == 1) &&
15208 	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) != SD_XB_USCSICMD) &&
15209 	    (geterror(bp) == 0) && (xp->xb_dma_resid != 0) &&
15210 	    (xp->xb_pktp->pkt_resid == 0)) {
15211 
15212 		if (sd_setup_next_xfer(un, bp, pktp, xp) != 0) {
15213 			/*
15214 			 * Successfully set up next portion of cmd
15215 			 * transfer, try sending it
15216 			 */
15217 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
15218 			    NULL, NULL, 0, (clock_t)0, NULL);
15219 			sd_start_cmds(un, NULL);
15220 			return;	/* Note:x86: need a return here? */
15221 		}
15222 	}
15223 
15224 	/*
15225 	 * If this is the failfast bp, clear it from un_failfast_bp. This
15226 	 * can happen if upon being re-tried the failfast bp either
15227 	 * succeeded or encountered another error (possibly even a different
15228 	 * error than the one that precipitated the failfast state, but in
15229 	 * that case it would have had to exhaust retries as well). Regardless,
15230 	 * this should not occur whenever the instance is in the active
15231 	 * failfast state.
15232 	 */
15233 	if (bp == un->un_failfast_bp) {
15234 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
15235 		un->un_failfast_bp = NULL;
15236 	}
15237 
15238 	/*
15239 	 * Clear the failfast state upon successful completion of ANY cmd.
15240 	 */
15241 	if (bp->b_error == 0) {
15242 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
15243 		/*
15244 		 * If this is a successful command, but used to be retried,
15245 		 * we will take it as a recovered command and post an
15246 		 * ereport with driver-assessment of "recovered".
15247 		 */
15248 		if (xp->xb_ena > 0) {
15249 			sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp);
15250 			sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_RECOVERY);
15251 		}
15252 	} else {
15253 		/*
15254 		 * If this is a failed non-USCSI command we will post an
15255 		 * ereport with driver-assessment set accordingly("fail" or
15256 		 * "fatal").
15257 		 */
15258 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
15259 			sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp);
15260 			sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_FATAL);
15261 		}
15262 	}
15263 
15264 	/*
15265 	 * This is used if the command was retried one or more times. Show that
15266 	 * we are done with it, and allow processing of the waitq to resume.
15267 	 */
15268 	if (bp == un->un_retry_bp) {
15269 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15270 		    "sd_return_command: un:0x%p: "
15271 		    "RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
15272 		un->un_retry_bp = NULL;
15273 		un->un_retry_statp = NULL;
15274 	}
15275 
15276 	SD_UPDATE_RDWR_STATS(un, bp);
15277 	SD_UPDATE_PARTITION_STATS(un, bp);
15278 
15279 	switch (un->un_state) {
15280 	case SD_STATE_SUSPENDED:
15281 		/*
15282 		 * Notify any threads waiting in sd_ddi_suspend() that
15283 		 * a command completion has occurred.
15284 		 */
15285 		cv_broadcast(&un->un_disk_busy_cv);
15286 		break;
15287 	default:
15288 		sd_start_cmds(un, NULL);
15289 		break;
15290 	}
15291 
15292 	/* Return this command up the iodone chain to its originator. */
15293 	mutex_exit(SD_MUTEX(un));
15294 
15295 	(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
15296 	xp->xb_pktp = NULL;
15297 
15298 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
15299 
15300 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15301 	mutex_enter(SD_MUTEX(un));
15302 
15303 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: exit\n");
15304 }
15305 
15306 
15307 /*
15308  *    Function: sd_return_failed_command
15309  *
15310  * Description: Command completion when an error occurred.
15311  *
15312  *     Context: May be called from interrupt context
15313  */
15314 
15315 static void
15316 sd_return_failed_command(struct sd_lun *un, struct buf *bp, int errcode)
15317 {
15318 	ASSERT(bp != NULL);
15319 	ASSERT(un != NULL);
15320 	ASSERT(mutex_owned(SD_MUTEX(un)));
15321 
15322 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15323 	    "sd_return_failed_command: entry\n");
15324 
15325 	/*
15326 	 * b_resid could already be nonzero due to a partial data
15327 	 * transfer, so do not change it here.
15328 	 */
15329 	SD_BIOERROR(bp, errcode);
15330 
15331 	sd_return_command(un, bp);
15332 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15333 	    "sd_return_failed_command: exit\n");
15334 }
15335 
15336 
15337 /*
15338  *    Function: sd_return_failed_command_no_restart
15339  *
15340  * Description: Same as sd_return_failed_command, but ensures that no
15341  *		call back into sd_start_cmds will be issued.
15342  *
15343  *     Context: May be called from interrupt context
15344  */
15345 
15346 static void
15347 sd_return_failed_command_no_restart(struct sd_lun *un, struct buf *bp,
15348 	int errcode)
15349 {
15350 	struct sd_xbuf *xp;
15351 
15352 	ASSERT(bp != NULL);
15353 	ASSERT(un != NULL);
15354 	ASSERT(mutex_owned(SD_MUTEX(un)));
15355 	xp = SD_GET_XBUF(bp);
15356 	ASSERT(xp != NULL);
15357 	ASSERT(errcode != 0);
15358 
15359 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15360 	    "sd_return_failed_command_no_restart: entry\n");
15361 
15362 	/*
15363 	 * b_resid could already be nonzero due to a partial data
15364 	 * transfer, so do not change it here.
15365 	 */
15366 	SD_BIOERROR(bp, errcode);
15367 
15368 	/*
15369 	 * If this is the failfast bp, clear it. This can happen if the
15370 	 * failfast bp encounterd a fatal error when we attempted to
15371 	 * re-try it (such as a scsi_transport(9F) failure).  However
15372 	 * we should NOT be in an active failfast state if the failfast
15373 	 * bp is not NULL.
15374 	 */
15375 	if (bp == un->un_failfast_bp) {
15376 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
15377 		un->un_failfast_bp = NULL;
15378 	}
15379 
15380 	if (bp == un->un_retry_bp) {
15381 		/*
15382 		 * This command was retried one or more times. Show that we are
15383 		 * done with it, and allow processing of the waitq to resume.
15384 		 */
15385 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15386 		    "sd_return_failed_command_no_restart: "
15387 		    " un:0x%p: RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
15388 		un->un_retry_bp = NULL;
15389 		un->un_retry_statp = NULL;
15390 	}
15391 
15392 	SD_UPDATE_RDWR_STATS(un, bp);
15393 	SD_UPDATE_PARTITION_STATS(un, bp);
15394 
15395 	mutex_exit(SD_MUTEX(un));
15396 
15397 	if (xp->xb_pktp != NULL) {
15398 		(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
15399 		xp->xb_pktp = NULL;
15400 	}
15401 
15402 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
15403 
15404 	mutex_enter(SD_MUTEX(un));
15405 
15406 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15407 	    "sd_return_failed_command_no_restart: exit\n");
15408 }
15409 
15410 
15411 /*
15412  *    Function: sd_retry_command
15413  *
15414  * Description: queue up a command for retry, or (optionally) fail it
15415  *		if retry counts are exhausted.
15416  *
15417  *   Arguments: un - Pointer to the sd_lun struct for the target.
15418  *
15419  *		bp - Pointer to the buf for the command to be retried.
15420  *
15421  *		retry_check_flag - Flag to see which (if any) of the retry
15422  *		   counts should be decremented/checked. If the indicated
15423  *		   retry count is exhausted, then the command will not be
15424  *		   retried; it will be failed instead. This should use a
15425  *		   value equal to one of the following:
15426  *
15427  *			SD_RETRIES_NOCHECK
15428  *			SD_RESD_RETRIES_STANDARD
15429  *			SD_RETRIES_VICTIM
15430  *
15431  *		   Optionally may be bitwise-OR'ed with SD_RETRIES_ISOLATE
15432  *		   if the check should be made to see of FLAG_ISOLATE is set
15433  *		   in the pkt. If FLAG_ISOLATE is set, then the command is
15434  *		   not retried, it is simply failed.
15435  *
15436  *		user_funcp - Ptr to function to call before dispatching the
15437  *		   command. May be NULL if no action needs to be performed.
15438  *		   (Primarily intended for printing messages.)
15439  *
15440  *		user_arg - Optional argument to be passed along to
15441  *		   the user_funcp call.
15442  *
15443  *		failure_code - errno return code to set in the bp if the
15444  *		   command is going to be failed.
15445  *
15446  *		retry_delay - Retry delay interval in (clock_t) units. May
15447  *		   be zero which indicates that the retry should be retried
15448  *		   immediately (ie, without an intervening delay).
15449  *
15450  *		statp - Ptr to kstat function to be updated if the command
15451  *		   is queued for a delayed retry. May be NULL if no kstat
15452  *		   update is desired.
15453  *
15454  *     Context: May be called from interrupt context.
15455  */
15456 
15457 static void
15458 sd_retry_command(struct sd_lun *un, struct buf *bp, int retry_check_flag,
15459 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, int
15460 	code), void *user_arg, int failure_code,  clock_t retry_delay,
15461 	void (*statp)(kstat_io_t *))
15462 {
15463 	struct sd_xbuf	*xp;
15464 	struct scsi_pkt	*pktp;
15465 	struct sd_fm_internal *sfip;
15466 
15467 	ASSERT(un != NULL);
15468 	ASSERT(mutex_owned(SD_MUTEX(un)));
15469 	ASSERT(bp != NULL);
15470 	xp = SD_GET_XBUF(bp);
15471 	ASSERT(xp != NULL);
15472 	pktp = SD_GET_PKTP(bp);
15473 	ASSERT(pktp != NULL);
15474 
15475 	sfip = (struct sd_fm_internal *)un->un_fm_private;
15476 	ASSERT(sfip != NULL);
15477 
15478 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
15479 	    "sd_retry_command: entry: bp:0x%p xp:0x%p\n", bp, xp);
15480 
15481 	/*
15482 	 * If we are syncing or dumping, fail the command to avoid
15483 	 * recursively calling back into scsi_transport().
15484 	 */
15485 	if (ddi_in_panic()) {
15486 		goto fail_command_no_log;
15487 	}
15488 
15489 	/*
15490 	 * We should never be be retrying a command with FLAG_DIAGNOSE set, so
15491 	 * log an error and fail the command.
15492 	 */
15493 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
15494 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
15495 		    "ERROR, retrying FLAG_DIAGNOSE command.\n");
15496 		sd_dump_memory(un, SD_LOG_IO, "CDB",
15497 		    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
15498 		sd_dump_memory(un, SD_LOG_IO, "Sense Data",
15499 		    (uchar_t *)xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
15500 		goto fail_command;
15501 	}
15502 
15503 	/*
15504 	 * If we are suspended, then put the command onto head of the
15505 	 * wait queue since we don't want to start more commands, and
15506 	 * clear the un_retry_bp. Next time when we are resumed, will
15507 	 * handle the command in the wait queue.
15508 	 */
15509 	switch (un->un_state) {
15510 	case SD_STATE_SUSPENDED:
15511 	case SD_STATE_DUMPING:
15512 		bp->av_forw = un->un_waitq_headp;
15513 		un->un_waitq_headp = bp;
15514 		if (un->un_waitq_tailp == NULL) {
15515 			un->un_waitq_tailp = bp;
15516 		}
15517 		if (bp == un->un_retry_bp) {
15518 			un->un_retry_bp = NULL;
15519 			un->un_retry_statp = NULL;
15520 		}
15521 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
15522 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: "
15523 		    "exiting; cmd bp:0x%p requeued for SUSPEND/DUMP\n", bp);
15524 		return;
15525 	default:
15526 		break;
15527 	}
15528 
15529 	/*
15530 	 * If the caller wants us to check FLAG_ISOLATE, then see if that
15531 	 * is set; if it is then we do not want to retry the command.
15532 	 * Normally, FLAG_ISOLATE is only used with USCSI cmds.
15533 	 */
15534 	if ((retry_check_flag & SD_RETRIES_ISOLATE) != 0) {
15535 		if ((pktp->pkt_flags & FLAG_ISOLATE) != 0) {
15536 			goto fail_command;
15537 		}
15538 	}
15539 
15540 
15541 	/*
15542 	 * If SD_RETRIES_FAILFAST is set, it indicates that either a
15543 	 * command timeout or a selection timeout has occurred. This means
15544 	 * that we were unable to establish an kind of communication with
15545 	 * the target, and subsequent retries and/or commands are likely
15546 	 * to encounter similar results and take a long time to complete.
15547 	 *
15548 	 * If this is a failfast error condition, we need to update the
15549 	 * failfast state, even if this bp does not have B_FAILFAST set.
15550 	 */
15551 	if (retry_check_flag & SD_RETRIES_FAILFAST) {
15552 		if (un->un_failfast_state == SD_FAILFAST_ACTIVE) {
15553 			ASSERT(un->un_failfast_bp == NULL);
15554 			/*
15555 			 * If we are already in the active failfast state, and
15556 			 * another failfast error condition has been detected,
15557 			 * then fail this command if it has B_FAILFAST set.
15558 			 * If B_FAILFAST is clear, then maintain the legacy
15559 			 * behavior of retrying heroically, even tho this will
15560 			 * take a lot more time to fail the command.
15561 			 */
15562 			if (bp->b_flags & B_FAILFAST) {
15563 				goto fail_command;
15564 			}
15565 		} else {
15566 			/*
15567 			 * We're not in the active failfast state, but we
15568 			 * have a failfast error condition, so we must begin
15569 			 * transition to the next state. We do this regardless
15570 			 * of whether or not this bp has B_FAILFAST set.
15571 			 */
15572 			if (un->un_failfast_bp == NULL) {
15573 				/*
15574 				 * This is the first bp to meet a failfast
15575 				 * condition so save it on un_failfast_bp &
15576 				 * do normal retry processing. Do not enter
15577 				 * active failfast state yet. This marks
15578 				 * entry into the "failfast pending" state.
15579 				 */
15580 				un->un_failfast_bp = bp;
15581 
15582 			} else if (un->un_failfast_bp == bp) {
15583 				/*
15584 				 * This is the second time *this* bp has
15585 				 * encountered a failfast error condition,
15586 				 * so enter active failfast state & flush
15587 				 * queues as appropriate.
15588 				 */
15589 				un->un_failfast_state = SD_FAILFAST_ACTIVE;
15590 				un->un_failfast_bp = NULL;
15591 				sd_failfast_flushq(un);
15592 
15593 				/*
15594 				 * Fail this bp now if B_FAILFAST set;
15595 				 * otherwise continue with retries. (It would
15596 				 * be pretty ironic if this bp succeeded on a
15597 				 * subsequent retry after we just flushed all
15598 				 * the queues).
15599 				 */
15600 				if (bp->b_flags & B_FAILFAST) {
15601 					goto fail_command;
15602 				}
15603 
15604 #if !defined(lint) && !defined(__lint)
15605 			} else {
15606 				/*
15607 				 * If neither of the preceeding conditionals
15608 				 * was true, it means that there is some
15609 				 * *other* bp that has met an inital failfast
15610 				 * condition and is currently either being
15611 				 * retried or is waiting to be retried. In
15612 				 * that case we should perform normal retry
15613 				 * processing on *this* bp, since there is a
15614 				 * chance that the current failfast condition
15615 				 * is transient and recoverable. If that does
15616 				 * not turn out to be the case, then retries
15617 				 * will be cleared when the wait queue is
15618 				 * flushed anyway.
15619 				 */
15620 #endif
15621 			}
15622 		}
15623 	} else {
15624 		/*
15625 		 * SD_RETRIES_FAILFAST is clear, which indicates that we
15626 		 * likely were able to at least establish some level of
15627 		 * communication with the target and subsequent commands
15628 		 * and/or retries are likely to get through to the target,
15629 		 * In this case we want to be aggressive about clearing
15630 		 * the failfast state. Note that this does not affect
15631 		 * the "failfast pending" condition.
15632 		 */
15633 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
15634 	}
15635 
15636 
15637 	/*
15638 	 * Check the specified retry count to see if we can still do
15639 	 * any retries with this pkt before we should fail it.
15640 	 */
15641 	switch (retry_check_flag & SD_RETRIES_MASK) {
15642 	case SD_RETRIES_VICTIM:
15643 		/*
15644 		 * Check the victim retry count. If exhausted, then fall
15645 		 * thru & check against the standard retry count.
15646 		 */
15647 		if (xp->xb_victim_retry_count < un->un_victim_retry_count) {
15648 			/* Increment count & proceed with the retry */
15649 			xp->xb_victim_retry_count++;
15650 			break;
15651 		}
15652 		/* Victim retries exhausted, fall back to std. retries... */
15653 		/* FALLTHRU */
15654 
15655 	case SD_RETRIES_STANDARD:
15656 		if (xp->xb_retry_count >= un->un_retry_count) {
15657 			/* Retries exhausted, fail the command */
15658 			SD_TRACE(SD_LOG_IO_CORE, un,
15659 			    "sd_retry_command: retries exhausted!\n");
15660 			/*
15661 			 * update b_resid for failed SCMD_READ & SCMD_WRITE
15662 			 * commands with nonzero pkt_resid.
15663 			 */
15664 			if ((pktp->pkt_reason == CMD_CMPLT) &&
15665 			    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD) &&
15666 			    (pktp->pkt_resid != 0)) {
15667 				uchar_t op = SD_GET_PKT_OPCODE(pktp) & 0x1F;
15668 				if ((op == SCMD_READ) || (op == SCMD_WRITE)) {
15669 					SD_UPDATE_B_RESID(bp, pktp);
15670 				}
15671 			}
15672 			goto fail_command;
15673 		}
15674 		xp->xb_retry_count++;
15675 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15676 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
15677 		break;
15678 
15679 	case SD_RETRIES_UA:
15680 		if (xp->xb_ua_retry_count >= sd_ua_retry_count) {
15681 			/* Retries exhausted, fail the command */
15682 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15683 			    "Unit Attention retries exhausted. "
15684 			    "Check the target.\n");
15685 			goto fail_command;
15686 		}
15687 		xp->xb_ua_retry_count++;
15688 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15689 		    "sd_retry_command: retry count:%d\n",
15690 		    xp->xb_ua_retry_count);
15691 		break;
15692 
15693 	case SD_RETRIES_BUSY:
15694 		if (xp->xb_retry_count >= un->un_busy_retry_count) {
15695 			/* Retries exhausted, fail the command */
15696 			SD_TRACE(SD_LOG_IO_CORE, un,
15697 			    "sd_retry_command: retries exhausted!\n");
15698 			goto fail_command;
15699 		}
15700 		xp->xb_retry_count++;
15701 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15702 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
15703 		break;
15704 
15705 	case SD_RETRIES_NOCHECK:
15706 	default:
15707 		/* No retry count to check. Just proceed with the retry */
15708 		break;
15709 	}
15710 
15711 	xp->xb_pktp->pkt_flags |= FLAG_HEAD;
15712 
15713 	/*
15714 	 * If this is a non-USCSI command being retried
15715 	 * during execution last time, we should post an ereport with
15716 	 * driver-assessment of the value "retry".
15717 	 * For partial DMA, request sense and STATUS_QFULL, there are no
15718 	 * hardware errors, we bypass ereport posting.
15719 	 */
15720 	if (failure_code != 0) {
15721 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
15722 			sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp);
15723 			sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_RETRY);
15724 		}
15725 	}
15726 
15727 	/*
15728 	 * If we were given a zero timeout, we must attempt to retry the
15729 	 * command immediately (ie, without a delay).
15730 	 */
15731 	if (retry_delay == 0) {
15732 		/*
15733 		 * Check some limiting conditions to see if we can actually
15734 		 * do the immediate retry.  If we cannot, then we must
15735 		 * fall back to queueing up a delayed retry.
15736 		 */
15737 		if (un->un_ncmds_in_transport >= un->un_throttle) {
15738 			/*
15739 			 * We are at the throttle limit for the target,
15740 			 * fall back to delayed retry.
15741 			 */
15742 			retry_delay = un->un_busy_timeout;
15743 			statp = kstat_waitq_enter;
15744 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15745 			    "sd_retry_command: immed. retry hit "
15746 			    "throttle!\n");
15747 		} else {
15748 			/*
15749 			 * We're clear to proceed with the immediate retry.
15750 			 * First call the user-provided function (if any)
15751 			 */
15752 			if (user_funcp != NULL) {
15753 				(*user_funcp)(un, bp, user_arg,
15754 				    SD_IMMEDIATE_RETRY_ISSUED);
15755 #ifdef __lock_lint
15756 				sd_print_incomplete_msg(un, bp, user_arg,
15757 				    SD_IMMEDIATE_RETRY_ISSUED);
15758 				sd_print_cmd_incomplete_msg(un, bp, user_arg,
15759 				    SD_IMMEDIATE_RETRY_ISSUED);
15760 				sd_print_sense_failed_msg(un, bp, user_arg,
15761 				    SD_IMMEDIATE_RETRY_ISSUED);
15762 #endif
15763 			}
15764 
15765 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15766 			    "sd_retry_command: issuing immediate retry\n");
15767 
15768 			/*
15769 			 * Call sd_start_cmds() to transport the command to
15770 			 * the target.
15771 			 */
15772 			sd_start_cmds(un, bp);
15773 
15774 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15775 			    "sd_retry_command exit\n");
15776 			return;
15777 		}
15778 	}
15779 
15780 	/*
15781 	 * Set up to retry the command after a delay.
15782 	 * First call the user-provided function (if any)
15783 	 */
15784 	if (user_funcp != NULL) {
15785 		(*user_funcp)(un, bp, user_arg, SD_DELAYED_RETRY_ISSUED);
15786 	}
15787 
15788 	sd_set_retry_bp(un, bp, retry_delay, statp);
15789 
15790 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
15791 	return;
15792 
15793 fail_command:
15794 
15795 	if (user_funcp != NULL) {
15796 		(*user_funcp)(un, bp, user_arg, SD_NO_RETRY_ISSUED);
15797 	}
15798 
15799 fail_command_no_log:
15800 
15801 	SD_INFO(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15802 	    "sd_retry_command: returning failed command\n");
15803 
15804 	sd_return_failed_command(un, bp, failure_code);
15805 
15806 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
15807 }
15808 
15809 
15810 /*
15811  *    Function: sd_set_retry_bp
15812  *
15813  * Description: Set up the given bp for retry.
15814  *
15815  *   Arguments: un - ptr to associated softstate
15816  *		bp - ptr to buf(9S) for the command
15817  *		retry_delay - time interval before issuing retry (may be 0)
15818  *		statp - optional pointer to kstat function
15819  *
15820  *     Context: May be called under interrupt context
15821  */
15822 
15823 static void
15824 sd_set_retry_bp(struct sd_lun *un, struct buf *bp, clock_t retry_delay,
15825 	void (*statp)(kstat_io_t *))
15826 {
15827 	ASSERT(un != NULL);
15828 	ASSERT(mutex_owned(SD_MUTEX(un)));
15829 	ASSERT(bp != NULL);
15830 
15831 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
15832 	    "sd_set_retry_bp: entry: un:0x%p bp:0x%p\n", un, bp);
15833 
15834 	/*
15835 	 * Indicate that the command is being retried. This will not allow any
15836 	 * other commands on the wait queue to be transported to the target
15837 	 * until this command has been completed (success or failure). The
15838 	 * "retry command" is not transported to the target until the given
15839 	 * time delay expires, unless the user specified a 0 retry_delay.
15840 	 *
15841 	 * Note: the timeout(9F) callback routine is what actually calls
15842 	 * sd_start_cmds() to transport the command, with the exception of a
15843 	 * zero retry_delay. The only current implementor of a zero retry delay
15844 	 * is the case where a START_STOP_UNIT is sent to spin-up a device.
15845 	 */
15846 	if (un->un_retry_bp == NULL) {
15847 		ASSERT(un->un_retry_statp == NULL);
15848 		un->un_retry_bp = bp;
15849 
15850 		/*
15851 		 * If the user has not specified a delay the command should
15852 		 * be queued and no timeout should be scheduled.
15853 		 */
15854 		if (retry_delay == 0) {
15855 			/*
15856 			 * Save the kstat pointer that will be used in the
15857 			 * call to SD_UPDATE_KSTATS() below, so that
15858 			 * sd_start_cmds() can correctly decrement the waitq
15859 			 * count when it is time to transport this command.
15860 			 */
15861 			un->un_retry_statp = statp;
15862 			goto done;
15863 		}
15864 	}
15865 
15866 	if (un->un_retry_bp == bp) {
15867 		/*
15868 		 * Save the kstat pointer that will be used in the call to
15869 		 * SD_UPDATE_KSTATS() below, so that sd_start_cmds() can
15870 		 * correctly decrement the waitq count when it is time to
15871 		 * transport this command.
15872 		 */
15873 		un->un_retry_statp = statp;
15874 
15875 		/*
15876 		 * Schedule a timeout if:
15877 		 *   1) The user has specified a delay.
15878 		 *   2) There is not a START_STOP_UNIT callback pending.
15879 		 *
15880 		 * If no delay has been specified, then it is up to the caller
15881 		 * to ensure that IO processing continues without stalling.
15882 		 * Effectively, this means that the caller will issue the
15883 		 * required call to sd_start_cmds(). The START_STOP_UNIT
15884 		 * callback does this after the START STOP UNIT command has
15885 		 * completed. In either of these cases we should not schedule
15886 		 * a timeout callback here.  Also don't schedule the timeout if
15887 		 * an SD_PATH_DIRECT_PRIORITY command is waiting to restart.
15888 		 */
15889 		if ((retry_delay != 0) && (un->un_startstop_timeid == NULL) &&
15890 		    (un->un_direct_priority_timeid == NULL)) {
15891 			un->un_retry_timeid =
15892 			    timeout(sd_start_retry_command, un, retry_delay);
15893 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15894 			    "sd_set_retry_bp: setting timeout: un: 0x%p"
15895 			    " bp:0x%p un_retry_timeid:0x%p\n",
15896 			    un, bp, un->un_retry_timeid);
15897 		}
15898 	} else {
15899 		/*
15900 		 * We only get in here if there is already another command
15901 		 * waiting to be retried.  In this case, we just put the
15902 		 * given command onto the wait queue, so it can be transported
15903 		 * after the current retry command has completed.
15904 		 *
15905 		 * Also we have to make sure that if the command at the head
15906 		 * of the wait queue is the un_failfast_bp, that we do not
15907 		 * put ahead of it any other commands that are to be retried.
15908 		 */
15909 		if ((un->un_failfast_bp != NULL) &&
15910 		    (un->un_failfast_bp == un->un_waitq_headp)) {
15911 			/*
15912 			 * Enqueue this command AFTER the first command on
15913 			 * the wait queue (which is also un_failfast_bp).
15914 			 */
15915 			bp->av_forw = un->un_waitq_headp->av_forw;
15916 			un->un_waitq_headp->av_forw = bp;
15917 			if (un->un_waitq_headp == un->un_waitq_tailp) {
15918 				un->un_waitq_tailp = bp;
15919 			}
15920 		} else {
15921 			/* Enqueue this command at the head of the waitq. */
15922 			bp->av_forw = un->un_waitq_headp;
15923 			un->un_waitq_headp = bp;
15924 			if (un->un_waitq_tailp == NULL) {
15925 				un->un_waitq_tailp = bp;
15926 			}
15927 		}
15928 
15929 		if (statp == NULL) {
15930 			statp = kstat_waitq_enter;
15931 		}
15932 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15933 		    "sd_set_retry_bp: un:0x%p already delayed retry\n", un);
15934 	}
15935 
15936 done:
15937 	if (statp != NULL) {
15938 		SD_UPDATE_KSTATS(un, statp, bp);
15939 	}
15940 
15941 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15942 	    "sd_set_retry_bp: exit un:0x%p\n", un);
15943 }
15944 
15945 
15946 /*
15947  *    Function: sd_start_retry_command
15948  *
15949  * Description: Start the command that has been waiting on the target's
15950  *		retry queue.  Called from timeout(9F) context after the
15951  *		retry delay interval has expired.
15952  *
15953  *   Arguments: arg - pointer to associated softstate for the device.
15954  *
15955  *     Context: timeout(9F) thread context.  May not sleep.
15956  */
15957 
15958 static void
15959 sd_start_retry_command(void *arg)
15960 {
15961 	struct sd_lun *un = arg;
15962 
15963 	ASSERT(un != NULL);
15964 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15965 
15966 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15967 	    "sd_start_retry_command: entry\n");
15968 
15969 	mutex_enter(SD_MUTEX(un));
15970 
15971 	un->un_retry_timeid = NULL;
15972 
15973 	if (un->un_retry_bp != NULL) {
15974 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15975 		    "sd_start_retry_command: un:0x%p STARTING bp:0x%p\n",
15976 		    un, un->un_retry_bp);
15977 		sd_start_cmds(un, un->un_retry_bp);
15978 	}
15979 
15980 	mutex_exit(SD_MUTEX(un));
15981 
15982 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15983 	    "sd_start_retry_command: exit\n");
15984 }
15985 
15986 /*
15987  *    Function: sd_rmw_msg_print_handler
15988  *
15989  * Description: If RMW mode is enabled and warning message is triggered
15990  *              print I/O count during a fixed interval.
15991  *
15992  *   Arguments: arg - pointer to associated softstate for the device.
15993  *
15994  *     Context: timeout(9F) thread context. May not sleep.
15995  */
15996 static void
15997 sd_rmw_msg_print_handler(void *arg)
15998 {
15999 	struct sd_lun *un = arg;
16000 
16001 	ASSERT(un != NULL);
16002 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16003 
16004 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16005 	    "sd_rmw_msg_print_handler: entry\n");
16006 
16007 	mutex_enter(SD_MUTEX(un));
16008 
16009 	if (un->un_rmw_incre_count > 0) {
16010 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16011 		    "%"PRIu64" I/O requests are not aligned with %d disk "
16012 		    "sector size in %ld seconds. They are handled through "
16013 		    "Read Modify Write but the performance is very low!\n",
16014 		    un->un_rmw_incre_count, un->un_tgt_blocksize,
16015 		    drv_hztousec(SD_RMW_MSG_PRINT_TIMEOUT) / 1000000);
16016 		un->un_rmw_incre_count = 0;
16017 		un->un_rmw_msg_timeid = timeout(sd_rmw_msg_print_handler,
16018 		    un, SD_RMW_MSG_PRINT_TIMEOUT);
16019 	} else {
16020 		un->un_rmw_msg_timeid = NULL;
16021 	}
16022 
16023 	mutex_exit(SD_MUTEX(un));
16024 
16025 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16026 	    "sd_rmw_msg_print_handler: exit\n");
16027 }
16028 
16029 /*
16030  *    Function: sd_start_direct_priority_command
16031  *
16032  * Description: Used to re-start an SD_PATH_DIRECT_PRIORITY command that had
16033  *		received TRAN_BUSY when we called scsi_transport() to send it
16034  *		to the underlying HBA. This function is called from timeout(9F)
16035  *		context after the delay interval has expired.
16036  *
16037  *   Arguments: arg - pointer to associated buf(9S) to be restarted.
16038  *
16039  *     Context: timeout(9F) thread context.  May not sleep.
16040  */
16041 
16042 static void
16043 sd_start_direct_priority_command(void *arg)
16044 {
16045 	struct buf	*priority_bp = arg;
16046 	struct sd_lun	*un;
16047 
16048 	ASSERT(priority_bp != NULL);
16049 	un = SD_GET_UN(priority_bp);
16050 	ASSERT(un != NULL);
16051 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16052 
16053 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16054 	    "sd_start_direct_priority_command: entry\n");
16055 
16056 	mutex_enter(SD_MUTEX(un));
16057 	un->un_direct_priority_timeid = NULL;
16058 	sd_start_cmds(un, priority_bp);
16059 	mutex_exit(SD_MUTEX(un));
16060 
16061 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16062 	    "sd_start_direct_priority_command: exit\n");
16063 }
16064 
16065 
16066 /*
16067  *    Function: sd_send_request_sense_command
16068  *
16069  * Description: Sends a REQUEST SENSE command to the target
16070  *
16071  *     Context: May be called from interrupt context.
16072  */
16073 
16074 static void
16075 sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
16076 	struct scsi_pkt *pktp)
16077 {
16078 	ASSERT(bp != NULL);
16079 	ASSERT(un != NULL);
16080 	ASSERT(mutex_owned(SD_MUTEX(un)));
16081 
16082 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_send_request_sense_command: "
16083 	    "entry: buf:0x%p\n", bp);
16084 
16085 	/*
16086 	 * If we are syncing or dumping, then fail the command to avoid a
16087 	 * recursive callback into scsi_transport(). Also fail the command
16088 	 * if we are suspended (legacy behavior).
16089 	 */
16090 	if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) ||
16091 	    (un->un_state == SD_STATE_DUMPING)) {
16092 		sd_return_failed_command(un, bp, EIO);
16093 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16094 		    "sd_send_request_sense_command: syncing/dumping, exit\n");
16095 		return;
16096 	}
16097 
16098 	/*
16099 	 * Retry the failed command and don't issue the request sense if:
16100 	 *    1) the sense buf is busy
16101 	 *    2) we have 1 or more outstanding commands on the target
16102 	 *    (the sense data will be cleared or invalidated any way)
16103 	 *
16104 	 * Note: There could be an issue with not checking a retry limit here,
16105 	 * the problem is determining which retry limit to check.
16106 	 */
16107 	if ((un->un_sense_isbusy != 0) || (un->un_ncmds_in_transport > 0)) {
16108 		/* Don't retry if the command is flagged as non-retryable */
16109 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
16110 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
16111 			    NULL, NULL, 0, un->un_busy_timeout,
16112 			    kstat_waitq_enter);
16113 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16114 			    "sd_send_request_sense_command: "
16115 			    "at full throttle, retrying exit\n");
16116 		} else {
16117 			sd_return_failed_command(un, bp, EIO);
16118 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16119 			    "sd_send_request_sense_command: "
16120 			    "at full throttle, non-retryable exit\n");
16121 		}
16122 		return;
16123 	}
16124 
16125 	sd_mark_rqs_busy(un, bp);
16126 	sd_start_cmds(un, un->un_rqs_bp);
16127 
16128 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16129 	    "sd_send_request_sense_command: exit\n");
16130 }
16131 
16132 
16133 /*
16134  *    Function: sd_mark_rqs_busy
16135  *
16136  * Description: Indicate that the request sense bp for this instance is
16137  *		in use.
16138  *
16139  *     Context: May be called under interrupt context
16140  */
16141 
16142 static void
16143 sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp)
16144 {
16145 	struct sd_xbuf	*sense_xp;
16146 
16147 	ASSERT(un != NULL);
16148 	ASSERT(bp != NULL);
16149 	ASSERT(mutex_owned(SD_MUTEX(un)));
16150 	ASSERT(un->un_sense_isbusy == 0);
16151 
16152 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: entry: "
16153 	    "buf:0x%p xp:0x%p un:0x%p\n", bp, SD_GET_XBUF(bp), un);
16154 
16155 	sense_xp = SD_GET_XBUF(un->un_rqs_bp);
16156 	ASSERT(sense_xp != NULL);
16157 
16158 	SD_INFO(SD_LOG_IO, un,
16159 	    "sd_mark_rqs_busy: entry: sense_xp:0x%p\n", sense_xp);
16160 
16161 	ASSERT(sense_xp->xb_pktp != NULL);
16162 	ASSERT((sense_xp->xb_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD))
16163 	    == (FLAG_SENSING | FLAG_HEAD));
16164 
16165 	un->un_sense_isbusy = 1;
16166 	un->un_rqs_bp->b_resid = 0;
16167 	sense_xp->xb_pktp->pkt_resid  = 0;
16168 	sense_xp->xb_pktp->pkt_reason = 0;
16169 
16170 	/* So we can get back the bp at interrupt time! */
16171 	sense_xp->xb_sense_bp = bp;
16172 
16173 	bzero(un->un_rqs_bp->b_un.b_addr, SENSE_LENGTH);
16174 
16175 	/*
16176 	 * Mark this buf as awaiting sense data. (This is already set in
16177 	 * the pkt_flags for the RQS packet.)
16178 	 */
16179 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags |= FLAG_SENSING;
16180 
16181 	/* Request sense down same path */
16182 	if (scsi_pkt_allocated_correctly((SD_GET_XBUF(bp))->xb_pktp) &&
16183 	    ((SD_GET_XBUF(bp))->xb_pktp)->pkt_path_instance)
16184 		sense_xp->xb_pktp->pkt_path_instance =
16185 		    ((SD_GET_XBUF(bp))->xb_pktp)->pkt_path_instance;
16186 
16187 	sense_xp->xb_retry_count	= 0;
16188 	sense_xp->xb_victim_retry_count = 0;
16189 	sense_xp->xb_ua_retry_count	= 0;
16190 	sense_xp->xb_nr_retry_count 	= 0;
16191 	sense_xp->xb_dma_resid  = 0;
16192 
16193 	/* Clean up the fields for auto-request sense */
16194 	sense_xp->xb_sense_status = 0;
16195 	sense_xp->xb_sense_state  = 0;
16196 	sense_xp->xb_sense_resid  = 0;
16197 	bzero(sense_xp->xb_sense_data, sizeof (sense_xp->xb_sense_data));
16198 
16199 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: exit\n");
16200 }
16201 
16202 
16203 /*
16204  *    Function: sd_mark_rqs_idle
16205  *
16206  * Description: SD_MUTEX must be held continuously through this routine
16207  *		to prevent reuse of the rqs struct before the caller can
16208  *		complete it's processing.
16209  *
16210  * Return Code: Pointer to the RQS buf
16211  *
16212  *     Context: May be called under interrupt context
16213  */
16214 
16215 static struct buf *
16216 sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *sense_xp)
16217 {
16218 	struct buf *bp;
16219 	ASSERT(un != NULL);
16220 	ASSERT(sense_xp != NULL);
16221 	ASSERT(mutex_owned(SD_MUTEX(un)));
16222 	ASSERT(un->un_sense_isbusy != 0);
16223 
16224 	un->un_sense_isbusy = 0;
16225 	bp = sense_xp->xb_sense_bp;
16226 	sense_xp->xb_sense_bp = NULL;
16227 
16228 	/* This pkt is no longer interested in getting sense data */
16229 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags &= ~FLAG_SENSING;
16230 
16231 	return (bp);
16232 }
16233 
16234 
16235 
16236 /*
16237  *    Function: sd_alloc_rqs
16238  *
16239  * Description: Set up the unit to receive auto request sense data
16240  *
16241  * Return Code: DDI_SUCCESS or DDI_FAILURE
16242  *
16243  *     Context: Called under attach(9E) context
16244  */
16245 
16246 static int
16247 sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un)
16248 {
16249 	struct sd_xbuf *xp;
16250 
16251 	ASSERT(un != NULL);
16252 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16253 	ASSERT(un->un_rqs_bp == NULL);
16254 	ASSERT(un->un_rqs_pktp == NULL);
16255 
16256 	/*
16257 	 * First allocate the required buf and scsi_pkt structs, then set up
16258 	 * the CDB in the scsi_pkt for a REQUEST SENSE command.
16259 	 */
16260 	un->un_rqs_bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL,
16261 	    MAX_SENSE_LENGTH, B_READ, SLEEP_FUNC, NULL);
16262 	if (un->un_rqs_bp == NULL) {
16263 		return (DDI_FAILURE);
16264 	}
16265 
16266 	un->un_rqs_pktp = scsi_init_pkt(&devp->sd_address, NULL, un->un_rqs_bp,
16267 	    CDB_GROUP0, 1, 0, PKT_CONSISTENT, SLEEP_FUNC, NULL);
16268 
16269 	if (un->un_rqs_pktp == NULL) {
16270 		sd_free_rqs(un);
16271 		return (DDI_FAILURE);
16272 	}
16273 
16274 	/* Set up the CDB in the scsi_pkt for a REQUEST SENSE command. */
16275 	(void) scsi_setup_cdb((union scsi_cdb *)un->un_rqs_pktp->pkt_cdbp,
16276 	    SCMD_REQUEST_SENSE, 0, MAX_SENSE_LENGTH, 0);
16277 
16278 	SD_FILL_SCSI1_LUN(un, un->un_rqs_pktp);
16279 
16280 	/* Set up the other needed members in the ARQ scsi_pkt. */
16281 	un->un_rqs_pktp->pkt_comp   = sdintr;
16282 	un->un_rqs_pktp->pkt_time   = sd_io_time;
16283 	un->un_rqs_pktp->pkt_flags |=
16284 	    (FLAG_SENSING | FLAG_HEAD);	/* (1222170) */
16285 
16286 	/*
16287 	 * Allocate  & init the sd_xbuf struct for the RQS command. Do not
16288 	 * provide any intpkt, destroypkt routines as we take care of
16289 	 * scsi_pkt allocation/freeing here and in sd_free_rqs().
16290 	 */
16291 	xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
16292 	sd_xbuf_init(un, un->un_rqs_bp, xp, SD_CHAIN_NULL, NULL);
16293 	xp->xb_pktp = un->un_rqs_pktp;
16294 	SD_INFO(SD_LOG_ATTACH_DETACH, un,
16295 	    "sd_alloc_rqs: un 0x%p, rqs  xp 0x%p,  pkt 0x%p,  buf 0x%p\n",
16296 	    un, xp, un->un_rqs_pktp, un->un_rqs_bp);
16297 
16298 	/*
16299 	 * Save the pointer to the request sense private bp so it can
16300 	 * be retrieved in sdintr.
16301 	 */
16302 	un->un_rqs_pktp->pkt_private = un->un_rqs_bp;
16303 	ASSERT(un->un_rqs_bp->b_private == xp);
16304 
16305 	/*
16306 	 * See if the HBA supports auto-request sense for the specified
16307 	 * target/lun. If it does, then try to enable it (if not already
16308 	 * enabled).
16309 	 *
16310 	 * Note: For some HBAs (ifp & sf), scsi_ifsetcap will always return
16311 	 * failure, while for other HBAs (pln) scsi_ifsetcap will always
16312 	 * return success.  However, in both of these cases ARQ is always
16313 	 * enabled and scsi_ifgetcap will always return true. The best approach
16314 	 * is to issue the scsi_ifgetcap() first, then try the scsi_ifsetcap().
16315 	 *
16316 	 * The 3rd case is the HBA (adp) always return enabled on
16317 	 * scsi_ifgetgetcap even when it's not enable, the best approach
16318 	 * is issue a scsi_ifsetcap then a scsi_ifgetcap
16319 	 * Note: this case is to circumvent the Adaptec bug. (x86 only)
16320 	 */
16321 
16322 	if (un->un_f_is_fibre == TRUE) {
16323 		un->un_f_arq_enabled = TRUE;
16324 	} else {
16325 #if defined(__i386) || defined(__amd64)
16326 		/*
16327 		 * Circumvent the Adaptec bug, remove this code when
16328 		 * the bug is fixed
16329 		 */
16330 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1);
16331 #endif
16332 		switch (scsi_ifgetcap(SD_ADDRESS(un), "auto-rqsense", 1)) {
16333 		case 0:
16334 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
16335 			    "sd_alloc_rqs: HBA supports ARQ\n");
16336 			/*
16337 			 * ARQ is supported by this HBA but currently is not
16338 			 * enabled. Attempt to enable it and if successful then
16339 			 * mark this instance as ARQ enabled.
16340 			 */
16341 			if (scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1)
16342 			    == 1) {
16343 				/* Successfully enabled ARQ in the HBA */
16344 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
16345 				    "sd_alloc_rqs: ARQ enabled\n");
16346 				un->un_f_arq_enabled = TRUE;
16347 			} else {
16348 				/* Could not enable ARQ in the HBA */
16349 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
16350 				    "sd_alloc_rqs: failed ARQ enable\n");
16351 				un->un_f_arq_enabled = FALSE;
16352 			}
16353 			break;
16354 		case 1:
16355 			/*
16356 			 * ARQ is supported by this HBA and is already enabled.
16357 			 * Just mark ARQ as enabled for this instance.
16358 			 */
16359 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
16360 			    "sd_alloc_rqs: ARQ already enabled\n");
16361 			un->un_f_arq_enabled = TRUE;
16362 			break;
16363 		default:
16364 			/*
16365 			 * ARQ is not supported by this HBA; disable it for this
16366 			 * instance.
16367 			 */
16368 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
16369 			    "sd_alloc_rqs: HBA does not support ARQ\n");
16370 			un->un_f_arq_enabled = FALSE;
16371 			break;
16372 		}
16373 	}
16374 
16375 	return (DDI_SUCCESS);
16376 }
16377 
16378 
16379 /*
16380  *    Function: sd_free_rqs
16381  *
16382  * Description: Cleanup for the pre-instance RQS command.
16383  *
16384  *     Context: Kernel thread context
16385  */
16386 
16387 static void
16388 sd_free_rqs(struct sd_lun *un)
16389 {
16390 	ASSERT(un != NULL);
16391 
16392 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: entry\n");
16393 
16394 	/*
16395 	 * If consistent memory is bound to a scsi_pkt, the pkt
16396 	 * has to be destroyed *before* freeing the consistent memory.
16397 	 * Don't change the sequence of this operations.
16398 	 * scsi_destroy_pkt() might access memory, which isn't allowed,
16399 	 * after it was freed in scsi_free_consistent_buf().
16400 	 */
16401 	if (un->un_rqs_pktp != NULL) {
16402 		scsi_destroy_pkt(un->un_rqs_pktp);
16403 		un->un_rqs_pktp = NULL;
16404 	}
16405 
16406 	if (un->un_rqs_bp != NULL) {
16407 		struct sd_xbuf *xp = SD_GET_XBUF(un->un_rqs_bp);
16408 		if (xp != NULL) {
16409 			kmem_free(xp, sizeof (struct sd_xbuf));
16410 		}
16411 		scsi_free_consistent_buf(un->un_rqs_bp);
16412 		un->un_rqs_bp = NULL;
16413 	}
16414 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: exit\n");
16415 }
16416 
16417 
16418 
16419 /*
16420  *    Function: sd_reduce_throttle
16421  *
16422  * Description: Reduces the maximum # of outstanding commands on a
16423  *		target to the current number of outstanding commands.
16424  *		Queues a tiemout(9F) callback to restore the limit
16425  *		after a specified interval has elapsed.
16426  *		Typically used when we get a TRAN_BUSY return code
16427  *		back from scsi_transport().
16428  *
16429  *   Arguments: un - ptr to the sd_lun softstate struct
16430  *		throttle_type: SD_THROTTLE_TRAN_BUSY or SD_THROTTLE_QFULL
16431  *
16432  *     Context: May be called from interrupt context
16433  */
16434 
16435 static void
16436 sd_reduce_throttle(struct sd_lun *un, int throttle_type)
16437 {
16438 	ASSERT(un != NULL);
16439 	ASSERT(mutex_owned(SD_MUTEX(un)));
16440 	ASSERT(un->un_ncmds_in_transport >= 0);
16441 
16442 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
16443 	    "entry: un:0x%p un_throttle:%d un_ncmds_in_transport:%d\n",
16444 	    un, un->un_throttle, un->un_ncmds_in_transport);
16445 
16446 	if (un->un_throttle > 1) {
16447 		if (un->un_f_use_adaptive_throttle == TRUE) {
16448 			switch (throttle_type) {
16449 			case SD_THROTTLE_TRAN_BUSY:
16450 				if (un->un_busy_throttle == 0) {
16451 					un->un_busy_throttle = un->un_throttle;
16452 				}
16453 				break;
16454 			case SD_THROTTLE_QFULL:
16455 				un->un_busy_throttle = 0;
16456 				break;
16457 			default:
16458 				ASSERT(FALSE);
16459 			}
16460 
16461 			if (un->un_ncmds_in_transport > 0) {
16462 				un->un_throttle = un->un_ncmds_in_transport;
16463 			}
16464 
16465 		} else {
16466 			if (un->un_ncmds_in_transport == 0) {
16467 				un->un_throttle = 1;
16468 			} else {
16469 				un->un_throttle = un->un_ncmds_in_transport;
16470 			}
16471 		}
16472 	}
16473 
16474 	/* Reschedule the timeout if none is currently active */
16475 	if (un->un_reset_throttle_timeid == NULL) {
16476 		un->un_reset_throttle_timeid = timeout(sd_restore_throttle,
16477 		    un, SD_THROTTLE_RESET_INTERVAL);
16478 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16479 		    "sd_reduce_throttle: timeout scheduled!\n");
16480 	}
16481 
16482 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
16483 	    "exit: un:0x%p un_throttle:%d\n", un, un->un_throttle);
16484 }
16485 
16486 
16487 
16488 /*
16489  *    Function: sd_restore_throttle
16490  *
16491  * Description: Callback function for timeout(9F).  Resets the current
16492  *		value of un->un_throttle to its default.
16493  *
16494  *   Arguments: arg - pointer to associated softstate for the device.
16495  *
16496  *     Context: May be called from interrupt context
16497  */
16498 
16499 static void
16500 sd_restore_throttle(void *arg)
16501 {
16502 	struct sd_lun	*un = arg;
16503 
16504 	ASSERT(un != NULL);
16505 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16506 
16507 	mutex_enter(SD_MUTEX(un));
16508 
16509 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
16510 	    "entry: un:0x%p un_throttle:%d\n", un, un->un_throttle);
16511 
16512 	un->un_reset_throttle_timeid = NULL;
16513 
16514 	if (un->un_f_use_adaptive_throttle == TRUE) {
16515 		/*
16516 		 * If un_busy_throttle is nonzero, then it contains the
16517 		 * value that un_throttle was when we got a TRAN_BUSY back
16518 		 * from scsi_transport(). We want to revert back to this
16519 		 * value.
16520 		 *
16521 		 * In the QFULL case, the throttle limit will incrementally
16522 		 * increase until it reaches max throttle.
16523 		 */
16524 		if (un->un_busy_throttle > 0) {
16525 			un->un_throttle = un->un_busy_throttle;
16526 			un->un_busy_throttle = 0;
16527 		} else {
16528 			/*
16529 			 * increase throttle by 10% open gate slowly, schedule
16530 			 * another restore if saved throttle has not been
16531 			 * reached
16532 			 */
16533 			short throttle;
16534 			if (sd_qfull_throttle_enable) {
16535 				throttle = un->un_throttle +
16536 				    max((un->un_throttle / 10), 1);
16537 				un->un_throttle =
16538 				    (throttle < un->un_saved_throttle) ?
16539 				    throttle : un->un_saved_throttle;
16540 				if (un->un_throttle < un->un_saved_throttle) {
16541 					un->un_reset_throttle_timeid =
16542 					    timeout(sd_restore_throttle,
16543 					    un,
16544 					    SD_QFULL_THROTTLE_RESET_INTERVAL);
16545 				}
16546 			}
16547 		}
16548 
16549 		/*
16550 		 * If un_throttle has fallen below the low-water mark, we
16551 		 * restore the maximum value here (and allow it to ratchet
16552 		 * down again if necessary).
16553 		 */
16554 		if (un->un_throttle < un->un_min_throttle) {
16555 			un->un_throttle = un->un_saved_throttle;
16556 		}
16557 	} else {
16558 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
16559 		    "restoring limit from 0x%x to 0x%x\n",
16560 		    un->un_throttle, un->un_saved_throttle);
16561 		un->un_throttle = un->un_saved_throttle;
16562 	}
16563 
16564 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
16565 	    "sd_restore_throttle: calling sd_start_cmds!\n");
16566 
16567 	sd_start_cmds(un, NULL);
16568 
16569 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
16570 	    "sd_restore_throttle: exit: un:0x%p un_throttle:%d\n",
16571 	    un, un->un_throttle);
16572 
16573 	mutex_exit(SD_MUTEX(un));
16574 
16575 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: exit\n");
16576 }
16577 
16578 /*
16579  *    Function: sdrunout
16580  *
16581  * Description: Callback routine for scsi_init_pkt when a resource allocation
16582  *		fails.
16583  *
16584  *   Arguments: arg - a pointer to the sd_lun unit struct for the particular
16585  *		soft state instance.
16586  *
16587  * Return Code: The scsi_init_pkt routine allows for the callback function to
16588  *		return a 0 indicating the callback should be rescheduled or a 1
16589  *		indicating not to reschedule. This routine always returns 1
16590  *		because the driver always provides a callback function to
16591  *		scsi_init_pkt. This results in a callback always being scheduled
16592  *		(via the scsi_init_pkt callback implementation) if a resource
16593  *		failure occurs.
16594  *
16595  *     Context: This callback function may not block or call routines that block
16596  *
16597  *        Note: Using the scsi_init_pkt callback facility can result in an I/O
16598  *		request persisting at the head of the list which cannot be
16599  *		satisfied even after multiple retries. In the future the driver
16600  *		may implement some time of maximum runout count before failing
16601  *		an I/O.
16602  */
16603 
16604 static int
16605 sdrunout(caddr_t arg)
16606 {
16607 	struct sd_lun	*un = (struct sd_lun *)arg;
16608 
16609 	ASSERT(un != NULL);
16610 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16611 
16612 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: entry\n");
16613 
16614 	mutex_enter(SD_MUTEX(un));
16615 	sd_start_cmds(un, NULL);
16616 	mutex_exit(SD_MUTEX(un));
16617 	/*
16618 	 * This callback routine always returns 1 (i.e. do not reschedule)
16619 	 * because we always specify sdrunout as the callback handler for
16620 	 * scsi_init_pkt inside the call to sd_start_cmds.
16621 	 */
16622 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: exit\n");
16623 	return (1);
16624 }
16625 
16626 
16627 /*
16628  *    Function: sdintr
16629  *
16630  * Description: Completion callback routine for scsi_pkt(9S) structs
16631  *		sent to the HBA driver via scsi_transport(9F).
16632  *
16633  *     Context: Interrupt context
16634  */
16635 
16636 static void
16637 sdintr(struct scsi_pkt *pktp)
16638 {
16639 	struct buf	*bp;
16640 	struct sd_xbuf	*xp;
16641 	struct sd_lun	*un;
16642 	size_t		actual_len;
16643 	sd_ssc_t	*sscp;
16644 
16645 	ASSERT(pktp != NULL);
16646 	bp = (struct buf *)pktp->pkt_private;
16647 	ASSERT(bp != NULL);
16648 	xp = SD_GET_XBUF(bp);
16649 	ASSERT(xp != NULL);
16650 	ASSERT(xp->xb_pktp != NULL);
16651 	un = SD_GET_UN(bp);
16652 	ASSERT(un != NULL);
16653 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16654 
16655 #ifdef SD_FAULT_INJECTION
16656 
16657 	SD_INFO(SD_LOG_IOERR, un, "sdintr: sdintr calling Fault injection\n");
16658 	/* SD FaultInjection */
16659 	sd_faultinjection(pktp);
16660 
16661 #endif /* SD_FAULT_INJECTION */
16662 
16663 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: entry: buf:0x%p,"
16664 	    " xp:0x%p, un:0x%p\n", bp, xp, un);
16665 
16666 	mutex_enter(SD_MUTEX(un));
16667 
16668 	ASSERT(un->un_fm_private != NULL);
16669 	sscp = &((struct sd_fm_internal *)(un->un_fm_private))->fm_ssc;
16670 	ASSERT(sscp != NULL);
16671 
16672 	/* Reduce the count of the #commands currently in transport */
16673 	un->un_ncmds_in_transport--;
16674 	ASSERT(un->un_ncmds_in_transport >= 0);
16675 
16676 	/* Increment counter to indicate that the callback routine is active */
16677 	un->un_in_callback++;
16678 
16679 	SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
16680 
16681 #ifdef	SDDEBUG
16682 	if (bp == un->un_retry_bp) {
16683 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sdintr: "
16684 		    "un:0x%p: GOT retry_bp:0x%p un_ncmds_in_transport:%d\n",
16685 		    un, un->un_retry_bp, un->un_ncmds_in_transport);
16686 	}
16687 #endif
16688 
16689 	/*
16690 	 * If pkt_reason is CMD_DEV_GONE, fail the command, and update the media
16691 	 * state if needed.
16692 	 */
16693 	if (pktp->pkt_reason == CMD_DEV_GONE) {
16694 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16695 		    "Command failed to complete...Device is gone\n");
16696 		if (un->un_mediastate != DKIO_DEV_GONE) {
16697 			un->un_mediastate = DKIO_DEV_GONE;
16698 			cv_broadcast(&un->un_state_cv);
16699 		}
16700 		/*
16701 		 * If the command happens to be the REQUEST SENSE command,
16702 		 * free up the rqs buf and fail the original command.
16703 		 */
16704 		if (bp == un->un_rqs_bp) {
16705 			bp = sd_mark_rqs_idle(un, xp);
16706 		}
16707 		sd_return_failed_command(un, bp, EIO);
16708 		goto exit;
16709 	}
16710 
16711 	if (pktp->pkt_state & STATE_XARQ_DONE) {
16712 		SD_TRACE(SD_LOG_COMMON, un,
16713 		    "sdintr: extra sense data received. pkt=%p\n", pktp);
16714 	}
16715 
16716 	/*
16717 	 * First see if the pkt has auto-request sense data with it....
16718 	 * Look at the packet state first so we don't take a performance
16719 	 * hit looking at the arq enabled flag unless absolutely necessary.
16720 	 */
16721 	if ((pktp->pkt_state & STATE_ARQ_DONE) &&
16722 	    (un->un_f_arq_enabled == TRUE)) {
16723 		/*
16724 		 * The HBA did an auto request sense for this command so check
16725 		 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
16726 		 * driver command that should not be retried.
16727 		 */
16728 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
16729 			/*
16730 			 * Save the relevant sense info into the xp for the
16731 			 * original cmd.
16732 			 */
16733 			struct scsi_arq_status *asp;
16734 			asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
16735 			xp->xb_sense_status =
16736 			    *((uchar_t *)(&(asp->sts_rqpkt_status)));
16737 			xp->xb_sense_state  = asp->sts_rqpkt_state;
16738 			xp->xb_sense_resid  = asp->sts_rqpkt_resid;
16739 			if (pktp->pkt_state & STATE_XARQ_DONE) {
16740 				actual_len = MAX_SENSE_LENGTH -
16741 				    xp->xb_sense_resid;
16742 				bcopy(&asp->sts_sensedata, xp->xb_sense_data,
16743 				    MAX_SENSE_LENGTH);
16744 			} else {
16745 				if (xp->xb_sense_resid > SENSE_LENGTH) {
16746 					actual_len = MAX_SENSE_LENGTH -
16747 					    xp->xb_sense_resid;
16748 				} else {
16749 					actual_len = SENSE_LENGTH -
16750 					    xp->xb_sense_resid;
16751 				}
16752 				if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
16753 					if ((((struct uscsi_cmd *)
16754 					    (xp->xb_pktinfo))->uscsi_rqlen) >
16755 					    actual_len) {
16756 						xp->xb_sense_resid =
16757 						    (((struct uscsi_cmd *)
16758 						    (xp->xb_pktinfo))->
16759 						    uscsi_rqlen) - actual_len;
16760 					} else {
16761 						xp->xb_sense_resid = 0;
16762 					}
16763 				}
16764 				bcopy(&asp->sts_sensedata, xp->xb_sense_data,
16765 				    SENSE_LENGTH);
16766 			}
16767 
16768 			/* fail the command */
16769 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16770 			    "sdintr: arq done and FLAG_DIAGNOSE set\n");
16771 			sd_return_failed_command(un, bp, EIO);
16772 			goto exit;
16773 		}
16774 
16775 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
16776 		/*
16777 		 * We want to either retry or fail this command, so free
16778 		 * the DMA resources here.  If we retry the command then
16779 		 * the DMA resources will be reallocated in sd_start_cmds().
16780 		 * Note that when PKT_DMA_PARTIAL is used, this reallocation
16781 		 * causes the *entire* transfer to start over again from the
16782 		 * beginning of the request, even for PARTIAL chunks that
16783 		 * have already transferred successfully.
16784 		 */
16785 		if ((un->un_f_is_fibre == TRUE) &&
16786 		    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
16787 		    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
16788 			scsi_dmafree(pktp);
16789 			xp->xb_pkt_flags |= SD_XB_DMA_FREED;
16790 		}
16791 #endif
16792 
16793 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16794 		    "sdintr: arq done, sd_handle_auto_request_sense\n");
16795 
16796 		sd_handle_auto_request_sense(un, bp, xp, pktp);
16797 		goto exit;
16798 	}
16799 
16800 	/* Next see if this is the REQUEST SENSE pkt for the instance */
16801 	if (pktp->pkt_flags & FLAG_SENSING)  {
16802 		/* This pktp is from the unit's REQUEST_SENSE command */
16803 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16804 		    "sdintr: sd_handle_request_sense\n");
16805 		sd_handle_request_sense(un, bp, xp, pktp);
16806 		goto exit;
16807 	}
16808 
16809 	/*
16810 	 * Check to see if the command successfully completed as requested;
16811 	 * this is the most common case (and also the hot performance path).
16812 	 *
16813 	 * Requirements for successful completion are:
16814 	 * pkt_reason is CMD_CMPLT and packet status is status good.
16815 	 * In addition:
16816 	 * - A residual of zero indicates successful completion no matter what
16817 	 *   the command is.
16818 	 * - If the residual is not zero and the command is not a read or
16819 	 *   write, then it's still defined as successful completion. In other
16820 	 *   words, if the command is a read or write the residual must be
16821 	 *   zero for successful completion.
16822 	 * - If the residual is not zero and the command is a read or
16823 	 *   write, and it's a USCSICMD, then it's still defined as
16824 	 *   successful completion.
16825 	 */
16826 	if ((pktp->pkt_reason == CMD_CMPLT) &&
16827 	    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD)) {
16828 
16829 		/*
16830 		 * Since this command is returned with a good status, we
16831 		 * can reset the count for Sonoma failover.
16832 		 */
16833 		un->un_sonoma_failure_count = 0;
16834 
16835 		/*
16836 		 * Return all USCSI commands on good status
16837 		 */
16838 		if (pktp->pkt_resid == 0) {
16839 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16840 			    "sdintr: returning command for resid == 0\n");
16841 		} else if (((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_READ) &&
16842 		    ((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_WRITE)) {
16843 			SD_UPDATE_B_RESID(bp, pktp);
16844 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16845 			    "sdintr: returning command for resid != 0\n");
16846 		} else if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
16847 			SD_UPDATE_B_RESID(bp, pktp);
16848 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16849 			    "sdintr: returning uscsi command\n");
16850 		} else {
16851 			goto not_successful;
16852 		}
16853 		sd_return_command(un, bp);
16854 
16855 		/*
16856 		 * Decrement counter to indicate that the callback routine
16857 		 * is done.
16858 		 */
16859 		un->un_in_callback--;
16860 		ASSERT(un->un_in_callback >= 0);
16861 		mutex_exit(SD_MUTEX(un));
16862 
16863 		return;
16864 	}
16865 
16866 not_successful:
16867 
16868 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
16869 	/*
16870 	 * The following is based upon knowledge of the underlying transport
16871 	 * and its use of DMA resources.  This code should be removed when
16872 	 * PKT_DMA_PARTIAL support is taken out of the disk driver in favor
16873 	 * of the new PKT_CMD_BREAKUP protocol. See also sd_initpkt_for_buf()
16874 	 * and sd_start_cmds().
16875 	 *
16876 	 * Free any DMA resources associated with this command if there
16877 	 * is a chance it could be retried or enqueued for later retry.
16878 	 * If we keep the DMA binding then mpxio cannot reissue the
16879 	 * command on another path whenever a path failure occurs.
16880 	 *
16881 	 * Note that when PKT_DMA_PARTIAL is used, free/reallocation
16882 	 * causes the *entire* transfer to start over again from the
16883 	 * beginning of the request, even for PARTIAL chunks that
16884 	 * have already transferred successfully.
16885 	 *
16886 	 * This is only done for non-uscsi commands (and also skipped for the
16887 	 * driver's internal RQS command). Also just do this for Fibre Channel
16888 	 * devices as these are the only ones that support mpxio.
16889 	 */
16890 	if ((un->un_f_is_fibre == TRUE) &&
16891 	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
16892 	    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
16893 		scsi_dmafree(pktp);
16894 		xp->xb_pkt_flags |= SD_XB_DMA_FREED;
16895 	}
16896 #endif
16897 
16898 	/*
16899 	 * The command did not successfully complete as requested so check
16900 	 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
16901 	 * driver command that should not be retried so just return. If
16902 	 * FLAG_DIAGNOSE is not set the error will be processed below.
16903 	 */
16904 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
16905 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16906 		    "sdintr: FLAG_DIAGNOSE: sd_return_failed_command\n");
16907 		/*
16908 		 * Issue a request sense if a check condition caused the error
16909 		 * (we handle the auto request sense case above), otherwise
16910 		 * just fail the command.
16911 		 */
16912 		if ((pktp->pkt_reason == CMD_CMPLT) &&
16913 		    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK)) {
16914 			sd_send_request_sense_command(un, bp, pktp);
16915 		} else {
16916 			sd_return_failed_command(un, bp, EIO);
16917 		}
16918 		goto exit;
16919 	}
16920 
16921 	/*
16922 	 * The command did not successfully complete as requested so process
16923 	 * the error, retry, and/or attempt recovery.
16924 	 */
16925 	switch (pktp->pkt_reason) {
16926 	case CMD_CMPLT:
16927 		switch (SD_GET_PKT_STATUS(pktp)) {
16928 		case STATUS_GOOD:
16929 			/*
16930 			 * The command completed successfully with a non-zero
16931 			 * residual
16932 			 */
16933 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16934 			    "sdintr: STATUS_GOOD \n");
16935 			sd_pkt_status_good(un, bp, xp, pktp);
16936 			break;
16937 
16938 		case STATUS_CHECK:
16939 		case STATUS_TERMINATED:
16940 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16941 			    "sdintr: STATUS_TERMINATED | STATUS_CHECK\n");
16942 			sd_pkt_status_check_condition(un, bp, xp, pktp);
16943 			break;
16944 
16945 		case STATUS_BUSY:
16946 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16947 			    "sdintr: STATUS_BUSY\n");
16948 			sd_pkt_status_busy(un, bp, xp, pktp);
16949 			break;
16950 
16951 		case STATUS_RESERVATION_CONFLICT:
16952 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16953 			    "sdintr: STATUS_RESERVATION_CONFLICT\n");
16954 			sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
16955 			break;
16956 
16957 		case STATUS_QFULL:
16958 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16959 			    "sdintr: STATUS_QFULL\n");
16960 			sd_pkt_status_qfull(un, bp, xp, pktp);
16961 			break;
16962 
16963 		case STATUS_MET:
16964 		case STATUS_INTERMEDIATE:
16965 		case STATUS_SCSI2:
16966 		case STATUS_INTERMEDIATE_MET:
16967 		case STATUS_ACA_ACTIVE:
16968 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16969 			    "Unexpected SCSI status received: 0x%x\n",
16970 			    SD_GET_PKT_STATUS(pktp));
16971 			/*
16972 			 * Mark the ssc_flags when detected invalid status
16973 			 * code for non-USCSI command.
16974 			 */
16975 			if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
16976 				sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_STATUS,
16977 				    0, "stat-code");
16978 			}
16979 			sd_return_failed_command(un, bp, EIO);
16980 			break;
16981 
16982 		default:
16983 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16984 			    "Invalid SCSI status received: 0x%x\n",
16985 			    SD_GET_PKT_STATUS(pktp));
16986 			if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
16987 				sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_STATUS,
16988 				    0, "stat-code");
16989 			}
16990 			sd_return_failed_command(un, bp, EIO);
16991 			break;
16992 
16993 		}
16994 		break;
16995 
16996 	case CMD_INCOMPLETE:
16997 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16998 		    "sdintr:  CMD_INCOMPLETE\n");
16999 		sd_pkt_reason_cmd_incomplete(un, bp, xp, pktp);
17000 		break;
17001 	case CMD_TRAN_ERR:
17002 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17003 		    "sdintr: CMD_TRAN_ERR\n");
17004 		sd_pkt_reason_cmd_tran_err(un, bp, xp, pktp);
17005 		break;
17006 	case CMD_RESET:
17007 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17008 		    "sdintr: CMD_RESET \n");
17009 		sd_pkt_reason_cmd_reset(un, bp, xp, pktp);
17010 		break;
17011 	case CMD_ABORTED:
17012 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17013 		    "sdintr: CMD_ABORTED \n");
17014 		sd_pkt_reason_cmd_aborted(un, bp, xp, pktp);
17015 		break;
17016 	case CMD_TIMEOUT:
17017 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17018 		    "sdintr: CMD_TIMEOUT\n");
17019 		sd_pkt_reason_cmd_timeout(un, bp, xp, pktp);
17020 		break;
17021 	case CMD_UNX_BUS_FREE:
17022 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17023 		    "sdintr: CMD_UNX_BUS_FREE \n");
17024 		sd_pkt_reason_cmd_unx_bus_free(un, bp, xp, pktp);
17025 		break;
17026 	case CMD_TAG_REJECT:
17027 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17028 		    "sdintr: CMD_TAG_REJECT\n");
17029 		sd_pkt_reason_cmd_tag_reject(un, bp, xp, pktp);
17030 		break;
17031 	default:
17032 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17033 		    "sdintr: default\n");
17034 		/*
17035 		 * Mark the ssc_flags for detecting invliad pkt_reason.
17036 		 */
17037 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
17038 			sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_PKT_REASON,
17039 			    0, "pkt-reason");
17040 		}
17041 		sd_pkt_reason_default(un, bp, xp, pktp);
17042 		break;
17043 	}
17044 
17045 exit:
17046 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: exit\n");
17047 
17048 	/* Decrement counter to indicate that the callback routine is done. */
17049 	un->un_in_callback--;
17050 	ASSERT(un->un_in_callback >= 0);
17051 
17052 	/*
17053 	 * At this point, the pkt has been dispatched, ie, it is either
17054 	 * being re-tried or has been returned to its caller and should
17055 	 * not be referenced.
17056 	 */
17057 
17058 	mutex_exit(SD_MUTEX(un));
17059 }
17060 
17061 
17062 /*
17063  *    Function: sd_print_incomplete_msg
17064  *
17065  * Description: Prints the error message for a CMD_INCOMPLETE error.
17066  *
17067  *   Arguments: un - ptr to associated softstate for the device.
17068  *		bp - ptr to the buf(9S) for the command.
17069  *		arg - message string ptr
17070  *		code - SD_DELAYED_RETRY_ISSUED, SD_IMMEDIATE_RETRY_ISSUED,
17071  *			or SD_NO_RETRY_ISSUED.
17072  *
17073  *     Context: May be called under interrupt context
17074  */
17075 
17076 static void
17077 sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
17078 {
17079 	struct scsi_pkt	*pktp;
17080 	char	*msgp;
17081 	char	*cmdp = arg;
17082 
17083 	ASSERT(un != NULL);
17084 	ASSERT(mutex_owned(SD_MUTEX(un)));
17085 	ASSERT(bp != NULL);
17086 	ASSERT(arg != NULL);
17087 	pktp = SD_GET_PKTP(bp);
17088 	ASSERT(pktp != NULL);
17089 
17090 	switch (code) {
17091 	case SD_DELAYED_RETRY_ISSUED:
17092 	case SD_IMMEDIATE_RETRY_ISSUED:
17093 		msgp = "retrying";
17094 		break;
17095 	case SD_NO_RETRY_ISSUED:
17096 	default:
17097 		msgp = "giving up";
17098 		break;
17099 	}
17100 
17101 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
17102 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17103 		    "incomplete %s- %s\n", cmdp, msgp);
17104 	}
17105 }
17106 
17107 
17108 
17109 /*
17110  *    Function: sd_pkt_status_good
17111  *
17112  * Description: Processing for a STATUS_GOOD code in pkt_status.
17113  *
17114  *     Context: May be called under interrupt context
17115  */
17116 
17117 static void
17118 sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
17119 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17120 {
17121 	char	*cmdp;
17122 
17123 	ASSERT(un != NULL);
17124 	ASSERT(mutex_owned(SD_MUTEX(un)));
17125 	ASSERT(bp != NULL);
17126 	ASSERT(xp != NULL);
17127 	ASSERT(pktp != NULL);
17128 	ASSERT(pktp->pkt_reason == CMD_CMPLT);
17129 	ASSERT(SD_GET_PKT_STATUS(pktp) == STATUS_GOOD);
17130 	ASSERT(pktp->pkt_resid != 0);
17131 
17132 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: entry\n");
17133 
17134 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17135 	switch (SD_GET_PKT_OPCODE(pktp) & 0x1F) {
17136 	case SCMD_READ:
17137 		cmdp = "read";
17138 		break;
17139 	case SCMD_WRITE:
17140 		cmdp = "write";
17141 		break;
17142 	default:
17143 		SD_UPDATE_B_RESID(bp, pktp);
17144 		sd_return_command(un, bp);
17145 		SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
17146 		return;
17147 	}
17148 
17149 	/*
17150 	 * See if we can retry the read/write, preferrably immediately.
17151 	 * If retries are exhaused, then sd_retry_command() will update
17152 	 * the b_resid count.
17153 	 */
17154 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_incomplete_msg,
17155 	    cmdp, EIO, (clock_t)0, NULL);
17156 
17157 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
17158 }
17159 
17160 
17161 
17162 
17163 
17164 /*
17165  *    Function: sd_handle_request_sense
17166  *
17167  * Description: Processing for non-auto Request Sense command.
17168  *
17169  *   Arguments: un - ptr to associated softstate
17170  *		sense_bp - ptr to buf(9S) for the RQS command
17171  *		sense_xp - ptr to the sd_xbuf for the RQS command
17172  *		sense_pktp - ptr to the scsi_pkt(9S) for the RQS command
17173  *
17174  *     Context: May be called under interrupt context
17175  */
17176 
17177 static void
17178 sd_handle_request_sense(struct sd_lun *un, struct buf *sense_bp,
17179 	struct sd_xbuf *sense_xp, struct scsi_pkt *sense_pktp)
17180 {
17181 	struct buf	*cmd_bp;	/* buf for the original command */
17182 	struct sd_xbuf	*cmd_xp;	/* sd_xbuf for the original command */
17183 	struct scsi_pkt *cmd_pktp;	/* pkt for the original command */
17184 	size_t		actual_len;	/* actual sense data length */
17185 
17186 	ASSERT(un != NULL);
17187 	ASSERT(mutex_owned(SD_MUTEX(un)));
17188 	ASSERT(sense_bp != NULL);
17189 	ASSERT(sense_xp != NULL);
17190 	ASSERT(sense_pktp != NULL);
17191 
17192 	/*
17193 	 * Note the sense_bp, sense_xp, and sense_pktp here are for the
17194 	 * RQS command and not the original command.
17195 	 */
17196 	ASSERT(sense_pktp == un->un_rqs_pktp);
17197 	ASSERT(sense_bp   == un->un_rqs_bp);
17198 	ASSERT((sense_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) ==
17199 	    (FLAG_SENSING | FLAG_HEAD));
17200 	ASSERT((((SD_GET_XBUF(sense_xp->xb_sense_bp))->xb_pktp->pkt_flags) &
17201 	    FLAG_SENSING) == FLAG_SENSING);
17202 
17203 	/* These are the bp, xp, and pktp for the original command */
17204 	cmd_bp = sense_xp->xb_sense_bp;
17205 	cmd_xp = SD_GET_XBUF(cmd_bp);
17206 	cmd_pktp = SD_GET_PKTP(cmd_bp);
17207 
17208 	if (sense_pktp->pkt_reason != CMD_CMPLT) {
17209 		/*
17210 		 * The REQUEST SENSE command failed.  Release the REQUEST
17211 		 * SENSE command for re-use, get back the bp for the original
17212 		 * command, and attempt to re-try the original command if
17213 		 * FLAG_DIAGNOSE is not set in the original packet.
17214 		 */
17215 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
17216 		if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
17217 			cmd_bp = sd_mark_rqs_idle(un, sense_xp);
17218 			sd_retry_command(un, cmd_bp, SD_RETRIES_STANDARD,
17219 			    NULL, NULL, EIO, (clock_t)0, NULL);
17220 			return;
17221 		}
17222 	}
17223 
17224 	/*
17225 	 * Save the relevant sense info into the xp for the original cmd.
17226 	 *
17227 	 * Note: if the request sense failed the state info will be zero
17228 	 * as set in sd_mark_rqs_busy()
17229 	 */
17230 	cmd_xp->xb_sense_status = *(sense_pktp->pkt_scbp);
17231 	cmd_xp->xb_sense_state  = sense_pktp->pkt_state;
17232 	actual_len = MAX_SENSE_LENGTH - sense_pktp->pkt_resid;
17233 	if ((cmd_xp->xb_pkt_flags & SD_XB_USCSICMD) &&
17234 	    (((struct uscsi_cmd *)cmd_xp->xb_pktinfo)->uscsi_rqlen >
17235 	    SENSE_LENGTH)) {
17236 		bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data,
17237 		    MAX_SENSE_LENGTH);
17238 		cmd_xp->xb_sense_resid = sense_pktp->pkt_resid;
17239 	} else {
17240 		bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data,
17241 		    SENSE_LENGTH);
17242 		if (actual_len < SENSE_LENGTH) {
17243 			cmd_xp->xb_sense_resid = SENSE_LENGTH - actual_len;
17244 		} else {
17245 			cmd_xp->xb_sense_resid = 0;
17246 		}
17247 	}
17248 
17249 	/*
17250 	 *  Free up the RQS command....
17251 	 *  NOTE:
17252 	 *	Must do this BEFORE calling sd_validate_sense_data!
17253 	 *	sd_validate_sense_data may return the original command in
17254 	 *	which case the pkt will be freed and the flags can no
17255 	 *	longer be touched.
17256 	 *	SD_MUTEX is held through this process until the command
17257 	 *	is dispatched based upon the sense data, so there are
17258 	 *	no race conditions.
17259 	 */
17260 	(void) sd_mark_rqs_idle(un, sense_xp);
17261 
17262 	/*
17263 	 * For a retryable command see if we have valid sense data, if so then
17264 	 * turn it over to sd_decode_sense() to figure out the right course of
17265 	 * action. Just fail a non-retryable command.
17266 	 */
17267 	if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
17268 		if (sd_validate_sense_data(un, cmd_bp, cmd_xp, actual_len) ==
17269 		    SD_SENSE_DATA_IS_VALID) {
17270 			sd_decode_sense(un, cmd_bp, cmd_xp, cmd_pktp);
17271 		}
17272 	} else {
17273 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Failed CDB",
17274 		    (uchar_t *)cmd_pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
17275 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Sense Data",
17276 		    (uchar_t *)cmd_xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
17277 		sd_return_failed_command(un, cmd_bp, EIO);
17278 	}
17279 }
17280 
17281 
17282 
17283 
17284 /*
17285  *    Function: sd_handle_auto_request_sense
17286  *
17287  * Description: Processing for auto-request sense information.
17288  *
17289  *   Arguments: un - ptr to associated softstate
17290  *		bp - ptr to buf(9S) for the command
17291  *		xp - ptr to the sd_xbuf for the command
17292  *		pktp - ptr to the scsi_pkt(9S) for the command
17293  *
17294  *     Context: May be called under interrupt context
17295  */
17296 
17297 static void
17298 sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
17299 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17300 {
17301 	struct scsi_arq_status *asp;
17302 	size_t actual_len;
17303 
17304 	ASSERT(un != NULL);
17305 	ASSERT(mutex_owned(SD_MUTEX(un)));
17306 	ASSERT(bp != NULL);
17307 	ASSERT(xp != NULL);
17308 	ASSERT(pktp != NULL);
17309 	ASSERT(pktp != un->un_rqs_pktp);
17310 	ASSERT(bp   != un->un_rqs_bp);
17311 
17312 	/*
17313 	 * For auto-request sense, we get a scsi_arq_status back from
17314 	 * the HBA, with the sense data in the sts_sensedata member.
17315 	 * The pkt_scbp of the packet points to this scsi_arq_status.
17316 	 */
17317 	asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
17318 
17319 	if (asp->sts_rqpkt_reason != CMD_CMPLT) {
17320 		/*
17321 		 * The auto REQUEST SENSE failed; see if we can re-try
17322 		 * the original command.
17323 		 */
17324 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17325 		    "auto request sense failed (reason=%s)\n",
17326 		    scsi_rname(asp->sts_rqpkt_reason));
17327 
17328 		sd_reset_target(un, pktp);
17329 
17330 		sd_retry_command(un, bp, SD_RETRIES_STANDARD,
17331 		    NULL, NULL, EIO, (clock_t)0, NULL);
17332 		return;
17333 	}
17334 
17335 	/* Save the relevant sense info into the xp for the original cmd. */
17336 	xp->xb_sense_status = *((uchar_t *)(&(asp->sts_rqpkt_status)));
17337 	xp->xb_sense_state  = asp->sts_rqpkt_state;
17338 	xp->xb_sense_resid  = asp->sts_rqpkt_resid;
17339 	if (xp->xb_sense_state & STATE_XARQ_DONE) {
17340 		actual_len = MAX_SENSE_LENGTH - xp->xb_sense_resid;
17341 		bcopy(&asp->sts_sensedata, xp->xb_sense_data,
17342 		    MAX_SENSE_LENGTH);
17343 	} else {
17344 		if (xp->xb_sense_resid > SENSE_LENGTH) {
17345 			actual_len = MAX_SENSE_LENGTH - xp->xb_sense_resid;
17346 		} else {
17347 			actual_len = SENSE_LENGTH - xp->xb_sense_resid;
17348 		}
17349 		if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
17350 			if ((((struct uscsi_cmd *)
17351 			    (xp->xb_pktinfo))->uscsi_rqlen) > actual_len) {
17352 				xp->xb_sense_resid = (((struct uscsi_cmd *)
17353 				    (xp->xb_pktinfo))->uscsi_rqlen) -
17354 				    actual_len;
17355 			} else {
17356 				xp->xb_sense_resid = 0;
17357 			}
17358 		}
17359 		bcopy(&asp->sts_sensedata, xp->xb_sense_data, SENSE_LENGTH);
17360 	}
17361 
17362 	/*
17363 	 * See if we have valid sense data, if so then turn it over to
17364 	 * sd_decode_sense() to figure out the right course of action.
17365 	 */
17366 	if (sd_validate_sense_data(un, bp, xp, actual_len) ==
17367 	    SD_SENSE_DATA_IS_VALID) {
17368 		sd_decode_sense(un, bp, xp, pktp);
17369 	}
17370 }
17371 
17372 
17373 /*
17374  *    Function: sd_print_sense_failed_msg
17375  *
17376  * Description: Print log message when RQS has failed.
17377  *
17378  *   Arguments: un - ptr to associated softstate
17379  *		bp - ptr to buf(9S) for the command
17380  *		arg - generic message string ptr
17381  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
17382  *			or SD_NO_RETRY_ISSUED
17383  *
17384  *     Context: May be called from interrupt context
17385  */
17386 
17387 static void
17388 sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, void *arg,
17389 	int code)
17390 {
17391 	char	*msgp = arg;
17392 
17393 	ASSERT(un != NULL);
17394 	ASSERT(mutex_owned(SD_MUTEX(un)));
17395 	ASSERT(bp != NULL);
17396 
17397 	if ((code == SD_NO_RETRY_ISSUED) && (msgp != NULL)) {
17398 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, msgp);
17399 	}
17400 }
17401 
17402 
17403 /*
17404  *    Function: sd_validate_sense_data
17405  *
17406  * Description: Check the given sense data for validity.
17407  *		If the sense data is not valid, the command will
17408  *		be either failed or retried!
17409  *
17410  * Return Code: SD_SENSE_DATA_IS_INVALID
17411  *		SD_SENSE_DATA_IS_VALID
17412  *
17413  *     Context: May be called from interrupt context
17414  */
17415 
17416 static int
17417 sd_validate_sense_data(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
17418 	size_t actual_len)
17419 {
17420 	struct scsi_extended_sense *esp;
17421 	struct	scsi_pkt *pktp;
17422 	char	*msgp = NULL;
17423 	sd_ssc_t *sscp;
17424 
17425 	ASSERT(un != NULL);
17426 	ASSERT(mutex_owned(SD_MUTEX(un)));
17427 	ASSERT(bp != NULL);
17428 	ASSERT(bp != un->un_rqs_bp);
17429 	ASSERT(xp != NULL);
17430 	ASSERT(un->un_fm_private != NULL);
17431 
17432 	pktp = SD_GET_PKTP(bp);
17433 	ASSERT(pktp != NULL);
17434 
17435 	sscp = &((struct sd_fm_internal *)(un->un_fm_private))->fm_ssc;
17436 	ASSERT(sscp != NULL);
17437 
17438 	/*
17439 	 * Check the status of the RQS command (auto or manual).
17440 	 */
17441 	switch (xp->xb_sense_status & STATUS_MASK) {
17442 	case STATUS_GOOD:
17443 		break;
17444 
17445 	case STATUS_RESERVATION_CONFLICT:
17446 		sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
17447 		return (SD_SENSE_DATA_IS_INVALID);
17448 
17449 	case STATUS_BUSY:
17450 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17451 		    "Busy Status on REQUEST SENSE\n");
17452 		sd_retry_command(un, bp, SD_RETRIES_BUSY, NULL,
17453 		    NULL, EIO, un->un_busy_timeout / 500, kstat_waitq_enter);
17454 		return (SD_SENSE_DATA_IS_INVALID);
17455 
17456 	case STATUS_QFULL:
17457 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17458 		    "QFULL Status on REQUEST SENSE\n");
17459 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL,
17460 		    NULL, EIO, un->un_busy_timeout / 500, kstat_waitq_enter);
17461 		return (SD_SENSE_DATA_IS_INVALID);
17462 
17463 	case STATUS_CHECK:
17464 	case STATUS_TERMINATED:
17465 		msgp = "Check Condition on REQUEST SENSE\n";
17466 		goto sense_failed;
17467 
17468 	default:
17469 		msgp = "Not STATUS_GOOD on REQUEST_SENSE\n";
17470 		goto sense_failed;
17471 	}
17472 
17473 	/*
17474 	 * See if we got the minimum required amount of sense data.
17475 	 * Note: We are assuming the returned sense data is SENSE_LENGTH bytes
17476 	 * or less.
17477 	 */
17478 	if (((xp->xb_sense_state & STATE_XFERRED_DATA) == 0) ||
17479 	    (actual_len == 0)) {
17480 		msgp = "Request Sense couldn't get sense data\n";
17481 		goto sense_failed;
17482 	}
17483 
17484 	if (actual_len < SUN_MIN_SENSE_LENGTH) {
17485 		msgp = "Not enough sense information\n";
17486 		/* Mark the ssc_flags for detecting invalid sense data */
17487 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
17488 			sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE, 0,
17489 			    "sense-data");
17490 		}
17491 		goto sense_failed;
17492 	}
17493 
17494 	/*
17495 	 * We require the extended sense data
17496 	 */
17497 	esp = (struct scsi_extended_sense *)xp->xb_sense_data;
17498 	if (esp->es_class != CLASS_EXTENDED_SENSE) {
17499 		if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
17500 			static char tmp[8];
17501 			static char buf[148];
17502 			char *p = (char *)(xp->xb_sense_data);
17503 			int i;
17504 
17505 			mutex_enter(&sd_sense_mutex);
17506 			(void) strcpy(buf, "undecodable sense information:");
17507 			for (i = 0; i < actual_len; i++) {
17508 				(void) sprintf(tmp, " 0x%x", *(p++)&0xff);
17509 				(void) strcpy(&buf[strlen(buf)], tmp);
17510 			}
17511 			i = strlen(buf);
17512 			(void) strcpy(&buf[i], "-(assumed fatal)\n");
17513 
17514 			if (SD_FM_LOG(un) == SD_FM_LOG_NSUP) {
17515 				scsi_log(SD_DEVINFO(un), sd_label,
17516 				    CE_WARN, buf);
17517 			}
17518 			mutex_exit(&sd_sense_mutex);
17519 		}
17520 
17521 		/* Mark the ssc_flags for detecting invalid sense data */
17522 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
17523 			sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE, 0,
17524 			    "sense-data");
17525 		}
17526 
17527 		/* Note: Legacy behavior, fail the command with no retry */
17528 		sd_return_failed_command(un, bp, EIO);
17529 		return (SD_SENSE_DATA_IS_INVALID);
17530 	}
17531 
17532 	/*
17533 	 * Check that es_code is valid (es_class concatenated with es_code
17534 	 * make up the "response code" field.  es_class will always be 7, so
17535 	 * make sure es_code is 0, 1, 2, 3 or 0xf.  es_code will indicate the
17536 	 * format.
17537 	 */
17538 	if ((esp->es_code != CODE_FMT_FIXED_CURRENT) &&
17539 	    (esp->es_code != CODE_FMT_FIXED_DEFERRED) &&
17540 	    (esp->es_code != CODE_FMT_DESCR_CURRENT) &&
17541 	    (esp->es_code != CODE_FMT_DESCR_DEFERRED) &&
17542 	    (esp->es_code != CODE_FMT_VENDOR_SPECIFIC)) {
17543 		/* Mark the ssc_flags for detecting invalid sense data */
17544 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
17545 			sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE, 0,
17546 			    "sense-data");
17547 		}
17548 		goto sense_failed;
17549 	}
17550 
17551 	return (SD_SENSE_DATA_IS_VALID);
17552 
17553 sense_failed:
17554 	/*
17555 	 * If the request sense failed (for whatever reason), attempt
17556 	 * to retry the original command.
17557 	 */
17558 #if defined(__i386) || defined(__amd64)
17559 	/*
17560 	 * SD_RETRY_DELAY is conditionally compile (#if fibre) in
17561 	 * sddef.h for Sparc platform, and x86 uses 1 binary
17562 	 * for both SCSI/FC.
17563 	 * The SD_RETRY_DELAY value need to be adjusted here
17564 	 * when SD_RETRY_DELAY change in sddef.h
17565 	 */
17566 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
17567 	    sd_print_sense_failed_msg, msgp, EIO,
17568 	    un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, NULL);
17569 #else
17570 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
17571 	    sd_print_sense_failed_msg, msgp, EIO, SD_RETRY_DELAY, NULL);
17572 #endif
17573 
17574 	return (SD_SENSE_DATA_IS_INVALID);
17575 }
17576 
17577 /*
17578  *    Function: sd_decode_sense
17579  *
17580  * Description: Take recovery action(s) when SCSI Sense Data is received.
17581  *
17582  *     Context: Interrupt context.
17583  */
17584 
17585 static void
17586 sd_decode_sense(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
17587 	struct scsi_pkt *pktp)
17588 {
17589 	uint8_t sense_key;
17590 
17591 	ASSERT(un != NULL);
17592 	ASSERT(mutex_owned(SD_MUTEX(un)));
17593 	ASSERT(bp != NULL);
17594 	ASSERT(bp != un->un_rqs_bp);
17595 	ASSERT(xp != NULL);
17596 	ASSERT(pktp != NULL);
17597 
17598 	sense_key = scsi_sense_key(xp->xb_sense_data);
17599 
17600 	switch (sense_key) {
17601 	case KEY_NO_SENSE:
17602 		sd_sense_key_no_sense(un, bp, xp, pktp);
17603 		break;
17604 	case KEY_RECOVERABLE_ERROR:
17605 		sd_sense_key_recoverable_error(un, xp->xb_sense_data,
17606 		    bp, xp, pktp);
17607 		break;
17608 	case KEY_NOT_READY:
17609 		sd_sense_key_not_ready(un, xp->xb_sense_data,
17610 		    bp, xp, pktp);
17611 		break;
17612 	case KEY_MEDIUM_ERROR:
17613 	case KEY_HARDWARE_ERROR:
17614 		sd_sense_key_medium_or_hardware_error(un,
17615 		    xp->xb_sense_data, bp, xp, pktp);
17616 		break;
17617 	case KEY_ILLEGAL_REQUEST:
17618 		sd_sense_key_illegal_request(un, bp, xp, pktp);
17619 		break;
17620 	case KEY_UNIT_ATTENTION:
17621 		sd_sense_key_unit_attention(un, xp->xb_sense_data,
17622 		    bp, xp, pktp);
17623 		break;
17624 	case KEY_WRITE_PROTECT:
17625 	case KEY_VOLUME_OVERFLOW:
17626 	case KEY_MISCOMPARE:
17627 		sd_sense_key_fail_command(un, bp, xp, pktp);
17628 		break;
17629 	case KEY_BLANK_CHECK:
17630 		sd_sense_key_blank_check(un, bp, xp, pktp);
17631 		break;
17632 	case KEY_ABORTED_COMMAND:
17633 		sd_sense_key_aborted_command(un, bp, xp, pktp);
17634 		break;
17635 	case KEY_VENDOR_UNIQUE:
17636 	case KEY_COPY_ABORTED:
17637 	case KEY_EQUAL:
17638 	case KEY_RESERVED:
17639 	default:
17640 		sd_sense_key_default(un, xp->xb_sense_data,
17641 		    bp, xp, pktp);
17642 		break;
17643 	}
17644 }
17645 
17646 
17647 /*
17648  *    Function: sd_dump_memory
17649  *
17650  * Description: Debug logging routine to print the contents of a user provided
17651  *		buffer. The output of the buffer is broken up into 256 byte
17652  *		segments due to a size constraint of the scsi_log.
17653  *		implementation.
17654  *
17655  *   Arguments: un - ptr to softstate
17656  *		comp - component mask
17657  *		title - "title" string to preceed data when printed
17658  *		data - ptr to data block to be printed
17659  *		len - size of data block to be printed
17660  *		fmt - SD_LOG_HEX (use 0x%02x format) or SD_LOG_CHAR (use %c)
17661  *
17662  *     Context: May be called from interrupt context
17663  */
17664 
17665 #define	SD_DUMP_MEMORY_BUF_SIZE	256
17666 
17667 static char *sd_dump_format_string[] = {
17668 		" 0x%02x",
17669 		" %c"
17670 };
17671 
17672 static void
17673 sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, uchar_t *data,
17674     int len, int fmt)
17675 {
17676 	int	i, j;
17677 	int	avail_count;
17678 	int	start_offset;
17679 	int	end_offset;
17680 	size_t	entry_len;
17681 	char	*bufp;
17682 	char	*local_buf;
17683 	char	*format_string;
17684 
17685 	ASSERT((fmt == SD_LOG_HEX) || (fmt == SD_LOG_CHAR));
17686 
17687 	/*
17688 	 * In the debug version of the driver, this function is called from a
17689 	 * number of places which are NOPs in the release driver.
17690 	 * The debug driver therefore has additional methods of filtering
17691 	 * debug output.
17692 	 */
17693 #ifdef SDDEBUG
17694 	/*
17695 	 * In the debug version of the driver we can reduce the amount of debug
17696 	 * messages by setting sd_error_level to something other than
17697 	 * SCSI_ERR_ALL and clearing bits in sd_level_mask and
17698 	 * sd_component_mask.
17699 	 */
17700 	if (((sd_level_mask & (SD_LOGMASK_DUMP_MEM | SD_LOGMASK_DIAG)) == 0) ||
17701 	    (sd_error_level != SCSI_ERR_ALL)) {
17702 		return;
17703 	}
17704 	if (((sd_component_mask & comp) == 0) ||
17705 	    (sd_error_level != SCSI_ERR_ALL)) {
17706 		return;
17707 	}
17708 #else
17709 	if (sd_error_level != SCSI_ERR_ALL) {
17710 		return;
17711 	}
17712 #endif
17713 
17714 	local_buf = kmem_zalloc(SD_DUMP_MEMORY_BUF_SIZE, KM_SLEEP);
17715 	bufp = local_buf;
17716 	/*
17717 	 * Available length is the length of local_buf[], minus the
17718 	 * length of the title string, minus one for the ":", minus
17719 	 * one for the newline, minus one for the NULL terminator.
17720 	 * This gives the #bytes available for holding the printed
17721 	 * values from the given data buffer.
17722 	 */
17723 	if (fmt == SD_LOG_HEX) {
17724 		format_string = sd_dump_format_string[0];
17725 	} else /* SD_LOG_CHAR */ {
17726 		format_string = sd_dump_format_string[1];
17727 	}
17728 	/*
17729 	 * Available count is the number of elements from the given
17730 	 * data buffer that we can fit into the available length.
17731 	 * This is based upon the size of the format string used.
17732 	 * Make one entry and find it's size.
17733 	 */
17734 	(void) sprintf(bufp, format_string, data[0]);
17735 	entry_len = strlen(bufp);
17736 	avail_count = (SD_DUMP_MEMORY_BUF_SIZE - strlen(title) - 3) / entry_len;
17737 
17738 	j = 0;
17739 	while (j < len) {
17740 		bufp = local_buf;
17741 		bzero(bufp, SD_DUMP_MEMORY_BUF_SIZE);
17742 		start_offset = j;
17743 
17744 		end_offset = start_offset + avail_count;
17745 
17746 		(void) sprintf(bufp, "%s:", title);
17747 		bufp += strlen(bufp);
17748 		for (i = start_offset; ((i < end_offset) && (j < len));
17749 		    i++, j++) {
17750 			(void) sprintf(bufp, format_string, data[i]);
17751 			bufp += entry_len;
17752 		}
17753 		(void) sprintf(bufp, "\n");
17754 
17755 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, "%s", local_buf);
17756 	}
17757 	kmem_free(local_buf, SD_DUMP_MEMORY_BUF_SIZE);
17758 }
17759 
17760 /*
17761  *    Function: sd_print_sense_msg
17762  *
17763  * Description: Log a message based upon the given sense data.
17764  *
17765  *   Arguments: un - ptr to associated softstate
17766  *		bp - ptr to buf(9S) for the command
17767  *		arg - ptr to associate sd_sense_info struct
17768  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
17769  *			or SD_NO_RETRY_ISSUED
17770  *
17771  *     Context: May be called from interrupt context
17772  */
17773 
17774 static void
17775 sd_print_sense_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
17776 {
17777 	struct sd_xbuf	*xp;
17778 	struct scsi_pkt	*pktp;
17779 	uint8_t *sensep;
17780 	daddr_t request_blkno;
17781 	diskaddr_t err_blkno;
17782 	int severity;
17783 	int pfa_flag;
17784 	extern struct scsi_key_strings scsi_cmds[];
17785 
17786 	ASSERT(un != NULL);
17787 	ASSERT(mutex_owned(SD_MUTEX(un)));
17788 	ASSERT(bp != NULL);
17789 	xp = SD_GET_XBUF(bp);
17790 	ASSERT(xp != NULL);
17791 	pktp = SD_GET_PKTP(bp);
17792 	ASSERT(pktp != NULL);
17793 	ASSERT(arg != NULL);
17794 
17795 	severity = ((struct sd_sense_info *)(arg))->ssi_severity;
17796 	pfa_flag = ((struct sd_sense_info *)(arg))->ssi_pfa_flag;
17797 
17798 	if ((code == SD_DELAYED_RETRY_ISSUED) ||
17799 	    (code == SD_IMMEDIATE_RETRY_ISSUED)) {
17800 		severity = SCSI_ERR_RETRYABLE;
17801 	}
17802 
17803 	/* Use absolute block number for the request block number */
17804 	request_blkno = xp->xb_blkno;
17805 
17806 	/*
17807 	 * Now try to get the error block number from the sense data
17808 	 */
17809 	sensep = xp->xb_sense_data;
17810 
17811 	if (scsi_sense_info_uint64(sensep, SENSE_LENGTH,
17812 	    (uint64_t *)&err_blkno)) {
17813 		/*
17814 		 * We retrieved the error block number from the information
17815 		 * portion of the sense data.
17816 		 *
17817 		 * For USCSI commands we are better off using the error
17818 		 * block no. as the requested block no. (This is the best
17819 		 * we can estimate.)
17820 		 */
17821 		if ((SD_IS_BUFIO(xp) == FALSE) &&
17822 		    ((pktp->pkt_flags & FLAG_SILENT) == 0)) {
17823 			request_blkno = err_blkno;
17824 		}
17825 	} else {
17826 		/*
17827 		 * Without the es_valid bit set (for fixed format) or an
17828 		 * information descriptor (for descriptor format) we cannot
17829 		 * be certain of the error blkno, so just use the
17830 		 * request_blkno.
17831 		 */
17832 		err_blkno = (diskaddr_t)request_blkno;
17833 	}
17834 
17835 	/*
17836 	 * The following will log the buffer contents for the release driver
17837 	 * if the SD_LOGMASK_DIAG bit of sd_level_mask is set, or the error
17838 	 * level is set to verbose.
17839 	 */
17840 	sd_dump_memory(un, SD_LOG_IO, "Failed CDB",
17841 	    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
17842 	sd_dump_memory(un, SD_LOG_IO, "Sense Data",
17843 	    (uchar_t *)sensep, SENSE_LENGTH, SD_LOG_HEX);
17844 
17845 	if (pfa_flag == FALSE) {
17846 		/* This is normally only set for USCSI */
17847 		if ((pktp->pkt_flags & FLAG_SILENT) != 0) {
17848 			return;
17849 		}
17850 
17851 		if ((SD_IS_BUFIO(xp) == TRUE) &&
17852 		    (((sd_level_mask & SD_LOGMASK_DIAG) == 0) &&
17853 		    (severity < sd_error_level))) {
17854 			return;
17855 		}
17856 	}
17857 	/*
17858 	 * Check for Sonoma Failover and keep a count of how many failed I/O's
17859 	 */
17860 	if ((SD_IS_LSI(un)) &&
17861 	    (scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) &&
17862 	    (scsi_sense_asc(sensep) == 0x94) &&
17863 	    (scsi_sense_ascq(sensep) == 0x01)) {
17864 		un->un_sonoma_failure_count++;
17865 		if (un->un_sonoma_failure_count > 1) {
17866 			return;
17867 		}
17868 	}
17869 
17870 	if (SD_FM_LOG(un) == SD_FM_LOG_NSUP ||
17871 	    ((scsi_sense_key(sensep) == KEY_RECOVERABLE_ERROR) &&
17872 	    (pktp->pkt_resid == 0))) {
17873 		scsi_vu_errmsg(SD_SCSI_DEVP(un), pktp, sd_label, severity,
17874 		    request_blkno, err_blkno, scsi_cmds,
17875 		    (struct scsi_extended_sense *)sensep,
17876 		    un->un_additional_codes, NULL);
17877 	}
17878 }
17879 
17880 /*
17881  *    Function: sd_sense_key_no_sense
17882  *
17883  * Description: Recovery action when sense data was not received.
17884  *
17885  *     Context: May be called from interrupt context
17886  */
17887 
17888 static void
17889 sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
17890 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17891 {
17892 	struct sd_sense_info	si;
17893 
17894 	ASSERT(un != NULL);
17895 	ASSERT(mutex_owned(SD_MUTEX(un)));
17896 	ASSERT(bp != NULL);
17897 	ASSERT(xp != NULL);
17898 	ASSERT(pktp != NULL);
17899 
17900 	si.ssi_severity = SCSI_ERR_FATAL;
17901 	si.ssi_pfa_flag = FALSE;
17902 
17903 	SD_UPDATE_ERRSTATS(un, sd_softerrs);
17904 
17905 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17906 	    &si, EIO, (clock_t)0, NULL);
17907 }
17908 
17909 
17910 /*
17911  *    Function: sd_sense_key_recoverable_error
17912  *
17913  * Description: Recovery actions for a SCSI "Recovered Error" sense key.
17914  *
17915  *     Context: May be called from interrupt context
17916  */
17917 
17918 static void
17919 sd_sense_key_recoverable_error(struct sd_lun *un,
17920 	uint8_t *sense_datap,
17921 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17922 {
17923 	struct sd_sense_info	si;
17924 	uint8_t asc = scsi_sense_asc(sense_datap);
17925 
17926 	ASSERT(un != NULL);
17927 	ASSERT(mutex_owned(SD_MUTEX(un)));
17928 	ASSERT(bp != NULL);
17929 	ASSERT(xp != NULL);
17930 	ASSERT(pktp != NULL);
17931 
17932 	/*
17933 	 * 0x5D: FAILURE PREDICTION THRESHOLD EXCEEDED
17934 	 */
17935 	if ((asc == 0x5D) && (sd_report_pfa != 0)) {
17936 		SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
17937 		si.ssi_severity = SCSI_ERR_INFO;
17938 		si.ssi_pfa_flag = TRUE;
17939 	} else {
17940 		SD_UPDATE_ERRSTATS(un, sd_softerrs);
17941 		SD_UPDATE_ERRSTATS(un, sd_rq_recov_err);
17942 		si.ssi_severity = SCSI_ERR_RECOVERED;
17943 		si.ssi_pfa_flag = FALSE;
17944 	}
17945 
17946 	if (pktp->pkt_resid == 0) {
17947 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17948 		sd_return_command(un, bp);
17949 		return;
17950 	}
17951 
17952 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17953 	    &si, EIO, (clock_t)0, NULL);
17954 }
17955 
17956 
17957 
17958 
17959 /*
17960  *    Function: sd_sense_key_not_ready
17961  *
17962  * Description: Recovery actions for a SCSI "Not Ready" sense key.
17963  *
17964  *     Context: May be called from interrupt context
17965  */
17966 
17967 static void
17968 sd_sense_key_not_ready(struct sd_lun *un,
17969 	uint8_t *sense_datap,
17970 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17971 {
17972 	struct sd_sense_info	si;
17973 	uint8_t asc = scsi_sense_asc(sense_datap);
17974 	uint8_t ascq = scsi_sense_ascq(sense_datap);
17975 
17976 	ASSERT(un != NULL);
17977 	ASSERT(mutex_owned(SD_MUTEX(un)));
17978 	ASSERT(bp != NULL);
17979 	ASSERT(xp != NULL);
17980 	ASSERT(pktp != NULL);
17981 
17982 	si.ssi_severity = SCSI_ERR_FATAL;
17983 	si.ssi_pfa_flag = FALSE;
17984 
17985 	/*
17986 	 * Update error stats after first NOT READY error. Disks may have
17987 	 * been powered down and may need to be restarted.  For CDROMs,
17988 	 * report NOT READY errors only if media is present.
17989 	 */
17990 	if ((ISCD(un) && (asc == 0x3A)) ||
17991 	    (xp->xb_nr_retry_count > 0)) {
17992 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
17993 		SD_UPDATE_ERRSTATS(un, sd_rq_ntrdy_err);
17994 	}
17995 
17996 	/*
17997 	 * Just fail if the "not ready" retry limit has been reached.
17998 	 */
17999 	if (xp->xb_nr_retry_count >= un->un_notready_retry_count) {
18000 		/* Special check for error message printing for removables. */
18001 		if (un->un_f_has_removable_media && (asc == 0x04) &&
18002 		    (ascq >= 0x04)) {
18003 			si.ssi_severity = SCSI_ERR_ALL;
18004 		}
18005 		goto fail_command;
18006 	}
18007 
18008 	/*
18009 	 * Check the ASC and ASCQ in the sense data as needed, to determine
18010 	 * what to do.
18011 	 */
18012 	switch (asc) {
18013 	case 0x04:	/* LOGICAL UNIT NOT READY */
18014 		/*
18015 		 * disk drives that don't spin up result in a very long delay
18016 		 * in format without warning messages. We will log a message
18017 		 * if the error level is set to verbose.
18018 		 */
18019 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
18020 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18021 			    "logical unit not ready, resetting disk\n");
18022 		}
18023 
18024 		/*
18025 		 * There are different requirements for CDROMs and disks for
18026 		 * the number of retries.  If a CD-ROM is giving this, it is
18027 		 * probably reading TOC and is in the process of getting
18028 		 * ready, so we should keep on trying for a long time to make
18029 		 * sure that all types of media are taken in account (for
18030 		 * some media the drive takes a long time to read TOC).  For
18031 		 * disks we do not want to retry this too many times as this
18032 		 * can cause a long hang in format when the drive refuses to
18033 		 * spin up (a very common failure).
18034 		 */
18035 		switch (ascq) {
18036 		case 0x00:  /* LUN NOT READY, CAUSE NOT REPORTABLE */
18037 			/*
18038 			 * Disk drives frequently refuse to spin up which
18039 			 * results in a very long hang in format without
18040 			 * warning messages.
18041 			 *
18042 			 * Note: This code preserves the legacy behavior of
18043 			 * comparing xb_nr_retry_count against zero for fibre
18044 			 * channel targets instead of comparing against the
18045 			 * un_reset_retry_count value.  The reason for this
18046 			 * discrepancy has been so utterly lost beneath the
18047 			 * Sands of Time that even Indiana Jones could not
18048 			 * find it.
18049 			 */
18050 			if (un->un_f_is_fibre == TRUE) {
18051 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
18052 				    (xp->xb_nr_retry_count > 0)) &&
18053 				    (un->un_startstop_timeid == NULL)) {
18054 					scsi_log(SD_DEVINFO(un), sd_label,
18055 					    CE_WARN, "logical unit not ready, "
18056 					    "resetting disk\n");
18057 					sd_reset_target(un, pktp);
18058 				}
18059 			} else {
18060 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
18061 				    (xp->xb_nr_retry_count >
18062 				    un->un_reset_retry_count)) &&
18063 				    (un->un_startstop_timeid == NULL)) {
18064 					scsi_log(SD_DEVINFO(un), sd_label,
18065 					    CE_WARN, "logical unit not ready, "
18066 					    "resetting disk\n");
18067 					sd_reset_target(un, pktp);
18068 				}
18069 			}
18070 			break;
18071 
18072 		case 0x01:  /* LUN IS IN PROCESS OF BECOMING READY */
18073 			/*
18074 			 * If the target is in the process of becoming
18075 			 * ready, just proceed with the retry. This can
18076 			 * happen with CD-ROMs that take a long time to
18077 			 * read TOC after a power cycle or reset.
18078 			 */
18079 			goto do_retry;
18080 
18081 		case 0x02:  /* LUN NOT READY, INITITIALIZING CMD REQUIRED */
18082 			break;
18083 
18084 		case 0x03:  /* LUN NOT READY, MANUAL INTERVENTION REQUIRED */
18085 			/*
18086 			 * Retries cannot help here so just fail right away.
18087 			 */
18088 			goto fail_command;
18089 
18090 		case 0x88:
18091 			/*
18092 			 * Vendor-unique code for T3/T4: it indicates a
18093 			 * path problem in a mutipathed config, but as far as
18094 			 * the target driver is concerned it equates to a fatal
18095 			 * error, so we should just fail the command right away
18096 			 * (without printing anything to the console). If this
18097 			 * is not a T3/T4, fall thru to the default recovery
18098 			 * action.
18099 			 * T3/T4 is FC only, don't need to check is_fibre
18100 			 */
18101 			if (SD_IS_T3(un) || SD_IS_T4(un)) {
18102 				sd_return_failed_command(un, bp, EIO);
18103 				return;
18104 			}
18105 			/* FALLTHRU */
18106 
18107 		case 0x04:  /* LUN NOT READY, FORMAT IN PROGRESS */
18108 		case 0x05:  /* LUN NOT READY, REBUILD IN PROGRESS */
18109 		case 0x06:  /* LUN NOT READY, RECALCULATION IN PROGRESS */
18110 		case 0x07:  /* LUN NOT READY, OPERATION IN PROGRESS */
18111 		case 0x08:  /* LUN NOT READY, LONG WRITE IN PROGRESS */
18112 		default:    /* Possible future codes in SCSI spec? */
18113 			/*
18114 			 * For removable-media devices, do not retry if
18115 			 * ASCQ > 2 as these result mostly from USCSI commands
18116 			 * on MMC devices issued to check status of an
18117 			 * operation initiated in immediate mode.  Also for
18118 			 * ASCQ >= 4 do not print console messages as these
18119 			 * mainly represent a user-initiated operation
18120 			 * instead of a system failure.
18121 			 */
18122 			if (un->un_f_has_removable_media) {
18123 				si.ssi_severity = SCSI_ERR_ALL;
18124 				goto fail_command;
18125 			}
18126 			break;
18127 		}
18128 
18129 		/*
18130 		 * As part of our recovery attempt for the NOT READY
18131 		 * condition, we issue a START STOP UNIT command. However
18132 		 * we want to wait for a short delay before attempting this
18133 		 * as there may still be more commands coming back from the
18134 		 * target with the check condition. To do this we use
18135 		 * timeout(9F) to call sd_start_stop_unit_callback() after
18136 		 * the delay interval expires. (sd_start_stop_unit_callback()
18137 		 * dispatches sd_start_stop_unit_task(), which will issue
18138 		 * the actual START STOP UNIT command. The delay interval
18139 		 * is one-half of the delay that we will use to retry the
18140 		 * command that generated the NOT READY condition.
18141 		 *
18142 		 * Note that we could just dispatch sd_start_stop_unit_task()
18143 		 * from here and allow it to sleep for the delay interval,
18144 		 * but then we would be tying up the taskq thread
18145 		 * uncesessarily for the duration of the delay.
18146 		 *
18147 		 * Do not issue the START STOP UNIT if the current command
18148 		 * is already a START STOP UNIT.
18149 		 */
18150 		if (pktp->pkt_cdbp[0] == SCMD_START_STOP) {
18151 			break;
18152 		}
18153 
18154 		/*
18155 		 * Do not schedule the timeout if one is already pending.
18156 		 */
18157 		if (un->un_startstop_timeid != NULL) {
18158 			SD_INFO(SD_LOG_ERROR, un,
18159 			    "sd_sense_key_not_ready: restart already issued to"
18160 			    " %s%d\n", ddi_driver_name(SD_DEVINFO(un)),
18161 			    ddi_get_instance(SD_DEVINFO(un)));
18162 			break;
18163 		}
18164 
18165 		/*
18166 		 * Schedule the START STOP UNIT command, then queue the command
18167 		 * for a retry.
18168 		 *
18169 		 * Note: A timeout is not scheduled for this retry because we
18170 		 * want the retry to be serial with the START_STOP_UNIT. The
18171 		 * retry will be started when the START_STOP_UNIT is completed
18172 		 * in sd_start_stop_unit_task.
18173 		 */
18174 		un->un_startstop_timeid = timeout(sd_start_stop_unit_callback,
18175 		    un, un->un_busy_timeout / 2);
18176 		xp->xb_nr_retry_count++;
18177 		sd_set_retry_bp(un, bp, 0, kstat_waitq_enter);
18178 		return;
18179 
18180 	case 0x05:	/* LOGICAL UNIT DOES NOT RESPOND TO SELECTION */
18181 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
18182 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18183 			    "unit does not respond to selection\n");
18184 		}
18185 		break;
18186 
18187 	case 0x3A:	/* MEDIUM NOT PRESENT */
18188 		if (sd_error_level >= SCSI_ERR_FATAL) {
18189 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18190 			    "Caddy not inserted in drive\n");
18191 		}
18192 
18193 		sr_ejected(un);
18194 		un->un_mediastate = DKIO_EJECTED;
18195 		/* The state has changed, inform the media watch routines */
18196 		cv_broadcast(&un->un_state_cv);
18197 		/* Just fail if no media is present in the drive. */
18198 		goto fail_command;
18199 
18200 	default:
18201 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
18202 			scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
18203 			    "Unit not Ready. Additional sense code 0x%x\n",
18204 			    asc);
18205 		}
18206 		break;
18207 	}
18208 
18209 do_retry:
18210 
18211 	/*
18212 	 * Retry the command, as some targets may report NOT READY for
18213 	 * several seconds after being reset.
18214 	 */
18215 	xp->xb_nr_retry_count++;
18216 	si.ssi_severity = SCSI_ERR_RETRYABLE;
18217 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
18218 	    &si, EIO, un->un_busy_timeout, NULL);
18219 
18220 	return;
18221 
18222 fail_command:
18223 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18224 	sd_return_failed_command(un, bp, EIO);
18225 }
18226 
18227 
18228 
18229 /*
18230  *    Function: sd_sense_key_medium_or_hardware_error
18231  *
18232  * Description: Recovery actions for a SCSI "Medium Error" or "Hardware Error"
18233  *		sense key.
18234  *
18235  *     Context: May be called from interrupt context
18236  */
18237 
18238 static void
18239 sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
18240 	uint8_t *sense_datap,
18241 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18242 {
18243 	struct sd_sense_info	si;
18244 	uint8_t sense_key = scsi_sense_key(sense_datap);
18245 	uint8_t asc = scsi_sense_asc(sense_datap);
18246 
18247 	ASSERT(un != NULL);
18248 	ASSERT(mutex_owned(SD_MUTEX(un)));
18249 	ASSERT(bp != NULL);
18250 	ASSERT(xp != NULL);
18251 	ASSERT(pktp != NULL);
18252 
18253 	si.ssi_severity = SCSI_ERR_FATAL;
18254 	si.ssi_pfa_flag = FALSE;
18255 
18256 	if (sense_key == KEY_MEDIUM_ERROR) {
18257 		SD_UPDATE_ERRSTATS(un, sd_rq_media_err);
18258 	}
18259 
18260 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18261 
18262 	if ((un->un_reset_retry_count != 0) &&
18263 	    (xp->xb_retry_count == un->un_reset_retry_count)) {
18264 		mutex_exit(SD_MUTEX(un));
18265 		/* Do NOT do a RESET_ALL here: too intrusive. (4112858) */
18266 		if (un->un_f_allow_bus_device_reset == TRUE) {
18267 
18268 			boolean_t try_resetting_target = B_TRUE;
18269 
18270 			/*
18271 			 * We need to be able to handle specific ASC when we are
18272 			 * handling a KEY_HARDWARE_ERROR. In particular
18273 			 * taking the default action of resetting the target may
18274 			 * not be the appropriate way to attempt recovery.
18275 			 * Resetting a target because of a single LUN failure
18276 			 * victimizes all LUNs on that target.
18277 			 *
18278 			 * This is true for the LSI arrays, if an LSI
18279 			 * array controller returns an ASC of 0x84 (LUN Dead) we
18280 			 * should trust it.
18281 			 */
18282 
18283 			if (sense_key == KEY_HARDWARE_ERROR) {
18284 				switch (asc) {
18285 				case 0x84:
18286 					if (SD_IS_LSI(un)) {
18287 						try_resetting_target = B_FALSE;
18288 					}
18289 					break;
18290 				default:
18291 					break;
18292 				}
18293 			}
18294 
18295 			if (try_resetting_target == B_TRUE) {
18296 				int reset_retval = 0;
18297 				if (un->un_f_lun_reset_enabled == TRUE) {
18298 					SD_TRACE(SD_LOG_IO_CORE, un,
18299 					    "sd_sense_key_medium_or_hardware_"
18300 					    "error: issuing RESET_LUN\n");
18301 					reset_retval =
18302 					    scsi_reset(SD_ADDRESS(un),
18303 					    RESET_LUN);
18304 				}
18305 				if (reset_retval == 0) {
18306 					SD_TRACE(SD_LOG_IO_CORE, un,
18307 					    "sd_sense_key_medium_or_hardware_"
18308 					    "error: issuing RESET_TARGET\n");
18309 					(void) scsi_reset(SD_ADDRESS(un),
18310 					    RESET_TARGET);
18311 				}
18312 			}
18313 		}
18314 		mutex_enter(SD_MUTEX(un));
18315 	}
18316 
18317 	/*
18318 	 * This really ought to be a fatal error, but we will retry anyway
18319 	 * as some drives report this as a spurious error.
18320 	 */
18321 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18322 	    &si, EIO, (clock_t)0, NULL);
18323 }
18324 
18325 
18326 
18327 /*
18328  *    Function: sd_sense_key_illegal_request
18329  *
18330  * Description: Recovery actions for a SCSI "Illegal Request" sense key.
18331  *
18332  *     Context: May be called from interrupt context
18333  */
18334 
18335 static void
18336 sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
18337 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18338 {
18339 	struct sd_sense_info	si;
18340 
18341 	ASSERT(un != NULL);
18342 	ASSERT(mutex_owned(SD_MUTEX(un)));
18343 	ASSERT(bp != NULL);
18344 	ASSERT(xp != NULL);
18345 	ASSERT(pktp != NULL);
18346 
18347 	SD_UPDATE_ERRSTATS(un, sd_rq_illrq_err);
18348 
18349 	si.ssi_severity = SCSI_ERR_INFO;
18350 	si.ssi_pfa_flag = FALSE;
18351 
18352 	/* Pointless to retry if the target thinks it's an illegal request */
18353 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18354 	sd_return_failed_command(un, bp, EIO);
18355 }
18356 
18357 
18358 
18359 
18360 /*
18361  *    Function: sd_sense_key_unit_attention
18362  *
18363  * Description: Recovery actions for a SCSI "Unit Attention" sense key.
18364  *
18365  *     Context: May be called from interrupt context
18366  */
18367 
18368 static void
18369 sd_sense_key_unit_attention(struct sd_lun *un,
18370 	uint8_t *sense_datap,
18371 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18372 {
18373 	/*
18374 	 * For UNIT ATTENTION we allow retries for one minute. Devices
18375 	 * like Sonoma can return UNIT ATTENTION close to a minute
18376 	 * under certain conditions.
18377 	 */
18378 	int	retry_check_flag = SD_RETRIES_UA;
18379 	boolean_t	kstat_updated = B_FALSE;
18380 	struct	sd_sense_info		si;
18381 	uint8_t asc = scsi_sense_asc(sense_datap);
18382 	uint8_t	ascq = scsi_sense_ascq(sense_datap);
18383 
18384 	ASSERT(un != NULL);
18385 	ASSERT(mutex_owned(SD_MUTEX(un)));
18386 	ASSERT(bp != NULL);
18387 	ASSERT(xp != NULL);
18388 	ASSERT(pktp != NULL);
18389 
18390 	si.ssi_severity = SCSI_ERR_INFO;
18391 	si.ssi_pfa_flag = FALSE;
18392 
18393 
18394 	switch (asc) {
18395 	case 0x5D:  /* FAILURE PREDICTION THRESHOLD EXCEEDED */
18396 		if (sd_report_pfa != 0) {
18397 			SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
18398 			si.ssi_pfa_flag = TRUE;
18399 			retry_check_flag = SD_RETRIES_STANDARD;
18400 			goto do_retry;
18401 		}
18402 
18403 		break;
18404 
18405 	case 0x29:  /* POWER ON, RESET, OR BUS DEVICE RESET OCCURRED */
18406 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
18407 			un->un_resvd_status |=
18408 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
18409 		}
18410 #ifdef _LP64
18411 		if (un->un_blockcount + 1 > SD_GROUP1_MAX_ADDRESS) {
18412 			if (taskq_dispatch(sd_tq, sd_reenable_dsense_task,
18413 			    un, KM_NOSLEEP) == 0) {
18414 				/*
18415 				 * If we can't dispatch the task we'll just
18416 				 * live without descriptor sense.  We can
18417 				 * try again on the next "unit attention"
18418 				 */
18419 				SD_ERROR(SD_LOG_ERROR, un,
18420 				    "sd_sense_key_unit_attention: "
18421 				    "Could not dispatch "
18422 				    "sd_reenable_dsense_task\n");
18423 			}
18424 		}
18425 #endif /* _LP64 */
18426 		/* FALLTHRU */
18427 
18428 	case 0x28: /* NOT READY TO READY CHANGE, MEDIUM MAY HAVE CHANGED */
18429 		if (!un->un_f_has_removable_media) {
18430 			break;
18431 		}
18432 
18433 		/*
18434 		 * When we get a unit attention from a removable-media device,
18435 		 * it may be in a state that will take a long time to recover
18436 		 * (e.g., from a reset).  Since we are executing in interrupt
18437 		 * context here, we cannot wait around for the device to come
18438 		 * back. So hand this command off to sd_media_change_task()
18439 		 * for deferred processing under taskq thread context. (Note
18440 		 * that the command still may be failed if a problem is
18441 		 * encountered at a later time.)
18442 		 */
18443 		if (taskq_dispatch(sd_tq, sd_media_change_task, pktp,
18444 		    KM_NOSLEEP) == 0) {
18445 			/*
18446 			 * Cannot dispatch the request so fail the command.
18447 			 */
18448 			SD_UPDATE_ERRSTATS(un, sd_harderrs);
18449 			SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
18450 			si.ssi_severity = SCSI_ERR_FATAL;
18451 			sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18452 			sd_return_failed_command(un, bp, EIO);
18453 		}
18454 
18455 		/*
18456 		 * If failed to dispatch sd_media_change_task(), we already
18457 		 * updated kstat. If succeed to dispatch sd_media_change_task(),
18458 		 * we should update kstat later if it encounters an error. So,
18459 		 * we update kstat_updated flag here.
18460 		 */
18461 		kstat_updated = B_TRUE;
18462 
18463 		/*
18464 		 * Either the command has been successfully dispatched to a
18465 		 * task Q for retrying, or the dispatch failed. In either case
18466 		 * do NOT retry again by calling sd_retry_command. This sets up
18467 		 * two retries of the same command and when one completes and
18468 		 * frees the resources the other will access freed memory,
18469 		 * a bad thing.
18470 		 */
18471 		return;
18472 
18473 	default:
18474 		break;
18475 	}
18476 
18477 	/*
18478 	 * ASC  ASCQ
18479 	 *  2A   09	Capacity data has changed
18480 	 *  2A   01	Mode parameters changed
18481 	 *  3F   0E	Reported luns data has changed
18482 	 * Arrays that support logical unit expansion should report
18483 	 * capacity changes(2Ah/09). Mode parameters changed and
18484 	 * reported luns data has changed are the approximation.
18485 	 */
18486 	if (((asc == 0x2a) && (ascq == 0x09)) ||
18487 	    ((asc == 0x2a) && (ascq == 0x01)) ||
18488 	    ((asc == 0x3f) && (ascq == 0x0e))) {
18489 		if (taskq_dispatch(sd_tq, sd_target_change_task, un,
18490 		    KM_NOSLEEP) == 0) {
18491 			SD_ERROR(SD_LOG_ERROR, un,
18492 			    "sd_sense_key_unit_attention: "
18493 			    "Could not dispatch sd_target_change_task\n");
18494 		}
18495 	}
18496 
18497 	/*
18498 	 * Update kstat if we haven't done that.
18499 	 */
18500 	if (!kstat_updated) {
18501 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
18502 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
18503 	}
18504 
18505 do_retry:
18506 	sd_retry_command(un, bp, retry_check_flag, sd_print_sense_msg, &si,
18507 	    EIO, SD_UA_RETRY_DELAY, NULL);
18508 }
18509 
18510 
18511 
18512 /*
18513  *    Function: sd_sense_key_fail_command
18514  *
18515  * Description: Use to fail a command when we don't like the sense key that
18516  *		was returned.
18517  *
18518  *     Context: May be called from interrupt context
18519  */
18520 
18521 static void
18522 sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
18523 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18524 {
18525 	struct sd_sense_info	si;
18526 
18527 	ASSERT(un != NULL);
18528 	ASSERT(mutex_owned(SD_MUTEX(un)));
18529 	ASSERT(bp != NULL);
18530 	ASSERT(xp != NULL);
18531 	ASSERT(pktp != NULL);
18532 
18533 	si.ssi_severity = SCSI_ERR_FATAL;
18534 	si.ssi_pfa_flag = FALSE;
18535 
18536 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18537 	sd_return_failed_command(un, bp, EIO);
18538 }
18539 
18540 
18541 
18542 /*
18543  *    Function: sd_sense_key_blank_check
18544  *
18545  * Description: Recovery actions for a SCSI "Blank Check" sense key.
18546  *		Has no monetary connotation.
18547  *
18548  *     Context: May be called from interrupt context
18549  */
18550 
18551 static void
18552 sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
18553 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18554 {
18555 	struct sd_sense_info	si;
18556 
18557 	ASSERT(un != NULL);
18558 	ASSERT(mutex_owned(SD_MUTEX(un)));
18559 	ASSERT(bp != NULL);
18560 	ASSERT(xp != NULL);
18561 	ASSERT(pktp != NULL);
18562 
18563 	/*
18564 	 * Blank check is not fatal for removable devices, therefore
18565 	 * it does not require a console message.
18566 	 */
18567 	si.ssi_severity = (un->un_f_has_removable_media) ? SCSI_ERR_ALL :
18568 	    SCSI_ERR_FATAL;
18569 	si.ssi_pfa_flag = FALSE;
18570 
18571 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18572 	sd_return_failed_command(un, bp, EIO);
18573 }
18574 
18575 
18576 
18577 
18578 /*
18579  *    Function: sd_sense_key_aborted_command
18580  *
18581  * Description: Recovery actions for a SCSI "Aborted Command" sense key.
18582  *
18583  *     Context: May be called from interrupt context
18584  */
18585 
18586 static void
18587 sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
18588 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18589 {
18590 	struct sd_sense_info	si;
18591 
18592 	ASSERT(un != NULL);
18593 	ASSERT(mutex_owned(SD_MUTEX(un)));
18594 	ASSERT(bp != NULL);
18595 	ASSERT(xp != NULL);
18596 	ASSERT(pktp != NULL);
18597 
18598 	si.ssi_severity = SCSI_ERR_FATAL;
18599 	si.ssi_pfa_flag = FALSE;
18600 
18601 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18602 
18603 	/*
18604 	 * This really ought to be a fatal error, but we will retry anyway
18605 	 * as some drives report this as a spurious error.
18606 	 */
18607 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18608 	    &si, EIO, drv_usectohz(100000), NULL);
18609 }
18610 
18611 
18612 
18613 /*
18614  *    Function: sd_sense_key_default
18615  *
18616  * Description: Default recovery action for several SCSI sense keys (basically
18617  *		attempts a retry).
18618  *
18619  *     Context: May be called from interrupt context
18620  */
18621 
18622 static void
18623 sd_sense_key_default(struct sd_lun *un,
18624 	uint8_t *sense_datap,
18625 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18626 {
18627 	struct sd_sense_info	si;
18628 	uint8_t sense_key = scsi_sense_key(sense_datap);
18629 
18630 	ASSERT(un != NULL);
18631 	ASSERT(mutex_owned(SD_MUTEX(un)));
18632 	ASSERT(bp != NULL);
18633 	ASSERT(xp != NULL);
18634 	ASSERT(pktp != NULL);
18635 
18636 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18637 
18638 	/*
18639 	 * Undecoded sense key.	Attempt retries and hope that will fix
18640 	 * the problem.  Otherwise, we're dead.
18641 	 */
18642 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
18643 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18644 		    "Unhandled Sense Key '%s'\n", sense_keys[sense_key]);
18645 	}
18646 
18647 	si.ssi_severity = SCSI_ERR_FATAL;
18648 	si.ssi_pfa_flag = FALSE;
18649 
18650 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18651 	    &si, EIO, (clock_t)0, NULL);
18652 }
18653 
18654 
18655 
18656 /*
18657  *    Function: sd_print_retry_msg
18658  *
18659  * Description: Print a message indicating the retry action being taken.
18660  *
18661  *   Arguments: un - ptr to associated softstate
18662  *		bp - ptr to buf(9S) for the command
18663  *		arg - not used.
18664  *		flag - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
18665  *			or SD_NO_RETRY_ISSUED
18666  *
18667  *     Context: May be called from interrupt context
18668  */
18669 /* ARGSUSED */
18670 static void
18671 sd_print_retry_msg(struct sd_lun *un, struct buf *bp, void *arg, int flag)
18672 {
18673 	struct sd_xbuf	*xp;
18674 	struct scsi_pkt *pktp;
18675 	char *reasonp;
18676 	char *msgp;
18677 
18678 	ASSERT(un != NULL);
18679 	ASSERT(mutex_owned(SD_MUTEX(un)));
18680 	ASSERT(bp != NULL);
18681 	pktp = SD_GET_PKTP(bp);
18682 	ASSERT(pktp != NULL);
18683 	xp = SD_GET_XBUF(bp);
18684 	ASSERT(xp != NULL);
18685 
18686 	ASSERT(!mutex_owned(&un->un_pm_mutex));
18687 	mutex_enter(&un->un_pm_mutex);
18688 	if ((un->un_state == SD_STATE_SUSPENDED) ||
18689 	    (SD_DEVICE_IS_IN_LOW_POWER(un)) ||
18690 	    (pktp->pkt_flags & FLAG_SILENT)) {
18691 		mutex_exit(&un->un_pm_mutex);
18692 		goto update_pkt_reason;
18693 	}
18694 	mutex_exit(&un->un_pm_mutex);
18695 
18696 	/*
18697 	 * Suppress messages if they are all the same pkt_reason; with
18698 	 * TQ, many (up to 256) are returned with the same pkt_reason.
18699 	 * If we are in panic, then suppress the retry messages.
18700 	 */
18701 	switch (flag) {
18702 	case SD_NO_RETRY_ISSUED:
18703 		msgp = "giving up";
18704 		break;
18705 	case SD_IMMEDIATE_RETRY_ISSUED:
18706 	case SD_DELAYED_RETRY_ISSUED:
18707 		if (ddi_in_panic() || (un->un_state == SD_STATE_OFFLINE) ||
18708 		    ((pktp->pkt_reason == un->un_last_pkt_reason) &&
18709 		    (sd_error_level != SCSI_ERR_ALL))) {
18710 			return;
18711 		}
18712 		msgp = "retrying command";
18713 		break;
18714 	default:
18715 		goto update_pkt_reason;
18716 	}
18717 
18718 	reasonp = (((pktp->pkt_statistics & STAT_PERR) != 0) ? "parity error" :
18719 	    scsi_rname(pktp->pkt_reason));
18720 
18721 	if (SD_FM_LOG(un) == SD_FM_LOG_NSUP) {
18722 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18723 		    "SCSI transport failed: reason '%s': %s\n", reasonp, msgp);
18724 	}
18725 
18726 update_pkt_reason:
18727 	/*
18728 	 * Update un->un_last_pkt_reason with the value in pktp->pkt_reason.
18729 	 * This is to prevent multiple console messages for the same failure
18730 	 * condition.  Note that un->un_last_pkt_reason is NOT restored if &
18731 	 * when the command is retried successfully because there still may be
18732 	 * more commands coming back with the same value of pktp->pkt_reason.
18733 	 */
18734 	if ((pktp->pkt_reason != CMD_CMPLT) || (xp->xb_retry_count == 0)) {
18735 		un->un_last_pkt_reason = pktp->pkt_reason;
18736 	}
18737 }
18738 
18739 
18740 /*
18741  *    Function: sd_print_cmd_incomplete_msg
18742  *
18743  * Description: Message logging fn. for a SCSA "CMD_INCOMPLETE" pkt_reason.
18744  *
18745  *   Arguments: un - ptr to associated softstate
18746  *		bp - ptr to buf(9S) for the command
18747  *		arg - passed to sd_print_retry_msg()
18748  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
18749  *			or SD_NO_RETRY_ISSUED
18750  *
18751  *     Context: May be called from interrupt context
18752  */
18753 
18754 static void
18755 sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg,
18756 	int code)
18757 {
18758 	dev_info_t	*dip;
18759 
18760 	ASSERT(un != NULL);
18761 	ASSERT(mutex_owned(SD_MUTEX(un)));
18762 	ASSERT(bp != NULL);
18763 
18764 	switch (code) {
18765 	case SD_NO_RETRY_ISSUED:
18766 		/* Command was failed. Someone turned off this target? */
18767 		if (un->un_state != SD_STATE_OFFLINE) {
18768 			/*
18769 			 * Suppress message if we are detaching and
18770 			 * device has been disconnected
18771 			 * Note that DEVI_IS_DEVICE_REMOVED is a consolidation
18772 			 * private interface and not part of the DDI
18773 			 */
18774 			dip = un->un_sd->sd_dev;
18775 			if (!(DEVI_IS_DETACHING(dip) &&
18776 			    DEVI_IS_DEVICE_REMOVED(dip))) {
18777 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18778 				"disk not responding to selection\n");
18779 			}
18780 			New_state(un, SD_STATE_OFFLINE);
18781 		}
18782 		break;
18783 
18784 	case SD_DELAYED_RETRY_ISSUED:
18785 	case SD_IMMEDIATE_RETRY_ISSUED:
18786 	default:
18787 		/* Command was successfully queued for retry */
18788 		sd_print_retry_msg(un, bp, arg, code);
18789 		break;
18790 	}
18791 }
18792 
18793 
18794 /*
18795  *    Function: sd_pkt_reason_cmd_incomplete
18796  *
18797  * Description: Recovery actions for a SCSA "CMD_INCOMPLETE" pkt_reason.
18798  *
18799  *     Context: May be called from interrupt context
18800  */
18801 
18802 static void
18803 sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
18804 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18805 {
18806 	int flag = SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE;
18807 
18808 	ASSERT(un != NULL);
18809 	ASSERT(mutex_owned(SD_MUTEX(un)));
18810 	ASSERT(bp != NULL);
18811 	ASSERT(xp != NULL);
18812 	ASSERT(pktp != NULL);
18813 
18814 	/* Do not do a reset if selection did not complete */
18815 	/* Note: Should this not just check the bit? */
18816 	if (pktp->pkt_state != STATE_GOT_BUS) {
18817 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
18818 		sd_reset_target(un, pktp);
18819 	}
18820 
18821 	/*
18822 	 * If the target was not successfully selected, then set
18823 	 * SD_RETRIES_FAILFAST to indicate that we lost communication
18824 	 * with the target, and further retries and/or commands are
18825 	 * likely to take a long time.
18826 	 */
18827 	if ((pktp->pkt_state & STATE_GOT_TARGET) == 0) {
18828 		flag |= SD_RETRIES_FAILFAST;
18829 	}
18830 
18831 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18832 
18833 	sd_retry_command(un, bp, flag,
18834 	    sd_print_cmd_incomplete_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18835 }
18836 
18837 
18838 
18839 /*
18840  *    Function: sd_pkt_reason_cmd_tran_err
18841  *
18842  * Description: Recovery actions for a SCSA "CMD_TRAN_ERR" pkt_reason.
18843  *
18844  *     Context: May be called from interrupt context
18845  */
18846 
18847 static void
18848 sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
18849 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18850 {
18851 	ASSERT(un != NULL);
18852 	ASSERT(mutex_owned(SD_MUTEX(un)));
18853 	ASSERT(bp != NULL);
18854 	ASSERT(xp != NULL);
18855 	ASSERT(pktp != NULL);
18856 
18857 	/*
18858 	 * Do not reset if we got a parity error, or if
18859 	 * selection did not complete.
18860 	 */
18861 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18862 	/* Note: Should this not just check the bit for pkt_state? */
18863 	if (((pktp->pkt_statistics & STAT_PERR) == 0) &&
18864 	    (pktp->pkt_state != STATE_GOT_BUS)) {
18865 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
18866 		sd_reset_target(un, pktp);
18867 	}
18868 
18869 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18870 
18871 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
18872 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18873 }
18874 
18875 
18876 
18877 /*
18878  *    Function: sd_pkt_reason_cmd_reset
18879  *
18880  * Description: Recovery actions for a SCSA "CMD_RESET" pkt_reason.
18881  *
18882  *     Context: May be called from interrupt context
18883  */
18884 
18885 static void
18886 sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
18887 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18888 {
18889 	ASSERT(un != NULL);
18890 	ASSERT(mutex_owned(SD_MUTEX(un)));
18891 	ASSERT(bp != NULL);
18892 	ASSERT(xp != NULL);
18893 	ASSERT(pktp != NULL);
18894 
18895 	/* The target may still be running the command, so try to reset. */
18896 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18897 	sd_reset_target(un, pktp);
18898 
18899 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18900 
18901 	/*
18902 	 * If pkt_reason is CMD_RESET chances are that this pkt got
18903 	 * reset because another target on this bus caused it. The target
18904 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
18905 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
18906 	 */
18907 
18908 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
18909 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18910 }
18911 
18912 
18913 
18914 
18915 /*
18916  *    Function: sd_pkt_reason_cmd_aborted
18917  *
18918  * Description: Recovery actions for a SCSA "CMD_ABORTED" pkt_reason.
18919  *
18920  *     Context: May be called from interrupt context
18921  */
18922 
18923 static void
18924 sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
18925 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18926 {
18927 	ASSERT(un != NULL);
18928 	ASSERT(mutex_owned(SD_MUTEX(un)));
18929 	ASSERT(bp != NULL);
18930 	ASSERT(xp != NULL);
18931 	ASSERT(pktp != NULL);
18932 
18933 	/* The target may still be running the command, so try to reset. */
18934 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18935 	sd_reset_target(un, pktp);
18936 
18937 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18938 
18939 	/*
18940 	 * If pkt_reason is CMD_ABORTED chances are that this pkt got
18941 	 * aborted because another target on this bus caused it. The target
18942 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
18943 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
18944 	 */
18945 
18946 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
18947 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18948 }
18949 
18950 
18951 
18952 /*
18953  *    Function: sd_pkt_reason_cmd_timeout
18954  *
18955  * Description: Recovery actions for a SCSA "CMD_TIMEOUT" pkt_reason.
18956  *
18957  *     Context: May be called from interrupt context
18958  */
18959 
18960 static void
18961 sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
18962 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18963 {
18964 	ASSERT(un != NULL);
18965 	ASSERT(mutex_owned(SD_MUTEX(un)));
18966 	ASSERT(bp != NULL);
18967 	ASSERT(xp != NULL);
18968 	ASSERT(pktp != NULL);
18969 
18970 
18971 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18972 	sd_reset_target(un, pktp);
18973 
18974 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18975 
18976 	/*
18977 	 * A command timeout indicates that we could not establish
18978 	 * communication with the target, so set SD_RETRIES_FAILFAST
18979 	 * as further retries/commands are likely to take a long time.
18980 	 */
18981 	sd_retry_command(un, bp,
18982 	    (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE | SD_RETRIES_FAILFAST),
18983 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18984 }
18985 
18986 
18987 
18988 /*
18989  *    Function: sd_pkt_reason_cmd_unx_bus_free
18990  *
18991  * Description: Recovery actions for a SCSA "CMD_UNX_BUS_FREE" pkt_reason.
18992  *
18993  *     Context: May be called from interrupt context
18994  */
18995 
18996 static void
18997 sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
18998 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18999 {
19000 	void (*funcp)(struct sd_lun *un, struct buf *bp, void *arg, int code);
19001 
19002 	ASSERT(un != NULL);
19003 	ASSERT(mutex_owned(SD_MUTEX(un)));
19004 	ASSERT(bp != NULL);
19005 	ASSERT(xp != NULL);
19006 	ASSERT(pktp != NULL);
19007 
19008 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
19009 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19010 
19011 	funcp = ((pktp->pkt_statistics & STAT_PERR) == 0) ?
19012 	    sd_print_retry_msg : NULL;
19013 
19014 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
19015 	    funcp, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19016 }
19017 
19018 
19019 /*
19020  *    Function: sd_pkt_reason_cmd_tag_reject
19021  *
19022  * Description: Recovery actions for a SCSA "CMD_TAG_REJECT" pkt_reason.
19023  *
19024  *     Context: May be called from interrupt context
19025  */
19026 
19027 static void
19028 sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
19029 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19030 {
19031 	ASSERT(un != NULL);
19032 	ASSERT(mutex_owned(SD_MUTEX(un)));
19033 	ASSERT(bp != NULL);
19034 	ASSERT(xp != NULL);
19035 	ASSERT(pktp != NULL);
19036 
19037 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
19038 	pktp->pkt_flags = 0;
19039 	un->un_tagflags = 0;
19040 	if (un->un_f_opt_queueing == TRUE) {
19041 		un->un_throttle = min(un->un_throttle, 3);
19042 	} else {
19043 		un->un_throttle = 1;
19044 	}
19045 	mutex_exit(SD_MUTEX(un));
19046 	(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
19047 	mutex_enter(SD_MUTEX(un));
19048 
19049 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19050 
19051 	/* Legacy behavior not to check retry counts here. */
19052 	sd_retry_command(un, bp, (SD_RETRIES_NOCHECK | SD_RETRIES_ISOLATE),
19053 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19054 }
19055 
19056 
19057 /*
19058  *    Function: sd_pkt_reason_default
19059  *
19060  * Description: Default recovery actions for SCSA pkt_reason values that
19061  *		do not have more explicit recovery actions.
19062  *
19063  *     Context: May be called from interrupt context
19064  */
19065 
19066 static void
19067 sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
19068 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19069 {
19070 	ASSERT(un != NULL);
19071 	ASSERT(mutex_owned(SD_MUTEX(un)));
19072 	ASSERT(bp != NULL);
19073 	ASSERT(xp != NULL);
19074 	ASSERT(pktp != NULL);
19075 
19076 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
19077 	sd_reset_target(un, pktp);
19078 
19079 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19080 
19081 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
19082 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19083 }
19084 
19085 
19086 
19087 /*
19088  *    Function: sd_pkt_status_check_condition
19089  *
19090  * Description: Recovery actions for a "STATUS_CHECK" SCSI command status.
19091  *
19092  *     Context: May be called from interrupt context
19093  */
19094 
19095 static void
19096 sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
19097 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19098 {
19099 	ASSERT(un != NULL);
19100 	ASSERT(mutex_owned(SD_MUTEX(un)));
19101 	ASSERT(bp != NULL);
19102 	ASSERT(xp != NULL);
19103 	ASSERT(pktp != NULL);
19104 
19105 	SD_TRACE(SD_LOG_IO, un, "sd_pkt_status_check_condition: "
19106 	    "entry: buf:0x%p xp:0x%p\n", bp, xp);
19107 
19108 	/*
19109 	 * If ARQ is NOT enabled, then issue a REQUEST SENSE command (the
19110 	 * command will be retried after the request sense). Otherwise, retry
19111 	 * the command. Note: we are issuing the request sense even though the
19112 	 * retry limit may have been reached for the failed command.
19113 	 */
19114 	if (un->un_f_arq_enabled == FALSE) {
19115 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
19116 		    "no ARQ, sending request sense command\n");
19117 		sd_send_request_sense_command(un, bp, pktp);
19118 	} else {
19119 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
19120 		    "ARQ,retrying request sense command\n");
19121 #if defined(__i386) || defined(__amd64)
19122 		/*
19123 		 * The SD_RETRY_DELAY value need to be adjusted here
19124 		 * when SD_RETRY_DELAY change in sddef.h
19125 		 */
19126 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
19127 		    un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0,
19128 		    NULL);
19129 #else
19130 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL,
19131 		    EIO, SD_RETRY_DELAY, NULL);
19132 #endif
19133 	}
19134 
19135 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: exit\n");
19136 }
19137 
19138 
19139 /*
19140  *    Function: sd_pkt_status_busy
19141  *
19142  * Description: Recovery actions for a "STATUS_BUSY" SCSI command status.
19143  *
19144  *     Context: May be called from interrupt context
19145  */
19146 
19147 static void
19148 sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
19149 	struct scsi_pkt *pktp)
19150 {
19151 	ASSERT(un != NULL);
19152 	ASSERT(mutex_owned(SD_MUTEX(un)));
19153 	ASSERT(bp != NULL);
19154 	ASSERT(xp != NULL);
19155 	ASSERT(pktp != NULL);
19156 
19157 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19158 	    "sd_pkt_status_busy: entry\n");
19159 
19160 	/* If retries are exhausted, just fail the command. */
19161 	if (xp->xb_retry_count >= un->un_busy_retry_count) {
19162 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
19163 		    "device busy too long\n");
19164 		sd_return_failed_command(un, bp, EIO);
19165 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19166 		    "sd_pkt_status_busy: exit\n");
19167 		return;
19168 	}
19169 	xp->xb_retry_count++;
19170 
19171 	/*
19172 	 * Try to reset the target. However, we do not want to perform
19173 	 * more than one reset if the device continues to fail. The reset
19174 	 * will be performed when the retry count reaches the reset
19175 	 * threshold.  This threshold should be set such that at least
19176 	 * one retry is issued before the reset is performed.
19177 	 */
19178 	if (xp->xb_retry_count ==
19179 	    ((un->un_reset_retry_count < 2) ? 2 : un->un_reset_retry_count)) {
19180 		int rval = 0;
19181 		mutex_exit(SD_MUTEX(un));
19182 		if (un->un_f_allow_bus_device_reset == TRUE) {
19183 			/*
19184 			 * First try to reset the LUN; if we cannot then
19185 			 * try to reset the target.
19186 			 */
19187 			if (un->un_f_lun_reset_enabled == TRUE) {
19188 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19189 				    "sd_pkt_status_busy: RESET_LUN\n");
19190 				rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
19191 			}
19192 			if (rval == 0) {
19193 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19194 				    "sd_pkt_status_busy: RESET_TARGET\n");
19195 				rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
19196 			}
19197 		}
19198 		if (rval == 0) {
19199 			/*
19200 			 * If the RESET_LUN and/or RESET_TARGET failed,
19201 			 * try RESET_ALL
19202 			 */
19203 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19204 			    "sd_pkt_status_busy: RESET_ALL\n");
19205 			rval = scsi_reset(SD_ADDRESS(un), RESET_ALL);
19206 		}
19207 		mutex_enter(SD_MUTEX(un));
19208 		if (rval == 0) {
19209 			/*
19210 			 * The RESET_LUN, RESET_TARGET, and/or RESET_ALL failed.
19211 			 * At this point we give up & fail the command.
19212 			 */
19213 			sd_return_failed_command(un, bp, EIO);
19214 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19215 			    "sd_pkt_status_busy: exit (failed cmd)\n");
19216 			return;
19217 		}
19218 	}
19219 
19220 	/*
19221 	 * Retry the command. Be sure to specify SD_RETRIES_NOCHECK as
19222 	 * we have already checked the retry counts above.
19223 	 */
19224 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL,
19225 	    EIO, un->un_busy_timeout, NULL);
19226 
19227 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19228 	    "sd_pkt_status_busy: exit\n");
19229 }
19230 
19231 
19232 /*
19233  *    Function: sd_pkt_status_reservation_conflict
19234  *
19235  * Description: Recovery actions for a "STATUS_RESERVATION_CONFLICT" SCSI
19236  *		command status.
19237  *
19238  *     Context: May be called from interrupt context
19239  */
19240 
19241 static void
19242 sd_pkt_status_reservation_conflict(struct sd_lun *un, struct buf *bp,
19243 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19244 {
19245 	ASSERT(un != NULL);
19246 	ASSERT(mutex_owned(SD_MUTEX(un)));
19247 	ASSERT(bp != NULL);
19248 	ASSERT(xp != NULL);
19249 	ASSERT(pktp != NULL);
19250 
19251 	/*
19252 	 * If the command was PERSISTENT_RESERVATION_[IN|OUT] then reservation
19253 	 * conflict could be due to various reasons like incorrect keys, not
19254 	 * registered or not reserved etc. So, we return EACCES to the caller.
19255 	 */
19256 	if (un->un_reservation_type == SD_SCSI3_RESERVATION) {
19257 		int cmd = SD_GET_PKT_OPCODE(pktp);
19258 		if ((cmd == SCMD_PERSISTENT_RESERVE_IN) ||
19259 		    (cmd == SCMD_PERSISTENT_RESERVE_OUT)) {
19260 			sd_return_failed_command(un, bp, EACCES);
19261 			return;
19262 		}
19263 	}
19264 
19265 	un->un_resvd_status |= SD_RESERVATION_CONFLICT;
19266 
19267 	if ((un->un_resvd_status & SD_FAILFAST) != 0) {
19268 		if (sd_failfast_enable != 0) {
19269 			/* By definition, we must panic here.... */
19270 			sd_panic_for_res_conflict(un);
19271 			/*NOTREACHED*/
19272 		}
19273 		SD_ERROR(SD_LOG_IO, un,
19274 		    "sd_handle_resv_conflict: Disk Reserved\n");
19275 		sd_return_failed_command(un, bp, EACCES);
19276 		return;
19277 	}
19278 
19279 	/*
19280 	 * 1147670: retry only if sd_retry_on_reservation_conflict
19281 	 * property is set (default is 1). Retries will not succeed
19282 	 * on a disk reserved by another initiator. HA systems
19283 	 * may reset this via sd.conf to avoid these retries.
19284 	 *
19285 	 * Note: The legacy return code for this failure is EIO, however EACCES
19286 	 * seems more appropriate for a reservation conflict.
19287 	 */
19288 	if (sd_retry_on_reservation_conflict == 0) {
19289 		SD_ERROR(SD_LOG_IO, un,
19290 		    "sd_handle_resv_conflict: Device Reserved\n");
19291 		sd_return_failed_command(un, bp, EIO);
19292 		return;
19293 	}
19294 
19295 	/*
19296 	 * Retry the command if we can.
19297 	 *
19298 	 * Note: The legacy return code for this failure is EIO, however EACCES
19299 	 * seems more appropriate for a reservation conflict.
19300 	 */
19301 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
19302 	    (clock_t)2, NULL);
19303 }
19304 
19305 
19306 
19307 /*
19308  *    Function: sd_pkt_status_qfull
19309  *
19310  * Description: Handle a QUEUE FULL condition from the target.  This can
19311  *		occur if the HBA does not handle the queue full condition.
19312  *		(Basically this means third-party HBAs as Sun HBAs will
19313  *		handle the queue full condition.)  Note that if there are
19314  *		some commands already in the transport, then the queue full
19315  *		has occurred because the queue for this nexus is actually
19316  *		full. If there are no commands in the transport, then the
19317  *		queue full is resulting from some other initiator or lun
19318  *		consuming all the resources at the target.
19319  *
19320  *     Context: May be called from interrupt context
19321  */
19322 
19323 static void
19324 sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
19325 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19326 {
19327 	ASSERT(un != NULL);
19328 	ASSERT(mutex_owned(SD_MUTEX(un)));
19329 	ASSERT(bp != NULL);
19330 	ASSERT(xp != NULL);
19331 	ASSERT(pktp != NULL);
19332 
19333 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19334 	    "sd_pkt_status_qfull: entry\n");
19335 
19336 	/*
19337 	 * Just lower the QFULL throttle and retry the command.  Note that
19338 	 * we do not limit the number of retries here.
19339 	 */
19340 	sd_reduce_throttle(un, SD_THROTTLE_QFULL);
19341 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 0,
19342 	    SD_RESTART_TIMEOUT, NULL);
19343 
19344 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19345 	    "sd_pkt_status_qfull: exit\n");
19346 }
19347 
19348 
19349 /*
19350  *    Function: sd_reset_target
19351  *
19352  * Description: Issue a scsi_reset(9F), with either RESET_LUN,
19353  *		RESET_TARGET, or RESET_ALL.
19354  *
19355  *     Context: May be called under interrupt context.
19356  */
19357 
19358 static void
19359 sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp)
19360 {
19361 	int rval = 0;
19362 
19363 	ASSERT(un != NULL);
19364 	ASSERT(mutex_owned(SD_MUTEX(un)));
19365 	ASSERT(pktp != NULL);
19366 
19367 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: entry\n");
19368 
19369 	/*
19370 	 * No need to reset if the transport layer has already done so.
19371 	 */
19372 	if ((pktp->pkt_statistics &
19373 	    (STAT_BUS_RESET | STAT_DEV_RESET | STAT_ABORTED)) != 0) {
19374 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19375 		    "sd_reset_target: no reset\n");
19376 		return;
19377 	}
19378 
19379 	mutex_exit(SD_MUTEX(un));
19380 
19381 	if (un->un_f_allow_bus_device_reset == TRUE) {
19382 		if (un->un_f_lun_reset_enabled == TRUE) {
19383 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19384 			    "sd_reset_target: RESET_LUN\n");
19385 			rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
19386 		}
19387 		if (rval == 0) {
19388 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19389 			    "sd_reset_target: RESET_TARGET\n");
19390 			rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
19391 		}
19392 	}
19393 
19394 	if (rval == 0) {
19395 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19396 		    "sd_reset_target: RESET_ALL\n");
19397 		(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
19398 	}
19399 
19400 	mutex_enter(SD_MUTEX(un));
19401 
19402 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: exit\n");
19403 }
19404 
19405 /*
19406  *    Function: sd_target_change_task
19407  *
19408  * Description: Handle dynamic target change
19409  *
19410  *     Context: Executes in a taskq() thread context
19411  */
19412 static void
19413 sd_target_change_task(void *arg)
19414 {
19415 	struct sd_lun		*un = arg;
19416 	uint64_t		capacity;
19417 	diskaddr_t		label_cap;
19418 	uint_t			lbasize;
19419 	sd_ssc_t		*ssc;
19420 
19421 	ASSERT(un != NULL);
19422 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19423 
19424 	if ((un->un_f_blockcount_is_valid == FALSE) ||
19425 	    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
19426 		return;
19427 	}
19428 
19429 	ssc = sd_ssc_init(un);
19430 
19431 	if (sd_send_scsi_READ_CAPACITY(ssc, &capacity,
19432 	    &lbasize, SD_PATH_DIRECT) != 0) {
19433 		SD_ERROR(SD_LOG_ERROR, un,
19434 		    "sd_target_change_task: fail to read capacity\n");
19435 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
19436 		goto task_exit;
19437 	}
19438 
19439 	mutex_enter(SD_MUTEX(un));
19440 	if (capacity <= un->un_blockcount) {
19441 		mutex_exit(SD_MUTEX(un));
19442 		goto task_exit;
19443 	}
19444 
19445 	sd_update_block_info(un, lbasize, capacity);
19446 	mutex_exit(SD_MUTEX(un));
19447 
19448 	/*
19449 	 * If lun is EFI labeled and lun capacity is greater than the
19450 	 * capacity contained in the label, log a sys event.
19451 	 */
19452 	if (cmlb_efi_label_capacity(un->un_cmlbhandle, &label_cap,
19453 	    (void*)SD_PATH_DIRECT) == 0) {
19454 		mutex_enter(SD_MUTEX(un));
19455 		if (un->un_f_blockcount_is_valid &&
19456 		    un->un_blockcount > label_cap) {
19457 			mutex_exit(SD_MUTEX(un));
19458 			sd_log_lun_expansion_event(un, KM_SLEEP);
19459 		} else {
19460 			mutex_exit(SD_MUTEX(un));
19461 		}
19462 	}
19463 
19464 task_exit:
19465 	sd_ssc_fini(ssc);
19466 }
19467 
19468 /*
19469  *    Function: sd_log_lun_expansion_event
19470  *
19471  * Description: Log lun expansion sys event
19472  *
19473  *     Context: Never called from interrupt context
19474  */
19475 static void
19476 sd_log_lun_expansion_event(struct sd_lun *un, int km_flag)
19477 {
19478 	int err;
19479 	char			*path;
19480 	nvlist_t		*dle_attr_list;
19481 
19482 	/* Allocate and build sysevent attribute list */
19483 	err = nvlist_alloc(&dle_attr_list, NV_UNIQUE_NAME_TYPE, km_flag);
19484 	if (err != 0) {
19485 		SD_ERROR(SD_LOG_ERROR, un,
19486 		    "sd_log_lun_expansion_event: fail to allocate space\n");
19487 		return;
19488 	}
19489 
19490 	path = kmem_alloc(MAXPATHLEN, km_flag);
19491 	if (path == NULL) {
19492 		nvlist_free(dle_attr_list);
19493 		SD_ERROR(SD_LOG_ERROR, un,
19494 		    "sd_log_lun_expansion_event: fail to allocate space\n");
19495 		return;
19496 	}
19497 	/*
19498 	 * Add path attribute to identify the lun.
19499 	 * We are using minor node 'a' as the sysevent attribute.
19500 	 */
19501 	(void) snprintf(path, MAXPATHLEN, "/devices");
19502 	(void) ddi_pathname(SD_DEVINFO(un), path + strlen(path));
19503 	(void) snprintf(path + strlen(path), MAXPATHLEN - strlen(path),
19504 	    ":a");
19505 
19506 	err = nvlist_add_string(dle_attr_list, DEV_PHYS_PATH, path);
19507 	if (err != 0) {
19508 		nvlist_free(dle_attr_list);
19509 		kmem_free(path, MAXPATHLEN);
19510 		SD_ERROR(SD_LOG_ERROR, un,
19511 		    "sd_log_lun_expansion_event: fail to add attribute\n");
19512 		return;
19513 	}
19514 
19515 	/* Log dynamic lun expansion sysevent */
19516 	err = ddi_log_sysevent(SD_DEVINFO(un), SUNW_VENDOR, EC_DEV_STATUS,
19517 	    ESC_DEV_DLE, dle_attr_list, NULL, km_flag);
19518 	if (err != DDI_SUCCESS) {
19519 		SD_ERROR(SD_LOG_ERROR, un,
19520 		    "sd_log_lun_expansion_event: fail to log sysevent\n");
19521 	}
19522 
19523 	nvlist_free(dle_attr_list);
19524 	kmem_free(path, MAXPATHLEN);
19525 }
19526 
19527 /*
19528  *    Function: sd_media_change_task
19529  *
19530  * Description: Recovery action for CDROM to become available.
19531  *
19532  *     Context: Executes in a taskq() thread context
19533  */
19534 
19535 static void
19536 sd_media_change_task(void *arg)
19537 {
19538 	struct	scsi_pkt	*pktp = arg;
19539 	struct	sd_lun		*un;
19540 	struct	buf		*bp;
19541 	struct	sd_xbuf		*xp;
19542 	int	err		= 0;
19543 	int	retry_count	= 0;
19544 	int	retry_limit	= SD_UNIT_ATTENTION_RETRY/10;
19545 	struct	sd_sense_info	si;
19546 
19547 	ASSERT(pktp != NULL);
19548 	bp = (struct buf *)pktp->pkt_private;
19549 	ASSERT(bp != NULL);
19550 	xp = SD_GET_XBUF(bp);
19551 	ASSERT(xp != NULL);
19552 	un = SD_GET_UN(bp);
19553 	ASSERT(un != NULL);
19554 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19555 	ASSERT(un->un_f_monitor_media_state);
19556 
19557 	si.ssi_severity = SCSI_ERR_INFO;
19558 	si.ssi_pfa_flag = FALSE;
19559 
19560 	/*
19561 	 * When a reset is issued on a CDROM, it takes a long time to
19562 	 * recover. First few attempts to read capacity and other things
19563 	 * related to handling unit attention fail (with a ASC 0x4 and
19564 	 * ASCQ 0x1). In that case we want to do enough retries and we want
19565 	 * to limit the retries in other cases of genuine failures like
19566 	 * no media in drive.
19567 	 */
19568 	while (retry_count++ < retry_limit) {
19569 		if ((err = sd_handle_mchange(un)) == 0) {
19570 			break;
19571 		}
19572 		if (err == EAGAIN) {
19573 			retry_limit = SD_UNIT_ATTENTION_RETRY;
19574 		}
19575 		/* Sleep for 0.5 sec. & try again */
19576 		delay(drv_usectohz(500000));
19577 	}
19578 
19579 	/*
19580 	 * Dispatch (retry or fail) the original command here,
19581 	 * along with appropriate console messages....
19582 	 *
19583 	 * Must grab the mutex before calling sd_retry_command,
19584 	 * sd_print_sense_msg and sd_return_failed_command.
19585 	 */
19586 	mutex_enter(SD_MUTEX(un));
19587 	if (err != SD_CMD_SUCCESS) {
19588 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
19589 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
19590 		si.ssi_severity = SCSI_ERR_FATAL;
19591 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
19592 		sd_return_failed_command(un, bp, EIO);
19593 	} else {
19594 		sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
19595 		    &si, EIO, (clock_t)0, NULL);
19596 	}
19597 	mutex_exit(SD_MUTEX(un));
19598 }
19599 
19600 
19601 
19602 /*
19603  *    Function: sd_handle_mchange
19604  *
19605  * Description: Perform geometry validation & other recovery when CDROM
19606  *		has been removed from drive.
19607  *
19608  * Return Code: 0 for success
19609  *		errno-type return code of either sd_send_scsi_DOORLOCK() or
19610  *		sd_send_scsi_READ_CAPACITY()
19611  *
19612  *     Context: Executes in a taskq() thread context
19613  */
19614 
19615 static int
19616 sd_handle_mchange(struct sd_lun *un)
19617 {
19618 	uint64_t	capacity;
19619 	uint32_t	lbasize;
19620 	int		rval;
19621 	sd_ssc_t	*ssc;
19622 
19623 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19624 	ASSERT(un->un_f_monitor_media_state);
19625 
19626 	ssc = sd_ssc_init(un);
19627 	rval = sd_send_scsi_READ_CAPACITY(ssc, &capacity, &lbasize,
19628 	    SD_PATH_DIRECT_PRIORITY);
19629 
19630 	if (rval != 0)
19631 		goto failed;
19632 
19633 	mutex_enter(SD_MUTEX(un));
19634 	sd_update_block_info(un, lbasize, capacity);
19635 
19636 	if (un->un_errstats != NULL) {
19637 		struct	sd_errstats *stp =
19638 		    (struct sd_errstats *)un->un_errstats->ks_data;
19639 		stp->sd_capacity.value.ui64 = (uint64_t)
19640 		    ((uint64_t)un->un_blockcount *
19641 		    (uint64_t)un->un_tgt_blocksize);
19642 	}
19643 
19644 	/*
19645 	 * Check if the media in the device is writable or not
19646 	 */
19647 	if (ISCD(un)) {
19648 		sd_check_for_writable_cd(ssc, SD_PATH_DIRECT_PRIORITY);
19649 	}
19650 
19651 	/*
19652 	 * Note: Maybe let the strategy/partitioning chain worry about getting
19653 	 * valid geometry.
19654 	 */
19655 	mutex_exit(SD_MUTEX(un));
19656 	cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY);
19657 
19658 
19659 	if (cmlb_validate(un->un_cmlbhandle, 0,
19660 	    (void *)SD_PATH_DIRECT_PRIORITY) != 0) {
19661 		sd_ssc_fini(ssc);
19662 		return (EIO);
19663 	} else {
19664 		if (un->un_f_pkstats_enabled) {
19665 			sd_set_pstats(un);
19666 			SD_TRACE(SD_LOG_IO_PARTITION, un,
19667 			    "sd_handle_mchange: un:0x%p pstats created and "
19668 			    "set\n", un);
19669 		}
19670 	}
19671 
19672 	/*
19673 	 * Try to lock the door
19674 	 */
19675 	rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT,
19676 	    SD_PATH_DIRECT_PRIORITY);
19677 failed:
19678 	if (rval != 0)
19679 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
19680 	sd_ssc_fini(ssc);
19681 	return (rval);
19682 }
19683 
19684 
19685 /*
19686  *    Function: sd_send_scsi_DOORLOCK
19687  *
19688  * Description: Issue the scsi DOOR LOCK command
19689  *
19690  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
19691  *                      structure for this target.
19692  *		flag  - SD_REMOVAL_ALLOW
19693  *			SD_REMOVAL_PREVENT
19694  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19695  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19696  *			to use the USCSI "direct" chain and bypass the normal
19697  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
19698  *			command is issued as part of an error recovery action.
19699  *
19700  * Return Code: 0   - Success
19701  *		errno return code from sd_ssc_send()
19702  *
19703  *     Context: Can sleep.
19704  */
19705 
19706 static int
19707 sd_send_scsi_DOORLOCK(sd_ssc_t *ssc, int flag, int path_flag)
19708 {
19709 	struct scsi_extended_sense	sense_buf;
19710 	union scsi_cdb		cdb;
19711 	struct uscsi_cmd	ucmd_buf;
19712 	int			status;
19713 	struct sd_lun		*un;
19714 
19715 	ASSERT(ssc != NULL);
19716 	un = ssc->ssc_un;
19717 	ASSERT(un != NULL);
19718 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19719 
19720 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_DOORLOCK: entry: un:0x%p\n", un);
19721 
19722 	/* already determined doorlock is not supported, fake success */
19723 	if (un->un_f_doorlock_supported == FALSE) {
19724 		return (0);
19725 	}
19726 
19727 	/*
19728 	 * If we are ejecting and see an SD_REMOVAL_PREVENT
19729 	 * ignore the command so we can complete the eject
19730 	 * operation.
19731 	 */
19732 	if (flag == SD_REMOVAL_PREVENT) {
19733 		mutex_enter(SD_MUTEX(un));
19734 		if (un->un_f_ejecting == TRUE) {
19735 			mutex_exit(SD_MUTEX(un));
19736 			return (EAGAIN);
19737 		}
19738 		mutex_exit(SD_MUTEX(un));
19739 	}
19740 
19741 	bzero(&cdb, sizeof (cdb));
19742 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19743 
19744 	cdb.scc_cmd = SCMD_DOORLOCK;
19745 	cdb.cdb_opaque[4] = (uchar_t)flag;
19746 
19747 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19748 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19749 	ucmd_buf.uscsi_bufaddr	= NULL;
19750 	ucmd_buf.uscsi_buflen	= 0;
19751 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19752 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
19753 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
19754 	ucmd_buf.uscsi_timeout	= 15;
19755 
19756 	SD_TRACE(SD_LOG_IO, un,
19757 	    "sd_send_scsi_DOORLOCK: returning sd_ssc_send\n");
19758 
19759 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
19760 	    UIO_SYSSPACE, path_flag);
19761 
19762 	if (status == 0)
19763 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
19764 
19765 	if ((status == EIO) && (ucmd_buf.uscsi_status == STATUS_CHECK) &&
19766 	    (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19767 	    (scsi_sense_key((uint8_t *)&sense_buf) == KEY_ILLEGAL_REQUEST)) {
19768 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
19769 
19770 		/* fake success and skip subsequent doorlock commands */
19771 		un->un_f_doorlock_supported = FALSE;
19772 		return (0);
19773 	}
19774 
19775 	return (status);
19776 }
19777 
19778 /*
19779  *    Function: sd_send_scsi_READ_CAPACITY
19780  *
19781  * Description: This routine uses the scsi READ CAPACITY command to determine
19782  *		the device capacity in number of blocks and the device native
19783  *		block size. If this function returns a failure, then the
19784  *		values in *capp and *lbap are undefined.  If the capacity
19785  *		returned is 0xffffffff then the lun is too large for a
19786  *		normal READ CAPACITY command and the results of a
19787  *		READ CAPACITY 16 will be used instead.
19788  *
19789  *   Arguments: ssc   - ssc contains ptr to soft state struct for the target
19790  *		capp - ptr to unsigned 64-bit variable to receive the
19791  *			capacity value from the command.
19792  *		lbap - ptr to unsigned 32-bit varaible to receive the
19793  *			block size value from the command
19794  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19795  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19796  *			to use the USCSI "direct" chain and bypass the normal
19797  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
19798  *			command is issued as part of an error recovery action.
19799  *
19800  * Return Code: 0   - Success
19801  *		EIO - IO error
19802  *		EACCES - Reservation conflict detected
19803  *		EAGAIN - Device is becoming ready
19804  *		errno return code from sd_ssc_send()
19805  *
19806  *     Context: Can sleep.  Blocks until command completes.
19807  */
19808 
19809 #define	SD_CAPACITY_SIZE	sizeof (struct scsi_capacity)
19810 
19811 static int
19812 sd_send_scsi_READ_CAPACITY(sd_ssc_t *ssc, uint64_t *capp, uint32_t *lbap,
19813 	int path_flag)
19814 {
19815 	struct	scsi_extended_sense	sense_buf;
19816 	struct	uscsi_cmd	ucmd_buf;
19817 	union	scsi_cdb	cdb;
19818 	uint32_t		*capacity_buf;
19819 	uint64_t		capacity;
19820 	uint32_t		lbasize;
19821 	uint32_t		pbsize;
19822 	int			status;
19823 	struct sd_lun		*un;
19824 
19825 	ASSERT(ssc != NULL);
19826 
19827 	un = ssc->ssc_un;
19828 	ASSERT(un != NULL);
19829 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19830 	ASSERT(capp != NULL);
19831 	ASSERT(lbap != NULL);
19832 
19833 	SD_TRACE(SD_LOG_IO, un,
19834 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
19835 
19836 	/*
19837 	 * First send a READ_CAPACITY command to the target.
19838 	 * (This command is mandatory under SCSI-2.)
19839 	 *
19840 	 * Set up the CDB for the READ_CAPACITY command.  The Partial
19841 	 * Medium Indicator bit is cleared.  The address field must be
19842 	 * zero if the PMI bit is zero.
19843 	 */
19844 	bzero(&cdb, sizeof (cdb));
19845 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19846 
19847 	capacity_buf = kmem_zalloc(SD_CAPACITY_SIZE, KM_SLEEP);
19848 
19849 	cdb.scc_cmd = SCMD_READ_CAPACITY;
19850 
19851 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19852 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
19853 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity_buf;
19854 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_SIZE;
19855 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19856 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
19857 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19858 	ucmd_buf.uscsi_timeout	= 60;
19859 
19860 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
19861 	    UIO_SYSSPACE, path_flag);
19862 
19863 	switch (status) {
19864 	case 0:
19865 		/* Return failure if we did not get valid capacity data. */
19866 		if (ucmd_buf.uscsi_resid != 0) {
19867 			sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
19868 			    "sd_send_scsi_READ_CAPACITY received invalid "
19869 			    "capacity data");
19870 			kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19871 			return (EIO);
19872 		}
19873 		/*
19874 		 * Read capacity and block size from the READ CAPACITY 10 data.
19875 		 * This data may be adjusted later due to device specific
19876 		 * issues.
19877 		 *
19878 		 * According to the SCSI spec, the READ CAPACITY 10
19879 		 * command returns the following:
19880 		 *
19881 		 *  bytes 0-3: Maximum logical block address available.
19882 		 *		(MSB in byte:0 & LSB in byte:3)
19883 		 *
19884 		 *  bytes 4-7: Block length in bytes
19885 		 *		(MSB in byte:4 & LSB in byte:7)
19886 		 *
19887 		 */
19888 		capacity = BE_32(capacity_buf[0]);
19889 		lbasize = BE_32(capacity_buf[1]);
19890 
19891 		/*
19892 		 * Done with capacity_buf
19893 		 */
19894 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19895 
19896 		/*
19897 		 * if the reported capacity is set to all 0xf's, then
19898 		 * this disk is too large and requires SBC-2 commands.
19899 		 * Reissue the request using READ CAPACITY 16.
19900 		 */
19901 		if (capacity == 0xffffffff) {
19902 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
19903 			status = sd_send_scsi_READ_CAPACITY_16(ssc, &capacity,
19904 			    &lbasize, &pbsize, path_flag);
19905 			if (status != 0) {
19906 				return (status);
19907 			}
19908 		}
19909 		break;	/* Success! */
19910 	case EIO:
19911 		switch (ucmd_buf.uscsi_status) {
19912 		case STATUS_RESERVATION_CONFLICT:
19913 			status = EACCES;
19914 			break;
19915 		case STATUS_CHECK:
19916 			/*
19917 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
19918 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
19919 			 */
19920 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19921 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
19922 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
19923 				kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19924 				return (EAGAIN);
19925 			}
19926 			break;
19927 		default:
19928 			break;
19929 		}
19930 		/* FALLTHRU */
19931 	default:
19932 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19933 		return (status);
19934 	}
19935 
19936 	/*
19937 	 * Some ATAPI CD-ROM drives report inaccurate LBA size values
19938 	 * (2352 and 0 are common) so for these devices always force the value
19939 	 * to 2048 as required by the ATAPI specs.
19940 	 */
19941 	if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) {
19942 		lbasize = 2048;
19943 	}
19944 
19945 	/*
19946 	 * Get the maximum LBA value from the READ CAPACITY data.
19947 	 * Here we assume that the Partial Medium Indicator (PMI) bit
19948 	 * was cleared when issuing the command. This means that the LBA
19949 	 * returned from the device is the LBA of the last logical block
19950 	 * on the logical unit.  The actual logical block count will be
19951 	 * this value plus one.
19952 	 *
19953 	 * Currently, for removable media, the capacity is saved in terms
19954 	 * of un->un_sys_blocksize, so scale the capacity value to reflect this.
19955 	 */
19956 	if (un->un_f_has_removable_media)
19957 		capacity = (capacity + 1) * (lbasize / un->un_sys_blocksize);
19958 
19959 	/*
19960 	 * Copy the values from the READ CAPACITY command into the space
19961 	 * provided by the caller.
19962 	 */
19963 	*capp = capacity;
19964 	*lbap = lbasize;
19965 
19966 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY: "
19967 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
19968 
19969 	/*
19970 	 * Both the lbasize and capacity from the device must be nonzero,
19971 	 * otherwise we assume that the values are not valid and return
19972 	 * failure to the caller. (4203735)
19973 	 */
19974 	if ((capacity == 0) || (lbasize == 0)) {
19975 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
19976 		    "sd_send_scsi_READ_CAPACITY received invalid value "
19977 		    "capacity %llu lbasize %d", capacity, lbasize);
19978 		return (EIO);
19979 	}
19980 	sd_ssc_assessment(ssc, SD_FMT_STANDARD);
19981 	return (0);
19982 }
19983 
19984 /*
19985  *    Function: sd_send_scsi_READ_CAPACITY_16
19986  *
19987  * Description: This routine uses the scsi READ CAPACITY 16 command to
19988  *		determine the device capacity in number of blocks and the
19989  *		device native block size.  If this function returns a failure,
19990  *		then the values in *capp and *lbap are undefined.
19991  *		This routine should be called by sd_send_scsi_READ_CAPACITY
19992  *              which will apply any device specific adjustments to capacity
19993  *              and lbasize. One exception is it is also called by
19994  *              sd_get_media_info_ext. In that function, there is no need to
19995  *              adjust the capacity and lbasize.
19996  *
19997  *   Arguments: ssc   - ssc contains ptr to soft state struct for the target
19998  *		capp - ptr to unsigned 64-bit variable to receive the
19999  *			capacity value from the command.
20000  *		lbap - ptr to unsigned 32-bit varaible to receive the
20001  *			block size value from the command
20002  *              psp  - ptr to unsigned 32-bit variable to receive the
20003  *                      physical block size value from the command
20004  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20005  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20006  *			to use the USCSI "direct" chain and bypass the normal
20007  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when
20008  *			this command is issued as part of an error recovery
20009  *			action.
20010  *
20011  * Return Code: 0   - Success
20012  *		EIO - IO error
20013  *		EACCES - Reservation conflict detected
20014  *		EAGAIN - Device is becoming ready
20015  *		errno return code from sd_ssc_send()
20016  *
20017  *     Context: Can sleep.  Blocks until command completes.
20018  */
20019 
20020 #define	SD_CAPACITY_16_SIZE	sizeof (struct scsi_capacity_16)
20021 
20022 static int
20023 sd_send_scsi_READ_CAPACITY_16(sd_ssc_t *ssc, uint64_t *capp,
20024 	uint32_t *lbap, uint32_t *psp, int path_flag)
20025 {
20026 	struct	scsi_extended_sense	sense_buf;
20027 	struct	uscsi_cmd	ucmd_buf;
20028 	union	scsi_cdb	cdb;
20029 	uint64_t		*capacity16_buf;
20030 	uint64_t		capacity;
20031 	uint32_t		lbasize;
20032 	uint32_t		pbsize;
20033 	uint32_t		lbpb_exp;
20034 	int			status;
20035 	struct sd_lun		*un;
20036 
20037 	ASSERT(ssc != NULL);
20038 
20039 	un = ssc->ssc_un;
20040 	ASSERT(un != NULL);
20041 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20042 	ASSERT(capp != NULL);
20043 	ASSERT(lbap != NULL);
20044 
20045 	SD_TRACE(SD_LOG_IO, un,
20046 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
20047 
20048 	/*
20049 	 * First send a READ_CAPACITY_16 command to the target.
20050 	 *
20051 	 * Set up the CDB for the READ_CAPACITY_16 command.  The Partial
20052 	 * Medium Indicator bit is cleared.  The address field must be
20053 	 * zero if the PMI bit is zero.
20054 	 */
20055 	bzero(&cdb, sizeof (cdb));
20056 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20057 
20058 	capacity16_buf = kmem_zalloc(SD_CAPACITY_16_SIZE, KM_SLEEP);
20059 
20060 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20061 	ucmd_buf.uscsi_cdblen	= CDB_GROUP4;
20062 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity16_buf;
20063 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_16_SIZE;
20064 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20065 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
20066 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20067 	ucmd_buf.uscsi_timeout	= 60;
20068 
20069 	/*
20070 	 * Read Capacity (16) is a Service Action In command.  One
20071 	 * command byte (0x9E) is overloaded for multiple operations,
20072 	 * with the second CDB byte specifying the desired operation
20073 	 */
20074 	cdb.scc_cmd = SCMD_SVC_ACTION_IN_G4;
20075 	cdb.cdb_opaque[1] = SSVC_ACTION_READ_CAPACITY_G4;
20076 
20077 	/*
20078 	 * Fill in allocation length field
20079 	 */
20080 	FORMG4COUNT(&cdb, ucmd_buf.uscsi_buflen);
20081 
20082 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20083 	    UIO_SYSSPACE, path_flag);
20084 
20085 	switch (status) {
20086 	case 0:
20087 		/* Return failure if we did not get valid capacity data. */
20088 		if (ucmd_buf.uscsi_resid > 20) {
20089 			sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
20090 			    "sd_send_scsi_READ_CAPACITY_16 received invalid "
20091 			    "capacity data");
20092 			kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
20093 			return (EIO);
20094 		}
20095 
20096 		/*
20097 		 * Read capacity and block size from the READ CAPACITY 10 data.
20098 		 * This data may be adjusted later due to device specific
20099 		 * issues.
20100 		 *
20101 		 * According to the SCSI spec, the READ CAPACITY 10
20102 		 * command returns the following:
20103 		 *
20104 		 *  bytes 0-7: Maximum logical block address available.
20105 		 *		(MSB in byte:0 & LSB in byte:7)
20106 		 *
20107 		 *  bytes 8-11: Block length in bytes
20108 		 *		(MSB in byte:8 & LSB in byte:11)
20109 		 *
20110 		 *  byte 13: LOGICAL BLOCKS PER PHYSICAL BLOCK EXPONENT
20111 		 */
20112 		capacity = BE_64(capacity16_buf[0]);
20113 		lbasize = BE_32(*(uint32_t *)&capacity16_buf[1]);
20114 		lbpb_exp = (BE_64(capacity16_buf[1]) >> 40) & 0x0f;
20115 
20116 		pbsize = lbasize << lbpb_exp;
20117 
20118 		/*
20119 		 * Done with capacity16_buf
20120 		 */
20121 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
20122 
20123 		/*
20124 		 * if the reported capacity is set to all 0xf's, then
20125 		 * this disk is too large.  This could only happen with
20126 		 * a device that supports LBAs larger than 64 bits which
20127 		 * are not defined by any current T10 standards.
20128 		 */
20129 		if (capacity == 0xffffffffffffffff) {
20130 			sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
20131 			    "disk is too large");
20132 			return (EIO);
20133 		}
20134 		break;	/* Success! */
20135 	case EIO:
20136 		switch (ucmd_buf.uscsi_status) {
20137 		case STATUS_RESERVATION_CONFLICT:
20138 			status = EACCES;
20139 			break;
20140 		case STATUS_CHECK:
20141 			/*
20142 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
20143 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
20144 			 */
20145 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20146 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
20147 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
20148 				kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
20149 				return (EAGAIN);
20150 			}
20151 			break;
20152 		default:
20153 			break;
20154 		}
20155 		/* FALLTHRU */
20156 	default:
20157 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
20158 		return (status);
20159 	}
20160 
20161 	*capp = capacity;
20162 	*lbap = lbasize;
20163 	*psp = pbsize;
20164 
20165 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY_16: "
20166 	    "capacity:0x%llx  lbasize:0x%x, pbsize: 0x%x\n",
20167 	    capacity, lbasize, pbsize);
20168 
20169 	return (0);
20170 }
20171 
20172 
20173 /*
20174  *    Function: sd_send_scsi_START_STOP_UNIT
20175  *
20176  * Description: Issue a scsi START STOP UNIT command to the target.
20177  *
20178  *   Arguments: ssc    - ssc contatins pointer to driver soft state (unit)
20179  *                       structure for this target.
20180  *      pc_flag - SD_POWER_CONDITION
20181  *                SD_START_STOP
20182  *		flag  - SD_TARGET_START
20183  *			SD_TARGET_STOP
20184  *			SD_TARGET_EJECT
20185  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20186  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20187  *			to use the USCSI "direct" chain and bypass the normal
20188  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
20189  *			command is issued as part of an error recovery action.
20190  *
20191  * Return Code: 0   - Success
20192  *		EIO - IO error
20193  *		EACCES - Reservation conflict detected
20194  *		ENXIO  - Not Ready, medium not present
20195  *		errno return code from sd_ssc_send()
20196  *
20197  *     Context: Can sleep.
20198  */
20199 
20200 static int
20201 sd_send_scsi_START_STOP_UNIT(sd_ssc_t *ssc, int pc_flag, int flag,
20202     int path_flag)
20203 {
20204 	struct	scsi_extended_sense	sense_buf;
20205 	union scsi_cdb		cdb;
20206 	struct uscsi_cmd	ucmd_buf;
20207 	int			status;
20208 	struct sd_lun		*un;
20209 
20210 	ASSERT(ssc != NULL);
20211 	un = ssc->ssc_un;
20212 	ASSERT(un != NULL);
20213 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20214 
20215 	SD_TRACE(SD_LOG_IO, un,
20216 	    "sd_send_scsi_START_STOP_UNIT: entry: un:0x%p\n", un);
20217 
20218 	if (un->un_f_check_start_stop &&
20219 	    ((pc_flag == SD_START_STOP) && (flag != SD_TARGET_EJECT)) &&
20220 	    (un->un_f_start_stop_supported != TRUE)) {
20221 		return (0);
20222 	}
20223 
20224 	/*
20225 	 * If we are performing an eject operation and
20226 	 * we receive any command other than SD_TARGET_EJECT
20227 	 * we should immediately return.
20228 	 */
20229 	if (flag != SD_TARGET_EJECT) {
20230 		mutex_enter(SD_MUTEX(un));
20231 		if (un->un_f_ejecting == TRUE) {
20232 			mutex_exit(SD_MUTEX(un));
20233 			return (EAGAIN);
20234 		}
20235 		mutex_exit(SD_MUTEX(un));
20236 	}
20237 
20238 	bzero(&cdb, sizeof (cdb));
20239 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20240 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20241 
20242 	cdb.scc_cmd = SCMD_START_STOP;
20243 	cdb.cdb_opaque[4] = (pc_flag == SD_POWER_CONDITION) ?
20244 	    (uchar_t)(flag << 4) : (uchar_t)flag;
20245 
20246 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20247 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
20248 	ucmd_buf.uscsi_bufaddr	= NULL;
20249 	ucmd_buf.uscsi_buflen	= 0;
20250 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20251 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20252 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
20253 	ucmd_buf.uscsi_timeout	= 200;
20254 
20255 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20256 	    UIO_SYSSPACE, path_flag);
20257 
20258 	switch (status) {
20259 	case 0:
20260 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20261 		break;	/* Success! */
20262 	case EIO:
20263 		switch (ucmd_buf.uscsi_status) {
20264 		case STATUS_RESERVATION_CONFLICT:
20265 			status = EACCES;
20266 			break;
20267 		case STATUS_CHECK:
20268 			if (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) {
20269 				switch (scsi_sense_key(
20270 				    (uint8_t *)&sense_buf)) {
20271 				case KEY_ILLEGAL_REQUEST:
20272 					status = ENOTSUP;
20273 					break;
20274 				case KEY_NOT_READY:
20275 					if (scsi_sense_asc(
20276 					    (uint8_t *)&sense_buf)
20277 					    == 0x3A) {
20278 						status = ENXIO;
20279 					}
20280 					break;
20281 				default:
20282 					break;
20283 				}
20284 			}
20285 			break;
20286 		default:
20287 			break;
20288 		}
20289 		break;
20290 	default:
20291 		break;
20292 	}
20293 
20294 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_START_STOP_UNIT: exit\n");
20295 
20296 	return (status);
20297 }
20298 
20299 
20300 /*
20301  *    Function: sd_start_stop_unit_callback
20302  *
20303  * Description: timeout(9F) callback to begin recovery process for a
20304  *		device that has spun down.
20305  *
20306  *   Arguments: arg - pointer to associated softstate struct.
20307  *
20308  *     Context: Executes in a timeout(9F) thread context
20309  */
20310 
20311 static void
20312 sd_start_stop_unit_callback(void *arg)
20313 {
20314 	struct sd_lun	*un = arg;
20315 	ASSERT(un != NULL);
20316 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20317 
20318 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_callback: entry\n");
20319 
20320 	(void) taskq_dispatch(sd_tq, sd_start_stop_unit_task, un, KM_NOSLEEP);
20321 }
20322 
20323 
20324 /*
20325  *    Function: sd_start_stop_unit_task
20326  *
20327  * Description: Recovery procedure when a drive is spun down.
20328  *
20329  *   Arguments: arg - pointer to associated softstate struct.
20330  *
20331  *     Context: Executes in a taskq() thread context
20332  */
20333 
20334 static void
20335 sd_start_stop_unit_task(void *arg)
20336 {
20337 	struct sd_lun	*un = arg;
20338 	sd_ssc_t	*ssc;
20339 	int		power_level;
20340 	int		rval;
20341 
20342 	ASSERT(un != NULL);
20343 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20344 
20345 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: entry\n");
20346 
20347 	/*
20348 	 * Some unformatted drives report not ready error, no need to
20349 	 * restart if format has been initiated.
20350 	 */
20351 	mutex_enter(SD_MUTEX(un));
20352 	if (un->un_f_format_in_progress == TRUE) {
20353 		mutex_exit(SD_MUTEX(un));
20354 		return;
20355 	}
20356 	mutex_exit(SD_MUTEX(un));
20357 
20358 	ssc = sd_ssc_init(un);
20359 	/*
20360 	 * When a START STOP command is issued from here, it is part of a
20361 	 * failure recovery operation and must be issued before any other
20362 	 * commands, including any pending retries. Thus it must be sent
20363 	 * using SD_PATH_DIRECT_PRIORITY. It doesn't matter if the spin up
20364 	 * succeeds or not, we will start I/O after the attempt.
20365 	 * If power condition is supported and the current power level
20366 	 * is capable of performing I/O, we should set the power condition
20367 	 * to that level. Otherwise, set the power condition to ACTIVE.
20368 	 */
20369 	if (un->un_f_power_condition_supported) {
20370 		mutex_enter(SD_MUTEX(un));
20371 		ASSERT(SD_PM_IS_LEVEL_VALID(un, un->un_power_level));
20372 		power_level = sd_pwr_pc.ran_perf[un->un_power_level]
20373 		    > 0 ? un->un_power_level : SD_SPINDLE_ACTIVE;
20374 		mutex_exit(SD_MUTEX(un));
20375 		rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_POWER_CONDITION,
20376 		    sd_pl2pc[power_level], SD_PATH_DIRECT_PRIORITY);
20377 	} else {
20378 		rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
20379 		    SD_TARGET_START, SD_PATH_DIRECT_PRIORITY);
20380 	}
20381 
20382 	if (rval != 0)
20383 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
20384 	sd_ssc_fini(ssc);
20385 	/*
20386 	 * The above call blocks until the START_STOP_UNIT command completes.
20387 	 * Now that it has completed, we must re-try the original IO that
20388 	 * received the NOT READY condition in the first place. There are
20389 	 * three possible conditions here:
20390 	 *
20391 	 *  (1) The original IO is on un_retry_bp.
20392 	 *  (2) The original IO is on the regular wait queue, and un_retry_bp
20393 	 *	is NULL.
20394 	 *  (3) The original IO is on the regular wait queue, and un_retry_bp
20395 	 *	points to some other, unrelated bp.
20396 	 *
20397 	 * For each case, we must call sd_start_cmds() with un_retry_bp
20398 	 * as the argument. If un_retry_bp is NULL, this will initiate
20399 	 * processing of the regular wait queue.  If un_retry_bp is not NULL,
20400 	 * then this will process the bp on un_retry_bp. That may or may not
20401 	 * be the original IO, but that does not matter: the important thing
20402 	 * is to keep the IO processing going at this point.
20403 	 *
20404 	 * Note: This is a very specific error recovery sequence associated
20405 	 * with a drive that is not spun up. We attempt a START_STOP_UNIT and
20406 	 * serialize the I/O with completion of the spin-up.
20407 	 */
20408 	mutex_enter(SD_MUTEX(un));
20409 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
20410 	    "sd_start_stop_unit_task: un:0x%p starting bp:0x%p\n",
20411 	    un, un->un_retry_bp);
20412 	un->un_startstop_timeid = NULL;	/* Timeout is no longer pending */
20413 	sd_start_cmds(un, un->un_retry_bp);
20414 	mutex_exit(SD_MUTEX(un));
20415 
20416 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: exit\n");
20417 }
20418 
20419 
20420 /*
20421  *    Function: sd_send_scsi_INQUIRY
20422  *
20423  * Description: Issue the scsi INQUIRY command.
20424  *
20425  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
20426  *                      structure for this target.
20427  *		bufaddr
20428  *		buflen
20429  *		evpd
20430  *		page_code
20431  *		page_length
20432  *
20433  * Return Code: 0   - Success
20434  *		errno return code from sd_ssc_send()
20435  *
20436  *     Context: Can sleep. Does not return until command is completed.
20437  */
20438 
20439 static int
20440 sd_send_scsi_INQUIRY(sd_ssc_t *ssc, uchar_t *bufaddr, size_t buflen,
20441 	uchar_t evpd, uchar_t page_code, size_t *residp)
20442 {
20443 	union scsi_cdb		cdb;
20444 	struct uscsi_cmd	ucmd_buf;
20445 	int			status;
20446 	struct sd_lun		*un;
20447 
20448 	ASSERT(ssc != NULL);
20449 	un = ssc->ssc_un;
20450 	ASSERT(un != NULL);
20451 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20452 	ASSERT(bufaddr != NULL);
20453 
20454 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: entry: un:0x%p\n", un);
20455 
20456 	bzero(&cdb, sizeof (cdb));
20457 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20458 	bzero(bufaddr, buflen);
20459 
20460 	cdb.scc_cmd = SCMD_INQUIRY;
20461 	cdb.cdb_opaque[1] = evpd;
20462 	cdb.cdb_opaque[2] = page_code;
20463 	FORMG0COUNT(&cdb, buflen);
20464 
20465 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20466 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
20467 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
20468 	ucmd_buf.uscsi_buflen	= buflen;
20469 	ucmd_buf.uscsi_rqbuf	= NULL;
20470 	ucmd_buf.uscsi_rqlen	= 0;
20471 	ucmd_buf.uscsi_flags	= USCSI_READ | USCSI_SILENT;
20472 	ucmd_buf.uscsi_timeout	= 200;	/* Excessive legacy value */
20473 
20474 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20475 	    UIO_SYSSPACE, SD_PATH_DIRECT);
20476 
20477 	/*
20478 	 * Only handle status == 0, the upper-level caller
20479 	 * will put different assessment based on the context.
20480 	 */
20481 	if (status == 0)
20482 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20483 
20484 	if ((status == 0) && (residp != NULL)) {
20485 		*residp = ucmd_buf.uscsi_resid;
20486 	}
20487 
20488 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: exit\n");
20489 
20490 	return (status);
20491 }
20492 
20493 
20494 /*
20495  *    Function: sd_send_scsi_TEST_UNIT_READY
20496  *
20497  * Description: Issue the scsi TEST UNIT READY command.
20498  *		This routine can be told to set the flag USCSI_DIAGNOSE to
20499  *		prevent retrying failed commands. Use this when the intent
20500  *		is either to check for device readiness, to clear a Unit
20501  *		Attention, or to clear any outstanding sense data.
20502  *		However under specific conditions the expected behavior
20503  *		is for retries to bring a device ready, so use the flag
20504  *		with caution.
20505  *
20506  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
20507  *                      structure for this target.
20508  *		flag:   SD_CHECK_FOR_MEDIA: return ENXIO if no media present
20509  *			SD_DONT_RETRY_TUR: include uscsi flag USCSI_DIAGNOSE.
20510  *			0: dont check for media present, do retries on cmd.
20511  *
20512  * Return Code: 0   - Success
20513  *		EIO - IO error
20514  *		EACCES - Reservation conflict detected
20515  *		ENXIO  - Not Ready, medium not present
20516  *		errno return code from sd_ssc_send()
20517  *
20518  *     Context: Can sleep. Does not return until command is completed.
20519  */
20520 
20521 static int
20522 sd_send_scsi_TEST_UNIT_READY(sd_ssc_t *ssc, int flag)
20523 {
20524 	struct	scsi_extended_sense	sense_buf;
20525 	union scsi_cdb		cdb;
20526 	struct uscsi_cmd	ucmd_buf;
20527 	int			status;
20528 	struct sd_lun		*un;
20529 
20530 	ASSERT(ssc != NULL);
20531 	un = ssc->ssc_un;
20532 	ASSERT(un != NULL);
20533 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20534 
20535 	SD_TRACE(SD_LOG_IO, un,
20536 	    "sd_send_scsi_TEST_UNIT_READY: entry: un:0x%p\n", un);
20537 
20538 	/*
20539 	 * Some Seagate elite1 TQ devices get hung with disconnect/reconnect
20540 	 * timeouts when they receive a TUR and the queue is not empty. Check
20541 	 * the configuration flag set during attach (indicating the drive has
20542 	 * this firmware bug) and un_ncmds_in_transport before issuing the
20543 	 * TUR. If there are
20544 	 * pending commands return success, this is a bit arbitrary but is ok
20545 	 * for non-removables (i.e. the eliteI disks) and non-clustering
20546 	 * configurations.
20547 	 */
20548 	if (un->un_f_cfg_tur_check == TRUE) {
20549 		mutex_enter(SD_MUTEX(un));
20550 		if (un->un_ncmds_in_transport != 0) {
20551 			mutex_exit(SD_MUTEX(un));
20552 			return (0);
20553 		}
20554 		mutex_exit(SD_MUTEX(un));
20555 	}
20556 
20557 	bzero(&cdb, sizeof (cdb));
20558 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20559 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20560 
20561 	cdb.scc_cmd = SCMD_TEST_UNIT_READY;
20562 
20563 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20564 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
20565 	ucmd_buf.uscsi_bufaddr	= NULL;
20566 	ucmd_buf.uscsi_buflen	= 0;
20567 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20568 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20569 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
20570 
20571 	/* Use flag USCSI_DIAGNOSE to prevent retries if it fails. */
20572 	if ((flag & SD_DONT_RETRY_TUR) != 0) {
20573 		ucmd_buf.uscsi_flags |= USCSI_DIAGNOSE;
20574 	}
20575 	ucmd_buf.uscsi_timeout	= 60;
20576 
20577 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20578 	    UIO_SYSSPACE, ((flag & SD_BYPASS_PM) ? SD_PATH_DIRECT :
20579 	    SD_PATH_STANDARD));
20580 
20581 	switch (status) {
20582 	case 0:
20583 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20584 		break;	/* Success! */
20585 	case EIO:
20586 		switch (ucmd_buf.uscsi_status) {
20587 		case STATUS_RESERVATION_CONFLICT:
20588 			status = EACCES;
20589 			break;
20590 		case STATUS_CHECK:
20591 			if ((flag & SD_CHECK_FOR_MEDIA) == 0) {
20592 				break;
20593 			}
20594 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20595 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
20596 			    KEY_NOT_READY) &&
20597 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x3A)) {
20598 				status = ENXIO;
20599 			}
20600 			break;
20601 		default:
20602 			break;
20603 		}
20604 		break;
20605 	default:
20606 		break;
20607 	}
20608 
20609 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_TEST_UNIT_READY: exit\n");
20610 
20611 	return (status);
20612 }
20613 
20614 /*
20615  *    Function: sd_send_scsi_PERSISTENT_RESERVE_IN
20616  *
20617  * Description: Issue the scsi PERSISTENT RESERVE IN command.
20618  *
20619  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
20620  *                      structure for this target.
20621  *
20622  * Return Code: 0   - Success
20623  *		EACCES
20624  *		ENOTSUP
20625  *		errno return code from sd_ssc_send()
20626  *
20627  *     Context: Can sleep. Does not return until command is completed.
20628  */
20629 
20630 static int
20631 sd_send_scsi_PERSISTENT_RESERVE_IN(sd_ssc_t *ssc, uchar_t  usr_cmd,
20632 	uint16_t data_len, uchar_t *data_bufp)
20633 {
20634 	struct scsi_extended_sense	sense_buf;
20635 	union scsi_cdb		cdb;
20636 	struct uscsi_cmd	ucmd_buf;
20637 	int			status;
20638 	int			no_caller_buf = FALSE;
20639 	struct sd_lun		*un;
20640 
20641 	ASSERT(ssc != NULL);
20642 	un = ssc->ssc_un;
20643 	ASSERT(un != NULL);
20644 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20645 	ASSERT((usr_cmd == SD_READ_KEYS) || (usr_cmd == SD_READ_RESV));
20646 
20647 	SD_TRACE(SD_LOG_IO, un,
20648 	    "sd_send_scsi_PERSISTENT_RESERVE_IN: entry: un:0x%p\n", un);
20649 
20650 	bzero(&cdb, sizeof (cdb));
20651 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20652 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20653 	if (data_bufp == NULL) {
20654 		/* Allocate a default buf if the caller did not give one */
20655 		ASSERT(data_len == 0);
20656 		data_len  = MHIOC_RESV_KEY_SIZE;
20657 		data_bufp = kmem_zalloc(MHIOC_RESV_KEY_SIZE, KM_SLEEP);
20658 		no_caller_buf = TRUE;
20659 	}
20660 
20661 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_IN;
20662 	cdb.cdb_opaque[1] = usr_cmd;
20663 	FORMG1COUNT(&cdb, data_len);
20664 
20665 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20666 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
20667 	ucmd_buf.uscsi_bufaddr	= (caddr_t)data_bufp;
20668 	ucmd_buf.uscsi_buflen	= data_len;
20669 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20670 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20671 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20672 	ucmd_buf.uscsi_timeout	= 60;
20673 
20674 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20675 	    UIO_SYSSPACE, SD_PATH_STANDARD);
20676 
20677 	switch (status) {
20678 	case 0:
20679 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20680 
20681 		break;	/* Success! */
20682 	case EIO:
20683 		switch (ucmd_buf.uscsi_status) {
20684 		case STATUS_RESERVATION_CONFLICT:
20685 			status = EACCES;
20686 			break;
20687 		case STATUS_CHECK:
20688 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20689 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
20690 			    KEY_ILLEGAL_REQUEST)) {
20691 				status = ENOTSUP;
20692 			}
20693 			break;
20694 		default:
20695 			break;
20696 		}
20697 		break;
20698 	default:
20699 		break;
20700 	}
20701 
20702 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_IN: exit\n");
20703 
20704 	if (no_caller_buf == TRUE) {
20705 		kmem_free(data_bufp, data_len);
20706 	}
20707 
20708 	return (status);
20709 }
20710 
20711 
20712 /*
20713  *    Function: sd_send_scsi_PERSISTENT_RESERVE_OUT
20714  *
20715  * Description: This routine is the driver entry point for handling CD-ROM
20716  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS,
20717  *		MHIOCGRP_INRESV) by sending the SCSI-3 PROUT commands to the
20718  *		device.
20719  *
20720  *   Arguments: ssc  -  ssc contains un - pointer to soft state struct
20721  *                      for the target.
20722  *		usr_cmd SCSI-3 reservation facility command (one of
20723  *			SD_SCSI3_REGISTER, SD_SCSI3_RESERVE, SD_SCSI3_RELEASE,
20724  *			SD_SCSI3_PREEMPTANDABORT)
20725  *		usr_bufp - user provided pointer register, reserve descriptor or
20726  *			preempt and abort structure (mhioc_register_t,
20727  *                      mhioc_resv_desc_t, mhioc_preemptandabort_t)
20728  *
20729  * Return Code: 0   - Success
20730  *		EACCES
20731  *		ENOTSUP
20732  *		errno return code from sd_ssc_send()
20733  *
20734  *     Context: Can sleep. Does not return until command is completed.
20735  */
20736 
20737 static int
20738 sd_send_scsi_PERSISTENT_RESERVE_OUT(sd_ssc_t *ssc, uchar_t usr_cmd,
20739 	uchar_t	*usr_bufp)
20740 {
20741 	struct scsi_extended_sense	sense_buf;
20742 	union scsi_cdb		cdb;
20743 	struct uscsi_cmd	ucmd_buf;
20744 	int			status;
20745 	uchar_t			data_len = sizeof (sd_prout_t);
20746 	sd_prout_t		*prp;
20747 	struct sd_lun		*un;
20748 
20749 	ASSERT(ssc != NULL);
20750 	un = ssc->ssc_un;
20751 	ASSERT(un != NULL);
20752 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20753 	ASSERT(data_len == 24);	/* required by scsi spec */
20754 
20755 	SD_TRACE(SD_LOG_IO, un,
20756 	    "sd_send_scsi_PERSISTENT_RESERVE_OUT: entry: un:0x%p\n", un);
20757 
20758 	if (usr_bufp == NULL) {
20759 		return (EINVAL);
20760 	}
20761 
20762 	bzero(&cdb, sizeof (cdb));
20763 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20764 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20765 	prp = kmem_zalloc(data_len, KM_SLEEP);
20766 
20767 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_OUT;
20768 	cdb.cdb_opaque[1] = usr_cmd;
20769 	FORMG1COUNT(&cdb, data_len);
20770 
20771 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20772 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
20773 	ucmd_buf.uscsi_bufaddr	= (caddr_t)prp;
20774 	ucmd_buf.uscsi_buflen	= data_len;
20775 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20776 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20777 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
20778 	ucmd_buf.uscsi_timeout	= 60;
20779 
20780 	switch (usr_cmd) {
20781 	case SD_SCSI3_REGISTER: {
20782 		mhioc_register_t *ptr = (mhioc_register_t *)usr_bufp;
20783 
20784 		bcopy(ptr->oldkey.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
20785 		bcopy(ptr->newkey.key, prp->service_key,
20786 		    MHIOC_RESV_KEY_SIZE);
20787 		prp->aptpl = ptr->aptpl;
20788 		break;
20789 	}
20790 	case SD_SCSI3_RESERVE:
20791 	case SD_SCSI3_RELEASE: {
20792 		mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp;
20793 
20794 		bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
20795 		prp->scope_address = BE_32(ptr->scope_specific_addr);
20796 		cdb.cdb_opaque[2] = ptr->type;
20797 		break;
20798 	}
20799 	case SD_SCSI3_PREEMPTANDABORT: {
20800 		mhioc_preemptandabort_t *ptr =
20801 		    (mhioc_preemptandabort_t *)usr_bufp;
20802 
20803 		bcopy(ptr->resvdesc.key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
20804 		bcopy(ptr->victim_key.key, prp->service_key,
20805 		    MHIOC_RESV_KEY_SIZE);
20806 		prp->scope_address = BE_32(ptr->resvdesc.scope_specific_addr);
20807 		cdb.cdb_opaque[2] = ptr->resvdesc.type;
20808 		ucmd_buf.uscsi_flags |= USCSI_HEAD;
20809 		break;
20810 	}
20811 	case SD_SCSI3_REGISTERANDIGNOREKEY:
20812 	{
20813 		mhioc_registerandignorekey_t *ptr;
20814 		ptr = (mhioc_registerandignorekey_t *)usr_bufp;
20815 		bcopy(ptr->newkey.key,
20816 		    prp->service_key, MHIOC_RESV_KEY_SIZE);
20817 		prp->aptpl = ptr->aptpl;
20818 		break;
20819 	}
20820 	default:
20821 		ASSERT(FALSE);
20822 		break;
20823 	}
20824 
20825 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20826 	    UIO_SYSSPACE, SD_PATH_STANDARD);
20827 
20828 	switch (status) {
20829 	case 0:
20830 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20831 		break;	/* Success! */
20832 	case EIO:
20833 		switch (ucmd_buf.uscsi_status) {
20834 		case STATUS_RESERVATION_CONFLICT:
20835 			status = EACCES;
20836 			break;
20837 		case STATUS_CHECK:
20838 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20839 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
20840 			    KEY_ILLEGAL_REQUEST)) {
20841 				status = ENOTSUP;
20842 			}
20843 			break;
20844 		default:
20845 			break;
20846 		}
20847 		break;
20848 	default:
20849 		break;
20850 	}
20851 
20852 	kmem_free(prp, data_len);
20853 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_OUT: exit\n");
20854 	return (status);
20855 }
20856 
20857 
20858 /*
20859  *    Function: sd_send_scsi_SYNCHRONIZE_CACHE
20860  *
20861  * Description: Issues a scsi SYNCHRONIZE CACHE command to the target
20862  *
20863  *   Arguments: un - pointer to the target's soft state struct
20864  *              dkc - pointer to the callback structure
20865  *
20866  * Return Code: 0 - success
20867  *		errno-type error code
20868  *
20869  *     Context: kernel thread context only.
20870  *
20871  *  _______________________________________________________________
20872  * | dkc_flag &   | dkc_callback | DKIOCFLUSHWRITECACHE            |
20873  * |FLUSH_VOLATILE|              | operation                       |
20874  * |______________|______________|_________________________________|
20875  * | 0            | NULL         | Synchronous flush on both       |
20876  * |              |              | volatile and non-volatile cache |
20877  * |______________|______________|_________________________________|
20878  * | 1            | NULL         | Synchronous flush on volatile   |
20879  * |              |              | cache; disk drivers may suppress|
20880  * |              |              | flush if disk table indicates   |
20881  * |              |              | non-volatile cache              |
20882  * |______________|______________|_________________________________|
20883  * | 0            | !NULL        | Asynchronous flush on both      |
20884  * |              |              | volatile and non-volatile cache;|
20885  * |______________|______________|_________________________________|
20886  * | 1            | !NULL        | Asynchronous flush on volatile  |
20887  * |              |              | cache; disk drivers may suppress|
20888  * |              |              | flush if disk table indicates   |
20889  * |              |              | non-volatile cache              |
20890  * |______________|______________|_________________________________|
20891  *
20892  */
20893 
20894 static int
20895 sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un, struct dk_callback *dkc)
20896 {
20897 	struct sd_uscsi_info	*uip;
20898 	struct uscsi_cmd	*uscmd;
20899 	union scsi_cdb		*cdb;
20900 	struct buf		*bp;
20901 	int			rval = 0;
20902 	int			is_async;
20903 
20904 	SD_TRACE(SD_LOG_IO, un,
20905 	    "sd_send_scsi_SYNCHRONIZE_CACHE: entry: un:0x%p\n", un);
20906 
20907 	ASSERT(un != NULL);
20908 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20909 
20910 	if (dkc == NULL || dkc->dkc_callback == NULL) {
20911 		is_async = FALSE;
20912 	} else {
20913 		is_async = TRUE;
20914 	}
20915 
20916 	mutex_enter(SD_MUTEX(un));
20917 	/* check whether cache flush should be suppressed */
20918 	if (un->un_f_suppress_cache_flush == TRUE) {
20919 		mutex_exit(SD_MUTEX(un));
20920 		/*
20921 		 * suppress the cache flush if the device is told to do
20922 		 * so by sd.conf or disk table
20923 		 */
20924 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_SYNCHRONIZE_CACHE: \
20925 		    skip the cache flush since suppress_cache_flush is %d!\n",
20926 		    un->un_f_suppress_cache_flush);
20927 
20928 		if (is_async == TRUE) {
20929 			/* invoke callback for asynchronous flush */
20930 			(*dkc->dkc_callback)(dkc->dkc_cookie, 0);
20931 		}
20932 		return (rval);
20933 	}
20934 	mutex_exit(SD_MUTEX(un));
20935 
20936 	/*
20937 	 * check dkc_flag & FLUSH_VOLATILE so SYNC_NV bit can be
20938 	 * set properly
20939 	 */
20940 	cdb = kmem_zalloc(CDB_GROUP1, KM_SLEEP);
20941 	cdb->scc_cmd = SCMD_SYNCHRONIZE_CACHE;
20942 
20943 	mutex_enter(SD_MUTEX(un));
20944 	if (dkc != NULL && un->un_f_sync_nv_supported &&
20945 	    (dkc->dkc_flag & FLUSH_VOLATILE)) {
20946 		/*
20947 		 * if the device supports SYNC_NV bit, turn on
20948 		 * the SYNC_NV bit to only flush volatile cache
20949 		 */
20950 		cdb->cdb_un.tag |= SD_SYNC_NV_BIT;
20951 	}
20952 	mutex_exit(SD_MUTEX(un));
20953 
20954 	/*
20955 	 * First get some memory for the uscsi_cmd struct and cdb
20956 	 * and initialize for SYNCHRONIZE_CACHE cmd.
20957 	 */
20958 	uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
20959 	uscmd->uscsi_cdblen = CDB_GROUP1;
20960 	uscmd->uscsi_cdb = (caddr_t)cdb;
20961 	uscmd->uscsi_bufaddr = NULL;
20962 	uscmd->uscsi_buflen = 0;
20963 	uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
20964 	uscmd->uscsi_rqlen = SENSE_LENGTH;
20965 	uscmd->uscsi_rqresid = SENSE_LENGTH;
20966 	uscmd->uscsi_flags = USCSI_RQENABLE | USCSI_SILENT;
20967 	uscmd->uscsi_timeout = sd_io_time;
20968 
20969 	/*
20970 	 * Allocate an sd_uscsi_info struct and fill it with the info
20971 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
20972 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
20973 	 * since we allocate the buf here in this function, we do not
20974 	 * need to preserve the prior contents of b_private.
20975 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
20976 	 */
20977 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
20978 	uip->ui_flags = SD_PATH_DIRECT;
20979 	uip->ui_cmdp  = uscmd;
20980 
20981 	bp = getrbuf(KM_SLEEP);
20982 	bp->b_private = uip;
20983 
20984 	/*
20985 	 * Setup buffer to carry uscsi request.
20986 	 */
20987 	bp->b_flags  = B_BUSY;
20988 	bp->b_bcount = 0;
20989 	bp->b_blkno  = 0;
20990 
20991 	if (is_async == TRUE) {
20992 		bp->b_iodone = sd_send_scsi_SYNCHRONIZE_CACHE_biodone;
20993 		uip->ui_dkc = *dkc;
20994 	}
20995 
20996 	bp->b_edev = SD_GET_DEV(un);
20997 	bp->b_dev = cmpdev(bp->b_edev);	/* maybe unnecessary? */
20998 
20999 	/*
21000 	 * Unset un_f_sync_cache_required flag
21001 	 */
21002 	mutex_enter(SD_MUTEX(un));
21003 	un->un_f_sync_cache_required = FALSE;
21004 	mutex_exit(SD_MUTEX(un));
21005 
21006 	(void) sd_uscsi_strategy(bp);
21007 
21008 	/*
21009 	 * If synchronous request, wait for completion
21010 	 * If async just return and let b_iodone callback
21011 	 * cleanup.
21012 	 * NOTE: On return, u_ncmds_in_driver will be decremented,
21013 	 * but it was also incremented in sd_uscsi_strategy(), so
21014 	 * we should be ok.
21015 	 */
21016 	if (is_async == FALSE) {
21017 		(void) biowait(bp);
21018 		rval = sd_send_scsi_SYNCHRONIZE_CACHE_biodone(bp);
21019 	}
21020 
21021 	return (rval);
21022 }
21023 
21024 
21025 static int
21026 sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp)
21027 {
21028 	struct sd_uscsi_info *uip;
21029 	struct uscsi_cmd *uscmd;
21030 	uint8_t *sense_buf;
21031 	struct sd_lun *un;
21032 	int status;
21033 	union scsi_cdb *cdb;
21034 
21035 	uip = (struct sd_uscsi_info *)(bp->b_private);
21036 	ASSERT(uip != NULL);
21037 
21038 	uscmd = uip->ui_cmdp;
21039 	ASSERT(uscmd != NULL);
21040 
21041 	sense_buf = (uint8_t *)uscmd->uscsi_rqbuf;
21042 	ASSERT(sense_buf != NULL);
21043 
21044 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
21045 	ASSERT(un != NULL);
21046 
21047 	cdb = (union scsi_cdb *)uscmd->uscsi_cdb;
21048 
21049 	status = geterror(bp);
21050 	switch (status) {
21051 	case 0:
21052 		break;	/* Success! */
21053 	case EIO:
21054 		switch (uscmd->uscsi_status) {
21055 		case STATUS_RESERVATION_CONFLICT:
21056 			/* Ignore reservation conflict */
21057 			status = 0;
21058 			goto done;
21059 
21060 		case STATUS_CHECK:
21061 			if ((uscmd->uscsi_rqstatus == STATUS_GOOD) &&
21062 			    (scsi_sense_key(sense_buf) ==
21063 			    KEY_ILLEGAL_REQUEST)) {
21064 				/* Ignore Illegal Request error */
21065 				if (cdb->cdb_un.tag&SD_SYNC_NV_BIT) {
21066 					mutex_enter(SD_MUTEX(un));
21067 					un->un_f_sync_nv_supported = FALSE;
21068 					mutex_exit(SD_MUTEX(un));
21069 					status = 0;
21070 					SD_TRACE(SD_LOG_IO, un,
21071 					    "un_f_sync_nv_supported \
21072 					    is set to false.\n");
21073 					goto done;
21074 				}
21075 
21076 				mutex_enter(SD_MUTEX(un));
21077 				un->un_f_sync_cache_supported = FALSE;
21078 				mutex_exit(SD_MUTEX(un));
21079 				SD_TRACE(SD_LOG_IO, un,
21080 				    "sd_send_scsi_SYNCHRONIZE_CACHE_biodone: \
21081 				    un_f_sync_cache_supported set to false \
21082 				    with asc = %x, ascq = %x\n",
21083 				    scsi_sense_asc(sense_buf),
21084 				    scsi_sense_ascq(sense_buf));
21085 				status = ENOTSUP;
21086 				goto done;
21087 			}
21088 			break;
21089 		default:
21090 			break;
21091 		}
21092 		/* FALLTHRU */
21093 	default:
21094 		/*
21095 		 * Turn on the un_f_sync_cache_required flag
21096 		 * since the SYNC CACHE command failed
21097 		 */
21098 		mutex_enter(SD_MUTEX(un));
21099 		un->un_f_sync_cache_required = TRUE;
21100 		mutex_exit(SD_MUTEX(un));
21101 
21102 		/*
21103 		 * Don't log an error message if this device
21104 		 * has removable media.
21105 		 */
21106 		if (!un->un_f_has_removable_media) {
21107 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
21108 			    "SYNCHRONIZE CACHE command failed (%d)\n", status);
21109 		}
21110 		break;
21111 	}
21112 
21113 done:
21114 	if (uip->ui_dkc.dkc_callback != NULL) {
21115 		(*uip->ui_dkc.dkc_callback)(uip->ui_dkc.dkc_cookie, status);
21116 	}
21117 
21118 	ASSERT((bp->b_flags & B_REMAPPED) == 0);
21119 	freerbuf(bp);
21120 	kmem_free(uip, sizeof (struct sd_uscsi_info));
21121 	kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH);
21122 	kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen);
21123 	kmem_free(uscmd, sizeof (struct uscsi_cmd));
21124 
21125 	return (status);
21126 }
21127 
21128 
21129 /*
21130  *    Function: sd_send_scsi_GET_CONFIGURATION
21131  *
21132  * Description: Issues the get configuration command to the device.
21133  *		Called from sd_check_for_writable_cd & sd_get_media_info
21134  *		caller needs to ensure that buflen = SD_PROFILE_HEADER_LEN
21135  *   Arguments: ssc
21136  *		ucmdbuf
21137  *		rqbuf
21138  *		rqbuflen
21139  *		bufaddr
21140  *		buflen
21141  *		path_flag
21142  *
21143  * Return Code: 0   - Success
21144  *		errno return code from sd_ssc_send()
21145  *
21146  *     Context: Can sleep. Does not return until command is completed.
21147  *
21148  */
21149 
21150 static int
21151 sd_send_scsi_GET_CONFIGURATION(sd_ssc_t *ssc, struct uscsi_cmd *ucmdbuf,
21152 	uchar_t *rqbuf, uint_t rqbuflen, uchar_t *bufaddr, uint_t buflen,
21153 	int path_flag)
21154 {
21155 	char	cdb[CDB_GROUP1];
21156 	int	status;
21157 	struct sd_lun	*un;
21158 
21159 	ASSERT(ssc != NULL);
21160 	un = ssc->ssc_un;
21161 	ASSERT(un != NULL);
21162 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21163 	ASSERT(bufaddr != NULL);
21164 	ASSERT(ucmdbuf != NULL);
21165 	ASSERT(rqbuf != NULL);
21166 
21167 	SD_TRACE(SD_LOG_IO, un,
21168 	    "sd_send_scsi_GET_CONFIGURATION: entry: un:0x%p\n", un);
21169 
21170 	bzero(cdb, sizeof (cdb));
21171 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
21172 	bzero(rqbuf, rqbuflen);
21173 	bzero(bufaddr, buflen);
21174 
21175 	/*
21176 	 * Set up cdb field for the get configuration command.
21177 	 */
21178 	cdb[0] = SCMD_GET_CONFIGURATION;
21179 	cdb[1] = 0x02;  /* Requested Type */
21180 	cdb[8] = SD_PROFILE_HEADER_LEN;
21181 	ucmdbuf->uscsi_cdb = cdb;
21182 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
21183 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
21184 	ucmdbuf->uscsi_buflen = buflen;
21185 	ucmdbuf->uscsi_timeout = sd_io_time;
21186 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
21187 	ucmdbuf->uscsi_rqlen = rqbuflen;
21188 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
21189 
21190 	status = sd_ssc_send(ssc, ucmdbuf, FKIOCTL,
21191 	    UIO_SYSSPACE, path_flag);
21192 
21193 	switch (status) {
21194 	case 0:
21195 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
21196 		break;  /* Success! */
21197 	case EIO:
21198 		switch (ucmdbuf->uscsi_status) {
21199 		case STATUS_RESERVATION_CONFLICT:
21200 			status = EACCES;
21201 			break;
21202 		default:
21203 			break;
21204 		}
21205 		break;
21206 	default:
21207 		break;
21208 	}
21209 
21210 	if (status == 0) {
21211 		SD_DUMP_MEMORY(un, SD_LOG_IO,
21212 		    "sd_send_scsi_GET_CONFIGURATION: data",
21213 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
21214 	}
21215 
21216 	SD_TRACE(SD_LOG_IO, un,
21217 	    "sd_send_scsi_GET_CONFIGURATION: exit\n");
21218 
21219 	return (status);
21220 }
21221 
21222 /*
21223  *    Function: sd_send_scsi_feature_GET_CONFIGURATION
21224  *
21225  * Description: Issues the get configuration command to the device to
21226  *              retrieve a specific feature. Called from
21227  *		sd_check_for_writable_cd & sd_set_mmc_caps.
21228  *   Arguments: ssc
21229  *              ucmdbuf
21230  *              rqbuf
21231  *              rqbuflen
21232  *              bufaddr
21233  *              buflen
21234  *		feature
21235  *
21236  * Return Code: 0   - Success
21237  *              errno return code from sd_ssc_send()
21238  *
21239  *     Context: Can sleep. Does not return until command is completed.
21240  *
21241  */
21242 static int
21243 sd_send_scsi_feature_GET_CONFIGURATION(sd_ssc_t *ssc,
21244 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
21245 	uchar_t *bufaddr, uint_t buflen, char feature, int path_flag)
21246 {
21247 	char    cdb[CDB_GROUP1];
21248 	int	status;
21249 	struct sd_lun	*un;
21250 
21251 	ASSERT(ssc != NULL);
21252 	un = ssc->ssc_un;
21253 	ASSERT(un != NULL);
21254 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21255 	ASSERT(bufaddr != NULL);
21256 	ASSERT(ucmdbuf != NULL);
21257 	ASSERT(rqbuf != NULL);
21258 
21259 	SD_TRACE(SD_LOG_IO, un,
21260 	    "sd_send_scsi_feature_GET_CONFIGURATION: entry: un:0x%p\n", un);
21261 
21262 	bzero(cdb, sizeof (cdb));
21263 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
21264 	bzero(rqbuf, rqbuflen);
21265 	bzero(bufaddr, buflen);
21266 
21267 	/*
21268 	 * Set up cdb field for the get configuration command.
21269 	 */
21270 	cdb[0] = SCMD_GET_CONFIGURATION;
21271 	cdb[1] = 0x02;  /* Requested Type */
21272 	cdb[3] = feature;
21273 	cdb[8] = buflen;
21274 	ucmdbuf->uscsi_cdb = cdb;
21275 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
21276 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
21277 	ucmdbuf->uscsi_buflen = buflen;
21278 	ucmdbuf->uscsi_timeout = sd_io_time;
21279 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
21280 	ucmdbuf->uscsi_rqlen = rqbuflen;
21281 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
21282 
21283 	status = sd_ssc_send(ssc, ucmdbuf, FKIOCTL,
21284 	    UIO_SYSSPACE, path_flag);
21285 
21286 	switch (status) {
21287 	case 0:
21288 
21289 		break;  /* Success! */
21290 	case EIO:
21291 		switch (ucmdbuf->uscsi_status) {
21292 		case STATUS_RESERVATION_CONFLICT:
21293 			status = EACCES;
21294 			break;
21295 		default:
21296 			break;
21297 		}
21298 		break;
21299 	default:
21300 		break;
21301 	}
21302 
21303 	if (status == 0) {
21304 		SD_DUMP_MEMORY(un, SD_LOG_IO,
21305 		    "sd_send_scsi_feature_GET_CONFIGURATION: data",
21306 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
21307 	}
21308 
21309 	SD_TRACE(SD_LOG_IO, un,
21310 	    "sd_send_scsi_feature_GET_CONFIGURATION: exit\n");
21311 
21312 	return (status);
21313 }
21314 
21315 
21316 /*
21317  *    Function: sd_send_scsi_MODE_SENSE
21318  *
21319  * Description: Utility function for issuing a scsi MODE SENSE command.
21320  *		Note: This routine uses a consistent implementation for Group0,
21321  *		Group1, and Group2 commands across all platforms. ATAPI devices
21322  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
21323  *
21324  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
21325  *                      structure for this target.
21326  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
21327  *			  CDB_GROUP[1|2] (10 byte).
21328  *		bufaddr - buffer for page data retrieved from the target.
21329  *		buflen - size of page to be retrieved.
21330  *		page_code - page code of data to be retrieved from the target.
21331  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
21332  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
21333  *			to use the USCSI "direct" chain and bypass the normal
21334  *			command waitq.
21335  *
21336  * Return Code: 0   - Success
21337  *		errno return code from sd_ssc_send()
21338  *
21339  *     Context: Can sleep. Does not return until command is completed.
21340  */
21341 
21342 static int
21343 sd_send_scsi_MODE_SENSE(sd_ssc_t *ssc, int cdbsize, uchar_t *bufaddr,
21344 	size_t buflen,  uchar_t page_code, int path_flag)
21345 {
21346 	struct	scsi_extended_sense	sense_buf;
21347 	union scsi_cdb		cdb;
21348 	struct uscsi_cmd	ucmd_buf;
21349 	int			status;
21350 	int			headlen;
21351 	struct sd_lun		*un;
21352 
21353 	ASSERT(ssc != NULL);
21354 	un = ssc->ssc_un;
21355 	ASSERT(un != NULL);
21356 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21357 	ASSERT(bufaddr != NULL);
21358 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
21359 	    (cdbsize == CDB_GROUP2));
21360 
21361 	SD_TRACE(SD_LOG_IO, un,
21362 	    "sd_send_scsi_MODE_SENSE: entry: un:0x%p\n", un);
21363 
21364 	bzero(&cdb, sizeof (cdb));
21365 	bzero(&ucmd_buf, sizeof (ucmd_buf));
21366 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
21367 	bzero(bufaddr, buflen);
21368 
21369 	if (cdbsize == CDB_GROUP0) {
21370 		cdb.scc_cmd = SCMD_MODE_SENSE;
21371 		cdb.cdb_opaque[2] = page_code;
21372 		FORMG0COUNT(&cdb, buflen);
21373 		headlen = MODE_HEADER_LENGTH;
21374 	} else {
21375 		cdb.scc_cmd = SCMD_MODE_SENSE_G1;
21376 		cdb.cdb_opaque[2] = page_code;
21377 		FORMG1COUNT(&cdb, buflen);
21378 		headlen = MODE_HEADER_LENGTH_GRP2;
21379 	}
21380 
21381 	ASSERT(headlen <= buflen);
21382 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
21383 
21384 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
21385 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
21386 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
21387 	ucmd_buf.uscsi_buflen	= buflen;
21388 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
21389 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
21390 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
21391 	ucmd_buf.uscsi_timeout	= 60;
21392 
21393 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
21394 	    UIO_SYSSPACE, path_flag);
21395 
21396 	switch (status) {
21397 	case 0:
21398 		/*
21399 		 * sr_check_wp() uses 0x3f page code and check the header of
21400 		 * mode page to determine if target device is write-protected.
21401 		 * But some USB devices return 0 bytes for 0x3f page code. For
21402 		 * this case, make sure that mode page header is returned at
21403 		 * least.
21404 		 */
21405 		if (buflen - ucmd_buf.uscsi_resid <  headlen) {
21406 			status = EIO;
21407 			sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
21408 			    "mode page header is not returned");
21409 		}
21410 		break;	/* Success! */
21411 	case EIO:
21412 		switch (ucmd_buf.uscsi_status) {
21413 		case STATUS_RESERVATION_CONFLICT:
21414 			status = EACCES;
21415 			break;
21416 		default:
21417 			break;
21418 		}
21419 		break;
21420 	default:
21421 		break;
21422 	}
21423 
21424 	if (status == 0) {
21425 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SENSE: data",
21426 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
21427 	}
21428 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SENSE: exit\n");
21429 
21430 	return (status);
21431 }
21432 
21433 
21434 /*
21435  *    Function: sd_send_scsi_MODE_SELECT
21436  *
21437  * Description: Utility function for issuing a scsi MODE SELECT command.
21438  *		Note: This routine uses a consistent implementation for Group0,
21439  *		Group1, and Group2 commands across all platforms. ATAPI devices
21440  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
21441  *
21442  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
21443  *                      structure for this target.
21444  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
21445  *			  CDB_GROUP[1|2] (10 byte).
21446  *		bufaddr - buffer for page data retrieved from the target.
21447  *		buflen - size of page to be retrieved.
21448  *		save_page - boolean to determin if SP bit should be set.
21449  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
21450  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
21451  *			to use the USCSI "direct" chain and bypass the normal
21452  *			command waitq.
21453  *
21454  * Return Code: 0   - Success
21455  *		errno return code from sd_ssc_send()
21456  *
21457  *     Context: Can sleep. Does not return until command is completed.
21458  */
21459 
21460 static int
21461 sd_send_scsi_MODE_SELECT(sd_ssc_t *ssc, int cdbsize, uchar_t *bufaddr,
21462 	size_t buflen,  uchar_t save_page, int path_flag)
21463 {
21464 	struct	scsi_extended_sense	sense_buf;
21465 	union scsi_cdb		cdb;
21466 	struct uscsi_cmd	ucmd_buf;
21467 	int			status;
21468 	struct sd_lun		*un;
21469 
21470 	ASSERT(ssc != NULL);
21471 	un = ssc->ssc_un;
21472 	ASSERT(un != NULL);
21473 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21474 	ASSERT(bufaddr != NULL);
21475 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
21476 	    (cdbsize == CDB_GROUP2));
21477 
21478 	SD_TRACE(SD_LOG_IO, un,
21479 	    "sd_send_scsi_MODE_SELECT: entry: un:0x%p\n", un);
21480 
21481 	bzero(&cdb, sizeof (cdb));
21482 	bzero(&ucmd_buf, sizeof (ucmd_buf));
21483 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
21484 
21485 	/* Set the PF bit for many third party drives */
21486 	cdb.cdb_opaque[1] = 0x10;
21487 
21488 	/* Set the savepage(SP) bit if given */
21489 	if (save_page == SD_SAVE_PAGE) {
21490 		cdb.cdb_opaque[1] |= 0x01;
21491 	}
21492 
21493 	if (cdbsize == CDB_GROUP0) {
21494 		cdb.scc_cmd = SCMD_MODE_SELECT;
21495 		FORMG0COUNT(&cdb, buflen);
21496 	} else {
21497 		cdb.scc_cmd = SCMD_MODE_SELECT_G1;
21498 		FORMG1COUNT(&cdb, buflen);
21499 	}
21500 
21501 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
21502 
21503 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
21504 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
21505 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
21506 	ucmd_buf.uscsi_buflen	= buflen;
21507 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
21508 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
21509 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
21510 	ucmd_buf.uscsi_timeout	= 60;
21511 
21512 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
21513 	    UIO_SYSSPACE, path_flag);
21514 
21515 	switch (status) {
21516 	case 0:
21517 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
21518 		break;	/* Success! */
21519 	case EIO:
21520 		switch (ucmd_buf.uscsi_status) {
21521 		case STATUS_RESERVATION_CONFLICT:
21522 			status = EACCES;
21523 			break;
21524 		default:
21525 			break;
21526 		}
21527 		break;
21528 	default:
21529 		break;
21530 	}
21531 
21532 	if (status == 0) {
21533 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SELECT: data",
21534 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
21535 	}
21536 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SELECT: exit\n");
21537 
21538 	return (status);
21539 }
21540 
21541 
21542 /*
21543  *    Function: sd_send_scsi_RDWR
21544  *
21545  * Description: Issue a scsi READ or WRITE command with the given parameters.
21546  *
21547  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
21548  *                      structure for this target.
21549  *		cmd:	 SCMD_READ or SCMD_WRITE
21550  *		bufaddr: Address of caller's buffer to receive the RDWR data
21551  *		buflen:  Length of caller's buffer receive the RDWR data.
21552  *		start_block: Block number for the start of the RDWR operation.
21553  *			 (Assumes target-native block size.)
21554  *		residp:  Pointer to variable to receive the redisual of the
21555  *			 RDWR operation (may be NULL of no residual requested).
21556  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
21557  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
21558  *			to use the USCSI "direct" chain and bypass the normal
21559  *			command waitq.
21560  *
21561  * Return Code: 0   - Success
21562  *		errno return code from sd_ssc_send()
21563  *
21564  *     Context: Can sleep. Does not return until command is completed.
21565  */
21566 
21567 static int
21568 sd_send_scsi_RDWR(sd_ssc_t *ssc, uchar_t cmd, void *bufaddr,
21569 	size_t buflen, daddr_t start_block, int path_flag)
21570 {
21571 	struct	scsi_extended_sense	sense_buf;
21572 	union scsi_cdb		cdb;
21573 	struct uscsi_cmd	ucmd_buf;
21574 	uint32_t		block_count;
21575 	int			status;
21576 	int			cdbsize;
21577 	uchar_t			flag;
21578 	struct sd_lun		*un;
21579 
21580 	ASSERT(ssc != NULL);
21581 	un = ssc->ssc_un;
21582 	ASSERT(un != NULL);
21583 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21584 	ASSERT(bufaddr != NULL);
21585 	ASSERT((cmd == SCMD_READ) || (cmd == SCMD_WRITE));
21586 
21587 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: entry: un:0x%p\n", un);
21588 
21589 	if (un->un_f_tgt_blocksize_is_valid != TRUE) {
21590 		return (EINVAL);
21591 	}
21592 
21593 	mutex_enter(SD_MUTEX(un));
21594 	block_count = SD_BYTES2TGTBLOCKS(un, buflen);
21595 	mutex_exit(SD_MUTEX(un));
21596 
21597 	flag = (cmd == SCMD_READ) ? USCSI_READ : USCSI_WRITE;
21598 
21599 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_RDWR: "
21600 	    "bufaddr:0x%p buflen:0x%x start_block:0x%p block_count:0x%x\n",
21601 	    bufaddr, buflen, start_block, block_count);
21602 
21603 	bzero(&cdb, sizeof (cdb));
21604 	bzero(&ucmd_buf, sizeof (ucmd_buf));
21605 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
21606 
21607 	/* Compute CDB size to use */
21608 	if (start_block > 0xffffffff)
21609 		cdbsize = CDB_GROUP4;
21610 	else if ((start_block & 0xFFE00000) ||
21611 	    (un->un_f_cfg_is_atapi == TRUE))
21612 		cdbsize = CDB_GROUP1;
21613 	else
21614 		cdbsize = CDB_GROUP0;
21615 
21616 	switch (cdbsize) {
21617 	case CDB_GROUP0:	/* 6-byte CDBs */
21618 		cdb.scc_cmd = cmd;
21619 		FORMG0ADDR(&cdb, start_block);
21620 		FORMG0COUNT(&cdb, block_count);
21621 		break;
21622 	case CDB_GROUP1:	/* 10-byte CDBs */
21623 		cdb.scc_cmd = cmd | SCMD_GROUP1;
21624 		FORMG1ADDR(&cdb, start_block);
21625 		FORMG1COUNT(&cdb, block_count);
21626 		break;
21627 	case CDB_GROUP4:	/* 16-byte CDBs */
21628 		cdb.scc_cmd = cmd | SCMD_GROUP4;
21629 		FORMG4LONGADDR(&cdb, (uint64_t)start_block);
21630 		FORMG4COUNT(&cdb, block_count);
21631 		break;
21632 	case CDB_GROUP5:	/* 12-byte CDBs (currently unsupported) */
21633 	default:
21634 		/* All others reserved */
21635 		return (EINVAL);
21636 	}
21637 
21638 	/* Set LUN bit(s) in CDB if this is a SCSI-1 device */
21639 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
21640 
21641 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
21642 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
21643 	ucmd_buf.uscsi_bufaddr	= bufaddr;
21644 	ucmd_buf.uscsi_buflen	= buflen;
21645 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
21646 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
21647 	ucmd_buf.uscsi_flags	= flag | USCSI_RQENABLE | USCSI_SILENT;
21648 	ucmd_buf.uscsi_timeout	= 60;
21649 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
21650 	    UIO_SYSSPACE, path_flag);
21651 
21652 	switch (status) {
21653 	case 0:
21654 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
21655 		break;	/* Success! */
21656 	case EIO:
21657 		switch (ucmd_buf.uscsi_status) {
21658 		case STATUS_RESERVATION_CONFLICT:
21659 			status = EACCES;
21660 			break;
21661 		default:
21662 			break;
21663 		}
21664 		break;
21665 	default:
21666 		break;
21667 	}
21668 
21669 	if (status == 0) {
21670 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_RDWR: data",
21671 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
21672 	}
21673 
21674 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: exit\n");
21675 
21676 	return (status);
21677 }
21678 
21679 
21680 /*
21681  *    Function: sd_send_scsi_LOG_SENSE
21682  *
21683  * Description: Issue a scsi LOG_SENSE command with the given parameters.
21684  *
21685  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
21686  *                      structure for this target.
21687  *
21688  * Return Code: 0   - Success
21689  *		errno return code from sd_ssc_send()
21690  *
21691  *     Context: Can sleep. Does not return until command is completed.
21692  */
21693 
21694 static int
21695 sd_send_scsi_LOG_SENSE(sd_ssc_t *ssc, uchar_t *bufaddr, uint16_t buflen,
21696 	uchar_t page_code, uchar_t page_control, uint16_t param_ptr,
21697 	int path_flag)
21698 
21699 {
21700 	struct scsi_extended_sense	sense_buf;
21701 	union scsi_cdb		cdb;
21702 	struct uscsi_cmd	ucmd_buf;
21703 	int			status;
21704 	struct sd_lun		*un;
21705 
21706 	ASSERT(ssc != NULL);
21707 	un = ssc->ssc_un;
21708 	ASSERT(un != NULL);
21709 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21710 
21711 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: entry: un:0x%p\n", un);
21712 
21713 	bzero(&cdb, sizeof (cdb));
21714 	bzero(&ucmd_buf, sizeof (ucmd_buf));
21715 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
21716 
21717 	cdb.scc_cmd = SCMD_LOG_SENSE_G1;
21718 	cdb.cdb_opaque[2] = (page_control << 6) | page_code;
21719 	cdb.cdb_opaque[5] = (uchar_t)((param_ptr & 0xFF00) >> 8);
21720 	cdb.cdb_opaque[6] = (uchar_t)(param_ptr  & 0x00FF);
21721 	FORMG1COUNT(&cdb, buflen);
21722 
21723 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
21724 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
21725 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
21726 	ucmd_buf.uscsi_buflen	= buflen;
21727 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
21728 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
21729 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
21730 	ucmd_buf.uscsi_timeout	= 60;
21731 
21732 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
21733 	    UIO_SYSSPACE, path_flag);
21734 
21735 	switch (status) {
21736 	case 0:
21737 		break;
21738 	case EIO:
21739 		switch (ucmd_buf.uscsi_status) {
21740 		case STATUS_RESERVATION_CONFLICT:
21741 			status = EACCES;
21742 			break;
21743 		case STATUS_CHECK:
21744 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
21745 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
21746 				KEY_ILLEGAL_REQUEST) &&
21747 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x24)) {
21748 				/*
21749 				 * ASC 0x24: INVALID FIELD IN CDB
21750 				 */
21751 				switch (page_code) {
21752 				case START_STOP_CYCLE_PAGE:
21753 					/*
21754 					 * The start stop cycle counter is
21755 					 * implemented as page 0x31 in earlier
21756 					 * generation disks. In new generation
21757 					 * disks the start stop cycle counter is
21758 					 * implemented as page 0xE. To properly
21759 					 * handle this case if an attempt for
21760 					 * log page 0xE is made and fails we
21761 					 * will try again using page 0x31.
21762 					 *
21763 					 * Network storage BU committed to
21764 					 * maintain the page 0x31 for this
21765 					 * purpose and will not have any other
21766 					 * page implemented with page code 0x31
21767 					 * until all disks transition to the
21768 					 * standard page.
21769 					 */
21770 					mutex_enter(SD_MUTEX(un));
21771 					un->un_start_stop_cycle_page =
21772 					    START_STOP_CYCLE_VU_PAGE;
21773 					cdb.cdb_opaque[2] =
21774 					    (char)(page_control << 6) |
21775 					    un->un_start_stop_cycle_page;
21776 					mutex_exit(SD_MUTEX(un));
21777 					sd_ssc_assessment(ssc, SD_FMT_IGNORE);
21778 					status = sd_ssc_send(
21779 					    ssc, &ucmd_buf, FKIOCTL,
21780 					    UIO_SYSSPACE, path_flag);
21781 
21782 					break;
21783 				case TEMPERATURE_PAGE:
21784 					status = ENOTTY;
21785 					break;
21786 				default:
21787 					break;
21788 				}
21789 			}
21790 			break;
21791 		default:
21792 			break;
21793 		}
21794 		break;
21795 	default:
21796 		break;
21797 	}
21798 
21799 	if (status == 0) {
21800 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
21801 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_LOG_SENSE: data",
21802 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
21803 	}
21804 
21805 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: exit\n");
21806 
21807 	return (status);
21808 }
21809 
21810 
21811 /*
21812  *    Function: sdioctl
21813  *
21814  * Description: Driver's ioctl(9e) entry point function.
21815  *
21816  *   Arguments: dev     - device number
21817  *		cmd     - ioctl operation to be performed
21818  *		arg     - user argument, contains data to be set or reference
21819  *			  parameter for get
21820  *		flag    - bit flag, indicating open settings, 32/64 bit type
21821  *		cred_p  - user credential pointer
21822  *		rval_p  - calling process return value (OPT)
21823  *
21824  * Return Code: EINVAL
21825  *		ENOTTY
21826  *		ENXIO
21827  *		EIO
21828  *		EFAULT
21829  *		ENOTSUP
21830  *		EPERM
21831  *
21832  *     Context: Called from the device switch at normal priority.
21833  */
21834 
21835 static int
21836 sdioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cred_p, int *rval_p)
21837 {
21838 	struct sd_lun	*un = NULL;
21839 	int		err = 0;
21840 	int		i = 0;
21841 	cred_t		*cr;
21842 	int		tmprval = EINVAL;
21843 	boolean_t	is_valid;
21844 	sd_ssc_t	*ssc;
21845 
21846 	/*
21847 	 * All device accesses go thru sdstrategy where we check on suspend
21848 	 * status
21849 	 */
21850 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21851 		return (ENXIO);
21852 	}
21853 
21854 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21855 
21856 	/* Initialize sd_ssc_t for internal uscsi commands */
21857 	ssc = sd_ssc_init(un);
21858 
21859 	is_valid = SD_IS_VALID_LABEL(un);
21860 
21861 	/*
21862 	 * Moved this wait from sd_uscsi_strategy to here for
21863 	 * reasons of deadlock prevention. Internal driver commands,
21864 	 * specifically those to change a devices power level, result
21865 	 * in a call to sd_uscsi_strategy.
21866 	 */
21867 	mutex_enter(SD_MUTEX(un));
21868 	while ((un->un_state == SD_STATE_SUSPENDED) ||
21869 	    (un->un_state == SD_STATE_PM_CHANGING)) {
21870 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
21871 	}
21872 	/*
21873 	 * Twiddling the counter here protects commands from now
21874 	 * through to the top of sd_uscsi_strategy. Without the
21875 	 * counter inc. a power down, for example, could get in
21876 	 * after the above check for state is made and before
21877 	 * execution gets to the top of sd_uscsi_strategy.
21878 	 * That would cause problems.
21879 	 */
21880 	un->un_ncmds_in_driver++;
21881 
21882 	if (!is_valid &&
21883 	    (flag & (FNDELAY | FNONBLOCK))) {
21884 		switch (cmd) {
21885 		case DKIOCGGEOM:	/* SD_PATH_DIRECT */
21886 		case DKIOCGVTOC:
21887 		case DKIOCGEXTVTOC:
21888 		case DKIOCGAPART:
21889 		case DKIOCPARTINFO:
21890 		case DKIOCEXTPARTINFO:
21891 		case DKIOCSGEOM:
21892 		case DKIOCSAPART:
21893 		case DKIOCGETEFI:
21894 		case DKIOCPARTITION:
21895 		case DKIOCSVTOC:
21896 		case DKIOCSEXTVTOC:
21897 		case DKIOCSETEFI:
21898 		case DKIOCGMBOOT:
21899 		case DKIOCSMBOOT:
21900 		case DKIOCG_PHYGEOM:
21901 		case DKIOCG_VIRTGEOM:
21902 #if defined(__i386) || defined(__amd64)
21903 		case DKIOCSETEXTPART:
21904 #endif
21905 			/* let cmlb handle it */
21906 			goto skip_ready_valid;
21907 
21908 		case CDROMPAUSE:
21909 		case CDROMRESUME:
21910 		case CDROMPLAYMSF:
21911 		case CDROMPLAYTRKIND:
21912 		case CDROMREADTOCHDR:
21913 		case CDROMREADTOCENTRY:
21914 		case CDROMSTOP:
21915 		case CDROMSTART:
21916 		case CDROMVOLCTRL:
21917 		case CDROMSUBCHNL:
21918 		case CDROMREADMODE2:
21919 		case CDROMREADMODE1:
21920 		case CDROMREADOFFSET:
21921 		case CDROMSBLKMODE:
21922 		case CDROMGBLKMODE:
21923 		case CDROMGDRVSPEED:
21924 		case CDROMSDRVSPEED:
21925 		case CDROMCDDA:
21926 		case CDROMCDXA:
21927 		case CDROMSUBCODE:
21928 			if (!ISCD(un)) {
21929 				un->un_ncmds_in_driver--;
21930 				ASSERT(un->un_ncmds_in_driver >= 0);
21931 				mutex_exit(SD_MUTEX(un));
21932 				err = ENOTTY;
21933 				goto done_without_assess;
21934 			}
21935 			break;
21936 		case FDEJECT:
21937 		case DKIOCEJECT:
21938 		case CDROMEJECT:
21939 			if (!un->un_f_eject_media_supported) {
21940 				un->un_ncmds_in_driver--;
21941 				ASSERT(un->un_ncmds_in_driver >= 0);
21942 				mutex_exit(SD_MUTEX(un));
21943 				err = ENOTTY;
21944 				goto done_without_assess;
21945 			}
21946 			break;
21947 		case DKIOCFLUSHWRITECACHE:
21948 			mutex_exit(SD_MUTEX(un));
21949 			err = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
21950 			if (err != 0) {
21951 				mutex_enter(SD_MUTEX(un));
21952 				un->un_ncmds_in_driver--;
21953 				ASSERT(un->un_ncmds_in_driver >= 0);
21954 				mutex_exit(SD_MUTEX(un));
21955 				err = EIO;
21956 				goto done_quick_assess;
21957 			}
21958 			mutex_enter(SD_MUTEX(un));
21959 			/* FALLTHROUGH */
21960 		case DKIOCREMOVABLE:
21961 		case DKIOCHOTPLUGGABLE:
21962 		case DKIOCINFO:
21963 		case DKIOCGMEDIAINFO:
21964 		case DKIOCGMEDIAINFOEXT:
21965 		case MHIOCENFAILFAST:
21966 		case MHIOCSTATUS:
21967 		case MHIOCTKOWN:
21968 		case MHIOCRELEASE:
21969 		case MHIOCGRP_INKEYS:
21970 		case MHIOCGRP_INRESV:
21971 		case MHIOCGRP_REGISTER:
21972 		case MHIOCGRP_RESERVE:
21973 		case MHIOCGRP_PREEMPTANDABORT:
21974 		case MHIOCGRP_REGISTERANDIGNOREKEY:
21975 		case CDROMCLOSETRAY:
21976 		case USCSICMD:
21977 			goto skip_ready_valid;
21978 		default:
21979 			break;
21980 		}
21981 
21982 		mutex_exit(SD_MUTEX(un));
21983 		err = sd_ready_and_valid(ssc, SDPART(dev));
21984 		mutex_enter(SD_MUTEX(un));
21985 
21986 		if (err != SD_READY_VALID) {
21987 			switch (cmd) {
21988 			case DKIOCSTATE:
21989 			case CDROMGDRVSPEED:
21990 			case CDROMSDRVSPEED:
21991 			case FDEJECT:	/* for eject command */
21992 			case DKIOCEJECT:
21993 			case CDROMEJECT:
21994 			case DKIOCREMOVABLE:
21995 			case DKIOCHOTPLUGGABLE:
21996 				break;
21997 			default:
21998 				if (un->un_f_has_removable_media) {
21999 					err = ENXIO;
22000 				} else {
22001 				/* Do not map SD_RESERVED_BY_OTHERS to EIO */
22002 					if (err == SD_RESERVED_BY_OTHERS) {
22003 						err = EACCES;
22004 					} else {
22005 						err = EIO;
22006 					}
22007 				}
22008 				un->un_ncmds_in_driver--;
22009 				ASSERT(un->un_ncmds_in_driver >= 0);
22010 				mutex_exit(SD_MUTEX(un));
22011 
22012 				goto done_without_assess;
22013 			}
22014 		}
22015 	}
22016 
22017 skip_ready_valid:
22018 	mutex_exit(SD_MUTEX(un));
22019 
22020 	switch (cmd) {
22021 	case DKIOCINFO:
22022 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCINFO\n");
22023 		err = sd_dkio_ctrl_info(dev, (caddr_t)arg, flag);
22024 		break;
22025 
22026 	case DKIOCGMEDIAINFO:
22027 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFO\n");
22028 		err = sd_get_media_info(dev, (caddr_t)arg, flag);
22029 		break;
22030 
22031 	case DKIOCGMEDIAINFOEXT:
22032 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFOEXT\n");
22033 		err = sd_get_media_info_ext(dev, (caddr_t)arg, flag);
22034 		break;
22035 
22036 	case DKIOCGGEOM:
22037 	case DKIOCGVTOC:
22038 	case DKIOCGEXTVTOC:
22039 	case DKIOCGAPART:
22040 	case DKIOCPARTINFO:
22041 	case DKIOCEXTPARTINFO:
22042 	case DKIOCSGEOM:
22043 	case DKIOCSAPART:
22044 	case DKIOCGETEFI:
22045 	case DKIOCPARTITION:
22046 	case DKIOCSVTOC:
22047 	case DKIOCSEXTVTOC:
22048 	case DKIOCSETEFI:
22049 	case DKIOCGMBOOT:
22050 	case DKIOCSMBOOT:
22051 	case DKIOCG_PHYGEOM:
22052 	case DKIOCG_VIRTGEOM:
22053 #if defined(__i386) || defined(__amd64)
22054 	case DKIOCSETEXTPART:
22055 #endif
22056 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOC %d\n", cmd);
22057 
22058 		/* TUR should spin up */
22059 
22060 		if (un->un_f_has_removable_media)
22061 			err = sd_send_scsi_TEST_UNIT_READY(ssc,
22062 			    SD_CHECK_FOR_MEDIA);
22063 
22064 		else
22065 			err = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
22066 
22067 		if (err != 0)
22068 			goto done_with_assess;
22069 
22070 		err = cmlb_ioctl(un->un_cmlbhandle, dev,
22071 		    cmd, arg, flag, cred_p, rval_p, (void *)SD_PATH_DIRECT);
22072 
22073 		if ((err == 0) &&
22074 		    ((cmd == DKIOCSETEFI) ||
22075 		    (un->un_f_pkstats_enabled) &&
22076 		    (cmd == DKIOCSAPART || cmd == DKIOCSVTOC ||
22077 		    cmd == DKIOCSEXTVTOC))) {
22078 
22079 			tmprval = cmlb_validate(un->un_cmlbhandle, CMLB_SILENT,
22080 			    (void *)SD_PATH_DIRECT);
22081 			if ((tmprval == 0) && un->un_f_pkstats_enabled) {
22082 				sd_set_pstats(un);
22083 				SD_TRACE(SD_LOG_IO_PARTITION, un,
22084 				    "sd_ioctl: un:0x%p pstats created and "
22085 				    "set\n", un);
22086 			}
22087 		}
22088 
22089 		if ((cmd == DKIOCSVTOC || cmd == DKIOCSEXTVTOC) ||
22090 		    ((cmd == DKIOCSETEFI) && (tmprval == 0))) {
22091 
22092 			mutex_enter(SD_MUTEX(un));
22093 			if (un->un_f_devid_supported &&
22094 			    (un->un_f_opt_fab_devid == TRUE)) {
22095 				if (un->un_devid == NULL) {
22096 					sd_register_devid(ssc, SD_DEVINFO(un),
22097 					    SD_TARGET_IS_UNRESERVED);
22098 				} else {
22099 					/*
22100 					 * The device id for this disk
22101 					 * has been fabricated. The
22102 					 * device id must be preserved
22103 					 * by writing it back out to
22104 					 * disk.
22105 					 */
22106 					if (sd_write_deviceid(ssc) != 0) {
22107 						ddi_devid_free(un->un_devid);
22108 						un->un_devid = NULL;
22109 					}
22110 				}
22111 			}
22112 			mutex_exit(SD_MUTEX(un));
22113 		}
22114 
22115 		break;
22116 
22117 	case DKIOCLOCK:
22118 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCLOCK\n");
22119 		err = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT,
22120 		    SD_PATH_STANDARD);
22121 		goto done_with_assess;
22122 
22123 	case DKIOCUNLOCK:
22124 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCUNLOCK\n");
22125 		err = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_ALLOW,
22126 		    SD_PATH_STANDARD);
22127 		goto done_with_assess;
22128 
22129 	case DKIOCSTATE: {
22130 		enum dkio_state		state;
22131 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSTATE\n");
22132 
22133 		if (ddi_copyin((void *)arg, &state, sizeof (int), flag) != 0) {
22134 			err = EFAULT;
22135 		} else {
22136 			err = sd_check_media(dev, state);
22137 			if (err == 0) {
22138 				if (ddi_copyout(&un->un_mediastate, (void *)arg,
22139 				    sizeof (int), flag) != 0)
22140 					err = EFAULT;
22141 			}
22142 		}
22143 		break;
22144 	}
22145 
22146 	case DKIOCREMOVABLE:
22147 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREMOVABLE\n");
22148 		i = un->un_f_has_removable_media ? 1 : 0;
22149 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
22150 			err = EFAULT;
22151 		} else {
22152 			err = 0;
22153 		}
22154 		break;
22155 
22156 	case DKIOCHOTPLUGGABLE:
22157 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCHOTPLUGGABLE\n");
22158 		i = un->un_f_is_hotpluggable ? 1 : 0;
22159 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
22160 			err = EFAULT;
22161 		} else {
22162 			err = 0;
22163 		}
22164 		break;
22165 
22166 	case DKIOCGTEMPERATURE:
22167 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGTEMPERATURE\n");
22168 		err = sd_dkio_get_temp(dev, (caddr_t)arg, flag);
22169 		break;
22170 
22171 	case MHIOCENFAILFAST:
22172 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCENFAILFAST\n");
22173 		if ((err = drv_priv(cred_p)) == 0) {
22174 			err = sd_mhdioc_failfast(dev, (caddr_t)arg, flag);
22175 		}
22176 		break;
22177 
22178 	case MHIOCTKOWN:
22179 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCTKOWN\n");
22180 		if ((err = drv_priv(cred_p)) == 0) {
22181 			err = sd_mhdioc_takeown(dev, (caddr_t)arg, flag);
22182 		}
22183 		break;
22184 
22185 	case MHIOCRELEASE:
22186 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCRELEASE\n");
22187 		if ((err = drv_priv(cred_p)) == 0) {
22188 			err = sd_mhdioc_release(dev);
22189 		}
22190 		break;
22191 
22192 	case MHIOCSTATUS:
22193 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCSTATUS\n");
22194 		if ((err = drv_priv(cred_p)) == 0) {
22195 			switch (sd_send_scsi_TEST_UNIT_READY(ssc, 0)) {
22196 			case 0:
22197 				err = 0;
22198 				break;
22199 			case EACCES:
22200 				*rval_p = 1;
22201 				err = 0;
22202 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
22203 				break;
22204 			default:
22205 				err = EIO;
22206 				goto done_with_assess;
22207 			}
22208 		}
22209 		break;
22210 
22211 	case MHIOCQRESERVE:
22212 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCQRESERVE\n");
22213 		if ((err = drv_priv(cred_p)) == 0) {
22214 			err = sd_reserve_release(dev, SD_RESERVE);
22215 		}
22216 		break;
22217 
22218 	case MHIOCREREGISTERDEVID:
22219 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCREREGISTERDEVID\n");
22220 		if (drv_priv(cred_p) == EPERM) {
22221 			err = EPERM;
22222 		} else if (!un->un_f_devid_supported) {
22223 			err = ENOTTY;
22224 		} else {
22225 			err = sd_mhdioc_register_devid(dev);
22226 		}
22227 		break;
22228 
22229 	case MHIOCGRP_INKEYS:
22230 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INKEYS\n");
22231 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
22232 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22233 				err = ENOTSUP;
22234 			} else {
22235 				err = sd_mhdioc_inkeys(dev, (caddr_t)arg,
22236 				    flag);
22237 			}
22238 		}
22239 		break;
22240 
22241 	case MHIOCGRP_INRESV:
22242 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INRESV\n");
22243 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
22244 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22245 				err = ENOTSUP;
22246 			} else {
22247 				err = sd_mhdioc_inresv(dev, (caddr_t)arg, flag);
22248 			}
22249 		}
22250 		break;
22251 
22252 	case MHIOCGRP_REGISTER:
22253 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTER\n");
22254 		if ((err = drv_priv(cred_p)) != EPERM) {
22255 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22256 				err = ENOTSUP;
22257 			} else if (arg != NULL) {
22258 				mhioc_register_t reg;
22259 				if (ddi_copyin((void *)arg, &reg,
22260 				    sizeof (mhioc_register_t), flag) != 0) {
22261 					err = EFAULT;
22262 				} else {
22263 					err =
22264 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
22265 					    ssc, SD_SCSI3_REGISTER,
22266 					    (uchar_t *)&reg);
22267 					if (err != 0)
22268 						goto done_with_assess;
22269 				}
22270 			}
22271 		}
22272 		break;
22273 
22274 	case MHIOCGRP_RESERVE:
22275 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_RESERVE\n");
22276 		if ((err = drv_priv(cred_p)) != EPERM) {
22277 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22278 				err = ENOTSUP;
22279 			} else if (arg != NULL) {
22280 				mhioc_resv_desc_t resv_desc;
22281 				if (ddi_copyin((void *)arg, &resv_desc,
22282 				    sizeof (mhioc_resv_desc_t), flag) != 0) {
22283 					err = EFAULT;
22284 				} else {
22285 					err =
22286 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
22287 					    ssc, SD_SCSI3_RESERVE,
22288 					    (uchar_t *)&resv_desc);
22289 					if (err != 0)
22290 						goto done_with_assess;
22291 				}
22292 			}
22293 		}
22294 		break;
22295 
22296 	case MHIOCGRP_PREEMPTANDABORT:
22297 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n");
22298 		if ((err = drv_priv(cred_p)) != EPERM) {
22299 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22300 				err = ENOTSUP;
22301 			} else if (arg != NULL) {
22302 				mhioc_preemptandabort_t preempt_abort;
22303 				if (ddi_copyin((void *)arg, &preempt_abort,
22304 				    sizeof (mhioc_preemptandabort_t),
22305 				    flag) != 0) {
22306 					err = EFAULT;
22307 				} else {
22308 					err =
22309 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
22310 					    ssc, SD_SCSI3_PREEMPTANDABORT,
22311 					    (uchar_t *)&preempt_abort);
22312 					if (err != 0)
22313 						goto done_with_assess;
22314 				}
22315 			}
22316 		}
22317 		break;
22318 
22319 	case MHIOCGRP_REGISTERANDIGNOREKEY:
22320 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTERANDIGNOREKEY\n");
22321 		if ((err = drv_priv(cred_p)) != EPERM) {
22322 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22323 				err = ENOTSUP;
22324 			} else if (arg != NULL) {
22325 				mhioc_registerandignorekey_t r_and_i;
22326 				if (ddi_copyin((void *)arg, (void *)&r_and_i,
22327 				    sizeof (mhioc_registerandignorekey_t),
22328 				    flag) != 0) {
22329 					err = EFAULT;
22330 				} else {
22331 					err =
22332 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
22333 					    ssc, SD_SCSI3_REGISTERANDIGNOREKEY,
22334 					    (uchar_t *)&r_and_i);
22335 					if (err != 0)
22336 						goto done_with_assess;
22337 				}
22338 			}
22339 		}
22340 		break;
22341 
22342 	case USCSICMD:
22343 		SD_TRACE(SD_LOG_IOCTL, un, "USCSICMD\n");
22344 		cr = ddi_get_cred();
22345 		if ((drv_priv(cred_p) != 0) && (drv_priv(cr) != 0)) {
22346 			err = EPERM;
22347 		} else {
22348 			enum uio_seg	uioseg;
22349 
22350 			uioseg = (flag & FKIOCTL) ? UIO_SYSSPACE :
22351 			    UIO_USERSPACE;
22352 			if (un->un_f_format_in_progress == TRUE) {
22353 				err = EAGAIN;
22354 				break;
22355 			}
22356 
22357 			err = sd_ssc_send(ssc,
22358 			    (struct uscsi_cmd *)arg,
22359 			    flag, uioseg, SD_PATH_STANDARD);
22360 			if (err != 0)
22361 				goto done_with_assess;
22362 			else
22363 				sd_ssc_assessment(ssc, SD_FMT_STANDARD);
22364 		}
22365 		break;
22366 
22367 	case CDROMPAUSE:
22368 	case CDROMRESUME:
22369 		SD_TRACE(SD_LOG_IOCTL, un, "PAUSE-RESUME\n");
22370 		if (!ISCD(un)) {
22371 			err = ENOTTY;
22372 		} else {
22373 			err = sr_pause_resume(dev, cmd);
22374 		}
22375 		break;
22376 
22377 	case CDROMPLAYMSF:
22378 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYMSF\n");
22379 		if (!ISCD(un)) {
22380 			err = ENOTTY;
22381 		} else {
22382 			err = sr_play_msf(dev, (caddr_t)arg, flag);
22383 		}
22384 		break;
22385 
22386 	case CDROMPLAYTRKIND:
22387 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYTRKIND\n");
22388 #if defined(__i386) || defined(__amd64)
22389 		/*
22390 		 * not supported on ATAPI CD drives, use CDROMPLAYMSF instead
22391 		 */
22392 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
22393 #else
22394 		if (!ISCD(un)) {
22395 #endif
22396 			err = ENOTTY;
22397 		} else {
22398 			err = sr_play_trkind(dev, (caddr_t)arg, flag);
22399 		}
22400 		break;
22401 
22402 	case CDROMREADTOCHDR:
22403 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCHDR\n");
22404 		if (!ISCD(un)) {
22405 			err = ENOTTY;
22406 		} else {
22407 			err = sr_read_tochdr(dev, (caddr_t)arg, flag);
22408 		}
22409 		break;
22410 
22411 	case CDROMREADTOCENTRY:
22412 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCENTRY\n");
22413 		if (!ISCD(un)) {
22414 			err = ENOTTY;
22415 		} else {
22416 			err = sr_read_tocentry(dev, (caddr_t)arg, flag);
22417 		}
22418 		break;
22419 
22420 	case CDROMSTOP:
22421 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTOP\n");
22422 		if (!ISCD(un)) {
22423 			err = ENOTTY;
22424 		} else {
22425 			err = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
22426 			    SD_TARGET_STOP, SD_PATH_STANDARD);
22427 			goto done_with_assess;
22428 		}
22429 		break;
22430 
22431 	case CDROMSTART:
22432 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTART\n");
22433 		if (!ISCD(un)) {
22434 			err = ENOTTY;
22435 		} else {
22436 			err = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
22437 			    SD_TARGET_START, SD_PATH_STANDARD);
22438 			goto done_with_assess;
22439 		}
22440 		break;
22441 
22442 	case CDROMCLOSETRAY:
22443 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCLOSETRAY\n");
22444 		if (!ISCD(un)) {
22445 			err = ENOTTY;
22446 		} else {
22447 			err = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
22448 			    SD_TARGET_CLOSE, SD_PATH_STANDARD);
22449 			goto done_with_assess;
22450 		}
22451 		break;
22452 
22453 	case FDEJECT:	/* for eject command */
22454 	case DKIOCEJECT:
22455 	case CDROMEJECT:
22456 		SD_TRACE(SD_LOG_IOCTL, un, "EJECT\n");
22457 		if (!un->un_f_eject_media_supported) {
22458 			err = ENOTTY;
22459 		} else {
22460 			err = sr_eject(dev);
22461 		}
22462 		break;
22463 
22464 	case CDROMVOLCTRL:
22465 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMVOLCTRL\n");
22466 		if (!ISCD(un)) {
22467 			err = ENOTTY;
22468 		} else {
22469 			err = sr_volume_ctrl(dev, (caddr_t)arg, flag);
22470 		}
22471 		break;
22472 
22473 	case CDROMSUBCHNL:
22474 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCHNL\n");
22475 		if (!ISCD(un)) {
22476 			err = ENOTTY;
22477 		} else {
22478 			err = sr_read_subchannel(dev, (caddr_t)arg, flag);
22479 		}
22480 		break;
22481 
22482 	case CDROMREADMODE2:
22483 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE2\n");
22484 		if (!ISCD(un)) {
22485 			err = ENOTTY;
22486 		} else if (un->un_f_cfg_is_atapi == TRUE) {
22487 			/*
22488 			 * If the drive supports READ CD, use that instead of
22489 			 * switching the LBA size via a MODE SELECT
22490 			 * Block Descriptor
22491 			 */
22492 			err = sr_read_cd_mode2(dev, (caddr_t)arg, flag);
22493 		} else {
22494 			err = sr_read_mode2(dev, (caddr_t)arg, flag);
22495 		}
22496 		break;
22497 
22498 	case CDROMREADMODE1:
22499 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE1\n");
22500 		if (!ISCD(un)) {
22501 			err = ENOTTY;
22502 		} else {
22503 			err = sr_read_mode1(dev, (caddr_t)arg, flag);
22504 		}
22505 		break;
22506 
22507 	case CDROMREADOFFSET:
22508 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADOFFSET\n");
22509 		if (!ISCD(un)) {
22510 			err = ENOTTY;
22511 		} else {
22512 			err = sr_read_sony_session_offset(dev, (caddr_t)arg,
22513 			    flag);
22514 		}
22515 		break;
22516 
22517 	case CDROMSBLKMODE:
22518 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSBLKMODE\n");
22519 		/*
22520 		 * There is no means of changing block size in case of atapi
22521 		 * drives, thus return ENOTTY if drive type is atapi
22522 		 */
22523 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
22524 			err = ENOTTY;
22525 		} else if (un->un_f_mmc_cap == TRUE) {
22526 
22527 			/*
22528 			 * MMC Devices do not support changing the
22529 			 * logical block size
22530 			 *
22531 			 * Note: EINVAL is being returned instead of ENOTTY to
22532 			 * maintain consistancy with the original mmc
22533 			 * driver update.
22534 			 */
22535 			err = EINVAL;
22536 		} else {
22537 			mutex_enter(SD_MUTEX(un));
22538 			if ((!(un->un_exclopen & (1<<SDPART(dev)))) ||
22539 			    (un->un_ncmds_in_transport > 0)) {
22540 				mutex_exit(SD_MUTEX(un));
22541 				err = EINVAL;
22542 			} else {
22543 				mutex_exit(SD_MUTEX(un));
22544 				err = sr_change_blkmode(dev, cmd, arg, flag);
22545 			}
22546 		}
22547 		break;
22548 
22549 	case CDROMGBLKMODE:
22550 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMGBLKMODE\n");
22551 		if (!ISCD(un)) {
22552 			err = ENOTTY;
22553 		} else if ((un->un_f_cfg_is_atapi != FALSE) &&
22554 		    (un->un_f_blockcount_is_valid != FALSE)) {
22555 			/*
22556 			 * Drive is an ATAPI drive so return target block
22557 			 * size for ATAPI drives since we cannot change the
22558 			 * blocksize on ATAPI drives. Used primarily to detect
22559 			 * if an ATAPI cdrom is present.
22560 			 */
22561 			if (ddi_copyout(&un->un_tgt_blocksize, (void *)arg,
22562 			    sizeof (int), flag) != 0) {
22563 				err = EFAULT;
22564 			} else {
22565 				err = 0;
22566 			}
22567 
22568 		} else {
22569 			/*
22570 			 * Drive supports changing block sizes via a Mode
22571 			 * Select.
22572 			 */
22573 			err = sr_change_blkmode(dev, cmd, arg, flag);
22574 		}
22575 		break;
22576 
22577 	case CDROMGDRVSPEED:
22578 	case CDROMSDRVSPEED:
22579 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMXDRVSPEED\n");
22580 		if (!ISCD(un)) {
22581 			err = ENOTTY;
22582 		} else if (un->un_f_mmc_cap == TRUE) {
22583 			/*
22584 			 * Note: In the future the driver implementation
22585 			 * for getting and
22586 			 * setting cd speed should entail:
22587 			 * 1) If non-mmc try the Toshiba mode page
22588 			 *    (sr_change_speed)
22589 			 * 2) If mmc but no support for Real Time Streaming try
22590 			 *    the SET CD SPEED (0xBB) command
22591 			 *   (sr_atapi_change_speed)
22592 			 * 3) If mmc and support for Real Time Streaming
22593 			 *    try the GET PERFORMANCE and SET STREAMING
22594 			 *    commands (not yet implemented, 4380808)
22595 			 */
22596 			/*
22597 			 * As per recent MMC spec, CD-ROM speed is variable
22598 			 * and changes with LBA. Since there is no such
22599 			 * things as drive speed now, fail this ioctl.
22600 			 *
22601 			 * Note: EINVAL is returned for consistancy of original
22602 			 * implementation which included support for getting
22603 			 * the drive speed of mmc devices but not setting
22604 			 * the drive speed. Thus EINVAL would be returned
22605 			 * if a set request was made for an mmc device.
22606 			 * We no longer support get or set speed for
22607 			 * mmc but need to remain consistent with regard
22608 			 * to the error code returned.
22609 			 */
22610 			err = EINVAL;
22611 		} else if (un->un_f_cfg_is_atapi == TRUE) {
22612 			err = sr_atapi_change_speed(dev, cmd, arg, flag);
22613 		} else {
22614 			err = sr_change_speed(dev, cmd, arg, flag);
22615 		}
22616 		break;
22617 
22618 	case CDROMCDDA:
22619 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDDA\n");
22620 		if (!ISCD(un)) {
22621 			err = ENOTTY;
22622 		} else {
22623 			err = sr_read_cdda(dev, (void *)arg, flag);
22624 		}
22625 		break;
22626 
22627 	case CDROMCDXA:
22628 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDXA\n");
22629 		if (!ISCD(un)) {
22630 			err = ENOTTY;
22631 		} else {
22632 			err = sr_read_cdxa(dev, (caddr_t)arg, flag);
22633 		}
22634 		break;
22635 
22636 	case CDROMSUBCODE:
22637 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCODE\n");
22638 		if (!ISCD(un)) {
22639 			err = ENOTTY;
22640 		} else {
22641 			err = sr_read_all_subcodes(dev, (caddr_t)arg, flag);
22642 		}
22643 		break;
22644 
22645 
22646 #ifdef SDDEBUG
22647 /* RESET/ABORTS testing ioctls */
22648 	case DKIOCRESET: {
22649 		int	reset_level;
22650 
22651 		if (ddi_copyin((void *)arg, &reset_level, sizeof (int), flag)) {
22652 			err = EFAULT;
22653 		} else {
22654 			SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCRESET: "
22655 			    "reset_level = 0x%lx\n", reset_level);
22656 			if (scsi_reset(SD_ADDRESS(un), reset_level)) {
22657 				err = 0;
22658 			} else {
22659 				err = EIO;
22660 			}
22661 		}
22662 		break;
22663 	}
22664 
22665 	case DKIOCABORT:
22666 		SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCABORT:\n");
22667 		if (scsi_abort(SD_ADDRESS(un), NULL)) {
22668 			err = 0;
22669 		} else {
22670 			err = EIO;
22671 		}
22672 		break;
22673 #endif
22674 
22675 #ifdef SD_FAULT_INJECTION
22676 /* SDIOC FaultInjection testing ioctls */
22677 	case SDIOCSTART:
22678 	case SDIOCSTOP:
22679 	case SDIOCINSERTPKT:
22680 	case SDIOCINSERTXB:
22681 	case SDIOCINSERTUN:
22682 	case SDIOCINSERTARQ:
22683 	case SDIOCPUSH:
22684 	case SDIOCRETRIEVE:
22685 	case SDIOCRUN:
22686 		SD_INFO(SD_LOG_SDTEST, un, "sdioctl:"
22687 		    "SDIOC detected cmd:0x%X:\n", cmd);
22688 		/* call error generator */
22689 		sd_faultinjection_ioctl(cmd, arg, un);
22690 		err = 0;
22691 		break;
22692 
22693 #endif /* SD_FAULT_INJECTION */
22694 
22695 	case DKIOCFLUSHWRITECACHE:
22696 		{
22697 			struct dk_callback *dkc = (struct dk_callback *)arg;
22698 
22699 			mutex_enter(SD_MUTEX(un));
22700 			if (!un->un_f_sync_cache_supported ||
22701 			    !un->un_f_write_cache_enabled) {
22702 				err = un->un_f_sync_cache_supported ?
22703 				    0 : ENOTSUP;
22704 				mutex_exit(SD_MUTEX(un));
22705 				if ((flag & FKIOCTL) && dkc != NULL &&
22706 				    dkc->dkc_callback != NULL) {
22707 					(*dkc->dkc_callback)(dkc->dkc_cookie,
22708 					    err);
22709 					/*
22710 					 * Did callback and reported error.
22711 					 * Since we did a callback, ioctl
22712 					 * should return 0.
22713 					 */
22714 					err = 0;
22715 				}
22716 				break;
22717 			}
22718 			mutex_exit(SD_MUTEX(un));
22719 
22720 			if ((flag & FKIOCTL) && dkc != NULL &&
22721 			    dkc->dkc_callback != NULL) {
22722 				/* async SYNC CACHE request */
22723 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc);
22724 			} else {
22725 				/* synchronous SYNC CACHE request */
22726 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL);
22727 			}
22728 		}
22729 		break;
22730 
22731 	case DKIOCGETWCE: {
22732 
22733 		int wce;
22734 
22735 		if ((err = sd_get_write_cache_enabled(ssc, &wce)) != 0) {
22736 			break;
22737 		}
22738 
22739 		if (ddi_copyout(&wce, (void *)arg, sizeof (wce), flag)) {
22740 			err = EFAULT;
22741 		}
22742 		break;
22743 	}
22744 
22745 	case DKIOCSETWCE: {
22746 
22747 		int wce, sync_supported;
22748 
22749 		if (ddi_copyin((void *)arg, &wce, sizeof (wce), flag)) {
22750 			err = EFAULT;
22751 			break;
22752 		}
22753 
22754 		/*
22755 		 * Synchronize multiple threads trying to enable
22756 		 * or disable the cache via the un_f_wcc_cv
22757 		 * condition variable.
22758 		 */
22759 		mutex_enter(SD_MUTEX(un));
22760 
22761 		/*
22762 		 * Don't allow the cache to be enabled if the
22763 		 * config file has it disabled.
22764 		 */
22765 		if (un->un_f_opt_disable_cache && wce) {
22766 			mutex_exit(SD_MUTEX(un));
22767 			err = EINVAL;
22768 			break;
22769 		}
22770 
22771 		/*
22772 		 * Wait for write cache change in progress
22773 		 * bit to be clear before proceeding.
22774 		 */
22775 		while (un->un_f_wcc_inprog)
22776 			cv_wait(&un->un_wcc_cv, SD_MUTEX(un));
22777 
22778 		un->un_f_wcc_inprog = 1;
22779 
22780 		if (un->un_f_write_cache_enabled && wce == 0) {
22781 			/*
22782 			 * Disable the write cache.  Don't clear
22783 			 * un_f_write_cache_enabled until after
22784 			 * the mode select and flush are complete.
22785 			 */
22786 			sync_supported = un->un_f_sync_cache_supported;
22787 
22788 			/*
22789 			 * If cache flush is suppressed, we assume that the
22790 			 * controller firmware will take care of managing the
22791 			 * write cache for us: no need to explicitly
22792 			 * disable it.
22793 			 */
22794 			if (!un->un_f_suppress_cache_flush) {
22795 				mutex_exit(SD_MUTEX(un));
22796 				if ((err = sd_cache_control(ssc,
22797 				    SD_CACHE_NOCHANGE,
22798 				    SD_CACHE_DISABLE)) == 0 &&
22799 				    sync_supported) {
22800 					err = sd_send_scsi_SYNCHRONIZE_CACHE(un,
22801 					    NULL);
22802 				}
22803 			} else {
22804 				mutex_exit(SD_MUTEX(un));
22805 			}
22806 
22807 			mutex_enter(SD_MUTEX(un));
22808 			if (err == 0) {
22809 				un->un_f_write_cache_enabled = 0;
22810 			}
22811 
22812 		} else if (!un->un_f_write_cache_enabled && wce != 0) {
22813 			/*
22814 			 * Set un_f_write_cache_enabled first, so there is
22815 			 * no window where the cache is enabled, but the
22816 			 * bit says it isn't.
22817 			 */
22818 			un->un_f_write_cache_enabled = 1;
22819 
22820 			/*
22821 			 * If cache flush is suppressed, we assume that the
22822 			 * controller firmware will take care of managing the
22823 			 * write cache for us: no need to explicitly
22824 			 * enable it.
22825 			 */
22826 			if (!un->un_f_suppress_cache_flush) {
22827 				mutex_exit(SD_MUTEX(un));
22828 				err = sd_cache_control(ssc, SD_CACHE_NOCHANGE,
22829 				    SD_CACHE_ENABLE);
22830 			} else {
22831 				mutex_exit(SD_MUTEX(un));
22832 			}
22833 
22834 			mutex_enter(SD_MUTEX(un));
22835 
22836 			if (err) {
22837 				un->un_f_write_cache_enabled = 0;
22838 			}
22839 		}
22840 
22841 		un->un_f_wcc_inprog = 0;
22842 		cv_broadcast(&un->un_wcc_cv);
22843 		mutex_exit(SD_MUTEX(un));
22844 		break;
22845 	}
22846 
22847 	default:
22848 		err = ENOTTY;
22849 		break;
22850 	}
22851 	mutex_enter(SD_MUTEX(un));
22852 	un->un_ncmds_in_driver--;
22853 	ASSERT(un->un_ncmds_in_driver >= 0);
22854 	mutex_exit(SD_MUTEX(un));
22855 
22856 
22857 done_without_assess:
22858 	sd_ssc_fini(ssc);
22859 
22860 	SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err);
22861 	return (err);
22862 
22863 done_with_assess:
22864 	mutex_enter(SD_MUTEX(un));
22865 	un->un_ncmds_in_driver--;
22866 	ASSERT(un->un_ncmds_in_driver >= 0);
22867 	mutex_exit(SD_MUTEX(un));
22868 
22869 done_quick_assess:
22870 	if (err != 0)
22871 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
22872 	/* Uninitialize sd_ssc_t pointer */
22873 	sd_ssc_fini(ssc);
22874 
22875 	SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err);
22876 	return (err);
22877 }
22878 
22879 
22880 /*
22881  *    Function: sd_dkio_ctrl_info
22882  *
22883  * Description: This routine is the driver entry point for handling controller
22884  *		information ioctl requests (DKIOCINFO).
22885  *
22886  *   Arguments: dev  - the device number
22887  *		arg  - pointer to user provided dk_cinfo structure
22888  *		       specifying the controller type and attributes.
22889  *		flag - this argument is a pass through to ddi_copyxxx()
22890  *		       directly from the mode argument of ioctl().
22891  *
22892  * Return Code: 0
22893  *		EFAULT
22894  *		ENXIO
22895  */
22896 
22897 static int
22898 sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag)
22899 {
22900 	struct sd_lun	*un = NULL;
22901 	struct dk_cinfo	*info;
22902 	dev_info_t	*pdip;
22903 	int		lun, tgt;
22904 
22905 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22906 		return (ENXIO);
22907 	}
22908 
22909 	info = (struct dk_cinfo *)
22910 	    kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP);
22911 
22912 	switch (un->un_ctype) {
22913 	case CTYPE_CDROM:
22914 		info->dki_ctype = DKC_CDROM;
22915 		break;
22916 	default:
22917 		info->dki_ctype = DKC_SCSI_CCS;
22918 		break;
22919 	}
22920 	pdip = ddi_get_parent(SD_DEVINFO(un));
22921 	info->dki_cnum = ddi_get_instance(pdip);
22922 	if (strlen(ddi_get_name(pdip)) < DK_DEVLEN) {
22923 		(void) strcpy(info->dki_cname, ddi_get_name(pdip));
22924 	} else {
22925 		(void) strncpy(info->dki_cname, ddi_node_name(pdip),
22926 		    DK_DEVLEN - 1);
22927 	}
22928 
22929 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
22930 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_LUN, 0);
22931 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
22932 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_TARGET, 0);
22933 
22934 	/* Unit Information */
22935 	info->dki_unit = ddi_get_instance(SD_DEVINFO(un));
22936 	info->dki_slave = ((tgt << 3) | lun);
22937 	(void) strncpy(info->dki_dname, ddi_driver_name(SD_DEVINFO(un)),
22938 	    DK_DEVLEN - 1);
22939 	info->dki_flags = DKI_FMTVOL;
22940 	info->dki_partition = SDPART(dev);
22941 
22942 	/* Max Transfer size of this device in blocks */
22943 	info->dki_maxtransfer = un->un_max_xfer_size / un->un_sys_blocksize;
22944 	info->dki_addr = 0;
22945 	info->dki_space = 0;
22946 	info->dki_prio = 0;
22947 	info->dki_vec = 0;
22948 
22949 	if (ddi_copyout(info, arg, sizeof (struct dk_cinfo), flag) != 0) {
22950 		kmem_free(info, sizeof (struct dk_cinfo));
22951 		return (EFAULT);
22952 	} else {
22953 		kmem_free(info, sizeof (struct dk_cinfo));
22954 		return (0);
22955 	}
22956 }
22957 
22958 
22959 /*
22960  *    Function: sd_get_media_info
22961  *
22962  * Description: This routine is the driver entry point for handling ioctl
22963  *		requests for the media type or command set profile used by the
22964  *		drive to operate on the media (DKIOCGMEDIAINFO).
22965  *
22966  *   Arguments: dev	- the device number
22967  *		arg	- pointer to user provided dk_minfo structure
22968  *			  specifying the media type, logical block size and
22969  *			  drive capacity.
22970  *		flag	- this argument is a pass through to ddi_copyxxx()
22971  *			  directly from the mode argument of ioctl().
22972  *
22973  * Return Code: 0
22974  *		EACCESS
22975  *		EFAULT
22976  *		ENXIO
22977  *		EIO
22978  */
22979 
22980 static int
22981 sd_get_media_info(dev_t dev, caddr_t arg, int flag)
22982 {
22983 	struct sd_lun		*un = NULL;
22984 	struct uscsi_cmd	com;
22985 	struct scsi_inquiry	*sinq;
22986 	struct dk_minfo		media_info;
22987 	u_longlong_t		media_capacity;
22988 	uint64_t		capacity;
22989 	uint_t			lbasize;
22990 	uchar_t			*out_data;
22991 	uchar_t			*rqbuf;
22992 	int			rval = 0;
22993 	int			rtn;
22994 	sd_ssc_t		*ssc;
22995 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
22996 	    (un->un_state == SD_STATE_OFFLINE)) {
22997 		return (ENXIO);
22998 	}
22999 
23000 	SD_TRACE(SD_LOG_IOCTL_DKIO, un, "sd_get_media_info: entry\n");
23001 
23002 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
23003 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
23004 
23005 	/* Issue a TUR to determine if the drive is ready with media present */
23006 	ssc = sd_ssc_init(un);
23007 	rval = sd_send_scsi_TEST_UNIT_READY(ssc, SD_CHECK_FOR_MEDIA);
23008 	if (rval == ENXIO) {
23009 		goto done;
23010 	} else if (rval != 0) {
23011 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23012 	}
23013 
23014 	/* Now get configuration data */
23015 	if (ISCD(un)) {
23016 		media_info.dki_media_type = DK_CDROM;
23017 
23018 		/* Allow SCMD_GET_CONFIGURATION to MMC devices only */
23019 		if (un->un_f_mmc_cap == TRUE) {
23020 			rtn = sd_send_scsi_GET_CONFIGURATION(ssc, &com, rqbuf,
23021 			    SENSE_LENGTH, out_data, SD_PROFILE_HEADER_LEN,
23022 			    SD_PATH_STANDARD);
23023 
23024 			if (rtn) {
23025 				/*
23026 				 * We ignore all failures for CD and need to
23027 				 * put the assessment before processing code
23028 				 * to avoid missing assessment for FMA.
23029 				 */
23030 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23031 				/*
23032 				 * Failed for other than an illegal request
23033 				 * or command not supported
23034 				 */
23035 				if ((com.uscsi_status == STATUS_CHECK) &&
23036 				    (com.uscsi_rqstatus == STATUS_GOOD)) {
23037 					if ((rqbuf[2] != KEY_ILLEGAL_REQUEST) ||
23038 					    (rqbuf[12] != 0x20)) {
23039 						rval = EIO;
23040 						goto no_assessment;
23041 					}
23042 				}
23043 			} else {
23044 				/*
23045 				 * The GET CONFIGURATION command succeeded
23046 				 * so set the media type according to the
23047 				 * returned data
23048 				 */
23049 				media_info.dki_media_type = out_data[6];
23050 				media_info.dki_media_type <<= 8;
23051 				media_info.dki_media_type |= out_data[7];
23052 			}
23053 		}
23054 	} else {
23055 		/*
23056 		 * The profile list is not available, so we attempt to identify
23057 		 * the media type based on the inquiry data
23058 		 */
23059 		sinq = un->un_sd->sd_inq;
23060 		if ((sinq->inq_dtype == DTYPE_DIRECT) ||
23061 		    (sinq->inq_dtype == DTYPE_OPTICAL)) {
23062 			/* This is a direct access device  or optical disk */
23063 			media_info.dki_media_type = DK_FIXED_DISK;
23064 
23065 			if ((bcmp(sinq->inq_vid, "IOMEGA", 6) == 0) ||
23066 			    (bcmp(sinq->inq_vid, "iomega", 6) == 0)) {
23067 				if ((bcmp(sinq->inq_pid, "ZIP", 3) == 0)) {
23068 					media_info.dki_media_type = DK_ZIP;
23069 				} else if (
23070 				    (bcmp(sinq->inq_pid, "jaz", 3) == 0)) {
23071 					media_info.dki_media_type = DK_JAZ;
23072 				}
23073 			}
23074 		} else {
23075 			/*
23076 			 * Not a CD, direct access or optical disk so return
23077 			 * unknown media
23078 			 */
23079 			media_info.dki_media_type = DK_UNKNOWN;
23080 		}
23081 	}
23082 
23083 	/* Now read the capacity so we can provide the lbasize and capacity */
23084 	rval = sd_send_scsi_READ_CAPACITY(ssc, &capacity, &lbasize,
23085 	    SD_PATH_DIRECT);
23086 	switch (rval) {
23087 	case 0:
23088 		break;
23089 	case EACCES:
23090 		rval = EACCES;
23091 		goto done;
23092 	default:
23093 		rval = EIO;
23094 		goto done;
23095 	}
23096 
23097 	/*
23098 	 * If lun is expanded dynamically, update the un structure.
23099 	 */
23100 	mutex_enter(SD_MUTEX(un));
23101 	if ((un->un_f_blockcount_is_valid == TRUE) &&
23102 	    (un->un_f_tgt_blocksize_is_valid == TRUE) &&
23103 	    (capacity > un->un_blockcount)) {
23104 		sd_update_block_info(un, lbasize, capacity);
23105 	}
23106 	mutex_exit(SD_MUTEX(un));
23107 
23108 	media_info.dki_lbsize = lbasize;
23109 	media_capacity = capacity;
23110 
23111 	/*
23112 	 * sd_send_scsi_READ_CAPACITY() reports capacity in
23113 	 * un->un_sys_blocksize chunks. So we need to convert it into
23114 	 * cap.lbasize chunks.
23115 	 */
23116 	media_capacity *= un->un_sys_blocksize;
23117 	media_capacity /= lbasize;
23118 	media_info.dki_capacity = media_capacity;
23119 
23120 	if (ddi_copyout(&media_info, arg, sizeof (struct dk_minfo), flag)) {
23121 		rval = EFAULT;
23122 		/* Put goto. Anybody might add some code below in future */
23123 		goto no_assessment;
23124 	}
23125 done:
23126 	if (rval != 0) {
23127 		if (rval == EIO)
23128 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
23129 		else
23130 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23131 	}
23132 no_assessment:
23133 	sd_ssc_fini(ssc);
23134 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
23135 	kmem_free(rqbuf, SENSE_LENGTH);
23136 	return (rval);
23137 }
23138 
23139 /*
23140  *    Function: sd_get_media_info_ext
23141  *
23142  * Description: This routine is the driver entry point for handling ioctl
23143  *		requests for the media type or command set profile used by the
23144  *		drive to operate on the media (DKIOCGMEDIAINFOEXT). The
23145  *		difference this ioctl and DKIOCGMEDIAINFO is the return value
23146  *		of this ioctl contains both logical block size and physical
23147  *		block size.
23148  *
23149  *
23150  *   Arguments: dev	- the device number
23151  *		arg	- pointer to user provided dk_minfo_ext structure
23152  *			  specifying the media type, logical block size,
23153  *			  physical block size and disk capacity.
23154  *		flag	- this argument is a pass through to ddi_copyxxx()
23155  *			  directly from the mode argument of ioctl().
23156  *
23157  * Return Code: 0
23158  *		EACCESS
23159  *		EFAULT
23160  *		ENXIO
23161  *		EIO
23162  */
23163 
23164 static int
23165 sd_get_media_info_ext(dev_t dev, caddr_t arg, int flag)
23166 {
23167 	struct sd_lun		*un = NULL;
23168 	struct uscsi_cmd	com;
23169 	struct scsi_inquiry	*sinq;
23170 	struct dk_minfo_ext	media_info_ext;
23171 	u_longlong_t		media_capacity;
23172 	uint64_t		capacity;
23173 	uint_t			lbasize;
23174 	uint_t			pbsize;
23175 	uchar_t			*out_data;
23176 	uchar_t			*rqbuf;
23177 	int			rval = 0;
23178 	int			rtn;
23179 	sd_ssc_t		*ssc;
23180 
23181 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
23182 	    (un->un_state == SD_STATE_OFFLINE)) {
23183 		return (ENXIO);
23184 	}
23185 
23186 	SD_TRACE(SD_LOG_IOCTL_DKIO, un, "sd_get_media_info_ext: entry\n");
23187 
23188 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
23189 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
23190 	ssc = sd_ssc_init(un);
23191 
23192 	/* Issue a TUR to determine if the drive is ready with media present */
23193 	rval = sd_send_scsi_TEST_UNIT_READY(ssc, SD_CHECK_FOR_MEDIA);
23194 	if (rval == ENXIO) {
23195 		goto done;
23196 	} else if (rval != 0) {
23197 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23198 	}
23199 
23200 	/* Now get configuration data */
23201 	if (ISCD(un)) {
23202 		media_info_ext.dki_media_type = DK_CDROM;
23203 
23204 		/* Allow SCMD_GET_CONFIGURATION to MMC devices only */
23205 		if (un->un_f_mmc_cap == TRUE) {
23206 			rtn = sd_send_scsi_GET_CONFIGURATION(ssc, &com, rqbuf,
23207 			    SENSE_LENGTH, out_data, SD_PROFILE_HEADER_LEN,
23208 			    SD_PATH_STANDARD);
23209 
23210 			if (rtn) {
23211 				/*
23212 				 * We ignore all failures for CD and need to
23213 				 * put the assessment before processing code
23214 				 * to avoid missing assessment for FMA.
23215 				 */
23216 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23217 				/*
23218 				 * Failed for other than an illegal request
23219 				 * or command not supported
23220 				 */
23221 				if ((com.uscsi_status == STATUS_CHECK) &&
23222 				    (com.uscsi_rqstatus == STATUS_GOOD)) {
23223 					if ((rqbuf[2] != KEY_ILLEGAL_REQUEST) ||
23224 					    (rqbuf[12] != 0x20)) {
23225 						rval = EIO;
23226 						goto no_assessment;
23227 					}
23228 				}
23229 			} else {
23230 				/*
23231 				 * The GET CONFIGURATION command succeeded
23232 				 * so set the media type according to the
23233 				 * returned data
23234 				 */
23235 				media_info_ext.dki_media_type = out_data[6];
23236 				media_info_ext.dki_media_type <<= 8;
23237 				media_info_ext.dki_media_type |= out_data[7];
23238 			}
23239 		}
23240 	} else {
23241 		/*
23242 		 * The profile list is not available, so we attempt to identify
23243 		 * the media type based on the inquiry data
23244 		 */
23245 		sinq = un->un_sd->sd_inq;
23246 		if ((sinq->inq_dtype == DTYPE_DIRECT) ||
23247 		    (sinq->inq_dtype == DTYPE_OPTICAL)) {
23248 			/* This is a direct access device  or optical disk */
23249 			media_info_ext.dki_media_type = DK_FIXED_DISK;
23250 
23251 			if ((bcmp(sinq->inq_vid, "IOMEGA", 6) == 0) ||
23252 			    (bcmp(sinq->inq_vid, "iomega", 6) == 0)) {
23253 				if ((bcmp(sinq->inq_pid, "ZIP", 3) == 0)) {
23254 					media_info_ext.dki_media_type = DK_ZIP;
23255 				} else if (
23256 				    (bcmp(sinq->inq_pid, "jaz", 3) == 0)) {
23257 					media_info_ext.dki_media_type = DK_JAZ;
23258 				}
23259 			}
23260 		} else {
23261 			/*
23262 			 * Not a CD, direct access or optical disk so return
23263 			 * unknown media
23264 			 */
23265 			media_info_ext.dki_media_type = DK_UNKNOWN;
23266 		}
23267 	}
23268 
23269 	/*
23270 	 * Now read the capacity so we can provide the lbasize,
23271 	 * pbsize and capacity.
23272 	 */
23273 	rval = sd_send_scsi_READ_CAPACITY_16(ssc, &capacity, &lbasize, &pbsize,
23274 	    SD_PATH_DIRECT);
23275 
23276 	if (rval != 0) {
23277 		rval = sd_send_scsi_READ_CAPACITY(ssc, &capacity, &lbasize,
23278 		    SD_PATH_DIRECT);
23279 
23280 		switch (rval) {
23281 		case 0:
23282 			pbsize = lbasize;
23283 			media_capacity = capacity;
23284 			/*
23285 			 * sd_send_scsi_READ_CAPACITY() reports capacity in
23286 			 * un->un_sys_blocksize chunks. So we need to convert
23287 			 * it into cap.lbsize chunks.
23288 			 */
23289 			if (un->un_f_has_removable_media) {
23290 				media_capacity *= un->un_sys_blocksize;
23291 				media_capacity /= lbasize;
23292 			}
23293 			break;
23294 		case EACCES:
23295 			rval = EACCES;
23296 			goto done;
23297 		default:
23298 			rval = EIO;
23299 			goto done;
23300 		}
23301 	} else {
23302 		media_capacity = capacity;
23303 	}
23304 
23305 	/*
23306 	 * If lun is expanded dynamically, update the un structure.
23307 	 */
23308 	mutex_enter(SD_MUTEX(un));
23309 	if ((un->un_f_blockcount_is_valid == TRUE) &&
23310 	    (un->un_f_tgt_blocksize_is_valid == TRUE) &&
23311 	    (capacity > un->un_blockcount)) {
23312 		sd_update_block_info(un, lbasize, capacity);
23313 	}
23314 	mutex_exit(SD_MUTEX(un));
23315 
23316 	media_info_ext.dki_lbsize = lbasize;
23317 	media_info_ext.dki_capacity = media_capacity;
23318 	media_info_ext.dki_pbsize = pbsize;
23319 
23320 	if (ddi_copyout(&media_info_ext, arg, sizeof (struct dk_minfo_ext),
23321 	    flag)) {
23322 		rval = EFAULT;
23323 		goto no_assessment;
23324 	}
23325 done:
23326 	if (rval != 0) {
23327 		if (rval == EIO)
23328 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
23329 		else
23330 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23331 	}
23332 no_assessment:
23333 	sd_ssc_fini(ssc);
23334 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
23335 	kmem_free(rqbuf, SENSE_LENGTH);
23336 	return (rval);
23337 }
23338 
23339 /*
23340  *    Function: sd_check_media
23341  *
23342  * Description: This utility routine implements the functionality for the
23343  *		DKIOCSTATE ioctl. This ioctl blocks the user thread until the
23344  *		driver state changes from that specified by the user
23345  *		(inserted or ejected). For example, if the user specifies
23346  *		DKIO_EJECTED and the current media state is inserted this
23347  *		routine will immediately return DKIO_INSERTED. However, if the
23348  *		current media state is not inserted the user thread will be
23349  *		blocked until the drive state changes. If DKIO_NONE is specified
23350  *		the user thread will block until a drive state change occurs.
23351  *
23352  *   Arguments: dev  - the device number
23353  *		state  - user pointer to a dkio_state, updated with the current
23354  *			drive state at return.
23355  *
23356  * Return Code: ENXIO
23357  *		EIO
23358  *		EAGAIN
23359  *		EINTR
23360  */
23361 
23362 static int
23363 sd_check_media(dev_t dev, enum dkio_state state)
23364 {
23365 	struct sd_lun		*un = NULL;
23366 	enum dkio_state		prev_state;
23367 	opaque_t		token = NULL;
23368 	int			rval = 0;
23369 	sd_ssc_t		*ssc;
23370 	dev_t			sub_dev;
23371 
23372 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23373 		return (ENXIO);
23374 	}
23375 
23376 	/*
23377 	 * sub_dev is used when submitting request to scsi watch.
23378 	 * All submissions are unified to use same device number.
23379 	 */
23380 	sub_dev = sd_make_device(SD_DEVINFO(un));
23381 
23382 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: entry\n");
23383 
23384 	ssc = sd_ssc_init(un);
23385 
23386 	mutex_enter(SD_MUTEX(un));
23387 
23388 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: "
23389 	    "state=%x, mediastate=%x\n", state, un->un_mediastate);
23390 
23391 	prev_state = un->un_mediastate;
23392 
23393 	/* is there anything to do? */
23394 	if (state == un->un_mediastate || un->un_mediastate == DKIO_NONE) {
23395 		/*
23396 		 * submit the request to the scsi_watch service;
23397 		 * scsi_media_watch_cb() does the real work
23398 		 */
23399 		mutex_exit(SD_MUTEX(un));
23400 
23401 		/*
23402 		 * This change handles the case where a scsi watch request is
23403 		 * added to a device that is powered down. To accomplish this
23404 		 * we power up the device before adding the scsi watch request,
23405 		 * since the scsi watch sends a TUR directly to the device
23406 		 * which the device cannot handle if it is powered down.
23407 		 */
23408 		if (sd_pm_entry(un) != DDI_SUCCESS) {
23409 			mutex_enter(SD_MUTEX(un));
23410 			goto done;
23411 		}
23412 
23413 		token = scsi_watch_request_submit(SD_SCSI_DEVP(un),
23414 		    sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb,
23415 		    (caddr_t)sub_dev);
23416 
23417 		sd_pm_exit(un);
23418 
23419 		mutex_enter(SD_MUTEX(un));
23420 		if (token == NULL) {
23421 			rval = EAGAIN;
23422 			goto done;
23423 		}
23424 
23425 		/*
23426 		 * This is a special case IOCTL that doesn't return
23427 		 * until the media state changes. Routine sdpower
23428 		 * knows about and handles this so don't count it
23429 		 * as an active cmd in the driver, which would
23430 		 * keep the device busy to the pm framework.
23431 		 * If the count isn't decremented the device can't
23432 		 * be powered down.
23433 		 */
23434 		un->un_ncmds_in_driver--;
23435 		ASSERT(un->un_ncmds_in_driver >= 0);
23436 
23437 		/*
23438 		 * if a prior request had been made, this will be the same
23439 		 * token, as scsi_watch was designed that way.
23440 		 */
23441 		un->un_swr_token = token;
23442 		un->un_specified_mediastate = state;
23443 
23444 		/*
23445 		 * now wait for media change
23446 		 * we will not be signalled unless mediastate == state but it is
23447 		 * still better to test for this condition, since there is a
23448 		 * 2 sec cv_broadcast delay when mediastate == DKIO_INSERTED
23449 		 */
23450 		SD_TRACE(SD_LOG_COMMON, un,
23451 		    "sd_check_media: waiting for media state change\n");
23452 		while (un->un_mediastate == state) {
23453 			if (cv_wait_sig(&un->un_state_cv, SD_MUTEX(un)) == 0) {
23454 				SD_TRACE(SD_LOG_COMMON, un,
23455 				    "sd_check_media: waiting for media state "
23456 				    "was interrupted\n");
23457 				un->un_ncmds_in_driver++;
23458 				rval = EINTR;
23459 				goto done;
23460 			}
23461 			SD_TRACE(SD_LOG_COMMON, un,
23462 			    "sd_check_media: received signal, state=%x\n",
23463 			    un->un_mediastate);
23464 		}
23465 		/*
23466 		 * Inc the counter to indicate the device once again
23467 		 * has an active outstanding cmd.
23468 		 */
23469 		un->un_ncmds_in_driver++;
23470 	}
23471 
23472 	/* invalidate geometry */
23473 	if (prev_state == DKIO_INSERTED && un->un_mediastate == DKIO_EJECTED) {
23474 		sr_ejected(un);
23475 	}
23476 
23477 	if (un->un_mediastate == DKIO_INSERTED && prev_state != DKIO_INSERTED) {
23478 		uint64_t	capacity;
23479 		uint_t		lbasize;
23480 
23481 		SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: media inserted\n");
23482 		mutex_exit(SD_MUTEX(un));
23483 		/*
23484 		 * Since the following routines use SD_PATH_DIRECT, we must
23485 		 * call PM directly before the upcoming disk accesses. This
23486 		 * may cause the disk to be power/spin up.
23487 		 */
23488 
23489 		if (sd_pm_entry(un) == DDI_SUCCESS) {
23490 			rval = sd_send_scsi_READ_CAPACITY(ssc,
23491 			    &capacity, &lbasize, SD_PATH_DIRECT);
23492 			if (rval != 0) {
23493 				sd_pm_exit(un);
23494 				if (rval == EIO)
23495 					sd_ssc_assessment(ssc,
23496 					    SD_FMT_STATUS_CHECK);
23497 				else
23498 					sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23499 				mutex_enter(SD_MUTEX(un));
23500 				goto done;
23501 			}
23502 		} else {
23503 			rval = EIO;
23504 			mutex_enter(SD_MUTEX(un));
23505 			goto done;
23506 		}
23507 		mutex_enter(SD_MUTEX(un));
23508 
23509 		sd_update_block_info(un, lbasize, capacity);
23510 
23511 		/*
23512 		 *  Check if the media in the device is writable or not
23513 		 */
23514 		if (ISCD(un)) {
23515 			sd_check_for_writable_cd(ssc, SD_PATH_DIRECT);
23516 		}
23517 
23518 		mutex_exit(SD_MUTEX(un));
23519 		cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT);
23520 		if ((cmlb_validate(un->un_cmlbhandle, 0,
23521 		    (void *)SD_PATH_DIRECT) == 0) && un->un_f_pkstats_enabled) {
23522 			sd_set_pstats(un);
23523 			SD_TRACE(SD_LOG_IO_PARTITION, un,
23524 			    "sd_check_media: un:0x%p pstats created and "
23525 			    "set\n", un);
23526 		}
23527 
23528 		rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT,
23529 		    SD_PATH_DIRECT);
23530 
23531 		sd_pm_exit(un);
23532 
23533 		if (rval != 0) {
23534 			if (rval == EIO)
23535 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
23536 			else
23537 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23538 		}
23539 
23540 		mutex_enter(SD_MUTEX(un));
23541 	}
23542 done:
23543 	sd_ssc_fini(ssc);
23544 	un->un_f_watcht_stopped = FALSE;
23545 	if (token != NULL && un->un_swr_token != NULL) {
23546 		/*
23547 		 * Use of this local token and the mutex ensures that we avoid
23548 		 * some race conditions associated with terminating the
23549 		 * scsi watch.
23550 		 */
23551 		token = un->un_swr_token;
23552 		mutex_exit(SD_MUTEX(un));
23553 		(void) scsi_watch_request_terminate(token,
23554 		    SCSI_WATCH_TERMINATE_WAIT);
23555 		if (scsi_watch_get_ref_count(token) == 0) {
23556 			mutex_enter(SD_MUTEX(un));
23557 			un->un_swr_token = (opaque_t)NULL;
23558 		} else {
23559 			mutex_enter(SD_MUTEX(un));
23560 		}
23561 	}
23562 
23563 	/*
23564 	 * Update the capacity kstat value, if no media previously
23565 	 * (capacity kstat is 0) and a media has been inserted
23566 	 * (un_f_blockcount_is_valid == TRUE)
23567 	 */
23568 	if (un->un_errstats) {
23569 		struct sd_errstats	*stp = NULL;
23570 
23571 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
23572 		if ((stp->sd_capacity.value.ui64 == 0) &&
23573 		    (un->un_f_blockcount_is_valid == TRUE)) {
23574 			stp->sd_capacity.value.ui64 =
23575 			    (uint64_t)((uint64_t)un->un_blockcount *
23576 			    un->un_sys_blocksize);
23577 		}
23578 	}
23579 	mutex_exit(SD_MUTEX(un));
23580 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: done\n");
23581 	return (rval);
23582 }
23583 
23584 
23585 /*
23586  *    Function: sd_delayed_cv_broadcast
23587  *
23588  * Description: Delayed cv_broadcast to allow for target to recover from media
23589  *		insertion.
23590  *
23591  *   Arguments: arg - driver soft state (unit) structure
23592  */
23593 
23594 static void
23595 sd_delayed_cv_broadcast(void *arg)
23596 {
23597 	struct sd_lun *un = arg;
23598 
23599 	SD_TRACE(SD_LOG_COMMON, un, "sd_delayed_cv_broadcast\n");
23600 
23601 	mutex_enter(SD_MUTEX(un));
23602 	un->un_dcvb_timeid = NULL;
23603 	cv_broadcast(&un->un_state_cv);
23604 	mutex_exit(SD_MUTEX(un));
23605 }
23606 
23607 
23608 /*
23609  *    Function: sd_media_watch_cb
23610  *
23611  * Description: Callback routine used for support of the DKIOCSTATE ioctl. This
23612  *		routine processes the TUR sense data and updates the driver
23613  *		state if a transition has occurred. The user thread
23614  *		(sd_check_media) is then signalled.
23615  *
23616  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
23617  *			among multiple watches that share this callback function
23618  *		resultp - scsi watch facility result packet containing scsi
23619  *			  packet, status byte and sense data
23620  *
23621  * Return Code: 0 for success, -1 for failure
23622  */
23623 
23624 static int
23625 sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
23626 {
23627 	struct sd_lun			*un;
23628 	struct scsi_status		*statusp = resultp->statusp;
23629 	uint8_t				*sensep = (uint8_t *)resultp->sensep;
23630 	enum dkio_state			state = DKIO_NONE;
23631 	dev_t				dev = (dev_t)arg;
23632 	uchar_t				actual_sense_length;
23633 	uint8_t				skey, asc, ascq;
23634 
23635 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23636 		return (-1);
23637 	}
23638 	actual_sense_length = resultp->actual_sense_length;
23639 
23640 	mutex_enter(SD_MUTEX(un));
23641 	SD_TRACE(SD_LOG_COMMON, un,
23642 	    "sd_media_watch_cb: status=%x, sensep=%p, len=%x\n",
23643 	    *((char *)statusp), (void *)sensep, actual_sense_length);
23644 
23645 	if (resultp->pkt->pkt_reason == CMD_DEV_GONE) {
23646 		un->un_mediastate = DKIO_DEV_GONE;
23647 		cv_broadcast(&un->un_state_cv);
23648 		mutex_exit(SD_MUTEX(un));
23649 
23650 		return (0);
23651 	}
23652 
23653 	/*
23654 	 * If there was a check condition then sensep points to valid sense data
23655 	 * If status was not a check condition but a reservation or busy status
23656 	 * then the new state is DKIO_NONE
23657 	 */
23658 	if (sensep != NULL) {
23659 		skey = scsi_sense_key(sensep);
23660 		asc = scsi_sense_asc(sensep);
23661 		ascq = scsi_sense_ascq(sensep);
23662 
23663 		SD_INFO(SD_LOG_COMMON, un,
23664 		    "sd_media_watch_cb: sense KEY=%x, ASC=%x, ASCQ=%x\n",
23665 		    skey, asc, ascq);
23666 		/* This routine only uses up to 13 bytes of sense data. */
23667 		if (actual_sense_length >= 13) {
23668 			if (skey == KEY_UNIT_ATTENTION) {
23669 				if (asc == 0x28) {
23670 					state = DKIO_INSERTED;
23671 				}
23672 			} else if (skey == KEY_NOT_READY) {
23673 				/*
23674 				 * Sense data of 02/06/00 means that the
23675 				 * drive could not read the media (No
23676 				 * reference position found). In this case
23677 				 * to prevent a hang on the DKIOCSTATE IOCTL
23678 				 * we set the media state to DKIO_INSERTED.
23679 				 */
23680 				if (asc == 0x06 && ascq == 0x00)
23681 					state = DKIO_INSERTED;
23682 
23683 				/*
23684 				 * if 02/04/02  means that the host
23685 				 * should send start command. Explicitly
23686 				 * leave the media state as is
23687 				 * (inserted) as the media is inserted
23688 				 * and host has stopped device for PM
23689 				 * reasons. Upon next true read/write
23690 				 * to this media will bring the
23691 				 * device to the right state good for
23692 				 * media access.
23693 				 */
23694 				if (asc == 0x3a) {
23695 					state = DKIO_EJECTED;
23696 				} else {
23697 					/*
23698 					 * If the drive is busy with an
23699 					 * operation or long write, keep the
23700 					 * media in an inserted state.
23701 					 */
23702 
23703 					if ((asc == 0x04) &&
23704 					    ((ascq == 0x02) ||
23705 					    (ascq == 0x07) ||
23706 					    (ascq == 0x08))) {
23707 						state = DKIO_INSERTED;
23708 					}
23709 				}
23710 			} else if (skey == KEY_NO_SENSE) {
23711 				if ((asc == 0x00) && (ascq == 0x00)) {
23712 					/*
23713 					 * Sense Data 00/00/00 does not provide
23714 					 * any information about the state of
23715 					 * the media. Ignore it.
23716 					 */
23717 					mutex_exit(SD_MUTEX(un));
23718 					return (0);
23719 				}
23720 			}
23721 		}
23722 	} else if ((*((char *)statusp) == STATUS_GOOD) &&
23723 	    (resultp->pkt->pkt_reason == CMD_CMPLT)) {
23724 		state = DKIO_INSERTED;
23725 	}
23726 
23727 	SD_TRACE(SD_LOG_COMMON, un,
23728 	    "sd_media_watch_cb: state=%x, specified=%x\n",
23729 	    state, un->un_specified_mediastate);
23730 
23731 	/*
23732 	 * now signal the waiting thread if this is *not* the specified state;
23733 	 * delay the signal if the state is DKIO_INSERTED to allow the target
23734 	 * to recover
23735 	 */
23736 	if (state != un->un_specified_mediastate) {
23737 		un->un_mediastate = state;
23738 		if (state == DKIO_INSERTED) {
23739 			/*
23740 			 * delay the signal to give the drive a chance
23741 			 * to do what it apparently needs to do
23742 			 */
23743 			SD_TRACE(SD_LOG_COMMON, un,
23744 			    "sd_media_watch_cb: delayed cv_broadcast\n");
23745 			if (un->un_dcvb_timeid == NULL) {
23746 				un->un_dcvb_timeid =
23747 				    timeout(sd_delayed_cv_broadcast, un,
23748 				    drv_usectohz((clock_t)MEDIA_ACCESS_DELAY));
23749 			}
23750 		} else {
23751 			SD_TRACE(SD_LOG_COMMON, un,
23752 			    "sd_media_watch_cb: immediate cv_broadcast\n");
23753 			cv_broadcast(&un->un_state_cv);
23754 		}
23755 	}
23756 	mutex_exit(SD_MUTEX(un));
23757 	return (0);
23758 }
23759 
23760 
23761 /*
23762  *    Function: sd_dkio_get_temp
23763  *
23764  * Description: This routine is the driver entry point for handling ioctl
23765  *		requests to get the disk temperature.
23766  *
23767  *   Arguments: dev  - the device number
23768  *		arg  - pointer to user provided dk_temperature structure.
23769  *		flag - this argument is a pass through to ddi_copyxxx()
23770  *		       directly from the mode argument of ioctl().
23771  *
23772  * Return Code: 0
23773  *		EFAULT
23774  *		ENXIO
23775  *		EAGAIN
23776  */
23777 
23778 static int
23779 sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag)
23780 {
23781 	struct sd_lun		*un = NULL;
23782 	struct dk_temperature	*dktemp = NULL;
23783 	uchar_t			*temperature_page;
23784 	int			rval = 0;
23785 	int			path_flag = SD_PATH_STANDARD;
23786 	sd_ssc_t		*ssc;
23787 
23788 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23789 		return (ENXIO);
23790 	}
23791 
23792 	ssc = sd_ssc_init(un);
23793 	dktemp = kmem_zalloc(sizeof (struct dk_temperature), KM_SLEEP);
23794 
23795 	/* copyin the disk temp argument to get the user flags */
23796 	if (ddi_copyin((void *)arg, dktemp,
23797 	    sizeof (struct dk_temperature), flag) != 0) {
23798 		rval = EFAULT;
23799 		goto done;
23800 	}
23801 
23802 	/* Initialize the temperature to invalid. */
23803 	dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
23804 	dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
23805 
23806 	/*
23807 	 * Note: Investigate removing the "bypass pm" semantic.
23808 	 * Can we just bypass PM always?
23809 	 */
23810 	if (dktemp->dkt_flags & DKT_BYPASS_PM) {
23811 		path_flag = SD_PATH_DIRECT;
23812 		ASSERT(!mutex_owned(&un->un_pm_mutex));
23813 		mutex_enter(&un->un_pm_mutex);
23814 		if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
23815 			/*
23816 			 * If DKT_BYPASS_PM is set, and the drive happens to be
23817 			 * in low power mode, we can not wake it up, Need to
23818 			 * return EAGAIN.
23819 			 */
23820 			mutex_exit(&un->un_pm_mutex);
23821 			rval = EAGAIN;
23822 			goto done;
23823 		} else {
23824 			/*
23825 			 * Indicate to PM the device is busy. This is required
23826 			 * to avoid a race - i.e. the ioctl is issuing a
23827 			 * command and the pm framework brings down the device
23828 			 * to low power mode (possible power cut-off on some
23829 			 * platforms).
23830 			 */
23831 			mutex_exit(&un->un_pm_mutex);
23832 			if (sd_pm_entry(un) != DDI_SUCCESS) {
23833 				rval = EAGAIN;
23834 				goto done;
23835 			}
23836 		}
23837 	}
23838 
23839 	temperature_page = kmem_zalloc(TEMPERATURE_PAGE_SIZE, KM_SLEEP);
23840 
23841 	rval = sd_send_scsi_LOG_SENSE(ssc, temperature_page,
23842 	    TEMPERATURE_PAGE_SIZE, TEMPERATURE_PAGE, 1, 0, path_flag);
23843 	if (rval != 0)
23844 		goto done2;
23845 
23846 	/*
23847 	 * For the current temperature verify that the parameter length is 0x02
23848 	 * and the parameter code is 0x00
23849 	 */
23850 	if ((temperature_page[7] == 0x02) && (temperature_page[4] == 0x00) &&
23851 	    (temperature_page[5] == 0x00)) {
23852 		if (temperature_page[9] == 0xFF) {
23853 			dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
23854 		} else {
23855 			dktemp->dkt_cur_temp = (short)(temperature_page[9]);
23856 		}
23857 	}
23858 
23859 	/*
23860 	 * For the reference temperature verify that the parameter
23861 	 * length is 0x02 and the parameter code is 0x01
23862 	 */
23863 	if ((temperature_page[13] == 0x02) && (temperature_page[10] == 0x00) &&
23864 	    (temperature_page[11] == 0x01)) {
23865 		if (temperature_page[15] == 0xFF) {
23866 			dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
23867 		} else {
23868 			dktemp->dkt_ref_temp = (short)(temperature_page[15]);
23869 		}
23870 	}
23871 
23872 	/* Do the copyout regardless of the temperature commands status. */
23873 	if (ddi_copyout(dktemp, (void *)arg, sizeof (struct dk_temperature),
23874 	    flag) != 0) {
23875 		rval = EFAULT;
23876 		goto done1;
23877 	}
23878 
23879 done2:
23880 	if (rval != 0) {
23881 		if (rval == EIO)
23882 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
23883 		else
23884 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23885 	}
23886 done1:
23887 	if (path_flag == SD_PATH_DIRECT) {
23888 		sd_pm_exit(un);
23889 	}
23890 
23891 	kmem_free(temperature_page, TEMPERATURE_PAGE_SIZE);
23892 done:
23893 	sd_ssc_fini(ssc);
23894 	if (dktemp != NULL) {
23895 		kmem_free(dktemp, sizeof (struct dk_temperature));
23896 	}
23897 
23898 	return (rval);
23899 }
23900 
23901 
23902 /*
23903  *    Function: sd_log_page_supported
23904  *
23905  * Description: This routine uses sd_send_scsi_LOG_SENSE to find the list of
23906  *		supported log pages.
23907  *
23908  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
23909  *                      structure for this target.
23910  *		log_page -
23911  *
23912  * Return Code: -1 - on error (log sense is optional and may not be supported).
23913  *		0  - log page not found.
23914  *  		1  - log page found.
23915  */
23916 
23917 static int
23918 sd_log_page_supported(sd_ssc_t *ssc, int log_page)
23919 {
23920 	uchar_t *log_page_data;
23921 	int	i;
23922 	int	match = 0;
23923 	int	log_size;
23924 	int	status = 0;
23925 	struct sd_lun	*un;
23926 
23927 	ASSERT(ssc != NULL);
23928 	un = ssc->ssc_un;
23929 	ASSERT(un != NULL);
23930 
23931 	log_page_data = kmem_zalloc(0xFF, KM_SLEEP);
23932 
23933 	status = sd_send_scsi_LOG_SENSE(ssc, log_page_data, 0xFF, 0, 0x01, 0,
23934 	    SD_PATH_DIRECT);
23935 
23936 	if (status != 0) {
23937 		if (status == EIO) {
23938 			/*
23939 			 * Some disks do not support log sense, we
23940 			 * should ignore this kind of error(sense key is
23941 			 * 0x5 - illegal request).
23942 			 */
23943 			uint8_t *sensep;
23944 			int senlen;
23945 
23946 			sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf;
23947 			senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen -
23948 			    ssc->ssc_uscsi_cmd->uscsi_rqresid);
23949 
23950 			if (senlen > 0 &&
23951 			    scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) {
23952 				sd_ssc_assessment(ssc,
23953 				    SD_FMT_IGNORE_COMPROMISE);
23954 			} else {
23955 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
23956 			}
23957 		} else {
23958 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23959 		}
23960 
23961 		SD_ERROR(SD_LOG_COMMON, un,
23962 		    "sd_log_page_supported: failed log page retrieval\n");
23963 		kmem_free(log_page_data, 0xFF);
23964 		return (-1);
23965 	}
23966 
23967 	log_size = log_page_data[3];
23968 
23969 	/*
23970 	 * The list of supported log pages start from the fourth byte. Check
23971 	 * until we run out of log pages or a match is found.
23972 	 */
23973 	for (i = 4; (i < (log_size + 4)) && !match; i++) {
23974 		if (log_page_data[i] == log_page) {
23975 			match++;
23976 		}
23977 	}
23978 	kmem_free(log_page_data, 0xFF);
23979 	return (match);
23980 }
23981 
23982 
23983 /*
23984  *    Function: sd_mhdioc_failfast
23985  *
23986  * Description: This routine is the driver entry point for handling ioctl
23987  *		requests to enable/disable the multihost failfast option.
23988  *		(MHIOCENFAILFAST)
23989  *
23990  *   Arguments: dev	- the device number
23991  *		arg	- user specified probing interval.
23992  *		flag	- this argument is a pass through to ddi_copyxxx()
23993  *			  directly from the mode argument of ioctl().
23994  *
23995  * Return Code: 0
23996  *		EFAULT
23997  *		ENXIO
23998  */
23999 
24000 static int
24001 sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag)
24002 {
24003 	struct sd_lun	*un = NULL;
24004 	int		mh_time;
24005 	int		rval = 0;
24006 
24007 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24008 		return (ENXIO);
24009 	}
24010 
24011 	if (ddi_copyin((void *)arg, &mh_time, sizeof (int), flag))
24012 		return (EFAULT);
24013 
24014 	if (mh_time) {
24015 		mutex_enter(SD_MUTEX(un));
24016 		un->un_resvd_status |= SD_FAILFAST;
24017 		mutex_exit(SD_MUTEX(un));
24018 		/*
24019 		 * If mh_time is INT_MAX, then this ioctl is being used for
24020 		 * SCSI-3 PGR purposes, and we don't need to spawn watch thread.
24021 		 */
24022 		if (mh_time != INT_MAX) {
24023 			rval = sd_check_mhd(dev, mh_time);
24024 		}
24025 	} else {
24026 		(void) sd_check_mhd(dev, 0);
24027 		mutex_enter(SD_MUTEX(un));
24028 		un->un_resvd_status &= ~SD_FAILFAST;
24029 		mutex_exit(SD_MUTEX(un));
24030 	}
24031 	return (rval);
24032 }
24033 
24034 
24035 /*
24036  *    Function: sd_mhdioc_takeown
24037  *
24038  * Description: This routine is the driver entry point for handling ioctl
24039  *		requests to forcefully acquire exclusive access rights to the
24040  *		multihost disk (MHIOCTKOWN).
24041  *
24042  *   Arguments: dev	- the device number
24043  *		arg	- user provided structure specifying the delay
24044  *			  parameters in milliseconds
24045  *		flag	- this argument is a pass through to ddi_copyxxx()
24046  *			  directly from the mode argument of ioctl().
24047  *
24048  * Return Code: 0
24049  *		EFAULT
24050  *		ENXIO
24051  */
24052 
24053 static int
24054 sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag)
24055 {
24056 	struct sd_lun		*un = NULL;
24057 	struct mhioctkown	*tkown = NULL;
24058 	int			rval = 0;
24059 
24060 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24061 		return (ENXIO);
24062 	}
24063 
24064 	if (arg != NULL) {
24065 		tkown = (struct mhioctkown *)
24066 		    kmem_zalloc(sizeof (struct mhioctkown), KM_SLEEP);
24067 		rval = ddi_copyin(arg, tkown, sizeof (struct mhioctkown), flag);
24068 		if (rval != 0) {
24069 			rval = EFAULT;
24070 			goto error;
24071 		}
24072 	}
24073 
24074 	rval = sd_take_ownership(dev, tkown);
24075 	mutex_enter(SD_MUTEX(un));
24076 	if (rval == 0) {
24077 		un->un_resvd_status |= SD_RESERVE;
24078 		if (tkown != NULL && tkown->reinstate_resv_delay != 0) {
24079 			sd_reinstate_resv_delay =
24080 			    tkown->reinstate_resv_delay * 1000;
24081 		} else {
24082 			sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY;
24083 		}
24084 		/*
24085 		 * Give the scsi_watch routine interval set by
24086 		 * the MHIOCENFAILFAST ioctl precedence here.
24087 		 */
24088 		if ((un->un_resvd_status & SD_FAILFAST) == 0) {
24089 			mutex_exit(SD_MUTEX(un));
24090 			(void) sd_check_mhd(dev, sd_reinstate_resv_delay/1000);
24091 			SD_TRACE(SD_LOG_IOCTL_MHD, un,
24092 			    "sd_mhdioc_takeown : %d\n",
24093 			    sd_reinstate_resv_delay);
24094 		} else {
24095 			mutex_exit(SD_MUTEX(un));
24096 		}
24097 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_NOTIFY,
24098 		    sd_mhd_reset_notify_cb, (caddr_t)un);
24099 	} else {
24100 		un->un_resvd_status &= ~SD_RESERVE;
24101 		mutex_exit(SD_MUTEX(un));
24102 	}
24103 
24104 error:
24105 	if (tkown != NULL) {
24106 		kmem_free(tkown, sizeof (struct mhioctkown));
24107 	}
24108 	return (rval);
24109 }
24110 
24111 
24112 /*
24113  *    Function: sd_mhdioc_release
24114  *
24115  * Description: This routine is the driver entry point for handling ioctl
24116  *		requests to release exclusive access rights to the multihost
24117  *		disk (MHIOCRELEASE).
24118  *
24119  *   Arguments: dev	- the device number
24120  *
24121  * Return Code: 0
24122  *		ENXIO
24123  */
24124 
24125 static int
24126 sd_mhdioc_release(dev_t dev)
24127 {
24128 	struct sd_lun		*un = NULL;
24129 	timeout_id_t		resvd_timeid_save;
24130 	int			resvd_status_save;
24131 	int			rval = 0;
24132 
24133 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24134 		return (ENXIO);
24135 	}
24136 
24137 	mutex_enter(SD_MUTEX(un));
24138 	resvd_status_save = un->un_resvd_status;
24139 	un->un_resvd_status &=
24140 	    ~(SD_RESERVE | SD_LOST_RESERVE | SD_WANT_RESERVE);
24141 	if (un->un_resvd_timeid) {
24142 		resvd_timeid_save = un->un_resvd_timeid;
24143 		un->un_resvd_timeid = NULL;
24144 		mutex_exit(SD_MUTEX(un));
24145 		(void) untimeout(resvd_timeid_save);
24146 	} else {
24147 		mutex_exit(SD_MUTEX(un));
24148 	}
24149 
24150 	/*
24151 	 * destroy any pending timeout thread that may be attempting to
24152 	 * reinstate reservation on this device.
24153 	 */
24154 	sd_rmv_resv_reclaim_req(dev);
24155 
24156 	if ((rval = sd_reserve_release(dev, SD_RELEASE)) == 0) {
24157 		mutex_enter(SD_MUTEX(un));
24158 		if ((un->un_mhd_token) &&
24159 		    ((un->un_resvd_status & SD_FAILFAST) == 0)) {
24160 			mutex_exit(SD_MUTEX(un));
24161 			(void) sd_check_mhd(dev, 0);
24162 		} else {
24163 			mutex_exit(SD_MUTEX(un));
24164 		}
24165 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
24166 		    sd_mhd_reset_notify_cb, (caddr_t)un);
24167 	} else {
24168 		/*
24169 		 * sd_mhd_watch_cb will restart the resvd recover timeout thread
24170 		 */
24171 		mutex_enter(SD_MUTEX(un));
24172 		un->un_resvd_status = resvd_status_save;
24173 		mutex_exit(SD_MUTEX(un));
24174 	}
24175 	return (rval);
24176 }
24177 
24178 
24179 /*
24180  *    Function: sd_mhdioc_register_devid
24181  *
24182  * Description: This routine is the driver entry point for handling ioctl
24183  *		requests to register the device id (MHIOCREREGISTERDEVID).
24184  *
24185  *		Note: The implementation for this ioctl has been updated to
24186  *		be consistent with the original PSARC case (1999/357)
24187  *		(4375899, 4241671, 4220005)
24188  *
24189  *   Arguments: dev	- the device number
24190  *
24191  * Return Code: 0
24192  *		ENXIO
24193  */
24194 
24195 static int
24196 sd_mhdioc_register_devid(dev_t dev)
24197 {
24198 	struct sd_lun	*un = NULL;
24199 	int		rval = 0;
24200 	sd_ssc_t	*ssc;
24201 
24202 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24203 		return (ENXIO);
24204 	}
24205 
24206 	ASSERT(!mutex_owned(SD_MUTEX(un)));
24207 
24208 	mutex_enter(SD_MUTEX(un));
24209 
24210 	/* If a devid already exists, de-register it */
24211 	if (un->un_devid != NULL) {
24212 		ddi_devid_unregister(SD_DEVINFO(un));
24213 		/*
24214 		 * After unregister devid, needs to free devid memory
24215 		 */
24216 		ddi_devid_free(un->un_devid);
24217 		un->un_devid = NULL;
24218 	}
24219 
24220 	/* Check for reservation conflict */
24221 	mutex_exit(SD_MUTEX(un));
24222 	ssc = sd_ssc_init(un);
24223 	rval = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
24224 	mutex_enter(SD_MUTEX(un));
24225 
24226 	switch (rval) {
24227 	case 0:
24228 		sd_register_devid(ssc, SD_DEVINFO(un), SD_TARGET_IS_UNRESERVED);
24229 		break;
24230 	case EACCES:
24231 		break;
24232 	default:
24233 		rval = EIO;
24234 	}
24235 
24236 	mutex_exit(SD_MUTEX(un));
24237 	if (rval != 0) {
24238 		if (rval == EIO)
24239 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
24240 		else
24241 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
24242 	}
24243 	sd_ssc_fini(ssc);
24244 	return (rval);
24245 }
24246 
24247 
24248 /*
24249  *    Function: sd_mhdioc_inkeys
24250  *
24251  * Description: This routine is the driver entry point for handling ioctl
24252  *		requests to issue the SCSI-3 Persistent In Read Keys command
24253  *		to the device (MHIOCGRP_INKEYS).
24254  *
24255  *   Arguments: dev	- the device number
24256  *		arg	- user provided in_keys structure
24257  *		flag	- this argument is a pass through to ddi_copyxxx()
24258  *			  directly from the mode argument of ioctl().
24259  *
24260  * Return Code: code returned by sd_persistent_reservation_in_read_keys()
24261  *		ENXIO
24262  *		EFAULT
24263  */
24264 
24265 static int
24266 sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag)
24267 {
24268 	struct sd_lun		*un;
24269 	mhioc_inkeys_t		inkeys;
24270 	int			rval = 0;
24271 
24272 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24273 		return (ENXIO);
24274 	}
24275 
24276 #ifdef _MULTI_DATAMODEL
24277 	switch (ddi_model_convert_from(flag & FMODELS)) {
24278 	case DDI_MODEL_ILP32: {
24279 		struct mhioc_inkeys32	inkeys32;
24280 
24281 		if (ddi_copyin(arg, &inkeys32,
24282 		    sizeof (struct mhioc_inkeys32), flag) != 0) {
24283 			return (EFAULT);
24284 		}
24285 		inkeys.li = (mhioc_key_list_t *)(uintptr_t)inkeys32.li;
24286 		if ((rval = sd_persistent_reservation_in_read_keys(un,
24287 		    &inkeys, flag)) != 0) {
24288 			return (rval);
24289 		}
24290 		inkeys32.generation = inkeys.generation;
24291 		if (ddi_copyout(&inkeys32, arg, sizeof (struct mhioc_inkeys32),
24292 		    flag) != 0) {
24293 			return (EFAULT);
24294 		}
24295 		break;
24296 	}
24297 	case DDI_MODEL_NONE:
24298 		if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t),
24299 		    flag) != 0) {
24300 			return (EFAULT);
24301 		}
24302 		if ((rval = sd_persistent_reservation_in_read_keys(un,
24303 		    &inkeys, flag)) != 0) {
24304 			return (rval);
24305 		}
24306 		if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t),
24307 		    flag) != 0) {
24308 			return (EFAULT);
24309 		}
24310 		break;
24311 	}
24312 
24313 #else /* ! _MULTI_DATAMODEL */
24314 
24315 	if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), flag) != 0) {
24316 		return (EFAULT);
24317 	}
24318 	rval = sd_persistent_reservation_in_read_keys(un, &inkeys, flag);
24319 	if (rval != 0) {
24320 		return (rval);
24321 	}
24322 	if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), flag) != 0) {
24323 		return (EFAULT);
24324 	}
24325 
24326 #endif /* _MULTI_DATAMODEL */
24327 
24328 	return (rval);
24329 }
24330 
24331 
24332 /*
24333  *    Function: sd_mhdioc_inresv
24334  *
24335  * Description: This routine is the driver entry point for handling ioctl
24336  *		requests to issue the SCSI-3 Persistent In Read Reservations
24337  *		command to the device (MHIOCGRP_INKEYS).
24338  *
24339  *   Arguments: dev	- the device number
24340  *		arg	- user provided in_resv structure
24341  *		flag	- this argument is a pass through to ddi_copyxxx()
24342  *			  directly from the mode argument of ioctl().
24343  *
24344  * Return Code: code returned by sd_persistent_reservation_in_read_resv()
24345  *		ENXIO
24346  *		EFAULT
24347  */
24348 
24349 static int
24350 sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag)
24351 {
24352 	struct sd_lun		*un;
24353 	mhioc_inresvs_t		inresvs;
24354 	int			rval = 0;
24355 
24356 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24357 		return (ENXIO);
24358 	}
24359 
24360 #ifdef _MULTI_DATAMODEL
24361 
24362 	switch (ddi_model_convert_from(flag & FMODELS)) {
24363 	case DDI_MODEL_ILP32: {
24364 		struct mhioc_inresvs32	inresvs32;
24365 
24366 		if (ddi_copyin(arg, &inresvs32,
24367 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
24368 			return (EFAULT);
24369 		}
24370 		inresvs.li = (mhioc_resv_desc_list_t *)(uintptr_t)inresvs32.li;
24371 		if ((rval = sd_persistent_reservation_in_read_resv(un,
24372 		    &inresvs, flag)) != 0) {
24373 			return (rval);
24374 		}
24375 		inresvs32.generation = inresvs.generation;
24376 		if (ddi_copyout(&inresvs32, arg,
24377 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
24378 			return (EFAULT);
24379 		}
24380 		break;
24381 	}
24382 	case DDI_MODEL_NONE:
24383 		if (ddi_copyin(arg, &inresvs,
24384 		    sizeof (mhioc_inresvs_t), flag) != 0) {
24385 			return (EFAULT);
24386 		}
24387 		if ((rval = sd_persistent_reservation_in_read_resv(un,
24388 		    &inresvs, flag)) != 0) {
24389 			return (rval);
24390 		}
24391 		if (ddi_copyout(&inresvs, arg,
24392 		    sizeof (mhioc_inresvs_t), flag) != 0) {
24393 			return (EFAULT);
24394 		}
24395 		break;
24396 	}
24397 
24398 #else /* ! _MULTI_DATAMODEL */
24399 
24400 	if (ddi_copyin(arg, &inresvs, sizeof (mhioc_inresvs_t), flag) != 0) {
24401 		return (EFAULT);
24402 	}
24403 	rval = sd_persistent_reservation_in_read_resv(un, &inresvs, flag);
24404 	if (rval != 0) {
24405 		return (rval);
24406 	}
24407 	if (ddi_copyout(&inresvs, arg, sizeof (mhioc_inresvs_t), flag)) {
24408 		return (EFAULT);
24409 	}
24410 
24411 #endif /* ! _MULTI_DATAMODEL */
24412 
24413 	return (rval);
24414 }
24415 
24416 
24417 /*
24418  * The following routines support the clustering functionality described below
24419  * and implement lost reservation reclaim functionality.
24420  *
24421  * Clustering
24422  * ----------
24423  * The clustering code uses two different, independent forms of SCSI
24424  * reservation. Traditional SCSI-2 Reserve/Release and the newer SCSI-3
24425  * Persistent Group Reservations. For any particular disk, it will use either
24426  * SCSI-2 or SCSI-3 PGR but never both at the same time for the same disk.
24427  *
24428  * SCSI-2
24429  * The cluster software takes ownership of a multi-hosted disk by issuing the
24430  * MHIOCTKOWN ioctl to the disk driver. It releases ownership by issuing the
24431  * MHIOCRELEASE ioctl.  Closely related is the MHIOCENFAILFAST ioctl -- a
24432  * cluster, just after taking ownership of the disk with the MHIOCTKOWN ioctl
24433  * then issues the MHIOCENFAILFAST ioctl.  This ioctl "enables failfast" in the
24434  * driver. The meaning of failfast is that if the driver (on this host) ever
24435  * encounters the scsi error return code RESERVATION_CONFLICT from the device,
24436  * it should immediately panic the host. The motivation for this ioctl is that
24437  * if this host does encounter reservation conflict, the underlying cause is
24438  * that some other host of the cluster has decided that this host is no longer
24439  * in the cluster and has seized control of the disks for itself. Since this
24440  * host is no longer in the cluster, it ought to panic itself. The
24441  * MHIOCENFAILFAST ioctl does two things:
24442  *	(a) it sets a flag that will cause any returned RESERVATION_CONFLICT
24443  *      error to panic the host
24444  *      (b) it sets up a periodic timer to test whether this host still has
24445  *      "access" (in that no other host has reserved the device):  if the
24446  *      periodic timer gets RESERVATION_CONFLICT, the host is panicked. The
24447  *      purpose of that periodic timer is to handle scenarios where the host is
24448  *      otherwise temporarily quiescent, temporarily doing no real i/o.
24449  * The MHIOCTKOWN ioctl will "break" a reservation that is held by another host,
24450  * by issuing a SCSI Bus Device Reset.  It will then issue a SCSI Reserve for
24451  * the device itself.
24452  *
24453  * SCSI-3 PGR
24454  * A direct semantic implementation of the SCSI-3 Persistent Reservation
24455  * facility is supported through the shared multihost disk ioctls
24456  * (MHIOCGRP_INKEYS, MHIOCGRP_INRESV, MHIOCGRP_REGISTER, MHIOCGRP_RESERVE,
24457  * MHIOCGRP_PREEMPTANDABORT)
24458  *
24459  * Reservation Reclaim:
24460  * --------------------
24461  * To support the lost reservation reclaim operations this driver creates a
24462  * single thread to handle reinstating reservations on all devices that have
24463  * lost reservations sd_resv_reclaim_requests are logged for all devices that
24464  * have LOST RESERVATIONS when the scsi watch facility callsback sd_mhd_watch_cb
24465  * and the reservation reclaim thread loops through the requests to regain the
24466  * lost reservations.
24467  */
24468 
24469 /*
24470  *    Function: sd_check_mhd()
24471  *
24472  * Description: This function sets up and submits a scsi watch request or
24473  *		terminates an existing watch request. This routine is used in
24474  *		support of reservation reclaim.
24475  *
24476  *   Arguments: dev    - the device 'dev_t' is used for context to discriminate
24477  *			 among multiple watches that share the callback function
24478  *		interval - the number of microseconds specifying the watch
24479  *			   interval for issuing TEST UNIT READY commands. If
24480  *			   set to 0 the watch should be terminated. If the
24481  *			   interval is set to 0 and if the device is required
24482  *			   to hold reservation while disabling failfast, the
24483  *			   watch is restarted with an interval of
24484  *			   reinstate_resv_delay.
24485  *
24486  * Return Code: 0	   - Successful submit/terminate of scsi watch request
24487  *		ENXIO      - Indicates an invalid device was specified
24488  *		EAGAIN     - Unable to submit the scsi watch request
24489  */
24490 
24491 static int
24492 sd_check_mhd(dev_t dev, int interval)
24493 {
24494 	struct sd_lun	*un;
24495 	opaque_t	token;
24496 
24497 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24498 		return (ENXIO);
24499 	}
24500 
24501 	/* is this a watch termination request? */
24502 	if (interval == 0) {
24503 		mutex_enter(SD_MUTEX(un));
24504 		/* if there is an existing watch task then terminate it */
24505 		if (un->un_mhd_token) {
24506 			token = un->un_mhd_token;
24507 			un->un_mhd_token = NULL;
24508 			mutex_exit(SD_MUTEX(un));
24509 			(void) scsi_watch_request_terminate(token,
24510 			    SCSI_WATCH_TERMINATE_ALL_WAIT);
24511 			mutex_enter(SD_MUTEX(un));
24512 		} else {
24513 			mutex_exit(SD_MUTEX(un));
24514 			/*
24515 			 * Note: If we return here we don't check for the
24516 			 * failfast case. This is the original legacy
24517 			 * implementation but perhaps we should be checking
24518 			 * the failfast case.
24519 			 */
24520 			return (0);
24521 		}
24522 		/*
24523 		 * If the device is required to hold reservation while
24524 		 * disabling failfast, we need to restart the scsi_watch
24525 		 * routine with an interval of reinstate_resv_delay.
24526 		 */
24527 		if (un->un_resvd_status & SD_RESERVE) {
24528 			interval = sd_reinstate_resv_delay/1000;
24529 		} else {
24530 			/* no failfast so bail */
24531 			mutex_exit(SD_MUTEX(un));
24532 			return (0);
24533 		}
24534 		mutex_exit(SD_MUTEX(un));
24535 	}
24536 
24537 	/*
24538 	 * adjust minimum time interval to 1 second,
24539 	 * and convert from msecs to usecs
24540 	 */
24541 	if (interval > 0 && interval < 1000) {
24542 		interval = 1000;
24543 	}
24544 	interval *= 1000;
24545 
24546 	/*
24547 	 * submit the request to the scsi_watch service
24548 	 */
24549 	token = scsi_watch_request_submit(SD_SCSI_DEVP(un), interval,
24550 	    SENSE_LENGTH, sd_mhd_watch_cb, (caddr_t)dev);
24551 	if (token == NULL) {
24552 		return (EAGAIN);
24553 	}
24554 
24555 	/*
24556 	 * save token for termination later on
24557 	 */
24558 	mutex_enter(SD_MUTEX(un));
24559 	un->un_mhd_token = token;
24560 	mutex_exit(SD_MUTEX(un));
24561 	return (0);
24562 }
24563 
24564 
24565 /*
24566  *    Function: sd_mhd_watch_cb()
24567  *
24568  * Description: This function is the call back function used by the scsi watch
24569  *		facility. The scsi watch facility sends the "Test Unit Ready"
24570  *		and processes the status. If applicable (i.e. a "Unit Attention"
24571  *		status and automatic "Request Sense" not used) the scsi watch
24572  *		facility will send a "Request Sense" and retrieve the sense data
24573  *		to be passed to this callback function. In either case the
24574  *		automatic "Request Sense" or the facility submitting one, this
24575  *		callback is passed the status and sense data.
24576  *
24577  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
24578  *			among multiple watches that share this callback function
24579  *		resultp - scsi watch facility result packet containing scsi
24580  *			  packet, status byte and sense data
24581  *
24582  * Return Code: 0 - continue the watch task
24583  *		non-zero - terminate the watch task
24584  */
24585 
24586 static int
24587 sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
24588 {
24589 	struct sd_lun			*un;
24590 	struct scsi_status		*statusp;
24591 	uint8_t				*sensep;
24592 	struct scsi_pkt			*pkt;
24593 	uchar_t				actual_sense_length;
24594 	dev_t  				dev = (dev_t)arg;
24595 
24596 	ASSERT(resultp != NULL);
24597 	statusp			= resultp->statusp;
24598 	sensep			= (uint8_t *)resultp->sensep;
24599 	pkt			= resultp->pkt;
24600 	actual_sense_length	= resultp->actual_sense_length;
24601 
24602 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24603 		return (ENXIO);
24604 	}
24605 
24606 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
24607 	    "sd_mhd_watch_cb: reason '%s', status '%s'\n",
24608 	    scsi_rname(pkt->pkt_reason), sd_sname(*((unsigned char *)statusp)));
24609 
24610 	/* Begin processing of the status and/or sense data */
24611 	if (pkt->pkt_reason != CMD_CMPLT) {
24612 		/* Handle the incomplete packet */
24613 		sd_mhd_watch_incomplete(un, pkt);
24614 		return (0);
24615 	} else if (*((unsigned char *)statusp) != STATUS_GOOD) {
24616 		if (*((unsigned char *)statusp)
24617 		    == STATUS_RESERVATION_CONFLICT) {
24618 			/*
24619 			 * Handle a reservation conflict by panicking if
24620 			 * configured for failfast or by logging the conflict
24621 			 * and updating the reservation status
24622 			 */
24623 			mutex_enter(SD_MUTEX(un));
24624 			if ((un->un_resvd_status & SD_FAILFAST) &&
24625 			    (sd_failfast_enable)) {
24626 				sd_panic_for_res_conflict(un);
24627 				/*NOTREACHED*/
24628 			}
24629 			SD_INFO(SD_LOG_IOCTL_MHD, un,
24630 			    "sd_mhd_watch_cb: Reservation Conflict\n");
24631 			un->un_resvd_status |= SD_RESERVATION_CONFLICT;
24632 			mutex_exit(SD_MUTEX(un));
24633 		}
24634 	}
24635 
24636 	if (sensep != NULL) {
24637 		if (actual_sense_length >= (SENSE_LENGTH - 2)) {
24638 			mutex_enter(SD_MUTEX(un));
24639 			if ((scsi_sense_asc(sensep) ==
24640 			    SD_SCSI_RESET_SENSE_CODE) &&
24641 			    (un->un_resvd_status & SD_RESERVE)) {
24642 				/*
24643 				 * The additional sense code indicates a power
24644 				 * on or bus device reset has occurred; update
24645 				 * the reservation status.
24646 				 */
24647 				un->un_resvd_status |=
24648 				    (SD_LOST_RESERVE | SD_WANT_RESERVE);
24649 				SD_INFO(SD_LOG_IOCTL_MHD, un,
24650 				    "sd_mhd_watch_cb: Lost Reservation\n");
24651 			}
24652 		} else {
24653 			return (0);
24654 		}
24655 	} else {
24656 		mutex_enter(SD_MUTEX(un));
24657 	}
24658 
24659 	if ((un->un_resvd_status & SD_RESERVE) &&
24660 	    (un->un_resvd_status & SD_LOST_RESERVE)) {
24661 		if (un->un_resvd_status & SD_WANT_RESERVE) {
24662 			/*
24663 			 * A reset occurred in between the last probe and this
24664 			 * one so if a timeout is pending cancel it.
24665 			 */
24666 			if (un->un_resvd_timeid) {
24667 				timeout_id_t temp_id = un->un_resvd_timeid;
24668 				un->un_resvd_timeid = NULL;
24669 				mutex_exit(SD_MUTEX(un));
24670 				(void) untimeout(temp_id);
24671 				mutex_enter(SD_MUTEX(un));
24672 			}
24673 			un->un_resvd_status &= ~SD_WANT_RESERVE;
24674 		}
24675 		if (un->un_resvd_timeid == 0) {
24676 			/* Schedule a timeout to handle the lost reservation */
24677 			un->un_resvd_timeid = timeout(sd_mhd_resvd_recover,
24678 			    (void *)dev,
24679 			    drv_usectohz(sd_reinstate_resv_delay));
24680 		}
24681 	}
24682 	mutex_exit(SD_MUTEX(un));
24683 	return (0);
24684 }
24685 
24686 
24687 /*
24688  *    Function: sd_mhd_watch_incomplete()
24689  *
24690  * Description: This function is used to find out why a scsi pkt sent by the
24691  *		scsi watch facility was not completed. Under some scenarios this
24692  *		routine will return. Otherwise it will send a bus reset to see
24693  *		if the drive is still online.
24694  *
24695  *   Arguments: un  - driver soft state (unit) structure
24696  *		pkt - incomplete scsi pkt
24697  */
24698 
24699 static void
24700 sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt)
24701 {
24702 	int	be_chatty;
24703 	int	perr;
24704 
24705 	ASSERT(pkt != NULL);
24706 	ASSERT(un != NULL);
24707 	be_chatty	= (!(pkt->pkt_flags & FLAG_SILENT));
24708 	perr		= (pkt->pkt_statistics & STAT_PERR);
24709 
24710 	mutex_enter(SD_MUTEX(un));
24711 	if (un->un_state == SD_STATE_DUMPING) {
24712 		mutex_exit(SD_MUTEX(un));
24713 		return;
24714 	}
24715 
24716 	switch (pkt->pkt_reason) {
24717 	case CMD_UNX_BUS_FREE:
24718 		/*
24719 		 * If we had a parity error that caused the target to drop BSY*,
24720 		 * don't be chatty about it.
24721 		 */
24722 		if (perr && be_chatty) {
24723 			be_chatty = 0;
24724 		}
24725 		break;
24726 	case CMD_TAG_REJECT:
24727 		/*
24728 		 * The SCSI-2 spec states that a tag reject will be sent by the
24729 		 * target if tagged queuing is not supported. A tag reject may
24730 		 * also be sent during certain initialization periods or to
24731 		 * control internal resources. For the latter case the target
24732 		 * may also return Queue Full.
24733 		 *
24734 		 * If this driver receives a tag reject from a target that is
24735 		 * going through an init period or controlling internal
24736 		 * resources tagged queuing will be disabled. This is a less
24737 		 * than optimal behavior but the driver is unable to determine
24738 		 * the target state and assumes tagged queueing is not supported
24739 		 */
24740 		pkt->pkt_flags = 0;
24741 		un->un_tagflags = 0;
24742 
24743 		if (un->un_f_opt_queueing == TRUE) {
24744 			un->un_throttle = min(un->un_throttle, 3);
24745 		} else {
24746 			un->un_throttle = 1;
24747 		}
24748 		mutex_exit(SD_MUTEX(un));
24749 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
24750 		mutex_enter(SD_MUTEX(un));
24751 		break;
24752 	case CMD_INCOMPLETE:
24753 		/*
24754 		 * The transport stopped with an abnormal state, fallthrough and
24755 		 * reset the target and/or bus unless selection did not complete
24756 		 * (indicated by STATE_GOT_BUS) in which case we don't want to
24757 		 * go through a target/bus reset
24758 		 */
24759 		if (pkt->pkt_state == STATE_GOT_BUS) {
24760 			break;
24761 		}
24762 		/*FALLTHROUGH*/
24763 
24764 	case CMD_TIMEOUT:
24765 	default:
24766 		/*
24767 		 * The lun may still be running the command, so a lun reset
24768 		 * should be attempted. If the lun reset fails or cannot be
24769 		 * issued, than try a target reset. Lastly try a bus reset.
24770 		 */
24771 		if ((pkt->pkt_statistics &
24772 		    (STAT_BUS_RESET|STAT_DEV_RESET|STAT_ABORTED)) == 0) {
24773 			int reset_retval = 0;
24774 			mutex_exit(SD_MUTEX(un));
24775 			if (un->un_f_allow_bus_device_reset == TRUE) {
24776 				if (un->un_f_lun_reset_enabled == TRUE) {
24777 					reset_retval =
24778 					    scsi_reset(SD_ADDRESS(un),
24779 					    RESET_LUN);
24780 				}
24781 				if (reset_retval == 0) {
24782 					reset_retval =
24783 					    scsi_reset(SD_ADDRESS(un),
24784 					    RESET_TARGET);
24785 				}
24786 			}
24787 			if (reset_retval == 0) {
24788 				(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
24789 			}
24790 			mutex_enter(SD_MUTEX(un));
24791 		}
24792 		break;
24793 	}
24794 
24795 	/* A device/bus reset has occurred; update the reservation status. */
24796 	if ((pkt->pkt_reason == CMD_RESET) || (pkt->pkt_statistics &
24797 	    (STAT_BUS_RESET | STAT_DEV_RESET))) {
24798 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
24799 			un->un_resvd_status |=
24800 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
24801 			SD_INFO(SD_LOG_IOCTL_MHD, un,
24802 			    "sd_mhd_watch_incomplete: Lost Reservation\n");
24803 		}
24804 	}
24805 
24806 	/*
24807 	 * The disk has been turned off; Update the device state.
24808 	 *
24809 	 * Note: Should we be offlining the disk here?
24810 	 */
24811 	if (pkt->pkt_state == STATE_GOT_BUS) {
24812 		SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_watch_incomplete: "
24813 		    "Disk not responding to selection\n");
24814 		if (un->un_state != SD_STATE_OFFLINE) {
24815 			New_state(un, SD_STATE_OFFLINE);
24816 		}
24817 	} else if (be_chatty) {
24818 		/*
24819 		 * suppress messages if they are all the same pkt reason;
24820 		 * with TQ, many (up to 256) are returned with the same
24821 		 * pkt_reason
24822 		 */
24823 		if (pkt->pkt_reason != un->un_last_pkt_reason) {
24824 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
24825 			    "sd_mhd_watch_incomplete: "
24826 			    "SCSI transport failed: reason '%s'\n",
24827 			    scsi_rname(pkt->pkt_reason));
24828 		}
24829 	}
24830 	un->un_last_pkt_reason = pkt->pkt_reason;
24831 	mutex_exit(SD_MUTEX(un));
24832 }
24833 
24834 
24835 /*
24836  *    Function: sd_sname()
24837  *
24838  * Description: This is a simple little routine to return a string containing
24839  *		a printable description of command status byte for use in
24840  *		logging.
24841  *
24842  *   Arguments: status - pointer to a status byte
24843  *
24844  * Return Code: char * - string containing status description.
24845  */
24846 
24847 static char *
24848 sd_sname(uchar_t status)
24849 {
24850 	switch (status & STATUS_MASK) {
24851 	case STATUS_GOOD:
24852 		return ("good status");
24853 	case STATUS_CHECK:
24854 		return ("check condition");
24855 	case STATUS_MET:
24856 		return ("condition met");
24857 	case STATUS_BUSY:
24858 		return ("busy");
24859 	case STATUS_INTERMEDIATE:
24860 		return ("intermediate");
24861 	case STATUS_INTERMEDIATE_MET:
24862 		return ("intermediate - condition met");
24863 	case STATUS_RESERVATION_CONFLICT:
24864 		return ("reservation_conflict");
24865 	case STATUS_TERMINATED:
24866 		return ("command terminated");
24867 	case STATUS_QFULL:
24868 		return ("queue full");
24869 	default:
24870 		return ("<unknown status>");
24871 	}
24872 }
24873 
24874 
24875 /*
24876  *    Function: sd_mhd_resvd_recover()
24877  *
24878  * Description: This function adds a reservation entry to the
24879  *		sd_resv_reclaim_request list and signals the reservation
24880  *		reclaim thread that there is work pending. If the reservation
24881  *		reclaim thread has not been previously created this function
24882  *		will kick it off.
24883  *
24884  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
24885  *			among multiple watches that share this callback function
24886  *
24887  *     Context: This routine is called by timeout() and is run in interrupt
24888  *		context. It must not sleep or call other functions which may
24889  *		sleep.
24890  */
24891 
24892 static void
24893 sd_mhd_resvd_recover(void *arg)
24894 {
24895 	dev_t			dev = (dev_t)arg;
24896 	struct sd_lun		*un;
24897 	struct sd_thr_request	*sd_treq = NULL;
24898 	struct sd_thr_request	*sd_cur = NULL;
24899 	struct sd_thr_request	*sd_prev = NULL;
24900 	int			already_there = 0;
24901 
24902 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24903 		return;
24904 	}
24905 
24906 	mutex_enter(SD_MUTEX(un));
24907 	un->un_resvd_timeid = NULL;
24908 	if (un->un_resvd_status & SD_WANT_RESERVE) {
24909 		/*
24910 		 * There was a reset so don't issue the reserve, allow the
24911 		 * sd_mhd_watch_cb callback function to notice this and
24912 		 * reschedule the timeout for reservation.
24913 		 */
24914 		mutex_exit(SD_MUTEX(un));
24915 		return;
24916 	}
24917 	mutex_exit(SD_MUTEX(un));
24918 
24919 	/*
24920 	 * Add this device to the sd_resv_reclaim_request list and the
24921 	 * sd_resv_reclaim_thread should take care of the rest.
24922 	 *
24923 	 * Note: We can't sleep in this context so if the memory allocation
24924 	 * fails allow the sd_mhd_watch_cb callback function to notice this and
24925 	 * reschedule the timeout for reservation.  (4378460)
24926 	 */
24927 	sd_treq = (struct sd_thr_request *)
24928 	    kmem_zalloc(sizeof (struct sd_thr_request), KM_NOSLEEP);
24929 	if (sd_treq == NULL) {
24930 		return;
24931 	}
24932 
24933 	sd_treq->sd_thr_req_next = NULL;
24934 	sd_treq->dev = dev;
24935 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
24936 	if (sd_tr.srq_thr_req_head == NULL) {
24937 		sd_tr.srq_thr_req_head = sd_treq;
24938 	} else {
24939 		sd_cur = sd_prev = sd_tr.srq_thr_req_head;
24940 		for (; sd_cur != NULL; sd_cur = sd_cur->sd_thr_req_next) {
24941 			if (sd_cur->dev == dev) {
24942 				/*
24943 				 * already in Queue so don't log
24944 				 * another request for the device
24945 				 */
24946 				already_there = 1;
24947 				break;
24948 			}
24949 			sd_prev = sd_cur;
24950 		}
24951 		if (!already_there) {
24952 			SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_resvd_recover: "
24953 			    "logging request for %lx\n", dev);
24954 			sd_prev->sd_thr_req_next = sd_treq;
24955 		} else {
24956 			kmem_free(sd_treq, sizeof (struct sd_thr_request));
24957 		}
24958 	}
24959 
24960 	/*
24961 	 * Create a kernel thread to do the reservation reclaim and free up this
24962 	 * thread. We cannot block this thread while we go away to do the
24963 	 * reservation reclaim
24964 	 */
24965 	if (sd_tr.srq_resv_reclaim_thread == NULL)
24966 		sd_tr.srq_resv_reclaim_thread = thread_create(NULL, 0,
24967 		    sd_resv_reclaim_thread, NULL,
24968 		    0, &p0, TS_RUN, v.v_maxsyspri - 2);
24969 
24970 	/* Tell the reservation reclaim thread that it has work to do */
24971 	cv_signal(&sd_tr.srq_resv_reclaim_cv);
24972 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
24973 }
24974 
24975 /*
24976  *    Function: sd_resv_reclaim_thread()
24977  *
24978  * Description: This function implements the reservation reclaim operations
24979  *
24980  *   Arguments: arg - the device 'dev_t' is used for context to discriminate
24981  *		      among multiple watches that share this callback function
24982  */
24983 
24984 static void
24985 sd_resv_reclaim_thread()
24986 {
24987 	struct sd_lun		*un;
24988 	struct sd_thr_request	*sd_mhreq;
24989 
24990 	/* Wait for work */
24991 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
24992 	if (sd_tr.srq_thr_req_head == NULL) {
24993 		cv_wait(&sd_tr.srq_resv_reclaim_cv,
24994 		    &sd_tr.srq_resv_reclaim_mutex);
24995 	}
24996 
24997 	/* Loop while we have work */
24998 	while ((sd_tr.srq_thr_cur_req = sd_tr.srq_thr_req_head) != NULL) {
24999 		un = ddi_get_soft_state(sd_state,
25000 		    SDUNIT(sd_tr.srq_thr_cur_req->dev));
25001 		if (un == NULL) {
25002 			/*
25003 			 * softstate structure is NULL so just
25004 			 * dequeue the request and continue
25005 			 */
25006 			sd_tr.srq_thr_req_head =
25007 			    sd_tr.srq_thr_cur_req->sd_thr_req_next;
25008 			kmem_free(sd_tr.srq_thr_cur_req,
25009 			    sizeof (struct sd_thr_request));
25010 			continue;
25011 		}
25012 
25013 		/* dequeue the request */
25014 		sd_mhreq = sd_tr.srq_thr_cur_req;
25015 		sd_tr.srq_thr_req_head =
25016 		    sd_tr.srq_thr_cur_req->sd_thr_req_next;
25017 		mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25018 
25019 		/*
25020 		 * Reclaim reservation only if SD_RESERVE is still set. There
25021 		 * may have been a call to MHIOCRELEASE before we got here.
25022 		 */
25023 		mutex_enter(SD_MUTEX(un));
25024 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
25025 			/*
25026 			 * Note: The SD_LOST_RESERVE flag is cleared before
25027 			 * reclaiming the reservation. If this is done after the
25028 			 * call to sd_reserve_release a reservation loss in the
25029 			 * window between pkt completion of reserve cmd and
25030 			 * mutex_enter below may not be recognized
25031 			 */
25032 			un->un_resvd_status &= ~SD_LOST_RESERVE;
25033 			mutex_exit(SD_MUTEX(un));
25034 
25035 			if (sd_reserve_release(sd_mhreq->dev,
25036 			    SD_RESERVE) == 0) {
25037 				mutex_enter(SD_MUTEX(un));
25038 				un->un_resvd_status |= SD_RESERVE;
25039 				mutex_exit(SD_MUTEX(un));
25040 				SD_INFO(SD_LOG_IOCTL_MHD, un,
25041 				    "sd_resv_reclaim_thread: "
25042 				    "Reservation Recovered\n");
25043 			} else {
25044 				mutex_enter(SD_MUTEX(un));
25045 				un->un_resvd_status |= SD_LOST_RESERVE;
25046 				mutex_exit(SD_MUTEX(un));
25047 				SD_INFO(SD_LOG_IOCTL_MHD, un,
25048 				    "sd_resv_reclaim_thread: Failed "
25049 				    "Reservation Recovery\n");
25050 			}
25051 		} else {
25052 			mutex_exit(SD_MUTEX(un));
25053 		}
25054 		mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25055 		ASSERT(sd_mhreq == sd_tr.srq_thr_cur_req);
25056 		kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
25057 		sd_mhreq = sd_tr.srq_thr_cur_req = NULL;
25058 		/*
25059 		 * wakeup the destroy thread if anyone is waiting on
25060 		 * us to complete.
25061 		 */
25062 		cv_signal(&sd_tr.srq_inprocess_cv);
25063 		SD_TRACE(SD_LOG_IOCTL_MHD, un,
25064 		    "sd_resv_reclaim_thread: cv_signalling current request \n");
25065 	}
25066 
25067 	/*
25068 	 * cleanup the sd_tr structure now that this thread will not exist
25069 	 */
25070 	ASSERT(sd_tr.srq_thr_req_head == NULL);
25071 	ASSERT(sd_tr.srq_thr_cur_req == NULL);
25072 	sd_tr.srq_resv_reclaim_thread = NULL;
25073 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25074 	thread_exit();
25075 }
25076 
25077 
25078 /*
25079  *    Function: sd_rmv_resv_reclaim_req()
25080  *
25081  * Description: This function removes any pending reservation reclaim requests
25082  *		for the specified device.
25083  *
25084  *   Arguments: dev - the device 'dev_t'
25085  */
25086 
25087 static void
25088 sd_rmv_resv_reclaim_req(dev_t dev)
25089 {
25090 	struct sd_thr_request *sd_mhreq;
25091 	struct sd_thr_request *sd_prev;
25092 
25093 	/* Remove a reservation reclaim request from the list */
25094 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25095 	if (sd_tr.srq_thr_cur_req && sd_tr.srq_thr_cur_req->dev == dev) {
25096 		/*
25097 		 * We are attempting to reinstate reservation for
25098 		 * this device. We wait for sd_reserve_release()
25099 		 * to return before we return.
25100 		 */
25101 		cv_wait(&sd_tr.srq_inprocess_cv,
25102 		    &sd_tr.srq_resv_reclaim_mutex);
25103 	} else {
25104 		sd_prev = sd_mhreq = sd_tr.srq_thr_req_head;
25105 		if (sd_mhreq && sd_mhreq->dev == dev) {
25106 			sd_tr.srq_thr_req_head = sd_mhreq->sd_thr_req_next;
25107 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
25108 			mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25109 			return;
25110 		}
25111 		for (; sd_mhreq != NULL; sd_mhreq = sd_mhreq->sd_thr_req_next) {
25112 			if (sd_mhreq && sd_mhreq->dev == dev) {
25113 				break;
25114 			}
25115 			sd_prev = sd_mhreq;
25116 		}
25117 		if (sd_mhreq != NULL) {
25118 			sd_prev->sd_thr_req_next = sd_mhreq->sd_thr_req_next;
25119 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
25120 		}
25121 	}
25122 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25123 }
25124 
25125 
25126 /*
25127  *    Function: sd_mhd_reset_notify_cb()
25128  *
25129  * Description: This is a call back function for scsi_reset_notify. This
25130  *		function updates the softstate reserved status and logs the
25131  *		reset. The driver scsi watch facility callback function
25132  *		(sd_mhd_watch_cb) and reservation reclaim thread functionality
25133  *		will reclaim the reservation.
25134  *
25135  *   Arguments: arg  - driver soft state (unit) structure
25136  */
25137 
25138 static void
25139 sd_mhd_reset_notify_cb(caddr_t arg)
25140 {
25141 	struct sd_lun *un = (struct sd_lun *)arg;
25142 
25143 	mutex_enter(SD_MUTEX(un));
25144 	if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
25145 		un->un_resvd_status |= (SD_LOST_RESERVE | SD_WANT_RESERVE);
25146 		SD_INFO(SD_LOG_IOCTL_MHD, un,
25147 		    "sd_mhd_reset_notify_cb: Lost Reservation\n");
25148 	}
25149 	mutex_exit(SD_MUTEX(un));
25150 }
25151 
25152 
25153 /*
25154  *    Function: sd_take_ownership()
25155  *
25156  * Description: This routine implements an algorithm to achieve a stable
25157  *		reservation on disks which don't implement priority reserve,
25158  *		and makes sure that other host lose re-reservation attempts.
25159  *		This algorithm contains of a loop that keeps issuing the RESERVE
25160  *		for some period of time (min_ownership_delay, default 6 seconds)
25161  *		During that loop, it looks to see if there has been a bus device
25162  *		reset or bus reset (both of which cause an existing reservation
25163  *		to be lost). If the reservation is lost issue RESERVE until a
25164  *		period of min_ownership_delay with no resets has gone by, or
25165  *		until max_ownership_delay has expired. This loop ensures that
25166  *		the host really did manage to reserve the device, in spite of
25167  *		resets. The looping for min_ownership_delay (default six
25168  *		seconds) is important to early generation clustering products,
25169  *		Solstice HA 1.x and Sun Cluster 2.x. Those products use an
25170  *		MHIOCENFAILFAST periodic timer of two seconds. By having
25171  *		MHIOCTKOWN issue Reserves in a loop for six seconds, and having
25172  *		MHIOCENFAILFAST poll every two seconds, the idea is that by the
25173  *		time the MHIOCTKOWN ioctl returns, the other host (if any) will
25174  *		have already noticed, via the MHIOCENFAILFAST polling, that it
25175  *		no longer "owns" the disk and will have panicked itself.  Thus,
25176  *		the host issuing the MHIOCTKOWN is assured (with timing
25177  *		dependencies) that by the time it actually starts to use the
25178  *		disk for real work, the old owner is no longer accessing it.
25179  *
25180  *		min_ownership_delay is the minimum amount of time for which the
25181  *		disk must be reserved continuously devoid of resets before the
25182  *		MHIOCTKOWN ioctl will return success.
25183  *
25184  *		max_ownership_delay indicates the amount of time by which the
25185  *		take ownership should succeed or timeout with an error.
25186  *
25187  *   Arguments: dev - the device 'dev_t'
25188  *		*p  - struct containing timing info.
25189  *
25190  * Return Code: 0 for success or error code
25191  */
25192 
25193 static int
25194 sd_take_ownership(dev_t dev, struct mhioctkown *p)
25195 {
25196 	struct sd_lun	*un;
25197 	int		rval;
25198 	int		err;
25199 	int		reservation_count   = 0;
25200 	int		min_ownership_delay =  6000000; /* in usec */
25201 	int		max_ownership_delay = 30000000; /* in usec */
25202 	clock_t		start_time;	/* starting time of this algorithm */
25203 	clock_t		end_time;	/* time limit for giving up */
25204 	clock_t		ownership_time;	/* time limit for stable ownership */
25205 	clock_t		current_time;
25206 	clock_t		previous_current_time;
25207 
25208 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25209 		return (ENXIO);
25210 	}
25211 
25212 	/*
25213 	 * Attempt a device reservation. A priority reservation is requested.
25214 	 */
25215 	if ((rval = sd_reserve_release(dev, SD_PRIORITY_RESERVE))
25216 	    != SD_SUCCESS) {
25217 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
25218 		    "sd_take_ownership: return(1)=%d\n", rval);
25219 		return (rval);
25220 	}
25221 
25222 	/* Update the softstate reserved status to indicate the reservation */
25223 	mutex_enter(SD_MUTEX(un));
25224 	un->un_resvd_status |= SD_RESERVE;
25225 	un->un_resvd_status &=
25226 	    ~(SD_LOST_RESERVE | SD_WANT_RESERVE | SD_RESERVATION_CONFLICT);
25227 	mutex_exit(SD_MUTEX(un));
25228 
25229 	if (p != NULL) {
25230 		if (p->min_ownership_delay != 0) {
25231 			min_ownership_delay = p->min_ownership_delay * 1000;
25232 		}
25233 		if (p->max_ownership_delay != 0) {
25234 			max_ownership_delay = p->max_ownership_delay * 1000;
25235 		}
25236 	}
25237 	SD_INFO(SD_LOG_IOCTL_MHD, un,
25238 	    "sd_take_ownership: min, max delays: %d, %d\n",
25239 	    min_ownership_delay, max_ownership_delay);
25240 
25241 	start_time = ddi_get_lbolt();
25242 	current_time	= start_time;
25243 	ownership_time	= current_time + drv_usectohz(min_ownership_delay);
25244 	end_time	= start_time + drv_usectohz(max_ownership_delay);
25245 
25246 	while (current_time - end_time < 0) {
25247 		delay(drv_usectohz(500000));
25248 
25249 		if ((err = sd_reserve_release(dev, SD_RESERVE)) != 0) {
25250 			if ((sd_reserve_release(dev, SD_RESERVE)) != 0) {
25251 				mutex_enter(SD_MUTEX(un));
25252 				rval = (un->un_resvd_status &
25253 				    SD_RESERVATION_CONFLICT) ? EACCES : EIO;
25254 				mutex_exit(SD_MUTEX(un));
25255 				break;
25256 			}
25257 		}
25258 		previous_current_time = current_time;
25259 		current_time = ddi_get_lbolt();
25260 		mutex_enter(SD_MUTEX(un));
25261 		if (err || (un->un_resvd_status & SD_LOST_RESERVE)) {
25262 			ownership_time = ddi_get_lbolt() +
25263 			    drv_usectohz(min_ownership_delay);
25264 			reservation_count = 0;
25265 		} else {
25266 			reservation_count++;
25267 		}
25268 		un->un_resvd_status |= SD_RESERVE;
25269 		un->un_resvd_status &= ~(SD_LOST_RESERVE | SD_WANT_RESERVE);
25270 		mutex_exit(SD_MUTEX(un));
25271 
25272 		SD_INFO(SD_LOG_IOCTL_MHD, un,
25273 		    "sd_take_ownership: ticks for loop iteration=%ld, "
25274 		    "reservation=%s\n", (current_time - previous_current_time),
25275 		    reservation_count ? "ok" : "reclaimed");
25276 
25277 		if (current_time - ownership_time >= 0 &&
25278 		    reservation_count >= 4) {
25279 			rval = 0; /* Achieved a stable ownership */
25280 			break;
25281 		}
25282 		if (current_time - end_time >= 0) {
25283 			rval = EACCES; /* No ownership in max possible time */
25284 			break;
25285 		}
25286 	}
25287 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
25288 	    "sd_take_ownership: return(2)=%d\n", rval);
25289 	return (rval);
25290 }
25291 
25292 
25293 /*
25294  *    Function: sd_reserve_release()
25295  *
25296  * Description: This function builds and sends scsi RESERVE, RELEASE, and
25297  *		PRIORITY RESERVE commands based on a user specified command type
25298  *
25299  *   Arguments: dev - the device 'dev_t'
25300  *		cmd - user specified command type; one of SD_PRIORITY_RESERVE,
25301  *		      SD_RESERVE, SD_RELEASE
25302  *
25303  * Return Code: 0 or Error Code
25304  */
25305 
25306 static int
25307 sd_reserve_release(dev_t dev, int cmd)
25308 {
25309 	struct uscsi_cmd	*com = NULL;
25310 	struct sd_lun		*un = NULL;
25311 	char			cdb[CDB_GROUP0];
25312 	int			rval;
25313 
25314 	ASSERT((cmd == SD_RELEASE) || (cmd == SD_RESERVE) ||
25315 	    (cmd == SD_PRIORITY_RESERVE));
25316 
25317 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25318 		return (ENXIO);
25319 	}
25320 
25321 	/* instantiate and initialize the command and cdb */
25322 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25323 	bzero(cdb, CDB_GROUP0);
25324 	com->uscsi_flags   = USCSI_SILENT;
25325 	com->uscsi_timeout = un->un_reserve_release_time;
25326 	com->uscsi_cdblen  = CDB_GROUP0;
25327 	com->uscsi_cdb	   = cdb;
25328 	if (cmd == SD_RELEASE) {
25329 		cdb[0] = SCMD_RELEASE;
25330 	} else {
25331 		cdb[0] = SCMD_RESERVE;
25332 	}
25333 
25334 	/* Send the command. */
25335 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
25336 	    SD_PATH_STANDARD);
25337 
25338 	/*
25339 	 * "break" a reservation that is held by another host, by issuing a
25340 	 * reset if priority reserve is desired, and we could not get the
25341 	 * device.
25342 	 */
25343 	if ((cmd == SD_PRIORITY_RESERVE) &&
25344 	    (rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
25345 		/*
25346 		 * First try to reset the LUN. If we cannot, then try a target
25347 		 * reset, followed by a bus reset if the target reset fails.
25348 		 */
25349 		int reset_retval = 0;
25350 		if (un->un_f_lun_reset_enabled == TRUE) {
25351 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
25352 		}
25353 		if (reset_retval == 0) {
25354 			/* The LUN reset either failed or was not issued */
25355 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
25356 		}
25357 		if ((reset_retval == 0) &&
25358 		    (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0)) {
25359 			rval = EIO;
25360 			kmem_free(com, sizeof (*com));
25361 			return (rval);
25362 		}
25363 
25364 		bzero(com, sizeof (struct uscsi_cmd));
25365 		com->uscsi_flags   = USCSI_SILENT;
25366 		com->uscsi_cdb	   = cdb;
25367 		com->uscsi_cdblen  = CDB_GROUP0;
25368 		com->uscsi_timeout = 5;
25369 
25370 		/*
25371 		 * Reissue the last reserve command, this time without request
25372 		 * sense.  Assume that it is just a regular reserve command.
25373 		 */
25374 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
25375 		    SD_PATH_STANDARD);
25376 	}
25377 
25378 	/* Return an error if still getting a reservation conflict. */
25379 	if ((rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
25380 		rval = EACCES;
25381 	}
25382 
25383 	kmem_free(com, sizeof (*com));
25384 	return (rval);
25385 }
25386 
25387 
25388 #define	SD_NDUMP_RETRIES	12
25389 /*
25390  *	System Crash Dump routine
25391  */
25392 
25393 static int
25394 sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
25395 {
25396 	int		instance;
25397 	int		partition;
25398 	int		i;
25399 	int		err;
25400 	struct sd_lun	*un;
25401 	struct scsi_pkt *wr_pktp;
25402 	struct buf	*wr_bp;
25403 	struct buf	wr_buf;
25404 	daddr_t		tgt_byte_offset; /* rmw - byte offset for target */
25405 	daddr_t		tgt_blkno;	/* rmw - blkno for target */
25406 	size_t		tgt_byte_count; /* rmw -  # of bytes to xfer */
25407 	size_t		tgt_nblk; /* rmw -  # of tgt blks to xfer */
25408 	size_t		io_start_offset;
25409 	int		doing_rmw = FALSE;
25410 	int		rval;
25411 	ssize_t		dma_resid;
25412 	daddr_t		oblkno;
25413 	diskaddr_t	nblks = 0;
25414 	diskaddr_t	start_block;
25415 
25416 	instance = SDUNIT(dev);
25417 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
25418 	    !SD_IS_VALID_LABEL(un) || ISCD(un)) {
25419 		return (ENXIO);
25420 	}
25421 
25422 	_NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*un))
25423 
25424 	SD_TRACE(SD_LOG_DUMP, un, "sddump: entry\n");
25425 
25426 	partition = SDPART(dev);
25427 	SD_INFO(SD_LOG_DUMP, un, "sddump: partition = %d\n", partition);
25428 
25429 	if (!(NOT_DEVBSIZE(un))) {
25430 		int secmask = 0;
25431 		int blknomask = 0;
25432 
25433 		blknomask = (un->un_tgt_blocksize / DEV_BSIZE) - 1;
25434 		secmask = un->un_tgt_blocksize - 1;
25435 
25436 		if (blkno & blknomask) {
25437 			SD_TRACE(SD_LOG_DUMP, un,
25438 			    "sddump: dump start block not modulo %d\n",
25439 			    un->un_tgt_blocksize);
25440 			return (EINVAL);
25441 		}
25442 
25443 		if ((nblk * DEV_BSIZE) & secmask) {
25444 			SD_TRACE(SD_LOG_DUMP, un,
25445 			    "sddump: dump length not modulo %d\n",
25446 			    un->un_tgt_blocksize);
25447 			return (EINVAL);
25448 		}
25449 
25450 	}
25451 
25452 	/* Validate blocks to dump at against partition size. */
25453 
25454 	(void) cmlb_partinfo(un->un_cmlbhandle, partition,
25455 	    &nblks, &start_block, NULL, NULL, (void *)SD_PATH_DIRECT);
25456 
25457 	if (NOT_DEVBSIZE(un)) {
25458 		if ((blkno + nblk) > nblks) {
25459 			SD_TRACE(SD_LOG_DUMP, un,
25460 			    "sddump: dump range larger than partition: "
25461 			    "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n",
25462 			    blkno, nblk, nblks);
25463 			return (EINVAL);
25464 		}
25465 	} else {
25466 		if (((blkno / (un->un_tgt_blocksize / DEV_BSIZE)) +
25467 		    (nblk / (un->un_tgt_blocksize / DEV_BSIZE))) > nblks) {
25468 			SD_TRACE(SD_LOG_DUMP, un,
25469 			    "sddump: dump range larger than partition: "
25470 			    "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n",
25471 			    blkno, nblk, nblks);
25472 			return (EINVAL);
25473 		}
25474 	}
25475 
25476 	mutex_enter(&un->un_pm_mutex);
25477 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
25478 		struct scsi_pkt *start_pktp;
25479 
25480 		mutex_exit(&un->un_pm_mutex);
25481 
25482 		/*
25483 		 * use pm framework to power on HBA 1st
25484 		 */
25485 		(void) pm_raise_power(SD_DEVINFO(un), 0,
25486 		    SD_PM_STATE_ACTIVE(un));
25487 
25488 		/*
25489 		 * Dump no long uses sdpower to power on a device, it's
25490 		 * in-line here so it can be done in polled mode.
25491 		 */
25492 
25493 		SD_INFO(SD_LOG_DUMP, un, "sddump: starting device\n");
25494 
25495 		start_pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, NULL,
25496 		    CDB_GROUP0, un->un_status_len, 0, 0, NULL_FUNC, NULL);
25497 
25498 		if (start_pktp == NULL) {
25499 			/* We were not given a SCSI packet, fail. */
25500 			return (EIO);
25501 		}
25502 		bzero(start_pktp->pkt_cdbp, CDB_GROUP0);
25503 		start_pktp->pkt_cdbp[0] = SCMD_START_STOP;
25504 		start_pktp->pkt_cdbp[4] = SD_TARGET_START;
25505 		start_pktp->pkt_flags = FLAG_NOINTR;
25506 
25507 		mutex_enter(SD_MUTEX(un));
25508 		SD_FILL_SCSI1_LUN(un, start_pktp);
25509 		mutex_exit(SD_MUTEX(un));
25510 		/*
25511 		 * Scsi_poll returns 0 (success) if the command completes and
25512 		 * the status block is STATUS_GOOD.
25513 		 */
25514 		if (sd_scsi_poll(un, start_pktp) != 0) {
25515 			scsi_destroy_pkt(start_pktp);
25516 			return (EIO);
25517 		}
25518 		scsi_destroy_pkt(start_pktp);
25519 		(void) sd_pm_state_change(un, SD_PM_STATE_ACTIVE(un),
25520 		    SD_PM_STATE_CHANGE);
25521 	} else {
25522 		mutex_exit(&un->un_pm_mutex);
25523 	}
25524 
25525 	mutex_enter(SD_MUTEX(un));
25526 	un->un_throttle = 0;
25527 
25528 	/*
25529 	 * The first time through, reset the specific target device.
25530 	 * However, when cpr calls sddump we know that sd is in a
25531 	 * a good state so no bus reset is required.
25532 	 * Clear sense data via Request Sense cmd.
25533 	 * In sddump we don't care about allow_bus_device_reset anymore
25534 	 */
25535 
25536 	if ((un->un_state != SD_STATE_SUSPENDED) &&
25537 	    (un->un_state != SD_STATE_DUMPING)) {
25538 
25539 		New_state(un, SD_STATE_DUMPING);
25540 
25541 		if (un->un_f_is_fibre == FALSE) {
25542 			mutex_exit(SD_MUTEX(un));
25543 			/*
25544 			 * Attempt a bus reset for parallel scsi.
25545 			 *
25546 			 * Note: A bus reset is required because on some host
25547 			 * systems (i.e. E420R) a bus device reset is
25548 			 * insufficient to reset the state of the target.
25549 			 *
25550 			 * Note: Don't issue the reset for fibre-channel,
25551 			 * because this tends to hang the bus (loop) for
25552 			 * too long while everyone is logging out and in
25553 			 * and the deadman timer for dumping will fire
25554 			 * before the dump is complete.
25555 			 */
25556 			if (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0) {
25557 				mutex_enter(SD_MUTEX(un));
25558 				Restore_state(un);
25559 				mutex_exit(SD_MUTEX(un));
25560 				return (EIO);
25561 			}
25562 
25563 			/* Delay to give the device some recovery time. */
25564 			drv_usecwait(10000);
25565 
25566 			if (sd_send_polled_RQS(un) == SD_FAILURE) {
25567 				SD_INFO(SD_LOG_DUMP, un,
25568 				    "sddump: sd_send_polled_RQS failed\n");
25569 			}
25570 			mutex_enter(SD_MUTEX(un));
25571 		}
25572 	}
25573 
25574 	/*
25575 	 * Convert the partition-relative block number to a
25576 	 * disk physical block number.
25577 	 */
25578 	if (NOT_DEVBSIZE(un)) {
25579 		blkno += start_block;
25580 	} else {
25581 		blkno = blkno / (un->un_tgt_blocksize / DEV_BSIZE);
25582 		blkno += start_block;
25583 	}
25584 
25585 	SD_INFO(SD_LOG_DUMP, un, "sddump: disk blkno = 0x%x\n", blkno);
25586 
25587 
25588 	/*
25589 	 * Check if the device has a non-512 block size.
25590 	 */
25591 	wr_bp = NULL;
25592 	if (NOT_DEVBSIZE(un)) {
25593 		tgt_byte_offset = blkno * un->un_sys_blocksize;
25594 		tgt_byte_count = nblk * un->un_sys_blocksize;
25595 		if ((tgt_byte_offset % un->un_tgt_blocksize) ||
25596 		    (tgt_byte_count % un->un_tgt_blocksize)) {
25597 			doing_rmw = TRUE;
25598 			/*
25599 			 * Calculate the block number and number of block
25600 			 * in terms of the media block size.
25601 			 */
25602 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
25603 			tgt_nblk =
25604 			    ((tgt_byte_offset + tgt_byte_count +
25605 			    (un->un_tgt_blocksize - 1)) /
25606 			    un->un_tgt_blocksize) - tgt_blkno;
25607 
25608 			/*
25609 			 * Invoke the routine which is going to do read part
25610 			 * of read-modify-write.
25611 			 * Note that this routine returns a pointer to
25612 			 * a valid bp in wr_bp.
25613 			 */
25614 			err = sddump_do_read_of_rmw(un, tgt_blkno, tgt_nblk,
25615 			    &wr_bp);
25616 			if (err) {
25617 				mutex_exit(SD_MUTEX(un));
25618 				return (err);
25619 			}
25620 			/*
25621 			 * Offset is being calculated as -
25622 			 * (original block # * system block size) -
25623 			 * (new block # * target block size)
25624 			 */
25625 			io_start_offset =
25626 			    ((uint64_t)(blkno * un->un_sys_blocksize)) -
25627 			    ((uint64_t)(tgt_blkno * un->un_tgt_blocksize));
25628 
25629 			ASSERT((io_start_offset >= 0) &&
25630 			    (io_start_offset < un->un_tgt_blocksize));
25631 			/*
25632 			 * Do the modify portion of read modify write.
25633 			 */
25634 			bcopy(addr, &wr_bp->b_un.b_addr[io_start_offset],
25635 			    (size_t)nblk * un->un_sys_blocksize);
25636 		} else {
25637 			doing_rmw = FALSE;
25638 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
25639 			tgt_nblk = tgt_byte_count / un->un_tgt_blocksize;
25640 		}
25641 
25642 		/* Convert blkno and nblk to target blocks */
25643 		blkno = tgt_blkno;
25644 		nblk = tgt_nblk;
25645 	} else {
25646 		wr_bp = &wr_buf;
25647 		bzero(wr_bp, sizeof (struct buf));
25648 		wr_bp->b_flags		= B_BUSY;
25649 		wr_bp->b_un.b_addr	= addr;
25650 		wr_bp->b_bcount		= nblk << DEV_BSHIFT;
25651 		wr_bp->b_resid		= 0;
25652 	}
25653 
25654 	mutex_exit(SD_MUTEX(un));
25655 
25656 	/*
25657 	 * Obtain a SCSI packet for the write command.
25658 	 * It should be safe to call the allocator here without
25659 	 * worrying about being locked for DVMA mapping because
25660 	 * the address we're passed is already a DVMA mapping
25661 	 *
25662 	 * We are also not going to worry about semaphore ownership
25663 	 * in the dump buffer. Dumping is single threaded at present.
25664 	 */
25665 
25666 	wr_pktp = NULL;
25667 
25668 	dma_resid = wr_bp->b_bcount;
25669 	oblkno = blkno;
25670 
25671 	if (!(NOT_DEVBSIZE(un))) {
25672 		nblk = nblk / (un->un_tgt_blocksize / DEV_BSIZE);
25673 	}
25674 
25675 	while (dma_resid != 0) {
25676 
25677 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
25678 		wr_bp->b_flags &= ~B_ERROR;
25679 
25680 		if (un->un_partial_dma_supported == 1) {
25681 			blkno = oblkno +
25682 			    ((wr_bp->b_bcount - dma_resid) /
25683 			    un->un_tgt_blocksize);
25684 			nblk = dma_resid / un->un_tgt_blocksize;
25685 
25686 			if (wr_pktp) {
25687 				/*
25688 				 * Partial DMA transfers after initial transfer
25689 				 */
25690 				rval = sd_setup_next_rw_pkt(un, wr_pktp, wr_bp,
25691 				    blkno, nblk);
25692 			} else {
25693 				/* Initial transfer */
25694 				rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
25695 				    un->un_pkt_flags, NULL_FUNC, NULL,
25696 				    blkno, nblk);
25697 			}
25698 		} else {
25699 			rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
25700 			    0, NULL_FUNC, NULL, blkno, nblk);
25701 		}
25702 
25703 		if (rval == 0) {
25704 			/* We were given a SCSI packet, continue. */
25705 			break;
25706 		}
25707 
25708 		if (i == 0) {
25709 			if (wr_bp->b_flags & B_ERROR) {
25710 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25711 				    "no resources for dumping; "
25712 				    "error code: 0x%x, retrying",
25713 				    geterror(wr_bp));
25714 			} else {
25715 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25716 				    "no resources for dumping; retrying");
25717 			}
25718 		} else if (i != (SD_NDUMP_RETRIES - 1)) {
25719 			if (wr_bp->b_flags & B_ERROR) {
25720 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
25721 				    "no resources for dumping; error code: "
25722 				    "0x%x, retrying\n", geterror(wr_bp));
25723 			}
25724 		} else {
25725 			if (wr_bp->b_flags & B_ERROR) {
25726 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
25727 				    "no resources for dumping; "
25728 				    "error code: 0x%x, retries failed, "
25729 				    "giving up.\n", geterror(wr_bp));
25730 			} else {
25731 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
25732 				    "no resources for dumping; "
25733 				    "retries failed, giving up.\n");
25734 			}
25735 			mutex_enter(SD_MUTEX(un));
25736 			Restore_state(un);
25737 			if (NOT_DEVBSIZE(un) && (doing_rmw == TRUE)) {
25738 				mutex_exit(SD_MUTEX(un));
25739 				scsi_free_consistent_buf(wr_bp);
25740 			} else {
25741 				mutex_exit(SD_MUTEX(un));
25742 			}
25743 			return (EIO);
25744 		}
25745 		drv_usecwait(10000);
25746 	}
25747 
25748 	if (un->un_partial_dma_supported == 1) {
25749 		/*
25750 		 * save the resid from PARTIAL_DMA
25751 		 */
25752 		dma_resid = wr_pktp->pkt_resid;
25753 		if (dma_resid != 0)
25754 			nblk -= SD_BYTES2TGTBLOCKS(un, dma_resid);
25755 		wr_pktp->pkt_resid = 0;
25756 	} else {
25757 		dma_resid = 0;
25758 	}
25759 
25760 	/* SunBug 1222170 */
25761 	wr_pktp->pkt_flags = FLAG_NOINTR;
25762 
25763 	err = EIO;
25764 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
25765 
25766 		/*
25767 		 * Scsi_poll returns 0 (success) if the command completes and
25768 		 * the status block is STATUS_GOOD.  We should only check
25769 		 * errors if this condition is not true.  Even then we should
25770 		 * send our own request sense packet only if we have a check
25771 		 * condition and auto request sense has not been performed by
25772 		 * the hba.
25773 		 */
25774 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending write\n");
25775 
25776 		if ((sd_scsi_poll(un, wr_pktp) == 0) &&
25777 		    (wr_pktp->pkt_resid == 0)) {
25778 			err = SD_SUCCESS;
25779 			break;
25780 		}
25781 
25782 		/*
25783 		 * Check CMD_DEV_GONE 1st, give up if device is gone.
25784 		 */
25785 		if (wr_pktp->pkt_reason == CMD_DEV_GONE) {
25786 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25787 			    "Error while dumping state...Device is gone\n");
25788 			break;
25789 		}
25790 
25791 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_CHECK) {
25792 			SD_INFO(SD_LOG_DUMP, un,
25793 			    "sddump: write failed with CHECK, try # %d\n", i);
25794 			if (((wr_pktp->pkt_state & STATE_ARQ_DONE) == 0)) {
25795 				(void) sd_send_polled_RQS(un);
25796 			}
25797 
25798 			continue;
25799 		}
25800 
25801 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_BUSY) {
25802 			int reset_retval = 0;
25803 
25804 			SD_INFO(SD_LOG_DUMP, un,
25805 			    "sddump: write failed with BUSY, try # %d\n", i);
25806 
25807 			if (un->un_f_lun_reset_enabled == TRUE) {
25808 				reset_retval = scsi_reset(SD_ADDRESS(un),
25809 				    RESET_LUN);
25810 			}
25811 			if (reset_retval == 0) {
25812 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
25813 			}
25814 			(void) sd_send_polled_RQS(un);
25815 
25816 		} else {
25817 			SD_INFO(SD_LOG_DUMP, un,
25818 			    "sddump: write failed with 0x%x, try # %d\n",
25819 			    SD_GET_PKT_STATUS(wr_pktp), i);
25820 			mutex_enter(SD_MUTEX(un));
25821 			sd_reset_target(un, wr_pktp);
25822 			mutex_exit(SD_MUTEX(un));
25823 		}
25824 
25825 		/*
25826 		 * If we are not getting anywhere with lun/target resets,
25827 		 * let's reset the bus.
25828 		 */
25829 		if (i == SD_NDUMP_RETRIES/2) {
25830 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
25831 			(void) sd_send_polled_RQS(un);
25832 		}
25833 	}
25834 	}
25835 
25836 	scsi_destroy_pkt(wr_pktp);
25837 	mutex_enter(SD_MUTEX(un));
25838 	if ((NOT_DEVBSIZE(un)) && (doing_rmw == TRUE)) {
25839 		mutex_exit(SD_MUTEX(un));
25840 		scsi_free_consistent_buf(wr_bp);
25841 	} else {
25842 		mutex_exit(SD_MUTEX(un));
25843 	}
25844 	SD_TRACE(SD_LOG_DUMP, un, "sddump: exit: err = %d\n", err);
25845 	return (err);
25846 }
25847 
25848 /*
25849  *    Function: sd_scsi_poll()
25850  *
25851  * Description: This is a wrapper for the scsi_poll call.
25852  *
25853  *   Arguments: sd_lun - The unit structure
25854  *              scsi_pkt - The scsi packet being sent to the device.
25855  *
25856  * Return Code: 0 - Command completed successfully with good status
25857  *             -1 - Command failed.  This could indicate a check condition
25858  *                  or other status value requiring recovery action.
25859  *
25860  * NOTE: This code is only called off sddump().
25861  */
25862 
25863 static int
25864 sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pktp)
25865 {
25866 	int status;
25867 
25868 	ASSERT(un != NULL);
25869 	ASSERT(!mutex_owned(SD_MUTEX(un)));
25870 	ASSERT(pktp != NULL);
25871 
25872 	status = SD_SUCCESS;
25873 
25874 	if (scsi_ifgetcap(&pktp->pkt_address, "tagged-qing", 1) == 1) {
25875 		pktp->pkt_flags |= un->un_tagflags;
25876 		pktp->pkt_flags &= ~FLAG_NODISCON;
25877 	}
25878 
25879 	status = sd_ddi_scsi_poll(pktp);
25880 	/*
25881 	 * Scsi_poll returns 0 (success) if the command completes and the
25882 	 * status block is STATUS_GOOD.  We should only check errors if this
25883 	 * condition is not true.  Even then we should send our own request
25884 	 * sense packet only if we have a check condition and auto
25885 	 * request sense has not been performed by the hba.
25886 	 * Don't get RQS data if pkt_reason is CMD_DEV_GONE.
25887 	 */
25888 	if ((status != SD_SUCCESS) &&
25889 	    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK) &&
25890 	    (pktp->pkt_state & STATE_ARQ_DONE) == 0 &&
25891 	    (pktp->pkt_reason != CMD_DEV_GONE))
25892 		(void) sd_send_polled_RQS(un);
25893 
25894 	return (status);
25895 }
25896 
25897 /*
25898  *    Function: sd_send_polled_RQS()
25899  *
25900  * Description: This sends the request sense command to a device.
25901  *
25902  *   Arguments: sd_lun - The unit structure
25903  *
25904  * Return Code: 0 - Command completed successfully with good status
25905  *             -1 - Command failed.
25906  *
25907  */
25908 
25909 static int
25910 sd_send_polled_RQS(struct sd_lun *un)
25911 {
25912 	int	ret_val;
25913 	struct	scsi_pkt	*rqs_pktp;
25914 	struct	buf		*rqs_bp;
25915 
25916 	ASSERT(un != NULL);
25917 	ASSERT(!mutex_owned(SD_MUTEX(un)));
25918 
25919 	ret_val = SD_SUCCESS;
25920 
25921 	rqs_pktp = un->un_rqs_pktp;
25922 	rqs_bp	 = un->un_rqs_bp;
25923 
25924 	mutex_enter(SD_MUTEX(un));
25925 
25926 	if (un->un_sense_isbusy) {
25927 		ret_val = SD_FAILURE;
25928 		mutex_exit(SD_MUTEX(un));
25929 		return (ret_val);
25930 	}
25931 
25932 	/*
25933 	 * If the request sense buffer (and packet) is not in use,
25934 	 * let's set the un_sense_isbusy and send our packet
25935 	 */
25936 	un->un_sense_isbusy 	= 1;
25937 	rqs_pktp->pkt_resid  	= 0;
25938 	rqs_pktp->pkt_reason 	= 0;
25939 	rqs_pktp->pkt_flags |= FLAG_NOINTR;
25940 	bzero(rqs_bp->b_un.b_addr, SENSE_LENGTH);
25941 
25942 	mutex_exit(SD_MUTEX(un));
25943 
25944 	SD_INFO(SD_LOG_COMMON, un, "sd_send_polled_RQS: req sense buf at"
25945 	    " 0x%p\n", rqs_bp->b_un.b_addr);
25946 
25947 	/*
25948 	 * Can't send this to sd_scsi_poll, we wrap ourselves around the
25949 	 * axle - it has a call into us!
25950 	 */
25951 	if ((ret_val = sd_ddi_scsi_poll(rqs_pktp)) != 0) {
25952 		SD_INFO(SD_LOG_COMMON, un,
25953 		    "sd_send_polled_RQS: RQS failed\n");
25954 	}
25955 
25956 	SD_DUMP_MEMORY(un, SD_LOG_COMMON, "sd_send_polled_RQS:",
25957 	    (uchar_t *)rqs_bp->b_un.b_addr, SENSE_LENGTH, SD_LOG_HEX);
25958 
25959 	mutex_enter(SD_MUTEX(un));
25960 	un->un_sense_isbusy = 0;
25961 	mutex_exit(SD_MUTEX(un));
25962 
25963 	return (ret_val);
25964 }
25965 
25966 /*
25967  * Defines needed for localized version of the scsi_poll routine.
25968  */
25969 #define	CSEC		10000			/* usecs */
25970 #define	SEC_TO_CSEC	(1000000/CSEC)
25971 
25972 /*
25973  *    Function: sd_ddi_scsi_poll()
25974  *
25975  * Description: Localized version of the scsi_poll routine.  The purpose is to
25976  *		send a scsi_pkt to a device as a polled command.  This version
25977  *		is to ensure more robust handling of transport errors.
25978  *		Specifically this routine cures not ready, coming ready
25979  *		transition for power up and reset of sonoma's.  This can take
25980  *		up to 45 seconds for power-on and 20 seconds for reset of a
25981  * 		sonoma lun.
25982  *
25983  *   Arguments: scsi_pkt - The scsi_pkt being sent to a device
25984  *
25985  * Return Code: 0 - Command completed successfully with good status
25986  *             -1 - Command failed.
25987  *
25988  * NOTE: This code is almost identical to scsi_poll, however before 6668774 can
25989  * be fixed (removing this code), we need to determine how to handle the
25990  * KEY_UNIT_ATTENTION condition below in conditions not as limited as sddump().
25991  *
25992  * NOTE: This code is only called off sddump().
25993  */
25994 static int
25995 sd_ddi_scsi_poll(struct scsi_pkt *pkt)
25996 {
25997 	int			rval = -1;
25998 	int			savef;
25999 	long			savet;
26000 	void			(*savec)();
26001 	int			timeout;
26002 	int			busy_count;
26003 	int			poll_delay;
26004 	int			rc;
26005 	uint8_t			*sensep;
26006 	struct scsi_arq_status	*arqstat;
26007 	extern int		do_polled_io;
26008 
26009 	ASSERT(pkt->pkt_scbp);
26010 
26011 	/*
26012 	 * save old flags..
26013 	 */
26014 	savef = pkt->pkt_flags;
26015 	savec = pkt->pkt_comp;
26016 	savet = pkt->pkt_time;
26017 
26018 	pkt->pkt_flags |= FLAG_NOINTR;
26019 
26020 	/*
26021 	 * XXX there is nothing in the SCSA spec that states that we should not
26022 	 * do a callback for polled cmds; however, removing this will break sd
26023 	 * and probably other target drivers
26024 	 */
26025 	pkt->pkt_comp = NULL;
26026 
26027 	/*
26028 	 * we don't like a polled command without timeout.
26029 	 * 60 seconds seems long enough.
26030 	 */
26031 	if (pkt->pkt_time == 0)
26032 		pkt->pkt_time = SCSI_POLL_TIMEOUT;
26033 
26034 	/*
26035 	 * Send polled cmd.
26036 	 *
26037 	 * We do some error recovery for various errors.  Tran_busy,
26038 	 * queue full, and non-dispatched commands are retried every 10 msec.
26039 	 * as they are typically transient failures.  Busy status and Not
26040 	 * Ready are retried every second as this status takes a while to
26041 	 * change.
26042 	 */
26043 	timeout = pkt->pkt_time * SEC_TO_CSEC;
26044 
26045 	for (busy_count = 0; busy_count < timeout; busy_count++) {
26046 		/*
26047 		 * Initialize pkt status variables.
26048 		 */
26049 		*pkt->pkt_scbp = pkt->pkt_reason = pkt->pkt_state = 0;
26050 
26051 		if ((rc = scsi_transport(pkt)) != TRAN_ACCEPT) {
26052 			if (rc != TRAN_BUSY) {
26053 				/* Transport failed - give up. */
26054 				break;
26055 			} else {
26056 				/* Transport busy - try again. */
26057 				poll_delay = 1 * CSEC;		/* 10 msec. */
26058 			}
26059 		} else {
26060 			/*
26061 			 * Transport accepted - check pkt status.
26062 			 */
26063 			rc = (*pkt->pkt_scbp) & STATUS_MASK;
26064 			if ((pkt->pkt_reason == CMD_CMPLT) &&
26065 			    (rc == STATUS_CHECK) &&
26066 			    (pkt->pkt_state & STATE_ARQ_DONE)) {
26067 				arqstat =
26068 				    (struct scsi_arq_status *)(pkt->pkt_scbp);
26069 				sensep = (uint8_t *)&arqstat->sts_sensedata;
26070 			} else {
26071 				sensep = NULL;
26072 			}
26073 
26074 			if ((pkt->pkt_reason == CMD_CMPLT) &&
26075 			    (rc == STATUS_GOOD)) {
26076 				/* No error - we're done */
26077 				rval = 0;
26078 				break;
26079 
26080 			} else if (pkt->pkt_reason == CMD_DEV_GONE) {
26081 				/* Lost connection - give up */
26082 				break;
26083 
26084 			} else if ((pkt->pkt_reason == CMD_INCOMPLETE) &&
26085 			    (pkt->pkt_state == 0)) {
26086 				/* Pkt not dispatched - try again. */
26087 				poll_delay = 1 * CSEC;		/* 10 msec. */
26088 
26089 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
26090 			    (rc == STATUS_QFULL)) {
26091 				/* Queue full - try again. */
26092 				poll_delay = 1 * CSEC;		/* 10 msec. */
26093 
26094 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
26095 			    (rc == STATUS_BUSY)) {
26096 				/* Busy - try again. */
26097 				poll_delay = 100 * CSEC;	/* 1 sec. */
26098 				busy_count += (SEC_TO_CSEC - 1);
26099 
26100 			} else if ((sensep != NULL) &&
26101 			    (scsi_sense_key(sensep) == KEY_UNIT_ATTENTION)) {
26102 				/*
26103 				 * Unit Attention - try again.
26104 				 * Pretend it took 1 sec.
26105 				 * NOTE: 'continue' avoids poll_delay
26106 				 */
26107 				busy_count += (SEC_TO_CSEC - 1);
26108 				continue;
26109 
26110 			} else if ((sensep != NULL) &&
26111 			    (scsi_sense_key(sensep) == KEY_NOT_READY) &&
26112 			    (scsi_sense_asc(sensep) == 0x04) &&
26113 			    (scsi_sense_ascq(sensep) == 0x01)) {
26114 				/*
26115 				 * Not ready -> ready - try again.
26116 				 * 04h/01h: LUN IS IN PROCESS OF BECOMING READY
26117 				 * ...same as STATUS_BUSY
26118 				 */
26119 				poll_delay = 100 * CSEC;	/* 1 sec. */
26120 				busy_count += (SEC_TO_CSEC - 1);
26121 
26122 			} else {
26123 				/* BAD status - give up. */
26124 				break;
26125 			}
26126 		}
26127 
26128 		if (((curthread->t_flag & T_INTR_THREAD) == 0) &&
26129 		    !do_polled_io) {
26130 			delay(drv_usectohz(poll_delay));
26131 		} else {
26132 			/* we busy wait during cpr_dump or interrupt threads */
26133 			drv_usecwait(poll_delay);
26134 		}
26135 	}
26136 
26137 	pkt->pkt_flags = savef;
26138 	pkt->pkt_comp = savec;
26139 	pkt->pkt_time = savet;
26140 
26141 	/* return on error */
26142 	if (rval)
26143 		return (rval);
26144 
26145 	/*
26146 	 * This is not a performance critical code path.
26147 	 *
26148 	 * As an accommodation for scsi_poll callers, to avoid ddi_dma_sync()
26149 	 * issues associated with looking at DMA memory prior to
26150 	 * scsi_pkt_destroy(), we scsi_sync_pkt() prior to return.
26151 	 */
26152 	scsi_sync_pkt(pkt);
26153 	return (0);
26154 }
26155 
26156 
26157 
26158 /*
26159  *    Function: sd_persistent_reservation_in_read_keys
26160  *
26161  * Description: This routine is the driver entry point for handling CD-ROM
26162  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS)
26163  *		by sending the SCSI-3 PRIN commands to the device.
26164  *		Processes the read keys command response by copying the
26165  *		reservation key information into the user provided buffer.
26166  *		Support for the 32/64 bit _MULTI_DATAMODEL is implemented.
26167  *
26168  *   Arguments: un   -  Pointer to soft state struct for the target.
26169  *		usrp -	user provided pointer to multihost Persistent In Read
26170  *			Keys structure (mhioc_inkeys_t)
26171  *		flag -	this argument is a pass through to ddi_copyxxx()
26172  *			directly from the mode argument of ioctl().
26173  *
26174  * Return Code: 0   - Success
26175  *		EACCES
26176  *		ENOTSUP
26177  *		errno return code from sd_send_scsi_cmd()
26178  *
26179  *     Context: Can sleep. Does not return until command is completed.
26180  */
26181 
26182 static int
26183 sd_persistent_reservation_in_read_keys(struct sd_lun *un,
26184     mhioc_inkeys_t *usrp, int flag)
26185 {
26186 #ifdef _MULTI_DATAMODEL
26187 	struct mhioc_key_list32	li32;
26188 #endif
26189 	sd_prin_readkeys_t	*in;
26190 	mhioc_inkeys_t		*ptr;
26191 	mhioc_key_list_t	li;
26192 	uchar_t			*data_bufp;
26193 	int 			data_len;
26194 	int			rval = 0;
26195 	size_t			copysz;
26196 	sd_ssc_t		*ssc;
26197 
26198 	if ((ptr = (mhioc_inkeys_t *)usrp) == NULL) {
26199 		return (EINVAL);
26200 	}
26201 	bzero(&li, sizeof (mhioc_key_list_t));
26202 
26203 	ssc = sd_ssc_init(un);
26204 
26205 	/*
26206 	 * Get the listsize from user
26207 	 */
26208 #ifdef _MULTI_DATAMODEL
26209 
26210 	switch (ddi_model_convert_from(flag & FMODELS)) {
26211 	case DDI_MODEL_ILP32:
26212 		copysz = sizeof (struct mhioc_key_list32);
26213 		if (ddi_copyin(ptr->li, &li32, copysz, flag)) {
26214 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26215 			    "sd_persistent_reservation_in_read_keys: "
26216 			    "failed ddi_copyin: mhioc_key_list32_t\n");
26217 			rval = EFAULT;
26218 			goto done;
26219 		}
26220 		li.listsize = li32.listsize;
26221 		li.list = (mhioc_resv_key_t *)(uintptr_t)li32.list;
26222 		break;
26223 
26224 	case DDI_MODEL_NONE:
26225 		copysz = sizeof (mhioc_key_list_t);
26226 		if (ddi_copyin(ptr->li, &li, copysz, flag)) {
26227 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26228 			    "sd_persistent_reservation_in_read_keys: "
26229 			    "failed ddi_copyin: mhioc_key_list_t\n");
26230 			rval = EFAULT;
26231 			goto done;
26232 		}
26233 		break;
26234 	}
26235 
26236 #else /* ! _MULTI_DATAMODEL */
26237 	copysz = sizeof (mhioc_key_list_t);
26238 	if (ddi_copyin(ptr->li, &li, copysz, flag)) {
26239 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26240 		    "sd_persistent_reservation_in_read_keys: "
26241 		    "failed ddi_copyin: mhioc_key_list_t\n");
26242 		rval = EFAULT;
26243 		goto done;
26244 	}
26245 #endif
26246 
26247 	data_len  = li.listsize * MHIOC_RESV_KEY_SIZE;
26248 	data_len += (sizeof (sd_prin_readkeys_t) - sizeof (caddr_t));
26249 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
26250 
26251 	rval = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_KEYS,
26252 	    data_len, data_bufp);
26253 	if (rval != 0) {
26254 		if (rval == EIO)
26255 			sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE);
26256 		else
26257 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
26258 		goto done;
26259 	}
26260 	in = (sd_prin_readkeys_t *)data_bufp;
26261 	ptr->generation = BE_32(in->generation);
26262 	li.listlen = BE_32(in->len) / MHIOC_RESV_KEY_SIZE;
26263 
26264 	/*
26265 	 * Return the min(listsize, listlen) keys
26266 	 */
26267 #ifdef _MULTI_DATAMODEL
26268 
26269 	switch (ddi_model_convert_from(flag & FMODELS)) {
26270 	case DDI_MODEL_ILP32:
26271 		li32.listlen = li.listlen;
26272 		if (ddi_copyout(&li32, ptr->li, copysz, flag)) {
26273 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26274 			    "sd_persistent_reservation_in_read_keys: "
26275 			    "failed ddi_copyout: mhioc_key_list32_t\n");
26276 			rval = EFAULT;
26277 			goto done;
26278 		}
26279 		break;
26280 
26281 	case DDI_MODEL_NONE:
26282 		if (ddi_copyout(&li, ptr->li, copysz, flag)) {
26283 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26284 			    "sd_persistent_reservation_in_read_keys: "
26285 			    "failed ddi_copyout: mhioc_key_list_t\n");
26286 			rval = EFAULT;
26287 			goto done;
26288 		}
26289 		break;
26290 	}
26291 
26292 #else /* ! _MULTI_DATAMODEL */
26293 
26294 	if (ddi_copyout(&li, ptr->li, copysz, flag)) {
26295 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26296 		    "sd_persistent_reservation_in_read_keys: "
26297 		    "failed ddi_copyout: mhioc_key_list_t\n");
26298 		rval = EFAULT;
26299 		goto done;
26300 	}
26301 
26302 #endif /* _MULTI_DATAMODEL */
26303 
26304 	copysz = min(li.listlen * MHIOC_RESV_KEY_SIZE,
26305 	    li.listsize * MHIOC_RESV_KEY_SIZE);
26306 	if (ddi_copyout(&in->keylist, li.list, copysz, flag)) {
26307 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26308 		    "sd_persistent_reservation_in_read_keys: "
26309 		    "failed ddi_copyout: keylist\n");
26310 		rval = EFAULT;
26311 	}
26312 done:
26313 	sd_ssc_fini(ssc);
26314 	kmem_free(data_bufp, data_len);
26315 	return (rval);
26316 }
26317 
26318 
26319 /*
26320  *    Function: sd_persistent_reservation_in_read_resv
26321  *
26322  * Description: This routine is the driver entry point for handling CD-ROM
26323  *		multi-host persistent reservation requests (MHIOCGRP_INRESV)
26324  *		by sending the SCSI-3 PRIN commands to the device.
26325  *		Process the read persistent reservations command response by
26326  *		copying the reservation information into the user provided
26327  *		buffer. Support for the 32/64 _MULTI_DATAMODEL is implemented.
26328  *
26329  *   Arguments: un   -  Pointer to soft state struct for the target.
26330  *		usrp -	user provided pointer to multihost Persistent In Read
26331  *			Keys structure (mhioc_inkeys_t)
26332  *		flag -	this argument is a pass through to ddi_copyxxx()
26333  *			directly from the mode argument of ioctl().
26334  *
26335  * Return Code: 0   - Success
26336  *		EACCES
26337  *		ENOTSUP
26338  *		errno return code from sd_send_scsi_cmd()
26339  *
26340  *     Context: Can sleep. Does not return until command is completed.
26341  */
26342 
26343 static int
26344 sd_persistent_reservation_in_read_resv(struct sd_lun *un,
26345     mhioc_inresvs_t *usrp, int flag)
26346 {
26347 #ifdef _MULTI_DATAMODEL
26348 	struct mhioc_resv_desc_list32 resvlist32;
26349 #endif
26350 	sd_prin_readresv_t	*in;
26351 	mhioc_inresvs_t		*ptr;
26352 	sd_readresv_desc_t	*readresv_ptr;
26353 	mhioc_resv_desc_list_t	resvlist;
26354 	mhioc_resv_desc_t 	resvdesc;
26355 	uchar_t			*data_bufp = NULL;
26356 	int 			data_len;
26357 	int			rval = 0;
26358 	int			i;
26359 	size_t			copysz;
26360 	mhioc_resv_desc_t	*bufp;
26361 	sd_ssc_t		*ssc;
26362 
26363 	if ((ptr = usrp) == NULL) {
26364 		return (EINVAL);
26365 	}
26366 
26367 	ssc = sd_ssc_init(un);
26368 
26369 	/*
26370 	 * Get the listsize from user
26371 	 */
26372 #ifdef _MULTI_DATAMODEL
26373 	switch (ddi_model_convert_from(flag & FMODELS)) {
26374 	case DDI_MODEL_ILP32:
26375 		copysz = sizeof (struct mhioc_resv_desc_list32);
26376 		if (ddi_copyin(ptr->li, &resvlist32, copysz, flag)) {
26377 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26378 			    "sd_persistent_reservation_in_read_resv: "
26379 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
26380 			rval = EFAULT;
26381 			goto done;
26382 		}
26383 		resvlist.listsize = resvlist32.listsize;
26384 		resvlist.list = (mhioc_resv_desc_t *)(uintptr_t)resvlist32.list;
26385 		break;
26386 
26387 	case DDI_MODEL_NONE:
26388 		copysz = sizeof (mhioc_resv_desc_list_t);
26389 		if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
26390 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26391 			    "sd_persistent_reservation_in_read_resv: "
26392 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
26393 			rval = EFAULT;
26394 			goto done;
26395 		}
26396 		break;
26397 	}
26398 #else /* ! _MULTI_DATAMODEL */
26399 	copysz = sizeof (mhioc_resv_desc_list_t);
26400 	if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
26401 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26402 		    "sd_persistent_reservation_in_read_resv: "
26403 		    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
26404 		rval = EFAULT;
26405 		goto done;
26406 	}
26407 #endif /* ! _MULTI_DATAMODEL */
26408 
26409 	data_len  = resvlist.listsize * SCSI3_RESV_DESC_LEN;
26410 	data_len += (sizeof (sd_prin_readresv_t) - sizeof (caddr_t));
26411 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
26412 
26413 	rval = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_RESV,
26414 	    data_len, data_bufp);
26415 	if (rval != 0) {
26416 		if (rval == EIO)
26417 			sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE);
26418 		else
26419 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
26420 		goto done;
26421 	}
26422 	in = (sd_prin_readresv_t *)data_bufp;
26423 	ptr->generation = BE_32(in->generation);
26424 	resvlist.listlen = BE_32(in->len) / SCSI3_RESV_DESC_LEN;
26425 
26426 	/*
26427 	 * Return the min(listsize, listlen( keys
26428 	 */
26429 #ifdef _MULTI_DATAMODEL
26430 
26431 	switch (ddi_model_convert_from(flag & FMODELS)) {
26432 	case DDI_MODEL_ILP32:
26433 		resvlist32.listlen = resvlist.listlen;
26434 		if (ddi_copyout(&resvlist32, ptr->li, copysz, flag)) {
26435 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26436 			    "sd_persistent_reservation_in_read_resv: "
26437 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
26438 			rval = EFAULT;
26439 			goto done;
26440 		}
26441 		break;
26442 
26443 	case DDI_MODEL_NONE:
26444 		if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
26445 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26446 			    "sd_persistent_reservation_in_read_resv: "
26447 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
26448 			rval = EFAULT;
26449 			goto done;
26450 		}
26451 		break;
26452 	}
26453 
26454 #else /* ! _MULTI_DATAMODEL */
26455 
26456 	if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
26457 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26458 		    "sd_persistent_reservation_in_read_resv: "
26459 		    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
26460 		rval = EFAULT;
26461 		goto done;
26462 	}
26463 
26464 #endif /* ! _MULTI_DATAMODEL */
26465 
26466 	readresv_ptr = (sd_readresv_desc_t *)&in->readresv_desc;
26467 	bufp = resvlist.list;
26468 	copysz = sizeof (mhioc_resv_desc_t);
26469 	for (i = 0; i < min(resvlist.listlen, resvlist.listsize);
26470 	    i++, readresv_ptr++, bufp++) {
26471 
26472 		bcopy(&readresv_ptr->resvkey, &resvdesc.key,
26473 		    MHIOC_RESV_KEY_SIZE);
26474 		resvdesc.type  = readresv_ptr->type;
26475 		resvdesc.scope = readresv_ptr->scope;
26476 		resvdesc.scope_specific_addr =
26477 		    BE_32(readresv_ptr->scope_specific_addr);
26478 
26479 		if (ddi_copyout(&resvdesc, bufp, copysz, flag)) {
26480 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26481 			    "sd_persistent_reservation_in_read_resv: "
26482 			    "failed ddi_copyout: resvlist\n");
26483 			rval = EFAULT;
26484 			goto done;
26485 		}
26486 	}
26487 done:
26488 	sd_ssc_fini(ssc);
26489 	/* only if data_bufp is allocated, we need to free it */
26490 	if (data_bufp) {
26491 		kmem_free(data_bufp, data_len);
26492 	}
26493 	return (rval);
26494 }
26495 
26496 
26497 /*
26498  *    Function: sr_change_blkmode()
26499  *
26500  * Description: This routine is the driver entry point for handling CD-ROM
26501  *		block mode ioctl requests. Support for returning and changing
26502  *		the current block size in use by the device is implemented. The
26503  *		LBA size is changed via a MODE SELECT Block Descriptor.
26504  *
26505  *		This routine issues a mode sense with an allocation length of
26506  *		12 bytes for the mode page header and a single block descriptor.
26507  *
26508  *   Arguments: dev - the device 'dev_t'
26509  *		cmd - the request type; one of CDROMGBLKMODE (get) or
26510  *		      CDROMSBLKMODE (set)
26511  *		data - current block size or requested block size
26512  *		flag - this argument is a pass through to ddi_copyxxx() directly
26513  *		       from the mode argument of ioctl().
26514  *
26515  * Return Code: the code returned by sd_send_scsi_cmd()
26516  *		EINVAL if invalid arguments are provided
26517  *		EFAULT if ddi_copyxxx() fails
26518  *		ENXIO if fail ddi_get_soft_state
26519  *		EIO if invalid mode sense block descriptor length
26520  *
26521  */
26522 
26523 static int
26524 sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag)
26525 {
26526 	struct sd_lun			*un = NULL;
26527 	struct mode_header		*sense_mhp, *select_mhp;
26528 	struct block_descriptor		*sense_desc, *select_desc;
26529 	int				current_bsize;
26530 	int				rval = EINVAL;
26531 	uchar_t				*sense = NULL;
26532 	uchar_t				*select = NULL;
26533 	sd_ssc_t			*ssc;
26534 
26535 	ASSERT((cmd == CDROMGBLKMODE) || (cmd == CDROMSBLKMODE));
26536 
26537 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26538 		return (ENXIO);
26539 	}
26540 
26541 	/*
26542 	 * The block length is changed via the Mode Select block descriptor, the
26543 	 * "Read/Write Error Recovery" mode page (0x1) contents are not actually
26544 	 * required as part of this routine. Therefore the mode sense allocation
26545 	 * length is specified to be the length of a mode page header and a
26546 	 * block descriptor.
26547 	 */
26548 	sense = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
26549 
26550 	ssc = sd_ssc_init(un);
26551 	rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense,
26552 	    BUFLEN_CHG_BLK_MODE, MODEPAGE_ERR_RECOV, SD_PATH_STANDARD);
26553 	sd_ssc_fini(ssc);
26554 	if (rval != 0) {
26555 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26556 		    "sr_change_blkmode: Mode Sense Failed\n");
26557 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
26558 		return (rval);
26559 	}
26560 
26561 	/* Check the block descriptor len to handle only 1 block descriptor */
26562 	sense_mhp = (struct mode_header *)sense;
26563 	if ((sense_mhp->bdesc_length == 0) ||
26564 	    (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH)) {
26565 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26566 		    "sr_change_blkmode: Mode Sense returned invalid block"
26567 		    " descriptor length\n");
26568 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
26569 		return (EIO);
26570 	}
26571 	sense_desc = (struct block_descriptor *)(sense + MODE_HEADER_LENGTH);
26572 	current_bsize = ((sense_desc->blksize_hi << 16) |
26573 	    (sense_desc->blksize_mid << 8) | sense_desc->blksize_lo);
26574 
26575 	/* Process command */
26576 	switch (cmd) {
26577 	case CDROMGBLKMODE:
26578 		/* Return the block size obtained during the mode sense */
26579 		if (ddi_copyout(&current_bsize, (void *)data,
26580 		    sizeof (int), flag) != 0)
26581 			rval = EFAULT;
26582 		break;
26583 	case CDROMSBLKMODE:
26584 		/* Validate the requested block size */
26585 		switch (data) {
26586 		case CDROM_BLK_512:
26587 		case CDROM_BLK_1024:
26588 		case CDROM_BLK_2048:
26589 		case CDROM_BLK_2056:
26590 		case CDROM_BLK_2336:
26591 		case CDROM_BLK_2340:
26592 		case CDROM_BLK_2352:
26593 		case CDROM_BLK_2368:
26594 		case CDROM_BLK_2448:
26595 		case CDROM_BLK_2646:
26596 		case CDROM_BLK_2647:
26597 			break;
26598 		default:
26599 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26600 			    "sr_change_blkmode: "
26601 			    "Block Size '%ld' Not Supported\n", data);
26602 			kmem_free(sense, BUFLEN_CHG_BLK_MODE);
26603 			return (EINVAL);
26604 		}
26605 
26606 		/*
26607 		 * The current block size matches the requested block size so
26608 		 * there is no need to send the mode select to change the size
26609 		 */
26610 		if (current_bsize == data) {
26611 			break;
26612 		}
26613 
26614 		/* Build the select data for the requested block size */
26615 		select = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
26616 		select_mhp = (struct mode_header *)select;
26617 		select_desc =
26618 		    (struct block_descriptor *)(select + MODE_HEADER_LENGTH);
26619 		/*
26620 		 * The LBA size is changed via the block descriptor, so the
26621 		 * descriptor is built according to the user data
26622 		 */
26623 		select_mhp->bdesc_length = MODE_BLK_DESC_LENGTH;
26624 		select_desc->blksize_hi  = (char)(((data) & 0x00ff0000) >> 16);
26625 		select_desc->blksize_mid = (char)(((data) & 0x0000ff00) >> 8);
26626 		select_desc->blksize_lo  = (char)((data) & 0x000000ff);
26627 
26628 		/* Send the mode select for the requested block size */
26629 		ssc = sd_ssc_init(un);
26630 		rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0,
26631 		    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
26632 		    SD_PATH_STANDARD);
26633 		sd_ssc_fini(ssc);
26634 		if (rval != 0) {
26635 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26636 			    "sr_change_blkmode: Mode Select Failed\n");
26637 			/*
26638 			 * The mode select failed for the requested block size,
26639 			 * so reset the data for the original block size and
26640 			 * send it to the target. The error is indicated by the
26641 			 * return value for the failed mode select.
26642 			 */
26643 			select_desc->blksize_hi  = sense_desc->blksize_hi;
26644 			select_desc->blksize_mid = sense_desc->blksize_mid;
26645 			select_desc->blksize_lo  = sense_desc->blksize_lo;
26646 			ssc = sd_ssc_init(un);
26647 			(void) sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0,
26648 			    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
26649 			    SD_PATH_STANDARD);
26650 			sd_ssc_fini(ssc);
26651 		} else {
26652 			ASSERT(!mutex_owned(SD_MUTEX(un)));
26653 			mutex_enter(SD_MUTEX(un));
26654 			sd_update_block_info(un, (uint32_t)data, 0);
26655 			mutex_exit(SD_MUTEX(un));
26656 		}
26657 		break;
26658 	default:
26659 		/* should not reach here, but check anyway */
26660 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26661 		    "sr_change_blkmode: Command '%x' Not Supported\n", cmd);
26662 		rval = EINVAL;
26663 		break;
26664 	}
26665 
26666 	if (select) {
26667 		kmem_free(select, BUFLEN_CHG_BLK_MODE);
26668 	}
26669 	if (sense) {
26670 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
26671 	}
26672 	return (rval);
26673 }
26674 
26675 
26676 /*
26677  * Note: The following sr_change_speed() and sr_atapi_change_speed() routines
26678  * implement driver support for getting and setting the CD speed. The command
26679  * set used will be based on the device type. If the device has not been
26680  * identified as MMC the Toshiba vendor specific mode page will be used. If
26681  * the device is MMC but does not support the Real Time Streaming feature
26682  * the SET CD SPEED command will be used to set speed and mode page 0x2A will
26683  * be used to read the speed.
26684  */
26685 
26686 /*
26687  *    Function: sr_change_speed()
26688  *
26689  * Description: This routine is the driver entry point for handling CD-ROM
26690  *		drive speed ioctl requests for devices supporting the Toshiba
26691  *		vendor specific drive speed mode page. Support for returning
26692  *		and changing the current drive speed in use by the device is
26693  *		implemented.
26694  *
26695  *   Arguments: dev - the device 'dev_t'
26696  *		cmd - the request type; one of CDROMGDRVSPEED (get) or
26697  *		      CDROMSDRVSPEED (set)
26698  *		data - current drive speed or requested drive speed
26699  *		flag - this argument is a pass through to ddi_copyxxx() directly
26700  *		       from the mode argument of ioctl().
26701  *
26702  * Return Code: the code returned by sd_send_scsi_cmd()
26703  *		EINVAL if invalid arguments are provided
26704  *		EFAULT if ddi_copyxxx() fails
26705  *		ENXIO if fail ddi_get_soft_state
26706  *		EIO if invalid mode sense block descriptor length
26707  */
26708 
26709 static int
26710 sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
26711 {
26712 	struct sd_lun			*un = NULL;
26713 	struct mode_header		*sense_mhp, *select_mhp;
26714 	struct mode_speed		*sense_page, *select_page;
26715 	int				current_speed;
26716 	int				rval = EINVAL;
26717 	int				bd_len;
26718 	uchar_t				*sense = NULL;
26719 	uchar_t				*select = NULL;
26720 	sd_ssc_t			*ssc;
26721 
26722 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
26723 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26724 		return (ENXIO);
26725 	}
26726 
26727 	/*
26728 	 * Note: The drive speed is being modified here according to a Toshiba
26729 	 * vendor specific mode page (0x31).
26730 	 */
26731 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
26732 
26733 	ssc = sd_ssc_init(un);
26734 	rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense,
26735 	    BUFLEN_MODE_CDROM_SPEED, CDROM_MODE_SPEED,
26736 	    SD_PATH_STANDARD);
26737 	sd_ssc_fini(ssc);
26738 	if (rval != 0) {
26739 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26740 		    "sr_change_speed: Mode Sense Failed\n");
26741 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
26742 		return (rval);
26743 	}
26744 	sense_mhp  = (struct mode_header *)sense;
26745 
26746 	/* Check the block descriptor len to handle only 1 block descriptor */
26747 	bd_len = sense_mhp->bdesc_length;
26748 	if (bd_len > MODE_BLK_DESC_LENGTH) {
26749 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26750 		    "sr_change_speed: Mode Sense returned invalid block "
26751 		    "descriptor length\n");
26752 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
26753 		return (EIO);
26754 	}
26755 
26756 	sense_page = (struct mode_speed *)
26757 	    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
26758 	current_speed = sense_page->speed;
26759 
26760 	/* Process command */
26761 	switch (cmd) {
26762 	case CDROMGDRVSPEED:
26763 		/* Return the drive speed obtained during the mode sense */
26764 		if (current_speed == 0x2) {
26765 			current_speed = CDROM_TWELVE_SPEED;
26766 		}
26767 		if (ddi_copyout(&current_speed, (void *)data,
26768 		    sizeof (int), flag) != 0) {
26769 			rval = EFAULT;
26770 		}
26771 		break;
26772 	case CDROMSDRVSPEED:
26773 		/* Validate the requested drive speed */
26774 		switch ((uchar_t)data) {
26775 		case CDROM_TWELVE_SPEED:
26776 			data = 0x2;
26777 			/*FALLTHROUGH*/
26778 		case CDROM_NORMAL_SPEED:
26779 		case CDROM_DOUBLE_SPEED:
26780 		case CDROM_QUAD_SPEED:
26781 		case CDROM_MAXIMUM_SPEED:
26782 			break;
26783 		default:
26784 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26785 			    "sr_change_speed: "
26786 			    "Drive Speed '%d' Not Supported\n", (uchar_t)data);
26787 			kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
26788 			return (EINVAL);
26789 		}
26790 
26791 		/*
26792 		 * The current drive speed matches the requested drive speed so
26793 		 * there is no need to send the mode select to change the speed
26794 		 */
26795 		if (current_speed == data) {
26796 			break;
26797 		}
26798 
26799 		/* Build the select data for the requested drive speed */
26800 		select = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
26801 		select_mhp = (struct mode_header *)select;
26802 		select_mhp->bdesc_length = 0;
26803 		select_page =
26804 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
26805 		select_page =
26806 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
26807 		select_page->mode_page.code = CDROM_MODE_SPEED;
26808 		select_page->mode_page.length = 2;
26809 		select_page->speed = (uchar_t)data;
26810 
26811 		/* Send the mode select for the requested block size */
26812 		ssc = sd_ssc_init(un);
26813 		rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select,
26814 		    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
26815 		    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
26816 		sd_ssc_fini(ssc);
26817 		if (rval != 0) {
26818 			/*
26819 			 * The mode select failed for the requested drive speed,
26820 			 * so reset the data for the original drive speed and
26821 			 * send it to the target. The error is indicated by the
26822 			 * return value for the failed mode select.
26823 			 */
26824 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26825 			    "sr_drive_speed: Mode Select Failed\n");
26826 			select_page->speed = sense_page->speed;
26827 			ssc = sd_ssc_init(un);
26828 			(void) sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select,
26829 			    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
26830 			    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
26831 			sd_ssc_fini(ssc);
26832 		}
26833 		break;
26834 	default:
26835 		/* should not reach here, but check anyway */
26836 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26837 		    "sr_change_speed: Command '%x' Not Supported\n", cmd);
26838 		rval = EINVAL;
26839 		break;
26840 	}
26841 
26842 	if (select) {
26843 		kmem_free(select, BUFLEN_MODE_CDROM_SPEED);
26844 	}
26845 	if (sense) {
26846 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
26847 	}
26848 
26849 	return (rval);
26850 }
26851 
26852 
26853 /*
26854  *    Function: sr_atapi_change_speed()
26855  *
26856  * Description: This routine is the driver entry point for handling CD-ROM
26857  *		drive speed ioctl requests for MMC devices that do not support
26858  *		the Real Time Streaming feature (0x107).
26859  *
26860  *		Note: This routine will use the SET SPEED command which may not
26861  *		be supported by all devices.
26862  *
26863  *   Arguments: dev- the device 'dev_t'
26864  *		cmd- the request type; one of CDROMGDRVSPEED (get) or
26865  *		     CDROMSDRVSPEED (set)
26866  *		data- current drive speed or requested drive speed
26867  *		flag- this argument is a pass through to ddi_copyxxx() directly
26868  *		      from the mode argument of ioctl().
26869  *
26870  * Return Code: the code returned by sd_send_scsi_cmd()
26871  *		EINVAL if invalid arguments are provided
26872  *		EFAULT if ddi_copyxxx() fails
26873  *		ENXIO if fail ddi_get_soft_state
26874  *		EIO if invalid mode sense block descriptor length
26875  */
26876 
26877 static int
26878 sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
26879 {
26880 	struct sd_lun			*un;
26881 	struct uscsi_cmd		*com = NULL;
26882 	struct mode_header_grp2		*sense_mhp;
26883 	uchar_t				*sense_page;
26884 	uchar_t				*sense = NULL;
26885 	char				cdb[CDB_GROUP5];
26886 	int				bd_len;
26887 	int				current_speed = 0;
26888 	int				max_speed = 0;
26889 	int				rval;
26890 	sd_ssc_t			*ssc;
26891 
26892 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
26893 
26894 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26895 		return (ENXIO);
26896 	}
26897 
26898 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
26899 
26900 	ssc = sd_ssc_init(un);
26901 	rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense,
26902 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP,
26903 	    SD_PATH_STANDARD);
26904 	sd_ssc_fini(ssc);
26905 	if (rval != 0) {
26906 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26907 		    "sr_atapi_change_speed: Mode Sense Failed\n");
26908 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
26909 		return (rval);
26910 	}
26911 
26912 	/* Check the block descriptor len to handle only 1 block descriptor */
26913 	sense_mhp = (struct mode_header_grp2 *)sense;
26914 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
26915 	if (bd_len > MODE_BLK_DESC_LENGTH) {
26916 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26917 		    "sr_atapi_change_speed: Mode Sense returned invalid "
26918 		    "block descriptor length\n");
26919 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
26920 		return (EIO);
26921 	}
26922 
26923 	/* Calculate the current and maximum drive speeds */
26924 	sense_page = (uchar_t *)(sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
26925 	current_speed = (sense_page[14] << 8) | sense_page[15];
26926 	max_speed = (sense_page[8] << 8) | sense_page[9];
26927 
26928 	/* Process the command */
26929 	switch (cmd) {
26930 	case CDROMGDRVSPEED:
26931 		current_speed /= SD_SPEED_1X;
26932 		if (ddi_copyout(&current_speed, (void *)data,
26933 		    sizeof (int), flag) != 0)
26934 			rval = EFAULT;
26935 		break;
26936 	case CDROMSDRVSPEED:
26937 		/* Convert the speed code to KB/sec */
26938 		switch ((uchar_t)data) {
26939 		case CDROM_NORMAL_SPEED:
26940 			current_speed = SD_SPEED_1X;
26941 			break;
26942 		case CDROM_DOUBLE_SPEED:
26943 			current_speed = 2 * SD_SPEED_1X;
26944 			break;
26945 		case CDROM_QUAD_SPEED:
26946 			current_speed = 4 * SD_SPEED_1X;
26947 			break;
26948 		case CDROM_TWELVE_SPEED:
26949 			current_speed = 12 * SD_SPEED_1X;
26950 			break;
26951 		case CDROM_MAXIMUM_SPEED:
26952 			current_speed = 0xffff;
26953 			break;
26954 		default:
26955 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26956 			    "sr_atapi_change_speed: invalid drive speed %d\n",
26957 			    (uchar_t)data);
26958 			kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
26959 			return (EINVAL);
26960 		}
26961 
26962 		/* Check the request against the drive's max speed. */
26963 		if (current_speed != 0xffff) {
26964 			if (current_speed > max_speed) {
26965 				kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
26966 				return (EINVAL);
26967 			}
26968 		}
26969 
26970 		/*
26971 		 * Build and send the SET SPEED command
26972 		 *
26973 		 * Note: The SET SPEED (0xBB) command used in this routine is
26974 		 * obsolete per the SCSI MMC spec but still supported in the
26975 		 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
26976 		 * therefore the command is still implemented in this routine.
26977 		 */
26978 		bzero(cdb, sizeof (cdb));
26979 		cdb[0] = (char)SCMD_SET_CDROM_SPEED;
26980 		cdb[2] = (uchar_t)(current_speed >> 8);
26981 		cdb[3] = (uchar_t)current_speed;
26982 		com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26983 		com->uscsi_cdb	   = (caddr_t)cdb;
26984 		com->uscsi_cdblen  = CDB_GROUP5;
26985 		com->uscsi_bufaddr = NULL;
26986 		com->uscsi_buflen  = 0;
26987 		com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT;
26988 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, 0, SD_PATH_STANDARD);
26989 		break;
26990 	default:
26991 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26992 		    "sr_atapi_change_speed: Command '%x' Not Supported\n", cmd);
26993 		rval = EINVAL;
26994 	}
26995 
26996 	if (sense) {
26997 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
26998 	}
26999 	if (com) {
27000 		kmem_free(com, sizeof (*com));
27001 	}
27002 	return (rval);
27003 }
27004 
27005 
27006 /*
27007  *    Function: sr_pause_resume()
27008  *
27009  * Description: This routine is the driver entry point for handling CD-ROM
27010  *		pause/resume ioctl requests. This only affects the audio play
27011  *		operation.
27012  *
27013  *   Arguments: dev - the device 'dev_t'
27014  *		cmd - the request type; one of CDROMPAUSE or CDROMRESUME, used
27015  *		      for setting the resume bit of the cdb.
27016  *
27017  * Return Code: the code returned by sd_send_scsi_cmd()
27018  *		EINVAL if invalid mode specified
27019  *
27020  */
27021 
27022 static int
27023 sr_pause_resume(dev_t dev, int cmd)
27024 {
27025 	struct sd_lun		*un;
27026 	struct uscsi_cmd	*com;
27027 	char			cdb[CDB_GROUP1];
27028 	int			rval;
27029 
27030 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27031 		return (ENXIO);
27032 	}
27033 
27034 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27035 	bzero(cdb, CDB_GROUP1);
27036 	cdb[0] = SCMD_PAUSE_RESUME;
27037 	switch (cmd) {
27038 	case CDROMRESUME:
27039 		cdb[8] = 1;
27040 		break;
27041 	case CDROMPAUSE:
27042 		cdb[8] = 0;
27043 		break;
27044 	default:
27045 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_pause_resume:"
27046 		    " Command '%x' Not Supported\n", cmd);
27047 		rval = EINVAL;
27048 		goto done;
27049 	}
27050 
27051 	com->uscsi_cdb    = cdb;
27052 	com->uscsi_cdblen = CDB_GROUP1;
27053 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
27054 
27055 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27056 	    SD_PATH_STANDARD);
27057 
27058 done:
27059 	kmem_free(com, sizeof (*com));
27060 	return (rval);
27061 }
27062 
27063 
27064 /*
27065  *    Function: sr_play_msf()
27066  *
27067  * Description: This routine is the driver entry point for handling CD-ROM
27068  *		ioctl requests to output the audio signals at the specified
27069  *		starting address and continue the audio play until the specified
27070  *		ending address (CDROMPLAYMSF) The address is in Minute Second
27071  *		Frame (MSF) format.
27072  *
27073  *   Arguments: dev	- the device 'dev_t'
27074  *		data	- pointer to user provided audio msf structure,
27075  *		          specifying start/end addresses.
27076  *		flag	- this argument is a pass through to ddi_copyxxx()
27077  *		          directly from the mode argument of ioctl().
27078  *
27079  * Return Code: the code returned by sd_send_scsi_cmd()
27080  *		EFAULT if ddi_copyxxx() fails
27081  *		ENXIO if fail ddi_get_soft_state
27082  *		EINVAL if data pointer is NULL
27083  */
27084 
27085 static int
27086 sr_play_msf(dev_t dev, caddr_t data, int flag)
27087 {
27088 	struct sd_lun		*un;
27089 	struct uscsi_cmd	*com;
27090 	struct cdrom_msf	msf_struct;
27091 	struct cdrom_msf	*msf = &msf_struct;
27092 	char			cdb[CDB_GROUP1];
27093 	int			rval;
27094 
27095 	if (data == NULL) {
27096 		return (EINVAL);
27097 	}
27098 
27099 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27100 		return (ENXIO);
27101 	}
27102 
27103 	if (ddi_copyin(data, msf, sizeof (struct cdrom_msf), flag)) {
27104 		return (EFAULT);
27105 	}
27106 
27107 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27108 	bzero(cdb, CDB_GROUP1);
27109 	cdb[0] = SCMD_PLAYAUDIO_MSF;
27110 	if (un->un_f_cfg_playmsf_bcd == TRUE) {
27111 		cdb[3] = BYTE_TO_BCD(msf->cdmsf_min0);
27112 		cdb[4] = BYTE_TO_BCD(msf->cdmsf_sec0);
27113 		cdb[5] = BYTE_TO_BCD(msf->cdmsf_frame0);
27114 		cdb[6] = BYTE_TO_BCD(msf->cdmsf_min1);
27115 		cdb[7] = BYTE_TO_BCD(msf->cdmsf_sec1);
27116 		cdb[8] = BYTE_TO_BCD(msf->cdmsf_frame1);
27117 	} else {
27118 		cdb[3] = msf->cdmsf_min0;
27119 		cdb[4] = msf->cdmsf_sec0;
27120 		cdb[5] = msf->cdmsf_frame0;
27121 		cdb[6] = msf->cdmsf_min1;
27122 		cdb[7] = msf->cdmsf_sec1;
27123 		cdb[8] = msf->cdmsf_frame1;
27124 	}
27125 	com->uscsi_cdb    = cdb;
27126 	com->uscsi_cdblen = CDB_GROUP1;
27127 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
27128 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27129 	    SD_PATH_STANDARD);
27130 	kmem_free(com, sizeof (*com));
27131 	return (rval);
27132 }
27133 
27134 
27135 /*
27136  *    Function: sr_play_trkind()
27137  *
27138  * Description: This routine is the driver entry point for handling CD-ROM
27139  *		ioctl requests to output the audio signals at the specified
27140  *		starting address and continue the audio play until the specified
27141  *		ending address (CDROMPLAYTRKIND). The address is in Track Index
27142  *		format.
27143  *
27144  *   Arguments: dev	- the device 'dev_t'
27145  *		data	- pointer to user provided audio track/index structure,
27146  *		          specifying start/end addresses.
27147  *		flag	- this argument is a pass through to ddi_copyxxx()
27148  *		          directly from the mode argument of ioctl().
27149  *
27150  * Return Code: the code returned by sd_send_scsi_cmd()
27151  *		EFAULT if ddi_copyxxx() fails
27152  *		ENXIO if fail ddi_get_soft_state
27153  *		EINVAL if data pointer is NULL
27154  */
27155 
27156 static int
27157 sr_play_trkind(dev_t dev, caddr_t data, int flag)
27158 {
27159 	struct cdrom_ti		ti_struct;
27160 	struct cdrom_ti		*ti = &ti_struct;
27161 	struct uscsi_cmd	*com = NULL;
27162 	char			cdb[CDB_GROUP1];
27163 	int			rval;
27164 
27165 	if (data == NULL) {
27166 		return (EINVAL);
27167 	}
27168 
27169 	if (ddi_copyin(data, ti, sizeof (struct cdrom_ti), flag)) {
27170 		return (EFAULT);
27171 	}
27172 
27173 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27174 	bzero(cdb, CDB_GROUP1);
27175 	cdb[0] = SCMD_PLAYAUDIO_TI;
27176 	cdb[4] = ti->cdti_trk0;
27177 	cdb[5] = ti->cdti_ind0;
27178 	cdb[7] = ti->cdti_trk1;
27179 	cdb[8] = ti->cdti_ind1;
27180 	com->uscsi_cdb    = cdb;
27181 	com->uscsi_cdblen = CDB_GROUP1;
27182 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
27183 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27184 	    SD_PATH_STANDARD);
27185 	kmem_free(com, sizeof (*com));
27186 	return (rval);
27187 }
27188 
27189 
27190 /*
27191  *    Function: sr_read_all_subcodes()
27192  *
27193  * Description: This routine is the driver entry point for handling CD-ROM
27194  *		ioctl requests to return raw subcode data while the target is
27195  *		playing audio (CDROMSUBCODE).
27196  *
27197  *   Arguments: dev	- the device 'dev_t'
27198  *		data	- pointer to user provided cdrom subcode structure,
27199  *		          specifying the transfer length and address.
27200  *		flag	- this argument is a pass through to ddi_copyxxx()
27201  *		          directly from the mode argument of ioctl().
27202  *
27203  * Return Code: the code returned by sd_send_scsi_cmd()
27204  *		EFAULT if ddi_copyxxx() fails
27205  *		ENXIO if fail ddi_get_soft_state
27206  *		EINVAL if data pointer is NULL
27207  */
27208 
27209 static int
27210 sr_read_all_subcodes(dev_t dev, caddr_t data, int flag)
27211 {
27212 	struct sd_lun		*un = NULL;
27213 	struct uscsi_cmd	*com = NULL;
27214 	struct cdrom_subcode	*subcode = NULL;
27215 	int			rval;
27216 	size_t			buflen;
27217 	char			cdb[CDB_GROUP5];
27218 
27219 #ifdef _MULTI_DATAMODEL
27220 	/* To support ILP32 applications in an LP64 world */
27221 	struct cdrom_subcode32		cdrom_subcode32;
27222 	struct cdrom_subcode32		*cdsc32 = &cdrom_subcode32;
27223 #endif
27224 	if (data == NULL) {
27225 		return (EINVAL);
27226 	}
27227 
27228 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27229 		return (ENXIO);
27230 	}
27231 
27232 	subcode = kmem_zalloc(sizeof (struct cdrom_subcode), KM_SLEEP);
27233 
27234 #ifdef _MULTI_DATAMODEL
27235 	switch (ddi_model_convert_from(flag & FMODELS)) {
27236 	case DDI_MODEL_ILP32:
27237 		if (ddi_copyin(data, cdsc32, sizeof (*cdsc32), flag)) {
27238 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27239 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
27240 			kmem_free(subcode, sizeof (struct cdrom_subcode));
27241 			return (EFAULT);
27242 		}
27243 		/* Convert the ILP32 uscsi data from the application to LP64 */
27244 		cdrom_subcode32tocdrom_subcode(cdsc32, subcode);
27245 		break;
27246 	case DDI_MODEL_NONE:
27247 		if (ddi_copyin(data, subcode,
27248 		    sizeof (struct cdrom_subcode), flag)) {
27249 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27250 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
27251 			kmem_free(subcode, sizeof (struct cdrom_subcode));
27252 			return (EFAULT);
27253 		}
27254 		break;
27255 	}
27256 #else /* ! _MULTI_DATAMODEL */
27257 	if (ddi_copyin(data, subcode, sizeof (struct cdrom_subcode), flag)) {
27258 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27259 		    "sr_read_all_subcodes: ddi_copyin Failed\n");
27260 		kmem_free(subcode, sizeof (struct cdrom_subcode));
27261 		return (EFAULT);
27262 	}
27263 #endif /* _MULTI_DATAMODEL */
27264 
27265 	/*
27266 	 * Since MMC-2 expects max 3 bytes for length, check if the
27267 	 * length input is greater than 3 bytes
27268 	 */
27269 	if ((subcode->cdsc_length & 0xFF000000) != 0) {
27270 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27271 		    "sr_read_all_subcodes: "
27272 		    "cdrom transfer length too large: %d (limit %d)\n",
27273 		    subcode->cdsc_length, 0xFFFFFF);
27274 		kmem_free(subcode, sizeof (struct cdrom_subcode));
27275 		return (EINVAL);
27276 	}
27277 
27278 	buflen = CDROM_BLK_SUBCODE * subcode->cdsc_length;
27279 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27280 	bzero(cdb, CDB_GROUP5);
27281 
27282 	if (un->un_f_mmc_cap == TRUE) {
27283 		cdb[0] = (char)SCMD_READ_CD;
27284 		cdb[2] = (char)0xff;
27285 		cdb[3] = (char)0xff;
27286 		cdb[4] = (char)0xff;
27287 		cdb[5] = (char)0xff;
27288 		cdb[6] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
27289 		cdb[7] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
27290 		cdb[8] = ((subcode->cdsc_length) & 0x000000ff);
27291 		cdb[10] = 1;
27292 	} else {
27293 		/*
27294 		 * Note: A vendor specific command (0xDF) is being used her to
27295 		 * request a read of all subcodes.
27296 		 */
27297 		cdb[0] = (char)SCMD_READ_ALL_SUBCODES;
27298 		cdb[6] = (((subcode->cdsc_length) & 0xff000000) >> 24);
27299 		cdb[7] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
27300 		cdb[8] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
27301 		cdb[9] = ((subcode->cdsc_length) & 0x000000ff);
27302 	}
27303 	com->uscsi_cdb	   = cdb;
27304 	com->uscsi_cdblen  = CDB_GROUP5;
27305 	com->uscsi_bufaddr = (caddr_t)subcode->cdsc_addr;
27306 	com->uscsi_buflen  = buflen;
27307 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27308 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
27309 	    SD_PATH_STANDARD);
27310 	kmem_free(subcode, sizeof (struct cdrom_subcode));
27311 	kmem_free(com, sizeof (*com));
27312 	return (rval);
27313 }
27314 
27315 
27316 /*
27317  *    Function: sr_read_subchannel()
27318  *
27319  * Description: This routine is the driver entry point for handling CD-ROM
27320  *		ioctl requests to return the Q sub-channel data of the CD
27321  *		current position block. (CDROMSUBCHNL) The data includes the
27322  *		track number, index number, absolute CD-ROM address (LBA or MSF
27323  *		format per the user) , track relative CD-ROM address (LBA or MSF
27324  *		format per the user), control data and audio status.
27325  *
27326  *   Arguments: dev	- the device 'dev_t'
27327  *		data	- pointer to user provided cdrom sub-channel structure
27328  *		flag	- this argument is a pass through to ddi_copyxxx()
27329  *		          directly from the mode argument of ioctl().
27330  *
27331  * Return Code: the code returned by sd_send_scsi_cmd()
27332  *		EFAULT if ddi_copyxxx() fails
27333  *		ENXIO if fail ddi_get_soft_state
27334  *		EINVAL if data pointer is NULL
27335  */
27336 
27337 static int
27338 sr_read_subchannel(dev_t dev, caddr_t data, int flag)
27339 {
27340 	struct sd_lun		*un;
27341 	struct uscsi_cmd	*com;
27342 	struct cdrom_subchnl	subchanel;
27343 	struct cdrom_subchnl	*subchnl = &subchanel;
27344 	char			cdb[CDB_GROUP1];
27345 	caddr_t			buffer;
27346 	int			rval;
27347 
27348 	if (data == NULL) {
27349 		return (EINVAL);
27350 	}
27351 
27352 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27353 	    (un->un_state == SD_STATE_OFFLINE)) {
27354 		return (ENXIO);
27355 	}
27356 
27357 	if (ddi_copyin(data, subchnl, sizeof (struct cdrom_subchnl), flag)) {
27358 		return (EFAULT);
27359 	}
27360 
27361 	buffer = kmem_zalloc((size_t)16, KM_SLEEP);
27362 	bzero(cdb, CDB_GROUP1);
27363 	cdb[0] = SCMD_READ_SUBCHANNEL;
27364 	/* Set the MSF bit based on the user requested address format */
27365 	cdb[1] = (subchnl->cdsc_format & CDROM_LBA) ? 0 : 0x02;
27366 	/*
27367 	 * Set the Q bit in byte 2 to indicate that Q sub-channel data be
27368 	 * returned
27369 	 */
27370 	cdb[2] = 0x40;
27371 	/*
27372 	 * Set byte 3 to specify the return data format. A value of 0x01
27373 	 * indicates that the CD-ROM current position should be returned.
27374 	 */
27375 	cdb[3] = 0x01;
27376 	cdb[8] = 0x10;
27377 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27378 	com->uscsi_cdb	   = cdb;
27379 	com->uscsi_cdblen  = CDB_GROUP1;
27380 	com->uscsi_bufaddr = buffer;
27381 	com->uscsi_buflen  = 16;
27382 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27383 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27384 	    SD_PATH_STANDARD);
27385 	if (rval != 0) {
27386 		kmem_free(buffer, 16);
27387 		kmem_free(com, sizeof (*com));
27388 		return (rval);
27389 	}
27390 
27391 	/* Process the returned Q sub-channel data */
27392 	subchnl->cdsc_audiostatus = buffer[1];
27393 	subchnl->cdsc_adr	= (buffer[5] & 0xF0);
27394 	subchnl->cdsc_ctrl	= (buffer[5] & 0x0F);
27395 	subchnl->cdsc_trk	= buffer[6];
27396 	subchnl->cdsc_ind	= buffer[7];
27397 	if (subchnl->cdsc_format & CDROM_LBA) {
27398 		subchnl->cdsc_absaddr.lba =
27399 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
27400 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
27401 		subchnl->cdsc_reladdr.lba =
27402 		    ((uchar_t)buffer[12] << 24) + ((uchar_t)buffer[13] << 16) +
27403 		    ((uchar_t)buffer[14] << 8) + ((uchar_t)buffer[15]);
27404 	} else if (un->un_f_cfg_readsub_bcd == TRUE) {
27405 		subchnl->cdsc_absaddr.msf.minute = BCD_TO_BYTE(buffer[9]);
27406 		subchnl->cdsc_absaddr.msf.second = BCD_TO_BYTE(buffer[10]);
27407 		subchnl->cdsc_absaddr.msf.frame  = BCD_TO_BYTE(buffer[11]);
27408 		subchnl->cdsc_reladdr.msf.minute = BCD_TO_BYTE(buffer[13]);
27409 		subchnl->cdsc_reladdr.msf.second = BCD_TO_BYTE(buffer[14]);
27410 		subchnl->cdsc_reladdr.msf.frame  = BCD_TO_BYTE(buffer[15]);
27411 	} else {
27412 		subchnl->cdsc_absaddr.msf.minute = buffer[9];
27413 		subchnl->cdsc_absaddr.msf.second = buffer[10];
27414 		subchnl->cdsc_absaddr.msf.frame  = buffer[11];
27415 		subchnl->cdsc_reladdr.msf.minute = buffer[13];
27416 		subchnl->cdsc_reladdr.msf.second = buffer[14];
27417 		subchnl->cdsc_reladdr.msf.frame  = buffer[15];
27418 	}
27419 	kmem_free(buffer, 16);
27420 	kmem_free(com, sizeof (*com));
27421 	if (ddi_copyout(subchnl, data, sizeof (struct cdrom_subchnl), flag)
27422 	    != 0) {
27423 		return (EFAULT);
27424 	}
27425 	return (rval);
27426 }
27427 
27428 
27429 /*
27430  *    Function: sr_read_tocentry()
27431  *
27432  * Description: This routine is the driver entry point for handling CD-ROM
27433  *		ioctl requests to read from the Table of Contents (TOC)
27434  *		(CDROMREADTOCENTRY). This routine provides the ADR and CTRL
27435  *		fields, the starting address (LBA or MSF format per the user)
27436  *		and the data mode if the user specified track is a data track.
27437  *
27438  *		Note: The READ HEADER (0x44) command used in this routine is
27439  *		obsolete per the SCSI MMC spec but still supported in the
27440  *		MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
27441  *		therefore the command is still implemented in this routine.
27442  *
27443  *   Arguments: dev	- the device 'dev_t'
27444  *		data	- pointer to user provided toc entry structure,
27445  *			  specifying the track # and the address format
27446  *			  (LBA or MSF).
27447  *		flag	- this argument is a pass through to ddi_copyxxx()
27448  *		          directly from the mode argument of ioctl().
27449  *
27450  * Return Code: the code returned by sd_send_scsi_cmd()
27451  *		EFAULT if ddi_copyxxx() fails
27452  *		ENXIO if fail ddi_get_soft_state
27453  *		EINVAL if data pointer is NULL
27454  */
27455 
27456 static int
27457 sr_read_tocentry(dev_t dev, caddr_t data, int flag)
27458 {
27459 	struct sd_lun		*un = NULL;
27460 	struct uscsi_cmd	*com;
27461 	struct cdrom_tocentry	toc_entry;
27462 	struct cdrom_tocentry	*entry = &toc_entry;
27463 	caddr_t			buffer;
27464 	int			rval;
27465 	char			cdb[CDB_GROUP1];
27466 
27467 	if (data == NULL) {
27468 		return (EINVAL);
27469 	}
27470 
27471 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27472 	    (un->un_state == SD_STATE_OFFLINE)) {
27473 		return (ENXIO);
27474 	}
27475 
27476 	if (ddi_copyin(data, entry, sizeof (struct cdrom_tocentry), flag)) {
27477 		return (EFAULT);
27478 	}
27479 
27480 	/* Validate the requested track and address format */
27481 	if (!(entry->cdte_format & (CDROM_LBA | CDROM_MSF))) {
27482 		return (EINVAL);
27483 	}
27484 
27485 	if (entry->cdte_track == 0) {
27486 		return (EINVAL);
27487 	}
27488 
27489 	buffer = kmem_zalloc((size_t)12, KM_SLEEP);
27490 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27491 	bzero(cdb, CDB_GROUP1);
27492 
27493 	cdb[0] = SCMD_READ_TOC;
27494 	/* Set the MSF bit based on the user requested address format  */
27495 	cdb[1] = ((entry->cdte_format & CDROM_LBA) ? 0 : 2);
27496 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
27497 		cdb[6] = BYTE_TO_BCD(entry->cdte_track);
27498 	} else {
27499 		cdb[6] = entry->cdte_track;
27500 	}
27501 
27502 	/*
27503 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
27504 	 * (4 byte TOC response header + 8 byte track descriptor)
27505 	 */
27506 	cdb[8] = 12;
27507 	com->uscsi_cdb	   = cdb;
27508 	com->uscsi_cdblen  = CDB_GROUP1;
27509 	com->uscsi_bufaddr = buffer;
27510 	com->uscsi_buflen  = 0x0C;
27511 	com->uscsi_flags   = (USCSI_DIAGNOSE | USCSI_SILENT | USCSI_READ);
27512 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27513 	    SD_PATH_STANDARD);
27514 	if (rval != 0) {
27515 		kmem_free(buffer, 12);
27516 		kmem_free(com, sizeof (*com));
27517 		return (rval);
27518 	}
27519 
27520 	/* Process the toc entry */
27521 	entry->cdte_adr		= (buffer[5] & 0xF0) >> 4;
27522 	entry->cdte_ctrl	= (buffer[5] & 0x0F);
27523 	if (entry->cdte_format & CDROM_LBA) {
27524 		entry->cdte_addr.lba =
27525 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
27526 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
27527 	} else if (un->un_f_cfg_read_toc_addr_bcd == TRUE) {
27528 		entry->cdte_addr.msf.minute	= BCD_TO_BYTE(buffer[9]);
27529 		entry->cdte_addr.msf.second	= BCD_TO_BYTE(buffer[10]);
27530 		entry->cdte_addr.msf.frame	= BCD_TO_BYTE(buffer[11]);
27531 		/*
27532 		 * Send a READ TOC command using the LBA address format to get
27533 		 * the LBA for the track requested so it can be used in the
27534 		 * READ HEADER request
27535 		 *
27536 		 * Note: The MSF bit of the READ HEADER command specifies the
27537 		 * output format. The block address specified in that command
27538 		 * must be in LBA format.
27539 		 */
27540 		cdb[1] = 0;
27541 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27542 		    SD_PATH_STANDARD);
27543 		if (rval != 0) {
27544 			kmem_free(buffer, 12);
27545 			kmem_free(com, sizeof (*com));
27546 			return (rval);
27547 		}
27548 	} else {
27549 		entry->cdte_addr.msf.minute	= buffer[9];
27550 		entry->cdte_addr.msf.second	= buffer[10];
27551 		entry->cdte_addr.msf.frame	= buffer[11];
27552 		/*
27553 		 * Send a READ TOC command using the LBA address format to get
27554 		 * the LBA for the track requested so it can be used in the
27555 		 * READ HEADER request
27556 		 *
27557 		 * Note: The MSF bit of the READ HEADER command specifies the
27558 		 * output format. The block address specified in that command
27559 		 * must be in LBA format.
27560 		 */
27561 		cdb[1] = 0;
27562 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27563 		    SD_PATH_STANDARD);
27564 		if (rval != 0) {
27565 			kmem_free(buffer, 12);
27566 			kmem_free(com, sizeof (*com));
27567 			return (rval);
27568 		}
27569 	}
27570 
27571 	/*
27572 	 * Build and send the READ HEADER command to determine the data mode of
27573 	 * the user specified track.
27574 	 */
27575 	if ((entry->cdte_ctrl & CDROM_DATA_TRACK) &&
27576 	    (entry->cdte_track != CDROM_LEADOUT)) {
27577 		bzero(cdb, CDB_GROUP1);
27578 		cdb[0] = SCMD_READ_HEADER;
27579 		cdb[2] = buffer[8];
27580 		cdb[3] = buffer[9];
27581 		cdb[4] = buffer[10];
27582 		cdb[5] = buffer[11];
27583 		cdb[8] = 0x08;
27584 		com->uscsi_buflen = 0x08;
27585 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27586 		    SD_PATH_STANDARD);
27587 		if (rval == 0) {
27588 			entry->cdte_datamode = buffer[0];
27589 		} else {
27590 			/*
27591 			 * READ HEADER command failed, since this is
27592 			 * obsoleted in one spec, its better to return
27593 			 * -1 for an invlid track so that we can still
27594 			 * receive the rest of the TOC data.
27595 			 */
27596 			entry->cdte_datamode = (uchar_t)-1;
27597 		}
27598 	} else {
27599 		entry->cdte_datamode = (uchar_t)-1;
27600 	}
27601 
27602 	kmem_free(buffer, 12);
27603 	kmem_free(com, sizeof (*com));
27604 	if (ddi_copyout(entry, data, sizeof (struct cdrom_tocentry), flag) != 0)
27605 		return (EFAULT);
27606 
27607 	return (rval);
27608 }
27609 
27610 
27611 /*
27612  *    Function: sr_read_tochdr()
27613  *
27614  * Description: This routine is the driver entry point for handling CD-ROM
27615  * 		ioctl requests to read the Table of Contents (TOC) header
27616  *		(CDROMREADTOHDR). The TOC header consists of the disk starting
27617  *		and ending track numbers
27618  *
27619  *   Arguments: dev	- the device 'dev_t'
27620  *		data	- pointer to user provided toc header structure,
27621  *			  specifying the starting and ending track numbers.
27622  *		flag	- this argument is a pass through to ddi_copyxxx()
27623  *			  directly from the mode argument of ioctl().
27624  *
27625  * Return Code: the code returned by sd_send_scsi_cmd()
27626  *		EFAULT if ddi_copyxxx() fails
27627  *		ENXIO if fail ddi_get_soft_state
27628  *		EINVAL if data pointer is NULL
27629  */
27630 
27631 static int
27632 sr_read_tochdr(dev_t dev, caddr_t data, int flag)
27633 {
27634 	struct sd_lun		*un;
27635 	struct uscsi_cmd	*com;
27636 	struct cdrom_tochdr	toc_header;
27637 	struct cdrom_tochdr	*hdr = &toc_header;
27638 	char			cdb[CDB_GROUP1];
27639 	int			rval;
27640 	caddr_t			buffer;
27641 
27642 	if (data == NULL) {
27643 		return (EINVAL);
27644 	}
27645 
27646 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27647 	    (un->un_state == SD_STATE_OFFLINE)) {
27648 		return (ENXIO);
27649 	}
27650 
27651 	buffer = kmem_zalloc(4, KM_SLEEP);
27652 	bzero(cdb, CDB_GROUP1);
27653 	cdb[0] = SCMD_READ_TOC;
27654 	/*
27655 	 * Specifying a track number of 0x00 in the READ TOC command indicates
27656 	 * that the TOC header should be returned
27657 	 */
27658 	cdb[6] = 0x00;
27659 	/*
27660 	 * Bytes 7 & 8 are the 4 byte allocation length for TOC header.
27661 	 * (2 byte data len + 1 byte starting track # + 1 byte ending track #)
27662 	 */
27663 	cdb[8] = 0x04;
27664 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27665 	com->uscsi_cdb	   = cdb;
27666 	com->uscsi_cdblen  = CDB_GROUP1;
27667 	com->uscsi_bufaddr = buffer;
27668 	com->uscsi_buflen  = 0x04;
27669 	com->uscsi_timeout = 300;
27670 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27671 
27672 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27673 	    SD_PATH_STANDARD);
27674 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
27675 		hdr->cdth_trk0 = BCD_TO_BYTE(buffer[2]);
27676 		hdr->cdth_trk1 = BCD_TO_BYTE(buffer[3]);
27677 	} else {
27678 		hdr->cdth_trk0 = buffer[2];
27679 		hdr->cdth_trk1 = buffer[3];
27680 	}
27681 	kmem_free(buffer, 4);
27682 	kmem_free(com, sizeof (*com));
27683 	if (ddi_copyout(hdr, data, sizeof (struct cdrom_tochdr), flag) != 0) {
27684 		return (EFAULT);
27685 	}
27686 	return (rval);
27687 }
27688 
27689 
27690 /*
27691  * Note: The following sr_read_mode1(), sr_read_cd_mode2(), sr_read_mode2(),
27692  * sr_read_cdda(), sr_read_cdxa(), routines implement driver support for
27693  * handling CDROMREAD ioctl requests for mode 1 user data, mode 2 user data,
27694  * digital audio and extended architecture digital audio. These modes are
27695  * defined in the IEC908 (Red Book), ISO10149 (Yellow Book), and the SCSI3
27696  * MMC specs.
27697  *
27698  * In addition to support for the various data formats these routines also
27699  * include support for devices that implement only the direct access READ
27700  * commands (0x08, 0x28), devices that implement the READ_CD commands
27701  * (0xBE, 0xD4), and devices that implement the vendor unique READ CDDA and
27702  * READ CDXA commands (0xD8, 0xDB)
27703  */
27704 
27705 /*
27706  *    Function: sr_read_mode1()
27707  *
27708  * Description: This routine is the driver entry point for handling CD-ROM
27709  *		ioctl read mode1 requests (CDROMREADMODE1).
27710  *
27711  *   Arguments: dev	- the device 'dev_t'
27712  *		data	- pointer to user provided cd read structure specifying
27713  *			  the lba buffer address and length.
27714  *		flag	- this argument is a pass through to ddi_copyxxx()
27715  *			  directly from the mode argument of ioctl().
27716  *
27717  * Return Code: the code returned by sd_send_scsi_cmd()
27718  *		EFAULT if ddi_copyxxx() fails
27719  *		ENXIO if fail ddi_get_soft_state
27720  *		EINVAL if data pointer is NULL
27721  */
27722 
27723 static int
27724 sr_read_mode1(dev_t dev, caddr_t data, int flag)
27725 {
27726 	struct sd_lun		*un;
27727 	struct cdrom_read	mode1_struct;
27728 	struct cdrom_read	*mode1 = &mode1_struct;
27729 	int			rval;
27730 	sd_ssc_t		*ssc;
27731 
27732 #ifdef _MULTI_DATAMODEL
27733 	/* To support ILP32 applications in an LP64 world */
27734 	struct cdrom_read32	cdrom_read32;
27735 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
27736 #endif /* _MULTI_DATAMODEL */
27737 
27738 	if (data == NULL) {
27739 		return (EINVAL);
27740 	}
27741 
27742 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27743 	    (un->un_state == SD_STATE_OFFLINE)) {
27744 		return (ENXIO);
27745 	}
27746 
27747 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
27748 	    "sd_read_mode1: entry: un:0x%p\n", un);
27749 
27750 #ifdef _MULTI_DATAMODEL
27751 	switch (ddi_model_convert_from(flag & FMODELS)) {
27752 	case DDI_MODEL_ILP32:
27753 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
27754 			return (EFAULT);
27755 		}
27756 		/* Convert the ILP32 uscsi data from the application to LP64 */
27757 		cdrom_read32tocdrom_read(cdrd32, mode1);
27758 		break;
27759 	case DDI_MODEL_NONE:
27760 		if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
27761 			return (EFAULT);
27762 		}
27763 	}
27764 #else /* ! _MULTI_DATAMODEL */
27765 	if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
27766 		return (EFAULT);
27767 	}
27768 #endif /* _MULTI_DATAMODEL */
27769 
27770 	ssc = sd_ssc_init(un);
27771 	rval = sd_send_scsi_READ(ssc, mode1->cdread_bufaddr,
27772 	    mode1->cdread_buflen, mode1->cdread_lba, SD_PATH_STANDARD);
27773 	sd_ssc_fini(ssc);
27774 
27775 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
27776 	    "sd_read_mode1: exit: un:0x%p\n", un);
27777 
27778 	return (rval);
27779 }
27780 
27781 
27782 /*
27783  *    Function: sr_read_cd_mode2()
27784  *
27785  * Description: This routine is the driver entry point for handling CD-ROM
27786  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
27787  *		support the READ CD (0xBE) command or the 1st generation
27788  *		READ CD (0xD4) command.
27789  *
27790  *   Arguments: dev	- the device 'dev_t'
27791  *		data	- pointer to user provided cd read structure specifying
27792  *			  the lba buffer address and length.
27793  *		flag	- this argument is a pass through to ddi_copyxxx()
27794  *			  directly from the mode argument of ioctl().
27795  *
27796  * Return Code: the code returned by sd_send_scsi_cmd()
27797  *		EFAULT if ddi_copyxxx() fails
27798  *		ENXIO if fail ddi_get_soft_state
27799  *		EINVAL if data pointer is NULL
27800  */
27801 
27802 static int
27803 sr_read_cd_mode2(dev_t dev, caddr_t data, int flag)
27804 {
27805 	struct sd_lun		*un;
27806 	struct uscsi_cmd	*com;
27807 	struct cdrom_read	mode2_struct;
27808 	struct cdrom_read	*mode2 = &mode2_struct;
27809 	uchar_t			cdb[CDB_GROUP5];
27810 	int			nblocks;
27811 	int			rval;
27812 #ifdef _MULTI_DATAMODEL
27813 	/*  To support ILP32 applications in an LP64 world */
27814 	struct cdrom_read32	cdrom_read32;
27815 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
27816 #endif /* _MULTI_DATAMODEL */
27817 
27818 	if (data == NULL) {
27819 		return (EINVAL);
27820 	}
27821 
27822 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27823 	    (un->un_state == SD_STATE_OFFLINE)) {
27824 		return (ENXIO);
27825 	}
27826 
27827 #ifdef _MULTI_DATAMODEL
27828 	switch (ddi_model_convert_from(flag & FMODELS)) {
27829 	case DDI_MODEL_ILP32:
27830 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
27831 			return (EFAULT);
27832 		}
27833 		/* Convert the ILP32 uscsi data from the application to LP64 */
27834 		cdrom_read32tocdrom_read(cdrd32, mode2);
27835 		break;
27836 	case DDI_MODEL_NONE:
27837 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
27838 			return (EFAULT);
27839 		}
27840 		break;
27841 	}
27842 
27843 #else /* ! _MULTI_DATAMODEL */
27844 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
27845 		return (EFAULT);
27846 	}
27847 #endif /* _MULTI_DATAMODEL */
27848 
27849 	bzero(cdb, sizeof (cdb));
27850 	if (un->un_f_cfg_read_cd_xd4 == TRUE) {
27851 		/* Read command supported by 1st generation atapi drives */
27852 		cdb[0] = SCMD_READ_CDD4;
27853 	} else {
27854 		/* Universal CD Access Command */
27855 		cdb[0] = SCMD_READ_CD;
27856 	}
27857 
27858 	/*
27859 	 * Set expected sector type to: 2336s byte, Mode 2 Yellow Book
27860 	 */
27861 	cdb[1] = CDROM_SECTOR_TYPE_MODE2;
27862 
27863 	/* set the start address */
27864 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 24) & 0XFF);
27865 	cdb[3] = (uchar_t)((mode2->cdread_lba >> 16) & 0XFF);
27866 	cdb[4] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
27867 	cdb[5] = (uchar_t)(mode2->cdread_lba & 0xFF);
27868 
27869 	/* set the transfer length */
27870 	nblocks = mode2->cdread_buflen / 2336;
27871 	cdb[6] = (uchar_t)(nblocks >> 16);
27872 	cdb[7] = (uchar_t)(nblocks >> 8);
27873 	cdb[8] = (uchar_t)nblocks;
27874 
27875 	/* set the filter bits */
27876 	cdb[9] = CDROM_READ_CD_USERDATA;
27877 
27878 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27879 	com->uscsi_cdb = (caddr_t)cdb;
27880 	com->uscsi_cdblen = sizeof (cdb);
27881 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
27882 	com->uscsi_buflen = mode2->cdread_buflen;
27883 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27884 
27885 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
27886 	    SD_PATH_STANDARD);
27887 	kmem_free(com, sizeof (*com));
27888 	return (rval);
27889 }
27890 
27891 
27892 /*
27893  *    Function: sr_read_mode2()
27894  *
27895  * Description: This routine is the driver entry point for handling CD-ROM
27896  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
27897  *		do not support the READ CD (0xBE) command.
27898  *
27899  *   Arguments: dev	- the device 'dev_t'
27900  *		data	- pointer to user provided cd read structure specifying
27901  *			  the lba buffer address and length.
27902  *		flag	- this argument is a pass through to ddi_copyxxx()
27903  *			  directly from the mode argument of ioctl().
27904  *
27905  * Return Code: the code returned by sd_send_scsi_cmd()
27906  *		EFAULT if ddi_copyxxx() fails
27907  *		ENXIO if fail ddi_get_soft_state
27908  *		EINVAL if data pointer is NULL
27909  *		EIO if fail to reset block size
27910  *		EAGAIN if commands are in progress in the driver
27911  */
27912 
27913 static int
27914 sr_read_mode2(dev_t dev, caddr_t data, int flag)
27915 {
27916 	struct sd_lun		*un;
27917 	struct cdrom_read	mode2_struct;
27918 	struct cdrom_read	*mode2 = &mode2_struct;
27919 	int			rval;
27920 	uint32_t		restore_blksize;
27921 	struct uscsi_cmd	*com;
27922 	uchar_t			cdb[CDB_GROUP0];
27923 	int			nblocks;
27924 
27925 #ifdef _MULTI_DATAMODEL
27926 	/* To support ILP32 applications in an LP64 world */
27927 	struct cdrom_read32	cdrom_read32;
27928 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
27929 #endif /* _MULTI_DATAMODEL */
27930 
27931 	if (data == NULL) {
27932 		return (EINVAL);
27933 	}
27934 
27935 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27936 	    (un->un_state == SD_STATE_OFFLINE)) {
27937 		return (ENXIO);
27938 	}
27939 
27940 	/*
27941 	 * Because this routine will update the device and driver block size
27942 	 * being used we want to make sure there are no commands in progress.
27943 	 * If commands are in progress the user will have to try again.
27944 	 *
27945 	 * We check for 1 instead of 0 because we increment un_ncmds_in_driver
27946 	 * in sdioctl to protect commands from sdioctl through to the top of
27947 	 * sd_uscsi_strategy. See sdioctl for details.
27948 	 */
27949 	mutex_enter(SD_MUTEX(un));
27950 	if (un->un_ncmds_in_driver != 1) {
27951 		mutex_exit(SD_MUTEX(un));
27952 		return (EAGAIN);
27953 	}
27954 	mutex_exit(SD_MUTEX(un));
27955 
27956 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
27957 	    "sd_read_mode2: entry: un:0x%p\n", un);
27958 
27959 #ifdef _MULTI_DATAMODEL
27960 	switch (ddi_model_convert_from(flag & FMODELS)) {
27961 	case DDI_MODEL_ILP32:
27962 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
27963 			return (EFAULT);
27964 		}
27965 		/* Convert the ILP32 uscsi data from the application to LP64 */
27966 		cdrom_read32tocdrom_read(cdrd32, mode2);
27967 		break;
27968 	case DDI_MODEL_NONE:
27969 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
27970 			return (EFAULT);
27971 		}
27972 		break;
27973 	}
27974 #else /* ! _MULTI_DATAMODEL */
27975 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag)) {
27976 		return (EFAULT);
27977 	}
27978 #endif /* _MULTI_DATAMODEL */
27979 
27980 	/* Store the current target block size for restoration later */
27981 	restore_blksize = un->un_tgt_blocksize;
27982 
27983 	/* Change the device and soft state target block size to 2336 */
27984 	if (sr_sector_mode(dev, SD_MODE2_BLKSIZE) != 0) {
27985 		rval = EIO;
27986 		goto done;
27987 	}
27988 
27989 
27990 	bzero(cdb, sizeof (cdb));
27991 
27992 	/* set READ operation */
27993 	cdb[0] = SCMD_READ;
27994 
27995 	/* adjust lba for 2kbyte blocks from 512 byte blocks */
27996 	mode2->cdread_lba >>= 2;
27997 
27998 	/* set the start address */
27999 	cdb[1] = (uchar_t)((mode2->cdread_lba >> 16) & 0X1F);
28000 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
28001 	cdb[3] = (uchar_t)(mode2->cdread_lba & 0xFF);
28002 
28003 	/* set the transfer length */
28004 	nblocks = mode2->cdread_buflen / 2336;
28005 	cdb[4] = (uchar_t)nblocks & 0xFF;
28006 
28007 	/* build command */
28008 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28009 	com->uscsi_cdb = (caddr_t)cdb;
28010 	com->uscsi_cdblen = sizeof (cdb);
28011 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
28012 	com->uscsi_buflen = mode2->cdread_buflen;
28013 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28014 
28015 	/*
28016 	 * Issue SCSI command with user space address for read buffer.
28017 	 *
28018 	 * This sends the command through main channel in the driver.
28019 	 *
28020 	 * Since this is accessed via an IOCTL call, we go through the
28021 	 * standard path, so that if the device was powered down, then
28022 	 * it would be 'awakened' to handle the command.
28023 	 */
28024 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
28025 	    SD_PATH_STANDARD);
28026 
28027 	kmem_free(com, sizeof (*com));
28028 
28029 	/* Restore the device and soft state target block size */
28030 	if (sr_sector_mode(dev, restore_blksize) != 0) {
28031 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28032 		    "can't do switch back to mode 1\n");
28033 		/*
28034 		 * If sd_send_scsi_READ succeeded we still need to report
28035 		 * an error because we failed to reset the block size
28036 		 */
28037 		if (rval == 0) {
28038 			rval = EIO;
28039 		}
28040 	}
28041 
28042 done:
28043 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28044 	    "sd_read_mode2: exit: un:0x%p\n", un);
28045 
28046 	return (rval);
28047 }
28048 
28049 
28050 /*
28051  *    Function: sr_sector_mode()
28052  *
28053  * Description: This utility function is used by sr_read_mode2 to set the target
28054  *		block size based on the user specified size. This is a legacy
28055  *		implementation based upon a vendor specific mode page
28056  *
28057  *   Arguments: dev	- the device 'dev_t'
28058  *		data	- flag indicating if block size is being set to 2336 or
28059  *			  512.
28060  *
28061  * Return Code: the code returned by sd_send_scsi_cmd()
28062  *		EFAULT if ddi_copyxxx() fails
28063  *		ENXIO if fail ddi_get_soft_state
28064  *		EINVAL if data pointer is NULL
28065  */
28066 
28067 static int
28068 sr_sector_mode(dev_t dev, uint32_t blksize)
28069 {
28070 	struct sd_lun	*un;
28071 	uchar_t		*sense;
28072 	uchar_t		*select;
28073 	int		rval;
28074 	sd_ssc_t	*ssc;
28075 
28076 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28077 	    (un->un_state == SD_STATE_OFFLINE)) {
28078 		return (ENXIO);
28079 	}
28080 
28081 	sense = kmem_zalloc(20, KM_SLEEP);
28082 
28083 	/* Note: This is a vendor specific mode page (0x81) */
28084 	ssc = sd_ssc_init(un);
28085 	rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, 20, 0x81,
28086 	    SD_PATH_STANDARD);
28087 	sd_ssc_fini(ssc);
28088 	if (rval != 0) {
28089 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
28090 		    "sr_sector_mode: Mode Sense failed\n");
28091 		kmem_free(sense, 20);
28092 		return (rval);
28093 	}
28094 	select = kmem_zalloc(20, KM_SLEEP);
28095 	select[3] = 0x08;
28096 	select[10] = ((blksize >> 8) & 0xff);
28097 	select[11] = (blksize & 0xff);
28098 	select[12] = 0x01;
28099 	select[13] = 0x06;
28100 	select[14] = sense[14];
28101 	select[15] = sense[15];
28102 	if (blksize == SD_MODE2_BLKSIZE) {
28103 		select[14] |= 0x01;
28104 	}
28105 
28106 	ssc = sd_ssc_init(un);
28107 	rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select, 20,
28108 	    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
28109 	sd_ssc_fini(ssc);
28110 	if (rval != 0) {
28111 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
28112 		    "sr_sector_mode: Mode Select failed\n");
28113 	} else {
28114 		/*
28115 		 * Only update the softstate block size if we successfully
28116 		 * changed the device block mode.
28117 		 */
28118 		mutex_enter(SD_MUTEX(un));
28119 		sd_update_block_info(un, blksize, 0);
28120 		mutex_exit(SD_MUTEX(un));
28121 	}
28122 	kmem_free(sense, 20);
28123 	kmem_free(select, 20);
28124 	return (rval);
28125 }
28126 
28127 
28128 /*
28129  *    Function: sr_read_cdda()
28130  *
28131  * Description: This routine is the driver entry point for handling CD-ROM
28132  *		ioctl requests to return CD-DA or subcode data. (CDROMCDDA) If
28133  *		the target supports CDDA these requests are handled via a vendor
28134  *		specific command (0xD8) If the target does not support CDDA
28135  *		these requests are handled via the READ CD command (0xBE).
28136  *
28137  *   Arguments: dev	- the device 'dev_t'
28138  *		data	- pointer to user provided CD-DA structure specifying
28139  *			  the track starting address, transfer length, and
28140  *			  subcode options.
28141  *		flag	- this argument is a pass through to ddi_copyxxx()
28142  *			  directly from the mode argument of ioctl().
28143  *
28144  * Return Code: the code returned by sd_send_scsi_cmd()
28145  *		EFAULT if ddi_copyxxx() fails
28146  *		ENXIO if fail ddi_get_soft_state
28147  *		EINVAL if invalid arguments are provided
28148  *		ENOTTY
28149  */
28150 
28151 static int
28152 sr_read_cdda(dev_t dev, caddr_t data, int flag)
28153 {
28154 	struct sd_lun			*un;
28155 	struct uscsi_cmd		*com;
28156 	struct cdrom_cdda		*cdda;
28157 	int				rval;
28158 	size_t				buflen;
28159 	char				cdb[CDB_GROUP5];
28160 
28161 #ifdef _MULTI_DATAMODEL
28162 	/* To support ILP32 applications in an LP64 world */
28163 	struct cdrom_cdda32	cdrom_cdda32;
28164 	struct cdrom_cdda32	*cdda32 = &cdrom_cdda32;
28165 #endif /* _MULTI_DATAMODEL */
28166 
28167 	if (data == NULL) {
28168 		return (EINVAL);
28169 	}
28170 
28171 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28172 		return (ENXIO);
28173 	}
28174 
28175 	cdda = kmem_zalloc(sizeof (struct cdrom_cdda), KM_SLEEP);
28176 
28177 #ifdef _MULTI_DATAMODEL
28178 	switch (ddi_model_convert_from(flag & FMODELS)) {
28179 	case DDI_MODEL_ILP32:
28180 		if (ddi_copyin(data, cdda32, sizeof (*cdda32), flag)) {
28181 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28182 			    "sr_read_cdda: ddi_copyin Failed\n");
28183 			kmem_free(cdda, sizeof (struct cdrom_cdda));
28184 			return (EFAULT);
28185 		}
28186 		/* Convert the ILP32 uscsi data from the application to LP64 */
28187 		cdrom_cdda32tocdrom_cdda(cdda32, cdda);
28188 		break;
28189 	case DDI_MODEL_NONE:
28190 		if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
28191 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28192 			    "sr_read_cdda: ddi_copyin Failed\n");
28193 			kmem_free(cdda, sizeof (struct cdrom_cdda));
28194 			return (EFAULT);
28195 		}
28196 		break;
28197 	}
28198 #else /* ! _MULTI_DATAMODEL */
28199 	if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
28200 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28201 		    "sr_read_cdda: ddi_copyin Failed\n");
28202 		kmem_free(cdda, sizeof (struct cdrom_cdda));
28203 		return (EFAULT);
28204 	}
28205 #endif /* _MULTI_DATAMODEL */
28206 
28207 	/*
28208 	 * Since MMC-2 expects max 3 bytes for length, check if the
28209 	 * length input is greater than 3 bytes
28210 	 */
28211 	if ((cdda->cdda_length & 0xFF000000) != 0) {
28212 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdda: "
28213 		    "cdrom transfer length too large: %d (limit %d)\n",
28214 		    cdda->cdda_length, 0xFFFFFF);
28215 		kmem_free(cdda, sizeof (struct cdrom_cdda));
28216 		return (EINVAL);
28217 	}
28218 
28219 	switch (cdda->cdda_subcode) {
28220 	case CDROM_DA_NO_SUBCODE:
28221 		buflen = CDROM_BLK_2352 * cdda->cdda_length;
28222 		break;
28223 	case CDROM_DA_SUBQ:
28224 		buflen = CDROM_BLK_2368 * cdda->cdda_length;
28225 		break;
28226 	case CDROM_DA_ALL_SUBCODE:
28227 		buflen = CDROM_BLK_2448 * cdda->cdda_length;
28228 		break;
28229 	case CDROM_DA_SUBCODE_ONLY:
28230 		buflen = CDROM_BLK_SUBCODE * cdda->cdda_length;
28231 		break;
28232 	default:
28233 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28234 		    "sr_read_cdda: Subcode '0x%x' Not Supported\n",
28235 		    cdda->cdda_subcode);
28236 		kmem_free(cdda, sizeof (struct cdrom_cdda));
28237 		return (EINVAL);
28238 	}
28239 
28240 	/* Build and send the command */
28241 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28242 	bzero(cdb, CDB_GROUP5);
28243 
28244 	if (un->un_f_cfg_cdda == TRUE) {
28245 		cdb[0] = (char)SCMD_READ_CD;
28246 		cdb[1] = 0x04;
28247 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
28248 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
28249 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
28250 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
28251 		cdb[6] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
28252 		cdb[7] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
28253 		cdb[8] = ((cdda->cdda_length) & 0x000000ff);
28254 		cdb[9] = 0x10;
28255 		switch (cdda->cdda_subcode) {
28256 		case CDROM_DA_NO_SUBCODE :
28257 			cdb[10] = 0x0;
28258 			break;
28259 		case CDROM_DA_SUBQ :
28260 			cdb[10] = 0x2;
28261 			break;
28262 		case CDROM_DA_ALL_SUBCODE :
28263 			cdb[10] = 0x1;
28264 			break;
28265 		case CDROM_DA_SUBCODE_ONLY :
28266 			/* FALLTHROUGH */
28267 		default :
28268 			kmem_free(cdda, sizeof (struct cdrom_cdda));
28269 			kmem_free(com, sizeof (*com));
28270 			return (ENOTTY);
28271 		}
28272 	} else {
28273 		cdb[0] = (char)SCMD_READ_CDDA;
28274 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
28275 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
28276 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
28277 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
28278 		cdb[6] = (((cdda->cdda_length) & 0xff000000) >> 24);
28279 		cdb[7] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
28280 		cdb[8] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
28281 		cdb[9] = ((cdda->cdda_length) & 0x000000ff);
28282 		cdb[10] = cdda->cdda_subcode;
28283 	}
28284 
28285 	com->uscsi_cdb = cdb;
28286 	com->uscsi_cdblen = CDB_GROUP5;
28287 	com->uscsi_bufaddr = (caddr_t)cdda->cdda_data;
28288 	com->uscsi_buflen = buflen;
28289 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28290 
28291 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
28292 	    SD_PATH_STANDARD);
28293 
28294 	kmem_free(cdda, sizeof (struct cdrom_cdda));
28295 	kmem_free(com, sizeof (*com));
28296 	return (rval);
28297 }
28298 
28299 
28300 /*
28301  *    Function: sr_read_cdxa()
28302  *
28303  * Description: This routine is the driver entry point for handling CD-ROM
28304  *		ioctl requests to return CD-XA (Extended Architecture) data.
28305  *		(CDROMCDXA).
28306  *
28307  *   Arguments: dev	- the device 'dev_t'
28308  *		data	- pointer to user provided CD-XA structure specifying
28309  *			  the data starting address, transfer length, and format
28310  *		flag	- this argument is a pass through to ddi_copyxxx()
28311  *			  directly from the mode argument of ioctl().
28312  *
28313  * Return Code: the code returned by sd_send_scsi_cmd()
28314  *		EFAULT if ddi_copyxxx() fails
28315  *		ENXIO if fail ddi_get_soft_state
28316  *		EINVAL if data pointer is NULL
28317  */
28318 
28319 static int
28320 sr_read_cdxa(dev_t dev, caddr_t data, int flag)
28321 {
28322 	struct sd_lun		*un;
28323 	struct uscsi_cmd	*com;
28324 	struct cdrom_cdxa	*cdxa;
28325 	int			rval;
28326 	size_t			buflen;
28327 	char			cdb[CDB_GROUP5];
28328 	uchar_t			read_flags;
28329 
28330 #ifdef _MULTI_DATAMODEL
28331 	/* To support ILP32 applications in an LP64 world */
28332 	struct cdrom_cdxa32		cdrom_cdxa32;
28333 	struct cdrom_cdxa32		*cdxa32 = &cdrom_cdxa32;
28334 #endif /* _MULTI_DATAMODEL */
28335 
28336 	if (data == NULL) {
28337 		return (EINVAL);
28338 	}
28339 
28340 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28341 		return (ENXIO);
28342 	}
28343 
28344 	cdxa = kmem_zalloc(sizeof (struct cdrom_cdxa), KM_SLEEP);
28345 
28346 #ifdef _MULTI_DATAMODEL
28347 	switch (ddi_model_convert_from(flag & FMODELS)) {
28348 	case DDI_MODEL_ILP32:
28349 		if (ddi_copyin(data, cdxa32, sizeof (*cdxa32), flag)) {
28350 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28351 			return (EFAULT);
28352 		}
28353 		/*
28354 		 * Convert the ILP32 uscsi data from the
28355 		 * application to LP64 for internal use.
28356 		 */
28357 		cdrom_cdxa32tocdrom_cdxa(cdxa32, cdxa);
28358 		break;
28359 	case DDI_MODEL_NONE:
28360 		if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
28361 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28362 			return (EFAULT);
28363 		}
28364 		break;
28365 	}
28366 #else /* ! _MULTI_DATAMODEL */
28367 	if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
28368 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28369 		return (EFAULT);
28370 	}
28371 #endif /* _MULTI_DATAMODEL */
28372 
28373 	/*
28374 	 * Since MMC-2 expects max 3 bytes for length, check if the
28375 	 * length input is greater than 3 bytes
28376 	 */
28377 	if ((cdxa->cdxa_length & 0xFF000000) != 0) {
28378 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdxa: "
28379 		    "cdrom transfer length too large: %d (limit %d)\n",
28380 		    cdxa->cdxa_length, 0xFFFFFF);
28381 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28382 		return (EINVAL);
28383 	}
28384 
28385 	switch (cdxa->cdxa_format) {
28386 	case CDROM_XA_DATA:
28387 		buflen = CDROM_BLK_2048 * cdxa->cdxa_length;
28388 		read_flags = 0x10;
28389 		break;
28390 	case CDROM_XA_SECTOR_DATA:
28391 		buflen = CDROM_BLK_2352 * cdxa->cdxa_length;
28392 		read_flags = 0xf8;
28393 		break;
28394 	case CDROM_XA_DATA_W_ERROR:
28395 		buflen = CDROM_BLK_2646 * cdxa->cdxa_length;
28396 		read_flags = 0xfc;
28397 		break;
28398 	default:
28399 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28400 		    "sr_read_cdxa: Format '0x%x' Not Supported\n",
28401 		    cdxa->cdxa_format);
28402 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28403 		return (EINVAL);
28404 	}
28405 
28406 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28407 	bzero(cdb, CDB_GROUP5);
28408 	if (un->un_f_mmc_cap == TRUE) {
28409 		cdb[0] = (char)SCMD_READ_CD;
28410 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
28411 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
28412 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
28413 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
28414 		cdb[6] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
28415 		cdb[7] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
28416 		cdb[8] = ((cdxa->cdxa_length) & 0x000000ff);
28417 		cdb[9] = (char)read_flags;
28418 	} else {
28419 		/*
28420 		 * Note: A vendor specific command (0xDB) is being used her to
28421 		 * request a read of all subcodes.
28422 		 */
28423 		cdb[0] = (char)SCMD_READ_CDXA;
28424 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
28425 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
28426 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
28427 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
28428 		cdb[6] = (((cdxa->cdxa_length) & 0xff000000) >> 24);
28429 		cdb[7] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
28430 		cdb[8] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
28431 		cdb[9] = ((cdxa->cdxa_length) & 0x000000ff);
28432 		cdb[10] = cdxa->cdxa_format;
28433 	}
28434 	com->uscsi_cdb	   = cdb;
28435 	com->uscsi_cdblen  = CDB_GROUP5;
28436 	com->uscsi_bufaddr = (caddr_t)cdxa->cdxa_data;
28437 	com->uscsi_buflen  = buflen;
28438 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28439 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
28440 	    SD_PATH_STANDARD);
28441 	kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28442 	kmem_free(com, sizeof (*com));
28443 	return (rval);
28444 }
28445 
28446 
28447 /*
28448  *    Function: sr_eject()
28449  *
28450  * Description: This routine is the driver entry point for handling CD-ROM
28451  *		eject ioctl requests (FDEJECT, DKIOCEJECT, CDROMEJECT)
28452  *
28453  *   Arguments: dev	- the device 'dev_t'
28454  *
28455  * Return Code: the code returned by sd_send_scsi_cmd()
28456  */
28457 
28458 static int
28459 sr_eject(dev_t dev)
28460 {
28461 	struct sd_lun	*un;
28462 	int		rval;
28463 	sd_ssc_t	*ssc;
28464 
28465 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28466 	    (un->un_state == SD_STATE_OFFLINE)) {
28467 		return (ENXIO);
28468 	}
28469 
28470 	/*
28471 	 * To prevent race conditions with the eject
28472 	 * command, keep track of an eject command as
28473 	 * it progresses. If we are already handling
28474 	 * an eject command in the driver for the given
28475 	 * unit and another request to eject is received
28476 	 * immediately return EAGAIN so we don't lose
28477 	 * the command if the current eject command fails.
28478 	 */
28479 	mutex_enter(SD_MUTEX(un));
28480 	if (un->un_f_ejecting == TRUE) {
28481 		mutex_exit(SD_MUTEX(un));
28482 		return (EAGAIN);
28483 	}
28484 	un->un_f_ejecting = TRUE;
28485 	mutex_exit(SD_MUTEX(un));
28486 
28487 	ssc = sd_ssc_init(un);
28488 	rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_ALLOW,
28489 	    SD_PATH_STANDARD);
28490 	sd_ssc_fini(ssc);
28491 
28492 	if (rval != 0) {
28493 		mutex_enter(SD_MUTEX(un));
28494 		un->un_f_ejecting = FALSE;
28495 		mutex_exit(SD_MUTEX(un));
28496 		return (rval);
28497 	}
28498 
28499 	ssc = sd_ssc_init(un);
28500 	rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
28501 	    SD_TARGET_EJECT, SD_PATH_STANDARD);
28502 	sd_ssc_fini(ssc);
28503 
28504 	if (rval == 0) {
28505 		mutex_enter(SD_MUTEX(un));
28506 		sr_ejected(un);
28507 		un->un_mediastate = DKIO_EJECTED;
28508 		un->un_f_ejecting = FALSE;
28509 		cv_broadcast(&un->un_state_cv);
28510 		mutex_exit(SD_MUTEX(un));
28511 	} else {
28512 		mutex_enter(SD_MUTEX(un));
28513 		un->un_f_ejecting = FALSE;
28514 		mutex_exit(SD_MUTEX(un));
28515 	}
28516 	return (rval);
28517 }
28518 
28519 
28520 /*
28521  *    Function: sr_ejected()
28522  *
28523  * Description: This routine updates the soft state structure to invalidate the
28524  *		geometry information after the media has been ejected or a
28525  *		media eject has been detected.
28526  *
28527  *   Arguments: un - driver soft state (unit) structure
28528  */
28529 
28530 static void
28531 sr_ejected(struct sd_lun *un)
28532 {
28533 	struct sd_errstats *stp;
28534 
28535 	ASSERT(un != NULL);
28536 	ASSERT(mutex_owned(SD_MUTEX(un)));
28537 
28538 	un->un_f_blockcount_is_valid	= FALSE;
28539 	un->un_f_tgt_blocksize_is_valid	= FALSE;
28540 	mutex_exit(SD_MUTEX(un));
28541 	cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY);
28542 	mutex_enter(SD_MUTEX(un));
28543 
28544 	if (un->un_errstats != NULL) {
28545 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
28546 		stp->sd_capacity.value.ui64 = 0;
28547 	}
28548 }
28549 
28550 
28551 /*
28552  *    Function: sr_check_wp()
28553  *
28554  * Description: This routine checks the write protection of a removable
28555  *      media disk and hotpluggable devices via the write protect bit of
28556  *      the Mode Page Header device specific field. Some devices choke
28557  *      on unsupported mode page. In order to workaround this issue,
28558  *      this routine has been implemented to use 0x3f mode page(request
28559  *      for all pages) for all device types.
28560  *
28561  *   Arguments: dev             - the device 'dev_t'
28562  *
28563  * Return Code: int indicating if the device is write protected (1) or not (0)
28564  *
28565  *     Context: Kernel thread.
28566  *
28567  */
28568 
28569 static int
28570 sr_check_wp(dev_t dev)
28571 {
28572 	struct sd_lun	*un;
28573 	uchar_t		device_specific;
28574 	uchar_t		*sense;
28575 	int		hdrlen;
28576 	int		rval = FALSE;
28577 	int		status;
28578 	sd_ssc_t	*ssc;
28579 
28580 	/*
28581 	 * Note: The return codes for this routine should be reworked to
28582 	 * properly handle the case of a NULL softstate.
28583 	 */
28584 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28585 		return (FALSE);
28586 	}
28587 
28588 	if (un->un_f_cfg_is_atapi == TRUE) {
28589 		/*
28590 		 * The mode page contents are not required; set the allocation
28591 		 * length for the mode page header only
28592 		 */
28593 		hdrlen = MODE_HEADER_LENGTH_GRP2;
28594 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
28595 		ssc = sd_ssc_init(un);
28596 		status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense, hdrlen,
28597 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD);
28598 		sd_ssc_fini(ssc);
28599 		if (status != 0)
28600 			goto err_exit;
28601 		device_specific =
28602 		    ((struct mode_header_grp2 *)sense)->device_specific;
28603 	} else {
28604 		hdrlen = MODE_HEADER_LENGTH;
28605 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
28606 		ssc = sd_ssc_init(un);
28607 		status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, hdrlen,
28608 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD);
28609 		sd_ssc_fini(ssc);
28610 		if (status != 0)
28611 			goto err_exit;
28612 		device_specific =
28613 		    ((struct mode_header *)sense)->device_specific;
28614 	}
28615 
28616 
28617 	/*
28618 	 * Write protect mode sense failed; not all disks
28619 	 * understand this query. Return FALSE assuming that
28620 	 * these devices are not writable.
28621 	 */
28622 	if (device_specific & WRITE_PROTECT) {
28623 		rval = TRUE;
28624 	}
28625 
28626 err_exit:
28627 	kmem_free(sense, hdrlen);
28628 	return (rval);
28629 }
28630 
28631 /*
28632  *    Function: sr_volume_ctrl()
28633  *
28634  * Description: This routine is the driver entry point for handling CD-ROM
28635  *		audio output volume ioctl requests. (CDROMVOLCTRL)
28636  *
28637  *   Arguments: dev	- the device 'dev_t'
28638  *		data	- pointer to user audio volume control structure
28639  *		flag	- this argument is a pass through to ddi_copyxxx()
28640  *			  directly from the mode argument of ioctl().
28641  *
28642  * Return Code: the code returned by sd_send_scsi_cmd()
28643  *		EFAULT if ddi_copyxxx() fails
28644  *		ENXIO if fail ddi_get_soft_state
28645  *		EINVAL if data pointer is NULL
28646  *
28647  */
28648 
28649 static int
28650 sr_volume_ctrl(dev_t dev, caddr_t data, int flag)
28651 {
28652 	struct sd_lun		*un;
28653 	struct cdrom_volctrl    volume;
28654 	struct cdrom_volctrl    *vol = &volume;
28655 	uchar_t			*sense_page;
28656 	uchar_t			*select_page;
28657 	uchar_t			*sense;
28658 	uchar_t			*select;
28659 	int			sense_buflen;
28660 	int			select_buflen;
28661 	int			rval;
28662 	sd_ssc_t		*ssc;
28663 
28664 	if (data == NULL) {
28665 		return (EINVAL);
28666 	}
28667 
28668 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28669 	    (un->un_state == SD_STATE_OFFLINE)) {
28670 		return (ENXIO);
28671 	}
28672 
28673 	if (ddi_copyin(data, vol, sizeof (struct cdrom_volctrl), flag)) {
28674 		return (EFAULT);
28675 	}
28676 
28677 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
28678 		struct mode_header_grp2		*sense_mhp;
28679 		struct mode_header_grp2		*select_mhp;
28680 		int				bd_len;
28681 
28682 		sense_buflen = MODE_PARAM_LENGTH_GRP2 + MODEPAGE_AUDIO_CTRL_LEN;
28683 		select_buflen = MODE_HEADER_LENGTH_GRP2 +
28684 		    MODEPAGE_AUDIO_CTRL_LEN;
28685 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
28686 		select = kmem_zalloc(select_buflen, KM_SLEEP);
28687 		ssc = sd_ssc_init(un);
28688 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense,
28689 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
28690 		    SD_PATH_STANDARD);
28691 		sd_ssc_fini(ssc);
28692 
28693 		if (rval != 0) {
28694 			SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
28695 			    "sr_volume_ctrl: Mode Sense Failed\n");
28696 			kmem_free(sense, sense_buflen);
28697 			kmem_free(select, select_buflen);
28698 			return (rval);
28699 		}
28700 		sense_mhp = (struct mode_header_grp2 *)sense;
28701 		select_mhp = (struct mode_header_grp2 *)select;
28702 		bd_len = (sense_mhp->bdesc_length_hi << 8) |
28703 		    sense_mhp->bdesc_length_lo;
28704 		if (bd_len > MODE_BLK_DESC_LENGTH) {
28705 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28706 			    "sr_volume_ctrl: Mode Sense returned invalid "
28707 			    "block descriptor length\n");
28708 			kmem_free(sense, sense_buflen);
28709 			kmem_free(select, select_buflen);
28710 			return (EIO);
28711 		}
28712 		sense_page = (uchar_t *)
28713 		    (sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
28714 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH_GRP2);
28715 		select_mhp->length_msb = 0;
28716 		select_mhp->length_lsb = 0;
28717 		select_mhp->bdesc_length_hi = 0;
28718 		select_mhp->bdesc_length_lo = 0;
28719 	} else {
28720 		struct mode_header		*sense_mhp, *select_mhp;
28721 
28722 		sense_buflen = MODE_PARAM_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
28723 		select_buflen = MODE_HEADER_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
28724 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
28725 		select = kmem_zalloc(select_buflen, KM_SLEEP);
28726 		ssc = sd_ssc_init(un);
28727 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense,
28728 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
28729 		    SD_PATH_STANDARD);
28730 		sd_ssc_fini(ssc);
28731 
28732 		if (rval != 0) {
28733 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28734 			    "sr_volume_ctrl: Mode Sense Failed\n");
28735 			kmem_free(sense, sense_buflen);
28736 			kmem_free(select, select_buflen);
28737 			return (rval);
28738 		}
28739 		sense_mhp  = (struct mode_header *)sense;
28740 		select_mhp = (struct mode_header *)select;
28741 		if (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH) {
28742 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28743 			    "sr_volume_ctrl: Mode Sense returned invalid "
28744 			    "block descriptor length\n");
28745 			kmem_free(sense, sense_buflen);
28746 			kmem_free(select, select_buflen);
28747 			return (EIO);
28748 		}
28749 		sense_page = (uchar_t *)
28750 		    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
28751 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH);
28752 		select_mhp->length = 0;
28753 		select_mhp->bdesc_length = 0;
28754 	}
28755 	/*
28756 	 * Note: An audio control data structure could be created and overlayed
28757 	 * on the following in place of the array indexing method implemented.
28758 	 */
28759 
28760 	/* Build the select data for the user volume data */
28761 	select_page[0] = MODEPAGE_AUDIO_CTRL;
28762 	select_page[1] = 0xE;
28763 	/* Set the immediate bit */
28764 	select_page[2] = 0x04;
28765 	/* Zero out reserved fields */
28766 	select_page[3] = 0x00;
28767 	select_page[4] = 0x00;
28768 	/* Return sense data for fields not to be modified */
28769 	select_page[5] = sense_page[5];
28770 	select_page[6] = sense_page[6];
28771 	select_page[7] = sense_page[7];
28772 	/* Set the user specified volume levels for channel 0 and 1 */
28773 	select_page[8] = 0x01;
28774 	select_page[9] = vol->channel0;
28775 	select_page[10] = 0x02;
28776 	select_page[11] = vol->channel1;
28777 	/* Channel 2 and 3 are currently unsupported so return the sense data */
28778 	select_page[12] = sense_page[12];
28779 	select_page[13] = sense_page[13];
28780 	select_page[14] = sense_page[14];
28781 	select_page[15] = sense_page[15];
28782 
28783 	ssc = sd_ssc_init(un);
28784 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
28785 		rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP1, select,
28786 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
28787 	} else {
28788 		rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select,
28789 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
28790 	}
28791 	sd_ssc_fini(ssc);
28792 
28793 	kmem_free(sense, sense_buflen);
28794 	kmem_free(select, select_buflen);
28795 	return (rval);
28796 }
28797 
28798 
28799 /*
28800  *    Function: sr_read_sony_session_offset()
28801  *
28802  * Description: This routine is the driver entry point for handling CD-ROM
28803  *		ioctl requests for session offset information. (CDROMREADOFFSET)
28804  *		The address of the first track in the last session of a
28805  *		multi-session CD-ROM is returned
28806  *
28807  *		Note: This routine uses a vendor specific key value in the
28808  *		command control field without implementing any vendor check here
28809  *		or in the ioctl routine.
28810  *
28811  *   Arguments: dev	- the device 'dev_t'
28812  *		data	- pointer to an int to hold the requested address
28813  *		flag	- this argument is a pass through to ddi_copyxxx()
28814  *			  directly from the mode argument of ioctl().
28815  *
28816  * Return Code: the code returned by sd_send_scsi_cmd()
28817  *		EFAULT if ddi_copyxxx() fails
28818  *		ENXIO if fail ddi_get_soft_state
28819  *		EINVAL if data pointer is NULL
28820  */
28821 
28822 static int
28823 sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag)
28824 {
28825 	struct sd_lun		*un;
28826 	struct uscsi_cmd	*com;
28827 	caddr_t			buffer;
28828 	char			cdb[CDB_GROUP1];
28829 	int			session_offset = 0;
28830 	int			rval;
28831 
28832 	if (data == NULL) {
28833 		return (EINVAL);
28834 	}
28835 
28836 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28837 	    (un->un_state == SD_STATE_OFFLINE)) {
28838 		return (ENXIO);
28839 	}
28840 
28841 	buffer = kmem_zalloc((size_t)SONY_SESSION_OFFSET_LEN, KM_SLEEP);
28842 	bzero(cdb, CDB_GROUP1);
28843 	cdb[0] = SCMD_READ_TOC;
28844 	/*
28845 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
28846 	 * (4 byte TOC response header + 8 byte response data)
28847 	 */
28848 	cdb[8] = SONY_SESSION_OFFSET_LEN;
28849 	/* Byte 9 is the control byte. A vendor specific value is used */
28850 	cdb[9] = SONY_SESSION_OFFSET_KEY;
28851 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28852 	com->uscsi_cdb = cdb;
28853 	com->uscsi_cdblen = CDB_GROUP1;
28854 	com->uscsi_bufaddr = buffer;
28855 	com->uscsi_buflen = SONY_SESSION_OFFSET_LEN;
28856 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28857 
28858 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
28859 	    SD_PATH_STANDARD);
28860 	if (rval != 0) {
28861 		kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
28862 		kmem_free(com, sizeof (*com));
28863 		return (rval);
28864 	}
28865 	if (buffer[1] == SONY_SESSION_OFFSET_VALID) {
28866 		session_offset =
28867 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
28868 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
28869 		/*
28870 		 * Offset returned offset in current lbasize block's. Convert to
28871 		 * 2k block's to return to the user
28872 		 */
28873 		if (un->un_tgt_blocksize == CDROM_BLK_512) {
28874 			session_offset >>= 2;
28875 		} else if (un->un_tgt_blocksize == CDROM_BLK_1024) {
28876 			session_offset >>= 1;
28877 		}
28878 	}
28879 
28880 	if (ddi_copyout(&session_offset, data, sizeof (int), flag) != 0) {
28881 		rval = EFAULT;
28882 	}
28883 
28884 	kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
28885 	kmem_free(com, sizeof (*com));
28886 	return (rval);
28887 }
28888 
28889 
28890 /*
28891  *    Function: sd_wm_cache_constructor()
28892  *
28893  * Description: Cache Constructor for the wmap cache for the read/modify/write
28894  * 		devices.
28895  *
28896  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
28897  *		un	- sd_lun structure for the device.
28898  *		flag	- the km flags passed to constructor
28899  *
28900  * Return Code: 0 on success.
28901  *		-1 on failure.
28902  */
28903 
28904 /*ARGSUSED*/
28905 static int
28906 sd_wm_cache_constructor(void *wm, void *un, int flags)
28907 {
28908 	bzero(wm, sizeof (struct sd_w_map));
28909 	cv_init(&((struct sd_w_map *)wm)->wm_avail, NULL, CV_DRIVER, NULL);
28910 	return (0);
28911 }
28912 
28913 
28914 /*
28915  *    Function: sd_wm_cache_destructor()
28916  *
28917  * Description: Cache destructor for the wmap cache for the read/modify/write
28918  * 		devices.
28919  *
28920  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
28921  *		un	- sd_lun structure for the device.
28922  */
28923 /*ARGSUSED*/
28924 static void
28925 sd_wm_cache_destructor(void *wm, void *un)
28926 {
28927 	cv_destroy(&((struct sd_w_map *)wm)->wm_avail);
28928 }
28929 
28930 
28931 /*
28932  *    Function: sd_range_lock()
28933  *
28934  * Description: Lock the range of blocks specified as parameter to ensure
28935  *		that read, modify write is atomic and no other i/o writes
28936  *		to the same location. The range is specified in terms
28937  *		of start and end blocks. Block numbers are the actual
28938  *		media block numbers and not system.
28939  *
28940  *   Arguments: un	- sd_lun structure for the device.
28941  *		startb - The starting block number
28942  *		endb - The end block number
28943  *		typ - type of i/o - simple/read_modify_write
28944  *
28945  * Return Code: wm  - pointer to the wmap structure.
28946  *
28947  *     Context: This routine can sleep.
28948  */
28949 
28950 static struct sd_w_map *
28951 sd_range_lock(struct sd_lun *un, daddr_t startb, daddr_t endb, ushort_t typ)
28952 {
28953 	struct sd_w_map *wmp = NULL;
28954 	struct sd_w_map *sl_wmp = NULL;
28955 	struct sd_w_map *tmp_wmp;
28956 	wm_state state = SD_WM_CHK_LIST;
28957 
28958 
28959 	ASSERT(un != NULL);
28960 	ASSERT(!mutex_owned(SD_MUTEX(un)));
28961 
28962 	mutex_enter(SD_MUTEX(un));
28963 
28964 	while (state != SD_WM_DONE) {
28965 
28966 		switch (state) {
28967 		case SD_WM_CHK_LIST:
28968 			/*
28969 			 * This is the starting state. Check the wmap list
28970 			 * to see if the range is currently available.
28971 			 */
28972 			if (!(typ & SD_WTYPE_RMW) && !(un->un_rmw_count)) {
28973 				/*
28974 				 * If this is a simple write and no rmw
28975 				 * i/o is pending then try to lock the
28976 				 * range as the range should be available.
28977 				 */
28978 				state = SD_WM_LOCK_RANGE;
28979 			} else {
28980 				tmp_wmp = sd_get_range(un, startb, endb);
28981 				if (tmp_wmp != NULL) {
28982 					if ((wmp != NULL) && ONLIST(un, wmp)) {
28983 						/*
28984 						 * Should not keep onlist wmps
28985 						 * while waiting this macro
28986 						 * will also do wmp = NULL;
28987 						 */
28988 						FREE_ONLIST_WMAP(un, wmp);
28989 					}
28990 					/*
28991 					 * sl_wmp is the wmap on which wait
28992 					 * is done, since the tmp_wmp points
28993 					 * to the inuse wmap, set sl_wmp to
28994 					 * tmp_wmp and change the state to sleep
28995 					 */
28996 					sl_wmp = tmp_wmp;
28997 					state = SD_WM_WAIT_MAP;
28998 				} else {
28999 					state = SD_WM_LOCK_RANGE;
29000 				}
29001 
29002 			}
29003 			break;
29004 
29005 		case SD_WM_LOCK_RANGE:
29006 			ASSERT(un->un_wm_cache);
29007 			/*
29008 			 * The range need to be locked, try to get a wmap.
29009 			 * First attempt it with NO_SLEEP, want to avoid a sleep
29010 			 * if possible as we will have to release the sd mutex
29011 			 * if we have to sleep.
29012 			 */
29013 			if (wmp == NULL)
29014 				wmp = kmem_cache_alloc(un->un_wm_cache,
29015 				    KM_NOSLEEP);
29016 			if (wmp == NULL) {
29017 				mutex_exit(SD_MUTEX(un));
29018 				_NOTE(DATA_READABLE_WITHOUT_LOCK
29019 				    (sd_lun::un_wm_cache))
29020 				wmp = kmem_cache_alloc(un->un_wm_cache,
29021 				    KM_SLEEP);
29022 				mutex_enter(SD_MUTEX(un));
29023 				/*
29024 				 * we released the mutex so recheck and go to
29025 				 * check list state.
29026 				 */
29027 				state = SD_WM_CHK_LIST;
29028 			} else {
29029 				/*
29030 				 * We exit out of state machine since we
29031 				 * have the wmap. Do the housekeeping first.
29032 				 * place the wmap on the wmap list if it is not
29033 				 * on it already and then set the state to done.
29034 				 */
29035 				wmp->wm_start = startb;
29036 				wmp->wm_end = endb;
29037 				wmp->wm_flags = typ | SD_WM_BUSY;
29038 				if (typ & SD_WTYPE_RMW) {
29039 					un->un_rmw_count++;
29040 				}
29041 				/*
29042 				 * If not already on the list then link
29043 				 */
29044 				if (!ONLIST(un, wmp)) {
29045 					wmp->wm_next = un->un_wm;
29046 					wmp->wm_prev = NULL;
29047 					if (wmp->wm_next)
29048 						wmp->wm_next->wm_prev = wmp;
29049 					un->un_wm = wmp;
29050 				}
29051 				state = SD_WM_DONE;
29052 			}
29053 			break;
29054 
29055 		case SD_WM_WAIT_MAP:
29056 			ASSERT(sl_wmp->wm_flags & SD_WM_BUSY);
29057 			/*
29058 			 * Wait is done on sl_wmp, which is set in the
29059 			 * check_list state.
29060 			 */
29061 			sl_wmp->wm_wanted_count++;
29062 			cv_wait(&sl_wmp->wm_avail, SD_MUTEX(un));
29063 			sl_wmp->wm_wanted_count--;
29064 			/*
29065 			 * We can reuse the memory from the completed sl_wmp
29066 			 * lock range for our new lock, but only if noone is
29067 			 * waiting for it.
29068 			 */
29069 			ASSERT(!(sl_wmp->wm_flags & SD_WM_BUSY));
29070 			if (sl_wmp->wm_wanted_count == 0) {
29071 				if (wmp != NULL)
29072 					CHK_N_FREEWMP(un, wmp);
29073 				wmp = sl_wmp;
29074 			}
29075 			sl_wmp = NULL;
29076 			/*
29077 			 * After waking up, need to recheck for availability of
29078 			 * range.
29079 			 */
29080 			state = SD_WM_CHK_LIST;
29081 			break;
29082 
29083 		default:
29084 			panic("sd_range_lock: "
29085 			    "Unknown state %d in sd_range_lock", state);
29086 			/*NOTREACHED*/
29087 		} /* switch(state) */
29088 
29089 	} /* while(state != SD_WM_DONE) */
29090 
29091 	mutex_exit(SD_MUTEX(un));
29092 
29093 	ASSERT(wmp != NULL);
29094 
29095 	return (wmp);
29096 }
29097 
29098 
29099 /*
29100  *    Function: sd_get_range()
29101  *
29102  * Description: Find if there any overlapping I/O to this one
29103  *		Returns the write-map of 1st such I/O, NULL otherwise.
29104  *
29105  *   Arguments: un	- sd_lun structure for the device.
29106  *		startb - The starting block number
29107  *		endb - The end block number
29108  *
29109  * Return Code: wm  - pointer to the wmap structure.
29110  */
29111 
29112 static struct sd_w_map *
29113 sd_get_range(struct sd_lun *un, daddr_t startb, daddr_t endb)
29114 {
29115 	struct sd_w_map *wmp;
29116 
29117 	ASSERT(un != NULL);
29118 
29119 	for (wmp = un->un_wm; wmp != NULL; wmp = wmp->wm_next) {
29120 		if (!(wmp->wm_flags & SD_WM_BUSY)) {
29121 			continue;
29122 		}
29123 		if ((startb >= wmp->wm_start) && (startb <= wmp->wm_end)) {
29124 			break;
29125 		}
29126 		if ((endb >= wmp->wm_start) && (endb <= wmp->wm_end)) {
29127 			break;
29128 		}
29129 	}
29130 
29131 	return (wmp);
29132 }
29133 
29134 
29135 /*
29136  *    Function: sd_free_inlist_wmap()
29137  *
29138  * Description: Unlink and free a write map struct.
29139  *
29140  *   Arguments: un      - sd_lun structure for the device.
29141  *		wmp	- sd_w_map which needs to be unlinked.
29142  */
29143 
29144 static void
29145 sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp)
29146 {
29147 	ASSERT(un != NULL);
29148 
29149 	if (un->un_wm == wmp) {
29150 		un->un_wm = wmp->wm_next;
29151 	} else {
29152 		wmp->wm_prev->wm_next = wmp->wm_next;
29153 	}
29154 
29155 	if (wmp->wm_next) {
29156 		wmp->wm_next->wm_prev = wmp->wm_prev;
29157 	}
29158 
29159 	wmp->wm_next = wmp->wm_prev = NULL;
29160 
29161 	kmem_cache_free(un->un_wm_cache, wmp);
29162 }
29163 
29164 
29165 /*
29166  *    Function: sd_range_unlock()
29167  *
29168  * Description: Unlock the range locked by wm.
29169  *		Free write map if nobody else is waiting on it.
29170  *
29171  *   Arguments: un      - sd_lun structure for the device.
29172  *              wmp     - sd_w_map which needs to be unlinked.
29173  */
29174 
29175 static void
29176 sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm)
29177 {
29178 	ASSERT(un != NULL);
29179 	ASSERT(wm != NULL);
29180 	ASSERT(!mutex_owned(SD_MUTEX(un)));
29181 
29182 	mutex_enter(SD_MUTEX(un));
29183 
29184 	if (wm->wm_flags & SD_WTYPE_RMW) {
29185 		un->un_rmw_count--;
29186 	}
29187 
29188 	if (wm->wm_wanted_count) {
29189 		wm->wm_flags = 0;
29190 		/*
29191 		 * Broadcast that the wmap is available now.
29192 		 */
29193 		cv_broadcast(&wm->wm_avail);
29194 	} else {
29195 		/*
29196 		 * If no one is waiting on the map, it should be free'ed.
29197 		 */
29198 		sd_free_inlist_wmap(un, wm);
29199 	}
29200 
29201 	mutex_exit(SD_MUTEX(un));
29202 }
29203 
29204 
29205 /*
29206  *    Function: sd_read_modify_write_task
29207  *
29208  * Description: Called from a taskq thread to initiate the write phase of
29209  *		a read-modify-write request.  This is used for targets where
29210  *		un->un_sys_blocksize != un->un_tgt_blocksize.
29211  *
29212  *   Arguments: arg - a pointer to the buf(9S) struct for the write command.
29213  *
29214  *     Context: Called under taskq thread context.
29215  */
29216 
29217 static void
29218 sd_read_modify_write_task(void *arg)
29219 {
29220 	struct sd_mapblocksize_info	*bsp;
29221 	struct buf	*bp;
29222 	struct sd_xbuf	*xp;
29223 	struct sd_lun	*un;
29224 
29225 	bp = arg;	/* The bp is given in arg */
29226 	ASSERT(bp != NULL);
29227 
29228 	/* Get the pointer to the layer-private data struct */
29229 	xp = SD_GET_XBUF(bp);
29230 	ASSERT(xp != NULL);
29231 	bsp = xp->xb_private;
29232 	ASSERT(bsp != NULL);
29233 
29234 	un = SD_GET_UN(bp);
29235 	ASSERT(un != NULL);
29236 	ASSERT(!mutex_owned(SD_MUTEX(un)));
29237 
29238 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
29239 	    "sd_read_modify_write_task: entry: buf:0x%p\n", bp);
29240 
29241 	/*
29242 	 * This is the write phase of a read-modify-write request, called
29243 	 * under the context of a taskq thread in response to the completion
29244 	 * of the read portion of the rmw request completing under interrupt
29245 	 * context. The write request must be sent from here down the iostart
29246 	 * chain as if it were being sent from sd_mapblocksize_iostart(), so
29247 	 * we use the layer index saved in the layer-private data area.
29248 	 */
29249 	SD_NEXT_IOSTART(bsp->mbs_layer_index, un, bp);
29250 
29251 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
29252 	    "sd_read_modify_write_task: exit: buf:0x%p\n", bp);
29253 }
29254 
29255 
29256 /*
29257  *    Function: sddump_do_read_of_rmw()
29258  *
29259  * Description: This routine will be called from sddump, If sddump is called
29260  *		with an I/O which not aligned on device blocksize boundary
29261  *		then the write has to be converted to read-modify-write.
29262  *		Do the read part here in order to keep sddump simple.
29263  *		Note - That the sd_mutex is held across the call to this
29264  *		routine.
29265  *
29266  *   Arguments: un	- sd_lun
29267  *		blkno	- block number in terms of media block size.
29268  *		nblk	- number of blocks.
29269  *		bpp	- pointer to pointer to the buf structure. On return
29270  *			from this function, *bpp points to the valid buffer
29271  *			to which the write has to be done.
29272  *
29273  * Return Code: 0 for success or errno-type return code
29274  */
29275 
29276 static int
29277 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
29278 	struct buf **bpp)
29279 {
29280 	int err;
29281 	int i;
29282 	int rval;
29283 	struct buf *bp;
29284 	struct scsi_pkt *pkt = NULL;
29285 	uint32_t target_blocksize;
29286 
29287 	ASSERT(un != NULL);
29288 	ASSERT(mutex_owned(SD_MUTEX(un)));
29289 
29290 	target_blocksize = un->un_tgt_blocksize;
29291 
29292 	mutex_exit(SD_MUTEX(un));
29293 
29294 	bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), (struct buf *)NULL,
29295 	    (size_t)(nblk * target_blocksize), B_READ, NULL_FUNC, NULL);
29296 	if (bp == NULL) {
29297 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29298 		    "no resources for dumping; giving up");
29299 		err = ENOMEM;
29300 		goto done;
29301 	}
29302 
29303 	rval = sd_setup_rw_pkt(un, &pkt, bp, 0, NULL_FUNC, NULL,
29304 	    blkno, nblk);
29305 	if (rval != 0) {
29306 		scsi_free_consistent_buf(bp);
29307 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29308 		    "no resources for dumping; giving up");
29309 		err = ENOMEM;
29310 		goto done;
29311 	}
29312 
29313 	pkt->pkt_flags |= FLAG_NOINTR;
29314 
29315 	err = EIO;
29316 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
29317 
29318 		/*
29319 		 * Scsi_poll returns 0 (success) if the command completes and
29320 		 * the status block is STATUS_GOOD.  We should only check
29321 		 * errors if this condition is not true.  Even then we should
29322 		 * send our own request sense packet only if we have a check
29323 		 * condition and auto request sense has not been performed by
29324 		 * the hba.
29325 		 */
29326 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending read\n");
29327 
29328 		if ((sd_scsi_poll(un, pkt) == 0) && (pkt->pkt_resid == 0)) {
29329 			err = 0;
29330 			break;
29331 		}
29332 
29333 		/*
29334 		 * Check CMD_DEV_GONE 1st, give up if device is gone,
29335 		 * no need to read RQS data.
29336 		 */
29337 		if (pkt->pkt_reason == CMD_DEV_GONE) {
29338 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29339 			    "Error while dumping state with rmw..."
29340 			    "Device is gone\n");
29341 			break;
29342 		}
29343 
29344 		if (SD_GET_PKT_STATUS(pkt) == STATUS_CHECK) {
29345 			SD_INFO(SD_LOG_DUMP, un,
29346 			    "sddump: read failed with CHECK, try # %d\n", i);
29347 			if (((pkt->pkt_state & STATE_ARQ_DONE) == 0)) {
29348 				(void) sd_send_polled_RQS(un);
29349 			}
29350 
29351 			continue;
29352 		}
29353 
29354 		if (SD_GET_PKT_STATUS(pkt) == STATUS_BUSY) {
29355 			int reset_retval = 0;
29356 
29357 			SD_INFO(SD_LOG_DUMP, un,
29358 			    "sddump: read failed with BUSY, try # %d\n", i);
29359 
29360 			if (un->un_f_lun_reset_enabled == TRUE) {
29361 				reset_retval = scsi_reset(SD_ADDRESS(un),
29362 				    RESET_LUN);
29363 			}
29364 			if (reset_retval == 0) {
29365 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
29366 			}
29367 			(void) sd_send_polled_RQS(un);
29368 
29369 		} else {
29370 			SD_INFO(SD_LOG_DUMP, un,
29371 			    "sddump: read failed with 0x%x, try # %d\n",
29372 			    SD_GET_PKT_STATUS(pkt), i);
29373 			mutex_enter(SD_MUTEX(un));
29374 			sd_reset_target(un, pkt);
29375 			mutex_exit(SD_MUTEX(un));
29376 		}
29377 
29378 		/*
29379 		 * If we are not getting anywhere with lun/target resets,
29380 		 * let's reset the bus.
29381 		 */
29382 		if (i > SD_NDUMP_RETRIES/2) {
29383 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
29384 			(void) sd_send_polled_RQS(un);
29385 		}
29386 
29387 	}
29388 	scsi_destroy_pkt(pkt);
29389 
29390 	if (err != 0) {
29391 		scsi_free_consistent_buf(bp);
29392 		*bpp = NULL;
29393 	} else {
29394 		*bpp = bp;
29395 	}
29396 
29397 done:
29398 	mutex_enter(SD_MUTEX(un));
29399 	return (err);
29400 }
29401 
29402 
29403 /*
29404  *    Function: sd_failfast_flushq
29405  *
29406  * Description: Take all bp's on the wait queue that have B_FAILFAST set
29407  *		in b_flags and move them onto the failfast queue, then kick
29408  *		off a thread to return all bp's on the failfast queue to
29409  *		their owners with an error set.
29410  *
29411  *   Arguments: un - pointer to the soft state struct for the instance.
29412  *
29413  *     Context: may execute in interrupt context.
29414  */
29415 
29416 static void
29417 sd_failfast_flushq(struct sd_lun *un)
29418 {
29419 	struct buf *bp;
29420 	struct buf *next_waitq_bp;
29421 	struct buf *prev_waitq_bp = NULL;
29422 
29423 	ASSERT(un != NULL);
29424 	ASSERT(mutex_owned(SD_MUTEX(un)));
29425 	ASSERT(un->un_failfast_state == SD_FAILFAST_ACTIVE);
29426 	ASSERT(un->un_failfast_bp == NULL);
29427 
29428 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
29429 	    "sd_failfast_flushq: entry: un:0x%p\n", un);
29430 
29431 	/*
29432 	 * Check if we should flush all bufs when entering failfast state, or
29433 	 * just those with B_FAILFAST set.
29434 	 */
29435 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) {
29436 		/*
29437 		 * Move *all* bp's on the wait queue to the failfast flush
29438 		 * queue, including those that do NOT have B_FAILFAST set.
29439 		 */
29440 		if (un->un_failfast_headp == NULL) {
29441 			ASSERT(un->un_failfast_tailp == NULL);
29442 			un->un_failfast_headp = un->un_waitq_headp;
29443 		} else {
29444 			ASSERT(un->un_failfast_tailp != NULL);
29445 			un->un_failfast_tailp->av_forw = un->un_waitq_headp;
29446 		}
29447 
29448 		un->un_failfast_tailp = un->un_waitq_tailp;
29449 
29450 		/* update kstat for each bp moved out of the waitq */
29451 		for (bp = un->un_waitq_headp; bp != NULL; bp = bp->av_forw) {
29452 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
29453 		}
29454 
29455 		/* empty the waitq */
29456 		un->un_waitq_headp = un->un_waitq_tailp = NULL;
29457 
29458 	} else {
29459 		/*
29460 		 * Go thru the wait queue, pick off all entries with
29461 		 * B_FAILFAST set, and move these onto the failfast queue.
29462 		 */
29463 		for (bp = un->un_waitq_headp; bp != NULL; bp = next_waitq_bp) {
29464 			/*
29465 			 * Save the pointer to the next bp on the wait queue,
29466 			 * so we get to it on the next iteration of this loop.
29467 			 */
29468 			next_waitq_bp = bp->av_forw;
29469 
29470 			/*
29471 			 * If this bp from the wait queue does NOT have
29472 			 * B_FAILFAST set, just move on to the next element
29473 			 * in the wait queue. Note, this is the only place
29474 			 * where it is correct to set prev_waitq_bp.
29475 			 */
29476 			if ((bp->b_flags & B_FAILFAST) == 0) {
29477 				prev_waitq_bp = bp;
29478 				continue;
29479 			}
29480 
29481 			/*
29482 			 * Remove the bp from the wait queue.
29483 			 */
29484 			if (bp == un->un_waitq_headp) {
29485 				/* The bp is the first element of the waitq. */
29486 				un->un_waitq_headp = next_waitq_bp;
29487 				if (un->un_waitq_headp == NULL) {
29488 					/* The wait queue is now empty */
29489 					un->un_waitq_tailp = NULL;
29490 				}
29491 			} else {
29492 				/*
29493 				 * The bp is either somewhere in the middle
29494 				 * or at the end of the wait queue.
29495 				 */
29496 				ASSERT(un->un_waitq_headp != NULL);
29497 				ASSERT(prev_waitq_bp != NULL);
29498 				ASSERT((prev_waitq_bp->b_flags & B_FAILFAST)
29499 				    == 0);
29500 				if (bp == un->un_waitq_tailp) {
29501 					/* bp is the last entry on the waitq. */
29502 					ASSERT(next_waitq_bp == NULL);
29503 					un->un_waitq_tailp = prev_waitq_bp;
29504 				}
29505 				prev_waitq_bp->av_forw = next_waitq_bp;
29506 			}
29507 			bp->av_forw = NULL;
29508 
29509 			/*
29510 			 * update kstat since the bp is moved out of
29511 			 * the waitq
29512 			 */
29513 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
29514 
29515 			/*
29516 			 * Now put the bp onto the failfast queue.
29517 			 */
29518 			if (un->un_failfast_headp == NULL) {
29519 				/* failfast queue is currently empty */
29520 				ASSERT(un->un_failfast_tailp == NULL);
29521 				un->un_failfast_headp =
29522 				    un->un_failfast_tailp = bp;
29523 			} else {
29524 				/* Add the bp to the end of the failfast q */
29525 				ASSERT(un->un_failfast_tailp != NULL);
29526 				ASSERT(un->un_failfast_tailp->b_flags &
29527 				    B_FAILFAST);
29528 				un->un_failfast_tailp->av_forw = bp;
29529 				un->un_failfast_tailp = bp;
29530 			}
29531 		}
29532 	}
29533 
29534 	/*
29535 	 * Now return all bp's on the failfast queue to their owners.
29536 	 */
29537 	while ((bp = un->un_failfast_headp) != NULL) {
29538 
29539 		un->un_failfast_headp = bp->av_forw;
29540 		if (un->un_failfast_headp == NULL) {
29541 			un->un_failfast_tailp = NULL;
29542 		}
29543 
29544 		/*
29545 		 * We want to return the bp with a failure error code, but
29546 		 * we do not want a call to sd_start_cmds() to occur here,
29547 		 * so use sd_return_failed_command_no_restart() instead of
29548 		 * sd_return_failed_command().
29549 		 */
29550 		sd_return_failed_command_no_restart(un, bp, EIO);
29551 	}
29552 
29553 	/* Flush the xbuf queues if required. */
29554 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_QUEUES) {
29555 		ddi_xbuf_flushq(un->un_xbuf_attr, sd_failfast_flushq_callback);
29556 	}
29557 
29558 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
29559 	    "sd_failfast_flushq: exit: un:0x%p\n", un);
29560 }
29561 
29562 
29563 /*
29564  *    Function: sd_failfast_flushq_callback
29565  *
29566  * Description: Return TRUE if the given bp meets the criteria for failfast
29567  *		flushing. Used with ddi_xbuf_flushq(9F).
29568  *
29569  *   Arguments: bp - ptr to buf struct to be examined.
29570  *
29571  *     Context: Any
29572  */
29573 
29574 static int
29575 sd_failfast_flushq_callback(struct buf *bp)
29576 {
29577 	/*
29578 	 * Return TRUE if (1) we want to flush ALL bufs when the failfast
29579 	 * state is entered; OR (2) the given bp has B_FAILFAST set.
29580 	 */
29581 	return (((sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) ||
29582 	    (bp->b_flags & B_FAILFAST)) ? TRUE : FALSE);
29583 }
29584 
29585 
29586 
29587 /*
29588  * Function: sd_setup_next_xfer
29589  *
29590  * Description: Prepare next I/O operation using DMA_PARTIAL
29591  *
29592  */
29593 
29594 static int
29595 sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
29596     struct scsi_pkt *pkt, struct sd_xbuf *xp)
29597 {
29598 	ssize_t	num_blks_not_xfered;
29599 	daddr_t	strt_blk_num;
29600 	ssize_t	bytes_not_xfered;
29601 	int	rval;
29602 
29603 	ASSERT(pkt->pkt_resid == 0);
29604 
29605 	/*
29606 	 * Calculate next block number and amount to be transferred.
29607 	 *
29608 	 * How much data NOT transfered to the HBA yet.
29609 	 */
29610 	bytes_not_xfered = xp->xb_dma_resid;
29611 
29612 	/*
29613 	 * figure how many blocks NOT transfered to the HBA yet.
29614 	 */
29615 	num_blks_not_xfered = SD_BYTES2TGTBLOCKS(un, bytes_not_xfered);
29616 
29617 	/*
29618 	 * set starting block number to the end of what WAS transfered.
29619 	 */
29620 	strt_blk_num = xp->xb_blkno +
29621 	    SD_BYTES2TGTBLOCKS(un, bp->b_bcount - bytes_not_xfered);
29622 
29623 	/*
29624 	 * Move pkt to the next portion of the xfer.  sd_setup_next_rw_pkt
29625 	 * will call scsi_initpkt with NULL_FUNC so we do not have to release
29626 	 * the disk mutex here.
29627 	 */
29628 	rval = sd_setup_next_rw_pkt(un, pkt, bp,
29629 	    strt_blk_num, num_blks_not_xfered);
29630 
29631 	if (rval == 0) {
29632 
29633 		/*
29634 		 * Success.
29635 		 *
29636 		 * Adjust things if there are still more blocks to be
29637 		 * transfered.
29638 		 */
29639 		xp->xb_dma_resid = pkt->pkt_resid;
29640 		pkt->pkt_resid = 0;
29641 
29642 		return (1);
29643 	}
29644 
29645 	/*
29646 	 * There's really only one possible return value from
29647 	 * sd_setup_next_rw_pkt which occurs when scsi_init_pkt
29648 	 * returns NULL.
29649 	 */
29650 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
29651 
29652 	bp->b_resid = bp->b_bcount;
29653 	bp->b_flags |= B_ERROR;
29654 
29655 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29656 	    "Error setting up next portion of DMA transfer\n");
29657 
29658 	return (0);
29659 }
29660 
29661 /*
29662  *    Function: sd_panic_for_res_conflict
29663  *
29664  * Description: Call panic with a string formatted with "Reservation Conflict"
29665  *		and a human readable identifier indicating the SD instance
29666  *		that experienced the reservation conflict.
29667  *
29668  *   Arguments: un - pointer to the soft state struct for the instance.
29669  *
29670  *     Context: may execute in interrupt context.
29671  */
29672 
29673 #define	SD_RESV_CONFLICT_FMT_LEN 40
29674 void
29675 sd_panic_for_res_conflict(struct sd_lun *un)
29676 {
29677 	char panic_str[SD_RESV_CONFLICT_FMT_LEN+MAXPATHLEN];
29678 	char path_str[MAXPATHLEN];
29679 
29680 	(void) snprintf(panic_str, sizeof (panic_str),
29681 	    "Reservation Conflict\nDisk: %s",
29682 	    ddi_pathname(SD_DEVINFO(un), path_str));
29683 
29684 	panic(panic_str);
29685 }
29686 
29687 /*
29688  * Note: The following sd_faultinjection_ioctl( ) routines implement
29689  * driver support for handling fault injection for error analysis
29690  * causing faults in multiple layers of the driver.
29691  *
29692  */
29693 
29694 #ifdef SD_FAULT_INJECTION
29695 static uint_t   sd_fault_injection_on = 0;
29696 
29697 /*
29698  *    Function: sd_faultinjection_ioctl()
29699  *
29700  * Description: This routine is the driver entry point for handling
29701  *              faultinjection ioctls to inject errors into the
29702  *              layer model
29703  *
29704  *   Arguments: cmd	- the ioctl cmd received
29705  *		arg	- the arguments from user and returns
29706  */
29707 
29708 static void
29709 sd_faultinjection_ioctl(int cmd, intptr_t arg,  struct sd_lun *un) {
29710 
29711 	uint_t i = 0;
29712 	uint_t rval;
29713 
29714 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl: entry\n");
29715 
29716 	mutex_enter(SD_MUTEX(un));
29717 
29718 	switch (cmd) {
29719 	case SDIOCRUN:
29720 		/* Allow pushed faults to be injected */
29721 		SD_INFO(SD_LOG_SDTEST, un,
29722 		    "sd_faultinjection_ioctl: Injecting Fault Run\n");
29723 
29724 		sd_fault_injection_on = 1;
29725 
29726 		SD_INFO(SD_LOG_IOERR, un,
29727 		    "sd_faultinjection_ioctl: run finished\n");
29728 		break;
29729 
29730 	case SDIOCSTART:
29731 		/* Start Injection Session */
29732 		SD_INFO(SD_LOG_SDTEST, un,
29733 		    "sd_faultinjection_ioctl: Injecting Fault Start\n");
29734 
29735 		sd_fault_injection_on = 0;
29736 		un->sd_injection_mask = 0xFFFFFFFF;
29737 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
29738 			un->sd_fi_fifo_pkt[i] = NULL;
29739 			un->sd_fi_fifo_xb[i] = NULL;
29740 			un->sd_fi_fifo_un[i] = NULL;
29741 			un->sd_fi_fifo_arq[i] = NULL;
29742 		}
29743 		un->sd_fi_fifo_start = 0;
29744 		un->sd_fi_fifo_end = 0;
29745 
29746 		mutex_enter(&(un->un_fi_mutex));
29747 		un->sd_fi_log[0] = '\0';
29748 		un->sd_fi_buf_len = 0;
29749 		mutex_exit(&(un->un_fi_mutex));
29750 
29751 		SD_INFO(SD_LOG_IOERR, un,
29752 		    "sd_faultinjection_ioctl: start finished\n");
29753 		break;
29754 
29755 	case SDIOCSTOP:
29756 		/* Stop Injection Session */
29757 		SD_INFO(SD_LOG_SDTEST, un,
29758 		    "sd_faultinjection_ioctl: Injecting Fault Stop\n");
29759 		sd_fault_injection_on = 0;
29760 		un->sd_injection_mask = 0x0;
29761 
29762 		/* Empty stray or unuseds structs from fifo */
29763 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
29764 			if (un->sd_fi_fifo_pkt[i] != NULL) {
29765 				kmem_free(un->sd_fi_fifo_pkt[i],
29766 				    sizeof (struct sd_fi_pkt));
29767 			}
29768 			if (un->sd_fi_fifo_xb[i] != NULL) {
29769 				kmem_free(un->sd_fi_fifo_xb[i],
29770 				    sizeof (struct sd_fi_xb));
29771 			}
29772 			if (un->sd_fi_fifo_un[i] != NULL) {
29773 				kmem_free(un->sd_fi_fifo_un[i],
29774 				    sizeof (struct sd_fi_un));
29775 			}
29776 			if (un->sd_fi_fifo_arq[i] != NULL) {
29777 				kmem_free(un->sd_fi_fifo_arq[i],
29778 				    sizeof (struct sd_fi_arq));
29779 			}
29780 			un->sd_fi_fifo_pkt[i] = NULL;
29781 			un->sd_fi_fifo_un[i] = NULL;
29782 			un->sd_fi_fifo_xb[i] = NULL;
29783 			un->sd_fi_fifo_arq[i] = NULL;
29784 		}
29785 		un->sd_fi_fifo_start = 0;
29786 		un->sd_fi_fifo_end = 0;
29787 
29788 		SD_INFO(SD_LOG_IOERR, un,
29789 		    "sd_faultinjection_ioctl: stop finished\n");
29790 		break;
29791 
29792 	case SDIOCINSERTPKT:
29793 		/* Store a packet struct to be pushed onto fifo */
29794 		SD_INFO(SD_LOG_SDTEST, un,
29795 		    "sd_faultinjection_ioctl: Injecting Fault Insert Pkt\n");
29796 
29797 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
29798 
29799 		sd_fault_injection_on = 0;
29800 
29801 		/* No more that SD_FI_MAX_ERROR allowed in Queue */
29802 		if (un->sd_fi_fifo_pkt[i] != NULL) {
29803 			kmem_free(un->sd_fi_fifo_pkt[i],
29804 			    sizeof (struct sd_fi_pkt));
29805 		}
29806 		if (arg != NULL) {
29807 			un->sd_fi_fifo_pkt[i] =
29808 			    kmem_alloc(sizeof (struct sd_fi_pkt), KM_NOSLEEP);
29809 			if (un->sd_fi_fifo_pkt[i] == NULL) {
29810 				/* Alloc failed don't store anything */
29811 				break;
29812 			}
29813 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_pkt[i],
29814 			    sizeof (struct sd_fi_pkt), 0);
29815 			if (rval == -1) {
29816 				kmem_free(un->sd_fi_fifo_pkt[i],
29817 				    sizeof (struct sd_fi_pkt));
29818 				un->sd_fi_fifo_pkt[i] = NULL;
29819 			}
29820 		} else {
29821 			SD_INFO(SD_LOG_IOERR, un,
29822 			    "sd_faultinjection_ioctl: pkt null\n");
29823 		}
29824 		break;
29825 
29826 	case SDIOCINSERTXB:
29827 		/* Store a xb struct to be pushed onto fifo */
29828 		SD_INFO(SD_LOG_SDTEST, un,
29829 		    "sd_faultinjection_ioctl: Injecting Fault Insert XB\n");
29830 
29831 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
29832 
29833 		sd_fault_injection_on = 0;
29834 
29835 		if (un->sd_fi_fifo_xb[i] != NULL) {
29836 			kmem_free(un->sd_fi_fifo_xb[i],
29837 			    sizeof (struct sd_fi_xb));
29838 			un->sd_fi_fifo_xb[i] = NULL;
29839 		}
29840 		if (arg != NULL) {
29841 			un->sd_fi_fifo_xb[i] =
29842 			    kmem_alloc(sizeof (struct sd_fi_xb), KM_NOSLEEP);
29843 			if (un->sd_fi_fifo_xb[i] == NULL) {
29844 				/* Alloc failed don't store anything */
29845 				break;
29846 			}
29847 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_xb[i],
29848 			    sizeof (struct sd_fi_xb), 0);
29849 
29850 			if (rval == -1) {
29851 				kmem_free(un->sd_fi_fifo_xb[i],
29852 				    sizeof (struct sd_fi_xb));
29853 				un->sd_fi_fifo_xb[i] = NULL;
29854 			}
29855 		} else {
29856 			SD_INFO(SD_LOG_IOERR, un,
29857 			    "sd_faultinjection_ioctl: xb null\n");
29858 		}
29859 		break;
29860 
29861 	case SDIOCINSERTUN:
29862 		/* Store a un struct to be pushed onto fifo */
29863 		SD_INFO(SD_LOG_SDTEST, un,
29864 		    "sd_faultinjection_ioctl: Injecting Fault Insert UN\n");
29865 
29866 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
29867 
29868 		sd_fault_injection_on = 0;
29869 
29870 		if (un->sd_fi_fifo_un[i] != NULL) {
29871 			kmem_free(un->sd_fi_fifo_un[i],
29872 			    sizeof (struct sd_fi_un));
29873 			un->sd_fi_fifo_un[i] = NULL;
29874 		}
29875 		if (arg != NULL) {
29876 			un->sd_fi_fifo_un[i] =
29877 			    kmem_alloc(sizeof (struct sd_fi_un), KM_NOSLEEP);
29878 			if (un->sd_fi_fifo_un[i] == NULL) {
29879 				/* Alloc failed don't store anything */
29880 				break;
29881 			}
29882 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_un[i],
29883 			    sizeof (struct sd_fi_un), 0);
29884 			if (rval == -1) {
29885 				kmem_free(un->sd_fi_fifo_un[i],
29886 				    sizeof (struct sd_fi_un));
29887 				un->sd_fi_fifo_un[i] = NULL;
29888 			}
29889 
29890 		} else {
29891 			SD_INFO(SD_LOG_IOERR, un,
29892 			    "sd_faultinjection_ioctl: un null\n");
29893 		}
29894 
29895 		break;
29896 
29897 	case SDIOCINSERTARQ:
29898 		/* Store a arq struct to be pushed onto fifo */
29899 		SD_INFO(SD_LOG_SDTEST, un,
29900 		    "sd_faultinjection_ioctl: Injecting Fault Insert ARQ\n");
29901 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
29902 
29903 		sd_fault_injection_on = 0;
29904 
29905 		if (un->sd_fi_fifo_arq[i] != NULL) {
29906 			kmem_free(un->sd_fi_fifo_arq[i],
29907 			    sizeof (struct sd_fi_arq));
29908 			un->sd_fi_fifo_arq[i] = NULL;
29909 		}
29910 		if (arg != NULL) {
29911 			un->sd_fi_fifo_arq[i] =
29912 			    kmem_alloc(sizeof (struct sd_fi_arq), KM_NOSLEEP);
29913 			if (un->sd_fi_fifo_arq[i] == NULL) {
29914 				/* Alloc failed don't store anything */
29915 				break;
29916 			}
29917 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_arq[i],
29918 			    sizeof (struct sd_fi_arq), 0);
29919 			if (rval == -1) {
29920 				kmem_free(un->sd_fi_fifo_arq[i],
29921 				    sizeof (struct sd_fi_arq));
29922 				un->sd_fi_fifo_arq[i] = NULL;
29923 			}
29924 
29925 		} else {
29926 			SD_INFO(SD_LOG_IOERR, un,
29927 			    "sd_faultinjection_ioctl: arq null\n");
29928 		}
29929 
29930 		break;
29931 
29932 	case SDIOCPUSH:
29933 		/* Push stored xb, pkt, un, and arq onto fifo */
29934 		sd_fault_injection_on = 0;
29935 
29936 		if (arg != NULL) {
29937 			rval = ddi_copyin((void *)arg, &i, sizeof (uint_t), 0);
29938 			if (rval != -1 &&
29939 			    un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
29940 				un->sd_fi_fifo_end += i;
29941 			}
29942 		} else {
29943 			SD_INFO(SD_LOG_IOERR, un,
29944 			    "sd_faultinjection_ioctl: push arg null\n");
29945 			if (un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
29946 				un->sd_fi_fifo_end++;
29947 			}
29948 		}
29949 		SD_INFO(SD_LOG_IOERR, un,
29950 		    "sd_faultinjection_ioctl: push to end=%d\n",
29951 		    un->sd_fi_fifo_end);
29952 		break;
29953 
29954 	case SDIOCRETRIEVE:
29955 		/* Return buffer of log from Injection session */
29956 		SD_INFO(SD_LOG_SDTEST, un,
29957 		    "sd_faultinjection_ioctl: Injecting Fault Retreive");
29958 
29959 		sd_fault_injection_on = 0;
29960 
29961 		mutex_enter(&(un->un_fi_mutex));
29962 		rval = ddi_copyout(un->sd_fi_log, (void *)arg,
29963 		    un->sd_fi_buf_len+1, 0);
29964 		mutex_exit(&(un->un_fi_mutex));
29965 
29966 		if (rval == -1) {
29967 			/*
29968 			 * arg is possibly invalid setting
29969 			 * it to NULL for return
29970 			 */
29971 			arg = NULL;
29972 		}
29973 		break;
29974 	}
29975 
29976 	mutex_exit(SD_MUTEX(un));
29977 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl:"
29978 			    " exit\n");
29979 }
29980 
29981 
29982 /*
29983  *    Function: sd_injection_log()
29984  *
29985  * Description: This routine adds buff to the already existing injection log
29986  *              for retrieval via faultinjection_ioctl for use in fault
29987  *              detection and recovery
29988  *
29989  *   Arguments: buf - the string to add to the log
29990  */
29991 
29992 static void
29993 sd_injection_log(char *buf, struct sd_lun *un)
29994 {
29995 	uint_t len;
29996 
29997 	ASSERT(un != NULL);
29998 	ASSERT(buf != NULL);
29999 
30000 	mutex_enter(&(un->un_fi_mutex));
30001 
30002 	len = min(strlen(buf), 255);
30003 	/* Add logged value to Injection log to be returned later */
30004 	if (len + un->sd_fi_buf_len < SD_FI_MAX_BUF) {
30005 		uint_t	offset = strlen((char *)un->sd_fi_log);
30006 		char *destp = (char *)un->sd_fi_log + offset;
30007 		int i;
30008 		for (i = 0; i < len; i++) {
30009 			*destp++ = *buf++;
30010 		}
30011 		un->sd_fi_buf_len += len;
30012 		un->sd_fi_log[un->sd_fi_buf_len] = '\0';
30013 	}
30014 
30015 	mutex_exit(&(un->un_fi_mutex));
30016 }
30017 
30018 
30019 /*
30020  *    Function: sd_faultinjection()
30021  *
30022  * Description: This routine takes the pkt and changes its
30023  *		content based on error injection scenerio.
30024  *
30025  *   Arguments: pktp	- packet to be changed
30026  */
30027 
30028 static void
30029 sd_faultinjection(struct scsi_pkt *pktp)
30030 {
30031 	uint_t i;
30032 	struct sd_fi_pkt *fi_pkt;
30033 	struct sd_fi_xb *fi_xb;
30034 	struct sd_fi_un *fi_un;
30035 	struct sd_fi_arq *fi_arq;
30036 	struct buf *bp;
30037 	struct sd_xbuf *xb;
30038 	struct sd_lun *un;
30039 
30040 	ASSERT(pktp != NULL);
30041 
30042 	/* pull bp xb and un from pktp */
30043 	bp = (struct buf *)pktp->pkt_private;
30044 	xb = SD_GET_XBUF(bp);
30045 	un = SD_GET_UN(bp);
30046 
30047 	ASSERT(un != NULL);
30048 
30049 	mutex_enter(SD_MUTEX(un));
30050 
30051 	SD_TRACE(SD_LOG_SDTEST, un,
30052 	    "sd_faultinjection: entry Injection from sdintr\n");
30053 
30054 	/* if injection is off return */
30055 	if (sd_fault_injection_on == 0 ||
30056 	    un->sd_fi_fifo_start == un->sd_fi_fifo_end) {
30057 		mutex_exit(SD_MUTEX(un));
30058 		return;
30059 	}
30060 
30061 	SD_INFO(SD_LOG_SDTEST, un,
30062 	    "sd_faultinjection: is working for copying\n");
30063 
30064 	/* take next set off fifo */
30065 	i = un->sd_fi_fifo_start % SD_FI_MAX_ERROR;
30066 
30067 	fi_pkt = un->sd_fi_fifo_pkt[i];
30068 	fi_xb = un->sd_fi_fifo_xb[i];
30069 	fi_un = un->sd_fi_fifo_un[i];
30070 	fi_arq = un->sd_fi_fifo_arq[i];
30071 
30072 
30073 	/* set variables accordingly */
30074 	/* set pkt if it was on fifo */
30075 	if (fi_pkt != NULL) {
30076 		SD_CONDSET(pktp, pkt, pkt_flags, "pkt_flags");
30077 		SD_CONDSET(*pktp, pkt, pkt_scbp, "pkt_scbp");
30078 		if (fi_pkt->pkt_cdbp != 0xff)
30079 			SD_CONDSET(*pktp, pkt, pkt_cdbp, "pkt_cdbp");
30080 		SD_CONDSET(pktp, pkt, pkt_state, "pkt_state");
30081 		SD_CONDSET(pktp, pkt, pkt_statistics, "pkt_statistics");
30082 		SD_CONDSET(pktp, pkt, pkt_reason, "pkt_reason");
30083 
30084 	}
30085 	/* set xb if it was on fifo */
30086 	if (fi_xb != NULL) {
30087 		SD_CONDSET(xb, xb, xb_blkno, "xb_blkno");
30088 		SD_CONDSET(xb, xb, xb_dma_resid, "xb_dma_resid");
30089 		if (fi_xb->xb_retry_count != 0)
30090 			SD_CONDSET(xb, xb, xb_retry_count, "xb_retry_count");
30091 		SD_CONDSET(xb, xb, xb_victim_retry_count,
30092 		    "xb_victim_retry_count");
30093 		SD_CONDSET(xb, xb, xb_sense_status, "xb_sense_status");
30094 		SD_CONDSET(xb, xb, xb_sense_state, "xb_sense_state");
30095 		SD_CONDSET(xb, xb, xb_sense_resid, "xb_sense_resid");
30096 
30097 		/* copy in block data from sense */
30098 		/*
30099 		 * if (fi_xb->xb_sense_data[0] != -1) {
30100 		 *	bcopy(fi_xb->xb_sense_data, xb->xb_sense_data,
30101 		 *	SENSE_LENGTH);
30102 		 * }
30103 		 */
30104 		bcopy(fi_xb->xb_sense_data, xb->xb_sense_data, SENSE_LENGTH);
30105 
30106 		/* copy in extended sense codes */
30107 		SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data),
30108 		    xb, es_code, "es_code");
30109 		SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data),
30110 		    xb, es_key, "es_key");
30111 		SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data),
30112 		    xb, es_add_code, "es_add_code");
30113 		SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data),
30114 		    xb, es_qual_code, "es_qual_code");
30115 		struct scsi_extended_sense *esp;
30116 		esp = (struct scsi_extended_sense *)xb->xb_sense_data;
30117 		esp->es_class = CLASS_EXTENDED_SENSE;
30118 	}
30119 
30120 	/* set un if it was on fifo */
30121 	if (fi_un != NULL) {
30122 		SD_CONDSET(un->un_sd->sd_inq, un, inq_rmb, "inq_rmb");
30123 		SD_CONDSET(un, un, un_ctype, "un_ctype");
30124 		SD_CONDSET(un, un, un_reset_retry_count,
30125 		    "un_reset_retry_count");
30126 		SD_CONDSET(un, un, un_reservation_type, "un_reservation_type");
30127 		SD_CONDSET(un, un, un_resvd_status, "un_resvd_status");
30128 		SD_CONDSET(un, un, un_f_arq_enabled, "un_f_arq_enabled");
30129 		SD_CONDSET(un, un, un_f_allow_bus_device_reset,
30130 		    "un_f_allow_bus_device_reset");
30131 		SD_CONDSET(un, un, un_f_opt_queueing, "un_f_opt_queueing");
30132 
30133 	}
30134 
30135 	/* copy in auto request sense if it was on fifo */
30136 	if (fi_arq != NULL) {
30137 		bcopy(fi_arq, pktp->pkt_scbp, sizeof (struct sd_fi_arq));
30138 	}
30139 
30140 	/* free structs */
30141 	if (un->sd_fi_fifo_pkt[i] != NULL) {
30142 		kmem_free(un->sd_fi_fifo_pkt[i], sizeof (struct sd_fi_pkt));
30143 	}
30144 	if (un->sd_fi_fifo_xb[i] != NULL) {
30145 		kmem_free(un->sd_fi_fifo_xb[i], sizeof (struct sd_fi_xb));
30146 	}
30147 	if (un->sd_fi_fifo_un[i] != NULL) {
30148 		kmem_free(un->sd_fi_fifo_un[i], sizeof (struct sd_fi_un));
30149 	}
30150 	if (un->sd_fi_fifo_arq[i] != NULL) {
30151 		kmem_free(un->sd_fi_fifo_arq[i], sizeof (struct sd_fi_arq));
30152 	}
30153 
30154 	/*
30155 	 * kmem_free does not gurantee to set to NULL
30156 	 * since we uses these to determine if we set
30157 	 * values or not lets confirm they are always
30158 	 * NULL after free
30159 	 */
30160 	un->sd_fi_fifo_pkt[i] = NULL;
30161 	un->sd_fi_fifo_un[i] = NULL;
30162 	un->sd_fi_fifo_xb[i] = NULL;
30163 	un->sd_fi_fifo_arq[i] = NULL;
30164 
30165 	un->sd_fi_fifo_start++;
30166 
30167 	mutex_exit(SD_MUTEX(un));
30168 
30169 	SD_INFO(SD_LOG_SDTEST, un, "sd_faultinjection: exit\n");
30170 }
30171 
30172 #endif /* SD_FAULT_INJECTION */
30173 
30174 /*
30175  * This routine is invoked in sd_unit_attach(). Before calling it, the
30176  * properties in conf file should be processed already, and "hotpluggable"
30177  * property was processed also.
30178  *
30179  * The sd driver distinguishes 3 different type of devices: removable media,
30180  * non-removable media, and hotpluggable. Below the differences are defined:
30181  *
30182  * 1. Device ID
30183  *
30184  *     The device ID of a device is used to identify this device. Refer to
30185  *     ddi_devid_register(9F).
30186  *
30187  *     For a non-removable media disk device which can provide 0x80 or 0x83
30188  *     VPD page (refer to INQUIRY command of SCSI SPC specification), a unique
30189  *     device ID is created to identify this device. For other non-removable
30190  *     media devices, a default device ID is created only if this device has
30191  *     at least 2 alter cylinders. Otherwise, this device has no devid.
30192  *
30193  *     -------------------------------------------------------
30194  *     removable media   hotpluggable  | Can Have Device ID
30195  *     -------------------------------------------------------
30196  *         false             false     |     Yes
30197  *         false             true      |     Yes
30198  *         true                x       |     No
30199  *     ------------------------------------------------------
30200  *
30201  *
30202  * 2. SCSI group 4 commands
30203  *
30204  *     In SCSI specs, only some commands in group 4 command set can use
30205  *     8-byte addresses that can be used to access >2TB storage spaces.
30206  *     Other commands have no such capability. Without supporting group4,
30207  *     it is impossible to make full use of storage spaces of a disk with
30208  *     capacity larger than 2TB.
30209  *
30210  *     -----------------------------------------------
30211  *     removable media   hotpluggable   LP64  |  Group
30212  *     -----------------------------------------------
30213  *           false          false       false |   1
30214  *           false          false       true  |   4
30215  *           false          true        false |   1
30216  *           false          true        true  |   4
30217  *           true             x           x   |   5
30218  *     -----------------------------------------------
30219  *
30220  *
30221  * 3. Check for VTOC Label
30222  *
30223  *     If a direct-access disk has no EFI label, sd will check if it has a
30224  *     valid VTOC label. Now, sd also does that check for removable media
30225  *     and hotpluggable devices.
30226  *
30227  *     --------------------------------------------------------------
30228  *     Direct-Access   removable media    hotpluggable |  Check Label
30229  *     -------------------------------------------------------------
30230  *         false          false           false        |   No
30231  *         false          false           true         |   No
30232  *         false          true            false        |   Yes
30233  *         false          true            true         |   Yes
30234  *         true            x                x          |   Yes
30235  *     --------------------------------------------------------------
30236  *
30237  *
30238  * 4. Building default VTOC label
30239  *
30240  *     As section 3 says, sd checks if some kinds of devices have VTOC label.
30241  *     If those devices have no valid VTOC label, sd(7d) will attempt to
30242  *     create default VTOC for them. Currently sd creates default VTOC label
30243  *     for all devices on x86 platform (VTOC_16), but only for removable
30244  *     media devices on SPARC (VTOC_8).
30245  *
30246  *     -----------------------------------------------------------
30247  *       removable media hotpluggable platform   |   Default Label
30248  *     -----------------------------------------------------------
30249  *             false          false    sparc     |     No
30250  *             false          true      x86      |     Yes
30251  *             false          true     sparc     |     Yes
30252  *             true             x        x       |     Yes
30253  *     ----------------------------------------------------------
30254  *
30255  *
30256  * 5. Supported blocksizes of target devices
30257  *
30258  *     Sd supports non-512-byte blocksize for removable media devices only.
30259  *     For other devices, only 512-byte blocksize is supported. This may be
30260  *     changed in near future because some RAID devices require non-512-byte
30261  *     blocksize
30262  *
30263  *     -----------------------------------------------------------
30264  *     removable media    hotpluggable    | non-512-byte blocksize
30265  *     -----------------------------------------------------------
30266  *           false          false         |   No
30267  *           false          true          |   No
30268  *           true             x           |   Yes
30269  *     -----------------------------------------------------------
30270  *
30271  *
30272  * 6. Automatic mount & unmount
30273  *
30274  *     Sd(7d) driver provides DKIOCREMOVABLE ioctl. This ioctl is used to query
30275  *     if a device is removable media device. It return 1 for removable media
30276  *     devices, and 0 for others.
30277  *
30278  *     The automatic mounting subsystem should distinguish between the types
30279  *     of devices and apply automounting policies to each.
30280  *
30281  *
30282  * 7. fdisk partition management
30283  *
30284  *     Fdisk is traditional partition method on x86 platform. Sd(7d) driver
30285  *     just supports fdisk partitions on x86 platform. On sparc platform, sd
30286  *     doesn't support fdisk partitions at all. Note: pcfs(7fs) can recognize
30287  *     fdisk partitions on both x86 and SPARC platform.
30288  *
30289  *     -----------------------------------------------------------
30290  *       platform   removable media  USB/1394  |  fdisk supported
30291  *     -----------------------------------------------------------
30292  *        x86         X               X        |       true
30293  *     ------------------------------------------------------------
30294  *        sparc       X               X        |       false
30295  *     ------------------------------------------------------------
30296  *
30297  *
30298  * 8. MBOOT/MBR
30299  *
30300  *     Although sd(7d) doesn't support fdisk on SPARC platform, it does support
30301  *     read/write mboot for removable media devices on sparc platform.
30302  *
30303  *     -----------------------------------------------------------
30304  *       platform   removable media  USB/1394  |  mboot supported
30305  *     -----------------------------------------------------------
30306  *        x86         X               X        |       true
30307  *     ------------------------------------------------------------
30308  *        sparc      false           false     |       false
30309  *        sparc      false           true      |       true
30310  *        sparc      true            false     |       true
30311  *        sparc      true            true      |       true
30312  *     ------------------------------------------------------------
30313  *
30314  *
30315  * 9.  error handling during opening device
30316  *
30317  *     If failed to open a disk device, an errno is returned. For some kinds
30318  *     of errors, different errno is returned depending on if this device is
30319  *     a removable media device. This brings USB/1394 hard disks in line with
30320  *     expected hard disk behavior. It is not expected that this breaks any
30321  *     application.
30322  *
30323  *     ------------------------------------------------------
30324  *       removable media    hotpluggable   |  errno
30325  *     ------------------------------------------------------
30326  *             false          false        |   EIO
30327  *             false          true         |   EIO
30328  *             true             x          |   ENXIO
30329  *     ------------------------------------------------------
30330  *
30331  *
30332  * 11. ioctls: DKIOCEJECT, CDROMEJECT
30333  *
30334  *     These IOCTLs are applicable only to removable media devices.
30335  *
30336  *     -----------------------------------------------------------
30337  *       removable media    hotpluggable   |DKIOCEJECT, CDROMEJECT
30338  *     -----------------------------------------------------------
30339  *             false          false        |     No
30340  *             false          true         |     No
30341  *             true            x           |     Yes
30342  *     -----------------------------------------------------------
30343  *
30344  *
30345  * 12. Kstats for partitions
30346  *
30347  *     sd creates partition kstat for non-removable media devices. USB and
30348  *     Firewire hard disks now have partition kstats
30349  *
30350  *      ------------------------------------------------------
30351  *       removable media    hotpluggable   |   kstat
30352  *      ------------------------------------------------------
30353  *             false          false        |    Yes
30354  *             false          true         |    Yes
30355  *             true             x          |    No
30356  *       ------------------------------------------------------
30357  *
30358  *
30359  * 13. Removable media & hotpluggable properties
30360  *
30361  *     Sd driver creates a "removable-media" property for removable media
30362  *     devices. Parent nexus drivers create a "hotpluggable" property if
30363  *     it supports hotplugging.
30364  *
30365  *     ---------------------------------------------------------------------
30366  *     removable media   hotpluggable |  "removable-media"   " hotpluggable"
30367  *     ---------------------------------------------------------------------
30368  *       false            false       |    No                   No
30369  *       false            true        |    No                   Yes
30370  *       true             false       |    Yes                  No
30371  *       true             true        |    Yes                  Yes
30372  *     ---------------------------------------------------------------------
30373  *
30374  *
30375  * 14. Power Management
30376  *
30377  *     sd only power manages removable media devices or devices that support
30378  *     LOG_SENSE or have a "pm-capable" property  (PSARC/2002/250)
30379  *
30380  *     A parent nexus that supports hotplugging can also set "pm-capable"
30381  *     if the disk can be power managed.
30382  *
30383  *     ------------------------------------------------------------
30384  *       removable media hotpluggable pm-capable  |   power manage
30385  *     ------------------------------------------------------------
30386  *             false          false     false     |     No
30387  *             false          false     true      |     Yes
30388  *             false          true      false     |     No
30389  *             false          true      true      |     Yes
30390  *             true             x        x        |     Yes
30391  *     ------------------------------------------------------------
30392  *
30393  *      USB and firewire hard disks can now be power managed independently
30394  *      of the framebuffer
30395  *
30396  *
30397  * 15. Support for USB disks with capacity larger than 1TB
30398  *
30399  *     Currently, sd doesn't permit a fixed disk device with capacity
30400  *     larger than 1TB to be used in a 32-bit operating system environment.
30401  *     However, sd doesn't do that for removable media devices. Instead, it
30402  *     assumes that removable media devices cannot have a capacity larger
30403  *     than 1TB. Therefore, using those devices on 32-bit system is partially
30404  *     supported, which can cause some unexpected results.
30405  *
30406  *     ---------------------------------------------------------------------
30407  *       removable media    USB/1394 | Capacity > 1TB |   Used in 32-bit env
30408  *     ---------------------------------------------------------------------
30409  *             false          false  |   true         |     no
30410  *             false          true   |   true         |     no
30411  *             true           false  |   true         |     Yes
30412  *             true           true   |   true         |     Yes
30413  *     ---------------------------------------------------------------------
30414  *
30415  *
30416  * 16. Check write-protection at open time
30417  *
30418  *     When a removable media device is being opened for writing without NDELAY
30419  *     flag, sd will check if this device is writable. If attempting to open
30420  *     without NDELAY flag a write-protected device, this operation will abort.
30421  *
30422  *     ------------------------------------------------------------
30423  *       removable media    USB/1394   |   WP Check
30424  *     ------------------------------------------------------------
30425  *             false          false    |     No
30426  *             false          true     |     No
30427  *             true           false    |     Yes
30428  *             true           true     |     Yes
30429  *     ------------------------------------------------------------
30430  *
30431  *
30432  * 17. syslog when corrupted VTOC is encountered
30433  *
30434  *      Currently, if an invalid VTOC is encountered, sd only print syslog
30435  *      for fixed SCSI disks.
30436  *     ------------------------------------------------------------
30437  *       removable media    USB/1394   |   print syslog
30438  *     ------------------------------------------------------------
30439  *             false          false    |     Yes
30440  *             false          true     |     No
30441  *             true           false    |     No
30442  *             true           true     |     No
30443  *     ------------------------------------------------------------
30444  */
30445 static void
30446 sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi)
30447 {
30448 	int	pm_cap;
30449 
30450 	ASSERT(un->un_sd);
30451 	ASSERT(un->un_sd->sd_inq);
30452 
30453 	/*
30454 	 * Enable SYNC CACHE support for all devices.
30455 	 */
30456 	un->un_f_sync_cache_supported = TRUE;
30457 
30458 	/*
30459 	 * Set the sync cache required flag to false.
30460 	 * This would ensure that there is no SYNC CACHE
30461 	 * sent when there are no writes
30462 	 */
30463 	un->un_f_sync_cache_required = FALSE;
30464 
30465 	if (un->un_sd->sd_inq->inq_rmb) {
30466 		/*
30467 		 * The media of this device is removable. And for this kind
30468 		 * of devices, it is possible to change medium after opening
30469 		 * devices. Thus we should support this operation.
30470 		 */
30471 		un->un_f_has_removable_media = TRUE;
30472 
30473 		/*
30474 		 * support non-512-byte blocksize of removable media devices
30475 		 */
30476 		un->un_f_non_devbsize_supported = TRUE;
30477 
30478 		/*
30479 		 * Assume that all removable media devices support DOOR_LOCK
30480 		 */
30481 		un->un_f_doorlock_supported = TRUE;
30482 
30483 		/*
30484 		 * For a removable media device, it is possible to be opened
30485 		 * with NDELAY flag when there is no media in drive, in this
30486 		 * case we don't care if device is writable. But if without
30487 		 * NDELAY flag, we need to check if media is write-protected.
30488 		 */
30489 		un->un_f_chk_wp_open = TRUE;
30490 
30491 		/*
30492 		 * need to start a SCSI watch thread to monitor media state,
30493 		 * when media is being inserted or ejected, notify syseventd.
30494 		 */
30495 		un->un_f_monitor_media_state = TRUE;
30496 
30497 		/*
30498 		 * Some devices don't support START_STOP_UNIT command.
30499 		 * Therefore, we'd better check if a device supports it
30500 		 * before sending it.
30501 		 */
30502 		un->un_f_check_start_stop = TRUE;
30503 
30504 		/*
30505 		 * support eject media ioctl:
30506 		 *		FDEJECT, DKIOCEJECT, CDROMEJECT
30507 		 */
30508 		un->un_f_eject_media_supported = TRUE;
30509 
30510 		/*
30511 		 * Because many removable-media devices don't support
30512 		 * LOG_SENSE, we couldn't use this command to check if
30513 		 * a removable media device support power-management.
30514 		 * We assume that they support power-management via
30515 		 * START_STOP_UNIT command and can be spun up and down
30516 		 * without limitations.
30517 		 */
30518 		un->un_f_pm_supported = TRUE;
30519 
30520 		/*
30521 		 * Need to create a zero length (Boolean) property
30522 		 * removable-media for the removable media devices.
30523 		 * Note that the return value of the property is not being
30524 		 * checked, since if unable to create the property
30525 		 * then do not want the attach to fail altogether. Consistent
30526 		 * with other property creation in attach.
30527 		 */
30528 		(void) ddi_prop_create(DDI_DEV_T_NONE, devi,
30529 		    DDI_PROP_CANSLEEP, "removable-media", NULL, 0);
30530 
30531 	} else {
30532 		/*
30533 		 * create device ID for device
30534 		 */
30535 		un->un_f_devid_supported = TRUE;
30536 
30537 		/*
30538 		 * Spin up non-removable-media devices once it is attached
30539 		 */
30540 		un->un_f_attach_spinup = TRUE;
30541 
30542 		/*
30543 		 * According to SCSI specification, Sense data has two kinds of
30544 		 * format: fixed format, and descriptor format. At present, we
30545 		 * don't support descriptor format sense data for removable
30546 		 * media.
30547 		 */
30548 		if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) {
30549 			un->un_f_descr_format_supported = TRUE;
30550 		}
30551 
30552 		/*
30553 		 * kstats are created only for non-removable media devices.
30554 		 *
30555 		 * Set this in sd.conf to 0 in order to disable kstats.  The
30556 		 * default is 1, so they are enabled by default.
30557 		 */
30558 		un->un_f_pkstats_enabled = (ddi_prop_get_int(DDI_DEV_T_ANY,
30559 		    SD_DEVINFO(un), DDI_PROP_DONTPASS,
30560 		    "enable-partition-kstats", 1));
30561 
30562 		/*
30563 		 * Check if HBA has set the "pm-capable" property.
30564 		 * If "pm-capable" exists and is non-zero then we can
30565 		 * power manage the device without checking the start/stop
30566 		 * cycle count log sense page.
30567 		 *
30568 		 * If "pm-capable" exists and is set to be false (0),
30569 		 * then we should not power manage the device.
30570 		 *
30571 		 * If "pm-capable" doesn't exist then pm_cap will
30572 		 * be set to SD_PM_CAPABLE_UNDEFINED (-1).  In this case,
30573 		 * sd will check the start/stop cycle count log sense page
30574 		 * and power manage the device if the cycle count limit has
30575 		 * not been exceeded.
30576 		 */
30577 		pm_cap = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
30578 		    DDI_PROP_DONTPASS, "pm-capable", SD_PM_CAPABLE_UNDEFINED);
30579 		if (SD_PM_CAPABLE_IS_UNDEFINED(pm_cap)) {
30580 			un->un_f_log_sense_supported = TRUE;
30581 			if (!un->un_f_power_condition_disabled &&
30582 			    SD_INQUIRY(un)->inq_ansi == 6) {
30583 				un->un_f_power_condition_supported = TRUE;
30584 			}
30585 		} else {
30586 			/*
30587 			 * pm-capable property exists.
30588 			 *
30589 			 * Convert "TRUE" values for pm_cap to
30590 			 * SD_PM_CAPABLE_IS_TRUE to make it easier to check
30591 			 * later. "TRUE" values are any values defined in
30592 			 * inquiry.h.
30593 			 */
30594 			if (SD_PM_CAPABLE_IS_FALSE(pm_cap)) {
30595 				un->un_f_log_sense_supported = FALSE;
30596 			} else {
30597 				/* SD_PM_CAPABLE_IS_TRUE case */
30598 				un->un_f_pm_supported = TRUE;
30599 				if (!un->un_f_power_condition_disabled &&
30600 				    SD_PM_CAPABLE_IS_SPC_4(pm_cap)) {
30601 					un->un_f_power_condition_supported =
30602 					    TRUE;
30603 				}
30604 				if (SD_PM_CAP_LOG_SUPPORTED(pm_cap)) {
30605 					un->un_f_log_sense_supported = TRUE;
30606 					un->un_f_pm_log_sense_smart =
30607 					    SD_PM_CAP_SMART_LOG(pm_cap);
30608 				}
30609 			}
30610 
30611 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
30612 			    "sd_unit_attach: un:0x%p pm-capable "
30613 			    "property set to %d.\n", un, un->un_f_pm_supported);
30614 		}
30615 	}
30616 
30617 	if (un->un_f_is_hotpluggable) {
30618 
30619 		/*
30620 		 * Have to watch hotpluggable devices as well, since
30621 		 * that's the only way for userland applications to
30622 		 * detect hot removal while device is busy/mounted.
30623 		 */
30624 		un->un_f_monitor_media_state = TRUE;
30625 
30626 		un->un_f_check_start_stop = TRUE;
30627 
30628 	}
30629 }
30630 
30631 /*
30632  * sd_tg_rdwr:
30633  * Provides rdwr access for cmlb via sd_tgops. The start_block is
30634  * in sys block size, req_length in bytes.
30635  *
30636  */
30637 static int
30638 sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr,
30639     diskaddr_t start_block, size_t reqlength, void *tg_cookie)
30640 {
30641 	struct sd_lun *un;
30642 	int path_flag = (int)(uintptr_t)tg_cookie;
30643 	char *dkl = NULL;
30644 	diskaddr_t real_addr = start_block;
30645 	diskaddr_t first_byte, end_block;
30646 
30647 	size_t	buffer_size = reqlength;
30648 	int rval = 0;
30649 	diskaddr_t	cap;
30650 	uint32_t	lbasize;
30651 	sd_ssc_t	*ssc;
30652 
30653 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
30654 	if (un == NULL)
30655 		return (ENXIO);
30656 
30657 	if (cmd != TG_READ && cmd != TG_WRITE)
30658 		return (EINVAL);
30659 
30660 	ssc = sd_ssc_init(un);
30661 	mutex_enter(SD_MUTEX(un));
30662 	if (un->un_f_tgt_blocksize_is_valid == FALSE) {
30663 		mutex_exit(SD_MUTEX(un));
30664 		rval = sd_send_scsi_READ_CAPACITY(ssc, (uint64_t *)&cap,
30665 		    &lbasize, path_flag);
30666 		if (rval != 0)
30667 			goto done1;
30668 		mutex_enter(SD_MUTEX(un));
30669 		sd_update_block_info(un, lbasize, cap);
30670 		if ((un->un_f_tgt_blocksize_is_valid == FALSE)) {
30671 			mutex_exit(SD_MUTEX(un));
30672 			rval = EIO;
30673 			goto done;
30674 		}
30675 	}
30676 
30677 	if (NOT_DEVBSIZE(un)) {
30678 		/*
30679 		 * sys_blocksize != tgt_blocksize, need to re-adjust
30680 		 * blkno and save the index to beginning of dk_label
30681 		 */
30682 		first_byte  = SD_SYSBLOCKS2BYTES(start_block);
30683 		real_addr = first_byte / un->un_tgt_blocksize;
30684 
30685 		end_block = (first_byte + reqlength +
30686 		    un->un_tgt_blocksize - 1) / un->un_tgt_blocksize;
30687 
30688 		/* round up buffer size to multiple of target block size */
30689 		buffer_size = (end_block - real_addr) * un->un_tgt_blocksize;
30690 
30691 		SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_tg_rdwr",
30692 		    "label_addr: 0x%x allocation size: 0x%x\n",
30693 		    real_addr, buffer_size);
30694 
30695 		if (((first_byte % un->un_tgt_blocksize) != 0) ||
30696 		    (reqlength % un->un_tgt_blocksize) != 0)
30697 			/* the request is not aligned */
30698 			dkl = kmem_zalloc(buffer_size, KM_SLEEP);
30699 	}
30700 
30701 	/*
30702 	 * The MMC standard allows READ CAPACITY to be
30703 	 * inaccurate by a bounded amount (in the interest of
30704 	 * response latency).  As a result, failed READs are
30705 	 * commonplace (due to the reading of metadata and not
30706 	 * data). Depending on the per-Vendor/drive Sense data,
30707 	 * the failed READ can cause many (unnecessary) retries.
30708 	 */
30709 
30710 	if (ISCD(un) && (cmd == TG_READ) &&
30711 	    (un->un_f_blockcount_is_valid == TRUE) &&
30712 	    ((start_block == (un->un_blockcount - 1))||
30713 	    (start_block == (un->un_blockcount - 2)))) {
30714 			path_flag = SD_PATH_DIRECT_PRIORITY;
30715 	}
30716 
30717 	mutex_exit(SD_MUTEX(un));
30718 	if (cmd == TG_READ) {
30719 		rval = sd_send_scsi_READ(ssc, (dkl != NULL)? dkl: bufaddr,
30720 		    buffer_size, real_addr, path_flag);
30721 		if (dkl != NULL)
30722 			bcopy(dkl + SD_TGTBYTEOFFSET(un, start_block,
30723 			    real_addr), bufaddr, reqlength);
30724 	} else {
30725 		if (dkl) {
30726 			rval = sd_send_scsi_READ(ssc, dkl, buffer_size,
30727 			    real_addr, path_flag);
30728 			if (rval) {
30729 				goto done1;
30730 			}
30731 			bcopy(bufaddr, dkl + SD_TGTBYTEOFFSET(un, start_block,
30732 			    real_addr), reqlength);
30733 		}
30734 		rval = sd_send_scsi_WRITE(ssc, (dkl != NULL)? dkl: bufaddr,
30735 		    buffer_size, real_addr, path_flag);
30736 	}
30737 
30738 done1:
30739 	if (dkl != NULL)
30740 		kmem_free(dkl, buffer_size);
30741 
30742 	if (rval != 0) {
30743 		if (rval == EIO)
30744 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
30745 		else
30746 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
30747 	}
30748 done:
30749 	sd_ssc_fini(ssc);
30750 	return (rval);
30751 }
30752 
30753 
30754 static int
30755 sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie)
30756 {
30757 
30758 	struct sd_lun *un;
30759 	diskaddr_t	cap;
30760 	uint32_t	lbasize;
30761 	int		path_flag = (int)(uintptr_t)tg_cookie;
30762 	int		ret = 0;
30763 
30764 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
30765 	if (un == NULL)
30766 		return (ENXIO);
30767 
30768 	switch (cmd) {
30769 	case TG_GETPHYGEOM:
30770 	case TG_GETVIRTGEOM:
30771 	case TG_GETCAPACITY:
30772 	case TG_GETBLOCKSIZE:
30773 		mutex_enter(SD_MUTEX(un));
30774 
30775 		if ((un->un_f_blockcount_is_valid == TRUE) &&
30776 		    (un->un_f_tgt_blocksize_is_valid == TRUE)) {
30777 			cap = un->un_blockcount;
30778 			lbasize = un->un_tgt_blocksize;
30779 			mutex_exit(SD_MUTEX(un));
30780 		} else {
30781 			sd_ssc_t	*ssc;
30782 			mutex_exit(SD_MUTEX(un));
30783 			ssc = sd_ssc_init(un);
30784 			ret = sd_send_scsi_READ_CAPACITY(ssc, (uint64_t *)&cap,
30785 			    &lbasize, path_flag);
30786 			if (ret != 0) {
30787 				if (ret == EIO)
30788 					sd_ssc_assessment(ssc,
30789 					    SD_FMT_STATUS_CHECK);
30790 				else
30791 					sd_ssc_assessment(ssc,
30792 					    SD_FMT_IGNORE);
30793 				sd_ssc_fini(ssc);
30794 				return (ret);
30795 			}
30796 			sd_ssc_fini(ssc);
30797 			mutex_enter(SD_MUTEX(un));
30798 			sd_update_block_info(un, lbasize, cap);
30799 			if ((un->un_f_blockcount_is_valid == FALSE) ||
30800 			    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
30801 				mutex_exit(SD_MUTEX(un));
30802 				return (EIO);
30803 			}
30804 			mutex_exit(SD_MUTEX(un));
30805 		}
30806 
30807 		if (cmd == TG_GETCAPACITY) {
30808 			*(diskaddr_t *)arg = cap;
30809 			return (0);
30810 		}
30811 
30812 		if (cmd == TG_GETBLOCKSIZE) {
30813 			*(uint32_t *)arg = lbasize;
30814 			return (0);
30815 		}
30816 
30817 		if (cmd == TG_GETPHYGEOM)
30818 			ret = sd_get_physical_geometry(un, (cmlb_geom_t *)arg,
30819 			    cap, lbasize, path_flag);
30820 		else
30821 			/* TG_GETVIRTGEOM */
30822 			ret = sd_get_virtual_geometry(un,
30823 			    (cmlb_geom_t *)arg, cap, lbasize);
30824 
30825 		return (ret);
30826 
30827 	case TG_GETATTR:
30828 		mutex_enter(SD_MUTEX(un));
30829 		((tg_attribute_t *)arg)->media_is_writable =
30830 		    un->un_f_mmc_writable_media;
30831 		mutex_exit(SD_MUTEX(un));
30832 		return (0);
30833 	default:
30834 		return (ENOTTY);
30835 
30836 	}
30837 }
30838 
30839 /*
30840  *    Function: sd_ssc_ereport_post
30841  *
30842  * Description: Will be called when SD driver need to post an ereport.
30843  *
30844  *    Context: Kernel thread or interrupt context.
30845  */
30846 static void
30847 sd_ssc_ereport_post(sd_ssc_t *ssc, enum sd_driver_assessment drv_assess)
30848 {
30849 	int uscsi_path_instance = 0;
30850 	uchar_t	uscsi_pkt_reason;
30851 	uint32_t uscsi_pkt_state;
30852 	uint32_t uscsi_pkt_statistics;
30853 	uint64_t uscsi_ena;
30854 	uchar_t op_code;
30855 	uint8_t *sensep;
30856 	union scsi_cdb *cdbp;
30857 	uint_t cdblen = 0;
30858 	uint_t senlen = 0;
30859 	struct sd_lun *un;
30860 	dev_info_t *dip;
30861 	char *devid;
30862 	int ssc_invalid_flags = SSC_FLAGS_INVALID_PKT_REASON |
30863 	    SSC_FLAGS_INVALID_STATUS |
30864 	    SSC_FLAGS_INVALID_SENSE |
30865 	    SSC_FLAGS_INVALID_DATA;
30866 	char assessment[16];
30867 
30868 	ASSERT(ssc != NULL);
30869 	ASSERT(ssc->ssc_uscsi_cmd != NULL);
30870 	ASSERT(ssc->ssc_uscsi_info != NULL);
30871 
30872 	un = ssc->ssc_un;
30873 	ASSERT(un != NULL);
30874 
30875 	dip = un->un_sd->sd_dev;
30876 
30877 	/*
30878 	 * Get the devid:
30879 	 *	devid will only be passed to non-transport error reports.
30880 	 */
30881 	devid = DEVI(dip)->devi_devid_str;
30882 
30883 	/*
30884 	 * If we are syncing or dumping, the command will not be executed
30885 	 * so we bypass this situation.
30886 	 */
30887 	if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) ||
30888 	    (un->un_state == SD_STATE_DUMPING))
30889 		return;
30890 
30891 	uscsi_pkt_reason = ssc->ssc_uscsi_info->ui_pkt_reason;
30892 	uscsi_path_instance = ssc->ssc_uscsi_cmd->uscsi_path_instance;
30893 	uscsi_pkt_state = ssc->ssc_uscsi_info->ui_pkt_state;
30894 	uscsi_pkt_statistics = ssc->ssc_uscsi_info->ui_pkt_statistics;
30895 	uscsi_ena = ssc->ssc_uscsi_info->ui_ena;
30896 
30897 	sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf;
30898 	cdbp = (union scsi_cdb *)ssc->ssc_uscsi_cmd->uscsi_cdb;
30899 
30900 	/* In rare cases, EG:DOORLOCK, the cdb could be NULL */
30901 	if (cdbp == NULL) {
30902 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
30903 		    "sd_ssc_ereport_post meet empty cdb\n");
30904 		return;
30905 	}
30906 
30907 	op_code = cdbp->scc_cmd;
30908 
30909 	cdblen = (int)ssc->ssc_uscsi_cmd->uscsi_cdblen;
30910 	senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen -
30911 	    ssc->ssc_uscsi_cmd->uscsi_rqresid);
30912 
30913 	if (senlen > 0)
30914 		ASSERT(sensep != NULL);
30915 
30916 	/*
30917 	 * Initialize drv_assess to corresponding values.
30918 	 * SD_FM_DRV_FATAL will be mapped to "fail" or "fatal" depending
30919 	 * on the sense-key returned back.
30920 	 */
30921 	switch (drv_assess) {
30922 		case SD_FM_DRV_RECOVERY:
30923 			(void) sprintf(assessment, "%s", "recovered");
30924 			break;
30925 		case SD_FM_DRV_RETRY:
30926 			(void) sprintf(assessment, "%s", "retry");
30927 			break;
30928 		case SD_FM_DRV_NOTICE:
30929 			(void) sprintf(assessment, "%s", "info");
30930 			break;
30931 		case SD_FM_DRV_FATAL:
30932 		default:
30933 			(void) sprintf(assessment, "%s", "unknown");
30934 	}
30935 	/*
30936 	 * If drv_assess == SD_FM_DRV_RECOVERY, this should be a recovered
30937 	 * command, we will post ereport.io.scsi.cmd.disk.recovered.
30938 	 * driver-assessment will always be "recovered" here.
30939 	 */
30940 	if (drv_assess == SD_FM_DRV_RECOVERY) {
30941 		scsi_fm_ereport_post(un->un_sd, uscsi_path_instance,
30942 		    "cmd.disk.recovered", uscsi_ena, devid, DDI_NOSLEEP,
30943 		    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
30944 		    "driver-assessment", DATA_TYPE_STRING, assessment,
30945 		    "op-code", DATA_TYPE_UINT8, op_code,
30946 		    "cdb", DATA_TYPE_UINT8_ARRAY,
30947 		    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
30948 		    "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason,
30949 		    "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state,
30950 		    "pkt-stats", DATA_TYPE_UINT32, uscsi_pkt_statistics,
30951 		    NULL);
30952 		return;
30953 	}
30954 
30955 	/*
30956 	 * If there is un-expected/un-decodable data, we should post
30957 	 * ereport.io.scsi.cmd.disk.dev.uderr.
30958 	 * driver-assessment will be set based on parameter drv_assess.
30959 	 * SSC_FLAGS_INVALID_SENSE - invalid sense data sent back.
30960 	 * SSC_FLAGS_INVALID_PKT_REASON - invalid pkt-reason encountered.
30961 	 * SSC_FLAGS_INVALID_STATUS - invalid stat-code encountered.
30962 	 * SSC_FLAGS_INVALID_DATA - invalid data sent back.
30963 	 */
30964 	if (ssc->ssc_flags & ssc_invalid_flags) {
30965 		if (ssc->ssc_flags & SSC_FLAGS_INVALID_SENSE) {
30966 			scsi_fm_ereport_post(un->un_sd, uscsi_path_instance,
30967 			    "cmd.disk.dev.uderr", uscsi_ena, devid, DDI_NOSLEEP,
30968 			    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
30969 			    "driver-assessment", DATA_TYPE_STRING,
30970 			    drv_assess == SD_FM_DRV_FATAL ?
30971 			    "fail" : assessment,
30972 			    "op-code", DATA_TYPE_UINT8, op_code,
30973 			    "cdb", DATA_TYPE_UINT8_ARRAY,
30974 			    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
30975 			    "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason,
30976 			    "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state,
30977 			    "pkt-stats", DATA_TYPE_UINT32,
30978 			    uscsi_pkt_statistics,
30979 			    "stat-code", DATA_TYPE_UINT8,
30980 			    ssc->ssc_uscsi_cmd->uscsi_status,
30981 			    "un-decode-info", DATA_TYPE_STRING,
30982 			    ssc->ssc_info,
30983 			    "un-decode-value", DATA_TYPE_UINT8_ARRAY,
30984 			    senlen, sensep,
30985 			    NULL);
30986 		} else {
30987 			/*
30988 			 * For other type of invalid data, the
30989 			 * un-decode-value field would be empty because the
30990 			 * un-decodable content could be seen from upper
30991 			 * level payload or inside un-decode-info.
30992 			 */
30993 			scsi_fm_ereport_post(un->un_sd, uscsi_path_instance,
30994 			    "cmd.disk.dev.uderr", uscsi_ena, devid, DDI_NOSLEEP,
30995 			    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
30996 			    "driver-assessment", DATA_TYPE_STRING,
30997 			    drv_assess == SD_FM_DRV_FATAL ?
30998 			    "fail" : assessment,
30999 			    "op-code", DATA_TYPE_UINT8, op_code,
31000 			    "cdb", DATA_TYPE_UINT8_ARRAY,
31001 			    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
31002 			    "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason,
31003 			    "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state,
31004 			    "pkt-stats", DATA_TYPE_UINT32,
31005 			    uscsi_pkt_statistics,
31006 			    "stat-code", DATA_TYPE_UINT8,
31007 			    ssc->ssc_uscsi_cmd->uscsi_status,
31008 			    "un-decode-info", DATA_TYPE_STRING,
31009 			    ssc->ssc_info,
31010 			    "un-decode-value", DATA_TYPE_UINT8_ARRAY,
31011 			    0, NULL,
31012 			    NULL);
31013 		}
31014 		ssc->ssc_flags &= ~ssc_invalid_flags;
31015 		return;
31016 	}
31017 
31018 	if (uscsi_pkt_reason != CMD_CMPLT ||
31019 	    (ssc->ssc_flags & SSC_FLAGS_TRAN_ABORT)) {
31020 		/*
31021 		 * pkt-reason != CMD_CMPLT or SSC_FLAGS_TRAN_ABORT was
31022 		 * set inside sd_start_cmds due to errors(bad packet or
31023 		 * fatal transport error), we should take it as a
31024 		 * transport error, so we post ereport.io.scsi.cmd.disk.tran.
31025 		 * driver-assessment will be set based on drv_assess.
31026 		 * We will set devid to NULL because it is a transport
31027 		 * error.
31028 		 */
31029 		if (ssc->ssc_flags & SSC_FLAGS_TRAN_ABORT)
31030 			ssc->ssc_flags &= ~SSC_FLAGS_TRAN_ABORT;
31031 
31032 		scsi_fm_ereport_post(un->un_sd, uscsi_path_instance,
31033 		    "cmd.disk.tran", uscsi_ena, NULL, DDI_NOSLEEP, FM_VERSION,
31034 		    DATA_TYPE_UINT8, FM_EREPORT_VERS0,
31035 		    "driver-assessment", DATA_TYPE_STRING,
31036 		    drv_assess == SD_FM_DRV_FATAL ? "fail" : assessment,
31037 		    "op-code", DATA_TYPE_UINT8, op_code,
31038 		    "cdb", DATA_TYPE_UINT8_ARRAY,
31039 		    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
31040 		    "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason,
31041 		    "pkt-state", DATA_TYPE_UINT8, uscsi_pkt_state,
31042 		    "pkt-stats", DATA_TYPE_UINT32, uscsi_pkt_statistics,
31043 		    NULL);
31044 	} else {
31045 		/*
31046 		 * If we got here, we have a completed command, and we need
31047 		 * to further investigate the sense data to see what kind
31048 		 * of ereport we should post.
31049 		 * Post ereport.io.scsi.cmd.disk.dev.rqs.merr
31050 		 * if sense-key == 0x3.
31051 		 * Post ereport.io.scsi.cmd.disk.dev.rqs.derr otherwise.
31052 		 * driver-assessment will be set based on the parameter
31053 		 * drv_assess.
31054 		 */
31055 		if (senlen > 0) {
31056 			/*
31057 			 * Here we have sense data available.
31058 			 */
31059 			uint8_t sense_key;
31060 			sense_key = scsi_sense_key(sensep);
31061 			if (sense_key == 0x3) {
31062 				/*
31063 				 * sense-key == 0x3(medium error),
31064 				 * driver-assessment should be "fatal" if
31065 				 * drv_assess is SD_FM_DRV_FATAL.
31066 				 */
31067 				scsi_fm_ereport_post(un->un_sd,
31068 				    uscsi_path_instance,
31069 				    "cmd.disk.dev.rqs.merr",
31070 				    uscsi_ena, devid, DDI_NOSLEEP, FM_VERSION,
31071 				    DATA_TYPE_UINT8, FM_EREPORT_VERS0,
31072 				    "driver-assessment",
31073 				    DATA_TYPE_STRING,
31074 				    drv_assess == SD_FM_DRV_FATAL ?
31075 				    "fatal" : assessment,
31076 				    "op-code",
31077 				    DATA_TYPE_UINT8, op_code,
31078 				    "cdb",
31079 				    DATA_TYPE_UINT8_ARRAY, cdblen,
31080 				    ssc->ssc_uscsi_cmd->uscsi_cdb,
31081 				    "pkt-reason",
31082 				    DATA_TYPE_UINT8, uscsi_pkt_reason,
31083 				    "pkt-state",
31084 				    DATA_TYPE_UINT8, uscsi_pkt_state,
31085 				    "pkt-stats",
31086 				    DATA_TYPE_UINT32,
31087 				    uscsi_pkt_statistics,
31088 				    "stat-code",
31089 				    DATA_TYPE_UINT8,
31090 				    ssc->ssc_uscsi_cmd->uscsi_status,
31091 				    "key",
31092 				    DATA_TYPE_UINT8,
31093 				    scsi_sense_key(sensep),
31094 				    "asc",
31095 				    DATA_TYPE_UINT8,
31096 				    scsi_sense_asc(sensep),
31097 				    "ascq",
31098 				    DATA_TYPE_UINT8,
31099 				    scsi_sense_ascq(sensep),
31100 				    "sense-data",
31101 				    DATA_TYPE_UINT8_ARRAY,
31102 				    senlen, sensep,
31103 				    "lba",
31104 				    DATA_TYPE_UINT64,
31105 				    ssc->ssc_uscsi_info->ui_lba,
31106 				    NULL);
31107 				} else {
31108 					/*
31109 					 * if sense-key == 0x4(hardware
31110 					 * error), driver-assessment should
31111 					 * be "fatal" if drv_assess is
31112 					 * SD_FM_DRV_FATAL.
31113 					 */
31114 					scsi_fm_ereport_post(un->un_sd,
31115 					    uscsi_path_instance,
31116 					    "cmd.disk.dev.rqs.derr",
31117 					    uscsi_ena, devid, DDI_NOSLEEP,
31118 					    FM_VERSION,
31119 					    DATA_TYPE_UINT8, FM_EREPORT_VERS0,
31120 					    "driver-assessment",
31121 					    DATA_TYPE_STRING,
31122 					    drv_assess == SD_FM_DRV_FATAL ?
31123 					    (sense_key == 0x4 ?
31124 					    "fatal" : "fail") : assessment,
31125 					    "op-code",
31126 					    DATA_TYPE_UINT8, op_code,
31127 					    "cdb",
31128 					    DATA_TYPE_UINT8_ARRAY, cdblen,
31129 					    ssc->ssc_uscsi_cmd->uscsi_cdb,
31130 					    "pkt-reason",
31131 					    DATA_TYPE_UINT8, uscsi_pkt_reason,
31132 					    "pkt-state",
31133 					    DATA_TYPE_UINT8, uscsi_pkt_state,
31134 					    "pkt-stats",
31135 					    DATA_TYPE_UINT32,
31136 					    uscsi_pkt_statistics,
31137 					    "stat-code",
31138 					    DATA_TYPE_UINT8,
31139 					    ssc->ssc_uscsi_cmd->uscsi_status,
31140 					    "key",
31141 					    DATA_TYPE_UINT8,
31142 					    scsi_sense_key(sensep),
31143 					    "asc",
31144 					    DATA_TYPE_UINT8,
31145 					    scsi_sense_asc(sensep),
31146 					    "ascq",
31147 					    DATA_TYPE_UINT8,
31148 					    scsi_sense_ascq(sensep),
31149 					    "sense-data",
31150 					    DATA_TYPE_UINT8_ARRAY,
31151 					    senlen, sensep,
31152 					    NULL);
31153 				}
31154 		} else {
31155 			/*
31156 			 * For stat_code == STATUS_GOOD, this is not a
31157 			 * hardware error.
31158 			 */
31159 			if (ssc->ssc_uscsi_cmd->uscsi_status == STATUS_GOOD)
31160 				return;
31161 
31162 			/*
31163 			 * Post ereport.io.scsi.cmd.disk.dev.serr if we got the
31164 			 * stat-code but with sense data unavailable.
31165 			 * driver-assessment will be set based on parameter
31166 			 * drv_assess.
31167 			 */
31168 			scsi_fm_ereport_post(un->un_sd,
31169 			    uscsi_path_instance, "cmd.disk.dev.serr", uscsi_ena,
31170 			    devid, DDI_NOSLEEP, FM_VERSION, DATA_TYPE_UINT8,
31171 			    FM_EREPORT_VERS0,
31172 			    "driver-assessment", DATA_TYPE_STRING,
31173 			    drv_assess == SD_FM_DRV_FATAL ? "fail" : assessment,
31174 			    "op-code", DATA_TYPE_UINT8, op_code,
31175 			    "cdb",
31176 			    DATA_TYPE_UINT8_ARRAY,
31177 			    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
31178 			    "pkt-reason",
31179 			    DATA_TYPE_UINT8, uscsi_pkt_reason,
31180 			    "pkt-state",
31181 			    DATA_TYPE_UINT8, uscsi_pkt_state,
31182 			    "pkt-stats",
31183 			    DATA_TYPE_UINT32, uscsi_pkt_statistics,
31184 			    "stat-code",
31185 			    DATA_TYPE_UINT8,
31186 			    ssc->ssc_uscsi_cmd->uscsi_status,
31187 			    NULL);
31188 		}
31189 	}
31190 }
31191 
31192 /*
31193  *     Function: sd_ssc_extract_info
31194  *
31195  * Description: Extract information available to help generate ereport.
31196  *
31197  *     Context: Kernel thread or interrupt context.
31198  */
31199 static void
31200 sd_ssc_extract_info(sd_ssc_t *ssc, struct sd_lun *un, struct scsi_pkt *pktp,
31201     struct buf *bp, struct sd_xbuf *xp)
31202 {
31203 	size_t senlen = 0;
31204 	union scsi_cdb *cdbp;
31205 	int path_instance;
31206 	/*
31207 	 * Need scsi_cdb_size array to determine the cdb length.
31208 	 */
31209 	extern uchar_t	scsi_cdb_size[];
31210 
31211 	ASSERT(un != NULL);
31212 	ASSERT(pktp != NULL);
31213 	ASSERT(bp != NULL);
31214 	ASSERT(xp != NULL);
31215 	ASSERT(ssc != NULL);
31216 	ASSERT(mutex_owned(SD_MUTEX(un)));
31217 
31218 	/*
31219 	 * Transfer the cdb buffer pointer here.
31220 	 */
31221 	cdbp = (union scsi_cdb *)pktp->pkt_cdbp;
31222 
31223 	ssc->ssc_uscsi_cmd->uscsi_cdblen = scsi_cdb_size[GETGROUP(cdbp)];
31224 	ssc->ssc_uscsi_cmd->uscsi_cdb = (caddr_t)cdbp;
31225 
31226 	/*
31227 	 * Transfer the sense data buffer pointer if sense data is available,
31228 	 * calculate the sense data length first.
31229 	 */
31230 	if ((xp->xb_sense_state & STATE_XARQ_DONE) ||
31231 	    (xp->xb_sense_state & STATE_ARQ_DONE)) {
31232 		/*
31233 		 * For arq case, we will enter here.
31234 		 */
31235 		if (xp->xb_sense_state & STATE_XARQ_DONE) {
31236 			senlen = MAX_SENSE_LENGTH - xp->xb_sense_resid;
31237 		} else {
31238 			senlen = SENSE_LENGTH;
31239 		}
31240 	} else {
31241 		/*
31242 		 * For non-arq case, we will enter this branch.
31243 		 */
31244 		if (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK &&
31245 		    (xp->xb_sense_state & STATE_XFERRED_DATA)) {
31246 			senlen = SENSE_LENGTH - xp->xb_sense_resid;
31247 		}
31248 
31249 	}
31250 
31251 	ssc->ssc_uscsi_cmd->uscsi_rqlen = (senlen & 0xff);
31252 	ssc->ssc_uscsi_cmd->uscsi_rqresid = 0;
31253 	ssc->ssc_uscsi_cmd->uscsi_rqbuf = (caddr_t)xp->xb_sense_data;
31254 
31255 	ssc->ssc_uscsi_cmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK);
31256 
31257 	/*
31258 	 * Only transfer path_instance when scsi_pkt was properly allocated.
31259 	 */
31260 	path_instance = pktp->pkt_path_instance;
31261 	if (scsi_pkt_allocated_correctly(pktp) && path_instance)
31262 		ssc->ssc_uscsi_cmd->uscsi_path_instance = path_instance;
31263 	else
31264 		ssc->ssc_uscsi_cmd->uscsi_path_instance = 0;
31265 
31266 	/*
31267 	 * Copy in the other fields we may need when posting ereport.
31268 	 */
31269 	ssc->ssc_uscsi_info->ui_pkt_reason = pktp->pkt_reason;
31270 	ssc->ssc_uscsi_info->ui_pkt_state = pktp->pkt_state;
31271 	ssc->ssc_uscsi_info->ui_pkt_statistics = pktp->pkt_statistics;
31272 	ssc->ssc_uscsi_info->ui_lba = (uint64_t)SD_GET_BLKNO(bp);
31273 
31274 	/*
31275 	 * For partially read/write command, we will not create ena
31276 	 * in case of a successful command be reconized as recovered.
31277 	 */
31278 	if ((pktp->pkt_reason == CMD_CMPLT) &&
31279 	    (ssc->ssc_uscsi_cmd->uscsi_status == STATUS_GOOD) &&
31280 	    (senlen == 0)) {
31281 		return;
31282 	}
31283 
31284 	/*
31285 	 * To associate ereports of a single command execution flow, we
31286 	 * need a shared ena for a specific command.
31287 	 */
31288 	if (xp->xb_ena == 0)
31289 		xp->xb_ena = fm_ena_generate(0, FM_ENA_FMT1);
31290 	ssc->ssc_uscsi_info->ui_ena = xp->xb_ena;
31291 }
31292