1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 
26 /*
27  * hermon_cfg.c
28  *    Hermon Configuration Profile Routines
29  *
30  *    Implements the routines necessary for initializing and (later) tearing
31  *    down the list of Hermon configuration information.
32  */
33 
34 #include <sys/types.h>
35 #include <sys/conf.h>
36 #include <sys/ddi.h>
37 #include <sys/sunddi.h>
38 #include <sys/modctl.h>
39 #include <sys/bitmap.h>
40 
41 #include <sys/ib/adapters/hermon/hermon.h>
42 
43 /*
44  * Below are the elements that make up the Hermon configuration profile.
45  * For advanced users who wish to alter these values, this can be done via
46  * the /etc/system file. By default, values are assigned to the number of
47  * supported resources, either from the HCA's reported capacities or by
48  * a by-design limit in the driver.
49  */
50 
51 /* Number of supported QPs, CQs and SRQs */
52 uint32_t hermon_log_num_qp		= HERMON_NUM_QP_SHIFT;
53 uint32_t hermon_log_num_cq		= HERMON_NUM_CQ_SHIFT;
54 uint32_t hermon_log_num_srq		= HERMON_NUM_SRQ_SHIFT;
55 
56 /* Number of supported SGL per WQE for SQ/RQ, and for SRQ */
57 /* XXX use the same for all queues if limitation in srq.h is resolved */
58 uint32_t hermon_wqe_max_sgl		= HERMON_NUM_SGL_PER_WQE;
59 uint32_t hermon_srq_max_sgl		= HERMON_SRQ_MAX_SGL;
60 
61 /* Maximum "responder resources" (in) and "initiator depth" (out) per QP */
62 uint32_t hermon_log_num_rdb_per_qp	= HERMON_LOG_NUM_RDB_PER_QP;
63 
64 /*
65  * Number of multicast groups (MCGs), number of QP per MCG, and the number
66  * of entries (from the total number) in the multicast group "hash table"
67  */
68 uint32_t hermon_log_num_mcg		= HERMON_NUM_MCG_SHIFT;
69 uint32_t hermon_num_qp_per_mcg		= HERMON_NUM_QP_PER_MCG;
70 uint32_t hermon_log_num_mcg_hash	= HERMON_NUM_MCG_HASH_SHIFT;
71 
72 /* Number of UD AVs */
73 uint32_t hermon_log_num_ah		= HERMON_NUM_AH_SHIFT;
74 
75 /* Number of EQs and their default size */
76 uint32_t hermon_log_num_eq		= HERMON_NUM_EQ_SHIFT;
77 uint32_t hermon_log_eq_sz		= HERMON_DEFAULT_EQ_SZ_SHIFT;
78 
79 /*
80  * Number of supported MPTs, MTTs and also the maximum MPT size.
81  */
82 uint32_t hermon_log_num_mtt		= HERMON_NUM_MTT_SHIFT;
83 uint32_t hermon_log_num_dmpt		= HERMON_NUM_DMPT_SHIFT;
84 uint32_t hermon_log_max_mrw_sz		= HERMON_MAX_MEM_MPT_SHIFT;
85 
86 /*
87  * Number of supported UAR (User Access Regions) for this HCA.
88  * We could in the future read in uar_sz from devlim, and thus
89  * derive the number of UAR. Since this is derived from PAGESIZE,
90  * however, this means that x86 systems would have twice as many
91  * UARs as SPARC systems. Therefore for consistency's sake, we will
92  * just use 1024 pages, which is the maximum on SPARC systems.
93  */
94 uint32_t hermon_log_num_uar		= HERMON_NUM_UAR_SHIFT;
95 
96 /*
97  * Number of remaps allowed for FMR before a sync is required.  This value
98  * determines how many times we can fmr_deregister() before the underlying fmr
99  * framework places the region to wait for an MTT_SYNC operation, cleaning up
100  * the old mappings.
101  */
102 uint32_t hermon_fmr_num_remaps		= HERMON_FMR_MAX_REMAPS;
103 
104 /*
105  * Number of supported Hermon mailboxes ("In" and "Out") and their maximum
106  * sizes, respectively
107  */
108 uint32_t hermon_log_num_inmbox		= HERMON_NUM_MAILBOXES_SHIFT;
109 uint32_t hermon_log_num_outmbox		= HERMON_NUM_MAILBOXES_SHIFT;
110 uint32_t hermon_log_inmbox_size		= HERMON_MBOX_SIZE_SHIFT;
111 uint32_t hermon_log_outmbox_size	= HERMON_MBOX_SIZE_SHIFT;
112 uint32_t hermon_log_num_intr_inmbox	= HERMON_NUM_INTR_MAILBOXES_SHIFT;
113 uint32_t hermon_log_num_intr_outmbox	= HERMON_NUM_INTR_MAILBOXES_SHIFT;
114 
115 /* Number of supported Protection Domains (PD) */
116 uint32_t hermon_log_num_pd		= HERMON_NUM_PD_SHIFT;
117 
118 /*
119  * Number of total supported PKeys per PKey table (i.e.
120  * per port).  Also the number of SGID per GID table.
121  */
122 uint32_t hermon_log_max_pkeytbl		= HERMON_NUM_PKEYTBL_SHIFT;
123 uint32_t hermon_log_max_gidtbl		= HERMON_NUM_GIDTBL_SHIFT;
124 
125 /* Maximum supported MTU and portwidth */
126 uint32_t hermon_max_mtu			= HERMON_MAX_MTU;
127 uint32_t hermon_max_port_width		= HERMON_MAX_PORT_WIDTH;
128 
129 /* Number of supported Virtual Lanes (VL) */
130 uint32_t hermon_max_vlcap		= HERMON_MAX_VLCAP;
131 
132 /*
133  * Whether or not to use the built-in (i.e. in firmware) agents for QP0 and
134  * QP1, respectively.
135  */
136 uint32_t hermon_qp0_agents_in_fw	= 0;
137 uint32_t hermon_qp1_agents_in_fw	= 0;
138 
139 /*
140  * Whether DMA mappings should bypass the PCI IOMMU or not.
141  * hermon_iommu_bypass is a global setting for all memory addresses.
142  */
143 uint32_t hermon_iommu_bypass		= 1;
144 
145 /*
146  * Whether *DATA* buffers should be bound w/ Relaxed Ordering (RO) turned on
147  * via the SW workaround (HCAs don't support RO in HW).  Defaulted on,
148  * though care must be taken w/ some Userland clients that *MAY* have
149  * peeked in the data to understand when data xfer was done - MPI does
150  * as an efficiency
151  */
152 
153 uint32_t hermon_kernel_data_ro		= HERMON_RO_ENABLED;	/* default */
154 uint32_t hermon_user_data_ro		= HERMON_RO_ENABLED;	/* default */
155 
156 /*
157  * Whether Hermon should use MSI (Message Signaled Interrupts), if available.
158  * Note: 0 indicates 'legacy interrupt', 1 indicates MSI (if available)
159  */
160 uint32_t hermon_use_msi_if_avail	= 1;
161 
162 /*
163  * This is a patchable variable that determines the time we will wait after
164  * initiating SW reset before we do our first read from Hermon config space.
165  * If this value is set too small (less than the default 100ms), it is
166  * possible for Hermon hardware to be unready to respond to the config cycle
167  * reads.  This could cause master abort on the PCI bridge.  Note: If
168  * "hermon_sw_reset_delay" is set to zero, then no software reset of the Hermon
169  * device will be attempted.
170  */
171 uint32_t hermon_sw_reset_delay		= HERMON_SW_RESET_DELAY;
172 
173 /*
174  * These are patchable variables for hermon command polling. The poll_delay is
175  * the number of usec to wait in-between calls to poll the 'go' bit.  The
176  * poll_max is the total number of usec to loop in waiting for the 'go' bit to
177  * clear.
178  */
179 uint32_t hermon_cmd_poll_delay		= HERMON_CMD_POLL_DELAY;
180 uint32_t hermon_cmd_poll_max		= HERMON_CMD_POLL_MAX;
181 
182 /*
183  * This is a patchable variable that determines the frequency with which
184  * the AckReq bit will be set in outgoing RC packets.  The AckReq bit will be
185  * set in at least every 2^hermon_qp_ackreq_freq packets (but at least once
186  * per message, i.e. in the last packet).  Tuning this value can increase
187  * IB fabric utilization by cutting down on the number of unnecessary ACKs.
188  */
189 uint32_t hermon_qp_ackreq_freq		= HERMON_QP_ACKREQ_FREQ;
190 
191 static void hermon_cfg_wqe_sizes(hermon_state_t *state,
192     hermon_cfg_profile_t *cp);
193 #ifdef __sparc
194 static void hermon_check_iommu_bypass(hermon_state_t *state,
195     hermon_cfg_profile_t *cp);
196 #endif
197 
198 /*
199  * hermon_cfg_profile_init_phase1()
200  *    Context: Only called from attach() path context
201  */
202 int
203 hermon_cfg_profile_init_phase1(hermon_state_t *state)
204 {
205 	hermon_cfg_profile_t	*cp;
206 
207 	/*
208 	 * Allocate space for the configuration profile structure
209 	 */
210 	cp = (hermon_cfg_profile_t *)kmem_zalloc(sizeof (hermon_cfg_profile_t),
211 	    KM_SLEEP);
212 
213 	/*
214 	 * Common to all profiles.
215 	 */
216 	cp->cp_qp0_agents_in_fw		= hermon_qp0_agents_in_fw;
217 	cp->cp_qp1_agents_in_fw		= hermon_qp1_agents_in_fw;
218 	cp->cp_sw_reset_delay		= hermon_sw_reset_delay;
219 	cp->cp_cmd_poll_delay		= hermon_cmd_poll_delay;
220 	cp->cp_cmd_poll_max		= hermon_cmd_poll_max;
221 	cp->cp_ackreq_freq		= hermon_qp_ackreq_freq;
222 	cp->cp_fmr_max_remaps		= hermon_fmr_num_remaps;
223 
224 	/*
225 	 * Although most of the configuration is enabled in "phase2" of the
226 	 * cfg_profile_init, we have to setup the OUT mailboxes soon, since
227 	 * they are used immediately after this "phase1" completes, to run the
228 	 * firmware and get the device limits, which we'll need for 'phase2'.
229 	 * That's done in rsrc_init_phase1, called shortly after we do this
230 	 * and the sw reset - see hermon.c
231 	 */
232 	if (state->hs_cfg_profile_setting == HERMON_CFG_MEMFREE) {
233 		cp->cp_log_num_outmbox		= hermon_log_num_outmbox;
234 		cp->cp_log_outmbox_size		= hermon_log_outmbox_size;
235 		cp->cp_log_num_inmbox		= hermon_log_num_inmbox;
236 		cp->cp_log_inmbox_size		= hermon_log_inmbox_size;
237 		cp->cp_log_num_intr_inmbox	= hermon_log_num_intr_inmbox;
238 		cp->cp_log_num_intr_outmbox	= hermon_log_num_intr_outmbox;
239 
240 	} else {
241 		return (DDI_FAILURE);
242 	}
243 
244 	/*
245 	 * Set IOMMU bypass or not.  Ensure consistency of flags with
246 	 * architecture type.
247 	 */
248 #ifdef __sparc
249 	if (hermon_iommu_bypass == 1) {
250 		hermon_check_iommu_bypass(state, cp);
251 	} else {
252 		cp->cp_iommu_bypass = HERMON_BINDMEM_NORMAL;
253 	}
254 #else
255 	cp->cp_iommu_bypass = HERMON_BINDMEM_NORMAL;
256 #endif
257 
258 	/* Attach the configuration profile to Hermon softstate */
259 	state->hs_cfg_profile = cp;
260 
261 	return (DDI_SUCCESS);
262 }
263 
264 /*
265  * hermon_cfg_profile_init_phase2()
266  *    Context: Only called from attach() path context
267  */
268 int
269 hermon_cfg_profile_init_phase2(hermon_state_t *state)
270 {
271 	hermon_cfg_profile_t	*cp;
272 	hermon_hw_querydevlim_t	*devlim;
273 	hermon_hw_query_port_t	*port;
274 	uint32_t		num, size;
275 	int			i;
276 
277 	/* Read in the device limits */
278 	devlim = &state->hs_devlim;
279 	/* and the port information */
280 	port = &state->hs_queryport;
281 
282 	/* Read the configuration profile */
283 	cp = state->hs_cfg_profile;
284 
285 	/*
286 	 * We configure all Hermon HCAs with the same profile, which
287 	 * is based upon the default value assignments above. If we want to
288 	 * add additional profiles in the future, they can be added here.
289 	 * Note the reference to "Memfree" is a holdover from Arbel/Sinai
290 	 */
291 	if (state->hs_cfg_profile_setting != HERMON_CFG_MEMFREE) {
292 		return (DDI_FAILURE);
293 	}
294 
295 	/*
296 	 * Note for most configuration parameters, we use the lesser of our
297 	 * desired configuration value or the device-defined maximum value.
298 	 */
299 	cp->cp_log_num_mtt	= min(hermon_log_num_mtt, devlim->log_max_mtt);
300 	cp->cp_log_num_dmpt = min(hermon_log_num_dmpt, devlim->log_max_dmpt);
301 	cp->cp_log_num_cmpt	= HERMON_LOG_CMPT_PER_TYPE + 2;	/* times 4, */
302 								/* per PRM */
303 	cp->cp_log_max_mrw_sz	= min(hermon_log_max_mrw_sz,
304 	    devlim->log_max_mrw_sz);
305 	cp->cp_log_num_pd	= min(hermon_log_num_pd, devlim->log_max_pd);
306 	cp->cp_log_num_qp	= min(hermon_log_num_qp, devlim->log_max_qp);
307 	cp->cp_log_num_cq	= min(hermon_log_num_cq, devlim->log_max_cq);
308 	cp->cp_log_num_srq	= min(hermon_log_num_srq, devlim->log_max_srq);
309 	cp->cp_log_num_eq	= min(hermon_log_num_eq, devlim->log_max_eq);
310 	cp->cp_log_eq_sz	= min(hermon_log_eq_sz, devlim->log_max_eq_sz);
311 	cp->cp_log_num_rdb	= cp->cp_log_num_qp +
312 	    min(hermon_log_num_rdb_per_qp, devlim->log_max_ra_req_qp);
313 	cp->cp_hca_max_rdma_in_qp = cp->cp_hca_max_rdma_out_qp =
314 	    1 << min(hermon_log_num_rdb_per_qp, devlim->log_max_ra_req_qp);
315 	cp->cp_num_qp_per_mcg	= max(hermon_num_qp_per_mcg,
316 	    HERMON_NUM_QP_PER_MCG_MIN);
317 	cp->cp_num_qp_per_mcg	= min(cp->cp_num_qp_per_mcg,
318 	    (1 << devlim->log_max_qp_mcg) - 8);
319 	cp->cp_num_qp_per_mcg	= (1 << highbit(cp->cp_num_qp_per_mcg + 7)) - 8;
320 	cp->cp_log_num_mcg 	= min(hermon_log_num_mcg, devlim->log_max_mcg);
321 	cp->cp_log_num_mcg_hash	= hermon_log_num_mcg_hash;
322 
323 	/* until srq_resize is debugged, disable it */
324 	cp->cp_srq_resize_enabled = 0;
325 
326 	/* cp->cp_log_num_uar	= hermon_log_num_uar; */
327 	/*
328 	 * now, we HAVE to calculate the number of UAR pages, so that we can
329 	 * get the blueflame stuff correct as well
330 	 */
331 
332 	size = devlim->log_max_uar_sz;
333 	/* 1MB (2^^20) times size (2^^size) / sparc_pg (2^^13) */
334 	num = (20 + size) - 13;		/* XXX - consider using PAGESHIFT */
335 	if (devlim->blu_flm)
336 		num -= 1;	/* if blueflame, only half the size for UARs */
337 	cp->cp_log_num_uar	= min(hermon_log_num_uar, num);
338 
339 
340 	/* while we're at it, calculate the index of the kernel uar page */
341 	/* either the reserved uar's or 128, whichever is smaller */
342 	state->hs_kernel_uar_index = (devlim->num_rsvd_uar > 128) ?
343 	    devlim->num_rsvd_uar : 128;
344 
345 	cp->cp_log_max_pkeytbl	= port->log_max_pkey;
346 
347 	cp->cp_log_max_qp_sz	= devlim->log_max_qp_sz;
348 	cp->cp_log_max_cq_sz	= devlim->log_max_cq_sz;
349 	cp->cp_log_max_srq_sz	= devlim->log_max_srq_sz;
350 	cp->cp_log_max_gidtbl	= port->log_max_gid;
351 	cp->cp_max_mtu		= port->ib_mtu;	/* XXX now from query_port */
352 	cp->cp_max_port_width	= port->ib_port_wid;  /* now from query_port */
353 	cp->cp_max_vlcap	= port->max_vl;
354 	cp->cp_log_num_ah	= hermon_log_num_ah;
355 
356 	/* Paranoia, ensure no arrays indexed by port_num are out of bounds */
357 	cp->cp_num_ports	= devlim->num_ports;
358 	if (cp->cp_num_ports > HERMON_MAX_PORTS) {
359 		cmn_err(CE_CONT, "device has more ports (%d) than are "
360 		    "supported; Using %d ports\n",
361 		    cp->cp_num_ports, HERMON_MAX_PORTS);
362 		cp->cp_num_ports = HERMON_MAX_PORTS;
363 	};
364 
365 	/* allocate variable sized arrays */
366 	for (i = 0; i < HERMON_MAX_PORTS; i++) {
367 		state->hs_pkey[i] = kmem_zalloc((1 << cp->cp_log_max_pkeytbl) *
368 		    sizeof (ib_pkey_t), KM_SLEEP);
369 		state->hs_guid[i] = kmem_zalloc((1 << cp->cp_log_max_gidtbl) *
370 		    sizeof (ib_guid_t), KM_SLEEP);
371 	}
372 
373 	/* Determine WQE sizes from requested max SGLs */
374 	hermon_cfg_wqe_sizes(state, cp);
375 
376 	/* Set whether to use MSIs or not */
377 	cp->cp_use_msi_if_avail = hermon_use_msi_if_avail;
378 
379 #if !defined(_ELF64)
380 	/*
381 	 * Need to reduce the hermon kernel virtual memory footprint
382 	 * on 32-bit kernels.
383 	 */
384 	cp->cp_log_num_mtt	-= 6;
385 	cp->cp_log_num_dmpt	-= 6;
386 	cp->cp_log_num_pd	-= 6;
387 	cp->cp_log_num_qp	-= 6;
388 	cp->cp_log_num_cq	-= 6;
389 	cp->cp_log_num_srq	-= 6;
390 	cp->cp_log_num_rdb	= cp->cp_log_num_qp +
391 	    min(hermon_log_num_rdb_per_qp, devlim->log_max_ra_req_qp);
392 	cp->cp_hca_max_rdma_in_qp = cp->cp_hca_max_rdma_out_qp =
393 	    1 << min(hermon_log_num_rdb_per_qp, devlim->log_max_ra_req_qp);
394 #endif
395 
396 	return (DDI_SUCCESS);
397 }
398 
399 
400 /*
401  * hermon_cfg_profile_fini()
402  *    Context: Only called from attach() and/or detach() path contexts
403  */
404 void
405 hermon_cfg_profile_fini(hermon_state_t *state)
406 {
407 	/*
408 	 * Free up the space for configuration profile
409 	 */
410 	kmem_free(state->hs_cfg_profile, sizeof (hermon_cfg_profile_t));
411 }
412 
413 
414 /*
415  * hermon_cfg_wqe_sizes()
416  *    Context: Only called from attach() path context
417  */
418 static void
419 hermon_cfg_wqe_sizes(hermon_state_t *state, hermon_cfg_profile_t *cp)
420 {
421 	uint_t	max_size, log2;
422 	uint_t	max_sgl, real_max_sgl;
423 
424 	/*
425 	 * Get the requested maximum number SGL per WQE from the Hermon
426 	 * patchable variable
427 	 */
428 	max_sgl = hermon_wqe_max_sgl;
429 
430 	/*
431 	 * Use requested maximum number of SGL to calculate the max descriptor
432 	 * size (while guaranteeing that the descriptor size is a power-of-2
433 	 * cachelines).  We have to use the calculation for QP1 MLX transport
434 	 * because the possibility that we might need to inline a GRH, along
435 	 * with all the other headers and alignment restrictions, sets the
436 	 * maximum for the number of SGLs that we can advertise support for.
437 	 */
438 	max_size = (HERMON_QP_WQE_MLX_QP1_HDRS + (max_sgl << 4));
439 	log2 = highbit(max_size);
440 	if ((max_size & (max_size - 1)) == 0) {
441 		log2 = log2 - 1;
442 	}
443 	max_size = (1 << log2);
444 
445 	max_size = min(max_size, state->hs_devlim.max_desc_sz_sq);
446 
447 	/*
448 	 * Then use the calculated max descriptor size to determine the "real"
449 	 * maximum SGL (the number beyond which we would roll over to the next
450 	 * power-of-2).
451 	 */
452 	real_max_sgl = (max_size - HERMON_QP_WQE_MLX_QP1_HDRS) >> 4;
453 
454 	/* Then save away this configuration information */
455 	cp->cp_wqe_max_sgl	= max_sgl;
456 	cp->cp_wqe_real_max_sgl = real_max_sgl;
457 
458 	/* SRQ SGL gets set to it's own patchable variable value */
459 	cp->cp_srq_max_sgl		= hermon_srq_max_sgl;
460 }
461 
462 #ifdef __sparc
463 /*
464  * hermon_check_iommu_bypass()
465  *    Context: Only called from attach() path context
466  *    XXX This is a DMA allocation routine outside the normal
467  *	  path. FMA hardening will not like this.
468  */
469 static void
470 hermon_check_iommu_bypass(hermon_state_t *state, hermon_cfg_profile_t *cp)
471 {
472 	ddi_dma_handle_t	dmahdl;
473 	ddi_dma_attr_t		dma_attr;
474 	int			status;
475 	ddi_acc_handle_t	acc_hdl;
476 	caddr_t			kaddr;
477 	size_t			actual_len;
478 	ddi_dma_cookie_t	cookie;
479 	uint_t			cookiecnt;
480 
481 	hermon_dma_attr_init(state, &dma_attr);
482 
483 	/* Try mapping for IOMMU bypass (Force Physical) */
484 	dma_attr.dma_attr_flags = DDI_DMA_FORCE_PHYSICAL |
485 	    DDI_DMA_RELAXED_ORDERING;
486 
487 	/*
488 	 * Call ddi_dma_alloc_handle().  If this returns DDI_DMA_BADATTR then
489 	 * it is not possible to use IOMMU bypass with our PCI bridge parent.
490 	 * Since the function we are in can only be called if iommu bypass was
491 	 * requested in the config profile, we configure for bypass if the
492 	 * ddi_dma_alloc_handle() was successful.  Otherwise, we configure
493 	 * for non-bypass (ie: normal) mapping.
494 	 */
495 	status = ddi_dma_alloc_handle(state->hs_dip, &dma_attr,
496 	    DDI_DMA_SLEEP, NULL, &dmahdl);
497 	if (status == DDI_DMA_BADATTR) {
498 		cp->cp_iommu_bypass = HERMON_BINDMEM_NORMAL;
499 		return;
500 	} else if (status != DDI_SUCCESS) {	/* failed somehow */
501 		hermon_kernel_data_ro = HERMON_RO_DISABLED;
502 		hermon_user_data_ro = HERMON_RO_DISABLED;
503 		cp->cp_iommu_bypass = HERMON_BINDMEM_BYPASS;
504 		return;
505 	} else {
506 		cp->cp_iommu_bypass = HERMON_BINDMEM_BYPASS;
507 	}
508 
509 	status = ddi_dma_mem_alloc(dmahdl, 256,
510 	    &state->hs_reg_accattr, DDI_DMA_CONSISTENT,
511 	    DDI_DMA_SLEEP, NULL, (caddr_t *)&kaddr, &actual_len, &acc_hdl);
512 
513 	if (status != DDI_SUCCESS) {		/* failed somehow */
514 		hermon_kernel_data_ro = HERMON_RO_DISABLED;
515 		hermon_user_data_ro = HERMON_RO_DISABLED;
516 		ddi_dma_free_handle(&dmahdl);
517 		return;
518 	}
519 
520 	status = ddi_dma_addr_bind_handle(dmahdl, NULL, kaddr, actual_len,
521 	    DDI_DMA_RDWR, DDI_DMA_SLEEP, NULL, &cookie, &cookiecnt);
522 
523 	if (status == DDI_DMA_MAPPED) {
524 		(void) ddi_dma_unbind_handle(dmahdl);
525 	} else {
526 		hermon_kernel_data_ro = HERMON_RO_DISABLED;
527 		hermon_user_data_ro = HERMON_RO_DISABLED;
528 	}
529 
530 	ddi_dma_mem_free(&acc_hdl);
531 	ddi_dma_free_handle(&dmahdl);
532 }
533 #endif
534