xref: /illumos-gate/usr/src/uts/common/io/i40e/i40e_gld.c (revision c1e9c696)
1 /*
2  * This file and its contents are supplied under the terms of the
3  * Common Development and Distribution License ("CDDL"), version 1.0.
4  * You may only use this file in accordance with the terms of version
5  * 1.0 of the CDDL.
6  *
7  * A full copy of the text of the CDDL should have accompanied this
8  * source.  A copy of the CDDL is also available via the Internet at
9  * http://www.illumos.org/license/CDDL.
10  */
11 
12 /*
13  * Copyright 2015 OmniTI Computer Consulting, Inc. All rights reserved.
14  * Copyright (c) 2017, Joyent, Inc.
15  * Copyright 2017 Tegile Systems, Inc.  All rights reserved.
16  */
17 
18 /*
19  * For more information, please see the big theory statement in i40e_main.c.
20  */
21 
22 #include "i40e_sw.h"
23 
24 #define	I40E_PROP_RX_DMA_THRESH	"_rx_dma_threshold"
25 #define	I40E_PROP_TX_DMA_THRESH	"_tx_dma_threshold"
26 #define	I40E_PROP_RX_ITR	"_rx_intr_throttle"
27 #define	I40E_PROP_TX_ITR	"_tx_intr_throttle"
28 #define	I40E_PROP_OTHER_ITR	"_other_intr_throttle"
29 
30 char *i40e_priv_props[] = {
31 	I40E_PROP_RX_DMA_THRESH,
32 	I40E_PROP_TX_DMA_THRESH,
33 	I40E_PROP_RX_ITR,
34 	I40E_PROP_TX_ITR,
35 	I40E_PROP_OTHER_ITR,
36 	NULL
37 };
38 
39 static int
40 i40e_group_remove_mac(void *arg, const uint8_t *mac_addr)
41 {
42 	i40e_t *i40e = arg;
43 	struct i40e_aqc_remove_macvlan_element_data filt;
44 	struct i40e_hw *hw = &i40e->i40e_hw_space;
45 	int ret, i, last;
46 	i40e_uaddr_t *iua;
47 
48 	if (I40E_IS_MULTICAST(mac_addr))
49 		return (EINVAL);
50 
51 	mutex_enter(&i40e->i40e_general_lock);
52 
53 	if (i40e->i40e_state & I40E_SUSPENDED) {
54 		ret = ECANCELED;
55 		goto done;
56 	}
57 
58 	for (i = 0; i < i40e->i40e_resources.ifr_nmacfilt_used; i++) {
59 		if (bcmp(mac_addr, i40e->i40e_uaddrs[i].iua_mac,
60 		    ETHERADDRL) == 0)
61 			break;
62 	}
63 
64 	if (i == i40e->i40e_resources.ifr_nmacfilt_used) {
65 		ret = ENOENT;
66 		goto done;
67 	}
68 
69 	iua = &i40e->i40e_uaddrs[i];
70 	ASSERT(i40e->i40e_resources.ifr_nmacfilt_used > 0);
71 
72 	bzero(&filt, sizeof (filt));
73 	bcopy(mac_addr, filt.mac_addr, ETHERADDRL);
74 	filt.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH |
75 	    I40E_AQC_MACVLAN_DEL_IGNORE_VLAN;
76 
77 	if (i40e_aq_remove_macvlan(hw, iua->iua_vsi, &filt, 1, NULL) !=
78 	    I40E_SUCCESS) {
79 		i40e_error(i40e, "failed to remove mac address "
80 		    "%2x:%2x:%2x:%2x:%2x:%2x from unicast filter: %d",
81 		    mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3],
82 		    mac_addr[4], mac_addr[5], filt.error_code);
83 		ret = EIO;
84 		goto done;
85 	}
86 
87 	last = i40e->i40e_resources.ifr_nmacfilt_used - 1;
88 	if (i != last) {
89 		i40e_uaddr_t *src = &i40e->i40e_uaddrs[last];
90 		bcopy(src, iua, sizeof (i40e_uaddr_t));
91 	}
92 
93 	/*
94 	 * Set the multicast bit in the last one to indicate to ourselves that
95 	 * it's invalid.
96 	 */
97 	bzero(&i40e->i40e_uaddrs[last], sizeof (i40e_uaddr_t));
98 	i40e->i40e_uaddrs[last].iua_mac[0] = 0x01;
99 	i40e->i40e_resources.ifr_nmacfilt_used--;
100 	ret = 0;
101 done:
102 	mutex_exit(&i40e->i40e_general_lock);
103 
104 	return (ret);
105 }
106 
107 static int
108 i40e_group_add_mac(void *arg, const uint8_t *mac_addr)
109 {
110 	i40e_t *i40e = arg;
111 	struct i40e_hw *hw = &i40e->i40e_hw_space;
112 	int i, ret;
113 	i40e_uaddr_t *iua;
114 	struct i40e_aqc_add_macvlan_element_data filt;
115 
116 	if (I40E_IS_MULTICAST(mac_addr))
117 		return (EINVAL);
118 
119 	mutex_enter(&i40e->i40e_general_lock);
120 	if (i40e->i40e_state & I40E_SUSPENDED) {
121 		ret = ECANCELED;
122 		goto done;
123 	}
124 
125 	if (i40e->i40e_resources.ifr_nmacfilt ==
126 	    i40e->i40e_resources.ifr_nmacfilt_used) {
127 		ret = ENOSPC;
128 		goto done;
129 	}
130 
131 	for (i = 0; i < i40e->i40e_resources.ifr_nmacfilt_used; i++) {
132 		if (bcmp(mac_addr, i40e->i40e_uaddrs[i].iua_mac,
133 		    ETHERADDRL) == 0) {
134 			ret = EEXIST;
135 			goto done;
136 		}
137 	}
138 
139 	/*
140 	 * Note, the general use of the i40e_vsi_id will have to be refactored
141 	 * when we have proper group support.
142 	 */
143 	bzero(&filt, sizeof (filt));
144 	bcopy(mac_addr, filt.mac_addr, ETHERADDRL);
145 	filt.flags = I40E_AQC_MACVLAN_ADD_PERFECT_MATCH	|
146 	    I40E_AQC_MACVLAN_ADD_IGNORE_VLAN;
147 
148 	if ((ret = i40e_aq_add_macvlan(hw, i40e->i40e_vsi_id, &filt, 1,
149 	    NULL)) != I40E_SUCCESS) {
150 		i40e_error(i40e, "failed to add mac address "
151 		    "%2x:%2x:%2x:%2x:%2x:%2x to unicast filter: %d",
152 		    mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3],
153 		    mac_addr[4], mac_addr[5], ret);
154 		ret = EIO;
155 		goto done;
156 	}
157 
158 	iua = &i40e->i40e_uaddrs[i40e->i40e_resources.ifr_nmacfilt_used];
159 	bcopy(mac_addr, iua->iua_mac, ETHERADDRL);
160 	iua->iua_vsi = i40e->i40e_vsi_id;
161 	i40e->i40e_resources.ifr_nmacfilt_used++;
162 	ASSERT(i40e->i40e_resources.ifr_nmacfilt_used <=
163 	    i40e->i40e_resources.ifr_nmacfilt);
164 	ret = 0;
165 done:
166 	mutex_exit(&i40e->i40e_general_lock);
167 	return (ret);
168 }
169 
170 static int
171 i40e_m_start(void *arg)
172 {
173 	i40e_t *i40e = arg;
174 	int rc = 0;
175 
176 	mutex_enter(&i40e->i40e_general_lock);
177 	if (i40e->i40e_state & I40E_SUSPENDED) {
178 		rc = ECANCELED;
179 		goto done;
180 	}
181 
182 	if (!i40e_start(i40e, B_TRUE)) {
183 		rc = EIO;
184 		goto done;
185 	}
186 
187 	atomic_or_32(&i40e->i40e_state, I40E_STARTED);
188 done:
189 	mutex_exit(&i40e->i40e_general_lock);
190 
191 	return (rc);
192 }
193 
194 static void
195 i40e_m_stop(void *arg)
196 {
197 	i40e_t *i40e = arg;
198 
199 	mutex_enter(&i40e->i40e_general_lock);
200 
201 	if (i40e->i40e_state & I40E_SUSPENDED)
202 		goto done;
203 
204 	atomic_and_32(&i40e->i40e_state, ~I40E_STARTED);
205 	i40e_stop(i40e, B_TRUE);
206 done:
207 	mutex_exit(&i40e->i40e_general_lock);
208 }
209 
210 /*
211  * Enable and disable promiscuous mode as requested. We have to toggle both
212  * unicast and multicast. Note that multicast may already be enabled due to the
213  * i40e_m_multicast may toggle it itself. See i40e_main.c for more information
214  * on this.
215  */
216 static int
217 i40e_m_promisc(void *arg, boolean_t on)
218 {
219 	i40e_t *i40e = arg;
220 	struct i40e_hw *hw = &i40e->i40e_hw_space;
221 	int ret = 0, err = 0;
222 
223 	mutex_enter(&i40e->i40e_general_lock);
224 	if (i40e->i40e_state & I40E_SUSPENDED) {
225 		ret = ECANCELED;
226 		goto done;
227 	}
228 
229 
230 	ret = i40e_aq_set_vsi_unicast_promiscuous(hw, i40e->i40e_vsi_id,
231 	    on, NULL, B_FALSE);
232 	if (ret != I40E_SUCCESS) {
233 		i40e_error(i40e, "failed to %s unicast promiscuity on "
234 		    "the default VSI: %d", on == B_TRUE ? "enable" : "disable",
235 		    ret);
236 		err = EIO;
237 		goto done;
238 	}
239 
240 	/*
241 	 * If we have a non-zero mcast_promisc_count, then it has already been
242 	 * enabled or we need to leave it that way and not touch it.
243 	 */
244 	if (i40e->i40e_mcast_promisc_count > 0) {
245 		i40e->i40e_promisc_on = on;
246 		goto done;
247 	}
248 
249 	ret = i40e_aq_set_vsi_multicast_promiscuous(hw, i40e->i40e_vsi_id,
250 	    on, NULL);
251 	if (ret != I40E_SUCCESS) {
252 		i40e_error(i40e, "failed to %s multicast promiscuity on "
253 		    "the default VSI: %d", on == B_TRUE ? "enable" : "disable",
254 		    ret);
255 
256 		/*
257 		 * Try our best to put us back into a state that MAC expects us
258 		 * to be in.
259 		 */
260 		ret = i40e_aq_set_vsi_unicast_promiscuous(hw, i40e->i40e_vsi_id,
261 		    !on, NULL, B_FALSE);
262 		if (ret != I40E_SUCCESS) {
263 			i40e_error(i40e, "failed to %s unicast promiscuity on "
264 			    "the default VSI after toggling multicast failed: "
265 			    "%d", on == B_TRUE ? "disable" : "enable", ret);
266 		}
267 
268 		err = EIO;
269 		goto done;
270 	} else {
271 		i40e->i40e_promisc_on = on;
272 	}
273 
274 done:
275 	mutex_exit(&i40e->i40e_general_lock);
276 	return (err);
277 }
278 
279 /*
280  * See the big theory statement in i40e_main.c for multicast address management.
281  */
282 static int
283 i40e_multicast_add(i40e_t *i40e, const uint8_t *multicast_address)
284 {
285 	struct i40e_hw *hw = &i40e->i40e_hw_space;
286 	struct i40e_aqc_add_macvlan_element_data filt;
287 	i40e_maddr_t *mc;
288 	int ret;
289 
290 	ASSERT(MUTEX_HELD(&i40e->i40e_general_lock));
291 
292 	if (i40e->i40e_resources.ifr_nmcastfilt_used ==
293 	    i40e->i40e_resources.ifr_nmcastfilt) {
294 		if (i40e->i40e_mcast_promisc_count == 0 &&
295 		    i40e->i40e_promisc_on == B_FALSE) {
296 			ret = i40e_aq_set_vsi_multicast_promiscuous(hw,
297 			    i40e->i40e_vsi_id, B_TRUE, NULL);
298 			if (ret != I40E_SUCCESS) {
299 				i40e_error(i40e, "failed to enable multicast "
300 				    "promiscuous mode on VSI %d: %d",
301 				    i40e->i40e_vsi_id, ret);
302 				return (EIO);
303 			}
304 		}
305 		i40e->i40e_mcast_promisc_count++;
306 		return (0);
307 	}
308 
309 	mc = &i40e->i40e_maddrs[i40e->i40e_resources.ifr_nmcastfilt_used];
310 	bzero(&filt, sizeof (filt));
311 	bcopy(multicast_address, filt.mac_addr, ETHERADDRL);
312 	filt.flags = I40E_AQC_MACVLAN_ADD_HASH_MATCH |
313 	    I40E_AQC_MACVLAN_ADD_IGNORE_VLAN;
314 
315 	if ((ret = i40e_aq_add_macvlan(hw, i40e->i40e_vsi_id, &filt, 1,
316 	    NULL)) != I40E_SUCCESS) {
317 		i40e_error(i40e, "failed to add mac address "
318 		    "%2x:%2x:%2x:%2x:%2x:%2x to multicast filter: %d",
319 		    multicast_address[0], multicast_address[1],
320 		    multicast_address[2], multicast_address[3],
321 		    multicast_address[4], multicast_address[5],
322 		    ret);
323 		return (EIO);
324 	}
325 
326 	bcopy(multicast_address, mc->ima_mac, ETHERADDRL);
327 	i40e->i40e_resources.ifr_nmcastfilt_used++;
328 	return (0);
329 }
330 
331 /*
332  * See the big theory statement in i40e_main.c for multicast address management.
333  */
334 static int
335 i40e_multicast_remove(i40e_t *i40e, const uint8_t *multicast_address)
336 {
337 	int i, ret;
338 	struct i40e_hw *hw = &i40e->i40e_hw_space;
339 
340 	ASSERT(MUTEX_HELD(&i40e->i40e_general_lock));
341 
342 	for (i = 0; i < i40e->i40e_resources.ifr_nmcastfilt_used; i++) {
343 		struct i40e_aqc_remove_macvlan_element_data filt;
344 		int last;
345 
346 		if (bcmp(multicast_address, i40e->i40e_maddrs[i].ima_mac,
347 		    ETHERADDRL) != 0) {
348 			continue;
349 		}
350 
351 		bzero(&filt, sizeof (filt));
352 		bcopy(multicast_address, filt.mac_addr, ETHERADDRL);
353 		filt.flags = I40E_AQC_MACVLAN_DEL_HASH_MATCH |
354 		    I40E_AQC_MACVLAN_DEL_IGNORE_VLAN;
355 
356 		if (i40e_aq_remove_macvlan(hw, i40e->i40e_vsi_id,
357 		    &filt, 1, NULL) != I40E_SUCCESS) {
358 			i40e_error(i40e, "failed to remove mac address "
359 			    "%2x:%2x:%2x:%2x:%2x:%2x from multicast "
360 			    "filter: %d",
361 			    multicast_address[0], multicast_address[1],
362 			    multicast_address[2], multicast_address[3],
363 			    multicast_address[4], multicast_address[5],
364 			    filt.error_code);
365 			return (EIO);
366 		}
367 
368 		last = i40e->i40e_resources.ifr_nmcastfilt_used - 1;
369 		if (i != last) {
370 			bcopy(&i40e->i40e_maddrs[last], &i40e->i40e_maddrs[i],
371 			    sizeof (i40e_maddr_t));
372 			bzero(&i40e->i40e_maddrs[last], sizeof (i40e_maddr_t));
373 		}
374 
375 		ASSERT(i40e->i40e_resources.ifr_nmcastfilt_used > 0);
376 		i40e->i40e_resources.ifr_nmcastfilt_used--;
377 		return (0);
378 	}
379 
380 	if (i40e->i40e_mcast_promisc_count > 0) {
381 		if (i40e->i40e_mcast_promisc_count == 1 &&
382 		    i40e->i40e_promisc_on == B_FALSE) {
383 			ret = i40e_aq_set_vsi_multicast_promiscuous(hw,
384 			    i40e->i40e_vsi_id, B_FALSE, NULL);
385 			if (ret != I40E_SUCCESS) {
386 				i40e_error(i40e, "failed to disable "
387 				    "multicast promiscuous mode on VSI %d: %d",
388 				    i40e->i40e_vsi_id, ret);
389 				return (EIO);
390 			}
391 		}
392 		i40e->i40e_mcast_promisc_count--;
393 
394 		return (0);
395 	}
396 
397 	return (ENOENT);
398 }
399 
400 static int
401 i40e_m_multicast(void *arg, boolean_t add, const uint8_t *multicast_address)
402 {
403 	i40e_t *i40e = arg;
404 	int rc;
405 
406 	mutex_enter(&i40e->i40e_general_lock);
407 
408 	if (i40e->i40e_state & I40E_SUSPENDED) {
409 		mutex_exit(&i40e->i40e_general_lock);
410 		return (ECANCELED);
411 	}
412 
413 	if (add == B_TRUE) {
414 		rc = i40e_multicast_add(i40e, multicast_address);
415 	} else {
416 		rc = i40e_multicast_remove(i40e, multicast_address);
417 	}
418 
419 	mutex_exit(&i40e->i40e_general_lock);
420 	return (rc);
421 }
422 
423 /* ARGSUSED */
424 static void
425 i40e_m_ioctl(void *arg, queue_t *q, mblk_t *mp)
426 {
427 	/*
428 	 * At this time, we don't support toggling i40e into loopback mode. It's
429 	 * questionable how much value this has when there's no clear way to
430 	 * toggle this behavior from a supported way in userland.
431 	 */
432 	miocnak(q, mp, 0, EINVAL);
433 }
434 
435 static int
436 i40e_ring_start(mac_ring_driver_t rh, uint64_t gen_num)
437 {
438 	i40e_trqpair_t *itrq = (i40e_trqpair_t *)rh;
439 
440 	/*
441 	 * GLDv3 requires we keep track of a generation number, as it uses
442 	 * that number to keep track of whether or not a ring is active.
443 	 */
444 	mutex_enter(&itrq->itrq_rx_lock);
445 	itrq->itrq_rxgen = gen_num;
446 	mutex_exit(&itrq->itrq_rx_lock);
447 	return (0);
448 }
449 
450 /* ARGSUSED */
451 static int
452 i40e_rx_ring_intr_enable(mac_intr_handle_t intrh)
453 {
454 	i40e_trqpair_t *itrq = (i40e_trqpair_t *)intrh;
455 
456 	mutex_enter(&itrq->itrq_rx_lock);
457 	ASSERT(itrq->itrq_intr_poll == B_TRUE);
458 	i40e_intr_rx_queue_enable(itrq);
459 	itrq->itrq_intr_poll = B_FALSE;
460 	mutex_exit(&itrq->itrq_rx_lock);
461 
462 	return (0);
463 }
464 
465 /* ARGSUSED */
466 static int
467 i40e_rx_ring_intr_disable(mac_intr_handle_t intrh)
468 {
469 	i40e_trqpair_t *itrq = (i40e_trqpair_t *)intrh;
470 
471 	mutex_enter(&itrq->itrq_rx_lock);
472 	i40e_intr_rx_queue_disable(itrq);
473 	itrq->itrq_intr_poll = B_TRUE;
474 	mutex_exit(&itrq->itrq_rx_lock);
475 
476 	return (0);
477 }
478 
479 /* ARGSUSED */
480 static void
481 i40e_fill_tx_ring(void *arg, mac_ring_type_t rtype, const int group_index,
482     const int ring_index, mac_ring_info_t *infop, mac_ring_handle_t rh)
483 {
484 	i40e_t *i40e = arg;
485 	mac_intr_t *mintr = &infop->mri_intr;
486 	i40e_trqpair_t *itrq = &(i40e->i40e_trqpairs[ring_index]);
487 
488 	/*
489 	 * Note the group index here is expected to be -1 due to the fact that
490 	 * we're not actually grouping things tx-wise at this time.
491 	 */
492 	ASSERT(group_index == -1);
493 	ASSERT(ring_index < i40e->i40e_num_trqpairs);
494 
495 	itrq->itrq_mactxring = rh;
496 	infop->mri_driver = (mac_ring_driver_t)itrq;
497 	infop->mri_start = NULL;
498 	infop->mri_stop = NULL;
499 	infop->mri_tx = i40e_ring_tx;
500 	infop->mri_stat = i40e_tx_ring_stat;
501 
502 	/*
503 	 * We only provide the handle in cases where we have MSI-X interrupts,
504 	 * to indicate that we'd actually support retargetting.
505 	 */
506 	if (i40e->i40e_intr_type & DDI_INTR_TYPE_MSIX) {
507 		mintr->mi_ddi_handle =
508 		    i40e->i40e_intr_handles[itrq->itrq_tx_intrvec];
509 	}
510 }
511 
512 /* ARGSUSED */
513 static void
514 i40e_fill_rx_ring(void *arg, mac_ring_type_t rtype, const int group_index,
515     const int ring_index, mac_ring_info_t *infop, mac_ring_handle_t rh)
516 {
517 	i40e_t *i40e = arg;
518 	mac_intr_t *mintr = &infop->mri_intr;
519 	i40e_trqpair_t *itrq = &i40e->i40e_trqpairs[ring_index];
520 
521 	/*
522 	 * We assert the group number and ring index to help sanity check
523 	 * ourselves and mark that we'll need to rework this when we have
524 	 * multiple groups.
525 	 */
526 	ASSERT3S(group_index, ==, 0);
527 	ASSERT3S(ring_index, <, i40e->i40e_num_trqpairs);
528 
529 	itrq->itrq_macrxring = rh;
530 	infop->mri_driver = (mac_ring_driver_t)itrq;
531 	infop->mri_start = i40e_ring_start;
532 	infop->mri_stop = NULL;
533 	infop->mri_poll = i40e_ring_rx_poll;
534 	infop->mri_stat = i40e_rx_ring_stat;
535 	mintr->mi_handle = (mac_intr_handle_t)itrq;
536 	mintr->mi_enable = i40e_rx_ring_intr_enable;
537 	mintr->mi_disable = i40e_rx_ring_intr_disable;
538 
539 	/*
540 	 * We only provide the handle in cases where we have MSI-X interrupts,
541 	 * to indicate that we'd actually support retargetting.
542 	 */
543 	if (i40e->i40e_intr_type & DDI_INTR_TYPE_MSIX) {
544 		mintr->mi_ddi_handle =
545 		    i40e->i40e_intr_handles[itrq->itrq_rx_intrvec];
546 	}
547 }
548 
549 /* ARGSUSED */
550 static void
551 i40e_fill_rx_group(void *arg, mac_ring_type_t rtype, const int index,
552     mac_group_info_t *infop, mac_group_handle_t gh)
553 {
554 	i40e_t *i40e = arg;
555 
556 	if (rtype != MAC_RING_TYPE_RX)
557 		return;
558 
559 	/*
560 	 * Note, this is a simplified view of a group, given that we only have a
561 	 * single group and a single ring at the moment. We'll want to expand
562 	 * upon this as we leverage more hardware functionality.
563 	 */
564 	i40e->i40e_rx_group_handle = gh;
565 	infop->mgi_driver = (mac_group_driver_t)i40e;
566 	infop->mgi_start = NULL;
567 	infop->mgi_stop = NULL;
568 	infop->mgi_addmac = i40e_group_add_mac;
569 	infop->mgi_remmac = i40e_group_remove_mac;
570 
571 	ASSERT(i40e->i40e_num_rx_groups == I40E_GROUP_MAX);
572 	infop->mgi_count = i40e->i40e_num_trqpairs;
573 }
574 
575 static int
576 i40e_transceiver_info(void *arg, uint_t id, mac_transceiver_info_t *infop)
577 {
578 	boolean_t present, usable;
579 	i40e_t *i40e = arg;
580 
581 	if (id != 0 || infop == NULL)
582 		return (EINVAL);
583 
584 	mutex_enter(&i40e->i40e_general_lock);
585 	present = !!(i40e->i40e_hw_space.phy.link_info.link_info &
586 	    I40E_AQ_MEDIA_AVAILABLE);
587 	if (present) {
588 		usable = !!(i40e->i40e_hw_space.phy.link_info.an_info &
589 		    I40E_AQ_QUALIFIED_MODULE);
590 	} else {
591 		usable = B_FALSE;
592 	}
593 	mutex_exit(&i40e->i40e_general_lock);
594 
595 	mac_transceiver_info_set_usable(infop, usable);
596 	mac_transceiver_info_set_present(infop, present);
597 
598 	return (0);
599 }
600 
601 static int
602 i40e_gld_led_set(void *arg, mac_led_mode_t mode, uint_t flags)
603 {
604 	i40e_t *i40e = arg;
605 	struct i40e_hw *hw = &i40e->i40e_hw_space;
606 
607 	if (flags != 0)
608 		return (EINVAL);
609 
610 	if (mode != MAC_LED_DEFAULT &&
611 	    mode != MAC_LED_IDENT &&
612 	    mode != MAC_LED_OFF &&
613 	    mode != MAC_LED_ON)
614 		return (ENOTSUP);
615 
616 	if (mode != MAC_LED_DEFAULT && !i40e->i40e_led_saved) {
617 		i40e->i40e_led_status = i40e_led_get(hw);
618 		i40e->i40e_led_saved = B_TRUE;
619 	}
620 
621 	switch (mode) {
622 	case MAC_LED_DEFAULT:
623 		if (i40e->i40e_led_saved) {
624 			i40e_led_set(hw, i40e->i40e_led_status, B_FALSE);
625 			i40e->i40e_led_status = 0;
626 			i40e->i40e_led_saved = B_FALSE;
627 		}
628 		break;
629 	case MAC_LED_IDENT:
630 		i40e_led_set(hw, 0xf, B_TRUE);
631 		break;
632 	case MAC_LED_OFF:
633 		i40e_led_set(hw, 0x0, B_FALSE);
634 		break;
635 	case MAC_LED_ON:
636 		i40e_led_set(hw, 0xf, B_FALSE);
637 		break;
638 	default:
639 		return (ENOTSUP);
640 	}
641 
642 	return (0);
643 }
644 
645 static boolean_t
646 i40e_m_getcapab(void *arg, mac_capab_t cap, void *cap_data)
647 {
648 	i40e_t *i40e = arg;
649 	mac_capab_rings_t *cap_rings;
650 	mac_capab_transceiver_t *mct;
651 	mac_capab_led_t *mcl;
652 
653 	switch (cap) {
654 	case MAC_CAPAB_HCKSUM: {
655 		uint32_t *txflags = cap_data;
656 
657 		*txflags = 0;
658 		if (i40e->i40e_tx_hcksum_enable == B_TRUE)
659 			*txflags = HCKSUM_INET_PARTIAL | HCKSUM_IPHDRCKSUM;
660 		break;
661 	}
662 
663 	case MAC_CAPAB_RINGS:
664 		cap_rings = cap_data;
665 		cap_rings->mr_group_type = MAC_GROUP_TYPE_STATIC;
666 		switch (cap_rings->mr_type) {
667 		case MAC_RING_TYPE_TX:
668 			/*
669 			 * Note, saying we have no rings, but some number of
670 			 * groups indicates to MAC that it should create
671 			 * psuedo-groups with one for each TX ring. This may not
672 			 * be the long term behavior we want, but it'll work for
673 			 * now.
674 			 */
675 			cap_rings->mr_gnum = 0;
676 			cap_rings->mr_rnum = i40e->i40e_num_trqpairs;
677 			cap_rings->mr_rget = i40e_fill_tx_ring;
678 			cap_rings->mr_gget = NULL;
679 			cap_rings->mr_gaddring = NULL;
680 			cap_rings->mr_gremring = NULL;
681 			break;
682 		case MAC_RING_TYPE_RX:
683 			cap_rings->mr_rnum = i40e->i40e_num_trqpairs;
684 			cap_rings->mr_rget = i40e_fill_rx_ring;
685 			cap_rings->mr_gnum = I40E_GROUP_MAX;
686 			cap_rings->mr_gget = i40e_fill_rx_group;
687 			cap_rings->mr_gaddring = NULL;
688 			cap_rings->mr_gremring = NULL;
689 			break;
690 		default:
691 			return (B_FALSE);
692 		}
693 		break;
694 	case MAC_CAPAB_TRANSCEIVER:
695 		mct = cap_data;
696 
697 		/*
698 		 * Firmware doesn't have a great way of telling us in advance
699 		 * whether we'd expect a SFF transceiver. As such, we always
700 		 * advertise the support for this capability.
701 		 */
702 		mct->mct_flags = 0;
703 		mct->mct_ntransceivers = 1;
704 		mct->mct_info = i40e_transceiver_info;
705 		mct->mct_read = NULL;
706 
707 		return (B_TRUE);
708 	case MAC_CAPAB_LED:
709 		mcl = cap_data;
710 
711 		mcl->mcl_flags = 0;
712 		mcl->mcl_modes = MAC_LED_DEFAULT | MAC_LED_IDENT | MAC_LED_OFF |
713 		    MAC_LED_ON;
714 		mcl->mcl_set = i40e_gld_led_set;
715 		break;
716 
717 	default:
718 		return (B_FALSE);
719 	}
720 
721 	return (B_TRUE);
722 }
723 
724 /* ARGSUSED */
725 static int
726 i40e_m_setprop_private(i40e_t *i40e, const char *pr_name, uint_t pr_valsize,
727     const void *pr_val)
728 {
729 	int ret;
730 	long val;
731 	char *eptr;
732 
733 	ASSERT(MUTEX_HELD(&i40e->i40e_general_lock));
734 
735 	if ((ret = ddi_strtol(pr_val, &eptr, 10, &val)) != 0 ||
736 	    *eptr != '\0') {
737 		return (ret);
738 	}
739 
740 	if (strcmp(pr_name, I40E_PROP_RX_DMA_THRESH) == 0) {
741 		if (val < I40E_MIN_RX_DMA_THRESH ||
742 		    val > I40E_MAX_RX_DMA_THRESH) {
743 			return (EINVAL);
744 		}
745 		i40e->i40e_rx_dma_min = (uint32_t)val;
746 		return (0);
747 	}
748 
749 	if (strcmp(pr_name, I40E_PROP_TX_DMA_THRESH) == 0) {
750 		if (val < I40E_MIN_TX_DMA_THRESH ||
751 		    val > I40E_MAX_TX_DMA_THRESH) {
752 			return (EINVAL);
753 		}
754 		i40e->i40e_tx_dma_min = (uint32_t)val;
755 		return (0);
756 	}
757 
758 	if (strcmp(pr_name, I40E_PROP_RX_ITR) == 0) {
759 		if (val < I40E_MIN_ITR ||
760 		    val > I40E_MAX_ITR) {
761 			return (EINVAL);
762 		}
763 		i40e->i40e_rx_itr = (uint32_t)val;
764 		i40e_intr_set_itr(i40e, I40E_ITR_INDEX_RX, i40e->i40e_rx_itr);
765 		return (0);
766 	}
767 
768 	if (strcmp(pr_name, I40E_PROP_TX_ITR) == 0) {
769 		if (val < I40E_MIN_ITR ||
770 		    val > I40E_MAX_ITR) {
771 			return (EINVAL);
772 		}
773 		i40e->i40e_tx_itr = (uint32_t)val;
774 		i40e_intr_set_itr(i40e, I40E_ITR_INDEX_TX, i40e->i40e_tx_itr);
775 		return (0);
776 	}
777 
778 	if (strcmp(pr_name, I40E_PROP_OTHER_ITR) == 0) {
779 		if (val < I40E_MIN_ITR ||
780 		    val > I40E_MAX_ITR) {
781 			return (EINVAL);
782 		}
783 		i40e->i40e_tx_itr = (uint32_t)val;
784 		i40e_intr_set_itr(i40e, I40E_ITR_INDEX_OTHER,
785 		    i40e->i40e_other_itr);
786 		return (0);
787 	}
788 
789 	return (ENOTSUP);
790 }
791 
792 static int
793 i40e_m_getprop_private(i40e_t *i40e, const char *pr_name, uint_t pr_valsize,
794     void *pr_val)
795 {
796 	uint32_t val;
797 
798 	ASSERT(MUTEX_HELD(&i40e->i40e_general_lock));
799 
800 	if (strcmp(pr_name, I40E_PROP_RX_DMA_THRESH) == 0) {
801 		val = i40e->i40e_rx_dma_min;
802 	} else if (strcmp(pr_name, I40E_PROP_TX_DMA_THRESH) == 0) {
803 		val = i40e->i40e_tx_dma_min;
804 	} else if (strcmp(pr_name, I40E_PROP_RX_ITR) == 0) {
805 		val = i40e->i40e_rx_itr;
806 	} else if (strcmp(pr_name, I40E_PROP_TX_ITR) == 0) {
807 		val = i40e->i40e_tx_itr;
808 	} else if (strcmp(pr_name, I40E_PROP_OTHER_ITR) == 0) {
809 		val = i40e->i40e_other_itr;
810 	} else {
811 		return (ENOTSUP);
812 	}
813 
814 	if (snprintf(pr_val, pr_valsize, "%d", val) >= pr_valsize)
815 		return (ERANGE);
816 	return (0);
817 }
818 
819 /*
820  * Annoyingly for private properties MAC seems to ignore default values that
821  * aren't strings. That means that we have to translate all of these into
822  * uint32_t's and instead we size the buffer to be large enough to hold a
823  * uint32_t.
824  */
825 /* ARGSUSED */
826 static void
827 i40e_m_propinfo_private(i40e_t *i40e, const char *pr_name,
828     mac_prop_info_handle_t prh)
829 {
830 	char buf[64];
831 	uint32_t def;
832 
833 	if (strcmp(pr_name, I40E_PROP_RX_DMA_THRESH) == 0) {
834 		mac_prop_info_set_perm(prh, MAC_PROP_PERM_RW);
835 		def = I40E_DEF_RX_DMA_THRESH;
836 		mac_prop_info_set_range_uint32(prh,
837 		    I40E_MIN_RX_DMA_THRESH,
838 		    I40E_MAX_RX_DMA_THRESH);
839 	} else if (strcmp(pr_name, I40E_PROP_TX_DMA_THRESH) == 0) {
840 		mac_prop_info_set_perm(prh, MAC_PROP_PERM_RW);
841 		def = I40E_DEF_TX_DMA_THRESH;
842 		mac_prop_info_set_range_uint32(prh,
843 		    I40E_MIN_TX_DMA_THRESH,
844 		    I40E_MAX_TX_DMA_THRESH);
845 	} else if (strcmp(pr_name, I40E_PROP_RX_ITR) == 0) {
846 		mac_prop_info_set_perm(prh, MAC_PROP_PERM_RW);
847 		def = I40E_DEF_RX_ITR;
848 		mac_prop_info_set_range_uint32(prh, I40E_MIN_ITR, I40E_MAX_ITR);
849 	} else if (strcmp(pr_name, I40E_PROP_TX_ITR) == 0) {
850 		mac_prop_info_set_perm(prh, MAC_PROP_PERM_RW);
851 		def = I40E_DEF_TX_ITR;
852 		mac_prop_info_set_range_uint32(prh, I40E_MIN_ITR, I40E_MAX_ITR);
853 	} else if (strcmp(pr_name, I40E_PROP_OTHER_ITR) == 0) {
854 		mac_prop_info_set_perm(prh, MAC_PROP_PERM_RW);
855 		def = I40E_DEF_OTHER_ITR;
856 		mac_prop_info_set_range_uint32(prh, I40E_MIN_ITR, I40E_MAX_ITR);
857 	} else {
858 		return;
859 	}
860 
861 	(void) snprintf(buf, sizeof (buf), "%d", def);
862 	mac_prop_info_set_default_str(prh, buf);
863 }
864 
865 static int
866 i40e_m_setprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
867     uint_t pr_valsize, const void *pr_val)
868 {
869 	uint32_t new_mtu;
870 	i40e_t *i40e = arg;
871 	int ret = 0;
872 
873 	mutex_enter(&i40e->i40e_general_lock);
874 	if (i40e->i40e_state & I40E_SUSPENDED) {
875 		mutex_exit(&i40e->i40e_general_lock);
876 		return (ECANCELED);
877 	}
878 
879 	switch (pr_num) {
880 	/*
881 	 * These properties are always read-only across every device.
882 	 */
883 	case MAC_PROP_DUPLEX:
884 	case MAC_PROP_SPEED:
885 	case MAC_PROP_STATUS:
886 	case MAC_PROP_ADV_100FDX_CAP:
887 	case MAC_PROP_ADV_1000FDX_CAP:
888 	case MAC_PROP_ADV_10GFDX_CAP:
889 	case MAC_PROP_ADV_25GFDX_CAP:
890 	case MAC_PROP_ADV_40GFDX_CAP:
891 		ret = ENOTSUP;
892 		break;
893 	/*
894 	 * These are read-only at this time as we don't support configuring
895 	 * auto-negotiation. See the theory statement in i40e_main.c.
896 	 */
897 	case MAC_PROP_EN_100FDX_CAP:
898 	case MAC_PROP_EN_1000FDX_CAP:
899 	case MAC_PROP_EN_10GFDX_CAP:
900 	case MAC_PROP_EN_25GFDX_CAP:
901 	case MAC_PROP_EN_40GFDX_CAP:
902 	case MAC_PROP_AUTONEG:
903 	case MAC_PROP_FLOWCTRL:
904 		ret = ENOTSUP;
905 		break;
906 
907 	case MAC_PROP_MTU:
908 		bcopy(pr_val, &new_mtu, sizeof (new_mtu));
909 		if (new_mtu == i40e->i40e_sdu)
910 			break;
911 
912 		if (new_mtu < I40E_MIN_MTU ||
913 		    new_mtu > I40E_MAX_MTU) {
914 			ret = EINVAL;
915 			break;
916 		}
917 
918 		if (i40e->i40e_state & I40E_STARTED) {
919 			ret = EBUSY;
920 			break;
921 		}
922 
923 		ret = mac_maxsdu_update(i40e->i40e_mac_hdl, new_mtu);
924 		if (ret == 0) {
925 			i40e->i40e_sdu = new_mtu;
926 			i40e_update_mtu(i40e);
927 		}
928 		break;
929 
930 	case MAC_PROP_PRIVATE:
931 		ret = i40e_m_setprop_private(i40e, pr_name, pr_valsize, pr_val);
932 		break;
933 	default:
934 		ret = ENOTSUP;
935 		break;
936 	}
937 
938 	mutex_exit(&i40e->i40e_general_lock);
939 	return (ret);
940 }
941 
942 static int
943 i40e_m_getprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
944     uint_t pr_valsize, void *pr_val)
945 {
946 	i40e_t *i40e = arg;
947 	uint64_t speed;
948 	int ret = 0;
949 	uint8_t *u8;
950 	link_flowctrl_t fctl;
951 
952 	mutex_enter(&i40e->i40e_general_lock);
953 
954 	switch (pr_num) {
955 	case MAC_PROP_DUPLEX:
956 		if (pr_valsize < sizeof (link_duplex_t)) {
957 			ret = EOVERFLOW;
958 			break;
959 		}
960 		bcopy(&i40e->i40e_link_duplex, pr_val, sizeof (link_duplex_t));
961 		break;
962 	case MAC_PROP_SPEED:
963 		if (pr_valsize < sizeof (uint64_t)) {
964 			ret = EOVERFLOW;
965 			break;
966 		}
967 		speed = i40e->i40e_link_speed * 1000000ULL;
968 		bcopy(&speed, pr_val, sizeof (speed));
969 		break;
970 	case MAC_PROP_STATUS:
971 		if (pr_valsize < sizeof (link_state_t)) {
972 			ret = EOVERFLOW;
973 			break;
974 		}
975 		bcopy(&i40e->i40e_link_state, pr_val, sizeof (link_state_t));
976 		break;
977 	case MAC_PROP_AUTONEG:
978 		if (pr_valsize < sizeof (uint8_t)) {
979 			ret = EOVERFLOW;
980 			break;
981 		}
982 		u8 = pr_val;
983 		*u8 = 1;
984 		break;
985 	case MAC_PROP_FLOWCTRL:
986 		/*
987 		 * Because we don't currently support hardware flow control, we
988 		 * just hardcode this to be none.
989 		 */
990 		if (pr_valsize < sizeof (link_flowctrl_t)) {
991 			ret = EOVERFLOW;
992 			break;
993 		}
994 		fctl = LINK_FLOWCTRL_NONE;
995 		bcopy(&fctl, pr_val, sizeof (link_flowctrl_t));
996 		break;
997 	case MAC_PROP_MTU:
998 		if (pr_valsize < sizeof (uint32_t)) {
999 			ret = EOVERFLOW;
1000 			break;
1001 		}
1002 		bcopy(&i40e->i40e_sdu, pr_val, sizeof (uint32_t));
1003 		break;
1004 
1005 	/*
1006 	 * Because we don't let users control the speeds we may auto-negotiate
1007 	 * to, the values of the ADV_ and EN_ will always be the same.
1008 	 */
1009 	case MAC_PROP_ADV_100FDX_CAP:
1010 	case MAC_PROP_EN_100FDX_CAP:
1011 		if (pr_valsize < sizeof (uint8_t)) {
1012 			ret = EOVERFLOW;
1013 			break;
1014 		}
1015 		u8 = pr_val;
1016 		*u8 = (i40e->i40e_phy.link_speed & I40E_LINK_SPEED_100MB) != 0;
1017 		break;
1018 	case MAC_PROP_ADV_1000FDX_CAP:
1019 	case MAC_PROP_EN_1000FDX_CAP:
1020 		if (pr_valsize < sizeof (uint8_t)) {
1021 			ret = EOVERFLOW;
1022 			break;
1023 		}
1024 		u8 = pr_val;
1025 		*u8 = (i40e->i40e_phy.link_speed & I40E_LINK_SPEED_1GB) != 0;
1026 		break;
1027 	case MAC_PROP_ADV_10GFDX_CAP:
1028 	case MAC_PROP_EN_10GFDX_CAP:
1029 		if (pr_valsize < sizeof (uint8_t)) {
1030 			ret = EOVERFLOW;
1031 			break;
1032 		}
1033 		u8 = pr_val;
1034 		*u8 = (i40e->i40e_phy.link_speed & I40E_LINK_SPEED_10GB) != 0;
1035 		break;
1036 	case MAC_PROP_ADV_25GFDX_CAP:
1037 	case MAC_PROP_EN_25GFDX_CAP:
1038 		if (pr_valsize < sizeof (uint8_t)) {
1039 			ret = EOVERFLOW;
1040 			break;
1041 		}
1042 		u8 = pr_val;
1043 		*u8 = (i40e->i40e_phy.link_speed & I40E_LINK_SPEED_25GB) != 0;
1044 		break;
1045 	case MAC_PROP_ADV_40GFDX_CAP:
1046 	case MAC_PROP_EN_40GFDX_CAP:
1047 		if (pr_valsize < sizeof (uint8_t)) {
1048 			ret = EOVERFLOW;
1049 			break;
1050 		}
1051 		u8 = pr_val;
1052 		*u8 = (i40e->i40e_phy.link_speed & I40E_LINK_SPEED_40GB) != 0;
1053 		break;
1054 	case MAC_PROP_PRIVATE:
1055 		ret = i40e_m_getprop_private(i40e, pr_name, pr_valsize, pr_val);
1056 		break;
1057 	default:
1058 		ret = ENOTSUP;
1059 		break;
1060 	}
1061 
1062 	mutex_exit(&i40e->i40e_general_lock);
1063 
1064 	return (ret);
1065 }
1066 
1067 static void
1068 i40e_m_propinfo(void *arg, const char *pr_name, mac_prop_id_t pr_num,
1069     mac_prop_info_handle_t prh)
1070 {
1071 	i40e_t *i40e = arg;
1072 
1073 	mutex_enter(&i40e->i40e_general_lock);
1074 
1075 	switch (pr_num) {
1076 	case MAC_PROP_DUPLEX:
1077 	case MAC_PROP_SPEED:
1078 		mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
1079 		break;
1080 	case MAC_PROP_FLOWCTRL:
1081 		/*
1082 		 * At the moment, the driver doesn't support flow control, hence
1083 		 * why this is set to read-only and none.
1084 		 */
1085 		mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
1086 		mac_prop_info_set_default_link_flowctrl(prh,
1087 		    LINK_FLOWCTRL_NONE);
1088 		break;
1089 	case MAC_PROP_MTU:
1090 		mac_prop_info_set_range_uint32(prh, I40E_MIN_MTU, I40E_MAX_MTU);
1091 		break;
1092 
1093 	/*
1094 	 * We set the defaults for these based upon the phy's ability to
1095 	 * support the speeds. Note, auto-negotiation is required for fiber,
1096 	 * hence it is read-only and always enabled. When we have access to
1097 	 * copper phys we can revisit this.
1098 	 */
1099 	case MAC_PROP_AUTONEG:
1100 		mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
1101 		mac_prop_info_set_default_uint8(prh, 1);
1102 		break;
1103 	case MAC_PROP_ADV_100FDX_CAP:
1104 		mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
1105 		mac_prop_info_set_default_uint8(prh,
1106 		    (i40e->i40e_phy.link_speed & I40E_LINK_SPEED_100MB) != 0);
1107 		break;
1108 	case MAC_PROP_EN_100FDX_CAP:
1109 		mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
1110 		mac_prop_info_set_default_uint8(prh,
1111 		    (i40e->i40e_phy.link_speed & I40E_LINK_SPEED_100MB) != 0);
1112 		break;
1113 	case MAC_PROP_ADV_1000FDX_CAP:
1114 		mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
1115 		mac_prop_info_set_default_uint8(prh,
1116 		    (i40e->i40e_phy.link_speed & I40E_LINK_SPEED_1GB) != 0);
1117 		break;
1118 	case MAC_PROP_EN_1000FDX_CAP:
1119 		mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
1120 		mac_prop_info_set_default_uint8(prh,
1121 		    (i40e->i40e_phy.link_speed & I40E_LINK_SPEED_1GB) != 0);
1122 		break;
1123 	case MAC_PROP_ADV_10GFDX_CAP:
1124 		mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
1125 		mac_prop_info_set_default_uint8(prh,
1126 		    (i40e->i40e_phy.link_speed & I40E_LINK_SPEED_10GB) != 0);
1127 		break;
1128 	case MAC_PROP_EN_10GFDX_CAP:
1129 		mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
1130 		mac_prop_info_set_default_uint8(prh,
1131 		    (i40e->i40e_phy.link_speed & I40E_LINK_SPEED_10GB) != 0);
1132 		break;
1133 	case MAC_PROP_ADV_25GFDX_CAP:
1134 		mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
1135 		mac_prop_info_set_default_uint8(prh,
1136 		    (i40e->i40e_phy.link_speed & I40E_LINK_SPEED_25GB) != 0);
1137 		break;
1138 	case MAC_PROP_EN_25GFDX_CAP:
1139 		mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
1140 		mac_prop_info_set_default_uint8(prh,
1141 		    (i40e->i40e_phy.link_speed & I40E_LINK_SPEED_25GB) != 0);
1142 		break;
1143 	case MAC_PROP_ADV_40GFDX_CAP:
1144 		mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
1145 		mac_prop_info_set_default_uint8(prh,
1146 		    (i40e->i40e_phy.link_speed & I40E_LINK_SPEED_40GB) != 0);
1147 		break;
1148 	case MAC_PROP_EN_40GFDX_CAP:
1149 		mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
1150 		mac_prop_info_set_default_uint8(prh,
1151 		    (i40e->i40e_phy.link_speed & I40E_LINK_SPEED_40GB) != 0);
1152 		break;
1153 	case MAC_PROP_PRIVATE:
1154 		i40e_m_propinfo_private(i40e, pr_name, prh);
1155 		break;
1156 	default:
1157 		break;
1158 	}
1159 
1160 	mutex_exit(&i40e->i40e_general_lock);
1161 }
1162 
1163 #define	I40E_M_CALLBACK_FLAGS \
1164 	(MC_IOCTL | MC_GETCAPAB | MC_SETPROP | MC_GETPROP | MC_PROPINFO)
1165 
1166 static mac_callbacks_t i40e_m_callbacks = {
1167 	I40E_M_CALLBACK_FLAGS,
1168 	i40e_m_stat,
1169 	i40e_m_start,
1170 	i40e_m_stop,
1171 	i40e_m_promisc,
1172 	i40e_m_multicast,
1173 	NULL,
1174 	NULL,
1175 	NULL,
1176 	i40e_m_ioctl,
1177 	i40e_m_getcapab,
1178 	NULL,
1179 	NULL,
1180 	i40e_m_setprop,
1181 	i40e_m_getprop,
1182 	i40e_m_propinfo
1183 };
1184 
1185 boolean_t
1186 i40e_register_mac(i40e_t *i40e)
1187 {
1188 	struct i40e_hw *hw = &i40e->i40e_hw_space;
1189 	int status;
1190 	mac_register_t *mac = mac_alloc(MAC_VERSION);
1191 
1192 	if (mac == NULL)
1193 		return (B_FALSE);
1194 
1195 	mac->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
1196 	mac->m_driver = i40e;
1197 	mac->m_dip = i40e->i40e_dip;
1198 	mac->m_src_addr = hw->mac.addr;
1199 	mac->m_callbacks = &i40e_m_callbacks;
1200 	mac->m_min_sdu = 0;
1201 	mac->m_max_sdu = i40e->i40e_sdu;
1202 	mac->m_margin = VLAN_TAGSZ;
1203 	mac->m_priv_props = i40e_priv_props;
1204 	mac->m_v12n = MAC_VIRT_LEVEL1;
1205 
1206 	status = mac_register(mac, &i40e->i40e_mac_hdl);
1207 	if (status != 0)
1208 		i40e_error(i40e, "mac_register() returned %d", status);
1209 	mac_free(mac);
1210 
1211 	return (status == 0);
1212 }
1213