1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 QLogic Corporation. All rights reserved.
24  */
25 
26 #include <qlge.h>
27 #include <sys/atomic.h>
28 #include <sys/strsubr.h>
29 #include <sys/pattr.h>
30 #include <netinet/in.h>
31 #include <netinet/ip.h>
32 #include <netinet/ip6.h>
33 #include <netinet/tcp.h>
34 #include <netinet/udp.h>
35 #include <inet/ip.h>
36 
37 
38 
39 /*
40  * Local variables
41  */
42 static struct ether_addr ql_ether_broadcast_addr =
43 	{0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
44 static char version[] = "QLogic GLDv3 Driver " VERSIONSTR;
45 
46 /*
47  * Local function prototypes
48  */
49 static void ql_free_resources(dev_info_t *, qlge_t *);
50 static void ql_fini_kstats(qlge_t *);
51 static uint32_t ql_get_link_state(qlge_t *);
52 static void ql_read_conf(qlge_t *);
53 static int ql_alloc_phys(dev_info_t *, ddi_dma_handle_t *,
54     ddi_device_acc_attr_t *, uint_t, ddi_acc_handle_t *,
55     size_t, size_t, caddr_t *, ddi_dma_cookie_t *);
56 static void ql_free_phys(ddi_dma_handle_t *, ddi_acc_handle_t *);
57 static int ql_set_routing_reg(qlge_t *, uint32_t, uint32_t, int);
58 static int ql_route_initialize(qlge_t *);
59 static int ql_attach(dev_info_t *, ddi_attach_cmd_t);
60 static int ql_detach(dev_info_t *, ddi_detach_cmd_t);
61 static int ql_bringdown_adapter(qlge_t *);
62 static int ql_bringup_adapter(qlge_t *);
63 static int ql_asic_reset(qlge_t *);
64 static void ql_wake_mpi_reset_soft_intr(qlge_t *);
65 static void ql_stop_timer(qlge_t *qlge);
66 
67 /*
68  * TX dma maping handlers allow multiple sscatter-gather lists
69  */
70 ddi_dma_attr_t  tx_mapping_dma_attr = {
71 	DMA_ATTR_V0,			/* dma_attr_version */
72 	QL_DMA_LOW_ADDRESS,		/* low DMA address range */
73 	QL_DMA_HIGH_64BIT_ADDRESS,	/* high DMA address range */
74 	QL_DMA_XFER_COUNTER,		/* DMA counter register */
75 	QL_DMA_ADDRESS_ALIGNMENT,	/* DMA address alignment, default - 8 */
76 	QL_DMA_BURSTSIZES,		/* DMA burstsizes */
77 	QL_DMA_MIN_XFER_SIZE,		/* min effective DMA size */
78 	QL_DMA_MAX_XFER_SIZE,		/* max DMA xfer size */
79 	QL_DMA_SEGMENT_BOUNDARY,	/* segment boundary */
80 	QL_MAX_TX_DMA_HANDLES,		/* s/g list length */
81 	QL_DMA_GRANULARITY,		/* granularity of device */
82 	QL_DMA_XFER_FLAGS		/* DMA transfer flags */
83 };
84 
85 /*
86  * Receive buffers and Request/Response queues do not allow scatter-gather lists
87  */
88 ddi_dma_attr_t  dma_attr = {
89 	DMA_ATTR_V0,			/* dma_attr_version */
90 	QL_DMA_LOW_ADDRESS,		/* low DMA address range */
91 	QL_DMA_HIGH_64BIT_ADDRESS,	/* high DMA address range */
92 	QL_DMA_XFER_COUNTER,		/* DMA counter register */
93 	QL_DMA_ADDRESS_ALIGNMENT,	/* DMA address alignment, default - 8 */
94 	QL_DMA_BURSTSIZES,		/* DMA burstsizes */
95 	QL_DMA_MIN_XFER_SIZE,		/* min effective DMA size */
96 	QL_DMA_MAX_XFER_SIZE,		/* max DMA xfer size */
97 	QL_DMA_SEGMENT_BOUNDARY,	/* segment boundary */
98 	1,				/* s/g list length, i.e no sg list */
99 	QL_DMA_GRANULARITY,		/* granularity of device */
100 	QL_DMA_XFER_FLAGS		/* DMA transfer flags */
101 };
102 
103 /*
104  * DMA access attribute structure.
105  */
106 /* device register access from host */
107 ddi_device_acc_attr_t ql_dev_acc_attr = {
108 	DDI_DEVICE_ATTR_V0,
109 	DDI_STRUCTURE_LE_ACC,
110 	DDI_STRICTORDER_ACC
111 };
112 
113 /* host ring descriptors */
114 ddi_device_acc_attr_t ql_desc_acc_attr = {
115 	DDI_DEVICE_ATTR_V0,
116 	DDI_NEVERSWAP_ACC,
117 	DDI_STRICTORDER_ACC
118 };
119 
120 /* host ring buffer */
121 ddi_device_acc_attr_t ql_buf_acc_attr = {
122 	DDI_DEVICE_ATTR_V0,
123 	DDI_NEVERSWAP_ACC,
124 	DDI_STRICTORDER_ACC
125 };
126 
127 /*
128  * Hash key table for Receive Side Scaling (RSS) support
129  */
130 const uint8_t key_data[] = {
131 	0x23, 0x64, 0xa1, 0xaa, 0x37, 0xc0, 0xed, 0x05, 0x2b, 0x36,
132 	0x50, 0x5c, 0x45, 0x1e, 0x7e, 0xc8, 0x5d, 0x2a, 0x54, 0x2f,
133 	0xe4, 0x3d, 0x0f, 0xbb, 0x91, 0xd9, 0x25, 0x60, 0xd4, 0xf8,
134 	0x12, 0xa0, 0x59, 0x4b, 0x9e, 0x8a, 0x51, 0xda, 0xcd, 0x49};
135 
136 /*
137  * Shadow Registers:
138  * Outbound queues have a consumer index that is maintained by the chip.
139  * Inbound queues have a producer index that is maintained by the chip.
140  * For lower overhead, these registers are "shadowed" to host memory
141  * which allows the device driver to track the queue progress without
142  * PCI reads. When an entry is placed on an inbound queue, the chip will
143  * update the relevant index register and then copy the value to the
144  * shadow register in host memory.
145  */
146 
147 static inline unsigned int
148 ql_read_sh_reg(const volatile void *addr)
149 {
150 	return (*(volatile uint32_t *)addr);
151 }
152 
153 /*
154  * Read 32 bit atomically
155  */
156 uint32_t
157 ql_atomic_read_32(volatile uint32_t *target)
158 {
159 	/*
160 	 * atomic_add_32_nv returns the new value after the add,
161 	 * we are adding 0 so we should get the original value
162 	 */
163 	return (atomic_add_32_nv(target, 0));
164 }
165 
166 /*
167  * Set 32 bit atomically
168  */
169 void
170 ql_atomic_set_32(volatile uint32_t *target, uint32_t newval)
171 {
172 	(void) atomic_swap_32(target, newval);
173 }
174 
175 
176 /*
177  * Setup device PCI configuration registers.
178  * Kernel context.
179  */
180 static void
181 ql_pci_config(qlge_t *qlge)
182 {
183 	uint16_t w;
184 
185 	qlge->vendor_id = (uint16_t)pci_config_get16(qlge->pci_handle,
186 	    PCI_CONF_VENID);
187 	qlge->device_id = (uint16_t)pci_config_get16(qlge->pci_handle,
188 	    PCI_CONF_DEVID);
189 
190 	/*
191 	 * we want to respect framework's setting of PCI
192 	 * configuration space command register and also
193 	 * want to make sure that all bits of interest to us
194 	 * are properly set in PCI Command register(0x04).
195 	 * PCI_COMM_IO		0x1	 I/O access enable
196 	 * PCI_COMM_MAE		0x2	 Memory access enable
197 	 * PCI_COMM_ME		0x4	 bus master enable
198 	 * PCI_COMM_MEMWR_INVAL	0x10	 memory write and invalidate enable.
199 	 */
200 	w = (uint16_t)pci_config_get16(qlge->pci_handle, PCI_CONF_COMM);
201 	w = (uint16_t)(w & (~PCI_COMM_IO));
202 	w = (uint16_t)(w | PCI_COMM_MAE | PCI_COMM_ME |
203 	    /* PCI_COMM_MEMWR_INVAL | */
204 	    PCI_COMM_PARITY_DETECT | PCI_COMM_SERR_ENABLE);
205 
206 	pci_config_put16(qlge->pci_handle, PCI_CONF_COMM, w);
207 
208 	ql_dump_pci_config(qlge);
209 }
210 
211 /*
212  * This routine parforms the neccessary steps to set GLD mac information
213  * such as Function number, xgmac mask and shift bits
214  */
215 static int
216 ql_set_mac_info(qlge_t *qlge)
217 {
218 	uint32_t value;
219 	int rval = DDI_SUCCESS;
220 	uint32_t fn0_net, fn1_net;
221 
222 	/* set default value */
223 	qlge->fn0_net = FN0_NET;
224 	qlge->fn1_net = FN1_NET;
225 
226 	if (ql_read_processor_data(qlge, MPI_REG, &value) != DDI_SUCCESS) {
227 		cmn_err(CE_WARN, "%s(%d) read MPI register failed",
228 		    __func__, qlge->instance);
229 	} else {
230 		fn0_net = (value >> 1) & 0x07;
231 		fn1_net = (value >> 5) & 0x07;
232 		if ((fn0_net > 4) || (fn1_net > 4) || (fn0_net == fn1_net)) {
233 			cmn_err(CE_WARN, "%s(%d) bad mpi register value %x, \n"
234 			    "nic0 function number %d,"
235 			    "nic1 function number %d "
236 			    "use default\n",
237 			    __func__, qlge->instance, value, fn0_net, fn1_net);
238 		} else {
239 			qlge->fn0_net = fn0_net;
240 			qlge->fn1_net = fn1_net;
241 		}
242 	}
243 
244 	/* Get the function number that the driver is associated with */
245 	value = ql_read_reg(qlge, REG_STATUS);
246 	qlge->func_number = (uint8_t)((value >> 6) & 0x03);
247 	QL_PRINT(DBG_INIT, ("status register is:%x, func_number: %d\n",
248 	    value, qlge->func_number));
249 
250 	/* The driver is loaded on a non-NIC function? */
251 	if ((qlge->func_number != qlge->fn0_net) &&
252 	    (qlge->func_number != qlge->fn1_net)) {
253 		cmn_err(CE_WARN,
254 		    "Invalid function number = 0x%x\n", qlge->func_number);
255 		return (DDI_FAILURE);
256 	}
257 	/* network port 0? */
258 	if (qlge->func_number == qlge->fn0_net) {
259 		qlge->xgmac_sem_mask = QL_PORT0_XGMAC_SEM_MASK;
260 		qlge->xgmac_sem_bits = QL_PORT0_XGMAC_SEM_BITS;
261 	} else {
262 		qlge->xgmac_sem_mask = QL_PORT1_XGMAC_SEM_MASK;
263 		qlge->xgmac_sem_bits = QL_PORT1_XGMAC_SEM_BITS;
264 	}
265 
266 	return (rval);
267 
268 }
269 
270 /*
271  * write to doorbell register
272  */
273 void
274 ql_write_doorbell_reg(qlge_t *qlge, uint32_t *addr, uint32_t data)
275 {
276 	ddi_put32(qlge->dev_doorbell_reg_handle, addr, data);
277 }
278 
279 /*
280  * read from doorbell register
281  */
282 uint32_t
283 ql_read_doorbell_reg(qlge_t *qlge, uint32_t *addr)
284 {
285 	uint32_t ret;
286 
287 	ret = ddi_get32(qlge->dev_doorbell_reg_handle, addr);
288 
289 	return	(ret);
290 }
291 
292 /*
293  * This function waits for a specific bit to come ready
294  * in a given register.  It is used mostly by the initialize
295  * process, but is also used in kernel thread API such as
296  * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
297  */
298 static int
299 ql_wait_reg_rdy(qlge_t *qlge, uint32_t reg, uint32_t bit, uint32_t err_bit)
300 {
301 	uint32_t temp;
302 	int count = UDELAY_COUNT;
303 
304 	while (count) {
305 		temp = ql_read_reg(qlge, reg);
306 
307 		/* check for errors */
308 		if ((temp & err_bit) != 0) {
309 			break;
310 		} else if ((temp & bit) != 0)
311 			return (DDI_SUCCESS);
312 		qlge_delay(UDELAY_DELAY);
313 		count--;
314 	}
315 	cmn_err(CE_WARN,
316 	    "Waiting for reg %x to come ready failed.", reg);
317 	return (DDI_FAILURE);
318 }
319 
320 /*
321  * The CFG register is used to download TX and RX control blocks
322  * to the chip. This function waits for an operation to complete.
323  */
324 static int
325 ql_wait_cfg(qlge_t *qlge, uint32_t bit)
326 {
327 	int count = UDELAY_COUNT;
328 	uint32_t temp;
329 
330 	while (count) {
331 		temp = ql_read_reg(qlge, REG_CONFIGURATION);
332 		if ((temp & CFG_LE) != 0) {
333 			break;
334 		}
335 		if ((temp & bit) == 0)
336 			return (DDI_SUCCESS);
337 		qlge_delay(UDELAY_DELAY);
338 		count--;
339 	}
340 	cmn_err(CE_WARN,
341 	    "Waiting for cfg register bit %x failed.", bit);
342 	return (DDI_FAILURE);
343 }
344 
345 
346 /*
347  * Used to issue init control blocks to hw. Maps control block,
348  * sets address, triggers download, waits for completion.
349  */
350 static int
351 ql_write_cfg(qlge_t *qlge, uint32_t bit, uint64_t phy_addr, uint16_t q_id)
352 {
353 	int status = DDI_SUCCESS;
354 	uint32_t mask;
355 	uint32_t value;
356 
357 	status = ql_sem_spinlock(qlge, SEM_ICB_MASK);
358 	if (status != DDI_SUCCESS) {
359 		goto exit;
360 	}
361 	status = ql_wait_cfg(qlge, bit);
362 	if (status != DDI_SUCCESS) {
363 		goto exit;
364 	}
365 
366 	ql_write_reg(qlge, REG_ICB_ACCESS_ADDRESS_LOWER, LS_64BITS(phy_addr));
367 	ql_write_reg(qlge, REG_ICB_ACCESS_ADDRESS_UPPER, MS_64BITS(phy_addr));
368 
369 	mask = CFG_Q_MASK | (bit << 16);
370 	value = bit | (q_id << CFG_Q_SHIFT);
371 	ql_write_reg(qlge, REG_CONFIGURATION, (mask | value));
372 
373 	/*
374 	 * Wait for the bit to clear after signaling hw.
375 	 */
376 	status = ql_wait_cfg(qlge, bit);
377 	ql_sem_unlock(qlge, SEM_ICB_MASK); /* does flush too */
378 
379 exit:
380 	return (status);
381 }
382 
383 /*
384  * Initialize adapter instance
385  */
386 static int
387 ql_init_instance(qlge_t *qlge)
388 {
389 	int i;
390 
391 	/* Default value */
392 	qlge->mac_flags = QL_MAC_INIT;
393 	qlge->mtu = ETHERMTU;		/* set normal size as default */
394 	qlge->page_size = VM_PAGE_SIZE;	/* default page size */
395 	/* Set up the default ring sizes. */
396 	qlge->tx_ring_size = NUM_TX_RING_ENTRIES;
397 	qlge->rx_ring_size = NUM_RX_RING_ENTRIES;
398 
399 	/* Set up the coalescing parameters. */
400 	qlge->rx_coalesce_usecs = DFLT_RX_COALESCE_WAIT;
401 	qlge->tx_coalesce_usecs = DFLT_TX_COALESCE_WAIT;
402 	qlge->rx_max_coalesced_frames = DFLT_RX_INTER_FRAME_WAIT;
403 	qlge->tx_max_coalesced_frames = DFLT_TX_INTER_FRAME_WAIT;
404 	qlge->payload_copy_thresh = DFLT_PAYLOAD_COPY_THRESH;
405 	qlge->ql_dbgprnt = 0;
406 #if QL_DEBUG
407 	qlge->ql_dbgprnt = QL_DEBUG;
408 #endif /* QL_DEBUG */
409 
410 	/*
411 	 * TODO: Should be obtained from configuration or based off
412 	 * number of active cpus SJP 4th Mar. 09
413 	 */
414 	qlge->tx_ring_count = 1;
415 	qlge->rss_ring_count = 4;
416 	qlge->rx_ring_count = qlge->tx_ring_count + qlge->rss_ring_count;
417 
418 	for (i = 0; i < MAX_RX_RINGS; i++) {
419 		qlge->rx_polls[i] = 0;
420 		qlge->rx_interrupts[i] = 0;
421 	}
422 
423 	/*
424 	 * Set up the operating parameters.
425 	 */
426 	qlge->multicast_list_count = 0;
427 
428 	/*
429 	 * Set up the max number of unicast list
430 	 */
431 	qlge->unicst_total = MAX_UNICAST_LIST_SIZE;
432 	qlge->unicst_avail = MAX_UNICAST_LIST_SIZE;
433 
434 	/*
435 	 * read user defined properties in .conf file
436 	 */
437 	ql_read_conf(qlge); /* mtu, pause, LSO etc */
438 
439 	QL_PRINT(DBG_INIT, ("mtu is %d \n", qlge->mtu));
440 
441 	/* choose Memory Space mapping and get Vendor Id, Device ID etc */
442 	ql_pci_config(qlge);
443 	qlge->ip_hdr_offset = 0;
444 
445 	if (qlge->device_id == 0x8000) {
446 		/* Schultz card */
447 		qlge->cfg_flags |= CFG_CHIP_8100;
448 		/* enable just ipv4 chksum offload for Schultz */
449 		qlge->cfg_flags |= CFG_CKSUM_FULL_IPv4;
450 		/*
451 		 * Schultz firmware does not do pseduo IP header checksum
452 		 * calculation, needed to be done by driver
453 		 */
454 		qlge->cfg_flags |= CFG_HW_UNABLE_PSEUDO_HDR_CKSUM;
455 		if (qlge->lso_enable)
456 			qlge->cfg_flags |= CFG_LSO;
457 		qlge->cfg_flags |= CFG_SUPPORT_SCATTER_GATHER;
458 		/* Schultz must split packet header */
459 		qlge->cfg_flags |= CFG_ENABLE_SPLIT_HEADER;
460 		qlge->max_read_mbx = 5;
461 		qlge->ip_hdr_offset = 2;
462 	}
463 
464 	/* Set Function Number and some of the iocb mac information */
465 	if (ql_set_mac_info(qlge) != DDI_SUCCESS)
466 		return (DDI_FAILURE);
467 
468 	/* Read network settings from NVRAM */
469 	/* After nvram is read successfully, update dev_addr */
470 	if (ql_get_flash_params(qlge) == DDI_SUCCESS) {
471 		QL_PRINT(DBG_INIT, ("mac%d address is \n", qlge->func_number));
472 		for (i = 0; i < ETHERADDRL; i++) {
473 			qlge->dev_addr.ether_addr_octet[i] =
474 			    qlge->nic_config.factory_MAC[i];
475 		}
476 	} else {
477 		cmn_err(CE_WARN, "%s(%d): Failed to read flash memory",
478 		    __func__, qlge->instance);
479 		return (DDI_FAILURE);
480 	}
481 
482 	bcopy(qlge->dev_addr.ether_addr_octet,
483 	    qlge->unicst_addr[0].addr.ether_addr_octet,
484 	    ETHERADDRL);
485 	QL_DUMP(DBG_INIT, "\t flash mac address dump:\n",
486 	    &qlge->dev_addr.ether_addr_octet[0], 8, ETHERADDRL);
487 
488 	qlge->port_link_state = LS_DOWN;
489 
490 	return (DDI_SUCCESS);
491 }
492 
493 
494 /*
495  * This hardware semaphore provides the mechanism for exclusive access to
496  * resources shared between the NIC driver, MPI firmware,
497  * FCOE firmware and the FC driver.
498  */
499 static int
500 ql_sem_trylock(qlge_t *qlge, uint32_t sem_mask)
501 {
502 	uint32_t sem_bits = 0;
503 
504 	switch (sem_mask) {
505 	case SEM_XGMAC0_MASK:
506 		sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
507 		break;
508 	case SEM_XGMAC1_MASK:
509 		sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
510 		break;
511 	case SEM_ICB_MASK:
512 		sem_bits = SEM_SET << SEM_ICB_SHIFT;
513 		break;
514 	case SEM_MAC_ADDR_MASK:
515 		sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
516 		break;
517 	case SEM_FLASH_MASK:
518 		sem_bits = SEM_SET << SEM_FLASH_SHIFT;
519 		break;
520 	case SEM_PROBE_MASK:
521 		sem_bits = SEM_SET << SEM_PROBE_SHIFT;
522 		break;
523 	case SEM_RT_IDX_MASK:
524 		sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
525 		break;
526 	case SEM_PROC_REG_MASK:
527 		sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
528 		break;
529 	default:
530 		cmn_err(CE_WARN, "Bad Semaphore mask!.");
531 		return (DDI_FAILURE);
532 	}
533 
534 	ql_write_reg(qlge, REG_SEMAPHORE, sem_bits | sem_mask);
535 	return (!(ql_read_reg(qlge, REG_SEMAPHORE) & sem_bits));
536 }
537 
538 /*
539  * Lock a specific bit of Semaphore register to gain
540  * access to a particular shared register
541  */
542 int
543 ql_sem_spinlock(qlge_t *qlge, uint32_t sem_mask)
544 {
545 	unsigned int wait_count = 30;
546 
547 	while (wait_count) {
548 		if (!ql_sem_trylock(qlge, sem_mask))
549 			return (DDI_SUCCESS);
550 		qlge_delay(100);
551 		wait_count--;
552 	}
553 	cmn_err(CE_WARN, "%s(%d) sem_mask 0x%x lock timeout ",
554 	    __func__, qlge->instance, sem_mask);
555 	return (DDI_FAILURE);
556 }
557 
558 /*
559  * Unock a specific bit of Semaphore register to release
560  * access to a particular shared register
561  */
562 void
563 ql_sem_unlock(qlge_t *qlge, uint32_t sem_mask)
564 {
565 	ql_write_reg(qlge, REG_SEMAPHORE, sem_mask);
566 	ql_read_reg(qlge, REG_SEMAPHORE);	/* flush */
567 }
568 
569 /*
570  * Get property value from configuration file.
571  *
572  * string = property string pointer.
573  *
574  * Returns:
575  * 0xFFFFFFFF = no property else property value.
576  */
577 static uint32_t
578 ql_get_prop(qlge_t *qlge, char *string)
579 {
580 	char buf[256];
581 	uint32_t data;
582 
583 	/* Get adapter instance parameter. */
584 	(void) sprintf(buf, "hba%d-%s", qlge->instance, string);
585 	data = (uint32_t)ddi_prop_get_int(DDI_DEV_T_ANY, qlge->dip, 0, buf,
586 	    (int)0xffffffff);
587 
588 	/* Adapter instance parameter found? */
589 	if (data == 0xffffffff) {
590 		/* No, get default parameter. */
591 		data = (uint32_t)ddi_prop_get_int(DDI_DEV_T_ANY, qlge->dip, 0,
592 		    string, (int)0xffffffff);
593 	}
594 
595 	return (data);
596 }
597 
598 /*
599  * Read user setting from configuration file.
600  */
601 static void
602 ql_read_conf(qlge_t *qlge)
603 {
604 	uint32_t data;
605 
606 	/* clear configuration flags */
607 	qlge->cfg_flags = 0;
608 
609 	/* Get default rx_copy enable/disable. */
610 	if ((data = ql_get_prop(qlge, "force-rx-copy")) == 0xffffffff ||
611 	    data == 0) {
612 		qlge->cfg_flags &= ~CFG_RX_COPY_MODE;
613 		qlge->rx_copy = B_FALSE;
614 		QL_PRINT(DBG_INIT, ("rx copy mode disabled\n"));
615 	} else if (data == 1) {
616 		qlge->cfg_flags |= CFG_RX_COPY_MODE;
617 		qlge->rx_copy = B_TRUE;
618 		QL_PRINT(DBG_INIT, ("rx copy mode enabled\n"));
619 	}
620 
621 	/* Get mtu packet size. */
622 	data = ql_get_prop(qlge, "mtu");
623 	if ((data == ETHERMTU) || (data == JUMBO_MTU)) {
624 		if (qlge->mtu != data) {
625 			qlge->mtu = data;
626 			cmn_err(CE_NOTE, "new mtu is %d\n", qlge->mtu);
627 		}
628 	}
629 
630 	/* Get pause mode, default is Per Priority mode. */
631 	qlge->pause = PAUSE_MODE_PER_PRIORITY;
632 	data = ql_get_prop(qlge, "pause");
633 	if (data <= PAUSE_MODE_PER_PRIORITY) {
634 		if (qlge->pause != data) {
635 			qlge->pause = data;
636 			cmn_err(CE_NOTE, "new pause mode %d\n", qlge->pause);
637 		}
638 	}
639 
640 	/* Get tx_max_coalesced_frames. */
641 	qlge->tx_max_coalesced_frames = 5;
642 	data = ql_get_prop(qlge, "tx_max_coalesced_frames");
643 	/* if data is valid */
644 	if ((data != 0xffffffff) && data) {
645 		if (qlge->tx_max_coalesced_frames != data) {
646 			qlge->tx_max_coalesced_frames = (uint16_t)data;
647 		}
648 	}
649 
650 	/* Get split header payload_copy_thresh. */
651 	qlge->payload_copy_thresh = 6;
652 	data = ql_get_prop(qlge, "payload_copy_thresh");
653 	/* if data is valid */
654 	if ((data != 0xffffffff) && (data != 0)) {
655 		if (qlge->payload_copy_thresh != data) {
656 			qlge->payload_copy_thresh = data;
657 		}
658 	}
659 
660 	/* large send offload (LSO) capability. */
661 	qlge->lso_enable = 1;
662 	data = ql_get_prop(qlge, "lso_enable");
663 	/* if data is valid */
664 	if (data != 0xffffffff) {
665 		if (qlge->lso_enable != data) {
666 			qlge->lso_enable = (uint16_t)data;
667 		}
668 	}
669 }
670 
671 /*
672  * Enable global interrupt
673  */
674 static void
675 ql_enable_global_interrupt(qlge_t *qlge)
676 {
677 	ql_write_reg(qlge, REG_INTERRUPT_ENABLE,
678 	    (INTR_EN_EI << 16) | INTR_EN_EI);
679 	qlge->flags |= INTERRUPTS_ENABLED;
680 }
681 
682 /*
683  * Disable global interrupt
684  */
685 static void
686 ql_disable_global_interrupt(qlge_t *qlge)
687 {
688 	ql_write_reg(qlge, REG_INTERRUPT_ENABLE, (INTR_EN_EI << 16));
689 	qlge->flags &= ~INTERRUPTS_ENABLED;
690 }
691 
692 /*
693  * Enable one ring interrupt
694  */
695 void
696 ql_enable_completion_interrupt(qlge_t *qlge, uint32_t intr)
697 {
698 	struct intr_ctx *ctx = qlge->intr_ctx + intr;
699 
700 	QL_PRINT(DBG_INTR, ("%s(%d): To enable intr %d, irq_cnt %d \n",
701 	    __func__, qlge->instance, intr, ctx->irq_cnt));
702 
703 	if ((qlge->intr_type == DDI_INTR_TYPE_MSIX) && intr) {
704 		/*
705 		 * Always enable if we're MSIX multi interrupts and
706 		 * it's not the default (zeroeth) interrupt.
707 		 */
708 		ql_write_reg(qlge, REG_INTERRUPT_ENABLE, ctx->intr_en_mask);
709 		return;
710 	}
711 
712 	if (!atomic_dec_32_nv(&ctx->irq_cnt)) {
713 		mutex_enter(&qlge->hw_mutex);
714 		ql_write_reg(qlge, REG_INTERRUPT_ENABLE, ctx->intr_en_mask);
715 		mutex_exit(&qlge->hw_mutex);
716 		QL_PRINT(DBG_INTR,
717 		    ("%s(%d): write %x to intr enable register \n",
718 		    __func__, qlge->instance, ctx->intr_en_mask));
719 	}
720 }
721 
722 /*
723  * ql_forced_disable_completion_interrupt
724  * Used by call from OS, may be called without
725  * a pending interrupt so force the disable
726  */
727 uint32_t
728 ql_forced_disable_completion_interrupt(qlge_t *qlge, uint32_t intr)
729 {
730 	uint32_t var = 0;
731 	struct intr_ctx *ctx = qlge->intr_ctx + intr;
732 
733 	QL_PRINT(DBG_INTR, ("%s(%d): To disable intr %d, irq_cnt %d \n",
734 	    __func__, qlge->instance, intr, ctx->irq_cnt));
735 
736 	if ((qlge->intr_type == DDI_INTR_TYPE_MSIX) && intr) {
737 		ql_write_reg(qlge, REG_INTERRUPT_ENABLE, ctx->intr_dis_mask);
738 		var = ql_read_reg(qlge, REG_STATUS);
739 		return (var);
740 	}
741 
742 	mutex_enter(&qlge->hw_mutex);
743 	ql_write_reg(qlge, REG_INTERRUPT_ENABLE, ctx->intr_dis_mask);
744 	var = ql_read_reg(qlge, REG_STATUS);
745 	mutex_exit(&qlge->hw_mutex);
746 
747 	return (var);
748 }
749 
750 /*
751  * Disable a completion interrupt
752  */
753 void
754 ql_disable_completion_interrupt(qlge_t *qlge, uint32_t intr)
755 {
756 	struct intr_ctx *ctx;
757 
758 	ctx = qlge->intr_ctx + intr;
759 	QL_PRINT(DBG_INTR, ("%s(%d): To disable intr %d, irq_cnt %d \n",
760 	    __func__, qlge->instance, intr, ctx->irq_cnt));
761 	/*
762 	 * HW disables for us if we're MSIX multi interrupts and
763 	 * it's not the default (zeroeth) interrupt.
764 	 */
765 	if ((qlge->intr_type == DDI_INTR_TYPE_MSIX) && (intr != 0))
766 		return;
767 
768 	if (ql_atomic_read_32(&ctx->irq_cnt) == 0) {
769 		mutex_enter(&qlge->hw_mutex);
770 		ql_write_reg(qlge, REG_INTERRUPT_ENABLE, ctx->intr_dis_mask);
771 		mutex_exit(&qlge->hw_mutex);
772 	}
773 	atomic_inc_32(&ctx->irq_cnt);
774 }
775 
776 /*
777  * Enable all completion interrupts
778  */
779 static void
780 ql_enable_all_completion_interrupts(qlge_t *qlge)
781 {
782 	int i;
783 	uint32_t value = 1;
784 
785 	for (i = 0; i < qlge->intr_cnt; i++) {
786 		/*
787 		 * Set the count to 1 for Legacy / MSI interrupts or for the
788 		 * default interrupt (0)
789 		 */
790 		if ((qlge->intr_type != DDI_INTR_TYPE_MSIX) || i == 0) {
791 			ql_atomic_set_32(&qlge->intr_ctx[i].irq_cnt, value);
792 		}
793 		ql_enable_completion_interrupt(qlge, i);
794 	}
795 }
796 
797 /*
798  * Disable all completion interrupts
799  */
800 static void
801 ql_disable_all_completion_interrupts(qlge_t *qlge)
802 {
803 	int i;
804 	uint32_t value = 0;
805 
806 	for (i = 0; i < qlge->intr_cnt; i++) {
807 
808 		/*
809 		 * Set the count to 0 for Legacy / MSI interrupts or for the
810 		 * default interrupt (0)
811 		 */
812 		if ((qlge->intr_type != DDI_INTR_TYPE_MSIX) || i == 0)
813 			ql_atomic_set_32(&qlge->intr_ctx[i].irq_cnt, value);
814 
815 		ql_disable_completion_interrupt(qlge, i);
816 	}
817 }
818 
819 /*
820  * Update small buffer queue producer index
821  */
822 static void
823 ql_update_sbq_prod_idx(qlge_t *qlge, struct rx_ring *rx_ring)
824 {
825 	/* Update the buffer producer index */
826 	QL_PRINT(DBG_RX, ("sbq: updating prod idx = %d.\n",
827 	    rx_ring->sbq_prod_idx));
828 	ql_write_doorbell_reg(qlge, rx_ring->sbq_prod_idx_db_reg,
829 	    rx_ring->sbq_prod_idx);
830 }
831 
832 /*
833  * Update large buffer queue producer index
834  */
835 static void
836 ql_update_lbq_prod_idx(qlge_t *qlge, struct rx_ring *rx_ring)
837 {
838 	/* Update the buffer producer index */
839 	QL_PRINT(DBG_RX, ("lbq: updating prod idx = %d.\n",
840 	    rx_ring->lbq_prod_idx));
841 	ql_write_doorbell_reg(qlge, rx_ring->lbq_prod_idx_db_reg,
842 	    rx_ring->lbq_prod_idx);
843 }
844 
845 /*
846  * Adds a small buffer descriptor to end of its in use list,
847  * assumes sbq_lock is already taken
848  */
849 static void
850 ql_add_sbuf_to_in_use_list(struct rx_ring *rx_ring,
851     struct bq_desc *sbq_desc)
852 {
853 	uint32_t inuse_idx = rx_ring->sbq_use_tail;
854 
855 	rx_ring->sbuf_in_use[inuse_idx] = sbq_desc;
856 	inuse_idx++;
857 	if (inuse_idx >= rx_ring->sbq_len)
858 		inuse_idx = 0;
859 	rx_ring->sbq_use_tail = inuse_idx;
860 	atomic_inc_32(&rx_ring->sbuf_in_use_count);
861 	ASSERT(rx_ring->sbuf_in_use_count <= rx_ring->sbq_len);
862 }
863 
864 /*
865  * Get a small buffer descriptor from its in use list
866  */
867 static struct bq_desc *
868 ql_get_sbuf_from_in_use_list(struct rx_ring *rx_ring)
869 {
870 	struct bq_desc *sbq_desc = NULL;
871 	uint32_t inuse_idx;
872 
873 	/* Pick from head of in use list */
874 	inuse_idx = rx_ring->sbq_use_head;
875 	sbq_desc = rx_ring->sbuf_in_use[inuse_idx];
876 	rx_ring->sbuf_in_use[inuse_idx] = NULL;
877 
878 	if (sbq_desc != NULL) {
879 		inuse_idx++;
880 		if (inuse_idx >= rx_ring->sbq_len)
881 			inuse_idx = 0;
882 		rx_ring->sbq_use_head = inuse_idx;
883 		atomic_dec_32(&rx_ring->sbuf_in_use_count);
884 		atomic_inc_32(&rx_ring->rx_indicate);
885 		sbq_desc->upl_inuse = 1;
886 		/* if mp is NULL */
887 		if (sbq_desc->mp == NULL) {
888 			/* try to remap mp again */
889 			sbq_desc->mp =
890 			    desballoc((unsigned char *)(sbq_desc->bd_dma.vaddr),
891 			    rx_ring->sbq_buf_size, 0, &sbq_desc->rx_recycle);
892 		}
893 	}
894 
895 	return (sbq_desc);
896 }
897 
898 /*
899  * Add a small buffer descriptor to its free list
900  */
901 static void
902 ql_add_sbuf_to_free_list(struct rx_ring *rx_ring,
903     struct bq_desc *sbq_desc)
904 {
905 	uint32_t free_idx;
906 
907 	/* Add to the end of free list */
908 	free_idx = rx_ring->sbq_free_tail;
909 	rx_ring->sbuf_free[free_idx] = sbq_desc;
910 	ASSERT(rx_ring->sbuf_free_count <= rx_ring->sbq_len);
911 	free_idx++;
912 	if (free_idx >= rx_ring->sbq_len)
913 		free_idx = 0;
914 	rx_ring->sbq_free_tail = free_idx;
915 	atomic_inc_32(&rx_ring->sbuf_free_count);
916 }
917 
918 /*
919  * Get a small buffer descriptor from its free list
920  */
921 static struct bq_desc *
922 ql_get_sbuf_from_free_list(struct rx_ring *rx_ring)
923 {
924 	struct bq_desc *sbq_desc;
925 	uint32_t free_idx;
926 
927 	free_idx = rx_ring->sbq_free_head;
928 	/* Pick from top of free list */
929 	sbq_desc = rx_ring->sbuf_free[free_idx];
930 	rx_ring->sbuf_free[free_idx] = NULL;
931 	if (sbq_desc != NULL) {
932 		free_idx++;
933 		if (free_idx >= rx_ring->sbq_len)
934 			free_idx = 0;
935 		rx_ring->sbq_free_head = free_idx;
936 		atomic_dec_32(&rx_ring->sbuf_free_count);
937 		ASSERT(rx_ring->sbuf_free_count != 0);
938 	}
939 	return (sbq_desc);
940 }
941 
942 /*
943  * Add a large buffer descriptor to its in use list
944  */
945 static void
946 ql_add_lbuf_to_in_use_list(struct rx_ring *rx_ring,
947     struct bq_desc *lbq_desc)
948 {
949 	uint32_t inuse_idx;
950 
951 	inuse_idx = rx_ring->lbq_use_tail;
952 
953 	rx_ring->lbuf_in_use[inuse_idx] = lbq_desc;
954 	inuse_idx++;
955 	if (inuse_idx >= rx_ring->lbq_len)
956 		inuse_idx = 0;
957 	rx_ring->lbq_use_tail = inuse_idx;
958 	atomic_inc_32(&rx_ring->lbuf_in_use_count);
959 }
960 
961 /*
962  * Get a large buffer descriptor from in use list
963  */
964 static struct bq_desc *
965 ql_get_lbuf_from_in_use_list(struct rx_ring *rx_ring)
966 {
967 	struct bq_desc *lbq_desc;
968 	uint32_t inuse_idx;
969 
970 	/* Pick from head of in use list */
971 	inuse_idx = rx_ring->lbq_use_head;
972 	lbq_desc = rx_ring->lbuf_in_use[inuse_idx];
973 	rx_ring->lbuf_in_use[inuse_idx] = NULL;
974 
975 	if (lbq_desc != NULL) {
976 		inuse_idx++;
977 		if (inuse_idx >= rx_ring->lbq_len)
978 			inuse_idx = 0;
979 		rx_ring->lbq_use_head = inuse_idx;
980 		atomic_dec_32(&rx_ring->lbuf_in_use_count);
981 		atomic_inc_32(&rx_ring->rx_indicate);
982 		lbq_desc->upl_inuse = 1;
983 
984 		/* if mp is NULL */
985 		if (lbq_desc->mp == NULL) {
986 			/* try to remap mp again */
987 			lbq_desc->mp =
988 			    desballoc((unsigned char *)(lbq_desc->bd_dma.vaddr),
989 			    rx_ring->lbq_buf_size, 0, &lbq_desc->rx_recycle);
990 		}
991 	}
992 	return (lbq_desc);
993 }
994 
995 /*
996  * Add a large buffer descriptor to free list
997  */
998 static void
999 ql_add_lbuf_to_free_list(struct rx_ring *rx_ring,
1000     struct bq_desc *lbq_desc)
1001 {
1002 	uint32_t free_idx;
1003 
1004 	/* Add to the end of free list */
1005 	free_idx = rx_ring->lbq_free_tail;
1006 	rx_ring->lbuf_free[free_idx] = lbq_desc;
1007 	free_idx++;
1008 	if (free_idx >= rx_ring->lbq_len)
1009 		free_idx = 0;
1010 	rx_ring->lbq_free_tail = free_idx;
1011 	atomic_inc_32(&rx_ring->lbuf_free_count);
1012 	ASSERT(rx_ring->lbuf_free_count <= rx_ring->lbq_len);
1013 }
1014 
1015 /*
1016  * Get a large buffer descriptor from its free list
1017  */
1018 static struct bq_desc *
1019 ql_get_lbuf_from_free_list(struct rx_ring *rx_ring)
1020 {
1021 	struct bq_desc *lbq_desc;
1022 	uint32_t free_idx;
1023 
1024 	free_idx = rx_ring->lbq_free_head;
1025 	/* Pick from head of free list */
1026 	lbq_desc = rx_ring->lbuf_free[free_idx];
1027 	rx_ring->lbuf_free[free_idx] = NULL;
1028 
1029 	if (lbq_desc != NULL) {
1030 		free_idx++;
1031 		if (free_idx >= rx_ring->lbq_len)
1032 			free_idx = 0;
1033 		rx_ring->lbq_free_head = free_idx;
1034 		atomic_dec_32(&rx_ring->lbuf_free_count);
1035 		ASSERT(rx_ring->lbuf_free_count != 0);
1036 	}
1037 	return (lbq_desc);
1038 }
1039 
1040 /*
1041  * Add a small buffer descriptor to free list
1042  */
1043 static void
1044 ql_refill_sbuf_free_list(struct bq_desc *sbq_desc, boolean_t alloc_memory)
1045 {
1046 	struct rx_ring *rx_ring = sbq_desc->rx_ring;
1047 	uint64_t *sbq_entry;
1048 	qlge_t *qlge = (qlge_t *)rx_ring->qlge;
1049 	/*
1050 	 * Sync access
1051 	 */
1052 	mutex_enter(&rx_ring->sbq_lock);
1053 
1054 	sbq_desc->upl_inuse = 0;
1055 
1056 	/*
1057 	 * If we are freeing the buffers as a result of adapter unload, get out
1058 	 */
1059 	if ((sbq_desc->free_buf != NULL) ||
1060 	    (qlge->mac_flags == QL_MAC_DETACH)) {
1061 		if (sbq_desc->free_buf == NULL)
1062 			atomic_dec_32(&rx_ring->rx_indicate);
1063 		mutex_exit(&rx_ring->sbq_lock);
1064 		return;
1065 	}
1066 #ifdef QLGE_LOAD_UNLOAD
1067 	if (rx_ring->rx_indicate == 0)
1068 		cmn_err(CE_WARN, "sbq: indicate wrong");
1069 #endif
1070 #ifdef QLGE_TRACK_BUFFER_USAGE
1071 	uint32_t sb_consumer_idx;
1072 	uint32_t sb_producer_idx;
1073 	uint32_t num_free_buffers;
1074 	uint32_t temp;
1075 
1076 	temp = ql_read_doorbell_reg(qlge, rx_ring->sbq_prod_idx_db_reg);
1077 	sb_producer_idx = temp & 0x0000ffff;
1078 	sb_consumer_idx = (temp >> 16);
1079 
1080 	if (sb_consumer_idx > sb_producer_idx)
1081 		num_free_buffers = NUM_SMALL_BUFFERS -
1082 		    (sb_consumer_idx - sb_producer_idx);
1083 	else
1084 		num_free_buffers = sb_producer_idx - sb_consumer_idx;
1085 
1086 	if (num_free_buffers < qlge->rx_sb_low_count[rx_ring->cq_id])
1087 		qlge->rx_sb_low_count[rx_ring->cq_id] = num_free_buffers;
1088 
1089 #endif
1090 
1091 	ASSERT(sbq_desc->mp == NULL);
1092 
1093 #ifdef QLGE_LOAD_UNLOAD
1094 	if (rx_ring->rx_indicate > 0xFF000000)
1095 		cmn_err(CE_WARN, "sbq: indicate(%d) wrong: %d mac_flags %d,"
1096 		    " sbq_desc index %d.",
1097 		    rx_ring->cq_id, rx_ring->rx_indicate, rx_ring->mac_flags,
1098 		    sbq_desc->index);
1099 #endif
1100 	if (alloc_memory) {
1101 		sbq_desc->mp =
1102 		    desballoc((unsigned char *)(sbq_desc->bd_dma.vaddr),
1103 		    rx_ring->sbq_buf_size, 0, &sbq_desc->rx_recycle);
1104 		if (sbq_desc->mp == NULL) {
1105 			rx_ring->rx_failed_sbq_allocs++;
1106 		}
1107 	}
1108 
1109 	/* Got the packet from the stack decrement rx_indicate count */
1110 	atomic_dec_32(&rx_ring->rx_indicate);
1111 
1112 	ql_add_sbuf_to_free_list(rx_ring, sbq_desc);
1113 
1114 	/* Rearm if possible */
1115 	if ((rx_ring->sbuf_free_count >= MIN_BUFFERS_FREE_COUNT) &&
1116 	    (qlge->mac_flags == QL_MAC_STARTED)) {
1117 		sbq_entry = rx_ring->sbq_dma.vaddr;
1118 		sbq_entry += rx_ring->sbq_prod_idx;
1119 
1120 		while (rx_ring->sbuf_free_count > MIN_BUFFERS_ARM_COUNT) {
1121 			/* Get first one from free list */
1122 			sbq_desc = ql_get_sbuf_from_free_list(rx_ring);
1123 
1124 			*sbq_entry = cpu_to_le64(sbq_desc->bd_dma.dma_addr);
1125 			sbq_entry++;
1126 			rx_ring->sbq_prod_idx++;
1127 			if (rx_ring->sbq_prod_idx >= rx_ring->sbq_len) {
1128 				rx_ring->sbq_prod_idx = 0;
1129 				sbq_entry = rx_ring->sbq_dma.vaddr;
1130 			}
1131 			/* Add to end of in use list */
1132 			ql_add_sbuf_to_in_use_list(rx_ring, sbq_desc);
1133 		}
1134 
1135 		/* Update small buffer queue producer index */
1136 		ql_update_sbq_prod_idx(qlge, rx_ring);
1137 	}
1138 
1139 	mutex_exit(&rx_ring->sbq_lock);
1140 	QL_PRINT(DBG_RX_RING, ("%s(%d) exited, sbuf_free_count %d\n",
1141 	    __func__, qlge->instance, rx_ring->sbuf_free_count));
1142 }
1143 
1144 /*
1145  * rx recycle call back function
1146  */
1147 static void
1148 ql_release_to_sbuf_free_list(caddr_t p)
1149 {
1150 	struct bq_desc *sbq_desc = (struct bq_desc *)(void *)p;
1151 
1152 	if (sbq_desc == NULL)
1153 		return;
1154 	ql_refill_sbuf_free_list(sbq_desc, B_TRUE);
1155 }
1156 
1157 /*
1158  * Add a large buffer descriptor to free list
1159  */
1160 static void
1161 ql_refill_lbuf_free_list(struct bq_desc *lbq_desc, boolean_t alloc_memory)
1162 {
1163 	struct rx_ring *rx_ring = lbq_desc->rx_ring;
1164 	uint64_t *lbq_entry;
1165 	qlge_t *qlge = rx_ring->qlge;
1166 
1167 	/* Sync access */
1168 	mutex_enter(&rx_ring->lbq_lock);
1169 
1170 	lbq_desc->upl_inuse = 0;
1171 	/*
1172 	 * If we are freeing the buffers as a result of adapter unload, get out
1173 	 */
1174 	if ((lbq_desc->free_buf != NULL) ||
1175 	    (qlge->mac_flags == QL_MAC_DETACH)) {
1176 		if (lbq_desc->free_buf == NULL)
1177 			atomic_dec_32(&rx_ring->rx_indicate);
1178 		mutex_exit(&rx_ring->lbq_lock);
1179 		return;
1180 	}
1181 #ifdef QLGE_LOAD_UNLOAD
1182 	if (rx_ring->rx_indicate == 0)
1183 		cmn_err(CE_WARN, "lbq: indicate wrong");
1184 #endif
1185 #ifdef QLGE_TRACK_BUFFER_USAGE
1186 	uint32_t lb_consumer_idx;
1187 	uint32_t lb_producer_idx;
1188 	uint32_t num_free_buffers;
1189 	uint32_t temp;
1190 
1191 	temp = ql_read_doorbell_reg(qlge, rx_ring->lbq_prod_idx_db_reg);
1192 
1193 	lb_producer_idx = temp & 0x0000ffff;
1194 	lb_consumer_idx = (temp >> 16);
1195 
1196 	if (lb_consumer_idx > lb_producer_idx)
1197 		num_free_buffers = NUM_LARGE_BUFFERS -
1198 		    (lb_consumer_idx - lb_producer_idx);
1199 	else
1200 		num_free_buffers = lb_producer_idx - lb_consumer_idx;
1201 
1202 	if (num_free_buffers < qlge->rx_lb_low_count[rx_ring->cq_id]) {
1203 		qlge->rx_lb_low_count[rx_ring->cq_id] = num_free_buffers;
1204 	}
1205 #endif
1206 
1207 	ASSERT(lbq_desc->mp == NULL);
1208 #ifdef QLGE_LOAD_UNLOAD
1209 	if (rx_ring->rx_indicate > 0xFF000000)
1210 		cmn_err(CE_WARN, "lbq: indicate(%d) wrong: %d mac_flags %d,"
1211 		    "lbq_desc index %d",
1212 		    rx_ring->cq_id, rx_ring->rx_indicate, rx_ring->mac_flags,
1213 		    lbq_desc->index);
1214 #endif
1215 	if (alloc_memory) {
1216 		lbq_desc->mp =
1217 		    desballoc((unsigned char *)(lbq_desc->bd_dma.vaddr),
1218 		    rx_ring->lbq_buf_size, 0, &lbq_desc->rx_recycle);
1219 		if (lbq_desc->mp == NULL) {
1220 			rx_ring->rx_failed_lbq_allocs++;
1221 		}
1222 	}
1223 
1224 	/* Got the packet from the stack decrement rx_indicate count */
1225 	atomic_dec_32(&rx_ring->rx_indicate);
1226 
1227 	ql_add_lbuf_to_free_list(rx_ring, lbq_desc);
1228 
1229 	/* Rearm if possible */
1230 	if ((rx_ring->lbuf_free_count >= MIN_BUFFERS_FREE_COUNT) &&
1231 	    (qlge->mac_flags == QL_MAC_STARTED)) {
1232 		lbq_entry = rx_ring->lbq_dma.vaddr;
1233 		lbq_entry += rx_ring->lbq_prod_idx;
1234 		while (rx_ring->lbuf_free_count > MIN_BUFFERS_ARM_COUNT) {
1235 			/* Get first one from free list */
1236 			lbq_desc = ql_get_lbuf_from_free_list(rx_ring);
1237 
1238 			*lbq_entry = cpu_to_le64(lbq_desc->bd_dma.dma_addr);
1239 			lbq_entry++;
1240 			rx_ring->lbq_prod_idx++;
1241 			if (rx_ring->lbq_prod_idx >= rx_ring->lbq_len) {
1242 				rx_ring->lbq_prod_idx = 0;
1243 				lbq_entry = rx_ring->lbq_dma.vaddr;
1244 			}
1245 
1246 			/* Add to end of in use list */
1247 			ql_add_lbuf_to_in_use_list(rx_ring, lbq_desc);
1248 		}
1249 
1250 		/* Update large buffer queue producer index */
1251 		ql_update_lbq_prod_idx(rx_ring->qlge, rx_ring);
1252 	}
1253 
1254 	mutex_exit(&rx_ring->lbq_lock);
1255 	QL_PRINT(DBG_RX_RING, ("%s exitd, lbuf_free_count %d\n",
1256 	    __func__, rx_ring->lbuf_free_count));
1257 }
1258 /*
1259  * rx recycle call back function
1260  */
1261 static void
1262 ql_release_to_lbuf_free_list(caddr_t p)
1263 {
1264 	struct bq_desc *lbq_desc = (struct bq_desc *)(void *)p;
1265 
1266 	if (lbq_desc == NULL)
1267 		return;
1268 	ql_refill_lbuf_free_list(lbq_desc, B_TRUE);
1269 }
1270 
1271 /*
1272  * free small buffer queue buffers
1273  */
1274 static void
1275 ql_free_sbq_buffers(struct rx_ring *rx_ring)
1276 {
1277 	struct bq_desc *sbq_desc;
1278 	uint32_t i;
1279 	uint32_t j = rx_ring->sbq_free_head;
1280 	int  force_cnt = 0;
1281 
1282 	for (i = 0; i < rx_ring->sbuf_free_count; i++) {
1283 		sbq_desc = rx_ring->sbuf_free[j];
1284 		sbq_desc->free_buf = 1;
1285 		j++;
1286 		if (j >= rx_ring->sbq_len) {
1287 			j = 0;
1288 		}
1289 		if (sbq_desc->mp != NULL) {
1290 			freemsg(sbq_desc->mp);
1291 			sbq_desc->mp = NULL;
1292 		}
1293 	}
1294 	rx_ring->sbuf_free_count = 0;
1295 
1296 	j = rx_ring->sbq_use_head;
1297 	for (i = 0; i < rx_ring->sbuf_in_use_count; i++) {
1298 		sbq_desc = rx_ring->sbuf_in_use[j];
1299 		sbq_desc->free_buf = 1;
1300 		j++;
1301 		if (j >= rx_ring->sbq_len) {
1302 			j = 0;
1303 		}
1304 		if (sbq_desc->mp != NULL) {
1305 			freemsg(sbq_desc->mp);
1306 			sbq_desc->mp = NULL;
1307 		}
1308 	}
1309 	rx_ring->sbuf_in_use_count = 0;
1310 
1311 	sbq_desc = &rx_ring->sbq_desc[0];
1312 	for (i = 0; i < rx_ring->sbq_len; i++, sbq_desc++) {
1313 		/*
1314 		 * Set flag so that the callback does not allocate a new buffer
1315 		 */
1316 		sbq_desc->free_buf = 1;
1317 		if (sbq_desc->upl_inuse != 0) {
1318 			force_cnt++;
1319 		}
1320 		if (sbq_desc->bd_dma.dma_handle != NULL) {
1321 			ql_free_phys(&sbq_desc->bd_dma.dma_handle,
1322 			    &sbq_desc->bd_dma.acc_handle);
1323 			sbq_desc->bd_dma.dma_handle = NULL;
1324 			sbq_desc->bd_dma.acc_handle = NULL;
1325 		}
1326 	}
1327 #ifdef QLGE_LOAD_UNLOAD
1328 	cmn_err(CE_NOTE, "sbq: free %d inuse %d force %d\n",
1329 	    rx_ring->sbuf_free_count, rx_ring->sbuf_in_use_count, force_cnt);
1330 #endif
1331 	if (rx_ring->sbuf_in_use != NULL) {
1332 		kmem_free(rx_ring->sbuf_in_use, (rx_ring->sbq_len *
1333 		    sizeof (struct bq_desc *)));
1334 		rx_ring->sbuf_in_use = NULL;
1335 	}
1336 
1337 	if (rx_ring->sbuf_free != NULL) {
1338 		kmem_free(rx_ring->sbuf_free, (rx_ring->sbq_len *
1339 		    sizeof (struct bq_desc *)));
1340 		rx_ring->sbuf_free = NULL;
1341 	}
1342 }
1343 
1344 /* Allocate small buffers */
1345 static int
1346 ql_alloc_sbufs(qlge_t *qlge, struct rx_ring *rx_ring)
1347 {
1348 	struct bq_desc *sbq_desc;
1349 	int i;
1350 	ddi_dma_cookie_t dma_cookie;
1351 
1352 	rx_ring->sbuf_free = kmem_zalloc(rx_ring->sbq_len *
1353 	    sizeof (struct bq_desc *), KM_NOSLEEP);
1354 	if (rx_ring->sbuf_free == NULL) {
1355 		cmn_err(CE_WARN,
1356 		    "!%s: sbuf_free_list alloc: failed",
1357 		    __func__);
1358 		rx_ring->sbuf_free_count = 0;
1359 		goto alloc_sbuf_err;
1360 	}
1361 
1362 	rx_ring->sbuf_in_use = kmem_zalloc(rx_ring->sbq_len *
1363 	    sizeof (struct bq_desc *), KM_NOSLEEP);
1364 	if (rx_ring->sbuf_in_use == NULL) {
1365 		cmn_err(CE_WARN,
1366 		    "!%s: sbuf_inuse_list alloc: failed",
1367 		    __func__);
1368 		rx_ring->sbuf_in_use_count = 0;
1369 		goto alloc_sbuf_err;
1370 	}
1371 	rx_ring->sbq_use_head = 0;
1372 	rx_ring->sbq_use_tail = 0;
1373 	rx_ring->sbq_free_head = 0;
1374 	rx_ring->sbq_free_tail = 0;
1375 	sbq_desc = &rx_ring->sbq_desc[0];
1376 
1377 	for (i = 0; i < rx_ring->sbq_len; i++, sbq_desc++) {
1378 		/* Allocate buffer */
1379 		if (ql_alloc_phys(qlge->dip, &sbq_desc->bd_dma.dma_handle,
1380 		    &ql_buf_acc_attr,
1381 		    DDI_DMA_READ | DDI_DMA_STREAMING,
1382 		    &sbq_desc->bd_dma.acc_handle,
1383 		    (size_t)rx_ring->sbq_buf_size,	/* mem size */
1384 		    (size_t)0,				/* default alignment */
1385 		    (caddr_t *)&sbq_desc->bd_dma.vaddr,
1386 		    &dma_cookie) != 0) {
1387 			cmn_err(CE_WARN,
1388 			    "!%s: ddi_dma_alloc_handle: failed",
1389 			    __func__);
1390 			goto alloc_sbuf_err;
1391 		}
1392 
1393 		/* Set context for Return buffer callback */
1394 		sbq_desc->bd_dma.dma_addr = dma_cookie.dmac_laddress;
1395 		sbq_desc->rx_recycle.free_func = ql_release_to_sbuf_free_list;
1396 		sbq_desc->rx_recycle.free_arg  = (caddr_t)sbq_desc;
1397 		sbq_desc->rx_ring = rx_ring;
1398 		sbq_desc->upl_inuse = 0;
1399 		sbq_desc->free_buf = 0;
1400 
1401 		sbq_desc->mp =
1402 		    desballoc((unsigned char *)(sbq_desc->bd_dma.vaddr),
1403 		    rx_ring->sbq_buf_size, 0, &sbq_desc->rx_recycle);
1404 		if (sbq_desc->mp == NULL) {
1405 			cmn_err(CE_WARN, "%s: desballoc() failed", __func__);
1406 			goto alloc_sbuf_err;
1407 		}
1408 		ql_add_sbuf_to_free_list(rx_ring, sbq_desc);
1409 	}
1410 
1411 	return (DDI_SUCCESS);
1412 
1413 alloc_sbuf_err:
1414 	ql_free_sbq_buffers(rx_ring);
1415 	return (DDI_FAILURE);
1416 }
1417 
1418 static void
1419 ql_free_lbq_buffers(struct rx_ring *rx_ring)
1420 {
1421 	struct bq_desc *lbq_desc;
1422 	uint32_t i, j;
1423 	int force_cnt = 0;
1424 
1425 	j = rx_ring->lbq_free_head;
1426 	for (i = 0; i < rx_ring->lbuf_free_count; i++) {
1427 		lbq_desc = rx_ring->lbuf_free[j];
1428 		lbq_desc->free_buf = 1;
1429 		j++;
1430 		if (j >= rx_ring->lbq_len)
1431 			j = 0;
1432 		if (lbq_desc->mp != NULL) {
1433 			freemsg(lbq_desc->mp);
1434 			lbq_desc->mp = NULL;
1435 		}
1436 	}
1437 	rx_ring->lbuf_free_count = 0;
1438 
1439 	j = rx_ring->lbq_use_head;
1440 	for (i = 0; i < rx_ring->lbuf_in_use_count; i++) {
1441 		lbq_desc = rx_ring->lbuf_in_use[j];
1442 		lbq_desc->free_buf = 1;
1443 		j++;
1444 		if (j >= rx_ring->lbq_len) {
1445 			j = 0;
1446 		}
1447 		if (lbq_desc->mp != NULL) {
1448 			freemsg(lbq_desc->mp);
1449 			lbq_desc->mp = NULL;
1450 		}
1451 	}
1452 	rx_ring->lbuf_in_use_count = 0;
1453 
1454 	lbq_desc = &rx_ring->lbq_desc[0];
1455 	for (i = 0; i < rx_ring->lbq_len; i++, lbq_desc++) {
1456 		/* Set flag so that callback will not allocate a new buffer */
1457 		lbq_desc->free_buf = 1;
1458 		if (lbq_desc->upl_inuse != 0) {
1459 			force_cnt++;
1460 		}
1461 		if (lbq_desc->bd_dma.dma_handle != NULL) {
1462 			ql_free_phys(&lbq_desc->bd_dma.dma_handle,
1463 			    &lbq_desc->bd_dma.acc_handle);
1464 			lbq_desc->bd_dma.dma_handle = NULL;
1465 			lbq_desc->bd_dma.acc_handle = NULL;
1466 		}
1467 	}
1468 #ifdef QLGE_LOAD_UNLOAD
1469 	if (force_cnt) {
1470 		cmn_err(CE_WARN, "lbq: free %d inuse %d force %d",
1471 		    rx_ring->lbuf_free_count, rx_ring->lbuf_in_use_count,
1472 		    force_cnt);
1473 	}
1474 #endif
1475 	if (rx_ring->lbuf_in_use != NULL) {
1476 		kmem_free(rx_ring->lbuf_in_use, (rx_ring->lbq_len *
1477 		    sizeof (struct bq_desc *)));
1478 		rx_ring->lbuf_in_use = NULL;
1479 	}
1480 
1481 	if (rx_ring->lbuf_free != NULL) {
1482 		kmem_free(rx_ring->lbuf_free, (rx_ring->lbq_len *
1483 		    sizeof (struct bq_desc *)));
1484 		rx_ring->lbuf_free = NULL;
1485 	}
1486 }
1487 
1488 /* Allocate large buffers */
1489 static int
1490 ql_alloc_lbufs(qlge_t *qlge, struct rx_ring *rx_ring)
1491 {
1492 	struct bq_desc *lbq_desc;
1493 	ddi_dma_cookie_t dma_cookie;
1494 	int i;
1495 	uint32_t lbq_buf_size;
1496 
1497 	rx_ring->lbuf_free = kmem_zalloc(rx_ring->lbq_len *
1498 	    sizeof (struct bq_desc *), KM_NOSLEEP);
1499 	if (rx_ring->lbuf_free == NULL) {
1500 		cmn_err(CE_WARN,
1501 		    "!%s: lbuf_free_list alloc: failed",
1502 		    __func__);
1503 		rx_ring->lbuf_free_count = 0;
1504 		goto alloc_lbuf_err;
1505 	}
1506 
1507 	rx_ring->lbuf_in_use = kmem_zalloc(rx_ring->lbq_len *
1508 	    sizeof (struct bq_desc *), KM_NOSLEEP);
1509 
1510 	if (rx_ring->lbuf_in_use == NULL) {
1511 		cmn_err(CE_WARN,
1512 		    "!%s: lbuf_inuse_list alloc: failed",
1513 		    __func__);
1514 		rx_ring->lbuf_in_use_count = 0;
1515 		goto alloc_lbuf_err;
1516 	}
1517 	rx_ring->lbq_use_head = 0;
1518 	rx_ring->lbq_use_tail = 0;
1519 	rx_ring->lbq_free_head = 0;
1520 	rx_ring->lbq_free_tail = 0;
1521 
1522 	lbq_buf_size = (qlge->mtu == ETHERMTU) ?
1523 	    NORMAL_FRAME_SIZE : JUMBO_FRAME_SIZE;
1524 
1525 	lbq_desc = &rx_ring->lbq_desc[0];
1526 	for (i = 0; i < rx_ring->lbq_len; i++, lbq_desc++) {
1527 		rx_ring->lbq_buf_size = lbq_buf_size;
1528 		/* Allocate buffer */
1529 		if (ql_alloc_phys(qlge->dip, &lbq_desc->bd_dma.dma_handle,
1530 		    &ql_buf_acc_attr,
1531 		    DDI_DMA_READ | DDI_DMA_STREAMING,
1532 		    &lbq_desc->bd_dma.acc_handle,
1533 		    (size_t)rx_ring->lbq_buf_size,  /* mem size */
1534 		    (size_t)0, /* default alignment */
1535 		    (caddr_t *)&lbq_desc->bd_dma.vaddr,
1536 		    &dma_cookie) != 0) {
1537 			cmn_err(CE_WARN,
1538 			    "!%s: ddi_dma_alloc_handle: failed",
1539 			    __func__);
1540 			goto alloc_lbuf_err;
1541 		}
1542 
1543 		/* Set context for Return buffer callback */
1544 		lbq_desc->bd_dma.dma_addr = dma_cookie.dmac_laddress;
1545 		lbq_desc->rx_recycle.free_func = ql_release_to_lbuf_free_list;
1546 		lbq_desc->rx_recycle.free_arg  = (caddr_t)lbq_desc;
1547 		lbq_desc->rx_ring = rx_ring;
1548 		lbq_desc->upl_inuse = 0;
1549 		lbq_desc->free_buf = 0;
1550 
1551 		lbq_desc->mp =
1552 		    desballoc((unsigned char *)(lbq_desc->bd_dma.vaddr),
1553 		    rx_ring->lbq_buf_size, 0, &lbq_desc->rx_recycle);
1554 		if (lbq_desc->mp == NULL) {
1555 			cmn_err(CE_WARN, "%s: desballoc() failed", __func__);
1556 			goto alloc_lbuf_err;
1557 		}
1558 		ql_add_lbuf_to_free_list(rx_ring, lbq_desc);
1559 	} /* For all large buffers */
1560 
1561 	return (DDI_SUCCESS);
1562 
1563 alloc_lbuf_err:
1564 	ql_free_lbq_buffers(rx_ring);
1565 	return (DDI_FAILURE);
1566 }
1567 
1568 /*
1569  * Free rx buffers
1570  */
1571 static void
1572 ql_free_rx_buffers(qlge_t *qlge)
1573 {
1574 	int i;
1575 	struct rx_ring *rx_ring;
1576 
1577 	for (i = 0; i < qlge->rx_ring_count; i++) {
1578 		rx_ring = &qlge->rx_ring[i];
1579 		if (rx_ring->type != TX_Q) {
1580 			ql_free_lbq_buffers(rx_ring);
1581 			ql_free_sbq_buffers(rx_ring);
1582 		}
1583 	}
1584 }
1585 
1586 /*
1587  * Allocate rx buffers
1588  */
1589 static int
1590 ql_alloc_rx_buffers(qlge_t *qlge)
1591 {
1592 	struct rx_ring *rx_ring;
1593 	int i;
1594 
1595 	for (i = 0; i < qlge->rx_ring_count; i++) {
1596 		rx_ring = &qlge->rx_ring[i];
1597 		if (rx_ring->type != TX_Q) {
1598 			if (ql_alloc_sbufs(qlge, rx_ring) != DDI_SUCCESS)
1599 				goto alloc_err;
1600 			if (ql_alloc_lbufs(qlge, rx_ring) != DDI_SUCCESS)
1601 				goto alloc_err;
1602 		}
1603 	}
1604 #ifdef QLGE_TRACK_BUFFER_USAGE
1605 	for (i = 0; i < qlge->rx_ring_count; i++) {
1606 		if (qlge->rx_ring[i].type == RX_Q) {
1607 			qlge->rx_sb_low_count[i] = NUM_SMALL_BUFFERS;
1608 			qlge->rx_lb_low_count[i] = NUM_LARGE_BUFFERS;
1609 		}
1610 		qlge->cq_low_count[i] = NUM_RX_RING_ENTRIES;
1611 	}
1612 #endif
1613 	return (DDI_SUCCESS);
1614 
1615 alloc_err:
1616 
1617 	return (DDI_FAILURE);
1618 }
1619 
1620 /*
1621  * Initialize large buffer queue ring
1622  */
1623 static void
1624 ql_init_lbq_ring(struct rx_ring *rx_ring)
1625 {
1626 	uint16_t i;
1627 	struct bq_desc *lbq_desc;
1628 
1629 	bzero(rx_ring->lbq_desc, rx_ring->lbq_len * sizeof (struct bq_desc));
1630 	for (i = 0; i < rx_ring->lbq_len; i++) {
1631 		lbq_desc = &rx_ring->lbq_desc[i];
1632 		lbq_desc->index = i;
1633 	}
1634 }
1635 
1636 /*
1637  * Initialize small buffer queue ring
1638  */
1639 static void
1640 ql_init_sbq_ring(struct rx_ring *rx_ring)
1641 {
1642 	uint16_t i;
1643 	struct bq_desc *sbq_desc;
1644 
1645 	bzero(rx_ring->sbq_desc, rx_ring->sbq_len * sizeof (struct bq_desc));
1646 	for (i = 0; i < rx_ring->sbq_len; i++) {
1647 		sbq_desc = &rx_ring->sbq_desc[i];
1648 		sbq_desc->index = i;
1649 	}
1650 }
1651 
1652 /*
1653  * Calculate the pseudo-header checksum if hardware can not do
1654  */
1655 static void
1656 ql_pseudo_cksum(uint8_t *buf)
1657 {
1658 	uint32_t cksum;
1659 	uint16_t iphl;
1660 	uint16_t proto;
1661 
1662 	iphl = (uint16_t)(4 * (buf[0] & 0xF));
1663 	cksum = (((uint16_t)buf[2])<<8) + buf[3] - iphl;
1664 	cksum += proto = buf[9];
1665 	cksum += (((uint16_t)buf[12])<<8) + buf[13];
1666 	cksum += (((uint16_t)buf[14])<<8) + buf[15];
1667 	cksum += (((uint16_t)buf[16])<<8) + buf[17];
1668 	cksum += (((uint16_t)buf[18])<<8) + buf[19];
1669 	cksum = (cksum>>16) + (cksum & 0xFFFF);
1670 	cksum = (cksum>>16) + (cksum & 0xFFFF);
1671 
1672 	/*
1673 	 * Point it to the TCP/UDP header, and
1674 	 * update the checksum field.
1675 	 */
1676 	buf += iphl + ((proto == IPPROTO_TCP) ?
1677 	    TCP_CKSUM_OFFSET : UDP_CKSUM_OFFSET);
1678 
1679 	*(uint16_t *)(void *)buf = (uint16_t)htons((uint16_t)cksum);
1680 
1681 }
1682 
1683 /*
1684  * Transmit an incoming packet.
1685  */
1686 mblk_t *
1687 ql_ring_tx(void *arg, mblk_t *mp)
1688 {
1689 	struct tx_ring *tx_ring = (struct tx_ring *)arg;
1690 	qlge_t *qlge = tx_ring->qlge;
1691 	mblk_t *next;
1692 	int rval;
1693 	uint32_t tx_count = 0;
1694 
1695 	if (qlge->port_link_state == LS_DOWN) {
1696 		/* can not send message while link is down */
1697 		mblk_t *tp;
1698 		cmn_err(CE_WARN, "tx failed due to link down");
1699 
1700 		while (mp != NULL) {
1701 			tp = mp->b_next;
1702 			mp->b_next = NULL;
1703 			freemsg(mp);
1704 			mp = tp;
1705 		}
1706 		goto exit;
1707 	}
1708 
1709 	mutex_enter(&tx_ring->tx_lock);
1710 	/* if mac is not started, driver is not ready, can not send */
1711 	if (tx_ring->mac_flags != QL_MAC_STARTED) {
1712 		cmn_err(CE_WARN, "%s(%d)ring not started, mode %d "
1713 		    " return packets",
1714 		    __func__, qlge->instance, tx_ring->mac_flags);
1715 		mutex_exit(&tx_ring->tx_lock);
1716 		goto exit;
1717 	}
1718 
1719 	/* we must try to send all */
1720 	while (mp != NULL) {
1721 		/*
1722 		 * if number of available slots is less than a threshold,
1723 		 * then quit
1724 		 */
1725 		if (tx_ring->tx_free_count <= TX_STOP_THRESHOLD) {
1726 			tx_ring->queue_stopped = 1;
1727 			rval = DDI_FAILURE;
1728 #ifdef QLGE_LOAD_UNLOAD
1729 			cmn_err(CE_WARN, "%s(%d) no resources",
1730 			    __func__, qlge->instance);
1731 #endif
1732 			tx_ring->defer++;
1733 			/*
1734 			 * If we return the buffer back we are expected to call
1735 			 * mac_tx_ring_update() when resources are available
1736 			 */
1737 			break;
1738 		}
1739 
1740 		next = mp->b_next;
1741 		mp->b_next = NULL;
1742 
1743 		rval = ql_send_common(tx_ring, mp);
1744 
1745 		if (rval != DDI_SUCCESS) {
1746 			mp->b_next = next;
1747 			break;
1748 		}
1749 		tx_count++;
1750 		mp = next;
1751 	}
1752 
1753 	/*
1754 	 * After all msg blocks are mapped or copied to tx buffer,
1755 	 * trigger the hardware to send!
1756 	 */
1757 	if (tx_count > 0) {
1758 		ql_write_doorbell_reg(tx_ring->qlge, tx_ring->prod_idx_db_reg,
1759 		    tx_ring->prod_idx);
1760 	}
1761 
1762 	mutex_exit(&tx_ring->tx_lock);
1763 exit:
1764 	return (mp);
1765 }
1766 
1767 
1768 /*
1769  * This function builds an mblk list for the given inbound
1770  * completion.
1771  */
1772 
1773 static mblk_t *
1774 ql_build_rx_mp(qlge_t *qlge, struct rx_ring *rx_ring,
1775     struct ib_mac_iocb_rsp *ib_mac_rsp)
1776 {
1777 	mblk_t *mp = NULL;
1778 	mblk_t *mp1 = NULL;	/* packet header */
1779 	mblk_t *mp2 = NULL;	/* packet content */
1780 	struct bq_desc *lbq_desc;
1781 	struct bq_desc *sbq_desc;
1782 	uint32_t err_flag = (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK);
1783 	uint32_t payload_len = le32_to_cpu(ib_mac_rsp->data_len);
1784 	uint32_t header_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1785 	uint32_t pkt_len = payload_len + header_len;
1786 	uint32_t done;
1787 	uint64_t *curr_ial_ptr;
1788 	uint32_t ial_data_addr_low;
1789 	uint32_t actual_data_addr_low;
1790 	mblk_t *mp_ial = NULL;	/* ial chained packets */
1791 	uint32_t size;
1792 
1793 	/*
1794 	 * Check if error flags are set
1795 	 */
1796 	if (err_flag != 0) {
1797 		if ((err_flag & IB_MAC_IOCB_RSP_ERR_OVERSIZE) != 0)
1798 			rx_ring->frame_too_long++;
1799 		if ((err_flag & IB_MAC_IOCB_RSP_ERR_UNDERSIZE) != 0)
1800 			rx_ring->frame_too_short++;
1801 		if ((err_flag & IB_MAC_IOCB_RSP_ERR_CRC) != 0)
1802 			rx_ring->fcs_err++;
1803 #ifdef QLGE_LOAD_UNLOAD
1804 		cmn_err(CE_WARN, "bad packet, type 0x%x", err_flag);
1805 #endif
1806 		QL_DUMP(DBG_RX, "qlge_ring_rx: bad response iocb dump\n",
1807 		    (uint8_t *)ib_mac_rsp, 8,
1808 		    (size_t)sizeof (struct ib_mac_iocb_rsp));
1809 	}
1810 
1811 	/* header should not be in large buffer */
1812 	if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HL) {
1813 		cmn_err(CE_WARN, "header in large buffer or invalid!");
1814 		err_flag |= 1;
1815 	}
1816 	/*
1817 	 * Handle the header buffer if present.
1818 	 * packet header must be valid and saved in one small buffer
1819 	 * broadcast/multicast packets' headers not splitted
1820 	 */
1821 	if ((ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) &&
1822 	    (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1823 		QL_PRINT(DBG_RX, ("Header of %d bytes in small buffer.\n",
1824 		    header_len));
1825 		/* Sync access */
1826 		sbq_desc = ql_get_sbuf_from_in_use_list(rx_ring);
1827 
1828 		ASSERT(sbq_desc != NULL);
1829 
1830 		/*
1831 		 * Validate addresses from the ASIC with the
1832 		 * expected sbuf address
1833 		 */
1834 		if (cpu_to_le64(sbq_desc->bd_dma.dma_addr)
1835 		    != ib_mac_rsp->hdr_addr) {
1836 			/* Small buffer address mismatch */
1837 			cmn_err(CE_WARN, "%s(%d) ring%d packet saved"
1838 			    " in wrong small buffer",
1839 			    __func__, qlge->instance, rx_ring->cq_id);
1840 			goto fetal_error;
1841 		}
1842 		/* get this packet */
1843 		mp1 = sbq_desc->mp;
1844 		if ((err_flag != 0)|| (mp1 == NULL)) {
1845 			/* failed on this packet, put it back for re-arming */
1846 #ifdef QLGE_LOAD_UNLOAD
1847 			cmn_err(CE_WARN, "get header from small buffer fail");
1848 #endif
1849 			ql_refill_sbuf_free_list(sbq_desc, B_FALSE);
1850 			mp1 = NULL;
1851 		} else {
1852 			/* Flush DMA'd data */
1853 			(void) ddi_dma_sync(sbq_desc->bd_dma.dma_handle,
1854 			    0, header_len, DDI_DMA_SYNC_FORKERNEL);
1855 
1856 			if ((qlge->ip_hdr_offset != 0)&&
1857 			    (header_len < SMALL_BUFFER_SIZE)) {
1858 				/*
1859 				 * copy entire header to a 2 bytes boundary
1860 				 * address for 8100 adapters so that the IP
1861 				 * header can be on a 4 byte boundary address
1862 				 */
1863 				bcopy(mp1->b_rptr,
1864 				    (mp1->b_rptr + SMALL_BUFFER_SIZE +
1865 				    qlge->ip_hdr_offset),
1866 				    header_len);
1867 				mp1->b_rptr += SMALL_BUFFER_SIZE +
1868 				    qlge->ip_hdr_offset;
1869 			}
1870 
1871 			/*
1872 			 * Adjust the mp payload_len to match
1873 			 * the packet header payload_len
1874 			 */
1875 			mp1->b_wptr = mp1->b_rptr + header_len;
1876 			mp1->b_next = mp1->b_cont = NULL;
1877 			QL_DUMP(DBG_RX, "\t RX packet header dump:\n",
1878 			    (uint8_t *)mp1->b_rptr, 8, header_len);
1879 		}
1880 	}
1881 
1882 	/*
1883 	 * packet data or whole packet can be in small or one or
1884 	 * several large buffer(s)
1885 	 */
1886 	if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1887 		/*
1888 		 * The data is in a single small buffer.
1889 		 */
1890 		sbq_desc = ql_get_sbuf_from_in_use_list(rx_ring);
1891 
1892 		ASSERT(sbq_desc != NULL);
1893 
1894 		QL_PRINT(DBG_RX,
1895 		    ("%d bytes in a single small buffer, sbq_desc = %p, "
1896 		    "sbq_desc->bd_dma.dma_addr = %x,"
1897 		    " ib_mac_rsp->data_addr = %x, mp = %p\n",
1898 		    payload_len, sbq_desc, sbq_desc->bd_dma.dma_addr,
1899 		    ib_mac_rsp->data_addr, sbq_desc->mp));
1900 
1901 		/*
1902 		 * Validate  addresses from the ASIC with the
1903 		 * expected sbuf address
1904 		 */
1905 		if (cpu_to_le64(sbq_desc->bd_dma.dma_addr)
1906 		    != ib_mac_rsp->data_addr) {
1907 			/* Small buffer address mismatch */
1908 			cmn_err(CE_WARN, "%s(%d) ring%d packet saved"
1909 			    " in wrong small buffer",
1910 			    __func__, qlge->instance, rx_ring->cq_id);
1911 			goto fetal_error;
1912 		}
1913 		/* get this packet */
1914 		mp2 = sbq_desc->mp;
1915 		if ((err_flag != 0) || (mp2 == NULL)) {
1916 #ifdef QLGE_LOAD_UNLOAD
1917 			/* failed on this packet, put it back for re-arming */
1918 			cmn_err(CE_WARN, "ignore bad data from small buffer");
1919 #endif
1920 			ql_refill_sbuf_free_list(sbq_desc, B_FALSE);
1921 			mp2 = NULL;
1922 		} else {
1923 			/* Adjust the buffer length to match the payload_len */
1924 			mp2->b_wptr = mp2->b_rptr + payload_len;
1925 			mp2->b_next = mp2->b_cont = NULL;
1926 			/* Flush DMA'd data */
1927 			(void) ddi_dma_sync(sbq_desc->bd_dma.dma_handle,
1928 			    0, payload_len, DDI_DMA_SYNC_FORKERNEL);
1929 			QL_DUMP(DBG_RX, "\t RX packet payload dump:\n",
1930 			    (uint8_t *)mp2->b_rptr, 8, payload_len);
1931 			/*
1932 			 * if payload is too small , copy to
1933 			 * the end of packet header
1934 			 */
1935 			if ((mp1 != NULL) &&
1936 			    (payload_len <= qlge->payload_copy_thresh) &&
1937 			    (pkt_len <
1938 			    (SMALL_BUFFER_SIZE - qlge->ip_hdr_offset))) {
1939 				bcopy(mp2->b_rptr, mp1->b_wptr, payload_len);
1940 				mp1->b_wptr += payload_len;
1941 				freemsg(mp2);
1942 				mp2 = NULL;
1943 			}
1944 		}
1945 	} else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1946 		/*
1947 		 * The data is in a single large buffer.
1948 		 */
1949 		lbq_desc = ql_get_lbuf_from_in_use_list(rx_ring);
1950 
1951 		QL_PRINT(DBG_RX,
1952 		    ("%d bytes in a single large buffer, lbq_desc = %p, "
1953 		    "lbq_desc->bd_dma.dma_addr = %x,"
1954 		    " ib_mac_rsp->data_addr = %x, mp = %p\n",
1955 		    payload_len, lbq_desc, lbq_desc->bd_dma.dma_addr,
1956 		    ib_mac_rsp->data_addr, lbq_desc->mp));
1957 
1958 		ASSERT(lbq_desc != NULL);
1959 
1960 		/*
1961 		 * Validate  addresses from the ASIC with
1962 		 * the expected lbuf address
1963 		 */
1964 		if (cpu_to_le64(lbq_desc->bd_dma.dma_addr)
1965 		    != ib_mac_rsp->data_addr) {
1966 			/* Large buffer address mismatch */
1967 			cmn_err(CE_WARN, "%s(%d) ring%d packet saved"
1968 			    " in wrong large buffer",
1969 			    __func__, qlge->instance, rx_ring->cq_id);
1970 			goto fetal_error;
1971 		}
1972 		mp2 = lbq_desc->mp;
1973 		if ((err_flag != 0) || (mp2 == NULL)) {
1974 #ifdef QLGE_LOAD_UNLOAD
1975 			cmn_err(CE_WARN, "ignore bad data from large buffer");
1976 #endif
1977 			/* failed on this packet, put it back for re-arming */
1978 			ql_refill_lbuf_free_list(lbq_desc, B_FALSE);
1979 			mp2 = NULL;
1980 		} else {
1981 			/*
1982 			 * Adjust the buffer length to match
1983 			 * the packet payload_len
1984 			 */
1985 			mp2->b_wptr = mp2->b_rptr + payload_len;
1986 			mp2->b_next = mp2->b_cont = NULL;
1987 			/* Flush DMA'd data */
1988 			(void) ddi_dma_sync(lbq_desc->bd_dma.dma_handle,
1989 			    0, payload_len, DDI_DMA_SYNC_FORKERNEL);
1990 			QL_DUMP(DBG_RX, "\t RX packet payload dump:\n",
1991 			    (uint8_t *)mp2->b_rptr, 8, payload_len);
1992 			/*
1993 			 * if payload is too small , copy to
1994 			 * the end of packet header
1995 			 */
1996 			if ((mp1 != NULL) &&
1997 			    (payload_len <= qlge->payload_copy_thresh) &&
1998 			    (pkt_len<
1999 			    (SMALL_BUFFER_SIZE - qlge->ip_hdr_offset))) {
2000 				bcopy(mp2->b_rptr, mp1->b_wptr, payload_len);
2001 				mp1->b_wptr += payload_len;
2002 				freemsg(mp2);
2003 				mp2 = NULL;
2004 			}
2005 		}
2006 	} else if (payload_len) {
2007 		/*
2008 		 * payload available but not in sml nor lrg buffer,
2009 		 * so, it is saved in IAL
2010 		 */
2011 #ifdef QLGE_LOAD_UNLOAD
2012 		cmn_err(CE_NOTE, "packet chained in IAL \n");
2013 #endif
2014 		/* lrg buf addresses are saved in one small buffer */
2015 		sbq_desc = ql_get_sbuf_from_in_use_list(rx_ring);
2016 		curr_ial_ptr = (uint64_t *)sbq_desc->bd_dma.vaddr;
2017 		done = 0;
2018 		while (!done) {
2019 			ial_data_addr_low =
2020 			    (uint32_t)(le64_to_cpu(*curr_ial_ptr) &
2021 			    0xFFFFFFFE);
2022 			/* check if this is the last packet fragment */
2023 			done = (uint32_t)(le64_to_cpu(*curr_ial_ptr) & 1);
2024 			curr_ial_ptr++;
2025 			/*
2026 			 * The data is in one or several large buffer(s).
2027 			 */
2028 			lbq_desc = ql_get_lbuf_from_in_use_list(rx_ring);
2029 			actual_data_addr_low =
2030 			    (uint32_t)(lbq_desc->bd_dma.dma_addr &
2031 			    0xFFFFFFFE);
2032 			if (ial_data_addr_low != actual_data_addr_low) {
2033 				cmn_err(CE_WARN,
2034 				    "packet saved in wrong ial lrg buffer"
2035 				    " expected %x, actual %lx",
2036 				    ial_data_addr_low,
2037 				    (uintptr_t)lbq_desc->bd_dma.dma_addr);
2038 				goto fetal_error;
2039 			}
2040 
2041 			if (mp_ial == NULL) {
2042 				mp_ial = mp2 = lbq_desc->mp;
2043 			} else {
2044 				mp2->b_cont = lbq_desc->mp;
2045 				mp2 = lbq_desc->mp;
2046 			}
2047 			mp2->b_next = NULL;
2048 			mp2->b_cont = NULL;
2049 			size = (payload_len < rx_ring->lbq_buf_size)?
2050 			    payload_len : rx_ring->lbq_buf_size;
2051 			mp2->b_wptr = mp2->b_rptr + size;
2052 			/* Flush DMA'd data */
2053 			(void) ddi_dma_sync(lbq_desc->bd_dma.dma_handle,
2054 			    0, size, DDI_DMA_SYNC_FORKERNEL);
2055 			payload_len -= size;
2056 			QL_DUMP(DBG_RX, "\t Mac data dump:\n",
2057 			    (uint8_t *)mp2->b_rptr, 8, size);
2058 		}
2059 		mp2 = mp_ial;
2060 		freemsg(sbq_desc->mp);
2061 	}
2062 	/*
2063 	 * some packets' hdr not split, then send mp2 upstream, otherwise,
2064 	 * concatenate message block mp2 to the tail of message header, mp1
2065 	 */
2066 	if (!err_flag) {
2067 		if (mp1) {
2068 			if (mp2) {
2069 				QL_PRINT(DBG_RX, ("packet in mp1 and mp2\n"));
2070 				linkb(mp1, mp2); /* mp1->b_cont = mp2; */
2071 				mp = mp1;
2072 			} else {
2073 				QL_PRINT(DBG_RX, ("packet in mp1 only\n"));
2074 				mp = mp1;
2075 			}
2076 		} else if (mp2) {
2077 			QL_PRINT(DBG_RX, ("packet in mp2 only\n"));
2078 			mp = mp2;
2079 		}
2080 	}
2081 	return (mp);
2082 
2083 fetal_error:
2084 	/* Fetal Error! */
2085 	*mp->b_wptr = 0;
2086 	return (mp);
2087 
2088 }
2089 
2090 /*
2091  * Bump completion queue consumer index.
2092  */
2093 static void
2094 ql_update_cq(struct rx_ring *rx_ring)
2095 {
2096 	rx_ring->cnsmr_idx++;
2097 	rx_ring->curr_entry++;
2098 	if (rx_ring->cnsmr_idx >= rx_ring->cq_len) {
2099 		rx_ring->cnsmr_idx = 0;
2100 		rx_ring->curr_entry = rx_ring->cq_dma.vaddr;
2101 	}
2102 }
2103 
2104 /*
2105  * Update completion queue consumer index.
2106  */
2107 static void
2108 ql_write_cq_idx(struct rx_ring *rx_ring)
2109 {
2110 	qlge_t *qlge = rx_ring->qlge;
2111 
2112 	ql_write_doorbell_reg(qlge, rx_ring->cnsmr_idx_db_reg,
2113 	    rx_ring->cnsmr_idx);
2114 }
2115 
2116 /*
2117  * Processes a SYS-Chip Event Notification Completion Event.
2118  * The incoming notification event that describes a link up/down
2119  * or some sorts of error happens.
2120  */
2121 static void
2122 ql_process_chip_ae_intr(qlge_t *qlge,
2123     struct ib_sys_event_iocb_rsp *ib_sys_event_rsp_ptr)
2124 {
2125 	uint8_t eventType = ib_sys_event_rsp_ptr->event_type;
2126 	uint32_t soft_req = 0;
2127 
2128 	switch (eventType) {
2129 		case SYS_EVENT_PORT_LINK_UP:	/* 0x0h */
2130 			QL_PRINT(DBG_MBX, ("Port Link Up\n"));
2131 			break;
2132 
2133 		case SYS_EVENT_PORT_LINK_DOWN:	/* 0x1h */
2134 			QL_PRINT(DBG_MBX, ("Port Link Down\n"));
2135 			break;
2136 
2137 		case SYS_EVENT_MULTIPLE_CAM_HITS : /* 0x6h */
2138 			cmn_err(CE_WARN, "A multiple CAM hits look up error "
2139 			    "occurred");
2140 			soft_req |= NEED_HW_RESET;
2141 			break;
2142 
2143 		case SYS_EVENT_SOFT_ECC_ERR:	/* 0x7h */
2144 			cmn_err(CE_WARN, "Soft ECC error detected");
2145 			soft_req |= NEED_HW_RESET;
2146 			break;
2147 
2148 		case SYS_EVENT_MGMT_FATAL_ERR:	/* 0x8h */
2149 			cmn_err(CE_WARN, "Management (MPI) Processor fatal"
2150 			    " error occured");
2151 			soft_req |= NEED_MPI_RESET;
2152 			break;
2153 
2154 		case SYS_EVENT_MAC_INTERRUPT:	/* 0x9h */
2155 			QL_PRINT(DBG_MBX, ("MAC Interrupt"));
2156 			break;
2157 
2158 		case SYS_EVENT_PCI_ERR_READING_SML_LRG_BUF:	/* 0x40h */
2159 			cmn_err(CE_WARN, "PCI Error reading small/large "
2160 			    "buffers occured");
2161 			soft_req |= NEED_HW_RESET;
2162 			break;
2163 
2164 		default:
2165 			QL_PRINT(DBG_RX, ("%s(%d) unknown Sys Event: "
2166 			    "type 0x%x occured",
2167 			    __func__, qlge->instance, eventType));
2168 			break;
2169 	}
2170 
2171 	if ((soft_req & NEED_MPI_RESET) != 0) {
2172 		ql_wake_mpi_reset_soft_intr(qlge);
2173 	} else if ((soft_req & NEED_HW_RESET) != 0) {
2174 		ql_wake_asic_reset_soft_intr(qlge);
2175 	}
2176 }
2177 
2178 /*
2179  * set received packet checksum flag
2180  */
2181 void
2182 ql_set_rx_cksum(mblk_t *mp, struct ib_mac_iocb_rsp *net_rsp)
2183 {
2184 	uint32_t flags;
2185 
2186 	/* Not TCP or UDP packet? nothing more to do */
2187 	if (((net_rsp->flags2 & IB_MAC_IOCB_RSP_T) == 0) &&
2188 	    ((net_rsp->flags2 & IB_MAC_IOCB_RSP_U) == 0))
2189 	return;
2190 
2191 	/* No CKO support for IPv6 */
2192 	if ((net_rsp->flags3 & IB_MAC_IOCB_RSP_V6) != 0)
2193 		return;
2194 
2195 	/*
2196 	 * If checksum error, don't set flags; stack will calculate
2197 	 * checksum, detect the error and update statistics
2198 	 */
2199 	if (((net_rsp->flags1 & IB_MAC_IOCB_RSP_TE) != 0) ||
2200 	    ((net_rsp->flags1 & IB_MAC_IOCB_RSP_IE) != 0))
2201 		return;
2202 
2203 	/* TCP or UDP packet and checksum valid */
2204 	if (((net_rsp->flags2 & IB_MAC_IOCB_RSP_T) != 0) &&
2205 	    ((net_rsp->flags1 & IB_MAC_IOCB_RSP_NU) == 0)) {
2206 		flags = HCK_FULLCKSUM | HCK_FULLCKSUM_OK;
2207 		(void) hcksum_assoc(mp, NULL, NULL, 0, 0, 0, 0, flags, 0);
2208 	}
2209 	if (((net_rsp->flags2 & IB_MAC_IOCB_RSP_U) != 0) &&
2210 	    ((net_rsp->flags1 & IB_MAC_IOCB_RSP_NU) == 0)) {
2211 		flags = HCK_FULLCKSUM | HCK_FULLCKSUM_OK;
2212 		(void) hcksum_assoc(mp, NULL, NULL, 0, 0, 0, 0, flags, 0);
2213 	}
2214 }
2215 
2216 /*
2217  * This function goes through h/w descriptor in one specified rx ring,
2218  * receives the data if the descriptor status shows the data is ready.
2219  * It returns a chain of mblks containing the received data, to be
2220  * passed up to mac_rx_ring().
2221  */
2222 mblk_t *
2223 ql_ring_rx(struct rx_ring *rx_ring, int poll_bytes)
2224 {
2225 	qlge_t *qlge = rx_ring->qlge;
2226 	uint32_t prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2227 	struct ib_mac_iocb_rsp *net_rsp;
2228 	mblk_t *mp;
2229 	mblk_t *mblk_head;
2230 	mblk_t **mblk_tail;
2231 	uint32_t received_bytes = 0;
2232 	boolean_t done = B_FALSE;
2233 	uint32_t length;
2234 
2235 #ifdef QLGE_TRACK_BUFFER_USAGE
2236 	uint32_t consumer_idx;
2237 	uint32_t producer_idx;
2238 	uint32_t num_free_entries;
2239 	uint32_t temp;
2240 
2241 	temp = ql_read_doorbell_reg(qlge, rx_ring->cnsmr_idx_db_reg);
2242 	consumer_idx = temp & 0x0000ffff;
2243 	producer_idx = (temp >> 16);
2244 
2245 	if (consumer_idx > producer_idx)
2246 		num_free_entries = (consumer_idx - producer_idx);
2247 	else
2248 		num_free_entries = NUM_RX_RING_ENTRIES - (
2249 		    producer_idx - consumer_idx);
2250 
2251 	if (num_free_entries < qlge->cq_low_count[rx_ring->cq_id])
2252 		qlge->cq_low_count[rx_ring->cq_id] = num_free_entries;
2253 
2254 #endif
2255 	mblk_head = NULL;
2256 	mblk_tail = &mblk_head;
2257 
2258 	while (!done && (prod != rx_ring->cnsmr_idx)) {
2259 		QL_PRINT(DBG_RX,
2260 		    ("%s cq_id = %d, prod = %d, cnsmr = %d.\n",
2261 		    __func__, rx_ring->cq_id, prod, rx_ring->cnsmr_idx));
2262 
2263 		net_rsp = (struct ib_mac_iocb_rsp *)rx_ring->curr_entry;
2264 		(void) ddi_dma_sync(rx_ring->cq_dma.dma_handle,
2265 		    (off_t)((uintptr_t)net_rsp -
2266 		    (uintptr_t)rx_ring->cq_dma.vaddr),
2267 		    (size_t)sizeof (*net_rsp), DDI_DMA_SYNC_FORKERNEL);
2268 		QL_DUMP(DBG_RX, "qlge_ring_rx: rx completion iocb\n",
2269 		    rx_ring->curr_entry, 8, (size_t)sizeof (*net_rsp));
2270 
2271 		switch (net_rsp->opcode) {
2272 
2273 		case OPCODE_IB_MAC_IOCB:
2274 			/* Adding length of pkt header and payload */
2275 			length = le32_to_cpu(net_rsp->data_len) +
2276 			    le32_to_cpu(net_rsp->hdr_len);
2277 			if ((poll_bytes != QLGE_POLL_ALL) &&
2278 			    ((received_bytes + length) > poll_bytes)) {
2279 				done = B_TRUE;
2280 				continue;
2281 			}
2282 			received_bytes += length;
2283 
2284 			mp = ql_build_rx_mp(qlge, rx_ring, net_rsp);
2285 			if (mp != NULL) {
2286 				if (rx_ring->mac_flags != QL_MAC_STARTED) {
2287 					/*
2288 					 * Increment number of packets we have
2289 					 * indicated to the stack, should be
2290 					 * decremented when we get it back
2291 					 * or when freemsg is called
2292 					 */
2293 					ASSERT(rx_ring->rx_indicate
2294 					    <= rx_ring->cq_len);
2295 #ifdef QLGE_LOAD_UNLOAD
2296 					cmn_err(CE_WARN, "%s do not send to OS,"
2297 					    " mac_flags %d, indicate %d",
2298 					    __func__, rx_ring->mac_flags,
2299 					    rx_ring->rx_indicate);
2300 #endif
2301 					QL_PRINT(DBG_RX,
2302 					    ("cq_id = %d, packet "
2303 					    "dropped, mac not "
2304 					    "enabled.\n",
2305 					    rx_ring->cq_id));
2306 					rx_ring->rx_pkt_dropped_mac_unenabled++;
2307 
2308 					/* rx_lock is expected to be held */
2309 					mutex_exit(&rx_ring->rx_lock);
2310 					freemsg(mp);
2311 					mutex_enter(&rx_ring->rx_lock);
2312 					mp = NULL;
2313 				}
2314 
2315 				if (mp != NULL) {
2316 					/*
2317 					 * IP full packet has been
2318 					 * successfully verified by
2319 					 * H/W and is correct
2320 					 */
2321 					ql_set_rx_cksum(mp, net_rsp);
2322 
2323 					rx_ring->rx_packets++;
2324 					rx_ring->rx_bytes += length;
2325 					*mblk_tail = mp;
2326 					mblk_tail = &mp->b_next;
2327 				}
2328 			} else {
2329 				QL_PRINT(DBG_RX,
2330 				    ("cq_id = %d, packet dropped\n",
2331 				    rx_ring->cq_id));
2332 				rx_ring->rx_packets_dropped_no_buffer++;
2333 			}
2334 			break;
2335 
2336 		case OPCODE_IB_SYS_EVENT_IOCB:
2337 			ql_process_chip_ae_intr(qlge,
2338 			    (struct ib_sys_event_iocb_rsp *)
2339 			    net_rsp);
2340 			break;
2341 
2342 		default:
2343 			cmn_err(CE_WARN,
2344 			    "%s Ring(%d)Hit default case, not handled!"
2345 			    " dropping the packet, "
2346 			    "opcode = %x.", __func__, rx_ring->cq_id,
2347 			    net_rsp->opcode);
2348 			break;
2349 		}
2350 		/* increment cnsmr_idx and curr_entry */
2351 		ql_update_cq(rx_ring);
2352 		prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2353 
2354 	}
2355 	/* update cnsmr_idx */
2356 	ql_write_cq_idx(rx_ring);
2357 	/* do not enable interrupt for polling mode */
2358 	if (poll_bytes == QLGE_POLL_ALL)
2359 		ql_enable_completion_interrupt(rx_ring->qlge, rx_ring->irq);
2360 	return (mblk_head);
2361 }
2362 
2363 /* Process an outbound completion from an rx ring. */
2364 static void
2365 ql_process_mac_tx_intr(qlge_t *qlge, struct ob_mac_iocb_rsp *mac_rsp)
2366 {
2367 	struct tx_ring *tx_ring;
2368 	struct tx_ring_desc *tx_ring_desc;
2369 	int j;
2370 
2371 	tx_ring = &qlge->tx_ring[mac_rsp->txq_idx];
2372 	tx_ring_desc = tx_ring->wq_desc;
2373 	tx_ring_desc += mac_rsp->tid;
2374 
2375 	if (tx_ring_desc->tx_type == USE_DMA) {
2376 		QL_PRINT(DBG_TX, ("%s(%d): tx type USE_DMA\n",
2377 		    __func__, qlge->instance));
2378 
2379 		/*
2380 		 * Release the DMA resource that is used for
2381 		 * DMA binding.
2382 		 */
2383 		for (j = 0; j < tx_ring_desc->tx_dma_handle_used; j++) {
2384 			(void) ddi_dma_unbind_handle(
2385 			    tx_ring_desc->tx_dma_handle[j]);
2386 		}
2387 
2388 		tx_ring_desc->tx_dma_handle_used = 0;
2389 		/*
2390 		 * Free the mblk after sending completed
2391 		 */
2392 		if (tx_ring_desc->mp != NULL) {
2393 			freemsg(tx_ring_desc->mp);
2394 			tx_ring_desc->mp = NULL;
2395 		}
2396 	}
2397 
2398 	tx_ring->obytes += tx_ring_desc->tx_bytes;
2399 	tx_ring->opackets++;
2400 
2401 	if (mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E | OB_MAC_IOCB_RSP_S |
2402 	    OB_MAC_IOCB_RSP_L | OB_MAC_IOCB_RSP_B)) {
2403 		tx_ring->errxmt++;
2404 		if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
2405 			/* EMPTY */
2406 			QL_PRINT(DBG_TX,
2407 			    ("Total descriptor length did not match "
2408 			    "transfer length.\n"));
2409 		}
2410 		if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
2411 			/* EMPTY */
2412 			QL_PRINT(DBG_TX,
2413 			    ("Frame too short to be legal, not sent.\n"));
2414 		}
2415 		if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
2416 			/* EMPTY */
2417 			QL_PRINT(DBG_TX,
2418 			    ("Frame too long, but sent anyway.\n"));
2419 		}
2420 		if (mac_rsp->flags3 & OB_MAC_IOCB_RSP_B) {
2421 			/* EMPTY */
2422 			QL_PRINT(DBG_TX,
2423 			    ("PCI backplane error. Frame not sent.\n"));
2424 		}
2425 	}
2426 	atomic_inc_32(&tx_ring->tx_free_count);
2427 }
2428 
2429 /*
2430  * clean up tx completion iocbs
2431  */
2432 static int
2433 ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
2434 {
2435 	qlge_t *qlge = rx_ring->qlge;
2436 	uint32_t prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2437 	struct ob_mac_iocb_rsp *net_rsp = NULL;
2438 	int count = 0;
2439 	struct tx_ring *tx_ring;
2440 	boolean_t resume_tx = B_FALSE;
2441 
2442 	mutex_enter(&rx_ring->rx_lock);
2443 #ifdef QLGE_TRACK_BUFFER_USAGE
2444 	{
2445 	uint32_t consumer_idx;
2446 	uint32_t producer_idx;
2447 	uint32_t num_free_entries;
2448 	uint32_t temp;
2449 
2450 	temp = ql_read_doorbell_reg(qlge, rx_ring->cnsmr_idx_db_reg);
2451 	consumer_idx = temp & 0x0000ffff;
2452 	producer_idx = (temp >> 16);
2453 
2454 	if (consumer_idx > producer_idx)
2455 		num_free_entries = (consumer_idx - producer_idx);
2456 	else
2457 		num_free_entries = NUM_RX_RING_ENTRIES -
2458 		    (producer_idx - consumer_idx);
2459 
2460 	if (num_free_entries < qlge->cq_low_count[rx_ring->cq_id])
2461 		qlge->cq_low_count[rx_ring->cq_id] = num_free_entries;
2462 
2463 	}
2464 #endif
2465 	/* While there are entries in the completion queue. */
2466 	while (prod != rx_ring->cnsmr_idx) {
2467 
2468 		QL_PRINT(DBG_RX,
2469 		    ("%s cq_id = %d, prod = %d, cnsmr = %d.\n", __func__,
2470 		    rx_ring->cq_id, prod, rx_ring->cnsmr_idx));
2471 
2472 		net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
2473 		(void) ddi_dma_sync(rx_ring->cq_dma.dma_handle,
2474 		    (off_t)((uintptr_t)net_rsp -
2475 		    (uintptr_t)rx_ring->cq_dma.vaddr),
2476 		    (size_t)sizeof (*net_rsp), DDI_DMA_SYNC_FORKERNEL);
2477 
2478 		QL_DUMP(DBG_RX, "ql_clean_outbound_rx_ring: "
2479 		    "response packet data\n",
2480 		    rx_ring->curr_entry, 8,
2481 		    (size_t)sizeof (*net_rsp));
2482 
2483 		switch (net_rsp->opcode) {
2484 
2485 		case OPCODE_OB_MAC_OFFLOAD_IOCB:
2486 		case OPCODE_OB_MAC_IOCB:
2487 			ql_process_mac_tx_intr(qlge, net_rsp);
2488 			break;
2489 
2490 		default:
2491 			cmn_err(CE_WARN,
2492 			    "%s Hit default case, not handled! "
2493 			    "dropping the packet,"
2494 			    " opcode = %x.",
2495 			    __func__, net_rsp->opcode);
2496 			break;
2497 		}
2498 		count++;
2499 		ql_update_cq(rx_ring);
2500 		prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2501 	}
2502 	ql_write_cq_idx(rx_ring);
2503 
2504 	mutex_exit(&rx_ring->rx_lock);
2505 
2506 	tx_ring = &qlge->tx_ring[net_rsp->txq_idx];
2507 
2508 	mutex_enter(&tx_ring->tx_lock);
2509 
2510 	if (tx_ring->queue_stopped &&
2511 	    (tx_ring->tx_free_count > TX_RESUME_THRESHOLD)) {
2512 		/*
2513 		 * The queue got stopped because the tx_ring was full.
2514 		 * Wake it up, because it's now at least 25% empty.
2515 		 */
2516 		tx_ring->queue_stopped = 0;
2517 		resume_tx = B_TRUE;
2518 	}
2519 
2520 	mutex_exit(&tx_ring->tx_lock);
2521 	/* Don't hold the lock during OS callback */
2522 	if (resume_tx)
2523 		RESUME_TX(tx_ring);
2524 	return (count);
2525 }
2526 
2527 /*
2528  * reset asic when error happens
2529  */
2530 /* ARGSUSED */
2531 static uint_t
2532 ql_asic_reset_work(caddr_t arg1, caddr_t arg2)
2533 {
2534 	qlge_t *qlge = (qlge_t *)((void *)arg1);
2535 	int status;
2536 
2537 	mutex_enter(&qlge->gen_mutex);
2538 	status = ql_bringdown_adapter(qlge);
2539 	if (status != DDI_SUCCESS)
2540 		goto error;
2541 
2542 	status = ql_bringup_adapter(qlge);
2543 	if (status != DDI_SUCCESS)
2544 		goto error;
2545 	mutex_exit(&qlge->gen_mutex);
2546 	return (DDI_INTR_CLAIMED);
2547 
2548 error:
2549 	mutex_exit(&qlge->gen_mutex);
2550 	cmn_err(CE_WARN,
2551 	    "qlge up/down cycle failed, closing device");
2552 	return (DDI_INTR_CLAIMED);
2553 }
2554 
2555 /*
2556  * Reset MPI
2557  */
2558 /* ARGSUSED */
2559 static uint_t
2560 ql_mpi_reset_work(caddr_t arg1, caddr_t arg2)
2561 {
2562 	qlge_t *qlge = (qlge_t *)((void *)arg1);
2563 
2564 	ql_reset_mpi_risc(qlge);
2565 	return (DDI_INTR_CLAIMED);
2566 }
2567 
2568 /*
2569  * Process MPI mailbox messages
2570  */
2571 /* ARGSUSED */
2572 static uint_t
2573 ql_mpi_event_work(caddr_t arg1, caddr_t arg2)
2574 {
2575 	qlge_t *qlge = (qlge_t *)((void *)arg1);
2576 
2577 	ql_do_mpi_intr(qlge);
2578 	return (DDI_INTR_CLAIMED);
2579 }
2580 
2581 /* Fire up a handler to reset the MPI processor. */
2582 void
2583 ql_wake_asic_reset_soft_intr(qlge_t *qlge)
2584 {
2585 	(void) ddi_intr_trigger_softint(qlge->asic_reset_intr_hdl, NULL);
2586 }
2587 
2588 static void
2589 ql_wake_mpi_reset_soft_intr(qlge_t *qlge)
2590 {
2591 	(void) ddi_intr_trigger_softint(qlge->mpi_reset_intr_hdl, NULL);
2592 }
2593 
2594 static void
2595 ql_wake_mpi_event_soft_intr(qlge_t *qlge)
2596 {
2597 	(void) ddi_intr_trigger_softint(qlge->mpi_event_intr_hdl, NULL);
2598 }
2599 
2600 /*
2601  * This handles a fatal error, MPI activity, and the default
2602  * rx_ring in an MSI-X multiple interrupt vector environment.
2603  * In MSI/Legacy environment it also process the rest of
2604  * the rx_rings.
2605  */
2606 /* ARGSUSED */
2607 static uint_t
2608 ql_isr(caddr_t arg1, caddr_t arg2)
2609 {
2610 	struct rx_ring *rx_ring = (struct rx_ring *)((void *)arg1);
2611 	qlge_t *qlge = rx_ring->qlge;
2612 	struct intr_ctx *intr_ctx = &qlge->intr_ctx[0];
2613 	uint32_t var, prod;
2614 	int i;
2615 	int work_done = 0;
2616 
2617 	mblk_t *mp;
2618 
2619 	_NOTE(ARGUNUSED(arg2));
2620 
2621 	++qlge->rx_interrupts[rx_ring->cq_id];
2622 
2623 	if (ql_atomic_read_32(&qlge->intr_ctx[0].irq_cnt)) {
2624 		ql_write_reg(qlge, REG_RSVD7, 0xfeed0002);
2625 		var = ql_read_reg(qlge, REG_ERROR_STATUS);
2626 		var = ql_read_reg(qlge, REG_STATUS);
2627 		var = ql_read_reg(qlge, REG_INTERRUPT_STATUS_1);
2628 		return (DDI_INTR_CLAIMED);
2629 	}
2630 
2631 	ql_disable_completion_interrupt(qlge, intr_ctx->intr);
2632 
2633 	/*
2634 	 * Check the default queue and wake handler if active.
2635 	 */
2636 	rx_ring = &qlge->rx_ring[0];
2637 	prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2638 	QL_PRINT(DBG_INTR, ("rx-ring[0] prod index 0x%x, consumer 0x%x ",
2639 	    prod, rx_ring->cnsmr_idx));
2640 	/* check if interrupt is due to incoming packet */
2641 	if (prod != rx_ring->cnsmr_idx) {
2642 		QL_PRINT(DBG_INTR, ("Waking handler for rx_ring[0].\n"));
2643 		ql_disable_completion_interrupt(qlge, intr_ctx->intr);
2644 		mutex_enter(&rx_ring->rx_lock);
2645 		mp = ql_ring_rx(rx_ring, QLGE_POLL_ALL);
2646 		mutex_exit(&rx_ring->rx_lock);
2647 
2648 		if (mp != NULL)
2649 			RX_UPSTREAM(rx_ring, mp);
2650 		work_done++;
2651 	} else {
2652 		/*
2653 		 * If interrupt is not due to incoming packet, read status
2654 		 * register to see if error happens or mailbox interrupt.
2655 		 */
2656 		var = ql_read_reg(qlge, REG_STATUS);
2657 		if ((var & STATUS_FE) != 0) {
2658 			ql_write_reg(qlge, REG_RSVD7, 0xfeed0003);
2659 
2660 			cmn_err(CE_WARN, "Got fatal error, STS = %x.", var);
2661 			var = ql_read_reg(qlge, REG_ERROR_STATUS);
2662 			cmn_err(CE_WARN,
2663 			    "Resetting chip. Error Status Register = 0x%x",
2664 			    var);
2665 			ql_wake_asic_reset_soft_intr(qlge);
2666 			return (DDI_INTR_CLAIMED);
2667 		}
2668 
2669 		/*
2670 		 * Check MPI processor activity.
2671 		 */
2672 		if ((var & STATUS_PI) != 0) {
2673 			/*
2674 			 * We've got an async event or mailbox completion.
2675 			 * Handle it and clear the source of the interrupt.
2676 			 */
2677 			ql_write_reg(qlge, REG_RSVD7, 0xfeed0004);
2678 
2679 			QL_PRINT(DBG_INTR, ("Got MPI processor interrupt.\n"));
2680 			ql_disable_completion_interrupt(qlge, intr_ctx->intr);
2681 			ql_wake_mpi_event_soft_intr(qlge);
2682 			work_done++;
2683 		}
2684 	}
2685 
2686 	if (qlge->intr_type != DDI_INTR_TYPE_MSIX) {
2687 		/*
2688 		 * Start the DPC for each active queue.
2689 		 */
2690 		for (i = 1; i < qlge->rx_ring_count; i++) {
2691 			rx_ring = &qlge->rx_ring[i];
2692 
2693 			if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
2694 			    rx_ring->cnsmr_idx) {
2695 				QL_PRINT(DBG_INTR,
2696 				    ("Waking handler for rx_ring[%d].\n", i));
2697 
2698 				ql_disable_completion_interrupt(qlge,
2699 				    rx_ring->irq);
2700 				if (rx_ring->type == TX_Q) {
2701 					ql_clean_outbound_rx_ring(rx_ring);
2702 					ql_enable_completion_interrupt(
2703 					    rx_ring->qlge, rx_ring->irq);
2704 				} else {
2705 					mutex_enter(&rx_ring->rx_lock);
2706 					mp = ql_ring_rx(rx_ring, QLGE_POLL_ALL);
2707 					mutex_exit(&rx_ring->rx_lock);
2708 					if (mp != NULL)
2709 						RX_UPSTREAM(rx_ring, mp);
2710 #ifdef QLGE_LOAD_UNLOAD
2711 					if (rx_ring->mac_flags ==
2712 					    QL_MAC_STOPPED)
2713 						cmn_err(CE_NOTE,
2714 						    "%s rx_indicate(%d) %d\n",
2715 						    __func__, i,
2716 						    rx_ring->rx_indicate);
2717 #endif
2718 				}
2719 				work_done++;
2720 			}
2721 		}
2722 	}
2723 
2724 	ql_enable_completion_interrupt(qlge, intr_ctx->intr);
2725 
2726 	return (work_done ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED);
2727 }
2728 
2729 /*
2730  * MSI-X Multiple Vector Interrupt Handler for outbound (TX) completions.
2731  */
2732 /* ARGSUSED */
2733 static uint_t
2734 ql_msix_tx_isr(caddr_t arg1, caddr_t arg2)
2735 {
2736 	struct rx_ring *rx_ring = (struct rx_ring *)((void *)arg1);
2737 	qlge_t *qlge = rx_ring->qlge;
2738 	_NOTE(ARGUNUSED(arg2));
2739 
2740 	++qlge->rx_interrupts[rx_ring->cq_id];
2741 	ql_clean_outbound_rx_ring(rx_ring);
2742 	ql_enable_completion_interrupt(rx_ring->qlge, rx_ring->irq);
2743 
2744 	return (DDI_INTR_CLAIMED);
2745 }
2746 
2747 /*
2748  * Poll n_bytes of chained incoming packets
2749  */
2750 mblk_t *
2751 ql_ring_rx_poll(void *arg, int n_bytes)
2752 {
2753 	struct rx_ring *rx_ring = (struct rx_ring *)arg;
2754 	qlge_t *qlge = rx_ring->qlge;
2755 	mblk_t *mp = NULL;
2756 	uint32_t var;
2757 
2758 	ASSERT(n_bytes >= 0);
2759 	QL_PRINT(DBG_GLD, ("%s for ring(%d) to read max %d bytes\n",
2760 	    __func__, rx_ring->cq_id, n_bytes));
2761 
2762 	++qlge->rx_polls[rx_ring->cq_id];
2763 
2764 	if (n_bytes == 0)
2765 		return (mp);
2766 	mutex_enter(&rx_ring->rx_lock);
2767 	mp = ql_ring_rx(rx_ring, n_bytes);
2768 	mutex_exit(&rx_ring->rx_lock);
2769 
2770 	if ((rx_ring->cq_id == 0) && (mp == NULL)) {
2771 		var = ql_read_reg(qlge, REG_STATUS);
2772 		/*
2773 		 * Check for fatal error.
2774 		 */
2775 		if ((var & STATUS_FE) != 0) {
2776 			ql_write_reg(qlge, REG_RSVD7, 0xfeed0003);
2777 			var = ql_read_reg(qlge, REG_ERROR_STATUS);
2778 			cmn_err(CE_WARN, "Got fatal error %x.", var);
2779 			ql_wake_asic_reset_soft_intr(qlge);
2780 		}
2781 		/*
2782 		 * Check MPI processor activity.
2783 		 */
2784 		if ((var & STATUS_PI) != 0) {
2785 			/*
2786 			 * We've got an async event or mailbox completion.
2787 			 * Handle it and clear the source of the interrupt.
2788 			 */
2789 			ql_write_reg(qlge, REG_RSVD7, 0xfeed0004);
2790 			ql_do_mpi_intr(qlge);
2791 		}
2792 	}
2793 
2794 	return (mp);
2795 }
2796 
2797 /*
2798  * MSI-X Multiple Vector Interrupt Handler for inbound (RX) completions.
2799  */
2800 /* ARGSUSED */
2801 static uint_t
2802 ql_msix_rx_isr(caddr_t arg1, caddr_t arg2)
2803 {
2804 	struct rx_ring *rx_ring = (struct rx_ring *)((void *)arg1);
2805 	qlge_t *qlge = rx_ring->qlge;
2806 	mblk_t *mp;
2807 	_NOTE(ARGUNUSED(arg2));
2808 
2809 	QL_PRINT(DBG_INTR, ("%s for ring %d\n", __func__, rx_ring->cq_id));
2810 
2811 	++qlge->rx_interrupts[rx_ring->cq_id];
2812 
2813 	mutex_enter(&rx_ring->rx_lock);
2814 	mp = ql_ring_rx(rx_ring, QLGE_POLL_ALL);
2815 	mutex_exit(&rx_ring->rx_lock);
2816 
2817 	if (mp != NULL)
2818 		RX_UPSTREAM(rx_ring, mp);
2819 
2820 	return (DDI_INTR_CLAIMED);
2821 }
2822 
2823 
2824 /*
2825  *
2826  * Allocate DMA Buffer for ioctl service
2827  *
2828  */
2829 static int
2830 ql_alloc_ioctl_dma_buf(qlge_t *qlge)
2831 {
2832 	uint64_t phy_addr;
2833 	uint64_t alloc_size;
2834 	ddi_dma_cookie_t dma_cookie;
2835 
2836 	alloc_size = qlge->ioctl_buf_dma_attr.mem_len =
2837 	    max(WCS_MPI_CODE_RAM_LENGTH, MEMC_MPI_RAM_LENGTH);
2838 	if (ql_alloc_phys(qlge->dip, &qlge->ioctl_buf_dma_attr.dma_handle,
2839 	    &ql_buf_acc_attr,
2840 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
2841 	    &qlge->ioctl_buf_dma_attr.acc_handle,
2842 	    (size_t)alloc_size,  /* mem size */
2843 	    (size_t)0,  /* alignment */
2844 	    (caddr_t *)&qlge->ioctl_buf_dma_attr.vaddr,
2845 	    &dma_cookie) != 0) {
2846 		cmn_err(CE_WARN, "%s(%d): ioctl DMA allocation failed.",
2847 		    __func__, qlge->instance);
2848 		return (DDI_FAILURE);
2849 	}
2850 
2851 	phy_addr = dma_cookie.dmac_laddress;
2852 
2853 	if (qlge->ioctl_buf_dma_attr.vaddr == NULL) {
2854 		cmn_err(CE_WARN, "%s(%d): failed.", __func__, qlge->instance);
2855 		return (DDI_FAILURE);
2856 	}
2857 
2858 	qlge->ioctl_buf_dma_attr.dma_addr = phy_addr;
2859 
2860 	QL_PRINT(DBG_MBX, ("%s: ioctl_dma_buf_virt_addr = 0x%lx, "
2861 	    "phy_addr = 0x%lx\n",
2862 	    __func__, qlge->ioctl_buf_dma_attr.vaddr, phy_addr));
2863 
2864 	return (DDI_SUCCESS);
2865 }
2866 
2867 
2868 /*
2869  * Function to free physical memory.
2870  */
2871 static void
2872 ql_free_phys(ddi_dma_handle_t *dma_handle, ddi_acc_handle_t *acc_handle)
2873 {
2874 	if (dma_handle != NULL) {
2875 		(void) ddi_dma_unbind_handle(*dma_handle);
2876 		if (acc_handle != NULL)
2877 			ddi_dma_mem_free(acc_handle);
2878 		ddi_dma_free_handle(dma_handle);
2879 	}
2880 }
2881 
2882 /*
2883  * Function to free ioctl dma buffer.
2884  */
2885 static void
2886 ql_free_ioctl_dma_buf(qlge_t *qlge)
2887 {
2888 	if (qlge->ioctl_buf_dma_attr.dma_handle != NULL) {
2889 		ql_free_phys(&qlge->ioctl_buf_dma_attr.dma_handle,
2890 		    &qlge->ioctl_buf_dma_attr.acc_handle);
2891 
2892 		qlge->ioctl_buf_dma_attr.vaddr = NULL;
2893 		qlge->ioctl_buf_dma_attr.dma_handle = NULL;
2894 	}
2895 }
2896 
2897 /*
2898  * Free shadow register space used for request and completion queues
2899  */
2900 static void
2901 ql_free_shadow_space(qlge_t *qlge)
2902 {
2903 	if (qlge->host_copy_shadow_dma_attr.dma_handle != NULL) {
2904 		ql_free_phys(&qlge->host_copy_shadow_dma_attr.dma_handle,
2905 		    &qlge->host_copy_shadow_dma_attr.acc_handle);
2906 		bzero(&qlge->host_copy_shadow_dma_attr,
2907 		    sizeof (qlge->host_copy_shadow_dma_attr));
2908 	}
2909 
2910 	if (qlge->buf_q_ptr_base_addr_dma_attr.dma_handle != NULL) {
2911 		ql_free_phys(&qlge->buf_q_ptr_base_addr_dma_attr.dma_handle,
2912 		    &qlge->buf_q_ptr_base_addr_dma_attr.acc_handle);
2913 		bzero(&qlge->buf_q_ptr_base_addr_dma_attr,
2914 		    sizeof (qlge->buf_q_ptr_base_addr_dma_attr));
2915 	}
2916 }
2917 
2918 /*
2919  * Allocate shadow register space for request and completion queues
2920  */
2921 static int
2922 ql_alloc_shadow_space(qlge_t *qlge)
2923 {
2924 	ddi_dma_cookie_t dma_cookie;
2925 
2926 	if (ql_alloc_phys(qlge->dip,
2927 	    &qlge->host_copy_shadow_dma_attr.dma_handle,
2928 	    &ql_dev_acc_attr,
2929 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
2930 	    &qlge->host_copy_shadow_dma_attr.acc_handle,
2931 	    (size_t)VM_PAGE_SIZE,  /* mem size */
2932 	    (size_t)4, /* 4 bytes alignment */
2933 	    (caddr_t *)&qlge->host_copy_shadow_dma_attr.vaddr,
2934 	    &dma_cookie) != 0) {
2935 		bzero(&qlge->host_copy_shadow_dma_attr,
2936 		    sizeof (qlge->host_copy_shadow_dma_attr));
2937 
2938 		cmn_err(CE_WARN, "%s(%d): Unable to allocate DMA memory for "
2939 		    "response shadow registers", __func__, qlge->instance);
2940 		return (DDI_FAILURE);
2941 	}
2942 
2943 	qlge->host_copy_shadow_dma_attr.dma_addr = dma_cookie.dmac_laddress;
2944 
2945 	if (ql_alloc_phys(qlge->dip,
2946 	    &qlge->buf_q_ptr_base_addr_dma_attr.dma_handle,
2947 	    &ql_desc_acc_attr,
2948 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
2949 	    &qlge->buf_q_ptr_base_addr_dma_attr.acc_handle,
2950 	    (size_t)VM_PAGE_SIZE,  /* mem size */
2951 	    (size_t)4, /* 4 bytes alignment */
2952 	    (caddr_t *)&qlge->buf_q_ptr_base_addr_dma_attr.vaddr,
2953 	    &dma_cookie) != 0) {
2954 		bzero(&qlge->buf_q_ptr_base_addr_dma_attr,
2955 		    sizeof (qlge->buf_q_ptr_base_addr_dma_attr));
2956 
2957 		cmn_err(CE_WARN, "%s(%d): Unable to allocate DMA memory "
2958 		    "for request shadow registers",
2959 		    __func__, qlge->instance);
2960 		goto err_wqp_sh_area;
2961 	}
2962 	qlge->buf_q_ptr_base_addr_dma_attr.dma_addr = dma_cookie.dmac_laddress;
2963 
2964 	return (DDI_SUCCESS);
2965 
2966 err_wqp_sh_area:
2967 	ql_free_phys(&qlge->host_copy_shadow_dma_attr.dma_handle,
2968 	    &qlge->host_copy_shadow_dma_attr.acc_handle);
2969 	bzero(&qlge->host_copy_shadow_dma_attr,
2970 	    sizeof (qlge->host_copy_shadow_dma_attr));
2971 
2972 	return (DDI_FAILURE);
2973 }
2974 
2975 /*
2976  * Initialize a tx ring
2977  */
2978 static void
2979 ql_init_tx_ring(struct tx_ring *tx_ring)
2980 {
2981 	int i;
2982 	struct ob_mac_iocb_req *mac_iocb_ptr = tx_ring->wq_dma.vaddr;
2983 	struct tx_ring_desc *tx_ring_desc = tx_ring->wq_desc;
2984 
2985 	for (i = 0; i < tx_ring->wq_len; i++) {
2986 		tx_ring_desc->index = i;
2987 		tx_ring_desc->queue_entry = mac_iocb_ptr;
2988 		mac_iocb_ptr++;
2989 		tx_ring_desc++;
2990 	}
2991 	tx_ring->tx_free_count = tx_ring->wq_len;
2992 	tx_ring->queue_stopped = 0;
2993 }
2994 
2995 /*
2996  * Free one tx ring resources
2997  */
2998 static void
2999 ql_free_tx_resources(struct tx_ring *tx_ring)
3000 {
3001 	struct tx_ring_desc *tx_ring_desc;
3002 	int i, j;
3003 
3004 	ql_free_phys(&tx_ring->wq_dma.dma_handle, &tx_ring->wq_dma.acc_handle);
3005 	bzero(&tx_ring->wq_dma, sizeof (tx_ring->wq_dma));
3006 
3007 	if (tx_ring->wq_desc != NULL) {
3008 		tx_ring_desc = tx_ring->wq_desc;
3009 		for (i = 0; i < tx_ring->wq_len; i++, tx_ring_desc++) {
3010 			for (j = 0; j < QL_MAX_TX_DMA_HANDLES; j++) {
3011 				if (tx_ring_desc->tx_dma_handle[j]) {
3012 					/*
3013 					 * The unbinding will happen in tx
3014 					 * completion, here we just free the
3015 					 * handles
3016 					 */
3017 					ddi_dma_free_handle(
3018 					    &(tx_ring_desc->tx_dma_handle[j]));
3019 					tx_ring_desc->tx_dma_handle[j] = NULL;
3020 				}
3021 			}
3022 			if (tx_ring_desc->oal != NULL) {
3023 				tx_ring_desc->oal_dma_addr = 0;
3024 				tx_ring_desc->oal = NULL;
3025 				tx_ring_desc->copy_buffer = NULL;
3026 				tx_ring_desc->copy_buffer_dma_addr = 0;
3027 
3028 				ql_free_phys(&tx_ring_desc->oal_dma.dma_handle,
3029 				    &tx_ring_desc->oal_dma.acc_handle);
3030 			}
3031 		}
3032 		kmem_free(tx_ring->wq_desc,
3033 		    tx_ring->wq_len * sizeof (struct tx_ring_desc));
3034 		tx_ring->wq_desc = NULL;
3035 	}
3036 	/* free the wqicb struct */
3037 	if (tx_ring->wqicb_dma.dma_handle) {
3038 		ql_free_phys(&tx_ring->wqicb_dma.dma_handle,
3039 		    &tx_ring->wqicb_dma.acc_handle);
3040 		bzero(&tx_ring->wqicb_dma, sizeof (tx_ring->wqicb_dma));
3041 	}
3042 }
3043 
3044 /*
3045  * Allocate work (request) queue memory and transmit
3046  * descriptors for this transmit ring
3047  */
3048 static int
3049 ql_alloc_tx_resources(qlge_t *qlge, struct tx_ring *tx_ring)
3050 {
3051 	ddi_dma_cookie_t dma_cookie;
3052 	struct tx_ring_desc *tx_ring_desc;
3053 	int i, j;
3054 	uint32_t length;
3055 
3056 	/* allocate dma buffers for obiocbs */
3057 	if (ql_alloc_phys(qlge->dip, &tx_ring->wq_dma.dma_handle,
3058 	    &ql_desc_acc_attr,
3059 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
3060 	    &tx_ring->wq_dma.acc_handle,
3061 	    (size_t)tx_ring->wq_size,	/* mem size */
3062 	    (size_t)128, /* alignment:128 bytes boundary */
3063 	    (caddr_t *)&tx_ring->wq_dma.vaddr,
3064 	    &dma_cookie) != 0) {
3065 		bzero(&tx_ring->wq_dma, sizeof (&tx_ring->wq_dma));
3066 		cmn_err(CE_WARN, "%s(%d): reqQ allocation failed.",
3067 		    __func__, qlge->instance);
3068 		return (DDI_FAILURE);
3069 	}
3070 	tx_ring->wq_dma.dma_addr = dma_cookie.dmac_laddress;
3071 
3072 	tx_ring->wq_desc =
3073 	    kmem_zalloc(tx_ring->wq_len * sizeof (struct tx_ring_desc),
3074 	    KM_NOSLEEP);
3075 	if (tx_ring->wq_desc == NULL) {
3076 		goto err;
3077 	} else {
3078 		tx_ring_desc = tx_ring->wq_desc;
3079 		/*
3080 		 * Allocate a large enough structure to hold the following
3081 		 * 1. oal buffer MAX_SGELEMENTS * sizeof (oal_entry) bytes
3082 		 * 2. copy buffer of QL_MAX_COPY_LENGTH bytes
3083 		 */
3084 		for (i = 0; i < tx_ring->wq_len; i++, tx_ring_desc++) {
3085 			length = (sizeof (struct oal_entry) * MAX_SG_ELEMENTS)
3086 			    + QL_MAX_COPY_LENGTH;
3087 
3088 			if (ql_alloc_phys(qlge->dip,
3089 			    &tx_ring_desc->oal_dma.dma_handle,
3090 			    &ql_desc_acc_attr,
3091 			    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
3092 			    &tx_ring_desc->oal_dma.acc_handle,
3093 			    (size_t)length,	/* mem size */
3094 			    (size_t)0, /* default alignment:8 bytes boundary */
3095 			    (caddr_t *)&tx_ring_desc->oal_dma.vaddr,
3096 			    &dma_cookie) != 0) {
3097 				bzero(&tx_ring_desc->oal_dma,
3098 				    sizeof (tx_ring_desc->oal_dma));
3099 				cmn_err(CE_WARN, "%s(%d): reqQ tx buf &"
3100 				    "oal alloc failed.",
3101 				    __func__, qlge->instance);
3102 				return (DDI_FAILURE);
3103 			}
3104 
3105 			tx_ring_desc->oal = tx_ring_desc->oal_dma.vaddr;
3106 			tx_ring_desc->oal_dma_addr = dma_cookie.dmac_laddress;
3107 			tx_ring_desc->copy_buffer =
3108 			    (caddr_t)((uint8_t *)tx_ring_desc->oal
3109 			    + (sizeof (struct oal_entry) * MAX_SG_ELEMENTS));
3110 			tx_ring_desc->copy_buffer_dma_addr =
3111 			    (tx_ring_desc->oal_dma_addr
3112 			    + (sizeof (struct oal_entry) * MAX_SG_ELEMENTS));
3113 
3114 			/* Allocate dma handles for transmit buffers */
3115 			for (j = 0; j < QL_MAX_TX_DMA_HANDLES; j++) {
3116 				if (ddi_dma_alloc_handle(qlge->dip,
3117 				    &tx_mapping_dma_attr,
3118 				    DDI_DMA_DONTWAIT,
3119 				    0, &tx_ring_desc->tx_dma_handle[j])
3120 				    != DDI_SUCCESS) {
3121 					cmn_err(CE_WARN,
3122 					    "!%s: ddi_dma_alloc_handle: "
3123 					    "tx_dma_handle "
3124 					    "alloc failed", __func__);
3125 					goto err;
3126 				}
3127 			}
3128 		}
3129 	}
3130 	/* alloc a wqicb control block to load this tx ring to hw */
3131 	if (ql_alloc_phys(qlge->dip, &tx_ring->wqicb_dma.dma_handle,
3132 	    &ql_desc_acc_attr,
3133 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
3134 	    &tx_ring->wqicb_dma.acc_handle,
3135 	    (size_t)sizeof (struct wqicb_t),	/* mem size */
3136 	    (size_t)0, /* alignment:128 bytes boundary */
3137 	    (caddr_t *)&tx_ring->wqicb_dma.vaddr,
3138 	    &dma_cookie) != 0) {
3139 		bzero(&tx_ring->wqicb_dma, sizeof (tx_ring->wqicb_dma));
3140 		cmn_err(CE_WARN, "%s(%d): wqicb allocation failed.",
3141 		    __func__, qlge->instance);
3142 		return (DDI_FAILURE);
3143 	}
3144 	tx_ring->wqicb_dma.dma_addr = dma_cookie.dmac_laddress;
3145 
3146 	return (DDI_SUCCESS);
3147 
3148 err:
3149 	ql_free_tx_resources(tx_ring);
3150 	return (DDI_FAILURE);
3151 }
3152 
3153 /*
3154  * Free one rx ring resources
3155  */
3156 static void
3157 ql_free_rx_resources(struct rx_ring *rx_ring)
3158 {
3159 	/* Free the small buffer queue. */
3160 	if (rx_ring->sbq_dma.dma_handle) {
3161 		ql_free_phys(&rx_ring->sbq_dma.dma_handle,
3162 		    &rx_ring->sbq_dma.acc_handle);
3163 		bzero(&rx_ring->sbq_dma, sizeof (rx_ring->sbq_dma));
3164 	}
3165 
3166 	/* Free the small buffer queue control blocks. */
3167 	kmem_free(rx_ring->sbq_desc, rx_ring->sbq_len *
3168 	    sizeof (struct bq_desc));
3169 	rx_ring->sbq_desc = NULL;
3170 
3171 	/* Free the large buffer queue. */
3172 	if (rx_ring->lbq_dma.dma_handle) {
3173 		ql_free_phys(&rx_ring->lbq_dma.dma_handle,
3174 		    &rx_ring->lbq_dma.acc_handle);
3175 		bzero(&rx_ring->lbq_dma, sizeof (rx_ring->lbq_dma));
3176 	}
3177 
3178 	/* Free the large buffer queue control blocks. */
3179 	kmem_free(rx_ring->lbq_desc, rx_ring->lbq_len *
3180 	    sizeof (struct bq_desc));
3181 	rx_ring->lbq_desc = NULL;
3182 
3183 	/* Free cqicb struct */
3184 	if (rx_ring->cqicb_dma.dma_handle) {
3185 		ql_free_phys(&rx_ring->cqicb_dma.dma_handle,
3186 		    &rx_ring->cqicb_dma.acc_handle);
3187 		bzero(&rx_ring->cqicb_dma, sizeof (rx_ring->cqicb_dma));
3188 	}
3189 	/* Free the rx queue. */
3190 	if (rx_ring->cq_dma.dma_handle) {
3191 		ql_free_phys(&rx_ring->cq_dma.dma_handle,
3192 		    &rx_ring->cq_dma.acc_handle);
3193 		bzero(&rx_ring->cq_dma, sizeof (rx_ring->cq_dma));
3194 	}
3195 }
3196 
3197 /*
3198  * Allocate queues and buffers for this completions queue based
3199  * on the values in the parameter structure.
3200  */
3201 static int
3202 ql_alloc_rx_resources(qlge_t *qlge, struct rx_ring *rx_ring)
3203 {
3204 	ddi_dma_cookie_t dma_cookie;
3205 
3206 	if (ql_alloc_phys(qlge->dip, &rx_ring->cq_dma.dma_handle,
3207 	    &ql_desc_acc_attr,
3208 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
3209 	    &rx_ring->cq_dma.acc_handle,
3210 	    (size_t)rx_ring->cq_size,  /* mem size */
3211 	    (size_t)128, /* alignment:128 bytes boundary */
3212 	    (caddr_t *)&rx_ring->cq_dma.vaddr,
3213 	    &dma_cookie) != 0)	{
3214 		bzero(&rx_ring->cq_dma, sizeof (rx_ring->cq_dma));
3215 		cmn_err(CE_WARN, "%s(%d): rspQ allocation failed.",
3216 		    __func__, qlge->instance);
3217 		return (DDI_FAILURE);
3218 	}
3219 	rx_ring->cq_dma.dma_addr = dma_cookie.dmac_laddress;
3220 
3221 	if (rx_ring->sbq_len != 0) {
3222 		/*
3223 		 * Allocate small buffer queue.
3224 		 */
3225 		if (ql_alloc_phys(qlge->dip, &rx_ring->sbq_dma.dma_handle,
3226 		    &ql_desc_acc_attr,
3227 		    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
3228 		    &rx_ring->sbq_dma.acc_handle,
3229 		    (size_t)rx_ring->sbq_size,  /* mem size */
3230 		    (size_t)128, /* alignment:128 bytes boundary */
3231 		    (caddr_t *)&rx_ring->sbq_dma.vaddr,
3232 		    &dma_cookie) != 0) {
3233 			bzero(&rx_ring->sbq_dma, sizeof (rx_ring->sbq_dma));
3234 			cmn_err(CE_WARN,
3235 			    "%s(%d): small buffer queue allocation failed.",
3236 			    __func__, qlge->instance);
3237 			goto err_mem;
3238 		}
3239 		rx_ring->sbq_dma.dma_addr = dma_cookie.dmac_laddress;
3240 
3241 		/*
3242 		 * Allocate small buffer queue control blocks.
3243 		 */
3244 		rx_ring->sbq_desc =
3245 		    kmem_zalloc(rx_ring->sbq_len * sizeof (struct bq_desc),
3246 		    KM_NOSLEEP);
3247 		if (rx_ring->sbq_desc == NULL) {
3248 			cmn_err(CE_WARN,
3249 			    "sbq control block allocation failed.");
3250 			goto err_mem;
3251 		}
3252 
3253 		ql_init_sbq_ring(rx_ring);
3254 	}
3255 
3256 	if (rx_ring->lbq_len != 0) {
3257 		/*
3258 		 * Allocate large buffer queue.
3259 		 */
3260 		if (ql_alloc_phys(qlge->dip, &rx_ring->lbq_dma.dma_handle,
3261 		    &ql_desc_acc_attr,
3262 		    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
3263 		    &rx_ring->lbq_dma.acc_handle,
3264 		    (size_t)rx_ring->lbq_size,  /* mem size */
3265 		    (size_t)128, /* alignment:128 bytes boundary */
3266 		    (caddr_t *)&rx_ring->lbq_dma.vaddr,
3267 		    &dma_cookie) != 0) {
3268 			bzero(&rx_ring->lbq_dma, sizeof (rx_ring->lbq_dma));
3269 			cmn_err(CE_WARN, "%s(%d): lbq allocation failed.",
3270 			    __func__, qlge->instance);
3271 			goto err_mem;
3272 		}
3273 		rx_ring->lbq_dma.dma_addr = dma_cookie.dmac_laddress;
3274 
3275 		/*
3276 		 * Allocate large buffer queue control blocks.
3277 		 */
3278 		rx_ring->lbq_desc =
3279 		    kmem_zalloc(rx_ring->lbq_len * sizeof (struct bq_desc),
3280 		    KM_NOSLEEP);
3281 		if (rx_ring->lbq_desc == NULL) {
3282 			cmn_err(CE_WARN,
3283 			    "Large buffer queue control block allocation "
3284 			    "failed.");
3285 			goto err_mem;
3286 		}
3287 		ql_init_lbq_ring(rx_ring);
3288 	}
3289 
3290 	if (ql_alloc_phys(qlge->dip, &rx_ring->cqicb_dma.dma_handle,
3291 	    &ql_desc_acc_attr,
3292 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
3293 	    &rx_ring->cqicb_dma.acc_handle,
3294 	    (size_t)sizeof (struct cqicb_t),  /* mem size */
3295 	    (size_t)0, /* alignment:128 bytes boundary */
3296 	    (caddr_t *)&rx_ring->cqicb_dma.vaddr,
3297 	    &dma_cookie) != 0) {
3298 		bzero(&rx_ring->cqicb_dma, sizeof (rx_ring->cqicb_dma));
3299 		cmn_err(CE_WARN, "%s(%d): cqicb allocation failed.",
3300 		    __func__, qlge->instance);
3301 		return (DDI_FAILURE);
3302 	}
3303 	rx_ring->cqicb_dma.dma_addr = dma_cookie.dmac_laddress;
3304 
3305 	return (DDI_SUCCESS);
3306 
3307 err_mem:
3308 	ql_free_rx_resources(rx_ring);
3309 	return (DDI_FAILURE);
3310 }
3311 
3312 /*
3313  * Frees tx/rx queues memory resources
3314  */
3315 static void
3316 ql_free_mem_resources(qlge_t *qlge)
3317 {
3318 	int i;
3319 
3320 	if (qlge->ricb_dma.dma_handle) {
3321 		/* free the ricb struct */
3322 		ql_free_phys(&qlge->ricb_dma.dma_handle,
3323 		    &qlge->ricb_dma.acc_handle);
3324 		bzero(&qlge->ricb_dma, sizeof (qlge->ricb_dma));
3325 	}
3326 
3327 	ql_free_rx_buffers(qlge);
3328 
3329 	ql_free_ioctl_dma_buf(qlge);
3330 
3331 	for (i = 0; i < qlge->tx_ring_count; i++)
3332 		ql_free_tx_resources(&qlge->tx_ring[i]);
3333 
3334 	for (i = 0; i < qlge->rx_ring_count; i++)
3335 		ql_free_rx_resources(&qlge->rx_ring[i]);
3336 
3337 	ql_free_shadow_space(qlge);
3338 }
3339 
3340 /*
3341  * Allocate buffer queues, large buffers and small buffers etc
3342  *
3343  * This API is called in the gld_attach member function. It is called
3344  * only once.  Later reset,reboot should not re-allocate all rings and
3345  * buffers.
3346  */
3347 static int
3348 ql_alloc_mem_resources(qlge_t *qlge)
3349 {
3350 	int i;
3351 	ddi_dma_cookie_t dma_cookie;
3352 
3353 	/* Allocate space for our shadow registers */
3354 	if (ql_alloc_shadow_space(qlge))
3355 		return (DDI_FAILURE);
3356 
3357 	for (i = 0; i < qlge->rx_ring_count; i++) {
3358 		if (ql_alloc_rx_resources(qlge, &qlge->rx_ring[i]) != 0) {
3359 			cmn_err(CE_WARN, "RX resource allocation failed.");
3360 			goto err_mem;
3361 		}
3362 	}
3363 	/* Allocate tx queue resources */
3364 	for (i = 0; i < qlge->tx_ring_count; i++) {
3365 		if (ql_alloc_tx_resources(qlge, &qlge->tx_ring[i]) != 0) {
3366 			cmn_err(CE_WARN, "Tx resource allocation failed.");
3367 			goto err_mem;
3368 		}
3369 	}
3370 
3371 	if (ql_alloc_ioctl_dma_buf(qlge) != DDI_SUCCESS) {
3372 		goto err_mem;
3373 	}
3374 
3375 	if (ql_alloc_rx_buffers(qlge) != DDI_SUCCESS) {
3376 		cmn_err(CE_WARN, "?%s(%d): ql_alloc_rx_buffers failed",
3377 		    __func__, qlge->instance);
3378 		goto err_mem;
3379 	}
3380 
3381 	qlge->sequence |= INIT_ALLOC_RX_BUF;
3382 
3383 	if (ql_alloc_phys(qlge->dip, &qlge->ricb_dma.dma_handle,
3384 	    &ql_desc_acc_attr,
3385 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
3386 	    &qlge->ricb_dma.acc_handle,
3387 	    (size_t)sizeof (struct ricb),  /* mem size */
3388 	    (size_t)0, /* alignment:128 bytes boundary */
3389 	    (caddr_t *)&qlge->ricb_dma.vaddr,
3390 	    &dma_cookie) != 0) {
3391 		bzero(&qlge->ricb_dma, sizeof (qlge->ricb_dma));
3392 		cmn_err(CE_WARN, "%s(%d): ricb allocation failed.",
3393 		    __func__, qlge->instance);
3394 		return (DDI_FAILURE);
3395 	}
3396 	qlge->ricb_dma.dma_addr = dma_cookie.dmac_laddress;
3397 
3398 	return (DDI_SUCCESS);
3399 
3400 err_mem:
3401 	ql_free_mem_resources(qlge);
3402 	return (DDI_FAILURE);
3403 }
3404 
3405 
3406 /*
3407  * Function used to allocate physical memory and zero it.
3408  */
3409 
3410 static int
3411 ql_alloc_phys(dev_info_t *dip, ddi_dma_handle_t *dma_handle,
3412     ddi_device_acc_attr_t *device_acc_attr,
3413     uint_t dma_flags,
3414     ddi_acc_handle_t *acc_handle,
3415     size_t size,
3416     size_t alignment,
3417     caddr_t *vaddr,
3418     ddi_dma_cookie_t *dma_cookie)
3419 {
3420 	size_t rlen;
3421 	uint_t cnt;
3422 
3423 	/*
3424 	 * Workaround for SUN XMITS buffer must end and start on 8 byte
3425 	 * boundary. Else, hardware will overrun the buffer. Simple fix is
3426 	 * to make sure buffer has enough room for overrun.
3427 	 */
3428 	if (size & 7) {
3429 		size += 8 - (size & 7);
3430 	}
3431 
3432 	/* Adjust the alignment if requested */
3433 	if (alignment) {
3434 		dma_attr.dma_attr_align = alignment;
3435 	}
3436 
3437 	/*
3438 	 * Allocate DMA handle
3439 	 */
3440 	if (ddi_dma_alloc_handle(dip, &dma_attr, DDI_DMA_SLEEP, NULL,
3441 	    dma_handle) != DDI_SUCCESS) {
3442 		cmn_err(CE_WARN, QL_BANG "%s:  ddi_dma_alloc_handle FAILED",
3443 		    __func__);
3444 		return (QL_ERROR);
3445 	}
3446 	/*
3447 	 * Allocate DMA memory
3448 	 */
3449 	if (ddi_dma_mem_alloc(*dma_handle, size, device_acc_attr,
3450 	    dma_flags & (DDI_DMA_CONSISTENT|DDI_DMA_STREAMING), DDI_DMA_SLEEP,
3451 	    NULL, vaddr, &rlen, acc_handle) != DDI_SUCCESS) {
3452 		ddi_dma_free_handle(dma_handle);
3453 	}
3454 	if (vaddr == NULL) {
3455 		cmn_err(CE_WARN, "alloc_phys: Memory alloc Failed");
3456 		ddi_dma_free_handle(dma_handle);
3457 		return (QL_ERROR);
3458 	}
3459 
3460 	if (ddi_dma_addr_bind_handle(*dma_handle, NULL, *vaddr, rlen,
3461 	    dma_flags, DDI_DMA_SLEEP, NULL,
3462 	    dma_cookie, &cnt) != DDI_DMA_MAPPED) {
3463 		ddi_dma_mem_free(acc_handle);
3464 
3465 		ddi_dma_free_handle(dma_handle);
3466 		cmn_err(CE_WARN, "%s ddi_dma_addr_bind_handle FAILED",
3467 		    __func__);
3468 		return (QL_ERROR);
3469 	}
3470 
3471 	if (cnt != 1) {
3472 
3473 		ql_free_phys(dma_handle, acc_handle);
3474 
3475 		cmn_err(CE_WARN, "%s: cnt != 1; Failed segment count",
3476 		    __func__);
3477 		return (QL_ERROR);
3478 	}
3479 
3480 	bzero((caddr_t)*vaddr, rlen);
3481 
3482 	return (0);
3483 }
3484 
3485 /*
3486  * Add interrupt handlers based on the interrupt type.
3487  * Before adding the interrupt handlers, the interrupt vectors should
3488  * have been allocated, and the rx/tx rings have also been allocated.
3489  */
3490 static int
3491 ql_add_intr_handlers(qlge_t *qlge)
3492 {
3493 	int vector = 0;
3494 	int rc, i;
3495 	uint32_t value;
3496 	struct intr_ctx *intr_ctx = &qlge->intr_ctx[0];
3497 
3498 	switch (qlge->intr_type) {
3499 	case DDI_INTR_TYPE_MSIX:
3500 		/*
3501 		 * Add interrupt handler for rx and tx rings: vector[0 -
3502 		 * (qlge->intr_cnt -1)].
3503 		 */
3504 		value = 0;
3505 		for (vector = 0; vector < qlge->intr_cnt; vector++) {
3506 			ql_atomic_set_32(&intr_ctx->irq_cnt, value);
3507 
3508 			/*
3509 			 * associate interrupt vector with interrupt handler
3510 			 */
3511 			rc = ddi_intr_add_handler(qlge->htable[vector],
3512 			    (ddi_intr_handler_t *)intr_ctx->handler,
3513 			    (void *)&qlge->rx_ring[vector], NULL);
3514 
3515 			if (rc != DDI_SUCCESS) {
3516 				QL_PRINT(DBG_INIT,
3517 				    ("Add rx interrupt handler failed. "
3518 				    "return: %d, vector: %d", rc, vector));
3519 				for (vector--; vector >= 0; vector--) {
3520 					(void) ddi_intr_remove_handler(
3521 					    qlge->htable[vector]);
3522 				}
3523 				return (DDI_FAILURE);
3524 			}
3525 			intr_ctx++;
3526 		}
3527 		break;
3528 
3529 	case DDI_INTR_TYPE_MSI:
3530 		/*
3531 		 * Add interrupt handlers for the only vector
3532 		 */
3533 		ql_atomic_set_32(&intr_ctx->irq_cnt, value);
3534 
3535 		rc = ddi_intr_add_handler(qlge->htable[vector],
3536 		    ql_isr,
3537 		    (caddr_t)&qlge->rx_ring[0], NULL);
3538 
3539 		if (rc != DDI_SUCCESS) {
3540 			QL_PRINT(DBG_INIT,
3541 			    ("Add MSI interrupt handler failed: %d\n", rc));
3542 			return (DDI_FAILURE);
3543 		}
3544 		break;
3545 
3546 	case DDI_INTR_TYPE_FIXED:
3547 		/*
3548 		 * Add interrupt handlers for the only vector
3549 		 */
3550 		ql_atomic_set_32(&intr_ctx->irq_cnt, value);
3551 
3552 		rc = ddi_intr_add_handler(qlge->htable[vector],
3553 		    ql_isr,
3554 		    (caddr_t)&qlge->rx_ring[0], NULL);
3555 
3556 		if (rc != DDI_SUCCESS) {
3557 			QL_PRINT(DBG_INIT,
3558 			    ("Add legacy interrupt handler failed: %d\n", rc));
3559 			return (DDI_FAILURE);
3560 		}
3561 		break;
3562 
3563 	default:
3564 		return (DDI_FAILURE);
3565 	}
3566 
3567 	/* Enable interrupts */
3568 	/* Block enable */
3569 	if (qlge->intr_cap & DDI_INTR_FLAG_BLOCK) {
3570 		QL_PRINT(DBG_INIT, ("Block enabling %d interrupt(s)\n",
3571 		    qlge->intr_cnt));
3572 		(void) ddi_intr_block_enable(qlge->htable, qlge->intr_cnt);
3573 	} else { /* Non block enable */
3574 		for (i = 0; i < qlge->intr_cnt; i++) {
3575 			QL_PRINT(DBG_INIT, ("Non Block Enabling interrupt %d\n,"
3576 			    "handle 0x%x\n", i, qlge->htable[i]));
3577 			(void) ddi_intr_enable(qlge->htable[i]);
3578 		}
3579 	}
3580 	qlge->sequence |= INIT_INTR_ENABLED;
3581 
3582 	return (DDI_SUCCESS);
3583 }
3584 
3585 /*
3586  * Here we build the intr_ctx structures based on
3587  * our rx_ring count and intr vector count.
3588  * The intr_ctx structure is used to hook each vector
3589  * to possibly different handlers.
3590  */
3591 static void
3592 ql_resolve_queues_to_irqs(qlge_t *qlge)
3593 {
3594 	int i = 0;
3595 	struct intr_ctx *intr_ctx = &qlge->intr_ctx[0];
3596 
3597 	if (qlge->intr_type == DDI_INTR_TYPE_MSIX) {
3598 		/*
3599 		 * Each rx_ring has its own intr_ctx since we
3600 		 * have separate vectors for each queue.
3601 		 * This only true when MSI-X is enabled.
3602 		 */
3603 		for (i = 0; i < qlge->intr_cnt; i++, intr_ctx++) {
3604 			qlge->rx_ring[i].irq = i;
3605 			intr_ctx->intr = i;
3606 			intr_ctx->qlge = qlge;
3607 
3608 			/*
3609 			 * We set up each vectors enable/disable/read bits so
3610 			 * there's no bit/mask calculations in critical path.
3611 			 */
3612 			intr_ctx->intr_en_mask =
3613 			    INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3614 			    INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK |
3615 			    INTR_EN_IHD | i;
3616 			intr_ctx->intr_dis_mask =
3617 			    INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3618 			    INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
3619 			    INTR_EN_IHD | i;
3620 			intr_ctx->intr_read_mask =
3621 			    INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3622 			    INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD
3623 			    | i;
3624 
3625 			if (i == 0) {
3626 				/*
3627 				 * Default queue handles bcast/mcast plus
3628 				 * async events.
3629 				 */
3630 				intr_ctx->handler = ql_isr;
3631 			} else if (qlge->rx_ring[i].type == TX_Q) {
3632 				/*
3633 				 * Outbound queue is for outbound completions
3634 				 * only.
3635 				 */
3636 				intr_ctx->handler = ql_msix_tx_isr;
3637 			} else {
3638 				/*
3639 				 * Inbound queues handle unicast frames only.
3640 				 */
3641 				intr_ctx->handler = ql_msix_rx_isr;
3642 			}
3643 		}
3644 	} else {
3645 		/*
3646 		 * All rx_rings use the same intr_ctx since
3647 		 * there is only one vector.
3648 		 */
3649 		intr_ctx->intr = 0;
3650 		intr_ctx->qlge = qlge;
3651 		/*
3652 		 * We set up each vectors enable/disable/read bits so
3653 		 * there's no bit/mask calculations in the critical path.
3654 		 */
3655 		intr_ctx->intr_en_mask =
3656 		    INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3657 		    INTR_EN_TYPE_ENABLE;
3658 		intr_ctx->intr_dis_mask =
3659 		    INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3660 		    INTR_EN_TYPE_DISABLE;
3661 		intr_ctx->intr_read_mask =
3662 		    INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3663 		    INTR_EN_TYPE_READ;
3664 		/*
3665 		 * Single interrupt means one handler for all rings.
3666 		 */
3667 		intr_ctx->handler = ql_isr;
3668 		for (i = 0; i < qlge->rx_ring_count; i++)
3669 			qlge->rx_ring[i].irq = 0;
3670 	}
3671 }
3672 
3673 
3674 /*
3675  * Free allocated interrupts.
3676  */
3677 static void
3678 ql_free_irq_vectors(qlge_t *qlge)
3679 {
3680 	int i;
3681 	int rc;
3682 
3683 	if (qlge->sequence & INIT_INTR_ENABLED) {
3684 		/* Disable all interrupts */
3685 		if (qlge->intr_cap & DDI_INTR_FLAG_BLOCK) {
3686 			/* Call ddi_intr_block_disable() */
3687 			(void) ddi_intr_block_disable(qlge->htable,
3688 			    qlge->intr_cnt);
3689 		} else {
3690 			for (i = 0; i < qlge->intr_cnt; i++) {
3691 				(void) ddi_intr_disable(qlge->htable[i]);
3692 			}
3693 		}
3694 
3695 		qlge->sequence &= ~INIT_INTR_ENABLED;
3696 	}
3697 
3698 	for (i = 0; i < qlge->intr_cnt; i++) {
3699 
3700 		if (qlge->sequence & INIT_ADD_INTERRUPT)
3701 			(void) ddi_intr_remove_handler(qlge->htable[i]);
3702 
3703 		if (qlge->sequence & INIT_INTR_ALLOC) {
3704 			rc = ddi_intr_free(qlge->htable[i]);
3705 			if (rc != DDI_SUCCESS) {
3706 				/* EMPTY */
3707 				QL_PRINT(DBG_INIT, ("Free intr failed: %d",
3708 				    rc));
3709 			}
3710 		}
3711 	}
3712 	if (qlge->sequence & INIT_INTR_ALLOC)
3713 		qlge->sequence &= ~INIT_INTR_ALLOC;
3714 
3715 	if (qlge->sequence & INIT_ADD_INTERRUPT)
3716 		qlge->sequence &= ~INIT_ADD_INTERRUPT;
3717 
3718 	if (qlge->htable) {
3719 		kmem_free(qlge->htable, qlge->intr_size);
3720 		qlge->htable = NULL;
3721 	}
3722 }
3723 
3724 /*
3725  * Allocate interrupt vectors
3726  * For legacy and MSI, only 1 handle is needed.
3727  * For MSI-X, if fewer than 2 vectors are available, return failure.
3728  * Upon success, this maps the vectors to rx and tx rings for
3729  * interrupts.
3730  */
3731 static int
3732 ql_request_irq_vectors(qlge_t *qlge, int intr_type)
3733 {
3734 	dev_info_t *devinfo;
3735 	uint32_t request, orig;
3736 	int count, avail, actual;
3737 	int minimum;
3738 	int rc;
3739 
3740 	devinfo = qlge->dip;
3741 
3742 	switch (intr_type) {
3743 	case DDI_INTR_TYPE_FIXED:
3744 		request = 1;	/* Request 1 legacy interrupt handle */
3745 		minimum = 1;
3746 		QL_PRINT(DBG_INIT, ("interrupt type: legacy\n"));
3747 		break;
3748 
3749 	case DDI_INTR_TYPE_MSI:
3750 		request = 1;	/* Request 1 MSI interrupt handle */
3751 		minimum = 1;
3752 		QL_PRINT(DBG_INIT, ("interrupt type: MSI\n"));
3753 		break;
3754 
3755 	case DDI_INTR_TYPE_MSIX:
3756 		/*
3757 		 * Ideal number of vectors for the adapter is
3758 		 * # rss rings + tx completion rings for default completion
3759 		 * queue.
3760 		 */
3761 		request = qlge->rx_ring_count;
3762 
3763 		orig = request;
3764 		if (request > (MAX_RX_RINGS))
3765 			request = MAX_RX_RINGS;
3766 		minimum = 2;
3767 		QL_PRINT(DBG_INIT, ("interrupt type: MSI-X\n"));
3768 		break;
3769 
3770 	default:
3771 		QL_PRINT(DBG_INIT, ("Invalid parameter\n"));
3772 		return (DDI_FAILURE);
3773 	}
3774 
3775 	QL_PRINT(DBG_INIT, ("interrupt handles requested: %d  minimum: %d\n",
3776 	    request, minimum));
3777 
3778 	/*
3779 	 * Get number of supported interrupts
3780 	 */
3781 	rc = ddi_intr_get_nintrs(devinfo, intr_type, &count);
3782 	if ((rc != DDI_SUCCESS) || (count < minimum)) {
3783 		QL_PRINT(DBG_INIT, ("Get interrupt number failed. Return: %d, "
3784 		    "count: %d\n", rc, count));
3785 		return (DDI_FAILURE);
3786 	}
3787 	QL_PRINT(DBG_INIT, ("interrupts supported: %d\n", count));
3788 
3789 	/*
3790 	 * Get number of available interrupts
3791 	 */
3792 	rc = ddi_intr_get_navail(devinfo, intr_type, &avail);
3793 	if ((rc != DDI_SUCCESS) || (avail < minimum)) {
3794 		QL_PRINT(DBG_INIT,
3795 		    ("Get interrupt available number failed. Return:"
3796 		    " %d, available: %d\n", rc, avail));
3797 		return (DDI_FAILURE);
3798 	}
3799 	QL_PRINT(DBG_INIT, ("interrupts available: %d\n", avail));
3800 
3801 	if (avail < request) {
3802 		QL_PRINT(DBG_INIT, ("Request %d handles, %d available\n",
3803 		    request, avail));
3804 		request = avail;
3805 	}
3806 
3807 	actual = 0;
3808 	qlge->intr_cnt = 0;
3809 
3810 	/*
3811 	 * Allocate an array of interrupt handles
3812 	 */
3813 	qlge->intr_size = (size_t)(request * sizeof (ddi_intr_handle_t));
3814 	qlge->htable = kmem_alloc(qlge->intr_size, KM_SLEEP);
3815 
3816 	rc = ddi_intr_alloc(devinfo, qlge->htable, intr_type, 0,
3817 	    (int)request, &actual, DDI_INTR_ALLOC_NORMAL);
3818 	if (rc != DDI_SUCCESS) {
3819 		cmn_err(CE_WARN, "%s(%d) Allocate interrupts failed. return:"
3820 		    " %d, request: %d, actual: %d",
3821 		    __func__, qlge->instance, rc, request, actual);
3822 		goto ql_intr_alloc_fail;
3823 	}
3824 	qlge->intr_cnt = actual;
3825 
3826 	qlge->sequence |= INIT_INTR_ALLOC;
3827 
3828 	/*
3829 	 * If the actual number of vectors is less than the minumum
3830 	 * then fail.
3831 	 */
3832 	if (actual < minimum) {
3833 		cmn_err(CE_WARN,
3834 		    "Insufficient interrupt handles available: %d", actual);
3835 		goto ql_intr_alloc_fail;
3836 	}
3837 
3838 	/*
3839 	 * For MSI-X, actual might force us to reduce number of tx & rx rings
3840 	 */
3841 	if ((intr_type == DDI_INTR_TYPE_MSIX) && (orig > actual)) {
3842 		if (actual < MAX_RX_RINGS) {
3843 			qlge->tx_ring_count = 1;
3844 			qlge->rss_ring_count = actual - 1;
3845 			qlge->rx_ring_count = qlge->tx_ring_count +
3846 			    qlge->rss_ring_count;
3847 		}
3848 	}
3849 	/*
3850 	 * Get priority for first vector, assume remaining are all the same
3851 	 */
3852 	rc = ddi_intr_get_pri(qlge->htable[0], &qlge->intr_pri);
3853 	if (rc != DDI_SUCCESS) {
3854 		QL_PRINT(DBG_INIT, ("Get interrupt priority failed: %d\n", rc));
3855 		goto ql_intr_alloc_fail;
3856 	}
3857 
3858 	rc = ddi_intr_get_cap(qlge->htable[0], &qlge->intr_cap);
3859 	if (rc != DDI_SUCCESS) {
3860 		QL_PRINT(DBG_INIT, ("Get interrupt cap failed: %d\n", rc));
3861 		goto ql_intr_alloc_fail;
3862 	}
3863 
3864 	qlge->intr_type = intr_type;
3865 
3866 	return (DDI_SUCCESS);
3867 
3868 ql_intr_alloc_fail:
3869 	ql_free_irq_vectors(qlge);
3870 
3871 	return (DDI_FAILURE);
3872 }
3873 
3874 /*
3875  * Allocate interrupt vector(s) for one of the following interrupt types, MSI-X,
3876  * MSI or Legacy. In MSI and Legacy modes we only support a single receive and
3877  * transmit queue.
3878  */
3879 int
3880 ql_alloc_irqs(qlge_t *qlge)
3881 {
3882 	int intr_types;
3883 	int rval;
3884 
3885 	/*
3886 	 * Get supported interrupt types
3887 	 */
3888 	if (ddi_intr_get_supported_types(qlge->dip, &intr_types)
3889 	    != DDI_SUCCESS) {
3890 		cmn_err(CE_WARN, "%s(%d):ddi_intr_get_supported_types failed",
3891 		    __func__, qlge->instance);
3892 
3893 		return (DDI_FAILURE);
3894 	}
3895 
3896 	QL_PRINT(DBG_INIT, ("%s(%d) Interrupt types supported %d\n",
3897 	    __func__, qlge->instance, intr_types));
3898 
3899 	/* Install MSI-X interrupts */
3900 	if ((intr_types & DDI_INTR_TYPE_MSIX) != 0) {
3901 		QL_PRINT(DBG_INIT, ("%s(%d) MSI-X interrupt supported %d\n",
3902 		    __func__, qlge->instance, intr_types));
3903 		rval = ql_request_irq_vectors(qlge, DDI_INTR_TYPE_MSIX);
3904 		if (rval == DDI_SUCCESS) {
3905 			return (rval);
3906 		}
3907 		QL_PRINT(DBG_INIT, ("%s(%d) MSI-X interrupt allocation failed,"
3908 		    " trying MSI interrupts ...\n", __func__, qlge->instance));
3909 	}
3910 
3911 	/*
3912 	 * We will have 2 completion queues in MSI / Legacy mode,
3913 	 * Queue 0 for default completions
3914 	 * Queue 1 for transmit completions
3915 	 */
3916 	qlge->rss_ring_count = 1; /* Default completion queue (0) for all */
3917 	qlge->tx_ring_count = 1; /* Single tx completion queue */
3918 	qlge->rx_ring_count = qlge->tx_ring_count + qlge->rss_ring_count;
3919 
3920 	QL_PRINT(DBG_INIT, ("%s(%d) Falling back to single completion queue \n",
3921 	    __func__, qlge->instance));
3922 	/*
3923 	 * Add the h/w interrupt handler and initialise mutexes
3924 	 */
3925 	rval = DDI_FAILURE;
3926 
3927 	/*
3928 	 * If OS supports MSIX interrupt but fails to allocate, then try
3929 	 * MSI interrupt. If MSI interrupt allocation fails also, then roll
3930 	 * back to fixed interrupt.
3931 	 */
3932 	if (intr_types & DDI_INTR_TYPE_MSI) {
3933 		rval = ql_request_irq_vectors(qlge, DDI_INTR_TYPE_MSI);
3934 		if (rval == DDI_SUCCESS) {
3935 			qlge->intr_type = DDI_INTR_TYPE_MSI;
3936 			QL_PRINT(DBG_INIT, ("%s(%d) use MSI Interrupt \n",
3937 			    __func__, qlge->instance));
3938 		}
3939 	}
3940 
3941 	/* Try Fixed interrupt Legacy mode */
3942 	if (rval != DDI_SUCCESS) {
3943 		rval = ql_request_irq_vectors(qlge, DDI_INTR_TYPE_FIXED);
3944 		if (rval != DDI_SUCCESS) {
3945 			cmn_err(CE_WARN, "%s(%d):Legacy mode interrupt "
3946 			    "allocation failed",
3947 			    __func__, qlge->instance);
3948 		} else {
3949 			qlge->intr_type = DDI_INTR_TYPE_FIXED;
3950 			QL_PRINT(DBG_INIT, ("%s(%d) use Fixed Interrupt \n",
3951 			    __func__, qlge->instance));
3952 		}
3953 	}
3954 
3955 	return (rval);
3956 }
3957 
3958 static void
3959 ql_free_rx_tx_locks(qlge_t *qlge)
3960 {
3961 	int i;
3962 	struct rx_ring *rx_ring;
3963 	struct tx_ring *tx_ring;
3964 
3965 	for (i = 0; i < qlge->tx_ring_count; i++) {
3966 		tx_ring = &qlge->tx_ring[i];
3967 		mutex_destroy(&tx_ring->tx_lock);
3968 	}
3969 
3970 	for (i = 0; i < qlge->rx_ring_count; i++) {
3971 		rx_ring = &qlge->rx_ring[i];
3972 		mutex_destroy(&rx_ring->rx_lock);
3973 		mutex_destroy(&rx_ring->sbq_lock);
3974 		mutex_destroy(&rx_ring->lbq_lock);
3975 	}
3976 }
3977 
3978 /*
3979  * Frees all resources allocated during attach.
3980  *
3981  * Input:
3982  * dip = pointer to device information structure.
3983  * sequence = bits indicating resources to free.
3984  *
3985  * Context:
3986  * Kernel context.
3987  */
3988 static void
3989 ql_free_resources(dev_info_t *dip, qlge_t *qlge)
3990 {
3991 
3992 	/* Disable driver timer */
3993 	ql_stop_timer(qlge);
3994 
3995 	if (qlge->sequence & INIT_MAC_REGISTERED) {
3996 		mac_unregister(qlge->mh);
3997 		qlge->sequence &= ~INIT_MAC_REGISTERED;
3998 	}
3999 
4000 	if (qlge->sequence & INIT_MAC_ALLOC) {
4001 		/* Nothing to do, macp is already freed */
4002 		qlge->sequence &= ~INIT_MAC_ALLOC;
4003 	}
4004 
4005 	if (qlge->sequence & INIT_PCI_CONFIG_SETUP) {
4006 		pci_config_teardown(&qlge->pci_handle);
4007 		qlge->sequence &= ~INIT_PCI_CONFIG_SETUP;
4008 	}
4009 
4010 	if (qlge->sequence & INIT_ADD_INTERRUPT) {
4011 		ql_free_irq_vectors(qlge);
4012 		qlge->sequence &= ~INIT_ADD_INTERRUPT;
4013 	}
4014 
4015 	if (qlge->sequence & INIT_ADD_SOFT_INTERRUPT) {
4016 		(void) ddi_intr_remove_softint(qlge->mpi_event_intr_hdl);
4017 		(void) ddi_intr_remove_softint(qlge->mpi_reset_intr_hdl);
4018 		(void) ddi_intr_remove_softint(qlge->asic_reset_intr_hdl);
4019 		qlge->sequence &= ~INIT_ADD_SOFT_INTERRUPT;
4020 	}
4021 
4022 	if (qlge->sequence & INIT_KSTATS) {
4023 		ql_fini_kstats(qlge);
4024 		qlge->sequence &= ~INIT_KSTATS;
4025 	}
4026 
4027 	if (qlge->sequence & INIT_MUTEX) {
4028 		mutex_destroy(&qlge->gen_mutex);
4029 		mutex_destroy(&qlge->hw_mutex);
4030 		mutex_destroy(&qlge->mbx_mutex);
4031 		cv_destroy(&qlge->cv_mbx_intr);
4032 		qlge->sequence &= ~INIT_MUTEX;
4033 	}
4034 
4035 	if (qlge->sequence & INIT_LOCKS_CREATED) {
4036 		ql_free_rx_tx_locks(qlge);
4037 		qlge->sequence &= ~INIT_LOCKS_CREATED;
4038 	}
4039 
4040 	if (qlge->sequence & INIT_MEMORY_ALLOC) {
4041 		ql_free_mem_resources(qlge);
4042 		qlge->sequence &= ~INIT_MEMORY_ALLOC;
4043 	}
4044 
4045 	if (qlge->sequence & INIT_REGS_SETUP) {
4046 		ddi_regs_map_free(&qlge->dev_handle);
4047 		qlge->sequence &= ~INIT_REGS_SETUP;
4048 	}
4049 
4050 	if (qlge->sequence & INIT_DOORBELL_REGS_SETUP) {
4051 		ddi_regs_map_free(&qlge->dev_doorbell_reg_handle);
4052 		qlge->sequence &= ~INIT_DOORBELL_REGS_SETUP;
4053 	}
4054 
4055 	/*
4056 	 * free flash flt table that allocated in attach stage
4057 	 */
4058 	if ((qlge->flt.ql_flt_entry_ptr != NULL)&&
4059 	    (qlge->flt.header.length != 0)) {
4060 		kmem_free(qlge->flt.ql_flt_entry_ptr, qlge->flt.header.length);
4061 		qlge->flt.ql_flt_entry_ptr = NULL;
4062 	}
4063 
4064 	/* finally, free qlge structure */
4065 	if (qlge->sequence & INIT_SOFTSTATE_ALLOC) {
4066 		kmem_free(qlge, sizeof (qlge_t));
4067 	}
4068 
4069 	ddi_prop_remove_all(dip);
4070 	ddi_set_driver_private(dip, NULL);
4071 
4072 }
4073 
4074 /*
4075  * Set promiscuous mode of the driver
4076  * Caller must catch HW_LOCK
4077  */
4078 void
4079 ql_set_promiscuous(qlge_t *qlge, int mode)
4080 {
4081 	if (mode) {
4082 		ql_set_routing_reg(qlge, RT_IDX_PROMISCUOUS_SLOT,
4083 		    RT_IDX_VALID, 1);
4084 	} else {
4085 		ql_set_routing_reg(qlge, RT_IDX_PROMISCUOUS_SLOT,
4086 		    RT_IDX_VALID, 0);
4087 	}
4088 }
4089 /*
4090  * Write 'data1' to Mac Protocol Address Index Register and
4091  * 'data2' to Mac Protocol Address Data Register
4092  *  Assuming that the Mac Protocol semaphore lock has been acquired.
4093  */
4094 static int
4095 ql_write_mac_proto_regs(qlge_t *qlge, uint32_t data1, uint32_t data2)
4096 {
4097 	int return_value = DDI_SUCCESS;
4098 
4099 	if (ql_wait_reg_bit(qlge, REG_MAC_PROTOCOL_ADDRESS_INDEX,
4100 	    MAC_PROTOCOL_ADDRESS_INDEX_MW, BIT_SET, 5) != DDI_SUCCESS) {
4101 		cmn_err(CE_WARN, "Wait for MAC_PROTOCOL Address Register "
4102 		    "timeout.");
4103 		return_value = DDI_FAILURE;
4104 		goto out;
4105 	}
4106 	ql_write_reg(qlge, REG_MAC_PROTOCOL_ADDRESS_INDEX /* A8 */, data1);
4107 	ql_write_reg(qlge, REG_MAC_PROTOCOL_DATA /* 0xAC */, data2);
4108 out:
4109 	return (return_value);
4110 }
4111 /*
4112  * Enable the 'index'ed multicast address in the host memory's multicast_list
4113  */
4114 int
4115 ql_add_multicast_address(qlge_t *qlge, int index)
4116 {
4117 	int rtn_val = DDI_FAILURE;
4118 	uint32_t offset;
4119 	uint32_t value1, value2;
4120 
4121 	/* Acquire the required semaphore */
4122 	if (ql_sem_spinlock(qlge, QL_MAC_PROTOCOL_SEM_MASK) != DDI_SUCCESS) {
4123 		return (rtn_val);
4124 	}
4125 
4126 	/* Program Offset0 - lower 32 bits of the MAC address */
4127 	offset = 0;
4128 	value1 = MAC_PROTOCOL_ADDRESS_ENABLE | MAC_PROTOCOL_TYPE_MULTICAST |
4129 	    (index << 4) | offset;
4130 	value2 = ((qlge->multicast_list[index].addr.ether_addr_octet[2] << 24)
4131 	    |(qlge->multicast_list[index].addr.ether_addr_octet[3] << 16)
4132 	    |(qlge->multicast_list[index].addr.ether_addr_octet[4] << 8)
4133 	    |(qlge->multicast_list[index].addr.ether_addr_octet[5]));
4134 	if (ql_write_mac_proto_regs(qlge, value1, value2) != DDI_SUCCESS)
4135 		goto out;
4136 
4137 	/* Program offset1: upper 16 bits of the MAC address */
4138 	offset = 1;
4139 	value1 = MAC_PROTOCOL_ADDRESS_ENABLE | MAC_PROTOCOL_TYPE_MULTICAST |
4140 	    (index<<4) | offset;
4141 	value2 = ((qlge->multicast_list[index].addr.ether_addr_octet[0] << 8)
4142 	    |qlge->multicast_list[index].addr.ether_addr_octet[1]);
4143 	if (ql_write_mac_proto_regs(qlge, value1, value2) != DDI_SUCCESS) {
4144 		goto out;
4145 	}
4146 	rtn_val = DDI_SUCCESS;
4147 out:
4148 	ql_sem_unlock(qlge, QL_MAC_PROTOCOL_SEM_MASK);
4149 	return (rtn_val);
4150 }
4151 
4152 /*
4153  * Disable the 'index'ed multicast address in the host memory's multicast_list
4154  */
4155 int
4156 ql_remove_multicast_address(qlge_t *qlge, int index)
4157 {
4158 	int rtn_val = DDI_FAILURE;
4159 	uint32_t offset;
4160 	uint32_t value1, value2;
4161 
4162 	/* Acquire the required semaphore */
4163 	if (ql_sem_spinlock(qlge, QL_MAC_PROTOCOL_SEM_MASK) != DDI_SUCCESS) {
4164 		return (rtn_val);
4165 	}
4166 	/* Program Offset0 - lower 32 bits of the MAC address */
4167 	offset = 0;
4168 	value1 = (MAC_PROTOCOL_TYPE_MULTICAST | offset)|(index<<4);
4169 	value2 =
4170 	    ((qlge->multicast_list[index].addr.ether_addr_octet[2] << 24)
4171 	    |(qlge->multicast_list[index].addr.ether_addr_octet[3] << 16)
4172 	    |(qlge->multicast_list[index].addr.ether_addr_octet[4] << 8)
4173 	    |(qlge->multicast_list[index].addr.ether_addr_octet[5]));
4174 	if (ql_write_mac_proto_regs(qlge, value1, value2) != DDI_SUCCESS) {
4175 		goto out;
4176 	}
4177 	/* Program offset1: upper 16 bits of the MAC address */
4178 	offset = 1;
4179 	value1 = (MAC_PROTOCOL_TYPE_MULTICAST | offset)|(index<<4);
4180 	value2 = 0;
4181 	if (ql_write_mac_proto_regs(qlge, value1, value2) != DDI_SUCCESS) {
4182 		goto out;
4183 	}
4184 	rtn_val = DDI_SUCCESS;
4185 out:
4186 	ql_sem_unlock(qlge, QL_MAC_PROTOCOL_SEM_MASK);
4187 	return (rtn_val);
4188 }
4189 
4190 /*
4191  * Add a new multicast address to the list of supported list
4192  * This API is called after OS called gld_set_multicast (GLDv2)
4193  * or m_multicst (GLDv3)
4194  *
4195  * Restriction:
4196  * The number of maximum multicast address is limited by hardware.
4197  */
4198 int
4199 ql_add_to_multicast_list(qlge_t *qlge, uint8_t *ep)
4200 {
4201 	uint32_t index = qlge->multicast_list_count;
4202 	int rval = DDI_SUCCESS;
4203 	int status;
4204 
4205 	if ((ep[0] & 01) == 0) {
4206 		rval = EINVAL;
4207 		goto exit;
4208 	}
4209 
4210 	/* if there is an availabe space in multicast_list, then add it */
4211 	if (index < MAX_MULTICAST_LIST_SIZE) {
4212 		bcopy(ep, qlge->multicast_list[index].addr.ether_addr_octet,
4213 		    ETHERADDRL);
4214 		/* increment the total number of addresses in multicast list */
4215 		ql_add_multicast_address(qlge, index);
4216 		qlge->multicast_list_count++;
4217 		QL_PRINT(DBG_GLD,
4218 		    ("%s(%d): added to index of multicast list= 0x%x, "
4219 		    "total %d\n", __func__, qlge->instance, index,
4220 		    qlge->multicast_list_count));
4221 
4222 		if (index > MAX_MULTICAST_HW_SIZE) {
4223 			if (!qlge->multicast_promisc) {
4224 				status = ql_set_routing_reg(qlge,
4225 				    RT_IDX_ALLMULTI_SLOT,
4226 				    RT_IDX_MCAST, 1);
4227 				if (status) {
4228 					cmn_err(CE_WARN,
4229 					    "Failed to init routing reg "
4230 					    "for mcast promisc mode.");
4231 					rval = ENOENT;
4232 					goto exit;
4233 				}
4234 				qlge->multicast_promisc = B_TRUE;
4235 			}
4236 		}
4237 	} else {
4238 		rval = ENOENT;
4239 	}
4240 exit:
4241 	return (rval);
4242 }
4243 
4244 /*
4245  * Remove an old multicast address from the list of supported multicast
4246  * addresses. This API is called after OS called gld_set_multicast (GLDv2)
4247  * or m_multicst (GLDv3)
4248  * The number of maximum multicast address is limited by hardware.
4249  */
4250 int
4251 ql_remove_from_multicast_list(qlge_t *qlge, uint8_t *ep)
4252 {
4253 	uint32_t total = qlge->multicast_list_count;
4254 	int i = 0;
4255 	int rmv_index = 0;
4256 	size_t length = sizeof (ql_multicast_addr);
4257 	int status;
4258 
4259 	for (i = 0; i < total; i++) {
4260 		if (bcmp(ep, &qlge->multicast_list[i].addr, ETHERADDRL) != 0) {
4261 			continue;
4262 		}
4263 
4264 		rmv_index = i;
4265 		/* block move the reset of other multicast address forward */
4266 		length = ((total -1) -i) * sizeof (ql_multicast_addr);
4267 		if (length > 0) {
4268 			bcopy(&qlge->multicast_list[i+1],
4269 			    &qlge->multicast_list[i], length);
4270 		}
4271 		qlge->multicast_list_count--;
4272 		if (qlge->multicast_list_count <= MAX_MULTICAST_HW_SIZE) {
4273 			/*
4274 			 * there is a deletion in multicast list table,
4275 			 * re-enable them
4276 			 */
4277 			for (i = rmv_index; i < qlge->multicast_list_count;
4278 			    i++) {
4279 				ql_add_multicast_address(qlge, i);
4280 			}
4281 			/* and disable the last one */
4282 			ql_remove_multicast_address(qlge, i);
4283 
4284 			/* disable multicast promiscuous mode */
4285 			if (qlge->multicast_promisc) {
4286 				status = ql_set_routing_reg(qlge,
4287 				    RT_IDX_ALLMULTI_SLOT,
4288 				    RT_IDX_MCAST, 0);
4289 				if (status) {
4290 					cmn_err(CE_WARN,
4291 					    "Failed to init routing reg for "
4292 					    "mcast promisc mode.");
4293 					goto exit;
4294 				}
4295 				/* write to config register */
4296 				qlge->multicast_promisc = B_FALSE;
4297 			}
4298 		}
4299 		break;
4300 	}
4301 exit:
4302 	return (DDI_SUCCESS);
4303 }
4304 
4305 /*
4306  * Read a XGMAC register
4307  */
4308 int
4309 ql_read_xgmac_reg(qlge_t *qlge, uint32_t addr, uint32_t *val)
4310 {
4311 	int rtn_val = DDI_FAILURE;
4312 
4313 	/* wait for XGMAC Address register RDY bit set */
4314 	if (ql_wait_reg_bit(qlge, REG_XGMAC_ADDRESS, XGMAC_ADDRESS_RDY,
4315 	    BIT_SET, 10) != DDI_SUCCESS) {
4316 		goto out;
4317 	}
4318 	/* start rx transaction */
4319 	ql_write_reg(qlge, REG_XGMAC_ADDRESS, addr|XGMAC_ADDRESS_READ_TRANSACT);
4320 
4321 	/*
4322 	 * wait for XGMAC Address register RDY bit set,
4323 	 * which indicates data is ready
4324 	 */
4325 	if (ql_wait_reg_bit(qlge, REG_XGMAC_ADDRESS, XGMAC_ADDRESS_RDY,
4326 	    BIT_SET, 10) != DDI_SUCCESS) {
4327 		goto out;
4328 	}
4329 	/* read data from XGAMC_DATA register */
4330 	*val = ql_read_reg(qlge, REG_XGMAC_DATA);
4331 	rtn_val = DDI_SUCCESS;
4332 out:
4333 	return (rtn_val);
4334 }
4335 
4336 /*
4337  * Implement checksum offload for IPv4 IP packets
4338  */
4339 static void
4340 ql_hw_csum_setup(qlge_t *qlge, uint32_t pflags, caddr_t bp,
4341     struct ob_mac_iocb_req *mac_iocb_ptr)
4342 {
4343 	struct ip *iphdr = NULL;
4344 	struct ether_header *ethhdr;
4345 	struct ether_vlan_header *ethvhdr;
4346 	struct tcphdr *tcp_hdr;
4347 	uint32_t etherType;
4348 	int mac_hdr_len, ip_hdr_len, tcp_udp_hdr_len;
4349 	int ip_hdr_off, tcp_udp_hdr_off, hdr_off;
4350 
4351 	ethhdr  = (struct ether_header *)((void *)bp);
4352 	ethvhdr = (struct ether_vlan_header *)((void *)bp);
4353 	/* Is this vlan packet? */
4354 	if (ntohs(ethvhdr->ether_tpid) == ETHERTYPE_VLAN) {
4355 		mac_hdr_len = sizeof (struct ether_vlan_header);
4356 		etherType = ntohs(ethvhdr->ether_type);
4357 	} else {
4358 		mac_hdr_len = sizeof (struct ether_header);
4359 		etherType = ntohs(ethhdr->ether_type);
4360 	}
4361 	/* Is this IPv4 or IPv6 packet? */
4362 	if (IPH_HDR_VERSION((ipha_t *)(void *)(bp+mac_hdr_len)) ==
4363 	    IPV4_VERSION) {
4364 		if (etherType == ETHERTYPE_IP /* 0800 */) {
4365 			iphdr = (struct ip *)(void *)(bp+mac_hdr_len);
4366 		} else {
4367 			/* EMPTY */
4368 			QL_PRINT(DBG_TX,
4369 			    ("%s(%d) : IPv4 None IP packet type 0x%x\n",
4370 			    __func__, qlge->instance, etherType));
4371 		}
4372 	}
4373 	/* ipV4 packets */
4374 	if (iphdr != NULL) {
4375 
4376 		ip_hdr_len = IPH_HDR_LENGTH(iphdr);
4377 		QL_PRINT(DBG_TX,
4378 		    ("%s(%d) : IPv4 header length using IPH_HDR_LENGTH:"
4379 		    " %d bytes \n", __func__, qlge->instance, ip_hdr_len));
4380 
4381 		ip_hdr_off = mac_hdr_len;
4382 		QL_PRINT(DBG_TX, ("%s(%d) : ip_hdr_len=%d\n",
4383 		    __func__, qlge->instance, ip_hdr_len));
4384 
4385 		mac_iocb_ptr->flag0 = (uint8_t)(mac_iocb_ptr->flag0 |
4386 		    OB_MAC_IOCB_REQ_IPv4);
4387 
4388 		if (pflags & HCK_IPV4_HDRCKSUM) {
4389 			QL_PRINT(DBG_TX, ("%s(%d) : Do IPv4 header checksum\n",
4390 			    __func__, qlge->instance));
4391 			mac_iocb_ptr->opcode = OPCODE_OB_MAC_OFFLOAD_IOCB;
4392 			mac_iocb_ptr->flag2 = (uint8_t)(mac_iocb_ptr->flag2 |
4393 			    OB_MAC_IOCB_REQ_IC);
4394 			iphdr->ip_sum = 0;
4395 			mac_iocb_ptr->hdr_off = (uint16_t)
4396 			    cpu_to_le16(ip_hdr_off);
4397 		}
4398 		if (pflags & HCK_FULLCKSUM) {
4399 			if (iphdr->ip_p == IPPROTO_TCP) {
4400 				tcp_hdr =
4401 				    (struct tcphdr *)(void *)
4402 				    ((uint8_t *)(void *)iphdr + ip_hdr_len);
4403 				QL_PRINT(DBG_TX, ("%s(%d) : Do TCP checksum\n",
4404 				    __func__, qlge->instance));
4405 				mac_iocb_ptr->opcode =
4406 				    OPCODE_OB_MAC_OFFLOAD_IOCB;
4407 				mac_iocb_ptr->flag1 =
4408 				    (uint8_t)(mac_iocb_ptr->flag1 |
4409 				    OB_MAC_IOCB_REQ_TC);
4410 				mac_iocb_ptr->flag2 =
4411 				    (uint8_t)(mac_iocb_ptr->flag2 |
4412 				    OB_MAC_IOCB_REQ_IC);
4413 				iphdr->ip_sum = 0;
4414 				tcp_udp_hdr_off = mac_hdr_len+ip_hdr_len;
4415 				tcp_udp_hdr_len = tcp_hdr->th_off*4;
4416 				QL_PRINT(DBG_TX, ("%s(%d): tcp header len:%d\n",
4417 				    __func__, qlge->instance, tcp_udp_hdr_len));
4418 				hdr_off = ip_hdr_off;
4419 				tcp_udp_hdr_off <<= 6;
4420 				hdr_off |= tcp_udp_hdr_off;
4421 				mac_iocb_ptr->hdr_off =
4422 				    (uint16_t)cpu_to_le16(hdr_off);
4423 				mac_iocb_ptr->protocol_hdr_len = (uint16_t)
4424 				    cpu_to_le16(mac_hdr_len + ip_hdr_len +
4425 				    tcp_udp_hdr_len);
4426 
4427 				/*
4428 				 * if the chip is unable to do pseudo header
4429 				 * cksum calculation, do it in then put the
4430 				 * result to the data passed to the chip
4431 				 */
4432 				if (qlge->cfg_flags &
4433 				    CFG_HW_UNABLE_PSEUDO_HDR_CKSUM) {
4434 					ql_pseudo_cksum((uint8_t *)iphdr);
4435 				}
4436 			} else if (iphdr->ip_p == IPPROTO_UDP) {
4437 				QL_PRINT(DBG_TX, ("%s(%d) : Do UDP checksum\n",
4438 				    __func__, qlge->instance));
4439 				mac_iocb_ptr->opcode =
4440 				    OPCODE_OB_MAC_OFFLOAD_IOCB;
4441 				mac_iocb_ptr->flag1 =
4442 				    (uint8_t)(mac_iocb_ptr->flag1 |
4443 				    OB_MAC_IOCB_REQ_UC);
4444 				mac_iocb_ptr->flag2 =
4445 				    (uint8_t)(mac_iocb_ptr->flag2 |
4446 				    OB_MAC_IOCB_REQ_IC);
4447 				iphdr->ip_sum = 0;
4448 				tcp_udp_hdr_off = mac_hdr_len + ip_hdr_len;
4449 				tcp_udp_hdr_len = sizeof (struct udphdr);
4450 				QL_PRINT(DBG_TX, ("%s(%d):udp header len:%d\n",
4451 				    __func__, qlge->instance, tcp_udp_hdr_len));
4452 				hdr_off = ip_hdr_off;
4453 				tcp_udp_hdr_off <<= 6;
4454 				hdr_off |= tcp_udp_hdr_off;
4455 				mac_iocb_ptr->hdr_off =
4456 				    (uint16_t)cpu_to_le16(hdr_off);
4457 				mac_iocb_ptr->protocol_hdr_len = (uint16_t)
4458 				    cpu_to_le16(mac_hdr_len + ip_hdr_len
4459 				    + tcp_udp_hdr_len);
4460 
4461 				/*
4462 				 * if the chip is unable to calculate pseudo
4463 				 * hdr cksum,do it in then put the result to
4464 				 * the data passed to the chip
4465 				 */
4466 				if (qlge->cfg_flags &
4467 				    CFG_HW_UNABLE_PSEUDO_HDR_CKSUM) {
4468 					ql_pseudo_cksum((uint8_t *)iphdr);
4469 				}
4470 			}
4471 		}
4472 	}
4473 }
4474 
4475 /*
4476  * For TSO/LSO:
4477  * MAC frame transmission with TCP large segment offload is performed in the
4478  * same way as the MAC frame transmission with checksum offload with the
4479  * exception that the maximum TCP segment size (MSS) must be specified to
4480  * allow the chip to segment the data into legal sized frames.
4481  * The host also needs to calculate a pseudo-header checksum over the
4482  * following fields:
4483  * Source IP Address, Destination IP Address, and the Protocol.
4484  * The TCP length is not included in the pseudo-header calculation.
4485  * The pseudo-header checksum is place in the TCP checksum field of the
4486  * prototype header.
4487  */
4488 static void
4489 ql_lso_pseudo_cksum(uint8_t *buf)
4490 {
4491 	uint32_t cksum;
4492 	uint16_t iphl;
4493 	uint16_t proto;
4494 
4495 	/*
4496 	 * Calculate the LSO pseudo-header checksum.
4497 	 */
4498 	iphl = (uint16_t)(4 * (buf[0] & 0xF));
4499 	cksum = proto = buf[9];
4500 	cksum += (((uint16_t)buf[12])<<8) + buf[13];
4501 	cksum += (((uint16_t)buf[14])<<8) + buf[15];
4502 	cksum += (((uint16_t)buf[16])<<8) + buf[17];
4503 	cksum += (((uint16_t)buf[18])<<8) + buf[19];
4504 	cksum = (cksum>>16) + (cksum & 0xFFFF);
4505 	cksum = (cksum>>16) + (cksum & 0xFFFF);
4506 
4507 	/*
4508 	 * Point it to the TCP/UDP header, and
4509 	 * update the checksum field.
4510 	 */
4511 	buf += iphl + ((proto == IPPROTO_TCP) ?
4512 	    TCP_CKSUM_OFFSET : UDP_CKSUM_OFFSET);
4513 
4514 	*(uint16_t *)(void *)buf = (uint16_t)htons((uint16_t)cksum);
4515 }
4516 
4517 /*
4518  * Tell the hardware to do Large Send Offload (LSO)
4519  *
4520  * Some fields in ob_mac_iocb need to be set so hardware can know what is
4521  * the incoming packet, TCP or UDP, whether a VLAN tag needs to be inserted
4522  * in the right place of the packet etc, thus, hardware can process the
4523  * packet correctly.
4524  */
4525 static void
4526 ql_hw_lso_setup(qlge_t *qlge, uint32_t mss, caddr_t bp,
4527     struct ob_mac_iocb_req *mac_iocb_ptr)
4528 {
4529 	struct ip *iphdr = NULL;
4530 	struct ether_header *ethhdr;
4531 	struct ether_vlan_header *ethvhdr;
4532 	struct tcphdr *tcp_hdr;
4533 	struct udphdr *udp_hdr;
4534 	uint32_t etherType;
4535 	uint16_t mac_hdr_len, ip_hdr_len, tcp_udp_hdr_len;
4536 	uint16_t ip_hdr_off, tcp_udp_hdr_off, hdr_off;
4537 
4538 	ethhdr = (struct ether_header *)(void *)bp;
4539 	ethvhdr = (struct ether_vlan_header *)(void *)bp;
4540 
4541 	/* Is this vlan packet? */
4542 	if (ntohs(ethvhdr->ether_tpid) == ETHERTYPE_VLAN) {
4543 		mac_hdr_len = sizeof (struct ether_vlan_header);
4544 		etherType = ntohs(ethvhdr->ether_type);
4545 	} else {
4546 		mac_hdr_len = sizeof (struct ether_header);
4547 		etherType = ntohs(ethhdr->ether_type);
4548 	}
4549 	/* Is this IPv4 or IPv6 packet? */
4550 	if (IPH_HDR_VERSION((ipha_t *)(void *)(bp + mac_hdr_len)) ==
4551 	    IPV4_VERSION) {
4552 		if (etherType == ETHERTYPE_IP /* 0800 */) {
4553 			iphdr 	= (struct ip *)(void *)(bp+mac_hdr_len);
4554 		} else {
4555 			/* EMPTY */
4556 			QL_PRINT(DBG_TX, ("%s(%d) : IPv4 None IP packet"
4557 			    " type 0x%x\n",
4558 			    __func__, qlge->instance, etherType));
4559 		}
4560 	}
4561 
4562 	if (iphdr != NULL) { /* ipV4 packets */
4563 		ip_hdr_len = (uint16_t)IPH_HDR_LENGTH(iphdr);
4564 		QL_PRINT(DBG_TX,
4565 		    ("%s(%d) : IPv4 header length using IPH_HDR_LENGTH: %d"
4566 		    " bytes \n", __func__, qlge->instance, ip_hdr_len));
4567 
4568 		ip_hdr_off = mac_hdr_len;
4569 		QL_PRINT(DBG_TX, ("%s(%d) : ip_hdr_len=%d\n",
4570 		    __func__, qlge->instance, ip_hdr_len));
4571 
4572 		mac_iocb_ptr->flag0 = (uint8_t)(mac_iocb_ptr->flag0 |
4573 		    OB_MAC_IOCB_REQ_IPv4);
4574 		if (qlge->cfg_flags & CFG_CKSUM_FULL_IPv4) {
4575 			if (iphdr->ip_p == IPPROTO_TCP) {
4576 				tcp_hdr = (struct tcphdr *)(void *)
4577 				    ((uint8_t *)(void *)iphdr +
4578 				    ip_hdr_len);
4579 				QL_PRINT(DBG_TX, ("%s(%d) : Do TSO on TCP "
4580 				    "packet\n",
4581 				    __func__, qlge->instance));
4582 				mac_iocb_ptr->opcode =
4583 				    OPCODE_OB_MAC_OFFLOAD_IOCB;
4584 				mac_iocb_ptr->flag1 =
4585 				    (uint8_t)(mac_iocb_ptr->flag1 |
4586 				    OB_MAC_IOCB_REQ_LSO);
4587 				iphdr->ip_sum = 0;
4588 				tcp_udp_hdr_off =
4589 				    (uint16_t)(mac_hdr_len+ip_hdr_len);
4590 				tcp_udp_hdr_len =
4591 				    (uint16_t)(tcp_hdr->th_off*4);
4592 				QL_PRINT(DBG_TX, ("%s(%d): tcp header len:%d\n",
4593 				    __func__, qlge->instance, tcp_udp_hdr_len));
4594 				hdr_off = ip_hdr_off;
4595 				tcp_udp_hdr_off <<= 6;
4596 				hdr_off |= tcp_udp_hdr_off;
4597 				mac_iocb_ptr->hdr_off =
4598 				    (uint16_t)cpu_to_le16(hdr_off);
4599 				mac_iocb_ptr->protocol_hdr_len = (uint16_t)
4600 				    cpu_to_le16(mac_hdr_len + ip_hdr_len +
4601 				    tcp_udp_hdr_len);
4602 				mac_iocb_ptr->mss = (uint16_t)cpu_to_le16(mss);
4603 
4604 				/*
4605 				 * if the chip is unable to calculate pseudo
4606 				 * header checksum, do it in then put the result
4607 				 * to the data passed to the chip
4608 				 */
4609 				if (qlge->cfg_flags &
4610 				    CFG_HW_UNABLE_PSEUDO_HDR_CKSUM)
4611 					ql_lso_pseudo_cksum((uint8_t *)iphdr);
4612 			} else if (iphdr->ip_p == IPPROTO_UDP) {
4613 				udp_hdr = (struct udphdr *)(void *)
4614 				    ((uint8_t *)(void *)iphdr
4615 				    + ip_hdr_len);
4616 				QL_PRINT(DBG_TX, ("%s(%d) : Do TSO on UDP "
4617 				    "packet\n",
4618 				    __func__, qlge->instance));
4619 				mac_iocb_ptr->opcode =
4620 				    OPCODE_OB_MAC_OFFLOAD_IOCB;
4621 				mac_iocb_ptr->flag1 =
4622 				    (uint8_t)(mac_iocb_ptr->flag1 |
4623 				    OB_MAC_IOCB_REQ_LSO);
4624 				iphdr->ip_sum = 0;
4625 				tcp_udp_hdr_off =
4626 				    (uint16_t)(mac_hdr_len+ip_hdr_len);
4627 				tcp_udp_hdr_len =
4628 				    (uint16_t)(udp_hdr->uh_ulen*4);
4629 				QL_PRINT(DBG_TX, ("%s(%d):udp header len:%d\n",
4630 				    __func__, qlge->instance, tcp_udp_hdr_len));
4631 				hdr_off = ip_hdr_off;
4632 				tcp_udp_hdr_off <<= 6;
4633 				hdr_off |= tcp_udp_hdr_off;
4634 				mac_iocb_ptr->hdr_off =
4635 				    (uint16_t)cpu_to_le16(hdr_off);
4636 				mac_iocb_ptr->protocol_hdr_len = (uint16_t)
4637 				    cpu_to_le16(mac_hdr_len + ip_hdr_len +
4638 				    tcp_udp_hdr_len);
4639 				mac_iocb_ptr->mss = (uint16_t)cpu_to_le16(mss);
4640 
4641 				/*
4642 				 * if the chip is unable to do pseudo header
4643 				 * checksum calculation, do it here then put the
4644 				 * result to the data passed to the chip
4645 				 */
4646 				if (qlge->cfg_flags &
4647 				    CFG_HW_UNABLE_PSEUDO_HDR_CKSUM)
4648 					ql_lso_pseudo_cksum((uint8_t *)iphdr);
4649 			}
4650 		}
4651 	}
4652 }
4653 
4654 /*
4655  * Generic packet sending function which is used to send one packet.
4656  */
4657 int
4658 ql_send_common(struct tx_ring *tx_ring, mblk_t *mp)
4659 {
4660 	struct tx_ring_desc *tx_cb;
4661 	struct ob_mac_iocb_req *mac_iocb_ptr;
4662 	mblk_t *tp;
4663 	size_t msg_len = 0;
4664 	size_t off;
4665 	caddr_t bp;
4666 	size_t nbyte, total_len;
4667 	uint_t i = 0;
4668 	int j = 0, frags = 0;
4669 	uint32_t phy_addr_low, phy_addr_high;
4670 	uint64_t phys_addr;
4671 	clock_t now;
4672 	uint32_t pflags = 0;
4673 	uint32_t mss = 0;
4674 	enum tx_mode_t tx_mode;
4675 	struct oal_entry *oal_entry;
4676 	int status;
4677 	uint_t ncookies, oal_entries, max_oal_entries;
4678 	size_t max_seg_len = 0;
4679 	boolean_t use_lso = B_FALSE;
4680 	struct oal_entry *tx_entry = NULL;
4681 	struct oal_entry *last_oal_entry;
4682 	qlge_t *qlge = tx_ring->qlge;
4683 	ddi_dma_cookie_t dma_cookie;
4684 	size_t tx_buf_len = QL_MAX_COPY_LENGTH;
4685 	int force_pullup = 0;
4686 
4687 	tp = mp;
4688 	total_len = msg_len = 0;
4689 	max_oal_entries = TX_DESC_PER_IOCB + MAX_SG_ELEMENTS-1;
4690 
4691 	/* Calculate number of data and segments in the incoming message */
4692 	for (tp = mp; tp != NULL; tp = tp->b_cont) {
4693 		nbyte = MBLKL(tp);
4694 		total_len += nbyte;
4695 		max_seg_len = max(nbyte, max_seg_len);
4696 		QL_PRINT(DBG_TX, ("Requested sending data in %d segments, "
4697 		    "total length: %d\n", frags, nbyte));
4698 		frags++;
4699 	}
4700 
4701 	if (total_len >= QL_LSO_MAX) {
4702 		freemsg(mp);
4703 #ifdef QLGE_LOAD_UNLOAD
4704 		cmn_err(CE_NOTE, "%s: quit, packet oversize %d\n",
4705 		    __func__, (int)total_len);
4706 #endif
4707 		return (NULL);
4708 	}
4709 
4710 	bp = (caddr_t)mp->b_rptr;
4711 	if (bp[0] & 1) {
4712 		if (bcmp(bp, ql_ether_broadcast_addr.ether_addr_octet,
4713 		    ETHERADDRL) == 0) {
4714 			QL_PRINT(DBG_TX, ("Broadcast packet\n"));
4715 			tx_ring->brdcstxmt++;
4716 		} else {
4717 			QL_PRINT(DBG_TX, ("multicast packet\n"));
4718 			tx_ring->multixmt++;
4719 		}
4720 	}
4721 
4722 	tx_ring->obytes += total_len;
4723 	tx_ring->opackets ++;
4724 
4725 	QL_PRINT(DBG_TX, ("total requested sending data length: %d, in %d segs,"
4726 	    " max seg len: %d\n", total_len, frags, max_seg_len));
4727 
4728 	/* claim a free slot in tx ring */
4729 	tx_cb = &tx_ring->wq_desc[tx_ring->prod_idx];
4730 
4731 	/* get the tx descriptor */
4732 	mac_iocb_ptr = tx_cb->queue_entry;
4733 
4734 	bzero((void *)mac_iocb_ptr, sizeof (*mac_iocb_ptr));
4735 
4736 	ASSERT(tx_cb->mp == NULL);
4737 
4738 	/*
4739 	 * Decide to use DMA map or copy mode.
4740 	 * DMA map mode must be used when the total msg length is more than the
4741 	 * tx buffer length.
4742 	 */
4743 
4744 	if (total_len > tx_buf_len)
4745 		tx_mode = USE_DMA;
4746 	else if	(max_seg_len > QL_MAX_COPY_LENGTH)
4747 		tx_mode = USE_DMA;
4748 	else
4749 		tx_mode = USE_COPY;
4750 
4751 	if (qlge->chksum_cap) {
4752 		hcksum_retrieve(mp, NULL, NULL, NULL,
4753 		    NULL, NULL, NULL, &pflags);
4754 		QL_PRINT(DBG_TX, ("checksum flag is :0x%x, card capability "
4755 		    "is 0x%x \n", pflags, qlge->chksum_cap));
4756 		if (qlge->lso_enable) {
4757 			uint32_t lso_flags = 0;
4758 			lso_info_get(mp, &mss, &lso_flags);
4759 			use_lso = (lso_flags == HW_LSO);
4760 		}
4761 		QL_PRINT(DBG_TX, ("mss :%d, use_lso %x \n",
4762 		    mss, use_lso));
4763 	}
4764 
4765 do_pullup:
4766 
4767 	/* concatenate all frags into one large packet if too fragmented */
4768 	if (((tx_mode == USE_DMA)&&(frags > QL_MAX_TX_DMA_HANDLES)) ||
4769 	    force_pullup) {
4770 		mblk_t *mp1;
4771 		if ((mp1 = msgpullup(mp, -1)) != NULL) {
4772 			freemsg(mp);
4773 			mp = mp1;
4774 			frags = 1;
4775 		} else {
4776 			tx_ring->tx_fail_dma_bind++;
4777 			goto bad;
4778 		}
4779 	}
4780 
4781 	tx_cb->tx_bytes = (uint32_t)total_len;
4782 	tx_cb->mp = mp;
4783 	tx_cb->tx_dma_handle_used = 0;
4784 
4785 	if (tx_mode == USE_DMA) {
4786 		msg_len = total_len;
4787 
4788 		mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
4789 		mac_iocb_ptr->tid = tx_ring->prod_idx;
4790 		mac_iocb_ptr->frame_len = (uint32_t)cpu_to_le32(msg_len);
4791 		mac_iocb_ptr->txq_idx = tx_ring->wq_id;
4792 
4793 		tx_entry = &mac_iocb_ptr->oal_entry[0];
4794 		oal_entry = NULL;
4795 
4796 		for (tp = mp, oal_entries = j = 0; tp != NULL;
4797 		    tp = tp->b_cont) {
4798 			/* if too many tx dma handles needed */
4799 			if (j >= QL_MAX_TX_DMA_HANDLES) {
4800 				tx_ring->tx_no_dma_handle++;
4801 				if (!force_pullup) {
4802 					force_pullup = 1;
4803 					goto do_pullup;
4804 				} else {
4805 					goto bad;
4806 				}
4807 			}
4808 			nbyte = (uint16_t)MBLKL(tp);
4809 			if (nbyte == 0)
4810 				continue;
4811 
4812 			status = ddi_dma_addr_bind_handle(
4813 			    tx_cb->tx_dma_handle[j], NULL,
4814 			    (caddr_t)tp->b_rptr, nbyte,
4815 			    DDI_DMA_WRITE | DDI_DMA_STREAMING, DDI_DMA_DONTWAIT,
4816 			    0, &dma_cookie, &ncookies);
4817 
4818 			QL_PRINT(DBG_TX, ("map sending data segment: %d, "
4819 			    "length: %d, spans in %d cookies\n",
4820 			    j, nbyte, ncookies));
4821 
4822 			if (status != DDI_DMA_MAPPED) {
4823 				goto bad;
4824 			}
4825 			/*
4826 			 * Each fragment can span several cookies. One cookie
4827 			 * will use one tx descriptor to transmit.
4828 			 */
4829 			for (i = ncookies; i > 0; i--, tx_entry++,
4830 			    oal_entries++) {
4831 				/*
4832 				 * The number of TX descriptors that can be
4833 				 *  saved in tx iocb and oal list is limited
4834 				 */
4835 				if (oal_entries > max_oal_entries) {
4836 					tx_ring->tx_no_dma_cookie++;
4837 					if (!force_pullup) {
4838 						force_pullup = 1;
4839 						goto do_pullup;
4840 					} else {
4841 						goto bad;
4842 					}
4843 				}
4844 
4845 				if ((oal_entries == TX_DESC_PER_IOCB) &&
4846 				    !oal_entry) {
4847 					/*
4848 					 * Time to switch to an oal list
4849 					 * The last entry should be copied
4850 					 * to first entry in the oal list
4851 					 */
4852 					oal_entry = tx_cb->oal;
4853 					tx_entry =
4854 					    &mac_iocb_ptr->oal_entry[
4855 					    TX_DESC_PER_IOCB-1];
4856 					bcopy(tx_entry, oal_entry,
4857 					    sizeof (*oal_entry));
4858 
4859 					/*
4860 					 * last entry should be updated to
4861 					 * point to the extended oal list itself
4862 					 */
4863 					tx_entry->buf_addr_low =
4864 					    cpu_to_le32(
4865 					    LS_64BITS(tx_cb->oal_dma_addr));
4866 					tx_entry->buf_addr_high =
4867 					    cpu_to_le32(
4868 					    MS_64BITS(tx_cb->oal_dma_addr));
4869 					/*
4870 					 * Point tx_entry to the oal list
4871 					 * second entry
4872 					 */
4873 					tx_entry = &oal_entry[1];
4874 				}
4875 
4876 				tx_entry->buf_len =
4877 				    (uint32_t)cpu_to_le32(dma_cookie.dmac_size);
4878 				phys_addr = dma_cookie.dmac_laddress;
4879 				tx_entry->buf_addr_low =
4880 				    cpu_to_le32(LS_64BITS(phys_addr));
4881 				tx_entry->buf_addr_high =
4882 				    cpu_to_le32(MS_64BITS(phys_addr));
4883 
4884 				last_oal_entry = tx_entry;
4885 
4886 				if (i > 1)
4887 					ddi_dma_nextcookie(
4888 					    tx_cb->tx_dma_handle[j],
4889 					    &dma_cookie);
4890 			}
4891 			j++;
4892 		}
4893 		/*
4894 		 * if OAL is used, the last oal entry in tx iocb indicates
4895 		 * number of additional address/len pairs in OAL
4896 		 */
4897 		if (oal_entries > TX_DESC_PER_IOCB) {
4898 			tx_entry = &mac_iocb_ptr->oal_entry[TX_DESC_PER_IOCB-1];
4899 			tx_entry->buf_len = (uint32_t)
4900 			    (cpu_to_le32((sizeof (struct oal_entry) *
4901 			    (oal_entries -TX_DESC_PER_IOCB+1))|OAL_CONT_ENTRY));
4902 		}
4903 		last_oal_entry->buf_len = cpu_to_le32(
4904 		    le32_to_cpu(last_oal_entry->buf_len)|OAL_LAST_ENTRY);
4905 
4906 		tx_cb->tx_dma_handle_used = j;
4907 		QL_PRINT(DBG_TX, ("total tx_dma_handle_used %d cookies %d \n",
4908 		    j, oal_entries));
4909 
4910 		bp = (caddr_t)mp->b_rptr;
4911 	}
4912 	if (tx_mode == USE_COPY) {
4913 		bp = tx_cb->copy_buffer;
4914 		off = 0;
4915 		nbyte = 0;
4916 		frags = 0;
4917 		/*
4918 		 * Copy up to tx_buf_len of the transmit data
4919 		 * from mp to tx buffer
4920 		 */
4921 		for (tp = mp; tp != NULL; tp = tp->b_cont) {
4922 			nbyte = MBLKL(tp);
4923 			if ((off + nbyte) <= tx_buf_len) {
4924 				bcopy(tp->b_rptr, &bp[off], nbyte);
4925 				off += nbyte;
4926 				frags ++;
4927 			}
4928 		}
4929 
4930 		msg_len = off;
4931 
4932 		mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
4933 		mac_iocb_ptr->tid = tx_ring->prod_idx;
4934 		mac_iocb_ptr->frame_len = (uint32_t)cpu_to_le32(msg_len);
4935 		mac_iocb_ptr->txq_idx = tx_ring->wq_id;
4936 
4937 		QL_PRINT(DBG_TX, ("Copy Mode:actual sent data length is: %d, "
4938 		    "from %d segaments\n", msg_len, frags));
4939 
4940 		phys_addr = tx_cb->copy_buffer_dma_addr;
4941 		phy_addr_low = cpu_to_le32(LS_64BITS(phys_addr));
4942 		phy_addr_high = cpu_to_le32(MS_64BITS(phys_addr));
4943 
4944 		QL_DUMP(DBG_TX, "\t requested sending data:\n",
4945 		    (uint8_t *)tx_cb->copy_buffer, 8, total_len);
4946 
4947 		mac_iocb_ptr->oal_entry[0].buf_len = (uint32_t)
4948 		    cpu_to_le32(msg_len | OAL_LAST_ENTRY);
4949 		mac_iocb_ptr->oal_entry[0].buf_addr_low  = phy_addr_low;
4950 		mac_iocb_ptr->oal_entry[0].buf_addr_high = phy_addr_high;
4951 
4952 		freemsg(mp); /* no need, we have copied */
4953 		tx_cb->mp = NULL;
4954 	} /* End of Copy Mode */
4955 
4956 	/* Do TSO/LSO on TCP packet? */
4957 	if (use_lso && mss) {
4958 		ql_hw_lso_setup(qlge, mss, bp, mac_iocb_ptr);
4959 	} else if (pflags & qlge->chksum_cap) {
4960 		/* Do checksum offloading */
4961 		ql_hw_csum_setup(qlge, pflags, bp, mac_iocb_ptr);
4962 	}
4963 
4964 	/* let device know the latest outbound IOCB */
4965 	(void) ddi_dma_sync(tx_ring->wq_dma.dma_handle,
4966 	    (off_t)((uintptr_t)mac_iocb_ptr - (uintptr_t)tx_ring->wq_dma.vaddr),
4967 	    (size_t)sizeof (*mac_iocb_ptr), DDI_DMA_SYNC_FORDEV);
4968 
4969 	if (tx_mode == USE_DMA) {
4970 		/* let device know the latest outbound OAL if necessary */
4971 		if (oal_entries > TX_DESC_PER_IOCB) {
4972 			(void) ddi_dma_sync(tx_cb->oal_dma.dma_handle,
4973 			    (off_t)0,
4974 			    (sizeof (struct oal_entry) *
4975 			    (oal_entries -TX_DESC_PER_IOCB+1)),
4976 			    DDI_DMA_SYNC_FORDEV);
4977 		}
4978 	} else { /* for USE_COPY mode, tx buffer has changed */
4979 		/* let device know the latest change */
4980 		(void) ddi_dma_sync(tx_cb->oal_dma.dma_handle,
4981 		/* copy buf offset */
4982 		    (off_t)(sizeof (oal_entry) * MAX_SG_ELEMENTS),
4983 		    msg_len, DDI_DMA_SYNC_FORDEV);
4984 	}
4985 
4986 	/* save how the packet was sent */
4987 	tx_cb->tx_type = tx_mode;
4988 
4989 	QL_DUMP_REQ_PKT(qlge, mac_iocb_ptr, tx_cb->oal, oal_entries);
4990 	/* reduce the number of available tx slot */
4991 	atomic_dec_32(&tx_ring->tx_free_count);
4992 
4993 	tx_ring->prod_idx++;
4994 	if (tx_ring->prod_idx >= tx_ring->wq_len)
4995 		tx_ring->prod_idx = 0;
4996 
4997 	now = ddi_get_lbolt();
4998 	qlge->last_tx_time = now;
4999 
5000 	return (DDI_SUCCESS);
5001 
5002 bad:
5003 	/*
5004 	 * if for any reason driver can not send, delete
5005 	 * the message pointer, mp
5006 	 */
5007 	now = ddi_get_lbolt();
5008 	freemsg(mp);
5009 	mp = NULL;
5010 	for (i = 0; i < j; i++)
5011 		(void) ddi_dma_unbind_handle(tx_cb->tx_dma_handle[i]);
5012 
5013 	QL_PRINT(DBG_TX, ("%s(%d) failed at 0x%x",
5014 	    __func__, qlge->instance, (int)now));
5015 
5016 	return (DDI_SUCCESS);
5017 }
5018 
5019 
5020 /*
5021  * Initializes hardware and driver software flags before the driver
5022  * is finally ready to work.
5023  */
5024 int
5025 ql_do_start(qlge_t *qlge)
5026 {
5027 	int i;
5028 	struct rx_ring *rx_ring;
5029 	uint16_t lbq_buf_size;
5030 	int rings_done;
5031 
5032 	ASSERT(qlge != NULL);
5033 
5034 	mutex_enter(&qlge->hw_mutex);
5035 
5036 	/* Reset adapter */
5037 	ql_asic_reset(qlge);
5038 
5039 	lbq_buf_size = (uint16_t)
5040 	    ((qlge->mtu == ETHERMTU)? NORMAL_FRAME_SIZE : JUMBO_FRAME_SIZE);
5041 	if (qlge->rx_ring[0].lbq_buf_size != lbq_buf_size) {
5042 #ifdef QLGE_LOAD_UNLOAD
5043 		cmn_err(CE_NOTE, "realloc buffers old: %d new: %d\n",
5044 		    qlge->rx_ring[0].lbq_buf_size, lbq_buf_size);
5045 #endif
5046 		/*
5047 		 * Check if any ring has buffers still with upper layers
5048 		 * If buffers are pending with upper layers, we use the
5049 		 * existing buffers and don't reallocate new ones
5050 		 * Unfortunately there is no way to evict buffers from
5051 		 * upper layers. Using buffers with the current size may
5052 		 * cause slightly sub-optimal performance, but that seems
5053 		 * to be the easiest way to handle this situation.
5054 		 */
5055 		rings_done = 0;
5056 		for (i = 0; i < qlge->rx_ring_count; i++) {
5057 			rx_ring = &qlge->rx_ring[i];
5058 			if (rx_ring->rx_indicate == 0)
5059 				rings_done++;
5060 			else
5061 				break;
5062 		}
5063 		/*
5064 		 * No buffers pending with upper layers;
5065 		 * reallocte them for new MTU size
5066 		 */
5067 		if (rings_done >= qlge->rx_ring_count) {
5068 			/* free large buffer pool */
5069 			for (i = 0; i < qlge->rx_ring_count; i++) {
5070 				rx_ring = &qlge->rx_ring[i];
5071 				if (rx_ring->type != TX_Q) {
5072 					ql_free_sbq_buffers(rx_ring);
5073 					ql_free_lbq_buffers(rx_ring);
5074 				}
5075 			}
5076 			/* reallocate large buffer pool */
5077 			for (i = 0; i < qlge->rx_ring_count; i++) {
5078 				rx_ring = &qlge->rx_ring[i];
5079 				if (rx_ring->type != TX_Q) {
5080 					ql_alloc_sbufs(qlge, rx_ring);
5081 					ql_alloc_lbufs(qlge, rx_ring);
5082 				}
5083 			}
5084 		}
5085 	}
5086 
5087 	if (ql_bringup_adapter(qlge) != DDI_SUCCESS) {
5088 		cmn_err(CE_WARN, "qlge bringup adapter failed");
5089 		ddi_fm_service_impact(qlge->dip, DDI_SERVICE_DEGRADED);
5090 		mutex_exit(&qlge->hw_mutex);
5091 		return (DDI_FAILURE);
5092 	}
5093 
5094 	mutex_exit(&qlge->hw_mutex);
5095 
5096 	/* Get current link state */
5097 	qlge->port_link_state = ql_get_link_state(qlge);
5098 
5099 	if (qlge->port_link_state == LS_UP) {
5100 		QL_PRINT(DBG_GLD, ("%s(%d) Link UP !!\n",
5101 		    __func__, qlge->instance));
5102 		/* If driver detects a carrier on */
5103 		CARRIER_ON(qlge);
5104 	} else {
5105 		QL_PRINT(DBG_GLD, ("%s(%d) Link down\n",
5106 		    __func__, qlge->instance));
5107 		/* If driver detects a lack of carrier */
5108 		CARRIER_OFF(qlge);
5109 	}
5110 	qlge->mac_flags = QL_MAC_STARTED;
5111 	return (DDI_SUCCESS);
5112 }
5113 
5114 /*
5115  * Stop currently running driver
5116  * Driver needs to stop routing new packets to driver and wait until
5117  * all pending tx/rx buffers to be free-ed.
5118  */
5119 int
5120 ql_do_stop(qlge_t *qlge)
5121 {
5122 	int rc = DDI_FAILURE;
5123 	uint32_t i, j, k;
5124 	struct bq_desc *sbq_desc, *lbq_desc;
5125 	struct rx_ring *rx_ring;
5126 
5127 	ASSERT(qlge != NULL);
5128 
5129 	CARRIER_OFF(qlge);
5130 
5131 	rc = ql_bringdown_adapter(qlge);
5132 	if (rc != DDI_SUCCESS) {
5133 		cmn_err(CE_WARN, "qlge bringdown adapter failed.");
5134 	} else
5135 		rc = DDI_SUCCESS;
5136 
5137 	for (k = 0; k < qlge->rx_ring_count; k++) {
5138 		rx_ring = &qlge->rx_ring[k];
5139 		if (rx_ring->type != TX_Q) {
5140 			j = rx_ring->lbq_use_head;
5141 #ifdef QLGE_LOAD_UNLOAD
5142 			cmn_err(CE_NOTE, "ring %d: move %d lbufs in use list"
5143 			    " to free list %d\n total %d\n",
5144 			    k, rx_ring->lbuf_in_use_count,
5145 			    rx_ring->lbuf_free_count,
5146 			    rx_ring->lbuf_in_use_count +
5147 			    rx_ring->lbuf_free_count);
5148 #endif
5149 			for (i = 0; i < rx_ring->lbuf_in_use_count; i++) {
5150 				lbq_desc = rx_ring->lbuf_in_use[j];
5151 				j++;
5152 				if (j >= rx_ring->lbq_len) {
5153 					j = 0;
5154 				}
5155 				if (lbq_desc->mp) {
5156 					atomic_inc_32(&rx_ring->rx_indicate);
5157 					freemsg(lbq_desc->mp);
5158 				}
5159 			}
5160 			rx_ring->lbq_use_head = j;
5161 			rx_ring->lbq_use_tail = j;
5162 			rx_ring->lbuf_in_use_count = 0;
5163 			j = rx_ring->sbq_use_head;
5164 #ifdef QLGE_LOAD_UNLOAD
5165 			cmn_err(CE_NOTE, "ring %d: move %d sbufs in use list,"
5166 			    " to free list %d\n total %d \n",
5167 			    k, rx_ring->sbuf_in_use_count,
5168 			    rx_ring->sbuf_free_count,
5169 			    rx_ring->sbuf_in_use_count +
5170 			    rx_ring->sbuf_free_count);
5171 #endif
5172 			for (i = 0; i < rx_ring->sbuf_in_use_count; i++) {
5173 				sbq_desc = rx_ring->sbuf_in_use[j];
5174 				j++;
5175 				if (j >= rx_ring->sbq_len) {
5176 					j = 0;
5177 				}
5178 				if (sbq_desc->mp) {
5179 					atomic_inc_32(&rx_ring->rx_indicate);
5180 					freemsg(sbq_desc->mp);
5181 				}
5182 			}
5183 			rx_ring->sbq_use_head = j;
5184 			rx_ring->sbq_use_tail = j;
5185 			rx_ring->sbuf_in_use_count = 0;
5186 		}
5187 	}
5188 
5189 	qlge->mac_flags = QL_MAC_STOPPED;
5190 
5191 	return (rc);
5192 }
5193 
5194 /*
5195  * Support
5196  */
5197 
5198 void
5199 ql_disable_isr(qlge_t *qlge)
5200 {
5201 	/*
5202 	 * disable the hardware interrupt
5203 	 */
5204 	ISP_DISABLE_GLOBAL_INTRS(qlge);
5205 
5206 	qlge->flags &= ~INTERRUPTS_ENABLED;
5207 }
5208 
5209 
5210 
5211 /*
5212  * busy wait for 'usecs' microseconds.
5213  */
5214 void
5215 qlge_delay(clock_t usecs)
5216 {
5217 	drv_usecwait(usecs);
5218 }
5219 
5220 /*
5221  * retrieve firmware details.
5222  */
5223 
5224 pci_cfg_t *
5225 ql_get_pci_config(qlge_t *qlge)
5226 {
5227 	return (&(qlge->pci_cfg));
5228 }
5229 
5230 /*
5231  * Get current Link status
5232  */
5233 static uint32_t
5234 ql_get_link_state(qlge_t *qlge)
5235 {
5236 	uint32_t bitToCheck = 0;
5237 	uint32_t temp, linkState;
5238 
5239 	if (qlge->func_number == qlge->fn0_net) {
5240 		bitToCheck = STS_PL0;
5241 	} else {
5242 		bitToCheck = STS_PL1;
5243 	}
5244 	temp = ql_read_reg(qlge, REG_STATUS);
5245 	QL_PRINT(DBG_GLD, ("%s(%d) chip status reg: 0x%x\n",
5246 	    __func__, qlge->instance, temp));
5247 
5248 	if (temp & bitToCheck) {
5249 		linkState = LS_UP;
5250 	} else {
5251 		linkState = LS_DOWN;
5252 	}
5253 	if (CFG_IST(qlge, CFG_CHIP_8100)) {
5254 		/* for Schultz, link Speed is fixed to 10G, full duplex */
5255 		qlge->speed  = SPEED_10G;
5256 		qlge->duplex = 1;
5257 	}
5258 	return (linkState);
5259 }
5260 /*
5261  * Get current link status and report to OS
5262  */
5263 static void
5264 ql_get_and_report_link_state(qlge_t *qlge)
5265 {
5266 	uint32_t cur_link_state;
5267 
5268 	/* Get current link state */
5269 	cur_link_state = ql_get_link_state(qlge);
5270 	/* if link state has changed */
5271 	if (cur_link_state != qlge->port_link_state) {
5272 
5273 		qlge->port_link_state = cur_link_state;
5274 
5275 		if (qlge->port_link_state == LS_UP) {
5276 			QL_PRINT(DBG_GLD, ("%s(%d) Link UP !!\n",
5277 			    __func__, qlge->instance));
5278 			/* If driver detects a carrier on */
5279 			CARRIER_ON(qlge);
5280 		} else {
5281 			QL_PRINT(DBG_GLD, ("%s(%d) Link down\n",
5282 			    __func__, qlge->instance));
5283 			/* If driver detects a lack of carrier */
5284 			CARRIER_OFF(qlge);
5285 		}
5286 	}
5287 }
5288 
5289 /*
5290  * timer callback function executed after timer expires
5291  */
5292 static void
5293 ql_timer(void* arg)
5294 {
5295 	ql_get_and_report_link_state((qlge_t *)arg);
5296 }
5297 
5298 /*
5299  * stop the running timer if activated
5300  */
5301 static void
5302 ql_stop_timer(qlge_t *qlge)
5303 {
5304 	timeout_id_t timer_id;
5305 	/* Disable driver timer */
5306 	if (qlge->ql_timer_timeout_id != NULL) {
5307 		timer_id = qlge->ql_timer_timeout_id;
5308 		qlge->ql_timer_timeout_id = NULL;
5309 		(void) untimeout(timer_id);
5310 	}
5311 }
5312 
5313 /*
5314  * stop then restart timer
5315  */
5316 void
5317 ql_restart_timer(qlge_t *qlge)
5318 {
5319 	ql_stop_timer(qlge);
5320 	qlge->ql_timer_ticks = TICKS_PER_SEC / 4;
5321 	qlge->ql_timer_timeout_id = timeout(ql_timer,
5322 	    (void *)qlge, qlge->ql_timer_ticks);
5323 }
5324 
5325 /* ************************************************************************* */
5326 /*
5327  *		Hardware K-Stats Data Structures and Subroutines
5328  */
5329 /* ************************************************************************* */
5330 static const ql_ksindex_t ql_kstats_hw[] = {
5331 	/* PCI related hardware information */
5332 	{ 0, "Vendor Id"			},
5333 	{ 1, "Device Id"			},
5334 	{ 2, "Command"				},
5335 	{ 3, "Status"				},
5336 	{ 4, "Revision Id"			},
5337 	{ 5, "Cache Line Size"			},
5338 	{ 6, "Latency Timer"			},
5339 	{ 7, "Header Type"			},
5340 	{ 9, "I/O base addr"			},
5341 	{ 10, "Control Reg Base addr low"	},
5342 	{ 11, "Control Reg Base addr high"	},
5343 	{ 12, "Doorbell Reg Base addr low"	},
5344 	{ 13, "Doorbell Reg Base addr high"	},
5345 	{ 14, "Subsystem Vendor Id"		},
5346 	{ 15, "Subsystem Device ID"		},
5347 	{ 16, "PCIe Device Control"		},
5348 	{ 17, "PCIe Link Status"		},
5349 
5350 	{ -1,	NULL				},
5351 };
5352 
5353 /*
5354  * kstat update function for PCI registers
5355  */
5356 static int
5357 ql_kstats_get_pci_regs(kstat_t *ksp, int flag)
5358 {
5359 	qlge_t *qlge;
5360 	kstat_named_t *knp;
5361 
5362 	if (flag != KSTAT_READ)
5363 		return (EACCES);
5364 
5365 	qlge = ksp->ks_private;
5366 	knp = ksp->ks_data;
5367 	(knp++)->value.ui32 = qlge->pci_cfg.vendor_id;
5368 	(knp++)->value.ui32 = qlge->pci_cfg.device_id;
5369 	(knp++)->value.ui32 = qlge->pci_cfg.command;
5370 	(knp++)->value.ui32 = qlge->pci_cfg.status;
5371 	(knp++)->value.ui32 = qlge->pci_cfg.revision;
5372 	(knp++)->value.ui32 = qlge->pci_cfg.cache_line_size;
5373 	(knp++)->value.ui32 = qlge->pci_cfg.latency_timer;
5374 	(knp++)->value.ui32 = qlge->pci_cfg.header_type;
5375 	(knp++)->value.ui32 = qlge->pci_cfg.io_base_address;
5376 	(knp++)->value.ui32 =
5377 	    qlge->pci_cfg.pci_cntl_reg_set_mem_base_address_lower;
5378 	(knp++)->value.ui32 =
5379 	    qlge->pci_cfg.pci_cntl_reg_set_mem_base_address_upper;
5380 	(knp++)->value.ui32 =
5381 	    qlge->pci_cfg.pci_doorbell_mem_base_address_lower;
5382 	(knp++)->value.ui32 =
5383 	    qlge->pci_cfg.pci_doorbell_mem_base_address_upper;
5384 	(knp++)->value.ui32 = qlge->pci_cfg.sub_vendor_id;
5385 	(knp++)->value.ui32 = qlge->pci_cfg.sub_device_id;
5386 	(knp++)->value.ui32 = qlge->pci_cfg.pcie_device_control;
5387 	(knp++)->value.ui32 = qlge->pci_cfg.link_status;
5388 
5389 	return (0);
5390 }
5391 
5392 static const ql_ksindex_t ql_kstats_mii[] = {
5393 	/* MAC/MII related hardware information */
5394 	{ 0, "mtu"},
5395 
5396 	{ -1, NULL},
5397 };
5398 
5399 
5400 /*
5401  * kstat update function for MII related information.
5402  */
5403 static int
5404 ql_kstats_mii_update(kstat_t *ksp, int flag)
5405 {
5406 	qlge_t *qlge;
5407 	kstat_named_t *knp;
5408 
5409 	if (flag != KSTAT_READ)
5410 		return (EACCES);
5411 
5412 	qlge = ksp->ks_private;
5413 	knp = ksp->ks_data;
5414 
5415 	(knp++)->value.ui32 = qlge->mtu;
5416 
5417 	return (0);
5418 }
5419 
5420 static const ql_ksindex_t ql_kstats_reg[] = {
5421 	/* Register information */
5422 	{ 0, "System (0x08)"			},
5423 	{ 1, "Reset/Fail Over(0x0Ch"		},
5424 	{ 2, "Function Specific Control(0x10)"	},
5425 	{ 3, "Status (0x30)"			},
5426 	{ 4, "Intr Enable (0x34)"		},
5427 	{ 5, "Intr Status1 (0x3C)"		},
5428 	{ 6, "Error Status (0x54)"		},
5429 	{ 7, "XGMAC Flow Control(0x11C)"	},
5430 	{ 8, "XGMAC Tx Pause Frames(0x230)"	},
5431 	{ 9, "XGMAC Rx Pause Frames(0x388)"	},
5432 	{ 10, "XGMAC Rx FIFO Drop Count(0x5B8)"	},
5433 	{ 11, "interrupts actually allocated"	},
5434 	{ 12, "interrupts on rx ring 0"		},
5435 	{ 13, "interrupts on rx ring 1"		},
5436 	{ 14, "interrupts on rx ring 2"		},
5437 	{ 15, "interrupts on rx ring 3"		},
5438 	{ 16, "interrupts on rx ring 4"		},
5439 	{ 17, "interrupts on rx ring 5"		},
5440 	{ 18, "interrupts on rx ring 6"		},
5441 	{ 19, "interrupts on rx ring 7"		},
5442 	{ 20, "polls on rx ring 0"		},
5443 	{ 21, "polls on rx ring 1"		},
5444 	{ 22, "polls on rx ring 2"		},
5445 	{ 23, "polls on rx ring 3"		},
5446 	{ 24, "polls on rx ring 4"		},
5447 	{ 25, "polls on rx ring 5"		},
5448 	{ 26, "polls on rx ring 6"		},
5449 	{ 27, "polls on rx ring 7"		},
5450 	{ 28, "tx no resource on ring 0"	},
5451 	{ 29, "tx dma bind fail on ring 0"	},
5452 	{ 30, "tx dma no handle on ring 0"	},
5453 	{ 31, "tx dma no cookie on ring 0"	},
5454 	{ 32, "MPI firmware major version"},
5455 	{ 33, "MPI firmware minor version"},
5456 	{ 34, "MPI firmware sub version"},
5457 
5458 	{ -1, NULL},
5459 };
5460 
5461 
5462 /*
5463  * kstat update function for device register set
5464  */
5465 static int
5466 ql_kstats_get_reg_and_dev_stats(kstat_t *ksp, int flag)
5467 {
5468 	qlge_t *qlge;
5469 	kstat_named_t *knp;
5470 	uint32_t val32;
5471 	int i = 0;
5472 	struct tx_ring *tx_ring;
5473 
5474 	if (flag != KSTAT_READ)
5475 		return (EACCES);
5476 
5477 	qlge = ksp->ks_private;
5478 	knp = ksp->ks_data;
5479 
5480 	(knp++)->value.ui32 = ql_read_reg(qlge, REG_SYSTEM);
5481 	(knp++)->value.ui32 = ql_read_reg(qlge, REG_RESET_FAILOVER);
5482 	(knp++)->value.ui32 = ql_read_reg(qlge, REG_FUNCTION_SPECIFIC_CONTROL);
5483 	(knp++)->value.ui32 = ql_read_reg(qlge, REG_STATUS);
5484 	(knp++)->value.ui32 = ql_read_reg(qlge, REG_INTERRUPT_ENABLE);
5485 	(knp++)->value.ui32 = ql_read_reg(qlge, REG_INTERRUPT_STATUS_1);
5486 	(knp++)->value.ui32 = ql_read_reg(qlge, REG_ERROR_STATUS);
5487 
5488 	if (ql_sem_spinlock(qlge, qlge->xgmac_sem_mask)) {
5489 		return (0);
5490 	}
5491 	ql_read_xgmac_reg(qlge, REG_XGMAC_FLOW_CONTROL, &val32);
5492 	(knp++)->value.ui32 = val32;
5493 
5494 	ql_read_xgmac_reg(qlge, REG_XGMAC_MAC_TX_PAUSE_PKTS, &val32);
5495 	(knp++)->value.ui32 = val32;
5496 
5497 	ql_read_xgmac_reg(qlge, REG_XGMAC_MAC_RX_PAUSE_PKTS, &val32);
5498 	(knp++)->value.ui32 = val32;
5499 
5500 	ql_read_xgmac_reg(qlge, REG_XGMAC_MAC_RX_FIFO_DROPS, &val32);
5501 	(knp++)->value.ui32 = val32;
5502 
5503 	ql_sem_unlock(qlge, qlge->xgmac_sem_mask);
5504 
5505 	(knp++)->value.ui32 = qlge->intr_cnt;
5506 
5507 	for (i = 0; i < 8; i++) {
5508 		(knp++)->value.ui32 = qlge->rx_interrupts[i];
5509 	}
5510 
5511 	for (i = 0; i < 8; i++) {
5512 		(knp++)->value.ui32 = qlge->rx_polls[i];
5513 	}
5514 
5515 	tx_ring = &qlge->tx_ring[0];
5516 	(knp++)->value.ui32 = tx_ring->defer;
5517 	(knp++)->value.ui32 = tx_ring->tx_fail_dma_bind;
5518 	(knp++)->value.ui32 = tx_ring->tx_no_dma_handle;
5519 	(knp++)->value.ui32 = tx_ring->tx_no_dma_cookie;
5520 
5521 	(knp++)->value.ui32 = qlge->fw_version_info.major_version;
5522 	(knp++)->value.ui32 = qlge->fw_version_info.minor_version;
5523 	(knp++)->value.ui32 = qlge->fw_version_info.sub_minor_version;
5524 
5525 	return (0);
5526 }
5527 
5528 
5529 static kstat_t *
5530 ql_setup_named_kstat(qlge_t *qlge, int instance, char *name,
5531     const ql_ksindex_t *ksip, size_t size, int (*update)(kstat_t *, int))
5532 {
5533 	kstat_t *ksp;
5534 	kstat_named_t *knp;
5535 	char *np;
5536 	int type;
5537 
5538 	size /= sizeof (ql_ksindex_t);
5539 	ksp = kstat_create(ADAPTER_NAME, instance, name, "net",
5540 	    KSTAT_TYPE_NAMED, ((uint32_t)size) - 1, KSTAT_FLAG_PERSISTENT);
5541 	if (ksp == NULL)
5542 		return (NULL);
5543 
5544 	ksp->ks_private = qlge;
5545 	ksp->ks_update = update;
5546 	for (knp = ksp->ks_data; (np = ksip->name) != NULL; ++knp, ++ksip) {
5547 		switch (*np) {
5548 		default:
5549 			type = KSTAT_DATA_UINT32;
5550 			break;
5551 		case '&':
5552 			np += 1;
5553 			type = KSTAT_DATA_CHAR;
5554 			break;
5555 		}
5556 		kstat_named_init(knp, np, (uint8_t)type);
5557 	}
5558 	kstat_install(ksp);
5559 
5560 	return (ksp);
5561 }
5562 
5563 /*
5564  * Setup various kstat
5565  */
5566 int
5567 ql_init_kstats(qlge_t *qlge)
5568 {
5569 	/* Hardware KStats */
5570 	qlge->ql_kstats[QL_KSTAT_CHIP] = ql_setup_named_kstat(qlge,
5571 	    qlge->instance, "chip", ql_kstats_hw,
5572 	    sizeof (ql_kstats_hw), ql_kstats_get_pci_regs);
5573 	if (qlge->ql_kstats[QL_KSTAT_CHIP] == NULL) {
5574 		return (DDI_FAILURE);
5575 	}
5576 
5577 	/* MII KStats */
5578 	qlge->ql_kstats[QL_KSTAT_LINK] = ql_setup_named_kstat(qlge,
5579 	    qlge->instance, "mii", ql_kstats_mii,
5580 	    sizeof (ql_kstats_mii), ql_kstats_mii_update);
5581 	if (qlge->ql_kstats[QL_KSTAT_LINK] == NULL) {
5582 		return (DDI_FAILURE);
5583 	}
5584 
5585 	/* REG KStats */
5586 	qlge->ql_kstats[QL_KSTAT_REG] = ql_setup_named_kstat(qlge,
5587 	    qlge->instance, "reg", ql_kstats_reg,
5588 	    sizeof (ql_kstats_reg), ql_kstats_get_reg_and_dev_stats);
5589 	if (qlge->ql_kstats[QL_KSTAT_REG] == NULL) {
5590 		return (DDI_FAILURE);
5591 	}
5592 	return (DDI_SUCCESS);
5593 }
5594 
5595 /*
5596  * delete all kstat
5597  */
5598 void
5599 ql_fini_kstats(qlge_t *qlge)
5600 {
5601 	int i;
5602 
5603 	for (i = 0; i < QL_KSTAT_COUNT; i++) {
5604 		if (qlge->ql_kstats[i] != NULL)
5605 			kstat_delete(qlge->ql_kstats[i]);
5606 	}
5607 }
5608 
5609 /* ************************************************************************* */
5610 /*
5611  *                                 kstat end
5612  */
5613 /* ************************************************************************* */
5614 
5615 /*
5616  * Setup the parameters for receive and transmit rings including buffer sizes
5617  * and completion queue sizes
5618  */
5619 static int
5620 ql_setup_rings(qlge_t *qlge)
5621 {
5622 	uint8_t i;
5623 	struct rx_ring *rx_ring;
5624 	struct tx_ring *tx_ring;
5625 	uint16_t lbq_buf_size;
5626 
5627 	lbq_buf_size = (uint16_t)
5628 	    ((qlge->mtu == ETHERMTU)? NORMAL_FRAME_SIZE : JUMBO_FRAME_SIZE);
5629 
5630 	/*
5631 	 * rx_ring[0] is always the default queue.
5632 	 */
5633 	/*
5634 	 * qlge->rx_ring_count:
5635 	 * Total number of rx_rings. This includes a number
5636 	 * of outbound completion handler rx_rings, and a
5637 	 * number of inbound completion handler rx_rings.
5638 	 * rss is only enabled if we have more than 1 rx completion
5639 	 * queue. If we have a single rx completion queue
5640 	 * then all rx completions go to this queue and
5641 	 * the last completion queue
5642 	 */
5643 
5644 	qlge->tx_ring_first_cq_id = qlge->rss_ring_count;
5645 
5646 	for (i = 0; i < qlge->tx_ring_count; i++) {
5647 		tx_ring = &qlge->tx_ring[i];
5648 		bzero((void *)tx_ring, sizeof (*tx_ring));
5649 		tx_ring->qlge = qlge;
5650 		tx_ring->wq_id = i;
5651 		tx_ring->wq_len = qlge->tx_ring_size;
5652 		tx_ring->wq_size = (uint32_t)(
5653 		    tx_ring->wq_len * sizeof (struct ob_mac_iocb_req));
5654 
5655 		/*
5656 		 * The completion queue ID for the tx rings start
5657 		 * immediately after the last rss completion queue.
5658 		 */
5659 		tx_ring->cq_id = (uint16_t)(i + qlge->tx_ring_first_cq_id);
5660 	}
5661 
5662 	for (i = 0; i < qlge->rx_ring_count; i++) {
5663 		rx_ring = &qlge->rx_ring[i];
5664 		bzero((void *)rx_ring, sizeof (*rx_ring));
5665 		rx_ring->qlge = qlge;
5666 		rx_ring->cq_id = i;
5667 		if (i != 0)
5668 			rx_ring->cpu = (i) % qlge->rx_ring_count;
5669 		else
5670 			rx_ring->cpu = 0;
5671 
5672 		if (i < qlge->rss_ring_count) {
5673 			/*
5674 			 * Inbound completions (RSS) queues
5675 			 * Default queue is queue 0 which handles
5676 			 * unicast plus bcast/mcast and async events.
5677 			 * Other inbound queues handle unicast frames only.
5678 			 */
5679 			rx_ring->cq_len = qlge->rx_ring_size;
5680 			rx_ring->cq_size = (uint32_t)
5681 			    (rx_ring->cq_len * sizeof (struct net_rsp_iocb));
5682 			rx_ring->lbq_len = NUM_LARGE_BUFFERS;
5683 			rx_ring->lbq_size = (uint32_t)
5684 			    (rx_ring->lbq_len * sizeof (uint64_t));
5685 			rx_ring->lbq_buf_size = lbq_buf_size;
5686 			rx_ring->sbq_len = NUM_SMALL_BUFFERS;
5687 			rx_ring->sbq_size = (uint32_t)
5688 			    (rx_ring->sbq_len * sizeof (uint64_t));
5689 			rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
5690 			rx_ring->type = RX_Q;
5691 
5692 			QL_PRINT(DBG_GLD,
5693 			    ("%s(%d)Allocating rss completion queue %d "
5694 			    "on cpu %d\n", __func__, qlge->instance,
5695 			    rx_ring->cq_id, rx_ring->cpu));
5696 		} else {
5697 			/*
5698 			 * Outbound queue handles outbound completions only
5699 			 */
5700 			/* outbound cq is same size as tx_ring it services. */
5701 			rx_ring->cq_len = qlge->tx_ring_size;
5702 			rx_ring->cq_size = (uint32_t)
5703 			    (rx_ring->cq_len * sizeof (struct net_rsp_iocb));
5704 			rx_ring->lbq_len = 0;
5705 			rx_ring->lbq_size = 0;
5706 			rx_ring->lbq_buf_size = 0;
5707 			rx_ring->sbq_len = 0;
5708 			rx_ring->sbq_size = 0;
5709 			rx_ring->sbq_buf_size = 0;
5710 			rx_ring->type = TX_Q;
5711 
5712 			QL_PRINT(DBG_GLD,
5713 			    ("%s(%d)Allocating TX completion queue %d on"
5714 			    " cpu %d\n", __func__, qlge->instance,
5715 			    rx_ring->cq_id, rx_ring->cpu));
5716 		}
5717 	}
5718 
5719 	return (DDI_SUCCESS);
5720 }
5721 
5722 static int
5723 ql_start_rx_ring(qlge_t *qlge, struct rx_ring *rx_ring)
5724 {
5725 	struct cqicb_t *cqicb = (struct cqicb_t *)rx_ring->cqicb_dma.vaddr;
5726 	void *shadow_reg = (uint8_t *)qlge->host_copy_shadow_dma_attr.vaddr +
5727 	    (rx_ring->cq_id * sizeof (uint64_t) * RX_TX_RING_SHADOW_SPACE)
5728 	/* first shadow area is used by wqicb's host copy of consumer index */
5729 	    + sizeof (uint64_t);
5730 	uint64_t shadow_reg_dma = qlge->host_copy_shadow_dma_attr.dma_addr +
5731 	    (rx_ring->cq_id * sizeof (uint64_t) * RX_TX_RING_SHADOW_SPACE)
5732 	    + sizeof (uint64_t);
5733 	/* lrg/sml bufq pointers */
5734 	uint8_t *buf_q_base_reg =
5735 	    (uint8_t *)qlge->buf_q_ptr_base_addr_dma_attr.vaddr +
5736 	    (rx_ring->cq_id * sizeof (uint64_t) * BUF_Q_PTR_SPACE);
5737 	uint64_t buf_q_base_reg_dma =
5738 	    qlge->buf_q_ptr_base_addr_dma_attr.dma_addr +
5739 	    (rx_ring->cq_id * sizeof (uint64_t) * BUF_Q_PTR_SPACE);
5740 	caddr_t doorbell_area =
5741 	    qlge->doorbell_reg_iobase + (VM_PAGE_SIZE * (128 + rx_ring->cq_id));
5742 	int err = 0;
5743 	uint16_t bq_len;
5744 	uint64_t tmp;
5745 	uint64_t *base_indirect_ptr;
5746 	int page_entries;
5747 
5748 	/* Set up the shadow registers for this ring. */
5749 	rx_ring->prod_idx_sh_reg = shadow_reg;
5750 	rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
5751 
5752 	rx_ring->lbq_base_indirect = (uint64_t *)(void *)buf_q_base_reg;
5753 	rx_ring->lbq_base_indirect_dma = buf_q_base_reg_dma;
5754 
5755 	QL_PRINT(DBG_INIT, ("%s rx ring(%d): prod_idx virtual addr = 0x%lx,"
5756 	    " phys_addr 0x%lx\n", __func__, rx_ring->cq_id,
5757 	    rx_ring->prod_idx_sh_reg, rx_ring->prod_idx_sh_reg_dma));
5758 
5759 	buf_q_base_reg += ((BUF_Q_PTR_SPACE / 2) * sizeof (uint64_t));
5760 	buf_q_base_reg_dma += ((BUF_Q_PTR_SPACE / 2) * sizeof (uint64_t));
5761 	rx_ring->sbq_base_indirect = (uint64_t *)(void *)buf_q_base_reg;
5762 	rx_ring->sbq_base_indirect_dma = buf_q_base_reg_dma;
5763 
5764 	/* PCI doorbell mem area + 0x00 for consumer index register */
5765 	rx_ring->cnsmr_idx_db_reg = (uint32_t *)(void *)doorbell_area;
5766 	rx_ring->cnsmr_idx = 0;
5767 	*rx_ring->prod_idx_sh_reg = 0;
5768 	rx_ring->curr_entry = rx_ring->cq_dma.vaddr;
5769 
5770 	/* PCI doorbell mem area + 0x04 for valid register */
5771 	rx_ring->valid_db_reg = (uint32_t *)(void *)
5772 	    ((uint8_t *)(void *)doorbell_area + 0x04);
5773 
5774 	/* PCI doorbell mem area + 0x18 for large buffer consumer */
5775 	rx_ring->lbq_prod_idx_db_reg = (uint32_t *)(void *)
5776 	    ((uint8_t *)(void *)doorbell_area + 0x18);
5777 
5778 	/* PCI doorbell mem area + 0x1c */
5779 	rx_ring->sbq_prod_idx_db_reg = (uint32_t *)(void *)
5780 	    ((uint8_t *)(void *)doorbell_area + 0x1c);
5781 
5782 	bzero((void *)cqicb, sizeof (*cqicb));
5783 
5784 	cqicb->msix_vect = (uint8_t)rx_ring->irq;
5785 
5786 	bq_len = (uint16_t)((rx_ring->cq_len == 65536) ?
5787 	    (uint16_t)0 : (uint16_t)rx_ring->cq_len);
5788 	cqicb->len = (uint16_t)cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
5789 
5790 	cqicb->cq_base_addr_lo =
5791 	    cpu_to_le32(LS_64BITS(rx_ring->cq_dma.dma_addr));
5792 	cqicb->cq_base_addr_hi =
5793 	    cpu_to_le32(MS_64BITS(rx_ring->cq_dma.dma_addr));
5794 
5795 	cqicb->prod_idx_addr_lo =
5796 	    cpu_to_le32(LS_64BITS(rx_ring->prod_idx_sh_reg_dma));
5797 	cqicb->prod_idx_addr_hi =
5798 	    cpu_to_le32(MS_64BITS(rx_ring->prod_idx_sh_reg_dma));
5799 
5800 	/*
5801 	 * Set up the control block load flags.
5802 	 */
5803 	cqicb->flags = FLAGS_LC | /* Load queue base address */
5804 	    FLAGS_LV | /* Load MSI-X vector */
5805 	    FLAGS_LI;  /* Load irq delay values */
5806 	if (rx_ring->lbq_len) {
5807 		/* Load lbq values */
5808 		cqicb->flags = (uint8_t)(cqicb->flags | FLAGS_LL);
5809 		tmp = (uint64_t)rx_ring->lbq_dma.dma_addr;
5810 		base_indirect_ptr = (uint64_t *)rx_ring->lbq_base_indirect;
5811 		page_entries = 0;
5812 		do {
5813 			*base_indirect_ptr = cpu_to_le64(tmp);
5814 			tmp += VM_PAGE_SIZE;
5815 			base_indirect_ptr++;
5816 			page_entries++;
5817 		} while (page_entries < (int)(
5818 		    ((rx_ring->lbq_len * sizeof (uint64_t)) / VM_PAGE_SIZE)));
5819 
5820 		cqicb->lbq_addr_lo =
5821 		    cpu_to_le32(LS_64BITS(rx_ring->lbq_base_indirect_dma));
5822 		cqicb->lbq_addr_hi =
5823 		    cpu_to_le32(MS_64BITS(rx_ring->lbq_base_indirect_dma));
5824 		bq_len = (uint16_t)((rx_ring->lbq_buf_size == 65536) ?
5825 		    (uint16_t)0 : (uint16_t)rx_ring->lbq_buf_size);
5826 		cqicb->lbq_buf_size = (uint16_t)cpu_to_le16(bq_len);
5827 		bq_len = (uint16_t)((rx_ring->lbq_len == 65536) ? (uint16_t)0 :
5828 		    (uint16_t)rx_ring->lbq_len);
5829 		cqicb->lbq_len = (uint16_t)cpu_to_le16(bq_len);
5830 		rx_ring->lbq_prod_idx = 0;
5831 		rx_ring->lbq_curr_idx = 0;
5832 	}
5833 	if (rx_ring->sbq_len) {
5834 		/* Load sbq values */
5835 		cqicb->flags = (uint8_t)(cqicb->flags | FLAGS_LS);
5836 		tmp = (uint64_t)rx_ring->sbq_dma.dma_addr;
5837 		base_indirect_ptr = (uint64_t *)rx_ring->sbq_base_indirect;
5838 		page_entries = 0;
5839 
5840 		do {
5841 			*base_indirect_ptr = cpu_to_le64(tmp);
5842 			tmp += VM_PAGE_SIZE;
5843 			base_indirect_ptr++;
5844 			page_entries++;
5845 		} while (page_entries < (uint32_t)
5846 		    (((rx_ring->sbq_len * sizeof (uint64_t)) / VM_PAGE_SIZE)));
5847 
5848 		cqicb->sbq_addr_lo =
5849 		    cpu_to_le32(LS_64BITS(rx_ring->sbq_base_indirect_dma));
5850 		cqicb->sbq_addr_hi =
5851 		    cpu_to_le32(MS_64BITS(rx_ring->sbq_base_indirect_dma));
5852 		cqicb->sbq_buf_size = (uint16_t)
5853 		    cpu_to_le16((uint16_t)(rx_ring->sbq_buf_size/2));
5854 		bq_len = (uint16_t)((rx_ring->sbq_len == 65536) ?
5855 		    (uint16_t)0 : (uint16_t)rx_ring->sbq_len);
5856 		cqicb->sbq_len = (uint16_t)cpu_to_le16(bq_len);
5857 		rx_ring->sbq_prod_idx = 0;
5858 		rx_ring->sbq_curr_idx = 0;
5859 	}
5860 	switch (rx_ring->type) {
5861 	case TX_Q:
5862 		cqicb->irq_delay = (uint16_t)
5863 		    cpu_to_le16(qlge->tx_coalesce_usecs);
5864 		cqicb->pkt_delay = (uint16_t)
5865 		    cpu_to_le16(qlge->tx_max_coalesced_frames);
5866 		break;
5867 
5868 	case DEFAULT_Q:
5869 		cqicb->irq_delay = 0;
5870 		cqicb->pkt_delay = 0;
5871 		break;
5872 
5873 	case RX_Q:
5874 		/*
5875 		 * Inbound completion handling rx_rings run in
5876 		 * separate NAPI contexts.
5877 		 */
5878 		cqicb->irq_delay = (uint16_t)
5879 		    cpu_to_le16(qlge->rx_coalesce_usecs);
5880 		cqicb->pkt_delay = (uint16_t)
5881 		    cpu_to_le16(qlge->rx_max_coalesced_frames);
5882 		break;
5883 	default:
5884 		cmn_err(CE_WARN, "Invalid rx_ring->type = %d.",
5885 		    rx_ring->type);
5886 	}
5887 	QL_PRINT(DBG_INIT, ("Initializing rx completion queue %d.\n",
5888 	    rx_ring->cq_id));
5889 	/* QL_DUMP_CQICB(qlge, cqicb); */
5890 	err = ql_write_cfg(qlge, CFG_LCQ, rx_ring->cqicb_dma.dma_addr,
5891 	    rx_ring->cq_id);
5892 	if (err) {
5893 		cmn_err(CE_WARN, "Failed to load CQICB.");
5894 		return (err);
5895 	}
5896 
5897 	rx_ring->rx_packets_dropped_no_buffer = 0;
5898 	rx_ring->rx_pkt_dropped_mac_unenabled = 0;
5899 	rx_ring->rx_failed_sbq_allocs = 0;
5900 	rx_ring->rx_failed_lbq_allocs = 0;
5901 	rx_ring->rx_packets = 0;
5902 	rx_ring->rx_bytes = 0;
5903 	rx_ring->frame_too_long = 0;
5904 	rx_ring->frame_too_short = 0;
5905 	rx_ring->fcs_err = 0;
5906 
5907 	return (err);
5908 }
5909 
5910 /*
5911  * start RSS
5912  */
5913 static int
5914 ql_start_rss(qlge_t *qlge)
5915 {
5916 	struct ricb *ricb = (struct ricb *)qlge->ricb_dma.vaddr;
5917 	int status = 0;
5918 	int i;
5919 	uint8_t *hash_id = (uint8_t *)ricb->hash_cq_id;
5920 
5921 	bzero((void *)ricb, sizeof (*ricb));
5922 
5923 	ricb->base_cq = RSS_L4K;
5924 	ricb->flags =
5925 	    (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RI4 | RSS_RI6 | RSS_RT4 |
5926 	    RSS_RT6);
5927 	ricb->mask = (uint16_t)cpu_to_le16(RSS_HASH_CQ_ID_MAX - 1);
5928 
5929 	/*
5930 	 * Fill out the Indirection Table.
5931 	 */
5932 	for (i = 0; i < RSS_HASH_CQ_ID_MAX; i++)
5933 		hash_id[i] = (uint8_t)(i & (qlge->rss_ring_count - 1));
5934 
5935 	(void) memcpy(&ricb->ipv6_hash_key[0], key_data, 40);
5936 	(void) memcpy(&ricb->ipv4_hash_key[0], key_data, 16);
5937 
5938 	QL_PRINT(DBG_INIT, ("Initializing RSS.\n"));
5939 
5940 	status = ql_write_cfg(qlge, CFG_LR, qlge->ricb_dma.dma_addr, 0);
5941 	if (status) {
5942 		cmn_err(CE_WARN, "Failed to load RICB.");
5943 		return (status);
5944 	}
5945 
5946 	return (status);
5947 }
5948 
5949 /*
5950  * load a tx ring control block to hw and start this ring
5951  */
5952 static int
5953 ql_start_tx_ring(qlge_t *qlge, struct tx_ring *tx_ring)
5954 {
5955 	struct wqicb_t *wqicb = (struct wqicb_t *)tx_ring->wqicb_dma.vaddr;
5956 	caddr_t doorbell_area =
5957 	    qlge->doorbell_reg_iobase + (VM_PAGE_SIZE * tx_ring->wq_id);
5958 	void *shadow_reg = (uint8_t *)qlge->host_copy_shadow_dma_attr.vaddr +
5959 	    (tx_ring->wq_id * sizeof (uint64_t)) * RX_TX_RING_SHADOW_SPACE;
5960 	uint64_t shadow_reg_dma = qlge->host_copy_shadow_dma_attr.dma_addr +
5961 	    (tx_ring->wq_id * sizeof (uint64_t)) * RX_TX_RING_SHADOW_SPACE;
5962 	int err = 0;
5963 
5964 	/*
5965 	 * Assign doorbell registers for this tx_ring.
5966 	 */
5967 
5968 	/* TX PCI doorbell mem area for tx producer index */
5969 	tx_ring->prod_idx_db_reg = (uint32_t *)(void *)doorbell_area;
5970 	tx_ring->prod_idx = 0;
5971 	/* TX PCI doorbell mem area + 0x04 */
5972 	tx_ring->valid_db_reg = (uint32_t *)(void *)
5973 	    ((uint8_t *)(void *)doorbell_area + 0x04);
5974 
5975 	/*
5976 	 * Assign shadow registers for this tx_ring.
5977 	 */
5978 	tx_ring->cnsmr_idx_sh_reg = shadow_reg;
5979 	tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
5980 	*tx_ring->cnsmr_idx_sh_reg = 0;
5981 
5982 	QL_PRINT(DBG_INIT, ("%s tx ring(%d): cnsmr_idx virtual addr = 0x%lx,"
5983 	    " phys_addr 0x%lx\n",
5984 	    __func__, tx_ring->wq_id, tx_ring->cnsmr_idx_sh_reg,
5985 	    tx_ring->cnsmr_idx_sh_reg_dma));
5986 
5987 	wqicb->len =
5988 	    (uint16_t)cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
5989 	wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
5990 	    Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
5991 	wqicb->cq_id_rss = (uint16_t)cpu_to_le16(tx_ring->cq_id);
5992 	wqicb->rid = 0;
5993 	wqicb->wq_addr_lo = cpu_to_le32(LS_64BITS(tx_ring->wq_dma.dma_addr));
5994 	wqicb->wq_addr_hi = cpu_to_le32(MS_64BITS(tx_ring->wq_dma.dma_addr));
5995 	wqicb->cnsmr_idx_addr_lo =
5996 	    cpu_to_le32(LS_64BITS(tx_ring->cnsmr_idx_sh_reg_dma));
5997 	wqicb->cnsmr_idx_addr_hi =
5998 	    cpu_to_le32(MS_64BITS(tx_ring->cnsmr_idx_sh_reg_dma));
5999 
6000 	ql_init_tx_ring(tx_ring);
6001 	/* QL_DUMP_WQICB(qlge, wqicb); */
6002 	err = ql_write_cfg(qlge, CFG_LRQ, tx_ring->wqicb_dma.dma_addr,
6003 	    tx_ring->wq_id);
6004 
6005 	if (err) {
6006 		cmn_err(CE_WARN, "Failed to load WQICB.");
6007 		return (err);
6008 	}
6009 	return (err);
6010 }
6011 
6012 /*
6013  * Set up a MAC, multicast or VLAN address for the
6014  * inbound frame matching.
6015  */
6016 int
6017 ql_set_mac_addr_reg(qlge_t *qlge, uint8_t *addr, uint32_t type,
6018     uint16_t index)
6019 {
6020 	uint32_t offset = 0;
6021 	int status = DDI_SUCCESS;
6022 
6023 	switch (type) {
6024 	case MAC_ADDR_TYPE_MULTI_MAC:
6025 	case MAC_ADDR_TYPE_CAM_MAC: {
6026 		uint32_t cam_output;
6027 		uint32_t upper = (addr[0] << 8) | addr[1];
6028 		uint32_t lower =
6029 		    (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
6030 		    (addr[5]);
6031 
6032 		QL_PRINT(DBG_INIT, ("Adding %s ", (type ==
6033 		    MAC_ADDR_TYPE_MULTI_MAC) ?
6034 		    "MULTICAST" : "UNICAST"));
6035 		QL_PRINT(DBG_INIT,
6036 		    ("addr %02x %02x %02x %02x %02x %02x at index %d in "
6037 		    "the CAM.\n",
6038 		    addr[0], addr[1], addr[2], addr[3], addr[4],
6039 		    addr[5], index));
6040 
6041 		status = ql_wait_reg_rdy(qlge,
6042 		    REG_MAC_PROTOCOL_ADDRESS_INDEX, MAC_ADDR_MW, 0);
6043 		if (status)
6044 			goto exit;
6045 		/* offset 0 - lower 32 bits of the MAC address */
6046 		ql_write_reg(qlge, REG_MAC_PROTOCOL_ADDRESS_INDEX,
6047 		    (offset++) |
6048 		    (index << MAC_ADDR_IDX_SHIFT) | /* index */
6049 		    type);	/* type */
6050 		ql_write_reg(qlge, REG_MAC_PROTOCOL_DATA, lower);
6051 		status = ql_wait_reg_rdy(qlge,
6052 		    REG_MAC_PROTOCOL_ADDRESS_INDEX, MAC_ADDR_MW, 0);
6053 		if (status)
6054 			goto exit;
6055 		/* offset 1 - upper 16 bits of the MAC address */
6056 		ql_write_reg(qlge, REG_MAC_PROTOCOL_ADDRESS_INDEX,
6057 		    (offset++) |
6058 		    (index << MAC_ADDR_IDX_SHIFT) | /* index */
6059 		    type);	/* type */
6060 		ql_write_reg(qlge, REG_MAC_PROTOCOL_DATA, upper);
6061 		status = ql_wait_reg_rdy(qlge,
6062 		    REG_MAC_PROTOCOL_ADDRESS_INDEX, MAC_ADDR_MW, 0);
6063 		if (status)
6064 			goto exit;
6065 		/* offset 2 - CQ ID associated with this MAC address */
6066 		ql_write_reg(qlge, REG_MAC_PROTOCOL_ADDRESS_INDEX,
6067 		    (offset) | (index << MAC_ADDR_IDX_SHIFT) |	/* index */
6068 		    type);	/* type */
6069 		/*
6070 		 * This field should also include the queue id
6071 		 * and possibly the function id.  Right now we hardcode
6072 		 * the route field to NIC core.
6073 		 */
6074 		if (type == MAC_ADDR_TYPE_CAM_MAC) {
6075 			cam_output = (CAM_OUT_ROUTE_NIC |
6076 			    (qlge->func_number << CAM_OUT_FUNC_SHIFT) |
6077 			    (0 <<
6078 			    CAM_OUT_CQ_ID_SHIFT));
6079 
6080 			/* route to NIC core */
6081 			ql_write_reg(qlge, REG_MAC_PROTOCOL_DATA,
6082 			    cam_output);
6083 			}
6084 		break;
6085 		}
6086 	default:
6087 		cmn_err(CE_WARN,
6088 		    "Address type %d not yet supported.", type);
6089 		status = DDI_FAILURE;
6090 	}
6091 exit:
6092 	return (status);
6093 }
6094 
6095 /*
6096  * The NIC function for this chip has 16 routing indexes.  Each one can be used
6097  * to route different frame types to various inbound queues.  We send broadcast
6098  * multicast/error frames to the default queue for slow handling,
6099  * and CAM hit/RSS frames to the fast handling queues.
6100  */
6101 static int
6102 ql_set_routing_reg(qlge_t *qlge, uint32_t index, uint32_t mask, int enable)
6103 {
6104 	int status;
6105 	uint32_t value = 0;
6106 
6107 	QL_PRINT(DBG_INIT,
6108 	    ("%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
6109 	    (enable ? "Adding" : "Removing"),
6110 	    ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
6111 	    ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
6112 	    ((index ==
6113 	    RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
6114 	    ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
6115 	    ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
6116 	    ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
6117 	    ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
6118 	    ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
6119 	    ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
6120 	    ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
6121 	    ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
6122 	    ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
6123 	    ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
6124 	    ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
6125 	    ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
6126 	    ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
6127 	    (enable ? "to" : "from")));
6128 
6129 	switch (mask) {
6130 	case RT_IDX_CAM_HIT:
6131 		value = RT_IDX_DST_CAM_Q | /* dest */
6132 		    RT_IDX_TYPE_NICQ | /* type */
6133 		    (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT); /* index */
6134 		break;
6135 
6136 	case RT_IDX_VALID: /* Promiscuous Mode frames. */
6137 		value = RT_IDX_DST_DFLT_Q |	/* dest */
6138 		    RT_IDX_TYPE_NICQ |	/* type */
6139 		    (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT); /* index */
6140 		break;
6141 
6142 	case RT_IDX_ERR:	/* Pass up MAC,IP,TCP/UDP error frames. */
6143 		value = RT_IDX_DST_DFLT_Q |	/* dest */
6144 		    RT_IDX_TYPE_NICQ |	/* type */
6145 		    (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT); /* index */
6146 		break;
6147 
6148 	case RT_IDX_BCAST:	/* Pass up Broadcast frames to default Q. */
6149 		value = RT_IDX_DST_DFLT_Q |	/* dest */
6150 		    RT_IDX_TYPE_NICQ |	/* type */
6151 		    (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT); /* index */
6152 		break;
6153 
6154 	case RT_IDX_MCAST:	/* Pass up All Multicast frames. */
6155 		value = RT_IDX_DST_CAM_Q |	/* dest */
6156 		    RT_IDX_TYPE_NICQ |	/* type */
6157 		    (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT); /* index */
6158 		break;
6159 
6160 	case RT_IDX_MCAST_MATCH:	/* Pass up matched Multicast frames. */
6161 		value = RT_IDX_DST_CAM_Q |	/* dest */
6162 		    RT_IDX_TYPE_NICQ |	/* type */
6163 		    (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT); /* index */
6164 		break;
6165 
6166 	case RT_IDX_RSS_MATCH:	/* Pass up matched RSS frames. */
6167 		value = RT_IDX_DST_RSS |	/* dest */
6168 		    RT_IDX_TYPE_NICQ |	/* type */
6169 		    (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT); /* index */
6170 		break;
6171 
6172 	case 0:	/* Clear the E-bit on an entry. */
6173 		value = RT_IDX_DST_DFLT_Q |	/* dest */
6174 		    RT_IDX_TYPE_NICQ |	/* type */
6175 		    (index << RT_IDX_IDX_SHIFT); /* index */
6176 		break;
6177 
6178 	default:
6179 		cmn_err(CE_WARN, "Mask type %d not yet supported.",
6180 		    mask);
6181 		status = -EPERM;
6182 		goto exit;
6183 	}
6184 
6185 	if (value != 0) {
6186 		status = ql_wait_reg_rdy(qlge, REG_ROUTING_INDEX, RT_IDX_MW, 0);
6187 		if (status)
6188 			goto exit;
6189 		value |= (enable ? RT_IDX_E : 0);
6190 		ql_write_reg(qlge, REG_ROUTING_INDEX, value);
6191 		ql_write_reg(qlge, REG_ROUTING_DATA, enable ? mask : 0);
6192 	}
6193 
6194 exit:
6195 	return (status);
6196 }
6197 
6198 /*
6199  * Clear all the entries in the routing table.
6200  * Caller must get semaphore in advance.
6201  */
6202 
6203 static int
6204 ql_stop_routing(qlge_t *qlge)
6205 {
6206 	int status = 0;
6207 	int i;
6208 	/* Clear all the entries in the routing table. */
6209 	for (i = 0; i < 16; i++) {
6210 		status = ql_set_routing_reg(qlge, i, 0, 0);
6211 		if (status) {
6212 			cmn_err(CE_WARN, "Stop routing failed. ");
6213 		}
6214 	}
6215 	return (status);
6216 }
6217 
6218 /* Initialize the frame-to-queue routing. */
6219 static int
6220 ql_route_initialize(qlge_t *qlge)
6221 {
6222 	int status = 0;
6223 
6224 	status = ql_sem_spinlock(qlge, SEM_RT_IDX_MASK);
6225 	if (status != DDI_SUCCESS)
6226 		return (status);
6227 
6228 	/* Clear all the entries in the routing table. */
6229 	status = ql_stop_routing(qlge);
6230 	if (status) {
6231 		goto exit;
6232 	}
6233 	status = ql_set_routing_reg(qlge, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
6234 	if (status) {
6235 		cmn_err(CE_WARN,
6236 		    "Failed to init routing register for broadcast packets.");
6237 		goto exit;
6238 	}
6239 	/*
6240 	 * If we have more than one inbound queue, then turn on RSS in the
6241 	 * routing block.
6242 	 */
6243 	if (qlge->rss_ring_count > 1) {
6244 		status = ql_set_routing_reg(qlge, RT_IDX_RSS_MATCH_SLOT,
6245 		    RT_IDX_RSS_MATCH, 1);
6246 		if (status) {
6247 			cmn_err(CE_WARN,
6248 			    "Failed to init routing register for MATCH RSS "
6249 			    "packets.");
6250 			goto exit;
6251 		}
6252 	}
6253 
6254 	status = ql_set_routing_reg(qlge, RT_IDX_CAM_HIT_SLOT,
6255 	    RT_IDX_CAM_HIT, 1);
6256 	if (status) {
6257 		cmn_err(CE_WARN,
6258 		    "Failed to init routing register for CAM packets.");
6259 		goto exit;
6260 	}
6261 
6262 	status = ql_set_routing_reg(qlge, RT_IDX_MCAST_MATCH_SLOT,
6263 	    RT_IDX_MCAST_MATCH, 1);
6264 	if (status) {
6265 		cmn_err(CE_WARN,
6266 		    "Failed to init routing register for Multicast "
6267 		    "packets.");
6268 	}
6269 
6270 exit:
6271 	ql_sem_unlock(qlge, SEM_RT_IDX_MASK);
6272 	return (status);
6273 }
6274 
6275 /*
6276  * Initialize hardware
6277  */
6278 static int
6279 ql_device_initialize(qlge_t *qlge)
6280 {
6281 	uint32_t value, mask, required_max_frame_size;
6282 	int i;
6283 	int status = 0;
6284 	uint16_t pause = PAUSE_MODE_DISABLED;
6285 	boolean_t update_port_config = B_FALSE;
6286 	/*
6287 	 * Set up the System register to halt on errors.
6288 	 */
6289 	value = SYS_EFE | SYS_FAE;
6290 	mask = value << 16;
6291 	ql_write_reg(qlge, REG_SYSTEM, mask | value);
6292 
6293 	/* Set the default queue. */
6294 	value = NIC_RCV_CFG_DFQ;
6295 	mask = NIC_RCV_CFG_DFQ_MASK;
6296 
6297 	ql_write_reg(qlge, REG_NIC_RECEIVE_CONFIGURATION, mask | value);
6298 
6299 	/* Enable the MPI interrupt. */
6300 	ql_write_reg(qlge, REG_INTERRUPT_MASK, (INTR_MASK_PI << 16)
6301 	    | INTR_MASK_PI);
6302 	/* Enable the function, set pagesize, enable error checking. */
6303 	value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
6304 	    FSC_EC | FSC_VM_PAGE_4K | FSC_DBRST_1024;
6305 	/* Set/clear header splitting. */
6306 	if (CFG_IST(qlge, CFG_ENABLE_SPLIT_HEADER)) {
6307 		value |= FSC_SH;
6308 		ql_write_reg(qlge, REG_SPLIT_HEADER, SMALL_BUFFER_SIZE);
6309 	}
6310 	mask = FSC_VM_PAGESIZE_MASK |
6311 	    FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
6312 	ql_write_reg(qlge, REG_FUNCTION_SPECIFIC_CONTROL, mask | value);
6313 	/*
6314 	 * check current port max frame size, if different from OS setting,
6315 	 * then we need to change
6316 	 */
6317 	required_max_frame_size =
6318 	    (qlge->mtu == ETHERMTU)? NORMAL_FRAME_SIZE : JUMBO_FRAME_SIZE;
6319 
6320 	if (ql_get_port_cfg(qlge) == DDI_SUCCESS) {
6321 		/* if correct frame size but different from required size */
6322 		if (qlge->port_cfg_info.max_frame_size !=
6323 		    required_max_frame_size) {
6324 			QL_PRINT(DBG_MBX,
6325 			    ("update frame size, current %d, new %d\n",
6326 			    qlge->port_cfg_info.max_frame_size,
6327 			    required_max_frame_size));
6328 			qlge->port_cfg_info.max_frame_size =
6329 			    required_max_frame_size;
6330 			update_port_config = B_TRUE;
6331 		}
6332 		if (qlge->port_cfg_info.link_cfg & STD_PAUSE)
6333 			pause = PAUSE_MODE_STANDARD;
6334 		else if (qlge->port_cfg_info.link_cfg & PP_PAUSE)
6335 			pause = PAUSE_MODE_PER_PRIORITY;
6336 		if (pause != qlge->pause) {
6337 			update_port_config = B_TRUE;
6338 		}
6339 		/*
6340 		 * Always update port config for now to work around
6341 		 * a hardware bug
6342 		 */
6343 		update_port_config = B_TRUE;
6344 
6345 		/* if need to update port configuration */
6346 		if (update_port_config)
6347 			ql_set_port_cfg(qlge);
6348 	} else
6349 		cmn_err(CE_WARN, "ql_get_port_cfg failed");
6350 
6351 	/* Start up the rx queues. */
6352 	for (i = 0; i < qlge->rx_ring_count; i++) {
6353 		status = ql_start_rx_ring(qlge, &qlge->rx_ring[i]);
6354 		if (status) {
6355 			cmn_err(CE_WARN,
6356 			    "Failed to start rx ring[%d]", i);
6357 			return (status);
6358 		}
6359 	}
6360 
6361 	/*
6362 	 * If there is more than one inbound completion queue
6363 	 * then download a RICB to configure RSS.
6364 	 */
6365 	if (qlge->rss_ring_count > 1) {
6366 		status = ql_start_rss(qlge);
6367 		if (status) {
6368 			cmn_err(CE_WARN, "Failed to start RSS.");
6369 			return (status);
6370 		}
6371 	}
6372 
6373 	/* Start up the tx queues. */
6374 	for (i = 0; i < qlge->tx_ring_count; i++) {
6375 		status = ql_start_tx_ring(qlge, &qlge->tx_ring[i]);
6376 		if (status) {
6377 			cmn_err(CE_WARN,
6378 			    "Failed to start tx ring[%d]", i);
6379 			return (status);
6380 		}
6381 	}
6382 	qlge->selected_tx_ring = 0;
6383 	/* Set the frame routing filter. */
6384 	status = ql_route_initialize(qlge);
6385 	if (status) {
6386 		cmn_err(CE_WARN,
6387 		    "Failed to init CAM/Routing tables.");
6388 		return (status);
6389 	}
6390 
6391 	return (status);
6392 }
6393 
6394 /*
6395  * Issue soft reset to chip.
6396  */
6397 static int
6398 ql_asic_reset(qlge_t *qlge)
6399 {
6400 	uint32_t value;
6401 	int max_wait_time = 3;
6402 	int status = DDI_SUCCESS;
6403 
6404 	ql_write_reg(qlge, REG_RESET_FAILOVER, FUNCTION_RESET_MASK
6405 	    |FUNCTION_RESET);
6406 
6407 	max_wait_time = 3;
6408 	do {
6409 		value =  ql_read_reg(qlge, REG_RESET_FAILOVER);
6410 		if ((value & FUNCTION_RESET) == 0)
6411 			break;
6412 		qlge_delay(QL_ONE_SEC_DELAY);
6413 	} while ((--max_wait_time));
6414 
6415 	if (max_wait_time == 0) {
6416 		cmn_err(CE_WARN,
6417 		    "TIMEOUT!!! errored out of resetting the chip!");
6418 		status = DDI_FAILURE;
6419 	}
6420 
6421 	return (status);
6422 }
6423 
6424 /*
6425  * If there are more than MIN_BUFFERS_ARM_COUNT small buffer descriptors in
6426  * its free list, move xMIN_BUFFERS_ARM_COUNT descriptors to its in use list
6427  * to be used by hardware.
6428  */
6429 static void
6430 ql_arm_sbuf(qlge_t *qlge, struct rx_ring *rx_ring)
6431 {
6432 	struct bq_desc *sbq_desc;
6433 	int i;
6434 	uint64_t *sbq_entry = rx_ring->sbq_dma.vaddr;
6435 	uint32_t arm_count;
6436 
6437 	if (rx_ring->sbuf_free_count > rx_ring->sbq_len-MIN_BUFFERS_ARM_COUNT)
6438 		arm_count = (rx_ring->sbq_len-MIN_BUFFERS_ARM_COUNT);
6439 	else {
6440 		/* Adjust to a multiple of 16 */
6441 		arm_count = (rx_ring->sbuf_free_count / 16) * 16;
6442 #ifdef QLGE_LOAD_UNLOAD
6443 		cmn_err(CE_NOTE, "adjust sbuf arm_count %d\n", arm_count);
6444 #endif
6445 	}
6446 	for (i = 0; i < arm_count; i++) {
6447 		sbq_desc = ql_get_sbuf_from_free_list(rx_ring);
6448 		if (sbq_desc == NULL)
6449 			break;
6450 		/* Arm asic */
6451 		*sbq_entry = cpu_to_le64(sbq_desc->bd_dma.dma_addr);
6452 		sbq_entry++;
6453 
6454 		/* link the descriptors to in_use_list */
6455 		ql_add_sbuf_to_in_use_list(rx_ring, sbq_desc);
6456 		rx_ring->sbq_prod_idx++;
6457 	}
6458 	ql_update_sbq_prod_idx(qlge, rx_ring);
6459 }
6460 
6461 /*
6462  * If there are more than MIN_BUFFERS_ARM_COUNT large buffer descriptors in
6463  * its free list, move xMIN_BUFFERS_ARM_COUNT descriptors to its in use list
6464  * to be used by hardware.
6465  */
6466 static void
6467 ql_arm_lbuf(qlge_t *qlge, struct rx_ring *rx_ring)
6468 {
6469 	struct bq_desc *lbq_desc;
6470 	int i;
6471 	uint64_t *lbq_entry = rx_ring->lbq_dma.vaddr;
6472 	uint32_t arm_count;
6473 
6474 	if (rx_ring->lbuf_free_count > rx_ring->lbq_len-MIN_BUFFERS_ARM_COUNT)
6475 		arm_count = (rx_ring->lbq_len-MIN_BUFFERS_ARM_COUNT);
6476 	else {
6477 		/* Adjust to a multiple of 16 */
6478 		arm_count = (rx_ring->lbuf_free_count / 16) * 16;
6479 #ifdef QLGE_LOAD_UNLOAD
6480 		cmn_err(CE_NOTE, "adjust lbuf arm_count %d\n", arm_count);
6481 #endif
6482 	}
6483 	for (i = 0; i < arm_count; i++) {
6484 		lbq_desc = ql_get_lbuf_from_free_list(rx_ring);
6485 		if (lbq_desc == NULL)
6486 			break;
6487 		/* Arm asic */
6488 		*lbq_entry = cpu_to_le64(lbq_desc->bd_dma.dma_addr);
6489 		lbq_entry++;
6490 
6491 		/* link the descriptors to in_use_list */
6492 		ql_add_lbuf_to_in_use_list(rx_ring, lbq_desc);
6493 		rx_ring->lbq_prod_idx++;
6494 	}
6495 	ql_update_lbq_prod_idx(qlge, rx_ring);
6496 }
6497 
6498 
6499 /*
6500  * Initializes the adapter by configuring request and response queues,
6501  * allocates and ARMs small and large receive buffers to the
6502  * hardware
6503  */
6504 static int
6505 ql_bringup_adapter(qlge_t *qlge)
6506 {
6507 	int i;
6508 
6509 	if (ql_device_initialize(qlge) != DDI_SUCCESS) {
6510 		cmn_err(CE_WARN, "?%s(%d): ql_device_initialize failed",
6511 		    __func__, qlge->instance);
6512 		goto err_bringup;
6513 	}
6514 	qlge->sequence |= INIT_ADAPTER_UP;
6515 
6516 #ifdef QLGE_TRACK_BUFFER_USAGE
6517 	for (i = 0; i < qlge->rx_ring_count; i++) {
6518 		if (qlge->rx_ring[i].type != TX_Q) {
6519 			qlge->rx_sb_low_count[i] = NUM_SMALL_BUFFERS;
6520 			qlge->rx_lb_low_count[i] = NUM_LARGE_BUFFERS;
6521 		}
6522 		qlge->cq_low_count[i] = NUM_RX_RING_ENTRIES;
6523 	}
6524 #endif
6525 	/* Arm buffers */
6526 	for (i = 0; i < qlge->rx_ring_count; i++) {
6527 		if (qlge->rx_ring[i].type != TX_Q) {
6528 			ql_arm_sbuf(qlge, &qlge->rx_ring[i]);
6529 			ql_arm_lbuf(qlge, &qlge->rx_ring[i]);
6530 		}
6531 	}
6532 
6533 	/* Enable work/request queues */
6534 	for (i = 0; i < qlge->tx_ring_count; i++) {
6535 		if (qlge->tx_ring[i].valid_db_reg)
6536 			ql_write_doorbell_reg(qlge,
6537 			    qlge->tx_ring[i].valid_db_reg,
6538 			    REQ_Q_VALID);
6539 	}
6540 
6541 	/* Enable completion queues */
6542 	for (i = 0; i < qlge->rx_ring_count; i++) {
6543 		if (qlge->rx_ring[i].valid_db_reg)
6544 			ql_write_doorbell_reg(qlge,
6545 			    qlge->rx_ring[i].valid_db_reg,
6546 			    RSP_Q_VALID);
6547 	}
6548 
6549 	for (i = 0; i < qlge->tx_ring_count; i++) {
6550 		mutex_enter(&qlge->tx_ring[i].tx_lock);
6551 		qlge->tx_ring[i].mac_flags = QL_MAC_STARTED;
6552 		mutex_exit(&qlge->tx_ring[i].tx_lock);
6553 	}
6554 
6555 	for (i = 0; i < qlge->rx_ring_count; i++) {
6556 		mutex_enter(&qlge->rx_ring[i].rx_lock);
6557 		qlge->rx_ring[i].mac_flags = QL_MAC_STARTED;
6558 		mutex_exit(&qlge->rx_ring[i].rx_lock);
6559 	}
6560 
6561 	/* This mutex will get re-acquired in enable_completion interrupt */
6562 	mutex_exit(&qlge->hw_mutex);
6563 	/* Traffic can start flowing now */
6564 	ql_enable_all_completion_interrupts(qlge);
6565 	mutex_enter(&qlge->hw_mutex);
6566 
6567 	ql_enable_global_interrupt(qlge);
6568 
6569 	qlge->sequence |= ADAPTER_INIT;
6570 	return (DDI_SUCCESS);
6571 
6572 err_bringup:
6573 	ql_asic_reset(qlge);
6574 	return (DDI_FAILURE);
6575 }
6576 
6577 /*
6578  * Initialize mutexes of each rx/tx rings
6579  */
6580 static int
6581 ql_init_rx_tx_locks(qlge_t *qlge)
6582 {
6583 	struct tx_ring *tx_ring;
6584 	struct rx_ring *rx_ring;
6585 	int i;
6586 
6587 	for (i = 0; i < qlge->tx_ring_count; i++) {
6588 		tx_ring = &qlge->tx_ring[i];
6589 		mutex_init(&tx_ring->tx_lock, NULL, MUTEX_DRIVER,
6590 		    DDI_INTR_PRI(qlge->intr_pri));
6591 	}
6592 
6593 	for (i = 0; i < qlge->rx_ring_count; i++) {
6594 		rx_ring = &qlge->rx_ring[i];
6595 		mutex_init(&rx_ring->rx_lock, NULL, MUTEX_DRIVER,
6596 		    DDI_INTR_PRI(qlge->intr_pri));
6597 		mutex_init(&rx_ring->sbq_lock, NULL, MUTEX_DRIVER,
6598 		    DDI_INTR_PRI(qlge->intr_pri));
6599 		mutex_init(&rx_ring->lbq_lock, NULL, MUTEX_DRIVER,
6600 		    DDI_INTR_PRI(qlge->intr_pri));
6601 	}
6602 
6603 	return (DDI_SUCCESS);
6604 }
6605 
6606 /*
6607  * ql_attach - Driver attach.
6608  */
6609 static int
6610 ql_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
6611 {
6612 	int instance;
6613 	qlge_t *qlge;
6614 	int rval;
6615 	uint16_t w;
6616 	mac_register_t *macp = NULL;
6617 	rval = DDI_FAILURE;
6618 
6619 	/* first get the instance */
6620 	instance = ddi_get_instance(dip);
6621 
6622 	switch (cmd) {
6623 	case DDI_ATTACH:
6624 		/*
6625 		 * Check that hardware is installed in a DMA-capable slot
6626 		 */
6627 		if (ddi_slaveonly(dip) == DDI_SUCCESS) {
6628 			cmn_err(CE_WARN, "?%s(%d): Not installed in a "
6629 			    "DMA-capable slot", ADAPTER_NAME, instance);
6630 			break;
6631 		}
6632 
6633 		/*
6634 		 * No support for high-level interrupts
6635 		 */
6636 		if (ddi_intr_hilevel(dip, 0) != 0) {
6637 			cmn_err(CE_WARN, "?%s(%d): No support for high-level"
6638 			    " intrs", ADAPTER_NAME, instance);
6639 			break;
6640 		}
6641 
6642 		/*
6643 		 * Allocate our per-device-instance structure
6644 		 */
6645 
6646 		qlge = (qlge_t *)kmem_zalloc(sizeof (*qlge), KM_SLEEP);
6647 		ASSERT(qlge != NULL);
6648 
6649 		qlge->sequence |= INIT_SOFTSTATE_ALLOC;
6650 
6651 		qlge->dip = dip;
6652 		qlge->instance = instance;
6653 
6654 		/*
6655 		 * Setup the ISP8x00 registers address mapping to be
6656 		 * accessed by this particular driver.
6657 		 * 0x0   Configuration Space
6658 		 * 0x1   I/O Space
6659 		 * 0x2   1st Memory Space address - Control Register Set
6660 		 * 0x3   2nd Memory Space address - Doorbell Memory Space
6661 		 */
6662 
6663 		w = 2;
6664 		if (ddi_regs_map_setup(dip, w, (caddr_t *)&qlge->iobase, 0,
6665 		    sizeof (dev_reg_t), &ql_dev_acc_attr,
6666 		    &qlge->dev_handle) != DDI_SUCCESS) {
6667 			cmn_err(CE_WARN, "%s(%d): Unable to map device "
6668 			    "registers", ADAPTER_NAME, instance);
6669 			ql_free_resources(dip, qlge);
6670 			break;
6671 		}
6672 
6673 		QL_PRINT(DBG_GLD, ("ql_attach: I/O base = 0x%x\n",
6674 		    qlge->iobase));
6675 
6676 		qlge->sequence |= INIT_REGS_SETUP;
6677 
6678 		/* map Doorbell memory space */
6679 		w = 3;
6680 		if (ddi_regs_map_setup(dip, w,
6681 		    (caddr_t *)&qlge->doorbell_reg_iobase, 0,
6682 		    0x100000 /* sizeof (dev_doorbell_reg_t) */,
6683 		    &ql_dev_acc_attr,
6684 		    &qlge->dev_doorbell_reg_handle) != DDI_SUCCESS) {
6685 			cmn_err(CE_WARN, "%s(%d): Unable to map Doorbell "
6686 			    "registers",
6687 			    ADAPTER_NAME, instance);
6688 			ql_free_resources(dip, qlge);
6689 			break;
6690 		}
6691 
6692 		QL_PRINT(DBG_GLD, ("ql_attach: Doorbell I/O base = 0x%x\n",
6693 		    qlge->doorbell_reg_iobase));
6694 
6695 		qlge->sequence |= INIT_DOORBELL_REGS_SETUP;
6696 
6697 		/*
6698 		 * Allocate a macinfo structure for this instance
6699 		 */
6700 		if ((macp = mac_alloc(MAC_VERSION)) == NULL) {
6701 			cmn_err(CE_WARN, "%s(%d): mac_alloc failed",
6702 			    __func__, instance);
6703 			ql_free_resources(dip, qlge);
6704 			return (NULL);
6705 		}
6706 		/* save adapter status to dip private data */
6707 		ddi_set_driver_private(dip, qlge);
6708 		QL_PRINT(DBG_INIT, ("%s(%d): Allocate macinfo structure done\n",
6709 		    ADAPTER_NAME, instance));
6710 
6711 		qlge->sequence |= INIT_MAC_ALLOC;
6712 
6713 		/*
6714 		 * Attach this instance of the device
6715 		 */
6716 		/* Setup PCI Local Bus Configuration resource. */
6717 		if (pci_config_setup(dip, &qlge->pci_handle) != DDI_SUCCESS) {
6718 			cmn_err(CE_WARN, "%s(%d):Unable to get PCI resources",
6719 			    ADAPTER_NAME, instance);
6720 			ql_free_resources(dip, qlge);
6721 			break;
6722 		}
6723 
6724 		qlge->sequence |= INIT_PCI_CONFIG_SETUP;
6725 
6726 		if (ql_init_instance(qlge) != DDI_SUCCESS) {
6727 			cmn_err(CE_WARN, "%s(%d): Unable to initialize device "
6728 			    "instance", ADAPTER_NAME, instance);
6729 			ql_free_resources(dip, qlge);
6730 			break;
6731 		}
6732 
6733 		/* Setup interrupt vectors */
6734 		if (ql_alloc_irqs(qlge) != DDI_SUCCESS) {
6735 			ql_free_resources(dip, qlge);
6736 			break;
6737 		}
6738 		qlge->sequence |= INIT_INTR_ALLOC;
6739 
6740 		/* Configure queues */
6741 		if (ql_setup_rings(qlge) != DDI_SUCCESS) {
6742 			ql_free_resources(dip, qlge);
6743 			break;
6744 		}
6745 
6746 		qlge->sequence |= INIT_SETUP_RINGS;
6747 		/*
6748 		 * Map queues to interrupt vectors
6749 		 */
6750 		ql_resolve_queues_to_irqs(qlge);
6751 		/*
6752 		 * Add interrupt handlers
6753 		 */
6754 		if (ql_add_intr_handlers(qlge) != DDI_SUCCESS) {
6755 			cmn_err(CE_WARN, "Failed to add interrupt "
6756 			    "handlers");
6757 			ql_free_resources(dip, qlge);
6758 			break;
6759 		}
6760 
6761 		qlge->sequence |= INIT_ADD_INTERRUPT;
6762 		QL_PRINT(DBG_GLD, ("%s(%d): Add interrupt handler done\n",
6763 		    ADAPTER_NAME, instance));
6764 
6765 		/* Initialize mutex, need the interrupt priority */
6766 		ql_init_rx_tx_locks(qlge);
6767 
6768 		qlge->sequence |= INIT_LOCKS_CREATED;
6769 
6770 		/*
6771 		 * Use a soft interrupt to do something that we do not want
6772 		 * to do in regular network functions or with mutexs being held
6773 		 */
6774 		if (ddi_intr_add_softint(qlge->dip, &qlge->mpi_event_intr_hdl,
6775 		    DDI_INTR_SOFTPRI_MIN, ql_mpi_event_work, (caddr_t)qlge)
6776 		    != DDI_SUCCESS) {
6777 			ql_free_resources(dip, qlge);
6778 			break;
6779 		}
6780 
6781 		if (ddi_intr_add_softint(qlge->dip, &qlge->asic_reset_intr_hdl,
6782 		    DDI_INTR_SOFTPRI_MIN, ql_asic_reset_work, (caddr_t)qlge)
6783 		    != DDI_SUCCESS) {
6784 			ql_free_resources(dip, qlge);
6785 			break;
6786 		}
6787 
6788 		if (ddi_intr_add_softint(qlge->dip, &qlge->mpi_reset_intr_hdl,
6789 		    DDI_INTR_SOFTPRI_MIN, ql_mpi_reset_work, (caddr_t)qlge)
6790 		    != DDI_SUCCESS) {
6791 			ql_free_resources(dip, qlge);
6792 			break;
6793 		}
6794 
6795 		qlge->sequence |= INIT_ADD_SOFT_INTERRUPT;
6796 
6797 		/*
6798 		 * mutex to protect the adapter state structure.
6799 		 * initialize mutexes according to the interrupt priority
6800 		 */
6801 		mutex_init(&qlge->gen_mutex, NULL, MUTEX_DRIVER,
6802 		    DDI_INTR_PRI(qlge->intr_pri));
6803 		mutex_init(&qlge->hw_mutex, NULL, MUTEX_DRIVER,
6804 		    DDI_INTR_PRI(qlge->intr_pri));
6805 		mutex_init(&qlge->mbx_mutex, NULL, MUTEX_DRIVER,
6806 		    DDI_INTR_PRI(qlge->intr_pri));
6807 
6808 		/* Mailbox wait and interrupt conditional variable. */
6809 		cv_init(&qlge->cv_mbx_intr, NULL, CV_DRIVER, NULL);
6810 
6811 		qlge->sequence |= INIT_MUTEX;
6812 
6813 		/*
6814 		 * KStats
6815 		 */
6816 		if (ql_init_kstats(qlge) != DDI_SUCCESS) {
6817 			cmn_err(CE_WARN, "%s(%d): KState initialization failed",
6818 			    ADAPTER_NAME, instance);
6819 			ql_free_resources(dip, qlge);
6820 			break;
6821 		}
6822 		qlge->sequence |= INIT_KSTATS;
6823 
6824 		/*
6825 		 * Initialize gld macinfo structure
6826 		 */
6827 		ql_gld3_init(qlge, macp);
6828 
6829 		if (mac_register(macp, &qlge->mh) != DDI_SUCCESS) {
6830 			cmn_err(CE_WARN, "%s(%d): mac_register failed",
6831 			    __func__, instance);
6832 			ql_free_resources(dip, qlge);
6833 			break;
6834 		}
6835 		qlge->sequence |= INIT_MAC_REGISTERED;
6836 		QL_PRINT(DBG_GLD, ("%s(%d): mac_register done\n",
6837 		    ADAPTER_NAME, instance));
6838 
6839 		mac_free(macp);
6840 		macp = NULL;
6841 
6842 		qlge->mac_flags = QL_MAC_ATTACHED;
6843 
6844 		/*
6845 		 * Allocate memory resources
6846 		 */
6847 		if (ql_alloc_mem_resources(qlge) != DDI_SUCCESS) {
6848 			cmn_err(CE_WARN, "%s(%d): memory allocation failed",
6849 			    __func__, qlge->instance);
6850 			ql_free_mem_resources(qlge);
6851 			ddi_fm_service_impact(qlge->dip, DDI_SERVICE_DEGRADED);
6852 			return (DDI_FAILURE);
6853 		}
6854 		qlge->sequence |= INIT_MEMORY_ALLOC;
6855 
6856 		ddi_report_dev(dip);
6857 
6858 		rval = DDI_SUCCESS;
6859 	break;
6860 /*
6861  * DDI_RESUME
6862  * When called  with  cmd  set  to  DDI_RESUME,  attach()  must
6863  * restore  the hardware state of a device (power may have been
6864  * removed from the device), allow  pending  requests  to  con-
6865  * tinue,  and  service  new requests. In this case, the driver
6866  * must not  make  any  assumptions  about  the  state  of  the
6867  * hardware,  but  must  restore the state of the device except
6868  * for the power level of components.
6869  *
6870  */
6871 	case DDI_RESUME:
6872 
6873 		if ((qlge = (qlge_t *)QL_GET_DEV(dip)) == NULL)
6874 			return (DDI_FAILURE);
6875 
6876 		QL_PRINT(DBG_GLD, ("%s(%d)-DDI_RESUME\n",
6877 		    __func__, qlge->instance));
6878 
6879 		mutex_enter(&qlge->gen_mutex);
6880 		rval = ql_do_start(qlge);
6881 		mutex_exit(&qlge->gen_mutex);
6882 		break;
6883 
6884 	default:
6885 		break;
6886 	}
6887 	return (rval);
6888 }
6889 
6890 /*
6891  * Unbind all pending tx dma handles during driver bring down
6892  */
6893 static void
6894 ql_unbind_pending_tx_dma_handle(struct tx_ring *tx_ring)
6895 {
6896 	struct tx_ring_desc *tx_ring_desc;
6897 	int i, j;
6898 
6899 	if (tx_ring->wq_desc) {
6900 		tx_ring_desc = tx_ring->wq_desc;
6901 		for (i = 0; i < tx_ring->wq_len; i++, tx_ring_desc++) {
6902 			for (j = 0; j < tx_ring_desc->tx_dma_handle_used; j++) {
6903 				if (tx_ring_desc->tx_dma_handle[j]) {
6904 					(void) ddi_dma_unbind_handle(
6905 					    tx_ring_desc->tx_dma_handle[j]);
6906 				}
6907 			}
6908 			tx_ring_desc->tx_dma_handle_used = 0;
6909 		} /* end of for loop */
6910 	}
6911 }
6912 /*
6913  * Wait for all the packets sent to the chip to finish transmission
6914  * to prevent buffers to be unmapped before or during a transmit operation
6915  */
6916 static int
6917 ql_wait_tx_quiesce(qlge_t *qlge)
6918 {
6919 	int count = MAX_TX_WAIT_COUNT, i;
6920 	int rings_done;
6921 	volatile struct tx_ring *tx_ring;
6922 	uint32_t consumer_idx;
6923 	uint32_t producer_idx;
6924 	uint32_t temp;
6925 	int done = 0;
6926 	int rval = DDI_FAILURE;
6927 
6928 	while (!done) {
6929 		rings_done = 0;
6930 
6931 		for (i = 0; i < qlge->tx_ring_count; i++) {
6932 			tx_ring = &qlge->tx_ring[i];
6933 			temp = ql_read_doorbell_reg(qlge,
6934 			    tx_ring->prod_idx_db_reg);
6935 			producer_idx = temp & 0x0000ffff;
6936 			consumer_idx = (temp >> 16);
6937 
6938 			/*
6939 			 * Get the pending iocb count, ones which have not been
6940 			 * pulled down by the chip
6941 			 */
6942 			if (producer_idx >= consumer_idx)
6943 				temp = (producer_idx - consumer_idx);
6944 			else
6945 				temp = (tx_ring->wq_len - consumer_idx) +
6946 				    producer_idx;
6947 
6948 			if ((tx_ring->tx_free_count + temp) >= tx_ring->wq_len)
6949 				rings_done++;
6950 			else {
6951 				done = 1;
6952 				break;
6953 			}
6954 		}
6955 
6956 		/* If all the rings are done */
6957 		if (rings_done >= qlge->tx_ring_count) {
6958 #ifdef QLGE_LOAD_UNLOAD
6959 			cmn_err(CE_NOTE, "%s(%d) done successfully \n",
6960 			    __func__, qlge->instance);
6961 #endif
6962 			rval = DDI_SUCCESS;
6963 			break;
6964 		}
6965 
6966 		qlge_delay(100);
6967 
6968 		count--;
6969 		if (!count) {
6970 
6971 			count = MAX_TX_WAIT_COUNT;
6972 #ifdef QLGE_LOAD_UNLOAD
6973 			volatile struct rx_ring *rx_ring;
6974 			cmn_err(CE_NOTE, "%s(%d): Waiting for %d pending"
6975 			    " Transmits on queue %d to complete .\n",
6976 			    __func__, qlge->instance,
6977 			    (qlge->tx_ring[i].wq_len -
6978 			    qlge->tx_ring[i].tx_free_count),
6979 			    i);
6980 
6981 			rx_ring = &qlge->rx_ring[i+1];
6982 			temp = ql_read_doorbell_reg(qlge,
6983 			    rx_ring->cnsmr_idx_db_reg);
6984 			consumer_idx = temp & 0x0000ffff;
6985 			producer_idx = (temp >> 16);
6986 			cmn_err(CE_NOTE, "%s(%d): Transmit completion queue %d,"
6987 			    " Producer %d, Consumer %d\n",
6988 			    __func__, qlge->instance,
6989 			    i+1,
6990 			    producer_idx, consumer_idx);
6991 
6992 			temp = ql_read_doorbell_reg(qlge,
6993 			    tx_ring->prod_idx_db_reg);
6994 			producer_idx = temp & 0x0000ffff;
6995 			consumer_idx = (temp >> 16);
6996 			cmn_err(CE_NOTE, "%s(%d): Transmit request queue %d,"
6997 			    " Producer %d, Consumer %d\n",
6998 			    __func__, qlge->instance, i,
6999 			    producer_idx, consumer_idx);
7000 #endif
7001 
7002 			/* For now move on */
7003 			break;
7004 		}
7005 	}
7006 	/* Stop the request queue */
7007 	mutex_enter(&qlge->hw_mutex);
7008 	for (i = 0; i < qlge->tx_ring_count; i++) {
7009 		if (qlge->tx_ring[i].valid_db_reg) {
7010 			ql_write_doorbell_reg(qlge,
7011 			    qlge->tx_ring[i].valid_db_reg, 0);
7012 		}
7013 	}
7014 	mutex_exit(&qlge->hw_mutex);
7015 	return (rval);
7016 }
7017 
7018 /*
7019  * Wait for all the receives indicated to the stack to come back
7020  */
7021 static int
7022 ql_wait_rx_complete(qlge_t *qlge)
7023 {
7024 	int i;
7025 	/* Disable all the completion queues */
7026 	mutex_enter(&qlge->hw_mutex);
7027 	for (i = 0; i < qlge->rx_ring_count; i++) {
7028 		if (qlge->rx_ring[i].valid_db_reg) {
7029 			ql_write_doorbell_reg(qlge,
7030 			    qlge->rx_ring[i].valid_db_reg, 0);
7031 		}
7032 	}
7033 	mutex_exit(&qlge->hw_mutex);
7034 
7035 	/* Wait for OS to return all rx buffers */
7036 	qlge_delay(QL_ONE_SEC_DELAY);
7037 	return (DDI_SUCCESS);
7038 }
7039 
7040 /*
7041  * stop the driver
7042  */
7043 static int
7044 ql_bringdown_adapter(qlge_t *qlge)
7045 {
7046 	int i;
7047 	int status = DDI_SUCCESS;
7048 
7049 	qlge->mac_flags = QL_MAC_BRINGDOWN;
7050 	if (qlge->sequence & ADAPTER_INIT) {
7051 		/* stop forwarding external packets to driver */
7052 		status = ql_sem_spinlock(qlge, SEM_RT_IDX_MASK);
7053 		if (status)
7054 			return (status);
7055 		ql_stop_routing(qlge);
7056 		ql_sem_unlock(qlge, SEM_RT_IDX_MASK);
7057 		/*
7058 		 * Set the flag for receive and transmit
7059 		 * operations to cease
7060 		 */
7061 		for (i = 0; i < qlge->tx_ring_count; i++) {
7062 			mutex_enter(&qlge->tx_ring[i].tx_lock);
7063 			qlge->tx_ring[i].mac_flags = QL_MAC_STOPPED;
7064 			mutex_exit(&qlge->tx_ring[i].tx_lock);
7065 		}
7066 
7067 		for (i = 0; i < qlge->rx_ring_count; i++) {
7068 			mutex_enter(&qlge->rx_ring[i].rx_lock);
7069 			qlge->rx_ring[i].mac_flags = QL_MAC_STOPPED;
7070 			mutex_exit(&qlge->rx_ring[i].rx_lock);
7071 		}
7072 
7073 		/*
7074 		 * Need interrupts to be running while the transmit
7075 		 * completions are cleared. Wait for the packets
7076 		 * queued to the chip to be sent out
7077 		 */
7078 		(void) ql_wait_tx_quiesce(qlge);
7079 		/* Interrupts not needed from now */
7080 		ql_disable_all_completion_interrupts(qlge);
7081 
7082 		mutex_enter(&qlge->hw_mutex);
7083 		/* Disable Global interrupt */
7084 		ql_disable_global_interrupt(qlge);
7085 		mutex_exit(&qlge->hw_mutex);
7086 
7087 		/* Wait for all the indicated packets to come back */
7088 		status = ql_wait_rx_complete(qlge);
7089 
7090 		mutex_enter(&qlge->hw_mutex);
7091 		/* Reset adapter */
7092 		ql_asic_reset(qlge);
7093 		/*
7094 		 * Unbind all tx dma handles to prevent pending tx descriptors'
7095 		 * dma handles from being re-used.
7096 		 */
7097 		for (i = 0; i < qlge->tx_ring_count; i++) {
7098 			ql_unbind_pending_tx_dma_handle(&qlge->tx_ring[i]);
7099 		}
7100 
7101 		qlge->sequence &= ~ADAPTER_INIT;
7102 
7103 		mutex_exit(&qlge->hw_mutex);
7104 	}
7105 	return (status);
7106 }
7107 
7108 /*
7109  * ql_detach
7110  * Used to remove all the states associated with a given
7111  * instances of a device node prior to the removal of that
7112  * instance from the system.
7113  */
7114 static int
7115 ql_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
7116 {
7117 	qlge_t *qlge;
7118 	int rval;
7119 
7120 	rval = DDI_SUCCESS;
7121 
7122 	switch (cmd) {
7123 	case DDI_DETACH:
7124 
7125 		if ((qlge = QL_GET_DEV(dip)) == NULL)
7126 			return (DDI_FAILURE);
7127 		rval = ql_bringdown_adapter(qlge);
7128 		if (rval != DDI_SUCCESS)
7129 			break;
7130 
7131 		qlge->mac_flags = QL_MAC_DETACH;
7132 
7133 		/* free memory resources */
7134 		if (qlge->sequence & INIT_MEMORY_ALLOC) {
7135 			ql_free_mem_resources(qlge);
7136 			qlge->sequence &= ~INIT_MEMORY_ALLOC;
7137 		}
7138 		ql_free_resources(dip, qlge);
7139 
7140 		break;
7141 
7142 	case DDI_SUSPEND:
7143 		if ((qlge = QL_GET_DEV(dip)) == NULL)
7144 			return (DDI_FAILURE);
7145 
7146 		mutex_enter(&qlge->gen_mutex);
7147 		if ((qlge->mac_flags == QL_MAC_ATTACHED) ||
7148 		    (qlge->mac_flags == QL_MAC_STARTED)) {
7149 			ql_do_stop(qlge);
7150 		}
7151 		qlge->mac_flags = QL_MAC_SUSPENDED;
7152 		mutex_exit(&qlge->gen_mutex);
7153 
7154 		break;
7155 	default:
7156 		rval = DDI_FAILURE;
7157 		break;
7158 	}
7159 
7160 	return (rval);
7161 }
7162 
7163 /*
7164  * quiesce(9E) entry point.
7165  *
7166  * This function is called when the system is single-threaded at high
7167  * PIL with preemption disabled. Therefore, this function must not be
7168  * blocked.
7169  *
7170  * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
7171  */
7172 int
7173 ql_quiesce(dev_info_t *dip)
7174 {
7175 	qlge_t *qlge;
7176 	int i;
7177 
7178 	if ((qlge = QL_GET_DEV(dip)) == NULL)
7179 		return (DDI_FAILURE);
7180 
7181 	if (CFG_IST(qlge, CFG_CHIP_8100)) {
7182 		/* stop forwarding external packets to driver */
7183 		ql_sem_spinlock(qlge, SEM_RT_IDX_MASK);
7184 		ql_stop_routing(qlge);
7185 		ql_sem_unlock(qlge, SEM_RT_IDX_MASK);
7186 		/* Stop all the request queues */
7187 		for (i = 0; i < qlge->tx_ring_count; i++) {
7188 			if (qlge->tx_ring[i].valid_db_reg) {
7189 				ql_write_doorbell_reg(qlge,
7190 				    qlge->tx_ring[i].valid_db_reg, 0);
7191 			}
7192 		}
7193 		qlge_delay(QL_ONE_SEC_DELAY/4);
7194 		/* Interrupts not needed from now */
7195 		/* Disable MPI interrupt */
7196 		ql_write_reg(qlge, REG_INTERRUPT_MASK,
7197 		    (INTR_MASK_PI << 16));
7198 		ql_disable_global_interrupt(qlge);
7199 
7200 		/* Disable all the rx completion queues */
7201 		for (i = 0; i < qlge->rx_ring_count; i++) {
7202 			if (qlge->rx_ring[i].valid_db_reg) {
7203 				ql_write_doorbell_reg(qlge,
7204 				    qlge->rx_ring[i].valid_db_reg, 0);
7205 			}
7206 		}
7207 		qlge_delay(QL_ONE_SEC_DELAY/4);
7208 		qlge->mac_flags = QL_MAC_STOPPED;
7209 		/* Reset adapter */
7210 		ql_asic_reset(qlge);
7211 		qlge_delay(100);
7212 	}
7213 
7214 	return (DDI_SUCCESS);
7215 }
7216 
7217 QL_STREAM_OPS(ql_ops, ql_attach, ql_detach);
7218 
7219 /*
7220  * Loadable Driver Interface Structures.
7221  * Declare and initialize the module configuration section...
7222  */
7223 static struct modldrv modldrv = {
7224 	&mod_driverops,		/* type of module: driver */
7225 	version,		/* name of module */
7226 	&ql_ops			/* driver dev_ops */
7227 };
7228 
7229 static struct modlinkage modlinkage = {
7230 	MODREV_1, 	&modldrv,	NULL
7231 };
7232 
7233 /*
7234  * Loadable Module Routines
7235  */
7236 
7237 /*
7238  * _init
7239  * Initializes a loadable module. It is called before any other
7240  * routine in a loadable module.
7241  */
7242 int
7243 _init(void)
7244 {
7245 	int rval;
7246 
7247 	mac_init_ops(&ql_ops, ADAPTER_NAME);
7248 	rval = mod_install(&modlinkage);
7249 	if (rval != DDI_SUCCESS) {
7250 		mac_fini_ops(&ql_ops);
7251 		cmn_err(CE_WARN, "?Unable to install/attach driver '%s'",
7252 		    ADAPTER_NAME);
7253 	}
7254 
7255 	return (rval);
7256 }
7257 
7258 /*
7259  * _fini
7260  * Prepares a module for unloading. It is called when the system
7261  * wants to unload a module. If the module determines that it can
7262  * be unloaded, then _fini() returns the value returned by
7263  * mod_remove(). Upon successful return from _fini() no other
7264  * routine in the module will be called before _init() is called.
7265  */
7266 int
7267 _fini(void)
7268 {
7269 	int rval;
7270 
7271 	rval = mod_remove(&modlinkage);
7272 	if (rval == DDI_SUCCESS) {
7273 		mac_fini_ops(&ql_ops);
7274 	}
7275 
7276 	return (rval);
7277 }
7278 
7279 /*
7280  * _info
7281  * Returns information about loadable module.
7282  */
7283 int
7284 _info(struct modinfo *modinfop)
7285 {
7286 	return (mod_info(&modlinkage, modinfop));
7287 }
7288