1 /******************************************************************************
2 
3   Copyright (c) 2001-2015, Intel Corporation
4   All rights reserved.
5 
6   Redistribution and use in source and binary forms, with or without
7   modification, are permitted provided that the following conditions are met:
8 
9    1. Redistributions of source code must retain the above copyright notice,
10       this list of conditions and the following disclaimer.
11 
12    2. Redistributions in binary form must reproduce the above copyright
13       notice, this list of conditions and the following disclaimer in the
14       documentation and/or other materials provided with the distribution.
15 
16    3. Neither the name of the Intel Corporation nor the names of its
17       contributors may be used to endorse or promote products derived from
18       this software without specific prior written permission.
19 
20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30   POSSIBILITY OF SUCH DAMAGE.
31 
32 ******************************************************************************/
33 /*$FreeBSD$*/
34 
35 /* 82562G 10/100 Network Connection
36  * 82562G-2 10/100 Network Connection
37  * 82562GT 10/100 Network Connection
38  * 82562GT-2 10/100 Network Connection
39  * 82562V 10/100 Network Connection
40  * 82562V-2 10/100 Network Connection
41  * 82566DC-2 Gigabit Network Connection
42  * 82566DC Gigabit Network Connection
43  * 82566DM-2 Gigabit Network Connection
44  * 82566DM Gigabit Network Connection
45  * 82566MC Gigabit Network Connection
46  * 82566MM Gigabit Network Connection
47  * 82567LM Gigabit Network Connection
48  * 82567LF Gigabit Network Connection
49  * 82567V Gigabit Network Connection
50  * 82567LM-2 Gigabit Network Connection
51  * 82567LF-2 Gigabit Network Connection
52  * 82567V-2 Gigabit Network Connection
53  * 82567LF-3 Gigabit Network Connection
54  * 82567LM-3 Gigabit Network Connection
55  * 82567LM-4 Gigabit Network Connection
56  * 82577LM Gigabit Network Connection
57  * 82577LC Gigabit Network Connection
58  * 82578DM Gigabit Network Connection
59  * 82578DC Gigabit Network Connection
60  * 82579LM Gigabit Network Connection
61  * 82579V Gigabit Network Connection
62  * Ethernet Connection I217-LM
63  * Ethernet Connection I217-V
64  * Ethernet Connection I218-V
65  * Ethernet Connection I218-LM
66  * Ethernet Connection (2) I218-LM
67  * Ethernet Connection (2) I218-V
68  * Ethernet Connection (3) I218-LM
69  * Ethernet Connection (3) I218-V
70  */
71 
72 #include "e1000_api.h"
73 
74 static s32  e1000_acquire_swflag_ich8lan(struct e1000_hw *hw);
75 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw);
76 static s32  e1000_acquire_nvm_ich8lan(struct e1000_hw *hw);
77 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw);
78 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
79 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
80 static int  e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
81 static int  e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
82 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw);
83 static void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw,
84 					      u8 *mc_addr_list,
85 					      u32 mc_addr_count);
86 static s32  e1000_check_reset_block_ich8lan(struct e1000_hw *hw);
87 static s32  e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw);
88 static s32  e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
89 static s32  e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw,
90 					    bool active);
91 static s32  e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw,
92 					    bool active);
93 static s32  e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
94 				   u16 words, u16 *data);
95 static s32  e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
96 			       u16 *data);
97 static s32  e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
98 				    u16 words, u16 *data);
99 static s32  e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw);
100 static s32  e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw);
101 static s32  e1000_update_nvm_checksum_spt(struct e1000_hw *hw);
102 static s32  e1000_valid_led_default_ich8lan(struct e1000_hw *hw,
103 					    u16 *data);
104 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
105 static s32  e1000_get_bus_info_ich8lan(struct e1000_hw *hw);
106 static s32  e1000_reset_hw_ich8lan(struct e1000_hw *hw);
107 static s32  e1000_init_hw_ich8lan(struct e1000_hw *hw);
108 static s32  e1000_setup_link_ich8lan(struct e1000_hw *hw);
109 static s32  e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
110 static s32  e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
111 static s32  e1000_get_link_up_info_ich8lan(struct e1000_hw *hw,
112 					   u16 *speed, u16 *duplex);
113 static s32  e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
114 static s32  e1000_led_on_ich8lan(struct e1000_hw *hw);
115 static s32  e1000_led_off_ich8lan(struct e1000_hw *hw);
116 static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
117 static s32  e1000_setup_led_pchlan(struct e1000_hw *hw);
118 static s32  e1000_cleanup_led_pchlan(struct e1000_hw *hw);
119 static s32  e1000_led_on_pchlan(struct e1000_hw *hw);
120 static s32  e1000_led_off_pchlan(struct e1000_hw *hw);
121 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
122 static s32  e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
123 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
124 static s32  e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
125 static s32  e1000_read_flash_byte_ich8lan(struct e1000_hw *hw,
126 					  u32 offset, u8 *data);
127 static s32  e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
128 					  u8 size, u16 *data);
129 static s32  e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
130 					    u32 *data);
131 static s32  e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
132 					   u32 offset, u32 *data);
133 static s32  e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
134 					     u32 offset, u32 data);
135 static s32  e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
136 						  u32 offset, u32 dword);
137 static s32  e1000_read_flash_word_ich8lan(struct e1000_hw *hw,
138 					  u32 offset, u16 *data);
139 static s32  e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
140 						 u32 offset, u8 byte);
141 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
142 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
143 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw);
144 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
145 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
146 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
147 static s32 e1000_set_obff_timer_pch_lpt(struct e1000_hw *hw, u32 itr);
148 
149 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
150 /* Offset 04h HSFSTS */
151 union ich8_hws_flash_status {
152 	struct ich8_hsfsts {
153 		u16 flcdone:1; /* bit 0 Flash Cycle Done */
154 		u16 flcerr:1; /* bit 1 Flash Cycle Error */
155 		u16 dael:1; /* bit 2 Direct Access error Log */
156 		u16 berasesz:2; /* bit 4:3 Sector Erase Size */
157 		u16 flcinprog:1; /* bit 5 flash cycle in Progress */
158 		u16 reserved1:2; /* bit 13:6 Reserved */
159 		u16 reserved2:6; /* bit 13:6 Reserved */
160 		u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */
161 		u16 flockdn:1; /* bit 15 Flash Config Lock-Down */
162 	} hsf_status;
163 	u16 regval;
164 };
165 
166 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
167 /* Offset 06h FLCTL */
168 union ich8_hws_flash_ctrl {
169 	struct ich8_hsflctl {
170 		u16 flcgo:1;   /* 0 Flash Cycle Go */
171 		u16 flcycle:2;   /* 2:1 Flash Cycle */
172 		u16 reserved:5;   /* 7:3 Reserved  */
173 		u16 fldbcount:2;   /* 9:8 Flash Data Byte Count */
174 		u16 flockdn:6;   /* 15:10 Reserved */
175 	} hsf_ctrl;
176 	u16 regval;
177 };
178 
179 /* ICH Flash Region Access Permissions */
180 union ich8_hws_flash_regacc {
181 	struct ich8_flracc {
182 		u32 grra:8; /* 0:7 GbE region Read Access */
183 		u32 grwa:8; /* 8:15 GbE region Write Access */
184 		u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */
185 		u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */
186 	} hsf_flregacc;
187 	u16 regval;
188 };
189 
190 /**
191  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
192  *  @hw: pointer to the HW structure
193  *
194  *  Test access to the PHY registers by reading the PHY ID registers.  If
195  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
196  *  otherwise assume the read PHY ID is correct if it is valid.
197  *
198  *  Assumes the sw/fw/hw semaphore is already acquired.
199  **/
200 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
201 {
202 	u16 phy_reg = 0;
203 	u32 phy_id = 0;
204 	s32 ret_val = 0;
205 	u16 retry_count;
206 	u32 mac_reg = 0;
207 
208 	for (retry_count = 0; retry_count < 2; retry_count++) {
209 		ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_reg);
210 		if (ret_val || (phy_reg == 0xFFFF))
211 			continue;
212 		phy_id = (u32)(phy_reg << 16);
213 
214 		ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_reg);
215 		if (ret_val || (phy_reg == 0xFFFF)) {
216 			phy_id = 0;
217 			continue;
218 		}
219 		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
220 		break;
221 	}
222 
223 	if (hw->phy.id) {
224 		if  (hw->phy.id == phy_id)
225 			goto out;
226 	} else if (phy_id) {
227 		hw->phy.id = phy_id;
228 		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
229 		goto out;
230 	}
231 
232 	/* In case the PHY needs to be in mdio slow mode,
233 	 * set slow mode and try to get the PHY id again.
234 	 */
235 	if (hw->mac.type < e1000_pch_lpt) {
236 		hw->phy.ops.release(hw);
237 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
238 		if (!ret_val)
239 			ret_val = e1000_get_phy_id(hw);
240 		hw->phy.ops.acquire(hw);
241 	}
242 
243 	if (ret_val)
244 		return FALSE;
245 out:
246 	if (hw->mac.type >= e1000_pch_lpt) {
247 		/* Only unforce SMBus if ME is not active */
248 		if (!(E1000_READ_REG(hw, E1000_FWSM) &
249 		    E1000_ICH_FWSM_FW_VALID)) {
250 			/* Unforce SMBus mode in PHY */
251 			hw->phy.ops.read_reg_locked(hw, CV_SMB_CTRL, &phy_reg);
252 			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
253 			hw->phy.ops.write_reg_locked(hw, CV_SMB_CTRL, phy_reg);
254 
255 			/* Unforce SMBus mode in MAC */
256 			mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
257 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
258 			E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
259 		}
260 	}
261 
262 	return TRUE;
263 }
264 
265 /**
266  *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
267  *  @hw: pointer to the HW structure
268  *
269  *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
270  *  used to reset the PHY to a quiescent state when necessary.
271  **/
272 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
273 {
274 	u32 mac_reg;
275 
276 	DEBUGFUNC("e1000_toggle_lanphypc_pch_lpt");
277 
278 	/* Set Phy Config Counter to 50msec */
279 	mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM3);
280 	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
281 	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
282 	E1000_WRITE_REG(hw, E1000_FEXTNVM3, mac_reg);
283 
284 	/* Toggle LANPHYPC Value bit */
285 	mac_reg = E1000_READ_REG(hw, E1000_CTRL);
286 	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
287 	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
288 	E1000_WRITE_REG(hw, E1000_CTRL, mac_reg);
289 	E1000_WRITE_FLUSH(hw);
290 	msec_delay(1);
291 	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
292 	E1000_WRITE_REG(hw, E1000_CTRL, mac_reg);
293 	E1000_WRITE_FLUSH(hw);
294 
295 	if (hw->mac.type < e1000_pch_lpt) {
296 		msec_delay(50);
297 	} else {
298 		u16 count = 20;
299 
300 		do {
301 			msec_delay(5);
302 		} while (!(E1000_READ_REG(hw, E1000_CTRL_EXT) &
303 			   E1000_CTRL_EXT_LPCD) && count--);
304 
305 		msec_delay(30);
306 	}
307 }
308 
309 /**
310  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
311  *  @hw: pointer to the HW structure
312  *
313  *  Workarounds/flow necessary for PHY initialization during driver load
314  *  and resume paths.
315  **/
316 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
317 {
318 	u32 mac_reg, fwsm = E1000_READ_REG(hw, E1000_FWSM);
319 	s32 ret_val;
320 
321 	DEBUGFUNC("e1000_init_phy_workarounds_pchlan");
322 
323 	/* Gate automatic PHY configuration by hardware on managed and
324 	 * non-managed 82579 and newer adapters.
325 	 */
326 	e1000_gate_hw_phy_config_ich8lan(hw, TRUE);
327 
328 	/* It is not possible to be certain of the current state of ULP
329 	 * so forcibly disable it.
330 	 */
331 	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
332 	e1000_disable_ulp_lpt_lp(hw, TRUE);
333 
334 	ret_val = hw->phy.ops.acquire(hw);
335 	if (ret_val) {
336 		DEBUGOUT("Failed to initialize PHY flow\n");
337 		goto out;
338 	}
339 
340 	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
341 	 * inaccessible and resetting the PHY is not blocked, toggle the
342 	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
343 	 */
344 	switch (hw->mac.type) {
345 	case e1000_pch_lpt:
346 	case e1000_pch_spt:
347 	case e1000_pch_cnp:
348 	case e1000_pch_tgp:
349 	case e1000_pch_adp:
350 	case e1000_pch_mtp:
351 	case e1000_pch_lnp:
352 	case e1000_pch_rpl:
353 		if (e1000_phy_is_accessible_pchlan(hw))
354 			break;
355 
356 		/* Before toggling LANPHYPC, see if PHY is accessible by
357 		 * forcing MAC to SMBus mode first.
358 		 */
359 		mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
360 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
361 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
362 
363 		/* Wait 50 milliseconds for MAC to finish any retries
364 		 * that it might be trying to perform from previous
365 		 * attempts to acknowledge any phy read requests.
366 		 */
367 		 msec_delay(50);
368 
369 		/* fall-through */
370 	case e1000_pch2lan:
371 		if (e1000_phy_is_accessible_pchlan(hw))
372 			break;
373 
374 		/* fall-through */
375 	case e1000_pchlan:
376 		if ((hw->mac.type == e1000_pchlan) &&
377 		    (fwsm & E1000_ICH_FWSM_FW_VALID))
378 			break;
379 
380 		if (hw->phy.ops.check_reset_block(hw)) {
381 			DEBUGOUT("Required LANPHYPC toggle blocked by ME\n");
382 			ret_val = -E1000_ERR_PHY;
383 			break;
384 		}
385 
386 		/* Toggle LANPHYPC Value bit */
387 		e1000_toggle_lanphypc_pch_lpt(hw);
388 		if (hw->mac.type >= e1000_pch_lpt) {
389 			if (e1000_phy_is_accessible_pchlan(hw))
390 				break;
391 
392 			/* Toggling LANPHYPC brings the PHY out of SMBus mode
393 			 * so ensure that the MAC is also out of SMBus mode
394 			 */
395 			mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
396 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
397 			E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
398 
399 			if (e1000_phy_is_accessible_pchlan(hw))
400 				break;
401 
402 			ret_val = -E1000_ERR_PHY;
403 		}
404 		break;
405 	default:
406 		break;
407 	}
408 
409 	hw->phy.ops.release(hw);
410 	if (!ret_val) {
411 
412 		/* Check to see if able to reset PHY.  Print error if not */
413 		if (hw->phy.ops.check_reset_block(hw)) {
414 			ERROR_REPORT("Reset blocked by ME\n");
415 			goto out;
416 		}
417 
418 		/* Reset the PHY before any access to it.  Doing so, ensures
419 		 * that the PHY is in a known good state before we read/write
420 		 * PHY registers.  The generic reset is sufficient here,
421 		 * because we haven't determined the PHY type yet.
422 		 */
423 		ret_val = e1000_phy_hw_reset_generic(hw);
424 		if (ret_val)
425 			goto out;
426 
427 		/* On a successful reset, possibly need to wait for the PHY
428 		 * to quiesce to an accessible state before returning control
429 		 * to the calling function.  If the PHY does not quiesce, then
430 		 * return E1000E_BLK_PHY_RESET, as this is the condition that
431 		 *  the PHY is in.
432 		 */
433 		ret_val = hw->phy.ops.check_reset_block(hw);
434 		if (ret_val)
435 			ERROR_REPORT("ME blocked access to PHY after reset\n");
436 	}
437 
438 out:
439 	/* Ungate automatic PHY configuration on non-managed 82579 */
440 	if ((hw->mac.type == e1000_pch2lan) &&
441 	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
442 		msec_delay(10);
443 		e1000_gate_hw_phy_config_ich8lan(hw, FALSE);
444 	}
445 
446 	return ret_val;
447 }
448 
449 /**
450  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
451  *  @hw: pointer to the HW structure
452  *
453  *  Initialize family-specific PHY parameters and function pointers.
454  **/
455 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
456 {
457 	struct e1000_phy_info *phy = &hw->phy;
458 	s32 ret_val;
459 
460 	DEBUGFUNC("e1000_init_phy_params_pchlan");
461 
462 	phy->addr		= 1;
463 	phy->reset_delay_us	= 100;
464 
465 	phy->ops.acquire	= e1000_acquire_swflag_ich8lan;
466 	phy->ops.check_reset_block = e1000_check_reset_block_ich8lan;
467 	phy->ops.get_cfg_done	= e1000_get_cfg_done_ich8lan;
468 	phy->ops.set_page	= e1000_set_page_igp;
469 	phy->ops.read_reg	= e1000_read_phy_reg_hv;
470 	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
471 	phy->ops.read_reg_page	= e1000_read_phy_reg_page_hv;
472 	phy->ops.release	= e1000_release_swflag_ich8lan;
473 	phy->ops.reset		= e1000_phy_hw_reset_ich8lan;
474 	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
475 	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
476 	phy->ops.write_reg	= e1000_write_phy_reg_hv;
477 	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
478 	phy->ops.write_reg_page	= e1000_write_phy_reg_page_hv;
479 	phy->ops.power_up	= e1000_power_up_phy_copper;
480 	phy->ops.power_down	= e1000_power_down_phy_copper_ich8lan;
481 	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
482 
483 	phy->id = e1000_phy_unknown;
484 
485 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
486 	if (ret_val)
487 		return ret_val;
488 
489 	if (phy->id == e1000_phy_unknown)
490 		switch (hw->mac.type) {
491 		default:
492 			ret_val = e1000_get_phy_id(hw);
493 			if (ret_val)
494 				return ret_val;
495 			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
496 				break;
497 			/* fall-through */
498 		case e1000_pch2lan:
499 		case e1000_pch_lpt:
500 		case e1000_pch_spt:
501 		case e1000_pch_cnp:
502 		case e1000_pch_tgp:
503 		case e1000_pch_adp:
504 		case e1000_pch_mtp:
505 		case e1000_pch_lnp:
506 		case e1000_pch_rpl:
507 			/* In case the PHY needs to be in mdio slow mode,
508 			 * set slow mode and try to get the PHY id again.
509 			 */
510 			ret_val = e1000_set_mdio_slow_mode_hv(hw);
511 			if (ret_val)
512 				return ret_val;
513 			ret_val = e1000_get_phy_id(hw);
514 			if (ret_val)
515 				return ret_val;
516 			break;
517 		}
518 	phy->type = e1000_get_phy_type_from_id(phy->id);
519 
520 	switch (phy->type) {
521 	case e1000_phy_82577:
522 	case e1000_phy_82579:
523 	case e1000_phy_i217:
524 		phy->ops.check_polarity = e1000_check_polarity_82577;
525 		phy->ops.force_speed_duplex =
526 			e1000_phy_force_speed_duplex_82577;
527 		phy->ops.get_cable_length = e1000_get_cable_length_82577;
528 		phy->ops.get_info = e1000_get_phy_info_82577;
529 		phy->ops.commit = e1000_phy_sw_reset_generic;
530 		break;
531 	case e1000_phy_82578:
532 		phy->ops.check_polarity = e1000_check_polarity_m88;
533 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
534 		phy->ops.get_cable_length = e1000_get_cable_length_m88;
535 		phy->ops.get_info = e1000_get_phy_info_m88;
536 		break;
537 	default:
538 		ret_val = -E1000_ERR_PHY;
539 		break;
540 	}
541 
542 	return ret_val;
543 }
544 
545 /**
546  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
547  *  @hw: pointer to the HW structure
548  *
549  *  Initialize family-specific PHY parameters and function pointers.
550  **/
551 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
552 {
553 	struct e1000_phy_info *phy = &hw->phy;
554 	s32 ret_val;
555 	u16 i = 0;
556 
557 	DEBUGFUNC("e1000_init_phy_params_ich8lan");
558 
559 	phy->addr		= 1;
560 	phy->reset_delay_us	= 100;
561 
562 	phy->ops.acquire	= e1000_acquire_swflag_ich8lan;
563 	phy->ops.check_reset_block = e1000_check_reset_block_ich8lan;
564 	phy->ops.get_cable_length = e1000_get_cable_length_igp_2;
565 	phy->ops.get_cfg_done	= e1000_get_cfg_done_ich8lan;
566 	phy->ops.read_reg	= e1000_read_phy_reg_igp;
567 	phy->ops.release	= e1000_release_swflag_ich8lan;
568 	phy->ops.reset		= e1000_phy_hw_reset_ich8lan;
569 	phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan;
570 	phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan;
571 	phy->ops.write_reg	= e1000_write_phy_reg_igp;
572 	phy->ops.power_up	= e1000_power_up_phy_copper;
573 	phy->ops.power_down	= e1000_power_down_phy_copper_ich8lan;
574 
575 	/* We may need to do this twice - once for IGP and if that fails,
576 	 * we'll set BM func pointers and try again
577 	 */
578 	ret_val = e1000_determine_phy_address(hw);
579 	if (ret_val) {
580 		phy->ops.write_reg = e1000_write_phy_reg_bm;
581 		phy->ops.read_reg  = e1000_read_phy_reg_bm;
582 		ret_val = e1000_determine_phy_address(hw);
583 		if (ret_val) {
584 			DEBUGOUT("Cannot determine PHY addr. Erroring out\n");
585 			return ret_val;
586 		}
587 	}
588 
589 	phy->id = 0;
590 	while ((e1000_phy_unknown == e1000_get_phy_type_from_id(phy->id)) &&
591 	       (i++ < 100)) {
592 		msec_delay(1);
593 		ret_val = e1000_get_phy_id(hw);
594 		if (ret_val)
595 			return ret_val;
596 	}
597 
598 	/* Verify phy id */
599 	switch (phy->id) {
600 	case IGP03E1000_E_PHY_ID:
601 		phy->type = e1000_phy_igp_3;
602 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
603 		phy->ops.read_reg_locked = e1000_read_phy_reg_igp_locked;
604 		phy->ops.write_reg_locked = e1000_write_phy_reg_igp_locked;
605 		phy->ops.get_info = e1000_get_phy_info_igp;
606 		phy->ops.check_polarity = e1000_check_polarity_igp;
607 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
608 		break;
609 	case IFE_E_PHY_ID:
610 	case IFE_PLUS_E_PHY_ID:
611 	case IFE_C_E_PHY_ID:
612 		phy->type = e1000_phy_ife;
613 		phy->autoneg_mask = E1000_ALL_NOT_GIG;
614 		phy->ops.get_info = e1000_get_phy_info_ife;
615 		phy->ops.check_polarity = e1000_check_polarity_ife;
616 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
617 		break;
618 	case BME1000_E_PHY_ID:
619 		phy->type = e1000_phy_bm;
620 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
621 		phy->ops.read_reg = e1000_read_phy_reg_bm;
622 		phy->ops.write_reg = e1000_write_phy_reg_bm;
623 		phy->ops.commit = e1000_phy_sw_reset_generic;
624 		phy->ops.get_info = e1000_get_phy_info_m88;
625 		phy->ops.check_polarity = e1000_check_polarity_m88;
626 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
627 		break;
628 	default:
629 		return -E1000_ERR_PHY;
630 		break;
631 	}
632 
633 	return E1000_SUCCESS;
634 }
635 
636 /**
637  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
638  *  @hw: pointer to the HW structure
639  *
640  *  Initialize family-specific NVM parameters and function
641  *  pointers.
642  **/
643 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
644 {
645 	struct e1000_nvm_info *nvm = &hw->nvm;
646 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
647 	u32 gfpreg, sector_base_addr, sector_end_addr;
648 	u16 i;
649 	u32 nvm_size;
650 
651 	DEBUGFUNC("e1000_init_nvm_params_ich8lan");
652 
653 	nvm->type = e1000_nvm_flash_sw;
654 
655 	if (hw->mac.type >= e1000_pch_spt) {
656 		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
657 		 * STRAP register. This is because in SPT the GbE Flash region
658 		 * is no longer accessed through the flash registers. Instead,
659 		 * the mechanism has changed, and the Flash region access
660 		 * registers are now implemented in GbE memory space.
661 		 */
662 		nvm->flash_base_addr = 0;
663 		nvm_size =
664 		    (((E1000_READ_REG(hw, E1000_STRAP) >> 1) & 0x1F) + 1)
665 		    * NVM_SIZE_MULTIPLIER;
666 		nvm->flash_bank_size = nvm_size / 2;
667 		/* Adjust to word count */
668 		nvm->flash_bank_size /= sizeof(u16);
669 		/* Set the base address for flash register access */
670 		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
671 	} else {
672 		/* Can't read flash registers if register set isn't mapped. */
673 		if (!hw->flash_address) {
674 			DEBUGOUT("ERROR: Flash registers not mapped\n");
675 			return -E1000_ERR_CONFIG;
676 		}
677 
678 		gfpreg = E1000_READ_FLASH_REG(hw, ICH_FLASH_GFPREG);
679 
680 		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
681 		 * Add 1 to sector_end_addr since this sector is included in
682 		 * the overall size.
683 		 */
684 		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
685 		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
686 
687 		/* flash_base_addr is byte-aligned */
688 		nvm->flash_base_addr = sector_base_addr
689 				       << FLASH_SECTOR_ADDR_SHIFT;
690 
691 		/* find total size of the NVM, then cut in half since the total
692 		 * size represents two separate NVM banks.
693 		 */
694 		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
695 					<< FLASH_SECTOR_ADDR_SHIFT);
696 		nvm->flash_bank_size /= 2;
697 		/* Adjust to word count */
698 		nvm->flash_bank_size /= sizeof(u16);
699 	}
700 
701 	nvm->word_size = E1000_SHADOW_RAM_WORDS;
702 
703 	/* Clear shadow ram */
704 	for (i = 0; i < nvm->word_size; i++) {
705 		dev_spec->shadow_ram[i].modified = FALSE;
706 		dev_spec->shadow_ram[i].value    = 0xFFFF;
707 	}
708 
709 	E1000_MUTEX_INIT(&dev_spec->nvm_mutex);
710 	E1000_MUTEX_INIT(&dev_spec->swflag_mutex);
711 
712 	/* Function Pointers */
713 	nvm->ops.acquire	= e1000_acquire_nvm_ich8lan;
714 	nvm->ops.release	= e1000_release_nvm_ich8lan;
715 	if (hw->mac.type >= e1000_pch_spt) {
716 		nvm->ops.read	= e1000_read_nvm_spt;
717 		nvm->ops.update	= e1000_update_nvm_checksum_spt;
718 	} else {
719 		nvm->ops.read	= e1000_read_nvm_ich8lan;
720 		nvm->ops.update	= e1000_update_nvm_checksum_ich8lan;
721 	}
722 	nvm->ops.valid_led_default = e1000_valid_led_default_ich8lan;
723 	nvm->ops.validate	= e1000_validate_nvm_checksum_ich8lan;
724 	nvm->ops.write		= e1000_write_nvm_ich8lan;
725 
726 	return E1000_SUCCESS;
727 }
728 
729 /**
730  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
731  *  @hw: pointer to the HW structure
732  *
733  *  Initialize family-specific MAC parameters and function
734  *  pointers.
735  **/
736 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
737 {
738 	struct e1000_mac_info *mac = &hw->mac;
739 
740 	DEBUGFUNC("e1000_init_mac_params_ich8lan");
741 
742 	/* Set media type function pointer */
743 	hw->phy.media_type = e1000_media_type_copper;
744 
745 	/* Set mta register count */
746 	mac->mta_reg_count = 32;
747 	/* Set rar entry count */
748 	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
749 	if (mac->type == e1000_ich8lan)
750 		mac->rar_entry_count--;
751 	/* Set if part includes ASF firmware */
752 	mac->asf_firmware_present = TRUE;
753 	/* FWSM register */
754 	mac->has_fwsm = TRUE;
755 	/* ARC subsystem not supported */
756 	mac->arc_subsystem_valid = FALSE;
757 	/* Adaptive IFS supported */
758 	mac->adaptive_ifs = TRUE;
759 
760 	/* Function pointers */
761 
762 	/* bus type/speed/width */
763 	mac->ops.get_bus_info = e1000_get_bus_info_ich8lan;
764 	/* function id */
765 	mac->ops.set_lan_id = e1000_set_lan_id_single_port;
766 	/* reset */
767 	mac->ops.reset_hw = e1000_reset_hw_ich8lan;
768 	/* hw initialization */
769 	mac->ops.init_hw = e1000_init_hw_ich8lan;
770 	/* link setup */
771 	mac->ops.setup_link = e1000_setup_link_ich8lan;
772 	/* physical interface setup */
773 	mac->ops.setup_physical_interface = e1000_setup_copper_link_ich8lan;
774 	/* check for link */
775 	mac->ops.check_for_link = e1000_check_for_copper_link_ich8lan;
776 	/* link info */
777 	mac->ops.get_link_up_info = e1000_get_link_up_info_ich8lan;
778 	/* multicast address update */
779 	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
780 	/* clear hardware counters */
781 	mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan;
782 
783 	/* LED and other operations */
784 	switch (mac->type) {
785 	case e1000_ich8lan:
786 	case e1000_ich9lan:
787 	case e1000_ich10lan:
788 		/* check management mode */
789 		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
790 		/* ID LED init */
791 		mac->ops.id_led_init = e1000_id_led_init_generic;
792 		/* blink LED */
793 		mac->ops.blink_led = e1000_blink_led_generic;
794 		/* setup LED */
795 		mac->ops.setup_led = e1000_setup_led_generic;
796 		/* cleanup LED */
797 		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
798 		/* turn on/off LED */
799 		mac->ops.led_on = e1000_led_on_ich8lan;
800 		mac->ops.led_off = e1000_led_off_ich8lan;
801 		break;
802 	case e1000_pch2lan:
803 		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
804 		mac->ops.rar_set = e1000_rar_set_pch2lan;
805 		/* fall-through */
806 	case e1000_pch_lpt:
807 	case e1000_pch_spt:
808 	case e1000_pch_cnp:
809 	case e1000_pch_tgp:
810 	case e1000_pch_adp:
811 	case e1000_pch_mtp:
812 	case e1000_pch_lnp:
813 	case e1000_pch_rpl:
814 		/* multicast address update for pch2 */
815 		mac->ops.update_mc_addr_list =
816 			e1000_update_mc_addr_list_pch2lan;
817 		/* fall-through */
818 	case e1000_pchlan:
819 		/* check management mode */
820 		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
821 		/* ID LED init */
822 		mac->ops.id_led_init = e1000_id_led_init_pchlan;
823 		/* setup LED */
824 		mac->ops.setup_led = e1000_setup_led_pchlan;
825 		/* cleanup LED */
826 		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
827 		/* turn on/off LED */
828 		mac->ops.led_on = e1000_led_on_pchlan;
829 		mac->ops.led_off = e1000_led_off_pchlan;
830 		break;
831 	default:
832 		break;
833 	}
834 
835 	if (mac->type >= e1000_pch_lpt) {
836 		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
837 		mac->ops.rar_set = e1000_rar_set_pch_lpt;
838 		mac->ops.setup_physical_interface = e1000_setup_copper_link_pch_lpt;
839 		mac->ops.set_obff_timer = e1000_set_obff_timer_pch_lpt;
840 	}
841 
842 	/* Enable PCS Lock-loss workaround for ICH8 */
843 	if (mac->type == e1000_ich8lan)
844 		e1000_set_kmrn_lock_loss_workaround_ich8lan(hw, TRUE);
845 
846 	return E1000_SUCCESS;
847 }
848 
849 /**
850  *  __e1000_access_emi_reg_locked - Read/write EMI register
851  *  @hw: pointer to the HW structure
852  *  @addr: EMI address to program
853  *  @data: pointer to value to read/write from/to the EMI address
854  *  @read: boolean flag to indicate read or write
855  *
856  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
857  **/
858 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
859 					 u16 *data, bool read)
860 {
861 	s32 ret_val;
862 
863 	DEBUGFUNC("__e1000_access_emi_reg_locked");
864 
865 	ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR, address);
866 	if (ret_val)
867 		return ret_val;
868 
869 	if (read)
870 		ret_val = hw->phy.ops.read_reg_locked(hw, I82579_EMI_DATA,
871 						      data);
872 	else
873 		ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA,
874 						       *data);
875 
876 	return ret_val;
877 }
878 
879 /**
880  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
881  *  @hw: pointer to the HW structure
882  *  @addr: EMI address to program
883  *  @data: value to be read from the EMI address
884  *
885  *  Assumes the SW/FW/HW Semaphore is already acquired.
886  **/
887 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
888 {
889 	DEBUGFUNC("e1000_read_emi_reg_locked");
890 
891 	return __e1000_access_emi_reg_locked(hw, addr, data, TRUE);
892 }
893 
894 /**
895  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
896  *  @hw: pointer to the HW structure
897  *  @addr: EMI address to program
898  *  @data: value to be written to the EMI address
899  *
900  *  Assumes the SW/FW/HW Semaphore is already acquired.
901  **/
902 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
903 {
904 	DEBUGFUNC("e1000_read_emi_reg_locked");
905 
906 	return __e1000_access_emi_reg_locked(hw, addr, &data, FALSE);
907 }
908 
909 /**
910  *  e1000_set_eee_pchlan - Enable/disable EEE support
911  *  @hw: pointer to the HW structure
912  *
913  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
914  *  the link and the EEE capabilities of the link partner.  The LPI Control
915  *  register bits will remain set only if/when link is up.
916  *
917  *  EEE LPI must not be asserted earlier than one second after link is up.
918  *  On 82579, EEE LPI should not be enabled until such time otherwise there
919  *  can be link issues with some switches.  Other devices can have EEE LPI
920  *  enabled immediately upon link up since they have a timer in hardware which
921  *  prevents LPI from being asserted too early.
922  **/
923 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
924 {
925 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
926 	s32 ret_val;
927 	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
928 
929 	DEBUGFUNC("e1000_set_eee_pchlan");
930 
931 	switch (hw->phy.type) {
932 	case e1000_phy_82579:
933 		lpa = I82579_EEE_LP_ABILITY;
934 		pcs_status = I82579_EEE_PCS_STATUS;
935 		adv_addr = I82579_EEE_ADVERTISEMENT;
936 		break;
937 	case e1000_phy_i217:
938 		lpa = I217_EEE_LP_ABILITY;
939 		pcs_status = I217_EEE_PCS_STATUS;
940 		adv_addr = I217_EEE_ADVERTISEMENT;
941 		break;
942 	default:
943 		return E1000_SUCCESS;
944 	}
945 
946 	ret_val = hw->phy.ops.acquire(hw);
947 	if (ret_val)
948 		return ret_val;
949 
950 	ret_val = hw->phy.ops.read_reg_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
951 	if (ret_val)
952 		goto release;
953 
954 	/* Clear bits that enable EEE in various speeds */
955 	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
956 
957 	/* Enable EEE if not disabled by user */
958 	if (!dev_spec->eee_disable) {
959 		/* Save off link partner's EEE ability */
960 		ret_val = e1000_read_emi_reg_locked(hw, lpa,
961 						    &dev_spec->eee_lp_ability);
962 		if (ret_val)
963 			goto release;
964 
965 		/* Read EEE advertisement */
966 		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
967 		if (ret_val)
968 			goto release;
969 
970 		/* Enable EEE only for speeds in which the link partner is
971 		 * EEE capable and for which we advertise EEE.
972 		 */
973 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
974 			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
975 
976 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
977 			hw->phy.ops.read_reg_locked(hw, PHY_LP_ABILITY, &data);
978 			if (data & NWAY_LPAR_100TX_FD_CAPS)
979 				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
980 			else
981 				/* EEE is not supported in 100Half, so ignore
982 				 * partner's EEE in 100 ability if full-duplex
983 				 * is not advertised.
984 				 */
985 				dev_spec->eee_lp_ability &=
986 				    ~I82579_EEE_100_SUPPORTED;
987 		}
988 	}
989 
990 	if (hw->phy.type == e1000_phy_82579) {
991 		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
992 						    &data);
993 		if (ret_val)
994 			goto release;
995 
996 		data &= ~I82579_LPI_100_PLL_SHUT;
997 		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
998 						     data);
999 	}
1000 
1001 	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
1002 	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
1003 	if (ret_val)
1004 		goto release;
1005 
1006 	ret_val = hw->phy.ops.write_reg_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
1007 release:
1008 	hw->phy.ops.release(hw);
1009 
1010 	return ret_val;
1011 }
1012 
1013 /**
1014  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
1015  *  @hw:   pointer to the HW structure
1016  *  @link: link up bool flag
1017  *
1018  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
1019  *  preventing further DMA write requests.  Workaround the issue by disabling
1020  *  the de-assertion of the clock request when in 1Gpbs mode.
1021  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
1022  *  speeds in order to avoid Tx hangs.
1023  **/
1024 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
1025 {
1026 	u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
1027 	u32 status = E1000_READ_REG(hw, E1000_STATUS);
1028 	s32 ret_val = E1000_SUCCESS;
1029 	u16 reg;
1030 
1031 	if (link && (status & E1000_STATUS_SPEED_1000)) {
1032 		ret_val = hw->phy.ops.acquire(hw);
1033 		if (ret_val)
1034 			return ret_val;
1035 
1036 		ret_val =
1037 		    e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1038 					       &reg);
1039 		if (ret_val)
1040 			goto release;
1041 
1042 		ret_val =
1043 		    e1000_write_kmrn_reg_locked(hw,
1044 						E1000_KMRNCTRLSTA_K1_CONFIG,
1045 						reg &
1046 						~E1000_KMRNCTRLSTA_K1_ENABLE);
1047 		if (ret_val)
1048 			goto release;
1049 
1050 		usec_delay(10);
1051 
1052 		E1000_WRITE_REG(hw, E1000_FEXTNVM6,
1053 				fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
1054 
1055 		ret_val =
1056 		    e1000_write_kmrn_reg_locked(hw,
1057 						E1000_KMRNCTRLSTA_K1_CONFIG,
1058 						reg);
1059 release:
1060 		hw->phy.ops.release(hw);
1061 	} else {
1062 		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
1063 		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
1064 
1065 		if ((hw->phy.revision > 5) || !link ||
1066 		    ((status & E1000_STATUS_SPEED_100) &&
1067 		     (status & E1000_STATUS_FD)))
1068 			goto update_fextnvm6;
1069 
1070 		ret_val = hw->phy.ops.read_reg(hw, I217_INBAND_CTRL, &reg);
1071 		if (ret_val)
1072 			return ret_val;
1073 
1074 		/* Clear link status transmit timeout */
1075 		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
1076 
1077 		if (status & E1000_STATUS_SPEED_100) {
1078 			/* Set inband Tx timeout to 5x10us for 100Half */
1079 			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1080 
1081 			/* Do not extend the K1 entry latency for 100Half */
1082 			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1083 		} else {
1084 			/* Set inband Tx timeout to 50x10us for 10Full/Half */
1085 			reg |= 50 <<
1086 			       I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1087 
1088 			/* Extend the K1 entry latency for 10 Mbps */
1089 			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1090 		}
1091 
1092 		ret_val = hw->phy.ops.write_reg(hw, I217_INBAND_CTRL, reg);
1093 		if (ret_val)
1094 			return ret_val;
1095 
1096 update_fextnvm6:
1097 		E1000_WRITE_REG(hw, E1000_FEXTNVM6, fextnvm6);
1098 	}
1099 
1100 	return ret_val;
1101 }
1102 
1103 static u64 e1000_ltr2ns(u16 ltr)
1104 {
1105 	u32 value, scale;
1106 
1107 	/* Determine the latency in nsec based on the LTR value & scale */
1108 	value = ltr & E1000_LTRV_VALUE_MASK;
1109 	scale = (ltr & E1000_LTRV_SCALE_MASK) >> E1000_LTRV_SCALE_SHIFT;
1110 
1111 	return value * (1 << (scale * E1000_LTRV_SCALE_FACTOR));
1112 }
1113 
1114 /**
1115  *  e1000_platform_pm_pch_lpt - Set platform power management values
1116  *  @hw: pointer to the HW structure
1117  *  @link: bool indicating link status
1118  *
1119  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
1120  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1121  *  when link is up (which must not exceed the maximum latency supported
1122  *  by the platform), otherwise specify there is no LTR requirement.
1123  *  Unlike TRUE-PCIe devices which set the LTR maximum snoop/no-snoop
1124  *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1125  *  Capability register set, on this device LTR is set by writing the
1126  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1127  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1128  *  message to the PMC.
1129  *
1130  *  Use the LTR value to calculate the Optimized Buffer Flush/Fill (OBFF)
1131  *  high-water mark.
1132  **/
1133 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1134 {
1135 	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1136 		  link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1137 	u16 lat_enc = 0;	/* latency encoded */
1138 	s32 obff_hwm = 0;
1139 
1140 	DEBUGFUNC("e1000_platform_pm_pch_lpt");
1141 
1142 	if (link) {
1143 		u16 speed, duplex, scale = 0;
1144 		u16 max_snoop, max_nosnoop;
1145 		u16 max_ltr_enc;	/* max LTR latency encoded */
1146 		s64 lat_ns;
1147 		s64 value;
1148 		u32 rxa;
1149 
1150 		if (!hw->mac.max_frame_size) {
1151 			DEBUGOUT("max_frame_size not set.\n");
1152 			return -E1000_ERR_CONFIG;
1153 		}
1154 
1155 		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1156 		if (!speed) {
1157 			DEBUGOUT("Speed not set.\n");
1158 			return -E1000_ERR_CONFIG;
1159 		}
1160 
1161 		/* Rx Packet Buffer Allocation size (KB) */
1162 		rxa = E1000_READ_REG(hw, E1000_PBA) & E1000_PBA_RXA_MASK;
1163 
1164 		/* Determine the maximum latency tolerated by the device.
1165 		 *
1166 		 * Per the PCIe spec, the tolerated latencies are encoded as
1167 		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1168 		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1169 		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1170 		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1171 		 */
1172 		lat_ns = ((s64)rxa * 1024 -
1173 			  (2 * (s64)hw->mac.max_frame_size)) * 8 * 1000;
1174 		if (lat_ns < 0)
1175 			lat_ns = 0;
1176 		else
1177 			lat_ns /= speed;
1178 		value = lat_ns;
1179 
1180 		while (value > E1000_LTRV_VALUE_MASK) {
1181 			scale++;
1182 			value = E1000_DIVIDE_ROUND_UP(value, (1 << 5));
1183 		}
1184 		if (scale > E1000_LTRV_SCALE_MAX) {
1185 			DEBUGOUT1("Invalid LTR latency scale %d\n", scale);
1186 			return -E1000_ERR_CONFIG;
1187 		}
1188 		lat_enc = (u16)((scale << E1000_LTRV_SCALE_SHIFT) | value);
1189 
1190 		/* Determine the maximum latency tolerated by the platform */
1191 		e1000_read_pci_cfg(hw, E1000_PCI_LTR_CAP_LPT, &max_snoop);
1192 		e1000_read_pci_cfg(hw, E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1193 		max_ltr_enc = E1000_MAX(max_snoop, max_nosnoop);
1194 
1195 		if (lat_enc > max_ltr_enc) {
1196 			lat_enc = max_ltr_enc;
1197 			lat_ns = e1000_ltr2ns(max_ltr_enc);
1198 		}
1199 
1200 		if (lat_ns) {
1201 			lat_ns *= speed * 1000;
1202 			lat_ns /= 8;
1203 			lat_ns /= 1000000000;
1204 			obff_hwm = (s32)(rxa - lat_ns);
1205 		}
1206 		if ((obff_hwm < 0) || (obff_hwm > E1000_SVT_OFF_HWM_MASK)) {
1207 			DEBUGOUT1("Invalid high water mark %d\n", obff_hwm);
1208 			return -E1000_ERR_CONFIG;
1209 		}
1210 	}
1211 
1212 	/* Set Snoop and No-Snoop latencies the same */
1213 	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1214 	E1000_WRITE_REG(hw, E1000_LTRV, reg);
1215 
1216 	/* Set OBFF high water mark */
1217 	reg = E1000_READ_REG(hw, E1000_SVT) & ~E1000_SVT_OFF_HWM_MASK;
1218 	reg |= obff_hwm;
1219 	E1000_WRITE_REG(hw, E1000_SVT, reg);
1220 
1221 	/* Enable OBFF */
1222 	reg = E1000_READ_REG(hw, E1000_SVCR);
1223 	reg |= E1000_SVCR_OFF_EN;
1224 	/* Always unblock interrupts to the CPU even when the system is
1225 	 * in OBFF mode. This ensures that small round-robin traffic
1226 	 * (like ping) does not get dropped or experience long latency.
1227 	 */
1228 	reg |= E1000_SVCR_OFF_MASKINT;
1229 	E1000_WRITE_REG(hw, E1000_SVCR, reg);
1230 
1231 	return E1000_SUCCESS;
1232 }
1233 
1234 /**
1235  *  e1000_set_obff_timer_pch_lpt - Update Optimized Buffer Flush/Fill timer
1236  *  @hw: pointer to the HW structure
1237  *  @itr: interrupt throttling rate
1238  *
1239  *  Configure OBFF with the updated interrupt rate.
1240  **/
1241 static s32 e1000_set_obff_timer_pch_lpt(struct e1000_hw *hw, u32 itr)
1242 {
1243 	u32 svcr;
1244 	s32 timer;
1245 
1246 	DEBUGFUNC("e1000_set_obff_timer_pch_lpt");
1247 
1248 	/* Convert ITR value into microseconds for OBFF timer */
1249 	timer = itr & E1000_ITR_MASK;
1250 	timer = (timer * E1000_ITR_MULT) / 1000;
1251 
1252 	if ((timer < 0) || (timer > E1000_ITR_MASK)) {
1253 		DEBUGOUT1("Invalid OBFF timer %d\n", timer);
1254 		return -E1000_ERR_CONFIG;
1255 	}
1256 
1257 	svcr = E1000_READ_REG(hw, E1000_SVCR);
1258 	svcr &= ~E1000_SVCR_OFF_TIMER_MASK;
1259 	svcr |= timer << E1000_SVCR_OFF_TIMER_SHIFT;
1260 	E1000_WRITE_REG(hw, E1000_SVCR, svcr);
1261 
1262 	return E1000_SUCCESS;
1263 }
1264 
1265 /**
1266  *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1267  *  @hw: pointer to the HW structure
1268  *  @to_sx: boolean indicating a system power state transition to Sx
1269  *
1270  *  When link is down, configure ULP mode to significantly reduce the power
1271  *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1272  *  ME firmware to start the ULP configuration.  If not on an ME enabled
1273  *  system, configure the ULP mode by software.
1274  */
1275 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1276 {
1277 	u32 mac_reg;
1278 	s32 ret_val = E1000_SUCCESS;
1279 	u16 phy_reg;
1280 	u16 oem_reg = 0;
1281 
1282 	if ((hw->mac.type < e1000_pch_lpt) ||
1283 	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1284 	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) ||
1285 	    (hw->device_id == E1000_DEV_ID_PCH_I218_LM2) ||
1286 	    (hw->device_id == E1000_DEV_ID_PCH_I218_V2) ||
1287 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1288 		return 0;
1289 
1290 	if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) {
1291 		/* Request ME configure ULP mode in the PHY */
1292 		mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1293 		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1294 		E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1295 
1296 		goto out;
1297 	}
1298 
1299 	if (!to_sx) {
1300 		int i = 0;
1301 
1302 		/* Poll up to 5 seconds for Cable Disconnected indication */
1303 		while (!(E1000_READ_REG(hw, E1000_FEXT) &
1304 			 E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1305 			/* Bail if link is re-acquired */
1306 			if (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)
1307 				return -E1000_ERR_PHY;
1308 
1309 			if (i++ == 100)
1310 				break;
1311 
1312 			msec_delay(50);
1313 		}
1314 		DEBUGOUT2("CABLE_DISCONNECTED %s set after %dmsec\n",
1315 			 (E1000_READ_REG(hw, E1000_FEXT) &
1316 			  E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not",
1317 			 i * 50);
1318 	}
1319 
1320 	ret_val = hw->phy.ops.acquire(hw);
1321 	if (ret_val)
1322 		goto out;
1323 
1324 	/* Force SMBus mode in PHY */
1325 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1326 	if (ret_val)
1327 		goto release;
1328 	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1329 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1330 
1331 	/* Force SMBus mode in MAC */
1332 	mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1333 	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1334 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1335 
1336 	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1337 	 * LPLU and disable Gig speed when entering ULP
1338 	 */
1339 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1340 		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1341 						       &oem_reg);
1342 		if (ret_val)
1343 			goto release;
1344 
1345 		phy_reg = oem_reg;
1346 		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1347 
1348 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1349 							phy_reg);
1350 
1351 		if (ret_val)
1352 			goto release;
1353 	}
1354 
1355 	/* Set Inband ULP Exit, Reset to SMBus mode and
1356 	 * Disable SMBus Release on PERST# in PHY
1357 	 */
1358 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1359 	if (ret_val)
1360 		goto release;
1361 	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1362 		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1363 	if (to_sx) {
1364 		if (E1000_READ_REG(hw, E1000_WUFC) & E1000_WUFC_LNKC)
1365 			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1366 		else
1367 			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1368 
1369 		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1370 		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1371 	} else {
1372 		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1373 		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1374 		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1375 	}
1376 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1377 
1378 	/* Set Disable SMBus Release on PERST# in MAC */
1379 	mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7);
1380 	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1381 	E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg);
1382 
1383 	/* Commit ULP changes in PHY by starting auto ULP configuration */
1384 	phy_reg |= I218_ULP_CONFIG1_START;
1385 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1386 
1387 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1388 	    to_sx && (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
1389 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1390 							oem_reg);
1391 		if (ret_val)
1392 			goto release;
1393 	}
1394 
1395 release:
1396 	hw->phy.ops.release(hw);
1397 out:
1398 	if (ret_val)
1399 		DEBUGOUT1("Error in ULP enable flow: %d\n", ret_val);
1400 	else
1401 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1402 
1403 	return ret_val;
1404 }
1405 
1406 /**
1407  *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1408  *  @hw: pointer to the HW structure
1409  *  @force: boolean indicating whether or not to force disabling ULP
1410  *
1411  *  Un-configure ULP mode when link is up, the system is transitioned from
1412  *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1413  *  system, poll for an indication from ME that ULP has been un-configured.
1414  *  If not on an ME enabled system, un-configure the ULP mode by software.
1415  *
1416  *  During nominal operation, this function is called when link is acquired
1417  *  to disable ULP mode (force=FALSE); otherwise, for example when unloading
1418  *  the driver or during Sx->S0 transitions, this is called with force=TRUE
1419  *  to forcibly disable ULP.
1420  */
1421 s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1422 {
1423 	s32 ret_val = E1000_SUCCESS;
1424 	u32 mac_reg;
1425 	u16 phy_reg;
1426 	int i = 0;
1427 
1428 	if ((hw->mac.type < e1000_pch_lpt) ||
1429 	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1430 	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) ||
1431 	    (hw->device_id == E1000_DEV_ID_PCH_I218_LM2) ||
1432 	    (hw->device_id == E1000_DEV_ID_PCH_I218_V2) ||
1433 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1434 		return 0;
1435 
1436 	if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) {
1437 		if (force) {
1438 			/* Request ME un-configure ULP mode in the PHY */
1439 			mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1440 			mac_reg &= ~E1000_H2ME_ULP;
1441 			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1442 			E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1443 		}
1444 
1445 		/* Poll up to 300msec for ME to clear ULP_CFG_DONE. */
1446 		while (E1000_READ_REG(hw, E1000_FWSM) &
1447 		       E1000_FWSM_ULP_CFG_DONE) {
1448 			if (i++ == 30) {
1449 				ret_val = -E1000_ERR_PHY;
1450 				goto out;
1451 			}
1452 
1453 			msec_delay(10);
1454 		}
1455 		DEBUGOUT1("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1456 
1457 		if (force) {
1458 			mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1459 			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1460 			E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1461 		} else {
1462 			/* Clear H2ME.ULP after ME ULP configuration */
1463 			mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1464 			mac_reg &= ~E1000_H2ME_ULP;
1465 			E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1466 		}
1467 
1468 		goto out;
1469 	}
1470 
1471 	ret_val = hw->phy.ops.acquire(hw);
1472 	if (ret_val)
1473 		goto out;
1474 
1475 	if (force)
1476 		/* Toggle LANPHYPC Value bit */
1477 		e1000_toggle_lanphypc_pch_lpt(hw);
1478 
1479 	/* Unforce SMBus mode in PHY */
1480 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1481 	if (ret_val) {
1482 		/* The MAC might be in PCIe mode, so temporarily force to
1483 		 * SMBus mode in order to access the PHY.
1484 		 */
1485 		mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1486 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1487 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1488 
1489 		msec_delay(50);
1490 
1491 		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1492 						       &phy_reg);
1493 		if (ret_val)
1494 			goto release;
1495 	}
1496 	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1497 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1498 
1499 	/* Unforce SMBus mode in MAC */
1500 	mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1501 	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1502 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1503 
1504 	/* When ULP mode was previously entered, K1 was disabled by the
1505 	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1506 	 */
1507 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1508 	if (ret_val)
1509 		goto release;
1510 	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1511 	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1512 
1513 	/* Clear ULP enabled configuration */
1514 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1515 	if (ret_val)
1516 		goto release;
1517 	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1518 		     I218_ULP_CONFIG1_STICKY_ULP |
1519 		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1520 		     I218_ULP_CONFIG1_WOL_HOST |
1521 		     I218_ULP_CONFIG1_INBAND_EXIT |
1522 		     I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1523 		     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1524 		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1525 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1526 
1527 	/* Commit ULP changes by starting auto ULP configuration */
1528 	phy_reg |= I218_ULP_CONFIG1_START;
1529 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1530 
1531 	/* Clear Disable SMBus Release on PERST# in MAC */
1532 	mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7);
1533 	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1534 	E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg);
1535 
1536 release:
1537 	hw->phy.ops.release(hw);
1538 	if (force) {
1539 		hw->phy.ops.reset(hw);
1540 		msec_delay(50);
1541 	}
1542 out:
1543 	if (ret_val)
1544 		DEBUGOUT1("Error in ULP disable flow: %d\n", ret_val);
1545 	else
1546 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1547 
1548 	return ret_val;
1549 }
1550 
1551 /**
1552  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1553  *  @hw: pointer to the HW structure
1554  *
1555  *  Checks to see of the link status of the hardware has changed.  If a
1556  *  change in link status has been detected, then we read the PHY registers
1557  *  to get the current speed/duplex if link exists.
1558  **/
1559 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1560 {
1561 	struct e1000_mac_info *mac = &hw->mac;
1562 	s32 ret_val, tipg_reg = 0;
1563 	u16 emi_addr, emi_val = 0;
1564 	bool link;
1565 	u16 phy_reg;
1566 
1567 	DEBUGFUNC("e1000_check_for_copper_link_ich8lan");
1568 
1569 	/* We only want to go out to the PHY registers to see if Auto-Neg
1570 	 * has completed and/or if our link status has changed.  The
1571 	 * get_link_status flag is set upon receiving a Link Status
1572 	 * Change or Rx Sequence Error interrupt.
1573 	 */
1574 	if (!mac->get_link_status)
1575 		return E1000_SUCCESS;
1576 
1577 	/* First we want to see if the MII Status Register reports
1578 	 * link.  If so, then we want to get the current speed/duplex
1579 	 * of the PHY.
1580 	 */
1581 	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
1582 	if (ret_val)
1583 		return ret_val;
1584 
1585 	if (hw->mac.type == e1000_pchlan) {
1586 		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1587 		if (ret_val)
1588 			return ret_val;
1589 	}
1590 
1591 	/* When connected at 10Mbps half-duplex, some parts are excessively
1592 	 * aggressive resulting in many collisions. To avoid this, increase
1593 	 * the IPG and reduce Rx latency in the PHY.
1594 	 */
1595 	if ((hw->mac.type >= e1000_pch2lan) && link) {
1596 		u16 speed, duplex;
1597 
1598 		e1000_get_speed_and_duplex_copper_generic(hw, &speed, &duplex);
1599 		tipg_reg = E1000_READ_REG(hw, E1000_TIPG);
1600 		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1601 
1602 		if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1603 			tipg_reg |= 0xFF;
1604 			/* Reduce Rx latency in analog PHY */
1605 			emi_val = 0;
1606 		} else if (hw->mac.type >= e1000_pch_spt &&
1607 			   duplex == FULL_DUPLEX && speed != SPEED_1000) {
1608 			tipg_reg |= 0xC;
1609 			emi_val = 1;
1610 		} else {
1611 			/* Roll back the default values */
1612 			tipg_reg |= 0x08;
1613 			emi_val = 1;
1614 		}
1615 
1616 		E1000_WRITE_REG(hw, E1000_TIPG, tipg_reg);
1617 
1618 		ret_val = hw->phy.ops.acquire(hw);
1619 		if (ret_val)
1620 			return ret_val;
1621 
1622 		if (hw->mac.type == e1000_pch2lan)
1623 			emi_addr = I82579_RX_CONFIG;
1624 		else
1625 			emi_addr = I217_RX_CONFIG;
1626 		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1627 
1628 		if (hw->mac.type >= e1000_pch_lpt) {
1629 			u16 phy_reg;
1630 
1631 			hw->phy.ops.read_reg_locked(hw, I217_PLL_CLOCK_GATE_REG,
1632 						    &phy_reg);
1633 			phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1634 			if (speed == SPEED_100 || speed == SPEED_10)
1635 				phy_reg |= 0x3E8;
1636 			else
1637 				phy_reg |= 0xFA;
1638 			hw->phy.ops.write_reg_locked(hw,
1639 						     I217_PLL_CLOCK_GATE_REG,
1640 						     phy_reg);
1641 
1642 			if (speed == SPEED_1000) {
1643 				hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1644 							    &phy_reg);
1645 
1646 				phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1647 
1648 				hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1649 							     phy_reg);
1650 				}
1651 		 }
1652 		hw->phy.ops.release(hw);
1653 
1654 		if (ret_val)
1655 			return ret_val;
1656 
1657 		if (hw->mac.type >= e1000_pch_spt) {
1658 			u16 data;
1659 			u16 ptr_gap;
1660 
1661 			if (speed == SPEED_1000) {
1662 				ret_val = hw->phy.ops.acquire(hw);
1663 				if (ret_val)
1664 					return ret_val;
1665 
1666 				ret_val = hw->phy.ops.read_reg_locked(hw,
1667 							      PHY_REG(776, 20),
1668 							      &data);
1669 				if (ret_val) {
1670 					hw->phy.ops.release(hw);
1671 					return ret_val;
1672 				}
1673 
1674 				ptr_gap = (data & (0x3FF << 2)) >> 2;
1675 				if (ptr_gap < 0x18) {
1676 					data &= ~(0x3FF << 2);
1677 					data |= (0x18 << 2);
1678 					ret_val =
1679 						hw->phy.ops.write_reg_locked(hw,
1680 							PHY_REG(776, 20), data);
1681 				}
1682 				hw->phy.ops.release(hw);
1683 				if (ret_val)
1684 					return ret_val;
1685 			} else {
1686 				ret_val = hw->phy.ops.acquire(hw);
1687 				if (ret_val)
1688 					return ret_val;
1689 
1690 				ret_val = hw->phy.ops.write_reg_locked(hw,
1691 							     PHY_REG(776, 20),
1692 							     0xC023);
1693 				hw->phy.ops.release(hw);
1694 				if (ret_val)
1695 					return ret_val;
1696 
1697 			}
1698 		}
1699 	}
1700 
1701 	/* I217 Packet Loss issue:
1702 	 * ensure that FEXTNVM4 Beacon Duration is set correctly
1703 	 * on power up.
1704 	 * Set the Beacon Duration for I217 to 8 usec
1705 	 */
1706 	if (hw->mac.type >= e1000_pch_lpt) {
1707 		u32 mac_reg;
1708 
1709 		mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM4);
1710 		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1711 		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1712 		E1000_WRITE_REG(hw, E1000_FEXTNVM4, mac_reg);
1713 	}
1714 
1715 	/* Work-around I218 hang issue */
1716 	if ((hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1717 	    (hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1718 	    (hw->device_id == E1000_DEV_ID_PCH_I218_LM3) ||
1719 	    (hw->device_id == E1000_DEV_ID_PCH_I218_V3)) {
1720 		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1721 		if (ret_val)
1722 			return ret_val;
1723 	}
1724 	if (hw->mac.type >= e1000_pch_lpt) {
1725 		/* Set platform power management values for
1726 		 * Latency Tolerance Reporting (LTR)
1727 		 * Optimized Buffer Flush/Fill (OBFF)
1728 		 */
1729 		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1730 		if (ret_val)
1731 			return ret_val;
1732 	}
1733 
1734 	/* Clear link partner's EEE ability */
1735 	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1736 
1737 	/* FEXTNVM6 K1-off workaround - for SPT only */
1738 	if (hw->mac.type == e1000_pch_spt) {
1739 		u32 pcieanacfg = E1000_READ_REG(hw, E1000_PCIEANACFG);
1740 		u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
1741 
1742 		if ((pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE) &&
1743 			(hw->dev_spec.ich8lan.disable_k1_off == FALSE))
1744 			fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1745 		else
1746 			fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1747 
1748 		E1000_WRITE_REG(hw, E1000_FEXTNVM6, fextnvm6);
1749 	}
1750 
1751 	if (!link)
1752 		return E1000_SUCCESS; /* No link detected */
1753 
1754 	mac->get_link_status = FALSE;
1755 
1756 	switch (hw->mac.type) {
1757 	case e1000_pch2lan:
1758 		ret_val = e1000_k1_workaround_lv(hw);
1759 		if (ret_val)
1760 			return ret_val;
1761 		/* fall-thru */
1762 	case e1000_pchlan:
1763 		if (hw->phy.type == e1000_phy_82578) {
1764 			ret_val = e1000_link_stall_workaround_hv(hw);
1765 			if (ret_val)
1766 				return ret_val;
1767 		}
1768 
1769 		/* Workaround for PCHx parts in half-duplex:
1770 		 * Set the number of preambles removed from the packet
1771 		 * when it is passed from the PHY to the MAC to prevent
1772 		 * the MAC from misinterpreting the packet type.
1773 		 */
1774 		hw->phy.ops.read_reg(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1775 		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1776 
1777 		if ((E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_FD) !=
1778 		    E1000_STATUS_FD)
1779 			phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1780 
1781 		hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1782 		break;
1783 	default:
1784 		break;
1785 	}
1786 
1787 	/* Check if there was DownShift, must be checked
1788 	 * immediately after link-up
1789 	 */
1790 	e1000_check_downshift_generic(hw);
1791 
1792 	/* Enable/Disable EEE after link up */
1793 	if (hw->phy.type > e1000_phy_82579) {
1794 		ret_val = e1000_set_eee_pchlan(hw);
1795 		if (ret_val)
1796 			return ret_val;
1797 	}
1798 
1799 	/* If we are forcing speed/duplex, then we simply return since
1800 	 * we have already determined whether we have link or not.
1801 	 */
1802 	if (!mac->autoneg)
1803 		return -E1000_ERR_CONFIG;
1804 
1805 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1806 	 * of MAC speed/duplex configuration.  So we only need to
1807 	 * configure Collision Distance in the MAC.
1808 	 */
1809 	mac->ops.config_collision_dist(hw);
1810 
1811 	/* Configure Flow Control now that Auto-Neg has completed.
1812 	 * First, we need to restore the desired flow control
1813 	 * settings because we may have had to re-autoneg with a
1814 	 * different link partner.
1815 	 */
1816 	ret_val = e1000_config_fc_after_link_up_generic(hw);
1817 	if (ret_val)
1818 		DEBUGOUT("Error configuring flow control\n");
1819 
1820 	return ret_val;
1821 }
1822 
1823 /**
1824  *  e1000_init_function_pointers_ich8lan - Initialize ICH8 function pointers
1825  *  @hw: pointer to the HW structure
1826  *
1827  *  Initialize family-specific function pointers for PHY, MAC, and NVM.
1828  **/
1829 void e1000_init_function_pointers_ich8lan(struct e1000_hw *hw)
1830 {
1831 	DEBUGFUNC("e1000_init_function_pointers_ich8lan");
1832 
1833 	hw->mac.ops.init_params = e1000_init_mac_params_ich8lan;
1834 	hw->nvm.ops.init_params = e1000_init_nvm_params_ich8lan;
1835 	switch (hw->mac.type) {
1836 	case e1000_ich8lan:
1837 	case e1000_ich9lan:
1838 	case e1000_ich10lan:
1839 		hw->phy.ops.init_params = e1000_init_phy_params_ich8lan;
1840 		break;
1841 	case e1000_pchlan:
1842 	case e1000_pch2lan:
1843 	case e1000_pch_lpt:
1844 	case e1000_pch_spt:
1845 	case e1000_pch_cnp:
1846 	case e1000_pch_tgp:
1847 	case e1000_pch_adp:
1848 	case e1000_pch_mtp:
1849 	case e1000_pch_lnp:
1850 	case e1000_pch_rpl:
1851 		hw->phy.ops.init_params = e1000_init_phy_params_pchlan;
1852 		break;
1853 	default:
1854 		break;
1855 	}
1856 }
1857 
1858 /**
1859  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1860  *  @hw: pointer to the HW structure
1861  *
1862  *  Acquires the mutex for performing NVM operations.
1863  **/
1864 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
1865 {
1866 	DEBUGFUNC("e1000_acquire_nvm_ich8lan");
1867 
1868 	E1000_MUTEX_LOCK(&hw->dev_spec.ich8lan.nvm_mutex);
1869 
1870 	return E1000_SUCCESS;
1871 }
1872 
1873 /**
1874  *  e1000_release_nvm_ich8lan - Release NVM mutex
1875  *  @hw: pointer to the HW structure
1876  *
1877  *  Releases the mutex used while performing NVM operations.
1878  **/
1879 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
1880 {
1881 	DEBUGFUNC("e1000_release_nvm_ich8lan");
1882 
1883 	E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.nvm_mutex);
1884 
1885 	return;
1886 }
1887 
1888 /**
1889  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1890  *  @hw: pointer to the HW structure
1891  *
1892  *  Acquires the software control flag for performing PHY and select
1893  *  MAC CSR accesses.
1894  **/
1895 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1896 {
1897 	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1898 	s32 ret_val = E1000_SUCCESS;
1899 
1900 	DEBUGFUNC("e1000_acquire_swflag_ich8lan");
1901 
1902 	E1000_MUTEX_LOCK(&hw->dev_spec.ich8lan.swflag_mutex);
1903 
1904 	while (timeout) {
1905 		extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1906 		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1907 			break;
1908 
1909 		msec_delay_irq(1);
1910 		timeout--;
1911 	}
1912 
1913 	if (!timeout) {
1914 		DEBUGOUT("SW has already locked the resource.\n");
1915 		ret_val = -E1000_ERR_CONFIG;
1916 		goto out;
1917 	}
1918 
1919 	timeout = SW_FLAG_TIMEOUT;
1920 
1921 	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1922 	E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1923 
1924 	while (timeout) {
1925 		extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1926 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1927 			break;
1928 
1929 		msec_delay_irq(1);
1930 		timeout--;
1931 	}
1932 
1933 	if (!timeout) {
1934 		DEBUGOUT2("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1935 			  E1000_READ_REG(hw, E1000_FWSM), extcnf_ctrl);
1936 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1937 		E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1938 		ret_val = -E1000_ERR_CONFIG;
1939 		goto out;
1940 	}
1941 
1942 out:
1943 	if (ret_val)
1944 		E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
1945 
1946 	return ret_val;
1947 }
1948 
1949 /**
1950  *  e1000_release_swflag_ich8lan - Release software control flag
1951  *  @hw: pointer to the HW structure
1952  *
1953  *  Releases the software control flag for performing PHY and select
1954  *  MAC CSR accesses.
1955  **/
1956 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1957 {
1958 	u32 extcnf_ctrl;
1959 
1960 	DEBUGFUNC("e1000_release_swflag_ich8lan");
1961 
1962 	extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1963 
1964 	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1965 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1966 		E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1967 	} else {
1968 		DEBUGOUT("Semaphore unexpectedly released by sw/fw/hw\n");
1969 	}
1970 
1971 	E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
1972 
1973 	return;
1974 }
1975 
1976 /**
1977  *  e1000_check_mng_mode_ich8lan - Checks management mode
1978  *  @hw: pointer to the HW structure
1979  *
1980  *  This checks if the adapter has any manageability enabled.
1981  *  This is a function pointer entry point only called by read/write
1982  *  routines for the PHY and NVM parts.
1983  **/
1984 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1985 {
1986 	u32 fwsm;
1987 
1988 	DEBUGFUNC("e1000_check_mng_mode_ich8lan");
1989 
1990 	fwsm = E1000_READ_REG(hw, E1000_FWSM);
1991 
1992 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1993 	       ((fwsm & E1000_FWSM_MODE_MASK) ==
1994 		(E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1995 }
1996 
1997 /**
1998  *  e1000_check_mng_mode_pchlan - Checks management mode
1999  *  @hw: pointer to the HW structure
2000  *
2001  *  This checks if the adapter has iAMT enabled.
2002  *  This is a function pointer entry point only called by read/write
2003  *  routines for the PHY and NVM parts.
2004  **/
2005 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
2006 {
2007 	u32 fwsm;
2008 
2009 	DEBUGFUNC("e1000_check_mng_mode_pchlan");
2010 
2011 	fwsm = E1000_READ_REG(hw, E1000_FWSM);
2012 
2013 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
2014 	       (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
2015 }
2016 
2017 /**
2018  *  e1000_rar_set_pch2lan - Set receive address register
2019  *  @hw: pointer to the HW structure
2020  *  @addr: pointer to the receive address
2021  *  @index: receive address array register
2022  *
2023  *  Sets the receive address array register at index to the address passed
2024  *  in by addr.  For 82579, RAR[0] is the base address register that is to
2025  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
2026  *  Use SHRA[0-3] in place of those reserved for ME.
2027  **/
2028 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
2029 {
2030 	u32 rar_low, rar_high;
2031 
2032 	DEBUGFUNC("e1000_rar_set_pch2lan");
2033 
2034 	/* HW expects these in little endian so we reverse the byte order
2035 	 * from network order (big endian) to little endian
2036 	 */
2037 	rar_low = ((u32) addr[0] |
2038 		   ((u32) addr[1] << 8) |
2039 		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
2040 
2041 	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
2042 
2043 	/* If MAC address zero, no need to set the AV bit */
2044 	if (rar_low || rar_high)
2045 		rar_high |= E1000_RAH_AV;
2046 
2047 	if (index == 0) {
2048 		E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
2049 		E1000_WRITE_FLUSH(hw);
2050 		E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
2051 		E1000_WRITE_FLUSH(hw);
2052 		return E1000_SUCCESS;
2053 	}
2054 
2055 	/* RAR[1-6] are owned by manageability.  Skip those and program the
2056 	 * next address into the SHRA register array.
2057 	 */
2058 	if (index < (u32) (hw->mac.rar_entry_count)) {
2059 		s32 ret_val;
2060 
2061 		ret_val = e1000_acquire_swflag_ich8lan(hw);
2062 		if (ret_val)
2063 			goto out;
2064 
2065 		E1000_WRITE_REG(hw, E1000_SHRAL(index - 1), rar_low);
2066 		E1000_WRITE_FLUSH(hw);
2067 		E1000_WRITE_REG(hw, E1000_SHRAH(index - 1), rar_high);
2068 		E1000_WRITE_FLUSH(hw);
2069 
2070 		e1000_release_swflag_ich8lan(hw);
2071 
2072 		/* verify the register updates */
2073 		if ((E1000_READ_REG(hw, E1000_SHRAL(index - 1)) == rar_low) &&
2074 		    (E1000_READ_REG(hw, E1000_SHRAH(index - 1)) == rar_high))
2075 			return E1000_SUCCESS;
2076 
2077 		DEBUGOUT2("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
2078 			 (index - 1), E1000_READ_REG(hw, E1000_FWSM));
2079 	}
2080 
2081 out:
2082 	DEBUGOUT1("Failed to write receive address at index %d\n", index);
2083 	return -E1000_ERR_CONFIG;
2084 }
2085 
2086 /**
2087  *  e1000_rar_set_pch_lpt - Set receive address registers
2088  *  @hw: pointer to the HW structure
2089  *  @addr: pointer to the receive address
2090  *  @index: receive address array register
2091  *
2092  *  Sets the receive address register array at index to the address passed
2093  *  in by addr. For LPT, RAR[0] is the base address register that is to
2094  *  contain the MAC address. SHRA[0-10] are the shared receive address
2095  *  registers that are shared between the Host and manageability engine (ME).
2096  **/
2097 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
2098 {
2099 	u32 rar_low, rar_high;
2100 	u32 wlock_mac;
2101 
2102 	DEBUGFUNC("e1000_rar_set_pch_lpt");
2103 
2104 	/* HW expects these in little endian so we reverse the byte order
2105 	 * from network order (big endian) to little endian
2106 	 */
2107 	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
2108 		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
2109 
2110 	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
2111 
2112 	/* If MAC address zero, no need to set the AV bit */
2113 	if (rar_low || rar_high)
2114 		rar_high |= E1000_RAH_AV;
2115 
2116 	if (index == 0) {
2117 		E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
2118 		E1000_WRITE_FLUSH(hw);
2119 		E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
2120 		E1000_WRITE_FLUSH(hw);
2121 		return E1000_SUCCESS;
2122 	}
2123 
2124 	/* The manageability engine (ME) can lock certain SHRAR registers that
2125 	 * it is using - those registers are unavailable for use.
2126 	 */
2127 	if (index < hw->mac.rar_entry_count) {
2128 		wlock_mac = E1000_READ_REG(hw, E1000_FWSM) &
2129 			    E1000_FWSM_WLOCK_MAC_MASK;
2130 		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2131 
2132 		/* Check if all SHRAR registers are locked */
2133 		if (wlock_mac == 1)
2134 			goto out;
2135 
2136 		if ((wlock_mac == 0) || (index <= wlock_mac)) {
2137 			s32 ret_val;
2138 
2139 			ret_val = e1000_acquire_swflag_ich8lan(hw);
2140 
2141 			if (ret_val)
2142 				goto out;
2143 
2144 			E1000_WRITE_REG(hw, E1000_SHRAL_PCH_LPT(index - 1),
2145 					rar_low);
2146 			E1000_WRITE_FLUSH(hw);
2147 			E1000_WRITE_REG(hw, E1000_SHRAH_PCH_LPT(index - 1),
2148 					rar_high);
2149 			E1000_WRITE_FLUSH(hw);
2150 
2151 			e1000_release_swflag_ich8lan(hw);
2152 
2153 			/* verify the register updates */
2154 			if ((E1000_READ_REG(hw, E1000_SHRAL_PCH_LPT(index - 1)) == rar_low) &&
2155 			    (E1000_READ_REG(hw, E1000_SHRAH_PCH_LPT(index - 1)) == rar_high))
2156 				return E1000_SUCCESS;
2157 		}
2158 	}
2159 
2160 out:
2161 	DEBUGOUT1("Failed to write receive address at index %d\n", index);
2162 	return -E1000_ERR_CONFIG;
2163 }
2164 
2165 /**
2166  *  e1000_update_mc_addr_list_pch2lan - Update Multicast addresses
2167  *  @hw: pointer to the HW structure
2168  *  @mc_addr_list: array of multicast addresses to program
2169  *  @mc_addr_count: number of multicast addresses to program
2170  *
2171  *  Updates entire Multicast Table Array of the PCH2 MAC and PHY.
2172  *  The caller must have a packed mc_addr_list of multicast addresses.
2173  **/
2174 static void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw,
2175 					      u8 *mc_addr_list,
2176 					      u32 mc_addr_count)
2177 {
2178 	u16 phy_reg = 0;
2179 	int i;
2180 	s32 ret_val;
2181 
2182 	DEBUGFUNC("e1000_update_mc_addr_list_pch2lan");
2183 
2184 	e1000_update_mc_addr_list_generic(hw, mc_addr_list, mc_addr_count);
2185 
2186 	ret_val = hw->phy.ops.acquire(hw);
2187 	if (ret_val)
2188 		return;
2189 
2190 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2191 	if (ret_val)
2192 		goto release;
2193 
2194 	for (i = 0; i < hw->mac.mta_reg_count; i++) {
2195 		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
2196 					   (u16)(hw->mac.mta_shadow[i] &
2197 						 0xFFFF));
2198 		hw->phy.ops.write_reg_page(hw, (BM_MTA(i) + 1),
2199 					   (u16)((hw->mac.mta_shadow[i] >> 16) &
2200 						 0xFFFF));
2201 	}
2202 
2203 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2204 
2205 release:
2206 	hw->phy.ops.release(hw);
2207 }
2208 
2209 /**
2210  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2211  *  @hw: pointer to the HW structure
2212  *
2213  *  Checks if firmware is blocking the reset of the PHY.
2214  *  This is a function pointer entry point only called by
2215  *  reset routines.
2216  **/
2217 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2218 {
2219 	u32 fwsm;
2220 	bool blocked = FALSE;
2221 	int i = 0;
2222 
2223 	DEBUGFUNC("e1000_check_reset_block_ich8lan");
2224 
2225 	do {
2226 		fwsm = E1000_READ_REG(hw, E1000_FWSM);
2227 		if (!(fwsm & E1000_ICH_FWSM_RSPCIPHY)) {
2228 			blocked = TRUE;
2229 			msec_delay(10);
2230 			continue;
2231 		}
2232 		blocked = FALSE;
2233 	} while (blocked && (i++ < 30));
2234 	return blocked ? E1000_BLK_PHY_RESET : E1000_SUCCESS;
2235 }
2236 
2237 /**
2238  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2239  *  @hw: pointer to the HW structure
2240  *
2241  *  Assumes semaphore already acquired.
2242  *
2243  **/
2244 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2245 {
2246 	u16 phy_data;
2247 	u32 strap = E1000_READ_REG(hw, E1000_STRAP);
2248 	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2249 		E1000_STRAP_SMT_FREQ_SHIFT;
2250 	s32 ret_val;
2251 
2252 	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2253 
2254 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2255 	if (ret_val)
2256 		return ret_val;
2257 
2258 	phy_data &= ~HV_SMB_ADDR_MASK;
2259 	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2260 	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2261 
2262 	if (hw->phy.type == e1000_phy_i217) {
2263 		/* Restore SMBus frequency */
2264 		if (freq--) {
2265 			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2266 			phy_data |= (freq & (1 << 0)) <<
2267 				HV_SMB_ADDR_FREQ_LOW_SHIFT;
2268 			phy_data |= (freq & (1 << 1)) <<
2269 				(HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2270 		} else {
2271 			DEBUGOUT("Unsupported SMB frequency in PHY\n");
2272 		}
2273 	}
2274 
2275 	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2276 }
2277 
2278 /**
2279  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2280  *  @hw:   pointer to the HW structure
2281  *
2282  *  SW should configure the LCD from the NVM extended configuration region
2283  *  as a workaround for certain parts.
2284  **/
2285 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2286 {
2287 	struct e1000_phy_info *phy = &hw->phy;
2288 	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2289 	s32 ret_val = E1000_SUCCESS;
2290 	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2291 
2292 	DEBUGFUNC("e1000_sw_lcd_config_ich8lan");
2293 
2294 	/* Initialize the PHY from the NVM on ICH platforms.  This
2295 	 * is needed due to an issue where the NVM configuration is
2296 	 * not properly autoloaded after power transitions.
2297 	 * Therefore, after each PHY reset, we will load the
2298 	 * configuration data out of the NVM manually.
2299 	 */
2300 	switch (hw->mac.type) {
2301 	case e1000_ich8lan:
2302 		if (phy->type != e1000_phy_igp_3)
2303 			return ret_val;
2304 
2305 		if ((hw->device_id == E1000_DEV_ID_ICH8_IGP_AMT) ||
2306 		    (hw->device_id == E1000_DEV_ID_ICH8_IGP_C)) {
2307 			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2308 			break;
2309 		}
2310 		/* Fall-thru */
2311 	case e1000_pchlan:
2312 	case e1000_pch2lan:
2313 	case e1000_pch_lpt:
2314 	case e1000_pch_spt:
2315 	case e1000_pch_cnp:
2316 	case e1000_pch_tgp:
2317 	case e1000_pch_adp:
2318 	case e1000_pch_mtp:
2319 	case e1000_pch_lnp:
2320 	case e1000_pch_rpl:
2321 		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2322 		break;
2323 	default:
2324 		return ret_val;
2325 	}
2326 
2327 	ret_val = hw->phy.ops.acquire(hw);
2328 	if (ret_val)
2329 		return ret_val;
2330 
2331 	data = E1000_READ_REG(hw, E1000_FEXTNVM);
2332 	if (!(data & sw_cfg_mask))
2333 		goto release;
2334 
2335 	/* Make sure HW does not configure LCD from PHY
2336 	 * extended configuration before SW configuration
2337 	 */
2338 	data = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
2339 	if ((hw->mac.type < e1000_pch2lan) &&
2340 	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2341 			goto release;
2342 
2343 	cnf_size = E1000_READ_REG(hw, E1000_EXTCNF_SIZE);
2344 	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2345 	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2346 	if (!cnf_size)
2347 		goto release;
2348 
2349 	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2350 	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2351 
2352 	if (((hw->mac.type == e1000_pchlan) &&
2353 	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2354 	    (hw->mac.type > e1000_pchlan)) {
2355 		/* HW configures the SMBus address and LEDs when the
2356 		 * OEM and LCD Write Enable bits are set in the NVM.
2357 		 * When both NVM bits are cleared, SW will configure
2358 		 * them instead.
2359 		 */
2360 		ret_val = e1000_write_smbus_addr(hw);
2361 		if (ret_val)
2362 			goto release;
2363 
2364 		data = E1000_READ_REG(hw, E1000_LEDCTL);
2365 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2366 							(u16)data);
2367 		if (ret_val)
2368 			goto release;
2369 	}
2370 
2371 	/* Configure LCD from extended configuration region. */
2372 
2373 	/* cnf_base_addr is in DWORD */
2374 	word_addr = (u16)(cnf_base_addr << 1);
2375 
2376 	for (i = 0; i < cnf_size; i++) {
2377 		ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2), 1,
2378 					   &reg_data);
2379 		if (ret_val)
2380 			goto release;
2381 
2382 		ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2 + 1),
2383 					   1, &reg_addr);
2384 		if (ret_val)
2385 			goto release;
2386 
2387 		/* Save off the PHY page for future writes. */
2388 		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2389 			phy_page = reg_data;
2390 			continue;
2391 		}
2392 
2393 		reg_addr &= PHY_REG_MASK;
2394 		reg_addr |= phy_page;
2395 
2396 		ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
2397 						    reg_data);
2398 		if (ret_val)
2399 			goto release;
2400 	}
2401 
2402 release:
2403 	hw->phy.ops.release(hw);
2404 	return ret_val;
2405 }
2406 
2407 /**
2408  *  e1000_k1_gig_workaround_hv - K1 Si workaround
2409  *  @hw:   pointer to the HW structure
2410  *  @link: link up bool flag
2411  *
2412  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2413  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2414  *  If link is down, the function will restore the default K1 setting located
2415  *  in the NVM.
2416  **/
2417 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2418 {
2419 	s32 ret_val = E1000_SUCCESS;
2420 	u16 status_reg = 0;
2421 	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2422 
2423 	DEBUGFUNC("e1000_k1_gig_workaround_hv");
2424 
2425 	if (hw->mac.type != e1000_pchlan)
2426 		return E1000_SUCCESS;
2427 
2428 	/* Wrap the whole flow with the sw flag */
2429 	ret_val = hw->phy.ops.acquire(hw);
2430 	if (ret_val)
2431 		return ret_val;
2432 
2433 	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2434 	if (link) {
2435 		if (hw->phy.type == e1000_phy_82578) {
2436 			ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
2437 							      &status_reg);
2438 			if (ret_val)
2439 				goto release;
2440 
2441 			status_reg &= (BM_CS_STATUS_LINK_UP |
2442 				       BM_CS_STATUS_RESOLVED |
2443 				       BM_CS_STATUS_SPEED_MASK);
2444 
2445 			if (status_reg == (BM_CS_STATUS_LINK_UP |
2446 					   BM_CS_STATUS_RESOLVED |
2447 					   BM_CS_STATUS_SPEED_1000))
2448 				k1_enable = FALSE;
2449 		}
2450 
2451 		if (hw->phy.type == e1000_phy_82577) {
2452 			ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
2453 							      &status_reg);
2454 			if (ret_val)
2455 				goto release;
2456 
2457 			status_reg &= (HV_M_STATUS_LINK_UP |
2458 				       HV_M_STATUS_AUTONEG_COMPLETE |
2459 				       HV_M_STATUS_SPEED_MASK);
2460 
2461 			if (status_reg == (HV_M_STATUS_LINK_UP |
2462 					   HV_M_STATUS_AUTONEG_COMPLETE |
2463 					   HV_M_STATUS_SPEED_1000))
2464 				k1_enable = FALSE;
2465 		}
2466 
2467 		/* Link stall fix for link up */
2468 		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
2469 						       0x0100);
2470 		if (ret_val)
2471 			goto release;
2472 
2473 	} else {
2474 		/* Link stall fix for link down */
2475 		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
2476 						       0x4100);
2477 		if (ret_val)
2478 			goto release;
2479 	}
2480 
2481 	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2482 
2483 release:
2484 	hw->phy.ops.release(hw);
2485 
2486 	return ret_val;
2487 }
2488 
2489 /**
2490  *  e1000_configure_k1_ich8lan - Configure K1 power state
2491  *  @hw: pointer to the HW structure
2492  *  @enable: K1 state to configure
2493  *
2494  *  Configure the K1 power state based on the provided parameter.
2495  *  Assumes semaphore already acquired.
2496  *
2497  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2498  **/
2499 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2500 {
2501 	s32 ret_val;
2502 	u32 ctrl_reg = 0;
2503 	u32 ctrl_ext = 0;
2504 	u32 reg = 0;
2505 	u16 kmrn_reg = 0;
2506 
2507 	DEBUGFUNC("e1000_configure_k1_ich8lan");
2508 
2509 	ret_val = e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2510 					     &kmrn_reg);
2511 	if (ret_val)
2512 		return ret_val;
2513 
2514 	if (k1_enable)
2515 		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2516 	else
2517 		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2518 
2519 	ret_val = e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2520 					      kmrn_reg);
2521 	if (ret_val)
2522 		return ret_val;
2523 
2524 	usec_delay(20);
2525 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
2526 	ctrl_reg = E1000_READ_REG(hw, E1000_CTRL);
2527 
2528 	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2529 	reg |= E1000_CTRL_FRCSPD;
2530 	E1000_WRITE_REG(hw, E1000_CTRL, reg);
2531 
2532 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2533 	E1000_WRITE_FLUSH(hw);
2534 	usec_delay(20);
2535 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg);
2536 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
2537 	E1000_WRITE_FLUSH(hw);
2538 	usec_delay(20);
2539 
2540 	return E1000_SUCCESS;
2541 }
2542 
2543 /**
2544  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2545  *  @hw:       pointer to the HW structure
2546  *  @d0_state: boolean if entering d0 or d3 device state
2547  *
2548  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2549  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2550  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2551  **/
2552 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2553 {
2554 	s32 ret_val = 0;
2555 	u32 mac_reg;
2556 	u16 oem_reg;
2557 
2558 	DEBUGFUNC("e1000_oem_bits_config_ich8lan");
2559 
2560 	if (hw->mac.type < e1000_pchlan)
2561 		return ret_val;
2562 
2563 	ret_val = hw->phy.ops.acquire(hw);
2564 	if (ret_val)
2565 		return ret_val;
2566 
2567 	if (hw->mac.type == e1000_pchlan) {
2568 		mac_reg = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
2569 		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2570 			goto release;
2571 	}
2572 
2573 	mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM);
2574 	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2575 		goto release;
2576 
2577 	mac_reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
2578 
2579 	ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
2580 	if (ret_val)
2581 		goto release;
2582 
2583 	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2584 
2585 	if (d0_state) {
2586 		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2587 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2588 
2589 		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2590 			oem_reg |= HV_OEM_BITS_LPLU;
2591 	} else {
2592 		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2593 		    E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2594 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2595 
2596 		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2597 		    E1000_PHY_CTRL_NOND0A_LPLU))
2598 			oem_reg |= HV_OEM_BITS_LPLU;
2599 	}
2600 
2601 	/* Set Restart auto-neg to activate the bits */
2602 	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2603 	    !hw->phy.ops.check_reset_block(hw))
2604 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2605 
2606 	ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
2607 
2608 release:
2609 	hw->phy.ops.release(hw);
2610 
2611 	return ret_val;
2612 }
2613 
2614 
2615 /**
2616  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2617  *  @hw:   pointer to the HW structure
2618  **/
2619 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2620 {
2621 	s32 ret_val;
2622 	u16 data;
2623 
2624 	DEBUGFUNC("e1000_set_mdio_slow_mode_hv");
2625 
2626 	ret_val = hw->phy.ops.read_reg(hw, HV_KMRN_MODE_CTRL, &data);
2627 	if (ret_val)
2628 		return ret_val;
2629 
2630 	data |= HV_KMRN_MDIO_SLOW;
2631 
2632 	ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_MODE_CTRL, data);
2633 
2634 	return ret_val;
2635 }
2636 
2637 /**
2638  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2639  *  done after every PHY reset.
2640  **/
2641 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2642 {
2643 	s32 ret_val = E1000_SUCCESS;
2644 	u16 phy_data;
2645 
2646 	DEBUGFUNC("e1000_hv_phy_workarounds_ich8lan");
2647 
2648 	if (hw->mac.type != e1000_pchlan)
2649 		return E1000_SUCCESS;
2650 
2651 	/* Set MDIO slow mode before any other MDIO access */
2652 	if (hw->phy.type == e1000_phy_82577) {
2653 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2654 		if (ret_val)
2655 			return ret_val;
2656 	}
2657 
2658 	if (((hw->phy.type == e1000_phy_82577) &&
2659 	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2660 	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2661 		/* Disable generation of early preamble */
2662 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 25), 0x4431);
2663 		if (ret_val)
2664 			return ret_val;
2665 
2666 		/* Preamble tuning for SSC */
2667 		ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA,
2668 						0xA204);
2669 		if (ret_val)
2670 			return ret_val;
2671 	}
2672 
2673 	if (hw->phy.type == e1000_phy_82578) {
2674 		/* Return registers to default by doing a soft reset then
2675 		 * writing 0x3140 to the control register.
2676 		 */
2677 		if (hw->phy.revision < 2) {
2678 			e1000_phy_sw_reset_generic(hw);
2679 			ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL,
2680 							0x3140);
2681 		}
2682 	}
2683 
2684 	/* Select page 0 */
2685 	ret_val = hw->phy.ops.acquire(hw);
2686 	if (ret_val)
2687 		return ret_val;
2688 
2689 	hw->phy.addr = 1;
2690 	ret_val = e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2691 	hw->phy.ops.release(hw);
2692 	if (ret_val)
2693 		return ret_val;
2694 
2695 	/* Configure the K1 Si workaround during phy reset assuming there is
2696 	 * link so that it disables K1 if link is in 1Gbps.
2697 	 */
2698 	ret_val = e1000_k1_gig_workaround_hv(hw, TRUE);
2699 	if (ret_val)
2700 		return ret_val;
2701 
2702 	/* Workaround for link disconnects on a busy hub in half duplex */
2703 	ret_val = hw->phy.ops.acquire(hw);
2704 	if (ret_val)
2705 		return ret_val;
2706 	ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2707 	if (ret_val)
2708 		goto release;
2709 	ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG,
2710 					       phy_data & 0x00FF);
2711 	if (ret_val)
2712 		goto release;
2713 
2714 	/* set MSE higher to enable link to stay up when noise is high */
2715 	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2716 release:
2717 	hw->phy.ops.release(hw);
2718 
2719 	return ret_val;
2720 }
2721 
2722 /**
2723  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2724  *  @hw:   pointer to the HW structure
2725  **/
2726 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2727 {
2728 	u32 mac_reg;
2729 	u16 i, phy_reg = 0;
2730 	s32 ret_val;
2731 
2732 	DEBUGFUNC("e1000_copy_rx_addrs_to_phy_ich8lan");
2733 
2734 	ret_val = hw->phy.ops.acquire(hw);
2735 	if (ret_val)
2736 		return;
2737 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2738 	if (ret_val)
2739 		goto release;
2740 
2741 	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2742 	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2743 		mac_reg = E1000_READ_REG(hw, E1000_RAL(i));
2744 		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2745 					   (u16)(mac_reg & 0xFFFF));
2746 		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2747 					   (u16)((mac_reg >> 16) & 0xFFFF));
2748 
2749 		mac_reg = E1000_READ_REG(hw, E1000_RAH(i));
2750 		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2751 					   (u16)(mac_reg & 0xFFFF));
2752 		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2753 					   (u16)((mac_reg & E1000_RAH_AV)
2754 						 >> 16));
2755 	}
2756 
2757 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2758 
2759 release:
2760 	hw->phy.ops.release(hw);
2761 }
2762 
2763 static u32 e1000_calc_rx_da_crc(u8 mac[])
2764 {
2765 	u32 poly = 0xEDB88320;	/* Polynomial for 802.3 CRC calculation */
2766 	u32 i, j, mask, crc;
2767 
2768 	DEBUGFUNC("e1000_calc_rx_da_crc");
2769 
2770 	crc = 0xffffffff;
2771 	for (i = 0; i < 6; i++) {
2772 		crc = crc ^ mac[i];
2773 		for (j = 8; j > 0; j--) {
2774 			mask = (crc & 1) * (-1);
2775 			crc = (crc >> 1) ^ (poly & mask);
2776 		}
2777 	}
2778 	return ~crc;
2779 }
2780 
2781 /**
2782  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2783  *  with 82579 PHY
2784  *  @hw: pointer to the HW structure
2785  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2786  **/
2787 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2788 {
2789 	s32 ret_val = E1000_SUCCESS;
2790 	u16 phy_reg, data;
2791 	u32 mac_reg;
2792 	u16 i;
2793 
2794 	DEBUGFUNC("e1000_lv_jumbo_workaround_ich8lan");
2795 
2796 	if (hw->mac.type < e1000_pch2lan)
2797 		return E1000_SUCCESS;
2798 
2799 	/* disable Rx path while enabling/disabling workaround */
2800 	hw->phy.ops.read_reg(hw, PHY_REG(769, 20), &phy_reg);
2801 	ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 20),
2802 					phy_reg | (1 << 14));
2803 	if (ret_val)
2804 		return ret_val;
2805 
2806 	if (enable) {
2807 		/* Write Rx addresses (rar_entry_count for RAL/H, and
2808 		 * SHRAL/H) and initial CRC values to the MAC
2809 		 */
2810 		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2811 			u8 mac_addr[ETH_ADDR_LEN] = {0};
2812 			u32 addr_high, addr_low;
2813 
2814 			addr_high = E1000_READ_REG(hw, E1000_RAH(i));
2815 			if (!(addr_high & E1000_RAH_AV))
2816 				continue;
2817 			addr_low = E1000_READ_REG(hw, E1000_RAL(i));
2818 			mac_addr[0] = (addr_low & 0xFF);
2819 			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2820 			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2821 			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2822 			mac_addr[4] = (addr_high & 0xFF);
2823 			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2824 
2825 			E1000_WRITE_REG(hw, E1000_PCH_RAICC(i),
2826 					e1000_calc_rx_da_crc(mac_addr));
2827 		}
2828 
2829 		/* Write Rx addresses to the PHY */
2830 		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2831 
2832 		/* Enable jumbo frame workaround in the MAC */
2833 		mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG);
2834 		mac_reg &= ~(1 << 14);
2835 		mac_reg |= (7 << 15);
2836 		E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg);
2837 
2838 		mac_reg = E1000_READ_REG(hw, E1000_RCTL);
2839 		mac_reg |= E1000_RCTL_SECRC;
2840 		E1000_WRITE_REG(hw, E1000_RCTL, mac_reg);
2841 
2842 		ret_val = e1000_read_kmrn_reg_generic(hw,
2843 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2844 						&data);
2845 		if (ret_val)
2846 			return ret_val;
2847 		ret_val = e1000_write_kmrn_reg_generic(hw,
2848 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2849 						data | (1 << 0));
2850 		if (ret_val)
2851 			return ret_val;
2852 		ret_val = e1000_read_kmrn_reg_generic(hw,
2853 						E1000_KMRNCTRLSTA_HD_CTRL,
2854 						&data);
2855 		if (ret_val)
2856 			return ret_val;
2857 		data &= ~(0xF << 8);
2858 		data |= (0xB << 8);
2859 		ret_val = e1000_write_kmrn_reg_generic(hw,
2860 						E1000_KMRNCTRLSTA_HD_CTRL,
2861 						data);
2862 		if (ret_val)
2863 			return ret_val;
2864 
2865 		/* Enable jumbo frame workaround in the PHY */
2866 		hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data);
2867 		data &= ~(0x7F << 5);
2868 		data |= (0x37 << 5);
2869 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data);
2870 		if (ret_val)
2871 			return ret_val;
2872 		hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data);
2873 		data &= ~(1 << 13);
2874 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data);
2875 		if (ret_val)
2876 			return ret_val;
2877 		hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data);
2878 		data &= ~(0x3FF << 2);
2879 		data |= (E1000_TX_PTR_GAP << 2);
2880 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data);
2881 		if (ret_val)
2882 			return ret_val;
2883 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0xF100);
2884 		if (ret_val)
2885 			return ret_val;
2886 		hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data);
2887 		ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data |
2888 						(1 << 10));
2889 		if (ret_val)
2890 			return ret_val;
2891 	} else {
2892 		/* Write MAC register values back to h/w defaults */
2893 		mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG);
2894 		mac_reg &= ~(0xF << 14);
2895 		E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg);
2896 
2897 		mac_reg = E1000_READ_REG(hw, E1000_RCTL);
2898 		mac_reg &= ~E1000_RCTL_SECRC;
2899 		E1000_WRITE_REG(hw, E1000_RCTL, mac_reg);
2900 
2901 		ret_val = e1000_read_kmrn_reg_generic(hw,
2902 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2903 						&data);
2904 		if (ret_val)
2905 			return ret_val;
2906 		ret_val = e1000_write_kmrn_reg_generic(hw,
2907 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2908 						data & ~(1 << 0));
2909 		if (ret_val)
2910 			return ret_val;
2911 		ret_val = e1000_read_kmrn_reg_generic(hw,
2912 						E1000_KMRNCTRLSTA_HD_CTRL,
2913 						&data);
2914 		if (ret_val)
2915 			return ret_val;
2916 		data &= ~(0xF << 8);
2917 		data |= (0xB << 8);
2918 		ret_val = e1000_write_kmrn_reg_generic(hw,
2919 						E1000_KMRNCTRLSTA_HD_CTRL,
2920 						data);
2921 		if (ret_val)
2922 			return ret_val;
2923 
2924 		/* Write PHY register values back to h/w defaults */
2925 		hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data);
2926 		data &= ~(0x7F << 5);
2927 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data);
2928 		if (ret_val)
2929 			return ret_val;
2930 		hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data);
2931 		data |= (1 << 13);
2932 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data);
2933 		if (ret_val)
2934 			return ret_val;
2935 		hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data);
2936 		data &= ~(0x3FF << 2);
2937 		data |= (0x8 << 2);
2938 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data);
2939 		if (ret_val)
2940 			return ret_val;
2941 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0x7E00);
2942 		if (ret_val)
2943 			return ret_val;
2944 		hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data);
2945 		ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data &
2946 						~(1 << 10));
2947 		if (ret_val)
2948 			return ret_val;
2949 	}
2950 
2951 	/* re-enable Rx path after enabling/disabling workaround */
2952 	return hw->phy.ops.write_reg(hw, PHY_REG(769, 20), phy_reg &
2953 				     ~(1 << 14));
2954 }
2955 
2956 /**
2957  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2958  *  done after every PHY reset.
2959  **/
2960 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2961 {
2962 	s32 ret_val = E1000_SUCCESS;
2963 
2964 	DEBUGFUNC("e1000_lv_phy_workarounds_ich8lan");
2965 
2966 	if (hw->mac.type != e1000_pch2lan)
2967 		return E1000_SUCCESS;
2968 
2969 	/* Set MDIO slow mode before any other MDIO access */
2970 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2971 	if (ret_val)
2972 		return ret_val;
2973 
2974 	ret_val = hw->phy.ops.acquire(hw);
2975 	if (ret_val)
2976 		return ret_val;
2977 	/* set MSE higher to enable link to stay up when noise is high */
2978 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2979 	if (ret_val)
2980 		goto release;
2981 	/* drop link after 5 times MSE threshold was reached */
2982 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2983 release:
2984 	hw->phy.ops.release(hw);
2985 
2986 	return ret_val;
2987 }
2988 
2989 /**
2990  *  e1000_k1_gig_workaround_lv - K1 Si workaround
2991  *  @hw:   pointer to the HW structure
2992  *
2993  *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2994  *  Disable K1 for 1000 and 100 speeds
2995  **/
2996 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2997 {
2998 	s32 ret_val = E1000_SUCCESS;
2999 	u16 status_reg = 0;
3000 
3001 	DEBUGFUNC("e1000_k1_workaround_lv");
3002 
3003 	if (hw->mac.type != e1000_pch2lan)
3004 		return E1000_SUCCESS;
3005 
3006 	/* Set K1 beacon duration based on 10Mbs speed */
3007 	ret_val = hw->phy.ops.read_reg(hw, HV_M_STATUS, &status_reg);
3008 	if (ret_val)
3009 		return ret_val;
3010 
3011 	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
3012 	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
3013 		if (status_reg &
3014 		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
3015 			u16 pm_phy_reg;
3016 
3017 			/* LV 1G/100 Packet drop issue wa  */
3018 			ret_val = hw->phy.ops.read_reg(hw, HV_PM_CTRL,
3019 						       &pm_phy_reg);
3020 			if (ret_val)
3021 				return ret_val;
3022 			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
3023 			ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL,
3024 							pm_phy_reg);
3025 			if (ret_val)
3026 				return ret_val;
3027 		} else {
3028 			u32 mac_reg;
3029 			mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM4);
3030 			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
3031 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
3032 			E1000_WRITE_REG(hw, E1000_FEXTNVM4, mac_reg);
3033 		}
3034 	}
3035 
3036 	return ret_val;
3037 }
3038 
3039 /**
3040  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
3041  *  @hw:   pointer to the HW structure
3042  *  @gate: boolean set to TRUE to gate, FALSE to ungate
3043  *
3044  *  Gate/ungate the automatic PHY configuration via hardware; perform
3045  *  the configuration via software instead.
3046  **/
3047 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
3048 {
3049 	u32 extcnf_ctrl;
3050 
3051 	DEBUGFUNC("e1000_gate_hw_phy_config_ich8lan");
3052 
3053 	if (hw->mac.type < e1000_pch2lan)
3054 		return;
3055 
3056 	extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
3057 
3058 	if (gate)
3059 		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
3060 	else
3061 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
3062 
3063 	E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
3064 }
3065 
3066 /**
3067  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
3068  *  @hw: pointer to the HW structure
3069  *
3070  *  Check the appropriate indication the MAC has finished configuring the
3071  *  PHY after a software reset.
3072  **/
3073 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
3074 {
3075 	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
3076 
3077 	DEBUGFUNC("e1000_lan_init_done_ich8lan");
3078 
3079 	/* Wait for basic configuration completes before proceeding */
3080 	do {
3081 		data = E1000_READ_REG(hw, E1000_STATUS);
3082 		data &= E1000_STATUS_LAN_INIT_DONE;
3083 		usec_delay(100);
3084 	} while ((!data) && --loop);
3085 
3086 	/* If basic configuration is incomplete before the above loop
3087 	 * count reaches 0, loading the configuration from NVM will
3088 	 * leave the PHY in a bad state possibly resulting in no link.
3089 	 */
3090 	if (loop == 0)
3091 		DEBUGOUT("LAN_INIT_DONE not set, increase timeout\n");
3092 
3093 	/* Clear the Init Done bit for the next init event */
3094 	data = E1000_READ_REG(hw, E1000_STATUS);
3095 	data &= ~E1000_STATUS_LAN_INIT_DONE;
3096 	E1000_WRITE_REG(hw, E1000_STATUS, data);
3097 }
3098 
3099 /**
3100  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
3101  *  @hw: pointer to the HW structure
3102  **/
3103 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
3104 {
3105 	s32 ret_val = E1000_SUCCESS;
3106 	u16 reg;
3107 
3108 	DEBUGFUNC("e1000_post_phy_reset_ich8lan");
3109 
3110 	if (hw->phy.ops.check_reset_block(hw))
3111 		return E1000_SUCCESS;
3112 
3113 	/* Allow time for h/w to get to quiescent state after reset */
3114 	msec_delay(10);
3115 
3116 	/* Perform any necessary post-reset workarounds */
3117 	switch (hw->mac.type) {
3118 	case e1000_pchlan:
3119 		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
3120 		if (ret_val)
3121 			return ret_val;
3122 		break;
3123 	case e1000_pch2lan:
3124 		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
3125 		if (ret_val)
3126 			return ret_val;
3127 		break;
3128 	default:
3129 		break;
3130 	}
3131 
3132 	/* Clear the host wakeup bit after lcd reset */
3133 	if (hw->mac.type >= e1000_pchlan) {
3134 		hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &reg);
3135 		reg &= ~BM_WUC_HOST_WU_BIT;
3136 		hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, reg);
3137 	}
3138 
3139 	/* Configure the LCD with the extended configuration region in NVM */
3140 	ret_val = e1000_sw_lcd_config_ich8lan(hw);
3141 	if (ret_val)
3142 		return ret_val;
3143 
3144 	/* Configure the LCD with the OEM bits in NVM */
3145 	ret_val = e1000_oem_bits_config_ich8lan(hw, TRUE);
3146 
3147 	if (hw->mac.type == e1000_pch2lan) {
3148 		/* Ungate automatic PHY configuration on non-managed 82579 */
3149 		if (!(E1000_READ_REG(hw, E1000_FWSM) &
3150 		    E1000_ICH_FWSM_FW_VALID)) {
3151 			msec_delay(10);
3152 			e1000_gate_hw_phy_config_ich8lan(hw, FALSE);
3153 		}
3154 
3155 		/* Set EEE LPI Update Timer to 200usec */
3156 		ret_val = hw->phy.ops.acquire(hw);
3157 		if (ret_val)
3158 			return ret_val;
3159 		ret_val = e1000_write_emi_reg_locked(hw,
3160 						     I82579_LPI_UPDATE_TIMER,
3161 						     0x1387);
3162 		hw->phy.ops.release(hw);
3163 	}
3164 
3165 	return ret_val;
3166 }
3167 
3168 /**
3169  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
3170  *  @hw: pointer to the HW structure
3171  *
3172  *  Resets the PHY
3173  *  This is a function pointer entry point called by drivers
3174  *  or other shared routines.
3175  **/
3176 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
3177 {
3178 	s32 ret_val = E1000_SUCCESS;
3179 
3180 	DEBUGFUNC("e1000_phy_hw_reset_ich8lan");
3181 
3182 	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
3183 	if ((hw->mac.type == e1000_pch2lan) &&
3184 	    !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID))
3185 		e1000_gate_hw_phy_config_ich8lan(hw, TRUE);
3186 
3187 	ret_val = e1000_phy_hw_reset_generic(hw);
3188 	if (ret_val)
3189 		return ret_val;
3190 
3191 	return e1000_post_phy_reset_ich8lan(hw);
3192 }
3193 
3194 /**
3195  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
3196  *  @hw: pointer to the HW structure
3197  *  @active: TRUE to enable LPLU, FALSE to disable
3198  *
3199  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
3200  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
3201  *  the phy speed. This function will manually set the LPLU bit and restart
3202  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
3203  *  since it configures the same bit.
3204  **/
3205 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
3206 {
3207 	s32 ret_val;
3208 	u16 oem_reg;
3209 
3210 	DEBUGFUNC("e1000_set_lplu_state_pchlan");
3211 	ret_val = hw->phy.ops.read_reg(hw, HV_OEM_BITS, &oem_reg);
3212 	if (ret_val)
3213 		return ret_val;
3214 
3215 	if (active)
3216 		oem_reg |= HV_OEM_BITS_LPLU;
3217 	else
3218 		oem_reg &= ~HV_OEM_BITS_LPLU;
3219 
3220 	if (!hw->phy.ops.check_reset_block(hw))
3221 		oem_reg |= HV_OEM_BITS_RESTART_AN;
3222 
3223 	return hw->phy.ops.write_reg(hw, HV_OEM_BITS, oem_reg);
3224 }
3225 
3226 /**
3227  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
3228  *  @hw: pointer to the HW structure
3229  *  @active: TRUE to enable LPLU, FALSE to disable
3230  *
3231  *  Sets the LPLU D0 state according to the active flag.  When
3232  *  activating LPLU this function also disables smart speed
3233  *  and vice versa.  LPLU will not be activated unless the
3234  *  device autonegotiation advertisement meets standards of
3235  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3236  *  This is a function pointer entry point only called by
3237  *  PHY setup routines.
3238  **/
3239 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3240 {
3241 	struct e1000_phy_info *phy = &hw->phy;
3242 	u32 phy_ctrl;
3243 	s32 ret_val = E1000_SUCCESS;
3244 	u16 data;
3245 
3246 	DEBUGFUNC("e1000_set_d0_lplu_state_ich8lan");
3247 
3248 	if (phy->type == e1000_phy_ife)
3249 		return E1000_SUCCESS;
3250 
3251 	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
3252 
3253 	if (active) {
3254 		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
3255 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3256 
3257 		if (phy->type != e1000_phy_igp_3)
3258 			return E1000_SUCCESS;
3259 
3260 		/* Call gig speed drop workaround on LPLU before accessing
3261 		 * any PHY registers
3262 		 */
3263 		if (hw->mac.type == e1000_ich8lan)
3264 			e1000_gig_downshift_workaround_ich8lan(hw);
3265 
3266 		/* When LPLU is enabled, we should disable SmartSpeed */
3267 		ret_val = phy->ops.read_reg(hw,
3268 					    IGP01E1000_PHY_PORT_CONFIG,
3269 					    &data);
3270 		if (ret_val)
3271 			return ret_val;
3272 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3273 		ret_val = phy->ops.write_reg(hw,
3274 					     IGP01E1000_PHY_PORT_CONFIG,
3275 					     data);
3276 		if (ret_val)
3277 			return ret_val;
3278 	} else {
3279 		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3280 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3281 
3282 		if (phy->type != e1000_phy_igp_3)
3283 			return E1000_SUCCESS;
3284 
3285 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3286 		 * during Dx states where the power conservation is most
3287 		 * important.  During driver activity we should enable
3288 		 * SmartSpeed, so performance is maintained.
3289 		 */
3290 		if (phy->smart_speed == e1000_smart_speed_on) {
3291 			ret_val = phy->ops.read_reg(hw,
3292 						    IGP01E1000_PHY_PORT_CONFIG,
3293 						    &data);
3294 			if (ret_val)
3295 				return ret_val;
3296 
3297 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3298 			ret_val = phy->ops.write_reg(hw,
3299 						     IGP01E1000_PHY_PORT_CONFIG,
3300 						     data);
3301 			if (ret_val)
3302 				return ret_val;
3303 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3304 			ret_val = phy->ops.read_reg(hw,
3305 						    IGP01E1000_PHY_PORT_CONFIG,
3306 						    &data);
3307 			if (ret_val)
3308 				return ret_val;
3309 
3310 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3311 			ret_val = phy->ops.write_reg(hw,
3312 						     IGP01E1000_PHY_PORT_CONFIG,
3313 						     data);
3314 			if (ret_val)
3315 				return ret_val;
3316 		}
3317 	}
3318 
3319 	return E1000_SUCCESS;
3320 }
3321 
3322 /**
3323  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3324  *  @hw: pointer to the HW structure
3325  *  @active: TRUE to enable LPLU, FALSE to disable
3326  *
3327  *  Sets the LPLU D3 state according to the active flag.  When
3328  *  activating LPLU this function also disables smart speed
3329  *  and vice versa.  LPLU will not be activated unless the
3330  *  device autonegotiation advertisement meets standards of
3331  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3332  *  This is a function pointer entry point only called by
3333  *  PHY setup routines.
3334  **/
3335 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3336 {
3337 	struct e1000_phy_info *phy = &hw->phy;
3338 	u32 phy_ctrl;
3339 	s32 ret_val = E1000_SUCCESS;
3340 	u16 data;
3341 
3342 	DEBUGFUNC("e1000_set_d3_lplu_state_ich8lan");
3343 
3344 	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
3345 
3346 	if (!active) {
3347 		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3348 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3349 
3350 		if (phy->type != e1000_phy_igp_3)
3351 			return E1000_SUCCESS;
3352 
3353 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3354 		 * during Dx states where the power conservation is most
3355 		 * important.  During driver activity we should enable
3356 		 * SmartSpeed, so performance is maintained.
3357 		 */
3358 		if (phy->smart_speed == e1000_smart_speed_on) {
3359 			ret_val = phy->ops.read_reg(hw,
3360 						    IGP01E1000_PHY_PORT_CONFIG,
3361 						    &data);
3362 			if (ret_val)
3363 				return ret_val;
3364 
3365 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3366 			ret_val = phy->ops.write_reg(hw,
3367 						     IGP01E1000_PHY_PORT_CONFIG,
3368 						     data);
3369 			if (ret_val)
3370 				return ret_val;
3371 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3372 			ret_val = phy->ops.read_reg(hw,
3373 						    IGP01E1000_PHY_PORT_CONFIG,
3374 						    &data);
3375 			if (ret_val)
3376 				return ret_val;
3377 
3378 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3379 			ret_val = phy->ops.write_reg(hw,
3380 						     IGP01E1000_PHY_PORT_CONFIG,
3381 						     data);
3382 			if (ret_val)
3383 				return ret_val;
3384 		}
3385 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3386 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3387 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3388 		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3389 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3390 
3391 		if (phy->type != e1000_phy_igp_3)
3392 			return E1000_SUCCESS;
3393 
3394 		/* Call gig speed drop workaround on LPLU before accessing
3395 		 * any PHY registers
3396 		 */
3397 		if (hw->mac.type == e1000_ich8lan)
3398 			e1000_gig_downshift_workaround_ich8lan(hw);
3399 
3400 		/* When LPLU is enabled, we should disable SmartSpeed */
3401 		ret_val = phy->ops.read_reg(hw,
3402 					    IGP01E1000_PHY_PORT_CONFIG,
3403 					    &data);
3404 		if (ret_val)
3405 			return ret_val;
3406 
3407 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3408 		ret_val = phy->ops.write_reg(hw,
3409 					     IGP01E1000_PHY_PORT_CONFIG,
3410 					     data);
3411 	}
3412 
3413 	return ret_val;
3414 }
3415 
3416 /**
3417  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3418  *  @hw: pointer to the HW structure
3419  *  @bank:  pointer to the variable that returns the active bank
3420  *
3421  *  Reads signature byte from the NVM using the flash access registers.
3422  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3423  **/
3424 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3425 {
3426 	u32 eecd;
3427 	struct e1000_nvm_info *nvm = &hw->nvm;
3428 	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3429 	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3430 	u32 nvm_dword = 0;
3431 	u8 sig_byte = 0;
3432 	s32 ret_val;
3433 
3434 	DEBUGFUNC("e1000_valid_nvm_bank_detect_ich8lan");
3435 
3436 	switch (hw->mac.type) {
3437 	case e1000_pch_spt:
3438 	case e1000_pch_cnp:
3439 	case e1000_pch_tgp:
3440 	case e1000_pch_adp:
3441 	case e1000_pch_mtp:
3442 	case e1000_pch_lnp:
3443 	case e1000_pch_rpl:
3444 		bank1_offset = nvm->flash_bank_size;
3445 		act_offset = E1000_ICH_NVM_SIG_WORD;
3446 
3447 		/* set bank to 0 in case flash read fails */
3448 		*bank = 0;
3449 
3450 		/* Check bank 0 */
3451 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3452 							 &nvm_dword);
3453 		if (ret_val)
3454 			return ret_val;
3455 		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3456 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3457 		    E1000_ICH_NVM_SIG_VALUE) {
3458 			*bank = 0;
3459 			return E1000_SUCCESS;
3460 		}
3461 
3462 		/* Check bank 1 */
3463 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3464 							 bank1_offset,
3465 							 &nvm_dword);
3466 		if (ret_val)
3467 			return ret_val;
3468 		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3469 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3470 		    E1000_ICH_NVM_SIG_VALUE) {
3471 			*bank = 1;
3472 			return E1000_SUCCESS;
3473 		}
3474 
3475 		DEBUGOUT("ERROR: No valid NVM bank present\n");
3476 		return -E1000_ERR_NVM;
3477 	case e1000_ich8lan:
3478 	case e1000_ich9lan:
3479 		eecd = E1000_READ_REG(hw, E1000_EECD);
3480 		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3481 		    E1000_EECD_SEC1VAL_VALID_MASK) {
3482 			if (eecd & E1000_EECD_SEC1VAL)
3483 				*bank = 1;
3484 			else
3485 				*bank = 0;
3486 
3487 			return E1000_SUCCESS;
3488 		}
3489 		DEBUGOUT("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3490 		/* fall-thru */
3491 	default:
3492 		/* set bank to 0 in case flash read fails */
3493 		*bank = 0;
3494 
3495 		/* Check bank 0 */
3496 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3497 							&sig_byte);
3498 		if (ret_val)
3499 			return ret_val;
3500 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3501 		    E1000_ICH_NVM_SIG_VALUE) {
3502 			*bank = 0;
3503 			return E1000_SUCCESS;
3504 		}
3505 
3506 		/* Check bank 1 */
3507 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3508 							bank1_offset,
3509 							&sig_byte);
3510 		if (ret_val)
3511 			return ret_val;
3512 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3513 		    E1000_ICH_NVM_SIG_VALUE) {
3514 			*bank = 1;
3515 			return E1000_SUCCESS;
3516 		}
3517 
3518 		DEBUGOUT("ERROR: No valid NVM bank present\n");
3519 		return -E1000_ERR_NVM;
3520 	}
3521 }
3522 
3523 /**
3524  *  e1000_read_nvm_spt - NVM access for SPT
3525  *  @hw: pointer to the HW structure
3526  *  @offset: The offset (in bytes) of the word(s) to read.
3527  *  @words: Size of data to read in words.
3528  *  @data: pointer to the word(s) to read at offset.
3529  *
3530  *  Reads a word(s) from the NVM
3531  **/
3532 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3533 			      u16 *data)
3534 {
3535 	struct e1000_nvm_info *nvm = &hw->nvm;
3536 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3537 	u32 act_offset;
3538 	s32 ret_val = E1000_SUCCESS;
3539 	u32 bank = 0;
3540 	u32 dword = 0;
3541 	u16 offset_to_read;
3542 	u16 i;
3543 
3544 	DEBUGFUNC("e1000_read_nvm_spt");
3545 
3546 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3547 	    (words == 0)) {
3548 		DEBUGOUT("nvm parameter(s) out of bounds\n");
3549 		ret_val = -E1000_ERR_NVM;
3550 		goto out;
3551 	}
3552 
3553 	nvm->ops.acquire(hw);
3554 
3555 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3556 	if (ret_val != E1000_SUCCESS) {
3557 		DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
3558 		bank = 0;
3559 	}
3560 
3561 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3562 	act_offset += offset;
3563 
3564 	ret_val = E1000_SUCCESS;
3565 
3566 	for (i = 0; i < words; i += 2) {
3567 		if (words - i == 1) {
3568 			if (dev_spec->shadow_ram[offset+i].modified) {
3569 				data[i] = dev_spec->shadow_ram[offset+i].value;
3570 			} else {
3571 				offset_to_read = act_offset + i -
3572 						 ((act_offset + i) % 2);
3573 				ret_val =
3574 				   e1000_read_flash_dword_ich8lan(hw,
3575 								 offset_to_read,
3576 								 &dword);
3577 				if (ret_val)
3578 					break;
3579 				if ((act_offset + i) % 2 == 0)
3580 					data[i] = (u16)(dword & 0xFFFF);
3581 				else
3582 					data[i] = (u16)((dword >> 16) & 0xFFFF);
3583 			}
3584 		} else {
3585 			offset_to_read = act_offset + i;
3586 			if (!(dev_spec->shadow_ram[offset+i].modified) ||
3587 			    !(dev_spec->shadow_ram[offset+i+1].modified)) {
3588 				ret_val =
3589 				   e1000_read_flash_dword_ich8lan(hw,
3590 								 offset_to_read,
3591 								 &dword);
3592 				if (ret_val)
3593 					break;
3594 			}
3595 			if (dev_spec->shadow_ram[offset+i].modified)
3596 				data[i] = dev_spec->shadow_ram[offset+i].value;
3597 			else
3598 				data[i] = (u16) (dword & 0xFFFF);
3599 			if (dev_spec->shadow_ram[offset+i].modified)
3600 				data[i+1] =
3601 				   dev_spec->shadow_ram[offset+i+1].value;
3602 			else
3603 				data[i+1] = (u16) (dword >> 16 & 0xFFFF);
3604 		}
3605 	}
3606 
3607 	nvm->ops.release(hw);
3608 
3609 out:
3610 	if (ret_val)
3611 		DEBUGOUT1("NVM read error: %d\n", ret_val);
3612 
3613 	return ret_val;
3614 }
3615 
3616 /**
3617  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3618  *  @hw: pointer to the HW structure
3619  *  @offset: The offset (in bytes) of the word(s) to read.
3620  *  @words: Size of data to read in words
3621  *  @data: Pointer to the word(s) to read at offset.
3622  *
3623  *  Reads a word(s) from the NVM using the flash access registers.
3624  **/
3625 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3626 				  u16 *data)
3627 {
3628 	struct e1000_nvm_info *nvm = &hw->nvm;
3629 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3630 	u32 act_offset;
3631 	s32 ret_val = E1000_SUCCESS;
3632 	u32 bank = 0;
3633 	u16 i, word;
3634 
3635 	DEBUGFUNC("e1000_read_nvm_ich8lan");
3636 
3637 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3638 	    (words == 0)) {
3639 		DEBUGOUT("nvm parameter(s) out of bounds\n");
3640 		ret_val = -E1000_ERR_NVM;
3641 		goto out;
3642 	}
3643 
3644 	nvm->ops.acquire(hw);
3645 
3646 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3647 	if (ret_val != E1000_SUCCESS) {
3648 		DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
3649 		bank = 0;
3650 	}
3651 
3652 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3653 	act_offset += offset;
3654 
3655 	ret_val = E1000_SUCCESS;
3656 	for (i = 0; i < words; i++) {
3657 		if (dev_spec->shadow_ram[offset+i].modified) {
3658 			data[i] = dev_spec->shadow_ram[offset+i].value;
3659 		} else {
3660 			ret_val = e1000_read_flash_word_ich8lan(hw,
3661 								act_offset + i,
3662 								&word);
3663 			if (ret_val)
3664 				break;
3665 			data[i] = word;
3666 		}
3667 	}
3668 
3669 	nvm->ops.release(hw);
3670 
3671 out:
3672 	if (ret_val)
3673 		DEBUGOUT1("NVM read error: %d\n", ret_val);
3674 
3675 	return ret_val;
3676 }
3677 
3678 /**
3679  *  e1000_flash_cycle_init_ich8lan - Initialize flash
3680  *  @hw: pointer to the HW structure
3681  *
3682  *  This function does initial flash setup so that a new read/write/erase cycle
3683  *  can be started.
3684  **/
3685 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3686 {
3687 	union ich8_hws_flash_status hsfsts;
3688 	s32 ret_val = -E1000_ERR_NVM;
3689 
3690 	DEBUGFUNC("e1000_flash_cycle_init_ich8lan");
3691 
3692 	hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3693 
3694 	/* Check if the flash descriptor is valid */
3695 	if (!hsfsts.hsf_status.fldesvalid) {
3696 		DEBUGOUT("Flash descriptor invalid.  SW Sequencing must be used.\n");
3697 		return -E1000_ERR_NVM;
3698 	}
3699 
3700 	/* Clear FCERR and DAEL in hw status by writing 1 */
3701 	hsfsts.hsf_status.flcerr = 1;
3702 	hsfsts.hsf_status.dael = 1;
3703 	if (hw->mac.type >= e1000_pch_spt)
3704 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3705 				      hsfsts.regval & 0xFFFF);
3706 	else
3707 		E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
3708 
3709 	/* Either we should have a hardware SPI cycle in progress
3710 	 * bit to check against, in order to start a new cycle or
3711 	 * FDONE bit should be changed in the hardware so that it
3712 	 * is 1 after hardware reset, which can then be used as an
3713 	 * indication whether a cycle is in progress or has been
3714 	 * completed.
3715 	 */
3716 
3717 	if (!hsfsts.hsf_status.flcinprog) {
3718 		/* There is no cycle running at present,
3719 		 * so we can start a cycle.
3720 		 * Begin by setting Flash Cycle Done.
3721 		 */
3722 		hsfsts.hsf_status.flcdone = 1;
3723 		if (hw->mac.type >= e1000_pch_spt)
3724 			E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3725 					      hsfsts.regval & 0xFFFF);
3726 		else
3727 			E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS,
3728 						hsfsts.regval);
3729 		ret_val = E1000_SUCCESS;
3730 	} else {
3731 		s32 i;
3732 
3733 		/* Otherwise poll for sometime so the current
3734 		 * cycle has a chance to end before giving up.
3735 		 */
3736 		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3737 			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
3738 							      ICH_FLASH_HSFSTS);
3739 			if (!hsfsts.hsf_status.flcinprog) {
3740 				ret_val = E1000_SUCCESS;
3741 				break;
3742 			}
3743 			usec_delay(1);
3744 		}
3745 		if (ret_val == E1000_SUCCESS) {
3746 			/* Successful in waiting for previous cycle to timeout,
3747 			 * now set the Flash Cycle Done.
3748 			 */
3749 			hsfsts.hsf_status.flcdone = 1;
3750 			if (hw->mac.type >= e1000_pch_spt)
3751 				E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3752 						      hsfsts.regval & 0xFFFF);
3753 			else
3754 				E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS,
3755 							hsfsts.regval);
3756 		} else {
3757 			DEBUGOUT("Flash controller busy, cannot get access\n");
3758 		}
3759 	}
3760 
3761 	return ret_val;
3762 }
3763 
3764 /**
3765  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3766  *  @hw: pointer to the HW structure
3767  *  @timeout: maximum time to wait for completion
3768  *
3769  *  This function starts a flash cycle and waits for its completion.
3770  **/
3771 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3772 {
3773 	union ich8_hws_flash_ctrl hsflctl;
3774 	union ich8_hws_flash_status hsfsts;
3775 	u32 i = 0;
3776 
3777 	DEBUGFUNC("e1000_flash_cycle_ich8lan");
3778 
3779 	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3780 	if (hw->mac.type >= e1000_pch_spt)
3781 		hsflctl.regval = E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS)>>16;
3782 	else
3783 		hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
3784 	hsflctl.hsf_ctrl.flcgo = 1;
3785 
3786 	if (hw->mac.type >= e1000_pch_spt)
3787 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3788 				      hsflctl.regval << 16);
3789 	else
3790 		E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
3791 
3792 	/* wait till FDONE bit is set to 1 */
3793 	do {
3794 		hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3795 		if (hsfsts.hsf_status.flcdone)
3796 			break;
3797 		usec_delay(1);
3798 	} while (i++ < timeout);
3799 
3800 	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3801 		return E1000_SUCCESS;
3802 
3803 	return -E1000_ERR_NVM;
3804 }
3805 
3806 /**
3807  *  e1000_read_flash_dword_ich8lan - Read dword from flash
3808  *  @hw: pointer to the HW structure
3809  *  @offset: offset to data location
3810  *  @data: pointer to the location for storing the data
3811  *
3812  *  Reads the flash dword at offset into data.  Offset is converted
3813  *  to bytes before read.
3814  **/
3815 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3816 					  u32 *data)
3817 {
3818 	DEBUGFUNC("e1000_read_flash_dword_ich8lan");
3819 
3820 	if (!data)
3821 		return -E1000_ERR_NVM;
3822 
3823 	/* Must convert word offset into bytes. */
3824 	offset <<= 1;
3825 
3826 	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3827 }
3828 
3829 /**
3830  *  e1000_read_flash_word_ich8lan - Read word from flash
3831  *  @hw: pointer to the HW structure
3832  *  @offset: offset to data location
3833  *  @data: pointer to the location for storing the data
3834  *
3835  *  Reads the flash word at offset into data.  Offset is converted
3836  *  to bytes before read.
3837  **/
3838 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3839 					 u16 *data)
3840 {
3841 	DEBUGFUNC("e1000_read_flash_word_ich8lan");
3842 
3843 	if (!data)
3844 		return -E1000_ERR_NVM;
3845 
3846 	/* Must convert offset into bytes. */
3847 	offset <<= 1;
3848 
3849 	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3850 }
3851 
3852 /**
3853  *  e1000_read_flash_byte_ich8lan - Read byte from flash
3854  *  @hw: pointer to the HW structure
3855  *  @offset: The offset of the byte to read.
3856  *  @data: Pointer to a byte to store the value read.
3857  *
3858  *  Reads a single byte from the NVM using the flash access registers.
3859  **/
3860 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3861 					 u8 *data)
3862 {
3863 	s32 ret_val;
3864 	u16 word = 0;
3865 
3866 	/* In SPT, only 32 bits access is supported,
3867 	 * so this function should not be called.
3868 	 */
3869 	if (hw->mac.type >= e1000_pch_spt)
3870 		return -E1000_ERR_NVM;
3871 	else
3872 		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3873 
3874 	if (ret_val)
3875 		return ret_val;
3876 
3877 	*data = (u8)word;
3878 
3879 	return E1000_SUCCESS;
3880 }
3881 
3882 /**
3883  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3884  *  @hw: pointer to the HW structure
3885  *  @offset: The offset (in bytes) of the byte or word to read.
3886  *  @size: Size of data to read, 1=byte 2=word
3887  *  @data: Pointer to the word to store the value read.
3888  *
3889  *  Reads a byte or word from the NVM using the flash access registers.
3890  **/
3891 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3892 					 u8 size, u16 *data)
3893 {
3894 	union ich8_hws_flash_status hsfsts;
3895 	union ich8_hws_flash_ctrl hsflctl;
3896 	u32 flash_linear_addr;
3897 	u32 flash_data = 0;
3898 	s32 ret_val = -E1000_ERR_NVM;
3899 	u8 count = 0;
3900 
3901 	DEBUGFUNC("e1000_read_flash_data_ich8lan");
3902 
3903 	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3904 		return -E1000_ERR_NVM;
3905 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3906 			     hw->nvm.flash_base_addr);
3907 
3908 	do {
3909 		usec_delay(1);
3910 		/* Steps */
3911 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3912 		if (ret_val != E1000_SUCCESS)
3913 			break;
3914 		hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
3915 
3916 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3917 		hsflctl.hsf_ctrl.fldbcount = size - 1;
3918 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3919 		E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
3920 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
3921 
3922 		ret_val = e1000_flash_cycle_ich8lan(hw,
3923 						ICH_FLASH_READ_COMMAND_TIMEOUT);
3924 
3925 		/* Check if FCERR is set to 1, if set to 1, clear it
3926 		 * and try the whole sequence a few more times, else
3927 		 * read in (shift in) the Flash Data0, the order is
3928 		 * least significant byte first msb to lsb
3929 		 */
3930 		if (ret_val == E1000_SUCCESS) {
3931 			flash_data = E1000_READ_FLASH_REG(hw, ICH_FLASH_FDATA0);
3932 			if (size == 1)
3933 				*data = (u8)(flash_data & 0x000000FF);
3934 			else if (size == 2)
3935 				*data = (u16)(flash_data & 0x0000FFFF);
3936 			break;
3937 		} else {
3938 			/* If we've gotten here, then things are probably
3939 			 * completely hosed, but if the error condition is
3940 			 * detected, it won't hurt to give it another try...
3941 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3942 			 */
3943 			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
3944 							      ICH_FLASH_HSFSTS);
3945 			if (hsfsts.hsf_status.flcerr) {
3946 				/* Repeat for some time before giving up. */
3947 				continue;
3948 			} else if (!hsfsts.hsf_status.flcdone) {
3949 				DEBUGOUT("Timeout error - flash cycle did not complete.\n");
3950 				break;
3951 			}
3952 		}
3953 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3954 
3955 	return ret_val;
3956 }
3957 
3958 /**
3959  *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3960  *  @hw: pointer to the HW structure
3961  *  @offset: The offset (in bytes) of the dword to read.
3962  *  @data: Pointer to the dword to store the value read.
3963  *
3964  *  Reads a byte or word from the NVM using the flash access registers.
3965  **/
3966 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3967 					   u32 *data)
3968 {
3969 	union ich8_hws_flash_status hsfsts;
3970 	union ich8_hws_flash_ctrl hsflctl;
3971 	u32 flash_linear_addr;
3972 	s32 ret_val = -E1000_ERR_NVM;
3973 	u8 count = 0;
3974 
3975 	DEBUGFUNC("e1000_read_flash_data_ich8lan");
3976 
3977 	if (offset > ICH_FLASH_LINEAR_ADDR_MASK && hw->mac.type < e1000_pch_spt)
3978 		return -E1000_ERR_NVM;
3979 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3980 			     hw->nvm.flash_base_addr);
3981 
3982 	do {
3983 		usec_delay(1);
3984 		/* Steps */
3985 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3986 		if (ret_val != E1000_SUCCESS)
3987 			break;
3988 		/* In SPT, This register is in Lan memory space, not flash.
3989 		 * Therefore, only 32 bit access is supported
3990 		 */
3991 		hsflctl.regval = E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS)>>16;
3992 
3993 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3994 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3995 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3996 		/* In SPT, This register is in Lan memory space, not flash.
3997 		 * Therefore, only 32 bit access is supported
3998 		 */
3999 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
4000 				      (u32)hsflctl.regval << 16);
4001 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
4002 
4003 		ret_val = e1000_flash_cycle_ich8lan(hw,
4004 						ICH_FLASH_READ_COMMAND_TIMEOUT);
4005 
4006 		/* Check if FCERR is set to 1, if set to 1, clear it
4007 		 * and try the whole sequence a few more times, else
4008 		 * read in (shift in) the Flash Data0, the order is
4009 		 * least significant byte first msb to lsb
4010 		 */
4011 		if (ret_val == E1000_SUCCESS) {
4012 			*data = E1000_READ_FLASH_REG(hw, ICH_FLASH_FDATA0);
4013 			break;
4014 		} else {
4015 			/* If we've gotten here, then things are probably
4016 			 * completely hosed, but if the error condition is
4017 			 * detected, it won't hurt to give it another try...
4018 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
4019 			 */
4020 			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
4021 							      ICH_FLASH_HSFSTS);
4022 			if (hsfsts.hsf_status.flcerr) {
4023 				/* Repeat for some time before giving up. */
4024 				continue;
4025 			} else if (!hsfsts.hsf_status.flcdone) {
4026 				DEBUGOUT("Timeout error - flash cycle did not complete.\n");
4027 				break;
4028 			}
4029 		}
4030 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4031 
4032 	return ret_val;
4033 }
4034 
4035 /**
4036  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
4037  *  @hw: pointer to the HW structure
4038  *  @offset: The offset (in bytes) of the word(s) to write.
4039  *  @words: Size of data to write in words
4040  *  @data: Pointer to the word(s) to write at offset.
4041  *
4042  *  Writes a byte or word to the NVM using the flash access registers.
4043  **/
4044 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
4045 				   u16 *data)
4046 {
4047 	struct e1000_nvm_info *nvm = &hw->nvm;
4048 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4049 	u16 i;
4050 
4051 	DEBUGFUNC("e1000_write_nvm_ich8lan");
4052 
4053 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
4054 	    (words == 0)) {
4055 		DEBUGOUT("nvm parameter(s) out of bounds\n");
4056 		return -E1000_ERR_NVM;
4057 	}
4058 
4059 	nvm->ops.acquire(hw);
4060 
4061 	for (i = 0; i < words; i++) {
4062 		dev_spec->shadow_ram[offset+i].modified = TRUE;
4063 		dev_spec->shadow_ram[offset+i].value = data[i];
4064 	}
4065 
4066 	nvm->ops.release(hw);
4067 
4068 	return E1000_SUCCESS;
4069 }
4070 
4071 /**
4072  *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
4073  *  @hw: pointer to the HW structure
4074  *
4075  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
4076  *  which writes the checksum to the shadow ram.  The changes in the shadow
4077  *  ram are then committed to the EEPROM by processing each bank at a time
4078  *  checking for the modified bit and writing only the pending changes.
4079  *  After a successful commit, the shadow ram is cleared and is ready for
4080  *  future writes.
4081  **/
4082 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
4083 {
4084 	struct e1000_nvm_info *nvm = &hw->nvm;
4085 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4086 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
4087 	s32 ret_val;
4088 	u32 dword = 0;
4089 
4090 	DEBUGFUNC("e1000_update_nvm_checksum_spt");
4091 
4092 	ret_val = e1000_update_nvm_checksum_generic(hw);
4093 	if (ret_val)
4094 		goto out;
4095 
4096 	if (nvm->type != e1000_nvm_flash_sw)
4097 		goto out;
4098 
4099 	nvm->ops.acquire(hw);
4100 
4101 	/* We're writing to the opposite bank so if we're on bank 1,
4102 	 * write to bank 0 etc.  We also need to erase the segment that
4103 	 * is going to be written
4104 	 */
4105 	ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
4106 	if (ret_val != E1000_SUCCESS) {
4107 		DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
4108 		bank = 0;
4109 	}
4110 
4111 	if (bank == 0) {
4112 		new_bank_offset = nvm->flash_bank_size;
4113 		old_bank_offset = 0;
4114 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
4115 		if (ret_val)
4116 			goto release;
4117 	} else {
4118 		old_bank_offset = nvm->flash_bank_size;
4119 		new_bank_offset = 0;
4120 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
4121 		if (ret_val)
4122 			goto release;
4123 	}
4124 	for (i = 0; i < E1000_SHADOW_RAM_WORDS; i += 2) {
4125 		/* Determine whether to write the value stored
4126 		 * in the other NVM bank or a modified value stored
4127 		 * in the shadow RAM
4128 		 */
4129 		ret_val = e1000_read_flash_dword_ich8lan(hw,
4130 							 i + old_bank_offset,
4131 							 &dword);
4132 
4133 		if (dev_spec->shadow_ram[i].modified) {
4134 			dword &= 0xffff0000;
4135 			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
4136 		}
4137 		if (dev_spec->shadow_ram[i + 1].modified) {
4138 			dword &= 0x0000ffff;
4139 			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
4140 				  << 16);
4141 		}
4142 		if (ret_val)
4143 			break;
4144 
4145 		/* If the word is 0x13, then make sure the signature bits
4146 		 * (15:14) are 11b until the commit has completed.
4147 		 * This will allow us to write 10b which indicates the
4148 		 * signature is valid.  We want to do this after the write
4149 		 * has completed so that we don't mark the segment valid
4150 		 * while the write is still in progress
4151 		 */
4152 		if (i == E1000_ICH_NVM_SIG_WORD - 1)
4153 			dword |= E1000_ICH_NVM_SIG_MASK << 16;
4154 
4155 		/* Convert offset to bytes. */
4156 		act_offset = (i + new_bank_offset) << 1;
4157 
4158 		usec_delay(100);
4159 
4160 		/* Write the data to the new bank. Offset in words*/
4161 		act_offset = i + new_bank_offset;
4162 		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
4163 								dword);
4164 		if (ret_val)
4165 			break;
4166 	 }
4167 
4168 	/* Don't bother writing the segment valid bits if sector
4169 	 * programming failed.
4170 	 */
4171 	if (ret_val) {
4172 		DEBUGOUT("Flash commit failed.\n");
4173 		goto release;
4174 	}
4175 
4176 	/* Finally validate the new segment by setting bit 15:14
4177 	 * to 10b in word 0x13 , this can be done without an
4178 	 * erase as well since these bits are 11 to start with
4179 	 * and we need to change bit 14 to 0b
4180 	 */
4181 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4182 
4183 	/*offset in words but we read dword*/
4184 	--act_offset;
4185 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
4186 
4187 	if (ret_val)
4188 		goto release;
4189 
4190 	dword &= 0xBFFFFFFF;
4191 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
4192 
4193 	if (ret_val)
4194 		goto release;
4195 
4196 	/* And invalidate the previously valid segment by setting
4197 	 * its signature word (0x13) high_byte to 0b. This can be
4198 	 * done without an erase because flash erase sets all bits
4199 	 * to 1's. We can write 1's to 0's without an erase
4200 	 */
4201 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4202 
4203 	/* offset in words but we read dword*/
4204 	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
4205 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
4206 
4207 	if (ret_val)
4208 		goto release;
4209 
4210 	dword &= 0x00FFFFFF;
4211 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
4212 
4213 	if (ret_val)
4214 		goto release;
4215 
4216 	/* Great!  Everything worked, we can now clear the cached entries. */
4217 	for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
4218 		dev_spec->shadow_ram[i].modified = FALSE;
4219 		dev_spec->shadow_ram[i].value = 0xFFFF;
4220 	}
4221 
4222 release:
4223 	nvm->ops.release(hw);
4224 
4225 	/* Reload the EEPROM, or else modifications will not appear
4226 	 * until after the next adapter reset.
4227 	 */
4228 	if (!ret_val) {
4229 		nvm->ops.reload(hw);
4230 		msec_delay(10);
4231 	}
4232 
4233 out:
4234 	if (ret_val)
4235 		DEBUGOUT1("NVM update error: %d\n", ret_val);
4236 
4237 	return ret_val;
4238 }
4239 
4240 /**
4241  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
4242  *  @hw: pointer to the HW structure
4243  *
4244  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
4245  *  which writes the checksum to the shadow ram.  The changes in the shadow
4246  *  ram are then committed to the EEPROM by processing each bank at a time
4247  *  checking for the modified bit and writing only the pending changes.
4248  *  After a successful commit, the shadow ram is cleared and is ready for
4249  *  future writes.
4250  **/
4251 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
4252 {
4253 	struct e1000_nvm_info *nvm = &hw->nvm;
4254 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4255 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
4256 	s32 ret_val;
4257 	u16 data = 0;
4258 
4259 	DEBUGFUNC("e1000_update_nvm_checksum_ich8lan");
4260 
4261 	ret_val = e1000_update_nvm_checksum_generic(hw);
4262 	if (ret_val)
4263 		goto out;
4264 
4265 	if (nvm->type != e1000_nvm_flash_sw)
4266 		goto out;
4267 
4268 	nvm->ops.acquire(hw);
4269 
4270 	/* We're writing to the opposite bank so if we're on bank 1,
4271 	 * write to bank 0 etc.  We also need to erase the segment that
4272 	 * is going to be written
4273 	 */
4274 	ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
4275 	if (ret_val != E1000_SUCCESS) {
4276 		DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
4277 		bank = 0;
4278 	}
4279 
4280 	if (bank == 0) {
4281 		new_bank_offset = nvm->flash_bank_size;
4282 		old_bank_offset = 0;
4283 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
4284 		if (ret_val)
4285 			goto release;
4286 	} else {
4287 		old_bank_offset = nvm->flash_bank_size;
4288 		new_bank_offset = 0;
4289 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
4290 		if (ret_val)
4291 			goto release;
4292 	}
4293 	for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
4294 		if (dev_spec->shadow_ram[i].modified) {
4295 			data = dev_spec->shadow_ram[i].value;
4296 		} else {
4297 			ret_val = e1000_read_flash_word_ich8lan(hw, i +
4298 								old_bank_offset,
4299 								&data);
4300 			if (ret_val)
4301 				break;
4302 		}
4303 		/* If the word is 0x13, then make sure the signature bits
4304 		 * (15:14) are 11b until the commit has completed.
4305 		 * This will allow us to write 10b which indicates the
4306 		 * signature is valid.  We want to do this after the write
4307 		 * has completed so that we don't mark the segment valid
4308 		 * while the write is still in progress
4309 		 */
4310 		if (i == E1000_ICH_NVM_SIG_WORD)
4311 			data |= E1000_ICH_NVM_SIG_MASK;
4312 
4313 		/* Convert offset to bytes. */
4314 		act_offset = (i + new_bank_offset) << 1;
4315 
4316 		usec_delay(100);
4317 
4318 		/* Write the bytes to the new bank. */
4319 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4320 							       act_offset,
4321 							       (u8)data);
4322 		if (ret_val)
4323 			break;
4324 
4325 		usec_delay(100);
4326 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4327 							  act_offset + 1,
4328 							  (u8)(data >> 8));
4329 		if (ret_val)
4330 			break;
4331 	 }
4332 
4333 	/* Don't bother writing the segment valid bits if sector
4334 	 * programming failed.
4335 	 */
4336 	if (ret_val) {
4337 		DEBUGOUT("Flash commit failed.\n");
4338 		goto release;
4339 	}
4340 
4341 	/* Finally validate the new segment by setting bit 15:14
4342 	 * to 10b in word 0x13 , this can be done without an
4343 	 * erase as well since these bits are 11 to start with
4344 	 * and we need to change bit 14 to 0b
4345 	 */
4346 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4347 	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4348 	if (ret_val)
4349 		goto release;
4350 
4351 	data &= 0xBFFF;
4352 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset * 2 + 1,
4353 						       (u8)(data >> 8));
4354 	if (ret_val)
4355 		goto release;
4356 
4357 	/* And invalidate the previously valid segment by setting
4358 	 * its signature word (0x13) high_byte to 0b. This can be
4359 	 * done without an erase because flash erase sets all bits
4360 	 * to 1's. We can write 1's to 0's without an erase
4361 	 */
4362 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4363 
4364 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4365 
4366 	if (ret_val)
4367 		goto release;
4368 
4369 	/* Great!  Everything worked, we can now clear the cached entries. */
4370 	for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
4371 		dev_spec->shadow_ram[i].modified = FALSE;
4372 		dev_spec->shadow_ram[i].value = 0xFFFF;
4373 	}
4374 
4375 release:
4376 	nvm->ops.release(hw);
4377 
4378 	/* Reload the EEPROM, or else modifications will not appear
4379 	 * until after the next adapter reset.
4380 	 */
4381 	if (!ret_val) {
4382 		nvm->ops.reload(hw);
4383 		msec_delay(10);
4384 	}
4385 
4386 out:
4387 	if (ret_val)
4388 		DEBUGOUT1("NVM update error: %d\n", ret_val);
4389 
4390 	return ret_val;
4391 }
4392 
4393 /**
4394  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4395  *  @hw: pointer to the HW structure
4396  *
4397  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4398  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4399  *  calculated, in which case we need to calculate the checksum and set bit 6.
4400  **/
4401 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4402 {
4403 	s32 ret_val;
4404 	u16 data;
4405 	u16 word;
4406 	u16 valid_csum_mask;
4407 
4408 	DEBUGFUNC("e1000_validate_nvm_checksum_ich8lan");
4409 
4410 	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4411 	 * the checksum needs to be fixed.  This bit is an indication that
4412 	 * the NVM was prepared by OEM software and did not calculate
4413 	 * the checksum...a likely scenario.
4414 	 */
4415 	switch (hw->mac.type) {
4416 	case e1000_pch_lpt:
4417 	case e1000_pch_spt:
4418 	case e1000_pch_cnp:
4419 	case e1000_pch_tgp:
4420 	case e1000_pch_adp:
4421 	case e1000_pch_mtp:
4422 	case e1000_pch_lnp:
4423 	case e1000_pch_rpl:
4424 		word = NVM_COMPAT;
4425 		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4426 		break;
4427 	default:
4428 		word = NVM_FUTURE_INIT_WORD1;
4429 		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4430 		break;
4431 	}
4432 
4433 	ret_val = hw->nvm.ops.read(hw, word, 1, &data);
4434 	if (ret_val)
4435 		return ret_val;
4436 
4437 	if (!(data & valid_csum_mask)) {
4438 		data |= valid_csum_mask;
4439 		ret_val = hw->nvm.ops.write(hw, word, 1, &data);
4440 		if (ret_val)
4441 			return ret_val;
4442 		ret_val = hw->nvm.ops.update(hw);
4443 		if (ret_val)
4444 			return ret_val;
4445 	}
4446 
4447 	return e1000_validate_nvm_checksum_generic(hw);
4448 }
4449 
4450 /**
4451  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4452  *  @hw: pointer to the HW structure
4453  *  @offset: The offset (in bytes) of the byte/word to read.
4454  *  @size: Size of data to read, 1=byte 2=word
4455  *  @data: The byte(s) to write to the NVM.
4456  *
4457  *  Writes one/two bytes to the NVM using the flash access registers.
4458  **/
4459 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4460 					  u8 size, u16 data)
4461 {
4462 	union ich8_hws_flash_status hsfsts;
4463 	union ich8_hws_flash_ctrl hsflctl;
4464 	u32 flash_linear_addr;
4465 	u32 flash_data = 0;
4466 	s32 ret_val;
4467 	u8 count = 0;
4468 
4469 	DEBUGFUNC("e1000_write_ich8_data");
4470 
4471 	if (hw->mac.type >= e1000_pch_spt) {
4472 		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4473 			return -E1000_ERR_NVM;
4474 	} else {
4475 		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4476 			return -E1000_ERR_NVM;
4477 	}
4478 
4479 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4480 			     hw->nvm.flash_base_addr);
4481 
4482 	do {
4483 		usec_delay(1);
4484 		/* Steps */
4485 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4486 		if (ret_val != E1000_SUCCESS)
4487 			break;
4488 		/* In SPT, This register is in Lan memory space, not
4489 		 * flash.  Therefore, only 32 bit access is supported
4490 		 */
4491 		if (hw->mac.type >= e1000_pch_spt)
4492 			hsflctl.regval =
4493 			    E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS) >> 16;
4494 		else
4495 			hsflctl.regval =
4496 			    E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
4497 
4498 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4499 		hsflctl.hsf_ctrl.fldbcount = size - 1;
4500 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4501 		/* In SPT, This register is in Lan memory space,
4502 		 * not flash.  Therefore, only 32 bit access is
4503 		 * supported
4504 		 */
4505 		if (hw->mac.type >= e1000_pch_spt)
4506 			E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
4507 					      hsflctl.regval << 16);
4508 		else
4509 			E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
4510 						hsflctl.regval);
4511 
4512 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
4513 
4514 		if (size == 1)
4515 			flash_data = (u32)data & 0x00FF;
4516 		else
4517 			flash_data = (u32)data;
4518 
4519 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data);
4520 
4521 		/* check if FCERR is set to 1 , if set to 1, clear it
4522 		 * and try the whole sequence a few more times else done
4523 		 */
4524 		ret_val =
4525 		    e1000_flash_cycle_ich8lan(hw,
4526 					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4527 		if (ret_val == E1000_SUCCESS)
4528 			break;
4529 
4530 		/* If we're here, then things are most likely
4531 		 * completely hosed, but if the error condition
4532 		 * is detected, it won't hurt to give it another
4533 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4534 		 */
4535 		hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
4536 		if (hsfsts.hsf_status.flcerr)
4537 			/* Repeat for some time before giving up. */
4538 			continue;
4539 		if (!hsfsts.hsf_status.flcdone) {
4540 			DEBUGOUT("Timeout error - flash cycle did not complete.\n");
4541 			break;
4542 		}
4543 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4544 
4545 	return ret_val;
4546 }
4547 
4548 /**
4549 *  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4550 *  @hw: pointer to the HW structure
4551 *  @offset: The offset (in bytes) of the dwords to read.
4552 *  @data: The 4 bytes to write to the NVM.
4553 *
4554 *  Writes one/two/four bytes to the NVM using the flash access registers.
4555 **/
4556 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4557 					    u32 data)
4558 {
4559 	union ich8_hws_flash_status hsfsts;
4560 	union ich8_hws_flash_ctrl hsflctl;
4561 	u32 flash_linear_addr;
4562 	s32 ret_val;
4563 	u8 count = 0;
4564 
4565 	DEBUGFUNC("e1000_write_flash_data32_ich8lan");
4566 
4567 	if (hw->mac.type >= e1000_pch_spt) {
4568 		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4569 			return -E1000_ERR_NVM;
4570 	}
4571 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4572 			     hw->nvm.flash_base_addr);
4573 	do {
4574 		usec_delay(1);
4575 		/* Steps */
4576 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4577 		if (ret_val != E1000_SUCCESS)
4578 			break;
4579 
4580 		/* In SPT, This register is in Lan memory space, not
4581 		 * flash.  Therefore, only 32 bit access is supported
4582 		 */
4583 		if (hw->mac.type >= e1000_pch_spt)
4584 			hsflctl.regval = E1000_READ_FLASH_REG(hw,
4585 							      ICH_FLASH_HSFSTS)
4586 					 >> 16;
4587 		else
4588 			hsflctl.regval = E1000_READ_FLASH_REG16(hw,
4589 							      ICH_FLASH_HSFCTL);
4590 
4591 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4592 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4593 
4594 		/* In SPT, This register is in Lan memory space,
4595 		 * not flash.  Therefore, only 32 bit access is
4596 		 * supported
4597 		 */
4598 		if (hw->mac.type >= e1000_pch_spt)
4599 			E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
4600 					      hsflctl.regval << 16);
4601 		else
4602 			E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
4603 						hsflctl.regval);
4604 
4605 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
4606 
4607 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FDATA0, data);
4608 
4609 		/* check if FCERR is set to 1 , if set to 1, clear it
4610 		 * and try the whole sequence a few more times else done
4611 		 */
4612 		ret_val = e1000_flash_cycle_ich8lan(hw,
4613 					       ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4614 
4615 		if (ret_val == E1000_SUCCESS)
4616 			break;
4617 
4618 		/* If we're here, then things are most likely
4619 		 * completely hosed, but if the error condition
4620 		 * is detected, it won't hurt to give it another
4621 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4622 		 */
4623 		hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
4624 
4625 		if (hsfsts.hsf_status.flcerr)
4626 			/* Repeat for some time before giving up. */
4627 			continue;
4628 		if (!hsfsts.hsf_status.flcdone) {
4629 			DEBUGOUT("Timeout error - flash cycle did not complete.\n");
4630 			break;
4631 		}
4632 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4633 
4634 	return ret_val;
4635 }
4636 
4637 /**
4638  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4639  *  @hw: pointer to the HW structure
4640  *  @offset: The index of the byte to read.
4641  *  @data: The byte to write to the NVM.
4642  *
4643  *  Writes a single byte to the NVM using the flash access registers.
4644  **/
4645 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4646 					  u8 data)
4647 {
4648 	u16 word = (u16)data;
4649 
4650 	DEBUGFUNC("e1000_write_flash_byte_ich8lan");
4651 
4652 	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4653 }
4654 
4655 /**
4656 *  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4657 *  @hw: pointer to the HW structure
4658 *  @offset: The offset of the word to write.
4659 *  @dword: The dword to write to the NVM.
4660 *
4661 *  Writes a single dword to the NVM using the flash access registers.
4662 *  Goes through a retry algorithm before giving up.
4663 **/
4664 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4665 						 u32 offset, u32 dword)
4666 {
4667 	s32 ret_val;
4668 	u16 program_retries;
4669 
4670 	DEBUGFUNC("e1000_retry_write_flash_dword_ich8lan");
4671 
4672 	/* Must convert word offset into bytes. */
4673 	offset <<= 1;
4674 
4675 	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4676 
4677 	if (!ret_val)
4678 		return ret_val;
4679 	for (program_retries = 0; program_retries < 100; program_retries++) {
4680 		DEBUGOUT2("Retrying Byte %8.8X at offset %u\n", dword, offset);
4681 		usec_delay(100);
4682 		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4683 		if (ret_val == E1000_SUCCESS)
4684 			break;
4685 	}
4686 	if (program_retries == 100)
4687 		return -E1000_ERR_NVM;
4688 
4689 	return E1000_SUCCESS;
4690 }
4691 
4692 /**
4693  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4694  *  @hw: pointer to the HW structure
4695  *  @offset: The offset of the byte to write.
4696  *  @byte: The byte to write to the NVM.
4697  *
4698  *  Writes a single byte to the NVM using the flash access registers.
4699  *  Goes through a retry algorithm before giving up.
4700  **/
4701 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4702 						u32 offset, u8 byte)
4703 {
4704 	s32 ret_val;
4705 	u16 program_retries;
4706 
4707 	DEBUGFUNC("e1000_retry_write_flash_byte_ich8lan");
4708 
4709 	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4710 	if (!ret_val)
4711 		return ret_val;
4712 
4713 	for (program_retries = 0; program_retries < 100; program_retries++) {
4714 		DEBUGOUT2("Retrying Byte %2.2X at offset %u\n", byte, offset);
4715 		usec_delay(100);
4716 		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4717 		if (ret_val == E1000_SUCCESS)
4718 			break;
4719 	}
4720 	if (program_retries == 100)
4721 		return -E1000_ERR_NVM;
4722 
4723 	return E1000_SUCCESS;
4724 }
4725 
4726 /**
4727  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4728  *  @hw: pointer to the HW structure
4729  *  @bank: 0 for first bank, 1 for second bank, etc.
4730  *
4731  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4732  *  bank N is 4096 * N + flash_reg_addr.
4733  **/
4734 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4735 {
4736 	struct e1000_nvm_info *nvm = &hw->nvm;
4737 	union ich8_hws_flash_status hsfsts;
4738 	union ich8_hws_flash_ctrl hsflctl;
4739 	u32 flash_linear_addr;
4740 	/* bank size is in 16bit words - adjust to bytes */
4741 	u32 flash_bank_size = nvm->flash_bank_size * 2;
4742 	s32 ret_val;
4743 	s32 count = 0;
4744 	s32 j, iteration, sector_size;
4745 
4746 	DEBUGFUNC("e1000_erase_flash_bank_ich8lan");
4747 
4748 	hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
4749 
4750 	/* Determine HW Sector size: Read BERASE bits of hw flash status
4751 	 * register
4752 	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4753 	 *     consecutive sectors.  The start index for the nth Hw sector
4754 	 *     can be calculated as = bank * 4096 + n * 256
4755 	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4756 	 *     The start index for the nth Hw sector can be calculated
4757 	 *     as = bank * 4096
4758 	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4759 	 *     (ich9 only, otherwise error condition)
4760 	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4761 	 */
4762 	switch (hsfsts.hsf_status.berasesz) {
4763 	case 0:
4764 		/* Hw sector size 256 */
4765 		sector_size = ICH_FLASH_SEG_SIZE_256;
4766 		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4767 		break;
4768 	case 1:
4769 		sector_size = ICH_FLASH_SEG_SIZE_4K;
4770 		iteration = 1;
4771 		break;
4772 	case 2:
4773 		sector_size = ICH_FLASH_SEG_SIZE_8K;
4774 		iteration = 1;
4775 		break;
4776 	case 3:
4777 		sector_size = ICH_FLASH_SEG_SIZE_64K;
4778 		iteration = 1;
4779 		break;
4780 	default:
4781 		return -E1000_ERR_NVM;
4782 	}
4783 
4784 	/* Start with the base address, then add the sector offset. */
4785 	flash_linear_addr = hw->nvm.flash_base_addr;
4786 	flash_linear_addr += (bank) ? flash_bank_size : 0;
4787 
4788 	for (j = 0; j < iteration; j++) {
4789 		do {
4790 			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4791 
4792 			/* Steps */
4793 			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4794 			if (ret_val)
4795 				return ret_val;
4796 
4797 			/* Write a value 11 (block Erase) in Flash
4798 			 * Cycle field in hw flash control
4799 			 */
4800 			if (hw->mac.type >= e1000_pch_spt)
4801 				hsflctl.regval =
4802 				    E1000_READ_FLASH_REG(hw,
4803 							 ICH_FLASH_HSFSTS)>>16;
4804 			else
4805 				hsflctl.regval =
4806 				    E1000_READ_FLASH_REG16(hw,
4807 							   ICH_FLASH_HSFCTL);
4808 
4809 			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4810 			if (hw->mac.type >= e1000_pch_spt)
4811 				E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
4812 						      hsflctl.regval << 16);
4813 			else
4814 				E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
4815 							hsflctl.regval);
4816 
4817 			/* Write the last 24 bits of an index within the
4818 			 * block into Flash Linear address field in Flash
4819 			 * Address.
4820 			 */
4821 			flash_linear_addr += (j * sector_size);
4822 			E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR,
4823 					      flash_linear_addr);
4824 
4825 			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4826 			if (ret_val == E1000_SUCCESS)
4827 				break;
4828 
4829 			/* Check if FCERR is set to 1.  If 1,
4830 			 * clear it and try the whole sequence
4831 			 * a few more times else Done
4832 			 */
4833 			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
4834 						      ICH_FLASH_HSFSTS);
4835 			if (hsfsts.hsf_status.flcerr)
4836 				/* repeat for some time before giving up */
4837 				continue;
4838 			else if (!hsfsts.hsf_status.flcdone)
4839 				return ret_val;
4840 		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4841 	}
4842 
4843 	return E1000_SUCCESS;
4844 }
4845 
4846 /**
4847  *  e1000_valid_led_default_ich8lan - Set the default LED settings
4848  *  @hw: pointer to the HW structure
4849  *  @data: Pointer to the LED settings
4850  *
4851  *  Reads the LED default settings from the NVM to data.  If the NVM LED
4852  *  settings is all 0's or F's, set the LED default to a valid LED default
4853  *  setting.
4854  **/
4855 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4856 {
4857 	s32 ret_val;
4858 
4859 	DEBUGFUNC("e1000_valid_led_default_ich8lan");
4860 
4861 	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
4862 	if (ret_val) {
4863 		DEBUGOUT("NVM Read Error\n");
4864 		return ret_val;
4865 	}
4866 
4867 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4868 		*data = ID_LED_DEFAULT_ICH8LAN;
4869 
4870 	return E1000_SUCCESS;
4871 }
4872 
4873 /**
4874  *  e1000_id_led_init_pchlan - store LED configurations
4875  *  @hw: pointer to the HW structure
4876  *
4877  *  PCH does not control LEDs via the LEDCTL register, rather it uses
4878  *  the PHY LED configuration register.
4879  *
4880  *  PCH also does not have an "always on" or "always off" mode which
4881  *  complicates the ID feature.  Instead of using the "on" mode to indicate
4882  *  in ledctl_mode2 the LEDs to use for ID (see e1000_id_led_init_generic()),
4883  *  use "link_up" mode.  The LEDs will still ID on request if there is no
4884  *  link based on logic in e1000_led_[on|off]_pchlan().
4885  **/
4886 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4887 {
4888 	struct e1000_mac_info *mac = &hw->mac;
4889 	s32 ret_val;
4890 	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4891 	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4892 	u16 data, i, temp, shift;
4893 
4894 	DEBUGFUNC("e1000_id_led_init_pchlan");
4895 
4896 	/* Get default ID LED modes */
4897 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4898 	if (ret_val)
4899 		return ret_val;
4900 
4901 	mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL);
4902 	mac->ledctl_mode1 = mac->ledctl_default;
4903 	mac->ledctl_mode2 = mac->ledctl_default;
4904 
4905 	for (i = 0; i < 4; i++) {
4906 		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4907 		shift = (i * 5);
4908 		switch (temp) {
4909 		case ID_LED_ON1_DEF2:
4910 		case ID_LED_ON1_ON2:
4911 		case ID_LED_ON1_OFF2:
4912 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4913 			mac->ledctl_mode1 |= (ledctl_on << shift);
4914 			break;
4915 		case ID_LED_OFF1_DEF2:
4916 		case ID_LED_OFF1_ON2:
4917 		case ID_LED_OFF1_OFF2:
4918 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4919 			mac->ledctl_mode1 |= (ledctl_off << shift);
4920 			break;
4921 		default:
4922 			/* Do nothing */
4923 			break;
4924 		}
4925 		switch (temp) {
4926 		case ID_LED_DEF1_ON2:
4927 		case ID_LED_ON1_ON2:
4928 		case ID_LED_OFF1_ON2:
4929 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4930 			mac->ledctl_mode2 |= (ledctl_on << shift);
4931 			break;
4932 		case ID_LED_DEF1_OFF2:
4933 		case ID_LED_ON1_OFF2:
4934 		case ID_LED_OFF1_OFF2:
4935 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4936 			mac->ledctl_mode2 |= (ledctl_off << shift);
4937 			break;
4938 		default:
4939 			/* Do nothing */
4940 			break;
4941 		}
4942 	}
4943 
4944 	return E1000_SUCCESS;
4945 }
4946 
4947 /**
4948  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4949  *  @hw: pointer to the HW structure
4950  *
4951  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4952  *  register, so the bus width is hard coded.
4953  **/
4954 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4955 {
4956 	struct e1000_bus_info *bus = &hw->bus;
4957 	s32 ret_val;
4958 
4959 	DEBUGFUNC("e1000_get_bus_info_ich8lan");
4960 
4961 	ret_val = e1000_get_bus_info_pcie_generic(hw);
4962 
4963 	/* ICH devices are "PCI Express"-ish.  They have
4964 	 * a configuration space, but do not contain
4965 	 * PCI Express Capability registers, so bus width
4966 	 * must be hardcoded.
4967 	 */
4968 	if (bus->width == e1000_bus_width_unknown)
4969 		bus->width = e1000_bus_width_pcie_x1;
4970 
4971 	return ret_val;
4972 }
4973 
4974 /**
4975  *  e1000_reset_hw_ich8lan - Reset the hardware
4976  *  @hw: pointer to the HW structure
4977  *
4978  *  Does a full reset of the hardware which includes a reset of the PHY and
4979  *  MAC.
4980  **/
4981 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4982 {
4983 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4984 	u16 kum_cfg;
4985 	u32 ctrl, reg;
4986 	s32 ret_val;
4987 
4988 	DEBUGFUNC("e1000_reset_hw_ich8lan");
4989 
4990 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
4991 	 * on the last TLP read/write transaction when MAC is reset.
4992 	 */
4993 	ret_val = e1000_disable_pcie_master_generic(hw);
4994 	if (ret_val)
4995 		DEBUGOUT("PCI-E Master disable polling has failed.\n");
4996 
4997 	DEBUGOUT("Masking off all interrupts\n");
4998 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
4999 
5000 	/* Disable the Transmit and Receive units.  Then delay to allow
5001 	 * any pending transactions to complete before we hit the MAC
5002 	 * with the global reset.
5003 	 */
5004 	E1000_WRITE_REG(hw, E1000_RCTL, 0);
5005 	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
5006 	E1000_WRITE_FLUSH(hw);
5007 
5008 	msec_delay(10);
5009 
5010 	/* Workaround for ICH8 bit corruption issue in FIFO memory */
5011 	if (hw->mac.type == e1000_ich8lan) {
5012 		/* Set Tx and Rx buffer allocation to 8k apiece. */
5013 		E1000_WRITE_REG(hw, E1000_PBA, E1000_PBA_8K);
5014 		/* Set Packet Buffer Size to 16k. */
5015 		E1000_WRITE_REG(hw, E1000_PBS, E1000_PBS_16K);
5016 	}
5017 
5018 	if (hw->mac.type == e1000_pchlan) {
5019 		/* Save the NVM K1 bit setting*/
5020 		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
5021 		if (ret_val)
5022 			return ret_val;
5023 
5024 		if (kum_cfg & E1000_NVM_K1_ENABLE)
5025 			dev_spec->nvm_k1_enabled = TRUE;
5026 		else
5027 			dev_spec->nvm_k1_enabled = FALSE;
5028 	}
5029 
5030 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5031 
5032 	if (!hw->phy.ops.check_reset_block(hw)) {
5033 		/* Full-chip reset requires MAC and PHY reset at the same
5034 		 * time to make sure the interface between MAC and the
5035 		 * external PHY is reset.
5036 		 */
5037 		ctrl |= E1000_CTRL_PHY_RST;
5038 
5039 		/* Gate automatic PHY configuration by hardware on
5040 		 * non-managed 82579
5041 		 */
5042 		if ((hw->mac.type == e1000_pch2lan) &&
5043 		    !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID))
5044 			e1000_gate_hw_phy_config_ich8lan(hw, TRUE);
5045 	}
5046 	ret_val = e1000_acquire_swflag_ich8lan(hw);
5047 	DEBUGOUT("Issuing a global reset to ich8lan\n");
5048 	E1000_WRITE_REG(hw, E1000_CTRL, (ctrl | E1000_CTRL_RST));
5049 	/* cannot issue a flush here because it hangs the hardware */
5050 	msec_delay(20);
5051 
5052 	/* Set Phy Config Counter to 50msec */
5053 	if (hw->mac.type == e1000_pch2lan) {
5054 		reg = E1000_READ_REG(hw, E1000_FEXTNVM3);
5055 		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
5056 		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
5057 		E1000_WRITE_REG(hw, E1000_FEXTNVM3, reg);
5058 	}
5059 
5060 	if (!ret_val)
5061 		E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
5062 
5063 	if (ctrl & E1000_CTRL_PHY_RST) {
5064 		ret_val = hw->phy.ops.get_cfg_done(hw);
5065 		if (ret_val)
5066 			return ret_val;
5067 
5068 		ret_val = e1000_post_phy_reset_ich8lan(hw);
5069 		if (ret_val)
5070 			return ret_val;
5071 	}
5072 
5073 	/* For PCH, this write will make sure that any noise
5074 	 * will be detected as a CRC error and be dropped rather than show up
5075 	 * as a bad packet to the DMA engine.
5076 	 */
5077 	if (hw->mac.type == e1000_pchlan)
5078 		E1000_WRITE_REG(hw, E1000_CRC_OFFSET, 0x65656565);
5079 
5080 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
5081 	E1000_READ_REG(hw, E1000_ICR);
5082 
5083 	reg = E1000_READ_REG(hw, E1000_KABGTXD);
5084 	reg |= E1000_KABGTXD_BGSQLBIAS;
5085 	E1000_WRITE_REG(hw, E1000_KABGTXD, reg);
5086 
5087 	return E1000_SUCCESS;
5088 }
5089 
5090 /**
5091  *  e1000_init_hw_ich8lan - Initialize the hardware
5092  *  @hw: pointer to the HW structure
5093  *
5094  *  Prepares the hardware for transmit and receive by doing the following:
5095  *   - initialize hardware bits
5096  *   - initialize LED identification
5097  *   - setup receive address registers
5098  *   - setup flow control
5099  *   - setup transmit descriptors
5100  *   - clear statistics
5101  **/
5102 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
5103 {
5104 	struct e1000_mac_info *mac = &hw->mac;
5105 	u32 ctrl_ext, txdctl, snoop;
5106 	s32 ret_val;
5107 	u16 i;
5108 
5109 	DEBUGFUNC("e1000_init_hw_ich8lan");
5110 
5111 	e1000_initialize_hw_bits_ich8lan(hw);
5112 
5113 	/* Initialize identification LED */
5114 	ret_val = mac->ops.id_led_init(hw);
5115 	/* An error is not fatal and we should not stop init due to this */
5116 	if (ret_val)
5117 		DEBUGOUT("Error initializing identification LED\n");
5118 
5119 	/* Setup the receive address. */
5120 	e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
5121 
5122 	/* Zero out the Multicast HASH table */
5123 	DEBUGOUT("Zeroing the MTA\n");
5124 	for (i = 0; i < mac->mta_reg_count; i++)
5125 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
5126 
5127 	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
5128 	 * the ME.  Disable wakeup by clearing the host wakeup bit.
5129 	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
5130 	 */
5131 	if (hw->phy.type == e1000_phy_82578) {
5132 		hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &i);
5133 		i &= ~BM_WUC_HOST_WU_BIT;
5134 		hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, i);
5135 		ret_val = e1000_phy_hw_reset_ich8lan(hw);
5136 		if (ret_val)
5137 			return ret_val;
5138 	}
5139 
5140 	/* Setup link and flow control */
5141 	ret_val = mac->ops.setup_link(hw);
5142 
5143 	/* Set the transmit descriptor write-back policy for both queues */
5144 	txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0));
5145 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
5146 		  E1000_TXDCTL_FULL_TX_DESC_WB);
5147 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
5148 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
5149 	E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl);
5150 	txdctl = E1000_READ_REG(hw, E1000_TXDCTL(1));
5151 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
5152 		  E1000_TXDCTL_FULL_TX_DESC_WB);
5153 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
5154 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
5155 	E1000_WRITE_REG(hw, E1000_TXDCTL(1), txdctl);
5156 
5157 	/* ICH8 has opposite polarity of no_snoop bits.
5158 	 * By default, we should use snoop behavior.
5159 	 */
5160 	if (mac->type == e1000_ich8lan)
5161 		snoop = PCIE_ICH8_SNOOP_ALL;
5162 	else
5163 		snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
5164 	e1000_set_pcie_no_snoop_generic(hw, snoop);
5165 
5166 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
5167 	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
5168 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
5169 
5170 	/* Clear all of the statistics registers (clear on read).  It is
5171 	 * important that we do this after we have tried to establish link
5172 	 * because the symbol error count will increment wildly if there
5173 	 * is no link.
5174 	 */
5175 	e1000_clear_hw_cntrs_ich8lan(hw);
5176 
5177 	return ret_val;
5178 }
5179 
5180 /**
5181  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
5182  *  @hw: pointer to the HW structure
5183  *
5184  *  Sets/Clears required hardware bits necessary for correctly setting up the
5185  *  hardware for transmit and receive.
5186  **/
5187 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
5188 {
5189 	u32 reg;
5190 
5191 	DEBUGFUNC("e1000_initialize_hw_bits_ich8lan");
5192 
5193 	/* Extended Device Control */
5194 	reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
5195 	reg |= (1 << 22);
5196 	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
5197 	if (hw->mac.type >= e1000_pchlan)
5198 		reg |= E1000_CTRL_EXT_PHYPDEN;
5199 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
5200 
5201 	/* Transmit Descriptor Control 0 */
5202 	reg = E1000_READ_REG(hw, E1000_TXDCTL(0));
5203 	reg |= (1 << 22);
5204 	E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg);
5205 
5206 	/* Transmit Descriptor Control 1 */
5207 	reg = E1000_READ_REG(hw, E1000_TXDCTL(1));
5208 	reg |= (1 << 22);
5209 	E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg);
5210 
5211 	/* Transmit Arbitration Control 0 */
5212 	reg = E1000_READ_REG(hw, E1000_TARC(0));
5213 	if (hw->mac.type == e1000_ich8lan)
5214 		reg |= (1 << 28) | (1 << 29);
5215 	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
5216 	E1000_WRITE_REG(hw, E1000_TARC(0), reg);
5217 
5218 	/* Transmit Arbitration Control 1 */
5219 	reg = E1000_READ_REG(hw, E1000_TARC(1));
5220 	if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR)
5221 		reg &= ~(1 << 28);
5222 	else
5223 		reg |= (1 << 28);
5224 	reg |= (1 << 24) | (1 << 26) | (1 << 30);
5225 	E1000_WRITE_REG(hw, E1000_TARC(1), reg);
5226 
5227 	/* Device Status */
5228 	if (hw->mac.type == e1000_ich8lan) {
5229 		reg = E1000_READ_REG(hw, E1000_STATUS);
5230 		reg &= ~(1UL << 31);
5231 		E1000_WRITE_REG(hw, E1000_STATUS, reg);
5232 	}
5233 
5234 	/* work-around descriptor data corruption issue during nfs v2 udp
5235 	 * traffic, just disable the nfs filtering capability
5236 	 */
5237 	reg = E1000_READ_REG(hw, E1000_RFCTL);
5238 	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
5239 
5240 	/* Disable IPv6 extension header parsing because some malformed
5241 	 * IPv6 headers can hang the Rx.
5242 	 */
5243 	if (hw->mac.type == e1000_ich8lan)
5244 		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
5245 	E1000_WRITE_REG(hw, E1000_RFCTL, reg);
5246 
5247 	/* Enable ECC on Lynxpoint */
5248 	if (hw->mac.type >= e1000_pch_lpt) {
5249 		reg = E1000_READ_REG(hw, E1000_PBECCSTS);
5250 		reg |= E1000_PBECCSTS_ECC_ENABLE;
5251 		E1000_WRITE_REG(hw, E1000_PBECCSTS, reg);
5252 
5253 		reg = E1000_READ_REG(hw, E1000_CTRL);
5254 		reg |= E1000_CTRL_MEHE;
5255 		E1000_WRITE_REG(hw, E1000_CTRL, reg);
5256 	}
5257 
5258 	return;
5259 }
5260 
5261 /**
5262  *  e1000_setup_link_ich8lan - Setup flow control and link settings
5263  *  @hw: pointer to the HW structure
5264  *
5265  *  Determines which flow control settings to use, then configures flow
5266  *  control.  Calls the appropriate media-specific link configuration
5267  *  function.  Assuming the adapter has a valid link partner, a valid link
5268  *  should be established.  Assumes the hardware has previously been reset
5269  *  and the transmitter and receiver are not enabled.
5270  **/
5271 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
5272 {
5273 	s32 ret_val;
5274 
5275 	DEBUGFUNC("e1000_setup_link_ich8lan");
5276 
5277 	if (hw->phy.ops.check_reset_block(hw))
5278 		return E1000_SUCCESS;
5279 
5280 	/* ICH parts do not have a word in the NVM to determine
5281 	 * the default flow control setting, so we explicitly
5282 	 * set it to full.
5283 	 */
5284 	if (hw->fc.requested_mode == e1000_fc_default)
5285 		hw->fc.requested_mode = e1000_fc_full;
5286 
5287 	/* Save off the requested flow control mode for use later.  Depending
5288 	 * on the link partner's capabilities, we may or may not use this mode.
5289 	 */
5290 	hw->fc.current_mode = hw->fc.requested_mode;
5291 
5292 	DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
5293 		hw->fc.current_mode);
5294 
5295 	/* Continue to configure the copper link. */
5296 	ret_val = hw->mac.ops.setup_physical_interface(hw);
5297 	if (ret_val)
5298 		return ret_val;
5299 
5300 	E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time);
5301 	if ((hw->phy.type == e1000_phy_82578) ||
5302 	    (hw->phy.type == e1000_phy_82579) ||
5303 	    (hw->phy.type == e1000_phy_i217) ||
5304 	    (hw->phy.type == e1000_phy_82577)) {
5305 		E1000_WRITE_REG(hw, E1000_FCRTV_PCH, hw->fc.refresh_time);
5306 
5307 		ret_val = hw->phy.ops.write_reg(hw,
5308 					     PHY_REG(BM_PORT_CTRL_PAGE, 27),
5309 					     hw->fc.pause_time);
5310 		if (ret_val)
5311 			return ret_val;
5312 	}
5313 
5314 	return e1000_set_fc_watermarks_generic(hw);
5315 }
5316 
5317 /**
5318  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
5319  *  @hw: pointer to the HW structure
5320  *
5321  *  Configures the kumeran interface to the PHY to wait the appropriate time
5322  *  when polling the PHY, then call the generic setup_copper_link to finish
5323  *  configuring the copper link.
5324  **/
5325 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
5326 {
5327 	u32 ctrl;
5328 	s32 ret_val;
5329 	u16 reg_data;
5330 
5331 	DEBUGFUNC("e1000_setup_copper_link_ich8lan");
5332 
5333 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5334 	ctrl |= E1000_CTRL_SLU;
5335 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5336 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5337 
5338 	/* Set the mac to wait the maximum time between each iteration
5339 	 * and increase the max iterations when polling the phy;
5340 	 * this fixes erroneous timeouts at 10Mbps.
5341 	 */
5342 	ret_val = e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_TIMEOUTS,
5343 					       0xFFFF);
5344 	if (ret_val)
5345 		return ret_val;
5346 	ret_val = e1000_read_kmrn_reg_generic(hw,
5347 					      E1000_KMRNCTRLSTA_INBAND_PARAM,
5348 					      &reg_data);
5349 	if (ret_val)
5350 		return ret_val;
5351 	reg_data |= 0x3F;
5352 	ret_val = e1000_write_kmrn_reg_generic(hw,
5353 					       E1000_KMRNCTRLSTA_INBAND_PARAM,
5354 					       reg_data);
5355 	if (ret_val)
5356 		return ret_val;
5357 
5358 	switch (hw->phy.type) {
5359 	case e1000_phy_igp_3:
5360 		ret_val = e1000_copper_link_setup_igp(hw);
5361 		if (ret_val)
5362 			return ret_val;
5363 		break;
5364 	case e1000_phy_bm:
5365 	case e1000_phy_82578:
5366 		ret_val = e1000_copper_link_setup_m88(hw);
5367 		if (ret_val)
5368 			return ret_val;
5369 		break;
5370 	case e1000_phy_82577:
5371 	case e1000_phy_82579:
5372 		ret_val = e1000_copper_link_setup_82577(hw);
5373 		if (ret_val)
5374 			return ret_val;
5375 		break;
5376 	case e1000_phy_ife:
5377 		ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL,
5378 					       &reg_data);
5379 		if (ret_val)
5380 			return ret_val;
5381 
5382 		reg_data &= ~IFE_PMC_AUTO_MDIX;
5383 
5384 		switch (hw->phy.mdix) {
5385 		case 1:
5386 			reg_data &= ~IFE_PMC_FORCE_MDIX;
5387 			break;
5388 		case 2:
5389 			reg_data |= IFE_PMC_FORCE_MDIX;
5390 			break;
5391 		case 0:
5392 		default:
5393 			reg_data |= IFE_PMC_AUTO_MDIX;
5394 			break;
5395 		}
5396 		ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL,
5397 						reg_data);
5398 		if (ret_val)
5399 			return ret_val;
5400 		break;
5401 	default:
5402 		break;
5403 	}
5404 
5405 	return e1000_setup_copper_link_generic(hw);
5406 }
5407 
5408 /**
5409  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5410  *  @hw: pointer to the HW structure
5411  *
5412  *  Calls the PHY specific link setup function and then calls the
5413  *  generic setup_copper_link to finish configuring the link for
5414  *  Lynxpoint PCH devices
5415  **/
5416 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5417 {
5418 	u32 ctrl;
5419 	s32 ret_val;
5420 
5421 	DEBUGFUNC("e1000_setup_copper_link_pch_lpt");
5422 
5423 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5424 	ctrl |= E1000_CTRL_SLU;
5425 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5426 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5427 
5428 	ret_val = e1000_copper_link_setup_82577(hw);
5429 	if (ret_val)
5430 		return ret_val;
5431 
5432 	return e1000_setup_copper_link_generic(hw);
5433 }
5434 
5435 /**
5436  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5437  *  @hw: pointer to the HW structure
5438  *  @speed: pointer to store current link speed
5439  *  @duplex: pointer to store the current link duplex
5440  *
5441  *  Calls the generic get_speed_and_duplex to retrieve the current link
5442  *  information and then calls the Kumeran lock loss workaround for links at
5443  *  gigabit speeds.
5444  **/
5445 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5446 					  u16 *duplex)
5447 {
5448 	s32 ret_val;
5449 
5450 	DEBUGFUNC("e1000_get_link_up_info_ich8lan");
5451 
5452 	ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, duplex);
5453 	if (ret_val)
5454 		return ret_val;
5455 
5456 	if ((hw->mac.type == e1000_ich8lan) &&
5457 	    (hw->phy.type == e1000_phy_igp_3) &&
5458 	    (*speed == SPEED_1000)) {
5459 		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5460 	}
5461 
5462 	return ret_val;
5463 }
5464 
5465 /**
5466  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5467  *  @hw: pointer to the HW structure
5468  *
5469  *  Work-around for 82566 Kumeran PCS lock loss:
5470  *  On link status change (i.e. PCI reset, speed change) and link is up and
5471  *  speed is gigabit-
5472  *    0) if workaround is optionally disabled do nothing
5473  *    1) wait 1ms for Kumeran link to come up
5474  *    2) check Kumeran Diagnostic register PCS lock loss bit
5475  *    3) if not set the link is locked (all is good), otherwise...
5476  *    4) reset the PHY
5477  *    5) repeat up to 10 times
5478  *  Note: this is only called for IGP3 copper when speed is 1gb.
5479  **/
5480 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5481 {
5482 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5483 	u32 phy_ctrl;
5484 	s32 ret_val;
5485 	u16 i, data;
5486 	bool link;
5487 
5488 	DEBUGFUNC("e1000_kmrn_lock_loss_workaround_ich8lan");
5489 
5490 	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5491 		return E1000_SUCCESS;
5492 
5493 	/* Make sure link is up before proceeding.  If not just return.
5494 	 * Attempting this while link is negotiating fouled up link
5495 	 * stability
5496 	 */
5497 	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
5498 	if (!link)
5499 		return E1000_SUCCESS;
5500 
5501 	for (i = 0; i < 10; i++) {
5502 		/* read once to clear */
5503 		ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data);
5504 		if (ret_val)
5505 			return ret_val;
5506 		/* and again to get new status */
5507 		ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data);
5508 		if (ret_val)
5509 			return ret_val;
5510 
5511 		/* check for PCS lock */
5512 		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5513 			return E1000_SUCCESS;
5514 
5515 		/* Issue PHY reset */
5516 		hw->phy.ops.reset(hw);
5517 		msec_delay_irq(5);
5518 	}
5519 	/* Disable GigE link negotiation */
5520 	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
5521 	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5522 		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5523 	E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
5524 
5525 	/* Call gig speed drop workaround on Gig disable before accessing
5526 	 * any PHY registers
5527 	 */
5528 	e1000_gig_downshift_workaround_ich8lan(hw);
5529 
5530 	/* unable to acquire PCS lock */
5531 	return -E1000_ERR_PHY;
5532 }
5533 
5534 /**
5535  *  e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5536  *  @hw: pointer to the HW structure
5537  *  @state: boolean value used to set the current Kumeran workaround state
5538  *
5539  *  If ICH8, set the current Kumeran workaround state (enabled - TRUE
5540  *  /disabled - FALSE).
5541  **/
5542 void e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5543 						 bool state)
5544 {
5545 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5546 
5547 	DEBUGFUNC("e1000_set_kmrn_lock_loss_workaround_ich8lan");
5548 
5549 	if (hw->mac.type != e1000_ich8lan) {
5550 		DEBUGOUT("Workaround applies to ICH8 only.\n");
5551 		return;
5552 	}
5553 
5554 	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5555 
5556 	return;
5557 }
5558 
5559 /**
5560  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5561  *  @hw: pointer to the HW structure
5562  *
5563  *  Workaround for 82566 power-down on D3 entry:
5564  *    1) disable gigabit link
5565  *    2) write VR power-down enable
5566  *    3) read it back
5567  *  Continue if successful, else issue LCD reset and repeat
5568  **/
5569 void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5570 {
5571 	u32 reg;
5572 	u16 data;
5573 	u8  retry = 0;
5574 
5575 	DEBUGFUNC("e1000_igp3_phy_powerdown_workaround_ich8lan");
5576 
5577 	if (hw->phy.type != e1000_phy_igp_3)
5578 		return;
5579 
5580 	/* Try the workaround twice (if needed) */
5581 	do {
5582 		/* Disable link */
5583 		reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
5584 		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5585 			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5586 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, reg);
5587 
5588 		/* Call gig speed drop workaround on Gig disable before
5589 		 * accessing any PHY registers
5590 		 */
5591 		if (hw->mac.type == e1000_ich8lan)
5592 			e1000_gig_downshift_workaround_ich8lan(hw);
5593 
5594 		/* Write VR power-down enable */
5595 		hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data);
5596 		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5597 		hw->phy.ops.write_reg(hw, IGP3_VR_CTRL,
5598 				      data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5599 
5600 		/* Read it back and test */
5601 		hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data);
5602 		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5603 		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5604 			break;
5605 
5606 		/* Issue PHY reset and repeat at most one more time */
5607 		reg = E1000_READ_REG(hw, E1000_CTRL);
5608 		E1000_WRITE_REG(hw, E1000_CTRL, reg | E1000_CTRL_PHY_RST);
5609 		retry++;
5610 	} while (retry);
5611 }
5612 
5613 /**
5614  *  e1000_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5615  *  @hw: pointer to the HW structure
5616  *
5617  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5618  *  LPLU, Gig disable, MDIC PHY reset):
5619  *    1) Set Kumeran Near-end loopback
5620  *    2) Clear Kumeran Near-end loopback
5621  *  Should only be called for ICH8[m] devices with any 1G Phy.
5622  **/
5623 void e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5624 {
5625 	s32 ret_val;
5626 	u16 reg_data;
5627 
5628 	DEBUGFUNC("e1000_gig_downshift_workaround_ich8lan");
5629 
5630 	if ((hw->mac.type != e1000_ich8lan) ||
5631 	    (hw->phy.type == e1000_phy_ife))
5632 		return;
5633 
5634 	ret_val = e1000_read_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5635 					      &reg_data);
5636 	if (ret_val)
5637 		return;
5638 	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5639 	ret_val = e1000_write_kmrn_reg_generic(hw,
5640 					       E1000_KMRNCTRLSTA_DIAG_OFFSET,
5641 					       reg_data);
5642 	if (ret_val)
5643 		return;
5644 	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5645 	e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5646 				     reg_data);
5647 }
5648 
5649 /**
5650  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5651  *  @hw: pointer to the HW structure
5652  *
5653  *  During S0 to Sx transition, it is possible the link remains at gig
5654  *  instead of negotiating to a lower speed.  Before going to Sx, set
5655  *  'Gig Disable' to force link speed negotiation to a lower speed based on
5656  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5657  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5658  *  needs to be written.
5659  *  Parts that support (and are linked to a partner which support) EEE in
5660  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5661  *  than 10Mbps w/o EEE.
5662  **/
5663 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5664 {
5665 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5666 	u32 phy_ctrl;
5667 	s32 ret_val;
5668 
5669 	DEBUGFUNC("e1000_suspend_workarounds_ich8lan");
5670 
5671 	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
5672 	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5673 
5674 	if (hw->phy.type == e1000_phy_i217) {
5675 		u16 phy_reg, device_id = hw->device_id;
5676 
5677 		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5678 		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5679 		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5680 		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5681 		    (hw->mac.type >= e1000_pch_spt)) {
5682 			u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
5683 
5684 			E1000_WRITE_REG(hw, E1000_FEXTNVM6,
5685 					fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5686 		}
5687 
5688 		ret_val = hw->phy.ops.acquire(hw);
5689 		if (ret_val)
5690 			goto out;
5691 
5692 		if (!dev_spec->eee_disable) {
5693 			u16 eee_advert;
5694 
5695 			ret_val =
5696 			    e1000_read_emi_reg_locked(hw,
5697 						      I217_EEE_ADVERTISEMENT,
5698 						      &eee_advert);
5699 			if (ret_val)
5700 				goto release;
5701 
5702 			/* Disable LPLU if both link partners support 100BaseT
5703 			 * EEE and 100Full is advertised on both ends of the
5704 			 * link, and enable Auto Enable LPI since there will
5705 			 * be no driver to enable LPI while in Sx.
5706 			 */
5707 			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5708 			    (dev_spec->eee_lp_ability &
5709 			     I82579_EEE_100_SUPPORTED) &&
5710 			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5711 				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5712 					      E1000_PHY_CTRL_NOND0A_LPLU);
5713 
5714 				/* Set Auto Enable LPI after link up */
5715 				hw->phy.ops.read_reg_locked(hw,
5716 							    I217_LPI_GPIO_CTRL,
5717 							    &phy_reg);
5718 				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5719 				hw->phy.ops.write_reg_locked(hw,
5720 							     I217_LPI_GPIO_CTRL,
5721 							     phy_reg);
5722 			}
5723 		}
5724 
5725 		/* For i217 Intel Rapid Start Technology support,
5726 		 * when the system is going into Sx and no manageability engine
5727 		 * is present, the driver must configure proxy to reset only on
5728 		 * power good.  LPI (Low Power Idle) state must also reset only
5729 		 * on power good, as well as the MTA (Multicast table array).
5730 		 * The SMBus release must also be disabled on LCD reset.
5731 		 */
5732 		if (!(E1000_READ_REG(hw, E1000_FWSM) &
5733 		      E1000_ICH_FWSM_FW_VALID)) {
5734 			/* Enable proxy to reset only on power good. */
5735 			hw->phy.ops.read_reg_locked(hw, I217_PROXY_CTRL,
5736 						    &phy_reg);
5737 			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5738 			hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL,
5739 						     phy_reg);
5740 
5741 			/* Set bit enable LPI (EEE) to reset only on
5742 			 * power good.
5743 			*/
5744 			hw->phy.ops.read_reg_locked(hw, I217_SxCTRL, &phy_reg);
5745 			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5746 			hw->phy.ops.write_reg_locked(hw, I217_SxCTRL, phy_reg);
5747 
5748 			/* Disable the SMB release on LCD reset. */
5749 			hw->phy.ops.read_reg_locked(hw, I217_MEMPWR, &phy_reg);
5750 			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5751 			hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg);
5752 		}
5753 
5754 		/* Enable MTA to reset for Intel Rapid Start Technology
5755 		 * Support
5756 		 */
5757 		hw->phy.ops.read_reg_locked(hw, I217_CGFREG, &phy_reg);
5758 		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5759 		hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg);
5760 
5761 release:
5762 		hw->phy.ops.release(hw);
5763 	}
5764 out:
5765 	E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
5766 
5767 	if (hw->mac.type == e1000_ich8lan)
5768 		e1000_gig_downshift_workaround_ich8lan(hw);
5769 
5770 	if (hw->mac.type >= e1000_pchlan) {
5771 		e1000_oem_bits_config_ich8lan(hw, FALSE);
5772 
5773 		/* Reset PHY to activate OEM bits on 82577/8 */
5774 		if (hw->mac.type == e1000_pchlan)
5775 			e1000_phy_hw_reset_generic(hw);
5776 
5777 		ret_val = hw->phy.ops.acquire(hw);
5778 		if (ret_val)
5779 			return;
5780 		e1000_write_smbus_addr(hw);
5781 		hw->phy.ops.release(hw);
5782 	}
5783 
5784 	return;
5785 }
5786 
5787 /**
5788  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5789  *  @hw: pointer to the HW structure
5790  *
5791  *  During Sx to S0 transitions on non-managed devices or managed devices
5792  *  on which PHY resets are not blocked, if the PHY registers cannot be
5793  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5794  *  the PHY.
5795  *  On i217, setup Intel Rapid Start Technology.
5796  **/
5797 u32 e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5798 {
5799 	s32 ret_val;
5800 
5801 	DEBUGFUNC("e1000_resume_workarounds_pchlan");
5802 	if (hw->mac.type < e1000_pch2lan)
5803 		return E1000_SUCCESS;
5804 
5805 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5806 	if (ret_val) {
5807 		DEBUGOUT1("Failed to init PHY flow ret_val=%d\n", ret_val);
5808 		return ret_val;
5809 	}
5810 
5811 	/* For i217 Intel Rapid Start Technology support when the system
5812 	 * is transitioning from Sx and no manageability engine is present
5813 	 * configure SMBus to restore on reset, disable proxy, and enable
5814 	 * the reset on MTA (Multicast table array).
5815 	 */
5816 	if (hw->phy.type == e1000_phy_i217) {
5817 		u16 phy_reg;
5818 
5819 		ret_val = hw->phy.ops.acquire(hw);
5820 		if (ret_val) {
5821 			DEBUGOUT("Failed to setup iRST\n");
5822 			return ret_val;
5823 		}
5824 
5825 		/* Clear Auto Enable LPI after link up */
5826 		hw->phy.ops.read_reg_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5827 		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5828 		hw->phy.ops.write_reg_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5829 
5830 		if (!(E1000_READ_REG(hw, E1000_FWSM) &
5831 		    E1000_ICH_FWSM_FW_VALID)) {
5832 			/* Restore clear on SMB if no manageability engine
5833 			 * is present
5834 			 */
5835 			ret_val = hw->phy.ops.read_reg_locked(hw, I217_MEMPWR,
5836 							      &phy_reg);
5837 			if (ret_val)
5838 				goto release;
5839 			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5840 			hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg);
5841 
5842 			/* Disable Proxy */
5843 			hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL, 0);
5844 		}
5845 		/* Enable reset on MTA */
5846 		ret_val = hw->phy.ops.read_reg_locked(hw, I217_CGFREG,
5847 						      &phy_reg);
5848 		if (ret_val)
5849 			goto release;
5850 		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5851 		hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg);
5852 release:
5853 		if (ret_val)
5854 			DEBUGOUT1("Error %d in resume workarounds\n", ret_val);
5855 		hw->phy.ops.release(hw);
5856 		return ret_val;
5857 	}
5858 	return E1000_SUCCESS;
5859 }
5860 
5861 /**
5862  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5863  *  @hw: pointer to the HW structure
5864  *
5865  *  Return the LED back to the default configuration.
5866  **/
5867 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5868 {
5869 	DEBUGFUNC("e1000_cleanup_led_ich8lan");
5870 
5871 	if (hw->phy.type == e1000_phy_ife)
5872 		return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5873 					     0);
5874 
5875 	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
5876 	return E1000_SUCCESS;
5877 }
5878 
5879 /**
5880  *  e1000_led_on_ich8lan - Turn LEDs on
5881  *  @hw: pointer to the HW structure
5882  *
5883  *  Turn on the LEDs.
5884  **/
5885 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5886 {
5887 	DEBUGFUNC("e1000_led_on_ich8lan");
5888 
5889 	if (hw->phy.type == e1000_phy_ife)
5890 		return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5891 				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5892 
5893 	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2);
5894 	return E1000_SUCCESS;
5895 }
5896 
5897 /**
5898  *  e1000_led_off_ich8lan - Turn LEDs off
5899  *  @hw: pointer to the HW structure
5900  *
5901  *  Turn off the LEDs.
5902  **/
5903 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5904 {
5905 	DEBUGFUNC("e1000_led_off_ich8lan");
5906 
5907 	if (hw->phy.type == e1000_phy_ife)
5908 		return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5909 			       (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
5910 
5911 	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
5912 	return E1000_SUCCESS;
5913 }
5914 
5915 /**
5916  *  e1000_setup_led_pchlan - Configures SW controllable LED
5917  *  @hw: pointer to the HW structure
5918  *
5919  *  This prepares the SW controllable LED for use.
5920  **/
5921 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5922 {
5923 	DEBUGFUNC("e1000_setup_led_pchlan");
5924 
5925 	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
5926 				     (u16)hw->mac.ledctl_mode1);
5927 }
5928 
5929 /**
5930  *  e1000_cleanup_led_pchlan - Restore the default LED operation
5931  *  @hw: pointer to the HW structure
5932  *
5933  *  Return the LED back to the default configuration.
5934  **/
5935 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5936 {
5937 	DEBUGFUNC("e1000_cleanup_led_pchlan");
5938 
5939 	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
5940 				     (u16)hw->mac.ledctl_default);
5941 }
5942 
5943 /**
5944  *  e1000_led_on_pchlan - Turn LEDs on
5945  *  @hw: pointer to the HW structure
5946  *
5947  *  Turn on the LEDs.
5948  **/
5949 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5950 {
5951 	u16 data = (u16)hw->mac.ledctl_mode2;
5952 	u32 i, led;
5953 
5954 	DEBUGFUNC("e1000_led_on_pchlan");
5955 
5956 	/* If no link, then turn LED on by setting the invert bit
5957 	 * for each LED that's mode is "link_up" in ledctl_mode2.
5958 	 */
5959 	if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
5960 		for (i = 0; i < 3; i++) {
5961 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5962 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5963 			    E1000_LEDCTL_MODE_LINK_UP)
5964 				continue;
5965 			if (led & E1000_PHY_LED0_IVRT)
5966 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5967 			else
5968 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5969 		}
5970 	}
5971 
5972 	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
5973 }
5974 
5975 /**
5976  *  e1000_led_off_pchlan - Turn LEDs off
5977  *  @hw: pointer to the HW structure
5978  *
5979  *  Turn off the LEDs.
5980  **/
5981 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5982 {
5983 	u16 data = (u16)hw->mac.ledctl_mode1;
5984 	u32 i, led;
5985 
5986 	DEBUGFUNC("e1000_led_off_pchlan");
5987 
5988 	/* If no link, then turn LED off by clearing the invert bit
5989 	 * for each LED that's mode is "link_up" in ledctl_mode1.
5990 	 */
5991 	if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
5992 		for (i = 0; i < 3; i++) {
5993 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5994 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5995 			    E1000_LEDCTL_MODE_LINK_UP)
5996 				continue;
5997 			if (led & E1000_PHY_LED0_IVRT)
5998 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5999 			else
6000 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
6001 		}
6002 	}
6003 
6004 	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
6005 }
6006 
6007 /**
6008  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
6009  *  @hw: pointer to the HW structure
6010  *
6011  *  Read appropriate register for the config done bit for completion status
6012  *  and configure the PHY through s/w for EEPROM-less parts.
6013  *
6014  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
6015  *  config done bit, so only an error is logged and continues.  If we were
6016  *  to return with error, EEPROM-less silicon would not be able to be reset
6017  *  or change link.
6018  **/
6019 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
6020 {
6021 	s32 ret_val = E1000_SUCCESS;
6022 	u32 bank = 0;
6023 	u32 status;
6024 
6025 	DEBUGFUNC("e1000_get_cfg_done_ich8lan");
6026 
6027 	e1000_get_cfg_done_generic(hw);
6028 
6029 	/* Wait for indication from h/w that it has completed basic config */
6030 	if (hw->mac.type >= e1000_ich10lan) {
6031 		e1000_lan_init_done_ich8lan(hw);
6032 	} else {
6033 		ret_val = e1000_get_auto_rd_done_generic(hw);
6034 		if (ret_val) {
6035 			/* When auto config read does not complete, do not
6036 			 * return with an error. This can happen in situations
6037 			 * where there is no eeprom and prevents getting link.
6038 			 */
6039 			DEBUGOUT("Auto Read Done did not complete\n");
6040 			ret_val = E1000_SUCCESS;
6041 		}
6042 	}
6043 
6044 	/* Clear PHY Reset Asserted bit */
6045 	status = E1000_READ_REG(hw, E1000_STATUS);
6046 	if (status & E1000_STATUS_PHYRA)
6047 		E1000_WRITE_REG(hw, E1000_STATUS, status & ~E1000_STATUS_PHYRA);
6048 	else
6049 		DEBUGOUT("PHY Reset Asserted not set - needs delay\n");
6050 
6051 	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
6052 	if (hw->mac.type <= e1000_ich9lan) {
6053 		if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) &&
6054 		    (hw->phy.type == e1000_phy_igp_3)) {
6055 			e1000_phy_init_script_igp3(hw);
6056 		}
6057 	} else {
6058 		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
6059 			/* Maybe we should do a basic PHY config */
6060 			DEBUGOUT("EEPROM not present\n");
6061 			ret_val = -E1000_ERR_CONFIG;
6062 		}
6063 	}
6064 
6065 	return ret_val;
6066 }
6067 
6068 /**
6069  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
6070  * @hw: pointer to the HW structure
6071  *
6072  * In the case of a PHY power down to save power, or to turn off link during a
6073  * driver unload, or wake on lan is not enabled, remove the link.
6074  **/
6075 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
6076 {
6077 	/* If the management interface is not enabled, then power down */
6078 	if (!(hw->mac.ops.check_mng_mode(hw) ||
6079 	      hw->phy.ops.check_reset_block(hw)))
6080 		e1000_power_down_phy_copper(hw);
6081 
6082 	return;
6083 }
6084 
6085 /**
6086  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
6087  *  @hw: pointer to the HW structure
6088  *
6089  *  Clears hardware counters specific to the silicon family and calls
6090  *  clear_hw_cntrs_generic to clear all general purpose counters.
6091  **/
6092 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
6093 {
6094 	u16 phy_data;
6095 	s32 ret_val;
6096 
6097 	DEBUGFUNC("e1000_clear_hw_cntrs_ich8lan");
6098 
6099 	e1000_clear_hw_cntrs_base_generic(hw);
6100 
6101 	E1000_READ_REG(hw, E1000_ALGNERRC);
6102 	E1000_READ_REG(hw, E1000_RXERRC);
6103 	E1000_READ_REG(hw, E1000_TNCRS);
6104 	E1000_READ_REG(hw, E1000_CEXTERR);
6105 	E1000_READ_REG(hw, E1000_TSCTC);
6106 	E1000_READ_REG(hw, E1000_TSCTFC);
6107 
6108 	E1000_READ_REG(hw, E1000_MGTPRC);
6109 	E1000_READ_REG(hw, E1000_MGTPDC);
6110 	E1000_READ_REG(hw, E1000_MGTPTC);
6111 
6112 	E1000_READ_REG(hw, E1000_IAC);
6113 	E1000_READ_REG(hw, E1000_ICRXOC);
6114 
6115 	/* Clear PHY statistics registers */
6116 	if ((hw->phy.type == e1000_phy_82578) ||
6117 	    (hw->phy.type == e1000_phy_82579) ||
6118 	    (hw->phy.type == e1000_phy_i217) ||
6119 	    (hw->phy.type == e1000_phy_82577)) {
6120 		ret_val = hw->phy.ops.acquire(hw);
6121 		if (ret_val)
6122 			return;
6123 		ret_val = hw->phy.ops.set_page(hw,
6124 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
6125 		if (ret_val)
6126 			goto release;
6127 		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
6128 		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
6129 		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
6130 		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
6131 		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
6132 		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
6133 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
6134 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
6135 		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
6136 		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
6137 		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
6138 		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
6139 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
6140 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
6141 release:
6142 		hw->phy.ops.release(hw);
6143 	}
6144 }
6145 
6146