1 #ifndef ECORE_INIT_OPS_H
2 #define ECORE_INIT_OPS_H
3 
4 
5 #ifndef PDEV_ILT
6 #define PDEV_ILT(bp)	NULL
7 #endif
8 
9 #ifndef PDEV_FUNC
10 #define PDEV_FUNC(bp)	0
11 #endif
12 
13 #ifndef PDEV_PORT
14 #define PDEV_PORT(bp)	0
15 #endif
16 
17 #ifndef ECORE_ILT_FREE
18 #define ECORE_ILT_FREE(x, y, sz)
19 #endif
20 
21 #ifndef ECORE_ILT_ZALLOC
22 #define ECORE_ILT_ZALLOC(x, y, sz)
23 #endif
24 
25 #ifndef ILOG2
26 #define ILOG2(x)	x
27 #endif
28 
29 #define FORCE32	(u32)
30 
31 static int ecore_gunzip(struct _lm_device_t *pdev, const u8 *zbuf, int len);
32 static void ecore_reg_wr_ind(struct _lm_device_t *pdev, u32 addr, u32 val);
33 static void ecore_write_dmae_phys_len(struct _lm_device_t *pdev,
34 				      lm_address_t phys_addr, u32 addr,
35 				      u32 len);
36 
ecore_init_str_wr(struct _lm_device_t * pdev,u32 addr,const u32 * data,u32 len)37 static void ecore_init_str_wr(struct _lm_device_t *pdev, u32 addr,
38 			      const u32 *data, u32 len)
39 {
40 	u32 i;
41 
42 	for (i = 0; i < len; i++)
43 		REG_WR(pdev, addr + i*4, data[i]);
44 }
45 
ecore_init_ind_wr(struct _lm_device_t * pdev,u32 addr,const u32 * data,u32 len)46 static void ecore_init_ind_wr(struct _lm_device_t *pdev, u32 addr,
47 			      const u32 *data, u32 len)
48 {
49 	u32 i;
50 
51 	for (i = 0; i < len; i++)
52 		ecore_reg_wr_ind(pdev, addr + i*4, data[i]);
53 }
54 
ecore_write_big_buf(struct _lm_device_t * pdev,u32 addr,u32 len,u8 wb)55 static void ecore_write_big_buf(struct _lm_device_t *pdev, u32 addr, u32 len,
56 				u8 wb)
57 {
58 	if (DMAE_READY(pdev))
59 		ecore_write_dmae_phys_len(pdev, GUNZIP_PHYS(pdev), addr, len);
60 
61 	/* in E1 chips BIOS initiated ZLR may interrupt widebus writes */
62 	else if (wb && CHIP_IS_E1(pdev))
63 		ecore_init_ind_wr(pdev, addr, GUNZIP_BUF(pdev), len);
64 
65 	/* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
66 	else
67 		ecore_init_str_wr(pdev, addr, GUNZIP_BUF(pdev), len);
68 }
69 
ecore_init_fill(struct _lm_device_t * pdev,u32 addr,int fill,u32 len,u8 wb)70 static void ecore_init_fill(struct _lm_device_t *pdev, u32 addr, int fill,
71 			    u32 len, u8 wb)
72 {
73 	u32 buf_len = (((len*4) > FW_BUF_SIZE) ? FW_BUF_SIZE : (len*4));
74 	u32 buf_len32 = buf_len/4;
75 	u32 i;
76 
77 	mm_memset(GUNZIP_BUF(pdev), (u8)fill, buf_len);
78 
79 	for (i = 0; i < len; i += buf_len32) {
80 		u32 cur_len = min(buf_len32, len - i);
81 
82 		ecore_write_big_buf(pdev, addr + i*4, cur_len, wb);
83 	}
84 }
85 
ecore_write_big_buf_wb(struct _lm_device_t * pdev,u32 addr,u32 len)86 static void ecore_write_big_buf_wb(struct _lm_device_t *pdev, u32 addr, u32 len)
87 {
88 	if (DMAE_READY(pdev))
89 		ecore_write_dmae_phys_len(pdev, GUNZIP_PHYS(pdev), addr, len);
90 
91 	/* in E1 chips BIOS initiated ZLR may interrupt widebus writes */
92 	else if (CHIP_IS_E1(pdev))
93 		ecore_init_ind_wr(pdev, addr, GUNZIP_BUF(pdev), len);
94 
95 	/* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
96 	else
97 		ecore_init_str_wr(pdev, addr, GUNZIP_BUF(pdev), len);
98 }
99 
ecore_init_wr_64(struct _lm_device_t * pdev,u32 addr,const u32 * data,u32 len64)100 static void ecore_init_wr_64(struct _lm_device_t *pdev, u32 addr,
101 			     const u32 *data, u32 len64)
102 {
103 	u32 buf_len32 = FW_BUF_SIZE/4;
104 	u32 len = len64*2;
105 	u64 data64 = 0;
106 	u32 i;
107 
108 	/* 64 bit value is in a blob: first low DWORD, then high DWORD */
109 	data64 = HILO_U64((*(data + 1)), (*data));
110 
111 	len64 = min((u32)(FW_BUF_SIZE/8), len64);
112 	for (i = 0; i < len64; i++) {
113 		u64 *pdata = ((u64 *)(GUNZIP_BUF(pdev))) + i;
114 
115 		*pdata = data64;
116 	}
117 
118 	for (i = 0; i < len; i += buf_len32) {
119 		u32 cur_len = min(buf_len32, len - i);
120 
121 		ecore_write_big_buf_wb(pdev, addr + i*4, cur_len);
122 	}
123 }
124 
125 /*********************************************************
126    There are different blobs for each PRAM section.
127    In addition, each blob write operation is divided into a few operations
128    in order to decrease the amount of phys. contiguous buffer needed.
129    Thus, when we select a blob the address may be with some offset
130    from the beginning of PRAM section.
131    The same holds for the INT_TABLE sections.
132 **********************************************************/
133 #define IF_IS_INT_TABLE_ADDR(base, addr) \
134 			if (((base) <= (addr)) && ((base) + 0x400 >= (addr)))
135 
136 #define IF_IS_PRAM_ADDR(base, addr) \
137 			if (((base) <= (addr)) && ((base) + 0x40000 >= (addr)))
138 
ecore_sel_blob(struct _lm_device_t * pdev,u32 addr,const u8 * data)139 static const u8 *ecore_sel_blob(struct _lm_device_t *pdev, u32 addr,
140 				const u8 *data)
141 {
142 	IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE, addr)
143 		data = INIT_TSEM_INT_TABLE_DATA(pdev);
144 	else
145 		IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE, addr)
146 			data = INIT_CSEM_INT_TABLE_DATA(pdev);
147 	else
148 		IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE, addr)
149 			data = INIT_USEM_INT_TABLE_DATA(pdev);
150 	else
151 		IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE, addr)
152 			data = INIT_XSEM_INT_TABLE_DATA(pdev);
153 	else
154 		IF_IS_PRAM_ADDR(TSEM_REG_PRAM, addr)
155 			data = INIT_TSEM_PRAM_DATA(pdev);
156 	else
157 		IF_IS_PRAM_ADDR(CSEM_REG_PRAM, addr)
158 			data = INIT_CSEM_PRAM_DATA(pdev);
159 	else
160 		IF_IS_PRAM_ADDR(USEM_REG_PRAM, addr)
161 			data = INIT_USEM_PRAM_DATA(pdev);
162 	else
163 		IF_IS_PRAM_ADDR(XSEM_REG_PRAM, addr)
164 			data = INIT_XSEM_PRAM_DATA(pdev);
165 
166 	return data;
167 }
168 
ecore_init_wr_wb(struct _lm_device_t * pdev,u32 addr,const u32 * data,u32 len)169 static void ecore_init_wr_wb(struct _lm_device_t *pdev, u32 addr,
170 			     const u32 *data, u32 len)
171 {
172 	if (DMAE_READY(pdev))
173 		VIRT_WR_DMAE_LEN(pdev, data, addr, len, 0);
174 
175 	/* in E1 chips BIOS initiated ZLR may interrupt widebus writes */
176 	else if (CHIP_IS_E1(pdev))
177 		ecore_init_ind_wr(pdev, addr, data, len);
178 
179 	/* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
180 	else
181 		ecore_init_str_wr(pdev, addr, data, len);
182 }
183 
184 #ifndef FW_ZIP_SUPPORT /* ! BNX2X_UPSTREAM */
ecore_init_fw(struct _lm_device_t * pdev,u32 addr,u32 len)185 static void ecore_init_fw(struct _lm_device_t *pdev, u32 addr, u32 len)
186 {
187 	const u8 *data = NULL;
188 
189 	data = ecore_sel_blob(pdev, addr, (const u8 *)data);
190 
191 	if (DMAE_READY(pdev))
192 		VIRT_WR_DMAE_LEN(pdev, data, addr, len, 1);
193 
194 	/* in E1 BIOS initiated ZLR may interrupt widebus writes */
195 	else if (CHIP_IS_E1(pdev))
196 		ecore_init_ind_wr(pdev, addr, (const u32 *)data, len);
197 
198 	/* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
199 	else
200 		ecore_init_str_wr(pdev, addr, (const u32 *)data, len);
201 }
202 
203 #endif
204 
205 #ifdef ECORE_UPSTREAM /* ECORE_UPSTREAM */
ecore_wr_64(struct _lm_device_t * pdev,u32 reg,u32 val_lo,u32 val_hi)206 static void ecore_wr_64(struct _lm_device_t *pdev, u32 reg, u32 val_lo,
207 			u32 val_hi)
208 {
209 	u32 wb_write[2];
210 
211 	wb_write[0] = val_lo;
212 	wb_write[1] = val_hi;
213 	REG_WR_DMAE_LEN(pdev, reg, wb_write, 2);
214 }
215 #endif
216 
ecore_init_wr_zp(struct _lm_device_t * pdev,u32 addr,u32 len,u32 blob_off)217 static void ecore_init_wr_zp(struct _lm_device_t *pdev, u32 addr, u32 len,
218 			     u32 blob_off)
219 {
220 	const u8 *data = NULL;
221 	int rc;
222 	u32 i;
223 
224 	data = ecore_sel_blob(pdev, addr, data) + blob_off*4;
225 
226 	rc = ecore_gunzip(pdev, data, len);
227 	if (rc)
228 		return;
229 
230 	/* gunzip_outlen is in dwords */
231 	len = GUNZIP_OUTLEN(pdev);
232 	for (i = 0; i < len; i++)
233 		((u32 *)GUNZIP_BUF(pdev))[i] = FORCE32
234 				mm_cpu_to_le32(((u32 *)GUNZIP_BUF(pdev))[i]);
235 
236 	ecore_write_big_buf_wb(pdev, addr, len);
237 }
238 
ecore_init_block(struct _lm_device_t * pdev,u32 block,u32 stage)239 static void ecore_init_block(struct _lm_device_t *pdev, u32 block, u32 stage)
240 {
241 	u16 op_start =
242 		INIT_OPS_OFFSETS(pdev)[BLOCK_OPS_IDX(block, stage,
243 						     STAGE_START)];
244 	u16 op_end =
245 		INIT_OPS_OFFSETS(pdev)[BLOCK_OPS_IDX(block, stage,
246 						     STAGE_END)];
247 	const union init_op *op;
248 	u32 op_idx, op_type, addr, len;
249 	const u32 *data, *data_base;
250 
251 	/* If empty block */
252 	if (op_start == op_end)
253 		return;
254 
255 	data_base = INIT_DATA(pdev);
256 
257 	for (op_idx = op_start; op_idx < op_end; op_idx++) {
258 
259 		op = (const union init_op *)&(INIT_OPS(pdev)[op_idx]);
260 		/* Get generic data */
261 		op_type = op->raw.op;
262 		addr = op->raw.offset;
263 		/* Get data that's used for OP_SW, OP_WB, OP_FW, OP_ZP and
264 		 * OP_WR64 (we assume that op_arr_write and op_write have the
265 		 * same structure).
266 		 */
267 		len = op->arr_wr.data_len;
268 		data = data_base + op->arr_wr.data_off;
269 
270 		switch (op_type) {
271 		case OP_RD:
272 			REG_RD(pdev, addr);
273 			break;
274 		case OP_WR:
275 			REG_WR(pdev, addr, op->write.val);
276 			break;
277 		case OP_SW:
278 			ecore_init_str_wr(pdev, addr, data, len);
279 			break;
280 		case OP_WB:
281 			ecore_init_wr_wb(pdev, addr, data, len);
282 			break;
283 #ifndef FW_ZIP_SUPPORT /* ! BNX2X_UPSTREAM */
284 		case OP_FW:
285 			ecore_init_fw(pdev, addr, len);
286 			break;
287 #endif
288 		case OP_ZR:
289 			ecore_init_fill(pdev, addr, 0, op->zero.len, 0);
290 			break;
291 		case OP_WB_ZR:
292 			ecore_init_fill(pdev, addr, 0, op->zero.len, 1);
293 			break;
294 		case OP_ZP:
295 			ecore_init_wr_zp(pdev, addr, len,
296 					 op->arr_wr.data_off);
297 			break;
298 		case OP_WR_64:
299 			ecore_init_wr_64(pdev, addr, data, len);
300 			break;
301 		case OP_IF_MODE_AND:
302 			/* if any of the flags doesn't match, skip the
303 			 * conditional block.
304 			 */
305 			if ((INIT_MODE_FLAGS(pdev) &
306 				op->if_mode.mode_bit_map) !=
307 				op->if_mode.mode_bit_map)
308 				op_idx += op->if_mode.cmd_offset;
309 			break;
310 		case OP_IF_MODE_OR:
311 			/* if all the flags don't match, skip the conditional
312 			 * block.
313 			 */
314 			if ((INIT_MODE_FLAGS(pdev) &
315 				op->if_mode.mode_bit_map) == 0)
316 				op_idx += op->if_mode.cmd_offset;
317 			break;
318 #ifndef BNX2X_UPSTREAM /* ! BNX2X_UPSTREAM */
319 		    /* the following opcodes are unused at the moment. */
320 		case OP_IF_PHASE:
321 		case OP_RT:
322 		case OP_DELAY:
323 		case OP_VERIFY:
324 #endif
325 		default:
326 			/* Should never get here! */
327 			DbgBreakIf(TRUE);
328 			break;
329 		}
330 	}
331 }
332 
333 
334 /****************************************************************************
335 * PXP Arbiter
336 ****************************************************************************/
337 /*
338  * This code configures the PCI read/write arbiter
339  * which implements a weighted round robin
340  * between the virtual queues in the chip.
341  *
342  * The values were derived for each PCI max payload and max request size.
343  * since max payload and max request size are only known at run time,
344  * this is done as a separate init stage.
345  */
346 
347 #define NUM_WR_Q			13
348 #define NUM_RD_Q			29
349 #define MAX_RD_ORD			3
350 #define MAX_WR_ORD			2
351 
352 /* configuration for one arbiter queue */
353 struct arb_line {
354 	int l;
355 	int add;
356 	int ubound;
357 };
358 
359 /* derived configuration for each read queue for each max request size */
360 static const struct arb_line read_arb_data[NUM_RD_Q][MAX_RD_ORD + 1] = {
361 /* 1 */	{ {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
362 	{ {4, 8,  4},  {4,  8,  4},  {4,  8,  4},  {4,  8,  4}  },
363 	{ {4, 3,  3},  {4,  3,  3},  {4,  3,  3},  {4,  3,  3}  },
364 	{ {8, 3,  6},  {16, 3,  11}, {16, 3,  11}, {16, 3,  11} },
365 	{ {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
366 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
367 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
368 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
369 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
370 /* 10 */{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
371 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
372 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
373 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
374 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
375 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
376 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
377 	{ {8, 64, 6},  {16, 64, 11}, {32, 64, 21}, {32, 64, 21} },
378 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
379 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
380 /* 20 */{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
381 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
382 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
383 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
384 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
385 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
386 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
387 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
388 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
389 	{ {8, 64, 25}, {16, 64, 41}, {32, 64, 81}, {64, 64, 120} }
390 };
391 
392 /* derived configuration for each write queue for each max request size */
393 static const struct arb_line write_arb_data[NUM_WR_Q][MAX_WR_ORD + 1] = {
394 /* 1 */	{ {4, 6,  3},  {4,  6,  3},  {4,  6,  3} },
395 	{ {4, 2,  3},  {4,  2,  3},  {4,  2,  3} },
396 	{ {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
397 	{ {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
398 	{ {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
399 	{ {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
400 	{ {8, 64, 25}, {16, 64, 25}, {32, 64, 25} },
401 	{ {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
402 	{ {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
403 /* 10 */{ {8, 9,  6},  {16, 9,  11}, {32, 9,  21} },
404 	{ {8, 47, 19}, {16, 47, 19}, {32, 47, 21} },
405 	{ {8, 9,  6},  {16, 9,  11}, {16, 9,  11} },
406 	{ {8, 64, 25}, {16, 64, 41}, {32, 64, 81} }
407 };
408 
409 /* register addresses for read queues */
410 static const struct arb_line read_arb_addr[NUM_RD_Q-1] = {
411 /* 1 */	{PXP2_REG_RQ_BW_RD_L0, PXP2_REG_RQ_BW_RD_ADD0,
412 		PXP2_REG_RQ_BW_RD_UBOUND0},
413 	{PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
414 		PXP2_REG_PSWRQ_BW_UB1},
415 	{PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
416 		PXP2_REG_PSWRQ_BW_UB2},
417 	{PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
418 		PXP2_REG_PSWRQ_BW_UB3},
419 	{PXP2_REG_RQ_BW_RD_L4, PXP2_REG_RQ_BW_RD_ADD4,
420 		PXP2_REG_RQ_BW_RD_UBOUND4},
421 	{PXP2_REG_RQ_BW_RD_L5, PXP2_REG_RQ_BW_RD_ADD5,
422 		PXP2_REG_RQ_BW_RD_UBOUND5},
423 	{PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
424 		PXP2_REG_PSWRQ_BW_UB6},
425 	{PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
426 		PXP2_REG_PSWRQ_BW_UB7},
427 	{PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
428 		PXP2_REG_PSWRQ_BW_UB8},
429 /* 10 */{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
430 		PXP2_REG_PSWRQ_BW_UB9},
431 	{PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
432 		PXP2_REG_PSWRQ_BW_UB10},
433 	{PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
434 		PXP2_REG_PSWRQ_BW_UB11},
435 	{PXP2_REG_RQ_BW_RD_L12, PXP2_REG_RQ_BW_RD_ADD12,
436 		PXP2_REG_RQ_BW_RD_UBOUND12},
437 	{PXP2_REG_RQ_BW_RD_L13, PXP2_REG_RQ_BW_RD_ADD13,
438 		PXP2_REG_RQ_BW_RD_UBOUND13},
439 	{PXP2_REG_RQ_BW_RD_L14, PXP2_REG_RQ_BW_RD_ADD14,
440 		PXP2_REG_RQ_BW_RD_UBOUND14},
441 	{PXP2_REG_RQ_BW_RD_L15, PXP2_REG_RQ_BW_RD_ADD15,
442 		PXP2_REG_RQ_BW_RD_UBOUND15},
443 	{PXP2_REG_RQ_BW_RD_L16, PXP2_REG_RQ_BW_RD_ADD16,
444 		PXP2_REG_RQ_BW_RD_UBOUND16},
445 	{PXP2_REG_RQ_BW_RD_L17, PXP2_REG_RQ_BW_RD_ADD17,
446 		PXP2_REG_RQ_BW_RD_UBOUND17},
447 	{PXP2_REG_RQ_BW_RD_L18, PXP2_REG_RQ_BW_RD_ADD18,
448 		PXP2_REG_RQ_BW_RD_UBOUND18},
449 /* 20 */{PXP2_REG_RQ_BW_RD_L19, PXP2_REG_RQ_BW_RD_ADD19,
450 		PXP2_REG_RQ_BW_RD_UBOUND19},
451 	{PXP2_REG_RQ_BW_RD_L20, PXP2_REG_RQ_BW_RD_ADD20,
452 		PXP2_REG_RQ_BW_RD_UBOUND20},
453 	{PXP2_REG_RQ_BW_RD_L22, PXP2_REG_RQ_BW_RD_ADD22,
454 		PXP2_REG_RQ_BW_RD_UBOUND22},
455 	{PXP2_REG_RQ_BW_RD_L23, PXP2_REG_RQ_BW_RD_ADD23,
456 		PXP2_REG_RQ_BW_RD_UBOUND23},
457 	{PXP2_REG_RQ_BW_RD_L24, PXP2_REG_RQ_BW_RD_ADD24,
458 		PXP2_REG_RQ_BW_RD_UBOUND24},
459 	{PXP2_REG_RQ_BW_RD_L25, PXP2_REG_RQ_BW_RD_ADD25,
460 		PXP2_REG_RQ_BW_RD_UBOUND25},
461 	{PXP2_REG_RQ_BW_RD_L26, PXP2_REG_RQ_BW_RD_ADD26,
462 		PXP2_REG_RQ_BW_RD_UBOUND26},
463 	{PXP2_REG_RQ_BW_RD_L27, PXP2_REG_RQ_BW_RD_ADD27,
464 		PXP2_REG_RQ_BW_RD_UBOUND27},
465 	{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
466 		PXP2_REG_PSWRQ_BW_UB28}
467 };
468 
469 /* register addresses for write queues */
470 static const struct arb_line write_arb_addr[NUM_WR_Q-1] = {
471 /* 1 */	{PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
472 		PXP2_REG_PSWRQ_BW_UB1},
473 	{PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
474 		PXP2_REG_PSWRQ_BW_UB2},
475 	{PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
476 		PXP2_REG_PSWRQ_BW_UB3},
477 	{PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
478 		PXP2_REG_PSWRQ_BW_UB6},
479 	{PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
480 		PXP2_REG_PSWRQ_BW_UB7},
481 	{PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
482 		PXP2_REG_PSWRQ_BW_UB8},
483 	{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
484 		PXP2_REG_PSWRQ_BW_UB9},
485 	{PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
486 		PXP2_REG_PSWRQ_BW_UB10},
487 	{PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
488 		PXP2_REG_PSWRQ_BW_UB11},
489 /* 10 */{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
490 		PXP2_REG_PSWRQ_BW_UB28},
491 	{PXP2_REG_RQ_BW_WR_L29, PXP2_REG_RQ_BW_WR_ADD29,
492 		PXP2_REG_RQ_BW_WR_UBOUND29},
493 	{PXP2_REG_RQ_BW_WR_L30, PXP2_REG_RQ_BW_WR_ADD30,
494 		PXP2_REG_RQ_BW_WR_UBOUND30}
495 };
496 
ecore_init_pxp_arb(struct _lm_device_t * pdev,int r_order,int w_order)497 static void ecore_init_pxp_arb(struct _lm_device_t *pdev, int r_order,
498 			       int w_order)
499 {
500 	u32 val, i;
501 
502 	if (r_order > MAX_RD_ORD) {
503 		DbgMessage(pdev, WARNi, "read order of %d  order adjusted to %d\n",
504 			   r_order, MAX_RD_ORD);
505 		r_order = MAX_RD_ORD;
506 	}
507 	if (w_order > MAX_WR_ORD) {
508 		DbgMessage(pdev, WARNi, "write order of %d  order adjusted to %d\n",
509 			   w_order, MAX_WR_ORD);
510 		w_order = MAX_WR_ORD;
511 	}
512 	if (CHIP_REV_IS_FPGA(pdev)) {
513 		DbgMessage(pdev, WARNi, "write order adjusted to 1 for FPGA\n");
514 		w_order = 0;
515 	}
516 	DbgMessage(pdev, INFORMi, "read order %d  write order %d\n", r_order, w_order);
517 
518 	for (i = 0; i < NUM_RD_Q-1; i++) {
519 		REG_WR(pdev, read_arb_addr[i].l, read_arb_data[i][r_order].l);
520 		REG_WR(pdev, read_arb_addr[i].add,
521 		       read_arb_data[i][r_order].add);
522 		REG_WR(pdev, read_arb_addr[i].ubound,
523 		       read_arb_data[i][r_order].ubound);
524 	}
525 
526 	for (i = 0; i < NUM_WR_Q-1; i++) {
527 		if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) ||
528 		    (write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) {
529 
530 			REG_WR(pdev, write_arb_addr[i].l,
531 			       write_arb_data[i][w_order].l);
532 
533 			REG_WR(pdev, write_arb_addr[i].add,
534 			       write_arb_data[i][w_order].add);
535 
536 			REG_WR(pdev, write_arb_addr[i].ubound,
537 			       write_arb_data[i][w_order].ubound);
538 		} else {
539 
540 			val = REG_RD(pdev, write_arb_addr[i].l);
541 			REG_WR(pdev, write_arb_addr[i].l,
542 			       val | (write_arb_data[i][w_order].l << 10));
543 
544 			val = REG_RD(pdev, write_arb_addr[i].add);
545 			REG_WR(pdev, write_arb_addr[i].add,
546 			       val | (write_arb_data[i][w_order].add << 10));
547 
548 			val = REG_RD(pdev, write_arb_addr[i].ubound);
549 			REG_WR(pdev, write_arb_addr[i].ubound,
550 			       val | (write_arb_data[i][w_order].ubound << 7));
551 		}
552 	}
553 
554 	val =  write_arb_data[NUM_WR_Q-1][w_order].add;
555 	val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10;
556 	val += write_arb_data[NUM_WR_Q-1][w_order].l << 17;
557 	REG_WR(pdev, PXP2_REG_PSWRQ_BW_RD, val);
558 
559 	val =  read_arb_data[NUM_RD_Q-1][r_order].add;
560 	val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10;
561 	val += read_arb_data[NUM_RD_Q-1][r_order].l << 17;
562 	REG_WR(pdev, PXP2_REG_PSWRQ_BW_WR, val);
563 
564 	REG_WR(pdev, PXP2_REG_RQ_WR_MBS0, w_order);
565 	REG_WR(pdev, PXP2_REG_RQ_WR_MBS1, w_order);
566 	REG_WR(pdev, PXP2_REG_RQ_RD_MBS0, r_order);
567 	REG_WR(pdev, PXP2_REG_RQ_RD_MBS1, r_order);
568 
569 	if ((CHIP_IS_E1(pdev) || CHIP_IS_E1H(pdev)) && (r_order == MAX_RD_ORD))
570 		REG_WR(pdev, PXP2_REG_RQ_PDR_LIMIT, 0xe00);
571 
572 	if (CHIP_IS_E3(pdev))
573 		REG_WR(pdev, PXP2_REG_WR_USDMDP_TH, (0x4 << w_order));
574 	else if (CHIP_IS_E2(pdev))
575 		REG_WR(pdev, PXP2_REG_WR_USDMDP_TH, (0x8 << w_order));
576 	else
577 		REG_WR(pdev, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order));
578 
579 	if (!CHIP_IS_E1(pdev)) {
580 		/*    MPS      w_order     optimal TH      presently TH
581 		 *    128         0             0               2
582 		 *    256         1             1               3
583 		 *    >=512       2             2               3
584 		 */
585 		/* DMAE is special */
586 		if (!CHIP_IS_E1H(pdev)) {
587 			/* E2 can use optimal TH */
588 			val = w_order;
589 			REG_WR(pdev, PXP2_REG_WR_DMAE_MPS, val);
590 		} else {
591 			val = ((w_order == 0) ? 2 : 3);
592 			REG_WR(pdev, PXP2_REG_WR_DMAE_MPS, 2);
593 		}
594 
595 		REG_WR(pdev, PXP2_REG_WR_HC_MPS, val);
596 		REG_WR(pdev, PXP2_REG_WR_USDM_MPS, val);
597 		REG_WR(pdev, PXP2_REG_WR_CSDM_MPS, val);
598 		REG_WR(pdev, PXP2_REG_WR_TSDM_MPS, val);
599 		REG_WR(pdev, PXP2_REG_WR_XSDM_MPS, val);
600 		REG_WR(pdev, PXP2_REG_WR_QM_MPS, val);
601 		REG_WR(pdev, PXP2_REG_WR_TM_MPS, val);
602 		REG_WR(pdev, PXP2_REG_WR_SRC_MPS, val);
603 		REG_WR(pdev, PXP2_REG_WR_DBG_MPS, val);
604 		REG_WR(pdev, PXP2_REG_WR_CDU_MPS, val);
605 	}
606 
607 	/* Validate number of tags suppoted by device */
608 #define PCIE_REG_PCIER_TL_HDR_FC_ST		0x2980
609 	val = REG_RD(pdev, PCIE_REG_PCIER_TL_HDR_FC_ST);
610 	val &= 0xFF;
611 	if (val <= 0x20)
612 		REG_WR(pdev, PXP2_REG_PGL_TAGS_LIMIT, 0x20);
613 }
614 
615 #ifdef ECORE_UPSTREAM /* ECORE_UPSTREAM */
616 /****************************************************************************
617 * ILT management
618 ****************************************************************************/
619 /*
620  * This codes hides the low level HW interaction for ILT management and
621  * configuration. The API consists of a shadow ILT table which is set by the
622  * driver and a set of routines to use it to configure the HW.
623  *
624  */
625 
626 /* ILT HW init operations */
627 
628 /* ILT memory management operations */
629 #define ILT_MEMOP_ALLOC		0
630 #define ILT_MEMOP_FREE		1
631 
632 /* the phys address is shifted right 12 bits and has an added
633  * 1=valid bit added to the 53rd bit
634  * then since this is a wide register(TM)
635  * we split it into two 32 bit writes
636  */
637 #define ILT_ADDR1(x)		((u32)(((u64)x >> 12) & 0xFFFFFFFF))
638 #define ILT_ADDR2(x)		((u32)((1 << 20) | ((u64)x >> 44)))
639 #define ILT_RANGE(f, l)		(((l) << 10) | f)
640 
ecore_ilt_line_mem_op(struct _lm_device_t * pdev,struct ilt_line * line,u32 size,u8 memop)641 static int ecore_ilt_line_mem_op(struct _lm_device_t *pdev,
642 				 struct ilt_line *line, u32 size, u8 memop)
643 {
644 	if (memop == ILT_MEMOP_FREE) {
645 		ECORE_ILT_FREE(line->page, line->page_mapping, line->size);
646 		return 0;
647 	}
648 	ECORE_ILT_ZALLOC(line->page, &line->page_mapping, size);
649 	if (!line->page)
650 		return -1;
651 	line->size = size;
652 	return 0;
653 }
654 
655 
ecore_ilt_client_mem_op(struct _lm_device_t * pdev,int cli_num,u8 memop)656 static int ecore_ilt_client_mem_op(struct _lm_device_t *pdev, int cli_num,
657 				   u8 memop)
658 {
659 	int i, rc;
660 	struct ecore_ilt *ilt = PDEV_ILT(pdev);
661 	struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
662 
663 	if (!ilt || !ilt->lines)
664 		return -1;
665 
666 	if (ilt_cli->flags & (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM))
667 		return 0;
668 
669 	for (rc = 0, i = ilt_cli->start; i <= ilt_cli->end && !rc; i++) {
670 		rc = ecore_ilt_line_mem_op(pdev, &ilt->lines[i],
671 					   ilt_cli->page_size, memop);
672 	}
673 	return rc;
674 }
675 
ecore_ilt_mem_op_cnic(struct _lm_device_t * pdev,u8 memop)676 static int ecore_ilt_mem_op_cnic(struct _lm_device_t *pdev, u8 memop)
677 {
678 	int rc = 0;
679 
680 	if (CONFIGURE_NIC_MODE(pdev))
681 		rc = ecore_ilt_client_mem_op(pdev, ILT_CLIENT_SRC, memop);
682 	if (!rc)
683 		rc = ecore_ilt_client_mem_op(pdev, ILT_CLIENT_TM, memop);
684 
685 	return rc;
686 }
687 
ecore_ilt_mem_op(struct _lm_device_t * pdev,u8 memop)688 static int ecore_ilt_mem_op(struct _lm_device_t *pdev, u8 memop)
689 {
690 	int rc = ecore_ilt_client_mem_op(pdev, ILT_CLIENT_CDU, memop);
691 	if (!rc)
692 		rc = ecore_ilt_client_mem_op(pdev, ILT_CLIENT_QM, memop);
693 	if (!rc && CNIC_SUPPORT(pdev) && !CONFIGURE_NIC_MODE(pdev))
694 		rc = ecore_ilt_client_mem_op(pdev, ILT_CLIENT_SRC, memop);
695 
696 	return rc;
697 }
698 
ecore_ilt_line_wr(struct _lm_device_t * pdev,int abs_idx,lm_address_t page_mapping)699 static void ecore_ilt_line_wr(struct _lm_device_t *pdev, int abs_idx,
700 			      lm_address_t page_mapping)
701 {
702 	u32 reg;
703 
704 	if (CHIP_IS_E1(pdev))
705 		reg = PXP2_REG_RQ_ONCHIP_AT + abs_idx*8;
706 	else
707 		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + abs_idx*8;
708 
709 	ecore_wr_64(pdev, reg, ILT_ADDR1(page_mapping.as_u64), ILT_ADDR2(page_mapping.as_u64));
710 }
711 
ecore_ilt_line_init_op(struct _lm_device_t * pdev,struct ecore_ilt * ilt,int idx,u8 initop)712 static void ecore_ilt_line_init_op(struct _lm_device_t *pdev,
713 				   struct ecore_ilt *ilt, int idx, u8 initop)
714 {
715 	lm_address_t	null_mapping;
716 	int abs_idx = ilt->start_line + idx;
717 
718 
719 	switch (initop) {
720 	case INITOP_INIT:
721 		/* set in the init-value array */
722 	case INITOP_SET:
723 		ecore_ilt_line_wr(pdev, abs_idx, ilt->lines[idx].page_mapping);
724 		break;
725 	case INITOP_CLEAR:
726 		null_mapping.as_u64 = 0;
727 		ecore_ilt_line_wr(pdev, abs_idx, null_mapping);
728 		break;
729 	}
730 }
731 
ecore_ilt_boundry_init_op(struct _lm_device_t * pdev,struct ilt_client_info * ilt_cli,u32 ilt_start,u8 initop)732 static void ecore_ilt_boundry_init_op(struct _lm_device_t *pdev,
733 				      struct ilt_client_info *ilt_cli,
734 				      u32 ilt_start, u8 initop)
735 {
736 	u32 start_reg = 0;
737 	u32 end_reg = 0;
738 
739 	/* The boundary is either SET or INIT,
740 	   CLEAR => SET and for now SET ~~ INIT */
741 
742 	/* find the appropriate regs */
743 	if (CHIP_IS_E1(pdev)) {
744 		switch (ilt_cli->client_num) {
745 		case ILT_CLIENT_CDU:
746 			start_reg = PXP2_REG_PSWRQ_CDU0_L2P;
747 			break;
748 		case ILT_CLIENT_QM:
749 			start_reg = PXP2_REG_PSWRQ_QM0_L2P;
750 			break;
751 		case ILT_CLIENT_SRC:
752 			start_reg = PXP2_REG_PSWRQ_SRC0_L2P;
753 			break;
754 		case ILT_CLIENT_TM:
755 			start_reg = PXP2_REG_PSWRQ_TM0_L2P;
756 			break;
757 		}
758 		REG_WR(pdev, start_reg + PDEV_FUNC(pdev)*4,
759 		       ILT_RANGE((ilt_start + ilt_cli->start),
760 				 (ilt_start + ilt_cli->end)));
761 	} else {
762 		switch (ilt_cli->client_num) {
763 		case ILT_CLIENT_CDU:
764 			start_reg = PXP2_REG_RQ_CDU_FIRST_ILT;
765 			end_reg = PXP2_REG_RQ_CDU_LAST_ILT;
766 			break;
767 		case ILT_CLIENT_QM:
768 			start_reg = PXP2_REG_RQ_QM_FIRST_ILT;
769 			end_reg = PXP2_REG_RQ_QM_LAST_ILT;
770 			break;
771 		case ILT_CLIENT_SRC:
772 			start_reg = PXP2_REG_RQ_SRC_FIRST_ILT;
773 			end_reg = PXP2_REG_RQ_SRC_LAST_ILT;
774 			break;
775 		case ILT_CLIENT_TM:
776 			start_reg = PXP2_REG_RQ_TM_FIRST_ILT;
777 			end_reg = PXP2_REG_RQ_TM_LAST_ILT;
778 			break;
779 		}
780 		REG_WR(pdev, start_reg, (ilt_start + ilt_cli->start));
781 		REG_WR(pdev, end_reg, (ilt_start + ilt_cli->end));
782 	}
783 }
784 
ecore_ilt_client_init_op_ilt(struct _lm_device_t * pdev,struct ecore_ilt * ilt,struct ilt_client_info * ilt_cli,u8 initop)785 static void ecore_ilt_client_init_op_ilt(struct _lm_device_t *pdev,
786 					 struct ecore_ilt *ilt,
787 					 struct ilt_client_info *ilt_cli,
788 					 u8 initop)
789 {
790 	int i;
791 
792 	if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT)
793 		return;
794 
795 	for (i = ilt_cli->start; i <= ilt_cli->end; i++)
796 		ecore_ilt_line_init_op(pdev, ilt, i, initop);
797 
798 	/* init/clear the ILT boundries */
799 	ecore_ilt_boundry_init_op(pdev, ilt_cli, ilt->start_line, initop);
800 }
801 
ecore_ilt_client_init_op(struct _lm_device_t * pdev,struct ilt_client_info * ilt_cli,u8 initop)802 static void ecore_ilt_client_init_op(struct _lm_device_t *pdev,
803 				     struct ilt_client_info *ilt_cli, u8 initop)
804 {
805 	struct ecore_ilt *ilt = PDEV_ILT(pdev);
806 
807 	ecore_ilt_client_init_op_ilt(pdev, ilt, ilt_cli, initop);
808 }
809 
ecore_ilt_client_id_init_op(struct _lm_device_t * pdev,int cli_num,u8 initop)810 static void ecore_ilt_client_id_init_op(struct _lm_device_t *pdev,
811 					int cli_num, u8 initop)
812 {
813 	struct ecore_ilt *ilt = PDEV_ILT(pdev);
814 	struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
815 
816 	ecore_ilt_client_init_op(pdev, ilt_cli, initop);
817 }
818 
ecore_ilt_init_op_cnic(struct _lm_device_t * pdev,u8 initop)819 static void ecore_ilt_init_op_cnic(struct _lm_device_t *pdev, u8 initop)
820 {
821 	if (CONFIGURE_NIC_MODE(pdev))
822 		ecore_ilt_client_id_init_op(pdev, ILT_CLIENT_SRC, initop);
823 	ecore_ilt_client_id_init_op(pdev, ILT_CLIENT_TM, initop);
824 }
825 
ecore_ilt_init_op(struct _lm_device_t * pdev,u8 initop)826 static void ecore_ilt_init_op(struct _lm_device_t *pdev, u8 initop)
827 {
828 	ecore_ilt_client_id_init_op(pdev, ILT_CLIENT_CDU, initop);
829 	ecore_ilt_client_id_init_op(pdev, ILT_CLIENT_QM, initop);
830 	if (CNIC_SUPPORT(pdev) && !CONFIGURE_NIC_MODE(pdev))
831 		ecore_ilt_client_id_init_op(pdev, ILT_CLIENT_SRC, initop);
832 }
833 
ecore_ilt_init_client_psz(struct _lm_device_t * pdev,int cli_num,u32 psz_reg,u8 initop)834 static void ecore_ilt_init_client_psz(struct _lm_device_t *pdev, int cli_num,
835 				      u32 psz_reg, u8 initop)
836 {
837 	struct ecore_ilt *ilt = PDEV_ILT(pdev);
838 	struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
839 
840 	if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT)
841 		return;
842 
843 	switch (initop) {
844 	case INITOP_INIT:
845 		/* set in the init-value array */
846 	case INITOP_SET:
847 		REG_WR(pdev, psz_reg, ILOG2(ilt_cli->page_size >> 12));
848 		break;
849 	case INITOP_CLEAR:
850 		break;
851 	}
852 }
853 
854 /*
855  * called during init common stage, ilt clients should be initialized
856  * prioir to calling this function
857  */
ecore_ilt_init_page_size(struct _lm_device_t * pdev,u8 initop)858 static void ecore_ilt_init_page_size(struct _lm_device_t *pdev, u8 initop)
859 {
860 	ecore_ilt_init_client_psz(pdev, ILT_CLIENT_CDU,
861 				  PXP2_REG_RQ_CDU_P_SIZE, initop);
862 	ecore_ilt_init_client_psz(pdev, ILT_CLIENT_QM,
863 				  PXP2_REG_RQ_QM_P_SIZE, initop);
864 	ecore_ilt_init_client_psz(pdev, ILT_CLIENT_SRC,
865 				  PXP2_REG_RQ_SRC_P_SIZE, initop);
866 	ecore_ilt_init_client_psz(pdev, ILT_CLIENT_TM,
867 				  PXP2_REG_RQ_TM_P_SIZE, initop);
868 }
869 
870 /****************************************************************************
871 * QM initializations
872 ****************************************************************************/
873 #define QM_QUEUES_PER_FUNC	16 /* E1 has 32, but only 16 are used */
874 #define QM_INIT_MIN_CID_COUNT	31
875 #define QM_INIT(cid_cnt)	(cid_cnt > QM_INIT_MIN_CID_COUNT)
876 
877 /* called during init port stage */
ecore_qm_init_cid_count(struct _lm_device_t * pdev,int qm_cid_count,u8 initop)878 static void ecore_qm_init_cid_count(struct _lm_device_t *pdev, int qm_cid_count,
879 				    u8 initop)
880 {
881 	int port = PDEV_PORT(pdev);
882 
883 	if (QM_INIT(qm_cid_count)) {
884 		switch (initop) {
885 		case INITOP_INIT:
886 			/* set in the init-value array */
887 		case INITOP_SET:
888 			REG_WR(pdev, QM_REG_CONNNUM_0 + port*4,
889 			       qm_cid_count/16 - 1);
890 			break;
891 		case INITOP_CLEAR:
892 			break;
893 		}
894 	}
895 }
896 
ecore_qm_set_ptr_table(struct _lm_device_t * pdev,int qm_cid_count,u32 base_reg,u32 reg)897 static void ecore_qm_set_ptr_table(struct _lm_device_t *pdev, int qm_cid_count,
898 				   u32 base_reg, u32 reg)
899 {
900 	int i;
901 	u32 wb_data[2] = {0, 0};
902 	for (i = 0; i < 4 * QM_QUEUES_PER_FUNC; i++) {
903 		REG_WR(pdev, base_reg + i*4,
904 		       qm_cid_count * 4 * (i % QM_QUEUES_PER_FUNC));
905 		ecore_init_wr_wb(pdev, reg + i*8,
906 				 wb_data, 2);
907 	}
908 }
909 
910 /* called during init common stage */
ecore_qm_init_ptr_table(struct _lm_device_t * pdev,int qm_cid_count,u8 initop)911 static void ecore_qm_init_ptr_table(struct _lm_device_t *pdev, int qm_cid_count,
912 				    u8 initop)
913 {
914 	if (!QM_INIT(qm_cid_count))
915 		return;
916 
917 	switch (initop) {
918 	case INITOP_INIT:
919 		/* set in the init-value array */
920 	case INITOP_SET:
921 		ecore_qm_set_ptr_table(pdev, qm_cid_count,
922 				       QM_REG_BASEADDR, QM_REG_PTRTBL);
923 		if (CHIP_IS_E1H(pdev))
924 			ecore_qm_set_ptr_table(pdev, qm_cid_count,
925 					       QM_REG_BASEADDR_EXT_A,
926 					       QM_REG_PTRTBL_EXT_A);
927 		break;
928 	case INITOP_CLEAR:
929 		break;
930 	}
931 }
932 
933 #endif
934 /****************************************************************************
935 * SRC initializations
936 ****************************************************************************/
937 #ifdef ECORE_L5
938 /* called during init func stage */
ecore_src_init_t2(struct _lm_device_t * pdev,struct src_ent * t2,lm_address_t t2_mapping,int src_cid_count)939 static void ecore_src_init_t2(struct _lm_device_t *pdev, struct src_ent *t2,
940 			      lm_address_t t2_mapping, int src_cid_count)
941 {
942 	int i;
943 	int port = PDEV_PORT(pdev);
944 
945 	/* Initialize T2 */
946 	for (i = 0; i < src_cid_count-1; i++)
947 		t2[i].next = (u64)(t2_mapping.as_u64 +
948 			     (i+1)*sizeof(struct src_ent));
949 
950 	/* tell the searcher where the T2 table is */
951 	REG_WR(pdev, SRC_REG_COUNTFREE0 + port*4, src_cid_count);
952 
953 	ecore_wr_64(pdev, SRC_REG_FIRSTFREE0 + port*16,
954 		    U64_LO(t2_mapping.as_u64), U64_HI(t2_mapping.as_u64));
955 
956 	ecore_wr_64(pdev, SRC_REG_LASTFREE0 + port*16,
957 		    U64_LO((u64)t2_mapping.as_u64 +
958 			   (src_cid_count-1) * sizeof(struct src_ent)),
959 		    U64_HI((u64)t2_mapping.as_u64 +
960 			   (src_cid_count-1) * sizeof(struct src_ent)));
961 }
962 #endif
963 #endif /* ECORE_INIT_OPS_H */
964