xref: /illumos-gate/usr/src/uts/common/inet/ip/ip.c (revision 6a634c9d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 1990 Mentat Inc.
25  */
26 
27 #include <sys/types.h>
28 #include <sys/stream.h>
29 #include <sys/dlpi.h>
30 #include <sys/stropts.h>
31 #include <sys/sysmacros.h>
32 #include <sys/strsubr.h>
33 #include <sys/strlog.h>
34 #include <sys/strsun.h>
35 #include <sys/zone.h>
36 #define	_SUN_TPI_VERSION 2
37 #include <sys/tihdr.h>
38 #include <sys/xti_inet.h>
39 #include <sys/ddi.h>
40 #include <sys/suntpi.h>
41 #include <sys/cmn_err.h>
42 #include <sys/debug.h>
43 #include <sys/kobj.h>
44 #include <sys/modctl.h>
45 #include <sys/atomic.h>
46 #include <sys/policy.h>
47 #include <sys/priv.h>
48 #include <sys/taskq.h>
49 
50 #include <sys/systm.h>
51 #include <sys/param.h>
52 #include <sys/kmem.h>
53 #include <sys/sdt.h>
54 #include <sys/socket.h>
55 #include <sys/vtrace.h>
56 #include <sys/isa_defs.h>
57 #include <sys/mac.h>
58 #include <net/if.h>
59 #include <net/if_arp.h>
60 #include <net/route.h>
61 #include <sys/sockio.h>
62 #include <netinet/in.h>
63 #include <net/if_dl.h>
64 
65 #include <inet/common.h>
66 #include <inet/mi.h>
67 #include <inet/mib2.h>
68 #include <inet/nd.h>
69 #include <inet/arp.h>
70 #include <inet/snmpcom.h>
71 #include <inet/optcom.h>
72 #include <inet/kstatcom.h>
73 
74 #include <netinet/igmp_var.h>
75 #include <netinet/ip6.h>
76 #include <netinet/icmp6.h>
77 #include <netinet/sctp.h>
78 
79 #include <inet/ip.h>
80 #include <inet/ip_impl.h>
81 #include <inet/ip6.h>
82 #include <inet/ip6_asp.h>
83 #include <inet/tcp.h>
84 #include <inet/tcp_impl.h>
85 #include <inet/ip_multi.h>
86 #include <inet/ip_if.h>
87 #include <inet/ip_ire.h>
88 #include <inet/ip_ftable.h>
89 #include <inet/ip_rts.h>
90 #include <inet/ip_ndp.h>
91 #include <inet/ip_listutils.h>
92 #include <netinet/igmp.h>
93 #include <netinet/ip_mroute.h>
94 #include <inet/ipp_common.h>
95 
96 #include <net/pfkeyv2.h>
97 #include <inet/sadb.h>
98 #include <inet/ipsec_impl.h>
99 #include <inet/iptun/iptun_impl.h>
100 #include <inet/ipdrop.h>
101 #include <inet/ip_netinfo.h>
102 #include <inet/ilb_ip.h>
103 
104 #include <sys/ethernet.h>
105 #include <net/if_types.h>
106 #include <sys/cpuvar.h>
107 
108 #include <ipp/ipp.h>
109 #include <ipp/ipp_impl.h>
110 #include <ipp/ipgpc/ipgpc.h>
111 
112 #include <sys/pattr.h>
113 #include <inet/ipclassifier.h>
114 #include <inet/sctp_ip.h>
115 #include <inet/sctp/sctp_impl.h>
116 #include <inet/udp_impl.h>
117 #include <inet/rawip_impl.h>
118 #include <inet/rts_impl.h>
119 
120 #include <sys/tsol/label.h>
121 #include <sys/tsol/tnet.h>
122 
123 #include <sys/squeue_impl.h>
124 #include <inet/ip_arp.h>
125 
126 #include <sys/clock_impl.h>	/* For LBOLT_FASTPATH{,64} */
127 
128 /*
129  * Values for squeue switch:
130  * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN
131  * IP_SQUEUE_ENTER: SQ_PROCESS
132  * IP_SQUEUE_FILL: SQ_FILL
133  */
134 int ip_squeue_enter = IP_SQUEUE_ENTER;	/* Setable in /etc/system */
135 
136 int ip_squeue_flag;
137 
138 /*
139  * Setable in /etc/system
140  */
141 int ip_poll_normal_ms = 100;
142 int ip_poll_normal_ticks = 0;
143 int ip_modclose_ackwait_ms = 3000;
144 
145 /*
146  * It would be nice to have these present only in DEBUG systems, but the
147  * current design of the global symbol checking logic requires them to be
148  * unconditionally present.
149  */
150 uint_t ip_thread_data;			/* TSD key for debug support */
151 krwlock_t ip_thread_rwlock;
152 list_t	ip_thread_list;
153 
154 /*
155  * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions.
156  */
157 
158 struct listptr_s {
159 	mblk_t	*lp_head;	/* pointer to the head of the list */
160 	mblk_t	*lp_tail;	/* pointer to the tail of the list */
161 };
162 
163 typedef struct listptr_s listptr_t;
164 
165 /*
166  * This is used by ip_snmp_get_mib2_ip_route_media and
167  * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data.
168  */
169 typedef struct iproutedata_s {
170 	uint_t		ird_idx;
171 	uint_t		ird_flags;	/* see below */
172 	listptr_t	ird_route;	/* ipRouteEntryTable */
173 	listptr_t	ird_netmedia;	/* ipNetToMediaEntryTable */
174 	listptr_t	ird_attrs;	/* ipRouteAttributeTable */
175 } iproutedata_t;
176 
177 /* Include ire_testhidden and IRE_IF_CLONE routes */
178 #define	IRD_REPORT_ALL	0x01
179 
180 /*
181  * Cluster specific hooks. These should be NULL when booted as a non-cluster
182  */
183 
184 /*
185  * Hook functions to enable cluster networking
186  * On non-clustered systems these vectors must always be NULL.
187  *
188  * Hook function to Check ip specified ip address is a shared ip address
189  * in the cluster
190  *
191  */
192 int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol,
193     sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL;
194 
195 /*
196  * Hook function to generate cluster wide ip fragment identifier
197  */
198 uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol,
199     sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp,
200     void *args) = NULL;
201 
202 /*
203  * Hook function to generate cluster wide SPI.
204  */
205 void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t,
206     void *) = NULL;
207 
208 /*
209  * Hook function to verify if the SPI is already utlized.
210  */
211 
212 int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL;
213 
214 /*
215  * Hook function to delete the SPI from the cluster wide repository.
216  */
217 
218 void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL;
219 
220 /*
221  * Hook function to inform the cluster when packet received on an IDLE SA
222  */
223 
224 void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t,
225     in6_addr_t, in6_addr_t, void *) = NULL;
226 
227 /*
228  * Synchronization notes:
229  *
230  * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any
231  * MT level protection given by STREAMS. IP uses a combination of its own
232  * internal serialization mechanism and standard Solaris locking techniques.
233  * The internal serialization is per phyint.  This is used to serialize
234  * plumbing operations, IPMP operations, most set ioctls, etc.
235  *
236  * Plumbing is a long sequence of operations involving message
237  * exchanges between IP, ARP and device drivers. Many set ioctls are typically
238  * involved in plumbing operations. A natural model is to serialize these
239  * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in
240  * parallel without any interference. But various set ioctls on hme0 are best
241  * serialized, along with IPMP operations and processing of DLPI control
242  * messages received from drivers on a per phyint basis. This serialization is
243  * provided by the ipsq_t and primitives operating on this. Details can
244  * be found in ip_if.c above the core primitives operating on ipsq_t.
245  *
246  * Lookups of an ipif or ill by a thread return a refheld ipif / ill.
247  * Simiarly lookup of an ire by a thread also returns a refheld ire.
248  * In addition ipif's and ill's referenced by the ire are also indirectly
249  * refheld. Thus no ipif or ill can vanish as long as an ipif is refheld
250  * directly or indirectly. For example an SIOCSLIFADDR ioctl that changes the
251  * address of an ipif has to go through the ipsq_t. This ensures that only
252  * one such exclusive operation proceeds at any time on the ipif. It then
253  * waits for all refcnts
254  * associated with this ipif to come down to zero. The address is changed
255  * only after the ipif has been quiesced. Then the ipif is brought up again.
256  * More details are described above the comment in ip_sioctl_flags.
257  *
258  * Packet processing is based mostly on IREs and are fully multi-threaded
259  * using standard Solaris MT techniques.
260  *
261  * There are explicit locks in IP to handle:
262  * - The ip_g_head list maintained by mi_open_link() and friends.
263  *
264  * - The reassembly data structures (one lock per hash bucket)
265  *
266  * - conn_lock is meant to protect conn_t fields. The fields actually
267  *   protected by conn_lock are documented in the conn_t definition.
268  *
269  * - ire_lock to protect some of the fields of the ire, IRE tables
270  *   (one lock per hash bucket). Refer to ip_ire.c for details.
271  *
272  * - ndp_g_lock and ncec_lock for protecting NCEs.
273  *
274  * - ill_lock protects fields of the ill and ipif. Details in ip.h
275  *
276  * - ill_g_lock: This is a global reader/writer lock. Protects the following
277  *	* The AVL tree based global multi list of all ills.
278  *	* The linked list of all ipifs of an ill
279  *	* The <ipsq-xop> mapping
280  *	* <ill-phyint> association
281  *   Insertion/deletion of an ill in the system, insertion/deletion of an ipif
282  *   into an ill, changing the <ipsq-xop> mapping of an ill, changing the
283  *   <ill-phyint> assoc of an ill will all have to hold the ill_g_lock as
284  *   writer for the actual duration of the insertion/deletion/change.
285  *
286  * - ill_lock:  This is a per ill mutex.
287  *   It protects some members of the ill_t struct; see ip.h for details.
288  *   It also protects the <ill-phyint> assoc.
289  *   It also protects the list of ipifs hanging off the ill.
290  *
291  * - ipsq_lock: This is a per ipsq_t mutex lock.
292  *   This protects some members of the ipsq_t struct; see ip.h for details.
293  *   It also protects the <ipsq-ipxop> mapping
294  *
295  * - ipx_lock: This is a per ipxop_t mutex lock.
296  *   This protects some members of the ipxop_t struct; see ip.h for details.
297  *
298  * - phyint_lock: This is a per phyint mutex lock. Protects just the
299  *   phyint_flags
300  *
301  * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses.
302  *   This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the
303  *   uniqueness check also done atomically.
304  *
305  * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc
306  *   group list linked by ill_usesrc_grp_next. It also protects the
307  *   ill_usesrc_ifindex field. It is taken as a writer when a member of the
308  *   group is being added or deleted.  This lock is taken as a reader when
309  *   walking the list/group(eg: to get the number of members in a usesrc group).
310  *   Note, it is only necessary to take this lock if the ill_usesrc_grp_next
311  *   field is changing state i.e from NULL to non-NULL or vice-versa. For
312  *   example, it is not necessary to take this lock in the initial portion
313  *   of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these
314  *   operations are executed exclusively and that ensures that the "usesrc
315  *   group state" cannot change. The "usesrc group state" change can happen
316  *   only in the latter part of ip_sioctl_slifusesrc and in ill_delete.
317  *
318  * Changing <ill-phyint>, <ipsq-xop> assocications:
319  *
320  * To change the <ill-phyint> association, the ill_g_lock must be held
321  * as writer, and the ill_locks of both the v4 and v6 instance of the ill
322  * must be held.
323  *
324  * To change the <ipsq-xop> association, the ill_g_lock must be held as
325  * writer, the ipsq_lock must be held, and one must be writer on the ipsq.
326  * This is only done when ills are added or removed from IPMP groups.
327  *
328  * To add or delete an ipif from the list of ipifs hanging off the ill,
329  * ill_g_lock (writer) and ill_lock must be held and the thread must be
330  * a writer on the associated ipsq.
331  *
332  * To add or delete an ill to the system, the ill_g_lock must be held as
333  * writer and the thread must be a writer on the associated ipsq.
334  *
335  * To add or delete an ilm to an ill, the ill_lock must be held and the thread
336  * must be a writer on the associated ipsq.
337  *
338  * Lock hierarchy
339  *
340  * Some lock hierarchy scenarios are listed below.
341  *
342  * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock
343  * ill_g_lock -> ill_lock(s) -> phyint_lock
344  * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock
345  * ill_g_lock -> ip_addr_avail_lock
346  * conn_lock -> irb_lock -> ill_lock -> ire_lock
347  * ill_g_lock -> ip_g_nd_lock
348  * ill_g_lock -> ips_ipmp_lock -> ill_lock -> nce_lock
349  * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock -> nce_lock
350  * arl_lock -> ill_lock
351  * ips_ire_dep_lock -> irb_lock
352  *
353  * When more than 1 ill lock is needed to be held, all ill lock addresses
354  * are sorted on address and locked starting from highest addressed lock
355  * downward.
356  *
357  * Multicast scenarios
358  * ips_ill_g_lock -> ill_mcast_lock
359  * conn_ilg_lock -> ips_ill_g_lock -> ill_lock
360  * ill_mcast_serializer -> ill_mcast_lock -> ips_ipmp_lock -> ill_lock
361  * ill_mcast_serializer -> ill_mcast_lock -> connf_lock -> conn_lock
362  * ill_mcast_serializer -> ill_mcast_lock -> conn_ilg_lock
363  * ill_mcast_serializer -> ill_mcast_lock -> ips_igmp_timer_lock
364  *
365  * IPsec scenarios
366  *
367  * ipsa_lock -> ill_g_lock -> ill_lock
368  * ill_g_usesrc_lock -> ill_g_lock -> ill_lock
369  *
370  * Trusted Solaris scenarios
371  *
372  * igsa_lock -> gcgrp_rwlock -> gcgrp_lock
373  * igsa_lock -> gcdb_lock
374  * gcgrp_rwlock -> ire_lock
375  * gcgrp_rwlock -> gcdb_lock
376  *
377  * squeue(sq_lock), flow related (ft_lock, fe_lock) locking
378  *
379  * cpu_lock --> ill_lock --> sqset_lock --> sq_lock
380  * sq_lock -> conn_lock -> QLOCK(q)
381  * ill_lock -> ft_lock -> fe_lock
382  *
383  * Routing/forwarding table locking notes:
384  *
385  * Lock acquisition order: Radix tree lock, irb_lock.
386  * Requirements:
387  * i.  Walker must not hold any locks during the walker callback.
388  * ii  Walker must not see a truncated tree during the walk because of any node
389  *     deletion.
390  * iii Existing code assumes ire_bucket is valid if it is non-null and is used
391  *     in many places in the code to walk the irb list. Thus even if all the
392  *     ires in a bucket have been deleted, we still can't free the radix node
393  *     until the ires have actually been inactive'd (freed).
394  *
395  * Tree traversal - Need to hold the global tree lock in read mode.
396  * Before dropping the global tree lock, need to either increment the ire_refcnt
397  * to ensure that the radix node can't be deleted.
398  *
399  * Tree add - Need to hold the global tree lock in write mode to add a
400  * radix node. To prevent the node from being deleted, increment the
401  * irb_refcnt, after the node is added to the tree. The ire itself is
402  * added later while holding the irb_lock, but not the tree lock.
403  *
404  * Tree delete - Need to hold the global tree lock and irb_lock in write mode.
405  * All associated ires must be inactive (i.e. freed), and irb_refcnt
406  * must be zero.
407  *
408  * Walker - Increment irb_refcnt before calling the walker callback. Hold the
409  * global tree lock (read mode) for traversal.
410  *
411  * IRE dependencies - In some cases we hold ips_ire_dep_lock across ire_refrele
412  * hence we will acquire irb_lock while holding ips_ire_dep_lock.
413  *
414  * IPsec notes :
415  *
416  * IP interacts with the IPsec code (AH/ESP) by storing IPsec attributes
417  * in the ip_xmit_attr_t ip_recv_attr_t. For outbound datagrams, the
418  * ip_xmit_attr_t has the
419  * information used by the IPsec code for applying the right level of
420  * protection. The information initialized by IP in the ip_xmit_attr_t
421  * is determined by the per-socket policy or global policy in the system.
422  * For inbound datagrams, the ip_recv_attr_t
423  * starts out with nothing in it. It gets filled
424  * with the right information if it goes through the AH/ESP code, which
425  * happens if the incoming packet is secure. The information initialized
426  * by AH/ESP, is later used by IP (during fanouts to ULP) to see whether
427  * the policy requirements needed by per-socket policy or global policy
428  * is met or not.
429  *
430  * For fully connected sockets i.e dst, src [addr, port] is known,
431  * conn_policy_cached is set indicating that policy has been cached.
432  * conn_in_enforce_policy may or may not be set depending on whether
433  * there is a global policy match or per-socket policy match.
434  * Policy inheriting happpens in ip_policy_set once the destination is known.
435  * Once the right policy is set on the conn_t, policy cannot change for
436  * this socket. This makes life simpler for TCP (UDP ?) where
437  * re-transmissions go out with the same policy. For symmetry, policy
438  * is cached for fully connected UDP sockets also. Thus if policy is cached,
439  * it also implies that policy is latched i.e policy cannot change
440  * on these sockets. As we have the right policy on the conn, we don't
441  * have to lookup global policy for every outbound and inbound datagram
442  * and thus serving as an optimization. Note that a global policy change
443  * does not affect fully connected sockets if they have policy. If fully
444  * connected sockets did not have any policy associated with it, global
445  * policy change may affect them.
446  *
447  * IP Flow control notes:
448  * ---------------------
449  * Non-TCP streams are flow controlled by IP. The way this is accomplished
450  * differs when ILL_CAPAB_DLD_DIRECT is enabled for that IP instance. When
451  * ILL_DIRECT_CAPABLE(ill) is TRUE, IP can do direct function calls into
452  * GLDv3. Otherwise packets are sent down to lower layers using STREAMS
453  * functions.
454  *
455  * Per Tx ring udp flow control:
456  * This is applicable only when ILL_CAPAB_DLD_DIRECT capability is set in
457  * the ill (i.e. ILL_DIRECT_CAPABLE(ill) is true).
458  *
459  * The underlying link can expose multiple Tx rings to the GLDv3 mac layer.
460  * To achieve best performance, outgoing traffic need to be fanned out among
461  * these Tx ring. mac_tx() is called (via str_mdata_fastpath_put()) to send
462  * traffic out of the NIC and it takes a fanout hint. UDP connections pass
463  * the address of connp as fanout hint to mac_tx(). Under flow controlled
464  * condition, mac_tx() returns a non-NULL cookie (ip_mac_tx_cookie_t). This
465  * cookie points to a specific Tx ring that is blocked. The cookie is used to
466  * hash into an idl_tx_list[] entry in idl_tx_list[] array. Each idl_tx_list_t
467  * point to drain_lists (idl_t's). These drain list will store the blocked UDP
468  * connp's. The drain list is not a single list but a configurable number of
469  * lists.
470  *
471  * The diagram below shows idl_tx_list_t's and their drain_lists. ip_stack_t
472  * has an array of idl_tx_list_t. The size of the array is TX_FANOUT_SIZE
473  * which is equal to 128. This array in turn contains a pointer to idl_t[],
474  * the ip drain list. The idl_t[] array size is MIN(max_ncpus, 8). The drain
475  * list will point to the list of connp's that are flow controlled.
476  *
477  *                      ---------------   -------   -------   -------
478  *                   |->|drain_list[0]|-->|connp|-->|connp|-->|connp|-->
479  *                   |  ---------------   -------   -------   -------
480  *                   |  ---------------   -------   -------   -------
481  *                   |->|drain_list[1]|-->|connp|-->|connp|-->|connp|-->
482  * ----------------  |  ---------------   -------   -------   -------
483  * |idl_tx_list[0]|->|  ---------------   -------   -------   -------
484  * ----------------  |->|drain_list[2]|-->|connp|-->|connp|-->|connp|-->
485  *                   |  ---------------   -------   -------   -------
486  *                   .        .              .         .         .
487  *                   |  ---------------   -------   -------   -------
488  *                   |->|drain_list[n]|-->|connp|-->|connp|-->|connp|-->
489  *                      ---------------   -------   -------   -------
490  *                      ---------------   -------   -------   -------
491  *                   |->|drain_list[0]|-->|connp|-->|connp|-->|connp|-->
492  *                   |  ---------------   -------   -------   -------
493  *                   |  ---------------   -------   -------   -------
494  * ----------------  |->|drain_list[1]|-->|connp|-->|connp|-->|connp|-->
495  * |idl_tx_list[1]|->|  ---------------   -------   -------   -------
496  * ----------------  |        .              .         .         .
497  *                   |  ---------------   -------   -------   -------
498  *                   |->|drain_list[n]|-->|connp|-->|connp|-->|connp|-->
499  *                      ---------------   -------   -------   -------
500  *     .....
501  * ----------------
502  * |idl_tx_list[n]|-> ...
503  * ----------------
504  *
505  * When mac_tx() returns a cookie, the cookie is hashed into an index into
506  * ips_idl_tx_list[], and conn_drain_insert() is called with the idl_tx_list
507  * to insert the conn onto.  conn_drain_insert() asserts flow control for the
508  * sockets via su_txq_full() (non-STREAMS) or QFULL on conn_wq (STREAMS).
509  * Further, conn_blocked is set to indicate that the conn is blocked.
510  *
511  * GLDv3 calls ill_flow_enable() when flow control is relieved.  The cookie
512  * passed in the call to ill_flow_enable() identifies the blocked Tx ring and
513  * is again hashed to locate the appropriate idl_tx_list, which is then
514  * drained via conn_walk_drain().  conn_walk_drain() goes through each conn in
515  * the drain list and calls conn_drain_remove() to clear flow control (via
516  * calling su_txq_full() or clearing QFULL), and remove the conn from the
517  * drain list.
518  *
519  * Note that the drain list is not a single list but a (configurable) array of
520  * lists (8 elements by default).  Synchronization between drain insertion and
521  * flow control wakeup is handled by using idl_txl->txl_lock, and only
522  * conn_drain_insert() and conn_drain_remove() manipulate the drain list.
523  *
524  * Flow control via STREAMS is used when ILL_DIRECT_CAPABLE() returns FALSE.
525  * On the send side, if the packet cannot be sent down to the driver by IP
526  * (canput() fails), ip_xmit() drops the packet and returns EWOULDBLOCK to the
527  * caller, who may then invoke ixa_check_drain_insert() to insert the conn on
528  * the 0'th drain list.  When ip_wsrv() runs on the ill_wq because flow
529  * control has been relieved, the blocked conns in the 0'th drain list are
530  * drained as in the non-STREAMS case.
531  *
532  * In both the STREAMS and non-STREAMS cases, the sockfs upcall to set QFULL
533  * is done when the conn is inserted into the drain list (conn_drain_insert())
534  * and cleared when the conn is removed from the it (conn_drain_remove()).
535  *
536  * IPQOS notes:
537  *
538  * IPQoS Policies are applied to packets using IPPF (IP Policy framework)
539  * and IPQoS modules. IPPF includes hooks in IP at different control points
540  * (callout positions) which direct packets to IPQoS modules for policy
541  * processing. Policies, if present, are global.
542  *
543  * The callout positions are located in the following paths:
544  *		o local_in (packets destined for this host)
545  *		o local_out (packets orginating from this host )
546  *		o fwd_in  (packets forwarded by this m/c - inbound)
547  *		o fwd_out (packets forwarded by this m/c - outbound)
548  * Hooks at these callout points can be enabled/disabled using the ndd variable
549  * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions).
550  * By default all the callout positions are enabled.
551  *
552  * Outbound (local_out)
553  * Hooks are placed in ire_send_wire_v4 and ire_send_wire_v6.
554  *
555  * Inbound (local_in)
556  * Hooks are placed in ip_fanout_v4 and ip_fanout_v6.
557  *
558  * Forwarding (in and out)
559  * Hooks are placed in ire_recv_forward_v4/v6.
560  *
561  * IP Policy Framework processing (IPPF processing)
562  * Policy processing for a packet is initiated by ip_process, which ascertains
563  * that the classifier (ipgpc) is loaded and configured, failing which the
564  * packet resumes normal processing in IP. If the clasifier is present, the
565  * packet is acted upon by one or more IPQoS modules (action instances), per
566  * filters configured in ipgpc and resumes normal IP processing thereafter.
567  * An action instance can drop a packet in course of its processing.
568  *
569  * Zones notes:
570  *
571  * The partitioning rules for networking are as follows:
572  * 1) Packets coming from a zone must have a source address belonging to that
573  * zone.
574  * 2) Packets coming from a zone can only be sent on a physical interface on
575  * which the zone has an IP address.
576  * 3) Between two zones on the same machine, packet delivery is only allowed if
577  * there's a matching route for the destination and zone in the forwarding
578  * table.
579  * 4) The TCP and UDP port spaces are per-zone; that is, two processes in
580  * different zones can bind to the same port with the wildcard address
581  * (INADDR_ANY).
582  *
583  * The granularity of interface partitioning is at the logical interface level.
584  * Therefore, every zone has its own IP addresses, and incoming packets can be
585  * attributed to a zone unambiguously. A logical interface is placed into a zone
586  * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t
587  * structure. Rule (1) is implemented by modifying the source address selection
588  * algorithm so that the list of eligible addresses is filtered based on the
589  * sending process zone.
590  *
591  * The Internet Routing Entries (IREs) are either exclusive to a zone or shared
592  * across all zones, depending on their type. Here is the break-up:
593  *
594  * IRE type				Shared/exclusive
595  * --------				----------------
596  * IRE_BROADCAST			Exclusive
597  * IRE_DEFAULT (default routes)		Shared (*)
598  * IRE_LOCAL				Exclusive (x)
599  * IRE_LOOPBACK				Exclusive
600  * IRE_PREFIX (net routes)		Shared (*)
601  * IRE_IF_NORESOLVER (interface routes)	Exclusive
602  * IRE_IF_RESOLVER (interface routes)	Exclusive
603  * IRE_IF_CLONE (interface routes)	Exclusive
604  * IRE_HOST (host routes)		Shared (*)
605  *
606  * (*) A zone can only use a default or off-subnet route if the gateway is
607  * directly reachable from the zone, that is, if the gateway's address matches
608  * one of the zone's logical interfaces.
609  *
610  * (x) IRE_LOCAL are handled a bit differently.
611  * When ip_restrict_interzone_loopback is set (the default),
612  * ire_route_recursive restricts loopback using an IRE_LOCAL
613  * between zone to the case when L2 would have conceptually looped the packet
614  * back, i.e. the loopback which is required since neither Ethernet drivers
615  * nor Ethernet hardware loops them back. This is the case when the normal
616  * routes (ignoring IREs with different zoneids) would send out the packet on
617  * the same ill as the ill with which is IRE_LOCAL is associated.
618  *
619  * Multiple zones can share a common broadcast address; typically all zones
620  * share the 255.255.255.255 address. Incoming as well as locally originated
621  * broadcast packets must be dispatched to all the zones on the broadcast
622  * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial
623  * since some zones may not be on the 10.16.72/24 network. To handle this, each
624  * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are
625  * sent to every zone that has an IRE_BROADCAST entry for the destination
626  * address on the input ill, see ip_input_broadcast().
627  *
628  * Applications in different zones can join the same multicast group address.
629  * The same logic applies for multicast as for broadcast. ip_input_multicast
630  * dispatches packets to all zones that have members on the physical interface.
631  */
632 
633 /*
634  * Squeue Fanout flags:
635  *	0: No fanout.
636  *	1: Fanout across all squeues
637  */
638 boolean_t	ip_squeue_fanout = 0;
639 
640 /*
641  * Maximum dups allowed per packet.
642  */
643 uint_t ip_max_frag_dups = 10;
644 
645 static int	ip_open(queue_t *q, dev_t *devp, int flag, int sflag,
646 		    cred_t *credp, boolean_t isv6);
647 static mblk_t	*ip_xmit_attach_llhdr(mblk_t *, nce_t *);
648 
649 static boolean_t icmp_inbound_verify_v4(mblk_t *, icmph_t *, ip_recv_attr_t *);
650 static void	icmp_inbound_too_big_v4(icmph_t *, ip_recv_attr_t *);
651 static void	icmp_inbound_error_fanout_v4(mblk_t *, icmph_t *,
652     ip_recv_attr_t *);
653 static void	icmp_options_update(ipha_t *);
654 static void	icmp_param_problem(mblk_t *, uint8_t,  ip_recv_attr_t *);
655 static void	icmp_pkt(mblk_t *, void *, size_t, ip_recv_attr_t *);
656 static mblk_t	*icmp_pkt_err_ok(mblk_t *, ip_recv_attr_t *);
657 static void	icmp_redirect_v4(mblk_t *mp, ipha_t *, icmph_t *,
658     ip_recv_attr_t *);
659 static void	icmp_send_redirect(mblk_t *, ipaddr_t, ip_recv_attr_t *);
660 static void	icmp_send_reply_v4(mblk_t *, ipha_t *, icmph_t *,
661     ip_recv_attr_t *);
662 
663 mblk_t		*ip_dlpi_alloc(size_t, t_uscalar_t);
664 char		*ip_dot_addr(ipaddr_t, char *);
665 mblk_t		*ip_carve_mp(mblk_t **, ssize_t);
666 int		ip_close(queue_t *, int);
667 static char	*ip_dot_saddr(uchar_t *, char *);
668 static void	ip_lrput(queue_t *, mblk_t *);
669 ipaddr_t	ip_net_mask(ipaddr_t);
670 char		*ip_nv_lookup(nv_t *, int);
671 void	ip_rput(queue_t *, mblk_t *);
672 static void	ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp,
673 		    void *dummy_arg);
674 int		ip_snmp_get(queue_t *, mblk_t *, int, boolean_t);
675 static mblk_t	*ip_snmp_get_mib2_ip(queue_t *, mblk_t *,
676 		    mib2_ipIfStatsEntry_t *, ip_stack_t *, boolean_t);
677 static mblk_t	*ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *,
678 		    ip_stack_t *, boolean_t);
679 static mblk_t	*ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *,
680 		    boolean_t);
681 static mblk_t	*ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst);
682 static mblk_t	*ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst);
683 static mblk_t	*ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst);
684 static mblk_t	*ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst);
685 static mblk_t	*ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *,
686 		    ip_stack_t *ipst, boolean_t);
687 static mblk_t	*ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *,
688 		    ip_stack_t *ipst, boolean_t);
689 static mblk_t	*ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *,
690 		    ip_stack_t *ipst);
691 static mblk_t	*ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *,
692 		    ip_stack_t *ipst);
693 static mblk_t	*ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *,
694 		    ip_stack_t *ipst);
695 static mblk_t	*ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *,
696 		    ip_stack_t *ipst);
697 static mblk_t	*ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *,
698 		    ip_stack_t *ipst);
699 static mblk_t	*ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *,
700 		    ip_stack_t *ipst);
701 static mblk_t	*ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, int,
702 		    ip_stack_t *ipst);
703 static mblk_t	*ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, int,
704 		    ip_stack_t *ipst);
705 static void	ip_snmp_get2_v4(ire_t *, iproutedata_t *);
706 static void	ip_snmp_get2_v6_route(ire_t *, iproutedata_t *);
707 static int	ip_snmp_get2_v4_media(ncec_t *, iproutedata_t *);
708 static int	ip_snmp_get2_v6_media(ncec_t *, iproutedata_t *);
709 int		ip_snmp_set(queue_t *, int, int, uchar_t *, int);
710 
711 static mblk_t	*ip_fragment_copyhdr(uchar_t *, int, int, ip_stack_t *,
712 		    mblk_t *);
713 
714 static void	conn_drain_init(ip_stack_t *);
715 static void	conn_drain_fini(ip_stack_t *);
716 static void	conn_drain(conn_t *connp, boolean_t closing);
717 
718 static void	conn_walk_drain(ip_stack_t *, idl_tx_list_t *);
719 static void	conn_walk_sctp(pfv_t, void *, zoneid_t, netstack_t *);
720 
721 static void	*ip_stack_init(netstackid_t stackid, netstack_t *ns);
722 static void	ip_stack_shutdown(netstackid_t stackid, void *arg);
723 static void	ip_stack_fini(netstackid_t stackid, void *arg);
724 
725 static int	ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t,
726     const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *),
727     ire_t *, conn_t *, boolean_t, const in6_addr_t *,  mcast_record_t,
728     const in6_addr_t *);
729 
730 static int	ip_squeue_switch(int);
731 
732 static void	*ip_kstat_init(netstackid_t, ip_stack_t *);
733 static void	ip_kstat_fini(netstackid_t, kstat_t *);
734 static int	ip_kstat_update(kstat_t *kp, int rw);
735 static void	*icmp_kstat_init(netstackid_t);
736 static void	icmp_kstat_fini(netstackid_t, kstat_t *);
737 static int	icmp_kstat_update(kstat_t *kp, int rw);
738 static void	*ip_kstat2_init(netstackid_t, ip_stat_t *);
739 static void	ip_kstat2_fini(netstackid_t, kstat_t *);
740 
741 static void	ipobs_init(ip_stack_t *);
742 static void	ipobs_fini(ip_stack_t *);
743 
744 static int	ip_tp_cpu_update(cpu_setup_t, int, void *);
745 
746 ipaddr_t	ip_g_all_ones = IP_HOST_MASK;
747 
748 static long ip_rput_pullups;
749 int	dohwcksum = 1;	/* use h/w cksum if supported by the hardware */
750 
751 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */
752 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */
753 
754 int	ip_debug;
755 
756 /*
757  * Multirouting/CGTP stuff
758  */
759 int	ip_cgtp_filter_rev = CGTP_FILTER_REV;	/* CGTP hooks version */
760 
761 /*
762  * IP tunables related declarations. Definitions are in ip_tunables.c
763  */
764 extern mod_prop_info_t ip_propinfo_tbl[];
765 extern int ip_propinfo_count;
766 
767 /*
768  * Table of IP ioctls encoding the various properties of the ioctl and
769  * indexed based on the last byte of the ioctl command. Occasionally there
770  * is a clash, and there is more than 1 ioctl with the same last byte.
771  * In such a case 1 ioctl is encoded in the ndx table and the remaining
772  * ioctls are encoded in the misc table. An entry in the ndx table is
773  * retrieved by indexing on the last byte of the ioctl command and comparing
774  * the ioctl command with the value in the ndx table. In the event of a
775  * mismatch the misc table is then searched sequentially for the desired
776  * ioctl command.
777  *
778  * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func>
779  */
780 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = {
781 	/* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
782 	/* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
783 	/* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
784 	/* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
785 	/* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
786 	/* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
787 	/* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
788 	/* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
789 	/* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
790 	/* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
791 
792 	/* 010 */ { SIOCADDRT,	sizeof (struct rtentry), IPI_PRIV,
793 			MISC_CMD, ip_siocaddrt, NULL },
794 	/* 011 */ { SIOCDELRT,	sizeof (struct rtentry), IPI_PRIV,
795 			MISC_CMD, ip_siocdelrt, NULL },
796 
797 	/* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
798 			IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart },
799 	/* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD,
800 			IF_CMD, ip_sioctl_get_addr, NULL },
801 
802 	/* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
803 			IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart },
804 	/* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq),
805 			IPI_GET_CMD, IF_CMD, ip_sioctl_get_dstaddr, NULL },
806 
807 	/* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq),
808 			IPI_PRIV | IPI_WR,
809 			IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart },
810 	/* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq),
811 			IPI_MODOK | IPI_GET_CMD,
812 			IF_CMD, ip_sioctl_get_flags, NULL },
813 
814 	/* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
815 	/* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
816 
817 	/* copyin size cannot be coded for SIOCGIFCONF */
818 	/* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD,
819 			MISC_CMD, ip_sioctl_get_ifconf, NULL },
820 
821 	/* 021 */ { SIOCSIFMTU,	sizeof (struct ifreq), IPI_PRIV | IPI_WR,
822 			IF_CMD, ip_sioctl_mtu, NULL },
823 	/* 022 */ { SIOCGIFMTU,	sizeof (struct ifreq), IPI_GET_CMD,
824 			IF_CMD, ip_sioctl_get_mtu, NULL },
825 	/* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq),
826 			IPI_GET_CMD, IF_CMD, ip_sioctl_get_brdaddr, NULL },
827 	/* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
828 			IF_CMD, ip_sioctl_brdaddr, NULL },
829 	/* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq),
830 			IPI_GET_CMD, IF_CMD, ip_sioctl_get_netmask, NULL },
831 	/* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
832 			IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart },
833 	/* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq),
834 			IPI_GET_CMD, IF_CMD, ip_sioctl_get_metric, NULL },
835 	/* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV,
836 			IF_CMD, ip_sioctl_metric, NULL },
837 	/* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
838 
839 	/* See 166-168 below for extended SIOC*XARP ioctls */
840 	/* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR,
841 			ARP_CMD, ip_sioctl_arp, NULL },
842 	/* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD,
843 			ARP_CMD, ip_sioctl_arp, NULL },
844 	/* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR,
845 			ARP_CMD, ip_sioctl_arp, NULL },
846 
847 	/* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
848 	/* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
849 	/* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
850 	/* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
851 	/* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
852 	/* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
853 	/* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
854 	/* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
855 	/* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
856 	/* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
857 	/* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
858 	/* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
859 	/* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
860 	/* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
861 	/* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
862 	/* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
863 	/* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
864 	/* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
865 	/* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
866 	/* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
867 	/* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
868 
869 	/* 054 */ { IF_UNITSEL,	sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK,
870 			MISC_CMD, if_unitsel, if_unitsel_restart },
871 
872 	/* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
873 	/* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
874 	/* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
875 	/* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
876 	/* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
877 	/* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
878 	/* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
879 	/* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
880 	/* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
881 	/* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
882 	/* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
883 	/* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
884 	/* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
885 	/* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
886 	/* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
887 	/* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
888 	/* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
889 	/* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
890 
891 	/* 073 */ { SIOCSIFNAME, sizeof (struct ifreq),
892 			IPI_PRIV | IPI_WR | IPI_MODOK,
893 			IF_CMD, ip_sioctl_sifname, NULL },
894 
895 	/* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
896 	/* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
897 	/* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
898 	/* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
899 	/* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
900 	/* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
901 	/* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
902 	/* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
903 	/* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
904 	/* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
905 	/* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
906 	/* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
907 	/* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
908 
909 	/* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD,
910 			MISC_CMD, ip_sioctl_get_ifnum, NULL },
911 	/* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD,
912 			IF_CMD, ip_sioctl_get_muxid, NULL },
913 	/* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq),
914 			IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_muxid, NULL },
915 
916 	/* Both if and lif variants share same func */
917 	/* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD,
918 			IF_CMD, ip_sioctl_get_lifindex, NULL },
919 	/* Both if and lif variants share same func */
920 	/* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq),
921 			IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_slifindex, NULL },
922 
923 	/* copyin size cannot be coded for SIOCGIFCONF */
924 	/* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD,
925 			MISC_CMD, ip_sioctl_get_ifconf, NULL },
926 	/* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
927 	/* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
928 	/* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
929 	/* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
930 	/* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
931 	/* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
932 	/* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
933 	/* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
934 	/* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
935 	/* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
936 	/* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
937 	/* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
938 	/* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
939 	/* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
940 	/* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
941 	/* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
942 	/* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
943 
944 	/* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq),
945 			IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_removeif,
946 			ip_sioctl_removeif_restart },
947 	/* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq),
948 			IPI_GET_CMD | IPI_PRIV | IPI_WR,
949 			LIF_CMD, ip_sioctl_addif, NULL },
950 #define	SIOCLIFADDR_NDX 112
951 	/* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
952 			LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart },
953 	/* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq),
954 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL },
955 	/* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
956 			LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart },
957 	/* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq),
958 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL },
959 	/* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq),
960 			IPI_PRIV | IPI_WR,
961 			LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart },
962 	/* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq),
963 			IPI_GET_CMD | IPI_MODOK,
964 			LIF_CMD, ip_sioctl_get_flags, NULL },
965 
966 	/* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
967 	/* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
968 
969 	/* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD,
970 			ip_sioctl_get_lifconf, NULL },
971 	/* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
972 			LIF_CMD, ip_sioctl_mtu, NULL },
973 	/* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD,
974 			LIF_CMD, ip_sioctl_get_mtu, NULL },
975 	/* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq),
976 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL },
977 	/* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
978 			LIF_CMD, ip_sioctl_brdaddr, NULL },
979 	/* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq),
980 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_netmask, NULL },
981 	/* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
982 			LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart },
983 	/* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq),
984 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL },
985 	/* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
986 			LIF_CMD, ip_sioctl_metric, NULL },
987 	/* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq),
988 			IPI_PRIV | IPI_WR | IPI_MODOK,
989 			LIF_CMD, ip_sioctl_slifname,
990 			ip_sioctl_slifname_restart },
991 
992 	/* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD,
993 			MISC_CMD, ip_sioctl_get_lifnum, NULL },
994 	/* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq),
995 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_muxid, NULL },
996 	/* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq),
997 			IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_muxid, NULL },
998 	/* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq),
999 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifindex, 0 },
1000 	/* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq),
1001 			IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifindex, 0 },
1002 	/* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1003 			LIF_CMD, ip_sioctl_token, NULL },
1004 	/* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq),
1005 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL },
1006 	/* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1007 			LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart },
1008 	/* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq),
1009 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL },
1010 	/* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1011 			LIF_CMD, ip_sioctl_lnkinfo, NULL },
1012 
1013 	/* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq),
1014 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lnkinfo, NULL },
1015 	/* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV,
1016 			LIF_CMD, ip_siocdelndp_v6, NULL },
1017 	/* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD,
1018 			LIF_CMD, ip_siocqueryndp_v6, NULL },
1019 	/* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV,
1020 			LIF_CMD, ip_siocsetndp_v6, NULL },
1021 	/* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD,
1022 			MISC_CMD, ip_sioctl_tmyaddr, NULL },
1023 	/* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD,
1024 			MISC_CMD, ip_sioctl_tonlink, NULL },
1025 	/* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0,
1026 			MISC_CMD, ip_sioctl_tmysite, NULL },
1027 	/* 147 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1028 	/* 148 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1029 	/* IPSECioctls handled in ip_sioctl_copyin_setup itself */
1030 	/* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL },
1031 	/* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL },
1032 	/* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL },
1033 	/* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL },
1034 
1035 	/* 153 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1036 
1037 	/* 154 */ { SIOCGLIFBINDING, sizeof (struct lifreq), IPI_GET_CMD,
1038 			LIF_CMD, ip_sioctl_get_binding, NULL },
1039 	/* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq),
1040 			IPI_PRIV | IPI_WR,
1041 			LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname },
1042 	/* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq),
1043 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL },
1044 	/* 157 */ { SIOCGLIFGROUPINFO, sizeof (lifgroupinfo_t),
1045 			IPI_GET_CMD, MISC_CMD, ip_sioctl_groupinfo, NULL },
1046 
1047 	/* Leave 158-160 unused; used to be SIOC*IFARP ioctls */
1048 	/* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1049 	/* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1050 	/* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1051 
1052 	/* 161 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1053 
1054 	/* These are handled in ip_sioctl_copyin_setup itself */
1055 	/* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT,
1056 			MISC_CMD, NULL, NULL },
1057 	/* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT,
1058 			MISC_CMD, NULL, NULL },
1059 	/* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL },
1060 
1061 	/* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD,
1062 			ip_sioctl_get_lifconf, NULL },
1063 
1064 	/* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR,
1065 			XARP_CMD, ip_sioctl_arp, NULL },
1066 	/* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD,
1067 			XARP_CMD, ip_sioctl_arp, NULL },
1068 	/* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR,
1069 			XARP_CMD, ip_sioctl_arp, NULL },
1070 
1071 	/* SIOCPOPSOCKFS is not handled by IP */
1072 	/* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL },
1073 
1074 	/* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq),
1075 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL },
1076 	/* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq),
1077 			IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifzone,
1078 			ip_sioctl_slifzone_restart },
1079 	/* 172-174 are SCTP ioctls and not handled by IP */
1080 	/* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1081 	/* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1082 	/* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1083 	/* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq),
1084 			IPI_GET_CMD, LIF_CMD,
1085 			ip_sioctl_get_lifusesrc, 0 },
1086 	/* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq),
1087 			IPI_PRIV | IPI_WR,
1088 			LIF_CMD, ip_sioctl_slifusesrc,
1089 			NULL },
1090 	/* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD,
1091 			ip_sioctl_get_lifsrcof, NULL },
1092 	/* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD,
1093 			MSFILT_CMD, ip_sioctl_msfilter, NULL },
1094 	/* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), 0,
1095 			MSFILT_CMD, ip_sioctl_msfilter, NULL },
1096 	/* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD,
1097 			MSFILT_CMD, ip_sioctl_msfilter, NULL },
1098 	/* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), 0,
1099 			MSFILT_CMD, ip_sioctl_msfilter, NULL },
1100 	/* 182 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1101 	/* SIOCSENABLESDP is handled by SDP */
1102 	/* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL },
1103 	/* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL },
1104 	/* 185 */ { SIOCGIFHWADDR, sizeof (struct ifreq), IPI_GET_CMD,
1105 			IF_CMD, ip_sioctl_get_ifhwaddr, NULL },
1106 	/* 186 */ { IPI_DONTCARE /* SIOCGSTAMP */, 0, 0, 0, NULL, NULL },
1107 	/* 187 */ { SIOCILB, 0, IPI_PRIV | IPI_GET_CMD, MISC_CMD,
1108 			ip_sioctl_ilb_cmd, NULL },
1109 	/* 188 */ { SIOCGETPROP, 0, IPI_GET_CMD, 0, NULL, NULL },
1110 	/* 189 */ { SIOCSETPROP, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL},
1111 	/* 190 */ { SIOCGLIFDADSTATE, sizeof (struct lifreq),
1112 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dadstate, NULL },
1113 	/* 191 */ { SIOCSLIFPREFIX, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1114 			LIF_CMD, ip_sioctl_prefix, ip_sioctl_prefix_restart },
1115 	/* 192 */ { SIOCGLIFHWADDR, sizeof (struct lifreq), IPI_GET_CMD,
1116 			LIF_CMD, ip_sioctl_get_lifhwaddr, NULL }
1117 };
1118 
1119 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t);
1120 
1121 ip_ioctl_cmd_t ip_misc_ioctl_table[] = {
1122 	{ I_LINK,	0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1123 	{ I_UNLINK,	0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1124 	{ I_PLINK,	0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1125 	{ I_PUNLINK,	0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1126 	{ ND_GET,	0, 0, 0, NULL, NULL },
1127 	{ ND_SET,	0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1128 	{ IP_IOCTL,	0, 0, 0, NULL, NULL },
1129 	{ SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_GET_CMD,
1130 		MISC_CMD, mrt_ioctl},
1131 	{ SIOCGETSGCNT,	sizeof (struct sioc_sg_req), IPI_GET_CMD,
1132 		MISC_CMD, mrt_ioctl},
1133 	{ SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_GET_CMD,
1134 		MISC_CMD, mrt_ioctl}
1135 };
1136 
1137 int ip_misc_ioctl_count =
1138     sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t);
1139 
1140 int	conn_drain_nthreads;		/* Number of drainers reqd. */
1141 					/* Settable in /etc/system */
1142 /* Defined in ip_ire.c */
1143 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt;
1144 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt;
1145 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio;
1146 
1147 static nv_t	ire_nv_arr[] = {
1148 	{ IRE_BROADCAST, "BROADCAST" },
1149 	{ IRE_LOCAL, "LOCAL" },
1150 	{ IRE_LOOPBACK, "LOOPBACK" },
1151 	{ IRE_DEFAULT, "DEFAULT" },
1152 	{ IRE_PREFIX, "PREFIX" },
1153 	{ IRE_IF_NORESOLVER, "IF_NORESOL" },
1154 	{ IRE_IF_RESOLVER, "IF_RESOLV" },
1155 	{ IRE_IF_CLONE, "IF_CLONE" },
1156 	{ IRE_HOST, "HOST" },
1157 	{ IRE_MULTICAST, "MULTICAST" },
1158 	{ IRE_NOROUTE, "NOROUTE" },
1159 	{ 0 }
1160 };
1161 
1162 nv_t	*ire_nv_tbl = ire_nv_arr;
1163 
1164 /* Simple ICMP IP Header Template */
1165 static ipha_t icmp_ipha = {
1166 	IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP
1167 };
1168 
1169 struct module_info ip_mod_info = {
1170 	IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT,
1171 	IP_MOD_LOWAT
1172 };
1173 
1174 /*
1175  * Duplicate static symbols within a module confuses mdb; so we avoid the
1176  * problem by making the symbols here distinct from those in udp.c.
1177  */
1178 
1179 /*
1180  * Entry points for IP as a device and as a module.
1181  * We have separate open functions for the /dev/ip and /dev/ip6 devices.
1182  */
1183 static struct qinit iprinitv4 = {
1184 	(pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL,
1185 	&ip_mod_info
1186 };
1187 
1188 struct qinit iprinitv6 = {
1189 	(pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL,
1190 	&ip_mod_info
1191 };
1192 
1193 static struct qinit ipwinit = {
1194 	(pfi_t)ip_wput_nondata, (pfi_t)ip_wsrv, NULL, NULL, NULL,
1195 	&ip_mod_info
1196 };
1197 
1198 static struct qinit iplrinit = {
1199 	(pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL,
1200 	&ip_mod_info
1201 };
1202 
1203 static struct qinit iplwinit = {
1204 	(pfi_t)ip_lwput, NULL, NULL, NULL, NULL,
1205 	&ip_mod_info
1206 };
1207 
1208 /* For AF_INET aka /dev/ip */
1209 struct streamtab ipinfov4 = {
1210 	&iprinitv4, &ipwinit, &iplrinit, &iplwinit
1211 };
1212 
1213 /* For AF_INET6 aka /dev/ip6 */
1214 struct streamtab ipinfov6 = {
1215 	&iprinitv6, &ipwinit, &iplrinit, &iplwinit
1216 };
1217 
1218 #ifdef	DEBUG
1219 boolean_t skip_sctp_cksum = B_FALSE;
1220 #endif
1221 
1222 /*
1223  * Generate an ICMP fragmentation needed message.
1224  * When called from ip_output side a minimal ip_recv_attr_t needs to be
1225  * constructed by the caller.
1226  */
1227 void
1228 icmp_frag_needed(mblk_t *mp, int mtu, ip_recv_attr_t *ira)
1229 {
1230 	icmph_t	icmph;
1231 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
1232 
1233 	mp = icmp_pkt_err_ok(mp, ira);
1234 	if (mp == NULL)
1235 		return;
1236 
1237 	bzero(&icmph, sizeof (icmph_t));
1238 	icmph.icmph_type = ICMP_DEST_UNREACHABLE;
1239 	icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED;
1240 	icmph.icmph_du_mtu = htons((uint16_t)mtu);
1241 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded);
1242 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs);
1243 
1244 	icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
1245 }
1246 
1247 /*
1248  * icmp_inbound_v4 deals with ICMP messages that are handled by IP.
1249  * If the ICMP message is consumed by IP, i.e., it should not be delivered
1250  * to any IPPROTO_ICMP raw sockets, then it returns NULL.
1251  * Likewise, if the ICMP error is misformed (too short, etc), then it
1252  * returns NULL. The caller uses this to determine whether or not to send
1253  * to raw sockets.
1254  *
1255  * All error messages are passed to the matching transport stream.
1256  *
1257  * The following cases are handled by icmp_inbound:
1258  * 1) It needs to send a reply back and possibly delivering it
1259  *    to the "interested" upper clients.
1260  * 2) Return the mblk so that the caller can pass it to the RAW socket clients.
1261  * 3) It needs to change some values in IP only.
1262  * 4) It needs to change some values in IP and upper layers e.g TCP
1263  *    by delivering an error to the upper layers.
1264  *
1265  * We handle the above three cases in the context of IPsec in the
1266  * following way :
1267  *
1268  * 1) Send the reply back in the same way as the request came in.
1269  *    If it came in encrypted, it goes out encrypted. If it came in
1270  *    clear, it goes out in clear. Thus, this will prevent chosen
1271  *    plain text attack.
1272  * 2) The client may or may not expect things to come in secure.
1273  *    If it comes in secure, the policy constraints are checked
1274  *    before delivering it to the upper layers. If it comes in
1275  *    clear, ipsec_inbound_accept_clear will decide whether to
1276  *    accept this in clear or not. In both the cases, if the returned
1277  *    message (IP header + 8 bytes) that caused the icmp message has
1278  *    AH/ESP headers, it is sent up to AH/ESP for validation before
1279  *    sending up. If there are only 8 bytes of returned message, then
1280  *    upper client will not be notified.
1281  * 3) Check with global policy to see whether it matches the constaints.
1282  *    But this will be done only if icmp_accept_messages_in_clear is
1283  *    zero.
1284  * 4) If we need to change both in IP and ULP, then the decision taken
1285  *    while affecting the values in IP and while delivering up to TCP
1286  *    should be the same.
1287  *
1288  * 	There are two cases.
1289  *
1290  * 	a) If we reject data at the IP layer (ipsec_check_global_policy()
1291  *	   failed), we will not deliver it to the ULP, even though they
1292  *	   are *willing* to accept in *clear*. This is fine as our global
1293  *	   disposition to icmp messages asks us reject the datagram.
1294  *
1295  *	b) If we accept data at the IP layer (ipsec_check_global_policy()
1296  *	   succeeded or icmp_accept_messages_in_clear is 1), and not able
1297  *	   to deliver it to ULP (policy failed), it can lead to
1298  *	   consistency problems. The cases known at this time are
1299  *	   ICMP_DESTINATION_UNREACHABLE  messages with following code
1300  *	   values :
1301  *
1302  *	   - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value
1303  *	     and Upper layer rejects. Then the communication will
1304  *	     come to a stop. This is solved by making similar decisions
1305  *	     at both levels. Currently, when we are unable to deliver
1306  *	     to the Upper Layer (due to policy failures) while IP has
1307  *	     adjusted dce_pmtu, the next outbound datagram would
1308  *	     generate a local ICMP_FRAGMENTATION_NEEDED message - which
1309  *	     will be with the right level of protection. Thus the right
1310  *	     value will be communicated even if we are not able to
1311  *	     communicate when we get from the wire initially. But this
1312  *	     assumes there would be at least one outbound datagram after
1313  *	     IP has adjusted its dce_pmtu value. To make things
1314  *	     simpler, we accept in clear after the validation of
1315  *	     AH/ESP headers.
1316  *
1317  *	   - Other ICMP ERRORS : We may not be able to deliver it to the
1318  *	     upper layer depending on the level of protection the upper
1319  *	     layer expects and the disposition in ipsec_inbound_accept_clear().
1320  *	     ipsec_inbound_accept_clear() decides whether a given ICMP error
1321  *	     should be accepted in clear when the Upper layer expects secure.
1322  *	     Thus the communication may get aborted by some bad ICMP
1323  *	     packets.
1324  */
1325 mblk_t *
1326 icmp_inbound_v4(mblk_t *mp, ip_recv_attr_t *ira)
1327 {
1328 	icmph_t		*icmph;
1329 	ipha_t		*ipha;		/* Outer header */
1330 	int		ip_hdr_length;	/* Outer header length */
1331 	boolean_t	interested;
1332 	ipif_t		*ipif;
1333 	uint32_t	ts;
1334 	uint32_t	*tsp;
1335 	timestruc_t	now;
1336 	ill_t		*ill = ira->ira_ill;
1337 	ip_stack_t	*ipst = ill->ill_ipst;
1338 	zoneid_t	zoneid = ira->ira_zoneid;
1339 	int		len_needed;
1340 	mblk_t		*mp_ret = NULL;
1341 
1342 	ipha = (ipha_t *)mp->b_rptr;
1343 
1344 	BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs);
1345 
1346 	ip_hdr_length = ira->ira_ip_hdr_length;
1347 	if ((mp->b_wptr - mp->b_rptr) < (ip_hdr_length + ICMPH_SIZE)) {
1348 		if (ira->ira_pktlen < (ip_hdr_length + ICMPH_SIZE)) {
1349 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
1350 			ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
1351 			freemsg(mp);
1352 			return (NULL);
1353 		}
1354 		/* Last chance to get real. */
1355 		ipha = ip_pullup(mp, ip_hdr_length + ICMPH_SIZE, ira);
1356 		if (ipha == NULL) {
1357 			BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors);
1358 			freemsg(mp);
1359 			return (NULL);
1360 		}
1361 	}
1362 
1363 	/* The IP header will always be a multiple of four bytes */
1364 	icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1365 	ip2dbg(("icmp_inbound_v4: type %d code %d\n", icmph->icmph_type,
1366 	    icmph->icmph_code));
1367 
1368 	/*
1369 	 * We will set "interested" to "true" if we should pass a copy to
1370 	 * the transport or if we handle the packet locally.
1371 	 */
1372 	interested = B_FALSE;
1373 	switch (icmph->icmph_type) {
1374 	case ICMP_ECHO_REPLY:
1375 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps);
1376 		break;
1377 	case ICMP_DEST_UNREACHABLE:
1378 		if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED)
1379 			BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded);
1380 		interested = B_TRUE;	/* Pass up to transport */
1381 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs);
1382 		break;
1383 	case ICMP_SOURCE_QUENCH:
1384 		interested = B_TRUE;	/* Pass up to transport */
1385 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs);
1386 		break;
1387 	case ICMP_REDIRECT:
1388 		if (!ipst->ips_ip_ignore_redirect)
1389 			interested = B_TRUE;
1390 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects);
1391 		break;
1392 	case ICMP_ECHO_REQUEST:
1393 		/*
1394 		 * Whether to respond to echo requests that come in as IP
1395 		 * broadcasts or as IP multicast is subject to debate
1396 		 * (what isn't?).  We aim to please, you pick it.
1397 		 * Default is do it.
1398 		 */
1399 		if (ira->ira_flags & IRAF_MULTICAST) {
1400 			/* multicast: respond based on tunable */
1401 			interested = ipst->ips_ip_g_resp_to_echo_mcast;
1402 		} else if (ira->ira_flags & IRAF_BROADCAST) {
1403 			/* broadcast: respond based on tunable */
1404 			interested = ipst->ips_ip_g_resp_to_echo_bcast;
1405 		} else {
1406 			/* unicast: always respond */
1407 			interested = B_TRUE;
1408 		}
1409 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos);
1410 		if (!interested) {
1411 			/* We never pass these to RAW sockets */
1412 			freemsg(mp);
1413 			return (NULL);
1414 		}
1415 
1416 		/* Check db_ref to make sure we can modify the packet. */
1417 		if (mp->b_datap->db_ref > 1) {
1418 			mblk_t	*mp1;
1419 
1420 			mp1 = copymsg(mp);
1421 			freemsg(mp);
1422 			if (!mp1) {
1423 				BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1424 				return (NULL);
1425 			}
1426 			mp = mp1;
1427 			ipha = (ipha_t *)mp->b_rptr;
1428 			icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1429 		}
1430 		icmph->icmph_type = ICMP_ECHO_REPLY;
1431 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps);
1432 		icmp_send_reply_v4(mp, ipha, icmph, ira);
1433 		return (NULL);
1434 
1435 	case ICMP_ROUTER_ADVERTISEMENT:
1436 	case ICMP_ROUTER_SOLICITATION:
1437 		break;
1438 	case ICMP_TIME_EXCEEDED:
1439 		interested = B_TRUE;	/* Pass up to transport */
1440 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds);
1441 		break;
1442 	case ICMP_PARAM_PROBLEM:
1443 		interested = B_TRUE;	/* Pass up to transport */
1444 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs);
1445 		break;
1446 	case ICMP_TIME_STAMP_REQUEST:
1447 		/* Response to Time Stamp Requests is local policy. */
1448 		if (ipst->ips_ip_g_resp_to_timestamp) {
1449 			if (ira->ira_flags & IRAF_MULTIBROADCAST)
1450 				interested =
1451 				    ipst->ips_ip_g_resp_to_timestamp_bcast;
1452 			else
1453 				interested = B_TRUE;
1454 		}
1455 		if (!interested) {
1456 			/* We never pass these to RAW sockets */
1457 			freemsg(mp);
1458 			return (NULL);
1459 		}
1460 
1461 		/* Make sure we have enough of the packet */
1462 		len_needed = ip_hdr_length + ICMPH_SIZE +
1463 		    3 * sizeof (uint32_t);
1464 
1465 		if (mp->b_wptr - mp->b_rptr < len_needed) {
1466 			ipha = ip_pullup(mp, len_needed, ira);
1467 			if (ipha == NULL) {
1468 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1469 				ip_drop_input("ipIfStatsInDiscards - ip_pullup",
1470 				    mp, ill);
1471 				freemsg(mp);
1472 				return (NULL);
1473 			}
1474 			/* Refresh following the pullup. */
1475 			icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1476 		}
1477 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps);
1478 		/* Check db_ref to make sure we can modify the packet. */
1479 		if (mp->b_datap->db_ref > 1) {
1480 			mblk_t	*mp1;
1481 
1482 			mp1 = copymsg(mp);
1483 			freemsg(mp);
1484 			if (!mp1) {
1485 				BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1486 				return (NULL);
1487 			}
1488 			mp = mp1;
1489 			ipha = (ipha_t *)mp->b_rptr;
1490 			icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1491 		}
1492 		icmph->icmph_type = ICMP_TIME_STAMP_REPLY;
1493 		tsp = (uint32_t *)&icmph[1];
1494 		tsp++;		/* Skip past 'originate time' */
1495 		/* Compute # of milliseconds since midnight */
1496 		gethrestime(&now);
1497 		ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
1498 		    now.tv_nsec / (NANOSEC / MILLISEC);
1499 		*tsp++ = htonl(ts);	/* Lay in 'receive time' */
1500 		*tsp++ = htonl(ts);	/* Lay in 'send time' */
1501 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps);
1502 		icmp_send_reply_v4(mp, ipha, icmph, ira);
1503 		return (NULL);
1504 
1505 	case ICMP_TIME_STAMP_REPLY:
1506 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps);
1507 		break;
1508 	case ICMP_INFO_REQUEST:
1509 		/* Per RFC 1122 3.2.2.7, ignore this. */
1510 	case ICMP_INFO_REPLY:
1511 		break;
1512 	case ICMP_ADDRESS_MASK_REQUEST:
1513 		if (ira->ira_flags & IRAF_MULTIBROADCAST) {
1514 			interested =
1515 			    ipst->ips_ip_respond_to_address_mask_broadcast;
1516 		} else {
1517 			interested = B_TRUE;
1518 		}
1519 		if (!interested) {
1520 			/* We never pass these to RAW sockets */
1521 			freemsg(mp);
1522 			return (NULL);
1523 		}
1524 		len_needed = ip_hdr_length + ICMPH_SIZE + IP_ADDR_LEN;
1525 		if (mp->b_wptr - mp->b_rptr < len_needed) {
1526 			ipha = ip_pullup(mp, len_needed, ira);
1527 			if (ipha == NULL) {
1528 				BUMP_MIB(ill->ill_ip_mib,
1529 				    ipIfStatsInTruncatedPkts);
1530 				ip_drop_input("ipIfStatsInTruncatedPkts", mp,
1531 				    ill);
1532 				freemsg(mp);
1533 				return (NULL);
1534 			}
1535 			/* Refresh following the pullup. */
1536 			icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1537 		}
1538 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks);
1539 		/* Check db_ref to make sure we can modify the packet. */
1540 		if (mp->b_datap->db_ref > 1) {
1541 			mblk_t	*mp1;
1542 
1543 			mp1 = copymsg(mp);
1544 			freemsg(mp);
1545 			if (!mp1) {
1546 				BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1547 				return (NULL);
1548 			}
1549 			mp = mp1;
1550 			ipha = (ipha_t *)mp->b_rptr;
1551 			icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1552 		}
1553 		/*
1554 		 * Need the ipif with the mask be the same as the source
1555 		 * address of the mask reply. For unicast we have a specific
1556 		 * ipif. For multicast/broadcast we only handle onlink
1557 		 * senders, and use the source address to pick an ipif.
1558 		 */
1559 		ipif = ipif_lookup_addr(ipha->ipha_dst, ill, zoneid, ipst);
1560 		if (ipif == NULL) {
1561 			/* Broadcast or multicast */
1562 			ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid);
1563 			if (ipif == NULL) {
1564 				freemsg(mp);
1565 				return (NULL);
1566 			}
1567 		}
1568 		icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY;
1569 		bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN);
1570 		ipif_refrele(ipif);
1571 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps);
1572 		icmp_send_reply_v4(mp, ipha, icmph, ira);
1573 		return (NULL);
1574 
1575 	case ICMP_ADDRESS_MASK_REPLY:
1576 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps);
1577 		break;
1578 	default:
1579 		interested = B_TRUE;	/* Pass up to transport */
1580 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns);
1581 		break;
1582 	}
1583 	/*
1584 	 * See if there is an ICMP client to avoid an extra copymsg/freemsg
1585 	 * if there isn't one.
1586 	 */
1587 	if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_ICMP].connf_head != NULL) {
1588 		/* If there is an ICMP client and we want one too, copy it. */
1589 
1590 		if (!interested) {
1591 			/* Caller will deliver to RAW sockets */
1592 			return (mp);
1593 		}
1594 		mp_ret = copymsg(mp);
1595 		if (mp_ret == NULL) {
1596 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1597 			ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill);
1598 		}
1599 	} else if (!interested) {
1600 		/* Neither we nor raw sockets are interested. Drop packet now */
1601 		freemsg(mp);
1602 		return (NULL);
1603 	}
1604 
1605 	/*
1606 	 * ICMP error or redirect packet. Make sure we have enough of
1607 	 * the header and that db_ref == 1 since we might end up modifying
1608 	 * the packet.
1609 	 */
1610 	if (mp->b_cont != NULL) {
1611 		if (ip_pullup(mp, -1, ira) == NULL) {
1612 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1613 			ip_drop_input("ipIfStatsInDiscards - ip_pullup",
1614 			    mp, ill);
1615 			freemsg(mp);
1616 			return (mp_ret);
1617 		}
1618 	}
1619 
1620 	if (mp->b_datap->db_ref > 1) {
1621 		mblk_t	*mp1;
1622 
1623 		mp1 = copymsg(mp);
1624 		if (mp1 == NULL) {
1625 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1626 			ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill);
1627 			freemsg(mp);
1628 			return (mp_ret);
1629 		}
1630 		freemsg(mp);
1631 		mp = mp1;
1632 	}
1633 
1634 	/*
1635 	 * In case mp has changed, verify the message before any further
1636 	 * processes.
1637 	 */
1638 	ipha = (ipha_t *)mp->b_rptr;
1639 	icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1640 	if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
1641 		freemsg(mp);
1642 		return (mp_ret);
1643 	}
1644 
1645 	switch (icmph->icmph_type) {
1646 	case ICMP_REDIRECT:
1647 		icmp_redirect_v4(mp, ipha, icmph, ira);
1648 		break;
1649 	case ICMP_DEST_UNREACHABLE:
1650 		if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) {
1651 			/* Update DCE and adjust MTU is icmp header if needed */
1652 			icmp_inbound_too_big_v4(icmph, ira);
1653 		}
1654 		/* FALLTHRU */
1655 	default:
1656 		icmp_inbound_error_fanout_v4(mp, icmph, ira);
1657 		break;
1658 	}
1659 	return (mp_ret);
1660 }
1661 
1662 /*
1663  * Send an ICMP echo, timestamp or address mask reply.
1664  * The caller has already updated the payload part of the packet.
1665  * We handle the ICMP checksum, IP source address selection and feed
1666  * the packet into ip_output_simple.
1667  */
1668 static void
1669 icmp_send_reply_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph,
1670     ip_recv_attr_t *ira)
1671 {
1672 	uint_t		ip_hdr_length = ira->ira_ip_hdr_length;
1673 	ill_t		*ill = ira->ira_ill;
1674 	ip_stack_t	*ipst = ill->ill_ipst;
1675 	ip_xmit_attr_t	ixas;
1676 
1677 	/* Send out an ICMP packet */
1678 	icmph->icmph_checksum = 0;
1679 	icmph->icmph_checksum = IP_CSUM(mp, ip_hdr_length, 0);
1680 	/* Reset time to live. */
1681 	ipha->ipha_ttl = ipst->ips_ip_def_ttl;
1682 	{
1683 		/* Swap source and destination addresses */
1684 		ipaddr_t tmp;
1685 
1686 		tmp = ipha->ipha_src;
1687 		ipha->ipha_src = ipha->ipha_dst;
1688 		ipha->ipha_dst = tmp;
1689 	}
1690 	ipha->ipha_ident = 0;
1691 	if (!IS_SIMPLE_IPH(ipha))
1692 		icmp_options_update(ipha);
1693 
1694 	bzero(&ixas, sizeof (ixas));
1695 	ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
1696 	ixas.ixa_zoneid = ira->ira_zoneid;
1697 	ixas.ixa_cred = kcred;
1698 	ixas.ixa_cpid = NOPID;
1699 	ixas.ixa_tsl = ira->ira_tsl;	/* Behave as a multi-level responder */
1700 	ixas.ixa_ifindex = 0;
1701 	ixas.ixa_ipst = ipst;
1702 	ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1703 
1704 	if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) {
1705 		/*
1706 		 * This packet should go out the same way as it
1707 		 * came in i.e in clear, independent of the IPsec policy
1708 		 * for transmitting packets.
1709 		 */
1710 		ixas.ixa_flags |= IXAF_NO_IPSEC;
1711 	} else {
1712 		if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) {
1713 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1714 			/* Note: mp already consumed and ip_drop_packet done */
1715 			return;
1716 		}
1717 	}
1718 	if (ira->ira_flags & IRAF_MULTIBROADCAST) {
1719 		/*
1720 		 * Not one or our addresses (IRE_LOCALs), thus we let
1721 		 * ip_output_simple pick the source.
1722 		 */
1723 		ipha->ipha_src = INADDR_ANY;
1724 		ixas.ixa_flags |= IXAF_SET_SOURCE;
1725 	}
1726 	/* Should we send with DF and use dce_pmtu? */
1727 	if (ipst->ips_ipv4_icmp_return_pmtu) {
1728 		ixas.ixa_flags |= IXAF_PMTU_DISCOVERY;
1729 		ipha->ipha_fragment_offset_and_flags |= IPH_DF_HTONS;
1730 	}
1731 
1732 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs);
1733 
1734 	(void) ip_output_simple(mp, &ixas);
1735 	ixa_cleanup(&ixas);
1736 }
1737 
1738 /*
1739  * Verify the ICMP messages for either for ICMP error or redirect packet.
1740  * The caller should have fully pulled up the message. If it's a redirect
1741  * packet, only basic checks on IP header will be done; otherwise, verify
1742  * the packet by looking at the included ULP header.
1743  *
1744  * Called before icmp_inbound_error_fanout_v4 is called.
1745  */
1746 static boolean_t
1747 icmp_inbound_verify_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira)
1748 {
1749 	ill_t		*ill = ira->ira_ill;
1750 	int		hdr_length;
1751 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
1752 	conn_t		*connp;
1753 	ipha_t		*ipha;	/* Inner IP header */
1754 
1755 	ipha = (ipha_t *)&icmph[1];
1756 	if ((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH > mp->b_wptr)
1757 		goto truncated;
1758 
1759 	hdr_length = IPH_HDR_LENGTH(ipha);
1760 
1761 	if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION))
1762 		goto discard_pkt;
1763 
1764 	if (hdr_length < sizeof (ipha_t))
1765 		goto truncated;
1766 
1767 	if ((uchar_t *)ipha + hdr_length > mp->b_wptr)
1768 		goto truncated;
1769 
1770 	/*
1771 	 * Stop here for ICMP_REDIRECT.
1772 	 */
1773 	if (icmph->icmph_type == ICMP_REDIRECT)
1774 		return (B_TRUE);
1775 
1776 	/*
1777 	 * ICMP errors only.
1778 	 */
1779 	switch (ipha->ipha_protocol) {
1780 	case IPPROTO_UDP:
1781 		/*
1782 		 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
1783 		 * transport header.
1784 		 */
1785 		if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
1786 		    mp->b_wptr)
1787 			goto truncated;
1788 		break;
1789 	case IPPROTO_TCP: {
1790 		tcpha_t		*tcpha;
1791 
1792 		/*
1793 		 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
1794 		 * transport header.
1795 		 */
1796 		if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
1797 		    mp->b_wptr)
1798 			goto truncated;
1799 
1800 		tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length);
1801 		connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN,
1802 		    ipst);
1803 		if (connp == NULL)
1804 			goto discard_pkt;
1805 
1806 		if ((connp->conn_verifyicmp != NULL) &&
1807 		    !connp->conn_verifyicmp(connp, tcpha, icmph, NULL, ira)) {
1808 			CONN_DEC_REF(connp);
1809 			goto discard_pkt;
1810 		}
1811 		CONN_DEC_REF(connp);
1812 		break;
1813 	}
1814 	case IPPROTO_SCTP:
1815 		/*
1816 		 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
1817 		 * transport header.
1818 		 */
1819 		if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
1820 		    mp->b_wptr)
1821 			goto truncated;
1822 		break;
1823 	case IPPROTO_ESP:
1824 	case IPPROTO_AH:
1825 		break;
1826 	case IPPROTO_ENCAP:
1827 		if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) >
1828 		    mp->b_wptr)
1829 			goto truncated;
1830 		break;
1831 	default:
1832 		break;
1833 	}
1834 
1835 	return (B_TRUE);
1836 
1837 discard_pkt:
1838 	/* Bogus ICMP error. */
1839 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1840 	return (B_FALSE);
1841 
1842 truncated:
1843 	/* We pulled up everthing already. Must be truncated */
1844 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
1845 	ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
1846 	return (B_FALSE);
1847 }
1848 
1849 /* Table from RFC 1191 */
1850 static int icmp_frag_size_table[] =
1851 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 };
1852 
1853 /*
1854  * Process received ICMP Packet too big.
1855  * Just handles the DCE create/update, including using the above table of
1856  * PMTU guesses. The caller is responsible for validating the packet before
1857  * passing it in and also to fanout the ICMP error to any matching transport
1858  * conns. Assumes the message has been fully pulled up and verified.
1859  *
1860  * Before getting here, the caller has called icmp_inbound_verify_v4()
1861  * that should have verified with ULP to prevent undoing the changes we're
1862  * going to make to DCE. For example, TCP might have verified that the packet
1863  * which generated error is in the send window.
1864  *
1865  * In some cases modified this MTU in the ICMP header packet; the caller
1866  * should pass to the matching ULP after this returns.
1867  */
1868 static void
1869 icmp_inbound_too_big_v4(icmph_t *icmph, ip_recv_attr_t *ira)
1870 {
1871 	dce_t		*dce;
1872 	int		old_mtu;
1873 	int		mtu, orig_mtu;
1874 	ipaddr_t	dst;
1875 	boolean_t	disable_pmtud;
1876 	ill_t		*ill = ira->ira_ill;
1877 	ip_stack_t	*ipst = ill->ill_ipst;
1878 	uint_t		hdr_length;
1879 	ipha_t		*ipha;
1880 
1881 	/* Caller already pulled up everything. */
1882 	ipha = (ipha_t *)&icmph[1];
1883 	ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE &&
1884 	    icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED);
1885 	ASSERT(ill != NULL);
1886 
1887 	hdr_length = IPH_HDR_LENGTH(ipha);
1888 
1889 	/*
1890 	 * We handle path MTU for source routed packets since the DCE
1891 	 * is looked up using the final destination.
1892 	 */
1893 	dst = ip_get_dst(ipha);
1894 
1895 	dce = dce_lookup_and_add_v4(dst, ipst);
1896 	if (dce == NULL) {
1897 		/* Couldn't add a unique one - ENOMEM */
1898 		ip1dbg(("icmp_inbound_too_big_v4: no dce for 0x%x\n",
1899 		    ntohl(dst)));
1900 		return;
1901 	}
1902 
1903 	/* Check for MTU discovery advice as described in RFC 1191 */
1904 	mtu = ntohs(icmph->icmph_du_mtu);
1905 	orig_mtu = mtu;
1906 	disable_pmtud = B_FALSE;
1907 
1908 	mutex_enter(&dce->dce_lock);
1909 	if (dce->dce_flags & DCEF_PMTU)
1910 		old_mtu = dce->dce_pmtu;
1911 	else
1912 		old_mtu = ill->ill_mtu;
1913 
1914 	if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) {
1915 		uint32_t length;
1916 		int	i;
1917 
1918 		/*
1919 		 * Use the table from RFC 1191 to figure out
1920 		 * the next "plateau" based on the length in
1921 		 * the original IP packet.
1922 		 */
1923 		length = ntohs(ipha->ipha_length);
1924 		DTRACE_PROBE2(ip4__pmtu__guess, dce_t *, dce,
1925 		    uint32_t, length);
1926 		if (old_mtu <= length &&
1927 		    old_mtu >= length - hdr_length) {
1928 			/*
1929 			 * Handle broken BSD 4.2 systems that
1930 			 * return the wrong ipha_length in ICMP
1931 			 * errors.
1932 			 */
1933 			ip1dbg(("Wrong mtu: sent %d, dce %d\n",
1934 			    length, old_mtu));
1935 			length -= hdr_length;
1936 		}
1937 		for (i = 0; i < A_CNT(icmp_frag_size_table); i++) {
1938 			if (length > icmp_frag_size_table[i])
1939 				break;
1940 		}
1941 		if (i == A_CNT(icmp_frag_size_table)) {
1942 			/* Smaller than IP_MIN_MTU! */
1943 			ip1dbg(("Too big for packet size %d\n",
1944 			    length));
1945 			disable_pmtud = B_TRUE;
1946 			mtu = ipst->ips_ip_pmtu_min;
1947 		} else {
1948 			mtu = icmp_frag_size_table[i];
1949 			ip1dbg(("Calculated mtu %d, packet size %d, "
1950 			    "before %d\n", mtu, length, old_mtu));
1951 			if (mtu < ipst->ips_ip_pmtu_min) {
1952 				mtu = ipst->ips_ip_pmtu_min;
1953 				disable_pmtud = B_TRUE;
1954 			}
1955 		}
1956 	}
1957 	if (disable_pmtud)
1958 		dce->dce_flags |= DCEF_TOO_SMALL_PMTU;
1959 	else
1960 		dce->dce_flags &= ~DCEF_TOO_SMALL_PMTU;
1961 
1962 	dce->dce_pmtu = MIN(old_mtu, mtu);
1963 	/* Prepare to send the new max frag size for the ULP. */
1964 	icmph->icmph_du_zero = 0;
1965 	icmph->icmph_du_mtu =  htons((uint16_t)dce->dce_pmtu);
1966 	DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, dce_t *,
1967 	    dce, int, orig_mtu, int, mtu);
1968 
1969 	/* We now have a PMTU for sure */
1970 	dce->dce_flags |= DCEF_PMTU;
1971 	dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64());
1972 	mutex_exit(&dce->dce_lock);
1973 	/*
1974 	 * After dropping the lock the new value is visible to everyone.
1975 	 * Then we bump the generation number so any cached values reinspect
1976 	 * the dce_t.
1977 	 */
1978 	dce_increment_generation(dce);
1979 	dce_refrele(dce);
1980 }
1981 
1982 /*
1983  * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout_v4
1984  * calls this function.
1985  */
1986 static mblk_t *
1987 icmp_inbound_self_encap_error_v4(mblk_t *mp, ipha_t *ipha, ipha_t *in_ipha)
1988 {
1989 	int length;
1990 
1991 	ASSERT(mp->b_datap->db_type == M_DATA);
1992 
1993 	/* icmp_inbound_v4 has already pulled up the whole error packet */
1994 	ASSERT(mp->b_cont == NULL);
1995 
1996 	/*
1997 	 * The length that we want to overlay is the inner header
1998 	 * and what follows it.
1999 	 */
2000 	length = msgdsize(mp) - ((uchar_t *)in_ipha - mp->b_rptr);
2001 
2002 	/*
2003 	 * Overlay the inner header and whatever follows it over the
2004 	 * outer header.
2005 	 */
2006 	bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length);
2007 
2008 	/* Adjust for what we removed */
2009 	mp->b_wptr -= (uchar_t *)in_ipha - (uchar_t *)ipha;
2010 	return (mp);
2011 }
2012 
2013 /*
2014  * Try to pass the ICMP message upstream in case the ULP cares.
2015  *
2016  * If the packet that caused the ICMP error is secure, we send
2017  * it to AH/ESP to make sure that the attached packet has a
2018  * valid association. ipha in the code below points to the
2019  * IP header of the packet that caused the error.
2020  *
2021  * For IPsec cases, we let the next-layer-up (which has access to
2022  * cached policy on the conn_t, or can query the SPD directly)
2023  * subtract out any IPsec overhead if they must.  We therefore make no
2024  * adjustments here for IPsec overhead.
2025  *
2026  * IFN could have been generated locally or by some router.
2027  *
2028  * LOCAL : ire_send_wire (before calling ipsec_out_process) can call
2029  * icmp_frag_needed/icmp_pkt2big_v6 to generated a local IFN.
2030  *	    This happens because IP adjusted its value of MTU on an
2031  *	    earlier IFN message and could not tell the upper layer,
2032  *	    the new adjusted value of MTU e.g. Packet was encrypted
2033  *	    or there was not enough information to fanout to upper
2034  *	    layers. Thus on the next outbound datagram, ire_send_wire
2035  *	    generates the IFN, where IPsec processing has *not* been
2036  *	    done.
2037  *
2038  *	    Note that we retain ixa_fragsize across IPsec thus once
2039  *	    we have picking ixa_fragsize and entered ipsec_out_process we do
2040  *	    no change the fragsize even if the path MTU changes before
2041  *	    we reach ip_output_post_ipsec.
2042  *
2043  *	    In the local case, IRAF_LOOPBACK will be set indicating
2044  *	    that IFN was generated locally.
2045  *
2046  * ROUTER : IFN could be secure or non-secure.
2047  *
2048  *	    * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the
2049  *	      packet in error has AH/ESP headers to validate the AH/ESP
2050  *	      headers. AH/ESP will verify whether there is a valid SA or
2051  *	      not and send it back. We will fanout again if we have more
2052  *	      data in the packet.
2053  *
2054  *	      If the packet in error does not have AH/ESP, we handle it
2055  *	      like any other case.
2056  *
2057  *	    * NON_SECURE : If the packet in error has AH/ESP headers, we send it
2058  *	      up to AH/ESP for validation. AH/ESP will verify whether there is a
2059  *	      valid SA or not and send it back. We will fanout again if
2060  *	      we have more data in the packet.
2061  *
2062  *	      If the packet in error does not have AH/ESP, we handle it
2063  *	      like any other case.
2064  *
2065  * The caller must have called icmp_inbound_verify_v4.
2066  */
2067 static void
2068 icmp_inbound_error_fanout_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira)
2069 {
2070 	uint16_t	*up;	/* Pointer to ports in ULP header */
2071 	uint32_t	ports;	/* reversed ports for fanout */
2072 	ipha_t		ripha;	/* With reversed addresses */
2073 	ipha_t		*ipha;  /* Inner IP header */
2074 	uint_t		hdr_length; /* Inner IP header length */
2075 	tcpha_t		*tcpha;
2076 	conn_t		*connp;
2077 	ill_t		*ill = ira->ira_ill;
2078 	ip_stack_t	*ipst = ill->ill_ipst;
2079 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
2080 	ill_t		*rill = ira->ira_rill;
2081 
2082 	/* Caller already pulled up everything. */
2083 	ipha = (ipha_t *)&icmph[1];
2084 	ASSERT((uchar_t *)&ipha[1] <= mp->b_wptr);
2085 	ASSERT(mp->b_cont == NULL);
2086 
2087 	hdr_length = IPH_HDR_LENGTH(ipha);
2088 	ira->ira_protocol = ipha->ipha_protocol;
2089 
2090 	/*
2091 	 * We need a separate IP header with the source and destination
2092 	 * addresses reversed to do fanout/classification because the ipha in
2093 	 * the ICMP error is in the form we sent it out.
2094 	 */
2095 	ripha.ipha_src = ipha->ipha_dst;
2096 	ripha.ipha_dst = ipha->ipha_src;
2097 	ripha.ipha_protocol = ipha->ipha_protocol;
2098 	ripha.ipha_version_and_hdr_length = ipha->ipha_version_and_hdr_length;
2099 
2100 	ip2dbg(("icmp_inbound_error_v4: proto %d %x to %x: %d/%d\n",
2101 	    ripha.ipha_protocol, ntohl(ipha->ipha_src),
2102 	    ntohl(ipha->ipha_dst),
2103 	    icmph->icmph_type, icmph->icmph_code));
2104 
2105 	switch (ipha->ipha_protocol) {
2106 	case IPPROTO_UDP:
2107 		up = (uint16_t *)((uchar_t *)ipha + hdr_length);
2108 
2109 		/* Attempt to find a client stream based on port. */
2110 		ip2dbg(("icmp_inbound_error_v4: UDP ports %d to %d\n",
2111 		    ntohs(up[0]), ntohs(up[1])));
2112 
2113 		/* Note that we send error to all matches. */
2114 		ira->ira_flags |= IRAF_ICMP_ERROR;
2115 		ip_fanout_udp_multi_v4(mp, &ripha, up[0], up[1], ira);
2116 		ira->ira_flags &= ~IRAF_ICMP_ERROR;
2117 		return;
2118 
2119 	case IPPROTO_TCP:
2120 		/*
2121 		 * Find a TCP client stream for this packet.
2122 		 * Note that we do a reverse lookup since the header is
2123 		 * in the form we sent it out.
2124 		 */
2125 		tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length);
2126 		connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN,
2127 		    ipst);
2128 		if (connp == NULL)
2129 			goto discard_pkt;
2130 
2131 		if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) ||
2132 		    (ira->ira_flags & IRAF_IPSEC_SECURE)) {
2133 			mp = ipsec_check_inbound_policy(mp, connp,
2134 			    ipha, NULL, ira);
2135 			if (mp == NULL) {
2136 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2137 				/* Note that mp is NULL */
2138 				ip_drop_input("ipIfStatsInDiscards", mp, ill);
2139 				CONN_DEC_REF(connp);
2140 				return;
2141 			}
2142 		}
2143 
2144 		ira->ira_flags |= IRAF_ICMP_ERROR;
2145 		ira->ira_ill = ira->ira_rill = NULL;
2146 		if (IPCL_IS_TCP(connp)) {
2147 			SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
2148 			    connp->conn_recvicmp, connp, ira, SQ_FILL,
2149 			    SQTAG_TCP_INPUT_ICMP_ERR);
2150 		} else {
2151 			/* Not TCP; must be SOCK_RAW, IPPROTO_TCP */
2152 			(connp->conn_recv)(connp, mp, NULL, ira);
2153 			CONN_DEC_REF(connp);
2154 		}
2155 		ira->ira_ill = ill;
2156 		ira->ira_rill = rill;
2157 		ira->ira_flags &= ~IRAF_ICMP_ERROR;
2158 		return;
2159 
2160 	case IPPROTO_SCTP:
2161 		up = (uint16_t *)((uchar_t *)ipha + hdr_length);
2162 		/* Find a SCTP client stream for this packet. */
2163 		((uint16_t *)&ports)[0] = up[1];
2164 		((uint16_t *)&ports)[1] = up[0];
2165 
2166 		ira->ira_flags |= IRAF_ICMP_ERROR;
2167 		ip_fanout_sctp(mp, &ripha, NULL, ports, ira);
2168 		ira->ira_flags &= ~IRAF_ICMP_ERROR;
2169 		return;
2170 
2171 	case IPPROTO_ESP:
2172 	case IPPROTO_AH:
2173 		if (!ipsec_loaded(ipss)) {
2174 			ip_proto_not_sup(mp, ira);
2175 			return;
2176 		}
2177 
2178 		if (ipha->ipha_protocol == IPPROTO_ESP)
2179 			mp = ipsecesp_icmp_error(mp, ira);
2180 		else
2181 			mp = ipsecah_icmp_error(mp, ira);
2182 		if (mp == NULL)
2183 			return;
2184 
2185 		/* Just in case ipsec didn't preserve the NULL b_cont */
2186 		if (mp->b_cont != NULL) {
2187 			if (!pullupmsg(mp, -1))
2188 				goto discard_pkt;
2189 		}
2190 
2191 		/*
2192 		 * Note that ira_pktlen and ira_ip_hdr_length are no longer
2193 		 * correct, but we don't use them any more here.
2194 		 *
2195 		 * If succesful, the mp has been modified to not include
2196 		 * the ESP/AH header so we can fanout to the ULP's icmp
2197 		 * error handler.
2198 		 */
2199 		if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH)
2200 			goto truncated;
2201 
2202 		/* Verify the modified message before any further processes. */
2203 		ipha = (ipha_t *)mp->b_rptr;
2204 		hdr_length = IPH_HDR_LENGTH(ipha);
2205 		icmph = (icmph_t *)&mp->b_rptr[hdr_length];
2206 		if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
2207 			freemsg(mp);
2208 			return;
2209 		}
2210 
2211 		icmp_inbound_error_fanout_v4(mp, icmph, ira);
2212 		return;
2213 
2214 	case IPPROTO_ENCAP: {
2215 		/* Look for self-encapsulated packets that caused an error */
2216 		ipha_t *in_ipha;
2217 
2218 		/*
2219 		 * Caller has verified that length has to be
2220 		 * at least the size of IP header.
2221 		 */
2222 		ASSERT(hdr_length >= sizeof (ipha_t));
2223 		/*
2224 		 * Check the sanity of the inner IP header like
2225 		 * we did for the outer header.
2226 		 */
2227 		in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length);
2228 		if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) {
2229 			goto discard_pkt;
2230 		}
2231 		if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) {
2232 			goto discard_pkt;
2233 		}
2234 		/* Check for Self-encapsulated tunnels */
2235 		if (in_ipha->ipha_src == ipha->ipha_src &&
2236 		    in_ipha->ipha_dst == ipha->ipha_dst) {
2237 
2238 			mp = icmp_inbound_self_encap_error_v4(mp, ipha,
2239 			    in_ipha);
2240 			if (mp == NULL)
2241 				goto discard_pkt;
2242 
2243 			/*
2244 			 * Just in case self_encap didn't preserve the NULL
2245 			 * b_cont
2246 			 */
2247 			if (mp->b_cont != NULL) {
2248 				if (!pullupmsg(mp, -1))
2249 					goto discard_pkt;
2250 			}
2251 			/*
2252 			 * Note that ira_pktlen and ira_ip_hdr_length are no
2253 			 * longer correct, but we don't use them any more here.
2254 			 */
2255 			if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH)
2256 				goto truncated;
2257 
2258 			/*
2259 			 * Verify the modified message before any further
2260 			 * processes.
2261 			 */
2262 			ipha = (ipha_t *)mp->b_rptr;
2263 			hdr_length = IPH_HDR_LENGTH(ipha);
2264 			icmph = (icmph_t *)&mp->b_rptr[hdr_length];
2265 			if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
2266 				freemsg(mp);
2267 				return;
2268 			}
2269 
2270 			/*
2271 			 * The packet in error is self-encapsualted.
2272 			 * And we are finding it further encapsulated
2273 			 * which we could not have possibly generated.
2274 			 */
2275 			if (ipha->ipha_protocol == IPPROTO_ENCAP) {
2276 				goto discard_pkt;
2277 			}
2278 			icmp_inbound_error_fanout_v4(mp, icmph, ira);
2279 			return;
2280 		}
2281 		/* No self-encapsulated */
2282 		/* FALLTHRU */
2283 	}
2284 	case IPPROTO_IPV6:
2285 		if ((connp = ipcl_iptun_classify_v4(&ripha.ipha_src,
2286 		    &ripha.ipha_dst, ipst)) != NULL) {
2287 			ira->ira_flags |= IRAF_ICMP_ERROR;
2288 			connp->conn_recvicmp(connp, mp, NULL, ira);
2289 			CONN_DEC_REF(connp);
2290 			ira->ira_flags &= ~IRAF_ICMP_ERROR;
2291 			return;
2292 		}
2293 		/*
2294 		 * No IP tunnel is interested, fallthrough and see
2295 		 * if a raw socket will want it.
2296 		 */
2297 		/* FALLTHRU */
2298 	default:
2299 		ira->ira_flags |= IRAF_ICMP_ERROR;
2300 		ip_fanout_proto_v4(mp, &ripha, ira);
2301 		ira->ira_flags &= ~IRAF_ICMP_ERROR;
2302 		return;
2303 	}
2304 	/* NOTREACHED */
2305 discard_pkt:
2306 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2307 	ip1dbg(("icmp_inbound_error_fanout_v4: drop pkt\n"));
2308 	ip_drop_input("ipIfStatsInDiscards", mp, ill);
2309 	freemsg(mp);
2310 	return;
2311 
2312 truncated:
2313 	/* We pulled up everthing already. Must be truncated */
2314 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
2315 	ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
2316 	freemsg(mp);
2317 }
2318 
2319 /*
2320  * Common IP options parser.
2321  *
2322  * Setup routine: fill in *optp with options-parsing state, then
2323  * tail-call ipoptp_next to return the first option.
2324  */
2325 uint8_t
2326 ipoptp_first(ipoptp_t *optp, ipha_t *ipha)
2327 {
2328 	uint32_t totallen; /* total length of all options */
2329 
2330 	totallen = ipha->ipha_version_and_hdr_length -
2331 	    (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
2332 	totallen <<= 2;
2333 	optp->ipoptp_next = (uint8_t *)(&ipha[1]);
2334 	optp->ipoptp_end = optp->ipoptp_next + totallen;
2335 	optp->ipoptp_flags = 0;
2336 	return (ipoptp_next(optp));
2337 }
2338 
2339 /* Like above but without an ipha_t */
2340 uint8_t
2341 ipoptp_first2(ipoptp_t *optp, uint32_t totallen, uint8_t *opt)
2342 {
2343 	optp->ipoptp_next = opt;
2344 	optp->ipoptp_end = optp->ipoptp_next + totallen;
2345 	optp->ipoptp_flags = 0;
2346 	return (ipoptp_next(optp));
2347 }
2348 
2349 /*
2350  * Common IP options parser: extract next option.
2351  */
2352 uint8_t
2353 ipoptp_next(ipoptp_t *optp)
2354 {
2355 	uint8_t *end = optp->ipoptp_end;
2356 	uint8_t *cur = optp->ipoptp_next;
2357 	uint8_t opt, len, pointer;
2358 
2359 	/*
2360 	 * If cur > end already, then the ipoptp_end or ipoptp_next pointer
2361 	 * has been corrupted.
2362 	 */
2363 	ASSERT(cur <= end);
2364 
2365 	if (cur == end)
2366 		return (IPOPT_EOL);
2367 
2368 	opt = cur[IPOPT_OPTVAL];
2369 
2370 	/*
2371 	 * Skip any NOP options.
2372 	 */
2373 	while (opt == IPOPT_NOP) {
2374 		cur++;
2375 		if (cur == end)
2376 			return (IPOPT_EOL);
2377 		opt = cur[IPOPT_OPTVAL];
2378 	}
2379 
2380 	if (opt == IPOPT_EOL)
2381 		return (IPOPT_EOL);
2382 
2383 	/*
2384 	 * Option requiring a length.
2385 	 */
2386 	if ((cur + 1) >= end) {
2387 		optp->ipoptp_flags |= IPOPTP_ERROR;
2388 		return (IPOPT_EOL);
2389 	}
2390 	len = cur[IPOPT_OLEN];
2391 	if (len < 2) {
2392 		optp->ipoptp_flags |= IPOPTP_ERROR;
2393 		return (IPOPT_EOL);
2394 	}
2395 	optp->ipoptp_cur = cur;
2396 	optp->ipoptp_len = len;
2397 	optp->ipoptp_next = cur + len;
2398 	if (cur + len > end) {
2399 		optp->ipoptp_flags |= IPOPTP_ERROR;
2400 		return (IPOPT_EOL);
2401 	}
2402 
2403 	/*
2404 	 * For the options which require a pointer field, make sure
2405 	 * its there, and make sure it points to either something
2406 	 * inside this option, or the end of the option.
2407 	 */
2408 	switch (opt) {
2409 	case IPOPT_RR:
2410 	case IPOPT_TS:
2411 	case IPOPT_LSRR:
2412 	case IPOPT_SSRR:
2413 		if (len <= IPOPT_OFFSET) {
2414 			optp->ipoptp_flags |= IPOPTP_ERROR;
2415 			return (opt);
2416 		}
2417 		pointer = cur[IPOPT_OFFSET];
2418 		if (pointer - 1 > len) {
2419 			optp->ipoptp_flags |= IPOPTP_ERROR;
2420 			return (opt);
2421 		}
2422 		break;
2423 	}
2424 
2425 	/*
2426 	 * Sanity check the pointer field based on the type of the
2427 	 * option.
2428 	 */
2429 	switch (opt) {
2430 	case IPOPT_RR:
2431 	case IPOPT_SSRR:
2432 	case IPOPT_LSRR:
2433 		if (pointer < IPOPT_MINOFF_SR)
2434 			optp->ipoptp_flags |= IPOPTP_ERROR;
2435 		break;
2436 	case IPOPT_TS:
2437 		if (pointer < IPOPT_MINOFF_IT)
2438 			optp->ipoptp_flags |= IPOPTP_ERROR;
2439 		/*
2440 		 * Note that the Internet Timestamp option also
2441 		 * contains two four bit fields (the Overflow field,
2442 		 * and the Flag field), which follow the pointer
2443 		 * field.  We don't need to check that these fields
2444 		 * fall within the length of the option because this
2445 		 * was implicitely done above.  We've checked that the
2446 		 * pointer value is at least IPOPT_MINOFF_IT, and that
2447 		 * it falls within the option.  Since IPOPT_MINOFF_IT >
2448 		 * IPOPT_POS_OV_FLG, we don't need the explicit check.
2449 		 */
2450 		ASSERT(len > IPOPT_POS_OV_FLG);
2451 		break;
2452 	}
2453 
2454 	return (opt);
2455 }
2456 
2457 /*
2458  * Use the outgoing IP header to create an IP_OPTIONS option the way
2459  * it was passed down from the application.
2460  *
2461  * This is compatible with BSD in that it returns
2462  * the reverse source route with the final destination
2463  * as the last entry. The first 4 bytes of the option
2464  * will contain the final destination.
2465  */
2466 int
2467 ip_opt_get_user(conn_t *connp, uchar_t *buf)
2468 {
2469 	ipoptp_t	opts;
2470 	uchar_t		*opt;
2471 	uint8_t		optval;
2472 	uint8_t		optlen;
2473 	uint32_t	len = 0;
2474 	uchar_t		*buf1 = buf;
2475 	uint32_t	totallen;
2476 	ipaddr_t	dst;
2477 	ip_pkt_t	*ipp = &connp->conn_xmit_ipp;
2478 
2479 	if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
2480 		return (0);
2481 
2482 	totallen = ipp->ipp_ipv4_options_len;
2483 	if (totallen & 0x3)
2484 		return (0);
2485 
2486 	buf += IP_ADDR_LEN;	/* Leave room for final destination */
2487 	len += IP_ADDR_LEN;
2488 	bzero(buf1, IP_ADDR_LEN);
2489 
2490 	dst = connp->conn_faddr_v4;
2491 
2492 	for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
2493 	    optval != IPOPT_EOL;
2494 	    optval = ipoptp_next(&opts)) {
2495 		int	off;
2496 
2497 		opt = opts.ipoptp_cur;
2498 		if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
2499 			break;
2500 		}
2501 		optlen = opts.ipoptp_len;
2502 
2503 		switch (optval) {
2504 		case IPOPT_SSRR:
2505 		case IPOPT_LSRR:
2506 
2507 			/*
2508 			 * Insert destination as the first entry in the source
2509 			 * route and move down the entries on step.
2510 			 * The last entry gets placed at buf1.
2511 			 */
2512 			buf[IPOPT_OPTVAL] = optval;
2513 			buf[IPOPT_OLEN] = optlen;
2514 			buf[IPOPT_OFFSET] = optlen;
2515 
2516 			off = optlen - IP_ADDR_LEN;
2517 			if (off < 0) {
2518 				/* No entries in source route */
2519 				break;
2520 			}
2521 			/* Last entry in source route if not already set */
2522 			if (dst == INADDR_ANY)
2523 				bcopy(opt + off, buf1, IP_ADDR_LEN);
2524 			off -= IP_ADDR_LEN;
2525 
2526 			while (off > 0) {
2527 				bcopy(opt + off,
2528 				    buf + off + IP_ADDR_LEN,
2529 				    IP_ADDR_LEN);
2530 				off -= IP_ADDR_LEN;
2531 			}
2532 			/* ipha_dst into first slot */
2533 			bcopy(&dst, buf + off + IP_ADDR_LEN,
2534 			    IP_ADDR_LEN);
2535 			buf += optlen;
2536 			len += optlen;
2537 			break;
2538 
2539 		default:
2540 			bcopy(opt, buf, optlen);
2541 			buf += optlen;
2542 			len += optlen;
2543 			break;
2544 		}
2545 	}
2546 done:
2547 	/* Pad the resulting options */
2548 	while (len & 0x3) {
2549 		*buf++ = IPOPT_EOL;
2550 		len++;
2551 	}
2552 	return (len);
2553 }
2554 
2555 /*
2556  * Update any record route or timestamp options to include this host.
2557  * Reverse any source route option.
2558  * This routine assumes that the options are well formed i.e. that they
2559  * have already been checked.
2560  */
2561 static void
2562 icmp_options_update(ipha_t *ipha)
2563 {
2564 	ipoptp_t	opts;
2565 	uchar_t		*opt;
2566 	uint8_t		optval;
2567 	ipaddr_t	src;		/* Our local address */
2568 	ipaddr_t	dst;
2569 
2570 	ip2dbg(("icmp_options_update\n"));
2571 	src = ipha->ipha_src;
2572 	dst = ipha->ipha_dst;
2573 
2574 	for (optval = ipoptp_first(&opts, ipha);
2575 	    optval != IPOPT_EOL;
2576 	    optval = ipoptp_next(&opts)) {
2577 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
2578 		opt = opts.ipoptp_cur;
2579 		ip2dbg(("icmp_options_update: opt %d, len %d\n",
2580 		    optval, opts.ipoptp_len));
2581 		switch (optval) {
2582 			int off1, off2;
2583 		case IPOPT_SSRR:
2584 		case IPOPT_LSRR:
2585 			/*
2586 			 * Reverse the source route.  The first entry
2587 			 * should be the next to last one in the current
2588 			 * source route (the last entry is our address).
2589 			 * The last entry should be the final destination.
2590 			 */
2591 			off1 = IPOPT_MINOFF_SR - 1;
2592 			off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
2593 			if (off2 < 0) {
2594 				/* No entries in source route */
2595 				ip1dbg((
2596 				    "icmp_options_update: bad src route\n"));
2597 				break;
2598 			}
2599 			bcopy((char *)opt + off2, &dst, IP_ADDR_LEN);
2600 			bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN);
2601 			bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN);
2602 			off2 -= IP_ADDR_LEN;
2603 
2604 			while (off1 < off2) {
2605 				bcopy((char *)opt + off1, &src, IP_ADDR_LEN);
2606 				bcopy((char *)opt + off2, (char *)opt + off1,
2607 				    IP_ADDR_LEN);
2608 				bcopy(&src, (char *)opt + off2, IP_ADDR_LEN);
2609 				off1 += IP_ADDR_LEN;
2610 				off2 -= IP_ADDR_LEN;
2611 			}
2612 			opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
2613 			break;
2614 		}
2615 	}
2616 }
2617 
2618 /*
2619  * Process received ICMP Redirect messages.
2620  * Assumes the caller has verified that the headers are in the pulled up mblk.
2621  * Consumes mp.
2622  */
2623 static void
2624 icmp_redirect_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, ip_recv_attr_t *ira)
2625 {
2626 	ire_t		*ire, *nire;
2627 	ire_t		*prev_ire;
2628 	ipaddr_t  	src, dst, gateway;
2629 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
2630 	ipha_t		*inner_ipha;	/* Inner IP header */
2631 
2632 	/* Caller already pulled up everything. */
2633 	inner_ipha = (ipha_t *)&icmph[1];
2634 	src = ipha->ipha_src;
2635 	dst = inner_ipha->ipha_dst;
2636 	gateway = icmph->icmph_rd_gateway;
2637 	/* Make sure the new gateway is reachable somehow. */
2638 	ire = ire_ftable_lookup_v4(gateway, 0, 0, IRE_ONLINK, NULL,
2639 	    ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, NULL);
2640 	/*
2641 	 * Make sure we had a route for the dest in question and that
2642 	 * that route was pointing to the old gateway (the source of the
2643 	 * redirect packet.)
2644 	 * We do longest match and then compare ire_gateway_addr below.
2645 	 */
2646 	prev_ire = ire_ftable_lookup_v4(dst, 0, 0, 0, NULL, ALL_ZONES,
2647 	    NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL);
2648 	/*
2649 	 * Check that
2650 	 *	the redirect was not from ourselves
2651 	 *	the new gateway and the old gateway are directly reachable
2652 	 */
2653 	if (prev_ire == NULL || ire == NULL ||
2654 	    (prev_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) ||
2655 	    (prev_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) ||
2656 	    !(ire->ire_type & IRE_IF_ALL) ||
2657 	    prev_ire->ire_gateway_addr != src) {
2658 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects);
2659 		ip_drop_input("icmpInBadRedirects - ire", mp, ira->ira_ill);
2660 		freemsg(mp);
2661 		if (ire != NULL)
2662 			ire_refrele(ire);
2663 		if (prev_ire != NULL)
2664 			ire_refrele(prev_ire);
2665 		return;
2666 	}
2667 
2668 	ire_refrele(prev_ire);
2669 	ire_refrele(ire);
2670 
2671 	/*
2672 	 * TODO: more precise handling for cases 0, 2, 3, the latter two
2673 	 * require TOS routing
2674 	 */
2675 	switch (icmph->icmph_code) {
2676 	case 0:
2677 	case 1:
2678 		/* TODO: TOS specificity for cases 2 and 3 */
2679 	case 2:
2680 	case 3:
2681 		break;
2682 	default:
2683 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects);
2684 		ip_drop_input("icmpInBadRedirects - code", mp, ira->ira_ill);
2685 		freemsg(mp);
2686 		return;
2687 	}
2688 	/*
2689 	 * Create a Route Association.  This will allow us to remember that
2690 	 * someone we believe told us to use the particular gateway.
2691 	 */
2692 	ire = ire_create(
2693 	    (uchar_t *)&dst,			/* dest addr */
2694 	    (uchar_t *)&ip_g_all_ones,		/* mask */
2695 	    (uchar_t *)&gateway,		/* gateway addr */
2696 	    IRE_HOST,
2697 	    NULL,				/* ill */
2698 	    ALL_ZONES,
2699 	    (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST),
2700 	    NULL,				/* tsol_gc_t */
2701 	    ipst);
2702 
2703 	if (ire == NULL) {
2704 		freemsg(mp);
2705 		return;
2706 	}
2707 	nire = ire_add(ire);
2708 	/* Check if it was a duplicate entry */
2709 	if (nire != NULL && nire != ire) {
2710 		ASSERT(nire->ire_identical_ref > 1);
2711 		ire_delete(nire);
2712 		ire_refrele(nire);
2713 		nire = NULL;
2714 	}
2715 	ire = nire;
2716 	if (ire != NULL) {
2717 		ire_refrele(ire);		/* Held in ire_add */
2718 
2719 		/* tell routing sockets that we received a redirect */
2720 		ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src,
2721 		    (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0,
2722 		    (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst);
2723 	}
2724 
2725 	/*
2726 	 * Delete any existing IRE_HOST type redirect ires for this destination.
2727 	 * This together with the added IRE has the effect of
2728 	 * modifying an existing redirect.
2729 	 */
2730 	prev_ire = ire_ftable_lookup_v4(dst, 0, src, IRE_HOST, NULL,
2731 	    ALL_ZONES, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), 0, ipst, NULL);
2732 	if (prev_ire != NULL) {
2733 		if (prev_ire ->ire_flags & RTF_DYNAMIC)
2734 			ire_delete(prev_ire);
2735 		ire_refrele(prev_ire);
2736 	}
2737 
2738 	freemsg(mp);
2739 }
2740 
2741 /*
2742  * Generate an ICMP parameter problem message.
2743  * When called from ip_output side a minimal ip_recv_attr_t needs to be
2744  * constructed by the caller.
2745  */
2746 static void
2747 icmp_param_problem(mblk_t *mp, uint8_t ptr, ip_recv_attr_t *ira)
2748 {
2749 	icmph_t	icmph;
2750 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
2751 
2752 	mp = icmp_pkt_err_ok(mp, ira);
2753 	if (mp == NULL)
2754 		return;
2755 
2756 	bzero(&icmph, sizeof (icmph_t));
2757 	icmph.icmph_type = ICMP_PARAM_PROBLEM;
2758 	icmph.icmph_pp_ptr = ptr;
2759 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs);
2760 	icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
2761 }
2762 
2763 /*
2764  * Build and ship an IPv4 ICMP message using the packet data in mp, and
2765  * the ICMP header pointed to by "stuff".  (May be called as writer.)
2766  * Note: assumes that icmp_pkt_err_ok has been called to verify that
2767  * an icmp error packet can be sent.
2768  * Assigns an appropriate source address to the packet. If ipha_dst is
2769  * one of our addresses use it for source. Otherwise let ip_output_simple
2770  * pick the source address.
2771  */
2772 static void
2773 icmp_pkt(mblk_t *mp, void *stuff, size_t len, ip_recv_attr_t *ira)
2774 {
2775 	ipaddr_t dst;
2776 	icmph_t	*icmph;
2777 	ipha_t	*ipha;
2778 	uint_t	len_needed;
2779 	size_t	msg_len;
2780 	mblk_t	*mp1;
2781 	ipaddr_t src;
2782 	ire_t	*ire;
2783 	ip_xmit_attr_t ixas;
2784 	ip_stack_t *ipst = ira->ira_ill->ill_ipst;
2785 
2786 	ipha = (ipha_t *)mp->b_rptr;
2787 
2788 	bzero(&ixas, sizeof (ixas));
2789 	ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
2790 	ixas.ixa_zoneid = ira->ira_zoneid;
2791 	ixas.ixa_ifindex = 0;
2792 	ixas.ixa_ipst = ipst;
2793 	ixas.ixa_cred = kcred;
2794 	ixas.ixa_cpid = NOPID;
2795 	ixas.ixa_tsl = ira->ira_tsl;	/* Behave as a multi-level responder */
2796 	ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
2797 
2798 	if (ira->ira_flags & IRAF_IPSEC_SECURE) {
2799 		/*
2800 		 * Apply IPsec based on how IPsec was applied to
2801 		 * the packet that had the error.
2802 		 *
2803 		 * If it was an outbound packet that caused the ICMP
2804 		 * error, then the caller will have setup the IRA
2805 		 * appropriately.
2806 		 */
2807 		if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) {
2808 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
2809 			/* Note: mp already consumed and ip_drop_packet done */
2810 			return;
2811 		}
2812 	} else {
2813 		/*
2814 		 * This is in clear. The icmp message we are building
2815 		 * here should go out in clear, independent of our policy.
2816 		 */
2817 		ixas.ixa_flags |= IXAF_NO_IPSEC;
2818 	}
2819 
2820 	/* Remember our eventual destination */
2821 	dst = ipha->ipha_src;
2822 
2823 	/*
2824 	 * If the packet was for one of our unicast addresses, make
2825 	 * sure we respond with that as the source. Otherwise
2826 	 * have ip_output_simple pick the source address.
2827 	 */
2828 	ire = ire_ftable_lookup_v4(ipha->ipha_dst, 0, 0,
2829 	    (IRE_LOCAL|IRE_LOOPBACK), NULL, ira->ira_zoneid, NULL,
2830 	    MATCH_IRE_TYPE|MATCH_IRE_ZONEONLY, 0, ipst, NULL);
2831 	if (ire != NULL) {
2832 		ire_refrele(ire);
2833 		src = ipha->ipha_dst;
2834 	} else {
2835 		src = INADDR_ANY;
2836 		ixas.ixa_flags |= IXAF_SET_SOURCE;
2837 	}
2838 
2839 	/*
2840 	 * Check if we can send back more then 8 bytes in addition to
2841 	 * the IP header.  We try to send 64 bytes of data and the internal
2842 	 * header in the special cases of ipv4 encapsulated ipv4 or ipv6.
2843 	 */
2844 	len_needed = IPH_HDR_LENGTH(ipha);
2845 	if (ipha->ipha_protocol == IPPROTO_ENCAP ||
2846 	    ipha->ipha_protocol == IPPROTO_IPV6) {
2847 		if (!pullupmsg(mp, -1)) {
2848 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
2849 			ip_drop_output("ipIfStatsOutDiscards", mp, NULL);
2850 			freemsg(mp);
2851 			return;
2852 		}
2853 		ipha = (ipha_t *)mp->b_rptr;
2854 
2855 		if (ipha->ipha_protocol == IPPROTO_ENCAP) {
2856 			len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha +
2857 			    len_needed));
2858 		} else {
2859 			ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed);
2860 
2861 			ASSERT(ipha->ipha_protocol == IPPROTO_IPV6);
2862 			len_needed += ip_hdr_length_v6(mp, ip6h);
2863 		}
2864 	}
2865 	len_needed += ipst->ips_ip_icmp_return;
2866 	msg_len = msgdsize(mp);
2867 	if (msg_len > len_needed) {
2868 		(void) adjmsg(mp, len_needed - msg_len);
2869 		msg_len = len_needed;
2870 	}
2871 	mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_MED);
2872 	if (mp1 == NULL) {
2873 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors);
2874 		freemsg(mp);
2875 		return;
2876 	}
2877 	mp1->b_cont = mp;
2878 	mp = mp1;
2879 
2880 	/*
2881 	 * Set IXAF_TRUSTED_ICMP so we can let the ICMP messages this
2882 	 * node generates be accepted in peace by all on-host destinations.
2883 	 * If we do NOT assume that all on-host destinations trust
2884 	 * self-generated ICMP messages, then rework here, ip6.c, and spd.c.
2885 	 * (Look for IXAF_TRUSTED_ICMP).
2886 	 */
2887 	ixas.ixa_flags |= IXAF_TRUSTED_ICMP;
2888 
2889 	ipha = (ipha_t *)mp->b_rptr;
2890 	mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len);
2891 	*ipha = icmp_ipha;
2892 	ipha->ipha_src = src;
2893 	ipha->ipha_dst = dst;
2894 	ipha->ipha_ttl = ipst->ips_ip_def_ttl;
2895 	msg_len += sizeof (icmp_ipha) + len;
2896 	if (msg_len > IP_MAXPACKET) {
2897 		(void) adjmsg(mp, IP_MAXPACKET - msg_len);
2898 		msg_len = IP_MAXPACKET;
2899 	}
2900 	ipha->ipha_length = htons((uint16_t)msg_len);
2901 	icmph = (icmph_t *)&ipha[1];
2902 	bcopy(stuff, icmph, len);
2903 	icmph->icmph_checksum = 0;
2904 	icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0);
2905 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs);
2906 
2907 	(void) ip_output_simple(mp, &ixas);
2908 	ixa_cleanup(&ixas);
2909 }
2910 
2911 /*
2912  * Determine if an ICMP error packet can be sent given the rate limit.
2913  * The limit consists of an average frequency (icmp_pkt_err_interval measured
2914  * in milliseconds) and a burst size. Burst size number of packets can
2915  * be sent arbitrarely closely spaced.
2916  * The state is tracked using two variables to implement an approximate
2917  * token bucket filter:
2918  *	icmp_pkt_err_last - lbolt value when the last burst started
2919  *	icmp_pkt_err_sent - number of packets sent in current burst
2920  */
2921 boolean_t
2922 icmp_err_rate_limit(ip_stack_t *ipst)
2923 {
2924 	clock_t now = TICK_TO_MSEC(ddi_get_lbolt());
2925 	uint_t refilled; /* Number of packets refilled in tbf since last */
2926 	/* Guard against changes by loading into local variable */
2927 	uint_t err_interval = ipst->ips_ip_icmp_err_interval;
2928 
2929 	if (err_interval == 0)
2930 		return (B_FALSE);
2931 
2932 	if (ipst->ips_icmp_pkt_err_last > now) {
2933 		/* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */
2934 		ipst->ips_icmp_pkt_err_last = 0;
2935 		ipst->ips_icmp_pkt_err_sent = 0;
2936 	}
2937 	/*
2938 	 * If we are in a burst update the token bucket filter.
2939 	 * Update the "last" time to be close to "now" but make sure
2940 	 * we don't loose precision.
2941 	 */
2942 	if (ipst->ips_icmp_pkt_err_sent != 0) {
2943 		refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval;
2944 		if (refilled > ipst->ips_icmp_pkt_err_sent) {
2945 			ipst->ips_icmp_pkt_err_sent = 0;
2946 		} else {
2947 			ipst->ips_icmp_pkt_err_sent -= refilled;
2948 			ipst->ips_icmp_pkt_err_last += refilled * err_interval;
2949 		}
2950 	}
2951 	if (ipst->ips_icmp_pkt_err_sent == 0) {
2952 		/* Start of new burst */
2953 		ipst->ips_icmp_pkt_err_last = now;
2954 	}
2955 	if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) {
2956 		ipst->ips_icmp_pkt_err_sent++;
2957 		ip1dbg(("icmp_err_rate_limit: %d sent in burst\n",
2958 		    ipst->ips_icmp_pkt_err_sent));
2959 		return (B_FALSE);
2960 	}
2961 	ip1dbg(("icmp_err_rate_limit: dropped\n"));
2962 	return (B_TRUE);
2963 }
2964 
2965 /*
2966  * Check if it is ok to send an IPv4 ICMP error packet in
2967  * response to the IPv4 packet in mp.
2968  * Free the message and return null if no
2969  * ICMP error packet should be sent.
2970  */
2971 static mblk_t *
2972 icmp_pkt_err_ok(mblk_t *mp, ip_recv_attr_t *ira)
2973 {
2974 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
2975 	icmph_t	*icmph;
2976 	ipha_t	*ipha;
2977 	uint_t	len_needed;
2978 
2979 	if (!mp)
2980 		return (NULL);
2981 	ipha = (ipha_t *)mp->b_rptr;
2982 	if (ip_csum_hdr(ipha)) {
2983 		BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs);
2984 		ip_drop_input("ipIfStatsInCksumErrs", mp, NULL);
2985 		freemsg(mp);
2986 		return (NULL);
2987 	}
2988 	if (ip_type_v4(ipha->ipha_dst, ipst) == IRE_BROADCAST ||
2989 	    ip_type_v4(ipha->ipha_src, ipst) == IRE_BROADCAST ||
2990 	    CLASSD(ipha->ipha_dst) ||
2991 	    CLASSD(ipha->ipha_src) ||
2992 	    (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) {
2993 		/* Note: only errors to the fragment with offset 0 */
2994 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
2995 		freemsg(mp);
2996 		return (NULL);
2997 	}
2998 	if (ipha->ipha_protocol == IPPROTO_ICMP) {
2999 		/*
3000 		 * Check the ICMP type.  RFC 1122 sez:  don't send ICMP
3001 		 * errors in response to any ICMP errors.
3002 		 */
3003 		len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE;
3004 		if (mp->b_wptr - mp->b_rptr < len_needed) {
3005 			if (!pullupmsg(mp, len_needed)) {
3006 				BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors);
3007 				freemsg(mp);
3008 				return (NULL);
3009 			}
3010 			ipha = (ipha_t *)mp->b_rptr;
3011 		}
3012 		icmph = (icmph_t *)
3013 		    (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]);
3014 		switch (icmph->icmph_type) {
3015 		case ICMP_DEST_UNREACHABLE:
3016 		case ICMP_SOURCE_QUENCH:
3017 		case ICMP_TIME_EXCEEDED:
3018 		case ICMP_PARAM_PROBLEM:
3019 		case ICMP_REDIRECT:
3020 			BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
3021 			freemsg(mp);
3022 			return (NULL);
3023 		default:
3024 			break;
3025 		}
3026 	}
3027 	/*
3028 	 * If this is a labeled system, then check to see if we're allowed to
3029 	 * send a response to this particular sender.  If not, then just drop.
3030 	 */
3031 	if (is_system_labeled() && !tsol_can_reply_error(mp, ira)) {
3032 		ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n"));
3033 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
3034 		freemsg(mp);
3035 		return (NULL);
3036 	}
3037 	if (icmp_err_rate_limit(ipst)) {
3038 		/*
3039 		 * Only send ICMP error packets every so often.
3040 		 * This should be done on a per port/source basis,
3041 		 * but for now this will suffice.
3042 		 */
3043 		freemsg(mp);
3044 		return (NULL);
3045 	}
3046 	return (mp);
3047 }
3048 
3049 /*
3050  * Called when a packet was sent out the same link that it arrived on.
3051  * Check if it is ok to send a redirect and then send it.
3052  */
3053 void
3054 ip_send_potential_redirect_v4(mblk_t *mp, ipha_t *ipha, ire_t *ire,
3055     ip_recv_attr_t *ira)
3056 {
3057 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
3058 	ipaddr_t	src, nhop;
3059 	mblk_t		*mp1;
3060 	ire_t		*nhop_ire;
3061 
3062 	/*
3063 	 * Check the source address to see if it originated
3064 	 * on the same logical subnet it is going back out on.
3065 	 * If so, we should be able to send it a redirect.
3066 	 * Avoid sending a redirect if the destination
3067 	 * is directly connected (i.e., we matched an IRE_ONLINK),
3068 	 * or if the packet was source routed out this interface.
3069 	 *
3070 	 * We avoid sending a redirect if the
3071 	 * destination is directly connected
3072 	 * because it is possible that multiple
3073 	 * IP subnets may have been configured on
3074 	 * the link, and the source may not
3075 	 * be on the same subnet as ip destination,
3076 	 * even though they are on the same
3077 	 * physical link.
3078 	 */
3079 	if ((ire->ire_type & IRE_ONLINK) ||
3080 	    ip_source_routed(ipha, ipst))
3081 		return;
3082 
3083 	nhop_ire = ire_nexthop(ire);
3084 	if (nhop_ire == NULL)
3085 		return;
3086 
3087 	nhop = nhop_ire->ire_addr;
3088 
3089 	if (nhop_ire->ire_type & IRE_IF_CLONE) {
3090 		ire_t	*ire2;
3091 
3092 		/* Follow ire_dep_parent to find non-clone IRE_INTERFACE */
3093 		mutex_enter(&nhop_ire->ire_lock);
3094 		ire2 = nhop_ire->ire_dep_parent;
3095 		if (ire2 != NULL)
3096 			ire_refhold(ire2);
3097 		mutex_exit(&nhop_ire->ire_lock);
3098 		ire_refrele(nhop_ire);
3099 		nhop_ire = ire2;
3100 	}
3101 	if (nhop_ire == NULL)
3102 		return;
3103 
3104 	ASSERT(!(nhop_ire->ire_type & IRE_IF_CLONE));
3105 
3106 	src = ipha->ipha_src;
3107 
3108 	/*
3109 	 * We look at the interface ire for the nexthop,
3110 	 * to see if ipha_src is in the same subnet
3111 	 * as the nexthop.
3112 	 */
3113 	if ((src & nhop_ire->ire_mask) == (nhop & nhop_ire->ire_mask)) {
3114 		/*
3115 		 * The source is directly connected.
3116 		 */
3117 		mp1 = copymsg(mp);
3118 		if (mp1 != NULL) {
3119 			icmp_send_redirect(mp1, nhop, ira);
3120 		}
3121 	}
3122 	ire_refrele(nhop_ire);
3123 }
3124 
3125 /*
3126  * Generate an ICMP redirect message.
3127  */
3128 static void
3129 icmp_send_redirect(mblk_t *mp, ipaddr_t gateway, ip_recv_attr_t *ira)
3130 {
3131 	icmph_t	icmph;
3132 	ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3133 
3134 	mp = icmp_pkt_err_ok(mp, ira);
3135 	if (mp == NULL)
3136 		return;
3137 
3138 	bzero(&icmph, sizeof (icmph_t));
3139 	icmph.icmph_type = ICMP_REDIRECT;
3140 	icmph.icmph_code = 1;
3141 	icmph.icmph_rd_gateway = gateway;
3142 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects);
3143 	icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
3144 }
3145 
3146 /*
3147  * Generate an ICMP time exceeded message.
3148  */
3149 void
3150 icmp_time_exceeded(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira)
3151 {
3152 	icmph_t	icmph;
3153 	ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3154 
3155 	mp = icmp_pkt_err_ok(mp, ira);
3156 	if (mp == NULL)
3157 		return;
3158 
3159 	bzero(&icmph, sizeof (icmph_t));
3160 	icmph.icmph_type = ICMP_TIME_EXCEEDED;
3161 	icmph.icmph_code = code;
3162 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds);
3163 	icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
3164 }
3165 
3166 /*
3167  * Generate an ICMP unreachable message.
3168  * When called from ip_output side a minimal ip_recv_attr_t needs to be
3169  * constructed by the caller.
3170  */
3171 void
3172 icmp_unreachable(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira)
3173 {
3174 	icmph_t	icmph;
3175 	ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3176 
3177 	mp = icmp_pkt_err_ok(mp, ira);
3178 	if (mp == NULL)
3179 		return;
3180 
3181 	bzero(&icmph, sizeof (icmph_t));
3182 	icmph.icmph_type = ICMP_DEST_UNREACHABLE;
3183 	icmph.icmph_code = code;
3184 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs);
3185 	icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
3186 }
3187 
3188 /*
3189  * Latch in the IPsec state for a stream based the policy in the listener
3190  * and the actions in the ip_recv_attr_t.
3191  * Called directly from TCP and SCTP.
3192  */
3193 boolean_t
3194 ip_ipsec_policy_inherit(conn_t *connp, conn_t *lconnp, ip_recv_attr_t *ira)
3195 {
3196 	ASSERT(lconnp->conn_policy != NULL);
3197 	ASSERT(connp->conn_policy == NULL);
3198 
3199 	IPPH_REFHOLD(lconnp->conn_policy);
3200 	connp->conn_policy = lconnp->conn_policy;
3201 
3202 	if (ira->ira_ipsec_action != NULL) {
3203 		if (connp->conn_latch == NULL) {
3204 			connp->conn_latch = iplatch_create();
3205 			if (connp->conn_latch == NULL)
3206 				return (B_FALSE);
3207 		}
3208 		ipsec_latch_inbound(connp, ira);
3209 	}
3210 	return (B_TRUE);
3211 }
3212 
3213 /*
3214  * Verify whether or not the IP address is a valid local address.
3215  * Could be a unicast, including one for a down interface.
3216  * If allow_mcbc then a multicast or broadcast address is also
3217  * acceptable.
3218  *
3219  * In the case of a broadcast/multicast address, however, the
3220  * upper protocol is expected to reset the src address
3221  * to zero when we return IPVL_MCAST/IPVL_BCAST so that
3222  * no packets are emitted with broadcast/multicast address as
3223  * source address (that violates hosts requirements RFC 1122)
3224  * The addresses valid for bind are:
3225  *	(1) - INADDR_ANY (0)
3226  *	(2) - IP address of an UP interface
3227  *	(3) - IP address of a DOWN interface
3228  *	(4) - valid local IP broadcast addresses. In this case
3229  *	the conn will only receive packets destined to
3230  *	the specified broadcast address.
3231  *	(5) - a multicast address. In this case
3232  *	the conn will only receive packets destined to
3233  *	the specified multicast address. Note: the
3234  *	application still has to issue an
3235  *	IP_ADD_MEMBERSHIP socket option.
3236  *
3237  * In all the above cases, the bound address must be valid in the current zone.
3238  * When the address is loopback, multicast or broadcast, there might be many
3239  * matching IREs so bind has to look up based on the zone.
3240  */
3241 ip_laddr_t
3242 ip_laddr_verify_v4(ipaddr_t src_addr, zoneid_t zoneid,
3243     ip_stack_t *ipst, boolean_t allow_mcbc)
3244 {
3245 	ire_t *src_ire;
3246 
3247 	ASSERT(src_addr != INADDR_ANY);
3248 
3249 	src_ire = ire_ftable_lookup_v4(src_addr, 0, 0, 0,
3250 	    NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, 0, ipst, NULL);
3251 
3252 	/*
3253 	 * If an address other than in6addr_any is requested,
3254 	 * we verify that it is a valid address for bind
3255 	 * Note: Following code is in if-else-if form for
3256 	 * readability compared to a condition check.
3257 	 */
3258 	if (src_ire != NULL && (src_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK))) {
3259 		/*
3260 		 * (2) Bind to address of local UP interface
3261 		 */
3262 		ire_refrele(src_ire);
3263 		return (IPVL_UNICAST_UP);
3264 	} else if (src_ire != NULL && src_ire->ire_type & IRE_BROADCAST) {
3265 		/*
3266 		 * (4) Bind to broadcast address
3267 		 */
3268 		ire_refrele(src_ire);
3269 		if (allow_mcbc)
3270 			return (IPVL_BCAST);
3271 		else
3272 			return (IPVL_BAD);
3273 	} else if (CLASSD(src_addr)) {
3274 		/* (5) bind to multicast address. */
3275 		if (src_ire != NULL)
3276 			ire_refrele(src_ire);
3277 
3278 		if (allow_mcbc)
3279 			return (IPVL_MCAST);
3280 		else
3281 			return (IPVL_BAD);
3282 	} else {
3283 		ipif_t *ipif;
3284 
3285 		/*
3286 		 * (3) Bind to address of local DOWN interface?
3287 		 * (ipif_lookup_addr() looks up all interfaces
3288 		 * but we do not get here for UP interfaces
3289 		 * - case (2) above)
3290 		 */
3291 		if (src_ire != NULL)
3292 			ire_refrele(src_ire);
3293 
3294 		ipif = ipif_lookup_addr(src_addr, NULL, zoneid, ipst);
3295 		if (ipif == NULL)
3296 			return (IPVL_BAD);
3297 
3298 		/* Not a useful source? */
3299 		if (ipif->ipif_flags & (IPIF_NOLOCAL | IPIF_ANYCAST)) {
3300 			ipif_refrele(ipif);
3301 			return (IPVL_BAD);
3302 		}
3303 		ipif_refrele(ipif);
3304 		return (IPVL_UNICAST_DOWN);
3305 	}
3306 }
3307 
3308 /*
3309  * Insert in the bind fanout for IPv4 and IPv6.
3310  * The caller should already have used ip_laddr_verify_v*() before calling
3311  * this.
3312  */
3313 int
3314 ip_laddr_fanout_insert(conn_t *connp)
3315 {
3316 	int		error;
3317 
3318 	/*
3319 	 * Allow setting new policies. For example, disconnects result
3320 	 * in us being called. As we would have set conn_policy_cached
3321 	 * to B_TRUE before, we should set it to B_FALSE, so that policy
3322 	 * can change after the disconnect.
3323 	 */
3324 	connp->conn_policy_cached = B_FALSE;
3325 
3326 	error = ipcl_bind_insert(connp);
3327 	if (error != 0) {
3328 		if (connp->conn_anon_port) {
3329 			(void) tsol_mlp_anon(crgetzone(connp->conn_cred),
3330 			    connp->conn_mlp_type, connp->conn_proto,
3331 			    ntohs(connp->conn_lport), B_FALSE);
3332 		}
3333 		connp->conn_mlp_type = mlptSingle;
3334 	}
3335 	return (error);
3336 }
3337 
3338 /*
3339  * Verify that both the source and destination addresses are valid. If
3340  * IPDF_VERIFY_DST is not set, then the destination address may be unreachable,
3341  * i.e. have no route to it.  Protocols like TCP want to verify destination
3342  * reachability, while tunnels do not.
3343  *
3344  * Determine the route, the interface, and (optionally) the source address
3345  * to use to reach a given destination.
3346  * Note that we allow connect to broadcast and multicast addresses when
3347  * IPDF_ALLOW_MCBC is set.
3348  * first_hop and dst_addr are normally the same, but if source routing
3349  * they will differ; in that case the first_hop is what we'll use for the
3350  * routing lookup but the dce and label checks will be done on dst_addr,
3351  *
3352  * If uinfo is set, then we fill in the best available information
3353  * we have for the destination. This is based on (in priority order) any
3354  * metrics and path MTU stored in a dce_t, route metrics, and finally the
3355  * ill_mtu/ill_mc_mtu.
3356  *
3357  * Tsol note: If we have a source route then dst_addr != firsthop. But we
3358  * always do the label check on dst_addr.
3359  */
3360 int
3361 ip_set_destination_v4(ipaddr_t *src_addrp, ipaddr_t dst_addr, ipaddr_t firsthop,
3362     ip_xmit_attr_t *ixa, iulp_t *uinfo, uint32_t flags, uint_t mac_mode)
3363 {
3364 	ire_t		*ire = NULL;
3365 	int		error = 0;
3366 	ipaddr_t	setsrc;				/* RTF_SETSRC */
3367 	zoneid_t	zoneid = ixa->ixa_zoneid;	/* Honors SO_ALLZONES */
3368 	ip_stack_t	*ipst = ixa->ixa_ipst;
3369 	dce_t		*dce;
3370 	uint_t		pmtu;
3371 	uint_t		generation;
3372 	nce_t		*nce;
3373 	ill_t		*ill = NULL;
3374 	boolean_t	multirt = B_FALSE;
3375 
3376 	ASSERT(ixa->ixa_flags & IXAF_IS_IPV4);
3377 
3378 	/*
3379 	 * We never send to zero; the ULPs map it to the loopback address.
3380 	 * We can't allow it since we use zero to mean unitialized in some
3381 	 * places.
3382 	 */
3383 	ASSERT(dst_addr != INADDR_ANY);
3384 
3385 	if (is_system_labeled()) {
3386 		ts_label_t *tsl = NULL;
3387 
3388 		error = tsol_check_dest(ixa->ixa_tsl, &dst_addr, IPV4_VERSION,
3389 		    mac_mode, (flags & IPDF_ZONE_IS_GLOBAL) != 0, &tsl);
3390 		if (error != 0)
3391 			return (error);
3392 		if (tsl != NULL) {
3393 			/* Update the label */
3394 			ip_xmit_attr_replace_tsl(ixa, tsl);
3395 		}
3396 	}
3397 
3398 	setsrc = INADDR_ANY;
3399 	/*
3400 	 * Select a route; For IPMP interfaces, we would only select
3401 	 * a "hidden" route (i.e., going through a specific under_ill)
3402 	 * if ixa_ifindex has been specified.
3403 	 */
3404 	ire = ip_select_route_v4(firsthop, *src_addrp, ixa,
3405 	    &generation, &setsrc, &error, &multirt);
3406 	ASSERT(ire != NULL);	/* IRE_NOROUTE if none found */
3407 	if (error != 0)
3408 		goto bad_addr;
3409 
3410 	/*
3411 	 * ire can't be a broadcast or multicast unless IPDF_ALLOW_MCBC is set.
3412 	 * If IPDF_VERIFY_DST is set, the destination must be reachable;
3413 	 * Otherwise the destination needn't be reachable.
3414 	 *
3415 	 * If we match on a reject or black hole, then we've got a
3416 	 * local failure.  May as well fail out the connect() attempt,
3417 	 * since it's never going to succeed.
3418 	 */
3419 	if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
3420 		/*
3421 		 * If we're verifying destination reachability, we always want
3422 		 * to complain here.
3423 		 *
3424 		 * If we're not verifying destination reachability but the
3425 		 * destination has a route, we still want to fail on the
3426 		 * temporary address and broadcast address tests.
3427 		 *
3428 		 * In both cases do we let the code continue so some reasonable
3429 		 * information is returned to the caller. That enables the
3430 		 * caller to use (and even cache) the IRE. conn_ip_ouput will
3431 		 * use the generation mismatch path to check for the unreachable
3432 		 * case thereby avoiding any specific check in the main path.
3433 		 */
3434 		ASSERT(generation == IRE_GENERATION_VERIFY);
3435 		if (flags & IPDF_VERIFY_DST) {
3436 			/*
3437 			 * Set errno but continue to set up ixa_ire to be
3438 			 * the RTF_REJECT|RTF_BLACKHOLE IRE.
3439 			 * That allows callers to use ip_output to get an
3440 			 * ICMP error back.
3441 			 */
3442 			if (!(ire->ire_type & IRE_HOST))
3443 				error = ENETUNREACH;
3444 			else
3445 				error = EHOSTUNREACH;
3446 		}
3447 	}
3448 
3449 	if ((ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) &&
3450 	    !(flags & IPDF_ALLOW_MCBC)) {
3451 		ire_refrele(ire);
3452 		ire = ire_reject(ipst, B_FALSE);
3453 		generation = IRE_GENERATION_VERIFY;
3454 		error = ENETUNREACH;
3455 	}
3456 
3457 	/* Cache things */
3458 	if (ixa->ixa_ire != NULL)
3459 		ire_refrele_notr(ixa->ixa_ire);
3460 #ifdef DEBUG
3461 	ire_refhold_notr(ire);
3462 	ire_refrele(ire);
3463 #endif
3464 	ixa->ixa_ire = ire;
3465 	ixa->ixa_ire_generation = generation;
3466 
3467 	/*
3468 	 * Ensure that ixa_dce is always set any time that ixa_ire is set,
3469 	 * since some callers will send a packet to conn_ip_output() even if
3470 	 * there's an error.
3471 	 */
3472 	if (flags & IPDF_UNIQUE_DCE) {
3473 		/* Fallback to the default dce if allocation fails */
3474 		dce = dce_lookup_and_add_v4(dst_addr, ipst);
3475 		if (dce != NULL)
3476 			generation = dce->dce_generation;
3477 		else
3478 			dce = dce_lookup_v4(dst_addr, ipst, &generation);
3479 	} else {
3480 		dce = dce_lookup_v4(dst_addr, ipst, &generation);
3481 	}
3482 	ASSERT(dce != NULL);
3483 	if (ixa->ixa_dce != NULL)
3484 		dce_refrele_notr(ixa->ixa_dce);
3485 #ifdef DEBUG
3486 	dce_refhold_notr(dce);
3487 	dce_refrele(dce);
3488 #endif
3489 	ixa->ixa_dce = dce;
3490 	ixa->ixa_dce_generation = generation;
3491 
3492 	/*
3493 	 * For multicast with multirt we have a flag passed back from
3494 	 * ire_lookup_multi_ill_v4 since we don't have an IRE for each
3495 	 * possible multicast address.
3496 	 * We also need a flag for multicast since we can't check
3497 	 * whether RTF_MULTIRT is set in ixa_ire for multicast.
3498 	 */
3499 	if (multirt) {
3500 		ixa->ixa_postfragfn = ip_postfrag_multirt_v4;
3501 		ixa->ixa_flags |= IXAF_MULTIRT_MULTICAST;
3502 	} else {
3503 		ixa->ixa_postfragfn = ire->ire_postfragfn;
3504 		ixa->ixa_flags &= ~IXAF_MULTIRT_MULTICAST;
3505 	}
3506 	if (!(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) {
3507 		/* Get an nce to cache. */
3508 		nce = ire_to_nce(ire, firsthop, NULL);
3509 		if (nce == NULL) {
3510 			/* Allocation failure? */
3511 			ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
3512 		} else {
3513 			if (ixa->ixa_nce != NULL)
3514 				nce_refrele(ixa->ixa_nce);
3515 			ixa->ixa_nce = nce;
3516 		}
3517 	}
3518 
3519 	/*
3520 	 * If the source address is a loopback address, the
3521 	 * destination had best be local or multicast.
3522 	 * If we are sending to an IRE_LOCAL using a loopback source then
3523 	 * it had better be the same zoneid.
3524 	 */
3525 	if (*src_addrp == htonl(INADDR_LOOPBACK)) {
3526 		if ((ire->ire_type & IRE_LOCAL) && ire->ire_zoneid != zoneid) {
3527 			ire = NULL;	/* Stored in ixa_ire */
3528 			error = EADDRNOTAVAIL;
3529 			goto bad_addr;
3530 		}
3531 		if (!(ire->ire_type & (IRE_LOOPBACK|IRE_LOCAL|IRE_MULTICAST))) {
3532 			ire = NULL;	/* Stored in ixa_ire */
3533 			error = EADDRNOTAVAIL;
3534 			goto bad_addr;
3535 		}
3536 	}
3537 	if (ire->ire_type & IRE_BROADCAST) {
3538 		/*
3539 		 * If the ULP didn't have a specified source, then we
3540 		 * make sure we reselect the source when sending
3541 		 * broadcasts out different interfaces.
3542 		 */
3543 		if (flags & IPDF_SELECT_SRC)
3544 			ixa->ixa_flags |= IXAF_SET_SOURCE;
3545 		else
3546 			ixa->ixa_flags &= ~IXAF_SET_SOURCE;
3547 	}
3548 
3549 	/*
3550 	 * Does the caller want us to pick a source address?
3551 	 */
3552 	if (flags & IPDF_SELECT_SRC) {
3553 		ipaddr_t	src_addr;
3554 
3555 		/*
3556 		 * We use use ire_nexthop_ill to avoid the under ipmp
3557 		 * interface for source address selection. Note that for ipmp
3558 		 * probe packets, ixa_ifindex would have been specified, and
3559 		 * the ip_select_route() invocation would have picked an ire
3560 		 * will ire_ill pointing at an under interface.
3561 		 */
3562 		ill = ire_nexthop_ill(ire);
3563 
3564 		/* If unreachable we have no ill but need some source */
3565 		if (ill == NULL) {
3566 			src_addr = htonl(INADDR_LOOPBACK);
3567 			/* Make sure we look for a better source address */
3568 			generation = SRC_GENERATION_VERIFY;
3569 		} else {
3570 			error = ip_select_source_v4(ill, setsrc, dst_addr,
3571 			    ixa->ixa_multicast_ifaddr, zoneid,
3572 			    ipst, &src_addr, &generation, NULL);
3573 			if (error != 0) {
3574 				ire = NULL;	/* Stored in ixa_ire */
3575 				goto bad_addr;
3576 			}
3577 		}
3578 
3579 		/*
3580 		 * We allow the source address to to down.
3581 		 * However, we check that we don't use the loopback address
3582 		 * as a source when sending out on the wire.
3583 		 */
3584 		if ((src_addr == htonl(INADDR_LOOPBACK)) &&
3585 		    !(ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK|IRE_MULTICAST)) &&
3586 		    !(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) {
3587 			ire = NULL;	/* Stored in ixa_ire */
3588 			error = EADDRNOTAVAIL;
3589 			goto bad_addr;
3590 		}
3591 
3592 		*src_addrp = src_addr;
3593 		ixa->ixa_src_generation = generation;
3594 	}
3595 
3596 	/*
3597 	 * Make sure we don't leave an unreachable ixa_nce in place
3598 	 * since ip_select_route is used when we unplumb i.e., remove
3599 	 * references on ixa_ire, ixa_nce, and ixa_dce.
3600 	 */
3601 	nce = ixa->ixa_nce;
3602 	if (nce != NULL && nce->nce_is_condemned) {
3603 		nce_refrele(nce);
3604 		ixa->ixa_nce = NULL;
3605 		ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
3606 	}
3607 
3608 	/*
3609 	 * The caller has set IXAF_PMTU_DISCOVERY if path MTU is desired.
3610 	 * However, we can't do it for IPv4 multicast or broadcast.
3611 	 */
3612 	if (ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST))
3613 		ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY;
3614 
3615 	/*
3616 	 * Set initial value for fragmentation limit. Either conn_ip_output
3617 	 * or ULP might updates it when there are routing changes.
3618 	 * Handles a NULL ixa_ire->ire_ill or a NULL ixa_nce for RTF_REJECT.
3619 	 */
3620 	pmtu = ip_get_pmtu(ixa);
3621 	ixa->ixa_fragsize = pmtu;
3622 	/* Make sure ixa_fragsize and ixa_pmtu remain identical */
3623 	if (ixa->ixa_flags & IXAF_VERIFY_PMTU)
3624 		ixa->ixa_pmtu = pmtu;
3625 
3626 	/*
3627 	 * Extract information useful for some transports.
3628 	 * First we look for DCE metrics. Then we take what we have in
3629 	 * the metrics in the route, where the offlink is used if we have
3630 	 * one.
3631 	 */
3632 	if (uinfo != NULL) {
3633 		bzero(uinfo, sizeof (*uinfo));
3634 
3635 		if (dce->dce_flags & DCEF_UINFO)
3636 			*uinfo = dce->dce_uinfo;
3637 
3638 		rts_merge_metrics(uinfo, &ire->ire_metrics);
3639 
3640 		/* Allow ire_metrics to decrease the path MTU from above */
3641 		if (uinfo->iulp_mtu == 0 || uinfo->iulp_mtu > pmtu)
3642 			uinfo->iulp_mtu = pmtu;
3643 
3644 		uinfo->iulp_localnet = (ire->ire_type & IRE_ONLINK) != 0;
3645 		uinfo->iulp_loopback = (ire->ire_type & IRE_LOOPBACK) != 0;
3646 		uinfo->iulp_local = (ire->ire_type & IRE_LOCAL) != 0;
3647 	}
3648 
3649 	if (ill != NULL)
3650 		ill_refrele(ill);
3651 
3652 	return (error);
3653 
3654 bad_addr:
3655 	if (ire != NULL)
3656 		ire_refrele(ire);
3657 
3658 	if (ill != NULL)
3659 		ill_refrele(ill);
3660 
3661 	/*
3662 	 * Make sure we don't leave an unreachable ixa_nce in place
3663 	 * since ip_select_route is used when we unplumb i.e., remove
3664 	 * references on ixa_ire, ixa_nce, and ixa_dce.
3665 	 */
3666 	nce = ixa->ixa_nce;
3667 	if (nce != NULL && nce->nce_is_condemned) {
3668 		nce_refrele(nce);
3669 		ixa->ixa_nce = NULL;
3670 		ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
3671 	}
3672 
3673 	return (error);
3674 }
3675 
3676 
3677 /*
3678  * Get the base MTU for the case when path MTU discovery is not used.
3679  * Takes the MTU of the IRE into account.
3680  */
3681 uint_t
3682 ip_get_base_mtu(ill_t *ill, ire_t *ire)
3683 {
3684 	uint_t mtu;
3685 	uint_t iremtu = ire->ire_metrics.iulp_mtu;
3686 
3687 	if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST))
3688 		mtu = ill->ill_mc_mtu;
3689 	else
3690 		mtu = ill->ill_mtu;
3691 
3692 	if (iremtu != 0 && iremtu < mtu)
3693 		mtu = iremtu;
3694 
3695 	return (mtu);
3696 }
3697 
3698 /*
3699  * Get the PMTU for the attributes. Handles both IPv4 and IPv6.
3700  * Assumes that ixa_ire, dce, and nce have already been set up.
3701  *
3702  * The caller has set IXAF_PMTU_DISCOVERY if path MTU discovery is desired.
3703  * We avoid path MTU discovery if it is disabled with ndd.
3704  * Furtermore, if the path MTU is too small, then we don't set DF for IPv4.
3705  *
3706  * NOTE: We also used to turn it off for source routed packets. That
3707  * is no longer required since the dce is per final destination.
3708  */
3709 uint_t
3710 ip_get_pmtu(ip_xmit_attr_t *ixa)
3711 {
3712 	ip_stack_t	*ipst = ixa->ixa_ipst;
3713 	dce_t		*dce;
3714 	nce_t		*nce;
3715 	ire_t		*ire;
3716 	uint_t		pmtu;
3717 
3718 	ire = ixa->ixa_ire;
3719 	dce = ixa->ixa_dce;
3720 	nce = ixa->ixa_nce;
3721 
3722 	/*
3723 	 * If path MTU discovery has been turned off by ndd, then we ignore
3724 	 * any dce_pmtu and for IPv4 we will not set DF.
3725 	 */
3726 	if (!ipst->ips_ip_path_mtu_discovery)
3727 		ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY;
3728 
3729 	pmtu = IP_MAXPACKET;
3730 	/*
3731 	 * Decide whether whether IPv4 sets DF
3732 	 * For IPv6 "no DF" means to use the 1280 mtu
3733 	 */
3734 	if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) {
3735 		ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
3736 	} else {
3737 		ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF;
3738 		if (!(ixa->ixa_flags & IXAF_IS_IPV4))
3739 			pmtu = IPV6_MIN_MTU;
3740 	}
3741 
3742 	/* Check if the PMTU is to old before we use it */
3743 	if ((dce->dce_flags & DCEF_PMTU) &&
3744 	    TICK_TO_SEC(ddi_get_lbolt64()) - dce->dce_last_change_time >
3745 	    ipst->ips_ip_pathmtu_interval) {
3746 		/*
3747 		 * Older than 20 minutes. Drop the path MTU information.
3748 		 */
3749 		mutex_enter(&dce->dce_lock);
3750 		dce->dce_flags &= ~(DCEF_PMTU|DCEF_TOO_SMALL_PMTU);
3751 		dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64());
3752 		mutex_exit(&dce->dce_lock);
3753 		dce_increment_generation(dce);
3754 	}
3755 
3756 	/* The metrics on the route can lower the path MTU */
3757 	if (ire->ire_metrics.iulp_mtu != 0 &&
3758 	    ire->ire_metrics.iulp_mtu < pmtu)
3759 		pmtu = ire->ire_metrics.iulp_mtu;
3760 
3761 	/*
3762 	 * If the path MTU is smaller than some minimum, we still use dce_pmtu
3763 	 * above (would be 576 for IPv4 and 1280 for IPv6), but we clear
3764 	 * IXAF_PMTU_IPV4_DF so that we avoid setting DF for IPv4.
3765 	 */
3766 	if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) {
3767 		if (dce->dce_flags & DCEF_PMTU) {
3768 			if (dce->dce_pmtu < pmtu)
3769 				pmtu = dce->dce_pmtu;
3770 
3771 			if (dce->dce_flags & DCEF_TOO_SMALL_PMTU) {
3772 				ixa->ixa_flags |= IXAF_PMTU_TOO_SMALL;
3773 				ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF;
3774 			} else {
3775 				ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL;
3776 				ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
3777 			}
3778 		} else {
3779 			ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL;
3780 			ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
3781 		}
3782 	}
3783 
3784 	/*
3785 	 * If we have an IRE_LOCAL we use the loopback mtu instead of
3786 	 * the ill for going out the wire i.e., IRE_LOCAL gets the same
3787 	 * mtu as IRE_LOOPBACK.
3788 	 */
3789 	if (ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) {
3790 		uint_t loopback_mtu;
3791 
3792 		loopback_mtu = (ire->ire_ipversion == IPV6_VERSION) ?
3793 		    ip_loopback_mtu_v6plus : ip_loopback_mtuplus;
3794 
3795 		if (loopback_mtu < pmtu)
3796 			pmtu = loopback_mtu;
3797 	} else if (nce != NULL) {
3798 		/*
3799 		 * Make sure we don't exceed the interface MTU.
3800 		 * In the case of RTF_REJECT or RTF_BLACKHOLE we might not have
3801 		 * an ill. We'd use the above IP_MAXPACKET in that case just
3802 		 * to tell the transport something larger than zero.
3803 		 */
3804 		if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST)) {
3805 			if (nce->nce_common->ncec_ill->ill_mc_mtu < pmtu)
3806 				pmtu = nce->nce_common->ncec_ill->ill_mc_mtu;
3807 			if (nce->nce_common->ncec_ill != nce->nce_ill &&
3808 			    nce->nce_ill->ill_mc_mtu < pmtu) {
3809 				/*
3810 				 * for interfaces in an IPMP group, the mtu of
3811 				 * the nce_ill (under_ill) could be different
3812 				 * from the mtu of the ncec_ill, so we take the
3813 				 * min of the two.
3814 				 */
3815 				pmtu = nce->nce_ill->ill_mc_mtu;
3816 			}
3817 		} else {
3818 			if (nce->nce_common->ncec_ill->ill_mtu < pmtu)
3819 				pmtu = nce->nce_common->ncec_ill->ill_mtu;
3820 			if (nce->nce_common->ncec_ill != nce->nce_ill &&
3821 			    nce->nce_ill->ill_mtu < pmtu) {
3822 				/*
3823 				 * for interfaces in an IPMP group, the mtu of
3824 				 * the nce_ill (under_ill) could be different
3825 				 * from the mtu of the ncec_ill, so we take the
3826 				 * min of the two.
3827 				 */
3828 				pmtu = nce->nce_ill->ill_mtu;
3829 			}
3830 		}
3831 	}
3832 
3833 	/*
3834 	 * Handle the IPV6_USE_MIN_MTU socket option or ancillary data.
3835 	 * Only applies to IPv6.
3836 	 */
3837 	if (!(ixa->ixa_flags & IXAF_IS_IPV4)) {
3838 		if (ixa->ixa_flags & IXAF_USE_MIN_MTU) {
3839 			switch (ixa->ixa_use_min_mtu) {
3840 			case IPV6_USE_MIN_MTU_MULTICAST:
3841 				if (ire->ire_type & IRE_MULTICAST)
3842 					pmtu = IPV6_MIN_MTU;
3843 				break;
3844 			case IPV6_USE_MIN_MTU_ALWAYS:
3845 				pmtu = IPV6_MIN_MTU;
3846 				break;
3847 			case IPV6_USE_MIN_MTU_NEVER:
3848 				break;
3849 			}
3850 		} else {
3851 			/* Default is IPV6_USE_MIN_MTU_MULTICAST */
3852 			if (ire->ire_type & IRE_MULTICAST)
3853 				pmtu = IPV6_MIN_MTU;
3854 		}
3855 	}
3856 
3857 	/*
3858 	 * After receiving an ICMPv6 "packet too big" message with a
3859 	 * MTU < 1280, and for multirouted IPv6 packets, the IP layer
3860 	 * will insert a 8-byte fragment header in every packet. We compensate
3861 	 * for those cases by returning a smaller path MTU to the ULP.
3862 	 *
3863 	 * In the case of CGTP then ip_output will add a fragment header.
3864 	 * Make sure there is room for it by telling a smaller number
3865 	 * to the transport.
3866 	 *
3867 	 * When IXAF_IPV6_ADDR_FRAGHDR we subtract the frag hdr here
3868 	 * so the ULPs consistently see a iulp_pmtu and ip_get_pmtu()
3869 	 * which is the size of the packets it can send.
3870 	 */
3871 	if (!(ixa->ixa_flags & IXAF_IS_IPV4)) {
3872 		if ((dce->dce_flags & DCEF_TOO_SMALL_PMTU) ||
3873 		    (ire->ire_flags & RTF_MULTIRT) ||
3874 		    (ixa->ixa_flags & IXAF_MULTIRT_MULTICAST)) {
3875 			pmtu -= sizeof (ip6_frag_t);
3876 			ixa->ixa_flags |= IXAF_IPV6_ADD_FRAGHDR;
3877 		}
3878 	}
3879 
3880 	return (pmtu);
3881 }
3882 
3883 /*
3884  * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping
3885  * the final piece where we don't.  Return a pointer to the first mblk in the
3886  * result, and update the pointer to the next mblk to chew on.  If anything
3887  * goes wrong (i.e., dupb fails), we waste everything in sight and return a
3888  * NULL pointer.
3889  */
3890 mblk_t *
3891 ip_carve_mp(mblk_t **mpp, ssize_t len)
3892 {
3893 	mblk_t	*mp0;
3894 	mblk_t	*mp1;
3895 	mblk_t	*mp2;
3896 
3897 	if (!len || !mpp || !(mp0 = *mpp))
3898 		return (NULL);
3899 	/* If we aren't going to consume the first mblk, we need a dup. */
3900 	if (mp0->b_wptr - mp0->b_rptr > len) {
3901 		mp1 = dupb(mp0);
3902 		if (mp1) {
3903 			/* Partition the data between the two mblks. */
3904 			mp1->b_wptr = mp1->b_rptr + len;
3905 			mp0->b_rptr = mp1->b_wptr;
3906 			/*
3907 			 * after adjustments if mblk not consumed is now
3908 			 * unaligned, try to align it. If this fails free
3909 			 * all messages and let upper layer recover.
3910 			 */
3911 			if (!OK_32PTR(mp0->b_rptr)) {
3912 				if (!pullupmsg(mp0, -1)) {
3913 					freemsg(mp0);
3914 					freemsg(mp1);
3915 					*mpp = NULL;
3916 					return (NULL);
3917 				}
3918 			}
3919 		}
3920 		return (mp1);
3921 	}
3922 	/* Eat through as many mblks as we need to get len bytes. */
3923 	len -= mp0->b_wptr - mp0->b_rptr;
3924 	for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) {
3925 		if (mp2->b_wptr - mp2->b_rptr > len) {
3926 			/*
3927 			 * We won't consume the entire last mblk.  Like
3928 			 * above, dup and partition it.
3929 			 */
3930 			mp1->b_cont = dupb(mp2);
3931 			mp1 = mp1->b_cont;
3932 			if (!mp1) {
3933 				/*
3934 				 * Trouble.  Rather than go to a lot of
3935 				 * trouble to clean up, we free the messages.
3936 				 * This won't be any worse than losing it on
3937 				 * the wire.
3938 				 */
3939 				freemsg(mp0);
3940 				freemsg(mp2);
3941 				*mpp = NULL;
3942 				return (NULL);
3943 			}
3944 			mp1->b_wptr = mp1->b_rptr + len;
3945 			mp2->b_rptr = mp1->b_wptr;
3946 			/*
3947 			 * after adjustments if mblk not consumed is now
3948 			 * unaligned, try to align it. If this fails free
3949 			 * all messages and let upper layer recover.
3950 			 */
3951 			if (!OK_32PTR(mp2->b_rptr)) {
3952 				if (!pullupmsg(mp2, -1)) {
3953 					freemsg(mp0);
3954 					freemsg(mp2);
3955 					*mpp = NULL;
3956 					return (NULL);
3957 				}
3958 			}
3959 			*mpp = mp2;
3960 			return (mp0);
3961 		}
3962 		/* Decrement len by the amount we just got. */
3963 		len -= mp2->b_wptr - mp2->b_rptr;
3964 	}
3965 	/*
3966 	 * len should be reduced to zero now.  If not our caller has
3967 	 * screwed up.
3968 	 */
3969 	if (len) {
3970 		/* Shouldn't happen! */
3971 		freemsg(mp0);
3972 		*mpp = NULL;
3973 		return (NULL);
3974 	}
3975 	/*
3976 	 * We consumed up to exactly the end of an mblk.  Detach the part
3977 	 * we are returning from the rest of the chain.
3978 	 */
3979 	mp1->b_cont = NULL;
3980 	*mpp = mp2;
3981 	return (mp0);
3982 }
3983 
3984 /* The ill stream is being unplumbed. Called from ip_close */
3985 int
3986 ip_modclose(ill_t *ill)
3987 {
3988 	boolean_t success;
3989 	ipsq_t	*ipsq;
3990 	ipif_t	*ipif;
3991 	queue_t	*q = ill->ill_rq;
3992 	ip_stack_t	*ipst = ill->ill_ipst;
3993 	int	i;
3994 	arl_ill_common_t *ai = ill->ill_common;
3995 
3996 	/*
3997 	 * The punlink prior to this may have initiated a capability
3998 	 * negotiation. But ipsq_enter will block until that finishes or
3999 	 * times out.
4000 	 */
4001 	success = ipsq_enter(ill, B_FALSE, NEW_OP);
4002 
4003 	/*
4004 	 * Open/close/push/pop is guaranteed to be single threaded
4005 	 * per stream by STREAMS. FS guarantees that all references
4006 	 * from top are gone before close is called. So there can't
4007 	 * be another close thread that has set CONDEMNED on this ill.
4008 	 * and cause ipsq_enter to return failure.
4009 	 */
4010 	ASSERT(success);
4011 	ipsq = ill->ill_phyint->phyint_ipsq;
4012 
4013 	/*
4014 	 * Mark it condemned. No new reference will be made to this ill.
4015 	 * Lookup functions will return an error. Threads that try to
4016 	 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures
4017 	 * that the refcnt will drop down to zero.
4018 	 */
4019 	mutex_enter(&ill->ill_lock);
4020 	ill->ill_state_flags |= ILL_CONDEMNED;
4021 	for (ipif = ill->ill_ipif; ipif != NULL;
4022 	    ipif = ipif->ipif_next) {
4023 		ipif->ipif_state_flags |= IPIF_CONDEMNED;
4024 	}
4025 	/*
4026 	 * Wake up anybody waiting to enter the ipsq. ipsq_enter
4027 	 * returns  error if ILL_CONDEMNED is set
4028 	 */
4029 	cv_broadcast(&ill->ill_cv);
4030 	mutex_exit(&ill->ill_lock);
4031 
4032 	/*
4033 	 * Send all the deferred DLPI messages downstream which came in
4034 	 * during the small window right before ipsq_enter(). We do this
4035 	 * without waiting for the ACKs because all the ACKs for M_PROTO
4036 	 * messages are ignored in ip_rput() when ILL_CONDEMNED is set.
4037 	 */
4038 	ill_dlpi_send_deferred(ill);
4039 
4040 	/*
4041 	 * Shut down fragmentation reassembly.
4042 	 * ill_frag_timer won't start a timer again.
4043 	 * Now cancel any existing timer
4044 	 */
4045 	(void) untimeout(ill->ill_frag_timer_id);
4046 	(void) ill_frag_timeout(ill, 0);
4047 
4048 	/*
4049 	 * Call ill_delete to bring down the ipifs, ilms and ill on
4050 	 * this ill. Then wait for the refcnts to drop to zero.
4051 	 * ill_is_freeable checks whether the ill is really quiescent.
4052 	 * Then make sure that threads that are waiting to enter the
4053 	 * ipsq have seen the error returned by ipsq_enter and have
4054 	 * gone away. Then we call ill_delete_tail which does the
4055 	 * DL_UNBIND_REQ with the driver and then qprocsoff.
4056 	 */
4057 	ill_delete(ill);
4058 	mutex_enter(&ill->ill_lock);
4059 	while (!ill_is_freeable(ill))
4060 		cv_wait(&ill->ill_cv, &ill->ill_lock);
4061 
4062 	while (ill->ill_waiters)
4063 		cv_wait(&ill->ill_cv, &ill->ill_lock);
4064 
4065 	mutex_exit(&ill->ill_lock);
4066 
4067 	/*
4068 	 * ill_delete_tail drops reference on ill_ipst, but we need to keep
4069 	 * it held until the end of the function since the cleanup
4070 	 * below needs to be able to use the ip_stack_t.
4071 	 */
4072 	netstack_hold(ipst->ips_netstack);
4073 
4074 	/* qprocsoff is done via ill_delete_tail */
4075 	ill_delete_tail(ill);
4076 	/*
4077 	 * synchronously wait for arp stream to unbind. After this, we
4078 	 * cannot get any data packets up from the driver.
4079 	 */
4080 	arp_unbind_complete(ill);
4081 	ASSERT(ill->ill_ipst == NULL);
4082 
4083 	/*
4084 	 * Walk through all conns and qenable those that have queued data.
4085 	 * Close synchronization needs this to
4086 	 * be done to ensure that all upper layers blocked
4087 	 * due to flow control to the closing device
4088 	 * get unblocked.
4089 	 */
4090 	ip1dbg(("ip_wsrv: walking\n"));
4091 	for (i = 0; i < TX_FANOUT_SIZE; i++) {
4092 		conn_walk_drain(ipst, &ipst->ips_idl_tx_list[i]);
4093 	}
4094 
4095 	/*
4096 	 * ai can be null if this is an IPv6 ill, or if the IPv4
4097 	 * stream is being torn down before ARP was plumbed (e.g.,
4098 	 * /sbin/ifconfig plumbing a stream twice, and encountering
4099 	 * an error
4100 	 */
4101 	if (ai != NULL) {
4102 		ASSERT(!ill->ill_isv6);
4103 		mutex_enter(&ai->ai_lock);
4104 		ai->ai_ill = NULL;
4105 		if (ai->ai_arl == NULL) {
4106 			mutex_destroy(&ai->ai_lock);
4107 			kmem_free(ai, sizeof (*ai));
4108 		} else {
4109 			cv_signal(&ai->ai_ill_unplumb_done);
4110 			mutex_exit(&ai->ai_lock);
4111 		}
4112 	}
4113 
4114 	mutex_enter(&ipst->ips_ip_mi_lock);
4115 	mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill);
4116 	mutex_exit(&ipst->ips_ip_mi_lock);
4117 
4118 	/*
4119 	 * credp could be null if the open didn't succeed and ip_modopen
4120 	 * itself calls ip_close.
4121 	 */
4122 	if (ill->ill_credp != NULL)
4123 		crfree(ill->ill_credp);
4124 
4125 	mutex_destroy(&ill->ill_saved_ire_lock);
4126 	mutex_destroy(&ill->ill_lock);
4127 	rw_destroy(&ill->ill_mcast_lock);
4128 	mutex_destroy(&ill->ill_mcast_serializer);
4129 	list_destroy(&ill->ill_nce);
4130 
4131 	/*
4132 	 * Now we are done with the module close pieces that
4133 	 * need the netstack_t.
4134 	 */
4135 	netstack_rele(ipst->ips_netstack);
4136 
4137 	mi_close_free((IDP)ill);
4138 	q->q_ptr = WR(q)->q_ptr = NULL;
4139 
4140 	ipsq_exit(ipsq);
4141 
4142 	return (0);
4143 }
4144 
4145 /*
4146  * This is called as part of close() for IP, UDP, ICMP, and RTS
4147  * in order to quiesce the conn.
4148  */
4149 void
4150 ip_quiesce_conn(conn_t *connp)
4151 {
4152 	boolean_t	drain_cleanup_reqd = B_FALSE;
4153 	boolean_t	conn_ioctl_cleanup_reqd = B_FALSE;
4154 	boolean_t	ilg_cleanup_reqd = B_FALSE;
4155 	ip_stack_t	*ipst;
4156 
4157 	ASSERT(!IPCL_IS_TCP(connp));
4158 	ipst = connp->conn_netstack->netstack_ip;
4159 
4160 	/*
4161 	 * Mark the conn as closing, and this conn must not be
4162 	 * inserted in future into any list. Eg. conn_drain_insert(),
4163 	 * won't insert this conn into the conn_drain_list.
4164 	 *
4165 	 * conn_idl, and conn_ilg cannot get set henceforth.
4166 	 */
4167 	mutex_enter(&connp->conn_lock);
4168 	ASSERT(!(connp->conn_state_flags & CONN_QUIESCED));
4169 	connp->conn_state_flags |= CONN_CLOSING;
4170 	if (connp->conn_idl != NULL)
4171 		drain_cleanup_reqd = B_TRUE;
4172 	if (connp->conn_oper_pending_ill != NULL)
4173 		conn_ioctl_cleanup_reqd = B_TRUE;
4174 	if (connp->conn_dhcpinit_ill != NULL) {
4175 		ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0);
4176 		atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit);
4177 		ill_set_inputfn(connp->conn_dhcpinit_ill);
4178 		connp->conn_dhcpinit_ill = NULL;
4179 	}
4180 	if (connp->conn_ilg != NULL)
4181 		ilg_cleanup_reqd = B_TRUE;
4182 	mutex_exit(&connp->conn_lock);
4183 
4184 	if (conn_ioctl_cleanup_reqd)
4185 		conn_ioctl_cleanup(connp);
4186 
4187 	if (is_system_labeled() && connp->conn_anon_port) {
4188 		(void) tsol_mlp_anon(crgetzone(connp->conn_cred),
4189 		    connp->conn_mlp_type, connp->conn_proto,
4190 		    ntohs(connp->conn_lport), B_FALSE);
4191 		connp->conn_anon_port = 0;
4192 	}
4193 	connp->conn_mlp_type = mlptSingle;
4194 
4195 	/*
4196 	 * Remove this conn from any fanout list it is on.
4197 	 * and then wait for any threads currently operating
4198 	 * on this endpoint to finish
4199 	 */
4200 	ipcl_hash_remove(connp);
4201 
4202 	/*
4203 	 * Remove this conn from the drain list, and do any other cleanup that
4204 	 * may be required.  (TCP conns are never flow controlled, and
4205 	 * conn_idl will be NULL.)
4206 	 */
4207 	if (drain_cleanup_reqd && connp->conn_idl != NULL) {
4208 		idl_t *idl = connp->conn_idl;
4209 
4210 		mutex_enter(&idl->idl_lock);
4211 		conn_drain(connp, B_TRUE);
4212 		mutex_exit(&idl->idl_lock);
4213 	}
4214 
4215 	if (connp == ipst->ips_ip_g_mrouter)
4216 		(void) ip_mrouter_done(ipst);
4217 
4218 	if (ilg_cleanup_reqd)
4219 		ilg_delete_all(connp);
4220 
4221 	/*
4222 	 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED.
4223 	 * callers from write side can't be there now because close
4224 	 * is in progress. The only other caller is ipcl_walk
4225 	 * which checks for the condemned flag.
4226 	 */
4227 	mutex_enter(&connp->conn_lock);
4228 	connp->conn_state_flags |= CONN_CONDEMNED;
4229 	while (connp->conn_ref != 1)
4230 		cv_wait(&connp->conn_cv, &connp->conn_lock);
4231 	connp->conn_state_flags |= CONN_QUIESCED;
4232 	mutex_exit(&connp->conn_lock);
4233 }
4234 
4235 /* ARGSUSED */
4236 int
4237 ip_close(queue_t *q, int flags)
4238 {
4239 	conn_t		*connp;
4240 
4241 	/*
4242 	 * Call the appropriate delete routine depending on whether this is
4243 	 * a module or device.
4244 	 */
4245 	if (WR(q)->q_next != NULL) {
4246 		/* This is a module close */
4247 		return (ip_modclose((ill_t *)q->q_ptr));
4248 	}
4249 
4250 	connp = q->q_ptr;
4251 	ip_quiesce_conn(connp);
4252 
4253 	qprocsoff(q);
4254 
4255 	/*
4256 	 * Now we are truly single threaded on this stream, and can
4257 	 * delete the things hanging off the connp, and finally the connp.
4258 	 * We removed this connp from the fanout list, it cannot be
4259 	 * accessed thru the fanouts, and we already waited for the
4260 	 * conn_ref to drop to 0. We are already in close, so
4261 	 * there cannot be any other thread from the top. qprocsoff
4262 	 * has completed, and service has completed or won't run in
4263 	 * future.
4264 	 */
4265 	ASSERT(connp->conn_ref == 1);
4266 
4267 	inet_minor_free(connp->conn_minor_arena, connp->conn_dev);
4268 
4269 	connp->conn_ref--;
4270 	ipcl_conn_destroy(connp);
4271 
4272 	q->q_ptr = WR(q)->q_ptr = NULL;
4273 	return (0);
4274 }
4275 
4276 /*
4277  * Wapper around putnext() so that ip_rts_request can merely use
4278  * conn_recv.
4279  */
4280 /*ARGSUSED2*/
4281 static void
4282 ip_conn_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
4283 {
4284 	conn_t *connp = (conn_t *)arg1;
4285 
4286 	putnext(connp->conn_rq, mp);
4287 }
4288 
4289 /* Dummy in case ICMP error delivery is attempted to a /dev/ip instance */
4290 /* ARGSUSED */
4291 static void
4292 ip_conn_input_icmp(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
4293 {
4294 	freemsg(mp);
4295 }
4296 
4297 /*
4298  * Called when the module is about to be unloaded
4299  */
4300 void
4301 ip_ddi_destroy(void)
4302 {
4303 	/* This needs to be called before destroying any transports. */
4304 	mutex_enter(&cpu_lock);
4305 	unregister_cpu_setup_func(ip_tp_cpu_update, NULL);
4306 	mutex_exit(&cpu_lock);
4307 
4308 	tnet_fini();
4309 
4310 	icmp_ddi_g_destroy();
4311 	rts_ddi_g_destroy();
4312 	udp_ddi_g_destroy();
4313 	sctp_ddi_g_destroy();
4314 	tcp_ddi_g_destroy();
4315 	ilb_ddi_g_destroy();
4316 	dce_g_destroy();
4317 	ipsec_policy_g_destroy();
4318 	ipcl_g_destroy();
4319 	ip_net_g_destroy();
4320 	ip_ire_g_fini();
4321 	inet_minor_destroy(ip_minor_arena_sa);
4322 #if defined(_LP64)
4323 	inet_minor_destroy(ip_minor_arena_la);
4324 #endif
4325 
4326 #ifdef DEBUG
4327 	list_destroy(&ip_thread_list);
4328 	rw_destroy(&ip_thread_rwlock);
4329 	tsd_destroy(&ip_thread_data);
4330 #endif
4331 
4332 	netstack_unregister(NS_IP);
4333 }
4334 
4335 /*
4336  * First step in cleanup.
4337  */
4338 /* ARGSUSED */
4339 static void
4340 ip_stack_shutdown(netstackid_t stackid, void *arg)
4341 {
4342 	ip_stack_t *ipst = (ip_stack_t *)arg;
4343 
4344 #ifdef NS_DEBUG
4345 	printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid);
4346 #endif
4347 
4348 	/*
4349 	 * Perform cleanup for special interfaces (loopback and IPMP).
4350 	 */
4351 	ip_interface_cleanup(ipst);
4352 
4353 	/*
4354 	 * The *_hook_shutdown()s start the process of notifying any
4355 	 * consumers that things are going away.... nothing is destroyed.
4356 	 */
4357 	ipv4_hook_shutdown(ipst);
4358 	ipv6_hook_shutdown(ipst);
4359 	arp_hook_shutdown(ipst);
4360 
4361 	mutex_enter(&ipst->ips_capab_taskq_lock);
4362 	ipst->ips_capab_taskq_quit = B_TRUE;
4363 	cv_signal(&ipst->ips_capab_taskq_cv);
4364 	mutex_exit(&ipst->ips_capab_taskq_lock);
4365 }
4366 
4367 /*
4368  * Free the IP stack instance.
4369  */
4370 static void
4371 ip_stack_fini(netstackid_t stackid, void *arg)
4372 {
4373 	ip_stack_t *ipst = (ip_stack_t *)arg;
4374 	int ret;
4375 
4376 #ifdef NS_DEBUG
4377 	printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid);
4378 #endif
4379 	/*
4380 	 * At this point, all of the notifications that the events and
4381 	 * protocols are going away have been run, meaning that we can
4382 	 * now set about starting to clean things up.
4383 	 */
4384 	ipobs_fini(ipst);
4385 	ipv4_hook_destroy(ipst);
4386 	ipv6_hook_destroy(ipst);
4387 	arp_hook_destroy(ipst);
4388 	ip_net_destroy(ipst);
4389 
4390 	ipmp_destroy(ipst);
4391 
4392 	ip_kstat_fini(stackid, ipst->ips_ip_mibkp);
4393 	ipst->ips_ip_mibkp = NULL;
4394 	icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp);
4395 	ipst->ips_icmp_mibkp = NULL;
4396 	ip_kstat2_fini(stackid, ipst->ips_ip_kstat);
4397 	ipst->ips_ip_kstat = NULL;
4398 	bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics));
4399 	ip6_kstat_fini(stackid, ipst->ips_ip6_kstat);
4400 	ipst->ips_ip6_kstat = NULL;
4401 	bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics));
4402 
4403 	kmem_free(ipst->ips_propinfo_tbl,
4404 	    ip_propinfo_count * sizeof (mod_prop_info_t));
4405 	ipst->ips_propinfo_tbl = NULL;
4406 
4407 	dce_stack_destroy(ipst);
4408 	ip_mrouter_stack_destroy(ipst);
4409 
4410 	ret = untimeout(ipst->ips_igmp_timeout_id);
4411 	if (ret == -1) {
4412 		ASSERT(ipst->ips_igmp_timeout_id == 0);
4413 	} else {
4414 		ASSERT(ipst->ips_igmp_timeout_id != 0);
4415 		ipst->ips_igmp_timeout_id = 0;
4416 	}
4417 	ret = untimeout(ipst->ips_igmp_slowtimeout_id);
4418 	if (ret == -1) {
4419 		ASSERT(ipst->ips_igmp_slowtimeout_id == 0);
4420 	} else {
4421 		ASSERT(ipst->ips_igmp_slowtimeout_id != 0);
4422 		ipst->ips_igmp_slowtimeout_id = 0;
4423 	}
4424 	ret = untimeout(ipst->ips_mld_timeout_id);
4425 	if (ret == -1) {
4426 		ASSERT(ipst->ips_mld_timeout_id == 0);
4427 	} else {
4428 		ASSERT(ipst->ips_mld_timeout_id != 0);
4429 		ipst->ips_mld_timeout_id = 0;
4430 	}
4431 	ret = untimeout(ipst->ips_mld_slowtimeout_id);
4432 	if (ret == -1) {
4433 		ASSERT(ipst->ips_mld_slowtimeout_id == 0);
4434 	} else {
4435 		ASSERT(ipst->ips_mld_slowtimeout_id != 0);
4436 		ipst->ips_mld_slowtimeout_id = 0;
4437 	}
4438 
4439 	ip_ire_fini(ipst);
4440 	ip6_asp_free(ipst);
4441 	conn_drain_fini(ipst);
4442 	ipcl_destroy(ipst);
4443 
4444 	mutex_destroy(&ipst->ips_ndp4->ndp_g_lock);
4445 	mutex_destroy(&ipst->ips_ndp6->ndp_g_lock);
4446 	kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t));
4447 	ipst->ips_ndp4 = NULL;
4448 	kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t));
4449 	ipst->ips_ndp6 = NULL;
4450 
4451 	if (ipst->ips_loopback_ksp != NULL) {
4452 		kstat_delete_netstack(ipst->ips_loopback_ksp, stackid);
4453 		ipst->ips_loopback_ksp = NULL;
4454 	}
4455 
4456 	mutex_destroy(&ipst->ips_capab_taskq_lock);
4457 	cv_destroy(&ipst->ips_capab_taskq_cv);
4458 
4459 	rw_destroy(&ipst->ips_srcid_lock);
4460 
4461 	mutex_destroy(&ipst->ips_ip_mi_lock);
4462 	rw_destroy(&ipst->ips_ill_g_usesrc_lock);
4463 
4464 	mutex_destroy(&ipst->ips_igmp_timer_lock);
4465 	mutex_destroy(&ipst->ips_mld_timer_lock);
4466 	mutex_destroy(&ipst->ips_igmp_slowtimeout_lock);
4467 	mutex_destroy(&ipst->ips_mld_slowtimeout_lock);
4468 	mutex_destroy(&ipst->ips_ip_addr_avail_lock);
4469 	rw_destroy(&ipst->ips_ill_g_lock);
4470 
4471 	kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t));
4472 	ipst->ips_phyint_g_list = NULL;
4473 	kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS);
4474 	ipst->ips_ill_g_heads = NULL;
4475 
4476 	ldi_ident_release(ipst->ips_ldi_ident);
4477 	kmem_free(ipst, sizeof (*ipst));
4478 }
4479 
4480 /*
4481  * This function is called from the TSD destructor, and is used to debug
4482  * reference count issues in IP. See block comment in <inet/ip_if.h> for
4483  * details.
4484  */
4485 static void
4486 ip_thread_exit(void *phash)
4487 {
4488 	th_hash_t *thh = phash;
4489 
4490 	rw_enter(&ip_thread_rwlock, RW_WRITER);
4491 	list_remove(&ip_thread_list, thh);
4492 	rw_exit(&ip_thread_rwlock);
4493 	mod_hash_destroy_hash(thh->thh_hash);
4494 	kmem_free(thh, sizeof (*thh));
4495 }
4496 
4497 /*
4498  * Called when the IP kernel module is loaded into the kernel
4499  */
4500 void
4501 ip_ddi_init(void)
4502 {
4503 	ip_squeue_flag = ip_squeue_switch(ip_squeue_enter);
4504 
4505 	/*
4506 	 * For IP and TCP the minor numbers should start from 2 since we have 4
4507 	 * initial devices: ip, ip6, tcp, tcp6.
4508 	 */
4509 	/*
4510 	 * If this is a 64-bit kernel, then create two separate arenas -
4511 	 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the
4512 	 * other for socket apps in the range 2^^18 through 2^^32-1.
4513 	 */
4514 	ip_minor_arena_la = NULL;
4515 	ip_minor_arena_sa = NULL;
4516 #if defined(_LP64)
4517 	if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa",
4518 	    INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) {
4519 		cmn_err(CE_PANIC,
4520 		    "ip_ddi_init: ip_minor_arena_sa creation failed\n");
4521 	}
4522 	if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la",
4523 	    MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) {
4524 		cmn_err(CE_PANIC,
4525 		    "ip_ddi_init: ip_minor_arena_la creation failed\n");
4526 	}
4527 #else
4528 	if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa",
4529 	    INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) {
4530 		cmn_err(CE_PANIC,
4531 		    "ip_ddi_init: ip_minor_arena_sa creation failed\n");
4532 	}
4533 #endif
4534 	ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms);
4535 
4536 	ipcl_g_init();
4537 	ip_ire_g_init();
4538 	ip_net_g_init();
4539 
4540 #ifdef DEBUG
4541 	tsd_create(&ip_thread_data, ip_thread_exit);
4542 	rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL);
4543 	list_create(&ip_thread_list, sizeof (th_hash_t),
4544 	    offsetof(th_hash_t, thh_link));
4545 #endif
4546 	ipsec_policy_g_init();
4547 	tcp_ddi_g_init();
4548 	sctp_ddi_g_init();
4549 	dce_g_init();
4550 
4551 	/*
4552 	 * We want to be informed each time a stack is created or
4553 	 * destroyed in the kernel, so we can maintain the
4554 	 * set of udp_stack_t's.
4555 	 */
4556 	netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown,
4557 	    ip_stack_fini);
4558 
4559 	tnet_init();
4560 
4561 	udp_ddi_g_init();
4562 	rts_ddi_g_init();
4563 	icmp_ddi_g_init();
4564 	ilb_ddi_g_init();
4565 
4566 	/* This needs to be called after all transports are initialized. */
4567 	mutex_enter(&cpu_lock);
4568 	register_cpu_setup_func(ip_tp_cpu_update, NULL);
4569 	mutex_exit(&cpu_lock);
4570 }
4571 
4572 /*
4573  * Initialize the IP stack instance.
4574  */
4575 static void *
4576 ip_stack_init(netstackid_t stackid, netstack_t *ns)
4577 {
4578 	ip_stack_t	*ipst;
4579 	size_t		arrsz;
4580 	major_t		major;
4581 
4582 #ifdef NS_DEBUG
4583 	printf("ip_stack_init(stack %d)\n", stackid);
4584 #endif
4585 
4586 	ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP);
4587 	ipst->ips_netstack = ns;
4588 
4589 	ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS,
4590 	    KM_SLEEP);
4591 	ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t),
4592 	    KM_SLEEP);
4593 	ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP);
4594 	ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP);
4595 	mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL);
4596 	mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL);
4597 
4598 	mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL);
4599 	ipst->ips_igmp_deferred_next = INFINITY;
4600 	mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL);
4601 	ipst->ips_mld_deferred_next = INFINITY;
4602 	mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL);
4603 	mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL);
4604 	mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL);
4605 	mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL);
4606 	rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL);
4607 	rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL);
4608 
4609 	ipcl_init(ipst);
4610 	ip_ire_init(ipst);
4611 	ip6_asp_init(ipst);
4612 	ipif_init(ipst);
4613 	conn_drain_init(ipst);
4614 	ip_mrouter_stack_init(ipst);
4615 	dce_stack_init(ipst);
4616 
4617 	ipst->ips_ip_multirt_log_interval = 1000;
4618 
4619 	ipst->ips_ill_index = 1;
4620 
4621 	ipst->ips_saved_ip_forwarding = -1;
4622 	ipst->ips_reg_vif_num = ALL_VIFS; 	/* Index to Register vif */
4623 
4624 	arrsz = ip_propinfo_count * sizeof (mod_prop_info_t);
4625 	ipst->ips_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz, KM_SLEEP);
4626 	bcopy(ip_propinfo_tbl, ipst->ips_propinfo_tbl, arrsz);
4627 
4628 	ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst);
4629 	ipst->ips_icmp_mibkp = icmp_kstat_init(stackid);
4630 	ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics);
4631 	ipst->ips_ip6_kstat =
4632 	    ip6_kstat_init(stackid, &ipst->ips_ip6_statistics);
4633 
4634 	ipst->ips_ip_src_id = 1;
4635 	rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL);
4636 
4637 	ipst->ips_src_generation = SRC_GENERATION_INITIAL;
4638 
4639 	ip_net_init(ipst, ns);
4640 	ipv4_hook_init(ipst);
4641 	ipv6_hook_init(ipst);
4642 	arp_hook_init(ipst);
4643 	ipmp_init(ipst);
4644 	ipobs_init(ipst);
4645 
4646 	/*
4647 	 * Create the taskq dispatcher thread and initialize related stuff.
4648 	 */
4649 	ipst->ips_capab_taskq_thread = thread_create(NULL, 0,
4650 	    ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri);
4651 	mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL);
4652 	cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL);
4653 
4654 	major = mod_name_to_major(INET_NAME);
4655 	(void) ldi_ident_from_major(major, &ipst->ips_ldi_ident);
4656 	return (ipst);
4657 }
4658 
4659 /*
4660  * Allocate and initialize a DLPI template of the specified length.  (May be
4661  * called as writer.)
4662  */
4663 mblk_t *
4664 ip_dlpi_alloc(size_t len, t_uscalar_t prim)
4665 {
4666 	mblk_t	*mp;
4667 
4668 	mp = allocb(len, BPRI_MED);
4669 	if (!mp)
4670 		return (NULL);
4671 
4672 	/*
4673 	 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter
4674 	 * of which we don't seem to use) are sent with M_PCPROTO, and
4675 	 * that other DLPI are M_PROTO.
4676 	 */
4677 	if (prim == DL_INFO_REQ) {
4678 		mp->b_datap->db_type = M_PCPROTO;
4679 	} else {
4680 		mp->b_datap->db_type = M_PROTO;
4681 	}
4682 
4683 	mp->b_wptr = mp->b_rptr + len;
4684 	bzero(mp->b_rptr, len);
4685 	((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim;
4686 	return (mp);
4687 }
4688 
4689 /*
4690  * Allocate and initialize a DLPI notification.  (May be called as writer.)
4691  */
4692 mblk_t *
4693 ip_dlnotify_alloc(uint_t notification, uint_t data)
4694 {
4695 	dl_notify_ind_t	*notifyp;
4696 	mblk_t		*mp;
4697 
4698 	if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL)
4699 		return (NULL);
4700 
4701 	notifyp = (dl_notify_ind_t *)mp->b_rptr;
4702 	notifyp->dl_notification = notification;
4703 	notifyp->dl_data = data;
4704 	return (mp);
4705 }
4706 
4707 mblk_t *
4708 ip_dlnotify_alloc2(uint_t notification, uint_t data1, uint_t data2)
4709 {
4710 	dl_notify_ind_t	*notifyp;
4711 	mblk_t		*mp;
4712 
4713 	if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL)
4714 		return (NULL);
4715 
4716 	notifyp = (dl_notify_ind_t *)mp->b_rptr;
4717 	notifyp->dl_notification = notification;
4718 	notifyp->dl_data1 = data1;
4719 	notifyp->dl_data2 = data2;
4720 	return (mp);
4721 }
4722 
4723 /*
4724  * Debug formatting routine.  Returns a character string representation of the
4725  * addr in buf, of the form xxx.xxx.xxx.xxx.  This routine takes the address
4726  * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer.
4727  *
4728  * Once the ndd table-printing interfaces are removed, this can be changed to
4729  * standard dotted-decimal form.
4730  */
4731 char *
4732 ip_dot_addr(ipaddr_t addr, char *buf)
4733 {
4734 	uint8_t *ap = (uint8_t *)&addr;
4735 
4736 	(void) mi_sprintf(buf, "%03d.%03d.%03d.%03d",
4737 	    ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF);
4738 	return (buf);
4739 }
4740 
4741 /*
4742  * Write the given MAC address as a printable string in the usual colon-
4743  * separated format.
4744  */
4745 const char *
4746 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen)
4747 {
4748 	char *bp;
4749 
4750 	if (alen == 0 || buflen < 4)
4751 		return ("?");
4752 	bp = buf;
4753 	for (;;) {
4754 		/*
4755 		 * If there are more MAC address bytes available, but we won't
4756 		 * have any room to print them, then add "..." to the string
4757 		 * instead.  See below for the 'magic number' explanation.
4758 		 */
4759 		if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) {
4760 			(void) strcpy(bp, "...");
4761 			break;
4762 		}
4763 		(void) sprintf(bp, "%02x", *addr++);
4764 		bp += 2;
4765 		if (--alen == 0)
4766 			break;
4767 		*bp++ = ':';
4768 		buflen -= 3;
4769 		/*
4770 		 * At this point, based on the first 'if' statement above,
4771 		 * either alen == 1 and buflen >= 3, or alen > 1 and
4772 		 * buflen >= 4.  The first case leaves room for the final "xx"
4773 		 * number and trailing NUL byte.  The second leaves room for at
4774 		 * least "...".  Thus the apparently 'magic' numbers chosen for
4775 		 * that statement.
4776 		 */
4777 	}
4778 	return (buf);
4779 }
4780 
4781 /*
4782  * Called when it is conceptually a ULP that would sent the packet
4783  * e.g., port unreachable and protocol unreachable. Check that the packet
4784  * would have passed the IPsec global policy before sending the error.
4785  *
4786  * Send an ICMP error after patching up the packet appropriately.
4787  * Uses ip_drop_input and bumps the appropriate MIB.
4788  */
4789 void
4790 ip_fanout_send_icmp_v4(mblk_t *mp, uint_t icmp_type, uint_t icmp_code,
4791     ip_recv_attr_t *ira)
4792 {
4793 	ipha_t		*ipha;
4794 	boolean_t	secure;
4795 	ill_t		*ill = ira->ira_ill;
4796 	ip_stack_t	*ipst = ill->ill_ipst;
4797 	netstack_t	*ns = ipst->ips_netstack;
4798 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
4799 
4800 	secure = ira->ira_flags & IRAF_IPSEC_SECURE;
4801 
4802 	/*
4803 	 * We are generating an icmp error for some inbound packet.
4804 	 * Called from all ip_fanout_(udp, tcp, proto) functions.
4805 	 * Before we generate an error, check with global policy
4806 	 * to see whether this is allowed to enter the system. As
4807 	 * there is no "conn", we are checking with global policy.
4808 	 */
4809 	ipha = (ipha_t *)mp->b_rptr;
4810 	if (secure || ipss->ipsec_inbound_v4_policy_present) {
4811 		mp = ipsec_check_global_policy(mp, NULL, ipha, NULL, ira, ns);
4812 		if (mp == NULL)
4813 			return;
4814 	}
4815 
4816 	/* We never send errors for protocols that we do implement */
4817 	if (ira->ira_protocol == IPPROTO_ICMP ||
4818 	    ira->ira_protocol == IPPROTO_IGMP) {
4819 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
4820 		ip_drop_input("ip_fanout_send_icmp_v4", mp, ill);
4821 		freemsg(mp);
4822 		return;
4823 	}
4824 	/*
4825 	 * Have to correct checksum since
4826 	 * the packet might have been
4827 	 * fragmented and the reassembly code in ip_rput
4828 	 * does not restore the IP checksum.
4829 	 */
4830 	ipha->ipha_hdr_checksum = 0;
4831 	ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
4832 
4833 	switch (icmp_type) {
4834 	case ICMP_DEST_UNREACHABLE:
4835 		switch (icmp_code) {
4836 		case ICMP_PROTOCOL_UNREACHABLE:
4837 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInUnknownProtos);
4838 			ip_drop_input("ipIfStatsInUnknownProtos", mp, ill);
4839 			break;
4840 		case ICMP_PORT_UNREACHABLE:
4841 			BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts);
4842 			ip_drop_input("ipIfStatsNoPorts", mp, ill);
4843 			break;
4844 		}
4845 
4846 		icmp_unreachable(mp, icmp_code, ira);
4847 		break;
4848 	default:
4849 #ifdef DEBUG
4850 		panic("ip_fanout_send_icmp_v4: wrong type");
4851 		/*NOTREACHED*/
4852 #else
4853 		freemsg(mp);
4854 		break;
4855 #endif
4856 	}
4857 }
4858 
4859 /*
4860  * Used to send an ICMP error message when a packet is received for
4861  * a protocol that is not supported. The mblk passed as argument
4862  * is consumed by this function.
4863  */
4864 void
4865 ip_proto_not_sup(mblk_t *mp, ip_recv_attr_t *ira)
4866 {
4867 	ipha_t		*ipha;
4868 
4869 	ipha = (ipha_t *)mp->b_rptr;
4870 	if (ira->ira_flags & IRAF_IS_IPV4) {
4871 		ASSERT(IPH_HDR_VERSION(ipha) == IP_VERSION);
4872 		ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE,
4873 		    ICMP_PROTOCOL_UNREACHABLE, ira);
4874 	} else {
4875 		ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION);
4876 		ip_fanout_send_icmp_v6(mp, ICMP6_PARAM_PROB,
4877 		    ICMP6_PARAMPROB_NEXTHEADER, ira);
4878 	}
4879 }
4880 
4881 /*
4882  * Deliver a rawip packet to the given conn, possibly applying ipsec policy.
4883  * Handles IPv4 and IPv6.
4884  * We are responsible for disposing of mp, such as by freemsg() or putnext()
4885  * Caller is responsible for dropping references to the conn.
4886  */
4887 void
4888 ip_fanout_proto_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h,
4889     ip_recv_attr_t *ira)
4890 {
4891 	ill_t		*ill = ira->ira_ill;
4892 	ip_stack_t	*ipst = ill->ill_ipst;
4893 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
4894 	boolean_t	secure;
4895 	uint_t		protocol = ira->ira_protocol;
4896 	iaflags_t	iraflags = ira->ira_flags;
4897 	queue_t		*rq;
4898 
4899 	secure = iraflags & IRAF_IPSEC_SECURE;
4900 
4901 	rq = connp->conn_rq;
4902 	if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) {
4903 		switch (protocol) {
4904 		case IPPROTO_ICMPV6:
4905 			BUMP_MIB(ill->ill_icmp6_mib, ipv6IfIcmpInOverflows);
4906 			break;
4907 		case IPPROTO_ICMP:
4908 			BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows);
4909 			break;
4910 		default:
4911 			BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows);
4912 			break;
4913 		}
4914 		freemsg(mp);
4915 		return;
4916 	}
4917 
4918 	ASSERT(!(IPCL_IS_IPTUN(connp)));
4919 
4920 	if (((iraflags & IRAF_IS_IPV4) ?
4921 	    CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
4922 	    CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
4923 	    secure) {
4924 		mp = ipsec_check_inbound_policy(mp, connp, ipha,
4925 		    ip6h, ira);
4926 		if (mp == NULL) {
4927 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
4928 			/* Note that mp is NULL */
4929 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
4930 			return;
4931 		}
4932 	}
4933 
4934 	if (iraflags & IRAF_ICMP_ERROR) {
4935 		(connp->conn_recvicmp)(connp, mp, NULL, ira);
4936 	} else {
4937 		ill_t *rill = ira->ira_rill;
4938 
4939 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
4940 		ira->ira_ill = ira->ira_rill = NULL;
4941 		/* Send it upstream */
4942 		(connp->conn_recv)(connp, mp, NULL, ira);
4943 		ira->ira_ill = ill;
4944 		ira->ira_rill = rill;
4945 	}
4946 }
4947 
4948 /*
4949  * Handle protocols with which IP is less intimate.  There
4950  * can be more than one stream bound to a particular
4951  * protocol.  When this is the case, normally each one gets a copy
4952  * of any incoming packets.
4953  *
4954  * IPsec NOTE :
4955  *
4956  * Don't allow a secure packet going up a non-secure connection.
4957  * We don't allow this because
4958  *
4959  * 1) Reply might go out in clear which will be dropped at
4960  *    the sending side.
4961  * 2) If the reply goes out in clear it will give the
4962  *    adversary enough information for getting the key in
4963  *    most of the cases.
4964  *
4965  * Moreover getting a secure packet when we expect clear
4966  * implies that SA's were added without checking for
4967  * policy on both ends. This should not happen once ISAKMP
4968  * is used to negotiate SAs as SAs will be added only after
4969  * verifying the policy.
4970  *
4971  * Zones notes:
4972  * Earlier in ip_input on a system with multiple shared-IP zones we
4973  * duplicate the multicast and broadcast packets and send them up
4974  * with each explicit zoneid that exists on that ill.
4975  * This means that here we can match the zoneid with SO_ALLZONES being special.
4976  */
4977 void
4978 ip_fanout_proto_v4(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
4979 {
4980 	mblk_t		*mp1;
4981 	ipaddr_t	laddr;
4982 	conn_t		*connp, *first_connp, *next_connp;
4983 	connf_t		*connfp;
4984 	ill_t		*ill = ira->ira_ill;
4985 	ip_stack_t	*ipst = ill->ill_ipst;
4986 
4987 	laddr = ipha->ipha_dst;
4988 
4989 	connfp = &ipst->ips_ipcl_proto_fanout_v4[ira->ira_protocol];
4990 	mutex_enter(&connfp->connf_lock);
4991 	connp = connfp->connf_head;
4992 	for (connp = connfp->connf_head; connp != NULL;
4993 	    connp = connp->conn_next) {
4994 		/* Note: IPCL_PROTO_MATCH includes conn_wantpacket */
4995 		if (IPCL_PROTO_MATCH(connp, ira, ipha) &&
4996 		    (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
4997 		    tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) {
4998 			break;
4999 		}
5000 	}
5001 
5002 	if (connp == NULL) {
5003 		/*
5004 		 * No one bound to these addresses.  Is
5005 		 * there a client that wants all
5006 		 * unclaimed datagrams?
5007 		 */
5008 		mutex_exit(&connfp->connf_lock);
5009 		ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE,
5010 		    ICMP_PROTOCOL_UNREACHABLE, ira);
5011 		return;
5012 	}
5013 
5014 	ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL);
5015 
5016 	CONN_INC_REF(connp);
5017 	first_connp = connp;
5018 	connp = connp->conn_next;
5019 
5020 	for (;;) {
5021 		while (connp != NULL) {
5022 			/* Note: IPCL_PROTO_MATCH includes conn_wantpacket */
5023 			if (IPCL_PROTO_MATCH(connp, ira, ipha) &&
5024 			    (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5025 			    tsol_receive_local(mp, &laddr, IPV4_VERSION,
5026 			    ira, connp)))
5027 				break;
5028 			connp = connp->conn_next;
5029 		}
5030 
5031 		if (connp == NULL) {
5032 			/* No more interested clients */
5033 			connp = first_connp;
5034 			break;
5035 		}
5036 		if (((mp1 = dupmsg(mp)) == NULL) &&
5037 		    ((mp1 = copymsg(mp)) == NULL)) {
5038 			/* Memory allocation failed */
5039 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5040 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
5041 			connp = first_connp;
5042 			break;
5043 		}
5044 
5045 		CONN_INC_REF(connp);
5046 		mutex_exit(&connfp->connf_lock);
5047 
5048 		ip_fanout_proto_conn(connp, mp1, (ipha_t *)mp1->b_rptr, NULL,
5049 		    ira);
5050 
5051 		mutex_enter(&connfp->connf_lock);
5052 		/* Follow the next pointer before releasing the conn. */
5053 		next_connp = connp->conn_next;
5054 		CONN_DEC_REF(connp);
5055 		connp = next_connp;
5056 	}
5057 
5058 	/* Last one.  Send it upstream. */
5059 	mutex_exit(&connfp->connf_lock);
5060 
5061 	ip_fanout_proto_conn(connp, mp, ipha, NULL, ira);
5062 
5063 	CONN_DEC_REF(connp);
5064 }
5065 
5066 /*
5067  * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or
5068  * pass it along to ESP if the SPI is non-zero.  Returns the mblk if the mblk
5069  * is not consumed.
5070  *
5071  * One of three things can happen, all of which affect the passed-in mblk:
5072  *
5073  * 1.) The packet is stock UDP and gets its zero-SPI stripped.  Return mblk..
5074  *
5075  * 2.) The packet is ESP-in-UDP, gets transformed into an equivalent
5076  *     ESP packet, and is passed along to ESP for consumption.  Return NULL.
5077  *
5078  * 3.) The packet is an ESP-in-UDP Keepalive.  Drop it and return NULL.
5079  */
5080 mblk_t *
5081 zero_spi_check(mblk_t *mp, ip_recv_attr_t *ira)
5082 {
5083 	int shift, plen, iph_len;
5084 	ipha_t *ipha;
5085 	udpha_t *udpha;
5086 	uint32_t *spi;
5087 	uint32_t esp_ports;
5088 	uint8_t *orptr;
5089 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
5090 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
5091 
5092 	ipha = (ipha_t *)mp->b_rptr;
5093 	iph_len = ira->ira_ip_hdr_length;
5094 	plen = ira->ira_pktlen;
5095 
5096 	if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) {
5097 		/*
5098 		 * Most likely a keepalive for the benefit of an intervening
5099 		 * NAT.  These aren't for us, per se, so drop it.
5100 		 *
5101 		 * RFC 3947/8 doesn't say for sure what to do for 2-3
5102 		 * byte packets (keepalives are 1-byte), but we'll drop them
5103 		 * also.
5104 		 */
5105 		ip_drop_packet(mp, B_TRUE, ira->ira_ill,
5106 		    DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper);
5107 		return (NULL);
5108 	}
5109 
5110 	if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) {
5111 		/* might as well pull it all up - it might be ESP. */
5112 		if (!pullupmsg(mp, -1)) {
5113 			ip_drop_packet(mp, B_TRUE, ira->ira_ill,
5114 			    DROPPER(ipss, ipds_esp_nomem),
5115 			    &ipss->ipsec_dropper);
5116 			return (NULL);
5117 		}
5118 
5119 		ipha = (ipha_t *)mp->b_rptr;
5120 	}
5121 	spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t));
5122 	if (*spi == 0) {
5123 		/* UDP packet - remove 0-spi. */
5124 		shift = sizeof (uint32_t);
5125 	} else {
5126 		/* ESP-in-UDP packet - reduce to ESP. */
5127 		ipha->ipha_protocol = IPPROTO_ESP;
5128 		shift = sizeof (udpha_t);
5129 	}
5130 
5131 	/* Fix IP header */
5132 	ira->ira_pktlen = (plen - shift);
5133 	ipha->ipha_length = htons(ira->ira_pktlen);
5134 	ipha->ipha_hdr_checksum = 0;
5135 
5136 	orptr = mp->b_rptr;
5137 	mp->b_rptr += shift;
5138 
5139 	udpha = (udpha_t *)(orptr + iph_len);
5140 	if (*spi == 0) {
5141 		ASSERT((uint8_t *)ipha == orptr);
5142 		udpha->uha_length = htons(plen - shift - iph_len);
5143 		iph_len += sizeof (udpha_t);	/* For the call to ovbcopy(). */
5144 		esp_ports = 0;
5145 	} else {
5146 		esp_ports = *((uint32_t *)udpha);
5147 		ASSERT(esp_ports != 0);
5148 	}
5149 	ovbcopy(orptr, orptr + shift, iph_len);
5150 	if (esp_ports != 0) /* Punt up for ESP processing. */ {
5151 		ipha = (ipha_t *)(orptr + shift);
5152 
5153 		ira->ira_flags |= IRAF_ESP_UDP_PORTS;
5154 		ira->ira_esp_udp_ports = esp_ports;
5155 		ip_fanout_v4(mp, ipha, ira);
5156 		return (NULL);
5157 	}
5158 	return (mp);
5159 }
5160 
5161 /*
5162  * Deliver a udp packet to the given conn, possibly applying ipsec policy.
5163  * Handles IPv4 and IPv6.
5164  * We are responsible for disposing of mp, such as by freemsg() or putnext()
5165  * Caller is responsible for dropping references to the conn.
5166  */
5167 void
5168 ip_fanout_udp_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h,
5169     ip_recv_attr_t *ira)
5170 {
5171 	ill_t		*ill = ira->ira_ill;
5172 	ip_stack_t	*ipst = ill->ill_ipst;
5173 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
5174 	boolean_t	secure;
5175 	iaflags_t	iraflags = ira->ira_flags;
5176 
5177 	secure = iraflags & IRAF_IPSEC_SECURE;
5178 
5179 	if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld :
5180 	    !canputnext(connp->conn_rq)) {
5181 		BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows);
5182 		freemsg(mp);
5183 		return;
5184 	}
5185 
5186 	if (((iraflags & IRAF_IS_IPV4) ?
5187 	    CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
5188 	    CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
5189 	    secure) {
5190 		mp = ipsec_check_inbound_policy(mp, connp, ipha,
5191 		    ip6h, ira);
5192 		if (mp == NULL) {
5193 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5194 			/* Note that mp is NULL */
5195 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
5196 			return;
5197 		}
5198 	}
5199 
5200 	/*
5201 	 * Since this code is not used for UDP unicast we don't need a NAT_T
5202 	 * check. Only ip_fanout_v4 has that check.
5203 	 */
5204 	if (ira->ira_flags & IRAF_ICMP_ERROR) {
5205 		(connp->conn_recvicmp)(connp, mp, NULL, ira);
5206 	} else {
5207 		ill_t *rill = ira->ira_rill;
5208 
5209 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
5210 		ira->ira_ill = ira->ira_rill = NULL;
5211 		/* Send it upstream */
5212 		(connp->conn_recv)(connp, mp, NULL, ira);
5213 		ira->ira_ill = ill;
5214 		ira->ira_rill = rill;
5215 	}
5216 }
5217 
5218 /*
5219  * Fanout for UDP packets that are multicast or broadcast, and ICMP errors.
5220  * (Unicast fanout is handled in ip_input_v4.)
5221  *
5222  * If SO_REUSEADDR is set all multicast and broadcast packets
5223  * will be delivered to all conns bound to the same port.
5224  *
5225  * If there is at least one matching AF_INET receiver, then we will
5226  * ignore any AF_INET6 receivers.
5227  * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an
5228  * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4
5229  * packets.
5230  *
5231  * Zones notes:
5232  * Earlier in ip_input on a system with multiple shared-IP zones we
5233  * duplicate the multicast and broadcast packets and send them up
5234  * with each explicit zoneid that exists on that ill.
5235  * This means that here we can match the zoneid with SO_ALLZONES being special.
5236  */
5237 void
5238 ip_fanout_udp_multi_v4(mblk_t *mp, ipha_t *ipha, uint16_t lport, uint16_t fport,
5239     ip_recv_attr_t *ira)
5240 {
5241 	ipaddr_t	laddr;
5242 	in6_addr_t	v6faddr;
5243 	conn_t		*connp;
5244 	connf_t		*connfp;
5245 	ipaddr_t	faddr;
5246 	ill_t		*ill = ira->ira_ill;
5247 	ip_stack_t	*ipst = ill->ill_ipst;
5248 
5249 	ASSERT(ira->ira_flags & (IRAF_MULTIBROADCAST|IRAF_ICMP_ERROR));
5250 
5251 	laddr = ipha->ipha_dst;
5252 	faddr = ipha->ipha_src;
5253 
5254 	connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)];
5255 	mutex_enter(&connfp->connf_lock);
5256 	connp = connfp->connf_head;
5257 
5258 	/*
5259 	 * If SO_REUSEADDR has been set on the first we send the
5260 	 * packet to all clients that have joined the group and
5261 	 * match the port.
5262 	 */
5263 	while (connp != NULL) {
5264 		if ((IPCL_UDP_MATCH(connp, lport, laddr, fport, faddr)) &&
5265 		    conn_wantpacket(connp, ira, ipha) &&
5266 		    (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5267 		    tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp)))
5268 			break;
5269 		connp = connp->conn_next;
5270 	}
5271 
5272 	if (connp == NULL)
5273 		goto notfound;
5274 
5275 	CONN_INC_REF(connp);
5276 
5277 	if (connp->conn_reuseaddr) {
5278 		conn_t		*first_connp = connp;
5279 		conn_t		*next_connp;
5280 		mblk_t		*mp1;
5281 
5282 		connp = connp->conn_next;
5283 		for (;;) {
5284 			while (connp != NULL) {
5285 				if (IPCL_UDP_MATCH(connp, lport, laddr,
5286 				    fport, faddr) &&
5287 				    conn_wantpacket(connp, ira, ipha) &&
5288 				    (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5289 				    tsol_receive_local(mp, &laddr, IPV4_VERSION,
5290 				    ira, connp)))
5291 					break;
5292 				connp = connp->conn_next;
5293 			}
5294 			if (connp == NULL) {
5295 				/* No more interested clients */
5296 				connp = first_connp;
5297 				break;
5298 			}
5299 			if (((mp1 = dupmsg(mp)) == NULL) &&
5300 			    ((mp1 = copymsg(mp)) == NULL)) {
5301 				/* Memory allocation failed */
5302 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5303 				ip_drop_input("ipIfStatsInDiscards", mp, ill);
5304 				connp = first_connp;
5305 				break;
5306 			}
5307 			CONN_INC_REF(connp);
5308 			mutex_exit(&connfp->connf_lock);
5309 
5310 			IP_STAT(ipst, ip_udp_fanmb);
5311 			ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr,
5312 			    NULL, ira);
5313 			mutex_enter(&connfp->connf_lock);
5314 			/* Follow the next pointer before releasing the conn */
5315 			next_connp = connp->conn_next;
5316 			CONN_DEC_REF(connp);
5317 			connp = next_connp;
5318 		}
5319 	}
5320 
5321 	/* Last one.  Send it upstream. */
5322 	mutex_exit(&connfp->connf_lock);
5323 	IP_STAT(ipst, ip_udp_fanmb);
5324 	ip_fanout_udp_conn(connp, mp, ipha, NULL, ira);
5325 	CONN_DEC_REF(connp);
5326 	return;
5327 
5328 notfound:
5329 	mutex_exit(&connfp->connf_lock);
5330 	/*
5331 	 * IPv6 endpoints bound to multicast IPv4-mapped addresses
5332 	 * have already been matched above, since they live in the IPv4
5333 	 * fanout tables. This implies we only need to
5334 	 * check for IPv6 in6addr_any endpoints here.
5335 	 * Thus we compare using ipv6_all_zeros instead of the destination
5336 	 * address, except for the multicast group membership lookup which
5337 	 * uses the IPv4 destination.
5338 	 */
5339 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6faddr);
5340 	connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)];
5341 	mutex_enter(&connfp->connf_lock);
5342 	connp = connfp->connf_head;
5343 	/*
5344 	 * IPv4 multicast packet being delivered to an AF_INET6
5345 	 * in6addr_any endpoint.
5346 	 * Need to check conn_wantpacket(). Note that we use conn_wantpacket()
5347 	 * and not conn_wantpacket_v6() since any multicast membership is
5348 	 * for an IPv4-mapped multicast address.
5349 	 */
5350 	while (connp != NULL) {
5351 		if (IPCL_UDP_MATCH_V6(connp, lport, ipv6_all_zeros,
5352 		    fport, v6faddr) &&
5353 		    conn_wantpacket(connp, ira, ipha) &&
5354 		    (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5355 		    tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp)))
5356 			break;
5357 		connp = connp->conn_next;
5358 	}
5359 
5360 	if (connp == NULL) {
5361 		/*
5362 		 * No one bound to this port.  Is
5363 		 * there a client that wants all
5364 		 * unclaimed datagrams?
5365 		 */
5366 		mutex_exit(&connfp->connf_lock);
5367 
5368 		if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_UDP].connf_head !=
5369 		    NULL) {
5370 			ASSERT(ira->ira_protocol == IPPROTO_UDP);
5371 			ip_fanout_proto_v4(mp, ipha, ira);
5372 		} else {
5373 			/*
5374 			 * We used to attempt to send an icmp error here, but
5375 			 * since this is known to be a multicast packet
5376 			 * and we don't send icmp errors in response to
5377 			 * multicast, just drop the packet and give up sooner.
5378 			 */
5379 			BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts);
5380 			freemsg(mp);
5381 		}
5382 		return;
5383 	}
5384 	ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL);
5385 
5386 	/*
5387 	 * If SO_REUSEADDR has been set on the first we send the
5388 	 * packet to all clients that have joined the group and
5389 	 * match the port.
5390 	 */
5391 	if (connp->conn_reuseaddr) {
5392 		conn_t		*first_connp = connp;
5393 		conn_t		*next_connp;
5394 		mblk_t		*mp1;
5395 
5396 		CONN_INC_REF(connp);
5397 		connp = connp->conn_next;
5398 		for (;;) {
5399 			while (connp != NULL) {
5400 				if (IPCL_UDP_MATCH_V6(connp, lport,
5401 				    ipv6_all_zeros, fport, v6faddr) &&
5402 				    conn_wantpacket(connp, ira, ipha) &&
5403 				    (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5404 				    tsol_receive_local(mp, &laddr, IPV4_VERSION,
5405 				    ira, connp)))
5406 					break;
5407 				connp = connp->conn_next;
5408 			}
5409 			if (connp == NULL) {
5410 				/* No more interested clients */
5411 				connp = first_connp;
5412 				break;
5413 			}
5414 			if (((mp1 = dupmsg(mp)) == NULL) &&
5415 			    ((mp1 = copymsg(mp)) == NULL)) {
5416 				/* Memory allocation failed */
5417 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5418 				ip_drop_input("ipIfStatsInDiscards", mp, ill);
5419 				connp = first_connp;
5420 				break;
5421 			}
5422 			CONN_INC_REF(connp);
5423 			mutex_exit(&connfp->connf_lock);
5424 
5425 			IP_STAT(ipst, ip_udp_fanmb);
5426 			ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr,
5427 			    NULL, ira);
5428 			mutex_enter(&connfp->connf_lock);
5429 			/* Follow the next pointer before releasing the conn */
5430 			next_connp = connp->conn_next;
5431 			CONN_DEC_REF(connp);
5432 			connp = next_connp;
5433 		}
5434 	}
5435 
5436 	/* Last one.  Send it upstream. */
5437 	mutex_exit(&connfp->connf_lock);
5438 	IP_STAT(ipst, ip_udp_fanmb);
5439 	ip_fanout_udp_conn(connp, mp, ipha, NULL, ira);
5440 	CONN_DEC_REF(connp);
5441 }
5442 
5443 /*
5444  * Split an incoming packet's IPv4 options into the label and the other options.
5445  * If 'allocate' is set it does memory allocation for the ip_pkt_t, including
5446  * clearing out any leftover label or options.
5447  * Otherwise it just makes ipp point into the packet.
5448  *
5449  * Returns zero if ok; ENOMEM if the buffer couldn't be allocated.
5450  */
5451 int
5452 ip_find_hdr_v4(ipha_t *ipha, ip_pkt_t *ipp, boolean_t allocate)
5453 {
5454 	uchar_t		*opt;
5455 	uint32_t	totallen;
5456 	uint32_t	optval;
5457 	uint32_t	optlen;
5458 
5459 	ipp->ipp_fields |= IPPF_HOPLIMIT | IPPF_TCLASS | IPPF_ADDR;
5460 	ipp->ipp_hoplimit = ipha->ipha_ttl;
5461 	ipp->ipp_type_of_service = ipha->ipha_type_of_service;
5462 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &ipp->ipp_addr);
5463 
5464 	/*
5465 	 * Get length (in 4 byte octets) of IP header options.
5466 	 */
5467 	totallen = ipha->ipha_version_and_hdr_length -
5468 	    (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
5469 
5470 	if (totallen == 0) {
5471 		if (!allocate)
5472 			return (0);
5473 
5474 		/* Clear out anything from a previous packet */
5475 		if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
5476 			kmem_free(ipp->ipp_ipv4_options,
5477 			    ipp->ipp_ipv4_options_len);
5478 			ipp->ipp_ipv4_options = NULL;
5479 			ipp->ipp_ipv4_options_len = 0;
5480 			ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS;
5481 		}
5482 		if (ipp->ipp_fields & IPPF_LABEL_V4) {
5483 			kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
5484 			ipp->ipp_label_v4 = NULL;
5485 			ipp->ipp_label_len_v4 = 0;
5486 			ipp->ipp_fields &= ~IPPF_LABEL_V4;
5487 		}
5488 		return (0);
5489 	}
5490 
5491 	totallen <<= 2;
5492 	opt = (uchar_t *)&ipha[1];
5493 	if (!is_system_labeled()) {
5494 
5495 	copyall:
5496 		if (!allocate) {
5497 			if (totallen != 0) {
5498 				ipp->ipp_ipv4_options = opt;
5499 				ipp->ipp_ipv4_options_len = totallen;
5500 				ipp->ipp_fields |= IPPF_IPV4_OPTIONS;
5501 			}
5502 			return (0);
5503 		}
5504 		/* Just copy all of options */
5505 		if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
5506 			if (totallen == ipp->ipp_ipv4_options_len) {
5507 				bcopy(opt, ipp->ipp_ipv4_options, totallen);
5508 				return (0);
5509 			}
5510 			kmem_free(ipp->ipp_ipv4_options,
5511 			    ipp->ipp_ipv4_options_len);
5512 			ipp->ipp_ipv4_options = NULL;
5513 			ipp->ipp_ipv4_options_len = 0;
5514 			ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS;
5515 		}
5516 		if (totallen == 0)
5517 			return (0);
5518 
5519 		ipp->ipp_ipv4_options = kmem_alloc(totallen, KM_NOSLEEP);
5520 		if (ipp->ipp_ipv4_options == NULL)
5521 			return (ENOMEM);
5522 		ipp->ipp_ipv4_options_len = totallen;
5523 		ipp->ipp_fields |= IPPF_IPV4_OPTIONS;
5524 		bcopy(opt, ipp->ipp_ipv4_options, totallen);
5525 		return (0);
5526 	}
5527 
5528 	if (allocate && (ipp->ipp_fields & IPPF_LABEL_V4)) {
5529 		kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
5530 		ipp->ipp_label_v4 = NULL;
5531 		ipp->ipp_label_len_v4 = 0;
5532 		ipp->ipp_fields &= ~IPPF_LABEL_V4;
5533 	}
5534 
5535 	/*
5536 	 * Search for CIPSO option.
5537 	 * We assume CIPSO is first in options if it is present.
5538 	 * If it isn't, then ipp_opt_ipv4_options will not include the options
5539 	 * prior to the CIPSO option.
5540 	 */
5541 	while (totallen != 0) {
5542 		switch (optval = opt[IPOPT_OPTVAL]) {
5543 		case IPOPT_EOL:
5544 			return (0);
5545 		case IPOPT_NOP:
5546 			optlen = 1;
5547 			break;
5548 		default:
5549 			if (totallen <= IPOPT_OLEN)
5550 				return (EINVAL);
5551 			optlen = opt[IPOPT_OLEN];
5552 			if (optlen < 2)
5553 				return (EINVAL);
5554 		}
5555 		if (optlen > totallen)
5556 			return (EINVAL);
5557 
5558 		switch (optval) {
5559 		case IPOPT_COMSEC:
5560 			if (!allocate) {
5561 				ipp->ipp_label_v4 = opt;
5562 				ipp->ipp_label_len_v4 = optlen;
5563 				ipp->ipp_fields |= IPPF_LABEL_V4;
5564 			} else {
5565 				ipp->ipp_label_v4 = kmem_alloc(optlen,
5566 				    KM_NOSLEEP);
5567 				if (ipp->ipp_label_v4 == NULL)
5568 					return (ENOMEM);
5569 				ipp->ipp_label_len_v4 = optlen;
5570 				ipp->ipp_fields |= IPPF_LABEL_V4;
5571 				bcopy(opt, ipp->ipp_label_v4, optlen);
5572 			}
5573 			totallen -= optlen;
5574 			opt += optlen;
5575 
5576 			/* Skip padding bytes until we get to a multiple of 4 */
5577 			while ((totallen & 3) != 0 && opt[0] == IPOPT_NOP) {
5578 				totallen--;
5579 				opt++;
5580 			}
5581 			/* Remaining as ipp_ipv4_options */
5582 			goto copyall;
5583 		}
5584 		totallen -= optlen;
5585 		opt += optlen;
5586 	}
5587 	/* No CIPSO found; return everything as ipp_ipv4_options */
5588 	totallen = ipha->ipha_version_and_hdr_length -
5589 	    (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
5590 	totallen <<= 2;
5591 	opt = (uchar_t *)&ipha[1];
5592 	goto copyall;
5593 }
5594 
5595 /*
5596  * Efficient versions of lookup for an IRE when we only
5597  * match the address.
5598  * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE.
5599  * Does not handle multicast addresses.
5600  */
5601 uint_t
5602 ip_type_v4(ipaddr_t addr, ip_stack_t *ipst)
5603 {
5604 	ire_t *ire;
5605 	uint_t result;
5606 
5607 	ire = ire_ftable_lookup_simple_v4(addr, 0, ipst, NULL);
5608 	ASSERT(ire != NULL);
5609 	if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))
5610 		result = IRE_NOROUTE;
5611 	else
5612 		result = ire->ire_type;
5613 	ire_refrele(ire);
5614 	return (result);
5615 }
5616 
5617 /*
5618  * Efficient versions of lookup for an IRE when we only
5619  * match the address.
5620  * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE.
5621  * Does not handle multicast addresses.
5622  */
5623 uint_t
5624 ip_type_v6(const in6_addr_t *addr, ip_stack_t *ipst)
5625 {
5626 	ire_t *ire;
5627 	uint_t result;
5628 
5629 	ire = ire_ftable_lookup_simple_v6(addr, 0, ipst, NULL);
5630 	ASSERT(ire != NULL);
5631 	if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))
5632 		result = IRE_NOROUTE;
5633 	else
5634 		result = ire->ire_type;
5635 	ire_refrele(ire);
5636 	return (result);
5637 }
5638 
5639 /*
5640  * Nobody should be sending
5641  * packets up this stream
5642  */
5643 static void
5644 ip_lrput(queue_t *q, mblk_t *mp)
5645 {
5646 	switch (mp->b_datap->db_type) {
5647 	case M_FLUSH:
5648 		/* Turn around */
5649 		if (*mp->b_rptr & FLUSHW) {
5650 			*mp->b_rptr &= ~FLUSHR;
5651 			qreply(q, mp);
5652 			return;
5653 		}
5654 		break;
5655 	}
5656 	freemsg(mp);
5657 }
5658 
5659 /* Nobody should be sending packets down this stream */
5660 /* ARGSUSED */
5661 void
5662 ip_lwput(queue_t *q, mblk_t *mp)
5663 {
5664 	freemsg(mp);
5665 }
5666 
5667 /*
5668  * Move the first hop in any source route to ipha_dst and remove that part of
5669  * the source route.  Called by other protocols.  Errors in option formatting
5670  * are ignored - will be handled by ip_output_options. Return the final
5671  * destination (either ipha_dst or the last entry in a source route.)
5672  */
5673 ipaddr_t
5674 ip_massage_options(ipha_t *ipha, netstack_t *ns)
5675 {
5676 	ipoptp_t	opts;
5677 	uchar_t		*opt;
5678 	uint8_t		optval;
5679 	uint8_t		optlen;
5680 	ipaddr_t	dst;
5681 	int		i;
5682 	ip_stack_t	*ipst = ns->netstack_ip;
5683 
5684 	ip2dbg(("ip_massage_options\n"));
5685 	dst = ipha->ipha_dst;
5686 	for (optval = ipoptp_first(&opts, ipha);
5687 	    optval != IPOPT_EOL;
5688 	    optval = ipoptp_next(&opts)) {
5689 		opt = opts.ipoptp_cur;
5690 		switch (optval) {
5691 			uint8_t off;
5692 		case IPOPT_SSRR:
5693 		case IPOPT_LSRR:
5694 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
5695 				ip1dbg(("ip_massage_options: bad src route\n"));
5696 				break;
5697 			}
5698 			optlen = opts.ipoptp_len;
5699 			off = opt[IPOPT_OFFSET];
5700 			off--;
5701 		redo_srr:
5702 			if (optlen < IP_ADDR_LEN ||
5703 			    off > optlen - IP_ADDR_LEN) {
5704 				/* End of source route */
5705 				ip1dbg(("ip_massage_options: end of SR\n"));
5706 				break;
5707 			}
5708 			bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
5709 			ip1dbg(("ip_massage_options: next hop 0x%x\n",
5710 			    ntohl(dst)));
5711 			/*
5712 			 * Check if our address is present more than
5713 			 * once as consecutive hops in source route.
5714 			 * XXX verify per-interface ip_forwarding
5715 			 * for source route?
5716 			 */
5717 			if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
5718 				off += IP_ADDR_LEN;
5719 				goto redo_srr;
5720 			}
5721 			if (dst == htonl(INADDR_LOOPBACK)) {
5722 				ip1dbg(("ip_massage_options: loopback addr in "
5723 				    "source route!\n"));
5724 				break;
5725 			}
5726 			/*
5727 			 * Update ipha_dst to be the first hop and remove the
5728 			 * first hop from the source route (by overwriting
5729 			 * part of the option with NOP options).
5730 			 */
5731 			ipha->ipha_dst = dst;
5732 			/* Put the last entry in dst */
5733 			off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) +
5734 			    3;
5735 			bcopy(&opt[off], &dst, IP_ADDR_LEN);
5736 
5737 			ip1dbg(("ip_massage_options: last hop 0x%x\n",
5738 			    ntohl(dst)));
5739 			/* Move down and overwrite */
5740 			opt[IP_ADDR_LEN] = opt[0];
5741 			opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN;
5742 			opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET];
5743 			for (i = 0; i < IP_ADDR_LEN; i++)
5744 				opt[i] = IPOPT_NOP;
5745 			break;
5746 		}
5747 	}
5748 	return (dst);
5749 }
5750 
5751 /*
5752  * Return the network mask
5753  * associated with the specified address.
5754  */
5755 ipaddr_t
5756 ip_net_mask(ipaddr_t addr)
5757 {
5758 	uchar_t	*up = (uchar_t *)&addr;
5759 	ipaddr_t mask = 0;
5760 	uchar_t	*maskp = (uchar_t *)&mask;
5761 
5762 #if defined(__i386) || defined(__amd64)
5763 #define	TOTALLY_BRAIN_DAMAGED_C_COMPILER
5764 #endif
5765 #ifdef  TOTALLY_BRAIN_DAMAGED_C_COMPILER
5766 	maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0;
5767 #endif
5768 	if (CLASSD(addr)) {
5769 		maskp[0] = 0xF0;
5770 		return (mask);
5771 	}
5772 
5773 	/* We assume Class E default netmask to be 32 */
5774 	if (CLASSE(addr))
5775 		return (0xffffffffU);
5776 
5777 	if (addr == 0)
5778 		return (0);
5779 	maskp[0] = 0xFF;
5780 	if ((up[0] & 0x80) == 0)
5781 		return (mask);
5782 
5783 	maskp[1] = 0xFF;
5784 	if ((up[0] & 0xC0) == 0x80)
5785 		return (mask);
5786 
5787 	maskp[2] = 0xFF;
5788 	if ((up[0] & 0xE0) == 0xC0)
5789 		return (mask);
5790 
5791 	/* Otherwise return no mask */
5792 	return ((ipaddr_t)0);
5793 }
5794 
5795 /* Name/Value Table Lookup Routine */
5796 char *
5797 ip_nv_lookup(nv_t *nv, int value)
5798 {
5799 	if (!nv)
5800 		return (NULL);
5801 	for (; nv->nv_name; nv++) {
5802 		if (nv->nv_value == value)
5803 			return (nv->nv_name);
5804 	}
5805 	return ("unknown");
5806 }
5807 
5808 static int
5809 ip_wait_for_info_ack(ill_t *ill)
5810 {
5811 	int err;
5812 
5813 	mutex_enter(&ill->ill_lock);
5814 	while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) {
5815 		/*
5816 		 * Return value of 0 indicates a pending signal.
5817 		 */
5818 		err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock);
5819 		if (err == 0) {
5820 			mutex_exit(&ill->ill_lock);
5821 			return (EINTR);
5822 		}
5823 	}
5824 	mutex_exit(&ill->ill_lock);
5825 	/*
5826 	 * ip_rput_other could have set an error  in ill_error on
5827 	 * receipt of M_ERROR.
5828 	 */
5829 	return (ill->ill_error);
5830 }
5831 
5832 /*
5833  * This is a module open, i.e. this is a control stream for access
5834  * to a DLPI device.  We allocate an ill_t as the instance data in
5835  * this case.
5836  */
5837 static int
5838 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
5839 {
5840 	ill_t	*ill;
5841 	int	err;
5842 	zoneid_t zoneid;
5843 	netstack_t *ns;
5844 	ip_stack_t *ipst;
5845 
5846 	/*
5847 	 * Prevent unprivileged processes from pushing IP so that
5848 	 * they can't send raw IP.
5849 	 */
5850 	if (secpolicy_net_rawaccess(credp) != 0)
5851 		return (EPERM);
5852 
5853 	ns = netstack_find_by_cred(credp);
5854 	ASSERT(ns != NULL);
5855 	ipst = ns->netstack_ip;
5856 	ASSERT(ipst != NULL);
5857 
5858 	/*
5859 	 * For exclusive stacks we set the zoneid to zero
5860 	 * to make IP operate as if in the global zone.
5861 	 */
5862 	if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID)
5863 		zoneid = GLOBAL_ZONEID;
5864 	else
5865 		zoneid = crgetzoneid(credp);
5866 
5867 	ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t));
5868 	q->q_ptr = WR(q)->q_ptr = ill;
5869 	ill->ill_ipst = ipst;
5870 	ill->ill_zoneid = zoneid;
5871 
5872 	/*
5873 	 * ill_init initializes the ill fields and then sends down
5874 	 * down a DL_INFO_REQ after calling qprocson.
5875 	 */
5876 	err = ill_init(q, ill);
5877 
5878 	if (err != 0) {
5879 		mi_free(ill);
5880 		netstack_rele(ipst->ips_netstack);
5881 		q->q_ptr = NULL;
5882 		WR(q)->q_ptr = NULL;
5883 		return (err);
5884 	}
5885 
5886 	/*
5887 	 * Wait for the DL_INFO_ACK if a DL_INFO_REQ was sent.
5888 	 *
5889 	 * ill_init initializes the ipsq marking this thread as
5890 	 * writer
5891 	 */
5892 	ipsq_exit(ill->ill_phyint->phyint_ipsq);
5893 	err = ip_wait_for_info_ack(ill);
5894 	if (err == 0)
5895 		ill->ill_credp = credp;
5896 	else
5897 		goto fail;
5898 
5899 	crhold(credp);
5900 
5901 	mutex_enter(&ipst->ips_ip_mi_lock);
5902 	err = mi_open_link(&ipst->ips_ip_g_head, (IDP)q->q_ptr, devp, flag,
5903 	    sflag, credp);
5904 	mutex_exit(&ipst->ips_ip_mi_lock);
5905 fail:
5906 	if (err) {
5907 		(void) ip_close(q, 0);
5908 		return (err);
5909 	}
5910 	return (0);
5911 }
5912 
5913 /* For /dev/ip aka AF_INET open */
5914 int
5915 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
5916 {
5917 	return (ip_open(q, devp, flag, sflag, credp, B_FALSE));
5918 }
5919 
5920 /* For /dev/ip6 aka AF_INET6 open */
5921 int
5922 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
5923 {
5924 	return (ip_open(q, devp, flag, sflag, credp, B_TRUE));
5925 }
5926 
5927 /* IP open routine. */
5928 int
5929 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
5930     boolean_t isv6)
5931 {
5932 	conn_t 		*connp;
5933 	major_t		maj;
5934 	zoneid_t	zoneid;
5935 	netstack_t	*ns;
5936 	ip_stack_t	*ipst;
5937 
5938 	/* Allow reopen. */
5939 	if (q->q_ptr != NULL)
5940 		return (0);
5941 
5942 	if (sflag & MODOPEN) {
5943 		/* This is a module open */
5944 		return (ip_modopen(q, devp, flag, sflag, credp));
5945 	}
5946 
5947 	if ((flag & ~(FKLYR)) == IP_HELPER_STR) {
5948 		/*
5949 		 * Non streams based socket looking for a stream
5950 		 * to access IP
5951 		 */
5952 		return (ip_helper_stream_setup(q, devp, flag, sflag,
5953 		    credp, isv6));
5954 	}
5955 
5956 	ns = netstack_find_by_cred(credp);
5957 	ASSERT(ns != NULL);
5958 	ipst = ns->netstack_ip;
5959 	ASSERT(ipst != NULL);
5960 
5961 	/*
5962 	 * For exclusive stacks we set the zoneid to zero
5963 	 * to make IP operate as if in the global zone.
5964 	 */
5965 	if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID)
5966 		zoneid = GLOBAL_ZONEID;
5967 	else
5968 		zoneid = crgetzoneid(credp);
5969 
5970 	/*
5971 	 * We are opening as a device. This is an IP client stream, and we
5972 	 * allocate an conn_t as the instance data.
5973 	 */
5974 	connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack);
5975 
5976 	/*
5977 	 * ipcl_conn_create did a netstack_hold. Undo the hold that was
5978 	 * done by netstack_find_by_cred()
5979 	 */
5980 	netstack_rele(ipst->ips_netstack);
5981 
5982 	connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_ULP_CKSUM;
5983 	/* conn_allzones can not be set this early, hence no IPCL_ZONEID */
5984 	connp->conn_ixa->ixa_zoneid = zoneid;
5985 	connp->conn_zoneid = zoneid;
5986 
5987 	connp->conn_rq = q;
5988 	q->q_ptr = WR(q)->q_ptr = connp;
5989 
5990 	/* Minor tells us which /dev entry was opened */
5991 	if (isv6) {
5992 		connp->conn_family = AF_INET6;
5993 		connp->conn_ipversion = IPV6_VERSION;
5994 		connp->conn_ixa->ixa_flags &= ~IXAF_IS_IPV4;
5995 		connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT;
5996 	} else {
5997 		connp->conn_family = AF_INET;
5998 		connp->conn_ipversion = IPV4_VERSION;
5999 		connp->conn_ixa->ixa_flags |= IXAF_IS_IPV4;
6000 	}
6001 
6002 	if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
6003 	    ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
6004 		connp->conn_minor_arena = ip_minor_arena_la;
6005 	} else {
6006 		/*
6007 		 * Either minor numbers in the large arena were exhausted
6008 		 * or a non socket application is doing the open.
6009 		 * Try to allocate from the small arena.
6010 		 */
6011 		if ((connp->conn_dev =
6012 		    inet_minor_alloc(ip_minor_arena_sa)) == 0) {
6013 			/* CONN_DEC_REF takes care of netstack_rele() */
6014 			q->q_ptr = WR(q)->q_ptr = NULL;
6015 			CONN_DEC_REF(connp);
6016 			return (EBUSY);
6017 		}
6018 		connp->conn_minor_arena = ip_minor_arena_sa;
6019 	}
6020 
6021 	maj = getemajor(*devp);
6022 	*devp = makedevice(maj, (minor_t)connp->conn_dev);
6023 
6024 	/*
6025 	 * connp->conn_cred is crfree()ed in ipcl_conn_destroy()
6026 	 */
6027 	connp->conn_cred = credp;
6028 	connp->conn_cpid = curproc->p_pid;
6029 	/* Cache things in ixa without an extra refhold */
6030 	ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED));
6031 	connp->conn_ixa->ixa_cred = connp->conn_cred;
6032 	connp->conn_ixa->ixa_cpid = connp->conn_cpid;
6033 	if (is_system_labeled())
6034 		connp->conn_ixa->ixa_tsl = crgetlabel(connp->conn_cred);
6035 
6036 	/*
6037 	 * Handle IP_IOC_RTS_REQUEST and other ioctls which use conn_recv
6038 	 */
6039 	connp->conn_recv = ip_conn_input;
6040 	connp->conn_recvicmp = ip_conn_input_icmp;
6041 
6042 	crhold(connp->conn_cred);
6043 
6044 	/*
6045 	 * If the caller has the process-wide flag set, then default to MAC
6046 	 * exempt mode.  This allows read-down to unlabeled hosts.
6047 	 */
6048 	if (getpflags(NET_MAC_AWARE, credp) != 0)
6049 		connp->conn_mac_mode = CONN_MAC_AWARE;
6050 
6051 	connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID);
6052 
6053 	connp->conn_rq = q;
6054 	connp->conn_wq = WR(q);
6055 
6056 	/* Non-zero default values */
6057 	connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP;
6058 
6059 	/*
6060 	 * Make the conn globally visible to walkers
6061 	 */
6062 	ASSERT(connp->conn_ref == 1);
6063 	mutex_enter(&connp->conn_lock);
6064 	connp->conn_state_flags &= ~CONN_INCIPIENT;
6065 	mutex_exit(&connp->conn_lock);
6066 
6067 	qprocson(q);
6068 
6069 	return (0);
6070 }
6071 
6072 /*
6073  * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid,
6074  * all of them are copied to the conn_t. If the req is "zero", the policy is
6075  * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req
6076  * fields.
6077  * We keep only the latest setting of the policy and thus policy setting
6078  * is not incremental/cumulative.
6079  *
6080  * Requests to set policies with multiple alternative actions will
6081  * go through a different API.
6082  */
6083 int
6084 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req)
6085 {
6086 	uint_t ah_req = 0;
6087 	uint_t esp_req = 0;
6088 	uint_t se_req = 0;
6089 	ipsec_act_t *actp = NULL;
6090 	uint_t nact;
6091 	ipsec_policy_head_t *ph;
6092 	boolean_t is_pol_reset, is_pol_inserted = B_FALSE;
6093 	int error = 0;
6094 	netstack_t	*ns = connp->conn_netstack;
6095 	ip_stack_t	*ipst = ns->netstack_ip;
6096 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
6097 
6098 #define	REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER)
6099 
6100 	/*
6101 	 * The IP_SEC_OPT option does not allow variable length parameters,
6102 	 * hence a request cannot be NULL.
6103 	 */
6104 	if (req == NULL)
6105 		return (EINVAL);
6106 
6107 	ah_req = req->ipsr_ah_req;
6108 	esp_req = req->ipsr_esp_req;
6109 	se_req = req->ipsr_self_encap_req;
6110 
6111 	/* Don't allow setting self-encap without one or more of AH/ESP. */
6112 	if (se_req != 0 && esp_req == 0 && ah_req == 0)
6113 		return (EINVAL);
6114 
6115 	/*
6116 	 * Are we dealing with a request to reset the policy (i.e.
6117 	 * zero requests).
6118 	 */
6119 	is_pol_reset = ((ah_req & REQ_MASK) == 0 &&
6120 	    (esp_req & REQ_MASK) == 0 &&
6121 	    (se_req & REQ_MASK) == 0);
6122 
6123 	if (!is_pol_reset) {
6124 		/*
6125 		 * If we couldn't load IPsec, fail with "protocol
6126 		 * not supported".
6127 		 * IPsec may not have been loaded for a request with zero
6128 		 * policies, so we don't fail in this case.
6129 		 */
6130 		mutex_enter(&ipss->ipsec_loader_lock);
6131 		if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) {
6132 			mutex_exit(&ipss->ipsec_loader_lock);
6133 			return (EPROTONOSUPPORT);
6134 		}
6135 		mutex_exit(&ipss->ipsec_loader_lock);
6136 
6137 		/*
6138 		 * Test for valid requests. Invalid algorithms
6139 		 * need to be tested by IPsec code because new
6140 		 * algorithms can be added dynamically.
6141 		 */
6142 		if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 ||
6143 		    (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 ||
6144 		    (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) {
6145 			return (EINVAL);
6146 		}
6147 
6148 		/*
6149 		 * Only privileged users can issue these
6150 		 * requests.
6151 		 */
6152 		if (((ah_req & IPSEC_PREF_NEVER) ||
6153 		    (esp_req & IPSEC_PREF_NEVER) ||
6154 		    (se_req & IPSEC_PREF_NEVER)) &&
6155 		    secpolicy_ip_config(cr, B_FALSE) != 0) {
6156 			return (EPERM);
6157 		}
6158 
6159 		/*
6160 		 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER
6161 		 * are mutually exclusive.
6162 		 */
6163 		if (((ah_req & REQ_MASK) == REQ_MASK) ||
6164 		    ((esp_req & REQ_MASK) == REQ_MASK) ||
6165 		    ((se_req & REQ_MASK) == REQ_MASK)) {
6166 			/* Both of them are set */
6167 			return (EINVAL);
6168 		}
6169 	}
6170 
6171 	ASSERT(MUTEX_HELD(&connp->conn_lock));
6172 
6173 	/*
6174 	 * If we have already cached policies in conn_connect(), don't
6175 	 * let them change now. We cache policies for connections
6176 	 * whose src,dst [addr, port] is known.
6177 	 */
6178 	if (connp->conn_policy_cached) {
6179 		return (EINVAL);
6180 	}
6181 
6182 	/*
6183 	 * We have a zero policies, reset the connection policy if already
6184 	 * set. This will cause the connection to inherit the
6185 	 * global policy, if any.
6186 	 */
6187 	if (is_pol_reset) {
6188 		if (connp->conn_policy != NULL) {
6189 			IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack);
6190 			connp->conn_policy = NULL;
6191 		}
6192 		connp->conn_in_enforce_policy = B_FALSE;
6193 		connp->conn_out_enforce_policy = B_FALSE;
6194 		return (0);
6195 	}
6196 
6197 	ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy,
6198 	    ipst->ips_netstack);
6199 	if (ph == NULL)
6200 		goto enomem;
6201 
6202 	ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack);
6203 	if (actp == NULL)
6204 		goto enomem;
6205 
6206 	/*
6207 	 * Always insert IPv4 policy entries, since they can also apply to
6208 	 * ipv6 sockets being used in ipv4-compat mode.
6209 	 */
6210 	if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4,
6211 	    IPSEC_TYPE_INBOUND, ns))
6212 		goto enomem;
6213 	is_pol_inserted = B_TRUE;
6214 	if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4,
6215 	    IPSEC_TYPE_OUTBOUND, ns))
6216 		goto enomem;
6217 
6218 	/*
6219 	 * We're looking at a v6 socket, also insert the v6-specific
6220 	 * entries.
6221 	 */
6222 	if (connp->conn_family == AF_INET6) {
6223 		if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6,
6224 		    IPSEC_TYPE_INBOUND, ns))
6225 			goto enomem;
6226 		if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6,
6227 		    IPSEC_TYPE_OUTBOUND, ns))
6228 			goto enomem;
6229 	}
6230 
6231 	ipsec_actvec_free(actp, nact);
6232 
6233 	/*
6234 	 * If the requests need security, set enforce_policy.
6235 	 * If the requests are IPSEC_PREF_NEVER, one should
6236 	 * still set conn_out_enforce_policy so that ip_set_destination
6237 	 * marks the ip_xmit_attr_t appropriatly. This is needed so that
6238 	 * for connections that we don't cache policy in at connect time,
6239 	 * if global policy matches in ip_output_attach_policy, we
6240 	 * don't wrongly inherit global policy. Similarly, we need
6241 	 * to set conn_in_enforce_policy also so that we don't verify
6242 	 * policy wrongly.
6243 	 */
6244 	if ((ah_req & REQ_MASK) != 0 ||
6245 	    (esp_req & REQ_MASK) != 0 ||
6246 	    (se_req & REQ_MASK) != 0) {
6247 		connp->conn_in_enforce_policy = B_TRUE;
6248 		connp->conn_out_enforce_policy = B_TRUE;
6249 	}
6250 
6251 	return (error);
6252 #undef REQ_MASK
6253 
6254 	/*
6255 	 * Common memory-allocation-failure exit path.
6256 	 */
6257 enomem:
6258 	if (actp != NULL)
6259 		ipsec_actvec_free(actp, nact);
6260 	if (is_pol_inserted)
6261 		ipsec_polhead_flush(ph, ns);
6262 	return (ENOMEM);
6263 }
6264 
6265 /*
6266  * Set socket options for joining and leaving multicast groups.
6267  * Common to IPv4 and IPv6; inet6 indicates the type of socket.
6268  * The caller has already check that the option name is consistent with
6269  * the address family of the socket.
6270  */
6271 int
6272 ip_opt_set_multicast_group(conn_t *connp, t_scalar_t name,
6273     uchar_t *invalp, boolean_t inet6, boolean_t checkonly)
6274 {
6275 	int		*i1 = (int *)invalp;
6276 	int		error = 0;
6277 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
6278 	struct ip_mreq	*v4_mreqp;
6279 	struct ipv6_mreq *v6_mreqp;
6280 	struct group_req *greqp;
6281 	ire_t *ire;
6282 	boolean_t done = B_FALSE;
6283 	ipaddr_t ifaddr;
6284 	in6_addr_t v6group;
6285 	uint_t ifindex;
6286 	boolean_t mcast_opt = B_TRUE;
6287 	mcast_record_t fmode;
6288 	int (*optfn)(conn_t *, boolean_t, const in6_addr_t *,
6289 	    ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *);
6290 
6291 	switch (name) {
6292 	case IP_ADD_MEMBERSHIP:
6293 	case IPV6_JOIN_GROUP:
6294 		mcast_opt = B_FALSE;
6295 		/* FALLTHRU */
6296 	case MCAST_JOIN_GROUP:
6297 		fmode = MODE_IS_EXCLUDE;
6298 		optfn = ip_opt_add_group;
6299 		break;
6300 
6301 	case IP_DROP_MEMBERSHIP:
6302 	case IPV6_LEAVE_GROUP:
6303 		mcast_opt = B_FALSE;
6304 		/* FALLTHRU */
6305 	case MCAST_LEAVE_GROUP:
6306 		fmode = MODE_IS_INCLUDE;
6307 		optfn = ip_opt_delete_group;
6308 		break;
6309 	default:
6310 		ASSERT(0);
6311 	}
6312 
6313 	if (mcast_opt) {
6314 		struct sockaddr_in *sin;
6315 		struct sockaddr_in6 *sin6;
6316 
6317 		greqp = (struct group_req *)i1;
6318 		if (greqp->gr_group.ss_family == AF_INET) {
6319 			sin = (struct sockaddr_in *)&(greqp->gr_group);
6320 			IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, &v6group);
6321 		} else {
6322 			if (!inet6)
6323 				return (EINVAL);	/* Not on INET socket */
6324 
6325 			sin6 = (struct sockaddr_in6 *)&(greqp->gr_group);
6326 			v6group = sin6->sin6_addr;
6327 		}
6328 		ifaddr = INADDR_ANY;
6329 		ifindex = greqp->gr_interface;
6330 	} else if (inet6) {
6331 		v6_mreqp = (struct ipv6_mreq *)i1;
6332 		v6group = v6_mreqp->ipv6mr_multiaddr;
6333 		ifaddr = INADDR_ANY;
6334 		ifindex = v6_mreqp->ipv6mr_interface;
6335 	} else {
6336 		v4_mreqp = (struct ip_mreq *)i1;
6337 		IN6_INADDR_TO_V4MAPPED(&v4_mreqp->imr_multiaddr, &v6group);
6338 		ifaddr = (ipaddr_t)v4_mreqp->imr_interface.s_addr;
6339 		ifindex = 0;
6340 	}
6341 
6342 	/*
6343 	 * In the multirouting case, we need to replicate
6344 	 * the request on all interfaces that will take part
6345 	 * in replication.  We do so because multirouting is
6346 	 * reflective, thus we will probably receive multi-
6347 	 * casts on those interfaces.
6348 	 * The ip_multirt_apply_membership() succeeds if
6349 	 * the operation succeeds on at least one interface.
6350 	 */
6351 	if (IN6_IS_ADDR_V4MAPPED(&v6group)) {
6352 		ipaddr_t group;
6353 
6354 		IN6_V4MAPPED_TO_IPADDR(&v6group, group);
6355 
6356 		ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0,
6357 		    IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6358 		    MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6359 	} else {
6360 		ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0,
6361 		    IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6362 		    MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6363 	}
6364 	if (ire != NULL) {
6365 		if (ire->ire_flags & RTF_MULTIRT) {
6366 			error = ip_multirt_apply_membership(optfn, ire, connp,
6367 			    checkonly, &v6group, fmode, &ipv6_all_zeros);
6368 			done = B_TRUE;
6369 		}
6370 		ire_refrele(ire);
6371 	}
6372 
6373 	if (!done) {
6374 		error = optfn(connp, checkonly, &v6group, ifaddr, ifindex,
6375 		    fmode, &ipv6_all_zeros);
6376 	}
6377 	return (error);
6378 }
6379 
6380 /*
6381  * Set socket options for joining and leaving multicast groups
6382  * for specific sources.
6383  * Common to IPv4 and IPv6; inet6 indicates the type of socket.
6384  * The caller has already check that the option name is consistent with
6385  * the address family of the socket.
6386  */
6387 int
6388 ip_opt_set_multicast_sources(conn_t *connp, t_scalar_t name,
6389     uchar_t *invalp, boolean_t inet6, boolean_t checkonly)
6390 {
6391 	int		*i1 = (int *)invalp;
6392 	int		error = 0;
6393 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
6394 	struct ip_mreq_source *imreqp;
6395 	struct group_source_req *gsreqp;
6396 	in6_addr_t v6group, v6src;
6397 	uint32_t ifindex;
6398 	ipaddr_t ifaddr;
6399 	boolean_t mcast_opt = B_TRUE;
6400 	mcast_record_t fmode;
6401 	ire_t *ire;
6402 	boolean_t done = B_FALSE;
6403 	int (*optfn)(conn_t *, boolean_t, const in6_addr_t *,
6404 	    ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *);
6405 
6406 	switch (name) {
6407 	case IP_BLOCK_SOURCE:
6408 		mcast_opt = B_FALSE;
6409 		/* FALLTHRU */
6410 	case MCAST_BLOCK_SOURCE:
6411 		fmode = MODE_IS_EXCLUDE;
6412 		optfn = ip_opt_add_group;
6413 		break;
6414 
6415 	case IP_UNBLOCK_SOURCE:
6416 		mcast_opt = B_FALSE;
6417 		/* FALLTHRU */
6418 	case MCAST_UNBLOCK_SOURCE:
6419 		fmode = MODE_IS_EXCLUDE;
6420 		optfn = ip_opt_delete_group;
6421 		break;
6422 
6423 	case IP_ADD_SOURCE_MEMBERSHIP:
6424 		mcast_opt = B_FALSE;
6425 		/* FALLTHRU */
6426 	case MCAST_JOIN_SOURCE_GROUP:
6427 		fmode = MODE_IS_INCLUDE;
6428 		optfn = ip_opt_add_group;
6429 		break;
6430 
6431 	case IP_DROP_SOURCE_MEMBERSHIP:
6432 		mcast_opt = B_FALSE;
6433 		/* FALLTHRU */
6434 	case MCAST_LEAVE_SOURCE_GROUP:
6435 		fmode = MODE_IS_INCLUDE;
6436 		optfn = ip_opt_delete_group;
6437 		break;
6438 	default:
6439 		ASSERT(0);
6440 	}
6441 
6442 	if (mcast_opt) {
6443 		gsreqp = (struct group_source_req *)i1;
6444 		ifindex = gsreqp->gsr_interface;
6445 		if (gsreqp->gsr_group.ss_family == AF_INET) {
6446 			struct sockaddr_in *s;
6447 			s = (struct sockaddr_in *)&gsreqp->gsr_group;
6448 			IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6group);
6449 			s = (struct sockaddr_in *)&gsreqp->gsr_source;
6450 			IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src);
6451 		} else {
6452 			struct sockaddr_in6 *s6;
6453 
6454 			if (!inet6)
6455 				return (EINVAL);	/* Not on INET socket */
6456 
6457 			s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group;
6458 			v6group = s6->sin6_addr;
6459 			s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source;
6460 			v6src = s6->sin6_addr;
6461 		}
6462 		ifaddr = INADDR_ANY;
6463 	} else {
6464 		imreqp = (struct ip_mreq_source *)i1;
6465 		IN6_INADDR_TO_V4MAPPED(&imreqp->imr_multiaddr, &v6group);
6466 		IN6_INADDR_TO_V4MAPPED(&imreqp->imr_sourceaddr, &v6src);
6467 		ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr;
6468 		ifindex = 0;
6469 	}
6470 
6471 	/*
6472 	 * Handle src being mapped INADDR_ANY by changing it to unspecified.
6473 	 */
6474 	if (IN6_IS_ADDR_V4MAPPED_ANY(&v6src))
6475 		v6src = ipv6_all_zeros;
6476 
6477 	/*
6478 	 * In the multirouting case, we need to replicate
6479 	 * the request as noted in the mcast cases above.
6480 	 */
6481 	if (IN6_IS_ADDR_V4MAPPED(&v6group)) {
6482 		ipaddr_t group;
6483 
6484 		IN6_V4MAPPED_TO_IPADDR(&v6group, group);
6485 
6486 		ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0,
6487 		    IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6488 		    MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6489 	} else {
6490 		ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0,
6491 		    IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6492 		    MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6493 	}
6494 	if (ire != NULL) {
6495 		if (ire->ire_flags & RTF_MULTIRT) {
6496 			error = ip_multirt_apply_membership(optfn, ire, connp,
6497 			    checkonly, &v6group, fmode, &v6src);
6498 			done = B_TRUE;
6499 		}
6500 		ire_refrele(ire);
6501 	}
6502 	if (!done) {
6503 		error = optfn(connp, checkonly, &v6group, ifaddr, ifindex,
6504 		    fmode, &v6src);
6505 	}
6506 	return (error);
6507 }
6508 
6509 /*
6510  * Given a destination address and a pointer to where to put the information
6511  * this routine fills in the mtuinfo.
6512  * The socket must be connected.
6513  * For sctp conn_faddr is the primary address.
6514  */
6515 int
6516 ip_fill_mtuinfo(conn_t *connp, ip_xmit_attr_t *ixa, struct ip6_mtuinfo *mtuinfo)
6517 {
6518 	uint32_t	pmtu = IP_MAXPACKET;
6519 	uint_t		scopeid;
6520 
6521 	if (IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6))
6522 		return (-1);
6523 
6524 	/* In case we never sent or called ip_set_destination_v4/v6 */
6525 	if (ixa->ixa_ire != NULL)
6526 		pmtu = ip_get_pmtu(ixa);
6527 
6528 	if (ixa->ixa_flags & IXAF_SCOPEID_SET)
6529 		scopeid = ixa->ixa_scopeid;
6530 	else
6531 		scopeid = 0;
6532 
6533 	bzero(mtuinfo, sizeof (*mtuinfo));
6534 	mtuinfo->ip6m_addr.sin6_family = AF_INET6;
6535 	mtuinfo->ip6m_addr.sin6_port = connp->conn_fport;
6536 	mtuinfo->ip6m_addr.sin6_addr = connp->conn_faddr_v6;
6537 	mtuinfo->ip6m_addr.sin6_scope_id = scopeid;
6538 	mtuinfo->ip6m_mtu = pmtu;
6539 
6540 	return (sizeof (struct ip6_mtuinfo));
6541 }
6542 
6543 /*
6544  * When the src multihoming is changed from weak to [strong, preferred]
6545  * ip_ire_rebind_walker is called to walk the list of all ire_t entries
6546  * and identify routes that were created by user-applications in the
6547  * unbound state (i.e., without RTA_IFP), and for which an ire_ill is not
6548  * currently defined. These routes are then 'rebound', i.e., their ire_ill
6549  * is selected by finding an interface route for the gateway.
6550  */
6551 /* ARGSUSED */
6552 void
6553 ip_ire_rebind_walker(ire_t *ire, void *notused)
6554 {
6555 	if (!ire->ire_unbound || ire->ire_ill != NULL)
6556 		return;
6557 	ire_rebind(ire);
6558 	ire_delete(ire);
6559 }
6560 
6561 /*
6562  * When the src multihoming is changed from  [strong, preferred] to weak,
6563  * ip_ire_unbind_walker is called to walk the list of all ire_t entries, and
6564  * set any entries that were created by user-applications in the unbound state
6565  * (i.e., without RTA_IFP) back to having a NULL ire_ill.
6566  */
6567 /* ARGSUSED */
6568 void
6569 ip_ire_unbind_walker(ire_t *ire, void *notused)
6570 {
6571 	ire_t *new_ire;
6572 
6573 	if (!ire->ire_unbound || ire->ire_ill == NULL)
6574 		return;
6575 	if (ire->ire_ipversion == IPV6_VERSION) {
6576 		new_ire = ire_create_v6(&ire->ire_addr_v6, &ire->ire_mask_v6,
6577 		    &ire->ire_gateway_addr_v6, ire->ire_type, NULL,
6578 		    ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst);
6579 	} else {
6580 		new_ire = ire_create((uchar_t *)&ire->ire_addr,
6581 		    (uchar_t *)&ire->ire_mask,
6582 		    (uchar_t *)&ire->ire_gateway_addr, ire->ire_type, NULL,
6583 		    ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst);
6584 	}
6585 	if (new_ire == NULL)
6586 		return;
6587 	new_ire->ire_unbound = B_TRUE;
6588 	/*
6589 	 * The bound ire must first be deleted so that we don't return
6590 	 * the existing one on the attempt to add the unbound new_ire.
6591 	 */
6592 	ire_delete(ire);
6593 	new_ire = ire_add(new_ire);
6594 	if (new_ire != NULL)
6595 		ire_refrele(new_ire);
6596 }
6597 
6598 /*
6599  * When the settings of ip*_strict_src_multihoming tunables are changed,
6600  * all cached routes need to be recomputed. This recomputation needs to be
6601  * done when going from weaker to stronger modes so that the cached ire
6602  * for the connection does not violate the current ip*_strict_src_multihoming
6603  * setting. It also needs to be done when going from stronger to weaker modes,
6604  * so that we fall back to matching on the longest-matching-route (as opposed
6605  * to a shorter match that may have been selected in the strong mode
6606  * to satisfy src_multihoming settings).
6607  *
6608  * The cached ixa_ire entires for all conn_t entries are marked as
6609  * "verify" so that they will be recomputed for the next packet.
6610  */
6611 void
6612 conn_ire_revalidate(conn_t *connp, void *arg)
6613 {
6614 	boolean_t isv6 = (boolean_t)arg;
6615 
6616 	if ((isv6 && connp->conn_ipversion != IPV6_VERSION) ||
6617 	    (!isv6 && connp->conn_ipversion != IPV4_VERSION))
6618 		return;
6619 	connp->conn_ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
6620 }
6621 
6622 /*
6623  * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases,
6624  * When an ipf is passed here for the first time, if
6625  * we already have in-order fragments on the queue, we convert from the fast-
6626  * path reassembly scheme to the hard-case scheme.  From then on, additional
6627  * fragments are reassembled here.  We keep track of the start and end offsets
6628  * of each piece, and the number of holes in the chain.  When the hole count
6629  * goes to zero, we are done!
6630  *
6631  * The ipf_count will be updated to account for any mblk(s) added (pointed to
6632  * by mp) or subtracted (freeb()ed dups), upon return the caller must update
6633  * ipfb_count and ill_frag_count by the difference of ipf_count before and
6634  * after the call to ip_reassemble().
6635  */
6636 int
6637 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill,
6638     size_t msg_len)
6639 {
6640 	uint_t	end;
6641 	mblk_t	*next_mp;
6642 	mblk_t	*mp1;
6643 	uint_t	offset;
6644 	boolean_t incr_dups = B_TRUE;
6645 	boolean_t offset_zero_seen = B_FALSE;
6646 	boolean_t pkt_boundary_checked = B_FALSE;
6647 
6648 	/* If start == 0 then ipf_nf_hdr_len has to be set. */
6649 	ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0);
6650 
6651 	/* Add in byte count */
6652 	ipf->ipf_count += msg_len;
6653 	if (ipf->ipf_end) {
6654 		/*
6655 		 * We were part way through in-order reassembly, but now there
6656 		 * is a hole.  We walk through messages already queued, and
6657 		 * mark them for hard case reassembly.  We know that up till
6658 		 * now they were in order starting from offset zero.
6659 		 */
6660 		offset = 0;
6661 		for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) {
6662 			IP_REASS_SET_START(mp1, offset);
6663 			if (offset == 0) {
6664 				ASSERT(ipf->ipf_nf_hdr_len != 0);
6665 				offset = -ipf->ipf_nf_hdr_len;
6666 			}
6667 			offset += mp1->b_wptr - mp1->b_rptr;
6668 			IP_REASS_SET_END(mp1, offset);
6669 		}
6670 		/* One hole at the end. */
6671 		ipf->ipf_hole_cnt = 1;
6672 		/* Brand it as a hard case, forever. */
6673 		ipf->ipf_end = 0;
6674 	}
6675 	/* Walk through all the new pieces. */
6676 	do {
6677 		end = start + (mp->b_wptr - mp->b_rptr);
6678 		/*
6679 		 * If start is 0, decrease 'end' only for the first mblk of
6680 		 * the fragment. Otherwise 'end' can get wrong value in the
6681 		 * second pass of the loop if first mblk is exactly the
6682 		 * size of ipf_nf_hdr_len.
6683 		 */
6684 		if (start == 0 && !offset_zero_seen) {
6685 			/* First segment */
6686 			ASSERT(ipf->ipf_nf_hdr_len != 0);
6687 			end -= ipf->ipf_nf_hdr_len;
6688 			offset_zero_seen = B_TRUE;
6689 		}
6690 		next_mp = mp->b_cont;
6691 		/*
6692 		 * We are checking to see if there is any interesing data
6693 		 * to process.  If there isn't and the mblk isn't the
6694 		 * one which carries the unfragmentable header then we
6695 		 * drop it.  It's possible to have just the unfragmentable
6696 		 * header come through without any data.  That needs to be
6697 		 * saved.
6698 		 *
6699 		 * If the assert at the top of this function holds then the
6700 		 * term "ipf->ipf_nf_hdr_len != 0" isn't needed.  This code
6701 		 * is infrequently traveled enough that the test is left in
6702 		 * to protect against future code changes which break that
6703 		 * invariant.
6704 		 */
6705 		if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) {
6706 			/* Empty.  Blast it. */
6707 			IP_REASS_SET_START(mp, 0);
6708 			IP_REASS_SET_END(mp, 0);
6709 			/*
6710 			 * If the ipf points to the mblk we are about to free,
6711 			 * update ipf to point to the next mblk (or NULL
6712 			 * if none).
6713 			 */
6714 			if (ipf->ipf_mp->b_cont == mp)
6715 				ipf->ipf_mp->b_cont = next_mp;
6716 			freeb(mp);
6717 			continue;
6718 		}
6719 		mp->b_cont = NULL;
6720 		IP_REASS_SET_START(mp, start);
6721 		IP_REASS_SET_END(mp, end);
6722 		if (!ipf->ipf_tail_mp) {
6723 			ipf->ipf_tail_mp = mp;
6724 			ipf->ipf_mp->b_cont = mp;
6725 			if (start == 0 || !more) {
6726 				ipf->ipf_hole_cnt = 1;
6727 				/*
6728 				 * if the first fragment comes in more than one
6729 				 * mblk, this loop will be executed for each
6730 				 * mblk. Need to adjust hole count so exiting
6731 				 * this routine will leave hole count at 1.
6732 				 */
6733 				if (next_mp)
6734 					ipf->ipf_hole_cnt++;
6735 			} else
6736 				ipf->ipf_hole_cnt = 2;
6737 			continue;
6738 		} else if (ipf->ipf_last_frag_seen && !more &&
6739 		    !pkt_boundary_checked) {
6740 			/*
6741 			 * We check datagram boundary only if this fragment
6742 			 * claims to be the last fragment and we have seen a
6743 			 * last fragment in the past too. We do this only
6744 			 * once for a given fragment.
6745 			 *
6746 			 * start cannot be 0 here as fragments with start=0
6747 			 * and MF=0 gets handled as a complete packet. These
6748 			 * fragments should not reach here.
6749 			 */
6750 
6751 			if (start + msgdsize(mp) !=
6752 			    IP_REASS_END(ipf->ipf_tail_mp)) {
6753 				/*
6754 				 * We have two fragments both of which claim
6755 				 * to be the last fragment but gives conflicting
6756 				 * information about the whole datagram size.
6757 				 * Something fishy is going on. Drop the
6758 				 * fragment and free up the reassembly list.
6759 				 */
6760 				return (IP_REASS_FAILED);
6761 			}
6762 
6763 			/*
6764 			 * We shouldn't come to this code block again for this
6765 			 * particular fragment.
6766 			 */
6767 			pkt_boundary_checked = B_TRUE;
6768 		}
6769 
6770 		/* New stuff at or beyond tail? */
6771 		offset = IP_REASS_END(ipf->ipf_tail_mp);
6772 		if (start >= offset) {
6773 			if (ipf->ipf_last_frag_seen) {
6774 				/* current fragment is beyond last fragment */
6775 				return (IP_REASS_FAILED);
6776 			}
6777 			/* Link it on end. */
6778 			ipf->ipf_tail_mp->b_cont = mp;
6779 			ipf->ipf_tail_mp = mp;
6780 			if (more) {
6781 				if (start != offset)
6782 					ipf->ipf_hole_cnt++;
6783 			} else if (start == offset && next_mp == NULL)
6784 					ipf->ipf_hole_cnt--;
6785 			continue;
6786 		}
6787 		mp1 = ipf->ipf_mp->b_cont;
6788 		offset = IP_REASS_START(mp1);
6789 		/* New stuff at the front? */
6790 		if (start < offset) {
6791 			if (start == 0) {
6792 				if (end >= offset) {
6793 					/* Nailed the hole at the begining. */
6794 					ipf->ipf_hole_cnt--;
6795 				}
6796 			} else if (end < offset) {
6797 				/*
6798 				 * A hole, stuff, and a hole where there used
6799 				 * to be just a hole.
6800 				 */
6801 				ipf->ipf_hole_cnt++;
6802 			}
6803 			mp->b_cont = mp1;
6804 			/* Check for overlap. */
6805 			while (end > offset) {
6806 				if (end < IP_REASS_END(mp1)) {
6807 					mp->b_wptr -= end - offset;
6808 					IP_REASS_SET_END(mp, offset);
6809 					BUMP_MIB(ill->ill_ip_mib,
6810 					    ipIfStatsReasmPartDups);
6811 					break;
6812 				}
6813 				/* Did we cover another hole? */
6814 				if ((mp1->b_cont &&
6815 				    IP_REASS_END(mp1) !=
6816 				    IP_REASS_START(mp1->b_cont) &&
6817 				    end >= IP_REASS_START(mp1->b_cont)) ||
6818 				    (!ipf->ipf_last_frag_seen && !more)) {
6819 					ipf->ipf_hole_cnt--;
6820 				}
6821 				/* Clip out mp1. */
6822 				if ((mp->b_cont = mp1->b_cont) == NULL) {
6823 					/*
6824 					 * After clipping out mp1, this guy
6825 					 * is now hanging off the end.
6826 					 */
6827 					ipf->ipf_tail_mp = mp;
6828 				}
6829 				IP_REASS_SET_START(mp1, 0);
6830 				IP_REASS_SET_END(mp1, 0);
6831 				/* Subtract byte count */
6832 				ipf->ipf_count -= mp1->b_datap->db_lim -
6833 				    mp1->b_datap->db_base;
6834 				freeb(mp1);
6835 				BUMP_MIB(ill->ill_ip_mib,
6836 				    ipIfStatsReasmPartDups);
6837 				mp1 = mp->b_cont;
6838 				if (!mp1)
6839 					break;
6840 				offset = IP_REASS_START(mp1);
6841 			}
6842 			ipf->ipf_mp->b_cont = mp;
6843 			continue;
6844 		}
6845 		/*
6846 		 * The new piece starts somewhere between the start of the head
6847 		 * and before the end of the tail.
6848 		 */
6849 		for (; mp1; mp1 = mp1->b_cont) {
6850 			offset = IP_REASS_END(mp1);
6851 			if (start < offset) {
6852 				if (end <= offset) {
6853 					/* Nothing new. */
6854 					IP_REASS_SET_START(mp, 0);
6855 					IP_REASS_SET_END(mp, 0);
6856 					/* Subtract byte count */
6857 					ipf->ipf_count -= mp->b_datap->db_lim -
6858 					    mp->b_datap->db_base;
6859 					if (incr_dups) {
6860 						ipf->ipf_num_dups++;
6861 						incr_dups = B_FALSE;
6862 					}
6863 					freeb(mp);
6864 					BUMP_MIB(ill->ill_ip_mib,
6865 					    ipIfStatsReasmDuplicates);
6866 					break;
6867 				}
6868 				/*
6869 				 * Trim redundant stuff off beginning of new
6870 				 * piece.
6871 				 */
6872 				IP_REASS_SET_START(mp, offset);
6873 				mp->b_rptr += offset - start;
6874 				BUMP_MIB(ill->ill_ip_mib,
6875 				    ipIfStatsReasmPartDups);
6876 				start = offset;
6877 				if (!mp1->b_cont) {
6878 					/*
6879 					 * After trimming, this guy is now
6880 					 * hanging off the end.
6881 					 */
6882 					mp1->b_cont = mp;
6883 					ipf->ipf_tail_mp = mp;
6884 					if (!more) {
6885 						ipf->ipf_hole_cnt--;
6886 					}
6887 					break;
6888 				}
6889 			}
6890 			if (start >= IP_REASS_START(mp1->b_cont))
6891 				continue;
6892 			/* Fill a hole */
6893 			if (start > offset)
6894 				ipf->ipf_hole_cnt++;
6895 			mp->b_cont = mp1->b_cont;
6896 			mp1->b_cont = mp;
6897 			mp1 = mp->b_cont;
6898 			offset = IP_REASS_START(mp1);
6899 			if (end >= offset) {
6900 				ipf->ipf_hole_cnt--;
6901 				/* Check for overlap. */
6902 				while (end > offset) {
6903 					if (end < IP_REASS_END(mp1)) {
6904 						mp->b_wptr -= end - offset;
6905 						IP_REASS_SET_END(mp, offset);
6906 						/*
6907 						 * TODO we might bump
6908 						 * this up twice if there is
6909 						 * overlap at both ends.
6910 						 */
6911 						BUMP_MIB(ill->ill_ip_mib,
6912 						    ipIfStatsReasmPartDups);
6913 						break;
6914 					}
6915 					/* Did we cover another hole? */
6916 					if ((mp1->b_cont &&
6917 					    IP_REASS_END(mp1)
6918 					    != IP_REASS_START(mp1->b_cont) &&
6919 					    end >=
6920 					    IP_REASS_START(mp1->b_cont)) ||
6921 					    (!ipf->ipf_last_frag_seen &&
6922 					    !more)) {
6923 						ipf->ipf_hole_cnt--;
6924 					}
6925 					/* Clip out mp1. */
6926 					if ((mp->b_cont = mp1->b_cont) ==
6927 					    NULL) {
6928 						/*
6929 						 * After clipping out mp1,
6930 						 * this guy is now hanging
6931 						 * off the end.
6932 						 */
6933 						ipf->ipf_tail_mp = mp;
6934 					}
6935 					IP_REASS_SET_START(mp1, 0);
6936 					IP_REASS_SET_END(mp1, 0);
6937 					/* Subtract byte count */
6938 					ipf->ipf_count -=
6939 					    mp1->b_datap->db_lim -
6940 					    mp1->b_datap->db_base;
6941 					freeb(mp1);
6942 					BUMP_MIB(ill->ill_ip_mib,
6943 					    ipIfStatsReasmPartDups);
6944 					mp1 = mp->b_cont;
6945 					if (!mp1)
6946 						break;
6947 					offset = IP_REASS_START(mp1);
6948 				}
6949 			}
6950 			break;
6951 		}
6952 	} while (start = end, mp = next_mp);
6953 
6954 	/* Fragment just processed could be the last one. Remember this fact */
6955 	if (!more)
6956 		ipf->ipf_last_frag_seen = B_TRUE;
6957 
6958 	/* Still got holes? */
6959 	if (ipf->ipf_hole_cnt)
6960 		return (IP_REASS_PARTIAL);
6961 	/* Clean up overloaded fields to avoid upstream disasters. */
6962 	for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) {
6963 		IP_REASS_SET_START(mp1, 0);
6964 		IP_REASS_SET_END(mp1, 0);
6965 	}
6966 	return (IP_REASS_COMPLETE);
6967 }
6968 
6969 /*
6970  * Fragmentation reassembly.  Each ILL has a hash table for
6971  * queuing packets undergoing reassembly for all IPIFs
6972  * associated with the ILL.  The hash is based on the packet
6973  * IP ident field.  The ILL frag hash table was allocated
6974  * as a timer block at the time the ILL was created.  Whenever
6975  * there is anything on the reassembly queue, the timer will
6976  * be running.  Returns the reassembled packet if reassembly completes.
6977  */
6978 mblk_t *
6979 ip_input_fragment(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
6980 {
6981 	uint32_t	frag_offset_flags;
6982 	mblk_t		*t_mp;
6983 	ipaddr_t	dst;
6984 	uint8_t		proto = ipha->ipha_protocol;
6985 	uint32_t	sum_val;
6986 	uint16_t	sum_flags;
6987 	ipf_t		*ipf;
6988 	ipf_t		**ipfp;
6989 	ipfb_t		*ipfb;
6990 	uint16_t	ident;
6991 	uint32_t	offset;
6992 	ipaddr_t	src;
6993 	uint_t		hdr_length;
6994 	uint32_t	end;
6995 	mblk_t		*mp1;
6996 	mblk_t		*tail_mp;
6997 	size_t		count;
6998 	size_t		msg_len;
6999 	uint8_t		ecn_info = 0;
7000 	uint32_t	packet_size;
7001 	boolean_t	pruned = B_FALSE;
7002 	ill_t		*ill = ira->ira_ill;
7003 	ip_stack_t	*ipst = ill->ill_ipst;
7004 
7005 	/*
7006 	 * Drop the fragmented as early as possible, if
7007 	 * we don't have resource(s) to re-assemble.
7008 	 */
7009 	if (ipst->ips_ip_reass_queue_bytes == 0) {
7010 		freemsg(mp);
7011 		return (NULL);
7012 	}
7013 
7014 	/* Check for fragmentation offset; return if there's none */
7015 	if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) &
7016 	    (IPH_MF | IPH_OFFSET)) == 0)
7017 		return (mp);
7018 
7019 	/*
7020 	 * We utilize hardware computed checksum info only for UDP since
7021 	 * IP fragmentation is a normal occurrence for the protocol.  In
7022 	 * addition, checksum offload support for IP fragments carrying
7023 	 * UDP payload is commonly implemented across network adapters.
7024 	 */
7025 	ASSERT(ira->ira_rill != NULL);
7026 	if (proto == IPPROTO_UDP && dohwcksum &&
7027 	    ILL_HCKSUM_CAPABLE(ira->ira_rill) &&
7028 	    (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) {
7029 		mblk_t *mp1 = mp->b_cont;
7030 		int32_t len;
7031 
7032 		/* Record checksum information from the packet */
7033 		sum_val = (uint32_t)DB_CKSUM16(mp);
7034 		sum_flags = DB_CKSUMFLAGS(mp);
7035 
7036 		/* IP payload offset from beginning of mblk */
7037 		offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr;
7038 
7039 		if ((sum_flags & HCK_PARTIALCKSUM) &&
7040 		    (mp1 == NULL || mp1->b_cont == NULL) &&
7041 		    offset >= DB_CKSUMSTART(mp) &&
7042 		    ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) {
7043 			uint32_t adj;
7044 			/*
7045 			 * Partial checksum has been calculated by hardware
7046 			 * and attached to the packet; in addition, any
7047 			 * prepended extraneous data is even byte aligned.
7048 			 * If any such data exists, we adjust the checksum;
7049 			 * this would also handle any postpended data.
7050 			 */
7051 			IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp),
7052 			    mp, mp1, len, adj);
7053 
7054 			/* One's complement subtract extraneous checksum */
7055 			if (adj >= sum_val)
7056 				sum_val = ~(adj - sum_val) & 0xFFFF;
7057 			else
7058 				sum_val -= adj;
7059 		}
7060 	} else {
7061 		sum_val = 0;
7062 		sum_flags = 0;
7063 	}
7064 
7065 	/* Clear hardware checksumming flag */
7066 	DB_CKSUMFLAGS(mp) = 0;
7067 
7068 	ident = ipha->ipha_ident;
7069 	offset = (frag_offset_flags << 3) & 0xFFFF;
7070 	src = ipha->ipha_src;
7071 	dst = ipha->ipha_dst;
7072 	hdr_length = IPH_HDR_LENGTH(ipha);
7073 	end = ntohs(ipha->ipha_length) - hdr_length;
7074 
7075 	/* If end == 0 then we have a packet with no data, so just free it */
7076 	if (end == 0) {
7077 		freemsg(mp);
7078 		return (NULL);
7079 	}
7080 
7081 	/* Record the ECN field info. */
7082 	ecn_info = (ipha->ipha_type_of_service & 0x3);
7083 	if (offset != 0) {
7084 		/*
7085 		 * If this isn't the first piece, strip the header, and
7086 		 * add the offset to the end value.
7087 		 */
7088 		mp->b_rptr += hdr_length;
7089 		end += offset;
7090 	}
7091 
7092 	/* Handle vnic loopback of fragments */
7093 	if (mp->b_datap->db_ref > 2)
7094 		msg_len = 0;
7095 	else
7096 		msg_len = MBLKSIZE(mp);
7097 
7098 	tail_mp = mp;
7099 	while (tail_mp->b_cont != NULL) {
7100 		tail_mp = tail_mp->b_cont;
7101 		if (tail_mp->b_datap->db_ref <= 2)
7102 			msg_len += MBLKSIZE(tail_mp);
7103 	}
7104 
7105 	/* If the reassembly list for this ILL will get too big, prune it */
7106 	if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >=
7107 	    ipst->ips_ip_reass_queue_bytes) {
7108 		DTRACE_PROBE3(ip_reass_queue_bytes, uint_t, msg_len,
7109 		    uint_t, ill->ill_frag_count,
7110 		    uint_t, ipst->ips_ip_reass_queue_bytes);
7111 		ill_frag_prune(ill,
7112 		    (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 :
7113 		    (ipst->ips_ip_reass_queue_bytes - msg_len));
7114 		pruned = B_TRUE;
7115 	}
7116 
7117 	ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)];
7118 	mutex_enter(&ipfb->ipfb_lock);
7119 
7120 	ipfp = &ipfb->ipfb_ipf;
7121 	/* Try to find an existing fragment queue for this packet. */
7122 	for (;;) {
7123 		ipf = ipfp[0];
7124 		if (ipf != NULL) {
7125 			/*
7126 			 * It has to match on ident and src/dst address.
7127 			 */
7128 			if (ipf->ipf_ident == ident &&
7129 			    ipf->ipf_src == src &&
7130 			    ipf->ipf_dst == dst &&
7131 			    ipf->ipf_protocol == proto) {
7132 				/*
7133 				 * If we have received too many
7134 				 * duplicate fragments for this packet
7135 				 * free it.
7136 				 */
7137 				if (ipf->ipf_num_dups > ip_max_frag_dups) {
7138 					ill_frag_free_pkts(ill, ipfb, ipf, 1);
7139 					freemsg(mp);
7140 					mutex_exit(&ipfb->ipfb_lock);
7141 					return (NULL);
7142 				}
7143 				/* Found it. */
7144 				break;
7145 			}
7146 			ipfp = &ipf->ipf_hash_next;
7147 			continue;
7148 		}
7149 
7150 		/*
7151 		 * If we pruned the list, do we want to store this new
7152 		 * fragment?. We apply an optimization here based on the
7153 		 * fact that most fragments will be received in order.
7154 		 * So if the offset of this incoming fragment is zero,
7155 		 * it is the first fragment of a new packet. We will
7156 		 * keep it.  Otherwise drop the fragment, as we have
7157 		 * probably pruned the packet already (since the
7158 		 * packet cannot be found).
7159 		 */
7160 		if (pruned && offset != 0) {
7161 			mutex_exit(&ipfb->ipfb_lock);
7162 			freemsg(mp);
7163 			return (NULL);
7164 		}
7165 
7166 		if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst))  {
7167 			/*
7168 			 * Too many fragmented packets in this hash
7169 			 * bucket. Free the oldest.
7170 			 */
7171 			ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1);
7172 		}
7173 
7174 		/* New guy.  Allocate a frag message. */
7175 		mp1 = allocb(sizeof (*ipf), BPRI_MED);
7176 		if (mp1 == NULL) {
7177 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7178 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
7179 			freemsg(mp);
7180 reass_done:
7181 			mutex_exit(&ipfb->ipfb_lock);
7182 			return (NULL);
7183 		}
7184 
7185 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds);
7186 		mp1->b_cont = mp;
7187 
7188 		/* Initialize the fragment header. */
7189 		ipf = (ipf_t *)mp1->b_rptr;
7190 		ipf->ipf_mp = mp1;
7191 		ipf->ipf_ptphn = ipfp;
7192 		ipfp[0] = ipf;
7193 		ipf->ipf_hash_next = NULL;
7194 		ipf->ipf_ident = ident;
7195 		ipf->ipf_protocol = proto;
7196 		ipf->ipf_src = src;
7197 		ipf->ipf_dst = dst;
7198 		ipf->ipf_nf_hdr_len = 0;
7199 		/* Record reassembly start time. */
7200 		ipf->ipf_timestamp = gethrestime_sec();
7201 		/* Record ipf generation and account for frag header */
7202 		ipf->ipf_gen = ill->ill_ipf_gen++;
7203 		ipf->ipf_count = MBLKSIZE(mp1);
7204 		ipf->ipf_last_frag_seen = B_FALSE;
7205 		ipf->ipf_ecn = ecn_info;
7206 		ipf->ipf_num_dups = 0;
7207 		ipfb->ipfb_frag_pkts++;
7208 		ipf->ipf_checksum = 0;
7209 		ipf->ipf_checksum_flags = 0;
7210 
7211 		/* Store checksum value in fragment header */
7212 		if (sum_flags != 0) {
7213 			sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7214 			sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7215 			ipf->ipf_checksum = sum_val;
7216 			ipf->ipf_checksum_flags = sum_flags;
7217 		}
7218 
7219 		/*
7220 		 * We handle reassembly two ways.  In the easy case,
7221 		 * where all the fragments show up in order, we do
7222 		 * minimal bookkeeping, and just clip new pieces on
7223 		 * the end.  If we ever see a hole, then we go off
7224 		 * to ip_reassemble which has to mark the pieces and
7225 		 * keep track of the number of holes, etc.  Obviously,
7226 		 * the point of having both mechanisms is so we can
7227 		 * handle the easy case as efficiently as possible.
7228 		 */
7229 		if (offset == 0) {
7230 			/* Easy case, in-order reassembly so far. */
7231 			ipf->ipf_count += msg_len;
7232 			ipf->ipf_tail_mp = tail_mp;
7233 			/*
7234 			 * Keep track of next expected offset in
7235 			 * ipf_end.
7236 			 */
7237 			ipf->ipf_end = end;
7238 			ipf->ipf_nf_hdr_len = hdr_length;
7239 		} else {
7240 			/* Hard case, hole at the beginning. */
7241 			ipf->ipf_tail_mp = NULL;
7242 			/*
7243 			 * ipf_end == 0 means that we have given up
7244 			 * on easy reassembly.
7245 			 */
7246 			ipf->ipf_end = 0;
7247 
7248 			/* Forget checksum offload from now on */
7249 			ipf->ipf_checksum_flags = 0;
7250 
7251 			/*
7252 			 * ipf_hole_cnt is set by ip_reassemble.
7253 			 * ipf_count is updated by ip_reassemble.
7254 			 * No need to check for return value here
7255 			 * as we don't expect reassembly to complete
7256 			 * or fail for the first fragment itself.
7257 			 */
7258 			(void) ip_reassemble(mp, ipf,
7259 			    (frag_offset_flags & IPH_OFFSET) << 3,
7260 			    (frag_offset_flags & IPH_MF), ill, msg_len);
7261 		}
7262 		/* Update per ipfb and ill byte counts */
7263 		ipfb->ipfb_count += ipf->ipf_count;
7264 		ASSERT(ipfb->ipfb_count > 0);	/* Wraparound */
7265 		atomic_add_32(&ill->ill_frag_count, ipf->ipf_count);
7266 		/* If the frag timer wasn't already going, start it. */
7267 		mutex_enter(&ill->ill_lock);
7268 		ill_frag_timer_start(ill);
7269 		mutex_exit(&ill->ill_lock);
7270 		goto reass_done;
7271 	}
7272 
7273 	/*
7274 	 * If the packet's flag has changed (it could be coming up
7275 	 * from an interface different than the previous, therefore
7276 	 * possibly different checksum capability), then forget about
7277 	 * any stored checksum states.  Otherwise add the value to
7278 	 * the existing one stored in the fragment header.
7279 	 */
7280 	if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) {
7281 		sum_val += ipf->ipf_checksum;
7282 		sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7283 		sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7284 		ipf->ipf_checksum = sum_val;
7285 	} else if (ipf->ipf_checksum_flags != 0) {
7286 		/* Forget checksum offload from now on */
7287 		ipf->ipf_checksum_flags = 0;
7288 	}
7289 
7290 	/*
7291 	 * We have a new piece of a datagram which is already being
7292 	 * reassembled.  Update the ECN info if all IP fragments
7293 	 * are ECN capable.  If there is one which is not, clear
7294 	 * all the info.  If there is at least one which has CE
7295 	 * code point, IP needs to report that up to transport.
7296 	 */
7297 	if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) {
7298 		if (ecn_info == IPH_ECN_CE)
7299 			ipf->ipf_ecn = IPH_ECN_CE;
7300 	} else {
7301 		ipf->ipf_ecn = IPH_ECN_NECT;
7302 	}
7303 	if (offset && ipf->ipf_end == offset) {
7304 		/* The new fragment fits at the end */
7305 		ipf->ipf_tail_mp->b_cont = mp;
7306 		/* Update the byte count */
7307 		ipf->ipf_count += msg_len;
7308 		/* Update per ipfb and ill byte counts */
7309 		ipfb->ipfb_count += msg_len;
7310 		ASSERT(ipfb->ipfb_count > 0);	/* Wraparound */
7311 		atomic_add_32(&ill->ill_frag_count, msg_len);
7312 		if (frag_offset_flags & IPH_MF) {
7313 			/* More to come. */
7314 			ipf->ipf_end = end;
7315 			ipf->ipf_tail_mp = tail_mp;
7316 			goto reass_done;
7317 		}
7318 	} else {
7319 		/* Go do the hard cases. */
7320 		int ret;
7321 
7322 		if (offset == 0)
7323 			ipf->ipf_nf_hdr_len = hdr_length;
7324 
7325 		/* Save current byte count */
7326 		count = ipf->ipf_count;
7327 		ret = ip_reassemble(mp, ipf,
7328 		    (frag_offset_flags & IPH_OFFSET) << 3,
7329 		    (frag_offset_flags & IPH_MF), ill, msg_len);
7330 		/* Count of bytes added and subtracted (freeb()ed) */
7331 		count = ipf->ipf_count - count;
7332 		if (count) {
7333 			/* Update per ipfb and ill byte counts */
7334 			ipfb->ipfb_count += count;
7335 			ASSERT(ipfb->ipfb_count > 0); /* Wraparound */
7336 			atomic_add_32(&ill->ill_frag_count, count);
7337 		}
7338 		if (ret == IP_REASS_PARTIAL) {
7339 			goto reass_done;
7340 		} else if (ret == IP_REASS_FAILED) {
7341 			/* Reassembly failed. Free up all resources */
7342 			ill_frag_free_pkts(ill, ipfb, ipf, 1);
7343 			for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) {
7344 				IP_REASS_SET_START(t_mp, 0);
7345 				IP_REASS_SET_END(t_mp, 0);
7346 			}
7347 			freemsg(mp);
7348 			goto reass_done;
7349 		}
7350 		/* We will reach here iff 'ret' is IP_REASS_COMPLETE */
7351 	}
7352 	/*
7353 	 * We have completed reassembly.  Unhook the frag header from
7354 	 * the reassembly list.
7355 	 *
7356 	 * Before we free the frag header, record the ECN info
7357 	 * to report back to the transport.
7358 	 */
7359 	ecn_info = ipf->ipf_ecn;
7360 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs);
7361 	ipfp = ipf->ipf_ptphn;
7362 
7363 	/* We need to supply these to caller */
7364 	if ((sum_flags = ipf->ipf_checksum_flags) != 0)
7365 		sum_val = ipf->ipf_checksum;
7366 	else
7367 		sum_val = 0;
7368 
7369 	mp1 = ipf->ipf_mp;
7370 	count = ipf->ipf_count;
7371 	ipf = ipf->ipf_hash_next;
7372 	if (ipf != NULL)
7373 		ipf->ipf_ptphn = ipfp;
7374 	ipfp[0] = ipf;
7375 	atomic_add_32(&ill->ill_frag_count, -count);
7376 	ASSERT(ipfb->ipfb_count >= count);
7377 	ipfb->ipfb_count -= count;
7378 	ipfb->ipfb_frag_pkts--;
7379 	mutex_exit(&ipfb->ipfb_lock);
7380 	/* Ditch the frag header. */
7381 	mp = mp1->b_cont;
7382 
7383 	freeb(mp1);
7384 
7385 	/* Restore original IP length in header. */
7386 	packet_size = (uint32_t)msgdsize(mp);
7387 	if (packet_size > IP_MAXPACKET) {
7388 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7389 		ip_drop_input("Reassembled packet too large", mp, ill);
7390 		freemsg(mp);
7391 		return (NULL);
7392 	}
7393 
7394 	if (DB_REF(mp) > 1) {
7395 		mblk_t *mp2 = copymsg(mp);
7396 
7397 		if (mp2 == NULL) {
7398 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7399 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
7400 			freemsg(mp);
7401 			return (NULL);
7402 		}
7403 		freemsg(mp);
7404 		mp = mp2;
7405 	}
7406 	ipha = (ipha_t *)mp->b_rptr;
7407 
7408 	ipha->ipha_length = htons((uint16_t)packet_size);
7409 	/* We're now complete, zip the frag state */
7410 	ipha->ipha_fragment_offset_and_flags = 0;
7411 	/* Record the ECN info. */
7412 	ipha->ipha_type_of_service &= 0xFC;
7413 	ipha->ipha_type_of_service |= ecn_info;
7414 
7415 	/* Update the receive attributes */
7416 	ira->ira_pktlen = packet_size;
7417 	ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha);
7418 
7419 	/* Reassembly is successful; set checksum information in packet */
7420 	DB_CKSUM16(mp) = (uint16_t)sum_val;
7421 	DB_CKSUMFLAGS(mp) = sum_flags;
7422 	DB_CKSUMSTART(mp) = ira->ira_ip_hdr_length;
7423 
7424 	return (mp);
7425 }
7426 
7427 /*
7428  * Pullup function that should be used for IP input in order to
7429  * ensure we do not loose the L2 source address; we need the l2 source
7430  * address for IP_RECVSLLA and for ndp_input.
7431  *
7432  * We return either NULL or b_rptr.
7433  */
7434 void *
7435 ip_pullup(mblk_t *mp, ssize_t len, ip_recv_attr_t *ira)
7436 {
7437 	ill_t		*ill = ira->ira_ill;
7438 
7439 	if (ip_rput_pullups++ == 0) {
7440 		(void) mi_strlog(ill->ill_rq, 1, SL_ERROR|SL_TRACE,
7441 		    "ip_pullup: %s forced us to "
7442 		    " pullup pkt, hdr len %ld, hdr addr %p",
7443 		    ill->ill_name, len, (void *)mp->b_rptr);
7444 	}
7445 	if (!(ira->ira_flags & IRAF_L2SRC_SET))
7446 		ip_setl2src(mp, ira, ira->ira_rill);
7447 	ASSERT(ira->ira_flags & IRAF_L2SRC_SET);
7448 	if (!pullupmsg(mp, len))
7449 		return (NULL);
7450 	else
7451 		return (mp->b_rptr);
7452 }
7453 
7454 /*
7455  * Make sure ira_l2src has an address. If we don't have one fill with zeros.
7456  * When called from the ULP ira_rill will be NULL hence the caller has to
7457  * pass in the ill.
7458  */
7459 /* ARGSUSED */
7460 void
7461 ip_setl2src(mblk_t *mp, ip_recv_attr_t *ira, ill_t *ill)
7462 {
7463 	const uchar_t *addr;
7464 	int alen;
7465 
7466 	if (ira->ira_flags & IRAF_L2SRC_SET)
7467 		return;
7468 
7469 	ASSERT(ill != NULL);
7470 	alen = ill->ill_phys_addr_length;
7471 	ASSERT(alen <= sizeof (ira->ira_l2src));
7472 	if (ira->ira_mhip != NULL &&
7473 	    (addr = ira->ira_mhip->mhi_saddr) != NULL) {
7474 		bcopy(addr, ira->ira_l2src, alen);
7475 	} else if ((ira->ira_flags & IRAF_L2SRC_LOOPBACK) &&
7476 	    (addr = ill->ill_phys_addr) != NULL) {
7477 		bcopy(addr, ira->ira_l2src, alen);
7478 	} else {
7479 		bzero(ira->ira_l2src, alen);
7480 	}
7481 	ira->ira_flags |= IRAF_L2SRC_SET;
7482 }
7483 
7484 /*
7485  * check ip header length and align it.
7486  */
7487 mblk_t *
7488 ip_check_and_align_header(mblk_t *mp, uint_t min_size, ip_recv_attr_t *ira)
7489 {
7490 	ill_t	*ill = ira->ira_ill;
7491 	ssize_t len;
7492 
7493 	len = MBLKL(mp);
7494 
7495 	if (!OK_32PTR(mp->b_rptr))
7496 		IP_STAT(ill->ill_ipst, ip_notaligned);
7497 	else
7498 		IP_STAT(ill->ill_ipst, ip_recv_pullup);
7499 
7500 	/* Guard against bogus device drivers */
7501 	if (len < 0) {
7502 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7503 		ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7504 		freemsg(mp);
7505 		return (NULL);
7506 	}
7507 
7508 	if (len == 0) {
7509 		/* GLD sometimes sends up mblk with b_rptr == b_wptr! */
7510 		mblk_t *mp1 = mp->b_cont;
7511 
7512 		if (!(ira->ira_flags & IRAF_L2SRC_SET))
7513 			ip_setl2src(mp, ira, ira->ira_rill);
7514 		ASSERT(ira->ira_flags & IRAF_L2SRC_SET);
7515 
7516 		freeb(mp);
7517 		mp = mp1;
7518 		if (mp == NULL)
7519 			return (NULL);
7520 
7521 		if (OK_32PTR(mp->b_rptr) && MBLKL(mp) >= min_size)
7522 			return (mp);
7523 	}
7524 	if (ip_pullup(mp, min_size, ira) == NULL) {
7525 		if (msgdsize(mp) < min_size) {
7526 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7527 			ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7528 		} else {
7529 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7530 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
7531 		}
7532 		freemsg(mp);
7533 		return (NULL);
7534 	}
7535 	return (mp);
7536 }
7537 
7538 /*
7539  * Common code for IPv4 and IPv6 to check and pullup multi-mblks
7540  */
7541 mblk_t *
7542 ip_check_length(mblk_t *mp, uchar_t *rptr, ssize_t len,	uint_t pkt_len,
7543     uint_t min_size, ip_recv_attr_t *ira)
7544 {
7545 	ill_t	*ill = ira->ira_ill;
7546 
7547 	/*
7548 	 * Make sure we have data length consistent
7549 	 * with the IP header.
7550 	 */
7551 	if (mp->b_cont == NULL) {
7552 		/* pkt_len is based on ipha_len, not the mblk length */
7553 		if (pkt_len < min_size) {
7554 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7555 			ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7556 			freemsg(mp);
7557 			return (NULL);
7558 		}
7559 		if (len < 0) {
7560 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
7561 			ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
7562 			freemsg(mp);
7563 			return (NULL);
7564 		}
7565 		/* Drop any pad */
7566 		mp->b_wptr = rptr + pkt_len;
7567 	} else if ((len += msgdsize(mp->b_cont)) != 0) {
7568 		ASSERT(pkt_len >= min_size);
7569 		if (pkt_len < min_size) {
7570 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7571 			ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7572 			freemsg(mp);
7573 			return (NULL);
7574 		}
7575 		if (len < 0) {
7576 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
7577 			ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
7578 			freemsg(mp);
7579 			return (NULL);
7580 		}
7581 		/* Drop any pad */
7582 		(void) adjmsg(mp, -len);
7583 		/*
7584 		 * adjmsg may have freed an mblk from the chain, hence
7585 		 * invalidate any hw checksum here. This will force IP to
7586 		 * calculate the checksum in sw, but only for this packet.
7587 		 */
7588 		DB_CKSUMFLAGS(mp) = 0;
7589 		IP_STAT(ill->ill_ipst, ip_multimblk);
7590 	}
7591 	return (mp);
7592 }
7593 
7594 /*
7595  * Check that the IPv4 opt_len is consistent with the packet and pullup
7596  * the options.
7597  */
7598 mblk_t *
7599 ip_check_optlen(mblk_t *mp, ipha_t *ipha, uint_t opt_len, uint_t pkt_len,
7600     ip_recv_attr_t *ira)
7601 {
7602 	ill_t	*ill = ira->ira_ill;
7603 	ssize_t len;
7604 
7605 	/* Assume no IPv6 packets arrive over the IPv4 queue */
7606 	if (IPH_HDR_VERSION(ipha) != IPV4_VERSION) {
7607 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7608 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion);
7609 		ip_drop_input("IPvN packet on IPv4 ill", mp, ill);
7610 		freemsg(mp);
7611 		return (NULL);
7612 	}
7613 
7614 	if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) {
7615 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7616 		ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7617 		freemsg(mp);
7618 		return (NULL);
7619 	}
7620 	/*
7621 	 * Recompute complete header length and make sure we
7622 	 * have access to all of it.
7623 	 */
7624 	len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2;
7625 	if (len > (mp->b_wptr - mp->b_rptr)) {
7626 		if (len > pkt_len) {
7627 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7628 			ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7629 			freemsg(mp);
7630 			return (NULL);
7631 		}
7632 		if (ip_pullup(mp, len, ira) == NULL) {
7633 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7634 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
7635 			freemsg(mp);
7636 			return (NULL);
7637 		}
7638 	}
7639 	return (mp);
7640 }
7641 
7642 /*
7643  * Returns a new ire, or the same ire, or NULL.
7644  * If a different IRE is returned, then it is held; the caller
7645  * needs to release it.
7646  * In no case is there any hold/release on the ire argument.
7647  */
7648 ire_t *
7649 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill)
7650 {
7651 	ire_t		*new_ire;
7652 	ill_t		*ire_ill;
7653 	uint_t		ifindex;
7654 	ip_stack_t	*ipst = ill->ill_ipst;
7655 	boolean_t	strict_check = B_FALSE;
7656 
7657 	/*
7658 	 * IPMP common case: if IRE and ILL are in the same group, there's no
7659 	 * issue (e.g. packet received on an underlying interface matched an
7660 	 * IRE_LOCAL on its associated group interface).
7661 	 */
7662 	ASSERT(ire->ire_ill != NULL);
7663 	if (IS_IN_SAME_ILLGRP(ill, ire->ire_ill))
7664 		return (ire);
7665 
7666 	/*
7667 	 * Do another ire lookup here, using the ingress ill, to see if the
7668 	 * interface is in a usesrc group.
7669 	 * As long as the ills belong to the same group, we don't consider
7670 	 * them to be arriving on the wrong interface. Thus, if the switch
7671 	 * is doing inbound load spreading, we won't drop packets when the
7672 	 * ip*_strict_dst_multihoming switch is on.
7673 	 * We also need to check for IPIF_UNNUMBERED point2point interfaces
7674 	 * where the local address may not be unique. In this case we were
7675 	 * at the mercy of the initial ire lookup and the IRE_LOCAL it
7676 	 * actually returned. The new lookup, which is more specific, should
7677 	 * only find the IRE_LOCAL associated with the ingress ill if one
7678 	 * exists.
7679 	 */
7680 	if (ire->ire_ipversion == IPV4_VERSION) {
7681 		if (ipst->ips_ip_strict_dst_multihoming)
7682 			strict_check = B_TRUE;
7683 		new_ire = ire_ftable_lookup_v4(*((ipaddr_t *)addr), 0, 0,
7684 		    IRE_LOCAL, ill, ALL_ZONES, NULL,
7685 		    (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL);
7686 	} else {
7687 		ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr));
7688 		if (ipst->ips_ipv6_strict_dst_multihoming)
7689 			strict_check = B_TRUE;
7690 		new_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL,
7691 		    IRE_LOCAL, ill, ALL_ZONES, NULL,
7692 		    (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL);
7693 	}
7694 	/*
7695 	 * If the same ire that was returned in ip_input() is found then this
7696 	 * is an indication that usesrc groups are in use. The packet
7697 	 * arrived on a different ill in the group than the one associated with
7698 	 * the destination address.  If a different ire was found then the same
7699 	 * IP address must be hosted on multiple ills. This is possible with
7700 	 * unnumbered point2point interfaces. We switch to use this new ire in
7701 	 * order to have accurate interface statistics.
7702 	 */
7703 	if (new_ire != NULL) {
7704 		/* Note: held in one case but not the other? Caller handles */
7705 		if (new_ire != ire)
7706 			return (new_ire);
7707 		/* Unchanged */
7708 		ire_refrele(new_ire);
7709 		return (ire);
7710 	}
7711 
7712 	/*
7713 	 * Chase pointers once and store locally.
7714 	 */
7715 	ASSERT(ire->ire_ill != NULL);
7716 	ire_ill = ire->ire_ill;
7717 	ifindex = ill->ill_usesrc_ifindex;
7718 
7719 	/*
7720 	 * Check if it's a legal address on the 'usesrc' interface.
7721 	 * For IPMP data addresses the IRE_LOCAL is the upper, hence we
7722 	 * can just check phyint_ifindex.
7723 	 */
7724 	if (ifindex != 0 && ifindex == ire_ill->ill_phyint->phyint_ifindex) {
7725 		return (ire);
7726 	}
7727 
7728 	/*
7729 	 * If the ip*_strict_dst_multihoming switch is on then we can
7730 	 * only accept this packet if the interface is marked as routing.
7731 	 */
7732 	if (!(strict_check))
7733 		return (ire);
7734 
7735 	if ((ill->ill_flags & ire->ire_ill->ill_flags & ILLF_ROUTER) != 0) {
7736 		return (ire);
7737 	}
7738 	return (NULL);
7739 }
7740 
7741 /*
7742  * This function is used to construct a mac_header_info_s from a
7743  * DL_UNITDATA_IND message.
7744  * The address fields in the mhi structure points into the message,
7745  * thus the caller can't use those fields after freeing the message.
7746  *
7747  * We determine whether the packet received is a non-unicast packet
7748  * and in doing so, determine whether or not it is broadcast vs multicast.
7749  * For it to be a broadcast packet, we must have the appropriate mblk_t
7750  * hanging off the ill_t.  If this is either not present or doesn't match
7751  * the destination mac address in the DL_UNITDATA_IND, the packet is deemed
7752  * to be multicast.  Thus NICs that have no broadcast address (or no
7753  * capability for one, such as point to point links) cannot return as
7754  * the packet being broadcast.
7755  */
7756 void
7757 ip_dlur_to_mhi(ill_t *ill, mblk_t *mb, struct mac_header_info_s *mhip)
7758 {
7759 	dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr;
7760 	mblk_t *bmp;
7761 	uint_t extra_offset;
7762 
7763 	bzero(mhip, sizeof (struct mac_header_info_s));
7764 
7765 	mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST;
7766 
7767 	if (ill->ill_sap_length < 0)
7768 		extra_offset = 0;
7769 	else
7770 		extra_offset = ill->ill_sap_length;
7771 
7772 	mhip->mhi_daddr = (uchar_t *)ind + ind->dl_dest_addr_offset +
7773 	    extra_offset;
7774 	mhip->mhi_saddr = (uchar_t *)ind + ind->dl_src_addr_offset +
7775 	    extra_offset;
7776 
7777 	if (!ind->dl_group_address)
7778 		return;
7779 
7780 	/* Multicast or broadcast */
7781 	mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST;
7782 
7783 	if (ind->dl_dest_addr_offset > sizeof (*ind) &&
7784 	    ind->dl_dest_addr_offset + ind->dl_dest_addr_length < MBLKL(mb) &&
7785 	    (bmp = ill->ill_bcast_mp) != NULL) {
7786 		dl_unitdata_req_t *dlur;
7787 		uint8_t *bphys_addr;
7788 
7789 		dlur = (dl_unitdata_req_t *)bmp->b_rptr;
7790 		bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset +
7791 		    extra_offset;
7792 
7793 		if (bcmp(mhip->mhi_daddr, bphys_addr,
7794 		    ind->dl_dest_addr_length) == 0)
7795 			mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST;
7796 	}
7797 }
7798 
7799 /*
7800  * This function is used to construct a mac_header_info_s from a
7801  * M_DATA fastpath message from a DLPI driver.
7802  * The address fields in the mhi structure points into the message,
7803  * thus the caller can't use those fields after freeing the message.
7804  *
7805  * We determine whether the packet received is a non-unicast packet
7806  * and in doing so, determine whether or not it is broadcast vs multicast.
7807  * For it to be a broadcast packet, we must have the appropriate mblk_t
7808  * hanging off the ill_t.  If this is either not present or doesn't match
7809  * the destination mac address in the DL_UNITDATA_IND, the packet is deemed
7810  * to be multicast.  Thus NICs that have no broadcast address (or no
7811  * capability for one, such as point to point links) cannot return as
7812  * the packet being broadcast.
7813  */
7814 void
7815 ip_mdata_to_mhi(ill_t *ill, mblk_t *mp, struct mac_header_info_s *mhip)
7816 {
7817 	mblk_t *bmp;
7818 	struct ether_header *pether;
7819 
7820 	bzero(mhip, sizeof (struct mac_header_info_s));
7821 
7822 	mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST;
7823 
7824 	pether = (struct ether_header *)((char *)mp->b_rptr
7825 	    - sizeof (struct ether_header));
7826 
7827 	/*
7828 	 * Make sure the interface is an ethernet type, since we don't
7829 	 * know the header format for anything but Ethernet. Also make
7830 	 * sure we are pointing correctly above db_base.
7831 	 */
7832 	if (ill->ill_type != IFT_ETHER)
7833 		return;
7834 
7835 retry:
7836 	if ((uchar_t *)pether < mp->b_datap->db_base)
7837 		return;
7838 
7839 	/* Is there a VLAN tag? */
7840 	if (ill->ill_isv6) {
7841 		if (pether->ether_type != htons(ETHERTYPE_IPV6)) {
7842 			pether = (struct ether_header *)((char *)pether - 4);
7843 			goto retry;
7844 		}
7845 	} else {
7846 		if (pether->ether_type != htons(ETHERTYPE_IP)) {
7847 			pether = (struct ether_header *)((char *)pether - 4);
7848 			goto retry;
7849 		}
7850 	}
7851 	mhip->mhi_daddr = (uchar_t *)&pether->ether_dhost;
7852 	mhip->mhi_saddr = (uchar_t *)&pether->ether_shost;
7853 
7854 	if (!(mhip->mhi_daddr[0] & 0x01))
7855 		return;
7856 
7857 	/* Multicast or broadcast */
7858 	mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST;
7859 
7860 	if ((bmp = ill->ill_bcast_mp) != NULL) {
7861 		dl_unitdata_req_t *dlur;
7862 		uint8_t *bphys_addr;
7863 		uint_t	addrlen;
7864 
7865 		dlur = (dl_unitdata_req_t *)bmp->b_rptr;
7866 		addrlen = dlur->dl_dest_addr_length;
7867 		if (ill->ill_sap_length < 0) {
7868 			bphys_addr = (uchar_t *)dlur +
7869 			    dlur->dl_dest_addr_offset;
7870 			addrlen += ill->ill_sap_length;
7871 		} else {
7872 			bphys_addr = (uchar_t *)dlur +
7873 			    dlur->dl_dest_addr_offset +
7874 			    ill->ill_sap_length;
7875 			addrlen -= ill->ill_sap_length;
7876 		}
7877 		if (bcmp(mhip->mhi_daddr, bphys_addr, addrlen) == 0)
7878 			mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST;
7879 	}
7880 }
7881 
7882 /*
7883  * Handle anything but M_DATA messages
7884  * We see the DL_UNITDATA_IND which are part
7885  * of the data path, and also the other messages from the driver.
7886  */
7887 void
7888 ip_rput_notdata(ill_t *ill, mblk_t *mp)
7889 {
7890 	mblk_t		*first_mp;
7891 	struct iocblk   *iocp;
7892 	struct mac_header_info_s mhi;
7893 
7894 	switch (DB_TYPE(mp)) {
7895 	case M_PROTO:
7896 	case M_PCPROTO: {
7897 		if (((dl_unitdata_ind_t *)mp->b_rptr)->dl_primitive !=
7898 		    DL_UNITDATA_IND) {
7899 			/* Go handle anything other than data elsewhere. */
7900 			ip_rput_dlpi(ill, mp);
7901 			return;
7902 		}
7903 
7904 		first_mp = mp;
7905 		mp = first_mp->b_cont;
7906 		first_mp->b_cont = NULL;
7907 
7908 		if (mp == NULL) {
7909 			freeb(first_mp);
7910 			return;
7911 		}
7912 		ip_dlur_to_mhi(ill, first_mp, &mhi);
7913 		if (ill->ill_isv6)
7914 			ip_input_v6(ill, NULL, mp, &mhi);
7915 		else
7916 			ip_input(ill, NULL, mp, &mhi);
7917 
7918 		/* Ditch the DLPI header. */
7919 		freeb(first_mp);
7920 		return;
7921 	}
7922 	case M_IOCACK:
7923 		iocp = (struct iocblk *)mp->b_rptr;
7924 		switch (iocp->ioc_cmd) {
7925 		case DL_IOC_HDR_INFO:
7926 			ill_fastpath_ack(ill, mp);
7927 			return;
7928 		default:
7929 			putnext(ill->ill_rq, mp);
7930 			return;
7931 		}
7932 		/* FALLTHRU */
7933 	case M_ERROR:
7934 	case M_HANGUP:
7935 		mutex_enter(&ill->ill_lock);
7936 		if (ill->ill_state_flags & ILL_CONDEMNED) {
7937 			mutex_exit(&ill->ill_lock);
7938 			freemsg(mp);
7939 			return;
7940 		}
7941 		ill_refhold_locked(ill);
7942 		mutex_exit(&ill->ill_lock);
7943 		qwriter_ip(ill, ill->ill_rq, mp, ip_rput_other, CUR_OP,
7944 		    B_FALSE);
7945 		return;
7946 	case M_CTL:
7947 		putnext(ill->ill_rq, mp);
7948 		return;
7949 	case M_IOCNAK:
7950 		ip1dbg(("got iocnak "));
7951 		iocp = (struct iocblk *)mp->b_rptr;
7952 		switch (iocp->ioc_cmd) {
7953 		case DL_IOC_HDR_INFO:
7954 			ip_rput_other(NULL, ill->ill_rq, mp, NULL);
7955 			return;
7956 		default:
7957 			break;
7958 		}
7959 		/* FALLTHRU */
7960 	default:
7961 		putnext(ill->ill_rq, mp);
7962 		return;
7963 	}
7964 }
7965 
7966 /* Read side put procedure.  Packets coming from the wire arrive here. */
7967 void
7968 ip_rput(queue_t *q, mblk_t *mp)
7969 {
7970 	ill_t	*ill;
7971 	union DL_primitives *dl;
7972 
7973 	ill = (ill_t *)q->q_ptr;
7974 
7975 	if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) {
7976 		/*
7977 		 * If things are opening or closing, only accept high-priority
7978 		 * DLPI messages.  (On open ill->ill_ipif has not yet been
7979 		 * created; on close, things hanging off the ill may have been
7980 		 * freed already.)
7981 		 */
7982 		dl = (union DL_primitives *)mp->b_rptr;
7983 		if (DB_TYPE(mp) != M_PCPROTO ||
7984 		    dl->dl_primitive == DL_UNITDATA_IND) {
7985 			inet_freemsg(mp);
7986 			return;
7987 		}
7988 	}
7989 	if (DB_TYPE(mp) == M_DATA) {
7990 		struct mac_header_info_s mhi;
7991 
7992 		ip_mdata_to_mhi(ill, mp, &mhi);
7993 		ip_input(ill, NULL, mp, &mhi);
7994 	} else {
7995 		ip_rput_notdata(ill, mp);
7996 	}
7997 }
7998 
7999 /*
8000  * Move the information to a copy.
8001  */
8002 mblk_t *
8003 ip_fix_dbref(mblk_t *mp, ip_recv_attr_t *ira)
8004 {
8005 	mblk_t		*mp1;
8006 	ill_t		*ill = ira->ira_ill;
8007 	ip_stack_t	*ipst = ill->ill_ipst;
8008 
8009 	IP_STAT(ipst, ip_db_ref);
8010 
8011 	/* Make sure we have ira_l2src before we loose the original mblk */
8012 	if (!(ira->ira_flags & IRAF_L2SRC_SET))
8013 		ip_setl2src(mp, ira, ira->ira_rill);
8014 
8015 	mp1 = copymsg(mp);
8016 	if (mp1 == NULL) {
8017 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
8018 		ip_drop_input("ipIfStatsInDiscards", mp, ill);
8019 		freemsg(mp);
8020 		return (NULL);
8021 	}
8022 	/* preserve the hardware checksum flags and data, if present */
8023 	if (DB_CKSUMFLAGS(mp) != 0) {
8024 		DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp);
8025 		DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp);
8026 		DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp);
8027 		DB_CKSUMEND(mp1) = DB_CKSUMEND(mp);
8028 		DB_CKSUM16(mp1) = DB_CKSUM16(mp);
8029 	}
8030 	freemsg(mp);
8031 	return (mp1);
8032 }
8033 
8034 static void
8035 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err,
8036     t_uscalar_t err)
8037 {
8038 	if (dl_err == DL_SYSERR) {
8039 		(void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
8040 		    "%s: %s failed: DL_SYSERR (errno %u)\n",
8041 		    ill->ill_name, dl_primstr(prim), err);
8042 		return;
8043 	}
8044 
8045 	(void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
8046 	    "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim),
8047 	    dl_errstr(dl_err));
8048 }
8049 
8050 /*
8051  * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other
8052  * than DL_UNITDATA_IND messages. If we need to process this message
8053  * exclusively, we call qwriter_ip, in which case we also need to call
8054  * ill_refhold before that, since qwriter_ip does an ill_refrele.
8055  */
8056 void
8057 ip_rput_dlpi(ill_t *ill, mblk_t *mp)
8058 {
8059 	dl_ok_ack_t	*dloa = (dl_ok_ack_t *)mp->b_rptr;
8060 	dl_error_ack_t	*dlea = (dl_error_ack_t *)dloa;
8061 	queue_t		*q = ill->ill_rq;
8062 	t_uscalar_t	prim = dloa->dl_primitive;
8063 	t_uscalar_t	reqprim = DL_PRIM_INVAL;
8064 
8065 	DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi",
8066 	    char *, dl_primstr(prim), ill_t *, ill);
8067 	ip1dbg(("ip_rput_dlpi"));
8068 
8069 	/*
8070 	 * If we received an ACK but didn't send a request for it, then it
8071 	 * can't be part of any pending operation; discard up-front.
8072 	 */
8073 	switch (prim) {
8074 	case DL_ERROR_ACK:
8075 		reqprim = dlea->dl_error_primitive;
8076 		ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s "
8077 		    "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim),
8078 		    reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno,
8079 		    dlea->dl_unix_errno));
8080 		break;
8081 	case DL_OK_ACK:
8082 		reqprim = dloa->dl_correct_primitive;
8083 		break;
8084 	case DL_INFO_ACK:
8085 		reqprim = DL_INFO_REQ;
8086 		break;
8087 	case DL_BIND_ACK:
8088 		reqprim = DL_BIND_REQ;
8089 		break;
8090 	case DL_PHYS_ADDR_ACK:
8091 		reqprim = DL_PHYS_ADDR_REQ;
8092 		break;
8093 	case DL_NOTIFY_ACK:
8094 		reqprim = DL_NOTIFY_REQ;
8095 		break;
8096 	case DL_CAPABILITY_ACK:
8097 		reqprim = DL_CAPABILITY_REQ;
8098 		break;
8099 	}
8100 
8101 	if (prim != DL_NOTIFY_IND) {
8102 		if (reqprim == DL_PRIM_INVAL ||
8103 		    !ill_dlpi_pending(ill, reqprim)) {
8104 			/* Not a DLPI message we support or expected */
8105 			freemsg(mp);
8106 			return;
8107 		}
8108 		ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim),
8109 		    dl_primstr(reqprim)));
8110 	}
8111 
8112 	switch (reqprim) {
8113 	case DL_UNBIND_REQ:
8114 		/*
8115 		 * NOTE: we mark the unbind as complete even if we got a
8116 		 * DL_ERROR_ACK, since there's not much else we can do.
8117 		 */
8118 		mutex_enter(&ill->ill_lock);
8119 		ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS;
8120 		cv_signal(&ill->ill_cv);
8121 		mutex_exit(&ill->ill_lock);
8122 		break;
8123 
8124 	case DL_ENABMULTI_REQ:
8125 		if (prim == DL_OK_ACK) {
8126 			if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS)
8127 				ill->ill_dlpi_multicast_state = IDS_OK;
8128 		}
8129 		break;
8130 	}
8131 
8132 	/*
8133 	 * The message is one we're waiting for (or DL_NOTIFY_IND), but we
8134 	 * need to become writer to continue to process it.  Because an
8135 	 * exclusive operation doesn't complete until replies to all queued
8136 	 * DLPI messages have been received, we know we're in the middle of an
8137 	 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND).
8138 	 *
8139 	 * As required by qwriter_ip(), we refhold the ill; it will refrele.
8140 	 * Since this is on the ill stream we unconditionally bump up the
8141 	 * refcount without doing ILL_CAN_LOOKUP().
8142 	 */
8143 	ill_refhold(ill);
8144 	if (prim == DL_NOTIFY_IND)
8145 		qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE);
8146 	else
8147 		qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE);
8148 }
8149 
8150 /*
8151  * Handling of DLPI messages that require exclusive access to the ipsq.
8152  *
8153  * Need to do ipsq_pending_mp_get on ioctl completion, which could
8154  * happen here. (along with mi_copy_done)
8155  */
8156 /* ARGSUSED */
8157 static void
8158 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
8159 {
8160 	dl_ok_ack_t	*dloa = (dl_ok_ack_t *)mp->b_rptr;
8161 	dl_error_ack_t	*dlea = (dl_error_ack_t *)dloa;
8162 	int		err = 0;
8163 	ill_t		*ill = (ill_t *)q->q_ptr;
8164 	ipif_t		*ipif = NULL;
8165 	mblk_t		*mp1 = NULL;
8166 	conn_t		*connp = NULL;
8167 	t_uscalar_t	paddrreq;
8168 	mblk_t		*mp_hw;
8169 	boolean_t	success;
8170 	boolean_t	ioctl_aborted = B_FALSE;
8171 	boolean_t	log = B_TRUE;
8172 
8173 	DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer",
8174 	    char *, dl_primstr(dloa->dl_primitive), ill_t *, ill);
8175 
8176 	ip1dbg(("ip_rput_dlpi_writer .."));
8177 	ASSERT(ipsq->ipsq_xop == ill->ill_phyint->phyint_ipsq->ipsq_xop);
8178 	ASSERT(IAM_WRITER_ILL(ill));
8179 
8180 	ipif = ipsq->ipsq_xop->ipx_pending_ipif;
8181 	/*
8182 	 * The current ioctl could have been aborted by the user and a new
8183 	 * ioctl to bring up another ill could have started. We could still
8184 	 * get a response from the driver later.
8185 	 */
8186 	if (ipif != NULL && ipif->ipif_ill != ill)
8187 		ioctl_aborted = B_TRUE;
8188 
8189 	switch (dloa->dl_primitive) {
8190 	case DL_ERROR_ACK:
8191 		ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n",
8192 		    dl_primstr(dlea->dl_error_primitive)));
8193 
8194 		DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer error",
8195 		    char *, dl_primstr(dlea->dl_error_primitive),
8196 		    ill_t *, ill);
8197 
8198 		switch (dlea->dl_error_primitive) {
8199 		case DL_DISABMULTI_REQ:
8200 			ill_dlpi_done(ill, dlea->dl_error_primitive);
8201 			break;
8202 		case DL_PROMISCON_REQ:
8203 		case DL_PROMISCOFF_REQ:
8204 		case DL_UNBIND_REQ:
8205 		case DL_ATTACH_REQ:
8206 		case DL_INFO_REQ:
8207 			ill_dlpi_done(ill, dlea->dl_error_primitive);
8208 			break;
8209 		case DL_NOTIFY_REQ:
8210 			ill_dlpi_done(ill, DL_NOTIFY_REQ);
8211 			log = B_FALSE;
8212 			break;
8213 		case DL_PHYS_ADDR_REQ:
8214 			/*
8215 			 * For IPv6 only, there are two additional
8216 			 * phys_addr_req's sent to the driver to get the
8217 			 * IPv6 token and lla. This allows IP to acquire
8218 			 * the hardware address format for a given interface
8219 			 * without having built in knowledge of the hardware
8220 			 * address. ill_phys_addr_pend keeps track of the last
8221 			 * DL_PAR sent so we know which response we are
8222 			 * dealing with. ill_dlpi_done will update
8223 			 * ill_phys_addr_pend when it sends the next req.
8224 			 * We don't complete the IOCTL until all three DL_PARs
8225 			 * have been attempted, so set *_len to 0 and break.
8226 			 */
8227 			paddrreq = ill->ill_phys_addr_pend;
8228 			ill_dlpi_done(ill, DL_PHYS_ADDR_REQ);
8229 			if (paddrreq == DL_IPV6_TOKEN) {
8230 				ill->ill_token_length = 0;
8231 				log = B_FALSE;
8232 				break;
8233 			} else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) {
8234 				ill->ill_nd_lla_len = 0;
8235 				log = B_FALSE;
8236 				break;
8237 			}
8238 			/*
8239 			 * Something went wrong with the DL_PHYS_ADDR_REQ.
8240 			 * We presumably have an IOCTL hanging out waiting
8241 			 * for completion. Find it and complete the IOCTL
8242 			 * with the error noted.
8243 			 * However, ill_dl_phys was called on an ill queue
8244 			 * (from SIOCSLIFNAME), thus conn_pending_ill is not
8245 			 * set. But the ioctl is known to be pending on ill_wq.
8246 			 */
8247 			if (!ill->ill_ifname_pending)
8248 				break;
8249 			ill->ill_ifname_pending = 0;
8250 			if (!ioctl_aborted)
8251 				mp1 = ipsq_pending_mp_get(ipsq, &connp);
8252 			if (mp1 != NULL) {
8253 				/*
8254 				 * This operation (SIOCSLIFNAME) must have
8255 				 * happened on the ill. Assert there is no conn
8256 				 */
8257 				ASSERT(connp == NULL);
8258 				q = ill->ill_wq;
8259 			}
8260 			break;
8261 		case DL_BIND_REQ:
8262 			ill_dlpi_done(ill, DL_BIND_REQ);
8263 			if (ill->ill_ifname_pending)
8264 				break;
8265 			mutex_enter(&ill->ill_lock);
8266 			ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS;
8267 			mutex_exit(&ill->ill_lock);
8268 			/*
8269 			 * Something went wrong with the bind.  We presumably
8270 			 * have an IOCTL hanging out waiting for completion.
8271 			 * Find it, take down the interface that was coming
8272 			 * up, and complete the IOCTL with the error noted.
8273 			 */
8274 			if (!ioctl_aborted)
8275 				mp1 = ipsq_pending_mp_get(ipsq, &connp);
8276 			if (mp1 != NULL) {
8277 				/*
8278 				 * This might be a result of a DL_NOTE_REPLUMB
8279 				 * notification. In that case, connp is NULL.
8280 				 */
8281 				if (connp != NULL)
8282 					q = CONNP_TO_WQ(connp);
8283 
8284 				(void) ipif_down(ipif, NULL, NULL);
8285 				/* error is set below the switch */
8286 			}
8287 			break;
8288 		case DL_ENABMULTI_REQ:
8289 			ill_dlpi_done(ill, DL_ENABMULTI_REQ);
8290 
8291 			if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS)
8292 				ill->ill_dlpi_multicast_state = IDS_FAILED;
8293 			if (ill->ill_dlpi_multicast_state == IDS_FAILED) {
8294 
8295 				printf("ip: joining multicasts failed (%d)"
8296 				    " on %s - will use link layer "
8297 				    "broadcasts for multicast\n",
8298 				    dlea->dl_errno, ill->ill_name);
8299 
8300 				/*
8301 				 * Set up for multi_bcast; We are the
8302 				 * writer, so ok to access ill->ill_ipif
8303 				 * without any lock.
8304 				 */
8305 				mutex_enter(&ill->ill_phyint->phyint_lock);
8306 				ill->ill_phyint->phyint_flags |=
8307 				    PHYI_MULTI_BCAST;
8308 				mutex_exit(&ill->ill_phyint->phyint_lock);
8309 
8310 			}
8311 			freemsg(mp);	/* Don't want to pass this up */
8312 			return;
8313 		case DL_CAPABILITY_REQ:
8314 			ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for "
8315 			    "DL_CAPABILITY REQ\n"));
8316 			if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT)
8317 				ill->ill_dlpi_capab_state = IDCS_FAILED;
8318 			ill_capability_done(ill);
8319 			freemsg(mp);
8320 			return;
8321 		}
8322 		/*
8323 		 * Note the error for IOCTL completion (mp1 is set when
8324 		 * ready to complete ioctl). If ill_ifname_pending_err is
8325 		 * set, an error occured during plumbing (ill_ifname_pending),
8326 		 * so we want to report that error.
8327 		 *
8328 		 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's
8329 		 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are
8330 		 * expected to get errack'd if the driver doesn't support
8331 		 * these flags (e.g. ethernet). log will be set to B_FALSE
8332 		 * if these error conditions are encountered.
8333 		 */
8334 		if (mp1 != NULL) {
8335 			if (ill->ill_ifname_pending_err != 0)  {
8336 				err = ill->ill_ifname_pending_err;
8337 				ill->ill_ifname_pending_err = 0;
8338 			} else {
8339 				err = dlea->dl_unix_errno ?
8340 				    dlea->dl_unix_errno : ENXIO;
8341 			}
8342 		/*
8343 		 * If we're plumbing an interface and an error hasn't already
8344 		 * been saved, set ill_ifname_pending_err to the error passed
8345 		 * up. Ignore the error if log is B_FALSE (see comment above).
8346 		 */
8347 		} else if (log && ill->ill_ifname_pending &&
8348 		    ill->ill_ifname_pending_err == 0) {
8349 			ill->ill_ifname_pending_err = dlea->dl_unix_errno ?
8350 			    dlea->dl_unix_errno : ENXIO;
8351 		}
8352 
8353 		if (log)
8354 			ip_dlpi_error(ill, dlea->dl_error_primitive,
8355 			    dlea->dl_errno, dlea->dl_unix_errno);
8356 		break;
8357 	case DL_CAPABILITY_ACK:
8358 		ill_capability_ack(ill, mp);
8359 		/*
8360 		 * The message has been handed off to ill_capability_ack
8361 		 * and must not be freed below
8362 		 */
8363 		mp = NULL;
8364 		break;
8365 
8366 	case DL_INFO_ACK:
8367 		/* Call a routine to handle this one. */
8368 		ill_dlpi_done(ill, DL_INFO_REQ);
8369 		ip_ll_subnet_defaults(ill, mp);
8370 		ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock));
8371 		return;
8372 	case DL_BIND_ACK:
8373 		/*
8374 		 * We should have an IOCTL waiting on this unless
8375 		 * sent by ill_dl_phys, in which case just return
8376 		 */
8377 		ill_dlpi_done(ill, DL_BIND_REQ);
8378 
8379 		if (ill->ill_ifname_pending) {
8380 			DTRACE_PROBE2(ip__rput__dlpi__ifname__pending,
8381 			    ill_t *, ill, mblk_t *, mp);
8382 			break;
8383 		}
8384 		mutex_enter(&ill->ill_lock);
8385 		ill->ill_dl_up = 1;
8386 		ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS;
8387 		mutex_exit(&ill->ill_lock);
8388 
8389 		if (!ioctl_aborted)
8390 			mp1 = ipsq_pending_mp_get(ipsq, &connp);
8391 		if (mp1 == NULL) {
8392 			DTRACE_PROBE1(ip__rput__dlpi__no__mblk, ill_t *, ill);
8393 			break;
8394 		}
8395 		/*
8396 		 * mp1 was added by ill_dl_up(). if that is a result of
8397 		 * a DL_NOTE_REPLUMB notification, connp could be NULL.
8398 		 */
8399 		if (connp != NULL)
8400 			q = CONNP_TO_WQ(connp);
8401 		/*
8402 		 * We are exclusive. So nothing can change even after
8403 		 * we get the pending mp.
8404 		 */
8405 		ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name));
8406 		DTRACE_PROBE1(ip__rput__dlpi__bind__ack, ill_t *, ill);
8407 		ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0);
8408 
8409 		/*
8410 		 * Now bring up the resolver; when that is complete, we'll
8411 		 * create IREs.  Note that we intentionally mirror what
8412 		 * ipif_up() would have done, because we got here by way of
8413 		 * ill_dl_up(), which stopped ipif_up()'s processing.
8414 		 */
8415 		if (ill->ill_isv6) {
8416 			/*
8417 			 * v6 interfaces.
8418 			 * Unlike ARP which has to do another bind
8419 			 * and attach, once we get here we are
8420 			 * done with NDP
8421 			 */
8422 			(void) ipif_resolver_up(ipif, Res_act_initial);
8423 			if ((err = ipif_ndp_up(ipif, B_TRUE)) == 0)
8424 				err = ipif_up_done_v6(ipif);
8425 		} else if (ill->ill_net_type == IRE_IF_RESOLVER) {
8426 			/*
8427 			 * ARP and other v4 external resolvers.
8428 			 * Leave the pending mblk intact so that
8429 			 * the ioctl completes in ip_rput().
8430 			 */
8431 			if (connp != NULL)
8432 				mutex_enter(&connp->conn_lock);
8433 			mutex_enter(&ill->ill_lock);
8434 			success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0);
8435 			mutex_exit(&ill->ill_lock);
8436 			if (connp != NULL)
8437 				mutex_exit(&connp->conn_lock);
8438 			if (success) {
8439 				err = ipif_resolver_up(ipif, Res_act_initial);
8440 				if (err == EINPROGRESS) {
8441 					freemsg(mp);
8442 					return;
8443 				}
8444 				mp1 = ipsq_pending_mp_get(ipsq, &connp);
8445 			} else {
8446 				/* The conn has started closing */
8447 				err = EINTR;
8448 			}
8449 		} else {
8450 			/*
8451 			 * This one is complete. Reply to pending ioctl.
8452 			 */
8453 			(void) ipif_resolver_up(ipif, Res_act_initial);
8454 			err = ipif_up_done(ipif);
8455 		}
8456 
8457 		if ((err == 0) && (ill->ill_up_ipifs)) {
8458 			err = ill_up_ipifs(ill, q, mp1);
8459 			if (err == EINPROGRESS) {
8460 				freemsg(mp);
8461 				return;
8462 			}
8463 		}
8464 
8465 		/*
8466 		 * If we have a moved ipif to bring up, and everything has
8467 		 * succeeded to this point, bring it up on the IPMP ill.
8468 		 * Otherwise, leave it down -- the admin can try to bring it
8469 		 * up by hand if need be.
8470 		 */
8471 		if (ill->ill_move_ipif != NULL) {
8472 			if (err != 0) {
8473 				ill->ill_move_ipif = NULL;
8474 			} else {
8475 				ipif = ill->ill_move_ipif;
8476 				ill->ill_move_ipif = NULL;
8477 				err = ipif_up(ipif, q, mp1);
8478 				if (err == EINPROGRESS) {
8479 					freemsg(mp);
8480 					return;
8481 				}
8482 			}
8483 		}
8484 		break;
8485 
8486 	case DL_NOTIFY_IND: {
8487 		dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr;
8488 		uint_t orig_mtu, orig_mc_mtu;
8489 
8490 		switch (notify->dl_notification) {
8491 		case DL_NOTE_PHYS_ADDR:
8492 			err = ill_set_phys_addr(ill, mp);
8493 			break;
8494 
8495 		case DL_NOTE_REPLUMB:
8496 			/*
8497 			 * Directly return after calling ill_replumb().
8498 			 * Note that we should not free mp as it is reused
8499 			 * in the ill_replumb() function.
8500 			 */
8501 			err = ill_replumb(ill, mp);
8502 			return;
8503 
8504 		case DL_NOTE_FASTPATH_FLUSH:
8505 			nce_flush(ill, B_FALSE);
8506 			break;
8507 
8508 		case DL_NOTE_SDU_SIZE:
8509 		case DL_NOTE_SDU_SIZE2:
8510 			/*
8511 			 * The dce and fragmentation code can cope with
8512 			 * this changing while packets are being sent.
8513 			 * When packets are sent ip_output will discover
8514 			 * a change.
8515 			 *
8516 			 * Change the MTU size of the interface.
8517 			 */
8518 			mutex_enter(&ill->ill_lock);
8519 			orig_mtu = ill->ill_mtu;
8520 			orig_mc_mtu = ill->ill_mc_mtu;
8521 			switch (notify->dl_notification) {
8522 			case DL_NOTE_SDU_SIZE:
8523 				ill->ill_current_frag =
8524 				    (uint_t)notify->dl_data;
8525 				ill->ill_mc_mtu = (uint_t)notify->dl_data;
8526 				break;
8527 			case DL_NOTE_SDU_SIZE2:
8528 				ill->ill_current_frag =
8529 				    (uint_t)notify->dl_data1;
8530 				ill->ill_mc_mtu = (uint_t)notify->dl_data2;
8531 				break;
8532 			}
8533 			if (ill->ill_current_frag > ill->ill_max_frag)
8534 				ill->ill_max_frag = ill->ill_current_frag;
8535 
8536 			if (!(ill->ill_flags & ILLF_FIXEDMTU)) {
8537 				ill->ill_mtu = ill->ill_current_frag;
8538 
8539 				/*
8540 				 * If ill_user_mtu was set (via
8541 				 * SIOCSLIFLNKINFO), clamp ill_mtu at it.
8542 				 */
8543 				if (ill->ill_user_mtu != 0 &&
8544 				    ill->ill_user_mtu < ill->ill_mtu)
8545 					ill->ill_mtu = ill->ill_user_mtu;
8546 
8547 				if (ill->ill_user_mtu != 0 &&
8548 				    ill->ill_user_mtu < ill->ill_mc_mtu)
8549 					ill->ill_mc_mtu = ill->ill_user_mtu;
8550 
8551 				if (ill->ill_isv6) {
8552 					if (ill->ill_mtu < IPV6_MIN_MTU)
8553 						ill->ill_mtu = IPV6_MIN_MTU;
8554 					if (ill->ill_mc_mtu < IPV6_MIN_MTU)
8555 						ill->ill_mc_mtu = IPV6_MIN_MTU;
8556 				} else {
8557 					if (ill->ill_mtu < IP_MIN_MTU)
8558 						ill->ill_mtu = IP_MIN_MTU;
8559 					if (ill->ill_mc_mtu < IP_MIN_MTU)
8560 						ill->ill_mc_mtu = IP_MIN_MTU;
8561 				}
8562 			} else if (ill->ill_mc_mtu > ill->ill_mtu) {
8563 				ill->ill_mc_mtu = ill->ill_mtu;
8564 			}
8565 
8566 			mutex_exit(&ill->ill_lock);
8567 			/*
8568 			 * Make sure all dce_generation checks find out
8569 			 * that ill_mtu/ill_mc_mtu has changed.
8570 			 */
8571 			if (orig_mtu != ill->ill_mtu ||
8572 			    orig_mc_mtu != ill->ill_mc_mtu) {
8573 				dce_increment_all_generations(ill->ill_isv6,
8574 				    ill->ill_ipst);
8575 			}
8576 
8577 			/*
8578 			 * Refresh IPMP meta-interface MTU if necessary.
8579 			 */
8580 			if (IS_UNDER_IPMP(ill))
8581 				ipmp_illgrp_refresh_mtu(ill->ill_grp);
8582 			break;
8583 
8584 		case DL_NOTE_LINK_UP:
8585 		case DL_NOTE_LINK_DOWN: {
8586 			/*
8587 			 * We are writer. ill / phyint / ipsq assocs stable.
8588 			 * The RUNNING flag reflects the state of the link.
8589 			 */
8590 			phyint_t *phyint = ill->ill_phyint;
8591 			uint64_t new_phyint_flags;
8592 			boolean_t changed = B_FALSE;
8593 			boolean_t went_up;
8594 
8595 			went_up = notify->dl_notification == DL_NOTE_LINK_UP;
8596 			mutex_enter(&phyint->phyint_lock);
8597 
8598 			new_phyint_flags = went_up ?
8599 			    phyint->phyint_flags | PHYI_RUNNING :
8600 			    phyint->phyint_flags & ~PHYI_RUNNING;
8601 
8602 			if (IS_IPMP(ill)) {
8603 				new_phyint_flags = went_up ?
8604 				    new_phyint_flags & ~PHYI_FAILED :
8605 				    new_phyint_flags | PHYI_FAILED;
8606 			}
8607 
8608 			if (new_phyint_flags != phyint->phyint_flags) {
8609 				phyint->phyint_flags = new_phyint_flags;
8610 				changed = B_TRUE;
8611 			}
8612 			mutex_exit(&phyint->phyint_lock);
8613 			/*
8614 			 * ill_restart_dad handles the DAD restart and routing
8615 			 * socket notification logic.
8616 			 */
8617 			if (changed) {
8618 				ill_restart_dad(phyint->phyint_illv4, went_up);
8619 				ill_restart_dad(phyint->phyint_illv6, went_up);
8620 			}
8621 			break;
8622 		}
8623 		case DL_NOTE_PROMISC_ON_PHYS: {
8624 			phyint_t *phyint = ill->ill_phyint;
8625 
8626 			mutex_enter(&phyint->phyint_lock);
8627 			phyint->phyint_flags |= PHYI_PROMISC;
8628 			mutex_exit(&phyint->phyint_lock);
8629 			break;
8630 		}
8631 		case DL_NOTE_PROMISC_OFF_PHYS: {
8632 			phyint_t *phyint = ill->ill_phyint;
8633 
8634 			mutex_enter(&phyint->phyint_lock);
8635 			phyint->phyint_flags &= ~PHYI_PROMISC;
8636 			mutex_exit(&phyint->phyint_lock);
8637 			break;
8638 		}
8639 		case DL_NOTE_CAPAB_RENEG:
8640 			/*
8641 			 * Something changed on the driver side.
8642 			 * It wants us to renegotiate the capabilities
8643 			 * on this ill. One possible cause is the aggregation
8644 			 * interface under us where a port got added or
8645 			 * went away.
8646 			 *
8647 			 * If the capability negotiation is already done
8648 			 * or is in progress, reset the capabilities and
8649 			 * mark the ill's ill_capab_reneg to be B_TRUE,
8650 			 * so that when the ack comes back, we can start
8651 			 * the renegotiation process.
8652 			 *
8653 			 * Note that if ill_capab_reneg is already B_TRUE
8654 			 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case),
8655 			 * the capability resetting request has been sent
8656 			 * and the renegotiation has not been started yet;
8657 			 * nothing needs to be done in this case.
8658 			 */
8659 			ipsq_current_start(ipsq, ill->ill_ipif, 0);
8660 			ill_capability_reset(ill, B_TRUE);
8661 			ipsq_current_finish(ipsq);
8662 			break;
8663 
8664 		case DL_NOTE_ALLOWED_IPS:
8665 			ill_set_allowed_ips(ill, mp);
8666 			break;
8667 		default:
8668 			ip0dbg(("ip_rput_dlpi_writer: unknown notification "
8669 			    "type 0x%x for DL_NOTIFY_IND\n",
8670 			    notify->dl_notification));
8671 			break;
8672 		}
8673 
8674 		/*
8675 		 * As this is an asynchronous operation, we
8676 		 * should not call ill_dlpi_done
8677 		 */
8678 		break;
8679 	}
8680 	case DL_NOTIFY_ACK: {
8681 		dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr;
8682 
8683 		if (noteack->dl_notifications & DL_NOTE_LINK_UP)
8684 			ill->ill_note_link = 1;
8685 		ill_dlpi_done(ill, DL_NOTIFY_REQ);
8686 		break;
8687 	}
8688 	case DL_PHYS_ADDR_ACK: {
8689 		/*
8690 		 * As part of plumbing the interface via SIOCSLIFNAME,
8691 		 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs,
8692 		 * whose answers we receive here.  As each answer is received,
8693 		 * we call ill_dlpi_done() to dispatch the next request as
8694 		 * we're processing the current one.  Once all answers have
8695 		 * been received, we use ipsq_pending_mp_get() to dequeue the
8696 		 * outstanding IOCTL and reply to it.  (Because ill_dl_phys()
8697 		 * is invoked from an ill queue, conn_oper_pending_ill is not
8698 		 * available, but we know the ioctl is pending on ill_wq.)
8699 		 */
8700 		uint_t	paddrlen, paddroff;
8701 		uint8_t	*addr;
8702 
8703 		paddrreq = ill->ill_phys_addr_pend;
8704 		paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length;
8705 		paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset;
8706 		addr = mp->b_rptr + paddroff;
8707 
8708 		ill_dlpi_done(ill, DL_PHYS_ADDR_REQ);
8709 		if (paddrreq == DL_IPV6_TOKEN) {
8710 			/*
8711 			 * bcopy to low-order bits of ill_token
8712 			 *
8713 			 * XXX Temporary hack - currently, all known tokens
8714 			 * are 64 bits, so I'll cheat for the moment.
8715 			 */
8716 			bcopy(addr, &ill->ill_token.s6_addr32[2], paddrlen);
8717 			ill->ill_token_length = paddrlen;
8718 			break;
8719 		} else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) {
8720 			ASSERT(ill->ill_nd_lla_mp == NULL);
8721 			ill_set_ndmp(ill, mp, paddroff, paddrlen);
8722 			mp = NULL;
8723 			break;
8724 		} else if (paddrreq == DL_CURR_DEST_ADDR) {
8725 			ASSERT(ill->ill_dest_addr_mp == NULL);
8726 			ill->ill_dest_addr_mp = mp;
8727 			ill->ill_dest_addr = addr;
8728 			mp = NULL;
8729 			if (ill->ill_isv6) {
8730 				ill_setdesttoken(ill);
8731 				ipif_setdestlinklocal(ill->ill_ipif);
8732 			}
8733 			break;
8734 		}
8735 
8736 		ASSERT(paddrreq == DL_CURR_PHYS_ADDR);
8737 		ASSERT(ill->ill_phys_addr_mp == NULL);
8738 		if (!ill->ill_ifname_pending)
8739 			break;
8740 		ill->ill_ifname_pending = 0;
8741 		if (!ioctl_aborted)
8742 			mp1 = ipsq_pending_mp_get(ipsq, &connp);
8743 		if (mp1 != NULL) {
8744 			ASSERT(connp == NULL);
8745 			q = ill->ill_wq;
8746 		}
8747 		/*
8748 		 * If any error acks received during the plumbing sequence,
8749 		 * ill_ifname_pending_err will be set. Break out and send up
8750 		 * the error to the pending ioctl.
8751 		 */
8752 		if (ill->ill_ifname_pending_err != 0) {
8753 			err = ill->ill_ifname_pending_err;
8754 			ill->ill_ifname_pending_err = 0;
8755 			break;
8756 		}
8757 
8758 		ill->ill_phys_addr_mp = mp;
8759 		ill->ill_phys_addr = (paddrlen == 0 ? NULL : addr);
8760 		mp = NULL;
8761 
8762 		/*
8763 		 * If paddrlen or ill_phys_addr_length is zero, the DLPI
8764 		 * provider doesn't support physical addresses.  We check both
8765 		 * paddrlen and ill_phys_addr_length because sppp (PPP) does
8766 		 * not have physical addresses, but historically adversises a
8767 		 * physical address length of 0 in its DL_INFO_ACK, but 6 in
8768 		 * its DL_PHYS_ADDR_ACK.
8769 		 */
8770 		if (paddrlen == 0 || ill->ill_phys_addr_length == 0) {
8771 			ill->ill_phys_addr = NULL;
8772 		} else if (paddrlen != ill->ill_phys_addr_length) {
8773 			ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d",
8774 			    paddrlen, ill->ill_phys_addr_length));
8775 			err = EINVAL;
8776 			break;
8777 		}
8778 
8779 		if (ill->ill_nd_lla_mp == NULL) {
8780 			if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) {
8781 				err = ENOMEM;
8782 				break;
8783 			}
8784 			ill_set_ndmp(ill, mp_hw, paddroff, paddrlen);
8785 		}
8786 
8787 		if (ill->ill_isv6) {
8788 			ill_setdefaulttoken(ill);
8789 			ipif_setlinklocal(ill->ill_ipif);
8790 		}
8791 		break;
8792 	}
8793 	case DL_OK_ACK:
8794 		ip2dbg(("DL_OK_ACK %s (0x%x)\n",
8795 		    dl_primstr((int)dloa->dl_correct_primitive),
8796 		    dloa->dl_correct_primitive));
8797 		DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer ok",
8798 		    char *, dl_primstr(dloa->dl_correct_primitive),
8799 		    ill_t *, ill);
8800 
8801 		switch (dloa->dl_correct_primitive) {
8802 		case DL_ENABMULTI_REQ:
8803 		case DL_DISABMULTI_REQ:
8804 			ill_dlpi_done(ill, dloa->dl_correct_primitive);
8805 			break;
8806 		case DL_PROMISCON_REQ:
8807 		case DL_PROMISCOFF_REQ:
8808 		case DL_UNBIND_REQ:
8809 		case DL_ATTACH_REQ:
8810 			ill_dlpi_done(ill, dloa->dl_correct_primitive);
8811 			break;
8812 		}
8813 		break;
8814 	default:
8815 		break;
8816 	}
8817 
8818 	freemsg(mp);
8819 	if (mp1 == NULL)
8820 		return;
8821 
8822 	/*
8823 	 * The operation must complete without EINPROGRESS since
8824 	 * ipsq_pending_mp_get() has removed the mblk (mp1).  Otherwise,
8825 	 * the operation will be stuck forever inside the IPSQ.
8826 	 */
8827 	ASSERT(err != EINPROGRESS);
8828 
8829 	DTRACE_PROBE4(ipif__ioctl, char *, "ip_rput_dlpi_writer finish",
8830 	    int, ipsq->ipsq_xop->ipx_current_ioctl, ill_t *, ill,
8831 	    ipif_t *, NULL);
8832 
8833 	switch (ipsq->ipsq_xop->ipx_current_ioctl) {
8834 	case 0:
8835 		ipsq_current_finish(ipsq);
8836 		break;
8837 
8838 	case SIOCSLIFNAME:
8839 	case IF_UNITSEL: {
8840 		ill_t *ill_other = ILL_OTHER(ill);
8841 
8842 		/*
8843 		 * If SIOCSLIFNAME or IF_UNITSEL is about to succeed, and the
8844 		 * ill has a peer which is in an IPMP group, then place ill
8845 		 * into the same group.  One catch: although ifconfig plumbs
8846 		 * the appropriate IPMP meta-interface prior to plumbing this
8847 		 * ill, it is possible for multiple ifconfig applications to
8848 		 * race (or for another application to adjust plumbing), in
8849 		 * which case the IPMP meta-interface we need will be missing.
8850 		 * If so, kick the phyint out of the group.
8851 		 */
8852 		if (err == 0 && ill_other != NULL && IS_UNDER_IPMP(ill_other)) {
8853 			ipmp_grp_t	*grp = ill->ill_phyint->phyint_grp;
8854 			ipmp_illgrp_t	*illg;
8855 
8856 			illg = ill->ill_isv6 ? grp->gr_v6 : grp->gr_v4;
8857 			if (illg == NULL)
8858 				ipmp_phyint_leave_grp(ill->ill_phyint);
8859 			else
8860 				ipmp_ill_join_illgrp(ill, illg);
8861 		}
8862 
8863 		if (ipsq->ipsq_xop->ipx_current_ioctl == IF_UNITSEL)
8864 			ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
8865 		else
8866 			ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq);
8867 		break;
8868 	}
8869 	case SIOCLIFADDIF:
8870 		ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq);
8871 		break;
8872 
8873 	default:
8874 		ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
8875 		break;
8876 	}
8877 }
8878 
8879 /*
8880  * ip_rput_other is called by ip_rput to handle messages modifying the global
8881  * state in IP.  If 'ipsq' is non-NULL, caller is writer on it.
8882  */
8883 /* ARGSUSED */
8884 void
8885 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
8886 {
8887 	ill_t		*ill = q->q_ptr;
8888 	struct iocblk	*iocp;
8889 
8890 	ip1dbg(("ip_rput_other "));
8891 	if (ipsq != NULL) {
8892 		ASSERT(IAM_WRITER_IPSQ(ipsq));
8893 		ASSERT(ipsq->ipsq_xop ==
8894 		    ill->ill_phyint->phyint_ipsq->ipsq_xop);
8895 	}
8896 
8897 	switch (mp->b_datap->db_type) {
8898 	case M_ERROR:
8899 	case M_HANGUP:
8900 		/*
8901 		 * The device has a problem.  We force the ILL down.  It can
8902 		 * be brought up again manually using SIOCSIFFLAGS (via
8903 		 * ifconfig or equivalent).
8904 		 */
8905 		ASSERT(ipsq != NULL);
8906 		if (mp->b_rptr < mp->b_wptr)
8907 			ill->ill_error = (int)(*mp->b_rptr & 0xFF);
8908 		if (ill->ill_error == 0)
8909 			ill->ill_error = ENXIO;
8910 		if (!ill_down_start(q, mp))
8911 			return;
8912 		ipif_all_down_tail(ipsq, q, mp, NULL);
8913 		break;
8914 	case M_IOCNAK: {
8915 		iocp = (struct iocblk *)mp->b_rptr;
8916 
8917 		ASSERT(iocp->ioc_cmd == DL_IOC_HDR_INFO);
8918 		/*
8919 		 * If this was the first attempt, turn off the fastpath
8920 		 * probing.
8921 		 */
8922 		mutex_enter(&ill->ill_lock);
8923 		if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) {
8924 			ill->ill_dlpi_fastpath_state = IDS_FAILED;
8925 			mutex_exit(&ill->ill_lock);
8926 			/*
8927 			 * don't flush the nce_t entries: we use them
8928 			 * as an index to the ncec itself.
8929 			 */
8930 			ip1dbg(("ip_rput: DLPI fastpath off on interface %s\n",
8931 			    ill->ill_name));
8932 		} else {
8933 			mutex_exit(&ill->ill_lock);
8934 		}
8935 		freemsg(mp);
8936 		break;
8937 	}
8938 	default:
8939 		ASSERT(0);
8940 		break;
8941 	}
8942 }
8943 
8944 /*
8945  * Update any source route, record route or timestamp options
8946  * When it fails it has consumed the message and BUMPed the MIB.
8947  */
8948 boolean_t
8949 ip_forward_options(mblk_t *mp, ipha_t *ipha, ill_t *dst_ill,
8950     ip_recv_attr_t *ira)
8951 {
8952 	ipoptp_t	opts;
8953 	uchar_t		*opt;
8954 	uint8_t		optval;
8955 	uint8_t		optlen;
8956 	ipaddr_t	dst;
8957 	ipaddr_t	ifaddr;
8958 	uint32_t	ts;
8959 	timestruc_t	now;
8960 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
8961 
8962 	ip2dbg(("ip_forward_options\n"));
8963 	dst = ipha->ipha_dst;
8964 	for (optval = ipoptp_first(&opts, ipha);
8965 	    optval != IPOPT_EOL;
8966 	    optval = ipoptp_next(&opts)) {
8967 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
8968 		opt = opts.ipoptp_cur;
8969 		optlen = opts.ipoptp_len;
8970 		ip2dbg(("ip_forward_options: opt %d, len %d\n",
8971 		    optval, opts.ipoptp_len));
8972 		switch (optval) {
8973 			uint32_t off;
8974 		case IPOPT_SSRR:
8975 		case IPOPT_LSRR:
8976 			/* Check if adminstratively disabled */
8977 			if (!ipst->ips_ip_forward_src_routed) {
8978 				BUMP_MIB(dst_ill->ill_ip_mib,
8979 				    ipIfStatsForwProhibits);
8980 				ip_drop_input("ICMP_SOURCE_ROUTE_FAILED",
8981 				    mp, dst_ill);
8982 				icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED,
8983 				    ira);
8984 				return (B_FALSE);
8985 			}
8986 			if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
8987 				/*
8988 				 * Must be partial since ip_input_options
8989 				 * checked for strict.
8990 				 */
8991 				break;
8992 			}
8993 			off = opt[IPOPT_OFFSET];
8994 			off--;
8995 		redo_srr:
8996 			if (optlen < IP_ADDR_LEN ||
8997 			    off > optlen - IP_ADDR_LEN) {
8998 				/* End of source route */
8999 				ip1dbg((
9000 				    "ip_forward_options: end of SR\n"));
9001 				break;
9002 			}
9003 			/* Pick a reasonable address on the outbound if */
9004 			ASSERT(dst_ill != NULL);
9005 			if (ip_select_source_v4(dst_ill, INADDR_ANY, dst,
9006 			    INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
9007 			    NULL) != 0) {
9008 				/* No source! Shouldn't happen */
9009 				ifaddr = INADDR_ANY;
9010 			}
9011 			bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9012 			bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9013 			ip1dbg(("ip_forward_options: next hop 0x%x\n",
9014 			    ntohl(dst)));
9015 
9016 			/*
9017 			 * Check if our address is present more than
9018 			 * once as consecutive hops in source route.
9019 			 */
9020 			if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
9021 				off += IP_ADDR_LEN;
9022 				opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9023 				goto redo_srr;
9024 			}
9025 			ipha->ipha_dst = dst;
9026 			opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9027 			break;
9028 		case IPOPT_RR:
9029 			off = opt[IPOPT_OFFSET];
9030 			off--;
9031 			if (optlen < IP_ADDR_LEN ||
9032 			    off > optlen - IP_ADDR_LEN) {
9033 				/* No more room - ignore */
9034 				ip1dbg((
9035 				    "ip_forward_options: end of RR\n"));
9036 				break;
9037 			}
9038 			/* Pick a reasonable address on the outbound if */
9039 			ASSERT(dst_ill != NULL);
9040 			if (ip_select_source_v4(dst_ill, INADDR_ANY, dst,
9041 			    INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
9042 			    NULL) != 0) {
9043 				/* No source! Shouldn't happen */
9044 				ifaddr = INADDR_ANY;
9045 			}
9046 			bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9047 			opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9048 			break;
9049 		case IPOPT_TS:
9050 			/* Insert timestamp if there is room */
9051 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9052 			case IPOPT_TS_TSONLY:
9053 				off = IPOPT_TS_TIMELEN;
9054 				break;
9055 			case IPOPT_TS_PRESPEC:
9056 			case IPOPT_TS_PRESPEC_RFC791:
9057 				/* Verify that the address matched */
9058 				off = opt[IPOPT_OFFSET] - 1;
9059 				bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9060 				if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9061 					/* Not for us */
9062 					break;
9063 				}
9064 				/* FALLTHRU */
9065 			case IPOPT_TS_TSANDADDR:
9066 				off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
9067 				break;
9068 			default:
9069 				/*
9070 				 * ip_*put_options should have already
9071 				 * dropped this packet.
9072 				 */
9073 				cmn_err(CE_PANIC, "ip_forward_options: "
9074 				    "unknown IT - bug in ip_input_options?\n");
9075 				return (B_TRUE);	/* Keep "lint" happy */
9076 			}
9077 			if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
9078 				/* Increase overflow counter */
9079 				off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
9080 				opt[IPOPT_POS_OV_FLG] =
9081 				    (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) |
9082 				    (off << 4));
9083 				break;
9084 			}
9085 			off = opt[IPOPT_OFFSET] - 1;
9086 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9087 			case IPOPT_TS_PRESPEC:
9088 			case IPOPT_TS_PRESPEC_RFC791:
9089 			case IPOPT_TS_TSANDADDR:
9090 				/* Pick a reasonable addr on the outbound if */
9091 				ASSERT(dst_ill != NULL);
9092 				if (ip_select_source_v4(dst_ill, INADDR_ANY,
9093 				    dst, INADDR_ANY, ALL_ZONES, ipst, &ifaddr,
9094 				    NULL, NULL) != 0) {
9095 					/* No source! Shouldn't happen */
9096 					ifaddr = INADDR_ANY;
9097 				}
9098 				bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9099 				opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9100 				/* FALLTHRU */
9101 			case IPOPT_TS_TSONLY:
9102 				off = opt[IPOPT_OFFSET] - 1;
9103 				/* Compute # of milliseconds since midnight */
9104 				gethrestime(&now);
9105 				ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
9106 				    now.tv_nsec / (NANOSEC / MILLISEC);
9107 				bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
9108 				opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
9109 				break;
9110 			}
9111 			break;
9112 		}
9113 	}
9114 	return (B_TRUE);
9115 }
9116 
9117 /*
9118  * Call ill_frag_timeout to do garbage collection. ill_frag_timeout
9119  * returns 'true' if there are still fragments left on the queue, in
9120  * which case we restart the timer.
9121  */
9122 void
9123 ill_frag_timer(void *arg)
9124 {
9125 	ill_t	*ill = (ill_t *)arg;
9126 	boolean_t frag_pending;
9127 	ip_stack_t *ipst = ill->ill_ipst;
9128 	time_t	timeout;
9129 
9130 	mutex_enter(&ill->ill_lock);
9131 	ASSERT(!ill->ill_fragtimer_executing);
9132 	if (ill->ill_state_flags & ILL_CONDEMNED) {
9133 		ill->ill_frag_timer_id = 0;
9134 		mutex_exit(&ill->ill_lock);
9135 		return;
9136 	}
9137 	ill->ill_fragtimer_executing = 1;
9138 	mutex_exit(&ill->ill_lock);
9139 
9140 	timeout = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout :
9141 	    ipst->ips_ip_reassembly_timeout);
9142 
9143 	frag_pending = ill_frag_timeout(ill, timeout);
9144 
9145 	/*
9146 	 * Restart the timer, if we have fragments pending or if someone
9147 	 * wanted us to be scheduled again.
9148 	 */
9149 	mutex_enter(&ill->ill_lock);
9150 	ill->ill_fragtimer_executing = 0;
9151 	ill->ill_frag_timer_id = 0;
9152 	if (frag_pending || ill->ill_fragtimer_needrestart)
9153 		ill_frag_timer_start(ill);
9154 	mutex_exit(&ill->ill_lock);
9155 }
9156 
9157 void
9158 ill_frag_timer_start(ill_t *ill)
9159 {
9160 	ip_stack_t *ipst = ill->ill_ipst;
9161 	clock_t	timeo_ms;
9162 
9163 	ASSERT(MUTEX_HELD(&ill->ill_lock));
9164 
9165 	/* If the ill is closing or opening don't proceed */
9166 	if (ill->ill_state_flags & ILL_CONDEMNED)
9167 		return;
9168 
9169 	if (ill->ill_fragtimer_executing) {
9170 		/*
9171 		 * ill_frag_timer is currently executing. Just record the
9172 		 * the fact that we want the timer to be restarted.
9173 		 * ill_frag_timer will post a timeout before it returns,
9174 		 * ensuring it will be called again.
9175 		 */
9176 		ill->ill_fragtimer_needrestart = 1;
9177 		return;
9178 	}
9179 
9180 	if (ill->ill_frag_timer_id == 0) {
9181 		timeo_ms = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout :
9182 		    ipst->ips_ip_reassembly_timeout) * SECONDS;
9183 
9184 		/*
9185 		 * The timer is neither running nor is the timeout handler
9186 		 * executing. Post a timeout so that ill_frag_timer will be
9187 		 * called
9188 		 */
9189 		ill->ill_frag_timer_id = timeout(ill_frag_timer, ill,
9190 		    MSEC_TO_TICK(timeo_ms >> 1));
9191 		ill->ill_fragtimer_needrestart = 0;
9192 	}
9193 }
9194 
9195 /*
9196  * Update any source route, record route or timestamp options.
9197  * Check that we are at end of strict source route.
9198  * The options have already been checked for sanity in ip_input_options().
9199  */
9200 boolean_t
9201 ip_input_local_options(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
9202 {
9203 	ipoptp_t	opts;
9204 	uchar_t		*opt;
9205 	uint8_t		optval;
9206 	uint8_t		optlen;
9207 	ipaddr_t	dst;
9208 	ipaddr_t	ifaddr;
9209 	uint32_t	ts;
9210 	timestruc_t	now;
9211 	ill_t		*ill = ira->ira_ill;
9212 	ip_stack_t	*ipst = ill->ill_ipst;
9213 
9214 	ip2dbg(("ip_input_local_options\n"));
9215 
9216 	for (optval = ipoptp_first(&opts, ipha);
9217 	    optval != IPOPT_EOL;
9218 	    optval = ipoptp_next(&opts)) {
9219 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
9220 		opt = opts.ipoptp_cur;
9221 		optlen = opts.ipoptp_len;
9222 		ip2dbg(("ip_input_local_options: opt %d, len %d\n",
9223 		    optval, optlen));
9224 		switch (optval) {
9225 			uint32_t off;
9226 		case IPOPT_SSRR:
9227 		case IPOPT_LSRR:
9228 			off = opt[IPOPT_OFFSET];
9229 			off--;
9230 			if (optlen < IP_ADDR_LEN ||
9231 			    off > optlen - IP_ADDR_LEN) {
9232 				/* End of source route */
9233 				ip1dbg(("ip_input_local_options: end of SR\n"));
9234 				break;
9235 			}
9236 			/*
9237 			 * This will only happen if two consecutive entries
9238 			 * in the source route contains our address or if
9239 			 * it is a packet with a loose source route which
9240 			 * reaches us before consuming the whole source route
9241 			 */
9242 			ip1dbg(("ip_input_local_options: not end of SR\n"));
9243 			if (optval == IPOPT_SSRR) {
9244 				goto bad_src_route;
9245 			}
9246 			/*
9247 			 * Hack: instead of dropping the packet truncate the
9248 			 * source route to what has been used by filling the
9249 			 * rest with IPOPT_NOP.
9250 			 */
9251 			opt[IPOPT_OLEN] = (uint8_t)off;
9252 			while (off < optlen) {
9253 				opt[off++] = IPOPT_NOP;
9254 			}
9255 			break;
9256 		case IPOPT_RR:
9257 			off = opt[IPOPT_OFFSET];
9258 			off--;
9259 			if (optlen < IP_ADDR_LEN ||
9260 			    off > optlen - IP_ADDR_LEN) {
9261 				/* No more room - ignore */
9262 				ip1dbg((
9263 				    "ip_input_local_options: end of RR\n"));
9264 				break;
9265 			}
9266 			/* Pick a reasonable address on the outbound if */
9267 			if (ip_select_source_v4(ill, INADDR_ANY, ipha->ipha_dst,
9268 			    INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
9269 			    NULL) != 0) {
9270 				/* No source! Shouldn't happen */
9271 				ifaddr = INADDR_ANY;
9272 			}
9273 			bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9274 			opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9275 			break;
9276 		case IPOPT_TS:
9277 			/* Insert timestamp if there is romm */
9278 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9279 			case IPOPT_TS_TSONLY:
9280 				off = IPOPT_TS_TIMELEN;
9281 				break;
9282 			case IPOPT_TS_PRESPEC:
9283 			case IPOPT_TS_PRESPEC_RFC791:
9284 				/* Verify that the address matched */
9285 				off = opt[IPOPT_OFFSET] - 1;
9286 				bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9287 				if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9288 					/* Not for us */
9289 					break;
9290 				}
9291 				/* FALLTHRU */
9292 			case IPOPT_TS_TSANDADDR:
9293 				off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
9294 				break;
9295 			default:
9296 				/*
9297 				 * ip_*put_options should have already
9298 				 * dropped this packet.
9299 				 */
9300 				cmn_err(CE_PANIC, "ip_input_local_options: "
9301 				    "unknown IT - bug in ip_input_options?\n");
9302 				return (B_TRUE);	/* Keep "lint" happy */
9303 			}
9304 			if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
9305 				/* Increase overflow counter */
9306 				off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
9307 				opt[IPOPT_POS_OV_FLG] =
9308 				    (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) |
9309 				    (off << 4));
9310 				break;
9311 			}
9312 			off = opt[IPOPT_OFFSET] - 1;
9313 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9314 			case IPOPT_TS_PRESPEC:
9315 			case IPOPT_TS_PRESPEC_RFC791:
9316 			case IPOPT_TS_TSANDADDR:
9317 				/* Pick a reasonable addr on the outbound if */
9318 				if (ip_select_source_v4(ill, INADDR_ANY,
9319 				    ipha->ipha_dst, INADDR_ANY, ALL_ZONES, ipst,
9320 				    &ifaddr, NULL, NULL) != 0) {
9321 					/* No source! Shouldn't happen */
9322 					ifaddr = INADDR_ANY;
9323 				}
9324 				bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9325 				opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9326 				/* FALLTHRU */
9327 			case IPOPT_TS_TSONLY:
9328 				off = opt[IPOPT_OFFSET] - 1;
9329 				/* Compute # of milliseconds since midnight */
9330 				gethrestime(&now);
9331 				ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
9332 				    now.tv_nsec / (NANOSEC / MILLISEC);
9333 				bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
9334 				opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
9335 				break;
9336 			}
9337 			break;
9338 		}
9339 	}
9340 	return (B_TRUE);
9341 
9342 bad_src_route:
9343 	/* make sure we clear any indication of a hardware checksum */
9344 	DB_CKSUMFLAGS(mp) = 0;
9345 	ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill);
9346 	icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira);
9347 	return (B_FALSE);
9348 
9349 }
9350 
9351 /*
9352  * Process IP options in an inbound packet.  Always returns the nexthop.
9353  * Normally this is the passed in nexthop, but if there is an option
9354  * that effects the nexthop (such as a source route) that will be returned.
9355  * Sets *errorp if there is an error, in which case an ICMP error has been sent
9356  * and mp freed.
9357  */
9358 ipaddr_t
9359 ip_input_options(ipha_t *ipha, ipaddr_t dst, mblk_t *mp,
9360     ip_recv_attr_t *ira, int *errorp)
9361 {
9362 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
9363 	ipoptp_t	opts;
9364 	uchar_t		*opt;
9365 	uint8_t		optval;
9366 	uint8_t		optlen;
9367 	intptr_t	code = 0;
9368 	ire_t		*ire;
9369 
9370 	ip2dbg(("ip_input_options\n"));
9371 	*errorp = 0;
9372 	for (optval = ipoptp_first(&opts, ipha);
9373 	    optval != IPOPT_EOL;
9374 	    optval = ipoptp_next(&opts)) {
9375 		opt = opts.ipoptp_cur;
9376 		optlen = opts.ipoptp_len;
9377 		ip2dbg(("ip_input_options: opt %d, len %d\n",
9378 		    optval, optlen));
9379 		/*
9380 		 * Note: we need to verify the checksum before we
9381 		 * modify anything thus this routine only extracts the next
9382 		 * hop dst from any source route.
9383 		 */
9384 		switch (optval) {
9385 			uint32_t off;
9386 		case IPOPT_SSRR:
9387 		case IPOPT_LSRR:
9388 			if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9389 				if (optval == IPOPT_SSRR) {
9390 					ip1dbg(("ip_input_options: not next"
9391 					    " strict source route 0x%x\n",
9392 					    ntohl(dst)));
9393 					code = (char *)&ipha->ipha_dst -
9394 					    (char *)ipha;
9395 					goto param_prob; /* RouterReq's */
9396 				}
9397 				ip2dbg(("ip_input_options: "
9398 				    "not next source route 0x%x\n",
9399 				    ntohl(dst)));
9400 				break;
9401 			}
9402 
9403 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
9404 				ip1dbg((
9405 				    "ip_input_options: bad option offset\n"));
9406 				code = (char *)&opt[IPOPT_OLEN] -
9407 				    (char *)ipha;
9408 				goto param_prob;
9409 			}
9410 			off = opt[IPOPT_OFFSET];
9411 			off--;
9412 		redo_srr:
9413 			if (optlen < IP_ADDR_LEN ||
9414 			    off > optlen - IP_ADDR_LEN) {
9415 				/* End of source route */
9416 				ip1dbg(("ip_input_options: end of SR\n"));
9417 				break;
9418 			}
9419 			bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9420 			ip1dbg(("ip_input_options: next hop 0x%x\n",
9421 			    ntohl(dst)));
9422 
9423 			/*
9424 			 * Check if our address is present more than
9425 			 * once as consecutive hops in source route.
9426 			 * XXX verify per-interface ip_forwarding
9427 			 * for source route?
9428 			 */
9429 			if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
9430 				off += IP_ADDR_LEN;
9431 				goto redo_srr;
9432 			}
9433 
9434 			if (dst == htonl(INADDR_LOOPBACK)) {
9435 				ip1dbg(("ip_input_options: loopback addr in "
9436 				    "source route!\n"));
9437 				goto bad_src_route;
9438 			}
9439 			/*
9440 			 * For strict: verify that dst is directly
9441 			 * reachable.
9442 			 */
9443 			if (optval == IPOPT_SSRR) {
9444 				ire = ire_ftable_lookup_v4(dst, 0, 0,
9445 				    IRE_INTERFACE, NULL, ALL_ZONES,
9446 				    ira->ira_tsl,
9447 				    MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst,
9448 				    NULL);
9449 				if (ire == NULL) {
9450 					ip1dbg(("ip_input_options: SSRR not "
9451 					    "directly reachable: 0x%x\n",
9452 					    ntohl(dst)));
9453 					goto bad_src_route;
9454 				}
9455 				ire_refrele(ire);
9456 			}
9457 			/*
9458 			 * Defer update of the offset and the record route
9459 			 * until the packet is forwarded.
9460 			 */
9461 			break;
9462 		case IPOPT_RR:
9463 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
9464 				ip1dbg((
9465 				    "ip_input_options: bad option offset\n"));
9466 				code = (char *)&opt[IPOPT_OLEN] -
9467 				    (char *)ipha;
9468 				goto param_prob;
9469 			}
9470 			break;
9471 		case IPOPT_TS:
9472 			/*
9473 			 * Verify that length >= 5 and that there is either
9474 			 * room for another timestamp or that the overflow
9475 			 * counter is not maxed out.
9476 			 */
9477 			code = (char *)&opt[IPOPT_OLEN] - (char *)ipha;
9478 			if (optlen < IPOPT_MINLEN_IT) {
9479 				goto param_prob;
9480 			}
9481 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
9482 				ip1dbg((
9483 				    "ip_input_options: bad option offset\n"));
9484 				code = (char *)&opt[IPOPT_OFFSET] -
9485 				    (char *)ipha;
9486 				goto param_prob;
9487 			}
9488 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9489 			case IPOPT_TS_TSONLY:
9490 				off = IPOPT_TS_TIMELEN;
9491 				break;
9492 			case IPOPT_TS_TSANDADDR:
9493 			case IPOPT_TS_PRESPEC:
9494 			case IPOPT_TS_PRESPEC_RFC791:
9495 				off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
9496 				break;
9497 			default:
9498 				code = (char *)&opt[IPOPT_POS_OV_FLG] -
9499 				    (char *)ipha;
9500 				goto param_prob;
9501 			}
9502 			if (opt[IPOPT_OFFSET] - 1 + off > optlen &&
9503 			    (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) {
9504 				/*
9505 				 * No room and the overflow counter is 15
9506 				 * already.
9507 				 */
9508 				goto param_prob;
9509 			}
9510 			break;
9511 		}
9512 	}
9513 
9514 	if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) {
9515 		return (dst);
9516 	}
9517 
9518 	ip1dbg(("ip_input_options: error processing IP options."));
9519 	code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha;
9520 
9521 param_prob:
9522 	/* make sure we clear any indication of a hardware checksum */
9523 	DB_CKSUMFLAGS(mp) = 0;
9524 	ip_drop_input("ICMP_PARAM_PROBLEM", mp, ira->ira_ill);
9525 	icmp_param_problem(mp, (uint8_t)code, ira);
9526 	*errorp = -1;
9527 	return (dst);
9528 
9529 bad_src_route:
9530 	/* make sure we clear any indication of a hardware checksum */
9531 	DB_CKSUMFLAGS(mp) = 0;
9532 	ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ira->ira_ill);
9533 	icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira);
9534 	*errorp = -1;
9535 	return (dst);
9536 }
9537 
9538 /*
9539  * IP & ICMP info in >=14 msg's ...
9540  *  - ip fixed part (mib2_ip_t)
9541  *  - icmp fixed part (mib2_icmp_t)
9542  *  - ipAddrEntryTable (ip 20)		all IPv4 ipifs
9543  *  - ipRouteEntryTable (ip 21)		all IPv4 IREs
9544  *  - ipNetToMediaEntryTable (ip 22)	all IPv4 Neighbor Cache entries
9545  *  - ipRouteAttributeTable (ip 102)	labeled routes
9546  *  - ip multicast membership (ip_member_t)
9547  *  - ip multicast source filtering (ip_grpsrc_t)
9548  *  - igmp fixed part (struct igmpstat)
9549  *  - multicast routing stats (struct mrtstat)
9550  *  - multicast routing vifs (array of struct vifctl)
9551  *  - multicast routing routes (array of struct mfcctl)
9552  *  - ip6 fixed part (mib2_ipv6IfStatsEntry_t)
9553  *					One per ill plus one generic
9554  *  - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t)
9555  *					One per ill plus one generic
9556  *  - ipv6RouteEntry			all IPv6 IREs
9557  *  - ipv6RouteAttributeTable (ip6 102)	labeled routes
9558  *  - ipv6NetToMediaEntry		all IPv6 Neighbor Cache entries
9559  *  - ipv6AddrEntry			all IPv6 ipifs
9560  *  - ipv6 multicast membership (ipv6_member_t)
9561  *  - ipv6 multicast source filtering (ipv6_grpsrc_t)
9562  *
9563  * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is
9564  * already filled in by the caller.
9565  * If legacy_req is true then MIB structures needs to be truncated to their
9566  * legacy sizes before being returned.
9567  * Return value of 0 indicates that no messages were sent and caller
9568  * should free mpctl.
9569  */
9570 int
9571 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level, boolean_t legacy_req)
9572 {
9573 	ip_stack_t *ipst;
9574 	sctp_stack_t *sctps;
9575 
9576 	if (q->q_next != NULL) {
9577 		ipst = ILLQ_TO_IPST(q);
9578 	} else {
9579 		ipst = CONNQ_TO_IPST(q);
9580 	}
9581 	ASSERT(ipst != NULL);
9582 	sctps = ipst->ips_netstack->netstack_sctp;
9583 
9584 	if (mpctl == NULL || mpctl->b_cont == NULL) {
9585 		return (0);
9586 	}
9587 
9588 	/*
9589 	 * For the purposes of the (broken) packet shell use
9590 	 * of the level we make sure MIB2_TCP/MIB2_UDP can be used
9591 	 * to make TCP and UDP appear first in the list of mib items.
9592 	 * TBD: We could expand this and use it in netstat so that
9593 	 * the kernel doesn't have to produce large tables (connections,
9594 	 * routes, etc) when netstat only wants the statistics or a particular
9595 	 * table.
9596 	 */
9597 	if (!(level == MIB2_TCP || level == MIB2_UDP)) {
9598 		if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) {
9599 			return (1);
9600 		}
9601 	}
9602 
9603 	if (level != MIB2_TCP) {
9604 		if ((mpctl = udp_snmp_get(q, mpctl, legacy_req)) == NULL) {
9605 			return (1);
9606 		}
9607 	}
9608 
9609 	if (level != MIB2_UDP) {
9610 		if ((mpctl = tcp_snmp_get(q, mpctl, legacy_req)) == NULL) {
9611 			return (1);
9612 		}
9613 	}
9614 
9615 	if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl,
9616 	    ipst, legacy_req)) == NULL) {
9617 		return (1);
9618 	}
9619 
9620 	if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst,
9621 	    legacy_req)) == NULL) {
9622 		return (1);
9623 	}
9624 
9625 	if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) {
9626 		return (1);
9627 	}
9628 
9629 	if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) {
9630 		return (1);
9631 	}
9632 
9633 	if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) {
9634 		return (1);
9635 	}
9636 
9637 	if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) {
9638 		return (1);
9639 	}
9640 
9641 	if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst,
9642 	    legacy_req)) == NULL) {
9643 		return (1);
9644 	}
9645 
9646 	if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst,
9647 	    legacy_req)) == NULL) {
9648 		return (1);
9649 	}
9650 
9651 	if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) {
9652 		return (1);
9653 	}
9654 
9655 	if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) {
9656 		return (1);
9657 	}
9658 
9659 	if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) {
9660 		return (1);
9661 	}
9662 
9663 	if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) {
9664 		return (1);
9665 	}
9666 
9667 	if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) {
9668 		return (1);
9669 	}
9670 
9671 	if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) {
9672 		return (1);
9673 	}
9674 
9675 	mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, level, ipst);
9676 	if (mpctl == NULL)
9677 		return (1);
9678 
9679 	mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, level, ipst);
9680 	if (mpctl == NULL)
9681 		return (1);
9682 
9683 	if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) {
9684 		return (1);
9685 	}
9686 	if ((mpctl = ip_snmp_get_mib2_ip_dce(q, mpctl, ipst)) == NULL) {
9687 		return (1);
9688 	}
9689 	freemsg(mpctl);
9690 	return (1);
9691 }
9692 
9693 /* Get global (legacy) IPv4 statistics */
9694 static mblk_t *
9695 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib,
9696     ip_stack_t *ipst, boolean_t legacy_req)
9697 {
9698 	mib2_ip_t		old_ip_mib;
9699 	struct opthdr		*optp;
9700 	mblk_t			*mp2ctl;
9701 	mib2_ipAddrEntry_t	mae;
9702 
9703 	/*
9704 	 * make a copy of the original message
9705 	 */
9706 	mp2ctl = copymsg(mpctl);
9707 
9708 	/* fixed length IP structure... */
9709 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9710 	optp->level = MIB2_IP;
9711 	optp->name = 0;
9712 	SET_MIB(old_ip_mib.ipForwarding,
9713 	    (WE_ARE_FORWARDING(ipst) ? 1 : 2));
9714 	SET_MIB(old_ip_mib.ipDefaultTTL,
9715 	    (uint32_t)ipst->ips_ip_def_ttl);
9716 	SET_MIB(old_ip_mib.ipReasmTimeout,
9717 	    ipst->ips_ip_reassembly_timeout);
9718 	SET_MIB(old_ip_mib.ipAddrEntrySize,
9719 	    (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) :
9720 	    sizeof (mib2_ipAddrEntry_t));
9721 	SET_MIB(old_ip_mib.ipRouteEntrySize,
9722 	    sizeof (mib2_ipRouteEntry_t));
9723 	SET_MIB(old_ip_mib.ipNetToMediaEntrySize,
9724 	    sizeof (mib2_ipNetToMediaEntry_t));
9725 	SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t));
9726 	SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t));
9727 	SET_MIB(old_ip_mib.ipRouteAttributeSize,
9728 	    sizeof (mib2_ipAttributeEntry_t));
9729 	SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t));
9730 	SET_MIB(old_ip_mib.ipDestEntrySize, sizeof (dest_cache_entry_t));
9731 
9732 	/*
9733 	 * Grab the statistics from the new IP MIB
9734 	 */
9735 	SET_MIB(old_ip_mib.ipInReceives,
9736 	    (uint32_t)ipmib->ipIfStatsHCInReceives);
9737 	SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors);
9738 	SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors);
9739 	SET_MIB(old_ip_mib.ipForwDatagrams,
9740 	    (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams);
9741 	SET_MIB(old_ip_mib.ipInUnknownProtos,
9742 	    ipmib->ipIfStatsInUnknownProtos);
9743 	SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards);
9744 	SET_MIB(old_ip_mib.ipInDelivers,
9745 	    (uint32_t)ipmib->ipIfStatsHCInDelivers);
9746 	SET_MIB(old_ip_mib.ipOutRequests,
9747 	    (uint32_t)ipmib->ipIfStatsHCOutRequests);
9748 	SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards);
9749 	SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes);
9750 	SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds);
9751 	SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs);
9752 	SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails);
9753 	SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs);
9754 	SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails);
9755 	SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates);
9756 
9757 	/* ipRoutingDiscards is not being used */
9758 	SET_MIB(old_ip_mib.ipRoutingDiscards, 0);
9759 	SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs);
9760 	SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts);
9761 	SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs);
9762 	SET_MIB(old_ip_mib.ipReasmDuplicates,
9763 	    ipmib->ipIfStatsReasmDuplicates);
9764 	SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups);
9765 	SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits);
9766 	SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs);
9767 	SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows);
9768 	SET_MIB(old_ip_mib.rawipInOverflows,
9769 	    ipmib->rawipIfStatsInOverflows);
9770 
9771 	SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded);
9772 	SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed);
9773 	SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion);
9774 	SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion);
9775 	SET_MIB(old_ip_mib.ipOutSwitchIPv6,
9776 	    ipmib->ipIfStatsOutSwitchIPVersion);
9777 
9778 	if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib,
9779 	    (int)sizeof (old_ip_mib))) {
9780 		ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n",
9781 		    (uint_t)sizeof (old_ip_mib)));
9782 	}
9783 
9784 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9785 	ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n",
9786 	    (int)optp->level, (int)optp->name, (int)optp->len));
9787 	qreply(q, mpctl);
9788 	return (mp2ctl);
9789 }
9790 
9791 /* Per interface IPv4 statistics */
9792 static mblk_t *
9793 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
9794     boolean_t legacy_req)
9795 {
9796 	struct opthdr		*optp;
9797 	mblk_t			*mp2ctl;
9798 	ill_t			*ill;
9799 	ill_walk_context_t	ctx;
9800 	mblk_t			*mp_tail = NULL;
9801 	mib2_ipIfStatsEntry_t	global_ip_mib;
9802 	mib2_ipAddrEntry_t	mae;
9803 
9804 	/*
9805 	 * Make a copy of the original message
9806 	 */
9807 	mp2ctl = copymsg(mpctl);
9808 
9809 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9810 	optp->level = MIB2_IP;
9811 	optp->name = MIB2_IP_TRAFFIC_STATS;
9812 	/* Include "unknown interface" ip_mib */
9813 	ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4;
9814 	ipst->ips_ip_mib.ipIfStatsIfIndex =
9815 	    MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */
9816 	SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding,
9817 	    (ipst->ips_ip_forwarding ? 1 : 2));
9818 	SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL,
9819 	    (uint32_t)ipst->ips_ip_def_ttl);
9820 	SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize,
9821 	    sizeof (mib2_ipIfStatsEntry_t));
9822 	SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize,
9823 	    sizeof (mib2_ipAddrEntry_t));
9824 	SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize,
9825 	    sizeof (mib2_ipRouteEntry_t));
9826 	SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize,
9827 	    sizeof (mib2_ipNetToMediaEntry_t));
9828 	SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize,
9829 	    sizeof (ip_member_t));
9830 	SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize,
9831 	    sizeof (ip_grpsrc_t));
9832 
9833 	bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib));
9834 
9835 	if (legacy_req) {
9836 		SET_MIB(global_ip_mib.ipIfStatsAddrEntrySize,
9837 		    LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t));
9838 	}
9839 
9840 	if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
9841 	    (char *)&global_ip_mib, (int)sizeof (global_ip_mib))) {
9842 		ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
9843 		    "failed to allocate %u bytes\n",
9844 		    (uint_t)sizeof (global_ip_mib)));
9845 	}
9846 
9847 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
9848 	ill = ILL_START_WALK_V4(&ctx, ipst);
9849 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
9850 		ill->ill_ip_mib->ipIfStatsIfIndex =
9851 		    ill->ill_phyint->phyint_ifindex;
9852 		SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding,
9853 		    (ipst->ips_ip_forwarding ? 1 : 2));
9854 		SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL,
9855 		    (uint32_t)ipst->ips_ip_def_ttl);
9856 
9857 		ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib);
9858 		if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
9859 		    (char *)ill->ill_ip_mib,
9860 		    (int)sizeof (*ill->ill_ip_mib))) {
9861 			ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
9862 			    "failed to allocate %u bytes\n",
9863 			    (uint_t)sizeof (*ill->ill_ip_mib)));
9864 		}
9865 	}
9866 	rw_exit(&ipst->ips_ill_g_lock);
9867 
9868 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9869 	ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
9870 	    "level %d, name %d, len %d\n",
9871 	    (int)optp->level, (int)optp->name, (int)optp->len));
9872 	qreply(q, mpctl);
9873 
9874 	if (mp2ctl == NULL)
9875 		return (NULL);
9876 
9877 	return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst,
9878 	    legacy_req));
9879 }
9880 
9881 /* Global IPv4 ICMP statistics */
9882 static mblk_t *
9883 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
9884 {
9885 	struct opthdr		*optp;
9886 	mblk_t			*mp2ctl;
9887 
9888 	/*
9889 	 * Make a copy of the original message
9890 	 */
9891 	mp2ctl = copymsg(mpctl);
9892 
9893 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9894 	optp->level = MIB2_ICMP;
9895 	optp->name = 0;
9896 	if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib,
9897 	    (int)sizeof (ipst->ips_icmp_mib))) {
9898 		ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n",
9899 		    (uint_t)sizeof (ipst->ips_icmp_mib)));
9900 	}
9901 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9902 	ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n",
9903 	    (int)optp->level, (int)optp->name, (int)optp->len));
9904 	qreply(q, mpctl);
9905 	return (mp2ctl);
9906 }
9907 
9908 /* Global IPv4 IGMP statistics */
9909 static mblk_t *
9910 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
9911 {
9912 	struct opthdr		*optp;
9913 	mblk_t			*mp2ctl;
9914 
9915 	/*
9916 	 * make a copy of the original message
9917 	 */
9918 	mp2ctl = copymsg(mpctl);
9919 
9920 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9921 	optp->level = EXPER_IGMP;
9922 	optp->name = 0;
9923 	if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat,
9924 	    (int)sizeof (ipst->ips_igmpstat))) {
9925 		ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n",
9926 		    (uint_t)sizeof (ipst->ips_igmpstat)));
9927 	}
9928 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9929 	ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n",
9930 	    (int)optp->level, (int)optp->name, (int)optp->len));
9931 	qreply(q, mpctl);
9932 	return (mp2ctl);
9933 }
9934 
9935 /* Global IPv4 Multicast Routing statistics */
9936 static mblk_t *
9937 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
9938 {
9939 	struct opthdr		*optp;
9940 	mblk_t			*mp2ctl;
9941 
9942 	/*
9943 	 * make a copy of the original message
9944 	 */
9945 	mp2ctl = copymsg(mpctl);
9946 
9947 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9948 	optp->level = EXPER_DVMRP;
9949 	optp->name = 0;
9950 	if (!ip_mroute_stats(mpctl->b_cont, ipst)) {
9951 		ip0dbg(("ip_mroute_stats: failed\n"));
9952 	}
9953 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9954 	ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n",
9955 	    (int)optp->level, (int)optp->name, (int)optp->len));
9956 	qreply(q, mpctl);
9957 	return (mp2ctl);
9958 }
9959 
9960 /* IPv4 address information */
9961 static mblk_t *
9962 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
9963     boolean_t legacy_req)
9964 {
9965 	struct opthdr		*optp;
9966 	mblk_t			*mp2ctl;
9967 	mblk_t			*mp_tail = NULL;
9968 	ill_t			*ill;
9969 	ipif_t			*ipif;
9970 	uint_t			bitval;
9971 	mib2_ipAddrEntry_t	mae;
9972 	size_t			mae_size;
9973 	zoneid_t		zoneid;
9974 	ill_walk_context_t	ctx;
9975 
9976 	/*
9977 	 * make a copy of the original message
9978 	 */
9979 	mp2ctl = copymsg(mpctl);
9980 
9981 	mae_size = (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) :
9982 	    sizeof (mib2_ipAddrEntry_t);
9983 
9984 	/* ipAddrEntryTable */
9985 
9986 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9987 	optp->level = MIB2_IP;
9988 	optp->name = MIB2_IP_ADDR;
9989 	zoneid = Q_TO_CONN(q)->conn_zoneid;
9990 
9991 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
9992 	ill = ILL_START_WALK_V4(&ctx, ipst);
9993 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
9994 		for (ipif = ill->ill_ipif; ipif != NULL;
9995 		    ipif = ipif->ipif_next) {
9996 			if (ipif->ipif_zoneid != zoneid &&
9997 			    ipif->ipif_zoneid != ALL_ZONES)
9998 				continue;
9999 			/* Sum of count from dead IRE_LO* and our current */
10000 			mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count;
10001 			if (ipif->ipif_ire_local != NULL) {
10002 				mae.ipAdEntInfo.ae_ibcnt +=
10003 				    ipif->ipif_ire_local->ire_ib_pkt_count;
10004 			}
10005 			mae.ipAdEntInfo.ae_obcnt = 0;
10006 			mae.ipAdEntInfo.ae_focnt = 0;
10007 
10008 			ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes,
10009 			    OCTET_LENGTH);
10010 			mae.ipAdEntIfIndex.o_length =
10011 			    mi_strlen(mae.ipAdEntIfIndex.o_bytes);
10012 			mae.ipAdEntAddr = ipif->ipif_lcl_addr;
10013 			mae.ipAdEntNetMask = ipif->ipif_net_mask;
10014 			mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet;
10015 			mae.ipAdEntInfo.ae_subnet_len =
10016 			    ip_mask_to_plen(ipif->ipif_net_mask);
10017 			mae.ipAdEntInfo.ae_src_addr = ipif->ipif_lcl_addr;
10018 			for (bitval = 1;
10019 			    bitval &&
10020 			    !(bitval & ipif->ipif_brd_addr);
10021 			    bitval <<= 1)
10022 				noop;
10023 			mae.ipAdEntBcastAddr = bitval;
10024 			mae.ipAdEntReasmMaxSize = IP_MAXPACKET;
10025 			mae.ipAdEntInfo.ae_mtu = ipif->ipif_ill->ill_mtu;
10026 			mae.ipAdEntInfo.ae_metric  = ipif->ipif_ill->ill_metric;
10027 			mae.ipAdEntInfo.ae_broadcast_addr =
10028 			    ipif->ipif_brd_addr;
10029 			mae.ipAdEntInfo.ae_pp_dst_addr =
10030 			    ipif->ipif_pp_dst_addr;
10031 			mae.ipAdEntInfo.ae_flags = ipif->ipif_flags |
10032 			    ill->ill_flags | ill->ill_phyint->phyint_flags;
10033 			mae.ipAdEntRetransmitTime =
10034 			    ill->ill_reachable_retrans_time;
10035 
10036 			if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10037 			    (char *)&mae, (int)mae_size)) {
10038 				ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to "
10039 				    "allocate %u bytes\n", (uint_t)mae_size));
10040 			}
10041 		}
10042 	}
10043 	rw_exit(&ipst->ips_ill_g_lock);
10044 
10045 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10046 	ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n",
10047 	    (int)optp->level, (int)optp->name, (int)optp->len));
10048 	qreply(q, mpctl);
10049 	return (mp2ctl);
10050 }
10051 
10052 /* IPv6 address information */
10053 static mblk_t *
10054 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
10055     boolean_t legacy_req)
10056 {
10057 	struct opthdr		*optp;
10058 	mblk_t			*mp2ctl;
10059 	mblk_t			*mp_tail = NULL;
10060 	ill_t			*ill;
10061 	ipif_t			*ipif;
10062 	mib2_ipv6AddrEntry_t	mae6;
10063 	size_t			mae6_size;
10064 	zoneid_t		zoneid;
10065 	ill_walk_context_t	ctx;
10066 
10067 	/*
10068 	 * make a copy of the original message
10069 	 */
10070 	mp2ctl = copymsg(mpctl);
10071 
10072 	mae6_size = (legacy_req) ?
10073 	    LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t) :
10074 	    sizeof (mib2_ipv6AddrEntry_t);
10075 
10076 	/* ipv6AddrEntryTable */
10077 
10078 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10079 	optp->level = MIB2_IP6;
10080 	optp->name = MIB2_IP6_ADDR;
10081 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10082 
10083 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10084 	ill = ILL_START_WALK_V6(&ctx, ipst);
10085 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10086 		for (ipif = ill->ill_ipif; ipif != NULL;
10087 		    ipif = ipif->ipif_next) {
10088 			if (ipif->ipif_zoneid != zoneid &&
10089 			    ipif->ipif_zoneid != ALL_ZONES)
10090 				continue;
10091 			/* Sum of count from dead IRE_LO* and our current */
10092 			mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count;
10093 			if (ipif->ipif_ire_local != NULL) {
10094 				mae6.ipv6AddrInfo.ae_ibcnt +=
10095 				    ipif->ipif_ire_local->ire_ib_pkt_count;
10096 			}
10097 			mae6.ipv6AddrInfo.ae_obcnt = 0;
10098 			mae6.ipv6AddrInfo.ae_focnt = 0;
10099 
10100 			ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes,
10101 			    OCTET_LENGTH);
10102 			mae6.ipv6AddrIfIndex.o_length =
10103 			    mi_strlen(mae6.ipv6AddrIfIndex.o_bytes);
10104 			mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr;
10105 			mae6.ipv6AddrPfxLength =
10106 			    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
10107 			mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet;
10108 			mae6.ipv6AddrInfo.ae_subnet_len =
10109 			    mae6.ipv6AddrPfxLength;
10110 			mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6lcl_addr;
10111 
10112 			/* Type: stateless(1), stateful(2), unknown(3) */
10113 			if (ipif->ipif_flags & IPIF_ADDRCONF)
10114 				mae6.ipv6AddrType = 1;
10115 			else
10116 				mae6.ipv6AddrType = 2;
10117 			/* Anycast: true(1), false(2) */
10118 			if (ipif->ipif_flags & IPIF_ANYCAST)
10119 				mae6.ipv6AddrAnycastFlag = 1;
10120 			else
10121 				mae6.ipv6AddrAnycastFlag = 2;
10122 
10123 			/*
10124 			 * Address status: preferred(1), deprecated(2),
10125 			 * invalid(3), inaccessible(4), unknown(5)
10126 			 */
10127 			if (ipif->ipif_flags & IPIF_NOLOCAL)
10128 				mae6.ipv6AddrStatus = 3;
10129 			else if (ipif->ipif_flags & IPIF_DEPRECATED)
10130 				mae6.ipv6AddrStatus = 2;
10131 			else
10132 				mae6.ipv6AddrStatus = 1;
10133 			mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_ill->ill_mtu;
10134 			mae6.ipv6AddrInfo.ae_metric  =
10135 			    ipif->ipif_ill->ill_metric;
10136 			mae6.ipv6AddrInfo.ae_pp_dst_addr =
10137 			    ipif->ipif_v6pp_dst_addr;
10138 			mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags |
10139 			    ill->ill_flags | ill->ill_phyint->phyint_flags;
10140 			mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET;
10141 			mae6.ipv6AddrIdentifier = ill->ill_token;
10142 			mae6.ipv6AddrIdentifierLen = ill->ill_token_length;
10143 			mae6.ipv6AddrReachableTime = ill->ill_reachable_time;
10144 			mae6.ipv6AddrRetransmitTime =
10145 			    ill->ill_reachable_retrans_time;
10146 			if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10147 			    (char *)&mae6, (int)mae6_size)) {
10148 				ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to "
10149 				    "allocate %u bytes\n",
10150 				    (uint_t)mae6_size));
10151 			}
10152 		}
10153 	}
10154 	rw_exit(&ipst->ips_ill_g_lock);
10155 
10156 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10157 	ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n",
10158 	    (int)optp->level, (int)optp->name, (int)optp->len));
10159 	qreply(q, mpctl);
10160 	return (mp2ctl);
10161 }
10162 
10163 /* IPv4 multicast group membership. */
10164 static mblk_t *
10165 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10166 {
10167 	struct opthdr		*optp;
10168 	mblk_t			*mp2ctl;
10169 	ill_t			*ill;
10170 	ipif_t			*ipif;
10171 	ilm_t			*ilm;
10172 	ip_member_t		ipm;
10173 	mblk_t			*mp_tail = NULL;
10174 	ill_walk_context_t	ctx;
10175 	zoneid_t		zoneid;
10176 
10177 	/*
10178 	 * make a copy of the original message
10179 	 */
10180 	mp2ctl = copymsg(mpctl);
10181 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10182 
10183 	/* ipGroupMember table */
10184 	optp = (struct opthdr *)&mpctl->b_rptr[
10185 	    sizeof (struct T_optmgmt_ack)];
10186 	optp->level = MIB2_IP;
10187 	optp->name = EXPER_IP_GROUP_MEMBERSHIP;
10188 
10189 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10190 	ill = ILL_START_WALK_V4(&ctx, ipst);
10191 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10192 		/* Make sure the ill isn't going away. */
10193 		if (!ill_check_and_refhold(ill))
10194 			continue;
10195 		rw_exit(&ipst->ips_ill_g_lock);
10196 		rw_enter(&ill->ill_mcast_lock, RW_READER);
10197 		for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10198 			if (ilm->ilm_zoneid != zoneid &&
10199 			    ilm->ilm_zoneid != ALL_ZONES)
10200 				continue;
10201 
10202 			/* Is there an ipif for ilm_ifaddr? */
10203 			for (ipif = ill->ill_ipif; ipif != NULL;
10204 			    ipif = ipif->ipif_next) {
10205 				if (!IPIF_IS_CONDEMNED(ipif) &&
10206 				    ipif->ipif_lcl_addr == ilm->ilm_ifaddr &&
10207 				    ilm->ilm_ifaddr != INADDR_ANY)
10208 					break;
10209 			}
10210 			if (ipif != NULL) {
10211 				ipif_get_name(ipif,
10212 				    ipm.ipGroupMemberIfIndex.o_bytes,
10213 				    OCTET_LENGTH);
10214 			} else {
10215 				ill_get_name(ill,
10216 				    ipm.ipGroupMemberIfIndex.o_bytes,
10217 				    OCTET_LENGTH);
10218 			}
10219 			ipm.ipGroupMemberIfIndex.o_length =
10220 			    mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes);
10221 
10222 			ipm.ipGroupMemberAddress = ilm->ilm_addr;
10223 			ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt;
10224 			ipm.ipGroupMemberFilterMode = ilm->ilm_fmode;
10225 			if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10226 			    (char *)&ipm, (int)sizeof (ipm))) {
10227 				ip1dbg(("ip_snmp_get_mib2_ip_group: "
10228 				    "failed to allocate %u bytes\n",
10229 				    (uint_t)sizeof (ipm)));
10230 			}
10231 		}
10232 		rw_exit(&ill->ill_mcast_lock);
10233 		ill_refrele(ill);
10234 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10235 	}
10236 	rw_exit(&ipst->ips_ill_g_lock);
10237 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10238 	ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10239 	    (int)optp->level, (int)optp->name, (int)optp->len));
10240 	qreply(q, mpctl);
10241 	return (mp2ctl);
10242 }
10243 
10244 /* IPv6 multicast group membership. */
10245 static mblk_t *
10246 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10247 {
10248 	struct opthdr		*optp;
10249 	mblk_t			*mp2ctl;
10250 	ill_t			*ill;
10251 	ilm_t			*ilm;
10252 	ipv6_member_t		ipm6;
10253 	mblk_t			*mp_tail = NULL;
10254 	ill_walk_context_t	ctx;
10255 	zoneid_t		zoneid;
10256 
10257 	/*
10258 	 * make a copy of the original message
10259 	 */
10260 	mp2ctl = copymsg(mpctl);
10261 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10262 
10263 	/* ip6GroupMember table */
10264 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10265 	optp->level = MIB2_IP6;
10266 	optp->name = EXPER_IP6_GROUP_MEMBERSHIP;
10267 
10268 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10269 	ill = ILL_START_WALK_V6(&ctx, ipst);
10270 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10271 		/* Make sure the ill isn't going away. */
10272 		if (!ill_check_and_refhold(ill))
10273 			continue;
10274 		rw_exit(&ipst->ips_ill_g_lock);
10275 		/*
10276 		 * Normally we don't have any members on under IPMP interfaces.
10277 		 * We report them as a debugging aid.
10278 		 */
10279 		rw_enter(&ill->ill_mcast_lock, RW_READER);
10280 		ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex;
10281 		for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10282 			if (ilm->ilm_zoneid != zoneid &&
10283 			    ilm->ilm_zoneid != ALL_ZONES)
10284 				continue;	/* not this zone */
10285 			ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr;
10286 			ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt;
10287 			ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode;
10288 			if (!snmp_append_data2(mpctl->b_cont,
10289 			    &mp_tail,
10290 			    (char *)&ipm6, (int)sizeof (ipm6))) {
10291 				ip1dbg(("ip_snmp_get_mib2_ip6_group: "
10292 				    "failed to allocate %u bytes\n",
10293 				    (uint_t)sizeof (ipm6)));
10294 			}
10295 		}
10296 		rw_exit(&ill->ill_mcast_lock);
10297 		ill_refrele(ill);
10298 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10299 	}
10300 	rw_exit(&ipst->ips_ill_g_lock);
10301 
10302 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10303 	ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10304 	    (int)optp->level, (int)optp->name, (int)optp->len));
10305 	qreply(q, mpctl);
10306 	return (mp2ctl);
10307 }
10308 
10309 /* IP multicast filtered sources */
10310 static mblk_t *
10311 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10312 {
10313 	struct opthdr		*optp;
10314 	mblk_t			*mp2ctl;
10315 	ill_t			*ill;
10316 	ipif_t			*ipif;
10317 	ilm_t			*ilm;
10318 	ip_grpsrc_t		ips;
10319 	mblk_t			*mp_tail = NULL;
10320 	ill_walk_context_t	ctx;
10321 	zoneid_t		zoneid;
10322 	int			i;
10323 	slist_t			*sl;
10324 
10325 	/*
10326 	 * make a copy of the original message
10327 	 */
10328 	mp2ctl = copymsg(mpctl);
10329 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10330 
10331 	/* ipGroupSource table */
10332 	optp = (struct opthdr *)&mpctl->b_rptr[
10333 	    sizeof (struct T_optmgmt_ack)];
10334 	optp->level = MIB2_IP;
10335 	optp->name = EXPER_IP_GROUP_SOURCES;
10336 
10337 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10338 	ill = ILL_START_WALK_V4(&ctx, ipst);
10339 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10340 		/* Make sure the ill isn't going away. */
10341 		if (!ill_check_and_refhold(ill))
10342 			continue;
10343 		rw_exit(&ipst->ips_ill_g_lock);
10344 		rw_enter(&ill->ill_mcast_lock, RW_READER);
10345 		for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10346 			sl = ilm->ilm_filter;
10347 			if (ilm->ilm_zoneid != zoneid &&
10348 			    ilm->ilm_zoneid != ALL_ZONES)
10349 				continue;
10350 			if (SLIST_IS_EMPTY(sl))
10351 				continue;
10352 
10353 			/* Is there an ipif for ilm_ifaddr? */
10354 			for (ipif = ill->ill_ipif; ipif != NULL;
10355 			    ipif = ipif->ipif_next) {
10356 				if (!IPIF_IS_CONDEMNED(ipif) &&
10357 				    ipif->ipif_lcl_addr == ilm->ilm_ifaddr &&
10358 				    ilm->ilm_ifaddr != INADDR_ANY)
10359 					break;
10360 			}
10361 			if (ipif != NULL) {
10362 				ipif_get_name(ipif,
10363 				    ips.ipGroupSourceIfIndex.o_bytes,
10364 				    OCTET_LENGTH);
10365 			} else {
10366 				ill_get_name(ill,
10367 				    ips.ipGroupSourceIfIndex.o_bytes,
10368 				    OCTET_LENGTH);
10369 			}
10370 			ips.ipGroupSourceIfIndex.o_length =
10371 			    mi_strlen(ips.ipGroupSourceIfIndex.o_bytes);
10372 
10373 			ips.ipGroupSourceGroup = ilm->ilm_addr;
10374 			for (i = 0; i < sl->sl_numsrc; i++) {
10375 				if (!IN6_IS_ADDR_V4MAPPED(&sl->sl_addr[i]))
10376 					continue;
10377 				IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i],
10378 				    ips.ipGroupSourceAddress);
10379 				if (snmp_append_data2(mpctl->b_cont, &mp_tail,
10380 				    (char *)&ips, (int)sizeof (ips)) == 0) {
10381 					ip1dbg(("ip_snmp_get_mib2_ip_group_src:"
10382 					    " failed to allocate %u bytes\n",
10383 					    (uint_t)sizeof (ips)));
10384 				}
10385 			}
10386 		}
10387 		rw_exit(&ill->ill_mcast_lock);
10388 		ill_refrele(ill);
10389 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10390 	}
10391 	rw_exit(&ipst->ips_ill_g_lock);
10392 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10393 	ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10394 	    (int)optp->level, (int)optp->name, (int)optp->len));
10395 	qreply(q, mpctl);
10396 	return (mp2ctl);
10397 }
10398 
10399 /* IPv6 multicast filtered sources. */
10400 static mblk_t *
10401 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10402 {
10403 	struct opthdr		*optp;
10404 	mblk_t			*mp2ctl;
10405 	ill_t			*ill;
10406 	ilm_t			*ilm;
10407 	ipv6_grpsrc_t		ips6;
10408 	mblk_t			*mp_tail = NULL;
10409 	ill_walk_context_t	ctx;
10410 	zoneid_t		zoneid;
10411 	int			i;
10412 	slist_t			*sl;
10413 
10414 	/*
10415 	 * make a copy of the original message
10416 	 */
10417 	mp2ctl = copymsg(mpctl);
10418 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10419 
10420 	/* ip6GroupMember table */
10421 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10422 	optp->level = MIB2_IP6;
10423 	optp->name = EXPER_IP6_GROUP_SOURCES;
10424 
10425 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10426 	ill = ILL_START_WALK_V6(&ctx, ipst);
10427 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10428 		/* Make sure the ill isn't going away. */
10429 		if (!ill_check_and_refhold(ill))
10430 			continue;
10431 		rw_exit(&ipst->ips_ill_g_lock);
10432 		/*
10433 		 * Normally we don't have any members on under IPMP interfaces.
10434 		 * We report them as a debugging aid.
10435 		 */
10436 		rw_enter(&ill->ill_mcast_lock, RW_READER);
10437 		ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex;
10438 		for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10439 			sl = ilm->ilm_filter;
10440 			if (ilm->ilm_zoneid != zoneid &&
10441 			    ilm->ilm_zoneid != ALL_ZONES)
10442 				continue;
10443 			if (SLIST_IS_EMPTY(sl))
10444 				continue;
10445 			ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr;
10446 			for (i = 0; i < sl->sl_numsrc; i++) {
10447 				ips6.ipv6GroupSourceAddress = sl->sl_addr[i];
10448 				if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10449 				    (char *)&ips6, (int)sizeof (ips6))) {
10450 					ip1dbg(("ip_snmp_get_mib2_ip6_"
10451 					    "group_src: failed to allocate "
10452 					    "%u bytes\n",
10453 					    (uint_t)sizeof (ips6)));
10454 				}
10455 			}
10456 		}
10457 		rw_exit(&ill->ill_mcast_lock);
10458 		ill_refrele(ill);
10459 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10460 	}
10461 	rw_exit(&ipst->ips_ill_g_lock);
10462 
10463 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10464 	ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10465 	    (int)optp->level, (int)optp->name, (int)optp->len));
10466 	qreply(q, mpctl);
10467 	return (mp2ctl);
10468 }
10469 
10470 /* Multicast routing virtual interface table. */
10471 static mblk_t *
10472 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10473 {
10474 	struct opthdr		*optp;
10475 	mblk_t			*mp2ctl;
10476 
10477 	/*
10478 	 * make a copy of the original message
10479 	 */
10480 	mp2ctl = copymsg(mpctl);
10481 
10482 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10483 	optp->level = EXPER_DVMRP;
10484 	optp->name = EXPER_DVMRP_VIF;
10485 	if (!ip_mroute_vif(mpctl->b_cont, ipst)) {
10486 		ip0dbg(("ip_mroute_vif: failed\n"));
10487 	}
10488 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10489 	ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n",
10490 	    (int)optp->level, (int)optp->name, (int)optp->len));
10491 	qreply(q, mpctl);
10492 	return (mp2ctl);
10493 }
10494 
10495 /* Multicast routing table. */
10496 static mblk_t *
10497 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10498 {
10499 	struct opthdr		*optp;
10500 	mblk_t			*mp2ctl;
10501 
10502 	/*
10503 	 * make a copy of the original message
10504 	 */
10505 	mp2ctl = copymsg(mpctl);
10506 
10507 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10508 	optp->level = EXPER_DVMRP;
10509 	optp->name = EXPER_DVMRP_MRT;
10510 	if (!ip_mroute_mrt(mpctl->b_cont, ipst)) {
10511 		ip0dbg(("ip_mroute_mrt: failed\n"));
10512 	}
10513 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10514 	ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n",
10515 	    (int)optp->level, (int)optp->name, (int)optp->len));
10516 	qreply(q, mpctl);
10517 	return (mp2ctl);
10518 }
10519 
10520 /*
10521  * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable
10522  * in one IRE walk.
10523  */
10524 static mblk_t *
10525 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, int level,
10526     ip_stack_t *ipst)
10527 {
10528 	struct opthdr	*optp;
10529 	mblk_t		*mp2ctl;	/* Returned */
10530 	mblk_t		*mp3ctl;	/* nettomedia */
10531 	mblk_t		*mp4ctl;	/* routeattrs */
10532 	iproutedata_t	ird;
10533 	zoneid_t	zoneid;
10534 
10535 	/*
10536 	 * make copies of the original message
10537 	 *	- mp2ctl is returned unchanged to the caller for his use
10538 	 *	- mpctl is sent upstream as ipRouteEntryTable
10539 	 *	- mp3ctl is sent upstream as ipNetToMediaEntryTable
10540 	 *	- mp4ctl is sent upstream as ipRouteAttributeTable
10541 	 */
10542 	mp2ctl = copymsg(mpctl);
10543 	mp3ctl = copymsg(mpctl);
10544 	mp4ctl = copymsg(mpctl);
10545 	if (mp3ctl == NULL || mp4ctl == NULL) {
10546 		freemsg(mp4ctl);
10547 		freemsg(mp3ctl);
10548 		freemsg(mp2ctl);
10549 		freemsg(mpctl);
10550 		return (NULL);
10551 	}
10552 
10553 	bzero(&ird, sizeof (ird));
10554 
10555 	ird.ird_route.lp_head = mpctl->b_cont;
10556 	ird.ird_netmedia.lp_head = mp3ctl->b_cont;
10557 	ird.ird_attrs.lp_head = mp4ctl->b_cont;
10558 	/*
10559 	 * If the level has been set the special EXPER_IP_AND_ALL_IRES value,
10560 	 * then also include ire_testhidden IREs and IRE_IF_CLONE.  This is
10561 	 * intended a temporary solution until a proper MIB API is provided
10562 	 * that provides complete filtering/caller-opt-in.
10563 	 */
10564 	if (level == EXPER_IP_AND_ALL_IRES)
10565 		ird.ird_flags |= IRD_REPORT_ALL;
10566 
10567 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10568 	ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst);
10569 
10570 	/* ipRouteEntryTable in mpctl */
10571 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10572 	optp->level = MIB2_IP;
10573 	optp->name = MIB2_IP_ROUTE;
10574 	optp->len = msgdsize(ird.ird_route.lp_head);
10575 	ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
10576 	    (int)optp->level, (int)optp->name, (int)optp->len));
10577 	qreply(q, mpctl);
10578 
10579 	/* ipNetToMediaEntryTable in mp3ctl */
10580 	ncec_walk(NULL, ip_snmp_get2_v4_media, &ird, ipst);
10581 
10582 	optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10583 	optp->level = MIB2_IP;
10584 	optp->name = MIB2_IP_MEDIA;
10585 	optp->len = msgdsize(ird.ird_netmedia.lp_head);
10586 	ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
10587 	    (int)optp->level, (int)optp->name, (int)optp->len));
10588 	qreply(q, mp3ctl);
10589 
10590 	/* ipRouteAttributeTable in mp4ctl */
10591 	optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10592 	optp->level = MIB2_IP;
10593 	optp->name = EXPER_IP_RTATTR;
10594 	optp->len = msgdsize(ird.ird_attrs.lp_head);
10595 	ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
10596 	    (int)optp->level, (int)optp->name, (int)optp->len));
10597 	if (optp->len == 0)
10598 		freemsg(mp4ctl);
10599 	else
10600 		qreply(q, mp4ctl);
10601 
10602 	return (mp2ctl);
10603 }
10604 
10605 /*
10606  * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and
10607  * ipv6NetToMediaEntryTable in an NDP walk.
10608  */
10609 static mblk_t *
10610 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, int level,
10611     ip_stack_t *ipst)
10612 {
10613 	struct opthdr	*optp;
10614 	mblk_t		*mp2ctl;	/* Returned */
10615 	mblk_t		*mp3ctl;	/* nettomedia */
10616 	mblk_t		*mp4ctl;	/* routeattrs */
10617 	iproutedata_t	ird;
10618 	zoneid_t	zoneid;
10619 
10620 	/*
10621 	 * make copies of the original message
10622 	 *	- mp2ctl is returned unchanged to the caller for his use
10623 	 *	- mpctl is sent upstream as ipv6RouteEntryTable
10624 	 *	- mp3ctl is sent upstream as ipv6NetToMediaEntryTable
10625 	 *	- mp4ctl is sent upstream as ipv6RouteAttributeTable
10626 	 */
10627 	mp2ctl = copymsg(mpctl);
10628 	mp3ctl = copymsg(mpctl);
10629 	mp4ctl = copymsg(mpctl);
10630 	if (mp3ctl == NULL || mp4ctl == NULL) {
10631 		freemsg(mp4ctl);
10632 		freemsg(mp3ctl);
10633 		freemsg(mp2ctl);
10634 		freemsg(mpctl);
10635 		return (NULL);
10636 	}
10637 
10638 	bzero(&ird, sizeof (ird));
10639 
10640 	ird.ird_route.lp_head = mpctl->b_cont;
10641 	ird.ird_netmedia.lp_head = mp3ctl->b_cont;
10642 	ird.ird_attrs.lp_head = mp4ctl->b_cont;
10643 	/*
10644 	 * If the level has been set the special EXPER_IP_AND_ALL_IRES value,
10645 	 * then also include ire_testhidden IREs and IRE_IF_CLONE.  This is
10646 	 * intended a temporary solution until a proper MIB API is provided
10647 	 * that provides complete filtering/caller-opt-in.
10648 	 */
10649 	if (level == EXPER_IP_AND_ALL_IRES)
10650 		ird.ird_flags |= IRD_REPORT_ALL;
10651 
10652 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10653 	ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst);
10654 
10655 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10656 	optp->level = MIB2_IP6;
10657 	optp->name = MIB2_IP6_ROUTE;
10658 	optp->len = msgdsize(ird.ird_route.lp_head);
10659 	ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
10660 	    (int)optp->level, (int)optp->name, (int)optp->len));
10661 	qreply(q, mpctl);
10662 
10663 	/* ipv6NetToMediaEntryTable in mp3ctl */
10664 	ncec_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst);
10665 
10666 	optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10667 	optp->level = MIB2_IP6;
10668 	optp->name = MIB2_IP6_MEDIA;
10669 	optp->len = msgdsize(ird.ird_netmedia.lp_head);
10670 	ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
10671 	    (int)optp->level, (int)optp->name, (int)optp->len));
10672 	qreply(q, mp3ctl);
10673 
10674 	/* ipv6RouteAttributeTable in mp4ctl */
10675 	optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10676 	optp->level = MIB2_IP6;
10677 	optp->name = EXPER_IP_RTATTR;
10678 	optp->len = msgdsize(ird.ird_attrs.lp_head);
10679 	ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
10680 	    (int)optp->level, (int)optp->name, (int)optp->len));
10681 	if (optp->len == 0)
10682 		freemsg(mp4ctl);
10683 	else
10684 		qreply(q, mp4ctl);
10685 
10686 	return (mp2ctl);
10687 }
10688 
10689 /*
10690  * IPv6 mib: One per ill
10691  */
10692 static mblk_t *
10693 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
10694     boolean_t legacy_req)
10695 {
10696 	struct opthdr		*optp;
10697 	mblk_t			*mp2ctl;
10698 	ill_t			*ill;
10699 	ill_walk_context_t	ctx;
10700 	mblk_t			*mp_tail = NULL;
10701 	mib2_ipv6AddrEntry_t	mae6;
10702 	mib2_ipIfStatsEntry_t	*ise;
10703 	size_t			ise_size, iae_size;
10704 
10705 	/*
10706 	 * Make a copy of the original message
10707 	 */
10708 	mp2ctl = copymsg(mpctl);
10709 
10710 	/* fixed length IPv6 structure ... */
10711 
10712 	if (legacy_req) {
10713 		ise_size = LEGACY_MIB_SIZE(&ipst->ips_ip6_mib,
10714 		    mib2_ipIfStatsEntry_t);
10715 		iae_size = LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t);
10716 	} else {
10717 		ise_size = sizeof (mib2_ipIfStatsEntry_t);
10718 		iae_size = sizeof (mib2_ipv6AddrEntry_t);
10719 	}
10720 
10721 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10722 	optp->level = MIB2_IP6;
10723 	optp->name = 0;
10724 	/* Include "unknown interface" ip6_mib */
10725 	ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6;
10726 	ipst->ips_ip6_mib.ipIfStatsIfIndex =
10727 	    MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */
10728 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding,
10729 	    ipst->ips_ipv6_forwarding ? 1 : 2);
10730 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit,
10731 	    ipst->ips_ipv6_def_hops);
10732 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize,
10733 	    sizeof (mib2_ipIfStatsEntry_t));
10734 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize,
10735 	    sizeof (mib2_ipv6AddrEntry_t));
10736 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize,
10737 	    sizeof (mib2_ipv6RouteEntry_t));
10738 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize,
10739 	    sizeof (mib2_ipv6NetToMediaEntry_t));
10740 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize,
10741 	    sizeof (ipv6_member_t));
10742 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize,
10743 	    sizeof (ipv6_grpsrc_t));
10744 
10745 	/*
10746 	 * Synchronize 64- and 32-bit counters
10747 	 */
10748 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives,
10749 	    ipIfStatsHCInReceives);
10750 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers,
10751 	    ipIfStatsHCInDelivers);
10752 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests,
10753 	    ipIfStatsHCOutRequests);
10754 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams,
10755 	    ipIfStatsHCOutForwDatagrams);
10756 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts,
10757 	    ipIfStatsHCOutMcastPkts);
10758 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts,
10759 	    ipIfStatsHCInMcastPkts);
10760 
10761 	if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10762 	    (char *)&ipst->ips_ip6_mib, (int)ise_size)) {
10763 		ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n",
10764 		    (uint_t)ise_size));
10765 	} else if (legacy_req) {
10766 		/* Adjust the EntrySize fields for legacy requests. */
10767 		ise =
10768 		    (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr - (int)ise_size);
10769 		SET_MIB(ise->ipIfStatsEntrySize, ise_size);
10770 		SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size);
10771 	}
10772 
10773 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10774 	ill = ILL_START_WALK_V6(&ctx, ipst);
10775 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10776 		ill->ill_ip_mib->ipIfStatsIfIndex =
10777 		    ill->ill_phyint->phyint_ifindex;
10778 		SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding,
10779 		    ipst->ips_ipv6_forwarding ? 1 : 2);
10780 		SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit,
10781 		    ill->ill_max_hops);
10782 
10783 		/*
10784 		 * Synchronize 64- and 32-bit counters
10785 		 */
10786 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives,
10787 		    ipIfStatsHCInReceives);
10788 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers,
10789 		    ipIfStatsHCInDelivers);
10790 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests,
10791 		    ipIfStatsHCOutRequests);
10792 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams,
10793 		    ipIfStatsHCOutForwDatagrams);
10794 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts,
10795 		    ipIfStatsHCOutMcastPkts);
10796 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts,
10797 		    ipIfStatsHCInMcastPkts);
10798 
10799 		if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10800 		    (char *)ill->ill_ip_mib, (int)ise_size)) {
10801 			ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate "
10802 			"%u bytes\n", (uint_t)ise_size));
10803 		} else if (legacy_req) {
10804 			/* Adjust the EntrySize fields for legacy requests. */
10805 			ise = (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr -
10806 			    (int)ise_size);
10807 			SET_MIB(ise->ipIfStatsEntrySize, ise_size);
10808 			SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size);
10809 		}
10810 	}
10811 	rw_exit(&ipst->ips_ill_g_lock);
10812 
10813 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10814 	ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n",
10815 	    (int)optp->level, (int)optp->name, (int)optp->len));
10816 	qreply(q, mpctl);
10817 	return (mp2ctl);
10818 }
10819 
10820 /*
10821  * ICMPv6 mib: One per ill
10822  */
10823 static mblk_t *
10824 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10825 {
10826 	struct opthdr		*optp;
10827 	mblk_t			*mp2ctl;
10828 	ill_t			*ill;
10829 	ill_walk_context_t	ctx;
10830 	mblk_t			*mp_tail = NULL;
10831 	/*
10832 	 * Make a copy of the original message
10833 	 */
10834 	mp2ctl = copymsg(mpctl);
10835 
10836 	/* fixed length ICMPv6 structure ... */
10837 
10838 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10839 	optp->level = MIB2_ICMP6;
10840 	optp->name = 0;
10841 	/* Include "unknown interface" icmp6_mib */
10842 	ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex =
10843 	    MIB2_UNKNOWN_INTERFACE; /* netstat flag */
10844 	ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize =
10845 	    sizeof (mib2_ipv6IfIcmpEntry_t);
10846 	if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10847 	    (char *)&ipst->ips_icmp6_mib,
10848 	    (int)sizeof (ipst->ips_icmp6_mib))) {
10849 		ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n",
10850 		    (uint_t)sizeof (ipst->ips_icmp6_mib)));
10851 	}
10852 
10853 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10854 	ill = ILL_START_WALK_V6(&ctx, ipst);
10855 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10856 		ill->ill_icmp6_mib->ipv6IfIcmpIfIndex =
10857 		    ill->ill_phyint->phyint_ifindex;
10858 		if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10859 		    (char *)ill->ill_icmp6_mib,
10860 		    (int)sizeof (*ill->ill_icmp6_mib))) {
10861 			ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate "
10862 			    "%u bytes\n",
10863 			    (uint_t)sizeof (*ill->ill_icmp6_mib)));
10864 		}
10865 	}
10866 	rw_exit(&ipst->ips_ill_g_lock);
10867 
10868 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10869 	ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n",
10870 	    (int)optp->level, (int)optp->name, (int)optp->len));
10871 	qreply(q, mpctl);
10872 	return (mp2ctl);
10873 }
10874 
10875 /*
10876  * ire_walk routine to create both ipRouteEntryTable and
10877  * ipRouteAttributeTable in one IRE walk
10878  */
10879 static void
10880 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird)
10881 {
10882 	ill_t				*ill;
10883 	mib2_ipRouteEntry_t		*re;
10884 	mib2_ipAttributeEntry_t		iaes;
10885 	tsol_ire_gw_secattr_t		*attrp;
10886 	tsol_gc_t			*gc = NULL;
10887 	tsol_gcgrp_t			*gcgrp = NULL;
10888 	ip_stack_t			*ipst = ire->ire_ipst;
10889 
10890 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
10891 
10892 	if (!(ird->ird_flags & IRD_REPORT_ALL)) {
10893 		if (ire->ire_testhidden)
10894 			return;
10895 		if (ire->ire_type & IRE_IF_CLONE)
10896 			return;
10897 	}
10898 
10899 	if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL)
10900 		return;
10901 
10902 	if ((attrp = ire->ire_gw_secattr) != NULL) {
10903 		mutex_enter(&attrp->igsa_lock);
10904 		if ((gc = attrp->igsa_gc) != NULL) {
10905 			gcgrp = gc->gc_grp;
10906 			ASSERT(gcgrp != NULL);
10907 			rw_enter(&gcgrp->gcgrp_rwlock, RW_READER);
10908 		}
10909 		mutex_exit(&attrp->igsa_lock);
10910 	}
10911 	/*
10912 	 * Return all IRE types for route table... let caller pick and choose
10913 	 */
10914 	re->ipRouteDest = ire->ire_addr;
10915 	ill = ire->ire_ill;
10916 	re->ipRouteIfIndex.o_length = 0;
10917 	if (ill != NULL) {
10918 		ill_get_name(ill, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH);
10919 		re->ipRouteIfIndex.o_length =
10920 		    mi_strlen(re->ipRouteIfIndex.o_bytes);
10921 	}
10922 	re->ipRouteMetric1 = -1;
10923 	re->ipRouteMetric2 = -1;
10924 	re->ipRouteMetric3 = -1;
10925 	re->ipRouteMetric4 = -1;
10926 
10927 	re->ipRouteNextHop = ire->ire_gateway_addr;
10928 	/* indirect(4), direct(3), or invalid(2) */
10929 	if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))
10930 		re->ipRouteType = 2;
10931 	else if (ire->ire_type & IRE_ONLINK)
10932 		re->ipRouteType = 3;
10933 	else
10934 		re->ipRouteType = 4;
10935 
10936 	re->ipRouteProto = -1;
10937 	re->ipRouteAge = gethrestime_sec() - ire->ire_create_time;
10938 	re->ipRouteMask = ire->ire_mask;
10939 	re->ipRouteMetric5 = -1;
10940 	re->ipRouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu;
10941 	if (ire->ire_ill != NULL && re->ipRouteInfo.re_max_frag == 0)
10942 		re->ipRouteInfo.re_max_frag = ire->ire_ill->ill_mtu;
10943 
10944 	re->ipRouteInfo.re_frag_flag	= 0;
10945 	re->ipRouteInfo.re_rtt		= 0;
10946 	re->ipRouteInfo.re_src_addr	= 0;
10947 	re->ipRouteInfo.re_ref		= ire->ire_refcnt;
10948 	re->ipRouteInfo.re_obpkt	= ire->ire_ob_pkt_count;
10949 	re->ipRouteInfo.re_ibpkt	= ire->ire_ib_pkt_count;
10950 	re->ipRouteInfo.re_flags	= ire->ire_flags;
10951 
10952 	/* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */
10953 	if (ire->ire_type & IRE_INTERFACE) {
10954 		ire_t *child;
10955 
10956 		rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
10957 		child = ire->ire_dep_children;
10958 		while (child != NULL) {
10959 			re->ipRouteInfo.re_obpkt += child->ire_ob_pkt_count;
10960 			re->ipRouteInfo.re_ibpkt += child->ire_ib_pkt_count;
10961 			child = child->ire_dep_sib_next;
10962 		}
10963 		rw_exit(&ipst->ips_ire_dep_lock);
10964 	}
10965 
10966 	if (ire->ire_flags & RTF_DYNAMIC) {
10967 		re->ipRouteInfo.re_ire_type	= IRE_HOST_REDIRECT;
10968 	} else {
10969 		re->ipRouteInfo.re_ire_type	= ire->ire_type;
10970 	}
10971 
10972 	if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail,
10973 	    (char *)re, (int)sizeof (*re))) {
10974 		ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n",
10975 		    (uint_t)sizeof (*re)));
10976 	}
10977 
10978 	if (gc != NULL) {
10979 		iaes.iae_routeidx = ird->ird_idx;
10980 		iaes.iae_doi = gc->gc_db->gcdb_doi;
10981 		iaes.iae_slrange = gc->gc_db->gcdb_slrange;
10982 
10983 		if (!snmp_append_data2(ird->ird_attrs.lp_head,
10984 		    &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) {
10985 			ip1dbg(("ip_snmp_get2_v4: failed to allocate %u "
10986 			    "bytes\n", (uint_t)sizeof (iaes)));
10987 		}
10988 	}
10989 
10990 	/* bump route index for next pass */
10991 	ird->ird_idx++;
10992 
10993 	kmem_free(re, sizeof (*re));
10994 	if (gcgrp != NULL)
10995 		rw_exit(&gcgrp->gcgrp_rwlock);
10996 }
10997 
10998 /*
10999  * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable.
11000  */
11001 static void
11002 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird)
11003 {
11004 	ill_t				*ill;
11005 	mib2_ipv6RouteEntry_t		*re;
11006 	mib2_ipAttributeEntry_t		iaes;
11007 	tsol_ire_gw_secattr_t		*attrp;
11008 	tsol_gc_t			*gc = NULL;
11009 	tsol_gcgrp_t			*gcgrp = NULL;
11010 	ip_stack_t			*ipst = ire->ire_ipst;
11011 
11012 	ASSERT(ire->ire_ipversion == IPV6_VERSION);
11013 
11014 	if (!(ird->ird_flags & IRD_REPORT_ALL)) {
11015 		if (ire->ire_testhidden)
11016 			return;
11017 		if (ire->ire_type & IRE_IF_CLONE)
11018 			return;
11019 	}
11020 
11021 	if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL)
11022 		return;
11023 
11024 	if ((attrp = ire->ire_gw_secattr) != NULL) {
11025 		mutex_enter(&attrp->igsa_lock);
11026 		if ((gc = attrp->igsa_gc) != NULL) {
11027 			gcgrp = gc->gc_grp;
11028 			ASSERT(gcgrp != NULL);
11029 			rw_enter(&gcgrp->gcgrp_rwlock, RW_READER);
11030 		}
11031 		mutex_exit(&attrp->igsa_lock);
11032 	}
11033 	/*
11034 	 * Return all IRE types for route table... let caller pick and choose
11035 	 */
11036 	re->ipv6RouteDest = ire->ire_addr_v6;
11037 	re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6);
11038 	re->ipv6RouteIndex = 0;	/* Unique when multiple with same dest/plen */
11039 	re->ipv6RouteIfIndex.o_length = 0;
11040 	ill = ire->ire_ill;
11041 	if (ill != NULL) {
11042 		ill_get_name(ill, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH);
11043 		re->ipv6RouteIfIndex.o_length =
11044 		    mi_strlen(re->ipv6RouteIfIndex.o_bytes);
11045 	}
11046 
11047 	ASSERT(!(ire->ire_type & IRE_BROADCAST));
11048 
11049 	mutex_enter(&ire->ire_lock);
11050 	re->ipv6RouteNextHop = ire->ire_gateway_addr_v6;
11051 	mutex_exit(&ire->ire_lock);
11052 
11053 	/* remote(4), local(3), or discard(2) */
11054 	if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))
11055 		re->ipv6RouteType = 2;
11056 	else if (ire->ire_type & IRE_ONLINK)
11057 		re->ipv6RouteType = 3;
11058 	else
11059 		re->ipv6RouteType = 4;
11060 
11061 	re->ipv6RouteProtocol	= -1;
11062 	re->ipv6RoutePolicy	= 0;
11063 	re->ipv6RouteAge	= gethrestime_sec() - ire->ire_create_time;
11064 	re->ipv6RouteNextHopRDI	= 0;
11065 	re->ipv6RouteWeight	= 0;
11066 	re->ipv6RouteMetric	= 0;
11067 	re->ipv6RouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu;
11068 	if (ire->ire_ill != NULL && re->ipv6RouteInfo.re_max_frag == 0)
11069 		re->ipv6RouteInfo.re_max_frag = ire->ire_ill->ill_mtu;
11070 
11071 	re->ipv6RouteInfo.re_frag_flag	= 0;
11072 	re->ipv6RouteInfo.re_rtt	= 0;
11073 	re->ipv6RouteInfo.re_src_addr	= ipv6_all_zeros;
11074 	re->ipv6RouteInfo.re_obpkt	= ire->ire_ob_pkt_count;
11075 	re->ipv6RouteInfo.re_ibpkt	= ire->ire_ib_pkt_count;
11076 	re->ipv6RouteInfo.re_ref	= ire->ire_refcnt;
11077 	re->ipv6RouteInfo.re_flags	= ire->ire_flags;
11078 
11079 	/* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */
11080 	if (ire->ire_type & IRE_INTERFACE) {
11081 		ire_t *child;
11082 
11083 		rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
11084 		child = ire->ire_dep_children;
11085 		while (child != NULL) {
11086 			re->ipv6RouteInfo.re_obpkt += child->ire_ob_pkt_count;
11087 			re->ipv6RouteInfo.re_ibpkt += child->ire_ib_pkt_count;
11088 			child = child->ire_dep_sib_next;
11089 		}
11090 		rw_exit(&ipst->ips_ire_dep_lock);
11091 	}
11092 	if (ire->ire_flags & RTF_DYNAMIC) {
11093 		re->ipv6RouteInfo.re_ire_type	= IRE_HOST_REDIRECT;
11094 	} else {
11095 		re->ipv6RouteInfo.re_ire_type	= ire->ire_type;
11096 	}
11097 
11098 	if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail,
11099 	    (char *)re, (int)sizeof (*re))) {
11100 		ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n",
11101 		    (uint_t)sizeof (*re)));
11102 	}
11103 
11104 	if (gc != NULL) {
11105 		iaes.iae_routeidx = ird->ird_idx;
11106 		iaes.iae_doi = gc->gc_db->gcdb_doi;
11107 		iaes.iae_slrange = gc->gc_db->gcdb_slrange;
11108 
11109 		if (!snmp_append_data2(ird->ird_attrs.lp_head,
11110 		    &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) {
11111 			ip1dbg(("ip_snmp_get2_v6: failed to allocate %u "
11112 			    "bytes\n", (uint_t)sizeof (iaes)));
11113 		}
11114 	}
11115 
11116 	/* bump route index for next pass */
11117 	ird->ird_idx++;
11118 
11119 	kmem_free(re, sizeof (*re));
11120 	if (gcgrp != NULL)
11121 		rw_exit(&gcgrp->gcgrp_rwlock);
11122 }
11123 
11124 /*
11125  * ncec_walk routine to create ipv6NetToMediaEntryTable
11126  */
11127 static int
11128 ip_snmp_get2_v6_media(ncec_t *ncec, iproutedata_t *ird)
11129 {
11130 	ill_t				*ill;
11131 	mib2_ipv6NetToMediaEntry_t	ntme;
11132 
11133 	ill = ncec->ncec_ill;
11134 	/* skip arpce entries, and loopback ncec entries */
11135 	if (ill->ill_isv6 == B_FALSE || ill->ill_net_type == IRE_LOOPBACK)
11136 		return (0);
11137 	/*
11138 	 * Neighbor cache entry attached to IRE with on-link
11139 	 * destination.
11140 	 * We report all IPMP groups on ncec_ill which is normally the upper.
11141 	 */
11142 	ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex;
11143 	ntme.ipv6NetToMediaNetAddress = ncec->ncec_addr;
11144 	ntme.ipv6NetToMediaPhysAddress.o_length = ill->ill_phys_addr_length;
11145 	if (ncec->ncec_lladdr != NULL) {
11146 		bcopy(ncec->ncec_lladdr, ntme.ipv6NetToMediaPhysAddress.o_bytes,
11147 		    ntme.ipv6NetToMediaPhysAddress.o_length);
11148 	}
11149 	/*
11150 	 * Note: Returns ND_* states. Should be:
11151 	 * reachable(1), stale(2), delay(3), probe(4),
11152 	 * invalid(5), unknown(6)
11153 	 */
11154 	ntme.ipv6NetToMediaState = ncec->ncec_state;
11155 	ntme.ipv6NetToMediaLastUpdated = 0;
11156 
11157 	/* other(1), dynamic(2), static(3), local(4) */
11158 	if (NCE_MYADDR(ncec)) {
11159 		ntme.ipv6NetToMediaType = 4;
11160 	} else if (ncec->ncec_flags & NCE_F_PUBLISH) {
11161 		ntme.ipv6NetToMediaType = 1; /* proxy */
11162 	} else if (ncec->ncec_flags & NCE_F_STATIC) {
11163 		ntme.ipv6NetToMediaType = 3;
11164 	} else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST)) {
11165 		ntme.ipv6NetToMediaType = 1;
11166 	} else {
11167 		ntme.ipv6NetToMediaType = 2;
11168 	}
11169 
11170 	if (!snmp_append_data2(ird->ird_netmedia.lp_head,
11171 	    &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) {
11172 		ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n",
11173 		    (uint_t)sizeof (ntme)));
11174 	}
11175 	return (0);
11176 }
11177 
11178 int
11179 nce2ace(ncec_t *ncec)
11180 {
11181 	int flags = 0;
11182 
11183 	if (NCE_ISREACHABLE(ncec))
11184 		flags |= ACE_F_RESOLVED;
11185 	if (ncec->ncec_flags & NCE_F_AUTHORITY)
11186 		flags |= ACE_F_AUTHORITY;
11187 	if (ncec->ncec_flags & NCE_F_PUBLISH)
11188 		flags |= ACE_F_PUBLISH;
11189 	if ((ncec->ncec_flags & NCE_F_NONUD) != 0)
11190 		flags |= ACE_F_PERMANENT;
11191 	if (NCE_MYADDR(ncec))
11192 		flags |= (ACE_F_MYADDR | ACE_F_AUTHORITY);
11193 	if (ncec->ncec_flags & NCE_F_UNVERIFIED)
11194 		flags |= ACE_F_UNVERIFIED;
11195 	if (ncec->ncec_flags & NCE_F_AUTHORITY)
11196 		flags |= ACE_F_AUTHORITY;
11197 	if (ncec->ncec_flags & NCE_F_DELAYED)
11198 		flags |= ACE_F_DELAYED;
11199 	return (flags);
11200 }
11201 
11202 /*
11203  * ncec_walk routine to create ipNetToMediaEntryTable
11204  */
11205 static int
11206 ip_snmp_get2_v4_media(ncec_t *ncec, iproutedata_t *ird)
11207 {
11208 	ill_t				*ill;
11209 	mib2_ipNetToMediaEntry_t	ntme;
11210 	const char			*name = "unknown";
11211 	ipaddr_t			ncec_addr;
11212 
11213 	ill = ncec->ncec_ill;
11214 	if (ill->ill_isv6 || (ncec->ncec_flags & NCE_F_BCAST) ||
11215 	    ill->ill_net_type == IRE_LOOPBACK)
11216 		return (0);
11217 
11218 	/* We report all IPMP groups on ncec_ill which is normally the upper. */
11219 	name = ill->ill_name;
11220 	/* Based on RFC 4293: other(1), inval(2), dyn(3), stat(4) */
11221 	if (NCE_MYADDR(ncec)) {
11222 		ntme.ipNetToMediaType = 4;
11223 	} else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST|NCE_F_PUBLISH)) {
11224 		ntme.ipNetToMediaType = 1;
11225 	} else {
11226 		ntme.ipNetToMediaType = 3;
11227 	}
11228 	ntme.ipNetToMediaIfIndex.o_length = MIN(OCTET_LENGTH, strlen(name));
11229 	bcopy(name, ntme.ipNetToMediaIfIndex.o_bytes,
11230 	    ntme.ipNetToMediaIfIndex.o_length);
11231 
11232 	IN6_V4MAPPED_TO_IPADDR(&ncec->ncec_addr, ncec_addr);
11233 	bcopy(&ncec_addr, &ntme.ipNetToMediaNetAddress, sizeof (ncec_addr));
11234 
11235 	ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (ipaddr_t);
11236 	ncec_addr = INADDR_BROADCAST;
11237 	bcopy(&ncec_addr, ntme.ipNetToMediaInfo.ntm_mask.o_bytes,
11238 	    sizeof (ncec_addr));
11239 	/*
11240 	 * map all the flags to the ACE counterpart.
11241 	 */
11242 	ntme.ipNetToMediaInfo.ntm_flags = nce2ace(ncec);
11243 
11244 	ntme.ipNetToMediaPhysAddress.o_length =
11245 	    MIN(OCTET_LENGTH, ill->ill_phys_addr_length);
11246 
11247 	if (!NCE_ISREACHABLE(ncec))
11248 		ntme.ipNetToMediaPhysAddress.o_length = 0;
11249 	else {
11250 		if (ncec->ncec_lladdr != NULL) {
11251 			bcopy(ncec->ncec_lladdr,
11252 			    ntme.ipNetToMediaPhysAddress.o_bytes,
11253 			    ntme.ipNetToMediaPhysAddress.o_length);
11254 		}
11255 	}
11256 
11257 	if (!snmp_append_data2(ird->ird_netmedia.lp_head,
11258 	    &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) {
11259 		ip1dbg(("ip_snmp_get2_v4_media: failed to allocate %u bytes\n",
11260 		    (uint_t)sizeof (ntme)));
11261 	}
11262 	return (0);
11263 }
11264 
11265 /*
11266  * return (0) if invalid set request, 1 otherwise, including non-tcp requests
11267  */
11268 /* ARGSUSED */
11269 int
11270 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len)
11271 {
11272 	switch (level) {
11273 	case MIB2_IP:
11274 	case MIB2_ICMP:
11275 		switch (name) {
11276 		default:
11277 			break;
11278 		}
11279 		return (1);
11280 	default:
11281 		return (1);
11282 	}
11283 }
11284 
11285 /*
11286  * When there exists both a 64- and 32-bit counter of a particular type
11287  * (i.e., InReceives), only the 64-bit counters are added.
11288  */
11289 void
11290 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2)
11291 {
11292 	UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors);
11293 	UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors);
11294 	UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes);
11295 	UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors);
11296 	UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos);
11297 	UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts);
11298 	UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards);
11299 	UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards);
11300 	UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs);
11301 	UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails);
11302 	UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates);
11303 	UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds);
11304 	UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs);
11305 	UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails);
11306 	UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes);
11307 	UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates);
11308 	UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups);
11309 	UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits);
11310 	UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs);
11311 	UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows);
11312 	UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows);
11313 	UPDATE_MIB(o1, ipIfStatsInWrongIPVersion,
11314 	    o2->ipIfStatsInWrongIPVersion);
11315 	UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion,
11316 	    o2->ipIfStatsInWrongIPVersion);
11317 	UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion,
11318 	    o2->ipIfStatsOutSwitchIPVersion);
11319 	UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives);
11320 	UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets);
11321 	UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams,
11322 	    o2->ipIfStatsHCInForwDatagrams);
11323 	UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers);
11324 	UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests);
11325 	UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams,
11326 	    o2->ipIfStatsHCOutForwDatagrams);
11327 	UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds);
11328 	UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits);
11329 	UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets);
11330 	UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts);
11331 	UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets);
11332 	UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts);
11333 	UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets,
11334 	    o2->ipIfStatsHCOutMcastOctets);
11335 	UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts);
11336 	UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts);
11337 	UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded);
11338 	UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed);
11339 	UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs);
11340 	UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs);
11341 	UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts);
11342 }
11343 
11344 void
11345 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2)
11346 {
11347 	UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs);
11348 	UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors);
11349 	UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs);
11350 	UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs);
11351 	UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds);
11352 	UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems);
11353 	UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs);
11354 	UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos);
11355 	UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies);
11356 	UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits,
11357 	    o2->ipv6IfIcmpInRouterSolicits);
11358 	UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements,
11359 	    o2->ipv6IfIcmpInRouterAdvertisements);
11360 	UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits,
11361 	    o2->ipv6IfIcmpInNeighborSolicits);
11362 	UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements,
11363 	    o2->ipv6IfIcmpInNeighborAdvertisements);
11364 	UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects);
11365 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries,
11366 	    o2->ipv6IfIcmpInGroupMembQueries);
11367 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses,
11368 	    o2->ipv6IfIcmpInGroupMembResponses);
11369 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions,
11370 	    o2->ipv6IfIcmpInGroupMembReductions);
11371 	UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs);
11372 	UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors);
11373 	UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs,
11374 	    o2->ipv6IfIcmpOutDestUnreachs);
11375 	UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs,
11376 	    o2->ipv6IfIcmpOutAdminProhibs);
11377 	UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds);
11378 	UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems,
11379 	    o2->ipv6IfIcmpOutParmProblems);
11380 	UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs);
11381 	UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos);
11382 	UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies);
11383 	UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits,
11384 	    o2->ipv6IfIcmpOutRouterSolicits);
11385 	UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements,
11386 	    o2->ipv6IfIcmpOutRouterAdvertisements);
11387 	UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits,
11388 	    o2->ipv6IfIcmpOutNeighborSolicits);
11389 	UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements,
11390 	    o2->ipv6IfIcmpOutNeighborAdvertisements);
11391 	UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects);
11392 	UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries,
11393 	    o2->ipv6IfIcmpOutGroupMembQueries);
11394 	UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses,
11395 	    o2->ipv6IfIcmpOutGroupMembResponses);
11396 	UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions,
11397 	    o2->ipv6IfIcmpOutGroupMembReductions);
11398 	UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows);
11399 	UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit);
11400 	UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements,
11401 	    o2->ipv6IfIcmpInBadNeighborAdvertisements);
11402 	UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations,
11403 	    o2->ipv6IfIcmpInBadNeighborSolicitations);
11404 	UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects);
11405 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal,
11406 	    o2->ipv6IfIcmpInGroupMembTotal);
11407 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries,
11408 	    o2->ipv6IfIcmpInGroupMembBadQueries);
11409 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports,
11410 	    o2->ipv6IfIcmpInGroupMembBadReports);
11411 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports,
11412 	    o2->ipv6IfIcmpInGroupMembOurReports);
11413 }
11414 
11415 /*
11416  * Called before the options are updated to check if this packet will
11417  * be source routed from here.
11418  * This routine assumes that the options are well formed i.e. that they
11419  * have already been checked.
11420  */
11421 boolean_t
11422 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst)
11423 {
11424 	ipoptp_t	opts;
11425 	uchar_t		*opt;
11426 	uint8_t		optval;
11427 	uint8_t		optlen;
11428 	ipaddr_t	dst;
11429 
11430 	if (IS_SIMPLE_IPH(ipha)) {
11431 		ip2dbg(("not source routed\n"));
11432 		return (B_FALSE);
11433 	}
11434 	dst = ipha->ipha_dst;
11435 	for (optval = ipoptp_first(&opts, ipha);
11436 	    optval != IPOPT_EOL;
11437 	    optval = ipoptp_next(&opts)) {
11438 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
11439 		opt = opts.ipoptp_cur;
11440 		optlen = opts.ipoptp_len;
11441 		ip2dbg(("ip_source_routed: opt %d, len %d\n",
11442 		    optval, optlen));
11443 		switch (optval) {
11444 			uint32_t off;
11445 		case IPOPT_SSRR:
11446 		case IPOPT_LSRR:
11447 			/*
11448 			 * If dst is one of our addresses and there are some
11449 			 * entries left in the source route return (true).
11450 			 */
11451 			if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
11452 				ip2dbg(("ip_source_routed: not next"
11453 				    " source route 0x%x\n",
11454 				    ntohl(dst)));
11455 				return (B_FALSE);
11456 			}
11457 			off = opt[IPOPT_OFFSET];
11458 			off--;
11459 			if (optlen < IP_ADDR_LEN ||
11460 			    off > optlen - IP_ADDR_LEN) {
11461 				/* End of source route */
11462 				ip1dbg(("ip_source_routed: end of SR\n"));
11463 				return (B_FALSE);
11464 			}
11465 			return (B_TRUE);
11466 		}
11467 	}
11468 	ip2dbg(("not source routed\n"));
11469 	return (B_FALSE);
11470 }
11471 
11472 /*
11473  * ip_unbind is called by the transports to remove a conn from
11474  * the fanout table.
11475  */
11476 void
11477 ip_unbind(conn_t *connp)
11478 {
11479 
11480 	ASSERT(!MUTEX_HELD(&connp->conn_lock));
11481 
11482 	if (is_system_labeled() && connp->conn_anon_port) {
11483 		(void) tsol_mlp_anon(crgetzone(connp->conn_cred),
11484 		    connp->conn_mlp_type, connp->conn_proto,
11485 		    ntohs(connp->conn_lport), B_FALSE);
11486 		connp->conn_anon_port = 0;
11487 	}
11488 	connp->conn_mlp_type = mlptSingle;
11489 
11490 	ipcl_hash_remove(connp);
11491 }
11492 
11493 /*
11494  * Used for deciding the MSS size for the upper layer. Thus
11495  * we need to check the outbound policy values in the conn.
11496  */
11497 int
11498 conn_ipsec_length(conn_t *connp)
11499 {
11500 	ipsec_latch_t *ipl;
11501 
11502 	ipl = connp->conn_latch;
11503 	if (ipl == NULL)
11504 		return (0);
11505 
11506 	if (connp->conn_ixa->ixa_ipsec_policy == NULL)
11507 		return (0);
11508 
11509 	return (connp->conn_ixa->ixa_ipsec_policy->ipsp_act->ipa_ovhd);
11510 }
11511 
11512 /*
11513  * Returns an estimate of the IPsec headers size. This is used if
11514  * we don't want to call into IPsec to get the exact size.
11515  */
11516 int
11517 ipsec_out_extra_length(ip_xmit_attr_t *ixa)
11518 {
11519 	ipsec_action_t *a;
11520 
11521 	if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE))
11522 		return (0);
11523 
11524 	a = ixa->ixa_ipsec_action;
11525 	if (a == NULL) {
11526 		ASSERT(ixa->ixa_ipsec_policy != NULL);
11527 		a = ixa->ixa_ipsec_policy->ipsp_act;
11528 	}
11529 	ASSERT(a != NULL);
11530 
11531 	return (a->ipa_ovhd);
11532 }
11533 
11534 /*
11535  * If there are any source route options, return the true final
11536  * destination. Otherwise, return the destination.
11537  */
11538 ipaddr_t
11539 ip_get_dst(ipha_t *ipha)
11540 {
11541 	ipoptp_t	opts;
11542 	uchar_t		*opt;
11543 	uint8_t		optval;
11544 	uint8_t		optlen;
11545 	ipaddr_t	dst;
11546 	uint32_t off;
11547 
11548 	dst = ipha->ipha_dst;
11549 
11550 	if (IS_SIMPLE_IPH(ipha))
11551 		return (dst);
11552 
11553 	for (optval = ipoptp_first(&opts, ipha);
11554 	    optval != IPOPT_EOL;
11555 	    optval = ipoptp_next(&opts)) {
11556 		opt = opts.ipoptp_cur;
11557 		optlen = opts.ipoptp_len;
11558 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
11559 		switch (optval) {
11560 		case IPOPT_SSRR:
11561 		case IPOPT_LSRR:
11562 			off = opt[IPOPT_OFFSET];
11563 			/*
11564 			 * If one of the conditions is true, it means
11565 			 * end of options and dst already has the right
11566 			 * value.
11567 			 */
11568 			if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) {
11569 				off = optlen - IP_ADDR_LEN;
11570 				bcopy(&opt[off], &dst, IP_ADDR_LEN);
11571 			}
11572 			return (dst);
11573 		default:
11574 			break;
11575 		}
11576 	}
11577 
11578 	return (dst);
11579 }
11580 
11581 /*
11582  * Outbound IP fragmentation routine.
11583  * Assumes the caller has checked whether or not fragmentation should
11584  * be allowed. Here we copy the DF bit from the header to all the generated
11585  * fragments.
11586  */
11587 int
11588 ip_fragment_v4(mblk_t *mp_orig, nce_t *nce, iaflags_t ixaflags,
11589     uint_t pkt_len, uint32_t max_frag, uint32_t xmit_hint, zoneid_t szone,
11590     zoneid_t nolzid, pfirepostfrag_t postfragfn, uintptr_t *ixa_cookie)
11591 {
11592 	int		i1;
11593 	int		hdr_len;
11594 	mblk_t		*hdr_mp;
11595 	ipha_t		*ipha;
11596 	int		ip_data_end;
11597 	int		len;
11598 	mblk_t		*mp = mp_orig;
11599 	int		offset;
11600 	ill_t		*ill = nce->nce_ill;
11601 	ip_stack_t	*ipst = ill->ill_ipst;
11602 	mblk_t		*carve_mp;
11603 	uint32_t	frag_flag;
11604 	uint_t		priority = mp->b_band;
11605 	int		error = 0;
11606 
11607 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragReqds);
11608 
11609 	if (pkt_len != msgdsize(mp)) {
11610 		ip0dbg(("Packet length mismatch: %d, %ld\n",
11611 		    pkt_len, msgdsize(mp)));
11612 		freemsg(mp);
11613 		return (EINVAL);
11614 	}
11615 
11616 	if (max_frag == 0) {
11617 		ip1dbg(("ip_fragment_v4: max_frag is zero. Dropping packet\n"));
11618 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11619 		ip_drop_output("FragFails: zero max_frag", mp, ill);
11620 		freemsg(mp);
11621 		return (EINVAL);
11622 	}
11623 
11624 	ASSERT(MBLKL(mp) >= sizeof (ipha_t));
11625 	ipha = (ipha_t *)mp->b_rptr;
11626 	ASSERT(ntohs(ipha->ipha_length) == pkt_len);
11627 	frag_flag = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_DF;
11628 
11629 	/*
11630 	 * Establish the starting offset.  May not be zero if we are fragging
11631 	 * a fragment that is being forwarded.
11632 	 */
11633 	offset = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET;
11634 
11635 	/* TODO why is this test needed? */
11636 	if (((max_frag - ntohs(ipha->ipha_length)) & ~7) < 8) {
11637 		/* TODO: notify ulp somehow */
11638 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11639 		ip_drop_output("FragFails: bad starting offset", mp, ill);
11640 		freemsg(mp);
11641 		return (EINVAL);
11642 	}
11643 
11644 	hdr_len = IPH_HDR_LENGTH(ipha);
11645 	ipha->ipha_hdr_checksum = 0;
11646 
11647 	/*
11648 	 * Establish the number of bytes maximum per frag, after putting
11649 	 * in the header.
11650 	 */
11651 	len = (max_frag - hdr_len) & ~7;
11652 
11653 	/* Get a copy of the header for the trailing frags */
11654 	hdr_mp = ip_fragment_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst,
11655 	    mp);
11656 	if (hdr_mp == NULL) {
11657 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11658 		ip_drop_output("FragFails: no hdr_mp", mp, ill);
11659 		freemsg(mp);
11660 		return (ENOBUFS);
11661 	}
11662 
11663 	/* Store the starting offset, with the MoreFrags flag. */
11664 	i1 = offset | IPH_MF | frag_flag;
11665 	ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1);
11666 
11667 	/* Establish the ending byte offset, based on the starting offset. */
11668 	offset <<= 3;
11669 	ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len;
11670 
11671 	/* Store the length of the first fragment in the IP header. */
11672 	i1 = len + hdr_len;
11673 	ASSERT(i1 <= IP_MAXPACKET);
11674 	ipha->ipha_length = htons((uint16_t)i1);
11675 
11676 	/*
11677 	 * Compute the IP header checksum for the first frag.  We have to
11678 	 * watch out that we stop at the end of the header.
11679 	 */
11680 	ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
11681 
11682 	/*
11683 	 * Now carve off the first frag.  Note that this will include the
11684 	 * original IP header.
11685 	 */
11686 	if (!(mp = ip_carve_mp(&mp_orig, i1))) {
11687 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11688 		ip_drop_output("FragFails: could not carve mp", mp_orig, ill);
11689 		freeb(hdr_mp);
11690 		freemsg(mp_orig);
11691 		return (ENOBUFS);
11692 	}
11693 
11694 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates);
11695 
11696 	error = postfragfn(mp, nce, ixaflags, i1, xmit_hint, szone, nolzid,
11697 	    ixa_cookie);
11698 	if (error != 0 && error != EWOULDBLOCK) {
11699 		/* No point in sending the other fragments */
11700 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11701 		ip_drop_output("FragFails: postfragfn failed", mp_orig, ill);
11702 		freeb(hdr_mp);
11703 		freemsg(mp_orig);
11704 		return (error);
11705 	}
11706 
11707 	/* No need to redo state machine in loop */
11708 	ixaflags &= ~IXAF_REACH_CONF;
11709 
11710 	/* Advance the offset to the second frag starting point. */
11711 	offset += len;
11712 	/*
11713 	 * Update hdr_len from the copied header - there might be less options
11714 	 * in the later fragments.
11715 	 */
11716 	hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr);
11717 	/* Loop until done. */
11718 	for (;;) {
11719 		uint16_t	offset_and_flags;
11720 		uint16_t	ip_len;
11721 
11722 		if (ip_data_end - offset > len) {
11723 			/*
11724 			 * Carve off the appropriate amount from the original
11725 			 * datagram.
11726 			 */
11727 			if (!(carve_mp = ip_carve_mp(&mp_orig, len))) {
11728 				mp = NULL;
11729 				break;
11730 			}
11731 			/*
11732 			 * More frags after this one.  Get another copy
11733 			 * of the header.
11734 			 */
11735 			if (carve_mp->b_datap->db_ref == 1 &&
11736 			    hdr_mp->b_wptr - hdr_mp->b_rptr <
11737 			    carve_mp->b_rptr - carve_mp->b_datap->db_base) {
11738 				/* Inline IP header */
11739 				carve_mp->b_rptr -= hdr_mp->b_wptr -
11740 				    hdr_mp->b_rptr;
11741 				bcopy(hdr_mp->b_rptr, carve_mp->b_rptr,
11742 				    hdr_mp->b_wptr - hdr_mp->b_rptr);
11743 				mp = carve_mp;
11744 			} else {
11745 				if (!(mp = copyb(hdr_mp))) {
11746 					freemsg(carve_mp);
11747 					break;
11748 				}
11749 				/* Get priority marking, if any. */
11750 				mp->b_band = priority;
11751 				mp->b_cont = carve_mp;
11752 			}
11753 			ipha = (ipha_t *)mp->b_rptr;
11754 			offset_and_flags = IPH_MF;
11755 		} else {
11756 			/*
11757 			 * Last frag.  Consume the header. Set len to
11758 			 * the length of this last piece.
11759 			 */
11760 			len = ip_data_end - offset;
11761 
11762 			/*
11763 			 * Carve off the appropriate amount from the original
11764 			 * datagram.
11765 			 */
11766 			if (!(carve_mp = ip_carve_mp(&mp_orig, len))) {
11767 				mp = NULL;
11768 				break;
11769 			}
11770 			if (carve_mp->b_datap->db_ref == 1 &&
11771 			    hdr_mp->b_wptr - hdr_mp->b_rptr <
11772 			    carve_mp->b_rptr - carve_mp->b_datap->db_base) {
11773 				/* Inline IP header */
11774 				carve_mp->b_rptr -= hdr_mp->b_wptr -
11775 				    hdr_mp->b_rptr;
11776 				bcopy(hdr_mp->b_rptr, carve_mp->b_rptr,
11777 				    hdr_mp->b_wptr - hdr_mp->b_rptr);
11778 				mp = carve_mp;
11779 				freeb(hdr_mp);
11780 				hdr_mp = mp;
11781 			} else {
11782 				mp = hdr_mp;
11783 				/* Get priority marking, if any. */
11784 				mp->b_band = priority;
11785 				mp->b_cont = carve_mp;
11786 			}
11787 			ipha = (ipha_t *)mp->b_rptr;
11788 			/* A frag of a frag might have IPH_MF non-zero */
11789 			offset_and_flags =
11790 			    ntohs(ipha->ipha_fragment_offset_and_flags) &
11791 			    IPH_MF;
11792 		}
11793 		offset_and_flags |= (uint16_t)(offset >> 3);
11794 		offset_and_flags |= (uint16_t)frag_flag;
11795 		/* Store the offset and flags in the IP header. */
11796 		ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags);
11797 
11798 		/* Store the length in the IP header. */
11799 		ip_len = (uint16_t)(len + hdr_len);
11800 		ipha->ipha_length = htons(ip_len);
11801 
11802 		/*
11803 		 * Set the IP header checksum.	Note that mp is just
11804 		 * the header, so this is easy to pass to ip_csum.
11805 		 */
11806 		ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
11807 
11808 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates);
11809 
11810 		error = postfragfn(mp, nce, ixaflags, ip_len, xmit_hint, szone,
11811 		    nolzid, ixa_cookie);
11812 		/* All done if we just consumed the hdr_mp. */
11813 		if (mp == hdr_mp) {
11814 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs);
11815 			return (error);
11816 		}
11817 		if (error != 0 && error != EWOULDBLOCK) {
11818 			DTRACE_PROBE2(ip__xmit__frag__fail, ill_t *, ill,
11819 			    mblk_t *, hdr_mp);
11820 			/* No point in sending the other fragments */
11821 			break;
11822 		}
11823 
11824 		/* Otherwise, advance and loop. */
11825 		offset += len;
11826 	}
11827 	/* Clean up following allocation failure. */
11828 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11829 	ip_drop_output("FragFails: loop ended", NULL, ill);
11830 	if (mp != hdr_mp)
11831 		freeb(hdr_mp);
11832 	if (mp != mp_orig)
11833 		freemsg(mp_orig);
11834 	return (error);
11835 }
11836 
11837 /*
11838  * Copy the header plus those options which have the copy bit set
11839  */
11840 static mblk_t *
11841 ip_fragment_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst,
11842     mblk_t *src)
11843 {
11844 	mblk_t	*mp;
11845 	uchar_t	*up;
11846 
11847 	/*
11848 	 * Quick check if we need to look for options without the copy bit
11849 	 * set
11850 	 */
11851 	mp = allocb_tmpl(ipst->ips_ip_wroff_extra + hdr_len, src);
11852 	if (!mp)
11853 		return (mp);
11854 	mp->b_rptr += ipst->ips_ip_wroff_extra;
11855 	if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) {
11856 		bcopy(rptr, mp->b_rptr, hdr_len);
11857 		mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra;
11858 		return (mp);
11859 	}
11860 	up  = mp->b_rptr;
11861 	bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH);
11862 	up += IP_SIMPLE_HDR_LENGTH;
11863 	rptr += IP_SIMPLE_HDR_LENGTH;
11864 	hdr_len -= IP_SIMPLE_HDR_LENGTH;
11865 	while (hdr_len > 0) {
11866 		uint32_t optval;
11867 		uint32_t optlen;
11868 
11869 		optval = *rptr;
11870 		if (optval == IPOPT_EOL)
11871 			break;
11872 		if (optval == IPOPT_NOP)
11873 			optlen = 1;
11874 		else
11875 			optlen = rptr[1];
11876 		if (optval & IPOPT_COPY) {
11877 			bcopy(rptr, up, optlen);
11878 			up += optlen;
11879 		}
11880 		rptr += optlen;
11881 		hdr_len -= optlen;
11882 	}
11883 	/*
11884 	 * Make sure that we drop an even number of words by filling
11885 	 * with EOL to the next word boundary.
11886 	 */
11887 	for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH);
11888 	    hdr_len & 0x3; hdr_len++)
11889 		*up++ = IPOPT_EOL;
11890 	mp->b_wptr = up;
11891 	/* Update header length */
11892 	mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2));
11893 	return (mp);
11894 }
11895 
11896 /*
11897  * Update any source route, record route, or timestamp options when
11898  * sending a packet back to ourselves.
11899  * Check that we are at end of strict source route.
11900  * The options have been sanity checked by ip_output_options().
11901  */
11902 void
11903 ip_output_local_options(ipha_t *ipha, ip_stack_t *ipst)
11904 {
11905 	ipoptp_t	opts;
11906 	uchar_t		*opt;
11907 	uint8_t		optval;
11908 	uint8_t		optlen;
11909 	ipaddr_t	dst;
11910 	uint32_t	ts;
11911 	timestruc_t	now;
11912 
11913 	for (optval = ipoptp_first(&opts, ipha);
11914 	    optval != IPOPT_EOL;
11915 	    optval = ipoptp_next(&opts)) {
11916 		opt = opts.ipoptp_cur;
11917 		optlen = opts.ipoptp_len;
11918 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
11919 		switch (optval) {
11920 			uint32_t off;
11921 		case IPOPT_SSRR:
11922 		case IPOPT_LSRR:
11923 			off = opt[IPOPT_OFFSET];
11924 			off--;
11925 			if (optlen < IP_ADDR_LEN ||
11926 			    off > optlen - IP_ADDR_LEN) {
11927 				/* End of source route */
11928 				break;
11929 			}
11930 			/*
11931 			 * This will only happen if two consecutive entries
11932 			 * in the source route contains our address or if
11933 			 * it is a packet with a loose source route which
11934 			 * reaches us before consuming the whole source route
11935 			 */
11936 
11937 			if (optval == IPOPT_SSRR) {
11938 				return;
11939 			}
11940 			/*
11941 			 * Hack: instead of dropping the packet truncate the
11942 			 * source route to what has been used by filling the
11943 			 * rest with IPOPT_NOP.
11944 			 */
11945 			opt[IPOPT_OLEN] = (uint8_t)off;
11946 			while (off < optlen) {
11947 				opt[off++] = IPOPT_NOP;
11948 			}
11949 			break;
11950 		case IPOPT_RR:
11951 			off = opt[IPOPT_OFFSET];
11952 			off--;
11953 			if (optlen < IP_ADDR_LEN ||
11954 			    off > optlen - IP_ADDR_LEN) {
11955 				/* No more room - ignore */
11956 				ip1dbg((
11957 				    "ip_output_local_options: end of RR\n"));
11958 				break;
11959 			}
11960 			dst = htonl(INADDR_LOOPBACK);
11961 			bcopy(&dst, (char *)opt + off, IP_ADDR_LEN);
11962 			opt[IPOPT_OFFSET] += IP_ADDR_LEN;
11963 			break;
11964 		case IPOPT_TS:
11965 			/* Insert timestamp if there is romm */
11966 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
11967 			case IPOPT_TS_TSONLY:
11968 				off = IPOPT_TS_TIMELEN;
11969 				break;
11970 			case IPOPT_TS_PRESPEC:
11971 			case IPOPT_TS_PRESPEC_RFC791:
11972 				/* Verify that the address matched */
11973 				off = opt[IPOPT_OFFSET] - 1;
11974 				bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
11975 				if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
11976 					/* Not for us */
11977 					break;
11978 				}
11979 				/* FALLTHRU */
11980 			case IPOPT_TS_TSANDADDR:
11981 				off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
11982 				break;
11983 			default:
11984 				/*
11985 				 * ip_*put_options should have already
11986 				 * dropped this packet.
11987 				 */
11988 				cmn_err(CE_PANIC, "ip_output_local_options: "
11989 				    "unknown IT - bug in ip_output_options?\n");
11990 				return;	/* Keep "lint" happy */
11991 			}
11992 			if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
11993 				/* Increase overflow counter */
11994 				off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
11995 				opt[IPOPT_POS_OV_FLG] = (uint8_t)
11996 				    (opt[IPOPT_POS_OV_FLG] & 0x0F) |
11997 				    (off << 4);
11998 				break;
11999 			}
12000 			off = opt[IPOPT_OFFSET] - 1;
12001 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
12002 			case IPOPT_TS_PRESPEC:
12003 			case IPOPT_TS_PRESPEC_RFC791:
12004 			case IPOPT_TS_TSANDADDR:
12005 				dst = htonl(INADDR_LOOPBACK);
12006 				bcopy(&dst, (char *)opt + off, IP_ADDR_LEN);
12007 				opt[IPOPT_OFFSET] += IP_ADDR_LEN;
12008 				/* FALLTHRU */
12009 			case IPOPT_TS_TSONLY:
12010 				off = opt[IPOPT_OFFSET] - 1;
12011 				/* Compute # of milliseconds since midnight */
12012 				gethrestime(&now);
12013 				ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
12014 				    now.tv_nsec / (NANOSEC / MILLISEC);
12015 				bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
12016 				opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
12017 				break;
12018 			}
12019 			break;
12020 		}
12021 	}
12022 }
12023 
12024 /*
12025  * Prepend an M_DATA fastpath header, and if none present prepend a
12026  * DL_UNITDATA_REQ. Frees the mblk on failure.
12027  *
12028  * nce_dlur_mp and nce_fp_mp can not disappear once they have been set.
12029  * If there is a change to them, the nce will be deleted (condemned) and
12030  * a new nce_t will be created when packets are sent. Thus we need no locks
12031  * to access those fields.
12032  *
12033  * We preserve b_band to support IPQoS. If a DL_UNITDATA_REQ is prepended
12034  * we place b_band in dl_priority.dl_max.
12035  */
12036 static mblk_t *
12037 ip_xmit_attach_llhdr(mblk_t *mp, nce_t *nce)
12038 {
12039 	uint_t	hlen;
12040 	mblk_t *mp1;
12041 	uint_t	priority;
12042 	uchar_t *rptr;
12043 
12044 	rptr = mp->b_rptr;
12045 
12046 	ASSERT(DB_TYPE(mp) == M_DATA);
12047 	priority = mp->b_band;
12048 
12049 	ASSERT(nce != NULL);
12050 	if ((mp1 = nce->nce_fp_mp) != NULL) {
12051 		hlen = MBLKL(mp1);
12052 		/*
12053 		 * Check if we have enough room to prepend fastpath
12054 		 * header
12055 		 */
12056 		if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) {
12057 			rptr -= hlen;
12058 			bcopy(mp1->b_rptr, rptr, hlen);
12059 			/*
12060 			 * Set the b_rptr to the start of the link layer
12061 			 * header
12062 			 */
12063 			mp->b_rptr = rptr;
12064 			return (mp);
12065 		}
12066 		mp1 = copyb(mp1);
12067 		if (mp1 == NULL) {
12068 			ill_t *ill = nce->nce_ill;
12069 
12070 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12071 			ip_drop_output("ipIfStatsOutDiscards", mp, ill);
12072 			freemsg(mp);
12073 			return (NULL);
12074 		}
12075 		mp1->b_band = priority;
12076 		mp1->b_cont = mp;
12077 		DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp);
12078 		DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp);
12079 		DB_CKSUMEND(mp1) = DB_CKSUMEND(mp);
12080 		DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp);
12081 		DB_LSOMSS(mp1) = DB_LSOMSS(mp);
12082 		DTRACE_PROBE1(ip__xmit__copyb, (mblk_t *), mp1);
12083 		/*
12084 		 * XXX disable ICK_VALID and compute checksum
12085 		 * here; can happen if nce_fp_mp changes and
12086 		 * it can't be copied now due to insufficient
12087 		 * space. (unlikely, fp mp can change, but it
12088 		 * does not increase in length)
12089 		 */
12090 		return (mp1);
12091 	}
12092 	mp1 = copyb(nce->nce_dlur_mp);
12093 
12094 	if (mp1 == NULL) {
12095 		ill_t *ill = nce->nce_ill;
12096 
12097 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12098 		ip_drop_output("ipIfStatsOutDiscards", mp, ill);
12099 		freemsg(mp);
12100 		return (NULL);
12101 	}
12102 	mp1->b_cont = mp;
12103 	if (priority != 0) {
12104 		mp1->b_band = priority;
12105 		((dl_unitdata_req_t *)(mp1->b_rptr))->dl_priority.dl_max =
12106 		    priority;
12107 	}
12108 	return (mp1);
12109 #undef rptr
12110 }
12111 
12112 /*
12113  * Finish the outbound IPsec processing. This function is called from
12114  * ipsec_out_process() if the IPsec packet was processed
12115  * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed
12116  * asynchronously.
12117  *
12118  * This is common to IPv4 and IPv6.
12119  */
12120 int
12121 ip_output_post_ipsec(mblk_t *mp, ip_xmit_attr_t *ixa)
12122 {
12123 	iaflags_t	ixaflags = ixa->ixa_flags;
12124 	uint_t		pktlen;
12125 
12126 
12127 	/* AH/ESP don't update ixa_pktlen when they modify the packet */
12128 	if (ixaflags & IXAF_IS_IPV4) {
12129 		ipha_t		*ipha = (ipha_t *)mp->b_rptr;
12130 
12131 		ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
12132 		pktlen = ntohs(ipha->ipha_length);
12133 	} else {
12134 		ip6_t		*ip6h = (ip6_t *)mp->b_rptr;
12135 
12136 		ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION);
12137 		pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN;
12138 	}
12139 
12140 	/*
12141 	 * We release any hard reference on the SAs here to make
12142 	 * sure the SAs can be garbage collected. ipsr_sa has a soft reference
12143 	 * on the SAs.
12144 	 * If in the future we want the hard latching of the SAs in the
12145 	 * ip_xmit_attr_t then we should remove this.
12146 	 */
12147 	if (ixa->ixa_ipsec_esp_sa != NULL) {
12148 		IPSA_REFRELE(ixa->ixa_ipsec_esp_sa);
12149 		ixa->ixa_ipsec_esp_sa = NULL;
12150 	}
12151 	if (ixa->ixa_ipsec_ah_sa != NULL) {
12152 		IPSA_REFRELE(ixa->ixa_ipsec_ah_sa);
12153 		ixa->ixa_ipsec_ah_sa = NULL;
12154 	}
12155 
12156 	/* Do we need to fragment? */
12157 	if ((ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR) ||
12158 	    pktlen > ixa->ixa_fragsize) {
12159 		if (ixaflags & IXAF_IS_IPV4) {
12160 			ASSERT(!(ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR));
12161 			/*
12162 			 * We check for the DF case in ipsec_out_process
12163 			 * hence this only handles the non-DF case.
12164 			 */
12165 			return (ip_fragment_v4(mp, ixa->ixa_nce, ixa->ixa_flags,
12166 			    pktlen, ixa->ixa_fragsize,
12167 			    ixa->ixa_xmit_hint, ixa->ixa_zoneid,
12168 			    ixa->ixa_no_loop_zoneid, ixa->ixa_postfragfn,
12169 			    &ixa->ixa_cookie));
12170 		} else {
12171 			mp = ip_fraghdr_add_v6(mp, ixa->ixa_ident, ixa);
12172 			if (mp == NULL) {
12173 				/* MIB and ip_drop_output already done */
12174 				return (ENOMEM);
12175 			}
12176 			pktlen += sizeof (ip6_frag_t);
12177 			if (pktlen > ixa->ixa_fragsize) {
12178 				return (ip_fragment_v6(mp, ixa->ixa_nce,
12179 				    ixa->ixa_flags, pktlen,
12180 				    ixa->ixa_fragsize, ixa->ixa_xmit_hint,
12181 				    ixa->ixa_zoneid, ixa->ixa_no_loop_zoneid,
12182 				    ixa->ixa_postfragfn, &ixa->ixa_cookie));
12183 			}
12184 		}
12185 	}
12186 	return ((ixa->ixa_postfragfn)(mp, ixa->ixa_nce, ixa->ixa_flags,
12187 	    pktlen, ixa->ixa_xmit_hint, ixa->ixa_zoneid,
12188 	    ixa->ixa_no_loop_zoneid, NULL));
12189 }
12190 
12191 /*
12192  * Finish the inbound IPsec processing. This function is called from
12193  * ipsec_out_process() if the IPsec packet was processed
12194  * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed
12195  * asynchronously.
12196  *
12197  * This is common to IPv4 and IPv6.
12198  */
12199 void
12200 ip_input_post_ipsec(mblk_t *mp, ip_recv_attr_t *ira)
12201 {
12202 	iaflags_t	iraflags = ira->ira_flags;
12203 
12204 	/* Length might have changed */
12205 	if (iraflags & IRAF_IS_IPV4) {
12206 		ipha_t		*ipha = (ipha_t *)mp->b_rptr;
12207 
12208 		ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
12209 		ira->ira_pktlen = ntohs(ipha->ipha_length);
12210 		ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha);
12211 		ira->ira_protocol = ipha->ipha_protocol;
12212 
12213 		ip_fanout_v4(mp, ipha, ira);
12214 	} else {
12215 		ip6_t		*ip6h = (ip6_t *)mp->b_rptr;
12216 		uint8_t		*nexthdrp;
12217 
12218 		ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION);
12219 		ira->ira_pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN;
12220 		if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ira->ira_ip_hdr_length,
12221 		    &nexthdrp)) {
12222 			/* Malformed packet */
12223 			BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards);
12224 			ip_drop_input("ipIfStatsInDiscards", mp, ira->ira_ill);
12225 			freemsg(mp);
12226 			return;
12227 		}
12228 		ira->ira_protocol = *nexthdrp;
12229 		ip_fanout_v6(mp, ip6h, ira);
12230 	}
12231 }
12232 
12233 /*
12234  * Select which AH & ESP SA's to use (if any) for the outbound packet.
12235  *
12236  * If this function returns B_TRUE, the requested SA's have been filled
12237  * into the ixa_ipsec_*_sa pointers.
12238  *
12239  * If the function returns B_FALSE, the packet has been "consumed", most
12240  * likely by an ACQUIRE sent up via PF_KEY to a key management daemon.
12241  *
12242  * The SA references created by the protocol-specific "select"
12243  * function will be released in ip_output_post_ipsec.
12244  */
12245 static boolean_t
12246 ipsec_out_select_sa(mblk_t *mp, ip_xmit_attr_t *ixa)
12247 {
12248 	boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE;
12249 	ipsec_policy_t *pp;
12250 	ipsec_action_t *ap;
12251 
12252 	ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE);
12253 	ASSERT((ixa->ixa_ipsec_policy != NULL) ||
12254 	    (ixa->ixa_ipsec_action != NULL));
12255 
12256 	ap = ixa->ixa_ipsec_action;
12257 	if (ap == NULL) {
12258 		pp = ixa->ixa_ipsec_policy;
12259 		ASSERT(pp != NULL);
12260 		ap = pp->ipsp_act;
12261 		ASSERT(ap != NULL);
12262 	}
12263 
12264 	/*
12265 	 * We have an action.  now, let's select SA's.
12266 	 * A side effect of setting ixa_ipsec_*_sa is that it will
12267 	 * be cached in the conn_t.
12268 	 */
12269 	if (ap->ipa_want_esp) {
12270 		if (ixa->ixa_ipsec_esp_sa == NULL) {
12271 			need_esp_acquire = !ipsec_outbound_sa(mp, ixa,
12272 			    IPPROTO_ESP);
12273 		}
12274 		ASSERT(need_esp_acquire || ixa->ixa_ipsec_esp_sa != NULL);
12275 	}
12276 
12277 	if (ap->ipa_want_ah) {
12278 		if (ixa->ixa_ipsec_ah_sa == NULL) {
12279 			need_ah_acquire = !ipsec_outbound_sa(mp, ixa,
12280 			    IPPROTO_AH);
12281 		}
12282 		ASSERT(need_ah_acquire || ixa->ixa_ipsec_ah_sa != NULL);
12283 		/*
12284 		 * The ESP and AH processing order needs to be preserved
12285 		 * when both protocols are required (ESP should be applied
12286 		 * before AH for an outbound packet). Force an ESP ACQUIRE
12287 		 * when both ESP and AH are required, and an AH ACQUIRE
12288 		 * is needed.
12289 		 */
12290 		if (ap->ipa_want_esp && need_ah_acquire)
12291 			need_esp_acquire = B_TRUE;
12292 	}
12293 
12294 	/*
12295 	 * Send an ACQUIRE (extended, regular, or both) if we need one.
12296 	 * Release SAs that got referenced, but will not be used until we
12297 	 * acquire _all_ of the SAs we need.
12298 	 */
12299 	if (need_ah_acquire || need_esp_acquire) {
12300 		if (ixa->ixa_ipsec_ah_sa != NULL) {
12301 			IPSA_REFRELE(ixa->ixa_ipsec_ah_sa);
12302 			ixa->ixa_ipsec_ah_sa = NULL;
12303 		}
12304 		if (ixa->ixa_ipsec_esp_sa != NULL) {
12305 			IPSA_REFRELE(ixa->ixa_ipsec_esp_sa);
12306 			ixa->ixa_ipsec_esp_sa = NULL;
12307 		}
12308 
12309 		sadb_acquire(mp, ixa, need_ah_acquire, need_esp_acquire);
12310 		return (B_FALSE);
12311 	}
12312 
12313 	return (B_TRUE);
12314 }
12315 
12316 /*
12317  * Handle IPsec output processing.
12318  * This function is only entered once for a given packet.
12319  * We try to do things synchronously, but if we need to have user-level
12320  * set up SAs, or ESP or AH uses asynchronous kEF, then the operation
12321  * will be completed
12322  *  - when the SAs are added in esp_add_sa_finish/ah_add_sa_finish
12323  *  - when asynchronous ESP is done it will do AH
12324  *
12325  * In all cases we come back in ip_output_post_ipsec() to fragment and
12326  * send out the packet.
12327  */
12328 int
12329 ipsec_out_process(mblk_t *mp, ip_xmit_attr_t *ixa)
12330 {
12331 	ill_t		*ill = ixa->ixa_nce->nce_ill;
12332 	ip_stack_t	*ipst = ixa->ixa_ipst;
12333 	ipsec_stack_t	*ipss;
12334 	ipsec_policy_t	*pp;
12335 	ipsec_action_t	*ap;
12336 
12337 	ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE);
12338 
12339 	ASSERT((ixa->ixa_ipsec_policy != NULL) ||
12340 	    (ixa->ixa_ipsec_action != NULL));
12341 
12342 	ipss = ipst->ips_netstack->netstack_ipsec;
12343 	if (!ipsec_loaded(ipss)) {
12344 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12345 		ip_drop_packet(mp, B_TRUE, ill,
12346 		    DROPPER(ipss, ipds_ip_ipsec_not_loaded),
12347 		    &ipss->ipsec_dropper);
12348 		return (ENOTSUP);
12349 	}
12350 
12351 	ap = ixa->ixa_ipsec_action;
12352 	if (ap == NULL) {
12353 		pp = ixa->ixa_ipsec_policy;
12354 		ASSERT(pp != NULL);
12355 		ap = pp->ipsp_act;
12356 		ASSERT(ap != NULL);
12357 	}
12358 
12359 	/* Handle explicit drop action and bypass. */
12360 	switch (ap->ipa_act.ipa_type) {
12361 	case IPSEC_ACT_DISCARD:
12362 	case IPSEC_ACT_REJECT:
12363 		ip_drop_packet(mp, B_FALSE, ill,
12364 		    DROPPER(ipss, ipds_spd_explicit), &ipss->ipsec_spd_dropper);
12365 		return (EHOSTUNREACH);	/* IPsec policy failure */
12366 	case IPSEC_ACT_BYPASS:
12367 		return (ip_output_post_ipsec(mp, ixa));
12368 	}
12369 
12370 	/*
12371 	 * The order of processing is first insert a IP header if needed.
12372 	 * Then insert the ESP header and then the AH header.
12373 	 */
12374 	if ((ixa->ixa_flags & IXAF_IS_IPV4) && ap->ipa_want_se) {
12375 		/*
12376 		 * First get the outer IP header before sending
12377 		 * it to ESP.
12378 		 */
12379 		ipha_t *oipha, *iipha;
12380 		mblk_t *outer_mp, *inner_mp;
12381 
12382 		if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) {
12383 			(void) mi_strlog(ill->ill_rq, 0,
12384 			    SL_ERROR|SL_TRACE|SL_CONSOLE,
12385 			    "ipsec_out_process: "
12386 			    "Self-Encapsulation failed: Out of memory\n");
12387 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12388 			ip_drop_output("ipIfStatsOutDiscards", mp, ill);
12389 			freemsg(mp);
12390 			return (ENOBUFS);
12391 		}
12392 		inner_mp = mp;
12393 		ASSERT(inner_mp->b_datap->db_type == M_DATA);
12394 		oipha = (ipha_t *)outer_mp->b_rptr;
12395 		iipha = (ipha_t *)inner_mp->b_rptr;
12396 		*oipha = *iipha;
12397 		outer_mp->b_wptr += sizeof (ipha_t);
12398 		oipha->ipha_length = htons(ntohs(iipha->ipha_length) +
12399 		    sizeof (ipha_t));
12400 		oipha->ipha_protocol = IPPROTO_ENCAP;
12401 		oipha->ipha_version_and_hdr_length =
12402 		    IP_SIMPLE_HDR_VERSION;
12403 		oipha->ipha_hdr_checksum = 0;
12404 		oipha->ipha_hdr_checksum = ip_csum_hdr(oipha);
12405 		outer_mp->b_cont = inner_mp;
12406 		mp = outer_mp;
12407 
12408 		ixa->ixa_flags |= IXAF_IPSEC_TUNNEL;
12409 	}
12410 
12411 	/* If we need to wait for a SA then we can't return any errno */
12412 	if (((ap->ipa_want_ah && (ixa->ixa_ipsec_ah_sa == NULL)) ||
12413 	    (ap->ipa_want_esp && (ixa->ixa_ipsec_esp_sa == NULL))) &&
12414 	    !ipsec_out_select_sa(mp, ixa))
12415 		return (0);
12416 
12417 	/*
12418 	 * By now, we know what SA's to use.  Toss over to ESP & AH
12419 	 * to do the heavy lifting.
12420 	 */
12421 	if (ap->ipa_want_esp) {
12422 		ASSERT(ixa->ixa_ipsec_esp_sa != NULL);
12423 
12424 		mp = ixa->ixa_ipsec_esp_sa->ipsa_output_func(mp, ixa);
12425 		if (mp == NULL) {
12426 			/*
12427 			 * Either it failed or is pending. In the former case
12428 			 * ipIfStatsInDiscards was increased.
12429 			 */
12430 			return (0);
12431 		}
12432 	}
12433 
12434 	if (ap->ipa_want_ah) {
12435 		ASSERT(ixa->ixa_ipsec_ah_sa != NULL);
12436 
12437 		mp = ixa->ixa_ipsec_ah_sa->ipsa_output_func(mp, ixa);
12438 		if (mp == NULL) {
12439 			/*
12440 			 * Either it failed or is pending. In the former case
12441 			 * ipIfStatsInDiscards was increased.
12442 			 */
12443 			return (0);
12444 		}
12445 	}
12446 	/*
12447 	 * We are done with IPsec processing. Send it over
12448 	 * the wire.
12449 	 */
12450 	return (ip_output_post_ipsec(mp, ixa));
12451 }
12452 
12453 /*
12454  * ioctls that go through a down/up sequence may need to wait for the down
12455  * to complete. This involves waiting for the ire and ipif refcnts to go down
12456  * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail.
12457  */
12458 /* ARGSUSED */
12459 void
12460 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
12461 {
12462 	struct iocblk *iocp;
12463 	mblk_t *mp1;
12464 	ip_ioctl_cmd_t *ipip;
12465 	int err;
12466 	sin_t	*sin;
12467 	struct lifreq *lifr;
12468 	struct ifreq *ifr;
12469 
12470 	iocp = (struct iocblk *)mp->b_rptr;
12471 	ASSERT(ipsq != NULL);
12472 	/* Existence of mp1 verified in ip_wput_nondata */
12473 	mp1 = mp->b_cont->b_cont;
12474 	ipip = ip_sioctl_lookup(iocp->ioc_cmd);
12475 	if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) {
12476 		/*
12477 		 * Special case where ipx_current_ipif is not set:
12478 		 * ill_phyint_reinit merged the v4 and v6 into a single ipsq.
12479 		 * We are here as were not able to complete the operation in
12480 		 * ipif_set_values because we could not become exclusive on
12481 		 * the new ipsq.
12482 		 */
12483 		ill_t *ill = q->q_ptr;
12484 		ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd);
12485 	}
12486 	ASSERT(ipsq->ipsq_xop->ipx_current_ipif != NULL);
12487 
12488 	if (ipip->ipi_cmd_type == IF_CMD) {
12489 		/* This a old style SIOC[GS]IF* command */
12490 		ifr = (struct ifreq *)mp1->b_rptr;
12491 		sin = (sin_t *)&ifr->ifr_addr;
12492 	} else if (ipip->ipi_cmd_type == LIF_CMD) {
12493 		/* This a new style SIOC[GS]LIF* command */
12494 		lifr = (struct lifreq *)mp1->b_rptr;
12495 		sin = (sin_t *)&lifr->lifr_addr;
12496 	} else {
12497 		sin = NULL;
12498 	}
12499 
12500 	err = (*ipip->ipi_func_restart)(ipsq->ipsq_xop->ipx_current_ipif, sin,
12501 	    q, mp, ipip, mp1->b_rptr);
12502 
12503 	DTRACE_PROBE4(ipif__ioctl, char *, "ip_reprocess_ioctl finish",
12504 	    int, ipip->ipi_cmd,
12505 	    ill_t *, ipsq->ipsq_xop->ipx_current_ipif->ipif_ill,
12506 	    ipif_t *, ipsq->ipsq_xop->ipx_current_ipif);
12507 
12508 	ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq);
12509 }
12510 
12511 /*
12512  * ioctl processing
12513  *
12514  * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up
12515  * the ioctl command in the ioctl tables, determines the copyin data size
12516  * from the ipi_copyin_size field, and does an mi_copyin() of that size.
12517  *
12518  * ioctl processing then continues when the M_IOCDATA makes its way down to
12519  * ip_wput_nondata().  The ioctl is looked up again in the ioctl table, its
12520  * associated 'conn' is refheld till the end of the ioctl and the general
12521  * ioctl processing function ip_process_ioctl() is called to extract the
12522  * arguments and process the ioctl.  To simplify extraction, ioctl commands
12523  * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a
12524  * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq())
12525  * is used to extract the ioctl's arguments.
12526  *
12527  * ip_process_ioctl determines if the ioctl needs to be serialized, and if
12528  * so goes thru the serialization primitive ipsq_try_enter. Then the
12529  * appropriate function to handle the ioctl is called based on the entry in
12530  * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish
12531  * which also refreleases the 'conn' that was refheld at the start of the
12532  * ioctl. Finally ipsq_exit is called if needed to exit the ipsq.
12533  *
12534  * Many exclusive ioctls go thru an internal down up sequence as part of
12535  * the operation. For example an attempt to change the IP address of an
12536  * ipif entails ipif_down, set address, ipif_up. Bringing down the interface
12537  * does all the cleanup such as deleting all ires that use this address.
12538  * Then we need to wait till all references to the interface go away.
12539  */
12540 void
12541 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg)
12542 {
12543 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
12544 	ip_ioctl_cmd_t *ipip = arg;
12545 	ip_extract_func_t *extract_funcp;
12546 	cmd_info_t ci;
12547 	int err;
12548 	boolean_t entered_ipsq = B_FALSE;
12549 
12550 	ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd));
12551 
12552 	if (ipip == NULL)
12553 		ipip = ip_sioctl_lookup(iocp->ioc_cmd);
12554 
12555 	/*
12556 	 * SIOCLIFADDIF needs to go thru a special path since the
12557 	 * ill may not exist yet. This happens in the case of lo0
12558 	 * which is created using this ioctl.
12559 	 */
12560 	if (ipip->ipi_cmd == SIOCLIFADDIF) {
12561 		err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL);
12562 		DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish",
12563 		    int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
12564 		ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
12565 		return;
12566 	}
12567 
12568 	ci.ci_ipif = NULL;
12569 	switch (ipip->ipi_cmd_type) {
12570 	case MISC_CMD:
12571 	case MSFILT_CMD:
12572 		/*
12573 		 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF.
12574 		 */
12575 		if (ipip->ipi_cmd == IF_UNITSEL) {
12576 			/* ioctl comes down the ill */
12577 			ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif;
12578 			ipif_refhold(ci.ci_ipif);
12579 		}
12580 		err = 0;
12581 		ci.ci_sin = NULL;
12582 		ci.ci_sin6 = NULL;
12583 		ci.ci_lifr = NULL;
12584 		extract_funcp = NULL;
12585 		break;
12586 
12587 	case IF_CMD:
12588 	case LIF_CMD:
12589 		extract_funcp = ip_extract_lifreq;
12590 		break;
12591 
12592 	case ARP_CMD:
12593 	case XARP_CMD:
12594 		extract_funcp = ip_extract_arpreq;
12595 		break;
12596 
12597 	default:
12598 		ASSERT(0);
12599 	}
12600 
12601 	if (extract_funcp != NULL) {
12602 		err = (*extract_funcp)(q, mp, ipip, &ci);
12603 		if (err != 0) {
12604 			DTRACE_PROBE4(ipif__ioctl,
12605 			    char *, "ip_process_ioctl finish err",
12606 			    int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
12607 			ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
12608 			return;
12609 		}
12610 
12611 		/*
12612 		 * All of the extraction functions return a refheld ipif.
12613 		 */
12614 		ASSERT(ci.ci_ipif != NULL);
12615 	}
12616 
12617 	if (!(ipip->ipi_flags & IPI_WR)) {
12618 		/*
12619 		 * A return value of EINPROGRESS means the ioctl is
12620 		 * either queued and waiting for some reason or has
12621 		 * already completed.
12622 		 */
12623 		err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip,
12624 		    ci.ci_lifr);
12625 		if (ci.ci_ipif != NULL) {
12626 			DTRACE_PROBE4(ipif__ioctl,
12627 			    char *, "ip_process_ioctl finish RD",
12628 			    int, ipip->ipi_cmd, ill_t *, ci.ci_ipif->ipif_ill,
12629 			    ipif_t *, ci.ci_ipif);
12630 			ipif_refrele(ci.ci_ipif);
12631 		} else {
12632 			DTRACE_PROBE4(ipif__ioctl,
12633 			    char *, "ip_process_ioctl finish RD",
12634 			    int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
12635 		}
12636 		ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
12637 		return;
12638 	}
12639 
12640 	ASSERT(ci.ci_ipif != NULL);
12641 
12642 	/*
12643 	 * If ipsq is non-NULL, we are already being called exclusively
12644 	 */
12645 	ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq));
12646 	if (ipsq == NULL) {
12647 		ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl,
12648 		    NEW_OP, B_TRUE);
12649 		if (ipsq == NULL) {
12650 			ipif_refrele(ci.ci_ipif);
12651 			return;
12652 		}
12653 		entered_ipsq = B_TRUE;
12654 	}
12655 	/*
12656 	 * Release the ipif so that ipif_down and friends that wait for
12657 	 * references to go away are not misled about the current ipif_refcnt
12658 	 * values. We are writer so we can access the ipif even after releasing
12659 	 * the ipif.
12660 	 */
12661 	ipif_refrele(ci.ci_ipif);
12662 
12663 	ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd);
12664 
12665 	/*
12666 	 * A return value of EINPROGRESS means the ioctl is
12667 	 * either queued and waiting for some reason or has
12668 	 * already completed.
12669 	 */
12670 	err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr);
12671 
12672 	DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish WR",
12673 	    int, ipip->ipi_cmd,
12674 	    ill_t *, ci.ci_ipif == NULL ? NULL : ci.ci_ipif->ipif_ill,
12675 	    ipif_t *, ci.ci_ipif);
12676 	ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq);
12677 
12678 	if (entered_ipsq)
12679 		ipsq_exit(ipsq);
12680 }
12681 
12682 /*
12683  * Complete the ioctl. Typically ioctls use the mi package and need to
12684  * do mi_copyout/mi_copy_done.
12685  */
12686 void
12687 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq)
12688 {
12689 	conn_t	*connp = NULL;
12690 
12691 	if (err == EINPROGRESS)
12692 		return;
12693 
12694 	if (CONN_Q(q)) {
12695 		connp = Q_TO_CONN(q);
12696 		ASSERT(connp->conn_ref >= 2);
12697 	}
12698 
12699 	switch (mode) {
12700 	case COPYOUT:
12701 		if (err == 0)
12702 			mi_copyout(q, mp);
12703 		else
12704 			mi_copy_done(q, mp, err);
12705 		break;
12706 
12707 	case NO_COPYOUT:
12708 		mi_copy_done(q, mp, err);
12709 		break;
12710 
12711 	default:
12712 		ASSERT(mode == CONN_CLOSE);	/* aborted through CONN_CLOSE */
12713 		break;
12714 	}
12715 
12716 	/*
12717 	 * The conn refhold and ioctlref placed on the conn at the start of the
12718 	 * ioctl are released here.
12719 	 */
12720 	if (connp != NULL) {
12721 		CONN_DEC_IOCTLREF(connp);
12722 		CONN_OPER_PENDING_DONE(connp);
12723 	}
12724 
12725 	if (ipsq != NULL)
12726 		ipsq_current_finish(ipsq);
12727 }
12728 
12729 /* Handles all non data messages */
12730 void
12731 ip_wput_nondata(queue_t *q, mblk_t *mp)
12732 {
12733 	mblk_t		*mp1;
12734 	struct iocblk	*iocp;
12735 	ip_ioctl_cmd_t	*ipip;
12736 	conn_t		*connp;
12737 	cred_t		*cr;
12738 	char		*proto_str;
12739 
12740 	if (CONN_Q(q))
12741 		connp = Q_TO_CONN(q);
12742 	else
12743 		connp = NULL;
12744 
12745 	switch (DB_TYPE(mp)) {
12746 	case M_IOCTL:
12747 		/*
12748 		 * IOCTL processing begins in ip_sioctl_copyin_setup which
12749 		 * will arrange to copy in associated control structures.
12750 		 */
12751 		ip_sioctl_copyin_setup(q, mp);
12752 		return;
12753 	case M_IOCDATA:
12754 		/*
12755 		 * Ensure that this is associated with one of our trans-
12756 		 * parent ioctls.  If it's not ours, discard it if we're
12757 		 * running as a driver, or pass it on if we're a module.
12758 		 */
12759 		iocp = (struct iocblk *)mp->b_rptr;
12760 		ipip = ip_sioctl_lookup(iocp->ioc_cmd);
12761 		if (ipip == NULL) {
12762 			if (q->q_next == NULL) {
12763 				goto nak;
12764 			} else {
12765 				putnext(q, mp);
12766 			}
12767 			return;
12768 		}
12769 		if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) {
12770 			/*
12771 			 * The ioctl is one we recognise, but is not consumed
12772 			 * by IP as a module and we are a module, so we drop
12773 			 */
12774 			goto nak;
12775 		}
12776 
12777 		/* IOCTL continuation following copyin or copyout. */
12778 		if (mi_copy_state(q, mp, NULL) == -1) {
12779 			/*
12780 			 * The copy operation failed.  mi_copy_state already
12781 			 * cleaned up, so we're out of here.
12782 			 */
12783 			return;
12784 		}
12785 		/*
12786 		 * If we just completed a copy in, we become writer and
12787 		 * continue processing in ip_sioctl_copyin_done.  If it
12788 		 * was a copy out, we call mi_copyout again.  If there is
12789 		 * nothing more to copy out, it will complete the IOCTL.
12790 		 */
12791 		if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) {
12792 			if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) {
12793 				mi_copy_done(q, mp, EPROTO);
12794 				return;
12795 			}
12796 			/*
12797 			 * Check for cases that need more copying.  A return
12798 			 * value of 0 means a second copyin has been started,
12799 			 * so we return; a return value of 1 means no more
12800 			 * copying is needed, so we continue.
12801 			 */
12802 			if (ipip->ipi_cmd_type == MSFILT_CMD &&
12803 			    MI_COPY_COUNT(mp) == 1) {
12804 				if (ip_copyin_msfilter(q, mp) == 0)
12805 					return;
12806 			}
12807 			/*
12808 			 * Refhold the conn, till the ioctl completes. This is
12809 			 * needed in case the ioctl ends up in the pending mp
12810 			 * list. Every mp in the ipx_pending_mp list must have
12811 			 * a refhold on the conn to resume processing. The
12812 			 * refhold is released when the ioctl completes
12813 			 * (whether normally or abnormally). An ioctlref is also
12814 			 * placed on the conn to prevent TCP from removing the
12815 			 * queue needed to send the ioctl reply back.
12816 			 * In all cases ip_ioctl_finish is called to finish
12817 			 * the ioctl and release the refholds.
12818 			 */
12819 			if (connp != NULL) {
12820 				/* This is not a reentry */
12821 				CONN_INC_REF(connp);
12822 				CONN_INC_IOCTLREF(connp);
12823 			} else {
12824 				if (!(ipip->ipi_flags & IPI_MODOK)) {
12825 					mi_copy_done(q, mp, EINVAL);
12826 					return;
12827 				}
12828 			}
12829 
12830 			ip_process_ioctl(NULL, q, mp, ipip);
12831 
12832 		} else {
12833 			mi_copyout(q, mp);
12834 		}
12835 		return;
12836 
12837 	case M_IOCNAK:
12838 		/*
12839 		 * The only way we could get here is if a resolver didn't like
12840 		 * an IOCTL we sent it.	 This shouldn't happen.
12841 		 */
12842 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
12843 		    "ip_wput_nondata: unexpected M_IOCNAK, ioc_cmd 0x%x",
12844 		    ((struct iocblk *)mp->b_rptr)->ioc_cmd);
12845 		freemsg(mp);
12846 		return;
12847 	case M_IOCACK:
12848 		/* /dev/ip shouldn't see this */
12849 		goto nak;
12850 	case M_FLUSH:
12851 		if (*mp->b_rptr & FLUSHW)
12852 			flushq(q, FLUSHALL);
12853 		if (q->q_next) {
12854 			putnext(q, mp);
12855 			return;
12856 		}
12857 		if (*mp->b_rptr & FLUSHR) {
12858 			*mp->b_rptr &= ~FLUSHW;
12859 			qreply(q, mp);
12860 			return;
12861 		}
12862 		freemsg(mp);
12863 		return;
12864 	case M_CTL:
12865 		break;
12866 	case M_PROTO:
12867 	case M_PCPROTO:
12868 		/*
12869 		 * The only PROTO messages we expect are SNMP-related.
12870 		 */
12871 		switch (((union T_primitives *)mp->b_rptr)->type) {
12872 		case T_SVR4_OPTMGMT_REQ:
12873 			ip2dbg(("ip_wput_nondata: T_SVR4_OPTMGMT_REQ "
12874 			    "flags %x\n",
12875 			    ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags));
12876 
12877 			if (connp == NULL) {
12878 				proto_str = "T_SVR4_OPTMGMT_REQ";
12879 				goto protonak;
12880 			}
12881 
12882 			/*
12883 			 * All Solaris components should pass a db_credp
12884 			 * for this TPI message, hence we ASSERT.
12885 			 * But in case there is some other M_PROTO that looks
12886 			 * like a TPI message sent by some other kernel
12887 			 * component, we check and return an error.
12888 			 */
12889 			cr = msg_getcred(mp, NULL);
12890 			ASSERT(cr != NULL);
12891 			if (cr == NULL) {
12892 				mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL);
12893 				if (mp != NULL)
12894 					qreply(q, mp);
12895 				return;
12896 			}
12897 
12898 			if (!snmpcom_req(q, mp, ip_snmp_set, ip_snmp_get, cr)) {
12899 				proto_str = "Bad SNMPCOM request?";
12900 				goto protonak;
12901 			}
12902 			return;
12903 		default:
12904 			ip1dbg(("ip_wput_nondata: dropping M_PROTO prim %u\n",
12905 			    (int)*(uint_t *)mp->b_rptr));
12906 			freemsg(mp);
12907 			return;
12908 		}
12909 	default:
12910 		break;
12911 	}
12912 	if (q->q_next) {
12913 		putnext(q, mp);
12914 	} else
12915 		freemsg(mp);
12916 	return;
12917 
12918 nak:
12919 	iocp->ioc_error = EINVAL;
12920 	mp->b_datap->db_type = M_IOCNAK;
12921 	iocp->ioc_count = 0;
12922 	qreply(q, mp);
12923 	return;
12924 
12925 protonak:
12926 	cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str);
12927 	if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL)
12928 		qreply(q, mp);
12929 }
12930 
12931 /*
12932  * Process IP options in an outbound packet.  Verify that the nexthop in a
12933  * strict source route is onlink.
12934  * Returns non-zero if something fails in which case an ICMP error has been
12935  * sent and mp freed.
12936  *
12937  * Assumes the ULP has called ip_massage_options to move nexthop into ipha_dst.
12938  */
12939 int
12940 ip_output_options(mblk_t *mp, ipha_t *ipha, ip_xmit_attr_t *ixa, ill_t *ill)
12941 {
12942 	ipoptp_t	opts;
12943 	uchar_t		*opt;
12944 	uint8_t		optval;
12945 	uint8_t		optlen;
12946 	ipaddr_t	dst;
12947 	intptr_t	code = 0;
12948 	ire_t		*ire;
12949 	ip_stack_t	*ipst = ixa->ixa_ipst;
12950 	ip_recv_attr_t	iras;
12951 
12952 	ip2dbg(("ip_output_options\n"));
12953 
12954 	dst = ipha->ipha_dst;
12955 	for (optval = ipoptp_first(&opts, ipha);
12956 	    optval != IPOPT_EOL;
12957 	    optval = ipoptp_next(&opts)) {
12958 		opt = opts.ipoptp_cur;
12959 		optlen = opts.ipoptp_len;
12960 		ip2dbg(("ip_output_options: opt %d, len %d\n",
12961 		    optval, optlen));
12962 		switch (optval) {
12963 			uint32_t off;
12964 		case IPOPT_SSRR:
12965 		case IPOPT_LSRR:
12966 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
12967 				ip1dbg((
12968 				    "ip_output_options: bad option offset\n"));
12969 				code = (char *)&opt[IPOPT_OLEN] -
12970 				    (char *)ipha;
12971 				goto param_prob;
12972 			}
12973 			off = opt[IPOPT_OFFSET];
12974 			ip1dbg(("ip_output_options: next hop 0x%x\n",
12975 			    ntohl(dst)));
12976 			/*
12977 			 * For strict: verify that dst is directly
12978 			 * reachable.
12979 			 */
12980 			if (optval == IPOPT_SSRR) {
12981 				ire = ire_ftable_lookup_v4(dst, 0, 0,
12982 				    IRE_INTERFACE, NULL, ALL_ZONES,
12983 				    ixa->ixa_tsl,
12984 				    MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst,
12985 				    NULL);
12986 				if (ire == NULL) {
12987 					ip1dbg(("ip_output_options: SSRR not"
12988 					    " directly reachable: 0x%x\n",
12989 					    ntohl(dst)));
12990 					goto bad_src_route;
12991 				}
12992 				ire_refrele(ire);
12993 			}
12994 			break;
12995 		case IPOPT_RR:
12996 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
12997 				ip1dbg((
12998 				    "ip_output_options: bad option offset\n"));
12999 				code = (char *)&opt[IPOPT_OLEN] -
13000 				    (char *)ipha;
13001 				goto param_prob;
13002 			}
13003 			break;
13004 		case IPOPT_TS:
13005 			/*
13006 			 * Verify that length >=5 and that there is either
13007 			 * room for another timestamp or that the overflow
13008 			 * counter is not maxed out.
13009 			 */
13010 			code = (char *)&opt[IPOPT_OLEN] - (char *)ipha;
13011 			if (optlen < IPOPT_MINLEN_IT) {
13012 				goto param_prob;
13013 			}
13014 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
13015 				ip1dbg((
13016 				    "ip_output_options: bad option offset\n"));
13017 				code = (char *)&opt[IPOPT_OFFSET] -
13018 				    (char *)ipha;
13019 				goto param_prob;
13020 			}
13021 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
13022 			case IPOPT_TS_TSONLY:
13023 				off = IPOPT_TS_TIMELEN;
13024 				break;
13025 			case IPOPT_TS_TSANDADDR:
13026 			case IPOPT_TS_PRESPEC:
13027 			case IPOPT_TS_PRESPEC_RFC791:
13028 				off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
13029 				break;
13030 			default:
13031 				code = (char *)&opt[IPOPT_POS_OV_FLG] -
13032 				    (char *)ipha;
13033 				goto param_prob;
13034 			}
13035 			if (opt[IPOPT_OFFSET] - 1 + off > optlen &&
13036 			    (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) {
13037 				/*
13038 				 * No room and the overflow counter is 15
13039 				 * already.
13040 				 */
13041 				goto param_prob;
13042 			}
13043 			break;
13044 		}
13045 	}
13046 
13047 	if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0)
13048 		return (0);
13049 
13050 	ip1dbg(("ip_output_options: error processing IP options."));
13051 	code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha;
13052 
13053 param_prob:
13054 	bzero(&iras, sizeof (iras));
13055 	iras.ira_ill = iras.ira_rill = ill;
13056 	iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex;
13057 	iras.ira_rifindex = iras.ira_ruifindex;
13058 	iras.ira_flags = IRAF_IS_IPV4;
13059 
13060 	ip_drop_output("ip_output_options", mp, ill);
13061 	icmp_param_problem(mp, (uint8_t)code, &iras);
13062 	ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
13063 	return (-1);
13064 
13065 bad_src_route:
13066 	bzero(&iras, sizeof (iras));
13067 	iras.ira_ill = iras.ira_rill = ill;
13068 	iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex;
13069 	iras.ira_rifindex = iras.ira_ruifindex;
13070 	iras.ira_flags = IRAF_IS_IPV4;
13071 
13072 	ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill);
13073 	icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, &iras);
13074 	ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
13075 	return (-1);
13076 }
13077 
13078 /*
13079  * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT.
13080  * conn_drain_list_cnt can be changed by setting conn_drain_nthreads
13081  * thru /etc/system.
13082  */
13083 #define	CONN_MAXDRAINCNT	64
13084 
13085 static void
13086 conn_drain_init(ip_stack_t *ipst)
13087 {
13088 	int i, j;
13089 	idl_tx_list_t *itl_tx;
13090 
13091 	ipst->ips_conn_drain_list_cnt = conn_drain_nthreads;
13092 
13093 	if ((ipst->ips_conn_drain_list_cnt == 0) ||
13094 	    (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) {
13095 		/*
13096 		 * Default value of the number of drainers is the
13097 		 * number of cpus, subject to maximum of 8 drainers.
13098 		 */
13099 		if (boot_max_ncpus != -1)
13100 			ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8);
13101 		else
13102 			ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8);
13103 	}
13104 
13105 	ipst->ips_idl_tx_list =
13106 	    kmem_zalloc(TX_FANOUT_SIZE * sizeof (idl_tx_list_t), KM_SLEEP);
13107 	for (i = 0; i < TX_FANOUT_SIZE; i++) {
13108 		itl_tx =  &ipst->ips_idl_tx_list[i];
13109 		itl_tx->txl_drain_list =
13110 		    kmem_zalloc(ipst->ips_conn_drain_list_cnt *
13111 		    sizeof (idl_t), KM_SLEEP);
13112 		mutex_init(&itl_tx->txl_lock, NULL, MUTEX_DEFAULT, NULL);
13113 		for (j = 0; j < ipst->ips_conn_drain_list_cnt; j++) {
13114 			mutex_init(&itl_tx->txl_drain_list[j].idl_lock, NULL,
13115 			    MUTEX_DEFAULT, NULL);
13116 			itl_tx->txl_drain_list[j].idl_itl = itl_tx;
13117 		}
13118 	}
13119 }
13120 
13121 static void
13122 conn_drain_fini(ip_stack_t *ipst)
13123 {
13124 	int i;
13125 	idl_tx_list_t *itl_tx;
13126 
13127 	for (i = 0; i < TX_FANOUT_SIZE; i++) {
13128 		itl_tx =  &ipst->ips_idl_tx_list[i];
13129 		kmem_free(itl_tx->txl_drain_list,
13130 		    ipst->ips_conn_drain_list_cnt * sizeof (idl_t));
13131 	}
13132 	kmem_free(ipst->ips_idl_tx_list,
13133 	    TX_FANOUT_SIZE * sizeof (idl_tx_list_t));
13134 	ipst->ips_idl_tx_list = NULL;
13135 }
13136 
13137 /*
13138  * Flow control has blocked us from proceeding.  Insert the given conn in one
13139  * of the conn drain lists.  When flow control is unblocked, either ip_wsrv()
13140  * (STREAMS) or ill_flow_enable() (direct) will be called back, which in turn
13141  * will call conn_walk_drain().  See the flow control notes at the top of this
13142  * file for more details.
13143  */
13144 void
13145 conn_drain_insert(conn_t *connp, idl_tx_list_t *tx_list)
13146 {
13147 	idl_t	*idl = tx_list->txl_drain_list;
13148 	uint_t	index;
13149 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
13150 
13151 	mutex_enter(&connp->conn_lock);
13152 	if (connp->conn_state_flags & CONN_CLOSING) {
13153 		/*
13154 		 * The conn is closing as a result of which CONN_CLOSING
13155 		 * is set. Return.
13156 		 */
13157 		mutex_exit(&connp->conn_lock);
13158 		return;
13159 	} else if (connp->conn_idl == NULL) {
13160 		/*
13161 		 * Assign the next drain list round robin. We dont' use
13162 		 * a lock, and thus it may not be strictly round robin.
13163 		 * Atomicity of load/stores is enough to make sure that
13164 		 * conn_drain_list_index is always within bounds.
13165 		 */
13166 		index = tx_list->txl_drain_index;
13167 		ASSERT(index < ipst->ips_conn_drain_list_cnt);
13168 		connp->conn_idl = &tx_list->txl_drain_list[index];
13169 		index++;
13170 		if (index == ipst->ips_conn_drain_list_cnt)
13171 			index = 0;
13172 		tx_list->txl_drain_index = index;
13173 	} else {
13174 		ASSERT(connp->conn_idl->idl_itl == tx_list);
13175 	}
13176 	mutex_exit(&connp->conn_lock);
13177 
13178 	idl = connp->conn_idl;
13179 	mutex_enter(&idl->idl_lock);
13180 	if ((connp->conn_drain_prev != NULL) ||
13181 	    (connp->conn_state_flags & CONN_CLOSING)) {
13182 		/*
13183 		 * The conn is either already in the drain list or closing.
13184 		 * (We needed to check for CONN_CLOSING again since close can
13185 		 * sneak in between dropping conn_lock and acquiring idl_lock.)
13186 		 */
13187 		mutex_exit(&idl->idl_lock);
13188 		return;
13189 	}
13190 
13191 	/*
13192 	 * The conn is not in the drain list. Insert it at the
13193 	 * tail of the drain list. The drain list is circular
13194 	 * and doubly linked. idl_conn points to the 1st element
13195 	 * in the list.
13196 	 */
13197 	if (idl->idl_conn == NULL) {
13198 		idl->idl_conn = connp;
13199 		connp->conn_drain_next = connp;
13200 		connp->conn_drain_prev = connp;
13201 	} else {
13202 		conn_t *head = idl->idl_conn;
13203 
13204 		connp->conn_drain_next = head;
13205 		connp->conn_drain_prev = head->conn_drain_prev;
13206 		head->conn_drain_prev->conn_drain_next = connp;
13207 		head->conn_drain_prev = connp;
13208 	}
13209 	/*
13210 	 * For non streams based sockets assert flow control.
13211 	 */
13212 	conn_setqfull(connp, NULL);
13213 	mutex_exit(&idl->idl_lock);
13214 }
13215 
13216 static void
13217 conn_drain_remove(conn_t *connp)
13218 {
13219 	idl_t *idl = connp->conn_idl;
13220 
13221 	if (idl != NULL) {
13222 		/*
13223 		 * Remove ourself from the drain list.
13224 		 */
13225 		if (connp->conn_drain_next == connp) {
13226 			/* Singleton in the list */
13227 			ASSERT(connp->conn_drain_prev == connp);
13228 			idl->idl_conn = NULL;
13229 		} else {
13230 			connp->conn_drain_prev->conn_drain_next =
13231 			    connp->conn_drain_next;
13232 			connp->conn_drain_next->conn_drain_prev =
13233 			    connp->conn_drain_prev;
13234 			if (idl->idl_conn == connp)
13235 				idl->idl_conn = connp->conn_drain_next;
13236 		}
13237 
13238 		/*
13239 		 * NOTE: because conn_idl is associated with a specific drain
13240 		 * list which in turn is tied to the index the TX ring
13241 		 * (txl_cookie) hashes to, and because the TX ring can change
13242 		 * over the lifetime of the conn_t, we must clear conn_idl so
13243 		 * a subsequent conn_drain_insert() will set conn_idl again
13244 		 * based on the latest txl_cookie.
13245 		 */
13246 		connp->conn_idl = NULL;
13247 	}
13248 	connp->conn_drain_next = NULL;
13249 	connp->conn_drain_prev = NULL;
13250 
13251 	conn_clrqfull(connp, NULL);
13252 	/*
13253 	 * For streams based sockets open up flow control.
13254 	 */
13255 	if (!IPCL_IS_NONSTR(connp))
13256 		enableok(connp->conn_wq);
13257 }
13258 
13259 /*
13260  * This conn is closing, and we are called from ip_close. OR
13261  * this conn is draining because flow-control on the ill has been relieved.
13262  *
13263  * We must also need to remove conn's on this idl from the list, and also
13264  * inform the sockfs upcalls about the change in flow-control.
13265  */
13266 static void
13267 conn_drain(conn_t *connp, boolean_t closing)
13268 {
13269 	idl_t *idl;
13270 	conn_t *next_connp;
13271 
13272 	/*
13273 	 * connp->conn_idl is stable at this point, and no lock is needed
13274 	 * to check it. If we are called from ip_close, close has already
13275 	 * set CONN_CLOSING, thus freezing the value of conn_idl, and
13276 	 * called us only because conn_idl is non-null. If we are called thru
13277 	 * service, conn_idl could be null, but it cannot change because
13278 	 * service is single-threaded per queue, and there cannot be another
13279 	 * instance of service trying to call conn_drain_insert on this conn
13280 	 * now.
13281 	 */
13282 	ASSERT(!closing || connp == NULL || connp->conn_idl != NULL);
13283 
13284 	/*
13285 	 * If the conn doesn't exist or is not on a drain list, bail.
13286 	 */
13287 	if (connp == NULL || connp->conn_idl == NULL ||
13288 	    connp->conn_drain_prev == NULL) {
13289 		return;
13290 	}
13291 
13292 	idl = connp->conn_idl;
13293 	ASSERT(MUTEX_HELD(&idl->idl_lock));
13294 
13295 	if (!closing) {
13296 		next_connp = connp->conn_drain_next;
13297 		while (next_connp != connp) {
13298 			conn_t *delconnp = next_connp;
13299 
13300 			next_connp = next_connp->conn_drain_next;
13301 			conn_drain_remove(delconnp);
13302 		}
13303 		ASSERT(connp->conn_drain_next == idl->idl_conn);
13304 	}
13305 	conn_drain_remove(connp);
13306 }
13307 
13308 /*
13309  * Write service routine. Shared perimeter entry point.
13310  * The device queue's messages has fallen below the low water mark and STREAMS
13311  * has backenabled the ill_wq. Send sockfs notification about flow-control on
13312  * each waiting conn.
13313  */
13314 void
13315 ip_wsrv(queue_t *q)
13316 {
13317 	ill_t	*ill;
13318 
13319 	ill = (ill_t *)q->q_ptr;
13320 	if (ill->ill_state_flags == 0) {
13321 		ip_stack_t *ipst = ill->ill_ipst;
13322 
13323 		/*
13324 		 * The device flow control has opened up.
13325 		 * Walk through conn drain lists and qenable the
13326 		 * first conn in each list. This makes sense only
13327 		 * if the stream is fully plumbed and setup.
13328 		 * Hence the ill_state_flags check above.
13329 		 */
13330 		ip1dbg(("ip_wsrv: walking\n"));
13331 		conn_walk_drain(ipst, &ipst->ips_idl_tx_list[0]);
13332 		enableok(ill->ill_wq);
13333 	}
13334 }
13335 
13336 /*
13337  * Callback to disable flow control in IP.
13338  *
13339  * This is a mac client callback added when the DLD_CAPAB_DIRECT capability
13340  * is enabled.
13341  *
13342  * When MAC_TX() is not able to send any more packets, dld sets its queue
13343  * to QFULL and enable the STREAMS flow control. Later, when the underlying
13344  * driver is able to continue to send packets, it calls mac_tx_(ring_)update()
13345  * function and wakes up corresponding mac worker threads, which in turn
13346  * calls this callback function, and disables flow control.
13347  */
13348 void
13349 ill_flow_enable(void *arg, ip_mac_tx_cookie_t cookie)
13350 {
13351 	ill_t *ill = (ill_t *)arg;
13352 	ip_stack_t *ipst = ill->ill_ipst;
13353 	idl_tx_list_t *idl_txl;
13354 
13355 	idl_txl = &ipst->ips_idl_tx_list[IDLHASHINDEX(cookie)];
13356 	mutex_enter(&idl_txl->txl_lock);
13357 	/* add code to to set a flag to indicate idl_txl is enabled */
13358 	conn_walk_drain(ipst, idl_txl);
13359 	mutex_exit(&idl_txl->txl_lock);
13360 }
13361 
13362 /*
13363  * Flow control has been relieved and STREAMS has backenabled us; drain
13364  * all the conn lists on `tx_list'.
13365  */
13366 static void
13367 conn_walk_drain(ip_stack_t *ipst, idl_tx_list_t *tx_list)
13368 {
13369 	int i;
13370 	idl_t *idl;
13371 
13372 	IP_STAT(ipst, ip_conn_walk_drain);
13373 
13374 	for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) {
13375 		idl = &tx_list->txl_drain_list[i];
13376 		mutex_enter(&idl->idl_lock);
13377 		conn_drain(idl->idl_conn, B_FALSE);
13378 		mutex_exit(&idl->idl_lock);
13379 	}
13380 }
13381 
13382 /*
13383  * Determine if the ill and multicast aspects of that packets
13384  * "matches" the conn.
13385  */
13386 boolean_t
13387 conn_wantpacket(conn_t *connp, ip_recv_attr_t *ira, ipha_t *ipha)
13388 {
13389 	ill_t		*ill = ira->ira_rill;
13390 	zoneid_t	zoneid = ira->ira_zoneid;
13391 	uint_t		in_ifindex;
13392 	ipaddr_t	dst, src;
13393 
13394 	dst = ipha->ipha_dst;
13395 	src = ipha->ipha_src;
13396 
13397 	/*
13398 	 * conn_incoming_ifindex is set by IP_BOUND_IF which limits
13399 	 * unicast, broadcast and multicast reception to
13400 	 * conn_incoming_ifindex.
13401 	 * conn_wantpacket is called for unicast, broadcast and
13402 	 * multicast packets.
13403 	 */
13404 	in_ifindex = connp->conn_incoming_ifindex;
13405 
13406 	/* mpathd can bind to the under IPMP interface, which we allow */
13407 	if (in_ifindex != 0 && in_ifindex != ill->ill_phyint->phyint_ifindex) {
13408 		if (!IS_UNDER_IPMP(ill))
13409 			return (B_FALSE);
13410 
13411 		if (in_ifindex != ipmp_ill_get_ipmp_ifindex(ill))
13412 			return (B_FALSE);
13413 	}
13414 
13415 	if (!IPCL_ZONE_MATCH(connp, zoneid))
13416 		return (B_FALSE);
13417 
13418 	if (!(ira->ira_flags & IRAF_MULTICAST))
13419 		return (B_TRUE);
13420 
13421 	if (connp->conn_multi_router) {
13422 		/* multicast packet and multicast router socket: send up */
13423 		return (B_TRUE);
13424 	}
13425 
13426 	if (ipha->ipha_protocol == IPPROTO_PIM ||
13427 	    ipha->ipha_protocol == IPPROTO_RSVP)
13428 		return (B_TRUE);
13429 
13430 	return (conn_hasmembers_ill_withsrc_v4(connp, dst, src, ira->ira_ill));
13431 }
13432 
13433 void
13434 conn_setqfull(conn_t *connp, boolean_t *flow_stopped)
13435 {
13436 	if (IPCL_IS_NONSTR(connp)) {
13437 		(*connp->conn_upcalls->su_txq_full)
13438 		    (connp->conn_upper_handle, B_TRUE);
13439 		if (flow_stopped != NULL)
13440 			*flow_stopped = B_TRUE;
13441 	} else {
13442 		queue_t *q = connp->conn_wq;
13443 
13444 		ASSERT(q != NULL);
13445 		if (!(q->q_flag & QFULL)) {
13446 			mutex_enter(QLOCK(q));
13447 			if (!(q->q_flag & QFULL)) {
13448 				/* still need to set QFULL */
13449 				q->q_flag |= QFULL;
13450 				/* set flow_stopped to true under QLOCK */
13451 				if (flow_stopped != NULL)
13452 					*flow_stopped = B_TRUE;
13453 				mutex_exit(QLOCK(q));
13454 			} else {
13455 				/* flow_stopped is left unchanged */
13456 				mutex_exit(QLOCK(q));
13457 			}
13458 		}
13459 	}
13460 }
13461 
13462 void
13463 conn_clrqfull(conn_t *connp, boolean_t *flow_stopped)
13464 {
13465 	if (IPCL_IS_NONSTR(connp)) {
13466 		(*connp->conn_upcalls->su_txq_full)
13467 		    (connp->conn_upper_handle, B_FALSE);
13468 		if (flow_stopped != NULL)
13469 			*flow_stopped = B_FALSE;
13470 	} else {
13471 		queue_t *q = connp->conn_wq;
13472 
13473 		ASSERT(q != NULL);
13474 		if (q->q_flag & QFULL) {
13475 			mutex_enter(QLOCK(q));
13476 			if (q->q_flag & QFULL) {
13477 				q->q_flag &= ~QFULL;
13478 				/* set flow_stopped to false under QLOCK */
13479 				if (flow_stopped != NULL)
13480 					*flow_stopped = B_FALSE;
13481 				mutex_exit(QLOCK(q));
13482 				if (q->q_flag & QWANTW)
13483 					qbackenable(q, 0);
13484 			} else {
13485 				/* flow_stopped is left unchanged */
13486 				mutex_exit(QLOCK(q));
13487 			}
13488 		}
13489 	}
13490 
13491 	mutex_enter(&connp->conn_lock);
13492 	connp->conn_blocked = B_FALSE;
13493 	mutex_exit(&connp->conn_lock);
13494 }
13495 
13496 /*
13497  * Return the length in bytes of the IPv4 headers (base header, label, and
13498  * other IP options) that will be needed based on the
13499  * ip_pkt_t structure passed by the caller.
13500  *
13501  * The returned length does not include the length of the upper level
13502  * protocol (ULP) header.
13503  * The caller needs to check that the length doesn't exceed the max for IPv4.
13504  */
13505 int
13506 ip_total_hdrs_len_v4(const ip_pkt_t *ipp)
13507 {
13508 	int len;
13509 
13510 	len = IP_SIMPLE_HDR_LENGTH;
13511 	if (ipp->ipp_fields & IPPF_LABEL_V4) {
13512 		ASSERT(ipp->ipp_label_len_v4 != 0);
13513 		/* We need to round up here */
13514 		len += (ipp->ipp_label_len_v4 + 3) & ~3;
13515 	}
13516 
13517 	if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
13518 		ASSERT(ipp->ipp_ipv4_options_len != 0);
13519 		ASSERT((ipp->ipp_ipv4_options_len & 3) == 0);
13520 		len += ipp->ipp_ipv4_options_len;
13521 	}
13522 	return (len);
13523 }
13524 
13525 /*
13526  * All-purpose routine to build an IPv4 header with options based
13527  * on the abstract ip_pkt_t.
13528  *
13529  * The caller has to set the source and destination address as well as
13530  * ipha_length. The caller has to massage any source route and compensate
13531  * for the ULP pseudo-header checksum due to the source route.
13532  */
13533 void
13534 ip_build_hdrs_v4(uchar_t *buf, uint_t buf_len, const ip_pkt_t *ipp,
13535     uint8_t protocol)
13536 {
13537 	ipha_t	*ipha = (ipha_t *)buf;
13538 	uint8_t *cp;
13539 
13540 	/* Initialize IPv4 header */
13541 	ipha->ipha_type_of_service = ipp->ipp_type_of_service;
13542 	ipha->ipha_length = 0;	/* Caller will set later */
13543 	ipha->ipha_ident = 0;
13544 	ipha->ipha_fragment_offset_and_flags = 0;
13545 	ipha->ipha_ttl = ipp->ipp_unicast_hops;
13546 	ipha->ipha_protocol = protocol;
13547 	ipha->ipha_hdr_checksum = 0;
13548 
13549 	if ((ipp->ipp_fields & IPPF_ADDR) &&
13550 	    IN6_IS_ADDR_V4MAPPED(&ipp->ipp_addr))
13551 		ipha->ipha_src = ipp->ipp_addr_v4;
13552 
13553 	cp = (uint8_t *)&ipha[1];
13554 	if (ipp->ipp_fields & IPPF_LABEL_V4) {
13555 		ASSERT(ipp->ipp_label_len_v4 != 0);
13556 		bcopy(ipp->ipp_label_v4, cp, ipp->ipp_label_len_v4);
13557 		cp += ipp->ipp_label_len_v4;
13558 		/* We need to round up here */
13559 		while ((uintptr_t)cp & 0x3) {
13560 			*cp++ = IPOPT_NOP;
13561 		}
13562 	}
13563 
13564 	if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
13565 		ASSERT(ipp->ipp_ipv4_options_len != 0);
13566 		ASSERT((ipp->ipp_ipv4_options_len & 3) == 0);
13567 		bcopy(ipp->ipp_ipv4_options, cp, ipp->ipp_ipv4_options_len);
13568 		cp += ipp->ipp_ipv4_options_len;
13569 	}
13570 	ipha->ipha_version_and_hdr_length =
13571 	    (uint8_t)((IP_VERSION << 4) + buf_len / 4);
13572 
13573 	ASSERT((int)(cp - buf) == buf_len);
13574 }
13575 
13576 /* Allocate the private structure */
13577 static int
13578 ip_priv_alloc(void **bufp)
13579 {
13580 	void	*buf;
13581 
13582 	if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL)
13583 		return (ENOMEM);
13584 
13585 	*bufp = buf;
13586 	return (0);
13587 }
13588 
13589 /* Function to delete the private structure */
13590 void
13591 ip_priv_free(void *buf)
13592 {
13593 	ASSERT(buf != NULL);
13594 	kmem_free(buf, sizeof (ip_priv_t));
13595 }
13596 
13597 /*
13598  * The entry point for IPPF processing.
13599  * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the
13600  * routine just returns.
13601  *
13602  * When called, ip_process generates an ipp_packet_t structure
13603  * which holds the state information for this packet and invokes the
13604  * the classifier (via ipp_packet_process). The classification, depending on
13605  * configured filters, results in a list of actions for this packet. Invoking
13606  * an action may cause the packet to be dropped, in which case we return NULL.
13607  * proc indicates the callout position for
13608  * this packet and ill is the interface this packet arrived on or will leave
13609  * on (inbound and outbound resp.).
13610  *
13611  * We do the processing on the rill (mapped to the upper if ipmp), but MIB
13612  * on the ill corrsponding to the destination IP address.
13613  */
13614 mblk_t *
13615 ip_process(ip_proc_t proc, mblk_t *mp, ill_t *rill, ill_t *ill)
13616 {
13617 	ip_priv_t	*priv;
13618 	ipp_action_id_t	aid;
13619 	int		rc = 0;
13620 	ipp_packet_t	*pp;
13621 
13622 	/* If the classifier is not loaded, return  */
13623 	if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) {
13624 		return (mp);
13625 	}
13626 
13627 	ASSERT(mp != NULL);
13628 
13629 	/* Allocate the packet structure */
13630 	rc = ipp_packet_alloc(&pp, "ip", aid);
13631 	if (rc != 0)
13632 		goto drop;
13633 
13634 	/* Allocate the private structure */
13635 	rc = ip_priv_alloc((void **)&priv);
13636 	if (rc != 0) {
13637 		ipp_packet_free(pp);
13638 		goto drop;
13639 	}
13640 	priv->proc = proc;
13641 	priv->ill_index = ill_get_upper_ifindex(rill);
13642 
13643 	ipp_packet_set_private(pp, priv, ip_priv_free);
13644 	ipp_packet_set_data(pp, mp);
13645 
13646 	/* Invoke the classifier */
13647 	rc = ipp_packet_process(&pp);
13648 	if (pp != NULL) {
13649 		mp = ipp_packet_get_data(pp);
13650 		ipp_packet_free(pp);
13651 		if (rc != 0)
13652 			goto drop;
13653 		return (mp);
13654 	} else {
13655 		/* No mp to trace in ip_drop_input/ip_drop_output  */
13656 		mp = NULL;
13657 	}
13658 drop:
13659 	if (proc == IPP_LOCAL_IN || proc == IPP_FWD_IN) {
13660 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
13661 		ip_drop_input("ip_process", mp, ill);
13662 	} else {
13663 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
13664 		ip_drop_output("ip_process", mp, ill);
13665 	}
13666 	freemsg(mp);
13667 	return (NULL);
13668 }
13669 
13670 /*
13671  * Propagate a multicast group membership operation (add/drop) on
13672  * all the interfaces crossed by the related multirt routes.
13673  * The call is considered successful if the operation succeeds
13674  * on at least one interface.
13675  *
13676  * This assumes that a set of IRE_HOST/RTF_MULTIRT has been created for the
13677  * multicast addresses with the ire argument being the first one.
13678  * We walk the bucket to find all the of those.
13679  *
13680  * Common to IPv4 and IPv6.
13681  */
13682 static int
13683 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t,
13684     const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *),
13685     ire_t *ire, conn_t *connp, boolean_t checkonly, const in6_addr_t *v6group,
13686     mcast_record_t fmode, const in6_addr_t *v6src)
13687 {
13688 	ire_t		*ire_gw;
13689 	irb_t		*irb;
13690 	int		ifindex;
13691 	int		error = 0;
13692 	int		result;
13693 	ip_stack_t	*ipst = ire->ire_ipst;
13694 	ipaddr_t	group;
13695 	boolean_t	isv6;
13696 	int		match_flags;
13697 
13698 	if (IN6_IS_ADDR_V4MAPPED(v6group)) {
13699 		IN6_V4MAPPED_TO_IPADDR(v6group, group);
13700 		isv6 = B_FALSE;
13701 	} else {
13702 		isv6 = B_TRUE;
13703 	}
13704 
13705 	irb = ire->ire_bucket;
13706 	ASSERT(irb != NULL);
13707 
13708 	result = 0;
13709 	irb_refhold(irb);
13710 	for (; ire != NULL; ire = ire->ire_next) {
13711 		if ((ire->ire_flags & RTF_MULTIRT) == 0)
13712 			continue;
13713 
13714 		/* We handle -ifp routes by matching on the ill if set */
13715 		match_flags = MATCH_IRE_TYPE;
13716 		if (ire->ire_ill != NULL)
13717 			match_flags |= MATCH_IRE_ILL;
13718 
13719 		if (isv6) {
13720 			if (!IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, v6group))
13721 				continue;
13722 
13723 			ire_gw = ire_ftable_lookup_v6(&ire->ire_gateway_addr_v6,
13724 			    0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL,
13725 			    match_flags, 0, ipst, NULL);
13726 		} else {
13727 			if (ire->ire_addr != group)
13728 				continue;
13729 
13730 			ire_gw = ire_ftable_lookup_v4(ire->ire_gateway_addr,
13731 			    0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL,
13732 			    match_flags, 0, ipst, NULL);
13733 		}
13734 		/* No interface route exists for the gateway; skip this ire. */
13735 		if (ire_gw == NULL)
13736 			continue;
13737 		if (ire_gw->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
13738 			ire_refrele(ire_gw);
13739 			continue;
13740 		}
13741 		ASSERT(ire_gw->ire_ill != NULL);	/* IRE_INTERFACE */
13742 		ifindex = ire_gw->ire_ill->ill_phyint->phyint_ifindex;
13743 
13744 		/*
13745 		 * The operation is considered a success if
13746 		 * it succeeds at least once on any one interface.
13747 		 */
13748 		error = fn(connp, checkonly, v6group, INADDR_ANY, ifindex,
13749 		    fmode, v6src);
13750 		if (error == 0)
13751 			result = CGTP_MCAST_SUCCESS;
13752 
13753 		ire_refrele(ire_gw);
13754 	}
13755 	irb_refrele(irb);
13756 	/*
13757 	 * Consider the call as successful if we succeeded on at least
13758 	 * one interface. Otherwise, return the last encountered error.
13759 	 */
13760 	return (result == CGTP_MCAST_SUCCESS ? 0 : error);
13761 }
13762 
13763 /*
13764  * Return the expected CGTP hooks version number.
13765  */
13766 int
13767 ip_cgtp_filter_supported(void)
13768 {
13769 	return (ip_cgtp_filter_rev);
13770 }
13771 
13772 /*
13773  * CGTP hooks can be registered by invoking this function.
13774  * Checks that the version number matches.
13775  */
13776 int
13777 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops)
13778 {
13779 	netstack_t *ns;
13780 	ip_stack_t *ipst;
13781 
13782 	if (ops->cfo_filter_rev != CGTP_FILTER_REV)
13783 		return (ENOTSUP);
13784 
13785 	ns = netstack_find_by_stackid(stackid);
13786 	if (ns == NULL)
13787 		return (EINVAL);
13788 	ipst = ns->netstack_ip;
13789 	ASSERT(ipst != NULL);
13790 
13791 	if (ipst->ips_ip_cgtp_filter_ops != NULL) {
13792 		netstack_rele(ns);
13793 		return (EALREADY);
13794 	}
13795 
13796 	ipst->ips_ip_cgtp_filter_ops = ops;
13797 
13798 	ill_set_inputfn_all(ipst);
13799 
13800 	netstack_rele(ns);
13801 	return (0);
13802 }
13803 
13804 /*
13805  * CGTP hooks can be unregistered by invoking this function.
13806  * Returns ENXIO if there was no registration.
13807  * Returns EBUSY if the ndd variable has not been turned off.
13808  */
13809 int
13810 ip_cgtp_filter_unregister(netstackid_t stackid)
13811 {
13812 	netstack_t *ns;
13813 	ip_stack_t *ipst;
13814 
13815 	ns = netstack_find_by_stackid(stackid);
13816 	if (ns == NULL)
13817 		return (EINVAL);
13818 	ipst = ns->netstack_ip;
13819 	ASSERT(ipst != NULL);
13820 
13821 	if (ipst->ips_ip_cgtp_filter) {
13822 		netstack_rele(ns);
13823 		return (EBUSY);
13824 	}
13825 
13826 	if (ipst->ips_ip_cgtp_filter_ops == NULL) {
13827 		netstack_rele(ns);
13828 		return (ENXIO);
13829 	}
13830 	ipst->ips_ip_cgtp_filter_ops = NULL;
13831 
13832 	ill_set_inputfn_all(ipst);
13833 
13834 	netstack_rele(ns);
13835 	return (0);
13836 }
13837 
13838 /*
13839  * Check whether there is a CGTP filter registration.
13840  * Returns non-zero if there is a registration, otherwise returns zero.
13841  * Note: returns zero if bad stackid.
13842  */
13843 int
13844 ip_cgtp_filter_is_registered(netstackid_t stackid)
13845 {
13846 	netstack_t *ns;
13847 	ip_stack_t *ipst;
13848 	int ret;
13849 
13850 	ns = netstack_find_by_stackid(stackid);
13851 	if (ns == NULL)
13852 		return (0);
13853 	ipst = ns->netstack_ip;
13854 	ASSERT(ipst != NULL);
13855 
13856 	if (ipst->ips_ip_cgtp_filter_ops != NULL)
13857 		ret = 1;
13858 	else
13859 		ret = 0;
13860 
13861 	netstack_rele(ns);
13862 	return (ret);
13863 }
13864 
13865 static int
13866 ip_squeue_switch(int val)
13867 {
13868 	int rval;
13869 
13870 	switch (val) {
13871 	case IP_SQUEUE_ENTER_NODRAIN:
13872 		rval = SQ_NODRAIN;
13873 		break;
13874 	case IP_SQUEUE_ENTER:
13875 		rval = SQ_PROCESS;
13876 		break;
13877 	case IP_SQUEUE_FILL:
13878 	default:
13879 		rval = SQ_FILL;
13880 		break;
13881 	}
13882 	return (rval);
13883 }
13884 
13885 static void *
13886 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp)
13887 {
13888 	kstat_t *ksp;
13889 
13890 	ip_stat_t template = {
13891 		{ "ip_udp_fannorm", 		KSTAT_DATA_UINT64 },
13892 		{ "ip_udp_fanmb", 		KSTAT_DATA_UINT64 },
13893 		{ "ip_recv_pullup", 		KSTAT_DATA_UINT64 },
13894 		{ "ip_db_ref",			KSTAT_DATA_UINT64 },
13895 		{ "ip_notaligned",		KSTAT_DATA_UINT64 },
13896 		{ "ip_multimblk",		KSTAT_DATA_UINT64 },
13897 		{ "ip_opt",			KSTAT_DATA_UINT64 },
13898 		{ "ipsec_proto_ahesp",		KSTAT_DATA_UINT64 },
13899 		{ "ip_conn_flputbq",		KSTAT_DATA_UINT64 },
13900 		{ "ip_conn_walk_drain",		KSTAT_DATA_UINT64 },
13901 		{ "ip_out_sw_cksum",		KSTAT_DATA_UINT64 },
13902 		{ "ip_out_sw_cksum_bytes",	KSTAT_DATA_UINT64 },
13903 		{ "ip_in_sw_cksum",		KSTAT_DATA_UINT64 },
13904 		{ "ip_ire_reclaim_calls",	KSTAT_DATA_UINT64 },
13905 		{ "ip_ire_reclaim_deleted",	KSTAT_DATA_UINT64 },
13906 		{ "ip_nce_reclaim_calls",	KSTAT_DATA_UINT64 },
13907 		{ "ip_nce_reclaim_deleted",	KSTAT_DATA_UINT64 },
13908 		{ "ip_dce_reclaim_calls",	KSTAT_DATA_UINT64 },
13909 		{ "ip_dce_reclaim_deleted",	KSTAT_DATA_UINT64 },
13910 		{ "ip_tcp_in_full_hw_cksum_err",	KSTAT_DATA_UINT64 },
13911 		{ "ip_tcp_in_part_hw_cksum_err",	KSTAT_DATA_UINT64 },
13912 		{ "ip_tcp_in_sw_cksum_err",		KSTAT_DATA_UINT64 },
13913 		{ "ip_udp_in_full_hw_cksum_err",	KSTAT_DATA_UINT64 },
13914 		{ "ip_udp_in_part_hw_cksum_err",	KSTAT_DATA_UINT64 },
13915 		{ "ip_udp_in_sw_cksum_err",	KSTAT_DATA_UINT64 },
13916 		{ "conn_in_recvdstaddr",	KSTAT_DATA_UINT64 },
13917 		{ "conn_in_recvopts",		KSTAT_DATA_UINT64 },
13918 		{ "conn_in_recvif",		KSTAT_DATA_UINT64 },
13919 		{ "conn_in_recvslla",		KSTAT_DATA_UINT64 },
13920 		{ "conn_in_recvucred",		KSTAT_DATA_UINT64 },
13921 		{ "conn_in_recvttl",		KSTAT_DATA_UINT64 },
13922 		{ "conn_in_recvhopopts",	KSTAT_DATA_UINT64 },
13923 		{ "conn_in_recvhoplimit",	KSTAT_DATA_UINT64 },
13924 		{ "conn_in_recvdstopts",	KSTAT_DATA_UINT64 },
13925 		{ "conn_in_recvrthdrdstopts",	KSTAT_DATA_UINT64 },
13926 		{ "conn_in_recvrthdr",		KSTAT_DATA_UINT64 },
13927 		{ "conn_in_recvpktinfo",	KSTAT_DATA_UINT64 },
13928 		{ "conn_in_recvtclass",		KSTAT_DATA_UINT64 },
13929 		{ "conn_in_timestamp",		KSTAT_DATA_UINT64 },
13930 	};
13931 
13932 	ksp = kstat_create_netstack("ip", 0, "ipstat", "net",
13933 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
13934 	    KSTAT_FLAG_VIRTUAL, stackid);
13935 
13936 	if (ksp == NULL)
13937 		return (NULL);
13938 
13939 	bcopy(&template, ip_statisticsp, sizeof (template));
13940 	ksp->ks_data = (void *)ip_statisticsp;
13941 	ksp->ks_private = (void *)(uintptr_t)stackid;
13942 
13943 	kstat_install(ksp);
13944 	return (ksp);
13945 }
13946 
13947 static void
13948 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp)
13949 {
13950 	if (ksp != NULL) {
13951 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
13952 		kstat_delete_netstack(ksp, stackid);
13953 	}
13954 }
13955 
13956 static void *
13957 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst)
13958 {
13959 	kstat_t	*ksp;
13960 
13961 	ip_named_kstat_t template = {
13962 		{ "forwarding",		KSTAT_DATA_UINT32, 0 },
13963 		{ "defaultTTL",		KSTAT_DATA_UINT32, 0 },
13964 		{ "inReceives",		KSTAT_DATA_UINT64, 0 },
13965 		{ "inHdrErrors",	KSTAT_DATA_UINT32, 0 },
13966 		{ "inAddrErrors",	KSTAT_DATA_UINT32, 0 },
13967 		{ "forwDatagrams",	KSTAT_DATA_UINT64, 0 },
13968 		{ "inUnknownProtos",	KSTAT_DATA_UINT32, 0 },
13969 		{ "inDiscards",		KSTAT_DATA_UINT32, 0 },
13970 		{ "inDelivers",		KSTAT_DATA_UINT64, 0 },
13971 		{ "outRequests",	KSTAT_DATA_UINT64, 0 },
13972 		{ "outDiscards",	KSTAT_DATA_UINT32, 0 },
13973 		{ "outNoRoutes",	KSTAT_DATA_UINT32, 0 },
13974 		{ "reasmTimeout",	KSTAT_DATA_UINT32, 0 },
13975 		{ "reasmReqds",		KSTAT_DATA_UINT32, 0 },
13976 		{ "reasmOKs",		KSTAT_DATA_UINT32, 0 },
13977 		{ "reasmFails",		KSTAT_DATA_UINT32, 0 },
13978 		{ "fragOKs",		KSTAT_DATA_UINT32, 0 },
13979 		{ "fragFails",		KSTAT_DATA_UINT32, 0 },
13980 		{ "fragCreates",	KSTAT_DATA_UINT32, 0 },
13981 		{ "addrEntrySize",	KSTAT_DATA_INT32, 0 },
13982 		{ "routeEntrySize",	KSTAT_DATA_INT32, 0 },
13983 		{ "netToMediaEntrySize",	KSTAT_DATA_INT32, 0 },
13984 		{ "routingDiscards",	KSTAT_DATA_UINT32, 0 },
13985 		{ "inErrs",		KSTAT_DATA_UINT32, 0 },
13986 		{ "noPorts",		KSTAT_DATA_UINT32, 0 },
13987 		{ "inCksumErrs",	KSTAT_DATA_UINT32, 0 },
13988 		{ "reasmDuplicates",	KSTAT_DATA_UINT32, 0 },
13989 		{ "reasmPartDups",	KSTAT_DATA_UINT32, 0 },
13990 		{ "forwProhibits",	KSTAT_DATA_UINT32, 0 },
13991 		{ "udpInCksumErrs",	KSTAT_DATA_UINT32, 0 },
13992 		{ "udpInOverflows",	KSTAT_DATA_UINT32, 0 },
13993 		{ "rawipInOverflows",	KSTAT_DATA_UINT32, 0 },
13994 		{ "ipsecInSucceeded",	KSTAT_DATA_UINT32, 0 },
13995 		{ "ipsecInFailed",	KSTAT_DATA_INT32, 0 },
13996 		{ "memberEntrySize",	KSTAT_DATA_INT32, 0 },
13997 		{ "inIPv6",		KSTAT_DATA_UINT32, 0 },
13998 		{ "outIPv6",		KSTAT_DATA_UINT32, 0 },
13999 		{ "outSwitchIPv6",	KSTAT_DATA_UINT32, 0 },
14000 	};
14001 
14002 	ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED,
14003 	    NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid);
14004 	if (ksp == NULL || ksp->ks_data == NULL)
14005 		return (NULL);
14006 
14007 	template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2;
14008 	template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl;
14009 	template.reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout;
14010 	template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t);
14011 	template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t);
14012 
14013 	template.netToMediaEntrySize.value.i32 =
14014 	    sizeof (mib2_ipNetToMediaEntry_t);
14015 
14016 	template.memberEntrySize.value.i32 = sizeof (ipv6_member_t);
14017 
14018 	bcopy(&template, ksp->ks_data, sizeof (template));
14019 	ksp->ks_update = ip_kstat_update;
14020 	ksp->ks_private = (void *)(uintptr_t)stackid;
14021 
14022 	kstat_install(ksp);
14023 	return (ksp);
14024 }
14025 
14026 static void
14027 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp)
14028 {
14029 	if (ksp != NULL) {
14030 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
14031 		kstat_delete_netstack(ksp, stackid);
14032 	}
14033 }
14034 
14035 static int
14036 ip_kstat_update(kstat_t *kp, int rw)
14037 {
14038 	ip_named_kstat_t *ipkp;
14039 	mib2_ipIfStatsEntry_t ipmib;
14040 	ill_walk_context_t ctx;
14041 	ill_t *ill;
14042 	netstackid_t	stackid = (zoneid_t)(uintptr_t)kp->ks_private;
14043 	netstack_t	*ns;
14044 	ip_stack_t	*ipst;
14045 
14046 	if (kp == NULL || kp->ks_data == NULL)
14047 		return (EIO);
14048 
14049 	if (rw == KSTAT_WRITE)
14050 		return (EACCES);
14051 
14052 	ns = netstack_find_by_stackid(stackid);
14053 	if (ns == NULL)
14054 		return (-1);
14055 	ipst = ns->netstack_ip;
14056 	if (ipst == NULL) {
14057 		netstack_rele(ns);
14058 		return (-1);
14059 	}
14060 	ipkp = (ip_named_kstat_t *)kp->ks_data;
14061 
14062 	bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib));
14063 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
14064 	ill = ILL_START_WALK_V4(&ctx, ipst);
14065 	for (; ill != NULL; ill = ill_next(&ctx, ill))
14066 		ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib);
14067 	rw_exit(&ipst->ips_ill_g_lock);
14068 
14069 	ipkp->forwarding.value.ui32 =		ipmib.ipIfStatsForwarding;
14070 	ipkp->defaultTTL.value.ui32 =		ipmib.ipIfStatsDefaultTTL;
14071 	ipkp->inReceives.value.ui64 =		ipmib.ipIfStatsHCInReceives;
14072 	ipkp->inHdrErrors.value.ui32 =		ipmib.ipIfStatsInHdrErrors;
14073 	ipkp->inAddrErrors.value.ui32 =		ipmib.ipIfStatsInAddrErrors;
14074 	ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams;
14075 	ipkp->inUnknownProtos.value.ui32 =	ipmib.ipIfStatsInUnknownProtos;
14076 	ipkp->inDiscards.value.ui32 =		ipmib.ipIfStatsInDiscards;
14077 	ipkp->inDelivers.value.ui64 =		ipmib.ipIfStatsHCInDelivers;
14078 	ipkp->outRequests.value.ui64 =		ipmib.ipIfStatsHCOutRequests;
14079 	ipkp->outDiscards.value.ui32 =		ipmib.ipIfStatsOutDiscards;
14080 	ipkp->outNoRoutes.value.ui32 =		ipmib.ipIfStatsOutNoRoutes;
14081 	ipkp->reasmTimeout.value.ui32 =		ipst->ips_ip_reassembly_timeout;
14082 	ipkp->reasmReqds.value.ui32 =		ipmib.ipIfStatsReasmReqds;
14083 	ipkp->reasmOKs.value.ui32 =		ipmib.ipIfStatsReasmOKs;
14084 	ipkp->reasmFails.value.ui32 =		ipmib.ipIfStatsReasmFails;
14085 	ipkp->fragOKs.value.ui32 =		ipmib.ipIfStatsOutFragOKs;
14086 	ipkp->fragFails.value.ui32 =		ipmib.ipIfStatsOutFragFails;
14087 	ipkp->fragCreates.value.ui32 =		ipmib.ipIfStatsOutFragCreates;
14088 
14089 	ipkp->routingDiscards.value.ui32 =	0;
14090 	ipkp->inErrs.value.ui32 =		ipmib.tcpIfStatsInErrs;
14091 	ipkp->noPorts.value.ui32 =		ipmib.udpIfStatsNoPorts;
14092 	ipkp->inCksumErrs.value.ui32 =		ipmib.ipIfStatsInCksumErrs;
14093 	ipkp->reasmDuplicates.value.ui32 =	ipmib.ipIfStatsReasmDuplicates;
14094 	ipkp->reasmPartDups.value.ui32 =	ipmib.ipIfStatsReasmPartDups;
14095 	ipkp->forwProhibits.value.ui32 =	ipmib.ipIfStatsForwProhibits;
14096 	ipkp->udpInCksumErrs.value.ui32 =	ipmib.udpIfStatsInCksumErrs;
14097 	ipkp->udpInOverflows.value.ui32 =	ipmib.udpIfStatsInOverflows;
14098 	ipkp->rawipInOverflows.value.ui32 =	ipmib.rawipIfStatsInOverflows;
14099 	ipkp->ipsecInSucceeded.value.ui32 =	ipmib.ipsecIfStatsInSucceeded;
14100 	ipkp->ipsecInFailed.value.i32 =		ipmib.ipsecIfStatsInFailed;
14101 
14102 	ipkp->inIPv6.value.ui32 =	ipmib.ipIfStatsInWrongIPVersion;
14103 	ipkp->outIPv6.value.ui32 =	ipmib.ipIfStatsOutWrongIPVersion;
14104 	ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion;
14105 
14106 	netstack_rele(ns);
14107 
14108 	return (0);
14109 }
14110 
14111 static void *
14112 icmp_kstat_init(netstackid_t stackid)
14113 {
14114 	kstat_t	*ksp;
14115 
14116 	icmp_named_kstat_t template = {
14117 		{ "inMsgs",		KSTAT_DATA_UINT32 },
14118 		{ "inErrors",		KSTAT_DATA_UINT32 },
14119 		{ "inDestUnreachs",	KSTAT_DATA_UINT32 },
14120 		{ "inTimeExcds",	KSTAT_DATA_UINT32 },
14121 		{ "inParmProbs",	KSTAT_DATA_UINT32 },
14122 		{ "inSrcQuenchs",	KSTAT_DATA_UINT32 },
14123 		{ "inRedirects",	KSTAT_DATA_UINT32 },
14124 		{ "inEchos",		KSTAT_DATA_UINT32 },
14125 		{ "inEchoReps",		KSTAT_DATA_UINT32 },
14126 		{ "inTimestamps",	KSTAT_DATA_UINT32 },
14127 		{ "inTimestampReps",	KSTAT_DATA_UINT32 },
14128 		{ "inAddrMasks",	KSTAT_DATA_UINT32 },
14129 		{ "inAddrMaskReps",	KSTAT_DATA_UINT32 },
14130 		{ "outMsgs",		KSTAT_DATA_UINT32 },
14131 		{ "outErrors",		KSTAT_DATA_UINT32 },
14132 		{ "outDestUnreachs",	KSTAT_DATA_UINT32 },
14133 		{ "outTimeExcds",	KSTAT_DATA_UINT32 },
14134 		{ "outParmProbs",	KSTAT_DATA_UINT32 },
14135 		{ "outSrcQuenchs",	KSTAT_DATA_UINT32 },
14136 		{ "outRedirects",	KSTAT_DATA_UINT32 },
14137 		{ "outEchos",		KSTAT_DATA_UINT32 },
14138 		{ "outEchoReps",	KSTAT_DATA_UINT32 },
14139 		{ "outTimestamps",	KSTAT_DATA_UINT32 },
14140 		{ "outTimestampReps",	KSTAT_DATA_UINT32 },
14141 		{ "outAddrMasks",	KSTAT_DATA_UINT32 },
14142 		{ "outAddrMaskReps",	KSTAT_DATA_UINT32 },
14143 		{ "inChksumErrs",	KSTAT_DATA_UINT32 },
14144 		{ "inUnknowns",		KSTAT_DATA_UINT32 },
14145 		{ "inFragNeeded",	KSTAT_DATA_UINT32 },
14146 		{ "outFragNeeded",	KSTAT_DATA_UINT32 },
14147 		{ "outDrops",		KSTAT_DATA_UINT32 },
14148 		{ "inOverFlows",	KSTAT_DATA_UINT32 },
14149 		{ "inBadRedirects",	KSTAT_DATA_UINT32 },
14150 	};
14151 
14152 	ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED,
14153 	    NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid);
14154 	if (ksp == NULL || ksp->ks_data == NULL)
14155 		return (NULL);
14156 
14157 	bcopy(&template, ksp->ks_data, sizeof (template));
14158 
14159 	ksp->ks_update = icmp_kstat_update;
14160 	ksp->ks_private = (void *)(uintptr_t)stackid;
14161 
14162 	kstat_install(ksp);
14163 	return (ksp);
14164 }
14165 
14166 static void
14167 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp)
14168 {
14169 	if (ksp != NULL) {
14170 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
14171 		kstat_delete_netstack(ksp, stackid);
14172 	}
14173 }
14174 
14175 static int
14176 icmp_kstat_update(kstat_t *kp, int rw)
14177 {
14178 	icmp_named_kstat_t *icmpkp;
14179 	netstackid_t	stackid = (zoneid_t)(uintptr_t)kp->ks_private;
14180 	netstack_t	*ns;
14181 	ip_stack_t	*ipst;
14182 
14183 	if ((kp == NULL) || (kp->ks_data == NULL))
14184 		return (EIO);
14185 
14186 	if (rw == KSTAT_WRITE)
14187 		return (EACCES);
14188 
14189 	ns = netstack_find_by_stackid(stackid);
14190 	if (ns == NULL)
14191 		return (-1);
14192 	ipst = ns->netstack_ip;
14193 	if (ipst == NULL) {
14194 		netstack_rele(ns);
14195 		return (-1);
14196 	}
14197 	icmpkp = (icmp_named_kstat_t *)kp->ks_data;
14198 
14199 	icmpkp->inMsgs.value.ui32 =	    ipst->ips_icmp_mib.icmpInMsgs;
14200 	icmpkp->inErrors.value.ui32 =	    ipst->ips_icmp_mib.icmpInErrors;
14201 	icmpkp->inDestUnreachs.value.ui32 =
14202 	    ipst->ips_icmp_mib.icmpInDestUnreachs;
14203 	icmpkp->inTimeExcds.value.ui32 =    ipst->ips_icmp_mib.icmpInTimeExcds;
14204 	icmpkp->inParmProbs.value.ui32 =    ipst->ips_icmp_mib.icmpInParmProbs;
14205 	icmpkp->inSrcQuenchs.value.ui32 =   ipst->ips_icmp_mib.icmpInSrcQuenchs;
14206 	icmpkp->inRedirects.value.ui32 =    ipst->ips_icmp_mib.icmpInRedirects;
14207 	icmpkp->inEchos.value.ui32 =	    ipst->ips_icmp_mib.icmpInEchos;
14208 	icmpkp->inEchoReps.value.ui32 =	    ipst->ips_icmp_mib.icmpInEchoReps;
14209 	icmpkp->inTimestamps.value.ui32 =   ipst->ips_icmp_mib.icmpInTimestamps;
14210 	icmpkp->inTimestampReps.value.ui32 =
14211 	    ipst->ips_icmp_mib.icmpInTimestampReps;
14212 	icmpkp->inAddrMasks.value.ui32 =    ipst->ips_icmp_mib.icmpInAddrMasks;
14213 	icmpkp->inAddrMaskReps.value.ui32 =
14214 	    ipst->ips_icmp_mib.icmpInAddrMaskReps;
14215 	icmpkp->outMsgs.value.ui32 =	    ipst->ips_icmp_mib.icmpOutMsgs;
14216 	icmpkp->outErrors.value.ui32 =	    ipst->ips_icmp_mib.icmpOutErrors;
14217 	icmpkp->outDestUnreachs.value.ui32 =
14218 	    ipst->ips_icmp_mib.icmpOutDestUnreachs;
14219 	icmpkp->outTimeExcds.value.ui32 =   ipst->ips_icmp_mib.icmpOutTimeExcds;
14220 	icmpkp->outParmProbs.value.ui32 =   ipst->ips_icmp_mib.icmpOutParmProbs;
14221 	icmpkp->outSrcQuenchs.value.ui32 =
14222 	    ipst->ips_icmp_mib.icmpOutSrcQuenchs;
14223 	icmpkp->outRedirects.value.ui32 =   ipst->ips_icmp_mib.icmpOutRedirects;
14224 	icmpkp->outEchos.value.ui32 =	    ipst->ips_icmp_mib.icmpOutEchos;
14225 	icmpkp->outEchoReps.value.ui32 =    ipst->ips_icmp_mib.icmpOutEchoReps;
14226 	icmpkp->outTimestamps.value.ui32 =
14227 	    ipst->ips_icmp_mib.icmpOutTimestamps;
14228 	icmpkp->outTimestampReps.value.ui32 =
14229 	    ipst->ips_icmp_mib.icmpOutTimestampReps;
14230 	icmpkp->outAddrMasks.value.ui32 =
14231 	    ipst->ips_icmp_mib.icmpOutAddrMasks;
14232 	icmpkp->outAddrMaskReps.value.ui32 =
14233 	    ipst->ips_icmp_mib.icmpOutAddrMaskReps;
14234 	icmpkp->inCksumErrs.value.ui32 =    ipst->ips_icmp_mib.icmpInCksumErrs;
14235 	icmpkp->inUnknowns.value.ui32 =	    ipst->ips_icmp_mib.icmpInUnknowns;
14236 	icmpkp->inFragNeeded.value.ui32 =   ipst->ips_icmp_mib.icmpInFragNeeded;
14237 	icmpkp->outFragNeeded.value.ui32 =
14238 	    ipst->ips_icmp_mib.icmpOutFragNeeded;
14239 	icmpkp->outDrops.value.ui32 =	    ipst->ips_icmp_mib.icmpOutDrops;
14240 	icmpkp->inOverflows.value.ui32 =    ipst->ips_icmp_mib.icmpInOverflows;
14241 	icmpkp->inBadRedirects.value.ui32 =
14242 	    ipst->ips_icmp_mib.icmpInBadRedirects;
14243 
14244 	netstack_rele(ns);
14245 	return (0);
14246 }
14247 
14248 /*
14249  * This is the fanout function for raw socket opened for SCTP.  Note
14250  * that it is called after SCTP checks that there is no socket which
14251  * wants a packet.  Then before SCTP handles this out of the blue packet,
14252  * this function is called to see if there is any raw socket for SCTP.
14253  * If there is and it is bound to the correct address, the packet will
14254  * be sent to that socket.  Note that only one raw socket can be bound to
14255  * a port.  This is assured in ipcl_sctp_hash_insert();
14256  */
14257 void
14258 ip_fanout_sctp_raw(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, uint32_t ports,
14259     ip_recv_attr_t *ira)
14260 {
14261 	conn_t		*connp;
14262 	queue_t		*rq;
14263 	boolean_t	secure;
14264 	ill_t		*ill = ira->ira_ill;
14265 	ip_stack_t	*ipst = ill->ill_ipst;
14266 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
14267 	sctp_stack_t	*sctps = ipst->ips_netstack->netstack_sctp;
14268 	iaflags_t	iraflags = ira->ira_flags;
14269 	ill_t		*rill = ira->ira_rill;
14270 
14271 	secure = iraflags & IRAF_IPSEC_SECURE;
14272 
14273 	connp = ipcl_classify_raw(mp, IPPROTO_SCTP, ports, ipha, ip6h,
14274 	    ira, ipst);
14275 	if (connp == NULL) {
14276 		/*
14277 		 * Although raw sctp is not summed, OOB chunks must be.
14278 		 * Drop the packet here if the sctp checksum failed.
14279 		 */
14280 		if (iraflags & IRAF_SCTP_CSUM_ERR) {
14281 			SCTPS_BUMP_MIB(sctps, sctpChecksumError);
14282 			freemsg(mp);
14283 			return;
14284 		}
14285 		ira->ira_ill = ira->ira_rill = NULL;
14286 		sctp_ootb_input(mp, ira, ipst);
14287 		ira->ira_ill = ill;
14288 		ira->ira_rill = rill;
14289 		return;
14290 	}
14291 	rq = connp->conn_rq;
14292 	if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) {
14293 		CONN_DEC_REF(connp);
14294 		BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows);
14295 		freemsg(mp);
14296 		return;
14297 	}
14298 	if (((iraflags & IRAF_IS_IPV4) ?
14299 	    CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
14300 	    CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
14301 	    secure) {
14302 		mp = ipsec_check_inbound_policy(mp, connp, ipha,
14303 		    ip6h, ira);
14304 		if (mp == NULL) {
14305 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
14306 			/* Note that mp is NULL */
14307 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
14308 			CONN_DEC_REF(connp);
14309 			return;
14310 		}
14311 	}
14312 
14313 	if (iraflags & IRAF_ICMP_ERROR) {
14314 		(connp->conn_recvicmp)(connp, mp, NULL, ira);
14315 	} else {
14316 		ill_t *rill = ira->ira_rill;
14317 
14318 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
14319 		/* This is the SOCK_RAW, IPPROTO_SCTP case. */
14320 		ira->ira_ill = ira->ira_rill = NULL;
14321 		(connp->conn_recv)(connp, mp, NULL, ira);
14322 		ira->ira_ill = ill;
14323 		ira->ira_rill = rill;
14324 	}
14325 	CONN_DEC_REF(connp);
14326 }
14327 
14328 /*
14329  * Free a packet that has the link-layer dl_unitdata_req_t or fast-path
14330  * header before the ip payload.
14331  */
14332 static void
14333 ip_xmit_flowctl_drop(ill_t *ill, mblk_t *mp, boolean_t is_fp_mp, int fp_mp_len)
14334 {
14335 	int len = (mp->b_wptr - mp->b_rptr);
14336 	mblk_t *ip_mp;
14337 
14338 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
14339 	if (is_fp_mp || len != fp_mp_len) {
14340 		if (len > fp_mp_len) {
14341 			/*
14342 			 * fastpath header and ip header in the first mblk
14343 			 */
14344 			mp->b_rptr += fp_mp_len;
14345 		} else {
14346 			/*
14347 			 * ip_xmit_attach_llhdr had to prepend an mblk to
14348 			 * attach the fastpath header before ip header.
14349 			 */
14350 			ip_mp = mp->b_cont;
14351 			freeb(mp);
14352 			mp = ip_mp;
14353 			mp->b_rptr += (fp_mp_len - len);
14354 		}
14355 	} else {
14356 		ip_mp = mp->b_cont;
14357 		freeb(mp);
14358 		mp = ip_mp;
14359 	}
14360 	ip_drop_output("ipIfStatsOutDiscards - flow ctl", mp, ill);
14361 	freemsg(mp);
14362 }
14363 
14364 /*
14365  * Normal post fragmentation function.
14366  *
14367  * Send a packet using the passed in nce. This handles both IPv4 and IPv6
14368  * using the same state machine.
14369  *
14370  * We return an error on failure. In particular we return EWOULDBLOCK
14371  * when the driver flow controls. In that case this ensures that ip_wsrv runs
14372  * (currently by canputnext failure resulting in backenabling from GLD.)
14373  * This allows the callers of conn_ip_output() to use EWOULDBLOCK as an
14374  * indication that they can flow control until ip_wsrv() tells then to restart.
14375  *
14376  * If the nce passed by caller is incomplete, this function
14377  * queues the packet and if necessary, sends ARP request and bails.
14378  * If the Neighbor Cache passed is fully resolved, we simply prepend
14379  * the link-layer header to the packet, do ipsec hw acceleration
14380  * work if necessary, and send the packet out on the wire.
14381  */
14382 /* ARGSUSED6 */
14383 int
14384 ip_xmit(mblk_t *mp, nce_t *nce, iaflags_t ixaflags, uint_t pkt_len,
14385     uint32_t xmit_hint, zoneid_t szone, zoneid_t nolzid, uintptr_t *ixacookie)
14386 {
14387 	queue_t		*wq;
14388 	ill_t		*ill = nce->nce_ill;
14389 	ip_stack_t	*ipst = ill->ill_ipst;
14390 	uint64_t	delta;
14391 	boolean_t	isv6 = ill->ill_isv6;
14392 	boolean_t	fp_mp;
14393 	ncec_t		*ncec = nce->nce_common;
14394 	int64_t		now = LBOLT_FASTPATH64;
14395 	boolean_t	is_probe;
14396 
14397 	DTRACE_PROBE1(ip__xmit, nce_t *, nce);
14398 
14399 	ASSERT(mp != NULL);
14400 	ASSERT(mp->b_datap->db_type == M_DATA);
14401 	ASSERT(pkt_len == msgdsize(mp));
14402 
14403 	/*
14404 	 * If we have already been here and are coming back after ARP/ND.
14405 	 * the IXAF_NO_TRACE flag is set. We skip FW_HOOKS, DTRACE and ipobs
14406 	 * in that case since they have seen the packet when it came here
14407 	 * the first time.
14408 	 */
14409 	if (ixaflags & IXAF_NO_TRACE)
14410 		goto sendit;
14411 
14412 	if (ixaflags & IXAF_IS_IPV4) {
14413 		ipha_t *ipha = (ipha_t *)mp->b_rptr;
14414 
14415 		ASSERT(!isv6);
14416 		ASSERT(pkt_len == ntohs(((ipha_t *)mp->b_rptr)->ipha_length));
14417 		if (HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) &&
14418 		    !(ixaflags & IXAF_NO_PFHOOK)) {
14419 			int	error;
14420 
14421 			FW_HOOKS(ipst->ips_ip4_physical_out_event,
14422 			    ipst->ips_ipv4firewall_physical_out,
14423 			    NULL, ill, ipha, mp, mp, 0, ipst, error);
14424 			DTRACE_PROBE1(ip4__physical__out__end,
14425 			    mblk_t *, mp);
14426 			if (mp == NULL)
14427 				return (error);
14428 
14429 			/* The length could have changed */
14430 			pkt_len = msgdsize(mp);
14431 		}
14432 		if (ipst->ips_ip4_observe.he_interested) {
14433 			/*
14434 			 * Note that for TX the zoneid is the sending
14435 			 * zone, whether or not MLP is in play.
14436 			 * Since the szone argument is the IP zoneid (i.e.,
14437 			 * zero for exclusive-IP zones) and ipobs wants
14438 			 * the system zoneid, we map it here.
14439 			 */
14440 			szone = IP_REAL_ZONEID(szone, ipst);
14441 
14442 			/*
14443 			 * On the outbound path the destination zone will be
14444 			 * unknown as we're sending this packet out on the
14445 			 * wire.
14446 			 */
14447 			ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES,
14448 			    ill, ipst);
14449 		}
14450 		DTRACE_IP7(send, mblk_t *, mp,  conn_t *, NULL,
14451 		    void_ip_t *, ipha,  __dtrace_ipsr_ill_t *, ill,
14452 		    ipha_t *, ipha, ip6_t *, NULL, int, 0);
14453 	} else {
14454 		ip6_t *ip6h = (ip6_t *)mp->b_rptr;
14455 
14456 		ASSERT(isv6);
14457 		ASSERT(pkt_len ==
14458 		    ntohs(((ip6_t *)mp->b_rptr)->ip6_plen) + IPV6_HDR_LEN);
14459 		if (HOOKS6_INTERESTED_PHYSICAL_OUT(ipst) &&
14460 		    !(ixaflags & IXAF_NO_PFHOOK)) {
14461 			int	error;
14462 
14463 			FW_HOOKS6(ipst->ips_ip6_physical_out_event,
14464 			    ipst->ips_ipv6firewall_physical_out,
14465 			    NULL, ill, ip6h, mp, mp, 0, ipst, error);
14466 			DTRACE_PROBE1(ip6__physical__out__end,
14467 			    mblk_t *, mp);
14468 			if (mp == NULL)
14469 				return (error);
14470 
14471 			/* The length could have changed */
14472 			pkt_len = msgdsize(mp);
14473 		}
14474 		if (ipst->ips_ip6_observe.he_interested) {
14475 			/* See above */
14476 			szone = IP_REAL_ZONEID(szone, ipst);
14477 
14478 			ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES,
14479 			    ill, ipst);
14480 		}
14481 		DTRACE_IP7(send, mblk_t *, mp,  conn_t *, NULL,
14482 		    void_ip_t *, ip6h,  __dtrace_ipsr_ill_t *, ill,
14483 		    ipha_t *, NULL, ip6_t *, ip6h, int, 0);
14484 	}
14485 
14486 sendit:
14487 	/*
14488 	 * We check the state without a lock because the state can never
14489 	 * move "backwards" to initial or incomplete.
14490 	 */
14491 	switch (ncec->ncec_state) {
14492 	case ND_REACHABLE:
14493 	case ND_STALE:
14494 	case ND_DELAY:
14495 	case ND_PROBE:
14496 		mp = ip_xmit_attach_llhdr(mp, nce);
14497 		if (mp == NULL) {
14498 			/*
14499 			 * ip_xmit_attach_llhdr has increased
14500 			 * ipIfStatsOutDiscards and called ip_drop_output()
14501 			 */
14502 			return (ENOBUFS);
14503 		}
14504 		/*
14505 		 * check if nce_fastpath completed and we tagged on a
14506 		 * copy of nce_fp_mp in ip_xmit_attach_llhdr().
14507 		 */
14508 		fp_mp = (mp->b_datap->db_type == M_DATA);
14509 
14510 		if (fp_mp &&
14511 		    (ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT)) {
14512 			ill_dld_direct_t *idd;
14513 
14514 			idd = &ill->ill_dld_capab->idc_direct;
14515 			/*
14516 			 * Send the packet directly to DLD, where it
14517 			 * may be queued depending on the availability
14518 			 * of transmit resources at the media layer.
14519 			 * Return value should be taken into
14520 			 * account and flow control the TCP.
14521 			 */
14522 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
14523 			UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
14524 			    pkt_len);
14525 
14526 			if (ixaflags & IXAF_NO_DEV_FLOW_CTL) {
14527 				(void) idd->idd_tx_df(idd->idd_tx_dh, mp,
14528 				    (uintptr_t)xmit_hint, IP_DROP_ON_NO_DESC);
14529 			} else {
14530 				uintptr_t cookie;
14531 
14532 				if ((cookie = idd->idd_tx_df(idd->idd_tx_dh,
14533 				    mp, (uintptr_t)xmit_hint, 0)) != 0) {
14534 					if (ixacookie != NULL)
14535 						*ixacookie = cookie;
14536 					return (EWOULDBLOCK);
14537 				}
14538 			}
14539 		} else {
14540 			wq = ill->ill_wq;
14541 
14542 			if (!(ixaflags & IXAF_NO_DEV_FLOW_CTL) &&
14543 			    !canputnext(wq)) {
14544 				if (ixacookie != NULL)
14545 					*ixacookie = 0;
14546 				ip_xmit_flowctl_drop(ill, mp, fp_mp,
14547 				    nce->nce_fp_mp != NULL ?
14548 				    MBLKL(nce->nce_fp_mp) : 0);
14549 				return (EWOULDBLOCK);
14550 			}
14551 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
14552 			UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
14553 			    pkt_len);
14554 			putnext(wq, mp);
14555 		}
14556 
14557 		/*
14558 		 * The rest of this function implements Neighbor Unreachability
14559 		 * detection. Determine if the ncec is eligible for NUD.
14560 		 */
14561 		if (ncec->ncec_flags & NCE_F_NONUD)
14562 			return (0);
14563 
14564 		ASSERT(ncec->ncec_state != ND_INCOMPLETE);
14565 
14566 		/*
14567 		 * Check for upper layer advice
14568 		 */
14569 		if (ixaflags & IXAF_REACH_CONF) {
14570 			timeout_id_t tid;
14571 
14572 			/*
14573 			 * It should be o.k. to check the state without
14574 			 * a lock here, at most we lose an advice.
14575 			 */
14576 			ncec->ncec_last = TICK_TO_MSEC(now);
14577 			if (ncec->ncec_state != ND_REACHABLE) {
14578 				mutex_enter(&ncec->ncec_lock);
14579 				ncec->ncec_state = ND_REACHABLE;
14580 				tid = ncec->ncec_timeout_id;
14581 				ncec->ncec_timeout_id = 0;
14582 				mutex_exit(&ncec->ncec_lock);
14583 				(void) untimeout(tid);
14584 				if (ip_debug > 2) {
14585 					/* ip1dbg */
14586 					pr_addr_dbg("ip_xmit: state"
14587 					    " for %s changed to"
14588 					    " REACHABLE\n", AF_INET6,
14589 					    &ncec->ncec_addr);
14590 				}
14591 			}
14592 			return (0);
14593 		}
14594 
14595 		delta =  TICK_TO_MSEC(now) - ncec->ncec_last;
14596 		ip1dbg(("ip_xmit: delta = %" PRId64
14597 		    " ill_reachable_time = %d \n", delta,
14598 		    ill->ill_reachable_time));
14599 		if (delta > (uint64_t)ill->ill_reachable_time) {
14600 			mutex_enter(&ncec->ncec_lock);
14601 			switch (ncec->ncec_state) {
14602 			case ND_REACHABLE:
14603 				ASSERT((ncec->ncec_flags & NCE_F_NONUD) == 0);
14604 				/* FALLTHROUGH */
14605 			case ND_STALE:
14606 				/*
14607 				 * ND_REACHABLE is identical to
14608 				 * ND_STALE in this specific case. If
14609 				 * reachable time has expired for this
14610 				 * neighbor (delta is greater than
14611 				 * reachable time), conceptually, the
14612 				 * neighbor cache is no longer in
14613 				 * REACHABLE state, but already in
14614 				 * STALE state.  So the correct
14615 				 * transition here is to ND_DELAY.
14616 				 */
14617 				ncec->ncec_state = ND_DELAY;
14618 				mutex_exit(&ncec->ncec_lock);
14619 				nce_restart_timer(ncec,
14620 				    ipst->ips_delay_first_probe_time);
14621 				if (ip_debug > 3) {
14622 					/* ip2dbg */
14623 					pr_addr_dbg("ip_xmit: state"
14624 					    " for %s changed to"
14625 					    " DELAY\n", AF_INET6,
14626 					    &ncec->ncec_addr);
14627 				}
14628 				break;
14629 			case ND_DELAY:
14630 			case ND_PROBE:
14631 				mutex_exit(&ncec->ncec_lock);
14632 				/* Timers have already started */
14633 				break;
14634 			case ND_UNREACHABLE:
14635 				/*
14636 				 * nce_timer has detected that this ncec
14637 				 * is unreachable and initiated deleting
14638 				 * this ncec.
14639 				 * This is a harmless race where we found the
14640 				 * ncec before it was deleted and have
14641 				 * just sent out a packet using this
14642 				 * unreachable ncec.
14643 				 */
14644 				mutex_exit(&ncec->ncec_lock);
14645 				break;
14646 			default:
14647 				ASSERT(0);
14648 				mutex_exit(&ncec->ncec_lock);
14649 			}
14650 		}
14651 		return (0);
14652 
14653 	case ND_INCOMPLETE:
14654 		/*
14655 		 * the state could have changed since we didn't hold the lock.
14656 		 * Re-verify state under lock.
14657 		 */
14658 		is_probe = ipmp_packet_is_probe(mp, nce->nce_ill);
14659 		mutex_enter(&ncec->ncec_lock);
14660 		if (NCE_ISREACHABLE(ncec)) {
14661 			mutex_exit(&ncec->ncec_lock);
14662 			goto sendit;
14663 		}
14664 		/* queue the packet */
14665 		nce_queue_mp(ncec, mp, is_probe);
14666 		mutex_exit(&ncec->ncec_lock);
14667 		DTRACE_PROBE2(ip__xmit__incomplete,
14668 		    (ncec_t *), ncec, (mblk_t *), mp);
14669 		return (0);
14670 
14671 	case ND_INITIAL:
14672 		/*
14673 		 * State could have changed since we didn't hold the lock, so
14674 		 * re-verify state.
14675 		 */
14676 		is_probe = ipmp_packet_is_probe(mp, nce->nce_ill);
14677 		mutex_enter(&ncec->ncec_lock);
14678 		if (NCE_ISREACHABLE(ncec))  {
14679 			mutex_exit(&ncec->ncec_lock);
14680 			goto sendit;
14681 		}
14682 		nce_queue_mp(ncec, mp, is_probe);
14683 		if (ncec->ncec_state == ND_INITIAL) {
14684 			ncec->ncec_state = ND_INCOMPLETE;
14685 			mutex_exit(&ncec->ncec_lock);
14686 			/*
14687 			 * figure out the source we want to use
14688 			 * and resolve it.
14689 			 */
14690 			ip_ndp_resolve(ncec);
14691 		} else  {
14692 			mutex_exit(&ncec->ncec_lock);
14693 		}
14694 		return (0);
14695 
14696 	case ND_UNREACHABLE:
14697 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
14698 		ip_drop_output("ipIfStatsOutDiscards - ND_UNREACHABLE",
14699 		    mp, ill);
14700 		freemsg(mp);
14701 		return (0);
14702 
14703 	default:
14704 		ASSERT(0);
14705 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
14706 		ip_drop_output("ipIfStatsOutDiscards - ND_other",
14707 		    mp, ill);
14708 		freemsg(mp);
14709 		return (ENETUNREACH);
14710 	}
14711 }
14712 
14713 /*
14714  * Return B_TRUE if the buffers differ in length or content.
14715  * This is used for comparing extension header buffers.
14716  * Note that an extension header would be declared different
14717  * even if all that changed was the next header value in that header i.e.
14718  * what really changed is the next extension header.
14719  */
14720 boolean_t
14721 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf,
14722     uint_t blen)
14723 {
14724 	if (!b_valid)
14725 		blen = 0;
14726 
14727 	if (alen != blen)
14728 		return (B_TRUE);
14729 	if (alen == 0)
14730 		return (B_FALSE);	/* Both zero length */
14731 	return (bcmp(abuf, bbuf, alen));
14732 }
14733 
14734 /*
14735  * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok.
14736  * Return B_FALSE if memory allocation fails - don't change any state!
14737  */
14738 boolean_t
14739 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid,
14740     const void *src, uint_t srclen)
14741 {
14742 	void *dst;
14743 
14744 	if (!src_valid)
14745 		srclen = 0;
14746 
14747 	ASSERT(*dstlenp == 0);
14748 	if (src != NULL && srclen != 0) {
14749 		dst = mi_alloc(srclen, BPRI_MED);
14750 		if (dst == NULL)
14751 			return (B_FALSE);
14752 	} else {
14753 		dst = NULL;
14754 	}
14755 	if (*dstp != NULL)
14756 		mi_free(*dstp);
14757 	*dstp = dst;
14758 	*dstlenp = dst == NULL ? 0 : srclen;
14759 	return (B_TRUE);
14760 }
14761 
14762 /*
14763  * Replace what is in *dst, *dstlen with the source.
14764  * Assumes ip_allocbuf has already been called.
14765  */
14766 void
14767 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid,
14768     const void *src, uint_t srclen)
14769 {
14770 	if (!src_valid)
14771 		srclen = 0;
14772 
14773 	ASSERT(*dstlenp == srclen);
14774 	if (src != NULL && srclen != 0)
14775 		bcopy(src, *dstp, srclen);
14776 }
14777 
14778 /*
14779  * Free the storage pointed to by the members of an ip_pkt_t.
14780  */
14781 void
14782 ip_pkt_free(ip_pkt_t *ipp)
14783 {
14784 	uint_t	fields = ipp->ipp_fields;
14785 
14786 	if (fields & IPPF_HOPOPTS) {
14787 		kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen);
14788 		ipp->ipp_hopopts = NULL;
14789 		ipp->ipp_hopoptslen = 0;
14790 	}
14791 	if (fields & IPPF_RTHDRDSTOPTS) {
14792 		kmem_free(ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen);
14793 		ipp->ipp_rthdrdstopts = NULL;
14794 		ipp->ipp_rthdrdstoptslen = 0;
14795 	}
14796 	if (fields & IPPF_DSTOPTS) {
14797 		kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen);
14798 		ipp->ipp_dstopts = NULL;
14799 		ipp->ipp_dstoptslen = 0;
14800 	}
14801 	if (fields & IPPF_RTHDR) {
14802 		kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen);
14803 		ipp->ipp_rthdr = NULL;
14804 		ipp->ipp_rthdrlen = 0;
14805 	}
14806 	if (fields & IPPF_IPV4_OPTIONS) {
14807 		kmem_free(ipp->ipp_ipv4_options, ipp->ipp_ipv4_options_len);
14808 		ipp->ipp_ipv4_options = NULL;
14809 		ipp->ipp_ipv4_options_len = 0;
14810 	}
14811 	if (fields & IPPF_LABEL_V4) {
14812 		kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
14813 		ipp->ipp_label_v4 = NULL;
14814 		ipp->ipp_label_len_v4 = 0;
14815 	}
14816 	if (fields & IPPF_LABEL_V6) {
14817 		kmem_free(ipp->ipp_label_v6, ipp->ipp_label_len_v6);
14818 		ipp->ipp_label_v6 = NULL;
14819 		ipp->ipp_label_len_v6 = 0;
14820 	}
14821 	ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
14822 	    IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6);
14823 }
14824 
14825 /*
14826  * Copy from src to dst and allocate as needed.
14827  * Returns zero or ENOMEM.
14828  *
14829  * The caller must initialize dst to zero.
14830  */
14831 int
14832 ip_pkt_copy(ip_pkt_t *src, ip_pkt_t *dst, int kmflag)
14833 {
14834 	uint_t	fields = src->ipp_fields;
14835 
14836 	/* Start with fields that don't require memory allocation */
14837 	dst->ipp_fields = fields &
14838 	    ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
14839 	    IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6);
14840 
14841 	dst->ipp_addr = src->ipp_addr;
14842 	dst->ipp_unicast_hops = src->ipp_unicast_hops;
14843 	dst->ipp_hoplimit = src->ipp_hoplimit;
14844 	dst->ipp_tclass = src->ipp_tclass;
14845 	dst->ipp_type_of_service = src->ipp_type_of_service;
14846 
14847 	if (!(fields & (IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
14848 	    IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6)))
14849 		return (0);
14850 
14851 	if (fields & IPPF_HOPOPTS) {
14852 		dst->ipp_hopopts = kmem_alloc(src->ipp_hopoptslen, kmflag);
14853 		if (dst->ipp_hopopts == NULL) {
14854 			ip_pkt_free(dst);
14855 			return (ENOMEM);
14856 		}
14857 		dst->ipp_fields |= IPPF_HOPOPTS;
14858 		bcopy(src->ipp_hopopts, dst->ipp_hopopts,
14859 		    src->ipp_hopoptslen);
14860 		dst->ipp_hopoptslen = src->ipp_hopoptslen;
14861 	}
14862 	if (fields & IPPF_RTHDRDSTOPTS) {
14863 		dst->ipp_rthdrdstopts = kmem_alloc(src->ipp_rthdrdstoptslen,
14864 		    kmflag);
14865 		if (dst->ipp_rthdrdstopts == NULL) {
14866 			ip_pkt_free(dst);
14867 			return (ENOMEM);
14868 		}
14869 		dst->ipp_fields |= IPPF_RTHDRDSTOPTS;
14870 		bcopy(src->ipp_rthdrdstopts, dst->ipp_rthdrdstopts,
14871 		    src->ipp_rthdrdstoptslen);
14872 		dst->ipp_rthdrdstoptslen = src->ipp_rthdrdstoptslen;
14873 	}
14874 	if (fields & IPPF_DSTOPTS) {
14875 		dst->ipp_dstopts = kmem_alloc(src->ipp_dstoptslen, kmflag);
14876 		if (dst->ipp_dstopts == NULL) {
14877 			ip_pkt_free(dst);
14878 			return (ENOMEM);
14879 		}
14880 		dst->ipp_fields |= IPPF_DSTOPTS;
14881 		bcopy(src->ipp_dstopts, dst->ipp_dstopts,
14882 		    src->ipp_dstoptslen);
14883 		dst->ipp_dstoptslen = src->ipp_dstoptslen;
14884 	}
14885 	if (fields & IPPF_RTHDR) {
14886 		dst->ipp_rthdr = kmem_alloc(src->ipp_rthdrlen, kmflag);
14887 		if (dst->ipp_rthdr == NULL) {
14888 			ip_pkt_free(dst);
14889 			return (ENOMEM);
14890 		}
14891 		dst->ipp_fields |= IPPF_RTHDR;
14892 		bcopy(src->ipp_rthdr, dst->ipp_rthdr,
14893 		    src->ipp_rthdrlen);
14894 		dst->ipp_rthdrlen = src->ipp_rthdrlen;
14895 	}
14896 	if (fields & IPPF_IPV4_OPTIONS) {
14897 		dst->ipp_ipv4_options = kmem_alloc(src->ipp_ipv4_options_len,
14898 		    kmflag);
14899 		if (dst->ipp_ipv4_options == NULL) {
14900 			ip_pkt_free(dst);
14901 			return (ENOMEM);
14902 		}
14903 		dst->ipp_fields |= IPPF_IPV4_OPTIONS;
14904 		bcopy(src->ipp_ipv4_options, dst->ipp_ipv4_options,
14905 		    src->ipp_ipv4_options_len);
14906 		dst->ipp_ipv4_options_len = src->ipp_ipv4_options_len;
14907 	}
14908 	if (fields & IPPF_LABEL_V4) {
14909 		dst->ipp_label_v4 = kmem_alloc(src->ipp_label_len_v4, kmflag);
14910 		if (dst->ipp_label_v4 == NULL) {
14911 			ip_pkt_free(dst);
14912 			return (ENOMEM);
14913 		}
14914 		dst->ipp_fields |= IPPF_LABEL_V4;
14915 		bcopy(src->ipp_label_v4, dst->ipp_label_v4,
14916 		    src->ipp_label_len_v4);
14917 		dst->ipp_label_len_v4 = src->ipp_label_len_v4;
14918 	}
14919 	if (fields & IPPF_LABEL_V6) {
14920 		dst->ipp_label_v6 = kmem_alloc(src->ipp_label_len_v6, kmflag);
14921 		if (dst->ipp_label_v6 == NULL) {
14922 			ip_pkt_free(dst);
14923 			return (ENOMEM);
14924 		}
14925 		dst->ipp_fields |= IPPF_LABEL_V6;
14926 		bcopy(src->ipp_label_v6, dst->ipp_label_v6,
14927 		    src->ipp_label_len_v6);
14928 		dst->ipp_label_len_v6 = src->ipp_label_len_v6;
14929 	}
14930 	if (fields & IPPF_FRAGHDR) {
14931 		dst->ipp_fraghdr = kmem_alloc(src->ipp_fraghdrlen, kmflag);
14932 		if (dst->ipp_fraghdr == NULL) {
14933 			ip_pkt_free(dst);
14934 			return (ENOMEM);
14935 		}
14936 		dst->ipp_fields |= IPPF_FRAGHDR;
14937 		bcopy(src->ipp_fraghdr, dst->ipp_fraghdr,
14938 		    src->ipp_fraghdrlen);
14939 		dst->ipp_fraghdrlen = src->ipp_fraghdrlen;
14940 	}
14941 	return (0);
14942 }
14943 
14944 /*
14945  * Returns INADDR_ANY if no source route
14946  */
14947 ipaddr_t
14948 ip_pkt_source_route_v4(const ip_pkt_t *ipp)
14949 {
14950 	ipaddr_t	nexthop = INADDR_ANY;
14951 	ipoptp_t	opts;
14952 	uchar_t		*opt;
14953 	uint8_t		optval;
14954 	uint8_t		optlen;
14955 	uint32_t	totallen;
14956 
14957 	if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
14958 		return (INADDR_ANY);
14959 
14960 	totallen = ipp->ipp_ipv4_options_len;
14961 	if (totallen & 0x3)
14962 		return (INADDR_ANY);
14963 
14964 	for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
14965 	    optval != IPOPT_EOL;
14966 	    optval = ipoptp_next(&opts)) {
14967 		opt = opts.ipoptp_cur;
14968 		switch (optval) {
14969 			uint8_t off;
14970 		case IPOPT_SSRR:
14971 		case IPOPT_LSRR:
14972 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
14973 				break;
14974 			}
14975 			optlen = opts.ipoptp_len;
14976 			off = opt[IPOPT_OFFSET];
14977 			off--;
14978 			if (optlen < IP_ADDR_LEN ||
14979 			    off > optlen - IP_ADDR_LEN) {
14980 				/* End of source route */
14981 				break;
14982 			}
14983 			bcopy((char *)opt + off, &nexthop, IP_ADDR_LEN);
14984 			if (nexthop == htonl(INADDR_LOOPBACK)) {
14985 				/* Ignore */
14986 				nexthop = INADDR_ANY;
14987 				break;
14988 			}
14989 			break;
14990 		}
14991 	}
14992 	return (nexthop);
14993 }
14994 
14995 /*
14996  * Reverse a source route.
14997  */
14998 void
14999 ip_pkt_source_route_reverse_v4(ip_pkt_t *ipp)
15000 {
15001 	ipaddr_t	tmp;
15002 	ipoptp_t	opts;
15003 	uchar_t		*opt;
15004 	uint8_t		optval;
15005 	uint32_t	totallen;
15006 
15007 	if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
15008 		return;
15009 
15010 	totallen = ipp->ipp_ipv4_options_len;
15011 	if (totallen & 0x3)
15012 		return;
15013 
15014 	for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
15015 	    optval != IPOPT_EOL;
15016 	    optval = ipoptp_next(&opts)) {
15017 		uint8_t off1, off2;
15018 
15019 		opt = opts.ipoptp_cur;
15020 		switch (optval) {
15021 		case IPOPT_SSRR:
15022 		case IPOPT_LSRR:
15023 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
15024 				break;
15025 			}
15026 			off1 = IPOPT_MINOFF_SR - 1;
15027 			off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
15028 			while (off2 > off1) {
15029 				bcopy(opt + off2, &tmp, IP_ADDR_LEN);
15030 				bcopy(opt + off1, opt + off2, IP_ADDR_LEN);
15031 				bcopy(&tmp, opt + off2, IP_ADDR_LEN);
15032 				off2 -= IP_ADDR_LEN;
15033 				off1 += IP_ADDR_LEN;
15034 			}
15035 			opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
15036 			break;
15037 		}
15038 	}
15039 }
15040 
15041 /*
15042  * Returns NULL if no routing header
15043  */
15044 in6_addr_t *
15045 ip_pkt_source_route_v6(const ip_pkt_t *ipp)
15046 {
15047 	in6_addr_t	*nexthop = NULL;
15048 	ip6_rthdr0_t	*rthdr;
15049 
15050 	if (!(ipp->ipp_fields & IPPF_RTHDR))
15051 		return (NULL);
15052 
15053 	rthdr = (ip6_rthdr0_t *)ipp->ipp_rthdr;
15054 	if (rthdr->ip6r0_segleft == 0)
15055 		return (NULL);
15056 
15057 	nexthop = (in6_addr_t *)((char *)rthdr + sizeof (*rthdr));
15058 	return (nexthop);
15059 }
15060 
15061 zoneid_t
15062 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_recv_attr_t *ira,
15063     zoneid_t lookup_zoneid)
15064 {
15065 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
15066 	ire_t		*ire;
15067 	int		ire_flags = MATCH_IRE_TYPE;
15068 	zoneid_t	zoneid = ALL_ZONES;
15069 
15070 	if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE))
15071 		return (ALL_ZONES);
15072 
15073 	if (lookup_zoneid != ALL_ZONES)
15074 		ire_flags |= MATCH_IRE_ZONEONLY;
15075 	ire = ire_ftable_lookup_v4(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK,
15076 	    NULL, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL);
15077 	if (ire != NULL) {
15078 		zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst);
15079 		ire_refrele(ire);
15080 	}
15081 	return (zoneid);
15082 }
15083 
15084 zoneid_t
15085 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill,
15086     ip_recv_attr_t *ira, zoneid_t lookup_zoneid)
15087 {
15088 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
15089 	ire_t		*ire;
15090 	int		ire_flags = MATCH_IRE_TYPE;
15091 	zoneid_t	zoneid = ALL_ZONES;
15092 
15093 	if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE))
15094 		return (ALL_ZONES);
15095 
15096 	if (IN6_IS_ADDR_LINKLOCAL(addr))
15097 		ire_flags |= MATCH_IRE_ILL;
15098 
15099 	if (lookup_zoneid != ALL_ZONES)
15100 		ire_flags |= MATCH_IRE_ZONEONLY;
15101 	ire = ire_ftable_lookup_v6(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK,
15102 	    ill, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL);
15103 	if (ire != NULL) {
15104 		zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst);
15105 		ire_refrele(ire);
15106 	}
15107 	return (zoneid);
15108 }
15109 
15110 /*
15111  * IP obserability hook support functions.
15112  */
15113 static void
15114 ipobs_init(ip_stack_t *ipst)
15115 {
15116 	netid_t id;
15117 
15118 	id = net_getnetidbynetstackid(ipst->ips_netstack->netstack_stackid);
15119 
15120 	ipst->ips_ip4_observe_pr = net_protocol_lookup(id, NHF_INET);
15121 	VERIFY(ipst->ips_ip4_observe_pr != NULL);
15122 
15123 	ipst->ips_ip6_observe_pr = net_protocol_lookup(id, NHF_INET6);
15124 	VERIFY(ipst->ips_ip6_observe_pr != NULL);
15125 }
15126 
15127 static void
15128 ipobs_fini(ip_stack_t *ipst)
15129 {
15130 
15131 	VERIFY(net_protocol_release(ipst->ips_ip4_observe_pr) == 0);
15132 	VERIFY(net_protocol_release(ipst->ips_ip6_observe_pr) == 0);
15133 }
15134 
15135 /*
15136  * hook_pkt_observe_t is composed in network byte order so that the
15137  * entire mblk_t chain handed into hook_run can be used as-is.
15138  * The caveat is that use of the fields, such as the zone fields,
15139  * requires conversion into host byte order first.
15140  */
15141 void
15142 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst,
15143     const ill_t *ill, ip_stack_t *ipst)
15144 {
15145 	hook_pkt_observe_t *hdr;
15146 	uint64_t grifindex;
15147 	mblk_t *imp;
15148 
15149 	imp = allocb(sizeof (*hdr), BPRI_HI);
15150 	if (imp == NULL)
15151 		return;
15152 
15153 	hdr = (hook_pkt_observe_t *)imp->b_rptr;
15154 	/*
15155 	 * b_wptr is set to make the apparent size of the data in the mblk_t
15156 	 * to exclude the pointers at the end of hook_pkt_observer_t.
15157 	 */
15158 	imp->b_wptr = imp->b_rptr + sizeof (dl_ipnetinfo_t);
15159 	imp->b_cont = mp;
15160 
15161 	ASSERT(DB_TYPE(mp) == M_DATA);
15162 
15163 	if (IS_UNDER_IPMP(ill))
15164 		grifindex = ipmp_ill_get_ipmp_ifindex(ill);
15165 	else
15166 		grifindex = 0;
15167 
15168 	hdr->hpo_version = 1;
15169 	hdr->hpo_htype = htons(htype);
15170 	hdr->hpo_pktlen = htonl((ulong_t)msgdsize(mp));
15171 	hdr->hpo_ifindex = htonl(ill->ill_phyint->phyint_ifindex);
15172 	hdr->hpo_grifindex = htonl(grifindex);
15173 	hdr->hpo_zsrc = htonl(zsrc);
15174 	hdr->hpo_zdst = htonl(zdst);
15175 	hdr->hpo_pkt = imp;
15176 	hdr->hpo_ctx = ipst->ips_netstack;
15177 
15178 	if (ill->ill_isv6) {
15179 		hdr->hpo_family = AF_INET6;
15180 		(void) hook_run(ipst->ips_ipv6_net_data->netd_hooks,
15181 		    ipst->ips_ipv6observing, (hook_data_t)hdr);
15182 	} else {
15183 		hdr->hpo_family = AF_INET;
15184 		(void) hook_run(ipst->ips_ipv4_net_data->netd_hooks,
15185 		    ipst->ips_ipv4observing, (hook_data_t)hdr);
15186 	}
15187 
15188 	imp->b_cont = NULL;
15189 	freemsg(imp);
15190 }
15191 
15192 /*
15193  * Utility routine that checks if `v4srcp' is a valid address on underlying
15194  * interface `ill'.  If `ipifp' is non-NULL, it's set to a held ipif
15195  * associated with `v4srcp' on success.  NOTE: if this is not called from
15196  * inside the IPSQ (ill_g_lock is not held), `ill' may be removed from the
15197  * group during or after this lookup.
15198  */
15199 boolean_t
15200 ipif_lookup_testaddr_v4(ill_t *ill, const in_addr_t *v4srcp, ipif_t **ipifp)
15201 {
15202 	ipif_t *ipif;
15203 
15204 	ipif = ipif_lookup_addr_exact(*v4srcp, ill, ill->ill_ipst);
15205 	if (ipif != NULL) {
15206 		if (ipifp != NULL)
15207 			*ipifp = ipif;
15208 		else
15209 			ipif_refrele(ipif);
15210 		return (B_TRUE);
15211 	}
15212 
15213 	ip1dbg(("ipif_lookup_testaddr_v4: cannot find ipif for src %x\n",
15214 	    *v4srcp));
15215 	return (B_FALSE);
15216 }
15217 
15218 /*
15219  * Transport protocol call back function for CPU state change.
15220  */
15221 /* ARGSUSED */
15222 static int
15223 ip_tp_cpu_update(cpu_setup_t what, int id, void *arg)
15224 {
15225 	processorid_t cpu_seqid;
15226 	netstack_handle_t nh;
15227 	netstack_t *ns;
15228 
15229 	ASSERT(MUTEX_HELD(&cpu_lock));
15230 
15231 	switch (what) {
15232 	case CPU_CONFIG:
15233 	case CPU_ON:
15234 	case CPU_INIT:
15235 	case CPU_CPUPART_IN:
15236 		cpu_seqid = cpu[id]->cpu_seqid;
15237 		netstack_next_init(&nh);
15238 		while ((ns = netstack_next(&nh)) != NULL) {
15239 			tcp_stack_cpu_add(ns->netstack_tcp, cpu_seqid);
15240 			sctp_stack_cpu_add(ns->netstack_sctp, cpu_seqid);
15241 			udp_stack_cpu_add(ns->netstack_udp, cpu_seqid);
15242 			netstack_rele(ns);
15243 		}
15244 		netstack_next_fini(&nh);
15245 		break;
15246 	case CPU_UNCONFIG:
15247 	case CPU_OFF:
15248 	case CPU_CPUPART_OUT:
15249 		/*
15250 		 * Nothing to do.  We don't remove the per CPU stats from
15251 		 * the IP stack even when the CPU goes offline.
15252 		 */
15253 		break;
15254 	default:
15255 		break;
15256 	}
15257 	return (0);
15258 }
15259