xref: /illumos-gate/usr/src/uts/common/inet/ip/ip.c (revision 45a4b79d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 1990 Mentat Inc.
25  * Copyright (c) 2017 OmniTI Computer Consulting, Inc. All rights reserved.
26  * Copyright (c) 2016 by Delphix. All rights reserved.
27  * Copyright (c) 2019 Joyent, Inc. All rights reserved.
28  */
29 
30 #include <sys/types.h>
31 #include <sys/stream.h>
32 #include <sys/dlpi.h>
33 #include <sys/stropts.h>
34 #include <sys/sysmacros.h>
35 #include <sys/strsubr.h>
36 #include <sys/strlog.h>
37 #include <sys/strsun.h>
38 #include <sys/zone.h>
39 #define	_SUN_TPI_VERSION 2
40 #include <sys/tihdr.h>
41 #include <sys/xti_inet.h>
42 #include <sys/ddi.h>
43 #include <sys/suntpi.h>
44 #include <sys/cmn_err.h>
45 #include <sys/debug.h>
46 #include <sys/kobj.h>
47 #include <sys/modctl.h>
48 #include <sys/atomic.h>
49 #include <sys/policy.h>
50 #include <sys/priv.h>
51 #include <sys/taskq.h>
52 
53 #include <sys/systm.h>
54 #include <sys/param.h>
55 #include <sys/kmem.h>
56 #include <sys/sdt.h>
57 #include <sys/socket.h>
58 #include <sys/vtrace.h>
59 #include <sys/isa_defs.h>
60 #include <sys/mac.h>
61 #include <net/if.h>
62 #include <net/if_arp.h>
63 #include <net/route.h>
64 #include <sys/sockio.h>
65 #include <netinet/in.h>
66 #include <net/if_dl.h>
67 
68 #include <inet/common.h>
69 #include <inet/mi.h>
70 #include <inet/mib2.h>
71 #include <inet/nd.h>
72 #include <inet/arp.h>
73 #include <inet/snmpcom.h>
74 #include <inet/optcom.h>
75 #include <inet/kstatcom.h>
76 
77 #include <netinet/igmp_var.h>
78 #include <netinet/ip6.h>
79 #include <netinet/icmp6.h>
80 #include <netinet/sctp.h>
81 
82 #include <inet/ip.h>
83 #include <inet/ip_impl.h>
84 #include <inet/ip6.h>
85 #include <inet/ip6_asp.h>
86 #include <inet/tcp.h>
87 #include <inet/tcp_impl.h>
88 #include <inet/ip_multi.h>
89 #include <inet/ip_if.h>
90 #include <inet/ip_ire.h>
91 #include <inet/ip_ftable.h>
92 #include <inet/ip_rts.h>
93 #include <inet/ip_ndp.h>
94 #include <inet/ip_listutils.h>
95 #include <netinet/igmp.h>
96 #include <netinet/ip_mroute.h>
97 #include <inet/ipp_common.h>
98 #include <inet/cc.h>
99 
100 #include <net/pfkeyv2.h>
101 #include <inet/sadb.h>
102 #include <inet/ipsec_impl.h>
103 #include <inet/iptun/iptun_impl.h>
104 #include <inet/ipdrop.h>
105 #include <inet/ip_netinfo.h>
106 #include <inet/ilb_ip.h>
107 
108 #include <sys/ethernet.h>
109 #include <net/if_types.h>
110 #include <sys/cpuvar.h>
111 
112 #include <ipp/ipp.h>
113 #include <ipp/ipp_impl.h>
114 #include <ipp/ipgpc/ipgpc.h>
115 
116 #include <sys/pattr.h>
117 #include <inet/ipclassifier.h>
118 #include <inet/sctp_ip.h>
119 #include <inet/sctp/sctp_impl.h>
120 #include <inet/udp_impl.h>
121 #include <inet/rawip_impl.h>
122 #include <inet/rts_impl.h>
123 
124 #include <sys/tsol/label.h>
125 #include <sys/tsol/tnet.h>
126 
127 #include <sys/squeue_impl.h>
128 #include <inet/ip_arp.h>
129 
130 #include <sys/clock_impl.h>	/* For LBOLT_FASTPATH{,64} */
131 
132 /*
133  * Values for squeue switch:
134  * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN
135  * IP_SQUEUE_ENTER: SQ_PROCESS
136  * IP_SQUEUE_FILL: SQ_FILL
137  */
138 int ip_squeue_enter = IP_SQUEUE_ENTER;	/* Setable in /etc/system */
139 
140 int ip_squeue_flag;
141 
142 /*
143  * Setable in /etc/system
144  */
145 int ip_poll_normal_ms = 100;
146 int ip_poll_normal_ticks = 0;
147 int ip_modclose_ackwait_ms = 3000;
148 
149 /*
150  * It would be nice to have these present only in DEBUG systems, but the
151  * current design of the global symbol checking logic requires them to be
152  * unconditionally present.
153  */
154 uint_t ip_thread_data;			/* TSD key for debug support */
155 krwlock_t ip_thread_rwlock;
156 list_t	ip_thread_list;
157 
158 /*
159  * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions.
160  */
161 
162 struct listptr_s {
163 	mblk_t	*lp_head;	/* pointer to the head of the list */
164 	mblk_t	*lp_tail;	/* pointer to the tail of the list */
165 };
166 
167 typedef struct listptr_s listptr_t;
168 
169 /*
170  * This is used by ip_snmp_get_mib2_ip_route_media and
171  * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data.
172  */
173 typedef struct iproutedata_s {
174 	uint_t		ird_idx;
175 	uint_t		ird_flags;	/* see below */
176 	listptr_t	ird_route;	/* ipRouteEntryTable */
177 	listptr_t	ird_netmedia;	/* ipNetToMediaEntryTable */
178 	listptr_t	ird_attrs;	/* ipRouteAttributeTable */
179 } iproutedata_t;
180 
181 /* Include ire_testhidden and IRE_IF_CLONE routes */
182 #define	IRD_REPORT_ALL	0x01
183 
184 /*
185  * Cluster specific hooks. These should be NULL when booted as a non-cluster
186  */
187 
188 /*
189  * Hook functions to enable cluster networking
190  * On non-clustered systems these vectors must always be NULL.
191  *
192  * Hook function to Check ip specified ip address is a shared ip address
193  * in the cluster
194  *
195  */
196 int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol,
197     sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL;
198 
199 /*
200  * Hook function to generate cluster wide ip fragment identifier
201  */
202 uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol,
203     sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp,
204     void *args) = NULL;
205 
206 /*
207  * Hook function to generate cluster wide SPI.
208  */
209 void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t,
210     void *) = NULL;
211 
212 /*
213  * Hook function to verify if the SPI is already utlized.
214  */
215 
216 int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL;
217 
218 /*
219  * Hook function to delete the SPI from the cluster wide repository.
220  */
221 
222 void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL;
223 
224 /*
225  * Hook function to inform the cluster when packet received on an IDLE SA
226  */
227 
228 void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t,
229     in6_addr_t, in6_addr_t, void *) = NULL;
230 
231 /*
232  * Synchronization notes:
233  *
234  * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any
235  * MT level protection given by STREAMS. IP uses a combination of its own
236  * internal serialization mechanism and standard Solaris locking techniques.
237  * The internal serialization is per phyint.  This is used to serialize
238  * plumbing operations, IPMP operations, most set ioctls, etc.
239  *
240  * Plumbing is a long sequence of operations involving message
241  * exchanges between IP, ARP and device drivers. Many set ioctls are typically
242  * involved in plumbing operations. A natural model is to serialize these
243  * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in
244  * parallel without any interference. But various set ioctls on hme0 are best
245  * serialized, along with IPMP operations and processing of DLPI control
246  * messages received from drivers on a per phyint basis. This serialization is
247  * provided by the ipsq_t and primitives operating on this. Details can
248  * be found in ip_if.c above the core primitives operating on ipsq_t.
249  *
250  * Lookups of an ipif or ill by a thread return a refheld ipif / ill.
251  * Simiarly lookup of an ire by a thread also returns a refheld ire.
252  * In addition ipif's and ill's referenced by the ire are also indirectly
253  * refheld. Thus no ipif or ill can vanish as long as an ipif is refheld
254  * directly or indirectly. For example an SIOCSLIFADDR ioctl that changes the
255  * address of an ipif has to go through the ipsq_t. This ensures that only
256  * one such exclusive operation proceeds at any time on the ipif. It then
257  * waits for all refcnts
258  * associated with this ipif to come down to zero. The address is changed
259  * only after the ipif has been quiesced. Then the ipif is brought up again.
260  * More details are described above the comment in ip_sioctl_flags.
261  *
262  * Packet processing is based mostly on IREs and are fully multi-threaded
263  * using standard Solaris MT techniques.
264  *
265  * There are explicit locks in IP to handle:
266  * - The ip_g_head list maintained by mi_open_link() and friends.
267  *
268  * - The reassembly data structures (one lock per hash bucket)
269  *
270  * - conn_lock is meant to protect conn_t fields. The fields actually
271  *   protected by conn_lock are documented in the conn_t definition.
272  *
273  * - ire_lock to protect some of the fields of the ire, IRE tables
274  *   (one lock per hash bucket). Refer to ip_ire.c for details.
275  *
276  * - ndp_g_lock and ncec_lock for protecting NCEs.
277  *
278  * - ill_lock protects fields of the ill and ipif. Details in ip.h
279  *
280  * - ill_g_lock: This is a global reader/writer lock. Protects the following
281  *	* The AVL tree based global multi list of all ills.
282  *	* The linked list of all ipifs of an ill
283  *	* The <ipsq-xop> mapping
284  *	* <ill-phyint> association
285  *   Insertion/deletion of an ill in the system, insertion/deletion of an ipif
286  *   into an ill, changing the <ipsq-xop> mapping of an ill, changing the
287  *   <ill-phyint> assoc of an ill will all have to hold the ill_g_lock as
288  *   writer for the actual duration of the insertion/deletion/change.
289  *
290  * - ill_lock:  This is a per ill mutex.
291  *   It protects some members of the ill_t struct; see ip.h for details.
292  *   It also protects the <ill-phyint> assoc.
293  *   It also protects the list of ipifs hanging off the ill.
294  *
295  * - ipsq_lock: This is a per ipsq_t mutex lock.
296  *   This protects some members of the ipsq_t struct; see ip.h for details.
297  *   It also protects the <ipsq-ipxop> mapping
298  *
299  * - ipx_lock: This is a per ipxop_t mutex lock.
300  *   This protects some members of the ipxop_t struct; see ip.h for details.
301  *
302  * - phyint_lock: This is a per phyint mutex lock. Protects just the
303  *   phyint_flags
304  *
305  * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses.
306  *   This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the
307  *   uniqueness check also done atomically.
308  *
309  * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc
310  *   group list linked by ill_usesrc_grp_next. It also protects the
311  *   ill_usesrc_ifindex field. It is taken as a writer when a member of the
312  *   group is being added or deleted.  This lock is taken as a reader when
313  *   walking the list/group(eg: to get the number of members in a usesrc group).
314  *   Note, it is only necessary to take this lock if the ill_usesrc_grp_next
315  *   field is changing state i.e from NULL to non-NULL or vice-versa. For
316  *   example, it is not necessary to take this lock in the initial portion
317  *   of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these
318  *   operations are executed exclusively and that ensures that the "usesrc
319  *   group state" cannot change. The "usesrc group state" change can happen
320  *   only in the latter part of ip_sioctl_slifusesrc and in ill_delete.
321  *
322  * Changing <ill-phyint>, <ipsq-xop> assocications:
323  *
324  * To change the <ill-phyint> association, the ill_g_lock must be held
325  * as writer, and the ill_locks of both the v4 and v6 instance of the ill
326  * must be held.
327  *
328  * To change the <ipsq-xop> association, the ill_g_lock must be held as
329  * writer, the ipsq_lock must be held, and one must be writer on the ipsq.
330  * This is only done when ills are added or removed from IPMP groups.
331  *
332  * To add or delete an ipif from the list of ipifs hanging off the ill,
333  * ill_g_lock (writer) and ill_lock must be held and the thread must be
334  * a writer on the associated ipsq.
335  *
336  * To add or delete an ill to the system, the ill_g_lock must be held as
337  * writer and the thread must be a writer on the associated ipsq.
338  *
339  * To add or delete an ilm to an ill, the ill_lock must be held and the thread
340  * must be a writer on the associated ipsq.
341  *
342  * Lock hierarchy
343  *
344  * Some lock hierarchy scenarios are listed below.
345  *
346  * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock
347  * ill_g_lock -> ill_lock(s) -> phyint_lock
348  * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock
349  * ill_g_lock -> ip_addr_avail_lock
350  * conn_lock -> irb_lock -> ill_lock -> ire_lock
351  * ill_g_lock -> ip_g_nd_lock
352  * ill_g_lock -> ips_ipmp_lock -> ill_lock -> nce_lock
353  * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock -> nce_lock
354  * arl_lock -> ill_lock
355  * ips_ire_dep_lock -> irb_lock
356  *
357  * When more than 1 ill lock is needed to be held, all ill lock addresses
358  * are sorted on address and locked starting from highest addressed lock
359  * downward.
360  *
361  * Multicast scenarios
362  * ips_ill_g_lock -> ill_mcast_lock
363  * conn_ilg_lock -> ips_ill_g_lock -> ill_lock
364  * ill_mcast_serializer -> ill_mcast_lock -> ips_ipmp_lock -> ill_lock
365  * ill_mcast_serializer -> ill_mcast_lock -> connf_lock -> conn_lock
366  * ill_mcast_serializer -> ill_mcast_lock -> conn_ilg_lock
367  * ill_mcast_serializer -> ill_mcast_lock -> ips_igmp_timer_lock
368  *
369  * IPsec scenarios
370  *
371  * ipsa_lock -> ill_g_lock -> ill_lock
372  * ill_g_usesrc_lock -> ill_g_lock -> ill_lock
373  *
374  * Trusted Solaris scenarios
375  *
376  * igsa_lock -> gcgrp_rwlock -> gcgrp_lock
377  * igsa_lock -> gcdb_lock
378  * gcgrp_rwlock -> ire_lock
379  * gcgrp_rwlock -> gcdb_lock
380  *
381  * squeue(sq_lock), flow related (ft_lock, fe_lock) locking
382  *
383  * cpu_lock --> ill_lock --> sqset_lock --> sq_lock
384  * sq_lock -> conn_lock -> QLOCK(q)
385  * ill_lock -> ft_lock -> fe_lock
386  *
387  * Routing/forwarding table locking notes:
388  *
389  * Lock acquisition order: Radix tree lock, irb_lock.
390  * Requirements:
391  * i.  Walker must not hold any locks during the walker callback.
392  * ii  Walker must not see a truncated tree during the walk because of any node
393  *     deletion.
394  * iii Existing code assumes ire_bucket is valid if it is non-null and is used
395  *     in many places in the code to walk the irb list. Thus even if all the
396  *     ires in a bucket have been deleted, we still can't free the radix node
397  *     until the ires have actually been inactive'd (freed).
398  *
399  * Tree traversal - Need to hold the global tree lock in read mode.
400  * Before dropping the global tree lock, need to either increment the ire_refcnt
401  * to ensure that the radix node can't be deleted.
402  *
403  * Tree add - Need to hold the global tree lock in write mode to add a
404  * radix node. To prevent the node from being deleted, increment the
405  * irb_refcnt, after the node is added to the tree. The ire itself is
406  * added later while holding the irb_lock, but not the tree lock.
407  *
408  * Tree delete - Need to hold the global tree lock and irb_lock in write mode.
409  * All associated ires must be inactive (i.e. freed), and irb_refcnt
410  * must be zero.
411  *
412  * Walker - Increment irb_refcnt before calling the walker callback. Hold the
413  * global tree lock (read mode) for traversal.
414  *
415  * IRE dependencies - In some cases we hold ips_ire_dep_lock across ire_refrele
416  * hence we will acquire irb_lock while holding ips_ire_dep_lock.
417  *
418  * IPsec notes :
419  *
420  * IP interacts with the IPsec code (AH/ESP) by storing IPsec attributes
421  * in the ip_xmit_attr_t ip_recv_attr_t. For outbound datagrams, the
422  * ip_xmit_attr_t has the
423  * information used by the IPsec code for applying the right level of
424  * protection. The information initialized by IP in the ip_xmit_attr_t
425  * is determined by the per-socket policy or global policy in the system.
426  * For inbound datagrams, the ip_recv_attr_t
427  * starts out with nothing in it. It gets filled
428  * with the right information if it goes through the AH/ESP code, which
429  * happens if the incoming packet is secure. The information initialized
430  * by AH/ESP, is later used by IP (during fanouts to ULP) to see whether
431  * the policy requirements needed by per-socket policy or global policy
432  * is met or not.
433  *
434  * For fully connected sockets i.e dst, src [addr, port] is known,
435  * conn_policy_cached is set indicating that policy has been cached.
436  * conn_in_enforce_policy may or may not be set depending on whether
437  * there is a global policy match or per-socket policy match.
438  * Policy inheriting happpens in ip_policy_set once the destination is known.
439  * Once the right policy is set on the conn_t, policy cannot change for
440  * this socket. This makes life simpler for TCP (UDP ?) where
441  * re-transmissions go out with the same policy. For symmetry, policy
442  * is cached for fully connected UDP sockets also. Thus if policy is cached,
443  * it also implies that policy is latched i.e policy cannot change
444  * on these sockets. As we have the right policy on the conn, we don't
445  * have to lookup global policy for every outbound and inbound datagram
446  * and thus serving as an optimization. Note that a global policy change
447  * does not affect fully connected sockets if they have policy. If fully
448  * connected sockets did not have any policy associated with it, global
449  * policy change may affect them.
450  *
451  * IP Flow control notes:
452  * ---------------------
453  * Non-TCP streams are flow controlled by IP. The way this is accomplished
454  * differs when ILL_CAPAB_DLD_DIRECT is enabled for that IP instance. When
455  * ILL_DIRECT_CAPABLE(ill) is TRUE, IP can do direct function calls into
456  * GLDv3. Otherwise packets are sent down to lower layers using STREAMS
457  * functions.
458  *
459  * Per Tx ring udp flow control:
460  * This is applicable only when ILL_CAPAB_DLD_DIRECT capability is set in
461  * the ill (i.e. ILL_DIRECT_CAPABLE(ill) is true).
462  *
463  * The underlying link can expose multiple Tx rings to the GLDv3 mac layer.
464  * To achieve best performance, outgoing traffic need to be fanned out among
465  * these Tx ring. mac_tx() is called (via str_mdata_fastpath_put()) to send
466  * traffic out of the NIC and it takes a fanout hint. UDP connections pass
467  * the address of connp as fanout hint to mac_tx(). Under flow controlled
468  * condition, mac_tx() returns a non-NULL cookie (ip_mac_tx_cookie_t). This
469  * cookie points to a specific Tx ring that is blocked. The cookie is used to
470  * hash into an idl_tx_list[] entry in idl_tx_list[] array. Each idl_tx_list_t
471  * point to drain_lists (idl_t's). These drain list will store the blocked UDP
472  * connp's. The drain list is not a single list but a configurable number of
473  * lists.
474  *
475  * The diagram below shows idl_tx_list_t's and their drain_lists. ip_stack_t
476  * has an array of idl_tx_list_t. The size of the array is TX_FANOUT_SIZE
477  * which is equal to 128. This array in turn contains a pointer to idl_t[],
478  * the ip drain list. The idl_t[] array size is MIN(max_ncpus, 8). The drain
479  * list will point to the list of connp's that are flow controlled.
480  *
481  *                      ---------------   -------   -------   -------
482  *                   |->|drain_list[0]|-->|connp|-->|connp|-->|connp|-->
483  *                   |  ---------------   -------   -------   -------
484  *                   |  ---------------   -------   -------   -------
485  *                   |->|drain_list[1]|-->|connp|-->|connp|-->|connp|-->
486  * ----------------  |  ---------------   -------   -------   -------
487  * |idl_tx_list[0]|->|  ---------------   -------   -------   -------
488  * ----------------  |->|drain_list[2]|-->|connp|-->|connp|-->|connp|-->
489  *                   |  ---------------   -------   -------   -------
490  *                   .        .              .         .         .
491  *                   |  ---------------   -------   -------   -------
492  *                   |->|drain_list[n]|-->|connp|-->|connp|-->|connp|-->
493  *                      ---------------   -------   -------   -------
494  *                      ---------------   -------   -------   -------
495  *                   |->|drain_list[0]|-->|connp|-->|connp|-->|connp|-->
496  *                   |  ---------------   -------   -------   -------
497  *                   |  ---------------   -------   -------   -------
498  * ----------------  |->|drain_list[1]|-->|connp|-->|connp|-->|connp|-->
499  * |idl_tx_list[1]|->|  ---------------   -------   -------   -------
500  * ----------------  |        .              .         .         .
501  *                   |  ---------------   -------   -------   -------
502  *                   |->|drain_list[n]|-->|connp|-->|connp|-->|connp|-->
503  *                      ---------------   -------   -------   -------
504  *     .....
505  * ----------------
506  * |idl_tx_list[n]|-> ...
507  * ----------------
508  *
509  * When mac_tx() returns a cookie, the cookie is hashed into an index into
510  * ips_idl_tx_list[], and conn_drain_insert() is called with the idl_tx_list
511  * to insert the conn onto.  conn_drain_insert() asserts flow control for the
512  * sockets via su_txq_full() (non-STREAMS) or QFULL on conn_wq (STREAMS).
513  * Further, conn_blocked is set to indicate that the conn is blocked.
514  *
515  * GLDv3 calls ill_flow_enable() when flow control is relieved.  The cookie
516  * passed in the call to ill_flow_enable() identifies the blocked Tx ring and
517  * is again hashed to locate the appropriate idl_tx_list, which is then
518  * drained via conn_walk_drain().  conn_walk_drain() goes through each conn in
519  * the drain list and calls conn_drain_remove() to clear flow control (via
520  * calling su_txq_full() or clearing QFULL), and remove the conn from the
521  * drain list.
522  *
523  * Note that the drain list is not a single list but a (configurable) array of
524  * lists (8 elements by default).  Synchronization between drain insertion and
525  * flow control wakeup is handled by using idl_txl->txl_lock, and only
526  * conn_drain_insert() and conn_drain_remove() manipulate the drain list.
527  *
528  * Flow control via STREAMS is used when ILL_DIRECT_CAPABLE() returns FALSE.
529  * On the send side, if the packet cannot be sent down to the driver by IP
530  * (canput() fails), ip_xmit() drops the packet and returns EWOULDBLOCK to the
531  * caller, who may then invoke ixa_check_drain_insert() to insert the conn on
532  * the 0'th drain list.  When ip_wsrv() runs on the ill_wq because flow
533  * control has been relieved, the blocked conns in the 0'th drain list are
534  * drained as in the non-STREAMS case.
535  *
536  * In both the STREAMS and non-STREAMS cases, the sockfs upcall to set QFULL
537  * is done when the conn is inserted into the drain list (conn_drain_insert())
538  * and cleared when the conn is removed from the it (conn_drain_remove()).
539  *
540  * IPQOS notes:
541  *
542  * IPQoS Policies are applied to packets using IPPF (IP Policy framework)
543  * and IPQoS modules. IPPF includes hooks in IP at different control points
544  * (callout positions) which direct packets to IPQoS modules for policy
545  * processing. Policies, if present, are global.
546  *
547  * The callout positions are located in the following paths:
548  *		o local_in (packets destined for this host)
549  *		o local_out (packets orginating from this host )
550  *		o fwd_in  (packets forwarded by this m/c - inbound)
551  *		o fwd_out (packets forwarded by this m/c - outbound)
552  * Hooks at these callout points can be enabled/disabled using the ndd variable
553  * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions).
554  * By default all the callout positions are enabled.
555  *
556  * Outbound (local_out)
557  * Hooks are placed in ire_send_wire_v4 and ire_send_wire_v6.
558  *
559  * Inbound (local_in)
560  * Hooks are placed in ip_fanout_v4 and ip_fanout_v6.
561  *
562  * Forwarding (in and out)
563  * Hooks are placed in ire_recv_forward_v4/v6.
564  *
565  * IP Policy Framework processing (IPPF processing)
566  * Policy processing for a packet is initiated by ip_process, which ascertains
567  * that the classifier (ipgpc) is loaded and configured, failing which the
568  * packet resumes normal processing in IP. If the clasifier is present, the
569  * packet is acted upon by one or more IPQoS modules (action instances), per
570  * filters configured in ipgpc and resumes normal IP processing thereafter.
571  * An action instance can drop a packet in course of its processing.
572  *
573  * Zones notes:
574  *
575  * The partitioning rules for networking are as follows:
576  * 1) Packets coming from a zone must have a source address belonging to that
577  * zone.
578  * 2) Packets coming from a zone can only be sent on a physical interface on
579  * which the zone has an IP address.
580  * 3) Between two zones on the same machine, packet delivery is only allowed if
581  * there's a matching route for the destination and zone in the forwarding
582  * table.
583  * 4) The TCP and UDP port spaces are per-zone; that is, two processes in
584  * different zones can bind to the same port with the wildcard address
585  * (INADDR_ANY).
586  *
587  * The granularity of interface partitioning is at the logical interface level.
588  * Therefore, every zone has its own IP addresses, and incoming packets can be
589  * attributed to a zone unambiguously. A logical interface is placed into a zone
590  * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t
591  * structure. Rule (1) is implemented by modifying the source address selection
592  * algorithm so that the list of eligible addresses is filtered based on the
593  * sending process zone.
594  *
595  * The Internet Routing Entries (IREs) are either exclusive to a zone or shared
596  * across all zones, depending on their type. Here is the break-up:
597  *
598  * IRE type				Shared/exclusive
599  * --------				----------------
600  * IRE_BROADCAST			Exclusive
601  * IRE_DEFAULT (default routes)		Shared (*)
602  * IRE_LOCAL				Exclusive (x)
603  * IRE_LOOPBACK				Exclusive
604  * IRE_PREFIX (net routes)		Shared (*)
605  * IRE_IF_NORESOLVER (interface routes)	Exclusive
606  * IRE_IF_RESOLVER (interface routes)	Exclusive
607  * IRE_IF_CLONE (interface routes)	Exclusive
608  * IRE_HOST (host routes)		Shared (*)
609  *
610  * (*) A zone can only use a default or off-subnet route if the gateway is
611  * directly reachable from the zone, that is, if the gateway's address matches
612  * one of the zone's logical interfaces.
613  *
614  * (x) IRE_LOCAL are handled a bit differently.
615  * When ip_restrict_interzone_loopback is set (the default),
616  * ire_route_recursive restricts loopback using an IRE_LOCAL
617  * between zone to the case when L2 would have conceptually looped the packet
618  * back, i.e. the loopback which is required since neither Ethernet drivers
619  * nor Ethernet hardware loops them back. This is the case when the normal
620  * routes (ignoring IREs with different zoneids) would send out the packet on
621  * the same ill as the ill with which is IRE_LOCAL is associated.
622  *
623  * Multiple zones can share a common broadcast address; typically all zones
624  * share the 255.255.255.255 address. Incoming as well as locally originated
625  * broadcast packets must be dispatched to all the zones on the broadcast
626  * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial
627  * since some zones may not be on the 10.16.72/24 network. To handle this, each
628  * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are
629  * sent to every zone that has an IRE_BROADCAST entry for the destination
630  * address on the input ill, see ip_input_broadcast().
631  *
632  * Applications in different zones can join the same multicast group address.
633  * The same logic applies for multicast as for broadcast. ip_input_multicast
634  * dispatches packets to all zones that have members on the physical interface.
635  */
636 
637 /*
638  * Squeue Fanout flags:
639  *	0: No fanout.
640  *	1: Fanout across all squeues
641  */
642 boolean_t	ip_squeue_fanout = 0;
643 
644 /*
645  * Maximum dups allowed per packet.
646  */
647 uint_t ip_max_frag_dups = 10;
648 
649 static int	ip_open(queue_t *q, dev_t *devp, int flag, int sflag,
650 		    cred_t *credp, boolean_t isv6);
651 static mblk_t	*ip_xmit_attach_llhdr(mblk_t *, nce_t *);
652 
653 static boolean_t icmp_inbound_verify_v4(mblk_t *, icmph_t *, ip_recv_attr_t *);
654 static void	icmp_inbound_too_big_v4(icmph_t *, ip_recv_attr_t *);
655 static void	icmp_inbound_error_fanout_v4(mblk_t *, icmph_t *,
656     ip_recv_attr_t *);
657 static void	icmp_options_update(ipha_t *);
658 static void	icmp_param_problem(mblk_t *, uint8_t,  ip_recv_attr_t *);
659 static void	icmp_pkt(mblk_t *, void *, size_t, ip_recv_attr_t *);
660 static mblk_t	*icmp_pkt_err_ok(mblk_t *, ip_recv_attr_t *);
661 static void	icmp_redirect_v4(mblk_t *mp, ipha_t *, icmph_t *,
662     ip_recv_attr_t *);
663 static void	icmp_send_redirect(mblk_t *, ipaddr_t, ip_recv_attr_t *);
664 static void	icmp_send_reply_v4(mblk_t *, ipha_t *, icmph_t *,
665     ip_recv_attr_t *);
666 
667 mblk_t		*ip_dlpi_alloc(size_t, t_uscalar_t);
668 char		*ip_dot_addr(ipaddr_t, char *);
669 mblk_t		*ip_carve_mp(mblk_t **, ssize_t);
670 static char	*ip_dot_saddr(uchar_t *, char *);
671 static int	ip_lrput(queue_t *, mblk_t *);
672 ipaddr_t	ip_net_mask(ipaddr_t);
673 char		*ip_nv_lookup(nv_t *, int);
674 int		ip_rput(queue_t *, mblk_t *);
675 static void	ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp,
676 		    void *dummy_arg);
677 int		ip_snmp_get(queue_t *, mblk_t *, int, boolean_t);
678 static mblk_t	*ip_snmp_get_mib2_ip(queue_t *, mblk_t *,
679 		    mib2_ipIfStatsEntry_t *, ip_stack_t *, boolean_t);
680 static mblk_t	*ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *,
681 		    ip_stack_t *, boolean_t);
682 static mblk_t	*ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *,
683 		    boolean_t);
684 static mblk_t	*ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst);
685 static mblk_t	*ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst);
686 static mblk_t	*ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst);
687 static mblk_t	*ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst);
688 static mblk_t	*ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *,
689 		    ip_stack_t *ipst, boolean_t);
690 static mblk_t	*ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *,
691 		    ip_stack_t *ipst, boolean_t);
692 static mblk_t	*ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *,
693 		    ip_stack_t *ipst);
694 static mblk_t	*ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *,
695 		    ip_stack_t *ipst);
696 static mblk_t	*ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *,
697 		    ip_stack_t *ipst);
698 static mblk_t	*ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *,
699 		    ip_stack_t *ipst);
700 static mblk_t	*ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *,
701 		    ip_stack_t *ipst);
702 static mblk_t	*ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *,
703 		    ip_stack_t *ipst);
704 static mblk_t	*ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, int,
705 		    ip_stack_t *ipst);
706 static mblk_t	*ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, int,
707 		    ip_stack_t *ipst);
708 static void	ip_snmp_get2_v4(ire_t *, iproutedata_t *);
709 static void	ip_snmp_get2_v6_route(ire_t *, iproutedata_t *);
710 static void	ip_snmp_get2_v4_media(ncec_t *, void *);
711 static void	ip_snmp_get2_v6_media(ncec_t *, void *);
712 int		ip_snmp_set(queue_t *, int, int, uchar_t *, int);
713 
714 static mblk_t	*ip_fragment_copyhdr(uchar_t *, int, int, ip_stack_t *,
715 		    mblk_t *);
716 
717 static void	conn_drain_init(ip_stack_t *);
718 static void	conn_drain_fini(ip_stack_t *);
719 static void	conn_drain(conn_t *connp, boolean_t closing);
720 
721 static void	conn_walk_drain(ip_stack_t *, idl_tx_list_t *);
722 static void	conn_walk_sctp(pfv_t, void *, zoneid_t, netstack_t *);
723 
724 static void	*ip_stack_init(netstackid_t stackid, netstack_t *ns);
725 static void	ip_stack_shutdown(netstackid_t stackid, void *arg);
726 static void	ip_stack_fini(netstackid_t stackid, void *arg);
727 
728 static int	ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t,
729     const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *),
730     ire_t *, conn_t *, boolean_t, const in6_addr_t *,  mcast_record_t,
731     const in6_addr_t *);
732 
733 static int	ip_squeue_switch(int);
734 
735 static void	*ip_kstat_init(netstackid_t, ip_stack_t *);
736 static void	ip_kstat_fini(netstackid_t, kstat_t *);
737 static int	ip_kstat_update(kstat_t *kp, int rw);
738 static void	*icmp_kstat_init(netstackid_t);
739 static void	icmp_kstat_fini(netstackid_t, kstat_t *);
740 static int	icmp_kstat_update(kstat_t *kp, int rw);
741 static void	*ip_kstat2_init(netstackid_t, ip_stat_t *);
742 static void	ip_kstat2_fini(netstackid_t, kstat_t *);
743 
744 static void	ipobs_init(ip_stack_t *);
745 static void	ipobs_fini(ip_stack_t *);
746 
747 static int	ip_tp_cpu_update(cpu_setup_t, int, void *);
748 
749 ipaddr_t	ip_g_all_ones = IP_HOST_MASK;
750 
751 static long ip_rput_pullups;
752 int	dohwcksum = 1;	/* use h/w cksum if supported by the hardware */
753 
754 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */
755 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */
756 
757 int	ip_debug;
758 
759 /*
760  * Multirouting/CGTP stuff
761  */
762 int	ip_cgtp_filter_rev = CGTP_FILTER_REV;	/* CGTP hooks version */
763 
764 /*
765  * IP tunables related declarations. Definitions are in ip_tunables.c
766  */
767 extern mod_prop_info_t ip_propinfo_tbl[];
768 extern int ip_propinfo_count;
769 
770 /*
771  * Table of IP ioctls encoding the various properties of the ioctl and
772  * indexed based on the last byte of the ioctl command. Occasionally there
773  * is a clash, and there is more than 1 ioctl with the same last byte.
774  * In such a case 1 ioctl is encoded in the ndx table and the remaining
775  * ioctls are encoded in the misc table. An entry in the ndx table is
776  * retrieved by indexing on the last byte of the ioctl command and comparing
777  * the ioctl command with the value in the ndx table. In the event of a
778  * mismatch the misc table is then searched sequentially for the desired
779  * ioctl command.
780  *
781  * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func>
782  */
783 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = {
784 	/* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
785 	/* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
786 	/* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
787 	/* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
788 	/* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
789 	/* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
790 	/* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
791 	/* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
792 	/* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
793 	/* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
794 
795 	/* 010 */ { SIOCADDRT,	sizeof (struct rtentry), IPI_PRIV,
796 			MISC_CMD, ip_siocaddrt, NULL },
797 	/* 011 */ { SIOCDELRT,	sizeof (struct rtentry), IPI_PRIV,
798 			MISC_CMD, ip_siocdelrt, NULL },
799 
800 	/* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
801 			IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart },
802 	/* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD,
803 			IF_CMD, ip_sioctl_get_addr, NULL },
804 
805 	/* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
806 			IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart },
807 	/* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq),
808 			IPI_GET_CMD, IF_CMD, ip_sioctl_get_dstaddr, NULL },
809 
810 	/* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq),
811 			IPI_PRIV | IPI_WR,
812 			IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart },
813 	/* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq),
814 			IPI_MODOK | IPI_GET_CMD,
815 			IF_CMD, ip_sioctl_get_flags, NULL },
816 
817 	/* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
818 	/* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
819 
820 	/* copyin size cannot be coded for SIOCGIFCONF */
821 	/* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD,
822 			MISC_CMD, ip_sioctl_get_ifconf, NULL },
823 
824 	/* 021 */ { SIOCSIFMTU,	sizeof (struct ifreq), IPI_PRIV | IPI_WR,
825 			IF_CMD, ip_sioctl_mtu, NULL },
826 	/* 022 */ { SIOCGIFMTU,	sizeof (struct ifreq), IPI_GET_CMD,
827 			IF_CMD, ip_sioctl_get_mtu, NULL },
828 	/* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq),
829 			IPI_GET_CMD, IF_CMD, ip_sioctl_get_brdaddr, NULL },
830 	/* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
831 			IF_CMD, ip_sioctl_brdaddr, NULL },
832 	/* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq),
833 			IPI_GET_CMD, IF_CMD, ip_sioctl_get_netmask, NULL },
834 	/* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
835 			IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart },
836 	/* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq),
837 			IPI_GET_CMD, IF_CMD, ip_sioctl_get_metric, NULL },
838 	/* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV,
839 			IF_CMD, ip_sioctl_metric, NULL },
840 	/* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
841 
842 	/* See 166-168 below for extended SIOC*XARP ioctls */
843 	/* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR,
844 			ARP_CMD, ip_sioctl_arp, NULL },
845 	/* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD,
846 			ARP_CMD, ip_sioctl_arp, NULL },
847 	/* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR,
848 			ARP_CMD, ip_sioctl_arp, NULL },
849 
850 	/* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
851 	/* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
852 	/* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
853 	/* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
854 	/* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
855 	/* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
856 	/* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
857 	/* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
858 	/* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
859 	/* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
860 	/* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
861 	/* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
862 	/* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
863 	/* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
864 	/* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
865 	/* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
866 	/* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
867 	/* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
868 	/* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
869 	/* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
870 	/* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
871 
872 	/* 054 */ { IF_UNITSEL,	sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK,
873 			MISC_CMD, if_unitsel, if_unitsel_restart },
874 
875 	/* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
876 	/* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
877 	/* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
878 	/* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
879 	/* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
880 	/* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
881 	/* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
882 	/* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
883 	/* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
884 	/* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
885 	/* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
886 	/* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
887 	/* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
888 	/* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
889 	/* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
890 	/* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
891 	/* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
892 	/* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
893 
894 	/* 073 */ { SIOCSIFNAME, sizeof (struct ifreq),
895 			IPI_PRIV | IPI_WR | IPI_MODOK,
896 			IF_CMD, ip_sioctl_sifname, NULL },
897 
898 	/* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
899 	/* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
900 	/* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
901 	/* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
902 	/* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
903 	/* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
904 	/* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
905 	/* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
906 	/* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
907 	/* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
908 	/* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
909 	/* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
910 	/* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
911 
912 	/* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD,
913 			MISC_CMD, ip_sioctl_get_ifnum, NULL },
914 	/* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD,
915 			IF_CMD, ip_sioctl_get_muxid, NULL },
916 	/* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq),
917 			IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_muxid, NULL },
918 
919 	/* Both if and lif variants share same func */
920 	/* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD,
921 			IF_CMD, ip_sioctl_get_lifindex, NULL },
922 	/* Both if and lif variants share same func */
923 	/* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq),
924 			IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_slifindex, NULL },
925 
926 	/* copyin size cannot be coded for SIOCGIFCONF */
927 	/* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD,
928 			MISC_CMD, ip_sioctl_get_ifconf, NULL },
929 	/* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
930 	/* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
931 	/* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
932 	/* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
933 	/* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
934 	/* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
935 	/* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
936 	/* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
937 	/* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
938 	/* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
939 	/* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
940 	/* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
941 	/* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
942 	/* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
943 	/* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
944 	/* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
945 	/* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
946 
947 	/* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq),
948 			IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_removeif,
949 			ip_sioctl_removeif_restart },
950 	/* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq),
951 			IPI_GET_CMD | IPI_PRIV | IPI_WR,
952 			LIF_CMD, ip_sioctl_addif, NULL },
953 #define	SIOCLIFADDR_NDX 112
954 	/* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
955 			LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart },
956 	/* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq),
957 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL },
958 	/* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
959 			LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart },
960 	/* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq),
961 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL },
962 	/* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq),
963 			IPI_PRIV | IPI_WR,
964 			LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart },
965 	/* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq),
966 			IPI_GET_CMD | IPI_MODOK,
967 			LIF_CMD, ip_sioctl_get_flags, NULL },
968 
969 	/* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
970 	/* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
971 
972 	/* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD,
973 			ip_sioctl_get_lifconf, NULL },
974 	/* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
975 			LIF_CMD, ip_sioctl_mtu, NULL },
976 	/* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD,
977 			LIF_CMD, ip_sioctl_get_mtu, NULL },
978 	/* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq),
979 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL },
980 	/* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
981 			LIF_CMD, ip_sioctl_brdaddr, NULL },
982 	/* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq),
983 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_netmask, NULL },
984 	/* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
985 			LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart },
986 	/* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq),
987 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL },
988 	/* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
989 			LIF_CMD, ip_sioctl_metric, NULL },
990 	/* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq),
991 			IPI_PRIV | IPI_WR | IPI_MODOK,
992 			LIF_CMD, ip_sioctl_slifname,
993 			ip_sioctl_slifname_restart },
994 
995 	/* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD,
996 			MISC_CMD, ip_sioctl_get_lifnum, NULL },
997 	/* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq),
998 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_muxid, NULL },
999 	/* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq),
1000 			IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_muxid, NULL },
1001 	/* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq),
1002 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifindex, 0 },
1003 	/* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq),
1004 			IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifindex, 0 },
1005 	/* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1006 			LIF_CMD, ip_sioctl_token, NULL },
1007 	/* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq),
1008 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL },
1009 	/* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1010 			LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart },
1011 	/* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq),
1012 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL },
1013 	/* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1014 			LIF_CMD, ip_sioctl_lnkinfo, NULL },
1015 
1016 	/* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq),
1017 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lnkinfo, NULL },
1018 	/* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV,
1019 			LIF_CMD, ip_siocdelndp_v6, NULL },
1020 	/* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD,
1021 			LIF_CMD, ip_siocqueryndp_v6, NULL },
1022 	/* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV,
1023 			LIF_CMD, ip_siocsetndp_v6, NULL },
1024 	/* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD,
1025 			MISC_CMD, ip_sioctl_tmyaddr, NULL },
1026 	/* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD,
1027 			MISC_CMD, ip_sioctl_tonlink, NULL },
1028 	/* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0,
1029 			MISC_CMD, ip_sioctl_tmysite, NULL },
1030 	/* 147 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1031 	/* 148 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1032 
1033 	/* Old *IPSECONFIG ioctls are now deprecated, now see spdsock.c */
1034 	/* 149 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1035 	/* 150 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1036 	/* 151 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1037 	/* 152 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1038 
1039 	/* 153 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1040 
1041 	/* 154 */ { SIOCGLIFBINDING, sizeof (struct lifreq), IPI_GET_CMD,
1042 			LIF_CMD, ip_sioctl_get_binding, NULL },
1043 	/* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq),
1044 			IPI_PRIV | IPI_WR,
1045 			LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname },
1046 	/* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq),
1047 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL },
1048 	/* 157 */ { SIOCGLIFGROUPINFO, sizeof (lifgroupinfo_t),
1049 			IPI_GET_CMD, MISC_CMD, ip_sioctl_groupinfo, NULL },
1050 
1051 	/* Leave 158-160 unused; used to be SIOC*IFARP ioctls */
1052 	/* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1053 	/* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1054 	/* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1055 
1056 	/* 161 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1057 
1058 	/* These are handled in ip_sioctl_copyin_setup itself */
1059 	/* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT,
1060 			MISC_CMD, NULL, NULL },
1061 	/* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT,
1062 			MISC_CMD, NULL, NULL },
1063 	/* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL },
1064 
1065 	/* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD,
1066 			ip_sioctl_get_lifconf, NULL },
1067 
1068 	/* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR,
1069 			XARP_CMD, ip_sioctl_arp, NULL },
1070 	/* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD,
1071 			XARP_CMD, ip_sioctl_arp, NULL },
1072 	/* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR,
1073 			XARP_CMD, ip_sioctl_arp, NULL },
1074 
1075 	/* SIOCPOPSOCKFS is not handled by IP */
1076 	/* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL },
1077 
1078 	/* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq),
1079 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL },
1080 	/* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq),
1081 			IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifzone,
1082 			ip_sioctl_slifzone_restart },
1083 	/* 172-174 are SCTP ioctls and not handled by IP */
1084 	/* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1085 	/* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1086 	/* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1087 	/* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq),
1088 			IPI_GET_CMD, LIF_CMD,
1089 			ip_sioctl_get_lifusesrc, 0 },
1090 	/* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq),
1091 			IPI_PRIV | IPI_WR,
1092 			LIF_CMD, ip_sioctl_slifusesrc,
1093 			NULL },
1094 	/* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD,
1095 			ip_sioctl_get_lifsrcof, NULL },
1096 	/* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD,
1097 			MSFILT_CMD, ip_sioctl_msfilter, NULL },
1098 	/* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), 0,
1099 			MSFILT_CMD, ip_sioctl_msfilter, NULL },
1100 	/* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD,
1101 			MSFILT_CMD, ip_sioctl_msfilter, NULL },
1102 	/* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), 0,
1103 			MSFILT_CMD, ip_sioctl_msfilter, NULL },
1104 	/* 182 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1105 	/* SIOCSENABLESDP is handled by SDP */
1106 	/* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL },
1107 	/* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL },
1108 	/* 185 */ { SIOCGIFHWADDR, sizeof (struct ifreq), IPI_GET_CMD,
1109 			IF_CMD, ip_sioctl_get_ifhwaddr, NULL },
1110 	/* 186 */ { IPI_DONTCARE /* SIOCGSTAMP */, 0, 0, 0, NULL, NULL },
1111 	/* 187 */ { SIOCILB, 0, IPI_PRIV | IPI_GET_CMD, MISC_CMD,
1112 			ip_sioctl_ilb_cmd, NULL },
1113 	/* 188 */ { SIOCGETPROP, 0, IPI_GET_CMD, 0, NULL, NULL },
1114 	/* 189 */ { SIOCSETPROP, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL},
1115 	/* 190 */ { SIOCGLIFDADSTATE, sizeof (struct lifreq),
1116 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dadstate, NULL },
1117 	/* 191 */ { SIOCSLIFPREFIX, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1118 			LIF_CMD, ip_sioctl_prefix, ip_sioctl_prefix_restart },
1119 	/* 192 */ { SIOCGLIFHWADDR, sizeof (struct lifreq), IPI_GET_CMD,
1120 			LIF_CMD, ip_sioctl_get_lifhwaddr, NULL }
1121 };
1122 
1123 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t);
1124 
1125 ip_ioctl_cmd_t ip_misc_ioctl_table[] = {
1126 	{ I_LINK,	0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1127 	{ I_UNLINK,	0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1128 	{ I_PLINK,	0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1129 	{ I_PUNLINK,	0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1130 	{ ND_GET,	0, 0, 0, NULL, NULL },
1131 	{ ND_SET,	0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1132 	{ IP_IOCTL,	0, 0, 0, NULL, NULL },
1133 	{ SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_GET_CMD,
1134 		MISC_CMD, mrt_ioctl},
1135 	{ SIOCGETSGCNT,	sizeof (struct sioc_sg_req), IPI_GET_CMD,
1136 		MISC_CMD, mrt_ioctl},
1137 	{ SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_GET_CMD,
1138 		MISC_CMD, mrt_ioctl}
1139 };
1140 
1141 int ip_misc_ioctl_count =
1142     sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t);
1143 
1144 int	conn_drain_nthreads;		/* Number of drainers reqd. */
1145 					/* Settable in /etc/system */
1146 /* Defined in ip_ire.c */
1147 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt;
1148 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt;
1149 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio;
1150 
1151 static nv_t	ire_nv_arr[] = {
1152 	{ IRE_BROADCAST, "BROADCAST" },
1153 	{ IRE_LOCAL, "LOCAL" },
1154 	{ IRE_LOOPBACK, "LOOPBACK" },
1155 	{ IRE_DEFAULT, "DEFAULT" },
1156 	{ IRE_PREFIX, "PREFIX" },
1157 	{ IRE_IF_NORESOLVER, "IF_NORESOL" },
1158 	{ IRE_IF_RESOLVER, "IF_RESOLV" },
1159 	{ IRE_IF_CLONE, "IF_CLONE" },
1160 	{ IRE_HOST, "HOST" },
1161 	{ IRE_MULTICAST, "MULTICAST" },
1162 	{ IRE_NOROUTE, "NOROUTE" },
1163 	{ 0 }
1164 };
1165 
1166 nv_t	*ire_nv_tbl = ire_nv_arr;
1167 
1168 /* Simple ICMP IP Header Template */
1169 static ipha_t icmp_ipha = {
1170 	IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP
1171 };
1172 
1173 struct module_info ip_mod_info = {
1174 	IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT,
1175 	IP_MOD_LOWAT
1176 };
1177 
1178 /*
1179  * Duplicate static symbols within a module confuses mdb; so we avoid the
1180  * problem by making the symbols here distinct from those in udp.c.
1181  */
1182 
1183 /*
1184  * Entry points for IP as a device and as a module.
1185  * We have separate open functions for the /dev/ip and /dev/ip6 devices.
1186  */
1187 static struct qinit iprinitv4 = {
1188 	ip_rput, NULL, ip_openv4, ip_close, NULL, &ip_mod_info
1189 };
1190 
1191 struct qinit iprinitv6 = {
1192 	ip_rput_v6, NULL, ip_openv6, ip_close, NULL, &ip_mod_info
1193 };
1194 
1195 static struct qinit ipwinit = {
1196 	ip_wput_nondata, ip_wsrv, NULL, NULL, NULL, &ip_mod_info
1197 };
1198 
1199 static struct qinit iplrinit = {
1200 	ip_lrput, NULL, ip_openv4, ip_close, NULL, &ip_mod_info
1201 };
1202 
1203 static struct qinit iplwinit = {
1204 	ip_lwput, NULL, NULL, NULL, NULL, &ip_mod_info
1205 };
1206 
1207 /* For AF_INET aka /dev/ip */
1208 struct streamtab ipinfov4 = {
1209 	&iprinitv4, &ipwinit, &iplrinit, &iplwinit
1210 };
1211 
1212 /* For AF_INET6 aka /dev/ip6 */
1213 struct streamtab ipinfov6 = {
1214 	&iprinitv6, &ipwinit, &iplrinit, &iplwinit
1215 };
1216 
1217 #ifdef	DEBUG
1218 boolean_t skip_sctp_cksum = B_FALSE;
1219 #endif
1220 
1221 /*
1222  * Generate an ICMP fragmentation needed message.
1223  * When called from ip_output side a minimal ip_recv_attr_t needs to be
1224  * constructed by the caller.
1225  */
1226 void
1227 icmp_frag_needed(mblk_t *mp, int mtu, ip_recv_attr_t *ira)
1228 {
1229 	icmph_t	icmph;
1230 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
1231 
1232 	mp = icmp_pkt_err_ok(mp, ira);
1233 	if (mp == NULL)
1234 		return;
1235 
1236 	bzero(&icmph, sizeof (icmph_t));
1237 	icmph.icmph_type = ICMP_DEST_UNREACHABLE;
1238 	icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED;
1239 	icmph.icmph_du_mtu = htons((uint16_t)mtu);
1240 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded);
1241 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs);
1242 
1243 	icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
1244 }
1245 
1246 /*
1247  * icmp_inbound_v4 deals with ICMP messages that are handled by IP.
1248  * If the ICMP message is consumed by IP, i.e., it should not be delivered
1249  * to any IPPROTO_ICMP raw sockets, then it returns NULL.
1250  * Likewise, if the ICMP error is misformed (too short, etc), then it
1251  * returns NULL. The caller uses this to determine whether or not to send
1252  * to raw sockets.
1253  *
1254  * All error messages are passed to the matching transport stream.
1255  *
1256  * The following cases are handled by icmp_inbound:
1257  * 1) It needs to send a reply back and possibly delivering it
1258  *    to the "interested" upper clients.
1259  * 2) Return the mblk so that the caller can pass it to the RAW socket clients.
1260  * 3) It needs to change some values in IP only.
1261  * 4) It needs to change some values in IP and upper layers e.g TCP
1262  *    by delivering an error to the upper layers.
1263  *
1264  * We handle the above three cases in the context of IPsec in the
1265  * following way :
1266  *
1267  * 1) Send the reply back in the same way as the request came in.
1268  *    If it came in encrypted, it goes out encrypted. If it came in
1269  *    clear, it goes out in clear. Thus, this will prevent chosen
1270  *    plain text attack.
1271  * 2) The client may or may not expect things to come in secure.
1272  *    If it comes in secure, the policy constraints are checked
1273  *    before delivering it to the upper layers. If it comes in
1274  *    clear, ipsec_inbound_accept_clear will decide whether to
1275  *    accept this in clear or not. In both the cases, if the returned
1276  *    message (IP header + 8 bytes) that caused the icmp message has
1277  *    AH/ESP headers, it is sent up to AH/ESP for validation before
1278  *    sending up. If there are only 8 bytes of returned message, then
1279  *    upper client will not be notified.
1280  * 3) Check with global policy to see whether it matches the constaints.
1281  *    But this will be done only if icmp_accept_messages_in_clear is
1282  *    zero.
1283  * 4) If we need to change both in IP and ULP, then the decision taken
1284  *    while affecting the values in IP and while delivering up to TCP
1285  *    should be the same.
1286  *
1287  *	There are two cases.
1288  *
1289  *	a) If we reject data at the IP layer (ipsec_check_global_policy()
1290  *	   failed), we will not deliver it to the ULP, even though they
1291  *	   are *willing* to accept in *clear*. This is fine as our global
1292  *	   disposition to icmp messages asks us reject the datagram.
1293  *
1294  *	b) If we accept data at the IP layer (ipsec_check_global_policy()
1295  *	   succeeded or icmp_accept_messages_in_clear is 1), and not able
1296  *	   to deliver it to ULP (policy failed), it can lead to
1297  *	   consistency problems. The cases known at this time are
1298  *	   ICMP_DESTINATION_UNREACHABLE  messages with following code
1299  *	   values :
1300  *
1301  *	   - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value
1302  *	     and Upper layer rejects. Then the communication will
1303  *	     come to a stop. This is solved by making similar decisions
1304  *	     at both levels. Currently, when we are unable to deliver
1305  *	     to the Upper Layer (due to policy failures) while IP has
1306  *	     adjusted dce_pmtu, the next outbound datagram would
1307  *	     generate a local ICMP_FRAGMENTATION_NEEDED message - which
1308  *	     will be with the right level of protection. Thus the right
1309  *	     value will be communicated even if we are not able to
1310  *	     communicate when we get from the wire initially. But this
1311  *	     assumes there would be at least one outbound datagram after
1312  *	     IP has adjusted its dce_pmtu value. To make things
1313  *	     simpler, we accept in clear after the validation of
1314  *	     AH/ESP headers.
1315  *
1316  *	   - Other ICMP ERRORS : We may not be able to deliver it to the
1317  *	     upper layer depending on the level of protection the upper
1318  *	     layer expects and the disposition in ipsec_inbound_accept_clear().
1319  *	     ipsec_inbound_accept_clear() decides whether a given ICMP error
1320  *	     should be accepted in clear when the Upper layer expects secure.
1321  *	     Thus the communication may get aborted by some bad ICMP
1322  *	     packets.
1323  */
1324 mblk_t *
1325 icmp_inbound_v4(mblk_t *mp, ip_recv_attr_t *ira)
1326 {
1327 	icmph_t		*icmph;
1328 	ipha_t		*ipha;		/* Outer header */
1329 	int		ip_hdr_length;	/* Outer header length */
1330 	boolean_t	interested;
1331 	ipif_t		*ipif;
1332 	uint32_t	ts;
1333 	uint32_t	*tsp;
1334 	timestruc_t	now;
1335 	ill_t		*ill = ira->ira_ill;
1336 	ip_stack_t	*ipst = ill->ill_ipst;
1337 	zoneid_t	zoneid = ira->ira_zoneid;
1338 	int		len_needed;
1339 	mblk_t		*mp_ret = NULL;
1340 
1341 	ipha = (ipha_t *)mp->b_rptr;
1342 
1343 	BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs);
1344 
1345 	ip_hdr_length = ira->ira_ip_hdr_length;
1346 	if ((mp->b_wptr - mp->b_rptr) < (ip_hdr_length + ICMPH_SIZE)) {
1347 		if (ira->ira_pktlen < (ip_hdr_length + ICMPH_SIZE)) {
1348 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
1349 			ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
1350 			freemsg(mp);
1351 			return (NULL);
1352 		}
1353 		/* Last chance to get real. */
1354 		ipha = ip_pullup(mp, ip_hdr_length + ICMPH_SIZE, ira);
1355 		if (ipha == NULL) {
1356 			BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors);
1357 			freemsg(mp);
1358 			return (NULL);
1359 		}
1360 	}
1361 
1362 	/* The IP header will always be a multiple of four bytes */
1363 	icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1364 	ip2dbg(("icmp_inbound_v4: type %d code %d\n", icmph->icmph_type,
1365 	    icmph->icmph_code));
1366 
1367 	/*
1368 	 * We will set "interested" to "true" if we should pass a copy to
1369 	 * the transport or if we handle the packet locally.
1370 	 */
1371 	interested = B_FALSE;
1372 	switch (icmph->icmph_type) {
1373 	case ICMP_ECHO_REPLY:
1374 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps);
1375 		break;
1376 	case ICMP_DEST_UNREACHABLE:
1377 		if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED)
1378 			BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded);
1379 		interested = B_TRUE;	/* Pass up to transport */
1380 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs);
1381 		break;
1382 	case ICMP_SOURCE_QUENCH:
1383 		interested = B_TRUE;	/* Pass up to transport */
1384 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs);
1385 		break;
1386 	case ICMP_REDIRECT:
1387 		if (!ipst->ips_ip_ignore_redirect)
1388 			interested = B_TRUE;
1389 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects);
1390 		break;
1391 	case ICMP_ECHO_REQUEST:
1392 		/*
1393 		 * Whether to respond to echo requests that come in as IP
1394 		 * broadcasts or as IP multicast is subject to debate
1395 		 * (what isn't?).  We aim to please, you pick it.
1396 		 * Default is do it.
1397 		 */
1398 		if (ira->ira_flags & IRAF_MULTICAST) {
1399 			/* multicast: respond based on tunable */
1400 			interested = ipst->ips_ip_g_resp_to_echo_mcast;
1401 		} else if (ira->ira_flags & IRAF_BROADCAST) {
1402 			/* broadcast: respond based on tunable */
1403 			interested = ipst->ips_ip_g_resp_to_echo_bcast;
1404 		} else {
1405 			/* unicast: always respond */
1406 			interested = B_TRUE;
1407 		}
1408 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos);
1409 		if (!interested) {
1410 			/* We never pass these to RAW sockets */
1411 			freemsg(mp);
1412 			return (NULL);
1413 		}
1414 
1415 		/* Check db_ref to make sure we can modify the packet. */
1416 		if (mp->b_datap->db_ref > 1) {
1417 			mblk_t	*mp1;
1418 
1419 			mp1 = copymsg(mp);
1420 			freemsg(mp);
1421 			if (!mp1) {
1422 				BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1423 				return (NULL);
1424 			}
1425 			mp = mp1;
1426 			ipha = (ipha_t *)mp->b_rptr;
1427 			icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1428 		}
1429 		icmph->icmph_type = ICMP_ECHO_REPLY;
1430 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps);
1431 		icmp_send_reply_v4(mp, ipha, icmph, ira);
1432 		return (NULL);
1433 
1434 	case ICMP_ROUTER_ADVERTISEMENT:
1435 	case ICMP_ROUTER_SOLICITATION:
1436 		break;
1437 	case ICMP_TIME_EXCEEDED:
1438 		interested = B_TRUE;	/* Pass up to transport */
1439 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds);
1440 		break;
1441 	case ICMP_PARAM_PROBLEM:
1442 		interested = B_TRUE;	/* Pass up to transport */
1443 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs);
1444 		break;
1445 	case ICMP_TIME_STAMP_REQUEST:
1446 		/* Response to Time Stamp Requests is local policy. */
1447 		if (ipst->ips_ip_g_resp_to_timestamp) {
1448 			if (ira->ira_flags & IRAF_MULTIBROADCAST)
1449 				interested =
1450 				    ipst->ips_ip_g_resp_to_timestamp_bcast;
1451 			else
1452 				interested = B_TRUE;
1453 		}
1454 		if (!interested) {
1455 			/* We never pass these to RAW sockets */
1456 			freemsg(mp);
1457 			return (NULL);
1458 		}
1459 
1460 		/* Make sure we have enough of the packet */
1461 		len_needed = ip_hdr_length + ICMPH_SIZE +
1462 		    3 * sizeof (uint32_t);
1463 
1464 		if (mp->b_wptr - mp->b_rptr < len_needed) {
1465 			ipha = ip_pullup(mp, len_needed, ira);
1466 			if (ipha == NULL) {
1467 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1468 				ip_drop_input("ipIfStatsInDiscards - ip_pullup",
1469 				    mp, ill);
1470 				freemsg(mp);
1471 				return (NULL);
1472 			}
1473 			/* Refresh following the pullup. */
1474 			icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1475 		}
1476 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps);
1477 		/* Check db_ref to make sure we can modify the packet. */
1478 		if (mp->b_datap->db_ref > 1) {
1479 			mblk_t	*mp1;
1480 
1481 			mp1 = copymsg(mp);
1482 			freemsg(mp);
1483 			if (!mp1) {
1484 				BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1485 				return (NULL);
1486 			}
1487 			mp = mp1;
1488 			ipha = (ipha_t *)mp->b_rptr;
1489 			icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1490 		}
1491 		icmph->icmph_type = ICMP_TIME_STAMP_REPLY;
1492 		tsp = (uint32_t *)&icmph[1];
1493 		tsp++;		/* Skip past 'originate time' */
1494 		/* Compute # of milliseconds since midnight */
1495 		gethrestime(&now);
1496 		ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
1497 		    NSEC2MSEC(now.tv_nsec);
1498 		*tsp++ = htonl(ts);	/* Lay in 'receive time' */
1499 		*tsp++ = htonl(ts);	/* Lay in 'send time' */
1500 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps);
1501 		icmp_send_reply_v4(mp, ipha, icmph, ira);
1502 		return (NULL);
1503 
1504 	case ICMP_TIME_STAMP_REPLY:
1505 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps);
1506 		break;
1507 	case ICMP_INFO_REQUEST:
1508 		/* Per RFC 1122 3.2.2.7, ignore this. */
1509 	case ICMP_INFO_REPLY:
1510 		break;
1511 	case ICMP_ADDRESS_MASK_REQUEST:
1512 		if (ira->ira_flags & IRAF_MULTIBROADCAST) {
1513 			interested =
1514 			    ipst->ips_ip_respond_to_address_mask_broadcast;
1515 		} else {
1516 			interested = B_TRUE;
1517 		}
1518 		if (!interested) {
1519 			/* We never pass these to RAW sockets */
1520 			freemsg(mp);
1521 			return (NULL);
1522 		}
1523 		len_needed = ip_hdr_length + ICMPH_SIZE + IP_ADDR_LEN;
1524 		if (mp->b_wptr - mp->b_rptr < len_needed) {
1525 			ipha = ip_pullup(mp, len_needed, ira);
1526 			if (ipha == NULL) {
1527 				BUMP_MIB(ill->ill_ip_mib,
1528 				    ipIfStatsInTruncatedPkts);
1529 				ip_drop_input("ipIfStatsInTruncatedPkts", mp,
1530 				    ill);
1531 				freemsg(mp);
1532 				return (NULL);
1533 			}
1534 			/* Refresh following the pullup. */
1535 			icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1536 		}
1537 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks);
1538 		/* Check db_ref to make sure we can modify the packet. */
1539 		if (mp->b_datap->db_ref > 1) {
1540 			mblk_t	*mp1;
1541 
1542 			mp1 = copymsg(mp);
1543 			freemsg(mp);
1544 			if (!mp1) {
1545 				BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1546 				return (NULL);
1547 			}
1548 			mp = mp1;
1549 			ipha = (ipha_t *)mp->b_rptr;
1550 			icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1551 		}
1552 		/*
1553 		 * Need the ipif with the mask be the same as the source
1554 		 * address of the mask reply. For unicast we have a specific
1555 		 * ipif. For multicast/broadcast we only handle onlink
1556 		 * senders, and use the source address to pick an ipif.
1557 		 */
1558 		ipif = ipif_lookup_addr(ipha->ipha_dst, ill, zoneid, ipst);
1559 		if (ipif == NULL) {
1560 			/* Broadcast or multicast */
1561 			ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid);
1562 			if (ipif == NULL) {
1563 				freemsg(mp);
1564 				return (NULL);
1565 			}
1566 		}
1567 		icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY;
1568 		bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN);
1569 		ipif_refrele(ipif);
1570 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps);
1571 		icmp_send_reply_v4(mp, ipha, icmph, ira);
1572 		return (NULL);
1573 
1574 	case ICMP_ADDRESS_MASK_REPLY:
1575 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps);
1576 		break;
1577 	default:
1578 		interested = B_TRUE;	/* Pass up to transport */
1579 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns);
1580 		break;
1581 	}
1582 	/*
1583 	 * See if there is an ICMP client to avoid an extra copymsg/freemsg
1584 	 * if there isn't one.
1585 	 */
1586 	if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_ICMP].connf_head != NULL) {
1587 		/* If there is an ICMP client and we want one too, copy it. */
1588 
1589 		if (!interested) {
1590 			/* Caller will deliver to RAW sockets */
1591 			return (mp);
1592 		}
1593 		mp_ret = copymsg(mp);
1594 		if (mp_ret == NULL) {
1595 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1596 			ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill);
1597 		}
1598 	} else if (!interested) {
1599 		/* Neither we nor raw sockets are interested. Drop packet now */
1600 		freemsg(mp);
1601 		return (NULL);
1602 	}
1603 
1604 	/*
1605 	 * ICMP error or redirect packet. Make sure we have enough of
1606 	 * the header and that db_ref == 1 since we might end up modifying
1607 	 * the packet.
1608 	 */
1609 	if (mp->b_cont != NULL) {
1610 		if (ip_pullup(mp, -1, ira) == NULL) {
1611 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1612 			ip_drop_input("ipIfStatsInDiscards - ip_pullup",
1613 			    mp, ill);
1614 			freemsg(mp);
1615 			return (mp_ret);
1616 		}
1617 	}
1618 
1619 	if (mp->b_datap->db_ref > 1) {
1620 		mblk_t	*mp1;
1621 
1622 		mp1 = copymsg(mp);
1623 		if (mp1 == NULL) {
1624 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1625 			ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill);
1626 			freemsg(mp);
1627 			return (mp_ret);
1628 		}
1629 		freemsg(mp);
1630 		mp = mp1;
1631 	}
1632 
1633 	/*
1634 	 * In case mp has changed, verify the message before any further
1635 	 * processes.
1636 	 */
1637 	ipha = (ipha_t *)mp->b_rptr;
1638 	icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1639 	if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
1640 		freemsg(mp);
1641 		return (mp_ret);
1642 	}
1643 
1644 	switch (icmph->icmph_type) {
1645 	case ICMP_REDIRECT:
1646 		icmp_redirect_v4(mp, ipha, icmph, ira);
1647 		break;
1648 	case ICMP_DEST_UNREACHABLE:
1649 		if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) {
1650 			/* Update DCE and adjust MTU is icmp header if needed */
1651 			icmp_inbound_too_big_v4(icmph, ira);
1652 		}
1653 		/* FALLTHROUGH */
1654 	default:
1655 		icmp_inbound_error_fanout_v4(mp, icmph, ira);
1656 		break;
1657 	}
1658 	return (mp_ret);
1659 }
1660 
1661 /*
1662  * Send an ICMP echo, timestamp or address mask reply.
1663  * The caller has already updated the payload part of the packet.
1664  * We handle the ICMP checksum, IP source address selection and feed
1665  * the packet into ip_output_simple.
1666  */
1667 static void
1668 icmp_send_reply_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph,
1669     ip_recv_attr_t *ira)
1670 {
1671 	uint_t		ip_hdr_length = ira->ira_ip_hdr_length;
1672 	ill_t		*ill = ira->ira_ill;
1673 	ip_stack_t	*ipst = ill->ill_ipst;
1674 	ip_xmit_attr_t	ixas;
1675 
1676 	/* Send out an ICMP packet */
1677 	icmph->icmph_checksum = 0;
1678 	icmph->icmph_checksum = IP_CSUM(mp, ip_hdr_length, 0);
1679 	/* Reset time to live. */
1680 	ipha->ipha_ttl = ipst->ips_ip_def_ttl;
1681 	{
1682 		/* Swap source and destination addresses */
1683 		ipaddr_t tmp;
1684 
1685 		tmp = ipha->ipha_src;
1686 		ipha->ipha_src = ipha->ipha_dst;
1687 		ipha->ipha_dst = tmp;
1688 	}
1689 	ipha->ipha_ident = 0;
1690 	if (!IS_SIMPLE_IPH(ipha))
1691 		icmp_options_update(ipha);
1692 
1693 	bzero(&ixas, sizeof (ixas));
1694 	ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
1695 	ixas.ixa_zoneid = ira->ira_zoneid;
1696 	ixas.ixa_cred = kcred;
1697 	ixas.ixa_cpid = NOPID;
1698 	ixas.ixa_tsl = ira->ira_tsl;	/* Behave as a multi-level responder */
1699 	ixas.ixa_ifindex = 0;
1700 	ixas.ixa_ipst = ipst;
1701 	ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1702 
1703 	if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) {
1704 		/*
1705 		 * This packet should go out the same way as it
1706 		 * came in i.e in clear, independent of the IPsec policy
1707 		 * for transmitting packets.
1708 		 */
1709 		ixas.ixa_flags |= IXAF_NO_IPSEC;
1710 	} else {
1711 		if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) {
1712 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1713 			/* Note: mp already consumed and ip_drop_packet done */
1714 			return;
1715 		}
1716 	}
1717 	if (ira->ira_flags & IRAF_MULTIBROADCAST) {
1718 		/*
1719 		 * Not one or our addresses (IRE_LOCALs), thus we let
1720 		 * ip_output_simple pick the source.
1721 		 */
1722 		ipha->ipha_src = INADDR_ANY;
1723 		ixas.ixa_flags |= IXAF_SET_SOURCE;
1724 	}
1725 	/* Should we send with DF and use dce_pmtu? */
1726 	if (ipst->ips_ipv4_icmp_return_pmtu) {
1727 		ixas.ixa_flags |= IXAF_PMTU_DISCOVERY;
1728 		ipha->ipha_fragment_offset_and_flags |= IPH_DF_HTONS;
1729 	}
1730 
1731 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs);
1732 
1733 	(void) ip_output_simple(mp, &ixas);
1734 	ixa_cleanup(&ixas);
1735 }
1736 
1737 /*
1738  * Verify the ICMP messages for either for ICMP error or redirect packet.
1739  * The caller should have fully pulled up the message. If it's a redirect
1740  * packet, only basic checks on IP header will be done; otherwise, verify
1741  * the packet by looking at the included ULP header.
1742  *
1743  * Called before icmp_inbound_error_fanout_v4 is called.
1744  */
1745 static boolean_t
1746 icmp_inbound_verify_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira)
1747 {
1748 	ill_t		*ill = ira->ira_ill;
1749 	int		hdr_length;
1750 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
1751 	conn_t		*connp;
1752 	ipha_t		*ipha;	/* Inner IP header */
1753 
1754 	ipha = (ipha_t *)&icmph[1];
1755 	if ((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH > mp->b_wptr)
1756 		goto truncated;
1757 
1758 	hdr_length = IPH_HDR_LENGTH(ipha);
1759 
1760 	if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION))
1761 		goto discard_pkt;
1762 
1763 	if (hdr_length < sizeof (ipha_t))
1764 		goto truncated;
1765 
1766 	if ((uchar_t *)ipha + hdr_length > mp->b_wptr)
1767 		goto truncated;
1768 
1769 	/*
1770 	 * Stop here for ICMP_REDIRECT.
1771 	 */
1772 	if (icmph->icmph_type == ICMP_REDIRECT)
1773 		return (B_TRUE);
1774 
1775 	/*
1776 	 * ICMP errors only.
1777 	 */
1778 	switch (ipha->ipha_protocol) {
1779 	case IPPROTO_UDP:
1780 		/*
1781 		 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
1782 		 * transport header.
1783 		 */
1784 		if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
1785 		    mp->b_wptr)
1786 			goto truncated;
1787 		break;
1788 	case IPPROTO_TCP: {
1789 		tcpha_t		*tcpha;
1790 
1791 		/*
1792 		 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
1793 		 * transport header.
1794 		 */
1795 		if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
1796 		    mp->b_wptr)
1797 			goto truncated;
1798 
1799 		tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length);
1800 		connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN,
1801 		    ipst);
1802 		if (connp == NULL)
1803 			goto discard_pkt;
1804 
1805 		if ((connp->conn_verifyicmp != NULL) &&
1806 		    !connp->conn_verifyicmp(connp, tcpha, icmph, NULL, ira)) {
1807 			CONN_DEC_REF(connp);
1808 			goto discard_pkt;
1809 		}
1810 		CONN_DEC_REF(connp);
1811 		break;
1812 	}
1813 	case IPPROTO_SCTP:
1814 		/*
1815 		 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
1816 		 * transport header.
1817 		 */
1818 		if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
1819 		    mp->b_wptr)
1820 			goto truncated;
1821 		break;
1822 	case IPPROTO_ESP:
1823 	case IPPROTO_AH:
1824 		break;
1825 	case IPPROTO_ENCAP:
1826 		if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) >
1827 		    mp->b_wptr)
1828 			goto truncated;
1829 		break;
1830 	default:
1831 		break;
1832 	}
1833 
1834 	return (B_TRUE);
1835 
1836 discard_pkt:
1837 	/* Bogus ICMP error. */
1838 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1839 	return (B_FALSE);
1840 
1841 truncated:
1842 	/* We pulled up everthing already. Must be truncated */
1843 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
1844 	ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
1845 	return (B_FALSE);
1846 }
1847 
1848 /* Table from RFC 1191 */
1849 static int icmp_frag_size_table[] =
1850 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 };
1851 
1852 /*
1853  * Process received ICMP Packet too big.
1854  * Just handles the DCE create/update, including using the above table of
1855  * PMTU guesses. The caller is responsible for validating the packet before
1856  * passing it in and also to fanout the ICMP error to any matching transport
1857  * conns. Assumes the message has been fully pulled up and verified.
1858  *
1859  * Before getting here, the caller has called icmp_inbound_verify_v4()
1860  * that should have verified with ULP to prevent undoing the changes we're
1861  * going to make to DCE. For example, TCP might have verified that the packet
1862  * which generated error is in the send window.
1863  *
1864  * In some cases modified this MTU in the ICMP header packet; the caller
1865  * should pass to the matching ULP after this returns.
1866  */
1867 static void
1868 icmp_inbound_too_big_v4(icmph_t *icmph, ip_recv_attr_t *ira)
1869 {
1870 	dce_t		*dce;
1871 	int		old_mtu;
1872 	int		mtu, orig_mtu;
1873 	ipaddr_t	dst;
1874 	boolean_t	disable_pmtud;
1875 	ill_t		*ill = ira->ira_ill;
1876 	ip_stack_t	*ipst = ill->ill_ipst;
1877 	uint_t		hdr_length;
1878 	ipha_t		*ipha;
1879 
1880 	/* Caller already pulled up everything. */
1881 	ipha = (ipha_t *)&icmph[1];
1882 	ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE &&
1883 	    icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED);
1884 	ASSERT(ill != NULL);
1885 
1886 	hdr_length = IPH_HDR_LENGTH(ipha);
1887 
1888 	/*
1889 	 * We handle path MTU for source routed packets since the DCE
1890 	 * is looked up using the final destination.
1891 	 */
1892 	dst = ip_get_dst(ipha);
1893 
1894 	dce = dce_lookup_and_add_v4(dst, ipst);
1895 	if (dce == NULL) {
1896 		/* Couldn't add a unique one - ENOMEM */
1897 		ip1dbg(("icmp_inbound_too_big_v4: no dce for 0x%x\n",
1898 		    ntohl(dst)));
1899 		return;
1900 	}
1901 
1902 	/* Check for MTU discovery advice as described in RFC 1191 */
1903 	mtu = ntohs(icmph->icmph_du_mtu);
1904 	orig_mtu = mtu;
1905 	disable_pmtud = B_FALSE;
1906 
1907 	mutex_enter(&dce->dce_lock);
1908 	if (dce->dce_flags & DCEF_PMTU)
1909 		old_mtu = dce->dce_pmtu;
1910 	else
1911 		old_mtu = ill->ill_mtu;
1912 
1913 	if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) {
1914 		uint32_t length;
1915 		int	i;
1916 
1917 		/*
1918 		 * Use the table from RFC 1191 to figure out
1919 		 * the next "plateau" based on the length in
1920 		 * the original IP packet.
1921 		 */
1922 		length = ntohs(ipha->ipha_length);
1923 		DTRACE_PROBE2(ip4__pmtu__guess, dce_t *, dce,
1924 		    uint32_t, length);
1925 		if (old_mtu <= length &&
1926 		    old_mtu >= length - hdr_length) {
1927 			/*
1928 			 * Handle broken BSD 4.2 systems that
1929 			 * return the wrong ipha_length in ICMP
1930 			 * errors.
1931 			 */
1932 			ip1dbg(("Wrong mtu: sent %d, dce %d\n",
1933 			    length, old_mtu));
1934 			length -= hdr_length;
1935 		}
1936 		for (i = 0; i < A_CNT(icmp_frag_size_table); i++) {
1937 			if (length > icmp_frag_size_table[i])
1938 				break;
1939 		}
1940 		if (i == A_CNT(icmp_frag_size_table)) {
1941 			/* Smaller than IP_MIN_MTU! */
1942 			ip1dbg(("Too big for packet size %d\n",
1943 			    length));
1944 			disable_pmtud = B_TRUE;
1945 			mtu = ipst->ips_ip_pmtu_min;
1946 		} else {
1947 			mtu = icmp_frag_size_table[i];
1948 			ip1dbg(("Calculated mtu %d, packet size %d, "
1949 			    "before %d\n", mtu, length, old_mtu));
1950 			if (mtu < ipst->ips_ip_pmtu_min) {
1951 				mtu = ipst->ips_ip_pmtu_min;
1952 				disable_pmtud = B_TRUE;
1953 			}
1954 		}
1955 	}
1956 	if (disable_pmtud)
1957 		dce->dce_flags |= DCEF_TOO_SMALL_PMTU;
1958 	else
1959 		dce->dce_flags &= ~DCEF_TOO_SMALL_PMTU;
1960 
1961 	dce->dce_pmtu = MIN(old_mtu, mtu);
1962 	/* Prepare to send the new max frag size for the ULP. */
1963 	icmph->icmph_du_zero = 0;
1964 	icmph->icmph_du_mtu =  htons((uint16_t)dce->dce_pmtu);
1965 	DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, dce_t *,
1966 	    dce, int, orig_mtu, int, mtu);
1967 
1968 	/* We now have a PMTU for sure */
1969 	dce->dce_flags |= DCEF_PMTU;
1970 	dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64());
1971 	mutex_exit(&dce->dce_lock);
1972 	/*
1973 	 * After dropping the lock the new value is visible to everyone.
1974 	 * Then we bump the generation number so any cached values reinspect
1975 	 * the dce_t.
1976 	 */
1977 	dce_increment_generation(dce);
1978 	dce_refrele(dce);
1979 }
1980 
1981 /*
1982  * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout_v4
1983  * calls this function.
1984  */
1985 static mblk_t *
1986 icmp_inbound_self_encap_error_v4(mblk_t *mp, ipha_t *ipha, ipha_t *in_ipha)
1987 {
1988 	int length;
1989 
1990 	ASSERT(mp->b_datap->db_type == M_DATA);
1991 
1992 	/* icmp_inbound_v4 has already pulled up the whole error packet */
1993 	ASSERT(mp->b_cont == NULL);
1994 
1995 	/*
1996 	 * The length that we want to overlay is the inner header
1997 	 * and what follows it.
1998 	 */
1999 	length = msgdsize(mp) - ((uchar_t *)in_ipha - mp->b_rptr);
2000 
2001 	/*
2002 	 * Overlay the inner header and whatever follows it over the
2003 	 * outer header.
2004 	 */
2005 	bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length);
2006 
2007 	/* Adjust for what we removed */
2008 	mp->b_wptr -= (uchar_t *)in_ipha - (uchar_t *)ipha;
2009 	return (mp);
2010 }
2011 
2012 /*
2013  * Try to pass the ICMP message upstream in case the ULP cares.
2014  *
2015  * If the packet that caused the ICMP error is secure, we send
2016  * it to AH/ESP to make sure that the attached packet has a
2017  * valid association. ipha in the code below points to the
2018  * IP header of the packet that caused the error.
2019  *
2020  * For IPsec cases, we let the next-layer-up (which has access to
2021  * cached policy on the conn_t, or can query the SPD directly)
2022  * subtract out any IPsec overhead if they must.  We therefore make no
2023  * adjustments here for IPsec overhead.
2024  *
2025  * IFN could have been generated locally or by some router.
2026  *
2027  * LOCAL : ire_send_wire (before calling ipsec_out_process) can call
2028  * icmp_frag_needed/icmp_pkt2big_v6 to generated a local IFN.
2029  *	    This happens because IP adjusted its value of MTU on an
2030  *	    earlier IFN message and could not tell the upper layer,
2031  *	    the new adjusted value of MTU e.g. Packet was encrypted
2032  *	    or there was not enough information to fanout to upper
2033  *	    layers. Thus on the next outbound datagram, ire_send_wire
2034  *	    generates the IFN, where IPsec processing has *not* been
2035  *	    done.
2036  *
2037  *	    Note that we retain ixa_fragsize across IPsec thus once
2038  *	    we have picking ixa_fragsize and entered ipsec_out_process we do
2039  *	    no change the fragsize even if the path MTU changes before
2040  *	    we reach ip_output_post_ipsec.
2041  *
2042  *	    In the local case, IRAF_LOOPBACK will be set indicating
2043  *	    that IFN was generated locally.
2044  *
2045  * ROUTER : IFN could be secure or non-secure.
2046  *
2047  *	    * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the
2048  *	      packet in error has AH/ESP headers to validate the AH/ESP
2049  *	      headers. AH/ESP will verify whether there is a valid SA or
2050  *	      not and send it back. We will fanout again if we have more
2051  *	      data in the packet.
2052  *
2053  *	      If the packet in error does not have AH/ESP, we handle it
2054  *	      like any other case.
2055  *
2056  *	    * NON_SECURE : If the packet in error has AH/ESP headers, we send it
2057  *	      up to AH/ESP for validation. AH/ESP will verify whether there is a
2058  *	      valid SA or not and send it back. We will fanout again if
2059  *	      we have more data in the packet.
2060  *
2061  *	      If the packet in error does not have AH/ESP, we handle it
2062  *	      like any other case.
2063  *
2064  * The caller must have called icmp_inbound_verify_v4.
2065  */
2066 static void
2067 icmp_inbound_error_fanout_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira)
2068 {
2069 	uint16_t	*up;	/* Pointer to ports in ULP header */
2070 	uint32_t	ports;	/* reversed ports for fanout */
2071 	ipha_t		ripha;	/* With reversed addresses */
2072 	ipha_t		*ipha;  /* Inner IP header */
2073 	uint_t		hdr_length; /* Inner IP header length */
2074 	tcpha_t		*tcpha;
2075 	conn_t		*connp;
2076 	ill_t		*ill = ira->ira_ill;
2077 	ip_stack_t	*ipst = ill->ill_ipst;
2078 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
2079 	ill_t		*rill = ira->ira_rill;
2080 
2081 	/* Caller already pulled up everything. */
2082 	ipha = (ipha_t *)&icmph[1];
2083 	ASSERT((uchar_t *)&ipha[1] <= mp->b_wptr);
2084 	ASSERT(mp->b_cont == NULL);
2085 
2086 	hdr_length = IPH_HDR_LENGTH(ipha);
2087 	ira->ira_protocol = ipha->ipha_protocol;
2088 
2089 	/*
2090 	 * We need a separate IP header with the source and destination
2091 	 * addresses reversed to do fanout/classification because the ipha in
2092 	 * the ICMP error is in the form we sent it out.
2093 	 */
2094 	ripha.ipha_src = ipha->ipha_dst;
2095 	ripha.ipha_dst = ipha->ipha_src;
2096 	ripha.ipha_protocol = ipha->ipha_protocol;
2097 	ripha.ipha_version_and_hdr_length = ipha->ipha_version_and_hdr_length;
2098 
2099 	ip2dbg(("icmp_inbound_error_v4: proto %d %x to %x: %d/%d\n",
2100 	    ripha.ipha_protocol, ntohl(ipha->ipha_src),
2101 	    ntohl(ipha->ipha_dst),
2102 	    icmph->icmph_type, icmph->icmph_code));
2103 
2104 	switch (ipha->ipha_protocol) {
2105 	case IPPROTO_UDP:
2106 		up = (uint16_t *)((uchar_t *)ipha + hdr_length);
2107 
2108 		/* Attempt to find a client stream based on port. */
2109 		ip2dbg(("icmp_inbound_error_v4: UDP ports %d to %d\n",
2110 		    ntohs(up[0]), ntohs(up[1])));
2111 
2112 		/* Note that we send error to all matches. */
2113 		ira->ira_flags |= IRAF_ICMP_ERROR;
2114 		ip_fanout_udp_multi_v4(mp, &ripha, up[0], up[1], ira);
2115 		ira->ira_flags &= ~IRAF_ICMP_ERROR;
2116 		return;
2117 
2118 	case IPPROTO_TCP:
2119 		/*
2120 		 * Find a TCP client stream for this packet.
2121 		 * Note that we do a reverse lookup since the header is
2122 		 * in the form we sent it out.
2123 		 */
2124 		tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length);
2125 		connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN,
2126 		    ipst);
2127 		if (connp == NULL)
2128 			goto discard_pkt;
2129 
2130 		if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) ||
2131 		    (ira->ira_flags & IRAF_IPSEC_SECURE)) {
2132 			mp = ipsec_check_inbound_policy(mp, connp,
2133 			    ipha, NULL, ira);
2134 			if (mp == NULL) {
2135 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2136 				/* Note that mp is NULL */
2137 				ip_drop_input("ipIfStatsInDiscards", mp, ill);
2138 				CONN_DEC_REF(connp);
2139 				return;
2140 			}
2141 		}
2142 
2143 		ira->ira_flags |= IRAF_ICMP_ERROR;
2144 		ira->ira_ill = ira->ira_rill = NULL;
2145 		if (IPCL_IS_TCP(connp)) {
2146 			SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
2147 			    connp->conn_recvicmp, connp, ira, SQ_FILL,
2148 			    SQTAG_TCP_INPUT_ICMP_ERR);
2149 		} else {
2150 			/* Not TCP; must be SOCK_RAW, IPPROTO_TCP */
2151 			(connp->conn_recv)(connp, mp, NULL, ira);
2152 			CONN_DEC_REF(connp);
2153 		}
2154 		ira->ira_ill = ill;
2155 		ira->ira_rill = rill;
2156 		ira->ira_flags &= ~IRAF_ICMP_ERROR;
2157 		return;
2158 
2159 	case IPPROTO_SCTP:
2160 		up = (uint16_t *)((uchar_t *)ipha + hdr_length);
2161 		/* Find a SCTP client stream for this packet. */
2162 		((uint16_t *)&ports)[0] = up[1];
2163 		((uint16_t *)&ports)[1] = up[0];
2164 
2165 		ira->ira_flags |= IRAF_ICMP_ERROR;
2166 		ip_fanout_sctp(mp, &ripha, NULL, ports, ira);
2167 		ira->ira_flags &= ~IRAF_ICMP_ERROR;
2168 		return;
2169 
2170 	case IPPROTO_ESP:
2171 	case IPPROTO_AH:
2172 		if (!ipsec_loaded(ipss)) {
2173 			ip_proto_not_sup(mp, ira);
2174 			return;
2175 		}
2176 
2177 		if (ipha->ipha_protocol == IPPROTO_ESP)
2178 			mp = ipsecesp_icmp_error(mp, ira);
2179 		else
2180 			mp = ipsecah_icmp_error(mp, ira);
2181 		if (mp == NULL)
2182 			return;
2183 
2184 		/* Just in case ipsec didn't preserve the NULL b_cont */
2185 		if (mp->b_cont != NULL) {
2186 			if (!pullupmsg(mp, -1))
2187 				goto discard_pkt;
2188 		}
2189 
2190 		/*
2191 		 * Note that ira_pktlen and ira_ip_hdr_length are no longer
2192 		 * correct, but we don't use them any more here.
2193 		 *
2194 		 * If succesful, the mp has been modified to not include
2195 		 * the ESP/AH header so we can fanout to the ULP's icmp
2196 		 * error handler.
2197 		 */
2198 		if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH)
2199 			goto truncated;
2200 
2201 		/* Verify the modified message before any further processes. */
2202 		ipha = (ipha_t *)mp->b_rptr;
2203 		hdr_length = IPH_HDR_LENGTH(ipha);
2204 		icmph = (icmph_t *)&mp->b_rptr[hdr_length];
2205 		if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
2206 			freemsg(mp);
2207 			return;
2208 		}
2209 
2210 		icmp_inbound_error_fanout_v4(mp, icmph, ira);
2211 		return;
2212 
2213 	case IPPROTO_ENCAP: {
2214 		/* Look for self-encapsulated packets that caused an error */
2215 		ipha_t *in_ipha;
2216 
2217 		/*
2218 		 * Caller has verified that length has to be
2219 		 * at least the size of IP header.
2220 		 */
2221 		ASSERT(hdr_length >= sizeof (ipha_t));
2222 		/*
2223 		 * Check the sanity of the inner IP header like
2224 		 * we did for the outer header.
2225 		 */
2226 		in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length);
2227 		if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) {
2228 			goto discard_pkt;
2229 		}
2230 		if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) {
2231 			goto discard_pkt;
2232 		}
2233 		/* Check for Self-encapsulated tunnels */
2234 		if (in_ipha->ipha_src == ipha->ipha_src &&
2235 		    in_ipha->ipha_dst == ipha->ipha_dst) {
2236 
2237 			mp = icmp_inbound_self_encap_error_v4(mp, ipha,
2238 			    in_ipha);
2239 			if (mp == NULL)
2240 				goto discard_pkt;
2241 
2242 			/*
2243 			 * Just in case self_encap didn't preserve the NULL
2244 			 * b_cont
2245 			 */
2246 			if (mp->b_cont != NULL) {
2247 				if (!pullupmsg(mp, -1))
2248 					goto discard_pkt;
2249 			}
2250 			/*
2251 			 * Note that ira_pktlen and ira_ip_hdr_length are no
2252 			 * longer correct, but we don't use them any more here.
2253 			 */
2254 			if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH)
2255 				goto truncated;
2256 
2257 			/*
2258 			 * Verify the modified message before any further
2259 			 * processes.
2260 			 */
2261 			ipha = (ipha_t *)mp->b_rptr;
2262 			hdr_length = IPH_HDR_LENGTH(ipha);
2263 			icmph = (icmph_t *)&mp->b_rptr[hdr_length];
2264 			if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
2265 				freemsg(mp);
2266 				return;
2267 			}
2268 
2269 			/*
2270 			 * The packet in error is self-encapsualted.
2271 			 * And we are finding it further encapsulated
2272 			 * which we could not have possibly generated.
2273 			 */
2274 			if (ipha->ipha_protocol == IPPROTO_ENCAP) {
2275 				goto discard_pkt;
2276 			}
2277 			icmp_inbound_error_fanout_v4(mp, icmph, ira);
2278 			return;
2279 		}
2280 		/* No self-encapsulated */
2281 	}
2282 	/* FALLTHROUGH */
2283 	case IPPROTO_IPV6:
2284 		if ((connp = ipcl_iptun_classify_v4(&ripha.ipha_src,
2285 		    &ripha.ipha_dst, ipst)) != NULL) {
2286 			ira->ira_flags |= IRAF_ICMP_ERROR;
2287 			connp->conn_recvicmp(connp, mp, NULL, ira);
2288 			CONN_DEC_REF(connp);
2289 			ira->ira_flags &= ~IRAF_ICMP_ERROR;
2290 			return;
2291 		}
2292 		/*
2293 		 * No IP tunnel is interested, fallthrough and see
2294 		 * if a raw socket will want it.
2295 		 */
2296 		/* FALLTHROUGH */
2297 	default:
2298 		ira->ira_flags |= IRAF_ICMP_ERROR;
2299 		ip_fanout_proto_v4(mp, &ripha, ira);
2300 		ira->ira_flags &= ~IRAF_ICMP_ERROR;
2301 		return;
2302 	}
2303 	/* NOTREACHED */
2304 discard_pkt:
2305 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2306 	ip1dbg(("icmp_inbound_error_fanout_v4: drop pkt\n"));
2307 	ip_drop_input("ipIfStatsInDiscards", mp, ill);
2308 	freemsg(mp);
2309 	return;
2310 
2311 truncated:
2312 	/* We pulled up everthing already. Must be truncated */
2313 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
2314 	ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
2315 	freemsg(mp);
2316 }
2317 
2318 /*
2319  * Common IP options parser.
2320  *
2321  * Setup routine: fill in *optp with options-parsing state, then
2322  * tail-call ipoptp_next to return the first option.
2323  */
2324 uint8_t
2325 ipoptp_first(ipoptp_t *optp, ipha_t *ipha)
2326 {
2327 	uint32_t totallen; /* total length of all options */
2328 
2329 	totallen = ipha->ipha_version_and_hdr_length -
2330 	    (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
2331 	totallen <<= 2;
2332 	optp->ipoptp_next = (uint8_t *)(&ipha[1]);
2333 	optp->ipoptp_end = optp->ipoptp_next + totallen;
2334 	optp->ipoptp_flags = 0;
2335 	return (ipoptp_next(optp));
2336 }
2337 
2338 /* Like above but without an ipha_t */
2339 uint8_t
2340 ipoptp_first2(ipoptp_t *optp, uint32_t totallen, uint8_t *opt)
2341 {
2342 	optp->ipoptp_next = opt;
2343 	optp->ipoptp_end = optp->ipoptp_next + totallen;
2344 	optp->ipoptp_flags = 0;
2345 	return (ipoptp_next(optp));
2346 }
2347 
2348 /*
2349  * Common IP options parser: extract next option.
2350  */
2351 uint8_t
2352 ipoptp_next(ipoptp_t *optp)
2353 {
2354 	uint8_t *end = optp->ipoptp_end;
2355 	uint8_t *cur = optp->ipoptp_next;
2356 	uint8_t opt, len, pointer;
2357 
2358 	/*
2359 	 * If cur > end already, then the ipoptp_end or ipoptp_next pointer
2360 	 * has been corrupted.
2361 	 */
2362 	ASSERT(cur <= end);
2363 
2364 	if (cur == end)
2365 		return (IPOPT_EOL);
2366 
2367 	opt = cur[IPOPT_OPTVAL];
2368 
2369 	/*
2370 	 * Skip any NOP options.
2371 	 */
2372 	while (opt == IPOPT_NOP) {
2373 		cur++;
2374 		if (cur == end)
2375 			return (IPOPT_EOL);
2376 		opt = cur[IPOPT_OPTVAL];
2377 	}
2378 
2379 	if (opt == IPOPT_EOL)
2380 		return (IPOPT_EOL);
2381 
2382 	/*
2383 	 * Option requiring a length.
2384 	 */
2385 	if ((cur + 1) >= end) {
2386 		optp->ipoptp_flags |= IPOPTP_ERROR;
2387 		return (IPOPT_EOL);
2388 	}
2389 	len = cur[IPOPT_OLEN];
2390 	if (len < 2) {
2391 		optp->ipoptp_flags |= IPOPTP_ERROR;
2392 		return (IPOPT_EOL);
2393 	}
2394 	optp->ipoptp_cur = cur;
2395 	optp->ipoptp_len = len;
2396 	optp->ipoptp_next = cur + len;
2397 	if (cur + len > end) {
2398 		optp->ipoptp_flags |= IPOPTP_ERROR;
2399 		return (IPOPT_EOL);
2400 	}
2401 
2402 	/*
2403 	 * For the options which require a pointer field, make sure
2404 	 * its there, and make sure it points to either something
2405 	 * inside this option, or the end of the option.
2406 	 */
2407 	switch (opt) {
2408 	case IPOPT_RR:
2409 	case IPOPT_TS:
2410 	case IPOPT_LSRR:
2411 	case IPOPT_SSRR:
2412 		if (len <= IPOPT_OFFSET) {
2413 			optp->ipoptp_flags |= IPOPTP_ERROR;
2414 			return (opt);
2415 		}
2416 		pointer = cur[IPOPT_OFFSET];
2417 		if (pointer - 1 > len) {
2418 			optp->ipoptp_flags |= IPOPTP_ERROR;
2419 			return (opt);
2420 		}
2421 		break;
2422 	}
2423 
2424 	/*
2425 	 * Sanity check the pointer field based on the type of the
2426 	 * option.
2427 	 */
2428 	switch (opt) {
2429 	case IPOPT_RR:
2430 	case IPOPT_SSRR:
2431 	case IPOPT_LSRR:
2432 		if (pointer < IPOPT_MINOFF_SR)
2433 			optp->ipoptp_flags |= IPOPTP_ERROR;
2434 		break;
2435 	case IPOPT_TS:
2436 		if (pointer < IPOPT_MINOFF_IT)
2437 			optp->ipoptp_flags |= IPOPTP_ERROR;
2438 		/*
2439 		 * Note that the Internet Timestamp option also
2440 		 * contains two four bit fields (the Overflow field,
2441 		 * and the Flag field), which follow the pointer
2442 		 * field.  We don't need to check that these fields
2443 		 * fall within the length of the option because this
2444 		 * was implicitely done above.  We've checked that the
2445 		 * pointer value is at least IPOPT_MINOFF_IT, and that
2446 		 * it falls within the option.  Since IPOPT_MINOFF_IT >
2447 		 * IPOPT_POS_OV_FLG, we don't need the explicit check.
2448 		 */
2449 		ASSERT(len > IPOPT_POS_OV_FLG);
2450 		break;
2451 	}
2452 
2453 	return (opt);
2454 }
2455 
2456 /*
2457  * Use the outgoing IP header to create an IP_OPTIONS option the way
2458  * it was passed down from the application.
2459  *
2460  * This is compatible with BSD in that it returns
2461  * the reverse source route with the final destination
2462  * as the last entry. The first 4 bytes of the option
2463  * will contain the final destination.
2464  */
2465 int
2466 ip_opt_get_user(conn_t *connp, uchar_t *buf)
2467 {
2468 	ipoptp_t	opts;
2469 	uchar_t		*opt;
2470 	uint8_t		optval;
2471 	uint8_t		optlen;
2472 	uint32_t	len = 0;
2473 	uchar_t		*buf1 = buf;
2474 	uint32_t	totallen;
2475 	ipaddr_t	dst;
2476 	ip_pkt_t	*ipp = &connp->conn_xmit_ipp;
2477 
2478 	if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
2479 		return (0);
2480 
2481 	totallen = ipp->ipp_ipv4_options_len;
2482 	if (totallen & 0x3)
2483 		return (0);
2484 
2485 	buf += IP_ADDR_LEN;	/* Leave room for final destination */
2486 	len += IP_ADDR_LEN;
2487 	bzero(buf1, IP_ADDR_LEN);
2488 
2489 	dst = connp->conn_faddr_v4;
2490 
2491 	for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
2492 	    optval != IPOPT_EOL;
2493 	    optval = ipoptp_next(&opts)) {
2494 		int	off;
2495 
2496 		opt = opts.ipoptp_cur;
2497 		if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
2498 			break;
2499 		}
2500 		optlen = opts.ipoptp_len;
2501 
2502 		switch (optval) {
2503 		case IPOPT_SSRR:
2504 		case IPOPT_LSRR:
2505 
2506 			/*
2507 			 * Insert destination as the first entry in the source
2508 			 * route and move down the entries on step.
2509 			 * The last entry gets placed at buf1.
2510 			 */
2511 			buf[IPOPT_OPTVAL] = optval;
2512 			buf[IPOPT_OLEN] = optlen;
2513 			buf[IPOPT_OFFSET] = optlen;
2514 
2515 			off = optlen - IP_ADDR_LEN;
2516 			if (off < 0) {
2517 				/* No entries in source route */
2518 				break;
2519 			}
2520 			/* Last entry in source route if not already set */
2521 			if (dst == INADDR_ANY)
2522 				bcopy(opt + off, buf1, IP_ADDR_LEN);
2523 			off -= IP_ADDR_LEN;
2524 
2525 			while (off > 0) {
2526 				bcopy(opt + off,
2527 				    buf + off + IP_ADDR_LEN,
2528 				    IP_ADDR_LEN);
2529 				off -= IP_ADDR_LEN;
2530 			}
2531 			/* ipha_dst into first slot */
2532 			bcopy(&dst, buf + off + IP_ADDR_LEN,
2533 			    IP_ADDR_LEN);
2534 			buf += optlen;
2535 			len += optlen;
2536 			break;
2537 
2538 		default:
2539 			bcopy(opt, buf, optlen);
2540 			buf += optlen;
2541 			len += optlen;
2542 			break;
2543 		}
2544 	}
2545 done:
2546 	/* Pad the resulting options */
2547 	while (len & 0x3) {
2548 		*buf++ = IPOPT_EOL;
2549 		len++;
2550 	}
2551 	return (len);
2552 }
2553 
2554 /*
2555  * Update any record route or timestamp options to include this host.
2556  * Reverse any source route option.
2557  * This routine assumes that the options are well formed i.e. that they
2558  * have already been checked.
2559  */
2560 static void
2561 icmp_options_update(ipha_t *ipha)
2562 {
2563 	ipoptp_t	opts;
2564 	uchar_t		*opt;
2565 	uint8_t		optval;
2566 	ipaddr_t	src;		/* Our local address */
2567 	ipaddr_t	dst;
2568 
2569 	ip2dbg(("icmp_options_update\n"));
2570 	src = ipha->ipha_src;
2571 	dst = ipha->ipha_dst;
2572 
2573 	for (optval = ipoptp_first(&opts, ipha);
2574 	    optval != IPOPT_EOL;
2575 	    optval = ipoptp_next(&opts)) {
2576 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
2577 		opt = opts.ipoptp_cur;
2578 		ip2dbg(("icmp_options_update: opt %d, len %d\n",
2579 		    optval, opts.ipoptp_len));
2580 		switch (optval) {
2581 			int off1, off2;
2582 		case IPOPT_SSRR:
2583 		case IPOPT_LSRR:
2584 			/*
2585 			 * Reverse the source route.  The first entry
2586 			 * should be the next to last one in the current
2587 			 * source route (the last entry is our address).
2588 			 * The last entry should be the final destination.
2589 			 */
2590 			off1 = IPOPT_MINOFF_SR - 1;
2591 			off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
2592 			if (off2 < 0) {
2593 				/* No entries in source route */
2594 				ip1dbg((
2595 				    "icmp_options_update: bad src route\n"));
2596 				break;
2597 			}
2598 			bcopy((char *)opt + off2, &dst, IP_ADDR_LEN);
2599 			bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN);
2600 			bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN);
2601 			off2 -= IP_ADDR_LEN;
2602 
2603 			while (off1 < off2) {
2604 				bcopy((char *)opt + off1, &src, IP_ADDR_LEN);
2605 				bcopy((char *)opt + off2, (char *)opt + off1,
2606 				    IP_ADDR_LEN);
2607 				bcopy(&src, (char *)opt + off2, IP_ADDR_LEN);
2608 				off1 += IP_ADDR_LEN;
2609 				off2 -= IP_ADDR_LEN;
2610 			}
2611 			opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
2612 			break;
2613 		}
2614 	}
2615 }
2616 
2617 /*
2618  * Process received ICMP Redirect messages.
2619  * Assumes the caller has verified that the headers are in the pulled up mblk.
2620  * Consumes mp.
2621  */
2622 static void
2623 icmp_redirect_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, ip_recv_attr_t *ira)
2624 {
2625 	ire_t		*ire, *nire;
2626 	ire_t		*prev_ire;
2627 	ipaddr_t	src, dst, gateway;
2628 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
2629 	ipha_t		*inner_ipha;	/* Inner IP header */
2630 
2631 	/* Caller already pulled up everything. */
2632 	inner_ipha = (ipha_t *)&icmph[1];
2633 	src = ipha->ipha_src;
2634 	dst = inner_ipha->ipha_dst;
2635 	gateway = icmph->icmph_rd_gateway;
2636 	/* Make sure the new gateway is reachable somehow. */
2637 	ire = ire_ftable_lookup_v4(gateway, 0, 0, IRE_ONLINK, NULL,
2638 	    ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, NULL);
2639 	/*
2640 	 * Make sure we had a route for the dest in question and that
2641 	 * that route was pointing to the old gateway (the source of the
2642 	 * redirect packet.)
2643 	 * We do longest match and then compare ire_gateway_addr below.
2644 	 */
2645 	prev_ire = ire_ftable_lookup_v4(dst, 0, 0, 0, NULL, ALL_ZONES,
2646 	    NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL);
2647 	/*
2648 	 * Check that
2649 	 *	the redirect was not from ourselves
2650 	 *	the new gateway and the old gateway are directly reachable
2651 	 */
2652 	if (prev_ire == NULL || ire == NULL ||
2653 	    (prev_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) ||
2654 	    (prev_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) ||
2655 	    !(ire->ire_type & IRE_IF_ALL) ||
2656 	    prev_ire->ire_gateway_addr != src) {
2657 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects);
2658 		ip_drop_input("icmpInBadRedirects - ire", mp, ira->ira_ill);
2659 		freemsg(mp);
2660 		if (ire != NULL)
2661 			ire_refrele(ire);
2662 		if (prev_ire != NULL)
2663 			ire_refrele(prev_ire);
2664 		return;
2665 	}
2666 
2667 	ire_refrele(prev_ire);
2668 	ire_refrele(ire);
2669 
2670 	/*
2671 	 * TODO: more precise handling for cases 0, 2, 3, the latter two
2672 	 * require TOS routing
2673 	 */
2674 	switch (icmph->icmph_code) {
2675 	case 0:
2676 	case 1:
2677 		/* TODO: TOS specificity for cases 2 and 3 */
2678 	case 2:
2679 	case 3:
2680 		break;
2681 	default:
2682 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects);
2683 		ip_drop_input("icmpInBadRedirects - code", mp, ira->ira_ill);
2684 		freemsg(mp);
2685 		return;
2686 	}
2687 	/*
2688 	 * Create a Route Association.  This will allow us to remember that
2689 	 * someone we believe told us to use the particular gateway.
2690 	 */
2691 	ire = ire_create(
2692 	    (uchar_t *)&dst,			/* dest addr */
2693 	    (uchar_t *)&ip_g_all_ones,		/* mask */
2694 	    (uchar_t *)&gateway,		/* gateway addr */
2695 	    IRE_HOST,
2696 	    NULL,				/* ill */
2697 	    ALL_ZONES,
2698 	    (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST),
2699 	    NULL,				/* tsol_gc_t */
2700 	    ipst);
2701 
2702 	if (ire == NULL) {
2703 		freemsg(mp);
2704 		return;
2705 	}
2706 	nire = ire_add(ire);
2707 	/* Check if it was a duplicate entry */
2708 	if (nire != NULL && nire != ire) {
2709 		ASSERT(nire->ire_identical_ref > 1);
2710 		ire_delete(nire);
2711 		ire_refrele(nire);
2712 		nire = NULL;
2713 	}
2714 	ire = nire;
2715 	if (ire != NULL) {
2716 		ire_refrele(ire);		/* Held in ire_add */
2717 
2718 		/* tell routing sockets that we received a redirect */
2719 		ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src,
2720 		    (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0,
2721 		    (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst);
2722 	}
2723 
2724 	/*
2725 	 * Delete any existing IRE_HOST type redirect ires for this destination.
2726 	 * This together with the added IRE has the effect of
2727 	 * modifying an existing redirect.
2728 	 */
2729 	prev_ire = ire_ftable_lookup_v4(dst, 0, src, IRE_HOST, NULL,
2730 	    ALL_ZONES, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), 0, ipst, NULL);
2731 	if (prev_ire != NULL) {
2732 		if (prev_ire ->ire_flags & RTF_DYNAMIC)
2733 			ire_delete(prev_ire);
2734 		ire_refrele(prev_ire);
2735 	}
2736 
2737 	freemsg(mp);
2738 }
2739 
2740 /*
2741  * Generate an ICMP parameter problem message.
2742  * When called from ip_output side a minimal ip_recv_attr_t needs to be
2743  * constructed by the caller.
2744  */
2745 static void
2746 icmp_param_problem(mblk_t *mp, uint8_t ptr, ip_recv_attr_t *ira)
2747 {
2748 	icmph_t	icmph;
2749 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
2750 
2751 	mp = icmp_pkt_err_ok(mp, ira);
2752 	if (mp == NULL)
2753 		return;
2754 
2755 	bzero(&icmph, sizeof (icmph_t));
2756 	icmph.icmph_type = ICMP_PARAM_PROBLEM;
2757 	icmph.icmph_pp_ptr = ptr;
2758 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs);
2759 	icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
2760 }
2761 
2762 /*
2763  * Build and ship an IPv4 ICMP message using the packet data in mp, and
2764  * the ICMP header pointed to by "stuff".  (May be called as writer.)
2765  * Note: assumes that icmp_pkt_err_ok has been called to verify that
2766  * an icmp error packet can be sent.
2767  * Assigns an appropriate source address to the packet. If ipha_dst is
2768  * one of our addresses use it for source. Otherwise let ip_output_simple
2769  * pick the source address.
2770  */
2771 static void
2772 icmp_pkt(mblk_t *mp, void *stuff, size_t len, ip_recv_attr_t *ira)
2773 {
2774 	ipaddr_t dst;
2775 	icmph_t	*icmph;
2776 	ipha_t	*ipha;
2777 	uint_t	len_needed;
2778 	size_t	msg_len;
2779 	mblk_t	*mp1;
2780 	ipaddr_t src;
2781 	ire_t	*ire;
2782 	ip_xmit_attr_t ixas;
2783 	ip_stack_t *ipst = ira->ira_ill->ill_ipst;
2784 
2785 	ipha = (ipha_t *)mp->b_rptr;
2786 
2787 	bzero(&ixas, sizeof (ixas));
2788 	ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
2789 	ixas.ixa_zoneid = ira->ira_zoneid;
2790 	ixas.ixa_ifindex = 0;
2791 	ixas.ixa_ipst = ipst;
2792 	ixas.ixa_cred = kcred;
2793 	ixas.ixa_cpid = NOPID;
2794 	ixas.ixa_tsl = ira->ira_tsl;	/* Behave as a multi-level responder */
2795 	ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
2796 
2797 	if (ira->ira_flags & IRAF_IPSEC_SECURE) {
2798 		/*
2799 		 * Apply IPsec based on how IPsec was applied to
2800 		 * the packet that had the error.
2801 		 *
2802 		 * If it was an outbound packet that caused the ICMP
2803 		 * error, then the caller will have setup the IRA
2804 		 * appropriately.
2805 		 */
2806 		if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) {
2807 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
2808 			/* Note: mp already consumed and ip_drop_packet done */
2809 			return;
2810 		}
2811 	} else {
2812 		/*
2813 		 * This is in clear. The icmp message we are building
2814 		 * here should go out in clear, independent of our policy.
2815 		 */
2816 		ixas.ixa_flags |= IXAF_NO_IPSEC;
2817 	}
2818 
2819 	/* Remember our eventual destination */
2820 	dst = ipha->ipha_src;
2821 
2822 	/*
2823 	 * If the packet was for one of our unicast addresses, make
2824 	 * sure we respond with that as the source. Otherwise
2825 	 * have ip_output_simple pick the source address.
2826 	 */
2827 	ire = ire_ftable_lookup_v4(ipha->ipha_dst, 0, 0,
2828 	    (IRE_LOCAL|IRE_LOOPBACK), NULL, ira->ira_zoneid, NULL,
2829 	    MATCH_IRE_TYPE|MATCH_IRE_ZONEONLY, 0, ipst, NULL);
2830 	if (ire != NULL) {
2831 		ire_refrele(ire);
2832 		src = ipha->ipha_dst;
2833 	} else {
2834 		src = INADDR_ANY;
2835 		ixas.ixa_flags |= IXAF_SET_SOURCE;
2836 	}
2837 
2838 	/*
2839 	 * Check if we can send back more then 8 bytes in addition to
2840 	 * the IP header.  We try to send 64 bytes of data and the internal
2841 	 * header in the special cases of ipv4 encapsulated ipv4 or ipv6.
2842 	 */
2843 	len_needed = IPH_HDR_LENGTH(ipha);
2844 	if (ipha->ipha_protocol == IPPROTO_ENCAP ||
2845 	    ipha->ipha_protocol == IPPROTO_IPV6) {
2846 		if (!pullupmsg(mp, -1)) {
2847 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
2848 			ip_drop_output("ipIfStatsOutDiscards", mp, NULL);
2849 			freemsg(mp);
2850 			return;
2851 		}
2852 		ipha = (ipha_t *)mp->b_rptr;
2853 
2854 		if (ipha->ipha_protocol == IPPROTO_ENCAP) {
2855 			len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha +
2856 			    len_needed));
2857 		} else {
2858 			ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed);
2859 
2860 			ASSERT(ipha->ipha_protocol == IPPROTO_IPV6);
2861 			len_needed += ip_hdr_length_v6(mp, ip6h);
2862 		}
2863 	}
2864 	len_needed += ipst->ips_ip_icmp_return;
2865 	msg_len = msgdsize(mp);
2866 	if (msg_len > len_needed) {
2867 		(void) adjmsg(mp, len_needed - msg_len);
2868 		msg_len = len_needed;
2869 	}
2870 	mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_MED);
2871 	if (mp1 == NULL) {
2872 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors);
2873 		freemsg(mp);
2874 		return;
2875 	}
2876 	mp1->b_cont = mp;
2877 	mp = mp1;
2878 
2879 	/*
2880 	 * Set IXAF_TRUSTED_ICMP so we can let the ICMP messages this
2881 	 * node generates be accepted in peace by all on-host destinations.
2882 	 * If we do NOT assume that all on-host destinations trust
2883 	 * self-generated ICMP messages, then rework here, ip6.c, and spd.c.
2884 	 * (Look for IXAF_TRUSTED_ICMP).
2885 	 */
2886 	ixas.ixa_flags |= IXAF_TRUSTED_ICMP;
2887 
2888 	ipha = (ipha_t *)mp->b_rptr;
2889 	mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len);
2890 	*ipha = icmp_ipha;
2891 	ipha->ipha_src = src;
2892 	ipha->ipha_dst = dst;
2893 	ipha->ipha_ttl = ipst->ips_ip_def_ttl;
2894 	msg_len += sizeof (icmp_ipha) + len;
2895 	if (msg_len > IP_MAXPACKET) {
2896 		(void) adjmsg(mp, IP_MAXPACKET - msg_len);
2897 		msg_len = IP_MAXPACKET;
2898 	}
2899 	ipha->ipha_length = htons((uint16_t)msg_len);
2900 	icmph = (icmph_t *)&ipha[1];
2901 	bcopy(stuff, icmph, len);
2902 	icmph->icmph_checksum = 0;
2903 	icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0);
2904 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs);
2905 
2906 	(void) ip_output_simple(mp, &ixas);
2907 	ixa_cleanup(&ixas);
2908 }
2909 
2910 /*
2911  * Determine if an ICMP error packet can be sent given the rate limit.
2912  * The limit consists of an average frequency (icmp_pkt_err_interval measured
2913  * in milliseconds) and a burst size. Burst size number of packets can
2914  * be sent arbitrarely closely spaced.
2915  * The state is tracked using two variables to implement an approximate
2916  * token bucket filter:
2917  *	icmp_pkt_err_last - lbolt value when the last burst started
2918  *	icmp_pkt_err_sent - number of packets sent in current burst
2919  */
2920 boolean_t
2921 icmp_err_rate_limit(ip_stack_t *ipst)
2922 {
2923 	clock_t now = TICK_TO_MSEC(ddi_get_lbolt());
2924 	uint_t refilled; /* Number of packets refilled in tbf since last */
2925 	/* Guard against changes by loading into local variable */
2926 	uint_t err_interval = ipst->ips_ip_icmp_err_interval;
2927 
2928 	if (err_interval == 0)
2929 		return (B_FALSE);
2930 
2931 	if (ipst->ips_icmp_pkt_err_last > now) {
2932 		/* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */
2933 		ipst->ips_icmp_pkt_err_last = 0;
2934 		ipst->ips_icmp_pkt_err_sent = 0;
2935 	}
2936 	/*
2937 	 * If we are in a burst update the token bucket filter.
2938 	 * Update the "last" time to be close to "now" but make sure
2939 	 * we don't loose precision.
2940 	 */
2941 	if (ipst->ips_icmp_pkt_err_sent != 0) {
2942 		refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval;
2943 		if (refilled > ipst->ips_icmp_pkt_err_sent) {
2944 			ipst->ips_icmp_pkt_err_sent = 0;
2945 		} else {
2946 			ipst->ips_icmp_pkt_err_sent -= refilled;
2947 			ipst->ips_icmp_pkt_err_last += refilled * err_interval;
2948 		}
2949 	}
2950 	if (ipst->ips_icmp_pkt_err_sent == 0) {
2951 		/* Start of new burst */
2952 		ipst->ips_icmp_pkt_err_last = now;
2953 	}
2954 	if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) {
2955 		ipst->ips_icmp_pkt_err_sent++;
2956 		ip1dbg(("icmp_err_rate_limit: %d sent in burst\n",
2957 		    ipst->ips_icmp_pkt_err_sent));
2958 		return (B_FALSE);
2959 	}
2960 	ip1dbg(("icmp_err_rate_limit: dropped\n"));
2961 	return (B_TRUE);
2962 }
2963 
2964 /*
2965  * Check if it is ok to send an IPv4 ICMP error packet in
2966  * response to the IPv4 packet in mp.
2967  * Free the message and return null if no
2968  * ICMP error packet should be sent.
2969  */
2970 static mblk_t *
2971 icmp_pkt_err_ok(mblk_t *mp, ip_recv_attr_t *ira)
2972 {
2973 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
2974 	icmph_t	*icmph;
2975 	ipha_t	*ipha;
2976 	uint_t	len_needed;
2977 
2978 	if (!mp)
2979 		return (NULL);
2980 	ipha = (ipha_t *)mp->b_rptr;
2981 	if (ip_csum_hdr(ipha)) {
2982 		BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs);
2983 		ip_drop_input("ipIfStatsInCksumErrs", mp, NULL);
2984 		freemsg(mp);
2985 		return (NULL);
2986 	}
2987 	if (ip_type_v4(ipha->ipha_dst, ipst) == IRE_BROADCAST ||
2988 	    ip_type_v4(ipha->ipha_src, ipst) == IRE_BROADCAST ||
2989 	    CLASSD(ipha->ipha_dst) ||
2990 	    CLASSD(ipha->ipha_src) ||
2991 	    (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) {
2992 		/* Note: only errors to the fragment with offset 0 */
2993 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
2994 		freemsg(mp);
2995 		return (NULL);
2996 	}
2997 	if (ipha->ipha_protocol == IPPROTO_ICMP) {
2998 		/*
2999 		 * Check the ICMP type.  RFC 1122 sez:  don't send ICMP
3000 		 * errors in response to any ICMP errors.
3001 		 */
3002 		len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE;
3003 		if (mp->b_wptr - mp->b_rptr < len_needed) {
3004 			if (!pullupmsg(mp, len_needed)) {
3005 				BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors);
3006 				freemsg(mp);
3007 				return (NULL);
3008 			}
3009 			ipha = (ipha_t *)mp->b_rptr;
3010 		}
3011 		icmph = (icmph_t *)
3012 		    (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]);
3013 		switch (icmph->icmph_type) {
3014 		case ICMP_DEST_UNREACHABLE:
3015 		case ICMP_SOURCE_QUENCH:
3016 		case ICMP_TIME_EXCEEDED:
3017 		case ICMP_PARAM_PROBLEM:
3018 		case ICMP_REDIRECT:
3019 			BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
3020 			freemsg(mp);
3021 			return (NULL);
3022 		default:
3023 			break;
3024 		}
3025 	}
3026 	/*
3027 	 * If this is a labeled system, then check to see if we're allowed to
3028 	 * send a response to this particular sender.  If not, then just drop.
3029 	 */
3030 	if (is_system_labeled() && !tsol_can_reply_error(mp, ira)) {
3031 		ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n"));
3032 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
3033 		freemsg(mp);
3034 		return (NULL);
3035 	}
3036 	if (icmp_err_rate_limit(ipst)) {
3037 		/*
3038 		 * Only send ICMP error packets every so often.
3039 		 * This should be done on a per port/source basis,
3040 		 * but for now this will suffice.
3041 		 */
3042 		freemsg(mp);
3043 		return (NULL);
3044 	}
3045 	return (mp);
3046 }
3047 
3048 /*
3049  * Called when a packet was sent out the same link that it arrived on.
3050  * Check if it is ok to send a redirect and then send it.
3051  */
3052 void
3053 ip_send_potential_redirect_v4(mblk_t *mp, ipha_t *ipha, ire_t *ire,
3054     ip_recv_attr_t *ira)
3055 {
3056 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
3057 	ipaddr_t	src, nhop;
3058 	mblk_t		*mp1;
3059 	ire_t		*nhop_ire;
3060 
3061 	/*
3062 	 * Check the source address to see if it originated
3063 	 * on the same logical subnet it is going back out on.
3064 	 * If so, we should be able to send it a redirect.
3065 	 * Avoid sending a redirect if the destination
3066 	 * is directly connected (i.e., we matched an IRE_ONLINK),
3067 	 * or if the packet was source routed out this interface.
3068 	 *
3069 	 * We avoid sending a redirect if the
3070 	 * destination is directly connected
3071 	 * because it is possible that multiple
3072 	 * IP subnets may have been configured on
3073 	 * the link, and the source may not
3074 	 * be on the same subnet as ip destination,
3075 	 * even though they are on the same
3076 	 * physical link.
3077 	 */
3078 	if ((ire->ire_type & IRE_ONLINK) ||
3079 	    ip_source_routed(ipha, ipst))
3080 		return;
3081 
3082 	nhop_ire = ire_nexthop(ire);
3083 	if (nhop_ire == NULL)
3084 		return;
3085 
3086 	nhop = nhop_ire->ire_addr;
3087 
3088 	if (nhop_ire->ire_type & IRE_IF_CLONE) {
3089 		ire_t	*ire2;
3090 
3091 		/* Follow ire_dep_parent to find non-clone IRE_INTERFACE */
3092 		mutex_enter(&nhop_ire->ire_lock);
3093 		ire2 = nhop_ire->ire_dep_parent;
3094 		if (ire2 != NULL)
3095 			ire_refhold(ire2);
3096 		mutex_exit(&nhop_ire->ire_lock);
3097 		ire_refrele(nhop_ire);
3098 		nhop_ire = ire2;
3099 	}
3100 	if (nhop_ire == NULL)
3101 		return;
3102 
3103 	ASSERT(!(nhop_ire->ire_type & IRE_IF_CLONE));
3104 
3105 	src = ipha->ipha_src;
3106 
3107 	/*
3108 	 * We look at the interface ire for the nexthop,
3109 	 * to see if ipha_src is in the same subnet
3110 	 * as the nexthop.
3111 	 */
3112 	if ((src & nhop_ire->ire_mask) == (nhop & nhop_ire->ire_mask)) {
3113 		/*
3114 		 * The source is directly connected.
3115 		 */
3116 		mp1 = copymsg(mp);
3117 		if (mp1 != NULL) {
3118 			icmp_send_redirect(mp1, nhop, ira);
3119 		}
3120 	}
3121 	ire_refrele(nhop_ire);
3122 }
3123 
3124 /*
3125  * Generate an ICMP redirect message.
3126  */
3127 static void
3128 icmp_send_redirect(mblk_t *mp, ipaddr_t gateway, ip_recv_attr_t *ira)
3129 {
3130 	icmph_t	icmph;
3131 	ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3132 
3133 	mp = icmp_pkt_err_ok(mp, ira);
3134 	if (mp == NULL)
3135 		return;
3136 
3137 	bzero(&icmph, sizeof (icmph_t));
3138 	icmph.icmph_type = ICMP_REDIRECT;
3139 	icmph.icmph_code = 1;
3140 	icmph.icmph_rd_gateway = gateway;
3141 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects);
3142 	icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
3143 }
3144 
3145 /*
3146  * Generate an ICMP time exceeded message.
3147  */
3148 void
3149 icmp_time_exceeded(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira)
3150 {
3151 	icmph_t	icmph;
3152 	ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3153 
3154 	mp = icmp_pkt_err_ok(mp, ira);
3155 	if (mp == NULL)
3156 		return;
3157 
3158 	bzero(&icmph, sizeof (icmph_t));
3159 	icmph.icmph_type = ICMP_TIME_EXCEEDED;
3160 	icmph.icmph_code = code;
3161 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds);
3162 	icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
3163 }
3164 
3165 /*
3166  * Generate an ICMP unreachable message.
3167  * When called from ip_output side a minimal ip_recv_attr_t needs to be
3168  * constructed by the caller.
3169  */
3170 void
3171 icmp_unreachable(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira)
3172 {
3173 	icmph_t	icmph;
3174 	ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3175 
3176 	mp = icmp_pkt_err_ok(mp, ira);
3177 	if (mp == NULL)
3178 		return;
3179 
3180 	bzero(&icmph, sizeof (icmph_t));
3181 	icmph.icmph_type = ICMP_DEST_UNREACHABLE;
3182 	icmph.icmph_code = code;
3183 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs);
3184 	icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
3185 }
3186 
3187 /*
3188  * Latch in the IPsec state for a stream based the policy in the listener
3189  * and the actions in the ip_recv_attr_t.
3190  * Called directly from TCP and SCTP.
3191  */
3192 boolean_t
3193 ip_ipsec_policy_inherit(conn_t *connp, conn_t *lconnp, ip_recv_attr_t *ira)
3194 {
3195 	ASSERT(lconnp->conn_policy != NULL);
3196 	ASSERT(connp->conn_policy == NULL);
3197 
3198 	IPPH_REFHOLD(lconnp->conn_policy);
3199 	connp->conn_policy = lconnp->conn_policy;
3200 
3201 	if (ira->ira_ipsec_action != NULL) {
3202 		if (connp->conn_latch == NULL) {
3203 			connp->conn_latch = iplatch_create();
3204 			if (connp->conn_latch == NULL)
3205 				return (B_FALSE);
3206 		}
3207 		ipsec_latch_inbound(connp, ira);
3208 	}
3209 	return (B_TRUE);
3210 }
3211 
3212 /*
3213  * Verify whether or not the IP address is a valid local address.
3214  * Could be a unicast, including one for a down interface.
3215  * If allow_mcbc then a multicast or broadcast address is also
3216  * acceptable.
3217  *
3218  * In the case of a broadcast/multicast address, however, the
3219  * upper protocol is expected to reset the src address
3220  * to zero when we return IPVL_MCAST/IPVL_BCAST so that
3221  * no packets are emitted with broadcast/multicast address as
3222  * source address (that violates hosts requirements RFC 1122)
3223  * The addresses valid for bind are:
3224  *	(1) - INADDR_ANY (0)
3225  *	(2) - IP address of an UP interface
3226  *	(3) - IP address of a DOWN interface
3227  *	(4) - valid local IP broadcast addresses. In this case
3228  *	the conn will only receive packets destined to
3229  *	the specified broadcast address.
3230  *	(5) - a multicast address. In this case
3231  *	the conn will only receive packets destined to
3232  *	the specified multicast address. Note: the
3233  *	application still has to issue an
3234  *	IP_ADD_MEMBERSHIP socket option.
3235  *
3236  * In all the above cases, the bound address must be valid in the current zone.
3237  * When the address is loopback, multicast or broadcast, there might be many
3238  * matching IREs so bind has to look up based on the zone.
3239  */
3240 ip_laddr_t
3241 ip_laddr_verify_v4(ipaddr_t src_addr, zoneid_t zoneid,
3242     ip_stack_t *ipst, boolean_t allow_mcbc)
3243 {
3244 	ire_t *src_ire;
3245 
3246 	ASSERT(src_addr != INADDR_ANY);
3247 
3248 	src_ire = ire_ftable_lookup_v4(src_addr, 0, 0, 0,
3249 	    NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, 0, ipst, NULL);
3250 
3251 	/*
3252 	 * If an address other than in6addr_any is requested,
3253 	 * we verify that it is a valid address for bind
3254 	 * Note: Following code is in if-else-if form for
3255 	 * readability compared to a condition check.
3256 	 */
3257 	if (src_ire != NULL && (src_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK))) {
3258 		/*
3259 		 * (2) Bind to address of local UP interface
3260 		 */
3261 		ire_refrele(src_ire);
3262 		return (IPVL_UNICAST_UP);
3263 	} else if (src_ire != NULL && src_ire->ire_type & IRE_BROADCAST) {
3264 		/*
3265 		 * (4) Bind to broadcast address
3266 		 */
3267 		ire_refrele(src_ire);
3268 		if (allow_mcbc)
3269 			return (IPVL_BCAST);
3270 		else
3271 			return (IPVL_BAD);
3272 	} else if (CLASSD(src_addr)) {
3273 		/* (5) bind to multicast address. */
3274 		if (src_ire != NULL)
3275 			ire_refrele(src_ire);
3276 
3277 		if (allow_mcbc)
3278 			return (IPVL_MCAST);
3279 		else
3280 			return (IPVL_BAD);
3281 	} else {
3282 		ipif_t *ipif;
3283 
3284 		/*
3285 		 * (3) Bind to address of local DOWN interface?
3286 		 * (ipif_lookup_addr() looks up all interfaces
3287 		 * but we do not get here for UP interfaces
3288 		 * - case (2) above)
3289 		 */
3290 		if (src_ire != NULL)
3291 			ire_refrele(src_ire);
3292 
3293 		ipif = ipif_lookup_addr(src_addr, NULL, zoneid, ipst);
3294 		if (ipif == NULL)
3295 			return (IPVL_BAD);
3296 
3297 		/* Not a useful source? */
3298 		if (ipif->ipif_flags & (IPIF_NOLOCAL | IPIF_ANYCAST)) {
3299 			ipif_refrele(ipif);
3300 			return (IPVL_BAD);
3301 		}
3302 		ipif_refrele(ipif);
3303 		return (IPVL_UNICAST_DOWN);
3304 	}
3305 }
3306 
3307 /*
3308  * Insert in the bind fanout for IPv4 and IPv6.
3309  * The caller should already have used ip_laddr_verify_v*() before calling
3310  * this.
3311  */
3312 int
3313 ip_laddr_fanout_insert(conn_t *connp)
3314 {
3315 	int		error;
3316 
3317 	/*
3318 	 * Allow setting new policies. For example, disconnects result
3319 	 * in us being called. As we would have set conn_policy_cached
3320 	 * to B_TRUE before, we should set it to B_FALSE, so that policy
3321 	 * can change after the disconnect.
3322 	 */
3323 	connp->conn_policy_cached = B_FALSE;
3324 
3325 	error = ipcl_bind_insert(connp);
3326 	if (error != 0) {
3327 		if (connp->conn_anon_port) {
3328 			(void) tsol_mlp_anon(crgetzone(connp->conn_cred),
3329 			    connp->conn_mlp_type, connp->conn_proto,
3330 			    ntohs(connp->conn_lport), B_FALSE);
3331 		}
3332 		connp->conn_mlp_type = mlptSingle;
3333 	}
3334 	return (error);
3335 }
3336 
3337 /*
3338  * Verify that both the source and destination addresses are valid. If
3339  * IPDF_VERIFY_DST is not set, then the destination address may be unreachable,
3340  * i.e. have no route to it.  Protocols like TCP want to verify destination
3341  * reachability, while tunnels do not.
3342  *
3343  * Determine the route, the interface, and (optionally) the source address
3344  * to use to reach a given destination.
3345  * Note that we allow connect to broadcast and multicast addresses when
3346  * IPDF_ALLOW_MCBC is set.
3347  * first_hop and dst_addr are normally the same, but if source routing
3348  * they will differ; in that case the first_hop is what we'll use for the
3349  * routing lookup but the dce and label checks will be done on dst_addr,
3350  *
3351  * If uinfo is set, then we fill in the best available information
3352  * we have for the destination. This is based on (in priority order) any
3353  * metrics and path MTU stored in a dce_t, route metrics, and finally the
3354  * ill_mtu/ill_mc_mtu.
3355  *
3356  * Tsol note: If we have a source route then dst_addr != firsthop. But we
3357  * always do the label check on dst_addr.
3358  */
3359 int
3360 ip_set_destination_v4(ipaddr_t *src_addrp, ipaddr_t dst_addr, ipaddr_t firsthop,
3361     ip_xmit_attr_t *ixa, iulp_t *uinfo, uint32_t flags, uint_t mac_mode)
3362 {
3363 	ire_t		*ire = NULL;
3364 	int		error = 0;
3365 	ipaddr_t	setsrc;				/* RTF_SETSRC */
3366 	zoneid_t	zoneid = ixa->ixa_zoneid;	/* Honors SO_ALLZONES */
3367 	ip_stack_t	*ipst = ixa->ixa_ipst;
3368 	dce_t		*dce;
3369 	uint_t		pmtu;
3370 	uint_t		generation;
3371 	nce_t		*nce;
3372 	ill_t		*ill = NULL;
3373 	boolean_t	multirt = B_FALSE;
3374 
3375 	ASSERT(ixa->ixa_flags & IXAF_IS_IPV4);
3376 
3377 	/*
3378 	 * We never send to zero; the ULPs map it to the loopback address.
3379 	 * We can't allow it since we use zero to mean unitialized in some
3380 	 * places.
3381 	 */
3382 	ASSERT(dst_addr != INADDR_ANY);
3383 
3384 	if (is_system_labeled()) {
3385 		ts_label_t *tsl = NULL;
3386 
3387 		error = tsol_check_dest(ixa->ixa_tsl, &dst_addr, IPV4_VERSION,
3388 		    mac_mode, (flags & IPDF_ZONE_IS_GLOBAL) != 0, &tsl);
3389 		if (error != 0)
3390 			return (error);
3391 		if (tsl != NULL) {
3392 			/* Update the label */
3393 			ip_xmit_attr_replace_tsl(ixa, tsl);
3394 		}
3395 	}
3396 
3397 	setsrc = INADDR_ANY;
3398 	/*
3399 	 * Select a route; For IPMP interfaces, we would only select
3400 	 * a "hidden" route (i.e., going through a specific under_ill)
3401 	 * if ixa_ifindex has been specified.
3402 	 */
3403 	ire = ip_select_route_v4(firsthop, *src_addrp, ixa,
3404 	    &generation, &setsrc, &error, &multirt);
3405 	ASSERT(ire != NULL);	/* IRE_NOROUTE if none found */
3406 	if (error != 0)
3407 		goto bad_addr;
3408 
3409 	/*
3410 	 * ire can't be a broadcast or multicast unless IPDF_ALLOW_MCBC is set.
3411 	 * If IPDF_VERIFY_DST is set, the destination must be reachable;
3412 	 * Otherwise the destination needn't be reachable.
3413 	 *
3414 	 * If we match on a reject or black hole, then we've got a
3415 	 * local failure.  May as well fail out the connect() attempt,
3416 	 * since it's never going to succeed.
3417 	 */
3418 	if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
3419 		/*
3420 		 * If we're verifying destination reachability, we always want
3421 		 * to complain here.
3422 		 *
3423 		 * If we're not verifying destination reachability but the
3424 		 * destination has a route, we still want to fail on the
3425 		 * temporary address and broadcast address tests.
3426 		 *
3427 		 * In both cases do we let the code continue so some reasonable
3428 		 * information is returned to the caller. That enables the
3429 		 * caller to use (and even cache) the IRE. conn_ip_ouput will
3430 		 * use the generation mismatch path to check for the unreachable
3431 		 * case thereby avoiding any specific check in the main path.
3432 		 */
3433 		ASSERT(generation == IRE_GENERATION_VERIFY);
3434 		if (flags & IPDF_VERIFY_DST) {
3435 			/*
3436 			 * Set errno but continue to set up ixa_ire to be
3437 			 * the RTF_REJECT|RTF_BLACKHOLE IRE.
3438 			 * That allows callers to use ip_output to get an
3439 			 * ICMP error back.
3440 			 */
3441 			if (!(ire->ire_type & IRE_HOST))
3442 				error = ENETUNREACH;
3443 			else
3444 				error = EHOSTUNREACH;
3445 		}
3446 	}
3447 
3448 	if ((ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) &&
3449 	    !(flags & IPDF_ALLOW_MCBC)) {
3450 		ire_refrele(ire);
3451 		ire = ire_reject(ipst, B_FALSE);
3452 		generation = IRE_GENERATION_VERIFY;
3453 		error = ENETUNREACH;
3454 	}
3455 
3456 	/* Cache things */
3457 	if (ixa->ixa_ire != NULL)
3458 		ire_refrele_notr(ixa->ixa_ire);
3459 #ifdef DEBUG
3460 	ire_refhold_notr(ire);
3461 	ire_refrele(ire);
3462 #endif
3463 	ixa->ixa_ire = ire;
3464 	ixa->ixa_ire_generation = generation;
3465 
3466 	/*
3467 	 * Ensure that ixa_dce is always set any time that ixa_ire is set,
3468 	 * since some callers will send a packet to conn_ip_output() even if
3469 	 * there's an error.
3470 	 */
3471 	if (flags & IPDF_UNIQUE_DCE) {
3472 		/* Fallback to the default dce if allocation fails */
3473 		dce = dce_lookup_and_add_v4(dst_addr, ipst);
3474 		if (dce != NULL)
3475 			generation = dce->dce_generation;
3476 		else
3477 			dce = dce_lookup_v4(dst_addr, ipst, &generation);
3478 	} else {
3479 		dce = dce_lookup_v4(dst_addr, ipst, &generation);
3480 	}
3481 	ASSERT(dce != NULL);
3482 	if (ixa->ixa_dce != NULL)
3483 		dce_refrele_notr(ixa->ixa_dce);
3484 #ifdef DEBUG
3485 	dce_refhold_notr(dce);
3486 	dce_refrele(dce);
3487 #endif
3488 	ixa->ixa_dce = dce;
3489 	ixa->ixa_dce_generation = generation;
3490 
3491 	/*
3492 	 * For multicast with multirt we have a flag passed back from
3493 	 * ire_lookup_multi_ill_v4 since we don't have an IRE for each
3494 	 * possible multicast address.
3495 	 * We also need a flag for multicast since we can't check
3496 	 * whether RTF_MULTIRT is set in ixa_ire for multicast.
3497 	 */
3498 	if (multirt) {
3499 		ixa->ixa_postfragfn = ip_postfrag_multirt_v4;
3500 		ixa->ixa_flags |= IXAF_MULTIRT_MULTICAST;
3501 	} else {
3502 		ixa->ixa_postfragfn = ire->ire_postfragfn;
3503 		ixa->ixa_flags &= ~IXAF_MULTIRT_MULTICAST;
3504 	}
3505 	if (!(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) {
3506 		/* Get an nce to cache. */
3507 		nce = ire_to_nce(ire, firsthop, NULL);
3508 		if (nce == NULL) {
3509 			/* Allocation failure? */
3510 			ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
3511 		} else {
3512 			if (ixa->ixa_nce != NULL)
3513 				nce_refrele(ixa->ixa_nce);
3514 			ixa->ixa_nce = nce;
3515 		}
3516 	}
3517 
3518 	/*
3519 	 * If the source address is a loopback address, the
3520 	 * destination had best be local or multicast.
3521 	 * If we are sending to an IRE_LOCAL using a loopback source then
3522 	 * it had better be the same zoneid.
3523 	 */
3524 	if (*src_addrp == htonl(INADDR_LOOPBACK)) {
3525 		if ((ire->ire_type & IRE_LOCAL) && ire->ire_zoneid != zoneid) {
3526 			ire = NULL;	/* Stored in ixa_ire */
3527 			error = EADDRNOTAVAIL;
3528 			goto bad_addr;
3529 		}
3530 		if (!(ire->ire_type & (IRE_LOOPBACK|IRE_LOCAL|IRE_MULTICAST))) {
3531 			ire = NULL;	/* Stored in ixa_ire */
3532 			error = EADDRNOTAVAIL;
3533 			goto bad_addr;
3534 		}
3535 	}
3536 	if (ire->ire_type & IRE_BROADCAST) {
3537 		/*
3538 		 * If the ULP didn't have a specified source, then we
3539 		 * make sure we reselect the source when sending
3540 		 * broadcasts out different interfaces.
3541 		 */
3542 		if (flags & IPDF_SELECT_SRC)
3543 			ixa->ixa_flags |= IXAF_SET_SOURCE;
3544 		else
3545 			ixa->ixa_flags &= ~IXAF_SET_SOURCE;
3546 	}
3547 
3548 	/*
3549 	 * Does the caller want us to pick a source address?
3550 	 */
3551 	if (flags & IPDF_SELECT_SRC) {
3552 		ipaddr_t	src_addr;
3553 
3554 		/*
3555 		 * We use use ire_nexthop_ill to avoid the under ipmp
3556 		 * interface for source address selection. Note that for ipmp
3557 		 * probe packets, ixa_ifindex would have been specified, and
3558 		 * the ip_select_route() invocation would have picked an ire
3559 		 * will ire_ill pointing at an under interface.
3560 		 */
3561 		ill = ire_nexthop_ill(ire);
3562 
3563 		/* If unreachable we have no ill but need some source */
3564 		if (ill == NULL) {
3565 			src_addr = htonl(INADDR_LOOPBACK);
3566 			/* Make sure we look for a better source address */
3567 			generation = SRC_GENERATION_VERIFY;
3568 		} else {
3569 			error = ip_select_source_v4(ill, setsrc, dst_addr,
3570 			    ixa->ixa_multicast_ifaddr, zoneid,
3571 			    ipst, &src_addr, &generation, NULL);
3572 			if (error != 0) {
3573 				ire = NULL;	/* Stored in ixa_ire */
3574 				goto bad_addr;
3575 			}
3576 		}
3577 
3578 		/*
3579 		 * We allow the source address to to down.
3580 		 * However, we check that we don't use the loopback address
3581 		 * as a source when sending out on the wire.
3582 		 */
3583 		if ((src_addr == htonl(INADDR_LOOPBACK)) &&
3584 		    !(ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK|IRE_MULTICAST)) &&
3585 		    !(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) {
3586 			ire = NULL;	/* Stored in ixa_ire */
3587 			error = EADDRNOTAVAIL;
3588 			goto bad_addr;
3589 		}
3590 
3591 		*src_addrp = src_addr;
3592 		ixa->ixa_src_generation = generation;
3593 	}
3594 
3595 	/*
3596 	 * Make sure we don't leave an unreachable ixa_nce in place
3597 	 * since ip_select_route is used when we unplumb i.e., remove
3598 	 * references on ixa_ire, ixa_nce, and ixa_dce.
3599 	 */
3600 	nce = ixa->ixa_nce;
3601 	if (nce != NULL && nce->nce_is_condemned) {
3602 		nce_refrele(nce);
3603 		ixa->ixa_nce = NULL;
3604 		ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
3605 	}
3606 
3607 	/*
3608 	 * The caller has set IXAF_PMTU_DISCOVERY if path MTU is desired.
3609 	 * However, we can't do it for IPv4 multicast or broadcast.
3610 	 */
3611 	if (ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST))
3612 		ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY;
3613 
3614 	/*
3615 	 * Set initial value for fragmentation limit. Either conn_ip_output
3616 	 * or ULP might updates it when there are routing changes.
3617 	 * Handles a NULL ixa_ire->ire_ill or a NULL ixa_nce for RTF_REJECT.
3618 	 */
3619 	pmtu = ip_get_pmtu(ixa);
3620 	ixa->ixa_fragsize = pmtu;
3621 	/* Make sure ixa_fragsize and ixa_pmtu remain identical */
3622 	if (ixa->ixa_flags & IXAF_VERIFY_PMTU)
3623 		ixa->ixa_pmtu = pmtu;
3624 
3625 	/*
3626 	 * Extract information useful for some transports.
3627 	 * First we look for DCE metrics. Then we take what we have in
3628 	 * the metrics in the route, where the offlink is used if we have
3629 	 * one.
3630 	 */
3631 	if (uinfo != NULL) {
3632 		bzero(uinfo, sizeof (*uinfo));
3633 
3634 		if (dce->dce_flags & DCEF_UINFO)
3635 			*uinfo = dce->dce_uinfo;
3636 
3637 		rts_merge_metrics(uinfo, &ire->ire_metrics);
3638 
3639 		/* Allow ire_metrics to decrease the path MTU from above */
3640 		if (uinfo->iulp_mtu == 0 || uinfo->iulp_mtu > pmtu)
3641 			uinfo->iulp_mtu = pmtu;
3642 
3643 		uinfo->iulp_localnet = (ire->ire_type & IRE_ONLINK) != 0;
3644 		uinfo->iulp_loopback = (ire->ire_type & IRE_LOOPBACK) != 0;
3645 		uinfo->iulp_local = (ire->ire_type & IRE_LOCAL) != 0;
3646 	}
3647 
3648 	if (ill != NULL)
3649 		ill_refrele(ill);
3650 
3651 	return (error);
3652 
3653 bad_addr:
3654 	if (ire != NULL)
3655 		ire_refrele(ire);
3656 
3657 	if (ill != NULL)
3658 		ill_refrele(ill);
3659 
3660 	/*
3661 	 * Make sure we don't leave an unreachable ixa_nce in place
3662 	 * since ip_select_route is used when we unplumb i.e., remove
3663 	 * references on ixa_ire, ixa_nce, and ixa_dce.
3664 	 */
3665 	nce = ixa->ixa_nce;
3666 	if (nce != NULL && nce->nce_is_condemned) {
3667 		nce_refrele(nce);
3668 		ixa->ixa_nce = NULL;
3669 		ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
3670 	}
3671 
3672 	return (error);
3673 }
3674 
3675 
3676 /*
3677  * Get the base MTU for the case when path MTU discovery is not used.
3678  * Takes the MTU of the IRE into account.
3679  */
3680 uint_t
3681 ip_get_base_mtu(ill_t *ill, ire_t *ire)
3682 {
3683 	uint_t mtu;
3684 	uint_t iremtu = ire->ire_metrics.iulp_mtu;
3685 
3686 	if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST))
3687 		mtu = ill->ill_mc_mtu;
3688 	else
3689 		mtu = ill->ill_mtu;
3690 
3691 	if (iremtu != 0 && iremtu < mtu)
3692 		mtu = iremtu;
3693 
3694 	return (mtu);
3695 }
3696 
3697 /*
3698  * Get the PMTU for the attributes. Handles both IPv4 and IPv6.
3699  * Assumes that ixa_ire, dce, and nce have already been set up.
3700  *
3701  * The caller has set IXAF_PMTU_DISCOVERY if path MTU discovery is desired.
3702  * We avoid path MTU discovery if it is disabled with ndd.
3703  * Furtermore, if the path MTU is too small, then we don't set DF for IPv4.
3704  *
3705  * NOTE: We also used to turn it off for source routed packets. That
3706  * is no longer required since the dce is per final destination.
3707  */
3708 uint_t
3709 ip_get_pmtu(ip_xmit_attr_t *ixa)
3710 {
3711 	ip_stack_t	*ipst = ixa->ixa_ipst;
3712 	dce_t		*dce;
3713 	nce_t		*nce;
3714 	ire_t		*ire;
3715 	uint_t		pmtu;
3716 
3717 	ire = ixa->ixa_ire;
3718 	dce = ixa->ixa_dce;
3719 	nce = ixa->ixa_nce;
3720 
3721 	/*
3722 	 * If path MTU discovery has been turned off by ndd, then we ignore
3723 	 * any dce_pmtu and for IPv4 we will not set DF.
3724 	 */
3725 	if (!ipst->ips_ip_path_mtu_discovery)
3726 		ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY;
3727 
3728 	pmtu = IP_MAXPACKET;
3729 	/*
3730 	 * Decide whether whether IPv4 sets DF
3731 	 * For IPv6 "no DF" means to use the 1280 mtu
3732 	 */
3733 	if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) {
3734 		ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
3735 	} else {
3736 		ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF;
3737 		if (!(ixa->ixa_flags & IXAF_IS_IPV4))
3738 			pmtu = IPV6_MIN_MTU;
3739 	}
3740 
3741 	/* Check if the PMTU is to old before we use it */
3742 	if ((dce->dce_flags & DCEF_PMTU) &&
3743 	    TICK_TO_SEC(ddi_get_lbolt64()) - dce->dce_last_change_time >
3744 	    ipst->ips_ip_pathmtu_interval) {
3745 		/*
3746 		 * Older than 20 minutes. Drop the path MTU information.
3747 		 */
3748 		mutex_enter(&dce->dce_lock);
3749 		dce->dce_flags &= ~(DCEF_PMTU|DCEF_TOO_SMALL_PMTU);
3750 		dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64());
3751 		mutex_exit(&dce->dce_lock);
3752 		dce_increment_generation(dce);
3753 	}
3754 
3755 	/* The metrics on the route can lower the path MTU */
3756 	if (ire->ire_metrics.iulp_mtu != 0 &&
3757 	    ire->ire_metrics.iulp_mtu < pmtu)
3758 		pmtu = ire->ire_metrics.iulp_mtu;
3759 
3760 	/*
3761 	 * If the path MTU is smaller than some minimum, we still use dce_pmtu
3762 	 * above (would be 576 for IPv4 and 1280 for IPv6), but we clear
3763 	 * IXAF_PMTU_IPV4_DF so that we avoid setting DF for IPv4.
3764 	 */
3765 	if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) {
3766 		if (dce->dce_flags & DCEF_PMTU) {
3767 			if (dce->dce_pmtu < pmtu)
3768 				pmtu = dce->dce_pmtu;
3769 
3770 			if (dce->dce_flags & DCEF_TOO_SMALL_PMTU) {
3771 				ixa->ixa_flags |= IXAF_PMTU_TOO_SMALL;
3772 				ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF;
3773 			} else {
3774 				ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL;
3775 				ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
3776 			}
3777 		} else {
3778 			ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL;
3779 			ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
3780 		}
3781 	}
3782 
3783 	/*
3784 	 * If we have an IRE_LOCAL we use the loopback mtu instead of
3785 	 * the ill for going out the wire i.e., IRE_LOCAL gets the same
3786 	 * mtu as IRE_LOOPBACK.
3787 	 */
3788 	if (ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) {
3789 		uint_t loopback_mtu;
3790 
3791 		loopback_mtu = (ire->ire_ipversion == IPV6_VERSION) ?
3792 		    ip_loopback_mtu_v6plus : ip_loopback_mtuplus;
3793 
3794 		if (loopback_mtu < pmtu)
3795 			pmtu = loopback_mtu;
3796 	} else if (nce != NULL) {
3797 		/*
3798 		 * Make sure we don't exceed the interface MTU.
3799 		 * In the case of RTF_REJECT or RTF_BLACKHOLE we might not have
3800 		 * an ill. We'd use the above IP_MAXPACKET in that case just
3801 		 * to tell the transport something larger than zero.
3802 		 */
3803 		if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST)) {
3804 			if (nce->nce_common->ncec_ill->ill_mc_mtu < pmtu)
3805 				pmtu = nce->nce_common->ncec_ill->ill_mc_mtu;
3806 			if (nce->nce_common->ncec_ill != nce->nce_ill &&
3807 			    nce->nce_ill->ill_mc_mtu < pmtu) {
3808 				/*
3809 				 * for interfaces in an IPMP group, the mtu of
3810 				 * the nce_ill (under_ill) could be different
3811 				 * from the mtu of the ncec_ill, so we take the
3812 				 * min of the two.
3813 				 */
3814 				pmtu = nce->nce_ill->ill_mc_mtu;
3815 			}
3816 		} else {
3817 			if (nce->nce_common->ncec_ill->ill_mtu < pmtu)
3818 				pmtu = nce->nce_common->ncec_ill->ill_mtu;
3819 			if (nce->nce_common->ncec_ill != nce->nce_ill &&
3820 			    nce->nce_ill->ill_mtu < pmtu) {
3821 				/*
3822 				 * for interfaces in an IPMP group, the mtu of
3823 				 * the nce_ill (under_ill) could be different
3824 				 * from the mtu of the ncec_ill, so we take the
3825 				 * min of the two.
3826 				 */
3827 				pmtu = nce->nce_ill->ill_mtu;
3828 			}
3829 		}
3830 	}
3831 
3832 	/*
3833 	 * Handle the IPV6_USE_MIN_MTU socket option or ancillary data.
3834 	 * Only applies to IPv6.
3835 	 */
3836 	if (!(ixa->ixa_flags & IXAF_IS_IPV4)) {
3837 		if (ixa->ixa_flags & IXAF_USE_MIN_MTU) {
3838 			switch (ixa->ixa_use_min_mtu) {
3839 			case IPV6_USE_MIN_MTU_MULTICAST:
3840 				if (ire->ire_type & IRE_MULTICAST)
3841 					pmtu = IPV6_MIN_MTU;
3842 				break;
3843 			case IPV6_USE_MIN_MTU_ALWAYS:
3844 				pmtu = IPV6_MIN_MTU;
3845 				break;
3846 			case IPV6_USE_MIN_MTU_NEVER:
3847 				break;
3848 			}
3849 		} else {
3850 			/* Default is IPV6_USE_MIN_MTU_MULTICAST */
3851 			if (ire->ire_type & IRE_MULTICAST)
3852 				pmtu = IPV6_MIN_MTU;
3853 		}
3854 	}
3855 
3856 	/*
3857 	 * For multirouted IPv6 packets, the IP layer will insert a 8-byte
3858 	 * fragment header in every packet. We compensate for those cases by
3859 	 * returning a smaller path MTU to the ULP.
3860 	 *
3861 	 * In the case of CGTP then ip_output will add a fragment header.
3862 	 * Make sure there is room for it by telling a smaller number
3863 	 * to the transport.
3864 	 *
3865 	 * When IXAF_IPV6_ADDR_FRAGHDR we subtract the frag hdr here
3866 	 * so the ULPs consistently see a iulp_pmtu and ip_get_pmtu()
3867 	 * which is the size of the packets it can send.
3868 	 */
3869 	if (!(ixa->ixa_flags & IXAF_IS_IPV4)) {
3870 		if ((ire->ire_flags & RTF_MULTIRT) ||
3871 		    (ixa->ixa_flags & IXAF_MULTIRT_MULTICAST)) {
3872 			pmtu -= sizeof (ip6_frag_t);
3873 			ixa->ixa_flags |= IXAF_IPV6_ADD_FRAGHDR;
3874 		}
3875 	}
3876 
3877 	return (pmtu);
3878 }
3879 
3880 /*
3881  * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping
3882  * the final piece where we don't.  Return a pointer to the first mblk in the
3883  * result, and update the pointer to the next mblk to chew on.  If anything
3884  * goes wrong (i.e., dupb fails), we waste everything in sight and return a
3885  * NULL pointer.
3886  */
3887 mblk_t *
3888 ip_carve_mp(mblk_t **mpp, ssize_t len)
3889 {
3890 	mblk_t	*mp0;
3891 	mblk_t	*mp1;
3892 	mblk_t	*mp2;
3893 
3894 	if (!len || !mpp || !(mp0 = *mpp))
3895 		return (NULL);
3896 	/* If we aren't going to consume the first mblk, we need a dup. */
3897 	if (mp0->b_wptr - mp0->b_rptr > len) {
3898 		mp1 = dupb(mp0);
3899 		if (mp1) {
3900 			/* Partition the data between the two mblks. */
3901 			mp1->b_wptr = mp1->b_rptr + len;
3902 			mp0->b_rptr = mp1->b_wptr;
3903 			/*
3904 			 * after adjustments if mblk not consumed is now
3905 			 * unaligned, try to align it. If this fails free
3906 			 * all messages and let upper layer recover.
3907 			 */
3908 			if (!OK_32PTR(mp0->b_rptr)) {
3909 				if (!pullupmsg(mp0, -1)) {
3910 					freemsg(mp0);
3911 					freemsg(mp1);
3912 					*mpp = NULL;
3913 					return (NULL);
3914 				}
3915 			}
3916 		}
3917 		return (mp1);
3918 	}
3919 	/* Eat through as many mblks as we need to get len bytes. */
3920 	len -= mp0->b_wptr - mp0->b_rptr;
3921 	for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) {
3922 		if (mp2->b_wptr - mp2->b_rptr > len) {
3923 			/*
3924 			 * We won't consume the entire last mblk.  Like
3925 			 * above, dup and partition it.
3926 			 */
3927 			mp1->b_cont = dupb(mp2);
3928 			mp1 = mp1->b_cont;
3929 			if (!mp1) {
3930 				/*
3931 				 * Trouble.  Rather than go to a lot of
3932 				 * trouble to clean up, we free the messages.
3933 				 * This won't be any worse than losing it on
3934 				 * the wire.
3935 				 */
3936 				freemsg(mp0);
3937 				freemsg(mp2);
3938 				*mpp = NULL;
3939 				return (NULL);
3940 			}
3941 			mp1->b_wptr = mp1->b_rptr + len;
3942 			mp2->b_rptr = mp1->b_wptr;
3943 			/*
3944 			 * after adjustments if mblk not consumed is now
3945 			 * unaligned, try to align it. If this fails free
3946 			 * all messages and let upper layer recover.
3947 			 */
3948 			if (!OK_32PTR(mp2->b_rptr)) {
3949 				if (!pullupmsg(mp2, -1)) {
3950 					freemsg(mp0);
3951 					freemsg(mp2);
3952 					*mpp = NULL;
3953 					return (NULL);
3954 				}
3955 			}
3956 			*mpp = mp2;
3957 			return (mp0);
3958 		}
3959 		/* Decrement len by the amount we just got. */
3960 		len -= mp2->b_wptr - mp2->b_rptr;
3961 	}
3962 	/*
3963 	 * len should be reduced to zero now.  If not our caller has
3964 	 * screwed up.
3965 	 */
3966 	if (len) {
3967 		/* Shouldn't happen! */
3968 		freemsg(mp0);
3969 		*mpp = NULL;
3970 		return (NULL);
3971 	}
3972 	/*
3973 	 * We consumed up to exactly the end of an mblk.  Detach the part
3974 	 * we are returning from the rest of the chain.
3975 	 */
3976 	mp1->b_cont = NULL;
3977 	*mpp = mp2;
3978 	return (mp0);
3979 }
3980 
3981 /* The ill stream is being unplumbed. Called from ip_close */
3982 int
3983 ip_modclose(ill_t *ill)
3984 {
3985 	boolean_t success;
3986 	ipsq_t	*ipsq;
3987 	ipif_t	*ipif;
3988 	queue_t	*q = ill->ill_rq;
3989 	ip_stack_t	*ipst = ill->ill_ipst;
3990 	int	i;
3991 	arl_ill_common_t *ai = ill->ill_common;
3992 
3993 	/*
3994 	 * The punlink prior to this may have initiated a capability
3995 	 * negotiation. But ipsq_enter will block until that finishes or
3996 	 * times out.
3997 	 */
3998 	success = ipsq_enter(ill, B_FALSE, NEW_OP);
3999 
4000 	/*
4001 	 * Open/close/push/pop is guaranteed to be single threaded
4002 	 * per stream by STREAMS. FS guarantees that all references
4003 	 * from top are gone before close is called. So there can't
4004 	 * be another close thread that has set CONDEMNED on this ill.
4005 	 * and cause ipsq_enter to return failure.
4006 	 */
4007 	ASSERT(success);
4008 	ipsq = ill->ill_phyint->phyint_ipsq;
4009 
4010 	/*
4011 	 * Mark it condemned. No new reference will be made to this ill.
4012 	 * Lookup functions will return an error. Threads that try to
4013 	 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures
4014 	 * that the refcnt will drop down to zero.
4015 	 */
4016 	mutex_enter(&ill->ill_lock);
4017 	ill->ill_state_flags |= ILL_CONDEMNED;
4018 	for (ipif = ill->ill_ipif; ipif != NULL;
4019 	    ipif = ipif->ipif_next) {
4020 		ipif->ipif_state_flags |= IPIF_CONDEMNED;
4021 	}
4022 	/*
4023 	 * Wake up anybody waiting to enter the ipsq. ipsq_enter
4024 	 * returns  error if ILL_CONDEMNED is set
4025 	 */
4026 	cv_broadcast(&ill->ill_cv);
4027 	mutex_exit(&ill->ill_lock);
4028 
4029 	/*
4030 	 * Send all the deferred DLPI messages downstream which came in
4031 	 * during the small window right before ipsq_enter(). We do this
4032 	 * without waiting for the ACKs because all the ACKs for M_PROTO
4033 	 * messages are ignored in ip_rput() when ILL_CONDEMNED is set.
4034 	 */
4035 	ill_dlpi_send_deferred(ill);
4036 
4037 	/*
4038 	 * Shut down fragmentation reassembly.
4039 	 * ill_frag_timer won't start a timer again.
4040 	 * Now cancel any existing timer
4041 	 */
4042 	(void) untimeout(ill->ill_frag_timer_id);
4043 	(void) ill_frag_timeout(ill, 0);
4044 
4045 	/*
4046 	 * Call ill_delete to bring down the ipifs, ilms and ill on
4047 	 * this ill. Then wait for the refcnts to drop to zero.
4048 	 * ill_is_freeable checks whether the ill is really quiescent.
4049 	 * Then make sure that threads that are waiting to enter the
4050 	 * ipsq have seen the error returned by ipsq_enter and have
4051 	 * gone away. Then we call ill_delete_tail which does the
4052 	 * DL_UNBIND_REQ with the driver and then qprocsoff.
4053 	 */
4054 	ill_delete(ill);
4055 	mutex_enter(&ill->ill_lock);
4056 	while (!ill_is_freeable(ill))
4057 		cv_wait(&ill->ill_cv, &ill->ill_lock);
4058 
4059 	while (ill->ill_waiters)
4060 		cv_wait(&ill->ill_cv, &ill->ill_lock);
4061 
4062 	mutex_exit(&ill->ill_lock);
4063 
4064 	/*
4065 	 * ill_delete_tail drops reference on ill_ipst, but we need to keep
4066 	 * it held until the end of the function since the cleanup
4067 	 * below needs to be able to use the ip_stack_t.
4068 	 */
4069 	netstack_hold(ipst->ips_netstack);
4070 
4071 	/* qprocsoff is done via ill_delete_tail */
4072 	ill_delete_tail(ill);
4073 	/*
4074 	 * synchronously wait for arp stream to unbind. After this, we
4075 	 * cannot get any data packets up from the driver.
4076 	 */
4077 	arp_unbind_complete(ill);
4078 	ASSERT(ill->ill_ipst == NULL);
4079 
4080 	/*
4081 	 * Walk through all conns and qenable those that have queued data.
4082 	 * Close synchronization needs this to
4083 	 * be done to ensure that all upper layers blocked
4084 	 * due to flow control to the closing device
4085 	 * get unblocked.
4086 	 */
4087 	ip1dbg(("ip_wsrv: walking\n"));
4088 	for (i = 0; i < TX_FANOUT_SIZE; i++) {
4089 		conn_walk_drain(ipst, &ipst->ips_idl_tx_list[i]);
4090 	}
4091 
4092 	/*
4093 	 * ai can be null if this is an IPv6 ill, or if the IPv4
4094 	 * stream is being torn down before ARP was plumbed (e.g.,
4095 	 * /sbin/ifconfig plumbing a stream twice, and encountering
4096 	 * an error
4097 	 */
4098 	if (ai != NULL) {
4099 		ASSERT(!ill->ill_isv6);
4100 		mutex_enter(&ai->ai_lock);
4101 		ai->ai_ill = NULL;
4102 		if (ai->ai_arl == NULL) {
4103 			mutex_destroy(&ai->ai_lock);
4104 			kmem_free(ai, sizeof (*ai));
4105 		} else {
4106 			cv_signal(&ai->ai_ill_unplumb_done);
4107 			mutex_exit(&ai->ai_lock);
4108 		}
4109 	}
4110 
4111 	mutex_enter(&ipst->ips_ip_mi_lock);
4112 	mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill);
4113 	mutex_exit(&ipst->ips_ip_mi_lock);
4114 
4115 	/*
4116 	 * credp could be null if the open didn't succeed and ip_modopen
4117 	 * itself calls ip_close.
4118 	 */
4119 	if (ill->ill_credp != NULL)
4120 		crfree(ill->ill_credp);
4121 
4122 	mutex_destroy(&ill->ill_saved_ire_lock);
4123 	mutex_destroy(&ill->ill_lock);
4124 	rw_destroy(&ill->ill_mcast_lock);
4125 	mutex_destroy(&ill->ill_mcast_serializer);
4126 	list_destroy(&ill->ill_nce);
4127 
4128 	/*
4129 	 * Now we are done with the module close pieces that
4130 	 * need the netstack_t.
4131 	 */
4132 	netstack_rele(ipst->ips_netstack);
4133 
4134 	mi_close_free((IDP)ill);
4135 	q->q_ptr = WR(q)->q_ptr = NULL;
4136 
4137 	ipsq_exit(ipsq);
4138 
4139 	return (0);
4140 }
4141 
4142 /*
4143  * This is called as part of close() for IP, UDP, ICMP, and RTS
4144  * in order to quiesce the conn.
4145  */
4146 void
4147 ip_quiesce_conn(conn_t *connp)
4148 {
4149 	boolean_t	drain_cleanup_reqd = B_FALSE;
4150 	boolean_t	conn_ioctl_cleanup_reqd = B_FALSE;
4151 	boolean_t	ilg_cleanup_reqd = B_FALSE;
4152 	ip_stack_t	*ipst;
4153 
4154 	ASSERT(!IPCL_IS_TCP(connp));
4155 	ipst = connp->conn_netstack->netstack_ip;
4156 
4157 	/*
4158 	 * Mark the conn as closing, and this conn must not be
4159 	 * inserted in future into any list. Eg. conn_drain_insert(),
4160 	 * won't insert this conn into the conn_drain_list.
4161 	 *
4162 	 * conn_idl, and conn_ilg cannot get set henceforth.
4163 	 */
4164 	mutex_enter(&connp->conn_lock);
4165 	ASSERT(!(connp->conn_state_flags & CONN_QUIESCED));
4166 	connp->conn_state_flags |= CONN_CLOSING;
4167 	if (connp->conn_idl != NULL)
4168 		drain_cleanup_reqd = B_TRUE;
4169 	if (connp->conn_oper_pending_ill != NULL)
4170 		conn_ioctl_cleanup_reqd = B_TRUE;
4171 	if (connp->conn_dhcpinit_ill != NULL) {
4172 		ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0);
4173 		atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit);
4174 		ill_set_inputfn(connp->conn_dhcpinit_ill);
4175 		connp->conn_dhcpinit_ill = NULL;
4176 	}
4177 	if (connp->conn_ilg != NULL)
4178 		ilg_cleanup_reqd = B_TRUE;
4179 	mutex_exit(&connp->conn_lock);
4180 
4181 	if (conn_ioctl_cleanup_reqd)
4182 		conn_ioctl_cleanup(connp);
4183 
4184 	if (is_system_labeled() && connp->conn_anon_port) {
4185 		(void) tsol_mlp_anon(crgetzone(connp->conn_cred),
4186 		    connp->conn_mlp_type, connp->conn_proto,
4187 		    ntohs(connp->conn_lport), B_FALSE);
4188 		connp->conn_anon_port = 0;
4189 	}
4190 	connp->conn_mlp_type = mlptSingle;
4191 
4192 	/*
4193 	 * Remove this conn from any fanout list it is on.
4194 	 * and then wait for any threads currently operating
4195 	 * on this endpoint to finish
4196 	 */
4197 	ipcl_hash_remove(connp);
4198 
4199 	/*
4200 	 * Remove this conn from the drain list, and do any other cleanup that
4201 	 * may be required.  (TCP conns are never flow controlled, and
4202 	 * conn_idl will be NULL.)
4203 	 */
4204 	if (drain_cleanup_reqd && connp->conn_idl != NULL) {
4205 		idl_t *idl = connp->conn_idl;
4206 
4207 		mutex_enter(&idl->idl_lock);
4208 		conn_drain(connp, B_TRUE);
4209 		mutex_exit(&idl->idl_lock);
4210 	}
4211 
4212 	if (connp == ipst->ips_ip_g_mrouter)
4213 		(void) ip_mrouter_done(ipst);
4214 
4215 	if (ilg_cleanup_reqd)
4216 		ilg_delete_all(connp);
4217 
4218 	/*
4219 	 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED.
4220 	 * callers from write side can't be there now because close
4221 	 * is in progress. The only other caller is ipcl_walk
4222 	 * which checks for the condemned flag.
4223 	 */
4224 	mutex_enter(&connp->conn_lock);
4225 	connp->conn_state_flags |= CONN_CONDEMNED;
4226 	while (connp->conn_ref != 1)
4227 		cv_wait(&connp->conn_cv, &connp->conn_lock);
4228 	connp->conn_state_flags |= CONN_QUIESCED;
4229 	mutex_exit(&connp->conn_lock);
4230 }
4231 
4232 /* ARGSUSED */
4233 int
4234 ip_close(queue_t *q, int flags, cred_t *credp __unused)
4235 {
4236 	conn_t		*connp;
4237 
4238 	/*
4239 	 * Call the appropriate delete routine depending on whether this is
4240 	 * a module or device.
4241 	 */
4242 	if (WR(q)->q_next != NULL) {
4243 		/* This is a module close */
4244 		return (ip_modclose((ill_t *)q->q_ptr));
4245 	}
4246 
4247 	connp = q->q_ptr;
4248 	ip_quiesce_conn(connp);
4249 
4250 	qprocsoff(q);
4251 
4252 	/*
4253 	 * Now we are truly single threaded on this stream, and can
4254 	 * delete the things hanging off the connp, and finally the connp.
4255 	 * We removed this connp from the fanout list, it cannot be
4256 	 * accessed thru the fanouts, and we already waited for the
4257 	 * conn_ref to drop to 0. We are already in close, so
4258 	 * there cannot be any other thread from the top. qprocsoff
4259 	 * has completed, and service has completed or won't run in
4260 	 * future.
4261 	 */
4262 	ASSERT(connp->conn_ref == 1);
4263 
4264 	inet_minor_free(connp->conn_minor_arena, connp->conn_dev);
4265 
4266 	connp->conn_ref--;
4267 	ipcl_conn_destroy(connp);
4268 
4269 	q->q_ptr = WR(q)->q_ptr = NULL;
4270 	return (0);
4271 }
4272 
4273 /*
4274  * Wapper around putnext() so that ip_rts_request can merely use
4275  * conn_recv.
4276  */
4277 /*ARGSUSED2*/
4278 static void
4279 ip_conn_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
4280 {
4281 	conn_t *connp = (conn_t *)arg1;
4282 
4283 	putnext(connp->conn_rq, mp);
4284 }
4285 
4286 /* Dummy in case ICMP error delivery is attempted to a /dev/ip instance */
4287 /* ARGSUSED */
4288 static void
4289 ip_conn_input_icmp(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
4290 {
4291 	freemsg(mp);
4292 }
4293 
4294 /*
4295  * Called when the module is about to be unloaded
4296  */
4297 void
4298 ip_ddi_destroy(void)
4299 {
4300 	/* This needs to be called before destroying any transports. */
4301 	mutex_enter(&cpu_lock);
4302 	unregister_cpu_setup_func(ip_tp_cpu_update, NULL);
4303 	mutex_exit(&cpu_lock);
4304 
4305 	tnet_fini();
4306 
4307 	icmp_ddi_g_destroy();
4308 	rts_ddi_g_destroy();
4309 	udp_ddi_g_destroy();
4310 	sctp_ddi_g_destroy();
4311 	tcp_ddi_g_destroy();
4312 	ilb_ddi_g_destroy();
4313 	dce_g_destroy();
4314 	ipsec_policy_g_destroy();
4315 	ipcl_g_destroy();
4316 	ip_net_g_destroy();
4317 	ip_ire_g_fini();
4318 	inet_minor_destroy(ip_minor_arena_sa);
4319 #if defined(_LP64)
4320 	inet_minor_destroy(ip_minor_arena_la);
4321 #endif
4322 
4323 #ifdef DEBUG
4324 	list_destroy(&ip_thread_list);
4325 	rw_destroy(&ip_thread_rwlock);
4326 	tsd_destroy(&ip_thread_data);
4327 #endif
4328 
4329 	netstack_unregister(NS_IP);
4330 }
4331 
4332 /*
4333  * First step in cleanup.
4334  */
4335 /* ARGSUSED */
4336 static void
4337 ip_stack_shutdown(netstackid_t stackid, void *arg)
4338 {
4339 	ip_stack_t *ipst = (ip_stack_t *)arg;
4340 	kt_did_t ktid;
4341 
4342 #ifdef NS_DEBUG
4343 	printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid);
4344 #endif
4345 
4346 	/*
4347 	 * Perform cleanup for special interfaces (loopback and IPMP).
4348 	 */
4349 	ip_interface_cleanup(ipst);
4350 
4351 	/*
4352 	 * The *_hook_shutdown()s start the process of notifying any
4353 	 * consumers that things are going away.... nothing is destroyed.
4354 	 */
4355 	ipv4_hook_shutdown(ipst);
4356 	ipv6_hook_shutdown(ipst);
4357 	arp_hook_shutdown(ipst);
4358 
4359 	mutex_enter(&ipst->ips_capab_taskq_lock);
4360 	ktid = ipst->ips_capab_taskq_thread->t_did;
4361 	ipst->ips_capab_taskq_quit = B_TRUE;
4362 	cv_signal(&ipst->ips_capab_taskq_cv);
4363 	mutex_exit(&ipst->ips_capab_taskq_lock);
4364 
4365 	/*
4366 	 * In rare occurrences, particularly on virtual hardware where CPUs can
4367 	 * be de-scheduled, the thread that we just signaled will not run until
4368 	 * after we have gotten through parts of ip_stack_fini. If that happens
4369 	 * then we'll try to grab the ips_capab_taskq_lock as part of returning
4370 	 * from cv_wait which no longer exists.
4371 	 */
4372 	thread_join(ktid);
4373 }
4374 
4375 /*
4376  * Free the IP stack instance.
4377  */
4378 static void
4379 ip_stack_fini(netstackid_t stackid, void *arg)
4380 {
4381 	ip_stack_t *ipst = (ip_stack_t *)arg;
4382 	int ret;
4383 
4384 #ifdef NS_DEBUG
4385 	printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid);
4386 #endif
4387 	/*
4388 	 * At this point, all of the notifications that the events and
4389 	 * protocols are going away have been run, meaning that we can
4390 	 * now set about starting to clean things up.
4391 	 */
4392 	ipobs_fini(ipst);
4393 	ipv4_hook_destroy(ipst);
4394 	ipv6_hook_destroy(ipst);
4395 	arp_hook_destroy(ipst);
4396 	ip_net_destroy(ipst);
4397 
4398 	ipmp_destroy(ipst);
4399 
4400 	ip_kstat_fini(stackid, ipst->ips_ip_mibkp);
4401 	ipst->ips_ip_mibkp = NULL;
4402 	icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp);
4403 	ipst->ips_icmp_mibkp = NULL;
4404 	ip_kstat2_fini(stackid, ipst->ips_ip_kstat);
4405 	ipst->ips_ip_kstat = NULL;
4406 	bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics));
4407 	ip6_kstat_fini(stackid, ipst->ips_ip6_kstat);
4408 	ipst->ips_ip6_kstat = NULL;
4409 	bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics));
4410 
4411 	kmem_free(ipst->ips_propinfo_tbl,
4412 	    ip_propinfo_count * sizeof (mod_prop_info_t));
4413 	ipst->ips_propinfo_tbl = NULL;
4414 
4415 	dce_stack_destroy(ipst);
4416 	ip_mrouter_stack_destroy(ipst);
4417 
4418 	/*
4419 	 * Quiesce all of our timers. Note we set the quiesce flags before we
4420 	 * call untimeout. The slowtimers may actually kick off another instance
4421 	 * of the non-slow timers.
4422 	 */
4423 	mutex_enter(&ipst->ips_igmp_timer_lock);
4424 	ipst->ips_igmp_timer_quiesce = B_TRUE;
4425 	mutex_exit(&ipst->ips_igmp_timer_lock);
4426 
4427 	mutex_enter(&ipst->ips_mld_timer_lock);
4428 	ipst->ips_mld_timer_quiesce = B_TRUE;
4429 	mutex_exit(&ipst->ips_mld_timer_lock);
4430 
4431 	mutex_enter(&ipst->ips_igmp_slowtimeout_lock);
4432 	ipst->ips_igmp_slowtimeout_quiesce = B_TRUE;
4433 	mutex_exit(&ipst->ips_igmp_slowtimeout_lock);
4434 
4435 	mutex_enter(&ipst->ips_mld_slowtimeout_lock);
4436 	ipst->ips_mld_slowtimeout_quiesce = B_TRUE;
4437 	mutex_exit(&ipst->ips_mld_slowtimeout_lock);
4438 
4439 	ret = untimeout(ipst->ips_igmp_timeout_id);
4440 	if (ret == -1) {
4441 		ASSERT(ipst->ips_igmp_timeout_id == 0);
4442 	} else {
4443 		ASSERT(ipst->ips_igmp_timeout_id != 0);
4444 		ipst->ips_igmp_timeout_id = 0;
4445 	}
4446 	ret = untimeout(ipst->ips_igmp_slowtimeout_id);
4447 	if (ret == -1) {
4448 		ASSERT(ipst->ips_igmp_slowtimeout_id == 0);
4449 	} else {
4450 		ASSERT(ipst->ips_igmp_slowtimeout_id != 0);
4451 		ipst->ips_igmp_slowtimeout_id = 0;
4452 	}
4453 	ret = untimeout(ipst->ips_mld_timeout_id);
4454 	if (ret == -1) {
4455 		ASSERT(ipst->ips_mld_timeout_id == 0);
4456 	} else {
4457 		ASSERT(ipst->ips_mld_timeout_id != 0);
4458 		ipst->ips_mld_timeout_id = 0;
4459 	}
4460 	ret = untimeout(ipst->ips_mld_slowtimeout_id);
4461 	if (ret == -1) {
4462 		ASSERT(ipst->ips_mld_slowtimeout_id == 0);
4463 	} else {
4464 		ASSERT(ipst->ips_mld_slowtimeout_id != 0);
4465 		ipst->ips_mld_slowtimeout_id = 0;
4466 	}
4467 
4468 	ip_ire_fini(ipst);
4469 	ip6_asp_free(ipst);
4470 	conn_drain_fini(ipst);
4471 	ipcl_destroy(ipst);
4472 
4473 	mutex_destroy(&ipst->ips_ndp4->ndp_g_lock);
4474 	mutex_destroy(&ipst->ips_ndp6->ndp_g_lock);
4475 	kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t));
4476 	ipst->ips_ndp4 = NULL;
4477 	kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t));
4478 	ipst->ips_ndp6 = NULL;
4479 
4480 	if (ipst->ips_loopback_ksp != NULL) {
4481 		kstat_delete_netstack(ipst->ips_loopback_ksp, stackid);
4482 		ipst->ips_loopback_ksp = NULL;
4483 	}
4484 
4485 	mutex_destroy(&ipst->ips_capab_taskq_lock);
4486 	cv_destroy(&ipst->ips_capab_taskq_cv);
4487 
4488 	rw_destroy(&ipst->ips_srcid_lock);
4489 
4490 	mutex_destroy(&ipst->ips_ip_mi_lock);
4491 	rw_destroy(&ipst->ips_ill_g_usesrc_lock);
4492 
4493 	mutex_destroy(&ipst->ips_igmp_timer_lock);
4494 	mutex_destroy(&ipst->ips_mld_timer_lock);
4495 	mutex_destroy(&ipst->ips_igmp_slowtimeout_lock);
4496 	mutex_destroy(&ipst->ips_mld_slowtimeout_lock);
4497 	mutex_destroy(&ipst->ips_ip_addr_avail_lock);
4498 	rw_destroy(&ipst->ips_ill_g_lock);
4499 
4500 	kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t));
4501 	ipst->ips_phyint_g_list = NULL;
4502 	kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS);
4503 	ipst->ips_ill_g_heads = NULL;
4504 
4505 	ldi_ident_release(ipst->ips_ldi_ident);
4506 	kmem_free(ipst, sizeof (*ipst));
4507 }
4508 
4509 /*
4510  * This function is called from the TSD destructor, and is used to debug
4511  * reference count issues in IP. See block comment in <inet/ip_if.h> for
4512  * details.
4513  */
4514 static void
4515 ip_thread_exit(void *phash)
4516 {
4517 	th_hash_t *thh = phash;
4518 
4519 	rw_enter(&ip_thread_rwlock, RW_WRITER);
4520 	list_remove(&ip_thread_list, thh);
4521 	rw_exit(&ip_thread_rwlock);
4522 	mod_hash_destroy_hash(thh->thh_hash);
4523 	kmem_free(thh, sizeof (*thh));
4524 }
4525 
4526 /*
4527  * Called when the IP kernel module is loaded into the kernel
4528  */
4529 void
4530 ip_ddi_init(void)
4531 {
4532 	ip_squeue_flag = ip_squeue_switch(ip_squeue_enter);
4533 
4534 	/*
4535 	 * For IP and TCP the minor numbers should start from 2 since we have 4
4536 	 * initial devices: ip, ip6, tcp, tcp6.
4537 	 */
4538 	/*
4539 	 * If this is a 64-bit kernel, then create two separate arenas -
4540 	 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the
4541 	 * other for socket apps in the range 2^^18 through 2^^32-1.
4542 	 */
4543 	ip_minor_arena_la = NULL;
4544 	ip_minor_arena_sa = NULL;
4545 #if defined(_LP64)
4546 	if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa",
4547 	    INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) {
4548 		cmn_err(CE_PANIC,
4549 		    "ip_ddi_init: ip_minor_arena_sa creation failed\n");
4550 	}
4551 	if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la",
4552 	    MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) {
4553 		cmn_err(CE_PANIC,
4554 		    "ip_ddi_init: ip_minor_arena_la creation failed\n");
4555 	}
4556 #else
4557 	if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa",
4558 	    INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) {
4559 		cmn_err(CE_PANIC,
4560 		    "ip_ddi_init: ip_minor_arena_sa creation failed\n");
4561 	}
4562 #endif
4563 	ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms);
4564 
4565 	ipcl_g_init();
4566 	ip_ire_g_init();
4567 	ip_net_g_init();
4568 
4569 #ifdef DEBUG
4570 	tsd_create(&ip_thread_data, ip_thread_exit);
4571 	rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL);
4572 	list_create(&ip_thread_list, sizeof (th_hash_t),
4573 	    offsetof(th_hash_t, thh_link));
4574 #endif
4575 	ipsec_policy_g_init();
4576 	tcp_ddi_g_init();
4577 	sctp_ddi_g_init();
4578 	dce_g_init();
4579 
4580 	/*
4581 	 * We want to be informed each time a stack is created or
4582 	 * destroyed in the kernel, so we can maintain the
4583 	 * set of udp_stack_t's.
4584 	 */
4585 	netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown,
4586 	    ip_stack_fini);
4587 
4588 	tnet_init();
4589 
4590 	udp_ddi_g_init();
4591 	rts_ddi_g_init();
4592 	icmp_ddi_g_init();
4593 	ilb_ddi_g_init();
4594 
4595 	/* This needs to be called after all transports are initialized. */
4596 	mutex_enter(&cpu_lock);
4597 	register_cpu_setup_func(ip_tp_cpu_update, NULL);
4598 	mutex_exit(&cpu_lock);
4599 }
4600 
4601 /*
4602  * Initialize the IP stack instance.
4603  */
4604 static void *
4605 ip_stack_init(netstackid_t stackid, netstack_t *ns)
4606 {
4607 	ip_stack_t	*ipst;
4608 	size_t		arrsz;
4609 	major_t		major;
4610 
4611 #ifdef NS_DEBUG
4612 	printf("ip_stack_init(stack %d)\n", stackid);
4613 #endif
4614 
4615 	ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP);
4616 	ipst->ips_netstack = ns;
4617 
4618 	ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS,
4619 	    KM_SLEEP);
4620 	ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t),
4621 	    KM_SLEEP);
4622 	ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP);
4623 	ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP);
4624 	mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL);
4625 	mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL);
4626 
4627 	mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL);
4628 	ipst->ips_igmp_deferred_next = INFINITY;
4629 	mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL);
4630 	ipst->ips_mld_deferred_next = INFINITY;
4631 	mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL);
4632 	mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL);
4633 	mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL);
4634 	mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL);
4635 	rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL);
4636 	rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL);
4637 
4638 	ipcl_init(ipst);
4639 	ip_ire_init(ipst);
4640 	ip6_asp_init(ipst);
4641 	ipif_init(ipst);
4642 	conn_drain_init(ipst);
4643 	ip_mrouter_stack_init(ipst);
4644 	dce_stack_init(ipst);
4645 
4646 	ipst->ips_ip_multirt_log_interval = 1000;
4647 
4648 	ipst->ips_ill_index = 1;
4649 
4650 	ipst->ips_saved_ip_forwarding = -1;
4651 	ipst->ips_reg_vif_num = ALL_VIFS;	/* Index to Register vif */
4652 
4653 	arrsz = ip_propinfo_count * sizeof (mod_prop_info_t);
4654 	ipst->ips_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz, KM_SLEEP);
4655 	bcopy(ip_propinfo_tbl, ipst->ips_propinfo_tbl, arrsz);
4656 
4657 	ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst);
4658 	ipst->ips_icmp_mibkp = icmp_kstat_init(stackid);
4659 	ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics);
4660 	ipst->ips_ip6_kstat =
4661 	    ip6_kstat_init(stackid, &ipst->ips_ip6_statistics);
4662 
4663 	ipst->ips_ip_src_id = 1;
4664 	rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL);
4665 
4666 	ipst->ips_src_generation = SRC_GENERATION_INITIAL;
4667 
4668 	ip_net_init(ipst, ns);
4669 	ipv4_hook_init(ipst);
4670 	ipv6_hook_init(ipst);
4671 	arp_hook_init(ipst);
4672 	ipmp_init(ipst);
4673 	ipobs_init(ipst);
4674 
4675 	/*
4676 	 * Create the taskq dispatcher thread and initialize related stuff.
4677 	 */
4678 	mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL);
4679 	cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL);
4680 	ipst->ips_capab_taskq_thread = thread_create(NULL, 0,
4681 	    ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri);
4682 
4683 	major = mod_name_to_major(INET_NAME);
4684 	(void) ldi_ident_from_major(major, &ipst->ips_ldi_ident);
4685 	return (ipst);
4686 }
4687 
4688 /*
4689  * Allocate and initialize a DLPI template of the specified length.  (May be
4690  * called as writer.)
4691  */
4692 mblk_t *
4693 ip_dlpi_alloc(size_t len, t_uscalar_t prim)
4694 {
4695 	mblk_t	*mp;
4696 
4697 	mp = allocb(len, BPRI_MED);
4698 	if (!mp)
4699 		return (NULL);
4700 
4701 	/*
4702 	 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter
4703 	 * of which we don't seem to use) are sent with M_PCPROTO, and
4704 	 * that other DLPI are M_PROTO.
4705 	 */
4706 	if (prim == DL_INFO_REQ) {
4707 		mp->b_datap->db_type = M_PCPROTO;
4708 	} else {
4709 		mp->b_datap->db_type = M_PROTO;
4710 	}
4711 
4712 	mp->b_wptr = mp->b_rptr + len;
4713 	bzero(mp->b_rptr, len);
4714 	((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim;
4715 	return (mp);
4716 }
4717 
4718 /*
4719  * Allocate and initialize a DLPI notification.  (May be called as writer.)
4720  */
4721 mblk_t *
4722 ip_dlnotify_alloc(uint_t notification, uint_t data)
4723 {
4724 	dl_notify_ind_t	*notifyp;
4725 	mblk_t		*mp;
4726 
4727 	if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL)
4728 		return (NULL);
4729 
4730 	notifyp = (dl_notify_ind_t *)mp->b_rptr;
4731 	notifyp->dl_notification = notification;
4732 	notifyp->dl_data = data;
4733 	return (mp);
4734 }
4735 
4736 mblk_t *
4737 ip_dlnotify_alloc2(uint_t notification, uint_t data1, uint_t data2)
4738 {
4739 	dl_notify_ind_t	*notifyp;
4740 	mblk_t		*mp;
4741 
4742 	if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL)
4743 		return (NULL);
4744 
4745 	notifyp = (dl_notify_ind_t *)mp->b_rptr;
4746 	notifyp->dl_notification = notification;
4747 	notifyp->dl_data1 = data1;
4748 	notifyp->dl_data2 = data2;
4749 	return (mp);
4750 }
4751 
4752 /*
4753  * Debug formatting routine.  Returns a character string representation of the
4754  * addr in buf, of the form xxx.xxx.xxx.xxx.  This routine takes the address
4755  * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer.
4756  *
4757  * Once the ndd table-printing interfaces are removed, this can be changed to
4758  * standard dotted-decimal form.
4759  */
4760 char *
4761 ip_dot_addr(ipaddr_t addr, char *buf)
4762 {
4763 	uint8_t *ap = (uint8_t *)&addr;
4764 
4765 	(void) mi_sprintf(buf, "%03d.%03d.%03d.%03d",
4766 	    ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF);
4767 	return (buf);
4768 }
4769 
4770 /*
4771  * Write the given MAC address as a printable string in the usual colon-
4772  * separated format.
4773  */
4774 const char *
4775 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen)
4776 {
4777 	char *bp;
4778 
4779 	if (alen == 0 || buflen < 4)
4780 		return ("?");
4781 	bp = buf;
4782 	for (;;) {
4783 		/*
4784 		 * If there are more MAC address bytes available, but we won't
4785 		 * have any room to print them, then add "..." to the string
4786 		 * instead.  See below for the 'magic number' explanation.
4787 		 */
4788 		if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) {
4789 			(void) strcpy(bp, "...");
4790 			break;
4791 		}
4792 		(void) sprintf(bp, "%02x", *addr++);
4793 		bp += 2;
4794 		if (--alen == 0)
4795 			break;
4796 		*bp++ = ':';
4797 		buflen -= 3;
4798 		/*
4799 		 * At this point, based on the first 'if' statement above,
4800 		 * either alen == 1 and buflen >= 3, or alen > 1 and
4801 		 * buflen >= 4.  The first case leaves room for the final "xx"
4802 		 * number and trailing NUL byte.  The second leaves room for at
4803 		 * least "...".  Thus the apparently 'magic' numbers chosen for
4804 		 * that statement.
4805 		 */
4806 	}
4807 	return (buf);
4808 }
4809 
4810 /*
4811  * Called when it is conceptually a ULP that would sent the packet
4812  * e.g., port unreachable and protocol unreachable. Check that the packet
4813  * would have passed the IPsec global policy before sending the error.
4814  *
4815  * Send an ICMP error after patching up the packet appropriately.
4816  * Uses ip_drop_input and bumps the appropriate MIB.
4817  */
4818 void
4819 ip_fanout_send_icmp_v4(mblk_t *mp, uint_t icmp_type, uint_t icmp_code,
4820     ip_recv_attr_t *ira)
4821 {
4822 	ipha_t		*ipha;
4823 	boolean_t	secure;
4824 	ill_t		*ill = ira->ira_ill;
4825 	ip_stack_t	*ipst = ill->ill_ipst;
4826 	netstack_t	*ns = ipst->ips_netstack;
4827 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
4828 
4829 	secure = ira->ira_flags & IRAF_IPSEC_SECURE;
4830 
4831 	/*
4832 	 * We are generating an icmp error for some inbound packet.
4833 	 * Called from all ip_fanout_(udp, tcp, proto) functions.
4834 	 * Before we generate an error, check with global policy
4835 	 * to see whether this is allowed to enter the system. As
4836 	 * there is no "conn", we are checking with global policy.
4837 	 */
4838 	ipha = (ipha_t *)mp->b_rptr;
4839 	if (secure || ipss->ipsec_inbound_v4_policy_present) {
4840 		mp = ipsec_check_global_policy(mp, NULL, ipha, NULL, ira, ns);
4841 		if (mp == NULL)
4842 			return;
4843 	}
4844 
4845 	/* We never send errors for protocols that we do implement */
4846 	if (ira->ira_protocol == IPPROTO_ICMP ||
4847 	    ira->ira_protocol == IPPROTO_IGMP) {
4848 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
4849 		ip_drop_input("ip_fanout_send_icmp_v4", mp, ill);
4850 		freemsg(mp);
4851 		return;
4852 	}
4853 	/*
4854 	 * Have to correct checksum since
4855 	 * the packet might have been
4856 	 * fragmented and the reassembly code in ip_rput
4857 	 * does not restore the IP checksum.
4858 	 */
4859 	ipha->ipha_hdr_checksum = 0;
4860 	ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
4861 
4862 	switch (icmp_type) {
4863 	case ICMP_DEST_UNREACHABLE:
4864 		switch (icmp_code) {
4865 		case ICMP_PROTOCOL_UNREACHABLE:
4866 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInUnknownProtos);
4867 			ip_drop_input("ipIfStatsInUnknownProtos", mp, ill);
4868 			break;
4869 		case ICMP_PORT_UNREACHABLE:
4870 			BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts);
4871 			ip_drop_input("ipIfStatsNoPorts", mp, ill);
4872 			break;
4873 		}
4874 
4875 		icmp_unreachable(mp, icmp_code, ira);
4876 		break;
4877 	default:
4878 #ifdef DEBUG
4879 		panic("ip_fanout_send_icmp_v4: wrong type");
4880 		/*NOTREACHED*/
4881 #else
4882 		freemsg(mp);
4883 		break;
4884 #endif
4885 	}
4886 }
4887 
4888 /*
4889  * Used to send an ICMP error message when a packet is received for
4890  * a protocol that is not supported. The mblk passed as argument
4891  * is consumed by this function.
4892  */
4893 void
4894 ip_proto_not_sup(mblk_t *mp, ip_recv_attr_t *ira)
4895 {
4896 	ipha_t		*ipha;
4897 
4898 	ipha = (ipha_t *)mp->b_rptr;
4899 	if (ira->ira_flags & IRAF_IS_IPV4) {
4900 		ASSERT(IPH_HDR_VERSION(ipha) == IP_VERSION);
4901 		ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE,
4902 		    ICMP_PROTOCOL_UNREACHABLE, ira);
4903 	} else {
4904 		ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION);
4905 		ip_fanout_send_icmp_v6(mp, ICMP6_PARAM_PROB,
4906 		    ICMP6_PARAMPROB_NEXTHEADER, ira);
4907 	}
4908 }
4909 
4910 /*
4911  * Deliver a rawip packet to the given conn, possibly applying ipsec policy.
4912  * Handles IPv4 and IPv6.
4913  * We are responsible for disposing of mp, such as by freemsg() or putnext()
4914  * Caller is responsible for dropping references to the conn.
4915  */
4916 void
4917 ip_fanout_proto_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h,
4918     ip_recv_attr_t *ira)
4919 {
4920 	ill_t		*ill = ira->ira_ill;
4921 	ip_stack_t	*ipst = ill->ill_ipst;
4922 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
4923 	boolean_t	secure;
4924 	uint_t		protocol = ira->ira_protocol;
4925 	iaflags_t	iraflags = ira->ira_flags;
4926 	queue_t		*rq;
4927 
4928 	secure = iraflags & IRAF_IPSEC_SECURE;
4929 
4930 	rq = connp->conn_rq;
4931 	if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) {
4932 		switch (protocol) {
4933 		case IPPROTO_ICMPV6:
4934 			BUMP_MIB(ill->ill_icmp6_mib, ipv6IfIcmpInOverflows);
4935 			break;
4936 		case IPPROTO_ICMP:
4937 			BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows);
4938 			break;
4939 		default:
4940 			BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows);
4941 			break;
4942 		}
4943 		freemsg(mp);
4944 		return;
4945 	}
4946 
4947 	ASSERT(!(IPCL_IS_IPTUN(connp)));
4948 
4949 	if (((iraflags & IRAF_IS_IPV4) ?
4950 	    CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
4951 	    CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
4952 	    secure) {
4953 		mp = ipsec_check_inbound_policy(mp, connp, ipha,
4954 		    ip6h, ira);
4955 		if (mp == NULL) {
4956 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
4957 			/* Note that mp is NULL */
4958 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
4959 			return;
4960 		}
4961 	}
4962 
4963 	if (iraflags & IRAF_ICMP_ERROR) {
4964 		(connp->conn_recvicmp)(connp, mp, NULL, ira);
4965 	} else {
4966 		ill_t *rill = ira->ira_rill;
4967 
4968 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
4969 		ira->ira_ill = ira->ira_rill = NULL;
4970 		/* Send it upstream */
4971 		(connp->conn_recv)(connp, mp, NULL, ira);
4972 		ira->ira_ill = ill;
4973 		ira->ira_rill = rill;
4974 	}
4975 }
4976 
4977 /*
4978  * Handle protocols with which IP is less intimate.  There
4979  * can be more than one stream bound to a particular
4980  * protocol.  When this is the case, normally each one gets a copy
4981  * of any incoming packets.
4982  *
4983  * IPsec NOTE :
4984  *
4985  * Don't allow a secure packet going up a non-secure connection.
4986  * We don't allow this because
4987  *
4988  * 1) Reply might go out in clear which will be dropped at
4989  *    the sending side.
4990  * 2) If the reply goes out in clear it will give the
4991  *    adversary enough information for getting the key in
4992  *    most of the cases.
4993  *
4994  * Moreover getting a secure packet when we expect clear
4995  * implies that SA's were added without checking for
4996  * policy on both ends. This should not happen once ISAKMP
4997  * is used to negotiate SAs as SAs will be added only after
4998  * verifying the policy.
4999  *
5000  * Zones notes:
5001  * Earlier in ip_input on a system with multiple shared-IP zones we
5002  * duplicate the multicast and broadcast packets and send them up
5003  * with each explicit zoneid that exists on that ill.
5004  * This means that here we can match the zoneid with SO_ALLZONES being special.
5005  */
5006 void
5007 ip_fanout_proto_v4(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
5008 {
5009 	mblk_t		*mp1;
5010 	ipaddr_t	laddr;
5011 	conn_t		*connp, *first_connp, *next_connp;
5012 	connf_t		*connfp;
5013 	ill_t		*ill = ira->ira_ill;
5014 	ip_stack_t	*ipst = ill->ill_ipst;
5015 
5016 	laddr = ipha->ipha_dst;
5017 
5018 	connfp = &ipst->ips_ipcl_proto_fanout_v4[ira->ira_protocol];
5019 	mutex_enter(&connfp->connf_lock);
5020 	connp = connfp->connf_head;
5021 	for (connp = connfp->connf_head; connp != NULL;
5022 	    connp = connp->conn_next) {
5023 		/* Note: IPCL_PROTO_MATCH includes conn_wantpacket */
5024 		if (IPCL_PROTO_MATCH(connp, ira, ipha) &&
5025 		    (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5026 		    tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) {
5027 			break;
5028 		}
5029 	}
5030 
5031 	if (connp == NULL) {
5032 		/*
5033 		 * No one bound to these addresses.  Is
5034 		 * there a client that wants all
5035 		 * unclaimed datagrams?
5036 		 */
5037 		mutex_exit(&connfp->connf_lock);
5038 		ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE,
5039 		    ICMP_PROTOCOL_UNREACHABLE, ira);
5040 		return;
5041 	}
5042 
5043 	ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL);
5044 
5045 	CONN_INC_REF(connp);
5046 	first_connp = connp;
5047 	connp = connp->conn_next;
5048 
5049 	for (;;) {
5050 		while (connp != NULL) {
5051 			/* Note: IPCL_PROTO_MATCH includes conn_wantpacket */
5052 			if (IPCL_PROTO_MATCH(connp, ira, ipha) &&
5053 			    (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5054 			    tsol_receive_local(mp, &laddr, IPV4_VERSION,
5055 			    ira, connp)))
5056 				break;
5057 			connp = connp->conn_next;
5058 		}
5059 
5060 		if (connp == NULL) {
5061 			/* No more interested clients */
5062 			connp = first_connp;
5063 			break;
5064 		}
5065 		if (((mp1 = dupmsg(mp)) == NULL) &&
5066 		    ((mp1 = copymsg(mp)) == NULL)) {
5067 			/* Memory allocation failed */
5068 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5069 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
5070 			connp = first_connp;
5071 			break;
5072 		}
5073 
5074 		CONN_INC_REF(connp);
5075 		mutex_exit(&connfp->connf_lock);
5076 
5077 		ip_fanout_proto_conn(connp, mp1, (ipha_t *)mp1->b_rptr, NULL,
5078 		    ira);
5079 
5080 		mutex_enter(&connfp->connf_lock);
5081 		/* Follow the next pointer before releasing the conn. */
5082 		next_connp = connp->conn_next;
5083 		CONN_DEC_REF(connp);
5084 		connp = next_connp;
5085 	}
5086 
5087 	/* Last one.  Send it upstream. */
5088 	mutex_exit(&connfp->connf_lock);
5089 
5090 	ip_fanout_proto_conn(connp, mp, ipha, NULL, ira);
5091 
5092 	CONN_DEC_REF(connp);
5093 }
5094 
5095 /*
5096  * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or
5097  * pass it along to ESP if the SPI is non-zero.  Returns the mblk if the mblk
5098  * is not consumed.
5099  *
5100  * One of three things can happen, all of which affect the passed-in mblk:
5101  *
5102  * 1.) The packet is stock UDP and gets its zero-SPI stripped.  Return mblk..
5103  *
5104  * 2.) The packet is ESP-in-UDP, gets transformed into an equivalent
5105  *     ESP packet, and is passed along to ESP for consumption.  Return NULL.
5106  *
5107  * 3.) The packet is an ESP-in-UDP Keepalive.  Drop it and return NULL.
5108  */
5109 mblk_t *
5110 zero_spi_check(mblk_t *mp, ip_recv_attr_t *ira)
5111 {
5112 	int shift, plen, iph_len;
5113 	ipha_t *ipha;
5114 	udpha_t *udpha;
5115 	uint32_t *spi;
5116 	uint32_t esp_ports;
5117 	uint8_t *orptr;
5118 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
5119 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
5120 
5121 	ipha = (ipha_t *)mp->b_rptr;
5122 	iph_len = ira->ira_ip_hdr_length;
5123 	plen = ira->ira_pktlen;
5124 
5125 	if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) {
5126 		/*
5127 		 * Most likely a keepalive for the benefit of an intervening
5128 		 * NAT.  These aren't for us, per se, so drop it.
5129 		 *
5130 		 * RFC 3947/8 doesn't say for sure what to do for 2-3
5131 		 * byte packets (keepalives are 1-byte), but we'll drop them
5132 		 * also.
5133 		 */
5134 		ip_drop_packet(mp, B_TRUE, ira->ira_ill,
5135 		    DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper);
5136 		return (NULL);
5137 	}
5138 
5139 	if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) {
5140 		/* might as well pull it all up - it might be ESP. */
5141 		if (!pullupmsg(mp, -1)) {
5142 			ip_drop_packet(mp, B_TRUE, ira->ira_ill,
5143 			    DROPPER(ipss, ipds_esp_nomem),
5144 			    &ipss->ipsec_dropper);
5145 			return (NULL);
5146 		}
5147 
5148 		ipha = (ipha_t *)mp->b_rptr;
5149 	}
5150 	spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t));
5151 	if (*spi == 0) {
5152 		/* UDP packet - remove 0-spi. */
5153 		shift = sizeof (uint32_t);
5154 	} else {
5155 		/* ESP-in-UDP packet - reduce to ESP. */
5156 		ipha->ipha_protocol = IPPROTO_ESP;
5157 		shift = sizeof (udpha_t);
5158 	}
5159 
5160 	/* Fix IP header */
5161 	ira->ira_pktlen = (plen - shift);
5162 	ipha->ipha_length = htons(ira->ira_pktlen);
5163 	ipha->ipha_hdr_checksum = 0;
5164 
5165 	orptr = mp->b_rptr;
5166 	mp->b_rptr += shift;
5167 
5168 	udpha = (udpha_t *)(orptr + iph_len);
5169 	if (*spi == 0) {
5170 		ASSERT((uint8_t *)ipha == orptr);
5171 		udpha->uha_length = htons(plen - shift - iph_len);
5172 		iph_len += sizeof (udpha_t);	/* For the call to ovbcopy(). */
5173 		esp_ports = 0;
5174 	} else {
5175 		esp_ports = *((uint32_t *)udpha);
5176 		ASSERT(esp_ports != 0);
5177 	}
5178 	ovbcopy(orptr, orptr + shift, iph_len);
5179 	if (esp_ports != 0) /* Punt up for ESP processing. */ {
5180 		ipha = (ipha_t *)(orptr + shift);
5181 
5182 		ira->ira_flags |= IRAF_ESP_UDP_PORTS;
5183 		ira->ira_esp_udp_ports = esp_ports;
5184 		ip_fanout_v4(mp, ipha, ira);
5185 		return (NULL);
5186 	}
5187 	return (mp);
5188 }
5189 
5190 /*
5191  * Deliver a udp packet to the given conn, possibly applying ipsec policy.
5192  * Handles IPv4 and IPv6.
5193  * We are responsible for disposing of mp, such as by freemsg() or putnext()
5194  * Caller is responsible for dropping references to the conn.
5195  */
5196 void
5197 ip_fanout_udp_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h,
5198     ip_recv_attr_t *ira)
5199 {
5200 	ill_t		*ill = ira->ira_ill;
5201 	ip_stack_t	*ipst = ill->ill_ipst;
5202 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
5203 	boolean_t	secure;
5204 	iaflags_t	iraflags = ira->ira_flags;
5205 
5206 	secure = iraflags & IRAF_IPSEC_SECURE;
5207 
5208 	if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld :
5209 	    !canputnext(connp->conn_rq)) {
5210 		BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows);
5211 		freemsg(mp);
5212 		return;
5213 	}
5214 
5215 	if (((iraflags & IRAF_IS_IPV4) ?
5216 	    CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
5217 	    CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
5218 	    secure) {
5219 		mp = ipsec_check_inbound_policy(mp, connp, ipha,
5220 		    ip6h, ira);
5221 		if (mp == NULL) {
5222 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5223 			/* Note that mp is NULL */
5224 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
5225 			return;
5226 		}
5227 	}
5228 
5229 	/*
5230 	 * Since this code is not used for UDP unicast we don't need a NAT_T
5231 	 * check. Only ip_fanout_v4 has that check.
5232 	 */
5233 	if (ira->ira_flags & IRAF_ICMP_ERROR) {
5234 		(connp->conn_recvicmp)(connp, mp, NULL, ira);
5235 	} else {
5236 		ill_t *rill = ira->ira_rill;
5237 
5238 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
5239 		ira->ira_ill = ira->ira_rill = NULL;
5240 		/* Send it upstream */
5241 		(connp->conn_recv)(connp, mp, NULL, ira);
5242 		ira->ira_ill = ill;
5243 		ira->ira_rill = rill;
5244 	}
5245 }
5246 
5247 /*
5248  * Fanout for UDP packets that are multicast or broadcast, and ICMP errors.
5249  * (Unicast fanout is handled in ip_input_v4.)
5250  *
5251  * If SO_REUSEADDR is set all multicast and broadcast packets
5252  * will be delivered to all conns bound to the same port.
5253  *
5254  * If there is at least one matching AF_INET receiver, then we will
5255  * ignore any AF_INET6 receivers.
5256  * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an
5257  * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4
5258  * packets.
5259  *
5260  * Zones notes:
5261  * Earlier in ip_input on a system with multiple shared-IP zones we
5262  * duplicate the multicast and broadcast packets and send them up
5263  * with each explicit zoneid that exists on that ill.
5264  * This means that here we can match the zoneid with SO_ALLZONES being special.
5265  */
5266 void
5267 ip_fanout_udp_multi_v4(mblk_t *mp, ipha_t *ipha, uint16_t lport, uint16_t fport,
5268     ip_recv_attr_t *ira)
5269 {
5270 	ipaddr_t	laddr;
5271 	in6_addr_t	v6faddr;
5272 	conn_t		*connp;
5273 	connf_t		*connfp;
5274 	ipaddr_t	faddr;
5275 	ill_t		*ill = ira->ira_ill;
5276 	ip_stack_t	*ipst = ill->ill_ipst;
5277 
5278 	ASSERT(ira->ira_flags & (IRAF_MULTIBROADCAST|IRAF_ICMP_ERROR));
5279 
5280 	laddr = ipha->ipha_dst;
5281 	faddr = ipha->ipha_src;
5282 
5283 	connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)];
5284 	mutex_enter(&connfp->connf_lock);
5285 	connp = connfp->connf_head;
5286 
5287 	/*
5288 	 * If SO_REUSEADDR has been set on the first we send the
5289 	 * packet to all clients that have joined the group and
5290 	 * match the port.
5291 	 */
5292 	while (connp != NULL) {
5293 		if ((IPCL_UDP_MATCH(connp, lport, laddr, fport, faddr)) &&
5294 		    conn_wantpacket(connp, ira, ipha) &&
5295 		    (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5296 		    tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp)))
5297 			break;
5298 		connp = connp->conn_next;
5299 	}
5300 
5301 	if (connp == NULL)
5302 		goto notfound;
5303 
5304 	CONN_INC_REF(connp);
5305 
5306 	if (connp->conn_reuseaddr) {
5307 		conn_t		*first_connp = connp;
5308 		conn_t		*next_connp;
5309 		mblk_t		*mp1;
5310 
5311 		connp = connp->conn_next;
5312 		for (;;) {
5313 			while (connp != NULL) {
5314 				if (IPCL_UDP_MATCH(connp, lport, laddr,
5315 				    fport, faddr) &&
5316 				    conn_wantpacket(connp, ira, ipha) &&
5317 				    (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5318 				    tsol_receive_local(mp, &laddr, IPV4_VERSION,
5319 				    ira, connp)))
5320 					break;
5321 				connp = connp->conn_next;
5322 			}
5323 			if (connp == NULL) {
5324 				/* No more interested clients */
5325 				connp = first_connp;
5326 				break;
5327 			}
5328 			if (((mp1 = dupmsg(mp)) == NULL) &&
5329 			    ((mp1 = copymsg(mp)) == NULL)) {
5330 				/* Memory allocation failed */
5331 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5332 				ip_drop_input("ipIfStatsInDiscards", mp, ill);
5333 				connp = first_connp;
5334 				break;
5335 			}
5336 			CONN_INC_REF(connp);
5337 			mutex_exit(&connfp->connf_lock);
5338 
5339 			IP_STAT(ipst, ip_udp_fanmb);
5340 			ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr,
5341 			    NULL, ira);
5342 			mutex_enter(&connfp->connf_lock);
5343 			/* Follow the next pointer before releasing the conn */
5344 			next_connp = connp->conn_next;
5345 			CONN_DEC_REF(connp);
5346 			connp = next_connp;
5347 		}
5348 	}
5349 
5350 	/* Last one.  Send it upstream. */
5351 	mutex_exit(&connfp->connf_lock);
5352 	IP_STAT(ipst, ip_udp_fanmb);
5353 	ip_fanout_udp_conn(connp, mp, ipha, NULL, ira);
5354 	CONN_DEC_REF(connp);
5355 	return;
5356 
5357 notfound:
5358 	mutex_exit(&connfp->connf_lock);
5359 	/*
5360 	 * IPv6 endpoints bound to multicast IPv4-mapped addresses
5361 	 * have already been matched above, since they live in the IPv4
5362 	 * fanout tables. This implies we only need to
5363 	 * check for IPv6 in6addr_any endpoints here.
5364 	 * Thus we compare using ipv6_all_zeros instead of the destination
5365 	 * address, except for the multicast group membership lookup which
5366 	 * uses the IPv4 destination.
5367 	 */
5368 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6faddr);
5369 	connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)];
5370 	mutex_enter(&connfp->connf_lock);
5371 	connp = connfp->connf_head;
5372 	/*
5373 	 * IPv4 multicast packet being delivered to an AF_INET6
5374 	 * in6addr_any endpoint.
5375 	 * Need to check conn_wantpacket(). Note that we use conn_wantpacket()
5376 	 * and not conn_wantpacket_v6() since any multicast membership is
5377 	 * for an IPv4-mapped multicast address.
5378 	 */
5379 	while (connp != NULL) {
5380 		if (IPCL_UDP_MATCH_V6(connp, lport, ipv6_all_zeros,
5381 		    fport, v6faddr) &&
5382 		    conn_wantpacket(connp, ira, ipha) &&
5383 		    (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5384 		    tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp)))
5385 			break;
5386 		connp = connp->conn_next;
5387 	}
5388 
5389 	if (connp == NULL) {
5390 		/*
5391 		 * No one bound to this port.  Is
5392 		 * there a client that wants all
5393 		 * unclaimed datagrams?
5394 		 */
5395 		mutex_exit(&connfp->connf_lock);
5396 
5397 		if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_UDP].connf_head !=
5398 		    NULL) {
5399 			ASSERT(ira->ira_protocol == IPPROTO_UDP);
5400 			ip_fanout_proto_v4(mp, ipha, ira);
5401 		} else {
5402 			/*
5403 			 * We used to attempt to send an icmp error here, but
5404 			 * since this is known to be a multicast packet
5405 			 * and we don't send icmp errors in response to
5406 			 * multicast, just drop the packet and give up sooner.
5407 			 */
5408 			BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts);
5409 			freemsg(mp);
5410 		}
5411 		return;
5412 	}
5413 	CONN_INC_REF(connp);
5414 	ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL);
5415 
5416 	/*
5417 	 * If SO_REUSEADDR has been set on the first we send the
5418 	 * packet to all clients that have joined the group and
5419 	 * match the port.
5420 	 */
5421 	if (connp->conn_reuseaddr) {
5422 		conn_t		*first_connp = connp;
5423 		conn_t		*next_connp;
5424 		mblk_t		*mp1;
5425 
5426 		connp = connp->conn_next;
5427 		for (;;) {
5428 			while (connp != NULL) {
5429 				if (IPCL_UDP_MATCH_V6(connp, lport,
5430 				    ipv6_all_zeros, fport, v6faddr) &&
5431 				    conn_wantpacket(connp, ira, ipha) &&
5432 				    (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5433 				    tsol_receive_local(mp, &laddr, IPV4_VERSION,
5434 				    ira, connp)))
5435 					break;
5436 				connp = connp->conn_next;
5437 			}
5438 			if (connp == NULL) {
5439 				/* No more interested clients */
5440 				connp = first_connp;
5441 				break;
5442 			}
5443 			if (((mp1 = dupmsg(mp)) == NULL) &&
5444 			    ((mp1 = copymsg(mp)) == NULL)) {
5445 				/* Memory allocation failed */
5446 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5447 				ip_drop_input("ipIfStatsInDiscards", mp, ill);
5448 				connp = first_connp;
5449 				break;
5450 			}
5451 			CONN_INC_REF(connp);
5452 			mutex_exit(&connfp->connf_lock);
5453 
5454 			IP_STAT(ipst, ip_udp_fanmb);
5455 			ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr,
5456 			    NULL, ira);
5457 			mutex_enter(&connfp->connf_lock);
5458 			/* Follow the next pointer before releasing the conn */
5459 			next_connp = connp->conn_next;
5460 			CONN_DEC_REF(connp);
5461 			connp = next_connp;
5462 		}
5463 	}
5464 
5465 	/* Last one.  Send it upstream. */
5466 	mutex_exit(&connfp->connf_lock);
5467 	IP_STAT(ipst, ip_udp_fanmb);
5468 	ip_fanout_udp_conn(connp, mp, ipha, NULL, ira);
5469 	CONN_DEC_REF(connp);
5470 }
5471 
5472 /*
5473  * Split an incoming packet's IPv4 options into the label and the other options.
5474  * If 'allocate' is set it does memory allocation for the ip_pkt_t, including
5475  * clearing out any leftover label or options.
5476  * Otherwise it just makes ipp point into the packet.
5477  *
5478  * Returns zero if ok; ENOMEM if the buffer couldn't be allocated.
5479  */
5480 int
5481 ip_find_hdr_v4(ipha_t *ipha, ip_pkt_t *ipp, boolean_t allocate)
5482 {
5483 	uchar_t		*opt;
5484 	uint32_t	totallen;
5485 	uint32_t	optval;
5486 	uint32_t	optlen;
5487 
5488 	ipp->ipp_fields |= IPPF_HOPLIMIT | IPPF_TCLASS | IPPF_ADDR;
5489 	ipp->ipp_hoplimit = ipha->ipha_ttl;
5490 	ipp->ipp_type_of_service = ipha->ipha_type_of_service;
5491 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &ipp->ipp_addr);
5492 
5493 	/*
5494 	 * Get length (in 4 byte octets) of IP header options.
5495 	 */
5496 	totallen = ipha->ipha_version_and_hdr_length -
5497 	    (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
5498 
5499 	if (totallen == 0) {
5500 		if (!allocate)
5501 			return (0);
5502 
5503 		/* Clear out anything from a previous packet */
5504 		if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
5505 			kmem_free(ipp->ipp_ipv4_options,
5506 			    ipp->ipp_ipv4_options_len);
5507 			ipp->ipp_ipv4_options = NULL;
5508 			ipp->ipp_ipv4_options_len = 0;
5509 			ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS;
5510 		}
5511 		if (ipp->ipp_fields & IPPF_LABEL_V4) {
5512 			kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
5513 			ipp->ipp_label_v4 = NULL;
5514 			ipp->ipp_label_len_v4 = 0;
5515 			ipp->ipp_fields &= ~IPPF_LABEL_V4;
5516 		}
5517 		return (0);
5518 	}
5519 
5520 	totallen <<= 2;
5521 	opt = (uchar_t *)&ipha[1];
5522 	if (!is_system_labeled()) {
5523 
5524 	copyall:
5525 		if (!allocate) {
5526 			if (totallen != 0) {
5527 				ipp->ipp_ipv4_options = opt;
5528 				ipp->ipp_ipv4_options_len = totallen;
5529 				ipp->ipp_fields |= IPPF_IPV4_OPTIONS;
5530 			}
5531 			return (0);
5532 		}
5533 		/* Just copy all of options */
5534 		if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
5535 			if (totallen == ipp->ipp_ipv4_options_len) {
5536 				bcopy(opt, ipp->ipp_ipv4_options, totallen);
5537 				return (0);
5538 			}
5539 			kmem_free(ipp->ipp_ipv4_options,
5540 			    ipp->ipp_ipv4_options_len);
5541 			ipp->ipp_ipv4_options = NULL;
5542 			ipp->ipp_ipv4_options_len = 0;
5543 			ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS;
5544 		}
5545 		if (totallen == 0)
5546 			return (0);
5547 
5548 		ipp->ipp_ipv4_options = kmem_alloc(totallen, KM_NOSLEEP);
5549 		if (ipp->ipp_ipv4_options == NULL)
5550 			return (ENOMEM);
5551 		ipp->ipp_ipv4_options_len = totallen;
5552 		ipp->ipp_fields |= IPPF_IPV4_OPTIONS;
5553 		bcopy(opt, ipp->ipp_ipv4_options, totallen);
5554 		return (0);
5555 	}
5556 
5557 	if (allocate && (ipp->ipp_fields & IPPF_LABEL_V4)) {
5558 		kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
5559 		ipp->ipp_label_v4 = NULL;
5560 		ipp->ipp_label_len_v4 = 0;
5561 		ipp->ipp_fields &= ~IPPF_LABEL_V4;
5562 	}
5563 
5564 	/*
5565 	 * Search for CIPSO option.
5566 	 * We assume CIPSO is first in options if it is present.
5567 	 * If it isn't, then ipp_opt_ipv4_options will not include the options
5568 	 * prior to the CIPSO option.
5569 	 */
5570 	while (totallen != 0) {
5571 		switch (optval = opt[IPOPT_OPTVAL]) {
5572 		case IPOPT_EOL:
5573 			return (0);
5574 		case IPOPT_NOP:
5575 			optlen = 1;
5576 			break;
5577 		default:
5578 			if (totallen <= IPOPT_OLEN)
5579 				return (EINVAL);
5580 			optlen = opt[IPOPT_OLEN];
5581 			if (optlen < 2)
5582 				return (EINVAL);
5583 		}
5584 		if (optlen > totallen)
5585 			return (EINVAL);
5586 
5587 		switch (optval) {
5588 		case IPOPT_COMSEC:
5589 			if (!allocate) {
5590 				ipp->ipp_label_v4 = opt;
5591 				ipp->ipp_label_len_v4 = optlen;
5592 				ipp->ipp_fields |= IPPF_LABEL_V4;
5593 			} else {
5594 				ipp->ipp_label_v4 = kmem_alloc(optlen,
5595 				    KM_NOSLEEP);
5596 				if (ipp->ipp_label_v4 == NULL)
5597 					return (ENOMEM);
5598 				ipp->ipp_label_len_v4 = optlen;
5599 				ipp->ipp_fields |= IPPF_LABEL_V4;
5600 				bcopy(opt, ipp->ipp_label_v4, optlen);
5601 			}
5602 			totallen -= optlen;
5603 			opt += optlen;
5604 
5605 			/* Skip padding bytes until we get to a multiple of 4 */
5606 			while ((totallen & 3) != 0 && opt[0] == IPOPT_NOP) {
5607 				totallen--;
5608 				opt++;
5609 			}
5610 			/* Remaining as ipp_ipv4_options */
5611 			goto copyall;
5612 		}
5613 		totallen -= optlen;
5614 		opt += optlen;
5615 	}
5616 	/* No CIPSO found; return everything as ipp_ipv4_options */
5617 	totallen = ipha->ipha_version_and_hdr_length -
5618 	    (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
5619 	totallen <<= 2;
5620 	opt = (uchar_t *)&ipha[1];
5621 	goto copyall;
5622 }
5623 
5624 /*
5625  * Efficient versions of lookup for an IRE when we only
5626  * match the address.
5627  * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE.
5628  * Does not handle multicast addresses.
5629  */
5630 uint_t
5631 ip_type_v4(ipaddr_t addr, ip_stack_t *ipst)
5632 {
5633 	ire_t *ire;
5634 	uint_t result;
5635 
5636 	ire = ire_ftable_lookup_simple_v4(addr, 0, ipst, NULL);
5637 	ASSERT(ire != NULL);
5638 	if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))
5639 		result = IRE_NOROUTE;
5640 	else
5641 		result = ire->ire_type;
5642 	ire_refrele(ire);
5643 	return (result);
5644 }
5645 
5646 /*
5647  * Efficient versions of lookup for an IRE when we only
5648  * match the address.
5649  * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE.
5650  * Does not handle multicast addresses.
5651  */
5652 uint_t
5653 ip_type_v6(const in6_addr_t *addr, ip_stack_t *ipst)
5654 {
5655 	ire_t *ire;
5656 	uint_t result;
5657 
5658 	ire = ire_ftable_lookup_simple_v6(addr, 0, ipst, NULL);
5659 	ASSERT(ire != NULL);
5660 	if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))
5661 		result = IRE_NOROUTE;
5662 	else
5663 		result = ire->ire_type;
5664 	ire_refrele(ire);
5665 	return (result);
5666 }
5667 
5668 /*
5669  * Nobody should be sending
5670  * packets up this stream
5671  */
5672 static int
5673 ip_lrput(queue_t *q, mblk_t *mp)
5674 {
5675 	switch (mp->b_datap->db_type) {
5676 	case M_FLUSH:
5677 		/* Turn around */
5678 		if (*mp->b_rptr & FLUSHW) {
5679 			*mp->b_rptr &= ~FLUSHR;
5680 			qreply(q, mp);
5681 			return (0);
5682 		}
5683 		break;
5684 	}
5685 	freemsg(mp);
5686 	return (0);
5687 }
5688 
5689 /* Nobody should be sending packets down this stream */
5690 /* ARGSUSED */
5691 int
5692 ip_lwput(queue_t *q, mblk_t *mp)
5693 {
5694 	freemsg(mp);
5695 	return (0);
5696 }
5697 
5698 /*
5699  * Move the first hop in any source route to ipha_dst and remove that part of
5700  * the source route.  Called by other protocols.  Errors in option formatting
5701  * are ignored - will be handled by ip_output_options. Return the final
5702  * destination (either ipha_dst or the last entry in a source route.)
5703  */
5704 ipaddr_t
5705 ip_massage_options(ipha_t *ipha, netstack_t *ns)
5706 {
5707 	ipoptp_t	opts;
5708 	uchar_t		*opt;
5709 	uint8_t		optval;
5710 	uint8_t		optlen;
5711 	ipaddr_t	dst;
5712 	int		i;
5713 	ip_stack_t	*ipst = ns->netstack_ip;
5714 
5715 	ip2dbg(("ip_massage_options\n"));
5716 	dst = ipha->ipha_dst;
5717 	for (optval = ipoptp_first(&opts, ipha);
5718 	    optval != IPOPT_EOL;
5719 	    optval = ipoptp_next(&opts)) {
5720 		opt = opts.ipoptp_cur;
5721 		switch (optval) {
5722 			uint8_t off;
5723 		case IPOPT_SSRR:
5724 		case IPOPT_LSRR:
5725 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
5726 				ip1dbg(("ip_massage_options: bad src route\n"));
5727 				break;
5728 			}
5729 			optlen = opts.ipoptp_len;
5730 			off = opt[IPOPT_OFFSET];
5731 			off--;
5732 		redo_srr:
5733 			if (optlen < IP_ADDR_LEN ||
5734 			    off > optlen - IP_ADDR_LEN) {
5735 				/* End of source route */
5736 				ip1dbg(("ip_massage_options: end of SR\n"));
5737 				break;
5738 			}
5739 			bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
5740 			ip1dbg(("ip_massage_options: next hop 0x%x\n",
5741 			    ntohl(dst)));
5742 			/*
5743 			 * Check if our address is present more than
5744 			 * once as consecutive hops in source route.
5745 			 * XXX verify per-interface ip_forwarding
5746 			 * for source route?
5747 			 */
5748 			if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
5749 				off += IP_ADDR_LEN;
5750 				goto redo_srr;
5751 			}
5752 			if (dst == htonl(INADDR_LOOPBACK)) {
5753 				ip1dbg(("ip_massage_options: loopback addr in "
5754 				    "source route!\n"));
5755 				break;
5756 			}
5757 			/*
5758 			 * Update ipha_dst to be the first hop and remove the
5759 			 * first hop from the source route (by overwriting
5760 			 * part of the option with NOP options).
5761 			 */
5762 			ipha->ipha_dst = dst;
5763 			/* Put the last entry in dst */
5764 			off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) +
5765 			    3;
5766 			bcopy(&opt[off], &dst, IP_ADDR_LEN);
5767 
5768 			ip1dbg(("ip_massage_options: last hop 0x%x\n",
5769 			    ntohl(dst)));
5770 			/* Move down and overwrite */
5771 			opt[IP_ADDR_LEN] = opt[0];
5772 			opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN;
5773 			opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET];
5774 			for (i = 0; i < IP_ADDR_LEN; i++)
5775 				opt[i] = IPOPT_NOP;
5776 			break;
5777 		}
5778 	}
5779 	return (dst);
5780 }
5781 
5782 /*
5783  * Return the network mask
5784  * associated with the specified address.
5785  */
5786 ipaddr_t
5787 ip_net_mask(ipaddr_t addr)
5788 {
5789 	uchar_t	*up = (uchar_t *)&addr;
5790 	ipaddr_t mask = 0;
5791 	uchar_t	*maskp = (uchar_t *)&mask;
5792 
5793 #if defined(__i386) || defined(__amd64)
5794 #define	TOTALLY_BRAIN_DAMAGED_C_COMPILER
5795 #endif
5796 #ifdef  TOTALLY_BRAIN_DAMAGED_C_COMPILER
5797 	maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0;
5798 #endif
5799 	if (CLASSD(addr)) {
5800 		maskp[0] = 0xF0;
5801 		return (mask);
5802 	}
5803 
5804 	/* We assume Class E default netmask to be 32 */
5805 	if (CLASSE(addr))
5806 		return (0xffffffffU);
5807 
5808 	if (addr == 0)
5809 		return (0);
5810 	maskp[0] = 0xFF;
5811 	if ((up[0] & 0x80) == 0)
5812 		return (mask);
5813 
5814 	maskp[1] = 0xFF;
5815 	if ((up[0] & 0xC0) == 0x80)
5816 		return (mask);
5817 
5818 	maskp[2] = 0xFF;
5819 	if ((up[0] & 0xE0) == 0xC0)
5820 		return (mask);
5821 
5822 	/* Otherwise return no mask */
5823 	return ((ipaddr_t)0);
5824 }
5825 
5826 /* Name/Value Table Lookup Routine */
5827 char *
5828 ip_nv_lookup(nv_t *nv, int value)
5829 {
5830 	if (!nv)
5831 		return (NULL);
5832 	for (; nv->nv_name; nv++) {
5833 		if (nv->nv_value == value)
5834 			return (nv->nv_name);
5835 	}
5836 	return ("unknown");
5837 }
5838 
5839 static int
5840 ip_wait_for_info_ack(ill_t *ill)
5841 {
5842 	int err;
5843 
5844 	mutex_enter(&ill->ill_lock);
5845 	while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) {
5846 		/*
5847 		 * Return value of 0 indicates a pending signal.
5848 		 */
5849 		err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock);
5850 		if (err == 0) {
5851 			mutex_exit(&ill->ill_lock);
5852 			return (EINTR);
5853 		}
5854 	}
5855 	mutex_exit(&ill->ill_lock);
5856 	/*
5857 	 * ip_rput_other could have set an error  in ill_error on
5858 	 * receipt of M_ERROR.
5859 	 */
5860 	return (ill->ill_error);
5861 }
5862 
5863 /*
5864  * This is a module open, i.e. this is a control stream for access
5865  * to a DLPI device.  We allocate an ill_t as the instance data in
5866  * this case.
5867  */
5868 static int
5869 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
5870 {
5871 	ill_t	*ill;
5872 	int	err;
5873 	zoneid_t zoneid;
5874 	netstack_t *ns;
5875 	ip_stack_t *ipst;
5876 
5877 	/*
5878 	 * Prevent unprivileged processes from pushing IP so that
5879 	 * they can't send raw IP.
5880 	 */
5881 	if (secpolicy_net_rawaccess(credp) != 0)
5882 		return (EPERM);
5883 
5884 	ns = netstack_find_by_cred(credp);
5885 	ASSERT(ns != NULL);
5886 	ipst = ns->netstack_ip;
5887 	ASSERT(ipst != NULL);
5888 
5889 	/*
5890 	 * For exclusive stacks we set the zoneid to zero
5891 	 * to make IP operate as if in the global zone.
5892 	 */
5893 	if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID)
5894 		zoneid = GLOBAL_ZONEID;
5895 	else
5896 		zoneid = crgetzoneid(credp);
5897 
5898 	ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t));
5899 	q->q_ptr = WR(q)->q_ptr = ill;
5900 	ill->ill_ipst = ipst;
5901 	ill->ill_zoneid = zoneid;
5902 
5903 	/*
5904 	 * ill_init initializes the ill fields and then sends down
5905 	 * down a DL_INFO_REQ after calling qprocson.
5906 	 */
5907 	err = ill_init(q, ill);
5908 
5909 	if (err != 0) {
5910 		mi_free(ill);
5911 		netstack_rele(ipst->ips_netstack);
5912 		q->q_ptr = NULL;
5913 		WR(q)->q_ptr = NULL;
5914 		return (err);
5915 	}
5916 
5917 	/*
5918 	 * Wait for the DL_INFO_ACK if a DL_INFO_REQ was sent.
5919 	 *
5920 	 * ill_init initializes the ipsq marking this thread as
5921 	 * writer
5922 	 */
5923 	ipsq_exit(ill->ill_phyint->phyint_ipsq);
5924 	err = ip_wait_for_info_ack(ill);
5925 	if (err == 0)
5926 		ill->ill_credp = credp;
5927 	else
5928 		goto fail;
5929 
5930 	crhold(credp);
5931 
5932 	mutex_enter(&ipst->ips_ip_mi_lock);
5933 	err = mi_open_link(&ipst->ips_ip_g_head, (IDP)q->q_ptr, devp, flag,
5934 	    sflag, credp);
5935 	mutex_exit(&ipst->ips_ip_mi_lock);
5936 fail:
5937 	if (err) {
5938 		(void) ip_close(q, 0, credp);
5939 		return (err);
5940 	}
5941 	return (0);
5942 }
5943 
5944 /* For /dev/ip aka AF_INET open */
5945 int
5946 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
5947 {
5948 	return (ip_open(q, devp, flag, sflag, credp, B_FALSE));
5949 }
5950 
5951 /* For /dev/ip6 aka AF_INET6 open */
5952 int
5953 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
5954 {
5955 	return (ip_open(q, devp, flag, sflag, credp, B_TRUE));
5956 }
5957 
5958 /* IP open routine. */
5959 int
5960 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
5961     boolean_t isv6)
5962 {
5963 	conn_t		*connp;
5964 	major_t		maj;
5965 	zoneid_t	zoneid;
5966 	netstack_t	*ns;
5967 	ip_stack_t	*ipst;
5968 
5969 	/* Allow reopen. */
5970 	if (q->q_ptr != NULL)
5971 		return (0);
5972 
5973 	if (sflag & MODOPEN) {
5974 		/* This is a module open */
5975 		return (ip_modopen(q, devp, flag, sflag, credp));
5976 	}
5977 
5978 	if ((flag & ~(FKLYR)) == IP_HELPER_STR) {
5979 		/*
5980 		 * Non streams based socket looking for a stream
5981 		 * to access IP
5982 		 */
5983 		return (ip_helper_stream_setup(q, devp, flag, sflag,
5984 		    credp, isv6));
5985 	}
5986 
5987 	ns = netstack_find_by_cred(credp);
5988 	ASSERT(ns != NULL);
5989 	ipst = ns->netstack_ip;
5990 	ASSERT(ipst != NULL);
5991 
5992 	/*
5993 	 * For exclusive stacks we set the zoneid to zero
5994 	 * to make IP operate as if in the global zone.
5995 	 */
5996 	if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID)
5997 		zoneid = GLOBAL_ZONEID;
5998 	else
5999 		zoneid = crgetzoneid(credp);
6000 
6001 	/*
6002 	 * We are opening as a device. This is an IP client stream, and we
6003 	 * allocate an conn_t as the instance data.
6004 	 */
6005 	connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack);
6006 
6007 	/*
6008 	 * ipcl_conn_create did a netstack_hold. Undo the hold that was
6009 	 * done by netstack_find_by_cred()
6010 	 */
6011 	netstack_rele(ipst->ips_netstack);
6012 
6013 	connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_ULP_CKSUM;
6014 	/* conn_allzones can not be set this early, hence no IPCL_ZONEID */
6015 	connp->conn_ixa->ixa_zoneid = zoneid;
6016 	connp->conn_zoneid = zoneid;
6017 
6018 	connp->conn_rq = q;
6019 	q->q_ptr = WR(q)->q_ptr = connp;
6020 
6021 	/* Minor tells us which /dev entry was opened */
6022 	if (isv6) {
6023 		connp->conn_family = AF_INET6;
6024 		connp->conn_ipversion = IPV6_VERSION;
6025 		connp->conn_ixa->ixa_flags &= ~IXAF_IS_IPV4;
6026 		connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT;
6027 	} else {
6028 		connp->conn_family = AF_INET;
6029 		connp->conn_ipversion = IPV4_VERSION;
6030 		connp->conn_ixa->ixa_flags |= IXAF_IS_IPV4;
6031 	}
6032 
6033 	if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
6034 	    ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
6035 		connp->conn_minor_arena = ip_minor_arena_la;
6036 	} else {
6037 		/*
6038 		 * Either minor numbers in the large arena were exhausted
6039 		 * or a non socket application is doing the open.
6040 		 * Try to allocate from the small arena.
6041 		 */
6042 		if ((connp->conn_dev =
6043 		    inet_minor_alloc(ip_minor_arena_sa)) == 0) {
6044 			/* CONN_DEC_REF takes care of netstack_rele() */
6045 			q->q_ptr = WR(q)->q_ptr = NULL;
6046 			CONN_DEC_REF(connp);
6047 			return (EBUSY);
6048 		}
6049 		connp->conn_minor_arena = ip_minor_arena_sa;
6050 	}
6051 
6052 	maj = getemajor(*devp);
6053 	*devp = makedevice(maj, (minor_t)connp->conn_dev);
6054 
6055 	/*
6056 	 * connp->conn_cred is crfree()ed in ipcl_conn_destroy()
6057 	 */
6058 	connp->conn_cred = credp;
6059 	connp->conn_cpid = curproc->p_pid;
6060 	/* Cache things in ixa without an extra refhold */
6061 	ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED));
6062 	connp->conn_ixa->ixa_cred = connp->conn_cred;
6063 	connp->conn_ixa->ixa_cpid = connp->conn_cpid;
6064 	if (is_system_labeled())
6065 		connp->conn_ixa->ixa_tsl = crgetlabel(connp->conn_cred);
6066 
6067 	/*
6068 	 * Handle IP_IOC_RTS_REQUEST and other ioctls which use conn_recv
6069 	 */
6070 	connp->conn_recv = ip_conn_input;
6071 	connp->conn_recvicmp = ip_conn_input_icmp;
6072 
6073 	crhold(connp->conn_cred);
6074 
6075 	/*
6076 	 * If the caller has the process-wide flag set, then default to MAC
6077 	 * exempt mode.  This allows read-down to unlabeled hosts.
6078 	 */
6079 	if (getpflags(NET_MAC_AWARE, credp) != 0)
6080 		connp->conn_mac_mode = CONN_MAC_AWARE;
6081 
6082 	connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID);
6083 
6084 	connp->conn_rq = q;
6085 	connp->conn_wq = WR(q);
6086 
6087 	/* Non-zero default values */
6088 	connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP;
6089 
6090 	/*
6091 	 * Make the conn globally visible to walkers
6092 	 */
6093 	ASSERT(connp->conn_ref == 1);
6094 	mutex_enter(&connp->conn_lock);
6095 	connp->conn_state_flags &= ~CONN_INCIPIENT;
6096 	mutex_exit(&connp->conn_lock);
6097 
6098 	qprocson(q);
6099 
6100 	return (0);
6101 }
6102 
6103 /*
6104  * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid,
6105  * all of them are copied to the conn_t. If the req is "zero", the policy is
6106  * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req
6107  * fields.
6108  * We keep only the latest setting of the policy and thus policy setting
6109  * is not incremental/cumulative.
6110  *
6111  * Requests to set policies with multiple alternative actions will
6112  * go through a different API.
6113  */
6114 int
6115 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req)
6116 {
6117 	uint_t ah_req = 0;
6118 	uint_t esp_req = 0;
6119 	uint_t se_req = 0;
6120 	ipsec_act_t *actp = NULL;
6121 	uint_t nact;
6122 	ipsec_policy_head_t *ph;
6123 	boolean_t is_pol_reset, is_pol_inserted = B_FALSE;
6124 	int error = 0;
6125 	netstack_t	*ns = connp->conn_netstack;
6126 	ip_stack_t	*ipst = ns->netstack_ip;
6127 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
6128 
6129 #define	REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER)
6130 
6131 	/*
6132 	 * The IP_SEC_OPT option does not allow variable length parameters,
6133 	 * hence a request cannot be NULL.
6134 	 */
6135 	if (req == NULL)
6136 		return (EINVAL);
6137 
6138 	ah_req = req->ipsr_ah_req;
6139 	esp_req = req->ipsr_esp_req;
6140 	se_req = req->ipsr_self_encap_req;
6141 
6142 	/* Don't allow setting self-encap without one or more of AH/ESP. */
6143 	if (se_req != 0 && esp_req == 0 && ah_req == 0)
6144 		return (EINVAL);
6145 
6146 	/*
6147 	 * Are we dealing with a request to reset the policy (i.e.
6148 	 * zero requests).
6149 	 */
6150 	is_pol_reset = ((ah_req & REQ_MASK) == 0 &&
6151 	    (esp_req & REQ_MASK) == 0 &&
6152 	    (se_req & REQ_MASK) == 0);
6153 
6154 	if (!is_pol_reset) {
6155 		/*
6156 		 * If we couldn't load IPsec, fail with "protocol
6157 		 * not supported".
6158 		 * IPsec may not have been loaded for a request with zero
6159 		 * policies, so we don't fail in this case.
6160 		 */
6161 		mutex_enter(&ipss->ipsec_loader_lock);
6162 		if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) {
6163 			mutex_exit(&ipss->ipsec_loader_lock);
6164 			return (EPROTONOSUPPORT);
6165 		}
6166 		mutex_exit(&ipss->ipsec_loader_lock);
6167 
6168 		/*
6169 		 * Test for valid requests. Invalid algorithms
6170 		 * need to be tested by IPsec code because new
6171 		 * algorithms can be added dynamically.
6172 		 */
6173 		if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 ||
6174 		    (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 ||
6175 		    (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) {
6176 			return (EINVAL);
6177 		}
6178 
6179 		/*
6180 		 * Only privileged users can issue these
6181 		 * requests.
6182 		 */
6183 		if (((ah_req & IPSEC_PREF_NEVER) ||
6184 		    (esp_req & IPSEC_PREF_NEVER) ||
6185 		    (se_req & IPSEC_PREF_NEVER)) &&
6186 		    secpolicy_ip_config(cr, B_FALSE) != 0) {
6187 			return (EPERM);
6188 		}
6189 
6190 		/*
6191 		 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER
6192 		 * are mutually exclusive.
6193 		 */
6194 		if (((ah_req & REQ_MASK) == REQ_MASK) ||
6195 		    ((esp_req & REQ_MASK) == REQ_MASK) ||
6196 		    ((se_req & REQ_MASK) == REQ_MASK)) {
6197 			/* Both of them are set */
6198 			return (EINVAL);
6199 		}
6200 	}
6201 
6202 	ASSERT(MUTEX_HELD(&connp->conn_lock));
6203 
6204 	/*
6205 	 * If we have already cached policies in conn_connect(), don't
6206 	 * let them change now. We cache policies for connections
6207 	 * whose src,dst [addr, port] is known.
6208 	 */
6209 	if (connp->conn_policy_cached) {
6210 		return (EINVAL);
6211 	}
6212 
6213 	/*
6214 	 * We have a zero policies, reset the connection policy if already
6215 	 * set. This will cause the connection to inherit the
6216 	 * global policy, if any.
6217 	 */
6218 	if (is_pol_reset) {
6219 		if (connp->conn_policy != NULL) {
6220 			IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack);
6221 			connp->conn_policy = NULL;
6222 		}
6223 		connp->conn_in_enforce_policy = B_FALSE;
6224 		connp->conn_out_enforce_policy = B_FALSE;
6225 		return (0);
6226 	}
6227 
6228 	ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy,
6229 	    ipst->ips_netstack);
6230 	if (ph == NULL)
6231 		goto enomem;
6232 
6233 	ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack);
6234 	if (actp == NULL)
6235 		goto enomem;
6236 
6237 	/*
6238 	 * Always insert IPv4 policy entries, since they can also apply to
6239 	 * ipv6 sockets being used in ipv4-compat mode.
6240 	 */
6241 	if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4,
6242 	    IPSEC_TYPE_INBOUND, ns))
6243 		goto enomem;
6244 	is_pol_inserted = B_TRUE;
6245 	if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4,
6246 	    IPSEC_TYPE_OUTBOUND, ns))
6247 		goto enomem;
6248 
6249 	/*
6250 	 * We're looking at a v6 socket, also insert the v6-specific
6251 	 * entries.
6252 	 */
6253 	if (connp->conn_family == AF_INET6) {
6254 		if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6,
6255 		    IPSEC_TYPE_INBOUND, ns))
6256 			goto enomem;
6257 		if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6,
6258 		    IPSEC_TYPE_OUTBOUND, ns))
6259 			goto enomem;
6260 	}
6261 
6262 	ipsec_actvec_free(actp, nact);
6263 
6264 	/*
6265 	 * If the requests need security, set enforce_policy.
6266 	 * If the requests are IPSEC_PREF_NEVER, one should
6267 	 * still set conn_out_enforce_policy so that ip_set_destination
6268 	 * marks the ip_xmit_attr_t appropriatly. This is needed so that
6269 	 * for connections that we don't cache policy in at connect time,
6270 	 * if global policy matches in ip_output_attach_policy, we
6271 	 * don't wrongly inherit global policy. Similarly, we need
6272 	 * to set conn_in_enforce_policy also so that we don't verify
6273 	 * policy wrongly.
6274 	 */
6275 	if ((ah_req & REQ_MASK) != 0 ||
6276 	    (esp_req & REQ_MASK) != 0 ||
6277 	    (se_req & REQ_MASK) != 0) {
6278 		connp->conn_in_enforce_policy = B_TRUE;
6279 		connp->conn_out_enforce_policy = B_TRUE;
6280 	}
6281 
6282 	return (error);
6283 #undef REQ_MASK
6284 
6285 	/*
6286 	 * Common memory-allocation-failure exit path.
6287 	 */
6288 enomem:
6289 	if (actp != NULL)
6290 		ipsec_actvec_free(actp, nact);
6291 	if (is_pol_inserted)
6292 		ipsec_polhead_flush(ph, ns);
6293 	return (ENOMEM);
6294 }
6295 
6296 /*
6297  * Set socket options for joining and leaving multicast groups.
6298  * Common to IPv4 and IPv6; inet6 indicates the type of socket.
6299  * The caller has already check that the option name is consistent with
6300  * the address family of the socket.
6301  */
6302 int
6303 ip_opt_set_multicast_group(conn_t *connp, t_scalar_t name,
6304     uchar_t *invalp, boolean_t inet6, boolean_t checkonly)
6305 {
6306 	int		*i1 = (int *)invalp;
6307 	int		error = 0;
6308 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
6309 	struct ip_mreq	*v4_mreqp;
6310 	struct ipv6_mreq *v6_mreqp;
6311 	struct group_req *greqp;
6312 	ire_t *ire;
6313 	boolean_t done = B_FALSE;
6314 	ipaddr_t ifaddr;
6315 	in6_addr_t v6group;
6316 	uint_t ifindex;
6317 	boolean_t mcast_opt = B_TRUE;
6318 	mcast_record_t fmode;
6319 	int (*optfn)(conn_t *, boolean_t, const in6_addr_t *,
6320 	    ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *);
6321 
6322 	switch (name) {
6323 	case IP_ADD_MEMBERSHIP:
6324 	case IPV6_JOIN_GROUP:
6325 		mcast_opt = B_FALSE;
6326 		/* FALLTHROUGH */
6327 	case MCAST_JOIN_GROUP:
6328 		fmode = MODE_IS_EXCLUDE;
6329 		optfn = ip_opt_add_group;
6330 		break;
6331 
6332 	case IP_DROP_MEMBERSHIP:
6333 	case IPV6_LEAVE_GROUP:
6334 		mcast_opt = B_FALSE;
6335 		/* FALLTHROUGH */
6336 	case MCAST_LEAVE_GROUP:
6337 		fmode = MODE_IS_INCLUDE;
6338 		optfn = ip_opt_delete_group;
6339 		break;
6340 	default:
6341 		ASSERT(0);
6342 	}
6343 
6344 	if (mcast_opt) {
6345 		struct sockaddr_in *sin;
6346 		struct sockaddr_in6 *sin6;
6347 
6348 		greqp = (struct group_req *)i1;
6349 		if (greqp->gr_group.ss_family == AF_INET) {
6350 			sin = (struct sockaddr_in *)&(greqp->gr_group);
6351 			IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, &v6group);
6352 		} else {
6353 			if (!inet6)
6354 				return (EINVAL);	/* Not on INET socket */
6355 
6356 			sin6 = (struct sockaddr_in6 *)&(greqp->gr_group);
6357 			v6group = sin6->sin6_addr;
6358 		}
6359 		ifaddr = INADDR_ANY;
6360 		ifindex = greqp->gr_interface;
6361 	} else if (inet6) {
6362 		v6_mreqp = (struct ipv6_mreq *)i1;
6363 		v6group = v6_mreqp->ipv6mr_multiaddr;
6364 		ifaddr = INADDR_ANY;
6365 		ifindex = v6_mreqp->ipv6mr_interface;
6366 	} else {
6367 		v4_mreqp = (struct ip_mreq *)i1;
6368 		IN6_INADDR_TO_V4MAPPED(&v4_mreqp->imr_multiaddr, &v6group);
6369 		ifaddr = (ipaddr_t)v4_mreqp->imr_interface.s_addr;
6370 		ifindex = 0;
6371 	}
6372 
6373 	/*
6374 	 * In the multirouting case, we need to replicate
6375 	 * the request on all interfaces that will take part
6376 	 * in replication.  We do so because multirouting is
6377 	 * reflective, thus we will probably receive multi-
6378 	 * casts on those interfaces.
6379 	 * The ip_multirt_apply_membership() succeeds if
6380 	 * the operation succeeds on at least one interface.
6381 	 */
6382 	if (IN6_IS_ADDR_V4MAPPED(&v6group)) {
6383 		ipaddr_t group;
6384 
6385 		IN6_V4MAPPED_TO_IPADDR(&v6group, group);
6386 
6387 		ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0,
6388 		    IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6389 		    MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6390 	} else {
6391 		ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0,
6392 		    IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6393 		    MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6394 	}
6395 	if (ire != NULL) {
6396 		if (ire->ire_flags & RTF_MULTIRT) {
6397 			error = ip_multirt_apply_membership(optfn, ire, connp,
6398 			    checkonly, &v6group, fmode, &ipv6_all_zeros);
6399 			done = B_TRUE;
6400 		}
6401 		ire_refrele(ire);
6402 	}
6403 
6404 	if (!done) {
6405 		error = optfn(connp, checkonly, &v6group, ifaddr, ifindex,
6406 		    fmode, &ipv6_all_zeros);
6407 	}
6408 	return (error);
6409 }
6410 
6411 /*
6412  * Set socket options for joining and leaving multicast groups
6413  * for specific sources.
6414  * Common to IPv4 and IPv6; inet6 indicates the type of socket.
6415  * The caller has already check that the option name is consistent with
6416  * the address family of the socket.
6417  */
6418 int
6419 ip_opt_set_multicast_sources(conn_t *connp, t_scalar_t name,
6420     uchar_t *invalp, boolean_t inet6, boolean_t checkonly)
6421 {
6422 	int		*i1 = (int *)invalp;
6423 	int		error = 0;
6424 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
6425 	struct ip_mreq_source *imreqp;
6426 	struct group_source_req *gsreqp;
6427 	in6_addr_t v6group, v6src;
6428 	uint32_t ifindex;
6429 	ipaddr_t ifaddr;
6430 	boolean_t mcast_opt = B_TRUE;
6431 	mcast_record_t fmode;
6432 	ire_t *ire;
6433 	boolean_t done = B_FALSE;
6434 	int (*optfn)(conn_t *, boolean_t, const in6_addr_t *,
6435 	    ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *);
6436 
6437 	switch (name) {
6438 	case IP_BLOCK_SOURCE:
6439 		mcast_opt = B_FALSE;
6440 		/* FALLTHROUGH */
6441 	case MCAST_BLOCK_SOURCE:
6442 		fmode = MODE_IS_EXCLUDE;
6443 		optfn = ip_opt_add_group;
6444 		break;
6445 
6446 	case IP_UNBLOCK_SOURCE:
6447 		mcast_opt = B_FALSE;
6448 		/* FALLTHROUGH */
6449 	case MCAST_UNBLOCK_SOURCE:
6450 		fmode = MODE_IS_EXCLUDE;
6451 		optfn = ip_opt_delete_group;
6452 		break;
6453 
6454 	case IP_ADD_SOURCE_MEMBERSHIP:
6455 		mcast_opt = B_FALSE;
6456 		/* FALLTHROUGH */
6457 	case MCAST_JOIN_SOURCE_GROUP:
6458 		fmode = MODE_IS_INCLUDE;
6459 		optfn = ip_opt_add_group;
6460 		break;
6461 
6462 	case IP_DROP_SOURCE_MEMBERSHIP:
6463 		mcast_opt = B_FALSE;
6464 		/* FALLTHROUGH */
6465 	case MCAST_LEAVE_SOURCE_GROUP:
6466 		fmode = MODE_IS_INCLUDE;
6467 		optfn = ip_opt_delete_group;
6468 		break;
6469 	default:
6470 		ASSERT(0);
6471 	}
6472 
6473 	if (mcast_opt) {
6474 		gsreqp = (struct group_source_req *)i1;
6475 		ifindex = gsreqp->gsr_interface;
6476 		if (gsreqp->gsr_group.ss_family == AF_INET) {
6477 			struct sockaddr_in *s;
6478 			s = (struct sockaddr_in *)&gsreqp->gsr_group;
6479 			IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6group);
6480 			s = (struct sockaddr_in *)&gsreqp->gsr_source;
6481 			IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src);
6482 		} else {
6483 			struct sockaddr_in6 *s6;
6484 
6485 			if (!inet6)
6486 				return (EINVAL);	/* Not on INET socket */
6487 
6488 			s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group;
6489 			v6group = s6->sin6_addr;
6490 			s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source;
6491 			v6src = s6->sin6_addr;
6492 		}
6493 		ifaddr = INADDR_ANY;
6494 	} else {
6495 		imreqp = (struct ip_mreq_source *)i1;
6496 		IN6_INADDR_TO_V4MAPPED(&imreqp->imr_multiaddr, &v6group);
6497 		IN6_INADDR_TO_V4MAPPED(&imreqp->imr_sourceaddr, &v6src);
6498 		ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr;
6499 		ifindex = 0;
6500 	}
6501 
6502 	/*
6503 	 * Handle src being mapped INADDR_ANY by changing it to unspecified.
6504 	 */
6505 	if (IN6_IS_ADDR_V4MAPPED_ANY(&v6src))
6506 		v6src = ipv6_all_zeros;
6507 
6508 	/*
6509 	 * In the multirouting case, we need to replicate
6510 	 * the request as noted in the mcast cases above.
6511 	 */
6512 	if (IN6_IS_ADDR_V4MAPPED(&v6group)) {
6513 		ipaddr_t group;
6514 
6515 		IN6_V4MAPPED_TO_IPADDR(&v6group, group);
6516 
6517 		ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0,
6518 		    IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6519 		    MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6520 	} else {
6521 		ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0,
6522 		    IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6523 		    MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6524 	}
6525 	if (ire != NULL) {
6526 		if (ire->ire_flags & RTF_MULTIRT) {
6527 			error = ip_multirt_apply_membership(optfn, ire, connp,
6528 			    checkonly, &v6group, fmode, &v6src);
6529 			done = B_TRUE;
6530 		}
6531 		ire_refrele(ire);
6532 	}
6533 	if (!done) {
6534 		error = optfn(connp, checkonly, &v6group, ifaddr, ifindex,
6535 		    fmode, &v6src);
6536 	}
6537 	return (error);
6538 }
6539 
6540 /*
6541  * Given a destination address and a pointer to where to put the information
6542  * this routine fills in the mtuinfo.
6543  * The socket must be connected.
6544  * For sctp conn_faddr is the primary address.
6545  */
6546 int
6547 ip_fill_mtuinfo(conn_t *connp, ip_xmit_attr_t *ixa, struct ip6_mtuinfo *mtuinfo)
6548 {
6549 	uint32_t	pmtu = IP_MAXPACKET;
6550 	uint_t		scopeid;
6551 
6552 	if (IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6))
6553 		return (-1);
6554 
6555 	/* In case we never sent or called ip_set_destination_v4/v6 */
6556 	if (ixa->ixa_ire != NULL)
6557 		pmtu = ip_get_pmtu(ixa);
6558 
6559 	if (ixa->ixa_flags & IXAF_SCOPEID_SET)
6560 		scopeid = ixa->ixa_scopeid;
6561 	else
6562 		scopeid = 0;
6563 
6564 	bzero(mtuinfo, sizeof (*mtuinfo));
6565 	mtuinfo->ip6m_addr.sin6_family = AF_INET6;
6566 	mtuinfo->ip6m_addr.sin6_port = connp->conn_fport;
6567 	mtuinfo->ip6m_addr.sin6_addr = connp->conn_faddr_v6;
6568 	mtuinfo->ip6m_addr.sin6_scope_id = scopeid;
6569 	mtuinfo->ip6m_mtu = pmtu;
6570 
6571 	return (sizeof (struct ip6_mtuinfo));
6572 }
6573 
6574 /*
6575  * When the src multihoming is changed from weak to [strong, preferred]
6576  * ip_ire_rebind_walker is called to walk the list of all ire_t entries
6577  * and identify routes that were created by user-applications in the
6578  * unbound state (i.e., without RTA_IFP), and for which an ire_ill is not
6579  * currently defined. These routes are then 'rebound', i.e., their ire_ill
6580  * is selected by finding an interface route for the gateway.
6581  */
6582 /* ARGSUSED */
6583 void
6584 ip_ire_rebind_walker(ire_t *ire, void *notused)
6585 {
6586 	if (!ire->ire_unbound || ire->ire_ill != NULL)
6587 		return;
6588 	ire_rebind(ire);
6589 	ire_delete(ire);
6590 }
6591 
6592 /*
6593  * When the src multihoming is changed from  [strong, preferred] to weak,
6594  * ip_ire_unbind_walker is called to walk the list of all ire_t entries, and
6595  * set any entries that were created by user-applications in the unbound state
6596  * (i.e., without RTA_IFP) back to having a NULL ire_ill.
6597  */
6598 /* ARGSUSED */
6599 void
6600 ip_ire_unbind_walker(ire_t *ire, void *notused)
6601 {
6602 	ire_t *new_ire;
6603 
6604 	if (!ire->ire_unbound || ire->ire_ill == NULL)
6605 		return;
6606 	if (ire->ire_ipversion == IPV6_VERSION) {
6607 		new_ire = ire_create_v6(&ire->ire_addr_v6, &ire->ire_mask_v6,
6608 		    &ire->ire_gateway_addr_v6, ire->ire_type, NULL,
6609 		    ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst);
6610 	} else {
6611 		new_ire = ire_create((uchar_t *)&ire->ire_addr,
6612 		    (uchar_t *)&ire->ire_mask,
6613 		    (uchar_t *)&ire->ire_gateway_addr, ire->ire_type, NULL,
6614 		    ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst);
6615 	}
6616 	if (new_ire == NULL)
6617 		return;
6618 	new_ire->ire_unbound = B_TRUE;
6619 	/*
6620 	 * The bound ire must first be deleted so that we don't return
6621 	 * the existing one on the attempt to add the unbound new_ire.
6622 	 */
6623 	ire_delete(ire);
6624 	new_ire = ire_add(new_ire);
6625 	if (new_ire != NULL)
6626 		ire_refrele(new_ire);
6627 }
6628 
6629 /*
6630  * When the settings of ip*_strict_src_multihoming tunables are changed,
6631  * all cached routes need to be recomputed. This recomputation needs to be
6632  * done when going from weaker to stronger modes so that the cached ire
6633  * for the connection does not violate the current ip*_strict_src_multihoming
6634  * setting. It also needs to be done when going from stronger to weaker modes,
6635  * so that we fall back to matching on the longest-matching-route (as opposed
6636  * to a shorter match that may have been selected in the strong mode
6637  * to satisfy src_multihoming settings).
6638  *
6639  * The cached ixa_ire entires for all conn_t entries are marked as
6640  * "verify" so that they will be recomputed for the next packet.
6641  */
6642 void
6643 conn_ire_revalidate(conn_t *connp, void *arg)
6644 {
6645 	boolean_t isv6 = (boolean_t)arg;
6646 
6647 	if ((isv6 && connp->conn_ipversion != IPV6_VERSION) ||
6648 	    (!isv6 && connp->conn_ipversion != IPV4_VERSION))
6649 		return;
6650 	connp->conn_ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
6651 }
6652 
6653 /*
6654  * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases,
6655  * When an ipf is passed here for the first time, if
6656  * we already have in-order fragments on the queue, we convert from the fast-
6657  * path reassembly scheme to the hard-case scheme.  From then on, additional
6658  * fragments are reassembled here.  We keep track of the start and end offsets
6659  * of each piece, and the number of holes in the chain.  When the hole count
6660  * goes to zero, we are done!
6661  *
6662  * The ipf_count will be updated to account for any mblk(s) added (pointed to
6663  * by mp) or subtracted (freeb()ed dups), upon return the caller must update
6664  * ipfb_count and ill_frag_count by the difference of ipf_count before and
6665  * after the call to ip_reassemble().
6666  */
6667 int
6668 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill,
6669     size_t msg_len)
6670 {
6671 	uint_t	end;
6672 	mblk_t	*next_mp;
6673 	mblk_t	*mp1;
6674 	uint_t	offset;
6675 	boolean_t incr_dups = B_TRUE;
6676 	boolean_t offset_zero_seen = B_FALSE;
6677 	boolean_t pkt_boundary_checked = B_FALSE;
6678 
6679 	/* If start == 0 then ipf_nf_hdr_len has to be set. */
6680 	ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0);
6681 
6682 	/* Add in byte count */
6683 	ipf->ipf_count += msg_len;
6684 	if (ipf->ipf_end) {
6685 		/*
6686 		 * We were part way through in-order reassembly, but now there
6687 		 * is a hole.  We walk through messages already queued, and
6688 		 * mark them for hard case reassembly.  We know that up till
6689 		 * now they were in order starting from offset zero.
6690 		 */
6691 		offset = 0;
6692 		for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) {
6693 			IP_REASS_SET_START(mp1, offset);
6694 			if (offset == 0) {
6695 				ASSERT(ipf->ipf_nf_hdr_len != 0);
6696 				offset = -ipf->ipf_nf_hdr_len;
6697 			}
6698 			offset += mp1->b_wptr - mp1->b_rptr;
6699 			IP_REASS_SET_END(mp1, offset);
6700 		}
6701 		/* One hole at the end. */
6702 		ipf->ipf_hole_cnt = 1;
6703 		/* Brand it as a hard case, forever. */
6704 		ipf->ipf_end = 0;
6705 	}
6706 	/* Walk through all the new pieces. */
6707 	do {
6708 		end = start + (mp->b_wptr - mp->b_rptr);
6709 		/*
6710 		 * If start is 0, decrease 'end' only for the first mblk of
6711 		 * the fragment. Otherwise 'end' can get wrong value in the
6712 		 * second pass of the loop if first mblk is exactly the
6713 		 * size of ipf_nf_hdr_len.
6714 		 */
6715 		if (start == 0 && !offset_zero_seen) {
6716 			/* First segment */
6717 			ASSERT(ipf->ipf_nf_hdr_len != 0);
6718 			end -= ipf->ipf_nf_hdr_len;
6719 			offset_zero_seen = B_TRUE;
6720 		}
6721 		next_mp = mp->b_cont;
6722 		/*
6723 		 * We are checking to see if there is any interesing data
6724 		 * to process.  If there isn't and the mblk isn't the
6725 		 * one which carries the unfragmentable header then we
6726 		 * drop it.  It's possible to have just the unfragmentable
6727 		 * header come through without any data.  That needs to be
6728 		 * saved.
6729 		 *
6730 		 * If the assert at the top of this function holds then the
6731 		 * term "ipf->ipf_nf_hdr_len != 0" isn't needed.  This code
6732 		 * is infrequently traveled enough that the test is left in
6733 		 * to protect against future code changes which break that
6734 		 * invariant.
6735 		 */
6736 		if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) {
6737 			/* Empty.  Blast it. */
6738 			IP_REASS_SET_START(mp, 0);
6739 			IP_REASS_SET_END(mp, 0);
6740 			/*
6741 			 * If the ipf points to the mblk we are about to free,
6742 			 * update ipf to point to the next mblk (or NULL
6743 			 * if none).
6744 			 */
6745 			if (ipf->ipf_mp->b_cont == mp)
6746 				ipf->ipf_mp->b_cont = next_mp;
6747 			freeb(mp);
6748 			continue;
6749 		}
6750 		mp->b_cont = NULL;
6751 		IP_REASS_SET_START(mp, start);
6752 		IP_REASS_SET_END(mp, end);
6753 		if (!ipf->ipf_tail_mp) {
6754 			ipf->ipf_tail_mp = mp;
6755 			ipf->ipf_mp->b_cont = mp;
6756 			if (start == 0 || !more) {
6757 				ipf->ipf_hole_cnt = 1;
6758 				/*
6759 				 * if the first fragment comes in more than one
6760 				 * mblk, this loop will be executed for each
6761 				 * mblk. Need to adjust hole count so exiting
6762 				 * this routine will leave hole count at 1.
6763 				 */
6764 				if (next_mp)
6765 					ipf->ipf_hole_cnt++;
6766 			} else
6767 				ipf->ipf_hole_cnt = 2;
6768 			continue;
6769 		} else if (ipf->ipf_last_frag_seen && !more &&
6770 		    !pkt_boundary_checked) {
6771 			/*
6772 			 * We check datagram boundary only if this fragment
6773 			 * claims to be the last fragment and we have seen a
6774 			 * last fragment in the past too. We do this only
6775 			 * once for a given fragment.
6776 			 *
6777 			 * start cannot be 0 here as fragments with start=0
6778 			 * and MF=0 gets handled as a complete packet. These
6779 			 * fragments should not reach here.
6780 			 */
6781 
6782 			if (start + msgdsize(mp) !=
6783 			    IP_REASS_END(ipf->ipf_tail_mp)) {
6784 				/*
6785 				 * We have two fragments both of which claim
6786 				 * to be the last fragment but gives conflicting
6787 				 * information about the whole datagram size.
6788 				 * Something fishy is going on. Drop the
6789 				 * fragment and free up the reassembly list.
6790 				 */
6791 				return (IP_REASS_FAILED);
6792 			}
6793 
6794 			/*
6795 			 * We shouldn't come to this code block again for this
6796 			 * particular fragment.
6797 			 */
6798 			pkt_boundary_checked = B_TRUE;
6799 		}
6800 
6801 		/* New stuff at or beyond tail? */
6802 		offset = IP_REASS_END(ipf->ipf_tail_mp);
6803 		if (start >= offset) {
6804 			if (ipf->ipf_last_frag_seen) {
6805 				/* current fragment is beyond last fragment */
6806 				return (IP_REASS_FAILED);
6807 			}
6808 			/* Link it on end. */
6809 			ipf->ipf_tail_mp->b_cont = mp;
6810 			ipf->ipf_tail_mp = mp;
6811 			if (more) {
6812 				if (start != offset)
6813 					ipf->ipf_hole_cnt++;
6814 			} else if (start == offset && next_mp == NULL)
6815 					ipf->ipf_hole_cnt--;
6816 			continue;
6817 		}
6818 		mp1 = ipf->ipf_mp->b_cont;
6819 		offset = IP_REASS_START(mp1);
6820 		/* New stuff at the front? */
6821 		if (start < offset) {
6822 			if (start == 0) {
6823 				if (end >= offset) {
6824 					/* Nailed the hole at the begining. */
6825 					ipf->ipf_hole_cnt--;
6826 				}
6827 			} else if (end < offset) {
6828 				/*
6829 				 * A hole, stuff, and a hole where there used
6830 				 * to be just a hole.
6831 				 */
6832 				ipf->ipf_hole_cnt++;
6833 			}
6834 			mp->b_cont = mp1;
6835 			/* Check for overlap. */
6836 			while (end > offset) {
6837 				if (end < IP_REASS_END(mp1)) {
6838 					mp->b_wptr -= end - offset;
6839 					IP_REASS_SET_END(mp, offset);
6840 					BUMP_MIB(ill->ill_ip_mib,
6841 					    ipIfStatsReasmPartDups);
6842 					break;
6843 				}
6844 				/* Did we cover another hole? */
6845 				if ((mp1->b_cont &&
6846 				    IP_REASS_END(mp1) !=
6847 				    IP_REASS_START(mp1->b_cont) &&
6848 				    end >= IP_REASS_START(mp1->b_cont)) ||
6849 				    (!ipf->ipf_last_frag_seen && !more)) {
6850 					ipf->ipf_hole_cnt--;
6851 				}
6852 				/* Clip out mp1. */
6853 				if ((mp->b_cont = mp1->b_cont) == NULL) {
6854 					/*
6855 					 * After clipping out mp1, this guy
6856 					 * is now hanging off the end.
6857 					 */
6858 					ipf->ipf_tail_mp = mp;
6859 				}
6860 				IP_REASS_SET_START(mp1, 0);
6861 				IP_REASS_SET_END(mp1, 0);
6862 				/* Subtract byte count */
6863 				ipf->ipf_count -= mp1->b_datap->db_lim -
6864 				    mp1->b_datap->db_base;
6865 				freeb(mp1);
6866 				BUMP_MIB(ill->ill_ip_mib,
6867 				    ipIfStatsReasmPartDups);
6868 				mp1 = mp->b_cont;
6869 				if (!mp1)
6870 					break;
6871 				offset = IP_REASS_START(mp1);
6872 			}
6873 			ipf->ipf_mp->b_cont = mp;
6874 			continue;
6875 		}
6876 		/*
6877 		 * The new piece starts somewhere between the start of the head
6878 		 * and before the end of the tail.
6879 		 */
6880 		for (; mp1; mp1 = mp1->b_cont) {
6881 			offset = IP_REASS_END(mp1);
6882 			if (start < offset) {
6883 				if (end <= offset) {
6884 					/* Nothing new. */
6885 					IP_REASS_SET_START(mp, 0);
6886 					IP_REASS_SET_END(mp, 0);
6887 					/* Subtract byte count */
6888 					ipf->ipf_count -= mp->b_datap->db_lim -
6889 					    mp->b_datap->db_base;
6890 					if (incr_dups) {
6891 						ipf->ipf_num_dups++;
6892 						incr_dups = B_FALSE;
6893 					}
6894 					freeb(mp);
6895 					BUMP_MIB(ill->ill_ip_mib,
6896 					    ipIfStatsReasmDuplicates);
6897 					break;
6898 				}
6899 				/*
6900 				 * Trim redundant stuff off beginning of new
6901 				 * piece.
6902 				 */
6903 				IP_REASS_SET_START(mp, offset);
6904 				mp->b_rptr += offset - start;
6905 				BUMP_MIB(ill->ill_ip_mib,
6906 				    ipIfStatsReasmPartDups);
6907 				start = offset;
6908 				if (!mp1->b_cont) {
6909 					/*
6910 					 * After trimming, this guy is now
6911 					 * hanging off the end.
6912 					 */
6913 					mp1->b_cont = mp;
6914 					ipf->ipf_tail_mp = mp;
6915 					if (!more) {
6916 						ipf->ipf_hole_cnt--;
6917 					}
6918 					break;
6919 				}
6920 			}
6921 			if (start >= IP_REASS_START(mp1->b_cont))
6922 				continue;
6923 			/* Fill a hole */
6924 			if (start > offset)
6925 				ipf->ipf_hole_cnt++;
6926 			mp->b_cont = mp1->b_cont;
6927 			mp1->b_cont = mp;
6928 			mp1 = mp->b_cont;
6929 			offset = IP_REASS_START(mp1);
6930 			if (end >= offset) {
6931 				ipf->ipf_hole_cnt--;
6932 				/* Check for overlap. */
6933 				while (end > offset) {
6934 					if (end < IP_REASS_END(mp1)) {
6935 						mp->b_wptr -= end - offset;
6936 						IP_REASS_SET_END(mp, offset);
6937 						/*
6938 						 * TODO we might bump
6939 						 * this up twice if there is
6940 						 * overlap at both ends.
6941 						 */
6942 						BUMP_MIB(ill->ill_ip_mib,
6943 						    ipIfStatsReasmPartDups);
6944 						break;
6945 					}
6946 					/* Did we cover another hole? */
6947 					if ((mp1->b_cont &&
6948 					    IP_REASS_END(mp1)
6949 					    != IP_REASS_START(mp1->b_cont) &&
6950 					    end >=
6951 					    IP_REASS_START(mp1->b_cont)) ||
6952 					    (!ipf->ipf_last_frag_seen &&
6953 					    !more)) {
6954 						ipf->ipf_hole_cnt--;
6955 					}
6956 					/* Clip out mp1. */
6957 					if ((mp->b_cont = mp1->b_cont) ==
6958 					    NULL) {
6959 						/*
6960 						 * After clipping out mp1,
6961 						 * this guy is now hanging
6962 						 * off the end.
6963 						 */
6964 						ipf->ipf_tail_mp = mp;
6965 					}
6966 					IP_REASS_SET_START(mp1, 0);
6967 					IP_REASS_SET_END(mp1, 0);
6968 					/* Subtract byte count */
6969 					ipf->ipf_count -=
6970 					    mp1->b_datap->db_lim -
6971 					    mp1->b_datap->db_base;
6972 					freeb(mp1);
6973 					BUMP_MIB(ill->ill_ip_mib,
6974 					    ipIfStatsReasmPartDups);
6975 					mp1 = mp->b_cont;
6976 					if (!mp1)
6977 						break;
6978 					offset = IP_REASS_START(mp1);
6979 				}
6980 			}
6981 			break;
6982 		}
6983 	} while (start = end, mp = next_mp);
6984 
6985 	/* Fragment just processed could be the last one. Remember this fact */
6986 	if (!more)
6987 		ipf->ipf_last_frag_seen = B_TRUE;
6988 
6989 	/* Still got holes? */
6990 	if (ipf->ipf_hole_cnt)
6991 		return (IP_REASS_PARTIAL);
6992 	/* Clean up overloaded fields to avoid upstream disasters. */
6993 	for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) {
6994 		IP_REASS_SET_START(mp1, 0);
6995 		IP_REASS_SET_END(mp1, 0);
6996 	}
6997 	return (IP_REASS_COMPLETE);
6998 }
6999 
7000 /*
7001  * Fragmentation reassembly.  Each ILL has a hash table for
7002  * queuing packets undergoing reassembly for all IPIFs
7003  * associated with the ILL.  The hash is based on the packet
7004  * IP ident field.  The ILL frag hash table was allocated
7005  * as a timer block at the time the ILL was created.  Whenever
7006  * there is anything on the reassembly queue, the timer will
7007  * be running.  Returns the reassembled packet if reassembly completes.
7008  */
7009 mblk_t *
7010 ip_input_fragment(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
7011 {
7012 	uint32_t	frag_offset_flags;
7013 	mblk_t		*t_mp;
7014 	ipaddr_t	dst;
7015 	uint8_t		proto = ipha->ipha_protocol;
7016 	uint32_t	sum_val;
7017 	uint16_t	sum_flags;
7018 	ipf_t		*ipf;
7019 	ipf_t		**ipfp;
7020 	ipfb_t		*ipfb;
7021 	uint16_t	ident;
7022 	uint32_t	offset;
7023 	ipaddr_t	src;
7024 	uint_t		hdr_length;
7025 	uint32_t	end;
7026 	mblk_t		*mp1;
7027 	mblk_t		*tail_mp;
7028 	size_t		count;
7029 	size_t		msg_len;
7030 	uint8_t		ecn_info = 0;
7031 	uint32_t	packet_size;
7032 	boolean_t	pruned = B_FALSE;
7033 	ill_t		*ill = ira->ira_ill;
7034 	ip_stack_t	*ipst = ill->ill_ipst;
7035 
7036 	/*
7037 	 * Drop the fragmented as early as possible, if
7038 	 * we don't have resource(s) to re-assemble.
7039 	 */
7040 	if (ipst->ips_ip_reass_queue_bytes == 0) {
7041 		freemsg(mp);
7042 		return (NULL);
7043 	}
7044 
7045 	/* Check for fragmentation offset; return if there's none */
7046 	if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) &
7047 	    (IPH_MF | IPH_OFFSET)) == 0)
7048 		return (mp);
7049 
7050 	/*
7051 	 * We utilize hardware computed checksum info only for UDP since
7052 	 * IP fragmentation is a normal occurrence for the protocol.  In
7053 	 * addition, checksum offload support for IP fragments carrying
7054 	 * UDP payload is commonly implemented across network adapters.
7055 	 */
7056 	ASSERT(ira->ira_rill != NULL);
7057 	if (proto == IPPROTO_UDP && dohwcksum &&
7058 	    ILL_HCKSUM_CAPABLE(ira->ira_rill) &&
7059 	    (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) {
7060 		mblk_t *mp1 = mp->b_cont;
7061 		int32_t len;
7062 
7063 		/* Record checksum information from the packet */
7064 		sum_val = (uint32_t)DB_CKSUM16(mp);
7065 		sum_flags = DB_CKSUMFLAGS(mp);
7066 
7067 		/* IP payload offset from beginning of mblk */
7068 		offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr;
7069 
7070 		if ((sum_flags & HCK_PARTIALCKSUM) &&
7071 		    (mp1 == NULL || mp1->b_cont == NULL) &&
7072 		    offset >= DB_CKSUMSTART(mp) &&
7073 		    ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) {
7074 			uint32_t adj;
7075 			/*
7076 			 * Partial checksum has been calculated by hardware
7077 			 * and attached to the packet; in addition, any
7078 			 * prepended extraneous data is even byte aligned.
7079 			 * If any such data exists, we adjust the checksum;
7080 			 * this would also handle any postpended data.
7081 			 */
7082 			IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp),
7083 			    mp, mp1, len, adj);
7084 
7085 			/* One's complement subtract extraneous checksum */
7086 			if (adj >= sum_val)
7087 				sum_val = ~(adj - sum_val) & 0xFFFF;
7088 			else
7089 				sum_val -= adj;
7090 		}
7091 	} else {
7092 		sum_val = 0;
7093 		sum_flags = 0;
7094 	}
7095 
7096 	/* Clear hardware checksumming flag */
7097 	DB_CKSUMFLAGS(mp) = 0;
7098 
7099 	ident = ipha->ipha_ident;
7100 	offset = (frag_offset_flags << 3) & 0xFFFF;
7101 	src = ipha->ipha_src;
7102 	dst = ipha->ipha_dst;
7103 	hdr_length = IPH_HDR_LENGTH(ipha);
7104 	end = ntohs(ipha->ipha_length) - hdr_length;
7105 
7106 	/* If end == 0 then we have a packet with no data, so just free it */
7107 	if (end == 0) {
7108 		freemsg(mp);
7109 		return (NULL);
7110 	}
7111 
7112 	/* Record the ECN field info. */
7113 	ecn_info = (ipha->ipha_type_of_service & 0x3);
7114 	if (offset != 0) {
7115 		/*
7116 		 * If this isn't the first piece, strip the header, and
7117 		 * add the offset to the end value.
7118 		 */
7119 		mp->b_rptr += hdr_length;
7120 		end += offset;
7121 	}
7122 
7123 	/* Handle vnic loopback of fragments */
7124 	if (mp->b_datap->db_ref > 2)
7125 		msg_len = 0;
7126 	else
7127 		msg_len = MBLKSIZE(mp);
7128 
7129 	tail_mp = mp;
7130 	while (tail_mp->b_cont != NULL) {
7131 		tail_mp = tail_mp->b_cont;
7132 		if (tail_mp->b_datap->db_ref <= 2)
7133 			msg_len += MBLKSIZE(tail_mp);
7134 	}
7135 
7136 	/* If the reassembly list for this ILL will get too big, prune it */
7137 	if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >=
7138 	    ipst->ips_ip_reass_queue_bytes) {
7139 		DTRACE_PROBE3(ip_reass_queue_bytes, uint_t, msg_len,
7140 		    uint_t, ill->ill_frag_count,
7141 		    uint_t, ipst->ips_ip_reass_queue_bytes);
7142 		ill_frag_prune(ill,
7143 		    (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 :
7144 		    (ipst->ips_ip_reass_queue_bytes - msg_len));
7145 		pruned = B_TRUE;
7146 	}
7147 
7148 	ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)];
7149 	mutex_enter(&ipfb->ipfb_lock);
7150 
7151 	ipfp = &ipfb->ipfb_ipf;
7152 	/* Try to find an existing fragment queue for this packet. */
7153 	for (;;) {
7154 		ipf = ipfp[0];
7155 		if (ipf != NULL) {
7156 			/*
7157 			 * It has to match on ident and src/dst address.
7158 			 */
7159 			if (ipf->ipf_ident == ident &&
7160 			    ipf->ipf_src == src &&
7161 			    ipf->ipf_dst == dst &&
7162 			    ipf->ipf_protocol == proto) {
7163 				/*
7164 				 * If we have received too many
7165 				 * duplicate fragments for this packet
7166 				 * free it.
7167 				 */
7168 				if (ipf->ipf_num_dups > ip_max_frag_dups) {
7169 					ill_frag_free_pkts(ill, ipfb, ipf, 1);
7170 					freemsg(mp);
7171 					mutex_exit(&ipfb->ipfb_lock);
7172 					return (NULL);
7173 				}
7174 				/* Found it. */
7175 				break;
7176 			}
7177 			ipfp = &ipf->ipf_hash_next;
7178 			continue;
7179 		}
7180 
7181 		/*
7182 		 * If we pruned the list, do we want to store this new
7183 		 * fragment?. We apply an optimization here based on the
7184 		 * fact that most fragments will be received in order.
7185 		 * So if the offset of this incoming fragment is zero,
7186 		 * it is the first fragment of a new packet. We will
7187 		 * keep it.  Otherwise drop the fragment, as we have
7188 		 * probably pruned the packet already (since the
7189 		 * packet cannot be found).
7190 		 */
7191 		if (pruned && offset != 0) {
7192 			mutex_exit(&ipfb->ipfb_lock);
7193 			freemsg(mp);
7194 			return (NULL);
7195 		}
7196 
7197 		if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst))  {
7198 			/*
7199 			 * Too many fragmented packets in this hash
7200 			 * bucket. Free the oldest.
7201 			 */
7202 			ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1);
7203 		}
7204 
7205 		/* New guy.  Allocate a frag message. */
7206 		mp1 = allocb(sizeof (*ipf), BPRI_MED);
7207 		if (mp1 == NULL) {
7208 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7209 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
7210 			freemsg(mp);
7211 reass_done:
7212 			mutex_exit(&ipfb->ipfb_lock);
7213 			return (NULL);
7214 		}
7215 
7216 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds);
7217 		mp1->b_cont = mp;
7218 
7219 		/* Initialize the fragment header. */
7220 		ipf = (ipf_t *)mp1->b_rptr;
7221 		ipf->ipf_mp = mp1;
7222 		ipf->ipf_ptphn = ipfp;
7223 		ipfp[0] = ipf;
7224 		ipf->ipf_hash_next = NULL;
7225 		ipf->ipf_ident = ident;
7226 		ipf->ipf_protocol = proto;
7227 		ipf->ipf_src = src;
7228 		ipf->ipf_dst = dst;
7229 		ipf->ipf_nf_hdr_len = 0;
7230 		/* Record reassembly start time. */
7231 		ipf->ipf_timestamp = gethrestime_sec();
7232 		/* Record ipf generation and account for frag header */
7233 		ipf->ipf_gen = ill->ill_ipf_gen++;
7234 		ipf->ipf_count = MBLKSIZE(mp1);
7235 		ipf->ipf_last_frag_seen = B_FALSE;
7236 		ipf->ipf_ecn = ecn_info;
7237 		ipf->ipf_num_dups = 0;
7238 		ipfb->ipfb_frag_pkts++;
7239 		ipf->ipf_checksum = 0;
7240 		ipf->ipf_checksum_flags = 0;
7241 
7242 		/* Store checksum value in fragment header */
7243 		if (sum_flags != 0) {
7244 			sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7245 			sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7246 			ipf->ipf_checksum = sum_val;
7247 			ipf->ipf_checksum_flags = sum_flags;
7248 		}
7249 
7250 		/*
7251 		 * We handle reassembly two ways.  In the easy case,
7252 		 * where all the fragments show up in order, we do
7253 		 * minimal bookkeeping, and just clip new pieces on
7254 		 * the end.  If we ever see a hole, then we go off
7255 		 * to ip_reassemble which has to mark the pieces and
7256 		 * keep track of the number of holes, etc.  Obviously,
7257 		 * the point of having both mechanisms is so we can
7258 		 * handle the easy case as efficiently as possible.
7259 		 */
7260 		if (offset == 0) {
7261 			/* Easy case, in-order reassembly so far. */
7262 			ipf->ipf_count += msg_len;
7263 			ipf->ipf_tail_mp = tail_mp;
7264 			/*
7265 			 * Keep track of next expected offset in
7266 			 * ipf_end.
7267 			 */
7268 			ipf->ipf_end = end;
7269 			ipf->ipf_nf_hdr_len = hdr_length;
7270 		} else {
7271 			/* Hard case, hole at the beginning. */
7272 			ipf->ipf_tail_mp = NULL;
7273 			/*
7274 			 * ipf_end == 0 means that we have given up
7275 			 * on easy reassembly.
7276 			 */
7277 			ipf->ipf_end = 0;
7278 
7279 			/* Forget checksum offload from now on */
7280 			ipf->ipf_checksum_flags = 0;
7281 
7282 			/*
7283 			 * ipf_hole_cnt is set by ip_reassemble.
7284 			 * ipf_count is updated by ip_reassemble.
7285 			 * No need to check for return value here
7286 			 * as we don't expect reassembly to complete
7287 			 * or fail for the first fragment itself.
7288 			 */
7289 			(void) ip_reassemble(mp, ipf,
7290 			    (frag_offset_flags & IPH_OFFSET) << 3,
7291 			    (frag_offset_flags & IPH_MF), ill, msg_len);
7292 		}
7293 		/* Update per ipfb and ill byte counts */
7294 		ipfb->ipfb_count += ipf->ipf_count;
7295 		ASSERT(ipfb->ipfb_count > 0);	/* Wraparound */
7296 		atomic_add_32(&ill->ill_frag_count, ipf->ipf_count);
7297 		/* If the frag timer wasn't already going, start it. */
7298 		mutex_enter(&ill->ill_lock);
7299 		ill_frag_timer_start(ill);
7300 		mutex_exit(&ill->ill_lock);
7301 		goto reass_done;
7302 	}
7303 
7304 	/*
7305 	 * If the packet's flag has changed (it could be coming up
7306 	 * from an interface different than the previous, therefore
7307 	 * possibly different checksum capability), then forget about
7308 	 * any stored checksum states.  Otherwise add the value to
7309 	 * the existing one stored in the fragment header.
7310 	 */
7311 	if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) {
7312 		sum_val += ipf->ipf_checksum;
7313 		sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7314 		sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7315 		ipf->ipf_checksum = sum_val;
7316 	} else if (ipf->ipf_checksum_flags != 0) {
7317 		/* Forget checksum offload from now on */
7318 		ipf->ipf_checksum_flags = 0;
7319 	}
7320 
7321 	/*
7322 	 * We have a new piece of a datagram which is already being
7323 	 * reassembled.  Update the ECN info if all IP fragments
7324 	 * are ECN capable.  If there is one which is not, clear
7325 	 * all the info.  If there is at least one which has CE
7326 	 * code point, IP needs to report that up to transport.
7327 	 */
7328 	if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) {
7329 		if (ecn_info == IPH_ECN_CE)
7330 			ipf->ipf_ecn = IPH_ECN_CE;
7331 	} else {
7332 		ipf->ipf_ecn = IPH_ECN_NECT;
7333 	}
7334 	if (offset && ipf->ipf_end == offset) {
7335 		/* The new fragment fits at the end */
7336 		ipf->ipf_tail_mp->b_cont = mp;
7337 		/* Update the byte count */
7338 		ipf->ipf_count += msg_len;
7339 		/* Update per ipfb and ill byte counts */
7340 		ipfb->ipfb_count += msg_len;
7341 		ASSERT(ipfb->ipfb_count > 0);	/* Wraparound */
7342 		atomic_add_32(&ill->ill_frag_count, msg_len);
7343 		if (frag_offset_flags & IPH_MF) {
7344 			/* More to come. */
7345 			ipf->ipf_end = end;
7346 			ipf->ipf_tail_mp = tail_mp;
7347 			goto reass_done;
7348 		}
7349 	} else {
7350 		/* Go do the hard cases. */
7351 		int ret;
7352 
7353 		if (offset == 0)
7354 			ipf->ipf_nf_hdr_len = hdr_length;
7355 
7356 		/* Save current byte count */
7357 		count = ipf->ipf_count;
7358 		ret = ip_reassemble(mp, ipf,
7359 		    (frag_offset_flags & IPH_OFFSET) << 3,
7360 		    (frag_offset_flags & IPH_MF), ill, msg_len);
7361 		/* Count of bytes added and subtracted (freeb()ed) */
7362 		count = ipf->ipf_count - count;
7363 		if (count) {
7364 			/* Update per ipfb and ill byte counts */
7365 			ipfb->ipfb_count += count;
7366 			ASSERT(ipfb->ipfb_count > 0); /* Wraparound */
7367 			atomic_add_32(&ill->ill_frag_count, count);
7368 		}
7369 		if (ret == IP_REASS_PARTIAL) {
7370 			goto reass_done;
7371 		} else if (ret == IP_REASS_FAILED) {
7372 			/* Reassembly failed. Free up all resources */
7373 			ill_frag_free_pkts(ill, ipfb, ipf, 1);
7374 			for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) {
7375 				IP_REASS_SET_START(t_mp, 0);
7376 				IP_REASS_SET_END(t_mp, 0);
7377 			}
7378 			freemsg(mp);
7379 			goto reass_done;
7380 		}
7381 		/* We will reach here iff 'ret' is IP_REASS_COMPLETE */
7382 	}
7383 	/*
7384 	 * We have completed reassembly.  Unhook the frag header from
7385 	 * the reassembly list.
7386 	 *
7387 	 * Before we free the frag header, record the ECN info
7388 	 * to report back to the transport.
7389 	 */
7390 	ecn_info = ipf->ipf_ecn;
7391 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs);
7392 	ipfp = ipf->ipf_ptphn;
7393 
7394 	/* We need to supply these to caller */
7395 	if ((sum_flags = ipf->ipf_checksum_flags) != 0)
7396 		sum_val = ipf->ipf_checksum;
7397 	else
7398 		sum_val = 0;
7399 
7400 	mp1 = ipf->ipf_mp;
7401 	count = ipf->ipf_count;
7402 	ipf = ipf->ipf_hash_next;
7403 	if (ipf != NULL)
7404 		ipf->ipf_ptphn = ipfp;
7405 	ipfp[0] = ipf;
7406 	atomic_add_32(&ill->ill_frag_count, -count);
7407 	ASSERT(ipfb->ipfb_count >= count);
7408 	ipfb->ipfb_count -= count;
7409 	ipfb->ipfb_frag_pkts--;
7410 	mutex_exit(&ipfb->ipfb_lock);
7411 	/* Ditch the frag header. */
7412 	mp = mp1->b_cont;
7413 
7414 	freeb(mp1);
7415 
7416 	/* Restore original IP length in header. */
7417 	packet_size = (uint32_t)msgdsize(mp);
7418 	if (packet_size > IP_MAXPACKET) {
7419 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7420 		ip_drop_input("Reassembled packet too large", mp, ill);
7421 		freemsg(mp);
7422 		return (NULL);
7423 	}
7424 
7425 	if (DB_REF(mp) > 1) {
7426 		mblk_t *mp2 = copymsg(mp);
7427 
7428 		if (mp2 == NULL) {
7429 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7430 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
7431 			freemsg(mp);
7432 			return (NULL);
7433 		}
7434 		freemsg(mp);
7435 		mp = mp2;
7436 	}
7437 	ipha = (ipha_t *)mp->b_rptr;
7438 
7439 	ipha->ipha_length = htons((uint16_t)packet_size);
7440 	/* We're now complete, zip the frag state */
7441 	ipha->ipha_fragment_offset_and_flags = 0;
7442 	/* Record the ECN info. */
7443 	ipha->ipha_type_of_service &= 0xFC;
7444 	ipha->ipha_type_of_service |= ecn_info;
7445 
7446 	/* Update the receive attributes */
7447 	ira->ira_pktlen = packet_size;
7448 	ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha);
7449 
7450 	/* Reassembly is successful; set checksum information in packet */
7451 	DB_CKSUM16(mp) = (uint16_t)sum_val;
7452 	DB_CKSUMFLAGS(mp) = sum_flags;
7453 	DB_CKSUMSTART(mp) = ira->ira_ip_hdr_length;
7454 
7455 	return (mp);
7456 }
7457 
7458 /*
7459  * Pullup function that should be used for IP input in order to
7460  * ensure we do not loose the L2 source address; we need the l2 source
7461  * address for IP_RECVSLLA and for ndp_input.
7462  *
7463  * We return either NULL or b_rptr.
7464  */
7465 void *
7466 ip_pullup(mblk_t *mp, ssize_t len, ip_recv_attr_t *ira)
7467 {
7468 	ill_t		*ill = ira->ira_ill;
7469 
7470 	if (ip_rput_pullups++ == 0) {
7471 		(void) mi_strlog(ill->ill_rq, 1, SL_ERROR|SL_TRACE,
7472 		    "ip_pullup: %s forced us to "
7473 		    " pullup pkt, hdr len %ld, hdr addr %p",
7474 		    ill->ill_name, len, (void *)mp->b_rptr);
7475 	}
7476 	if (!(ira->ira_flags & IRAF_L2SRC_SET))
7477 		ip_setl2src(mp, ira, ira->ira_rill);
7478 	ASSERT(ira->ira_flags & IRAF_L2SRC_SET);
7479 	if (!pullupmsg(mp, len))
7480 		return (NULL);
7481 	else
7482 		return (mp->b_rptr);
7483 }
7484 
7485 /*
7486  * Make sure ira_l2src has an address. If we don't have one fill with zeros.
7487  * When called from the ULP ira_rill will be NULL hence the caller has to
7488  * pass in the ill.
7489  */
7490 /* ARGSUSED */
7491 void
7492 ip_setl2src(mblk_t *mp, ip_recv_attr_t *ira, ill_t *ill)
7493 {
7494 	const uchar_t *addr;
7495 	int alen;
7496 
7497 	if (ira->ira_flags & IRAF_L2SRC_SET)
7498 		return;
7499 
7500 	ASSERT(ill != NULL);
7501 	alen = ill->ill_phys_addr_length;
7502 	ASSERT(alen <= sizeof (ira->ira_l2src));
7503 	if (ira->ira_mhip != NULL &&
7504 	    (addr = ira->ira_mhip->mhi_saddr) != NULL) {
7505 		bcopy(addr, ira->ira_l2src, alen);
7506 	} else if ((ira->ira_flags & IRAF_L2SRC_LOOPBACK) &&
7507 	    (addr = ill->ill_phys_addr) != NULL) {
7508 		bcopy(addr, ira->ira_l2src, alen);
7509 	} else {
7510 		bzero(ira->ira_l2src, alen);
7511 	}
7512 	ira->ira_flags |= IRAF_L2SRC_SET;
7513 }
7514 
7515 /*
7516  * check ip header length and align it.
7517  */
7518 mblk_t *
7519 ip_check_and_align_header(mblk_t *mp, uint_t min_size, ip_recv_attr_t *ira)
7520 {
7521 	ill_t	*ill = ira->ira_ill;
7522 	ssize_t len;
7523 
7524 	len = MBLKL(mp);
7525 
7526 	if (!OK_32PTR(mp->b_rptr))
7527 		IP_STAT(ill->ill_ipst, ip_notaligned);
7528 	else
7529 		IP_STAT(ill->ill_ipst, ip_recv_pullup);
7530 
7531 	/* Guard against bogus device drivers */
7532 	if (len < 0) {
7533 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7534 		ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7535 		freemsg(mp);
7536 		return (NULL);
7537 	}
7538 
7539 	if (len == 0) {
7540 		/* GLD sometimes sends up mblk with b_rptr == b_wptr! */
7541 		mblk_t *mp1 = mp->b_cont;
7542 
7543 		if (!(ira->ira_flags & IRAF_L2SRC_SET))
7544 			ip_setl2src(mp, ira, ira->ira_rill);
7545 		ASSERT(ira->ira_flags & IRAF_L2SRC_SET);
7546 
7547 		freeb(mp);
7548 		mp = mp1;
7549 		if (mp == NULL)
7550 			return (NULL);
7551 
7552 		if (OK_32PTR(mp->b_rptr) && MBLKL(mp) >= min_size)
7553 			return (mp);
7554 	}
7555 	if (ip_pullup(mp, min_size, ira) == NULL) {
7556 		if (msgdsize(mp) < min_size) {
7557 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7558 			ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7559 		} else {
7560 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7561 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
7562 		}
7563 		freemsg(mp);
7564 		return (NULL);
7565 	}
7566 	return (mp);
7567 }
7568 
7569 /*
7570  * Common code for IPv4 and IPv6 to check and pullup multi-mblks
7571  */
7572 mblk_t *
7573 ip_check_length(mblk_t *mp, uchar_t *rptr, ssize_t len,	uint_t pkt_len,
7574     uint_t min_size, ip_recv_attr_t *ira)
7575 {
7576 	ill_t	*ill = ira->ira_ill;
7577 
7578 	/*
7579 	 * Make sure we have data length consistent
7580 	 * with the IP header.
7581 	 */
7582 	if (mp->b_cont == NULL) {
7583 		/* pkt_len is based on ipha_len, not the mblk length */
7584 		if (pkt_len < min_size) {
7585 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7586 			ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7587 			freemsg(mp);
7588 			return (NULL);
7589 		}
7590 		if (len < 0) {
7591 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
7592 			ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
7593 			freemsg(mp);
7594 			return (NULL);
7595 		}
7596 		/* Drop any pad */
7597 		mp->b_wptr = rptr + pkt_len;
7598 	} else if ((len += msgdsize(mp->b_cont)) != 0) {
7599 		ASSERT(pkt_len >= min_size);
7600 		if (pkt_len < min_size) {
7601 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7602 			ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7603 			freemsg(mp);
7604 			return (NULL);
7605 		}
7606 		if (len < 0) {
7607 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
7608 			ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
7609 			freemsg(mp);
7610 			return (NULL);
7611 		}
7612 		/* Drop any pad */
7613 		(void) adjmsg(mp, -len);
7614 		/*
7615 		 * adjmsg may have freed an mblk from the chain, hence
7616 		 * invalidate any hw checksum here. This will force IP to
7617 		 * calculate the checksum in sw, but only for this packet.
7618 		 */
7619 		DB_CKSUMFLAGS(mp) = 0;
7620 		IP_STAT(ill->ill_ipst, ip_multimblk);
7621 	}
7622 	return (mp);
7623 }
7624 
7625 /*
7626  * Check that the IPv4 opt_len is consistent with the packet and pullup
7627  * the options.
7628  */
7629 mblk_t *
7630 ip_check_optlen(mblk_t *mp, ipha_t *ipha, uint_t opt_len, uint_t pkt_len,
7631     ip_recv_attr_t *ira)
7632 {
7633 	ill_t	*ill = ira->ira_ill;
7634 	ssize_t len;
7635 
7636 	/* Assume no IPv6 packets arrive over the IPv4 queue */
7637 	if (IPH_HDR_VERSION(ipha) != IPV4_VERSION) {
7638 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7639 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion);
7640 		ip_drop_input("IPvN packet on IPv4 ill", mp, ill);
7641 		freemsg(mp);
7642 		return (NULL);
7643 	}
7644 
7645 	if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) {
7646 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7647 		ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7648 		freemsg(mp);
7649 		return (NULL);
7650 	}
7651 	/*
7652 	 * Recompute complete header length and make sure we
7653 	 * have access to all of it.
7654 	 */
7655 	len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2;
7656 	if (len > (mp->b_wptr - mp->b_rptr)) {
7657 		if (len > pkt_len) {
7658 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7659 			ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7660 			freemsg(mp);
7661 			return (NULL);
7662 		}
7663 		if (ip_pullup(mp, len, ira) == NULL) {
7664 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7665 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
7666 			freemsg(mp);
7667 			return (NULL);
7668 		}
7669 	}
7670 	return (mp);
7671 }
7672 
7673 /*
7674  * Returns a new ire, or the same ire, or NULL.
7675  * If a different IRE is returned, then it is held; the caller
7676  * needs to release it.
7677  * In no case is there any hold/release on the ire argument.
7678  */
7679 ire_t *
7680 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill)
7681 {
7682 	ire_t		*new_ire;
7683 	ill_t		*ire_ill;
7684 	uint_t		ifindex;
7685 	ip_stack_t	*ipst = ill->ill_ipst;
7686 	boolean_t	strict_check = B_FALSE;
7687 
7688 	/*
7689 	 * IPMP common case: if IRE and ILL are in the same group, there's no
7690 	 * issue (e.g. packet received on an underlying interface matched an
7691 	 * IRE_LOCAL on its associated group interface).
7692 	 */
7693 	ASSERT(ire->ire_ill != NULL);
7694 	if (IS_IN_SAME_ILLGRP(ill, ire->ire_ill))
7695 		return (ire);
7696 
7697 	/*
7698 	 * Do another ire lookup here, using the ingress ill, to see if the
7699 	 * interface is in a usesrc group.
7700 	 * As long as the ills belong to the same group, we don't consider
7701 	 * them to be arriving on the wrong interface. Thus, if the switch
7702 	 * is doing inbound load spreading, we won't drop packets when the
7703 	 * ip*_strict_dst_multihoming switch is on.
7704 	 * We also need to check for IPIF_UNNUMBERED point2point interfaces
7705 	 * where the local address may not be unique. In this case we were
7706 	 * at the mercy of the initial ire lookup and the IRE_LOCAL it
7707 	 * actually returned. The new lookup, which is more specific, should
7708 	 * only find the IRE_LOCAL associated with the ingress ill if one
7709 	 * exists.
7710 	 */
7711 	if (ire->ire_ipversion == IPV4_VERSION) {
7712 		if (ipst->ips_ip_strict_dst_multihoming)
7713 			strict_check = B_TRUE;
7714 		new_ire = ire_ftable_lookup_v4(*((ipaddr_t *)addr), 0, 0,
7715 		    IRE_LOCAL, ill, ALL_ZONES, NULL,
7716 		    (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL);
7717 	} else {
7718 		ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr));
7719 		if (ipst->ips_ipv6_strict_dst_multihoming)
7720 			strict_check = B_TRUE;
7721 		new_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL,
7722 		    IRE_LOCAL, ill, ALL_ZONES, NULL,
7723 		    (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL);
7724 	}
7725 	/*
7726 	 * If the same ire that was returned in ip_input() is found then this
7727 	 * is an indication that usesrc groups are in use. The packet
7728 	 * arrived on a different ill in the group than the one associated with
7729 	 * the destination address.  If a different ire was found then the same
7730 	 * IP address must be hosted on multiple ills. This is possible with
7731 	 * unnumbered point2point interfaces. We switch to use this new ire in
7732 	 * order to have accurate interface statistics.
7733 	 */
7734 	if (new_ire != NULL) {
7735 		/* Note: held in one case but not the other? Caller handles */
7736 		if (new_ire != ire)
7737 			return (new_ire);
7738 		/* Unchanged */
7739 		ire_refrele(new_ire);
7740 		return (ire);
7741 	}
7742 
7743 	/*
7744 	 * Chase pointers once and store locally.
7745 	 */
7746 	ASSERT(ire->ire_ill != NULL);
7747 	ire_ill = ire->ire_ill;
7748 	ifindex = ill->ill_usesrc_ifindex;
7749 
7750 	/*
7751 	 * Check if it's a legal address on the 'usesrc' interface.
7752 	 * For IPMP data addresses the IRE_LOCAL is the upper, hence we
7753 	 * can just check phyint_ifindex.
7754 	 */
7755 	if (ifindex != 0 && ifindex == ire_ill->ill_phyint->phyint_ifindex) {
7756 		return (ire);
7757 	}
7758 
7759 	/*
7760 	 * If the ip*_strict_dst_multihoming switch is on then we can
7761 	 * only accept this packet if the interface is marked as routing.
7762 	 */
7763 	if (!(strict_check))
7764 		return (ire);
7765 
7766 	if ((ill->ill_flags & ire->ire_ill->ill_flags & ILLF_ROUTER) != 0) {
7767 		return (ire);
7768 	}
7769 	return (NULL);
7770 }
7771 
7772 /*
7773  * This function is used to construct a mac_header_info_s from a
7774  * DL_UNITDATA_IND message.
7775  * The address fields in the mhi structure points into the message,
7776  * thus the caller can't use those fields after freeing the message.
7777  *
7778  * We determine whether the packet received is a non-unicast packet
7779  * and in doing so, determine whether or not it is broadcast vs multicast.
7780  * For it to be a broadcast packet, we must have the appropriate mblk_t
7781  * hanging off the ill_t.  If this is either not present or doesn't match
7782  * the destination mac address in the DL_UNITDATA_IND, the packet is deemed
7783  * to be multicast.  Thus NICs that have no broadcast address (or no
7784  * capability for one, such as point to point links) cannot return as
7785  * the packet being broadcast.
7786  */
7787 void
7788 ip_dlur_to_mhi(ill_t *ill, mblk_t *mb, struct mac_header_info_s *mhip)
7789 {
7790 	dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr;
7791 	mblk_t *bmp;
7792 	uint_t extra_offset;
7793 
7794 	bzero(mhip, sizeof (struct mac_header_info_s));
7795 
7796 	mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST;
7797 
7798 	if (ill->ill_sap_length < 0)
7799 		extra_offset = 0;
7800 	else
7801 		extra_offset = ill->ill_sap_length;
7802 
7803 	mhip->mhi_daddr = (uchar_t *)ind + ind->dl_dest_addr_offset +
7804 	    extra_offset;
7805 	mhip->mhi_saddr = (uchar_t *)ind + ind->dl_src_addr_offset +
7806 	    extra_offset;
7807 
7808 	if (!ind->dl_group_address)
7809 		return;
7810 
7811 	/* Multicast or broadcast */
7812 	mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST;
7813 
7814 	if (ind->dl_dest_addr_offset > sizeof (*ind) &&
7815 	    ind->dl_dest_addr_offset + ind->dl_dest_addr_length < MBLKL(mb) &&
7816 	    (bmp = ill->ill_bcast_mp) != NULL) {
7817 		dl_unitdata_req_t *dlur;
7818 		uint8_t *bphys_addr;
7819 
7820 		dlur = (dl_unitdata_req_t *)bmp->b_rptr;
7821 		bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset +
7822 		    extra_offset;
7823 
7824 		if (bcmp(mhip->mhi_daddr, bphys_addr,
7825 		    ind->dl_dest_addr_length) == 0)
7826 			mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST;
7827 	}
7828 }
7829 
7830 /*
7831  * This function is used to construct a mac_header_info_s from a
7832  * M_DATA fastpath message from a DLPI driver.
7833  * The address fields in the mhi structure points into the message,
7834  * thus the caller can't use those fields after freeing the message.
7835  *
7836  * We determine whether the packet received is a non-unicast packet
7837  * and in doing so, determine whether or not it is broadcast vs multicast.
7838  * For it to be a broadcast packet, we must have the appropriate mblk_t
7839  * hanging off the ill_t.  If this is either not present or doesn't match
7840  * the destination mac address in the DL_UNITDATA_IND, the packet is deemed
7841  * to be multicast.  Thus NICs that have no broadcast address (or no
7842  * capability for one, such as point to point links) cannot return as
7843  * the packet being broadcast.
7844  */
7845 void
7846 ip_mdata_to_mhi(ill_t *ill, mblk_t *mp, struct mac_header_info_s *mhip)
7847 {
7848 	mblk_t *bmp;
7849 	struct ether_header *pether;
7850 
7851 	bzero(mhip, sizeof (struct mac_header_info_s));
7852 
7853 	mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST;
7854 
7855 	pether = (struct ether_header *)((char *)mp->b_rptr
7856 	    - sizeof (struct ether_header));
7857 
7858 	/*
7859 	 * Make sure the interface is an ethernet type, since we don't
7860 	 * know the header format for anything but Ethernet. Also make
7861 	 * sure we are pointing correctly above db_base.
7862 	 */
7863 	if (ill->ill_type != IFT_ETHER)
7864 		return;
7865 
7866 retry:
7867 	if ((uchar_t *)pether < mp->b_datap->db_base)
7868 		return;
7869 
7870 	/* Is there a VLAN tag? */
7871 	if (ill->ill_isv6) {
7872 		if (pether->ether_type != htons(ETHERTYPE_IPV6)) {
7873 			pether = (struct ether_header *)((char *)pether - 4);
7874 			goto retry;
7875 		}
7876 	} else {
7877 		if (pether->ether_type != htons(ETHERTYPE_IP)) {
7878 			pether = (struct ether_header *)((char *)pether - 4);
7879 			goto retry;
7880 		}
7881 	}
7882 	mhip->mhi_daddr = (uchar_t *)&pether->ether_dhost;
7883 	mhip->mhi_saddr = (uchar_t *)&pether->ether_shost;
7884 
7885 	if (!(mhip->mhi_daddr[0] & 0x01))
7886 		return;
7887 
7888 	/* Multicast or broadcast */
7889 	mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST;
7890 
7891 	if ((bmp = ill->ill_bcast_mp) != NULL) {
7892 		dl_unitdata_req_t *dlur;
7893 		uint8_t *bphys_addr;
7894 		uint_t	addrlen;
7895 
7896 		dlur = (dl_unitdata_req_t *)bmp->b_rptr;
7897 		addrlen = dlur->dl_dest_addr_length;
7898 		if (ill->ill_sap_length < 0) {
7899 			bphys_addr = (uchar_t *)dlur +
7900 			    dlur->dl_dest_addr_offset;
7901 			addrlen += ill->ill_sap_length;
7902 		} else {
7903 			bphys_addr = (uchar_t *)dlur +
7904 			    dlur->dl_dest_addr_offset +
7905 			    ill->ill_sap_length;
7906 			addrlen -= ill->ill_sap_length;
7907 		}
7908 		if (bcmp(mhip->mhi_daddr, bphys_addr, addrlen) == 0)
7909 			mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST;
7910 	}
7911 }
7912 
7913 /*
7914  * Handle anything but M_DATA messages
7915  * We see the DL_UNITDATA_IND which are part
7916  * of the data path, and also the other messages from the driver.
7917  */
7918 void
7919 ip_rput_notdata(ill_t *ill, mblk_t *mp)
7920 {
7921 	mblk_t		*first_mp;
7922 	struct iocblk   *iocp;
7923 	struct mac_header_info_s mhi;
7924 
7925 	switch (DB_TYPE(mp)) {
7926 	case M_PROTO:
7927 	case M_PCPROTO: {
7928 		if (((dl_unitdata_ind_t *)mp->b_rptr)->dl_primitive !=
7929 		    DL_UNITDATA_IND) {
7930 			/* Go handle anything other than data elsewhere. */
7931 			ip_rput_dlpi(ill, mp);
7932 			return;
7933 		}
7934 
7935 		first_mp = mp;
7936 		mp = first_mp->b_cont;
7937 		first_mp->b_cont = NULL;
7938 
7939 		if (mp == NULL) {
7940 			freeb(first_mp);
7941 			return;
7942 		}
7943 		ip_dlur_to_mhi(ill, first_mp, &mhi);
7944 		if (ill->ill_isv6)
7945 			ip_input_v6(ill, NULL, mp, &mhi);
7946 		else
7947 			ip_input(ill, NULL, mp, &mhi);
7948 
7949 		/* Ditch the DLPI header. */
7950 		freeb(first_mp);
7951 		return;
7952 	}
7953 	case M_IOCACK:
7954 		iocp = (struct iocblk *)mp->b_rptr;
7955 		switch (iocp->ioc_cmd) {
7956 		case DL_IOC_HDR_INFO:
7957 			ill_fastpath_ack(ill, mp);
7958 			return;
7959 		default:
7960 			putnext(ill->ill_rq, mp);
7961 			return;
7962 		}
7963 		/* FALLTHROUGH */
7964 	case M_ERROR:
7965 	case M_HANGUP:
7966 		mutex_enter(&ill->ill_lock);
7967 		if (ill->ill_state_flags & ILL_CONDEMNED) {
7968 			mutex_exit(&ill->ill_lock);
7969 			freemsg(mp);
7970 			return;
7971 		}
7972 		ill_refhold_locked(ill);
7973 		mutex_exit(&ill->ill_lock);
7974 		qwriter_ip(ill, ill->ill_rq, mp, ip_rput_other, CUR_OP,
7975 		    B_FALSE);
7976 		return;
7977 	case M_CTL:
7978 		putnext(ill->ill_rq, mp);
7979 		return;
7980 	case M_IOCNAK:
7981 		ip1dbg(("got iocnak "));
7982 		iocp = (struct iocblk *)mp->b_rptr;
7983 		switch (iocp->ioc_cmd) {
7984 		case DL_IOC_HDR_INFO:
7985 			ip_rput_other(NULL, ill->ill_rq, mp, NULL);
7986 			return;
7987 		default:
7988 			break;
7989 		}
7990 		/* FALLTHROUGH */
7991 	default:
7992 		putnext(ill->ill_rq, mp);
7993 		return;
7994 	}
7995 }
7996 
7997 /* Read side put procedure.  Packets coming from the wire arrive here. */
7998 int
7999 ip_rput(queue_t *q, mblk_t *mp)
8000 {
8001 	ill_t	*ill;
8002 	union DL_primitives *dl;
8003 
8004 	ill = (ill_t *)q->q_ptr;
8005 
8006 	if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) {
8007 		/*
8008 		 * If things are opening or closing, only accept high-priority
8009 		 * DLPI messages.  (On open ill->ill_ipif has not yet been
8010 		 * created; on close, things hanging off the ill may have been
8011 		 * freed already.)
8012 		 */
8013 		dl = (union DL_primitives *)mp->b_rptr;
8014 		if (DB_TYPE(mp) != M_PCPROTO ||
8015 		    dl->dl_primitive == DL_UNITDATA_IND) {
8016 			inet_freemsg(mp);
8017 			return (0);
8018 		}
8019 	}
8020 	if (DB_TYPE(mp) == M_DATA) {
8021 		struct mac_header_info_s mhi;
8022 
8023 		ip_mdata_to_mhi(ill, mp, &mhi);
8024 		ip_input(ill, NULL, mp, &mhi);
8025 	} else {
8026 		ip_rput_notdata(ill, mp);
8027 	}
8028 	return (0);
8029 }
8030 
8031 /*
8032  * Move the information to a copy.
8033  */
8034 mblk_t *
8035 ip_fix_dbref(mblk_t *mp, ip_recv_attr_t *ira)
8036 {
8037 	mblk_t		*mp1;
8038 	ill_t		*ill = ira->ira_ill;
8039 	ip_stack_t	*ipst = ill->ill_ipst;
8040 
8041 	IP_STAT(ipst, ip_db_ref);
8042 
8043 	/* Make sure we have ira_l2src before we loose the original mblk */
8044 	if (!(ira->ira_flags & IRAF_L2SRC_SET))
8045 		ip_setl2src(mp, ira, ira->ira_rill);
8046 
8047 	mp1 = copymsg(mp);
8048 	if (mp1 == NULL) {
8049 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
8050 		ip_drop_input("ipIfStatsInDiscards", mp, ill);
8051 		freemsg(mp);
8052 		return (NULL);
8053 	}
8054 	/* preserve the hardware checksum flags and data, if present */
8055 	if (DB_CKSUMFLAGS(mp) != 0) {
8056 		DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp);
8057 		DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp);
8058 		DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp);
8059 		DB_CKSUMEND(mp1) = DB_CKSUMEND(mp);
8060 		DB_CKSUM16(mp1) = DB_CKSUM16(mp);
8061 	}
8062 	freemsg(mp);
8063 	return (mp1);
8064 }
8065 
8066 static void
8067 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err,
8068     t_uscalar_t err)
8069 {
8070 	if (dl_err == DL_SYSERR) {
8071 		(void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
8072 		    "%s: %s failed: DL_SYSERR (errno %u)\n",
8073 		    ill->ill_name, dl_primstr(prim), err);
8074 		return;
8075 	}
8076 
8077 	(void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
8078 	    "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim),
8079 	    dl_errstr(dl_err));
8080 }
8081 
8082 /*
8083  * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other
8084  * than DL_UNITDATA_IND messages. If we need to process this message
8085  * exclusively, we call qwriter_ip, in which case we also need to call
8086  * ill_refhold before that, since qwriter_ip does an ill_refrele.
8087  */
8088 void
8089 ip_rput_dlpi(ill_t *ill, mblk_t *mp)
8090 {
8091 	dl_ok_ack_t	*dloa = (dl_ok_ack_t *)mp->b_rptr;
8092 	dl_error_ack_t	*dlea = (dl_error_ack_t *)dloa;
8093 	queue_t		*q = ill->ill_rq;
8094 	t_uscalar_t	prim = dloa->dl_primitive;
8095 	t_uscalar_t	reqprim = DL_PRIM_INVAL;
8096 
8097 	DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi",
8098 	    char *, dl_primstr(prim), ill_t *, ill);
8099 	ip1dbg(("ip_rput_dlpi"));
8100 
8101 	/*
8102 	 * If we received an ACK but didn't send a request for it, then it
8103 	 * can't be part of any pending operation; discard up-front.
8104 	 */
8105 	switch (prim) {
8106 	case DL_ERROR_ACK:
8107 		reqprim = dlea->dl_error_primitive;
8108 		ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s "
8109 		    "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim),
8110 		    reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno,
8111 		    dlea->dl_unix_errno));
8112 		break;
8113 	case DL_OK_ACK:
8114 		reqprim = dloa->dl_correct_primitive;
8115 		break;
8116 	case DL_INFO_ACK:
8117 		reqprim = DL_INFO_REQ;
8118 		break;
8119 	case DL_BIND_ACK:
8120 		reqprim = DL_BIND_REQ;
8121 		break;
8122 	case DL_PHYS_ADDR_ACK:
8123 		reqprim = DL_PHYS_ADDR_REQ;
8124 		break;
8125 	case DL_NOTIFY_ACK:
8126 		reqprim = DL_NOTIFY_REQ;
8127 		break;
8128 	case DL_CAPABILITY_ACK:
8129 		reqprim = DL_CAPABILITY_REQ;
8130 		break;
8131 	}
8132 
8133 	if (prim != DL_NOTIFY_IND) {
8134 		if (reqprim == DL_PRIM_INVAL ||
8135 		    !ill_dlpi_pending(ill, reqprim)) {
8136 			/* Not a DLPI message we support or expected */
8137 			freemsg(mp);
8138 			return;
8139 		}
8140 		ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim),
8141 		    dl_primstr(reqprim)));
8142 	}
8143 
8144 	switch (reqprim) {
8145 	case DL_UNBIND_REQ:
8146 		/*
8147 		 * NOTE: we mark the unbind as complete even if we got a
8148 		 * DL_ERROR_ACK, since there's not much else we can do.
8149 		 */
8150 		mutex_enter(&ill->ill_lock);
8151 		ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS;
8152 		cv_signal(&ill->ill_cv);
8153 		mutex_exit(&ill->ill_lock);
8154 		break;
8155 
8156 	case DL_ENABMULTI_REQ:
8157 		if (prim == DL_OK_ACK) {
8158 			if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS)
8159 				ill->ill_dlpi_multicast_state = IDS_OK;
8160 		}
8161 		break;
8162 	}
8163 
8164 	/*
8165 	 * The message is one we're waiting for (or DL_NOTIFY_IND), but we
8166 	 * need to become writer to continue to process it.  Because an
8167 	 * exclusive operation doesn't complete until replies to all queued
8168 	 * DLPI messages have been received, we know we're in the middle of an
8169 	 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND).
8170 	 *
8171 	 * As required by qwriter_ip(), we refhold the ill; it will refrele.
8172 	 * Since this is on the ill stream we unconditionally bump up the
8173 	 * refcount without doing ILL_CAN_LOOKUP().
8174 	 */
8175 	ill_refhold(ill);
8176 	if (prim == DL_NOTIFY_IND)
8177 		qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE);
8178 	else
8179 		qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE);
8180 }
8181 
8182 /*
8183  * Handling of DLPI messages that require exclusive access to the ipsq.
8184  *
8185  * Need to do ipsq_pending_mp_get on ioctl completion, which could
8186  * happen here. (along with mi_copy_done)
8187  */
8188 /* ARGSUSED */
8189 static void
8190 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
8191 {
8192 	dl_ok_ack_t	*dloa = (dl_ok_ack_t *)mp->b_rptr;
8193 	dl_error_ack_t	*dlea = (dl_error_ack_t *)dloa;
8194 	int		err = 0;
8195 	ill_t		*ill = (ill_t *)q->q_ptr;
8196 	ipif_t		*ipif = NULL;
8197 	mblk_t		*mp1 = NULL;
8198 	conn_t		*connp = NULL;
8199 	t_uscalar_t	paddrreq;
8200 	mblk_t		*mp_hw;
8201 	boolean_t	success;
8202 	boolean_t	ioctl_aborted = B_FALSE;
8203 	boolean_t	log = B_TRUE;
8204 
8205 	DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer",
8206 	    char *, dl_primstr(dloa->dl_primitive), ill_t *, ill);
8207 
8208 	ip1dbg(("ip_rput_dlpi_writer .."));
8209 	ASSERT(ipsq->ipsq_xop == ill->ill_phyint->phyint_ipsq->ipsq_xop);
8210 	ASSERT(IAM_WRITER_ILL(ill));
8211 
8212 	ipif = ipsq->ipsq_xop->ipx_pending_ipif;
8213 	/*
8214 	 * The current ioctl could have been aborted by the user and a new
8215 	 * ioctl to bring up another ill could have started. We could still
8216 	 * get a response from the driver later.
8217 	 */
8218 	if (ipif != NULL && ipif->ipif_ill != ill)
8219 		ioctl_aborted = B_TRUE;
8220 
8221 	switch (dloa->dl_primitive) {
8222 	case DL_ERROR_ACK:
8223 		ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n",
8224 		    dl_primstr(dlea->dl_error_primitive)));
8225 
8226 		DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer error",
8227 		    char *, dl_primstr(dlea->dl_error_primitive),
8228 		    ill_t *, ill);
8229 
8230 		switch (dlea->dl_error_primitive) {
8231 		case DL_DISABMULTI_REQ:
8232 			ill_dlpi_done(ill, dlea->dl_error_primitive);
8233 			break;
8234 		case DL_PROMISCON_REQ:
8235 		case DL_PROMISCOFF_REQ:
8236 		case DL_UNBIND_REQ:
8237 		case DL_ATTACH_REQ:
8238 		case DL_INFO_REQ:
8239 			ill_dlpi_done(ill, dlea->dl_error_primitive);
8240 			break;
8241 		case DL_NOTIFY_REQ:
8242 			ill_dlpi_done(ill, DL_NOTIFY_REQ);
8243 			log = B_FALSE;
8244 			break;
8245 		case DL_PHYS_ADDR_REQ:
8246 			/*
8247 			 * For IPv6 only, there are two additional
8248 			 * phys_addr_req's sent to the driver to get the
8249 			 * IPv6 token and lla. This allows IP to acquire
8250 			 * the hardware address format for a given interface
8251 			 * without having built in knowledge of the hardware
8252 			 * address. ill_phys_addr_pend keeps track of the last
8253 			 * DL_PAR sent so we know which response we are
8254 			 * dealing with. ill_dlpi_done will update
8255 			 * ill_phys_addr_pend when it sends the next req.
8256 			 * We don't complete the IOCTL until all three DL_PARs
8257 			 * have been attempted, so set *_len to 0 and break.
8258 			 */
8259 			paddrreq = ill->ill_phys_addr_pend;
8260 			ill_dlpi_done(ill, DL_PHYS_ADDR_REQ);
8261 			if (paddrreq == DL_IPV6_TOKEN) {
8262 				ill->ill_token_length = 0;
8263 				log = B_FALSE;
8264 				break;
8265 			} else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) {
8266 				ill->ill_nd_lla_len = 0;
8267 				log = B_FALSE;
8268 				break;
8269 			}
8270 			/*
8271 			 * Something went wrong with the DL_PHYS_ADDR_REQ.
8272 			 * We presumably have an IOCTL hanging out waiting
8273 			 * for completion. Find it and complete the IOCTL
8274 			 * with the error noted.
8275 			 * However, ill_dl_phys was called on an ill queue
8276 			 * (from SIOCSLIFNAME), thus conn_pending_ill is not
8277 			 * set. But the ioctl is known to be pending on ill_wq.
8278 			 */
8279 			if (!ill->ill_ifname_pending)
8280 				break;
8281 			ill->ill_ifname_pending = 0;
8282 			if (!ioctl_aborted)
8283 				mp1 = ipsq_pending_mp_get(ipsq, &connp);
8284 			if (mp1 != NULL) {
8285 				/*
8286 				 * This operation (SIOCSLIFNAME) must have
8287 				 * happened on the ill. Assert there is no conn
8288 				 */
8289 				ASSERT(connp == NULL);
8290 				q = ill->ill_wq;
8291 			}
8292 			break;
8293 		case DL_BIND_REQ:
8294 			ill_dlpi_done(ill, DL_BIND_REQ);
8295 			if (ill->ill_ifname_pending)
8296 				break;
8297 			mutex_enter(&ill->ill_lock);
8298 			ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS;
8299 			mutex_exit(&ill->ill_lock);
8300 			/*
8301 			 * Something went wrong with the bind.  We presumably
8302 			 * have an IOCTL hanging out waiting for completion.
8303 			 * Find it, take down the interface that was coming
8304 			 * up, and complete the IOCTL with the error noted.
8305 			 */
8306 			if (!ioctl_aborted)
8307 				mp1 = ipsq_pending_mp_get(ipsq, &connp);
8308 			if (mp1 != NULL) {
8309 				/*
8310 				 * This might be a result of a DL_NOTE_REPLUMB
8311 				 * notification. In that case, connp is NULL.
8312 				 */
8313 				if (connp != NULL)
8314 					q = CONNP_TO_WQ(connp);
8315 
8316 				(void) ipif_down(ipif, NULL, NULL);
8317 				/* error is set below the switch */
8318 			}
8319 			break;
8320 		case DL_ENABMULTI_REQ:
8321 			ill_dlpi_done(ill, DL_ENABMULTI_REQ);
8322 
8323 			if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS)
8324 				ill->ill_dlpi_multicast_state = IDS_FAILED;
8325 			if (ill->ill_dlpi_multicast_state == IDS_FAILED) {
8326 
8327 				printf("ip: joining multicasts failed (%d)"
8328 				    " on %s - will use link layer "
8329 				    "broadcasts for multicast\n",
8330 				    dlea->dl_errno, ill->ill_name);
8331 
8332 				/*
8333 				 * Set up for multi_bcast; We are the
8334 				 * writer, so ok to access ill->ill_ipif
8335 				 * without any lock.
8336 				 */
8337 				mutex_enter(&ill->ill_phyint->phyint_lock);
8338 				ill->ill_phyint->phyint_flags |=
8339 				    PHYI_MULTI_BCAST;
8340 				mutex_exit(&ill->ill_phyint->phyint_lock);
8341 
8342 			}
8343 			freemsg(mp);	/* Don't want to pass this up */
8344 			return;
8345 		case DL_CAPABILITY_REQ:
8346 			ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for "
8347 			    "DL_CAPABILITY REQ\n"));
8348 			if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT)
8349 				ill->ill_dlpi_capab_state = IDCS_FAILED;
8350 			ill_capability_done(ill);
8351 			freemsg(mp);
8352 			return;
8353 		}
8354 		/*
8355 		 * Note the error for IOCTL completion (mp1 is set when
8356 		 * ready to complete ioctl). If ill_ifname_pending_err is
8357 		 * set, an error occured during plumbing (ill_ifname_pending),
8358 		 * so we want to report that error.
8359 		 *
8360 		 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's
8361 		 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are
8362 		 * expected to get errack'd if the driver doesn't support
8363 		 * these flags (e.g. ethernet). log will be set to B_FALSE
8364 		 * if these error conditions are encountered.
8365 		 */
8366 		if (mp1 != NULL) {
8367 			if (ill->ill_ifname_pending_err != 0)  {
8368 				err = ill->ill_ifname_pending_err;
8369 				ill->ill_ifname_pending_err = 0;
8370 			} else {
8371 				err = dlea->dl_unix_errno ?
8372 				    dlea->dl_unix_errno : ENXIO;
8373 			}
8374 		/*
8375 		 * If we're plumbing an interface and an error hasn't already
8376 		 * been saved, set ill_ifname_pending_err to the error passed
8377 		 * up. Ignore the error if log is B_FALSE (see comment above).
8378 		 */
8379 		} else if (log && ill->ill_ifname_pending &&
8380 		    ill->ill_ifname_pending_err == 0) {
8381 			ill->ill_ifname_pending_err = dlea->dl_unix_errno ?
8382 			    dlea->dl_unix_errno : ENXIO;
8383 		}
8384 
8385 		if (log)
8386 			ip_dlpi_error(ill, dlea->dl_error_primitive,
8387 			    dlea->dl_errno, dlea->dl_unix_errno);
8388 		break;
8389 	case DL_CAPABILITY_ACK:
8390 		ill_capability_ack(ill, mp);
8391 		/*
8392 		 * The message has been handed off to ill_capability_ack
8393 		 * and must not be freed below
8394 		 */
8395 		mp = NULL;
8396 		break;
8397 
8398 	case DL_INFO_ACK:
8399 		/* Call a routine to handle this one. */
8400 		ill_dlpi_done(ill, DL_INFO_REQ);
8401 		ip_ll_subnet_defaults(ill, mp);
8402 		ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock));
8403 		return;
8404 	case DL_BIND_ACK:
8405 		/*
8406 		 * We should have an IOCTL waiting on this unless
8407 		 * sent by ill_dl_phys, in which case just return
8408 		 */
8409 		ill_dlpi_done(ill, DL_BIND_REQ);
8410 
8411 		if (ill->ill_ifname_pending) {
8412 			DTRACE_PROBE2(ip__rput__dlpi__ifname__pending,
8413 			    ill_t *, ill, mblk_t *, mp);
8414 			break;
8415 		}
8416 		mutex_enter(&ill->ill_lock);
8417 		ill->ill_dl_up = 1;
8418 		ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS;
8419 		mutex_exit(&ill->ill_lock);
8420 
8421 		if (!ioctl_aborted)
8422 			mp1 = ipsq_pending_mp_get(ipsq, &connp);
8423 		if (mp1 == NULL) {
8424 			DTRACE_PROBE1(ip__rput__dlpi__no__mblk, ill_t *, ill);
8425 			break;
8426 		}
8427 		/*
8428 		 * mp1 was added by ill_dl_up(). if that is a result of
8429 		 * a DL_NOTE_REPLUMB notification, connp could be NULL.
8430 		 */
8431 		if (connp != NULL)
8432 			q = CONNP_TO_WQ(connp);
8433 		/*
8434 		 * We are exclusive. So nothing can change even after
8435 		 * we get the pending mp.
8436 		 */
8437 		ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name));
8438 		DTRACE_PROBE1(ip__rput__dlpi__bind__ack, ill_t *, ill);
8439 		ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0);
8440 
8441 		/*
8442 		 * Now bring up the resolver; when that is complete, we'll
8443 		 * create IREs.  Note that we intentionally mirror what
8444 		 * ipif_up() would have done, because we got here by way of
8445 		 * ill_dl_up(), which stopped ipif_up()'s processing.
8446 		 */
8447 		if (ill->ill_isv6) {
8448 			/*
8449 			 * v6 interfaces.
8450 			 * Unlike ARP which has to do another bind
8451 			 * and attach, once we get here we are
8452 			 * done with NDP
8453 			 */
8454 			(void) ipif_resolver_up(ipif, Res_act_initial);
8455 			if ((err = ipif_ndp_up(ipif, B_TRUE)) == 0)
8456 				err = ipif_up_done_v6(ipif);
8457 		} else if (ill->ill_net_type == IRE_IF_RESOLVER) {
8458 			/*
8459 			 * ARP and other v4 external resolvers.
8460 			 * Leave the pending mblk intact so that
8461 			 * the ioctl completes in ip_rput().
8462 			 */
8463 			if (connp != NULL)
8464 				mutex_enter(&connp->conn_lock);
8465 			mutex_enter(&ill->ill_lock);
8466 			success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0);
8467 			mutex_exit(&ill->ill_lock);
8468 			if (connp != NULL)
8469 				mutex_exit(&connp->conn_lock);
8470 			if (success) {
8471 				err = ipif_resolver_up(ipif, Res_act_initial);
8472 				if (err == EINPROGRESS) {
8473 					freemsg(mp);
8474 					return;
8475 				}
8476 				mp1 = ipsq_pending_mp_get(ipsq, &connp);
8477 			} else {
8478 				/* The conn has started closing */
8479 				err = EINTR;
8480 			}
8481 		} else {
8482 			/*
8483 			 * This one is complete. Reply to pending ioctl.
8484 			 */
8485 			(void) ipif_resolver_up(ipif, Res_act_initial);
8486 			err = ipif_up_done(ipif);
8487 		}
8488 
8489 		if ((err == 0) && (ill->ill_up_ipifs)) {
8490 			err = ill_up_ipifs(ill, q, mp1);
8491 			if (err == EINPROGRESS) {
8492 				freemsg(mp);
8493 				return;
8494 			}
8495 		}
8496 
8497 		/*
8498 		 * If we have a moved ipif to bring up, and everything has
8499 		 * succeeded to this point, bring it up on the IPMP ill.
8500 		 * Otherwise, leave it down -- the admin can try to bring it
8501 		 * up by hand if need be.
8502 		 */
8503 		if (ill->ill_move_ipif != NULL) {
8504 			if (err != 0) {
8505 				ill->ill_move_ipif = NULL;
8506 			} else {
8507 				ipif = ill->ill_move_ipif;
8508 				ill->ill_move_ipif = NULL;
8509 				err = ipif_up(ipif, q, mp1);
8510 				if (err == EINPROGRESS) {
8511 					freemsg(mp);
8512 					return;
8513 				}
8514 			}
8515 		}
8516 		break;
8517 
8518 	case DL_NOTIFY_IND: {
8519 		dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr;
8520 		uint_t orig_mtu, orig_mc_mtu;
8521 
8522 		switch (notify->dl_notification) {
8523 		case DL_NOTE_PHYS_ADDR:
8524 			err = ill_set_phys_addr(ill, mp);
8525 			break;
8526 
8527 		case DL_NOTE_REPLUMB:
8528 			/*
8529 			 * Directly return after calling ill_replumb().
8530 			 * Note that we should not free mp as it is reused
8531 			 * in the ill_replumb() function.
8532 			 */
8533 			err = ill_replumb(ill, mp);
8534 			return;
8535 
8536 		case DL_NOTE_FASTPATH_FLUSH:
8537 			nce_flush(ill, B_FALSE);
8538 			break;
8539 
8540 		case DL_NOTE_SDU_SIZE:
8541 		case DL_NOTE_SDU_SIZE2:
8542 			/*
8543 			 * The dce and fragmentation code can cope with
8544 			 * this changing while packets are being sent.
8545 			 * When packets are sent ip_output will discover
8546 			 * a change.
8547 			 *
8548 			 * Change the MTU size of the interface.
8549 			 */
8550 			mutex_enter(&ill->ill_lock);
8551 			orig_mtu = ill->ill_mtu;
8552 			orig_mc_mtu = ill->ill_mc_mtu;
8553 			switch (notify->dl_notification) {
8554 			case DL_NOTE_SDU_SIZE:
8555 				ill->ill_current_frag =
8556 				    (uint_t)notify->dl_data;
8557 				ill->ill_mc_mtu = (uint_t)notify->dl_data;
8558 				break;
8559 			case DL_NOTE_SDU_SIZE2:
8560 				ill->ill_current_frag =
8561 				    (uint_t)notify->dl_data1;
8562 				ill->ill_mc_mtu = (uint_t)notify->dl_data2;
8563 				break;
8564 			}
8565 			if (ill->ill_current_frag > ill->ill_max_frag)
8566 				ill->ill_max_frag = ill->ill_current_frag;
8567 
8568 			if (!(ill->ill_flags & ILLF_FIXEDMTU)) {
8569 				ill->ill_mtu = ill->ill_current_frag;
8570 
8571 				/*
8572 				 * If ill_user_mtu was set (via
8573 				 * SIOCSLIFLNKINFO), clamp ill_mtu at it.
8574 				 */
8575 				if (ill->ill_user_mtu != 0 &&
8576 				    ill->ill_user_mtu < ill->ill_mtu)
8577 					ill->ill_mtu = ill->ill_user_mtu;
8578 
8579 				if (ill->ill_user_mtu != 0 &&
8580 				    ill->ill_user_mtu < ill->ill_mc_mtu)
8581 					ill->ill_mc_mtu = ill->ill_user_mtu;
8582 
8583 				if (ill->ill_isv6) {
8584 					if (ill->ill_mtu < IPV6_MIN_MTU)
8585 						ill->ill_mtu = IPV6_MIN_MTU;
8586 					if (ill->ill_mc_mtu < IPV6_MIN_MTU)
8587 						ill->ill_mc_mtu = IPV6_MIN_MTU;
8588 				} else {
8589 					if (ill->ill_mtu < IP_MIN_MTU)
8590 						ill->ill_mtu = IP_MIN_MTU;
8591 					if (ill->ill_mc_mtu < IP_MIN_MTU)
8592 						ill->ill_mc_mtu = IP_MIN_MTU;
8593 				}
8594 			} else if (ill->ill_mc_mtu > ill->ill_mtu) {
8595 				ill->ill_mc_mtu = ill->ill_mtu;
8596 			}
8597 
8598 			mutex_exit(&ill->ill_lock);
8599 			/*
8600 			 * Make sure all dce_generation checks find out
8601 			 * that ill_mtu/ill_mc_mtu has changed.
8602 			 */
8603 			if (orig_mtu != ill->ill_mtu ||
8604 			    orig_mc_mtu != ill->ill_mc_mtu) {
8605 				dce_increment_all_generations(ill->ill_isv6,
8606 				    ill->ill_ipst);
8607 			}
8608 
8609 			/*
8610 			 * Refresh IPMP meta-interface MTU if necessary.
8611 			 */
8612 			if (IS_UNDER_IPMP(ill))
8613 				ipmp_illgrp_refresh_mtu(ill->ill_grp);
8614 			break;
8615 
8616 		case DL_NOTE_LINK_UP:
8617 		case DL_NOTE_LINK_DOWN: {
8618 			/*
8619 			 * We are writer. ill / phyint / ipsq assocs stable.
8620 			 * The RUNNING flag reflects the state of the link.
8621 			 */
8622 			phyint_t *phyint = ill->ill_phyint;
8623 			uint64_t new_phyint_flags;
8624 			boolean_t changed = B_FALSE;
8625 			boolean_t went_up;
8626 
8627 			went_up = notify->dl_notification == DL_NOTE_LINK_UP;
8628 			mutex_enter(&phyint->phyint_lock);
8629 
8630 			new_phyint_flags = went_up ?
8631 			    phyint->phyint_flags | PHYI_RUNNING :
8632 			    phyint->phyint_flags & ~PHYI_RUNNING;
8633 
8634 			if (IS_IPMP(ill)) {
8635 				new_phyint_flags = went_up ?
8636 				    new_phyint_flags & ~PHYI_FAILED :
8637 				    new_phyint_flags | PHYI_FAILED;
8638 			}
8639 
8640 			if (new_phyint_flags != phyint->phyint_flags) {
8641 				phyint->phyint_flags = new_phyint_flags;
8642 				changed = B_TRUE;
8643 			}
8644 			mutex_exit(&phyint->phyint_lock);
8645 			/*
8646 			 * ill_restart_dad handles the DAD restart and routing
8647 			 * socket notification logic.
8648 			 */
8649 			if (changed) {
8650 				ill_restart_dad(phyint->phyint_illv4, went_up);
8651 				ill_restart_dad(phyint->phyint_illv6, went_up);
8652 			}
8653 			break;
8654 		}
8655 		case DL_NOTE_PROMISC_ON_PHYS: {
8656 			phyint_t *phyint = ill->ill_phyint;
8657 
8658 			mutex_enter(&phyint->phyint_lock);
8659 			phyint->phyint_flags |= PHYI_PROMISC;
8660 			mutex_exit(&phyint->phyint_lock);
8661 			break;
8662 		}
8663 		case DL_NOTE_PROMISC_OFF_PHYS: {
8664 			phyint_t *phyint = ill->ill_phyint;
8665 
8666 			mutex_enter(&phyint->phyint_lock);
8667 			phyint->phyint_flags &= ~PHYI_PROMISC;
8668 			mutex_exit(&phyint->phyint_lock);
8669 			break;
8670 		}
8671 		case DL_NOTE_CAPAB_RENEG:
8672 			/*
8673 			 * Something changed on the driver side.
8674 			 * It wants us to renegotiate the capabilities
8675 			 * on this ill. One possible cause is the aggregation
8676 			 * interface under us where a port got added or
8677 			 * went away.
8678 			 *
8679 			 * If the capability negotiation is already done
8680 			 * or is in progress, reset the capabilities and
8681 			 * mark the ill's ill_capab_reneg to be B_TRUE,
8682 			 * so that when the ack comes back, we can start
8683 			 * the renegotiation process.
8684 			 *
8685 			 * Note that if ill_capab_reneg is already B_TRUE
8686 			 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case),
8687 			 * the capability resetting request has been sent
8688 			 * and the renegotiation has not been started yet;
8689 			 * nothing needs to be done in this case.
8690 			 */
8691 			ipsq_current_start(ipsq, ill->ill_ipif, 0);
8692 			ill_capability_reset(ill, B_TRUE);
8693 			ipsq_current_finish(ipsq);
8694 			break;
8695 
8696 		case DL_NOTE_ALLOWED_IPS:
8697 			ill_set_allowed_ips(ill, mp);
8698 			break;
8699 		default:
8700 			ip0dbg(("ip_rput_dlpi_writer: unknown notification "
8701 			    "type 0x%x for DL_NOTIFY_IND\n",
8702 			    notify->dl_notification));
8703 			break;
8704 		}
8705 
8706 		/*
8707 		 * As this is an asynchronous operation, we
8708 		 * should not call ill_dlpi_done
8709 		 */
8710 		break;
8711 	}
8712 	case DL_NOTIFY_ACK: {
8713 		dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr;
8714 
8715 		if (noteack->dl_notifications & DL_NOTE_LINK_UP)
8716 			ill->ill_note_link = 1;
8717 		ill_dlpi_done(ill, DL_NOTIFY_REQ);
8718 		break;
8719 	}
8720 	case DL_PHYS_ADDR_ACK: {
8721 		/*
8722 		 * As part of plumbing the interface via SIOCSLIFNAME,
8723 		 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs,
8724 		 * whose answers we receive here.  As each answer is received,
8725 		 * we call ill_dlpi_done() to dispatch the next request as
8726 		 * we're processing the current one.  Once all answers have
8727 		 * been received, we use ipsq_pending_mp_get() to dequeue the
8728 		 * outstanding IOCTL and reply to it.  (Because ill_dl_phys()
8729 		 * is invoked from an ill queue, conn_oper_pending_ill is not
8730 		 * available, but we know the ioctl is pending on ill_wq.)
8731 		 */
8732 		uint_t	paddrlen, paddroff;
8733 		uint8_t	*addr;
8734 
8735 		paddrreq = ill->ill_phys_addr_pend;
8736 		paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length;
8737 		paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset;
8738 		addr = mp->b_rptr + paddroff;
8739 
8740 		ill_dlpi_done(ill, DL_PHYS_ADDR_REQ);
8741 		if (paddrreq == DL_IPV6_TOKEN) {
8742 			/*
8743 			 * bcopy to low-order bits of ill_token
8744 			 *
8745 			 * XXX Temporary hack - currently, all known tokens
8746 			 * are 64 bits, so I'll cheat for the moment.
8747 			 */
8748 			bcopy(addr, &ill->ill_token.s6_addr32[2], paddrlen);
8749 			ill->ill_token_length = paddrlen;
8750 			break;
8751 		} else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) {
8752 			ASSERT(ill->ill_nd_lla_mp == NULL);
8753 			ill_set_ndmp(ill, mp, paddroff, paddrlen);
8754 			mp = NULL;
8755 			break;
8756 		} else if (paddrreq == DL_CURR_DEST_ADDR) {
8757 			ASSERT(ill->ill_dest_addr_mp == NULL);
8758 			ill->ill_dest_addr_mp = mp;
8759 			ill->ill_dest_addr = addr;
8760 			mp = NULL;
8761 			if (ill->ill_isv6) {
8762 				ill_setdesttoken(ill);
8763 				ipif_setdestlinklocal(ill->ill_ipif);
8764 			}
8765 			break;
8766 		}
8767 
8768 		ASSERT(paddrreq == DL_CURR_PHYS_ADDR);
8769 		ASSERT(ill->ill_phys_addr_mp == NULL);
8770 		if (!ill->ill_ifname_pending)
8771 			break;
8772 		ill->ill_ifname_pending = 0;
8773 		if (!ioctl_aborted)
8774 			mp1 = ipsq_pending_mp_get(ipsq, &connp);
8775 		if (mp1 != NULL) {
8776 			ASSERT(connp == NULL);
8777 			q = ill->ill_wq;
8778 		}
8779 		/*
8780 		 * If any error acks received during the plumbing sequence,
8781 		 * ill_ifname_pending_err will be set. Break out and send up
8782 		 * the error to the pending ioctl.
8783 		 */
8784 		if (ill->ill_ifname_pending_err != 0) {
8785 			err = ill->ill_ifname_pending_err;
8786 			ill->ill_ifname_pending_err = 0;
8787 			break;
8788 		}
8789 
8790 		ill->ill_phys_addr_mp = mp;
8791 		ill->ill_phys_addr = (paddrlen == 0 ? NULL : addr);
8792 		mp = NULL;
8793 
8794 		/*
8795 		 * If paddrlen or ill_phys_addr_length is zero, the DLPI
8796 		 * provider doesn't support physical addresses.  We check both
8797 		 * paddrlen and ill_phys_addr_length because sppp (PPP) does
8798 		 * not have physical addresses, but historically adversises a
8799 		 * physical address length of 0 in its DL_INFO_ACK, but 6 in
8800 		 * its DL_PHYS_ADDR_ACK.
8801 		 */
8802 		if (paddrlen == 0 || ill->ill_phys_addr_length == 0) {
8803 			ill->ill_phys_addr = NULL;
8804 		} else if (paddrlen != ill->ill_phys_addr_length) {
8805 			ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d",
8806 			    paddrlen, ill->ill_phys_addr_length));
8807 			err = EINVAL;
8808 			break;
8809 		}
8810 
8811 		if (ill->ill_nd_lla_mp == NULL) {
8812 			if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) {
8813 				err = ENOMEM;
8814 				break;
8815 			}
8816 			ill_set_ndmp(ill, mp_hw, paddroff, paddrlen);
8817 		}
8818 
8819 		if (ill->ill_isv6) {
8820 			ill_setdefaulttoken(ill);
8821 			ipif_setlinklocal(ill->ill_ipif);
8822 		}
8823 		break;
8824 	}
8825 	case DL_OK_ACK:
8826 		ip2dbg(("DL_OK_ACK %s (0x%x)\n",
8827 		    dl_primstr((int)dloa->dl_correct_primitive),
8828 		    dloa->dl_correct_primitive));
8829 		DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer ok",
8830 		    char *, dl_primstr(dloa->dl_correct_primitive),
8831 		    ill_t *, ill);
8832 
8833 		switch (dloa->dl_correct_primitive) {
8834 		case DL_ENABMULTI_REQ:
8835 		case DL_DISABMULTI_REQ:
8836 			ill_dlpi_done(ill, dloa->dl_correct_primitive);
8837 			break;
8838 		case DL_PROMISCON_REQ:
8839 		case DL_PROMISCOFF_REQ:
8840 		case DL_UNBIND_REQ:
8841 		case DL_ATTACH_REQ:
8842 			ill_dlpi_done(ill, dloa->dl_correct_primitive);
8843 			break;
8844 		}
8845 		break;
8846 	default:
8847 		break;
8848 	}
8849 
8850 	freemsg(mp);
8851 	if (mp1 == NULL)
8852 		return;
8853 
8854 	/*
8855 	 * The operation must complete without EINPROGRESS since
8856 	 * ipsq_pending_mp_get() has removed the mblk (mp1).  Otherwise,
8857 	 * the operation will be stuck forever inside the IPSQ.
8858 	 */
8859 	ASSERT(err != EINPROGRESS);
8860 
8861 	DTRACE_PROBE4(ipif__ioctl, char *, "ip_rput_dlpi_writer finish",
8862 	    int, ipsq->ipsq_xop->ipx_current_ioctl, ill_t *, ill,
8863 	    ipif_t *, NULL);
8864 
8865 	switch (ipsq->ipsq_xop->ipx_current_ioctl) {
8866 	case 0:
8867 		ipsq_current_finish(ipsq);
8868 		break;
8869 
8870 	case SIOCSLIFNAME:
8871 	case IF_UNITSEL: {
8872 		ill_t *ill_other = ILL_OTHER(ill);
8873 
8874 		/*
8875 		 * If SIOCSLIFNAME or IF_UNITSEL is about to succeed, and the
8876 		 * ill has a peer which is in an IPMP group, then place ill
8877 		 * into the same group.  One catch: although ifconfig plumbs
8878 		 * the appropriate IPMP meta-interface prior to plumbing this
8879 		 * ill, it is possible for multiple ifconfig applications to
8880 		 * race (or for another application to adjust plumbing), in
8881 		 * which case the IPMP meta-interface we need will be missing.
8882 		 * If so, kick the phyint out of the group.
8883 		 */
8884 		if (err == 0 && ill_other != NULL && IS_UNDER_IPMP(ill_other)) {
8885 			ipmp_grp_t	*grp = ill->ill_phyint->phyint_grp;
8886 			ipmp_illgrp_t	*illg;
8887 
8888 			illg = ill->ill_isv6 ? grp->gr_v6 : grp->gr_v4;
8889 			if (illg == NULL)
8890 				ipmp_phyint_leave_grp(ill->ill_phyint);
8891 			else
8892 				ipmp_ill_join_illgrp(ill, illg);
8893 		}
8894 
8895 		if (ipsq->ipsq_xop->ipx_current_ioctl == IF_UNITSEL)
8896 			ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
8897 		else
8898 			ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq);
8899 		break;
8900 	}
8901 	case SIOCLIFADDIF:
8902 		ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq);
8903 		break;
8904 
8905 	default:
8906 		ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
8907 		break;
8908 	}
8909 }
8910 
8911 /*
8912  * ip_rput_other is called by ip_rput to handle messages modifying the global
8913  * state in IP.  If 'ipsq' is non-NULL, caller is writer on it.
8914  */
8915 /* ARGSUSED */
8916 void
8917 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
8918 {
8919 	ill_t		*ill = q->q_ptr;
8920 	struct iocblk	*iocp;
8921 
8922 	ip1dbg(("ip_rput_other "));
8923 	if (ipsq != NULL) {
8924 		ASSERT(IAM_WRITER_IPSQ(ipsq));
8925 		ASSERT(ipsq->ipsq_xop ==
8926 		    ill->ill_phyint->phyint_ipsq->ipsq_xop);
8927 	}
8928 
8929 	switch (mp->b_datap->db_type) {
8930 	case M_ERROR:
8931 	case M_HANGUP:
8932 		/*
8933 		 * The device has a problem.  We force the ILL down.  It can
8934 		 * be brought up again manually using SIOCSIFFLAGS (via
8935 		 * ifconfig or equivalent).
8936 		 */
8937 		ASSERT(ipsq != NULL);
8938 		if (mp->b_rptr < mp->b_wptr)
8939 			ill->ill_error = (int)(*mp->b_rptr & 0xFF);
8940 		if (ill->ill_error == 0)
8941 			ill->ill_error = ENXIO;
8942 		if (!ill_down_start(q, mp))
8943 			return;
8944 		ipif_all_down_tail(ipsq, q, mp, NULL);
8945 		break;
8946 	case M_IOCNAK: {
8947 		iocp = (struct iocblk *)mp->b_rptr;
8948 
8949 		ASSERT(iocp->ioc_cmd == DL_IOC_HDR_INFO);
8950 		/*
8951 		 * If this was the first attempt, turn off the fastpath
8952 		 * probing.
8953 		 */
8954 		mutex_enter(&ill->ill_lock);
8955 		if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) {
8956 			ill->ill_dlpi_fastpath_state = IDS_FAILED;
8957 			mutex_exit(&ill->ill_lock);
8958 			/*
8959 			 * don't flush the nce_t entries: we use them
8960 			 * as an index to the ncec itself.
8961 			 */
8962 			ip1dbg(("ip_rput: DLPI fastpath off on interface %s\n",
8963 			    ill->ill_name));
8964 		} else {
8965 			mutex_exit(&ill->ill_lock);
8966 		}
8967 		freemsg(mp);
8968 		break;
8969 	}
8970 	default:
8971 		ASSERT(0);
8972 		break;
8973 	}
8974 }
8975 
8976 /*
8977  * Update any source route, record route or timestamp options
8978  * When it fails it has consumed the message and BUMPed the MIB.
8979  */
8980 boolean_t
8981 ip_forward_options(mblk_t *mp, ipha_t *ipha, ill_t *dst_ill,
8982     ip_recv_attr_t *ira)
8983 {
8984 	ipoptp_t	opts;
8985 	uchar_t		*opt;
8986 	uint8_t		optval;
8987 	uint8_t		optlen;
8988 	ipaddr_t	dst;
8989 	ipaddr_t	ifaddr;
8990 	uint32_t	ts;
8991 	timestruc_t	now;
8992 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
8993 
8994 	ip2dbg(("ip_forward_options\n"));
8995 	dst = ipha->ipha_dst;
8996 	for (optval = ipoptp_first(&opts, ipha);
8997 	    optval != IPOPT_EOL;
8998 	    optval = ipoptp_next(&opts)) {
8999 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
9000 		opt = opts.ipoptp_cur;
9001 		optlen = opts.ipoptp_len;
9002 		ip2dbg(("ip_forward_options: opt %d, len %d\n",
9003 		    optval, opts.ipoptp_len));
9004 		switch (optval) {
9005 			uint32_t off;
9006 		case IPOPT_SSRR:
9007 		case IPOPT_LSRR:
9008 			/* Check if adminstratively disabled */
9009 			if (!ipst->ips_ip_forward_src_routed) {
9010 				BUMP_MIB(dst_ill->ill_ip_mib,
9011 				    ipIfStatsForwProhibits);
9012 				ip_drop_input("ICMP_SOURCE_ROUTE_FAILED",
9013 				    mp, dst_ill);
9014 				icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED,
9015 				    ira);
9016 				return (B_FALSE);
9017 			}
9018 			if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9019 				/*
9020 				 * Must be partial since ip_input_options
9021 				 * checked for strict.
9022 				 */
9023 				break;
9024 			}
9025 			off = opt[IPOPT_OFFSET];
9026 			off--;
9027 		redo_srr:
9028 			if (optlen < IP_ADDR_LEN ||
9029 			    off > optlen - IP_ADDR_LEN) {
9030 				/* End of source route */
9031 				ip1dbg((
9032 				    "ip_forward_options: end of SR\n"));
9033 				break;
9034 			}
9035 			/* Pick a reasonable address on the outbound if */
9036 			ASSERT(dst_ill != NULL);
9037 			if (ip_select_source_v4(dst_ill, INADDR_ANY, dst,
9038 			    INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
9039 			    NULL) != 0) {
9040 				/* No source! Shouldn't happen */
9041 				ifaddr = INADDR_ANY;
9042 			}
9043 			bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9044 			bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9045 			ip1dbg(("ip_forward_options: next hop 0x%x\n",
9046 			    ntohl(dst)));
9047 
9048 			/*
9049 			 * Check if our address is present more than
9050 			 * once as consecutive hops in source route.
9051 			 */
9052 			if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
9053 				off += IP_ADDR_LEN;
9054 				opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9055 				goto redo_srr;
9056 			}
9057 			ipha->ipha_dst = dst;
9058 			opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9059 			break;
9060 		case IPOPT_RR:
9061 			off = opt[IPOPT_OFFSET];
9062 			off--;
9063 			if (optlen < IP_ADDR_LEN ||
9064 			    off > optlen - IP_ADDR_LEN) {
9065 				/* No more room - ignore */
9066 				ip1dbg((
9067 				    "ip_forward_options: end of RR\n"));
9068 				break;
9069 			}
9070 			/* Pick a reasonable address on the outbound if */
9071 			ASSERT(dst_ill != NULL);
9072 			if (ip_select_source_v4(dst_ill, INADDR_ANY, dst,
9073 			    INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
9074 			    NULL) != 0) {
9075 				/* No source! Shouldn't happen */
9076 				ifaddr = INADDR_ANY;
9077 			}
9078 			bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9079 			opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9080 			break;
9081 		case IPOPT_TS:
9082 			/* Insert timestamp if there is room */
9083 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9084 			case IPOPT_TS_TSONLY:
9085 				off = IPOPT_TS_TIMELEN;
9086 				break;
9087 			case IPOPT_TS_PRESPEC:
9088 			case IPOPT_TS_PRESPEC_RFC791:
9089 				/* Verify that the address matched */
9090 				off = opt[IPOPT_OFFSET] - 1;
9091 				bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9092 				if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9093 					/* Not for us */
9094 					break;
9095 				}
9096 				/* FALLTHROUGH */
9097 			case IPOPT_TS_TSANDADDR:
9098 				off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
9099 				break;
9100 			default:
9101 				/*
9102 				 * ip_*put_options should have already
9103 				 * dropped this packet.
9104 				 */
9105 				cmn_err(CE_PANIC, "ip_forward_options: "
9106 				    "unknown IT - bug in ip_input_options?\n");
9107 			}
9108 			if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
9109 				/* Increase overflow counter */
9110 				off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
9111 				opt[IPOPT_POS_OV_FLG] =
9112 				    (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) |
9113 				    (off << 4));
9114 				break;
9115 			}
9116 			off = opt[IPOPT_OFFSET] - 1;
9117 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9118 			case IPOPT_TS_PRESPEC:
9119 			case IPOPT_TS_PRESPEC_RFC791:
9120 			case IPOPT_TS_TSANDADDR:
9121 				/* Pick a reasonable addr on the outbound if */
9122 				ASSERT(dst_ill != NULL);
9123 				if (ip_select_source_v4(dst_ill, INADDR_ANY,
9124 				    dst, INADDR_ANY, ALL_ZONES, ipst, &ifaddr,
9125 				    NULL, NULL) != 0) {
9126 					/* No source! Shouldn't happen */
9127 					ifaddr = INADDR_ANY;
9128 				}
9129 				bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9130 				opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9131 				/* FALLTHROUGH */
9132 			case IPOPT_TS_TSONLY:
9133 				off = opt[IPOPT_OFFSET] - 1;
9134 				/* Compute # of milliseconds since midnight */
9135 				gethrestime(&now);
9136 				ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
9137 				    NSEC2MSEC(now.tv_nsec);
9138 				bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
9139 				opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
9140 				break;
9141 			}
9142 			break;
9143 		}
9144 	}
9145 	return (B_TRUE);
9146 }
9147 
9148 /*
9149  * Call ill_frag_timeout to do garbage collection. ill_frag_timeout
9150  * returns 'true' if there are still fragments left on the queue, in
9151  * which case we restart the timer.
9152  */
9153 void
9154 ill_frag_timer(void *arg)
9155 {
9156 	ill_t	*ill = (ill_t *)arg;
9157 	boolean_t frag_pending;
9158 	ip_stack_t *ipst = ill->ill_ipst;
9159 	time_t	timeout;
9160 
9161 	mutex_enter(&ill->ill_lock);
9162 	ASSERT(!ill->ill_fragtimer_executing);
9163 	if (ill->ill_state_flags & ILL_CONDEMNED) {
9164 		ill->ill_frag_timer_id = 0;
9165 		mutex_exit(&ill->ill_lock);
9166 		return;
9167 	}
9168 	ill->ill_fragtimer_executing = 1;
9169 	mutex_exit(&ill->ill_lock);
9170 
9171 	timeout = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout :
9172 	    ipst->ips_ip_reassembly_timeout);
9173 
9174 	frag_pending = ill_frag_timeout(ill, timeout);
9175 
9176 	/*
9177 	 * Restart the timer, if we have fragments pending or if someone
9178 	 * wanted us to be scheduled again.
9179 	 */
9180 	mutex_enter(&ill->ill_lock);
9181 	ill->ill_fragtimer_executing = 0;
9182 	ill->ill_frag_timer_id = 0;
9183 	if (frag_pending || ill->ill_fragtimer_needrestart)
9184 		ill_frag_timer_start(ill);
9185 	mutex_exit(&ill->ill_lock);
9186 }
9187 
9188 void
9189 ill_frag_timer_start(ill_t *ill)
9190 {
9191 	ip_stack_t *ipst = ill->ill_ipst;
9192 	clock_t	timeo_ms;
9193 
9194 	ASSERT(MUTEX_HELD(&ill->ill_lock));
9195 
9196 	/* If the ill is closing or opening don't proceed */
9197 	if (ill->ill_state_flags & ILL_CONDEMNED)
9198 		return;
9199 
9200 	if (ill->ill_fragtimer_executing) {
9201 		/*
9202 		 * ill_frag_timer is currently executing. Just record the
9203 		 * the fact that we want the timer to be restarted.
9204 		 * ill_frag_timer will post a timeout before it returns,
9205 		 * ensuring it will be called again.
9206 		 */
9207 		ill->ill_fragtimer_needrestart = 1;
9208 		return;
9209 	}
9210 
9211 	if (ill->ill_frag_timer_id == 0) {
9212 		timeo_ms = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout :
9213 		    ipst->ips_ip_reassembly_timeout) * SECONDS;
9214 
9215 		/*
9216 		 * The timer is neither running nor is the timeout handler
9217 		 * executing. Post a timeout so that ill_frag_timer will be
9218 		 * called
9219 		 */
9220 		ill->ill_frag_timer_id = timeout(ill_frag_timer, ill,
9221 		    MSEC_TO_TICK(timeo_ms >> 1));
9222 		ill->ill_fragtimer_needrestart = 0;
9223 	}
9224 }
9225 
9226 /*
9227  * Update any source route, record route or timestamp options.
9228  * Check that we are at end of strict source route.
9229  * The options have already been checked for sanity in ip_input_options().
9230  */
9231 boolean_t
9232 ip_input_local_options(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
9233 {
9234 	ipoptp_t	opts;
9235 	uchar_t		*opt;
9236 	uint8_t		optval;
9237 	uint8_t		optlen;
9238 	ipaddr_t	dst;
9239 	ipaddr_t	ifaddr;
9240 	uint32_t	ts;
9241 	timestruc_t	now;
9242 	ill_t		*ill = ira->ira_ill;
9243 	ip_stack_t	*ipst = ill->ill_ipst;
9244 
9245 	ip2dbg(("ip_input_local_options\n"));
9246 
9247 	for (optval = ipoptp_first(&opts, ipha);
9248 	    optval != IPOPT_EOL;
9249 	    optval = ipoptp_next(&opts)) {
9250 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
9251 		opt = opts.ipoptp_cur;
9252 		optlen = opts.ipoptp_len;
9253 		ip2dbg(("ip_input_local_options: opt %d, len %d\n",
9254 		    optval, optlen));
9255 		switch (optval) {
9256 			uint32_t off;
9257 		case IPOPT_SSRR:
9258 		case IPOPT_LSRR:
9259 			off = opt[IPOPT_OFFSET];
9260 			off--;
9261 			if (optlen < IP_ADDR_LEN ||
9262 			    off > optlen - IP_ADDR_LEN) {
9263 				/* End of source route */
9264 				ip1dbg(("ip_input_local_options: end of SR\n"));
9265 				break;
9266 			}
9267 			/*
9268 			 * This will only happen if two consecutive entries
9269 			 * in the source route contains our address or if
9270 			 * it is a packet with a loose source route which
9271 			 * reaches us before consuming the whole source route
9272 			 */
9273 			ip1dbg(("ip_input_local_options: not end of SR\n"));
9274 			if (optval == IPOPT_SSRR) {
9275 				goto bad_src_route;
9276 			}
9277 			/*
9278 			 * Hack: instead of dropping the packet truncate the
9279 			 * source route to what has been used by filling the
9280 			 * rest with IPOPT_NOP.
9281 			 */
9282 			opt[IPOPT_OLEN] = (uint8_t)off;
9283 			while (off < optlen) {
9284 				opt[off++] = IPOPT_NOP;
9285 			}
9286 			break;
9287 		case IPOPT_RR:
9288 			off = opt[IPOPT_OFFSET];
9289 			off--;
9290 			if (optlen < IP_ADDR_LEN ||
9291 			    off > optlen - IP_ADDR_LEN) {
9292 				/* No more room - ignore */
9293 				ip1dbg((
9294 				    "ip_input_local_options: end of RR\n"));
9295 				break;
9296 			}
9297 			/* Pick a reasonable address on the outbound if */
9298 			if (ip_select_source_v4(ill, INADDR_ANY, ipha->ipha_dst,
9299 			    INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
9300 			    NULL) != 0) {
9301 				/* No source! Shouldn't happen */
9302 				ifaddr = INADDR_ANY;
9303 			}
9304 			bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9305 			opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9306 			break;
9307 		case IPOPT_TS:
9308 			/* Insert timestamp if there is romm */
9309 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9310 			case IPOPT_TS_TSONLY:
9311 				off = IPOPT_TS_TIMELEN;
9312 				break;
9313 			case IPOPT_TS_PRESPEC:
9314 			case IPOPT_TS_PRESPEC_RFC791:
9315 				/* Verify that the address matched */
9316 				off = opt[IPOPT_OFFSET] - 1;
9317 				bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9318 				if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9319 					/* Not for us */
9320 					break;
9321 				}
9322 				/* FALLTHROUGH */
9323 			case IPOPT_TS_TSANDADDR:
9324 				off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
9325 				break;
9326 			default:
9327 				/*
9328 				 * ip_*put_options should have already
9329 				 * dropped this packet.
9330 				 */
9331 				cmn_err(CE_PANIC, "ip_input_local_options: "
9332 				    "unknown IT - bug in ip_input_options?\n");
9333 			}
9334 			if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
9335 				/* Increase overflow counter */
9336 				off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
9337 				opt[IPOPT_POS_OV_FLG] =
9338 				    (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) |
9339 				    (off << 4));
9340 				break;
9341 			}
9342 			off = opt[IPOPT_OFFSET] - 1;
9343 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9344 			case IPOPT_TS_PRESPEC:
9345 			case IPOPT_TS_PRESPEC_RFC791:
9346 			case IPOPT_TS_TSANDADDR:
9347 				/* Pick a reasonable addr on the outbound if */
9348 				if (ip_select_source_v4(ill, INADDR_ANY,
9349 				    ipha->ipha_dst, INADDR_ANY, ALL_ZONES, ipst,
9350 				    &ifaddr, NULL, NULL) != 0) {
9351 					/* No source! Shouldn't happen */
9352 					ifaddr = INADDR_ANY;
9353 				}
9354 				bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9355 				opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9356 				/* FALLTHROUGH */
9357 			case IPOPT_TS_TSONLY:
9358 				off = opt[IPOPT_OFFSET] - 1;
9359 				/* Compute # of milliseconds since midnight */
9360 				gethrestime(&now);
9361 				ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
9362 				    NSEC2MSEC(now.tv_nsec);
9363 				bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
9364 				opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
9365 				break;
9366 			}
9367 			break;
9368 		}
9369 	}
9370 	return (B_TRUE);
9371 
9372 bad_src_route:
9373 	/* make sure we clear any indication of a hardware checksum */
9374 	DB_CKSUMFLAGS(mp) = 0;
9375 	ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill);
9376 	icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira);
9377 	return (B_FALSE);
9378 
9379 }
9380 
9381 /*
9382  * Process IP options in an inbound packet.  Always returns the nexthop.
9383  * Normally this is the passed in nexthop, but if there is an option
9384  * that effects the nexthop (such as a source route) that will be returned.
9385  * Sets *errorp if there is an error, in which case an ICMP error has been sent
9386  * and mp freed.
9387  */
9388 ipaddr_t
9389 ip_input_options(ipha_t *ipha, ipaddr_t dst, mblk_t *mp,
9390     ip_recv_attr_t *ira, int *errorp)
9391 {
9392 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
9393 	ipoptp_t	opts;
9394 	uchar_t		*opt;
9395 	uint8_t		optval;
9396 	uint8_t		optlen;
9397 	intptr_t	code = 0;
9398 	ire_t		*ire;
9399 
9400 	ip2dbg(("ip_input_options\n"));
9401 	*errorp = 0;
9402 	for (optval = ipoptp_first(&opts, ipha);
9403 	    optval != IPOPT_EOL;
9404 	    optval = ipoptp_next(&opts)) {
9405 		opt = opts.ipoptp_cur;
9406 		optlen = opts.ipoptp_len;
9407 		ip2dbg(("ip_input_options: opt %d, len %d\n",
9408 		    optval, optlen));
9409 		/*
9410 		 * Note: we need to verify the checksum before we
9411 		 * modify anything thus this routine only extracts the next
9412 		 * hop dst from any source route.
9413 		 */
9414 		switch (optval) {
9415 			uint32_t off;
9416 		case IPOPT_SSRR:
9417 		case IPOPT_LSRR:
9418 			if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9419 				if (optval == IPOPT_SSRR) {
9420 					ip1dbg(("ip_input_options: not next"
9421 					    " strict source route 0x%x\n",
9422 					    ntohl(dst)));
9423 					code = (char *)&ipha->ipha_dst -
9424 					    (char *)ipha;
9425 					goto param_prob; /* RouterReq's */
9426 				}
9427 				ip2dbg(("ip_input_options: "
9428 				    "not next source route 0x%x\n",
9429 				    ntohl(dst)));
9430 				break;
9431 			}
9432 
9433 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
9434 				ip1dbg((
9435 				    "ip_input_options: bad option offset\n"));
9436 				code = (char *)&opt[IPOPT_OLEN] -
9437 				    (char *)ipha;
9438 				goto param_prob;
9439 			}
9440 			off = opt[IPOPT_OFFSET];
9441 			off--;
9442 		redo_srr:
9443 			if (optlen < IP_ADDR_LEN ||
9444 			    off > optlen - IP_ADDR_LEN) {
9445 				/* End of source route */
9446 				ip1dbg(("ip_input_options: end of SR\n"));
9447 				break;
9448 			}
9449 			bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9450 			ip1dbg(("ip_input_options: next hop 0x%x\n",
9451 			    ntohl(dst)));
9452 
9453 			/*
9454 			 * Check if our address is present more than
9455 			 * once as consecutive hops in source route.
9456 			 * XXX verify per-interface ip_forwarding
9457 			 * for source route?
9458 			 */
9459 			if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
9460 				off += IP_ADDR_LEN;
9461 				goto redo_srr;
9462 			}
9463 
9464 			if (dst == htonl(INADDR_LOOPBACK)) {
9465 				ip1dbg(("ip_input_options: loopback addr in "
9466 				    "source route!\n"));
9467 				goto bad_src_route;
9468 			}
9469 			/*
9470 			 * For strict: verify that dst is directly
9471 			 * reachable.
9472 			 */
9473 			if (optval == IPOPT_SSRR) {
9474 				ire = ire_ftable_lookup_v4(dst, 0, 0,
9475 				    IRE_INTERFACE, NULL, ALL_ZONES,
9476 				    ira->ira_tsl,
9477 				    MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst,
9478 				    NULL);
9479 				if (ire == NULL) {
9480 					ip1dbg(("ip_input_options: SSRR not "
9481 					    "directly reachable: 0x%x\n",
9482 					    ntohl(dst)));
9483 					goto bad_src_route;
9484 				}
9485 				ire_refrele(ire);
9486 			}
9487 			/*
9488 			 * Defer update of the offset and the record route
9489 			 * until the packet is forwarded.
9490 			 */
9491 			break;
9492 		case IPOPT_RR:
9493 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
9494 				ip1dbg((
9495 				    "ip_input_options: bad option offset\n"));
9496 				code = (char *)&opt[IPOPT_OLEN] -
9497 				    (char *)ipha;
9498 				goto param_prob;
9499 			}
9500 			break;
9501 		case IPOPT_TS:
9502 			/*
9503 			 * Verify that length >= 5 and that there is either
9504 			 * room for another timestamp or that the overflow
9505 			 * counter is not maxed out.
9506 			 */
9507 			code = (char *)&opt[IPOPT_OLEN] - (char *)ipha;
9508 			if (optlen < IPOPT_MINLEN_IT) {
9509 				goto param_prob;
9510 			}
9511 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
9512 				ip1dbg((
9513 				    "ip_input_options: bad option offset\n"));
9514 				code = (char *)&opt[IPOPT_OFFSET] -
9515 				    (char *)ipha;
9516 				goto param_prob;
9517 			}
9518 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9519 			case IPOPT_TS_TSONLY:
9520 				off = IPOPT_TS_TIMELEN;
9521 				break;
9522 			case IPOPT_TS_TSANDADDR:
9523 			case IPOPT_TS_PRESPEC:
9524 			case IPOPT_TS_PRESPEC_RFC791:
9525 				off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
9526 				break;
9527 			default:
9528 				code = (char *)&opt[IPOPT_POS_OV_FLG] -
9529 				    (char *)ipha;
9530 				goto param_prob;
9531 			}
9532 			if (opt[IPOPT_OFFSET] - 1 + off > optlen &&
9533 			    (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) {
9534 				/*
9535 				 * No room and the overflow counter is 15
9536 				 * already.
9537 				 */
9538 				goto param_prob;
9539 			}
9540 			break;
9541 		}
9542 	}
9543 
9544 	if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) {
9545 		return (dst);
9546 	}
9547 
9548 	ip1dbg(("ip_input_options: error processing IP options."));
9549 	code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha;
9550 
9551 param_prob:
9552 	/* make sure we clear any indication of a hardware checksum */
9553 	DB_CKSUMFLAGS(mp) = 0;
9554 	ip_drop_input("ICMP_PARAM_PROBLEM", mp, ira->ira_ill);
9555 	icmp_param_problem(mp, (uint8_t)code, ira);
9556 	*errorp = -1;
9557 	return (dst);
9558 
9559 bad_src_route:
9560 	/* make sure we clear any indication of a hardware checksum */
9561 	DB_CKSUMFLAGS(mp) = 0;
9562 	ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ira->ira_ill);
9563 	icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira);
9564 	*errorp = -1;
9565 	return (dst);
9566 }
9567 
9568 /*
9569  * IP & ICMP info in >=14 msg's ...
9570  *  - ip fixed part (mib2_ip_t)
9571  *  - icmp fixed part (mib2_icmp_t)
9572  *  - ipAddrEntryTable (ip 20)		all IPv4 ipifs
9573  *  - ipRouteEntryTable (ip 21)		all IPv4 IREs
9574  *  - ipNetToMediaEntryTable (ip 22)	all IPv4 Neighbor Cache entries
9575  *  - ipRouteAttributeTable (ip 102)	labeled routes
9576  *  - ip multicast membership (ip_member_t)
9577  *  - ip multicast source filtering (ip_grpsrc_t)
9578  *  - igmp fixed part (struct igmpstat)
9579  *  - multicast routing stats (struct mrtstat)
9580  *  - multicast routing vifs (array of struct vifctl)
9581  *  - multicast routing routes (array of struct mfcctl)
9582  *  - ip6 fixed part (mib2_ipv6IfStatsEntry_t)
9583  *					One per ill plus one generic
9584  *  - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t)
9585  *					One per ill plus one generic
9586  *  - ipv6RouteEntry			all IPv6 IREs
9587  *  - ipv6RouteAttributeTable (ip6 102)	labeled routes
9588  *  - ipv6NetToMediaEntry		all IPv6 Neighbor Cache entries
9589  *  - ipv6AddrEntry			all IPv6 ipifs
9590  *  - ipv6 multicast membership (ipv6_member_t)
9591  *  - ipv6 multicast source filtering (ipv6_grpsrc_t)
9592  *
9593  * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is
9594  * already filled in by the caller.
9595  * If legacy_req is true then MIB structures needs to be truncated to their
9596  * legacy sizes before being returned.
9597  * Return value of 0 indicates that no messages were sent and caller
9598  * should free mpctl.
9599  */
9600 int
9601 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level, boolean_t legacy_req)
9602 {
9603 	ip_stack_t *ipst;
9604 	sctp_stack_t *sctps;
9605 
9606 	if (q->q_next != NULL) {
9607 		ipst = ILLQ_TO_IPST(q);
9608 	} else {
9609 		ipst = CONNQ_TO_IPST(q);
9610 	}
9611 	ASSERT(ipst != NULL);
9612 	sctps = ipst->ips_netstack->netstack_sctp;
9613 
9614 	if (mpctl == NULL || mpctl->b_cont == NULL) {
9615 		return (0);
9616 	}
9617 
9618 	/*
9619 	 * For the purposes of the (broken) packet shell use
9620 	 * of the level we make sure MIB2_TCP/MIB2_UDP can be used
9621 	 * to make TCP and UDP appear first in the list of mib items.
9622 	 * TBD: We could expand this and use it in netstat so that
9623 	 * the kernel doesn't have to produce large tables (connections,
9624 	 * routes, etc) when netstat only wants the statistics or a particular
9625 	 * table.
9626 	 */
9627 	if (!(level == MIB2_TCP || level == MIB2_UDP)) {
9628 		if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) {
9629 			return (1);
9630 		}
9631 	}
9632 
9633 	if (level != MIB2_TCP) {
9634 		if ((mpctl = udp_snmp_get(q, mpctl, legacy_req)) == NULL) {
9635 			return (1);
9636 		}
9637 		if (level == MIB2_UDP) {
9638 			goto done;
9639 		}
9640 	}
9641 
9642 	if (level != MIB2_UDP) {
9643 		if ((mpctl = tcp_snmp_get(q, mpctl, legacy_req)) == NULL) {
9644 			return (1);
9645 		}
9646 		if (level == MIB2_TCP) {
9647 			goto done;
9648 		}
9649 	}
9650 
9651 	if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl,
9652 	    ipst, legacy_req)) == NULL) {
9653 		return (1);
9654 	}
9655 
9656 	if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst,
9657 	    legacy_req)) == NULL) {
9658 		return (1);
9659 	}
9660 
9661 	if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) {
9662 		return (1);
9663 	}
9664 
9665 	if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) {
9666 		return (1);
9667 	}
9668 
9669 	if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) {
9670 		return (1);
9671 	}
9672 
9673 	if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) {
9674 		return (1);
9675 	}
9676 
9677 	if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst,
9678 	    legacy_req)) == NULL) {
9679 		return (1);
9680 	}
9681 
9682 	if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst,
9683 	    legacy_req)) == NULL) {
9684 		return (1);
9685 	}
9686 
9687 	if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) {
9688 		return (1);
9689 	}
9690 
9691 	if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) {
9692 		return (1);
9693 	}
9694 
9695 	if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) {
9696 		return (1);
9697 	}
9698 
9699 	if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) {
9700 		return (1);
9701 	}
9702 
9703 	if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) {
9704 		return (1);
9705 	}
9706 
9707 	if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) {
9708 		return (1);
9709 	}
9710 
9711 	mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, level, ipst);
9712 	if (mpctl == NULL)
9713 		return (1);
9714 
9715 	mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, level, ipst);
9716 	if (mpctl == NULL)
9717 		return (1);
9718 
9719 	if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) {
9720 		return (1);
9721 	}
9722 	if ((mpctl = ip_snmp_get_mib2_ip_dce(q, mpctl, ipst)) == NULL) {
9723 		return (1);
9724 	}
9725 done:
9726 	freemsg(mpctl);
9727 	return (1);
9728 }
9729 
9730 /* Get global (legacy) IPv4 statistics */
9731 static mblk_t *
9732 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib,
9733     ip_stack_t *ipst, boolean_t legacy_req)
9734 {
9735 	mib2_ip_t		old_ip_mib;
9736 	struct opthdr		*optp;
9737 	mblk_t			*mp2ctl;
9738 	mib2_ipAddrEntry_t	mae;
9739 
9740 	/*
9741 	 * make a copy of the original message
9742 	 */
9743 	mp2ctl = copymsg(mpctl);
9744 
9745 	/* fixed length IP structure... */
9746 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9747 	optp->level = MIB2_IP;
9748 	optp->name = 0;
9749 	SET_MIB(old_ip_mib.ipForwarding,
9750 	    (WE_ARE_FORWARDING(ipst) ? 1 : 2));
9751 	SET_MIB(old_ip_mib.ipDefaultTTL,
9752 	    (uint32_t)ipst->ips_ip_def_ttl);
9753 	SET_MIB(old_ip_mib.ipReasmTimeout,
9754 	    ipst->ips_ip_reassembly_timeout);
9755 	SET_MIB(old_ip_mib.ipAddrEntrySize,
9756 	    (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) :
9757 	    sizeof (mib2_ipAddrEntry_t));
9758 	SET_MIB(old_ip_mib.ipRouteEntrySize,
9759 	    sizeof (mib2_ipRouteEntry_t));
9760 	SET_MIB(old_ip_mib.ipNetToMediaEntrySize,
9761 	    sizeof (mib2_ipNetToMediaEntry_t));
9762 	SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t));
9763 	SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t));
9764 	SET_MIB(old_ip_mib.ipRouteAttributeSize,
9765 	    sizeof (mib2_ipAttributeEntry_t));
9766 	SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t));
9767 	SET_MIB(old_ip_mib.ipDestEntrySize, sizeof (dest_cache_entry_t));
9768 
9769 	/*
9770 	 * Grab the statistics from the new IP MIB
9771 	 */
9772 	SET_MIB(old_ip_mib.ipInReceives,
9773 	    (uint32_t)ipmib->ipIfStatsHCInReceives);
9774 	SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors);
9775 	SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors);
9776 	SET_MIB(old_ip_mib.ipForwDatagrams,
9777 	    (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams);
9778 	SET_MIB(old_ip_mib.ipInUnknownProtos,
9779 	    ipmib->ipIfStatsInUnknownProtos);
9780 	SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards);
9781 	SET_MIB(old_ip_mib.ipInDelivers,
9782 	    (uint32_t)ipmib->ipIfStatsHCInDelivers);
9783 	SET_MIB(old_ip_mib.ipOutRequests,
9784 	    (uint32_t)ipmib->ipIfStatsHCOutRequests);
9785 	SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards);
9786 	SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes);
9787 	SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds);
9788 	SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs);
9789 	SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails);
9790 	SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs);
9791 	SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails);
9792 	SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates);
9793 
9794 	/* ipRoutingDiscards is not being used */
9795 	SET_MIB(old_ip_mib.ipRoutingDiscards, 0);
9796 	SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs);
9797 	SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts);
9798 	SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs);
9799 	SET_MIB(old_ip_mib.ipReasmDuplicates,
9800 	    ipmib->ipIfStatsReasmDuplicates);
9801 	SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups);
9802 	SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits);
9803 	SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs);
9804 	SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows);
9805 	SET_MIB(old_ip_mib.rawipInOverflows,
9806 	    ipmib->rawipIfStatsInOverflows);
9807 
9808 	SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded);
9809 	SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed);
9810 	SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion);
9811 	SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion);
9812 	SET_MIB(old_ip_mib.ipOutSwitchIPv6,
9813 	    ipmib->ipIfStatsOutSwitchIPVersion);
9814 
9815 	if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib,
9816 	    (int)sizeof (old_ip_mib))) {
9817 		ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n",
9818 		    (uint_t)sizeof (old_ip_mib)));
9819 	}
9820 
9821 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9822 	ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n",
9823 	    (int)optp->level, (int)optp->name, (int)optp->len));
9824 	qreply(q, mpctl);
9825 	return (mp2ctl);
9826 }
9827 
9828 /* Per interface IPv4 statistics */
9829 static mblk_t *
9830 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
9831     boolean_t legacy_req)
9832 {
9833 	struct opthdr		*optp;
9834 	mblk_t			*mp2ctl;
9835 	ill_t			*ill;
9836 	ill_walk_context_t	ctx;
9837 	mblk_t			*mp_tail = NULL;
9838 	mib2_ipIfStatsEntry_t	global_ip_mib;
9839 	mib2_ipAddrEntry_t	mae;
9840 
9841 	/*
9842 	 * Make a copy of the original message
9843 	 */
9844 	mp2ctl = copymsg(mpctl);
9845 
9846 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9847 	optp->level = MIB2_IP;
9848 	optp->name = MIB2_IP_TRAFFIC_STATS;
9849 	/* Include "unknown interface" ip_mib */
9850 	ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4;
9851 	ipst->ips_ip_mib.ipIfStatsIfIndex =
9852 	    MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */
9853 	SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding,
9854 	    (ipst->ips_ip_forwarding ? 1 : 2));
9855 	SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL,
9856 	    (uint32_t)ipst->ips_ip_def_ttl);
9857 	SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize,
9858 	    sizeof (mib2_ipIfStatsEntry_t));
9859 	SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize,
9860 	    sizeof (mib2_ipAddrEntry_t));
9861 	SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize,
9862 	    sizeof (mib2_ipRouteEntry_t));
9863 	SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize,
9864 	    sizeof (mib2_ipNetToMediaEntry_t));
9865 	SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize,
9866 	    sizeof (ip_member_t));
9867 	SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize,
9868 	    sizeof (ip_grpsrc_t));
9869 
9870 	bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib));
9871 
9872 	if (legacy_req) {
9873 		SET_MIB(global_ip_mib.ipIfStatsAddrEntrySize,
9874 		    LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t));
9875 	}
9876 
9877 	if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
9878 	    (char *)&global_ip_mib, (int)sizeof (global_ip_mib))) {
9879 		ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
9880 		    "failed to allocate %u bytes\n",
9881 		    (uint_t)sizeof (global_ip_mib)));
9882 	}
9883 
9884 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
9885 	ill = ILL_START_WALK_V4(&ctx, ipst);
9886 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
9887 		ill->ill_ip_mib->ipIfStatsIfIndex =
9888 		    ill->ill_phyint->phyint_ifindex;
9889 		SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding,
9890 		    (ipst->ips_ip_forwarding ? 1 : 2));
9891 		SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL,
9892 		    (uint32_t)ipst->ips_ip_def_ttl);
9893 
9894 		ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib);
9895 		if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
9896 		    (char *)ill->ill_ip_mib,
9897 		    (int)sizeof (*ill->ill_ip_mib))) {
9898 			ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
9899 			    "failed to allocate %u bytes\n",
9900 			    (uint_t)sizeof (*ill->ill_ip_mib)));
9901 		}
9902 	}
9903 	rw_exit(&ipst->ips_ill_g_lock);
9904 
9905 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9906 	ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
9907 	    "level %d, name %d, len %d\n",
9908 	    (int)optp->level, (int)optp->name, (int)optp->len));
9909 	qreply(q, mpctl);
9910 
9911 	if (mp2ctl == NULL)
9912 		return (NULL);
9913 
9914 	return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst,
9915 	    legacy_req));
9916 }
9917 
9918 /* Global IPv4 ICMP statistics */
9919 static mblk_t *
9920 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
9921 {
9922 	struct opthdr		*optp;
9923 	mblk_t			*mp2ctl;
9924 
9925 	/*
9926 	 * Make a copy of the original message
9927 	 */
9928 	mp2ctl = copymsg(mpctl);
9929 
9930 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9931 	optp->level = MIB2_ICMP;
9932 	optp->name = 0;
9933 	if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib,
9934 	    (int)sizeof (ipst->ips_icmp_mib))) {
9935 		ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n",
9936 		    (uint_t)sizeof (ipst->ips_icmp_mib)));
9937 	}
9938 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9939 	ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n",
9940 	    (int)optp->level, (int)optp->name, (int)optp->len));
9941 	qreply(q, mpctl);
9942 	return (mp2ctl);
9943 }
9944 
9945 /* Global IPv4 IGMP statistics */
9946 static mblk_t *
9947 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
9948 {
9949 	struct opthdr		*optp;
9950 	mblk_t			*mp2ctl;
9951 
9952 	/*
9953 	 * make a copy of the original message
9954 	 */
9955 	mp2ctl = copymsg(mpctl);
9956 
9957 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9958 	optp->level = EXPER_IGMP;
9959 	optp->name = 0;
9960 	if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat,
9961 	    (int)sizeof (ipst->ips_igmpstat))) {
9962 		ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n",
9963 		    (uint_t)sizeof (ipst->ips_igmpstat)));
9964 	}
9965 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9966 	ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n",
9967 	    (int)optp->level, (int)optp->name, (int)optp->len));
9968 	qreply(q, mpctl);
9969 	return (mp2ctl);
9970 }
9971 
9972 /* Global IPv4 Multicast Routing statistics */
9973 static mblk_t *
9974 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
9975 {
9976 	struct opthdr		*optp;
9977 	mblk_t			*mp2ctl;
9978 
9979 	/*
9980 	 * make a copy of the original message
9981 	 */
9982 	mp2ctl = copymsg(mpctl);
9983 
9984 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9985 	optp->level = EXPER_DVMRP;
9986 	optp->name = 0;
9987 	if (!ip_mroute_stats(mpctl->b_cont, ipst)) {
9988 		ip0dbg(("ip_mroute_stats: failed\n"));
9989 	}
9990 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9991 	ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n",
9992 	    (int)optp->level, (int)optp->name, (int)optp->len));
9993 	qreply(q, mpctl);
9994 	return (mp2ctl);
9995 }
9996 
9997 /* IPv4 address information */
9998 static mblk_t *
9999 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
10000     boolean_t legacy_req)
10001 {
10002 	struct opthdr		*optp;
10003 	mblk_t			*mp2ctl;
10004 	mblk_t			*mp_tail = NULL;
10005 	ill_t			*ill;
10006 	ipif_t			*ipif;
10007 	uint_t			bitval;
10008 	mib2_ipAddrEntry_t	mae;
10009 	size_t			mae_size;
10010 	zoneid_t		zoneid;
10011 	ill_walk_context_t	ctx;
10012 
10013 	/*
10014 	 * make a copy of the original message
10015 	 */
10016 	mp2ctl = copymsg(mpctl);
10017 
10018 	mae_size = (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) :
10019 	    sizeof (mib2_ipAddrEntry_t);
10020 
10021 	/* ipAddrEntryTable */
10022 
10023 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10024 	optp->level = MIB2_IP;
10025 	optp->name = MIB2_IP_ADDR;
10026 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10027 
10028 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10029 	ill = ILL_START_WALK_V4(&ctx, ipst);
10030 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10031 		for (ipif = ill->ill_ipif; ipif != NULL;
10032 		    ipif = ipif->ipif_next) {
10033 			if (ipif->ipif_zoneid != zoneid &&
10034 			    ipif->ipif_zoneid != ALL_ZONES)
10035 				continue;
10036 			/* Sum of count from dead IRE_LO* and our current */
10037 			mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count;
10038 			if (ipif->ipif_ire_local != NULL) {
10039 				mae.ipAdEntInfo.ae_ibcnt +=
10040 				    ipif->ipif_ire_local->ire_ib_pkt_count;
10041 			}
10042 			mae.ipAdEntInfo.ae_obcnt = 0;
10043 			mae.ipAdEntInfo.ae_focnt = 0;
10044 
10045 			ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes,
10046 			    OCTET_LENGTH);
10047 			mae.ipAdEntIfIndex.o_length =
10048 			    mi_strlen(mae.ipAdEntIfIndex.o_bytes);
10049 			mae.ipAdEntAddr = ipif->ipif_lcl_addr;
10050 			mae.ipAdEntNetMask = ipif->ipif_net_mask;
10051 			mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet;
10052 			mae.ipAdEntInfo.ae_subnet_len =
10053 			    ip_mask_to_plen(ipif->ipif_net_mask);
10054 			mae.ipAdEntInfo.ae_src_addr = ipif->ipif_lcl_addr;
10055 			for (bitval = 1;
10056 			    bitval &&
10057 			    !(bitval & ipif->ipif_brd_addr);
10058 			    bitval <<= 1)
10059 				noop;
10060 			mae.ipAdEntBcastAddr = bitval;
10061 			mae.ipAdEntReasmMaxSize = IP_MAXPACKET;
10062 			mae.ipAdEntInfo.ae_mtu = ipif->ipif_ill->ill_mtu;
10063 			mae.ipAdEntInfo.ae_metric  = ipif->ipif_ill->ill_metric;
10064 			mae.ipAdEntInfo.ae_broadcast_addr =
10065 			    ipif->ipif_brd_addr;
10066 			mae.ipAdEntInfo.ae_pp_dst_addr =
10067 			    ipif->ipif_pp_dst_addr;
10068 			mae.ipAdEntInfo.ae_flags = ipif->ipif_flags |
10069 			    ill->ill_flags | ill->ill_phyint->phyint_flags;
10070 			mae.ipAdEntRetransmitTime =
10071 			    ill->ill_reachable_retrans_time;
10072 
10073 			if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10074 			    (char *)&mae, (int)mae_size)) {
10075 				ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to "
10076 				    "allocate %u bytes\n", (uint_t)mae_size));
10077 			}
10078 		}
10079 	}
10080 	rw_exit(&ipst->ips_ill_g_lock);
10081 
10082 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10083 	ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n",
10084 	    (int)optp->level, (int)optp->name, (int)optp->len));
10085 	qreply(q, mpctl);
10086 	return (mp2ctl);
10087 }
10088 
10089 /* IPv6 address information */
10090 static mblk_t *
10091 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
10092     boolean_t legacy_req)
10093 {
10094 	struct opthdr		*optp;
10095 	mblk_t			*mp2ctl;
10096 	mblk_t			*mp_tail = NULL;
10097 	ill_t			*ill;
10098 	ipif_t			*ipif;
10099 	mib2_ipv6AddrEntry_t	mae6;
10100 	size_t			mae6_size;
10101 	zoneid_t		zoneid;
10102 	ill_walk_context_t	ctx;
10103 
10104 	/*
10105 	 * make a copy of the original message
10106 	 */
10107 	mp2ctl = copymsg(mpctl);
10108 
10109 	mae6_size = (legacy_req) ?
10110 	    LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t) :
10111 	    sizeof (mib2_ipv6AddrEntry_t);
10112 
10113 	/* ipv6AddrEntryTable */
10114 
10115 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10116 	optp->level = MIB2_IP6;
10117 	optp->name = MIB2_IP6_ADDR;
10118 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10119 
10120 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10121 	ill = ILL_START_WALK_V6(&ctx, ipst);
10122 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10123 		for (ipif = ill->ill_ipif; ipif != NULL;
10124 		    ipif = ipif->ipif_next) {
10125 			if (ipif->ipif_zoneid != zoneid &&
10126 			    ipif->ipif_zoneid != ALL_ZONES)
10127 				continue;
10128 			/* Sum of count from dead IRE_LO* and our current */
10129 			mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count;
10130 			if (ipif->ipif_ire_local != NULL) {
10131 				mae6.ipv6AddrInfo.ae_ibcnt +=
10132 				    ipif->ipif_ire_local->ire_ib_pkt_count;
10133 			}
10134 			mae6.ipv6AddrInfo.ae_obcnt = 0;
10135 			mae6.ipv6AddrInfo.ae_focnt = 0;
10136 
10137 			ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes,
10138 			    OCTET_LENGTH);
10139 			mae6.ipv6AddrIfIndex.o_length =
10140 			    mi_strlen(mae6.ipv6AddrIfIndex.o_bytes);
10141 			mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr;
10142 			mae6.ipv6AddrPfxLength =
10143 			    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
10144 			mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet;
10145 			mae6.ipv6AddrInfo.ae_subnet_len =
10146 			    mae6.ipv6AddrPfxLength;
10147 			mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6lcl_addr;
10148 
10149 			/* Type: stateless(1), stateful(2), unknown(3) */
10150 			if (ipif->ipif_flags & IPIF_ADDRCONF)
10151 				mae6.ipv6AddrType = 1;
10152 			else
10153 				mae6.ipv6AddrType = 2;
10154 			/* Anycast: true(1), false(2) */
10155 			if (ipif->ipif_flags & IPIF_ANYCAST)
10156 				mae6.ipv6AddrAnycastFlag = 1;
10157 			else
10158 				mae6.ipv6AddrAnycastFlag = 2;
10159 
10160 			/*
10161 			 * Address status: preferred(1), deprecated(2),
10162 			 * invalid(3), inaccessible(4), unknown(5)
10163 			 */
10164 			if (ipif->ipif_flags & IPIF_NOLOCAL)
10165 				mae6.ipv6AddrStatus = 3;
10166 			else if (ipif->ipif_flags & IPIF_DEPRECATED)
10167 				mae6.ipv6AddrStatus = 2;
10168 			else
10169 				mae6.ipv6AddrStatus = 1;
10170 			mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_ill->ill_mtu;
10171 			mae6.ipv6AddrInfo.ae_metric  =
10172 			    ipif->ipif_ill->ill_metric;
10173 			mae6.ipv6AddrInfo.ae_pp_dst_addr =
10174 			    ipif->ipif_v6pp_dst_addr;
10175 			mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags |
10176 			    ill->ill_flags | ill->ill_phyint->phyint_flags;
10177 			mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET;
10178 			mae6.ipv6AddrIdentifier = ill->ill_token;
10179 			mae6.ipv6AddrIdentifierLen = ill->ill_token_length;
10180 			mae6.ipv6AddrReachableTime = ill->ill_reachable_time;
10181 			mae6.ipv6AddrRetransmitTime =
10182 			    ill->ill_reachable_retrans_time;
10183 			if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10184 			    (char *)&mae6, (int)mae6_size)) {
10185 				ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to "
10186 				    "allocate %u bytes\n",
10187 				    (uint_t)mae6_size));
10188 			}
10189 		}
10190 	}
10191 	rw_exit(&ipst->ips_ill_g_lock);
10192 
10193 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10194 	ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n",
10195 	    (int)optp->level, (int)optp->name, (int)optp->len));
10196 	qreply(q, mpctl);
10197 	return (mp2ctl);
10198 }
10199 
10200 /* IPv4 multicast group membership. */
10201 static mblk_t *
10202 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10203 {
10204 	struct opthdr		*optp;
10205 	mblk_t			*mp2ctl;
10206 	ill_t			*ill;
10207 	ipif_t			*ipif;
10208 	ilm_t			*ilm;
10209 	ip_member_t		ipm;
10210 	mblk_t			*mp_tail = NULL;
10211 	ill_walk_context_t	ctx;
10212 	zoneid_t		zoneid;
10213 
10214 	/*
10215 	 * make a copy of the original message
10216 	 */
10217 	mp2ctl = copymsg(mpctl);
10218 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10219 
10220 	/* ipGroupMember table */
10221 	optp = (struct opthdr *)&mpctl->b_rptr[
10222 	    sizeof (struct T_optmgmt_ack)];
10223 	optp->level = MIB2_IP;
10224 	optp->name = EXPER_IP_GROUP_MEMBERSHIP;
10225 
10226 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10227 	ill = ILL_START_WALK_V4(&ctx, ipst);
10228 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10229 		/* Make sure the ill isn't going away. */
10230 		if (!ill_check_and_refhold(ill))
10231 			continue;
10232 		rw_exit(&ipst->ips_ill_g_lock);
10233 		rw_enter(&ill->ill_mcast_lock, RW_READER);
10234 		for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10235 			if (ilm->ilm_zoneid != zoneid &&
10236 			    ilm->ilm_zoneid != ALL_ZONES)
10237 				continue;
10238 
10239 			/* Is there an ipif for ilm_ifaddr? */
10240 			for (ipif = ill->ill_ipif; ipif != NULL;
10241 			    ipif = ipif->ipif_next) {
10242 				if (!IPIF_IS_CONDEMNED(ipif) &&
10243 				    ipif->ipif_lcl_addr == ilm->ilm_ifaddr &&
10244 				    ilm->ilm_ifaddr != INADDR_ANY)
10245 					break;
10246 			}
10247 			if (ipif != NULL) {
10248 				ipif_get_name(ipif,
10249 				    ipm.ipGroupMemberIfIndex.o_bytes,
10250 				    OCTET_LENGTH);
10251 			} else {
10252 				ill_get_name(ill,
10253 				    ipm.ipGroupMemberIfIndex.o_bytes,
10254 				    OCTET_LENGTH);
10255 			}
10256 			ipm.ipGroupMemberIfIndex.o_length =
10257 			    mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes);
10258 
10259 			ipm.ipGroupMemberAddress = ilm->ilm_addr;
10260 			ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt;
10261 			ipm.ipGroupMemberFilterMode = ilm->ilm_fmode;
10262 			if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10263 			    (char *)&ipm, (int)sizeof (ipm))) {
10264 				ip1dbg(("ip_snmp_get_mib2_ip_group: "
10265 				    "failed to allocate %u bytes\n",
10266 				    (uint_t)sizeof (ipm)));
10267 			}
10268 		}
10269 		rw_exit(&ill->ill_mcast_lock);
10270 		ill_refrele(ill);
10271 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10272 	}
10273 	rw_exit(&ipst->ips_ill_g_lock);
10274 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10275 	ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10276 	    (int)optp->level, (int)optp->name, (int)optp->len));
10277 	qreply(q, mpctl);
10278 	return (mp2ctl);
10279 }
10280 
10281 /* IPv6 multicast group membership. */
10282 static mblk_t *
10283 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10284 {
10285 	struct opthdr		*optp;
10286 	mblk_t			*mp2ctl;
10287 	ill_t			*ill;
10288 	ilm_t			*ilm;
10289 	ipv6_member_t		ipm6;
10290 	mblk_t			*mp_tail = NULL;
10291 	ill_walk_context_t	ctx;
10292 	zoneid_t		zoneid;
10293 
10294 	/*
10295 	 * make a copy of the original message
10296 	 */
10297 	mp2ctl = copymsg(mpctl);
10298 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10299 
10300 	/* ip6GroupMember table */
10301 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10302 	optp->level = MIB2_IP6;
10303 	optp->name = EXPER_IP6_GROUP_MEMBERSHIP;
10304 
10305 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10306 	ill = ILL_START_WALK_V6(&ctx, ipst);
10307 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10308 		/* Make sure the ill isn't going away. */
10309 		if (!ill_check_and_refhold(ill))
10310 			continue;
10311 		rw_exit(&ipst->ips_ill_g_lock);
10312 		/*
10313 		 * Normally we don't have any members on under IPMP interfaces.
10314 		 * We report them as a debugging aid.
10315 		 */
10316 		rw_enter(&ill->ill_mcast_lock, RW_READER);
10317 		ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex;
10318 		for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10319 			if (ilm->ilm_zoneid != zoneid &&
10320 			    ilm->ilm_zoneid != ALL_ZONES)
10321 				continue;	/* not this zone */
10322 			ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr;
10323 			ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt;
10324 			ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode;
10325 			if (!snmp_append_data2(mpctl->b_cont,
10326 			    &mp_tail,
10327 			    (char *)&ipm6, (int)sizeof (ipm6))) {
10328 				ip1dbg(("ip_snmp_get_mib2_ip6_group: "
10329 				    "failed to allocate %u bytes\n",
10330 				    (uint_t)sizeof (ipm6)));
10331 			}
10332 		}
10333 		rw_exit(&ill->ill_mcast_lock);
10334 		ill_refrele(ill);
10335 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10336 	}
10337 	rw_exit(&ipst->ips_ill_g_lock);
10338 
10339 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10340 	ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10341 	    (int)optp->level, (int)optp->name, (int)optp->len));
10342 	qreply(q, mpctl);
10343 	return (mp2ctl);
10344 }
10345 
10346 /* IP multicast filtered sources */
10347 static mblk_t *
10348 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10349 {
10350 	struct opthdr		*optp;
10351 	mblk_t			*mp2ctl;
10352 	ill_t			*ill;
10353 	ipif_t			*ipif;
10354 	ilm_t			*ilm;
10355 	ip_grpsrc_t		ips;
10356 	mblk_t			*mp_tail = NULL;
10357 	ill_walk_context_t	ctx;
10358 	zoneid_t		zoneid;
10359 	int			i;
10360 	slist_t			*sl;
10361 
10362 	/*
10363 	 * make a copy of the original message
10364 	 */
10365 	mp2ctl = copymsg(mpctl);
10366 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10367 
10368 	/* ipGroupSource table */
10369 	optp = (struct opthdr *)&mpctl->b_rptr[
10370 	    sizeof (struct T_optmgmt_ack)];
10371 	optp->level = MIB2_IP;
10372 	optp->name = EXPER_IP_GROUP_SOURCES;
10373 
10374 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10375 	ill = ILL_START_WALK_V4(&ctx, ipst);
10376 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10377 		/* Make sure the ill isn't going away. */
10378 		if (!ill_check_and_refhold(ill))
10379 			continue;
10380 		rw_exit(&ipst->ips_ill_g_lock);
10381 		rw_enter(&ill->ill_mcast_lock, RW_READER);
10382 		for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10383 			sl = ilm->ilm_filter;
10384 			if (ilm->ilm_zoneid != zoneid &&
10385 			    ilm->ilm_zoneid != ALL_ZONES)
10386 				continue;
10387 			if (SLIST_IS_EMPTY(sl))
10388 				continue;
10389 
10390 			/* Is there an ipif for ilm_ifaddr? */
10391 			for (ipif = ill->ill_ipif; ipif != NULL;
10392 			    ipif = ipif->ipif_next) {
10393 				if (!IPIF_IS_CONDEMNED(ipif) &&
10394 				    ipif->ipif_lcl_addr == ilm->ilm_ifaddr &&
10395 				    ilm->ilm_ifaddr != INADDR_ANY)
10396 					break;
10397 			}
10398 			if (ipif != NULL) {
10399 				ipif_get_name(ipif,
10400 				    ips.ipGroupSourceIfIndex.o_bytes,
10401 				    OCTET_LENGTH);
10402 			} else {
10403 				ill_get_name(ill,
10404 				    ips.ipGroupSourceIfIndex.o_bytes,
10405 				    OCTET_LENGTH);
10406 			}
10407 			ips.ipGroupSourceIfIndex.o_length =
10408 			    mi_strlen(ips.ipGroupSourceIfIndex.o_bytes);
10409 
10410 			ips.ipGroupSourceGroup = ilm->ilm_addr;
10411 			for (i = 0; i < sl->sl_numsrc; i++) {
10412 				if (!IN6_IS_ADDR_V4MAPPED(&sl->sl_addr[i]))
10413 					continue;
10414 				IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i],
10415 				    ips.ipGroupSourceAddress);
10416 				if (snmp_append_data2(mpctl->b_cont, &mp_tail,
10417 				    (char *)&ips, (int)sizeof (ips)) == 0) {
10418 					ip1dbg(("ip_snmp_get_mib2_ip_group_src:"
10419 					    " failed to allocate %u bytes\n",
10420 					    (uint_t)sizeof (ips)));
10421 				}
10422 			}
10423 		}
10424 		rw_exit(&ill->ill_mcast_lock);
10425 		ill_refrele(ill);
10426 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10427 	}
10428 	rw_exit(&ipst->ips_ill_g_lock);
10429 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10430 	ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10431 	    (int)optp->level, (int)optp->name, (int)optp->len));
10432 	qreply(q, mpctl);
10433 	return (mp2ctl);
10434 }
10435 
10436 /* IPv6 multicast filtered sources. */
10437 static mblk_t *
10438 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10439 {
10440 	struct opthdr		*optp;
10441 	mblk_t			*mp2ctl;
10442 	ill_t			*ill;
10443 	ilm_t			*ilm;
10444 	ipv6_grpsrc_t		ips6;
10445 	mblk_t			*mp_tail = NULL;
10446 	ill_walk_context_t	ctx;
10447 	zoneid_t		zoneid;
10448 	int			i;
10449 	slist_t			*sl;
10450 
10451 	/*
10452 	 * make a copy of the original message
10453 	 */
10454 	mp2ctl = copymsg(mpctl);
10455 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10456 
10457 	/* ip6GroupMember table */
10458 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10459 	optp->level = MIB2_IP6;
10460 	optp->name = EXPER_IP6_GROUP_SOURCES;
10461 
10462 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10463 	ill = ILL_START_WALK_V6(&ctx, ipst);
10464 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10465 		/* Make sure the ill isn't going away. */
10466 		if (!ill_check_and_refhold(ill))
10467 			continue;
10468 		rw_exit(&ipst->ips_ill_g_lock);
10469 		/*
10470 		 * Normally we don't have any members on under IPMP interfaces.
10471 		 * We report them as a debugging aid.
10472 		 */
10473 		rw_enter(&ill->ill_mcast_lock, RW_READER);
10474 		ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex;
10475 		for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10476 			sl = ilm->ilm_filter;
10477 			if (ilm->ilm_zoneid != zoneid &&
10478 			    ilm->ilm_zoneid != ALL_ZONES)
10479 				continue;
10480 			if (SLIST_IS_EMPTY(sl))
10481 				continue;
10482 			ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr;
10483 			for (i = 0; i < sl->sl_numsrc; i++) {
10484 				ips6.ipv6GroupSourceAddress = sl->sl_addr[i];
10485 				if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10486 				    (char *)&ips6, (int)sizeof (ips6))) {
10487 					ip1dbg(("ip_snmp_get_mib2_ip6_"
10488 					    "group_src: failed to allocate "
10489 					    "%u bytes\n",
10490 					    (uint_t)sizeof (ips6)));
10491 				}
10492 			}
10493 		}
10494 		rw_exit(&ill->ill_mcast_lock);
10495 		ill_refrele(ill);
10496 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10497 	}
10498 	rw_exit(&ipst->ips_ill_g_lock);
10499 
10500 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10501 	ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10502 	    (int)optp->level, (int)optp->name, (int)optp->len));
10503 	qreply(q, mpctl);
10504 	return (mp2ctl);
10505 }
10506 
10507 /* Multicast routing virtual interface table. */
10508 static mblk_t *
10509 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10510 {
10511 	struct opthdr		*optp;
10512 	mblk_t			*mp2ctl;
10513 
10514 	/*
10515 	 * make a copy of the original message
10516 	 */
10517 	mp2ctl = copymsg(mpctl);
10518 
10519 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10520 	optp->level = EXPER_DVMRP;
10521 	optp->name = EXPER_DVMRP_VIF;
10522 	if (!ip_mroute_vif(mpctl->b_cont, ipst)) {
10523 		ip0dbg(("ip_mroute_vif: failed\n"));
10524 	}
10525 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10526 	ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n",
10527 	    (int)optp->level, (int)optp->name, (int)optp->len));
10528 	qreply(q, mpctl);
10529 	return (mp2ctl);
10530 }
10531 
10532 /* Multicast routing table. */
10533 static mblk_t *
10534 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10535 {
10536 	struct opthdr		*optp;
10537 	mblk_t			*mp2ctl;
10538 
10539 	/*
10540 	 * make a copy of the original message
10541 	 */
10542 	mp2ctl = copymsg(mpctl);
10543 
10544 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10545 	optp->level = EXPER_DVMRP;
10546 	optp->name = EXPER_DVMRP_MRT;
10547 	if (!ip_mroute_mrt(mpctl->b_cont, ipst)) {
10548 		ip0dbg(("ip_mroute_mrt: failed\n"));
10549 	}
10550 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10551 	ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n",
10552 	    (int)optp->level, (int)optp->name, (int)optp->len));
10553 	qreply(q, mpctl);
10554 	return (mp2ctl);
10555 }
10556 
10557 /*
10558  * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable
10559  * in one IRE walk.
10560  */
10561 static mblk_t *
10562 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, int level,
10563     ip_stack_t *ipst)
10564 {
10565 	struct opthdr	*optp;
10566 	mblk_t		*mp2ctl;	/* Returned */
10567 	mblk_t		*mp3ctl;	/* nettomedia */
10568 	mblk_t		*mp4ctl;	/* routeattrs */
10569 	iproutedata_t	ird;
10570 	zoneid_t	zoneid;
10571 
10572 	/*
10573 	 * make copies of the original message
10574 	 *	- mp2ctl is returned unchanged to the caller for its use
10575 	 *	- mpctl is sent upstream as ipRouteEntryTable
10576 	 *	- mp3ctl is sent upstream as ipNetToMediaEntryTable
10577 	 *	- mp4ctl is sent upstream as ipRouteAttributeTable
10578 	 */
10579 	mp2ctl = copymsg(mpctl);
10580 	mp3ctl = copymsg(mpctl);
10581 	mp4ctl = copymsg(mpctl);
10582 	if (mp3ctl == NULL || mp4ctl == NULL) {
10583 		freemsg(mp4ctl);
10584 		freemsg(mp3ctl);
10585 		freemsg(mp2ctl);
10586 		freemsg(mpctl);
10587 		return (NULL);
10588 	}
10589 
10590 	bzero(&ird, sizeof (ird));
10591 
10592 	ird.ird_route.lp_head = mpctl->b_cont;
10593 	ird.ird_netmedia.lp_head = mp3ctl->b_cont;
10594 	ird.ird_attrs.lp_head = mp4ctl->b_cont;
10595 	/*
10596 	 * If the level has been set the special EXPER_IP_AND_ALL_IRES value,
10597 	 * then also include ire_testhidden IREs and IRE_IF_CLONE.  This is
10598 	 * intended a temporary solution until a proper MIB API is provided
10599 	 * that provides complete filtering/caller-opt-in.
10600 	 */
10601 	if (level == EXPER_IP_AND_ALL_IRES)
10602 		ird.ird_flags |= IRD_REPORT_ALL;
10603 
10604 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10605 	ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst);
10606 
10607 	/* ipRouteEntryTable in mpctl */
10608 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10609 	optp->level = MIB2_IP;
10610 	optp->name = MIB2_IP_ROUTE;
10611 	optp->len = msgdsize(ird.ird_route.lp_head);
10612 	ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
10613 	    (int)optp->level, (int)optp->name, (int)optp->len));
10614 	qreply(q, mpctl);
10615 
10616 	/* ipNetToMediaEntryTable in mp3ctl */
10617 	ncec_walk(NULL, ip_snmp_get2_v4_media, &ird, ipst);
10618 
10619 	optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10620 	optp->level = MIB2_IP;
10621 	optp->name = MIB2_IP_MEDIA;
10622 	optp->len = msgdsize(ird.ird_netmedia.lp_head);
10623 	ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
10624 	    (int)optp->level, (int)optp->name, (int)optp->len));
10625 	qreply(q, mp3ctl);
10626 
10627 	/* ipRouteAttributeTable in mp4ctl */
10628 	optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10629 	optp->level = MIB2_IP;
10630 	optp->name = EXPER_IP_RTATTR;
10631 	optp->len = msgdsize(ird.ird_attrs.lp_head);
10632 	ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
10633 	    (int)optp->level, (int)optp->name, (int)optp->len));
10634 	if (optp->len == 0)
10635 		freemsg(mp4ctl);
10636 	else
10637 		qreply(q, mp4ctl);
10638 
10639 	return (mp2ctl);
10640 }
10641 
10642 /*
10643  * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and
10644  * ipv6NetToMediaEntryTable in an NDP walk.
10645  */
10646 static mblk_t *
10647 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, int level,
10648     ip_stack_t *ipst)
10649 {
10650 	struct opthdr	*optp;
10651 	mblk_t		*mp2ctl;	/* Returned */
10652 	mblk_t		*mp3ctl;	/* nettomedia */
10653 	mblk_t		*mp4ctl;	/* routeattrs */
10654 	iproutedata_t	ird;
10655 	zoneid_t	zoneid;
10656 
10657 	/*
10658 	 * make copies of the original message
10659 	 *	- mp2ctl is returned unchanged to the caller for its use
10660 	 *	- mpctl is sent upstream as ipv6RouteEntryTable
10661 	 *	- mp3ctl is sent upstream as ipv6NetToMediaEntryTable
10662 	 *	- mp4ctl is sent upstream as ipv6RouteAttributeTable
10663 	 */
10664 	mp2ctl = copymsg(mpctl);
10665 	mp3ctl = copymsg(mpctl);
10666 	mp4ctl = copymsg(mpctl);
10667 	if (mp3ctl == NULL || mp4ctl == NULL) {
10668 		freemsg(mp4ctl);
10669 		freemsg(mp3ctl);
10670 		freemsg(mp2ctl);
10671 		freemsg(mpctl);
10672 		return (NULL);
10673 	}
10674 
10675 	bzero(&ird, sizeof (ird));
10676 
10677 	ird.ird_route.lp_head = mpctl->b_cont;
10678 	ird.ird_netmedia.lp_head = mp3ctl->b_cont;
10679 	ird.ird_attrs.lp_head = mp4ctl->b_cont;
10680 	/*
10681 	 * If the level has been set the special EXPER_IP_AND_ALL_IRES value,
10682 	 * then also include ire_testhidden IREs and IRE_IF_CLONE.  This is
10683 	 * intended a temporary solution until a proper MIB API is provided
10684 	 * that provides complete filtering/caller-opt-in.
10685 	 */
10686 	if (level == EXPER_IP_AND_ALL_IRES)
10687 		ird.ird_flags |= IRD_REPORT_ALL;
10688 
10689 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10690 	ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst);
10691 
10692 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10693 	optp->level = MIB2_IP6;
10694 	optp->name = MIB2_IP6_ROUTE;
10695 	optp->len = msgdsize(ird.ird_route.lp_head);
10696 	ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
10697 	    (int)optp->level, (int)optp->name, (int)optp->len));
10698 	qreply(q, mpctl);
10699 
10700 	/* ipv6NetToMediaEntryTable in mp3ctl */
10701 	ncec_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst);
10702 
10703 	optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10704 	optp->level = MIB2_IP6;
10705 	optp->name = MIB2_IP6_MEDIA;
10706 	optp->len = msgdsize(ird.ird_netmedia.lp_head);
10707 	ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
10708 	    (int)optp->level, (int)optp->name, (int)optp->len));
10709 	qreply(q, mp3ctl);
10710 
10711 	/* ipv6RouteAttributeTable in mp4ctl */
10712 	optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10713 	optp->level = MIB2_IP6;
10714 	optp->name = EXPER_IP_RTATTR;
10715 	optp->len = msgdsize(ird.ird_attrs.lp_head);
10716 	ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
10717 	    (int)optp->level, (int)optp->name, (int)optp->len));
10718 	if (optp->len == 0)
10719 		freemsg(mp4ctl);
10720 	else
10721 		qreply(q, mp4ctl);
10722 
10723 	return (mp2ctl);
10724 }
10725 
10726 /*
10727  * IPv6 mib: One per ill
10728  */
10729 static mblk_t *
10730 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
10731     boolean_t legacy_req)
10732 {
10733 	struct opthdr		*optp;
10734 	mblk_t			*mp2ctl;
10735 	ill_t			*ill;
10736 	ill_walk_context_t	ctx;
10737 	mblk_t			*mp_tail = NULL;
10738 	mib2_ipv6AddrEntry_t	mae6;
10739 	mib2_ipIfStatsEntry_t	*ise;
10740 	size_t			ise_size, iae_size;
10741 
10742 	/*
10743 	 * Make a copy of the original message
10744 	 */
10745 	mp2ctl = copymsg(mpctl);
10746 
10747 	/* fixed length IPv6 structure ... */
10748 
10749 	if (legacy_req) {
10750 		ise_size = LEGACY_MIB_SIZE(&ipst->ips_ip6_mib,
10751 		    mib2_ipIfStatsEntry_t);
10752 		iae_size = LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t);
10753 	} else {
10754 		ise_size = sizeof (mib2_ipIfStatsEntry_t);
10755 		iae_size = sizeof (mib2_ipv6AddrEntry_t);
10756 	}
10757 
10758 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10759 	optp->level = MIB2_IP6;
10760 	optp->name = 0;
10761 	/* Include "unknown interface" ip6_mib */
10762 	ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6;
10763 	ipst->ips_ip6_mib.ipIfStatsIfIndex =
10764 	    MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */
10765 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding,
10766 	    ipst->ips_ipv6_forwarding ? 1 : 2);
10767 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit,
10768 	    ipst->ips_ipv6_def_hops);
10769 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize,
10770 	    sizeof (mib2_ipIfStatsEntry_t));
10771 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize,
10772 	    sizeof (mib2_ipv6AddrEntry_t));
10773 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize,
10774 	    sizeof (mib2_ipv6RouteEntry_t));
10775 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize,
10776 	    sizeof (mib2_ipv6NetToMediaEntry_t));
10777 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize,
10778 	    sizeof (ipv6_member_t));
10779 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize,
10780 	    sizeof (ipv6_grpsrc_t));
10781 
10782 	/*
10783 	 * Synchronize 64- and 32-bit counters
10784 	 */
10785 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives,
10786 	    ipIfStatsHCInReceives);
10787 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers,
10788 	    ipIfStatsHCInDelivers);
10789 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests,
10790 	    ipIfStatsHCOutRequests);
10791 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams,
10792 	    ipIfStatsHCOutForwDatagrams);
10793 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts,
10794 	    ipIfStatsHCOutMcastPkts);
10795 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts,
10796 	    ipIfStatsHCInMcastPkts);
10797 
10798 	if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10799 	    (char *)&ipst->ips_ip6_mib, (int)ise_size)) {
10800 		ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n",
10801 		    (uint_t)ise_size));
10802 	} else if (legacy_req) {
10803 		/* Adjust the EntrySize fields for legacy requests. */
10804 		ise =
10805 		    (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr - (int)ise_size);
10806 		SET_MIB(ise->ipIfStatsEntrySize, ise_size);
10807 		SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size);
10808 	}
10809 
10810 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10811 	ill = ILL_START_WALK_V6(&ctx, ipst);
10812 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10813 		ill->ill_ip_mib->ipIfStatsIfIndex =
10814 		    ill->ill_phyint->phyint_ifindex;
10815 		SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding,
10816 		    ipst->ips_ipv6_forwarding ? 1 : 2);
10817 		SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit,
10818 		    ill->ill_max_hops);
10819 
10820 		/*
10821 		 * Synchronize 64- and 32-bit counters
10822 		 */
10823 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives,
10824 		    ipIfStatsHCInReceives);
10825 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers,
10826 		    ipIfStatsHCInDelivers);
10827 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests,
10828 		    ipIfStatsHCOutRequests);
10829 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams,
10830 		    ipIfStatsHCOutForwDatagrams);
10831 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts,
10832 		    ipIfStatsHCOutMcastPkts);
10833 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts,
10834 		    ipIfStatsHCInMcastPkts);
10835 
10836 		if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10837 		    (char *)ill->ill_ip_mib, (int)ise_size)) {
10838 			ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate "
10839 			"%u bytes\n", (uint_t)ise_size));
10840 		} else if (legacy_req) {
10841 			/* Adjust the EntrySize fields for legacy requests. */
10842 			ise = (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr -
10843 			    (int)ise_size);
10844 			SET_MIB(ise->ipIfStatsEntrySize, ise_size);
10845 			SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size);
10846 		}
10847 	}
10848 	rw_exit(&ipst->ips_ill_g_lock);
10849 
10850 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10851 	ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n",
10852 	    (int)optp->level, (int)optp->name, (int)optp->len));
10853 	qreply(q, mpctl);
10854 	return (mp2ctl);
10855 }
10856 
10857 /*
10858  * ICMPv6 mib: One per ill
10859  */
10860 static mblk_t *
10861 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10862 {
10863 	struct opthdr		*optp;
10864 	mblk_t			*mp2ctl;
10865 	ill_t			*ill;
10866 	ill_walk_context_t	ctx;
10867 	mblk_t			*mp_tail = NULL;
10868 	/*
10869 	 * Make a copy of the original message
10870 	 */
10871 	mp2ctl = copymsg(mpctl);
10872 
10873 	/* fixed length ICMPv6 structure ... */
10874 
10875 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10876 	optp->level = MIB2_ICMP6;
10877 	optp->name = 0;
10878 	/* Include "unknown interface" icmp6_mib */
10879 	ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex =
10880 	    MIB2_UNKNOWN_INTERFACE; /* netstat flag */
10881 	ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize =
10882 	    sizeof (mib2_ipv6IfIcmpEntry_t);
10883 	if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10884 	    (char *)&ipst->ips_icmp6_mib,
10885 	    (int)sizeof (ipst->ips_icmp6_mib))) {
10886 		ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n",
10887 		    (uint_t)sizeof (ipst->ips_icmp6_mib)));
10888 	}
10889 
10890 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10891 	ill = ILL_START_WALK_V6(&ctx, ipst);
10892 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10893 		ill->ill_icmp6_mib->ipv6IfIcmpIfIndex =
10894 		    ill->ill_phyint->phyint_ifindex;
10895 		if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10896 		    (char *)ill->ill_icmp6_mib,
10897 		    (int)sizeof (*ill->ill_icmp6_mib))) {
10898 			ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate "
10899 			    "%u bytes\n",
10900 			    (uint_t)sizeof (*ill->ill_icmp6_mib)));
10901 		}
10902 	}
10903 	rw_exit(&ipst->ips_ill_g_lock);
10904 
10905 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10906 	ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n",
10907 	    (int)optp->level, (int)optp->name, (int)optp->len));
10908 	qreply(q, mpctl);
10909 	return (mp2ctl);
10910 }
10911 
10912 /*
10913  * ire_walk routine to create both ipRouteEntryTable and
10914  * ipRouteAttributeTable in one IRE walk
10915  */
10916 static void
10917 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird)
10918 {
10919 	ill_t				*ill;
10920 	mib2_ipRouteEntry_t		*re;
10921 	mib2_ipAttributeEntry_t		iaes;
10922 	tsol_ire_gw_secattr_t		*attrp;
10923 	tsol_gc_t			*gc = NULL;
10924 	tsol_gcgrp_t			*gcgrp = NULL;
10925 	ip_stack_t			*ipst = ire->ire_ipst;
10926 
10927 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
10928 
10929 	if (!(ird->ird_flags & IRD_REPORT_ALL)) {
10930 		if (ire->ire_testhidden)
10931 			return;
10932 		if (ire->ire_type & IRE_IF_CLONE)
10933 			return;
10934 	}
10935 
10936 	if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL)
10937 		return;
10938 
10939 	if ((attrp = ire->ire_gw_secattr) != NULL) {
10940 		mutex_enter(&attrp->igsa_lock);
10941 		if ((gc = attrp->igsa_gc) != NULL) {
10942 			gcgrp = gc->gc_grp;
10943 			ASSERT(gcgrp != NULL);
10944 			rw_enter(&gcgrp->gcgrp_rwlock, RW_READER);
10945 		}
10946 		mutex_exit(&attrp->igsa_lock);
10947 	}
10948 	/*
10949 	 * Return all IRE types for route table... let caller pick and choose
10950 	 */
10951 	re->ipRouteDest = ire->ire_addr;
10952 	ill = ire->ire_ill;
10953 	re->ipRouteIfIndex.o_length = 0;
10954 	if (ill != NULL) {
10955 		ill_get_name(ill, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH);
10956 		re->ipRouteIfIndex.o_length =
10957 		    mi_strlen(re->ipRouteIfIndex.o_bytes);
10958 	}
10959 	re->ipRouteMetric1 = -1;
10960 	re->ipRouteMetric2 = -1;
10961 	re->ipRouteMetric3 = -1;
10962 	re->ipRouteMetric4 = -1;
10963 
10964 	re->ipRouteNextHop = ire->ire_gateway_addr;
10965 	/* indirect(4), direct(3), or invalid(2) */
10966 	if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))
10967 		re->ipRouteType = 2;
10968 	else if (ire->ire_type & IRE_ONLINK)
10969 		re->ipRouteType = 3;
10970 	else
10971 		re->ipRouteType = 4;
10972 
10973 	re->ipRouteProto = -1;
10974 	re->ipRouteAge = gethrestime_sec() - ire->ire_create_time;
10975 	re->ipRouteMask = ire->ire_mask;
10976 	re->ipRouteMetric5 = -1;
10977 	re->ipRouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu;
10978 	if (ire->ire_ill != NULL && re->ipRouteInfo.re_max_frag == 0)
10979 		re->ipRouteInfo.re_max_frag = ire->ire_ill->ill_mtu;
10980 
10981 	re->ipRouteInfo.re_frag_flag	= 0;
10982 	re->ipRouteInfo.re_rtt		= 0;
10983 	re->ipRouteInfo.re_src_addr	= 0;
10984 	re->ipRouteInfo.re_ref		= ire->ire_refcnt;
10985 	re->ipRouteInfo.re_obpkt	= ire->ire_ob_pkt_count;
10986 	re->ipRouteInfo.re_ibpkt	= ire->ire_ib_pkt_count;
10987 	re->ipRouteInfo.re_flags	= ire->ire_flags;
10988 
10989 	/* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */
10990 	if (ire->ire_type & IRE_INTERFACE) {
10991 		ire_t *child;
10992 
10993 		rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
10994 		child = ire->ire_dep_children;
10995 		while (child != NULL) {
10996 			re->ipRouteInfo.re_obpkt += child->ire_ob_pkt_count;
10997 			re->ipRouteInfo.re_ibpkt += child->ire_ib_pkt_count;
10998 			child = child->ire_dep_sib_next;
10999 		}
11000 		rw_exit(&ipst->ips_ire_dep_lock);
11001 	}
11002 
11003 	if (ire->ire_flags & RTF_DYNAMIC) {
11004 		re->ipRouteInfo.re_ire_type	= IRE_HOST_REDIRECT;
11005 	} else {
11006 		re->ipRouteInfo.re_ire_type	= ire->ire_type;
11007 	}
11008 
11009 	if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail,
11010 	    (char *)re, (int)sizeof (*re))) {
11011 		ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n",
11012 		    (uint_t)sizeof (*re)));
11013 	}
11014 
11015 	if (gc != NULL) {
11016 		iaes.iae_routeidx = ird->ird_idx;
11017 		iaes.iae_doi = gc->gc_db->gcdb_doi;
11018 		iaes.iae_slrange = gc->gc_db->gcdb_slrange;
11019 
11020 		if (!snmp_append_data2(ird->ird_attrs.lp_head,
11021 		    &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) {
11022 			ip1dbg(("ip_snmp_get2_v4: failed to allocate %u "
11023 			    "bytes\n", (uint_t)sizeof (iaes)));
11024 		}
11025 	}
11026 
11027 	/* bump route index for next pass */
11028 	ird->ird_idx++;
11029 
11030 	kmem_free(re, sizeof (*re));
11031 	if (gcgrp != NULL)
11032 		rw_exit(&gcgrp->gcgrp_rwlock);
11033 }
11034 
11035 /*
11036  * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable.
11037  */
11038 static void
11039 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird)
11040 {
11041 	ill_t				*ill;
11042 	mib2_ipv6RouteEntry_t		*re;
11043 	mib2_ipAttributeEntry_t		iaes;
11044 	tsol_ire_gw_secattr_t		*attrp;
11045 	tsol_gc_t			*gc = NULL;
11046 	tsol_gcgrp_t			*gcgrp = NULL;
11047 	ip_stack_t			*ipst = ire->ire_ipst;
11048 
11049 	ASSERT(ire->ire_ipversion == IPV6_VERSION);
11050 
11051 	if (!(ird->ird_flags & IRD_REPORT_ALL)) {
11052 		if (ire->ire_testhidden)
11053 			return;
11054 		if (ire->ire_type & IRE_IF_CLONE)
11055 			return;
11056 	}
11057 
11058 	if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL)
11059 		return;
11060 
11061 	if ((attrp = ire->ire_gw_secattr) != NULL) {
11062 		mutex_enter(&attrp->igsa_lock);
11063 		if ((gc = attrp->igsa_gc) != NULL) {
11064 			gcgrp = gc->gc_grp;
11065 			ASSERT(gcgrp != NULL);
11066 			rw_enter(&gcgrp->gcgrp_rwlock, RW_READER);
11067 		}
11068 		mutex_exit(&attrp->igsa_lock);
11069 	}
11070 	/*
11071 	 * Return all IRE types for route table... let caller pick and choose
11072 	 */
11073 	re->ipv6RouteDest = ire->ire_addr_v6;
11074 	re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6);
11075 	re->ipv6RouteIndex = 0;	/* Unique when multiple with same dest/plen */
11076 	re->ipv6RouteIfIndex.o_length = 0;
11077 	ill = ire->ire_ill;
11078 	if (ill != NULL) {
11079 		ill_get_name(ill, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH);
11080 		re->ipv6RouteIfIndex.o_length =
11081 		    mi_strlen(re->ipv6RouteIfIndex.o_bytes);
11082 	}
11083 
11084 	ASSERT(!(ire->ire_type & IRE_BROADCAST));
11085 
11086 	mutex_enter(&ire->ire_lock);
11087 	re->ipv6RouteNextHop = ire->ire_gateway_addr_v6;
11088 	mutex_exit(&ire->ire_lock);
11089 
11090 	/* remote(4), local(3), or discard(2) */
11091 	if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))
11092 		re->ipv6RouteType = 2;
11093 	else if (ire->ire_type & IRE_ONLINK)
11094 		re->ipv6RouteType = 3;
11095 	else
11096 		re->ipv6RouteType = 4;
11097 
11098 	re->ipv6RouteProtocol	= -1;
11099 	re->ipv6RoutePolicy	= 0;
11100 	re->ipv6RouteAge	= gethrestime_sec() - ire->ire_create_time;
11101 	re->ipv6RouteNextHopRDI	= 0;
11102 	re->ipv6RouteWeight	= 0;
11103 	re->ipv6RouteMetric	= 0;
11104 	re->ipv6RouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu;
11105 	if (ire->ire_ill != NULL && re->ipv6RouteInfo.re_max_frag == 0)
11106 		re->ipv6RouteInfo.re_max_frag = ire->ire_ill->ill_mtu;
11107 
11108 	re->ipv6RouteInfo.re_frag_flag	= 0;
11109 	re->ipv6RouteInfo.re_rtt	= 0;
11110 	re->ipv6RouteInfo.re_src_addr	= ipv6_all_zeros;
11111 	re->ipv6RouteInfo.re_obpkt	= ire->ire_ob_pkt_count;
11112 	re->ipv6RouteInfo.re_ibpkt	= ire->ire_ib_pkt_count;
11113 	re->ipv6RouteInfo.re_ref	= ire->ire_refcnt;
11114 	re->ipv6RouteInfo.re_flags	= ire->ire_flags;
11115 
11116 	/* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */
11117 	if (ire->ire_type & IRE_INTERFACE) {
11118 		ire_t *child;
11119 
11120 		rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
11121 		child = ire->ire_dep_children;
11122 		while (child != NULL) {
11123 			re->ipv6RouteInfo.re_obpkt += child->ire_ob_pkt_count;
11124 			re->ipv6RouteInfo.re_ibpkt += child->ire_ib_pkt_count;
11125 			child = child->ire_dep_sib_next;
11126 		}
11127 		rw_exit(&ipst->ips_ire_dep_lock);
11128 	}
11129 	if (ire->ire_flags & RTF_DYNAMIC) {
11130 		re->ipv6RouteInfo.re_ire_type	= IRE_HOST_REDIRECT;
11131 	} else {
11132 		re->ipv6RouteInfo.re_ire_type	= ire->ire_type;
11133 	}
11134 
11135 	if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail,
11136 	    (char *)re, (int)sizeof (*re))) {
11137 		ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n",
11138 		    (uint_t)sizeof (*re)));
11139 	}
11140 
11141 	if (gc != NULL) {
11142 		iaes.iae_routeidx = ird->ird_idx;
11143 		iaes.iae_doi = gc->gc_db->gcdb_doi;
11144 		iaes.iae_slrange = gc->gc_db->gcdb_slrange;
11145 
11146 		if (!snmp_append_data2(ird->ird_attrs.lp_head,
11147 		    &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) {
11148 			ip1dbg(("ip_snmp_get2_v6: failed to allocate %u "
11149 			    "bytes\n", (uint_t)sizeof (iaes)));
11150 		}
11151 	}
11152 
11153 	/* bump route index for next pass */
11154 	ird->ird_idx++;
11155 
11156 	kmem_free(re, sizeof (*re));
11157 	if (gcgrp != NULL)
11158 		rw_exit(&gcgrp->gcgrp_rwlock);
11159 }
11160 
11161 /*
11162  * ncec_walk routine to create ipv6NetToMediaEntryTable
11163  */
11164 static void
11165 ip_snmp_get2_v6_media(ncec_t *ncec, void *ptr)
11166 {
11167 	iproutedata_t *ird		= ptr;
11168 	ill_t				*ill;
11169 	mib2_ipv6NetToMediaEntry_t	ntme;
11170 
11171 	ill = ncec->ncec_ill;
11172 	/* skip arpce entries, and loopback ncec entries */
11173 	if (ill->ill_isv6 == B_FALSE || ill->ill_net_type == IRE_LOOPBACK)
11174 		return;
11175 	/*
11176 	 * Neighbor cache entry attached to IRE with on-link
11177 	 * destination.
11178 	 * We report all IPMP groups on ncec_ill which is normally the upper.
11179 	 */
11180 	ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex;
11181 	ntme.ipv6NetToMediaNetAddress = ncec->ncec_addr;
11182 	ntme.ipv6NetToMediaPhysAddress.o_length = ill->ill_phys_addr_length;
11183 	if (ncec->ncec_lladdr != NULL) {
11184 		bcopy(ncec->ncec_lladdr, ntme.ipv6NetToMediaPhysAddress.o_bytes,
11185 		    ntme.ipv6NetToMediaPhysAddress.o_length);
11186 	}
11187 	/*
11188 	 * Note: Returns ND_* states. Should be:
11189 	 * reachable(1), stale(2), delay(3), probe(4),
11190 	 * invalid(5), unknown(6)
11191 	 */
11192 	ntme.ipv6NetToMediaState = ncec->ncec_state;
11193 	ntme.ipv6NetToMediaLastUpdated = 0;
11194 
11195 	/* other(1), dynamic(2), static(3), local(4) */
11196 	if (NCE_MYADDR(ncec)) {
11197 		ntme.ipv6NetToMediaType = 4;
11198 	} else if (ncec->ncec_flags & NCE_F_PUBLISH) {
11199 		ntme.ipv6NetToMediaType = 1; /* proxy */
11200 	} else if (ncec->ncec_flags & NCE_F_STATIC) {
11201 		ntme.ipv6NetToMediaType = 3;
11202 	} else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST)) {
11203 		ntme.ipv6NetToMediaType = 1;
11204 	} else {
11205 		ntme.ipv6NetToMediaType = 2;
11206 	}
11207 
11208 	if (!snmp_append_data2(ird->ird_netmedia.lp_head,
11209 	    &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) {
11210 		ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n",
11211 		    (uint_t)sizeof (ntme)));
11212 	}
11213 }
11214 
11215 int
11216 nce2ace(ncec_t *ncec)
11217 {
11218 	int flags = 0;
11219 
11220 	if (NCE_ISREACHABLE(ncec))
11221 		flags |= ACE_F_RESOLVED;
11222 	if (ncec->ncec_flags & NCE_F_AUTHORITY)
11223 		flags |= ACE_F_AUTHORITY;
11224 	if (ncec->ncec_flags & NCE_F_PUBLISH)
11225 		flags |= ACE_F_PUBLISH;
11226 	if ((ncec->ncec_flags & NCE_F_NONUD) != 0)
11227 		flags |= ACE_F_PERMANENT;
11228 	if (NCE_MYADDR(ncec))
11229 		flags |= (ACE_F_MYADDR | ACE_F_AUTHORITY);
11230 	if (ncec->ncec_flags & NCE_F_UNVERIFIED)
11231 		flags |= ACE_F_UNVERIFIED;
11232 	if (ncec->ncec_flags & NCE_F_AUTHORITY)
11233 		flags |= ACE_F_AUTHORITY;
11234 	if (ncec->ncec_flags & NCE_F_DELAYED)
11235 		flags |= ACE_F_DELAYED;
11236 	return (flags);
11237 }
11238 
11239 /*
11240  * ncec_walk routine to create ipNetToMediaEntryTable
11241  */
11242 static void
11243 ip_snmp_get2_v4_media(ncec_t *ncec, void *ptr)
11244 {
11245 	iproutedata_t *ird		= ptr;
11246 	ill_t				*ill;
11247 	mib2_ipNetToMediaEntry_t	ntme;
11248 	const char			*name = "unknown";
11249 	ipaddr_t			ncec_addr;
11250 
11251 	ill = ncec->ncec_ill;
11252 	if (ill->ill_isv6 || (ncec->ncec_flags & NCE_F_BCAST) ||
11253 	    ill->ill_net_type == IRE_LOOPBACK)
11254 		return;
11255 
11256 	/* We report all IPMP groups on ncec_ill which is normally the upper. */
11257 	name = ill->ill_name;
11258 	/* Based on RFC 4293: other(1), inval(2), dyn(3), stat(4) */
11259 	if (NCE_MYADDR(ncec)) {
11260 		ntme.ipNetToMediaType = 4;
11261 	} else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST|NCE_F_PUBLISH)) {
11262 		ntme.ipNetToMediaType = 1;
11263 	} else {
11264 		ntme.ipNetToMediaType = 3;
11265 	}
11266 	ntme.ipNetToMediaIfIndex.o_length = MIN(OCTET_LENGTH, strlen(name));
11267 	bcopy(name, ntme.ipNetToMediaIfIndex.o_bytes,
11268 	    ntme.ipNetToMediaIfIndex.o_length);
11269 
11270 	IN6_V4MAPPED_TO_IPADDR(&ncec->ncec_addr, ncec_addr);
11271 	bcopy(&ncec_addr, &ntme.ipNetToMediaNetAddress, sizeof (ncec_addr));
11272 
11273 	ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (ipaddr_t);
11274 	ncec_addr = INADDR_BROADCAST;
11275 	bcopy(&ncec_addr, ntme.ipNetToMediaInfo.ntm_mask.o_bytes,
11276 	    sizeof (ncec_addr));
11277 	/*
11278 	 * map all the flags to the ACE counterpart.
11279 	 */
11280 	ntme.ipNetToMediaInfo.ntm_flags = nce2ace(ncec);
11281 
11282 	ntme.ipNetToMediaPhysAddress.o_length =
11283 	    MIN(OCTET_LENGTH, ill->ill_phys_addr_length);
11284 
11285 	if (!NCE_ISREACHABLE(ncec))
11286 		ntme.ipNetToMediaPhysAddress.o_length = 0;
11287 	else {
11288 		if (ncec->ncec_lladdr != NULL) {
11289 			bcopy(ncec->ncec_lladdr,
11290 			    ntme.ipNetToMediaPhysAddress.o_bytes,
11291 			    ntme.ipNetToMediaPhysAddress.o_length);
11292 		}
11293 	}
11294 
11295 	if (!snmp_append_data2(ird->ird_netmedia.lp_head,
11296 	    &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) {
11297 		ip1dbg(("ip_snmp_get2_v4_media: failed to allocate %u bytes\n",
11298 		    (uint_t)sizeof (ntme)));
11299 	}
11300 }
11301 
11302 /*
11303  * return (0) if invalid set request, 1 otherwise, including non-tcp requests
11304  */
11305 /* ARGSUSED */
11306 int
11307 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len)
11308 {
11309 	switch (level) {
11310 	case MIB2_IP:
11311 	case MIB2_ICMP:
11312 		switch (name) {
11313 		default:
11314 			break;
11315 		}
11316 		return (1);
11317 	default:
11318 		return (1);
11319 	}
11320 }
11321 
11322 /*
11323  * When there exists both a 64- and 32-bit counter of a particular type
11324  * (i.e., InReceives), only the 64-bit counters are added.
11325  */
11326 void
11327 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2)
11328 {
11329 	UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors);
11330 	UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors);
11331 	UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes);
11332 	UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors);
11333 	UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos);
11334 	UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts);
11335 	UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards);
11336 	UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards);
11337 	UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs);
11338 	UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails);
11339 	UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates);
11340 	UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds);
11341 	UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs);
11342 	UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails);
11343 	UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes);
11344 	UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates);
11345 	UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups);
11346 	UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits);
11347 	UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs);
11348 	UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows);
11349 	UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows);
11350 	UPDATE_MIB(o1, ipIfStatsInWrongIPVersion,
11351 	    o2->ipIfStatsInWrongIPVersion);
11352 	UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion,
11353 	    o2->ipIfStatsInWrongIPVersion);
11354 	UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion,
11355 	    o2->ipIfStatsOutSwitchIPVersion);
11356 	UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives);
11357 	UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets);
11358 	UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams,
11359 	    o2->ipIfStatsHCInForwDatagrams);
11360 	UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers);
11361 	UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests);
11362 	UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams,
11363 	    o2->ipIfStatsHCOutForwDatagrams);
11364 	UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds);
11365 	UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits);
11366 	UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets);
11367 	UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts);
11368 	UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets);
11369 	UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts);
11370 	UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets,
11371 	    o2->ipIfStatsHCOutMcastOctets);
11372 	UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts);
11373 	UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts);
11374 	UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded);
11375 	UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed);
11376 	UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs);
11377 	UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs);
11378 	UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts);
11379 }
11380 
11381 void
11382 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2)
11383 {
11384 	UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs);
11385 	UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors);
11386 	UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs);
11387 	UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs);
11388 	UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds);
11389 	UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems);
11390 	UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs);
11391 	UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos);
11392 	UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies);
11393 	UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits,
11394 	    o2->ipv6IfIcmpInRouterSolicits);
11395 	UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements,
11396 	    o2->ipv6IfIcmpInRouterAdvertisements);
11397 	UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits,
11398 	    o2->ipv6IfIcmpInNeighborSolicits);
11399 	UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements,
11400 	    o2->ipv6IfIcmpInNeighborAdvertisements);
11401 	UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects);
11402 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries,
11403 	    o2->ipv6IfIcmpInGroupMembQueries);
11404 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses,
11405 	    o2->ipv6IfIcmpInGroupMembResponses);
11406 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions,
11407 	    o2->ipv6IfIcmpInGroupMembReductions);
11408 	UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs);
11409 	UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors);
11410 	UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs,
11411 	    o2->ipv6IfIcmpOutDestUnreachs);
11412 	UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs,
11413 	    o2->ipv6IfIcmpOutAdminProhibs);
11414 	UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds);
11415 	UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems,
11416 	    o2->ipv6IfIcmpOutParmProblems);
11417 	UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs);
11418 	UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos);
11419 	UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies);
11420 	UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits,
11421 	    o2->ipv6IfIcmpOutRouterSolicits);
11422 	UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements,
11423 	    o2->ipv6IfIcmpOutRouterAdvertisements);
11424 	UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits,
11425 	    o2->ipv6IfIcmpOutNeighborSolicits);
11426 	UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements,
11427 	    o2->ipv6IfIcmpOutNeighborAdvertisements);
11428 	UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects);
11429 	UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries,
11430 	    o2->ipv6IfIcmpOutGroupMembQueries);
11431 	UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses,
11432 	    o2->ipv6IfIcmpOutGroupMembResponses);
11433 	UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions,
11434 	    o2->ipv6IfIcmpOutGroupMembReductions);
11435 	UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows);
11436 	UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit);
11437 	UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements,
11438 	    o2->ipv6IfIcmpInBadNeighborAdvertisements);
11439 	UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations,
11440 	    o2->ipv6IfIcmpInBadNeighborSolicitations);
11441 	UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects);
11442 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal,
11443 	    o2->ipv6IfIcmpInGroupMembTotal);
11444 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries,
11445 	    o2->ipv6IfIcmpInGroupMembBadQueries);
11446 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports,
11447 	    o2->ipv6IfIcmpInGroupMembBadReports);
11448 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports,
11449 	    o2->ipv6IfIcmpInGroupMembOurReports);
11450 }
11451 
11452 /*
11453  * Called before the options are updated to check if this packet will
11454  * be source routed from here.
11455  * This routine assumes that the options are well formed i.e. that they
11456  * have already been checked.
11457  */
11458 boolean_t
11459 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst)
11460 {
11461 	ipoptp_t	opts;
11462 	uchar_t		*opt;
11463 	uint8_t		optval;
11464 	uint8_t		optlen;
11465 	ipaddr_t	dst;
11466 
11467 	if (IS_SIMPLE_IPH(ipha)) {
11468 		ip2dbg(("not source routed\n"));
11469 		return (B_FALSE);
11470 	}
11471 	dst = ipha->ipha_dst;
11472 	for (optval = ipoptp_first(&opts, ipha);
11473 	    optval != IPOPT_EOL;
11474 	    optval = ipoptp_next(&opts)) {
11475 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
11476 		opt = opts.ipoptp_cur;
11477 		optlen = opts.ipoptp_len;
11478 		ip2dbg(("ip_source_routed: opt %d, len %d\n",
11479 		    optval, optlen));
11480 		switch (optval) {
11481 			uint32_t off;
11482 		case IPOPT_SSRR:
11483 		case IPOPT_LSRR:
11484 			/*
11485 			 * If dst is one of our addresses and there are some
11486 			 * entries left in the source route return (true).
11487 			 */
11488 			if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
11489 				ip2dbg(("ip_source_routed: not next"
11490 				    " source route 0x%x\n",
11491 				    ntohl(dst)));
11492 				return (B_FALSE);
11493 			}
11494 			off = opt[IPOPT_OFFSET];
11495 			off--;
11496 			if (optlen < IP_ADDR_LEN ||
11497 			    off > optlen - IP_ADDR_LEN) {
11498 				/* End of source route */
11499 				ip1dbg(("ip_source_routed: end of SR\n"));
11500 				return (B_FALSE);
11501 			}
11502 			return (B_TRUE);
11503 		}
11504 	}
11505 	ip2dbg(("not source routed\n"));
11506 	return (B_FALSE);
11507 }
11508 
11509 /*
11510  * ip_unbind is called by the transports to remove a conn from
11511  * the fanout table.
11512  */
11513 void
11514 ip_unbind(conn_t *connp)
11515 {
11516 
11517 	ASSERT(!MUTEX_HELD(&connp->conn_lock));
11518 
11519 	if (is_system_labeled() && connp->conn_anon_port) {
11520 		(void) tsol_mlp_anon(crgetzone(connp->conn_cred),
11521 		    connp->conn_mlp_type, connp->conn_proto,
11522 		    ntohs(connp->conn_lport), B_FALSE);
11523 		connp->conn_anon_port = 0;
11524 	}
11525 	connp->conn_mlp_type = mlptSingle;
11526 
11527 	ipcl_hash_remove(connp);
11528 }
11529 
11530 /*
11531  * Used for deciding the MSS size for the upper layer. Thus
11532  * we need to check the outbound policy values in the conn.
11533  */
11534 int
11535 conn_ipsec_length(conn_t *connp)
11536 {
11537 	ipsec_latch_t *ipl;
11538 
11539 	ipl = connp->conn_latch;
11540 	if (ipl == NULL)
11541 		return (0);
11542 
11543 	if (connp->conn_ixa->ixa_ipsec_policy == NULL)
11544 		return (0);
11545 
11546 	return (connp->conn_ixa->ixa_ipsec_policy->ipsp_act->ipa_ovhd);
11547 }
11548 
11549 /*
11550  * Returns an estimate of the IPsec headers size. This is used if
11551  * we don't want to call into IPsec to get the exact size.
11552  */
11553 int
11554 ipsec_out_extra_length(ip_xmit_attr_t *ixa)
11555 {
11556 	ipsec_action_t *a;
11557 
11558 	if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE))
11559 		return (0);
11560 
11561 	a = ixa->ixa_ipsec_action;
11562 	if (a == NULL) {
11563 		ASSERT(ixa->ixa_ipsec_policy != NULL);
11564 		a = ixa->ixa_ipsec_policy->ipsp_act;
11565 	}
11566 	ASSERT(a != NULL);
11567 
11568 	return (a->ipa_ovhd);
11569 }
11570 
11571 /*
11572  * If there are any source route options, return the true final
11573  * destination. Otherwise, return the destination.
11574  */
11575 ipaddr_t
11576 ip_get_dst(ipha_t *ipha)
11577 {
11578 	ipoptp_t	opts;
11579 	uchar_t		*opt;
11580 	uint8_t		optval;
11581 	uint8_t		optlen;
11582 	ipaddr_t	dst;
11583 	uint32_t off;
11584 
11585 	dst = ipha->ipha_dst;
11586 
11587 	if (IS_SIMPLE_IPH(ipha))
11588 		return (dst);
11589 
11590 	for (optval = ipoptp_first(&opts, ipha);
11591 	    optval != IPOPT_EOL;
11592 	    optval = ipoptp_next(&opts)) {
11593 		opt = opts.ipoptp_cur;
11594 		optlen = opts.ipoptp_len;
11595 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
11596 		switch (optval) {
11597 		case IPOPT_SSRR:
11598 		case IPOPT_LSRR:
11599 			off = opt[IPOPT_OFFSET];
11600 			/*
11601 			 * If one of the conditions is true, it means
11602 			 * end of options and dst already has the right
11603 			 * value.
11604 			 */
11605 			if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) {
11606 				off = optlen - IP_ADDR_LEN;
11607 				bcopy(&opt[off], &dst, IP_ADDR_LEN);
11608 			}
11609 			return (dst);
11610 		default:
11611 			break;
11612 		}
11613 	}
11614 
11615 	return (dst);
11616 }
11617 
11618 /*
11619  * Outbound IP fragmentation routine.
11620  * Assumes the caller has checked whether or not fragmentation should
11621  * be allowed. Here we copy the DF bit from the header to all the generated
11622  * fragments.
11623  */
11624 int
11625 ip_fragment_v4(mblk_t *mp_orig, nce_t *nce, iaflags_t ixaflags,
11626     uint_t pkt_len, uint32_t max_frag, uint32_t xmit_hint, zoneid_t szone,
11627     zoneid_t nolzid, pfirepostfrag_t postfragfn, uintptr_t *ixa_cookie)
11628 {
11629 	int		i1;
11630 	int		hdr_len;
11631 	mblk_t		*hdr_mp;
11632 	ipha_t		*ipha;
11633 	int		ip_data_end;
11634 	int		len;
11635 	mblk_t		*mp = mp_orig;
11636 	int		offset;
11637 	ill_t		*ill = nce->nce_ill;
11638 	ip_stack_t	*ipst = ill->ill_ipst;
11639 	mblk_t		*carve_mp;
11640 	uint32_t	frag_flag;
11641 	uint_t		priority = mp->b_band;
11642 	int		error = 0;
11643 
11644 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragReqds);
11645 
11646 	if (pkt_len != msgdsize(mp)) {
11647 		ip0dbg(("Packet length mismatch: %d, %ld\n",
11648 		    pkt_len, msgdsize(mp)));
11649 		freemsg(mp);
11650 		return (EINVAL);
11651 	}
11652 
11653 	if (max_frag == 0) {
11654 		ip1dbg(("ip_fragment_v4: max_frag is zero. Dropping packet\n"));
11655 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11656 		ip_drop_output("FragFails: zero max_frag", mp, ill);
11657 		freemsg(mp);
11658 		return (EINVAL);
11659 	}
11660 
11661 	ASSERT(MBLKL(mp) >= sizeof (ipha_t));
11662 	ipha = (ipha_t *)mp->b_rptr;
11663 	ASSERT(ntohs(ipha->ipha_length) == pkt_len);
11664 	frag_flag = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_DF;
11665 
11666 	/*
11667 	 * Establish the starting offset.  May not be zero if we are fragging
11668 	 * a fragment that is being forwarded.
11669 	 */
11670 	offset = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET;
11671 
11672 	/* TODO why is this test needed? */
11673 	if (((max_frag - ntohs(ipha->ipha_length)) & ~7) < 8) {
11674 		/* TODO: notify ulp somehow */
11675 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11676 		ip_drop_output("FragFails: bad starting offset", mp, ill);
11677 		freemsg(mp);
11678 		return (EINVAL);
11679 	}
11680 
11681 	hdr_len = IPH_HDR_LENGTH(ipha);
11682 	ipha->ipha_hdr_checksum = 0;
11683 
11684 	/*
11685 	 * Establish the number of bytes maximum per frag, after putting
11686 	 * in the header.
11687 	 */
11688 	len = (max_frag - hdr_len) & ~7;
11689 
11690 	/* Get a copy of the header for the trailing frags */
11691 	hdr_mp = ip_fragment_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst,
11692 	    mp);
11693 	if (hdr_mp == NULL) {
11694 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11695 		ip_drop_output("FragFails: no hdr_mp", mp, ill);
11696 		freemsg(mp);
11697 		return (ENOBUFS);
11698 	}
11699 
11700 	/* Store the starting offset, with the MoreFrags flag. */
11701 	i1 = offset | IPH_MF | frag_flag;
11702 	ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1);
11703 
11704 	/* Establish the ending byte offset, based on the starting offset. */
11705 	offset <<= 3;
11706 	ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len;
11707 
11708 	/* Store the length of the first fragment in the IP header. */
11709 	i1 = len + hdr_len;
11710 	ASSERT(i1 <= IP_MAXPACKET);
11711 	ipha->ipha_length = htons((uint16_t)i1);
11712 
11713 	/*
11714 	 * Compute the IP header checksum for the first frag.  We have to
11715 	 * watch out that we stop at the end of the header.
11716 	 */
11717 	ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
11718 
11719 	/*
11720 	 * Now carve off the first frag.  Note that this will include the
11721 	 * original IP header.
11722 	 */
11723 	if (!(mp = ip_carve_mp(&mp_orig, i1))) {
11724 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11725 		ip_drop_output("FragFails: could not carve mp", mp_orig, ill);
11726 		freeb(hdr_mp);
11727 		freemsg(mp_orig);
11728 		return (ENOBUFS);
11729 	}
11730 
11731 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates);
11732 
11733 	error = postfragfn(mp, nce, ixaflags, i1, xmit_hint, szone, nolzid,
11734 	    ixa_cookie);
11735 	if (error != 0 && error != EWOULDBLOCK) {
11736 		/* No point in sending the other fragments */
11737 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11738 		ip_drop_output("FragFails: postfragfn failed", mp_orig, ill);
11739 		freeb(hdr_mp);
11740 		freemsg(mp_orig);
11741 		return (error);
11742 	}
11743 
11744 	/* No need to redo state machine in loop */
11745 	ixaflags &= ~IXAF_REACH_CONF;
11746 
11747 	/* Advance the offset to the second frag starting point. */
11748 	offset += len;
11749 	/*
11750 	 * Update hdr_len from the copied header - there might be less options
11751 	 * in the later fragments.
11752 	 */
11753 	hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr);
11754 	/* Loop until done. */
11755 	for (;;) {
11756 		uint16_t	offset_and_flags;
11757 		uint16_t	ip_len;
11758 
11759 		if (ip_data_end - offset > len) {
11760 			/*
11761 			 * Carve off the appropriate amount from the original
11762 			 * datagram.
11763 			 */
11764 			if (!(carve_mp = ip_carve_mp(&mp_orig, len))) {
11765 				mp = NULL;
11766 				break;
11767 			}
11768 			/*
11769 			 * More frags after this one.  Get another copy
11770 			 * of the header.
11771 			 */
11772 			if (carve_mp->b_datap->db_ref == 1 &&
11773 			    hdr_mp->b_wptr - hdr_mp->b_rptr <
11774 			    carve_mp->b_rptr - carve_mp->b_datap->db_base) {
11775 				/* Inline IP header */
11776 				carve_mp->b_rptr -= hdr_mp->b_wptr -
11777 				    hdr_mp->b_rptr;
11778 				bcopy(hdr_mp->b_rptr, carve_mp->b_rptr,
11779 				    hdr_mp->b_wptr - hdr_mp->b_rptr);
11780 				mp = carve_mp;
11781 			} else {
11782 				if (!(mp = copyb(hdr_mp))) {
11783 					freemsg(carve_mp);
11784 					break;
11785 				}
11786 				/* Get priority marking, if any. */
11787 				mp->b_band = priority;
11788 				mp->b_cont = carve_mp;
11789 			}
11790 			ipha = (ipha_t *)mp->b_rptr;
11791 			offset_and_flags = IPH_MF;
11792 		} else {
11793 			/*
11794 			 * Last frag.  Consume the header. Set len to
11795 			 * the length of this last piece.
11796 			 */
11797 			len = ip_data_end - offset;
11798 
11799 			/*
11800 			 * Carve off the appropriate amount from the original
11801 			 * datagram.
11802 			 */
11803 			if (!(carve_mp = ip_carve_mp(&mp_orig, len))) {
11804 				mp = NULL;
11805 				break;
11806 			}
11807 			if (carve_mp->b_datap->db_ref == 1 &&
11808 			    hdr_mp->b_wptr - hdr_mp->b_rptr <
11809 			    carve_mp->b_rptr - carve_mp->b_datap->db_base) {
11810 				/* Inline IP header */
11811 				carve_mp->b_rptr -= hdr_mp->b_wptr -
11812 				    hdr_mp->b_rptr;
11813 				bcopy(hdr_mp->b_rptr, carve_mp->b_rptr,
11814 				    hdr_mp->b_wptr - hdr_mp->b_rptr);
11815 				mp = carve_mp;
11816 				freeb(hdr_mp);
11817 				hdr_mp = mp;
11818 			} else {
11819 				mp = hdr_mp;
11820 				/* Get priority marking, if any. */
11821 				mp->b_band = priority;
11822 				mp->b_cont = carve_mp;
11823 			}
11824 			ipha = (ipha_t *)mp->b_rptr;
11825 			/* A frag of a frag might have IPH_MF non-zero */
11826 			offset_and_flags =
11827 			    ntohs(ipha->ipha_fragment_offset_and_flags) &
11828 			    IPH_MF;
11829 		}
11830 		offset_and_flags |= (uint16_t)(offset >> 3);
11831 		offset_and_flags |= (uint16_t)frag_flag;
11832 		/* Store the offset and flags in the IP header. */
11833 		ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags);
11834 
11835 		/* Store the length in the IP header. */
11836 		ip_len = (uint16_t)(len + hdr_len);
11837 		ipha->ipha_length = htons(ip_len);
11838 
11839 		/*
11840 		 * Set the IP header checksum.	Note that mp is just
11841 		 * the header, so this is easy to pass to ip_csum.
11842 		 */
11843 		ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
11844 
11845 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates);
11846 
11847 		error = postfragfn(mp, nce, ixaflags, ip_len, xmit_hint, szone,
11848 		    nolzid, ixa_cookie);
11849 		/* All done if we just consumed the hdr_mp. */
11850 		if (mp == hdr_mp) {
11851 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs);
11852 			return (error);
11853 		}
11854 		if (error != 0 && error != EWOULDBLOCK) {
11855 			DTRACE_PROBE2(ip__xmit__frag__fail, ill_t *, ill,
11856 			    mblk_t *, hdr_mp);
11857 			/* No point in sending the other fragments */
11858 			break;
11859 		}
11860 
11861 		/* Otherwise, advance and loop. */
11862 		offset += len;
11863 	}
11864 	/* Clean up following allocation failure. */
11865 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11866 	ip_drop_output("FragFails: loop ended", NULL, ill);
11867 	if (mp != hdr_mp)
11868 		freeb(hdr_mp);
11869 	if (mp != mp_orig)
11870 		freemsg(mp_orig);
11871 	return (error);
11872 }
11873 
11874 /*
11875  * Copy the header plus those options which have the copy bit set
11876  */
11877 static mblk_t *
11878 ip_fragment_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst,
11879     mblk_t *src)
11880 {
11881 	mblk_t	*mp;
11882 	uchar_t	*up;
11883 
11884 	/*
11885 	 * Quick check if we need to look for options without the copy bit
11886 	 * set
11887 	 */
11888 	mp = allocb_tmpl(ipst->ips_ip_wroff_extra + hdr_len, src);
11889 	if (!mp)
11890 		return (mp);
11891 	mp->b_rptr += ipst->ips_ip_wroff_extra;
11892 	if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) {
11893 		bcopy(rptr, mp->b_rptr, hdr_len);
11894 		mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra;
11895 		return (mp);
11896 	}
11897 	up  = mp->b_rptr;
11898 	bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH);
11899 	up += IP_SIMPLE_HDR_LENGTH;
11900 	rptr += IP_SIMPLE_HDR_LENGTH;
11901 	hdr_len -= IP_SIMPLE_HDR_LENGTH;
11902 	while (hdr_len > 0) {
11903 		uint32_t optval;
11904 		uint32_t optlen;
11905 
11906 		optval = *rptr;
11907 		if (optval == IPOPT_EOL)
11908 			break;
11909 		if (optval == IPOPT_NOP)
11910 			optlen = 1;
11911 		else
11912 			optlen = rptr[1];
11913 		if (optval & IPOPT_COPY) {
11914 			bcopy(rptr, up, optlen);
11915 			up += optlen;
11916 		}
11917 		rptr += optlen;
11918 		hdr_len -= optlen;
11919 	}
11920 	/*
11921 	 * Make sure that we drop an even number of words by filling
11922 	 * with EOL to the next word boundary.
11923 	 */
11924 	for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH);
11925 	    hdr_len & 0x3; hdr_len++)
11926 		*up++ = IPOPT_EOL;
11927 	mp->b_wptr = up;
11928 	/* Update header length */
11929 	mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2));
11930 	return (mp);
11931 }
11932 
11933 /*
11934  * Update any source route, record route, or timestamp options when
11935  * sending a packet back to ourselves.
11936  * Check that we are at end of strict source route.
11937  * The options have been sanity checked by ip_output_options().
11938  */
11939 void
11940 ip_output_local_options(ipha_t *ipha, ip_stack_t *ipst)
11941 {
11942 	ipoptp_t	opts;
11943 	uchar_t		*opt;
11944 	uint8_t		optval;
11945 	uint8_t		optlen;
11946 	ipaddr_t	dst;
11947 	uint32_t	ts;
11948 	timestruc_t	now;
11949 
11950 	for (optval = ipoptp_first(&opts, ipha);
11951 	    optval != IPOPT_EOL;
11952 	    optval = ipoptp_next(&opts)) {
11953 		opt = opts.ipoptp_cur;
11954 		optlen = opts.ipoptp_len;
11955 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
11956 		switch (optval) {
11957 			uint32_t off;
11958 		case IPOPT_SSRR:
11959 		case IPOPT_LSRR:
11960 			off = opt[IPOPT_OFFSET];
11961 			off--;
11962 			if (optlen < IP_ADDR_LEN ||
11963 			    off > optlen - IP_ADDR_LEN) {
11964 				/* End of source route */
11965 				break;
11966 			}
11967 			/*
11968 			 * This will only happen if two consecutive entries
11969 			 * in the source route contains our address or if
11970 			 * it is a packet with a loose source route which
11971 			 * reaches us before consuming the whole source route
11972 			 */
11973 
11974 			if (optval == IPOPT_SSRR) {
11975 				return;
11976 			}
11977 			/*
11978 			 * Hack: instead of dropping the packet truncate the
11979 			 * source route to what has been used by filling the
11980 			 * rest with IPOPT_NOP.
11981 			 */
11982 			opt[IPOPT_OLEN] = (uint8_t)off;
11983 			while (off < optlen) {
11984 				opt[off++] = IPOPT_NOP;
11985 			}
11986 			break;
11987 		case IPOPT_RR:
11988 			off = opt[IPOPT_OFFSET];
11989 			off--;
11990 			if (optlen < IP_ADDR_LEN ||
11991 			    off > optlen - IP_ADDR_LEN) {
11992 				/* No more room - ignore */
11993 				ip1dbg((
11994 				    "ip_output_local_options: end of RR\n"));
11995 				break;
11996 			}
11997 			dst = htonl(INADDR_LOOPBACK);
11998 			bcopy(&dst, (char *)opt + off, IP_ADDR_LEN);
11999 			opt[IPOPT_OFFSET] += IP_ADDR_LEN;
12000 			break;
12001 		case IPOPT_TS:
12002 			/* Insert timestamp if there is romm */
12003 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
12004 			case IPOPT_TS_TSONLY:
12005 				off = IPOPT_TS_TIMELEN;
12006 				break;
12007 			case IPOPT_TS_PRESPEC:
12008 			case IPOPT_TS_PRESPEC_RFC791:
12009 				/* Verify that the address matched */
12010 				off = opt[IPOPT_OFFSET] - 1;
12011 				bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
12012 				if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
12013 					/* Not for us */
12014 					break;
12015 				}
12016 				/* FALLTHROUGH */
12017 			case IPOPT_TS_TSANDADDR:
12018 				off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
12019 				break;
12020 			default:
12021 				/*
12022 				 * ip_*put_options should have already
12023 				 * dropped this packet.
12024 				 */
12025 				cmn_err(CE_PANIC, "ip_output_local_options: "
12026 				    "unknown IT - bug in ip_output_options?\n");
12027 			}
12028 			if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
12029 				/* Increase overflow counter */
12030 				off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
12031 				opt[IPOPT_POS_OV_FLG] = (uint8_t)
12032 				    (opt[IPOPT_POS_OV_FLG] & 0x0F) |
12033 				    (off << 4);
12034 				break;
12035 			}
12036 			off = opt[IPOPT_OFFSET] - 1;
12037 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
12038 			case IPOPT_TS_PRESPEC:
12039 			case IPOPT_TS_PRESPEC_RFC791:
12040 			case IPOPT_TS_TSANDADDR:
12041 				dst = htonl(INADDR_LOOPBACK);
12042 				bcopy(&dst, (char *)opt + off, IP_ADDR_LEN);
12043 				opt[IPOPT_OFFSET] += IP_ADDR_LEN;
12044 				/* FALLTHROUGH */
12045 			case IPOPT_TS_TSONLY:
12046 				off = opt[IPOPT_OFFSET] - 1;
12047 				/* Compute # of milliseconds since midnight */
12048 				gethrestime(&now);
12049 				ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
12050 				    NSEC2MSEC(now.tv_nsec);
12051 				bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
12052 				opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
12053 				break;
12054 			}
12055 			break;
12056 		}
12057 	}
12058 }
12059 
12060 /*
12061  * Prepend an M_DATA fastpath header, and if none present prepend a
12062  * DL_UNITDATA_REQ. Frees the mblk on failure.
12063  *
12064  * nce_dlur_mp and nce_fp_mp can not disappear once they have been set.
12065  * If there is a change to them, the nce will be deleted (condemned) and
12066  * a new nce_t will be created when packets are sent. Thus we need no locks
12067  * to access those fields.
12068  *
12069  * We preserve b_band to support IPQoS. If a DL_UNITDATA_REQ is prepended
12070  * we place b_band in dl_priority.dl_max.
12071  */
12072 static mblk_t *
12073 ip_xmit_attach_llhdr(mblk_t *mp, nce_t *nce)
12074 {
12075 	uint_t	hlen;
12076 	mblk_t *mp1;
12077 	uint_t	priority;
12078 	uchar_t *rptr;
12079 
12080 	rptr = mp->b_rptr;
12081 
12082 	ASSERT(DB_TYPE(mp) == M_DATA);
12083 	priority = mp->b_band;
12084 
12085 	ASSERT(nce != NULL);
12086 	if ((mp1 = nce->nce_fp_mp) != NULL) {
12087 		hlen = MBLKL(mp1);
12088 		/*
12089 		 * Check if we have enough room to prepend fastpath
12090 		 * header
12091 		 */
12092 		if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) {
12093 			rptr -= hlen;
12094 			bcopy(mp1->b_rptr, rptr, hlen);
12095 			/*
12096 			 * Set the b_rptr to the start of the link layer
12097 			 * header
12098 			 */
12099 			mp->b_rptr = rptr;
12100 			return (mp);
12101 		}
12102 		mp1 = copyb(mp1);
12103 		if (mp1 == NULL) {
12104 			ill_t *ill = nce->nce_ill;
12105 
12106 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12107 			ip_drop_output("ipIfStatsOutDiscards", mp, ill);
12108 			freemsg(mp);
12109 			return (NULL);
12110 		}
12111 		mp1->b_band = priority;
12112 		mp1->b_cont = mp;
12113 		DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp);
12114 		DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp);
12115 		DB_CKSUMEND(mp1) = DB_CKSUMEND(mp);
12116 		DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp);
12117 		DB_LSOMSS(mp1) = DB_LSOMSS(mp);
12118 		DTRACE_PROBE1(ip__xmit__copyb, (mblk_t *), mp1);
12119 		/*
12120 		 * XXX disable ICK_VALID and compute checksum
12121 		 * here; can happen if nce_fp_mp changes and
12122 		 * it can't be copied now due to insufficient
12123 		 * space. (unlikely, fp mp can change, but it
12124 		 * does not increase in length)
12125 		 */
12126 		return (mp1);
12127 	}
12128 	mp1 = copyb(nce->nce_dlur_mp);
12129 
12130 	if (mp1 == NULL) {
12131 		ill_t *ill = nce->nce_ill;
12132 
12133 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12134 		ip_drop_output("ipIfStatsOutDiscards", mp, ill);
12135 		freemsg(mp);
12136 		return (NULL);
12137 	}
12138 	mp1->b_cont = mp;
12139 	if (priority != 0) {
12140 		mp1->b_band = priority;
12141 		((dl_unitdata_req_t *)(mp1->b_rptr))->dl_priority.dl_max =
12142 		    priority;
12143 	}
12144 	return (mp1);
12145 }
12146 
12147 /*
12148  * Finish the outbound IPsec processing. This function is called from
12149  * ipsec_out_process() if the IPsec packet was processed
12150  * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed
12151  * asynchronously.
12152  *
12153  * This is common to IPv4 and IPv6.
12154  */
12155 int
12156 ip_output_post_ipsec(mblk_t *mp, ip_xmit_attr_t *ixa)
12157 {
12158 	iaflags_t	ixaflags = ixa->ixa_flags;
12159 	uint_t		pktlen;
12160 
12161 
12162 	/* AH/ESP don't update ixa_pktlen when they modify the packet */
12163 	if (ixaflags & IXAF_IS_IPV4) {
12164 		ipha_t		*ipha = (ipha_t *)mp->b_rptr;
12165 
12166 		ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
12167 		pktlen = ntohs(ipha->ipha_length);
12168 	} else {
12169 		ip6_t		*ip6h = (ip6_t *)mp->b_rptr;
12170 
12171 		ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION);
12172 		pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN;
12173 	}
12174 
12175 	/*
12176 	 * We release any hard reference on the SAs here to make
12177 	 * sure the SAs can be garbage collected. ipsr_sa has a soft reference
12178 	 * on the SAs.
12179 	 * If in the future we want the hard latching of the SAs in the
12180 	 * ip_xmit_attr_t then we should remove this.
12181 	 */
12182 	if (ixa->ixa_ipsec_esp_sa != NULL) {
12183 		IPSA_REFRELE(ixa->ixa_ipsec_esp_sa);
12184 		ixa->ixa_ipsec_esp_sa = NULL;
12185 	}
12186 	if (ixa->ixa_ipsec_ah_sa != NULL) {
12187 		IPSA_REFRELE(ixa->ixa_ipsec_ah_sa);
12188 		ixa->ixa_ipsec_ah_sa = NULL;
12189 	}
12190 
12191 	/* Do we need to fragment? */
12192 	if ((ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR) ||
12193 	    pktlen > ixa->ixa_fragsize) {
12194 		if (ixaflags & IXAF_IS_IPV4) {
12195 			ASSERT(!(ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR));
12196 			/*
12197 			 * We check for the DF case in ipsec_out_process
12198 			 * hence this only handles the non-DF case.
12199 			 */
12200 			return (ip_fragment_v4(mp, ixa->ixa_nce, ixa->ixa_flags,
12201 			    pktlen, ixa->ixa_fragsize,
12202 			    ixa->ixa_xmit_hint, ixa->ixa_zoneid,
12203 			    ixa->ixa_no_loop_zoneid, ixa->ixa_postfragfn,
12204 			    &ixa->ixa_cookie));
12205 		} else {
12206 			mp = ip_fraghdr_add_v6(mp, ixa->ixa_ident, ixa);
12207 			if (mp == NULL) {
12208 				/* MIB and ip_drop_output already done */
12209 				return (ENOMEM);
12210 			}
12211 			pktlen += sizeof (ip6_frag_t);
12212 			if (pktlen > ixa->ixa_fragsize) {
12213 				return (ip_fragment_v6(mp, ixa->ixa_nce,
12214 				    ixa->ixa_flags, pktlen,
12215 				    ixa->ixa_fragsize, ixa->ixa_xmit_hint,
12216 				    ixa->ixa_zoneid, ixa->ixa_no_loop_zoneid,
12217 				    ixa->ixa_postfragfn, &ixa->ixa_cookie));
12218 			}
12219 		}
12220 	}
12221 	return ((ixa->ixa_postfragfn)(mp, ixa->ixa_nce, ixa->ixa_flags,
12222 	    pktlen, ixa->ixa_xmit_hint, ixa->ixa_zoneid,
12223 	    ixa->ixa_no_loop_zoneid, NULL));
12224 }
12225 
12226 /*
12227  * Finish the inbound IPsec processing. This function is called from
12228  * ipsec_out_process() if the IPsec packet was processed
12229  * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed
12230  * asynchronously.
12231  *
12232  * This is common to IPv4 and IPv6.
12233  */
12234 void
12235 ip_input_post_ipsec(mblk_t *mp, ip_recv_attr_t *ira)
12236 {
12237 	iaflags_t	iraflags = ira->ira_flags;
12238 
12239 	/* Length might have changed */
12240 	if (iraflags & IRAF_IS_IPV4) {
12241 		ipha_t		*ipha = (ipha_t *)mp->b_rptr;
12242 
12243 		ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
12244 		ira->ira_pktlen = ntohs(ipha->ipha_length);
12245 		ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha);
12246 		ira->ira_protocol = ipha->ipha_protocol;
12247 
12248 		ip_fanout_v4(mp, ipha, ira);
12249 	} else {
12250 		ip6_t		*ip6h = (ip6_t *)mp->b_rptr;
12251 		uint8_t		*nexthdrp;
12252 
12253 		ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION);
12254 		ira->ira_pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN;
12255 		if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ira->ira_ip_hdr_length,
12256 		    &nexthdrp)) {
12257 			/* Malformed packet */
12258 			BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards);
12259 			ip_drop_input("ipIfStatsInDiscards", mp, ira->ira_ill);
12260 			freemsg(mp);
12261 			return;
12262 		}
12263 		ira->ira_protocol = *nexthdrp;
12264 		ip_fanout_v6(mp, ip6h, ira);
12265 	}
12266 }
12267 
12268 /*
12269  * Select which AH & ESP SA's to use (if any) for the outbound packet.
12270  *
12271  * If this function returns B_TRUE, the requested SA's have been filled
12272  * into the ixa_ipsec_*_sa pointers.
12273  *
12274  * If the function returns B_FALSE, the packet has been "consumed", most
12275  * likely by an ACQUIRE sent up via PF_KEY to a key management daemon.
12276  *
12277  * The SA references created by the protocol-specific "select"
12278  * function will be released in ip_output_post_ipsec.
12279  */
12280 static boolean_t
12281 ipsec_out_select_sa(mblk_t *mp, ip_xmit_attr_t *ixa)
12282 {
12283 	boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE;
12284 	ipsec_policy_t *pp;
12285 	ipsec_action_t *ap;
12286 
12287 	ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE);
12288 	ASSERT((ixa->ixa_ipsec_policy != NULL) ||
12289 	    (ixa->ixa_ipsec_action != NULL));
12290 
12291 	ap = ixa->ixa_ipsec_action;
12292 	if (ap == NULL) {
12293 		pp = ixa->ixa_ipsec_policy;
12294 		ASSERT(pp != NULL);
12295 		ap = pp->ipsp_act;
12296 		ASSERT(ap != NULL);
12297 	}
12298 
12299 	/*
12300 	 * We have an action.  now, let's select SA's.
12301 	 * A side effect of setting ixa_ipsec_*_sa is that it will
12302 	 * be cached in the conn_t.
12303 	 */
12304 	if (ap->ipa_want_esp) {
12305 		if (ixa->ixa_ipsec_esp_sa == NULL) {
12306 			need_esp_acquire = !ipsec_outbound_sa(mp, ixa,
12307 			    IPPROTO_ESP);
12308 		}
12309 		ASSERT(need_esp_acquire || ixa->ixa_ipsec_esp_sa != NULL);
12310 	}
12311 
12312 	if (ap->ipa_want_ah) {
12313 		if (ixa->ixa_ipsec_ah_sa == NULL) {
12314 			need_ah_acquire = !ipsec_outbound_sa(mp, ixa,
12315 			    IPPROTO_AH);
12316 		}
12317 		ASSERT(need_ah_acquire || ixa->ixa_ipsec_ah_sa != NULL);
12318 		/*
12319 		 * The ESP and AH processing order needs to be preserved
12320 		 * when both protocols are required (ESP should be applied
12321 		 * before AH for an outbound packet). Force an ESP ACQUIRE
12322 		 * when both ESP and AH are required, and an AH ACQUIRE
12323 		 * is needed.
12324 		 */
12325 		if (ap->ipa_want_esp && need_ah_acquire)
12326 			need_esp_acquire = B_TRUE;
12327 	}
12328 
12329 	/*
12330 	 * Send an ACQUIRE (extended, regular, or both) if we need one.
12331 	 * Release SAs that got referenced, but will not be used until we
12332 	 * acquire _all_ of the SAs we need.
12333 	 */
12334 	if (need_ah_acquire || need_esp_acquire) {
12335 		if (ixa->ixa_ipsec_ah_sa != NULL) {
12336 			IPSA_REFRELE(ixa->ixa_ipsec_ah_sa);
12337 			ixa->ixa_ipsec_ah_sa = NULL;
12338 		}
12339 		if (ixa->ixa_ipsec_esp_sa != NULL) {
12340 			IPSA_REFRELE(ixa->ixa_ipsec_esp_sa);
12341 			ixa->ixa_ipsec_esp_sa = NULL;
12342 		}
12343 
12344 		sadb_acquire(mp, ixa, need_ah_acquire, need_esp_acquire);
12345 		return (B_FALSE);
12346 	}
12347 
12348 	return (B_TRUE);
12349 }
12350 
12351 /*
12352  * Handle IPsec output processing.
12353  * This function is only entered once for a given packet.
12354  * We try to do things synchronously, but if we need to have user-level
12355  * set up SAs, or ESP or AH uses asynchronous kEF, then the operation
12356  * will be completed
12357  *  - when the SAs are added in esp_add_sa_finish/ah_add_sa_finish
12358  *  - when asynchronous ESP is done it will do AH
12359  *
12360  * In all cases we come back in ip_output_post_ipsec() to fragment and
12361  * send out the packet.
12362  */
12363 int
12364 ipsec_out_process(mblk_t *mp, ip_xmit_attr_t *ixa)
12365 {
12366 	ill_t		*ill = ixa->ixa_nce->nce_ill;
12367 	ip_stack_t	*ipst = ixa->ixa_ipst;
12368 	ipsec_stack_t	*ipss;
12369 	ipsec_policy_t	*pp;
12370 	ipsec_action_t	*ap;
12371 
12372 	ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE);
12373 
12374 	ASSERT((ixa->ixa_ipsec_policy != NULL) ||
12375 	    (ixa->ixa_ipsec_action != NULL));
12376 
12377 	ipss = ipst->ips_netstack->netstack_ipsec;
12378 	if (!ipsec_loaded(ipss)) {
12379 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12380 		ip_drop_packet(mp, B_TRUE, ill,
12381 		    DROPPER(ipss, ipds_ip_ipsec_not_loaded),
12382 		    &ipss->ipsec_dropper);
12383 		return (ENOTSUP);
12384 	}
12385 
12386 	ap = ixa->ixa_ipsec_action;
12387 	if (ap == NULL) {
12388 		pp = ixa->ixa_ipsec_policy;
12389 		ASSERT(pp != NULL);
12390 		ap = pp->ipsp_act;
12391 		ASSERT(ap != NULL);
12392 	}
12393 
12394 	/* Handle explicit drop action and bypass. */
12395 	switch (ap->ipa_act.ipa_type) {
12396 	case IPSEC_ACT_DISCARD:
12397 	case IPSEC_ACT_REJECT:
12398 		ip_drop_packet(mp, B_FALSE, ill,
12399 		    DROPPER(ipss, ipds_spd_explicit), &ipss->ipsec_spd_dropper);
12400 		return (EHOSTUNREACH);	/* IPsec policy failure */
12401 	case IPSEC_ACT_BYPASS:
12402 		return (ip_output_post_ipsec(mp, ixa));
12403 	}
12404 
12405 	/*
12406 	 * The order of processing is first insert a IP header if needed.
12407 	 * Then insert the ESP header and then the AH header.
12408 	 */
12409 	if ((ixa->ixa_flags & IXAF_IS_IPV4) && ap->ipa_want_se) {
12410 		/*
12411 		 * First get the outer IP header before sending
12412 		 * it to ESP.
12413 		 */
12414 		ipha_t *oipha, *iipha;
12415 		mblk_t *outer_mp, *inner_mp;
12416 
12417 		if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) {
12418 			(void) mi_strlog(ill->ill_rq, 0,
12419 			    SL_ERROR|SL_TRACE|SL_CONSOLE,
12420 			    "ipsec_out_process: "
12421 			    "Self-Encapsulation failed: Out of memory\n");
12422 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12423 			ip_drop_output("ipIfStatsOutDiscards", mp, ill);
12424 			freemsg(mp);
12425 			return (ENOBUFS);
12426 		}
12427 		inner_mp = mp;
12428 		ASSERT(inner_mp->b_datap->db_type == M_DATA);
12429 		oipha = (ipha_t *)outer_mp->b_rptr;
12430 		iipha = (ipha_t *)inner_mp->b_rptr;
12431 		*oipha = *iipha;
12432 		outer_mp->b_wptr += sizeof (ipha_t);
12433 		oipha->ipha_length = htons(ntohs(iipha->ipha_length) +
12434 		    sizeof (ipha_t));
12435 		oipha->ipha_protocol = IPPROTO_ENCAP;
12436 		oipha->ipha_version_and_hdr_length =
12437 		    IP_SIMPLE_HDR_VERSION;
12438 		oipha->ipha_hdr_checksum = 0;
12439 		oipha->ipha_hdr_checksum = ip_csum_hdr(oipha);
12440 		outer_mp->b_cont = inner_mp;
12441 		mp = outer_mp;
12442 
12443 		ixa->ixa_flags |= IXAF_IPSEC_TUNNEL;
12444 	}
12445 
12446 	/* If we need to wait for a SA then we can't return any errno */
12447 	if (((ap->ipa_want_ah && (ixa->ixa_ipsec_ah_sa == NULL)) ||
12448 	    (ap->ipa_want_esp && (ixa->ixa_ipsec_esp_sa == NULL))) &&
12449 	    !ipsec_out_select_sa(mp, ixa))
12450 		return (0);
12451 
12452 	/*
12453 	 * By now, we know what SA's to use.  Toss over to ESP & AH
12454 	 * to do the heavy lifting.
12455 	 */
12456 	if (ap->ipa_want_esp) {
12457 		ASSERT(ixa->ixa_ipsec_esp_sa != NULL);
12458 
12459 		mp = ixa->ixa_ipsec_esp_sa->ipsa_output_func(mp, ixa);
12460 		if (mp == NULL) {
12461 			/*
12462 			 * Either it failed or is pending. In the former case
12463 			 * ipIfStatsInDiscards was increased.
12464 			 */
12465 			return (0);
12466 		}
12467 	}
12468 
12469 	if (ap->ipa_want_ah) {
12470 		ASSERT(ixa->ixa_ipsec_ah_sa != NULL);
12471 
12472 		mp = ixa->ixa_ipsec_ah_sa->ipsa_output_func(mp, ixa);
12473 		if (mp == NULL) {
12474 			/*
12475 			 * Either it failed or is pending. In the former case
12476 			 * ipIfStatsInDiscards was increased.
12477 			 */
12478 			return (0);
12479 		}
12480 	}
12481 	/*
12482 	 * We are done with IPsec processing. Send it over
12483 	 * the wire.
12484 	 */
12485 	return (ip_output_post_ipsec(mp, ixa));
12486 }
12487 
12488 /*
12489  * ioctls that go through a down/up sequence may need to wait for the down
12490  * to complete. This involves waiting for the ire and ipif refcnts to go down
12491  * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail.
12492  */
12493 /* ARGSUSED */
12494 void
12495 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
12496 {
12497 	struct iocblk *iocp;
12498 	mblk_t *mp1;
12499 	ip_ioctl_cmd_t *ipip;
12500 	int err;
12501 	sin_t	*sin;
12502 	struct lifreq *lifr;
12503 	struct ifreq *ifr;
12504 
12505 	iocp = (struct iocblk *)mp->b_rptr;
12506 	ASSERT(ipsq != NULL);
12507 	/* Existence of mp1 verified in ip_wput_nondata */
12508 	mp1 = mp->b_cont->b_cont;
12509 	ipip = ip_sioctl_lookup(iocp->ioc_cmd);
12510 	if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) {
12511 		/*
12512 		 * Special case where ipx_current_ipif is not set:
12513 		 * ill_phyint_reinit merged the v4 and v6 into a single ipsq.
12514 		 * We are here as were not able to complete the operation in
12515 		 * ipif_set_values because we could not become exclusive on
12516 		 * the new ipsq.
12517 		 */
12518 		ill_t *ill = q->q_ptr;
12519 		ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd);
12520 	}
12521 	ASSERT(ipsq->ipsq_xop->ipx_current_ipif != NULL);
12522 
12523 	if (ipip->ipi_cmd_type == IF_CMD) {
12524 		/* This a old style SIOC[GS]IF* command */
12525 		ifr = (struct ifreq *)mp1->b_rptr;
12526 		sin = (sin_t *)&ifr->ifr_addr;
12527 	} else if (ipip->ipi_cmd_type == LIF_CMD) {
12528 		/* This a new style SIOC[GS]LIF* command */
12529 		lifr = (struct lifreq *)mp1->b_rptr;
12530 		sin = (sin_t *)&lifr->lifr_addr;
12531 	} else {
12532 		sin = NULL;
12533 	}
12534 
12535 	err = (*ipip->ipi_func_restart)(ipsq->ipsq_xop->ipx_current_ipif, sin,
12536 	    q, mp, ipip, mp1->b_rptr);
12537 
12538 	DTRACE_PROBE4(ipif__ioctl, char *, "ip_reprocess_ioctl finish",
12539 	    int, ipip->ipi_cmd,
12540 	    ill_t *, ipsq->ipsq_xop->ipx_current_ipif->ipif_ill,
12541 	    ipif_t *, ipsq->ipsq_xop->ipx_current_ipif);
12542 
12543 	ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq);
12544 }
12545 
12546 /*
12547  * ioctl processing
12548  *
12549  * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up
12550  * the ioctl command in the ioctl tables, determines the copyin data size
12551  * from the ipi_copyin_size field, and does an mi_copyin() of that size.
12552  *
12553  * ioctl processing then continues when the M_IOCDATA makes its way down to
12554  * ip_wput_nondata().  The ioctl is looked up again in the ioctl table, its
12555  * associated 'conn' is refheld till the end of the ioctl and the general
12556  * ioctl processing function ip_process_ioctl() is called to extract the
12557  * arguments and process the ioctl.  To simplify extraction, ioctl commands
12558  * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a
12559  * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq())
12560  * is used to extract the ioctl's arguments.
12561  *
12562  * ip_process_ioctl determines if the ioctl needs to be serialized, and if
12563  * so goes thru the serialization primitive ipsq_try_enter. Then the
12564  * appropriate function to handle the ioctl is called based on the entry in
12565  * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish
12566  * which also refreleases the 'conn' that was refheld at the start of the
12567  * ioctl. Finally ipsq_exit is called if needed to exit the ipsq.
12568  *
12569  * Many exclusive ioctls go thru an internal down up sequence as part of
12570  * the operation. For example an attempt to change the IP address of an
12571  * ipif entails ipif_down, set address, ipif_up. Bringing down the interface
12572  * does all the cleanup such as deleting all ires that use this address.
12573  * Then we need to wait till all references to the interface go away.
12574  */
12575 void
12576 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg)
12577 {
12578 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
12579 	ip_ioctl_cmd_t *ipip = arg;
12580 	ip_extract_func_t *extract_funcp;
12581 	cmd_info_t ci;
12582 	int err;
12583 	boolean_t entered_ipsq = B_FALSE;
12584 
12585 	ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd));
12586 
12587 	if (ipip == NULL)
12588 		ipip = ip_sioctl_lookup(iocp->ioc_cmd);
12589 
12590 	/*
12591 	 * SIOCLIFADDIF needs to go thru a special path since the
12592 	 * ill may not exist yet. This happens in the case of lo0
12593 	 * which is created using this ioctl.
12594 	 */
12595 	if (ipip->ipi_cmd == SIOCLIFADDIF) {
12596 		err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL);
12597 		DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish",
12598 		    int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
12599 		ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
12600 		return;
12601 	}
12602 
12603 	ci.ci_ipif = NULL;
12604 	switch (ipip->ipi_cmd_type) {
12605 	case MISC_CMD:
12606 	case MSFILT_CMD:
12607 		/*
12608 		 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF.
12609 		 */
12610 		if (ipip->ipi_cmd == IF_UNITSEL) {
12611 			/* ioctl comes down the ill */
12612 			ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif;
12613 			ipif_refhold(ci.ci_ipif);
12614 		}
12615 		err = 0;
12616 		ci.ci_sin = NULL;
12617 		ci.ci_sin6 = NULL;
12618 		ci.ci_lifr = NULL;
12619 		extract_funcp = NULL;
12620 		break;
12621 
12622 	case IF_CMD:
12623 	case LIF_CMD:
12624 		extract_funcp = ip_extract_lifreq;
12625 		break;
12626 
12627 	case ARP_CMD:
12628 	case XARP_CMD:
12629 		extract_funcp = ip_extract_arpreq;
12630 		break;
12631 
12632 	default:
12633 		ASSERT(0);
12634 	}
12635 
12636 	if (extract_funcp != NULL) {
12637 		err = (*extract_funcp)(q, mp, ipip, &ci);
12638 		if (err != 0) {
12639 			DTRACE_PROBE4(ipif__ioctl,
12640 			    char *, "ip_process_ioctl finish err",
12641 			    int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
12642 			ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
12643 			return;
12644 		}
12645 
12646 		/*
12647 		 * All of the extraction functions return a refheld ipif.
12648 		 */
12649 		ASSERT(ci.ci_ipif != NULL);
12650 	}
12651 
12652 	if (!(ipip->ipi_flags & IPI_WR)) {
12653 		/*
12654 		 * A return value of EINPROGRESS means the ioctl is
12655 		 * either queued and waiting for some reason or has
12656 		 * already completed.
12657 		 */
12658 		err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip,
12659 		    ci.ci_lifr);
12660 		if (ci.ci_ipif != NULL) {
12661 			DTRACE_PROBE4(ipif__ioctl,
12662 			    char *, "ip_process_ioctl finish RD",
12663 			    int, ipip->ipi_cmd, ill_t *, ci.ci_ipif->ipif_ill,
12664 			    ipif_t *, ci.ci_ipif);
12665 			ipif_refrele(ci.ci_ipif);
12666 		} else {
12667 			DTRACE_PROBE4(ipif__ioctl,
12668 			    char *, "ip_process_ioctl finish RD",
12669 			    int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
12670 		}
12671 		ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
12672 		return;
12673 	}
12674 
12675 	ASSERT(ci.ci_ipif != NULL);
12676 
12677 	/*
12678 	 * If ipsq is non-NULL, we are already being called exclusively
12679 	 */
12680 	ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq));
12681 	if (ipsq == NULL) {
12682 		ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl,
12683 		    NEW_OP, B_TRUE);
12684 		if (ipsq == NULL) {
12685 			ipif_refrele(ci.ci_ipif);
12686 			return;
12687 		}
12688 		entered_ipsq = B_TRUE;
12689 	}
12690 	/*
12691 	 * Release the ipif so that ipif_down and friends that wait for
12692 	 * references to go away are not misled about the current ipif_refcnt
12693 	 * values. We are writer so we can access the ipif even after releasing
12694 	 * the ipif.
12695 	 */
12696 	ipif_refrele(ci.ci_ipif);
12697 
12698 	ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd);
12699 
12700 	/*
12701 	 * A return value of EINPROGRESS means the ioctl is
12702 	 * either queued and waiting for some reason or has
12703 	 * already completed.
12704 	 */
12705 	err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr);
12706 
12707 	DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish WR",
12708 	    int, ipip->ipi_cmd,
12709 	    ill_t *, ci.ci_ipif == NULL ? NULL : ci.ci_ipif->ipif_ill,
12710 	    ipif_t *, ci.ci_ipif);
12711 	ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq);
12712 
12713 	if (entered_ipsq)
12714 		ipsq_exit(ipsq);
12715 }
12716 
12717 /*
12718  * Complete the ioctl. Typically ioctls use the mi package and need to
12719  * do mi_copyout/mi_copy_done.
12720  */
12721 void
12722 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq)
12723 {
12724 	conn_t	*connp = NULL;
12725 
12726 	if (err == EINPROGRESS)
12727 		return;
12728 
12729 	if (CONN_Q(q)) {
12730 		connp = Q_TO_CONN(q);
12731 		ASSERT(connp->conn_ref >= 2);
12732 	}
12733 
12734 	switch (mode) {
12735 	case COPYOUT:
12736 		if (err == 0)
12737 			mi_copyout(q, mp);
12738 		else
12739 			mi_copy_done(q, mp, err);
12740 		break;
12741 
12742 	case NO_COPYOUT:
12743 		mi_copy_done(q, mp, err);
12744 		break;
12745 
12746 	default:
12747 		ASSERT(mode == CONN_CLOSE);	/* aborted through CONN_CLOSE */
12748 		break;
12749 	}
12750 
12751 	/*
12752 	 * The conn refhold and ioctlref placed on the conn at the start of the
12753 	 * ioctl are released here.
12754 	 */
12755 	if (connp != NULL) {
12756 		CONN_DEC_IOCTLREF(connp);
12757 		CONN_OPER_PENDING_DONE(connp);
12758 	}
12759 
12760 	if (ipsq != NULL)
12761 		ipsq_current_finish(ipsq);
12762 }
12763 
12764 /* Handles all non data messages */
12765 int
12766 ip_wput_nondata(queue_t *q, mblk_t *mp)
12767 {
12768 	mblk_t		*mp1;
12769 	struct iocblk	*iocp;
12770 	ip_ioctl_cmd_t	*ipip;
12771 	conn_t		*connp;
12772 	cred_t		*cr;
12773 	char		*proto_str;
12774 
12775 	if (CONN_Q(q))
12776 		connp = Q_TO_CONN(q);
12777 	else
12778 		connp = NULL;
12779 
12780 	switch (DB_TYPE(mp)) {
12781 	case M_IOCTL:
12782 		/*
12783 		 * IOCTL processing begins in ip_sioctl_copyin_setup which
12784 		 * will arrange to copy in associated control structures.
12785 		 */
12786 		ip_sioctl_copyin_setup(q, mp);
12787 		return (0);
12788 	case M_IOCDATA:
12789 		/*
12790 		 * Ensure that this is associated with one of our trans-
12791 		 * parent ioctls.  If it's not ours, discard it if we're
12792 		 * running as a driver, or pass it on if we're a module.
12793 		 */
12794 		iocp = (struct iocblk *)mp->b_rptr;
12795 		ipip = ip_sioctl_lookup(iocp->ioc_cmd);
12796 		if (ipip == NULL) {
12797 			if (q->q_next == NULL) {
12798 				goto nak;
12799 			} else {
12800 				putnext(q, mp);
12801 			}
12802 			return (0);
12803 		}
12804 		if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) {
12805 			/*
12806 			 * The ioctl is one we recognise, but is not consumed
12807 			 * by IP as a module and we are a module, so we drop
12808 			 */
12809 			goto nak;
12810 		}
12811 
12812 		/* IOCTL continuation following copyin or copyout. */
12813 		if (mi_copy_state(q, mp, NULL) == -1) {
12814 			/*
12815 			 * The copy operation failed.  mi_copy_state already
12816 			 * cleaned up, so we're out of here.
12817 			 */
12818 			return (0);
12819 		}
12820 		/*
12821 		 * If we just completed a copy in, we become writer and
12822 		 * continue processing in ip_sioctl_copyin_done.  If it
12823 		 * was a copy out, we call mi_copyout again.  If there is
12824 		 * nothing more to copy out, it will complete the IOCTL.
12825 		 */
12826 		if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) {
12827 			if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) {
12828 				mi_copy_done(q, mp, EPROTO);
12829 				return (0);
12830 			}
12831 			/*
12832 			 * Check for cases that need more copying.  A return
12833 			 * value of 0 means a second copyin has been started,
12834 			 * so we return; a return value of 1 means no more
12835 			 * copying is needed, so we continue.
12836 			 */
12837 			if (ipip->ipi_cmd_type == MSFILT_CMD &&
12838 			    MI_COPY_COUNT(mp) == 1) {
12839 				if (ip_copyin_msfilter(q, mp) == 0)
12840 					return (0);
12841 			}
12842 			/*
12843 			 * Refhold the conn, till the ioctl completes. This is
12844 			 * needed in case the ioctl ends up in the pending mp
12845 			 * list. Every mp in the ipx_pending_mp list must have
12846 			 * a refhold on the conn to resume processing. The
12847 			 * refhold is released when the ioctl completes
12848 			 * (whether normally or abnormally). An ioctlref is also
12849 			 * placed on the conn to prevent TCP from removing the
12850 			 * queue needed to send the ioctl reply back.
12851 			 * In all cases ip_ioctl_finish is called to finish
12852 			 * the ioctl and release the refholds.
12853 			 */
12854 			if (connp != NULL) {
12855 				/* This is not a reentry */
12856 				CONN_INC_REF(connp);
12857 				CONN_INC_IOCTLREF(connp);
12858 			} else {
12859 				if (!(ipip->ipi_flags & IPI_MODOK)) {
12860 					mi_copy_done(q, mp, EINVAL);
12861 					return (0);
12862 				}
12863 			}
12864 
12865 			ip_process_ioctl(NULL, q, mp, ipip);
12866 
12867 		} else {
12868 			mi_copyout(q, mp);
12869 		}
12870 		return (0);
12871 
12872 	case M_IOCNAK:
12873 		/*
12874 		 * The only way we could get here is if a resolver didn't like
12875 		 * an IOCTL we sent it.	 This shouldn't happen.
12876 		 */
12877 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
12878 		    "ip_wput_nondata: unexpected M_IOCNAK, ioc_cmd 0x%x",
12879 		    ((struct iocblk *)mp->b_rptr)->ioc_cmd);
12880 		freemsg(mp);
12881 		return (0);
12882 	case M_IOCACK:
12883 		/* /dev/ip shouldn't see this */
12884 		goto nak;
12885 	case M_FLUSH:
12886 		if (*mp->b_rptr & FLUSHW)
12887 			flushq(q, FLUSHALL);
12888 		if (q->q_next) {
12889 			putnext(q, mp);
12890 			return (0);
12891 		}
12892 		if (*mp->b_rptr & FLUSHR) {
12893 			*mp->b_rptr &= ~FLUSHW;
12894 			qreply(q, mp);
12895 			return (0);
12896 		}
12897 		freemsg(mp);
12898 		return (0);
12899 	case M_CTL:
12900 		break;
12901 	case M_PROTO:
12902 	case M_PCPROTO:
12903 		/*
12904 		 * The only PROTO messages we expect are SNMP-related.
12905 		 */
12906 		switch (((union T_primitives *)mp->b_rptr)->type) {
12907 		case T_SVR4_OPTMGMT_REQ:
12908 			ip2dbg(("ip_wput_nondata: T_SVR4_OPTMGMT_REQ "
12909 			    "flags %x\n",
12910 			    ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags));
12911 
12912 			if (connp == NULL) {
12913 				proto_str = "T_SVR4_OPTMGMT_REQ";
12914 				goto protonak;
12915 			}
12916 
12917 			/*
12918 			 * All Solaris components should pass a db_credp
12919 			 * for this TPI message, hence we ASSERT.
12920 			 * But in case there is some other M_PROTO that looks
12921 			 * like a TPI message sent by some other kernel
12922 			 * component, we check and return an error.
12923 			 */
12924 			cr = msg_getcred(mp, NULL);
12925 			ASSERT(cr != NULL);
12926 			if (cr == NULL) {
12927 				mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL);
12928 				if (mp != NULL)
12929 					qreply(q, mp);
12930 				return (0);
12931 			}
12932 
12933 			if (!snmpcom_req(q, mp, ip_snmp_set, ip_snmp_get, cr)) {
12934 				proto_str = "Bad SNMPCOM request?";
12935 				goto protonak;
12936 			}
12937 			return (0);
12938 		default:
12939 			ip1dbg(("ip_wput_nondata: dropping M_PROTO prim %u\n",
12940 			    (int)*(uint_t *)mp->b_rptr));
12941 			freemsg(mp);
12942 			return (0);
12943 		}
12944 	default:
12945 		break;
12946 	}
12947 	if (q->q_next) {
12948 		putnext(q, mp);
12949 	} else
12950 		freemsg(mp);
12951 	return (0);
12952 
12953 nak:
12954 	iocp->ioc_error = EINVAL;
12955 	mp->b_datap->db_type = M_IOCNAK;
12956 	iocp->ioc_count = 0;
12957 	qreply(q, mp);
12958 	return (0);
12959 
12960 protonak:
12961 	cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str);
12962 	if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL)
12963 		qreply(q, mp);
12964 	return (0);
12965 }
12966 
12967 /*
12968  * Process IP options in an outbound packet.  Verify that the nexthop in a
12969  * strict source route is onlink.
12970  * Returns non-zero if something fails in which case an ICMP error has been
12971  * sent and mp freed.
12972  *
12973  * Assumes the ULP has called ip_massage_options to move nexthop into ipha_dst.
12974  */
12975 int
12976 ip_output_options(mblk_t *mp, ipha_t *ipha, ip_xmit_attr_t *ixa, ill_t *ill)
12977 {
12978 	ipoptp_t	opts;
12979 	uchar_t		*opt;
12980 	uint8_t		optval;
12981 	uint8_t		optlen;
12982 	ipaddr_t	dst;
12983 	intptr_t	code = 0;
12984 	ire_t		*ire;
12985 	ip_stack_t	*ipst = ixa->ixa_ipst;
12986 	ip_recv_attr_t	iras;
12987 
12988 	ip2dbg(("ip_output_options\n"));
12989 
12990 	dst = ipha->ipha_dst;
12991 	for (optval = ipoptp_first(&opts, ipha);
12992 	    optval != IPOPT_EOL;
12993 	    optval = ipoptp_next(&opts)) {
12994 		opt = opts.ipoptp_cur;
12995 		optlen = opts.ipoptp_len;
12996 		ip2dbg(("ip_output_options: opt %d, len %d\n",
12997 		    optval, optlen));
12998 		switch (optval) {
12999 			uint32_t off;
13000 		case IPOPT_SSRR:
13001 		case IPOPT_LSRR:
13002 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
13003 				ip1dbg((
13004 				    "ip_output_options: bad option offset\n"));
13005 				code = (char *)&opt[IPOPT_OLEN] -
13006 				    (char *)ipha;
13007 				goto param_prob;
13008 			}
13009 			off = opt[IPOPT_OFFSET];
13010 			ip1dbg(("ip_output_options: next hop 0x%x\n",
13011 			    ntohl(dst)));
13012 			/*
13013 			 * For strict: verify that dst is directly
13014 			 * reachable.
13015 			 */
13016 			if (optval == IPOPT_SSRR) {
13017 				ire = ire_ftable_lookup_v4(dst, 0, 0,
13018 				    IRE_INTERFACE, NULL, ALL_ZONES,
13019 				    ixa->ixa_tsl,
13020 				    MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst,
13021 				    NULL);
13022 				if (ire == NULL) {
13023 					ip1dbg(("ip_output_options: SSRR not"
13024 					    " directly reachable: 0x%x\n",
13025 					    ntohl(dst)));
13026 					goto bad_src_route;
13027 				}
13028 				ire_refrele(ire);
13029 			}
13030 			break;
13031 		case IPOPT_RR:
13032 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
13033 				ip1dbg((
13034 				    "ip_output_options: bad option offset\n"));
13035 				code = (char *)&opt[IPOPT_OLEN] -
13036 				    (char *)ipha;
13037 				goto param_prob;
13038 			}
13039 			break;
13040 		case IPOPT_TS:
13041 			/*
13042 			 * Verify that length >=5 and that there is either
13043 			 * room for another timestamp or that the overflow
13044 			 * counter is not maxed out.
13045 			 */
13046 			code = (char *)&opt[IPOPT_OLEN] - (char *)ipha;
13047 			if (optlen < IPOPT_MINLEN_IT) {
13048 				goto param_prob;
13049 			}
13050 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
13051 				ip1dbg((
13052 				    "ip_output_options: bad option offset\n"));
13053 				code = (char *)&opt[IPOPT_OFFSET] -
13054 				    (char *)ipha;
13055 				goto param_prob;
13056 			}
13057 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
13058 			case IPOPT_TS_TSONLY:
13059 				off = IPOPT_TS_TIMELEN;
13060 				break;
13061 			case IPOPT_TS_TSANDADDR:
13062 			case IPOPT_TS_PRESPEC:
13063 			case IPOPT_TS_PRESPEC_RFC791:
13064 				off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
13065 				break;
13066 			default:
13067 				code = (char *)&opt[IPOPT_POS_OV_FLG] -
13068 				    (char *)ipha;
13069 				goto param_prob;
13070 			}
13071 			if (opt[IPOPT_OFFSET] - 1 + off > optlen &&
13072 			    (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) {
13073 				/*
13074 				 * No room and the overflow counter is 15
13075 				 * already.
13076 				 */
13077 				goto param_prob;
13078 			}
13079 			break;
13080 		}
13081 	}
13082 
13083 	if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0)
13084 		return (0);
13085 
13086 	ip1dbg(("ip_output_options: error processing IP options."));
13087 	code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha;
13088 
13089 param_prob:
13090 	bzero(&iras, sizeof (iras));
13091 	iras.ira_ill = iras.ira_rill = ill;
13092 	iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex;
13093 	iras.ira_rifindex = iras.ira_ruifindex;
13094 	iras.ira_flags = IRAF_IS_IPV4;
13095 
13096 	ip_drop_output("ip_output_options", mp, ill);
13097 	icmp_param_problem(mp, (uint8_t)code, &iras);
13098 	ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
13099 	return (-1);
13100 
13101 bad_src_route:
13102 	bzero(&iras, sizeof (iras));
13103 	iras.ira_ill = iras.ira_rill = ill;
13104 	iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex;
13105 	iras.ira_rifindex = iras.ira_ruifindex;
13106 	iras.ira_flags = IRAF_IS_IPV4;
13107 
13108 	ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill);
13109 	icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, &iras);
13110 	ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
13111 	return (-1);
13112 }
13113 
13114 /*
13115  * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT.
13116  * conn_drain_list_cnt can be changed by setting conn_drain_nthreads
13117  * thru /etc/system.
13118  */
13119 #define	CONN_MAXDRAINCNT	64
13120 
13121 static void
13122 conn_drain_init(ip_stack_t *ipst)
13123 {
13124 	int i, j;
13125 	idl_tx_list_t *itl_tx;
13126 
13127 	ipst->ips_conn_drain_list_cnt = conn_drain_nthreads;
13128 
13129 	if ((ipst->ips_conn_drain_list_cnt == 0) ||
13130 	    (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) {
13131 		/*
13132 		 * Default value of the number of drainers is the
13133 		 * number of cpus, subject to maximum of 8 drainers.
13134 		 */
13135 		if (boot_max_ncpus != -1)
13136 			ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8);
13137 		else
13138 			ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8);
13139 	}
13140 
13141 	ipst->ips_idl_tx_list =
13142 	    kmem_zalloc(TX_FANOUT_SIZE * sizeof (idl_tx_list_t), KM_SLEEP);
13143 	for (i = 0; i < TX_FANOUT_SIZE; i++) {
13144 		itl_tx =  &ipst->ips_idl_tx_list[i];
13145 		itl_tx->txl_drain_list =
13146 		    kmem_zalloc(ipst->ips_conn_drain_list_cnt *
13147 		    sizeof (idl_t), KM_SLEEP);
13148 		mutex_init(&itl_tx->txl_lock, NULL, MUTEX_DEFAULT, NULL);
13149 		for (j = 0; j < ipst->ips_conn_drain_list_cnt; j++) {
13150 			mutex_init(&itl_tx->txl_drain_list[j].idl_lock, NULL,
13151 			    MUTEX_DEFAULT, NULL);
13152 			itl_tx->txl_drain_list[j].idl_itl = itl_tx;
13153 		}
13154 	}
13155 }
13156 
13157 static void
13158 conn_drain_fini(ip_stack_t *ipst)
13159 {
13160 	int i;
13161 	idl_tx_list_t *itl_tx;
13162 
13163 	for (i = 0; i < TX_FANOUT_SIZE; i++) {
13164 		itl_tx =  &ipst->ips_idl_tx_list[i];
13165 		kmem_free(itl_tx->txl_drain_list,
13166 		    ipst->ips_conn_drain_list_cnt * sizeof (idl_t));
13167 	}
13168 	kmem_free(ipst->ips_idl_tx_list,
13169 	    TX_FANOUT_SIZE * sizeof (idl_tx_list_t));
13170 	ipst->ips_idl_tx_list = NULL;
13171 }
13172 
13173 /*
13174  * Flow control has blocked us from proceeding.  Insert the given conn in one
13175  * of the conn drain lists.  When flow control is unblocked, either ip_wsrv()
13176  * (STREAMS) or ill_flow_enable() (direct) will be called back, which in turn
13177  * will call conn_walk_drain().  See the flow control notes at the top of this
13178  * file for more details.
13179  */
13180 void
13181 conn_drain_insert(conn_t *connp, idl_tx_list_t *tx_list)
13182 {
13183 	idl_t	*idl = tx_list->txl_drain_list;
13184 	uint_t	index;
13185 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
13186 
13187 	mutex_enter(&connp->conn_lock);
13188 	if (connp->conn_state_flags & CONN_CLOSING) {
13189 		/*
13190 		 * The conn is closing as a result of which CONN_CLOSING
13191 		 * is set. Return.
13192 		 */
13193 		mutex_exit(&connp->conn_lock);
13194 		return;
13195 	} else if (connp->conn_idl == NULL) {
13196 		/*
13197 		 * Assign the next drain list round robin. We dont' use
13198 		 * a lock, and thus it may not be strictly round robin.
13199 		 * Atomicity of load/stores is enough to make sure that
13200 		 * conn_drain_list_index is always within bounds.
13201 		 */
13202 		index = tx_list->txl_drain_index;
13203 		ASSERT(index < ipst->ips_conn_drain_list_cnt);
13204 		connp->conn_idl = &tx_list->txl_drain_list[index];
13205 		index++;
13206 		if (index == ipst->ips_conn_drain_list_cnt)
13207 			index = 0;
13208 		tx_list->txl_drain_index = index;
13209 	} else {
13210 		ASSERT(connp->conn_idl->idl_itl == tx_list);
13211 	}
13212 	mutex_exit(&connp->conn_lock);
13213 
13214 	idl = connp->conn_idl;
13215 	mutex_enter(&idl->idl_lock);
13216 	if ((connp->conn_drain_prev != NULL) ||
13217 	    (connp->conn_state_flags & CONN_CLOSING)) {
13218 		/*
13219 		 * The conn is either already in the drain list or closing.
13220 		 * (We needed to check for CONN_CLOSING again since close can
13221 		 * sneak in between dropping conn_lock and acquiring idl_lock.)
13222 		 */
13223 		mutex_exit(&idl->idl_lock);
13224 		return;
13225 	}
13226 
13227 	/*
13228 	 * The conn is not in the drain list. Insert it at the
13229 	 * tail of the drain list. The drain list is circular
13230 	 * and doubly linked. idl_conn points to the 1st element
13231 	 * in the list.
13232 	 */
13233 	if (idl->idl_conn == NULL) {
13234 		idl->idl_conn = connp;
13235 		connp->conn_drain_next = connp;
13236 		connp->conn_drain_prev = connp;
13237 	} else {
13238 		conn_t *head = idl->idl_conn;
13239 
13240 		connp->conn_drain_next = head;
13241 		connp->conn_drain_prev = head->conn_drain_prev;
13242 		head->conn_drain_prev->conn_drain_next = connp;
13243 		head->conn_drain_prev = connp;
13244 	}
13245 	/*
13246 	 * For non streams based sockets assert flow control.
13247 	 */
13248 	conn_setqfull(connp, NULL);
13249 	mutex_exit(&idl->idl_lock);
13250 }
13251 
13252 static void
13253 conn_drain_remove(conn_t *connp)
13254 {
13255 	idl_t *idl = connp->conn_idl;
13256 
13257 	if (idl != NULL) {
13258 		/*
13259 		 * Remove ourself from the drain list.
13260 		 */
13261 		if (connp->conn_drain_next == connp) {
13262 			/* Singleton in the list */
13263 			ASSERT(connp->conn_drain_prev == connp);
13264 			idl->idl_conn = NULL;
13265 		} else {
13266 			connp->conn_drain_prev->conn_drain_next =
13267 			    connp->conn_drain_next;
13268 			connp->conn_drain_next->conn_drain_prev =
13269 			    connp->conn_drain_prev;
13270 			if (idl->idl_conn == connp)
13271 				idl->idl_conn = connp->conn_drain_next;
13272 		}
13273 
13274 		/*
13275 		 * NOTE: because conn_idl is associated with a specific drain
13276 		 * list which in turn is tied to the index the TX ring
13277 		 * (txl_cookie) hashes to, and because the TX ring can change
13278 		 * over the lifetime of the conn_t, we must clear conn_idl so
13279 		 * a subsequent conn_drain_insert() will set conn_idl again
13280 		 * based on the latest txl_cookie.
13281 		 */
13282 		connp->conn_idl = NULL;
13283 	}
13284 	connp->conn_drain_next = NULL;
13285 	connp->conn_drain_prev = NULL;
13286 
13287 	conn_clrqfull(connp, NULL);
13288 	/*
13289 	 * For streams based sockets open up flow control.
13290 	 */
13291 	if (!IPCL_IS_NONSTR(connp))
13292 		enableok(connp->conn_wq);
13293 }
13294 
13295 /*
13296  * This conn is closing, and we are called from ip_close. OR
13297  * this conn is draining because flow-control on the ill has been relieved.
13298  *
13299  * We must also need to remove conn's on this idl from the list, and also
13300  * inform the sockfs upcalls about the change in flow-control.
13301  */
13302 static void
13303 conn_drain(conn_t *connp, boolean_t closing)
13304 {
13305 	idl_t *idl;
13306 	conn_t *next_connp;
13307 
13308 	/*
13309 	 * connp->conn_idl is stable at this point, and no lock is needed
13310 	 * to check it. If we are called from ip_close, close has already
13311 	 * set CONN_CLOSING, thus freezing the value of conn_idl, and
13312 	 * called us only because conn_idl is non-null. If we are called thru
13313 	 * service, conn_idl could be null, but it cannot change because
13314 	 * service is single-threaded per queue, and there cannot be another
13315 	 * instance of service trying to call conn_drain_insert on this conn
13316 	 * now.
13317 	 */
13318 	ASSERT(!closing || connp == NULL || connp->conn_idl != NULL);
13319 
13320 	/*
13321 	 * If the conn doesn't exist or is not on a drain list, bail.
13322 	 */
13323 	if (connp == NULL || connp->conn_idl == NULL ||
13324 	    connp->conn_drain_prev == NULL) {
13325 		return;
13326 	}
13327 
13328 	idl = connp->conn_idl;
13329 	ASSERT(MUTEX_HELD(&idl->idl_lock));
13330 
13331 	if (!closing) {
13332 		next_connp = connp->conn_drain_next;
13333 		while (next_connp != connp) {
13334 			conn_t *delconnp = next_connp;
13335 
13336 			next_connp = next_connp->conn_drain_next;
13337 			conn_drain_remove(delconnp);
13338 		}
13339 		ASSERT(connp->conn_drain_next == idl->idl_conn);
13340 	}
13341 	conn_drain_remove(connp);
13342 }
13343 
13344 /*
13345  * Write service routine. Shared perimeter entry point.
13346  * The device queue's messages has fallen below the low water mark and STREAMS
13347  * has backenabled the ill_wq. Send sockfs notification about flow-control on
13348  * each waiting conn.
13349  */
13350 int
13351 ip_wsrv(queue_t *q)
13352 {
13353 	ill_t	*ill;
13354 
13355 	ill = (ill_t *)q->q_ptr;
13356 	if (ill->ill_state_flags == 0) {
13357 		ip_stack_t *ipst = ill->ill_ipst;
13358 
13359 		/*
13360 		 * The device flow control has opened up.
13361 		 * Walk through conn drain lists and qenable the
13362 		 * first conn in each list. This makes sense only
13363 		 * if the stream is fully plumbed and setup.
13364 		 * Hence the ill_state_flags check above.
13365 		 */
13366 		ip1dbg(("ip_wsrv: walking\n"));
13367 		conn_walk_drain(ipst, &ipst->ips_idl_tx_list[0]);
13368 		enableok(ill->ill_wq);
13369 	}
13370 	return (0);
13371 }
13372 
13373 /*
13374  * Callback to disable flow control in IP.
13375  *
13376  * This is a mac client callback added when the DLD_CAPAB_DIRECT capability
13377  * is enabled.
13378  *
13379  * When MAC_TX() is not able to send any more packets, dld sets its queue
13380  * to QFULL and enable the STREAMS flow control. Later, when the underlying
13381  * driver is able to continue to send packets, it calls mac_tx_(ring_)update()
13382  * function and wakes up corresponding mac worker threads, which in turn
13383  * calls this callback function, and disables flow control.
13384  */
13385 void
13386 ill_flow_enable(void *arg, ip_mac_tx_cookie_t cookie)
13387 {
13388 	ill_t *ill = (ill_t *)arg;
13389 	ip_stack_t *ipst = ill->ill_ipst;
13390 	idl_tx_list_t *idl_txl;
13391 
13392 	idl_txl = &ipst->ips_idl_tx_list[IDLHASHINDEX(cookie)];
13393 	mutex_enter(&idl_txl->txl_lock);
13394 	/* add code to to set a flag to indicate idl_txl is enabled */
13395 	conn_walk_drain(ipst, idl_txl);
13396 	mutex_exit(&idl_txl->txl_lock);
13397 }
13398 
13399 /*
13400  * Flow control has been relieved and STREAMS has backenabled us; drain
13401  * all the conn lists on `tx_list'.
13402  */
13403 static void
13404 conn_walk_drain(ip_stack_t *ipst, idl_tx_list_t *tx_list)
13405 {
13406 	int i;
13407 	idl_t *idl;
13408 
13409 	IP_STAT(ipst, ip_conn_walk_drain);
13410 
13411 	for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) {
13412 		idl = &tx_list->txl_drain_list[i];
13413 		mutex_enter(&idl->idl_lock);
13414 		conn_drain(idl->idl_conn, B_FALSE);
13415 		mutex_exit(&idl->idl_lock);
13416 	}
13417 }
13418 
13419 /*
13420  * Determine if the ill and multicast aspects of that packets
13421  * "matches" the conn.
13422  */
13423 boolean_t
13424 conn_wantpacket(conn_t *connp, ip_recv_attr_t *ira, ipha_t *ipha)
13425 {
13426 	ill_t		*ill = ira->ira_rill;
13427 	zoneid_t	zoneid = ira->ira_zoneid;
13428 	uint_t		in_ifindex;
13429 	ipaddr_t	dst, src;
13430 
13431 	dst = ipha->ipha_dst;
13432 	src = ipha->ipha_src;
13433 
13434 	/*
13435 	 * conn_incoming_ifindex is set by IP_BOUND_IF which limits
13436 	 * unicast, broadcast and multicast reception to
13437 	 * conn_incoming_ifindex.
13438 	 * conn_wantpacket is called for unicast, broadcast and
13439 	 * multicast packets.
13440 	 */
13441 	in_ifindex = connp->conn_incoming_ifindex;
13442 
13443 	/* mpathd can bind to the under IPMP interface, which we allow */
13444 	if (in_ifindex != 0 && in_ifindex != ill->ill_phyint->phyint_ifindex) {
13445 		if (!IS_UNDER_IPMP(ill))
13446 			return (B_FALSE);
13447 
13448 		if (in_ifindex != ipmp_ill_get_ipmp_ifindex(ill))
13449 			return (B_FALSE);
13450 	}
13451 
13452 	if (!IPCL_ZONE_MATCH(connp, zoneid))
13453 		return (B_FALSE);
13454 
13455 	if (!(ira->ira_flags & IRAF_MULTICAST))
13456 		return (B_TRUE);
13457 
13458 	if (connp->conn_multi_router) {
13459 		/* multicast packet and multicast router socket: send up */
13460 		return (B_TRUE);
13461 	}
13462 
13463 	if (ipha->ipha_protocol == IPPROTO_PIM ||
13464 	    ipha->ipha_protocol == IPPROTO_RSVP)
13465 		return (B_TRUE);
13466 
13467 	return (conn_hasmembers_ill_withsrc_v4(connp, dst, src, ira->ira_ill));
13468 }
13469 
13470 void
13471 conn_setqfull(conn_t *connp, boolean_t *flow_stopped)
13472 {
13473 	if (IPCL_IS_NONSTR(connp)) {
13474 		(*connp->conn_upcalls->su_txq_full)
13475 		    (connp->conn_upper_handle, B_TRUE);
13476 		if (flow_stopped != NULL)
13477 			*flow_stopped = B_TRUE;
13478 	} else {
13479 		queue_t *q = connp->conn_wq;
13480 
13481 		ASSERT(q != NULL);
13482 		if (!(q->q_flag & QFULL)) {
13483 			mutex_enter(QLOCK(q));
13484 			if (!(q->q_flag & QFULL)) {
13485 				/* still need to set QFULL */
13486 				q->q_flag |= QFULL;
13487 				/* set flow_stopped to true under QLOCK */
13488 				if (flow_stopped != NULL)
13489 					*flow_stopped = B_TRUE;
13490 				mutex_exit(QLOCK(q));
13491 			} else {
13492 				/* flow_stopped is left unchanged */
13493 				mutex_exit(QLOCK(q));
13494 			}
13495 		}
13496 	}
13497 }
13498 
13499 void
13500 conn_clrqfull(conn_t *connp, boolean_t *flow_stopped)
13501 {
13502 	if (IPCL_IS_NONSTR(connp)) {
13503 		(*connp->conn_upcalls->su_txq_full)
13504 		    (connp->conn_upper_handle, B_FALSE);
13505 		if (flow_stopped != NULL)
13506 			*flow_stopped = B_FALSE;
13507 	} else {
13508 		queue_t *q = connp->conn_wq;
13509 
13510 		ASSERT(q != NULL);
13511 		if (q->q_flag & QFULL) {
13512 			mutex_enter(QLOCK(q));
13513 			if (q->q_flag & QFULL) {
13514 				q->q_flag &= ~QFULL;
13515 				/* set flow_stopped to false under QLOCK */
13516 				if (flow_stopped != NULL)
13517 					*flow_stopped = B_FALSE;
13518 				mutex_exit(QLOCK(q));
13519 				if (q->q_flag & QWANTW)
13520 					qbackenable(q, 0);
13521 			} else {
13522 				/* flow_stopped is left unchanged */
13523 				mutex_exit(QLOCK(q));
13524 			}
13525 		}
13526 	}
13527 
13528 	mutex_enter(&connp->conn_lock);
13529 	connp->conn_blocked = B_FALSE;
13530 	mutex_exit(&connp->conn_lock);
13531 }
13532 
13533 /*
13534  * Return the length in bytes of the IPv4 headers (base header, label, and
13535  * other IP options) that will be needed based on the
13536  * ip_pkt_t structure passed by the caller.
13537  *
13538  * The returned length does not include the length of the upper level
13539  * protocol (ULP) header.
13540  * The caller needs to check that the length doesn't exceed the max for IPv4.
13541  */
13542 int
13543 ip_total_hdrs_len_v4(const ip_pkt_t *ipp)
13544 {
13545 	int len;
13546 
13547 	len = IP_SIMPLE_HDR_LENGTH;
13548 	if (ipp->ipp_fields & IPPF_LABEL_V4) {
13549 		ASSERT(ipp->ipp_label_len_v4 != 0);
13550 		/* We need to round up here */
13551 		len += (ipp->ipp_label_len_v4 + 3) & ~3;
13552 	}
13553 
13554 	if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
13555 		ASSERT(ipp->ipp_ipv4_options_len != 0);
13556 		ASSERT((ipp->ipp_ipv4_options_len & 3) == 0);
13557 		len += ipp->ipp_ipv4_options_len;
13558 	}
13559 	return (len);
13560 }
13561 
13562 /*
13563  * All-purpose routine to build an IPv4 header with options based
13564  * on the abstract ip_pkt_t.
13565  *
13566  * The caller has to set the source and destination address as well as
13567  * ipha_length. The caller has to massage any source route and compensate
13568  * for the ULP pseudo-header checksum due to the source route.
13569  */
13570 void
13571 ip_build_hdrs_v4(uchar_t *buf, uint_t buf_len, const ip_pkt_t *ipp,
13572     uint8_t protocol)
13573 {
13574 	ipha_t	*ipha = (ipha_t *)buf;
13575 	uint8_t *cp;
13576 
13577 	/* Initialize IPv4 header */
13578 	ipha->ipha_type_of_service = ipp->ipp_type_of_service;
13579 	ipha->ipha_length = 0;	/* Caller will set later */
13580 	ipha->ipha_ident = 0;
13581 	ipha->ipha_fragment_offset_and_flags = 0;
13582 	ipha->ipha_ttl = ipp->ipp_unicast_hops;
13583 	ipha->ipha_protocol = protocol;
13584 	ipha->ipha_hdr_checksum = 0;
13585 
13586 	if ((ipp->ipp_fields & IPPF_ADDR) &&
13587 	    IN6_IS_ADDR_V4MAPPED(&ipp->ipp_addr))
13588 		ipha->ipha_src = ipp->ipp_addr_v4;
13589 
13590 	cp = (uint8_t *)&ipha[1];
13591 	if (ipp->ipp_fields & IPPF_LABEL_V4) {
13592 		ASSERT(ipp->ipp_label_len_v4 != 0);
13593 		bcopy(ipp->ipp_label_v4, cp, ipp->ipp_label_len_v4);
13594 		cp += ipp->ipp_label_len_v4;
13595 		/* We need to round up here */
13596 		while ((uintptr_t)cp & 0x3) {
13597 			*cp++ = IPOPT_NOP;
13598 		}
13599 	}
13600 
13601 	if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
13602 		ASSERT(ipp->ipp_ipv4_options_len != 0);
13603 		ASSERT((ipp->ipp_ipv4_options_len & 3) == 0);
13604 		bcopy(ipp->ipp_ipv4_options, cp, ipp->ipp_ipv4_options_len);
13605 		cp += ipp->ipp_ipv4_options_len;
13606 	}
13607 	ipha->ipha_version_and_hdr_length =
13608 	    (uint8_t)((IP_VERSION << 4) + buf_len / 4);
13609 
13610 	ASSERT((int)(cp - buf) == buf_len);
13611 }
13612 
13613 /* Allocate the private structure */
13614 static int
13615 ip_priv_alloc(void **bufp)
13616 {
13617 	void	*buf;
13618 
13619 	if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL)
13620 		return (ENOMEM);
13621 
13622 	*bufp = buf;
13623 	return (0);
13624 }
13625 
13626 /* Function to delete the private structure */
13627 void
13628 ip_priv_free(void *buf)
13629 {
13630 	ASSERT(buf != NULL);
13631 	kmem_free(buf, sizeof (ip_priv_t));
13632 }
13633 
13634 /*
13635  * The entry point for IPPF processing.
13636  * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the
13637  * routine just returns.
13638  *
13639  * When called, ip_process generates an ipp_packet_t structure
13640  * which holds the state information for this packet and invokes the
13641  * the classifier (via ipp_packet_process). The classification, depending on
13642  * configured filters, results in a list of actions for this packet. Invoking
13643  * an action may cause the packet to be dropped, in which case we return NULL.
13644  * proc indicates the callout position for
13645  * this packet and ill is the interface this packet arrived on or will leave
13646  * on (inbound and outbound resp.).
13647  *
13648  * We do the processing on the rill (mapped to the upper if ipmp), but MIB
13649  * on the ill corrsponding to the destination IP address.
13650  */
13651 mblk_t *
13652 ip_process(ip_proc_t proc, mblk_t *mp, ill_t *rill, ill_t *ill)
13653 {
13654 	ip_priv_t	*priv;
13655 	ipp_action_id_t	aid;
13656 	int		rc = 0;
13657 	ipp_packet_t	*pp;
13658 
13659 	/* If the classifier is not loaded, return  */
13660 	if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) {
13661 		return (mp);
13662 	}
13663 
13664 	ASSERT(mp != NULL);
13665 
13666 	/* Allocate the packet structure */
13667 	rc = ipp_packet_alloc(&pp, "ip", aid);
13668 	if (rc != 0)
13669 		goto drop;
13670 
13671 	/* Allocate the private structure */
13672 	rc = ip_priv_alloc((void **)&priv);
13673 	if (rc != 0) {
13674 		ipp_packet_free(pp);
13675 		goto drop;
13676 	}
13677 	priv->proc = proc;
13678 	priv->ill_index = ill_get_upper_ifindex(rill);
13679 
13680 	ipp_packet_set_private(pp, priv, ip_priv_free);
13681 	ipp_packet_set_data(pp, mp);
13682 
13683 	/* Invoke the classifier */
13684 	rc = ipp_packet_process(&pp);
13685 	if (pp != NULL) {
13686 		mp = ipp_packet_get_data(pp);
13687 		ipp_packet_free(pp);
13688 		if (rc != 0)
13689 			goto drop;
13690 		return (mp);
13691 	} else {
13692 		/* No mp to trace in ip_drop_input/ip_drop_output  */
13693 		mp = NULL;
13694 	}
13695 drop:
13696 	if (proc == IPP_LOCAL_IN || proc == IPP_FWD_IN) {
13697 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
13698 		ip_drop_input("ip_process", mp, ill);
13699 	} else {
13700 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
13701 		ip_drop_output("ip_process", mp, ill);
13702 	}
13703 	freemsg(mp);
13704 	return (NULL);
13705 }
13706 
13707 /*
13708  * Propagate a multicast group membership operation (add/drop) on
13709  * all the interfaces crossed by the related multirt routes.
13710  * The call is considered successful if the operation succeeds
13711  * on at least one interface.
13712  *
13713  * This assumes that a set of IRE_HOST/RTF_MULTIRT has been created for the
13714  * multicast addresses with the ire argument being the first one.
13715  * We walk the bucket to find all the of those.
13716  *
13717  * Common to IPv4 and IPv6.
13718  */
13719 static int
13720 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t,
13721     const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *),
13722     ire_t *ire, conn_t *connp, boolean_t checkonly, const in6_addr_t *v6group,
13723     mcast_record_t fmode, const in6_addr_t *v6src)
13724 {
13725 	ire_t		*ire_gw;
13726 	irb_t		*irb;
13727 	int		ifindex;
13728 	int		error = 0;
13729 	int		result;
13730 	ip_stack_t	*ipst = ire->ire_ipst;
13731 	ipaddr_t	group;
13732 	boolean_t	isv6;
13733 	int		match_flags;
13734 
13735 	if (IN6_IS_ADDR_V4MAPPED(v6group)) {
13736 		IN6_V4MAPPED_TO_IPADDR(v6group, group);
13737 		isv6 = B_FALSE;
13738 	} else {
13739 		isv6 = B_TRUE;
13740 	}
13741 
13742 	irb = ire->ire_bucket;
13743 	ASSERT(irb != NULL);
13744 
13745 	result = 0;
13746 	irb_refhold(irb);
13747 	for (; ire != NULL; ire = ire->ire_next) {
13748 		if ((ire->ire_flags & RTF_MULTIRT) == 0)
13749 			continue;
13750 
13751 		/* We handle -ifp routes by matching on the ill if set */
13752 		match_flags = MATCH_IRE_TYPE;
13753 		if (ire->ire_ill != NULL)
13754 			match_flags |= MATCH_IRE_ILL;
13755 
13756 		if (isv6) {
13757 			if (!IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, v6group))
13758 				continue;
13759 
13760 			ire_gw = ire_ftable_lookup_v6(&ire->ire_gateway_addr_v6,
13761 			    0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL,
13762 			    match_flags, 0, ipst, NULL);
13763 		} else {
13764 			if (ire->ire_addr != group)
13765 				continue;
13766 
13767 			ire_gw = ire_ftable_lookup_v4(ire->ire_gateway_addr,
13768 			    0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL,
13769 			    match_flags, 0, ipst, NULL);
13770 		}
13771 		/* No interface route exists for the gateway; skip this ire. */
13772 		if (ire_gw == NULL)
13773 			continue;
13774 		if (ire_gw->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
13775 			ire_refrele(ire_gw);
13776 			continue;
13777 		}
13778 		ASSERT(ire_gw->ire_ill != NULL);	/* IRE_INTERFACE */
13779 		ifindex = ire_gw->ire_ill->ill_phyint->phyint_ifindex;
13780 
13781 		/*
13782 		 * The operation is considered a success if
13783 		 * it succeeds at least once on any one interface.
13784 		 */
13785 		error = fn(connp, checkonly, v6group, INADDR_ANY, ifindex,
13786 		    fmode, v6src);
13787 		if (error == 0)
13788 			result = CGTP_MCAST_SUCCESS;
13789 
13790 		ire_refrele(ire_gw);
13791 	}
13792 	irb_refrele(irb);
13793 	/*
13794 	 * Consider the call as successful if we succeeded on at least
13795 	 * one interface. Otherwise, return the last encountered error.
13796 	 */
13797 	return (result == CGTP_MCAST_SUCCESS ? 0 : error);
13798 }
13799 
13800 /*
13801  * Return the expected CGTP hooks version number.
13802  */
13803 int
13804 ip_cgtp_filter_supported(void)
13805 {
13806 	return (ip_cgtp_filter_rev);
13807 }
13808 
13809 /*
13810  * CGTP hooks can be registered by invoking this function.
13811  * Checks that the version number matches.
13812  */
13813 int
13814 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops)
13815 {
13816 	netstack_t *ns;
13817 	ip_stack_t *ipst;
13818 
13819 	if (ops->cfo_filter_rev != CGTP_FILTER_REV)
13820 		return (ENOTSUP);
13821 
13822 	ns = netstack_find_by_stackid(stackid);
13823 	if (ns == NULL)
13824 		return (EINVAL);
13825 	ipst = ns->netstack_ip;
13826 	ASSERT(ipst != NULL);
13827 
13828 	if (ipst->ips_ip_cgtp_filter_ops != NULL) {
13829 		netstack_rele(ns);
13830 		return (EALREADY);
13831 	}
13832 
13833 	ipst->ips_ip_cgtp_filter_ops = ops;
13834 
13835 	ill_set_inputfn_all(ipst);
13836 
13837 	netstack_rele(ns);
13838 	return (0);
13839 }
13840 
13841 /*
13842  * CGTP hooks can be unregistered by invoking this function.
13843  * Returns ENXIO if there was no registration.
13844  * Returns EBUSY if the ndd variable has not been turned off.
13845  */
13846 int
13847 ip_cgtp_filter_unregister(netstackid_t stackid)
13848 {
13849 	netstack_t *ns;
13850 	ip_stack_t *ipst;
13851 
13852 	ns = netstack_find_by_stackid(stackid);
13853 	if (ns == NULL)
13854 		return (EINVAL);
13855 	ipst = ns->netstack_ip;
13856 	ASSERT(ipst != NULL);
13857 
13858 	if (ipst->ips_ip_cgtp_filter) {
13859 		netstack_rele(ns);
13860 		return (EBUSY);
13861 	}
13862 
13863 	if (ipst->ips_ip_cgtp_filter_ops == NULL) {
13864 		netstack_rele(ns);
13865 		return (ENXIO);
13866 	}
13867 	ipst->ips_ip_cgtp_filter_ops = NULL;
13868 
13869 	ill_set_inputfn_all(ipst);
13870 
13871 	netstack_rele(ns);
13872 	return (0);
13873 }
13874 
13875 /*
13876  * Check whether there is a CGTP filter registration.
13877  * Returns non-zero if there is a registration, otherwise returns zero.
13878  * Note: returns zero if bad stackid.
13879  */
13880 int
13881 ip_cgtp_filter_is_registered(netstackid_t stackid)
13882 {
13883 	netstack_t *ns;
13884 	ip_stack_t *ipst;
13885 	int ret;
13886 
13887 	ns = netstack_find_by_stackid(stackid);
13888 	if (ns == NULL)
13889 		return (0);
13890 	ipst = ns->netstack_ip;
13891 	ASSERT(ipst != NULL);
13892 
13893 	if (ipst->ips_ip_cgtp_filter_ops != NULL)
13894 		ret = 1;
13895 	else
13896 		ret = 0;
13897 
13898 	netstack_rele(ns);
13899 	return (ret);
13900 }
13901 
13902 static int
13903 ip_squeue_switch(int val)
13904 {
13905 	int rval;
13906 
13907 	switch (val) {
13908 	case IP_SQUEUE_ENTER_NODRAIN:
13909 		rval = SQ_NODRAIN;
13910 		break;
13911 	case IP_SQUEUE_ENTER:
13912 		rval = SQ_PROCESS;
13913 		break;
13914 	case IP_SQUEUE_FILL:
13915 	default:
13916 		rval = SQ_FILL;
13917 		break;
13918 	}
13919 	return (rval);
13920 }
13921 
13922 static void *
13923 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp)
13924 {
13925 	kstat_t *ksp;
13926 
13927 	ip_stat_t template = {
13928 		{ "ip_udp_fannorm",		KSTAT_DATA_UINT64 },
13929 		{ "ip_udp_fanmb",		KSTAT_DATA_UINT64 },
13930 		{ "ip_recv_pullup",		KSTAT_DATA_UINT64 },
13931 		{ "ip_db_ref",			KSTAT_DATA_UINT64 },
13932 		{ "ip_notaligned",		KSTAT_DATA_UINT64 },
13933 		{ "ip_multimblk",		KSTAT_DATA_UINT64 },
13934 		{ "ip_opt",			KSTAT_DATA_UINT64 },
13935 		{ "ipsec_proto_ahesp",		KSTAT_DATA_UINT64 },
13936 		{ "ip_conn_flputbq",		KSTAT_DATA_UINT64 },
13937 		{ "ip_conn_walk_drain",		KSTAT_DATA_UINT64 },
13938 		{ "ip_out_sw_cksum",		KSTAT_DATA_UINT64 },
13939 		{ "ip_out_sw_cksum_bytes",	KSTAT_DATA_UINT64 },
13940 		{ "ip_in_sw_cksum",		KSTAT_DATA_UINT64 },
13941 		{ "ip_ire_reclaim_calls",	KSTAT_DATA_UINT64 },
13942 		{ "ip_ire_reclaim_deleted",	KSTAT_DATA_UINT64 },
13943 		{ "ip_nce_reclaim_calls",	KSTAT_DATA_UINT64 },
13944 		{ "ip_nce_reclaim_deleted",	KSTAT_DATA_UINT64 },
13945 		{ "ip_nce_mcast_reclaim_calls",	KSTAT_DATA_UINT64 },
13946 		{ "ip_nce_mcast_reclaim_deleted",	KSTAT_DATA_UINT64 },
13947 		{ "ip_nce_mcast_reclaim_tqfail",	KSTAT_DATA_UINT64 },
13948 		{ "ip_dce_reclaim_calls",	KSTAT_DATA_UINT64 },
13949 		{ "ip_dce_reclaim_deleted",	KSTAT_DATA_UINT64 },
13950 		{ "ip_tcp_in_full_hw_cksum_err",	KSTAT_DATA_UINT64 },
13951 		{ "ip_tcp_in_part_hw_cksum_err",	KSTAT_DATA_UINT64 },
13952 		{ "ip_tcp_in_sw_cksum_err",		KSTAT_DATA_UINT64 },
13953 		{ "ip_udp_in_full_hw_cksum_err",	KSTAT_DATA_UINT64 },
13954 		{ "ip_udp_in_part_hw_cksum_err",	KSTAT_DATA_UINT64 },
13955 		{ "ip_udp_in_sw_cksum_err",	KSTAT_DATA_UINT64 },
13956 		{ "conn_in_recvdstaddr",	KSTAT_DATA_UINT64 },
13957 		{ "conn_in_recvopts",		KSTAT_DATA_UINT64 },
13958 		{ "conn_in_recvif",		KSTAT_DATA_UINT64 },
13959 		{ "conn_in_recvslla",		KSTAT_DATA_UINT64 },
13960 		{ "conn_in_recvucred",		KSTAT_DATA_UINT64 },
13961 		{ "conn_in_recvttl",		KSTAT_DATA_UINT64 },
13962 		{ "conn_in_recvhopopts",	KSTAT_DATA_UINT64 },
13963 		{ "conn_in_recvhoplimit",	KSTAT_DATA_UINT64 },
13964 		{ "conn_in_recvdstopts",	KSTAT_DATA_UINT64 },
13965 		{ "conn_in_recvrthdrdstopts",	KSTAT_DATA_UINT64 },
13966 		{ "conn_in_recvrthdr",		KSTAT_DATA_UINT64 },
13967 		{ "conn_in_recvpktinfo",	KSTAT_DATA_UINT64 },
13968 		{ "conn_in_recvtclass",		KSTAT_DATA_UINT64 },
13969 		{ "conn_in_timestamp",		KSTAT_DATA_UINT64 },
13970 	};
13971 
13972 	ksp = kstat_create_netstack("ip", 0, "ipstat", "net",
13973 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
13974 	    KSTAT_FLAG_VIRTUAL, stackid);
13975 
13976 	if (ksp == NULL)
13977 		return (NULL);
13978 
13979 	bcopy(&template, ip_statisticsp, sizeof (template));
13980 	ksp->ks_data = (void *)ip_statisticsp;
13981 	ksp->ks_private = (void *)(uintptr_t)stackid;
13982 
13983 	kstat_install(ksp);
13984 	return (ksp);
13985 }
13986 
13987 static void
13988 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp)
13989 {
13990 	if (ksp != NULL) {
13991 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
13992 		kstat_delete_netstack(ksp, stackid);
13993 	}
13994 }
13995 
13996 static void *
13997 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst)
13998 {
13999 	kstat_t	*ksp;
14000 
14001 	ip_named_kstat_t template = {
14002 		{ "forwarding",		KSTAT_DATA_UINT32, 0 },
14003 		{ "defaultTTL",		KSTAT_DATA_UINT32, 0 },
14004 		{ "inReceives",		KSTAT_DATA_UINT64, 0 },
14005 		{ "inHdrErrors",	KSTAT_DATA_UINT32, 0 },
14006 		{ "inAddrErrors",	KSTAT_DATA_UINT32, 0 },
14007 		{ "forwDatagrams",	KSTAT_DATA_UINT64, 0 },
14008 		{ "inUnknownProtos",	KSTAT_DATA_UINT32, 0 },
14009 		{ "inDiscards",		KSTAT_DATA_UINT32, 0 },
14010 		{ "inDelivers",		KSTAT_DATA_UINT64, 0 },
14011 		{ "outRequests",	KSTAT_DATA_UINT64, 0 },
14012 		{ "outDiscards",	KSTAT_DATA_UINT32, 0 },
14013 		{ "outNoRoutes",	KSTAT_DATA_UINT32, 0 },
14014 		{ "reasmTimeout",	KSTAT_DATA_UINT32, 0 },
14015 		{ "reasmReqds",		KSTAT_DATA_UINT32, 0 },
14016 		{ "reasmOKs",		KSTAT_DATA_UINT32, 0 },
14017 		{ "reasmFails",		KSTAT_DATA_UINT32, 0 },
14018 		{ "fragOKs",		KSTAT_DATA_UINT32, 0 },
14019 		{ "fragFails",		KSTAT_DATA_UINT32, 0 },
14020 		{ "fragCreates",	KSTAT_DATA_UINT32, 0 },
14021 		{ "addrEntrySize",	KSTAT_DATA_INT32, 0 },
14022 		{ "routeEntrySize",	KSTAT_DATA_INT32, 0 },
14023 		{ "netToMediaEntrySize",	KSTAT_DATA_INT32, 0 },
14024 		{ "routingDiscards",	KSTAT_DATA_UINT32, 0 },
14025 		{ "inErrs",		KSTAT_DATA_UINT32, 0 },
14026 		{ "noPorts",		KSTAT_DATA_UINT32, 0 },
14027 		{ "inCksumErrs",	KSTAT_DATA_UINT32, 0 },
14028 		{ "reasmDuplicates",	KSTAT_DATA_UINT32, 0 },
14029 		{ "reasmPartDups",	KSTAT_DATA_UINT32, 0 },
14030 		{ "forwProhibits",	KSTAT_DATA_UINT32, 0 },
14031 		{ "udpInCksumErrs",	KSTAT_DATA_UINT32, 0 },
14032 		{ "udpInOverflows",	KSTAT_DATA_UINT32, 0 },
14033 		{ "rawipInOverflows",	KSTAT_DATA_UINT32, 0 },
14034 		{ "ipsecInSucceeded",	KSTAT_DATA_UINT32, 0 },
14035 		{ "ipsecInFailed",	KSTAT_DATA_INT32, 0 },
14036 		{ "memberEntrySize",	KSTAT_DATA_INT32, 0 },
14037 		{ "inIPv6",		KSTAT_DATA_UINT32, 0 },
14038 		{ "outIPv6",		KSTAT_DATA_UINT32, 0 },
14039 		{ "outSwitchIPv6",	KSTAT_DATA_UINT32, 0 },
14040 	};
14041 
14042 	ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED,
14043 	    NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid);
14044 	if (ksp == NULL || ksp->ks_data == NULL)
14045 		return (NULL);
14046 
14047 	template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2;
14048 	template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl;
14049 	template.reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout;
14050 	template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t);
14051 	template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t);
14052 
14053 	template.netToMediaEntrySize.value.i32 =
14054 	    sizeof (mib2_ipNetToMediaEntry_t);
14055 
14056 	template.memberEntrySize.value.i32 = sizeof (ipv6_member_t);
14057 
14058 	bcopy(&template, ksp->ks_data, sizeof (template));
14059 	ksp->ks_update = ip_kstat_update;
14060 	ksp->ks_private = (void *)(uintptr_t)stackid;
14061 
14062 	kstat_install(ksp);
14063 	return (ksp);
14064 }
14065 
14066 static void
14067 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp)
14068 {
14069 	if (ksp != NULL) {
14070 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
14071 		kstat_delete_netstack(ksp, stackid);
14072 	}
14073 }
14074 
14075 static int
14076 ip_kstat_update(kstat_t *kp, int rw)
14077 {
14078 	ip_named_kstat_t *ipkp;
14079 	mib2_ipIfStatsEntry_t ipmib;
14080 	ill_walk_context_t ctx;
14081 	ill_t *ill;
14082 	netstackid_t	stackid = (zoneid_t)(uintptr_t)kp->ks_private;
14083 	netstack_t	*ns;
14084 	ip_stack_t	*ipst;
14085 
14086 	if (kp->ks_data == NULL)
14087 		return (EIO);
14088 
14089 	if (rw == KSTAT_WRITE)
14090 		return (EACCES);
14091 
14092 	ns = netstack_find_by_stackid(stackid);
14093 	if (ns == NULL)
14094 		return (-1);
14095 	ipst = ns->netstack_ip;
14096 	if (ipst == NULL) {
14097 		netstack_rele(ns);
14098 		return (-1);
14099 	}
14100 	ipkp = (ip_named_kstat_t *)kp->ks_data;
14101 
14102 	bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib));
14103 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
14104 	ill = ILL_START_WALK_V4(&ctx, ipst);
14105 	for (; ill != NULL; ill = ill_next(&ctx, ill))
14106 		ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib);
14107 	rw_exit(&ipst->ips_ill_g_lock);
14108 
14109 	ipkp->forwarding.value.ui32 =		ipmib.ipIfStatsForwarding;
14110 	ipkp->defaultTTL.value.ui32 =		ipmib.ipIfStatsDefaultTTL;
14111 	ipkp->inReceives.value.ui64 =		ipmib.ipIfStatsHCInReceives;
14112 	ipkp->inHdrErrors.value.ui32 =		ipmib.ipIfStatsInHdrErrors;
14113 	ipkp->inAddrErrors.value.ui32 =		ipmib.ipIfStatsInAddrErrors;
14114 	ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams;
14115 	ipkp->inUnknownProtos.value.ui32 =	ipmib.ipIfStatsInUnknownProtos;
14116 	ipkp->inDiscards.value.ui32 =		ipmib.ipIfStatsInDiscards;
14117 	ipkp->inDelivers.value.ui64 =		ipmib.ipIfStatsHCInDelivers;
14118 	ipkp->outRequests.value.ui64 =		ipmib.ipIfStatsHCOutRequests;
14119 	ipkp->outDiscards.value.ui32 =		ipmib.ipIfStatsOutDiscards;
14120 	ipkp->outNoRoutes.value.ui32 =		ipmib.ipIfStatsOutNoRoutes;
14121 	ipkp->reasmTimeout.value.ui32 =		ipst->ips_ip_reassembly_timeout;
14122 	ipkp->reasmReqds.value.ui32 =		ipmib.ipIfStatsReasmReqds;
14123 	ipkp->reasmOKs.value.ui32 =		ipmib.ipIfStatsReasmOKs;
14124 	ipkp->reasmFails.value.ui32 =		ipmib.ipIfStatsReasmFails;
14125 	ipkp->fragOKs.value.ui32 =		ipmib.ipIfStatsOutFragOKs;
14126 	ipkp->fragFails.value.ui32 =		ipmib.ipIfStatsOutFragFails;
14127 	ipkp->fragCreates.value.ui32 =		ipmib.ipIfStatsOutFragCreates;
14128 
14129 	ipkp->routingDiscards.value.ui32 =	0;
14130 	ipkp->inErrs.value.ui32 =		ipmib.tcpIfStatsInErrs;
14131 	ipkp->noPorts.value.ui32 =		ipmib.udpIfStatsNoPorts;
14132 	ipkp->inCksumErrs.value.ui32 =		ipmib.ipIfStatsInCksumErrs;
14133 	ipkp->reasmDuplicates.value.ui32 =	ipmib.ipIfStatsReasmDuplicates;
14134 	ipkp->reasmPartDups.value.ui32 =	ipmib.ipIfStatsReasmPartDups;
14135 	ipkp->forwProhibits.value.ui32 =	ipmib.ipIfStatsForwProhibits;
14136 	ipkp->udpInCksumErrs.value.ui32 =	ipmib.udpIfStatsInCksumErrs;
14137 	ipkp->udpInOverflows.value.ui32 =	ipmib.udpIfStatsInOverflows;
14138 	ipkp->rawipInOverflows.value.ui32 =	ipmib.rawipIfStatsInOverflows;
14139 	ipkp->ipsecInSucceeded.value.ui32 =	ipmib.ipsecIfStatsInSucceeded;
14140 	ipkp->ipsecInFailed.value.i32 =		ipmib.ipsecIfStatsInFailed;
14141 
14142 	ipkp->inIPv6.value.ui32 =	ipmib.ipIfStatsInWrongIPVersion;
14143 	ipkp->outIPv6.value.ui32 =	ipmib.ipIfStatsOutWrongIPVersion;
14144 	ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion;
14145 
14146 	netstack_rele(ns);
14147 
14148 	return (0);
14149 }
14150 
14151 static void *
14152 icmp_kstat_init(netstackid_t stackid)
14153 {
14154 	kstat_t	*ksp;
14155 
14156 	icmp_named_kstat_t template = {
14157 		{ "inMsgs",		KSTAT_DATA_UINT32 },
14158 		{ "inErrors",		KSTAT_DATA_UINT32 },
14159 		{ "inDestUnreachs",	KSTAT_DATA_UINT32 },
14160 		{ "inTimeExcds",	KSTAT_DATA_UINT32 },
14161 		{ "inParmProbs",	KSTAT_DATA_UINT32 },
14162 		{ "inSrcQuenchs",	KSTAT_DATA_UINT32 },
14163 		{ "inRedirects",	KSTAT_DATA_UINT32 },
14164 		{ "inEchos",		KSTAT_DATA_UINT32 },
14165 		{ "inEchoReps",		KSTAT_DATA_UINT32 },
14166 		{ "inTimestamps",	KSTAT_DATA_UINT32 },
14167 		{ "inTimestampReps",	KSTAT_DATA_UINT32 },
14168 		{ "inAddrMasks",	KSTAT_DATA_UINT32 },
14169 		{ "inAddrMaskReps",	KSTAT_DATA_UINT32 },
14170 		{ "outMsgs",		KSTAT_DATA_UINT32 },
14171 		{ "outErrors",		KSTAT_DATA_UINT32 },
14172 		{ "outDestUnreachs",	KSTAT_DATA_UINT32 },
14173 		{ "outTimeExcds",	KSTAT_DATA_UINT32 },
14174 		{ "outParmProbs",	KSTAT_DATA_UINT32 },
14175 		{ "outSrcQuenchs",	KSTAT_DATA_UINT32 },
14176 		{ "outRedirects",	KSTAT_DATA_UINT32 },
14177 		{ "outEchos",		KSTAT_DATA_UINT32 },
14178 		{ "outEchoReps",	KSTAT_DATA_UINT32 },
14179 		{ "outTimestamps",	KSTAT_DATA_UINT32 },
14180 		{ "outTimestampReps",	KSTAT_DATA_UINT32 },
14181 		{ "outAddrMasks",	KSTAT_DATA_UINT32 },
14182 		{ "outAddrMaskReps",	KSTAT_DATA_UINT32 },
14183 		{ "inChksumErrs",	KSTAT_DATA_UINT32 },
14184 		{ "inUnknowns",		KSTAT_DATA_UINT32 },
14185 		{ "inFragNeeded",	KSTAT_DATA_UINT32 },
14186 		{ "outFragNeeded",	KSTAT_DATA_UINT32 },
14187 		{ "outDrops",		KSTAT_DATA_UINT32 },
14188 		{ "inOverFlows",	KSTAT_DATA_UINT32 },
14189 		{ "inBadRedirects",	KSTAT_DATA_UINT32 },
14190 	};
14191 
14192 	ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED,
14193 	    NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid);
14194 	if (ksp == NULL || ksp->ks_data == NULL)
14195 		return (NULL);
14196 
14197 	bcopy(&template, ksp->ks_data, sizeof (template));
14198 
14199 	ksp->ks_update = icmp_kstat_update;
14200 	ksp->ks_private = (void *)(uintptr_t)stackid;
14201 
14202 	kstat_install(ksp);
14203 	return (ksp);
14204 }
14205 
14206 static void
14207 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp)
14208 {
14209 	if (ksp != NULL) {
14210 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
14211 		kstat_delete_netstack(ksp, stackid);
14212 	}
14213 }
14214 
14215 static int
14216 icmp_kstat_update(kstat_t *kp, int rw)
14217 {
14218 	icmp_named_kstat_t *icmpkp;
14219 	netstackid_t	stackid = (zoneid_t)(uintptr_t)kp->ks_private;
14220 	netstack_t	*ns;
14221 	ip_stack_t	*ipst;
14222 
14223 	if (kp->ks_data == NULL)
14224 		return (EIO);
14225 
14226 	if (rw == KSTAT_WRITE)
14227 		return (EACCES);
14228 
14229 	ns = netstack_find_by_stackid(stackid);
14230 	if (ns == NULL)
14231 		return (-1);
14232 	ipst = ns->netstack_ip;
14233 	if (ipst == NULL) {
14234 		netstack_rele(ns);
14235 		return (-1);
14236 	}
14237 	icmpkp = (icmp_named_kstat_t *)kp->ks_data;
14238 
14239 	icmpkp->inMsgs.value.ui32 =	    ipst->ips_icmp_mib.icmpInMsgs;
14240 	icmpkp->inErrors.value.ui32 =	    ipst->ips_icmp_mib.icmpInErrors;
14241 	icmpkp->inDestUnreachs.value.ui32 =
14242 	    ipst->ips_icmp_mib.icmpInDestUnreachs;
14243 	icmpkp->inTimeExcds.value.ui32 =    ipst->ips_icmp_mib.icmpInTimeExcds;
14244 	icmpkp->inParmProbs.value.ui32 =    ipst->ips_icmp_mib.icmpInParmProbs;
14245 	icmpkp->inSrcQuenchs.value.ui32 =   ipst->ips_icmp_mib.icmpInSrcQuenchs;
14246 	icmpkp->inRedirects.value.ui32 =    ipst->ips_icmp_mib.icmpInRedirects;
14247 	icmpkp->inEchos.value.ui32 =	    ipst->ips_icmp_mib.icmpInEchos;
14248 	icmpkp->inEchoReps.value.ui32 =	    ipst->ips_icmp_mib.icmpInEchoReps;
14249 	icmpkp->inTimestamps.value.ui32 =   ipst->ips_icmp_mib.icmpInTimestamps;
14250 	icmpkp->inTimestampReps.value.ui32 =
14251 	    ipst->ips_icmp_mib.icmpInTimestampReps;
14252 	icmpkp->inAddrMasks.value.ui32 =    ipst->ips_icmp_mib.icmpInAddrMasks;
14253 	icmpkp->inAddrMaskReps.value.ui32 =
14254 	    ipst->ips_icmp_mib.icmpInAddrMaskReps;
14255 	icmpkp->outMsgs.value.ui32 =	    ipst->ips_icmp_mib.icmpOutMsgs;
14256 	icmpkp->outErrors.value.ui32 =	    ipst->ips_icmp_mib.icmpOutErrors;
14257 	icmpkp->outDestUnreachs.value.ui32 =
14258 	    ipst->ips_icmp_mib.icmpOutDestUnreachs;
14259 	icmpkp->outTimeExcds.value.ui32 =   ipst->ips_icmp_mib.icmpOutTimeExcds;
14260 	icmpkp->outParmProbs.value.ui32 =   ipst->ips_icmp_mib.icmpOutParmProbs;
14261 	icmpkp->outSrcQuenchs.value.ui32 =
14262 	    ipst->ips_icmp_mib.icmpOutSrcQuenchs;
14263 	icmpkp->outRedirects.value.ui32 =   ipst->ips_icmp_mib.icmpOutRedirects;
14264 	icmpkp->outEchos.value.ui32 =	    ipst->ips_icmp_mib.icmpOutEchos;
14265 	icmpkp->outEchoReps.value.ui32 =    ipst->ips_icmp_mib.icmpOutEchoReps;
14266 	icmpkp->outTimestamps.value.ui32 =
14267 	    ipst->ips_icmp_mib.icmpOutTimestamps;
14268 	icmpkp->outTimestampReps.value.ui32 =
14269 	    ipst->ips_icmp_mib.icmpOutTimestampReps;
14270 	icmpkp->outAddrMasks.value.ui32 =
14271 	    ipst->ips_icmp_mib.icmpOutAddrMasks;
14272 	icmpkp->outAddrMaskReps.value.ui32 =
14273 	    ipst->ips_icmp_mib.icmpOutAddrMaskReps;
14274 	icmpkp->inCksumErrs.value.ui32 =    ipst->ips_icmp_mib.icmpInCksumErrs;
14275 	icmpkp->inUnknowns.value.ui32 =	    ipst->ips_icmp_mib.icmpInUnknowns;
14276 	icmpkp->inFragNeeded.value.ui32 =   ipst->ips_icmp_mib.icmpInFragNeeded;
14277 	icmpkp->outFragNeeded.value.ui32 =
14278 	    ipst->ips_icmp_mib.icmpOutFragNeeded;
14279 	icmpkp->outDrops.value.ui32 =	    ipst->ips_icmp_mib.icmpOutDrops;
14280 	icmpkp->inOverflows.value.ui32 =    ipst->ips_icmp_mib.icmpInOverflows;
14281 	icmpkp->inBadRedirects.value.ui32 =
14282 	    ipst->ips_icmp_mib.icmpInBadRedirects;
14283 
14284 	netstack_rele(ns);
14285 	return (0);
14286 }
14287 
14288 /*
14289  * This is the fanout function for raw socket opened for SCTP.  Note
14290  * that it is called after SCTP checks that there is no socket which
14291  * wants a packet.  Then before SCTP handles this out of the blue packet,
14292  * this function is called to see if there is any raw socket for SCTP.
14293  * If there is and it is bound to the correct address, the packet will
14294  * be sent to that socket.  Note that only one raw socket can be bound to
14295  * a port.  This is assured in ipcl_sctp_hash_insert();
14296  */
14297 void
14298 ip_fanout_sctp_raw(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, uint32_t ports,
14299     ip_recv_attr_t *ira)
14300 {
14301 	conn_t		*connp;
14302 	queue_t		*rq;
14303 	boolean_t	secure;
14304 	ill_t		*ill = ira->ira_ill;
14305 	ip_stack_t	*ipst = ill->ill_ipst;
14306 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
14307 	sctp_stack_t	*sctps = ipst->ips_netstack->netstack_sctp;
14308 	iaflags_t	iraflags = ira->ira_flags;
14309 	ill_t		*rill = ira->ira_rill;
14310 
14311 	secure = iraflags & IRAF_IPSEC_SECURE;
14312 
14313 	connp = ipcl_classify_raw(mp, IPPROTO_SCTP, ports, ipha, ip6h,
14314 	    ira, ipst);
14315 	if (connp == NULL) {
14316 		/*
14317 		 * Although raw sctp is not summed, OOB chunks must be.
14318 		 * Drop the packet here if the sctp checksum failed.
14319 		 */
14320 		if (iraflags & IRAF_SCTP_CSUM_ERR) {
14321 			SCTPS_BUMP_MIB(sctps, sctpChecksumError);
14322 			freemsg(mp);
14323 			return;
14324 		}
14325 		ira->ira_ill = ira->ira_rill = NULL;
14326 		sctp_ootb_input(mp, ira, ipst);
14327 		ira->ira_ill = ill;
14328 		ira->ira_rill = rill;
14329 		return;
14330 	}
14331 	rq = connp->conn_rq;
14332 	if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) {
14333 		CONN_DEC_REF(connp);
14334 		BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows);
14335 		freemsg(mp);
14336 		return;
14337 	}
14338 	if (((iraflags & IRAF_IS_IPV4) ?
14339 	    CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
14340 	    CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
14341 	    secure) {
14342 		mp = ipsec_check_inbound_policy(mp, connp, ipha,
14343 		    ip6h, ira);
14344 		if (mp == NULL) {
14345 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
14346 			/* Note that mp is NULL */
14347 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
14348 			CONN_DEC_REF(connp);
14349 			return;
14350 		}
14351 	}
14352 
14353 	if (iraflags & IRAF_ICMP_ERROR) {
14354 		(connp->conn_recvicmp)(connp, mp, NULL, ira);
14355 	} else {
14356 		ill_t *rill = ira->ira_rill;
14357 
14358 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
14359 		/* This is the SOCK_RAW, IPPROTO_SCTP case. */
14360 		ira->ira_ill = ira->ira_rill = NULL;
14361 		(connp->conn_recv)(connp, mp, NULL, ira);
14362 		ira->ira_ill = ill;
14363 		ira->ira_rill = rill;
14364 	}
14365 	CONN_DEC_REF(connp);
14366 }
14367 
14368 /*
14369  * Free a packet that has the link-layer dl_unitdata_req_t or fast-path
14370  * header before the ip payload.
14371  */
14372 static void
14373 ip_xmit_flowctl_drop(ill_t *ill, mblk_t *mp, boolean_t is_fp_mp, int fp_mp_len)
14374 {
14375 	int len = (mp->b_wptr - mp->b_rptr);
14376 	mblk_t *ip_mp;
14377 
14378 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
14379 	if (is_fp_mp || len != fp_mp_len) {
14380 		if (len > fp_mp_len) {
14381 			/*
14382 			 * fastpath header and ip header in the first mblk
14383 			 */
14384 			mp->b_rptr += fp_mp_len;
14385 		} else {
14386 			/*
14387 			 * ip_xmit_attach_llhdr had to prepend an mblk to
14388 			 * attach the fastpath header before ip header.
14389 			 */
14390 			ip_mp = mp->b_cont;
14391 			freeb(mp);
14392 			mp = ip_mp;
14393 			mp->b_rptr += (fp_mp_len - len);
14394 		}
14395 	} else {
14396 		ip_mp = mp->b_cont;
14397 		freeb(mp);
14398 		mp = ip_mp;
14399 	}
14400 	ip_drop_output("ipIfStatsOutDiscards - flow ctl", mp, ill);
14401 	freemsg(mp);
14402 }
14403 
14404 /*
14405  * Normal post fragmentation function.
14406  *
14407  * Send a packet using the passed in nce. This handles both IPv4 and IPv6
14408  * using the same state machine.
14409  *
14410  * We return an error on failure. In particular we return EWOULDBLOCK
14411  * when the driver flow controls. In that case this ensures that ip_wsrv runs
14412  * (currently by canputnext failure resulting in backenabling from GLD.)
14413  * This allows the callers of conn_ip_output() to use EWOULDBLOCK as an
14414  * indication that they can flow control until ip_wsrv() tells then to restart.
14415  *
14416  * If the nce passed by caller is incomplete, this function
14417  * queues the packet and if necessary, sends ARP request and bails.
14418  * If the Neighbor Cache passed is fully resolved, we simply prepend
14419  * the link-layer header to the packet, do ipsec hw acceleration
14420  * work if necessary, and send the packet out on the wire.
14421  */
14422 /* ARGSUSED6 */
14423 int
14424 ip_xmit(mblk_t *mp, nce_t *nce, iaflags_t ixaflags, uint_t pkt_len,
14425     uint32_t xmit_hint, zoneid_t szone, zoneid_t nolzid, uintptr_t *ixacookie)
14426 {
14427 	queue_t		*wq;
14428 	ill_t		*ill = nce->nce_ill;
14429 	ip_stack_t	*ipst = ill->ill_ipst;
14430 	uint64_t	delta;
14431 	boolean_t	isv6 = ill->ill_isv6;
14432 	boolean_t	fp_mp;
14433 	ncec_t		*ncec = nce->nce_common;
14434 	int64_t		now = LBOLT_FASTPATH64;
14435 	boolean_t	is_probe;
14436 
14437 	DTRACE_PROBE1(ip__xmit, nce_t *, nce);
14438 
14439 	ASSERT(mp != NULL);
14440 	ASSERT(mp->b_datap->db_type == M_DATA);
14441 	ASSERT(pkt_len == msgdsize(mp));
14442 
14443 	/*
14444 	 * If we have already been here and are coming back after ARP/ND.
14445 	 * the IXAF_NO_TRACE flag is set. We skip FW_HOOKS, DTRACE and ipobs
14446 	 * in that case since they have seen the packet when it came here
14447 	 * the first time.
14448 	 */
14449 	if (ixaflags & IXAF_NO_TRACE)
14450 		goto sendit;
14451 
14452 	if (ixaflags & IXAF_IS_IPV4) {
14453 		ipha_t *ipha = (ipha_t *)mp->b_rptr;
14454 
14455 		ASSERT(!isv6);
14456 		ASSERT(pkt_len == ntohs(((ipha_t *)mp->b_rptr)->ipha_length));
14457 		if (HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) &&
14458 		    !(ixaflags & IXAF_NO_PFHOOK)) {
14459 			int	error;
14460 
14461 			FW_HOOKS(ipst->ips_ip4_physical_out_event,
14462 			    ipst->ips_ipv4firewall_physical_out,
14463 			    NULL, ill, ipha, mp, mp, 0, ipst, error);
14464 			DTRACE_PROBE1(ip4__physical__out__end,
14465 			    mblk_t *, mp);
14466 			if (mp == NULL)
14467 				return (error);
14468 
14469 			/* The length could have changed */
14470 			pkt_len = msgdsize(mp);
14471 		}
14472 		if (ipst->ips_ip4_observe.he_interested) {
14473 			/*
14474 			 * Note that for TX the zoneid is the sending
14475 			 * zone, whether or not MLP is in play.
14476 			 * Since the szone argument is the IP zoneid (i.e.,
14477 			 * zero for exclusive-IP zones) and ipobs wants
14478 			 * the system zoneid, we map it here.
14479 			 */
14480 			szone = IP_REAL_ZONEID(szone, ipst);
14481 
14482 			/*
14483 			 * On the outbound path the destination zone will be
14484 			 * unknown as we're sending this packet out on the
14485 			 * wire.
14486 			 */
14487 			ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES,
14488 			    ill, ipst);
14489 		}
14490 		DTRACE_IP7(send, mblk_t *, mp,  conn_t *, NULL,
14491 		    void_ip_t *, ipha,  __dtrace_ipsr_ill_t *, ill,
14492 		    ipha_t *, ipha, ip6_t *, NULL, int, 0);
14493 	} else {
14494 		ip6_t *ip6h = (ip6_t *)mp->b_rptr;
14495 
14496 		ASSERT(isv6);
14497 		ASSERT(pkt_len ==
14498 		    ntohs(((ip6_t *)mp->b_rptr)->ip6_plen) + IPV6_HDR_LEN);
14499 		if (HOOKS6_INTERESTED_PHYSICAL_OUT(ipst) &&
14500 		    !(ixaflags & IXAF_NO_PFHOOK)) {
14501 			int	error;
14502 
14503 			FW_HOOKS6(ipst->ips_ip6_physical_out_event,
14504 			    ipst->ips_ipv6firewall_physical_out,
14505 			    NULL, ill, ip6h, mp, mp, 0, ipst, error);
14506 			DTRACE_PROBE1(ip6__physical__out__end,
14507 			    mblk_t *, mp);
14508 			if (mp == NULL)
14509 				return (error);
14510 
14511 			/* The length could have changed */
14512 			pkt_len = msgdsize(mp);
14513 		}
14514 		if (ipst->ips_ip6_observe.he_interested) {
14515 			/* See above */
14516 			szone = IP_REAL_ZONEID(szone, ipst);
14517 
14518 			ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES,
14519 			    ill, ipst);
14520 		}
14521 		DTRACE_IP7(send, mblk_t *, mp,  conn_t *, NULL,
14522 		    void_ip_t *, ip6h,  __dtrace_ipsr_ill_t *, ill,
14523 		    ipha_t *, NULL, ip6_t *, ip6h, int, 0);
14524 	}
14525 
14526 sendit:
14527 	/*
14528 	 * We check the state without a lock because the state can never
14529 	 * move "backwards" to initial or incomplete.
14530 	 */
14531 	switch (ncec->ncec_state) {
14532 	case ND_REACHABLE:
14533 	case ND_STALE:
14534 	case ND_DELAY:
14535 	case ND_PROBE:
14536 		mp = ip_xmit_attach_llhdr(mp, nce);
14537 		if (mp == NULL) {
14538 			/*
14539 			 * ip_xmit_attach_llhdr has increased
14540 			 * ipIfStatsOutDiscards and called ip_drop_output()
14541 			 */
14542 			return (ENOBUFS);
14543 		}
14544 		/*
14545 		 * check if nce_fastpath completed and we tagged on a
14546 		 * copy of nce_fp_mp in ip_xmit_attach_llhdr().
14547 		 */
14548 		fp_mp = (mp->b_datap->db_type == M_DATA);
14549 
14550 		if (fp_mp &&
14551 		    (ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT)) {
14552 			ill_dld_direct_t *idd;
14553 
14554 			idd = &ill->ill_dld_capab->idc_direct;
14555 			/*
14556 			 * Send the packet directly to DLD, where it
14557 			 * may be queued depending on the availability
14558 			 * of transmit resources at the media layer.
14559 			 * Return value should be taken into
14560 			 * account and flow control the TCP.
14561 			 */
14562 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
14563 			UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
14564 			    pkt_len);
14565 
14566 			if (ixaflags & IXAF_NO_DEV_FLOW_CTL) {
14567 				(void) idd->idd_tx_df(idd->idd_tx_dh, mp,
14568 				    (uintptr_t)xmit_hint, IP_DROP_ON_NO_DESC);
14569 			} else {
14570 				uintptr_t cookie;
14571 
14572 				if ((cookie = idd->idd_tx_df(idd->idd_tx_dh,
14573 				    mp, (uintptr_t)xmit_hint, 0)) != 0) {
14574 					if (ixacookie != NULL)
14575 						*ixacookie = cookie;
14576 					return (EWOULDBLOCK);
14577 				}
14578 			}
14579 		} else {
14580 			wq = ill->ill_wq;
14581 
14582 			if (!(ixaflags & IXAF_NO_DEV_FLOW_CTL) &&
14583 			    !canputnext(wq)) {
14584 				if (ixacookie != NULL)
14585 					*ixacookie = 0;
14586 				ip_xmit_flowctl_drop(ill, mp, fp_mp,
14587 				    nce->nce_fp_mp != NULL ?
14588 				    MBLKL(nce->nce_fp_mp) : 0);
14589 				return (EWOULDBLOCK);
14590 			}
14591 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
14592 			UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
14593 			    pkt_len);
14594 			putnext(wq, mp);
14595 		}
14596 
14597 		/*
14598 		 * The rest of this function implements Neighbor Unreachability
14599 		 * detection. Determine if the ncec is eligible for NUD.
14600 		 */
14601 		if (ncec->ncec_flags & NCE_F_NONUD)
14602 			return (0);
14603 
14604 		ASSERT(ncec->ncec_state != ND_INCOMPLETE);
14605 
14606 		/*
14607 		 * Check for upper layer advice
14608 		 */
14609 		if (ixaflags & IXAF_REACH_CONF) {
14610 			timeout_id_t tid;
14611 
14612 			/*
14613 			 * It should be o.k. to check the state without
14614 			 * a lock here, at most we lose an advice.
14615 			 */
14616 			ncec->ncec_last = TICK_TO_MSEC(now);
14617 			if (ncec->ncec_state != ND_REACHABLE) {
14618 				mutex_enter(&ncec->ncec_lock);
14619 				ncec->ncec_state = ND_REACHABLE;
14620 				tid = ncec->ncec_timeout_id;
14621 				ncec->ncec_timeout_id = 0;
14622 				mutex_exit(&ncec->ncec_lock);
14623 				(void) untimeout(tid);
14624 				if (ip_debug > 2) {
14625 					/* ip1dbg */
14626 					pr_addr_dbg("ip_xmit: state"
14627 					    " for %s changed to"
14628 					    " REACHABLE\n", AF_INET6,
14629 					    &ncec->ncec_addr);
14630 				}
14631 			}
14632 			return (0);
14633 		}
14634 
14635 		delta =  TICK_TO_MSEC(now) - ncec->ncec_last;
14636 		ip1dbg(("ip_xmit: delta = %" PRId64
14637 		    " ill_reachable_time = %d \n", delta,
14638 		    ill->ill_reachable_time));
14639 		if (delta > (uint64_t)ill->ill_reachable_time) {
14640 			mutex_enter(&ncec->ncec_lock);
14641 			switch (ncec->ncec_state) {
14642 			case ND_REACHABLE:
14643 				ASSERT((ncec->ncec_flags & NCE_F_NONUD) == 0);
14644 				/* FALLTHROUGH */
14645 			case ND_STALE:
14646 				/*
14647 				 * ND_REACHABLE is identical to
14648 				 * ND_STALE in this specific case. If
14649 				 * reachable time has expired for this
14650 				 * neighbor (delta is greater than
14651 				 * reachable time), conceptually, the
14652 				 * neighbor cache is no longer in
14653 				 * REACHABLE state, but already in
14654 				 * STALE state.  So the correct
14655 				 * transition here is to ND_DELAY.
14656 				 */
14657 				ncec->ncec_state = ND_DELAY;
14658 				mutex_exit(&ncec->ncec_lock);
14659 				nce_restart_timer(ncec,
14660 				    ipst->ips_delay_first_probe_time);
14661 				if (ip_debug > 3) {
14662 					/* ip2dbg */
14663 					pr_addr_dbg("ip_xmit: state"
14664 					    " for %s changed to"
14665 					    " DELAY\n", AF_INET6,
14666 					    &ncec->ncec_addr);
14667 				}
14668 				break;
14669 			case ND_DELAY:
14670 			case ND_PROBE:
14671 				mutex_exit(&ncec->ncec_lock);
14672 				/* Timers have already started */
14673 				break;
14674 			case ND_UNREACHABLE:
14675 				/*
14676 				 * nce_timer has detected that this ncec
14677 				 * is unreachable and initiated deleting
14678 				 * this ncec.
14679 				 * This is a harmless race where we found the
14680 				 * ncec before it was deleted and have
14681 				 * just sent out a packet using this
14682 				 * unreachable ncec.
14683 				 */
14684 				mutex_exit(&ncec->ncec_lock);
14685 				break;
14686 			default:
14687 				ASSERT(0);
14688 				mutex_exit(&ncec->ncec_lock);
14689 			}
14690 		}
14691 		return (0);
14692 
14693 	case ND_INCOMPLETE:
14694 		/*
14695 		 * the state could have changed since we didn't hold the lock.
14696 		 * Re-verify state under lock.
14697 		 */
14698 		is_probe = ipmp_packet_is_probe(mp, nce->nce_ill);
14699 		mutex_enter(&ncec->ncec_lock);
14700 		if (NCE_ISREACHABLE(ncec)) {
14701 			mutex_exit(&ncec->ncec_lock);
14702 			goto sendit;
14703 		}
14704 		/* queue the packet */
14705 		nce_queue_mp(ncec, mp, is_probe);
14706 		mutex_exit(&ncec->ncec_lock);
14707 		DTRACE_PROBE2(ip__xmit__incomplete,
14708 		    (ncec_t *), ncec, (mblk_t *), mp);
14709 		return (0);
14710 
14711 	case ND_INITIAL:
14712 		/*
14713 		 * State could have changed since we didn't hold the lock, so
14714 		 * re-verify state.
14715 		 */
14716 		is_probe = ipmp_packet_is_probe(mp, nce->nce_ill);
14717 		mutex_enter(&ncec->ncec_lock);
14718 		if (NCE_ISREACHABLE(ncec))  {
14719 			mutex_exit(&ncec->ncec_lock);
14720 			goto sendit;
14721 		}
14722 		nce_queue_mp(ncec, mp, is_probe);
14723 		if (ncec->ncec_state == ND_INITIAL) {
14724 			ncec->ncec_state = ND_INCOMPLETE;
14725 			mutex_exit(&ncec->ncec_lock);
14726 			/*
14727 			 * figure out the source we want to use
14728 			 * and resolve it.
14729 			 */
14730 			ip_ndp_resolve(ncec);
14731 		} else  {
14732 			mutex_exit(&ncec->ncec_lock);
14733 		}
14734 		return (0);
14735 
14736 	case ND_UNREACHABLE:
14737 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
14738 		ip_drop_output("ipIfStatsOutDiscards - ND_UNREACHABLE",
14739 		    mp, ill);
14740 		freemsg(mp);
14741 		return (0);
14742 
14743 	default:
14744 		ASSERT(0);
14745 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
14746 		ip_drop_output("ipIfStatsOutDiscards - ND_other",
14747 		    mp, ill);
14748 		freemsg(mp);
14749 		return (ENETUNREACH);
14750 	}
14751 }
14752 
14753 /*
14754  * Return B_TRUE if the buffers differ in length or content.
14755  * This is used for comparing extension header buffers.
14756  * Note that an extension header would be declared different
14757  * even if all that changed was the next header value in that header i.e.
14758  * what really changed is the next extension header.
14759  */
14760 boolean_t
14761 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf,
14762     uint_t blen)
14763 {
14764 	if (!b_valid)
14765 		blen = 0;
14766 
14767 	if (alen != blen)
14768 		return (B_TRUE);
14769 	if (alen == 0)
14770 		return (B_FALSE);	/* Both zero length */
14771 	return (bcmp(abuf, bbuf, alen));
14772 }
14773 
14774 /*
14775  * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok.
14776  * Return B_FALSE if memory allocation fails - don't change any state!
14777  */
14778 boolean_t
14779 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid,
14780     const void *src, uint_t srclen)
14781 {
14782 	void *dst;
14783 
14784 	if (!src_valid)
14785 		srclen = 0;
14786 
14787 	ASSERT(*dstlenp == 0);
14788 	if (src != NULL && srclen != 0) {
14789 		dst = mi_alloc(srclen, BPRI_MED);
14790 		if (dst == NULL)
14791 			return (B_FALSE);
14792 	} else {
14793 		dst = NULL;
14794 	}
14795 	if (*dstp != NULL)
14796 		mi_free(*dstp);
14797 	*dstp = dst;
14798 	*dstlenp = dst == NULL ? 0 : srclen;
14799 	return (B_TRUE);
14800 }
14801 
14802 /*
14803  * Replace what is in *dst, *dstlen with the source.
14804  * Assumes ip_allocbuf has already been called.
14805  */
14806 void
14807 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid,
14808     const void *src, uint_t srclen)
14809 {
14810 	if (!src_valid)
14811 		srclen = 0;
14812 
14813 	ASSERT(*dstlenp == srclen);
14814 	if (src != NULL && srclen != 0)
14815 		bcopy(src, *dstp, srclen);
14816 }
14817 
14818 /*
14819  * Free the storage pointed to by the members of an ip_pkt_t.
14820  */
14821 void
14822 ip_pkt_free(ip_pkt_t *ipp)
14823 {
14824 	uint_t	fields = ipp->ipp_fields;
14825 
14826 	if (fields & IPPF_HOPOPTS) {
14827 		kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen);
14828 		ipp->ipp_hopopts = NULL;
14829 		ipp->ipp_hopoptslen = 0;
14830 	}
14831 	if (fields & IPPF_RTHDRDSTOPTS) {
14832 		kmem_free(ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen);
14833 		ipp->ipp_rthdrdstopts = NULL;
14834 		ipp->ipp_rthdrdstoptslen = 0;
14835 	}
14836 	if (fields & IPPF_DSTOPTS) {
14837 		kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen);
14838 		ipp->ipp_dstopts = NULL;
14839 		ipp->ipp_dstoptslen = 0;
14840 	}
14841 	if (fields & IPPF_RTHDR) {
14842 		kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen);
14843 		ipp->ipp_rthdr = NULL;
14844 		ipp->ipp_rthdrlen = 0;
14845 	}
14846 	if (fields & IPPF_IPV4_OPTIONS) {
14847 		kmem_free(ipp->ipp_ipv4_options, ipp->ipp_ipv4_options_len);
14848 		ipp->ipp_ipv4_options = NULL;
14849 		ipp->ipp_ipv4_options_len = 0;
14850 	}
14851 	if (fields & IPPF_LABEL_V4) {
14852 		kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
14853 		ipp->ipp_label_v4 = NULL;
14854 		ipp->ipp_label_len_v4 = 0;
14855 	}
14856 	if (fields & IPPF_LABEL_V6) {
14857 		kmem_free(ipp->ipp_label_v6, ipp->ipp_label_len_v6);
14858 		ipp->ipp_label_v6 = NULL;
14859 		ipp->ipp_label_len_v6 = 0;
14860 	}
14861 	ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
14862 	    IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6);
14863 }
14864 
14865 /*
14866  * Copy from src to dst and allocate as needed.
14867  * Returns zero or ENOMEM.
14868  *
14869  * The caller must initialize dst to zero.
14870  */
14871 int
14872 ip_pkt_copy(ip_pkt_t *src, ip_pkt_t *dst, int kmflag)
14873 {
14874 	uint_t	fields = src->ipp_fields;
14875 
14876 	/* Start with fields that don't require memory allocation */
14877 	dst->ipp_fields = fields &
14878 	    ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
14879 	    IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6);
14880 
14881 	dst->ipp_addr = src->ipp_addr;
14882 	dst->ipp_unicast_hops = src->ipp_unicast_hops;
14883 	dst->ipp_hoplimit = src->ipp_hoplimit;
14884 	dst->ipp_tclass = src->ipp_tclass;
14885 	dst->ipp_type_of_service = src->ipp_type_of_service;
14886 
14887 	if (!(fields & (IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
14888 	    IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6)))
14889 		return (0);
14890 
14891 	if (fields & IPPF_HOPOPTS) {
14892 		dst->ipp_hopopts = kmem_alloc(src->ipp_hopoptslen, kmflag);
14893 		if (dst->ipp_hopopts == NULL) {
14894 			ip_pkt_free(dst);
14895 			return (ENOMEM);
14896 		}
14897 		dst->ipp_fields |= IPPF_HOPOPTS;
14898 		bcopy(src->ipp_hopopts, dst->ipp_hopopts,
14899 		    src->ipp_hopoptslen);
14900 		dst->ipp_hopoptslen = src->ipp_hopoptslen;
14901 	}
14902 	if (fields & IPPF_RTHDRDSTOPTS) {
14903 		dst->ipp_rthdrdstopts = kmem_alloc(src->ipp_rthdrdstoptslen,
14904 		    kmflag);
14905 		if (dst->ipp_rthdrdstopts == NULL) {
14906 			ip_pkt_free(dst);
14907 			return (ENOMEM);
14908 		}
14909 		dst->ipp_fields |= IPPF_RTHDRDSTOPTS;
14910 		bcopy(src->ipp_rthdrdstopts, dst->ipp_rthdrdstopts,
14911 		    src->ipp_rthdrdstoptslen);
14912 		dst->ipp_rthdrdstoptslen = src->ipp_rthdrdstoptslen;
14913 	}
14914 	if (fields & IPPF_DSTOPTS) {
14915 		dst->ipp_dstopts = kmem_alloc(src->ipp_dstoptslen, kmflag);
14916 		if (dst->ipp_dstopts == NULL) {
14917 			ip_pkt_free(dst);
14918 			return (ENOMEM);
14919 		}
14920 		dst->ipp_fields |= IPPF_DSTOPTS;
14921 		bcopy(src->ipp_dstopts, dst->ipp_dstopts,
14922 		    src->ipp_dstoptslen);
14923 		dst->ipp_dstoptslen = src->ipp_dstoptslen;
14924 	}
14925 	if (fields & IPPF_RTHDR) {
14926 		dst->ipp_rthdr = kmem_alloc(src->ipp_rthdrlen, kmflag);
14927 		if (dst->ipp_rthdr == NULL) {
14928 			ip_pkt_free(dst);
14929 			return (ENOMEM);
14930 		}
14931 		dst->ipp_fields |= IPPF_RTHDR;
14932 		bcopy(src->ipp_rthdr, dst->ipp_rthdr,
14933 		    src->ipp_rthdrlen);
14934 		dst->ipp_rthdrlen = src->ipp_rthdrlen;
14935 	}
14936 	if (fields & IPPF_IPV4_OPTIONS) {
14937 		dst->ipp_ipv4_options = kmem_alloc(src->ipp_ipv4_options_len,
14938 		    kmflag);
14939 		if (dst->ipp_ipv4_options == NULL) {
14940 			ip_pkt_free(dst);
14941 			return (ENOMEM);
14942 		}
14943 		dst->ipp_fields |= IPPF_IPV4_OPTIONS;
14944 		bcopy(src->ipp_ipv4_options, dst->ipp_ipv4_options,
14945 		    src->ipp_ipv4_options_len);
14946 		dst->ipp_ipv4_options_len = src->ipp_ipv4_options_len;
14947 	}
14948 	if (fields & IPPF_LABEL_V4) {
14949 		dst->ipp_label_v4 = kmem_alloc(src->ipp_label_len_v4, kmflag);
14950 		if (dst->ipp_label_v4 == NULL) {
14951 			ip_pkt_free(dst);
14952 			return (ENOMEM);
14953 		}
14954 		dst->ipp_fields |= IPPF_LABEL_V4;
14955 		bcopy(src->ipp_label_v4, dst->ipp_label_v4,
14956 		    src->ipp_label_len_v4);
14957 		dst->ipp_label_len_v4 = src->ipp_label_len_v4;
14958 	}
14959 	if (fields & IPPF_LABEL_V6) {
14960 		dst->ipp_label_v6 = kmem_alloc(src->ipp_label_len_v6, kmflag);
14961 		if (dst->ipp_label_v6 == NULL) {
14962 			ip_pkt_free(dst);
14963 			return (ENOMEM);
14964 		}
14965 		dst->ipp_fields |= IPPF_LABEL_V6;
14966 		bcopy(src->ipp_label_v6, dst->ipp_label_v6,
14967 		    src->ipp_label_len_v6);
14968 		dst->ipp_label_len_v6 = src->ipp_label_len_v6;
14969 	}
14970 	if (fields & IPPF_FRAGHDR) {
14971 		dst->ipp_fraghdr = kmem_alloc(src->ipp_fraghdrlen, kmflag);
14972 		if (dst->ipp_fraghdr == NULL) {
14973 			ip_pkt_free(dst);
14974 			return (ENOMEM);
14975 		}
14976 		dst->ipp_fields |= IPPF_FRAGHDR;
14977 		bcopy(src->ipp_fraghdr, dst->ipp_fraghdr,
14978 		    src->ipp_fraghdrlen);
14979 		dst->ipp_fraghdrlen = src->ipp_fraghdrlen;
14980 	}
14981 	return (0);
14982 }
14983 
14984 /*
14985  * Returns INADDR_ANY if no source route
14986  */
14987 ipaddr_t
14988 ip_pkt_source_route_v4(const ip_pkt_t *ipp)
14989 {
14990 	ipaddr_t	nexthop = INADDR_ANY;
14991 	ipoptp_t	opts;
14992 	uchar_t		*opt;
14993 	uint8_t		optval;
14994 	uint8_t		optlen;
14995 	uint32_t	totallen;
14996 
14997 	if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
14998 		return (INADDR_ANY);
14999 
15000 	totallen = ipp->ipp_ipv4_options_len;
15001 	if (totallen & 0x3)
15002 		return (INADDR_ANY);
15003 
15004 	for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
15005 	    optval != IPOPT_EOL;
15006 	    optval = ipoptp_next(&opts)) {
15007 		opt = opts.ipoptp_cur;
15008 		switch (optval) {
15009 			uint8_t off;
15010 		case IPOPT_SSRR:
15011 		case IPOPT_LSRR:
15012 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
15013 				break;
15014 			}
15015 			optlen = opts.ipoptp_len;
15016 			off = opt[IPOPT_OFFSET];
15017 			off--;
15018 			if (optlen < IP_ADDR_LEN ||
15019 			    off > optlen - IP_ADDR_LEN) {
15020 				/* End of source route */
15021 				break;
15022 			}
15023 			bcopy((char *)opt + off, &nexthop, IP_ADDR_LEN);
15024 			if (nexthop == htonl(INADDR_LOOPBACK)) {
15025 				/* Ignore */
15026 				nexthop = INADDR_ANY;
15027 				break;
15028 			}
15029 			break;
15030 		}
15031 	}
15032 	return (nexthop);
15033 }
15034 
15035 /*
15036  * Reverse a source route.
15037  */
15038 void
15039 ip_pkt_source_route_reverse_v4(ip_pkt_t *ipp)
15040 {
15041 	ipaddr_t	tmp;
15042 	ipoptp_t	opts;
15043 	uchar_t		*opt;
15044 	uint8_t		optval;
15045 	uint32_t	totallen;
15046 
15047 	if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
15048 		return;
15049 
15050 	totallen = ipp->ipp_ipv4_options_len;
15051 	if (totallen & 0x3)
15052 		return;
15053 
15054 	for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
15055 	    optval != IPOPT_EOL;
15056 	    optval = ipoptp_next(&opts)) {
15057 		uint8_t off1, off2;
15058 
15059 		opt = opts.ipoptp_cur;
15060 		switch (optval) {
15061 		case IPOPT_SSRR:
15062 		case IPOPT_LSRR:
15063 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
15064 				break;
15065 			}
15066 			off1 = IPOPT_MINOFF_SR - 1;
15067 			off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
15068 			while (off2 > off1) {
15069 				bcopy(opt + off2, &tmp, IP_ADDR_LEN);
15070 				bcopy(opt + off1, opt + off2, IP_ADDR_LEN);
15071 				bcopy(&tmp, opt + off2, IP_ADDR_LEN);
15072 				off2 -= IP_ADDR_LEN;
15073 				off1 += IP_ADDR_LEN;
15074 			}
15075 			opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
15076 			break;
15077 		}
15078 	}
15079 }
15080 
15081 /*
15082  * Returns NULL if no routing header
15083  */
15084 in6_addr_t *
15085 ip_pkt_source_route_v6(const ip_pkt_t *ipp)
15086 {
15087 	in6_addr_t	*nexthop = NULL;
15088 	ip6_rthdr0_t	*rthdr;
15089 
15090 	if (!(ipp->ipp_fields & IPPF_RTHDR))
15091 		return (NULL);
15092 
15093 	rthdr = (ip6_rthdr0_t *)ipp->ipp_rthdr;
15094 	if (rthdr->ip6r0_segleft == 0)
15095 		return (NULL);
15096 
15097 	nexthop = (in6_addr_t *)((char *)rthdr + sizeof (*rthdr));
15098 	return (nexthop);
15099 }
15100 
15101 zoneid_t
15102 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_recv_attr_t *ira,
15103     zoneid_t lookup_zoneid)
15104 {
15105 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
15106 	ire_t		*ire;
15107 	int		ire_flags = MATCH_IRE_TYPE;
15108 	zoneid_t	zoneid = ALL_ZONES;
15109 
15110 	if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE))
15111 		return (ALL_ZONES);
15112 
15113 	if (lookup_zoneid != ALL_ZONES)
15114 		ire_flags |= MATCH_IRE_ZONEONLY;
15115 	ire = ire_ftable_lookup_v4(addr, 0, 0, IRE_LOCAL | IRE_LOOPBACK,
15116 	    NULL, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL);
15117 	if (ire != NULL) {
15118 		zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst);
15119 		ire_refrele(ire);
15120 	}
15121 	return (zoneid);
15122 }
15123 
15124 zoneid_t
15125 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill,
15126     ip_recv_attr_t *ira, zoneid_t lookup_zoneid)
15127 {
15128 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
15129 	ire_t		*ire;
15130 	int		ire_flags = MATCH_IRE_TYPE;
15131 	zoneid_t	zoneid = ALL_ZONES;
15132 
15133 	if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE))
15134 		return (ALL_ZONES);
15135 
15136 	if (IN6_IS_ADDR_LINKLOCAL(addr))
15137 		ire_flags |= MATCH_IRE_ILL;
15138 
15139 	if (lookup_zoneid != ALL_ZONES)
15140 		ire_flags |= MATCH_IRE_ZONEONLY;
15141 	ire = ire_ftable_lookup_v6(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK,
15142 	    ill, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL);
15143 	if (ire != NULL) {
15144 		zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst);
15145 		ire_refrele(ire);
15146 	}
15147 	return (zoneid);
15148 }
15149 
15150 /*
15151  * IP obserability hook support functions.
15152  */
15153 static void
15154 ipobs_init(ip_stack_t *ipst)
15155 {
15156 	netid_t id;
15157 
15158 	id = net_getnetidbynetstackid(ipst->ips_netstack->netstack_stackid);
15159 
15160 	ipst->ips_ip4_observe_pr = net_protocol_lookup(id, NHF_INET);
15161 	VERIFY(ipst->ips_ip4_observe_pr != NULL);
15162 
15163 	ipst->ips_ip6_observe_pr = net_protocol_lookup(id, NHF_INET6);
15164 	VERIFY(ipst->ips_ip6_observe_pr != NULL);
15165 }
15166 
15167 static void
15168 ipobs_fini(ip_stack_t *ipst)
15169 {
15170 
15171 	VERIFY(net_protocol_release(ipst->ips_ip4_observe_pr) == 0);
15172 	VERIFY(net_protocol_release(ipst->ips_ip6_observe_pr) == 0);
15173 }
15174 
15175 /*
15176  * hook_pkt_observe_t is composed in network byte order so that the
15177  * entire mblk_t chain handed into hook_run can be used as-is.
15178  * The caveat is that use of the fields, such as the zone fields,
15179  * requires conversion into host byte order first.
15180  */
15181 void
15182 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst,
15183     const ill_t *ill, ip_stack_t *ipst)
15184 {
15185 	hook_pkt_observe_t *hdr;
15186 	uint64_t grifindex;
15187 	mblk_t *imp;
15188 
15189 	imp = allocb(sizeof (*hdr), BPRI_HI);
15190 	if (imp == NULL)
15191 		return;
15192 
15193 	hdr = (hook_pkt_observe_t *)imp->b_rptr;
15194 	/*
15195 	 * b_wptr is set to make the apparent size of the data in the mblk_t
15196 	 * to exclude the pointers at the end of hook_pkt_observer_t.
15197 	 */
15198 	imp->b_wptr = imp->b_rptr + sizeof (dl_ipnetinfo_t);
15199 	imp->b_cont = mp;
15200 
15201 	ASSERT(DB_TYPE(mp) == M_DATA);
15202 
15203 	if (IS_UNDER_IPMP(ill))
15204 		grifindex = ipmp_ill_get_ipmp_ifindex(ill);
15205 	else
15206 		grifindex = 0;
15207 
15208 	hdr->hpo_version = 1;
15209 	hdr->hpo_htype = htons(htype);
15210 	hdr->hpo_pktlen = htonl((ulong_t)msgdsize(mp));
15211 	hdr->hpo_ifindex = htonl(ill->ill_phyint->phyint_ifindex);
15212 	hdr->hpo_grifindex = htonl(grifindex);
15213 	hdr->hpo_zsrc = htonl(zsrc);
15214 	hdr->hpo_zdst = htonl(zdst);
15215 	hdr->hpo_pkt = imp;
15216 	hdr->hpo_ctx = ipst->ips_netstack;
15217 
15218 	if (ill->ill_isv6) {
15219 		hdr->hpo_family = AF_INET6;
15220 		(void) hook_run(ipst->ips_ipv6_net_data->netd_hooks,
15221 		    ipst->ips_ipv6observing, (hook_data_t)hdr);
15222 	} else {
15223 		hdr->hpo_family = AF_INET;
15224 		(void) hook_run(ipst->ips_ipv4_net_data->netd_hooks,
15225 		    ipst->ips_ipv4observing, (hook_data_t)hdr);
15226 	}
15227 
15228 	imp->b_cont = NULL;
15229 	freemsg(imp);
15230 }
15231 
15232 /*
15233  * Utility routine that checks if `v4srcp' is a valid address on underlying
15234  * interface `ill'.  If `ipifp' is non-NULL, it's set to a held ipif
15235  * associated with `v4srcp' on success.  NOTE: if this is not called from
15236  * inside the IPSQ (ill_g_lock is not held), `ill' may be removed from the
15237  * group during or after this lookup.
15238  */
15239 boolean_t
15240 ipif_lookup_testaddr_v4(ill_t *ill, const in_addr_t *v4srcp, ipif_t **ipifp)
15241 {
15242 	ipif_t *ipif;
15243 
15244 	ipif = ipif_lookup_addr_exact(*v4srcp, ill, ill->ill_ipst);
15245 	if (ipif != NULL) {
15246 		if (ipifp != NULL)
15247 			*ipifp = ipif;
15248 		else
15249 			ipif_refrele(ipif);
15250 		return (B_TRUE);
15251 	}
15252 
15253 	ip1dbg(("ipif_lookup_testaddr_v4: cannot find ipif for src %x\n",
15254 	    *v4srcp));
15255 	return (B_FALSE);
15256 }
15257 
15258 /*
15259  * Transport protocol call back function for CPU state change.
15260  */
15261 /* ARGSUSED */
15262 static int
15263 ip_tp_cpu_update(cpu_setup_t what, int id, void *arg)
15264 {
15265 	processorid_t cpu_seqid;
15266 	netstack_handle_t nh;
15267 	netstack_t *ns;
15268 
15269 	ASSERT(MUTEX_HELD(&cpu_lock));
15270 
15271 	switch (what) {
15272 	case CPU_CONFIG:
15273 	case CPU_ON:
15274 	case CPU_INIT:
15275 	case CPU_CPUPART_IN:
15276 		cpu_seqid = cpu[id]->cpu_seqid;
15277 		netstack_next_init(&nh);
15278 		while ((ns = netstack_next(&nh)) != NULL) {
15279 			tcp_stack_cpu_add(ns->netstack_tcp, cpu_seqid);
15280 			sctp_stack_cpu_add(ns->netstack_sctp, cpu_seqid);
15281 			udp_stack_cpu_add(ns->netstack_udp, cpu_seqid);
15282 			netstack_rele(ns);
15283 		}
15284 		netstack_next_fini(&nh);
15285 		break;
15286 	case CPU_UNCONFIG:
15287 	case CPU_OFF:
15288 	case CPU_CPUPART_OUT:
15289 		/*
15290 		 * Nothing to do.  We don't remove the per CPU stats from
15291 		 * the IP stack even when the CPU goes offline.
15292 		 */
15293 		break;
15294 	default:
15295 		break;
15296 	}
15297 	return (0);
15298 }
15299