xref: /illumos-gate/usr/src/uts/common/fs/zfs/zio.c (revision d6e1c446)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
24  * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25  * Copyright (c) 2014 Integros [integros.com]
26  */
27 
28 #include <sys/sysmacros.h>
29 #include <sys/zfs_context.h>
30 #include <sys/fm/fs/zfs.h>
31 #include <sys/spa.h>
32 #include <sys/txg.h>
33 #include <sys/spa_impl.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/zio_impl.h>
36 #include <sys/zio_compress.h>
37 #include <sys/zio_checksum.h>
38 #include <sys/dmu_objset.h>
39 #include <sys/arc.h>
40 #include <sys/ddt.h>
41 #include <sys/blkptr.h>
42 #include <sys/zfeature.h>
43 #include <sys/metaslab_impl.h>
44 #include <sys/abd.h>
45 
46 /*
47  * ==========================================================================
48  * I/O type descriptions
49  * ==========================================================================
50  */
51 const char *zio_type_name[ZIO_TYPES] = {
52 	"zio_null", "zio_read", "zio_write", "zio_free", "zio_claim",
53 	"zio_ioctl"
54 };
55 
56 boolean_t zio_dva_throttle_enabled = B_TRUE;
57 
58 /*
59  * ==========================================================================
60  * I/O kmem caches
61  * ==========================================================================
62  */
63 kmem_cache_t *zio_cache;
64 kmem_cache_t *zio_link_cache;
65 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
66 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
67 
68 #ifdef _KERNEL
69 extern vmem_t *zio_alloc_arena;
70 #endif
71 
72 #define	ZIO_PIPELINE_CONTINUE		0x100
73 #define	ZIO_PIPELINE_STOP		0x101
74 
75 #define	BP_SPANB(indblkshift, level) \
76 	(((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
77 #define	COMPARE_META_LEVEL	0x80000000ul
78 /*
79  * The following actions directly effect the spa's sync-to-convergence logic.
80  * The values below define the sync pass when we start performing the action.
81  * Care should be taken when changing these values as they directly impact
82  * spa_sync() performance. Tuning these values may introduce subtle performance
83  * pathologies and should only be done in the context of performance analysis.
84  * These tunables will eventually be removed and replaced with #defines once
85  * enough analysis has been done to determine optimal values.
86  *
87  * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
88  * regular blocks are not deferred.
89  */
90 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
91 int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
92 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
93 
94 /*
95  * An allocating zio is one that either currently has the DVA allocate
96  * stage set or will have it later in its lifetime.
97  */
98 #define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
99 
100 boolean_t	zio_requeue_io_start_cut_in_line = B_TRUE;
101 
102 #ifdef ZFS_DEBUG
103 int zio_buf_debug_limit = 16384;
104 #else
105 int zio_buf_debug_limit = 0;
106 #endif
107 
108 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t);
109 
110 void
111 zio_init(void)
112 {
113 	size_t c;
114 	vmem_t *data_alloc_arena = NULL;
115 
116 #ifdef _KERNEL
117 	data_alloc_arena = zio_alloc_arena;
118 #endif
119 	zio_cache = kmem_cache_create("zio_cache",
120 	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
121 	zio_link_cache = kmem_cache_create("zio_link_cache",
122 	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
123 
124 	/*
125 	 * For small buffers, we want a cache for each multiple of
126 	 * SPA_MINBLOCKSIZE.  For larger buffers, we want a cache
127 	 * for each quarter-power of 2.
128 	 */
129 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
130 		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
131 		size_t p2 = size;
132 		size_t align = 0;
133 		size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0;
134 
135 		while (!ISP2(p2))
136 			p2 &= p2 - 1;
137 
138 #ifndef _KERNEL
139 		/*
140 		 * If we are using watchpoints, put each buffer on its own page,
141 		 * to eliminate the performance overhead of trapping to the
142 		 * kernel when modifying a non-watched buffer that shares the
143 		 * page with a watched buffer.
144 		 */
145 		if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
146 			continue;
147 #endif
148 		if (size <= 4 * SPA_MINBLOCKSIZE) {
149 			align = SPA_MINBLOCKSIZE;
150 		} else if (IS_P2ALIGNED(size, p2 >> 2)) {
151 			align = MIN(p2 >> 2, PAGESIZE);
152 		}
153 
154 		if (align != 0) {
155 			char name[36];
156 			(void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
157 			zio_buf_cache[c] = kmem_cache_create(name, size,
158 			    align, NULL, NULL, NULL, NULL, NULL, cflags);
159 
160 			/*
161 			 * Since zio_data bufs do not appear in crash dumps, we
162 			 * pass KMC_NOTOUCH so that no allocator metadata is
163 			 * stored with the buffers.
164 			 */
165 			(void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
166 			zio_data_buf_cache[c] = kmem_cache_create(name, size,
167 			    align, NULL, NULL, NULL, NULL, data_alloc_arena,
168 			    cflags | KMC_NOTOUCH);
169 		}
170 	}
171 
172 	while (--c != 0) {
173 		ASSERT(zio_buf_cache[c] != NULL);
174 		if (zio_buf_cache[c - 1] == NULL)
175 			zio_buf_cache[c - 1] = zio_buf_cache[c];
176 
177 		ASSERT(zio_data_buf_cache[c] != NULL);
178 		if (zio_data_buf_cache[c - 1] == NULL)
179 			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
180 	}
181 
182 	zio_inject_init();
183 }
184 
185 void
186 zio_fini(void)
187 {
188 	size_t c;
189 	kmem_cache_t *last_cache = NULL;
190 	kmem_cache_t *last_data_cache = NULL;
191 
192 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
193 		if (zio_buf_cache[c] != last_cache) {
194 			last_cache = zio_buf_cache[c];
195 			kmem_cache_destroy(zio_buf_cache[c]);
196 		}
197 		zio_buf_cache[c] = NULL;
198 
199 		if (zio_data_buf_cache[c] != last_data_cache) {
200 			last_data_cache = zio_data_buf_cache[c];
201 			kmem_cache_destroy(zio_data_buf_cache[c]);
202 		}
203 		zio_data_buf_cache[c] = NULL;
204 	}
205 
206 	kmem_cache_destroy(zio_link_cache);
207 	kmem_cache_destroy(zio_cache);
208 
209 	zio_inject_fini();
210 }
211 
212 /*
213  * ==========================================================================
214  * Allocate and free I/O buffers
215  * ==========================================================================
216  */
217 
218 /*
219  * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
220  * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
221  * useful to inspect ZFS metadata, but if possible, we should avoid keeping
222  * excess / transient data in-core during a crashdump.
223  */
224 void *
225 zio_buf_alloc(size_t size)
226 {
227 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
228 
229 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
230 
231 	return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
232 }
233 
234 /*
235  * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
236  * crashdump if the kernel panics.  This exists so that we will limit the amount
237  * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
238  * of kernel heap dumped to disk when the kernel panics)
239  */
240 void *
241 zio_data_buf_alloc(size_t size)
242 {
243 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
244 
245 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
246 
247 	return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
248 }
249 
250 void
251 zio_buf_free(void *buf, size_t size)
252 {
253 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
254 
255 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
256 
257 	kmem_cache_free(zio_buf_cache[c], buf);
258 }
259 
260 void
261 zio_data_buf_free(void *buf, size_t size)
262 {
263 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
264 
265 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
266 
267 	kmem_cache_free(zio_data_buf_cache[c], buf);
268 }
269 
270 /*
271  * ==========================================================================
272  * Push and pop I/O transform buffers
273  * ==========================================================================
274  */
275 void
276 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize,
277     zio_transform_func_t *transform)
278 {
279 	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
280 
281 	/*
282 	 * Ensure that anyone expecting this zio to contain a linear ABD isn't
283 	 * going to get a nasty surprise when they try to access the data.
284 	 */
285 	IMPLY(abd_is_linear(zio->io_abd), abd_is_linear(data));
286 
287 	zt->zt_orig_abd = zio->io_abd;
288 	zt->zt_orig_size = zio->io_size;
289 	zt->zt_bufsize = bufsize;
290 	zt->zt_transform = transform;
291 
292 	zt->zt_next = zio->io_transform_stack;
293 	zio->io_transform_stack = zt;
294 
295 	zio->io_abd = data;
296 	zio->io_size = size;
297 }
298 
299 void
300 zio_pop_transforms(zio_t *zio)
301 {
302 	zio_transform_t *zt;
303 
304 	while ((zt = zio->io_transform_stack) != NULL) {
305 		if (zt->zt_transform != NULL)
306 			zt->zt_transform(zio,
307 			    zt->zt_orig_abd, zt->zt_orig_size);
308 
309 		if (zt->zt_bufsize != 0)
310 			abd_free(zio->io_abd);
311 
312 		zio->io_abd = zt->zt_orig_abd;
313 		zio->io_size = zt->zt_orig_size;
314 		zio->io_transform_stack = zt->zt_next;
315 
316 		kmem_free(zt, sizeof (zio_transform_t));
317 	}
318 }
319 
320 /*
321  * ==========================================================================
322  * I/O transform callbacks for subblocks and decompression
323  * ==========================================================================
324  */
325 static void
326 zio_subblock(zio_t *zio, abd_t *data, uint64_t size)
327 {
328 	ASSERT(zio->io_size > size);
329 
330 	if (zio->io_type == ZIO_TYPE_READ)
331 		abd_copy(data, zio->io_abd, size);
332 }
333 
334 static void
335 zio_decompress(zio_t *zio, abd_t *data, uint64_t size)
336 {
337 	if (zio->io_error == 0) {
338 		void *tmp = abd_borrow_buf(data, size);
339 		int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
340 		    zio->io_abd, tmp, zio->io_size, size);
341 		abd_return_buf_copy(data, tmp, size);
342 
343 		if (ret != 0)
344 			zio->io_error = SET_ERROR(EIO);
345 	}
346 }
347 
348 /*
349  * ==========================================================================
350  * I/O parent/child relationships and pipeline interlocks
351  * ==========================================================================
352  */
353 zio_t *
354 zio_walk_parents(zio_t *cio, zio_link_t **zl)
355 {
356 	list_t *pl = &cio->io_parent_list;
357 
358 	*zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl);
359 	if (*zl == NULL)
360 		return (NULL);
361 
362 	ASSERT((*zl)->zl_child == cio);
363 	return ((*zl)->zl_parent);
364 }
365 
366 zio_t *
367 zio_walk_children(zio_t *pio, zio_link_t **zl)
368 {
369 	list_t *cl = &pio->io_child_list;
370 
371 	*zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl);
372 	if (*zl == NULL)
373 		return (NULL);
374 
375 	ASSERT((*zl)->zl_parent == pio);
376 	return ((*zl)->zl_child);
377 }
378 
379 zio_t *
380 zio_unique_parent(zio_t *cio)
381 {
382 	zio_link_t *zl = NULL;
383 	zio_t *pio = zio_walk_parents(cio, &zl);
384 
385 	VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL);
386 	return (pio);
387 }
388 
389 void
390 zio_add_child(zio_t *pio, zio_t *cio)
391 {
392 	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
393 
394 	/*
395 	 * Logical I/Os can have logical, gang, or vdev children.
396 	 * Gang I/Os can have gang or vdev children.
397 	 * Vdev I/Os can only have vdev children.
398 	 * The following ASSERT captures all of these constraints.
399 	 */
400 	ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
401 
402 	zl->zl_parent = pio;
403 	zl->zl_child = cio;
404 
405 	mutex_enter(&cio->io_lock);
406 	mutex_enter(&pio->io_lock);
407 
408 	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
409 
410 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
411 		pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
412 
413 	list_insert_head(&pio->io_child_list, zl);
414 	list_insert_head(&cio->io_parent_list, zl);
415 
416 	pio->io_child_count++;
417 	cio->io_parent_count++;
418 
419 	mutex_exit(&pio->io_lock);
420 	mutex_exit(&cio->io_lock);
421 }
422 
423 static void
424 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
425 {
426 	ASSERT(zl->zl_parent == pio);
427 	ASSERT(zl->zl_child == cio);
428 
429 	mutex_enter(&cio->io_lock);
430 	mutex_enter(&pio->io_lock);
431 
432 	list_remove(&pio->io_child_list, zl);
433 	list_remove(&cio->io_parent_list, zl);
434 
435 	pio->io_child_count--;
436 	cio->io_parent_count--;
437 
438 	mutex_exit(&pio->io_lock);
439 	mutex_exit(&cio->io_lock);
440 
441 	kmem_cache_free(zio_link_cache, zl);
442 }
443 
444 static boolean_t
445 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait)
446 {
447 	boolean_t waiting = B_FALSE;
448 
449 	mutex_enter(&zio->io_lock);
450 	ASSERT(zio->io_stall == NULL);
451 	for (int c = 0; c < ZIO_CHILD_TYPES; c++) {
452 		if (!(ZIO_CHILD_BIT_IS_SET(childbits, c)))
453 			continue;
454 
455 		uint64_t *countp = &zio->io_children[c][wait];
456 		if (*countp != 0) {
457 			zio->io_stage >>= 1;
458 			ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN);
459 			zio->io_stall = countp;
460 			waiting = B_TRUE;
461 			break;
462 		}
463 	}
464 	mutex_exit(&zio->io_lock);
465 	return (waiting);
466 }
467 
468 static void
469 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
470 {
471 	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
472 	int *errorp = &pio->io_child_error[zio->io_child_type];
473 
474 	mutex_enter(&pio->io_lock);
475 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
476 		*errorp = zio_worst_error(*errorp, zio->io_error);
477 	pio->io_reexecute |= zio->io_reexecute;
478 	ASSERT3U(*countp, >, 0);
479 
480 	(*countp)--;
481 
482 	if (*countp == 0 && pio->io_stall == countp) {
483 		zio_taskq_type_t type =
484 		    pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE :
485 		    ZIO_TASKQ_INTERRUPT;
486 		pio->io_stall = NULL;
487 		mutex_exit(&pio->io_lock);
488 		/*
489 		 * Dispatch the parent zio in its own taskq so that
490 		 * the child can continue to make progress. This also
491 		 * prevents overflowing the stack when we have deeply nested
492 		 * parent-child relationships.
493 		 */
494 		zio_taskq_dispatch(pio, type, B_FALSE);
495 	} else {
496 		mutex_exit(&pio->io_lock);
497 	}
498 }
499 
500 static void
501 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
502 {
503 	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
504 		zio->io_error = zio->io_child_error[c];
505 }
506 
507 int
508 zio_bookmark_compare(const void *x1, const void *x2)
509 {
510 	const zio_t *z1 = x1;
511 	const zio_t *z2 = x2;
512 
513 	if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset)
514 		return (-1);
515 	if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset)
516 		return (1);
517 
518 	if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object)
519 		return (-1);
520 	if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object)
521 		return (1);
522 
523 	if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level)
524 		return (-1);
525 	if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level)
526 		return (1);
527 
528 	if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid)
529 		return (-1);
530 	if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid)
531 		return (1);
532 
533 	if (z1 < z2)
534 		return (-1);
535 	if (z1 > z2)
536 		return (1);
537 
538 	return (0);
539 }
540 
541 /*
542  * ==========================================================================
543  * Create the various types of I/O (read, write, free, etc)
544  * ==========================================================================
545  */
546 static zio_t *
547 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
548     abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done,
549     void *private, zio_type_t type, zio_priority_t priority,
550     enum zio_flag flags, vdev_t *vd, uint64_t offset,
551     const zbookmark_phys_t *zb, enum zio_stage stage, enum zio_stage pipeline)
552 {
553 	zio_t *zio;
554 
555 	ASSERT3U(psize, <=, SPA_MAXBLOCKSIZE);
556 	ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0);
557 	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
558 
559 	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
560 	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
561 	ASSERT(vd || stage == ZIO_STAGE_OPEN);
562 
563 	IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW) != 0);
564 
565 	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
566 	bzero(zio, sizeof (zio_t));
567 
568 	mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
569 	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
570 
571 	list_create(&zio->io_parent_list, sizeof (zio_link_t),
572 	    offsetof(zio_link_t, zl_parent_node));
573 	list_create(&zio->io_child_list, sizeof (zio_link_t),
574 	    offsetof(zio_link_t, zl_child_node));
575 	metaslab_trace_init(&zio->io_alloc_list);
576 
577 	if (vd != NULL)
578 		zio->io_child_type = ZIO_CHILD_VDEV;
579 	else if (flags & ZIO_FLAG_GANG_CHILD)
580 		zio->io_child_type = ZIO_CHILD_GANG;
581 	else if (flags & ZIO_FLAG_DDT_CHILD)
582 		zio->io_child_type = ZIO_CHILD_DDT;
583 	else
584 		zio->io_child_type = ZIO_CHILD_LOGICAL;
585 
586 	if (bp != NULL) {
587 		zio->io_bp = (blkptr_t *)bp;
588 		zio->io_bp_copy = *bp;
589 		zio->io_bp_orig = *bp;
590 		if (type != ZIO_TYPE_WRITE ||
591 		    zio->io_child_type == ZIO_CHILD_DDT)
592 			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
593 		if (zio->io_child_type == ZIO_CHILD_LOGICAL)
594 			zio->io_logical = zio;
595 		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
596 			pipeline |= ZIO_GANG_STAGES;
597 	}
598 
599 	zio->io_spa = spa;
600 	zio->io_txg = txg;
601 	zio->io_done = done;
602 	zio->io_private = private;
603 	zio->io_type = type;
604 	zio->io_priority = priority;
605 	zio->io_vd = vd;
606 	zio->io_offset = offset;
607 	zio->io_orig_abd = zio->io_abd = data;
608 	zio->io_orig_size = zio->io_size = psize;
609 	zio->io_lsize = lsize;
610 	zio->io_orig_flags = zio->io_flags = flags;
611 	zio->io_orig_stage = zio->io_stage = stage;
612 	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
613 	zio->io_pipeline_trace = ZIO_STAGE_OPEN;
614 
615 	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
616 	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
617 
618 	if (zb != NULL)
619 		zio->io_bookmark = *zb;
620 
621 	if (pio != NULL) {
622 		if (zio->io_logical == NULL)
623 			zio->io_logical = pio->io_logical;
624 		if (zio->io_child_type == ZIO_CHILD_GANG)
625 			zio->io_gang_leader = pio->io_gang_leader;
626 		zio_add_child(pio, zio);
627 	}
628 
629 	return (zio);
630 }
631 
632 static void
633 zio_destroy(zio_t *zio)
634 {
635 	metaslab_trace_fini(&zio->io_alloc_list);
636 	list_destroy(&zio->io_parent_list);
637 	list_destroy(&zio->io_child_list);
638 	mutex_destroy(&zio->io_lock);
639 	cv_destroy(&zio->io_cv);
640 	kmem_cache_free(zio_cache, zio);
641 }
642 
643 zio_t *
644 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
645     void *private, enum zio_flag flags)
646 {
647 	zio_t *zio;
648 
649 	zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
650 	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
651 	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
652 
653 	return (zio);
654 }
655 
656 zio_t *
657 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
658 {
659 	return (zio_null(NULL, spa, NULL, done, private, flags));
660 }
661 
662 void
663 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp)
664 {
665 	if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
666 		zfs_panic_recover("blkptr at %p has invalid TYPE %llu",
667 		    bp, (longlong_t)BP_GET_TYPE(bp));
668 	}
669 	if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS ||
670 	    BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) {
671 		zfs_panic_recover("blkptr at %p has invalid CHECKSUM %llu",
672 		    bp, (longlong_t)BP_GET_CHECKSUM(bp));
673 	}
674 	if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS ||
675 	    BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) {
676 		zfs_panic_recover("blkptr at %p has invalid COMPRESS %llu",
677 		    bp, (longlong_t)BP_GET_COMPRESS(bp));
678 	}
679 	if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
680 		zfs_panic_recover("blkptr at %p has invalid LSIZE %llu",
681 		    bp, (longlong_t)BP_GET_LSIZE(bp));
682 	}
683 	if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
684 		zfs_panic_recover("blkptr at %p has invalid PSIZE %llu",
685 		    bp, (longlong_t)BP_GET_PSIZE(bp));
686 	}
687 
688 	if (BP_IS_EMBEDDED(bp)) {
689 		if (BPE_GET_ETYPE(bp) > NUM_BP_EMBEDDED_TYPES) {
690 			zfs_panic_recover("blkptr at %p has invalid ETYPE %llu",
691 			    bp, (longlong_t)BPE_GET_ETYPE(bp));
692 		}
693 	}
694 
695 	/*
696 	 * Do not verify individual DVAs if the config is not trusted. This
697 	 * will be done once the zio is executed in vdev_mirror_map_alloc.
698 	 */
699 	if (!spa->spa_trust_config)
700 		return;
701 
702 	/*
703 	 * Pool-specific checks.
704 	 *
705 	 * Note: it would be nice to verify that the blk_birth and
706 	 * BP_PHYSICAL_BIRTH() are not too large.  However, spa_freeze()
707 	 * allows the birth time of log blocks (and dmu_sync()-ed blocks
708 	 * that are in the log) to be arbitrarily large.
709 	 */
710 	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
711 		uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]);
712 		if (vdevid >= spa->spa_root_vdev->vdev_children) {
713 			zfs_panic_recover("blkptr at %p DVA %u has invalid "
714 			    "VDEV %llu",
715 			    bp, i, (longlong_t)vdevid);
716 			continue;
717 		}
718 		vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
719 		if (vd == NULL) {
720 			zfs_panic_recover("blkptr at %p DVA %u has invalid "
721 			    "VDEV %llu",
722 			    bp, i, (longlong_t)vdevid);
723 			continue;
724 		}
725 		if (vd->vdev_ops == &vdev_hole_ops) {
726 			zfs_panic_recover("blkptr at %p DVA %u has hole "
727 			    "VDEV %llu",
728 			    bp, i, (longlong_t)vdevid);
729 			continue;
730 		}
731 		if (vd->vdev_ops == &vdev_missing_ops) {
732 			/*
733 			 * "missing" vdevs are valid during import, but we
734 			 * don't have their detailed info (e.g. asize), so
735 			 * we can't perform any more checks on them.
736 			 */
737 			continue;
738 		}
739 		uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
740 		uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]);
741 		if (BP_IS_GANG(bp))
742 			asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
743 		if (offset + asize > vd->vdev_asize) {
744 			zfs_panic_recover("blkptr at %p DVA %u has invalid "
745 			    "OFFSET %llu",
746 			    bp, i, (longlong_t)offset);
747 		}
748 	}
749 }
750 
751 boolean_t
752 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp)
753 {
754 	uint64_t vdevid = DVA_GET_VDEV(dva);
755 
756 	if (vdevid >= spa->spa_root_vdev->vdev_children)
757 		return (B_FALSE);
758 
759 	vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
760 	if (vd == NULL)
761 		return (B_FALSE);
762 
763 	if (vd->vdev_ops == &vdev_hole_ops)
764 		return (B_FALSE);
765 
766 	if (vd->vdev_ops == &vdev_missing_ops) {
767 		return (B_FALSE);
768 	}
769 
770 	uint64_t offset = DVA_GET_OFFSET(dva);
771 	uint64_t asize = DVA_GET_ASIZE(dva);
772 
773 	if (BP_IS_GANG(bp))
774 		asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
775 	if (offset + asize > vd->vdev_asize)
776 		return (B_FALSE);
777 
778 	return (B_TRUE);
779 }
780 
781 zio_t *
782 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
783     abd_t *data, uint64_t size, zio_done_func_t *done, void *private,
784     zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
785 {
786 	zio_t *zio;
787 
788 	zfs_blkptr_verify(spa, bp);
789 
790 	zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
791 	    data, size, size, done, private,
792 	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
793 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
794 	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
795 
796 	return (zio);
797 }
798 
799 zio_t *
800 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
801     abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp,
802     zio_done_func_t *ready, zio_done_func_t *children_ready,
803     zio_done_func_t *physdone, zio_done_func_t *done,
804     void *private, zio_priority_t priority, enum zio_flag flags,
805     const zbookmark_phys_t *zb)
806 {
807 	zio_t *zio;
808 
809 	ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
810 	    zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
811 	    zp->zp_compress >= ZIO_COMPRESS_OFF &&
812 	    zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
813 	    DMU_OT_IS_VALID(zp->zp_type) &&
814 	    zp->zp_level < 32 &&
815 	    zp->zp_copies > 0 &&
816 	    zp->zp_copies <= spa_max_replication(spa));
817 
818 	zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private,
819 	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
820 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
821 	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
822 
823 	zio->io_ready = ready;
824 	zio->io_children_ready = children_ready;
825 	zio->io_physdone = physdone;
826 	zio->io_prop = *zp;
827 
828 	/*
829 	 * Data can be NULL if we are going to call zio_write_override() to
830 	 * provide the already-allocated BP.  But we may need the data to
831 	 * verify a dedup hit (if requested).  In this case, don't try to
832 	 * dedup (just take the already-allocated BP verbatim).
833 	 */
834 	if (data == NULL && zio->io_prop.zp_dedup_verify) {
835 		zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
836 	}
837 
838 	return (zio);
839 }
840 
841 zio_t *
842 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data,
843     uint64_t size, zio_done_func_t *done, void *private,
844     zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb)
845 {
846 	zio_t *zio;
847 
848 	zio = zio_create(pio, spa, txg, bp, data, size, size, done, private,
849 	    ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb,
850 	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
851 
852 	return (zio);
853 }
854 
855 void
856 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
857 {
858 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
859 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
860 	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
861 	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
862 
863 	/*
864 	 * We must reset the io_prop to match the values that existed
865 	 * when the bp was first written by dmu_sync() keeping in mind
866 	 * that nopwrite and dedup are mutually exclusive.
867 	 */
868 	zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
869 	zio->io_prop.zp_nopwrite = nopwrite;
870 	zio->io_prop.zp_copies = copies;
871 	zio->io_bp_override = bp;
872 }
873 
874 void
875 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
876 {
877 
878 	zfs_blkptr_verify(spa, bp);
879 
880 	/*
881 	 * The check for EMBEDDED is a performance optimization.  We
882 	 * process the free here (by ignoring it) rather than
883 	 * putting it on the list and then processing it in zio_free_sync().
884 	 */
885 	if (BP_IS_EMBEDDED(bp))
886 		return;
887 	metaslab_check_free(spa, bp);
888 
889 	/*
890 	 * Frees that are for the currently-syncing txg, are not going to be
891 	 * deferred, and which will not need to do a read (i.e. not GANG or
892 	 * DEDUP), can be processed immediately.  Otherwise, put them on the
893 	 * in-memory list for later processing.
894 	 */
895 	if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp) ||
896 	    txg != spa->spa_syncing_txg ||
897 	    spa_sync_pass(spa) >= zfs_sync_pass_deferred_free) {
898 		bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
899 	} else {
900 		VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp, 0)));
901 	}
902 }
903 
904 zio_t *
905 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
906     enum zio_flag flags)
907 {
908 	zio_t *zio;
909 	enum zio_stage stage = ZIO_FREE_PIPELINE;
910 
911 	ASSERT(!BP_IS_HOLE(bp));
912 	ASSERT(spa_syncing_txg(spa) == txg);
913 	ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free);
914 
915 	if (BP_IS_EMBEDDED(bp))
916 		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
917 
918 	metaslab_check_free(spa, bp);
919 	arc_freed(spa, bp);
920 
921 	/*
922 	 * GANG and DEDUP blocks can induce a read (for the gang block header,
923 	 * or the DDT), so issue them asynchronously so that this thread is
924 	 * not tied up.
925 	 */
926 	if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp))
927 		stage |= ZIO_STAGE_ISSUE_ASYNC;
928 
929 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
930 	    BP_GET_PSIZE(bp), NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW,
931 	    flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage);
932 
933 	return (zio);
934 }
935 
936 zio_t *
937 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
938     zio_done_func_t *done, void *private, enum zio_flag flags)
939 {
940 	zio_t *zio;
941 
942 	zfs_blkptr_verify(spa, bp);
943 
944 	if (BP_IS_EMBEDDED(bp))
945 		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
946 
947 	/*
948 	 * A claim is an allocation of a specific block.  Claims are needed
949 	 * to support immediate writes in the intent log.  The issue is that
950 	 * immediate writes contain committed data, but in a txg that was
951 	 * *not* committed.  Upon opening the pool after an unclean shutdown,
952 	 * the intent log claims all blocks that contain immediate write data
953 	 * so that the SPA knows they're in use.
954 	 *
955 	 * All claims *must* be resolved in the first txg -- before the SPA
956 	 * starts allocating blocks -- so that nothing is allocated twice.
957 	 * If txg == 0 we just verify that the block is claimable.
958 	 */
959 	ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
960 	ASSERT(txg == spa_first_txg(spa) || txg == 0);
961 	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(1M) */
962 
963 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
964 	    BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW,
965 	    flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
966 	ASSERT0(zio->io_queued_timestamp);
967 
968 	return (zio);
969 }
970 
971 zio_t *
972 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
973     zio_done_func_t *done, void *private, enum zio_flag flags)
974 {
975 	zio_t *zio;
976 	int c;
977 
978 	if (vd->vdev_children == 0) {
979 		zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
980 		    ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
981 		    ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
982 
983 		zio->io_cmd = cmd;
984 	} else {
985 		zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
986 
987 		for (c = 0; c < vd->vdev_children; c++)
988 			zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
989 			    done, private, flags));
990 	}
991 
992 	return (zio);
993 }
994 
995 zio_t *
996 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
997     abd_t *data, int checksum, zio_done_func_t *done, void *private,
998     zio_priority_t priority, enum zio_flag flags, boolean_t labels)
999 {
1000 	zio_t *zio;
1001 
1002 	ASSERT(vd->vdev_children == 0);
1003 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1004 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1005 	ASSERT3U(offset + size, <=, vd->vdev_psize);
1006 
1007 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1008 	    private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1009 	    offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
1010 
1011 	zio->io_prop.zp_checksum = checksum;
1012 
1013 	return (zio);
1014 }
1015 
1016 zio_t *
1017 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1018     abd_t *data, int checksum, zio_done_func_t *done, void *private,
1019     zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1020 {
1021 	zio_t *zio;
1022 
1023 	ASSERT(vd->vdev_children == 0);
1024 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1025 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1026 	ASSERT3U(offset + size, <=, vd->vdev_psize);
1027 
1028 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1029 	    private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1030 	    offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
1031 
1032 	zio->io_prop.zp_checksum = checksum;
1033 
1034 	if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
1035 		/*
1036 		 * zec checksums are necessarily destructive -- they modify
1037 		 * the end of the write buffer to hold the verifier/checksum.
1038 		 * Therefore, we must make a local copy in case the data is
1039 		 * being written to multiple places in parallel.
1040 		 */
1041 		abd_t *wbuf = abd_alloc_sametype(data, size);
1042 		abd_copy(wbuf, data, size);
1043 
1044 		zio_push_transform(zio, wbuf, size, size, NULL);
1045 	}
1046 
1047 	return (zio);
1048 }
1049 
1050 /*
1051  * Create a child I/O to do some work for us.
1052  */
1053 zio_t *
1054 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1055     abd_t *data, uint64_t size, int type, zio_priority_t priority,
1056     enum zio_flag flags, zio_done_func_t *done, void *private)
1057 {
1058 	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1059 	zio_t *zio;
1060 
1061 	/*
1062 	 * vdev child I/Os do not propagate their error to the parent.
1063 	 * Therefore, for correct operation the caller *must* check for
1064 	 * and handle the error in the child i/o's done callback.
1065 	 * The only exceptions are i/os that we don't care about
1066 	 * (OPTIONAL or REPAIR).
1067 	 */
1068 	ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) ||
1069 	    done != NULL);
1070 
1071 	/*
1072 	 * In the common case, where the parent zio was to a normal vdev,
1073 	 * the child zio must be to a child vdev of that vdev.  Otherwise,
1074 	 * the child zio must be to a top-level vdev.
1075 	 */
1076 	if (pio->io_vd != NULL && pio->io_vd->vdev_ops != &vdev_indirect_ops) {
1077 		ASSERT3P(vd->vdev_parent, ==, pio->io_vd);
1078 	} else {
1079 		ASSERT3P(vd, ==, vd->vdev_top);
1080 	}
1081 
1082 	if (type == ZIO_TYPE_READ && bp != NULL) {
1083 		/*
1084 		 * If we have the bp, then the child should perform the
1085 		 * checksum and the parent need not.  This pushes error
1086 		 * detection as close to the leaves as possible and
1087 		 * eliminates redundant checksums in the interior nodes.
1088 		 */
1089 		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1090 		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1091 	}
1092 
1093 	if (vd->vdev_ops->vdev_op_leaf) {
1094 		ASSERT0(vd->vdev_children);
1095 		offset += VDEV_LABEL_START_SIZE;
1096 	}
1097 
1098 	flags |= ZIO_VDEV_CHILD_FLAGS(pio);
1099 
1100 	/*
1101 	 * If we've decided to do a repair, the write is not speculative --
1102 	 * even if the original read was.
1103 	 */
1104 	if (flags & ZIO_FLAG_IO_REPAIR)
1105 		flags &= ~ZIO_FLAG_SPECULATIVE;
1106 
1107 	/*
1108 	 * If we're creating a child I/O that is not associated with a
1109 	 * top-level vdev, then the child zio is not an allocating I/O.
1110 	 * If this is a retried I/O then we ignore it since we will
1111 	 * have already processed the original allocating I/O.
1112 	 */
1113 	if (flags & ZIO_FLAG_IO_ALLOCATING &&
1114 	    (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) {
1115 		metaslab_class_t *mc = spa_normal_class(pio->io_spa);
1116 
1117 		ASSERT(mc->mc_alloc_throttle_enabled);
1118 		ASSERT(type == ZIO_TYPE_WRITE);
1119 		ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE);
1120 		ASSERT(!(flags & ZIO_FLAG_IO_REPAIR));
1121 		ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) ||
1122 		    pio->io_child_type == ZIO_CHILD_GANG);
1123 
1124 		flags &= ~ZIO_FLAG_IO_ALLOCATING;
1125 	}
1126 
1127 	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size,
1128 	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1129 	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1130 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
1131 
1132 	zio->io_physdone = pio->io_physdone;
1133 	if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
1134 		zio->io_logical->io_phys_children++;
1135 
1136 	return (zio);
1137 }
1138 
1139 zio_t *
1140 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size,
1141     int type, zio_priority_t priority, enum zio_flag flags,
1142     zio_done_func_t *done, void *private)
1143 {
1144 	zio_t *zio;
1145 
1146 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1147 
1148 	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1149 	    data, size, size, done, private, type, priority,
1150 	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1151 	    vd, offset, NULL,
1152 	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1153 
1154 	return (zio);
1155 }
1156 
1157 void
1158 zio_flush(zio_t *zio, vdev_t *vd)
1159 {
1160 	zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
1161 	    NULL, NULL,
1162 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1163 }
1164 
1165 void
1166 zio_shrink(zio_t *zio, uint64_t size)
1167 {
1168 	ASSERT3P(zio->io_executor, ==, NULL);
1169 	ASSERT3P(zio->io_orig_size, ==, zio->io_size);
1170 	ASSERT3U(size, <=, zio->io_size);
1171 
1172 	/*
1173 	 * We don't shrink for raidz because of problems with the
1174 	 * reconstruction when reading back less than the block size.
1175 	 * Note, BP_IS_RAIDZ() assumes no compression.
1176 	 */
1177 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1178 	if (!BP_IS_RAIDZ(zio->io_bp)) {
1179 		/* we are not doing a raw write */
1180 		ASSERT3U(zio->io_size, ==, zio->io_lsize);
1181 		zio->io_orig_size = zio->io_size = zio->io_lsize = size;
1182 	}
1183 }
1184 
1185 /*
1186  * ==========================================================================
1187  * Prepare to read and write logical blocks
1188  * ==========================================================================
1189  */
1190 
1191 static int
1192 zio_read_bp_init(zio_t *zio)
1193 {
1194 	blkptr_t *bp = zio->io_bp;
1195 
1196 	ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1197 
1198 	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1199 	    zio->io_child_type == ZIO_CHILD_LOGICAL &&
1200 	    !(zio->io_flags & ZIO_FLAG_RAW)) {
1201 		uint64_t psize =
1202 		    BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1203 		zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1204 		    psize, psize, zio_decompress);
1205 	}
1206 
1207 	if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1208 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1209 
1210 		int psize = BPE_GET_PSIZE(bp);
1211 		void *data = abd_borrow_buf(zio->io_abd, psize);
1212 		decode_embedded_bp_compressed(bp, data);
1213 		abd_return_buf_copy(zio->io_abd, data, psize);
1214 	} else {
1215 		ASSERT(!BP_IS_EMBEDDED(bp));
1216 		ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1217 	}
1218 
1219 	if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1220 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1221 
1222 	if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1223 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1224 
1225 	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1226 		zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1227 
1228 	return (ZIO_PIPELINE_CONTINUE);
1229 }
1230 
1231 static int
1232 zio_write_bp_init(zio_t *zio)
1233 {
1234 	if (!IO_IS_ALLOCATING(zio))
1235 		return (ZIO_PIPELINE_CONTINUE);
1236 
1237 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1238 
1239 	if (zio->io_bp_override) {
1240 		blkptr_t *bp = zio->io_bp;
1241 		zio_prop_t *zp = &zio->io_prop;
1242 
1243 		ASSERT(bp->blk_birth != zio->io_txg);
1244 		ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1245 
1246 		*bp = *zio->io_bp_override;
1247 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1248 
1249 		if (BP_IS_EMBEDDED(bp))
1250 			return (ZIO_PIPELINE_CONTINUE);
1251 
1252 		/*
1253 		 * If we've been overridden and nopwrite is set then
1254 		 * set the flag accordingly to indicate that a nopwrite
1255 		 * has already occurred.
1256 		 */
1257 		if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1258 			ASSERT(!zp->zp_dedup);
1259 			ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum);
1260 			zio->io_flags |= ZIO_FLAG_NOPWRITE;
1261 			return (ZIO_PIPELINE_CONTINUE);
1262 		}
1263 
1264 		ASSERT(!zp->zp_nopwrite);
1265 
1266 		if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1267 			return (ZIO_PIPELINE_CONTINUE);
1268 
1269 		ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1270 		    ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1271 
1272 		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) {
1273 			BP_SET_DEDUP(bp, 1);
1274 			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1275 			return (ZIO_PIPELINE_CONTINUE);
1276 		}
1277 
1278 		/*
1279 		 * We were unable to handle this as an override bp, treat
1280 		 * it as a regular write I/O.
1281 		 */
1282 		zio->io_bp_override = NULL;
1283 		*bp = zio->io_bp_orig;
1284 		zio->io_pipeline = zio->io_orig_pipeline;
1285 	}
1286 
1287 	return (ZIO_PIPELINE_CONTINUE);
1288 }
1289 
1290 static int
1291 zio_write_compress(zio_t *zio)
1292 {
1293 	spa_t *spa = zio->io_spa;
1294 	zio_prop_t *zp = &zio->io_prop;
1295 	enum zio_compress compress = zp->zp_compress;
1296 	blkptr_t *bp = zio->io_bp;
1297 	uint64_t lsize = zio->io_lsize;
1298 	uint64_t psize = zio->io_size;
1299 	int pass = 1;
1300 
1301 	EQUIV(lsize != psize, (zio->io_flags & ZIO_FLAG_RAW) != 0);
1302 
1303 	/*
1304 	 * If our children haven't all reached the ready stage,
1305 	 * wait for them and then repeat this pipeline stage.
1306 	 */
1307 	if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT |
1308 	    ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) {
1309 		return (ZIO_PIPELINE_STOP);
1310 	}
1311 
1312 	if (!IO_IS_ALLOCATING(zio))
1313 		return (ZIO_PIPELINE_CONTINUE);
1314 
1315 	if (zio->io_children_ready != NULL) {
1316 		/*
1317 		 * Now that all our children are ready, run the callback
1318 		 * associated with this zio in case it wants to modify the
1319 		 * data to be written.
1320 		 */
1321 		ASSERT3U(zp->zp_level, >, 0);
1322 		zio->io_children_ready(zio);
1323 	}
1324 
1325 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1326 	ASSERT(zio->io_bp_override == NULL);
1327 
1328 	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1329 		/*
1330 		 * We're rewriting an existing block, which means we're
1331 		 * working on behalf of spa_sync().  For spa_sync() to
1332 		 * converge, it must eventually be the case that we don't
1333 		 * have to allocate new blocks.  But compression changes
1334 		 * the blocksize, which forces a reallocate, and makes
1335 		 * convergence take longer.  Therefore, after the first
1336 		 * few passes, stop compressing to ensure convergence.
1337 		 */
1338 		pass = spa_sync_pass(spa);
1339 
1340 		ASSERT(zio->io_txg == spa_syncing_txg(spa));
1341 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1342 		ASSERT(!BP_GET_DEDUP(bp));
1343 
1344 		if (pass >= zfs_sync_pass_dont_compress)
1345 			compress = ZIO_COMPRESS_OFF;
1346 
1347 		/* Make sure someone doesn't change their mind on overwrites */
1348 		ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1349 		    spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1350 	}
1351 
1352 	/* If it's a compressed write that is not raw, compress the buffer. */
1353 	if (compress != ZIO_COMPRESS_OFF && psize == lsize) {
1354 		void *cbuf = zio_buf_alloc(lsize);
1355 		psize = zio_compress_data(compress, zio->io_abd, cbuf, lsize);
1356 		if (psize == 0 || psize == lsize) {
1357 			compress = ZIO_COMPRESS_OFF;
1358 			zio_buf_free(cbuf, lsize);
1359 		} else if (!zp->zp_dedup && psize <= BPE_PAYLOAD_SIZE &&
1360 		    zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1361 		    spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1362 			encode_embedded_bp_compressed(bp,
1363 			    cbuf, compress, lsize, psize);
1364 			BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1365 			BP_SET_TYPE(bp, zio->io_prop.zp_type);
1366 			BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1367 			zio_buf_free(cbuf, lsize);
1368 			bp->blk_birth = zio->io_txg;
1369 			zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1370 			ASSERT(spa_feature_is_active(spa,
1371 			    SPA_FEATURE_EMBEDDED_DATA));
1372 			return (ZIO_PIPELINE_CONTINUE);
1373 		} else {
1374 			/*
1375 			 * Round up compressed size up to the ashift
1376 			 * of the smallest-ashift device, and zero the tail.
1377 			 * This ensures that the compressed size of the BP
1378 			 * (and thus compressratio property) are correct,
1379 			 * in that we charge for the padding used to fill out
1380 			 * the last sector.
1381 			 */
1382 			ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
1383 			size_t rounded = (size_t)P2ROUNDUP(psize,
1384 			    1ULL << spa->spa_min_ashift);
1385 			if (rounded >= lsize) {
1386 				compress = ZIO_COMPRESS_OFF;
1387 				zio_buf_free(cbuf, lsize);
1388 				psize = lsize;
1389 			} else {
1390 				abd_t *cdata = abd_get_from_buf(cbuf, lsize);
1391 				abd_take_ownership_of_buf(cdata, B_TRUE);
1392 				abd_zero_off(cdata, psize, rounded - psize);
1393 				psize = rounded;
1394 				zio_push_transform(zio, cdata,
1395 				    psize, lsize, NULL);
1396 			}
1397 		}
1398 
1399 		/*
1400 		 * We were unable to handle this as an override bp, treat
1401 		 * it as a regular write I/O.
1402 		 */
1403 		zio->io_bp_override = NULL;
1404 		*bp = zio->io_bp_orig;
1405 		zio->io_pipeline = zio->io_orig_pipeline;
1406 	} else {
1407 		ASSERT3U(psize, !=, 0);
1408 	}
1409 
1410 	/*
1411 	 * The final pass of spa_sync() must be all rewrites, but the first
1412 	 * few passes offer a trade-off: allocating blocks defers convergence,
1413 	 * but newly allocated blocks are sequential, so they can be written
1414 	 * to disk faster.  Therefore, we allow the first few passes of
1415 	 * spa_sync() to allocate new blocks, but force rewrites after that.
1416 	 * There should only be a handful of blocks after pass 1 in any case.
1417 	 */
1418 	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1419 	    BP_GET_PSIZE(bp) == psize &&
1420 	    pass >= zfs_sync_pass_rewrite) {
1421 		ASSERT(psize != 0);
1422 		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1423 		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1424 		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1425 	} else {
1426 		BP_ZERO(bp);
1427 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
1428 	}
1429 
1430 	if (psize == 0) {
1431 		if (zio->io_bp_orig.blk_birth != 0 &&
1432 		    spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1433 			BP_SET_LSIZE(bp, lsize);
1434 			BP_SET_TYPE(bp, zp->zp_type);
1435 			BP_SET_LEVEL(bp, zp->zp_level);
1436 			BP_SET_BIRTH(bp, zio->io_txg, 0);
1437 		}
1438 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1439 	} else {
1440 		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1441 		BP_SET_LSIZE(bp, lsize);
1442 		BP_SET_TYPE(bp, zp->zp_type);
1443 		BP_SET_LEVEL(bp, zp->zp_level);
1444 		BP_SET_PSIZE(bp, psize);
1445 		BP_SET_COMPRESS(bp, compress);
1446 		BP_SET_CHECKSUM(bp, zp->zp_checksum);
1447 		BP_SET_DEDUP(bp, zp->zp_dedup);
1448 		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1449 		if (zp->zp_dedup) {
1450 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1451 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1452 			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1453 		}
1454 		if (zp->zp_nopwrite) {
1455 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1456 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1457 			zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1458 		}
1459 	}
1460 	return (ZIO_PIPELINE_CONTINUE);
1461 }
1462 
1463 static int
1464 zio_free_bp_init(zio_t *zio)
1465 {
1466 	blkptr_t *bp = zio->io_bp;
1467 
1468 	if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1469 		if (BP_GET_DEDUP(bp))
1470 			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1471 	}
1472 
1473 	ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1474 
1475 	return (ZIO_PIPELINE_CONTINUE);
1476 }
1477 
1478 /*
1479  * ==========================================================================
1480  * Execute the I/O pipeline
1481  * ==========================================================================
1482  */
1483 
1484 static void
1485 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1486 {
1487 	spa_t *spa = zio->io_spa;
1488 	zio_type_t t = zio->io_type;
1489 	int flags = (cutinline ? TQ_FRONT : 0);
1490 
1491 	/*
1492 	 * If we're a config writer or a probe, the normal issue and
1493 	 * interrupt threads may all be blocked waiting for the config lock.
1494 	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1495 	 */
1496 	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1497 		t = ZIO_TYPE_NULL;
1498 
1499 	/*
1500 	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1501 	 */
1502 	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1503 		t = ZIO_TYPE_NULL;
1504 
1505 	/*
1506 	 * If this is a high priority I/O, then use the high priority taskq if
1507 	 * available.
1508 	 */
1509 	if (zio->io_priority == ZIO_PRIORITY_NOW &&
1510 	    spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1511 		q++;
1512 
1513 	ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1514 
1515 	/*
1516 	 * NB: We are assuming that the zio can only be dispatched
1517 	 * to a single taskq at a time.  It would be a grievous error
1518 	 * to dispatch the zio to another taskq at the same time.
1519 	 */
1520 	ASSERT(zio->io_tqent.tqent_next == NULL);
1521 	spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1522 	    flags, &zio->io_tqent);
1523 }
1524 
1525 static boolean_t
1526 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1527 {
1528 	kthread_t *executor = zio->io_executor;
1529 	spa_t *spa = zio->io_spa;
1530 
1531 	for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1532 		spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1533 		uint_t i;
1534 		for (i = 0; i < tqs->stqs_count; i++) {
1535 			if (taskq_member(tqs->stqs_taskq[i], executor))
1536 				return (B_TRUE);
1537 		}
1538 	}
1539 
1540 	return (B_FALSE);
1541 }
1542 
1543 static int
1544 zio_issue_async(zio_t *zio)
1545 {
1546 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1547 
1548 	return (ZIO_PIPELINE_STOP);
1549 }
1550 
1551 void
1552 zio_interrupt(zio_t *zio)
1553 {
1554 	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1555 }
1556 
1557 void
1558 zio_delay_interrupt(zio_t *zio)
1559 {
1560 	/*
1561 	 * The timeout_generic() function isn't defined in userspace, so
1562 	 * rather than trying to implement the function, the zio delay
1563 	 * functionality has been disabled for userspace builds.
1564 	 */
1565 
1566 #ifdef _KERNEL
1567 	/*
1568 	 * If io_target_timestamp is zero, then no delay has been registered
1569 	 * for this IO, thus jump to the end of this function and "skip" the
1570 	 * delay; issuing it directly to the zio layer.
1571 	 */
1572 	if (zio->io_target_timestamp != 0) {
1573 		hrtime_t now = gethrtime();
1574 
1575 		if (now >= zio->io_target_timestamp) {
1576 			/*
1577 			 * This IO has already taken longer than the target
1578 			 * delay to complete, so we don't want to delay it
1579 			 * any longer; we "miss" the delay and issue it
1580 			 * directly to the zio layer. This is likely due to
1581 			 * the target latency being set to a value less than
1582 			 * the underlying hardware can satisfy (e.g. delay
1583 			 * set to 1ms, but the disks take 10ms to complete an
1584 			 * IO request).
1585 			 */
1586 
1587 			DTRACE_PROBE2(zio__delay__miss, zio_t *, zio,
1588 			    hrtime_t, now);
1589 
1590 			zio_interrupt(zio);
1591 		} else {
1592 			hrtime_t diff = zio->io_target_timestamp - now;
1593 
1594 			DTRACE_PROBE3(zio__delay__hit, zio_t *, zio,
1595 			    hrtime_t, now, hrtime_t, diff);
1596 
1597 			(void) timeout_generic(CALLOUT_NORMAL,
1598 			    (void (*)(void *))zio_interrupt, zio, diff, 1, 0);
1599 		}
1600 
1601 		return;
1602 	}
1603 #endif
1604 
1605 	DTRACE_PROBE1(zio__delay__skip, zio_t *, zio);
1606 	zio_interrupt(zio);
1607 }
1608 
1609 /*
1610  * Execute the I/O pipeline until one of the following occurs:
1611  *
1612  *	(1) the I/O completes
1613  *	(2) the pipeline stalls waiting for dependent child I/Os
1614  *	(3) the I/O issues, so we're waiting for an I/O completion interrupt
1615  *	(4) the I/O is delegated by vdev-level caching or aggregation
1616  *	(5) the I/O is deferred due to vdev-level queueing
1617  *	(6) the I/O is handed off to another thread.
1618  *
1619  * In all cases, the pipeline stops whenever there's no CPU work; it never
1620  * burns a thread in cv_wait().
1621  *
1622  * There's no locking on io_stage because there's no legitimate way
1623  * for multiple threads to be attempting to process the same I/O.
1624  */
1625 static zio_pipe_stage_t *zio_pipeline[];
1626 
1627 void
1628 zio_execute(zio_t *zio)
1629 {
1630 	zio->io_executor = curthread;
1631 
1632 	ASSERT3U(zio->io_queued_timestamp, >, 0);
1633 
1634 	while (zio->io_stage < ZIO_STAGE_DONE) {
1635 		enum zio_stage pipeline = zio->io_pipeline;
1636 		enum zio_stage stage = zio->io_stage;
1637 		int rv;
1638 
1639 		ASSERT(!MUTEX_HELD(&zio->io_lock));
1640 		ASSERT(ISP2(stage));
1641 		ASSERT(zio->io_stall == NULL);
1642 
1643 		do {
1644 			stage <<= 1;
1645 		} while ((stage & pipeline) == 0);
1646 
1647 		ASSERT(stage <= ZIO_STAGE_DONE);
1648 
1649 		/*
1650 		 * If we are in interrupt context and this pipeline stage
1651 		 * will grab a config lock that is held across I/O,
1652 		 * or may wait for an I/O that needs an interrupt thread
1653 		 * to complete, issue async to avoid deadlock.
1654 		 *
1655 		 * For VDEV_IO_START, we cut in line so that the io will
1656 		 * be sent to disk promptly.
1657 		 */
1658 		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1659 		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1660 			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1661 			    zio_requeue_io_start_cut_in_line : B_FALSE;
1662 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1663 			return;
1664 		}
1665 
1666 		zio->io_stage = stage;
1667 		zio->io_pipeline_trace |= zio->io_stage;
1668 		rv = zio_pipeline[highbit64(stage) - 1](zio);
1669 
1670 		if (rv == ZIO_PIPELINE_STOP)
1671 			return;
1672 
1673 		ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1674 	}
1675 }
1676 
1677 /*
1678  * ==========================================================================
1679  * Initiate I/O, either sync or async
1680  * ==========================================================================
1681  */
1682 int
1683 zio_wait(zio_t *zio)
1684 {
1685 	int error;
1686 
1687 	ASSERT3P(zio->io_stage, ==, ZIO_STAGE_OPEN);
1688 	ASSERT3P(zio->io_executor, ==, NULL);
1689 
1690 	zio->io_waiter = curthread;
1691 	ASSERT0(zio->io_queued_timestamp);
1692 	zio->io_queued_timestamp = gethrtime();
1693 
1694 	zio_execute(zio);
1695 
1696 	mutex_enter(&zio->io_lock);
1697 	while (zio->io_executor != NULL)
1698 		cv_wait(&zio->io_cv, &zio->io_lock);
1699 	mutex_exit(&zio->io_lock);
1700 
1701 	error = zio->io_error;
1702 	zio_destroy(zio);
1703 
1704 	return (error);
1705 }
1706 
1707 void
1708 zio_nowait(zio_t *zio)
1709 {
1710 	ASSERT3P(zio->io_executor, ==, NULL);
1711 
1712 	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1713 	    zio_unique_parent(zio) == NULL) {
1714 		/*
1715 		 * This is a logical async I/O with no parent to wait for it.
1716 		 * We add it to the spa_async_root_zio "Godfather" I/O which
1717 		 * will ensure they complete prior to unloading the pool.
1718 		 */
1719 		spa_t *spa = zio->io_spa;
1720 
1721 		zio_add_child(spa->spa_async_zio_root[CPU_SEQID], zio);
1722 	}
1723 
1724 	ASSERT0(zio->io_queued_timestamp);
1725 	zio->io_queued_timestamp = gethrtime();
1726 	zio_execute(zio);
1727 }
1728 
1729 /*
1730  * ==========================================================================
1731  * Reexecute, cancel, or suspend/resume failed I/O
1732  * ==========================================================================
1733  */
1734 
1735 static void
1736 zio_reexecute(zio_t *pio)
1737 {
1738 	zio_t *cio, *cio_next;
1739 
1740 	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1741 	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1742 	ASSERT(pio->io_gang_leader == NULL);
1743 	ASSERT(pio->io_gang_tree == NULL);
1744 
1745 	pio->io_flags = pio->io_orig_flags;
1746 	pio->io_stage = pio->io_orig_stage;
1747 	pio->io_pipeline = pio->io_orig_pipeline;
1748 	pio->io_reexecute = 0;
1749 	pio->io_flags |= ZIO_FLAG_REEXECUTED;
1750 	pio->io_pipeline_trace = 0;
1751 	pio->io_error = 0;
1752 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1753 		pio->io_state[w] = 0;
1754 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1755 		pio->io_child_error[c] = 0;
1756 
1757 	if (IO_IS_ALLOCATING(pio))
1758 		BP_ZERO(pio->io_bp);
1759 
1760 	/*
1761 	 * As we reexecute pio's children, new children could be created.
1762 	 * New children go to the head of pio's io_child_list, however,
1763 	 * so we will (correctly) not reexecute them.  The key is that
1764 	 * the remainder of pio's io_child_list, from 'cio_next' onward,
1765 	 * cannot be affected by any side effects of reexecuting 'cio'.
1766 	 */
1767 	zio_link_t *zl = NULL;
1768 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
1769 		cio_next = zio_walk_children(pio, &zl);
1770 		mutex_enter(&pio->io_lock);
1771 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1772 			pio->io_children[cio->io_child_type][w]++;
1773 		mutex_exit(&pio->io_lock);
1774 		zio_reexecute(cio);
1775 	}
1776 
1777 	/*
1778 	 * Now that all children have been reexecuted, execute the parent.
1779 	 * We don't reexecute "The Godfather" I/O here as it's the
1780 	 * responsibility of the caller to wait on it.
1781 	 */
1782 	if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) {
1783 		pio->io_queued_timestamp = gethrtime();
1784 		zio_execute(pio);
1785 	}
1786 }
1787 
1788 void
1789 zio_suspend(spa_t *spa, zio_t *zio)
1790 {
1791 	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1792 		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1793 		    "failure and the failure mode property for this pool "
1794 		    "is set to panic.", spa_name(spa));
1795 
1796 	zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
1797 
1798 	mutex_enter(&spa->spa_suspend_lock);
1799 
1800 	if (spa->spa_suspend_zio_root == NULL)
1801 		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1802 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1803 		    ZIO_FLAG_GODFATHER);
1804 
1805 	spa->spa_suspended = B_TRUE;
1806 
1807 	if (zio != NULL) {
1808 		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
1809 		ASSERT(zio != spa->spa_suspend_zio_root);
1810 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1811 		ASSERT(zio_unique_parent(zio) == NULL);
1812 		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1813 		zio_add_child(spa->spa_suspend_zio_root, zio);
1814 	}
1815 
1816 	mutex_exit(&spa->spa_suspend_lock);
1817 }
1818 
1819 int
1820 zio_resume(spa_t *spa)
1821 {
1822 	zio_t *pio;
1823 
1824 	/*
1825 	 * Reexecute all previously suspended i/o.
1826 	 */
1827 	mutex_enter(&spa->spa_suspend_lock);
1828 	spa->spa_suspended = B_FALSE;
1829 	cv_broadcast(&spa->spa_suspend_cv);
1830 	pio = spa->spa_suspend_zio_root;
1831 	spa->spa_suspend_zio_root = NULL;
1832 	mutex_exit(&spa->spa_suspend_lock);
1833 
1834 	if (pio == NULL)
1835 		return (0);
1836 
1837 	zio_reexecute(pio);
1838 	return (zio_wait(pio));
1839 }
1840 
1841 void
1842 zio_resume_wait(spa_t *spa)
1843 {
1844 	mutex_enter(&spa->spa_suspend_lock);
1845 	while (spa_suspended(spa))
1846 		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1847 	mutex_exit(&spa->spa_suspend_lock);
1848 }
1849 
1850 /*
1851  * ==========================================================================
1852  * Gang blocks.
1853  *
1854  * A gang block is a collection of small blocks that looks to the DMU
1855  * like one large block.  When zio_dva_allocate() cannot find a block
1856  * of the requested size, due to either severe fragmentation or the pool
1857  * being nearly full, it calls zio_write_gang_block() to construct the
1858  * block from smaller fragments.
1859  *
1860  * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1861  * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
1862  * an indirect block: it's an array of block pointers.  It consumes
1863  * only one sector and hence is allocatable regardless of fragmentation.
1864  * The gang header's bps point to its gang members, which hold the data.
1865  *
1866  * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
1867  * as the verifier to ensure uniqueness of the SHA256 checksum.
1868  * Critically, the gang block bp's blk_cksum is the checksum of the data,
1869  * not the gang header.  This ensures that data block signatures (needed for
1870  * deduplication) are independent of how the block is physically stored.
1871  *
1872  * Gang blocks can be nested: a gang member may itself be a gang block.
1873  * Thus every gang block is a tree in which root and all interior nodes are
1874  * gang headers, and the leaves are normal blocks that contain user data.
1875  * The root of the gang tree is called the gang leader.
1876  *
1877  * To perform any operation (read, rewrite, free, claim) on a gang block,
1878  * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1879  * in the io_gang_tree field of the original logical i/o by recursively
1880  * reading the gang leader and all gang headers below it.  This yields
1881  * an in-core tree containing the contents of every gang header and the
1882  * bps for every constituent of the gang block.
1883  *
1884  * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1885  * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
1886  * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1887  * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1888  * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1889  * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
1890  * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1891  * of the gang header plus zio_checksum_compute() of the data to update the
1892  * gang header's blk_cksum as described above.
1893  *
1894  * The two-phase assemble/issue model solves the problem of partial failure --
1895  * what if you'd freed part of a gang block but then couldn't read the
1896  * gang header for another part?  Assembling the entire gang tree first
1897  * ensures that all the necessary gang header I/O has succeeded before
1898  * starting the actual work of free, claim, or write.  Once the gang tree
1899  * is assembled, free and claim are in-memory operations that cannot fail.
1900  *
1901  * In the event that a gang write fails, zio_dva_unallocate() walks the
1902  * gang tree to immediately free (i.e. insert back into the space map)
1903  * everything we've allocated.  This ensures that we don't get ENOSPC
1904  * errors during repeated suspend/resume cycles due to a flaky device.
1905  *
1906  * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
1907  * the gang tree, we won't modify the block, so we can safely defer the free
1908  * (knowing that the block is still intact).  If we *can* assemble the gang
1909  * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
1910  * each constituent bp and we can allocate a new block on the next sync pass.
1911  *
1912  * In all cases, the gang tree allows complete recovery from partial failure.
1913  * ==========================================================================
1914  */
1915 
1916 static void
1917 zio_gang_issue_func_done(zio_t *zio)
1918 {
1919 	abd_put(zio->io_abd);
1920 }
1921 
1922 static zio_t *
1923 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
1924     uint64_t offset)
1925 {
1926 	if (gn != NULL)
1927 		return (pio);
1928 
1929 	return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset),
1930 	    BP_GET_PSIZE(bp), zio_gang_issue_func_done,
1931 	    NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1932 	    &pio->io_bookmark));
1933 }
1934 
1935 static zio_t *
1936 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
1937     uint64_t offset)
1938 {
1939 	zio_t *zio;
1940 
1941 	if (gn != NULL) {
1942 		abd_t *gbh_abd =
1943 		    abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1944 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1945 		    gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL,
1946 		    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1947 		    &pio->io_bookmark);
1948 		/*
1949 		 * As we rewrite each gang header, the pipeline will compute
1950 		 * a new gang block header checksum for it; but no one will
1951 		 * compute a new data checksum, so we do that here.  The one
1952 		 * exception is the gang leader: the pipeline already computed
1953 		 * its data checksum because that stage precedes gang assembly.
1954 		 * (Presently, nothing actually uses interior data checksums;
1955 		 * this is just good hygiene.)
1956 		 */
1957 		if (gn != pio->io_gang_leader->io_gang_tree) {
1958 			abd_t *buf = abd_get_offset(data, offset);
1959 
1960 			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
1961 			    buf, BP_GET_PSIZE(bp));
1962 
1963 			abd_put(buf);
1964 		}
1965 		/*
1966 		 * If we are here to damage data for testing purposes,
1967 		 * leave the GBH alone so that we can detect the damage.
1968 		 */
1969 		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
1970 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
1971 	} else {
1972 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1973 		    abd_get_offset(data, offset), BP_GET_PSIZE(bp),
1974 		    zio_gang_issue_func_done, NULL, pio->io_priority,
1975 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1976 	}
1977 
1978 	return (zio);
1979 }
1980 
1981 /* ARGSUSED */
1982 static zio_t *
1983 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
1984     uint64_t offset)
1985 {
1986 	return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
1987 	    ZIO_GANG_CHILD_FLAGS(pio)));
1988 }
1989 
1990 /* ARGSUSED */
1991 static zio_t *
1992 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
1993     uint64_t offset)
1994 {
1995 	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
1996 	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1997 }
1998 
1999 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
2000 	NULL,
2001 	zio_read_gang,
2002 	zio_rewrite_gang,
2003 	zio_free_gang,
2004 	zio_claim_gang,
2005 	NULL
2006 };
2007 
2008 static void zio_gang_tree_assemble_done(zio_t *zio);
2009 
2010 static zio_gang_node_t *
2011 zio_gang_node_alloc(zio_gang_node_t **gnpp)
2012 {
2013 	zio_gang_node_t *gn;
2014 
2015 	ASSERT(*gnpp == NULL);
2016 
2017 	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
2018 	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
2019 	*gnpp = gn;
2020 
2021 	return (gn);
2022 }
2023 
2024 static void
2025 zio_gang_node_free(zio_gang_node_t **gnpp)
2026 {
2027 	zio_gang_node_t *gn = *gnpp;
2028 
2029 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2030 		ASSERT(gn->gn_child[g] == NULL);
2031 
2032 	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2033 	kmem_free(gn, sizeof (*gn));
2034 	*gnpp = NULL;
2035 }
2036 
2037 static void
2038 zio_gang_tree_free(zio_gang_node_t **gnpp)
2039 {
2040 	zio_gang_node_t *gn = *gnpp;
2041 
2042 	if (gn == NULL)
2043 		return;
2044 
2045 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2046 		zio_gang_tree_free(&gn->gn_child[g]);
2047 
2048 	zio_gang_node_free(gnpp);
2049 }
2050 
2051 static void
2052 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
2053 {
2054 	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
2055 	abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2056 
2057 	ASSERT(gio->io_gang_leader == gio);
2058 	ASSERT(BP_IS_GANG(bp));
2059 
2060 	zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2061 	    zio_gang_tree_assemble_done, gn, gio->io_priority,
2062 	    ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
2063 }
2064 
2065 static void
2066 zio_gang_tree_assemble_done(zio_t *zio)
2067 {
2068 	zio_t *gio = zio->io_gang_leader;
2069 	zio_gang_node_t *gn = zio->io_private;
2070 	blkptr_t *bp = zio->io_bp;
2071 
2072 	ASSERT(gio == zio_unique_parent(zio));
2073 	ASSERT(zio->io_child_count == 0);
2074 
2075 	if (zio->io_error)
2076 		return;
2077 
2078 	/* this ABD was created from a linear buf in zio_gang_tree_assemble */
2079 	if (BP_SHOULD_BYTESWAP(bp))
2080 		byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size);
2081 
2082 	ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh);
2083 	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
2084 	ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2085 
2086 	abd_put(zio->io_abd);
2087 
2088 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2089 		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2090 		if (!BP_IS_GANG(gbp))
2091 			continue;
2092 		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
2093 	}
2094 }
2095 
2096 static void
2097 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data,
2098     uint64_t offset)
2099 {
2100 	zio_t *gio = pio->io_gang_leader;
2101 	zio_t *zio;
2102 
2103 	ASSERT(BP_IS_GANG(bp) == !!gn);
2104 	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
2105 	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
2106 
2107 	/*
2108 	 * If you're a gang header, your data is in gn->gn_gbh.
2109 	 * If you're a gang member, your data is in 'data' and gn == NULL.
2110 	 */
2111 	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset);
2112 
2113 	if (gn != NULL) {
2114 		ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2115 
2116 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2117 			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2118 			if (BP_IS_HOLE(gbp))
2119 				continue;
2120 			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data,
2121 			    offset);
2122 			offset += BP_GET_PSIZE(gbp);
2123 		}
2124 	}
2125 
2126 	if (gn == gio->io_gang_tree)
2127 		ASSERT3U(gio->io_size, ==, offset);
2128 
2129 	if (zio != pio)
2130 		zio_nowait(zio);
2131 }
2132 
2133 static int
2134 zio_gang_assemble(zio_t *zio)
2135 {
2136 	blkptr_t *bp = zio->io_bp;
2137 
2138 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
2139 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2140 
2141 	zio->io_gang_leader = zio;
2142 
2143 	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
2144 
2145 	return (ZIO_PIPELINE_CONTINUE);
2146 }
2147 
2148 static int
2149 zio_gang_issue(zio_t *zio)
2150 {
2151 	blkptr_t *bp = zio->io_bp;
2152 
2153 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) {
2154 		return (ZIO_PIPELINE_STOP);
2155 	}
2156 
2157 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
2158 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2159 
2160 	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
2161 		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd,
2162 		    0);
2163 	else
2164 		zio_gang_tree_free(&zio->io_gang_tree);
2165 
2166 	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2167 
2168 	return (ZIO_PIPELINE_CONTINUE);
2169 }
2170 
2171 static void
2172 zio_write_gang_member_ready(zio_t *zio)
2173 {
2174 	zio_t *pio = zio_unique_parent(zio);
2175 	zio_t *gio = zio->io_gang_leader;
2176 	dva_t *cdva = zio->io_bp->blk_dva;
2177 	dva_t *pdva = pio->io_bp->blk_dva;
2178 	uint64_t asize;
2179 
2180 	if (BP_IS_HOLE(zio->io_bp))
2181 		return;
2182 
2183 	ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
2184 
2185 	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
2186 	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
2187 	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
2188 	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
2189 	ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
2190 
2191 	mutex_enter(&pio->io_lock);
2192 	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
2193 		ASSERT(DVA_GET_GANG(&pdva[d]));
2194 		asize = DVA_GET_ASIZE(&pdva[d]);
2195 		asize += DVA_GET_ASIZE(&cdva[d]);
2196 		DVA_SET_ASIZE(&pdva[d], asize);
2197 	}
2198 	mutex_exit(&pio->io_lock);
2199 }
2200 
2201 static void
2202 zio_write_gang_done(zio_t *zio)
2203 {
2204 	abd_put(zio->io_abd);
2205 }
2206 
2207 static int
2208 zio_write_gang_block(zio_t *pio)
2209 {
2210 	spa_t *spa = pio->io_spa;
2211 	metaslab_class_t *mc = spa_normal_class(spa);
2212 	blkptr_t *bp = pio->io_bp;
2213 	zio_t *gio = pio->io_gang_leader;
2214 	zio_t *zio;
2215 	zio_gang_node_t *gn, **gnpp;
2216 	zio_gbh_phys_t *gbh;
2217 	abd_t *gbh_abd;
2218 	uint64_t txg = pio->io_txg;
2219 	uint64_t resid = pio->io_size;
2220 	uint64_t lsize;
2221 	int copies = gio->io_prop.zp_copies;
2222 	int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
2223 	zio_prop_t zp;
2224 	int error;
2225 
2226 	int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER;
2227 	if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2228 		ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2229 		ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA));
2230 
2231 		flags |= METASLAB_ASYNC_ALLOC;
2232 		VERIFY(refcount_held(&mc->mc_alloc_slots, pio));
2233 
2234 		/*
2235 		 * The logical zio has already placed a reservation for
2236 		 * 'copies' allocation slots but gang blocks may require
2237 		 * additional copies. These additional copies
2238 		 * (i.e. gbh_copies - copies) are guaranteed to succeed
2239 		 * since metaslab_class_throttle_reserve() always allows
2240 		 * additional reservations for gang blocks.
2241 		 */
2242 		VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies,
2243 		    pio, flags));
2244 	}
2245 
2246 	error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE,
2247 	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags,
2248 	    &pio->io_alloc_list, pio);
2249 	if (error) {
2250 		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2251 			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2252 			ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA));
2253 
2254 			/*
2255 			 * If we failed to allocate the gang block header then
2256 			 * we remove any additional allocation reservations that
2257 			 * we placed here. The original reservation will
2258 			 * be removed when the logical I/O goes to the ready
2259 			 * stage.
2260 			 */
2261 			metaslab_class_throttle_unreserve(mc,
2262 			    gbh_copies - copies, pio);
2263 		}
2264 		pio->io_error = error;
2265 		return (ZIO_PIPELINE_CONTINUE);
2266 	}
2267 
2268 	if (pio == gio) {
2269 		gnpp = &gio->io_gang_tree;
2270 	} else {
2271 		gnpp = pio->io_private;
2272 		ASSERT(pio->io_ready == zio_write_gang_member_ready);
2273 	}
2274 
2275 	gn = zio_gang_node_alloc(gnpp);
2276 	gbh = gn->gn_gbh;
2277 	bzero(gbh, SPA_GANGBLOCKSIZE);
2278 	gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE);
2279 
2280 	/*
2281 	 * Create the gang header.
2282 	 */
2283 	zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2284 	    zio_write_gang_done, NULL, pio->io_priority,
2285 	    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2286 
2287 	/*
2288 	 * Create and nowait the gang children.
2289 	 */
2290 	for (int g = 0; resid != 0; resid -= lsize, g++) {
2291 		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
2292 		    SPA_MINBLOCKSIZE);
2293 		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
2294 
2295 		zp.zp_checksum = gio->io_prop.zp_checksum;
2296 		zp.zp_compress = ZIO_COMPRESS_OFF;
2297 		zp.zp_type = DMU_OT_NONE;
2298 		zp.zp_level = 0;
2299 		zp.zp_copies = gio->io_prop.zp_copies;
2300 		zp.zp_dedup = B_FALSE;
2301 		zp.zp_dedup_verify = B_FALSE;
2302 		zp.zp_nopwrite = B_FALSE;
2303 
2304 		zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
2305 		    abd_get_offset(pio->io_abd, pio->io_size - resid), lsize,
2306 		    lsize, &zp, zio_write_gang_member_ready, NULL, NULL,
2307 		    zio_write_gang_done, &gn->gn_child[g], pio->io_priority,
2308 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2309 
2310 		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2311 			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2312 			ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA));
2313 
2314 			/*
2315 			 * Gang children won't throttle but we should
2316 			 * account for their work, so reserve an allocation
2317 			 * slot for them here.
2318 			 */
2319 			VERIFY(metaslab_class_throttle_reserve(mc,
2320 			    zp.zp_copies, cio, flags));
2321 		}
2322 		zio_nowait(cio);
2323 	}
2324 
2325 	/*
2326 	 * Set pio's pipeline to just wait for zio to finish.
2327 	 */
2328 	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2329 
2330 	zio_nowait(zio);
2331 
2332 	return (ZIO_PIPELINE_CONTINUE);
2333 }
2334 
2335 /*
2336  * The zio_nop_write stage in the pipeline determines if allocating a
2337  * new bp is necessary.  The nopwrite feature can handle writes in
2338  * either syncing or open context (i.e. zil writes) and as a result is
2339  * mutually exclusive with dedup.
2340  *
2341  * By leveraging a cryptographically secure checksum, such as SHA256, we
2342  * can compare the checksums of the new data and the old to determine if
2343  * allocating a new block is required.  Note that our requirements for
2344  * cryptographic strength are fairly weak: there can't be any accidental
2345  * hash collisions, but we don't need to be secure against intentional
2346  * (malicious) collisions.  To trigger a nopwrite, you have to be able
2347  * to write the file to begin with, and triggering an incorrect (hash
2348  * collision) nopwrite is no worse than simply writing to the file.
2349  * That said, there are no known attacks against the checksum algorithms
2350  * used for nopwrite, assuming that the salt and the checksums
2351  * themselves remain secret.
2352  */
2353 static int
2354 zio_nop_write(zio_t *zio)
2355 {
2356 	blkptr_t *bp = zio->io_bp;
2357 	blkptr_t *bp_orig = &zio->io_bp_orig;
2358 	zio_prop_t *zp = &zio->io_prop;
2359 
2360 	ASSERT(BP_GET_LEVEL(bp) == 0);
2361 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2362 	ASSERT(zp->zp_nopwrite);
2363 	ASSERT(!zp->zp_dedup);
2364 	ASSERT(zio->io_bp_override == NULL);
2365 	ASSERT(IO_IS_ALLOCATING(zio));
2366 
2367 	/*
2368 	 * Check to see if the original bp and the new bp have matching
2369 	 * characteristics (i.e. same checksum, compression algorithms, etc).
2370 	 * If they don't then just continue with the pipeline which will
2371 	 * allocate a new bp.
2372 	 */
2373 	if (BP_IS_HOLE(bp_orig) ||
2374 	    !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
2375 	    ZCHECKSUM_FLAG_NOPWRITE) ||
2376 	    BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
2377 	    BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
2378 	    BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
2379 	    zp->zp_copies != BP_GET_NDVAS(bp_orig))
2380 		return (ZIO_PIPELINE_CONTINUE);
2381 
2382 	/*
2383 	 * If the checksums match then reset the pipeline so that we
2384 	 * avoid allocating a new bp and issuing any I/O.
2385 	 */
2386 	if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
2387 		ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
2388 		    ZCHECKSUM_FLAG_NOPWRITE);
2389 		ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
2390 		ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
2391 		ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
2392 		ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
2393 		    sizeof (uint64_t)) == 0);
2394 
2395 		*bp = *bp_orig;
2396 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2397 		zio->io_flags |= ZIO_FLAG_NOPWRITE;
2398 	}
2399 
2400 	return (ZIO_PIPELINE_CONTINUE);
2401 }
2402 
2403 /*
2404  * ==========================================================================
2405  * Dedup
2406  * ==========================================================================
2407  */
2408 static void
2409 zio_ddt_child_read_done(zio_t *zio)
2410 {
2411 	blkptr_t *bp = zio->io_bp;
2412 	ddt_entry_t *dde = zio->io_private;
2413 	ddt_phys_t *ddp;
2414 	zio_t *pio = zio_unique_parent(zio);
2415 
2416 	mutex_enter(&pio->io_lock);
2417 	ddp = ddt_phys_select(dde, bp);
2418 	if (zio->io_error == 0)
2419 		ddt_phys_clear(ddp);	/* this ddp doesn't need repair */
2420 
2421 	if (zio->io_error == 0 && dde->dde_repair_abd == NULL)
2422 		dde->dde_repair_abd = zio->io_abd;
2423 	else
2424 		abd_free(zio->io_abd);
2425 	mutex_exit(&pio->io_lock);
2426 }
2427 
2428 static int
2429 zio_ddt_read_start(zio_t *zio)
2430 {
2431 	blkptr_t *bp = zio->io_bp;
2432 
2433 	ASSERT(BP_GET_DEDUP(bp));
2434 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2435 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2436 
2437 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
2438 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
2439 		ddt_entry_t *dde = ddt_repair_start(ddt, bp);
2440 		ddt_phys_t *ddp = dde->dde_phys;
2441 		ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
2442 		blkptr_t blk;
2443 
2444 		ASSERT(zio->io_vsd == NULL);
2445 		zio->io_vsd = dde;
2446 
2447 		if (ddp_self == NULL)
2448 			return (ZIO_PIPELINE_CONTINUE);
2449 
2450 		for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2451 			if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
2452 				continue;
2453 			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
2454 			    &blk);
2455 			zio_nowait(zio_read(zio, zio->io_spa, &blk,
2456 			    abd_alloc_for_io(zio->io_size, B_TRUE),
2457 			    zio->io_size, zio_ddt_child_read_done, dde,
2458 			    zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) |
2459 			    ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark));
2460 		}
2461 		return (ZIO_PIPELINE_CONTINUE);
2462 	}
2463 
2464 	zio_nowait(zio_read(zio, zio->io_spa, bp,
2465 	    zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority,
2466 	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
2467 
2468 	return (ZIO_PIPELINE_CONTINUE);
2469 }
2470 
2471 static int
2472 zio_ddt_read_done(zio_t *zio)
2473 {
2474 	blkptr_t *bp = zio->io_bp;
2475 
2476 	if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) {
2477 		return (ZIO_PIPELINE_STOP);
2478 	}
2479 
2480 	ASSERT(BP_GET_DEDUP(bp));
2481 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2482 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2483 
2484 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
2485 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
2486 		ddt_entry_t *dde = zio->io_vsd;
2487 		if (ddt == NULL) {
2488 			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
2489 			return (ZIO_PIPELINE_CONTINUE);
2490 		}
2491 		if (dde == NULL) {
2492 			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
2493 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2494 			return (ZIO_PIPELINE_STOP);
2495 		}
2496 		if (dde->dde_repair_abd != NULL) {
2497 			abd_copy(zio->io_abd, dde->dde_repair_abd,
2498 			    zio->io_size);
2499 			zio->io_child_error[ZIO_CHILD_DDT] = 0;
2500 		}
2501 		ddt_repair_done(ddt, dde);
2502 		zio->io_vsd = NULL;
2503 	}
2504 
2505 	ASSERT(zio->io_vsd == NULL);
2506 
2507 	return (ZIO_PIPELINE_CONTINUE);
2508 }
2509 
2510 static boolean_t
2511 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
2512 {
2513 	spa_t *spa = zio->io_spa;
2514 	boolean_t do_raw = (zio->io_flags & ZIO_FLAG_RAW);
2515 
2516 	/* We should never get a raw, override zio */
2517 	ASSERT(!(zio->io_bp_override && do_raw));
2518 
2519 	/*
2520 	 * Note: we compare the original data, not the transformed data,
2521 	 * because when zio->io_bp is an override bp, we will not have
2522 	 * pushed the I/O transforms.  That's an important optimization
2523 	 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
2524 	 */
2525 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2526 		zio_t *lio = dde->dde_lead_zio[p];
2527 
2528 		if (lio != NULL) {
2529 			return (lio->io_orig_size != zio->io_orig_size ||
2530 			    abd_cmp(zio->io_orig_abd, lio->io_orig_abd,
2531 			    zio->io_orig_size) != 0);
2532 		}
2533 	}
2534 
2535 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2536 		ddt_phys_t *ddp = &dde->dde_phys[p];
2537 
2538 		if (ddp->ddp_phys_birth != 0) {
2539 			arc_buf_t *abuf = NULL;
2540 			arc_flags_t aflags = ARC_FLAG_WAIT;
2541 			int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
2542 			blkptr_t blk = *zio->io_bp;
2543 			int error;
2544 
2545 			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2546 
2547 			ddt_exit(ddt);
2548 
2549 			/*
2550 			 * Intuitively, it would make more sense to compare
2551 			 * io_abd than io_orig_abd in the raw case since you
2552 			 * don't want to look at any transformations that have
2553 			 * happened to the data. However, for raw I/Os the
2554 			 * data will actually be the same in io_abd and
2555 			 * io_orig_abd, so all we have to do is issue this as
2556 			 * a raw ARC read.
2557 			 */
2558 			if (do_raw) {
2559 				zio_flags |= ZIO_FLAG_RAW;
2560 				ASSERT3U(zio->io_size, ==, zio->io_orig_size);
2561 				ASSERT0(abd_cmp(zio->io_abd, zio->io_orig_abd,
2562 				    zio->io_size));
2563 				ASSERT3P(zio->io_transform_stack, ==, NULL);
2564 			}
2565 
2566 			error = arc_read(NULL, spa, &blk,
2567 			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2568 			    zio_flags, &aflags, &zio->io_bookmark);
2569 
2570 			if (error == 0) {
2571 				if (arc_buf_size(abuf) != zio->io_orig_size ||
2572 				    abd_cmp_buf(zio->io_orig_abd, abuf->b_data,
2573 				    zio->io_orig_size) != 0)
2574 					error = SET_ERROR(EEXIST);
2575 				arc_buf_destroy(abuf, &abuf);
2576 			}
2577 
2578 			ddt_enter(ddt);
2579 			return (error != 0);
2580 		}
2581 	}
2582 
2583 	return (B_FALSE);
2584 }
2585 
2586 static void
2587 zio_ddt_child_write_ready(zio_t *zio)
2588 {
2589 	int p = zio->io_prop.zp_copies;
2590 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2591 	ddt_entry_t *dde = zio->io_private;
2592 	ddt_phys_t *ddp = &dde->dde_phys[p];
2593 	zio_t *pio;
2594 
2595 	if (zio->io_error)
2596 		return;
2597 
2598 	ddt_enter(ddt);
2599 
2600 	ASSERT(dde->dde_lead_zio[p] == zio);
2601 
2602 	ddt_phys_fill(ddp, zio->io_bp);
2603 
2604 	zio_link_t *zl = NULL;
2605 	while ((pio = zio_walk_parents(zio, &zl)) != NULL)
2606 		ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
2607 
2608 	ddt_exit(ddt);
2609 }
2610 
2611 static void
2612 zio_ddt_child_write_done(zio_t *zio)
2613 {
2614 	int p = zio->io_prop.zp_copies;
2615 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2616 	ddt_entry_t *dde = zio->io_private;
2617 	ddt_phys_t *ddp = &dde->dde_phys[p];
2618 
2619 	ddt_enter(ddt);
2620 
2621 	ASSERT(ddp->ddp_refcnt == 0);
2622 	ASSERT(dde->dde_lead_zio[p] == zio);
2623 	dde->dde_lead_zio[p] = NULL;
2624 
2625 	if (zio->io_error == 0) {
2626 		zio_link_t *zl = NULL;
2627 		while (zio_walk_parents(zio, &zl) != NULL)
2628 			ddt_phys_addref(ddp);
2629 	} else {
2630 		ddt_phys_clear(ddp);
2631 	}
2632 
2633 	ddt_exit(ddt);
2634 }
2635 
2636 static void
2637 zio_ddt_ditto_write_done(zio_t *zio)
2638 {
2639 	int p = DDT_PHYS_DITTO;
2640 	zio_prop_t *zp = &zio->io_prop;
2641 	blkptr_t *bp = zio->io_bp;
2642 	ddt_t *ddt = ddt_select(zio->io_spa, bp);
2643 	ddt_entry_t *dde = zio->io_private;
2644 	ddt_phys_t *ddp = &dde->dde_phys[p];
2645 	ddt_key_t *ddk = &dde->dde_key;
2646 
2647 	ddt_enter(ddt);
2648 
2649 	ASSERT(ddp->ddp_refcnt == 0);
2650 	ASSERT(dde->dde_lead_zio[p] == zio);
2651 	dde->dde_lead_zio[p] = NULL;
2652 
2653 	if (zio->io_error == 0) {
2654 		ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2655 		ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2656 		ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2657 		if (ddp->ddp_phys_birth != 0)
2658 			ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2659 		ddt_phys_fill(ddp, bp);
2660 	}
2661 
2662 	ddt_exit(ddt);
2663 }
2664 
2665 static int
2666 zio_ddt_write(zio_t *zio)
2667 {
2668 	spa_t *spa = zio->io_spa;
2669 	blkptr_t *bp = zio->io_bp;
2670 	uint64_t txg = zio->io_txg;
2671 	zio_prop_t *zp = &zio->io_prop;
2672 	int p = zp->zp_copies;
2673 	int ditto_copies;
2674 	zio_t *cio = NULL;
2675 	zio_t *dio = NULL;
2676 	ddt_t *ddt = ddt_select(spa, bp);
2677 	ddt_entry_t *dde;
2678 	ddt_phys_t *ddp;
2679 
2680 	ASSERT(BP_GET_DEDUP(bp));
2681 	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2682 	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2683 	ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW)));
2684 
2685 	ddt_enter(ddt);
2686 	dde = ddt_lookup(ddt, bp, B_TRUE);
2687 	ddp = &dde->dde_phys[p];
2688 
2689 	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2690 		/*
2691 		 * If we're using a weak checksum, upgrade to a strong checksum
2692 		 * and try again.  If we're already using a strong checksum,
2693 		 * we can't resolve it, so just convert to an ordinary write.
2694 		 * (And automatically e-mail a paper to Nature?)
2695 		 */
2696 		if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
2697 		    ZCHECKSUM_FLAG_DEDUP)) {
2698 			zp->zp_checksum = spa_dedup_checksum(spa);
2699 			zio_pop_transforms(zio);
2700 			zio->io_stage = ZIO_STAGE_OPEN;
2701 			BP_ZERO(bp);
2702 		} else {
2703 			zp->zp_dedup = B_FALSE;
2704 			BP_SET_DEDUP(bp, B_FALSE);
2705 		}
2706 		ASSERT(!BP_GET_DEDUP(bp));
2707 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
2708 		ddt_exit(ddt);
2709 		return (ZIO_PIPELINE_CONTINUE);
2710 	}
2711 
2712 	ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2713 	ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2714 
2715 	if (ditto_copies > ddt_ditto_copies_present(dde) &&
2716 	    dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2717 		zio_prop_t czp = *zp;
2718 
2719 		czp.zp_copies = ditto_copies;
2720 
2721 		/*
2722 		 * If we arrived here with an override bp, we won't have run
2723 		 * the transform stack, so we won't have the data we need to
2724 		 * generate a child i/o.  So, toss the override bp and restart.
2725 		 * This is safe, because using the override bp is just an
2726 		 * optimization; and it's rare, so the cost doesn't matter.
2727 		 */
2728 		if (zio->io_bp_override) {
2729 			zio_pop_transforms(zio);
2730 			zio->io_stage = ZIO_STAGE_OPEN;
2731 			zio->io_pipeline = ZIO_WRITE_PIPELINE;
2732 			zio->io_bp_override = NULL;
2733 			BP_ZERO(bp);
2734 			ddt_exit(ddt);
2735 			return (ZIO_PIPELINE_CONTINUE);
2736 		}
2737 
2738 		dio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
2739 		    zio->io_orig_size, zio->io_orig_size, &czp, NULL, NULL,
2740 		    NULL, zio_ddt_ditto_write_done, dde, zio->io_priority,
2741 		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2742 
2743 		zio_push_transform(dio, zio->io_abd, zio->io_size, 0, NULL);
2744 		dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2745 	}
2746 
2747 	if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2748 		if (ddp->ddp_phys_birth != 0)
2749 			ddt_bp_fill(ddp, bp, txg);
2750 		if (dde->dde_lead_zio[p] != NULL)
2751 			zio_add_child(zio, dde->dde_lead_zio[p]);
2752 		else
2753 			ddt_phys_addref(ddp);
2754 	} else if (zio->io_bp_override) {
2755 		ASSERT(bp->blk_birth == txg);
2756 		ASSERT(BP_EQUAL(bp, zio->io_bp_override));
2757 		ddt_phys_fill(ddp, bp);
2758 		ddt_phys_addref(ddp);
2759 	} else {
2760 		cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
2761 		    zio->io_orig_size, zio->io_orig_size, zp,
2762 		    zio_ddt_child_write_ready, NULL, NULL,
2763 		    zio_ddt_child_write_done, dde, zio->io_priority,
2764 		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2765 
2766 		zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL);
2767 		dde->dde_lead_zio[p] = cio;
2768 	}
2769 
2770 	ddt_exit(ddt);
2771 
2772 	if (cio)
2773 		zio_nowait(cio);
2774 	if (dio)
2775 		zio_nowait(dio);
2776 
2777 	return (ZIO_PIPELINE_CONTINUE);
2778 }
2779 
2780 ddt_entry_t *freedde; /* for debugging */
2781 
2782 static int
2783 zio_ddt_free(zio_t *zio)
2784 {
2785 	spa_t *spa = zio->io_spa;
2786 	blkptr_t *bp = zio->io_bp;
2787 	ddt_t *ddt = ddt_select(spa, bp);
2788 	ddt_entry_t *dde;
2789 	ddt_phys_t *ddp;
2790 
2791 	ASSERT(BP_GET_DEDUP(bp));
2792 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2793 
2794 	ddt_enter(ddt);
2795 	freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
2796 	ddp = ddt_phys_select(dde, bp);
2797 	ddt_phys_decref(ddp);
2798 	ddt_exit(ddt);
2799 
2800 	return (ZIO_PIPELINE_CONTINUE);
2801 }
2802 
2803 /*
2804  * ==========================================================================
2805  * Allocate and free blocks
2806  * ==========================================================================
2807  */
2808 
2809 static zio_t *
2810 zio_io_to_allocate(spa_t *spa)
2811 {
2812 	zio_t *zio;
2813 
2814 	ASSERT(MUTEX_HELD(&spa->spa_alloc_lock));
2815 
2816 	zio = avl_first(&spa->spa_alloc_tree);
2817 	if (zio == NULL)
2818 		return (NULL);
2819 
2820 	ASSERT(IO_IS_ALLOCATING(zio));
2821 
2822 	/*
2823 	 * Try to place a reservation for this zio. If we're unable to
2824 	 * reserve then we throttle.
2825 	 */
2826 	if (!metaslab_class_throttle_reserve(spa_normal_class(spa),
2827 	    zio->io_prop.zp_copies, zio, 0)) {
2828 		return (NULL);
2829 	}
2830 
2831 	avl_remove(&spa->spa_alloc_tree, zio);
2832 	ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE);
2833 
2834 	return (zio);
2835 }
2836 
2837 static int
2838 zio_dva_throttle(zio_t *zio)
2839 {
2840 	spa_t *spa = zio->io_spa;
2841 	zio_t *nio;
2842 
2843 	if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE ||
2844 	    !spa_normal_class(zio->io_spa)->mc_alloc_throttle_enabled ||
2845 	    zio->io_child_type == ZIO_CHILD_GANG ||
2846 	    zio->io_flags & ZIO_FLAG_NODATA) {
2847 		return (ZIO_PIPELINE_CONTINUE);
2848 	}
2849 
2850 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2851 
2852 	ASSERT3U(zio->io_queued_timestamp, >, 0);
2853 	ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE);
2854 
2855 	mutex_enter(&spa->spa_alloc_lock);
2856 
2857 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
2858 	avl_add(&spa->spa_alloc_tree, zio);
2859 
2860 	nio = zio_io_to_allocate(zio->io_spa);
2861 	mutex_exit(&spa->spa_alloc_lock);
2862 
2863 	if (nio == zio)
2864 		return (ZIO_PIPELINE_CONTINUE);
2865 
2866 	if (nio != NULL) {
2867 		ASSERT(nio->io_stage == ZIO_STAGE_DVA_THROTTLE);
2868 		/*
2869 		 * We are passing control to a new zio so make sure that
2870 		 * it is processed by a different thread. We do this to
2871 		 * avoid stack overflows that can occur when parents are
2872 		 * throttled and children are making progress. We allow
2873 		 * it to go to the head of the taskq since it's already
2874 		 * been waiting.
2875 		 */
2876 		zio_taskq_dispatch(nio, ZIO_TASKQ_ISSUE, B_TRUE);
2877 	}
2878 	return (ZIO_PIPELINE_STOP);
2879 }
2880 
2881 void
2882 zio_allocate_dispatch(spa_t *spa)
2883 {
2884 	zio_t *zio;
2885 
2886 	mutex_enter(&spa->spa_alloc_lock);
2887 	zio = zio_io_to_allocate(spa);
2888 	mutex_exit(&spa->spa_alloc_lock);
2889 	if (zio == NULL)
2890 		return;
2891 
2892 	ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE);
2893 	ASSERT0(zio->io_error);
2894 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE);
2895 }
2896 
2897 static int
2898 zio_dva_allocate(zio_t *zio)
2899 {
2900 	spa_t *spa = zio->io_spa;
2901 	metaslab_class_t *mc = spa_normal_class(spa);
2902 	blkptr_t *bp = zio->io_bp;
2903 	int error;
2904 	int flags = 0;
2905 
2906 	if (zio->io_gang_leader == NULL) {
2907 		ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2908 		zio->io_gang_leader = zio;
2909 	}
2910 
2911 	ASSERT(BP_IS_HOLE(bp));
2912 	ASSERT0(BP_GET_NDVAS(bp));
2913 	ASSERT3U(zio->io_prop.zp_copies, >, 0);
2914 	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
2915 	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
2916 
2917 	if (zio->io_flags & ZIO_FLAG_NODATA) {
2918 		flags |= METASLAB_DONT_THROTTLE;
2919 	}
2920 	if (zio->io_flags & ZIO_FLAG_GANG_CHILD) {
2921 		flags |= METASLAB_GANG_CHILD;
2922 	}
2923 	if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE) {
2924 		flags |= METASLAB_ASYNC_ALLOC;
2925 	}
2926 
2927 	error = metaslab_alloc(spa, mc, zio->io_size, bp,
2928 	    zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
2929 	    &zio->io_alloc_list, zio);
2930 
2931 	if (error != 0) {
2932 		spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, "
2933 		    "size %llu, error %d", spa_name(spa), zio, zio->io_size,
2934 		    error);
2935 		if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
2936 			return (zio_write_gang_block(zio));
2937 		zio->io_error = error;
2938 	}
2939 
2940 	return (ZIO_PIPELINE_CONTINUE);
2941 }
2942 
2943 static int
2944 zio_dva_free(zio_t *zio)
2945 {
2946 	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
2947 
2948 	return (ZIO_PIPELINE_CONTINUE);
2949 }
2950 
2951 static int
2952 zio_dva_claim(zio_t *zio)
2953 {
2954 	int error;
2955 
2956 	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
2957 	if (error)
2958 		zio->io_error = error;
2959 
2960 	return (ZIO_PIPELINE_CONTINUE);
2961 }
2962 
2963 /*
2964  * Undo an allocation.  This is used by zio_done() when an I/O fails
2965  * and we want to give back the block we just allocated.
2966  * This handles both normal blocks and gang blocks.
2967  */
2968 static void
2969 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
2970 {
2971 	ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2972 	ASSERT(zio->io_bp_override == NULL);
2973 
2974 	if (!BP_IS_HOLE(bp))
2975 		metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
2976 
2977 	if (gn != NULL) {
2978 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2979 			zio_dva_unallocate(zio, gn->gn_child[g],
2980 			    &gn->gn_gbh->zg_blkptr[g]);
2981 		}
2982 	}
2983 }
2984 
2985 /*
2986  * Try to allocate an intent log block.  Return 0 on success, errno on failure.
2987  */
2988 int
2989 zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp,
2990     uint64_t size, boolean_t *slog)
2991 {
2992 	int error = 1;
2993 	zio_alloc_list_t io_alloc_list;
2994 
2995 	ASSERT(txg > spa_syncing_txg(spa));
2996 
2997 	metaslab_trace_init(&io_alloc_list);
2998 	error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1,
2999 	    txg, old_bp, METASLAB_HINTBP_AVOID, &io_alloc_list, NULL);
3000 	if (error == 0) {
3001 		*slog = TRUE;
3002 	} else {
3003 		error = metaslab_alloc(spa, spa_normal_class(spa), size,
3004 		    new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID,
3005 		    &io_alloc_list, NULL);
3006 		if (error == 0)
3007 			*slog = FALSE;
3008 	}
3009 	metaslab_trace_fini(&io_alloc_list);
3010 
3011 	if (error == 0) {
3012 		BP_SET_LSIZE(new_bp, size);
3013 		BP_SET_PSIZE(new_bp, size);
3014 		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
3015 		BP_SET_CHECKSUM(new_bp,
3016 		    spa_version(spa) >= SPA_VERSION_SLIM_ZIL
3017 		    ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
3018 		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3019 		BP_SET_LEVEL(new_bp, 0);
3020 		BP_SET_DEDUP(new_bp, 0);
3021 		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
3022 	} else {
3023 		zfs_dbgmsg("%s: zil block allocation failure: "
3024 		    "size %llu, error %d", spa_name(spa), size, error);
3025 	}
3026 
3027 	return (error);
3028 }
3029 
3030 /*
3031  * Free an intent log block.
3032  */
3033 void
3034 zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp)
3035 {
3036 	ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG);
3037 	ASSERT(!BP_IS_GANG(bp));
3038 
3039 	zio_free(spa, txg, bp);
3040 }
3041 
3042 /*
3043  * ==========================================================================
3044  * Read and write to physical devices
3045  * ==========================================================================
3046  */
3047 
3048 
3049 /*
3050  * Issue an I/O to the underlying vdev. Typically the issue pipeline
3051  * stops after this stage and will resume upon I/O completion.
3052  * However, there are instances where the vdev layer may need to
3053  * continue the pipeline when an I/O was not issued. Since the I/O
3054  * that was sent to the vdev layer might be different than the one
3055  * currently active in the pipeline (see vdev_queue_io()), we explicitly
3056  * force the underlying vdev layers to call either zio_execute() or
3057  * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
3058  */
3059 static int
3060 zio_vdev_io_start(zio_t *zio)
3061 {
3062 	vdev_t *vd = zio->io_vd;
3063 	uint64_t align;
3064 	spa_t *spa = zio->io_spa;
3065 
3066 	ASSERT(zio->io_error == 0);
3067 	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
3068 
3069 	if (vd == NULL) {
3070 		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3071 			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
3072 
3073 		/*
3074 		 * The mirror_ops handle multiple DVAs in a single BP.
3075 		 */
3076 		vdev_mirror_ops.vdev_op_io_start(zio);
3077 		return (ZIO_PIPELINE_STOP);
3078 	}
3079 
3080 	ASSERT3P(zio->io_logical, !=, zio);
3081 	if (zio->io_type == ZIO_TYPE_WRITE) {
3082 		ASSERT(spa->spa_trust_config);
3083 
3084 		if (zio->io_vd->vdev_removing) {
3085 			ASSERT(zio->io_flags &
3086 			    (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL |
3087 			    ZIO_FLAG_INDUCE_DAMAGE));
3088 		}
3089 	}
3090 
3091 	/*
3092 	 * We keep track of time-sensitive I/Os so that the scan thread
3093 	 * can quickly react to certain workloads.  In particular, we care
3094 	 * about non-scrubbing, top-level reads and writes with the following
3095 	 * characteristics:
3096 	 *	- synchronous writes of user data to non-slog devices
3097 	 *	- any reads of user data
3098 	 * When these conditions are met, adjust the timestamp of spa_last_io
3099 	 * which allows the scan thread to adjust its workload accordingly.
3100 	 */
3101 	if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL &&
3102 	    vd == vd->vdev_top && !vd->vdev_islog &&
3103 	    zio->io_bookmark.zb_objset != DMU_META_OBJSET &&
3104 	    zio->io_txg != spa_syncing_txg(spa)) {
3105 		uint64_t old = spa->spa_last_io;
3106 		uint64_t new = ddi_get_lbolt64();
3107 		if (old != new)
3108 			(void) atomic_cas_64(&spa->spa_last_io, old, new);
3109 	}
3110 
3111 	align = 1ULL << vd->vdev_top->vdev_ashift;
3112 
3113 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
3114 	    P2PHASE(zio->io_size, align) != 0) {
3115 		/* Transform logical writes to be a full physical block size. */
3116 		uint64_t asize = P2ROUNDUP(zio->io_size, align);
3117 		abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize);
3118 		ASSERT(vd == vd->vdev_top);
3119 		if (zio->io_type == ZIO_TYPE_WRITE) {
3120 			abd_copy(abuf, zio->io_abd, zio->io_size);
3121 			abd_zero_off(abuf, zio->io_size, asize - zio->io_size);
3122 		}
3123 		zio_push_transform(zio, abuf, asize, asize, zio_subblock);
3124 	}
3125 
3126 	/*
3127 	 * If this is not a physical io, make sure that it is properly aligned
3128 	 * before proceeding.
3129 	 */
3130 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
3131 		ASSERT0(P2PHASE(zio->io_offset, align));
3132 		ASSERT0(P2PHASE(zio->io_size, align));
3133 	} else {
3134 		/*
3135 		 * For physical writes, we allow 512b aligned writes and assume
3136 		 * the device will perform a read-modify-write as necessary.
3137 		 */
3138 		ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
3139 		ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
3140 	}
3141 
3142 	VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
3143 
3144 	/*
3145 	 * If this is a repair I/O, and there's no self-healing involved --
3146 	 * that is, we're just resilvering what we expect to resilver --
3147 	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
3148 	 * This prevents spurious resilvering with nested replication.
3149 	 * For example, given a mirror of mirrors, (A+B)+(C+D), if only
3150 	 * A is out of date, we'll read from C+D, then use the data to
3151 	 * resilver A+B -- but we don't actually want to resilver B, just A.
3152 	 * The top-level mirror has no way to know this, so instead we just
3153 	 * discard unnecessary repairs as we work our way down the vdev tree.
3154 	 * The same logic applies to any form of nested replication:
3155 	 * ditto + mirror, RAID-Z + replacing, etc.  This covers them all.
3156 	 */
3157 	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
3158 	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
3159 	    zio->io_txg != 0 &&	/* not a delegated i/o */
3160 	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
3161 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3162 		zio_vdev_io_bypass(zio);
3163 		return (ZIO_PIPELINE_CONTINUE);
3164 	}
3165 
3166 	if (vd->vdev_ops->vdev_op_leaf &&
3167 	    (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
3168 
3169 		if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio))
3170 			return (ZIO_PIPELINE_CONTINUE);
3171 
3172 		if ((zio = vdev_queue_io(zio)) == NULL)
3173 			return (ZIO_PIPELINE_STOP);
3174 
3175 		if (!vdev_accessible(vd, zio)) {
3176 			zio->io_error = SET_ERROR(ENXIO);
3177 			zio_interrupt(zio);
3178 			return (ZIO_PIPELINE_STOP);
3179 		}
3180 	}
3181 
3182 	vd->vdev_ops->vdev_op_io_start(zio);
3183 	return (ZIO_PIPELINE_STOP);
3184 }
3185 
3186 static int
3187 zio_vdev_io_done(zio_t *zio)
3188 {
3189 	vdev_t *vd = zio->io_vd;
3190 	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
3191 	boolean_t unexpected_error = B_FALSE;
3192 
3193 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3194 		return (ZIO_PIPELINE_STOP);
3195 	}
3196 
3197 	ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);
3198 
3199 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
3200 
3201 		vdev_queue_io_done(zio);
3202 
3203 		if (zio->io_type == ZIO_TYPE_WRITE)
3204 			vdev_cache_write(zio);
3205 
3206 		if (zio_injection_enabled && zio->io_error == 0)
3207 			zio->io_error = zio_handle_device_injection(vd,
3208 			    zio, EIO);
3209 
3210 		if (zio_injection_enabled && zio->io_error == 0)
3211 			zio->io_error = zio_handle_label_injection(zio, EIO);
3212 
3213 		if (zio->io_error) {
3214 			if (!vdev_accessible(vd, zio)) {
3215 				zio->io_error = SET_ERROR(ENXIO);
3216 			} else {
3217 				unexpected_error = B_TRUE;
3218 			}
3219 		}
3220 	}
3221 
3222 	ops->vdev_op_io_done(zio);
3223 
3224 	if (unexpected_error)
3225 		VERIFY(vdev_probe(vd, zio) == NULL);
3226 
3227 	return (ZIO_PIPELINE_CONTINUE);
3228 }
3229 
3230 /*
3231  * For non-raidz ZIOs, we can just copy aside the bad data read from the
3232  * disk, and use that to finish the checksum ereport later.
3233  */
3234 static void
3235 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
3236     const void *good_buf)
3237 {
3238 	/* no processing needed */
3239 	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
3240 }
3241 
3242 /*ARGSUSED*/
3243 void
3244 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
3245 {
3246 	void *buf = zio_buf_alloc(zio->io_size);
3247 
3248 	abd_copy_to_buf(buf, zio->io_abd, zio->io_size);
3249 
3250 	zcr->zcr_cbinfo = zio->io_size;
3251 	zcr->zcr_cbdata = buf;
3252 	zcr->zcr_finish = zio_vsd_default_cksum_finish;
3253 	zcr->zcr_free = zio_buf_free;
3254 }
3255 
3256 static int
3257 zio_vdev_io_assess(zio_t *zio)
3258 {
3259 	vdev_t *vd = zio->io_vd;
3260 
3261 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3262 		return (ZIO_PIPELINE_STOP);
3263 	}
3264 
3265 	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3266 		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
3267 
3268 	if (zio->io_vsd != NULL) {
3269 		zio->io_vsd_ops->vsd_free(zio);
3270 		zio->io_vsd = NULL;
3271 	}
3272 
3273 	if (zio_injection_enabled && zio->io_error == 0)
3274 		zio->io_error = zio_handle_fault_injection(zio, EIO);
3275 
3276 	/*
3277 	 * If the I/O failed, determine whether we should attempt to retry it.
3278 	 *
3279 	 * On retry, we cut in line in the issue queue, since we don't want
3280 	 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
3281 	 */
3282 	if (zio->io_error && vd == NULL &&
3283 	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
3284 		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
3285 		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
3286 		zio->io_error = 0;
3287 		zio->io_flags |= ZIO_FLAG_IO_RETRY |
3288 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
3289 		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
3290 		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
3291 		    zio_requeue_io_start_cut_in_line);
3292 		return (ZIO_PIPELINE_STOP);
3293 	}
3294 
3295 	/*
3296 	 * If we got an error on a leaf device, convert it to ENXIO
3297 	 * if the device is not accessible at all.
3298 	 */
3299 	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3300 	    !vdev_accessible(vd, zio))
3301 		zio->io_error = SET_ERROR(ENXIO);
3302 
3303 	/*
3304 	 * If we can't write to an interior vdev (mirror or RAID-Z),
3305 	 * set vdev_cant_write so that we stop trying to allocate from it.
3306 	 */
3307 	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
3308 	    vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
3309 		vd->vdev_cant_write = B_TRUE;
3310 	}
3311 
3312 	/*
3313 	 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future
3314 	 * attempts will ever succeed. In this case we set a persistent bit so
3315 	 * that we don't bother with it in the future.
3316 	 */
3317 	if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) &&
3318 	    zio->io_type == ZIO_TYPE_IOCTL &&
3319 	    zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL)
3320 		vd->vdev_nowritecache = B_TRUE;
3321 
3322 	if (zio->io_error)
3323 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3324 
3325 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3326 	    zio->io_physdone != NULL) {
3327 		ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
3328 		ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
3329 		zio->io_physdone(zio->io_logical);
3330 	}
3331 
3332 	return (ZIO_PIPELINE_CONTINUE);
3333 }
3334 
3335 void
3336 zio_vdev_io_reissue(zio_t *zio)
3337 {
3338 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3339 	ASSERT(zio->io_error == 0);
3340 
3341 	zio->io_stage >>= 1;
3342 }
3343 
3344 void
3345 zio_vdev_io_redone(zio_t *zio)
3346 {
3347 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
3348 
3349 	zio->io_stage >>= 1;
3350 }
3351 
3352 void
3353 zio_vdev_io_bypass(zio_t *zio)
3354 {
3355 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3356 	ASSERT(zio->io_error == 0);
3357 
3358 	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
3359 	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
3360 }
3361 
3362 /*
3363  * ==========================================================================
3364  * Generate and verify checksums
3365  * ==========================================================================
3366  */
3367 static int
3368 zio_checksum_generate(zio_t *zio)
3369 {
3370 	blkptr_t *bp = zio->io_bp;
3371 	enum zio_checksum checksum;
3372 
3373 	if (bp == NULL) {
3374 		/*
3375 		 * This is zio_write_phys().
3376 		 * We're either generating a label checksum, or none at all.
3377 		 */
3378 		checksum = zio->io_prop.zp_checksum;
3379 
3380 		if (checksum == ZIO_CHECKSUM_OFF)
3381 			return (ZIO_PIPELINE_CONTINUE);
3382 
3383 		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
3384 	} else {
3385 		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
3386 			ASSERT(!IO_IS_ALLOCATING(zio));
3387 			checksum = ZIO_CHECKSUM_GANG_HEADER;
3388 		} else {
3389 			checksum = BP_GET_CHECKSUM(bp);
3390 		}
3391 	}
3392 
3393 	zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size);
3394 
3395 	return (ZIO_PIPELINE_CONTINUE);
3396 }
3397 
3398 static int
3399 zio_checksum_verify(zio_t *zio)
3400 {
3401 	zio_bad_cksum_t info;
3402 	blkptr_t *bp = zio->io_bp;
3403 	int error;
3404 
3405 	ASSERT(zio->io_vd != NULL);
3406 
3407 	if (bp == NULL) {
3408 		/*
3409 		 * This is zio_read_phys().
3410 		 * We're either verifying a label checksum, or nothing at all.
3411 		 */
3412 		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
3413 			return (ZIO_PIPELINE_CONTINUE);
3414 
3415 		ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
3416 	}
3417 
3418 	if ((error = zio_checksum_error(zio, &info)) != 0) {
3419 		zio->io_error = error;
3420 		if (error == ECKSUM &&
3421 		    !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
3422 			zfs_ereport_start_checksum(zio->io_spa,
3423 			    zio->io_vd, zio, zio->io_offset,
3424 			    zio->io_size, NULL, &info);
3425 		}
3426 	}
3427 
3428 	return (ZIO_PIPELINE_CONTINUE);
3429 }
3430 
3431 /*
3432  * Called by RAID-Z to ensure we don't compute the checksum twice.
3433  */
3434 void
3435 zio_checksum_verified(zio_t *zio)
3436 {
3437 	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
3438 }
3439 
3440 /*
3441  * ==========================================================================
3442  * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
3443  * An error of 0 indicates success.  ENXIO indicates whole-device failure,
3444  * which may be transient (e.g. unplugged) or permament.  ECKSUM and EIO
3445  * indicate errors that are specific to one I/O, and most likely permanent.
3446  * Any other error is presumed to be worse because we weren't expecting it.
3447  * ==========================================================================
3448  */
3449 int
3450 zio_worst_error(int e1, int e2)
3451 {
3452 	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
3453 	int r1, r2;
3454 
3455 	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
3456 		if (e1 == zio_error_rank[r1])
3457 			break;
3458 
3459 	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
3460 		if (e2 == zio_error_rank[r2])
3461 			break;
3462 
3463 	return (r1 > r2 ? e1 : e2);
3464 }
3465 
3466 /*
3467  * ==========================================================================
3468  * I/O completion
3469  * ==========================================================================
3470  */
3471 static int
3472 zio_ready(zio_t *zio)
3473 {
3474 	blkptr_t *bp = zio->io_bp;
3475 	zio_t *pio, *pio_next;
3476 	zio_link_t *zl = NULL;
3477 
3478 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT,
3479 	    ZIO_WAIT_READY)) {
3480 		return (ZIO_PIPELINE_STOP);
3481 	}
3482 
3483 	if (zio->io_ready) {
3484 		ASSERT(IO_IS_ALLOCATING(zio));
3485 		ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
3486 		    (zio->io_flags & ZIO_FLAG_NOPWRITE));
3487 		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
3488 
3489 		zio->io_ready(zio);
3490 	}
3491 
3492 	if (bp != NULL && bp != &zio->io_bp_copy)
3493 		zio->io_bp_copy = *bp;
3494 
3495 	if (zio->io_error != 0) {
3496 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3497 
3498 		if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
3499 			ASSERT(IO_IS_ALLOCATING(zio));
3500 			ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
3501 			/*
3502 			 * We were unable to allocate anything, unreserve and
3503 			 * issue the next I/O to allocate.
3504 			 */
3505 			metaslab_class_throttle_unreserve(
3506 			    spa_normal_class(zio->io_spa),
3507 			    zio->io_prop.zp_copies, zio);
3508 			zio_allocate_dispatch(zio->io_spa);
3509 		}
3510 	}
3511 
3512 	mutex_enter(&zio->io_lock);
3513 	zio->io_state[ZIO_WAIT_READY] = 1;
3514 	pio = zio_walk_parents(zio, &zl);
3515 	mutex_exit(&zio->io_lock);
3516 
3517 	/*
3518 	 * As we notify zio's parents, new parents could be added.
3519 	 * New parents go to the head of zio's io_parent_list, however,
3520 	 * so we will (correctly) not notify them.  The remainder of zio's
3521 	 * io_parent_list, from 'pio_next' onward, cannot change because
3522 	 * all parents must wait for us to be done before they can be done.
3523 	 */
3524 	for (; pio != NULL; pio = pio_next) {
3525 		pio_next = zio_walk_parents(zio, &zl);
3526 		zio_notify_parent(pio, zio, ZIO_WAIT_READY);
3527 	}
3528 
3529 	if (zio->io_flags & ZIO_FLAG_NODATA) {
3530 		if (BP_IS_GANG(bp)) {
3531 			zio->io_flags &= ~ZIO_FLAG_NODATA;
3532 		} else {
3533 			ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE);
3534 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
3535 		}
3536 	}
3537 
3538 	if (zio_injection_enabled &&
3539 	    zio->io_spa->spa_syncing_txg == zio->io_txg)
3540 		zio_handle_ignored_writes(zio);
3541 
3542 	return (ZIO_PIPELINE_CONTINUE);
3543 }
3544 
3545 /*
3546  * Update the allocation throttle accounting.
3547  */
3548 static void
3549 zio_dva_throttle_done(zio_t *zio)
3550 {
3551 	zio_t *lio = zio->io_logical;
3552 	zio_t *pio = zio_unique_parent(zio);
3553 	vdev_t *vd = zio->io_vd;
3554 	int flags = METASLAB_ASYNC_ALLOC;
3555 
3556 	ASSERT3P(zio->io_bp, !=, NULL);
3557 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
3558 	ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE);
3559 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
3560 	ASSERT(vd != NULL);
3561 	ASSERT3P(vd, ==, vd->vdev_top);
3562 	ASSERT(!(zio->io_flags & (ZIO_FLAG_IO_REPAIR | ZIO_FLAG_IO_RETRY)));
3563 	ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING);
3564 	ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE));
3565 	ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA));
3566 
3567 	/*
3568 	 * Parents of gang children can have two flavors -- ones that
3569 	 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set)
3570 	 * and ones that allocated the constituent blocks. The allocation
3571 	 * throttle needs to know the allocating parent zio so we must find
3572 	 * it here.
3573 	 */
3574 	if (pio->io_child_type == ZIO_CHILD_GANG) {
3575 		/*
3576 		 * If our parent is a rewrite gang child then our grandparent
3577 		 * would have been the one that performed the allocation.
3578 		 */
3579 		if (pio->io_flags & ZIO_FLAG_IO_REWRITE)
3580 			pio = zio_unique_parent(pio);
3581 		flags |= METASLAB_GANG_CHILD;
3582 	}
3583 
3584 	ASSERT(IO_IS_ALLOCATING(pio));
3585 	ASSERT3P(zio, !=, zio->io_logical);
3586 	ASSERT(zio->io_logical != NULL);
3587 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
3588 	ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE);
3589 
3590 	mutex_enter(&pio->io_lock);
3591 	metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags);
3592 	mutex_exit(&pio->io_lock);
3593 
3594 	metaslab_class_throttle_unreserve(spa_normal_class(zio->io_spa),
3595 	    1, pio);
3596 
3597 	/*
3598 	 * Call into the pipeline to see if there is more work that
3599 	 * needs to be done. If there is work to be done it will be
3600 	 * dispatched to another taskq thread.
3601 	 */
3602 	zio_allocate_dispatch(zio->io_spa);
3603 }
3604 
3605 static int
3606 zio_done(zio_t *zio)
3607 {
3608 	spa_t *spa = zio->io_spa;
3609 	zio_t *lio = zio->io_logical;
3610 	blkptr_t *bp = zio->io_bp;
3611 	vdev_t *vd = zio->io_vd;
3612 	uint64_t psize = zio->io_size;
3613 	zio_t *pio, *pio_next;
3614 	metaslab_class_t *mc = spa_normal_class(spa);
3615 	zio_link_t *zl = NULL;
3616 
3617 	/*
3618 	 * If our children haven't all completed,
3619 	 * wait for them and then repeat this pipeline stage.
3620 	 */
3621 	if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) {
3622 		return (ZIO_PIPELINE_STOP);
3623 	}
3624 
3625 	/*
3626 	 * If the allocation throttle is enabled, then update the accounting.
3627 	 * We only track child I/Os that are part of an allocating async
3628 	 * write. We must do this since the allocation is performed
3629 	 * by the logical I/O but the actual write is done by child I/Os.
3630 	 */
3631 	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING &&
3632 	    zio->io_child_type == ZIO_CHILD_VDEV) {
3633 		ASSERT(mc->mc_alloc_throttle_enabled);
3634 		zio_dva_throttle_done(zio);
3635 	}
3636 
3637 	/*
3638 	 * If the allocation throttle is enabled, verify that
3639 	 * we have decremented the refcounts for every I/O that was throttled.
3640 	 */
3641 	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
3642 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3643 		ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
3644 		ASSERT(bp != NULL);
3645 		metaslab_group_alloc_verify(spa, zio->io_bp, zio);
3646 		VERIFY(refcount_not_held(&mc->mc_alloc_slots, zio));
3647 	}
3648 
3649 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
3650 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
3651 			ASSERT(zio->io_children[c][w] == 0);
3652 
3653 	if (bp != NULL && !BP_IS_EMBEDDED(bp)) {
3654 		ASSERT(bp->blk_pad[0] == 0);
3655 		ASSERT(bp->blk_pad[1] == 0);
3656 		ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
3657 		    (bp == zio_unique_parent(zio)->io_bp));
3658 		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
3659 		    zio->io_bp_override == NULL &&
3660 		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
3661 			ASSERT(!BP_SHOULD_BYTESWAP(bp));
3662 			ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp));
3663 			ASSERT(BP_COUNT_GANG(bp) == 0 ||
3664 			    (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
3665 		}
3666 		if (zio->io_flags & ZIO_FLAG_NOPWRITE)
3667 			VERIFY(BP_EQUAL(bp, &zio->io_bp_orig));
3668 	}
3669 
3670 	/*
3671 	 * If there were child vdev/gang/ddt errors, they apply to us now.
3672 	 */
3673 	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
3674 	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
3675 	zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
3676 
3677 	/*
3678 	 * If the I/O on the transformed data was successful, generate any
3679 	 * checksum reports now while we still have the transformed data.
3680 	 */
3681 	if (zio->io_error == 0) {
3682 		while (zio->io_cksum_report != NULL) {
3683 			zio_cksum_report_t *zcr = zio->io_cksum_report;
3684 			uint64_t align = zcr->zcr_align;
3685 			uint64_t asize = P2ROUNDUP(psize, align);
3686 			char *abuf = NULL;
3687 			abd_t *adata = zio->io_abd;
3688 
3689 			if (asize != psize) {
3690 				adata = abd_alloc_linear(asize, B_TRUE);
3691 				abd_copy(adata, zio->io_abd, psize);
3692 				abd_zero_off(adata, psize, asize - psize);
3693 			}
3694 
3695 			if (adata != NULL)
3696 				abuf = abd_borrow_buf_copy(adata, asize);
3697 
3698 			zio->io_cksum_report = zcr->zcr_next;
3699 			zcr->zcr_next = NULL;
3700 			zcr->zcr_finish(zcr, abuf);
3701 			zfs_ereport_free_checksum(zcr);
3702 
3703 			if (adata != NULL)
3704 				abd_return_buf(adata, abuf, asize);
3705 
3706 			if (asize != psize)
3707 				abd_free(adata);
3708 		}
3709 	}
3710 
3711 	zio_pop_transforms(zio);	/* note: may set zio->io_error */
3712 
3713 	vdev_stat_update(zio, psize);
3714 
3715 	if (zio->io_error) {
3716 		/*
3717 		 * If this I/O is attached to a particular vdev,
3718 		 * generate an error message describing the I/O failure
3719 		 * at the block level.  We ignore these errors if the
3720 		 * device is currently unavailable.
3721 		 */
3722 		if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
3723 			zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0);
3724 
3725 		if ((zio->io_error == EIO || !(zio->io_flags &
3726 		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
3727 		    zio == lio) {
3728 			/*
3729 			 * For logical I/O requests, tell the SPA to log the
3730 			 * error and generate a logical data ereport.
3731 			 */
3732 			spa_log_error(spa, zio);
3733 			zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio,
3734 			    0, 0);
3735 		}
3736 	}
3737 
3738 	if (zio->io_error && zio == lio) {
3739 		/*
3740 		 * Determine whether zio should be reexecuted.  This will
3741 		 * propagate all the way to the root via zio_notify_parent().
3742 		 */
3743 		ASSERT(vd == NULL && bp != NULL);
3744 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3745 
3746 		if (IO_IS_ALLOCATING(zio) &&
3747 		    !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
3748 			if (zio->io_error != ENOSPC)
3749 				zio->io_reexecute |= ZIO_REEXECUTE_NOW;
3750 			else
3751 				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3752 		}
3753 
3754 		if ((zio->io_type == ZIO_TYPE_READ ||
3755 		    zio->io_type == ZIO_TYPE_FREE) &&
3756 		    !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
3757 		    zio->io_error == ENXIO &&
3758 		    spa_load_state(spa) == SPA_LOAD_NONE &&
3759 		    spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
3760 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3761 
3762 		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
3763 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3764 
3765 		/*
3766 		 * Here is a possibly good place to attempt to do
3767 		 * either combinatorial reconstruction or error correction
3768 		 * based on checksums.  It also might be a good place
3769 		 * to send out preliminary ereports before we suspend
3770 		 * processing.
3771 		 */
3772 	}
3773 
3774 	/*
3775 	 * If there were logical child errors, they apply to us now.
3776 	 * We defer this until now to avoid conflating logical child
3777 	 * errors with errors that happened to the zio itself when
3778 	 * updating vdev stats and reporting FMA events above.
3779 	 */
3780 	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
3781 
3782 	if ((zio->io_error || zio->io_reexecute) &&
3783 	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
3784 	    !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
3785 		zio_dva_unallocate(zio, zio->io_gang_tree, bp);
3786 
3787 	zio_gang_tree_free(&zio->io_gang_tree);
3788 
3789 	/*
3790 	 * Godfather I/Os should never suspend.
3791 	 */
3792 	if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
3793 	    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
3794 		zio->io_reexecute = 0;
3795 
3796 	if (zio->io_reexecute) {
3797 		/*
3798 		 * This is a logical I/O that wants to reexecute.
3799 		 *
3800 		 * Reexecute is top-down.  When an i/o fails, if it's not
3801 		 * the root, it simply notifies its parent and sticks around.
3802 		 * The parent, seeing that it still has children in zio_done(),
3803 		 * does the same.  This percolates all the way up to the root.
3804 		 * The root i/o will reexecute or suspend the entire tree.
3805 		 *
3806 		 * This approach ensures that zio_reexecute() honors
3807 		 * all the original i/o dependency relationships, e.g.
3808 		 * parents not executing until children are ready.
3809 		 */
3810 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3811 
3812 		zio->io_gang_leader = NULL;
3813 
3814 		mutex_enter(&zio->io_lock);
3815 		zio->io_state[ZIO_WAIT_DONE] = 1;
3816 		mutex_exit(&zio->io_lock);
3817 
3818 		/*
3819 		 * "The Godfather" I/O monitors its children but is
3820 		 * not a true parent to them. It will track them through
3821 		 * the pipeline but severs its ties whenever they get into
3822 		 * trouble (e.g. suspended). This allows "The Godfather"
3823 		 * I/O to return status without blocking.
3824 		 */
3825 		zl = NULL;
3826 		for (pio = zio_walk_parents(zio, &zl); pio != NULL;
3827 		    pio = pio_next) {
3828 			zio_link_t *remove_zl = zl;
3829 			pio_next = zio_walk_parents(zio, &zl);
3830 
3831 			if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
3832 			    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
3833 				zio_remove_child(pio, zio, remove_zl);
3834 				zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3835 			}
3836 		}
3837 
3838 		if ((pio = zio_unique_parent(zio)) != NULL) {
3839 			/*
3840 			 * We're not a root i/o, so there's nothing to do
3841 			 * but notify our parent.  Don't propagate errors
3842 			 * upward since we haven't permanently failed yet.
3843 			 */
3844 			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
3845 			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
3846 			zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3847 		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
3848 			/*
3849 			 * We'd fail again if we reexecuted now, so suspend
3850 			 * until conditions improve (e.g. device comes online).
3851 			 */
3852 			zio_suspend(spa, zio);
3853 		} else {
3854 			/*
3855 			 * Reexecution is potentially a huge amount of work.
3856 			 * Hand it off to the otherwise-unused claim taskq.
3857 			 */
3858 			ASSERT(zio->io_tqent.tqent_next == NULL);
3859 			spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM,
3860 			    ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio,
3861 			    0, &zio->io_tqent);
3862 		}
3863 		return (ZIO_PIPELINE_STOP);
3864 	}
3865 
3866 	ASSERT(zio->io_child_count == 0);
3867 	ASSERT(zio->io_reexecute == 0);
3868 	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
3869 
3870 	/*
3871 	 * Report any checksum errors, since the I/O is complete.
3872 	 */
3873 	while (zio->io_cksum_report != NULL) {
3874 		zio_cksum_report_t *zcr = zio->io_cksum_report;
3875 		zio->io_cksum_report = zcr->zcr_next;
3876 		zcr->zcr_next = NULL;
3877 		zcr->zcr_finish(zcr, NULL);
3878 		zfs_ereport_free_checksum(zcr);
3879 	}
3880 
3881 	/*
3882 	 * It is the responsibility of the done callback to ensure that this
3883 	 * particular zio is no longer discoverable for adoption, and as
3884 	 * such, cannot acquire any new parents.
3885 	 */
3886 	if (zio->io_done)
3887 		zio->io_done(zio);
3888 
3889 	mutex_enter(&zio->io_lock);
3890 	zio->io_state[ZIO_WAIT_DONE] = 1;
3891 	mutex_exit(&zio->io_lock);
3892 
3893 	zl = NULL;
3894 	for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) {
3895 		zio_link_t *remove_zl = zl;
3896 		pio_next = zio_walk_parents(zio, &zl);
3897 		zio_remove_child(pio, zio, remove_zl);
3898 		zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3899 	}
3900 
3901 	if (zio->io_waiter != NULL) {
3902 		mutex_enter(&zio->io_lock);
3903 		zio->io_executor = NULL;
3904 		cv_broadcast(&zio->io_cv);
3905 		mutex_exit(&zio->io_lock);
3906 	} else {
3907 		zio_destroy(zio);
3908 	}
3909 
3910 	return (ZIO_PIPELINE_STOP);
3911 }
3912 
3913 /*
3914  * ==========================================================================
3915  * I/O pipeline definition
3916  * ==========================================================================
3917  */
3918 static zio_pipe_stage_t *zio_pipeline[] = {
3919 	NULL,
3920 	zio_read_bp_init,
3921 	zio_write_bp_init,
3922 	zio_free_bp_init,
3923 	zio_issue_async,
3924 	zio_write_compress,
3925 	zio_checksum_generate,
3926 	zio_nop_write,
3927 	zio_ddt_read_start,
3928 	zio_ddt_read_done,
3929 	zio_ddt_write,
3930 	zio_ddt_free,
3931 	zio_gang_assemble,
3932 	zio_gang_issue,
3933 	zio_dva_throttle,
3934 	zio_dva_allocate,
3935 	zio_dva_free,
3936 	zio_dva_claim,
3937 	zio_ready,
3938 	zio_vdev_io_start,
3939 	zio_vdev_io_done,
3940 	zio_vdev_io_assess,
3941 	zio_checksum_verify,
3942 	zio_done
3943 };
3944 
3945 
3946 
3947 
3948 /*
3949  * Compare two zbookmark_phys_t's to see which we would reach first in a
3950  * pre-order traversal of the object tree.
3951  *
3952  * This is simple in every case aside from the meta-dnode object. For all other
3953  * objects, we traverse them in order (object 1 before object 2, and so on).
3954  * However, all of these objects are traversed while traversing object 0, since
3955  * the data it points to is the list of objects.  Thus, we need to convert to a
3956  * canonical representation so we can compare meta-dnode bookmarks to
3957  * non-meta-dnode bookmarks.
3958  *
3959  * We do this by calculating "equivalents" for each field of the zbookmark.
3960  * zbookmarks outside of the meta-dnode use their own object and level, and
3961  * calculate the level 0 equivalent (the first L0 blkid that is contained in the
3962  * blocks this bookmark refers to) by multiplying their blkid by their span
3963  * (the number of L0 blocks contained within one block at their level).
3964  * zbookmarks inside the meta-dnode calculate their object equivalent
3965  * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
3966  * level + 1<<31 (any value larger than a level could ever be) for their level.
3967  * This causes them to always compare before a bookmark in their object
3968  * equivalent, compare appropriately to bookmarks in other objects, and to
3969  * compare appropriately to other bookmarks in the meta-dnode.
3970  */
3971 int
3972 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
3973     const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
3974 {
3975 	/*
3976 	 * These variables represent the "equivalent" values for the zbookmark,
3977 	 * after converting zbookmarks inside the meta dnode to their
3978 	 * normal-object equivalents.
3979 	 */
3980 	uint64_t zb1obj, zb2obj;
3981 	uint64_t zb1L0, zb2L0;
3982 	uint64_t zb1level, zb2level;
3983 
3984 	if (zb1->zb_object == zb2->zb_object &&
3985 	    zb1->zb_level == zb2->zb_level &&
3986 	    zb1->zb_blkid == zb2->zb_blkid)
3987 		return (0);
3988 
3989 	/*
3990 	 * BP_SPANB calculates the span in blocks.
3991 	 */
3992 	zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
3993 	zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
3994 
3995 	if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
3996 		zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
3997 		zb1L0 = 0;
3998 		zb1level = zb1->zb_level + COMPARE_META_LEVEL;
3999 	} else {
4000 		zb1obj = zb1->zb_object;
4001 		zb1level = zb1->zb_level;
4002 	}
4003 
4004 	if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
4005 		zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4006 		zb2L0 = 0;
4007 		zb2level = zb2->zb_level + COMPARE_META_LEVEL;
4008 	} else {
4009 		zb2obj = zb2->zb_object;
4010 		zb2level = zb2->zb_level;
4011 	}
4012 
4013 	/* Now that we have a canonical representation, do the comparison. */
4014 	if (zb1obj != zb2obj)
4015 		return (zb1obj < zb2obj ? -1 : 1);
4016 	else if (zb1L0 != zb2L0)
4017 		return (zb1L0 < zb2L0 ? -1 : 1);
4018 	else if (zb1level != zb2level)
4019 		return (zb1level > zb2level ? -1 : 1);
4020 	/*
4021 	 * This can (theoretically) happen if the bookmarks have the same object
4022 	 * and level, but different blkids, if the block sizes are not the same.
4023 	 * There is presently no way to change the indirect block sizes
4024 	 */
4025 	return (0);
4026 }
4027 
4028 /*
4029  *  This function checks the following: given that last_block is the place that
4030  *  our traversal stopped last time, does that guarantee that we've visited
4031  *  every node under subtree_root?  Therefore, we can't just use the raw output
4032  *  of zbookmark_compare.  We have to pass in a modified version of
4033  *  subtree_root; by incrementing the block id, and then checking whether
4034  *  last_block is before or equal to that, we can tell whether or not having
4035  *  visited last_block implies that all of subtree_root's children have been
4036  *  visited.
4037  */
4038 boolean_t
4039 zbookmark_subtree_completed(const dnode_phys_t *dnp,
4040     const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
4041 {
4042 	zbookmark_phys_t mod_zb = *subtree_root;
4043 	mod_zb.zb_blkid++;
4044 	ASSERT(last_block->zb_level == 0);
4045 
4046 	/* The objset_phys_t isn't before anything. */
4047 	if (dnp == NULL)
4048 		return (B_FALSE);
4049 
4050 	/*
4051 	 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
4052 	 * data block size in sectors, because that variable is only used if
4053 	 * the bookmark refers to a block in the meta-dnode.  Since we don't
4054 	 * know without examining it what object it refers to, and there's no
4055 	 * harm in passing in this value in other cases, we always pass it in.
4056 	 *
4057 	 * We pass in 0 for the indirect block size shift because zb2 must be
4058 	 * level 0.  The indirect block size is only used to calculate the span
4059 	 * of the bookmark, but since the bookmark must be level 0, the span is
4060 	 * always 1, so the math works out.
4061 	 *
4062 	 * If you make changes to how the zbookmark_compare code works, be sure
4063 	 * to make sure that this code still works afterwards.
4064 	 */
4065 	return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
4066 	    1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
4067 	    last_block) <= 0);
4068 }
4069