xref: /illumos-gate/usr/src/uts/common/fs/zfs/zio.c (revision 663207ad)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24  * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25  * Copyright (c) 2014 Integros [integros.com]
26  * Copyright (c) 2017, Intel Corporation.
27  */
28 
29 #include <sys/sysmacros.h>
30 #include <sys/zfs_context.h>
31 #include <sys/fm/fs/zfs.h>
32 #include <sys/spa.h>
33 #include <sys/txg.h>
34 #include <sys/spa_impl.h>
35 #include <sys/vdev_impl.h>
36 #include <sys/zio_impl.h>
37 #include <sys/zio_compress.h>
38 #include <sys/zio_checksum.h>
39 #include <sys/dmu_objset.h>
40 #include <sys/arc.h>
41 #include <sys/ddt.h>
42 #include <sys/blkptr.h>
43 #include <sys/zfeature.h>
44 #include <sys/metaslab_impl.h>
45 #include <sys/abd.h>
46 #include <sys/cityhash.h>
47 
48 /*
49  * ==========================================================================
50  * I/O type descriptions
51  * ==========================================================================
52  */
53 const char *zio_type_name[ZIO_TYPES] = {
54 	"zio_null", "zio_read", "zio_write", "zio_free", "zio_claim",
55 	"zio_ioctl"
56 };
57 
58 boolean_t zio_dva_throttle_enabled = B_TRUE;
59 
60 /*
61  * ==========================================================================
62  * I/O kmem caches
63  * ==========================================================================
64  */
65 kmem_cache_t *zio_cache;
66 kmem_cache_t *zio_link_cache;
67 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
68 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
69 
70 #ifdef _KERNEL
71 extern vmem_t *zio_alloc_arena;
72 #endif
73 
74 #define	ZIO_PIPELINE_CONTINUE		0x100
75 #define	ZIO_PIPELINE_STOP		0x101
76 
77 #define	BP_SPANB(indblkshift, level) \
78 	(((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
79 #define	COMPARE_META_LEVEL	0x80000000ul
80 /*
81  * The following actions directly effect the spa's sync-to-convergence logic.
82  * The values below define the sync pass when we start performing the action.
83  * Care should be taken when changing these values as they directly impact
84  * spa_sync() performance. Tuning these values may introduce subtle performance
85  * pathologies and should only be done in the context of performance analysis.
86  * These tunables will eventually be removed and replaced with #defines once
87  * enough analysis has been done to determine optimal values.
88  *
89  * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
90  * regular blocks are not deferred.
91  */
92 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
93 int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
94 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
95 
96 /*
97  * An allocating zio is one that either currently has the DVA allocate
98  * stage set or will have it later in its lifetime.
99  */
100 #define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
101 
102 boolean_t	zio_requeue_io_start_cut_in_line = B_TRUE;
103 
104 #ifdef ZFS_DEBUG
105 int zio_buf_debug_limit = 16384;
106 #else
107 int zio_buf_debug_limit = 0;
108 #endif
109 
110 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t);
111 
112 void
113 zio_init(void)
114 {
115 	size_t c;
116 	vmem_t *data_alloc_arena = NULL;
117 
118 #ifdef _KERNEL
119 	data_alloc_arena = zio_alloc_arena;
120 #endif
121 	zio_cache = kmem_cache_create("zio_cache",
122 	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
123 	zio_link_cache = kmem_cache_create("zio_link_cache",
124 	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
125 
126 	/*
127 	 * For small buffers, we want a cache for each multiple of
128 	 * SPA_MINBLOCKSIZE.  For larger buffers, we want a cache
129 	 * for each quarter-power of 2.
130 	 */
131 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
132 		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
133 		size_t p2 = size;
134 		size_t align = 0;
135 		size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0;
136 
137 		while (!ISP2(p2))
138 			p2 &= p2 - 1;
139 
140 #ifndef _KERNEL
141 		/*
142 		 * If we are using watchpoints, put each buffer on its own page,
143 		 * to eliminate the performance overhead of trapping to the
144 		 * kernel when modifying a non-watched buffer that shares the
145 		 * page with a watched buffer.
146 		 */
147 		if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
148 			continue;
149 #endif
150 		if (size <= 4 * SPA_MINBLOCKSIZE) {
151 			align = SPA_MINBLOCKSIZE;
152 		} else if (IS_P2ALIGNED(size, p2 >> 2)) {
153 			align = MIN(p2 >> 2, PAGESIZE);
154 		}
155 
156 		if (align != 0) {
157 			char name[36];
158 			(void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
159 			zio_buf_cache[c] = kmem_cache_create(name, size,
160 			    align, NULL, NULL, NULL, NULL, NULL, cflags);
161 
162 			/*
163 			 * Since zio_data bufs do not appear in crash dumps, we
164 			 * pass KMC_NOTOUCH so that no allocator metadata is
165 			 * stored with the buffers.
166 			 */
167 			(void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
168 			zio_data_buf_cache[c] = kmem_cache_create(name, size,
169 			    align, NULL, NULL, NULL, NULL, data_alloc_arena,
170 			    cflags | KMC_NOTOUCH);
171 		}
172 	}
173 
174 	while (--c != 0) {
175 		ASSERT(zio_buf_cache[c] != NULL);
176 		if (zio_buf_cache[c - 1] == NULL)
177 			zio_buf_cache[c - 1] = zio_buf_cache[c];
178 
179 		ASSERT(zio_data_buf_cache[c] != NULL);
180 		if (zio_data_buf_cache[c - 1] == NULL)
181 			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
182 	}
183 
184 	zio_inject_init();
185 }
186 
187 void
188 zio_fini(void)
189 {
190 	size_t c;
191 	kmem_cache_t *last_cache = NULL;
192 	kmem_cache_t *last_data_cache = NULL;
193 
194 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
195 		if (zio_buf_cache[c] != last_cache) {
196 			last_cache = zio_buf_cache[c];
197 			kmem_cache_destroy(zio_buf_cache[c]);
198 		}
199 		zio_buf_cache[c] = NULL;
200 
201 		if (zio_data_buf_cache[c] != last_data_cache) {
202 			last_data_cache = zio_data_buf_cache[c];
203 			kmem_cache_destroy(zio_data_buf_cache[c]);
204 		}
205 		zio_data_buf_cache[c] = NULL;
206 	}
207 
208 	kmem_cache_destroy(zio_link_cache);
209 	kmem_cache_destroy(zio_cache);
210 
211 	zio_inject_fini();
212 }
213 
214 /*
215  * ==========================================================================
216  * Allocate and free I/O buffers
217  * ==========================================================================
218  */
219 
220 /*
221  * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
222  * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
223  * useful to inspect ZFS metadata, but if possible, we should avoid keeping
224  * excess / transient data in-core during a crashdump.
225  */
226 void *
227 zio_buf_alloc(size_t size)
228 {
229 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
230 
231 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
232 
233 	return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
234 }
235 
236 /*
237  * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
238  * crashdump if the kernel panics.  This exists so that we will limit the amount
239  * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
240  * of kernel heap dumped to disk when the kernel panics)
241  */
242 void *
243 zio_data_buf_alloc(size_t size)
244 {
245 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
246 
247 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
248 
249 	return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
250 }
251 
252 void
253 zio_buf_free(void *buf, size_t size)
254 {
255 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
256 
257 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
258 
259 	kmem_cache_free(zio_buf_cache[c], buf);
260 }
261 
262 void
263 zio_data_buf_free(void *buf, size_t size)
264 {
265 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
266 
267 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
268 
269 	kmem_cache_free(zio_data_buf_cache[c], buf);
270 }
271 
272 /*
273  * ==========================================================================
274  * Push and pop I/O transform buffers
275  * ==========================================================================
276  */
277 void
278 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize,
279     zio_transform_func_t *transform)
280 {
281 	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
282 
283 	/*
284 	 * Ensure that anyone expecting this zio to contain a linear ABD isn't
285 	 * going to get a nasty surprise when they try to access the data.
286 	 */
287 	IMPLY(abd_is_linear(zio->io_abd), abd_is_linear(data));
288 
289 	zt->zt_orig_abd = zio->io_abd;
290 	zt->zt_orig_size = zio->io_size;
291 	zt->zt_bufsize = bufsize;
292 	zt->zt_transform = transform;
293 
294 	zt->zt_next = zio->io_transform_stack;
295 	zio->io_transform_stack = zt;
296 
297 	zio->io_abd = data;
298 	zio->io_size = size;
299 }
300 
301 void
302 zio_pop_transforms(zio_t *zio)
303 {
304 	zio_transform_t *zt;
305 
306 	while ((zt = zio->io_transform_stack) != NULL) {
307 		if (zt->zt_transform != NULL)
308 			zt->zt_transform(zio,
309 			    zt->zt_orig_abd, zt->zt_orig_size);
310 
311 		if (zt->zt_bufsize != 0)
312 			abd_free(zio->io_abd);
313 
314 		zio->io_abd = zt->zt_orig_abd;
315 		zio->io_size = zt->zt_orig_size;
316 		zio->io_transform_stack = zt->zt_next;
317 
318 		kmem_free(zt, sizeof (zio_transform_t));
319 	}
320 }
321 
322 /*
323  * ==========================================================================
324  * I/O transform callbacks for subblocks and decompression
325  * ==========================================================================
326  */
327 static void
328 zio_subblock(zio_t *zio, abd_t *data, uint64_t size)
329 {
330 	ASSERT(zio->io_size > size);
331 
332 	if (zio->io_type == ZIO_TYPE_READ)
333 		abd_copy(data, zio->io_abd, size);
334 }
335 
336 static void
337 zio_decompress(zio_t *zio, abd_t *data, uint64_t size)
338 {
339 	if (zio->io_error == 0) {
340 		void *tmp = abd_borrow_buf(data, size);
341 		int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
342 		    zio->io_abd, tmp, zio->io_size, size);
343 		abd_return_buf_copy(data, tmp, size);
344 
345 		if (ret != 0)
346 			zio->io_error = SET_ERROR(EIO);
347 	}
348 }
349 
350 /*
351  * ==========================================================================
352  * I/O parent/child relationships and pipeline interlocks
353  * ==========================================================================
354  */
355 zio_t *
356 zio_walk_parents(zio_t *cio, zio_link_t **zl)
357 {
358 	list_t *pl = &cio->io_parent_list;
359 
360 	*zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl);
361 	if (*zl == NULL)
362 		return (NULL);
363 
364 	ASSERT((*zl)->zl_child == cio);
365 	return ((*zl)->zl_parent);
366 }
367 
368 zio_t *
369 zio_walk_children(zio_t *pio, zio_link_t **zl)
370 {
371 	list_t *cl = &pio->io_child_list;
372 
373 	*zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl);
374 	if (*zl == NULL)
375 		return (NULL);
376 
377 	ASSERT((*zl)->zl_parent == pio);
378 	return ((*zl)->zl_child);
379 }
380 
381 zio_t *
382 zio_unique_parent(zio_t *cio)
383 {
384 	zio_link_t *zl = NULL;
385 	zio_t *pio = zio_walk_parents(cio, &zl);
386 
387 	VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL);
388 	return (pio);
389 }
390 
391 void
392 zio_add_child(zio_t *pio, zio_t *cio)
393 {
394 	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
395 
396 	/*
397 	 * Logical I/Os can have logical, gang, or vdev children.
398 	 * Gang I/Os can have gang or vdev children.
399 	 * Vdev I/Os can only have vdev children.
400 	 * The following ASSERT captures all of these constraints.
401 	 */
402 	ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
403 
404 	zl->zl_parent = pio;
405 	zl->zl_child = cio;
406 
407 	mutex_enter(&cio->io_lock);
408 	mutex_enter(&pio->io_lock);
409 
410 	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
411 
412 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
413 		pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
414 
415 	list_insert_head(&pio->io_child_list, zl);
416 	list_insert_head(&cio->io_parent_list, zl);
417 
418 	pio->io_child_count++;
419 	cio->io_parent_count++;
420 
421 	mutex_exit(&pio->io_lock);
422 	mutex_exit(&cio->io_lock);
423 }
424 
425 static void
426 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
427 {
428 	ASSERT(zl->zl_parent == pio);
429 	ASSERT(zl->zl_child == cio);
430 
431 	mutex_enter(&cio->io_lock);
432 	mutex_enter(&pio->io_lock);
433 
434 	list_remove(&pio->io_child_list, zl);
435 	list_remove(&cio->io_parent_list, zl);
436 
437 	pio->io_child_count--;
438 	cio->io_parent_count--;
439 
440 	mutex_exit(&pio->io_lock);
441 	mutex_exit(&cio->io_lock);
442 
443 	kmem_cache_free(zio_link_cache, zl);
444 }
445 
446 static boolean_t
447 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait)
448 {
449 	boolean_t waiting = B_FALSE;
450 
451 	mutex_enter(&zio->io_lock);
452 	ASSERT(zio->io_stall == NULL);
453 	for (int c = 0; c < ZIO_CHILD_TYPES; c++) {
454 		if (!(ZIO_CHILD_BIT_IS_SET(childbits, c)))
455 			continue;
456 
457 		uint64_t *countp = &zio->io_children[c][wait];
458 		if (*countp != 0) {
459 			zio->io_stage >>= 1;
460 			ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN);
461 			zio->io_stall = countp;
462 			waiting = B_TRUE;
463 			break;
464 		}
465 	}
466 	mutex_exit(&zio->io_lock);
467 	return (waiting);
468 }
469 
470 static void
471 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
472 {
473 	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
474 	int *errorp = &pio->io_child_error[zio->io_child_type];
475 
476 	mutex_enter(&pio->io_lock);
477 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
478 		*errorp = zio_worst_error(*errorp, zio->io_error);
479 	pio->io_reexecute |= zio->io_reexecute;
480 	ASSERT3U(*countp, >, 0);
481 
482 	(*countp)--;
483 
484 	if (*countp == 0 && pio->io_stall == countp) {
485 		zio_taskq_type_t type =
486 		    pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE :
487 		    ZIO_TASKQ_INTERRUPT;
488 		pio->io_stall = NULL;
489 		mutex_exit(&pio->io_lock);
490 		/*
491 		 * Dispatch the parent zio in its own taskq so that
492 		 * the child can continue to make progress. This also
493 		 * prevents overflowing the stack when we have deeply nested
494 		 * parent-child relationships.
495 		 */
496 		zio_taskq_dispatch(pio, type, B_FALSE);
497 	} else {
498 		mutex_exit(&pio->io_lock);
499 	}
500 }
501 
502 static void
503 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
504 {
505 	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
506 		zio->io_error = zio->io_child_error[c];
507 }
508 
509 int
510 zio_bookmark_compare(const void *x1, const void *x2)
511 {
512 	const zio_t *z1 = x1;
513 	const zio_t *z2 = x2;
514 
515 	if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset)
516 		return (-1);
517 	if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset)
518 		return (1);
519 
520 	if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object)
521 		return (-1);
522 	if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object)
523 		return (1);
524 
525 	if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level)
526 		return (-1);
527 	if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level)
528 		return (1);
529 
530 	if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid)
531 		return (-1);
532 	if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid)
533 		return (1);
534 
535 	if (z1 < z2)
536 		return (-1);
537 	if (z1 > z2)
538 		return (1);
539 
540 	return (0);
541 }
542 
543 /*
544  * ==========================================================================
545  * Create the various types of I/O (read, write, free, etc)
546  * ==========================================================================
547  */
548 static zio_t *
549 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
550     abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done,
551     void *private, zio_type_t type, zio_priority_t priority,
552     enum zio_flag flags, vdev_t *vd, uint64_t offset,
553     const zbookmark_phys_t *zb, enum zio_stage stage, enum zio_stage pipeline)
554 {
555 	zio_t *zio;
556 
557 	ASSERT3U(psize, <=, SPA_MAXBLOCKSIZE);
558 	ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0);
559 	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
560 
561 	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
562 	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
563 	ASSERT(vd || stage == ZIO_STAGE_OPEN);
564 
565 	IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW) != 0);
566 
567 	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
568 	bzero(zio, sizeof (zio_t));
569 
570 	mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
571 	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
572 
573 	list_create(&zio->io_parent_list, sizeof (zio_link_t),
574 	    offsetof(zio_link_t, zl_parent_node));
575 	list_create(&zio->io_child_list, sizeof (zio_link_t),
576 	    offsetof(zio_link_t, zl_child_node));
577 	metaslab_trace_init(&zio->io_alloc_list);
578 
579 	if (vd != NULL)
580 		zio->io_child_type = ZIO_CHILD_VDEV;
581 	else if (flags & ZIO_FLAG_GANG_CHILD)
582 		zio->io_child_type = ZIO_CHILD_GANG;
583 	else if (flags & ZIO_FLAG_DDT_CHILD)
584 		zio->io_child_type = ZIO_CHILD_DDT;
585 	else
586 		zio->io_child_type = ZIO_CHILD_LOGICAL;
587 
588 	if (bp != NULL) {
589 		zio->io_bp = (blkptr_t *)bp;
590 		zio->io_bp_copy = *bp;
591 		zio->io_bp_orig = *bp;
592 		if (type != ZIO_TYPE_WRITE ||
593 		    zio->io_child_type == ZIO_CHILD_DDT)
594 			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
595 		if (zio->io_child_type == ZIO_CHILD_LOGICAL)
596 			zio->io_logical = zio;
597 		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
598 			pipeline |= ZIO_GANG_STAGES;
599 	}
600 
601 	zio->io_spa = spa;
602 	zio->io_txg = txg;
603 	zio->io_done = done;
604 	zio->io_private = private;
605 	zio->io_type = type;
606 	zio->io_priority = priority;
607 	zio->io_vd = vd;
608 	zio->io_offset = offset;
609 	zio->io_orig_abd = zio->io_abd = data;
610 	zio->io_orig_size = zio->io_size = psize;
611 	zio->io_lsize = lsize;
612 	zio->io_orig_flags = zio->io_flags = flags;
613 	zio->io_orig_stage = zio->io_stage = stage;
614 	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
615 	zio->io_pipeline_trace = ZIO_STAGE_OPEN;
616 
617 	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
618 	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
619 
620 	if (zb != NULL)
621 		zio->io_bookmark = *zb;
622 
623 	if (pio != NULL) {
624 		if (zio->io_metaslab_class == NULL)
625 			zio->io_metaslab_class = pio->io_metaslab_class;
626 		if (zio->io_logical == NULL)
627 			zio->io_logical = pio->io_logical;
628 		if (zio->io_child_type == ZIO_CHILD_GANG)
629 			zio->io_gang_leader = pio->io_gang_leader;
630 		zio_add_child(pio, zio);
631 	}
632 
633 	return (zio);
634 }
635 
636 static void
637 zio_destroy(zio_t *zio)
638 {
639 	metaslab_trace_fini(&zio->io_alloc_list);
640 	list_destroy(&zio->io_parent_list);
641 	list_destroy(&zio->io_child_list);
642 	mutex_destroy(&zio->io_lock);
643 	cv_destroy(&zio->io_cv);
644 	kmem_cache_free(zio_cache, zio);
645 }
646 
647 zio_t *
648 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
649     void *private, enum zio_flag flags)
650 {
651 	zio_t *zio;
652 
653 	zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
654 	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
655 	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
656 
657 	return (zio);
658 }
659 
660 zio_t *
661 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
662 {
663 	return (zio_null(NULL, spa, NULL, done, private, flags));
664 }
665 
666 void
667 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp)
668 {
669 	if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
670 		zfs_panic_recover("blkptr at %p has invalid TYPE %llu",
671 		    bp, (longlong_t)BP_GET_TYPE(bp));
672 	}
673 	if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS ||
674 	    BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) {
675 		zfs_panic_recover("blkptr at %p has invalid CHECKSUM %llu",
676 		    bp, (longlong_t)BP_GET_CHECKSUM(bp));
677 	}
678 	if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS ||
679 	    BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) {
680 		zfs_panic_recover("blkptr at %p has invalid COMPRESS %llu",
681 		    bp, (longlong_t)BP_GET_COMPRESS(bp));
682 	}
683 	if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
684 		zfs_panic_recover("blkptr at %p has invalid LSIZE %llu",
685 		    bp, (longlong_t)BP_GET_LSIZE(bp));
686 	}
687 	if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
688 		zfs_panic_recover("blkptr at %p has invalid PSIZE %llu",
689 		    bp, (longlong_t)BP_GET_PSIZE(bp));
690 	}
691 
692 	if (BP_IS_EMBEDDED(bp)) {
693 		if (BPE_GET_ETYPE(bp) > NUM_BP_EMBEDDED_TYPES) {
694 			zfs_panic_recover("blkptr at %p has invalid ETYPE %llu",
695 			    bp, (longlong_t)BPE_GET_ETYPE(bp));
696 		}
697 	}
698 
699 	/*
700 	 * Do not verify individual DVAs if the config is not trusted. This
701 	 * will be done once the zio is executed in vdev_mirror_map_alloc.
702 	 */
703 	if (!spa->spa_trust_config)
704 		return;
705 
706 	/*
707 	 * Pool-specific checks.
708 	 *
709 	 * Note: it would be nice to verify that the blk_birth and
710 	 * BP_PHYSICAL_BIRTH() are not too large.  However, spa_freeze()
711 	 * allows the birth time of log blocks (and dmu_sync()-ed blocks
712 	 * that are in the log) to be arbitrarily large.
713 	 */
714 	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
715 		uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]);
716 		if (vdevid >= spa->spa_root_vdev->vdev_children) {
717 			zfs_panic_recover("blkptr at %p DVA %u has invalid "
718 			    "VDEV %llu",
719 			    bp, i, (longlong_t)vdevid);
720 			continue;
721 		}
722 		vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
723 		if (vd == NULL) {
724 			zfs_panic_recover("blkptr at %p DVA %u has invalid "
725 			    "VDEV %llu",
726 			    bp, i, (longlong_t)vdevid);
727 			continue;
728 		}
729 		if (vd->vdev_ops == &vdev_hole_ops) {
730 			zfs_panic_recover("blkptr at %p DVA %u has hole "
731 			    "VDEV %llu",
732 			    bp, i, (longlong_t)vdevid);
733 			continue;
734 		}
735 		if (vd->vdev_ops == &vdev_missing_ops) {
736 			/*
737 			 * "missing" vdevs are valid during import, but we
738 			 * don't have their detailed info (e.g. asize), so
739 			 * we can't perform any more checks on them.
740 			 */
741 			continue;
742 		}
743 		uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
744 		uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]);
745 		if (BP_IS_GANG(bp))
746 			asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
747 		if (offset + asize > vd->vdev_asize) {
748 			zfs_panic_recover("blkptr at %p DVA %u has invalid "
749 			    "OFFSET %llu",
750 			    bp, i, (longlong_t)offset);
751 		}
752 	}
753 }
754 
755 boolean_t
756 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp)
757 {
758 	uint64_t vdevid = DVA_GET_VDEV(dva);
759 
760 	if (vdevid >= spa->spa_root_vdev->vdev_children)
761 		return (B_FALSE);
762 
763 	vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
764 	if (vd == NULL)
765 		return (B_FALSE);
766 
767 	if (vd->vdev_ops == &vdev_hole_ops)
768 		return (B_FALSE);
769 
770 	if (vd->vdev_ops == &vdev_missing_ops) {
771 		return (B_FALSE);
772 	}
773 
774 	uint64_t offset = DVA_GET_OFFSET(dva);
775 	uint64_t asize = DVA_GET_ASIZE(dva);
776 
777 	if (BP_IS_GANG(bp))
778 		asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
779 	if (offset + asize > vd->vdev_asize)
780 		return (B_FALSE);
781 
782 	return (B_TRUE);
783 }
784 
785 zio_t *
786 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
787     abd_t *data, uint64_t size, zio_done_func_t *done, void *private,
788     zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
789 {
790 	zio_t *zio;
791 
792 	zfs_blkptr_verify(spa, bp);
793 
794 	zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
795 	    data, size, size, done, private,
796 	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
797 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
798 	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
799 
800 	return (zio);
801 }
802 
803 zio_t *
804 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
805     abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp,
806     zio_done_func_t *ready, zio_done_func_t *children_ready,
807     zio_done_func_t *physdone, zio_done_func_t *done,
808     void *private, zio_priority_t priority, enum zio_flag flags,
809     const zbookmark_phys_t *zb)
810 {
811 	zio_t *zio;
812 
813 	ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
814 	    zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
815 	    zp->zp_compress >= ZIO_COMPRESS_OFF &&
816 	    zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
817 	    DMU_OT_IS_VALID(zp->zp_type) &&
818 	    zp->zp_level < 32 &&
819 	    zp->zp_copies > 0 &&
820 	    zp->zp_copies <= spa_max_replication(spa));
821 
822 	zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private,
823 	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
824 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
825 	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
826 
827 	zio->io_ready = ready;
828 	zio->io_children_ready = children_ready;
829 	zio->io_physdone = physdone;
830 	zio->io_prop = *zp;
831 
832 	/*
833 	 * Data can be NULL if we are going to call zio_write_override() to
834 	 * provide the already-allocated BP.  But we may need the data to
835 	 * verify a dedup hit (if requested).  In this case, don't try to
836 	 * dedup (just take the already-allocated BP verbatim).
837 	 */
838 	if (data == NULL && zio->io_prop.zp_dedup_verify) {
839 		zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
840 	}
841 
842 	return (zio);
843 }
844 
845 zio_t *
846 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data,
847     uint64_t size, zio_done_func_t *done, void *private,
848     zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb)
849 {
850 	zio_t *zio;
851 
852 	zio = zio_create(pio, spa, txg, bp, data, size, size, done, private,
853 	    ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb,
854 	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
855 
856 	return (zio);
857 }
858 
859 void
860 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
861 {
862 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
863 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
864 	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
865 	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
866 
867 	/*
868 	 * We must reset the io_prop to match the values that existed
869 	 * when the bp was first written by dmu_sync() keeping in mind
870 	 * that nopwrite and dedup are mutually exclusive.
871 	 */
872 	zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
873 	zio->io_prop.zp_nopwrite = nopwrite;
874 	zio->io_prop.zp_copies = copies;
875 	zio->io_bp_override = bp;
876 }
877 
878 void
879 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
880 {
881 
882 	zfs_blkptr_verify(spa, bp);
883 
884 	/*
885 	 * The check for EMBEDDED is a performance optimization.  We
886 	 * process the free here (by ignoring it) rather than
887 	 * putting it on the list and then processing it in zio_free_sync().
888 	 */
889 	if (BP_IS_EMBEDDED(bp))
890 		return;
891 	metaslab_check_free(spa, bp);
892 
893 	/*
894 	 * Frees that are for the currently-syncing txg, are not going to be
895 	 * deferred, and which will not need to do a read (i.e. not GANG or
896 	 * DEDUP), can be processed immediately.  Otherwise, put them on the
897 	 * in-memory list for later processing.
898 	 */
899 	if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp) ||
900 	    txg != spa->spa_syncing_txg ||
901 	    spa_sync_pass(spa) >= zfs_sync_pass_deferred_free) {
902 		bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
903 	} else {
904 		VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp, 0)));
905 	}
906 }
907 
908 zio_t *
909 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
910     enum zio_flag flags)
911 {
912 	zio_t *zio;
913 	enum zio_stage stage = ZIO_FREE_PIPELINE;
914 
915 	ASSERT(!BP_IS_HOLE(bp));
916 	ASSERT(spa_syncing_txg(spa) == txg);
917 	ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free);
918 
919 	if (BP_IS_EMBEDDED(bp))
920 		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
921 
922 	metaslab_check_free(spa, bp);
923 	arc_freed(spa, bp);
924 
925 	/*
926 	 * GANG and DEDUP blocks can induce a read (for the gang block header,
927 	 * or the DDT), so issue them asynchronously so that this thread is
928 	 * not tied up.
929 	 */
930 	if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp))
931 		stage |= ZIO_STAGE_ISSUE_ASYNC;
932 
933 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
934 	    BP_GET_PSIZE(bp), NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW,
935 	    flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage);
936 
937 	return (zio);
938 }
939 
940 zio_t *
941 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
942     zio_done_func_t *done, void *private, enum zio_flag flags)
943 {
944 	zio_t *zio;
945 
946 	zfs_blkptr_verify(spa, bp);
947 
948 	if (BP_IS_EMBEDDED(bp))
949 		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
950 
951 	/*
952 	 * A claim is an allocation of a specific block.  Claims are needed
953 	 * to support immediate writes in the intent log.  The issue is that
954 	 * immediate writes contain committed data, but in a txg that was
955 	 * *not* committed.  Upon opening the pool after an unclean shutdown,
956 	 * the intent log claims all blocks that contain immediate write data
957 	 * so that the SPA knows they're in use.
958 	 *
959 	 * All claims *must* be resolved in the first txg -- before the SPA
960 	 * starts allocating blocks -- so that nothing is allocated twice.
961 	 * If txg == 0 we just verify that the block is claimable.
962 	 */
963 	ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <,
964 	    spa_min_claim_txg(spa));
965 	ASSERT(txg == spa_min_claim_txg(spa) || txg == 0);
966 	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(1M) */
967 
968 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
969 	    BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW,
970 	    flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
971 	ASSERT0(zio->io_queued_timestamp);
972 
973 	return (zio);
974 }
975 
976 zio_t *
977 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
978     zio_done_func_t *done, void *private, enum zio_flag flags)
979 {
980 	zio_t *zio;
981 	int c;
982 
983 	if (vd->vdev_children == 0) {
984 		zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
985 		    ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
986 		    ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
987 
988 		zio->io_cmd = cmd;
989 	} else {
990 		zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
991 
992 		for (c = 0; c < vd->vdev_children; c++)
993 			zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
994 			    done, private, flags));
995 	}
996 
997 	return (zio);
998 }
999 
1000 zio_t *
1001 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1002     abd_t *data, int checksum, zio_done_func_t *done, void *private,
1003     zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1004 {
1005 	zio_t *zio;
1006 
1007 	ASSERT(vd->vdev_children == 0);
1008 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1009 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1010 	ASSERT3U(offset + size, <=, vd->vdev_psize);
1011 
1012 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1013 	    private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1014 	    offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
1015 
1016 	zio->io_prop.zp_checksum = checksum;
1017 
1018 	return (zio);
1019 }
1020 
1021 zio_t *
1022 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1023     abd_t *data, int checksum, zio_done_func_t *done, void *private,
1024     zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1025 {
1026 	zio_t *zio;
1027 
1028 	ASSERT(vd->vdev_children == 0);
1029 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1030 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1031 	ASSERT3U(offset + size, <=, vd->vdev_psize);
1032 
1033 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1034 	    private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1035 	    offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
1036 
1037 	zio->io_prop.zp_checksum = checksum;
1038 
1039 	if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
1040 		/*
1041 		 * zec checksums are necessarily destructive -- they modify
1042 		 * the end of the write buffer to hold the verifier/checksum.
1043 		 * Therefore, we must make a local copy in case the data is
1044 		 * being written to multiple places in parallel.
1045 		 */
1046 		abd_t *wbuf = abd_alloc_sametype(data, size);
1047 		abd_copy(wbuf, data, size);
1048 
1049 		zio_push_transform(zio, wbuf, size, size, NULL);
1050 	}
1051 
1052 	return (zio);
1053 }
1054 
1055 /*
1056  * Create a child I/O to do some work for us.
1057  */
1058 zio_t *
1059 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1060     abd_t *data, uint64_t size, int type, zio_priority_t priority,
1061     enum zio_flag flags, zio_done_func_t *done, void *private)
1062 {
1063 	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1064 	zio_t *zio;
1065 
1066 	/*
1067 	 * vdev child I/Os do not propagate their error to the parent.
1068 	 * Therefore, for correct operation the caller *must* check for
1069 	 * and handle the error in the child i/o's done callback.
1070 	 * The only exceptions are i/os that we don't care about
1071 	 * (OPTIONAL or REPAIR).
1072 	 */
1073 	ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) ||
1074 	    done != NULL);
1075 
1076 	if (type == ZIO_TYPE_READ && bp != NULL) {
1077 		/*
1078 		 * If we have the bp, then the child should perform the
1079 		 * checksum and the parent need not.  This pushes error
1080 		 * detection as close to the leaves as possible and
1081 		 * eliminates redundant checksums in the interior nodes.
1082 		 */
1083 		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1084 		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1085 	}
1086 
1087 	if (vd->vdev_ops->vdev_op_leaf) {
1088 		ASSERT0(vd->vdev_children);
1089 		offset += VDEV_LABEL_START_SIZE;
1090 	}
1091 
1092 	flags |= ZIO_VDEV_CHILD_FLAGS(pio);
1093 
1094 	/*
1095 	 * If we've decided to do a repair, the write is not speculative --
1096 	 * even if the original read was.
1097 	 */
1098 	if (flags & ZIO_FLAG_IO_REPAIR)
1099 		flags &= ~ZIO_FLAG_SPECULATIVE;
1100 
1101 	/*
1102 	 * If we're creating a child I/O that is not associated with a
1103 	 * top-level vdev, then the child zio is not an allocating I/O.
1104 	 * If this is a retried I/O then we ignore it since we will
1105 	 * have already processed the original allocating I/O.
1106 	 */
1107 	if (flags & ZIO_FLAG_IO_ALLOCATING &&
1108 	    (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) {
1109 		ASSERT(pio->io_metaslab_class != NULL);
1110 		ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled);
1111 		ASSERT(type == ZIO_TYPE_WRITE);
1112 		ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE);
1113 		ASSERT(!(flags & ZIO_FLAG_IO_REPAIR));
1114 		ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) ||
1115 		    pio->io_child_type == ZIO_CHILD_GANG);
1116 
1117 		flags &= ~ZIO_FLAG_IO_ALLOCATING;
1118 	}
1119 
1120 	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size,
1121 	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1122 	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1123 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
1124 
1125 	zio->io_physdone = pio->io_physdone;
1126 	if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
1127 		zio->io_logical->io_phys_children++;
1128 
1129 	return (zio);
1130 }
1131 
1132 zio_t *
1133 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size,
1134     zio_type_t type, zio_priority_t priority, enum zio_flag flags,
1135     zio_done_func_t *done, void *private)
1136 {
1137 	zio_t *zio;
1138 
1139 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1140 
1141 	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1142 	    data, size, size, done, private, type, priority,
1143 	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1144 	    vd, offset, NULL,
1145 	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1146 
1147 	return (zio);
1148 }
1149 
1150 void
1151 zio_flush(zio_t *zio, vdev_t *vd)
1152 {
1153 	zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
1154 	    NULL, NULL,
1155 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1156 }
1157 
1158 void
1159 zio_shrink(zio_t *zio, uint64_t size)
1160 {
1161 	ASSERT3P(zio->io_executor, ==, NULL);
1162 	ASSERT3P(zio->io_orig_size, ==, zio->io_size);
1163 	ASSERT3U(size, <=, zio->io_size);
1164 
1165 	/*
1166 	 * We don't shrink for raidz because of problems with the
1167 	 * reconstruction when reading back less than the block size.
1168 	 * Note, BP_IS_RAIDZ() assumes no compression.
1169 	 */
1170 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1171 	if (!BP_IS_RAIDZ(zio->io_bp)) {
1172 		/* we are not doing a raw write */
1173 		ASSERT3U(zio->io_size, ==, zio->io_lsize);
1174 		zio->io_orig_size = zio->io_size = zio->io_lsize = size;
1175 	}
1176 }
1177 
1178 /*
1179  * ==========================================================================
1180  * Prepare to read and write logical blocks
1181  * ==========================================================================
1182  */
1183 
1184 static int
1185 zio_read_bp_init(zio_t *zio)
1186 {
1187 	blkptr_t *bp = zio->io_bp;
1188 
1189 	ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1190 
1191 	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1192 	    zio->io_child_type == ZIO_CHILD_LOGICAL &&
1193 	    !(zio->io_flags & ZIO_FLAG_RAW)) {
1194 		uint64_t psize =
1195 		    BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1196 		zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1197 		    psize, psize, zio_decompress);
1198 	}
1199 
1200 	if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1201 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1202 
1203 		int psize = BPE_GET_PSIZE(bp);
1204 		void *data = abd_borrow_buf(zio->io_abd, psize);
1205 		decode_embedded_bp_compressed(bp, data);
1206 		abd_return_buf_copy(zio->io_abd, data, psize);
1207 	} else {
1208 		ASSERT(!BP_IS_EMBEDDED(bp));
1209 		ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1210 	}
1211 
1212 	if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1213 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1214 
1215 	if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1216 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1217 
1218 	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1219 		zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1220 
1221 	return (ZIO_PIPELINE_CONTINUE);
1222 }
1223 
1224 static int
1225 zio_write_bp_init(zio_t *zio)
1226 {
1227 	if (!IO_IS_ALLOCATING(zio))
1228 		return (ZIO_PIPELINE_CONTINUE);
1229 
1230 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1231 
1232 	if (zio->io_bp_override) {
1233 		blkptr_t *bp = zio->io_bp;
1234 		zio_prop_t *zp = &zio->io_prop;
1235 
1236 		ASSERT(bp->blk_birth != zio->io_txg);
1237 		ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1238 
1239 		*bp = *zio->io_bp_override;
1240 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1241 
1242 		if (BP_IS_EMBEDDED(bp))
1243 			return (ZIO_PIPELINE_CONTINUE);
1244 
1245 		/*
1246 		 * If we've been overridden and nopwrite is set then
1247 		 * set the flag accordingly to indicate that a nopwrite
1248 		 * has already occurred.
1249 		 */
1250 		if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1251 			ASSERT(!zp->zp_dedup);
1252 			ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum);
1253 			zio->io_flags |= ZIO_FLAG_NOPWRITE;
1254 			return (ZIO_PIPELINE_CONTINUE);
1255 		}
1256 
1257 		ASSERT(!zp->zp_nopwrite);
1258 
1259 		if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1260 			return (ZIO_PIPELINE_CONTINUE);
1261 
1262 		ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1263 		    ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1264 
1265 		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) {
1266 			BP_SET_DEDUP(bp, 1);
1267 			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1268 			return (ZIO_PIPELINE_CONTINUE);
1269 		}
1270 
1271 		/*
1272 		 * We were unable to handle this as an override bp, treat
1273 		 * it as a regular write I/O.
1274 		 */
1275 		zio->io_bp_override = NULL;
1276 		*bp = zio->io_bp_orig;
1277 		zio->io_pipeline = zio->io_orig_pipeline;
1278 	}
1279 
1280 	return (ZIO_PIPELINE_CONTINUE);
1281 }
1282 
1283 static int
1284 zio_write_compress(zio_t *zio)
1285 {
1286 	spa_t *spa = zio->io_spa;
1287 	zio_prop_t *zp = &zio->io_prop;
1288 	enum zio_compress compress = zp->zp_compress;
1289 	blkptr_t *bp = zio->io_bp;
1290 	uint64_t lsize = zio->io_lsize;
1291 	uint64_t psize = zio->io_size;
1292 	int pass = 1;
1293 
1294 	EQUIV(lsize != psize, (zio->io_flags & ZIO_FLAG_RAW) != 0);
1295 
1296 	/*
1297 	 * If our children haven't all reached the ready stage,
1298 	 * wait for them and then repeat this pipeline stage.
1299 	 */
1300 	if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT |
1301 	    ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) {
1302 		return (ZIO_PIPELINE_STOP);
1303 	}
1304 
1305 	if (!IO_IS_ALLOCATING(zio))
1306 		return (ZIO_PIPELINE_CONTINUE);
1307 
1308 	if (zio->io_children_ready != NULL) {
1309 		/*
1310 		 * Now that all our children are ready, run the callback
1311 		 * associated with this zio in case it wants to modify the
1312 		 * data to be written.
1313 		 */
1314 		ASSERT3U(zp->zp_level, >, 0);
1315 		zio->io_children_ready(zio);
1316 	}
1317 
1318 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1319 	ASSERT(zio->io_bp_override == NULL);
1320 
1321 	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1322 		/*
1323 		 * We're rewriting an existing block, which means we're
1324 		 * working on behalf of spa_sync().  For spa_sync() to
1325 		 * converge, it must eventually be the case that we don't
1326 		 * have to allocate new blocks.  But compression changes
1327 		 * the blocksize, which forces a reallocate, and makes
1328 		 * convergence take longer.  Therefore, after the first
1329 		 * few passes, stop compressing to ensure convergence.
1330 		 */
1331 		pass = spa_sync_pass(spa);
1332 
1333 		ASSERT(zio->io_txg == spa_syncing_txg(spa));
1334 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1335 		ASSERT(!BP_GET_DEDUP(bp));
1336 
1337 		if (pass >= zfs_sync_pass_dont_compress)
1338 			compress = ZIO_COMPRESS_OFF;
1339 
1340 		/* Make sure someone doesn't change their mind on overwrites */
1341 		ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1342 		    spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1343 	}
1344 
1345 	/* If it's a compressed write that is not raw, compress the buffer. */
1346 	if (compress != ZIO_COMPRESS_OFF && psize == lsize) {
1347 		void *cbuf = zio_buf_alloc(lsize);
1348 		psize = zio_compress_data(compress, zio->io_abd, cbuf, lsize);
1349 		if (psize == 0 || psize == lsize) {
1350 			compress = ZIO_COMPRESS_OFF;
1351 			zio_buf_free(cbuf, lsize);
1352 		} else if (!zp->zp_dedup && psize <= BPE_PAYLOAD_SIZE &&
1353 		    zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1354 		    spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1355 			encode_embedded_bp_compressed(bp,
1356 			    cbuf, compress, lsize, psize);
1357 			BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1358 			BP_SET_TYPE(bp, zio->io_prop.zp_type);
1359 			BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1360 			zio_buf_free(cbuf, lsize);
1361 			bp->blk_birth = zio->io_txg;
1362 			zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1363 			ASSERT(spa_feature_is_active(spa,
1364 			    SPA_FEATURE_EMBEDDED_DATA));
1365 			return (ZIO_PIPELINE_CONTINUE);
1366 		} else {
1367 			/*
1368 			 * Round up compressed size up to the ashift
1369 			 * of the smallest-ashift device, and zero the tail.
1370 			 * This ensures that the compressed size of the BP
1371 			 * (and thus compressratio property) are correct,
1372 			 * in that we charge for the padding used to fill out
1373 			 * the last sector.
1374 			 */
1375 			ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
1376 			size_t rounded = (size_t)P2ROUNDUP(psize,
1377 			    1ULL << spa->spa_min_ashift);
1378 			if (rounded >= lsize) {
1379 				compress = ZIO_COMPRESS_OFF;
1380 				zio_buf_free(cbuf, lsize);
1381 				psize = lsize;
1382 			} else {
1383 				abd_t *cdata = abd_get_from_buf(cbuf, lsize);
1384 				abd_take_ownership_of_buf(cdata, B_TRUE);
1385 				abd_zero_off(cdata, psize, rounded - psize);
1386 				psize = rounded;
1387 				zio_push_transform(zio, cdata,
1388 				    psize, lsize, NULL);
1389 			}
1390 		}
1391 
1392 		/*
1393 		 * We were unable to handle this as an override bp, treat
1394 		 * it as a regular write I/O.
1395 		 */
1396 		zio->io_bp_override = NULL;
1397 		*bp = zio->io_bp_orig;
1398 		zio->io_pipeline = zio->io_orig_pipeline;
1399 	} else {
1400 		ASSERT3U(psize, !=, 0);
1401 	}
1402 
1403 	/*
1404 	 * The final pass of spa_sync() must be all rewrites, but the first
1405 	 * few passes offer a trade-off: allocating blocks defers convergence,
1406 	 * but newly allocated blocks are sequential, so they can be written
1407 	 * to disk faster.  Therefore, we allow the first few passes of
1408 	 * spa_sync() to allocate new blocks, but force rewrites after that.
1409 	 * There should only be a handful of blocks after pass 1 in any case.
1410 	 */
1411 	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1412 	    BP_GET_PSIZE(bp) == psize &&
1413 	    pass >= zfs_sync_pass_rewrite) {
1414 		VERIFY3U(psize, !=, 0);
1415 		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1416 
1417 		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1418 		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1419 	} else {
1420 		BP_ZERO(bp);
1421 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
1422 	}
1423 
1424 	if (psize == 0) {
1425 		if (zio->io_bp_orig.blk_birth != 0 &&
1426 		    spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1427 			BP_SET_LSIZE(bp, lsize);
1428 			BP_SET_TYPE(bp, zp->zp_type);
1429 			BP_SET_LEVEL(bp, zp->zp_level);
1430 			BP_SET_BIRTH(bp, zio->io_txg, 0);
1431 		}
1432 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1433 	} else {
1434 		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1435 		BP_SET_LSIZE(bp, lsize);
1436 		BP_SET_TYPE(bp, zp->zp_type);
1437 		BP_SET_LEVEL(bp, zp->zp_level);
1438 		BP_SET_PSIZE(bp, psize);
1439 		BP_SET_COMPRESS(bp, compress);
1440 		BP_SET_CHECKSUM(bp, zp->zp_checksum);
1441 		BP_SET_DEDUP(bp, zp->zp_dedup);
1442 		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1443 		if (zp->zp_dedup) {
1444 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1445 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1446 			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1447 		}
1448 		if (zp->zp_nopwrite) {
1449 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1450 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1451 			zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1452 		}
1453 	}
1454 	return (ZIO_PIPELINE_CONTINUE);
1455 }
1456 
1457 static int
1458 zio_free_bp_init(zio_t *zio)
1459 {
1460 	blkptr_t *bp = zio->io_bp;
1461 
1462 	if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1463 		if (BP_GET_DEDUP(bp))
1464 			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1465 	}
1466 
1467 	ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1468 
1469 	return (ZIO_PIPELINE_CONTINUE);
1470 }
1471 
1472 /*
1473  * ==========================================================================
1474  * Execute the I/O pipeline
1475  * ==========================================================================
1476  */
1477 
1478 static void
1479 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1480 {
1481 	spa_t *spa = zio->io_spa;
1482 	zio_type_t t = zio->io_type;
1483 	int flags = (cutinline ? TQ_FRONT : 0);
1484 
1485 	/*
1486 	 * If we're a config writer or a probe, the normal issue and
1487 	 * interrupt threads may all be blocked waiting for the config lock.
1488 	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1489 	 */
1490 	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1491 		t = ZIO_TYPE_NULL;
1492 
1493 	/*
1494 	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1495 	 */
1496 	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1497 		t = ZIO_TYPE_NULL;
1498 
1499 	/*
1500 	 * If this is a high priority I/O, then use the high priority taskq if
1501 	 * available.
1502 	 */
1503 	if ((zio->io_priority == ZIO_PRIORITY_NOW ||
1504 	    zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) &&
1505 	    spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1506 		q++;
1507 
1508 	ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1509 
1510 	/*
1511 	 * NB: We are assuming that the zio can only be dispatched
1512 	 * to a single taskq at a time.  It would be a grievous error
1513 	 * to dispatch the zio to another taskq at the same time.
1514 	 */
1515 	ASSERT(zio->io_tqent.tqent_next == NULL);
1516 	spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1517 	    flags, &zio->io_tqent);
1518 }
1519 
1520 static boolean_t
1521 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1522 {
1523 	kthread_t *executor = zio->io_executor;
1524 	spa_t *spa = zio->io_spa;
1525 
1526 	for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1527 		spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1528 		uint_t i;
1529 		for (i = 0; i < tqs->stqs_count; i++) {
1530 			if (taskq_member(tqs->stqs_taskq[i], executor))
1531 				return (B_TRUE);
1532 		}
1533 	}
1534 
1535 	return (B_FALSE);
1536 }
1537 
1538 static int
1539 zio_issue_async(zio_t *zio)
1540 {
1541 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1542 
1543 	return (ZIO_PIPELINE_STOP);
1544 }
1545 
1546 void
1547 zio_interrupt(zio_t *zio)
1548 {
1549 	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1550 }
1551 
1552 void
1553 zio_delay_interrupt(zio_t *zio)
1554 {
1555 	/*
1556 	 * The timeout_generic() function isn't defined in userspace, so
1557 	 * rather than trying to implement the function, the zio delay
1558 	 * functionality has been disabled for userspace builds.
1559 	 */
1560 
1561 #ifdef _KERNEL
1562 	/*
1563 	 * If io_target_timestamp is zero, then no delay has been registered
1564 	 * for this IO, thus jump to the end of this function and "skip" the
1565 	 * delay; issuing it directly to the zio layer.
1566 	 */
1567 	if (zio->io_target_timestamp != 0) {
1568 		hrtime_t now = gethrtime();
1569 
1570 		if (now >= zio->io_target_timestamp) {
1571 			/*
1572 			 * This IO has already taken longer than the target
1573 			 * delay to complete, so we don't want to delay it
1574 			 * any longer; we "miss" the delay and issue it
1575 			 * directly to the zio layer. This is likely due to
1576 			 * the target latency being set to a value less than
1577 			 * the underlying hardware can satisfy (e.g. delay
1578 			 * set to 1ms, but the disks take 10ms to complete an
1579 			 * IO request).
1580 			 */
1581 
1582 			DTRACE_PROBE2(zio__delay__miss, zio_t *, zio,
1583 			    hrtime_t, now);
1584 
1585 			zio_interrupt(zio);
1586 		} else {
1587 			hrtime_t diff = zio->io_target_timestamp - now;
1588 
1589 			DTRACE_PROBE3(zio__delay__hit, zio_t *, zio,
1590 			    hrtime_t, now, hrtime_t, diff);
1591 
1592 			(void) timeout_generic(CALLOUT_NORMAL,
1593 			    (void (*)(void *))zio_interrupt, zio, diff, 1, 0);
1594 		}
1595 
1596 		return;
1597 	}
1598 #endif
1599 
1600 	DTRACE_PROBE1(zio__delay__skip, zio_t *, zio);
1601 	zio_interrupt(zio);
1602 }
1603 
1604 /*
1605  * Execute the I/O pipeline until one of the following occurs:
1606  *
1607  *	(1) the I/O completes
1608  *	(2) the pipeline stalls waiting for dependent child I/Os
1609  *	(3) the I/O issues, so we're waiting for an I/O completion interrupt
1610  *	(4) the I/O is delegated by vdev-level caching or aggregation
1611  *	(5) the I/O is deferred due to vdev-level queueing
1612  *	(6) the I/O is handed off to another thread.
1613  *
1614  * In all cases, the pipeline stops whenever there's no CPU work; it never
1615  * burns a thread in cv_wait().
1616  *
1617  * There's no locking on io_stage because there's no legitimate way
1618  * for multiple threads to be attempting to process the same I/O.
1619  */
1620 static zio_pipe_stage_t *zio_pipeline[];
1621 
1622 void
1623 zio_execute(zio_t *zio)
1624 {
1625 	zio->io_executor = curthread;
1626 
1627 	ASSERT3U(zio->io_queued_timestamp, >, 0);
1628 
1629 	while (zio->io_stage < ZIO_STAGE_DONE) {
1630 		enum zio_stage pipeline = zio->io_pipeline;
1631 		enum zio_stage stage = zio->io_stage;
1632 		int rv;
1633 
1634 		ASSERT(!MUTEX_HELD(&zio->io_lock));
1635 		ASSERT(ISP2(stage));
1636 		ASSERT(zio->io_stall == NULL);
1637 
1638 		do {
1639 			stage <<= 1;
1640 		} while ((stage & pipeline) == 0);
1641 
1642 		ASSERT(stage <= ZIO_STAGE_DONE);
1643 
1644 		/*
1645 		 * If we are in interrupt context and this pipeline stage
1646 		 * will grab a config lock that is held across I/O,
1647 		 * or may wait for an I/O that needs an interrupt thread
1648 		 * to complete, issue async to avoid deadlock.
1649 		 *
1650 		 * For VDEV_IO_START, we cut in line so that the io will
1651 		 * be sent to disk promptly.
1652 		 */
1653 		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1654 		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1655 			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1656 			    zio_requeue_io_start_cut_in_line : B_FALSE;
1657 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1658 			return;
1659 		}
1660 
1661 		zio->io_stage = stage;
1662 		zio->io_pipeline_trace |= zio->io_stage;
1663 		rv = zio_pipeline[highbit64(stage) - 1](zio);
1664 
1665 		if (rv == ZIO_PIPELINE_STOP)
1666 			return;
1667 
1668 		ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1669 	}
1670 }
1671 
1672 /*
1673  * ==========================================================================
1674  * Initiate I/O, either sync or async
1675  * ==========================================================================
1676  */
1677 int
1678 zio_wait(zio_t *zio)
1679 {
1680 	int error;
1681 
1682 	ASSERT3P(zio->io_stage, ==, ZIO_STAGE_OPEN);
1683 	ASSERT3P(zio->io_executor, ==, NULL);
1684 
1685 	zio->io_waiter = curthread;
1686 	ASSERT0(zio->io_queued_timestamp);
1687 	zio->io_queued_timestamp = gethrtime();
1688 
1689 	zio_execute(zio);
1690 
1691 	mutex_enter(&zio->io_lock);
1692 	while (zio->io_executor != NULL)
1693 		cv_wait(&zio->io_cv, &zio->io_lock);
1694 	mutex_exit(&zio->io_lock);
1695 
1696 	error = zio->io_error;
1697 	zio_destroy(zio);
1698 
1699 	return (error);
1700 }
1701 
1702 void
1703 zio_nowait(zio_t *zio)
1704 {
1705 	ASSERT3P(zio->io_executor, ==, NULL);
1706 
1707 	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1708 	    zio_unique_parent(zio) == NULL) {
1709 		/*
1710 		 * This is a logical async I/O with no parent to wait for it.
1711 		 * We add it to the spa_async_root_zio "Godfather" I/O which
1712 		 * will ensure they complete prior to unloading the pool.
1713 		 */
1714 		spa_t *spa = zio->io_spa;
1715 
1716 		zio_add_child(spa->spa_async_zio_root[CPU_SEQID], zio);
1717 	}
1718 
1719 	ASSERT0(zio->io_queued_timestamp);
1720 	zio->io_queued_timestamp = gethrtime();
1721 	zio_execute(zio);
1722 }
1723 
1724 /*
1725  * ==========================================================================
1726  * Reexecute, cancel, or suspend/resume failed I/O
1727  * ==========================================================================
1728  */
1729 
1730 static void
1731 zio_reexecute(zio_t *pio)
1732 {
1733 	zio_t *cio, *cio_next;
1734 
1735 	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1736 	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1737 	ASSERT(pio->io_gang_leader == NULL);
1738 	ASSERT(pio->io_gang_tree == NULL);
1739 
1740 	pio->io_flags = pio->io_orig_flags;
1741 	pio->io_stage = pio->io_orig_stage;
1742 	pio->io_pipeline = pio->io_orig_pipeline;
1743 	pio->io_reexecute = 0;
1744 	pio->io_flags |= ZIO_FLAG_REEXECUTED;
1745 	pio->io_pipeline_trace = 0;
1746 	pio->io_error = 0;
1747 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1748 		pio->io_state[w] = 0;
1749 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1750 		pio->io_child_error[c] = 0;
1751 
1752 	if (IO_IS_ALLOCATING(pio))
1753 		BP_ZERO(pio->io_bp);
1754 
1755 	/*
1756 	 * As we reexecute pio's children, new children could be created.
1757 	 * New children go to the head of pio's io_child_list, however,
1758 	 * so we will (correctly) not reexecute them.  The key is that
1759 	 * the remainder of pio's io_child_list, from 'cio_next' onward,
1760 	 * cannot be affected by any side effects of reexecuting 'cio'.
1761 	 */
1762 	zio_link_t *zl = NULL;
1763 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
1764 		cio_next = zio_walk_children(pio, &zl);
1765 		mutex_enter(&pio->io_lock);
1766 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1767 			pio->io_children[cio->io_child_type][w]++;
1768 		mutex_exit(&pio->io_lock);
1769 		zio_reexecute(cio);
1770 	}
1771 
1772 	/*
1773 	 * Now that all children have been reexecuted, execute the parent.
1774 	 * We don't reexecute "The Godfather" I/O here as it's the
1775 	 * responsibility of the caller to wait on it.
1776 	 */
1777 	if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) {
1778 		pio->io_queued_timestamp = gethrtime();
1779 		zio_execute(pio);
1780 	}
1781 }
1782 
1783 void
1784 zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason)
1785 {
1786 	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1787 		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1788 		    "failure and the failure mode property for this pool "
1789 		    "is set to panic.", spa_name(spa));
1790 
1791 	zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
1792 
1793 	mutex_enter(&spa->spa_suspend_lock);
1794 
1795 	if (spa->spa_suspend_zio_root == NULL)
1796 		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1797 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1798 		    ZIO_FLAG_GODFATHER);
1799 
1800 	spa->spa_suspended = reason;
1801 
1802 	if (zio != NULL) {
1803 		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
1804 		ASSERT(zio != spa->spa_suspend_zio_root);
1805 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1806 		ASSERT(zio_unique_parent(zio) == NULL);
1807 		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1808 		zio_add_child(spa->spa_suspend_zio_root, zio);
1809 	}
1810 
1811 	mutex_exit(&spa->spa_suspend_lock);
1812 }
1813 
1814 int
1815 zio_resume(spa_t *spa)
1816 {
1817 	zio_t *pio;
1818 
1819 	/*
1820 	 * Reexecute all previously suspended i/o.
1821 	 */
1822 	mutex_enter(&spa->spa_suspend_lock);
1823 	spa->spa_suspended = ZIO_SUSPEND_NONE;
1824 	cv_broadcast(&spa->spa_suspend_cv);
1825 	pio = spa->spa_suspend_zio_root;
1826 	spa->spa_suspend_zio_root = NULL;
1827 	mutex_exit(&spa->spa_suspend_lock);
1828 
1829 	if (pio == NULL)
1830 		return (0);
1831 
1832 	zio_reexecute(pio);
1833 	return (zio_wait(pio));
1834 }
1835 
1836 void
1837 zio_resume_wait(spa_t *spa)
1838 {
1839 	mutex_enter(&spa->spa_suspend_lock);
1840 	while (spa_suspended(spa))
1841 		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1842 	mutex_exit(&spa->spa_suspend_lock);
1843 }
1844 
1845 /*
1846  * ==========================================================================
1847  * Gang blocks.
1848  *
1849  * A gang block is a collection of small blocks that looks to the DMU
1850  * like one large block.  When zio_dva_allocate() cannot find a block
1851  * of the requested size, due to either severe fragmentation or the pool
1852  * being nearly full, it calls zio_write_gang_block() to construct the
1853  * block from smaller fragments.
1854  *
1855  * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1856  * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
1857  * an indirect block: it's an array of block pointers.  It consumes
1858  * only one sector and hence is allocatable regardless of fragmentation.
1859  * The gang header's bps point to its gang members, which hold the data.
1860  *
1861  * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
1862  * as the verifier to ensure uniqueness of the SHA256 checksum.
1863  * Critically, the gang block bp's blk_cksum is the checksum of the data,
1864  * not the gang header.  This ensures that data block signatures (needed for
1865  * deduplication) are independent of how the block is physically stored.
1866  *
1867  * Gang blocks can be nested: a gang member may itself be a gang block.
1868  * Thus every gang block is a tree in which root and all interior nodes are
1869  * gang headers, and the leaves are normal blocks that contain user data.
1870  * The root of the gang tree is called the gang leader.
1871  *
1872  * To perform any operation (read, rewrite, free, claim) on a gang block,
1873  * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1874  * in the io_gang_tree field of the original logical i/o by recursively
1875  * reading the gang leader and all gang headers below it.  This yields
1876  * an in-core tree containing the contents of every gang header and the
1877  * bps for every constituent of the gang block.
1878  *
1879  * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1880  * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
1881  * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1882  * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1883  * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1884  * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
1885  * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1886  * of the gang header plus zio_checksum_compute() of the data to update the
1887  * gang header's blk_cksum as described above.
1888  *
1889  * The two-phase assemble/issue model solves the problem of partial failure --
1890  * what if you'd freed part of a gang block but then couldn't read the
1891  * gang header for another part?  Assembling the entire gang tree first
1892  * ensures that all the necessary gang header I/O has succeeded before
1893  * starting the actual work of free, claim, or write.  Once the gang tree
1894  * is assembled, free and claim are in-memory operations that cannot fail.
1895  *
1896  * In the event that a gang write fails, zio_dva_unallocate() walks the
1897  * gang tree to immediately free (i.e. insert back into the space map)
1898  * everything we've allocated.  This ensures that we don't get ENOSPC
1899  * errors during repeated suspend/resume cycles due to a flaky device.
1900  *
1901  * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
1902  * the gang tree, we won't modify the block, so we can safely defer the free
1903  * (knowing that the block is still intact).  If we *can* assemble the gang
1904  * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
1905  * each constituent bp and we can allocate a new block on the next sync pass.
1906  *
1907  * In all cases, the gang tree allows complete recovery from partial failure.
1908  * ==========================================================================
1909  */
1910 
1911 static void
1912 zio_gang_issue_func_done(zio_t *zio)
1913 {
1914 	abd_put(zio->io_abd);
1915 }
1916 
1917 static zio_t *
1918 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
1919     uint64_t offset)
1920 {
1921 	if (gn != NULL)
1922 		return (pio);
1923 
1924 	return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset),
1925 	    BP_GET_PSIZE(bp), zio_gang_issue_func_done,
1926 	    NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1927 	    &pio->io_bookmark));
1928 }
1929 
1930 static zio_t *
1931 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
1932     uint64_t offset)
1933 {
1934 	zio_t *zio;
1935 
1936 	if (gn != NULL) {
1937 		abd_t *gbh_abd =
1938 		    abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1939 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1940 		    gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL,
1941 		    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1942 		    &pio->io_bookmark);
1943 		/*
1944 		 * As we rewrite each gang header, the pipeline will compute
1945 		 * a new gang block header checksum for it; but no one will
1946 		 * compute a new data checksum, so we do that here.  The one
1947 		 * exception is the gang leader: the pipeline already computed
1948 		 * its data checksum because that stage precedes gang assembly.
1949 		 * (Presently, nothing actually uses interior data checksums;
1950 		 * this is just good hygiene.)
1951 		 */
1952 		if (gn != pio->io_gang_leader->io_gang_tree) {
1953 			abd_t *buf = abd_get_offset(data, offset);
1954 
1955 			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
1956 			    buf, BP_GET_PSIZE(bp));
1957 
1958 			abd_put(buf);
1959 		}
1960 		/*
1961 		 * If we are here to damage data for testing purposes,
1962 		 * leave the GBH alone so that we can detect the damage.
1963 		 */
1964 		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
1965 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
1966 	} else {
1967 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1968 		    abd_get_offset(data, offset), BP_GET_PSIZE(bp),
1969 		    zio_gang_issue_func_done, NULL, pio->io_priority,
1970 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1971 	}
1972 
1973 	return (zio);
1974 }
1975 
1976 /* ARGSUSED */
1977 static zio_t *
1978 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
1979     uint64_t offset)
1980 {
1981 	return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
1982 	    ZIO_GANG_CHILD_FLAGS(pio)));
1983 }
1984 
1985 /* ARGSUSED */
1986 static zio_t *
1987 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
1988     uint64_t offset)
1989 {
1990 	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
1991 	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1992 }
1993 
1994 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
1995 	NULL,
1996 	zio_read_gang,
1997 	zio_rewrite_gang,
1998 	zio_free_gang,
1999 	zio_claim_gang,
2000 	NULL
2001 };
2002 
2003 static void zio_gang_tree_assemble_done(zio_t *zio);
2004 
2005 static zio_gang_node_t *
2006 zio_gang_node_alloc(zio_gang_node_t **gnpp)
2007 {
2008 	zio_gang_node_t *gn;
2009 
2010 	ASSERT(*gnpp == NULL);
2011 
2012 	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
2013 	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
2014 	*gnpp = gn;
2015 
2016 	return (gn);
2017 }
2018 
2019 static void
2020 zio_gang_node_free(zio_gang_node_t **gnpp)
2021 {
2022 	zio_gang_node_t *gn = *gnpp;
2023 
2024 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2025 		ASSERT(gn->gn_child[g] == NULL);
2026 
2027 	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2028 	kmem_free(gn, sizeof (*gn));
2029 	*gnpp = NULL;
2030 }
2031 
2032 static void
2033 zio_gang_tree_free(zio_gang_node_t **gnpp)
2034 {
2035 	zio_gang_node_t *gn = *gnpp;
2036 
2037 	if (gn == NULL)
2038 		return;
2039 
2040 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2041 		zio_gang_tree_free(&gn->gn_child[g]);
2042 
2043 	zio_gang_node_free(gnpp);
2044 }
2045 
2046 static void
2047 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
2048 {
2049 	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
2050 	abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2051 
2052 	ASSERT(gio->io_gang_leader == gio);
2053 	ASSERT(BP_IS_GANG(bp));
2054 
2055 	zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2056 	    zio_gang_tree_assemble_done, gn, gio->io_priority,
2057 	    ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
2058 }
2059 
2060 static void
2061 zio_gang_tree_assemble_done(zio_t *zio)
2062 {
2063 	zio_t *gio = zio->io_gang_leader;
2064 	zio_gang_node_t *gn = zio->io_private;
2065 	blkptr_t *bp = zio->io_bp;
2066 
2067 	ASSERT(gio == zio_unique_parent(zio));
2068 	ASSERT(zio->io_child_count == 0);
2069 
2070 	if (zio->io_error)
2071 		return;
2072 
2073 	/* this ABD was created from a linear buf in zio_gang_tree_assemble */
2074 	if (BP_SHOULD_BYTESWAP(bp))
2075 		byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size);
2076 
2077 	ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh);
2078 	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
2079 	ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2080 
2081 	abd_put(zio->io_abd);
2082 
2083 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2084 		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2085 		if (!BP_IS_GANG(gbp))
2086 			continue;
2087 		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
2088 	}
2089 }
2090 
2091 static void
2092 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data,
2093     uint64_t offset)
2094 {
2095 	zio_t *gio = pio->io_gang_leader;
2096 	zio_t *zio;
2097 
2098 	ASSERT(BP_IS_GANG(bp) == !!gn);
2099 	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
2100 	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
2101 
2102 	/*
2103 	 * If you're a gang header, your data is in gn->gn_gbh.
2104 	 * If you're a gang member, your data is in 'data' and gn == NULL.
2105 	 */
2106 	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset);
2107 
2108 	if (gn != NULL) {
2109 		ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2110 
2111 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2112 			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2113 			if (BP_IS_HOLE(gbp))
2114 				continue;
2115 			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data,
2116 			    offset);
2117 			offset += BP_GET_PSIZE(gbp);
2118 		}
2119 	}
2120 
2121 	if (gn == gio->io_gang_tree)
2122 		ASSERT3U(gio->io_size, ==, offset);
2123 
2124 	if (zio != pio)
2125 		zio_nowait(zio);
2126 }
2127 
2128 static int
2129 zio_gang_assemble(zio_t *zio)
2130 {
2131 	blkptr_t *bp = zio->io_bp;
2132 
2133 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
2134 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2135 
2136 	zio->io_gang_leader = zio;
2137 
2138 	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
2139 
2140 	return (ZIO_PIPELINE_CONTINUE);
2141 }
2142 
2143 static int
2144 zio_gang_issue(zio_t *zio)
2145 {
2146 	blkptr_t *bp = zio->io_bp;
2147 
2148 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) {
2149 		return (ZIO_PIPELINE_STOP);
2150 	}
2151 
2152 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
2153 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2154 
2155 	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
2156 		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd,
2157 		    0);
2158 	else
2159 		zio_gang_tree_free(&zio->io_gang_tree);
2160 
2161 	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2162 
2163 	return (ZIO_PIPELINE_CONTINUE);
2164 }
2165 
2166 static void
2167 zio_write_gang_member_ready(zio_t *zio)
2168 {
2169 	zio_t *pio = zio_unique_parent(zio);
2170 	zio_t *gio = zio->io_gang_leader;
2171 	dva_t *cdva = zio->io_bp->blk_dva;
2172 	dva_t *pdva = pio->io_bp->blk_dva;
2173 	uint64_t asize;
2174 
2175 	if (BP_IS_HOLE(zio->io_bp))
2176 		return;
2177 
2178 	ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
2179 
2180 	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
2181 	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
2182 	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
2183 	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
2184 	ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
2185 
2186 	mutex_enter(&pio->io_lock);
2187 	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
2188 		ASSERT(DVA_GET_GANG(&pdva[d]));
2189 		asize = DVA_GET_ASIZE(&pdva[d]);
2190 		asize += DVA_GET_ASIZE(&cdva[d]);
2191 		DVA_SET_ASIZE(&pdva[d], asize);
2192 	}
2193 	mutex_exit(&pio->io_lock);
2194 }
2195 
2196 static void
2197 zio_write_gang_done(zio_t *zio)
2198 {
2199 	/*
2200 	 * The io_abd field will be NULL for a zio with no data.  The io_flags
2201 	 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't
2202 	 * check for it here as it is cleared in zio_ready.
2203 	 */
2204 	if (zio->io_abd != NULL)
2205 		abd_put(zio->io_abd);
2206 }
2207 
2208 static int
2209 zio_write_gang_block(zio_t *pio)
2210 {
2211 	spa_t *spa = pio->io_spa;
2212 	metaslab_class_t *mc = spa_normal_class(spa);
2213 	blkptr_t *bp = pio->io_bp;
2214 	zio_t *gio = pio->io_gang_leader;
2215 	zio_t *zio;
2216 	zio_gang_node_t *gn, **gnpp;
2217 	zio_gbh_phys_t *gbh;
2218 	abd_t *gbh_abd;
2219 	uint64_t txg = pio->io_txg;
2220 	uint64_t resid = pio->io_size;
2221 	uint64_t lsize;
2222 	int copies = gio->io_prop.zp_copies;
2223 	int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
2224 	zio_prop_t zp;
2225 	int error;
2226 	boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA);
2227 
2228 	int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER;
2229 	if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2230 		ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2231 		ASSERT(has_data);
2232 
2233 		flags |= METASLAB_ASYNC_ALLOC;
2234 		VERIFY(zfs_refcount_held(&mc->mc_alloc_slots[pio->io_allocator],
2235 		    pio));
2236 
2237 		/*
2238 		 * The logical zio has already placed a reservation for
2239 		 * 'copies' allocation slots but gang blocks may require
2240 		 * additional copies. These additional copies
2241 		 * (i.e. gbh_copies - copies) are guaranteed to succeed
2242 		 * since metaslab_class_throttle_reserve() always allows
2243 		 * additional reservations for gang blocks.
2244 		 */
2245 		VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies,
2246 		    pio->io_allocator, pio, flags));
2247 	}
2248 
2249 	error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE,
2250 	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags,
2251 	    &pio->io_alloc_list, pio, pio->io_allocator);
2252 	if (error) {
2253 		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2254 			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2255 			ASSERT(has_data);
2256 
2257 			/*
2258 			 * If we failed to allocate the gang block header then
2259 			 * we remove any additional allocation reservations that
2260 			 * we placed here. The original reservation will
2261 			 * be removed when the logical I/O goes to the ready
2262 			 * stage.
2263 			 */
2264 			metaslab_class_throttle_unreserve(mc,
2265 			    gbh_copies - copies, pio->io_allocator, pio);
2266 		}
2267 		pio->io_error = error;
2268 		return (ZIO_PIPELINE_CONTINUE);
2269 	}
2270 
2271 	if (pio == gio) {
2272 		gnpp = &gio->io_gang_tree;
2273 	} else {
2274 		gnpp = pio->io_private;
2275 		ASSERT(pio->io_ready == zio_write_gang_member_ready);
2276 	}
2277 
2278 	gn = zio_gang_node_alloc(gnpp);
2279 	gbh = gn->gn_gbh;
2280 	bzero(gbh, SPA_GANGBLOCKSIZE);
2281 	gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE);
2282 
2283 	/*
2284 	 * Create the gang header.
2285 	 */
2286 	zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2287 	    zio_write_gang_done, NULL, pio->io_priority,
2288 	    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2289 
2290 	/*
2291 	 * Create and nowait the gang children.
2292 	 */
2293 	for (int g = 0; resid != 0; resid -= lsize, g++) {
2294 		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
2295 		    SPA_MINBLOCKSIZE);
2296 		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
2297 
2298 		zp.zp_checksum = gio->io_prop.zp_checksum;
2299 		zp.zp_compress = ZIO_COMPRESS_OFF;
2300 		zp.zp_type = DMU_OT_NONE;
2301 		zp.zp_level = 0;
2302 		zp.zp_copies = gio->io_prop.zp_copies;
2303 		zp.zp_dedup = B_FALSE;
2304 		zp.zp_dedup_verify = B_FALSE;
2305 		zp.zp_nopwrite = B_FALSE;
2306 
2307 		zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
2308 		    has_data ? abd_get_offset(pio->io_abd, pio->io_size -
2309 		    resid) : NULL, lsize, lsize, &zp,
2310 		    zio_write_gang_member_ready, NULL, NULL,
2311 		    zio_write_gang_done, &gn->gn_child[g], pio->io_priority,
2312 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2313 
2314 		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2315 			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2316 			ASSERT(has_data);
2317 
2318 			/*
2319 			 * Gang children won't throttle but we should
2320 			 * account for their work, so reserve an allocation
2321 			 * slot for them here.
2322 			 */
2323 			VERIFY(metaslab_class_throttle_reserve(mc,
2324 			    zp.zp_copies, cio->io_allocator, cio, flags));
2325 		}
2326 		zio_nowait(cio);
2327 	}
2328 
2329 	/*
2330 	 * Set pio's pipeline to just wait for zio to finish.
2331 	 */
2332 	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2333 
2334 	zio_nowait(zio);
2335 
2336 	return (ZIO_PIPELINE_CONTINUE);
2337 }
2338 
2339 /*
2340  * The zio_nop_write stage in the pipeline determines if allocating a
2341  * new bp is necessary.  The nopwrite feature can handle writes in
2342  * either syncing or open context (i.e. zil writes) and as a result is
2343  * mutually exclusive with dedup.
2344  *
2345  * By leveraging a cryptographically secure checksum, such as SHA256, we
2346  * can compare the checksums of the new data and the old to determine if
2347  * allocating a new block is required.  Note that our requirements for
2348  * cryptographic strength are fairly weak: there can't be any accidental
2349  * hash collisions, but we don't need to be secure against intentional
2350  * (malicious) collisions.  To trigger a nopwrite, you have to be able
2351  * to write the file to begin with, and triggering an incorrect (hash
2352  * collision) nopwrite is no worse than simply writing to the file.
2353  * That said, there are no known attacks against the checksum algorithms
2354  * used for nopwrite, assuming that the salt and the checksums
2355  * themselves remain secret.
2356  */
2357 static int
2358 zio_nop_write(zio_t *zio)
2359 {
2360 	blkptr_t *bp = zio->io_bp;
2361 	blkptr_t *bp_orig = &zio->io_bp_orig;
2362 	zio_prop_t *zp = &zio->io_prop;
2363 
2364 	ASSERT(BP_GET_LEVEL(bp) == 0);
2365 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2366 	ASSERT(zp->zp_nopwrite);
2367 	ASSERT(!zp->zp_dedup);
2368 	ASSERT(zio->io_bp_override == NULL);
2369 	ASSERT(IO_IS_ALLOCATING(zio));
2370 
2371 	/*
2372 	 * Check to see if the original bp and the new bp have matching
2373 	 * characteristics (i.e. same checksum, compression algorithms, etc).
2374 	 * If they don't then just continue with the pipeline which will
2375 	 * allocate a new bp.
2376 	 */
2377 	if (BP_IS_HOLE(bp_orig) ||
2378 	    !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
2379 	    ZCHECKSUM_FLAG_NOPWRITE) ||
2380 	    BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
2381 	    BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
2382 	    BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
2383 	    zp->zp_copies != BP_GET_NDVAS(bp_orig))
2384 		return (ZIO_PIPELINE_CONTINUE);
2385 
2386 	/*
2387 	 * If the checksums match then reset the pipeline so that we
2388 	 * avoid allocating a new bp and issuing any I/O.
2389 	 */
2390 	if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
2391 		ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
2392 		    ZCHECKSUM_FLAG_NOPWRITE);
2393 		ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
2394 		ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
2395 		ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
2396 		ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
2397 		    sizeof (uint64_t)) == 0);
2398 
2399 		*bp = *bp_orig;
2400 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2401 		zio->io_flags |= ZIO_FLAG_NOPWRITE;
2402 	}
2403 
2404 	return (ZIO_PIPELINE_CONTINUE);
2405 }
2406 
2407 /*
2408  * ==========================================================================
2409  * Dedup
2410  * ==========================================================================
2411  */
2412 static void
2413 zio_ddt_child_read_done(zio_t *zio)
2414 {
2415 	blkptr_t *bp = zio->io_bp;
2416 	ddt_entry_t *dde = zio->io_private;
2417 	ddt_phys_t *ddp;
2418 	zio_t *pio = zio_unique_parent(zio);
2419 
2420 	mutex_enter(&pio->io_lock);
2421 	ddp = ddt_phys_select(dde, bp);
2422 	if (zio->io_error == 0)
2423 		ddt_phys_clear(ddp);	/* this ddp doesn't need repair */
2424 
2425 	if (zio->io_error == 0 && dde->dde_repair_abd == NULL)
2426 		dde->dde_repair_abd = zio->io_abd;
2427 	else
2428 		abd_free(zio->io_abd);
2429 	mutex_exit(&pio->io_lock);
2430 }
2431 
2432 static int
2433 zio_ddt_read_start(zio_t *zio)
2434 {
2435 	blkptr_t *bp = zio->io_bp;
2436 
2437 	ASSERT(BP_GET_DEDUP(bp));
2438 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2439 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2440 
2441 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
2442 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
2443 		ddt_entry_t *dde = ddt_repair_start(ddt, bp);
2444 		ddt_phys_t *ddp = dde->dde_phys;
2445 		ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
2446 		blkptr_t blk;
2447 
2448 		ASSERT(zio->io_vsd == NULL);
2449 		zio->io_vsd = dde;
2450 
2451 		if (ddp_self == NULL)
2452 			return (ZIO_PIPELINE_CONTINUE);
2453 
2454 		for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2455 			if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
2456 				continue;
2457 			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
2458 			    &blk);
2459 			zio_nowait(zio_read(zio, zio->io_spa, &blk,
2460 			    abd_alloc_for_io(zio->io_size, B_TRUE),
2461 			    zio->io_size, zio_ddt_child_read_done, dde,
2462 			    zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) |
2463 			    ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark));
2464 		}
2465 		return (ZIO_PIPELINE_CONTINUE);
2466 	}
2467 
2468 	zio_nowait(zio_read(zio, zio->io_spa, bp,
2469 	    zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority,
2470 	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
2471 
2472 	return (ZIO_PIPELINE_CONTINUE);
2473 }
2474 
2475 static int
2476 zio_ddt_read_done(zio_t *zio)
2477 {
2478 	blkptr_t *bp = zio->io_bp;
2479 
2480 	if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) {
2481 		return (ZIO_PIPELINE_STOP);
2482 	}
2483 
2484 	ASSERT(BP_GET_DEDUP(bp));
2485 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2486 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2487 
2488 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
2489 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
2490 		ddt_entry_t *dde = zio->io_vsd;
2491 		if (ddt == NULL) {
2492 			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
2493 			return (ZIO_PIPELINE_CONTINUE);
2494 		}
2495 		if (dde == NULL) {
2496 			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
2497 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2498 			return (ZIO_PIPELINE_STOP);
2499 		}
2500 		if (dde->dde_repair_abd != NULL) {
2501 			abd_copy(zio->io_abd, dde->dde_repair_abd,
2502 			    zio->io_size);
2503 			zio->io_child_error[ZIO_CHILD_DDT] = 0;
2504 		}
2505 		ddt_repair_done(ddt, dde);
2506 		zio->io_vsd = NULL;
2507 	}
2508 
2509 	ASSERT(zio->io_vsd == NULL);
2510 
2511 	return (ZIO_PIPELINE_CONTINUE);
2512 }
2513 
2514 static boolean_t
2515 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
2516 {
2517 	spa_t *spa = zio->io_spa;
2518 	boolean_t do_raw = (zio->io_flags & ZIO_FLAG_RAW);
2519 
2520 	/* We should never get a raw, override zio */
2521 	ASSERT(!(zio->io_bp_override && do_raw));
2522 
2523 	/*
2524 	 * Note: we compare the original data, not the transformed data,
2525 	 * because when zio->io_bp is an override bp, we will not have
2526 	 * pushed the I/O transforms.  That's an important optimization
2527 	 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
2528 	 */
2529 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2530 		zio_t *lio = dde->dde_lead_zio[p];
2531 
2532 		if (lio != NULL) {
2533 			return (lio->io_orig_size != zio->io_orig_size ||
2534 			    abd_cmp(zio->io_orig_abd, lio->io_orig_abd,
2535 			    zio->io_orig_size) != 0);
2536 		}
2537 	}
2538 
2539 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2540 		ddt_phys_t *ddp = &dde->dde_phys[p];
2541 
2542 		if (ddp->ddp_phys_birth != 0) {
2543 			arc_buf_t *abuf = NULL;
2544 			arc_flags_t aflags = ARC_FLAG_WAIT;
2545 			int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
2546 			blkptr_t blk = *zio->io_bp;
2547 			int error;
2548 
2549 			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2550 
2551 			ddt_exit(ddt);
2552 
2553 			/*
2554 			 * Intuitively, it would make more sense to compare
2555 			 * io_abd than io_orig_abd in the raw case since you
2556 			 * don't want to look at any transformations that have
2557 			 * happened to the data. However, for raw I/Os the
2558 			 * data will actually be the same in io_abd and
2559 			 * io_orig_abd, so all we have to do is issue this as
2560 			 * a raw ARC read.
2561 			 */
2562 			if (do_raw) {
2563 				zio_flags |= ZIO_FLAG_RAW;
2564 				ASSERT3U(zio->io_size, ==, zio->io_orig_size);
2565 				ASSERT0(abd_cmp(zio->io_abd, zio->io_orig_abd,
2566 				    zio->io_size));
2567 				ASSERT3P(zio->io_transform_stack, ==, NULL);
2568 			}
2569 
2570 			error = arc_read(NULL, spa, &blk,
2571 			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2572 			    zio_flags, &aflags, &zio->io_bookmark);
2573 
2574 			if (error == 0) {
2575 				if (arc_buf_size(abuf) != zio->io_orig_size ||
2576 				    abd_cmp_buf(zio->io_orig_abd, abuf->b_data,
2577 				    zio->io_orig_size) != 0)
2578 					error = SET_ERROR(EEXIST);
2579 				arc_buf_destroy(abuf, &abuf);
2580 			}
2581 
2582 			ddt_enter(ddt);
2583 			return (error != 0);
2584 		}
2585 	}
2586 
2587 	return (B_FALSE);
2588 }
2589 
2590 static void
2591 zio_ddt_child_write_ready(zio_t *zio)
2592 {
2593 	int p = zio->io_prop.zp_copies;
2594 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2595 	ddt_entry_t *dde = zio->io_private;
2596 	ddt_phys_t *ddp = &dde->dde_phys[p];
2597 	zio_t *pio;
2598 
2599 	if (zio->io_error)
2600 		return;
2601 
2602 	ddt_enter(ddt);
2603 
2604 	ASSERT(dde->dde_lead_zio[p] == zio);
2605 
2606 	ddt_phys_fill(ddp, zio->io_bp);
2607 
2608 	zio_link_t *zl = NULL;
2609 	while ((pio = zio_walk_parents(zio, &zl)) != NULL)
2610 		ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
2611 
2612 	ddt_exit(ddt);
2613 }
2614 
2615 static void
2616 zio_ddt_child_write_done(zio_t *zio)
2617 {
2618 	int p = zio->io_prop.zp_copies;
2619 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2620 	ddt_entry_t *dde = zio->io_private;
2621 	ddt_phys_t *ddp = &dde->dde_phys[p];
2622 
2623 	ddt_enter(ddt);
2624 
2625 	ASSERT(ddp->ddp_refcnt == 0);
2626 	ASSERT(dde->dde_lead_zio[p] == zio);
2627 	dde->dde_lead_zio[p] = NULL;
2628 
2629 	if (zio->io_error == 0) {
2630 		zio_link_t *zl = NULL;
2631 		while (zio_walk_parents(zio, &zl) != NULL)
2632 			ddt_phys_addref(ddp);
2633 	} else {
2634 		ddt_phys_clear(ddp);
2635 	}
2636 
2637 	ddt_exit(ddt);
2638 }
2639 
2640 static void
2641 zio_ddt_ditto_write_done(zio_t *zio)
2642 {
2643 	int p = DDT_PHYS_DITTO;
2644 	zio_prop_t *zp = &zio->io_prop;
2645 	blkptr_t *bp = zio->io_bp;
2646 	ddt_t *ddt = ddt_select(zio->io_spa, bp);
2647 	ddt_entry_t *dde = zio->io_private;
2648 	ddt_phys_t *ddp = &dde->dde_phys[p];
2649 	ddt_key_t *ddk = &dde->dde_key;
2650 
2651 	ddt_enter(ddt);
2652 
2653 	ASSERT(ddp->ddp_refcnt == 0);
2654 	ASSERT(dde->dde_lead_zio[p] == zio);
2655 	dde->dde_lead_zio[p] = NULL;
2656 
2657 	if (zio->io_error == 0) {
2658 		ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2659 		ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2660 		ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2661 		if (ddp->ddp_phys_birth != 0)
2662 			ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2663 		ddt_phys_fill(ddp, bp);
2664 	}
2665 
2666 	ddt_exit(ddt);
2667 }
2668 
2669 static int
2670 zio_ddt_write(zio_t *zio)
2671 {
2672 	spa_t *spa = zio->io_spa;
2673 	blkptr_t *bp = zio->io_bp;
2674 	uint64_t txg = zio->io_txg;
2675 	zio_prop_t *zp = &zio->io_prop;
2676 	int p = zp->zp_copies;
2677 	int ditto_copies;
2678 	zio_t *cio = NULL;
2679 	zio_t *dio = NULL;
2680 	ddt_t *ddt = ddt_select(spa, bp);
2681 	ddt_entry_t *dde;
2682 	ddt_phys_t *ddp;
2683 
2684 	ASSERT(BP_GET_DEDUP(bp));
2685 	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2686 	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2687 	ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW)));
2688 
2689 	ddt_enter(ddt);
2690 	dde = ddt_lookup(ddt, bp, B_TRUE);
2691 	ddp = &dde->dde_phys[p];
2692 
2693 	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2694 		/*
2695 		 * If we're using a weak checksum, upgrade to a strong checksum
2696 		 * and try again.  If we're already using a strong checksum,
2697 		 * we can't resolve it, so just convert to an ordinary write.
2698 		 * (And automatically e-mail a paper to Nature?)
2699 		 */
2700 		if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
2701 		    ZCHECKSUM_FLAG_DEDUP)) {
2702 			zp->zp_checksum = spa_dedup_checksum(spa);
2703 			zio_pop_transforms(zio);
2704 			zio->io_stage = ZIO_STAGE_OPEN;
2705 			BP_ZERO(bp);
2706 		} else {
2707 			zp->zp_dedup = B_FALSE;
2708 			BP_SET_DEDUP(bp, B_FALSE);
2709 		}
2710 		ASSERT(!BP_GET_DEDUP(bp));
2711 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
2712 		ddt_exit(ddt);
2713 		return (ZIO_PIPELINE_CONTINUE);
2714 	}
2715 
2716 	ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2717 	ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2718 
2719 	if (ditto_copies > ddt_ditto_copies_present(dde) &&
2720 	    dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2721 		zio_prop_t czp = *zp;
2722 
2723 		czp.zp_copies = ditto_copies;
2724 
2725 		/*
2726 		 * If we arrived here with an override bp, we won't have run
2727 		 * the transform stack, so we won't have the data we need to
2728 		 * generate a child i/o.  So, toss the override bp and restart.
2729 		 * This is safe, because using the override bp is just an
2730 		 * optimization; and it's rare, so the cost doesn't matter.
2731 		 */
2732 		if (zio->io_bp_override) {
2733 			zio_pop_transforms(zio);
2734 			zio->io_stage = ZIO_STAGE_OPEN;
2735 			zio->io_pipeline = ZIO_WRITE_PIPELINE;
2736 			zio->io_bp_override = NULL;
2737 			BP_ZERO(bp);
2738 			ddt_exit(ddt);
2739 			return (ZIO_PIPELINE_CONTINUE);
2740 		}
2741 
2742 		dio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
2743 		    zio->io_orig_size, zio->io_orig_size, &czp, NULL, NULL,
2744 		    NULL, zio_ddt_ditto_write_done, dde, zio->io_priority,
2745 		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2746 
2747 		zio_push_transform(dio, zio->io_abd, zio->io_size, 0, NULL);
2748 		dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2749 	}
2750 
2751 	if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2752 		if (ddp->ddp_phys_birth != 0)
2753 			ddt_bp_fill(ddp, bp, txg);
2754 		if (dde->dde_lead_zio[p] != NULL)
2755 			zio_add_child(zio, dde->dde_lead_zio[p]);
2756 		else
2757 			ddt_phys_addref(ddp);
2758 	} else if (zio->io_bp_override) {
2759 		ASSERT(bp->blk_birth == txg);
2760 		ASSERT(BP_EQUAL(bp, zio->io_bp_override));
2761 		ddt_phys_fill(ddp, bp);
2762 		ddt_phys_addref(ddp);
2763 	} else {
2764 		cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
2765 		    zio->io_orig_size, zio->io_orig_size, zp,
2766 		    zio_ddt_child_write_ready, NULL, NULL,
2767 		    zio_ddt_child_write_done, dde, zio->io_priority,
2768 		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2769 
2770 		zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL);
2771 		dde->dde_lead_zio[p] = cio;
2772 	}
2773 
2774 	ddt_exit(ddt);
2775 
2776 	if (cio)
2777 		zio_nowait(cio);
2778 	if (dio)
2779 		zio_nowait(dio);
2780 
2781 	return (ZIO_PIPELINE_CONTINUE);
2782 }
2783 
2784 ddt_entry_t *freedde; /* for debugging */
2785 
2786 static int
2787 zio_ddt_free(zio_t *zio)
2788 {
2789 	spa_t *spa = zio->io_spa;
2790 	blkptr_t *bp = zio->io_bp;
2791 	ddt_t *ddt = ddt_select(spa, bp);
2792 	ddt_entry_t *dde;
2793 	ddt_phys_t *ddp;
2794 
2795 	ASSERT(BP_GET_DEDUP(bp));
2796 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2797 
2798 	ddt_enter(ddt);
2799 	freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
2800 	ddp = ddt_phys_select(dde, bp);
2801 	ddt_phys_decref(ddp);
2802 	ddt_exit(ddt);
2803 
2804 	return (ZIO_PIPELINE_CONTINUE);
2805 }
2806 
2807 /*
2808  * ==========================================================================
2809  * Allocate and free blocks
2810  * ==========================================================================
2811  */
2812 
2813 static zio_t *
2814 zio_io_to_allocate(spa_t *spa, int allocator)
2815 {
2816 	zio_t *zio;
2817 
2818 	ASSERT(MUTEX_HELD(&spa->spa_alloc_locks[allocator]));
2819 
2820 	zio = avl_first(&spa->spa_alloc_trees[allocator]);
2821 	if (zio == NULL)
2822 		return (NULL);
2823 
2824 	ASSERT(IO_IS_ALLOCATING(zio));
2825 
2826 	/*
2827 	 * Try to place a reservation for this zio. If we're unable to
2828 	 * reserve then we throttle.
2829 	 */
2830 	ASSERT3U(zio->io_allocator, ==, allocator);
2831 	if (!metaslab_class_throttle_reserve(zio->io_metaslab_class,
2832 	    zio->io_prop.zp_copies, zio->io_allocator, zio, 0)) {
2833 		return (NULL);
2834 	}
2835 
2836 	avl_remove(&spa->spa_alloc_trees[allocator], zio);
2837 	ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE);
2838 
2839 	return (zio);
2840 }
2841 
2842 static int
2843 zio_dva_throttle(zio_t *zio)
2844 {
2845 	spa_t *spa = zio->io_spa;
2846 	zio_t *nio;
2847 	metaslab_class_t *mc;
2848 
2849 	/* locate an appropriate allocation class */
2850 	mc = spa_preferred_class(spa, zio->io_size, zio->io_prop.zp_type,
2851 	    zio->io_prop.zp_level, zio->io_prop.zp_zpl_smallblk);
2852 
2853 	if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE ||
2854 	    !mc->mc_alloc_throttle_enabled ||
2855 	    zio->io_child_type == ZIO_CHILD_GANG ||
2856 	    zio->io_flags & ZIO_FLAG_NODATA) {
2857 		return (ZIO_PIPELINE_CONTINUE);
2858 	}
2859 
2860 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2861 
2862 	ASSERT3U(zio->io_queued_timestamp, >, 0);
2863 	ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE);
2864 
2865 	zbookmark_phys_t *bm = &zio->io_bookmark;
2866 	/*
2867 	 * We want to try to use as many allocators as possible to help improve
2868 	 * performance, but we also want logically adjacent IOs to be physically
2869 	 * adjacent to improve sequential read performance. We chunk each object
2870 	 * into 2^20 block regions, and then hash based on the objset, object,
2871 	 * level, and region to accomplish both of these goals.
2872 	 */
2873 	zio->io_allocator = cityhash4(bm->zb_objset, bm->zb_object,
2874 	    bm->zb_level, bm->zb_blkid >> 20) % spa->spa_alloc_count;
2875 	mutex_enter(&spa->spa_alloc_locks[zio->io_allocator]);
2876 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
2877 	zio->io_metaslab_class = mc;
2878 	avl_add(&spa->spa_alloc_trees[zio->io_allocator], zio);
2879 	nio = zio_io_to_allocate(spa, zio->io_allocator);
2880 	mutex_exit(&spa->spa_alloc_locks[zio->io_allocator]);
2881 
2882 	if (nio == zio)
2883 		return (ZIO_PIPELINE_CONTINUE);
2884 
2885 	if (nio != NULL) {
2886 		ASSERT(nio->io_stage == ZIO_STAGE_DVA_THROTTLE);
2887 		/*
2888 		 * We are passing control to a new zio so make sure that
2889 		 * it is processed by a different thread. We do this to
2890 		 * avoid stack overflows that can occur when parents are
2891 		 * throttled and children are making progress. We allow
2892 		 * it to go to the head of the taskq since it's already
2893 		 * been waiting.
2894 		 */
2895 		zio_taskq_dispatch(nio, ZIO_TASKQ_ISSUE, B_TRUE);
2896 	}
2897 	return (ZIO_PIPELINE_STOP);
2898 }
2899 
2900 static void
2901 zio_allocate_dispatch(spa_t *spa, int allocator)
2902 {
2903 	zio_t *zio;
2904 
2905 	mutex_enter(&spa->spa_alloc_locks[allocator]);
2906 	zio = zio_io_to_allocate(spa, allocator);
2907 	mutex_exit(&spa->spa_alloc_locks[allocator]);
2908 	if (zio == NULL)
2909 		return;
2910 
2911 	ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE);
2912 	ASSERT0(zio->io_error);
2913 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE);
2914 }
2915 
2916 static int
2917 zio_dva_allocate(zio_t *zio)
2918 {
2919 	spa_t *spa = zio->io_spa;
2920 	metaslab_class_t *mc;
2921 	blkptr_t *bp = zio->io_bp;
2922 	int error;
2923 	int flags = 0;
2924 
2925 	if (zio->io_gang_leader == NULL) {
2926 		ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2927 		zio->io_gang_leader = zio;
2928 	}
2929 
2930 	ASSERT(BP_IS_HOLE(bp));
2931 	ASSERT0(BP_GET_NDVAS(bp));
2932 	ASSERT3U(zio->io_prop.zp_copies, >, 0);
2933 	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
2934 	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
2935 
2936 	if (zio->io_flags & ZIO_FLAG_NODATA)
2937 		flags |= METASLAB_DONT_THROTTLE;
2938 	if (zio->io_flags & ZIO_FLAG_GANG_CHILD)
2939 		flags |= METASLAB_GANG_CHILD;
2940 	if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE)
2941 		flags |= METASLAB_ASYNC_ALLOC;
2942 
2943 	/*
2944 	 * if not already chosen, locate an appropriate allocation class
2945 	 */
2946 	mc = zio->io_metaslab_class;
2947 	if (mc == NULL) {
2948 		mc = spa_preferred_class(spa, zio->io_size,
2949 		    zio->io_prop.zp_type, zio->io_prop.zp_level,
2950 		    zio->io_prop.zp_zpl_smallblk);
2951 		zio->io_metaslab_class = mc;
2952 	}
2953 
2954 	error = metaslab_alloc(spa, mc, zio->io_size, bp,
2955 	    zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
2956 	    &zio->io_alloc_list, zio, zio->io_allocator);
2957 
2958 	/*
2959 	 * Fallback to normal class when an alloc class is full
2960 	 */
2961 	if (error == ENOSPC && mc != spa_normal_class(spa)) {
2962 		/*
2963 		 * If throttling, transfer reservation over to normal class.
2964 		 * The io_allocator slot can remain the same even though we
2965 		 * are switching classes.
2966 		 */
2967 		if (mc->mc_alloc_throttle_enabled &&
2968 		    (zio->io_flags & ZIO_FLAG_IO_ALLOCATING)) {
2969 			metaslab_class_throttle_unreserve(mc,
2970 			    zio->io_prop.zp_copies, zio->io_allocator, zio);
2971 			zio->io_flags &= ~ZIO_FLAG_IO_ALLOCATING;
2972 
2973 			mc = spa_normal_class(spa);
2974 			VERIFY(metaslab_class_throttle_reserve(mc,
2975 			    zio->io_prop.zp_copies, zio->io_allocator, zio,
2976 			    flags | METASLAB_MUST_RESERVE));
2977 		} else {
2978 			mc = spa_normal_class(spa);
2979 		}
2980 		zio->io_metaslab_class = mc;
2981 
2982 		error = metaslab_alloc(spa, mc, zio->io_size, bp,
2983 		    zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
2984 		    &zio->io_alloc_list, zio, zio->io_allocator);
2985 	}
2986 
2987 	if (error != 0) {
2988 		zfs_dbgmsg("%s: metaslab allocation failure: zio %p, "
2989 		    "size %llu, error %d", spa_name(spa), zio, zio->io_size,
2990 		    error);
2991 		if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
2992 			return (zio_write_gang_block(zio));
2993 		zio->io_error = error;
2994 	}
2995 
2996 	return (ZIO_PIPELINE_CONTINUE);
2997 }
2998 
2999 static int
3000 zio_dva_free(zio_t *zio)
3001 {
3002 	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
3003 
3004 	return (ZIO_PIPELINE_CONTINUE);
3005 }
3006 
3007 static int
3008 zio_dva_claim(zio_t *zio)
3009 {
3010 	int error;
3011 
3012 	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
3013 	if (error)
3014 		zio->io_error = error;
3015 
3016 	return (ZIO_PIPELINE_CONTINUE);
3017 }
3018 
3019 /*
3020  * Undo an allocation.  This is used by zio_done() when an I/O fails
3021  * and we want to give back the block we just allocated.
3022  * This handles both normal blocks and gang blocks.
3023  */
3024 static void
3025 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
3026 {
3027 	ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
3028 	ASSERT(zio->io_bp_override == NULL);
3029 
3030 	if (!BP_IS_HOLE(bp))
3031 		metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
3032 
3033 	if (gn != NULL) {
3034 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
3035 			zio_dva_unallocate(zio, gn->gn_child[g],
3036 			    &gn->gn_gbh->zg_blkptr[g]);
3037 		}
3038 	}
3039 }
3040 
3041 /*
3042  * Try to allocate an intent log block.  Return 0 on success, errno on failure.
3043  */
3044 int
3045 zio_alloc_zil(spa_t *spa, uint64_t objset, uint64_t txg, blkptr_t *new_bp,
3046     blkptr_t *old_bp, uint64_t size, boolean_t *slog)
3047 {
3048 	int error = 1;
3049 	zio_alloc_list_t io_alloc_list;
3050 
3051 	ASSERT(txg > spa_syncing_txg(spa));
3052 
3053 	metaslab_trace_init(&io_alloc_list);
3054 
3055 	/*
3056 	 * Block pointer fields are useful to metaslabs for stats and debugging.
3057 	 * Fill in the obvious ones before calling into metaslab_alloc().
3058 	 */
3059 	BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3060 	BP_SET_PSIZE(new_bp, size);
3061 	BP_SET_LEVEL(new_bp, 0);
3062 
3063 	/*
3064 	 * When allocating a zil block, we don't have information about
3065 	 * the final destination of the block except the objset it's part
3066 	 * of, so we just hash the objset ID to pick the allocator to get
3067 	 * some parallelism.
3068 	 */
3069 	error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1,
3070 	    txg, old_bp, METASLAB_HINTBP_AVOID, &io_alloc_list, NULL,
3071 	    cityhash4(0, 0, 0, objset) % spa->spa_alloc_count);
3072 	if (error == 0) {
3073 		*slog = TRUE;
3074 	} else {
3075 		error = metaslab_alloc(spa, spa_normal_class(spa), size,
3076 		    new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID,
3077 		    &io_alloc_list, NULL, cityhash4(0, 0, 0, objset) %
3078 		    spa->spa_alloc_count);
3079 		if (error == 0)
3080 			*slog = FALSE;
3081 	}
3082 	metaslab_trace_fini(&io_alloc_list);
3083 
3084 	if (error == 0) {
3085 		BP_SET_LSIZE(new_bp, size);
3086 		BP_SET_PSIZE(new_bp, size);
3087 		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
3088 		BP_SET_CHECKSUM(new_bp,
3089 		    spa_version(spa) >= SPA_VERSION_SLIM_ZIL
3090 		    ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
3091 		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3092 		BP_SET_LEVEL(new_bp, 0);
3093 		BP_SET_DEDUP(new_bp, 0);
3094 		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
3095 	} else {
3096 		zfs_dbgmsg("%s: zil block allocation failure: "
3097 		    "size %llu, error %d", spa_name(spa), size, error);
3098 	}
3099 
3100 	return (error);
3101 }
3102 
3103 /*
3104  * ==========================================================================
3105  * Read and write to physical devices
3106  * ==========================================================================
3107  */
3108 
3109 
3110 /*
3111  * Issue an I/O to the underlying vdev. Typically the issue pipeline
3112  * stops after this stage and will resume upon I/O completion.
3113  * However, there are instances where the vdev layer may need to
3114  * continue the pipeline when an I/O was not issued. Since the I/O
3115  * that was sent to the vdev layer might be different than the one
3116  * currently active in the pipeline (see vdev_queue_io()), we explicitly
3117  * force the underlying vdev layers to call either zio_execute() or
3118  * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
3119  */
3120 static int
3121 zio_vdev_io_start(zio_t *zio)
3122 {
3123 	vdev_t *vd = zio->io_vd;
3124 	uint64_t align;
3125 	spa_t *spa = zio->io_spa;
3126 
3127 	ASSERT(zio->io_error == 0);
3128 	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
3129 
3130 	if (vd == NULL) {
3131 		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3132 			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
3133 
3134 		/*
3135 		 * The mirror_ops handle multiple DVAs in a single BP.
3136 		 */
3137 		vdev_mirror_ops.vdev_op_io_start(zio);
3138 		return (ZIO_PIPELINE_STOP);
3139 	}
3140 
3141 	ASSERT3P(zio->io_logical, !=, zio);
3142 	if (zio->io_type == ZIO_TYPE_WRITE) {
3143 		ASSERT(spa->spa_trust_config);
3144 
3145 		if (zio->io_vd->vdev_removing) {
3146 			/*
3147 			 * Note: the code can handle other kinds of writes,
3148 			 * but we don't expect them.
3149 			 */
3150 			ASSERT(zio->io_flags &
3151 			    (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL |
3152 			    ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE));
3153 		}
3154 	}
3155 
3156 	/*
3157 	 * We keep track of time-sensitive I/Os so that the scan thread
3158 	 * can quickly react to certain workloads.  In particular, we care
3159 	 * about non-scrubbing, top-level reads and writes with the following
3160 	 * characteristics:
3161 	 *	- synchronous writes of user data to non-slog devices
3162 	 *	- any reads of user data
3163 	 * When these conditions are met, adjust the timestamp of spa_last_io
3164 	 * which allows the scan thread to adjust its workload accordingly.
3165 	 */
3166 	if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL &&
3167 	    vd == vd->vdev_top && !vd->vdev_islog &&
3168 	    zio->io_bookmark.zb_objset != DMU_META_OBJSET &&
3169 	    zio->io_txg != spa_syncing_txg(spa)) {
3170 		uint64_t old = spa->spa_last_io;
3171 		uint64_t new = ddi_get_lbolt64();
3172 		if (old != new)
3173 			(void) atomic_cas_64(&spa->spa_last_io, old, new);
3174 	}
3175 
3176 	align = 1ULL << vd->vdev_top->vdev_ashift;
3177 
3178 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
3179 	    P2PHASE(zio->io_size, align) != 0) {
3180 		/* Transform logical writes to be a full physical block size. */
3181 		uint64_t asize = P2ROUNDUP(zio->io_size, align);
3182 		abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize);
3183 		ASSERT(vd == vd->vdev_top);
3184 		if (zio->io_type == ZIO_TYPE_WRITE) {
3185 			abd_copy(abuf, zio->io_abd, zio->io_size);
3186 			abd_zero_off(abuf, zio->io_size, asize - zio->io_size);
3187 		}
3188 		zio_push_transform(zio, abuf, asize, asize, zio_subblock);
3189 	}
3190 
3191 	/*
3192 	 * If this is not a physical io, make sure that it is properly aligned
3193 	 * before proceeding.
3194 	 */
3195 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
3196 		ASSERT0(P2PHASE(zio->io_offset, align));
3197 		ASSERT0(P2PHASE(zio->io_size, align));
3198 	} else {
3199 		/*
3200 		 * For physical writes, we allow 512b aligned writes and assume
3201 		 * the device will perform a read-modify-write as necessary.
3202 		 */
3203 		ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
3204 		ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
3205 	}
3206 
3207 	VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
3208 
3209 	/*
3210 	 * If this is a repair I/O, and there's no self-healing involved --
3211 	 * that is, we're just resilvering what we expect to resilver --
3212 	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
3213 	 * This prevents spurious resilvering.
3214 	 *
3215 	 * There are a few ways that we can end up creating these spurious
3216 	 * resilver i/os:
3217 	 *
3218 	 * 1. A resilver i/o will be issued if any DVA in the BP has a
3219 	 * dirty DTL.  The mirror code will issue resilver writes to
3220 	 * each DVA, including the one(s) that are not on vdevs with dirty
3221 	 * DTLs.
3222 	 *
3223 	 * 2. With nested replication, which happens when we have a
3224 	 * "replacing" or "spare" vdev that's a child of a mirror or raidz.
3225 	 * For example, given mirror(replacing(A+B), C), it's likely that
3226 	 * only A is out of date (it's the new device). In this case, we'll
3227 	 * read from C, then use the data to resilver A+B -- but we don't
3228 	 * actually want to resilver B, just A. The top-level mirror has no
3229 	 * way to know this, so instead we just discard unnecessary repairs
3230 	 * as we work our way down the vdev tree.
3231 	 *
3232 	 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc.
3233 	 * The same logic applies to any form of nested replication: ditto
3234 	 * + mirror, RAID-Z + replacing, etc.
3235 	 *
3236 	 * However, indirect vdevs point off to other vdevs which may have
3237 	 * DTL's, so we never bypass them.  The child i/os on concrete vdevs
3238 	 * will be properly bypassed instead.
3239 	 */
3240 	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
3241 	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
3242 	    zio->io_txg != 0 &&	/* not a delegated i/o */
3243 	    vd->vdev_ops != &vdev_indirect_ops &&
3244 	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
3245 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3246 		zio_vdev_io_bypass(zio);
3247 		return (ZIO_PIPELINE_CONTINUE);
3248 	}
3249 
3250 	if (vd->vdev_ops->vdev_op_leaf &&
3251 	    (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
3252 
3253 		if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio))
3254 			return (ZIO_PIPELINE_CONTINUE);
3255 
3256 		if ((zio = vdev_queue_io(zio)) == NULL)
3257 			return (ZIO_PIPELINE_STOP);
3258 
3259 		if (!vdev_accessible(vd, zio)) {
3260 			zio->io_error = SET_ERROR(ENXIO);
3261 			zio_interrupt(zio);
3262 			return (ZIO_PIPELINE_STOP);
3263 		}
3264 	}
3265 
3266 	vd->vdev_ops->vdev_op_io_start(zio);
3267 	return (ZIO_PIPELINE_STOP);
3268 }
3269 
3270 static int
3271 zio_vdev_io_done(zio_t *zio)
3272 {
3273 	vdev_t *vd = zio->io_vd;
3274 	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
3275 	boolean_t unexpected_error = B_FALSE;
3276 
3277 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3278 		return (ZIO_PIPELINE_STOP);
3279 	}
3280 
3281 	ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);
3282 
3283 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
3284 
3285 		vdev_queue_io_done(zio);
3286 
3287 		if (zio->io_type == ZIO_TYPE_WRITE)
3288 			vdev_cache_write(zio);
3289 
3290 		if (zio_injection_enabled && zio->io_error == 0)
3291 			zio->io_error = zio_handle_device_injection(vd,
3292 			    zio, EIO);
3293 
3294 		if (zio_injection_enabled && zio->io_error == 0)
3295 			zio->io_error = zio_handle_label_injection(zio, EIO);
3296 
3297 		if (zio->io_error) {
3298 			if (!vdev_accessible(vd, zio)) {
3299 				zio->io_error = SET_ERROR(ENXIO);
3300 			} else {
3301 				unexpected_error = B_TRUE;
3302 			}
3303 		}
3304 	}
3305 
3306 	ops->vdev_op_io_done(zio);
3307 
3308 	if (unexpected_error)
3309 		VERIFY(vdev_probe(vd, zio) == NULL);
3310 
3311 	return (ZIO_PIPELINE_CONTINUE);
3312 }
3313 
3314 /*
3315  * For non-raidz ZIOs, we can just copy aside the bad data read from the
3316  * disk, and use that to finish the checksum ereport later.
3317  */
3318 static void
3319 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
3320     const void *good_buf)
3321 {
3322 	/* no processing needed */
3323 	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
3324 }
3325 
3326 /*ARGSUSED*/
3327 void
3328 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
3329 {
3330 	void *buf = zio_buf_alloc(zio->io_size);
3331 
3332 	abd_copy_to_buf(buf, zio->io_abd, zio->io_size);
3333 
3334 	zcr->zcr_cbinfo = zio->io_size;
3335 	zcr->zcr_cbdata = buf;
3336 	zcr->zcr_finish = zio_vsd_default_cksum_finish;
3337 	zcr->zcr_free = zio_buf_free;
3338 }
3339 
3340 static int
3341 zio_vdev_io_assess(zio_t *zio)
3342 {
3343 	vdev_t *vd = zio->io_vd;
3344 
3345 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3346 		return (ZIO_PIPELINE_STOP);
3347 	}
3348 
3349 	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3350 		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
3351 
3352 	if (zio->io_vsd != NULL) {
3353 		zio->io_vsd_ops->vsd_free(zio);
3354 		zio->io_vsd = NULL;
3355 	}
3356 
3357 	if (zio_injection_enabled && zio->io_error == 0)
3358 		zio->io_error = zio_handle_fault_injection(zio, EIO);
3359 
3360 	/*
3361 	 * If the I/O failed, determine whether we should attempt to retry it.
3362 	 *
3363 	 * On retry, we cut in line in the issue queue, since we don't want
3364 	 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
3365 	 */
3366 	if (zio->io_error && vd == NULL &&
3367 	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
3368 		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
3369 		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
3370 		zio->io_error = 0;
3371 		zio->io_flags |= ZIO_FLAG_IO_RETRY |
3372 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
3373 		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
3374 		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
3375 		    zio_requeue_io_start_cut_in_line);
3376 		return (ZIO_PIPELINE_STOP);
3377 	}
3378 
3379 	/*
3380 	 * If we got an error on a leaf device, convert it to ENXIO
3381 	 * if the device is not accessible at all.
3382 	 */
3383 	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3384 	    !vdev_accessible(vd, zio))
3385 		zio->io_error = SET_ERROR(ENXIO);
3386 
3387 	/*
3388 	 * If we can't write to an interior vdev (mirror or RAID-Z),
3389 	 * set vdev_cant_write so that we stop trying to allocate from it.
3390 	 */
3391 	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
3392 	    vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
3393 		vd->vdev_cant_write = B_TRUE;
3394 	}
3395 
3396 	/*
3397 	 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future
3398 	 * attempts will ever succeed. In this case we set a persistent bit so
3399 	 * that we don't bother with it in the future.
3400 	 */
3401 	if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) &&
3402 	    zio->io_type == ZIO_TYPE_IOCTL &&
3403 	    zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL)
3404 		vd->vdev_nowritecache = B_TRUE;
3405 
3406 	if (zio->io_error)
3407 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3408 
3409 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3410 	    zio->io_physdone != NULL) {
3411 		ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
3412 		ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
3413 		zio->io_physdone(zio->io_logical);
3414 	}
3415 
3416 	return (ZIO_PIPELINE_CONTINUE);
3417 }
3418 
3419 void
3420 zio_vdev_io_reissue(zio_t *zio)
3421 {
3422 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3423 	ASSERT(zio->io_error == 0);
3424 
3425 	zio->io_stage >>= 1;
3426 }
3427 
3428 void
3429 zio_vdev_io_redone(zio_t *zio)
3430 {
3431 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
3432 
3433 	zio->io_stage >>= 1;
3434 }
3435 
3436 void
3437 zio_vdev_io_bypass(zio_t *zio)
3438 {
3439 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3440 	ASSERT(zio->io_error == 0);
3441 
3442 	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
3443 	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
3444 }
3445 
3446 /*
3447  * ==========================================================================
3448  * Generate and verify checksums
3449  * ==========================================================================
3450  */
3451 static int
3452 zio_checksum_generate(zio_t *zio)
3453 {
3454 	blkptr_t *bp = zio->io_bp;
3455 	enum zio_checksum checksum;
3456 
3457 	if (bp == NULL) {
3458 		/*
3459 		 * This is zio_write_phys().
3460 		 * We're either generating a label checksum, or none at all.
3461 		 */
3462 		checksum = zio->io_prop.zp_checksum;
3463 
3464 		if (checksum == ZIO_CHECKSUM_OFF)
3465 			return (ZIO_PIPELINE_CONTINUE);
3466 
3467 		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
3468 	} else {
3469 		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
3470 			ASSERT(!IO_IS_ALLOCATING(zio));
3471 			checksum = ZIO_CHECKSUM_GANG_HEADER;
3472 		} else {
3473 			checksum = BP_GET_CHECKSUM(bp);
3474 		}
3475 	}
3476 
3477 	zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size);
3478 
3479 	return (ZIO_PIPELINE_CONTINUE);
3480 }
3481 
3482 static int
3483 zio_checksum_verify(zio_t *zio)
3484 {
3485 	zio_bad_cksum_t info;
3486 	blkptr_t *bp = zio->io_bp;
3487 	int error;
3488 
3489 	ASSERT(zio->io_vd != NULL);
3490 
3491 	if (bp == NULL) {
3492 		/*
3493 		 * This is zio_read_phys().
3494 		 * We're either verifying a label checksum, or nothing at all.
3495 		 */
3496 		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
3497 			return (ZIO_PIPELINE_CONTINUE);
3498 
3499 		ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
3500 	}
3501 
3502 	if ((error = zio_checksum_error(zio, &info)) != 0) {
3503 		zio->io_error = error;
3504 		if (error == ECKSUM &&
3505 		    !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
3506 			zfs_ereport_start_checksum(zio->io_spa,
3507 			    zio->io_vd, zio, zio->io_offset,
3508 			    zio->io_size, NULL, &info);
3509 		}
3510 	}
3511 
3512 	return (ZIO_PIPELINE_CONTINUE);
3513 }
3514 
3515 /*
3516  * Called by RAID-Z to ensure we don't compute the checksum twice.
3517  */
3518 void
3519 zio_checksum_verified(zio_t *zio)
3520 {
3521 	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
3522 }
3523 
3524 /*
3525  * ==========================================================================
3526  * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
3527  * An error of 0 indicates success.  ENXIO indicates whole-device failure,
3528  * which may be transient (e.g. unplugged) or permament.  ECKSUM and EIO
3529  * indicate errors that are specific to one I/O, and most likely permanent.
3530  * Any other error is presumed to be worse because we weren't expecting it.
3531  * ==========================================================================
3532  */
3533 int
3534 zio_worst_error(int e1, int e2)
3535 {
3536 	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
3537 	int r1, r2;
3538 
3539 	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
3540 		if (e1 == zio_error_rank[r1])
3541 			break;
3542 
3543 	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
3544 		if (e2 == zio_error_rank[r2])
3545 			break;
3546 
3547 	return (r1 > r2 ? e1 : e2);
3548 }
3549 
3550 /*
3551  * ==========================================================================
3552  * I/O completion
3553  * ==========================================================================
3554  */
3555 static int
3556 zio_ready(zio_t *zio)
3557 {
3558 	blkptr_t *bp = zio->io_bp;
3559 	zio_t *pio, *pio_next;
3560 	zio_link_t *zl = NULL;
3561 
3562 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT,
3563 	    ZIO_WAIT_READY)) {
3564 		return (ZIO_PIPELINE_STOP);
3565 	}
3566 
3567 	if (zio->io_ready) {
3568 		ASSERT(IO_IS_ALLOCATING(zio));
3569 		ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
3570 		    (zio->io_flags & ZIO_FLAG_NOPWRITE));
3571 		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
3572 
3573 		zio->io_ready(zio);
3574 	}
3575 
3576 	if (bp != NULL && bp != &zio->io_bp_copy)
3577 		zio->io_bp_copy = *bp;
3578 
3579 	if (zio->io_error != 0) {
3580 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3581 
3582 		if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
3583 			ASSERT(IO_IS_ALLOCATING(zio));
3584 			ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
3585 			ASSERT(zio->io_metaslab_class != NULL);
3586 
3587 			/*
3588 			 * We were unable to allocate anything, unreserve and
3589 			 * issue the next I/O to allocate.
3590 			 */
3591 			metaslab_class_throttle_unreserve(
3592 			    zio->io_metaslab_class, zio->io_prop.zp_copies,
3593 			    zio->io_allocator, zio);
3594 			zio_allocate_dispatch(zio->io_spa, zio->io_allocator);
3595 		}
3596 	}
3597 
3598 	mutex_enter(&zio->io_lock);
3599 	zio->io_state[ZIO_WAIT_READY] = 1;
3600 	pio = zio_walk_parents(zio, &zl);
3601 	mutex_exit(&zio->io_lock);
3602 
3603 	/*
3604 	 * As we notify zio's parents, new parents could be added.
3605 	 * New parents go to the head of zio's io_parent_list, however,
3606 	 * so we will (correctly) not notify them.  The remainder of zio's
3607 	 * io_parent_list, from 'pio_next' onward, cannot change because
3608 	 * all parents must wait for us to be done before they can be done.
3609 	 */
3610 	for (; pio != NULL; pio = pio_next) {
3611 		pio_next = zio_walk_parents(zio, &zl);
3612 		zio_notify_parent(pio, zio, ZIO_WAIT_READY);
3613 	}
3614 
3615 	if (zio->io_flags & ZIO_FLAG_NODATA) {
3616 		if (BP_IS_GANG(bp)) {
3617 			zio->io_flags &= ~ZIO_FLAG_NODATA;
3618 		} else {
3619 			ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE);
3620 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
3621 		}
3622 	}
3623 
3624 	if (zio_injection_enabled &&
3625 	    zio->io_spa->spa_syncing_txg == zio->io_txg)
3626 		zio_handle_ignored_writes(zio);
3627 
3628 	return (ZIO_PIPELINE_CONTINUE);
3629 }
3630 
3631 /*
3632  * Update the allocation throttle accounting.
3633  */
3634 static void
3635 zio_dva_throttle_done(zio_t *zio)
3636 {
3637 	zio_t *lio = zio->io_logical;
3638 	zio_t *pio = zio_unique_parent(zio);
3639 	vdev_t *vd = zio->io_vd;
3640 	int flags = METASLAB_ASYNC_ALLOC;
3641 
3642 	ASSERT3P(zio->io_bp, !=, NULL);
3643 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
3644 	ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE);
3645 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
3646 	ASSERT(vd != NULL);
3647 	ASSERT3P(vd, ==, vd->vdev_top);
3648 	ASSERT(!(zio->io_flags & (ZIO_FLAG_IO_REPAIR | ZIO_FLAG_IO_RETRY)));
3649 	ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING);
3650 	ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE));
3651 	ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA));
3652 
3653 	/*
3654 	 * Parents of gang children can have two flavors -- ones that
3655 	 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set)
3656 	 * and ones that allocated the constituent blocks. The allocation
3657 	 * throttle needs to know the allocating parent zio so we must find
3658 	 * it here.
3659 	 */
3660 	if (pio->io_child_type == ZIO_CHILD_GANG) {
3661 		/*
3662 		 * If our parent is a rewrite gang child then our grandparent
3663 		 * would have been the one that performed the allocation.
3664 		 */
3665 		if (pio->io_flags & ZIO_FLAG_IO_REWRITE)
3666 			pio = zio_unique_parent(pio);
3667 		flags |= METASLAB_GANG_CHILD;
3668 	}
3669 
3670 	ASSERT(IO_IS_ALLOCATING(pio));
3671 	ASSERT3P(zio, !=, zio->io_logical);
3672 	ASSERT(zio->io_logical != NULL);
3673 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
3674 	ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE);
3675 	ASSERT(zio->io_metaslab_class != NULL);
3676 
3677 	mutex_enter(&pio->io_lock);
3678 	metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags,
3679 	    pio->io_allocator, B_TRUE);
3680 	mutex_exit(&pio->io_lock);
3681 
3682 	metaslab_class_throttle_unreserve(zio->io_metaslab_class, 1,
3683 	    pio->io_allocator, pio);
3684 
3685 	/*
3686 	 * Call into the pipeline to see if there is more work that
3687 	 * needs to be done. If there is work to be done it will be
3688 	 * dispatched to another taskq thread.
3689 	 */
3690 	zio_allocate_dispatch(zio->io_spa, pio->io_allocator);
3691 }
3692 
3693 static int
3694 zio_done(zio_t *zio)
3695 {
3696 	spa_t *spa = zio->io_spa;
3697 	zio_t *lio = zio->io_logical;
3698 	blkptr_t *bp = zio->io_bp;
3699 	vdev_t *vd = zio->io_vd;
3700 	uint64_t psize = zio->io_size;
3701 	zio_t *pio, *pio_next;
3702 	zio_link_t *zl = NULL;
3703 
3704 	/*
3705 	 * If our children haven't all completed,
3706 	 * wait for them and then repeat this pipeline stage.
3707 	 */
3708 	if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) {
3709 		return (ZIO_PIPELINE_STOP);
3710 	}
3711 
3712 	/*
3713 	 * If the allocation throttle is enabled, then update the accounting.
3714 	 * We only track child I/Os that are part of an allocating async
3715 	 * write. We must do this since the allocation is performed
3716 	 * by the logical I/O but the actual write is done by child I/Os.
3717 	 */
3718 	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING &&
3719 	    zio->io_child_type == ZIO_CHILD_VDEV) {
3720 		ASSERT(zio->io_metaslab_class != NULL);
3721 		ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled);
3722 		zio_dva_throttle_done(zio);
3723 	}
3724 
3725 	/*
3726 	 * If the allocation throttle is enabled, verify that
3727 	 * we have decremented the refcounts for every I/O that was throttled.
3728 	 */
3729 	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
3730 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3731 		ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
3732 		ASSERT(bp != NULL);
3733 
3734 		metaslab_group_alloc_verify(spa, zio->io_bp, zio,
3735 		    zio->io_allocator);
3736 		VERIFY(zfs_refcount_not_held(
3737 		    &zio->io_metaslab_class->mc_alloc_slots[zio->io_allocator],
3738 		    zio));
3739 	}
3740 
3741 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
3742 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
3743 			ASSERT(zio->io_children[c][w] == 0);
3744 
3745 	if (bp != NULL && !BP_IS_EMBEDDED(bp)) {
3746 		ASSERT(bp->blk_pad[0] == 0);
3747 		ASSERT(bp->blk_pad[1] == 0);
3748 		ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
3749 		    (bp == zio_unique_parent(zio)->io_bp));
3750 		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
3751 		    zio->io_bp_override == NULL &&
3752 		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
3753 			ASSERT(!BP_SHOULD_BYTESWAP(bp));
3754 			ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp));
3755 			ASSERT(BP_COUNT_GANG(bp) == 0 ||
3756 			    (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
3757 		}
3758 		if (zio->io_flags & ZIO_FLAG_NOPWRITE)
3759 			VERIFY(BP_EQUAL(bp, &zio->io_bp_orig));
3760 	}
3761 
3762 	/*
3763 	 * If there were child vdev/gang/ddt errors, they apply to us now.
3764 	 */
3765 	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
3766 	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
3767 	zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
3768 
3769 	/*
3770 	 * If the I/O on the transformed data was successful, generate any
3771 	 * checksum reports now while we still have the transformed data.
3772 	 */
3773 	if (zio->io_error == 0) {
3774 		while (zio->io_cksum_report != NULL) {
3775 			zio_cksum_report_t *zcr = zio->io_cksum_report;
3776 			uint64_t align = zcr->zcr_align;
3777 			uint64_t asize = P2ROUNDUP(psize, align);
3778 			char *abuf = NULL;
3779 			abd_t *adata = zio->io_abd;
3780 
3781 			if (asize != psize) {
3782 				adata = abd_alloc_linear(asize, B_TRUE);
3783 				abd_copy(adata, zio->io_abd, psize);
3784 				abd_zero_off(adata, psize, asize - psize);
3785 			}
3786 
3787 			if (adata != NULL)
3788 				abuf = abd_borrow_buf_copy(adata, asize);
3789 
3790 			zio->io_cksum_report = zcr->zcr_next;
3791 			zcr->zcr_next = NULL;
3792 			zcr->zcr_finish(zcr, abuf);
3793 			zfs_ereport_free_checksum(zcr);
3794 
3795 			if (adata != NULL)
3796 				abd_return_buf(adata, abuf, asize);
3797 
3798 			if (asize != psize)
3799 				abd_free(adata);
3800 		}
3801 	}
3802 
3803 	zio_pop_transforms(zio);	/* note: may set zio->io_error */
3804 
3805 	vdev_stat_update(zio, psize);
3806 
3807 	if (zio->io_error) {
3808 		/*
3809 		 * If this I/O is attached to a particular vdev,
3810 		 * generate an error message describing the I/O failure
3811 		 * at the block level.  We ignore these errors if the
3812 		 * device is currently unavailable.
3813 		 */
3814 		if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
3815 			zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0);
3816 
3817 		if ((zio->io_error == EIO || !(zio->io_flags &
3818 		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
3819 		    zio == lio) {
3820 			/*
3821 			 * For logical I/O requests, tell the SPA to log the
3822 			 * error and generate a logical data ereport.
3823 			 */
3824 			spa_log_error(spa, zio);
3825 			zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio,
3826 			    0, 0);
3827 		}
3828 	}
3829 
3830 	if (zio->io_error && zio == lio) {
3831 		/*
3832 		 * Determine whether zio should be reexecuted.  This will
3833 		 * propagate all the way to the root via zio_notify_parent().
3834 		 */
3835 		ASSERT(vd == NULL && bp != NULL);
3836 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3837 
3838 		if (IO_IS_ALLOCATING(zio) &&
3839 		    !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
3840 			if (zio->io_error != ENOSPC)
3841 				zio->io_reexecute |= ZIO_REEXECUTE_NOW;
3842 			else
3843 				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3844 		}
3845 
3846 		if ((zio->io_type == ZIO_TYPE_READ ||
3847 		    zio->io_type == ZIO_TYPE_FREE) &&
3848 		    !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
3849 		    zio->io_error == ENXIO &&
3850 		    spa_load_state(spa) == SPA_LOAD_NONE &&
3851 		    spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
3852 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3853 
3854 		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
3855 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3856 
3857 		/*
3858 		 * Here is a possibly good place to attempt to do
3859 		 * either combinatorial reconstruction or error correction
3860 		 * based on checksums.  It also might be a good place
3861 		 * to send out preliminary ereports before we suspend
3862 		 * processing.
3863 		 */
3864 	}
3865 
3866 	/*
3867 	 * If there were logical child errors, they apply to us now.
3868 	 * We defer this until now to avoid conflating logical child
3869 	 * errors with errors that happened to the zio itself when
3870 	 * updating vdev stats and reporting FMA events above.
3871 	 */
3872 	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
3873 
3874 	if ((zio->io_error || zio->io_reexecute) &&
3875 	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
3876 	    !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
3877 		zio_dva_unallocate(zio, zio->io_gang_tree, bp);
3878 
3879 	zio_gang_tree_free(&zio->io_gang_tree);
3880 
3881 	/*
3882 	 * Godfather I/Os should never suspend.
3883 	 */
3884 	if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
3885 	    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
3886 		zio->io_reexecute = 0;
3887 
3888 	if (zio->io_reexecute) {
3889 		/*
3890 		 * This is a logical I/O that wants to reexecute.
3891 		 *
3892 		 * Reexecute is top-down.  When an i/o fails, if it's not
3893 		 * the root, it simply notifies its parent and sticks around.
3894 		 * The parent, seeing that it still has children in zio_done(),
3895 		 * does the same.  This percolates all the way up to the root.
3896 		 * The root i/o will reexecute or suspend the entire tree.
3897 		 *
3898 		 * This approach ensures that zio_reexecute() honors
3899 		 * all the original i/o dependency relationships, e.g.
3900 		 * parents not executing until children are ready.
3901 		 */
3902 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3903 
3904 		zio->io_gang_leader = NULL;
3905 
3906 		mutex_enter(&zio->io_lock);
3907 		zio->io_state[ZIO_WAIT_DONE] = 1;
3908 		mutex_exit(&zio->io_lock);
3909 
3910 		/*
3911 		 * "The Godfather" I/O monitors its children but is
3912 		 * not a true parent to them. It will track them through
3913 		 * the pipeline but severs its ties whenever they get into
3914 		 * trouble (e.g. suspended). This allows "The Godfather"
3915 		 * I/O to return status without blocking.
3916 		 */
3917 		zl = NULL;
3918 		for (pio = zio_walk_parents(zio, &zl); pio != NULL;
3919 		    pio = pio_next) {
3920 			zio_link_t *remove_zl = zl;
3921 			pio_next = zio_walk_parents(zio, &zl);
3922 
3923 			if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
3924 			    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
3925 				zio_remove_child(pio, zio, remove_zl);
3926 				zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3927 			}
3928 		}
3929 
3930 		if ((pio = zio_unique_parent(zio)) != NULL) {
3931 			/*
3932 			 * We're not a root i/o, so there's nothing to do
3933 			 * but notify our parent.  Don't propagate errors
3934 			 * upward since we haven't permanently failed yet.
3935 			 */
3936 			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
3937 			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
3938 			zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3939 		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
3940 			/*
3941 			 * We'd fail again if we reexecuted now, so suspend
3942 			 * until conditions improve (e.g. device comes online).
3943 			 */
3944 			zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR);
3945 		} else {
3946 			/*
3947 			 * Reexecution is potentially a huge amount of work.
3948 			 * Hand it off to the otherwise-unused claim taskq.
3949 			 */
3950 			ASSERT(zio->io_tqent.tqent_next == NULL);
3951 			spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM,
3952 			    ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio,
3953 			    0, &zio->io_tqent);
3954 		}
3955 		return (ZIO_PIPELINE_STOP);
3956 	}
3957 
3958 	ASSERT(zio->io_child_count == 0);
3959 	ASSERT(zio->io_reexecute == 0);
3960 	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
3961 
3962 	/*
3963 	 * Report any checksum errors, since the I/O is complete.
3964 	 */
3965 	while (zio->io_cksum_report != NULL) {
3966 		zio_cksum_report_t *zcr = zio->io_cksum_report;
3967 		zio->io_cksum_report = zcr->zcr_next;
3968 		zcr->zcr_next = NULL;
3969 		zcr->zcr_finish(zcr, NULL);
3970 		zfs_ereport_free_checksum(zcr);
3971 	}
3972 
3973 	/*
3974 	 * It is the responsibility of the done callback to ensure that this
3975 	 * particular zio is no longer discoverable for adoption, and as
3976 	 * such, cannot acquire any new parents.
3977 	 */
3978 	if (zio->io_done)
3979 		zio->io_done(zio);
3980 
3981 	mutex_enter(&zio->io_lock);
3982 	zio->io_state[ZIO_WAIT_DONE] = 1;
3983 	mutex_exit(&zio->io_lock);
3984 
3985 	zl = NULL;
3986 	for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) {
3987 		zio_link_t *remove_zl = zl;
3988 		pio_next = zio_walk_parents(zio, &zl);
3989 		zio_remove_child(pio, zio, remove_zl);
3990 		zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3991 	}
3992 
3993 	if (zio->io_waiter != NULL) {
3994 		mutex_enter(&zio->io_lock);
3995 		zio->io_executor = NULL;
3996 		cv_broadcast(&zio->io_cv);
3997 		mutex_exit(&zio->io_lock);
3998 	} else {
3999 		zio_destroy(zio);
4000 	}
4001 
4002 	return (ZIO_PIPELINE_STOP);
4003 }
4004 
4005 /*
4006  * ==========================================================================
4007  * I/O pipeline definition
4008  * ==========================================================================
4009  */
4010 static zio_pipe_stage_t *zio_pipeline[] = {
4011 	NULL,
4012 	zio_read_bp_init,
4013 	zio_write_bp_init,
4014 	zio_free_bp_init,
4015 	zio_issue_async,
4016 	zio_write_compress,
4017 	zio_checksum_generate,
4018 	zio_nop_write,
4019 	zio_ddt_read_start,
4020 	zio_ddt_read_done,
4021 	zio_ddt_write,
4022 	zio_ddt_free,
4023 	zio_gang_assemble,
4024 	zio_gang_issue,
4025 	zio_dva_throttle,
4026 	zio_dva_allocate,
4027 	zio_dva_free,
4028 	zio_dva_claim,
4029 	zio_ready,
4030 	zio_vdev_io_start,
4031 	zio_vdev_io_done,
4032 	zio_vdev_io_assess,
4033 	zio_checksum_verify,
4034 	zio_done
4035 };
4036 
4037 
4038 
4039 
4040 /*
4041  * Compare two zbookmark_phys_t's to see which we would reach first in a
4042  * pre-order traversal of the object tree.
4043  *
4044  * This is simple in every case aside from the meta-dnode object. For all other
4045  * objects, we traverse them in order (object 1 before object 2, and so on).
4046  * However, all of these objects are traversed while traversing object 0, since
4047  * the data it points to is the list of objects.  Thus, we need to convert to a
4048  * canonical representation so we can compare meta-dnode bookmarks to
4049  * non-meta-dnode bookmarks.
4050  *
4051  * We do this by calculating "equivalents" for each field of the zbookmark.
4052  * zbookmarks outside of the meta-dnode use their own object and level, and
4053  * calculate the level 0 equivalent (the first L0 blkid that is contained in the
4054  * blocks this bookmark refers to) by multiplying their blkid by their span
4055  * (the number of L0 blocks contained within one block at their level).
4056  * zbookmarks inside the meta-dnode calculate their object equivalent
4057  * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
4058  * level + 1<<31 (any value larger than a level could ever be) for their level.
4059  * This causes them to always compare before a bookmark in their object
4060  * equivalent, compare appropriately to bookmarks in other objects, and to
4061  * compare appropriately to other bookmarks in the meta-dnode.
4062  */
4063 int
4064 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
4065     const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
4066 {
4067 	/*
4068 	 * These variables represent the "equivalent" values for the zbookmark,
4069 	 * after converting zbookmarks inside the meta dnode to their
4070 	 * normal-object equivalents.
4071 	 */
4072 	uint64_t zb1obj, zb2obj;
4073 	uint64_t zb1L0, zb2L0;
4074 	uint64_t zb1level, zb2level;
4075 
4076 	if (zb1->zb_object == zb2->zb_object &&
4077 	    zb1->zb_level == zb2->zb_level &&
4078 	    zb1->zb_blkid == zb2->zb_blkid)
4079 		return (0);
4080 
4081 	/*
4082 	 * BP_SPANB calculates the span in blocks.
4083 	 */
4084 	zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
4085 	zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
4086 
4087 	if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
4088 		zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4089 		zb1L0 = 0;
4090 		zb1level = zb1->zb_level + COMPARE_META_LEVEL;
4091 	} else {
4092 		zb1obj = zb1->zb_object;
4093 		zb1level = zb1->zb_level;
4094 	}
4095 
4096 	if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
4097 		zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4098 		zb2L0 = 0;
4099 		zb2level = zb2->zb_level + COMPARE_META_LEVEL;
4100 	} else {
4101 		zb2obj = zb2->zb_object;
4102 		zb2level = zb2->zb_level;
4103 	}
4104 
4105 	/* Now that we have a canonical representation, do the comparison. */
4106 	if (zb1obj != zb2obj)
4107 		return (zb1obj < zb2obj ? -1 : 1);
4108 	else if (zb1L0 != zb2L0)
4109 		return (zb1L0 < zb2L0 ? -1 : 1);
4110 	else if (zb1level != zb2level)
4111 		return (zb1level > zb2level ? -1 : 1);
4112 	/*
4113 	 * This can (theoretically) happen if the bookmarks have the same object
4114 	 * and level, but different blkids, if the block sizes are not the same.
4115 	 * There is presently no way to change the indirect block sizes
4116 	 */
4117 	return (0);
4118 }
4119 
4120 /*
4121  *  This function checks the following: given that last_block is the place that
4122  *  our traversal stopped last time, does that guarantee that we've visited
4123  *  every node under subtree_root?  Therefore, we can't just use the raw output
4124  *  of zbookmark_compare.  We have to pass in a modified version of
4125  *  subtree_root; by incrementing the block id, and then checking whether
4126  *  last_block is before or equal to that, we can tell whether or not having
4127  *  visited last_block implies that all of subtree_root's children have been
4128  *  visited.
4129  */
4130 boolean_t
4131 zbookmark_subtree_completed(const dnode_phys_t *dnp,
4132     const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
4133 {
4134 	zbookmark_phys_t mod_zb = *subtree_root;
4135 	mod_zb.zb_blkid++;
4136 	ASSERT(last_block->zb_level == 0);
4137 
4138 	/* The objset_phys_t isn't before anything. */
4139 	if (dnp == NULL)
4140 		return (B_FALSE);
4141 
4142 	/*
4143 	 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
4144 	 * data block size in sectors, because that variable is only used if
4145 	 * the bookmark refers to a block in the meta-dnode.  Since we don't
4146 	 * know without examining it what object it refers to, and there's no
4147 	 * harm in passing in this value in other cases, we always pass it in.
4148 	 *
4149 	 * We pass in 0 for the indirect block size shift because zb2 must be
4150 	 * level 0.  The indirect block size is only used to calculate the span
4151 	 * of the bookmark, but since the bookmark must be level 0, the span is
4152 	 * always 1, so the math works out.
4153 	 *
4154 	 * If you make changes to how the zbookmark_compare code works, be sure
4155 	 * to make sure that this code still works afterwards.
4156 	 */
4157 	return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
4158 	    1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
4159 	    last_block) <= 0);
4160 }
4161