xref: /illumos-gate/usr/src/uts/common/fs/zfs/zio.c (revision 21f7c81c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24  * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25  * Copyright (c) 2014 Integros [integros.com]
26  */
27 
28 #include <sys/sysmacros.h>
29 #include <sys/zfs_context.h>
30 #include <sys/fm/fs/zfs.h>
31 #include <sys/spa.h>
32 #include <sys/txg.h>
33 #include <sys/spa_impl.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/zio_impl.h>
36 #include <sys/zio_compress.h>
37 #include <sys/zio_checksum.h>
38 #include <sys/dmu_objset.h>
39 #include <sys/arc.h>
40 #include <sys/ddt.h>
41 #include <sys/blkptr.h>
42 #include <sys/zfeature.h>
43 #include <sys/metaslab_impl.h>
44 #include <sys/abd.h>
45 #include <sys/cityhash.h>
46 
47 /*
48  * ==========================================================================
49  * I/O type descriptions
50  * ==========================================================================
51  */
52 const char *zio_type_name[ZIO_TYPES] = {
53 	"zio_null", "zio_read", "zio_write", "zio_free", "zio_claim",
54 	"zio_ioctl"
55 };
56 
57 boolean_t zio_dva_throttle_enabled = B_TRUE;
58 
59 /*
60  * ==========================================================================
61  * I/O kmem caches
62  * ==========================================================================
63  */
64 kmem_cache_t *zio_cache;
65 kmem_cache_t *zio_link_cache;
66 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
67 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
68 
69 #ifdef _KERNEL
70 extern vmem_t *zio_alloc_arena;
71 #endif
72 
73 #define	ZIO_PIPELINE_CONTINUE		0x100
74 #define	ZIO_PIPELINE_STOP		0x101
75 
76 #define	BP_SPANB(indblkshift, level) \
77 	(((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
78 #define	COMPARE_META_LEVEL	0x80000000ul
79 /*
80  * The following actions directly effect the spa's sync-to-convergence logic.
81  * The values below define the sync pass when we start performing the action.
82  * Care should be taken when changing these values as they directly impact
83  * spa_sync() performance. Tuning these values may introduce subtle performance
84  * pathologies and should only be done in the context of performance analysis.
85  * These tunables will eventually be removed and replaced with #defines once
86  * enough analysis has been done to determine optimal values.
87  *
88  * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
89  * regular blocks are not deferred.
90  */
91 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
92 int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
93 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
94 
95 /*
96  * An allocating zio is one that either currently has the DVA allocate
97  * stage set or will have it later in its lifetime.
98  */
99 #define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
100 
101 boolean_t	zio_requeue_io_start_cut_in_line = B_TRUE;
102 
103 #ifdef ZFS_DEBUG
104 int zio_buf_debug_limit = 16384;
105 #else
106 int zio_buf_debug_limit = 0;
107 #endif
108 
109 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t);
110 
111 void
112 zio_init(void)
113 {
114 	size_t c;
115 	vmem_t *data_alloc_arena = NULL;
116 
117 #ifdef _KERNEL
118 	data_alloc_arena = zio_alloc_arena;
119 #endif
120 	zio_cache = kmem_cache_create("zio_cache",
121 	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
122 	zio_link_cache = kmem_cache_create("zio_link_cache",
123 	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
124 
125 	/*
126 	 * For small buffers, we want a cache for each multiple of
127 	 * SPA_MINBLOCKSIZE.  For larger buffers, we want a cache
128 	 * for each quarter-power of 2.
129 	 */
130 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
131 		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
132 		size_t p2 = size;
133 		size_t align = 0;
134 		size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0;
135 
136 		while (!ISP2(p2))
137 			p2 &= p2 - 1;
138 
139 #ifndef _KERNEL
140 		/*
141 		 * If we are using watchpoints, put each buffer on its own page,
142 		 * to eliminate the performance overhead of trapping to the
143 		 * kernel when modifying a non-watched buffer that shares the
144 		 * page with a watched buffer.
145 		 */
146 		if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
147 			continue;
148 #endif
149 		if (size <= 4 * SPA_MINBLOCKSIZE) {
150 			align = SPA_MINBLOCKSIZE;
151 		} else if (IS_P2ALIGNED(size, p2 >> 2)) {
152 			align = MIN(p2 >> 2, PAGESIZE);
153 		}
154 
155 		if (align != 0) {
156 			char name[36];
157 			(void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
158 			zio_buf_cache[c] = kmem_cache_create(name, size,
159 			    align, NULL, NULL, NULL, NULL, NULL, cflags);
160 
161 			/*
162 			 * Since zio_data bufs do not appear in crash dumps, we
163 			 * pass KMC_NOTOUCH so that no allocator metadata is
164 			 * stored with the buffers.
165 			 */
166 			(void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
167 			zio_data_buf_cache[c] = kmem_cache_create(name, size,
168 			    align, NULL, NULL, NULL, NULL, data_alloc_arena,
169 			    cflags | KMC_NOTOUCH);
170 		}
171 	}
172 
173 	while (--c != 0) {
174 		ASSERT(zio_buf_cache[c] != NULL);
175 		if (zio_buf_cache[c - 1] == NULL)
176 			zio_buf_cache[c - 1] = zio_buf_cache[c];
177 
178 		ASSERT(zio_data_buf_cache[c] != NULL);
179 		if (zio_data_buf_cache[c - 1] == NULL)
180 			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
181 	}
182 
183 	zio_inject_init();
184 }
185 
186 void
187 zio_fini(void)
188 {
189 	size_t c;
190 	kmem_cache_t *last_cache = NULL;
191 	kmem_cache_t *last_data_cache = NULL;
192 
193 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
194 		if (zio_buf_cache[c] != last_cache) {
195 			last_cache = zio_buf_cache[c];
196 			kmem_cache_destroy(zio_buf_cache[c]);
197 		}
198 		zio_buf_cache[c] = NULL;
199 
200 		if (zio_data_buf_cache[c] != last_data_cache) {
201 			last_data_cache = zio_data_buf_cache[c];
202 			kmem_cache_destroy(zio_data_buf_cache[c]);
203 		}
204 		zio_data_buf_cache[c] = NULL;
205 	}
206 
207 	kmem_cache_destroy(zio_link_cache);
208 	kmem_cache_destroy(zio_cache);
209 
210 	zio_inject_fini();
211 }
212 
213 /*
214  * ==========================================================================
215  * Allocate and free I/O buffers
216  * ==========================================================================
217  */
218 
219 /*
220  * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
221  * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
222  * useful to inspect ZFS metadata, but if possible, we should avoid keeping
223  * excess / transient data in-core during a crashdump.
224  */
225 void *
226 zio_buf_alloc(size_t size)
227 {
228 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
229 
230 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
231 
232 	return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
233 }
234 
235 /*
236  * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
237  * crashdump if the kernel panics.  This exists so that we will limit the amount
238  * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
239  * of kernel heap dumped to disk when the kernel panics)
240  */
241 void *
242 zio_data_buf_alloc(size_t size)
243 {
244 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
245 
246 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
247 
248 	return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
249 }
250 
251 void
252 zio_buf_free(void *buf, size_t size)
253 {
254 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
255 
256 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
257 
258 	kmem_cache_free(zio_buf_cache[c], buf);
259 }
260 
261 void
262 zio_data_buf_free(void *buf, size_t size)
263 {
264 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
265 
266 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
267 
268 	kmem_cache_free(zio_data_buf_cache[c], buf);
269 }
270 
271 /*
272  * ==========================================================================
273  * Push and pop I/O transform buffers
274  * ==========================================================================
275  */
276 void
277 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize,
278     zio_transform_func_t *transform)
279 {
280 	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
281 
282 	/*
283 	 * Ensure that anyone expecting this zio to contain a linear ABD isn't
284 	 * going to get a nasty surprise when they try to access the data.
285 	 */
286 	IMPLY(abd_is_linear(zio->io_abd), abd_is_linear(data));
287 
288 	zt->zt_orig_abd = zio->io_abd;
289 	zt->zt_orig_size = zio->io_size;
290 	zt->zt_bufsize = bufsize;
291 	zt->zt_transform = transform;
292 
293 	zt->zt_next = zio->io_transform_stack;
294 	zio->io_transform_stack = zt;
295 
296 	zio->io_abd = data;
297 	zio->io_size = size;
298 }
299 
300 void
301 zio_pop_transforms(zio_t *zio)
302 {
303 	zio_transform_t *zt;
304 
305 	while ((zt = zio->io_transform_stack) != NULL) {
306 		if (zt->zt_transform != NULL)
307 			zt->zt_transform(zio,
308 			    zt->zt_orig_abd, zt->zt_orig_size);
309 
310 		if (zt->zt_bufsize != 0)
311 			abd_free(zio->io_abd);
312 
313 		zio->io_abd = zt->zt_orig_abd;
314 		zio->io_size = zt->zt_orig_size;
315 		zio->io_transform_stack = zt->zt_next;
316 
317 		kmem_free(zt, sizeof (zio_transform_t));
318 	}
319 }
320 
321 /*
322  * ==========================================================================
323  * I/O transform callbacks for subblocks and decompression
324  * ==========================================================================
325  */
326 static void
327 zio_subblock(zio_t *zio, abd_t *data, uint64_t size)
328 {
329 	ASSERT(zio->io_size > size);
330 
331 	if (zio->io_type == ZIO_TYPE_READ)
332 		abd_copy(data, zio->io_abd, size);
333 }
334 
335 static void
336 zio_decompress(zio_t *zio, abd_t *data, uint64_t size)
337 {
338 	if (zio->io_error == 0) {
339 		void *tmp = abd_borrow_buf(data, size);
340 		int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
341 		    zio->io_abd, tmp, zio->io_size, size);
342 		abd_return_buf_copy(data, tmp, size);
343 
344 		if (ret != 0)
345 			zio->io_error = SET_ERROR(EIO);
346 	}
347 }
348 
349 /*
350  * ==========================================================================
351  * I/O parent/child relationships and pipeline interlocks
352  * ==========================================================================
353  */
354 zio_t *
355 zio_walk_parents(zio_t *cio, zio_link_t **zl)
356 {
357 	list_t *pl = &cio->io_parent_list;
358 
359 	*zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl);
360 	if (*zl == NULL)
361 		return (NULL);
362 
363 	ASSERT((*zl)->zl_child == cio);
364 	return ((*zl)->zl_parent);
365 }
366 
367 zio_t *
368 zio_walk_children(zio_t *pio, zio_link_t **zl)
369 {
370 	list_t *cl = &pio->io_child_list;
371 
372 	*zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl);
373 	if (*zl == NULL)
374 		return (NULL);
375 
376 	ASSERT((*zl)->zl_parent == pio);
377 	return ((*zl)->zl_child);
378 }
379 
380 zio_t *
381 zio_unique_parent(zio_t *cio)
382 {
383 	zio_link_t *zl = NULL;
384 	zio_t *pio = zio_walk_parents(cio, &zl);
385 
386 	VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL);
387 	return (pio);
388 }
389 
390 void
391 zio_add_child(zio_t *pio, zio_t *cio)
392 {
393 	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
394 
395 	/*
396 	 * Logical I/Os can have logical, gang, or vdev children.
397 	 * Gang I/Os can have gang or vdev children.
398 	 * Vdev I/Os can only have vdev children.
399 	 * The following ASSERT captures all of these constraints.
400 	 */
401 	ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
402 
403 	zl->zl_parent = pio;
404 	zl->zl_child = cio;
405 
406 	mutex_enter(&cio->io_lock);
407 	mutex_enter(&pio->io_lock);
408 
409 	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
410 
411 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
412 		pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
413 
414 	list_insert_head(&pio->io_child_list, zl);
415 	list_insert_head(&cio->io_parent_list, zl);
416 
417 	pio->io_child_count++;
418 	cio->io_parent_count++;
419 
420 	mutex_exit(&pio->io_lock);
421 	mutex_exit(&cio->io_lock);
422 }
423 
424 static void
425 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
426 {
427 	ASSERT(zl->zl_parent == pio);
428 	ASSERT(zl->zl_child == cio);
429 
430 	mutex_enter(&cio->io_lock);
431 	mutex_enter(&pio->io_lock);
432 
433 	list_remove(&pio->io_child_list, zl);
434 	list_remove(&cio->io_parent_list, zl);
435 
436 	pio->io_child_count--;
437 	cio->io_parent_count--;
438 
439 	mutex_exit(&pio->io_lock);
440 	mutex_exit(&cio->io_lock);
441 
442 	kmem_cache_free(zio_link_cache, zl);
443 }
444 
445 static boolean_t
446 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait)
447 {
448 	boolean_t waiting = B_FALSE;
449 
450 	mutex_enter(&zio->io_lock);
451 	ASSERT(zio->io_stall == NULL);
452 	for (int c = 0; c < ZIO_CHILD_TYPES; c++) {
453 		if (!(ZIO_CHILD_BIT_IS_SET(childbits, c)))
454 			continue;
455 
456 		uint64_t *countp = &zio->io_children[c][wait];
457 		if (*countp != 0) {
458 			zio->io_stage >>= 1;
459 			ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN);
460 			zio->io_stall = countp;
461 			waiting = B_TRUE;
462 			break;
463 		}
464 	}
465 	mutex_exit(&zio->io_lock);
466 	return (waiting);
467 }
468 
469 static void
470 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
471 {
472 	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
473 	int *errorp = &pio->io_child_error[zio->io_child_type];
474 
475 	mutex_enter(&pio->io_lock);
476 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
477 		*errorp = zio_worst_error(*errorp, zio->io_error);
478 	pio->io_reexecute |= zio->io_reexecute;
479 	ASSERT3U(*countp, >, 0);
480 
481 	(*countp)--;
482 
483 	if (*countp == 0 && pio->io_stall == countp) {
484 		zio_taskq_type_t type =
485 		    pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE :
486 		    ZIO_TASKQ_INTERRUPT;
487 		pio->io_stall = NULL;
488 		mutex_exit(&pio->io_lock);
489 		/*
490 		 * Dispatch the parent zio in its own taskq so that
491 		 * the child can continue to make progress. This also
492 		 * prevents overflowing the stack when we have deeply nested
493 		 * parent-child relationships.
494 		 */
495 		zio_taskq_dispatch(pio, type, B_FALSE);
496 	} else {
497 		mutex_exit(&pio->io_lock);
498 	}
499 }
500 
501 static void
502 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
503 {
504 	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
505 		zio->io_error = zio->io_child_error[c];
506 }
507 
508 int
509 zio_bookmark_compare(const void *x1, const void *x2)
510 {
511 	const zio_t *z1 = x1;
512 	const zio_t *z2 = x2;
513 
514 	if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset)
515 		return (-1);
516 	if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset)
517 		return (1);
518 
519 	if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object)
520 		return (-1);
521 	if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object)
522 		return (1);
523 
524 	if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level)
525 		return (-1);
526 	if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level)
527 		return (1);
528 
529 	if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid)
530 		return (-1);
531 	if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid)
532 		return (1);
533 
534 	if (z1 < z2)
535 		return (-1);
536 	if (z1 > z2)
537 		return (1);
538 
539 	return (0);
540 }
541 
542 /*
543  * ==========================================================================
544  * Create the various types of I/O (read, write, free, etc)
545  * ==========================================================================
546  */
547 static zio_t *
548 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
549     abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done,
550     void *private, zio_type_t type, zio_priority_t priority,
551     enum zio_flag flags, vdev_t *vd, uint64_t offset,
552     const zbookmark_phys_t *zb, enum zio_stage stage, enum zio_stage pipeline)
553 {
554 	zio_t *zio;
555 
556 	ASSERT3U(psize, <=, SPA_MAXBLOCKSIZE);
557 	ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0);
558 	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
559 
560 	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
561 	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
562 	ASSERT(vd || stage == ZIO_STAGE_OPEN);
563 
564 	IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW) != 0);
565 
566 	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
567 	bzero(zio, sizeof (zio_t));
568 
569 	mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
570 	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
571 
572 	list_create(&zio->io_parent_list, sizeof (zio_link_t),
573 	    offsetof(zio_link_t, zl_parent_node));
574 	list_create(&zio->io_child_list, sizeof (zio_link_t),
575 	    offsetof(zio_link_t, zl_child_node));
576 	metaslab_trace_init(&zio->io_alloc_list);
577 
578 	if (vd != NULL)
579 		zio->io_child_type = ZIO_CHILD_VDEV;
580 	else if (flags & ZIO_FLAG_GANG_CHILD)
581 		zio->io_child_type = ZIO_CHILD_GANG;
582 	else if (flags & ZIO_FLAG_DDT_CHILD)
583 		zio->io_child_type = ZIO_CHILD_DDT;
584 	else
585 		zio->io_child_type = ZIO_CHILD_LOGICAL;
586 
587 	if (bp != NULL) {
588 		zio->io_bp = (blkptr_t *)bp;
589 		zio->io_bp_copy = *bp;
590 		zio->io_bp_orig = *bp;
591 		if (type != ZIO_TYPE_WRITE ||
592 		    zio->io_child_type == ZIO_CHILD_DDT)
593 			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
594 		if (zio->io_child_type == ZIO_CHILD_LOGICAL)
595 			zio->io_logical = zio;
596 		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
597 			pipeline |= ZIO_GANG_STAGES;
598 	}
599 
600 	zio->io_spa = spa;
601 	zio->io_txg = txg;
602 	zio->io_done = done;
603 	zio->io_private = private;
604 	zio->io_type = type;
605 	zio->io_priority = priority;
606 	zio->io_vd = vd;
607 	zio->io_offset = offset;
608 	zio->io_orig_abd = zio->io_abd = data;
609 	zio->io_orig_size = zio->io_size = psize;
610 	zio->io_lsize = lsize;
611 	zio->io_orig_flags = zio->io_flags = flags;
612 	zio->io_orig_stage = zio->io_stage = stage;
613 	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
614 	zio->io_pipeline_trace = ZIO_STAGE_OPEN;
615 
616 	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
617 	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
618 
619 	if (zb != NULL)
620 		zio->io_bookmark = *zb;
621 
622 	if (pio != NULL) {
623 		if (zio->io_logical == NULL)
624 			zio->io_logical = pio->io_logical;
625 		if (zio->io_child_type == ZIO_CHILD_GANG)
626 			zio->io_gang_leader = pio->io_gang_leader;
627 		zio_add_child(pio, zio);
628 	}
629 
630 	return (zio);
631 }
632 
633 static void
634 zio_destroy(zio_t *zio)
635 {
636 	metaslab_trace_fini(&zio->io_alloc_list);
637 	list_destroy(&zio->io_parent_list);
638 	list_destroy(&zio->io_child_list);
639 	mutex_destroy(&zio->io_lock);
640 	cv_destroy(&zio->io_cv);
641 	kmem_cache_free(zio_cache, zio);
642 }
643 
644 zio_t *
645 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
646     void *private, enum zio_flag flags)
647 {
648 	zio_t *zio;
649 
650 	zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
651 	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
652 	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
653 
654 	return (zio);
655 }
656 
657 zio_t *
658 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
659 {
660 	return (zio_null(NULL, spa, NULL, done, private, flags));
661 }
662 
663 void
664 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp)
665 {
666 	if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
667 		zfs_panic_recover("blkptr at %p has invalid TYPE %llu",
668 		    bp, (longlong_t)BP_GET_TYPE(bp));
669 	}
670 	if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS ||
671 	    BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) {
672 		zfs_panic_recover("blkptr at %p has invalid CHECKSUM %llu",
673 		    bp, (longlong_t)BP_GET_CHECKSUM(bp));
674 	}
675 	if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS ||
676 	    BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) {
677 		zfs_panic_recover("blkptr at %p has invalid COMPRESS %llu",
678 		    bp, (longlong_t)BP_GET_COMPRESS(bp));
679 	}
680 	if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
681 		zfs_panic_recover("blkptr at %p has invalid LSIZE %llu",
682 		    bp, (longlong_t)BP_GET_LSIZE(bp));
683 	}
684 	if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
685 		zfs_panic_recover("blkptr at %p has invalid PSIZE %llu",
686 		    bp, (longlong_t)BP_GET_PSIZE(bp));
687 	}
688 
689 	if (BP_IS_EMBEDDED(bp)) {
690 		if (BPE_GET_ETYPE(bp) > NUM_BP_EMBEDDED_TYPES) {
691 			zfs_panic_recover("blkptr at %p has invalid ETYPE %llu",
692 			    bp, (longlong_t)BPE_GET_ETYPE(bp));
693 		}
694 	}
695 
696 	/*
697 	 * Do not verify individual DVAs if the config is not trusted. This
698 	 * will be done once the zio is executed in vdev_mirror_map_alloc.
699 	 */
700 	if (!spa->spa_trust_config)
701 		return;
702 
703 	/*
704 	 * Pool-specific checks.
705 	 *
706 	 * Note: it would be nice to verify that the blk_birth and
707 	 * BP_PHYSICAL_BIRTH() are not too large.  However, spa_freeze()
708 	 * allows the birth time of log blocks (and dmu_sync()-ed blocks
709 	 * that are in the log) to be arbitrarily large.
710 	 */
711 	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
712 		uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]);
713 		if (vdevid >= spa->spa_root_vdev->vdev_children) {
714 			zfs_panic_recover("blkptr at %p DVA %u has invalid "
715 			    "VDEV %llu",
716 			    bp, i, (longlong_t)vdevid);
717 			continue;
718 		}
719 		vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
720 		if (vd == NULL) {
721 			zfs_panic_recover("blkptr at %p DVA %u has invalid "
722 			    "VDEV %llu",
723 			    bp, i, (longlong_t)vdevid);
724 			continue;
725 		}
726 		if (vd->vdev_ops == &vdev_hole_ops) {
727 			zfs_panic_recover("blkptr at %p DVA %u has hole "
728 			    "VDEV %llu",
729 			    bp, i, (longlong_t)vdevid);
730 			continue;
731 		}
732 		if (vd->vdev_ops == &vdev_missing_ops) {
733 			/*
734 			 * "missing" vdevs are valid during import, but we
735 			 * don't have their detailed info (e.g. asize), so
736 			 * we can't perform any more checks on them.
737 			 */
738 			continue;
739 		}
740 		uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
741 		uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]);
742 		if (BP_IS_GANG(bp))
743 			asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
744 		if (offset + asize > vd->vdev_asize) {
745 			zfs_panic_recover("blkptr at %p DVA %u has invalid "
746 			    "OFFSET %llu",
747 			    bp, i, (longlong_t)offset);
748 		}
749 	}
750 }
751 
752 boolean_t
753 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp)
754 {
755 	uint64_t vdevid = DVA_GET_VDEV(dva);
756 
757 	if (vdevid >= spa->spa_root_vdev->vdev_children)
758 		return (B_FALSE);
759 
760 	vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
761 	if (vd == NULL)
762 		return (B_FALSE);
763 
764 	if (vd->vdev_ops == &vdev_hole_ops)
765 		return (B_FALSE);
766 
767 	if (vd->vdev_ops == &vdev_missing_ops) {
768 		return (B_FALSE);
769 	}
770 
771 	uint64_t offset = DVA_GET_OFFSET(dva);
772 	uint64_t asize = DVA_GET_ASIZE(dva);
773 
774 	if (BP_IS_GANG(bp))
775 		asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
776 	if (offset + asize > vd->vdev_asize)
777 		return (B_FALSE);
778 
779 	return (B_TRUE);
780 }
781 
782 zio_t *
783 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
784     abd_t *data, uint64_t size, zio_done_func_t *done, void *private,
785     zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
786 {
787 	zio_t *zio;
788 
789 	zfs_blkptr_verify(spa, bp);
790 
791 	zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
792 	    data, size, size, done, private,
793 	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
794 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
795 	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
796 
797 	return (zio);
798 }
799 
800 zio_t *
801 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
802     abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp,
803     zio_done_func_t *ready, zio_done_func_t *children_ready,
804     zio_done_func_t *physdone, zio_done_func_t *done,
805     void *private, zio_priority_t priority, enum zio_flag flags,
806     const zbookmark_phys_t *zb)
807 {
808 	zio_t *zio;
809 
810 	ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
811 	    zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
812 	    zp->zp_compress >= ZIO_COMPRESS_OFF &&
813 	    zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
814 	    DMU_OT_IS_VALID(zp->zp_type) &&
815 	    zp->zp_level < 32 &&
816 	    zp->zp_copies > 0 &&
817 	    zp->zp_copies <= spa_max_replication(spa));
818 
819 	zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private,
820 	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
821 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
822 	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
823 
824 	zio->io_ready = ready;
825 	zio->io_children_ready = children_ready;
826 	zio->io_physdone = physdone;
827 	zio->io_prop = *zp;
828 
829 	/*
830 	 * Data can be NULL if we are going to call zio_write_override() to
831 	 * provide the already-allocated BP.  But we may need the data to
832 	 * verify a dedup hit (if requested).  In this case, don't try to
833 	 * dedup (just take the already-allocated BP verbatim).
834 	 */
835 	if (data == NULL && zio->io_prop.zp_dedup_verify) {
836 		zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
837 	}
838 
839 	return (zio);
840 }
841 
842 zio_t *
843 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data,
844     uint64_t size, zio_done_func_t *done, void *private,
845     zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb)
846 {
847 	zio_t *zio;
848 
849 	zio = zio_create(pio, spa, txg, bp, data, size, size, done, private,
850 	    ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb,
851 	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
852 
853 	return (zio);
854 }
855 
856 void
857 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
858 {
859 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
860 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
861 	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
862 	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
863 
864 	/*
865 	 * We must reset the io_prop to match the values that existed
866 	 * when the bp was first written by dmu_sync() keeping in mind
867 	 * that nopwrite and dedup are mutually exclusive.
868 	 */
869 	zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
870 	zio->io_prop.zp_nopwrite = nopwrite;
871 	zio->io_prop.zp_copies = copies;
872 	zio->io_bp_override = bp;
873 }
874 
875 void
876 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
877 {
878 
879 	zfs_blkptr_verify(spa, bp);
880 
881 	/*
882 	 * The check for EMBEDDED is a performance optimization.  We
883 	 * process the free here (by ignoring it) rather than
884 	 * putting it on the list and then processing it in zio_free_sync().
885 	 */
886 	if (BP_IS_EMBEDDED(bp))
887 		return;
888 	metaslab_check_free(spa, bp);
889 
890 	/*
891 	 * Frees that are for the currently-syncing txg, are not going to be
892 	 * deferred, and which will not need to do a read (i.e. not GANG or
893 	 * DEDUP), can be processed immediately.  Otherwise, put them on the
894 	 * in-memory list for later processing.
895 	 */
896 	if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp) ||
897 	    txg != spa->spa_syncing_txg ||
898 	    spa_sync_pass(spa) >= zfs_sync_pass_deferred_free) {
899 		bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
900 	} else {
901 		VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp, 0)));
902 	}
903 }
904 
905 zio_t *
906 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
907     enum zio_flag flags)
908 {
909 	zio_t *zio;
910 	enum zio_stage stage = ZIO_FREE_PIPELINE;
911 
912 	ASSERT(!BP_IS_HOLE(bp));
913 	ASSERT(spa_syncing_txg(spa) == txg);
914 	ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free);
915 
916 	if (BP_IS_EMBEDDED(bp))
917 		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
918 
919 	metaslab_check_free(spa, bp);
920 	arc_freed(spa, bp);
921 
922 	/*
923 	 * GANG and DEDUP blocks can induce a read (for the gang block header,
924 	 * or the DDT), so issue them asynchronously so that this thread is
925 	 * not tied up.
926 	 */
927 	if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp))
928 		stage |= ZIO_STAGE_ISSUE_ASYNC;
929 
930 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
931 	    BP_GET_PSIZE(bp), NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW,
932 	    flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage);
933 
934 	return (zio);
935 }
936 
937 zio_t *
938 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
939     zio_done_func_t *done, void *private, enum zio_flag flags)
940 {
941 	zio_t *zio;
942 
943 	zfs_blkptr_verify(spa, bp);
944 
945 	if (BP_IS_EMBEDDED(bp))
946 		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
947 
948 	/*
949 	 * A claim is an allocation of a specific block.  Claims are needed
950 	 * to support immediate writes in the intent log.  The issue is that
951 	 * immediate writes contain committed data, but in a txg that was
952 	 * *not* committed.  Upon opening the pool after an unclean shutdown,
953 	 * the intent log claims all blocks that contain immediate write data
954 	 * so that the SPA knows they're in use.
955 	 *
956 	 * All claims *must* be resolved in the first txg -- before the SPA
957 	 * starts allocating blocks -- so that nothing is allocated twice.
958 	 * If txg == 0 we just verify that the block is claimable.
959 	 */
960 	ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <,
961 	    spa_min_claim_txg(spa));
962 	ASSERT(txg == spa_min_claim_txg(spa) || txg == 0);
963 	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(1M) */
964 
965 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
966 	    BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW,
967 	    flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
968 	ASSERT0(zio->io_queued_timestamp);
969 
970 	return (zio);
971 }
972 
973 zio_t *
974 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
975     zio_done_func_t *done, void *private, enum zio_flag flags)
976 {
977 	zio_t *zio;
978 	int c;
979 
980 	if (vd->vdev_children == 0) {
981 		zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
982 		    ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
983 		    ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
984 
985 		zio->io_cmd = cmd;
986 	} else {
987 		zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
988 
989 		for (c = 0; c < vd->vdev_children; c++)
990 			zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
991 			    done, private, flags));
992 	}
993 
994 	return (zio);
995 }
996 
997 zio_t *
998 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
999     abd_t *data, int checksum, zio_done_func_t *done, void *private,
1000     zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1001 {
1002 	zio_t *zio;
1003 
1004 	ASSERT(vd->vdev_children == 0);
1005 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1006 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1007 	ASSERT3U(offset + size, <=, vd->vdev_psize);
1008 
1009 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1010 	    private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1011 	    offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
1012 
1013 	zio->io_prop.zp_checksum = checksum;
1014 
1015 	return (zio);
1016 }
1017 
1018 zio_t *
1019 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1020     abd_t *data, int checksum, zio_done_func_t *done, void *private,
1021     zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1022 {
1023 	zio_t *zio;
1024 
1025 	ASSERT(vd->vdev_children == 0);
1026 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1027 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1028 	ASSERT3U(offset + size, <=, vd->vdev_psize);
1029 
1030 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1031 	    private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1032 	    offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
1033 
1034 	zio->io_prop.zp_checksum = checksum;
1035 
1036 	if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
1037 		/*
1038 		 * zec checksums are necessarily destructive -- they modify
1039 		 * the end of the write buffer to hold the verifier/checksum.
1040 		 * Therefore, we must make a local copy in case the data is
1041 		 * being written to multiple places in parallel.
1042 		 */
1043 		abd_t *wbuf = abd_alloc_sametype(data, size);
1044 		abd_copy(wbuf, data, size);
1045 
1046 		zio_push_transform(zio, wbuf, size, size, NULL);
1047 	}
1048 
1049 	return (zio);
1050 }
1051 
1052 /*
1053  * Create a child I/O to do some work for us.
1054  */
1055 zio_t *
1056 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1057     abd_t *data, uint64_t size, int type, zio_priority_t priority,
1058     enum zio_flag flags, zio_done_func_t *done, void *private)
1059 {
1060 	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1061 	zio_t *zio;
1062 
1063 	/*
1064 	 * vdev child I/Os do not propagate their error to the parent.
1065 	 * Therefore, for correct operation the caller *must* check for
1066 	 * and handle the error in the child i/o's done callback.
1067 	 * The only exceptions are i/os that we don't care about
1068 	 * (OPTIONAL or REPAIR).
1069 	 */
1070 	ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) ||
1071 	    done != NULL);
1072 
1073 	if (type == ZIO_TYPE_READ && bp != NULL) {
1074 		/*
1075 		 * If we have the bp, then the child should perform the
1076 		 * checksum and the parent need not.  This pushes error
1077 		 * detection as close to the leaves as possible and
1078 		 * eliminates redundant checksums in the interior nodes.
1079 		 */
1080 		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1081 		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1082 	}
1083 
1084 	if (vd->vdev_ops->vdev_op_leaf) {
1085 		ASSERT0(vd->vdev_children);
1086 		offset += VDEV_LABEL_START_SIZE;
1087 	}
1088 
1089 	flags |= ZIO_VDEV_CHILD_FLAGS(pio);
1090 
1091 	/*
1092 	 * If we've decided to do a repair, the write is not speculative --
1093 	 * even if the original read was.
1094 	 */
1095 	if (flags & ZIO_FLAG_IO_REPAIR)
1096 		flags &= ~ZIO_FLAG_SPECULATIVE;
1097 
1098 	/*
1099 	 * If we're creating a child I/O that is not associated with a
1100 	 * top-level vdev, then the child zio is not an allocating I/O.
1101 	 * If this is a retried I/O then we ignore it since we will
1102 	 * have already processed the original allocating I/O.
1103 	 */
1104 	if (flags & ZIO_FLAG_IO_ALLOCATING &&
1105 	    (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) {
1106 		metaslab_class_t *mc = spa_normal_class(pio->io_spa);
1107 
1108 		ASSERT(mc->mc_alloc_throttle_enabled);
1109 		ASSERT(type == ZIO_TYPE_WRITE);
1110 		ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE);
1111 		ASSERT(!(flags & ZIO_FLAG_IO_REPAIR));
1112 		ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) ||
1113 		    pio->io_child_type == ZIO_CHILD_GANG);
1114 
1115 		flags &= ~ZIO_FLAG_IO_ALLOCATING;
1116 	}
1117 
1118 	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size,
1119 	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1120 	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1121 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
1122 
1123 	zio->io_physdone = pio->io_physdone;
1124 	if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
1125 		zio->io_logical->io_phys_children++;
1126 
1127 	return (zio);
1128 }
1129 
1130 zio_t *
1131 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size,
1132     zio_type_t type, zio_priority_t priority, enum zio_flag flags,
1133     zio_done_func_t *done, void *private)
1134 {
1135 	zio_t *zio;
1136 
1137 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1138 
1139 	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1140 	    data, size, size, done, private, type, priority,
1141 	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1142 	    vd, offset, NULL,
1143 	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1144 
1145 	return (zio);
1146 }
1147 
1148 void
1149 zio_flush(zio_t *zio, vdev_t *vd)
1150 {
1151 	zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
1152 	    NULL, NULL,
1153 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1154 }
1155 
1156 void
1157 zio_shrink(zio_t *zio, uint64_t size)
1158 {
1159 	ASSERT3P(zio->io_executor, ==, NULL);
1160 	ASSERT3P(zio->io_orig_size, ==, zio->io_size);
1161 	ASSERT3U(size, <=, zio->io_size);
1162 
1163 	/*
1164 	 * We don't shrink for raidz because of problems with the
1165 	 * reconstruction when reading back less than the block size.
1166 	 * Note, BP_IS_RAIDZ() assumes no compression.
1167 	 */
1168 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1169 	if (!BP_IS_RAIDZ(zio->io_bp)) {
1170 		/* we are not doing a raw write */
1171 		ASSERT3U(zio->io_size, ==, zio->io_lsize);
1172 		zio->io_orig_size = zio->io_size = zio->io_lsize = size;
1173 	}
1174 }
1175 
1176 /*
1177  * ==========================================================================
1178  * Prepare to read and write logical blocks
1179  * ==========================================================================
1180  */
1181 
1182 static int
1183 zio_read_bp_init(zio_t *zio)
1184 {
1185 	blkptr_t *bp = zio->io_bp;
1186 
1187 	ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1188 
1189 	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1190 	    zio->io_child_type == ZIO_CHILD_LOGICAL &&
1191 	    !(zio->io_flags & ZIO_FLAG_RAW)) {
1192 		uint64_t psize =
1193 		    BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1194 		zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1195 		    psize, psize, zio_decompress);
1196 	}
1197 
1198 	if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1199 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1200 
1201 		int psize = BPE_GET_PSIZE(bp);
1202 		void *data = abd_borrow_buf(zio->io_abd, psize);
1203 		decode_embedded_bp_compressed(bp, data);
1204 		abd_return_buf_copy(zio->io_abd, data, psize);
1205 	} else {
1206 		ASSERT(!BP_IS_EMBEDDED(bp));
1207 		ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1208 	}
1209 
1210 	if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1211 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1212 
1213 	if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1214 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1215 
1216 	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1217 		zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1218 
1219 	return (ZIO_PIPELINE_CONTINUE);
1220 }
1221 
1222 static int
1223 zio_write_bp_init(zio_t *zio)
1224 {
1225 	if (!IO_IS_ALLOCATING(zio))
1226 		return (ZIO_PIPELINE_CONTINUE);
1227 
1228 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1229 
1230 	if (zio->io_bp_override) {
1231 		blkptr_t *bp = zio->io_bp;
1232 		zio_prop_t *zp = &zio->io_prop;
1233 
1234 		ASSERT(bp->blk_birth != zio->io_txg);
1235 		ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1236 
1237 		*bp = *zio->io_bp_override;
1238 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1239 
1240 		if (BP_IS_EMBEDDED(bp))
1241 			return (ZIO_PIPELINE_CONTINUE);
1242 
1243 		/*
1244 		 * If we've been overridden and nopwrite is set then
1245 		 * set the flag accordingly to indicate that a nopwrite
1246 		 * has already occurred.
1247 		 */
1248 		if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1249 			ASSERT(!zp->zp_dedup);
1250 			ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum);
1251 			zio->io_flags |= ZIO_FLAG_NOPWRITE;
1252 			return (ZIO_PIPELINE_CONTINUE);
1253 		}
1254 
1255 		ASSERT(!zp->zp_nopwrite);
1256 
1257 		if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1258 			return (ZIO_PIPELINE_CONTINUE);
1259 
1260 		ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1261 		    ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1262 
1263 		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) {
1264 			BP_SET_DEDUP(bp, 1);
1265 			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1266 			return (ZIO_PIPELINE_CONTINUE);
1267 		}
1268 
1269 		/*
1270 		 * We were unable to handle this as an override bp, treat
1271 		 * it as a regular write I/O.
1272 		 */
1273 		zio->io_bp_override = NULL;
1274 		*bp = zio->io_bp_orig;
1275 		zio->io_pipeline = zio->io_orig_pipeline;
1276 	}
1277 
1278 	return (ZIO_PIPELINE_CONTINUE);
1279 }
1280 
1281 static int
1282 zio_write_compress(zio_t *zio)
1283 {
1284 	spa_t *spa = zio->io_spa;
1285 	zio_prop_t *zp = &zio->io_prop;
1286 	enum zio_compress compress = zp->zp_compress;
1287 	blkptr_t *bp = zio->io_bp;
1288 	uint64_t lsize = zio->io_lsize;
1289 	uint64_t psize = zio->io_size;
1290 	int pass = 1;
1291 
1292 	EQUIV(lsize != psize, (zio->io_flags & ZIO_FLAG_RAW) != 0);
1293 
1294 	/*
1295 	 * If our children haven't all reached the ready stage,
1296 	 * wait for them and then repeat this pipeline stage.
1297 	 */
1298 	if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT |
1299 	    ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) {
1300 		return (ZIO_PIPELINE_STOP);
1301 	}
1302 
1303 	if (!IO_IS_ALLOCATING(zio))
1304 		return (ZIO_PIPELINE_CONTINUE);
1305 
1306 	if (zio->io_children_ready != NULL) {
1307 		/*
1308 		 * Now that all our children are ready, run the callback
1309 		 * associated with this zio in case it wants to modify the
1310 		 * data to be written.
1311 		 */
1312 		ASSERT3U(zp->zp_level, >, 0);
1313 		zio->io_children_ready(zio);
1314 	}
1315 
1316 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1317 	ASSERT(zio->io_bp_override == NULL);
1318 
1319 	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1320 		/*
1321 		 * We're rewriting an existing block, which means we're
1322 		 * working on behalf of spa_sync().  For spa_sync() to
1323 		 * converge, it must eventually be the case that we don't
1324 		 * have to allocate new blocks.  But compression changes
1325 		 * the blocksize, which forces a reallocate, and makes
1326 		 * convergence take longer.  Therefore, after the first
1327 		 * few passes, stop compressing to ensure convergence.
1328 		 */
1329 		pass = spa_sync_pass(spa);
1330 
1331 		ASSERT(zio->io_txg == spa_syncing_txg(spa));
1332 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1333 		ASSERT(!BP_GET_DEDUP(bp));
1334 
1335 		if (pass >= zfs_sync_pass_dont_compress)
1336 			compress = ZIO_COMPRESS_OFF;
1337 
1338 		/* Make sure someone doesn't change their mind on overwrites */
1339 		ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1340 		    spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1341 	}
1342 
1343 	/* If it's a compressed write that is not raw, compress the buffer. */
1344 	if (compress != ZIO_COMPRESS_OFF && psize == lsize) {
1345 		void *cbuf = zio_buf_alloc(lsize);
1346 		psize = zio_compress_data(compress, zio->io_abd, cbuf, lsize);
1347 		if (psize == 0 || psize == lsize) {
1348 			compress = ZIO_COMPRESS_OFF;
1349 			zio_buf_free(cbuf, lsize);
1350 		} else if (!zp->zp_dedup && psize <= BPE_PAYLOAD_SIZE &&
1351 		    zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1352 		    spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1353 			encode_embedded_bp_compressed(bp,
1354 			    cbuf, compress, lsize, psize);
1355 			BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1356 			BP_SET_TYPE(bp, zio->io_prop.zp_type);
1357 			BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1358 			zio_buf_free(cbuf, lsize);
1359 			bp->blk_birth = zio->io_txg;
1360 			zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1361 			ASSERT(spa_feature_is_active(spa,
1362 			    SPA_FEATURE_EMBEDDED_DATA));
1363 			return (ZIO_PIPELINE_CONTINUE);
1364 		} else {
1365 			/*
1366 			 * Round up compressed size up to the ashift
1367 			 * of the smallest-ashift device, and zero the tail.
1368 			 * This ensures that the compressed size of the BP
1369 			 * (and thus compressratio property) are correct,
1370 			 * in that we charge for the padding used to fill out
1371 			 * the last sector.
1372 			 */
1373 			ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
1374 			size_t rounded = (size_t)P2ROUNDUP(psize,
1375 			    1ULL << spa->spa_min_ashift);
1376 			if (rounded >= lsize) {
1377 				compress = ZIO_COMPRESS_OFF;
1378 				zio_buf_free(cbuf, lsize);
1379 				psize = lsize;
1380 			} else {
1381 				abd_t *cdata = abd_get_from_buf(cbuf, lsize);
1382 				abd_take_ownership_of_buf(cdata, B_TRUE);
1383 				abd_zero_off(cdata, psize, rounded - psize);
1384 				psize = rounded;
1385 				zio_push_transform(zio, cdata,
1386 				    psize, lsize, NULL);
1387 			}
1388 		}
1389 
1390 		/*
1391 		 * We were unable to handle this as an override bp, treat
1392 		 * it as a regular write I/O.
1393 		 */
1394 		zio->io_bp_override = NULL;
1395 		*bp = zio->io_bp_orig;
1396 		zio->io_pipeline = zio->io_orig_pipeline;
1397 	} else {
1398 		ASSERT3U(psize, !=, 0);
1399 	}
1400 
1401 	/*
1402 	 * The final pass of spa_sync() must be all rewrites, but the first
1403 	 * few passes offer a trade-off: allocating blocks defers convergence,
1404 	 * but newly allocated blocks are sequential, so they can be written
1405 	 * to disk faster.  Therefore, we allow the first few passes of
1406 	 * spa_sync() to allocate new blocks, but force rewrites after that.
1407 	 * There should only be a handful of blocks after pass 1 in any case.
1408 	 */
1409 	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1410 	    BP_GET_PSIZE(bp) == psize &&
1411 	    pass >= zfs_sync_pass_rewrite) {
1412 		ASSERT(psize != 0);
1413 		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1414 		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1415 		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1416 	} else {
1417 		BP_ZERO(bp);
1418 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
1419 	}
1420 
1421 	if (psize == 0) {
1422 		if (zio->io_bp_orig.blk_birth != 0 &&
1423 		    spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1424 			BP_SET_LSIZE(bp, lsize);
1425 			BP_SET_TYPE(bp, zp->zp_type);
1426 			BP_SET_LEVEL(bp, zp->zp_level);
1427 			BP_SET_BIRTH(bp, zio->io_txg, 0);
1428 		}
1429 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1430 	} else {
1431 		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1432 		BP_SET_LSIZE(bp, lsize);
1433 		BP_SET_TYPE(bp, zp->zp_type);
1434 		BP_SET_LEVEL(bp, zp->zp_level);
1435 		BP_SET_PSIZE(bp, psize);
1436 		BP_SET_COMPRESS(bp, compress);
1437 		BP_SET_CHECKSUM(bp, zp->zp_checksum);
1438 		BP_SET_DEDUP(bp, zp->zp_dedup);
1439 		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1440 		if (zp->zp_dedup) {
1441 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1442 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1443 			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1444 		}
1445 		if (zp->zp_nopwrite) {
1446 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1447 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1448 			zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1449 		}
1450 	}
1451 	return (ZIO_PIPELINE_CONTINUE);
1452 }
1453 
1454 static int
1455 zio_free_bp_init(zio_t *zio)
1456 {
1457 	blkptr_t *bp = zio->io_bp;
1458 
1459 	if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1460 		if (BP_GET_DEDUP(bp))
1461 			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1462 	}
1463 
1464 	ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1465 
1466 	return (ZIO_PIPELINE_CONTINUE);
1467 }
1468 
1469 /*
1470  * ==========================================================================
1471  * Execute the I/O pipeline
1472  * ==========================================================================
1473  */
1474 
1475 static void
1476 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1477 {
1478 	spa_t *spa = zio->io_spa;
1479 	zio_type_t t = zio->io_type;
1480 	int flags = (cutinline ? TQ_FRONT : 0);
1481 
1482 	/*
1483 	 * If we're a config writer or a probe, the normal issue and
1484 	 * interrupt threads may all be blocked waiting for the config lock.
1485 	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1486 	 */
1487 	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1488 		t = ZIO_TYPE_NULL;
1489 
1490 	/*
1491 	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1492 	 */
1493 	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1494 		t = ZIO_TYPE_NULL;
1495 
1496 	/*
1497 	 * If this is a high priority I/O, then use the high priority taskq if
1498 	 * available.
1499 	 */
1500 	if (zio->io_priority == ZIO_PRIORITY_NOW &&
1501 	    spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1502 		q++;
1503 
1504 	ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1505 
1506 	/*
1507 	 * NB: We are assuming that the zio can only be dispatched
1508 	 * to a single taskq at a time.  It would be a grievous error
1509 	 * to dispatch the zio to another taskq at the same time.
1510 	 */
1511 	ASSERT(zio->io_tqent.tqent_next == NULL);
1512 	spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1513 	    flags, &zio->io_tqent);
1514 }
1515 
1516 static boolean_t
1517 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1518 {
1519 	kthread_t *executor = zio->io_executor;
1520 	spa_t *spa = zio->io_spa;
1521 
1522 	for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1523 		spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1524 		uint_t i;
1525 		for (i = 0; i < tqs->stqs_count; i++) {
1526 			if (taskq_member(tqs->stqs_taskq[i], executor))
1527 				return (B_TRUE);
1528 		}
1529 	}
1530 
1531 	return (B_FALSE);
1532 }
1533 
1534 static int
1535 zio_issue_async(zio_t *zio)
1536 {
1537 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1538 
1539 	return (ZIO_PIPELINE_STOP);
1540 }
1541 
1542 void
1543 zio_interrupt(zio_t *zio)
1544 {
1545 	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1546 }
1547 
1548 void
1549 zio_delay_interrupt(zio_t *zio)
1550 {
1551 	/*
1552 	 * The timeout_generic() function isn't defined in userspace, so
1553 	 * rather than trying to implement the function, the zio delay
1554 	 * functionality has been disabled for userspace builds.
1555 	 */
1556 
1557 #ifdef _KERNEL
1558 	/*
1559 	 * If io_target_timestamp is zero, then no delay has been registered
1560 	 * for this IO, thus jump to the end of this function and "skip" the
1561 	 * delay; issuing it directly to the zio layer.
1562 	 */
1563 	if (zio->io_target_timestamp != 0) {
1564 		hrtime_t now = gethrtime();
1565 
1566 		if (now >= zio->io_target_timestamp) {
1567 			/*
1568 			 * This IO has already taken longer than the target
1569 			 * delay to complete, so we don't want to delay it
1570 			 * any longer; we "miss" the delay and issue it
1571 			 * directly to the zio layer. This is likely due to
1572 			 * the target latency being set to a value less than
1573 			 * the underlying hardware can satisfy (e.g. delay
1574 			 * set to 1ms, but the disks take 10ms to complete an
1575 			 * IO request).
1576 			 */
1577 
1578 			DTRACE_PROBE2(zio__delay__miss, zio_t *, zio,
1579 			    hrtime_t, now);
1580 
1581 			zio_interrupt(zio);
1582 		} else {
1583 			hrtime_t diff = zio->io_target_timestamp - now;
1584 
1585 			DTRACE_PROBE3(zio__delay__hit, zio_t *, zio,
1586 			    hrtime_t, now, hrtime_t, diff);
1587 
1588 			(void) timeout_generic(CALLOUT_NORMAL,
1589 			    (void (*)(void *))zio_interrupt, zio, diff, 1, 0);
1590 		}
1591 
1592 		return;
1593 	}
1594 #endif
1595 
1596 	DTRACE_PROBE1(zio__delay__skip, zio_t *, zio);
1597 	zio_interrupt(zio);
1598 }
1599 
1600 /*
1601  * Execute the I/O pipeline until one of the following occurs:
1602  *
1603  *	(1) the I/O completes
1604  *	(2) the pipeline stalls waiting for dependent child I/Os
1605  *	(3) the I/O issues, so we're waiting for an I/O completion interrupt
1606  *	(4) the I/O is delegated by vdev-level caching or aggregation
1607  *	(5) the I/O is deferred due to vdev-level queueing
1608  *	(6) the I/O is handed off to another thread.
1609  *
1610  * In all cases, the pipeline stops whenever there's no CPU work; it never
1611  * burns a thread in cv_wait().
1612  *
1613  * There's no locking on io_stage because there's no legitimate way
1614  * for multiple threads to be attempting to process the same I/O.
1615  */
1616 static zio_pipe_stage_t *zio_pipeline[];
1617 
1618 void
1619 zio_execute(zio_t *zio)
1620 {
1621 	zio->io_executor = curthread;
1622 
1623 	ASSERT3U(zio->io_queued_timestamp, >, 0);
1624 
1625 	while (zio->io_stage < ZIO_STAGE_DONE) {
1626 		enum zio_stage pipeline = zio->io_pipeline;
1627 		enum zio_stage stage = zio->io_stage;
1628 		int rv;
1629 
1630 		ASSERT(!MUTEX_HELD(&zio->io_lock));
1631 		ASSERT(ISP2(stage));
1632 		ASSERT(zio->io_stall == NULL);
1633 
1634 		do {
1635 			stage <<= 1;
1636 		} while ((stage & pipeline) == 0);
1637 
1638 		ASSERT(stage <= ZIO_STAGE_DONE);
1639 
1640 		/*
1641 		 * If we are in interrupt context and this pipeline stage
1642 		 * will grab a config lock that is held across I/O,
1643 		 * or may wait for an I/O that needs an interrupt thread
1644 		 * to complete, issue async to avoid deadlock.
1645 		 *
1646 		 * For VDEV_IO_START, we cut in line so that the io will
1647 		 * be sent to disk promptly.
1648 		 */
1649 		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1650 		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1651 			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1652 			    zio_requeue_io_start_cut_in_line : B_FALSE;
1653 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1654 			return;
1655 		}
1656 
1657 		zio->io_stage = stage;
1658 		zio->io_pipeline_trace |= zio->io_stage;
1659 		rv = zio_pipeline[highbit64(stage) - 1](zio);
1660 
1661 		if (rv == ZIO_PIPELINE_STOP)
1662 			return;
1663 
1664 		ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1665 	}
1666 }
1667 
1668 /*
1669  * ==========================================================================
1670  * Initiate I/O, either sync or async
1671  * ==========================================================================
1672  */
1673 int
1674 zio_wait(zio_t *zio)
1675 {
1676 	int error;
1677 
1678 	ASSERT3P(zio->io_stage, ==, ZIO_STAGE_OPEN);
1679 	ASSERT3P(zio->io_executor, ==, NULL);
1680 
1681 	zio->io_waiter = curthread;
1682 	ASSERT0(zio->io_queued_timestamp);
1683 	zio->io_queued_timestamp = gethrtime();
1684 
1685 	zio_execute(zio);
1686 
1687 	mutex_enter(&zio->io_lock);
1688 	while (zio->io_executor != NULL)
1689 		cv_wait(&zio->io_cv, &zio->io_lock);
1690 	mutex_exit(&zio->io_lock);
1691 
1692 	error = zio->io_error;
1693 	zio_destroy(zio);
1694 
1695 	return (error);
1696 }
1697 
1698 void
1699 zio_nowait(zio_t *zio)
1700 {
1701 	ASSERT3P(zio->io_executor, ==, NULL);
1702 
1703 	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1704 	    zio_unique_parent(zio) == NULL) {
1705 		/*
1706 		 * This is a logical async I/O with no parent to wait for it.
1707 		 * We add it to the spa_async_root_zio "Godfather" I/O which
1708 		 * will ensure they complete prior to unloading the pool.
1709 		 */
1710 		spa_t *spa = zio->io_spa;
1711 
1712 		zio_add_child(spa->spa_async_zio_root[CPU_SEQID], zio);
1713 	}
1714 
1715 	ASSERT0(zio->io_queued_timestamp);
1716 	zio->io_queued_timestamp = gethrtime();
1717 	zio_execute(zio);
1718 }
1719 
1720 /*
1721  * ==========================================================================
1722  * Reexecute, cancel, or suspend/resume failed I/O
1723  * ==========================================================================
1724  */
1725 
1726 static void
1727 zio_reexecute(zio_t *pio)
1728 {
1729 	zio_t *cio, *cio_next;
1730 
1731 	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1732 	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1733 	ASSERT(pio->io_gang_leader == NULL);
1734 	ASSERT(pio->io_gang_tree == NULL);
1735 
1736 	pio->io_flags = pio->io_orig_flags;
1737 	pio->io_stage = pio->io_orig_stage;
1738 	pio->io_pipeline = pio->io_orig_pipeline;
1739 	pio->io_reexecute = 0;
1740 	pio->io_flags |= ZIO_FLAG_REEXECUTED;
1741 	pio->io_pipeline_trace = 0;
1742 	pio->io_error = 0;
1743 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1744 		pio->io_state[w] = 0;
1745 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1746 		pio->io_child_error[c] = 0;
1747 
1748 	if (IO_IS_ALLOCATING(pio))
1749 		BP_ZERO(pio->io_bp);
1750 
1751 	/*
1752 	 * As we reexecute pio's children, new children could be created.
1753 	 * New children go to the head of pio's io_child_list, however,
1754 	 * so we will (correctly) not reexecute them.  The key is that
1755 	 * the remainder of pio's io_child_list, from 'cio_next' onward,
1756 	 * cannot be affected by any side effects of reexecuting 'cio'.
1757 	 */
1758 	zio_link_t *zl = NULL;
1759 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
1760 		cio_next = zio_walk_children(pio, &zl);
1761 		mutex_enter(&pio->io_lock);
1762 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1763 			pio->io_children[cio->io_child_type][w]++;
1764 		mutex_exit(&pio->io_lock);
1765 		zio_reexecute(cio);
1766 	}
1767 
1768 	/*
1769 	 * Now that all children have been reexecuted, execute the parent.
1770 	 * We don't reexecute "The Godfather" I/O here as it's the
1771 	 * responsibility of the caller to wait on it.
1772 	 */
1773 	if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) {
1774 		pio->io_queued_timestamp = gethrtime();
1775 		zio_execute(pio);
1776 	}
1777 }
1778 
1779 void
1780 zio_suspend(spa_t *spa, zio_t *zio)
1781 {
1782 	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1783 		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1784 		    "failure and the failure mode property for this pool "
1785 		    "is set to panic.", spa_name(spa));
1786 
1787 	zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
1788 
1789 	mutex_enter(&spa->spa_suspend_lock);
1790 
1791 	if (spa->spa_suspend_zio_root == NULL)
1792 		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1793 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1794 		    ZIO_FLAG_GODFATHER);
1795 
1796 	spa->spa_suspended = B_TRUE;
1797 
1798 	if (zio != NULL) {
1799 		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
1800 		ASSERT(zio != spa->spa_suspend_zio_root);
1801 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1802 		ASSERT(zio_unique_parent(zio) == NULL);
1803 		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1804 		zio_add_child(spa->spa_suspend_zio_root, zio);
1805 	}
1806 
1807 	mutex_exit(&spa->spa_suspend_lock);
1808 }
1809 
1810 int
1811 zio_resume(spa_t *spa)
1812 {
1813 	zio_t *pio;
1814 
1815 	/*
1816 	 * Reexecute all previously suspended i/o.
1817 	 */
1818 	mutex_enter(&spa->spa_suspend_lock);
1819 	spa->spa_suspended = B_FALSE;
1820 	cv_broadcast(&spa->spa_suspend_cv);
1821 	pio = spa->spa_suspend_zio_root;
1822 	spa->spa_suspend_zio_root = NULL;
1823 	mutex_exit(&spa->spa_suspend_lock);
1824 
1825 	if (pio == NULL)
1826 		return (0);
1827 
1828 	zio_reexecute(pio);
1829 	return (zio_wait(pio));
1830 }
1831 
1832 void
1833 zio_resume_wait(spa_t *spa)
1834 {
1835 	mutex_enter(&spa->spa_suspend_lock);
1836 	while (spa_suspended(spa))
1837 		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1838 	mutex_exit(&spa->spa_suspend_lock);
1839 }
1840 
1841 /*
1842  * ==========================================================================
1843  * Gang blocks.
1844  *
1845  * A gang block is a collection of small blocks that looks to the DMU
1846  * like one large block.  When zio_dva_allocate() cannot find a block
1847  * of the requested size, due to either severe fragmentation or the pool
1848  * being nearly full, it calls zio_write_gang_block() to construct the
1849  * block from smaller fragments.
1850  *
1851  * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1852  * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
1853  * an indirect block: it's an array of block pointers.  It consumes
1854  * only one sector and hence is allocatable regardless of fragmentation.
1855  * The gang header's bps point to its gang members, which hold the data.
1856  *
1857  * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
1858  * as the verifier to ensure uniqueness of the SHA256 checksum.
1859  * Critically, the gang block bp's blk_cksum is the checksum of the data,
1860  * not the gang header.  This ensures that data block signatures (needed for
1861  * deduplication) are independent of how the block is physically stored.
1862  *
1863  * Gang blocks can be nested: a gang member may itself be a gang block.
1864  * Thus every gang block is a tree in which root and all interior nodes are
1865  * gang headers, and the leaves are normal blocks that contain user data.
1866  * The root of the gang tree is called the gang leader.
1867  *
1868  * To perform any operation (read, rewrite, free, claim) on a gang block,
1869  * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1870  * in the io_gang_tree field of the original logical i/o by recursively
1871  * reading the gang leader and all gang headers below it.  This yields
1872  * an in-core tree containing the contents of every gang header and the
1873  * bps for every constituent of the gang block.
1874  *
1875  * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1876  * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
1877  * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1878  * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1879  * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1880  * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
1881  * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1882  * of the gang header plus zio_checksum_compute() of the data to update the
1883  * gang header's blk_cksum as described above.
1884  *
1885  * The two-phase assemble/issue model solves the problem of partial failure --
1886  * what if you'd freed part of a gang block but then couldn't read the
1887  * gang header for another part?  Assembling the entire gang tree first
1888  * ensures that all the necessary gang header I/O has succeeded before
1889  * starting the actual work of free, claim, or write.  Once the gang tree
1890  * is assembled, free and claim are in-memory operations that cannot fail.
1891  *
1892  * In the event that a gang write fails, zio_dva_unallocate() walks the
1893  * gang tree to immediately free (i.e. insert back into the space map)
1894  * everything we've allocated.  This ensures that we don't get ENOSPC
1895  * errors during repeated suspend/resume cycles due to a flaky device.
1896  *
1897  * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
1898  * the gang tree, we won't modify the block, so we can safely defer the free
1899  * (knowing that the block is still intact).  If we *can* assemble the gang
1900  * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
1901  * each constituent bp and we can allocate a new block on the next sync pass.
1902  *
1903  * In all cases, the gang tree allows complete recovery from partial failure.
1904  * ==========================================================================
1905  */
1906 
1907 static void
1908 zio_gang_issue_func_done(zio_t *zio)
1909 {
1910 	abd_put(zio->io_abd);
1911 }
1912 
1913 static zio_t *
1914 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
1915     uint64_t offset)
1916 {
1917 	if (gn != NULL)
1918 		return (pio);
1919 
1920 	return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset),
1921 	    BP_GET_PSIZE(bp), zio_gang_issue_func_done,
1922 	    NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1923 	    &pio->io_bookmark));
1924 }
1925 
1926 static zio_t *
1927 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
1928     uint64_t offset)
1929 {
1930 	zio_t *zio;
1931 
1932 	if (gn != NULL) {
1933 		abd_t *gbh_abd =
1934 		    abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1935 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1936 		    gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL,
1937 		    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1938 		    &pio->io_bookmark);
1939 		/*
1940 		 * As we rewrite each gang header, the pipeline will compute
1941 		 * a new gang block header checksum for it; but no one will
1942 		 * compute a new data checksum, so we do that here.  The one
1943 		 * exception is the gang leader: the pipeline already computed
1944 		 * its data checksum because that stage precedes gang assembly.
1945 		 * (Presently, nothing actually uses interior data checksums;
1946 		 * this is just good hygiene.)
1947 		 */
1948 		if (gn != pio->io_gang_leader->io_gang_tree) {
1949 			abd_t *buf = abd_get_offset(data, offset);
1950 
1951 			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
1952 			    buf, BP_GET_PSIZE(bp));
1953 
1954 			abd_put(buf);
1955 		}
1956 		/*
1957 		 * If we are here to damage data for testing purposes,
1958 		 * leave the GBH alone so that we can detect the damage.
1959 		 */
1960 		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
1961 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
1962 	} else {
1963 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1964 		    abd_get_offset(data, offset), BP_GET_PSIZE(bp),
1965 		    zio_gang_issue_func_done, NULL, pio->io_priority,
1966 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1967 	}
1968 
1969 	return (zio);
1970 }
1971 
1972 /* ARGSUSED */
1973 static zio_t *
1974 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
1975     uint64_t offset)
1976 {
1977 	return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
1978 	    ZIO_GANG_CHILD_FLAGS(pio)));
1979 }
1980 
1981 /* ARGSUSED */
1982 static zio_t *
1983 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
1984     uint64_t offset)
1985 {
1986 	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
1987 	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1988 }
1989 
1990 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
1991 	NULL,
1992 	zio_read_gang,
1993 	zio_rewrite_gang,
1994 	zio_free_gang,
1995 	zio_claim_gang,
1996 	NULL
1997 };
1998 
1999 static void zio_gang_tree_assemble_done(zio_t *zio);
2000 
2001 static zio_gang_node_t *
2002 zio_gang_node_alloc(zio_gang_node_t **gnpp)
2003 {
2004 	zio_gang_node_t *gn;
2005 
2006 	ASSERT(*gnpp == NULL);
2007 
2008 	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
2009 	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
2010 	*gnpp = gn;
2011 
2012 	return (gn);
2013 }
2014 
2015 static void
2016 zio_gang_node_free(zio_gang_node_t **gnpp)
2017 {
2018 	zio_gang_node_t *gn = *gnpp;
2019 
2020 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2021 		ASSERT(gn->gn_child[g] == NULL);
2022 
2023 	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2024 	kmem_free(gn, sizeof (*gn));
2025 	*gnpp = NULL;
2026 }
2027 
2028 static void
2029 zio_gang_tree_free(zio_gang_node_t **gnpp)
2030 {
2031 	zio_gang_node_t *gn = *gnpp;
2032 
2033 	if (gn == NULL)
2034 		return;
2035 
2036 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2037 		zio_gang_tree_free(&gn->gn_child[g]);
2038 
2039 	zio_gang_node_free(gnpp);
2040 }
2041 
2042 static void
2043 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
2044 {
2045 	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
2046 	abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2047 
2048 	ASSERT(gio->io_gang_leader == gio);
2049 	ASSERT(BP_IS_GANG(bp));
2050 
2051 	zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2052 	    zio_gang_tree_assemble_done, gn, gio->io_priority,
2053 	    ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
2054 }
2055 
2056 static void
2057 zio_gang_tree_assemble_done(zio_t *zio)
2058 {
2059 	zio_t *gio = zio->io_gang_leader;
2060 	zio_gang_node_t *gn = zio->io_private;
2061 	blkptr_t *bp = zio->io_bp;
2062 
2063 	ASSERT(gio == zio_unique_parent(zio));
2064 	ASSERT(zio->io_child_count == 0);
2065 
2066 	if (zio->io_error)
2067 		return;
2068 
2069 	/* this ABD was created from a linear buf in zio_gang_tree_assemble */
2070 	if (BP_SHOULD_BYTESWAP(bp))
2071 		byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size);
2072 
2073 	ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh);
2074 	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
2075 	ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2076 
2077 	abd_put(zio->io_abd);
2078 
2079 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2080 		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2081 		if (!BP_IS_GANG(gbp))
2082 			continue;
2083 		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
2084 	}
2085 }
2086 
2087 static void
2088 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data,
2089     uint64_t offset)
2090 {
2091 	zio_t *gio = pio->io_gang_leader;
2092 	zio_t *zio;
2093 
2094 	ASSERT(BP_IS_GANG(bp) == !!gn);
2095 	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
2096 	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
2097 
2098 	/*
2099 	 * If you're a gang header, your data is in gn->gn_gbh.
2100 	 * If you're a gang member, your data is in 'data' and gn == NULL.
2101 	 */
2102 	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset);
2103 
2104 	if (gn != NULL) {
2105 		ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2106 
2107 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2108 			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2109 			if (BP_IS_HOLE(gbp))
2110 				continue;
2111 			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data,
2112 			    offset);
2113 			offset += BP_GET_PSIZE(gbp);
2114 		}
2115 	}
2116 
2117 	if (gn == gio->io_gang_tree)
2118 		ASSERT3U(gio->io_size, ==, offset);
2119 
2120 	if (zio != pio)
2121 		zio_nowait(zio);
2122 }
2123 
2124 static int
2125 zio_gang_assemble(zio_t *zio)
2126 {
2127 	blkptr_t *bp = zio->io_bp;
2128 
2129 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
2130 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2131 
2132 	zio->io_gang_leader = zio;
2133 
2134 	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
2135 
2136 	return (ZIO_PIPELINE_CONTINUE);
2137 }
2138 
2139 static int
2140 zio_gang_issue(zio_t *zio)
2141 {
2142 	blkptr_t *bp = zio->io_bp;
2143 
2144 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) {
2145 		return (ZIO_PIPELINE_STOP);
2146 	}
2147 
2148 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
2149 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2150 
2151 	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
2152 		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd,
2153 		    0);
2154 	else
2155 		zio_gang_tree_free(&zio->io_gang_tree);
2156 
2157 	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2158 
2159 	return (ZIO_PIPELINE_CONTINUE);
2160 }
2161 
2162 static void
2163 zio_write_gang_member_ready(zio_t *zio)
2164 {
2165 	zio_t *pio = zio_unique_parent(zio);
2166 	zio_t *gio = zio->io_gang_leader;
2167 	dva_t *cdva = zio->io_bp->blk_dva;
2168 	dva_t *pdva = pio->io_bp->blk_dva;
2169 	uint64_t asize;
2170 
2171 	if (BP_IS_HOLE(zio->io_bp))
2172 		return;
2173 
2174 	ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
2175 
2176 	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
2177 	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
2178 	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
2179 	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
2180 	ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
2181 
2182 	mutex_enter(&pio->io_lock);
2183 	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
2184 		ASSERT(DVA_GET_GANG(&pdva[d]));
2185 		asize = DVA_GET_ASIZE(&pdva[d]);
2186 		asize += DVA_GET_ASIZE(&cdva[d]);
2187 		DVA_SET_ASIZE(&pdva[d], asize);
2188 	}
2189 	mutex_exit(&pio->io_lock);
2190 }
2191 
2192 static void
2193 zio_write_gang_done(zio_t *zio)
2194 {
2195 	abd_put(zio->io_abd);
2196 }
2197 
2198 static int
2199 zio_write_gang_block(zio_t *pio)
2200 {
2201 	spa_t *spa = pio->io_spa;
2202 	metaslab_class_t *mc = spa_normal_class(spa);
2203 	blkptr_t *bp = pio->io_bp;
2204 	zio_t *gio = pio->io_gang_leader;
2205 	zio_t *zio;
2206 	zio_gang_node_t *gn, **gnpp;
2207 	zio_gbh_phys_t *gbh;
2208 	abd_t *gbh_abd;
2209 	uint64_t txg = pio->io_txg;
2210 	uint64_t resid = pio->io_size;
2211 	uint64_t lsize;
2212 	int copies = gio->io_prop.zp_copies;
2213 	int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
2214 	zio_prop_t zp;
2215 	int error;
2216 
2217 	int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER;
2218 	if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2219 		ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2220 		ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA));
2221 
2222 		flags |= METASLAB_ASYNC_ALLOC;
2223 		VERIFY(refcount_held(&mc->mc_alloc_slots[pio->io_allocator],
2224 		    pio));
2225 
2226 		/*
2227 		 * The logical zio has already placed a reservation for
2228 		 * 'copies' allocation slots but gang blocks may require
2229 		 * additional copies. These additional copies
2230 		 * (i.e. gbh_copies - copies) are guaranteed to succeed
2231 		 * since metaslab_class_throttle_reserve() always allows
2232 		 * additional reservations for gang blocks.
2233 		 */
2234 		VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies,
2235 		    pio->io_allocator, pio, flags));
2236 	}
2237 
2238 	error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE,
2239 	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags,
2240 	    &pio->io_alloc_list, pio, pio->io_allocator);
2241 	if (error) {
2242 		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2243 			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2244 			ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA));
2245 
2246 			/*
2247 			 * If we failed to allocate the gang block header then
2248 			 * we remove any additional allocation reservations that
2249 			 * we placed here. The original reservation will
2250 			 * be removed when the logical I/O goes to the ready
2251 			 * stage.
2252 			 */
2253 			metaslab_class_throttle_unreserve(mc,
2254 			    gbh_copies - copies, pio->io_allocator, pio);
2255 		}
2256 		pio->io_error = error;
2257 		return (ZIO_PIPELINE_CONTINUE);
2258 	}
2259 
2260 	if (pio == gio) {
2261 		gnpp = &gio->io_gang_tree;
2262 	} else {
2263 		gnpp = pio->io_private;
2264 		ASSERT(pio->io_ready == zio_write_gang_member_ready);
2265 	}
2266 
2267 	gn = zio_gang_node_alloc(gnpp);
2268 	gbh = gn->gn_gbh;
2269 	bzero(gbh, SPA_GANGBLOCKSIZE);
2270 	gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE);
2271 
2272 	/*
2273 	 * Create the gang header.
2274 	 */
2275 	zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2276 	    zio_write_gang_done, NULL, pio->io_priority,
2277 	    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2278 
2279 	/*
2280 	 * Create and nowait the gang children.
2281 	 */
2282 	for (int g = 0; resid != 0; resid -= lsize, g++) {
2283 		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
2284 		    SPA_MINBLOCKSIZE);
2285 		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
2286 
2287 		zp.zp_checksum = gio->io_prop.zp_checksum;
2288 		zp.zp_compress = ZIO_COMPRESS_OFF;
2289 		zp.zp_type = DMU_OT_NONE;
2290 		zp.zp_level = 0;
2291 		zp.zp_copies = gio->io_prop.zp_copies;
2292 		zp.zp_dedup = B_FALSE;
2293 		zp.zp_dedup_verify = B_FALSE;
2294 		zp.zp_nopwrite = B_FALSE;
2295 
2296 		zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
2297 		    abd_get_offset(pio->io_abd, pio->io_size - resid), lsize,
2298 		    lsize, &zp, zio_write_gang_member_ready, NULL, NULL,
2299 		    zio_write_gang_done, &gn->gn_child[g], pio->io_priority,
2300 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2301 
2302 		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2303 			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2304 			ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA));
2305 
2306 			/*
2307 			 * Gang children won't throttle but we should
2308 			 * account for their work, so reserve an allocation
2309 			 * slot for them here.
2310 			 */
2311 			VERIFY(metaslab_class_throttle_reserve(mc,
2312 			    zp.zp_copies, cio->io_allocator, cio, flags));
2313 		}
2314 		zio_nowait(cio);
2315 	}
2316 
2317 	/*
2318 	 * Set pio's pipeline to just wait for zio to finish.
2319 	 */
2320 	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2321 
2322 	zio_nowait(zio);
2323 
2324 	return (ZIO_PIPELINE_CONTINUE);
2325 }
2326 
2327 /*
2328  * The zio_nop_write stage in the pipeline determines if allocating a
2329  * new bp is necessary.  The nopwrite feature can handle writes in
2330  * either syncing or open context (i.e. zil writes) and as a result is
2331  * mutually exclusive with dedup.
2332  *
2333  * By leveraging a cryptographically secure checksum, such as SHA256, we
2334  * can compare the checksums of the new data and the old to determine if
2335  * allocating a new block is required.  Note that our requirements for
2336  * cryptographic strength are fairly weak: there can't be any accidental
2337  * hash collisions, but we don't need to be secure against intentional
2338  * (malicious) collisions.  To trigger a nopwrite, you have to be able
2339  * to write the file to begin with, and triggering an incorrect (hash
2340  * collision) nopwrite is no worse than simply writing to the file.
2341  * That said, there are no known attacks against the checksum algorithms
2342  * used for nopwrite, assuming that the salt and the checksums
2343  * themselves remain secret.
2344  */
2345 static int
2346 zio_nop_write(zio_t *zio)
2347 {
2348 	blkptr_t *bp = zio->io_bp;
2349 	blkptr_t *bp_orig = &zio->io_bp_orig;
2350 	zio_prop_t *zp = &zio->io_prop;
2351 
2352 	ASSERT(BP_GET_LEVEL(bp) == 0);
2353 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2354 	ASSERT(zp->zp_nopwrite);
2355 	ASSERT(!zp->zp_dedup);
2356 	ASSERT(zio->io_bp_override == NULL);
2357 	ASSERT(IO_IS_ALLOCATING(zio));
2358 
2359 	/*
2360 	 * Check to see if the original bp and the new bp have matching
2361 	 * characteristics (i.e. same checksum, compression algorithms, etc).
2362 	 * If they don't then just continue with the pipeline which will
2363 	 * allocate a new bp.
2364 	 */
2365 	if (BP_IS_HOLE(bp_orig) ||
2366 	    !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
2367 	    ZCHECKSUM_FLAG_NOPWRITE) ||
2368 	    BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
2369 	    BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
2370 	    BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
2371 	    zp->zp_copies != BP_GET_NDVAS(bp_orig))
2372 		return (ZIO_PIPELINE_CONTINUE);
2373 
2374 	/*
2375 	 * If the checksums match then reset the pipeline so that we
2376 	 * avoid allocating a new bp and issuing any I/O.
2377 	 */
2378 	if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
2379 		ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
2380 		    ZCHECKSUM_FLAG_NOPWRITE);
2381 		ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
2382 		ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
2383 		ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
2384 		ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
2385 		    sizeof (uint64_t)) == 0);
2386 
2387 		*bp = *bp_orig;
2388 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2389 		zio->io_flags |= ZIO_FLAG_NOPWRITE;
2390 	}
2391 
2392 	return (ZIO_PIPELINE_CONTINUE);
2393 }
2394 
2395 /*
2396  * ==========================================================================
2397  * Dedup
2398  * ==========================================================================
2399  */
2400 static void
2401 zio_ddt_child_read_done(zio_t *zio)
2402 {
2403 	blkptr_t *bp = zio->io_bp;
2404 	ddt_entry_t *dde = zio->io_private;
2405 	ddt_phys_t *ddp;
2406 	zio_t *pio = zio_unique_parent(zio);
2407 
2408 	mutex_enter(&pio->io_lock);
2409 	ddp = ddt_phys_select(dde, bp);
2410 	if (zio->io_error == 0)
2411 		ddt_phys_clear(ddp);	/* this ddp doesn't need repair */
2412 
2413 	if (zio->io_error == 0 && dde->dde_repair_abd == NULL)
2414 		dde->dde_repair_abd = zio->io_abd;
2415 	else
2416 		abd_free(zio->io_abd);
2417 	mutex_exit(&pio->io_lock);
2418 }
2419 
2420 static int
2421 zio_ddt_read_start(zio_t *zio)
2422 {
2423 	blkptr_t *bp = zio->io_bp;
2424 
2425 	ASSERT(BP_GET_DEDUP(bp));
2426 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2427 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2428 
2429 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
2430 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
2431 		ddt_entry_t *dde = ddt_repair_start(ddt, bp);
2432 		ddt_phys_t *ddp = dde->dde_phys;
2433 		ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
2434 		blkptr_t blk;
2435 
2436 		ASSERT(zio->io_vsd == NULL);
2437 		zio->io_vsd = dde;
2438 
2439 		if (ddp_self == NULL)
2440 			return (ZIO_PIPELINE_CONTINUE);
2441 
2442 		for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2443 			if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
2444 				continue;
2445 			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
2446 			    &blk);
2447 			zio_nowait(zio_read(zio, zio->io_spa, &blk,
2448 			    abd_alloc_for_io(zio->io_size, B_TRUE),
2449 			    zio->io_size, zio_ddt_child_read_done, dde,
2450 			    zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) |
2451 			    ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark));
2452 		}
2453 		return (ZIO_PIPELINE_CONTINUE);
2454 	}
2455 
2456 	zio_nowait(zio_read(zio, zio->io_spa, bp,
2457 	    zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority,
2458 	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
2459 
2460 	return (ZIO_PIPELINE_CONTINUE);
2461 }
2462 
2463 static int
2464 zio_ddt_read_done(zio_t *zio)
2465 {
2466 	blkptr_t *bp = zio->io_bp;
2467 
2468 	if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) {
2469 		return (ZIO_PIPELINE_STOP);
2470 	}
2471 
2472 	ASSERT(BP_GET_DEDUP(bp));
2473 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2474 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2475 
2476 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
2477 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
2478 		ddt_entry_t *dde = zio->io_vsd;
2479 		if (ddt == NULL) {
2480 			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
2481 			return (ZIO_PIPELINE_CONTINUE);
2482 		}
2483 		if (dde == NULL) {
2484 			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
2485 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2486 			return (ZIO_PIPELINE_STOP);
2487 		}
2488 		if (dde->dde_repair_abd != NULL) {
2489 			abd_copy(zio->io_abd, dde->dde_repair_abd,
2490 			    zio->io_size);
2491 			zio->io_child_error[ZIO_CHILD_DDT] = 0;
2492 		}
2493 		ddt_repair_done(ddt, dde);
2494 		zio->io_vsd = NULL;
2495 	}
2496 
2497 	ASSERT(zio->io_vsd == NULL);
2498 
2499 	return (ZIO_PIPELINE_CONTINUE);
2500 }
2501 
2502 static boolean_t
2503 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
2504 {
2505 	spa_t *spa = zio->io_spa;
2506 	boolean_t do_raw = (zio->io_flags & ZIO_FLAG_RAW);
2507 
2508 	/* We should never get a raw, override zio */
2509 	ASSERT(!(zio->io_bp_override && do_raw));
2510 
2511 	/*
2512 	 * Note: we compare the original data, not the transformed data,
2513 	 * because when zio->io_bp is an override bp, we will not have
2514 	 * pushed the I/O transforms.  That's an important optimization
2515 	 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
2516 	 */
2517 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2518 		zio_t *lio = dde->dde_lead_zio[p];
2519 
2520 		if (lio != NULL) {
2521 			return (lio->io_orig_size != zio->io_orig_size ||
2522 			    abd_cmp(zio->io_orig_abd, lio->io_orig_abd,
2523 			    zio->io_orig_size) != 0);
2524 		}
2525 	}
2526 
2527 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2528 		ddt_phys_t *ddp = &dde->dde_phys[p];
2529 
2530 		if (ddp->ddp_phys_birth != 0) {
2531 			arc_buf_t *abuf = NULL;
2532 			arc_flags_t aflags = ARC_FLAG_WAIT;
2533 			int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
2534 			blkptr_t blk = *zio->io_bp;
2535 			int error;
2536 
2537 			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2538 
2539 			ddt_exit(ddt);
2540 
2541 			/*
2542 			 * Intuitively, it would make more sense to compare
2543 			 * io_abd than io_orig_abd in the raw case since you
2544 			 * don't want to look at any transformations that have
2545 			 * happened to the data. However, for raw I/Os the
2546 			 * data will actually be the same in io_abd and
2547 			 * io_orig_abd, so all we have to do is issue this as
2548 			 * a raw ARC read.
2549 			 */
2550 			if (do_raw) {
2551 				zio_flags |= ZIO_FLAG_RAW;
2552 				ASSERT3U(zio->io_size, ==, zio->io_orig_size);
2553 				ASSERT0(abd_cmp(zio->io_abd, zio->io_orig_abd,
2554 				    zio->io_size));
2555 				ASSERT3P(zio->io_transform_stack, ==, NULL);
2556 			}
2557 
2558 			error = arc_read(NULL, spa, &blk,
2559 			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2560 			    zio_flags, &aflags, &zio->io_bookmark);
2561 
2562 			if (error == 0) {
2563 				if (arc_buf_size(abuf) != zio->io_orig_size ||
2564 				    abd_cmp_buf(zio->io_orig_abd, abuf->b_data,
2565 				    zio->io_orig_size) != 0)
2566 					error = SET_ERROR(EEXIST);
2567 				arc_buf_destroy(abuf, &abuf);
2568 			}
2569 
2570 			ddt_enter(ddt);
2571 			return (error != 0);
2572 		}
2573 	}
2574 
2575 	return (B_FALSE);
2576 }
2577 
2578 static void
2579 zio_ddt_child_write_ready(zio_t *zio)
2580 {
2581 	int p = zio->io_prop.zp_copies;
2582 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2583 	ddt_entry_t *dde = zio->io_private;
2584 	ddt_phys_t *ddp = &dde->dde_phys[p];
2585 	zio_t *pio;
2586 
2587 	if (zio->io_error)
2588 		return;
2589 
2590 	ddt_enter(ddt);
2591 
2592 	ASSERT(dde->dde_lead_zio[p] == zio);
2593 
2594 	ddt_phys_fill(ddp, zio->io_bp);
2595 
2596 	zio_link_t *zl = NULL;
2597 	while ((pio = zio_walk_parents(zio, &zl)) != NULL)
2598 		ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
2599 
2600 	ddt_exit(ddt);
2601 }
2602 
2603 static void
2604 zio_ddt_child_write_done(zio_t *zio)
2605 {
2606 	int p = zio->io_prop.zp_copies;
2607 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2608 	ddt_entry_t *dde = zio->io_private;
2609 	ddt_phys_t *ddp = &dde->dde_phys[p];
2610 
2611 	ddt_enter(ddt);
2612 
2613 	ASSERT(ddp->ddp_refcnt == 0);
2614 	ASSERT(dde->dde_lead_zio[p] == zio);
2615 	dde->dde_lead_zio[p] = NULL;
2616 
2617 	if (zio->io_error == 0) {
2618 		zio_link_t *zl = NULL;
2619 		while (zio_walk_parents(zio, &zl) != NULL)
2620 			ddt_phys_addref(ddp);
2621 	} else {
2622 		ddt_phys_clear(ddp);
2623 	}
2624 
2625 	ddt_exit(ddt);
2626 }
2627 
2628 static void
2629 zio_ddt_ditto_write_done(zio_t *zio)
2630 {
2631 	int p = DDT_PHYS_DITTO;
2632 	zio_prop_t *zp = &zio->io_prop;
2633 	blkptr_t *bp = zio->io_bp;
2634 	ddt_t *ddt = ddt_select(zio->io_spa, bp);
2635 	ddt_entry_t *dde = zio->io_private;
2636 	ddt_phys_t *ddp = &dde->dde_phys[p];
2637 	ddt_key_t *ddk = &dde->dde_key;
2638 
2639 	ddt_enter(ddt);
2640 
2641 	ASSERT(ddp->ddp_refcnt == 0);
2642 	ASSERT(dde->dde_lead_zio[p] == zio);
2643 	dde->dde_lead_zio[p] = NULL;
2644 
2645 	if (zio->io_error == 0) {
2646 		ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2647 		ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2648 		ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2649 		if (ddp->ddp_phys_birth != 0)
2650 			ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2651 		ddt_phys_fill(ddp, bp);
2652 	}
2653 
2654 	ddt_exit(ddt);
2655 }
2656 
2657 static int
2658 zio_ddt_write(zio_t *zio)
2659 {
2660 	spa_t *spa = zio->io_spa;
2661 	blkptr_t *bp = zio->io_bp;
2662 	uint64_t txg = zio->io_txg;
2663 	zio_prop_t *zp = &zio->io_prop;
2664 	int p = zp->zp_copies;
2665 	int ditto_copies;
2666 	zio_t *cio = NULL;
2667 	zio_t *dio = NULL;
2668 	ddt_t *ddt = ddt_select(spa, bp);
2669 	ddt_entry_t *dde;
2670 	ddt_phys_t *ddp;
2671 
2672 	ASSERT(BP_GET_DEDUP(bp));
2673 	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2674 	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2675 	ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW)));
2676 
2677 	ddt_enter(ddt);
2678 	dde = ddt_lookup(ddt, bp, B_TRUE);
2679 	ddp = &dde->dde_phys[p];
2680 
2681 	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2682 		/*
2683 		 * If we're using a weak checksum, upgrade to a strong checksum
2684 		 * and try again.  If we're already using a strong checksum,
2685 		 * we can't resolve it, so just convert to an ordinary write.
2686 		 * (And automatically e-mail a paper to Nature?)
2687 		 */
2688 		if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
2689 		    ZCHECKSUM_FLAG_DEDUP)) {
2690 			zp->zp_checksum = spa_dedup_checksum(spa);
2691 			zio_pop_transforms(zio);
2692 			zio->io_stage = ZIO_STAGE_OPEN;
2693 			BP_ZERO(bp);
2694 		} else {
2695 			zp->zp_dedup = B_FALSE;
2696 			BP_SET_DEDUP(bp, B_FALSE);
2697 		}
2698 		ASSERT(!BP_GET_DEDUP(bp));
2699 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
2700 		ddt_exit(ddt);
2701 		return (ZIO_PIPELINE_CONTINUE);
2702 	}
2703 
2704 	ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2705 	ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2706 
2707 	if (ditto_copies > ddt_ditto_copies_present(dde) &&
2708 	    dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2709 		zio_prop_t czp = *zp;
2710 
2711 		czp.zp_copies = ditto_copies;
2712 
2713 		/*
2714 		 * If we arrived here with an override bp, we won't have run
2715 		 * the transform stack, so we won't have the data we need to
2716 		 * generate a child i/o.  So, toss the override bp and restart.
2717 		 * This is safe, because using the override bp is just an
2718 		 * optimization; and it's rare, so the cost doesn't matter.
2719 		 */
2720 		if (zio->io_bp_override) {
2721 			zio_pop_transforms(zio);
2722 			zio->io_stage = ZIO_STAGE_OPEN;
2723 			zio->io_pipeline = ZIO_WRITE_PIPELINE;
2724 			zio->io_bp_override = NULL;
2725 			BP_ZERO(bp);
2726 			ddt_exit(ddt);
2727 			return (ZIO_PIPELINE_CONTINUE);
2728 		}
2729 
2730 		dio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
2731 		    zio->io_orig_size, zio->io_orig_size, &czp, NULL, NULL,
2732 		    NULL, zio_ddt_ditto_write_done, dde, zio->io_priority,
2733 		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2734 
2735 		zio_push_transform(dio, zio->io_abd, zio->io_size, 0, NULL);
2736 		dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2737 	}
2738 
2739 	if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2740 		if (ddp->ddp_phys_birth != 0)
2741 			ddt_bp_fill(ddp, bp, txg);
2742 		if (dde->dde_lead_zio[p] != NULL)
2743 			zio_add_child(zio, dde->dde_lead_zio[p]);
2744 		else
2745 			ddt_phys_addref(ddp);
2746 	} else if (zio->io_bp_override) {
2747 		ASSERT(bp->blk_birth == txg);
2748 		ASSERT(BP_EQUAL(bp, zio->io_bp_override));
2749 		ddt_phys_fill(ddp, bp);
2750 		ddt_phys_addref(ddp);
2751 	} else {
2752 		cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
2753 		    zio->io_orig_size, zio->io_orig_size, zp,
2754 		    zio_ddt_child_write_ready, NULL, NULL,
2755 		    zio_ddt_child_write_done, dde, zio->io_priority,
2756 		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2757 
2758 		zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL);
2759 		dde->dde_lead_zio[p] = cio;
2760 	}
2761 
2762 	ddt_exit(ddt);
2763 
2764 	if (cio)
2765 		zio_nowait(cio);
2766 	if (dio)
2767 		zio_nowait(dio);
2768 
2769 	return (ZIO_PIPELINE_CONTINUE);
2770 }
2771 
2772 ddt_entry_t *freedde; /* for debugging */
2773 
2774 static int
2775 zio_ddt_free(zio_t *zio)
2776 {
2777 	spa_t *spa = zio->io_spa;
2778 	blkptr_t *bp = zio->io_bp;
2779 	ddt_t *ddt = ddt_select(spa, bp);
2780 	ddt_entry_t *dde;
2781 	ddt_phys_t *ddp;
2782 
2783 	ASSERT(BP_GET_DEDUP(bp));
2784 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2785 
2786 	ddt_enter(ddt);
2787 	freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
2788 	ddp = ddt_phys_select(dde, bp);
2789 	ddt_phys_decref(ddp);
2790 	ddt_exit(ddt);
2791 
2792 	return (ZIO_PIPELINE_CONTINUE);
2793 }
2794 
2795 /*
2796  * ==========================================================================
2797  * Allocate and free blocks
2798  * ==========================================================================
2799  */
2800 
2801 static zio_t *
2802 zio_io_to_allocate(spa_t *spa, int allocator)
2803 {
2804 	zio_t *zio;
2805 
2806 	ASSERT(MUTEX_HELD(&spa->spa_alloc_locks[allocator]));
2807 
2808 	zio = avl_first(&spa->spa_alloc_trees[allocator]);
2809 	if (zio == NULL)
2810 		return (NULL);
2811 
2812 	ASSERT(IO_IS_ALLOCATING(zio));
2813 
2814 	/*
2815 	 * Try to place a reservation for this zio. If we're unable to
2816 	 * reserve then we throttle.
2817 	 */
2818 	ASSERT3U(zio->io_allocator, ==, allocator);
2819 	if (!metaslab_class_throttle_reserve(spa_normal_class(spa),
2820 	    zio->io_prop.zp_copies, zio->io_allocator, zio, 0)) {
2821 		return (NULL);
2822 	}
2823 
2824 	avl_remove(&spa->spa_alloc_trees[allocator], zio);
2825 	ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE);
2826 
2827 	return (zio);
2828 }
2829 
2830 static int
2831 zio_dva_throttle(zio_t *zio)
2832 {
2833 	spa_t *spa = zio->io_spa;
2834 	zio_t *nio;
2835 
2836 	if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE ||
2837 	    !spa_normal_class(zio->io_spa)->mc_alloc_throttle_enabled ||
2838 	    zio->io_child_type == ZIO_CHILD_GANG ||
2839 	    zio->io_flags & ZIO_FLAG_NODATA) {
2840 		return (ZIO_PIPELINE_CONTINUE);
2841 	}
2842 
2843 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2844 
2845 	ASSERT3U(zio->io_queued_timestamp, >, 0);
2846 	ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE);
2847 
2848 	zbookmark_phys_t *bm = &zio->io_bookmark;
2849 	/*
2850 	 * We want to try to use as many allocators as possible to help improve
2851 	 * performance, but we also want logically adjacent IOs to be physically
2852 	 * adjacent to improve sequential read performance. We chunk each object
2853 	 * into 2^20 block regions, and then hash based on the objset, object,
2854 	 * level, and region to accomplish both of these goals.
2855 	 */
2856 	zio->io_allocator = cityhash4(bm->zb_objset, bm->zb_object,
2857 	    bm->zb_level, bm->zb_blkid >> 20) % spa->spa_alloc_count;
2858 	mutex_enter(&spa->spa_alloc_locks[zio->io_allocator]);
2859 
2860 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
2861 	avl_add(&spa->spa_alloc_trees[zio->io_allocator], zio);
2862 
2863 	nio = zio_io_to_allocate(zio->io_spa, zio->io_allocator);
2864 	mutex_exit(&spa->spa_alloc_locks[zio->io_allocator]);
2865 
2866 	if (nio == zio)
2867 		return (ZIO_PIPELINE_CONTINUE);
2868 
2869 	if (nio != NULL) {
2870 		ASSERT(nio->io_stage == ZIO_STAGE_DVA_THROTTLE);
2871 		/*
2872 		 * We are passing control to a new zio so make sure that
2873 		 * it is processed by a different thread. We do this to
2874 		 * avoid stack overflows that can occur when parents are
2875 		 * throttled and children are making progress. We allow
2876 		 * it to go to the head of the taskq since it's already
2877 		 * been waiting.
2878 		 */
2879 		zio_taskq_dispatch(nio, ZIO_TASKQ_ISSUE, B_TRUE);
2880 	}
2881 	return (ZIO_PIPELINE_STOP);
2882 }
2883 
2884 void
2885 zio_allocate_dispatch(spa_t *spa, int allocator)
2886 {
2887 	zio_t *zio;
2888 
2889 	mutex_enter(&spa->spa_alloc_locks[allocator]);
2890 	zio = zio_io_to_allocate(spa, allocator);
2891 	mutex_exit(&spa->spa_alloc_locks[allocator]);
2892 	if (zio == NULL)
2893 		return;
2894 
2895 	ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE);
2896 	ASSERT0(zio->io_error);
2897 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE);
2898 }
2899 
2900 static int
2901 zio_dva_allocate(zio_t *zio)
2902 {
2903 	spa_t *spa = zio->io_spa;
2904 	metaslab_class_t *mc = spa_normal_class(spa);
2905 	blkptr_t *bp = zio->io_bp;
2906 	int error;
2907 	int flags = 0;
2908 
2909 	if (zio->io_gang_leader == NULL) {
2910 		ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2911 		zio->io_gang_leader = zio;
2912 	}
2913 
2914 	ASSERT(BP_IS_HOLE(bp));
2915 	ASSERT0(BP_GET_NDVAS(bp));
2916 	ASSERT3U(zio->io_prop.zp_copies, >, 0);
2917 	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
2918 	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
2919 
2920 	if (zio->io_flags & ZIO_FLAG_NODATA) {
2921 		flags |= METASLAB_DONT_THROTTLE;
2922 	}
2923 	if (zio->io_flags & ZIO_FLAG_GANG_CHILD) {
2924 		flags |= METASLAB_GANG_CHILD;
2925 	}
2926 	if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE) {
2927 		flags |= METASLAB_ASYNC_ALLOC;
2928 	}
2929 
2930 	error = metaslab_alloc(spa, mc, zio->io_size, bp,
2931 	    zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
2932 	    &zio->io_alloc_list, zio, zio->io_allocator);
2933 
2934 	if (error != 0) {
2935 		zfs_dbgmsg("%s: metaslab allocation failure: zio %p, "
2936 		    "size %llu, error %d", spa_name(spa), zio, zio->io_size,
2937 		    error);
2938 		if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
2939 			return (zio_write_gang_block(zio));
2940 		zio->io_error = error;
2941 	}
2942 
2943 	return (ZIO_PIPELINE_CONTINUE);
2944 }
2945 
2946 static int
2947 zio_dva_free(zio_t *zio)
2948 {
2949 	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
2950 
2951 	return (ZIO_PIPELINE_CONTINUE);
2952 }
2953 
2954 static int
2955 zio_dva_claim(zio_t *zio)
2956 {
2957 	int error;
2958 
2959 	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
2960 	if (error)
2961 		zio->io_error = error;
2962 
2963 	return (ZIO_PIPELINE_CONTINUE);
2964 }
2965 
2966 /*
2967  * Undo an allocation.  This is used by zio_done() when an I/O fails
2968  * and we want to give back the block we just allocated.
2969  * This handles both normal blocks and gang blocks.
2970  */
2971 static void
2972 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
2973 {
2974 	ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2975 	ASSERT(zio->io_bp_override == NULL);
2976 
2977 	if (!BP_IS_HOLE(bp))
2978 		metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
2979 
2980 	if (gn != NULL) {
2981 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2982 			zio_dva_unallocate(zio, gn->gn_child[g],
2983 			    &gn->gn_gbh->zg_blkptr[g]);
2984 		}
2985 	}
2986 }
2987 
2988 /*
2989  * Try to allocate an intent log block.  Return 0 on success, errno on failure.
2990  */
2991 int
2992 zio_alloc_zil(spa_t *spa, uint64_t objset, uint64_t txg, blkptr_t *new_bp,
2993     blkptr_t *old_bp, uint64_t size, boolean_t *slog)
2994 {
2995 	int error = 1;
2996 	zio_alloc_list_t io_alloc_list;
2997 
2998 	ASSERT(txg > spa_syncing_txg(spa));
2999 
3000 	metaslab_trace_init(&io_alloc_list);
3001 	/*
3002 	 * When allocating a zil block, we don't have information about
3003 	 * the final destination of the block except the objset it's part
3004 	 * of, so we just hash the objset ID to pick the allocator to get
3005 	 * some parallelism.
3006 	 */
3007 	error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1,
3008 	    txg, old_bp, METASLAB_HINTBP_AVOID, &io_alloc_list, NULL,
3009 	    cityhash4(0, 0, 0, objset) % spa->spa_alloc_count);
3010 	if (error == 0) {
3011 		*slog = TRUE;
3012 	} else {
3013 		error = metaslab_alloc(spa, spa_normal_class(spa), size,
3014 		    new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID,
3015 		    &io_alloc_list, NULL, cityhash4(0, 0, 0, objset) %
3016 		    spa->spa_alloc_count);
3017 		if (error == 0)
3018 			*slog = FALSE;
3019 	}
3020 	metaslab_trace_fini(&io_alloc_list);
3021 
3022 	if (error == 0) {
3023 		BP_SET_LSIZE(new_bp, size);
3024 		BP_SET_PSIZE(new_bp, size);
3025 		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
3026 		BP_SET_CHECKSUM(new_bp,
3027 		    spa_version(spa) >= SPA_VERSION_SLIM_ZIL
3028 		    ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
3029 		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3030 		BP_SET_LEVEL(new_bp, 0);
3031 		BP_SET_DEDUP(new_bp, 0);
3032 		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
3033 	} else {
3034 		zfs_dbgmsg("%s: zil block allocation failure: "
3035 		    "size %llu, error %d", spa_name(spa), size, error);
3036 	}
3037 
3038 	return (error);
3039 }
3040 
3041 /*
3042  * ==========================================================================
3043  * Read and write to physical devices
3044  * ==========================================================================
3045  */
3046 
3047 
3048 /*
3049  * Issue an I/O to the underlying vdev. Typically the issue pipeline
3050  * stops after this stage and will resume upon I/O completion.
3051  * However, there are instances where the vdev layer may need to
3052  * continue the pipeline when an I/O was not issued. Since the I/O
3053  * that was sent to the vdev layer might be different than the one
3054  * currently active in the pipeline (see vdev_queue_io()), we explicitly
3055  * force the underlying vdev layers to call either zio_execute() or
3056  * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
3057  */
3058 static int
3059 zio_vdev_io_start(zio_t *zio)
3060 {
3061 	vdev_t *vd = zio->io_vd;
3062 	uint64_t align;
3063 	spa_t *spa = zio->io_spa;
3064 
3065 	ASSERT(zio->io_error == 0);
3066 	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
3067 
3068 	if (vd == NULL) {
3069 		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3070 			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
3071 
3072 		/*
3073 		 * The mirror_ops handle multiple DVAs in a single BP.
3074 		 */
3075 		vdev_mirror_ops.vdev_op_io_start(zio);
3076 		return (ZIO_PIPELINE_STOP);
3077 	}
3078 
3079 	ASSERT3P(zio->io_logical, !=, zio);
3080 	if (zio->io_type == ZIO_TYPE_WRITE) {
3081 		ASSERT(spa->spa_trust_config);
3082 
3083 		if (zio->io_vd->vdev_removing) {
3084 			/*
3085 			 * Note: the code can handle other kinds of writes,
3086 			 * but we don't expect them.
3087 			 */
3088 			ASSERT(zio->io_flags &
3089 			    (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL |
3090 			    ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE));
3091 		}
3092 	}
3093 
3094 	/*
3095 	 * We keep track of time-sensitive I/Os so that the scan thread
3096 	 * can quickly react to certain workloads.  In particular, we care
3097 	 * about non-scrubbing, top-level reads and writes with the following
3098 	 * characteristics:
3099 	 *	- synchronous writes of user data to non-slog devices
3100 	 *	- any reads of user data
3101 	 * When these conditions are met, adjust the timestamp of spa_last_io
3102 	 * which allows the scan thread to adjust its workload accordingly.
3103 	 */
3104 	if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL &&
3105 	    vd == vd->vdev_top && !vd->vdev_islog &&
3106 	    zio->io_bookmark.zb_objset != DMU_META_OBJSET &&
3107 	    zio->io_txg != spa_syncing_txg(spa)) {
3108 		uint64_t old = spa->spa_last_io;
3109 		uint64_t new = ddi_get_lbolt64();
3110 		if (old != new)
3111 			(void) atomic_cas_64(&spa->spa_last_io, old, new);
3112 	}
3113 
3114 	align = 1ULL << vd->vdev_top->vdev_ashift;
3115 
3116 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
3117 	    P2PHASE(zio->io_size, align) != 0) {
3118 		/* Transform logical writes to be a full physical block size. */
3119 		uint64_t asize = P2ROUNDUP(zio->io_size, align);
3120 		abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize);
3121 		ASSERT(vd == vd->vdev_top);
3122 		if (zio->io_type == ZIO_TYPE_WRITE) {
3123 			abd_copy(abuf, zio->io_abd, zio->io_size);
3124 			abd_zero_off(abuf, zio->io_size, asize - zio->io_size);
3125 		}
3126 		zio_push_transform(zio, abuf, asize, asize, zio_subblock);
3127 	}
3128 
3129 	/*
3130 	 * If this is not a physical io, make sure that it is properly aligned
3131 	 * before proceeding.
3132 	 */
3133 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
3134 		ASSERT0(P2PHASE(zio->io_offset, align));
3135 		ASSERT0(P2PHASE(zio->io_size, align));
3136 	} else {
3137 		/*
3138 		 * For physical writes, we allow 512b aligned writes and assume
3139 		 * the device will perform a read-modify-write as necessary.
3140 		 */
3141 		ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
3142 		ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
3143 	}
3144 
3145 	VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
3146 
3147 	/*
3148 	 * If this is a repair I/O, and there's no self-healing involved --
3149 	 * that is, we're just resilvering what we expect to resilver --
3150 	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
3151 	 * This prevents spurious resilvering.
3152 	 *
3153 	 * There are a few ways that we can end up creating these spurious
3154 	 * resilver i/os:
3155 	 *
3156 	 * 1. A resilver i/o will be issued if any DVA in the BP has a
3157 	 * dirty DTL.  The mirror code will issue resilver writes to
3158 	 * each DVA, including the one(s) that are not on vdevs with dirty
3159 	 * DTLs.
3160 	 *
3161 	 * 2. With nested replication, which happens when we have a
3162 	 * "replacing" or "spare" vdev that's a child of a mirror or raidz.
3163 	 * For example, given mirror(replacing(A+B), C), it's likely that
3164 	 * only A is out of date (it's the new device). In this case, we'll
3165 	 * read from C, then use the data to resilver A+B -- but we don't
3166 	 * actually want to resilver B, just A. The top-level mirror has no
3167 	 * way to know this, so instead we just discard unnecessary repairs
3168 	 * as we work our way down the vdev tree.
3169 	 *
3170 	 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc.
3171 	 * The same logic applies to any form of nested replication: ditto
3172 	 * + mirror, RAID-Z + replacing, etc.
3173 	 *
3174 	 * However, indirect vdevs point off to other vdevs which may have
3175 	 * DTL's, so we never bypass them.  The child i/os on concrete vdevs
3176 	 * will be properly bypassed instead.
3177 	 */
3178 	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
3179 	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
3180 	    zio->io_txg != 0 &&	/* not a delegated i/o */
3181 	    vd->vdev_ops != &vdev_indirect_ops &&
3182 	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
3183 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3184 		zio_vdev_io_bypass(zio);
3185 		return (ZIO_PIPELINE_CONTINUE);
3186 	}
3187 
3188 	if (vd->vdev_ops->vdev_op_leaf &&
3189 	    (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
3190 
3191 		if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio))
3192 			return (ZIO_PIPELINE_CONTINUE);
3193 
3194 		if ((zio = vdev_queue_io(zio)) == NULL)
3195 			return (ZIO_PIPELINE_STOP);
3196 
3197 		if (!vdev_accessible(vd, zio)) {
3198 			zio->io_error = SET_ERROR(ENXIO);
3199 			zio_interrupt(zio);
3200 			return (ZIO_PIPELINE_STOP);
3201 		}
3202 	}
3203 
3204 	vd->vdev_ops->vdev_op_io_start(zio);
3205 	return (ZIO_PIPELINE_STOP);
3206 }
3207 
3208 static int
3209 zio_vdev_io_done(zio_t *zio)
3210 {
3211 	vdev_t *vd = zio->io_vd;
3212 	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
3213 	boolean_t unexpected_error = B_FALSE;
3214 
3215 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3216 		return (ZIO_PIPELINE_STOP);
3217 	}
3218 
3219 	ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);
3220 
3221 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
3222 
3223 		vdev_queue_io_done(zio);
3224 
3225 		if (zio->io_type == ZIO_TYPE_WRITE)
3226 			vdev_cache_write(zio);
3227 
3228 		if (zio_injection_enabled && zio->io_error == 0)
3229 			zio->io_error = zio_handle_device_injection(vd,
3230 			    zio, EIO);
3231 
3232 		if (zio_injection_enabled && zio->io_error == 0)
3233 			zio->io_error = zio_handle_label_injection(zio, EIO);
3234 
3235 		if (zio->io_error) {
3236 			if (!vdev_accessible(vd, zio)) {
3237 				zio->io_error = SET_ERROR(ENXIO);
3238 			} else {
3239 				unexpected_error = B_TRUE;
3240 			}
3241 		}
3242 	}
3243 
3244 	ops->vdev_op_io_done(zio);
3245 
3246 	if (unexpected_error)
3247 		VERIFY(vdev_probe(vd, zio) == NULL);
3248 
3249 	return (ZIO_PIPELINE_CONTINUE);
3250 }
3251 
3252 /*
3253  * For non-raidz ZIOs, we can just copy aside the bad data read from the
3254  * disk, and use that to finish the checksum ereport later.
3255  */
3256 static void
3257 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
3258     const void *good_buf)
3259 {
3260 	/* no processing needed */
3261 	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
3262 }
3263 
3264 /*ARGSUSED*/
3265 void
3266 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
3267 {
3268 	void *buf = zio_buf_alloc(zio->io_size);
3269 
3270 	abd_copy_to_buf(buf, zio->io_abd, zio->io_size);
3271 
3272 	zcr->zcr_cbinfo = zio->io_size;
3273 	zcr->zcr_cbdata = buf;
3274 	zcr->zcr_finish = zio_vsd_default_cksum_finish;
3275 	zcr->zcr_free = zio_buf_free;
3276 }
3277 
3278 static int
3279 zio_vdev_io_assess(zio_t *zio)
3280 {
3281 	vdev_t *vd = zio->io_vd;
3282 
3283 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3284 		return (ZIO_PIPELINE_STOP);
3285 	}
3286 
3287 	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3288 		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
3289 
3290 	if (zio->io_vsd != NULL) {
3291 		zio->io_vsd_ops->vsd_free(zio);
3292 		zio->io_vsd = NULL;
3293 	}
3294 
3295 	if (zio_injection_enabled && zio->io_error == 0)
3296 		zio->io_error = zio_handle_fault_injection(zio, EIO);
3297 
3298 	/*
3299 	 * If the I/O failed, determine whether we should attempt to retry it.
3300 	 *
3301 	 * On retry, we cut in line in the issue queue, since we don't want
3302 	 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
3303 	 */
3304 	if (zio->io_error && vd == NULL &&
3305 	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
3306 		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
3307 		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
3308 		zio->io_error = 0;
3309 		zio->io_flags |= ZIO_FLAG_IO_RETRY |
3310 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
3311 		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
3312 		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
3313 		    zio_requeue_io_start_cut_in_line);
3314 		return (ZIO_PIPELINE_STOP);
3315 	}
3316 
3317 	/*
3318 	 * If we got an error on a leaf device, convert it to ENXIO
3319 	 * if the device is not accessible at all.
3320 	 */
3321 	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3322 	    !vdev_accessible(vd, zio))
3323 		zio->io_error = SET_ERROR(ENXIO);
3324 
3325 	/*
3326 	 * If we can't write to an interior vdev (mirror or RAID-Z),
3327 	 * set vdev_cant_write so that we stop trying to allocate from it.
3328 	 */
3329 	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
3330 	    vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
3331 		vd->vdev_cant_write = B_TRUE;
3332 	}
3333 
3334 	/*
3335 	 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future
3336 	 * attempts will ever succeed. In this case we set a persistent bit so
3337 	 * that we don't bother with it in the future.
3338 	 */
3339 	if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) &&
3340 	    zio->io_type == ZIO_TYPE_IOCTL &&
3341 	    zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL)
3342 		vd->vdev_nowritecache = B_TRUE;
3343 
3344 	if (zio->io_error)
3345 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3346 
3347 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3348 	    zio->io_physdone != NULL) {
3349 		ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
3350 		ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
3351 		zio->io_physdone(zio->io_logical);
3352 	}
3353 
3354 	return (ZIO_PIPELINE_CONTINUE);
3355 }
3356 
3357 void
3358 zio_vdev_io_reissue(zio_t *zio)
3359 {
3360 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3361 	ASSERT(zio->io_error == 0);
3362 
3363 	zio->io_stage >>= 1;
3364 }
3365 
3366 void
3367 zio_vdev_io_redone(zio_t *zio)
3368 {
3369 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
3370 
3371 	zio->io_stage >>= 1;
3372 }
3373 
3374 void
3375 zio_vdev_io_bypass(zio_t *zio)
3376 {
3377 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3378 	ASSERT(zio->io_error == 0);
3379 
3380 	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
3381 	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
3382 }
3383 
3384 /*
3385  * ==========================================================================
3386  * Generate and verify checksums
3387  * ==========================================================================
3388  */
3389 static int
3390 zio_checksum_generate(zio_t *zio)
3391 {
3392 	blkptr_t *bp = zio->io_bp;
3393 	enum zio_checksum checksum;
3394 
3395 	if (bp == NULL) {
3396 		/*
3397 		 * This is zio_write_phys().
3398 		 * We're either generating a label checksum, or none at all.
3399 		 */
3400 		checksum = zio->io_prop.zp_checksum;
3401 
3402 		if (checksum == ZIO_CHECKSUM_OFF)
3403 			return (ZIO_PIPELINE_CONTINUE);
3404 
3405 		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
3406 	} else {
3407 		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
3408 			ASSERT(!IO_IS_ALLOCATING(zio));
3409 			checksum = ZIO_CHECKSUM_GANG_HEADER;
3410 		} else {
3411 			checksum = BP_GET_CHECKSUM(bp);
3412 		}
3413 	}
3414 
3415 	zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size);
3416 
3417 	return (ZIO_PIPELINE_CONTINUE);
3418 }
3419 
3420 static int
3421 zio_checksum_verify(zio_t *zio)
3422 {
3423 	zio_bad_cksum_t info;
3424 	blkptr_t *bp = zio->io_bp;
3425 	int error;
3426 
3427 	ASSERT(zio->io_vd != NULL);
3428 
3429 	if (bp == NULL) {
3430 		/*
3431 		 * This is zio_read_phys().
3432 		 * We're either verifying a label checksum, or nothing at all.
3433 		 */
3434 		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
3435 			return (ZIO_PIPELINE_CONTINUE);
3436 
3437 		ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
3438 	}
3439 
3440 	if ((error = zio_checksum_error(zio, &info)) != 0) {
3441 		zio->io_error = error;
3442 		if (error == ECKSUM &&
3443 		    !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
3444 			zfs_ereport_start_checksum(zio->io_spa,
3445 			    zio->io_vd, zio, zio->io_offset,
3446 			    zio->io_size, NULL, &info);
3447 		}
3448 	}
3449 
3450 	return (ZIO_PIPELINE_CONTINUE);
3451 }
3452 
3453 /*
3454  * Called by RAID-Z to ensure we don't compute the checksum twice.
3455  */
3456 void
3457 zio_checksum_verified(zio_t *zio)
3458 {
3459 	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
3460 }
3461 
3462 /*
3463  * ==========================================================================
3464  * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
3465  * An error of 0 indicates success.  ENXIO indicates whole-device failure,
3466  * which may be transient (e.g. unplugged) or permament.  ECKSUM and EIO
3467  * indicate errors that are specific to one I/O, and most likely permanent.
3468  * Any other error is presumed to be worse because we weren't expecting it.
3469  * ==========================================================================
3470  */
3471 int
3472 zio_worst_error(int e1, int e2)
3473 {
3474 	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
3475 	int r1, r2;
3476 
3477 	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
3478 		if (e1 == zio_error_rank[r1])
3479 			break;
3480 
3481 	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
3482 		if (e2 == zio_error_rank[r2])
3483 			break;
3484 
3485 	return (r1 > r2 ? e1 : e2);
3486 }
3487 
3488 /*
3489  * ==========================================================================
3490  * I/O completion
3491  * ==========================================================================
3492  */
3493 static int
3494 zio_ready(zio_t *zio)
3495 {
3496 	blkptr_t *bp = zio->io_bp;
3497 	zio_t *pio, *pio_next;
3498 	zio_link_t *zl = NULL;
3499 
3500 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT,
3501 	    ZIO_WAIT_READY)) {
3502 		return (ZIO_PIPELINE_STOP);
3503 	}
3504 
3505 	if (zio->io_ready) {
3506 		ASSERT(IO_IS_ALLOCATING(zio));
3507 		ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
3508 		    (zio->io_flags & ZIO_FLAG_NOPWRITE));
3509 		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
3510 
3511 		zio->io_ready(zio);
3512 	}
3513 
3514 	if (bp != NULL && bp != &zio->io_bp_copy)
3515 		zio->io_bp_copy = *bp;
3516 
3517 	if (zio->io_error != 0) {
3518 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3519 
3520 		if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
3521 			ASSERT(IO_IS_ALLOCATING(zio));
3522 			ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
3523 			/*
3524 			 * We were unable to allocate anything, unreserve and
3525 			 * issue the next I/O to allocate.
3526 			 */
3527 			metaslab_class_throttle_unreserve(
3528 			    spa_normal_class(zio->io_spa),
3529 			    zio->io_prop.zp_copies, zio->io_allocator, zio);
3530 			zio_allocate_dispatch(zio->io_spa, zio->io_allocator);
3531 		}
3532 	}
3533 
3534 	mutex_enter(&zio->io_lock);
3535 	zio->io_state[ZIO_WAIT_READY] = 1;
3536 	pio = zio_walk_parents(zio, &zl);
3537 	mutex_exit(&zio->io_lock);
3538 
3539 	/*
3540 	 * As we notify zio's parents, new parents could be added.
3541 	 * New parents go to the head of zio's io_parent_list, however,
3542 	 * so we will (correctly) not notify them.  The remainder of zio's
3543 	 * io_parent_list, from 'pio_next' onward, cannot change because
3544 	 * all parents must wait for us to be done before they can be done.
3545 	 */
3546 	for (; pio != NULL; pio = pio_next) {
3547 		pio_next = zio_walk_parents(zio, &zl);
3548 		zio_notify_parent(pio, zio, ZIO_WAIT_READY);
3549 	}
3550 
3551 	if (zio->io_flags & ZIO_FLAG_NODATA) {
3552 		if (BP_IS_GANG(bp)) {
3553 			zio->io_flags &= ~ZIO_FLAG_NODATA;
3554 		} else {
3555 			ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE);
3556 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
3557 		}
3558 	}
3559 
3560 	if (zio_injection_enabled &&
3561 	    zio->io_spa->spa_syncing_txg == zio->io_txg)
3562 		zio_handle_ignored_writes(zio);
3563 
3564 	return (ZIO_PIPELINE_CONTINUE);
3565 }
3566 
3567 /*
3568  * Update the allocation throttle accounting.
3569  */
3570 static void
3571 zio_dva_throttle_done(zio_t *zio)
3572 {
3573 	zio_t *lio = zio->io_logical;
3574 	zio_t *pio = zio_unique_parent(zio);
3575 	vdev_t *vd = zio->io_vd;
3576 	int flags = METASLAB_ASYNC_ALLOC;
3577 
3578 	ASSERT3P(zio->io_bp, !=, NULL);
3579 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
3580 	ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE);
3581 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
3582 	ASSERT(vd != NULL);
3583 	ASSERT3P(vd, ==, vd->vdev_top);
3584 	ASSERT(!(zio->io_flags & (ZIO_FLAG_IO_REPAIR | ZIO_FLAG_IO_RETRY)));
3585 	ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING);
3586 	ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE));
3587 	ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA));
3588 
3589 	/*
3590 	 * Parents of gang children can have two flavors -- ones that
3591 	 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set)
3592 	 * and ones that allocated the constituent blocks. The allocation
3593 	 * throttle needs to know the allocating parent zio so we must find
3594 	 * it here.
3595 	 */
3596 	if (pio->io_child_type == ZIO_CHILD_GANG) {
3597 		/*
3598 		 * If our parent is a rewrite gang child then our grandparent
3599 		 * would have been the one that performed the allocation.
3600 		 */
3601 		if (pio->io_flags & ZIO_FLAG_IO_REWRITE)
3602 			pio = zio_unique_parent(pio);
3603 		flags |= METASLAB_GANG_CHILD;
3604 	}
3605 
3606 	ASSERT(IO_IS_ALLOCATING(pio));
3607 	ASSERT3P(zio, !=, zio->io_logical);
3608 	ASSERT(zio->io_logical != NULL);
3609 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
3610 	ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE);
3611 
3612 	mutex_enter(&pio->io_lock);
3613 	metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags,
3614 	    pio->io_allocator, B_TRUE);
3615 	mutex_exit(&pio->io_lock);
3616 
3617 	metaslab_class_throttle_unreserve(spa_normal_class(zio->io_spa),
3618 	    1, pio->io_allocator, pio);
3619 
3620 	/*
3621 	 * Call into the pipeline to see if there is more work that
3622 	 * needs to be done. If there is work to be done it will be
3623 	 * dispatched to another taskq thread.
3624 	 */
3625 	zio_allocate_dispatch(zio->io_spa, pio->io_allocator);
3626 }
3627 
3628 static int
3629 zio_done(zio_t *zio)
3630 {
3631 	spa_t *spa = zio->io_spa;
3632 	zio_t *lio = zio->io_logical;
3633 	blkptr_t *bp = zio->io_bp;
3634 	vdev_t *vd = zio->io_vd;
3635 	uint64_t psize = zio->io_size;
3636 	zio_t *pio, *pio_next;
3637 	metaslab_class_t *mc = spa_normal_class(spa);
3638 	zio_link_t *zl = NULL;
3639 
3640 	/*
3641 	 * If our children haven't all completed,
3642 	 * wait for them and then repeat this pipeline stage.
3643 	 */
3644 	if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) {
3645 		return (ZIO_PIPELINE_STOP);
3646 	}
3647 
3648 	/*
3649 	 * If the allocation throttle is enabled, then update the accounting.
3650 	 * We only track child I/Os that are part of an allocating async
3651 	 * write. We must do this since the allocation is performed
3652 	 * by the logical I/O but the actual write is done by child I/Os.
3653 	 */
3654 	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING &&
3655 	    zio->io_child_type == ZIO_CHILD_VDEV) {
3656 		ASSERT(mc->mc_alloc_throttle_enabled);
3657 		zio_dva_throttle_done(zio);
3658 	}
3659 
3660 	/*
3661 	 * If the allocation throttle is enabled, verify that
3662 	 * we have decremented the refcounts for every I/O that was throttled.
3663 	 */
3664 	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
3665 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3666 		ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
3667 		ASSERT(bp != NULL);
3668 		metaslab_group_alloc_verify(spa, zio->io_bp, zio,
3669 		    zio->io_allocator);
3670 		VERIFY(refcount_not_held(&mc->mc_alloc_slots[zio->io_allocator],
3671 		    zio));
3672 	}
3673 
3674 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
3675 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
3676 			ASSERT(zio->io_children[c][w] == 0);
3677 
3678 	if (bp != NULL && !BP_IS_EMBEDDED(bp)) {
3679 		ASSERT(bp->blk_pad[0] == 0);
3680 		ASSERT(bp->blk_pad[1] == 0);
3681 		ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
3682 		    (bp == zio_unique_parent(zio)->io_bp));
3683 		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
3684 		    zio->io_bp_override == NULL &&
3685 		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
3686 			ASSERT(!BP_SHOULD_BYTESWAP(bp));
3687 			ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp));
3688 			ASSERT(BP_COUNT_GANG(bp) == 0 ||
3689 			    (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
3690 		}
3691 		if (zio->io_flags & ZIO_FLAG_NOPWRITE)
3692 			VERIFY(BP_EQUAL(bp, &zio->io_bp_orig));
3693 	}
3694 
3695 	/*
3696 	 * If there were child vdev/gang/ddt errors, they apply to us now.
3697 	 */
3698 	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
3699 	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
3700 	zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
3701 
3702 	/*
3703 	 * If the I/O on the transformed data was successful, generate any
3704 	 * checksum reports now while we still have the transformed data.
3705 	 */
3706 	if (zio->io_error == 0) {
3707 		while (zio->io_cksum_report != NULL) {
3708 			zio_cksum_report_t *zcr = zio->io_cksum_report;
3709 			uint64_t align = zcr->zcr_align;
3710 			uint64_t asize = P2ROUNDUP(psize, align);
3711 			char *abuf = NULL;
3712 			abd_t *adata = zio->io_abd;
3713 
3714 			if (asize != psize) {
3715 				adata = abd_alloc_linear(asize, B_TRUE);
3716 				abd_copy(adata, zio->io_abd, psize);
3717 				abd_zero_off(adata, psize, asize - psize);
3718 			}
3719 
3720 			if (adata != NULL)
3721 				abuf = abd_borrow_buf_copy(adata, asize);
3722 
3723 			zio->io_cksum_report = zcr->zcr_next;
3724 			zcr->zcr_next = NULL;
3725 			zcr->zcr_finish(zcr, abuf);
3726 			zfs_ereport_free_checksum(zcr);
3727 
3728 			if (adata != NULL)
3729 				abd_return_buf(adata, abuf, asize);
3730 
3731 			if (asize != psize)
3732 				abd_free(adata);
3733 		}
3734 	}
3735 
3736 	zio_pop_transforms(zio);	/* note: may set zio->io_error */
3737 
3738 	vdev_stat_update(zio, psize);
3739 
3740 	if (zio->io_error) {
3741 		/*
3742 		 * If this I/O is attached to a particular vdev,
3743 		 * generate an error message describing the I/O failure
3744 		 * at the block level.  We ignore these errors if the
3745 		 * device is currently unavailable.
3746 		 */
3747 		if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
3748 			zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0);
3749 
3750 		if ((zio->io_error == EIO || !(zio->io_flags &
3751 		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
3752 		    zio == lio) {
3753 			/*
3754 			 * For logical I/O requests, tell the SPA to log the
3755 			 * error and generate a logical data ereport.
3756 			 */
3757 			spa_log_error(spa, zio);
3758 			zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio,
3759 			    0, 0);
3760 		}
3761 	}
3762 
3763 	if (zio->io_error && zio == lio) {
3764 		/*
3765 		 * Determine whether zio should be reexecuted.  This will
3766 		 * propagate all the way to the root via zio_notify_parent().
3767 		 */
3768 		ASSERT(vd == NULL && bp != NULL);
3769 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3770 
3771 		if (IO_IS_ALLOCATING(zio) &&
3772 		    !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
3773 			if (zio->io_error != ENOSPC)
3774 				zio->io_reexecute |= ZIO_REEXECUTE_NOW;
3775 			else
3776 				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3777 		}
3778 
3779 		if ((zio->io_type == ZIO_TYPE_READ ||
3780 		    zio->io_type == ZIO_TYPE_FREE) &&
3781 		    !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
3782 		    zio->io_error == ENXIO &&
3783 		    spa_load_state(spa) == SPA_LOAD_NONE &&
3784 		    spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
3785 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3786 
3787 		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
3788 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3789 
3790 		/*
3791 		 * Here is a possibly good place to attempt to do
3792 		 * either combinatorial reconstruction or error correction
3793 		 * based on checksums.  It also might be a good place
3794 		 * to send out preliminary ereports before we suspend
3795 		 * processing.
3796 		 */
3797 	}
3798 
3799 	/*
3800 	 * If there were logical child errors, they apply to us now.
3801 	 * We defer this until now to avoid conflating logical child
3802 	 * errors with errors that happened to the zio itself when
3803 	 * updating vdev stats and reporting FMA events above.
3804 	 */
3805 	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
3806 
3807 	if ((zio->io_error || zio->io_reexecute) &&
3808 	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
3809 	    !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
3810 		zio_dva_unallocate(zio, zio->io_gang_tree, bp);
3811 
3812 	zio_gang_tree_free(&zio->io_gang_tree);
3813 
3814 	/*
3815 	 * Godfather I/Os should never suspend.
3816 	 */
3817 	if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
3818 	    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
3819 		zio->io_reexecute = 0;
3820 
3821 	if (zio->io_reexecute) {
3822 		/*
3823 		 * This is a logical I/O that wants to reexecute.
3824 		 *
3825 		 * Reexecute is top-down.  When an i/o fails, if it's not
3826 		 * the root, it simply notifies its parent and sticks around.
3827 		 * The parent, seeing that it still has children in zio_done(),
3828 		 * does the same.  This percolates all the way up to the root.
3829 		 * The root i/o will reexecute or suspend the entire tree.
3830 		 *
3831 		 * This approach ensures that zio_reexecute() honors
3832 		 * all the original i/o dependency relationships, e.g.
3833 		 * parents not executing until children are ready.
3834 		 */
3835 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3836 
3837 		zio->io_gang_leader = NULL;
3838 
3839 		mutex_enter(&zio->io_lock);
3840 		zio->io_state[ZIO_WAIT_DONE] = 1;
3841 		mutex_exit(&zio->io_lock);
3842 
3843 		/*
3844 		 * "The Godfather" I/O monitors its children but is
3845 		 * not a true parent to them. It will track them through
3846 		 * the pipeline but severs its ties whenever they get into
3847 		 * trouble (e.g. suspended). This allows "The Godfather"
3848 		 * I/O to return status without blocking.
3849 		 */
3850 		zl = NULL;
3851 		for (pio = zio_walk_parents(zio, &zl); pio != NULL;
3852 		    pio = pio_next) {
3853 			zio_link_t *remove_zl = zl;
3854 			pio_next = zio_walk_parents(zio, &zl);
3855 
3856 			if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
3857 			    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
3858 				zio_remove_child(pio, zio, remove_zl);
3859 				zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3860 			}
3861 		}
3862 
3863 		if ((pio = zio_unique_parent(zio)) != NULL) {
3864 			/*
3865 			 * We're not a root i/o, so there's nothing to do
3866 			 * but notify our parent.  Don't propagate errors
3867 			 * upward since we haven't permanently failed yet.
3868 			 */
3869 			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
3870 			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
3871 			zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3872 		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
3873 			/*
3874 			 * We'd fail again if we reexecuted now, so suspend
3875 			 * until conditions improve (e.g. device comes online).
3876 			 */
3877 			zio_suspend(spa, zio);
3878 		} else {
3879 			/*
3880 			 * Reexecution is potentially a huge amount of work.
3881 			 * Hand it off to the otherwise-unused claim taskq.
3882 			 */
3883 			ASSERT(zio->io_tqent.tqent_next == NULL);
3884 			spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM,
3885 			    ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio,
3886 			    0, &zio->io_tqent);
3887 		}
3888 		return (ZIO_PIPELINE_STOP);
3889 	}
3890 
3891 	ASSERT(zio->io_child_count == 0);
3892 	ASSERT(zio->io_reexecute == 0);
3893 	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
3894 
3895 	/*
3896 	 * Report any checksum errors, since the I/O is complete.
3897 	 */
3898 	while (zio->io_cksum_report != NULL) {
3899 		zio_cksum_report_t *zcr = zio->io_cksum_report;
3900 		zio->io_cksum_report = zcr->zcr_next;
3901 		zcr->zcr_next = NULL;
3902 		zcr->zcr_finish(zcr, NULL);
3903 		zfs_ereport_free_checksum(zcr);
3904 	}
3905 
3906 	/*
3907 	 * It is the responsibility of the done callback to ensure that this
3908 	 * particular zio is no longer discoverable for adoption, and as
3909 	 * such, cannot acquire any new parents.
3910 	 */
3911 	if (zio->io_done)
3912 		zio->io_done(zio);
3913 
3914 	mutex_enter(&zio->io_lock);
3915 	zio->io_state[ZIO_WAIT_DONE] = 1;
3916 	mutex_exit(&zio->io_lock);
3917 
3918 	zl = NULL;
3919 	for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) {
3920 		zio_link_t *remove_zl = zl;
3921 		pio_next = zio_walk_parents(zio, &zl);
3922 		zio_remove_child(pio, zio, remove_zl);
3923 		zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3924 	}
3925 
3926 	if (zio->io_waiter != NULL) {
3927 		mutex_enter(&zio->io_lock);
3928 		zio->io_executor = NULL;
3929 		cv_broadcast(&zio->io_cv);
3930 		mutex_exit(&zio->io_lock);
3931 	} else {
3932 		zio_destroy(zio);
3933 	}
3934 
3935 	return (ZIO_PIPELINE_STOP);
3936 }
3937 
3938 /*
3939  * ==========================================================================
3940  * I/O pipeline definition
3941  * ==========================================================================
3942  */
3943 static zio_pipe_stage_t *zio_pipeline[] = {
3944 	NULL,
3945 	zio_read_bp_init,
3946 	zio_write_bp_init,
3947 	zio_free_bp_init,
3948 	zio_issue_async,
3949 	zio_write_compress,
3950 	zio_checksum_generate,
3951 	zio_nop_write,
3952 	zio_ddt_read_start,
3953 	zio_ddt_read_done,
3954 	zio_ddt_write,
3955 	zio_ddt_free,
3956 	zio_gang_assemble,
3957 	zio_gang_issue,
3958 	zio_dva_throttle,
3959 	zio_dva_allocate,
3960 	zio_dva_free,
3961 	zio_dva_claim,
3962 	zio_ready,
3963 	zio_vdev_io_start,
3964 	zio_vdev_io_done,
3965 	zio_vdev_io_assess,
3966 	zio_checksum_verify,
3967 	zio_done
3968 };
3969 
3970 
3971 
3972 
3973 /*
3974  * Compare two zbookmark_phys_t's to see which we would reach first in a
3975  * pre-order traversal of the object tree.
3976  *
3977  * This is simple in every case aside from the meta-dnode object. For all other
3978  * objects, we traverse them in order (object 1 before object 2, and so on).
3979  * However, all of these objects are traversed while traversing object 0, since
3980  * the data it points to is the list of objects.  Thus, we need to convert to a
3981  * canonical representation so we can compare meta-dnode bookmarks to
3982  * non-meta-dnode bookmarks.
3983  *
3984  * We do this by calculating "equivalents" for each field of the zbookmark.
3985  * zbookmarks outside of the meta-dnode use their own object and level, and
3986  * calculate the level 0 equivalent (the first L0 blkid that is contained in the
3987  * blocks this bookmark refers to) by multiplying their blkid by their span
3988  * (the number of L0 blocks contained within one block at their level).
3989  * zbookmarks inside the meta-dnode calculate their object equivalent
3990  * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
3991  * level + 1<<31 (any value larger than a level could ever be) for their level.
3992  * This causes them to always compare before a bookmark in their object
3993  * equivalent, compare appropriately to bookmarks in other objects, and to
3994  * compare appropriately to other bookmarks in the meta-dnode.
3995  */
3996 int
3997 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
3998     const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
3999 {
4000 	/*
4001 	 * These variables represent the "equivalent" values for the zbookmark,
4002 	 * after converting zbookmarks inside the meta dnode to their
4003 	 * normal-object equivalents.
4004 	 */
4005 	uint64_t zb1obj, zb2obj;
4006 	uint64_t zb1L0, zb2L0;
4007 	uint64_t zb1level, zb2level;
4008 
4009 	if (zb1->zb_object == zb2->zb_object &&
4010 	    zb1->zb_level == zb2->zb_level &&
4011 	    zb1->zb_blkid == zb2->zb_blkid)
4012 		return (0);
4013 
4014 	/*
4015 	 * BP_SPANB calculates the span in blocks.
4016 	 */
4017 	zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
4018 	zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
4019 
4020 	if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
4021 		zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4022 		zb1L0 = 0;
4023 		zb1level = zb1->zb_level + COMPARE_META_LEVEL;
4024 	} else {
4025 		zb1obj = zb1->zb_object;
4026 		zb1level = zb1->zb_level;
4027 	}
4028 
4029 	if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
4030 		zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4031 		zb2L0 = 0;
4032 		zb2level = zb2->zb_level + COMPARE_META_LEVEL;
4033 	} else {
4034 		zb2obj = zb2->zb_object;
4035 		zb2level = zb2->zb_level;
4036 	}
4037 
4038 	/* Now that we have a canonical representation, do the comparison. */
4039 	if (zb1obj != zb2obj)
4040 		return (zb1obj < zb2obj ? -1 : 1);
4041 	else if (zb1L0 != zb2L0)
4042 		return (zb1L0 < zb2L0 ? -1 : 1);
4043 	else if (zb1level != zb2level)
4044 		return (zb1level > zb2level ? -1 : 1);
4045 	/*
4046 	 * This can (theoretically) happen if the bookmarks have the same object
4047 	 * and level, but different blkids, if the block sizes are not the same.
4048 	 * There is presently no way to change the indirect block sizes
4049 	 */
4050 	return (0);
4051 }
4052 
4053 /*
4054  *  This function checks the following: given that last_block is the place that
4055  *  our traversal stopped last time, does that guarantee that we've visited
4056  *  every node under subtree_root?  Therefore, we can't just use the raw output
4057  *  of zbookmark_compare.  We have to pass in a modified version of
4058  *  subtree_root; by incrementing the block id, and then checking whether
4059  *  last_block is before or equal to that, we can tell whether or not having
4060  *  visited last_block implies that all of subtree_root's children have been
4061  *  visited.
4062  */
4063 boolean_t
4064 zbookmark_subtree_completed(const dnode_phys_t *dnp,
4065     const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
4066 {
4067 	zbookmark_phys_t mod_zb = *subtree_root;
4068 	mod_zb.zb_blkid++;
4069 	ASSERT(last_block->zb_level == 0);
4070 
4071 	/* The objset_phys_t isn't before anything. */
4072 	if (dnp == NULL)
4073 		return (B_FALSE);
4074 
4075 	/*
4076 	 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
4077 	 * data block size in sectors, because that variable is only used if
4078 	 * the bookmark refers to a block in the meta-dnode.  Since we don't
4079 	 * know without examining it what object it refers to, and there's no
4080 	 * harm in passing in this value in other cases, we always pass it in.
4081 	 *
4082 	 * We pass in 0 for the indirect block size shift because zb2 must be
4083 	 * level 0.  The indirect block size is only used to calculate the span
4084 	 * of the bookmark, but since the bookmark must be level 0, the span is
4085 	 * always 1, so the math works out.
4086 	 *
4087 	 * If you make changes to how the zbookmark_compare code works, be sure
4088 	 * to make sure that this code still works afterwards.
4089 	 */
4090 	return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
4091 	    1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
4092 	    last_block) <= 0);
4093 }
4094