xref: /illumos-gate/usr/src/uts/common/fs/zfs/zio.c (revision 084fd14f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24  * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25  * Copyright (c) 2014 Integros [integros.com]
26  * Copyright (c) 2017, Intel Corporation.
27  */
28 
29 #include <sys/sysmacros.h>
30 #include <sys/zfs_context.h>
31 #include <sys/fm/fs/zfs.h>
32 #include <sys/spa.h>
33 #include <sys/txg.h>
34 #include <sys/spa_impl.h>
35 #include <sys/vdev_impl.h>
36 #include <sys/vdev_trim.h>
37 #include <sys/zio_impl.h>
38 #include <sys/zio_compress.h>
39 #include <sys/zio_checksum.h>
40 #include <sys/dmu_objset.h>
41 #include <sys/arc.h>
42 #include <sys/ddt.h>
43 #include <sys/blkptr.h>
44 #include <sys/zfeature.h>
45 #include <sys/dsl_scan.h>
46 #include <sys/metaslab_impl.h>
47 #include <sys/abd.h>
48 #include <sys/cityhash.h>
49 #include <sys/dsl_crypt.h>
50 
51 /*
52  * ==========================================================================
53  * I/O type descriptions
54  * ==========================================================================
55  */
56 const char *zio_type_name[ZIO_TYPES] = {
57 	"zio_null", "zio_read", "zio_write", "zio_free", "zio_claim",
58 	"zio_ioctl", "z_trim"
59 };
60 
61 boolean_t zio_dva_throttle_enabled = B_TRUE;
62 
63 /*
64  * ==========================================================================
65  * I/O kmem caches
66  * ==========================================================================
67  */
68 kmem_cache_t *zio_cache;
69 kmem_cache_t *zio_link_cache;
70 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
71 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
72 
73 #ifdef _KERNEL
74 extern vmem_t *zio_alloc_arena;
75 #endif
76 
77 #define	ZIO_PIPELINE_CONTINUE		0x100
78 #define	ZIO_PIPELINE_STOP		0x101
79 
80 #define	BP_SPANB(indblkshift, level) \
81 	(((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
82 #define	COMPARE_META_LEVEL	0x80000000ul
83 /*
84  * The following actions directly effect the spa's sync-to-convergence logic.
85  * The values below define the sync pass when we start performing the action.
86  * Care should be taken when changing these values as they directly impact
87  * spa_sync() performance. Tuning these values may introduce subtle performance
88  * pathologies and should only be done in the context of performance analysis.
89  * These tunables will eventually be removed and replaced with #defines once
90  * enough analysis has been done to determine optimal values.
91  *
92  * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
93  * regular blocks are not deferred.
94  */
95 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
96 int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
97 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
98 
99 /*
100  * An allocating zio is one that either currently has the DVA allocate
101  * stage set or will have it later in its lifetime.
102  */
103 #define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
104 
105 boolean_t	zio_requeue_io_start_cut_in_line = B_TRUE;
106 
107 #ifdef ZFS_DEBUG
108 int zio_buf_debug_limit = 16384;
109 #else
110 int zio_buf_debug_limit = 0;
111 #endif
112 
113 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t);
114 
115 void
116 zio_init(void)
117 {
118 	size_t c;
119 	vmem_t *data_alloc_arena = NULL;
120 
121 #ifdef _KERNEL
122 	data_alloc_arena = zio_alloc_arena;
123 #endif
124 	zio_cache = kmem_cache_create("zio_cache",
125 	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
126 	zio_link_cache = kmem_cache_create("zio_link_cache",
127 	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
128 
129 	/*
130 	 * For small buffers, we want a cache for each multiple of
131 	 * SPA_MINBLOCKSIZE.  For larger buffers, we want a cache
132 	 * for each quarter-power of 2.
133 	 */
134 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
135 		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
136 		size_t p2 = size;
137 		size_t align = 0;
138 		size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0;
139 
140 		while (!ISP2(p2))
141 			p2 &= p2 - 1;
142 
143 #ifndef _KERNEL
144 		/*
145 		 * If we are using watchpoints, put each buffer on its own page,
146 		 * to eliminate the performance overhead of trapping to the
147 		 * kernel when modifying a non-watched buffer that shares the
148 		 * page with a watched buffer.
149 		 */
150 		if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
151 			continue;
152 #endif
153 		if (size <= 4 * SPA_MINBLOCKSIZE) {
154 			align = SPA_MINBLOCKSIZE;
155 		} else if (IS_P2ALIGNED(size, p2 >> 2)) {
156 			align = MIN(p2 >> 2, PAGESIZE);
157 		}
158 
159 		if (align != 0) {
160 			char name[36];
161 			(void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
162 			zio_buf_cache[c] = kmem_cache_create(name, size,
163 			    align, NULL, NULL, NULL, NULL, NULL, cflags);
164 
165 			/*
166 			 * Since zio_data bufs do not appear in crash dumps, we
167 			 * pass KMC_NOTOUCH so that no allocator metadata is
168 			 * stored with the buffers.
169 			 */
170 			(void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
171 			zio_data_buf_cache[c] = kmem_cache_create(name, size,
172 			    align, NULL, NULL, NULL, NULL, data_alloc_arena,
173 			    cflags | KMC_NOTOUCH);
174 		}
175 	}
176 
177 	while (--c != 0) {
178 		ASSERT(zio_buf_cache[c] != NULL);
179 		if (zio_buf_cache[c - 1] == NULL)
180 			zio_buf_cache[c - 1] = zio_buf_cache[c];
181 
182 		ASSERT(zio_data_buf_cache[c] != NULL);
183 		if (zio_data_buf_cache[c - 1] == NULL)
184 			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
185 	}
186 
187 	zio_inject_init();
188 }
189 
190 void
191 zio_fini(void)
192 {
193 	size_t c;
194 	kmem_cache_t *last_cache = NULL;
195 	kmem_cache_t *last_data_cache = NULL;
196 
197 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
198 		if (zio_buf_cache[c] != last_cache) {
199 			last_cache = zio_buf_cache[c];
200 			kmem_cache_destroy(zio_buf_cache[c]);
201 		}
202 		zio_buf_cache[c] = NULL;
203 
204 		if (zio_data_buf_cache[c] != last_data_cache) {
205 			last_data_cache = zio_data_buf_cache[c];
206 			kmem_cache_destroy(zio_data_buf_cache[c]);
207 		}
208 		zio_data_buf_cache[c] = NULL;
209 	}
210 
211 	kmem_cache_destroy(zio_link_cache);
212 	kmem_cache_destroy(zio_cache);
213 
214 	zio_inject_fini();
215 }
216 
217 /*
218  * ==========================================================================
219  * Allocate and free I/O buffers
220  * ==========================================================================
221  */
222 
223 /*
224  * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
225  * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
226  * useful to inspect ZFS metadata, but if possible, we should avoid keeping
227  * excess / transient data in-core during a crashdump.
228  */
229 void *
230 zio_buf_alloc(size_t size)
231 {
232 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
233 
234 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
235 
236 	return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
237 }
238 
239 /*
240  * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
241  * crashdump if the kernel panics.  This exists so that we will limit the amount
242  * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
243  * of kernel heap dumped to disk when the kernel panics)
244  */
245 void *
246 zio_data_buf_alloc(size_t size)
247 {
248 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
249 
250 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
251 
252 	return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
253 }
254 
255 void
256 zio_buf_free(void *buf, size_t size)
257 {
258 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
259 
260 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
261 
262 	kmem_cache_free(zio_buf_cache[c], buf);
263 }
264 
265 void
266 zio_data_buf_free(void *buf, size_t size)
267 {
268 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
269 
270 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
271 
272 	kmem_cache_free(zio_data_buf_cache[c], buf);
273 }
274 
275 /* ARGSUSED */
276 static void
277 zio_abd_free(void *abd, size_t size)
278 {
279 	abd_free((abd_t *)abd);
280 }
281 
282 /*
283  * ==========================================================================
284  * Push and pop I/O transform buffers
285  * ==========================================================================
286  */
287 void
288 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize,
289     zio_transform_func_t *transform)
290 {
291 	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
292 
293 	/*
294 	 * Ensure that anyone expecting this zio to contain a linear ABD isn't
295 	 * going to get a nasty surprise when they try to access the data.
296 	 */
297 	IMPLY(abd_is_linear(zio->io_abd), abd_is_linear(data));
298 
299 	zt->zt_orig_abd = zio->io_abd;
300 	zt->zt_orig_size = zio->io_size;
301 	zt->zt_bufsize = bufsize;
302 	zt->zt_transform = transform;
303 
304 	zt->zt_next = zio->io_transform_stack;
305 	zio->io_transform_stack = zt;
306 
307 	zio->io_abd = data;
308 	zio->io_size = size;
309 }
310 
311 void
312 zio_pop_transforms(zio_t *zio)
313 {
314 	zio_transform_t *zt;
315 
316 	while ((zt = zio->io_transform_stack) != NULL) {
317 		if (zt->zt_transform != NULL)
318 			zt->zt_transform(zio,
319 			    zt->zt_orig_abd, zt->zt_orig_size);
320 
321 		if (zt->zt_bufsize != 0)
322 			abd_free(zio->io_abd);
323 
324 		zio->io_abd = zt->zt_orig_abd;
325 		zio->io_size = zt->zt_orig_size;
326 		zio->io_transform_stack = zt->zt_next;
327 
328 		kmem_free(zt, sizeof (zio_transform_t));
329 	}
330 }
331 
332 /*
333  * ==========================================================================
334  * I/O transform callbacks for subblocks, decompression, and decryption
335  * ==========================================================================
336  */
337 static void
338 zio_subblock(zio_t *zio, abd_t *data, uint64_t size)
339 {
340 	ASSERT(zio->io_size > size);
341 
342 	if (zio->io_type == ZIO_TYPE_READ)
343 		abd_copy(data, zio->io_abd, size);
344 }
345 
346 static void
347 zio_decompress(zio_t *zio, abd_t *data, uint64_t size)
348 {
349 	if (zio->io_error == 0) {
350 		void *tmp = abd_borrow_buf(data, size);
351 		int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
352 		    zio->io_abd, tmp, zio->io_size, size);
353 		abd_return_buf_copy(data, tmp, size);
354 
355 		if (ret != 0)
356 			zio->io_error = SET_ERROR(EIO);
357 	}
358 }
359 
360 static void
361 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size)
362 {
363 	int ret;
364 	void *tmp;
365 	blkptr_t *bp = zio->io_bp;
366 	spa_t *spa = zio->io_spa;
367 	uint64_t dsobj = zio->io_bookmark.zb_objset;
368 	uint64_t lsize = BP_GET_LSIZE(bp);
369 	dmu_object_type_t ot = BP_GET_TYPE(bp);
370 	uint8_t salt[ZIO_DATA_SALT_LEN];
371 	uint8_t iv[ZIO_DATA_IV_LEN];
372 	uint8_t mac[ZIO_DATA_MAC_LEN];
373 	boolean_t no_crypt = B_FALSE;
374 
375 	ASSERT(BP_USES_CRYPT(bp));
376 	ASSERT3U(size, !=, 0);
377 
378 	if (zio->io_error != 0)
379 		return;
380 
381 	/*
382 	 * Verify the cksum of MACs stored in an indirect bp. It will always
383 	 * be possible to verify this since it does not require an encryption
384 	 * key.
385 	 */
386 	if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) {
387 		zio_crypt_decode_mac_bp(bp, mac);
388 
389 		if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) {
390 			/*
391 			 * We haven't decompressed the data yet, but
392 			 * zio_crypt_do_indirect_mac_checksum() requires
393 			 * decompressed data to be able to parse out the MACs
394 			 * from the indirect block. We decompress it now and
395 			 * throw away the result after we are finished.
396 			 */
397 			tmp = zio_buf_alloc(lsize);
398 			ret = zio_decompress_data(BP_GET_COMPRESS(bp),
399 			    zio->io_abd, tmp, zio->io_size, lsize);
400 			if (ret != 0) {
401 				ret = SET_ERROR(EIO);
402 				goto error;
403 			}
404 			ret = zio_crypt_do_indirect_mac_checksum(B_FALSE,
405 			    tmp, lsize, BP_SHOULD_BYTESWAP(bp), mac);
406 			zio_buf_free(tmp, lsize);
407 		} else {
408 			ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE,
409 			    zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac);
410 		}
411 		abd_copy(data, zio->io_abd, size);
412 
413 		if (ret != 0)
414 			goto error;
415 
416 		return;
417 	}
418 
419 	/*
420 	 * If this is an authenticated block, just check the MAC. It would be
421 	 * nice to separate this out into its own flag, but for the moment
422 	 * enum zio_flag is out of bits.
423 	 */
424 	if (BP_IS_AUTHENTICATED(bp)) {
425 		if (ot == DMU_OT_OBJSET) {
426 			ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa,
427 			    dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp));
428 		} else {
429 			zio_crypt_decode_mac_bp(bp, mac);
430 			ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj,
431 			    zio->io_abd, size, mac);
432 		}
433 		abd_copy(data, zio->io_abd, size);
434 
435 		if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) {
436 			ret = zio_handle_decrypt_injection(spa,
437 			    &zio->io_bookmark, ot, ECKSUM);
438 		}
439 		if (ret != 0)
440 			goto error;
441 
442 		return;
443 	}
444 
445 	zio_crypt_decode_params_bp(bp, salt, iv);
446 
447 	if (ot == DMU_OT_INTENT_LOG) {
448 		tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t));
449 		zio_crypt_decode_mac_zil(tmp, mac);
450 		abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t));
451 	} else {
452 		zio_crypt_decode_mac_bp(bp, mac);
453 	}
454 
455 	ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp),
456 	    BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data,
457 	    zio->io_abd, &no_crypt);
458 	if (no_crypt)
459 		abd_copy(data, zio->io_abd, size);
460 
461 	if (ret != 0)
462 		goto error;
463 
464 	return;
465 
466 error:
467 	/* assert that the key was found unless this was speculative */
468 	ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE));
469 
470 	/*
471 	 * If there was a decryption / authentication error return EIO as
472 	 * the io_error. If this was not a speculative zio, create an ereport.
473 	 */
474 	if (ret == ECKSUM) {
475 		zio->io_error = SET_ERROR(EIO);
476 		if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
477 			spa_log_error(spa, &zio->io_bookmark);
478 			zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
479 			    spa, NULL, &zio->io_bookmark, zio, 0, 0);
480 		}
481 	} else {
482 		zio->io_error = ret;
483 	}
484 }
485 
486 /*
487  * ==========================================================================
488  * I/O parent/child relationships and pipeline interlocks
489  * ==========================================================================
490  */
491 zio_t *
492 zio_walk_parents(zio_t *cio, zio_link_t **zl)
493 {
494 	list_t *pl = &cio->io_parent_list;
495 
496 	*zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl);
497 	if (*zl == NULL)
498 		return (NULL);
499 
500 	ASSERT((*zl)->zl_child == cio);
501 	return ((*zl)->zl_parent);
502 }
503 
504 zio_t *
505 zio_walk_children(zio_t *pio, zio_link_t **zl)
506 {
507 	list_t *cl = &pio->io_child_list;
508 
509 	ASSERT(MUTEX_HELD(&pio->io_lock));
510 
511 	*zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl);
512 	if (*zl == NULL)
513 		return (NULL);
514 
515 	ASSERT((*zl)->zl_parent == pio);
516 	return ((*zl)->zl_child);
517 }
518 
519 zio_t *
520 zio_unique_parent(zio_t *cio)
521 {
522 	zio_link_t *zl = NULL;
523 	zio_t *pio = zio_walk_parents(cio, &zl);
524 
525 	VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL);
526 	return (pio);
527 }
528 
529 void
530 zio_add_child(zio_t *pio, zio_t *cio)
531 {
532 	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
533 
534 	/*
535 	 * Logical I/Os can have logical, gang, or vdev children.
536 	 * Gang I/Os can have gang or vdev children.
537 	 * Vdev I/Os can only have vdev children.
538 	 * The following ASSERT captures all of these constraints.
539 	 */
540 	ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
541 
542 	zl->zl_parent = pio;
543 	zl->zl_child = cio;
544 
545 	mutex_enter(&pio->io_lock);
546 	mutex_enter(&cio->io_lock);
547 
548 	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
549 
550 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
551 		pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
552 
553 	list_insert_head(&pio->io_child_list, zl);
554 	list_insert_head(&cio->io_parent_list, zl);
555 
556 	pio->io_child_count++;
557 	cio->io_parent_count++;
558 
559 	mutex_exit(&cio->io_lock);
560 	mutex_exit(&pio->io_lock);
561 }
562 
563 static void
564 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
565 {
566 	ASSERT(zl->zl_parent == pio);
567 	ASSERT(zl->zl_child == cio);
568 
569 	mutex_enter(&pio->io_lock);
570 	mutex_enter(&cio->io_lock);
571 
572 	list_remove(&pio->io_child_list, zl);
573 	list_remove(&cio->io_parent_list, zl);
574 
575 	pio->io_child_count--;
576 	cio->io_parent_count--;
577 
578 	mutex_exit(&cio->io_lock);
579 	mutex_exit(&pio->io_lock);
580 
581 	kmem_cache_free(zio_link_cache, zl);
582 }
583 
584 static boolean_t
585 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait)
586 {
587 	boolean_t waiting = B_FALSE;
588 
589 	mutex_enter(&zio->io_lock);
590 	ASSERT(zio->io_stall == NULL);
591 	for (int c = 0; c < ZIO_CHILD_TYPES; c++) {
592 		if (!(ZIO_CHILD_BIT_IS_SET(childbits, c)))
593 			continue;
594 
595 		uint64_t *countp = &zio->io_children[c][wait];
596 		if (*countp != 0) {
597 			zio->io_stage >>= 1;
598 			ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN);
599 			zio->io_stall = countp;
600 			waiting = B_TRUE;
601 			break;
602 		}
603 	}
604 	mutex_exit(&zio->io_lock);
605 	return (waiting);
606 }
607 
608 static void
609 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
610 {
611 	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
612 	int *errorp = &pio->io_child_error[zio->io_child_type];
613 
614 	mutex_enter(&pio->io_lock);
615 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
616 		*errorp = zio_worst_error(*errorp, zio->io_error);
617 	pio->io_reexecute |= zio->io_reexecute;
618 	ASSERT3U(*countp, >, 0);
619 
620 	(*countp)--;
621 
622 	if (*countp == 0 && pio->io_stall == countp) {
623 		zio_taskq_type_t type =
624 		    pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE :
625 		    ZIO_TASKQ_INTERRUPT;
626 		pio->io_stall = NULL;
627 		mutex_exit(&pio->io_lock);
628 		/*
629 		 * Dispatch the parent zio in its own taskq so that
630 		 * the child can continue to make progress. This also
631 		 * prevents overflowing the stack when we have deeply nested
632 		 * parent-child relationships.
633 		 */
634 		zio_taskq_dispatch(pio, type, B_FALSE);
635 	} else {
636 		mutex_exit(&pio->io_lock);
637 	}
638 }
639 
640 static void
641 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
642 {
643 	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
644 		zio->io_error = zio->io_child_error[c];
645 }
646 
647 int
648 zio_bookmark_compare(const void *x1, const void *x2)
649 {
650 	const zio_t *z1 = x1;
651 	const zio_t *z2 = x2;
652 
653 	if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset)
654 		return (-1);
655 	if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset)
656 		return (1);
657 
658 	if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object)
659 		return (-1);
660 	if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object)
661 		return (1);
662 
663 	if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level)
664 		return (-1);
665 	if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level)
666 		return (1);
667 
668 	if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid)
669 		return (-1);
670 	if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid)
671 		return (1);
672 
673 	if (z1 < z2)
674 		return (-1);
675 	if (z1 > z2)
676 		return (1);
677 
678 	return (0);
679 }
680 
681 /*
682  * ==========================================================================
683  * Create the various types of I/O (read, write, free, etc)
684  * ==========================================================================
685  */
686 static zio_t *
687 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
688     abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done,
689     void *private, zio_type_t type, zio_priority_t priority,
690     enum zio_flag flags, vdev_t *vd, uint64_t offset,
691     const zbookmark_phys_t *zb, enum zio_stage stage, enum zio_stage pipeline)
692 {
693 	zio_t *zio;
694 
695 	IMPLY(type != ZIO_TYPE_TRIM, psize <= SPA_MAXBLOCKSIZE);
696 	ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0);
697 	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
698 
699 	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
700 	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
701 	ASSERT(vd || stage == ZIO_STAGE_OPEN);
702 
703 	IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0);
704 
705 	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
706 	bzero(zio, sizeof (zio_t));
707 
708 	mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
709 	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
710 
711 	list_create(&zio->io_parent_list, sizeof (zio_link_t),
712 	    offsetof(zio_link_t, zl_parent_node));
713 	list_create(&zio->io_child_list, sizeof (zio_link_t),
714 	    offsetof(zio_link_t, zl_child_node));
715 	metaslab_trace_init(&zio->io_alloc_list);
716 
717 	if (vd != NULL)
718 		zio->io_child_type = ZIO_CHILD_VDEV;
719 	else if (flags & ZIO_FLAG_GANG_CHILD)
720 		zio->io_child_type = ZIO_CHILD_GANG;
721 	else if (flags & ZIO_FLAG_DDT_CHILD)
722 		zio->io_child_type = ZIO_CHILD_DDT;
723 	else
724 		zio->io_child_type = ZIO_CHILD_LOGICAL;
725 
726 	if (bp != NULL) {
727 		zio->io_bp = (blkptr_t *)bp;
728 		zio->io_bp_copy = *bp;
729 		zio->io_bp_orig = *bp;
730 		if (type != ZIO_TYPE_WRITE ||
731 		    zio->io_child_type == ZIO_CHILD_DDT)
732 			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
733 		if (zio->io_child_type == ZIO_CHILD_LOGICAL)
734 			zio->io_logical = zio;
735 		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
736 			pipeline |= ZIO_GANG_STAGES;
737 	}
738 
739 	zio->io_spa = spa;
740 	zio->io_txg = txg;
741 	zio->io_done = done;
742 	zio->io_private = private;
743 	zio->io_type = type;
744 	zio->io_priority = priority;
745 	zio->io_vd = vd;
746 	zio->io_offset = offset;
747 	zio->io_orig_abd = zio->io_abd = data;
748 	zio->io_orig_size = zio->io_size = psize;
749 	zio->io_lsize = lsize;
750 	zio->io_orig_flags = zio->io_flags = flags;
751 	zio->io_orig_stage = zio->io_stage = stage;
752 	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
753 	zio->io_pipeline_trace = ZIO_STAGE_OPEN;
754 
755 	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
756 	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
757 
758 	if (zb != NULL)
759 		zio->io_bookmark = *zb;
760 
761 	if (pio != NULL) {
762 		if (zio->io_metaslab_class == NULL)
763 			zio->io_metaslab_class = pio->io_metaslab_class;
764 		if (zio->io_logical == NULL)
765 			zio->io_logical = pio->io_logical;
766 		if (zio->io_child_type == ZIO_CHILD_GANG)
767 			zio->io_gang_leader = pio->io_gang_leader;
768 		zio_add_child(pio, zio);
769 	}
770 
771 	return (zio);
772 }
773 
774 static void
775 zio_destroy(zio_t *zio)
776 {
777 	metaslab_trace_fini(&zio->io_alloc_list);
778 	list_destroy(&zio->io_parent_list);
779 	list_destroy(&zio->io_child_list);
780 	mutex_destroy(&zio->io_lock);
781 	cv_destroy(&zio->io_cv);
782 	kmem_cache_free(zio_cache, zio);
783 }
784 
785 zio_t *
786 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
787     void *private, enum zio_flag flags)
788 {
789 	zio_t *zio;
790 
791 	zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
792 	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
793 	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
794 
795 	return (zio);
796 }
797 
798 zio_t *
799 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
800 {
801 	return (zio_null(NULL, spa, NULL, done, private, flags));
802 }
803 
804 void
805 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp)
806 {
807 	if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
808 		zfs_panic_recover("blkptr at %p has invalid TYPE %llu",
809 		    bp, (longlong_t)BP_GET_TYPE(bp));
810 	}
811 	if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS ||
812 	    BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) {
813 		zfs_panic_recover("blkptr at %p has invalid CHECKSUM %llu",
814 		    bp, (longlong_t)BP_GET_CHECKSUM(bp));
815 	}
816 	if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS ||
817 	    BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) {
818 		zfs_panic_recover("blkptr at %p has invalid COMPRESS %llu",
819 		    bp, (longlong_t)BP_GET_COMPRESS(bp));
820 	}
821 	if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
822 		zfs_panic_recover("blkptr at %p has invalid LSIZE %llu",
823 		    bp, (longlong_t)BP_GET_LSIZE(bp));
824 	}
825 	if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
826 		zfs_panic_recover("blkptr at %p has invalid PSIZE %llu",
827 		    bp, (longlong_t)BP_GET_PSIZE(bp));
828 	}
829 
830 	if (BP_IS_EMBEDDED(bp)) {
831 		if (BPE_GET_ETYPE(bp) > NUM_BP_EMBEDDED_TYPES) {
832 			zfs_panic_recover("blkptr at %p has invalid ETYPE %llu",
833 			    bp, (longlong_t)BPE_GET_ETYPE(bp));
834 		}
835 	}
836 
837 	/*
838 	 * Do not verify individual DVAs if the config is not trusted. This
839 	 * will be done once the zio is executed in vdev_mirror_map_alloc.
840 	 */
841 	if (!spa->spa_trust_config)
842 		return;
843 
844 	/*
845 	 * Pool-specific checks.
846 	 *
847 	 * Note: it would be nice to verify that the blk_birth and
848 	 * BP_PHYSICAL_BIRTH() are not too large.  However, spa_freeze()
849 	 * allows the birth time of log blocks (and dmu_sync()-ed blocks
850 	 * that are in the log) to be arbitrarily large.
851 	 */
852 	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
853 		uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]);
854 		if (vdevid >= spa->spa_root_vdev->vdev_children) {
855 			zfs_panic_recover("blkptr at %p DVA %u has invalid "
856 			    "VDEV %llu",
857 			    bp, i, (longlong_t)vdevid);
858 			continue;
859 		}
860 		vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
861 		if (vd == NULL) {
862 			zfs_panic_recover("blkptr at %p DVA %u has invalid "
863 			    "VDEV %llu",
864 			    bp, i, (longlong_t)vdevid);
865 			continue;
866 		}
867 		if (vd->vdev_ops == &vdev_hole_ops) {
868 			zfs_panic_recover("blkptr at %p DVA %u has hole "
869 			    "VDEV %llu",
870 			    bp, i, (longlong_t)vdevid);
871 			continue;
872 		}
873 		if (vd->vdev_ops == &vdev_missing_ops) {
874 			/*
875 			 * "missing" vdevs are valid during import, but we
876 			 * don't have their detailed info (e.g. asize), so
877 			 * we can't perform any more checks on them.
878 			 */
879 			continue;
880 		}
881 		uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
882 		uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]);
883 		if (BP_IS_GANG(bp))
884 			asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
885 		if (offset + asize > vd->vdev_asize) {
886 			zfs_panic_recover("blkptr at %p DVA %u has invalid "
887 			    "OFFSET %llu",
888 			    bp, i, (longlong_t)offset);
889 		}
890 	}
891 }
892 
893 boolean_t
894 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp)
895 {
896 	uint64_t vdevid = DVA_GET_VDEV(dva);
897 
898 	if (vdevid >= spa->spa_root_vdev->vdev_children)
899 		return (B_FALSE);
900 
901 	vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
902 	if (vd == NULL)
903 		return (B_FALSE);
904 
905 	if (vd->vdev_ops == &vdev_hole_ops)
906 		return (B_FALSE);
907 
908 	if (vd->vdev_ops == &vdev_missing_ops) {
909 		return (B_FALSE);
910 	}
911 
912 	uint64_t offset = DVA_GET_OFFSET(dva);
913 	uint64_t asize = DVA_GET_ASIZE(dva);
914 
915 	if (BP_IS_GANG(bp))
916 		asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
917 	if (offset + asize > vd->vdev_asize)
918 		return (B_FALSE);
919 
920 	return (B_TRUE);
921 }
922 
923 zio_t *
924 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
925     abd_t *data, uint64_t size, zio_done_func_t *done, void *private,
926     zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
927 {
928 	zio_t *zio;
929 
930 	zfs_blkptr_verify(spa, bp);
931 
932 	zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
933 	    data, size, size, done, private,
934 	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
935 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
936 	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
937 
938 	return (zio);
939 }
940 
941 zio_t *
942 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
943     abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp,
944     zio_done_func_t *ready, zio_done_func_t *children_ready,
945     zio_done_func_t *physdone, zio_done_func_t *done,
946     void *private, zio_priority_t priority, enum zio_flag flags,
947     const zbookmark_phys_t *zb)
948 {
949 	zio_t *zio;
950 
951 	ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
952 	    zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
953 	    zp->zp_compress >= ZIO_COMPRESS_OFF &&
954 	    zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
955 	    DMU_OT_IS_VALID(zp->zp_type) &&
956 	    zp->zp_level < 32 &&
957 	    zp->zp_copies > 0 &&
958 	    zp->zp_copies <= spa_max_replication(spa));
959 
960 	zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private,
961 	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
962 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
963 	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
964 
965 	zio->io_ready = ready;
966 	zio->io_children_ready = children_ready;
967 	zio->io_physdone = physdone;
968 	zio->io_prop = *zp;
969 
970 	/*
971 	 * Data can be NULL if we are going to call zio_write_override() to
972 	 * provide the already-allocated BP.  But we may need the data to
973 	 * verify a dedup hit (if requested).  In this case, don't try to
974 	 * dedup (just take the already-allocated BP verbatim). Encrypted
975 	 * dedup blocks need data as well so we also disable dedup in this
976 	 * case.
977 	 */
978 	if (data == NULL &&
979 	    (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) {
980 		zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
981 	}
982 
983 	return (zio);
984 }
985 
986 zio_t *
987 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data,
988     uint64_t size, zio_done_func_t *done, void *private,
989     zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb)
990 {
991 	zio_t *zio;
992 
993 	zio = zio_create(pio, spa, txg, bp, data, size, size, done, private,
994 	    ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb,
995 	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
996 
997 	return (zio);
998 }
999 
1000 void
1001 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
1002 {
1003 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
1004 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1005 	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1006 	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
1007 
1008 	/*
1009 	 * We must reset the io_prop to match the values that existed
1010 	 * when the bp was first written by dmu_sync() keeping in mind
1011 	 * that nopwrite and dedup are mutually exclusive.
1012 	 */
1013 	zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
1014 	zio->io_prop.zp_nopwrite = nopwrite;
1015 	zio->io_prop.zp_copies = copies;
1016 	zio->io_bp_override = bp;
1017 }
1018 
1019 void
1020 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
1021 {
1022 
1023 	zfs_blkptr_verify(spa, bp);
1024 
1025 	/*
1026 	 * The check for EMBEDDED is a performance optimization.  We
1027 	 * process the free here (by ignoring it) rather than
1028 	 * putting it on the list and then processing it in zio_free_sync().
1029 	 */
1030 	if (BP_IS_EMBEDDED(bp))
1031 		return;
1032 	metaslab_check_free(spa, bp);
1033 
1034 	/*
1035 	 * Frees that are for the currently-syncing txg, are not going to be
1036 	 * deferred, and which will not need to do a read (i.e. not GANG or
1037 	 * DEDUP), can be processed immediately.  Otherwise, put them on the
1038 	 * in-memory list for later processing.
1039 	 */
1040 	if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp) ||
1041 	    txg != spa->spa_syncing_txg ||
1042 	    spa_sync_pass(spa) >= zfs_sync_pass_deferred_free) {
1043 		bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
1044 	} else {
1045 		VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp, 0)));
1046 	}
1047 }
1048 
1049 zio_t *
1050 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1051     enum zio_flag flags)
1052 {
1053 	zio_t *zio;
1054 	enum zio_stage stage = ZIO_FREE_PIPELINE;
1055 
1056 	ASSERT(!BP_IS_HOLE(bp));
1057 	ASSERT(spa_syncing_txg(spa) == txg);
1058 	ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free);
1059 
1060 	if (BP_IS_EMBEDDED(bp))
1061 		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
1062 
1063 	metaslab_check_free(spa, bp);
1064 	arc_freed(spa, bp);
1065 	dsl_scan_freed(spa, bp);
1066 
1067 	/*
1068 	 * GANG and DEDUP blocks can induce a read (for the gang block header,
1069 	 * or the DDT), so issue them asynchronously so that this thread is
1070 	 * not tied up.
1071 	 */
1072 	if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp))
1073 		stage |= ZIO_STAGE_ISSUE_ASYNC;
1074 
1075 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1076 	    BP_GET_PSIZE(bp), NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW,
1077 	    flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage);
1078 
1079 	return (zio);
1080 }
1081 
1082 zio_t *
1083 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1084     zio_done_func_t *done, void *private, enum zio_flag flags)
1085 {
1086 	zio_t *zio;
1087 
1088 	zfs_blkptr_verify(spa, bp);
1089 
1090 	if (BP_IS_EMBEDDED(bp))
1091 		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
1092 
1093 	/*
1094 	 * A claim is an allocation of a specific block.  Claims are needed
1095 	 * to support immediate writes in the intent log.  The issue is that
1096 	 * immediate writes contain committed data, but in a txg that was
1097 	 * *not* committed.  Upon opening the pool after an unclean shutdown,
1098 	 * the intent log claims all blocks that contain immediate write data
1099 	 * so that the SPA knows they're in use.
1100 	 *
1101 	 * All claims *must* be resolved in the first txg -- before the SPA
1102 	 * starts allocating blocks -- so that nothing is allocated twice.
1103 	 * If txg == 0 we just verify that the block is claimable.
1104 	 */
1105 	ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <,
1106 	    spa_min_claim_txg(spa));
1107 	ASSERT(txg == spa_min_claim_txg(spa) || txg == 0);
1108 	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(1M) */
1109 
1110 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1111 	    BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW,
1112 	    flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
1113 	ASSERT0(zio->io_queued_timestamp);
1114 
1115 	return (zio);
1116 }
1117 
1118 zio_t *
1119 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
1120     zio_done_func_t *done, void *private, enum zio_flag flags)
1121 {
1122 	zio_t *zio;
1123 	int c;
1124 
1125 	if (vd->vdev_children == 0) {
1126 		zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
1127 		    ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
1128 		    ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
1129 
1130 		zio->io_cmd = cmd;
1131 	} else {
1132 		zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
1133 
1134 		for (c = 0; c < vd->vdev_children; c++)
1135 			zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
1136 			    done, private, flags));
1137 	}
1138 
1139 	return (zio);
1140 }
1141 
1142 zio_t *
1143 zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1144     zio_done_func_t *done, void *private, zio_priority_t priority,
1145     enum zio_flag flags, enum trim_flag trim_flags)
1146 {
1147 	zio_t *zio;
1148 
1149 	ASSERT0(vd->vdev_children);
1150 	ASSERT0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
1151 	ASSERT0(P2PHASE(size, 1ULL << vd->vdev_ashift));
1152 	ASSERT3U(size, !=, 0);
1153 
1154 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, NULL, size, size, done,
1155 	    private, ZIO_TYPE_TRIM, priority, flags | ZIO_FLAG_PHYSICAL,
1156 	    vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_TRIM_PIPELINE);
1157 	zio->io_trim_flags = trim_flags;
1158 
1159 	return (zio);
1160 }
1161 
1162 zio_t *
1163 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1164     abd_t *data, int checksum, zio_done_func_t *done, void *private,
1165     zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1166 {
1167 	zio_t *zio;
1168 
1169 	ASSERT(vd->vdev_children == 0);
1170 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1171 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1172 	ASSERT3U(offset + size, <=, vd->vdev_psize);
1173 
1174 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1175 	    private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1176 	    offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
1177 
1178 	zio->io_prop.zp_checksum = checksum;
1179 
1180 	return (zio);
1181 }
1182 
1183 zio_t *
1184 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1185     abd_t *data, int checksum, zio_done_func_t *done, void *private,
1186     zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1187 {
1188 	zio_t *zio;
1189 
1190 	ASSERT(vd->vdev_children == 0);
1191 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1192 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1193 	ASSERT3U(offset + size, <=, vd->vdev_psize);
1194 
1195 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1196 	    private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1197 	    offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
1198 
1199 	zio->io_prop.zp_checksum = checksum;
1200 
1201 	if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
1202 		/*
1203 		 * zec checksums are necessarily destructive -- they modify
1204 		 * the end of the write buffer to hold the verifier/checksum.
1205 		 * Therefore, we must make a local copy in case the data is
1206 		 * being written to multiple places in parallel.
1207 		 */
1208 		abd_t *wbuf = abd_alloc_sametype(data, size);
1209 		abd_copy(wbuf, data, size);
1210 
1211 		zio_push_transform(zio, wbuf, size, size, NULL);
1212 	}
1213 
1214 	return (zio);
1215 }
1216 
1217 /*
1218  * Create a child I/O to do some work for us.
1219  */
1220 zio_t *
1221 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1222     abd_t *data, uint64_t size, int type, zio_priority_t priority,
1223     enum zio_flag flags, zio_done_func_t *done, void *private)
1224 {
1225 	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1226 	zio_t *zio;
1227 
1228 	/*
1229 	 * vdev child I/Os do not propagate their error to the parent.
1230 	 * Therefore, for correct operation the caller *must* check for
1231 	 * and handle the error in the child i/o's done callback.
1232 	 * The only exceptions are i/os that we don't care about
1233 	 * (OPTIONAL or REPAIR).
1234 	 */
1235 	ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) ||
1236 	    done != NULL);
1237 
1238 	if (type == ZIO_TYPE_READ && bp != NULL) {
1239 		/*
1240 		 * If we have the bp, then the child should perform the
1241 		 * checksum and the parent need not.  This pushes error
1242 		 * detection as close to the leaves as possible and
1243 		 * eliminates redundant checksums in the interior nodes.
1244 		 */
1245 		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1246 		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1247 	}
1248 
1249 	if (vd->vdev_ops->vdev_op_leaf) {
1250 		ASSERT0(vd->vdev_children);
1251 		offset += VDEV_LABEL_START_SIZE;
1252 	}
1253 
1254 	flags |= ZIO_VDEV_CHILD_FLAGS(pio);
1255 
1256 	/*
1257 	 * If we've decided to do a repair, the write is not speculative --
1258 	 * even if the original read was.
1259 	 */
1260 	if (flags & ZIO_FLAG_IO_REPAIR)
1261 		flags &= ~ZIO_FLAG_SPECULATIVE;
1262 
1263 	/*
1264 	 * If we're creating a child I/O that is not associated with a
1265 	 * top-level vdev, then the child zio is not an allocating I/O.
1266 	 * If this is a retried I/O then we ignore it since we will
1267 	 * have already processed the original allocating I/O.
1268 	 */
1269 	if (flags & ZIO_FLAG_IO_ALLOCATING &&
1270 	    (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) {
1271 		ASSERT(pio->io_metaslab_class != NULL);
1272 		ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled);
1273 		ASSERT(type == ZIO_TYPE_WRITE);
1274 		ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE);
1275 		ASSERT(!(flags & ZIO_FLAG_IO_REPAIR));
1276 		ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) ||
1277 		    pio->io_child_type == ZIO_CHILD_GANG);
1278 
1279 		flags &= ~ZIO_FLAG_IO_ALLOCATING;
1280 	}
1281 
1282 	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size,
1283 	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1284 	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1285 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
1286 
1287 	zio->io_physdone = pio->io_physdone;
1288 	if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
1289 		zio->io_logical->io_phys_children++;
1290 
1291 	return (zio);
1292 }
1293 
1294 zio_t *
1295 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size,
1296     zio_type_t type, zio_priority_t priority, enum zio_flag flags,
1297     zio_done_func_t *done, void *private)
1298 {
1299 	zio_t *zio;
1300 
1301 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1302 
1303 	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1304 	    data, size, size, done, private, type, priority,
1305 	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1306 	    vd, offset, NULL,
1307 	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1308 
1309 	return (zio);
1310 }
1311 
1312 void
1313 zio_flush(zio_t *zio, vdev_t *vd)
1314 {
1315 	zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
1316 	    NULL, NULL,
1317 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1318 }
1319 
1320 void
1321 zio_shrink(zio_t *zio, uint64_t size)
1322 {
1323 	ASSERT3P(zio->io_executor, ==, NULL);
1324 	ASSERT3P(zio->io_orig_size, ==, zio->io_size);
1325 	ASSERT3U(size, <=, zio->io_size);
1326 
1327 	/*
1328 	 * We don't shrink for raidz because of problems with the
1329 	 * reconstruction when reading back less than the block size.
1330 	 * Note, BP_IS_RAIDZ() assumes no compression.
1331 	 */
1332 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1333 	if (!BP_IS_RAIDZ(zio->io_bp)) {
1334 		/* we are not doing a raw write */
1335 		ASSERT3U(zio->io_size, ==, zio->io_lsize);
1336 		zio->io_orig_size = zio->io_size = zio->io_lsize = size;
1337 	}
1338 }
1339 
1340 /*
1341  * ==========================================================================
1342  * Prepare to read and write logical blocks
1343  * ==========================================================================
1344  */
1345 
1346 static int
1347 zio_read_bp_init(zio_t *zio)
1348 {
1349 	blkptr_t *bp = zio->io_bp;
1350 	uint64_t psize =
1351 	    BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1352 
1353 	ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1354 
1355 	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1356 	    zio->io_child_type == ZIO_CHILD_LOGICAL &&
1357 	    !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1358 		zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1359 		    psize, psize, zio_decompress);
1360 	}
1361 
1362 	if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) ||
1363 	    BP_HAS_INDIRECT_MAC_CKSUM(bp)) &&
1364 	    zio->io_child_type == ZIO_CHILD_LOGICAL) {
1365 		zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1366 		    psize, psize, zio_decrypt);
1367 	}
1368 
1369 	if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1370 		int psize = BPE_GET_PSIZE(bp);
1371 		void *data = abd_borrow_buf(zio->io_abd, psize);
1372 
1373 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1374 		decode_embedded_bp_compressed(bp, data);
1375 		abd_return_buf_copy(zio->io_abd, data, psize);
1376 	} else {
1377 		ASSERT(!BP_IS_EMBEDDED(bp));
1378 		ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1379 	}
1380 
1381 	if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1382 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1383 
1384 	if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1385 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1386 
1387 	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1388 		zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1389 
1390 	return (ZIO_PIPELINE_CONTINUE);
1391 }
1392 
1393 static int
1394 zio_write_bp_init(zio_t *zio)
1395 {
1396 	if (!IO_IS_ALLOCATING(zio))
1397 		return (ZIO_PIPELINE_CONTINUE);
1398 
1399 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1400 
1401 	if (zio->io_bp_override) {
1402 		blkptr_t *bp = zio->io_bp;
1403 		zio_prop_t *zp = &zio->io_prop;
1404 
1405 		ASSERT(bp->blk_birth != zio->io_txg);
1406 		ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1407 
1408 		*bp = *zio->io_bp_override;
1409 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1410 
1411 		if (BP_IS_EMBEDDED(bp))
1412 			return (ZIO_PIPELINE_CONTINUE);
1413 
1414 		/*
1415 		 * If we've been overridden and nopwrite is set then
1416 		 * set the flag accordingly to indicate that a nopwrite
1417 		 * has already occurred.
1418 		 */
1419 		if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1420 			ASSERT(!zp->zp_dedup);
1421 			ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum);
1422 			zio->io_flags |= ZIO_FLAG_NOPWRITE;
1423 			return (ZIO_PIPELINE_CONTINUE);
1424 		}
1425 
1426 		ASSERT(!zp->zp_nopwrite);
1427 
1428 		if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1429 			return (ZIO_PIPELINE_CONTINUE);
1430 
1431 		ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1432 		    ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1433 
1434 		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum &&
1435 		    !zp->zp_encrypt) {
1436 			BP_SET_DEDUP(bp, 1);
1437 			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1438 			return (ZIO_PIPELINE_CONTINUE);
1439 		}
1440 
1441 		/*
1442 		 * We were unable to handle this as an override bp, treat
1443 		 * it as a regular write I/O.
1444 		 */
1445 		zio->io_bp_override = NULL;
1446 		*bp = zio->io_bp_orig;
1447 		zio->io_pipeline = zio->io_orig_pipeline;
1448 	}
1449 
1450 	return (ZIO_PIPELINE_CONTINUE);
1451 }
1452 
1453 static int
1454 zio_write_compress(zio_t *zio)
1455 {
1456 	spa_t *spa = zio->io_spa;
1457 	zio_prop_t *zp = &zio->io_prop;
1458 	enum zio_compress compress = zp->zp_compress;
1459 	blkptr_t *bp = zio->io_bp;
1460 	uint64_t lsize = zio->io_lsize;
1461 	uint64_t psize = zio->io_size;
1462 	int pass = 1;
1463 
1464 	/*
1465 	 * If our children haven't all reached the ready stage,
1466 	 * wait for them and then repeat this pipeline stage.
1467 	 */
1468 	if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT |
1469 	    ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) {
1470 		return (ZIO_PIPELINE_STOP);
1471 	}
1472 
1473 	if (!IO_IS_ALLOCATING(zio))
1474 		return (ZIO_PIPELINE_CONTINUE);
1475 
1476 	if (zio->io_children_ready != NULL) {
1477 		/*
1478 		 * Now that all our children are ready, run the callback
1479 		 * associated with this zio in case it wants to modify the
1480 		 * data to be written.
1481 		 */
1482 		ASSERT3U(zp->zp_level, >, 0);
1483 		zio->io_children_ready(zio);
1484 	}
1485 
1486 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1487 	ASSERT(zio->io_bp_override == NULL);
1488 
1489 	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1490 		/*
1491 		 * We're rewriting an existing block, which means we're
1492 		 * working on behalf of spa_sync().  For spa_sync() to
1493 		 * converge, it must eventually be the case that we don't
1494 		 * have to allocate new blocks.  But compression changes
1495 		 * the blocksize, which forces a reallocate, and makes
1496 		 * convergence take longer.  Therefore, after the first
1497 		 * few passes, stop compressing to ensure convergence.
1498 		 */
1499 		pass = spa_sync_pass(spa);
1500 
1501 		ASSERT(zio->io_txg == spa_syncing_txg(spa));
1502 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1503 		ASSERT(!BP_GET_DEDUP(bp));
1504 
1505 		if (pass >= zfs_sync_pass_dont_compress)
1506 			compress = ZIO_COMPRESS_OFF;
1507 
1508 		/* Make sure someone doesn't change their mind on overwrites */
1509 		ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1510 		    spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1511 	}
1512 
1513 	/* If it's a compressed write that is not raw, compress the buffer. */
1514 	if (compress != ZIO_COMPRESS_OFF &&
1515 	    !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1516 		void *cbuf = zio_buf_alloc(lsize);
1517 		psize = zio_compress_data(compress, zio->io_abd, cbuf, lsize);
1518 		if (psize == 0 || psize == lsize) {
1519 			compress = ZIO_COMPRESS_OFF;
1520 			zio_buf_free(cbuf, lsize);
1521 		} else if (!zp->zp_dedup && !zp->zp_encrypt &&
1522 		    psize <= BPE_PAYLOAD_SIZE &&
1523 		    zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1524 		    spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1525 			encode_embedded_bp_compressed(bp,
1526 			    cbuf, compress, lsize, psize);
1527 			BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1528 			BP_SET_TYPE(bp, zio->io_prop.zp_type);
1529 			BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1530 			zio_buf_free(cbuf, lsize);
1531 			bp->blk_birth = zio->io_txg;
1532 			zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1533 			ASSERT(spa_feature_is_active(spa,
1534 			    SPA_FEATURE_EMBEDDED_DATA));
1535 			return (ZIO_PIPELINE_CONTINUE);
1536 		} else {
1537 			/*
1538 			 * Round up compressed size up to the ashift
1539 			 * of the smallest-ashift device, and zero the tail.
1540 			 * This ensures that the compressed size of the BP
1541 			 * (and thus compressratio property) are correct,
1542 			 * in that we charge for the padding used to fill out
1543 			 * the last sector.
1544 			 */
1545 			ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
1546 			size_t rounded = (size_t)P2ROUNDUP(psize,
1547 			    1ULL << spa->spa_min_ashift);
1548 			if (rounded >= lsize) {
1549 				compress = ZIO_COMPRESS_OFF;
1550 				zio_buf_free(cbuf, lsize);
1551 				psize = lsize;
1552 			} else {
1553 				abd_t *cdata = abd_get_from_buf(cbuf, lsize);
1554 				abd_take_ownership_of_buf(cdata, B_TRUE);
1555 				abd_zero_off(cdata, psize, rounded - psize);
1556 				psize = rounded;
1557 				zio_push_transform(zio, cdata,
1558 				    psize, lsize, NULL);
1559 			}
1560 		}
1561 
1562 		/*
1563 		 * We were unable to handle this as an override bp, treat
1564 		 * it as a regular write I/O.
1565 		 */
1566 		zio->io_bp_override = NULL;
1567 		*bp = zio->io_bp_orig;
1568 		zio->io_pipeline = zio->io_orig_pipeline;
1569 
1570 	} else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 &&
1571 	    zp->zp_type == DMU_OT_DNODE) {
1572 		/*
1573 		 * The DMU actually relies on the zio layer's compression
1574 		 * to free metadnode blocks that have had all contained
1575 		 * dnodes freed. As a result, even when doing a raw
1576 		 * receive, we must check whether the block can be compressed
1577 		 * to a hole.
1578 		 */
1579 		psize = zio_compress_data(ZIO_COMPRESS_EMPTY,
1580 		    zio->io_abd, NULL, lsize);
1581 		if (psize == 0)
1582 			compress = ZIO_COMPRESS_OFF;
1583 	} else {
1584 		ASSERT3U(psize, !=, 0);
1585 	}
1586 
1587 	/*
1588 	 * The final pass of spa_sync() must be all rewrites, but the first
1589 	 * few passes offer a trade-off: allocating blocks defers convergence,
1590 	 * but newly allocated blocks are sequential, so they can be written
1591 	 * to disk faster.  Therefore, we allow the first few passes of
1592 	 * spa_sync() to allocate new blocks, but force rewrites after that.
1593 	 * There should only be a handful of blocks after pass 1 in any case.
1594 	 */
1595 	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1596 	    BP_GET_PSIZE(bp) == psize &&
1597 	    pass >= zfs_sync_pass_rewrite) {
1598 		VERIFY3U(psize, !=, 0);
1599 		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1600 		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1601 		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1602 	} else {
1603 		BP_ZERO(bp);
1604 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
1605 	}
1606 
1607 	if (psize == 0) {
1608 		if (zio->io_bp_orig.blk_birth != 0 &&
1609 		    spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1610 			BP_SET_LSIZE(bp, lsize);
1611 			BP_SET_TYPE(bp, zp->zp_type);
1612 			BP_SET_LEVEL(bp, zp->zp_level);
1613 			BP_SET_BIRTH(bp, zio->io_txg, 0);
1614 		}
1615 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1616 	} else {
1617 		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1618 		BP_SET_LSIZE(bp, lsize);
1619 		BP_SET_TYPE(bp, zp->zp_type);
1620 		BP_SET_LEVEL(bp, zp->zp_level);
1621 		BP_SET_PSIZE(bp, psize);
1622 		BP_SET_COMPRESS(bp, compress);
1623 		BP_SET_CHECKSUM(bp, zp->zp_checksum);
1624 		BP_SET_DEDUP(bp, zp->zp_dedup);
1625 		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1626 		if (zp->zp_dedup) {
1627 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1628 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1629 			ASSERT(!zp->zp_encrypt ||
1630 			    DMU_OT_IS_ENCRYPTED(zp->zp_type));
1631 			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1632 		}
1633 		if (zp->zp_nopwrite) {
1634 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1635 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1636 			zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1637 		}
1638 	}
1639 	return (ZIO_PIPELINE_CONTINUE);
1640 }
1641 
1642 static int
1643 zio_free_bp_init(zio_t *zio)
1644 {
1645 	blkptr_t *bp = zio->io_bp;
1646 
1647 	if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1648 		if (BP_GET_DEDUP(bp))
1649 			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1650 	}
1651 
1652 	ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1653 
1654 	return (ZIO_PIPELINE_CONTINUE);
1655 }
1656 
1657 /*
1658  * ==========================================================================
1659  * Execute the I/O pipeline
1660  * ==========================================================================
1661  */
1662 
1663 static void
1664 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1665 {
1666 	spa_t *spa = zio->io_spa;
1667 	zio_type_t t = zio->io_type;
1668 	int flags = (cutinline ? TQ_FRONT : 0);
1669 
1670 	/*
1671 	 * If we're a config writer or a probe, the normal issue and
1672 	 * interrupt threads may all be blocked waiting for the config lock.
1673 	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1674 	 */
1675 	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1676 		t = ZIO_TYPE_NULL;
1677 
1678 	/*
1679 	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1680 	 */
1681 	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1682 		t = ZIO_TYPE_NULL;
1683 
1684 	/*
1685 	 * If this is a high priority I/O, then use the high priority taskq if
1686 	 * available.
1687 	 */
1688 	if ((zio->io_priority == ZIO_PRIORITY_NOW ||
1689 	    zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) &&
1690 	    spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1691 		q++;
1692 
1693 	ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1694 
1695 	/*
1696 	 * NB: We are assuming that the zio can only be dispatched
1697 	 * to a single taskq at a time.  It would be a grievous error
1698 	 * to dispatch the zio to another taskq at the same time.
1699 	 */
1700 	ASSERT(zio->io_tqent.tqent_next == NULL);
1701 	spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1702 	    flags, &zio->io_tqent);
1703 }
1704 
1705 static boolean_t
1706 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1707 {
1708 	kthread_t *executor = zio->io_executor;
1709 	spa_t *spa = zio->io_spa;
1710 
1711 	for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1712 		spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1713 		uint_t i;
1714 		for (i = 0; i < tqs->stqs_count; i++) {
1715 			if (taskq_member(tqs->stqs_taskq[i], executor))
1716 				return (B_TRUE);
1717 		}
1718 	}
1719 
1720 	return (B_FALSE);
1721 }
1722 
1723 static int
1724 zio_issue_async(zio_t *zio)
1725 {
1726 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1727 
1728 	return (ZIO_PIPELINE_STOP);
1729 }
1730 
1731 void
1732 zio_interrupt(zio_t *zio)
1733 {
1734 	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1735 }
1736 
1737 void
1738 zio_delay_interrupt(zio_t *zio)
1739 {
1740 	/*
1741 	 * The timeout_generic() function isn't defined in userspace, so
1742 	 * rather than trying to implement the function, the zio delay
1743 	 * functionality has been disabled for userspace builds.
1744 	 */
1745 
1746 #ifdef _KERNEL
1747 	/*
1748 	 * If io_target_timestamp is zero, then no delay has been registered
1749 	 * for this IO, thus jump to the end of this function and "skip" the
1750 	 * delay; issuing it directly to the zio layer.
1751 	 */
1752 	if (zio->io_target_timestamp != 0) {
1753 		hrtime_t now = gethrtime();
1754 
1755 		if (now >= zio->io_target_timestamp) {
1756 			/*
1757 			 * This IO has already taken longer than the target
1758 			 * delay to complete, so we don't want to delay it
1759 			 * any longer; we "miss" the delay and issue it
1760 			 * directly to the zio layer. This is likely due to
1761 			 * the target latency being set to a value less than
1762 			 * the underlying hardware can satisfy (e.g. delay
1763 			 * set to 1ms, but the disks take 10ms to complete an
1764 			 * IO request).
1765 			 */
1766 
1767 			DTRACE_PROBE2(zio__delay__miss, zio_t *, zio,
1768 			    hrtime_t, now);
1769 
1770 			zio_interrupt(zio);
1771 		} else {
1772 			hrtime_t diff = zio->io_target_timestamp - now;
1773 
1774 			DTRACE_PROBE3(zio__delay__hit, zio_t *, zio,
1775 			    hrtime_t, now, hrtime_t, diff);
1776 
1777 			(void) timeout_generic(CALLOUT_NORMAL,
1778 			    (void (*)(void *))zio_interrupt, zio, diff, 1, 0);
1779 		}
1780 
1781 		return;
1782 	}
1783 #endif
1784 
1785 	DTRACE_PROBE1(zio__delay__skip, zio_t *, zio);
1786 	zio_interrupt(zio);
1787 }
1788 
1789 /*
1790  * Execute the I/O pipeline until one of the following occurs:
1791  *
1792  *	(1) the I/O completes
1793  *	(2) the pipeline stalls waiting for dependent child I/Os
1794  *	(3) the I/O issues, so we're waiting for an I/O completion interrupt
1795  *	(4) the I/O is delegated by vdev-level caching or aggregation
1796  *	(5) the I/O is deferred due to vdev-level queueing
1797  *	(6) the I/O is handed off to another thread.
1798  *
1799  * In all cases, the pipeline stops whenever there's no CPU work; it never
1800  * burns a thread in cv_wait().
1801  *
1802  * There's no locking on io_stage because there's no legitimate way
1803  * for multiple threads to be attempting to process the same I/O.
1804  */
1805 static zio_pipe_stage_t *zio_pipeline[];
1806 
1807 void
1808 zio_execute(zio_t *zio)
1809 {
1810 	zio->io_executor = curthread;
1811 
1812 	ASSERT3U(zio->io_queued_timestamp, >, 0);
1813 
1814 	while (zio->io_stage < ZIO_STAGE_DONE) {
1815 		enum zio_stage pipeline = zio->io_pipeline;
1816 		enum zio_stage stage = zio->io_stage;
1817 		int rv;
1818 
1819 		ASSERT(!MUTEX_HELD(&zio->io_lock));
1820 		ASSERT(ISP2(stage));
1821 		ASSERT(zio->io_stall == NULL);
1822 
1823 		do {
1824 			stage <<= 1;
1825 		} while ((stage & pipeline) == 0);
1826 
1827 		ASSERT(stage <= ZIO_STAGE_DONE);
1828 
1829 		/*
1830 		 * If we are in interrupt context and this pipeline stage
1831 		 * will grab a config lock that is held across I/O,
1832 		 * or may wait for an I/O that needs an interrupt thread
1833 		 * to complete, issue async to avoid deadlock.
1834 		 *
1835 		 * For VDEV_IO_START, we cut in line so that the io will
1836 		 * be sent to disk promptly.
1837 		 */
1838 		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1839 		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1840 			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1841 			    zio_requeue_io_start_cut_in_line : B_FALSE;
1842 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1843 			return;
1844 		}
1845 
1846 		zio->io_stage = stage;
1847 		zio->io_pipeline_trace |= zio->io_stage;
1848 		rv = zio_pipeline[highbit64(stage) - 1](zio);
1849 
1850 		if (rv == ZIO_PIPELINE_STOP)
1851 			return;
1852 
1853 		ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1854 	}
1855 }
1856 
1857 /*
1858  * ==========================================================================
1859  * Initiate I/O, either sync or async
1860  * ==========================================================================
1861  */
1862 int
1863 zio_wait(zio_t *zio)
1864 {
1865 	int error;
1866 
1867 	ASSERT3P(zio->io_stage, ==, ZIO_STAGE_OPEN);
1868 	ASSERT3P(zio->io_executor, ==, NULL);
1869 
1870 	zio->io_waiter = curthread;
1871 	ASSERT0(zio->io_queued_timestamp);
1872 	zio->io_queued_timestamp = gethrtime();
1873 
1874 	zio_execute(zio);
1875 
1876 	mutex_enter(&zio->io_lock);
1877 	while (zio->io_executor != NULL)
1878 		cv_wait(&zio->io_cv, &zio->io_lock);
1879 	mutex_exit(&zio->io_lock);
1880 
1881 	error = zio->io_error;
1882 	zio_destroy(zio);
1883 
1884 	return (error);
1885 }
1886 
1887 void
1888 zio_nowait(zio_t *zio)
1889 {
1890 	ASSERT3P(zio->io_executor, ==, NULL);
1891 
1892 	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1893 	    zio_unique_parent(zio) == NULL) {
1894 		/*
1895 		 * This is a logical async I/O with no parent to wait for it.
1896 		 * We add it to the spa_async_root_zio "Godfather" I/O which
1897 		 * will ensure they complete prior to unloading the pool.
1898 		 */
1899 		spa_t *spa = zio->io_spa;
1900 
1901 		zio_add_child(spa->spa_async_zio_root[CPU_SEQID], zio);
1902 	}
1903 
1904 	ASSERT0(zio->io_queued_timestamp);
1905 	zio->io_queued_timestamp = gethrtime();
1906 	zio_execute(zio);
1907 }
1908 
1909 /*
1910  * ==========================================================================
1911  * Reexecute, cancel, or suspend/resume failed I/O
1912  * ==========================================================================
1913  */
1914 
1915 static void
1916 zio_reexecute(zio_t *pio)
1917 {
1918 	zio_t *cio, *cio_next;
1919 
1920 	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1921 	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1922 	ASSERT(pio->io_gang_leader == NULL);
1923 	ASSERT(pio->io_gang_tree == NULL);
1924 
1925 	pio->io_flags = pio->io_orig_flags;
1926 	pio->io_stage = pio->io_orig_stage;
1927 	pio->io_pipeline = pio->io_orig_pipeline;
1928 	pio->io_reexecute = 0;
1929 	pio->io_flags |= ZIO_FLAG_REEXECUTED;
1930 	pio->io_pipeline_trace = 0;
1931 	pio->io_error = 0;
1932 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1933 		pio->io_state[w] = 0;
1934 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1935 		pio->io_child_error[c] = 0;
1936 
1937 	if (IO_IS_ALLOCATING(pio))
1938 		BP_ZERO(pio->io_bp);
1939 
1940 	/*
1941 	 * As we reexecute pio's children, new children could be created.
1942 	 * New children go to the head of pio's io_child_list, however,
1943 	 * so we will (correctly) not reexecute them.  The key is that
1944 	 * the remainder of pio's io_child_list, from 'cio_next' onward,
1945 	 * cannot be affected by any side effects of reexecuting 'cio'.
1946 	 */
1947 	zio_link_t *zl = NULL;
1948 	mutex_enter(&pio->io_lock);
1949 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
1950 		cio_next = zio_walk_children(pio, &zl);
1951 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1952 			pio->io_children[cio->io_child_type][w]++;
1953 		mutex_exit(&pio->io_lock);
1954 		zio_reexecute(cio);
1955 		mutex_enter(&pio->io_lock);
1956 	}
1957 	mutex_exit(&pio->io_lock);
1958 
1959 	/*
1960 	 * Now that all children have been reexecuted, execute the parent.
1961 	 * We don't reexecute "The Godfather" I/O here as it's the
1962 	 * responsibility of the caller to wait on it.
1963 	 */
1964 	if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) {
1965 		pio->io_queued_timestamp = gethrtime();
1966 		zio_execute(pio);
1967 	}
1968 }
1969 
1970 void
1971 zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason)
1972 {
1973 	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1974 		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1975 		    "failure and the failure mode property for this pool "
1976 		    "is set to panic.", spa_name(spa));
1977 
1978 	zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL,
1979 	    NULL, NULL, 0, 0);
1980 
1981 	mutex_enter(&spa->spa_suspend_lock);
1982 
1983 	if (spa->spa_suspend_zio_root == NULL)
1984 		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1985 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1986 		    ZIO_FLAG_GODFATHER);
1987 
1988 	spa->spa_suspended = reason;
1989 
1990 	if (zio != NULL) {
1991 		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
1992 		ASSERT(zio != spa->spa_suspend_zio_root);
1993 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1994 		ASSERT(zio_unique_parent(zio) == NULL);
1995 		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1996 		zio_add_child(spa->spa_suspend_zio_root, zio);
1997 	}
1998 
1999 	mutex_exit(&spa->spa_suspend_lock);
2000 }
2001 
2002 int
2003 zio_resume(spa_t *spa)
2004 {
2005 	zio_t *pio;
2006 
2007 	/*
2008 	 * Reexecute all previously suspended i/o.
2009 	 */
2010 	mutex_enter(&spa->spa_suspend_lock);
2011 	spa->spa_suspended = ZIO_SUSPEND_NONE;
2012 	cv_broadcast(&spa->spa_suspend_cv);
2013 	pio = spa->spa_suspend_zio_root;
2014 	spa->spa_suspend_zio_root = NULL;
2015 	mutex_exit(&spa->spa_suspend_lock);
2016 
2017 	if (pio == NULL)
2018 		return (0);
2019 
2020 	zio_reexecute(pio);
2021 	return (zio_wait(pio));
2022 }
2023 
2024 void
2025 zio_resume_wait(spa_t *spa)
2026 {
2027 	mutex_enter(&spa->spa_suspend_lock);
2028 	while (spa_suspended(spa))
2029 		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
2030 	mutex_exit(&spa->spa_suspend_lock);
2031 }
2032 
2033 /*
2034  * ==========================================================================
2035  * Gang blocks.
2036  *
2037  * A gang block is a collection of small blocks that looks to the DMU
2038  * like one large block.  When zio_dva_allocate() cannot find a block
2039  * of the requested size, due to either severe fragmentation or the pool
2040  * being nearly full, it calls zio_write_gang_block() to construct the
2041  * block from smaller fragments.
2042  *
2043  * A gang block consists of a gang header (zio_gbh_phys_t) and up to
2044  * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
2045  * an indirect block: it's an array of block pointers.  It consumes
2046  * only one sector and hence is allocatable regardless of fragmentation.
2047  * The gang header's bps point to its gang members, which hold the data.
2048  *
2049  * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
2050  * as the verifier to ensure uniqueness of the SHA256 checksum.
2051  * Critically, the gang block bp's blk_cksum is the checksum of the data,
2052  * not the gang header.  This ensures that data block signatures (needed for
2053  * deduplication) are independent of how the block is physically stored.
2054  *
2055  * Gang blocks can be nested: a gang member may itself be a gang block.
2056  * Thus every gang block is a tree in which root and all interior nodes are
2057  * gang headers, and the leaves are normal blocks that contain user data.
2058  * The root of the gang tree is called the gang leader.
2059  *
2060  * To perform any operation (read, rewrite, free, claim) on a gang block,
2061  * zio_gang_assemble() first assembles the gang tree (minus data leaves)
2062  * in the io_gang_tree field of the original logical i/o by recursively
2063  * reading the gang leader and all gang headers below it.  This yields
2064  * an in-core tree containing the contents of every gang header and the
2065  * bps for every constituent of the gang block.
2066  *
2067  * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
2068  * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
2069  * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
2070  * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
2071  * zio_read_gang() is a wrapper around zio_read() that omits reading gang
2072  * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
2073  * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
2074  * of the gang header plus zio_checksum_compute() of the data to update the
2075  * gang header's blk_cksum as described above.
2076  *
2077  * The two-phase assemble/issue model solves the problem of partial failure --
2078  * what if you'd freed part of a gang block but then couldn't read the
2079  * gang header for another part?  Assembling the entire gang tree first
2080  * ensures that all the necessary gang header I/O has succeeded before
2081  * starting the actual work of free, claim, or write.  Once the gang tree
2082  * is assembled, free and claim are in-memory operations that cannot fail.
2083  *
2084  * In the event that a gang write fails, zio_dva_unallocate() walks the
2085  * gang tree to immediately free (i.e. insert back into the space map)
2086  * everything we've allocated.  This ensures that we don't get ENOSPC
2087  * errors during repeated suspend/resume cycles due to a flaky device.
2088  *
2089  * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
2090  * the gang tree, we won't modify the block, so we can safely defer the free
2091  * (knowing that the block is still intact).  If we *can* assemble the gang
2092  * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
2093  * each constituent bp and we can allocate a new block on the next sync pass.
2094  *
2095  * In all cases, the gang tree allows complete recovery from partial failure.
2096  * ==========================================================================
2097  */
2098 
2099 static void
2100 zio_gang_issue_func_done(zio_t *zio)
2101 {
2102 	abd_put(zio->io_abd);
2103 }
2104 
2105 static zio_t *
2106 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2107     uint64_t offset)
2108 {
2109 	if (gn != NULL)
2110 		return (pio);
2111 
2112 	return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset),
2113 	    BP_GET_PSIZE(bp), zio_gang_issue_func_done,
2114 	    NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2115 	    &pio->io_bookmark));
2116 }
2117 
2118 static zio_t *
2119 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2120     uint64_t offset)
2121 {
2122 	zio_t *zio;
2123 
2124 	if (gn != NULL) {
2125 		abd_t *gbh_abd =
2126 		    abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2127 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2128 		    gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL,
2129 		    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2130 		    &pio->io_bookmark);
2131 		/*
2132 		 * As we rewrite each gang header, the pipeline will compute
2133 		 * a new gang block header checksum for it; but no one will
2134 		 * compute a new data checksum, so we do that here.  The one
2135 		 * exception is the gang leader: the pipeline already computed
2136 		 * its data checksum because that stage precedes gang assembly.
2137 		 * (Presently, nothing actually uses interior data checksums;
2138 		 * this is just good hygiene.)
2139 		 */
2140 		if (gn != pio->io_gang_leader->io_gang_tree) {
2141 			abd_t *buf = abd_get_offset(data, offset);
2142 
2143 			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
2144 			    buf, BP_GET_PSIZE(bp));
2145 
2146 			abd_put(buf);
2147 		}
2148 		/*
2149 		 * If we are here to damage data for testing purposes,
2150 		 * leave the GBH alone so that we can detect the damage.
2151 		 */
2152 		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
2153 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2154 	} else {
2155 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2156 		    abd_get_offset(data, offset), BP_GET_PSIZE(bp),
2157 		    zio_gang_issue_func_done, NULL, pio->io_priority,
2158 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2159 	}
2160 
2161 	return (zio);
2162 }
2163 
2164 /* ARGSUSED */
2165 static zio_t *
2166 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2167     uint64_t offset)
2168 {
2169 	return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
2170 	    ZIO_GANG_CHILD_FLAGS(pio)));
2171 }
2172 
2173 /* ARGSUSED */
2174 static zio_t *
2175 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2176     uint64_t offset)
2177 {
2178 	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
2179 	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
2180 }
2181 
2182 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
2183 	NULL,
2184 	zio_read_gang,
2185 	zio_rewrite_gang,
2186 	zio_free_gang,
2187 	zio_claim_gang,
2188 	NULL
2189 };
2190 
2191 static void zio_gang_tree_assemble_done(zio_t *zio);
2192 
2193 static zio_gang_node_t *
2194 zio_gang_node_alloc(zio_gang_node_t **gnpp)
2195 {
2196 	zio_gang_node_t *gn;
2197 
2198 	ASSERT(*gnpp == NULL);
2199 
2200 	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
2201 	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
2202 	*gnpp = gn;
2203 
2204 	return (gn);
2205 }
2206 
2207 static void
2208 zio_gang_node_free(zio_gang_node_t **gnpp)
2209 {
2210 	zio_gang_node_t *gn = *gnpp;
2211 
2212 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2213 		ASSERT(gn->gn_child[g] == NULL);
2214 
2215 	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2216 	kmem_free(gn, sizeof (*gn));
2217 	*gnpp = NULL;
2218 }
2219 
2220 static void
2221 zio_gang_tree_free(zio_gang_node_t **gnpp)
2222 {
2223 	zio_gang_node_t *gn = *gnpp;
2224 
2225 	if (gn == NULL)
2226 		return;
2227 
2228 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2229 		zio_gang_tree_free(&gn->gn_child[g]);
2230 
2231 	zio_gang_node_free(gnpp);
2232 }
2233 
2234 static void
2235 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
2236 {
2237 	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
2238 	abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2239 
2240 	ASSERT(gio->io_gang_leader == gio);
2241 	ASSERT(BP_IS_GANG(bp));
2242 
2243 	zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2244 	    zio_gang_tree_assemble_done, gn, gio->io_priority,
2245 	    ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
2246 }
2247 
2248 static void
2249 zio_gang_tree_assemble_done(zio_t *zio)
2250 {
2251 	zio_t *gio = zio->io_gang_leader;
2252 	zio_gang_node_t *gn = zio->io_private;
2253 	blkptr_t *bp = zio->io_bp;
2254 
2255 	ASSERT(gio == zio_unique_parent(zio));
2256 	ASSERT(zio->io_child_count == 0);
2257 
2258 	if (zio->io_error)
2259 		return;
2260 
2261 	/* this ABD was created from a linear buf in zio_gang_tree_assemble */
2262 	if (BP_SHOULD_BYTESWAP(bp))
2263 		byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size);
2264 
2265 	ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh);
2266 	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
2267 	ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2268 
2269 	abd_put(zio->io_abd);
2270 
2271 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2272 		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2273 		if (!BP_IS_GANG(gbp))
2274 			continue;
2275 		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
2276 	}
2277 }
2278 
2279 static void
2280 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data,
2281     uint64_t offset)
2282 {
2283 	zio_t *gio = pio->io_gang_leader;
2284 	zio_t *zio;
2285 
2286 	ASSERT(BP_IS_GANG(bp) == !!gn);
2287 	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
2288 	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
2289 
2290 	/*
2291 	 * If you're a gang header, your data is in gn->gn_gbh.
2292 	 * If you're a gang member, your data is in 'data' and gn == NULL.
2293 	 */
2294 	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset);
2295 
2296 	if (gn != NULL) {
2297 		ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2298 
2299 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2300 			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2301 			if (BP_IS_HOLE(gbp))
2302 				continue;
2303 			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data,
2304 			    offset);
2305 			offset += BP_GET_PSIZE(gbp);
2306 		}
2307 	}
2308 
2309 	if (gn == gio->io_gang_tree)
2310 		ASSERT3U(gio->io_size, ==, offset);
2311 
2312 	if (zio != pio)
2313 		zio_nowait(zio);
2314 }
2315 
2316 static int
2317 zio_gang_assemble(zio_t *zio)
2318 {
2319 	blkptr_t *bp = zio->io_bp;
2320 
2321 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
2322 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2323 
2324 	zio->io_gang_leader = zio;
2325 
2326 	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
2327 
2328 	return (ZIO_PIPELINE_CONTINUE);
2329 }
2330 
2331 static int
2332 zio_gang_issue(zio_t *zio)
2333 {
2334 	blkptr_t *bp = zio->io_bp;
2335 
2336 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) {
2337 		return (ZIO_PIPELINE_STOP);
2338 	}
2339 
2340 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
2341 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2342 
2343 	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
2344 		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd,
2345 		    0);
2346 	else
2347 		zio_gang_tree_free(&zio->io_gang_tree);
2348 
2349 	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2350 
2351 	return (ZIO_PIPELINE_CONTINUE);
2352 }
2353 
2354 static void
2355 zio_write_gang_member_ready(zio_t *zio)
2356 {
2357 	zio_t *pio = zio_unique_parent(zio);
2358 	zio_t *gio = zio->io_gang_leader;
2359 	dva_t *cdva = zio->io_bp->blk_dva;
2360 	dva_t *pdva = pio->io_bp->blk_dva;
2361 	uint64_t asize;
2362 
2363 	if (BP_IS_HOLE(zio->io_bp))
2364 		return;
2365 
2366 	ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
2367 
2368 	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
2369 	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
2370 	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
2371 	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
2372 	ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
2373 
2374 	mutex_enter(&pio->io_lock);
2375 	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
2376 		ASSERT(DVA_GET_GANG(&pdva[d]));
2377 		asize = DVA_GET_ASIZE(&pdva[d]);
2378 		asize += DVA_GET_ASIZE(&cdva[d]);
2379 		DVA_SET_ASIZE(&pdva[d], asize);
2380 	}
2381 	mutex_exit(&pio->io_lock);
2382 }
2383 
2384 static void
2385 zio_write_gang_done(zio_t *zio)
2386 {
2387 	/*
2388 	 * The io_abd field will be NULL for a zio with no data.  The io_flags
2389 	 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't
2390 	 * check for it here as it is cleared in zio_ready.
2391 	 */
2392 	if (zio->io_abd != NULL)
2393 		abd_put(zio->io_abd);
2394 }
2395 
2396 static int
2397 zio_write_gang_block(zio_t *pio)
2398 {
2399 	spa_t *spa = pio->io_spa;
2400 	metaslab_class_t *mc = spa_normal_class(spa);
2401 	blkptr_t *bp = pio->io_bp;
2402 	zio_t *gio = pio->io_gang_leader;
2403 	zio_t *zio;
2404 	zio_gang_node_t *gn, **gnpp;
2405 	zio_gbh_phys_t *gbh;
2406 	abd_t *gbh_abd;
2407 	uint64_t txg = pio->io_txg;
2408 	uint64_t resid = pio->io_size;
2409 	uint64_t lsize;
2410 	int copies = gio->io_prop.zp_copies;
2411 	int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
2412 	zio_prop_t zp;
2413 	int error;
2414 	boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA);
2415 
2416 	/*
2417 	 * encrypted blocks need DVA[2] free so encrypted gang headers can't
2418 	 * have a third copy.
2419 	 */
2420 	if (gio->io_prop.zp_encrypt && gbh_copies >= SPA_DVAS_PER_BP)
2421 		gbh_copies = SPA_DVAS_PER_BP - 1;
2422 
2423 	int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER;
2424 	if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2425 		ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2426 		ASSERT(has_data);
2427 
2428 		flags |= METASLAB_ASYNC_ALLOC;
2429 		VERIFY(zfs_refcount_held(&mc->mc_alloc_slots[pio->io_allocator],
2430 		    pio));
2431 
2432 		/*
2433 		 * The logical zio has already placed a reservation for
2434 		 * 'copies' allocation slots but gang blocks may require
2435 		 * additional copies. These additional copies
2436 		 * (i.e. gbh_copies - copies) are guaranteed to succeed
2437 		 * since metaslab_class_throttle_reserve() always allows
2438 		 * additional reservations for gang blocks.
2439 		 */
2440 		VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies,
2441 		    pio->io_allocator, pio, flags));
2442 	}
2443 
2444 	error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE,
2445 	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags,
2446 	    &pio->io_alloc_list, pio, pio->io_allocator);
2447 	if (error) {
2448 		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2449 			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2450 			ASSERT(has_data);
2451 
2452 			/*
2453 			 * If we failed to allocate the gang block header then
2454 			 * we remove any additional allocation reservations that
2455 			 * we placed here. The original reservation will
2456 			 * be removed when the logical I/O goes to the ready
2457 			 * stage.
2458 			 */
2459 			metaslab_class_throttle_unreserve(mc,
2460 			    gbh_copies - copies, pio->io_allocator, pio);
2461 		}
2462 		pio->io_error = error;
2463 		return (ZIO_PIPELINE_CONTINUE);
2464 	}
2465 
2466 	if (pio == gio) {
2467 		gnpp = &gio->io_gang_tree;
2468 	} else {
2469 		gnpp = pio->io_private;
2470 		ASSERT(pio->io_ready == zio_write_gang_member_ready);
2471 	}
2472 
2473 	gn = zio_gang_node_alloc(gnpp);
2474 	gbh = gn->gn_gbh;
2475 	bzero(gbh, SPA_GANGBLOCKSIZE);
2476 	gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE);
2477 
2478 	/*
2479 	 * Create the gang header.
2480 	 */
2481 	zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2482 	    zio_write_gang_done, NULL, pio->io_priority,
2483 	    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2484 
2485 	/*
2486 	 * Create and nowait the gang children.
2487 	 */
2488 	for (int g = 0; resid != 0; resid -= lsize, g++) {
2489 		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
2490 		    SPA_MINBLOCKSIZE);
2491 		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
2492 
2493 		zp.zp_checksum = gio->io_prop.zp_checksum;
2494 		zp.zp_compress = ZIO_COMPRESS_OFF;
2495 		zp.zp_type = DMU_OT_NONE;
2496 		zp.zp_level = 0;
2497 		zp.zp_copies = gio->io_prop.zp_copies;
2498 		zp.zp_dedup = B_FALSE;
2499 		zp.zp_dedup_verify = B_FALSE;
2500 		zp.zp_nopwrite = B_FALSE;
2501 		zp.zp_encrypt = gio->io_prop.zp_encrypt;
2502 		zp.zp_byteorder = gio->io_prop.zp_byteorder;
2503 		bzero(zp.zp_salt, ZIO_DATA_SALT_LEN);
2504 		bzero(zp.zp_iv, ZIO_DATA_IV_LEN);
2505 		bzero(zp.zp_mac, ZIO_DATA_MAC_LEN);
2506 
2507 		zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
2508 		    has_data ? abd_get_offset(pio->io_abd, pio->io_size -
2509 		    resid) : NULL, lsize, lsize, &zp,
2510 		    zio_write_gang_member_ready, NULL, NULL,
2511 		    zio_write_gang_done, &gn->gn_child[g], pio->io_priority,
2512 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2513 
2514 		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2515 			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2516 			ASSERT(has_data);
2517 
2518 			/*
2519 			 * Gang children won't throttle but we should
2520 			 * account for their work, so reserve an allocation
2521 			 * slot for them here.
2522 			 */
2523 			VERIFY(metaslab_class_throttle_reserve(mc,
2524 			    zp.zp_copies, cio->io_allocator, cio, flags));
2525 		}
2526 		zio_nowait(cio);
2527 	}
2528 
2529 	/*
2530 	 * Set pio's pipeline to just wait for zio to finish.
2531 	 */
2532 	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2533 
2534 	zio_nowait(zio);
2535 
2536 	return (ZIO_PIPELINE_CONTINUE);
2537 }
2538 
2539 /*
2540  * The zio_nop_write stage in the pipeline determines if allocating a
2541  * new bp is necessary.  The nopwrite feature can handle writes in
2542  * either syncing or open context (i.e. zil writes) and as a result is
2543  * mutually exclusive with dedup.
2544  *
2545  * By leveraging a cryptographically secure checksum, such as SHA256, we
2546  * can compare the checksums of the new data and the old to determine if
2547  * allocating a new block is required.  Note that our requirements for
2548  * cryptographic strength are fairly weak: there can't be any accidental
2549  * hash collisions, but we don't need to be secure against intentional
2550  * (malicious) collisions.  To trigger a nopwrite, you have to be able
2551  * to write the file to begin with, and triggering an incorrect (hash
2552  * collision) nopwrite is no worse than simply writing to the file.
2553  * That said, there are no known attacks against the checksum algorithms
2554  * used for nopwrite, assuming that the salt and the checksums
2555  * themselves remain secret.
2556  */
2557 static int
2558 zio_nop_write(zio_t *zio)
2559 {
2560 	blkptr_t *bp = zio->io_bp;
2561 	blkptr_t *bp_orig = &zio->io_bp_orig;
2562 	zio_prop_t *zp = &zio->io_prop;
2563 
2564 	ASSERT(BP_GET_LEVEL(bp) == 0);
2565 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2566 	ASSERT(zp->zp_nopwrite);
2567 	ASSERT(!zp->zp_dedup);
2568 	ASSERT(zio->io_bp_override == NULL);
2569 	ASSERT(IO_IS_ALLOCATING(zio));
2570 
2571 	/*
2572 	 * Check to see if the original bp and the new bp have matching
2573 	 * characteristics (i.e. same checksum, compression algorithms, etc).
2574 	 * If they don't then just continue with the pipeline which will
2575 	 * allocate a new bp.
2576 	 */
2577 	if (BP_IS_HOLE(bp_orig) ||
2578 	    !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
2579 	    ZCHECKSUM_FLAG_NOPWRITE) ||
2580 	    BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) ||
2581 	    BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
2582 	    BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
2583 	    BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
2584 	    zp->zp_copies != BP_GET_NDVAS(bp_orig))
2585 		return (ZIO_PIPELINE_CONTINUE);
2586 
2587 	/*
2588 	 * If the checksums match then reset the pipeline so that we
2589 	 * avoid allocating a new bp and issuing any I/O.
2590 	 */
2591 	if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
2592 		ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
2593 		    ZCHECKSUM_FLAG_NOPWRITE);
2594 		ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
2595 		ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
2596 		ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
2597 		ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
2598 		    sizeof (uint64_t)) == 0);
2599 
2600 		*bp = *bp_orig;
2601 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2602 		zio->io_flags |= ZIO_FLAG_NOPWRITE;
2603 	}
2604 
2605 	return (ZIO_PIPELINE_CONTINUE);
2606 }
2607 
2608 /*
2609  * ==========================================================================
2610  * Dedup
2611  * ==========================================================================
2612  */
2613 static void
2614 zio_ddt_child_read_done(zio_t *zio)
2615 {
2616 	blkptr_t *bp = zio->io_bp;
2617 	ddt_entry_t *dde = zio->io_private;
2618 	ddt_phys_t *ddp;
2619 	zio_t *pio = zio_unique_parent(zio);
2620 
2621 	mutex_enter(&pio->io_lock);
2622 	ddp = ddt_phys_select(dde, bp);
2623 	if (zio->io_error == 0)
2624 		ddt_phys_clear(ddp);	/* this ddp doesn't need repair */
2625 
2626 	if (zio->io_error == 0 && dde->dde_repair_abd == NULL)
2627 		dde->dde_repair_abd = zio->io_abd;
2628 	else
2629 		abd_free(zio->io_abd);
2630 	mutex_exit(&pio->io_lock);
2631 }
2632 
2633 static int
2634 zio_ddt_read_start(zio_t *zio)
2635 {
2636 	blkptr_t *bp = zio->io_bp;
2637 
2638 	ASSERT(BP_GET_DEDUP(bp));
2639 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2640 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2641 
2642 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
2643 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
2644 		ddt_entry_t *dde = ddt_repair_start(ddt, bp);
2645 		ddt_phys_t *ddp = dde->dde_phys;
2646 		ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
2647 		blkptr_t blk;
2648 
2649 		ASSERT(zio->io_vsd == NULL);
2650 		zio->io_vsd = dde;
2651 
2652 		if (ddp_self == NULL)
2653 			return (ZIO_PIPELINE_CONTINUE);
2654 
2655 		for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2656 			if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
2657 				continue;
2658 			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
2659 			    &blk);
2660 			zio_nowait(zio_read(zio, zio->io_spa, &blk,
2661 			    abd_alloc_for_io(zio->io_size, B_TRUE),
2662 			    zio->io_size, zio_ddt_child_read_done, dde,
2663 			    zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) |
2664 			    ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark));
2665 		}
2666 		return (ZIO_PIPELINE_CONTINUE);
2667 	}
2668 
2669 	zio_nowait(zio_read(zio, zio->io_spa, bp,
2670 	    zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority,
2671 	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
2672 
2673 	return (ZIO_PIPELINE_CONTINUE);
2674 }
2675 
2676 static int
2677 zio_ddt_read_done(zio_t *zio)
2678 {
2679 	blkptr_t *bp = zio->io_bp;
2680 
2681 	if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) {
2682 		return (ZIO_PIPELINE_STOP);
2683 	}
2684 
2685 	ASSERT(BP_GET_DEDUP(bp));
2686 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2687 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2688 
2689 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
2690 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
2691 		ddt_entry_t *dde = zio->io_vsd;
2692 		if (ddt == NULL) {
2693 			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
2694 			return (ZIO_PIPELINE_CONTINUE);
2695 		}
2696 		if (dde == NULL) {
2697 			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
2698 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2699 			return (ZIO_PIPELINE_STOP);
2700 		}
2701 		if (dde->dde_repair_abd != NULL) {
2702 			abd_copy(zio->io_abd, dde->dde_repair_abd,
2703 			    zio->io_size);
2704 			zio->io_child_error[ZIO_CHILD_DDT] = 0;
2705 		}
2706 		ddt_repair_done(ddt, dde);
2707 		zio->io_vsd = NULL;
2708 	}
2709 
2710 	ASSERT(zio->io_vsd == NULL);
2711 
2712 	return (ZIO_PIPELINE_CONTINUE);
2713 }
2714 
2715 static boolean_t
2716 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
2717 {
2718 	spa_t *spa = zio->io_spa;
2719 	boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW);
2720 
2721 	/* We should never get a raw, override zio */
2722 	ASSERT(!(zio->io_bp_override && do_raw));
2723 
2724 	/*
2725 	 * Note: we compare the original data, not the transformed data,
2726 	 * because when zio->io_bp is an override bp, we will not have
2727 	 * pushed the I/O transforms.  That's an important optimization
2728 	 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
2729 	 * However, we should never get a raw, override zio so in these
2730 	 * cases we can compare the io_data directly. This is useful because
2731 	 * it allows us to do dedup verification even if we don't have access
2732 	 * to the original data (for instance, if the encryption keys aren't
2733 	 * loaded).
2734 	 */
2735 
2736 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2737 		zio_t *lio = dde->dde_lead_zio[p];
2738 
2739 		if (lio != NULL && do_raw) {
2740 			return (lio->io_size != zio->io_size ||
2741 			    abd_cmp(zio->io_abd, lio->io_abd,
2742 			    zio->io_size) != 0);
2743 		} else if (lio != NULL) {
2744 			return (lio->io_orig_size != zio->io_orig_size ||
2745 			    abd_cmp(zio->io_orig_abd, lio->io_orig_abd,
2746 			    zio->io_orig_size) != 0);
2747 		}
2748 	}
2749 
2750 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2751 		ddt_phys_t *ddp = &dde->dde_phys[p];
2752 
2753 		if (ddp->ddp_phys_birth != 0 && do_raw) {
2754 			blkptr_t blk = *zio->io_bp;
2755 			uint64_t psize;
2756 			abd_t *tmpabd;
2757 			int error;
2758 
2759 			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2760 			psize = BP_GET_PSIZE(&blk);
2761 
2762 			if (psize != zio->io_size)
2763 				return (B_TRUE);
2764 
2765 			ddt_exit(ddt);
2766 
2767 			tmpabd = abd_alloc_for_io(psize, B_TRUE);
2768 
2769 			error = zio_wait(zio_read(NULL, spa, &blk, tmpabd,
2770 			    psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
2771 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2772 			    ZIO_FLAG_RAW, &zio->io_bookmark));
2773 
2774 			if (error == 0) {
2775 				if (abd_cmp(tmpabd, zio->io_abd, psize) != 0)
2776 					error = SET_ERROR(ENOENT);
2777 			}
2778 
2779 			abd_free(tmpabd);
2780 			ddt_enter(ddt);
2781 			return (error != 0);
2782 		} else if (ddp->ddp_phys_birth != 0) {
2783 			arc_buf_t *abuf = NULL;
2784 			arc_flags_t aflags = ARC_FLAG_WAIT;
2785 			int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
2786 			blkptr_t blk = *zio->io_bp;
2787 			int error;
2788 
2789 			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2790 
2791 			if (BP_GET_LSIZE(&blk) != zio->io_orig_size)
2792 				return (B_TRUE);
2793 
2794 			ddt_exit(ddt);
2795 
2796 			/*
2797 			 * Intuitively, it would make more sense to compare
2798 			 * io_abd than io_orig_abd in the raw case since you
2799 			 * don't want to look at any transformations that have
2800 			 * happened to the data. However, for raw I/Os the
2801 			 * data will actually be the same in io_abd and
2802 			 * io_orig_abd, so all we have to do is issue this as
2803 			 * a raw ARC read.
2804 			 */
2805 			if (do_raw) {
2806 				zio_flags |= ZIO_FLAG_RAW;
2807 				ASSERT3U(zio->io_size, ==, zio->io_orig_size);
2808 				ASSERT0(abd_cmp(zio->io_abd, zio->io_orig_abd,
2809 				    zio->io_size));
2810 				ASSERT3P(zio->io_transform_stack, ==, NULL);
2811 			}
2812 
2813 			error = arc_read(NULL, spa, &blk,
2814 			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2815 			    zio_flags, &aflags, &zio->io_bookmark);
2816 
2817 			if (error == 0) {
2818 				if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data,
2819 				    zio->io_orig_size) != 0)
2820 					error = SET_ERROR(ENOENT);
2821 				arc_buf_destroy(abuf, &abuf);
2822 			}
2823 
2824 			ddt_enter(ddt);
2825 			return (error != 0);
2826 		}
2827 	}
2828 
2829 	return (B_FALSE);
2830 }
2831 
2832 static void
2833 zio_ddt_child_write_ready(zio_t *zio)
2834 {
2835 	int p = zio->io_prop.zp_copies;
2836 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2837 	ddt_entry_t *dde = zio->io_private;
2838 	ddt_phys_t *ddp = &dde->dde_phys[p];
2839 	zio_t *pio;
2840 
2841 	if (zio->io_error)
2842 		return;
2843 
2844 	ddt_enter(ddt);
2845 
2846 	ASSERT(dde->dde_lead_zio[p] == zio);
2847 
2848 	ddt_phys_fill(ddp, zio->io_bp);
2849 
2850 	zio_link_t *zl = NULL;
2851 	while ((pio = zio_walk_parents(zio, &zl)) != NULL)
2852 		ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
2853 
2854 	ddt_exit(ddt);
2855 }
2856 
2857 static void
2858 zio_ddt_child_write_done(zio_t *zio)
2859 {
2860 	int p = zio->io_prop.zp_copies;
2861 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2862 	ddt_entry_t *dde = zio->io_private;
2863 	ddt_phys_t *ddp = &dde->dde_phys[p];
2864 
2865 	ddt_enter(ddt);
2866 
2867 	ASSERT(ddp->ddp_refcnt == 0);
2868 	ASSERT(dde->dde_lead_zio[p] == zio);
2869 	dde->dde_lead_zio[p] = NULL;
2870 
2871 	if (zio->io_error == 0) {
2872 		zio_link_t *zl = NULL;
2873 		while (zio_walk_parents(zio, &zl) != NULL)
2874 			ddt_phys_addref(ddp);
2875 	} else {
2876 		ddt_phys_clear(ddp);
2877 	}
2878 
2879 	ddt_exit(ddt);
2880 }
2881 
2882 static void
2883 zio_ddt_ditto_write_done(zio_t *zio)
2884 {
2885 	int p = DDT_PHYS_DITTO;
2886 	zio_prop_t *zp = &zio->io_prop;
2887 	blkptr_t *bp = zio->io_bp;
2888 	ddt_t *ddt = ddt_select(zio->io_spa, bp);
2889 	ddt_entry_t *dde = zio->io_private;
2890 	ddt_phys_t *ddp = &dde->dde_phys[p];
2891 	ddt_key_t *ddk = &dde->dde_key;
2892 
2893 	ddt_enter(ddt);
2894 
2895 	ASSERT(ddp->ddp_refcnt == 0);
2896 	ASSERT(dde->dde_lead_zio[p] == zio);
2897 	dde->dde_lead_zio[p] = NULL;
2898 
2899 	if (zio->io_error == 0) {
2900 		ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2901 		ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2902 		ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2903 		if (ddp->ddp_phys_birth != 0)
2904 			ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2905 		ddt_phys_fill(ddp, bp);
2906 	}
2907 
2908 	ddt_exit(ddt);
2909 }
2910 
2911 static int
2912 zio_ddt_write(zio_t *zio)
2913 {
2914 	spa_t *spa = zio->io_spa;
2915 	blkptr_t *bp = zio->io_bp;
2916 	uint64_t txg = zio->io_txg;
2917 	zio_prop_t *zp = &zio->io_prop;
2918 	int p = zp->zp_copies;
2919 	int ditto_copies;
2920 	zio_t *cio = NULL;
2921 	zio_t *dio = NULL;
2922 	ddt_t *ddt = ddt_select(spa, bp);
2923 	ddt_entry_t *dde;
2924 	ddt_phys_t *ddp;
2925 
2926 	ASSERT(BP_GET_DEDUP(bp));
2927 	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2928 	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2929 	ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW)));
2930 
2931 	ddt_enter(ddt);
2932 	dde = ddt_lookup(ddt, bp, B_TRUE);
2933 	ddp = &dde->dde_phys[p];
2934 
2935 	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2936 		/*
2937 		 * If we're using a weak checksum, upgrade to a strong checksum
2938 		 * and try again.  If we're already using a strong checksum,
2939 		 * we can't resolve it, so just convert to an ordinary write.
2940 		 * (And automatically e-mail a paper to Nature?)
2941 		 */
2942 		if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
2943 		    ZCHECKSUM_FLAG_DEDUP)) {
2944 			zp->zp_checksum = spa_dedup_checksum(spa);
2945 			zio_pop_transforms(zio);
2946 			zio->io_stage = ZIO_STAGE_OPEN;
2947 			BP_ZERO(bp);
2948 		} else {
2949 			zp->zp_dedup = B_FALSE;
2950 			BP_SET_DEDUP(bp, B_FALSE);
2951 		}
2952 		ASSERT(!BP_GET_DEDUP(bp));
2953 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
2954 		ddt_exit(ddt);
2955 		return (ZIO_PIPELINE_CONTINUE);
2956 	}
2957 
2958 	ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2959 	ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2960 
2961 	if (ditto_copies > ddt_ditto_copies_present(dde) &&
2962 	    dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2963 		zio_prop_t czp = *zp;
2964 
2965 		czp.zp_copies = ditto_copies;
2966 
2967 		/*
2968 		 * If we arrived here with an override bp, we won't have run
2969 		 * the transform stack, so we won't have the data we need to
2970 		 * generate a child i/o.  So, toss the override bp and restart.
2971 		 * This is safe, because using the override bp is just an
2972 		 * optimization; and it's rare, so the cost doesn't matter.
2973 		 */
2974 		if (zio->io_bp_override) {
2975 			zio_pop_transforms(zio);
2976 			zio->io_stage = ZIO_STAGE_OPEN;
2977 			zio->io_pipeline = ZIO_WRITE_PIPELINE;
2978 			zio->io_bp_override = NULL;
2979 			BP_ZERO(bp);
2980 			ddt_exit(ddt);
2981 			return (ZIO_PIPELINE_CONTINUE);
2982 		}
2983 
2984 		dio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
2985 		    zio->io_orig_size, zio->io_orig_size, &czp, NULL, NULL,
2986 		    NULL, zio_ddt_ditto_write_done, dde, zio->io_priority,
2987 		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2988 
2989 		zio_push_transform(dio, zio->io_abd, zio->io_size, 0, NULL);
2990 		dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2991 	}
2992 
2993 	if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2994 		if (ddp->ddp_phys_birth != 0)
2995 			ddt_bp_fill(ddp, bp, txg);
2996 		if (dde->dde_lead_zio[p] != NULL)
2997 			zio_add_child(zio, dde->dde_lead_zio[p]);
2998 		else
2999 			ddt_phys_addref(ddp);
3000 	} else if (zio->io_bp_override) {
3001 		ASSERT(bp->blk_birth == txg);
3002 		ASSERT(BP_EQUAL(bp, zio->io_bp_override));
3003 		ddt_phys_fill(ddp, bp);
3004 		ddt_phys_addref(ddp);
3005 	} else {
3006 		cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
3007 		    zio->io_orig_size, zio->io_orig_size, zp,
3008 		    zio_ddt_child_write_ready, NULL, NULL,
3009 		    zio_ddt_child_write_done, dde, zio->io_priority,
3010 		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
3011 
3012 		zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL);
3013 		dde->dde_lead_zio[p] = cio;
3014 	}
3015 
3016 	ddt_exit(ddt);
3017 
3018 	if (cio)
3019 		zio_nowait(cio);
3020 	if (dio)
3021 		zio_nowait(dio);
3022 
3023 	return (ZIO_PIPELINE_CONTINUE);
3024 }
3025 
3026 ddt_entry_t *freedde; /* for debugging */
3027 
3028 static int
3029 zio_ddt_free(zio_t *zio)
3030 {
3031 	spa_t *spa = zio->io_spa;
3032 	blkptr_t *bp = zio->io_bp;
3033 	ddt_t *ddt = ddt_select(spa, bp);
3034 	ddt_entry_t *dde;
3035 	ddt_phys_t *ddp;
3036 
3037 	ASSERT(BP_GET_DEDUP(bp));
3038 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3039 
3040 	ddt_enter(ddt);
3041 	freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
3042 	ddp = ddt_phys_select(dde, bp);
3043 	ddt_phys_decref(ddp);
3044 	ddt_exit(ddt);
3045 
3046 	return (ZIO_PIPELINE_CONTINUE);
3047 }
3048 
3049 /*
3050  * ==========================================================================
3051  * Allocate and free blocks
3052  * ==========================================================================
3053  */
3054 
3055 static zio_t *
3056 zio_io_to_allocate(spa_t *spa, int allocator)
3057 {
3058 	zio_t *zio;
3059 
3060 	ASSERT(MUTEX_HELD(&spa->spa_alloc_locks[allocator]));
3061 
3062 	zio = avl_first(&spa->spa_alloc_trees[allocator]);
3063 	if (zio == NULL)
3064 		return (NULL);
3065 
3066 	ASSERT(IO_IS_ALLOCATING(zio));
3067 
3068 	/*
3069 	 * Try to place a reservation for this zio. If we're unable to
3070 	 * reserve then we throttle.
3071 	 */
3072 	ASSERT3U(zio->io_allocator, ==, allocator);
3073 	if (!metaslab_class_throttle_reserve(zio->io_metaslab_class,
3074 	    zio->io_prop.zp_copies, zio->io_allocator, zio, 0)) {
3075 		return (NULL);
3076 	}
3077 
3078 	avl_remove(&spa->spa_alloc_trees[allocator], zio);
3079 	ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE);
3080 
3081 	return (zio);
3082 }
3083 
3084 static int
3085 zio_dva_throttle(zio_t *zio)
3086 {
3087 	spa_t *spa = zio->io_spa;
3088 	zio_t *nio;
3089 	metaslab_class_t *mc;
3090 
3091 	/* locate an appropriate allocation class */
3092 	mc = spa_preferred_class(spa, zio->io_size, zio->io_prop.zp_type,
3093 	    zio->io_prop.zp_level, zio->io_prop.zp_zpl_smallblk);
3094 
3095 	if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE ||
3096 	    !mc->mc_alloc_throttle_enabled ||
3097 	    zio->io_child_type == ZIO_CHILD_GANG ||
3098 	    zio->io_flags & ZIO_FLAG_NODATA) {
3099 		return (ZIO_PIPELINE_CONTINUE);
3100 	}
3101 
3102 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3103 
3104 	ASSERT3U(zio->io_queued_timestamp, >, 0);
3105 	ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE);
3106 
3107 	zbookmark_phys_t *bm = &zio->io_bookmark;
3108 	/*
3109 	 * We want to try to use as many allocators as possible to help improve
3110 	 * performance, but we also want logically adjacent IOs to be physically
3111 	 * adjacent to improve sequential read performance. We chunk each object
3112 	 * into 2^20 block regions, and then hash based on the objset, object,
3113 	 * level, and region to accomplish both of these goals.
3114 	 */
3115 	zio->io_allocator = cityhash4(bm->zb_objset, bm->zb_object,
3116 	    bm->zb_level, bm->zb_blkid >> 20) % spa->spa_alloc_count;
3117 	mutex_enter(&spa->spa_alloc_locks[zio->io_allocator]);
3118 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3119 	zio->io_metaslab_class = mc;
3120 	avl_add(&spa->spa_alloc_trees[zio->io_allocator], zio);
3121 	nio = zio_io_to_allocate(spa, zio->io_allocator);
3122 	mutex_exit(&spa->spa_alloc_locks[zio->io_allocator]);
3123 
3124 	if (nio == zio)
3125 		return (ZIO_PIPELINE_CONTINUE);
3126 
3127 	if (nio != NULL) {
3128 		ASSERT(nio->io_stage == ZIO_STAGE_DVA_THROTTLE);
3129 		/*
3130 		 * We are passing control to a new zio so make sure that
3131 		 * it is processed by a different thread. We do this to
3132 		 * avoid stack overflows that can occur when parents are
3133 		 * throttled and children are making progress. We allow
3134 		 * it to go to the head of the taskq since it's already
3135 		 * been waiting.
3136 		 */
3137 		zio_taskq_dispatch(nio, ZIO_TASKQ_ISSUE, B_TRUE);
3138 	}
3139 	return (ZIO_PIPELINE_STOP);
3140 }
3141 
3142 static void
3143 zio_allocate_dispatch(spa_t *spa, int allocator)
3144 {
3145 	zio_t *zio;
3146 
3147 	mutex_enter(&spa->spa_alloc_locks[allocator]);
3148 	zio = zio_io_to_allocate(spa, allocator);
3149 	mutex_exit(&spa->spa_alloc_locks[allocator]);
3150 	if (zio == NULL)
3151 		return;
3152 
3153 	ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE);
3154 	ASSERT0(zio->io_error);
3155 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE);
3156 }
3157 
3158 static int
3159 zio_dva_allocate(zio_t *zio)
3160 {
3161 	spa_t *spa = zio->io_spa;
3162 	metaslab_class_t *mc;
3163 	blkptr_t *bp = zio->io_bp;
3164 	int error;
3165 	int flags = 0;
3166 
3167 	if (zio->io_gang_leader == NULL) {
3168 		ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3169 		zio->io_gang_leader = zio;
3170 	}
3171 
3172 	ASSERT(BP_IS_HOLE(bp));
3173 	ASSERT0(BP_GET_NDVAS(bp));
3174 	ASSERT3U(zio->io_prop.zp_copies, >, 0);
3175 	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
3176 	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
3177 
3178 	if (zio->io_flags & ZIO_FLAG_NODATA)
3179 		flags |= METASLAB_DONT_THROTTLE;
3180 	if (zio->io_flags & ZIO_FLAG_GANG_CHILD)
3181 		flags |= METASLAB_GANG_CHILD;
3182 	if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE)
3183 		flags |= METASLAB_ASYNC_ALLOC;
3184 
3185 	/*
3186 	 * if not already chosen, locate an appropriate allocation class
3187 	 */
3188 	mc = zio->io_metaslab_class;
3189 	if (mc == NULL) {
3190 		mc = spa_preferred_class(spa, zio->io_size,
3191 		    zio->io_prop.zp_type, zio->io_prop.zp_level,
3192 		    zio->io_prop.zp_zpl_smallblk);
3193 		zio->io_metaslab_class = mc;
3194 	}
3195 
3196 	error = metaslab_alloc(spa, mc, zio->io_size, bp,
3197 	    zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3198 	    &zio->io_alloc_list, zio, zio->io_allocator);
3199 
3200 	/*
3201 	 * Fallback to normal class when an alloc class is full
3202 	 */
3203 	if (error == ENOSPC && mc != spa_normal_class(spa)) {
3204 		/*
3205 		 * If throttling, transfer reservation over to normal class.
3206 		 * The io_allocator slot can remain the same even though we
3207 		 * are switching classes.
3208 		 */
3209 		if (mc->mc_alloc_throttle_enabled &&
3210 		    (zio->io_flags & ZIO_FLAG_IO_ALLOCATING)) {
3211 			metaslab_class_throttle_unreserve(mc,
3212 			    zio->io_prop.zp_copies, zio->io_allocator, zio);
3213 			zio->io_flags &= ~ZIO_FLAG_IO_ALLOCATING;
3214 
3215 			mc = spa_normal_class(spa);
3216 			VERIFY(metaslab_class_throttle_reserve(mc,
3217 			    zio->io_prop.zp_copies, zio->io_allocator, zio,
3218 			    flags | METASLAB_MUST_RESERVE));
3219 		} else {
3220 			mc = spa_normal_class(spa);
3221 		}
3222 		zio->io_metaslab_class = mc;
3223 
3224 		error = metaslab_alloc(spa, mc, zio->io_size, bp,
3225 		    zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3226 		    &zio->io_alloc_list, zio, zio->io_allocator);
3227 	}
3228 
3229 	if (error != 0) {
3230 		zfs_dbgmsg("%s: metaslab allocation failure: zio %p, "
3231 		    "size %llu, error %d", spa_name(spa), zio, zio->io_size,
3232 		    error);
3233 		if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
3234 			return (zio_write_gang_block(zio));
3235 		zio->io_error = error;
3236 	}
3237 
3238 	return (ZIO_PIPELINE_CONTINUE);
3239 }
3240 
3241 static int
3242 zio_dva_free(zio_t *zio)
3243 {
3244 	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
3245 
3246 	return (ZIO_PIPELINE_CONTINUE);
3247 }
3248 
3249 static int
3250 zio_dva_claim(zio_t *zio)
3251 {
3252 	int error;
3253 
3254 	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
3255 	if (error)
3256 		zio->io_error = error;
3257 
3258 	return (ZIO_PIPELINE_CONTINUE);
3259 }
3260 
3261 /*
3262  * Undo an allocation.  This is used by zio_done() when an I/O fails
3263  * and we want to give back the block we just allocated.
3264  * This handles both normal blocks and gang blocks.
3265  */
3266 static void
3267 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
3268 {
3269 	ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
3270 	ASSERT(zio->io_bp_override == NULL);
3271 
3272 	if (!BP_IS_HOLE(bp))
3273 		metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
3274 
3275 	if (gn != NULL) {
3276 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
3277 			zio_dva_unallocate(zio, gn->gn_child[g],
3278 			    &gn->gn_gbh->zg_blkptr[g]);
3279 		}
3280 	}
3281 }
3282 
3283 /*
3284  * Try to allocate an intent log block.  Return 0 on success, errno on failure.
3285  */
3286 int
3287 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp,
3288     blkptr_t *old_bp, uint64_t size, boolean_t *slog)
3289 {
3290 	int error = 1;
3291 	zio_alloc_list_t io_alloc_list;
3292 
3293 	ASSERT(txg > spa_syncing_txg(spa));
3294 
3295 	metaslab_trace_init(&io_alloc_list);
3296 
3297 	/*
3298 	 * Block pointer fields are useful to metaslabs for stats and debugging.
3299 	 * Fill in the obvious ones before calling into metaslab_alloc().
3300 	 */
3301 	BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3302 	BP_SET_PSIZE(new_bp, size);
3303 	BP_SET_LEVEL(new_bp, 0);
3304 
3305 	/*
3306 	 * When allocating a zil block, we don't have information about
3307 	 * the final destination of the block except the objset it's part
3308 	 * of, so we just hash the objset ID to pick the allocator to get
3309 	 * some parallelism.
3310 	 */
3311 	error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1,
3312 	    txg, old_bp, METASLAB_HINTBP_AVOID, &io_alloc_list, NULL,
3313 	    cityhash4(0, 0, 0,
3314 	    os->os_dsl_dataset->ds_object) % spa->spa_alloc_count);
3315 	if (error == 0) {
3316 		*slog = TRUE;
3317 	} else {
3318 		error = metaslab_alloc(spa, spa_normal_class(spa), size,
3319 		    new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID,
3320 		    &io_alloc_list, NULL, cityhash4(0, 0, 0,
3321 		    os->os_dsl_dataset->ds_object) % spa->spa_alloc_count);
3322 		if (error == 0)
3323 			*slog = FALSE;
3324 	}
3325 	metaslab_trace_fini(&io_alloc_list);
3326 
3327 	if (error == 0) {
3328 		BP_SET_LSIZE(new_bp, size);
3329 		BP_SET_PSIZE(new_bp, size);
3330 		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
3331 		BP_SET_CHECKSUM(new_bp,
3332 		    spa_version(spa) >= SPA_VERSION_SLIM_ZIL
3333 		    ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
3334 		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3335 		BP_SET_LEVEL(new_bp, 0);
3336 		BP_SET_DEDUP(new_bp, 0);
3337 		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
3338 
3339 		/*
3340 		 * encrypted blocks will require an IV and salt. We generate
3341 		 * these now since we will not be rewriting the bp at
3342 		 * rewrite time.
3343 		 */
3344 		if (os->os_encrypted) {
3345 			uint8_t iv[ZIO_DATA_IV_LEN];
3346 			uint8_t salt[ZIO_DATA_SALT_LEN];
3347 
3348 			BP_SET_CRYPT(new_bp, B_TRUE);
3349 			VERIFY0(spa_crypt_get_salt(spa,
3350 			    dmu_objset_id(os), salt));
3351 			VERIFY0(zio_crypt_generate_iv(iv));
3352 
3353 			zio_crypt_encode_params_bp(new_bp, salt, iv);
3354 		}
3355 	} else {
3356 		zfs_dbgmsg("%s: zil block allocation failure: "
3357 		    "size %llu, error %d", spa_name(spa), size, error);
3358 	}
3359 
3360 	return (error);
3361 }
3362 
3363 /*
3364  * ==========================================================================
3365  * Read and write to physical devices
3366  * ==========================================================================
3367  */
3368 
3369 /*
3370  * Issue an I/O to the underlying vdev. Typically the issue pipeline
3371  * stops after this stage and will resume upon I/O completion.
3372  * However, there are instances where the vdev layer may need to
3373  * continue the pipeline when an I/O was not issued. Since the I/O
3374  * that was sent to the vdev layer might be different than the one
3375  * currently active in the pipeline (see vdev_queue_io()), we explicitly
3376  * force the underlying vdev layers to call either zio_execute() or
3377  * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
3378  */
3379 static int
3380 zio_vdev_io_start(zio_t *zio)
3381 {
3382 	vdev_t *vd = zio->io_vd;
3383 	uint64_t align;
3384 	spa_t *spa = zio->io_spa;
3385 
3386 	ASSERT(zio->io_error == 0);
3387 	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
3388 
3389 	if (vd == NULL) {
3390 		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3391 			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
3392 
3393 		/*
3394 		 * The mirror_ops handle multiple DVAs in a single BP.
3395 		 */
3396 		vdev_mirror_ops.vdev_op_io_start(zio);
3397 		return (ZIO_PIPELINE_STOP);
3398 	}
3399 
3400 	ASSERT3P(zio->io_logical, !=, zio);
3401 	if (zio->io_type == ZIO_TYPE_WRITE) {
3402 		ASSERT(spa->spa_trust_config);
3403 
3404 		/*
3405 		 * Note: the code can handle other kinds of writes,
3406 		 * but we don't expect them.
3407 		 */
3408 		if (zio->io_vd->vdev_removing) {
3409 			ASSERT(zio->io_flags &
3410 			    (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL |
3411 			    ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE));
3412 		}
3413 	}
3414 
3415 	align = 1ULL << vd->vdev_top->vdev_ashift;
3416 
3417 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
3418 	    P2PHASE(zio->io_size, align) != 0) {
3419 		/* Transform logical writes to be a full physical block size. */
3420 		uint64_t asize = P2ROUNDUP(zio->io_size, align);
3421 		abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize);
3422 		ASSERT(vd == vd->vdev_top);
3423 		if (zio->io_type == ZIO_TYPE_WRITE) {
3424 			abd_copy(abuf, zio->io_abd, zio->io_size);
3425 			abd_zero_off(abuf, zio->io_size, asize - zio->io_size);
3426 		}
3427 		zio_push_transform(zio, abuf, asize, asize, zio_subblock);
3428 	}
3429 
3430 	/*
3431 	 * If this is not a physical io, make sure that it is properly aligned
3432 	 * before proceeding.
3433 	 */
3434 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
3435 		ASSERT0(P2PHASE(zio->io_offset, align));
3436 		ASSERT0(P2PHASE(zio->io_size, align));
3437 	} else {
3438 		/*
3439 		 * For physical writes, we allow 512b aligned writes and assume
3440 		 * the device will perform a read-modify-write as necessary.
3441 		 */
3442 		ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
3443 		ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
3444 	}
3445 
3446 	VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
3447 
3448 	/*
3449 	 * If this is a repair I/O, and there's no self-healing involved --
3450 	 * that is, we're just resilvering what we expect to resilver --
3451 	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
3452 	 * This prevents spurious resilvering.
3453 	 *
3454 	 * There are a few ways that we can end up creating these spurious
3455 	 * resilver i/os:
3456 	 *
3457 	 * 1. A resilver i/o will be issued if any DVA in the BP has a
3458 	 * dirty DTL.  The mirror code will issue resilver writes to
3459 	 * each DVA, including the one(s) that are not on vdevs with dirty
3460 	 * DTLs.
3461 	 *
3462 	 * 2. With nested replication, which happens when we have a
3463 	 * "replacing" or "spare" vdev that's a child of a mirror or raidz.
3464 	 * For example, given mirror(replacing(A+B), C), it's likely that
3465 	 * only A is out of date (it's the new device). In this case, we'll
3466 	 * read from C, then use the data to resilver A+B -- but we don't
3467 	 * actually want to resilver B, just A. The top-level mirror has no
3468 	 * way to know this, so instead we just discard unnecessary repairs
3469 	 * as we work our way down the vdev tree.
3470 	 *
3471 	 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc.
3472 	 * The same logic applies to any form of nested replication: ditto
3473 	 * + mirror, RAID-Z + replacing, etc.
3474 	 *
3475 	 * However, indirect vdevs point off to other vdevs which may have
3476 	 * DTL's, so we never bypass them.  The child i/os on concrete vdevs
3477 	 * will be properly bypassed instead.
3478 	 */
3479 	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
3480 	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
3481 	    zio->io_txg != 0 &&	/* not a delegated i/o */
3482 	    vd->vdev_ops != &vdev_indirect_ops &&
3483 	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
3484 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3485 		zio_vdev_io_bypass(zio);
3486 		return (ZIO_PIPELINE_CONTINUE);
3487 	}
3488 
3489 	if (vd->vdev_ops->vdev_op_leaf && (zio->io_type == ZIO_TYPE_READ ||
3490 	    zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM)) {
3491 
3492 		if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio))
3493 			return (ZIO_PIPELINE_CONTINUE);
3494 
3495 		if ((zio = vdev_queue_io(zio)) == NULL)
3496 			return (ZIO_PIPELINE_STOP);
3497 
3498 		if (!vdev_accessible(vd, zio)) {
3499 			zio->io_error = SET_ERROR(ENXIO);
3500 			zio_interrupt(zio);
3501 			return (ZIO_PIPELINE_STOP);
3502 		}
3503 	}
3504 
3505 	vd->vdev_ops->vdev_op_io_start(zio);
3506 	return (ZIO_PIPELINE_STOP);
3507 }
3508 
3509 static int
3510 zio_vdev_io_done(zio_t *zio)
3511 {
3512 	vdev_t *vd = zio->io_vd;
3513 	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
3514 	boolean_t unexpected_error = B_FALSE;
3515 
3516 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3517 		return (ZIO_PIPELINE_STOP);
3518 	}
3519 
3520 	ASSERT(zio->io_type == ZIO_TYPE_READ ||
3521 	    zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM);
3522 
3523 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
3524 
3525 		vdev_queue_io_done(zio);
3526 
3527 		if (zio->io_type == ZIO_TYPE_WRITE)
3528 			vdev_cache_write(zio);
3529 
3530 		if (zio_injection_enabled && zio->io_error == 0)
3531 			zio->io_error = zio_handle_device_injection(vd,
3532 			    zio, EIO);
3533 
3534 		if (zio_injection_enabled && zio->io_error == 0)
3535 			zio->io_error = zio_handle_label_injection(zio, EIO);
3536 
3537 		if (zio->io_error && zio->io_type != ZIO_TYPE_TRIM) {
3538 			if (!vdev_accessible(vd, zio)) {
3539 				zio->io_error = SET_ERROR(ENXIO);
3540 			} else {
3541 				unexpected_error = B_TRUE;
3542 			}
3543 		}
3544 	}
3545 
3546 	ops->vdev_op_io_done(zio);
3547 
3548 	if (unexpected_error)
3549 		VERIFY(vdev_probe(vd, zio) == NULL);
3550 
3551 	return (ZIO_PIPELINE_CONTINUE);
3552 }
3553 
3554 /*
3555  * This function is used to change the priority of an existing zio that is
3556  * currently in-flight. This is used by the arc to upgrade priority in the
3557  * event that a demand read is made for a block that is currently queued
3558  * as a scrub or async read IO. Otherwise, the high priority read request
3559  * would end up having to wait for the lower priority IO.
3560  */
3561 void
3562 zio_change_priority(zio_t *pio, zio_priority_t priority)
3563 {
3564 	zio_t *cio, *cio_next;
3565 	zio_link_t *zl = NULL;
3566 
3567 	ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
3568 
3569 	if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) {
3570 		vdev_queue_change_io_priority(pio, priority);
3571 	} else {
3572 		pio->io_priority = priority;
3573 	}
3574 
3575 	mutex_enter(&pio->io_lock);
3576 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
3577 		cio_next = zio_walk_children(pio, &zl);
3578 		zio_change_priority(cio, priority);
3579 	}
3580 	mutex_exit(&pio->io_lock);
3581 }
3582 
3583 /*
3584  * For non-raidz ZIOs, we can just copy aside the bad data read from the
3585  * disk, and use that to finish the checksum ereport later.
3586  */
3587 static void
3588 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
3589     const abd_t *good_buf)
3590 {
3591 	/* no processing needed */
3592 	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
3593 }
3594 
3595 /*ARGSUSED*/
3596 void
3597 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
3598 {
3599 	void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size);
3600 
3601 	abd_copy(abd, zio->io_abd, zio->io_size);
3602 
3603 	zcr->zcr_cbinfo = zio->io_size;
3604 	zcr->zcr_cbdata = abd;
3605 	zcr->zcr_finish = zio_vsd_default_cksum_finish;
3606 	zcr->zcr_free = zio_abd_free;
3607 }
3608 
3609 static int
3610 zio_vdev_io_assess(zio_t *zio)
3611 {
3612 	vdev_t *vd = zio->io_vd;
3613 
3614 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3615 		return (ZIO_PIPELINE_STOP);
3616 	}
3617 
3618 	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3619 		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
3620 
3621 	if (zio->io_vsd != NULL) {
3622 		zio->io_vsd_ops->vsd_free(zio);
3623 		zio->io_vsd = NULL;
3624 	}
3625 
3626 	if (zio_injection_enabled && zio->io_error == 0)
3627 		zio->io_error = zio_handle_fault_injection(zio, EIO);
3628 
3629 	/*
3630 	 * If the I/O failed, determine whether we should attempt to retry it.
3631 	 *
3632 	 * On retry, we cut in line in the issue queue, since we don't want
3633 	 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
3634 	 */
3635 	if (zio->io_error && vd == NULL &&
3636 	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
3637 		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
3638 		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
3639 		zio->io_error = 0;
3640 		zio->io_flags |= ZIO_FLAG_IO_RETRY |
3641 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
3642 		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
3643 		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
3644 		    zio_requeue_io_start_cut_in_line);
3645 		return (ZIO_PIPELINE_STOP);
3646 	}
3647 
3648 	/*
3649 	 * If we got an error on a leaf device, convert it to ENXIO
3650 	 * if the device is not accessible at all.
3651 	 */
3652 	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3653 	    !vdev_accessible(vd, zio))
3654 		zio->io_error = SET_ERROR(ENXIO);
3655 
3656 	/*
3657 	 * If we can't write to an interior vdev (mirror or RAID-Z),
3658 	 * set vdev_cant_write so that we stop trying to allocate from it.
3659 	 */
3660 	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
3661 	    vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
3662 		vd->vdev_cant_write = B_TRUE;
3663 	}
3664 
3665 	/*
3666 	 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future
3667 	 * attempts will ever succeed. In this case we set a persistent
3668 	 * boolean flag so that we don't bother with it in the future.
3669 	 */
3670 	if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) &&
3671 	    zio->io_type == ZIO_TYPE_IOCTL &&
3672 	    zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL)
3673 		vd->vdev_nowritecache = B_TRUE;
3674 
3675 	if (zio->io_error)
3676 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3677 
3678 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3679 	    zio->io_physdone != NULL) {
3680 		ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
3681 		ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
3682 		zio->io_physdone(zio->io_logical);
3683 	}
3684 
3685 	return (ZIO_PIPELINE_CONTINUE);
3686 }
3687 
3688 void
3689 zio_vdev_io_reissue(zio_t *zio)
3690 {
3691 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3692 	ASSERT(zio->io_error == 0);
3693 
3694 	zio->io_stage >>= 1;
3695 }
3696 
3697 void
3698 zio_vdev_io_redone(zio_t *zio)
3699 {
3700 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
3701 
3702 	zio->io_stage >>= 1;
3703 }
3704 
3705 void
3706 zio_vdev_io_bypass(zio_t *zio)
3707 {
3708 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3709 	ASSERT(zio->io_error == 0);
3710 
3711 	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
3712 	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
3713 }
3714 
3715 /*
3716  * ==========================================================================
3717  * Encrypt and store encryption parameters
3718  * ==========================================================================
3719  */
3720 
3721 
3722 /*
3723  * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for
3724  * managing the storage of encryption parameters and passing them to the
3725  * lower-level encryption functions.
3726  */
3727 static int
3728 zio_encrypt(zio_t *zio)
3729 {
3730 	zio_prop_t *zp = &zio->io_prop;
3731 	spa_t *spa = zio->io_spa;
3732 	blkptr_t *bp = zio->io_bp;
3733 	uint64_t psize = BP_GET_PSIZE(bp);
3734 	uint64_t dsobj = zio->io_bookmark.zb_objset;
3735 	dmu_object_type_t ot = BP_GET_TYPE(bp);
3736 	void *enc_buf = NULL;
3737 	abd_t *eabd = NULL;
3738 	uint8_t salt[ZIO_DATA_SALT_LEN];
3739 	uint8_t iv[ZIO_DATA_IV_LEN];
3740 	uint8_t mac[ZIO_DATA_MAC_LEN];
3741 	boolean_t no_crypt = B_FALSE;
3742 
3743 	/* the root zio already encrypted the data */
3744 	if (zio->io_child_type == ZIO_CHILD_GANG)
3745 		return (ZIO_PIPELINE_CONTINUE);
3746 
3747 	/* only ZIL blocks are re-encrypted on rewrite */
3748 	if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG)
3749 		return (ZIO_PIPELINE_CONTINUE);
3750 
3751 	if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) {
3752 		BP_SET_CRYPT(bp, B_FALSE);
3753 		return (ZIO_PIPELINE_CONTINUE);
3754 	}
3755 
3756 	/* if we are doing raw encryption set the provided encryption params */
3757 	if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) {
3758 		ASSERT0(BP_GET_LEVEL(bp));
3759 		BP_SET_CRYPT(bp, B_TRUE);
3760 		BP_SET_BYTEORDER(bp, zp->zp_byteorder);
3761 		if (ot != DMU_OT_OBJSET)
3762 			zio_crypt_encode_mac_bp(bp, zp->zp_mac);
3763 
3764 		/* dnode blocks must be written out in the provided byteorder */
3765 		if (zp->zp_byteorder != ZFS_HOST_BYTEORDER &&
3766 		    ot == DMU_OT_DNODE) {
3767 			void *bswap_buf = zio_buf_alloc(psize);
3768 			abd_t *babd = abd_get_from_buf(bswap_buf, psize);
3769 
3770 			ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
3771 			abd_copy_to_buf(bswap_buf, zio->io_abd, psize);
3772 			dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf,
3773 			    psize);
3774 
3775 			abd_take_ownership_of_buf(babd, B_TRUE);
3776 			zio_push_transform(zio, babd, psize, psize, NULL);
3777 		}
3778 
3779 		if (DMU_OT_IS_ENCRYPTED(ot))
3780 			zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv);
3781 		return (ZIO_PIPELINE_CONTINUE);
3782 	}
3783 
3784 	/* indirect blocks only maintain a cksum of the lower level MACs */
3785 	if (BP_GET_LEVEL(bp) > 0) {
3786 		BP_SET_CRYPT(bp, B_TRUE);
3787 		VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE,
3788 		    zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp),
3789 		    mac));
3790 		zio_crypt_encode_mac_bp(bp, mac);
3791 		return (ZIO_PIPELINE_CONTINUE);
3792 	}
3793 
3794 	/*
3795 	 * Objset blocks are a special case since they have 2 256-bit MACs
3796 	 * embedded within them.
3797 	 */
3798 	if (ot == DMU_OT_OBJSET) {
3799 		ASSERT0(DMU_OT_IS_ENCRYPTED(ot));
3800 		ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
3801 		BP_SET_CRYPT(bp, B_TRUE);
3802 		VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj,
3803 		    zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp)));
3804 		return (ZIO_PIPELINE_CONTINUE);
3805 	}
3806 
3807 	/* unencrypted object types are only authenticated with a MAC */
3808 	if (!DMU_OT_IS_ENCRYPTED(ot)) {
3809 		BP_SET_CRYPT(bp, B_TRUE);
3810 		VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj,
3811 		    zio->io_abd, psize, mac));
3812 		zio_crypt_encode_mac_bp(bp, mac);
3813 		return (ZIO_PIPELINE_CONTINUE);
3814 	}
3815 
3816 	/*
3817 	 * Later passes of sync-to-convergence may decide to rewrite data
3818 	 * in place to avoid more disk reallocations. This presents a problem
3819 	 * for encryption because this consitutes rewriting the new data with
3820 	 * the same encryption key and IV. However, this only applies to blocks
3821 	 * in the MOS (particularly the spacemaps) and we do not encrypt the
3822 	 * MOS. We assert that the zio is allocating or an intent log write
3823 	 * to enforce this.
3824 	 */
3825 	ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG);
3826 	ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG);
3827 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION));
3828 	ASSERT3U(psize, !=, 0);
3829 
3830 	enc_buf = zio_buf_alloc(psize);
3831 	eabd = abd_get_from_buf(enc_buf, psize);
3832 	abd_take_ownership_of_buf(eabd, B_TRUE);
3833 
3834 	/*
3835 	 * For an explanation of what encryption parameters are stored
3836 	 * where, see the block comment in zio_crypt.c.
3837 	 */
3838 	if (ot == DMU_OT_INTENT_LOG) {
3839 		zio_crypt_decode_params_bp(bp, salt, iv);
3840 	} else {
3841 		BP_SET_CRYPT(bp, B_TRUE);
3842 	}
3843 
3844 	/* Perform the encryption. This should not fail */
3845 	VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark,
3846 	    BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
3847 	    salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt));
3848 
3849 	/* encode encryption metadata into the bp */
3850 	if (ot == DMU_OT_INTENT_LOG) {
3851 		/*
3852 		 * ZIL blocks store the MAC in the embedded checksum, so the
3853 		 * transform must always be applied.
3854 		 */
3855 		zio_crypt_encode_mac_zil(enc_buf, mac);
3856 		zio_push_transform(zio, eabd, psize, psize, NULL);
3857 	} else {
3858 		BP_SET_CRYPT(bp, B_TRUE);
3859 		zio_crypt_encode_params_bp(bp, salt, iv);
3860 		zio_crypt_encode_mac_bp(bp, mac);
3861 
3862 		if (no_crypt) {
3863 			ASSERT3U(ot, ==, DMU_OT_DNODE);
3864 			abd_free(eabd);
3865 		} else {
3866 			zio_push_transform(zio, eabd, psize, psize, NULL);
3867 		}
3868 	}
3869 
3870 	return (ZIO_PIPELINE_CONTINUE);
3871 }
3872 
3873 /*
3874  * ==========================================================================
3875  * Generate and verify checksums
3876  * ==========================================================================
3877  */
3878 static int
3879 zio_checksum_generate(zio_t *zio)
3880 {
3881 	blkptr_t *bp = zio->io_bp;
3882 	enum zio_checksum checksum;
3883 
3884 	if (bp == NULL) {
3885 		/*
3886 		 * This is zio_write_phys().
3887 		 * We're either generating a label checksum, or none at all.
3888 		 */
3889 		checksum = zio->io_prop.zp_checksum;
3890 
3891 		if (checksum == ZIO_CHECKSUM_OFF)
3892 			return (ZIO_PIPELINE_CONTINUE);
3893 
3894 		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
3895 	} else {
3896 		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
3897 			ASSERT(!IO_IS_ALLOCATING(zio));
3898 			checksum = ZIO_CHECKSUM_GANG_HEADER;
3899 		} else {
3900 			checksum = BP_GET_CHECKSUM(bp);
3901 		}
3902 	}
3903 
3904 	zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size);
3905 
3906 	return (ZIO_PIPELINE_CONTINUE);
3907 }
3908 
3909 static int
3910 zio_checksum_verify(zio_t *zio)
3911 {
3912 	zio_bad_cksum_t info;
3913 	blkptr_t *bp = zio->io_bp;
3914 	int error;
3915 
3916 	ASSERT(zio->io_vd != NULL);
3917 
3918 	if (bp == NULL) {
3919 		/*
3920 		 * This is zio_read_phys().
3921 		 * We're either verifying a label checksum, or nothing at all.
3922 		 */
3923 		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
3924 			return (ZIO_PIPELINE_CONTINUE);
3925 
3926 		ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
3927 	}
3928 
3929 	if ((error = zio_checksum_error(zio, &info)) != 0) {
3930 		zio->io_error = error;
3931 		if (error == ECKSUM &&
3932 		    !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
3933 			zfs_ereport_start_checksum(zio->io_spa,
3934 			    zio->io_vd, &zio->io_bookmark, zio,
3935 			    zio->io_offset, zio->io_size, NULL, &info);
3936 		}
3937 	}
3938 
3939 	return (ZIO_PIPELINE_CONTINUE);
3940 }
3941 
3942 /*
3943  * Called by RAID-Z to ensure we don't compute the checksum twice.
3944  */
3945 void
3946 zio_checksum_verified(zio_t *zio)
3947 {
3948 	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
3949 }
3950 
3951 /*
3952  * ==========================================================================
3953  * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
3954  * An error of 0 indicates success.  ENXIO indicates whole-device failure,
3955  * which may be transient (e.g. unplugged) or permament.  ECKSUM and EIO
3956  * indicate errors that are specific to one I/O, and most likely permanent.
3957  * Any other error is presumed to be worse because we weren't expecting it.
3958  * ==========================================================================
3959  */
3960 int
3961 zio_worst_error(int e1, int e2)
3962 {
3963 	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
3964 	int r1, r2;
3965 
3966 	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
3967 		if (e1 == zio_error_rank[r1])
3968 			break;
3969 
3970 	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
3971 		if (e2 == zio_error_rank[r2])
3972 			break;
3973 
3974 	return (r1 > r2 ? e1 : e2);
3975 }
3976 
3977 /*
3978  * ==========================================================================
3979  * I/O completion
3980  * ==========================================================================
3981  */
3982 static int
3983 zio_ready(zio_t *zio)
3984 {
3985 	blkptr_t *bp = zio->io_bp;
3986 	zio_t *pio, *pio_next;
3987 	zio_link_t *zl = NULL;
3988 
3989 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT,
3990 	    ZIO_WAIT_READY)) {
3991 		return (ZIO_PIPELINE_STOP);
3992 	}
3993 
3994 	if (zio->io_ready) {
3995 		ASSERT(IO_IS_ALLOCATING(zio));
3996 		ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
3997 		    (zio->io_flags & ZIO_FLAG_NOPWRITE));
3998 		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
3999 
4000 		zio->io_ready(zio);
4001 	}
4002 
4003 	if (bp != NULL && bp != &zio->io_bp_copy)
4004 		zio->io_bp_copy = *bp;
4005 
4006 	if (zio->io_error != 0) {
4007 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4008 
4009 		if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4010 			ASSERT(IO_IS_ALLOCATING(zio));
4011 			ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4012 			ASSERT(zio->io_metaslab_class != NULL);
4013 
4014 			/*
4015 			 * We were unable to allocate anything, unreserve and
4016 			 * issue the next I/O to allocate.
4017 			 */
4018 			metaslab_class_throttle_unreserve(
4019 			    zio->io_metaslab_class, zio->io_prop.zp_copies,
4020 			    zio->io_allocator, zio);
4021 			zio_allocate_dispatch(zio->io_spa, zio->io_allocator);
4022 		}
4023 	}
4024 
4025 	mutex_enter(&zio->io_lock);
4026 	zio->io_state[ZIO_WAIT_READY] = 1;
4027 	pio = zio_walk_parents(zio, &zl);
4028 	mutex_exit(&zio->io_lock);
4029 
4030 	/*
4031 	 * As we notify zio's parents, new parents could be added.
4032 	 * New parents go to the head of zio's io_parent_list, however,
4033 	 * so we will (correctly) not notify them.  The remainder of zio's
4034 	 * io_parent_list, from 'pio_next' onward, cannot change because
4035 	 * all parents must wait for us to be done before they can be done.
4036 	 */
4037 	for (; pio != NULL; pio = pio_next) {
4038 		pio_next = zio_walk_parents(zio, &zl);
4039 		zio_notify_parent(pio, zio, ZIO_WAIT_READY);
4040 	}
4041 
4042 	if (zio->io_flags & ZIO_FLAG_NODATA) {
4043 		if (BP_IS_GANG(bp)) {
4044 			zio->io_flags &= ~ZIO_FLAG_NODATA;
4045 		} else {
4046 			ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE);
4047 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
4048 		}
4049 	}
4050 
4051 	if (zio_injection_enabled &&
4052 	    zio->io_spa->spa_syncing_txg == zio->io_txg)
4053 		zio_handle_ignored_writes(zio);
4054 
4055 	return (ZIO_PIPELINE_CONTINUE);
4056 }
4057 
4058 /*
4059  * Update the allocation throttle accounting.
4060  */
4061 static void
4062 zio_dva_throttle_done(zio_t *zio)
4063 {
4064 	zio_t *lio = zio->io_logical;
4065 	zio_t *pio = zio_unique_parent(zio);
4066 	vdev_t *vd = zio->io_vd;
4067 	int flags = METASLAB_ASYNC_ALLOC;
4068 
4069 	ASSERT3P(zio->io_bp, !=, NULL);
4070 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
4071 	ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE);
4072 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
4073 	ASSERT(vd != NULL);
4074 	ASSERT3P(vd, ==, vd->vdev_top);
4075 	ASSERT(!(zio->io_flags & (ZIO_FLAG_IO_REPAIR | ZIO_FLAG_IO_RETRY)));
4076 	ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING);
4077 	ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE));
4078 	ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA));
4079 
4080 	/*
4081 	 * Parents of gang children can have two flavors -- ones that
4082 	 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set)
4083 	 * and ones that allocated the constituent blocks. The allocation
4084 	 * throttle needs to know the allocating parent zio so we must find
4085 	 * it here.
4086 	 */
4087 	if (pio->io_child_type == ZIO_CHILD_GANG) {
4088 		/*
4089 		 * If our parent is a rewrite gang child then our grandparent
4090 		 * would have been the one that performed the allocation.
4091 		 */
4092 		if (pio->io_flags & ZIO_FLAG_IO_REWRITE)
4093 			pio = zio_unique_parent(pio);
4094 		flags |= METASLAB_GANG_CHILD;
4095 	}
4096 
4097 	ASSERT(IO_IS_ALLOCATING(pio));
4098 	ASSERT3P(zio, !=, zio->io_logical);
4099 	ASSERT(zio->io_logical != NULL);
4100 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4101 	ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE);
4102 	ASSERT(zio->io_metaslab_class != NULL);
4103 
4104 	mutex_enter(&pio->io_lock);
4105 	metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags,
4106 	    pio->io_allocator, B_TRUE);
4107 	mutex_exit(&pio->io_lock);
4108 
4109 	metaslab_class_throttle_unreserve(zio->io_metaslab_class, 1,
4110 	    pio->io_allocator, pio);
4111 
4112 	/*
4113 	 * Call into the pipeline to see if there is more work that
4114 	 * needs to be done. If there is work to be done it will be
4115 	 * dispatched to another taskq thread.
4116 	 */
4117 	zio_allocate_dispatch(zio->io_spa, pio->io_allocator);
4118 }
4119 
4120 static int
4121 zio_done(zio_t *zio)
4122 {
4123 	spa_t *spa = zio->io_spa;
4124 	zio_t *lio = zio->io_logical;
4125 	blkptr_t *bp = zio->io_bp;
4126 	vdev_t *vd = zio->io_vd;
4127 	uint64_t psize = zio->io_size;
4128 	zio_t *pio, *pio_next;
4129 	zio_link_t *zl = NULL;
4130 
4131 	/*
4132 	 * If our children haven't all completed,
4133 	 * wait for them and then repeat this pipeline stage.
4134 	 */
4135 	if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) {
4136 		return (ZIO_PIPELINE_STOP);
4137 	}
4138 
4139 	/*
4140 	 * If the allocation throttle is enabled, then update the accounting.
4141 	 * We only track child I/Os that are part of an allocating async
4142 	 * write. We must do this since the allocation is performed
4143 	 * by the logical I/O but the actual write is done by child I/Os.
4144 	 */
4145 	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING &&
4146 	    zio->io_child_type == ZIO_CHILD_VDEV) {
4147 		ASSERT(zio->io_metaslab_class != NULL);
4148 		ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled);
4149 		zio_dva_throttle_done(zio);
4150 	}
4151 
4152 	/*
4153 	 * If the allocation throttle is enabled, verify that
4154 	 * we have decremented the refcounts for every I/O that was throttled.
4155 	 */
4156 	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4157 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
4158 		ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4159 		ASSERT(bp != NULL);
4160 
4161 		metaslab_group_alloc_verify(spa, zio->io_bp, zio,
4162 		    zio->io_allocator);
4163 		VERIFY(zfs_refcount_not_held(
4164 		    &zio->io_metaslab_class->mc_alloc_slots[zio->io_allocator],
4165 		    zio));
4166 	}
4167 
4168 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
4169 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
4170 			ASSERT(zio->io_children[c][w] == 0);
4171 
4172 	if (bp != NULL && !BP_IS_EMBEDDED(bp)) {
4173 		ASSERT(bp->blk_pad[0] == 0);
4174 		ASSERT(bp->blk_pad[1] == 0);
4175 		ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
4176 		    (bp == zio_unique_parent(zio)->io_bp));
4177 		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
4178 		    zio->io_bp_override == NULL &&
4179 		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
4180 			ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp));
4181 			ASSERT(BP_COUNT_GANG(bp) == 0 ||
4182 			    (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
4183 		}
4184 		if (zio->io_flags & ZIO_FLAG_NOPWRITE)
4185 			VERIFY(BP_EQUAL(bp, &zio->io_bp_orig));
4186 	}
4187 
4188 	/*
4189 	 * If there were child vdev/gang/ddt errors, they apply to us now.
4190 	 */
4191 	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
4192 	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
4193 	zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
4194 
4195 	/*
4196 	 * If the I/O on the transformed data was successful, generate any
4197 	 * checksum reports now while we still have the transformed data.
4198 	 */
4199 	if (zio->io_error == 0) {
4200 		while (zio->io_cksum_report != NULL) {
4201 			zio_cksum_report_t *zcr = zio->io_cksum_report;
4202 			uint64_t align = zcr->zcr_align;
4203 			uint64_t asize = P2ROUNDUP(psize, align);
4204 			abd_t *adata = zio->io_abd;
4205 
4206 			if (asize != psize) {
4207 				adata = abd_alloc(asize, B_TRUE);
4208 				abd_copy(adata, zio->io_abd, psize);
4209 				abd_zero_off(adata, psize, asize - psize);
4210 			}
4211 
4212 			zio->io_cksum_report = zcr->zcr_next;
4213 			zcr->zcr_next = NULL;
4214 			zcr->zcr_finish(zcr, adata);
4215 			zfs_ereport_free_checksum(zcr);
4216 
4217 			if (asize != psize)
4218 				abd_free(adata);
4219 		}
4220 	}
4221 
4222 	zio_pop_transforms(zio);	/* note: may set zio->io_error */
4223 
4224 	vdev_stat_update(zio, psize);
4225 
4226 	if (zio->io_error) {
4227 		/*
4228 		 * If this I/O is attached to a particular vdev,
4229 		 * generate an error message describing the I/O failure
4230 		 * at the block level.  We ignore these errors if the
4231 		 * device is currently unavailable.
4232 		 */
4233 		if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
4234 			zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd,
4235 			    &zio->io_bookmark, zio, 0, 0);
4236 
4237 		if ((zio->io_error == EIO || !(zio->io_flags &
4238 		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
4239 		    zio == lio) {
4240 			/*
4241 			 * For logical I/O requests, tell the SPA to log the
4242 			 * error and generate a logical data ereport.
4243 			 */
4244 			spa_log_error(spa, &zio->io_bookmark);
4245 			zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL,
4246 			    &zio->io_bookmark, zio, 0, 0);
4247 		}
4248 	}
4249 
4250 	if (zio->io_error && zio == lio) {
4251 		/*
4252 		 * Determine whether zio should be reexecuted.  This will
4253 		 * propagate all the way to the root via zio_notify_parent().
4254 		 */
4255 		ASSERT(vd == NULL && bp != NULL);
4256 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4257 
4258 		if (IO_IS_ALLOCATING(zio) &&
4259 		    !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
4260 			if (zio->io_error != ENOSPC)
4261 				zio->io_reexecute |= ZIO_REEXECUTE_NOW;
4262 			else
4263 				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4264 		}
4265 
4266 		if ((zio->io_type == ZIO_TYPE_READ ||
4267 		    zio->io_type == ZIO_TYPE_FREE) &&
4268 		    !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
4269 		    zio->io_error == ENXIO &&
4270 		    spa_load_state(spa) == SPA_LOAD_NONE &&
4271 		    spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
4272 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4273 
4274 		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
4275 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4276 
4277 		/*
4278 		 * Here is a possibly good place to attempt to do
4279 		 * either combinatorial reconstruction or error correction
4280 		 * based on checksums.  It also might be a good place
4281 		 * to send out preliminary ereports before we suspend
4282 		 * processing.
4283 		 */
4284 	}
4285 
4286 	/*
4287 	 * If there were logical child errors, they apply to us now.
4288 	 * We defer this until now to avoid conflating logical child
4289 	 * errors with errors that happened to the zio itself when
4290 	 * updating vdev stats and reporting FMA events above.
4291 	 */
4292 	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
4293 
4294 	if ((zio->io_error || zio->io_reexecute) &&
4295 	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
4296 	    !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
4297 		zio_dva_unallocate(zio, zio->io_gang_tree, bp);
4298 
4299 	zio_gang_tree_free(&zio->io_gang_tree);
4300 
4301 	/*
4302 	 * Godfather I/Os should never suspend.
4303 	 */
4304 	if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
4305 	    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
4306 		zio->io_reexecute = 0;
4307 
4308 	if (zio->io_reexecute) {
4309 		/*
4310 		 * This is a logical I/O that wants to reexecute.
4311 		 *
4312 		 * Reexecute is top-down.  When an i/o fails, if it's not
4313 		 * the root, it simply notifies its parent and sticks around.
4314 		 * The parent, seeing that it still has children in zio_done(),
4315 		 * does the same.  This percolates all the way up to the root.
4316 		 * The root i/o will reexecute or suspend the entire tree.
4317 		 *
4318 		 * This approach ensures that zio_reexecute() honors
4319 		 * all the original i/o dependency relationships, e.g.
4320 		 * parents not executing until children are ready.
4321 		 */
4322 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4323 
4324 		zio->io_gang_leader = NULL;
4325 
4326 		mutex_enter(&zio->io_lock);
4327 		zio->io_state[ZIO_WAIT_DONE] = 1;
4328 		mutex_exit(&zio->io_lock);
4329 
4330 		/*
4331 		 * "The Godfather" I/O monitors its children but is
4332 		 * not a true parent to them. It will track them through
4333 		 * the pipeline but severs its ties whenever they get into
4334 		 * trouble (e.g. suspended). This allows "The Godfather"
4335 		 * I/O to return status without blocking.
4336 		 */
4337 		zl = NULL;
4338 		for (pio = zio_walk_parents(zio, &zl); pio != NULL;
4339 		    pio = pio_next) {
4340 			zio_link_t *remove_zl = zl;
4341 			pio_next = zio_walk_parents(zio, &zl);
4342 
4343 			if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
4344 			    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
4345 				zio_remove_child(pio, zio, remove_zl);
4346 				zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
4347 			}
4348 		}
4349 
4350 		if ((pio = zio_unique_parent(zio)) != NULL) {
4351 			/*
4352 			 * We're not a root i/o, so there's nothing to do
4353 			 * but notify our parent.  Don't propagate errors
4354 			 * upward since we haven't permanently failed yet.
4355 			 */
4356 			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
4357 			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
4358 			zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
4359 		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
4360 			/*
4361 			 * We'd fail again if we reexecuted now, so suspend
4362 			 * until conditions improve (e.g. device comes online).
4363 			 */
4364 			zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR);
4365 		} else {
4366 			/*
4367 			 * Reexecution is potentially a huge amount of work.
4368 			 * Hand it off to the otherwise-unused claim taskq.
4369 			 */
4370 			ASSERT(zio->io_tqent.tqent_next == NULL);
4371 			spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM,
4372 			    ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio,
4373 			    0, &zio->io_tqent);
4374 		}
4375 		return (ZIO_PIPELINE_STOP);
4376 	}
4377 
4378 	ASSERT(zio->io_child_count == 0);
4379 	ASSERT(zio->io_reexecute == 0);
4380 	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
4381 
4382 	/*
4383 	 * Report any checksum errors, since the I/O is complete.
4384 	 */
4385 	while (zio->io_cksum_report != NULL) {
4386 		zio_cksum_report_t *zcr = zio->io_cksum_report;
4387 		zio->io_cksum_report = zcr->zcr_next;
4388 		zcr->zcr_next = NULL;
4389 		zcr->zcr_finish(zcr, NULL);
4390 		zfs_ereport_free_checksum(zcr);
4391 	}
4392 
4393 	/*
4394 	 * It is the responsibility of the done callback to ensure that this
4395 	 * particular zio is no longer discoverable for adoption, and as
4396 	 * such, cannot acquire any new parents.
4397 	 */
4398 	if (zio->io_done)
4399 		zio->io_done(zio);
4400 
4401 	mutex_enter(&zio->io_lock);
4402 	zio->io_state[ZIO_WAIT_DONE] = 1;
4403 	mutex_exit(&zio->io_lock);
4404 
4405 	zl = NULL;
4406 	for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) {
4407 		zio_link_t *remove_zl = zl;
4408 		pio_next = zio_walk_parents(zio, &zl);
4409 		zio_remove_child(pio, zio, remove_zl);
4410 		zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
4411 	}
4412 
4413 	if (zio->io_waiter != NULL) {
4414 		mutex_enter(&zio->io_lock);
4415 		zio->io_executor = NULL;
4416 		cv_broadcast(&zio->io_cv);
4417 		mutex_exit(&zio->io_lock);
4418 	} else {
4419 		zio_destroy(zio);
4420 	}
4421 
4422 	return (ZIO_PIPELINE_STOP);
4423 }
4424 
4425 /*
4426  * ==========================================================================
4427  * I/O pipeline definition
4428  * ==========================================================================
4429  */
4430 static zio_pipe_stage_t *zio_pipeline[] = {
4431 	NULL,
4432 	zio_read_bp_init,
4433 	zio_write_bp_init,
4434 	zio_free_bp_init,
4435 	zio_issue_async,
4436 	zio_write_compress,
4437 	zio_encrypt,
4438 	zio_checksum_generate,
4439 	zio_nop_write,
4440 	zio_ddt_read_start,
4441 	zio_ddt_read_done,
4442 	zio_ddt_write,
4443 	zio_ddt_free,
4444 	zio_gang_assemble,
4445 	zio_gang_issue,
4446 	zio_dva_throttle,
4447 	zio_dva_allocate,
4448 	zio_dva_free,
4449 	zio_dva_claim,
4450 	zio_ready,
4451 	zio_vdev_io_start,
4452 	zio_vdev_io_done,
4453 	zio_vdev_io_assess,
4454 	zio_checksum_verify,
4455 	zio_done
4456 };
4457 
4458 
4459 
4460 
4461 /*
4462  * Compare two zbookmark_phys_t's to see which we would reach first in a
4463  * pre-order traversal of the object tree.
4464  *
4465  * This is simple in every case aside from the meta-dnode object. For all other
4466  * objects, we traverse them in order (object 1 before object 2, and so on).
4467  * However, all of these objects are traversed while traversing object 0, since
4468  * the data it points to is the list of objects.  Thus, we need to convert to a
4469  * canonical representation so we can compare meta-dnode bookmarks to
4470  * non-meta-dnode bookmarks.
4471  *
4472  * We do this by calculating "equivalents" for each field of the zbookmark.
4473  * zbookmarks outside of the meta-dnode use their own object and level, and
4474  * calculate the level 0 equivalent (the first L0 blkid that is contained in the
4475  * blocks this bookmark refers to) by multiplying their blkid by their span
4476  * (the number of L0 blocks contained within one block at their level).
4477  * zbookmarks inside the meta-dnode calculate their object equivalent
4478  * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
4479  * level + 1<<31 (any value larger than a level could ever be) for their level.
4480  * This causes them to always compare before a bookmark in their object
4481  * equivalent, compare appropriately to bookmarks in other objects, and to
4482  * compare appropriately to other bookmarks in the meta-dnode.
4483  */
4484 int
4485 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
4486     const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
4487 {
4488 	/*
4489 	 * These variables represent the "equivalent" values for the zbookmark,
4490 	 * after converting zbookmarks inside the meta dnode to their
4491 	 * normal-object equivalents.
4492 	 */
4493 	uint64_t zb1obj, zb2obj;
4494 	uint64_t zb1L0, zb2L0;
4495 	uint64_t zb1level, zb2level;
4496 
4497 	if (zb1->zb_object == zb2->zb_object &&
4498 	    zb1->zb_level == zb2->zb_level &&
4499 	    zb1->zb_blkid == zb2->zb_blkid)
4500 		return (0);
4501 
4502 	/*
4503 	 * BP_SPANB calculates the span in blocks.
4504 	 */
4505 	zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
4506 	zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
4507 
4508 	if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
4509 		zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4510 		zb1L0 = 0;
4511 		zb1level = zb1->zb_level + COMPARE_META_LEVEL;
4512 	} else {
4513 		zb1obj = zb1->zb_object;
4514 		zb1level = zb1->zb_level;
4515 	}
4516 
4517 	if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
4518 		zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4519 		zb2L0 = 0;
4520 		zb2level = zb2->zb_level + COMPARE_META_LEVEL;
4521 	} else {
4522 		zb2obj = zb2->zb_object;
4523 		zb2level = zb2->zb_level;
4524 	}
4525 
4526 	/* Now that we have a canonical representation, do the comparison. */
4527 	if (zb1obj != zb2obj)
4528 		return (zb1obj < zb2obj ? -1 : 1);
4529 	else if (zb1L0 != zb2L0)
4530 		return (zb1L0 < zb2L0 ? -1 : 1);
4531 	else if (zb1level != zb2level)
4532 		return (zb1level > zb2level ? -1 : 1);
4533 	/*
4534 	 * This can (theoretically) happen if the bookmarks have the same object
4535 	 * and level, but different blkids, if the block sizes are not the same.
4536 	 * There is presently no way to change the indirect block sizes
4537 	 */
4538 	return (0);
4539 }
4540 
4541 /*
4542  *  This function checks the following: given that last_block is the place that
4543  *  our traversal stopped last time, does that guarantee that we've visited
4544  *  every node under subtree_root?  Therefore, we can't just use the raw output
4545  *  of zbookmark_compare.  We have to pass in a modified version of
4546  *  subtree_root; by incrementing the block id, and then checking whether
4547  *  last_block is before or equal to that, we can tell whether or not having
4548  *  visited last_block implies that all of subtree_root's children have been
4549  *  visited.
4550  */
4551 boolean_t
4552 zbookmark_subtree_completed(const dnode_phys_t *dnp,
4553     const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
4554 {
4555 	zbookmark_phys_t mod_zb = *subtree_root;
4556 	mod_zb.zb_blkid++;
4557 	ASSERT(last_block->zb_level == 0);
4558 
4559 	/* The objset_phys_t isn't before anything. */
4560 	if (dnp == NULL)
4561 		return (B_FALSE);
4562 
4563 	/*
4564 	 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
4565 	 * data block size in sectors, because that variable is only used if
4566 	 * the bookmark refers to a block in the meta-dnode.  Since we don't
4567 	 * know without examining it what object it refers to, and there's no
4568 	 * harm in passing in this value in other cases, we always pass it in.
4569 	 *
4570 	 * We pass in 0 for the indirect block size shift because zb2 must be
4571 	 * level 0.  The indirect block size is only used to calculate the span
4572 	 * of the bookmark, but since the bookmark must be level 0, the span is
4573 	 * always 1, so the math works out.
4574 	 *
4575 	 * If you make changes to how the zbookmark_compare code works, be sure
4576 	 * to make sure that this code still works afterwards.
4577 	 */
4578 	return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
4579 	    1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
4580 	    last_block) <= 0);
4581 }
4582