xref: /illumos-gate/usr/src/uts/common/fs/zfs/zil.c (revision f8fdf681)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24  * Copyright (c) 2014 Integros [integros.com]
25  */
26 
27 /* Portions Copyright 2010 Robert Milkowski */
28 
29 #include <sys/zfs_context.h>
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/dmu.h>
33 #include <sys/zap.h>
34 #include <sys/arc.h>
35 #include <sys/stat.h>
36 #include <sys/resource.h>
37 #include <sys/zil.h>
38 #include <sys/zil_impl.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/vdev_impl.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/dsl_pool.h>
43 #include <sys/abd.h>
44 
45 /*
46  * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system
47  * calls that change the file system. Each itx has enough information to
48  * be able to replay them after a system crash, power loss, or
49  * equivalent failure mode. These are stored in memory until either:
50  *
51  *   1. they are committed to the pool by the DMU transaction group
52  *      (txg), at which point they can be discarded; or
53  *   2. they are committed to the on-disk ZIL for the dataset being
54  *      modified (e.g. due to an fsync, O_DSYNC, or other synchronous
55  *      requirement).
56  *
57  * In the event of a crash or power loss, the itxs contained by each
58  * dataset's on-disk ZIL will be replayed when that dataset is first
59  * instantianted (e.g. if the dataset is a normal fileystem, when it is
60  * first mounted).
61  *
62  * As hinted at above, there is one ZIL per dataset (both the in-memory
63  * representation, and the on-disk representation). The on-disk format
64  * consists of 3 parts:
65  *
66  * 	- a single, per-dataset, ZIL header; which points to a chain of
67  * 	- zero or more ZIL blocks; each of which contains
68  * 	- zero or more ZIL records
69  *
70  * A ZIL record holds the information necessary to replay a single
71  * system call transaction. A ZIL block can hold many ZIL records, and
72  * the blocks are chained together, similarly to a singly linked list.
73  *
74  * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL
75  * block in the chain, and the ZIL header points to the first block in
76  * the chain.
77  *
78  * Note, there is not a fixed place in the pool to hold these ZIL
79  * blocks; they are dynamically allocated and freed as needed from the
80  * blocks available on the pool, though they can be preferentially
81  * allocated from a dedicated "log" vdev.
82  */
83 
84 /*
85  * This controls the amount of time that a ZIL block (lwb) will remain
86  * "open" when it isn't "full", and it has a thread waiting for it to be
87  * committed to stable storage. Please refer to the zil_commit_waiter()
88  * function (and the comments within it) for more details.
89  */
90 int zfs_commit_timeout_pct = 5;
91 
92 /*
93  * Disable intent logging replay.  This global ZIL switch affects all pools.
94  */
95 int zil_replay_disable = 0;
96 
97 /*
98  * Disable the DKIOCFLUSHWRITECACHE commands that are normally sent to
99  * the disk(s) by the ZIL after an LWB write has completed. Setting this
100  * will cause ZIL corruption on power loss if a volatile out-of-order
101  * write cache is enabled.
102  */
103 boolean_t zil_nocacheflush = B_FALSE;
104 
105 /*
106  * Limit SLOG write size per commit executed with synchronous priority.
107  * Any writes above that will be executed with lower (asynchronous) priority
108  * to limit potential SLOG device abuse by single active ZIL writer.
109  */
110 uint64_t zil_slog_bulk = 768 * 1024;
111 
112 static kmem_cache_t *zil_lwb_cache;
113 static kmem_cache_t *zil_zcw_cache;
114 
115 static void zil_async_to_sync(zilog_t *zilog, uint64_t foid);
116 
117 #define	LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
118     sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
119 
120 static int
121 zil_bp_compare(const void *x1, const void *x2)
122 {
123 	const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
124 	const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
125 
126 	if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2))
127 		return (-1);
128 	if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2))
129 		return (1);
130 
131 	if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2))
132 		return (-1);
133 	if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2))
134 		return (1);
135 
136 	return (0);
137 }
138 
139 static void
140 zil_bp_tree_init(zilog_t *zilog)
141 {
142 	avl_create(&zilog->zl_bp_tree, zil_bp_compare,
143 	    sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
144 }
145 
146 static void
147 zil_bp_tree_fini(zilog_t *zilog)
148 {
149 	avl_tree_t *t = &zilog->zl_bp_tree;
150 	zil_bp_node_t *zn;
151 	void *cookie = NULL;
152 
153 	while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
154 		kmem_free(zn, sizeof (zil_bp_node_t));
155 
156 	avl_destroy(t);
157 }
158 
159 int
160 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
161 {
162 	avl_tree_t *t = &zilog->zl_bp_tree;
163 	const dva_t *dva;
164 	zil_bp_node_t *zn;
165 	avl_index_t where;
166 
167 	if (BP_IS_EMBEDDED(bp))
168 		return (0);
169 
170 	dva = BP_IDENTITY(bp);
171 
172 	if (avl_find(t, dva, &where) != NULL)
173 		return (SET_ERROR(EEXIST));
174 
175 	zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
176 	zn->zn_dva = *dva;
177 	avl_insert(t, zn, where);
178 
179 	return (0);
180 }
181 
182 static zil_header_t *
183 zil_header_in_syncing_context(zilog_t *zilog)
184 {
185 	return ((zil_header_t *)zilog->zl_header);
186 }
187 
188 static void
189 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
190 {
191 	zio_cksum_t *zc = &bp->blk_cksum;
192 
193 	zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
194 	zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
195 	zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
196 	zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
197 }
198 
199 /*
200  * Read a log block and make sure it's valid.
201  */
202 static int
203 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst,
204     char **end)
205 {
206 	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
207 	arc_flags_t aflags = ARC_FLAG_WAIT;
208 	arc_buf_t *abuf = NULL;
209 	zbookmark_phys_t zb;
210 	int error;
211 
212 	if (zilog->zl_header->zh_claim_txg == 0)
213 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
214 
215 	if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
216 		zio_flags |= ZIO_FLAG_SPECULATIVE;
217 
218 	SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
219 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
220 
221 	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
222 	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
223 
224 	if (error == 0) {
225 		zio_cksum_t cksum = bp->blk_cksum;
226 
227 		/*
228 		 * Validate the checksummed log block.
229 		 *
230 		 * Sequence numbers should be... sequential.  The checksum
231 		 * verifier for the next block should be bp's checksum plus 1.
232 		 *
233 		 * Also check the log chain linkage and size used.
234 		 */
235 		cksum.zc_word[ZIL_ZC_SEQ]++;
236 
237 		if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
238 			zil_chain_t *zilc = abuf->b_data;
239 			char *lr = (char *)(zilc + 1);
240 			uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
241 
242 			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
243 			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
244 				error = SET_ERROR(ECKSUM);
245 			} else {
246 				ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
247 				bcopy(lr, dst, len);
248 				*end = (char *)dst + len;
249 				*nbp = zilc->zc_next_blk;
250 			}
251 		} else {
252 			char *lr = abuf->b_data;
253 			uint64_t size = BP_GET_LSIZE(bp);
254 			zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
255 
256 			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
257 			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
258 			    (zilc->zc_nused > (size - sizeof (*zilc)))) {
259 				error = SET_ERROR(ECKSUM);
260 			} else {
261 				ASSERT3U(zilc->zc_nused, <=,
262 				    SPA_OLD_MAXBLOCKSIZE);
263 				bcopy(lr, dst, zilc->zc_nused);
264 				*end = (char *)dst + zilc->zc_nused;
265 				*nbp = zilc->zc_next_blk;
266 			}
267 		}
268 
269 		arc_buf_destroy(abuf, &abuf);
270 	}
271 
272 	return (error);
273 }
274 
275 /*
276  * Read a TX_WRITE log data block.
277  */
278 static int
279 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
280 {
281 	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
282 	const blkptr_t *bp = &lr->lr_blkptr;
283 	arc_flags_t aflags = ARC_FLAG_WAIT;
284 	arc_buf_t *abuf = NULL;
285 	zbookmark_phys_t zb;
286 	int error;
287 
288 	if (BP_IS_HOLE(bp)) {
289 		if (wbuf != NULL)
290 			bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
291 		return (0);
292 	}
293 
294 	if (zilog->zl_header->zh_claim_txg == 0)
295 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
296 
297 	SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
298 	    ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
299 
300 	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
301 	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
302 
303 	if (error == 0) {
304 		if (wbuf != NULL)
305 			bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
306 		arc_buf_destroy(abuf, &abuf);
307 	}
308 
309 	return (error);
310 }
311 
312 /*
313  * Parse the intent log, and call parse_func for each valid record within.
314  */
315 int
316 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
317     zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
318 {
319 	const zil_header_t *zh = zilog->zl_header;
320 	boolean_t claimed = !!zh->zh_claim_txg;
321 	uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
322 	uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
323 	uint64_t max_blk_seq = 0;
324 	uint64_t max_lr_seq = 0;
325 	uint64_t blk_count = 0;
326 	uint64_t lr_count = 0;
327 	blkptr_t blk, next_blk;
328 	char *lrbuf, *lrp;
329 	int error = 0;
330 
331 	/*
332 	 * Old logs didn't record the maximum zh_claim_lr_seq.
333 	 */
334 	if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
335 		claim_lr_seq = UINT64_MAX;
336 
337 	/*
338 	 * Starting at the block pointed to by zh_log we read the log chain.
339 	 * For each block in the chain we strongly check that block to
340 	 * ensure its validity.  We stop when an invalid block is found.
341 	 * For each block pointer in the chain we call parse_blk_func().
342 	 * For each record in each valid block we call parse_lr_func().
343 	 * If the log has been claimed, stop if we encounter a sequence
344 	 * number greater than the highest claimed sequence number.
345 	 */
346 	lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
347 	zil_bp_tree_init(zilog);
348 
349 	for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
350 		uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
351 		int reclen;
352 		char *end;
353 
354 		if (blk_seq > claim_blk_seq)
355 			break;
356 		if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0)
357 			break;
358 		ASSERT3U(max_blk_seq, <, blk_seq);
359 		max_blk_seq = blk_seq;
360 		blk_count++;
361 
362 		if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
363 			break;
364 
365 		error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end);
366 		if (error != 0)
367 			break;
368 
369 		for (lrp = lrbuf; lrp < end; lrp += reclen) {
370 			lr_t *lr = (lr_t *)lrp;
371 			reclen = lr->lrc_reclen;
372 			ASSERT3U(reclen, >=, sizeof (lr_t));
373 			if (lr->lrc_seq > claim_lr_seq)
374 				goto done;
375 			if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0)
376 				goto done;
377 			ASSERT3U(max_lr_seq, <, lr->lrc_seq);
378 			max_lr_seq = lr->lrc_seq;
379 			lr_count++;
380 		}
381 	}
382 done:
383 	zilog->zl_parse_error = error;
384 	zilog->zl_parse_blk_seq = max_blk_seq;
385 	zilog->zl_parse_lr_seq = max_lr_seq;
386 	zilog->zl_parse_blk_count = blk_count;
387 	zilog->zl_parse_lr_count = lr_count;
388 
389 	ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
390 	    (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq));
391 
392 	zil_bp_tree_fini(zilog);
393 	zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
394 
395 	return (error);
396 }
397 
398 /* ARGSUSED */
399 static int
400 zil_clear_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
401 {
402 	ASSERT(!BP_IS_HOLE(bp));
403 
404 	/*
405 	 * As we call this function from the context of a rewind to a
406 	 * checkpoint, each ZIL block whose txg is later than the txg
407 	 * that we rewind to is invalid. Thus, we return -1 so
408 	 * zil_parse() doesn't attempt to read it.
409 	 */
410 	if (bp->blk_birth >= first_txg)
411 		return (-1);
412 
413 	if (zil_bp_tree_add(zilog, bp) != 0)
414 		return (0);
415 
416 	zio_free(zilog->zl_spa, first_txg, bp);
417 	return (0);
418 }
419 
420 /* ARGSUSED */
421 static int
422 zil_noop_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
423 {
424 	return (0);
425 }
426 
427 static int
428 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
429 {
430 	/*
431 	 * Claim log block if not already committed and not already claimed.
432 	 * If tx == NULL, just verify that the block is claimable.
433 	 */
434 	if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
435 	    zil_bp_tree_add(zilog, bp) != 0)
436 		return (0);
437 
438 	return (zio_wait(zio_claim(NULL, zilog->zl_spa,
439 	    tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
440 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
441 }
442 
443 static int
444 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
445 {
446 	lr_write_t *lr = (lr_write_t *)lrc;
447 	int error;
448 
449 	if (lrc->lrc_txtype != TX_WRITE)
450 		return (0);
451 
452 	/*
453 	 * If the block is not readable, don't claim it.  This can happen
454 	 * in normal operation when a log block is written to disk before
455 	 * some of the dmu_sync() blocks it points to.  In this case, the
456 	 * transaction cannot have been committed to anyone (we would have
457 	 * waited for all writes to be stable first), so it is semantically
458 	 * correct to declare this the end of the log.
459 	 */
460 	if (lr->lr_blkptr.blk_birth >= first_txg &&
461 	    (error = zil_read_log_data(zilog, lr, NULL)) != 0)
462 		return (error);
463 	return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
464 }
465 
466 /* ARGSUSED */
467 static int
468 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
469 {
470 	zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
471 
472 	return (0);
473 }
474 
475 static int
476 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
477 {
478 	lr_write_t *lr = (lr_write_t *)lrc;
479 	blkptr_t *bp = &lr->lr_blkptr;
480 
481 	/*
482 	 * If we previously claimed it, we need to free it.
483 	 */
484 	if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
485 	    bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
486 	    !BP_IS_HOLE(bp))
487 		zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
488 
489 	return (0);
490 }
491 
492 static int
493 zil_lwb_vdev_compare(const void *x1, const void *x2)
494 {
495 	const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
496 	const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
497 
498 	if (v1 < v2)
499 		return (-1);
500 	if (v1 > v2)
501 		return (1);
502 
503 	return (0);
504 }
505 
506 static lwb_t *
507 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg)
508 {
509 	lwb_t *lwb;
510 
511 	lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
512 	lwb->lwb_zilog = zilog;
513 	lwb->lwb_blk = *bp;
514 	lwb->lwb_slog = slog;
515 	lwb->lwb_state = LWB_STATE_CLOSED;
516 	lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
517 	lwb->lwb_max_txg = txg;
518 	lwb->lwb_write_zio = NULL;
519 	lwb->lwb_root_zio = NULL;
520 	lwb->lwb_tx = NULL;
521 	lwb->lwb_issued_timestamp = 0;
522 	if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
523 		lwb->lwb_nused = sizeof (zil_chain_t);
524 		lwb->lwb_sz = BP_GET_LSIZE(bp);
525 	} else {
526 		lwb->lwb_nused = 0;
527 		lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
528 	}
529 
530 	mutex_enter(&zilog->zl_lock);
531 	list_insert_tail(&zilog->zl_lwb_list, lwb);
532 	mutex_exit(&zilog->zl_lock);
533 
534 	ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
535 	ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
536 	VERIFY(list_is_empty(&lwb->lwb_waiters));
537 
538 	return (lwb);
539 }
540 
541 static void
542 zil_free_lwb(zilog_t *zilog, lwb_t *lwb)
543 {
544 	ASSERT(MUTEX_HELD(&zilog->zl_lock));
545 	ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
546 	VERIFY(list_is_empty(&lwb->lwb_waiters));
547 	ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
548 	ASSERT3P(lwb->lwb_write_zio, ==, NULL);
549 	ASSERT3P(lwb->lwb_root_zio, ==, NULL);
550 	ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa));
551 	ASSERT(lwb->lwb_state == LWB_STATE_CLOSED ||
552 	    lwb->lwb_state == LWB_STATE_DONE);
553 
554 	/*
555 	 * Clear the zilog's field to indicate this lwb is no longer
556 	 * valid, and prevent use-after-free errors.
557 	 */
558 	if (zilog->zl_last_lwb_opened == lwb)
559 		zilog->zl_last_lwb_opened = NULL;
560 
561 	kmem_cache_free(zil_lwb_cache, lwb);
562 }
563 
564 /*
565  * Called when we create in-memory log transactions so that we know
566  * to cleanup the itxs at the end of spa_sync().
567  */
568 void
569 zilog_dirty(zilog_t *zilog, uint64_t txg)
570 {
571 	dsl_pool_t *dp = zilog->zl_dmu_pool;
572 	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
573 
574 	ASSERT(spa_writeable(zilog->zl_spa));
575 
576 	if (ds->ds_is_snapshot)
577 		panic("dirtying snapshot!");
578 
579 	if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
580 		/* up the hold count until we can be written out */
581 		dmu_buf_add_ref(ds->ds_dbuf, zilog);
582 
583 		zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg);
584 	}
585 }
586 
587 /*
588  * Determine if the zil is dirty in the specified txg. Callers wanting to
589  * ensure that the dirty state does not change must hold the itxg_lock for
590  * the specified txg. Holding the lock will ensure that the zil cannot be
591  * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
592  * state.
593  */
594 boolean_t
595 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
596 {
597 	dsl_pool_t *dp = zilog->zl_dmu_pool;
598 
599 	if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
600 		return (B_TRUE);
601 	return (B_FALSE);
602 }
603 
604 /*
605  * Determine if the zil is dirty. The zil is considered dirty if it has
606  * any pending itx records that have not been cleaned by zil_clean().
607  */
608 boolean_t
609 zilog_is_dirty(zilog_t *zilog)
610 {
611 	dsl_pool_t *dp = zilog->zl_dmu_pool;
612 
613 	for (int t = 0; t < TXG_SIZE; t++) {
614 		if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
615 			return (B_TRUE);
616 	}
617 	return (B_FALSE);
618 }
619 
620 /*
621  * Create an on-disk intent log.
622  */
623 static lwb_t *
624 zil_create(zilog_t *zilog)
625 {
626 	const zil_header_t *zh = zilog->zl_header;
627 	lwb_t *lwb = NULL;
628 	uint64_t txg = 0;
629 	dmu_tx_t *tx = NULL;
630 	blkptr_t blk;
631 	int error = 0;
632 	boolean_t slog = FALSE;
633 
634 	/*
635 	 * Wait for any previous destroy to complete.
636 	 */
637 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
638 
639 	ASSERT(zh->zh_claim_txg == 0);
640 	ASSERT(zh->zh_replay_seq == 0);
641 
642 	blk = zh->zh_log;
643 
644 	/*
645 	 * Allocate an initial log block if:
646 	 *    - there isn't one already
647 	 *    - the existing block is the wrong endianess
648 	 */
649 	if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
650 		tx = dmu_tx_create(zilog->zl_os);
651 		VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
652 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
653 		txg = dmu_tx_get_txg(tx);
654 
655 		if (!BP_IS_HOLE(&blk)) {
656 			zio_free(zilog->zl_spa, txg, &blk);
657 			BP_ZERO(&blk);
658 		}
659 
660 		error = zio_alloc_zil(zilog->zl_spa,
661 		    zilog->zl_os->os_dsl_dataset->ds_object, txg, &blk, NULL,
662 		    ZIL_MIN_BLKSZ, &slog);
663 
664 		if (error == 0)
665 			zil_init_log_chain(zilog, &blk);
666 	}
667 
668 	/*
669 	 * Allocate a log write block (lwb) for the first log block.
670 	 */
671 	if (error == 0)
672 		lwb = zil_alloc_lwb(zilog, &blk, slog, txg);
673 
674 	/*
675 	 * If we just allocated the first log block, commit our transaction
676 	 * and wait for zil_sync() to stuff the block poiner into zh_log.
677 	 * (zh is part of the MOS, so we cannot modify it in open context.)
678 	 */
679 	if (tx != NULL) {
680 		dmu_tx_commit(tx);
681 		txg_wait_synced(zilog->zl_dmu_pool, txg);
682 	}
683 
684 	ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
685 
686 	return (lwb);
687 }
688 
689 /*
690  * In one tx, free all log blocks and clear the log header. If keep_first
691  * is set, then we're replaying a log with no content. We want to keep the
692  * first block, however, so that the first synchronous transaction doesn't
693  * require a txg_wait_synced() in zil_create(). We don't need to
694  * txg_wait_synced() here either when keep_first is set, because both
695  * zil_create() and zil_destroy() will wait for any in-progress destroys
696  * to complete.
697  */
698 void
699 zil_destroy(zilog_t *zilog, boolean_t keep_first)
700 {
701 	const zil_header_t *zh = zilog->zl_header;
702 	lwb_t *lwb;
703 	dmu_tx_t *tx;
704 	uint64_t txg;
705 
706 	/*
707 	 * Wait for any previous destroy to complete.
708 	 */
709 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
710 
711 	zilog->zl_old_header = *zh;		/* debugging aid */
712 
713 	if (BP_IS_HOLE(&zh->zh_log))
714 		return;
715 
716 	tx = dmu_tx_create(zilog->zl_os);
717 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
718 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
719 	txg = dmu_tx_get_txg(tx);
720 
721 	mutex_enter(&zilog->zl_lock);
722 
723 	ASSERT3U(zilog->zl_destroy_txg, <, txg);
724 	zilog->zl_destroy_txg = txg;
725 	zilog->zl_keep_first = keep_first;
726 
727 	if (!list_is_empty(&zilog->zl_lwb_list)) {
728 		ASSERT(zh->zh_claim_txg == 0);
729 		VERIFY(!keep_first);
730 		while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
731 			list_remove(&zilog->zl_lwb_list, lwb);
732 			if (lwb->lwb_buf != NULL)
733 				zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
734 			zio_free(zilog->zl_spa, txg, &lwb->lwb_blk);
735 			zil_free_lwb(zilog, lwb);
736 		}
737 	} else if (!keep_first) {
738 		zil_destroy_sync(zilog, tx);
739 	}
740 	mutex_exit(&zilog->zl_lock);
741 
742 	dmu_tx_commit(tx);
743 }
744 
745 void
746 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
747 {
748 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
749 	(void) zil_parse(zilog, zil_free_log_block,
750 	    zil_free_log_record, tx, zilog->zl_header->zh_claim_txg);
751 }
752 
753 int
754 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
755 {
756 	dmu_tx_t *tx = txarg;
757 	zilog_t *zilog;
758 	uint64_t first_txg;
759 	zil_header_t *zh;
760 	objset_t *os;
761 	int error;
762 
763 	error = dmu_objset_own_obj(dp, ds->ds_object,
764 	    DMU_OST_ANY, B_FALSE, FTAG, &os);
765 	if (error != 0) {
766 		/*
767 		 * EBUSY indicates that the objset is inconsistent, in which
768 		 * case it can not have a ZIL.
769 		 */
770 		if (error != EBUSY) {
771 			cmn_err(CE_WARN, "can't open objset for %llu, error %u",
772 			    (unsigned long long)ds->ds_object, error);
773 		}
774 		return (0);
775 	}
776 
777 	zilog = dmu_objset_zil(os);
778 	zh = zil_header_in_syncing_context(zilog);
779 	ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa));
780 	first_txg = spa_min_claim_txg(zilog->zl_spa);
781 
782 	/*
783 	 * If the spa_log_state is not set to be cleared, check whether
784 	 * the current uberblock is a checkpoint one and if the current
785 	 * header has been claimed before moving on.
786 	 *
787 	 * If the current uberblock is a checkpointed uberblock then
788 	 * one of the following scenarios took place:
789 	 *
790 	 * 1] We are currently rewinding to the checkpoint of the pool.
791 	 * 2] We crashed in the middle of a checkpoint rewind but we
792 	 *    did manage to write the checkpointed uberblock to the
793 	 *    vdev labels, so when we tried to import the pool again
794 	 *    the checkpointed uberblock was selected from the import
795 	 *    procedure.
796 	 *
797 	 * In both cases we want to zero out all the ZIL blocks, except
798 	 * the ones that have been claimed at the time of the checkpoint
799 	 * (their zh_claim_txg != 0). The reason is that these blocks
800 	 * may be corrupted since we may have reused their locations on
801 	 * disk after we took the checkpoint.
802 	 *
803 	 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier
804 	 * when we first figure out whether the current uberblock is
805 	 * checkpointed or not. Unfortunately, that would discard all
806 	 * the logs, including the ones that are claimed, and we would
807 	 * leak space.
808 	 */
809 	if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR ||
810 	    (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
811 	    zh->zh_claim_txg == 0)) {
812 		if (!BP_IS_HOLE(&zh->zh_log)) {
813 			(void) zil_parse(zilog, zil_clear_log_block,
814 			    zil_noop_log_record, tx, first_txg);
815 		}
816 		BP_ZERO(&zh->zh_log);
817 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
818 		dmu_objset_disown(os, FTAG);
819 		return (0);
820 	}
821 
822 	/*
823 	 * If we are not rewinding and opening the pool normally, then
824 	 * the min_claim_txg should be equal to the first txg of the pool.
825 	 */
826 	ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa));
827 
828 	/*
829 	 * Claim all log blocks if we haven't already done so, and remember
830 	 * the highest claimed sequence number.  This ensures that if we can
831 	 * read only part of the log now (e.g. due to a missing device),
832 	 * but we can read the entire log later, we will not try to replay
833 	 * or destroy beyond the last block we successfully claimed.
834 	 */
835 	ASSERT3U(zh->zh_claim_txg, <=, first_txg);
836 	if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
837 		(void) zil_parse(zilog, zil_claim_log_block,
838 		    zil_claim_log_record, tx, first_txg);
839 		zh->zh_claim_txg = first_txg;
840 		zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
841 		zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
842 		if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
843 			zh->zh_flags |= ZIL_REPLAY_NEEDED;
844 		zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
845 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
846 	}
847 
848 	ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
849 	dmu_objset_disown(os, FTAG);
850 	return (0);
851 }
852 
853 /*
854  * Check the log by walking the log chain.
855  * Checksum errors are ok as they indicate the end of the chain.
856  * Any other error (no device or read failure) returns an error.
857  */
858 /* ARGSUSED */
859 int
860 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
861 {
862 	zilog_t *zilog;
863 	objset_t *os;
864 	blkptr_t *bp;
865 	int error;
866 
867 	ASSERT(tx == NULL);
868 
869 	error = dmu_objset_from_ds(ds, &os);
870 	if (error != 0) {
871 		cmn_err(CE_WARN, "can't open objset %llu, error %d",
872 		    (unsigned long long)ds->ds_object, error);
873 		return (0);
874 	}
875 
876 	zilog = dmu_objset_zil(os);
877 	bp = (blkptr_t *)&zilog->zl_header->zh_log;
878 
879 	if (!BP_IS_HOLE(bp)) {
880 		vdev_t *vd;
881 		boolean_t valid = B_TRUE;
882 
883 		/*
884 		 * Check the first block and determine if it's on a log device
885 		 * which may have been removed or faulted prior to loading this
886 		 * pool.  If so, there's no point in checking the rest of the
887 		 * log as its content should have already been synced to the
888 		 * pool.
889 		 */
890 		spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
891 		vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
892 		if (vd->vdev_islog && vdev_is_dead(vd))
893 			valid = vdev_log_state_valid(vd);
894 		spa_config_exit(os->os_spa, SCL_STATE, FTAG);
895 
896 		if (!valid)
897 			return (0);
898 
899 		/*
900 		 * Check whether the current uberblock is checkpointed (e.g.
901 		 * we are rewinding) and whether the current header has been
902 		 * claimed or not. If it hasn't then skip verifying it. We
903 		 * do this because its ZIL blocks may be part of the pool's
904 		 * state before the rewind, which is no longer valid.
905 		 */
906 		zil_header_t *zh = zil_header_in_syncing_context(zilog);
907 		if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
908 		    zh->zh_claim_txg == 0)
909 			return (0);
910 	}
911 
912 	/*
913 	 * Because tx == NULL, zil_claim_log_block() will not actually claim
914 	 * any blocks, but just determine whether it is possible to do so.
915 	 * In addition to checking the log chain, zil_claim_log_block()
916 	 * will invoke zio_claim() with a done func of spa_claim_notify(),
917 	 * which will update spa_max_claim_txg.  See spa_load() for details.
918 	 */
919 	error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
920 	    zilog->zl_header->zh_claim_txg ? -1ULL :
921 	    spa_min_claim_txg(os->os_spa));
922 
923 	return ((error == ECKSUM || error == ENOENT) ? 0 : error);
924 }
925 
926 /*
927  * When an itx is "skipped", this function is used to properly mark the
928  * waiter as "done, and signal any thread(s) waiting on it. An itx can
929  * be skipped (and not committed to an lwb) for a variety of reasons,
930  * one of them being that the itx was committed via spa_sync(), prior to
931  * it being committed to an lwb; this can happen if a thread calling
932  * zil_commit() is racing with spa_sync().
933  */
934 static void
935 zil_commit_waiter_skip(zil_commit_waiter_t *zcw)
936 {
937 	mutex_enter(&zcw->zcw_lock);
938 	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
939 	zcw->zcw_done = B_TRUE;
940 	cv_broadcast(&zcw->zcw_cv);
941 	mutex_exit(&zcw->zcw_lock);
942 }
943 
944 /*
945  * This function is used when the given waiter is to be linked into an
946  * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb.
947  * At this point, the waiter will no longer be referenced by the itx,
948  * and instead, will be referenced by the lwb.
949  */
950 static void
951 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb)
952 {
953 	/*
954 	 * The lwb_waiters field of the lwb is protected by the zilog's
955 	 * zl_lock, thus it must be held when calling this function.
956 	 */
957 	ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_lock));
958 
959 	mutex_enter(&zcw->zcw_lock);
960 	ASSERT(!list_link_active(&zcw->zcw_node));
961 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
962 	ASSERT3P(lwb, !=, NULL);
963 	ASSERT(lwb->lwb_state == LWB_STATE_OPENED ||
964 	    lwb->lwb_state == LWB_STATE_ISSUED);
965 
966 	list_insert_tail(&lwb->lwb_waiters, zcw);
967 	zcw->zcw_lwb = lwb;
968 	mutex_exit(&zcw->zcw_lock);
969 }
970 
971 /*
972  * This function is used when zio_alloc_zil() fails to allocate a ZIL
973  * block, and the given waiter must be linked to the "nolwb waiters"
974  * list inside of zil_process_commit_list().
975  */
976 static void
977 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb)
978 {
979 	mutex_enter(&zcw->zcw_lock);
980 	ASSERT(!list_link_active(&zcw->zcw_node));
981 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
982 	list_insert_tail(nolwb, zcw);
983 	mutex_exit(&zcw->zcw_lock);
984 }
985 
986 void
987 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp)
988 {
989 	avl_tree_t *t = &lwb->lwb_vdev_tree;
990 	avl_index_t where;
991 	zil_vdev_node_t *zv, zvsearch;
992 	int ndvas = BP_GET_NDVAS(bp);
993 	int i;
994 
995 	if (zil_nocacheflush)
996 		return;
997 
998 	mutex_enter(&lwb->lwb_vdev_lock);
999 	for (i = 0; i < ndvas; i++) {
1000 		zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
1001 		if (avl_find(t, &zvsearch, &where) == NULL) {
1002 			zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
1003 			zv->zv_vdev = zvsearch.zv_vdev;
1004 			avl_insert(t, zv, where);
1005 		}
1006 	}
1007 	mutex_exit(&lwb->lwb_vdev_lock);
1008 }
1009 
1010 void
1011 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg)
1012 {
1013 	lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1014 }
1015 
1016 /*
1017  * This function is a called after all VDEVs associated with a given lwb
1018  * write have completed their DKIOCFLUSHWRITECACHE command; or as soon
1019  * as the lwb write completes, if "zil_nocacheflush" is set.
1020  *
1021  * The intention is for this function to be called as soon as the
1022  * contents of an lwb are considered "stable" on disk, and will survive
1023  * any sudden loss of power. At this point, any threads waiting for the
1024  * lwb to reach this state are signalled, and the "waiter" structures
1025  * are marked "done".
1026  */
1027 static void
1028 zil_lwb_flush_vdevs_done(zio_t *zio)
1029 {
1030 	lwb_t *lwb = zio->io_private;
1031 	zilog_t *zilog = lwb->lwb_zilog;
1032 	dmu_tx_t *tx = lwb->lwb_tx;
1033 	zil_commit_waiter_t *zcw;
1034 
1035 	spa_config_exit(zilog->zl_spa, SCL_STATE, lwb);
1036 
1037 	zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1038 
1039 	mutex_enter(&zilog->zl_lock);
1040 
1041 	/*
1042 	 * Ensure the lwb buffer pointer is cleared before releasing the
1043 	 * txg. If we have had an allocation failure and the txg is
1044 	 * waiting to sync then we want zil_sync() to remove the lwb so
1045 	 * that it's not picked up as the next new one in
1046 	 * zil_process_commit_list(). zil_sync() will only remove the
1047 	 * lwb if lwb_buf is null.
1048 	 */
1049 	lwb->lwb_buf = NULL;
1050 	lwb->lwb_tx = NULL;
1051 
1052 	ASSERT3U(lwb->lwb_issued_timestamp, >, 0);
1053 	zilog->zl_last_lwb_latency = gethrtime() - lwb->lwb_issued_timestamp;
1054 
1055 	lwb->lwb_root_zio = NULL;
1056 	lwb->lwb_state = LWB_STATE_DONE;
1057 
1058 	if (zilog->zl_last_lwb_opened == lwb) {
1059 		/*
1060 		 * Remember the highest committed log sequence number
1061 		 * for ztest. We only update this value when all the log
1062 		 * writes succeeded, because ztest wants to ASSERT that
1063 		 * it got the whole log chain.
1064 		 */
1065 		zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1066 	}
1067 
1068 	while ((zcw = list_head(&lwb->lwb_waiters)) != NULL) {
1069 		mutex_enter(&zcw->zcw_lock);
1070 
1071 		ASSERT(list_link_active(&zcw->zcw_node));
1072 		list_remove(&lwb->lwb_waiters, zcw);
1073 
1074 		ASSERT3P(zcw->zcw_lwb, ==, lwb);
1075 		zcw->zcw_lwb = NULL;
1076 
1077 		zcw->zcw_zio_error = zio->io_error;
1078 
1079 		ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1080 		zcw->zcw_done = B_TRUE;
1081 		cv_broadcast(&zcw->zcw_cv);
1082 
1083 		mutex_exit(&zcw->zcw_lock);
1084 	}
1085 
1086 	mutex_exit(&zilog->zl_lock);
1087 
1088 	/*
1089 	 * Now that we've written this log block, we have a stable pointer
1090 	 * to the next block in the chain, so it's OK to let the txg in
1091 	 * which we allocated the next block sync.
1092 	 */
1093 	dmu_tx_commit(tx);
1094 }
1095 
1096 /*
1097  * This is called when an lwb write completes. This means, this specific
1098  * lwb was written to disk, and all dependent lwb have also been
1099  * written to disk.
1100  *
1101  * At this point, a DKIOCFLUSHWRITECACHE command hasn't been issued to
1102  * the VDEVs involved in writing out this specific lwb. The lwb will be
1103  * "done" once zil_lwb_flush_vdevs_done() is called, which occurs in the
1104  * zio completion callback for the lwb's root zio.
1105  */
1106 static void
1107 zil_lwb_write_done(zio_t *zio)
1108 {
1109 	lwb_t *lwb = zio->io_private;
1110 	spa_t *spa = zio->io_spa;
1111 	zilog_t *zilog = lwb->lwb_zilog;
1112 	avl_tree_t *t = &lwb->lwb_vdev_tree;
1113 	void *cookie = NULL;
1114 	zil_vdev_node_t *zv;
1115 
1116 	ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0);
1117 
1118 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1119 	ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
1120 	ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
1121 	ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
1122 	ASSERT(!BP_IS_GANG(zio->io_bp));
1123 	ASSERT(!BP_IS_HOLE(zio->io_bp));
1124 	ASSERT(BP_GET_FILL(zio->io_bp) == 0);
1125 
1126 	abd_put(zio->io_abd);
1127 
1128 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED);
1129 
1130 	mutex_enter(&zilog->zl_lock);
1131 	lwb->lwb_write_zio = NULL;
1132 	mutex_exit(&zilog->zl_lock);
1133 
1134 	if (avl_numnodes(t) == 0)
1135 		return;
1136 
1137 	/*
1138 	 * If there was an IO error, we're not going to call zio_flush()
1139 	 * on these vdevs, so we simply empty the tree and free the
1140 	 * nodes. We avoid calling zio_flush() since there isn't any
1141 	 * good reason for doing so, after the lwb block failed to be
1142 	 * written out.
1143 	 */
1144 	if (zio->io_error != 0) {
1145 		while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
1146 			kmem_free(zv, sizeof (*zv));
1147 		return;
1148 	}
1149 
1150 	while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
1151 		vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
1152 		if (vd != NULL)
1153 			zio_flush(lwb->lwb_root_zio, vd);
1154 		kmem_free(zv, sizeof (*zv));
1155 	}
1156 }
1157 
1158 /*
1159  * This function's purpose is to "open" an lwb such that it is ready to
1160  * accept new itxs being committed to it. To do this, the lwb's zio
1161  * structures are created, and linked to the lwb. This function is
1162  * idempotent; if the passed in lwb has already been opened, this
1163  * function is essentially a no-op.
1164  */
1165 static void
1166 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb)
1167 {
1168 	zbookmark_phys_t zb;
1169 	zio_priority_t prio;
1170 
1171 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1172 	ASSERT3P(lwb, !=, NULL);
1173 	EQUIV(lwb->lwb_root_zio == NULL, lwb->lwb_state == LWB_STATE_CLOSED);
1174 	EQUIV(lwb->lwb_root_zio != NULL, lwb->lwb_state == LWB_STATE_OPENED);
1175 
1176 	SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1177 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
1178 	    lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
1179 
1180 	if (lwb->lwb_root_zio == NULL) {
1181 		abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf,
1182 		    BP_GET_LSIZE(&lwb->lwb_blk));
1183 
1184 		if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk)
1185 			prio = ZIO_PRIORITY_SYNC_WRITE;
1186 		else
1187 			prio = ZIO_PRIORITY_ASYNC_WRITE;
1188 
1189 		lwb->lwb_root_zio = zio_root(zilog->zl_spa,
1190 		    zil_lwb_flush_vdevs_done, lwb, ZIO_FLAG_CANFAIL);
1191 		ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1192 
1193 		lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio,
1194 		    zilog->zl_spa, 0, &lwb->lwb_blk, lwb_abd,
1195 		    BP_GET_LSIZE(&lwb->lwb_blk), zil_lwb_write_done, lwb,
1196 		    prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb);
1197 		ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1198 
1199 		lwb->lwb_state = LWB_STATE_OPENED;
1200 
1201 		mutex_enter(&zilog->zl_lock);
1202 
1203 		/*
1204 		 * The zilog's "zl_last_lwb_opened" field is used to
1205 		 * build the lwb/zio dependency chain, which is used to
1206 		 * preserve the ordering of lwb completions that is
1207 		 * required by the semantics of the ZIL. Each new lwb
1208 		 * zio becomes a parent of the "previous" lwb zio, such
1209 		 * that the new lwb's zio cannot complete until the
1210 		 * "previous" lwb's zio completes.
1211 		 *
1212 		 * This is required by the semantics of zil_commit();
1213 		 * the commit waiters attached to the lwbs will be woken
1214 		 * in the lwb zio's completion callback, so this zio
1215 		 * dependency graph ensures the waiters are woken in the
1216 		 * correct order (the same order the lwbs were created).
1217 		 */
1218 		lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened;
1219 		if (last_lwb_opened != NULL &&
1220 		    last_lwb_opened->lwb_state != LWB_STATE_DONE) {
1221 			ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1222 			    last_lwb_opened->lwb_state == LWB_STATE_ISSUED);
1223 			ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL);
1224 			zio_add_child(lwb->lwb_root_zio,
1225 			    last_lwb_opened->lwb_root_zio);
1226 		}
1227 		zilog->zl_last_lwb_opened = lwb;
1228 
1229 		mutex_exit(&zilog->zl_lock);
1230 	}
1231 
1232 	ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1233 	ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1234 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1235 }
1236 
1237 /*
1238  * Define a limited set of intent log block sizes.
1239  *
1240  * These must be a multiple of 4KB. Note only the amount used (again
1241  * aligned to 4KB) actually gets written. However, we can't always just
1242  * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
1243  */
1244 uint64_t zil_block_buckets[] = {
1245     4096,		/* non TX_WRITE */
1246     8192+4096,		/* data base */
1247     32*1024 + 4096, 	/* NFS writes */
1248     UINT64_MAX
1249 };
1250 
1251 /*
1252  * Start a log block write and advance to the next log block.
1253  * Calls are serialized.
1254  */
1255 static lwb_t *
1256 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb)
1257 {
1258 	lwb_t *nlwb = NULL;
1259 	zil_chain_t *zilc;
1260 	spa_t *spa = zilog->zl_spa;
1261 	blkptr_t *bp;
1262 	dmu_tx_t *tx;
1263 	uint64_t txg;
1264 	uint64_t zil_blksz, wsz;
1265 	int i, error;
1266 	boolean_t slog;
1267 
1268 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1269 	ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1270 	ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1271 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1272 
1273 	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1274 		zilc = (zil_chain_t *)lwb->lwb_buf;
1275 		bp = &zilc->zc_next_blk;
1276 	} else {
1277 		zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
1278 		bp = &zilc->zc_next_blk;
1279 	}
1280 
1281 	ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
1282 
1283 	/*
1284 	 * Allocate the next block and save its address in this block
1285 	 * before writing it in order to establish the log chain.
1286 	 * Note that if the allocation of nlwb synced before we wrote
1287 	 * the block that points at it (lwb), we'd leak it if we crashed.
1288 	 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
1289 	 * We dirty the dataset to ensure that zil_sync() will be called
1290 	 * to clean up in the event of allocation failure or I/O failure.
1291 	 */
1292 
1293 	tx = dmu_tx_create(zilog->zl_os);
1294 
1295 	/*
1296 	 * Since we are not going to create any new dirty data, and we
1297 	 * can even help with clearing the existing dirty data, we
1298 	 * should not be subject to the dirty data based delays. We
1299 	 * use TXG_NOTHROTTLE to bypass the delay mechanism.
1300 	 */
1301 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));
1302 
1303 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1304 	txg = dmu_tx_get_txg(tx);
1305 
1306 	lwb->lwb_tx = tx;
1307 
1308 	/*
1309 	 * Log blocks are pre-allocated. Here we select the size of the next
1310 	 * block, based on size used in the last block.
1311 	 * - first find the smallest bucket that will fit the block from a
1312 	 *   limited set of block sizes. This is because it's faster to write
1313 	 *   blocks allocated from the same metaslab as they are adjacent or
1314 	 *   close.
1315 	 * - next find the maximum from the new suggested size and an array of
1316 	 *   previous sizes. This lessens a picket fence effect of wrongly
1317 	 *   guesssing the size if we have a stream of say 2k, 64k, 2k, 64k
1318 	 *   requests.
1319 	 *
1320 	 * Note we only write what is used, but we can't just allocate
1321 	 * the maximum block size because we can exhaust the available
1322 	 * pool log space.
1323 	 */
1324 	zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
1325 	for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
1326 		continue;
1327 	zil_blksz = zil_block_buckets[i];
1328 	if (zil_blksz == UINT64_MAX)
1329 		zil_blksz = SPA_OLD_MAXBLOCKSIZE;
1330 	zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
1331 	for (i = 0; i < ZIL_PREV_BLKS; i++)
1332 		zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1333 	zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1334 
1335 	BP_ZERO(bp);
1336 
1337 	/* pass the old blkptr in order to spread log blocks across devs */
1338 	error = zio_alloc_zil(spa, zilog->zl_os->os_dsl_dataset->ds_object,
1339 	    txg, bp, &lwb->lwb_blk, zil_blksz, &slog);
1340 	if (error == 0) {
1341 		ASSERT3U(bp->blk_birth, ==, txg);
1342 		bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1343 		bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1344 
1345 		/*
1346 		 * Allocate a new log write block (lwb).
1347 		 */
1348 		nlwb = zil_alloc_lwb(zilog, bp, slog, txg);
1349 	}
1350 
1351 	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1352 		/* For Slim ZIL only write what is used. */
1353 		wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1354 		ASSERT3U(wsz, <=, lwb->lwb_sz);
1355 		zio_shrink(lwb->lwb_write_zio, wsz);
1356 
1357 	} else {
1358 		wsz = lwb->lwb_sz;
1359 	}
1360 
1361 	zilc->zc_pad = 0;
1362 	zilc->zc_nused = lwb->lwb_nused;
1363 	zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1364 
1365 	/*
1366 	 * clear unused data for security
1367 	 */
1368 	bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
1369 
1370 	spa_config_enter(zilog->zl_spa, SCL_STATE, lwb, RW_READER);
1371 
1372 	zil_lwb_add_block(lwb, &lwb->lwb_blk);
1373 	lwb->lwb_issued_timestamp = gethrtime();
1374 	lwb->lwb_state = LWB_STATE_ISSUED;
1375 
1376 	zio_nowait(lwb->lwb_root_zio);
1377 	zio_nowait(lwb->lwb_write_zio);
1378 
1379 	/*
1380 	 * If there was an allocation failure then nlwb will be null which
1381 	 * forces a txg_wait_synced().
1382 	 */
1383 	return (nlwb);
1384 }
1385 
1386 static lwb_t *
1387 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1388 {
1389 	lr_t *lrcb, *lrc;
1390 	lr_write_t *lrwb, *lrw;
1391 	char *lr_buf;
1392 	uint64_t dlen, dnow, lwb_sp, reclen, txg;
1393 
1394 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1395 	ASSERT3P(lwb, !=, NULL);
1396 	ASSERT3P(lwb->lwb_buf, !=, NULL);
1397 
1398 	zil_lwb_write_open(zilog, lwb);
1399 
1400 	lrc = &itx->itx_lr;
1401 	lrw = (lr_write_t *)lrc;
1402 
1403 	/*
1404 	 * A commit itx doesn't represent any on-disk state; instead
1405 	 * it's simply used as a place holder on the commit list, and
1406 	 * provides a mechanism for attaching a "commit waiter" onto the
1407 	 * correct lwb (such that the waiter can be signalled upon
1408 	 * completion of that lwb). Thus, we don't process this itx's
1409 	 * log record if it's a commit itx (these itx's don't have log
1410 	 * records), and instead link the itx's waiter onto the lwb's
1411 	 * list of waiters.
1412 	 *
1413 	 * For more details, see the comment above zil_commit().
1414 	 */
1415 	if (lrc->lrc_txtype == TX_COMMIT) {
1416 		mutex_enter(&zilog->zl_lock);
1417 		zil_commit_waiter_link_lwb(itx->itx_private, lwb);
1418 		itx->itx_private = NULL;
1419 		mutex_exit(&zilog->zl_lock);
1420 		return (lwb);
1421 	}
1422 
1423 	if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
1424 		dlen = P2ROUNDUP_TYPED(
1425 		    lrw->lr_length, sizeof (uint64_t), uint64_t);
1426 	} else {
1427 		dlen = 0;
1428 	}
1429 	reclen = lrc->lrc_reclen;
1430 	zilog->zl_cur_used += (reclen + dlen);
1431 	txg = lrc->lrc_txg;
1432 
1433 	ASSERT3U(zilog->zl_cur_used, <, UINT64_MAX - (reclen + dlen));
1434 
1435 cont:
1436 	/*
1437 	 * If this record won't fit in the current log block, start a new one.
1438 	 * For WR_NEED_COPY optimize layout for minimal number of chunks.
1439 	 */
1440 	lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1441 	if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
1442 	    lwb_sp < ZIL_MAX_WASTE_SPACE && (dlen % ZIL_MAX_LOG_DATA == 0 ||
1443 	    lwb_sp < reclen + dlen % ZIL_MAX_LOG_DATA))) {
1444 		lwb = zil_lwb_write_issue(zilog, lwb);
1445 		if (lwb == NULL)
1446 			return (NULL);
1447 		zil_lwb_write_open(zilog, lwb);
1448 		ASSERT(LWB_EMPTY(lwb));
1449 		lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1450 		ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
1451 	}
1452 
1453 	dnow = MIN(dlen, lwb_sp - reclen);
1454 	lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1455 	bcopy(lrc, lr_buf, reclen);
1456 	lrcb = (lr_t *)lr_buf;		/* Like lrc, but inside lwb. */
1457 	lrwb = (lr_write_t *)lrcb;	/* Like lrw, but inside lwb. */
1458 
1459 	/*
1460 	 * If it's a write, fetch the data or get its blkptr as appropriate.
1461 	 */
1462 	if (lrc->lrc_txtype == TX_WRITE) {
1463 		if (txg > spa_freeze_txg(zilog->zl_spa))
1464 			txg_wait_synced(zilog->zl_dmu_pool, txg);
1465 		if (itx->itx_wr_state != WR_COPIED) {
1466 			char *dbuf;
1467 			int error;
1468 
1469 			if (itx->itx_wr_state == WR_NEED_COPY) {
1470 				dbuf = lr_buf + reclen;
1471 				lrcb->lrc_reclen += dnow;
1472 				if (lrwb->lr_length > dnow)
1473 					lrwb->lr_length = dnow;
1474 				lrw->lr_offset += dnow;
1475 				lrw->lr_length -= dnow;
1476 			} else {
1477 				ASSERT(itx->itx_wr_state == WR_INDIRECT);
1478 				dbuf = NULL;
1479 			}
1480 
1481 			/*
1482 			 * We pass in the "lwb_write_zio" rather than
1483 			 * "lwb_root_zio" so that the "lwb_write_zio"
1484 			 * becomes the parent of any zio's created by
1485 			 * the "zl_get_data" callback. The vdevs are
1486 			 * flushed after the "lwb_write_zio" completes,
1487 			 * so we want to make sure that completion
1488 			 * callback waits for these additional zio's,
1489 			 * such that the vdevs used by those zio's will
1490 			 * be included in the lwb's vdev tree, and those
1491 			 * vdevs will be properly flushed. If we passed
1492 			 * in "lwb_root_zio" here, then these additional
1493 			 * vdevs may not be flushed; e.g. if these zio's
1494 			 * completed after "lwb_write_zio" completed.
1495 			 */
1496 			error = zilog->zl_get_data(itx->itx_private,
1497 			    lrwb, dbuf, lwb, lwb->lwb_write_zio);
1498 
1499 			if (error == EIO) {
1500 				txg_wait_synced(zilog->zl_dmu_pool, txg);
1501 				return (lwb);
1502 			}
1503 			if (error != 0) {
1504 				ASSERT(error == ENOENT || error == EEXIST ||
1505 				    error == EALREADY);
1506 				return (lwb);
1507 			}
1508 		}
1509 	}
1510 
1511 	/*
1512 	 * We're actually making an entry, so update lrc_seq to be the
1513 	 * log record sequence number.  Note that this is generally not
1514 	 * equal to the itx sequence number because not all transactions
1515 	 * are synchronous, and sometimes spa_sync() gets there first.
1516 	 */
1517 	lrcb->lrc_seq = ++zilog->zl_lr_seq;
1518 	lwb->lwb_nused += reclen + dnow;
1519 
1520 	zil_lwb_add_txg(lwb, txg);
1521 
1522 	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1523 	ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1524 
1525 	dlen -= dnow;
1526 	if (dlen > 0) {
1527 		zilog->zl_cur_used += reclen;
1528 		goto cont;
1529 	}
1530 
1531 	return (lwb);
1532 }
1533 
1534 itx_t *
1535 zil_itx_create(uint64_t txtype, size_t lrsize)
1536 {
1537 	itx_t *itx;
1538 
1539 	lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
1540 
1541 	itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP);
1542 	itx->itx_lr.lrc_txtype = txtype;
1543 	itx->itx_lr.lrc_reclen = lrsize;
1544 	itx->itx_lr.lrc_seq = 0;	/* defensive */
1545 	itx->itx_sync = B_TRUE;		/* default is synchronous */
1546 
1547 	return (itx);
1548 }
1549 
1550 void
1551 zil_itx_destroy(itx_t *itx)
1552 {
1553 	kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen);
1554 }
1555 
1556 /*
1557  * Free up the sync and async itxs. The itxs_t has already been detached
1558  * so no locks are needed.
1559  */
1560 static void
1561 zil_itxg_clean(itxs_t *itxs)
1562 {
1563 	itx_t *itx;
1564 	list_t *list;
1565 	avl_tree_t *t;
1566 	void *cookie;
1567 	itx_async_node_t *ian;
1568 
1569 	list = &itxs->i_sync_list;
1570 	while ((itx = list_head(list)) != NULL) {
1571 		/*
1572 		 * In the general case, commit itxs will not be found
1573 		 * here, as they'll be committed to an lwb via
1574 		 * zil_lwb_commit(), and free'd in that function. Having
1575 		 * said that, it is still possible for commit itxs to be
1576 		 * found here, due to the following race:
1577 		 *
1578 		 *	- a thread calls zil_commit() which assigns the
1579 		 *	  commit itx to a per-txg i_sync_list
1580 		 *	- zil_itxg_clean() is called (e.g. via spa_sync())
1581 		 *	  while the waiter is still on the i_sync_list
1582 		 *
1583 		 * There's nothing to prevent syncing the txg while the
1584 		 * waiter is on the i_sync_list. This normally doesn't
1585 		 * happen because spa_sync() is slower than zil_commit(),
1586 		 * but if zil_commit() calls txg_wait_synced() (e.g.
1587 		 * because zil_create() or zil_commit_writer_stall() is
1588 		 * called) we will hit this case.
1589 		 */
1590 		if (itx->itx_lr.lrc_txtype == TX_COMMIT)
1591 			zil_commit_waiter_skip(itx->itx_private);
1592 
1593 		list_remove(list, itx);
1594 		zil_itx_destroy(itx);
1595 	}
1596 
1597 	cookie = NULL;
1598 	t = &itxs->i_async_tree;
1599 	while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1600 		list = &ian->ia_list;
1601 		while ((itx = list_head(list)) != NULL) {
1602 			list_remove(list, itx);
1603 			/* commit itxs should never be on the async lists. */
1604 			ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
1605 			zil_itx_destroy(itx);
1606 		}
1607 		list_destroy(list);
1608 		kmem_free(ian, sizeof (itx_async_node_t));
1609 	}
1610 	avl_destroy(t);
1611 
1612 	kmem_free(itxs, sizeof (itxs_t));
1613 }
1614 
1615 static int
1616 zil_aitx_compare(const void *x1, const void *x2)
1617 {
1618 	const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1619 	const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1620 
1621 	if (o1 < o2)
1622 		return (-1);
1623 	if (o1 > o2)
1624 		return (1);
1625 
1626 	return (0);
1627 }
1628 
1629 /*
1630  * Remove all async itx with the given oid.
1631  */
1632 static void
1633 zil_remove_async(zilog_t *zilog, uint64_t oid)
1634 {
1635 	uint64_t otxg, txg;
1636 	itx_async_node_t *ian;
1637 	avl_tree_t *t;
1638 	avl_index_t where;
1639 	list_t clean_list;
1640 	itx_t *itx;
1641 
1642 	ASSERT(oid != 0);
1643 	list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1644 
1645 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1646 		otxg = ZILTEST_TXG;
1647 	else
1648 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1649 
1650 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1651 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1652 
1653 		mutex_enter(&itxg->itxg_lock);
1654 		if (itxg->itxg_txg != txg) {
1655 			mutex_exit(&itxg->itxg_lock);
1656 			continue;
1657 		}
1658 
1659 		/*
1660 		 * Locate the object node and append its list.
1661 		 */
1662 		t = &itxg->itxg_itxs->i_async_tree;
1663 		ian = avl_find(t, &oid, &where);
1664 		if (ian != NULL)
1665 			list_move_tail(&clean_list, &ian->ia_list);
1666 		mutex_exit(&itxg->itxg_lock);
1667 	}
1668 	while ((itx = list_head(&clean_list)) != NULL) {
1669 		list_remove(&clean_list, itx);
1670 		/* commit itxs should never be on the async lists. */
1671 		ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
1672 		zil_itx_destroy(itx);
1673 	}
1674 	list_destroy(&clean_list);
1675 }
1676 
1677 void
1678 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1679 {
1680 	uint64_t txg;
1681 	itxg_t *itxg;
1682 	itxs_t *itxs, *clean = NULL;
1683 
1684 	/*
1685 	 * Object ids can be re-instantiated in the next txg so
1686 	 * remove any async transactions to avoid future leaks.
1687 	 * This can happen if a fsync occurs on the re-instantiated
1688 	 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets
1689 	 * the new file data and flushes a write record for the old object.
1690 	 */
1691 	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE)
1692 		zil_remove_async(zilog, itx->itx_oid);
1693 
1694 	/*
1695 	 * Ensure the data of a renamed file is committed before the rename.
1696 	 */
1697 	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1698 		zil_async_to_sync(zilog, itx->itx_oid);
1699 
1700 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1701 		txg = ZILTEST_TXG;
1702 	else
1703 		txg = dmu_tx_get_txg(tx);
1704 
1705 	itxg = &zilog->zl_itxg[txg & TXG_MASK];
1706 	mutex_enter(&itxg->itxg_lock);
1707 	itxs = itxg->itxg_itxs;
1708 	if (itxg->itxg_txg != txg) {
1709 		if (itxs != NULL) {
1710 			/*
1711 			 * The zil_clean callback hasn't got around to cleaning
1712 			 * this itxg. Save the itxs for release below.
1713 			 * This should be rare.
1714 			 */
1715 			zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
1716 			    "txg %llu", itxg->itxg_txg);
1717 			clean = itxg->itxg_itxs;
1718 		}
1719 		itxg->itxg_txg = txg;
1720 		itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP);
1721 
1722 		list_create(&itxs->i_sync_list, sizeof (itx_t),
1723 		    offsetof(itx_t, itx_node));
1724 		avl_create(&itxs->i_async_tree, zil_aitx_compare,
1725 		    sizeof (itx_async_node_t),
1726 		    offsetof(itx_async_node_t, ia_node));
1727 	}
1728 	if (itx->itx_sync) {
1729 		list_insert_tail(&itxs->i_sync_list, itx);
1730 	} else {
1731 		avl_tree_t *t = &itxs->i_async_tree;
1732 		uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid;
1733 		itx_async_node_t *ian;
1734 		avl_index_t where;
1735 
1736 		ian = avl_find(t, &foid, &where);
1737 		if (ian == NULL) {
1738 			ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP);
1739 			list_create(&ian->ia_list, sizeof (itx_t),
1740 			    offsetof(itx_t, itx_node));
1741 			ian->ia_foid = foid;
1742 			avl_insert(t, ian, where);
1743 		}
1744 		list_insert_tail(&ian->ia_list, itx);
1745 	}
1746 
1747 	itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1748 
1749 	/*
1750 	 * We don't want to dirty the ZIL using ZILTEST_TXG, because
1751 	 * zil_clean() will never be called using ZILTEST_TXG. Thus, we
1752 	 * need to be careful to always dirty the ZIL using the "real"
1753 	 * TXG (not itxg_txg) even when the SPA is frozen.
1754 	 */
1755 	zilog_dirty(zilog, dmu_tx_get_txg(tx));
1756 	mutex_exit(&itxg->itxg_lock);
1757 
1758 	/* Release the old itxs now we've dropped the lock */
1759 	if (clean != NULL)
1760 		zil_itxg_clean(clean);
1761 }
1762 
1763 /*
1764  * If there are any in-memory intent log transactions which have now been
1765  * synced then start up a taskq to free them. We should only do this after we
1766  * have written out the uberblocks (i.e. txg has been comitted) so that
1767  * don't inadvertently clean out in-memory log records that would be required
1768  * by zil_commit().
1769  */
1770 void
1771 zil_clean(zilog_t *zilog, uint64_t synced_txg)
1772 {
1773 	itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
1774 	itxs_t *clean_me;
1775 
1776 	ASSERT3U(synced_txg, <, ZILTEST_TXG);
1777 
1778 	mutex_enter(&itxg->itxg_lock);
1779 	if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
1780 		mutex_exit(&itxg->itxg_lock);
1781 		return;
1782 	}
1783 	ASSERT3U(itxg->itxg_txg, <=, synced_txg);
1784 	ASSERT3U(itxg->itxg_txg, !=, 0);
1785 	clean_me = itxg->itxg_itxs;
1786 	itxg->itxg_itxs = NULL;
1787 	itxg->itxg_txg = 0;
1788 	mutex_exit(&itxg->itxg_lock);
1789 	/*
1790 	 * Preferably start a task queue to free up the old itxs but
1791 	 * if taskq_dispatch can't allocate resources to do that then
1792 	 * free it in-line. This should be rare. Note, using TQ_SLEEP
1793 	 * created a bad performance problem.
1794 	 */
1795 	ASSERT3P(zilog->zl_dmu_pool, !=, NULL);
1796 	ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL);
1797 	if (taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq,
1798 	    (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == NULL)
1799 		zil_itxg_clean(clean_me);
1800 }
1801 
1802 /*
1803  * This function will traverse the queue of itxs that need to be
1804  * committed, and move them onto the ZIL's zl_itx_commit_list.
1805  */
1806 static void
1807 zil_get_commit_list(zilog_t *zilog)
1808 {
1809 	uint64_t otxg, txg;
1810 	list_t *commit_list = &zilog->zl_itx_commit_list;
1811 
1812 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1813 
1814 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1815 		otxg = ZILTEST_TXG;
1816 	else
1817 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1818 
1819 	/*
1820 	 * This is inherently racy, since there is nothing to prevent
1821 	 * the last synced txg from changing. That's okay since we'll
1822 	 * only commit things in the future.
1823 	 */
1824 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1825 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1826 
1827 		mutex_enter(&itxg->itxg_lock);
1828 		if (itxg->itxg_txg != txg) {
1829 			mutex_exit(&itxg->itxg_lock);
1830 			continue;
1831 		}
1832 
1833 		/*
1834 		 * If we're adding itx records to the zl_itx_commit_list,
1835 		 * then the zil better be dirty in this "txg". We can assert
1836 		 * that here since we're holding the itxg_lock which will
1837 		 * prevent spa_sync from cleaning it. Once we add the itxs
1838 		 * to the zl_itx_commit_list we must commit it to disk even
1839 		 * if it's unnecessary (i.e. the txg was synced).
1840 		 */
1841 		ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
1842 		    spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
1843 		list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
1844 
1845 		mutex_exit(&itxg->itxg_lock);
1846 	}
1847 }
1848 
1849 /*
1850  * Move the async itxs for a specified object to commit into sync lists.
1851  */
1852 static void
1853 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
1854 {
1855 	uint64_t otxg, txg;
1856 	itx_async_node_t *ian;
1857 	avl_tree_t *t;
1858 	avl_index_t where;
1859 
1860 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1861 		otxg = ZILTEST_TXG;
1862 	else
1863 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1864 
1865 	/*
1866 	 * This is inherently racy, since there is nothing to prevent
1867 	 * the last synced txg from changing.
1868 	 */
1869 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1870 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1871 
1872 		mutex_enter(&itxg->itxg_lock);
1873 		if (itxg->itxg_txg != txg) {
1874 			mutex_exit(&itxg->itxg_lock);
1875 			continue;
1876 		}
1877 
1878 		/*
1879 		 * If a foid is specified then find that node and append its
1880 		 * list. Otherwise walk the tree appending all the lists
1881 		 * to the sync list. We add to the end rather than the
1882 		 * beginning to ensure the create has happened.
1883 		 */
1884 		t = &itxg->itxg_itxs->i_async_tree;
1885 		if (foid != 0) {
1886 			ian = avl_find(t, &foid, &where);
1887 			if (ian != NULL) {
1888 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1889 				    &ian->ia_list);
1890 			}
1891 		} else {
1892 			void *cookie = NULL;
1893 
1894 			while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1895 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1896 				    &ian->ia_list);
1897 				list_destroy(&ian->ia_list);
1898 				kmem_free(ian, sizeof (itx_async_node_t));
1899 			}
1900 		}
1901 		mutex_exit(&itxg->itxg_lock);
1902 	}
1903 }
1904 
1905 /*
1906  * This function will prune commit itxs that are at the head of the
1907  * commit list (it won't prune past the first non-commit itx), and
1908  * either: a) attach them to the last lwb that's still pending
1909  * completion, or b) skip them altogether.
1910  *
1911  * This is used as a performance optimization to prevent commit itxs
1912  * from generating new lwbs when it's unnecessary to do so.
1913  */
1914 static void
1915 zil_prune_commit_list(zilog_t *zilog)
1916 {
1917 	itx_t *itx;
1918 
1919 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1920 
1921 	while (itx = list_head(&zilog->zl_itx_commit_list)) {
1922 		lr_t *lrc = &itx->itx_lr;
1923 		if (lrc->lrc_txtype != TX_COMMIT)
1924 			break;
1925 
1926 		mutex_enter(&zilog->zl_lock);
1927 
1928 		lwb_t *last_lwb = zilog->zl_last_lwb_opened;
1929 		if (last_lwb == NULL || last_lwb->lwb_state == LWB_STATE_DONE) {
1930 			/*
1931 			 * All of the itxs this waiter was waiting on
1932 			 * must have already completed (or there were
1933 			 * never any itx's for it to wait on), so it's
1934 			 * safe to skip this waiter and mark it done.
1935 			 */
1936 			zil_commit_waiter_skip(itx->itx_private);
1937 		} else {
1938 			zil_commit_waiter_link_lwb(itx->itx_private, last_lwb);
1939 			itx->itx_private = NULL;
1940 		}
1941 
1942 		mutex_exit(&zilog->zl_lock);
1943 
1944 		list_remove(&zilog->zl_itx_commit_list, itx);
1945 		zil_itx_destroy(itx);
1946 	}
1947 
1948 	IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
1949 }
1950 
1951 static void
1952 zil_commit_writer_stall(zilog_t *zilog)
1953 {
1954 	/*
1955 	 * When zio_alloc_zil() fails to allocate the next lwb block on
1956 	 * disk, we must call txg_wait_synced() to ensure all of the
1957 	 * lwbs in the zilog's zl_lwb_list are synced and then freed (in
1958 	 * zil_sync()), such that any subsequent ZIL writer (i.e. a call
1959 	 * to zil_process_commit_list()) will have to call zil_create(),
1960 	 * and start a new ZIL chain.
1961 	 *
1962 	 * Since zil_alloc_zil() failed, the lwb that was previously
1963 	 * issued does not have a pointer to the "next" lwb on disk.
1964 	 * Thus, if another ZIL writer thread was to allocate the "next"
1965 	 * on-disk lwb, that block could be leaked in the event of a
1966 	 * crash (because the previous lwb on-disk would not point to
1967 	 * it).
1968 	 *
1969 	 * We must hold the zilog's zl_issuer_lock while we do this, to
1970 	 * ensure no new threads enter zil_process_commit_list() until
1971 	 * all lwb's in the zl_lwb_list have been synced and freed
1972 	 * (which is achieved via the txg_wait_synced() call).
1973 	 */
1974 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1975 	txg_wait_synced(zilog->zl_dmu_pool, 0);
1976 	ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
1977 }
1978 
1979 /*
1980  * This function will traverse the commit list, creating new lwbs as
1981  * needed, and committing the itxs from the commit list to these newly
1982  * created lwbs. Additionally, as a new lwb is created, the previous
1983  * lwb will be issued to the zio layer to be written to disk.
1984  */
1985 static void
1986 zil_process_commit_list(zilog_t *zilog)
1987 {
1988 	spa_t *spa = zilog->zl_spa;
1989 	list_t nolwb_waiters;
1990 	lwb_t *lwb;
1991 	itx_t *itx;
1992 
1993 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1994 
1995 	/*
1996 	 * Return if there's nothing to commit before we dirty the fs by
1997 	 * calling zil_create().
1998 	 */
1999 	if (list_head(&zilog->zl_itx_commit_list) == NULL)
2000 		return;
2001 
2002 	list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t),
2003 	    offsetof(zil_commit_waiter_t, zcw_node));
2004 
2005 	lwb = list_tail(&zilog->zl_lwb_list);
2006 	if (lwb == NULL) {
2007 		lwb = zil_create(zilog);
2008 	} else {
2009 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2010 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_DONE);
2011 	}
2012 
2013 	while (itx = list_head(&zilog->zl_itx_commit_list)) {
2014 		lr_t *lrc = &itx->itx_lr;
2015 		uint64_t txg = lrc->lrc_txg;
2016 
2017 		ASSERT3U(txg, !=, 0);
2018 
2019 		if (lrc->lrc_txtype == TX_COMMIT) {
2020 			DTRACE_PROBE2(zil__process__commit__itx,
2021 			    zilog_t *, zilog, itx_t *, itx);
2022 		} else {
2023 			DTRACE_PROBE2(zil__process__normal__itx,
2024 			    zilog_t *, zilog, itx_t *, itx);
2025 		}
2026 
2027 		boolean_t synced = txg <= spa_last_synced_txg(spa);
2028 		boolean_t frozen = txg > spa_freeze_txg(spa);
2029 
2030 		/*
2031 		 * If the txg of this itx has already been synced out, then
2032 		 * we don't need to commit this itx to an lwb. This is
2033 		 * because the data of this itx will have already been
2034 		 * written to the main pool. This is inherently racy, and
2035 		 * it's still ok to commit an itx whose txg has already
2036 		 * been synced; this will result in a write that's
2037 		 * unnecessary, but will do no harm.
2038 		 *
2039 		 * With that said, we always want to commit TX_COMMIT itxs
2040 		 * to an lwb, regardless of whether or not that itx's txg
2041 		 * has been synced out. We do this to ensure any OPENED lwb
2042 		 * will always have at least one zil_commit_waiter_t linked
2043 		 * to the lwb.
2044 		 *
2045 		 * As a counter-example, if we skipped TX_COMMIT itx's
2046 		 * whose txg had already been synced, the following
2047 		 * situation could occur if we happened to be racing with
2048 		 * spa_sync:
2049 		 *
2050 		 * 1. we commit a non-TX_COMMIT itx to an lwb, where the
2051 		 *    itx's txg is 10 and the last synced txg is 9.
2052 		 * 2. spa_sync finishes syncing out txg 10.
2053 		 * 3. we move to the next itx in the list, it's a TX_COMMIT
2054 		 *    whose txg is 10, so we skip it rather than committing
2055 		 *    it to the lwb used in (1).
2056 		 *
2057 		 * If the itx that is skipped in (3) is the last TX_COMMIT
2058 		 * itx in the commit list, than it's possible for the lwb
2059 		 * used in (1) to remain in the OPENED state indefinitely.
2060 		 *
2061 		 * To prevent the above scenario from occuring, ensuring
2062 		 * that once an lwb is OPENED it will transition to ISSUED
2063 		 * and eventually DONE, we always commit TX_COMMIT itx's to
2064 		 * an lwb here, even if that itx's txg has already been
2065 		 * synced.
2066 		 *
2067 		 * Finally, if the pool is frozen, we _always_ commit the
2068 		 * itx.  The point of freezing the pool is to prevent data
2069 		 * from being written to the main pool via spa_sync, and
2070 		 * instead rely solely on the ZIL to persistently store the
2071 		 * data; i.e.  when the pool is frozen, the last synced txg
2072 		 * value can't be trusted.
2073 		 */
2074 		if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) {
2075 			if (lwb != NULL) {
2076 				lwb = zil_lwb_commit(zilog, itx, lwb);
2077 			} else if (lrc->lrc_txtype == TX_COMMIT) {
2078 				ASSERT3P(lwb, ==, NULL);
2079 				zil_commit_waiter_link_nolwb(
2080 				    itx->itx_private, &nolwb_waiters);
2081 			}
2082 		}
2083 
2084 		list_remove(&zilog->zl_itx_commit_list, itx);
2085 		zil_itx_destroy(itx);
2086 	}
2087 
2088 	if (lwb == NULL) {
2089 		/*
2090 		 * This indicates zio_alloc_zil() failed to allocate the
2091 		 * "next" lwb on-disk. When this happens, we must stall
2092 		 * the ZIL write pipeline; see the comment within
2093 		 * zil_commit_writer_stall() for more details.
2094 		 */
2095 		zil_commit_writer_stall(zilog);
2096 
2097 		/*
2098 		 * Additionally, we have to signal and mark the "nolwb"
2099 		 * waiters as "done" here, since without an lwb, we
2100 		 * can't do this via zil_lwb_flush_vdevs_done() like
2101 		 * normal.
2102 		 */
2103 		zil_commit_waiter_t *zcw;
2104 		while (zcw = list_head(&nolwb_waiters)) {
2105 			zil_commit_waiter_skip(zcw);
2106 			list_remove(&nolwb_waiters, zcw);
2107 		}
2108 	} else {
2109 		ASSERT(list_is_empty(&nolwb_waiters));
2110 		ASSERT3P(lwb, !=, NULL);
2111 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2112 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_DONE);
2113 
2114 		/*
2115 		 * At this point, the ZIL block pointed at by the "lwb"
2116 		 * variable is in one of the following states: "closed"
2117 		 * or "open".
2118 		 *
2119 		 * If its "closed", then no itxs have been committed to
2120 		 * it, so there's no point in issuing its zio (i.e.
2121 		 * it's "empty").
2122 		 *
2123 		 * If its "open" state, then it contains one or more
2124 		 * itxs that eventually need to be committed to stable
2125 		 * storage. In this case we intentionally do not issue
2126 		 * the lwb's zio to disk yet, and instead rely on one of
2127 		 * the following two mechanisms for issuing the zio:
2128 		 *
2129 		 * 1. Ideally, there will be more ZIL activity occuring
2130 		 * on the system, such that this function will be
2131 		 * immediately called again (not necessarily by the same
2132 		 * thread) and this lwb's zio will be issued via
2133 		 * zil_lwb_commit(). This way, the lwb is guaranteed to
2134 		 * be "full" when it is issued to disk, and we'll make
2135 		 * use of the lwb's size the best we can.
2136 		 *
2137 		 * 2. If there isn't sufficient ZIL activity occuring on
2138 		 * the system, such that this lwb's zio isn't issued via
2139 		 * zil_lwb_commit(), zil_commit_waiter() will issue the
2140 		 * lwb's zio. If this occurs, the lwb is not guaranteed
2141 		 * to be "full" by the time its zio is issued, and means
2142 		 * the size of the lwb was "too large" given the amount
2143 		 * of ZIL activity occuring on the system at that time.
2144 		 *
2145 		 * We do this for a couple of reasons:
2146 		 *
2147 		 * 1. To try and reduce the number of IOPs needed to
2148 		 * write the same number of itxs. If an lwb has space
2149 		 * available in it's buffer for more itxs, and more itxs
2150 		 * will be committed relatively soon (relative to the
2151 		 * latency of performing a write), then it's beneficial
2152 		 * to wait for these "next" itxs. This way, more itxs
2153 		 * can be committed to stable storage with fewer writes.
2154 		 *
2155 		 * 2. To try and use the largest lwb block size that the
2156 		 * incoming rate of itxs can support. Again, this is to
2157 		 * try and pack as many itxs into as few lwbs as
2158 		 * possible, without significantly impacting the latency
2159 		 * of each individual itx.
2160 		 */
2161 	}
2162 }
2163 
2164 /*
2165  * This function is responsible for ensuring the passed in commit waiter
2166  * (and associated commit itx) is committed to an lwb. If the waiter is
2167  * not already committed to an lwb, all itxs in the zilog's queue of
2168  * itxs will be processed. The assumption is the passed in waiter's
2169  * commit itx will found in the queue just like the other non-commit
2170  * itxs, such that when the entire queue is processed, the waiter will
2171  * have been commited to an lwb.
2172  *
2173  * The lwb associated with the passed in waiter is not guaranteed to
2174  * have been issued by the time this function completes. If the lwb is
2175  * not issued, we rely on future calls to zil_commit_writer() to issue
2176  * the lwb, or the timeout mechanism found in zil_commit_waiter().
2177  */
2178 static void
2179 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw)
2180 {
2181 	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2182 	ASSERT(spa_writeable(zilog->zl_spa));
2183 
2184 	mutex_enter(&zilog->zl_issuer_lock);
2185 
2186 	if (zcw->zcw_lwb != NULL || zcw->zcw_done) {
2187 		/*
2188 		 * It's possible that, while we were waiting to acquire
2189 		 * the "zl_issuer_lock", another thread committed this
2190 		 * waiter to an lwb. If that occurs, we bail out early,
2191 		 * without processing any of the zilog's queue of itxs.
2192 		 *
2193 		 * On certain workloads and system configurations, the
2194 		 * "zl_issuer_lock" can become highly contended. In an
2195 		 * attempt to reduce this contention, we immediately drop
2196 		 * the lock if the waiter has already been processed.
2197 		 *
2198 		 * We've measured this optimization to reduce CPU spent
2199 		 * contending on this lock by up to 5%, using a system
2200 		 * with 32 CPUs, low latency storage (~50 usec writes),
2201 		 * and 1024 threads performing sync writes.
2202 		 */
2203 		goto out;
2204 	}
2205 
2206 	zil_get_commit_list(zilog);
2207 	zil_prune_commit_list(zilog);
2208 	zil_process_commit_list(zilog);
2209 
2210 out:
2211 	mutex_exit(&zilog->zl_issuer_lock);
2212 }
2213 
2214 static void
2215 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw)
2216 {
2217 	ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2218 	ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2219 	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
2220 
2221 	lwb_t *lwb = zcw->zcw_lwb;
2222 	ASSERT3P(lwb, !=, NULL);
2223 	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_CLOSED);
2224 
2225 	/*
2226 	 * If the lwb has already been issued by another thread, we can
2227 	 * immediately return since there's no work to be done (the
2228 	 * point of this function is to issue the lwb). Additionally, we
2229 	 * do this prior to acquiring the zl_issuer_lock, to avoid
2230 	 * acquiring it when it's not necessary to do so.
2231 	 */
2232 	if (lwb->lwb_state == LWB_STATE_ISSUED ||
2233 	    lwb->lwb_state == LWB_STATE_DONE)
2234 		return;
2235 
2236 	/*
2237 	 * In order to call zil_lwb_write_issue() we must hold the
2238 	 * zilog's "zl_issuer_lock". We can't simply acquire that lock,
2239 	 * since we're already holding the commit waiter's "zcw_lock",
2240 	 * and those two locks are aquired in the opposite order
2241 	 * elsewhere.
2242 	 */
2243 	mutex_exit(&zcw->zcw_lock);
2244 	mutex_enter(&zilog->zl_issuer_lock);
2245 	mutex_enter(&zcw->zcw_lock);
2246 
2247 	/*
2248 	 * Since we just dropped and re-acquired the commit waiter's
2249 	 * lock, we have to re-check to see if the waiter was marked
2250 	 * "done" during that process. If the waiter was marked "done",
2251 	 * the "lwb" pointer is no longer valid (it can be free'd after
2252 	 * the waiter is marked "done"), so without this check we could
2253 	 * wind up with a use-after-free error below.
2254 	 */
2255 	if (zcw->zcw_done)
2256 		goto out;
2257 
2258 	ASSERT3P(lwb, ==, zcw->zcw_lwb);
2259 
2260 	/*
2261 	 * We've already checked this above, but since we hadn't acquired
2262 	 * the zilog's zl_issuer_lock, we have to perform this check a
2263 	 * second time while holding the lock.
2264 	 *
2265 	 * We don't need to hold the zl_lock since the lwb cannot transition
2266 	 * from OPENED to ISSUED while we hold the zl_issuer_lock. The lwb
2267 	 * _can_ transition from ISSUED to DONE, but it's OK to race with
2268 	 * that transition since we treat the lwb the same, whether it's in
2269 	 * the ISSUED or DONE states.
2270 	 *
2271 	 * The important thing, is we treat the lwb differently depending on
2272 	 * if it's ISSUED or OPENED, and block any other threads that might
2273 	 * attempt to issue this lwb. For that reason we hold the
2274 	 * zl_issuer_lock when checking the lwb_state; we must not call
2275 	 * zil_lwb_write_issue() if the lwb had already been issued.
2276 	 *
2277 	 * See the comment above the lwb_state_t structure definition for
2278 	 * more details on the lwb states, and locking requirements.
2279 	 */
2280 	if (lwb->lwb_state == LWB_STATE_ISSUED ||
2281 	    lwb->lwb_state == LWB_STATE_DONE)
2282 		goto out;
2283 
2284 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
2285 
2286 	/*
2287 	 * As described in the comments above zil_commit_waiter() and
2288 	 * zil_process_commit_list(), we need to issue this lwb's zio
2289 	 * since we've reached the commit waiter's timeout and it still
2290 	 * hasn't been issued.
2291 	 */
2292 	lwb_t *nlwb = zil_lwb_write_issue(zilog, lwb);
2293 
2294 	IMPLY(nlwb != NULL, lwb->lwb_state != LWB_STATE_OPENED);
2295 
2296 	/*
2297 	 * Since the lwb's zio hadn't been issued by the time this thread
2298 	 * reached its timeout, we reset the zilog's "zl_cur_used" field
2299 	 * to influence the zil block size selection algorithm.
2300 	 *
2301 	 * By having to issue the lwb's zio here, it means the size of the
2302 	 * lwb was too large, given the incoming throughput of itxs.  By
2303 	 * setting "zl_cur_used" to zero, we communicate this fact to the
2304 	 * block size selection algorithm, so it can take this informaiton
2305 	 * into account, and potentially select a smaller size for the
2306 	 * next lwb block that is allocated.
2307 	 */
2308 	zilog->zl_cur_used = 0;
2309 
2310 	if (nlwb == NULL) {
2311 		/*
2312 		 * When zil_lwb_write_issue() returns NULL, this
2313 		 * indicates zio_alloc_zil() failed to allocate the
2314 		 * "next" lwb on-disk. When this occurs, the ZIL write
2315 		 * pipeline must be stalled; see the comment within the
2316 		 * zil_commit_writer_stall() function for more details.
2317 		 *
2318 		 * We must drop the commit waiter's lock prior to
2319 		 * calling zil_commit_writer_stall() or else we can wind
2320 		 * up with the following deadlock:
2321 		 *
2322 		 * - This thread is waiting for the txg to sync while
2323 		 *   holding the waiter's lock; txg_wait_synced() is
2324 		 *   used within txg_commit_writer_stall().
2325 		 *
2326 		 * - The txg can't sync because it is waiting for this
2327 		 *   lwb's zio callback to call dmu_tx_commit().
2328 		 *
2329 		 * - The lwb's zio callback can't call dmu_tx_commit()
2330 		 *   because it's blocked trying to acquire the waiter's
2331 		 *   lock, which occurs prior to calling dmu_tx_commit()
2332 		 */
2333 		mutex_exit(&zcw->zcw_lock);
2334 		zil_commit_writer_stall(zilog);
2335 		mutex_enter(&zcw->zcw_lock);
2336 	}
2337 
2338 out:
2339 	mutex_exit(&zilog->zl_issuer_lock);
2340 	ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2341 }
2342 
2343 /*
2344  * This function is responsible for performing the following two tasks:
2345  *
2346  * 1. its primary responsibility is to block until the given "commit
2347  *    waiter" is considered "done".
2348  *
2349  * 2. its secondary responsibility is to issue the zio for the lwb that
2350  *    the given "commit waiter" is waiting on, if this function has
2351  *    waited "long enough" and the lwb is still in the "open" state.
2352  *
2353  * Given a sufficient amount of itxs being generated and written using
2354  * the ZIL, the lwb's zio will be issued via the zil_lwb_commit()
2355  * function. If this does not occur, this secondary responsibility will
2356  * ensure the lwb is issued even if there is not other synchronous
2357  * activity on the system.
2358  *
2359  * For more details, see zil_process_commit_list(); more specifically,
2360  * the comment at the bottom of that function.
2361  */
2362 static void
2363 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw)
2364 {
2365 	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2366 	ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2367 	ASSERT(spa_writeable(zilog->zl_spa));
2368 
2369 	mutex_enter(&zcw->zcw_lock);
2370 
2371 	/*
2372 	 * The timeout is scaled based on the lwb latency to avoid
2373 	 * significantly impacting the latency of each individual itx.
2374 	 * For more details, see the comment at the bottom of the
2375 	 * zil_process_commit_list() function.
2376 	 */
2377 	int pct = MAX(zfs_commit_timeout_pct, 1);
2378 	hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100;
2379 	hrtime_t wakeup = gethrtime() + sleep;
2380 	boolean_t timedout = B_FALSE;
2381 
2382 	while (!zcw->zcw_done) {
2383 		ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2384 
2385 		lwb_t *lwb = zcw->zcw_lwb;
2386 
2387 		/*
2388 		 * Usually, the waiter will have a non-NULL lwb field here,
2389 		 * but it's possible for it to be NULL as a result of
2390 		 * zil_commit() racing with spa_sync().
2391 		 *
2392 		 * When zil_clean() is called, it's possible for the itxg
2393 		 * list (which may be cleaned via a taskq) to contain
2394 		 * commit itxs. When this occurs, the commit waiters linked
2395 		 * off of these commit itxs will not be committed to an
2396 		 * lwb.  Additionally, these commit waiters will not be
2397 		 * marked done until zil_commit_waiter_skip() is called via
2398 		 * zil_itxg_clean().
2399 		 *
2400 		 * Thus, it's possible for this commit waiter (i.e. the
2401 		 * "zcw" variable) to be found in this "in between" state;
2402 		 * where it's "zcw_lwb" field is NULL, and it hasn't yet
2403 		 * been skipped, so it's "zcw_done" field is still B_FALSE.
2404 		 */
2405 		IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_CLOSED);
2406 
2407 		if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) {
2408 			ASSERT3B(timedout, ==, B_FALSE);
2409 
2410 			/*
2411 			 * If the lwb hasn't been issued yet, then we
2412 			 * need to wait with a timeout, in case this
2413 			 * function needs to issue the lwb after the
2414 			 * timeout is reached; responsibility (2) from
2415 			 * the comment above this function.
2416 			 */
2417 			clock_t timeleft = cv_timedwait_hires(&zcw->zcw_cv,
2418 			    &zcw->zcw_lock, wakeup, USEC2NSEC(1),
2419 			    CALLOUT_FLAG_ABSOLUTE);
2420 
2421 			if (timeleft >= 0 || zcw->zcw_done)
2422 				continue;
2423 
2424 			timedout = B_TRUE;
2425 			zil_commit_waiter_timeout(zilog, zcw);
2426 
2427 			if (!zcw->zcw_done) {
2428 				/*
2429 				 * If the commit waiter has already been
2430 				 * marked "done", it's possible for the
2431 				 * waiter's lwb structure to have already
2432 				 * been freed.  Thus, we can only reliably
2433 				 * make these assertions if the waiter
2434 				 * isn't done.
2435 				 */
2436 				ASSERT3P(lwb, ==, zcw->zcw_lwb);
2437 				ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
2438 			}
2439 		} else {
2440 			/*
2441 			 * If the lwb isn't open, then it must have already
2442 			 * been issued. In that case, there's no need to
2443 			 * use a timeout when waiting for the lwb to
2444 			 * complete.
2445 			 *
2446 			 * Additionally, if the lwb is NULL, the waiter
2447 			 * will soon be signalled and marked done via
2448 			 * zil_clean() and zil_itxg_clean(), so no timeout
2449 			 * is required.
2450 			 */
2451 
2452 			IMPLY(lwb != NULL,
2453 			    lwb->lwb_state == LWB_STATE_ISSUED ||
2454 			    lwb->lwb_state == LWB_STATE_DONE);
2455 			cv_wait(&zcw->zcw_cv, &zcw->zcw_lock);
2456 		}
2457 	}
2458 
2459 	mutex_exit(&zcw->zcw_lock);
2460 }
2461 
2462 static zil_commit_waiter_t *
2463 zil_alloc_commit_waiter()
2464 {
2465 	zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP);
2466 
2467 	cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL);
2468 	mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL);
2469 	list_link_init(&zcw->zcw_node);
2470 	zcw->zcw_lwb = NULL;
2471 	zcw->zcw_done = B_FALSE;
2472 	zcw->zcw_zio_error = 0;
2473 
2474 	return (zcw);
2475 }
2476 
2477 static void
2478 zil_free_commit_waiter(zil_commit_waiter_t *zcw)
2479 {
2480 	ASSERT(!list_link_active(&zcw->zcw_node));
2481 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
2482 	ASSERT3B(zcw->zcw_done, ==, B_TRUE);
2483 	mutex_destroy(&zcw->zcw_lock);
2484 	cv_destroy(&zcw->zcw_cv);
2485 	kmem_cache_free(zil_zcw_cache, zcw);
2486 }
2487 
2488 /*
2489  * This function is used to create a TX_COMMIT itx and assign it. This
2490  * way, it will be linked into the ZIL's list of synchronous itxs, and
2491  * then later committed to an lwb (or skipped) when
2492  * zil_process_commit_list() is called.
2493  */
2494 static void
2495 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw)
2496 {
2497 	dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
2498 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
2499 
2500 	itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t));
2501 	itx->itx_sync = B_TRUE;
2502 	itx->itx_private = zcw;
2503 
2504 	zil_itx_assign(zilog, itx, tx);
2505 
2506 	dmu_tx_commit(tx);
2507 }
2508 
2509 /*
2510  * Commit ZFS Intent Log transactions (itxs) to stable storage.
2511  *
2512  * When writing ZIL transactions to the on-disk representation of the
2513  * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple
2514  * itxs can be committed to a single lwb. Once a lwb is written and
2515  * committed to stable storage (i.e. the lwb is written, and vdevs have
2516  * been flushed), each itx that was committed to that lwb is also
2517  * considered to be committed to stable storage.
2518  *
2519  * When an itx is committed to an lwb, the log record (lr_t) contained
2520  * by the itx is copied into the lwb's zio buffer, and once this buffer
2521  * is written to disk, it becomes an on-disk ZIL block.
2522  *
2523  * As itxs are generated, they're inserted into the ZIL's queue of
2524  * uncommitted itxs. The semantics of zil_commit() are such that it will
2525  * block until all itxs that were in the queue when it was called, are
2526  * committed to stable storage.
2527  *
2528  * If "foid" is zero, this means all "synchronous" and "asynchronous"
2529  * itxs, for all objects in the dataset, will be committed to stable
2530  * storage prior to zil_commit() returning. If "foid" is non-zero, all
2531  * "synchronous" itxs for all objects, but only "asynchronous" itxs
2532  * that correspond to the foid passed in, will be committed to stable
2533  * storage prior to zil_commit() returning.
2534  *
2535  * Generally speaking, when zil_commit() is called, the consumer doesn't
2536  * actually care about _all_ of the uncommitted itxs. Instead, they're
2537  * simply trying to waiting for a specific itx to be committed to disk,
2538  * but the interface(s) for interacting with the ZIL don't allow such
2539  * fine-grained communication. A better interface would allow a consumer
2540  * to create and assign an itx, and then pass a reference to this itx to
2541  * zil_commit(); such that zil_commit() would return as soon as that
2542  * specific itx was committed to disk (instead of waiting for _all_
2543  * itxs to be committed).
2544  *
2545  * When a thread calls zil_commit() a special "commit itx" will be
2546  * generated, along with a corresponding "waiter" for this commit itx.
2547  * zil_commit() will wait on this waiter's CV, such that when the waiter
2548  * is marked done, and signalled, zil_commit() will return.
2549  *
2550  * This commit itx is inserted into the queue of uncommitted itxs. This
2551  * provides an easy mechanism for determining which itxs were in the
2552  * queue prior to zil_commit() having been called, and which itxs were
2553  * added after zil_commit() was called.
2554  *
2555  * The commit it is special; it doesn't have any on-disk representation.
2556  * When a commit itx is "committed" to an lwb, the waiter associated
2557  * with it is linked onto the lwb's list of waiters. Then, when that lwb
2558  * completes, each waiter on the lwb's list is marked done and signalled
2559  * -- allowing the thread waiting on the waiter to return from zil_commit().
2560  *
2561  * It's important to point out a few critical factors that allow us
2562  * to make use of the commit itxs, commit waiters, per-lwb lists of
2563  * commit waiters, and zio completion callbacks like we're doing:
2564  *
2565  *   1. The list of waiters for each lwb is traversed, and each commit
2566  *      waiter is marked "done" and signalled, in the zio completion
2567  *      callback of the lwb's zio[*].
2568  *
2569  *      * Actually, the waiters are signalled in the zio completion
2570  *        callback of the root zio for the DKIOCFLUSHWRITECACHE commands
2571  *        that are sent to the vdevs upon completion of the lwb zio.
2572  *
2573  *   2. When the itxs are inserted into the ZIL's queue of uncommitted
2574  *      itxs, the order in which they are inserted is preserved[*]; as
2575  *      itxs are added to the queue, they are added to the tail of
2576  *      in-memory linked lists.
2577  *
2578  *      When committing the itxs to lwbs (to be written to disk), they
2579  *      are committed in the same order in which the itxs were added to
2580  *      the uncommitted queue's linked list(s); i.e. the linked list of
2581  *      itxs to commit is traversed from head to tail, and each itx is
2582  *      committed to an lwb in that order.
2583  *
2584  *      * To clarify:
2585  *
2586  *        - the order of "sync" itxs is preserved w.r.t. other
2587  *          "sync" itxs, regardless of the corresponding objects.
2588  *        - the order of "async" itxs is preserved w.r.t. other
2589  *          "async" itxs corresponding to the same object.
2590  *        - the order of "async" itxs is *not* preserved w.r.t. other
2591  *          "async" itxs corresponding to different objects.
2592  *        - the order of "sync" itxs w.r.t. "async" itxs (or vice
2593  *          versa) is *not* preserved, even for itxs that correspond
2594  *          to the same object.
2595  *
2596  *      For more details, see: zil_itx_assign(), zil_async_to_sync(),
2597  *      zil_get_commit_list(), and zil_process_commit_list().
2598  *
2599  *   3. The lwbs represent a linked list of blocks on disk. Thus, any
2600  *      lwb cannot be considered committed to stable storage, until its
2601  *      "previous" lwb is also committed to stable storage. This fact,
2602  *      coupled with the fact described above, means that itxs are
2603  *      committed in (roughly) the order in which they were generated.
2604  *      This is essential because itxs are dependent on prior itxs.
2605  *      Thus, we *must not* deem an itx as being committed to stable
2606  *      storage, until *all* prior itxs have also been committed to
2607  *      stable storage.
2608  *
2609  *      To enforce this ordering of lwb zio's, while still leveraging as
2610  *      much of the underlying storage performance as possible, we rely
2611  *      on two fundamental concepts:
2612  *
2613  *          1. The creation and issuance of lwb zio's is protected by
2614  *             the zilog's "zl_issuer_lock", which ensures only a single
2615  *             thread is creating and/or issuing lwb's at a time
2616  *          2. The "previous" lwb is a child of the "current" lwb
2617  *             (leveraging the zio parent-child depenency graph)
2618  *
2619  *      By relying on this parent-child zio relationship, we can have
2620  *      many lwb zio's concurrently issued to the underlying storage,
2621  *      but the order in which they complete will be the same order in
2622  *      which they were created.
2623  */
2624 void
2625 zil_commit(zilog_t *zilog, uint64_t foid)
2626 {
2627 	/*
2628 	 * We should never attempt to call zil_commit on a snapshot for
2629 	 * a couple of reasons:
2630 	 *
2631 	 * 1. A snapshot may never be modified, thus it cannot have any
2632 	 *    in-flight itxs that would have modified the dataset.
2633 	 *
2634 	 * 2. By design, when zil_commit() is called, a commit itx will
2635 	 *    be assigned to this zilog; as a result, the zilog will be
2636 	 *    dirtied. We must not dirty the zilog of a snapshot; there's
2637 	 *    checks in the code that enforce this invariant, and will
2638 	 *    cause a panic if it's not upheld.
2639 	 */
2640 	ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE);
2641 
2642 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2643 		return;
2644 
2645 	if (!spa_writeable(zilog->zl_spa)) {
2646 		/*
2647 		 * If the SPA is not writable, there should never be any
2648 		 * pending itxs waiting to be committed to disk. If that
2649 		 * weren't true, we'd skip writing those itxs out, and
2650 		 * would break the sematics of zil_commit(); thus, we're
2651 		 * verifying that truth before we return to the caller.
2652 		 */
2653 		ASSERT(list_is_empty(&zilog->zl_lwb_list));
2654 		ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
2655 		for (int i = 0; i < TXG_SIZE; i++)
2656 			ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL);
2657 		return;
2658 	}
2659 
2660 	/*
2661 	 * If the ZIL is suspended, we don't want to dirty it by calling
2662 	 * zil_commit_itx_assign() below, nor can we write out
2663 	 * lwbs like would be done in zil_commit_write(). Thus, we
2664 	 * simply rely on txg_wait_synced() to maintain the necessary
2665 	 * semantics, and avoid calling those functions altogether.
2666 	 */
2667 	if (zilog->zl_suspend > 0) {
2668 		txg_wait_synced(zilog->zl_dmu_pool, 0);
2669 		return;
2670 	}
2671 
2672 	zil_commit_impl(zilog, foid);
2673 }
2674 
2675 void
2676 zil_commit_impl(zilog_t *zilog, uint64_t foid)
2677 {
2678 	/*
2679 	 * Move the "async" itxs for the specified foid to the "sync"
2680 	 * queues, such that they will be later committed (or skipped)
2681 	 * to an lwb when zil_process_commit_list() is called.
2682 	 *
2683 	 * Since these "async" itxs must be committed prior to this
2684 	 * call to zil_commit returning, we must perform this operation
2685 	 * before we call zil_commit_itx_assign().
2686 	 */
2687 	zil_async_to_sync(zilog, foid);
2688 
2689 	/*
2690 	 * We allocate a new "waiter" structure which will initially be
2691 	 * linked to the commit itx using the itx's "itx_private" field.
2692 	 * Since the commit itx doesn't represent any on-disk state,
2693 	 * when it's committed to an lwb, rather than copying the its
2694 	 * lr_t into the lwb's buffer, the commit itx's "waiter" will be
2695 	 * added to the lwb's list of waiters. Then, when the lwb is
2696 	 * committed to stable storage, each waiter in the lwb's list of
2697 	 * waiters will be marked "done", and signalled.
2698 	 *
2699 	 * We must create the waiter and assign the commit itx prior to
2700 	 * calling zil_commit_writer(), or else our specific commit itx
2701 	 * is not guaranteed to be committed to an lwb prior to calling
2702 	 * zil_commit_waiter().
2703 	 */
2704 	zil_commit_waiter_t *zcw = zil_alloc_commit_waiter();
2705 	zil_commit_itx_assign(zilog, zcw);
2706 
2707 	zil_commit_writer(zilog, zcw);
2708 	zil_commit_waiter(zilog, zcw);
2709 
2710 	if (zcw->zcw_zio_error != 0) {
2711 		/*
2712 		 * If there was an error writing out the ZIL blocks that
2713 		 * this thread is waiting on, then we fallback to
2714 		 * relying on spa_sync() to write out the data this
2715 		 * thread is waiting on. Obviously this has performance
2716 		 * implications, but the expectation is for this to be
2717 		 * an exceptional case, and shouldn't occur often.
2718 		 */
2719 		DTRACE_PROBE2(zil__commit__io__error,
2720 		    zilog_t *, zilog, zil_commit_waiter_t *, zcw);
2721 		txg_wait_synced(zilog->zl_dmu_pool, 0);
2722 	}
2723 
2724 	zil_free_commit_waiter(zcw);
2725 }
2726 
2727 /*
2728  * Called in syncing context to free committed log blocks and update log header.
2729  */
2730 void
2731 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
2732 {
2733 	zil_header_t *zh = zil_header_in_syncing_context(zilog);
2734 	uint64_t txg = dmu_tx_get_txg(tx);
2735 	spa_t *spa = zilog->zl_spa;
2736 	uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
2737 	lwb_t *lwb;
2738 
2739 	/*
2740 	 * We don't zero out zl_destroy_txg, so make sure we don't try
2741 	 * to destroy it twice.
2742 	 */
2743 	if (spa_sync_pass(spa) != 1)
2744 		return;
2745 
2746 	mutex_enter(&zilog->zl_lock);
2747 
2748 	ASSERT(zilog->zl_stop_sync == 0);
2749 
2750 	if (*replayed_seq != 0) {
2751 		ASSERT(zh->zh_replay_seq < *replayed_seq);
2752 		zh->zh_replay_seq = *replayed_seq;
2753 		*replayed_seq = 0;
2754 	}
2755 
2756 	if (zilog->zl_destroy_txg == txg) {
2757 		blkptr_t blk = zh->zh_log;
2758 
2759 		ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
2760 
2761 		bzero(zh, sizeof (zil_header_t));
2762 		bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
2763 
2764 		if (zilog->zl_keep_first) {
2765 			/*
2766 			 * If this block was part of log chain that couldn't
2767 			 * be claimed because a device was missing during
2768 			 * zil_claim(), but that device later returns,
2769 			 * then this block could erroneously appear valid.
2770 			 * To guard against this, assign a new GUID to the new
2771 			 * log chain so it doesn't matter what blk points to.
2772 			 */
2773 			zil_init_log_chain(zilog, &blk);
2774 			zh->zh_log = blk;
2775 		}
2776 	}
2777 
2778 	while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
2779 		zh->zh_log = lwb->lwb_blk;
2780 		if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
2781 			break;
2782 		list_remove(&zilog->zl_lwb_list, lwb);
2783 		zio_free(spa, txg, &lwb->lwb_blk);
2784 		zil_free_lwb(zilog, lwb);
2785 
2786 		/*
2787 		 * If we don't have anything left in the lwb list then
2788 		 * we've had an allocation failure and we need to zero
2789 		 * out the zil_header blkptr so that we don't end
2790 		 * up freeing the same block twice.
2791 		 */
2792 		if (list_head(&zilog->zl_lwb_list) == NULL)
2793 			BP_ZERO(&zh->zh_log);
2794 	}
2795 	mutex_exit(&zilog->zl_lock);
2796 }
2797 
2798 /* ARGSUSED */
2799 static int
2800 zil_lwb_cons(void *vbuf, void *unused, int kmflag)
2801 {
2802 	lwb_t *lwb = vbuf;
2803 	list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t),
2804 	    offsetof(zil_commit_waiter_t, zcw_node));
2805 	avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare,
2806 	    sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
2807 	mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
2808 	return (0);
2809 }
2810 
2811 /* ARGSUSED */
2812 static void
2813 zil_lwb_dest(void *vbuf, void *unused)
2814 {
2815 	lwb_t *lwb = vbuf;
2816 	mutex_destroy(&lwb->lwb_vdev_lock);
2817 	avl_destroy(&lwb->lwb_vdev_tree);
2818 	list_destroy(&lwb->lwb_waiters);
2819 }
2820 
2821 void
2822 zil_init(void)
2823 {
2824 	zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
2825 	    sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0);
2826 
2827 	zil_zcw_cache = kmem_cache_create("zil_zcw_cache",
2828 	    sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
2829 }
2830 
2831 void
2832 zil_fini(void)
2833 {
2834 	kmem_cache_destroy(zil_zcw_cache);
2835 	kmem_cache_destroy(zil_lwb_cache);
2836 }
2837 
2838 void
2839 zil_set_sync(zilog_t *zilog, uint64_t sync)
2840 {
2841 	zilog->zl_sync = sync;
2842 }
2843 
2844 void
2845 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
2846 {
2847 	zilog->zl_logbias = logbias;
2848 }
2849 
2850 zilog_t *
2851 zil_alloc(objset_t *os, zil_header_t *zh_phys)
2852 {
2853 	zilog_t *zilog;
2854 
2855 	zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
2856 
2857 	zilog->zl_header = zh_phys;
2858 	zilog->zl_os = os;
2859 	zilog->zl_spa = dmu_objset_spa(os);
2860 	zilog->zl_dmu_pool = dmu_objset_pool(os);
2861 	zilog->zl_destroy_txg = TXG_INITIAL - 1;
2862 	zilog->zl_logbias = dmu_objset_logbias(os);
2863 	zilog->zl_sync = dmu_objset_syncprop(os);
2864 	zilog->zl_dirty_max_txg = 0;
2865 	zilog->zl_last_lwb_opened = NULL;
2866 	zilog->zl_last_lwb_latency = 0;
2867 
2868 	mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
2869 	mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL);
2870 
2871 	for (int i = 0; i < TXG_SIZE; i++) {
2872 		mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
2873 		    MUTEX_DEFAULT, NULL);
2874 	}
2875 
2876 	list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
2877 	    offsetof(lwb_t, lwb_node));
2878 
2879 	list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
2880 	    offsetof(itx_t, itx_node));
2881 
2882 	cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
2883 
2884 	return (zilog);
2885 }
2886 
2887 void
2888 zil_free(zilog_t *zilog)
2889 {
2890 	zilog->zl_stop_sync = 1;
2891 
2892 	ASSERT0(zilog->zl_suspend);
2893 	ASSERT0(zilog->zl_suspending);
2894 
2895 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
2896 	list_destroy(&zilog->zl_lwb_list);
2897 
2898 	ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
2899 	list_destroy(&zilog->zl_itx_commit_list);
2900 
2901 	for (int i = 0; i < TXG_SIZE; i++) {
2902 		/*
2903 		 * It's possible for an itx to be generated that doesn't dirty
2904 		 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
2905 		 * callback to remove the entry. We remove those here.
2906 		 *
2907 		 * Also free up the ziltest itxs.
2908 		 */
2909 		if (zilog->zl_itxg[i].itxg_itxs)
2910 			zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
2911 		mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
2912 	}
2913 
2914 	mutex_destroy(&zilog->zl_issuer_lock);
2915 	mutex_destroy(&zilog->zl_lock);
2916 
2917 	cv_destroy(&zilog->zl_cv_suspend);
2918 
2919 	kmem_free(zilog, sizeof (zilog_t));
2920 }
2921 
2922 /*
2923  * Open an intent log.
2924  */
2925 zilog_t *
2926 zil_open(objset_t *os, zil_get_data_t *get_data)
2927 {
2928 	zilog_t *zilog = dmu_objset_zil(os);
2929 
2930 	ASSERT3P(zilog->zl_get_data, ==, NULL);
2931 	ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
2932 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
2933 
2934 	zilog->zl_get_data = get_data;
2935 
2936 	return (zilog);
2937 }
2938 
2939 /*
2940  * Close an intent log.
2941  */
2942 void
2943 zil_close(zilog_t *zilog)
2944 {
2945 	lwb_t *lwb;
2946 	uint64_t txg;
2947 
2948 	if (!dmu_objset_is_snapshot(zilog->zl_os)) {
2949 		zil_commit(zilog, 0);
2950 	} else {
2951 		ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
2952 		ASSERT0(zilog->zl_dirty_max_txg);
2953 		ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE);
2954 	}
2955 
2956 	mutex_enter(&zilog->zl_lock);
2957 	lwb = list_tail(&zilog->zl_lwb_list);
2958 	if (lwb == NULL)
2959 		txg = zilog->zl_dirty_max_txg;
2960 	else
2961 		txg = MAX(zilog->zl_dirty_max_txg, lwb->lwb_max_txg);
2962 	mutex_exit(&zilog->zl_lock);
2963 
2964 	/*
2965 	 * We need to use txg_wait_synced() to wait long enough for the
2966 	 * ZIL to be clean, and to wait for all pending lwbs to be
2967 	 * written out.
2968 	 */
2969 	if (txg != 0)
2970 		txg_wait_synced(zilog->zl_dmu_pool, txg);
2971 
2972 	if (zilog_is_dirty(zilog))
2973 		zfs_dbgmsg("zil (%p) is dirty, txg %llu", zilog, txg);
2974 	VERIFY(!zilog_is_dirty(zilog));
2975 
2976 	zilog->zl_get_data = NULL;
2977 
2978 	/*
2979 	 * We should have only one lwb left on the list; remove it now.
2980 	 */
2981 	mutex_enter(&zilog->zl_lock);
2982 	lwb = list_head(&zilog->zl_lwb_list);
2983 	if (lwb != NULL) {
2984 		ASSERT3P(lwb, ==, list_tail(&zilog->zl_lwb_list));
2985 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2986 		list_remove(&zilog->zl_lwb_list, lwb);
2987 		zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
2988 		zil_free_lwb(zilog, lwb);
2989 	}
2990 	mutex_exit(&zilog->zl_lock);
2991 }
2992 
2993 static char *suspend_tag = "zil suspending";
2994 
2995 /*
2996  * Suspend an intent log.  While in suspended mode, we still honor
2997  * synchronous semantics, but we rely on txg_wait_synced() to do it.
2998  * On old version pools, we suspend the log briefly when taking a
2999  * snapshot so that it will have an empty intent log.
3000  *
3001  * Long holds are not really intended to be used the way we do here --
3002  * held for such a short time.  A concurrent caller of dsl_dataset_long_held()
3003  * could fail.  Therefore we take pains to only put a long hold if it is
3004  * actually necessary.  Fortunately, it will only be necessary if the
3005  * objset is currently mounted (or the ZVOL equivalent).  In that case it
3006  * will already have a long hold, so we are not really making things any worse.
3007  *
3008  * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
3009  * zvol_state_t), and use their mechanism to prevent their hold from being
3010  * dropped (e.g. VFS_HOLD()).  However, that would be even more pain for
3011  * very little gain.
3012  *
3013  * if cookiep == NULL, this does both the suspend & resume.
3014  * Otherwise, it returns with the dataset "long held", and the cookie
3015  * should be passed into zil_resume().
3016  */
3017 int
3018 zil_suspend(const char *osname, void **cookiep)
3019 {
3020 	objset_t *os;
3021 	zilog_t *zilog;
3022 	const zil_header_t *zh;
3023 	int error;
3024 
3025 	error = dmu_objset_hold(osname, suspend_tag, &os);
3026 	if (error != 0)
3027 		return (error);
3028 	zilog = dmu_objset_zil(os);
3029 
3030 	mutex_enter(&zilog->zl_lock);
3031 	zh = zilog->zl_header;
3032 
3033 	if (zh->zh_flags & ZIL_REPLAY_NEEDED) {		/* unplayed log */
3034 		mutex_exit(&zilog->zl_lock);
3035 		dmu_objset_rele(os, suspend_tag);
3036 		return (SET_ERROR(EBUSY));
3037 	}
3038 
3039 	/*
3040 	 * Don't put a long hold in the cases where we can avoid it.  This
3041 	 * is when there is no cookie so we are doing a suspend & resume
3042 	 * (i.e. called from zil_vdev_offline()), and there's nothing to do
3043 	 * for the suspend because it's already suspended, or there's no ZIL.
3044 	 */
3045 	if (cookiep == NULL && !zilog->zl_suspending &&
3046 	    (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
3047 		mutex_exit(&zilog->zl_lock);
3048 		dmu_objset_rele(os, suspend_tag);
3049 		return (0);
3050 	}
3051 
3052 	dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
3053 	dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
3054 
3055 	zilog->zl_suspend++;
3056 
3057 	if (zilog->zl_suspend > 1) {
3058 		/*
3059 		 * Someone else is already suspending it.
3060 		 * Just wait for them to finish.
3061 		 */
3062 
3063 		while (zilog->zl_suspending)
3064 			cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
3065 		mutex_exit(&zilog->zl_lock);
3066 
3067 		if (cookiep == NULL)
3068 			zil_resume(os);
3069 		else
3070 			*cookiep = os;
3071 		return (0);
3072 	}
3073 
3074 	/*
3075 	 * If there is no pointer to an on-disk block, this ZIL must not
3076 	 * be active (e.g. filesystem not mounted), so there's nothing
3077 	 * to clean up.
3078 	 */
3079 	if (BP_IS_HOLE(&zh->zh_log)) {
3080 		ASSERT(cookiep != NULL); /* fast path already handled */
3081 
3082 		*cookiep = os;
3083 		mutex_exit(&zilog->zl_lock);
3084 		return (0);
3085 	}
3086 
3087 	zilog->zl_suspending = B_TRUE;
3088 	mutex_exit(&zilog->zl_lock);
3089 
3090 	/*
3091 	 * We need to use zil_commit_impl to ensure we wait for all
3092 	 * LWB_STATE_OPENED and LWB_STATE_ISSUED lwb's to be committed
3093 	 * to disk before proceeding. If we used zil_commit instead, it
3094 	 * would just call txg_wait_synced(), because zl_suspend is set.
3095 	 * txg_wait_synced() doesn't wait for these lwb's to be
3096 	 * LWB_STATE_DONE before returning.
3097 	 */
3098 	zil_commit_impl(zilog, 0);
3099 
3100 	/*
3101 	 * Now that we've ensured all lwb's are LWB_STATE_DONE, we use
3102 	 * txg_wait_synced() to ensure the data from the zilog has
3103 	 * migrated to the main pool before calling zil_destroy().
3104 	 */
3105 	txg_wait_synced(zilog->zl_dmu_pool, 0);
3106 
3107 	zil_destroy(zilog, B_FALSE);
3108 
3109 	mutex_enter(&zilog->zl_lock);
3110 	zilog->zl_suspending = B_FALSE;
3111 	cv_broadcast(&zilog->zl_cv_suspend);
3112 	mutex_exit(&zilog->zl_lock);
3113 
3114 	if (cookiep == NULL)
3115 		zil_resume(os);
3116 	else
3117 		*cookiep = os;
3118 	return (0);
3119 }
3120 
3121 void
3122 zil_resume(void *cookie)
3123 {
3124 	objset_t *os = cookie;
3125 	zilog_t *zilog = dmu_objset_zil(os);
3126 
3127 	mutex_enter(&zilog->zl_lock);
3128 	ASSERT(zilog->zl_suspend != 0);
3129 	zilog->zl_suspend--;
3130 	mutex_exit(&zilog->zl_lock);
3131 	dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3132 	dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3133 }
3134 
3135 typedef struct zil_replay_arg {
3136 	zil_replay_func_t **zr_replay;
3137 	void		*zr_arg;
3138 	boolean_t	zr_byteswap;
3139 	char		*zr_lr;
3140 } zil_replay_arg_t;
3141 
3142 static int
3143 zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
3144 {
3145 	char name[ZFS_MAX_DATASET_NAME_LEN];
3146 
3147 	zilog->zl_replaying_seq--;	/* didn't actually replay this one */
3148 
3149 	dmu_objset_name(zilog->zl_os, name);
3150 
3151 	cmn_err(CE_WARN, "ZFS replay transaction error %d, "
3152 	    "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
3153 	    (u_longlong_t)lr->lrc_seq,
3154 	    (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
3155 	    (lr->lrc_txtype & TX_CI) ? "CI" : "");
3156 
3157 	return (error);
3158 }
3159 
3160 static int
3161 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
3162 {
3163 	zil_replay_arg_t *zr = zra;
3164 	const zil_header_t *zh = zilog->zl_header;
3165 	uint64_t reclen = lr->lrc_reclen;
3166 	uint64_t txtype = lr->lrc_txtype;
3167 	int error = 0;
3168 
3169 	zilog->zl_replaying_seq = lr->lrc_seq;
3170 
3171 	if (lr->lrc_seq <= zh->zh_replay_seq)	/* already replayed */
3172 		return (0);
3173 
3174 	if (lr->lrc_txg < claim_txg)		/* already committed */
3175 		return (0);
3176 
3177 	/* Strip case-insensitive bit, still present in log record */
3178 	txtype &= ~TX_CI;
3179 
3180 	if (txtype == 0 || txtype >= TX_MAX_TYPE)
3181 		return (zil_replay_error(zilog, lr, EINVAL));
3182 
3183 	/*
3184 	 * If this record type can be logged out of order, the object
3185 	 * (lr_foid) may no longer exist.  That's legitimate, not an error.
3186 	 */
3187 	if (TX_OOO(txtype)) {
3188 		error = dmu_object_info(zilog->zl_os,
3189 		    ((lr_ooo_t *)lr)->lr_foid, NULL);
3190 		if (error == ENOENT || error == EEXIST)
3191 			return (0);
3192 	}
3193 
3194 	/*
3195 	 * Make a copy of the data so we can revise and extend it.
3196 	 */
3197 	bcopy(lr, zr->zr_lr, reclen);
3198 
3199 	/*
3200 	 * If this is a TX_WRITE with a blkptr, suck in the data.
3201 	 */
3202 	if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
3203 		error = zil_read_log_data(zilog, (lr_write_t *)lr,
3204 		    zr->zr_lr + reclen);
3205 		if (error != 0)
3206 			return (zil_replay_error(zilog, lr, error));
3207 	}
3208 
3209 	/*
3210 	 * The log block containing this lr may have been byteswapped
3211 	 * so that we can easily examine common fields like lrc_txtype.
3212 	 * However, the log is a mix of different record types, and only the
3213 	 * replay vectors know how to byteswap their records.  Therefore, if
3214 	 * the lr was byteswapped, undo it before invoking the replay vector.
3215 	 */
3216 	if (zr->zr_byteswap)
3217 		byteswap_uint64_array(zr->zr_lr, reclen);
3218 
3219 	/*
3220 	 * We must now do two things atomically: replay this log record,
3221 	 * and update the log header sequence number to reflect the fact that
3222 	 * we did so. At the end of each replay function the sequence number
3223 	 * is updated if we are in replay mode.
3224 	 */
3225 	error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
3226 	if (error != 0) {
3227 		/*
3228 		 * The DMU's dnode layer doesn't see removes until the txg
3229 		 * commits, so a subsequent claim can spuriously fail with
3230 		 * EEXIST. So if we receive any error we try syncing out
3231 		 * any removes then retry the transaction.  Note that we
3232 		 * specify B_FALSE for byteswap now, so we don't do it twice.
3233 		 */
3234 		txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
3235 		error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
3236 		if (error != 0)
3237 			return (zil_replay_error(zilog, lr, error));
3238 	}
3239 	return (0);
3240 }
3241 
3242 /* ARGSUSED */
3243 static int
3244 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
3245 {
3246 	zilog->zl_replay_blks++;
3247 
3248 	return (0);
3249 }
3250 
3251 /*
3252  * If this dataset has a non-empty intent log, replay it and destroy it.
3253  */
3254 void
3255 zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
3256 {
3257 	zilog_t *zilog = dmu_objset_zil(os);
3258 	const zil_header_t *zh = zilog->zl_header;
3259 	zil_replay_arg_t zr;
3260 
3261 	if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
3262 		zil_destroy(zilog, B_TRUE);
3263 		return;
3264 	}
3265 
3266 	zr.zr_replay = replay_func;
3267 	zr.zr_arg = arg;
3268 	zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
3269 	zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
3270 
3271 	/*
3272 	 * Wait for in-progress removes to sync before starting replay.
3273 	 */
3274 	txg_wait_synced(zilog->zl_dmu_pool, 0);
3275 
3276 	zilog->zl_replay = B_TRUE;
3277 	zilog->zl_replay_time = ddi_get_lbolt();
3278 	ASSERT(zilog->zl_replay_blks == 0);
3279 	(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
3280 	    zh->zh_claim_txg);
3281 	kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
3282 
3283 	zil_destroy(zilog, B_FALSE);
3284 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
3285 	zilog->zl_replay = B_FALSE;
3286 }
3287 
3288 boolean_t
3289 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
3290 {
3291 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3292 		return (B_TRUE);
3293 
3294 	if (zilog->zl_replay) {
3295 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
3296 		zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
3297 		    zilog->zl_replaying_seq;
3298 		return (B_TRUE);
3299 	}
3300 
3301 	return (B_FALSE);
3302 }
3303 
3304 /* ARGSUSED */
3305 int
3306 zil_reset(const char *osname, void *arg)
3307 {
3308 	int error;
3309 
3310 	error = zil_suspend(osname, NULL);
3311 	if (error != 0)
3312 		return (SET_ERROR(EEXIST));
3313 	return (0);
3314 }
3315