xref: /illumos-gate/usr/src/uts/common/fs/zfs/zfs_fuid.c (revision c4ab0d3f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 #include <sys/zfs_context.h>
26 #include <sys/dmu.h>
27 #include <sys/avl.h>
28 #include <sys/zap.h>
29 #include <sys/refcount.h>
30 #include <sys/nvpair.h>
31 #ifdef _KERNEL
32 #include <sys/kidmap.h>
33 #include <sys/sid.h>
34 #include <sys/zfs_vfsops.h>
35 #include <sys/zfs_znode.h>
36 #endif
37 #include <sys/zfs_fuid.h>
38 
39 /*
40  * FUID Domain table(s).
41  *
42  * The FUID table is stored as a packed nvlist of an array
43  * of nvlists which contain an index, domain string and offset
44  *
45  * During file system initialization the nvlist(s) are read and
46  * two AVL trees are created.  One tree is keyed by the index number
47  * and the other by the domain string.  Nodes are never removed from
48  * trees, but new entries may be added.  If a new entry is added then
49  * the zfsvfs->z_fuid_dirty flag is set to true and the caller will then
50  * be responsible for calling zfs_fuid_sync() to sync the changes to disk.
51  *
52  */
53 
54 #define	FUID_IDX	"fuid_idx"
55 #define	FUID_DOMAIN	"fuid_domain"
56 #define	FUID_OFFSET	"fuid_offset"
57 #define	FUID_NVP_ARRAY	"fuid_nvlist"
58 
59 typedef struct fuid_domain {
60 	avl_node_t	f_domnode;
61 	avl_node_t	f_idxnode;
62 	ksiddomain_t	*f_ksid;
63 	uint64_t	f_idx;
64 } fuid_domain_t;
65 
66 static char *nulldomain = "";
67 
68 /*
69  * Compare two indexes.
70  */
71 static int
72 idx_compare(const void *arg1, const void *arg2)
73 {
74 	const fuid_domain_t *node1 = (const fuid_domain_t *)arg1;
75 	const fuid_domain_t *node2 = (const fuid_domain_t *)arg2;
76 
77 	return (AVL_CMP(node1->f_idx, node2->f_idx));
78 }
79 
80 /*
81  * Compare two domain strings.
82  */
83 static int
84 domain_compare(const void *arg1, const void *arg2)
85 {
86 	const fuid_domain_t *node1 = (const fuid_domain_t *)arg1;
87 	const fuid_domain_t *node2 = (const fuid_domain_t *)arg2;
88 	int val;
89 
90 	val = strcmp(node1->f_ksid->kd_name, node2->f_ksid->kd_name);
91 
92 	return (AVL_ISIGN(val));
93 }
94 
95 void
96 zfs_fuid_avl_tree_create(avl_tree_t *idx_tree, avl_tree_t *domain_tree)
97 {
98 	avl_create(idx_tree, idx_compare,
99 	    sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_idxnode));
100 	avl_create(domain_tree, domain_compare,
101 	    sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_domnode));
102 }
103 
104 /*
105  * load initial fuid domain and idx trees.  This function is used by
106  * both the kernel and zdb.
107  */
108 uint64_t
109 zfs_fuid_table_load(objset_t *os, uint64_t fuid_obj, avl_tree_t *idx_tree,
110     avl_tree_t *domain_tree)
111 {
112 	dmu_buf_t *db;
113 	uint64_t fuid_size;
114 
115 	ASSERT(fuid_obj != 0);
116 	VERIFY(0 == dmu_bonus_hold(os, fuid_obj,
117 	    FTAG, &db));
118 	fuid_size = *(uint64_t *)db->db_data;
119 	dmu_buf_rele(db, FTAG);
120 
121 	if (fuid_size)  {
122 		nvlist_t **fuidnvp;
123 		nvlist_t *nvp = NULL;
124 		uint_t count;
125 		char *packed;
126 		int i;
127 
128 		packed = kmem_alloc(fuid_size, KM_SLEEP);
129 		VERIFY(dmu_read(os, fuid_obj, 0,
130 		    fuid_size, packed, DMU_READ_PREFETCH) == 0);
131 		VERIFY(nvlist_unpack(packed, fuid_size,
132 		    &nvp, 0) == 0);
133 		VERIFY(nvlist_lookup_nvlist_array(nvp, FUID_NVP_ARRAY,
134 		    &fuidnvp, &count) == 0);
135 
136 		for (i = 0; i != count; i++) {
137 			fuid_domain_t *domnode;
138 			char *domain;
139 			uint64_t idx;
140 
141 			VERIFY(nvlist_lookup_string(fuidnvp[i], FUID_DOMAIN,
142 			    &domain) == 0);
143 			VERIFY(nvlist_lookup_uint64(fuidnvp[i], FUID_IDX,
144 			    &idx) == 0);
145 
146 			domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP);
147 
148 			domnode->f_idx = idx;
149 			domnode->f_ksid = ksid_lookupdomain(domain);
150 			avl_add(idx_tree, domnode);
151 			avl_add(domain_tree, domnode);
152 		}
153 		nvlist_free(nvp);
154 		kmem_free(packed, fuid_size);
155 	}
156 	return (fuid_size);
157 }
158 
159 void
160 zfs_fuid_table_destroy(avl_tree_t *idx_tree, avl_tree_t *domain_tree)
161 {
162 	fuid_domain_t *domnode;
163 	void *cookie;
164 
165 	cookie = NULL;
166 	while (domnode = avl_destroy_nodes(domain_tree, &cookie))
167 		ksiddomain_rele(domnode->f_ksid);
168 
169 	avl_destroy(domain_tree);
170 	cookie = NULL;
171 	while (domnode = avl_destroy_nodes(idx_tree, &cookie))
172 		kmem_free(domnode, sizeof (fuid_domain_t));
173 	avl_destroy(idx_tree);
174 }
175 
176 char *
177 zfs_fuid_idx_domain(avl_tree_t *idx_tree, uint32_t idx)
178 {
179 	fuid_domain_t searchnode, *findnode;
180 	avl_index_t loc;
181 
182 	searchnode.f_idx = idx;
183 
184 	findnode = avl_find(idx_tree, &searchnode, &loc);
185 
186 	return (findnode ? findnode->f_ksid->kd_name : nulldomain);
187 }
188 
189 #ifdef _KERNEL
190 /*
191  * Load the fuid table(s) into memory.
192  */
193 static void
194 zfs_fuid_init(zfsvfs_t *zfsvfs)
195 {
196 	rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER);
197 
198 	if (zfsvfs->z_fuid_loaded) {
199 		rw_exit(&zfsvfs->z_fuid_lock);
200 		return;
201 	}
202 
203 	zfs_fuid_avl_tree_create(&zfsvfs->z_fuid_idx, &zfsvfs->z_fuid_domain);
204 
205 	(void) zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ,
206 	    ZFS_FUID_TABLES, 8, 1, &zfsvfs->z_fuid_obj);
207 	if (zfsvfs->z_fuid_obj != 0) {
208 		zfsvfs->z_fuid_size = zfs_fuid_table_load(zfsvfs->z_os,
209 		    zfsvfs->z_fuid_obj, &zfsvfs->z_fuid_idx,
210 		    &zfsvfs->z_fuid_domain);
211 	}
212 
213 	zfsvfs->z_fuid_loaded = B_TRUE;
214 	rw_exit(&zfsvfs->z_fuid_lock);
215 }
216 
217 /*
218  * sync out AVL trees to persistent storage.
219  */
220 void
221 zfs_fuid_sync(zfsvfs_t *zfsvfs, dmu_tx_t *tx)
222 {
223 	nvlist_t *nvp;
224 	nvlist_t **fuids;
225 	size_t nvsize = 0;
226 	char *packed;
227 	dmu_buf_t *db;
228 	fuid_domain_t *domnode;
229 	int numnodes;
230 	int i;
231 
232 	if (!zfsvfs->z_fuid_dirty) {
233 		return;
234 	}
235 
236 	rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER);
237 
238 	/*
239 	 * First see if table needs to be created?
240 	 */
241 	if (zfsvfs->z_fuid_obj == 0) {
242 		zfsvfs->z_fuid_obj = dmu_object_alloc(zfsvfs->z_os,
243 		    DMU_OT_FUID, 1 << 14, DMU_OT_FUID_SIZE,
244 		    sizeof (uint64_t), tx);
245 		VERIFY(zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
246 		    ZFS_FUID_TABLES, sizeof (uint64_t), 1,
247 		    &zfsvfs->z_fuid_obj, tx) == 0);
248 	}
249 
250 	VERIFY(nvlist_alloc(&nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
251 
252 	numnodes = avl_numnodes(&zfsvfs->z_fuid_idx);
253 	fuids = kmem_alloc(numnodes * sizeof (void *), KM_SLEEP);
254 	for (i = 0, domnode = avl_first(&zfsvfs->z_fuid_domain); domnode; i++,
255 	    domnode = AVL_NEXT(&zfsvfs->z_fuid_domain, domnode)) {
256 		VERIFY(nvlist_alloc(&fuids[i], NV_UNIQUE_NAME, KM_SLEEP) == 0);
257 		VERIFY(nvlist_add_uint64(fuids[i], FUID_IDX,
258 		    domnode->f_idx) == 0);
259 		VERIFY(nvlist_add_uint64(fuids[i], FUID_OFFSET, 0) == 0);
260 		VERIFY(nvlist_add_string(fuids[i], FUID_DOMAIN,
261 		    domnode->f_ksid->kd_name) == 0);
262 	}
263 	VERIFY(nvlist_add_nvlist_array(nvp, FUID_NVP_ARRAY,
264 	    fuids, numnodes) == 0);
265 	for (i = 0; i != numnodes; i++)
266 		nvlist_free(fuids[i]);
267 	kmem_free(fuids, numnodes * sizeof (void *));
268 	VERIFY(nvlist_size(nvp, &nvsize, NV_ENCODE_XDR) == 0);
269 	packed = kmem_alloc(nvsize, KM_SLEEP);
270 	VERIFY(nvlist_pack(nvp, &packed, &nvsize,
271 	    NV_ENCODE_XDR, KM_SLEEP) == 0);
272 	nvlist_free(nvp);
273 	zfsvfs->z_fuid_size = nvsize;
274 	dmu_write(zfsvfs->z_os, zfsvfs->z_fuid_obj, 0,
275 	    zfsvfs->z_fuid_size, packed, tx);
276 	kmem_free(packed, zfsvfs->z_fuid_size);
277 	VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, zfsvfs->z_fuid_obj,
278 	    FTAG, &db));
279 	dmu_buf_will_dirty(db, tx);
280 	*(uint64_t *)db->db_data = zfsvfs->z_fuid_size;
281 	dmu_buf_rele(db, FTAG);
282 
283 	zfsvfs->z_fuid_dirty = B_FALSE;
284 	rw_exit(&zfsvfs->z_fuid_lock);
285 }
286 
287 /*
288  * Query domain table for a given domain.
289  *
290  * If domain isn't found and addok is set, it is added to AVL trees and
291  * the zfsvfs->z_fuid_dirty flag will be set to TRUE.  It will then be
292  * necessary for the caller or another thread to detect the dirty table
293  * and sync out the changes.
294  */
295 int
296 zfs_fuid_find_by_domain(zfsvfs_t *zfsvfs, const char *domain,
297     char **retdomain, boolean_t addok)
298 {
299 	fuid_domain_t searchnode, *findnode;
300 	avl_index_t loc;
301 	krw_t rw = RW_READER;
302 
303 	/*
304 	 * If the dummy "nobody" domain then return an index of 0
305 	 * to cause the created FUID to be a standard POSIX id
306 	 * for the user nobody.
307 	 */
308 	if (domain[0] == '\0') {
309 		if (retdomain)
310 			*retdomain = nulldomain;
311 		return (0);
312 	}
313 
314 	searchnode.f_ksid = ksid_lookupdomain(domain);
315 	if (retdomain)
316 		*retdomain = searchnode.f_ksid->kd_name;
317 	if (!zfsvfs->z_fuid_loaded)
318 		zfs_fuid_init(zfsvfs);
319 
320 retry:
321 	rw_enter(&zfsvfs->z_fuid_lock, rw);
322 	findnode = avl_find(&zfsvfs->z_fuid_domain, &searchnode, &loc);
323 
324 	if (findnode) {
325 		rw_exit(&zfsvfs->z_fuid_lock);
326 		ksiddomain_rele(searchnode.f_ksid);
327 		return (findnode->f_idx);
328 	} else if (addok) {
329 		fuid_domain_t *domnode;
330 		uint64_t retidx;
331 
332 		if (rw == RW_READER && !rw_tryupgrade(&zfsvfs->z_fuid_lock)) {
333 			rw_exit(&zfsvfs->z_fuid_lock);
334 			rw = RW_WRITER;
335 			goto retry;
336 		}
337 
338 		domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP);
339 		domnode->f_ksid = searchnode.f_ksid;
340 
341 		retidx = domnode->f_idx = avl_numnodes(&zfsvfs->z_fuid_idx) + 1;
342 
343 		avl_add(&zfsvfs->z_fuid_domain, domnode);
344 		avl_add(&zfsvfs->z_fuid_idx, domnode);
345 		zfsvfs->z_fuid_dirty = B_TRUE;
346 		rw_exit(&zfsvfs->z_fuid_lock);
347 		return (retidx);
348 	} else {
349 		rw_exit(&zfsvfs->z_fuid_lock);
350 		return (-1);
351 	}
352 }
353 
354 /*
355  * Query domain table by index, returning domain string
356  *
357  * Returns a pointer from an avl node of the domain string.
358  *
359  */
360 const char *
361 zfs_fuid_find_by_idx(zfsvfs_t *zfsvfs, uint32_t idx)
362 {
363 	char *domain;
364 
365 	if (idx == 0 || !zfsvfs->z_use_fuids)
366 		return (NULL);
367 
368 	if (!zfsvfs->z_fuid_loaded)
369 		zfs_fuid_init(zfsvfs);
370 
371 	rw_enter(&zfsvfs->z_fuid_lock, RW_READER);
372 
373 	if (zfsvfs->z_fuid_obj || zfsvfs->z_fuid_dirty)
374 		domain = zfs_fuid_idx_domain(&zfsvfs->z_fuid_idx, idx);
375 	else
376 		domain = nulldomain;
377 	rw_exit(&zfsvfs->z_fuid_lock);
378 
379 	ASSERT(domain);
380 	return (domain);
381 }
382 
383 void
384 zfs_fuid_map_ids(znode_t *zp, cred_t *cr, uid_t *uidp, uid_t *gidp)
385 {
386 	*uidp = zfs_fuid_map_id(zp->z_zfsvfs, zp->z_uid, cr, ZFS_OWNER);
387 	*gidp = zfs_fuid_map_id(zp->z_zfsvfs, zp->z_gid, cr, ZFS_GROUP);
388 }
389 
390 uid_t
391 zfs_fuid_map_id(zfsvfs_t *zfsvfs, uint64_t fuid,
392     cred_t *cr, zfs_fuid_type_t type)
393 {
394 	uint32_t index = FUID_INDEX(fuid);
395 	const char *domain;
396 	uid_t id;
397 
398 	if (index == 0)
399 		return (fuid);
400 
401 	domain = zfs_fuid_find_by_idx(zfsvfs, index);
402 	ASSERT(domain != NULL);
403 
404 	if (type == ZFS_OWNER || type == ZFS_ACE_USER) {
405 		(void) kidmap_getuidbysid(crgetzone(cr), domain,
406 		    FUID_RID(fuid), &id);
407 	} else {
408 		(void) kidmap_getgidbysid(crgetzone(cr), domain,
409 		    FUID_RID(fuid), &id);
410 	}
411 	return (id);
412 }
413 
414 /*
415  * Add a FUID node to the list of fuid's being created for this
416  * ACL
417  *
418  * If ACL has multiple domains, then keep only one copy of each unique
419  * domain.
420  */
421 void
422 zfs_fuid_node_add(zfs_fuid_info_t **fuidpp, const char *domain, uint32_t rid,
423     uint64_t idx, uint64_t id, zfs_fuid_type_t type)
424 {
425 	zfs_fuid_t *fuid;
426 	zfs_fuid_domain_t *fuid_domain;
427 	zfs_fuid_info_t *fuidp;
428 	uint64_t fuididx;
429 	boolean_t found = B_FALSE;
430 
431 	if (*fuidpp == NULL)
432 		*fuidpp = zfs_fuid_info_alloc();
433 
434 	fuidp = *fuidpp;
435 	/*
436 	 * First find fuid domain index in linked list
437 	 *
438 	 * If one isn't found then create an entry.
439 	 */
440 
441 	for (fuididx = 1, fuid_domain = list_head(&fuidp->z_domains);
442 	    fuid_domain; fuid_domain = list_next(&fuidp->z_domains,
443 	    fuid_domain), fuididx++) {
444 		if (idx == fuid_domain->z_domidx) {
445 			found = B_TRUE;
446 			break;
447 		}
448 	}
449 
450 	if (!found) {
451 		fuid_domain = kmem_alloc(sizeof (zfs_fuid_domain_t), KM_SLEEP);
452 		fuid_domain->z_domain = domain;
453 		fuid_domain->z_domidx = idx;
454 		list_insert_tail(&fuidp->z_domains, fuid_domain);
455 		fuidp->z_domain_str_sz += strlen(domain) + 1;
456 		fuidp->z_domain_cnt++;
457 	}
458 
459 	if (type == ZFS_ACE_USER || type == ZFS_ACE_GROUP) {
460 
461 		/*
462 		 * Now allocate fuid entry and add it on the end of the list
463 		 */
464 
465 		fuid = kmem_alloc(sizeof (zfs_fuid_t), KM_SLEEP);
466 		fuid->z_id = id;
467 		fuid->z_domidx = idx;
468 		fuid->z_logfuid = FUID_ENCODE(fuididx, rid);
469 
470 		list_insert_tail(&fuidp->z_fuids, fuid);
471 		fuidp->z_fuid_cnt++;
472 	} else {
473 		if (type == ZFS_OWNER)
474 			fuidp->z_fuid_owner = FUID_ENCODE(fuididx, rid);
475 		else
476 			fuidp->z_fuid_group = FUID_ENCODE(fuididx, rid);
477 	}
478 }
479 
480 /*
481  * Create a file system FUID, based on information in the users cred
482  *
483  * If cred contains KSID_OWNER then it should be used to determine
484  * the uid otherwise cred's uid will be used. By default cred's gid
485  * is used unless it's an ephemeral ID in which case KSID_GROUP will
486  * be used if it exists.
487  */
488 uint64_t
489 zfs_fuid_create_cred(zfsvfs_t *zfsvfs, zfs_fuid_type_t type,
490     cred_t *cr, zfs_fuid_info_t **fuidp)
491 {
492 	uint64_t	idx;
493 	ksid_t		*ksid;
494 	uint32_t	rid;
495 	char 		*kdomain;
496 	const char	*domain;
497 	uid_t		id;
498 
499 	VERIFY(type == ZFS_OWNER || type == ZFS_GROUP);
500 
501 	ksid = crgetsid(cr, (type == ZFS_OWNER) ? KSID_OWNER : KSID_GROUP);
502 
503 	if (!zfsvfs->z_use_fuids || (ksid == NULL)) {
504 		id = (type == ZFS_OWNER) ? crgetuid(cr) : crgetgid(cr);
505 
506 		if (IS_EPHEMERAL(id))
507 			return ((type == ZFS_OWNER) ? UID_NOBODY : GID_NOBODY);
508 
509 		return ((uint64_t)id);
510 	}
511 
512 	/*
513 	 * ksid is present and FUID is supported
514 	 */
515 	id = (type == ZFS_OWNER) ? ksid_getid(ksid) : crgetgid(cr);
516 
517 	if (!IS_EPHEMERAL(id))
518 		return ((uint64_t)id);
519 
520 	if (type == ZFS_GROUP)
521 		id = ksid_getid(ksid);
522 
523 	rid = ksid_getrid(ksid);
524 	domain = ksid_getdomain(ksid);
525 
526 	idx = zfs_fuid_find_by_domain(zfsvfs, domain, &kdomain, B_TRUE);
527 
528 	zfs_fuid_node_add(fuidp, kdomain, rid, idx, id, type);
529 
530 	return (FUID_ENCODE(idx, rid));
531 }
532 
533 /*
534  * Create a file system FUID for an ACL ace
535  * or a chown/chgrp of the file.
536  * This is similar to zfs_fuid_create_cred, except that
537  * we can't find the domain + rid information in the
538  * cred.  Instead we have to query Winchester for the
539  * domain and rid.
540  *
541  * During replay operations the domain+rid information is
542  * found in the zfs_fuid_info_t that the replay code has
543  * attached to the zfsvfs of the file system.
544  */
545 uint64_t
546 zfs_fuid_create(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr,
547     zfs_fuid_type_t type, zfs_fuid_info_t **fuidpp)
548 {
549 	const char *domain;
550 	char *kdomain;
551 	uint32_t fuid_idx = FUID_INDEX(id);
552 	uint32_t rid;
553 	idmap_stat status;
554 	uint64_t idx = 0;
555 	zfs_fuid_t *zfuid = NULL;
556 	zfs_fuid_info_t *fuidp = NULL;
557 
558 	/*
559 	 * If POSIX ID, or entry is already a FUID then
560 	 * just return the id
561 	 *
562 	 * We may also be handed an already FUID'ized id via
563 	 * chmod.
564 	 */
565 
566 	if (!zfsvfs->z_use_fuids || !IS_EPHEMERAL(id) || fuid_idx != 0)
567 		return (id);
568 
569 	if (zfsvfs->z_replay) {
570 		fuidp = zfsvfs->z_fuid_replay;
571 
572 		/*
573 		 * If we are passed an ephemeral id, but no
574 		 * fuid_info was logged then return NOBODY.
575 		 * This is most likely a result of idmap service
576 		 * not being available.
577 		 */
578 		if (fuidp == NULL)
579 			return (UID_NOBODY);
580 
581 		VERIFY3U(type, >=, ZFS_OWNER);
582 		VERIFY3U(type, <=, ZFS_ACE_GROUP);
583 
584 		switch (type) {
585 		case ZFS_ACE_USER:
586 		case ZFS_ACE_GROUP:
587 			zfuid = list_head(&fuidp->z_fuids);
588 			rid = FUID_RID(zfuid->z_logfuid);
589 			idx = FUID_INDEX(zfuid->z_logfuid);
590 			break;
591 		case ZFS_OWNER:
592 			rid = FUID_RID(fuidp->z_fuid_owner);
593 			idx = FUID_INDEX(fuidp->z_fuid_owner);
594 			break;
595 		case ZFS_GROUP:
596 			rid = FUID_RID(fuidp->z_fuid_group);
597 			idx = FUID_INDEX(fuidp->z_fuid_group);
598 			break;
599 		};
600 		domain = fuidp->z_domain_table[idx - 1];
601 	} else {
602 		if (type == ZFS_OWNER || type == ZFS_ACE_USER)
603 			status = kidmap_getsidbyuid(crgetzone(cr), id,
604 			    &domain, &rid);
605 		else
606 			status = kidmap_getsidbygid(crgetzone(cr), id,
607 			    &domain, &rid);
608 
609 		if (status != 0) {
610 			/*
611 			 * When returning nobody we will need to
612 			 * make a dummy fuid table entry for logging
613 			 * purposes.
614 			 */
615 			rid = UID_NOBODY;
616 			domain = nulldomain;
617 		}
618 	}
619 
620 	idx = zfs_fuid_find_by_domain(zfsvfs, domain, &kdomain, B_TRUE);
621 
622 	if (!zfsvfs->z_replay)
623 		zfs_fuid_node_add(fuidpp, kdomain,
624 		    rid, idx, id, type);
625 	else if (zfuid != NULL) {
626 		list_remove(&fuidp->z_fuids, zfuid);
627 		kmem_free(zfuid, sizeof (zfs_fuid_t));
628 	}
629 	return (FUID_ENCODE(idx, rid));
630 }
631 
632 void
633 zfs_fuid_destroy(zfsvfs_t *zfsvfs)
634 {
635 	rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER);
636 	if (!zfsvfs->z_fuid_loaded) {
637 		rw_exit(&zfsvfs->z_fuid_lock);
638 		return;
639 	}
640 	zfs_fuid_table_destroy(&zfsvfs->z_fuid_idx, &zfsvfs->z_fuid_domain);
641 	rw_exit(&zfsvfs->z_fuid_lock);
642 }
643 
644 /*
645  * Allocate zfs_fuid_info for tracking FUIDs created during
646  * zfs_mknode, VOP_SETATTR() or VOP_SETSECATTR()
647  */
648 zfs_fuid_info_t *
649 zfs_fuid_info_alloc(void)
650 {
651 	zfs_fuid_info_t *fuidp;
652 
653 	fuidp = kmem_zalloc(sizeof (zfs_fuid_info_t), KM_SLEEP);
654 	list_create(&fuidp->z_domains, sizeof (zfs_fuid_domain_t),
655 	    offsetof(zfs_fuid_domain_t, z_next));
656 	list_create(&fuidp->z_fuids, sizeof (zfs_fuid_t),
657 	    offsetof(zfs_fuid_t, z_next));
658 	return (fuidp);
659 }
660 
661 /*
662  * Release all memory associated with zfs_fuid_info_t
663  */
664 void
665 zfs_fuid_info_free(zfs_fuid_info_t *fuidp)
666 {
667 	zfs_fuid_t *zfuid;
668 	zfs_fuid_domain_t *zdomain;
669 
670 	while ((zfuid = list_head(&fuidp->z_fuids)) != NULL) {
671 		list_remove(&fuidp->z_fuids, zfuid);
672 		kmem_free(zfuid, sizeof (zfs_fuid_t));
673 	}
674 
675 	if (fuidp->z_domain_table != NULL)
676 		kmem_free(fuidp->z_domain_table,
677 		    (sizeof (char **)) * fuidp->z_domain_cnt);
678 
679 	while ((zdomain = list_head(&fuidp->z_domains)) != NULL) {
680 		list_remove(&fuidp->z_domains, zdomain);
681 		kmem_free(zdomain, sizeof (zfs_fuid_domain_t));
682 	}
683 
684 	kmem_free(fuidp, sizeof (zfs_fuid_info_t));
685 }
686 
687 /*
688  * Check to see if id is a groupmember.  If cred
689  * has ksid info then sidlist is checked first
690  * and if still not found then POSIX groups are checked
691  *
692  * Will use a straight FUID compare when possible.
693  */
694 boolean_t
695 zfs_groupmember(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr)
696 {
697 	ksid_t		*ksid = crgetsid(cr, KSID_GROUP);
698 	ksidlist_t	*ksidlist = crgetsidlist(cr);
699 	uid_t		gid;
700 
701 	if (ksid && ksidlist) {
702 		int 		i;
703 		ksid_t		*ksid_groups;
704 		uint32_t	idx = FUID_INDEX(id);
705 		uint32_t	rid = FUID_RID(id);
706 
707 		ksid_groups = ksidlist->ksl_sids;
708 
709 		for (i = 0; i != ksidlist->ksl_nsid; i++) {
710 			if (idx == 0) {
711 				if (id != IDMAP_WK_CREATOR_GROUP_GID &&
712 				    id == ksid_groups[i].ks_id) {
713 					return (B_TRUE);
714 				}
715 			} else {
716 				const char *domain;
717 
718 				domain = zfs_fuid_find_by_idx(zfsvfs, idx);
719 				ASSERT(domain != NULL);
720 
721 				if (strcmp(domain,
722 				    IDMAP_WK_CREATOR_SID_AUTHORITY) == 0)
723 					return (B_FALSE);
724 
725 				if ((strcmp(domain,
726 				    ksid_groups[i].ks_domain->kd_name) == 0) &&
727 				    rid == ksid_groups[i].ks_rid)
728 					return (B_TRUE);
729 			}
730 		}
731 	}
732 
733 	/*
734 	 * Not found in ksidlist, check posix groups
735 	 */
736 	gid = zfs_fuid_map_id(zfsvfs, id, cr, ZFS_GROUP);
737 	return (groupmember(gid, cr));
738 }
739 
740 void
741 zfs_fuid_txhold(zfsvfs_t *zfsvfs, dmu_tx_t *tx)
742 {
743 	if (zfsvfs->z_fuid_obj == 0) {
744 		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
745 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
746 		    FUID_SIZE_ESTIMATE(zfsvfs));
747 		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL);
748 	} else {
749 		dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj);
750 		dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0,
751 		    FUID_SIZE_ESTIMATE(zfsvfs));
752 	}
753 }
754 #endif
755