xref: /illumos-gate/usr/src/uts/common/fs/zfs/vdev_queue.c (revision 5b062782)
1fa9e4066Sahrens /*
2fa9e4066Sahrens  * CDDL HEADER START
3fa9e4066Sahrens  *
4fa9e4066Sahrens  * The contents of this file are subject to the terms of the
5ea8dc4b6Seschrock  * Common Development and Distribution License (the "License").
6ea8dc4b6Seschrock  * You may not use this file except in compliance with the License.
7fa9e4066Sahrens  *
8fa9e4066Sahrens  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9fa9e4066Sahrens  * or http://www.opensolaris.org/os/licensing.
10fa9e4066Sahrens  * See the License for the specific language governing permissions
11fa9e4066Sahrens  * and limitations under the License.
12fa9e4066Sahrens  *
13fa9e4066Sahrens  * When distributing Covered Code, include this CDDL HEADER in each
14fa9e4066Sahrens  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15fa9e4066Sahrens  * If applicable, add the following below this CDDL HEADER, with the
16fa9e4066Sahrens  * fields enclosed by brackets "[]" replaced with your own identifying
17fa9e4066Sahrens  * information: Portions Copyright [yyyy] [name of copyright owner]
18fa9e4066Sahrens  *
19fa9e4066Sahrens  * CDDL HEADER END
20fa9e4066Sahrens  */
21fa9e4066Sahrens /*
22a3f829aeSBill Moore  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23fa9e4066Sahrens  * Use is subject to license terms.
24fa9e4066Sahrens  */
25fa9e4066Sahrens 
26283b8460SGeorge.Wilson /*
27*5b062782SMatthew Ahrens  * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
28c3d26abcSMatthew Ahrens  * Copyright (c) 2014 Integros [integros.com]
29283b8460SGeorge.Wilson  */
30283b8460SGeorge.Wilson 
31fa9e4066Sahrens #include <sys/zfs_context.h>
32fa9e4066Sahrens #include <sys/vdev_impl.h>
33c3a66015SMatthew Ahrens #include <sys/spa_impl.h>
34fa9e4066Sahrens #include <sys/zio.h>
35fa9e4066Sahrens #include <sys/avl.h>
3669962b56SMatthew Ahrens #include <sys/dsl_pool.h>
370f7643c7SGeorge Wilson #include <sys/metaslab_impl.h>
38770499e1SDan Kimmel #include <sys/abd.h>
39fa9e4066Sahrens 
40614409b5Sahrens /*
4169962b56SMatthew Ahrens  * ZFS I/O Scheduler
4269962b56SMatthew Ahrens  * ---------------
4369962b56SMatthew Ahrens  *
4469962b56SMatthew Ahrens  * ZFS issues I/O operations to leaf vdevs to satisfy and complete zios.  The
4569962b56SMatthew Ahrens  * I/O scheduler determines when and in what order those operations are
4669962b56SMatthew Ahrens  * issued.  The I/O scheduler divides operations into five I/O classes
4769962b56SMatthew Ahrens  * prioritized in the following order: sync read, sync write, async read,
4869962b56SMatthew Ahrens  * async write, and scrub/resilver.  Each queue defines the minimum and
4969962b56SMatthew Ahrens  * maximum number of concurrent operations that may be issued to the device.
5069962b56SMatthew Ahrens  * In addition, the device has an aggregate maximum. Note that the sum of the
5169962b56SMatthew Ahrens  * per-queue minimums must not exceed the aggregate maximum, and if the
5269962b56SMatthew Ahrens  * aggregate maximum is equal to or greater than the sum of the per-queue
5369962b56SMatthew Ahrens  * maximums, the per-queue minimum has no effect.
5469962b56SMatthew Ahrens  *
5569962b56SMatthew Ahrens  * For many physical devices, throughput increases with the number of
5669962b56SMatthew Ahrens  * concurrent operations, but latency typically suffers. Further, physical
5769962b56SMatthew Ahrens  * devices typically have a limit at which more concurrent operations have no
5869962b56SMatthew Ahrens  * effect on throughput or can actually cause it to decrease.
5969962b56SMatthew Ahrens  *
6069962b56SMatthew Ahrens  * The scheduler selects the next operation to issue by first looking for an
6169962b56SMatthew Ahrens  * I/O class whose minimum has not been satisfied. Once all are satisfied and
6269962b56SMatthew Ahrens  * the aggregate maximum has not been hit, the scheduler looks for classes
6369962b56SMatthew Ahrens  * whose maximum has not been satisfied. Iteration through the I/O classes is
6469962b56SMatthew Ahrens  * done in the order specified above. No further operations are issued if the
6569962b56SMatthew Ahrens  * aggregate maximum number of concurrent operations has been hit or if there
6669962b56SMatthew Ahrens  * are no operations queued for an I/O class that has not hit its maximum.
6769962b56SMatthew Ahrens  * Every time an i/o is queued or an operation completes, the I/O scheduler
6869962b56SMatthew Ahrens  * looks for new operations to issue.
6969962b56SMatthew Ahrens  *
7069962b56SMatthew Ahrens  * All I/O classes have a fixed maximum number of outstanding operations
7169962b56SMatthew Ahrens  * except for the async write class. Asynchronous writes represent the data
7269962b56SMatthew Ahrens  * that is committed to stable storage during the syncing stage for
7369962b56SMatthew Ahrens  * transaction groups (see txg.c). Transaction groups enter the syncing state
7469962b56SMatthew Ahrens  * periodically so the number of queued async writes will quickly burst up and
7569962b56SMatthew Ahrens  * then bleed down to zero. Rather than servicing them as quickly as possible,
7669962b56SMatthew Ahrens  * the I/O scheduler changes the maximum number of active async write i/os
7769962b56SMatthew Ahrens  * according to the amount of dirty data in the pool (see dsl_pool.c). Since
7869962b56SMatthew Ahrens  * both throughput and latency typically increase with the number of
7969962b56SMatthew Ahrens  * concurrent operations issued to physical devices, reducing the burstiness
8069962b56SMatthew Ahrens  * in the number of concurrent operations also stabilizes the response time of
8169962b56SMatthew Ahrens  * operations from other -- and in particular synchronous -- queues. In broad
8269962b56SMatthew Ahrens  * strokes, the I/O scheduler will issue more concurrent operations from the
8369962b56SMatthew Ahrens  * async write queue as there's more dirty data in the pool.
8469962b56SMatthew Ahrens  *
8569962b56SMatthew Ahrens  * Async Writes
8669962b56SMatthew Ahrens  *
8769962b56SMatthew Ahrens  * The number of concurrent operations issued for the async write I/O class
8869962b56SMatthew Ahrens  * follows a piece-wise linear function defined by a few adjustable points.
8969962b56SMatthew Ahrens  *
9069962b56SMatthew Ahrens  *        |                   o---------| <-- zfs_vdev_async_write_max_active
9169962b56SMatthew Ahrens  *   ^    |                  /^         |
9269962b56SMatthew Ahrens  *   |    |                 / |         |
9369962b56SMatthew Ahrens  * active |                /  |         |
9469962b56SMatthew Ahrens  *  I/O   |               /   |         |
9569962b56SMatthew Ahrens  * count  |              /    |         |
9669962b56SMatthew Ahrens  *        |             /     |         |
9769962b56SMatthew Ahrens  *        |------------o      |         | <-- zfs_vdev_async_write_min_active
9869962b56SMatthew Ahrens  *       0|____________^______|_________|
9969962b56SMatthew Ahrens  *        0%           |      |       100% of zfs_dirty_data_max
10069962b56SMatthew Ahrens  *                     |      |
10169962b56SMatthew Ahrens  *                     |      `-- zfs_vdev_async_write_active_max_dirty_percent
10269962b56SMatthew Ahrens  *                     `--------- zfs_vdev_async_write_active_min_dirty_percent
10369962b56SMatthew Ahrens  *
10469962b56SMatthew Ahrens  * Until the amount of dirty data exceeds a minimum percentage of the dirty
10569962b56SMatthew Ahrens  * data allowed in the pool, the I/O scheduler will limit the number of
10669962b56SMatthew Ahrens  * concurrent operations to the minimum. As that threshold is crossed, the
10769962b56SMatthew Ahrens  * number of concurrent operations issued increases linearly to the maximum at
10869962b56SMatthew Ahrens  * the specified maximum percentage of the dirty data allowed in the pool.
10969962b56SMatthew Ahrens  *
11069962b56SMatthew Ahrens  * Ideally, the amount of dirty data on a busy pool will stay in the sloped
11169962b56SMatthew Ahrens  * part of the function between zfs_vdev_async_write_active_min_dirty_percent
11269962b56SMatthew Ahrens  * and zfs_vdev_async_write_active_max_dirty_percent. If it exceeds the
11369962b56SMatthew Ahrens  * maximum percentage, this indicates that the rate of incoming data is
11469962b56SMatthew Ahrens  * greater than the rate that the backend storage can handle. In this case, we
11569962b56SMatthew Ahrens  * must further throttle incoming writes (see dmu_tx_delay() for details).
116614409b5Sahrens  */
117f7170741SWill Andrews 
118614409b5Sahrens /*
11969962b56SMatthew Ahrens  * The maximum number of i/os active to each device.  Ideally, this will be >=
12069962b56SMatthew Ahrens  * the sum of each queue's max_active.  It must be at least the sum of each
12169962b56SMatthew Ahrens  * queue's min_active.
122614409b5Sahrens  */
12369962b56SMatthew Ahrens uint32_t zfs_vdev_max_active = 1000;
124614409b5Sahrens 
125c55e05cbSMatthew Ahrens /*
12669962b56SMatthew Ahrens  * Per-queue limits on the number of i/os active to each device.  If the
12769962b56SMatthew Ahrens  * sum of the queue's max_active is < zfs_vdev_max_active, then the
12869962b56SMatthew Ahrens  * min_active comes into play.  We will send min_active from each queue,
12969962b56SMatthew Ahrens  * and then select from queues in the order defined by zio_priority_t.
13069962b56SMatthew Ahrens  *
13169962b56SMatthew Ahrens  * In general, smaller max_active's will lead to lower latency of synchronous
13269962b56SMatthew Ahrens  * operations.  Larger max_active's may lead to higher overall throughput,
13369962b56SMatthew Ahrens  * depending on underlying storage.
13469962b56SMatthew Ahrens  *
13569962b56SMatthew Ahrens  * The ratio of the queues' max_actives determines the balance of performance
13669962b56SMatthew Ahrens  * between reads, writes, and scrubs.  E.g., increasing
13769962b56SMatthew Ahrens  * zfs_vdev_scrub_max_active will cause the scrub or resilver to complete
13869962b56SMatthew Ahrens  * more quickly, but reads and writes to have higher latency and lower
13969962b56SMatthew Ahrens  * throughput.
140c55e05cbSMatthew Ahrens  */
14169962b56SMatthew Ahrens uint32_t zfs_vdev_sync_read_min_active = 10;
14269962b56SMatthew Ahrens uint32_t zfs_vdev_sync_read_max_active = 10;
14369962b56SMatthew Ahrens uint32_t zfs_vdev_sync_write_min_active = 10;
14469962b56SMatthew Ahrens uint32_t zfs_vdev_sync_write_max_active = 10;
14569962b56SMatthew Ahrens uint32_t zfs_vdev_async_read_min_active = 1;
14669962b56SMatthew Ahrens uint32_t zfs_vdev_async_read_max_active = 3;
14769962b56SMatthew Ahrens uint32_t zfs_vdev_async_write_min_active = 1;
14869962b56SMatthew Ahrens uint32_t zfs_vdev_async_write_max_active = 10;
14969962b56SMatthew Ahrens uint32_t zfs_vdev_scrub_min_active = 1;
15069962b56SMatthew Ahrens uint32_t zfs_vdev_scrub_max_active = 2;
151614409b5Sahrens 
15269962b56SMatthew Ahrens /*
15369962b56SMatthew Ahrens  * When the pool has less than zfs_vdev_async_write_active_min_dirty_percent
15469962b56SMatthew Ahrens  * dirty data, use zfs_vdev_async_write_min_active.  When it has more than
15569962b56SMatthew Ahrens  * zfs_vdev_async_write_active_max_dirty_percent, use
15669962b56SMatthew Ahrens  * zfs_vdev_async_write_max_active. The value is linearly interpolated
15769962b56SMatthew Ahrens  * between min and max.
15869962b56SMatthew Ahrens  */
15969962b56SMatthew Ahrens int zfs_vdev_async_write_active_min_dirty_percent = 30;
16069962b56SMatthew Ahrens int zfs_vdev_async_write_active_max_dirty_percent = 60;
161614409b5Sahrens 
162614409b5Sahrens /*
163f94275ceSAdam Leventhal  * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O.
164f94275ceSAdam Leventhal  * For read I/Os, we also aggregate across small adjacency gaps; for writes
165f94275ceSAdam Leventhal  * we include spans of optional I/Os to aid aggregation at the disk even when
166f94275ceSAdam Leventhal  * they aren't able to help us aggregate at this level.
167614409b5Sahrens  */
168b5152584SMatthew Ahrens int zfs_vdev_aggregation_limit = SPA_OLD_MAXBLOCKSIZE;
1696f708f7cSJeff Bonwick int zfs_vdev_read_gap_limit = 32 << 10;
170f94275ceSAdam Leventhal int zfs_vdev_write_gap_limit = 4 << 10;
171614409b5Sahrens 
1720f7643c7SGeorge Wilson /*
1730f7643c7SGeorge Wilson  * Define the queue depth percentage for each top-level. This percentage is
1740f7643c7SGeorge Wilson  * used in conjunction with zfs_vdev_async_max_active to determine how many
1750f7643c7SGeorge Wilson  * allocations a specific top-level vdev should handle. Once the queue depth
1760f7643c7SGeorge Wilson  * reaches zfs_vdev_queue_depth_pct * zfs_vdev_async_write_max_active / 100
1770f7643c7SGeorge Wilson  * then allocator will stop allocating blocks on that top-level device.
1780f7643c7SGeorge Wilson  * The default kernel setting is 1000% which will yield 100 allocations per
1790f7643c7SGeorge Wilson  * device. For userland testing, the default setting is 300% which equates
1800f7643c7SGeorge Wilson  * to 30 allocations per device.
1810f7643c7SGeorge Wilson  */
1820f7643c7SGeorge Wilson #ifdef _KERNEL
1830f7643c7SGeorge Wilson int zfs_vdev_queue_depth_pct = 1000;
1840f7643c7SGeorge Wilson #else
1850f7643c7SGeorge Wilson int zfs_vdev_queue_depth_pct = 300;
1860f7643c7SGeorge Wilson #endif
1870f7643c7SGeorge Wilson 
1880f7643c7SGeorge Wilson 
189fa9e4066Sahrens int
19069962b56SMatthew Ahrens vdev_queue_offset_compare(const void *x1, const void *x2)
191fa9e4066Sahrens {
192fa9e4066Sahrens 	const zio_t *z1 = x1;
193fa9e4066Sahrens 	const zio_t *z2 = x2;
194fa9e4066Sahrens 
195fa9e4066Sahrens 	if (z1->io_offset < z2->io_offset)
196fa9e4066Sahrens 		return (-1);
197fa9e4066Sahrens 	if (z1->io_offset > z2->io_offset)
198fa9e4066Sahrens 		return (1);
199fa9e4066Sahrens 
200fa9e4066Sahrens 	if (z1 < z2)
201fa9e4066Sahrens 		return (-1);
202fa9e4066Sahrens 	if (z1 > z2)
203fa9e4066Sahrens 		return (1);
204fa9e4066Sahrens 
205fa9e4066Sahrens 	return (0);
206fa9e4066Sahrens }
207fa9e4066Sahrens 
208fe319232SJustin T. Gibbs static inline avl_tree_t *
209fe319232SJustin T. Gibbs vdev_queue_class_tree(vdev_queue_t *vq, zio_priority_t p)
210fe319232SJustin T. Gibbs {
211fe319232SJustin T. Gibbs 	return (&vq->vq_class[p].vqc_queued_tree);
212fe319232SJustin T. Gibbs }
213fe319232SJustin T. Gibbs 
214fe319232SJustin T. Gibbs static inline avl_tree_t *
215fe319232SJustin T. Gibbs vdev_queue_type_tree(vdev_queue_t *vq, zio_type_t t)
216fe319232SJustin T. Gibbs {
217fe319232SJustin T. Gibbs 	ASSERT(t == ZIO_TYPE_READ || t == ZIO_TYPE_WRITE);
218fe319232SJustin T. Gibbs 	if (t == ZIO_TYPE_READ)
219fe319232SJustin T. Gibbs 		return (&vq->vq_read_offset_tree);
220fe319232SJustin T. Gibbs 	else
221fe319232SJustin T. Gibbs 		return (&vq->vq_write_offset_tree);
222fe319232SJustin T. Gibbs }
223fe319232SJustin T. Gibbs 
224fa9e4066Sahrens int
22569962b56SMatthew Ahrens vdev_queue_timestamp_compare(const void *x1, const void *x2)
226fa9e4066Sahrens {
227fa9e4066Sahrens 	const zio_t *z1 = x1;
228fa9e4066Sahrens 	const zio_t *z2 = x2;
229fa9e4066Sahrens 
23069962b56SMatthew Ahrens 	if (z1->io_timestamp < z2->io_timestamp)
231fa9e4066Sahrens 		return (-1);
23269962b56SMatthew Ahrens 	if (z1->io_timestamp > z2->io_timestamp)
233fa9e4066Sahrens 		return (1);
234fa9e4066Sahrens 
235fa9e4066Sahrens 	if (z1 < z2)
236fa9e4066Sahrens 		return (-1);
237fa9e4066Sahrens 	if (z1 > z2)
238fa9e4066Sahrens 		return (1);
239fa9e4066Sahrens 
240fa9e4066Sahrens 	return (0);
241fa9e4066Sahrens }
242fa9e4066Sahrens 
243fa9e4066Sahrens void
244fa9e4066Sahrens vdev_queue_init(vdev_t *vd)
245fa9e4066Sahrens {
246fa9e4066Sahrens 	vdev_queue_t *vq = &vd->vdev_queue;
247fa9e4066Sahrens 
248fa9e4066Sahrens 	mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL);
24969962b56SMatthew Ahrens 	vq->vq_vdev = vd;
250fa9e4066Sahrens 
25169962b56SMatthew Ahrens 	avl_create(&vq->vq_active_tree, vdev_queue_offset_compare,
25269962b56SMatthew Ahrens 	    sizeof (zio_t), offsetof(struct zio, io_queue_node));
253fe319232SJustin T. Gibbs 	avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_READ),
254fe319232SJustin T. Gibbs 	    vdev_queue_offset_compare, sizeof (zio_t),
255fe319232SJustin T. Gibbs 	    offsetof(struct zio, io_offset_node));
256fe319232SJustin T. Gibbs 	avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE),
257fe319232SJustin T. Gibbs 	    vdev_queue_offset_compare, sizeof (zio_t),
258fe319232SJustin T. Gibbs 	    offsetof(struct zio, io_offset_node));
259fa9e4066Sahrens 
26069962b56SMatthew Ahrens 	for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
261fe319232SJustin T. Gibbs 		int (*compfn) (const void *, const void *);
262fe319232SJustin T. Gibbs 
26369962b56SMatthew Ahrens 		/*
264fe319232SJustin T. Gibbs 		 * The synchronous i/o queues are dispatched in FIFO rather
265fe319232SJustin T. Gibbs 		 * than LBA order.  This provides more consistent latency for
266fe319232SJustin T. Gibbs 		 * these i/os.
26769962b56SMatthew Ahrens 		 */
268fe319232SJustin T. Gibbs 		if (p == ZIO_PRIORITY_SYNC_READ || p == ZIO_PRIORITY_SYNC_WRITE)
269fe319232SJustin T. Gibbs 			compfn = vdev_queue_timestamp_compare;
270fe319232SJustin T. Gibbs 		else
271fe319232SJustin T. Gibbs 			compfn = vdev_queue_offset_compare;
272fe319232SJustin T. Gibbs 
273fe319232SJustin T. Gibbs 		avl_create(vdev_queue_class_tree(vq, p), compfn,
27469962b56SMatthew Ahrens 		    sizeof (zio_t), offsetof(struct zio, io_queue_node));
27569962b56SMatthew Ahrens 	}
276fa9e4066Sahrens }
277fa9e4066Sahrens 
278fa9e4066Sahrens void
279fa9e4066Sahrens vdev_queue_fini(vdev_t *vd)
280fa9e4066Sahrens {
281fa9e4066Sahrens 	vdev_queue_t *vq = &vd->vdev_queue;
282fa9e4066Sahrens 
28369962b56SMatthew Ahrens 	for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++)
284fe319232SJustin T. Gibbs 		avl_destroy(vdev_queue_class_tree(vq, p));
28569962b56SMatthew Ahrens 	avl_destroy(&vq->vq_active_tree);
286fe319232SJustin T. Gibbs 	avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_READ));
287fe319232SJustin T. Gibbs 	avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE));
288fa9e4066Sahrens 
289fa9e4066Sahrens 	mutex_destroy(&vq->vq_lock);
290fa9e4066Sahrens }
291fa9e4066Sahrens 
292ea8dc4b6Seschrock static void
293ea8dc4b6Seschrock vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio)
294ea8dc4b6Seschrock {
295c3a66015SMatthew Ahrens 	spa_t *spa = zio->io_spa;
2960f7643c7SGeorge Wilson 
29769962b56SMatthew Ahrens 	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
298fe319232SJustin T. Gibbs 	avl_add(vdev_queue_class_tree(vq, zio->io_priority), zio);
299fe319232SJustin T. Gibbs 	avl_add(vdev_queue_type_tree(vq, zio->io_type), zio);
300c3a66015SMatthew Ahrens 
30169962b56SMatthew Ahrens 	mutex_enter(&spa->spa_iokstat_lock);
30269962b56SMatthew Ahrens 	spa->spa_queue_stats[zio->io_priority].spa_queued++;
30369962b56SMatthew Ahrens 	if (spa->spa_iokstat != NULL)
304c3a66015SMatthew Ahrens 		kstat_waitq_enter(spa->spa_iokstat->ks_data);
30569962b56SMatthew Ahrens 	mutex_exit(&spa->spa_iokstat_lock);
306ea8dc4b6Seschrock }
307ea8dc4b6Seschrock 
308ea8dc4b6Seschrock static void
309ea8dc4b6Seschrock vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio)
310ea8dc4b6Seschrock {
311c3a66015SMatthew Ahrens 	spa_t *spa = zio->io_spa;
3120f7643c7SGeorge Wilson 
31369962b56SMatthew Ahrens 	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
314fe319232SJustin T. Gibbs 	avl_remove(vdev_queue_class_tree(vq, zio->io_priority), zio);
315fe319232SJustin T. Gibbs 	avl_remove(vdev_queue_type_tree(vq, zio->io_type), zio);
316c3a66015SMatthew Ahrens 
31769962b56SMatthew Ahrens 	mutex_enter(&spa->spa_iokstat_lock);
31869962b56SMatthew Ahrens 	ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_queued, >, 0);
31969962b56SMatthew Ahrens 	spa->spa_queue_stats[zio->io_priority].spa_queued--;
32069962b56SMatthew Ahrens 	if (spa->spa_iokstat != NULL)
321c3a66015SMatthew Ahrens 		kstat_waitq_exit(spa->spa_iokstat->ks_data);
32269962b56SMatthew Ahrens 	mutex_exit(&spa->spa_iokstat_lock);
323c3a66015SMatthew Ahrens }
324c3a66015SMatthew Ahrens 
325c3a66015SMatthew Ahrens static void
326c3a66015SMatthew Ahrens vdev_queue_pending_add(vdev_queue_t *vq, zio_t *zio)
327c3a66015SMatthew Ahrens {
328c3a66015SMatthew Ahrens 	spa_t *spa = zio->io_spa;
32969962b56SMatthew Ahrens 	ASSERT(MUTEX_HELD(&vq->vq_lock));
33069962b56SMatthew Ahrens 	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
33169962b56SMatthew Ahrens 	vq->vq_class[zio->io_priority].vqc_active++;
33269962b56SMatthew Ahrens 	avl_add(&vq->vq_active_tree, zio);
33369962b56SMatthew Ahrens 
33469962b56SMatthew Ahrens 	mutex_enter(&spa->spa_iokstat_lock);
33569962b56SMatthew Ahrens 	spa->spa_queue_stats[zio->io_priority].spa_active++;
33669962b56SMatthew Ahrens 	if (spa->spa_iokstat != NULL)
337c3a66015SMatthew Ahrens 		kstat_runq_enter(spa->spa_iokstat->ks_data);
33869962b56SMatthew Ahrens 	mutex_exit(&spa->spa_iokstat_lock);
339c3a66015SMatthew Ahrens }
340c3a66015SMatthew Ahrens 
341c3a66015SMatthew Ahrens static void
342c3a66015SMatthew Ahrens vdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio)
343c3a66015SMatthew Ahrens {
344c3a66015SMatthew Ahrens 	spa_t *spa = zio->io_spa;
34569962b56SMatthew Ahrens 	ASSERT(MUTEX_HELD(&vq->vq_lock));
34669962b56SMatthew Ahrens 	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
34769962b56SMatthew Ahrens 	vq->vq_class[zio->io_priority].vqc_active--;
34869962b56SMatthew Ahrens 	avl_remove(&vq->vq_active_tree, zio);
34969962b56SMatthew Ahrens 
35069962b56SMatthew Ahrens 	mutex_enter(&spa->spa_iokstat_lock);
35169962b56SMatthew Ahrens 	ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_active, >, 0);
35269962b56SMatthew Ahrens 	spa->spa_queue_stats[zio->io_priority].spa_active--;
353c3a66015SMatthew Ahrens 	if (spa->spa_iokstat != NULL) {
354c3a66015SMatthew Ahrens 		kstat_io_t *ksio = spa->spa_iokstat->ks_data;
355c3a66015SMatthew Ahrens 
356c3a66015SMatthew Ahrens 		kstat_runq_exit(spa->spa_iokstat->ks_data);
357c3a66015SMatthew Ahrens 		if (zio->io_type == ZIO_TYPE_READ) {
358c3a66015SMatthew Ahrens 			ksio->reads++;
359c3a66015SMatthew Ahrens 			ksio->nread += zio->io_size;
360c3a66015SMatthew Ahrens 		} else if (zio->io_type == ZIO_TYPE_WRITE) {
361c3a66015SMatthew Ahrens 			ksio->writes++;
362c3a66015SMatthew Ahrens 			ksio->nwritten += zio->io_size;
363c3a66015SMatthew Ahrens 		}
364c3a66015SMatthew Ahrens 	}
36569962b56SMatthew Ahrens 	mutex_exit(&spa->spa_iokstat_lock);
366ea8dc4b6Seschrock }
367ea8dc4b6Seschrock 
368fa9e4066Sahrens static void
369fa9e4066Sahrens vdev_queue_agg_io_done(zio_t *aio)
370fa9e4066Sahrens {
37169962b56SMatthew Ahrens 	if (aio->io_type == ZIO_TYPE_READ) {
37269962b56SMatthew Ahrens 		zio_t *pio;
3730f7643c7SGeorge Wilson 		zio_link_t *zl = NULL;
3740f7643c7SGeorge Wilson 		while ((pio = zio_walk_parents(aio, &zl)) != NULL) {
375770499e1SDan Kimmel 			abd_copy_off(pio->io_abd, aio->io_abd,
376770499e1SDan Kimmel 			    0, pio->io_offset - aio->io_offset, pio->io_size);
37769962b56SMatthew Ahrens 		}
37869962b56SMatthew Ahrens 	}
379fa9e4066Sahrens 
380770499e1SDan Kimmel 	abd_free(aio->io_abd);
381fa9e4066Sahrens }
382fa9e4066Sahrens 
38369962b56SMatthew Ahrens static int
38469962b56SMatthew Ahrens vdev_queue_class_min_active(zio_priority_t p)
38569962b56SMatthew Ahrens {
38669962b56SMatthew Ahrens 	switch (p) {
38769962b56SMatthew Ahrens 	case ZIO_PRIORITY_SYNC_READ:
38869962b56SMatthew Ahrens 		return (zfs_vdev_sync_read_min_active);
38969962b56SMatthew Ahrens 	case ZIO_PRIORITY_SYNC_WRITE:
39069962b56SMatthew Ahrens 		return (zfs_vdev_sync_write_min_active);
39169962b56SMatthew Ahrens 	case ZIO_PRIORITY_ASYNC_READ:
39269962b56SMatthew Ahrens 		return (zfs_vdev_async_read_min_active);
39369962b56SMatthew Ahrens 	case ZIO_PRIORITY_ASYNC_WRITE:
39469962b56SMatthew Ahrens 		return (zfs_vdev_async_write_min_active);
39569962b56SMatthew Ahrens 	case ZIO_PRIORITY_SCRUB:
39669962b56SMatthew Ahrens 		return (zfs_vdev_scrub_min_active);
39769962b56SMatthew Ahrens 	default:
39869962b56SMatthew Ahrens 		panic("invalid priority %u", p);
39969962b56SMatthew Ahrens 		return (0);
40069962b56SMatthew Ahrens 	}
40169962b56SMatthew Ahrens }
40269962b56SMatthew Ahrens 
40369962b56SMatthew Ahrens static int
40473527f44SAlex Reece vdev_queue_max_async_writes(spa_t *spa)
40569962b56SMatthew Ahrens {
40669962b56SMatthew Ahrens 	int writes;
40773527f44SAlex Reece 	uint64_t dirty = spa->spa_dsl_pool->dp_dirty_total;
40869962b56SMatthew Ahrens 	uint64_t min_bytes = zfs_dirty_data_max *
40969962b56SMatthew Ahrens 	    zfs_vdev_async_write_active_min_dirty_percent / 100;
41069962b56SMatthew Ahrens 	uint64_t max_bytes = zfs_dirty_data_max *
41169962b56SMatthew Ahrens 	    zfs_vdev_async_write_active_max_dirty_percent / 100;
41269962b56SMatthew Ahrens 
41373527f44SAlex Reece 	/*
41473527f44SAlex Reece 	 * Sync tasks correspond to interactive user actions. To reduce the
41573527f44SAlex Reece 	 * execution time of those actions we push data out as fast as possible.
41673527f44SAlex Reece 	 */
41773527f44SAlex Reece 	if (spa_has_pending_synctask(spa)) {
41873527f44SAlex Reece 		return (zfs_vdev_async_write_max_active);
41973527f44SAlex Reece 	}
42073527f44SAlex Reece 
42169962b56SMatthew Ahrens 	if (dirty < min_bytes)
42269962b56SMatthew Ahrens 		return (zfs_vdev_async_write_min_active);
42369962b56SMatthew Ahrens 	if (dirty > max_bytes)
42469962b56SMatthew Ahrens 		return (zfs_vdev_async_write_max_active);
42569962b56SMatthew Ahrens 
42669962b56SMatthew Ahrens 	/*
42769962b56SMatthew Ahrens 	 * linear interpolation:
42869962b56SMatthew Ahrens 	 * slope = (max_writes - min_writes) / (max_bytes - min_bytes)
42969962b56SMatthew Ahrens 	 * move right by min_bytes
43069962b56SMatthew Ahrens 	 * move up by min_writes
43169962b56SMatthew Ahrens 	 */
43269962b56SMatthew Ahrens 	writes = (dirty - min_bytes) *
43369962b56SMatthew Ahrens 	    (zfs_vdev_async_write_max_active -
43469962b56SMatthew Ahrens 	    zfs_vdev_async_write_min_active) /
43569962b56SMatthew Ahrens 	    (max_bytes - min_bytes) +
43669962b56SMatthew Ahrens 	    zfs_vdev_async_write_min_active;
43769962b56SMatthew Ahrens 	ASSERT3U(writes, >=, zfs_vdev_async_write_min_active);
43869962b56SMatthew Ahrens 	ASSERT3U(writes, <=, zfs_vdev_async_write_max_active);
43969962b56SMatthew Ahrens 	return (writes);
44069962b56SMatthew Ahrens }
44169962b56SMatthew Ahrens 
44269962b56SMatthew Ahrens static int
44369962b56SMatthew Ahrens vdev_queue_class_max_active(spa_t *spa, zio_priority_t p)
44469962b56SMatthew Ahrens {
44569962b56SMatthew Ahrens 	switch (p) {
44669962b56SMatthew Ahrens 	case ZIO_PRIORITY_SYNC_READ:
44769962b56SMatthew Ahrens 		return (zfs_vdev_sync_read_max_active);
44869962b56SMatthew Ahrens 	case ZIO_PRIORITY_SYNC_WRITE:
44969962b56SMatthew Ahrens 		return (zfs_vdev_sync_write_max_active);
45069962b56SMatthew Ahrens 	case ZIO_PRIORITY_ASYNC_READ:
45169962b56SMatthew Ahrens 		return (zfs_vdev_async_read_max_active);
45269962b56SMatthew Ahrens 	case ZIO_PRIORITY_ASYNC_WRITE:
45373527f44SAlex Reece 		return (vdev_queue_max_async_writes(spa));
45469962b56SMatthew Ahrens 	case ZIO_PRIORITY_SCRUB:
45569962b56SMatthew Ahrens 		return (zfs_vdev_scrub_max_active);
45669962b56SMatthew Ahrens 	default:
45769962b56SMatthew Ahrens 		panic("invalid priority %u", p);
45869962b56SMatthew Ahrens 		return (0);
45969962b56SMatthew Ahrens 	}
46069962b56SMatthew Ahrens }
46169962b56SMatthew Ahrens 
46269962b56SMatthew Ahrens /*
46369962b56SMatthew Ahrens  * Return the i/o class to issue from, or ZIO_PRIORITY_MAX_QUEUEABLE if
46469962b56SMatthew Ahrens  * there is no eligible class.
46569962b56SMatthew Ahrens  */
46669962b56SMatthew Ahrens static zio_priority_t
46769962b56SMatthew Ahrens vdev_queue_class_to_issue(vdev_queue_t *vq)
46869962b56SMatthew Ahrens {
46969962b56SMatthew Ahrens 	spa_t *spa = vq->vq_vdev->vdev_spa;
47069962b56SMatthew Ahrens 	zio_priority_t p;
47169962b56SMatthew Ahrens 
47269962b56SMatthew Ahrens 	if (avl_numnodes(&vq->vq_active_tree) >= zfs_vdev_max_active)
47369962b56SMatthew Ahrens 		return (ZIO_PRIORITY_NUM_QUEUEABLE);
47469962b56SMatthew Ahrens 
47569962b56SMatthew Ahrens 	/* find a queue that has not reached its minimum # outstanding i/os */
47669962b56SMatthew Ahrens 	for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
477fe319232SJustin T. Gibbs 		if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 &&
47869962b56SMatthew Ahrens 		    vq->vq_class[p].vqc_active <
47969962b56SMatthew Ahrens 		    vdev_queue_class_min_active(p))
48069962b56SMatthew Ahrens 			return (p);
48169962b56SMatthew Ahrens 	}
48269962b56SMatthew Ahrens 
48369962b56SMatthew Ahrens 	/*
48469962b56SMatthew Ahrens 	 * If we haven't found a queue, look for one that hasn't reached its
48569962b56SMatthew Ahrens 	 * maximum # outstanding i/os.
48669962b56SMatthew Ahrens 	 */
48769962b56SMatthew Ahrens 	for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
488fe319232SJustin T. Gibbs 		if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 &&
48969962b56SMatthew Ahrens 		    vq->vq_class[p].vqc_active <
49069962b56SMatthew Ahrens 		    vdev_queue_class_max_active(spa, p))
49169962b56SMatthew Ahrens 			return (p);
49269962b56SMatthew Ahrens 	}
49369962b56SMatthew Ahrens 
49469962b56SMatthew Ahrens 	/* No eligible queued i/os */
49569962b56SMatthew Ahrens 	return (ZIO_PRIORITY_NUM_QUEUEABLE);
49669962b56SMatthew Ahrens }
49769962b56SMatthew Ahrens 
4986f708f7cSJeff Bonwick /*
4996f708f7cSJeff Bonwick  * Compute the range spanned by two i/os, which is the endpoint of the last
5006f708f7cSJeff Bonwick  * (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset).
5016f708f7cSJeff Bonwick  * Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio);
5026f708f7cSJeff Bonwick  * thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0.
5036f708f7cSJeff Bonwick  */
5046f708f7cSJeff Bonwick #define	IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset)
5056f708f7cSJeff Bonwick #define	IO_GAP(fio, lio) (-IO_SPAN(lio, fio))
506fa9e4066Sahrens 
507fa9e4066Sahrens static zio_t *
50869962b56SMatthew Ahrens vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio)
509fa9e4066Sahrens {
51069962b56SMatthew Ahrens 	zio_t *first, *last, *aio, *dio, *mandatory, *nio;
51169962b56SMatthew Ahrens 	uint64_t maxgap = 0;
51269962b56SMatthew Ahrens 	uint64_t size;
51369962b56SMatthew Ahrens 	boolean_t stretch = B_FALSE;
514fe319232SJustin T. Gibbs 	avl_tree_t *t = vdev_queue_type_tree(vq, zio->io_type);
51569962b56SMatthew Ahrens 	enum zio_flag flags = zio->io_flags & ZIO_FLAG_AGG_INHERIT;
51669962b56SMatthew Ahrens 
51769962b56SMatthew Ahrens 	if (zio->io_flags & ZIO_FLAG_DONT_AGGREGATE)
51869962b56SMatthew Ahrens 		return (NULL);
519fa9e4066Sahrens 
52069962b56SMatthew Ahrens 	first = last = zio;
521fa9e4066Sahrens 
52269962b56SMatthew Ahrens 	if (zio->io_type == ZIO_TYPE_READ)
52369962b56SMatthew Ahrens 		maxgap = zfs_vdev_read_gap_limit;
5248ad4d6ddSJeff Bonwick 
52569962b56SMatthew Ahrens 	/*
52669962b56SMatthew Ahrens 	 * We can aggregate I/Os that are sufficiently adjacent and of
52769962b56SMatthew Ahrens 	 * the same flavor, as expressed by the AGG_INHERIT flags.
52869962b56SMatthew Ahrens 	 * The latter requirement is necessary so that certain
52969962b56SMatthew Ahrens 	 * attributes of the I/O, such as whether it's a normal I/O
53069962b56SMatthew Ahrens 	 * or a scrub/resilver, can be preserved in the aggregate.
53169962b56SMatthew Ahrens 	 * We can include optional I/Os, but don't allow them
53269962b56SMatthew Ahrens 	 * to begin a range as they add no benefit in that situation.
53369962b56SMatthew Ahrens 	 */
534f94275ceSAdam Leventhal 
53569962b56SMatthew Ahrens 	/*
53669962b56SMatthew Ahrens 	 * We keep track of the last non-optional I/O.
53769962b56SMatthew Ahrens 	 */
53869962b56SMatthew Ahrens 	mandatory = (first->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : first;
539f94275ceSAdam Leventhal 
54069962b56SMatthew Ahrens 	/*
54169962b56SMatthew Ahrens 	 * Walk backwards through sufficiently contiguous I/Os
542*5b062782SMatthew Ahrens 	 * recording the last non-optional I/O.
54369962b56SMatthew Ahrens 	 */
54469962b56SMatthew Ahrens 	while ((dio = AVL_PREV(t, first)) != NULL &&
54569962b56SMatthew Ahrens 	    (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
54669962b56SMatthew Ahrens 	    IO_SPAN(dio, last) <= zfs_vdev_aggregation_limit &&
54769962b56SMatthew Ahrens 	    IO_GAP(dio, first) <= maxgap) {
54869962b56SMatthew Ahrens 		first = dio;
54969962b56SMatthew Ahrens 		if (mandatory == NULL && !(first->io_flags & ZIO_FLAG_OPTIONAL))
55069962b56SMatthew Ahrens 			mandatory = first;
55169962b56SMatthew Ahrens 	}
552f94275ceSAdam Leventhal 
55369962b56SMatthew Ahrens 	/*
55469962b56SMatthew Ahrens 	 * Skip any initial optional I/Os.
55569962b56SMatthew Ahrens 	 */
55669962b56SMatthew Ahrens 	while ((first->io_flags & ZIO_FLAG_OPTIONAL) && first != last) {
55769962b56SMatthew Ahrens 		first = AVL_NEXT(t, first);
55869962b56SMatthew Ahrens 		ASSERT(first != NULL);
55969962b56SMatthew Ahrens 	}
5606f708f7cSJeff Bonwick 
56169962b56SMatthew Ahrens 	/*
56269962b56SMatthew Ahrens 	 * Walk forward through sufficiently contiguous I/Os.
563*5b062782SMatthew Ahrens 	 * The aggregation limit does not apply to optional i/os, so that
564*5b062782SMatthew Ahrens 	 * we can issue contiguous writes even if they are larger than the
565*5b062782SMatthew Ahrens 	 * aggregation limit.
56669962b56SMatthew Ahrens 	 */
56769962b56SMatthew Ahrens 	while ((dio = AVL_NEXT(t, last)) != NULL &&
56869962b56SMatthew Ahrens 	    (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
569*5b062782SMatthew Ahrens 	    (IO_SPAN(first, dio) <= zfs_vdev_aggregation_limit ||
570*5b062782SMatthew Ahrens 	    (dio->io_flags & ZIO_FLAG_OPTIONAL)) &&
57169962b56SMatthew Ahrens 	    IO_GAP(last, dio) <= maxgap) {
57269962b56SMatthew Ahrens 		last = dio;
57369962b56SMatthew Ahrens 		if (!(last->io_flags & ZIO_FLAG_OPTIONAL))
57469962b56SMatthew Ahrens 			mandatory = last;
57569962b56SMatthew Ahrens 	}
576f94275ceSAdam Leventhal 
57769962b56SMatthew Ahrens 	/*
57869962b56SMatthew Ahrens 	 * Now that we've established the range of the I/O aggregation
57969962b56SMatthew Ahrens 	 * we must decide what to do with trailing optional I/Os.
58069962b56SMatthew Ahrens 	 * For reads, there's nothing to do. While we are unable to
58169962b56SMatthew Ahrens 	 * aggregate further, it's possible that a trailing optional
58269962b56SMatthew Ahrens 	 * I/O would allow the underlying device to aggregate with
58369962b56SMatthew Ahrens 	 * subsequent I/Os. We must therefore determine if the next
58469962b56SMatthew Ahrens 	 * non-optional I/O is close enough to make aggregation
58569962b56SMatthew Ahrens 	 * worthwhile.
58669962b56SMatthew Ahrens 	 */
58769962b56SMatthew Ahrens 	if (zio->io_type == ZIO_TYPE_WRITE && mandatory != NULL) {
58869962b56SMatthew Ahrens 		zio_t *nio = last;
58969962b56SMatthew Ahrens 		while ((dio = AVL_NEXT(t, nio)) != NULL &&
59069962b56SMatthew Ahrens 		    IO_GAP(nio, dio) == 0 &&
59169962b56SMatthew Ahrens 		    IO_GAP(mandatory, dio) <= zfs_vdev_write_gap_limit) {
59269962b56SMatthew Ahrens 			nio = dio;
59369962b56SMatthew Ahrens 			if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) {
59469962b56SMatthew Ahrens 				stretch = B_TRUE;
59569962b56SMatthew Ahrens 				break;
596f94275ceSAdam Leventhal 			}
597f94275ceSAdam Leventhal 		}
59869962b56SMatthew Ahrens 	}
599f94275ceSAdam Leventhal 
60069962b56SMatthew Ahrens 	if (stretch) {
601*5b062782SMatthew Ahrens 		/*
602*5b062782SMatthew Ahrens 		 * We are going to include an optional io in our aggregated
603*5b062782SMatthew Ahrens 		 * span, thus closing the write gap.  Only mandatory i/os can
604*5b062782SMatthew Ahrens 		 * start aggregated spans, so make sure that the next i/o
605*5b062782SMatthew Ahrens 		 * after our span is mandatory.
606*5b062782SMatthew Ahrens 		 */
60769962b56SMatthew Ahrens 		dio = AVL_NEXT(t, last);
60869962b56SMatthew Ahrens 		dio->io_flags &= ~ZIO_FLAG_OPTIONAL;
60969962b56SMatthew Ahrens 	} else {
610*5b062782SMatthew Ahrens 		/* do not include the optional i/o */
61169962b56SMatthew Ahrens 		while (last != mandatory && last != first) {
61269962b56SMatthew Ahrens 			ASSERT(last->io_flags & ZIO_FLAG_OPTIONAL);
61369962b56SMatthew Ahrens 			last = AVL_PREV(t, last);
61469962b56SMatthew Ahrens 			ASSERT(last != NULL);
615f94275ceSAdam Leventhal 		}
616fa9e4066Sahrens 	}
617fa9e4066Sahrens 
61869962b56SMatthew Ahrens 	if (first == last)
61969962b56SMatthew Ahrens 		return (NULL);
62069962b56SMatthew Ahrens 
62169962b56SMatthew Ahrens 	size = IO_SPAN(first, last);
622*5b062782SMatthew Ahrens 	ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
62369962b56SMatthew Ahrens 
62469962b56SMatthew Ahrens 	aio = zio_vdev_delegated_io(first->io_vd, first->io_offset,
625770499e1SDan Kimmel 	    abd_alloc_for_io(size, B_TRUE), size, first->io_type,
626770499e1SDan Kimmel 	    zio->io_priority, flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE,
62769962b56SMatthew Ahrens 	    vdev_queue_agg_io_done, NULL);
62869962b56SMatthew Ahrens 	aio->io_timestamp = first->io_timestamp;
62969962b56SMatthew Ahrens 
63069962b56SMatthew Ahrens 	nio = first;
63169962b56SMatthew Ahrens 	do {
63269962b56SMatthew Ahrens 		dio = nio;
63369962b56SMatthew Ahrens 		nio = AVL_NEXT(t, dio);
63469962b56SMatthew Ahrens 		ASSERT3U(dio->io_type, ==, aio->io_type);
63569962b56SMatthew Ahrens 
63669962b56SMatthew Ahrens 		if (dio->io_flags & ZIO_FLAG_NODATA) {
63769962b56SMatthew Ahrens 			ASSERT3U(dio->io_type, ==, ZIO_TYPE_WRITE);
638770499e1SDan Kimmel 			abd_zero_off(aio->io_abd,
639770499e1SDan Kimmel 			    dio->io_offset - aio->io_offset, dio->io_size);
64069962b56SMatthew Ahrens 		} else if (dio->io_type == ZIO_TYPE_WRITE) {
641770499e1SDan Kimmel 			abd_copy_off(aio->io_abd, dio->io_abd,
642770499e1SDan Kimmel 			    dio->io_offset - aio->io_offset, 0, dio->io_size);
64369962b56SMatthew Ahrens 		}
644a3f829aeSBill Moore 
64569962b56SMatthew Ahrens 		zio_add_child(dio, aio);
64669962b56SMatthew Ahrens 		vdev_queue_io_remove(vq, dio);
64769962b56SMatthew Ahrens 		zio_vdev_io_bypass(dio);
64869962b56SMatthew Ahrens 		zio_execute(dio);
64969962b56SMatthew Ahrens 	} while (dio != last);
65069962b56SMatthew Ahrens 
65169962b56SMatthew Ahrens 	return (aio);
65269962b56SMatthew Ahrens }
65369962b56SMatthew Ahrens 
65469962b56SMatthew Ahrens static zio_t *
65569962b56SMatthew Ahrens vdev_queue_io_to_issue(vdev_queue_t *vq)
65669962b56SMatthew Ahrens {
65769962b56SMatthew Ahrens 	zio_t *zio, *aio;
65869962b56SMatthew Ahrens 	zio_priority_t p;
65969962b56SMatthew Ahrens 	avl_index_t idx;
660fe319232SJustin T. Gibbs 	avl_tree_t *tree;
66169962b56SMatthew Ahrens 	zio_t search;
66269962b56SMatthew Ahrens 
66369962b56SMatthew Ahrens again:
66469962b56SMatthew Ahrens 	ASSERT(MUTEX_HELD(&vq->vq_lock));
665fa9e4066Sahrens 
66669962b56SMatthew Ahrens 	p = vdev_queue_class_to_issue(vq);
667fa9e4066Sahrens 
66869962b56SMatthew Ahrens 	if (p == ZIO_PRIORITY_NUM_QUEUEABLE) {
66969962b56SMatthew Ahrens 		/* No eligible queued i/os */
67069962b56SMatthew Ahrens 		return (NULL);
671fa9e4066Sahrens 	}
672fa9e4066Sahrens 
67369962b56SMatthew Ahrens 	/*
67469962b56SMatthew Ahrens 	 * For LBA-ordered queues (async / scrub), issue the i/o which follows
67569962b56SMatthew Ahrens 	 * the most recently issued i/o in LBA (offset) order.
67669962b56SMatthew Ahrens 	 *
67769962b56SMatthew Ahrens 	 * For FIFO queues (sync), issue the i/o with the lowest timestamp.
67869962b56SMatthew Ahrens 	 */
679fe319232SJustin T. Gibbs 	tree = vdev_queue_class_tree(vq, p);
68069962b56SMatthew Ahrens 	search.io_timestamp = 0;
68169962b56SMatthew Ahrens 	search.io_offset = vq->vq_last_offset + 1;
682fe319232SJustin T. Gibbs 	VERIFY3P(avl_find(tree, &search, &idx), ==, NULL);
683fe319232SJustin T. Gibbs 	zio = avl_nearest(tree, idx, AVL_AFTER);
68469962b56SMatthew Ahrens 	if (zio == NULL)
685fe319232SJustin T. Gibbs 		zio = avl_first(tree);
68669962b56SMatthew Ahrens 	ASSERT3U(zio->io_priority, ==, p);
68769962b56SMatthew Ahrens 
68869962b56SMatthew Ahrens 	aio = vdev_queue_aggregate(vq, zio);
68969962b56SMatthew Ahrens 	if (aio != NULL)
69069962b56SMatthew Ahrens 		zio = aio;
69169962b56SMatthew Ahrens 	else
69269962b56SMatthew Ahrens 		vdev_queue_io_remove(vq, zio);
693fa9e4066Sahrens 
694f94275ceSAdam Leventhal 	/*
695f94275ceSAdam Leventhal 	 * If the I/O is or was optional and therefore has no data, we need to
696f94275ceSAdam Leventhal 	 * simply discard it. We need to drop the vdev queue's lock to avoid a
697f94275ceSAdam Leventhal 	 * deadlock that we could encounter since this I/O will complete
698f94275ceSAdam Leventhal 	 * immediately.
699f94275ceSAdam Leventhal 	 */
70069962b56SMatthew Ahrens 	if (zio->io_flags & ZIO_FLAG_NODATA) {
701f94275ceSAdam Leventhal 		mutex_exit(&vq->vq_lock);
70269962b56SMatthew Ahrens 		zio_vdev_io_bypass(zio);
70369962b56SMatthew Ahrens 		zio_execute(zio);
704f94275ceSAdam Leventhal 		mutex_enter(&vq->vq_lock);
705f94275ceSAdam Leventhal 		goto again;
706f94275ceSAdam Leventhal 	}
707f94275ceSAdam Leventhal 
70869962b56SMatthew Ahrens 	vdev_queue_pending_add(vq, zio);
70969962b56SMatthew Ahrens 	vq->vq_last_offset = zio->io_offset;
710fa9e4066Sahrens 
71169962b56SMatthew Ahrens 	return (zio);
712fa9e4066Sahrens }
713fa9e4066Sahrens 
714fa9e4066Sahrens zio_t *
715fa9e4066Sahrens vdev_queue_io(zio_t *zio)
716fa9e4066Sahrens {
717fa9e4066Sahrens 	vdev_queue_t *vq = &zio->io_vd->vdev_queue;
718fa9e4066Sahrens 	zio_t *nio;
719fa9e4066Sahrens 
720fa9e4066Sahrens 	if (zio->io_flags & ZIO_FLAG_DONT_QUEUE)
721fa9e4066Sahrens 		return (zio);
722fa9e4066Sahrens 
72369962b56SMatthew Ahrens 	/*
72469962b56SMatthew Ahrens 	 * Children i/os inherent their parent's priority, which might
72569962b56SMatthew Ahrens 	 * not match the child's i/o type.  Fix it up here.
72669962b56SMatthew Ahrens 	 */
72769962b56SMatthew Ahrens 	if (zio->io_type == ZIO_TYPE_READ) {
72869962b56SMatthew Ahrens 		if (zio->io_priority != ZIO_PRIORITY_SYNC_READ &&
72969962b56SMatthew Ahrens 		    zio->io_priority != ZIO_PRIORITY_ASYNC_READ &&
73069962b56SMatthew Ahrens 		    zio->io_priority != ZIO_PRIORITY_SCRUB)
73169962b56SMatthew Ahrens 			zio->io_priority = ZIO_PRIORITY_ASYNC_READ;
73269962b56SMatthew Ahrens 	} else {
73369962b56SMatthew Ahrens 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
73469962b56SMatthew Ahrens 		if (zio->io_priority != ZIO_PRIORITY_SYNC_WRITE &&
73569962b56SMatthew Ahrens 		    zio->io_priority != ZIO_PRIORITY_ASYNC_WRITE)
73669962b56SMatthew Ahrens 			zio->io_priority = ZIO_PRIORITY_ASYNC_WRITE;
73769962b56SMatthew Ahrens 	}
738fa9e4066Sahrens 
73969962b56SMatthew Ahrens 	zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE;
740fa9e4066Sahrens 
741fa9e4066Sahrens 	mutex_enter(&vq->vq_lock);
742c55e05cbSMatthew Ahrens 	zio->io_timestamp = gethrtime();
743ea8dc4b6Seschrock 	vdev_queue_io_add(vq, zio);
74469962b56SMatthew Ahrens 	nio = vdev_queue_io_to_issue(vq);
745fa9e4066Sahrens 	mutex_exit(&vq->vq_lock);
746fa9e4066Sahrens 
747e05725b1Sbonwick 	if (nio == NULL)
748e05725b1Sbonwick 		return (NULL);
749e05725b1Sbonwick 
750e05725b1Sbonwick 	if (nio->io_done == vdev_queue_agg_io_done) {
751e05725b1Sbonwick 		zio_nowait(nio);
752e05725b1Sbonwick 		return (NULL);
753e05725b1Sbonwick 	}
754fa9e4066Sahrens 
755e05725b1Sbonwick 	return (nio);
756fa9e4066Sahrens }
757fa9e4066Sahrens 
758fa9e4066Sahrens void
759fa9e4066Sahrens vdev_queue_io_done(zio_t *zio)
760fa9e4066Sahrens {
761fa9e4066Sahrens 	vdev_queue_t *vq = &zio->io_vd->vdev_queue;
76269962b56SMatthew Ahrens 	zio_t *nio;
763fa9e4066Sahrens 
764fa9e4066Sahrens 	mutex_enter(&vq->vq_lock);
765fa9e4066Sahrens 
766c3a66015SMatthew Ahrens 	vdev_queue_pending_remove(vq, zio);
767fa9e4066Sahrens 
768c55e05cbSMatthew Ahrens 	vq->vq_io_complete_ts = gethrtime();
769283b8460SGeorge.Wilson 
77069962b56SMatthew Ahrens 	while ((nio = vdev_queue_io_to_issue(vq)) != NULL) {
771fa9e4066Sahrens 		mutex_exit(&vq->vq_lock);
772e05725b1Sbonwick 		if (nio->io_done == vdev_queue_agg_io_done) {
773e05725b1Sbonwick 			zio_nowait(nio);
774e05725b1Sbonwick 		} else {
775fa9e4066Sahrens 			zio_vdev_io_reissue(nio);
776e05725b1Sbonwick 			zio_execute(nio);
777e05725b1Sbonwick 		}
778fa9e4066Sahrens 		mutex_enter(&vq->vq_lock);
779fa9e4066Sahrens 	}
780fa9e4066Sahrens 
781fa9e4066Sahrens 	mutex_exit(&vq->vq_lock);
782fa9e4066Sahrens }
783