xref: /illumos-gate/usr/src/uts/common/fs/zfs/vdev.c (revision 663207ad)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25  * Copyright 2017 Nexenta Systems, Inc.
26  * Copyright (c) 2014 Integros [integros.com]
27  * Copyright 2016 Toomas Soome <tsoome@me.com>
28  * Copyright 2017 Joyent, Inc.
29  * Copyright (c) 2017, Intel Corporation.
30  */
31 
32 #include <sys/zfs_context.h>
33 #include <sys/fm/fs/zfs.h>
34 #include <sys/spa.h>
35 #include <sys/spa_impl.h>
36 #include <sys/bpobj.h>
37 #include <sys/dmu.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/dsl_dir.h>
40 #include <sys/vdev_impl.h>
41 #include <sys/uberblock_impl.h>
42 #include <sys/metaslab.h>
43 #include <sys/metaslab_impl.h>
44 #include <sys/space_map.h>
45 #include <sys/space_reftree.h>
46 #include <sys/zio.h>
47 #include <sys/zap.h>
48 #include <sys/fs/zfs.h>
49 #include <sys/arc.h>
50 #include <sys/zil.h>
51 #include <sys/dsl_scan.h>
52 #include <sys/abd.h>
53 #include <sys/vdev_initialize.h>
54 
55 /*
56  * Virtual device management.
57  */
58 
59 static vdev_ops_t *vdev_ops_table[] = {
60 	&vdev_root_ops,
61 	&vdev_raidz_ops,
62 	&vdev_mirror_ops,
63 	&vdev_replacing_ops,
64 	&vdev_spare_ops,
65 	&vdev_disk_ops,
66 	&vdev_file_ops,
67 	&vdev_missing_ops,
68 	&vdev_hole_ops,
69 	&vdev_indirect_ops,
70 	NULL
71 };
72 
73 /* maximum scrub/resilver I/O queue per leaf vdev */
74 int zfs_scrub_limit = 10;
75 
76 /* default target for number of metaslabs per top-level vdev */
77 int zfs_vdev_default_ms_count = 200;
78 
79 /* minimum number of metaslabs per top-level vdev */
80 int zfs_vdev_min_ms_count = 16;
81 
82 /* practical upper limit of total metaslabs per top-level vdev */
83 int zfs_vdev_ms_count_limit = 1ULL << 17;
84 
85 /* lower limit for metaslab size (512M) */
86 int zfs_vdev_default_ms_shift = 29;
87 
88 /* upper limit for metaslab size (16G) */
89 int zfs_vdev_max_ms_shift = 34;
90 
91 boolean_t vdev_validate_skip = B_FALSE;
92 
93 /*
94  * Since the DTL space map of a vdev is not expected to have a lot of
95  * entries, we default its block size to 4K.
96  */
97 int vdev_dtl_sm_blksz = (1 << 12);
98 
99 /*
100  * vdev-wide space maps that have lots of entries written to them at
101  * the end of each transaction can benefit from a higher I/O bandwidth
102  * (e.g. vdev_obsolete_sm), thus we default their block size to 128K.
103  */
104 int vdev_standard_sm_blksz = (1 << 17);
105 
106 int zfs_ashift_min;
107 
108 /*PRINTFLIKE2*/
109 void
110 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
111 {
112 	va_list adx;
113 	char buf[256];
114 
115 	va_start(adx, fmt);
116 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
117 	va_end(adx);
118 
119 	if (vd->vdev_path != NULL) {
120 		zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
121 		    vd->vdev_path, buf);
122 	} else {
123 		zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
124 		    vd->vdev_ops->vdev_op_type,
125 		    (u_longlong_t)vd->vdev_id,
126 		    (u_longlong_t)vd->vdev_guid, buf);
127 	}
128 }
129 
130 void
131 vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
132 {
133 	char state[20];
134 
135 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
136 		zfs_dbgmsg("%*svdev %u: %s", indent, "", vd->vdev_id,
137 		    vd->vdev_ops->vdev_op_type);
138 		return;
139 	}
140 
141 	switch (vd->vdev_state) {
142 	case VDEV_STATE_UNKNOWN:
143 		(void) snprintf(state, sizeof (state), "unknown");
144 		break;
145 	case VDEV_STATE_CLOSED:
146 		(void) snprintf(state, sizeof (state), "closed");
147 		break;
148 	case VDEV_STATE_OFFLINE:
149 		(void) snprintf(state, sizeof (state), "offline");
150 		break;
151 	case VDEV_STATE_REMOVED:
152 		(void) snprintf(state, sizeof (state), "removed");
153 		break;
154 	case VDEV_STATE_CANT_OPEN:
155 		(void) snprintf(state, sizeof (state), "can't open");
156 		break;
157 	case VDEV_STATE_FAULTED:
158 		(void) snprintf(state, sizeof (state), "faulted");
159 		break;
160 	case VDEV_STATE_DEGRADED:
161 		(void) snprintf(state, sizeof (state), "degraded");
162 		break;
163 	case VDEV_STATE_HEALTHY:
164 		(void) snprintf(state, sizeof (state), "healthy");
165 		break;
166 	default:
167 		(void) snprintf(state, sizeof (state), "<state %u>",
168 		    (uint_t)vd->vdev_state);
169 	}
170 
171 	zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
172 	    "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type,
173 	    vd->vdev_islog ? " (log)" : "",
174 	    (u_longlong_t)vd->vdev_guid,
175 	    vd->vdev_path ? vd->vdev_path : "N/A", state);
176 
177 	for (uint64_t i = 0; i < vd->vdev_children; i++)
178 		vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
179 }
180 
181 /*
182  * Given a vdev type, return the appropriate ops vector.
183  */
184 static vdev_ops_t *
185 vdev_getops(const char *type)
186 {
187 	vdev_ops_t *ops, **opspp;
188 
189 	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
190 		if (strcmp(ops->vdev_op_type, type) == 0)
191 			break;
192 
193 	return (ops);
194 }
195 
196 /*
197  * Derive the enumerated alloction bias from string input.
198  * String origin is either the per-vdev zap or zpool(1M).
199  */
200 static vdev_alloc_bias_t
201 vdev_derive_alloc_bias(const char *bias)
202 {
203 	vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
204 
205 	if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0)
206 		alloc_bias = VDEV_BIAS_LOG;
207 	else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0)
208 		alloc_bias = VDEV_BIAS_SPECIAL;
209 	else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0)
210 		alloc_bias = VDEV_BIAS_DEDUP;
211 
212 	return (alloc_bias);
213 }
214 
215 /* ARGSUSED */
216 void
217 vdev_default_xlate(vdev_t *vd, const range_seg_t *in, range_seg_t *res)
218 {
219 	res->rs_start = in->rs_start;
220 	res->rs_end = in->rs_end;
221 }
222 
223 /*
224  * Default asize function: return the MAX of psize with the asize of
225  * all children.  This is what's used by anything other than RAID-Z.
226  */
227 uint64_t
228 vdev_default_asize(vdev_t *vd, uint64_t psize)
229 {
230 	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
231 	uint64_t csize;
232 
233 	for (int c = 0; c < vd->vdev_children; c++) {
234 		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
235 		asize = MAX(asize, csize);
236 	}
237 
238 	return (asize);
239 }
240 
241 /*
242  * Get the minimum allocatable size. We define the allocatable size as
243  * the vdev's asize rounded to the nearest metaslab. This allows us to
244  * replace or attach devices which don't have the same physical size but
245  * can still satisfy the same number of allocations.
246  */
247 uint64_t
248 vdev_get_min_asize(vdev_t *vd)
249 {
250 	vdev_t *pvd = vd->vdev_parent;
251 
252 	/*
253 	 * If our parent is NULL (inactive spare or cache) or is the root,
254 	 * just return our own asize.
255 	 */
256 	if (pvd == NULL)
257 		return (vd->vdev_asize);
258 
259 	/*
260 	 * The top-level vdev just returns the allocatable size rounded
261 	 * to the nearest metaslab.
262 	 */
263 	if (vd == vd->vdev_top)
264 		return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
265 
266 	/*
267 	 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
268 	 * so each child must provide at least 1/Nth of its asize.
269 	 */
270 	if (pvd->vdev_ops == &vdev_raidz_ops)
271 		return ((pvd->vdev_min_asize + pvd->vdev_children - 1) /
272 		    pvd->vdev_children);
273 
274 	return (pvd->vdev_min_asize);
275 }
276 
277 void
278 vdev_set_min_asize(vdev_t *vd)
279 {
280 	vd->vdev_min_asize = vdev_get_min_asize(vd);
281 
282 	for (int c = 0; c < vd->vdev_children; c++)
283 		vdev_set_min_asize(vd->vdev_child[c]);
284 }
285 
286 vdev_t *
287 vdev_lookup_top(spa_t *spa, uint64_t vdev)
288 {
289 	vdev_t *rvd = spa->spa_root_vdev;
290 
291 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
292 
293 	if (vdev < rvd->vdev_children) {
294 		ASSERT(rvd->vdev_child[vdev] != NULL);
295 		return (rvd->vdev_child[vdev]);
296 	}
297 
298 	return (NULL);
299 }
300 
301 vdev_t *
302 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
303 {
304 	vdev_t *mvd;
305 
306 	if (vd->vdev_guid == guid)
307 		return (vd);
308 
309 	for (int c = 0; c < vd->vdev_children; c++)
310 		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
311 		    NULL)
312 			return (mvd);
313 
314 	return (NULL);
315 }
316 
317 static int
318 vdev_count_leaves_impl(vdev_t *vd)
319 {
320 	int n = 0;
321 
322 	if (vd->vdev_ops->vdev_op_leaf)
323 		return (1);
324 
325 	for (int c = 0; c < vd->vdev_children; c++)
326 		n += vdev_count_leaves_impl(vd->vdev_child[c]);
327 
328 	return (n);
329 }
330 
331 int
332 vdev_count_leaves(spa_t *spa)
333 {
334 	return (vdev_count_leaves_impl(spa->spa_root_vdev));
335 }
336 
337 void
338 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
339 {
340 	size_t oldsize, newsize;
341 	uint64_t id = cvd->vdev_id;
342 	vdev_t **newchild;
343 	spa_t *spa = cvd->vdev_spa;
344 
345 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
346 	ASSERT(cvd->vdev_parent == NULL);
347 
348 	cvd->vdev_parent = pvd;
349 
350 	if (pvd == NULL)
351 		return;
352 
353 	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
354 
355 	oldsize = pvd->vdev_children * sizeof (vdev_t *);
356 	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
357 	newsize = pvd->vdev_children * sizeof (vdev_t *);
358 
359 	newchild = kmem_zalloc(newsize, KM_SLEEP);
360 	if (pvd->vdev_child != NULL) {
361 		bcopy(pvd->vdev_child, newchild, oldsize);
362 		kmem_free(pvd->vdev_child, oldsize);
363 	}
364 
365 	pvd->vdev_child = newchild;
366 	pvd->vdev_child[id] = cvd;
367 
368 	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
369 	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
370 
371 	/*
372 	 * Walk up all ancestors to update guid sum.
373 	 */
374 	for (; pvd != NULL; pvd = pvd->vdev_parent)
375 		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
376 
377 	if (cvd->vdev_ops->vdev_op_leaf) {
378 		list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd);
379 		cvd->vdev_spa->spa_leaf_list_gen++;
380 	}
381 }
382 
383 void
384 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
385 {
386 	int c;
387 	uint_t id = cvd->vdev_id;
388 
389 	ASSERT(cvd->vdev_parent == pvd);
390 
391 	if (pvd == NULL)
392 		return;
393 
394 	ASSERT(id < pvd->vdev_children);
395 	ASSERT(pvd->vdev_child[id] == cvd);
396 
397 	pvd->vdev_child[id] = NULL;
398 	cvd->vdev_parent = NULL;
399 
400 	for (c = 0; c < pvd->vdev_children; c++)
401 		if (pvd->vdev_child[c])
402 			break;
403 
404 	if (c == pvd->vdev_children) {
405 		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
406 		pvd->vdev_child = NULL;
407 		pvd->vdev_children = 0;
408 	}
409 
410 	if (cvd->vdev_ops->vdev_op_leaf) {
411 		spa_t *spa = cvd->vdev_spa;
412 		list_remove(&spa->spa_leaf_list, cvd);
413 		spa->spa_leaf_list_gen++;
414 	}
415 
416 	/*
417 	 * Walk up all ancestors to update guid sum.
418 	 */
419 	for (; pvd != NULL; pvd = pvd->vdev_parent)
420 		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
421 }
422 
423 /*
424  * Remove any holes in the child array.
425  */
426 void
427 vdev_compact_children(vdev_t *pvd)
428 {
429 	vdev_t **newchild, *cvd;
430 	int oldc = pvd->vdev_children;
431 	int newc;
432 
433 	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
434 
435 	for (int c = newc = 0; c < oldc; c++)
436 		if (pvd->vdev_child[c])
437 			newc++;
438 
439 	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
440 
441 	for (int c = newc = 0; c < oldc; c++) {
442 		if ((cvd = pvd->vdev_child[c]) != NULL) {
443 			newchild[newc] = cvd;
444 			cvd->vdev_id = newc++;
445 		}
446 	}
447 
448 	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
449 	pvd->vdev_child = newchild;
450 	pvd->vdev_children = newc;
451 }
452 
453 /*
454  * Allocate and minimally initialize a vdev_t.
455  */
456 vdev_t *
457 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
458 {
459 	vdev_t *vd;
460 	vdev_indirect_config_t *vic;
461 
462 	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
463 	vic = &vd->vdev_indirect_config;
464 
465 	if (spa->spa_root_vdev == NULL) {
466 		ASSERT(ops == &vdev_root_ops);
467 		spa->spa_root_vdev = vd;
468 		spa->spa_load_guid = spa_generate_guid(NULL);
469 	}
470 
471 	if (guid == 0 && ops != &vdev_hole_ops) {
472 		if (spa->spa_root_vdev == vd) {
473 			/*
474 			 * The root vdev's guid will also be the pool guid,
475 			 * which must be unique among all pools.
476 			 */
477 			guid = spa_generate_guid(NULL);
478 		} else {
479 			/*
480 			 * Any other vdev's guid must be unique within the pool.
481 			 */
482 			guid = spa_generate_guid(spa);
483 		}
484 		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
485 	}
486 
487 	vd->vdev_spa = spa;
488 	vd->vdev_id = id;
489 	vd->vdev_guid = guid;
490 	vd->vdev_guid_sum = guid;
491 	vd->vdev_ops = ops;
492 	vd->vdev_state = VDEV_STATE_CLOSED;
493 	vd->vdev_ishole = (ops == &vdev_hole_ops);
494 	vic->vic_prev_indirect_vdev = UINT64_MAX;
495 
496 	rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
497 	mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
498 	vd->vdev_obsolete_segments = range_tree_create(NULL, NULL);
499 
500 	list_link_init(&vd->vdev_leaf_node);
501 	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
502 	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
503 	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
504 	mutex_init(&vd->vdev_queue_lock, NULL, MUTEX_DEFAULT, NULL);
505 	mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL);
506 	mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL);
507 	cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL);
508 	cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL);
509 
510 	for (int t = 0; t < DTL_TYPES; t++) {
511 		vd->vdev_dtl[t] = range_tree_create(NULL, NULL);
512 	}
513 	txg_list_create(&vd->vdev_ms_list, spa,
514 	    offsetof(struct metaslab, ms_txg_node));
515 	txg_list_create(&vd->vdev_dtl_list, spa,
516 	    offsetof(struct vdev, vdev_dtl_node));
517 	vd->vdev_stat.vs_timestamp = gethrtime();
518 	vdev_queue_init(vd);
519 	vdev_cache_init(vd);
520 
521 	return (vd);
522 }
523 
524 /*
525  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
526  * creating a new vdev or loading an existing one - the behavior is slightly
527  * different for each case.
528  */
529 int
530 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
531     int alloctype)
532 {
533 	vdev_ops_t *ops;
534 	char *type;
535 	uint64_t guid = 0, islog, nparity;
536 	vdev_t *vd;
537 	vdev_indirect_config_t *vic;
538 	vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
539 	boolean_t top_level = (parent && !parent->vdev_parent);
540 
541 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
542 
543 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
544 		return (SET_ERROR(EINVAL));
545 
546 	if ((ops = vdev_getops(type)) == NULL)
547 		return (SET_ERROR(EINVAL));
548 
549 	/*
550 	 * If this is a load, get the vdev guid from the nvlist.
551 	 * Otherwise, vdev_alloc_common() will generate one for us.
552 	 */
553 	if (alloctype == VDEV_ALLOC_LOAD) {
554 		uint64_t label_id;
555 
556 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
557 		    label_id != id)
558 			return (SET_ERROR(EINVAL));
559 
560 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
561 			return (SET_ERROR(EINVAL));
562 	} else if (alloctype == VDEV_ALLOC_SPARE) {
563 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
564 			return (SET_ERROR(EINVAL));
565 	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
566 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
567 			return (SET_ERROR(EINVAL));
568 	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
569 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
570 			return (SET_ERROR(EINVAL));
571 	}
572 
573 	/*
574 	 * The first allocated vdev must be of type 'root'.
575 	 */
576 	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
577 		return (SET_ERROR(EINVAL));
578 
579 	/*
580 	 * Determine whether we're a log vdev.
581 	 */
582 	islog = 0;
583 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
584 	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
585 		return (SET_ERROR(ENOTSUP));
586 
587 	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
588 		return (SET_ERROR(ENOTSUP));
589 
590 	/*
591 	 * Set the nparity property for RAID-Z vdevs.
592 	 */
593 	nparity = -1ULL;
594 	if (ops == &vdev_raidz_ops) {
595 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
596 		    &nparity) == 0) {
597 			if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
598 				return (SET_ERROR(EINVAL));
599 			/*
600 			 * Previous versions could only support 1 or 2 parity
601 			 * device.
602 			 */
603 			if (nparity > 1 &&
604 			    spa_version(spa) < SPA_VERSION_RAIDZ2)
605 				return (SET_ERROR(ENOTSUP));
606 			if (nparity > 2 &&
607 			    spa_version(spa) < SPA_VERSION_RAIDZ3)
608 				return (SET_ERROR(ENOTSUP));
609 		} else {
610 			/*
611 			 * We require the parity to be specified for SPAs that
612 			 * support multiple parity levels.
613 			 */
614 			if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
615 				return (SET_ERROR(EINVAL));
616 			/*
617 			 * Otherwise, we default to 1 parity device for RAID-Z.
618 			 */
619 			nparity = 1;
620 		}
621 	} else {
622 		nparity = 0;
623 	}
624 	ASSERT(nparity != -1ULL);
625 
626 	/*
627 	 * If creating a top-level vdev, check for allocation classes input
628 	 */
629 	if (top_level && alloctype == VDEV_ALLOC_ADD) {
630 		char *bias;
631 
632 		if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
633 		    &bias) == 0) {
634 			alloc_bias = vdev_derive_alloc_bias(bias);
635 
636 			/* spa_vdev_add() expects feature to be enabled */
637 			if (spa->spa_load_state != SPA_LOAD_CREATE &&
638 			    !spa_feature_is_enabled(spa,
639 			    SPA_FEATURE_ALLOCATION_CLASSES)) {
640 				return (SET_ERROR(ENOTSUP));
641 			}
642 		}
643 	}
644 
645 	vd = vdev_alloc_common(spa, id, guid, ops);
646 	vic = &vd->vdev_indirect_config;
647 
648 	vd->vdev_islog = islog;
649 	vd->vdev_nparity = nparity;
650 	if (top_level && alloc_bias != VDEV_BIAS_NONE)
651 		vd->vdev_alloc_bias = alloc_bias;
652 
653 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
654 		vd->vdev_path = spa_strdup(vd->vdev_path);
655 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
656 		vd->vdev_devid = spa_strdup(vd->vdev_devid);
657 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
658 	    &vd->vdev_physpath) == 0)
659 		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
660 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
661 		vd->vdev_fru = spa_strdup(vd->vdev_fru);
662 
663 	/*
664 	 * Set the whole_disk property.  If it's not specified, leave the value
665 	 * as -1.
666 	 */
667 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
668 	    &vd->vdev_wholedisk) != 0)
669 		vd->vdev_wholedisk = -1ULL;
670 
671 	ASSERT0(vic->vic_mapping_object);
672 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
673 	    &vic->vic_mapping_object);
674 	ASSERT0(vic->vic_births_object);
675 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
676 	    &vic->vic_births_object);
677 	ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
678 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
679 	    &vic->vic_prev_indirect_vdev);
680 
681 	/*
682 	 * Look for the 'not present' flag.  This will only be set if the device
683 	 * was not present at the time of import.
684 	 */
685 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
686 	    &vd->vdev_not_present);
687 
688 	/*
689 	 * Get the alignment requirement.
690 	 */
691 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
692 
693 	/*
694 	 * Retrieve the vdev creation time.
695 	 */
696 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
697 	    &vd->vdev_crtxg);
698 
699 	/*
700 	 * If we're a top-level vdev, try to load the allocation parameters.
701 	 */
702 	if (top_level &&
703 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
704 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
705 		    &vd->vdev_ms_array);
706 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
707 		    &vd->vdev_ms_shift);
708 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
709 		    &vd->vdev_asize);
710 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
711 		    &vd->vdev_removing);
712 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
713 		    &vd->vdev_top_zap);
714 	} else {
715 		ASSERT0(vd->vdev_top_zap);
716 	}
717 
718 	if (top_level && alloctype != VDEV_ALLOC_ATTACH) {
719 		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
720 		    alloctype == VDEV_ALLOC_ADD ||
721 		    alloctype == VDEV_ALLOC_SPLIT ||
722 		    alloctype == VDEV_ALLOC_ROOTPOOL);
723 		/* Note: metaslab_group_create() is now deferred */
724 	}
725 
726 	if (vd->vdev_ops->vdev_op_leaf &&
727 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
728 		(void) nvlist_lookup_uint64(nv,
729 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
730 	} else {
731 		ASSERT0(vd->vdev_leaf_zap);
732 	}
733 
734 	/*
735 	 * If we're a leaf vdev, try to load the DTL object and other state.
736 	 */
737 
738 	if (vd->vdev_ops->vdev_op_leaf &&
739 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
740 	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
741 		if (alloctype == VDEV_ALLOC_LOAD) {
742 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
743 			    &vd->vdev_dtl_object);
744 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
745 			    &vd->vdev_unspare);
746 		}
747 
748 		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
749 			uint64_t spare = 0;
750 
751 			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
752 			    &spare) == 0 && spare)
753 				spa_spare_add(vd);
754 		}
755 
756 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
757 		    &vd->vdev_offline);
758 
759 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
760 		    &vd->vdev_resilver_txg);
761 
762 		/*
763 		 * When importing a pool, we want to ignore the persistent fault
764 		 * state, as the diagnosis made on another system may not be
765 		 * valid in the current context.  Local vdevs will
766 		 * remain in the faulted state.
767 		 */
768 		if (spa_load_state(spa) == SPA_LOAD_OPEN) {
769 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
770 			    &vd->vdev_faulted);
771 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
772 			    &vd->vdev_degraded);
773 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
774 			    &vd->vdev_removed);
775 
776 			if (vd->vdev_faulted || vd->vdev_degraded) {
777 				char *aux;
778 
779 				vd->vdev_label_aux =
780 				    VDEV_AUX_ERR_EXCEEDED;
781 				if (nvlist_lookup_string(nv,
782 				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
783 				    strcmp(aux, "external") == 0)
784 					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
785 			}
786 		}
787 	}
788 
789 	/*
790 	 * Add ourselves to the parent's list of children.
791 	 */
792 	vdev_add_child(parent, vd);
793 
794 	*vdp = vd;
795 
796 	return (0);
797 }
798 
799 void
800 vdev_free(vdev_t *vd)
801 {
802 	spa_t *spa = vd->vdev_spa;
803 	ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
804 
805 	/*
806 	 * vdev_free() implies closing the vdev first.  This is simpler than
807 	 * trying to ensure complicated semantics for all callers.
808 	 */
809 	vdev_close(vd);
810 
811 	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
812 	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
813 
814 	/*
815 	 * Free all children.
816 	 */
817 	for (int c = 0; c < vd->vdev_children; c++)
818 		vdev_free(vd->vdev_child[c]);
819 
820 	ASSERT(vd->vdev_child == NULL);
821 	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
822 	ASSERT(vd->vdev_initialize_thread == NULL);
823 
824 	/*
825 	 * Discard allocation state.
826 	 */
827 	if (vd->vdev_mg != NULL) {
828 		vdev_metaslab_fini(vd);
829 		metaslab_group_destroy(vd->vdev_mg);
830 	}
831 
832 	ASSERT0(vd->vdev_stat.vs_space);
833 	ASSERT0(vd->vdev_stat.vs_dspace);
834 	ASSERT0(vd->vdev_stat.vs_alloc);
835 
836 	/*
837 	 * Remove this vdev from its parent's child list.
838 	 */
839 	vdev_remove_child(vd->vdev_parent, vd);
840 
841 	ASSERT(vd->vdev_parent == NULL);
842 	ASSERT(!list_link_active(&vd->vdev_leaf_node));
843 
844 	/*
845 	 * Clean up vdev structure.
846 	 */
847 	vdev_queue_fini(vd);
848 	vdev_cache_fini(vd);
849 
850 	if (vd->vdev_path)
851 		spa_strfree(vd->vdev_path);
852 	if (vd->vdev_devid)
853 		spa_strfree(vd->vdev_devid);
854 	if (vd->vdev_physpath)
855 		spa_strfree(vd->vdev_physpath);
856 	if (vd->vdev_fru)
857 		spa_strfree(vd->vdev_fru);
858 
859 	if (vd->vdev_isspare)
860 		spa_spare_remove(vd);
861 	if (vd->vdev_isl2cache)
862 		spa_l2cache_remove(vd);
863 
864 	txg_list_destroy(&vd->vdev_ms_list);
865 	txg_list_destroy(&vd->vdev_dtl_list);
866 
867 	mutex_enter(&vd->vdev_dtl_lock);
868 	space_map_close(vd->vdev_dtl_sm);
869 	for (int t = 0; t < DTL_TYPES; t++) {
870 		range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
871 		range_tree_destroy(vd->vdev_dtl[t]);
872 	}
873 	mutex_exit(&vd->vdev_dtl_lock);
874 
875 	EQUIV(vd->vdev_indirect_births != NULL,
876 	    vd->vdev_indirect_mapping != NULL);
877 	if (vd->vdev_indirect_births != NULL) {
878 		vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
879 		vdev_indirect_births_close(vd->vdev_indirect_births);
880 	}
881 
882 	if (vd->vdev_obsolete_sm != NULL) {
883 		ASSERT(vd->vdev_removing ||
884 		    vd->vdev_ops == &vdev_indirect_ops);
885 		space_map_close(vd->vdev_obsolete_sm);
886 		vd->vdev_obsolete_sm = NULL;
887 	}
888 	range_tree_destroy(vd->vdev_obsolete_segments);
889 	rw_destroy(&vd->vdev_indirect_rwlock);
890 	mutex_destroy(&vd->vdev_obsolete_lock);
891 
892 	mutex_destroy(&vd->vdev_queue_lock);
893 	mutex_destroy(&vd->vdev_dtl_lock);
894 	mutex_destroy(&vd->vdev_stat_lock);
895 	mutex_destroy(&vd->vdev_probe_lock);
896 	mutex_destroy(&vd->vdev_initialize_lock);
897 	mutex_destroy(&vd->vdev_initialize_io_lock);
898 	cv_destroy(&vd->vdev_initialize_io_cv);
899 	cv_destroy(&vd->vdev_initialize_cv);
900 
901 	if (vd == spa->spa_root_vdev)
902 		spa->spa_root_vdev = NULL;
903 
904 	kmem_free(vd, sizeof (vdev_t));
905 }
906 
907 /*
908  * Transfer top-level vdev state from svd to tvd.
909  */
910 static void
911 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
912 {
913 	spa_t *spa = svd->vdev_spa;
914 	metaslab_t *msp;
915 	vdev_t *vd;
916 	int t;
917 
918 	ASSERT(tvd == tvd->vdev_top);
919 
920 	tvd->vdev_ms_array = svd->vdev_ms_array;
921 	tvd->vdev_ms_shift = svd->vdev_ms_shift;
922 	tvd->vdev_ms_count = svd->vdev_ms_count;
923 	tvd->vdev_top_zap = svd->vdev_top_zap;
924 
925 	svd->vdev_ms_array = 0;
926 	svd->vdev_ms_shift = 0;
927 	svd->vdev_ms_count = 0;
928 	svd->vdev_top_zap = 0;
929 
930 	if (tvd->vdev_mg)
931 		ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
932 	tvd->vdev_mg = svd->vdev_mg;
933 	tvd->vdev_ms = svd->vdev_ms;
934 
935 	svd->vdev_mg = NULL;
936 	svd->vdev_ms = NULL;
937 
938 	if (tvd->vdev_mg != NULL)
939 		tvd->vdev_mg->mg_vd = tvd;
940 
941 	tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm;
942 	svd->vdev_checkpoint_sm = NULL;
943 
944 	tvd->vdev_alloc_bias = svd->vdev_alloc_bias;
945 	svd->vdev_alloc_bias = VDEV_BIAS_NONE;
946 
947 	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
948 	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
949 	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
950 
951 	svd->vdev_stat.vs_alloc = 0;
952 	svd->vdev_stat.vs_space = 0;
953 	svd->vdev_stat.vs_dspace = 0;
954 
955 	/*
956 	 * State which may be set on a top-level vdev that's in the
957 	 * process of being removed.
958 	 */
959 	ASSERT0(tvd->vdev_indirect_config.vic_births_object);
960 	ASSERT0(tvd->vdev_indirect_config.vic_mapping_object);
961 	ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL);
962 	ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL);
963 	ASSERT3P(tvd->vdev_indirect_births, ==, NULL);
964 	ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL);
965 	ASSERT0(tvd->vdev_removing);
966 	tvd->vdev_removing = svd->vdev_removing;
967 	tvd->vdev_indirect_config = svd->vdev_indirect_config;
968 	tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping;
969 	tvd->vdev_indirect_births = svd->vdev_indirect_births;
970 	range_tree_swap(&svd->vdev_obsolete_segments,
971 	    &tvd->vdev_obsolete_segments);
972 	tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm;
973 	svd->vdev_indirect_config.vic_mapping_object = 0;
974 	svd->vdev_indirect_config.vic_births_object = 0;
975 	svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL;
976 	svd->vdev_indirect_mapping = NULL;
977 	svd->vdev_indirect_births = NULL;
978 	svd->vdev_obsolete_sm = NULL;
979 	svd->vdev_removing = 0;
980 
981 	for (t = 0; t < TXG_SIZE; t++) {
982 		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
983 			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
984 		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
985 			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
986 		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
987 			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
988 	}
989 
990 	if (list_link_active(&svd->vdev_config_dirty_node)) {
991 		vdev_config_clean(svd);
992 		vdev_config_dirty(tvd);
993 	}
994 
995 	if (list_link_active(&svd->vdev_state_dirty_node)) {
996 		vdev_state_clean(svd);
997 		vdev_state_dirty(tvd);
998 	}
999 
1000 	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
1001 	svd->vdev_deflate_ratio = 0;
1002 
1003 	tvd->vdev_islog = svd->vdev_islog;
1004 	svd->vdev_islog = 0;
1005 }
1006 
1007 static void
1008 vdev_top_update(vdev_t *tvd, vdev_t *vd)
1009 {
1010 	if (vd == NULL)
1011 		return;
1012 
1013 	vd->vdev_top = tvd;
1014 
1015 	for (int c = 0; c < vd->vdev_children; c++)
1016 		vdev_top_update(tvd, vd->vdev_child[c]);
1017 }
1018 
1019 /*
1020  * Add a mirror/replacing vdev above an existing vdev.
1021  */
1022 vdev_t *
1023 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
1024 {
1025 	spa_t *spa = cvd->vdev_spa;
1026 	vdev_t *pvd = cvd->vdev_parent;
1027 	vdev_t *mvd;
1028 
1029 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1030 
1031 	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
1032 
1033 	mvd->vdev_asize = cvd->vdev_asize;
1034 	mvd->vdev_min_asize = cvd->vdev_min_asize;
1035 	mvd->vdev_max_asize = cvd->vdev_max_asize;
1036 	mvd->vdev_psize = cvd->vdev_psize;
1037 	mvd->vdev_ashift = cvd->vdev_ashift;
1038 	mvd->vdev_state = cvd->vdev_state;
1039 	mvd->vdev_crtxg = cvd->vdev_crtxg;
1040 
1041 	vdev_remove_child(pvd, cvd);
1042 	vdev_add_child(pvd, mvd);
1043 	cvd->vdev_id = mvd->vdev_children;
1044 	vdev_add_child(mvd, cvd);
1045 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1046 
1047 	if (mvd == mvd->vdev_top)
1048 		vdev_top_transfer(cvd, mvd);
1049 
1050 	return (mvd);
1051 }
1052 
1053 /*
1054  * Remove a 1-way mirror/replacing vdev from the tree.
1055  */
1056 void
1057 vdev_remove_parent(vdev_t *cvd)
1058 {
1059 	vdev_t *mvd = cvd->vdev_parent;
1060 	vdev_t *pvd = mvd->vdev_parent;
1061 
1062 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1063 
1064 	ASSERT(mvd->vdev_children == 1);
1065 	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
1066 	    mvd->vdev_ops == &vdev_replacing_ops ||
1067 	    mvd->vdev_ops == &vdev_spare_ops);
1068 	cvd->vdev_ashift = mvd->vdev_ashift;
1069 
1070 	vdev_remove_child(mvd, cvd);
1071 	vdev_remove_child(pvd, mvd);
1072 
1073 	/*
1074 	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
1075 	 * Otherwise, we could have detached an offline device, and when we
1076 	 * go to import the pool we'll think we have two top-level vdevs,
1077 	 * instead of a different version of the same top-level vdev.
1078 	 */
1079 	if (mvd->vdev_top == mvd) {
1080 		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
1081 		cvd->vdev_orig_guid = cvd->vdev_guid;
1082 		cvd->vdev_guid += guid_delta;
1083 		cvd->vdev_guid_sum += guid_delta;
1084 	}
1085 	cvd->vdev_id = mvd->vdev_id;
1086 	vdev_add_child(pvd, cvd);
1087 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1088 
1089 	if (cvd == cvd->vdev_top)
1090 		vdev_top_transfer(mvd, cvd);
1091 
1092 	ASSERT(mvd->vdev_children == 0);
1093 	vdev_free(mvd);
1094 }
1095 
1096 static void
1097 vdev_metaslab_group_create(vdev_t *vd)
1098 {
1099 	spa_t *spa = vd->vdev_spa;
1100 
1101 	/*
1102 	 * metaslab_group_create was delayed until allocation bias was available
1103 	 */
1104 	if (vd->vdev_mg == NULL) {
1105 		metaslab_class_t *mc;
1106 
1107 		if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE)
1108 			vd->vdev_alloc_bias = VDEV_BIAS_LOG;
1109 
1110 		ASSERT3U(vd->vdev_islog, ==,
1111 		    (vd->vdev_alloc_bias == VDEV_BIAS_LOG));
1112 
1113 		switch (vd->vdev_alloc_bias) {
1114 		case VDEV_BIAS_LOG:
1115 			mc = spa_log_class(spa);
1116 			break;
1117 		case VDEV_BIAS_SPECIAL:
1118 			mc = spa_special_class(spa);
1119 			break;
1120 		case VDEV_BIAS_DEDUP:
1121 			mc = spa_dedup_class(spa);
1122 			break;
1123 		default:
1124 			mc = spa_normal_class(spa);
1125 		}
1126 
1127 		vd->vdev_mg = metaslab_group_create(mc, vd,
1128 		    spa->spa_alloc_count);
1129 
1130 		/*
1131 		 * The spa ashift values currently only reflect the
1132 		 * general vdev classes. Class destination is late
1133 		 * binding so ashift checking had to wait until now
1134 		 */
1135 		if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1136 		    mc == spa_normal_class(spa) && vd->vdev_aux == NULL) {
1137 			if (vd->vdev_ashift > spa->spa_max_ashift)
1138 				spa->spa_max_ashift = vd->vdev_ashift;
1139 			if (vd->vdev_ashift < spa->spa_min_ashift)
1140 				spa->spa_min_ashift = vd->vdev_ashift;
1141 		}
1142 	}
1143 }
1144 
1145 int
1146 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
1147 {
1148 	spa_t *spa = vd->vdev_spa;
1149 	objset_t *mos = spa->spa_meta_objset;
1150 	uint64_t m;
1151 	uint64_t oldc = vd->vdev_ms_count;
1152 	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
1153 	metaslab_t **mspp;
1154 	int error;
1155 	boolean_t expanding = (oldc != 0);
1156 
1157 	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1158 
1159 	/*
1160 	 * This vdev is not being allocated from yet or is a hole.
1161 	 */
1162 	if (vd->vdev_ms_shift == 0)
1163 		return (0);
1164 
1165 	ASSERT(!vd->vdev_ishole);
1166 
1167 	ASSERT(oldc <= newc);
1168 
1169 	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
1170 
1171 	if (expanding) {
1172 		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
1173 		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
1174 	}
1175 
1176 	vd->vdev_ms = mspp;
1177 	vd->vdev_ms_count = newc;
1178 	for (m = oldc; m < newc; m++) {
1179 		uint64_t object = 0;
1180 
1181 		/*
1182 		 * vdev_ms_array may be 0 if we are creating the "fake"
1183 		 * metaslabs for an indirect vdev for zdb's leak detection.
1184 		 * See zdb_leak_init().
1185 		 */
1186 		if (txg == 0 && vd->vdev_ms_array != 0) {
1187 			error = dmu_read(mos, vd->vdev_ms_array,
1188 			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
1189 			    DMU_READ_PREFETCH);
1190 			if (error != 0) {
1191 				vdev_dbgmsg(vd, "unable to read the metaslab "
1192 				    "array [error=%d]", error);
1193 				return (error);
1194 			}
1195 		}
1196 
1197 #ifndef _KERNEL
1198 		/*
1199 		 * To accomodate zdb_leak_init() fake indirect
1200 		 * metaslabs, we allocate a metaslab group for
1201 		 * indirect vdevs which normally don't have one.
1202 		 */
1203 		if (vd->vdev_mg == NULL) {
1204 			ASSERT0(vdev_is_concrete(vd));
1205 			vdev_metaslab_group_create(vd);
1206 		}
1207 #endif
1208 		error = metaslab_init(vd->vdev_mg, m, object, txg,
1209 		    &(vd->vdev_ms[m]));
1210 		if (error != 0) {
1211 			vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
1212 			    error);
1213 			return (error);
1214 		}
1215 	}
1216 
1217 	if (txg == 0)
1218 		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1219 
1220 	/*
1221 	 * If the vdev is being removed we don't activate
1222 	 * the metaslabs since we want to ensure that no new
1223 	 * allocations are performed on this device.
1224 	 */
1225 	if (!expanding && !vd->vdev_removing) {
1226 		metaslab_group_activate(vd->vdev_mg);
1227 	}
1228 
1229 	if (txg == 0)
1230 		spa_config_exit(spa, SCL_ALLOC, FTAG);
1231 
1232 	return (0);
1233 }
1234 
1235 void
1236 vdev_metaslab_fini(vdev_t *vd)
1237 {
1238 	if (vd->vdev_checkpoint_sm != NULL) {
1239 		ASSERT(spa_feature_is_active(vd->vdev_spa,
1240 		    SPA_FEATURE_POOL_CHECKPOINT));
1241 		space_map_close(vd->vdev_checkpoint_sm);
1242 		/*
1243 		 * Even though we close the space map, we need to set its
1244 		 * pointer to NULL. The reason is that vdev_metaslab_fini()
1245 		 * may be called multiple times for certain operations
1246 		 * (i.e. when destroying a pool) so we need to ensure that
1247 		 * this clause never executes twice. This logic is similar
1248 		 * to the one used for the vdev_ms clause below.
1249 		 */
1250 		vd->vdev_checkpoint_sm = NULL;
1251 	}
1252 
1253 	if (vd->vdev_ms != NULL) {
1254 		uint64_t count = vd->vdev_ms_count;
1255 
1256 		metaslab_group_passivate(vd->vdev_mg);
1257 		for (uint64_t m = 0; m < count; m++) {
1258 			metaslab_t *msp = vd->vdev_ms[m];
1259 
1260 			if (msp != NULL)
1261 				metaslab_fini(msp);
1262 		}
1263 		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1264 		vd->vdev_ms = NULL;
1265 
1266 		vd->vdev_ms_count = 0;
1267 	}
1268 	ASSERT0(vd->vdev_ms_count);
1269 }
1270 
1271 typedef struct vdev_probe_stats {
1272 	boolean_t	vps_readable;
1273 	boolean_t	vps_writeable;
1274 	int		vps_flags;
1275 } vdev_probe_stats_t;
1276 
1277 static void
1278 vdev_probe_done(zio_t *zio)
1279 {
1280 	spa_t *spa = zio->io_spa;
1281 	vdev_t *vd = zio->io_vd;
1282 	vdev_probe_stats_t *vps = zio->io_private;
1283 
1284 	ASSERT(vd->vdev_probe_zio != NULL);
1285 
1286 	if (zio->io_type == ZIO_TYPE_READ) {
1287 		if (zio->io_error == 0)
1288 			vps->vps_readable = 1;
1289 		if (zio->io_error == 0 && spa_writeable(spa)) {
1290 			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1291 			    zio->io_offset, zio->io_size, zio->io_abd,
1292 			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1293 			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1294 		} else {
1295 			abd_free(zio->io_abd);
1296 		}
1297 	} else if (zio->io_type == ZIO_TYPE_WRITE) {
1298 		if (zio->io_error == 0)
1299 			vps->vps_writeable = 1;
1300 		abd_free(zio->io_abd);
1301 	} else if (zio->io_type == ZIO_TYPE_NULL) {
1302 		zio_t *pio;
1303 
1304 		vd->vdev_cant_read |= !vps->vps_readable;
1305 		vd->vdev_cant_write |= !vps->vps_writeable;
1306 
1307 		if (vdev_readable(vd) &&
1308 		    (vdev_writeable(vd) || !spa_writeable(spa))) {
1309 			zio->io_error = 0;
1310 		} else {
1311 			ASSERT(zio->io_error != 0);
1312 			vdev_dbgmsg(vd, "failed probe");
1313 			zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1314 			    spa, vd, NULL, 0, 0);
1315 			zio->io_error = SET_ERROR(ENXIO);
1316 		}
1317 
1318 		mutex_enter(&vd->vdev_probe_lock);
1319 		ASSERT(vd->vdev_probe_zio == zio);
1320 		vd->vdev_probe_zio = NULL;
1321 		mutex_exit(&vd->vdev_probe_lock);
1322 
1323 		zio_link_t *zl = NULL;
1324 		while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1325 			if (!vdev_accessible(vd, pio))
1326 				pio->io_error = SET_ERROR(ENXIO);
1327 
1328 		kmem_free(vps, sizeof (*vps));
1329 	}
1330 }
1331 
1332 /*
1333  * Determine whether this device is accessible.
1334  *
1335  * Read and write to several known locations: the pad regions of each
1336  * vdev label but the first, which we leave alone in case it contains
1337  * a VTOC.
1338  */
1339 zio_t *
1340 vdev_probe(vdev_t *vd, zio_t *zio)
1341 {
1342 	spa_t *spa = vd->vdev_spa;
1343 	vdev_probe_stats_t *vps = NULL;
1344 	zio_t *pio;
1345 
1346 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1347 
1348 	/*
1349 	 * Don't probe the probe.
1350 	 */
1351 	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1352 		return (NULL);
1353 
1354 	/*
1355 	 * To prevent 'probe storms' when a device fails, we create
1356 	 * just one probe i/o at a time.  All zios that want to probe
1357 	 * this vdev will become parents of the probe io.
1358 	 */
1359 	mutex_enter(&vd->vdev_probe_lock);
1360 
1361 	if ((pio = vd->vdev_probe_zio) == NULL) {
1362 		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1363 
1364 		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1365 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1366 		    ZIO_FLAG_TRYHARD;
1367 
1368 		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1369 			/*
1370 			 * vdev_cant_read and vdev_cant_write can only
1371 			 * transition from TRUE to FALSE when we have the
1372 			 * SCL_ZIO lock as writer; otherwise they can only
1373 			 * transition from FALSE to TRUE.  This ensures that
1374 			 * any zio looking at these values can assume that
1375 			 * failures persist for the life of the I/O.  That's
1376 			 * important because when a device has intermittent
1377 			 * connectivity problems, we want to ensure that
1378 			 * they're ascribed to the device (ENXIO) and not
1379 			 * the zio (EIO).
1380 			 *
1381 			 * Since we hold SCL_ZIO as writer here, clear both
1382 			 * values so the probe can reevaluate from first
1383 			 * principles.
1384 			 */
1385 			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1386 			vd->vdev_cant_read = B_FALSE;
1387 			vd->vdev_cant_write = B_FALSE;
1388 		}
1389 
1390 		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1391 		    vdev_probe_done, vps,
1392 		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1393 
1394 		/*
1395 		 * We can't change the vdev state in this context, so we
1396 		 * kick off an async task to do it on our behalf.
1397 		 */
1398 		if (zio != NULL) {
1399 			vd->vdev_probe_wanted = B_TRUE;
1400 			spa_async_request(spa, SPA_ASYNC_PROBE);
1401 		}
1402 	}
1403 
1404 	if (zio != NULL)
1405 		zio_add_child(zio, pio);
1406 
1407 	mutex_exit(&vd->vdev_probe_lock);
1408 
1409 	if (vps == NULL) {
1410 		ASSERT(zio != NULL);
1411 		return (NULL);
1412 	}
1413 
1414 	for (int l = 1; l < VDEV_LABELS; l++) {
1415 		zio_nowait(zio_read_phys(pio, vd,
1416 		    vdev_label_offset(vd->vdev_psize, l,
1417 		    offsetof(vdev_label_t, vl_pad2)), VDEV_PAD_SIZE,
1418 		    abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1419 		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1420 		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1421 	}
1422 
1423 	if (zio == NULL)
1424 		return (pio);
1425 
1426 	zio_nowait(pio);
1427 	return (NULL);
1428 }
1429 
1430 static void
1431 vdev_open_child(void *arg)
1432 {
1433 	vdev_t *vd = arg;
1434 
1435 	vd->vdev_open_thread = curthread;
1436 	vd->vdev_open_error = vdev_open(vd);
1437 	vd->vdev_open_thread = NULL;
1438 }
1439 
1440 boolean_t
1441 vdev_uses_zvols(vdev_t *vd)
1442 {
1443 	if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1444 	    strlen(ZVOL_DIR)) == 0)
1445 		return (B_TRUE);
1446 	for (int c = 0; c < vd->vdev_children; c++)
1447 		if (vdev_uses_zvols(vd->vdev_child[c]))
1448 			return (B_TRUE);
1449 	return (B_FALSE);
1450 }
1451 
1452 void
1453 vdev_open_children(vdev_t *vd)
1454 {
1455 	taskq_t *tq;
1456 	int children = vd->vdev_children;
1457 
1458 	/*
1459 	 * in order to handle pools on top of zvols, do the opens
1460 	 * in a single thread so that the same thread holds the
1461 	 * spa_namespace_lock
1462 	 */
1463 	if (vdev_uses_zvols(vd)) {
1464 		for (int c = 0; c < children; c++)
1465 			vd->vdev_child[c]->vdev_open_error =
1466 			    vdev_open(vd->vdev_child[c]);
1467 		return;
1468 	}
1469 	tq = taskq_create("vdev_open", children, minclsyspri,
1470 	    children, children, TASKQ_PREPOPULATE);
1471 
1472 	for (int c = 0; c < children; c++)
1473 		VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1474 		    TQ_SLEEP) != TASKQID_INVALID);
1475 
1476 	taskq_destroy(tq);
1477 }
1478 
1479 /*
1480  * Compute the raidz-deflation ratio.  Note, we hard-code
1481  * in 128k (1 << 17) because it is the "typical" blocksize.
1482  * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
1483  * otherwise it would inconsistently account for existing bp's.
1484  */
1485 static void
1486 vdev_set_deflate_ratio(vdev_t *vd)
1487 {
1488 	if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
1489 		vd->vdev_deflate_ratio = (1 << 17) /
1490 		    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
1491 	}
1492 }
1493 
1494 /*
1495  * Prepare a virtual device for access.
1496  */
1497 int
1498 vdev_open(vdev_t *vd)
1499 {
1500 	spa_t *spa = vd->vdev_spa;
1501 	int error;
1502 	uint64_t osize = 0;
1503 	uint64_t max_osize = 0;
1504 	uint64_t asize, max_asize, psize;
1505 	uint64_t ashift = 0;
1506 
1507 	ASSERT(vd->vdev_open_thread == curthread ||
1508 	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1509 	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1510 	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1511 	    vd->vdev_state == VDEV_STATE_OFFLINE);
1512 
1513 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1514 	vd->vdev_cant_read = B_FALSE;
1515 	vd->vdev_cant_write = B_FALSE;
1516 	vd->vdev_min_asize = vdev_get_min_asize(vd);
1517 
1518 	/*
1519 	 * If this vdev is not removed, check its fault status.  If it's
1520 	 * faulted, bail out of the open.
1521 	 */
1522 	if (!vd->vdev_removed && vd->vdev_faulted) {
1523 		ASSERT(vd->vdev_children == 0);
1524 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1525 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1526 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1527 		    vd->vdev_label_aux);
1528 		return (SET_ERROR(ENXIO));
1529 	} else if (vd->vdev_offline) {
1530 		ASSERT(vd->vdev_children == 0);
1531 		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1532 		return (SET_ERROR(ENXIO));
1533 	}
1534 
1535 	error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1536 
1537 	/*
1538 	 * Reset the vdev_reopening flag so that we actually close
1539 	 * the vdev on error.
1540 	 */
1541 	vd->vdev_reopening = B_FALSE;
1542 	if (zio_injection_enabled && error == 0)
1543 		error = zio_handle_device_injection(vd, NULL, ENXIO);
1544 
1545 	if (error) {
1546 		if (vd->vdev_removed &&
1547 		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1548 			vd->vdev_removed = B_FALSE;
1549 
1550 		if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
1551 			vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
1552 			    vd->vdev_stat.vs_aux);
1553 		} else {
1554 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1555 			    vd->vdev_stat.vs_aux);
1556 		}
1557 		return (error);
1558 	}
1559 
1560 	vd->vdev_removed = B_FALSE;
1561 
1562 	/*
1563 	 * Recheck the faulted flag now that we have confirmed that
1564 	 * the vdev is accessible.  If we're faulted, bail.
1565 	 */
1566 	if (vd->vdev_faulted) {
1567 		ASSERT(vd->vdev_children == 0);
1568 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1569 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1570 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1571 		    vd->vdev_label_aux);
1572 		return (SET_ERROR(ENXIO));
1573 	}
1574 
1575 	if (vd->vdev_degraded) {
1576 		ASSERT(vd->vdev_children == 0);
1577 		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1578 		    VDEV_AUX_ERR_EXCEEDED);
1579 	} else {
1580 		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1581 	}
1582 
1583 	/*
1584 	 * For hole or missing vdevs we just return success.
1585 	 */
1586 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1587 		return (0);
1588 
1589 	for (int c = 0; c < vd->vdev_children; c++) {
1590 		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1591 			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1592 			    VDEV_AUX_NONE);
1593 			break;
1594 		}
1595 	}
1596 
1597 	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1598 	max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1599 
1600 	if (vd->vdev_children == 0) {
1601 		if (osize < SPA_MINDEVSIZE) {
1602 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1603 			    VDEV_AUX_TOO_SMALL);
1604 			return (SET_ERROR(EOVERFLOW));
1605 		}
1606 		psize = osize;
1607 		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1608 		max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1609 		    VDEV_LABEL_END_SIZE);
1610 	} else {
1611 		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1612 		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1613 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1614 			    VDEV_AUX_TOO_SMALL);
1615 			return (SET_ERROR(EOVERFLOW));
1616 		}
1617 		psize = 0;
1618 		asize = osize;
1619 		max_asize = max_osize;
1620 	}
1621 
1622 	vd->vdev_psize = psize;
1623 
1624 	/*
1625 	 * Make sure the allocatable size hasn't shrunk too much.
1626 	 */
1627 	if (asize < vd->vdev_min_asize) {
1628 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1629 		    VDEV_AUX_BAD_LABEL);
1630 		return (SET_ERROR(EINVAL));
1631 	}
1632 
1633 	if (vd->vdev_asize == 0) {
1634 		/*
1635 		 * This is the first-ever open, so use the computed values.
1636 		 * For testing purposes, a higher ashift can be requested.
1637 		 */
1638 		vd->vdev_asize = asize;
1639 		vd->vdev_max_asize = max_asize;
1640 		vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1641 		vd->vdev_ashift = MAX(zfs_ashift_min, vd->vdev_ashift);
1642 	} else {
1643 		/*
1644 		 * Detect if the alignment requirement has increased.
1645 		 * We don't want to make the pool unavailable, just
1646 		 * issue a warning instead.
1647 		 */
1648 		if (ashift > vd->vdev_top->vdev_ashift &&
1649 		    vd->vdev_ops->vdev_op_leaf) {
1650 			cmn_err(CE_WARN,
1651 			    "Disk, '%s', has a block alignment that is "
1652 			    "larger than the pool's alignment\n",
1653 			    vd->vdev_path);
1654 		}
1655 		vd->vdev_max_asize = max_asize;
1656 	}
1657 
1658 	/*
1659 	 * If all children are healthy we update asize if either:
1660 	 * The asize has increased, due to a device expansion caused by dynamic
1661 	 * LUN growth or vdev replacement, and automatic expansion is enabled;
1662 	 * making the additional space available.
1663 	 *
1664 	 * The asize has decreased, due to a device shrink usually caused by a
1665 	 * vdev replace with a smaller device. This ensures that calculations
1666 	 * based of max_asize and asize e.g. esize are always valid. It's safe
1667 	 * to do this as we've already validated that asize is greater than
1668 	 * vdev_min_asize.
1669 	 */
1670 	if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1671 	    ((asize > vd->vdev_asize &&
1672 	    (vd->vdev_expanding || spa->spa_autoexpand)) ||
1673 	    (asize < vd->vdev_asize)))
1674 		vd->vdev_asize = asize;
1675 
1676 	vdev_set_min_asize(vd);
1677 
1678 	/*
1679 	 * Ensure we can issue some IO before declaring the
1680 	 * vdev open for business.
1681 	 */
1682 	if (vd->vdev_ops->vdev_op_leaf &&
1683 	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1684 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1685 		    VDEV_AUX_ERR_EXCEEDED);
1686 		return (error);
1687 	}
1688 
1689 	/*
1690 	 * Track the min and max ashift values for normal data devices.
1691 	 *
1692 	 * DJB - TBD these should perhaps be tracked per allocation class
1693 	 * (e.g. spa_min_ashift is used to round up post compression buffers)
1694 	 */
1695 	if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1696 	    vd->vdev_alloc_bias == VDEV_BIAS_NONE &&
1697 	    vd->vdev_aux == NULL) {
1698 		if (vd->vdev_ashift > spa->spa_max_ashift)
1699 			spa->spa_max_ashift = vd->vdev_ashift;
1700 		if (vd->vdev_ashift < spa->spa_min_ashift)
1701 			spa->spa_min_ashift = vd->vdev_ashift;
1702 	}
1703 
1704 	/*
1705 	 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1706 	 * resilver.  But don't do this if we are doing a reopen for a scrub,
1707 	 * since this would just restart the scrub we are already doing.
1708 	 */
1709 	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1710 	    vdev_resilver_needed(vd, NULL, NULL))
1711 		spa_async_request(spa, SPA_ASYNC_RESILVER);
1712 
1713 	return (0);
1714 }
1715 
1716 /*
1717  * Called once the vdevs are all opened, this routine validates the label
1718  * contents. This needs to be done before vdev_load() so that we don't
1719  * inadvertently do repair I/Os to the wrong device.
1720  *
1721  * This function will only return failure if one of the vdevs indicates that it
1722  * has since been destroyed or exported.  This is only possible if
1723  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1724  * will be updated but the function will return 0.
1725  */
1726 int
1727 vdev_validate(vdev_t *vd)
1728 {
1729 	spa_t *spa = vd->vdev_spa;
1730 	nvlist_t *label;
1731 	uint64_t guid = 0, aux_guid = 0, top_guid;
1732 	uint64_t state;
1733 	nvlist_t *nvl;
1734 	uint64_t txg;
1735 
1736 	if (vdev_validate_skip)
1737 		return (0);
1738 
1739 	for (uint64_t c = 0; c < vd->vdev_children; c++)
1740 		if (vdev_validate(vd->vdev_child[c]) != 0)
1741 			return (SET_ERROR(EBADF));
1742 
1743 	/*
1744 	 * If the device has already failed, or was marked offline, don't do
1745 	 * any further validation.  Otherwise, label I/O will fail and we will
1746 	 * overwrite the previous state.
1747 	 */
1748 	if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
1749 		return (0);
1750 
1751 	/*
1752 	 * If we are performing an extreme rewind, we allow for a label that
1753 	 * was modified at a point after the current txg.
1754 	 * If config lock is not held do not check for the txg. spa_sync could
1755 	 * be updating the vdev's label before updating spa_last_synced_txg.
1756 	 */
1757 	if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 ||
1758 	    spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG)
1759 		txg = UINT64_MAX;
1760 	else
1761 		txg = spa_last_synced_txg(spa);
1762 
1763 	if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1764 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1765 		    VDEV_AUX_BAD_LABEL);
1766 		vdev_dbgmsg(vd, "vdev_validate: failed reading config for "
1767 		    "txg %llu", (u_longlong_t)txg);
1768 		return (0);
1769 	}
1770 
1771 	/*
1772 	 * Determine if this vdev has been split off into another
1773 	 * pool.  If so, then refuse to open it.
1774 	 */
1775 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1776 	    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1777 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1778 		    VDEV_AUX_SPLIT_POOL);
1779 		nvlist_free(label);
1780 		vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
1781 		return (0);
1782 	}
1783 
1784 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
1785 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1786 		    VDEV_AUX_CORRUPT_DATA);
1787 		nvlist_free(label);
1788 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1789 		    ZPOOL_CONFIG_POOL_GUID);
1790 		return (0);
1791 	}
1792 
1793 	/*
1794 	 * If config is not trusted then ignore the spa guid check. This is
1795 	 * necessary because if the machine crashed during a re-guid the new
1796 	 * guid might have been written to all of the vdev labels, but not the
1797 	 * cached config. The check will be performed again once we have the
1798 	 * trusted config from the MOS.
1799 	 */
1800 	if (spa->spa_trust_config && guid != spa_guid(spa)) {
1801 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1802 		    VDEV_AUX_CORRUPT_DATA);
1803 		nvlist_free(label);
1804 		vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
1805 		    "match config (%llu != %llu)", (u_longlong_t)guid,
1806 		    (u_longlong_t)spa_guid(spa));
1807 		return (0);
1808 	}
1809 
1810 	if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1811 	    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1812 	    &aux_guid) != 0)
1813 		aux_guid = 0;
1814 
1815 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
1816 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1817 		    VDEV_AUX_CORRUPT_DATA);
1818 		nvlist_free(label);
1819 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1820 		    ZPOOL_CONFIG_GUID);
1821 		return (0);
1822 	}
1823 
1824 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
1825 	    != 0) {
1826 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1827 		    VDEV_AUX_CORRUPT_DATA);
1828 		nvlist_free(label);
1829 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1830 		    ZPOOL_CONFIG_TOP_GUID);
1831 		return (0);
1832 	}
1833 
1834 	/*
1835 	 * If this vdev just became a top-level vdev because its sibling was
1836 	 * detached, it will have adopted the parent's vdev guid -- but the
1837 	 * label may or may not be on disk yet. Fortunately, either version
1838 	 * of the label will have the same top guid, so if we're a top-level
1839 	 * vdev, we can safely compare to that instead.
1840 	 * However, if the config comes from a cachefile that failed to update
1841 	 * after the detach, a top-level vdev will appear as a non top-level
1842 	 * vdev in the config. Also relax the constraints if we perform an
1843 	 * extreme rewind.
1844 	 *
1845 	 * If we split this vdev off instead, then we also check the
1846 	 * original pool's guid. We don't want to consider the vdev
1847 	 * corrupt if it is partway through a split operation.
1848 	 */
1849 	if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
1850 		boolean_t mismatch = B_FALSE;
1851 		if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
1852 			if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
1853 				mismatch = B_TRUE;
1854 		} else {
1855 			if (vd->vdev_guid != top_guid &&
1856 			    vd->vdev_top->vdev_guid != guid)
1857 				mismatch = B_TRUE;
1858 		}
1859 
1860 		if (mismatch) {
1861 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1862 			    VDEV_AUX_CORRUPT_DATA);
1863 			nvlist_free(label);
1864 			vdev_dbgmsg(vd, "vdev_validate: config guid "
1865 			    "doesn't match label guid");
1866 			vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
1867 			    (u_longlong_t)vd->vdev_guid,
1868 			    (u_longlong_t)vd->vdev_top->vdev_guid);
1869 			vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
1870 			    "aux_guid %llu", (u_longlong_t)guid,
1871 			    (u_longlong_t)top_guid, (u_longlong_t)aux_guid);
1872 			return (0);
1873 		}
1874 	}
1875 
1876 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1877 	    &state) != 0) {
1878 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1879 		    VDEV_AUX_CORRUPT_DATA);
1880 		nvlist_free(label);
1881 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1882 		    ZPOOL_CONFIG_POOL_STATE);
1883 		return (0);
1884 	}
1885 
1886 	nvlist_free(label);
1887 
1888 	/*
1889 	 * If this is a verbatim import, no need to check the
1890 	 * state of the pool.
1891 	 */
1892 	if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1893 	    spa_load_state(spa) == SPA_LOAD_OPEN &&
1894 	    state != POOL_STATE_ACTIVE) {
1895 		vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
1896 		    "for spa %s", (u_longlong_t)state, spa->spa_name);
1897 		return (SET_ERROR(EBADF));
1898 	}
1899 
1900 	/*
1901 	 * If we were able to open and validate a vdev that was
1902 	 * previously marked permanently unavailable, clear that state
1903 	 * now.
1904 	 */
1905 	if (vd->vdev_not_present)
1906 		vd->vdev_not_present = 0;
1907 
1908 	return (0);
1909 }
1910 
1911 static void
1912 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
1913 {
1914 	if (svd->vdev_path != NULL && dvd->vdev_path != NULL) {
1915 		if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) {
1916 			zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed "
1917 			    "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
1918 			    dvd->vdev_path, svd->vdev_path);
1919 			spa_strfree(dvd->vdev_path);
1920 			dvd->vdev_path = spa_strdup(svd->vdev_path);
1921 		}
1922 	} else if (svd->vdev_path != NULL) {
1923 		dvd->vdev_path = spa_strdup(svd->vdev_path);
1924 		zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
1925 		    (u_longlong_t)dvd->vdev_guid, dvd->vdev_path);
1926 	}
1927 }
1928 
1929 /*
1930  * Recursively copy vdev paths from one vdev to another. Source and destination
1931  * vdev trees must have same geometry otherwise return error. Intended to copy
1932  * paths from userland config into MOS config.
1933  */
1934 int
1935 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
1936 {
1937 	if ((svd->vdev_ops == &vdev_missing_ops) ||
1938 	    (svd->vdev_ishole && dvd->vdev_ishole) ||
1939 	    (dvd->vdev_ops == &vdev_indirect_ops))
1940 		return (0);
1941 
1942 	if (svd->vdev_ops != dvd->vdev_ops) {
1943 		vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
1944 		    svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
1945 		return (SET_ERROR(EINVAL));
1946 	}
1947 
1948 	if (svd->vdev_guid != dvd->vdev_guid) {
1949 		vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
1950 		    "%llu)", (u_longlong_t)svd->vdev_guid,
1951 		    (u_longlong_t)dvd->vdev_guid);
1952 		return (SET_ERROR(EINVAL));
1953 	}
1954 
1955 	if (svd->vdev_children != dvd->vdev_children) {
1956 		vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
1957 		    "%llu != %llu", (u_longlong_t)svd->vdev_children,
1958 		    (u_longlong_t)dvd->vdev_children);
1959 		return (SET_ERROR(EINVAL));
1960 	}
1961 
1962 	for (uint64_t i = 0; i < svd->vdev_children; i++) {
1963 		int error = vdev_copy_path_strict(svd->vdev_child[i],
1964 		    dvd->vdev_child[i]);
1965 		if (error != 0)
1966 			return (error);
1967 	}
1968 
1969 	if (svd->vdev_ops->vdev_op_leaf)
1970 		vdev_copy_path_impl(svd, dvd);
1971 
1972 	return (0);
1973 }
1974 
1975 static void
1976 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
1977 {
1978 	ASSERT(stvd->vdev_top == stvd);
1979 	ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
1980 
1981 	for (uint64_t i = 0; i < dvd->vdev_children; i++) {
1982 		vdev_copy_path_search(stvd, dvd->vdev_child[i]);
1983 	}
1984 
1985 	if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
1986 		return;
1987 
1988 	/*
1989 	 * The idea here is that while a vdev can shift positions within
1990 	 * a top vdev (when replacing, attaching mirror, etc.) it cannot
1991 	 * step outside of it.
1992 	 */
1993 	vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
1994 
1995 	if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
1996 		return;
1997 
1998 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1999 
2000 	vdev_copy_path_impl(vd, dvd);
2001 }
2002 
2003 /*
2004  * Recursively copy vdev paths from one root vdev to another. Source and
2005  * destination vdev trees may differ in geometry. For each destination leaf
2006  * vdev, search a vdev with the same guid and top vdev id in the source.
2007  * Intended to copy paths from userland config into MOS config.
2008  */
2009 void
2010 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
2011 {
2012 	uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
2013 	ASSERT(srvd->vdev_ops == &vdev_root_ops);
2014 	ASSERT(drvd->vdev_ops == &vdev_root_ops);
2015 
2016 	for (uint64_t i = 0; i < children; i++) {
2017 		vdev_copy_path_search(srvd->vdev_child[i],
2018 		    drvd->vdev_child[i]);
2019 	}
2020 }
2021 
2022 /*
2023  * Close a virtual device.
2024  */
2025 void
2026 vdev_close(vdev_t *vd)
2027 {
2028 	spa_t *spa = vd->vdev_spa;
2029 	vdev_t *pvd = vd->vdev_parent;
2030 
2031 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2032 
2033 	/*
2034 	 * If our parent is reopening, then we are as well, unless we are
2035 	 * going offline.
2036 	 */
2037 	if (pvd != NULL && pvd->vdev_reopening)
2038 		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
2039 
2040 	vd->vdev_ops->vdev_op_close(vd);
2041 
2042 	vdev_cache_purge(vd);
2043 
2044 	/*
2045 	 * We record the previous state before we close it, so that if we are
2046 	 * doing a reopen(), we don't generate FMA ereports if we notice that
2047 	 * it's still faulted.
2048 	 */
2049 	vd->vdev_prevstate = vd->vdev_state;
2050 
2051 	if (vd->vdev_offline)
2052 		vd->vdev_state = VDEV_STATE_OFFLINE;
2053 	else
2054 		vd->vdev_state = VDEV_STATE_CLOSED;
2055 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2056 }
2057 
2058 void
2059 vdev_hold(vdev_t *vd)
2060 {
2061 	spa_t *spa = vd->vdev_spa;
2062 
2063 	ASSERT(spa_is_root(spa));
2064 	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
2065 		return;
2066 
2067 	for (int c = 0; c < vd->vdev_children; c++)
2068 		vdev_hold(vd->vdev_child[c]);
2069 
2070 	if (vd->vdev_ops->vdev_op_leaf)
2071 		vd->vdev_ops->vdev_op_hold(vd);
2072 }
2073 
2074 void
2075 vdev_rele(vdev_t *vd)
2076 {
2077 	spa_t *spa = vd->vdev_spa;
2078 
2079 	ASSERT(spa_is_root(spa));
2080 	for (int c = 0; c < vd->vdev_children; c++)
2081 		vdev_rele(vd->vdev_child[c]);
2082 
2083 	if (vd->vdev_ops->vdev_op_leaf)
2084 		vd->vdev_ops->vdev_op_rele(vd);
2085 }
2086 
2087 /*
2088  * Reopen all interior vdevs and any unopened leaves.  We don't actually
2089  * reopen leaf vdevs which had previously been opened as they might deadlock
2090  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
2091  * If the leaf has never been opened then open it, as usual.
2092  */
2093 void
2094 vdev_reopen(vdev_t *vd)
2095 {
2096 	spa_t *spa = vd->vdev_spa;
2097 
2098 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2099 
2100 	/* set the reopening flag unless we're taking the vdev offline */
2101 	vd->vdev_reopening = !vd->vdev_offline;
2102 	vdev_close(vd);
2103 	(void) vdev_open(vd);
2104 
2105 	/*
2106 	 * Call vdev_validate() here to make sure we have the same device.
2107 	 * Otherwise, a device with an invalid label could be successfully
2108 	 * opened in response to vdev_reopen().
2109 	 */
2110 	if (vd->vdev_aux) {
2111 		(void) vdev_validate_aux(vd);
2112 		if (vdev_readable(vd) && vdev_writeable(vd) &&
2113 		    vd->vdev_aux == &spa->spa_l2cache &&
2114 		    !l2arc_vdev_present(vd))
2115 			l2arc_add_vdev(spa, vd);
2116 	} else {
2117 		(void) vdev_validate(vd);
2118 	}
2119 
2120 	/*
2121 	 * Reassess parent vdev's health.
2122 	 */
2123 	vdev_propagate_state(vd);
2124 }
2125 
2126 int
2127 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
2128 {
2129 	int error;
2130 
2131 	/*
2132 	 * Normally, partial opens (e.g. of a mirror) are allowed.
2133 	 * For a create, however, we want to fail the request if
2134 	 * there are any components we can't open.
2135 	 */
2136 	error = vdev_open(vd);
2137 
2138 	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
2139 		vdev_close(vd);
2140 		return (error ? error : ENXIO);
2141 	}
2142 
2143 	/*
2144 	 * Recursively load DTLs and initialize all labels.
2145 	 */
2146 	if ((error = vdev_dtl_load(vd)) != 0 ||
2147 	    (error = vdev_label_init(vd, txg, isreplacing ?
2148 	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
2149 		vdev_close(vd);
2150 		return (error);
2151 	}
2152 
2153 	return (0);
2154 }
2155 
2156 void
2157 vdev_metaslab_set_size(vdev_t *vd)
2158 {
2159 	uint64_t asize = vd->vdev_asize;
2160 	uint64_t ms_count = asize >> zfs_vdev_default_ms_shift;
2161 	uint64_t ms_shift;
2162 
2163 	/*
2164 	 * There are two dimensions to the metaslab sizing calculation:
2165 	 * the size of the metaslab and the count of metaslabs per vdev.
2166 	 *
2167 	 * The default values used below are a good balance between memory
2168 	 * usage (larger metaslab size means more memory needed for loaded
2169 	 * metaslabs; more metaslabs means more memory needed for the
2170 	 * metaslab_t structs), metaslab load time (larger metaslabs take
2171 	 * longer to load), and metaslab sync time (more metaslabs means
2172 	 * more time spent syncing all of them).
2173 	 *
2174 	 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs.
2175 	 * The range of the dimensions are as follows:
2176 	 *
2177 	 *	2^29 <= ms_size  <= 2^34
2178 	 *	  16 <= ms_count <= 131,072
2179 	 *
2180 	 * On the lower end of vdev sizes, we aim for metaslabs sizes of
2181 	 * at least 512MB (2^29) to minimize fragmentation effects when
2182 	 * testing with smaller devices.  However, the count constraint
2183 	 * of at least 16 metaslabs will override this minimum size goal.
2184 	 *
2185 	 * On the upper end of vdev sizes, we aim for a maximum metaslab
2186 	 * size of 16GB.  However, we will cap the total count to 2^17
2187 	 * metaslabs to keep our memory footprint in check and let the
2188 	 * metaslab size grow from there if that limit is hit.
2189 	 *
2190 	 * The net effect of applying above constrains is summarized below.
2191 	 *
2192 	 *   vdev size	    metaslab count
2193 	 *  --------------|-----------------
2194 	 *	< 8GB		~16
2195 	 *  8GB   - 100GB	one per 512MB
2196 	 *  100GB - 3TB		~200
2197 	 *  3TB   - 2PB		one per 16GB
2198 	 *	> 2PB		~131,072
2199 	 *  --------------------------------
2200 	 *
2201 	 *  Finally, note that all of the above calculate the initial
2202 	 *  number of metaslabs. Expanding a top-level vdev will result
2203 	 *  in additional metaslabs being allocated making it possible
2204 	 *  to exceed the zfs_vdev_ms_count_limit.
2205 	 */
2206 
2207 	if (ms_count < zfs_vdev_min_ms_count)
2208 		ms_shift = highbit64(asize / zfs_vdev_min_ms_count);
2209 	else if (ms_count > zfs_vdev_default_ms_count)
2210 		ms_shift = highbit64(asize / zfs_vdev_default_ms_count);
2211 	else
2212 		ms_shift = zfs_vdev_default_ms_shift;
2213 
2214 	if (ms_shift < SPA_MAXBLOCKSHIFT) {
2215 		ms_shift = SPA_MAXBLOCKSHIFT;
2216 	} else if (ms_shift > zfs_vdev_max_ms_shift) {
2217 		ms_shift = zfs_vdev_max_ms_shift;
2218 		/* cap the total count to constrain memory footprint */
2219 		if ((asize >> ms_shift) > zfs_vdev_ms_count_limit)
2220 			ms_shift = highbit64(asize / zfs_vdev_ms_count_limit);
2221 	}
2222 
2223 	vd->vdev_ms_shift = ms_shift;
2224 	ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT);
2225 }
2226 
2227 void
2228 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
2229 {
2230 	ASSERT(vd == vd->vdev_top);
2231 	/* indirect vdevs don't have metaslabs or dtls */
2232 	ASSERT(vdev_is_concrete(vd) || flags == 0);
2233 	ASSERT(ISP2(flags));
2234 	ASSERT(spa_writeable(vd->vdev_spa));
2235 
2236 	if (flags & VDD_METASLAB)
2237 		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
2238 
2239 	if (flags & VDD_DTL)
2240 		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
2241 
2242 	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
2243 }
2244 
2245 void
2246 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
2247 {
2248 	for (int c = 0; c < vd->vdev_children; c++)
2249 		vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
2250 
2251 	if (vd->vdev_ops->vdev_op_leaf)
2252 		vdev_dirty(vd->vdev_top, flags, vd, txg);
2253 }
2254 
2255 /*
2256  * DTLs.
2257  *
2258  * A vdev's DTL (dirty time log) is the set of transaction groups for which
2259  * the vdev has less than perfect replication.  There are four kinds of DTL:
2260  *
2261  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
2262  *
2263  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
2264  *
2265  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
2266  *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
2267  *	txgs that was scrubbed.
2268  *
2269  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
2270  *	persistent errors or just some device being offline.
2271  *	Unlike the other three, the DTL_OUTAGE map is not generally
2272  *	maintained; it's only computed when needed, typically to
2273  *	determine whether a device can be detached.
2274  *
2275  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
2276  * either has the data or it doesn't.
2277  *
2278  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
2279  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
2280  * if any child is less than fully replicated, then so is its parent.
2281  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
2282  * comprising only those txgs which appear in 'maxfaults' or more children;
2283  * those are the txgs we don't have enough replication to read.  For example,
2284  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
2285  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
2286  * two child DTL_MISSING maps.
2287  *
2288  * It should be clear from the above that to compute the DTLs and outage maps
2289  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
2290  * Therefore, that is all we keep on disk.  When loading the pool, or after
2291  * a configuration change, we generate all other DTLs from first principles.
2292  */
2293 void
2294 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2295 {
2296 	range_tree_t *rt = vd->vdev_dtl[t];
2297 
2298 	ASSERT(t < DTL_TYPES);
2299 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2300 	ASSERT(spa_writeable(vd->vdev_spa));
2301 
2302 	mutex_enter(&vd->vdev_dtl_lock);
2303 	if (!range_tree_contains(rt, txg, size))
2304 		range_tree_add(rt, txg, size);
2305 	mutex_exit(&vd->vdev_dtl_lock);
2306 }
2307 
2308 boolean_t
2309 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2310 {
2311 	range_tree_t *rt = vd->vdev_dtl[t];
2312 	boolean_t dirty = B_FALSE;
2313 
2314 	ASSERT(t < DTL_TYPES);
2315 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2316 
2317 	/*
2318 	 * While we are loading the pool, the DTLs have not been loaded yet.
2319 	 * Ignore the DTLs and try all devices.  This avoids a recursive
2320 	 * mutex enter on the vdev_dtl_lock, and also makes us try hard
2321 	 * when loading the pool (relying on the checksum to ensure that
2322 	 * we get the right data -- note that we while loading, we are
2323 	 * only reading the MOS, which is always checksummed).
2324 	 */
2325 	if (vd->vdev_spa->spa_load_state != SPA_LOAD_NONE)
2326 		return (B_FALSE);
2327 
2328 	mutex_enter(&vd->vdev_dtl_lock);
2329 	if (!range_tree_is_empty(rt))
2330 		dirty = range_tree_contains(rt, txg, size);
2331 	mutex_exit(&vd->vdev_dtl_lock);
2332 
2333 	return (dirty);
2334 }
2335 
2336 boolean_t
2337 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
2338 {
2339 	range_tree_t *rt = vd->vdev_dtl[t];
2340 	boolean_t empty;
2341 
2342 	mutex_enter(&vd->vdev_dtl_lock);
2343 	empty = range_tree_is_empty(rt);
2344 	mutex_exit(&vd->vdev_dtl_lock);
2345 
2346 	return (empty);
2347 }
2348 
2349 /*
2350  * Returns the lowest txg in the DTL range.
2351  */
2352 static uint64_t
2353 vdev_dtl_min(vdev_t *vd)
2354 {
2355 	range_seg_t *rs;
2356 
2357 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2358 	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2359 	ASSERT0(vd->vdev_children);
2360 
2361 	rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
2362 	return (rs->rs_start - 1);
2363 }
2364 
2365 /*
2366  * Returns the highest txg in the DTL.
2367  */
2368 static uint64_t
2369 vdev_dtl_max(vdev_t *vd)
2370 {
2371 	range_seg_t *rs;
2372 
2373 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2374 	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2375 	ASSERT0(vd->vdev_children);
2376 
2377 	rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
2378 	return (rs->rs_end);
2379 }
2380 
2381 /*
2382  * Determine if a resilvering vdev should remove any DTL entries from
2383  * its range. If the vdev was resilvering for the entire duration of the
2384  * scan then it should excise that range from its DTLs. Otherwise, this
2385  * vdev is considered partially resilvered and should leave its DTL
2386  * entries intact. The comment in vdev_dtl_reassess() describes how we
2387  * excise the DTLs.
2388  */
2389 static boolean_t
2390 vdev_dtl_should_excise(vdev_t *vd)
2391 {
2392 	spa_t *spa = vd->vdev_spa;
2393 	dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2394 
2395 	ASSERT0(scn->scn_phys.scn_errors);
2396 	ASSERT0(vd->vdev_children);
2397 
2398 	if (vd->vdev_state < VDEV_STATE_DEGRADED)
2399 		return (B_FALSE);
2400 
2401 	if (vd->vdev_resilver_txg == 0 ||
2402 	    range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]))
2403 		return (B_TRUE);
2404 
2405 	/*
2406 	 * When a resilver is initiated the scan will assign the scn_max_txg
2407 	 * value to the highest txg value that exists in all DTLs. If this
2408 	 * device's max DTL is not part of this scan (i.e. it is not in
2409 	 * the range (scn_min_txg, scn_max_txg] then it is not eligible
2410 	 * for excision.
2411 	 */
2412 	if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
2413 		ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
2414 		ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
2415 		ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
2416 		return (B_TRUE);
2417 	}
2418 	return (B_FALSE);
2419 }
2420 
2421 /*
2422  * Reassess DTLs after a config change or scrub completion.
2423  */
2424 void
2425 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
2426 {
2427 	spa_t *spa = vd->vdev_spa;
2428 	avl_tree_t reftree;
2429 	int minref;
2430 
2431 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2432 
2433 	for (int c = 0; c < vd->vdev_children; c++)
2434 		vdev_dtl_reassess(vd->vdev_child[c], txg,
2435 		    scrub_txg, scrub_done);
2436 
2437 	if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
2438 		return;
2439 
2440 	if (vd->vdev_ops->vdev_op_leaf) {
2441 		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2442 
2443 		mutex_enter(&vd->vdev_dtl_lock);
2444 
2445 		/*
2446 		 * If we've completed a scan cleanly then determine
2447 		 * if this vdev should remove any DTLs. We only want to
2448 		 * excise regions on vdevs that were available during
2449 		 * the entire duration of this scan.
2450 		 */
2451 		if (scrub_txg != 0 &&
2452 		    (spa->spa_scrub_started ||
2453 		    (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
2454 		    vdev_dtl_should_excise(vd)) {
2455 			/*
2456 			 * We completed a scrub up to scrub_txg.  If we
2457 			 * did it without rebooting, then the scrub dtl
2458 			 * will be valid, so excise the old region and
2459 			 * fold in the scrub dtl.  Otherwise, leave the
2460 			 * dtl as-is if there was an error.
2461 			 *
2462 			 * There's little trick here: to excise the beginning
2463 			 * of the DTL_MISSING map, we put it into a reference
2464 			 * tree and then add a segment with refcnt -1 that
2465 			 * covers the range [0, scrub_txg).  This means
2466 			 * that each txg in that range has refcnt -1 or 0.
2467 			 * We then add DTL_SCRUB with a refcnt of 2, so that
2468 			 * entries in the range [0, scrub_txg) will have a
2469 			 * positive refcnt -- either 1 or 2.  We then convert
2470 			 * the reference tree into the new DTL_MISSING map.
2471 			 */
2472 			space_reftree_create(&reftree);
2473 			space_reftree_add_map(&reftree,
2474 			    vd->vdev_dtl[DTL_MISSING], 1);
2475 			space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
2476 			space_reftree_add_map(&reftree,
2477 			    vd->vdev_dtl[DTL_SCRUB], 2);
2478 			space_reftree_generate_map(&reftree,
2479 			    vd->vdev_dtl[DTL_MISSING], 1);
2480 			space_reftree_destroy(&reftree);
2481 		}
2482 		range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
2483 		range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2484 		    range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
2485 		if (scrub_done)
2486 			range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
2487 		range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
2488 		if (!vdev_readable(vd))
2489 			range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
2490 		else
2491 			range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2492 			    range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
2493 
2494 		/*
2495 		 * If the vdev was resilvering and no longer has any
2496 		 * DTLs then reset its resilvering flag.
2497 		 */
2498 		if (vd->vdev_resilver_txg != 0 &&
2499 		    range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
2500 		    range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE]))
2501 			vd->vdev_resilver_txg = 0;
2502 
2503 		mutex_exit(&vd->vdev_dtl_lock);
2504 
2505 		if (txg != 0)
2506 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
2507 		return;
2508 	}
2509 
2510 	mutex_enter(&vd->vdev_dtl_lock);
2511 	for (int t = 0; t < DTL_TYPES; t++) {
2512 		/* account for child's outage in parent's missing map */
2513 		int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
2514 		if (t == DTL_SCRUB)
2515 			continue;			/* leaf vdevs only */
2516 		if (t == DTL_PARTIAL)
2517 			minref = 1;			/* i.e. non-zero */
2518 		else if (vd->vdev_nparity != 0)
2519 			minref = vd->vdev_nparity + 1;	/* RAID-Z */
2520 		else
2521 			minref = vd->vdev_children;	/* any kind of mirror */
2522 		space_reftree_create(&reftree);
2523 		for (int c = 0; c < vd->vdev_children; c++) {
2524 			vdev_t *cvd = vd->vdev_child[c];
2525 			mutex_enter(&cvd->vdev_dtl_lock);
2526 			space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
2527 			mutex_exit(&cvd->vdev_dtl_lock);
2528 		}
2529 		space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
2530 		space_reftree_destroy(&reftree);
2531 	}
2532 	mutex_exit(&vd->vdev_dtl_lock);
2533 }
2534 
2535 int
2536 vdev_dtl_load(vdev_t *vd)
2537 {
2538 	spa_t *spa = vd->vdev_spa;
2539 	objset_t *mos = spa->spa_meta_objset;
2540 	int error = 0;
2541 
2542 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2543 		ASSERT(vdev_is_concrete(vd));
2544 
2545 		error = space_map_open(&vd->vdev_dtl_sm, mos,
2546 		    vd->vdev_dtl_object, 0, -1ULL, 0);
2547 		if (error)
2548 			return (error);
2549 		ASSERT(vd->vdev_dtl_sm != NULL);
2550 
2551 		mutex_enter(&vd->vdev_dtl_lock);
2552 
2553 		/*
2554 		 * Now that we've opened the space_map we need to update
2555 		 * the in-core DTL.
2556 		 */
2557 		space_map_update(vd->vdev_dtl_sm);
2558 
2559 		error = space_map_load(vd->vdev_dtl_sm,
2560 		    vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2561 		mutex_exit(&vd->vdev_dtl_lock);
2562 
2563 		return (error);
2564 	}
2565 
2566 	for (int c = 0; c < vd->vdev_children; c++) {
2567 		error = vdev_dtl_load(vd->vdev_child[c]);
2568 		if (error != 0)
2569 			break;
2570 	}
2571 
2572 	return (error);
2573 }
2574 
2575 static void
2576 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx)
2577 {
2578 	spa_t *spa = vd->vdev_spa;
2579 	objset_t *mos = spa->spa_meta_objset;
2580 	vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
2581 	const char *string;
2582 
2583 	ASSERT(alloc_bias != VDEV_BIAS_NONE);
2584 
2585 	string =
2586 	    (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG :
2587 	    (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL :
2588 	    (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL;
2589 
2590 	ASSERT(string != NULL);
2591 	VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS,
2592 	    1, strlen(string) + 1, string, tx));
2593 
2594 	if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) {
2595 		spa_activate_allocation_classes(spa, tx);
2596 	}
2597 }
2598 
2599 void
2600 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
2601 {
2602 	spa_t *spa = vd->vdev_spa;
2603 
2604 	VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
2605 	VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2606 	    zapobj, tx));
2607 }
2608 
2609 uint64_t
2610 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
2611 {
2612 	spa_t *spa = vd->vdev_spa;
2613 	uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
2614 	    DMU_OT_NONE, 0, tx);
2615 
2616 	ASSERT(zap != 0);
2617 	VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2618 	    zap, tx));
2619 
2620 	return (zap);
2621 }
2622 
2623 void
2624 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
2625 {
2626 	if (vd->vdev_ops != &vdev_hole_ops &&
2627 	    vd->vdev_ops != &vdev_missing_ops &&
2628 	    vd->vdev_ops != &vdev_root_ops &&
2629 	    !vd->vdev_top->vdev_removing) {
2630 		if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
2631 			vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
2632 		}
2633 		if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
2634 			vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
2635 			if (vd->vdev_alloc_bias != VDEV_BIAS_NONE)
2636 				vdev_zap_allocation_data(vd, tx);
2637 		}
2638 	}
2639 
2640 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
2641 		vdev_construct_zaps(vd->vdev_child[i], tx);
2642 	}
2643 }
2644 
2645 void
2646 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2647 {
2648 	spa_t *spa = vd->vdev_spa;
2649 	range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2650 	objset_t *mos = spa->spa_meta_objset;
2651 	range_tree_t *rtsync;
2652 	dmu_tx_t *tx;
2653 	uint64_t object = space_map_object(vd->vdev_dtl_sm);
2654 
2655 	ASSERT(vdev_is_concrete(vd));
2656 	ASSERT(vd->vdev_ops->vdev_op_leaf);
2657 
2658 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2659 
2660 	if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2661 		mutex_enter(&vd->vdev_dtl_lock);
2662 		space_map_free(vd->vdev_dtl_sm, tx);
2663 		space_map_close(vd->vdev_dtl_sm);
2664 		vd->vdev_dtl_sm = NULL;
2665 		mutex_exit(&vd->vdev_dtl_lock);
2666 
2667 		/*
2668 		 * We only destroy the leaf ZAP for detached leaves or for
2669 		 * removed log devices. Removed data devices handle leaf ZAP
2670 		 * cleanup later, once cancellation is no longer possible.
2671 		 */
2672 		if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
2673 		    vd->vdev_top->vdev_islog)) {
2674 			vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
2675 			vd->vdev_leaf_zap = 0;
2676 		}
2677 
2678 		dmu_tx_commit(tx);
2679 		return;
2680 	}
2681 
2682 	if (vd->vdev_dtl_sm == NULL) {
2683 		uint64_t new_object;
2684 
2685 		new_object = space_map_alloc(mos, vdev_dtl_sm_blksz, tx);
2686 		VERIFY3U(new_object, !=, 0);
2687 
2688 		VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2689 		    0, -1ULL, 0));
2690 		ASSERT(vd->vdev_dtl_sm != NULL);
2691 	}
2692 
2693 	rtsync = range_tree_create(NULL, NULL);
2694 
2695 	mutex_enter(&vd->vdev_dtl_lock);
2696 	range_tree_walk(rt, range_tree_add, rtsync);
2697 	mutex_exit(&vd->vdev_dtl_lock);
2698 
2699 	space_map_truncate(vd->vdev_dtl_sm, vdev_dtl_sm_blksz, tx);
2700 	space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx);
2701 	range_tree_vacate(rtsync, NULL, NULL);
2702 
2703 	range_tree_destroy(rtsync);
2704 
2705 	/*
2706 	 * If the object for the space map has changed then dirty
2707 	 * the top level so that we update the config.
2708 	 */
2709 	if (object != space_map_object(vd->vdev_dtl_sm)) {
2710 		vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
2711 		    "new object %llu", (u_longlong_t)txg, spa_name(spa),
2712 		    (u_longlong_t)object,
2713 		    (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
2714 		vdev_config_dirty(vd->vdev_top);
2715 	}
2716 
2717 	dmu_tx_commit(tx);
2718 
2719 	mutex_enter(&vd->vdev_dtl_lock);
2720 	space_map_update(vd->vdev_dtl_sm);
2721 	mutex_exit(&vd->vdev_dtl_lock);
2722 }
2723 
2724 /*
2725  * Determine whether the specified vdev can be offlined/detached/removed
2726  * without losing data.
2727  */
2728 boolean_t
2729 vdev_dtl_required(vdev_t *vd)
2730 {
2731 	spa_t *spa = vd->vdev_spa;
2732 	vdev_t *tvd = vd->vdev_top;
2733 	uint8_t cant_read = vd->vdev_cant_read;
2734 	boolean_t required;
2735 
2736 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2737 
2738 	if (vd == spa->spa_root_vdev || vd == tvd)
2739 		return (B_TRUE);
2740 
2741 	/*
2742 	 * Temporarily mark the device as unreadable, and then determine
2743 	 * whether this results in any DTL outages in the top-level vdev.
2744 	 * If not, we can safely offline/detach/remove the device.
2745 	 */
2746 	vd->vdev_cant_read = B_TRUE;
2747 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2748 	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2749 	vd->vdev_cant_read = cant_read;
2750 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2751 
2752 	if (!required && zio_injection_enabled)
2753 		required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2754 
2755 	return (required);
2756 }
2757 
2758 /*
2759  * Determine if resilver is needed, and if so the txg range.
2760  */
2761 boolean_t
2762 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2763 {
2764 	boolean_t needed = B_FALSE;
2765 	uint64_t thismin = UINT64_MAX;
2766 	uint64_t thismax = 0;
2767 
2768 	if (vd->vdev_children == 0) {
2769 		mutex_enter(&vd->vdev_dtl_lock);
2770 		if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
2771 		    vdev_writeable(vd)) {
2772 
2773 			thismin = vdev_dtl_min(vd);
2774 			thismax = vdev_dtl_max(vd);
2775 			needed = B_TRUE;
2776 		}
2777 		mutex_exit(&vd->vdev_dtl_lock);
2778 	} else {
2779 		for (int c = 0; c < vd->vdev_children; c++) {
2780 			vdev_t *cvd = vd->vdev_child[c];
2781 			uint64_t cmin, cmax;
2782 
2783 			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2784 				thismin = MIN(thismin, cmin);
2785 				thismax = MAX(thismax, cmax);
2786 				needed = B_TRUE;
2787 			}
2788 		}
2789 	}
2790 
2791 	if (needed && minp) {
2792 		*minp = thismin;
2793 		*maxp = thismax;
2794 	}
2795 	return (needed);
2796 }
2797 
2798 /*
2799  * Gets the checkpoint space map object from the vdev's ZAP.
2800  * Returns the spacemap object, or 0 if it wasn't in the ZAP
2801  * or the ZAP doesn't exist yet.
2802  */
2803 int
2804 vdev_checkpoint_sm_object(vdev_t *vd)
2805 {
2806 	ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
2807 	if (vd->vdev_top_zap == 0) {
2808 		return (0);
2809 	}
2810 
2811 	uint64_t sm_obj = 0;
2812 	int err = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap,
2813 	    VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, &sm_obj);
2814 
2815 	ASSERT(err == 0 || err == ENOENT);
2816 
2817 	return (sm_obj);
2818 }
2819 
2820 int
2821 vdev_load(vdev_t *vd)
2822 {
2823 	int error = 0;
2824 	/*
2825 	 * Recursively load all children.
2826 	 */
2827 	for (int c = 0; c < vd->vdev_children; c++) {
2828 		error = vdev_load(vd->vdev_child[c]);
2829 		if (error != 0) {
2830 			return (error);
2831 		}
2832 	}
2833 
2834 	vdev_set_deflate_ratio(vd);
2835 
2836 	/*
2837 	 * On spa_load path, grab the allocation bias from our zap
2838 	 */
2839 	if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
2840 		spa_t *spa = vd->vdev_spa;
2841 		char bias_str[64];
2842 
2843 		if (zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
2844 		    VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str),
2845 		    bias_str) == 0) {
2846 			ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE);
2847 			vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str);
2848 		}
2849 	}
2850 
2851 	/*
2852 	 * If this is a top-level vdev, initialize its metaslabs.
2853 	 */
2854 	if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
2855 		vdev_metaslab_group_create(vd);
2856 
2857 		if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
2858 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2859 			    VDEV_AUX_CORRUPT_DATA);
2860 			vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
2861 			    "asize=%llu", (u_longlong_t)vd->vdev_ashift,
2862 			    (u_longlong_t)vd->vdev_asize);
2863 			return (SET_ERROR(ENXIO));
2864 		} else if ((error = vdev_metaslab_init(vd, 0)) != 0) {
2865 			vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
2866 			    "[error=%d]", error);
2867 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2868 			    VDEV_AUX_CORRUPT_DATA);
2869 			return (error);
2870 		}
2871 
2872 		uint64_t checkpoint_sm_obj = vdev_checkpoint_sm_object(vd);
2873 		if (checkpoint_sm_obj != 0) {
2874 			objset_t *mos = spa_meta_objset(vd->vdev_spa);
2875 			ASSERT(vd->vdev_asize != 0);
2876 			ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL);
2877 
2878 			if ((error = space_map_open(&vd->vdev_checkpoint_sm,
2879 			    mos, checkpoint_sm_obj, 0, vd->vdev_asize,
2880 			    vd->vdev_ashift))) {
2881 				vdev_dbgmsg(vd, "vdev_load: space_map_open "
2882 				    "failed for checkpoint spacemap (obj %llu) "
2883 				    "[error=%d]",
2884 				    (u_longlong_t)checkpoint_sm_obj, error);
2885 				return (error);
2886 			}
2887 			ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
2888 			space_map_update(vd->vdev_checkpoint_sm);
2889 
2890 			/*
2891 			 * Since the checkpoint_sm contains free entries
2892 			 * exclusively we can use sm_alloc to indicate the
2893 			 * culmulative checkpointed space that has been freed.
2894 			 */
2895 			vd->vdev_stat.vs_checkpoint_space =
2896 			    -vd->vdev_checkpoint_sm->sm_alloc;
2897 			vd->vdev_spa->spa_checkpoint_info.sci_dspace +=
2898 			    vd->vdev_stat.vs_checkpoint_space;
2899 		}
2900 	}
2901 
2902 	/*
2903 	 * If this is a leaf vdev, load its DTL.
2904 	 */
2905 	if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
2906 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2907 		    VDEV_AUX_CORRUPT_DATA);
2908 		vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
2909 		    "[error=%d]", error);
2910 		return (error);
2911 	}
2912 
2913 	uint64_t obsolete_sm_object = vdev_obsolete_sm_object(vd);
2914 	if (obsolete_sm_object != 0) {
2915 		objset_t *mos = vd->vdev_spa->spa_meta_objset;
2916 		ASSERT(vd->vdev_asize != 0);
2917 		ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
2918 
2919 		if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
2920 		    obsolete_sm_object, 0, vd->vdev_asize, 0))) {
2921 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2922 			    VDEV_AUX_CORRUPT_DATA);
2923 			vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
2924 			    "obsolete spacemap (obj %llu) [error=%d]",
2925 			    (u_longlong_t)obsolete_sm_object, error);
2926 			return (error);
2927 		}
2928 		space_map_update(vd->vdev_obsolete_sm);
2929 	}
2930 
2931 	return (0);
2932 }
2933 
2934 /*
2935  * The special vdev case is used for hot spares and l2cache devices.  Its
2936  * sole purpose it to set the vdev state for the associated vdev.  To do this,
2937  * we make sure that we can open the underlying device, then try to read the
2938  * label, and make sure that the label is sane and that it hasn't been
2939  * repurposed to another pool.
2940  */
2941 int
2942 vdev_validate_aux(vdev_t *vd)
2943 {
2944 	nvlist_t *label;
2945 	uint64_t guid, version;
2946 	uint64_t state;
2947 
2948 	if (!vdev_readable(vd))
2949 		return (0);
2950 
2951 	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2952 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2953 		    VDEV_AUX_CORRUPT_DATA);
2954 		return (-1);
2955 	}
2956 
2957 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2958 	    !SPA_VERSION_IS_SUPPORTED(version) ||
2959 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2960 	    guid != vd->vdev_guid ||
2961 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2962 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2963 		    VDEV_AUX_CORRUPT_DATA);
2964 		nvlist_free(label);
2965 		return (-1);
2966 	}
2967 
2968 	/*
2969 	 * We don't actually check the pool state here.  If it's in fact in
2970 	 * use by another pool, we update this fact on the fly when requested.
2971 	 */
2972 	nvlist_free(label);
2973 	return (0);
2974 }
2975 
2976 /*
2977  * Free the objects used to store this vdev's spacemaps, and the array
2978  * that points to them.
2979  */
2980 void
2981 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
2982 {
2983 	if (vd->vdev_ms_array == 0)
2984 		return;
2985 
2986 	objset_t *mos = vd->vdev_spa->spa_meta_objset;
2987 	uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
2988 	size_t array_bytes = array_count * sizeof (uint64_t);
2989 	uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
2990 	VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
2991 	    array_bytes, smobj_array, 0));
2992 
2993 	for (uint64_t i = 0; i < array_count; i++) {
2994 		uint64_t smobj = smobj_array[i];
2995 		if (smobj == 0)
2996 			continue;
2997 
2998 		space_map_free_obj(mos, smobj, tx);
2999 	}
3000 
3001 	kmem_free(smobj_array, array_bytes);
3002 	VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
3003 	vd->vdev_ms_array = 0;
3004 }
3005 
3006 static void
3007 vdev_remove_empty_log(vdev_t *vd, uint64_t txg)
3008 {
3009 	spa_t *spa = vd->vdev_spa;
3010 
3011 	ASSERT(vd->vdev_islog);
3012 	ASSERT(vd == vd->vdev_top);
3013 	ASSERT3U(txg, ==, spa_syncing_txg(spa));
3014 
3015 	if (vd->vdev_ms != NULL) {
3016 		metaslab_group_t *mg = vd->vdev_mg;
3017 
3018 		metaslab_group_histogram_verify(mg);
3019 		metaslab_class_histogram_verify(mg->mg_class);
3020 
3021 		for (int m = 0; m < vd->vdev_ms_count; m++) {
3022 			metaslab_t *msp = vd->vdev_ms[m];
3023 
3024 			if (msp == NULL || msp->ms_sm == NULL)
3025 				continue;
3026 
3027 			mutex_enter(&msp->ms_lock);
3028 			/*
3029 			 * If the metaslab was not loaded when the vdev
3030 			 * was removed then the histogram accounting may
3031 			 * not be accurate. Update the histogram information
3032 			 * here so that we ensure that the metaslab group
3033 			 * and metaslab class are up-to-date.
3034 			 */
3035 			metaslab_group_histogram_remove(mg, msp);
3036 
3037 			VERIFY0(space_map_allocated(msp->ms_sm));
3038 			space_map_close(msp->ms_sm);
3039 			msp->ms_sm = NULL;
3040 			mutex_exit(&msp->ms_lock);
3041 		}
3042 
3043 		if (vd->vdev_checkpoint_sm != NULL) {
3044 			ASSERT(spa_has_checkpoint(spa));
3045 			space_map_close(vd->vdev_checkpoint_sm);
3046 			vd->vdev_checkpoint_sm = NULL;
3047 		}
3048 
3049 		metaslab_group_histogram_verify(mg);
3050 		metaslab_class_histogram_verify(mg->mg_class);
3051 
3052 		for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
3053 			ASSERT0(mg->mg_histogram[i]);
3054 	}
3055 
3056 	dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
3057 
3058 	vdev_destroy_spacemaps(vd, tx);
3059 	if (vd->vdev_top_zap != 0) {
3060 		vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
3061 		vd->vdev_top_zap = 0;
3062 	}
3063 
3064 	dmu_tx_commit(tx);
3065 }
3066 
3067 void
3068 vdev_sync_done(vdev_t *vd, uint64_t txg)
3069 {
3070 	metaslab_t *msp;
3071 	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
3072 
3073 	ASSERT(vdev_is_concrete(vd));
3074 
3075 	while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
3076 	    != NULL)
3077 		metaslab_sync_done(msp, txg);
3078 
3079 	if (reassess)
3080 		metaslab_sync_reassess(vd->vdev_mg);
3081 }
3082 
3083 void
3084 vdev_sync(vdev_t *vd, uint64_t txg)
3085 {
3086 	spa_t *spa = vd->vdev_spa;
3087 	vdev_t *lvd;
3088 	metaslab_t *msp;
3089 	dmu_tx_t *tx;
3090 
3091 	if (range_tree_space(vd->vdev_obsolete_segments) > 0) {
3092 		dmu_tx_t *tx;
3093 
3094 		ASSERT(vd->vdev_removing ||
3095 		    vd->vdev_ops == &vdev_indirect_ops);
3096 
3097 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3098 		vdev_indirect_sync_obsolete(vd, tx);
3099 		dmu_tx_commit(tx);
3100 
3101 		/*
3102 		 * If the vdev is indirect, it can't have dirty
3103 		 * metaslabs or DTLs.
3104 		 */
3105 		if (vd->vdev_ops == &vdev_indirect_ops) {
3106 			ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
3107 			ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
3108 			return;
3109 		}
3110 	}
3111 
3112 	ASSERT(vdev_is_concrete(vd));
3113 
3114 	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
3115 	    !vd->vdev_removing) {
3116 		ASSERT(vd == vd->vdev_top);
3117 		ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
3118 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3119 		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
3120 		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
3121 		ASSERT(vd->vdev_ms_array != 0);
3122 		vdev_config_dirty(vd);
3123 		dmu_tx_commit(tx);
3124 	}
3125 
3126 	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
3127 		metaslab_sync(msp, txg);
3128 		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
3129 	}
3130 
3131 	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
3132 		vdev_dtl_sync(lvd, txg);
3133 
3134 	/*
3135 	 * If this is an empty log device being removed, destroy the
3136 	 * metadata associated with it.
3137 	 */
3138 	if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
3139 		vdev_remove_empty_log(vd, txg);
3140 
3141 	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
3142 }
3143 
3144 uint64_t
3145 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
3146 {
3147 	return (vd->vdev_ops->vdev_op_asize(vd, psize));
3148 }
3149 
3150 /*
3151  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
3152  * not be opened, and no I/O is attempted.
3153  */
3154 int
3155 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
3156 {
3157 	vdev_t *vd, *tvd;
3158 
3159 	spa_vdev_state_enter(spa, SCL_NONE);
3160 
3161 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3162 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
3163 
3164 	if (!vd->vdev_ops->vdev_op_leaf)
3165 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3166 
3167 	tvd = vd->vdev_top;
3168 
3169 	/*
3170 	 * We don't directly use the aux state here, but if we do a
3171 	 * vdev_reopen(), we need this value to be present to remember why we
3172 	 * were faulted.
3173 	 */
3174 	vd->vdev_label_aux = aux;
3175 
3176 	/*
3177 	 * Faulted state takes precedence over degraded.
3178 	 */
3179 	vd->vdev_delayed_close = B_FALSE;
3180 	vd->vdev_faulted = 1ULL;
3181 	vd->vdev_degraded = 0ULL;
3182 	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
3183 
3184 	/*
3185 	 * If this device has the only valid copy of the data, then
3186 	 * back off and simply mark the vdev as degraded instead.
3187 	 */
3188 	if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
3189 		vd->vdev_degraded = 1ULL;
3190 		vd->vdev_faulted = 0ULL;
3191 
3192 		/*
3193 		 * If we reopen the device and it's not dead, only then do we
3194 		 * mark it degraded.
3195 		 */
3196 		vdev_reopen(tvd);
3197 
3198 		if (vdev_readable(vd))
3199 			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
3200 	}
3201 
3202 	return (spa_vdev_state_exit(spa, vd, 0));
3203 }
3204 
3205 /*
3206  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
3207  * user that something is wrong.  The vdev continues to operate as normal as far
3208  * as I/O is concerned.
3209  */
3210 int
3211 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
3212 {
3213 	vdev_t *vd;
3214 
3215 	spa_vdev_state_enter(spa, SCL_NONE);
3216 
3217 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3218 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
3219 
3220 	if (!vd->vdev_ops->vdev_op_leaf)
3221 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3222 
3223 	/*
3224 	 * If the vdev is already faulted, then don't do anything.
3225 	 */
3226 	if (vd->vdev_faulted || vd->vdev_degraded)
3227 		return (spa_vdev_state_exit(spa, NULL, 0));
3228 
3229 	vd->vdev_degraded = 1ULL;
3230 	if (!vdev_is_dead(vd))
3231 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
3232 		    aux);
3233 
3234 	return (spa_vdev_state_exit(spa, vd, 0));
3235 }
3236 
3237 /*
3238  * Online the given vdev.
3239  *
3240  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
3241  * spare device should be detached when the device finishes resilvering.
3242  * Second, the online should be treated like a 'test' online case, so no FMA
3243  * events are generated if the device fails to open.
3244  */
3245 int
3246 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
3247 {
3248 	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
3249 	boolean_t wasoffline;
3250 	vdev_state_t oldstate;
3251 
3252 	spa_vdev_state_enter(spa, SCL_NONE);
3253 
3254 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3255 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
3256 
3257 	if (!vd->vdev_ops->vdev_op_leaf)
3258 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3259 
3260 	wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
3261 	oldstate = vd->vdev_state;
3262 
3263 	tvd = vd->vdev_top;
3264 	vd->vdev_offline = B_FALSE;
3265 	vd->vdev_tmpoffline = B_FALSE;
3266 	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
3267 	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
3268 
3269 	/* XXX - L2ARC 1.0 does not support expansion */
3270 	if (!vd->vdev_aux) {
3271 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3272 			pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
3273 	}
3274 
3275 	vdev_reopen(tvd);
3276 	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
3277 
3278 	if (!vd->vdev_aux) {
3279 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3280 			pvd->vdev_expanding = B_FALSE;
3281 	}
3282 
3283 	if (newstate)
3284 		*newstate = vd->vdev_state;
3285 	if ((flags & ZFS_ONLINE_UNSPARE) &&
3286 	    !vdev_is_dead(vd) && vd->vdev_parent &&
3287 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3288 	    vd->vdev_parent->vdev_child[0] == vd)
3289 		vd->vdev_unspare = B_TRUE;
3290 
3291 	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
3292 
3293 		/* XXX - L2ARC 1.0 does not support expansion */
3294 		if (vd->vdev_aux)
3295 			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
3296 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3297 	}
3298 
3299 	/* Restart initializing if necessary */
3300 	mutex_enter(&vd->vdev_initialize_lock);
3301 	if (vdev_writeable(vd) &&
3302 	    vd->vdev_initialize_thread == NULL &&
3303 	    vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) {
3304 		(void) vdev_initialize(vd);
3305 	}
3306 	mutex_exit(&vd->vdev_initialize_lock);
3307 
3308 	if (wasoffline ||
3309 	    (oldstate < VDEV_STATE_DEGRADED &&
3310 	    vd->vdev_state >= VDEV_STATE_DEGRADED))
3311 		spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
3312 
3313 	return (spa_vdev_state_exit(spa, vd, 0));
3314 }
3315 
3316 static int
3317 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
3318 {
3319 	vdev_t *vd, *tvd;
3320 	int error = 0;
3321 	uint64_t generation;
3322 	metaslab_group_t *mg;
3323 
3324 top:
3325 	spa_vdev_state_enter(spa, SCL_ALLOC);
3326 
3327 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3328 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
3329 
3330 	if (!vd->vdev_ops->vdev_op_leaf)
3331 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3332 
3333 	tvd = vd->vdev_top;
3334 	mg = tvd->vdev_mg;
3335 	generation = spa->spa_config_generation + 1;
3336 
3337 	/*
3338 	 * If the device isn't already offline, try to offline it.
3339 	 */
3340 	if (!vd->vdev_offline) {
3341 		/*
3342 		 * If this device has the only valid copy of some data,
3343 		 * don't allow it to be offlined. Log devices are always
3344 		 * expendable.
3345 		 */
3346 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
3347 		    vdev_dtl_required(vd))
3348 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
3349 
3350 		/*
3351 		 * If the top-level is a slog and it has had allocations
3352 		 * then proceed.  We check that the vdev's metaslab group
3353 		 * is not NULL since it's possible that we may have just
3354 		 * added this vdev but not yet initialized its metaslabs.
3355 		 */
3356 		if (tvd->vdev_islog && mg != NULL) {
3357 			/*
3358 			 * Prevent any future allocations.
3359 			 */
3360 			metaslab_group_passivate(mg);
3361 			(void) spa_vdev_state_exit(spa, vd, 0);
3362 
3363 			error = spa_reset_logs(spa);
3364 
3365 			/*
3366 			 * If the log device was successfully reset but has
3367 			 * checkpointed data, do not offline it.
3368 			 */
3369 			if (error == 0 &&
3370 			    tvd->vdev_checkpoint_sm != NULL) {
3371 				ASSERT3U(tvd->vdev_checkpoint_sm->sm_alloc,
3372 				    !=, 0);
3373 				error = ZFS_ERR_CHECKPOINT_EXISTS;
3374 			}
3375 
3376 			spa_vdev_state_enter(spa, SCL_ALLOC);
3377 
3378 			/*
3379 			 * Check to see if the config has changed.
3380 			 */
3381 			if (error || generation != spa->spa_config_generation) {
3382 				metaslab_group_activate(mg);
3383 				if (error)
3384 					return (spa_vdev_state_exit(spa,
3385 					    vd, error));
3386 				(void) spa_vdev_state_exit(spa, vd, 0);
3387 				goto top;
3388 			}
3389 			ASSERT0(tvd->vdev_stat.vs_alloc);
3390 		}
3391 
3392 		/*
3393 		 * Offline this device and reopen its top-level vdev.
3394 		 * If the top-level vdev is a log device then just offline
3395 		 * it. Otherwise, if this action results in the top-level
3396 		 * vdev becoming unusable, undo it and fail the request.
3397 		 */
3398 		vd->vdev_offline = B_TRUE;
3399 		vdev_reopen(tvd);
3400 
3401 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
3402 		    vdev_is_dead(tvd)) {
3403 			vd->vdev_offline = B_FALSE;
3404 			vdev_reopen(tvd);
3405 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
3406 		}
3407 
3408 		/*
3409 		 * Add the device back into the metaslab rotor so that
3410 		 * once we online the device it's open for business.
3411 		 */
3412 		if (tvd->vdev_islog && mg != NULL)
3413 			metaslab_group_activate(mg);
3414 	}
3415 
3416 	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
3417 
3418 	return (spa_vdev_state_exit(spa, vd, 0));
3419 }
3420 
3421 int
3422 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
3423 {
3424 	int error;
3425 
3426 	mutex_enter(&spa->spa_vdev_top_lock);
3427 	error = vdev_offline_locked(spa, guid, flags);
3428 	mutex_exit(&spa->spa_vdev_top_lock);
3429 
3430 	return (error);
3431 }
3432 
3433 /*
3434  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
3435  * vdev_offline(), we assume the spa config is locked.  We also clear all
3436  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
3437  */
3438 void
3439 vdev_clear(spa_t *spa, vdev_t *vd)
3440 {
3441 	vdev_t *rvd = spa->spa_root_vdev;
3442 
3443 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3444 
3445 	if (vd == NULL)
3446 		vd = rvd;
3447 
3448 	vd->vdev_stat.vs_read_errors = 0;
3449 	vd->vdev_stat.vs_write_errors = 0;
3450 	vd->vdev_stat.vs_checksum_errors = 0;
3451 
3452 	for (int c = 0; c < vd->vdev_children; c++)
3453 		vdev_clear(spa, vd->vdev_child[c]);
3454 
3455 	/*
3456 	 * It makes no sense to "clear" an indirect vdev.
3457 	 */
3458 	if (!vdev_is_concrete(vd))
3459 		return;
3460 
3461 	/*
3462 	 * If we're in the FAULTED state or have experienced failed I/O, then
3463 	 * clear the persistent state and attempt to reopen the device.  We
3464 	 * also mark the vdev config dirty, so that the new faulted state is
3465 	 * written out to disk.
3466 	 */
3467 	if (vd->vdev_faulted || vd->vdev_degraded ||
3468 	    !vdev_readable(vd) || !vdev_writeable(vd)) {
3469 
3470 		/*
3471 		 * When reopening in reponse to a clear event, it may be due to
3472 		 * a fmadm repair request.  In this case, if the device is
3473 		 * still broken, we want to still post the ereport again.
3474 		 */
3475 		vd->vdev_forcefault = B_TRUE;
3476 
3477 		vd->vdev_faulted = vd->vdev_degraded = 0ULL;
3478 		vd->vdev_cant_read = B_FALSE;
3479 		vd->vdev_cant_write = B_FALSE;
3480 
3481 		vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
3482 
3483 		vd->vdev_forcefault = B_FALSE;
3484 
3485 		if (vd != rvd && vdev_writeable(vd->vdev_top))
3486 			vdev_state_dirty(vd->vdev_top);
3487 
3488 		if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
3489 			spa_async_request(spa, SPA_ASYNC_RESILVER);
3490 
3491 		spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
3492 	}
3493 
3494 	/*
3495 	 * When clearing a FMA-diagnosed fault, we always want to
3496 	 * unspare the device, as we assume that the original spare was
3497 	 * done in response to the FMA fault.
3498 	 */
3499 	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
3500 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3501 	    vd->vdev_parent->vdev_child[0] == vd)
3502 		vd->vdev_unspare = B_TRUE;
3503 }
3504 
3505 boolean_t
3506 vdev_is_dead(vdev_t *vd)
3507 {
3508 	/*
3509 	 * Holes and missing devices are always considered "dead".
3510 	 * This simplifies the code since we don't have to check for
3511 	 * these types of devices in the various code paths.
3512 	 * Instead we rely on the fact that we skip over dead devices
3513 	 * before issuing I/O to them.
3514 	 */
3515 	return (vd->vdev_state < VDEV_STATE_DEGRADED ||
3516 	    vd->vdev_ops == &vdev_hole_ops ||
3517 	    vd->vdev_ops == &vdev_missing_ops);
3518 }
3519 
3520 boolean_t
3521 vdev_readable(vdev_t *vd)
3522 {
3523 	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
3524 }
3525 
3526 boolean_t
3527 vdev_writeable(vdev_t *vd)
3528 {
3529 	return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
3530 	    vdev_is_concrete(vd));
3531 }
3532 
3533 boolean_t
3534 vdev_allocatable(vdev_t *vd)
3535 {
3536 	uint64_t state = vd->vdev_state;
3537 
3538 	/*
3539 	 * We currently allow allocations from vdevs which may be in the
3540 	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
3541 	 * fails to reopen then we'll catch it later when we're holding
3542 	 * the proper locks.  Note that we have to get the vdev state
3543 	 * in a local variable because although it changes atomically,
3544 	 * we're asking two separate questions about it.
3545 	 */
3546 	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
3547 	    !vd->vdev_cant_write && vdev_is_concrete(vd) &&
3548 	    vd->vdev_mg->mg_initialized);
3549 }
3550 
3551 boolean_t
3552 vdev_accessible(vdev_t *vd, zio_t *zio)
3553 {
3554 	ASSERT(zio->io_vd == vd);
3555 
3556 	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
3557 		return (B_FALSE);
3558 
3559 	if (zio->io_type == ZIO_TYPE_READ)
3560 		return (!vd->vdev_cant_read);
3561 
3562 	if (zio->io_type == ZIO_TYPE_WRITE)
3563 		return (!vd->vdev_cant_write);
3564 
3565 	return (B_TRUE);
3566 }
3567 
3568 boolean_t
3569 vdev_is_spacemap_addressable(vdev_t *vd)
3570 {
3571 	if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2))
3572 		return (B_TRUE);
3573 
3574 	/*
3575 	 * If double-word space map entries are not enabled we assume
3576 	 * 47 bits of the space map entry are dedicated to the entry's
3577 	 * offset (see SM_OFFSET_BITS in space_map.h). We then use that
3578 	 * to calculate the maximum address that can be described by a
3579 	 * space map entry for the given device.
3580 	 */
3581 	uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS;
3582 
3583 	if (shift >= 63) /* detect potential overflow */
3584 		return (B_TRUE);
3585 
3586 	return (vd->vdev_asize < (1ULL << shift));
3587 }
3588 
3589 /*
3590  * Get statistics for the given vdev.
3591  */
3592 void
3593 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
3594 {
3595 	spa_t *spa = vd->vdev_spa;
3596 	vdev_t *rvd = spa->spa_root_vdev;
3597 	vdev_t *tvd = vd->vdev_top;
3598 
3599 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
3600 
3601 	mutex_enter(&vd->vdev_stat_lock);
3602 	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
3603 	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
3604 	vs->vs_state = vd->vdev_state;
3605 	vs->vs_rsize = vdev_get_min_asize(vd);
3606 	if (vd->vdev_ops->vdev_op_leaf) {
3607 		vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
3608 		/*
3609 		 * Report intializing progress. Since we don't have the
3610 		 * initializing locks held, this is only an estimate (although a
3611 		 * fairly accurate one).
3612 		 */
3613 		vs->vs_initialize_bytes_done = vd->vdev_initialize_bytes_done;
3614 		vs->vs_initialize_bytes_est = vd->vdev_initialize_bytes_est;
3615 		vs->vs_initialize_state = vd->vdev_initialize_state;
3616 		vs->vs_initialize_action_time = vd->vdev_initialize_action_time;
3617 	}
3618 	/*
3619 	 * Report expandable space on top-level, non-auxillary devices only.
3620 	 * The expandable space is reported in terms of metaslab sized units
3621 	 * since that determines how much space the pool can expand.
3622 	 */
3623 	if (vd->vdev_aux == NULL && tvd != NULL) {
3624 		vs->vs_esize = P2ALIGN(vd->vdev_max_asize - vd->vdev_asize -
3625 		    spa->spa_bootsize, 1ULL << tvd->vdev_ms_shift);
3626 	}
3627 	if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
3628 	    vdev_is_concrete(vd)) {
3629 		vs->vs_fragmentation = (vd->vdev_mg != NULL) ?
3630 		    vd->vdev_mg->mg_fragmentation : 0;
3631 	}
3632 
3633 	/*
3634 	 * If we're getting stats on the root vdev, aggregate the I/O counts
3635 	 * over all top-level vdevs (i.e. the direct children of the root).
3636 	 */
3637 	if (vd == rvd) {
3638 		for (int c = 0; c < rvd->vdev_children; c++) {
3639 			vdev_t *cvd = rvd->vdev_child[c];
3640 			vdev_stat_t *cvs = &cvd->vdev_stat;
3641 
3642 			for (int t = 0; t < ZIO_TYPES; t++) {
3643 				vs->vs_ops[t] += cvs->vs_ops[t];
3644 				vs->vs_bytes[t] += cvs->vs_bytes[t];
3645 			}
3646 			cvs->vs_scan_removing = cvd->vdev_removing;
3647 		}
3648 	}
3649 	mutex_exit(&vd->vdev_stat_lock);
3650 }
3651 
3652 void
3653 vdev_clear_stats(vdev_t *vd)
3654 {
3655 	mutex_enter(&vd->vdev_stat_lock);
3656 	vd->vdev_stat.vs_space = 0;
3657 	vd->vdev_stat.vs_dspace = 0;
3658 	vd->vdev_stat.vs_alloc = 0;
3659 	mutex_exit(&vd->vdev_stat_lock);
3660 }
3661 
3662 void
3663 vdev_scan_stat_init(vdev_t *vd)
3664 {
3665 	vdev_stat_t *vs = &vd->vdev_stat;
3666 
3667 	for (int c = 0; c < vd->vdev_children; c++)
3668 		vdev_scan_stat_init(vd->vdev_child[c]);
3669 
3670 	mutex_enter(&vd->vdev_stat_lock);
3671 	vs->vs_scan_processed = 0;
3672 	mutex_exit(&vd->vdev_stat_lock);
3673 }
3674 
3675 void
3676 vdev_stat_update(zio_t *zio, uint64_t psize)
3677 {
3678 	spa_t *spa = zio->io_spa;
3679 	vdev_t *rvd = spa->spa_root_vdev;
3680 	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
3681 	vdev_t *pvd;
3682 	uint64_t txg = zio->io_txg;
3683 	vdev_stat_t *vs = &vd->vdev_stat;
3684 	zio_type_t type = zio->io_type;
3685 	int flags = zio->io_flags;
3686 
3687 	/*
3688 	 * If this i/o is a gang leader, it didn't do any actual work.
3689 	 */
3690 	if (zio->io_gang_tree)
3691 		return;
3692 
3693 	if (zio->io_error == 0) {
3694 		/*
3695 		 * If this is a root i/o, don't count it -- we've already
3696 		 * counted the top-level vdevs, and vdev_get_stats() will
3697 		 * aggregate them when asked.  This reduces contention on
3698 		 * the root vdev_stat_lock and implicitly handles blocks
3699 		 * that compress away to holes, for which there is no i/o.
3700 		 * (Holes never create vdev children, so all the counters
3701 		 * remain zero, which is what we want.)
3702 		 *
3703 		 * Note: this only applies to successful i/o (io_error == 0)
3704 		 * because unlike i/o counts, errors are not additive.
3705 		 * When reading a ditto block, for example, failure of
3706 		 * one top-level vdev does not imply a root-level error.
3707 		 */
3708 		if (vd == rvd)
3709 			return;
3710 
3711 		ASSERT(vd == zio->io_vd);
3712 
3713 		if (flags & ZIO_FLAG_IO_BYPASS)
3714 			return;
3715 
3716 		mutex_enter(&vd->vdev_stat_lock);
3717 
3718 		if (flags & ZIO_FLAG_IO_REPAIR) {
3719 			if (flags & ZIO_FLAG_SCAN_THREAD) {
3720 				dsl_scan_phys_t *scn_phys =
3721 				    &spa->spa_dsl_pool->dp_scan->scn_phys;
3722 				uint64_t *processed = &scn_phys->scn_processed;
3723 
3724 				/* XXX cleanup? */
3725 				if (vd->vdev_ops->vdev_op_leaf)
3726 					atomic_add_64(processed, psize);
3727 				vs->vs_scan_processed += psize;
3728 			}
3729 
3730 			if (flags & ZIO_FLAG_SELF_HEAL)
3731 				vs->vs_self_healed += psize;
3732 		}
3733 
3734 		vs->vs_ops[type]++;
3735 		vs->vs_bytes[type] += psize;
3736 
3737 		mutex_exit(&vd->vdev_stat_lock);
3738 		return;
3739 	}
3740 
3741 	if (flags & ZIO_FLAG_SPECULATIVE)
3742 		return;
3743 
3744 	/*
3745 	 * If this is an I/O error that is going to be retried, then ignore the
3746 	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
3747 	 * hard errors, when in reality they can happen for any number of
3748 	 * innocuous reasons (bus resets, MPxIO link failure, etc).
3749 	 */
3750 	if (zio->io_error == EIO &&
3751 	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
3752 		return;
3753 
3754 	/*
3755 	 * Intent logs writes won't propagate their error to the root
3756 	 * I/O so don't mark these types of failures as pool-level
3757 	 * errors.
3758 	 */
3759 	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
3760 		return;
3761 
3762 	mutex_enter(&vd->vdev_stat_lock);
3763 	if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
3764 		if (zio->io_error == ECKSUM)
3765 			vs->vs_checksum_errors++;
3766 		else
3767 			vs->vs_read_errors++;
3768 	}
3769 	if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
3770 		vs->vs_write_errors++;
3771 	mutex_exit(&vd->vdev_stat_lock);
3772 
3773 	if (spa->spa_load_state == SPA_LOAD_NONE &&
3774 	    type == ZIO_TYPE_WRITE && txg != 0 &&
3775 	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
3776 	    (flags & ZIO_FLAG_SCAN_THREAD) ||
3777 	    spa->spa_claiming)) {
3778 		/*
3779 		 * This is either a normal write (not a repair), or it's
3780 		 * a repair induced by the scrub thread, or it's a repair
3781 		 * made by zil_claim() during spa_load() in the first txg.
3782 		 * In the normal case, we commit the DTL change in the same
3783 		 * txg as the block was born.  In the scrub-induced repair
3784 		 * case, we know that scrubs run in first-pass syncing context,
3785 		 * so we commit the DTL change in spa_syncing_txg(spa).
3786 		 * In the zil_claim() case, we commit in spa_first_txg(spa).
3787 		 *
3788 		 * We currently do not make DTL entries for failed spontaneous
3789 		 * self-healing writes triggered by normal (non-scrubbing)
3790 		 * reads, because we have no transactional context in which to
3791 		 * do so -- and it's not clear that it'd be desirable anyway.
3792 		 */
3793 		if (vd->vdev_ops->vdev_op_leaf) {
3794 			uint64_t commit_txg = txg;
3795 			if (flags & ZIO_FLAG_SCAN_THREAD) {
3796 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3797 				ASSERT(spa_sync_pass(spa) == 1);
3798 				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
3799 				commit_txg = spa_syncing_txg(spa);
3800 			} else if (spa->spa_claiming) {
3801 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3802 				commit_txg = spa_first_txg(spa);
3803 			}
3804 			ASSERT(commit_txg >= spa_syncing_txg(spa));
3805 			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
3806 				return;
3807 			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3808 				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
3809 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
3810 		}
3811 		if (vd != rvd)
3812 			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
3813 	}
3814 }
3815 
3816 int64_t
3817 vdev_deflated_space(vdev_t *vd, int64_t space)
3818 {
3819 	ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0);
3820 	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
3821 
3822 	return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio);
3823 }
3824 
3825 /*
3826  * Update the in-core space usage stats for this vdev and the root vdev.
3827  */
3828 void
3829 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
3830     int64_t space_delta)
3831 {
3832 	int64_t dspace_delta;
3833 	spa_t *spa = vd->vdev_spa;
3834 	vdev_t *rvd = spa->spa_root_vdev;
3835 
3836 	ASSERT(vd == vd->vdev_top);
3837 
3838 	/*
3839 	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
3840 	 * factor.  We must calculate this here and not at the root vdev
3841 	 * because the root vdev's psize-to-asize is simply the max of its
3842 	 * childrens', thus not accurate enough for us.
3843 	 */
3844 	dspace_delta = vdev_deflated_space(vd, space_delta);
3845 
3846 	mutex_enter(&vd->vdev_stat_lock);
3847 	vd->vdev_stat.vs_alloc += alloc_delta;
3848 	vd->vdev_stat.vs_space += space_delta;
3849 	vd->vdev_stat.vs_dspace += dspace_delta;
3850 	mutex_exit(&vd->vdev_stat_lock);
3851 
3852 	/* every class but log contributes to root space stats */
3853 	if (vd->vdev_mg != NULL && !vd->vdev_islog) {
3854 		mutex_enter(&rvd->vdev_stat_lock);
3855 		rvd->vdev_stat.vs_alloc += alloc_delta;
3856 		rvd->vdev_stat.vs_space += space_delta;
3857 		rvd->vdev_stat.vs_dspace += dspace_delta;
3858 		mutex_exit(&rvd->vdev_stat_lock);
3859 	}
3860 	/* Note: metaslab_class_space_update moved to metaslab_space_update */
3861 }
3862 
3863 /*
3864  * Mark a top-level vdev's config as dirty, placing it on the dirty list
3865  * so that it will be written out next time the vdev configuration is synced.
3866  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
3867  */
3868 void
3869 vdev_config_dirty(vdev_t *vd)
3870 {
3871 	spa_t *spa = vd->vdev_spa;
3872 	vdev_t *rvd = spa->spa_root_vdev;
3873 	int c;
3874 
3875 	ASSERT(spa_writeable(spa));
3876 
3877 	/*
3878 	 * If this is an aux vdev (as with l2cache and spare devices), then we
3879 	 * update the vdev config manually and set the sync flag.
3880 	 */
3881 	if (vd->vdev_aux != NULL) {
3882 		spa_aux_vdev_t *sav = vd->vdev_aux;
3883 		nvlist_t **aux;
3884 		uint_t naux;
3885 
3886 		for (c = 0; c < sav->sav_count; c++) {
3887 			if (sav->sav_vdevs[c] == vd)
3888 				break;
3889 		}
3890 
3891 		if (c == sav->sav_count) {
3892 			/*
3893 			 * We're being removed.  There's nothing more to do.
3894 			 */
3895 			ASSERT(sav->sav_sync == B_TRUE);
3896 			return;
3897 		}
3898 
3899 		sav->sav_sync = B_TRUE;
3900 
3901 		if (nvlist_lookup_nvlist_array(sav->sav_config,
3902 		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3903 			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3904 			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3905 		}
3906 
3907 		ASSERT(c < naux);
3908 
3909 		/*
3910 		 * Setting the nvlist in the middle if the array is a little
3911 		 * sketchy, but it will work.
3912 		 */
3913 		nvlist_free(aux[c]);
3914 		aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3915 
3916 		return;
3917 	}
3918 
3919 	/*
3920 	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
3921 	 * must either hold SCL_CONFIG as writer, or must be the sync thread
3922 	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
3923 	 * so this is sufficient to ensure mutual exclusion.
3924 	 */
3925 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3926 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3927 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
3928 
3929 	if (vd == rvd) {
3930 		for (c = 0; c < rvd->vdev_children; c++)
3931 			vdev_config_dirty(rvd->vdev_child[c]);
3932 	} else {
3933 		ASSERT(vd == vd->vdev_top);
3934 
3935 		if (!list_link_active(&vd->vdev_config_dirty_node) &&
3936 		    vdev_is_concrete(vd)) {
3937 			list_insert_head(&spa->spa_config_dirty_list, vd);
3938 		}
3939 	}
3940 }
3941 
3942 void
3943 vdev_config_clean(vdev_t *vd)
3944 {
3945 	spa_t *spa = vd->vdev_spa;
3946 
3947 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3948 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3949 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
3950 
3951 	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3952 	list_remove(&spa->spa_config_dirty_list, vd);
3953 }
3954 
3955 /*
3956  * Mark a top-level vdev's state as dirty, so that the next pass of
3957  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
3958  * the state changes from larger config changes because they require
3959  * much less locking, and are often needed for administrative actions.
3960  */
3961 void
3962 vdev_state_dirty(vdev_t *vd)
3963 {
3964 	spa_t *spa = vd->vdev_spa;
3965 
3966 	ASSERT(spa_writeable(spa));
3967 	ASSERT(vd == vd->vdev_top);
3968 
3969 	/*
3970 	 * The state list is protected by the SCL_STATE lock.  The caller
3971 	 * must either hold SCL_STATE as writer, or must be the sync thread
3972 	 * (which holds SCL_STATE as reader).  There's only one sync thread,
3973 	 * so this is sufficient to ensure mutual exclusion.
3974 	 */
3975 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3976 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3977 	    spa_config_held(spa, SCL_STATE, RW_READER)));
3978 
3979 	if (!list_link_active(&vd->vdev_state_dirty_node) &&
3980 	    vdev_is_concrete(vd))
3981 		list_insert_head(&spa->spa_state_dirty_list, vd);
3982 }
3983 
3984 void
3985 vdev_state_clean(vdev_t *vd)
3986 {
3987 	spa_t *spa = vd->vdev_spa;
3988 
3989 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3990 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3991 	    spa_config_held(spa, SCL_STATE, RW_READER)));
3992 
3993 	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3994 	list_remove(&spa->spa_state_dirty_list, vd);
3995 }
3996 
3997 /*
3998  * Propagate vdev state up from children to parent.
3999  */
4000 void
4001 vdev_propagate_state(vdev_t *vd)
4002 {
4003 	spa_t *spa = vd->vdev_spa;
4004 	vdev_t *rvd = spa->spa_root_vdev;
4005 	int degraded = 0, faulted = 0;
4006 	int corrupted = 0;
4007 	vdev_t *child;
4008 
4009 	if (vd->vdev_children > 0) {
4010 		for (int c = 0; c < vd->vdev_children; c++) {
4011 			child = vd->vdev_child[c];
4012 
4013 			/*
4014 			 * Don't factor holes or indirect vdevs into the
4015 			 * decision.
4016 			 */
4017 			if (!vdev_is_concrete(child))
4018 				continue;
4019 
4020 			if (!vdev_readable(child) ||
4021 			    (!vdev_writeable(child) && spa_writeable(spa))) {
4022 				/*
4023 				 * Root special: if there is a top-level log
4024 				 * device, treat the root vdev as if it were
4025 				 * degraded.
4026 				 */
4027 				if (child->vdev_islog && vd == rvd)
4028 					degraded++;
4029 				else
4030 					faulted++;
4031 			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
4032 				degraded++;
4033 			}
4034 
4035 			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
4036 				corrupted++;
4037 		}
4038 
4039 		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
4040 
4041 		/*
4042 		 * Root special: if there is a top-level vdev that cannot be
4043 		 * opened due to corrupted metadata, then propagate the root
4044 		 * vdev's aux state as 'corrupt' rather than 'insufficient
4045 		 * replicas'.
4046 		 */
4047 		if (corrupted && vd == rvd &&
4048 		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
4049 			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
4050 			    VDEV_AUX_CORRUPT_DATA);
4051 	}
4052 
4053 	if (vd->vdev_parent)
4054 		vdev_propagate_state(vd->vdev_parent);
4055 }
4056 
4057 /*
4058  * Set a vdev's state.  If this is during an open, we don't update the parent
4059  * state, because we're in the process of opening children depth-first.
4060  * Otherwise, we propagate the change to the parent.
4061  *
4062  * If this routine places a device in a faulted state, an appropriate ereport is
4063  * generated.
4064  */
4065 void
4066 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
4067 {
4068 	uint64_t save_state;
4069 	spa_t *spa = vd->vdev_spa;
4070 
4071 	if (state == vd->vdev_state) {
4072 		vd->vdev_stat.vs_aux = aux;
4073 		return;
4074 	}
4075 
4076 	save_state = vd->vdev_state;
4077 
4078 	vd->vdev_state = state;
4079 	vd->vdev_stat.vs_aux = aux;
4080 
4081 	/*
4082 	 * If we are setting the vdev state to anything but an open state, then
4083 	 * always close the underlying device unless the device has requested
4084 	 * a delayed close (i.e. we're about to remove or fault the device).
4085 	 * Otherwise, we keep accessible but invalid devices open forever.
4086 	 * We don't call vdev_close() itself, because that implies some extra
4087 	 * checks (offline, etc) that we don't want here.  This is limited to
4088 	 * leaf devices, because otherwise closing the device will affect other
4089 	 * children.
4090 	 */
4091 	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
4092 	    vd->vdev_ops->vdev_op_leaf)
4093 		vd->vdev_ops->vdev_op_close(vd);
4094 
4095 	/*
4096 	 * If we have brought this vdev back into service, we need
4097 	 * to notify fmd so that it can gracefully repair any outstanding
4098 	 * cases due to a missing device.  We do this in all cases, even those
4099 	 * that probably don't correlate to a repaired fault.  This is sure to
4100 	 * catch all cases, and we let the zfs-retire agent sort it out.  If
4101 	 * this is a transient state it's OK, as the retire agent will
4102 	 * double-check the state of the vdev before repairing it.
4103 	 */
4104 	if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
4105 	    vd->vdev_prevstate != state)
4106 		zfs_post_state_change(spa, vd);
4107 
4108 	if (vd->vdev_removed &&
4109 	    state == VDEV_STATE_CANT_OPEN &&
4110 	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
4111 		/*
4112 		 * If the previous state is set to VDEV_STATE_REMOVED, then this
4113 		 * device was previously marked removed and someone attempted to
4114 		 * reopen it.  If this failed due to a nonexistent device, then
4115 		 * keep the device in the REMOVED state.  We also let this be if
4116 		 * it is one of our special test online cases, which is only
4117 		 * attempting to online the device and shouldn't generate an FMA
4118 		 * fault.
4119 		 */
4120 		vd->vdev_state = VDEV_STATE_REMOVED;
4121 		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
4122 	} else if (state == VDEV_STATE_REMOVED) {
4123 		vd->vdev_removed = B_TRUE;
4124 	} else if (state == VDEV_STATE_CANT_OPEN) {
4125 		/*
4126 		 * If we fail to open a vdev during an import or recovery, we
4127 		 * mark it as "not available", which signifies that it was
4128 		 * never there to begin with.  Failure to open such a device
4129 		 * is not considered an error.
4130 		 */
4131 		if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
4132 		    spa_load_state(spa) == SPA_LOAD_RECOVER) &&
4133 		    vd->vdev_ops->vdev_op_leaf)
4134 			vd->vdev_not_present = 1;
4135 
4136 		/*
4137 		 * Post the appropriate ereport.  If the 'prevstate' field is
4138 		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
4139 		 * that this is part of a vdev_reopen().  In this case, we don't
4140 		 * want to post the ereport if the device was already in the
4141 		 * CANT_OPEN state beforehand.
4142 		 *
4143 		 * If the 'checkremove' flag is set, then this is an attempt to
4144 		 * online the device in response to an insertion event.  If we
4145 		 * hit this case, then we have detected an insertion event for a
4146 		 * faulted or offline device that wasn't in the removed state.
4147 		 * In this scenario, we don't post an ereport because we are
4148 		 * about to replace the device, or attempt an online with
4149 		 * vdev_forcefault, which will generate the fault for us.
4150 		 */
4151 		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
4152 		    !vd->vdev_not_present && !vd->vdev_checkremove &&
4153 		    vd != spa->spa_root_vdev) {
4154 			const char *class;
4155 
4156 			switch (aux) {
4157 			case VDEV_AUX_OPEN_FAILED:
4158 				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
4159 				break;
4160 			case VDEV_AUX_CORRUPT_DATA:
4161 				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
4162 				break;
4163 			case VDEV_AUX_NO_REPLICAS:
4164 				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
4165 				break;
4166 			case VDEV_AUX_BAD_GUID_SUM:
4167 				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
4168 				break;
4169 			case VDEV_AUX_TOO_SMALL:
4170 				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
4171 				break;
4172 			case VDEV_AUX_BAD_LABEL:
4173 				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
4174 				break;
4175 			default:
4176 				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
4177 			}
4178 
4179 			zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
4180 		}
4181 
4182 		/* Erase any notion of persistent removed state */
4183 		vd->vdev_removed = B_FALSE;
4184 	} else {
4185 		vd->vdev_removed = B_FALSE;
4186 	}
4187 
4188 	if (!isopen && vd->vdev_parent)
4189 		vdev_propagate_state(vd->vdev_parent);
4190 }
4191 
4192 boolean_t
4193 vdev_children_are_offline(vdev_t *vd)
4194 {
4195 	ASSERT(!vd->vdev_ops->vdev_op_leaf);
4196 
4197 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
4198 		if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
4199 			return (B_FALSE);
4200 	}
4201 
4202 	return (B_TRUE);
4203 }
4204 
4205 /*
4206  * Check the vdev configuration to ensure that it's capable of supporting
4207  * a root pool. We do not support partial configuration.
4208  * In addition, only a single top-level vdev is allowed.
4209  */
4210 boolean_t
4211 vdev_is_bootable(vdev_t *vd)
4212 {
4213 	if (!vd->vdev_ops->vdev_op_leaf) {
4214 		char *vdev_type = vd->vdev_ops->vdev_op_type;
4215 
4216 		if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
4217 		    vd->vdev_children > 1) {
4218 			return (B_FALSE);
4219 		} else if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0 ||
4220 		    strcmp(vdev_type, VDEV_TYPE_INDIRECT) == 0) {
4221 			return (B_FALSE);
4222 		}
4223 	}
4224 
4225 	for (int c = 0; c < vd->vdev_children; c++) {
4226 		if (!vdev_is_bootable(vd->vdev_child[c]))
4227 			return (B_FALSE);
4228 	}
4229 	return (B_TRUE);
4230 }
4231 
4232 boolean_t
4233 vdev_is_concrete(vdev_t *vd)
4234 {
4235 	vdev_ops_t *ops = vd->vdev_ops;
4236 	if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
4237 	    ops == &vdev_missing_ops || ops == &vdev_root_ops) {
4238 		return (B_FALSE);
4239 	} else {
4240 		return (B_TRUE);
4241 	}
4242 }
4243 
4244 /*
4245  * Determine if a log device has valid content.  If the vdev was
4246  * removed or faulted in the MOS config then we know that
4247  * the content on the log device has already been written to the pool.
4248  */
4249 boolean_t
4250 vdev_log_state_valid(vdev_t *vd)
4251 {
4252 	if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
4253 	    !vd->vdev_removed)
4254 		return (B_TRUE);
4255 
4256 	for (int c = 0; c < vd->vdev_children; c++)
4257 		if (vdev_log_state_valid(vd->vdev_child[c]))
4258 			return (B_TRUE);
4259 
4260 	return (B_FALSE);
4261 }
4262 
4263 /*
4264  * Expand a vdev if possible.
4265  */
4266 void
4267 vdev_expand(vdev_t *vd, uint64_t txg)
4268 {
4269 	ASSERT(vd->vdev_top == vd);
4270 	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4271 	ASSERT(vdev_is_concrete(vd));
4272 
4273 	vdev_set_deflate_ratio(vd);
4274 
4275 	if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
4276 	    vdev_is_concrete(vd)) {
4277 		vdev_metaslab_group_create(vd);
4278 		VERIFY(vdev_metaslab_init(vd, txg) == 0);
4279 		vdev_config_dirty(vd);
4280 	}
4281 }
4282 
4283 /*
4284  * Split a vdev.
4285  */
4286 void
4287 vdev_split(vdev_t *vd)
4288 {
4289 	vdev_t *cvd, *pvd = vd->vdev_parent;
4290 
4291 	vdev_remove_child(pvd, vd);
4292 	vdev_compact_children(pvd);
4293 
4294 	cvd = pvd->vdev_child[0];
4295 	if (pvd->vdev_children == 1) {
4296 		vdev_remove_parent(cvd);
4297 		cvd->vdev_splitting = B_TRUE;
4298 	}
4299 	vdev_propagate_state(cvd);
4300 }
4301 
4302 void
4303 vdev_deadman(vdev_t *vd)
4304 {
4305 	for (int c = 0; c < vd->vdev_children; c++) {
4306 		vdev_t *cvd = vd->vdev_child[c];
4307 
4308 		vdev_deadman(cvd);
4309 	}
4310 
4311 	if (vd->vdev_ops->vdev_op_leaf) {
4312 		vdev_queue_t *vq = &vd->vdev_queue;
4313 
4314 		mutex_enter(&vq->vq_lock);
4315 		if (avl_numnodes(&vq->vq_active_tree) > 0) {
4316 			spa_t *spa = vd->vdev_spa;
4317 			zio_t *fio;
4318 			uint64_t delta;
4319 
4320 			/*
4321 			 * Look at the head of all the pending queues,
4322 			 * if any I/O has been outstanding for longer than
4323 			 * the spa_deadman_synctime we panic the system.
4324 			 */
4325 			fio = avl_first(&vq->vq_active_tree);
4326 			delta = gethrtime() - fio->io_timestamp;
4327 			if (delta > spa_deadman_synctime(spa)) {
4328 				vdev_dbgmsg(vd, "SLOW IO: zio timestamp "
4329 				    "%lluns, delta %lluns, last io %lluns",
4330 				    fio->io_timestamp, (u_longlong_t)delta,
4331 				    vq->vq_io_complete_ts);
4332 				fm_panic("I/O to pool '%s' appears to be "
4333 				    "hung.", spa_name(spa));
4334 			}
4335 		}
4336 		mutex_exit(&vq->vq_lock);
4337 	}
4338 }
4339