xref: /illumos-gate/usr/src/uts/common/fs/zfs/vdev.c (revision 5711d393)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25  * Copyright 2017 Nexenta Systems, Inc.
26  * Copyright (c) 2014 Integros [integros.com]
27  * Copyright 2016 Toomas Soome <tsoome@me.com>
28  * Copyright 2019 Joyent, Inc.
29  * Copyright (c) 2017, Intel Corporation.
30  */
31 
32 #include <sys/zfs_context.h>
33 #include <sys/fm/fs/zfs.h>
34 #include <sys/spa.h>
35 #include <sys/spa_impl.h>
36 #include <sys/bpobj.h>
37 #include <sys/dmu.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/dsl_dir.h>
40 #include <sys/vdev_impl.h>
41 #include <sys/uberblock_impl.h>
42 #include <sys/metaslab.h>
43 #include <sys/metaslab_impl.h>
44 #include <sys/space_map.h>
45 #include <sys/space_reftree.h>
46 #include <sys/zio.h>
47 #include <sys/zap.h>
48 #include <sys/fs/zfs.h>
49 #include <sys/arc.h>
50 #include <sys/zil.h>
51 #include <sys/dsl_scan.h>
52 #include <sys/abd.h>
53 #include <sys/vdev_initialize.h>
54 
55 /*
56  * Virtual device management.
57  */
58 
59 static vdev_ops_t *vdev_ops_table[] = {
60 	&vdev_root_ops,
61 	&vdev_raidz_ops,
62 	&vdev_mirror_ops,
63 	&vdev_replacing_ops,
64 	&vdev_spare_ops,
65 	&vdev_disk_ops,
66 	&vdev_file_ops,
67 	&vdev_missing_ops,
68 	&vdev_hole_ops,
69 	&vdev_indirect_ops,
70 	NULL
71 };
72 
73 /* maximum scrub/resilver I/O queue per leaf vdev */
74 int zfs_scrub_limit = 10;
75 
76 /* default target for number of metaslabs per top-level vdev */
77 int zfs_vdev_default_ms_count = 200;
78 
79 /* minimum number of metaslabs per top-level vdev */
80 int zfs_vdev_min_ms_count = 16;
81 
82 /* practical upper limit of total metaslabs per top-level vdev */
83 int zfs_vdev_ms_count_limit = 1ULL << 17;
84 
85 /* lower limit for metaslab size (512M) */
86 int zfs_vdev_default_ms_shift = 29;
87 
88 /* upper limit for metaslab size (16G) */
89 int zfs_vdev_max_ms_shift = 34;
90 
91 boolean_t vdev_validate_skip = B_FALSE;
92 
93 /*
94  * Since the DTL space map of a vdev is not expected to have a lot of
95  * entries, we default its block size to 4K.
96  */
97 int vdev_dtl_sm_blksz = (1 << 12);
98 
99 /*
100  * vdev-wide space maps that have lots of entries written to them at
101  * the end of each transaction can benefit from a higher I/O bandwidth
102  * (e.g. vdev_obsolete_sm), thus we default their block size to 128K.
103  */
104 int vdev_standard_sm_blksz = (1 << 17);
105 
106 int zfs_ashift_min;
107 
108 /*PRINTFLIKE2*/
109 void
110 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
111 {
112 	va_list adx;
113 	char buf[256];
114 
115 	va_start(adx, fmt);
116 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
117 	va_end(adx);
118 
119 	if (vd->vdev_path != NULL) {
120 		zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
121 		    vd->vdev_path, buf);
122 	} else {
123 		zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
124 		    vd->vdev_ops->vdev_op_type,
125 		    (u_longlong_t)vd->vdev_id,
126 		    (u_longlong_t)vd->vdev_guid, buf);
127 	}
128 }
129 
130 void
131 vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
132 {
133 	char state[20];
134 
135 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
136 		zfs_dbgmsg("%*svdev %u: %s", indent, "", vd->vdev_id,
137 		    vd->vdev_ops->vdev_op_type);
138 		return;
139 	}
140 
141 	switch (vd->vdev_state) {
142 	case VDEV_STATE_UNKNOWN:
143 		(void) snprintf(state, sizeof (state), "unknown");
144 		break;
145 	case VDEV_STATE_CLOSED:
146 		(void) snprintf(state, sizeof (state), "closed");
147 		break;
148 	case VDEV_STATE_OFFLINE:
149 		(void) snprintf(state, sizeof (state), "offline");
150 		break;
151 	case VDEV_STATE_REMOVED:
152 		(void) snprintf(state, sizeof (state), "removed");
153 		break;
154 	case VDEV_STATE_CANT_OPEN:
155 		(void) snprintf(state, sizeof (state), "can't open");
156 		break;
157 	case VDEV_STATE_FAULTED:
158 		(void) snprintf(state, sizeof (state), "faulted");
159 		break;
160 	case VDEV_STATE_DEGRADED:
161 		(void) snprintf(state, sizeof (state), "degraded");
162 		break;
163 	case VDEV_STATE_HEALTHY:
164 		(void) snprintf(state, sizeof (state), "healthy");
165 		break;
166 	default:
167 		(void) snprintf(state, sizeof (state), "<state %u>",
168 		    (uint_t)vd->vdev_state);
169 	}
170 
171 	zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
172 	    "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type,
173 	    vd->vdev_islog ? " (log)" : "",
174 	    (u_longlong_t)vd->vdev_guid,
175 	    vd->vdev_path ? vd->vdev_path : "N/A", state);
176 
177 	for (uint64_t i = 0; i < vd->vdev_children; i++)
178 		vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
179 }
180 
181 /*
182  * Given a vdev type, return the appropriate ops vector.
183  */
184 static vdev_ops_t *
185 vdev_getops(const char *type)
186 {
187 	vdev_ops_t *ops, **opspp;
188 
189 	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
190 		if (strcmp(ops->vdev_op_type, type) == 0)
191 			break;
192 
193 	return (ops);
194 }
195 
196 /*
197  * Derive the enumerated alloction bias from string input.
198  * String origin is either the per-vdev zap or zpool(1M).
199  */
200 static vdev_alloc_bias_t
201 vdev_derive_alloc_bias(const char *bias)
202 {
203 	vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
204 
205 	if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0)
206 		alloc_bias = VDEV_BIAS_LOG;
207 	else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0)
208 		alloc_bias = VDEV_BIAS_SPECIAL;
209 	else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0)
210 		alloc_bias = VDEV_BIAS_DEDUP;
211 
212 	return (alloc_bias);
213 }
214 
215 /* ARGSUSED */
216 void
217 vdev_default_xlate(vdev_t *vd, const range_seg_t *in, range_seg_t *res)
218 {
219 	res->rs_start = in->rs_start;
220 	res->rs_end = in->rs_end;
221 }
222 
223 /*
224  * Default asize function: return the MAX of psize with the asize of
225  * all children.  This is what's used by anything other than RAID-Z.
226  */
227 uint64_t
228 vdev_default_asize(vdev_t *vd, uint64_t psize)
229 {
230 	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
231 	uint64_t csize;
232 
233 	for (int c = 0; c < vd->vdev_children; c++) {
234 		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
235 		asize = MAX(asize, csize);
236 	}
237 
238 	return (asize);
239 }
240 
241 /*
242  * Get the minimum allocatable size. We define the allocatable size as
243  * the vdev's asize rounded to the nearest metaslab. This allows us to
244  * replace or attach devices which don't have the same physical size but
245  * can still satisfy the same number of allocations.
246  */
247 uint64_t
248 vdev_get_min_asize(vdev_t *vd)
249 {
250 	vdev_t *pvd = vd->vdev_parent;
251 
252 	/*
253 	 * If our parent is NULL (inactive spare or cache) or is the root,
254 	 * just return our own asize.
255 	 */
256 	if (pvd == NULL)
257 		return (vd->vdev_asize);
258 
259 	/*
260 	 * The top-level vdev just returns the allocatable size rounded
261 	 * to the nearest metaslab.
262 	 */
263 	if (vd == vd->vdev_top)
264 		return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
265 
266 	/*
267 	 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
268 	 * so each child must provide at least 1/Nth of its asize.
269 	 */
270 	if (pvd->vdev_ops == &vdev_raidz_ops)
271 		return ((pvd->vdev_min_asize + pvd->vdev_children - 1) /
272 		    pvd->vdev_children);
273 
274 	return (pvd->vdev_min_asize);
275 }
276 
277 void
278 vdev_set_min_asize(vdev_t *vd)
279 {
280 	vd->vdev_min_asize = vdev_get_min_asize(vd);
281 
282 	for (int c = 0; c < vd->vdev_children; c++)
283 		vdev_set_min_asize(vd->vdev_child[c]);
284 }
285 
286 vdev_t *
287 vdev_lookup_top(spa_t *spa, uint64_t vdev)
288 {
289 	vdev_t *rvd = spa->spa_root_vdev;
290 
291 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
292 
293 	if (vdev < rvd->vdev_children) {
294 		ASSERT(rvd->vdev_child[vdev] != NULL);
295 		return (rvd->vdev_child[vdev]);
296 	}
297 
298 	return (NULL);
299 }
300 
301 vdev_t *
302 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
303 {
304 	vdev_t *mvd;
305 
306 	if (vd->vdev_guid == guid)
307 		return (vd);
308 
309 	for (int c = 0; c < vd->vdev_children; c++)
310 		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
311 		    NULL)
312 			return (mvd);
313 
314 	return (NULL);
315 }
316 
317 static int
318 vdev_count_leaves_impl(vdev_t *vd)
319 {
320 	int n = 0;
321 
322 	if (vd->vdev_ops->vdev_op_leaf)
323 		return (1);
324 
325 	for (int c = 0; c < vd->vdev_children; c++)
326 		n += vdev_count_leaves_impl(vd->vdev_child[c]);
327 
328 	return (n);
329 }
330 
331 int
332 vdev_count_leaves(spa_t *spa)
333 {
334 	return (vdev_count_leaves_impl(spa->spa_root_vdev));
335 }
336 
337 void
338 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
339 {
340 	size_t oldsize, newsize;
341 	uint64_t id = cvd->vdev_id;
342 	vdev_t **newchild;
343 	spa_t *spa = cvd->vdev_spa;
344 
345 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
346 	ASSERT(cvd->vdev_parent == NULL);
347 
348 	cvd->vdev_parent = pvd;
349 
350 	if (pvd == NULL)
351 		return;
352 
353 	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
354 
355 	oldsize = pvd->vdev_children * sizeof (vdev_t *);
356 	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
357 	newsize = pvd->vdev_children * sizeof (vdev_t *);
358 
359 	newchild = kmem_zalloc(newsize, KM_SLEEP);
360 	if (pvd->vdev_child != NULL) {
361 		bcopy(pvd->vdev_child, newchild, oldsize);
362 		kmem_free(pvd->vdev_child, oldsize);
363 	}
364 
365 	pvd->vdev_child = newchild;
366 	pvd->vdev_child[id] = cvd;
367 
368 	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
369 	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
370 
371 	/*
372 	 * Walk up all ancestors to update guid sum.
373 	 */
374 	for (; pvd != NULL; pvd = pvd->vdev_parent)
375 		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
376 
377 	if (cvd->vdev_ops->vdev_op_leaf) {
378 		list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd);
379 		cvd->vdev_spa->spa_leaf_list_gen++;
380 	}
381 }
382 
383 void
384 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
385 {
386 	int c;
387 	uint_t id = cvd->vdev_id;
388 
389 	ASSERT(cvd->vdev_parent == pvd);
390 
391 	if (pvd == NULL)
392 		return;
393 
394 	ASSERT(id < pvd->vdev_children);
395 	ASSERT(pvd->vdev_child[id] == cvd);
396 
397 	pvd->vdev_child[id] = NULL;
398 	cvd->vdev_parent = NULL;
399 
400 	for (c = 0; c < pvd->vdev_children; c++)
401 		if (pvd->vdev_child[c])
402 			break;
403 
404 	if (c == pvd->vdev_children) {
405 		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
406 		pvd->vdev_child = NULL;
407 		pvd->vdev_children = 0;
408 	}
409 
410 	if (cvd->vdev_ops->vdev_op_leaf) {
411 		spa_t *spa = cvd->vdev_spa;
412 		list_remove(&spa->spa_leaf_list, cvd);
413 		spa->spa_leaf_list_gen++;
414 	}
415 
416 	/*
417 	 * Walk up all ancestors to update guid sum.
418 	 */
419 	for (; pvd != NULL; pvd = pvd->vdev_parent)
420 		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
421 }
422 
423 /*
424  * Remove any holes in the child array.
425  */
426 void
427 vdev_compact_children(vdev_t *pvd)
428 {
429 	vdev_t **newchild, *cvd;
430 	int oldc = pvd->vdev_children;
431 	int newc;
432 
433 	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
434 
435 	for (int c = newc = 0; c < oldc; c++)
436 		if (pvd->vdev_child[c])
437 			newc++;
438 
439 	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
440 
441 	for (int c = newc = 0; c < oldc; c++) {
442 		if ((cvd = pvd->vdev_child[c]) != NULL) {
443 			newchild[newc] = cvd;
444 			cvd->vdev_id = newc++;
445 		}
446 	}
447 
448 	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
449 	pvd->vdev_child = newchild;
450 	pvd->vdev_children = newc;
451 }
452 
453 /*
454  * Allocate and minimally initialize a vdev_t.
455  */
456 vdev_t *
457 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
458 {
459 	vdev_t *vd;
460 	vdev_indirect_config_t *vic;
461 
462 	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
463 	vic = &vd->vdev_indirect_config;
464 
465 	if (spa->spa_root_vdev == NULL) {
466 		ASSERT(ops == &vdev_root_ops);
467 		spa->spa_root_vdev = vd;
468 		spa->spa_load_guid = spa_generate_guid(NULL);
469 	}
470 
471 	if (guid == 0 && ops != &vdev_hole_ops) {
472 		if (spa->spa_root_vdev == vd) {
473 			/*
474 			 * The root vdev's guid will also be the pool guid,
475 			 * which must be unique among all pools.
476 			 */
477 			guid = spa_generate_guid(NULL);
478 		} else {
479 			/*
480 			 * Any other vdev's guid must be unique within the pool.
481 			 */
482 			guid = spa_generate_guid(spa);
483 		}
484 		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
485 	}
486 
487 	vd->vdev_spa = spa;
488 	vd->vdev_id = id;
489 	vd->vdev_guid = guid;
490 	vd->vdev_guid_sum = guid;
491 	vd->vdev_ops = ops;
492 	vd->vdev_state = VDEV_STATE_CLOSED;
493 	vd->vdev_ishole = (ops == &vdev_hole_ops);
494 	vic->vic_prev_indirect_vdev = UINT64_MAX;
495 
496 	rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
497 	mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
498 	vd->vdev_obsolete_segments = range_tree_create(NULL, NULL);
499 
500 	list_link_init(&vd->vdev_leaf_node);
501 	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
502 	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
503 	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
504 	mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL);
505 	mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL);
506 	mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL);
507 	cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL);
508 	cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL);
509 
510 	for (int t = 0; t < DTL_TYPES; t++) {
511 		vd->vdev_dtl[t] = range_tree_create(NULL, NULL);
512 	}
513 	txg_list_create(&vd->vdev_ms_list, spa,
514 	    offsetof(struct metaslab, ms_txg_node));
515 	txg_list_create(&vd->vdev_dtl_list, spa,
516 	    offsetof(struct vdev, vdev_dtl_node));
517 	vd->vdev_stat.vs_timestamp = gethrtime();
518 	vdev_queue_init(vd);
519 	vdev_cache_init(vd);
520 
521 	return (vd);
522 }
523 
524 /*
525  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
526  * creating a new vdev or loading an existing one - the behavior is slightly
527  * different for each case.
528  */
529 int
530 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
531     int alloctype)
532 {
533 	vdev_ops_t *ops;
534 	char *type;
535 	uint64_t guid = 0, islog, nparity;
536 	vdev_t *vd;
537 	vdev_indirect_config_t *vic;
538 	vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
539 	boolean_t top_level = (parent && !parent->vdev_parent);
540 
541 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
542 
543 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
544 		return (SET_ERROR(EINVAL));
545 
546 	if ((ops = vdev_getops(type)) == NULL)
547 		return (SET_ERROR(EINVAL));
548 
549 	/*
550 	 * If this is a load, get the vdev guid from the nvlist.
551 	 * Otherwise, vdev_alloc_common() will generate one for us.
552 	 */
553 	if (alloctype == VDEV_ALLOC_LOAD) {
554 		uint64_t label_id;
555 
556 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
557 		    label_id != id)
558 			return (SET_ERROR(EINVAL));
559 
560 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
561 			return (SET_ERROR(EINVAL));
562 	} else if (alloctype == VDEV_ALLOC_SPARE) {
563 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
564 			return (SET_ERROR(EINVAL));
565 	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
566 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
567 			return (SET_ERROR(EINVAL));
568 	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
569 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
570 			return (SET_ERROR(EINVAL));
571 	}
572 
573 	/*
574 	 * The first allocated vdev must be of type 'root'.
575 	 */
576 	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
577 		return (SET_ERROR(EINVAL));
578 
579 	/*
580 	 * Determine whether we're a log vdev.
581 	 */
582 	islog = 0;
583 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
584 	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
585 		return (SET_ERROR(ENOTSUP));
586 
587 	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
588 		return (SET_ERROR(ENOTSUP));
589 
590 	/*
591 	 * Set the nparity property for RAID-Z vdevs.
592 	 */
593 	nparity = -1ULL;
594 	if (ops == &vdev_raidz_ops) {
595 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
596 		    &nparity) == 0) {
597 			if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
598 				return (SET_ERROR(EINVAL));
599 			/*
600 			 * Previous versions could only support 1 or 2 parity
601 			 * device.
602 			 */
603 			if (nparity > 1 &&
604 			    spa_version(spa) < SPA_VERSION_RAIDZ2)
605 				return (SET_ERROR(ENOTSUP));
606 			if (nparity > 2 &&
607 			    spa_version(spa) < SPA_VERSION_RAIDZ3)
608 				return (SET_ERROR(ENOTSUP));
609 		} else {
610 			/*
611 			 * We require the parity to be specified for SPAs that
612 			 * support multiple parity levels.
613 			 */
614 			if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
615 				return (SET_ERROR(EINVAL));
616 			/*
617 			 * Otherwise, we default to 1 parity device for RAID-Z.
618 			 */
619 			nparity = 1;
620 		}
621 	} else {
622 		nparity = 0;
623 	}
624 	ASSERT(nparity != -1ULL);
625 
626 	/*
627 	 * If creating a top-level vdev, check for allocation classes input
628 	 */
629 	if (top_level && alloctype == VDEV_ALLOC_ADD) {
630 		char *bias;
631 
632 		if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
633 		    &bias) == 0) {
634 			alloc_bias = vdev_derive_alloc_bias(bias);
635 
636 			/* spa_vdev_add() expects feature to be enabled */
637 			if (alloc_bias != VDEV_BIAS_LOG &&
638 			    spa->spa_load_state != SPA_LOAD_CREATE &&
639 			    !spa_feature_is_enabled(spa,
640 			    SPA_FEATURE_ALLOCATION_CLASSES)) {
641 				return (SET_ERROR(ENOTSUP));
642 			}
643 		}
644 	}
645 
646 	vd = vdev_alloc_common(spa, id, guid, ops);
647 	vic = &vd->vdev_indirect_config;
648 
649 	vd->vdev_islog = islog;
650 	vd->vdev_nparity = nparity;
651 	if (top_level && alloc_bias != VDEV_BIAS_NONE)
652 		vd->vdev_alloc_bias = alloc_bias;
653 
654 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
655 		vd->vdev_path = spa_strdup(vd->vdev_path);
656 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
657 		vd->vdev_devid = spa_strdup(vd->vdev_devid);
658 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
659 	    &vd->vdev_physpath) == 0)
660 		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
661 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
662 		vd->vdev_fru = spa_strdup(vd->vdev_fru);
663 
664 	/*
665 	 * Set the whole_disk property.  If it's not specified, leave the value
666 	 * as -1.
667 	 */
668 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
669 	    &vd->vdev_wholedisk) != 0)
670 		vd->vdev_wholedisk = -1ULL;
671 
672 	ASSERT0(vic->vic_mapping_object);
673 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
674 	    &vic->vic_mapping_object);
675 	ASSERT0(vic->vic_births_object);
676 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
677 	    &vic->vic_births_object);
678 	ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
679 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
680 	    &vic->vic_prev_indirect_vdev);
681 
682 	/*
683 	 * Look for the 'not present' flag.  This will only be set if the device
684 	 * was not present at the time of import.
685 	 */
686 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
687 	    &vd->vdev_not_present);
688 
689 	/*
690 	 * Get the alignment requirement.
691 	 */
692 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
693 
694 	/*
695 	 * Retrieve the vdev creation time.
696 	 */
697 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
698 	    &vd->vdev_crtxg);
699 
700 	/*
701 	 * If we're a top-level vdev, try to load the allocation parameters.
702 	 */
703 	if (top_level &&
704 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
705 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
706 		    &vd->vdev_ms_array);
707 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
708 		    &vd->vdev_ms_shift);
709 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
710 		    &vd->vdev_asize);
711 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
712 		    &vd->vdev_removing);
713 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
714 		    &vd->vdev_top_zap);
715 	} else {
716 		ASSERT0(vd->vdev_top_zap);
717 	}
718 
719 	if (top_level && alloctype != VDEV_ALLOC_ATTACH) {
720 		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
721 		    alloctype == VDEV_ALLOC_ADD ||
722 		    alloctype == VDEV_ALLOC_SPLIT ||
723 		    alloctype == VDEV_ALLOC_ROOTPOOL);
724 		/* Note: metaslab_group_create() is now deferred */
725 	}
726 
727 	if (vd->vdev_ops->vdev_op_leaf &&
728 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
729 		(void) nvlist_lookup_uint64(nv,
730 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
731 	} else {
732 		ASSERT0(vd->vdev_leaf_zap);
733 	}
734 
735 	/*
736 	 * If we're a leaf vdev, try to load the DTL object and other state.
737 	 */
738 
739 	if (vd->vdev_ops->vdev_op_leaf &&
740 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
741 	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
742 		if (alloctype == VDEV_ALLOC_LOAD) {
743 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
744 			    &vd->vdev_dtl_object);
745 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
746 			    &vd->vdev_unspare);
747 		}
748 
749 		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
750 			uint64_t spare = 0;
751 
752 			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
753 			    &spare) == 0 && spare)
754 				spa_spare_add(vd);
755 		}
756 
757 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
758 		    &vd->vdev_offline);
759 
760 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
761 		    &vd->vdev_resilver_txg);
762 
763 		if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER))
764 			vdev_set_deferred_resilver(spa, vd);
765 
766 		/*
767 		 * When importing a pool, we want to ignore the persistent fault
768 		 * state, as the diagnosis made on another system may not be
769 		 * valid in the current context.  Local vdevs will
770 		 * remain in the faulted state.
771 		 */
772 		if (spa_load_state(spa) == SPA_LOAD_OPEN) {
773 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
774 			    &vd->vdev_faulted);
775 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
776 			    &vd->vdev_degraded);
777 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
778 			    &vd->vdev_removed);
779 
780 			if (vd->vdev_faulted || vd->vdev_degraded) {
781 				char *aux;
782 
783 				vd->vdev_label_aux =
784 				    VDEV_AUX_ERR_EXCEEDED;
785 				if (nvlist_lookup_string(nv,
786 				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
787 				    strcmp(aux, "external") == 0)
788 					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
789 			}
790 		}
791 	}
792 
793 	/*
794 	 * Add ourselves to the parent's list of children.
795 	 */
796 	vdev_add_child(parent, vd);
797 
798 	*vdp = vd;
799 
800 	return (0);
801 }
802 
803 void
804 vdev_free(vdev_t *vd)
805 {
806 	spa_t *spa = vd->vdev_spa;
807 	ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
808 
809 	/*
810 	 * Scan queues are normally destroyed at the end of a scan. If the
811 	 * queue exists here, that implies the vdev is being removed while
812 	 * the scan is still running.
813 	 */
814 	if (vd->vdev_scan_io_queue != NULL) {
815 		mutex_enter(&vd->vdev_scan_io_queue_lock);
816 		dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue);
817 		vd->vdev_scan_io_queue = NULL;
818 		mutex_exit(&vd->vdev_scan_io_queue_lock);
819 	}
820 
821 	/*
822 	 * vdev_free() implies closing the vdev first.  This is simpler than
823 	 * trying to ensure complicated semantics for all callers.
824 	 */
825 	vdev_close(vd);
826 
827 	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
828 	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
829 
830 	/*
831 	 * Free all children.
832 	 */
833 	for (int c = 0; c < vd->vdev_children; c++)
834 		vdev_free(vd->vdev_child[c]);
835 
836 	ASSERT(vd->vdev_child == NULL);
837 	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
838 	ASSERT(vd->vdev_initialize_thread == NULL);
839 
840 	/*
841 	 * Discard allocation state.
842 	 */
843 	if (vd->vdev_mg != NULL) {
844 		vdev_metaslab_fini(vd);
845 		metaslab_group_destroy(vd->vdev_mg);
846 	}
847 
848 	ASSERT0(vd->vdev_stat.vs_space);
849 	ASSERT0(vd->vdev_stat.vs_dspace);
850 	ASSERT0(vd->vdev_stat.vs_alloc);
851 
852 	/*
853 	 * Remove this vdev from its parent's child list.
854 	 */
855 	vdev_remove_child(vd->vdev_parent, vd);
856 
857 	ASSERT(vd->vdev_parent == NULL);
858 	ASSERT(!list_link_active(&vd->vdev_leaf_node));
859 
860 	/*
861 	 * Clean up vdev structure.
862 	 */
863 	vdev_queue_fini(vd);
864 	vdev_cache_fini(vd);
865 
866 	if (vd->vdev_path)
867 		spa_strfree(vd->vdev_path);
868 	if (vd->vdev_devid)
869 		spa_strfree(vd->vdev_devid);
870 	if (vd->vdev_physpath)
871 		spa_strfree(vd->vdev_physpath);
872 	if (vd->vdev_fru)
873 		spa_strfree(vd->vdev_fru);
874 
875 	if (vd->vdev_isspare)
876 		spa_spare_remove(vd);
877 	if (vd->vdev_isl2cache)
878 		spa_l2cache_remove(vd);
879 
880 	txg_list_destroy(&vd->vdev_ms_list);
881 	txg_list_destroy(&vd->vdev_dtl_list);
882 
883 	mutex_enter(&vd->vdev_dtl_lock);
884 	space_map_close(vd->vdev_dtl_sm);
885 	for (int t = 0; t < DTL_TYPES; t++) {
886 		range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
887 		range_tree_destroy(vd->vdev_dtl[t]);
888 	}
889 	mutex_exit(&vd->vdev_dtl_lock);
890 
891 	EQUIV(vd->vdev_indirect_births != NULL,
892 	    vd->vdev_indirect_mapping != NULL);
893 	if (vd->vdev_indirect_births != NULL) {
894 		vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
895 		vdev_indirect_births_close(vd->vdev_indirect_births);
896 	}
897 
898 	if (vd->vdev_obsolete_sm != NULL) {
899 		ASSERT(vd->vdev_removing ||
900 		    vd->vdev_ops == &vdev_indirect_ops);
901 		space_map_close(vd->vdev_obsolete_sm);
902 		vd->vdev_obsolete_sm = NULL;
903 	}
904 	range_tree_destroy(vd->vdev_obsolete_segments);
905 	rw_destroy(&vd->vdev_indirect_rwlock);
906 	mutex_destroy(&vd->vdev_obsolete_lock);
907 
908 	mutex_destroy(&vd->vdev_dtl_lock);
909 	mutex_destroy(&vd->vdev_stat_lock);
910 	mutex_destroy(&vd->vdev_probe_lock);
911 	mutex_destroy(&vd->vdev_scan_io_queue_lock);
912 	mutex_destroy(&vd->vdev_initialize_lock);
913 	mutex_destroy(&vd->vdev_initialize_io_lock);
914 	cv_destroy(&vd->vdev_initialize_io_cv);
915 	cv_destroy(&vd->vdev_initialize_cv);
916 
917 	if (vd == spa->spa_root_vdev)
918 		spa->spa_root_vdev = NULL;
919 
920 	kmem_free(vd, sizeof (vdev_t));
921 }
922 
923 /*
924  * Transfer top-level vdev state from svd to tvd.
925  */
926 static void
927 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
928 {
929 	spa_t *spa = svd->vdev_spa;
930 	metaslab_t *msp;
931 	vdev_t *vd;
932 	int t;
933 
934 	ASSERT(tvd == tvd->vdev_top);
935 
936 	tvd->vdev_ms_array = svd->vdev_ms_array;
937 	tvd->vdev_ms_shift = svd->vdev_ms_shift;
938 	tvd->vdev_ms_count = svd->vdev_ms_count;
939 	tvd->vdev_top_zap = svd->vdev_top_zap;
940 
941 	svd->vdev_ms_array = 0;
942 	svd->vdev_ms_shift = 0;
943 	svd->vdev_ms_count = 0;
944 	svd->vdev_top_zap = 0;
945 
946 	if (tvd->vdev_mg)
947 		ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
948 	tvd->vdev_mg = svd->vdev_mg;
949 	tvd->vdev_ms = svd->vdev_ms;
950 
951 	svd->vdev_mg = NULL;
952 	svd->vdev_ms = NULL;
953 
954 	if (tvd->vdev_mg != NULL)
955 		tvd->vdev_mg->mg_vd = tvd;
956 
957 	tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm;
958 	svd->vdev_checkpoint_sm = NULL;
959 
960 	tvd->vdev_alloc_bias = svd->vdev_alloc_bias;
961 	svd->vdev_alloc_bias = VDEV_BIAS_NONE;
962 
963 	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
964 	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
965 	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
966 
967 	svd->vdev_stat.vs_alloc = 0;
968 	svd->vdev_stat.vs_space = 0;
969 	svd->vdev_stat.vs_dspace = 0;
970 
971 	/*
972 	 * State which may be set on a top-level vdev that's in the
973 	 * process of being removed.
974 	 */
975 	ASSERT0(tvd->vdev_indirect_config.vic_births_object);
976 	ASSERT0(tvd->vdev_indirect_config.vic_mapping_object);
977 	ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL);
978 	ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL);
979 	ASSERT3P(tvd->vdev_indirect_births, ==, NULL);
980 	ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL);
981 	ASSERT0(tvd->vdev_removing);
982 	tvd->vdev_removing = svd->vdev_removing;
983 	tvd->vdev_indirect_config = svd->vdev_indirect_config;
984 	tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping;
985 	tvd->vdev_indirect_births = svd->vdev_indirect_births;
986 	range_tree_swap(&svd->vdev_obsolete_segments,
987 	    &tvd->vdev_obsolete_segments);
988 	tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm;
989 	svd->vdev_indirect_config.vic_mapping_object = 0;
990 	svd->vdev_indirect_config.vic_births_object = 0;
991 	svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL;
992 	svd->vdev_indirect_mapping = NULL;
993 	svd->vdev_indirect_births = NULL;
994 	svd->vdev_obsolete_sm = NULL;
995 	svd->vdev_removing = 0;
996 
997 	for (t = 0; t < TXG_SIZE; t++) {
998 		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
999 			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
1000 		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
1001 			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
1002 		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
1003 			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
1004 	}
1005 
1006 	if (list_link_active(&svd->vdev_config_dirty_node)) {
1007 		vdev_config_clean(svd);
1008 		vdev_config_dirty(tvd);
1009 	}
1010 
1011 	if (list_link_active(&svd->vdev_state_dirty_node)) {
1012 		vdev_state_clean(svd);
1013 		vdev_state_dirty(tvd);
1014 	}
1015 
1016 	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
1017 	svd->vdev_deflate_ratio = 0;
1018 
1019 	tvd->vdev_islog = svd->vdev_islog;
1020 	svd->vdev_islog = 0;
1021 
1022 	dsl_scan_io_queue_vdev_xfer(svd, tvd);
1023 }
1024 
1025 static void
1026 vdev_top_update(vdev_t *tvd, vdev_t *vd)
1027 {
1028 	if (vd == NULL)
1029 		return;
1030 
1031 	vd->vdev_top = tvd;
1032 
1033 	for (int c = 0; c < vd->vdev_children; c++)
1034 		vdev_top_update(tvd, vd->vdev_child[c]);
1035 }
1036 
1037 /*
1038  * Add a mirror/replacing vdev above an existing vdev.
1039  */
1040 vdev_t *
1041 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
1042 {
1043 	spa_t *spa = cvd->vdev_spa;
1044 	vdev_t *pvd = cvd->vdev_parent;
1045 	vdev_t *mvd;
1046 
1047 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1048 
1049 	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
1050 
1051 	mvd->vdev_asize = cvd->vdev_asize;
1052 	mvd->vdev_min_asize = cvd->vdev_min_asize;
1053 	mvd->vdev_max_asize = cvd->vdev_max_asize;
1054 	mvd->vdev_psize = cvd->vdev_psize;
1055 	mvd->vdev_ashift = cvd->vdev_ashift;
1056 	mvd->vdev_state = cvd->vdev_state;
1057 	mvd->vdev_crtxg = cvd->vdev_crtxg;
1058 
1059 	vdev_remove_child(pvd, cvd);
1060 	vdev_add_child(pvd, mvd);
1061 	cvd->vdev_id = mvd->vdev_children;
1062 	vdev_add_child(mvd, cvd);
1063 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1064 
1065 	if (mvd == mvd->vdev_top)
1066 		vdev_top_transfer(cvd, mvd);
1067 
1068 	return (mvd);
1069 }
1070 
1071 /*
1072  * Remove a 1-way mirror/replacing vdev from the tree.
1073  */
1074 void
1075 vdev_remove_parent(vdev_t *cvd)
1076 {
1077 	vdev_t *mvd = cvd->vdev_parent;
1078 	vdev_t *pvd = mvd->vdev_parent;
1079 
1080 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1081 
1082 	ASSERT(mvd->vdev_children == 1);
1083 	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
1084 	    mvd->vdev_ops == &vdev_replacing_ops ||
1085 	    mvd->vdev_ops == &vdev_spare_ops);
1086 	cvd->vdev_ashift = mvd->vdev_ashift;
1087 
1088 	vdev_remove_child(mvd, cvd);
1089 	vdev_remove_child(pvd, mvd);
1090 
1091 	/*
1092 	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
1093 	 * Otherwise, we could have detached an offline device, and when we
1094 	 * go to import the pool we'll think we have two top-level vdevs,
1095 	 * instead of a different version of the same top-level vdev.
1096 	 */
1097 	if (mvd->vdev_top == mvd) {
1098 		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
1099 		cvd->vdev_orig_guid = cvd->vdev_guid;
1100 		cvd->vdev_guid += guid_delta;
1101 		cvd->vdev_guid_sum += guid_delta;
1102 	}
1103 	cvd->vdev_id = mvd->vdev_id;
1104 	vdev_add_child(pvd, cvd);
1105 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1106 
1107 	if (cvd == cvd->vdev_top)
1108 		vdev_top_transfer(mvd, cvd);
1109 
1110 	ASSERT(mvd->vdev_children == 0);
1111 	vdev_free(mvd);
1112 }
1113 
1114 static void
1115 vdev_metaslab_group_create(vdev_t *vd)
1116 {
1117 	spa_t *spa = vd->vdev_spa;
1118 
1119 	/*
1120 	 * metaslab_group_create was delayed until allocation bias was available
1121 	 */
1122 	if (vd->vdev_mg == NULL) {
1123 		metaslab_class_t *mc;
1124 
1125 		if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE)
1126 			vd->vdev_alloc_bias = VDEV_BIAS_LOG;
1127 
1128 		ASSERT3U(vd->vdev_islog, ==,
1129 		    (vd->vdev_alloc_bias == VDEV_BIAS_LOG));
1130 
1131 		switch (vd->vdev_alloc_bias) {
1132 		case VDEV_BIAS_LOG:
1133 			mc = spa_log_class(spa);
1134 			break;
1135 		case VDEV_BIAS_SPECIAL:
1136 			mc = spa_special_class(spa);
1137 			break;
1138 		case VDEV_BIAS_DEDUP:
1139 			mc = spa_dedup_class(spa);
1140 			break;
1141 		default:
1142 			mc = spa_normal_class(spa);
1143 		}
1144 
1145 		vd->vdev_mg = metaslab_group_create(mc, vd,
1146 		    spa->spa_alloc_count);
1147 
1148 		/*
1149 		 * The spa ashift values currently only reflect the
1150 		 * general vdev classes. Class destination is late
1151 		 * binding so ashift checking had to wait until now
1152 		 */
1153 		if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1154 		    mc == spa_normal_class(spa) && vd->vdev_aux == NULL) {
1155 			if (vd->vdev_ashift > spa->spa_max_ashift)
1156 				spa->spa_max_ashift = vd->vdev_ashift;
1157 			if (vd->vdev_ashift < spa->spa_min_ashift)
1158 				spa->spa_min_ashift = vd->vdev_ashift;
1159 		}
1160 	}
1161 }
1162 
1163 int
1164 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
1165 {
1166 	spa_t *spa = vd->vdev_spa;
1167 	objset_t *mos = spa->spa_meta_objset;
1168 	uint64_t m;
1169 	uint64_t oldc = vd->vdev_ms_count;
1170 	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
1171 	metaslab_t **mspp;
1172 	int error;
1173 	boolean_t expanding = (oldc != 0);
1174 
1175 	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1176 
1177 	/*
1178 	 * This vdev is not being allocated from yet or is a hole.
1179 	 */
1180 	if (vd->vdev_ms_shift == 0)
1181 		return (0);
1182 
1183 	ASSERT(!vd->vdev_ishole);
1184 
1185 	ASSERT(oldc <= newc);
1186 
1187 	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
1188 
1189 	if (expanding) {
1190 		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
1191 		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
1192 	}
1193 
1194 	vd->vdev_ms = mspp;
1195 	vd->vdev_ms_count = newc;
1196 	for (m = oldc; m < newc; m++) {
1197 		uint64_t object = 0;
1198 
1199 		/*
1200 		 * vdev_ms_array may be 0 if we are creating the "fake"
1201 		 * metaslabs for an indirect vdev for zdb's leak detection.
1202 		 * See zdb_leak_init().
1203 		 */
1204 		if (txg == 0 && vd->vdev_ms_array != 0) {
1205 			error = dmu_read(mos, vd->vdev_ms_array,
1206 			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
1207 			    DMU_READ_PREFETCH);
1208 			if (error != 0) {
1209 				vdev_dbgmsg(vd, "unable to read the metaslab "
1210 				    "array [error=%d]", error);
1211 				return (error);
1212 			}
1213 		}
1214 
1215 #ifndef _KERNEL
1216 		/*
1217 		 * To accomodate zdb_leak_init() fake indirect
1218 		 * metaslabs, we allocate a metaslab group for
1219 		 * indirect vdevs which normally don't have one.
1220 		 */
1221 		if (vd->vdev_mg == NULL) {
1222 			ASSERT0(vdev_is_concrete(vd));
1223 			vdev_metaslab_group_create(vd);
1224 		}
1225 #endif
1226 		error = metaslab_init(vd->vdev_mg, m, object, txg,
1227 		    &(vd->vdev_ms[m]));
1228 		if (error != 0) {
1229 			vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
1230 			    error);
1231 			return (error);
1232 		}
1233 	}
1234 
1235 	if (txg == 0)
1236 		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1237 
1238 	/*
1239 	 * If the vdev is being removed we don't activate
1240 	 * the metaslabs since we want to ensure that no new
1241 	 * allocations are performed on this device.
1242 	 */
1243 	if (!expanding && !vd->vdev_removing) {
1244 		metaslab_group_activate(vd->vdev_mg);
1245 	}
1246 
1247 	if (txg == 0)
1248 		spa_config_exit(spa, SCL_ALLOC, FTAG);
1249 
1250 	return (0);
1251 }
1252 
1253 void
1254 vdev_metaslab_fini(vdev_t *vd)
1255 {
1256 	if (vd->vdev_checkpoint_sm != NULL) {
1257 		ASSERT(spa_feature_is_active(vd->vdev_spa,
1258 		    SPA_FEATURE_POOL_CHECKPOINT));
1259 		space_map_close(vd->vdev_checkpoint_sm);
1260 		/*
1261 		 * Even though we close the space map, we need to set its
1262 		 * pointer to NULL. The reason is that vdev_metaslab_fini()
1263 		 * may be called multiple times for certain operations
1264 		 * (i.e. when destroying a pool) so we need to ensure that
1265 		 * this clause never executes twice. This logic is similar
1266 		 * to the one used for the vdev_ms clause below.
1267 		 */
1268 		vd->vdev_checkpoint_sm = NULL;
1269 	}
1270 
1271 	if (vd->vdev_ms != NULL) {
1272 		metaslab_group_t *mg = vd->vdev_mg;
1273 		metaslab_group_passivate(mg);
1274 
1275 		uint64_t count = vd->vdev_ms_count;
1276 		for (uint64_t m = 0; m < count; m++) {
1277 			metaslab_t *msp = vd->vdev_ms[m];
1278 			if (msp != NULL)
1279 				metaslab_fini(msp);
1280 		}
1281 		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1282 		vd->vdev_ms = NULL;
1283 
1284 		vd->vdev_ms_count = 0;
1285 
1286 		for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
1287 			ASSERT0(mg->mg_histogram[i]);
1288 	}
1289 	ASSERT0(vd->vdev_ms_count);
1290 }
1291 
1292 typedef struct vdev_probe_stats {
1293 	boolean_t	vps_readable;
1294 	boolean_t	vps_writeable;
1295 	int		vps_flags;
1296 } vdev_probe_stats_t;
1297 
1298 static void
1299 vdev_probe_done(zio_t *zio)
1300 {
1301 	spa_t *spa = zio->io_spa;
1302 	vdev_t *vd = zio->io_vd;
1303 	vdev_probe_stats_t *vps = zio->io_private;
1304 
1305 	ASSERT(vd->vdev_probe_zio != NULL);
1306 
1307 	if (zio->io_type == ZIO_TYPE_READ) {
1308 		if (zio->io_error == 0)
1309 			vps->vps_readable = 1;
1310 		if (zio->io_error == 0 && spa_writeable(spa)) {
1311 			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1312 			    zio->io_offset, zio->io_size, zio->io_abd,
1313 			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1314 			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1315 		} else {
1316 			abd_free(zio->io_abd);
1317 		}
1318 	} else if (zio->io_type == ZIO_TYPE_WRITE) {
1319 		if (zio->io_error == 0)
1320 			vps->vps_writeable = 1;
1321 		abd_free(zio->io_abd);
1322 	} else if (zio->io_type == ZIO_TYPE_NULL) {
1323 		zio_t *pio;
1324 
1325 		vd->vdev_cant_read |= !vps->vps_readable;
1326 		vd->vdev_cant_write |= !vps->vps_writeable;
1327 
1328 		if (vdev_readable(vd) &&
1329 		    (vdev_writeable(vd) || !spa_writeable(spa))) {
1330 			zio->io_error = 0;
1331 		} else {
1332 			ASSERT(zio->io_error != 0);
1333 			vdev_dbgmsg(vd, "failed probe");
1334 			zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1335 			    spa, vd, NULL, NULL, 0, 0);
1336 			zio->io_error = SET_ERROR(ENXIO);
1337 		}
1338 
1339 		mutex_enter(&vd->vdev_probe_lock);
1340 		ASSERT(vd->vdev_probe_zio == zio);
1341 		vd->vdev_probe_zio = NULL;
1342 		mutex_exit(&vd->vdev_probe_lock);
1343 
1344 		zio_link_t *zl = NULL;
1345 		while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1346 			if (!vdev_accessible(vd, pio))
1347 				pio->io_error = SET_ERROR(ENXIO);
1348 
1349 		kmem_free(vps, sizeof (*vps));
1350 	}
1351 }
1352 
1353 /*
1354  * Determine whether this device is accessible.
1355  *
1356  * Read and write to several known locations: the pad regions of each
1357  * vdev label but the first, which we leave alone in case it contains
1358  * a VTOC.
1359  */
1360 zio_t *
1361 vdev_probe(vdev_t *vd, zio_t *zio)
1362 {
1363 	spa_t *spa = vd->vdev_spa;
1364 	vdev_probe_stats_t *vps = NULL;
1365 	zio_t *pio;
1366 
1367 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1368 
1369 	/*
1370 	 * Don't probe the probe.
1371 	 */
1372 	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1373 		return (NULL);
1374 
1375 	/*
1376 	 * To prevent 'probe storms' when a device fails, we create
1377 	 * just one probe i/o at a time.  All zios that want to probe
1378 	 * this vdev will become parents of the probe io.
1379 	 */
1380 	mutex_enter(&vd->vdev_probe_lock);
1381 
1382 	if ((pio = vd->vdev_probe_zio) == NULL) {
1383 		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1384 
1385 		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1386 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1387 		    ZIO_FLAG_TRYHARD;
1388 
1389 		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1390 			/*
1391 			 * vdev_cant_read and vdev_cant_write can only
1392 			 * transition from TRUE to FALSE when we have the
1393 			 * SCL_ZIO lock as writer; otherwise they can only
1394 			 * transition from FALSE to TRUE.  This ensures that
1395 			 * any zio looking at these values can assume that
1396 			 * failures persist for the life of the I/O.  That's
1397 			 * important because when a device has intermittent
1398 			 * connectivity problems, we want to ensure that
1399 			 * they're ascribed to the device (ENXIO) and not
1400 			 * the zio (EIO).
1401 			 *
1402 			 * Since we hold SCL_ZIO as writer here, clear both
1403 			 * values so the probe can reevaluate from first
1404 			 * principles.
1405 			 */
1406 			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1407 			vd->vdev_cant_read = B_FALSE;
1408 			vd->vdev_cant_write = B_FALSE;
1409 		}
1410 
1411 		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1412 		    vdev_probe_done, vps,
1413 		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1414 
1415 		/*
1416 		 * We can't change the vdev state in this context, so we
1417 		 * kick off an async task to do it on our behalf.
1418 		 */
1419 		if (zio != NULL) {
1420 			vd->vdev_probe_wanted = B_TRUE;
1421 			spa_async_request(spa, SPA_ASYNC_PROBE);
1422 		}
1423 	}
1424 
1425 	if (zio != NULL)
1426 		zio_add_child(zio, pio);
1427 
1428 	mutex_exit(&vd->vdev_probe_lock);
1429 
1430 	if (vps == NULL) {
1431 		ASSERT(zio != NULL);
1432 		return (NULL);
1433 	}
1434 
1435 	for (int l = 1; l < VDEV_LABELS; l++) {
1436 		zio_nowait(zio_read_phys(pio, vd,
1437 		    vdev_label_offset(vd->vdev_psize, l,
1438 		    offsetof(vdev_label_t, vl_pad2)), VDEV_PAD_SIZE,
1439 		    abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1440 		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1441 		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1442 	}
1443 
1444 	if (zio == NULL)
1445 		return (pio);
1446 
1447 	zio_nowait(pio);
1448 	return (NULL);
1449 }
1450 
1451 static void
1452 vdev_open_child(void *arg)
1453 {
1454 	vdev_t *vd = arg;
1455 
1456 	vd->vdev_open_thread = curthread;
1457 	vd->vdev_open_error = vdev_open(vd);
1458 	vd->vdev_open_thread = NULL;
1459 }
1460 
1461 boolean_t
1462 vdev_uses_zvols(vdev_t *vd)
1463 {
1464 	if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1465 	    strlen(ZVOL_DIR)) == 0)
1466 		return (B_TRUE);
1467 	for (int c = 0; c < vd->vdev_children; c++)
1468 		if (vdev_uses_zvols(vd->vdev_child[c]))
1469 			return (B_TRUE);
1470 	return (B_FALSE);
1471 }
1472 
1473 void
1474 vdev_open_children(vdev_t *vd)
1475 {
1476 	taskq_t *tq;
1477 	int children = vd->vdev_children;
1478 
1479 	/*
1480 	 * in order to handle pools on top of zvols, do the opens
1481 	 * in a single thread so that the same thread holds the
1482 	 * spa_namespace_lock
1483 	 */
1484 	if (vdev_uses_zvols(vd)) {
1485 retry_sync:
1486 		for (int c = 0; c < children; c++)
1487 			vd->vdev_child[c]->vdev_open_error =
1488 			    vdev_open(vd->vdev_child[c]);
1489 	} else {
1490 		tq = taskq_create("vdev_open", children, minclsyspri,
1491 		    children, children, TASKQ_PREPOPULATE);
1492 		if (tq == NULL)
1493 			goto retry_sync;
1494 
1495 		for (int c = 0; c < children; c++)
1496 			VERIFY(taskq_dispatch(tq, vdev_open_child,
1497 			    vd->vdev_child[c], TQ_SLEEP) != TASKQID_INVALID);
1498 
1499 		taskq_destroy(tq);
1500 	}
1501 
1502 	vd->vdev_nonrot = B_TRUE;
1503 
1504 	for (int c = 0; c < children; c++)
1505 		vd->vdev_nonrot &= vd->vdev_child[c]->vdev_nonrot;
1506 }
1507 
1508 /*
1509  * Compute the raidz-deflation ratio.  Note, we hard-code
1510  * in 128k (1 << 17) because it is the "typical" blocksize.
1511  * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
1512  * otherwise it would inconsistently account for existing bp's.
1513  */
1514 static void
1515 vdev_set_deflate_ratio(vdev_t *vd)
1516 {
1517 	if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
1518 		vd->vdev_deflate_ratio = (1 << 17) /
1519 		    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
1520 	}
1521 }
1522 
1523 /*
1524  * Prepare a virtual device for access.
1525  */
1526 int
1527 vdev_open(vdev_t *vd)
1528 {
1529 	spa_t *spa = vd->vdev_spa;
1530 	int error;
1531 	uint64_t osize = 0;
1532 	uint64_t max_osize = 0;
1533 	uint64_t asize, max_asize, psize;
1534 	uint64_t ashift = 0;
1535 
1536 	ASSERT(vd->vdev_open_thread == curthread ||
1537 	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1538 	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1539 	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1540 	    vd->vdev_state == VDEV_STATE_OFFLINE);
1541 
1542 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1543 	vd->vdev_cant_read = B_FALSE;
1544 	vd->vdev_cant_write = B_FALSE;
1545 	vd->vdev_min_asize = vdev_get_min_asize(vd);
1546 
1547 	/*
1548 	 * If this vdev is not removed, check its fault status.  If it's
1549 	 * faulted, bail out of the open.
1550 	 */
1551 	if (!vd->vdev_removed && vd->vdev_faulted) {
1552 		ASSERT(vd->vdev_children == 0);
1553 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1554 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1555 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1556 		    vd->vdev_label_aux);
1557 		return (SET_ERROR(ENXIO));
1558 	} else if (vd->vdev_offline) {
1559 		ASSERT(vd->vdev_children == 0);
1560 		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1561 		return (SET_ERROR(ENXIO));
1562 	}
1563 
1564 	error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1565 
1566 	/*
1567 	 * Reset the vdev_reopening flag so that we actually close
1568 	 * the vdev on error.
1569 	 */
1570 	vd->vdev_reopening = B_FALSE;
1571 	if (zio_injection_enabled && error == 0)
1572 		error = zio_handle_device_injection(vd, NULL, ENXIO);
1573 
1574 	if (error) {
1575 		if (vd->vdev_removed &&
1576 		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1577 			vd->vdev_removed = B_FALSE;
1578 
1579 		if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
1580 			vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
1581 			    vd->vdev_stat.vs_aux);
1582 		} else {
1583 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1584 			    vd->vdev_stat.vs_aux);
1585 		}
1586 		return (error);
1587 	}
1588 
1589 	vd->vdev_removed = B_FALSE;
1590 
1591 	/*
1592 	 * Recheck the faulted flag now that we have confirmed that
1593 	 * the vdev is accessible.  If we're faulted, bail.
1594 	 */
1595 	if (vd->vdev_faulted) {
1596 		ASSERT(vd->vdev_children == 0);
1597 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1598 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1599 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1600 		    vd->vdev_label_aux);
1601 		return (SET_ERROR(ENXIO));
1602 	}
1603 
1604 	if (vd->vdev_degraded) {
1605 		ASSERT(vd->vdev_children == 0);
1606 		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1607 		    VDEV_AUX_ERR_EXCEEDED);
1608 	} else {
1609 		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1610 	}
1611 
1612 	/*
1613 	 * For hole or missing vdevs we just return success.
1614 	 */
1615 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1616 		return (0);
1617 
1618 	for (int c = 0; c < vd->vdev_children; c++) {
1619 		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1620 			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1621 			    VDEV_AUX_NONE);
1622 			break;
1623 		}
1624 	}
1625 
1626 	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1627 	max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1628 
1629 	if (vd->vdev_children == 0) {
1630 		if (osize < SPA_MINDEVSIZE) {
1631 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1632 			    VDEV_AUX_TOO_SMALL);
1633 			return (SET_ERROR(EOVERFLOW));
1634 		}
1635 		psize = osize;
1636 		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1637 		max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1638 		    VDEV_LABEL_END_SIZE);
1639 	} else {
1640 		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1641 		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1642 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1643 			    VDEV_AUX_TOO_SMALL);
1644 			return (SET_ERROR(EOVERFLOW));
1645 		}
1646 		psize = 0;
1647 		asize = osize;
1648 		max_asize = max_osize;
1649 	}
1650 
1651 	vd->vdev_psize = psize;
1652 
1653 	/*
1654 	 * Make sure the allocatable size hasn't shrunk too much.
1655 	 */
1656 	if (asize < vd->vdev_min_asize) {
1657 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1658 		    VDEV_AUX_BAD_LABEL);
1659 		return (SET_ERROR(EINVAL));
1660 	}
1661 
1662 	if (vd->vdev_asize == 0) {
1663 		/*
1664 		 * This is the first-ever open, so use the computed values.
1665 		 * For compatibility, a different ashift can be requested.
1666 		 */
1667 		vd->vdev_asize = asize;
1668 		vd->vdev_max_asize = max_asize;
1669 		if (vd->vdev_ashift == 0) {
1670 			vd->vdev_ashift = ashift; /* use detected value */
1671 		}
1672 		if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN ||
1673 		    vd->vdev_ashift > ASHIFT_MAX)) {
1674 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1675 			    VDEV_AUX_BAD_ASHIFT);
1676 			return (SET_ERROR(EDOM));
1677 		}
1678 	} else {
1679 		/*
1680 		 * Detect if the alignment requirement has increased.
1681 		 * We don't want to make the pool unavailable, just
1682 		 * post an event instead.
1683 		 */
1684 		if (ashift > vd->vdev_top->vdev_ashift &&
1685 		    vd->vdev_ops->vdev_op_leaf) {
1686 			zfs_ereport_post(FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
1687 			    spa, vd, NULL, NULL, 0, 0);
1688 		}
1689 
1690 		vd->vdev_max_asize = max_asize;
1691 	}
1692 
1693 	/*
1694 	 * If all children are healthy we update asize if either:
1695 	 * The asize has increased, due to a device expansion caused by dynamic
1696 	 * LUN growth or vdev replacement, and automatic expansion is enabled;
1697 	 * making the additional space available.
1698 	 *
1699 	 * The asize has decreased, due to a device shrink usually caused by a
1700 	 * vdev replace with a smaller device. This ensures that calculations
1701 	 * based of max_asize and asize e.g. esize are always valid. It's safe
1702 	 * to do this as we've already validated that asize is greater than
1703 	 * vdev_min_asize.
1704 	 */
1705 	if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1706 	    ((asize > vd->vdev_asize &&
1707 	    (vd->vdev_expanding || spa->spa_autoexpand)) ||
1708 	    (asize < vd->vdev_asize)))
1709 		vd->vdev_asize = asize;
1710 
1711 	vdev_set_min_asize(vd);
1712 
1713 	/*
1714 	 * Ensure we can issue some IO before declaring the
1715 	 * vdev open for business.
1716 	 */
1717 	if (vd->vdev_ops->vdev_op_leaf &&
1718 	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1719 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1720 		    VDEV_AUX_ERR_EXCEEDED);
1721 		return (error);
1722 	}
1723 
1724 	/*
1725 	 * Track the min and max ashift values for normal data devices.
1726 	 *
1727 	 * DJB - TBD these should perhaps be tracked per allocation class
1728 	 * (e.g. spa_min_ashift is used to round up post compression buffers)
1729 	 */
1730 	if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1731 	    vd->vdev_alloc_bias == VDEV_BIAS_NONE &&
1732 	    vd->vdev_aux == NULL) {
1733 		if (vd->vdev_ashift > spa->spa_max_ashift)
1734 			spa->spa_max_ashift = vd->vdev_ashift;
1735 		if (vd->vdev_ashift < spa->spa_min_ashift)
1736 			spa->spa_min_ashift = vd->vdev_ashift;
1737 	}
1738 
1739 	/*
1740 	 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1741 	 * resilver.  But don't do this if we are doing a reopen for a scrub,
1742 	 * since this would just restart the scrub we are already doing.
1743 	 */
1744 	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1745 	    vdev_resilver_needed(vd, NULL, NULL)) {
1746 		if (dsl_scan_resilvering(spa->spa_dsl_pool) &&
1747 		    spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
1748 			vdev_set_deferred_resilver(spa, vd);
1749 		else
1750 			spa_async_request(spa, SPA_ASYNC_RESILVER);
1751 	}
1752 
1753 	return (0);
1754 }
1755 
1756 /*
1757  * Called once the vdevs are all opened, this routine validates the label
1758  * contents. This needs to be done before vdev_load() so that we don't
1759  * inadvertently do repair I/Os to the wrong device.
1760  *
1761  * This function will only return failure if one of the vdevs indicates that it
1762  * has since been destroyed or exported.  This is only possible if
1763  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1764  * will be updated but the function will return 0.
1765  */
1766 int
1767 vdev_validate(vdev_t *vd)
1768 {
1769 	spa_t *spa = vd->vdev_spa;
1770 	nvlist_t *label;
1771 	uint64_t guid = 0, aux_guid = 0, top_guid;
1772 	uint64_t state;
1773 	nvlist_t *nvl;
1774 	uint64_t txg;
1775 
1776 	if (vdev_validate_skip)
1777 		return (0);
1778 
1779 	for (uint64_t c = 0; c < vd->vdev_children; c++)
1780 		if (vdev_validate(vd->vdev_child[c]) != 0)
1781 			return (SET_ERROR(EBADF));
1782 
1783 	/*
1784 	 * If the device has already failed, or was marked offline, don't do
1785 	 * any further validation.  Otherwise, label I/O will fail and we will
1786 	 * overwrite the previous state.
1787 	 */
1788 	if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
1789 		return (0);
1790 
1791 	/*
1792 	 * If we are performing an extreme rewind, we allow for a label that
1793 	 * was modified at a point after the current txg.
1794 	 * If config lock is not held do not check for the txg. spa_sync could
1795 	 * be updating the vdev's label before updating spa_last_synced_txg.
1796 	 */
1797 	if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 ||
1798 	    spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG)
1799 		txg = UINT64_MAX;
1800 	else
1801 		txg = spa_last_synced_txg(spa);
1802 
1803 	if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1804 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1805 		    VDEV_AUX_BAD_LABEL);
1806 		vdev_dbgmsg(vd, "vdev_validate: failed reading config for "
1807 		    "txg %llu", (u_longlong_t)txg);
1808 		return (0);
1809 	}
1810 
1811 	/*
1812 	 * Determine if this vdev has been split off into another
1813 	 * pool.  If so, then refuse to open it.
1814 	 */
1815 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1816 	    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1817 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1818 		    VDEV_AUX_SPLIT_POOL);
1819 		nvlist_free(label);
1820 		vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
1821 		return (0);
1822 	}
1823 
1824 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
1825 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1826 		    VDEV_AUX_CORRUPT_DATA);
1827 		nvlist_free(label);
1828 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1829 		    ZPOOL_CONFIG_POOL_GUID);
1830 		return (0);
1831 	}
1832 
1833 	/*
1834 	 * If config is not trusted then ignore the spa guid check. This is
1835 	 * necessary because if the machine crashed during a re-guid the new
1836 	 * guid might have been written to all of the vdev labels, but not the
1837 	 * cached config. The check will be performed again once we have the
1838 	 * trusted config from the MOS.
1839 	 */
1840 	if (spa->spa_trust_config && guid != spa_guid(spa)) {
1841 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1842 		    VDEV_AUX_CORRUPT_DATA);
1843 		nvlist_free(label);
1844 		vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
1845 		    "match config (%llu != %llu)", (u_longlong_t)guid,
1846 		    (u_longlong_t)spa_guid(spa));
1847 		return (0);
1848 	}
1849 
1850 	if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1851 	    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1852 	    &aux_guid) != 0)
1853 		aux_guid = 0;
1854 
1855 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
1856 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1857 		    VDEV_AUX_CORRUPT_DATA);
1858 		nvlist_free(label);
1859 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1860 		    ZPOOL_CONFIG_GUID);
1861 		return (0);
1862 	}
1863 
1864 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
1865 	    != 0) {
1866 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1867 		    VDEV_AUX_CORRUPT_DATA);
1868 		nvlist_free(label);
1869 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1870 		    ZPOOL_CONFIG_TOP_GUID);
1871 		return (0);
1872 	}
1873 
1874 	/*
1875 	 * If this vdev just became a top-level vdev because its sibling was
1876 	 * detached, it will have adopted the parent's vdev guid -- but the
1877 	 * label may or may not be on disk yet. Fortunately, either version
1878 	 * of the label will have the same top guid, so if we're a top-level
1879 	 * vdev, we can safely compare to that instead.
1880 	 * However, if the config comes from a cachefile that failed to update
1881 	 * after the detach, a top-level vdev will appear as a non top-level
1882 	 * vdev in the config. Also relax the constraints if we perform an
1883 	 * extreme rewind.
1884 	 *
1885 	 * If we split this vdev off instead, then we also check the
1886 	 * original pool's guid. We don't want to consider the vdev
1887 	 * corrupt if it is partway through a split operation.
1888 	 */
1889 	if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
1890 		boolean_t mismatch = B_FALSE;
1891 		if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
1892 			if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
1893 				mismatch = B_TRUE;
1894 		} else {
1895 			if (vd->vdev_guid != top_guid &&
1896 			    vd->vdev_top->vdev_guid != guid)
1897 				mismatch = B_TRUE;
1898 		}
1899 
1900 		if (mismatch) {
1901 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1902 			    VDEV_AUX_CORRUPT_DATA);
1903 			nvlist_free(label);
1904 			vdev_dbgmsg(vd, "vdev_validate: config guid "
1905 			    "doesn't match label guid");
1906 			vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
1907 			    (u_longlong_t)vd->vdev_guid,
1908 			    (u_longlong_t)vd->vdev_top->vdev_guid);
1909 			vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
1910 			    "aux_guid %llu", (u_longlong_t)guid,
1911 			    (u_longlong_t)top_guid, (u_longlong_t)aux_guid);
1912 			return (0);
1913 		}
1914 	}
1915 
1916 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1917 	    &state) != 0) {
1918 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1919 		    VDEV_AUX_CORRUPT_DATA);
1920 		nvlist_free(label);
1921 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1922 		    ZPOOL_CONFIG_POOL_STATE);
1923 		return (0);
1924 	}
1925 
1926 	nvlist_free(label);
1927 
1928 	/*
1929 	 * If this is a verbatim import, no need to check the
1930 	 * state of the pool.
1931 	 */
1932 	if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1933 	    spa_load_state(spa) == SPA_LOAD_OPEN &&
1934 	    state != POOL_STATE_ACTIVE) {
1935 		vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
1936 		    "for spa %s", (u_longlong_t)state, spa->spa_name);
1937 		return (SET_ERROR(EBADF));
1938 	}
1939 
1940 	/*
1941 	 * If we were able to open and validate a vdev that was
1942 	 * previously marked permanently unavailable, clear that state
1943 	 * now.
1944 	 */
1945 	if (vd->vdev_not_present)
1946 		vd->vdev_not_present = 0;
1947 
1948 	return (0);
1949 }
1950 
1951 static void
1952 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
1953 {
1954 	if (svd->vdev_path != NULL && dvd->vdev_path != NULL) {
1955 		if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) {
1956 			zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed "
1957 			    "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
1958 			    dvd->vdev_path, svd->vdev_path);
1959 			spa_strfree(dvd->vdev_path);
1960 			dvd->vdev_path = spa_strdup(svd->vdev_path);
1961 		}
1962 	} else if (svd->vdev_path != NULL) {
1963 		dvd->vdev_path = spa_strdup(svd->vdev_path);
1964 		zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
1965 		    (u_longlong_t)dvd->vdev_guid, dvd->vdev_path);
1966 	}
1967 }
1968 
1969 /*
1970  * Recursively copy vdev paths from one vdev to another. Source and destination
1971  * vdev trees must have same geometry otherwise return error. Intended to copy
1972  * paths from userland config into MOS config.
1973  */
1974 int
1975 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
1976 {
1977 	if ((svd->vdev_ops == &vdev_missing_ops) ||
1978 	    (svd->vdev_ishole && dvd->vdev_ishole) ||
1979 	    (dvd->vdev_ops == &vdev_indirect_ops))
1980 		return (0);
1981 
1982 	if (svd->vdev_ops != dvd->vdev_ops) {
1983 		vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
1984 		    svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
1985 		return (SET_ERROR(EINVAL));
1986 	}
1987 
1988 	if (svd->vdev_guid != dvd->vdev_guid) {
1989 		vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
1990 		    "%llu)", (u_longlong_t)svd->vdev_guid,
1991 		    (u_longlong_t)dvd->vdev_guid);
1992 		return (SET_ERROR(EINVAL));
1993 	}
1994 
1995 	if (svd->vdev_children != dvd->vdev_children) {
1996 		vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
1997 		    "%llu != %llu", (u_longlong_t)svd->vdev_children,
1998 		    (u_longlong_t)dvd->vdev_children);
1999 		return (SET_ERROR(EINVAL));
2000 	}
2001 
2002 	for (uint64_t i = 0; i < svd->vdev_children; i++) {
2003 		int error = vdev_copy_path_strict(svd->vdev_child[i],
2004 		    dvd->vdev_child[i]);
2005 		if (error != 0)
2006 			return (error);
2007 	}
2008 
2009 	if (svd->vdev_ops->vdev_op_leaf)
2010 		vdev_copy_path_impl(svd, dvd);
2011 
2012 	return (0);
2013 }
2014 
2015 static void
2016 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
2017 {
2018 	ASSERT(stvd->vdev_top == stvd);
2019 	ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
2020 
2021 	for (uint64_t i = 0; i < dvd->vdev_children; i++) {
2022 		vdev_copy_path_search(stvd, dvd->vdev_child[i]);
2023 	}
2024 
2025 	if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
2026 		return;
2027 
2028 	/*
2029 	 * The idea here is that while a vdev can shift positions within
2030 	 * a top vdev (when replacing, attaching mirror, etc.) it cannot
2031 	 * step outside of it.
2032 	 */
2033 	vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
2034 
2035 	if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
2036 		return;
2037 
2038 	ASSERT(vd->vdev_ops->vdev_op_leaf);
2039 
2040 	vdev_copy_path_impl(vd, dvd);
2041 }
2042 
2043 /*
2044  * Recursively copy vdev paths from one root vdev to another. Source and
2045  * destination vdev trees may differ in geometry. For each destination leaf
2046  * vdev, search a vdev with the same guid and top vdev id in the source.
2047  * Intended to copy paths from userland config into MOS config.
2048  */
2049 void
2050 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
2051 {
2052 	uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
2053 	ASSERT(srvd->vdev_ops == &vdev_root_ops);
2054 	ASSERT(drvd->vdev_ops == &vdev_root_ops);
2055 
2056 	for (uint64_t i = 0; i < children; i++) {
2057 		vdev_copy_path_search(srvd->vdev_child[i],
2058 		    drvd->vdev_child[i]);
2059 	}
2060 }
2061 
2062 /*
2063  * Close a virtual device.
2064  */
2065 void
2066 vdev_close(vdev_t *vd)
2067 {
2068 	spa_t *spa = vd->vdev_spa;
2069 	vdev_t *pvd = vd->vdev_parent;
2070 
2071 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2072 
2073 	/*
2074 	 * If our parent is reopening, then we are as well, unless we are
2075 	 * going offline.
2076 	 */
2077 	if (pvd != NULL && pvd->vdev_reopening)
2078 		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
2079 
2080 	vd->vdev_ops->vdev_op_close(vd);
2081 
2082 	vdev_cache_purge(vd);
2083 
2084 	/*
2085 	 * We record the previous state before we close it, so that if we are
2086 	 * doing a reopen(), we don't generate FMA ereports if we notice that
2087 	 * it's still faulted.
2088 	 */
2089 	vd->vdev_prevstate = vd->vdev_state;
2090 
2091 	if (vd->vdev_offline)
2092 		vd->vdev_state = VDEV_STATE_OFFLINE;
2093 	else
2094 		vd->vdev_state = VDEV_STATE_CLOSED;
2095 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2096 }
2097 
2098 void
2099 vdev_hold(vdev_t *vd)
2100 {
2101 	spa_t *spa = vd->vdev_spa;
2102 
2103 	ASSERT(spa_is_root(spa));
2104 	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
2105 		return;
2106 
2107 	for (int c = 0; c < vd->vdev_children; c++)
2108 		vdev_hold(vd->vdev_child[c]);
2109 
2110 	if (vd->vdev_ops->vdev_op_leaf)
2111 		vd->vdev_ops->vdev_op_hold(vd);
2112 }
2113 
2114 void
2115 vdev_rele(vdev_t *vd)
2116 {
2117 	spa_t *spa = vd->vdev_spa;
2118 
2119 	ASSERT(spa_is_root(spa));
2120 	for (int c = 0; c < vd->vdev_children; c++)
2121 		vdev_rele(vd->vdev_child[c]);
2122 
2123 	if (vd->vdev_ops->vdev_op_leaf)
2124 		vd->vdev_ops->vdev_op_rele(vd);
2125 }
2126 
2127 /*
2128  * Reopen all interior vdevs and any unopened leaves.  We don't actually
2129  * reopen leaf vdevs which had previously been opened as they might deadlock
2130  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
2131  * If the leaf has never been opened then open it, as usual.
2132  */
2133 void
2134 vdev_reopen(vdev_t *vd)
2135 {
2136 	spa_t *spa = vd->vdev_spa;
2137 
2138 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2139 
2140 	/* set the reopening flag unless we're taking the vdev offline */
2141 	vd->vdev_reopening = !vd->vdev_offline;
2142 	vdev_close(vd);
2143 	(void) vdev_open(vd);
2144 
2145 	/*
2146 	 * Call vdev_validate() here to make sure we have the same device.
2147 	 * Otherwise, a device with an invalid label could be successfully
2148 	 * opened in response to vdev_reopen().
2149 	 */
2150 	if (vd->vdev_aux) {
2151 		(void) vdev_validate_aux(vd);
2152 		if (vdev_readable(vd) && vdev_writeable(vd) &&
2153 		    vd->vdev_aux == &spa->spa_l2cache &&
2154 		    !l2arc_vdev_present(vd))
2155 			l2arc_add_vdev(spa, vd);
2156 	} else {
2157 		(void) vdev_validate(vd);
2158 	}
2159 
2160 	/*
2161 	 * Reassess parent vdev's health.
2162 	 */
2163 	vdev_propagate_state(vd);
2164 }
2165 
2166 int
2167 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
2168 {
2169 	int error;
2170 
2171 	/*
2172 	 * Normally, partial opens (e.g. of a mirror) are allowed.
2173 	 * For a create, however, we want to fail the request if
2174 	 * there are any components we can't open.
2175 	 */
2176 	error = vdev_open(vd);
2177 
2178 	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
2179 		vdev_close(vd);
2180 		return (error ? error : ENXIO);
2181 	}
2182 
2183 	/*
2184 	 * Recursively load DTLs and initialize all labels.
2185 	 */
2186 	if ((error = vdev_dtl_load(vd)) != 0 ||
2187 	    (error = vdev_label_init(vd, txg, isreplacing ?
2188 	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
2189 		vdev_close(vd);
2190 		return (error);
2191 	}
2192 
2193 	return (0);
2194 }
2195 
2196 void
2197 vdev_metaslab_set_size(vdev_t *vd)
2198 {
2199 	uint64_t asize = vd->vdev_asize;
2200 	uint64_t ms_count = asize >> zfs_vdev_default_ms_shift;
2201 	uint64_t ms_shift;
2202 
2203 	/* BEGIN CSTYLED */
2204 	/*
2205 	 * There are two dimensions to the metaslab sizing calculation:
2206 	 * the size of the metaslab and the count of metaslabs per vdev.
2207 	 *
2208 	 * The default values used below are a good balance between memory
2209 	 * usage (larger metaslab size means more memory needed for loaded
2210 	 * metaslabs; more metaslabs means more memory needed for the
2211 	 * metaslab_t structs), metaslab load time (larger metaslabs take
2212 	 * longer to load), and metaslab sync time (more metaslabs means
2213 	 * more time spent syncing all of them).
2214 	 *
2215 	 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs.
2216 	 * The range of the dimensions are as follows:
2217 	 *
2218 	 *	2^29 <= ms_size  <= 2^34
2219 	 *	  16 <= ms_count <= 131,072
2220 	 *
2221 	 * On the lower end of vdev sizes, we aim for metaslabs sizes of
2222 	 * at least 512MB (2^29) to minimize fragmentation effects when
2223 	 * testing with smaller devices.  However, the count constraint
2224 	 * of at least 16 metaslabs will override this minimum size goal.
2225 	 *
2226 	 * On the upper end of vdev sizes, we aim for a maximum metaslab
2227 	 * size of 16GB.  However, we will cap the total count to 2^17
2228 	 * metaslabs to keep our memory footprint in check and let the
2229 	 * metaslab size grow from there if that limit is hit.
2230 	 *
2231 	 * The net effect of applying above constrains is summarized below.
2232 	 *
2233 	 *   vdev size	    metaslab count
2234 	 *  --------------|-----------------
2235 	 *	< 8GB		~16
2236 	 *  8GB   - 100GB	one per 512MB
2237 	 *  100GB - 3TB		~200
2238 	 *  3TB   - 2PB		one per 16GB
2239 	 *	> 2PB		~131,072
2240 	 *  --------------------------------
2241 	 *
2242 	 *  Finally, note that all of the above calculate the initial
2243 	 *  number of metaslabs. Expanding a top-level vdev will result
2244 	 *  in additional metaslabs being allocated making it possible
2245 	 *  to exceed the zfs_vdev_ms_count_limit.
2246 	 */
2247 	/* END CSTYLED */
2248 
2249 	if (ms_count < zfs_vdev_min_ms_count)
2250 		ms_shift = highbit64(asize / zfs_vdev_min_ms_count);
2251 	else if (ms_count > zfs_vdev_default_ms_count)
2252 		ms_shift = highbit64(asize / zfs_vdev_default_ms_count);
2253 	else
2254 		ms_shift = zfs_vdev_default_ms_shift;
2255 
2256 	if (ms_shift < SPA_MAXBLOCKSHIFT) {
2257 		ms_shift = SPA_MAXBLOCKSHIFT;
2258 	} else if (ms_shift > zfs_vdev_max_ms_shift) {
2259 		ms_shift = zfs_vdev_max_ms_shift;
2260 		/* cap the total count to constrain memory footprint */
2261 		if ((asize >> ms_shift) > zfs_vdev_ms_count_limit)
2262 			ms_shift = highbit64(asize / zfs_vdev_ms_count_limit);
2263 	}
2264 
2265 	vd->vdev_ms_shift = ms_shift;
2266 	ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT);
2267 }
2268 
2269 void
2270 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
2271 {
2272 	ASSERT(vd == vd->vdev_top);
2273 	/* indirect vdevs don't have metaslabs or dtls */
2274 	ASSERT(vdev_is_concrete(vd) || flags == 0);
2275 	ASSERT(ISP2(flags));
2276 	ASSERT(spa_writeable(vd->vdev_spa));
2277 
2278 	if (flags & VDD_METASLAB)
2279 		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
2280 
2281 	if (flags & VDD_DTL)
2282 		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
2283 
2284 	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
2285 }
2286 
2287 void
2288 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
2289 {
2290 	for (int c = 0; c < vd->vdev_children; c++)
2291 		vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
2292 
2293 	if (vd->vdev_ops->vdev_op_leaf)
2294 		vdev_dirty(vd->vdev_top, flags, vd, txg);
2295 }
2296 
2297 /*
2298  * DTLs.
2299  *
2300  * A vdev's DTL (dirty time log) is the set of transaction groups for which
2301  * the vdev has less than perfect replication.  There are four kinds of DTL:
2302  *
2303  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
2304  *
2305  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
2306  *
2307  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
2308  *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
2309  *	txgs that was scrubbed.
2310  *
2311  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
2312  *	persistent errors or just some device being offline.
2313  *	Unlike the other three, the DTL_OUTAGE map is not generally
2314  *	maintained; it's only computed when needed, typically to
2315  *	determine whether a device can be detached.
2316  *
2317  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
2318  * either has the data or it doesn't.
2319  *
2320  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
2321  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
2322  * if any child is less than fully replicated, then so is its parent.
2323  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
2324  * comprising only those txgs which appear in 'maxfaults' or more children;
2325  * those are the txgs we don't have enough replication to read.  For example,
2326  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
2327  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
2328  * two child DTL_MISSING maps.
2329  *
2330  * It should be clear from the above that to compute the DTLs and outage maps
2331  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
2332  * Therefore, that is all we keep on disk.  When loading the pool, or after
2333  * a configuration change, we generate all other DTLs from first principles.
2334  */
2335 void
2336 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2337 {
2338 	range_tree_t *rt = vd->vdev_dtl[t];
2339 
2340 	ASSERT(t < DTL_TYPES);
2341 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2342 	ASSERT(spa_writeable(vd->vdev_spa));
2343 
2344 	mutex_enter(&vd->vdev_dtl_lock);
2345 	if (!range_tree_contains(rt, txg, size))
2346 		range_tree_add(rt, txg, size);
2347 	mutex_exit(&vd->vdev_dtl_lock);
2348 }
2349 
2350 boolean_t
2351 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2352 {
2353 	range_tree_t *rt = vd->vdev_dtl[t];
2354 	boolean_t dirty = B_FALSE;
2355 
2356 	ASSERT(t < DTL_TYPES);
2357 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2358 
2359 	/*
2360 	 * While we are loading the pool, the DTLs have not been loaded yet.
2361 	 * Ignore the DTLs and try all devices.  This avoids a recursive
2362 	 * mutex enter on the vdev_dtl_lock, and also makes us try hard
2363 	 * when loading the pool (relying on the checksum to ensure that
2364 	 * we get the right data -- note that we while loading, we are
2365 	 * only reading the MOS, which is always checksummed).
2366 	 */
2367 	if (vd->vdev_spa->spa_load_state != SPA_LOAD_NONE)
2368 		return (B_FALSE);
2369 
2370 	mutex_enter(&vd->vdev_dtl_lock);
2371 	if (!range_tree_is_empty(rt))
2372 		dirty = range_tree_contains(rt, txg, size);
2373 	mutex_exit(&vd->vdev_dtl_lock);
2374 
2375 	return (dirty);
2376 }
2377 
2378 boolean_t
2379 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
2380 {
2381 	range_tree_t *rt = vd->vdev_dtl[t];
2382 	boolean_t empty;
2383 
2384 	mutex_enter(&vd->vdev_dtl_lock);
2385 	empty = range_tree_is_empty(rt);
2386 	mutex_exit(&vd->vdev_dtl_lock);
2387 
2388 	return (empty);
2389 }
2390 
2391 /*
2392  * Returns B_TRUE if vdev determines offset needs to be resilvered.
2393  */
2394 boolean_t
2395 vdev_dtl_need_resilver(vdev_t *vd, uint64_t offset, size_t psize)
2396 {
2397 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2398 
2399 	if (vd->vdev_ops->vdev_op_need_resilver == NULL ||
2400 	    vd->vdev_ops->vdev_op_leaf)
2401 		return (B_TRUE);
2402 
2403 	return (vd->vdev_ops->vdev_op_need_resilver(vd, offset, psize));
2404 }
2405 
2406 /*
2407  * Returns the lowest txg in the DTL range.
2408  */
2409 static uint64_t
2410 vdev_dtl_min(vdev_t *vd)
2411 {
2412 	range_seg_t *rs;
2413 
2414 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2415 	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2416 	ASSERT0(vd->vdev_children);
2417 
2418 	rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
2419 	return (rs->rs_start - 1);
2420 }
2421 
2422 /*
2423  * Returns the highest txg in the DTL.
2424  */
2425 static uint64_t
2426 vdev_dtl_max(vdev_t *vd)
2427 {
2428 	range_seg_t *rs;
2429 
2430 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2431 	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2432 	ASSERT0(vd->vdev_children);
2433 
2434 	rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
2435 	return (rs->rs_end);
2436 }
2437 
2438 /*
2439  * Determine if a resilvering vdev should remove any DTL entries from
2440  * its range. If the vdev was resilvering for the entire duration of the
2441  * scan then it should excise that range from its DTLs. Otherwise, this
2442  * vdev is considered partially resilvered and should leave its DTL
2443  * entries intact. The comment in vdev_dtl_reassess() describes how we
2444  * excise the DTLs.
2445  */
2446 static boolean_t
2447 vdev_dtl_should_excise(vdev_t *vd)
2448 {
2449 	spa_t *spa = vd->vdev_spa;
2450 	dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2451 
2452 	ASSERT0(scn->scn_phys.scn_errors);
2453 	ASSERT0(vd->vdev_children);
2454 
2455 	if (vd->vdev_state < VDEV_STATE_DEGRADED)
2456 		return (B_FALSE);
2457 
2458 	if (vd->vdev_resilver_deferred)
2459 		return (B_FALSE);
2460 
2461 	if (vd->vdev_resilver_txg == 0 ||
2462 	    range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]))
2463 		return (B_TRUE);
2464 
2465 	/*
2466 	 * When a resilver is initiated the scan will assign the scn_max_txg
2467 	 * value to the highest txg value that exists in all DTLs. If this
2468 	 * device's max DTL is not part of this scan (i.e. it is not in
2469 	 * the range (scn_min_txg, scn_max_txg] then it is not eligible
2470 	 * for excision.
2471 	 */
2472 	if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
2473 		ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
2474 		ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
2475 		ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
2476 		return (B_TRUE);
2477 	}
2478 	return (B_FALSE);
2479 }
2480 
2481 /*
2482  * Reassess DTLs after a config change or scrub completion.
2483  */
2484 void
2485 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
2486 {
2487 	spa_t *spa = vd->vdev_spa;
2488 	avl_tree_t reftree;
2489 	int minref;
2490 
2491 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2492 
2493 	for (int c = 0; c < vd->vdev_children; c++)
2494 		vdev_dtl_reassess(vd->vdev_child[c], txg,
2495 		    scrub_txg, scrub_done);
2496 
2497 	if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
2498 		return;
2499 
2500 	if (vd->vdev_ops->vdev_op_leaf) {
2501 		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2502 
2503 		mutex_enter(&vd->vdev_dtl_lock);
2504 
2505 		/*
2506 		 * If we've completed a scan cleanly then determine
2507 		 * if this vdev should remove any DTLs. We only want to
2508 		 * excise regions on vdevs that were available during
2509 		 * the entire duration of this scan.
2510 		 */
2511 		if (scrub_txg != 0 &&
2512 		    (spa->spa_scrub_started ||
2513 		    (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
2514 		    vdev_dtl_should_excise(vd)) {
2515 			/*
2516 			 * We completed a scrub up to scrub_txg.  If we
2517 			 * did it without rebooting, then the scrub dtl
2518 			 * will be valid, so excise the old region and
2519 			 * fold in the scrub dtl.  Otherwise, leave the
2520 			 * dtl as-is if there was an error.
2521 			 *
2522 			 * There's little trick here: to excise the beginning
2523 			 * of the DTL_MISSING map, we put it into a reference
2524 			 * tree and then add a segment with refcnt -1 that
2525 			 * covers the range [0, scrub_txg).  This means
2526 			 * that each txg in that range has refcnt -1 or 0.
2527 			 * We then add DTL_SCRUB with a refcnt of 2, so that
2528 			 * entries in the range [0, scrub_txg) will have a
2529 			 * positive refcnt -- either 1 or 2.  We then convert
2530 			 * the reference tree into the new DTL_MISSING map.
2531 			 */
2532 			space_reftree_create(&reftree);
2533 			space_reftree_add_map(&reftree,
2534 			    vd->vdev_dtl[DTL_MISSING], 1);
2535 			space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
2536 			space_reftree_add_map(&reftree,
2537 			    vd->vdev_dtl[DTL_SCRUB], 2);
2538 			space_reftree_generate_map(&reftree,
2539 			    vd->vdev_dtl[DTL_MISSING], 1);
2540 			space_reftree_destroy(&reftree);
2541 		}
2542 		range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
2543 		range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2544 		    range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
2545 		if (scrub_done)
2546 			range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
2547 		range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
2548 		if (!vdev_readable(vd))
2549 			range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
2550 		else
2551 			range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2552 			    range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
2553 
2554 		/*
2555 		 * If the vdev was resilvering and no longer has any
2556 		 * DTLs then reset its resilvering flag.
2557 		 */
2558 		if (vd->vdev_resilver_txg != 0 &&
2559 		    range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
2560 		    range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE]))
2561 			vd->vdev_resilver_txg = 0;
2562 
2563 		mutex_exit(&vd->vdev_dtl_lock);
2564 
2565 		if (txg != 0)
2566 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
2567 		return;
2568 	}
2569 
2570 	mutex_enter(&vd->vdev_dtl_lock);
2571 	for (int t = 0; t < DTL_TYPES; t++) {
2572 		/* account for child's outage in parent's missing map */
2573 		int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
2574 		if (t == DTL_SCRUB)
2575 			continue;			/* leaf vdevs only */
2576 		if (t == DTL_PARTIAL)
2577 			minref = 1;			/* i.e. non-zero */
2578 		else if (vd->vdev_nparity != 0)
2579 			minref = vd->vdev_nparity + 1;	/* RAID-Z */
2580 		else
2581 			minref = vd->vdev_children;	/* any kind of mirror */
2582 		space_reftree_create(&reftree);
2583 		for (int c = 0; c < vd->vdev_children; c++) {
2584 			vdev_t *cvd = vd->vdev_child[c];
2585 			mutex_enter(&cvd->vdev_dtl_lock);
2586 			space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
2587 			mutex_exit(&cvd->vdev_dtl_lock);
2588 		}
2589 		space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
2590 		space_reftree_destroy(&reftree);
2591 	}
2592 	mutex_exit(&vd->vdev_dtl_lock);
2593 }
2594 
2595 int
2596 vdev_dtl_load(vdev_t *vd)
2597 {
2598 	spa_t *spa = vd->vdev_spa;
2599 	objset_t *mos = spa->spa_meta_objset;
2600 	int error = 0;
2601 
2602 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2603 		ASSERT(vdev_is_concrete(vd));
2604 
2605 		error = space_map_open(&vd->vdev_dtl_sm, mos,
2606 		    vd->vdev_dtl_object, 0, -1ULL, 0);
2607 		if (error)
2608 			return (error);
2609 		ASSERT(vd->vdev_dtl_sm != NULL);
2610 
2611 		mutex_enter(&vd->vdev_dtl_lock);
2612 		error = space_map_load(vd->vdev_dtl_sm,
2613 		    vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2614 		mutex_exit(&vd->vdev_dtl_lock);
2615 
2616 		return (error);
2617 	}
2618 
2619 	for (int c = 0; c < vd->vdev_children; c++) {
2620 		error = vdev_dtl_load(vd->vdev_child[c]);
2621 		if (error != 0)
2622 			break;
2623 	}
2624 
2625 	return (error);
2626 }
2627 
2628 static void
2629 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx)
2630 {
2631 	spa_t *spa = vd->vdev_spa;
2632 	objset_t *mos = spa->spa_meta_objset;
2633 	vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
2634 	const char *string;
2635 
2636 	ASSERT(alloc_bias != VDEV_BIAS_NONE);
2637 
2638 	string =
2639 	    (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG :
2640 	    (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL :
2641 	    (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL;
2642 
2643 	ASSERT(string != NULL);
2644 	VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS,
2645 	    1, strlen(string) + 1, string, tx));
2646 
2647 	if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) {
2648 		spa_activate_allocation_classes(spa, tx);
2649 	}
2650 }
2651 
2652 void
2653 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
2654 {
2655 	spa_t *spa = vd->vdev_spa;
2656 
2657 	VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
2658 	VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2659 	    zapobj, tx));
2660 }
2661 
2662 uint64_t
2663 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
2664 {
2665 	spa_t *spa = vd->vdev_spa;
2666 	uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
2667 	    DMU_OT_NONE, 0, tx);
2668 
2669 	ASSERT(zap != 0);
2670 	VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2671 	    zap, tx));
2672 
2673 	return (zap);
2674 }
2675 
2676 void
2677 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
2678 {
2679 	if (vd->vdev_ops != &vdev_hole_ops &&
2680 	    vd->vdev_ops != &vdev_missing_ops &&
2681 	    vd->vdev_ops != &vdev_root_ops &&
2682 	    !vd->vdev_top->vdev_removing) {
2683 		if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
2684 			vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
2685 		}
2686 		if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
2687 			vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
2688 			if (vd->vdev_alloc_bias != VDEV_BIAS_NONE)
2689 				vdev_zap_allocation_data(vd, tx);
2690 		}
2691 	}
2692 
2693 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
2694 		vdev_construct_zaps(vd->vdev_child[i], tx);
2695 	}
2696 }
2697 
2698 void
2699 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2700 {
2701 	spa_t *spa = vd->vdev_spa;
2702 	range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2703 	objset_t *mos = spa->spa_meta_objset;
2704 	range_tree_t *rtsync;
2705 	dmu_tx_t *tx;
2706 	uint64_t object = space_map_object(vd->vdev_dtl_sm);
2707 
2708 	ASSERT(vdev_is_concrete(vd));
2709 	ASSERT(vd->vdev_ops->vdev_op_leaf);
2710 
2711 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2712 
2713 	if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2714 		mutex_enter(&vd->vdev_dtl_lock);
2715 		space_map_free(vd->vdev_dtl_sm, tx);
2716 		space_map_close(vd->vdev_dtl_sm);
2717 		vd->vdev_dtl_sm = NULL;
2718 		mutex_exit(&vd->vdev_dtl_lock);
2719 
2720 		/*
2721 		 * We only destroy the leaf ZAP for detached leaves or for
2722 		 * removed log devices. Removed data devices handle leaf ZAP
2723 		 * cleanup later, once cancellation is no longer possible.
2724 		 */
2725 		if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
2726 		    vd->vdev_top->vdev_islog)) {
2727 			vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
2728 			vd->vdev_leaf_zap = 0;
2729 		}
2730 
2731 		dmu_tx_commit(tx);
2732 		return;
2733 	}
2734 
2735 	if (vd->vdev_dtl_sm == NULL) {
2736 		uint64_t new_object;
2737 
2738 		new_object = space_map_alloc(mos, vdev_dtl_sm_blksz, tx);
2739 		VERIFY3U(new_object, !=, 0);
2740 
2741 		VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2742 		    0, -1ULL, 0));
2743 		ASSERT(vd->vdev_dtl_sm != NULL);
2744 	}
2745 
2746 	rtsync = range_tree_create(NULL, NULL);
2747 
2748 	mutex_enter(&vd->vdev_dtl_lock);
2749 	range_tree_walk(rt, range_tree_add, rtsync);
2750 	mutex_exit(&vd->vdev_dtl_lock);
2751 
2752 	space_map_truncate(vd->vdev_dtl_sm, vdev_dtl_sm_blksz, tx);
2753 	space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx);
2754 	range_tree_vacate(rtsync, NULL, NULL);
2755 
2756 	range_tree_destroy(rtsync);
2757 
2758 	/*
2759 	 * If the object for the space map has changed then dirty
2760 	 * the top level so that we update the config.
2761 	 */
2762 	if (object != space_map_object(vd->vdev_dtl_sm)) {
2763 		vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
2764 		    "new object %llu", (u_longlong_t)txg, spa_name(spa),
2765 		    (u_longlong_t)object,
2766 		    (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
2767 		vdev_config_dirty(vd->vdev_top);
2768 	}
2769 
2770 	dmu_tx_commit(tx);
2771 }
2772 
2773 /*
2774  * Determine whether the specified vdev can be offlined/detached/removed
2775  * without losing data.
2776  */
2777 boolean_t
2778 vdev_dtl_required(vdev_t *vd)
2779 {
2780 	spa_t *spa = vd->vdev_spa;
2781 	vdev_t *tvd = vd->vdev_top;
2782 	uint8_t cant_read = vd->vdev_cant_read;
2783 	boolean_t required;
2784 
2785 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2786 
2787 	if (vd == spa->spa_root_vdev || vd == tvd)
2788 		return (B_TRUE);
2789 
2790 	/*
2791 	 * Temporarily mark the device as unreadable, and then determine
2792 	 * whether this results in any DTL outages in the top-level vdev.
2793 	 * If not, we can safely offline/detach/remove the device.
2794 	 */
2795 	vd->vdev_cant_read = B_TRUE;
2796 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2797 	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2798 	vd->vdev_cant_read = cant_read;
2799 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2800 
2801 	if (!required && zio_injection_enabled)
2802 		required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2803 
2804 	return (required);
2805 }
2806 
2807 /*
2808  * Determine if resilver is needed, and if so the txg range.
2809  */
2810 boolean_t
2811 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2812 {
2813 	boolean_t needed = B_FALSE;
2814 	uint64_t thismin = UINT64_MAX;
2815 	uint64_t thismax = 0;
2816 
2817 	if (vd->vdev_children == 0) {
2818 		mutex_enter(&vd->vdev_dtl_lock);
2819 		if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
2820 		    vdev_writeable(vd)) {
2821 
2822 			thismin = vdev_dtl_min(vd);
2823 			thismax = vdev_dtl_max(vd);
2824 			needed = B_TRUE;
2825 		}
2826 		mutex_exit(&vd->vdev_dtl_lock);
2827 	} else {
2828 		for (int c = 0; c < vd->vdev_children; c++) {
2829 			vdev_t *cvd = vd->vdev_child[c];
2830 			uint64_t cmin, cmax;
2831 
2832 			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2833 				thismin = MIN(thismin, cmin);
2834 				thismax = MAX(thismax, cmax);
2835 				needed = B_TRUE;
2836 			}
2837 		}
2838 	}
2839 
2840 	if (needed && minp) {
2841 		*minp = thismin;
2842 		*maxp = thismax;
2843 	}
2844 	return (needed);
2845 }
2846 
2847 /*
2848  * Gets the checkpoint space map object from the vdev's ZAP.
2849  * Returns the spacemap object, or 0 if it wasn't in the ZAP
2850  * or the ZAP doesn't exist yet.
2851  */
2852 int
2853 vdev_checkpoint_sm_object(vdev_t *vd)
2854 {
2855 	ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
2856 	if (vd->vdev_top_zap == 0) {
2857 		return (0);
2858 	}
2859 
2860 	uint64_t sm_obj = 0;
2861 	int err = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap,
2862 	    VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, &sm_obj);
2863 
2864 	ASSERT(err == 0 || err == ENOENT);
2865 
2866 	return (sm_obj);
2867 }
2868 
2869 int
2870 vdev_load(vdev_t *vd)
2871 {
2872 	int error = 0;
2873 	/*
2874 	 * Recursively load all children.
2875 	 */
2876 	for (int c = 0; c < vd->vdev_children; c++) {
2877 		error = vdev_load(vd->vdev_child[c]);
2878 		if (error != 0) {
2879 			return (error);
2880 		}
2881 	}
2882 
2883 	vdev_set_deflate_ratio(vd);
2884 
2885 	/*
2886 	 * On spa_load path, grab the allocation bias from our zap
2887 	 */
2888 	if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
2889 		spa_t *spa = vd->vdev_spa;
2890 		char bias_str[64];
2891 
2892 		if (zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
2893 		    VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str),
2894 		    bias_str) == 0) {
2895 			ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE);
2896 			vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str);
2897 		}
2898 	}
2899 
2900 	/*
2901 	 * If this is a top-level vdev, initialize its metaslabs.
2902 	 */
2903 	if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
2904 		vdev_metaslab_group_create(vd);
2905 
2906 		if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
2907 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2908 			    VDEV_AUX_CORRUPT_DATA);
2909 			vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
2910 			    "asize=%llu", (u_longlong_t)vd->vdev_ashift,
2911 			    (u_longlong_t)vd->vdev_asize);
2912 			return (SET_ERROR(ENXIO));
2913 		}
2914 
2915 		error = vdev_metaslab_init(vd, 0);
2916 		if (error != 0) {
2917 			vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
2918 			    "[error=%d]", error);
2919 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2920 			    VDEV_AUX_CORRUPT_DATA);
2921 			return (error);
2922 		}
2923 
2924 		uint64_t checkpoint_sm_obj = vdev_checkpoint_sm_object(vd);
2925 		if (checkpoint_sm_obj != 0) {
2926 			objset_t *mos = spa_meta_objset(vd->vdev_spa);
2927 			ASSERT(vd->vdev_asize != 0);
2928 			ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL);
2929 
2930 			error = space_map_open(&vd->vdev_checkpoint_sm,
2931 			    mos, checkpoint_sm_obj, 0, vd->vdev_asize,
2932 			    vd->vdev_ashift);
2933 			if (error != 0) {
2934 				vdev_dbgmsg(vd, "vdev_load: space_map_open "
2935 				    "failed for checkpoint spacemap (obj %llu) "
2936 				    "[error=%d]",
2937 				    (u_longlong_t)checkpoint_sm_obj, error);
2938 				return (error);
2939 			}
2940 			ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
2941 
2942 			/*
2943 			 * Since the checkpoint_sm contains free entries
2944 			 * exclusively we can use space_map_allocated() to
2945 			 * indicate the cumulative checkpointed space that
2946 			 * has been freed.
2947 			 */
2948 			vd->vdev_stat.vs_checkpoint_space =
2949 			    -space_map_allocated(vd->vdev_checkpoint_sm);
2950 			vd->vdev_spa->spa_checkpoint_info.sci_dspace +=
2951 			    vd->vdev_stat.vs_checkpoint_space;
2952 		}
2953 	}
2954 
2955 	/*
2956 	 * If this is a leaf vdev, load its DTL.
2957 	 */
2958 	if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
2959 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2960 		    VDEV_AUX_CORRUPT_DATA);
2961 		vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
2962 		    "[error=%d]", error);
2963 		return (error);
2964 	}
2965 
2966 	uint64_t obsolete_sm_object = vdev_obsolete_sm_object(vd);
2967 	if (obsolete_sm_object != 0) {
2968 		objset_t *mos = vd->vdev_spa->spa_meta_objset;
2969 		ASSERT(vd->vdev_asize != 0);
2970 		ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
2971 
2972 		if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
2973 		    obsolete_sm_object, 0, vd->vdev_asize, 0))) {
2974 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2975 			    VDEV_AUX_CORRUPT_DATA);
2976 			vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
2977 			    "obsolete spacemap (obj %llu) [error=%d]",
2978 			    (u_longlong_t)obsolete_sm_object, error);
2979 			return (error);
2980 		}
2981 	}
2982 
2983 	return (0);
2984 }
2985 
2986 /*
2987  * The special vdev case is used for hot spares and l2cache devices.  Its
2988  * sole purpose it to set the vdev state for the associated vdev.  To do this,
2989  * we make sure that we can open the underlying device, then try to read the
2990  * label, and make sure that the label is sane and that it hasn't been
2991  * repurposed to another pool.
2992  */
2993 int
2994 vdev_validate_aux(vdev_t *vd)
2995 {
2996 	nvlist_t *label;
2997 	uint64_t guid, version;
2998 	uint64_t state;
2999 
3000 	if (!vdev_readable(vd))
3001 		return (0);
3002 
3003 	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
3004 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3005 		    VDEV_AUX_CORRUPT_DATA);
3006 		return (-1);
3007 	}
3008 
3009 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
3010 	    !SPA_VERSION_IS_SUPPORTED(version) ||
3011 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
3012 	    guid != vd->vdev_guid ||
3013 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
3014 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3015 		    VDEV_AUX_CORRUPT_DATA);
3016 		nvlist_free(label);
3017 		return (-1);
3018 	}
3019 
3020 	/*
3021 	 * We don't actually check the pool state here.  If it's in fact in
3022 	 * use by another pool, we update this fact on the fly when requested.
3023 	 */
3024 	nvlist_free(label);
3025 	return (0);
3026 }
3027 
3028 /*
3029  * Free the objects used to store this vdev's spacemaps, and the array
3030  * that points to them.
3031  */
3032 void
3033 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
3034 {
3035 	if (vd->vdev_ms_array == 0)
3036 		return;
3037 
3038 	objset_t *mos = vd->vdev_spa->spa_meta_objset;
3039 	uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
3040 	size_t array_bytes = array_count * sizeof (uint64_t);
3041 	uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
3042 	VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
3043 	    array_bytes, smobj_array, 0));
3044 
3045 	for (uint64_t i = 0; i < array_count; i++) {
3046 		uint64_t smobj = smobj_array[i];
3047 		if (smobj == 0)
3048 			continue;
3049 
3050 		space_map_free_obj(mos, smobj, tx);
3051 	}
3052 
3053 	kmem_free(smobj_array, array_bytes);
3054 	VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
3055 	vd->vdev_ms_array = 0;
3056 }
3057 
3058 static void
3059 vdev_remove_empty_log(vdev_t *vd, uint64_t txg)
3060 {
3061 	spa_t *spa = vd->vdev_spa;
3062 
3063 	ASSERT(vd->vdev_islog);
3064 	ASSERT(vd == vd->vdev_top);
3065 	ASSERT3U(txg, ==, spa_syncing_txg(spa));
3066 
3067 	dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
3068 
3069 	vdev_destroy_spacemaps(vd, tx);
3070 	if (vd->vdev_top_zap != 0) {
3071 		vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
3072 		vd->vdev_top_zap = 0;
3073 	}
3074 
3075 	dmu_tx_commit(tx);
3076 }
3077 
3078 void
3079 vdev_sync_done(vdev_t *vd, uint64_t txg)
3080 {
3081 	metaslab_t *msp;
3082 	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
3083 
3084 	ASSERT(vdev_is_concrete(vd));
3085 
3086 	while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
3087 	    != NULL)
3088 		metaslab_sync_done(msp, txg);
3089 
3090 	if (reassess)
3091 		metaslab_sync_reassess(vd->vdev_mg);
3092 }
3093 
3094 void
3095 vdev_sync(vdev_t *vd, uint64_t txg)
3096 {
3097 	spa_t *spa = vd->vdev_spa;
3098 	vdev_t *lvd;
3099 	metaslab_t *msp;
3100 
3101 	ASSERT3U(txg, ==, spa->spa_syncing_txg);
3102 	dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3103 	if (range_tree_space(vd->vdev_obsolete_segments) > 0) {
3104 		ASSERT(vd->vdev_removing ||
3105 		    vd->vdev_ops == &vdev_indirect_ops);
3106 
3107 		vdev_indirect_sync_obsolete(vd, tx);
3108 
3109 		/*
3110 		 * If the vdev is indirect, it can't have dirty
3111 		 * metaslabs or DTLs.
3112 		 */
3113 		if (vd->vdev_ops == &vdev_indirect_ops) {
3114 			ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
3115 			ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
3116 			dmu_tx_commit(tx);
3117 			return;
3118 		}
3119 	}
3120 
3121 	ASSERT(vdev_is_concrete(vd));
3122 
3123 	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
3124 	    !vd->vdev_removing) {
3125 		ASSERT(vd == vd->vdev_top);
3126 		ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
3127 		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
3128 		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
3129 		ASSERT(vd->vdev_ms_array != 0);
3130 		vdev_config_dirty(vd);
3131 	}
3132 
3133 	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
3134 		metaslab_sync(msp, txg);
3135 		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
3136 	}
3137 
3138 	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
3139 		vdev_dtl_sync(lvd, txg);
3140 
3141 	/*
3142 	 * If this is an empty log device being removed, destroy the
3143 	 * metadata associated with it.
3144 	 */
3145 	if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
3146 		vdev_remove_empty_log(vd, txg);
3147 
3148 	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
3149 	dmu_tx_commit(tx);
3150 }
3151 
3152 uint64_t
3153 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
3154 {
3155 	return (vd->vdev_ops->vdev_op_asize(vd, psize));
3156 }
3157 
3158 /*
3159  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
3160  * not be opened, and no I/O is attempted.
3161  */
3162 int
3163 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
3164 {
3165 	vdev_t *vd, *tvd;
3166 
3167 	spa_vdev_state_enter(spa, SCL_NONE);
3168 
3169 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3170 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
3171 
3172 	if (!vd->vdev_ops->vdev_op_leaf)
3173 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3174 
3175 	tvd = vd->vdev_top;
3176 
3177 	/*
3178 	 * We don't directly use the aux state here, but if we do a
3179 	 * vdev_reopen(), we need this value to be present to remember why we
3180 	 * were faulted.
3181 	 */
3182 	vd->vdev_label_aux = aux;
3183 
3184 	/*
3185 	 * Faulted state takes precedence over degraded.
3186 	 */
3187 	vd->vdev_delayed_close = B_FALSE;
3188 	vd->vdev_faulted = 1ULL;
3189 	vd->vdev_degraded = 0ULL;
3190 	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
3191 
3192 	/*
3193 	 * If this device has the only valid copy of the data, then
3194 	 * back off and simply mark the vdev as degraded instead.
3195 	 */
3196 	if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
3197 		vd->vdev_degraded = 1ULL;
3198 		vd->vdev_faulted = 0ULL;
3199 
3200 		/*
3201 		 * If we reopen the device and it's not dead, only then do we
3202 		 * mark it degraded.
3203 		 */
3204 		vdev_reopen(tvd);
3205 
3206 		if (vdev_readable(vd))
3207 			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
3208 	}
3209 
3210 	return (spa_vdev_state_exit(spa, vd, 0));
3211 }
3212 
3213 /*
3214  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
3215  * user that something is wrong.  The vdev continues to operate as normal as far
3216  * as I/O is concerned.
3217  */
3218 int
3219 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
3220 {
3221 	vdev_t *vd;
3222 
3223 	spa_vdev_state_enter(spa, SCL_NONE);
3224 
3225 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3226 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
3227 
3228 	if (!vd->vdev_ops->vdev_op_leaf)
3229 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3230 
3231 	/*
3232 	 * If the vdev is already faulted, then don't do anything.
3233 	 */
3234 	if (vd->vdev_faulted || vd->vdev_degraded)
3235 		return (spa_vdev_state_exit(spa, NULL, 0));
3236 
3237 	vd->vdev_degraded = 1ULL;
3238 	if (!vdev_is_dead(vd))
3239 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
3240 		    aux);
3241 
3242 	return (spa_vdev_state_exit(spa, vd, 0));
3243 }
3244 
3245 /*
3246  * Online the given vdev.
3247  *
3248  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
3249  * spare device should be detached when the device finishes resilvering.
3250  * Second, the online should be treated like a 'test' online case, so no FMA
3251  * events are generated if the device fails to open.
3252  */
3253 int
3254 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
3255 {
3256 	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
3257 	boolean_t wasoffline;
3258 	vdev_state_t oldstate;
3259 
3260 	spa_vdev_state_enter(spa, SCL_NONE);
3261 
3262 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3263 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
3264 
3265 	if (!vd->vdev_ops->vdev_op_leaf)
3266 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3267 
3268 	wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
3269 	oldstate = vd->vdev_state;
3270 
3271 	tvd = vd->vdev_top;
3272 	vd->vdev_offline = B_FALSE;
3273 	vd->vdev_tmpoffline = B_FALSE;
3274 	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
3275 	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
3276 
3277 	/* XXX - L2ARC 1.0 does not support expansion */
3278 	if (!vd->vdev_aux) {
3279 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3280 			pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
3281 	}
3282 
3283 	vdev_reopen(tvd);
3284 	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
3285 
3286 	if (!vd->vdev_aux) {
3287 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3288 			pvd->vdev_expanding = B_FALSE;
3289 	}
3290 
3291 	if (newstate)
3292 		*newstate = vd->vdev_state;
3293 	if ((flags & ZFS_ONLINE_UNSPARE) &&
3294 	    !vdev_is_dead(vd) && vd->vdev_parent &&
3295 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3296 	    vd->vdev_parent->vdev_child[0] == vd)
3297 		vd->vdev_unspare = B_TRUE;
3298 
3299 	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
3300 
3301 		/* XXX - L2ARC 1.0 does not support expansion */
3302 		if (vd->vdev_aux)
3303 			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
3304 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3305 	}
3306 
3307 	/* Restart initializing if necessary */
3308 	mutex_enter(&vd->vdev_initialize_lock);
3309 	if (vdev_writeable(vd) &&
3310 	    vd->vdev_initialize_thread == NULL &&
3311 	    vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) {
3312 		(void) vdev_initialize(vd);
3313 	}
3314 	mutex_exit(&vd->vdev_initialize_lock);
3315 
3316 	if (wasoffline ||
3317 	    (oldstate < VDEV_STATE_DEGRADED &&
3318 	    vd->vdev_state >= VDEV_STATE_DEGRADED))
3319 		spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
3320 
3321 	return (spa_vdev_state_exit(spa, vd, 0));
3322 }
3323 
3324 static int
3325 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
3326 {
3327 	vdev_t *vd, *tvd;
3328 	int error = 0;
3329 	uint64_t generation;
3330 	metaslab_group_t *mg;
3331 
3332 top:
3333 	spa_vdev_state_enter(spa, SCL_ALLOC);
3334 
3335 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3336 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
3337 
3338 	if (!vd->vdev_ops->vdev_op_leaf)
3339 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3340 
3341 	tvd = vd->vdev_top;
3342 	mg = tvd->vdev_mg;
3343 	generation = spa->spa_config_generation + 1;
3344 
3345 	/*
3346 	 * If the device isn't already offline, try to offline it.
3347 	 */
3348 	if (!vd->vdev_offline) {
3349 		/*
3350 		 * If this device has the only valid copy of some data,
3351 		 * don't allow it to be offlined. Log devices are always
3352 		 * expendable.
3353 		 */
3354 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
3355 		    vdev_dtl_required(vd))
3356 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
3357 
3358 		/*
3359 		 * If the top-level is a slog and it has had allocations
3360 		 * then proceed.  We check that the vdev's metaslab group
3361 		 * is not NULL since it's possible that we may have just
3362 		 * added this vdev but not yet initialized its metaslabs.
3363 		 */
3364 		if (tvd->vdev_islog && mg != NULL) {
3365 			/*
3366 			 * Prevent any future allocations.
3367 			 */
3368 			metaslab_group_passivate(mg);
3369 			(void) spa_vdev_state_exit(spa, vd, 0);
3370 
3371 			error = spa_reset_logs(spa);
3372 
3373 			/*
3374 			 * If the log device was successfully reset but has
3375 			 * checkpointed data, do not offline it.
3376 			 */
3377 			if (error == 0 &&
3378 			    tvd->vdev_checkpoint_sm != NULL) {
3379 				error = ZFS_ERR_CHECKPOINT_EXISTS;
3380 			}
3381 
3382 			spa_vdev_state_enter(spa, SCL_ALLOC);
3383 
3384 			/*
3385 			 * Check to see if the config has changed.
3386 			 */
3387 			if (error || generation != spa->spa_config_generation) {
3388 				metaslab_group_activate(mg);
3389 				if (error)
3390 					return (spa_vdev_state_exit(spa,
3391 					    vd, error));
3392 				(void) spa_vdev_state_exit(spa, vd, 0);
3393 				goto top;
3394 			}
3395 			ASSERT0(tvd->vdev_stat.vs_alloc);
3396 		}
3397 
3398 		/*
3399 		 * Offline this device and reopen its top-level vdev.
3400 		 * If the top-level vdev is a log device then just offline
3401 		 * it. Otherwise, if this action results in the top-level
3402 		 * vdev becoming unusable, undo it and fail the request.
3403 		 */
3404 		vd->vdev_offline = B_TRUE;
3405 		vdev_reopen(tvd);
3406 
3407 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
3408 		    vdev_is_dead(tvd)) {
3409 			vd->vdev_offline = B_FALSE;
3410 			vdev_reopen(tvd);
3411 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
3412 		}
3413 
3414 		/*
3415 		 * Add the device back into the metaslab rotor so that
3416 		 * once we online the device it's open for business.
3417 		 */
3418 		if (tvd->vdev_islog && mg != NULL)
3419 			metaslab_group_activate(mg);
3420 	}
3421 
3422 	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
3423 
3424 	return (spa_vdev_state_exit(spa, vd, 0));
3425 }
3426 
3427 int
3428 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
3429 {
3430 	int error;
3431 
3432 	mutex_enter(&spa->spa_vdev_top_lock);
3433 	error = vdev_offline_locked(spa, guid, flags);
3434 	mutex_exit(&spa->spa_vdev_top_lock);
3435 
3436 	return (error);
3437 }
3438 
3439 /*
3440  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
3441  * vdev_offline(), we assume the spa config is locked.  We also clear all
3442  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
3443  */
3444 void
3445 vdev_clear(spa_t *spa, vdev_t *vd)
3446 {
3447 	vdev_t *rvd = spa->spa_root_vdev;
3448 
3449 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3450 
3451 	if (vd == NULL)
3452 		vd = rvd;
3453 
3454 	vd->vdev_stat.vs_read_errors = 0;
3455 	vd->vdev_stat.vs_write_errors = 0;
3456 	vd->vdev_stat.vs_checksum_errors = 0;
3457 
3458 	for (int c = 0; c < vd->vdev_children; c++)
3459 		vdev_clear(spa, vd->vdev_child[c]);
3460 
3461 	/*
3462 	 * It makes no sense to "clear" an indirect vdev.
3463 	 */
3464 	if (!vdev_is_concrete(vd))
3465 		return;
3466 
3467 	/*
3468 	 * If we're in the FAULTED state or have experienced failed I/O, then
3469 	 * clear the persistent state and attempt to reopen the device.  We
3470 	 * also mark the vdev config dirty, so that the new faulted state is
3471 	 * written out to disk.
3472 	 */
3473 	if (vd->vdev_faulted || vd->vdev_degraded ||
3474 	    !vdev_readable(vd) || !vdev_writeable(vd)) {
3475 
3476 		/*
3477 		 * When reopening in reponse to a clear event, it may be due to
3478 		 * a fmadm repair request.  In this case, if the device is
3479 		 * still broken, we want to still post the ereport again.
3480 		 */
3481 		vd->vdev_forcefault = B_TRUE;
3482 
3483 		vd->vdev_faulted = vd->vdev_degraded = 0ULL;
3484 		vd->vdev_cant_read = B_FALSE;
3485 		vd->vdev_cant_write = B_FALSE;
3486 
3487 		vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
3488 
3489 		vd->vdev_forcefault = B_FALSE;
3490 
3491 		if (vd != rvd && vdev_writeable(vd->vdev_top))
3492 			vdev_state_dirty(vd->vdev_top);
3493 
3494 		if (vd->vdev_aux == NULL && !vdev_is_dead(vd)) {
3495 			if (dsl_scan_resilvering(spa->spa_dsl_pool) &&
3496 			    spa_feature_is_enabled(spa,
3497 			    SPA_FEATURE_RESILVER_DEFER))
3498 				vdev_set_deferred_resilver(spa, vd);
3499 			else
3500 				spa_async_request(spa, SPA_ASYNC_RESILVER);
3501 		}
3502 
3503 		spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
3504 	}
3505 
3506 	/*
3507 	 * When clearing a FMA-diagnosed fault, we always want to
3508 	 * unspare the device, as we assume that the original spare was
3509 	 * done in response to the FMA fault.
3510 	 */
3511 	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
3512 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3513 	    vd->vdev_parent->vdev_child[0] == vd)
3514 		vd->vdev_unspare = B_TRUE;
3515 }
3516 
3517 boolean_t
3518 vdev_is_dead(vdev_t *vd)
3519 {
3520 	/*
3521 	 * Holes and missing devices are always considered "dead".
3522 	 * This simplifies the code since we don't have to check for
3523 	 * these types of devices in the various code paths.
3524 	 * Instead we rely on the fact that we skip over dead devices
3525 	 * before issuing I/O to them.
3526 	 */
3527 	return (vd->vdev_state < VDEV_STATE_DEGRADED ||
3528 	    vd->vdev_ops == &vdev_hole_ops ||
3529 	    vd->vdev_ops == &vdev_missing_ops);
3530 }
3531 
3532 boolean_t
3533 vdev_readable(vdev_t *vd)
3534 {
3535 	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
3536 }
3537 
3538 boolean_t
3539 vdev_writeable(vdev_t *vd)
3540 {
3541 	return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
3542 	    vdev_is_concrete(vd));
3543 }
3544 
3545 boolean_t
3546 vdev_allocatable(vdev_t *vd)
3547 {
3548 	uint64_t state = vd->vdev_state;
3549 
3550 	/*
3551 	 * We currently allow allocations from vdevs which may be in the
3552 	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
3553 	 * fails to reopen then we'll catch it later when we're holding
3554 	 * the proper locks.  Note that we have to get the vdev state
3555 	 * in a local variable because although it changes atomically,
3556 	 * we're asking two separate questions about it.
3557 	 */
3558 	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
3559 	    !vd->vdev_cant_write && vdev_is_concrete(vd) &&
3560 	    vd->vdev_mg->mg_initialized);
3561 }
3562 
3563 boolean_t
3564 vdev_accessible(vdev_t *vd, zio_t *zio)
3565 {
3566 	ASSERT(zio->io_vd == vd);
3567 
3568 	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
3569 		return (B_FALSE);
3570 
3571 	if (zio->io_type == ZIO_TYPE_READ)
3572 		return (!vd->vdev_cant_read);
3573 
3574 	if (zio->io_type == ZIO_TYPE_WRITE)
3575 		return (!vd->vdev_cant_write);
3576 
3577 	return (B_TRUE);
3578 }
3579 
3580 boolean_t
3581 vdev_is_spacemap_addressable(vdev_t *vd)
3582 {
3583 	if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2))
3584 		return (B_TRUE);
3585 
3586 	/*
3587 	 * If double-word space map entries are not enabled we assume
3588 	 * 47 bits of the space map entry are dedicated to the entry's
3589 	 * offset (see SM_OFFSET_BITS in space_map.h). We then use that
3590 	 * to calculate the maximum address that can be described by a
3591 	 * space map entry for the given device.
3592 	 */
3593 	uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS;
3594 
3595 	if (shift >= 63) /* detect potential overflow */
3596 		return (B_TRUE);
3597 
3598 	return (vd->vdev_asize < (1ULL << shift));
3599 }
3600 
3601 /*
3602  * Get statistics for the given vdev.
3603  */
3604 void
3605 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
3606 {
3607 	spa_t *spa = vd->vdev_spa;
3608 	vdev_t *rvd = spa->spa_root_vdev;
3609 	vdev_t *tvd = vd->vdev_top;
3610 
3611 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
3612 
3613 	mutex_enter(&vd->vdev_stat_lock);
3614 	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
3615 	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
3616 	vs->vs_state = vd->vdev_state;
3617 	vs->vs_rsize = vdev_get_min_asize(vd);
3618 	if (vd->vdev_ops->vdev_op_leaf) {
3619 		vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
3620 		/*
3621 		 * Report intializing progress. Since we don't have the
3622 		 * initializing locks held, this is only an estimate (although a
3623 		 * fairly accurate one).
3624 		 */
3625 		vs->vs_initialize_bytes_done = vd->vdev_initialize_bytes_done;
3626 		vs->vs_initialize_bytes_est = vd->vdev_initialize_bytes_est;
3627 		vs->vs_initialize_state = vd->vdev_initialize_state;
3628 		vs->vs_initialize_action_time = vd->vdev_initialize_action_time;
3629 	}
3630 	/*
3631 	 * Report expandable space on top-level, non-auxillary devices only.
3632 	 * The expandable space is reported in terms of metaslab sized units
3633 	 * since that determines how much space the pool can expand.
3634 	 */
3635 	if (vd->vdev_aux == NULL && tvd != NULL) {
3636 		vs->vs_esize = P2ALIGN(vd->vdev_max_asize - vd->vdev_asize -
3637 		    spa->spa_bootsize, 1ULL << tvd->vdev_ms_shift);
3638 	}
3639 	if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
3640 	    vdev_is_concrete(vd)) {
3641 		vs->vs_fragmentation = (vd->vdev_mg != NULL) ?
3642 		    vd->vdev_mg->mg_fragmentation : 0;
3643 	}
3644 	if (vd->vdev_ops->vdev_op_leaf)
3645 		vs->vs_resilver_deferred = vd->vdev_resilver_deferred;
3646 
3647 	/*
3648 	 * If we're getting stats on the root vdev, aggregate the I/O counts
3649 	 * over all top-level vdevs (i.e. the direct children of the root).
3650 	 */
3651 	if (vd == rvd) {
3652 		for (int c = 0; c < rvd->vdev_children; c++) {
3653 			vdev_t *cvd = rvd->vdev_child[c];
3654 			vdev_stat_t *cvs = &cvd->vdev_stat;
3655 
3656 			for (int t = 0; t < ZIO_TYPES; t++) {
3657 				vs->vs_ops[t] += cvs->vs_ops[t];
3658 				vs->vs_bytes[t] += cvs->vs_bytes[t];
3659 			}
3660 			cvs->vs_scan_removing = cvd->vdev_removing;
3661 		}
3662 	}
3663 	mutex_exit(&vd->vdev_stat_lock);
3664 }
3665 
3666 void
3667 vdev_clear_stats(vdev_t *vd)
3668 {
3669 	mutex_enter(&vd->vdev_stat_lock);
3670 	vd->vdev_stat.vs_space = 0;
3671 	vd->vdev_stat.vs_dspace = 0;
3672 	vd->vdev_stat.vs_alloc = 0;
3673 	mutex_exit(&vd->vdev_stat_lock);
3674 }
3675 
3676 void
3677 vdev_scan_stat_init(vdev_t *vd)
3678 {
3679 	vdev_stat_t *vs = &vd->vdev_stat;
3680 
3681 	for (int c = 0; c < vd->vdev_children; c++)
3682 		vdev_scan_stat_init(vd->vdev_child[c]);
3683 
3684 	mutex_enter(&vd->vdev_stat_lock);
3685 	vs->vs_scan_processed = 0;
3686 	mutex_exit(&vd->vdev_stat_lock);
3687 }
3688 
3689 void
3690 vdev_stat_update(zio_t *zio, uint64_t psize)
3691 {
3692 	spa_t *spa = zio->io_spa;
3693 	vdev_t *rvd = spa->spa_root_vdev;
3694 	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
3695 	vdev_t *pvd;
3696 	uint64_t txg = zio->io_txg;
3697 	vdev_stat_t *vs = &vd->vdev_stat;
3698 	zio_type_t type = zio->io_type;
3699 	int flags = zio->io_flags;
3700 
3701 	/*
3702 	 * If this i/o is a gang leader, it didn't do any actual work.
3703 	 */
3704 	if (zio->io_gang_tree)
3705 		return;
3706 
3707 	if (zio->io_error == 0) {
3708 		/*
3709 		 * If this is a root i/o, don't count it -- we've already
3710 		 * counted the top-level vdevs, and vdev_get_stats() will
3711 		 * aggregate them when asked.  This reduces contention on
3712 		 * the root vdev_stat_lock and implicitly handles blocks
3713 		 * that compress away to holes, for which there is no i/o.
3714 		 * (Holes never create vdev children, so all the counters
3715 		 * remain zero, which is what we want.)
3716 		 *
3717 		 * Note: this only applies to successful i/o (io_error == 0)
3718 		 * because unlike i/o counts, errors are not additive.
3719 		 * When reading a ditto block, for example, failure of
3720 		 * one top-level vdev does not imply a root-level error.
3721 		 */
3722 		if (vd == rvd)
3723 			return;
3724 
3725 		ASSERT(vd == zio->io_vd);
3726 
3727 		if (flags & ZIO_FLAG_IO_BYPASS)
3728 			return;
3729 
3730 		mutex_enter(&vd->vdev_stat_lock);
3731 
3732 		if (flags & ZIO_FLAG_IO_REPAIR) {
3733 			if (flags & ZIO_FLAG_SCAN_THREAD) {
3734 				dsl_scan_phys_t *scn_phys =
3735 				    &spa->spa_dsl_pool->dp_scan->scn_phys;
3736 				uint64_t *processed = &scn_phys->scn_processed;
3737 
3738 				/* XXX cleanup? */
3739 				if (vd->vdev_ops->vdev_op_leaf)
3740 					atomic_add_64(processed, psize);
3741 				vs->vs_scan_processed += psize;
3742 			}
3743 
3744 			if (flags & ZIO_FLAG_SELF_HEAL)
3745 				vs->vs_self_healed += psize;
3746 		}
3747 
3748 		vs->vs_ops[type]++;
3749 		vs->vs_bytes[type] += psize;
3750 
3751 		mutex_exit(&vd->vdev_stat_lock);
3752 		return;
3753 	}
3754 
3755 	if (flags & ZIO_FLAG_SPECULATIVE)
3756 		return;
3757 
3758 	/*
3759 	 * If this is an I/O error that is going to be retried, then ignore the
3760 	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
3761 	 * hard errors, when in reality they can happen for any number of
3762 	 * innocuous reasons (bus resets, MPxIO link failure, etc).
3763 	 */
3764 	if (zio->io_error == EIO &&
3765 	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
3766 		return;
3767 
3768 	/*
3769 	 * Intent logs writes won't propagate their error to the root
3770 	 * I/O so don't mark these types of failures as pool-level
3771 	 * errors.
3772 	 */
3773 	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
3774 		return;
3775 
3776 	mutex_enter(&vd->vdev_stat_lock);
3777 	if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
3778 		if (zio->io_error == ECKSUM)
3779 			vs->vs_checksum_errors++;
3780 		else
3781 			vs->vs_read_errors++;
3782 	}
3783 	if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
3784 		vs->vs_write_errors++;
3785 	mutex_exit(&vd->vdev_stat_lock);
3786 
3787 	if (spa->spa_load_state == SPA_LOAD_NONE &&
3788 	    type == ZIO_TYPE_WRITE && txg != 0 &&
3789 	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
3790 	    (flags & ZIO_FLAG_SCAN_THREAD) ||
3791 	    spa->spa_claiming)) {
3792 		/*
3793 		 * This is either a normal write (not a repair), or it's
3794 		 * a repair induced by the scrub thread, or it's a repair
3795 		 * made by zil_claim() during spa_load() in the first txg.
3796 		 * In the normal case, we commit the DTL change in the same
3797 		 * txg as the block was born.  In the scrub-induced repair
3798 		 * case, we know that scrubs run in first-pass syncing context,
3799 		 * so we commit the DTL change in spa_syncing_txg(spa).
3800 		 * In the zil_claim() case, we commit in spa_first_txg(spa).
3801 		 *
3802 		 * We currently do not make DTL entries for failed spontaneous
3803 		 * self-healing writes triggered by normal (non-scrubbing)
3804 		 * reads, because we have no transactional context in which to
3805 		 * do so -- and it's not clear that it'd be desirable anyway.
3806 		 */
3807 		if (vd->vdev_ops->vdev_op_leaf) {
3808 			uint64_t commit_txg = txg;
3809 			if (flags & ZIO_FLAG_SCAN_THREAD) {
3810 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3811 				ASSERT(spa_sync_pass(spa) == 1);
3812 				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
3813 				commit_txg = spa_syncing_txg(spa);
3814 			} else if (spa->spa_claiming) {
3815 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3816 				commit_txg = spa_first_txg(spa);
3817 			}
3818 			ASSERT(commit_txg >= spa_syncing_txg(spa));
3819 			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
3820 				return;
3821 			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3822 				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
3823 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
3824 		}
3825 		if (vd != rvd)
3826 			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
3827 	}
3828 }
3829 
3830 int64_t
3831 vdev_deflated_space(vdev_t *vd, int64_t space)
3832 {
3833 	ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0);
3834 	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
3835 
3836 	return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio);
3837 }
3838 
3839 /*
3840  * Update the in-core space usage stats for this vdev and the root vdev.
3841  */
3842 void
3843 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
3844     int64_t space_delta)
3845 {
3846 	int64_t dspace_delta;
3847 	spa_t *spa = vd->vdev_spa;
3848 	vdev_t *rvd = spa->spa_root_vdev;
3849 
3850 	ASSERT(vd == vd->vdev_top);
3851 
3852 	/*
3853 	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
3854 	 * factor.  We must calculate this here and not at the root vdev
3855 	 * because the root vdev's psize-to-asize is simply the max of its
3856 	 * childrens', thus not accurate enough for us.
3857 	 */
3858 	dspace_delta = vdev_deflated_space(vd, space_delta);
3859 
3860 	mutex_enter(&vd->vdev_stat_lock);
3861 	/* ensure we won't underflow */
3862 	if (alloc_delta < 0) {
3863 		ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta);
3864 	}
3865 
3866 	vd->vdev_stat.vs_alloc += alloc_delta;
3867 	vd->vdev_stat.vs_space += space_delta;
3868 	vd->vdev_stat.vs_dspace += dspace_delta;
3869 	mutex_exit(&vd->vdev_stat_lock);
3870 
3871 	/* every class but log contributes to root space stats */
3872 	if (vd->vdev_mg != NULL && !vd->vdev_islog) {
3873 		ASSERT(!vd->vdev_isl2cache);
3874 		mutex_enter(&rvd->vdev_stat_lock);
3875 		rvd->vdev_stat.vs_alloc += alloc_delta;
3876 		rvd->vdev_stat.vs_space += space_delta;
3877 		rvd->vdev_stat.vs_dspace += dspace_delta;
3878 		mutex_exit(&rvd->vdev_stat_lock);
3879 	}
3880 	/* Note: metaslab_class_space_update moved to metaslab_space_update */
3881 }
3882 
3883 /*
3884  * Mark a top-level vdev's config as dirty, placing it on the dirty list
3885  * so that it will be written out next time the vdev configuration is synced.
3886  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
3887  */
3888 void
3889 vdev_config_dirty(vdev_t *vd)
3890 {
3891 	spa_t *spa = vd->vdev_spa;
3892 	vdev_t *rvd = spa->spa_root_vdev;
3893 	int c;
3894 
3895 	ASSERT(spa_writeable(spa));
3896 
3897 	/*
3898 	 * If this is an aux vdev (as with l2cache and spare devices), then we
3899 	 * update the vdev config manually and set the sync flag.
3900 	 */
3901 	if (vd->vdev_aux != NULL) {
3902 		spa_aux_vdev_t *sav = vd->vdev_aux;
3903 		nvlist_t **aux;
3904 		uint_t naux;
3905 
3906 		for (c = 0; c < sav->sav_count; c++) {
3907 			if (sav->sav_vdevs[c] == vd)
3908 				break;
3909 		}
3910 
3911 		if (c == sav->sav_count) {
3912 			/*
3913 			 * We're being removed.  There's nothing more to do.
3914 			 */
3915 			ASSERT(sav->sav_sync == B_TRUE);
3916 			return;
3917 		}
3918 
3919 		sav->sav_sync = B_TRUE;
3920 
3921 		if (nvlist_lookup_nvlist_array(sav->sav_config,
3922 		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3923 			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3924 			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3925 		}
3926 
3927 		ASSERT(c < naux);
3928 
3929 		/*
3930 		 * Setting the nvlist in the middle if the array is a little
3931 		 * sketchy, but it will work.
3932 		 */
3933 		nvlist_free(aux[c]);
3934 		aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3935 
3936 		return;
3937 	}
3938 
3939 	/*
3940 	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
3941 	 * must either hold SCL_CONFIG as writer, or must be the sync thread
3942 	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
3943 	 * so this is sufficient to ensure mutual exclusion.
3944 	 */
3945 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3946 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3947 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
3948 
3949 	if (vd == rvd) {
3950 		for (c = 0; c < rvd->vdev_children; c++)
3951 			vdev_config_dirty(rvd->vdev_child[c]);
3952 	} else {
3953 		ASSERT(vd == vd->vdev_top);
3954 
3955 		if (!list_link_active(&vd->vdev_config_dirty_node) &&
3956 		    vdev_is_concrete(vd)) {
3957 			list_insert_head(&spa->spa_config_dirty_list, vd);
3958 		}
3959 	}
3960 }
3961 
3962 void
3963 vdev_config_clean(vdev_t *vd)
3964 {
3965 	spa_t *spa = vd->vdev_spa;
3966 
3967 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3968 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3969 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
3970 
3971 	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3972 	list_remove(&spa->spa_config_dirty_list, vd);
3973 }
3974 
3975 /*
3976  * Mark a top-level vdev's state as dirty, so that the next pass of
3977  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
3978  * the state changes from larger config changes because they require
3979  * much less locking, and are often needed for administrative actions.
3980  */
3981 void
3982 vdev_state_dirty(vdev_t *vd)
3983 {
3984 	spa_t *spa = vd->vdev_spa;
3985 
3986 	ASSERT(spa_writeable(spa));
3987 	ASSERT(vd == vd->vdev_top);
3988 
3989 	/*
3990 	 * The state list is protected by the SCL_STATE lock.  The caller
3991 	 * must either hold SCL_STATE as writer, or must be the sync thread
3992 	 * (which holds SCL_STATE as reader).  There's only one sync thread,
3993 	 * so this is sufficient to ensure mutual exclusion.
3994 	 */
3995 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3996 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3997 	    spa_config_held(spa, SCL_STATE, RW_READER)));
3998 
3999 	if (!list_link_active(&vd->vdev_state_dirty_node) &&
4000 	    vdev_is_concrete(vd))
4001 		list_insert_head(&spa->spa_state_dirty_list, vd);
4002 }
4003 
4004 void
4005 vdev_state_clean(vdev_t *vd)
4006 {
4007 	spa_t *spa = vd->vdev_spa;
4008 
4009 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
4010 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4011 	    spa_config_held(spa, SCL_STATE, RW_READER)));
4012 
4013 	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
4014 	list_remove(&spa->spa_state_dirty_list, vd);
4015 }
4016 
4017 /*
4018  * Propagate vdev state up from children to parent.
4019  */
4020 void
4021 vdev_propagate_state(vdev_t *vd)
4022 {
4023 	spa_t *spa = vd->vdev_spa;
4024 	vdev_t *rvd = spa->spa_root_vdev;
4025 	int degraded = 0, faulted = 0;
4026 	int corrupted = 0;
4027 	vdev_t *child;
4028 
4029 	if (vd->vdev_children > 0) {
4030 		for (int c = 0; c < vd->vdev_children; c++) {
4031 			child = vd->vdev_child[c];
4032 
4033 			/*
4034 			 * Don't factor holes or indirect vdevs into the
4035 			 * decision.
4036 			 */
4037 			if (!vdev_is_concrete(child))
4038 				continue;
4039 
4040 			if (!vdev_readable(child) ||
4041 			    (!vdev_writeable(child) && spa_writeable(spa))) {
4042 				/*
4043 				 * Root special: if there is a top-level log
4044 				 * device, treat the root vdev as if it were
4045 				 * degraded.
4046 				 */
4047 				if (child->vdev_islog && vd == rvd)
4048 					degraded++;
4049 				else
4050 					faulted++;
4051 			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
4052 				degraded++;
4053 			}
4054 
4055 			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
4056 				corrupted++;
4057 		}
4058 
4059 		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
4060 
4061 		/*
4062 		 * Root special: if there is a top-level vdev that cannot be
4063 		 * opened due to corrupted metadata, then propagate the root
4064 		 * vdev's aux state as 'corrupt' rather than 'insufficient
4065 		 * replicas'.
4066 		 */
4067 		if (corrupted && vd == rvd &&
4068 		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
4069 			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
4070 			    VDEV_AUX_CORRUPT_DATA);
4071 	}
4072 
4073 	if (vd->vdev_parent)
4074 		vdev_propagate_state(vd->vdev_parent);
4075 }
4076 
4077 /*
4078  * Set a vdev's state.  If this is during an open, we don't update the parent
4079  * state, because we're in the process of opening children depth-first.
4080  * Otherwise, we propagate the change to the parent.
4081  *
4082  * If this routine places a device in a faulted state, an appropriate ereport is
4083  * generated.
4084  */
4085 void
4086 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
4087 {
4088 	uint64_t save_state;
4089 	spa_t *spa = vd->vdev_spa;
4090 
4091 	if (state == vd->vdev_state) {
4092 		vd->vdev_stat.vs_aux = aux;
4093 		return;
4094 	}
4095 
4096 	save_state = vd->vdev_state;
4097 
4098 	vd->vdev_state = state;
4099 	vd->vdev_stat.vs_aux = aux;
4100 
4101 	/*
4102 	 * If we are setting the vdev state to anything but an open state, then
4103 	 * always close the underlying device unless the device has requested
4104 	 * a delayed close (i.e. we're about to remove or fault the device).
4105 	 * Otherwise, we keep accessible but invalid devices open forever.
4106 	 * We don't call vdev_close() itself, because that implies some extra
4107 	 * checks (offline, etc) that we don't want here.  This is limited to
4108 	 * leaf devices, because otherwise closing the device will affect other
4109 	 * children.
4110 	 */
4111 	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
4112 	    vd->vdev_ops->vdev_op_leaf)
4113 		vd->vdev_ops->vdev_op_close(vd);
4114 
4115 	/*
4116 	 * If we have brought this vdev back into service, we need
4117 	 * to notify fmd so that it can gracefully repair any outstanding
4118 	 * cases due to a missing device.  We do this in all cases, even those
4119 	 * that probably don't correlate to a repaired fault.  This is sure to
4120 	 * catch all cases, and we let the zfs-retire agent sort it out.  If
4121 	 * this is a transient state it's OK, as the retire agent will
4122 	 * double-check the state of the vdev before repairing it.
4123 	 */
4124 	if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
4125 	    vd->vdev_prevstate != state)
4126 		zfs_post_state_change(spa, vd);
4127 
4128 	if (vd->vdev_removed &&
4129 	    state == VDEV_STATE_CANT_OPEN &&
4130 	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
4131 		/*
4132 		 * If the previous state is set to VDEV_STATE_REMOVED, then this
4133 		 * device was previously marked removed and someone attempted to
4134 		 * reopen it.  If this failed due to a nonexistent device, then
4135 		 * keep the device in the REMOVED state.  We also let this be if
4136 		 * it is one of our special test online cases, which is only
4137 		 * attempting to online the device and shouldn't generate an FMA
4138 		 * fault.
4139 		 */
4140 		vd->vdev_state = VDEV_STATE_REMOVED;
4141 		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
4142 	} else if (state == VDEV_STATE_REMOVED) {
4143 		vd->vdev_removed = B_TRUE;
4144 	} else if (state == VDEV_STATE_CANT_OPEN) {
4145 		/*
4146 		 * If we fail to open a vdev during an import or recovery, we
4147 		 * mark it as "not available", which signifies that it was
4148 		 * never there to begin with.  Failure to open such a device
4149 		 * is not considered an error.
4150 		 */
4151 		if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
4152 		    spa_load_state(spa) == SPA_LOAD_RECOVER) &&
4153 		    vd->vdev_ops->vdev_op_leaf)
4154 			vd->vdev_not_present = 1;
4155 
4156 		/*
4157 		 * Post the appropriate ereport.  If the 'prevstate' field is
4158 		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
4159 		 * that this is part of a vdev_reopen().  In this case, we don't
4160 		 * want to post the ereport if the device was already in the
4161 		 * CANT_OPEN state beforehand.
4162 		 *
4163 		 * If the 'checkremove' flag is set, then this is an attempt to
4164 		 * online the device in response to an insertion event.  If we
4165 		 * hit this case, then we have detected an insertion event for a
4166 		 * faulted or offline device that wasn't in the removed state.
4167 		 * In this scenario, we don't post an ereport because we are
4168 		 * about to replace the device, or attempt an online with
4169 		 * vdev_forcefault, which will generate the fault for us.
4170 		 */
4171 		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
4172 		    !vd->vdev_not_present && !vd->vdev_checkremove &&
4173 		    vd != spa->spa_root_vdev) {
4174 			const char *class;
4175 
4176 			switch (aux) {
4177 			case VDEV_AUX_OPEN_FAILED:
4178 				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
4179 				break;
4180 			case VDEV_AUX_CORRUPT_DATA:
4181 				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
4182 				break;
4183 			case VDEV_AUX_NO_REPLICAS:
4184 				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
4185 				break;
4186 			case VDEV_AUX_BAD_GUID_SUM:
4187 				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
4188 				break;
4189 			case VDEV_AUX_TOO_SMALL:
4190 				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
4191 				break;
4192 			case VDEV_AUX_BAD_LABEL:
4193 				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
4194 				break;
4195 			case VDEV_AUX_BAD_ASHIFT:
4196 				class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT;
4197 				break;
4198 			default:
4199 				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
4200 			}
4201 
4202 			zfs_ereport_post(class, spa, vd, NULL, NULL,
4203 			    save_state, 0);
4204 		}
4205 
4206 		/* Erase any notion of persistent removed state */
4207 		vd->vdev_removed = B_FALSE;
4208 	} else {
4209 		vd->vdev_removed = B_FALSE;
4210 	}
4211 
4212 	if (!isopen && vd->vdev_parent)
4213 		vdev_propagate_state(vd->vdev_parent);
4214 }
4215 
4216 boolean_t
4217 vdev_children_are_offline(vdev_t *vd)
4218 {
4219 	ASSERT(!vd->vdev_ops->vdev_op_leaf);
4220 
4221 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
4222 		if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
4223 			return (B_FALSE);
4224 	}
4225 
4226 	return (B_TRUE);
4227 }
4228 
4229 /*
4230  * Check the vdev configuration to ensure that it's capable of supporting
4231  * a root pool. We do not support partial configuration.
4232  * In addition, only a single top-level vdev is allowed.
4233  */
4234 boolean_t
4235 vdev_is_bootable(vdev_t *vd)
4236 {
4237 	if (!vd->vdev_ops->vdev_op_leaf) {
4238 		char *vdev_type = vd->vdev_ops->vdev_op_type;
4239 
4240 		if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
4241 		    vd->vdev_children > 1) {
4242 			int non_indirect = 0;
4243 
4244 			for (int c = 0; c < vd->vdev_children; c++) {
4245 				vdev_type =
4246 				    vd->vdev_child[c]->vdev_ops->vdev_op_type;
4247 				if (strcmp(vdev_type, VDEV_TYPE_INDIRECT) != 0)
4248 					non_indirect++;
4249 			}
4250 			/*
4251 			 * non_indirect > 1 means we have more than one
4252 			 * top-level vdev, so we stop here.
4253 			 */
4254 			if (non_indirect > 1)
4255 				return (B_FALSE);
4256 		} else if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
4257 			return (B_FALSE);
4258 		}
4259 	}
4260 
4261 	for (int c = 0; c < vd->vdev_children; c++) {
4262 		if (!vdev_is_bootable(vd->vdev_child[c]))
4263 			return (B_FALSE);
4264 	}
4265 	return (B_TRUE);
4266 }
4267 
4268 boolean_t
4269 vdev_is_concrete(vdev_t *vd)
4270 {
4271 	vdev_ops_t *ops = vd->vdev_ops;
4272 	if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
4273 	    ops == &vdev_missing_ops || ops == &vdev_root_ops) {
4274 		return (B_FALSE);
4275 	} else {
4276 		return (B_TRUE);
4277 	}
4278 }
4279 
4280 /*
4281  * Determine if a log device has valid content.  If the vdev was
4282  * removed or faulted in the MOS config then we know that
4283  * the content on the log device has already been written to the pool.
4284  */
4285 boolean_t
4286 vdev_log_state_valid(vdev_t *vd)
4287 {
4288 	if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
4289 	    !vd->vdev_removed)
4290 		return (B_TRUE);
4291 
4292 	for (int c = 0; c < vd->vdev_children; c++)
4293 		if (vdev_log_state_valid(vd->vdev_child[c]))
4294 			return (B_TRUE);
4295 
4296 	return (B_FALSE);
4297 }
4298 
4299 /*
4300  * Expand a vdev if possible.
4301  */
4302 void
4303 vdev_expand(vdev_t *vd, uint64_t txg)
4304 {
4305 	ASSERT(vd->vdev_top == vd);
4306 	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4307 	ASSERT(vdev_is_concrete(vd));
4308 
4309 	vdev_set_deflate_ratio(vd);
4310 
4311 	if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
4312 	    vdev_is_concrete(vd)) {
4313 		vdev_metaslab_group_create(vd);
4314 		VERIFY(vdev_metaslab_init(vd, txg) == 0);
4315 		vdev_config_dirty(vd);
4316 	}
4317 }
4318 
4319 /*
4320  * Split a vdev.
4321  */
4322 void
4323 vdev_split(vdev_t *vd)
4324 {
4325 	vdev_t *cvd, *pvd = vd->vdev_parent;
4326 
4327 	vdev_remove_child(pvd, vd);
4328 	vdev_compact_children(pvd);
4329 
4330 	cvd = pvd->vdev_child[0];
4331 	if (pvd->vdev_children == 1) {
4332 		vdev_remove_parent(cvd);
4333 		cvd->vdev_splitting = B_TRUE;
4334 	}
4335 	vdev_propagate_state(cvd);
4336 }
4337 
4338 void
4339 vdev_deadman(vdev_t *vd)
4340 {
4341 	for (int c = 0; c < vd->vdev_children; c++) {
4342 		vdev_t *cvd = vd->vdev_child[c];
4343 
4344 		vdev_deadman(cvd);
4345 	}
4346 
4347 	if (vd->vdev_ops->vdev_op_leaf) {
4348 		vdev_queue_t *vq = &vd->vdev_queue;
4349 
4350 		mutex_enter(&vq->vq_lock);
4351 		if (avl_numnodes(&vq->vq_active_tree) > 0) {
4352 			spa_t *spa = vd->vdev_spa;
4353 			zio_t *fio;
4354 			uint64_t delta;
4355 
4356 			/*
4357 			 * Look at the head of all the pending queues,
4358 			 * if any I/O has been outstanding for longer than
4359 			 * the spa_deadman_synctime we panic the system.
4360 			 */
4361 			fio = avl_first(&vq->vq_active_tree);
4362 			delta = gethrtime() - fio->io_timestamp;
4363 			if (delta > spa_deadman_synctime(spa)) {
4364 				vdev_dbgmsg(vd, "SLOW IO: zio timestamp "
4365 				    "%lluns, delta %lluns, last io %lluns",
4366 				    fio->io_timestamp, (u_longlong_t)delta,
4367 				    vq->vq_io_complete_ts);
4368 				fm_panic("I/O to pool '%s' appears to be "
4369 				    "hung.", spa_name(spa));
4370 			}
4371 		}
4372 		mutex_exit(&vq->vq_lock);
4373 	}
4374 }
4375 
4376 void
4377 vdev_set_deferred_resilver(spa_t *spa, vdev_t *vd)
4378 {
4379 	for (uint64_t i = 0; i < vd->vdev_children; i++)
4380 		vdev_set_deferred_resilver(spa, vd->vdev_child[i]);
4381 
4382 	if (!vd->vdev_ops->vdev_op_leaf || !vdev_writeable(vd) ||
4383 	    range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
4384 		return;
4385 	}
4386 
4387 	vd->vdev_resilver_deferred = B_TRUE;
4388 	spa->spa_resilver_deferred = B_TRUE;
4389 }
4390