xref: /illumos-gate/usr/src/uts/common/fs/zfs/vdev.c (revision 088f3894)
1fa9e4066Sahrens /*
2fa9e4066Sahrens  * CDDL HEADER START
3fa9e4066Sahrens  *
4fa9e4066Sahrens  * The contents of this file are subject to the terms of the
5441d80aaSlling  * Common Development and Distribution License (the "License").
6441d80aaSlling  * You may not use this file except in compliance with the License.
7fa9e4066Sahrens  *
8fa9e4066Sahrens  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9fa9e4066Sahrens  * or http://www.opensolaris.org/os/licensing.
10fa9e4066Sahrens  * See the License for the specific language governing permissions
11fa9e4066Sahrens  * and limitations under the License.
12fa9e4066Sahrens  *
13fa9e4066Sahrens  * When distributing Covered Code, include this CDDL HEADER in each
14fa9e4066Sahrens  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15fa9e4066Sahrens  * If applicable, add the following below this CDDL HEADER, with the
16fa9e4066Sahrens  * fields enclosed by brackets "[]" replaced with your own identifying
17fa9e4066Sahrens  * information: Portions Copyright [yyyy] [name of copyright owner]
18fa9e4066Sahrens  *
19fa9e4066Sahrens  * CDDL HEADER END
20fa9e4066Sahrens  */
2199653d4eSeschrock 
22fa9e4066Sahrens /*
2332b87932Sek  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24fa9e4066Sahrens  * Use is subject to license terms.
25fa9e4066Sahrens  */
26fa9e4066Sahrens 
27fa9e4066Sahrens #pragma ident	"%Z%%M%	%I%	%E% SMI"
28fa9e4066Sahrens 
29fa9e4066Sahrens #include <sys/zfs_context.h>
30ea8dc4b6Seschrock #include <sys/fm/fs/zfs.h>
31fa9e4066Sahrens #include <sys/spa.h>
32fa9e4066Sahrens #include <sys/spa_impl.h>
33fa9e4066Sahrens #include <sys/dmu.h>
34fa9e4066Sahrens #include <sys/dmu_tx.h>
35fa9e4066Sahrens #include <sys/vdev_impl.h>
36fa9e4066Sahrens #include <sys/uberblock_impl.h>
37fa9e4066Sahrens #include <sys/metaslab.h>
38fa9e4066Sahrens #include <sys/metaslab_impl.h>
39fa9e4066Sahrens #include <sys/space_map.h>
40fa9e4066Sahrens #include <sys/zio.h>
41fa9e4066Sahrens #include <sys/zap.h>
42fa9e4066Sahrens #include <sys/fs/zfs.h>
43c5904d13Seschrock #include <sys/arc.h>
44fa9e4066Sahrens 
45fa9e4066Sahrens /*
46fa9e4066Sahrens  * Virtual device management.
47fa9e4066Sahrens  */
48fa9e4066Sahrens 
49fa9e4066Sahrens static vdev_ops_t *vdev_ops_table[] = {
50fa9e4066Sahrens 	&vdev_root_ops,
51fa9e4066Sahrens 	&vdev_raidz_ops,
52fa9e4066Sahrens 	&vdev_mirror_ops,
53fa9e4066Sahrens 	&vdev_replacing_ops,
5499653d4eSeschrock 	&vdev_spare_ops,
55fa9e4066Sahrens 	&vdev_disk_ops,
56fa9e4066Sahrens 	&vdev_file_ops,
57fa9e4066Sahrens 	&vdev_missing_ops,
58fa9e4066Sahrens 	NULL
59fa9e4066Sahrens };
60fa9e4066Sahrens 
61*088f3894Sahrens /* maximum scrub/resilver I/O queue per leaf vdev */
62*088f3894Sahrens int zfs_scrub_limit = 10;
6305b2b3b8Smishra 
64fa9e4066Sahrens /*
65fa9e4066Sahrens  * Given a vdev type, return the appropriate ops vector.
66fa9e4066Sahrens  */
67fa9e4066Sahrens static vdev_ops_t *
68fa9e4066Sahrens vdev_getops(const char *type)
69fa9e4066Sahrens {
70fa9e4066Sahrens 	vdev_ops_t *ops, **opspp;
71fa9e4066Sahrens 
72fa9e4066Sahrens 	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
73fa9e4066Sahrens 		if (strcmp(ops->vdev_op_type, type) == 0)
74fa9e4066Sahrens 			break;
75fa9e4066Sahrens 
76fa9e4066Sahrens 	return (ops);
77fa9e4066Sahrens }
78fa9e4066Sahrens 
79fa9e4066Sahrens /*
80fa9e4066Sahrens  * Default asize function: return the MAX of psize with the asize of
81fa9e4066Sahrens  * all children.  This is what's used by anything other than RAID-Z.
82fa9e4066Sahrens  */
83fa9e4066Sahrens uint64_t
84fa9e4066Sahrens vdev_default_asize(vdev_t *vd, uint64_t psize)
85fa9e4066Sahrens {
86ecc2d604Sbonwick 	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
87fa9e4066Sahrens 	uint64_t csize;
88fa9e4066Sahrens 	uint64_t c;
89fa9e4066Sahrens 
90fa9e4066Sahrens 	for (c = 0; c < vd->vdev_children; c++) {
91fa9e4066Sahrens 		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
92fa9e4066Sahrens 		asize = MAX(asize, csize);
93fa9e4066Sahrens 	}
94fa9e4066Sahrens 
95fa9e4066Sahrens 	return (asize);
96fa9e4066Sahrens }
97fa9e4066Sahrens 
982a79c5feSlling /*
992a79c5feSlling  * Get the replaceable or attachable device size.
1002a79c5feSlling  * If the parent is a mirror or raidz, the replaceable size is the minimum
1012a79c5feSlling  * psize of all its children. For the rest, just return our own psize.
1022a79c5feSlling  *
1032a79c5feSlling  * e.g.
1042a79c5feSlling  *			psize	rsize
1052a79c5feSlling  * root			-	-
1062a79c5feSlling  *	mirror/raidz	-	-
1072a79c5feSlling  *	    disk1	20g	20g
1082a79c5feSlling  *	    disk2 	40g	20g
1092a79c5feSlling  *	disk3 		80g	80g
1102a79c5feSlling  */
1112a79c5feSlling uint64_t
1122a79c5feSlling vdev_get_rsize(vdev_t *vd)
1132a79c5feSlling {
1142a79c5feSlling 	vdev_t *pvd, *cvd;
1152a79c5feSlling 	uint64_t c, rsize;
1162a79c5feSlling 
1172a79c5feSlling 	pvd = vd->vdev_parent;
1182a79c5feSlling 
1192a79c5feSlling 	/*
1202a79c5feSlling 	 * If our parent is NULL or the root, just return our own psize.
1212a79c5feSlling 	 */
1222a79c5feSlling 	if (pvd == NULL || pvd->vdev_parent == NULL)
1232a79c5feSlling 		return (vd->vdev_psize);
1242a79c5feSlling 
1252a79c5feSlling 	rsize = 0;
1262a79c5feSlling 
1272a79c5feSlling 	for (c = 0; c < pvd->vdev_children; c++) {
1282a79c5feSlling 		cvd = pvd->vdev_child[c];
1292a79c5feSlling 		rsize = MIN(rsize - 1, cvd->vdev_psize - 1) + 1;
1302a79c5feSlling 	}
1312a79c5feSlling 
1322a79c5feSlling 	return (rsize);
1332a79c5feSlling }
1342a79c5feSlling 
135fa9e4066Sahrens vdev_t *
136fa9e4066Sahrens vdev_lookup_top(spa_t *spa, uint64_t vdev)
137fa9e4066Sahrens {
138fa9e4066Sahrens 	vdev_t *rvd = spa->spa_root_vdev;
139fa9e4066Sahrens 
140*088f3894Sahrens 	ASSERT(spa_config_held(spa, RW_READER));
141e05725b1Sbonwick 
142*088f3894Sahrens 	if (vdev < rvd->vdev_children) {
143*088f3894Sahrens 		ASSERT(rvd->vdev_child[vdev] != NULL);
144fa9e4066Sahrens 		return (rvd->vdev_child[vdev]);
145*088f3894Sahrens 	}
146fa9e4066Sahrens 
147fa9e4066Sahrens 	return (NULL);
148fa9e4066Sahrens }
149fa9e4066Sahrens 
150fa9e4066Sahrens vdev_t *
151fa9e4066Sahrens vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
152fa9e4066Sahrens {
153fa9e4066Sahrens 	int c;
154fa9e4066Sahrens 	vdev_t *mvd;
155fa9e4066Sahrens 
1560e34b6a7Sbonwick 	if (vd->vdev_guid == guid)
157fa9e4066Sahrens 		return (vd);
158fa9e4066Sahrens 
159fa9e4066Sahrens 	for (c = 0; c < vd->vdev_children; c++)
160fa9e4066Sahrens 		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
161fa9e4066Sahrens 		    NULL)
162fa9e4066Sahrens 			return (mvd);
163fa9e4066Sahrens 
164fa9e4066Sahrens 	return (NULL);
165fa9e4066Sahrens }
166fa9e4066Sahrens 
167fa9e4066Sahrens void
168fa9e4066Sahrens vdev_add_child(vdev_t *pvd, vdev_t *cvd)
169fa9e4066Sahrens {
170fa9e4066Sahrens 	size_t oldsize, newsize;
171fa9e4066Sahrens 	uint64_t id = cvd->vdev_id;
172fa9e4066Sahrens 	vdev_t **newchild;
173fa9e4066Sahrens 
174fa9e4066Sahrens 	ASSERT(spa_config_held(cvd->vdev_spa, RW_WRITER));
175fa9e4066Sahrens 	ASSERT(cvd->vdev_parent == NULL);
176fa9e4066Sahrens 
177fa9e4066Sahrens 	cvd->vdev_parent = pvd;
178fa9e4066Sahrens 
179fa9e4066Sahrens 	if (pvd == NULL)
180fa9e4066Sahrens 		return;
181fa9e4066Sahrens 
182fa9e4066Sahrens 	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
183fa9e4066Sahrens 
184fa9e4066Sahrens 	oldsize = pvd->vdev_children * sizeof (vdev_t *);
185fa9e4066Sahrens 	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
186fa9e4066Sahrens 	newsize = pvd->vdev_children * sizeof (vdev_t *);
187fa9e4066Sahrens 
188fa9e4066Sahrens 	newchild = kmem_zalloc(newsize, KM_SLEEP);
189fa9e4066Sahrens 	if (pvd->vdev_child != NULL) {
190fa9e4066Sahrens 		bcopy(pvd->vdev_child, newchild, oldsize);
191fa9e4066Sahrens 		kmem_free(pvd->vdev_child, oldsize);
192fa9e4066Sahrens 	}
193fa9e4066Sahrens 
194fa9e4066Sahrens 	pvd->vdev_child = newchild;
195fa9e4066Sahrens 	pvd->vdev_child[id] = cvd;
196fa9e4066Sahrens 
197fa9e4066Sahrens 	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
198fa9e4066Sahrens 	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
199fa9e4066Sahrens 
200fa9e4066Sahrens 	/*
201fa9e4066Sahrens 	 * Walk up all ancestors to update guid sum.
202fa9e4066Sahrens 	 */
203fa9e4066Sahrens 	for (; pvd != NULL; pvd = pvd->vdev_parent)
204fa9e4066Sahrens 		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
20505b2b3b8Smishra 
20605b2b3b8Smishra 	if (cvd->vdev_ops->vdev_op_leaf)
20705b2b3b8Smishra 		cvd->vdev_spa->spa_scrub_maxinflight += zfs_scrub_limit;
208fa9e4066Sahrens }
209fa9e4066Sahrens 
210fa9e4066Sahrens void
211fa9e4066Sahrens vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
212fa9e4066Sahrens {
213fa9e4066Sahrens 	int c;
214fa9e4066Sahrens 	uint_t id = cvd->vdev_id;
215fa9e4066Sahrens 
216fa9e4066Sahrens 	ASSERT(cvd->vdev_parent == pvd);
217fa9e4066Sahrens 
218fa9e4066Sahrens 	if (pvd == NULL)
219fa9e4066Sahrens 		return;
220fa9e4066Sahrens 
221fa9e4066Sahrens 	ASSERT(id < pvd->vdev_children);
222fa9e4066Sahrens 	ASSERT(pvd->vdev_child[id] == cvd);
223fa9e4066Sahrens 
224fa9e4066Sahrens 	pvd->vdev_child[id] = NULL;
225fa9e4066Sahrens 	cvd->vdev_parent = NULL;
226fa9e4066Sahrens 
227fa9e4066Sahrens 	for (c = 0; c < pvd->vdev_children; c++)
228fa9e4066Sahrens 		if (pvd->vdev_child[c])
229fa9e4066Sahrens 			break;
230fa9e4066Sahrens 
231fa9e4066Sahrens 	if (c == pvd->vdev_children) {
232fa9e4066Sahrens 		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
233fa9e4066Sahrens 		pvd->vdev_child = NULL;
234fa9e4066Sahrens 		pvd->vdev_children = 0;
235fa9e4066Sahrens 	}
236fa9e4066Sahrens 
237fa9e4066Sahrens 	/*
238fa9e4066Sahrens 	 * Walk up all ancestors to update guid sum.
239fa9e4066Sahrens 	 */
240fa9e4066Sahrens 	for (; pvd != NULL; pvd = pvd->vdev_parent)
241fa9e4066Sahrens 		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
24205b2b3b8Smishra 
24305b2b3b8Smishra 	if (cvd->vdev_ops->vdev_op_leaf)
24405b2b3b8Smishra 		cvd->vdev_spa->spa_scrub_maxinflight -= zfs_scrub_limit;
245fa9e4066Sahrens }
246fa9e4066Sahrens 
247fa9e4066Sahrens /*
248fa9e4066Sahrens  * Remove any holes in the child array.
249fa9e4066Sahrens  */
250fa9e4066Sahrens void
251fa9e4066Sahrens vdev_compact_children(vdev_t *pvd)
252fa9e4066Sahrens {
253fa9e4066Sahrens 	vdev_t **newchild, *cvd;
254fa9e4066Sahrens 	int oldc = pvd->vdev_children;
255fa9e4066Sahrens 	int newc, c;
256fa9e4066Sahrens 
257fa9e4066Sahrens 	ASSERT(spa_config_held(pvd->vdev_spa, RW_WRITER));
258fa9e4066Sahrens 
259fa9e4066Sahrens 	for (c = newc = 0; c < oldc; c++)
260fa9e4066Sahrens 		if (pvd->vdev_child[c])
261fa9e4066Sahrens 			newc++;
262fa9e4066Sahrens 
263fa9e4066Sahrens 	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
264fa9e4066Sahrens 
265fa9e4066Sahrens 	for (c = newc = 0; c < oldc; c++) {
266fa9e4066Sahrens 		if ((cvd = pvd->vdev_child[c]) != NULL) {
267fa9e4066Sahrens 			newchild[newc] = cvd;
268fa9e4066Sahrens 			cvd->vdev_id = newc++;
269fa9e4066Sahrens 		}
270fa9e4066Sahrens 	}
271fa9e4066Sahrens 
272fa9e4066Sahrens 	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
273fa9e4066Sahrens 	pvd->vdev_child = newchild;
274fa9e4066Sahrens 	pvd->vdev_children = newc;
275fa9e4066Sahrens }
276fa9e4066Sahrens 
277fa9e4066Sahrens /*
278fa9e4066Sahrens  * Allocate and minimally initialize a vdev_t.
279fa9e4066Sahrens  */
280fa9e4066Sahrens static vdev_t *
281fa9e4066Sahrens vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
282fa9e4066Sahrens {
283fa9e4066Sahrens 	vdev_t *vd;
284fa9e4066Sahrens 
285fa9e4066Sahrens 	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
286fa9e4066Sahrens 
2870e34b6a7Sbonwick 	if (spa->spa_root_vdev == NULL) {
2880e34b6a7Sbonwick 		ASSERT(ops == &vdev_root_ops);
2890e34b6a7Sbonwick 		spa->spa_root_vdev = vd;
2900e34b6a7Sbonwick 	}
2910e34b6a7Sbonwick 
2920e34b6a7Sbonwick 	if (guid == 0) {
2930e34b6a7Sbonwick 		if (spa->spa_root_vdev == vd) {
2940e34b6a7Sbonwick 			/*
2950e34b6a7Sbonwick 			 * The root vdev's guid will also be the pool guid,
2960e34b6a7Sbonwick 			 * which must be unique among all pools.
2970e34b6a7Sbonwick 			 */
2980e34b6a7Sbonwick 			while (guid == 0 || spa_guid_exists(guid, 0))
2990e34b6a7Sbonwick 				guid = spa_get_random(-1ULL);
3000e34b6a7Sbonwick 		} else {
3010e34b6a7Sbonwick 			/*
3020e34b6a7Sbonwick 			 * Any other vdev's guid must be unique within the pool.
3030e34b6a7Sbonwick 			 */
3040e34b6a7Sbonwick 			while (guid == 0 ||
3050e34b6a7Sbonwick 			    spa_guid_exists(spa_guid(spa), guid))
3060e34b6a7Sbonwick 				guid = spa_get_random(-1ULL);
3070e34b6a7Sbonwick 		}
3080e34b6a7Sbonwick 		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
3090e34b6a7Sbonwick 	}
3100e34b6a7Sbonwick 
311fa9e4066Sahrens 	vd->vdev_spa = spa;
312fa9e4066Sahrens 	vd->vdev_id = id;
313fa9e4066Sahrens 	vd->vdev_guid = guid;
314fa9e4066Sahrens 	vd->vdev_guid_sum = guid;
315fa9e4066Sahrens 	vd->vdev_ops = ops;
316fa9e4066Sahrens 	vd->vdev_state = VDEV_STATE_CLOSED;
317fa9e4066Sahrens 
318fa9e4066Sahrens 	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
3195ad82045Snd 	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
320fa9e4066Sahrens 	space_map_create(&vd->vdev_dtl_map, 0, -1ULL, 0, &vd->vdev_dtl_lock);
321fa9e4066Sahrens 	space_map_create(&vd->vdev_dtl_scrub, 0, -1ULL, 0, &vd->vdev_dtl_lock);
322fa9e4066Sahrens 	txg_list_create(&vd->vdev_ms_list,
323fa9e4066Sahrens 	    offsetof(struct metaslab, ms_txg_node));
324fa9e4066Sahrens 	txg_list_create(&vd->vdev_dtl_list,
325fa9e4066Sahrens 	    offsetof(struct vdev, vdev_dtl_node));
326fa9e4066Sahrens 	vd->vdev_stat.vs_timestamp = gethrtime();
3273d7072f8Seschrock 	vdev_queue_init(vd);
3283d7072f8Seschrock 	vdev_cache_init(vd);
329fa9e4066Sahrens 
330fa9e4066Sahrens 	return (vd);
331fa9e4066Sahrens }
332fa9e4066Sahrens 
333fa9e4066Sahrens /*
334fa9e4066Sahrens  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
335fa9e4066Sahrens  * creating a new vdev or loading an existing one - the behavior is slightly
336fa9e4066Sahrens  * different for each case.
337fa9e4066Sahrens  */
33899653d4eSeschrock int
33999653d4eSeschrock vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
34099653d4eSeschrock     int alloctype)
341fa9e4066Sahrens {
342fa9e4066Sahrens 	vdev_ops_t *ops;
343fa9e4066Sahrens 	char *type;
3448654d025Sperrin 	uint64_t guid = 0, islog, nparity;
345fa9e4066Sahrens 	vdev_t *vd;
346fa9e4066Sahrens 
347fa9e4066Sahrens 	ASSERT(spa_config_held(spa, RW_WRITER));
348fa9e4066Sahrens 
349fa9e4066Sahrens 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
35099653d4eSeschrock 		return (EINVAL);
351fa9e4066Sahrens 
352fa9e4066Sahrens 	if ((ops = vdev_getops(type)) == NULL)
35399653d4eSeschrock 		return (EINVAL);
354fa9e4066Sahrens 
355fa9e4066Sahrens 	/*
356fa9e4066Sahrens 	 * If this is a load, get the vdev guid from the nvlist.
357fa9e4066Sahrens 	 * Otherwise, vdev_alloc_common() will generate one for us.
358fa9e4066Sahrens 	 */
359fa9e4066Sahrens 	if (alloctype == VDEV_ALLOC_LOAD) {
360fa9e4066Sahrens 		uint64_t label_id;
361fa9e4066Sahrens 
362fa9e4066Sahrens 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
363fa9e4066Sahrens 		    label_id != id)
36499653d4eSeschrock 			return (EINVAL);
365fa9e4066Sahrens 
366fa9e4066Sahrens 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
36799653d4eSeschrock 			return (EINVAL);
36899653d4eSeschrock 	} else if (alloctype == VDEV_ALLOC_SPARE) {
36999653d4eSeschrock 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
37099653d4eSeschrock 			return (EINVAL);
371fa94a07fSbrendan 	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
372fa94a07fSbrendan 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
373fa94a07fSbrendan 			return (EINVAL);
374fa9e4066Sahrens 	}
375fa9e4066Sahrens 
37699653d4eSeschrock 	/*
37799653d4eSeschrock 	 * The first allocated vdev must be of type 'root'.
37899653d4eSeschrock 	 */
37999653d4eSeschrock 	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
38099653d4eSeschrock 		return (EINVAL);
38199653d4eSeschrock 
3828654d025Sperrin 	/*
3838654d025Sperrin 	 * Determine whether we're a log vdev.
3848654d025Sperrin 	 */
3858654d025Sperrin 	islog = 0;
3868654d025Sperrin 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
387990b4856Slling 	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
3888654d025Sperrin 		return (ENOTSUP);
389fa9e4066Sahrens 
39099653d4eSeschrock 	/*
3918654d025Sperrin 	 * Set the nparity property for RAID-Z vdevs.
39299653d4eSeschrock 	 */
3938654d025Sperrin 	nparity = -1ULL;
39499653d4eSeschrock 	if (ops == &vdev_raidz_ops) {
39599653d4eSeschrock 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
3968654d025Sperrin 		    &nparity) == 0) {
39799653d4eSeschrock 			/*
39899653d4eSeschrock 			 * Currently, we can only support 2 parity devices.
39999653d4eSeschrock 			 */
4008654d025Sperrin 			if (nparity == 0 || nparity > 2)
40199653d4eSeschrock 				return (EINVAL);
40299653d4eSeschrock 			/*
40399653d4eSeschrock 			 * Older versions can only support 1 parity device.
40499653d4eSeschrock 			 */
4058654d025Sperrin 			if (nparity == 2 &&
406e7437265Sahrens 			    spa_version(spa) < SPA_VERSION_RAID6)
40799653d4eSeschrock 				return (ENOTSUP);
40899653d4eSeschrock 		} else {
40999653d4eSeschrock 			/*
41099653d4eSeschrock 			 * We require the parity to be specified for SPAs that
41199653d4eSeschrock 			 * support multiple parity levels.
41299653d4eSeschrock 			 */
413e7437265Sahrens 			if (spa_version(spa) >= SPA_VERSION_RAID6)
41499653d4eSeschrock 				return (EINVAL);
41599653d4eSeschrock 			/*
41699653d4eSeschrock 			 * Otherwise, we default to 1 parity device for RAID-Z.
41799653d4eSeschrock 			 */
4188654d025Sperrin 			nparity = 1;
41999653d4eSeschrock 		}
42099653d4eSeschrock 	} else {
4218654d025Sperrin 		nparity = 0;
42299653d4eSeschrock 	}
4238654d025Sperrin 	ASSERT(nparity != -1ULL);
4248654d025Sperrin 
4258654d025Sperrin 	vd = vdev_alloc_common(spa, id, guid, ops);
4268654d025Sperrin 
4278654d025Sperrin 	vd->vdev_islog = islog;
4288654d025Sperrin 	vd->vdev_nparity = nparity;
4298654d025Sperrin 
4308654d025Sperrin 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
4318654d025Sperrin 		vd->vdev_path = spa_strdup(vd->vdev_path);
4328654d025Sperrin 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
4338654d025Sperrin 		vd->vdev_devid = spa_strdup(vd->vdev_devid);
4348654d025Sperrin 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
4358654d025Sperrin 	    &vd->vdev_physpath) == 0)
4368654d025Sperrin 		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
43799653d4eSeschrock 
438afefbcddSeschrock 	/*
439afefbcddSeschrock 	 * Set the whole_disk property.  If it's not specified, leave the value
440afefbcddSeschrock 	 * as -1.
441afefbcddSeschrock 	 */
442afefbcddSeschrock 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
443afefbcddSeschrock 	    &vd->vdev_wholedisk) != 0)
444afefbcddSeschrock 		vd->vdev_wholedisk = -1ULL;
445afefbcddSeschrock 
446ea8dc4b6Seschrock 	/*
447ea8dc4b6Seschrock 	 * Look for the 'not present' flag.  This will only be set if the device
448ea8dc4b6Seschrock 	 * was not present at the time of import.
449ea8dc4b6Seschrock 	 */
450c5904d13Seschrock 	if (!spa->spa_import_faulted)
451c5904d13Seschrock 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
452c5904d13Seschrock 		    &vd->vdev_not_present);
453ea8dc4b6Seschrock 
454ecc2d604Sbonwick 	/*
455ecc2d604Sbonwick 	 * Get the alignment requirement.
456ecc2d604Sbonwick 	 */
457ecc2d604Sbonwick 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
458ecc2d604Sbonwick 
459fa9e4066Sahrens 	/*
460fa9e4066Sahrens 	 * If we're a top-level vdev, try to load the allocation parameters.
461fa9e4066Sahrens 	 */
462fa9e4066Sahrens 	if (parent && !parent->vdev_parent && alloctype == VDEV_ALLOC_LOAD) {
463fa9e4066Sahrens 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
464fa9e4066Sahrens 		    &vd->vdev_ms_array);
465fa9e4066Sahrens 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
466fa9e4066Sahrens 		    &vd->vdev_ms_shift);
467fa9e4066Sahrens 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
468fa9e4066Sahrens 		    &vd->vdev_asize);
469fa9e4066Sahrens 	}
470fa9e4066Sahrens 
471fa9e4066Sahrens 	/*
4723d7072f8Seschrock 	 * If we're a leaf vdev, try to load the DTL object and other state.
473fa9e4066Sahrens 	 */
474c5904d13Seschrock 	if (vd->vdev_ops->vdev_op_leaf &&
475c5904d13Seschrock 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE)) {
476c5904d13Seschrock 		if (alloctype == VDEV_ALLOC_LOAD) {
477c5904d13Seschrock 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
478c5904d13Seschrock 			    &vd->vdev_dtl.smo_object);
479c5904d13Seschrock 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
480c5904d13Seschrock 			    &vd->vdev_unspare);
481c5904d13Seschrock 		}
482ecc2d604Sbonwick 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
483ecc2d604Sbonwick 		    &vd->vdev_offline);
484c5904d13Seschrock 
4853d7072f8Seschrock 		/*
4863d7072f8Seschrock 		 * When importing a pool, we want to ignore the persistent fault
4873d7072f8Seschrock 		 * state, as the diagnosis made on another system may not be
4883d7072f8Seschrock 		 * valid in the current context.
4893d7072f8Seschrock 		 */
4903d7072f8Seschrock 		if (spa->spa_load_state == SPA_LOAD_OPEN) {
4913d7072f8Seschrock 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
4923d7072f8Seschrock 			    &vd->vdev_faulted);
4933d7072f8Seschrock 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
4943d7072f8Seschrock 			    &vd->vdev_degraded);
4953d7072f8Seschrock 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
4963d7072f8Seschrock 			    &vd->vdev_removed);
4973d7072f8Seschrock 		}
498fa9e4066Sahrens 	}
499fa9e4066Sahrens 
500fa9e4066Sahrens 	/*
501fa9e4066Sahrens 	 * Add ourselves to the parent's list of children.
502fa9e4066Sahrens 	 */
503fa9e4066Sahrens 	vdev_add_child(parent, vd);
504fa9e4066Sahrens 
50599653d4eSeschrock 	*vdp = vd;
50699653d4eSeschrock 
50799653d4eSeschrock 	return (0);
508fa9e4066Sahrens }
509fa9e4066Sahrens 
510fa9e4066Sahrens void
511fa9e4066Sahrens vdev_free(vdev_t *vd)
512fa9e4066Sahrens {
513fa9e4066Sahrens 	int c;
5143d7072f8Seschrock 	spa_t *spa = vd->vdev_spa;
515fa9e4066Sahrens 
516fa9e4066Sahrens 	/*
517fa9e4066Sahrens 	 * vdev_free() implies closing the vdev first.  This is simpler than
518fa9e4066Sahrens 	 * trying to ensure complicated semantics for all callers.
519fa9e4066Sahrens 	 */
520fa9e4066Sahrens 	vdev_close(vd);
521fa9e4066Sahrens 
5223d7072f8Seschrock 
523ecc2d604Sbonwick 	ASSERT(!list_link_active(&vd->vdev_dirty_node));
524fa9e4066Sahrens 
525fa9e4066Sahrens 	/*
526fa9e4066Sahrens 	 * Free all children.
527fa9e4066Sahrens 	 */
528fa9e4066Sahrens 	for (c = 0; c < vd->vdev_children; c++)
529fa9e4066Sahrens 		vdev_free(vd->vdev_child[c]);
530fa9e4066Sahrens 
531fa9e4066Sahrens 	ASSERT(vd->vdev_child == NULL);
532fa9e4066Sahrens 	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
533fa9e4066Sahrens 
534fa9e4066Sahrens 	/*
535fa9e4066Sahrens 	 * Discard allocation state.
536fa9e4066Sahrens 	 */
537fa9e4066Sahrens 	if (vd == vd->vdev_top)
538fa9e4066Sahrens 		vdev_metaslab_fini(vd);
539fa9e4066Sahrens 
540fa9e4066Sahrens 	ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
54199653d4eSeschrock 	ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
542fa9e4066Sahrens 	ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
543fa9e4066Sahrens 
544fa9e4066Sahrens 	/*
545fa9e4066Sahrens 	 * Remove this vdev from its parent's child list.
546fa9e4066Sahrens 	 */
547fa9e4066Sahrens 	vdev_remove_child(vd->vdev_parent, vd);
548fa9e4066Sahrens 
549fa9e4066Sahrens 	ASSERT(vd->vdev_parent == NULL);
550fa9e4066Sahrens 
5513d7072f8Seschrock 	/*
5523d7072f8Seschrock 	 * Clean up vdev structure.
5533d7072f8Seschrock 	 */
5543d7072f8Seschrock 	vdev_queue_fini(vd);
5553d7072f8Seschrock 	vdev_cache_fini(vd);
5563d7072f8Seschrock 
5573d7072f8Seschrock 	if (vd->vdev_path)
5583d7072f8Seschrock 		spa_strfree(vd->vdev_path);
5593d7072f8Seschrock 	if (vd->vdev_devid)
5603d7072f8Seschrock 		spa_strfree(vd->vdev_devid);
5613d7072f8Seschrock 	if (vd->vdev_physpath)
5623d7072f8Seschrock 		spa_strfree(vd->vdev_physpath);
5633d7072f8Seschrock 
5643d7072f8Seschrock 	if (vd->vdev_isspare)
5653d7072f8Seschrock 		spa_spare_remove(vd);
566fa94a07fSbrendan 	if (vd->vdev_isl2cache)
567fa94a07fSbrendan 		spa_l2cache_remove(vd);
5683d7072f8Seschrock 
5693d7072f8Seschrock 	txg_list_destroy(&vd->vdev_ms_list);
5703d7072f8Seschrock 	txg_list_destroy(&vd->vdev_dtl_list);
5713d7072f8Seschrock 	mutex_enter(&vd->vdev_dtl_lock);
5723d7072f8Seschrock 	space_map_unload(&vd->vdev_dtl_map);
5733d7072f8Seschrock 	space_map_destroy(&vd->vdev_dtl_map);
5743d7072f8Seschrock 	space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL);
5753d7072f8Seschrock 	space_map_destroy(&vd->vdev_dtl_scrub);
5763d7072f8Seschrock 	mutex_exit(&vd->vdev_dtl_lock);
5773d7072f8Seschrock 	mutex_destroy(&vd->vdev_dtl_lock);
5783d7072f8Seschrock 	mutex_destroy(&vd->vdev_stat_lock);
5793d7072f8Seschrock 
5803d7072f8Seschrock 	if (vd == spa->spa_root_vdev)
5813d7072f8Seschrock 		spa->spa_root_vdev = NULL;
5823d7072f8Seschrock 
5833d7072f8Seschrock 	kmem_free(vd, sizeof (vdev_t));
584fa9e4066Sahrens }
585fa9e4066Sahrens 
586fa9e4066Sahrens /*
587fa9e4066Sahrens  * Transfer top-level vdev state from svd to tvd.
588fa9e4066Sahrens  */
589fa9e4066Sahrens static void
590fa9e4066Sahrens vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
591fa9e4066Sahrens {
592fa9e4066Sahrens 	spa_t *spa = svd->vdev_spa;
593fa9e4066Sahrens 	metaslab_t *msp;
594fa9e4066Sahrens 	vdev_t *vd;
595fa9e4066Sahrens 	int t;
596fa9e4066Sahrens 
597fa9e4066Sahrens 	ASSERT(tvd == tvd->vdev_top);
598fa9e4066Sahrens 
599fa9e4066Sahrens 	tvd->vdev_ms_array = svd->vdev_ms_array;
600fa9e4066Sahrens 	tvd->vdev_ms_shift = svd->vdev_ms_shift;
601fa9e4066Sahrens 	tvd->vdev_ms_count = svd->vdev_ms_count;
602fa9e4066Sahrens 
603fa9e4066Sahrens 	svd->vdev_ms_array = 0;
604fa9e4066Sahrens 	svd->vdev_ms_shift = 0;
605fa9e4066Sahrens 	svd->vdev_ms_count = 0;
606fa9e4066Sahrens 
607fa9e4066Sahrens 	tvd->vdev_mg = svd->vdev_mg;
608fa9e4066Sahrens 	tvd->vdev_ms = svd->vdev_ms;
609fa9e4066Sahrens 
610fa9e4066Sahrens 	svd->vdev_mg = NULL;
611fa9e4066Sahrens 	svd->vdev_ms = NULL;
612ecc2d604Sbonwick 
613ecc2d604Sbonwick 	if (tvd->vdev_mg != NULL)
614ecc2d604Sbonwick 		tvd->vdev_mg->mg_vd = tvd;
615fa9e4066Sahrens 
616fa9e4066Sahrens 	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
617fa9e4066Sahrens 	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
61899653d4eSeschrock 	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
619fa9e4066Sahrens 
620fa9e4066Sahrens 	svd->vdev_stat.vs_alloc = 0;
621fa9e4066Sahrens 	svd->vdev_stat.vs_space = 0;
62299653d4eSeschrock 	svd->vdev_stat.vs_dspace = 0;
623fa9e4066Sahrens 
624fa9e4066Sahrens 	for (t = 0; t < TXG_SIZE; t++) {
625fa9e4066Sahrens 		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
626fa9e4066Sahrens 			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
627fa9e4066Sahrens 		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
628fa9e4066Sahrens 			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
629fa9e4066Sahrens 		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
630fa9e4066Sahrens 			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
631fa9e4066Sahrens 	}
632fa9e4066Sahrens 
633ecc2d604Sbonwick 	if (list_link_active(&svd->vdev_dirty_node)) {
634fa9e4066Sahrens 		vdev_config_clean(svd);
635fa9e4066Sahrens 		vdev_config_dirty(tvd);
636fa9e4066Sahrens 	}
637fa9e4066Sahrens 
63899653d4eSeschrock 	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
63999653d4eSeschrock 	svd->vdev_deflate_ratio = 0;
6408654d025Sperrin 
6418654d025Sperrin 	tvd->vdev_islog = svd->vdev_islog;
6428654d025Sperrin 	svd->vdev_islog = 0;
643fa9e4066Sahrens }
644fa9e4066Sahrens 
645fa9e4066Sahrens static void
646fa9e4066Sahrens vdev_top_update(vdev_t *tvd, vdev_t *vd)
647fa9e4066Sahrens {
648fa9e4066Sahrens 	int c;
649fa9e4066Sahrens 
650fa9e4066Sahrens 	if (vd == NULL)
651fa9e4066Sahrens 		return;
652fa9e4066Sahrens 
653fa9e4066Sahrens 	vd->vdev_top = tvd;
654fa9e4066Sahrens 
655fa9e4066Sahrens 	for (c = 0; c < vd->vdev_children; c++)
656fa9e4066Sahrens 		vdev_top_update(tvd, vd->vdev_child[c]);
657fa9e4066Sahrens }
658fa9e4066Sahrens 
659fa9e4066Sahrens /*
660fa9e4066Sahrens  * Add a mirror/replacing vdev above an existing vdev.
661fa9e4066Sahrens  */
662fa9e4066Sahrens vdev_t *
663fa9e4066Sahrens vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
664fa9e4066Sahrens {
665fa9e4066Sahrens 	spa_t *spa = cvd->vdev_spa;
666fa9e4066Sahrens 	vdev_t *pvd = cvd->vdev_parent;
667fa9e4066Sahrens 	vdev_t *mvd;
668fa9e4066Sahrens 
669fa9e4066Sahrens 	ASSERT(spa_config_held(spa, RW_WRITER));
670fa9e4066Sahrens 
671fa9e4066Sahrens 	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
672ecc2d604Sbonwick 
673ecc2d604Sbonwick 	mvd->vdev_asize = cvd->vdev_asize;
674ecc2d604Sbonwick 	mvd->vdev_ashift = cvd->vdev_ashift;
675ecc2d604Sbonwick 	mvd->vdev_state = cvd->vdev_state;
676ecc2d604Sbonwick 
677fa9e4066Sahrens 	vdev_remove_child(pvd, cvd);
678fa9e4066Sahrens 	vdev_add_child(pvd, mvd);
679fa9e4066Sahrens 	cvd->vdev_id = mvd->vdev_children;
680fa9e4066Sahrens 	vdev_add_child(mvd, cvd);
681fa9e4066Sahrens 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
682fa9e4066Sahrens 
683fa9e4066Sahrens 	if (mvd == mvd->vdev_top)
684fa9e4066Sahrens 		vdev_top_transfer(cvd, mvd);
685fa9e4066Sahrens 
686fa9e4066Sahrens 	return (mvd);
687fa9e4066Sahrens }
688fa9e4066Sahrens 
689fa9e4066Sahrens /*
690fa9e4066Sahrens  * Remove a 1-way mirror/replacing vdev from the tree.
691fa9e4066Sahrens  */
692fa9e4066Sahrens void
693fa9e4066Sahrens vdev_remove_parent(vdev_t *cvd)
694fa9e4066Sahrens {
695fa9e4066Sahrens 	vdev_t *mvd = cvd->vdev_parent;
696fa9e4066Sahrens 	vdev_t *pvd = mvd->vdev_parent;
697fa9e4066Sahrens 
698fa9e4066Sahrens 	ASSERT(spa_config_held(cvd->vdev_spa, RW_WRITER));
699fa9e4066Sahrens 
700fa9e4066Sahrens 	ASSERT(mvd->vdev_children == 1);
701fa9e4066Sahrens 	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
70299653d4eSeschrock 	    mvd->vdev_ops == &vdev_replacing_ops ||
70399653d4eSeschrock 	    mvd->vdev_ops == &vdev_spare_ops);
704ecc2d604Sbonwick 	cvd->vdev_ashift = mvd->vdev_ashift;
705fa9e4066Sahrens 
706fa9e4066Sahrens 	vdev_remove_child(mvd, cvd);
707fa9e4066Sahrens 	vdev_remove_child(pvd, mvd);
708fa9e4066Sahrens 	cvd->vdev_id = mvd->vdev_id;
709fa9e4066Sahrens 	vdev_add_child(pvd, cvd);
71099653d4eSeschrock 	/*
71199653d4eSeschrock 	 * If we created a new toplevel vdev, then we need to change the child's
71299653d4eSeschrock 	 * vdev GUID to match the old toplevel vdev.  Otherwise, we could have
71399653d4eSeschrock 	 * detached an offline device, and when we go to import the pool we'll
71499653d4eSeschrock 	 * think we have two toplevel vdevs, instead of a different version of
71599653d4eSeschrock 	 * the same toplevel vdev.
71699653d4eSeschrock 	 */
71799653d4eSeschrock 	if (cvd->vdev_top == cvd) {
71899653d4eSeschrock 		pvd->vdev_guid_sum -= cvd->vdev_guid;
71999653d4eSeschrock 		cvd->vdev_guid_sum -= cvd->vdev_guid;
72099653d4eSeschrock 		cvd->vdev_guid = mvd->vdev_guid;
72199653d4eSeschrock 		cvd->vdev_guid_sum += mvd->vdev_guid;
72299653d4eSeschrock 		pvd->vdev_guid_sum += cvd->vdev_guid;
72399653d4eSeschrock 	}
724fa9e4066Sahrens 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
725fa9e4066Sahrens 
726fa9e4066Sahrens 	if (cvd == cvd->vdev_top)
727fa9e4066Sahrens 		vdev_top_transfer(mvd, cvd);
728fa9e4066Sahrens 
729fa9e4066Sahrens 	ASSERT(mvd->vdev_children == 0);
730fa9e4066Sahrens 	vdev_free(mvd);
731fa9e4066Sahrens }
732fa9e4066Sahrens 
733ea8dc4b6Seschrock int
734fa9e4066Sahrens vdev_metaslab_init(vdev_t *vd, uint64_t txg)
735fa9e4066Sahrens {
736fa9e4066Sahrens 	spa_t *spa = vd->vdev_spa;
737ecc2d604Sbonwick 	objset_t *mos = spa->spa_meta_objset;
7388654d025Sperrin 	metaslab_class_t *mc;
739ecc2d604Sbonwick 	uint64_t m;
740fa9e4066Sahrens 	uint64_t oldc = vd->vdev_ms_count;
741fa9e4066Sahrens 	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
742ecc2d604Sbonwick 	metaslab_t **mspp;
743ecc2d604Sbonwick 	int error;
744fa9e4066Sahrens 
7450e34b6a7Sbonwick 	if (vd->vdev_ms_shift == 0)	/* not being allocated from yet */
7460e34b6a7Sbonwick 		return (0);
7470e34b6a7Sbonwick 
748fa9e4066Sahrens 	dprintf("%s oldc %llu newc %llu\n", vdev_description(vd), oldc, newc);
749fa9e4066Sahrens 
750fa9e4066Sahrens 	ASSERT(oldc <= newc);
751fa9e4066Sahrens 
7528654d025Sperrin 	if (vd->vdev_islog)
7538654d025Sperrin 		mc = spa->spa_log_class;
7548654d025Sperrin 	else
7558654d025Sperrin 		mc = spa->spa_normal_class;
7568654d025Sperrin 
757ecc2d604Sbonwick 	if (vd->vdev_mg == NULL)
758ecc2d604Sbonwick 		vd->vdev_mg = metaslab_group_create(mc, vd);
759fa9e4066Sahrens 
760ecc2d604Sbonwick 	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
761fa9e4066Sahrens 
762ecc2d604Sbonwick 	if (oldc != 0) {
763ecc2d604Sbonwick 		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
764ecc2d604Sbonwick 		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
765ecc2d604Sbonwick 	}
766fa9e4066Sahrens 
767ecc2d604Sbonwick 	vd->vdev_ms = mspp;
768ecc2d604Sbonwick 	vd->vdev_ms_count = newc;
769fa9e4066Sahrens 
770ecc2d604Sbonwick 	for (m = oldc; m < newc; m++) {
771ecc2d604Sbonwick 		space_map_obj_t smo = { 0, 0, 0 };
772ecc2d604Sbonwick 		if (txg == 0) {
773ecc2d604Sbonwick 			uint64_t object = 0;
774ecc2d604Sbonwick 			error = dmu_read(mos, vd->vdev_ms_array,
775ecc2d604Sbonwick 			    m * sizeof (uint64_t), sizeof (uint64_t), &object);
776ecc2d604Sbonwick 			if (error)
777ecc2d604Sbonwick 				return (error);
778ecc2d604Sbonwick 			if (object != 0) {
779ecc2d604Sbonwick 				dmu_buf_t *db;
780ecc2d604Sbonwick 				error = dmu_bonus_hold(mos, object, FTAG, &db);
781ecc2d604Sbonwick 				if (error)
782ecc2d604Sbonwick 					return (error);
7831934e92fSmaybee 				ASSERT3U(db->db_size, >=, sizeof (smo));
7841934e92fSmaybee 				bcopy(db->db_data, &smo, sizeof (smo));
785ecc2d604Sbonwick 				ASSERT3U(smo.smo_object, ==, object);
786ea8dc4b6Seschrock 				dmu_buf_rele(db, FTAG);
787fa9e4066Sahrens 			}
788fa9e4066Sahrens 		}
789ecc2d604Sbonwick 		vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
790ecc2d604Sbonwick 		    m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
791fa9e4066Sahrens 	}
792fa9e4066Sahrens 
793ea8dc4b6Seschrock 	return (0);
794fa9e4066Sahrens }
795fa9e4066Sahrens 
796fa9e4066Sahrens void
797fa9e4066Sahrens vdev_metaslab_fini(vdev_t *vd)
798fa9e4066Sahrens {
799fa9e4066Sahrens 	uint64_t m;
800fa9e4066Sahrens 	uint64_t count = vd->vdev_ms_count;
801fa9e4066Sahrens 
802fa9e4066Sahrens 	if (vd->vdev_ms != NULL) {
803fa9e4066Sahrens 		for (m = 0; m < count; m++)
804ecc2d604Sbonwick 			if (vd->vdev_ms[m] != NULL)
805ecc2d604Sbonwick 				metaslab_fini(vd->vdev_ms[m]);
806fa9e4066Sahrens 		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
807fa9e4066Sahrens 		vd->vdev_ms = NULL;
808fa9e4066Sahrens 	}
809fa9e4066Sahrens }
810fa9e4066Sahrens 
8110a4e9518Sgw int
8120a4e9518Sgw vdev_probe(vdev_t *vd)
8130a4e9518Sgw {
8140a4e9518Sgw 	if (vd == NULL)
8150a4e9518Sgw 		return (EINVAL);
8160a4e9518Sgw 
8170a4e9518Sgw 	/*
8180a4e9518Sgw 	 * Right now we only support status checks on the leaf vdevs.
8190a4e9518Sgw 	 */
8200a4e9518Sgw 	if (vd->vdev_ops->vdev_op_leaf)
8210a4e9518Sgw 		return (vd->vdev_ops->vdev_op_probe(vd));
8220a4e9518Sgw 
8230a4e9518Sgw 	return (0);
8240a4e9518Sgw }
8250a4e9518Sgw 
826fa9e4066Sahrens /*
827fa9e4066Sahrens  * Prepare a virtual device for access.
828fa9e4066Sahrens  */
829fa9e4066Sahrens int
830fa9e4066Sahrens vdev_open(vdev_t *vd)
831fa9e4066Sahrens {
832fa9e4066Sahrens 	int error;
833fa9e4066Sahrens 	int c;
834fa9e4066Sahrens 	uint64_t osize = 0;
835fa9e4066Sahrens 	uint64_t asize, psize;
836ecc2d604Sbonwick 	uint64_t ashift = 0;
837fa9e4066Sahrens 
838fa9e4066Sahrens 	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
839fa9e4066Sahrens 	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
840fa9e4066Sahrens 	    vd->vdev_state == VDEV_STATE_OFFLINE);
841fa9e4066Sahrens 
842fa9e4066Sahrens 	if (vd->vdev_fault_mode == VDEV_FAULT_COUNT)
843fa9e4066Sahrens 		vd->vdev_fault_arg >>= 1;
844fa9e4066Sahrens 	else
845fa9e4066Sahrens 		vd->vdev_fault_mode = VDEV_FAULT_NONE;
846fa9e4066Sahrens 
847fa9e4066Sahrens 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
848fa9e4066Sahrens 
8493d7072f8Seschrock 	if (!vd->vdev_removed && vd->vdev_faulted) {
8503d7072f8Seschrock 		ASSERT(vd->vdev_children == 0);
8513d7072f8Seschrock 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
8523d7072f8Seschrock 		    VDEV_AUX_ERR_EXCEEDED);
8533d7072f8Seschrock 		return (ENXIO);
8543d7072f8Seschrock 	} else if (vd->vdev_offline) {
855fa9e4066Sahrens 		ASSERT(vd->vdev_children == 0);
856ea8dc4b6Seschrock 		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
857fa9e4066Sahrens 		return (ENXIO);
858fa9e4066Sahrens 	}
859fa9e4066Sahrens 
860fa9e4066Sahrens 	error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift);
861fa9e4066Sahrens 
862ea8dc4b6Seschrock 	if (zio_injection_enabled && error == 0)
863ea8dc4b6Seschrock 		error = zio_handle_device_injection(vd, ENXIO);
864ea8dc4b6Seschrock 
865fa9e4066Sahrens 	if (error) {
8663d7072f8Seschrock 		if (vd->vdev_removed &&
8673d7072f8Seschrock 		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
8683d7072f8Seschrock 			vd->vdev_removed = B_FALSE;
8693d7072f8Seschrock 
870ea8dc4b6Seschrock 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
871fa9e4066Sahrens 		    vd->vdev_stat.vs_aux);
872fa9e4066Sahrens 		return (error);
873fa9e4066Sahrens 	}
874fa9e4066Sahrens 
8753d7072f8Seschrock 	vd->vdev_removed = B_FALSE;
8763d7072f8Seschrock 
8773d7072f8Seschrock 	if (vd->vdev_degraded) {
8783d7072f8Seschrock 		ASSERT(vd->vdev_children == 0);
8793d7072f8Seschrock 		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
8803d7072f8Seschrock 		    VDEV_AUX_ERR_EXCEEDED);
8813d7072f8Seschrock 	} else {
8823d7072f8Seschrock 		vd->vdev_state = VDEV_STATE_HEALTHY;
8833d7072f8Seschrock 	}
884fa9e4066Sahrens 
885fa9e4066Sahrens 	for (c = 0; c < vd->vdev_children; c++)
886ea8dc4b6Seschrock 		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
887ea8dc4b6Seschrock 			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
888ea8dc4b6Seschrock 			    VDEV_AUX_NONE);
889ea8dc4b6Seschrock 			break;
890ea8dc4b6Seschrock 		}
891fa9e4066Sahrens 
892fa9e4066Sahrens 	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
893fa9e4066Sahrens 
894fa9e4066Sahrens 	if (vd->vdev_children == 0) {
895fa9e4066Sahrens 		if (osize < SPA_MINDEVSIZE) {
896ea8dc4b6Seschrock 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
897ea8dc4b6Seschrock 			    VDEV_AUX_TOO_SMALL);
898fa9e4066Sahrens 			return (EOVERFLOW);
899fa9e4066Sahrens 		}
900fa9e4066Sahrens 		psize = osize;
901fa9e4066Sahrens 		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
902fa9e4066Sahrens 	} else {
903ecc2d604Sbonwick 		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
904fa9e4066Sahrens 		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
905ea8dc4b6Seschrock 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
906ea8dc4b6Seschrock 			    VDEV_AUX_TOO_SMALL);
907fa9e4066Sahrens 			return (EOVERFLOW);
908fa9e4066Sahrens 		}
909fa9e4066Sahrens 		psize = 0;
910fa9e4066Sahrens 		asize = osize;
911fa9e4066Sahrens 	}
912fa9e4066Sahrens 
913fa9e4066Sahrens 	vd->vdev_psize = psize;
914fa9e4066Sahrens 
915fa9e4066Sahrens 	if (vd->vdev_asize == 0) {
916fa9e4066Sahrens 		/*
917fa9e4066Sahrens 		 * This is the first-ever open, so use the computed values.
918ecc2d604Sbonwick 		 * For testing purposes, a higher ashift can be requested.
919fa9e4066Sahrens 		 */
920fa9e4066Sahrens 		vd->vdev_asize = asize;
921ecc2d604Sbonwick 		vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
922fa9e4066Sahrens 	} else {
923fa9e4066Sahrens 		/*
924fa9e4066Sahrens 		 * Make sure the alignment requirement hasn't increased.
925fa9e4066Sahrens 		 */
926ecc2d604Sbonwick 		if (ashift > vd->vdev_top->vdev_ashift) {
927ea8dc4b6Seschrock 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
928ea8dc4b6Seschrock 			    VDEV_AUX_BAD_LABEL);
929fa9e4066Sahrens 			return (EINVAL);
930fa9e4066Sahrens 		}
931fa9e4066Sahrens 
932fa9e4066Sahrens 		/*
933fa9e4066Sahrens 		 * Make sure the device hasn't shrunk.
934fa9e4066Sahrens 		 */
935fa9e4066Sahrens 		if (asize < vd->vdev_asize) {
936ea8dc4b6Seschrock 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
937ea8dc4b6Seschrock 			    VDEV_AUX_BAD_LABEL);
938fa9e4066Sahrens 			return (EINVAL);
939fa9e4066Sahrens 		}
940fa9e4066Sahrens 
941fa9e4066Sahrens 		/*
942fa9e4066Sahrens 		 * If all children are healthy and the asize has increased,
943fa9e4066Sahrens 		 * then we've experienced dynamic LUN growth.
944fa9e4066Sahrens 		 */
945fa9e4066Sahrens 		if (vd->vdev_state == VDEV_STATE_HEALTHY &&
946fa9e4066Sahrens 		    asize > vd->vdev_asize) {
947fa9e4066Sahrens 			vd->vdev_asize = asize;
948fa9e4066Sahrens 		}
949fa9e4066Sahrens 	}
950fa9e4066Sahrens 
9510a4e9518Sgw 	/*
9520a4e9518Sgw 	 * Ensure we can issue some IO before declaring the
9530a4e9518Sgw 	 * vdev open for business.
9540a4e9518Sgw 	 */
9550a4e9518Sgw 	error = vdev_probe(vd);
9560a4e9518Sgw 	if (error) {
9570a4e9518Sgw 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
9580a4e9518Sgw 		    VDEV_AUX_OPEN_FAILED);
9590a4e9518Sgw 		return (error);
9600a4e9518Sgw 	}
9610a4e9518Sgw 
96299653d4eSeschrock 	/*
96399653d4eSeschrock 	 * If this is a top-level vdev, compute the raidz-deflation
96499653d4eSeschrock 	 * ratio.  Note, we hard-code in 128k (1<<17) because it is the
96599653d4eSeschrock 	 * current "typical" blocksize.  Even if SPA_MAXBLOCKSIZE
96699653d4eSeschrock 	 * changes, this algorithm must never change, or we will
96799653d4eSeschrock 	 * inconsistently account for existing bp's.
96899653d4eSeschrock 	 */
96999653d4eSeschrock 	if (vd->vdev_top == vd) {
97099653d4eSeschrock 		vd->vdev_deflate_ratio = (1<<17) /
97199653d4eSeschrock 		    (vdev_psize_to_asize(vd, 1<<17) >> SPA_MINBLOCKSHIFT);
97299653d4eSeschrock 	}
97399653d4eSeschrock 
974*088f3894Sahrens 	/*
975*088f3894Sahrens 	 * If a leaf vdev has a DTL, and seems healthy, then kick off a
976*088f3894Sahrens 	 * resilver.  But don't do this if we are doing a reopen for a
977*088f3894Sahrens 	 * scrub, since this would just restart the scrub we are already
978*088f3894Sahrens 	 * doing.
979*088f3894Sahrens 	 */
980*088f3894Sahrens 	if (vd->vdev_children == 0 && !vd->vdev_spa->spa_scrub_reopen) {
981*088f3894Sahrens 		mutex_enter(&vd->vdev_dtl_lock);
982*088f3894Sahrens 		if (vd->vdev_dtl_map.sm_space != 0 && vdev_writeable(vd))
983*088f3894Sahrens 			spa_async_request(vd->vdev_spa, SPA_ASYNC_RESILVER);
984*088f3894Sahrens 		mutex_exit(&vd->vdev_dtl_lock);
985*088f3894Sahrens 	}
986*088f3894Sahrens 
987fa9e4066Sahrens 	return (0);
988fa9e4066Sahrens }
989fa9e4066Sahrens 
990560e6e96Seschrock /*
991560e6e96Seschrock  * Called once the vdevs are all opened, this routine validates the label
992560e6e96Seschrock  * contents.  This needs to be done before vdev_load() so that we don't
9933d7072f8Seschrock  * inadvertently do repair I/Os to the wrong device.
994560e6e96Seschrock  *
995560e6e96Seschrock  * This function will only return failure if one of the vdevs indicates that it
996560e6e96Seschrock  * has since been destroyed or exported.  This is only possible if
997560e6e96Seschrock  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
998560e6e96Seschrock  * will be updated but the function will return 0.
999560e6e96Seschrock  */
1000560e6e96Seschrock int
1001560e6e96Seschrock vdev_validate(vdev_t *vd)
1002560e6e96Seschrock {
1003560e6e96Seschrock 	spa_t *spa = vd->vdev_spa;
1004560e6e96Seschrock 	int c;
1005560e6e96Seschrock 	nvlist_t *label;
1006560e6e96Seschrock 	uint64_t guid;
1007560e6e96Seschrock 	uint64_t state;
1008560e6e96Seschrock 
1009560e6e96Seschrock 	for (c = 0; c < vd->vdev_children; c++)
1010560e6e96Seschrock 		if (vdev_validate(vd->vdev_child[c]) != 0)
10110bf246f5Smc 			return (EBADF);
1012560e6e96Seschrock 
1013b5989ec7Seschrock 	/*
1014b5989ec7Seschrock 	 * If the device has already failed, or was marked offline, don't do
1015b5989ec7Seschrock 	 * any further validation.  Otherwise, label I/O will fail and we will
1016b5989ec7Seschrock 	 * overwrite the previous state.
1017b5989ec7Seschrock 	 */
1018b5989ec7Seschrock 	if (vd->vdev_ops->vdev_op_leaf && !vdev_is_dead(vd)) {
1019560e6e96Seschrock 
1020560e6e96Seschrock 		if ((label = vdev_label_read_config(vd)) == NULL) {
1021560e6e96Seschrock 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1022560e6e96Seschrock 			    VDEV_AUX_BAD_LABEL);
1023560e6e96Seschrock 			return (0);
1024560e6e96Seschrock 		}
1025560e6e96Seschrock 
1026560e6e96Seschrock 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
1027560e6e96Seschrock 		    &guid) != 0 || guid != spa_guid(spa)) {
1028560e6e96Seschrock 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1029560e6e96Seschrock 			    VDEV_AUX_CORRUPT_DATA);
1030560e6e96Seschrock 			nvlist_free(label);
1031560e6e96Seschrock 			return (0);
1032560e6e96Seschrock 		}
1033560e6e96Seschrock 
1034560e6e96Seschrock 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1035560e6e96Seschrock 		    &guid) != 0 || guid != vd->vdev_guid) {
1036560e6e96Seschrock 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1037560e6e96Seschrock 			    VDEV_AUX_CORRUPT_DATA);
1038560e6e96Seschrock 			nvlist_free(label);
1039560e6e96Seschrock 			return (0);
1040560e6e96Seschrock 		}
1041560e6e96Seschrock 
1042560e6e96Seschrock 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1043560e6e96Seschrock 		    &state) != 0) {
1044560e6e96Seschrock 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1045560e6e96Seschrock 			    VDEV_AUX_CORRUPT_DATA);
1046560e6e96Seschrock 			nvlist_free(label);
1047560e6e96Seschrock 			return (0);
1048560e6e96Seschrock 		}
1049560e6e96Seschrock 
1050560e6e96Seschrock 		nvlist_free(label);
1051560e6e96Seschrock 
1052560e6e96Seschrock 		if (spa->spa_load_state == SPA_LOAD_OPEN &&
1053560e6e96Seschrock 		    state != POOL_STATE_ACTIVE)
10540bf246f5Smc 			return (EBADF);
1055560e6e96Seschrock 
105651ece835Seschrock 		/*
105751ece835Seschrock 		 * If we were able to open and validate a vdev that was
105851ece835Seschrock 		 * previously marked permanently unavailable, clear that state
105951ece835Seschrock 		 * now.
106051ece835Seschrock 		 */
106151ece835Seschrock 		if (vd->vdev_not_present)
106251ece835Seschrock 			vd->vdev_not_present = 0;
106351ece835Seschrock 	}
1064560e6e96Seschrock 
1065560e6e96Seschrock 	return (0);
1066560e6e96Seschrock }
1067560e6e96Seschrock 
1068fa9e4066Sahrens /*
1069fa9e4066Sahrens  * Close a virtual device.
1070fa9e4066Sahrens  */
1071fa9e4066Sahrens void
1072fa9e4066Sahrens vdev_close(vdev_t *vd)
1073fa9e4066Sahrens {
1074fa9e4066Sahrens 	vd->vdev_ops->vdev_op_close(vd);
1075fa9e4066Sahrens 
10763d7072f8Seschrock 	vdev_cache_purge(vd);
1077fa9e4066Sahrens 
1078560e6e96Seschrock 	/*
1079560e6e96Seschrock 	 * We record the previous state before we close it, so  that if we are
1080560e6e96Seschrock 	 * doing a reopen(), we don't generate FMA ereports if we notice that
1081560e6e96Seschrock 	 * it's still faulted.
1082560e6e96Seschrock 	 */
1083560e6e96Seschrock 	vd->vdev_prevstate = vd->vdev_state;
1084560e6e96Seschrock 
1085fa9e4066Sahrens 	if (vd->vdev_offline)
1086fa9e4066Sahrens 		vd->vdev_state = VDEV_STATE_OFFLINE;
1087fa9e4066Sahrens 	else
1088fa9e4066Sahrens 		vd->vdev_state = VDEV_STATE_CLOSED;
1089ea8dc4b6Seschrock 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1090fa9e4066Sahrens }
1091fa9e4066Sahrens 
1092fa9e4066Sahrens void
1093ea8dc4b6Seschrock vdev_reopen(vdev_t *vd)
1094fa9e4066Sahrens {
1095ea8dc4b6Seschrock 	spa_t *spa = vd->vdev_spa;
1096fa9e4066Sahrens 
1097ea8dc4b6Seschrock 	ASSERT(spa_config_held(spa, RW_WRITER));
1098ea8dc4b6Seschrock 
1099fa9e4066Sahrens 	vdev_close(vd);
1100fa9e4066Sahrens 	(void) vdev_open(vd);
1101fa9e4066Sahrens 
110239c23413Seschrock 	/*
110339c23413Seschrock 	 * Call vdev_validate() here to make sure we have the same device.
110439c23413Seschrock 	 * Otherwise, a device with an invalid label could be successfully
110539c23413Seschrock 	 * opened in response to vdev_reopen().
110639c23413Seschrock 	 */
1107c5904d13Seschrock 	if (vd->vdev_aux) {
1108c5904d13Seschrock 		(void) vdev_validate_aux(vd);
1109c5904d13Seschrock 		if (!vdev_is_dead(vd) &&
1110c5904d13Seschrock 		    !l2arc_vdev_present(vd)) {
1111c5904d13Seschrock 			uint64_t size = vdev_get_rsize(vd);
1112c5904d13Seschrock 			l2arc_add_vdev(spa, vd,
1113c5904d13Seschrock 			    VDEV_LABEL_START_SIZE,
1114c5904d13Seschrock 			    size - VDEV_LABEL_START_SIZE);
1115c5904d13Seschrock 		}
1116c5904d13Seschrock 	} else {
1117c5904d13Seschrock 		(void) vdev_validate(vd);
1118c5904d13Seschrock 	}
111939c23413Seschrock 
1120fa9e4066Sahrens 	/*
11213d7072f8Seschrock 	 * Reassess parent vdev's health.
1122fa9e4066Sahrens 	 */
11233d7072f8Seschrock 	vdev_propagate_state(vd);
1124fa9e4066Sahrens }
1125fa9e4066Sahrens 
1126fa9e4066Sahrens int
112799653d4eSeschrock vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1128fa9e4066Sahrens {
1129fa9e4066Sahrens 	int error;
1130fa9e4066Sahrens 
1131fa9e4066Sahrens 	/*
1132fa9e4066Sahrens 	 * Normally, partial opens (e.g. of a mirror) are allowed.
1133fa9e4066Sahrens 	 * For a create, however, we want to fail the request if
1134fa9e4066Sahrens 	 * there are any components we can't open.
1135fa9e4066Sahrens 	 */
1136fa9e4066Sahrens 	error = vdev_open(vd);
1137fa9e4066Sahrens 
1138fa9e4066Sahrens 	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1139fa9e4066Sahrens 		vdev_close(vd);
1140fa9e4066Sahrens 		return (error ? error : ENXIO);
1141fa9e4066Sahrens 	}
1142fa9e4066Sahrens 
1143fa9e4066Sahrens 	/*
1144fa9e4066Sahrens 	 * Recursively initialize all labels.
1145fa9e4066Sahrens 	 */
114639c23413Seschrock 	if ((error = vdev_label_init(vd, txg, isreplacing ?
114739c23413Seschrock 	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1148fa9e4066Sahrens 		vdev_close(vd);
1149fa9e4066Sahrens 		return (error);
1150fa9e4066Sahrens 	}
1151fa9e4066Sahrens 
1152fa9e4066Sahrens 	return (0);
1153fa9e4066Sahrens }
1154fa9e4066Sahrens 
1155fa9e4066Sahrens /*
1156fa9e4066Sahrens  * The is the latter half of vdev_create().  It is distinct because it
1157fa9e4066Sahrens  * involves initiating transactions in order to do metaslab creation.
1158fa9e4066Sahrens  * For creation, we want to try to create all vdevs at once and then undo it
1159fa9e4066Sahrens  * if anything fails; this is much harder if we have pending transactions.
1160fa9e4066Sahrens  */
11610e34b6a7Sbonwick void
1162fa9e4066Sahrens vdev_init(vdev_t *vd, uint64_t txg)
1163fa9e4066Sahrens {
1164fa9e4066Sahrens 	/*
1165fa9e4066Sahrens 	 * Aim for roughly 200 metaslabs per vdev.
1166fa9e4066Sahrens 	 */
1167fa9e4066Sahrens 	vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1168fa9e4066Sahrens 	vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1169fa9e4066Sahrens 
1170fa9e4066Sahrens 	/*
11710e34b6a7Sbonwick 	 * Initialize the vdev's metaslabs.  This can't fail because
11720e34b6a7Sbonwick 	 * there's nothing to read when creating all new metaslabs.
1173fa9e4066Sahrens 	 */
11740e34b6a7Sbonwick 	VERIFY(vdev_metaslab_init(vd, txg) == 0);
1175fa9e4066Sahrens }
1176fa9e4066Sahrens 
1177fa9e4066Sahrens void
1178ecc2d604Sbonwick vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1179fa9e4066Sahrens {
1180ecc2d604Sbonwick 	ASSERT(vd == vd->vdev_top);
1181ecc2d604Sbonwick 	ASSERT(ISP2(flags));
1182fa9e4066Sahrens 
1183ecc2d604Sbonwick 	if (flags & VDD_METASLAB)
1184ecc2d604Sbonwick 		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1185ecc2d604Sbonwick 
1186ecc2d604Sbonwick 	if (flags & VDD_DTL)
1187ecc2d604Sbonwick 		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1188ecc2d604Sbonwick 
1189ecc2d604Sbonwick 	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1190fa9e4066Sahrens }
1191fa9e4066Sahrens 
1192fa9e4066Sahrens void
1193fa9e4066Sahrens vdev_dtl_dirty(space_map_t *sm, uint64_t txg, uint64_t size)
1194fa9e4066Sahrens {
1195fa9e4066Sahrens 	mutex_enter(sm->sm_lock);
1196fa9e4066Sahrens 	if (!space_map_contains(sm, txg, size))
1197fa9e4066Sahrens 		space_map_add(sm, txg, size);
1198fa9e4066Sahrens 	mutex_exit(sm->sm_lock);
1199fa9e4066Sahrens }
1200fa9e4066Sahrens 
1201fa9e4066Sahrens int
1202fa9e4066Sahrens vdev_dtl_contains(space_map_t *sm, uint64_t txg, uint64_t size)
1203fa9e4066Sahrens {
1204fa9e4066Sahrens 	int dirty;
1205fa9e4066Sahrens 
1206fa9e4066Sahrens 	/*
1207fa9e4066Sahrens 	 * Quick test without the lock -- covers the common case that
1208fa9e4066Sahrens 	 * there are no dirty time segments.
1209fa9e4066Sahrens 	 */
1210fa9e4066Sahrens 	if (sm->sm_space == 0)
1211fa9e4066Sahrens 		return (0);
1212fa9e4066Sahrens 
1213fa9e4066Sahrens 	mutex_enter(sm->sm_lock);
1214fa9e4066Sahrens 	dirty = space_map_contains(sm, txg, size);
1215fa9e4066Sahrens 	mutex_exit(sm->sm_lock);
1216fa9e4066Sahrens 
1217fa9e4066Sahrens 	return (dirty);
1218fa9e4066Sahrens }
1219fa9e4066Sahrens 
1220fa9e4066Sahrens /*
1221fa9e4066Sahrens  * Reassess DTLs after a config change or scrub completion.
1222fa9e4066Sahrens  */
1223fa9e4066Sahrens void
1224fa9e4066Sahrens vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1225fa9e4066Sahrens {
1226ea8dc4b6Seschrock 	spa_t *spa = vd->vdev_spa;
1227fa9e4066Sahrens 	int c;
1228fa9e4066Sahrens 
1229*088f3894Sahrens 	ASSERT(spa_config_held(spa, RW_READER));
1230fa9e4066Sahrens 
1231fa9e4066Sahrens 	if (vd->vdev_children == 0) {
1232fa9e4066Sahrens 		mutex_enter(&vd->vdev_dtl_lock);
1233*088f3894Sahrens 		if (scrub_txg != 0 &&
1234*088f3894Sahrens 		    (spa->spa_scrub_started || spa->spa_scrub_errors == 0)) {
1235*088f3894Sahrens 			/* XXX should check scrub_done? */
1236*088f3894Sahrens 			/*
1237*088f3894Sahrens 			 * We completed a scrub up to scrub_txg.  If we
1238*088f3894Sahrens 			 * did it without rebooting, then the scrub dtl
1239*088f3894Sahrens 			 * will be valid, so excise the old region and
1240*088f3894Sahrens 			 * fold in the scrub dtl.  Otherwise, leave the
1241*088f3894Sahrens 			 * dtl as-is if there was an error.
1242*088f3894Sahrens 			 */
1243fa9e4066Sahrens 			space_map_excise(&vd->vdev_dtl_map, 0, scrub_txg);
1244fa9e4066Sahrens 			space_map_union(&vd->vdev_dtl_map, &vd->vdev_dtl_scrub);
1245fa9e4066Sahrens 		}
1246fa9e4066Sahrens 		if (scrub_done)
1247fa9e4066Sahrens 			space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL);
1248fa9e4066Sahrens 		mutex_exit(&vd->vdev_dtl_lock);
1249*088f3894Sahrens 
1250ecc2d604Sbonwick 		if (txg != 0)
1251ecc2d604Sbonwick 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1252fa9e4066Sahrens 		return;
1253fa9e4066Sahrens 	}
1254fa9e4066Sahrens 
1255ea8dc4b6Seschrock 	/*
1256ea8dc4b6Seschrock 	 * Make sure the DTLs are always correct under the scrub lock.
1257ea8dc4b6Seschrock 	 */
1258ea8dc4b6Seschrock 	if (vd == spa->spa_root_vdev)
1259ea8dc4b6Seschrock 		mutex_enter(&spa->spa_scrub_lock);
1260ea8dc4b6Seschrock 
1261fa9e4066Sahrens 	mutex_enter(&vd->vdev_dtl_lock);
1262fa9e4066Sahrens 	space_map_vacate(&vd->vdev_dtl_map, NULL, NULL);
1263fa9e4066Sahrens 	space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL);
1264fa9e4066Sahrens 	mutex_exit(&vd->vdev_dtl_lock);
1265fa9e4066Sahrens 
1266fa9e4066Sahrens 	for (c = 0; c < vd->vdev_children; c++) {
1267fa9e4066Sahrens 		vdev_t *cvd = vd->vdev_child[c];
1268fa9e4066Sahrens 		vdev_dtl_reassess(cvd, txg, scrub_txg, scrub_done);
1269fa9e4066Sahrens 		mutex_enter(&vd->vdev_dtl_lock);
1270fa9e4066Sahrens 		space_map_union(&vd->vdev_dtl_map, &cvd->vdev_dtl_map);
1271fa9e4066Sahrens 		space_map_union(&vd->vdev_dtl_scrub, &cvd->vdev_dtl_scrub);
1272fa9e4066Sahrens 		mutex_exit(&vd->vdev_dtl_lock);
1273fa9e4066Sahrens 	}
1274ea8dc4b6Seschrock 
1275ea8dc4b6Seschrock 	if (vd == spa->spa_root_vdev)
1276ea8dc4b6Seschrock 		mutex_exit(&spa->spa_scrub_lock);
1277fa9e4066Sahrens }
1278fa9e4066Sahrens 
1279fa9e4066Sahrens static int
1280fa9e4066Sahrens vdev_dtl_load(vdev_t *vd)
1281fa9e4066Sahrens {
1282fa9e4066Sahrens 	spa_t *spa = vd->vdev_spa;
1283fa9e4066Sahrens 	space_map_obj_t *smo = &vd->vdev_dtl;
1284ecc2d604Sbonwick 	objset_t *mos = spa->spa_meta_objset;
1285fa9e4066Sahrens 	dmu_buf_t *db;
1286fa9e4066Sahrens 	int error;
1287fa9e4066Sahrens 
1288fa9e4066Sahrens 	ASSERT(vd->vdev_children == 0);
1289fa9e4066Sahrens 
1290fa9e4066Sahrens 	if (smo->smo_object == 0)
1291fa9e4066Sahrens 		return (0);
1292fa9e4066Sahrens 
1293ecc2d604Sbonwick 	if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1294ea8dc4b6Seschrock 		return (error);
1295ecc2d604Sbonwick 
12961934e92fSmaybee 	ASSERT3U(db->db_size, >=, sizeof (*smo));
12971934e92fSmaybee 	bcopy(db->db_data, smo, sizeof (*smo));
1298ea8dc4b6Seschrock 	dmu_buf_rele(db, FTAG);
1299fa9e4066Sahrens 
1300fa9e4066Sahrens 	mutex_enter(&vd->vdev_dtl_lock);
1301ecc2d604Sbonwick 	error = space_map_load(&vd->vdev_dtl_map, NULL, SM_ALLOC, smo, mos);
1302fa9e4066Sahrens 	mutex_exit(&vd->vdev_dtl_lock);
1303fa9e4066Sahrens 
1304fa9e4066Sahrens 	return (error);
1305fa9e4066Sahrens }
1306fa9e4066Sahrens 
1307fa9e4066Sahrens void
1308fa9e4066Sahrens vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1309fa9e4066Sahrens {
1310fa9e4066Sahrens 	spa_t *spa = vd->vdev_spa;
1311fa9e4066Sahrens 	space_map_obj_t *smo = &vd->vdev_dtl;
1312fa9e4066Sahrens 	space_map_t *sm = &vd->vdev_dtl_map;
1313ecc2d604Sbonwick 	objset_t *mos = spa->spa_meta_objset;
1314fa9e4066Sahrens 	space_map_t smsync;
1315fa9e4066Sahrens 	kmutex_t smlock;
1316fa9e4066Sahrens 	dmu_buf_t *db;
1317fa9e4066Sahrens 	dmu_tx_t *tx;
1318fa9e4066Sahrens 
1319fa9e4066Sahrens 	dprintf("%s in txg %llu pass %d\n",
1320fa9e4066Sahrens 	    vdev_description(vd), (u_longlong_t)txg, spa_sync_pass(spa));
1321fa9e4066Sahrens 
1322fa9e4066Sahrens 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1323fa9e4066Sahrens 
1324fa9e4066Sahrens 	if (vd->vdev_detached) {
1325fa9e4066Sahrens 		if (smo->smo_object != 0) {
1326ecc2d604Sbonwick 			int err = dmu_object_free(mos, smo->smo_object, tx);
1327fa9e4066Sahrens 			ASSERT3U(err, ==, 0);
1328fa9e4066Sahrens 			smo->smo_object = 0;
1329fa9e4066Sahrens 		}
1330fa9e4066Sahrens 		dmu_tx_commit(tx);
1331ecc2d604Sbonwick 		dprintf("detach %s committed in txg %llu\n",
1332ecc2d604Sbonwick 		    vdev_description(vd), txg);
1333fa9e4066Sahrens 		return;
1334fa9e4066Sahrens 	}
1335fa9e4066Sahrens 
1336fa9e4066Sahrens 	if (smo->smo_object == 0) {
1337fa9e4066Sahrens 		ASSERT(smo->smo_objsize == 0);
1338fa9e4066Sahrens 		ASSERT(smo->smo_alloc == 0);
1339ecc2d604Sbonwick 		smo->smo_object = dmu_object_alloc(mos,
1340fa9e4066Sahrens 		    DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1341fa9e4066Sahrens 		    DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1342fa9e4066Sahrens 		ASSERT(smo->smo_object != 0);
1343fa9e4066Sahrens 		vdev_config_dirty(vd->vdev_top);
1344fa9e4066Sahrens 	}
1345fa9e4066Sahrens 
1346fa9e4066Sahrens 	mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1347fa9e4066Sahrens 
1348fa9e4066Sahrens 	space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1349fa9e4066Sahrens 	    &smlock);
1350fa9e4066Sahrens 
1351fa9e4066Sahrens 	mutex_enter(&smlock);
1352fa9e4066Sahrens 
1353fa9e4066Sahrens 	mutex_enter(&vd->vdev_dtl_lock);
1354ecc2d604Sbonwick 	space_map_walk(sm, space_map_add, &smsync);
1355fa9e4066Sahrens 	mutex_exit(&vd->vdev_dtl_lock);
1356fa9e4066Sahrens 
1357ecc2d604Sbonwick 	space_map_truncate(smo, mos, tx);
1358ecc2d604Sbonwick 	space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1359fa9e4066Sahrens 
1360fa9e4066Sahrens 	space_map_destroy(&smsync);
1361fa9e4066Sahrens 
1362fa9e4066Sahrens 	mutex_exit(&smlock);
1363fa9e4066Sahrens 	mutex_destroy(&smlock);
1364fa9e4066Sahrens 
1365ecc2d604Sbonwick 	VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1366fa9e4066Sahrens 	dmu_buf_will_dirty(db, tx);
13671934e92fSmaybee 	ASSERT3U(db->db_size, >=, sizeof (*smo));
13681934e92fSmaybee 	bcopy(smo, db->db_data, sizeof (*smo));
1369ea8dc4b6Seschrock 	dmu_buf_rele(db, FTAG);
1370fa9e4066Sahrens 
1371fa9e4066Sahrens 	dmu_tx_commit(tx);
1372fa9e4066Sahrens }
1373fa9e4066Sahrens 
1374*088f3894Sahrens /*
1375*088f3894Sahrens  * Determine if resilver is needed, and if so the txg range.
1376*088f3894Sahrens  */
1377*088f3894Sahrens boolean_t
1378*088f3894Sahrens vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1379*088f3894Sahrens {
1380*088f3894Sahrens 	boolean_t needed = B_FALSE;
1381*088f3894Sahrens 	uint64_t thismin = UINT64_MAX;
1382*088f3894Sahrens 	uint64_t thismax = 0;
1383*088f3894Sahrens 
1384*088f3894Sahrens 	if (vd->vdev_children == 0) {
1385*088f3894Sahrens 		mutex_enter(&vd->vdev_dtl_lock);
1386*088f3894Sahrens 		if (vd->vdev_dtl_map.sm_space != 0 && vdev_writeable(vd)) {
1387*088f3894Sahrens 			space_seg_t *ss;
1388*088f3894Sahrens 
1389*088f3894Sahrens 			ss = avl_first(&vd->vdev_dtl_map.sm_root);
1390*088f3894Sahrens 			thismin = ss->ss_start - 1;
1391*088f3894Sahrens 			ss = avl_last(&vd->vdev_dtl_map.sm_root);
1392*088f3894Sahrens 			thismax = ss->ss_end;
1393*088f3894Sahrens 			needed = B_TRUE;
1394*088f3894Sahrens 		}
1395*088f3894Sahrens 		mutex_exit(&vd->vdev_dtl_lock);
1396*088f3894Sahrens 	} else {
1397*088f3894Sahrens 		int c;
1398*088f3894Sahrens 		for (c = 0; c < vd->vdev_children; c++) {
1399*088f3894Sahrens 			vdev_t *cvd = vd->vdev_child[c];
1400*088f3894Sahrens 			uint64_t cmin, cmax;
1401*088f3894Sahrens 
1402*088f3894Sahrens 			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1403*088f3894Sahrens 				thismin = MIN(thismin, cmin);
1404*088f3894Sahrens 				thismax = MAX(thismax, cmax);
1405*088f3894Sahrens 				needed = B_TRUE;
1406*088f3894Sahrens 			}
1407*088f3894Sahrens 		}
1408*088f3894Sahrens 	}
1409*088f3894Sahrens 
1410*088f3894Sahrens 	if (needed && minp) {
1411*088f3894Sahrens 		*minp = thismin;
1412*088f3894Sahrens 		*maxp = thismax;
1413*088f3894Sahrens 	}
1414*088f3894Sahrens 	return (needed);
1415*088f3894Sahrens }
1416*088f3894Sahrens 
1417560e6e96Seschrock void
1418ea8dc4b6Seschrock vdev_load(vdev_t *vd)
1419fa9e4066Sahrens {
1420560e6e96Seschrock 	int c;
1421fa9e4066Sahrens 
1422fa9e4066Sahrens 	/*
1423fa9e4066Sahrens 	 * Recursively load all children.
1424fa9e4066Sahrens 	 */
1425fa9e4066Sahrens 	for (c = 0; c < vd->vdev_children; c++)
1426560e6e96Seschrock 		vdev_load(vd->vdev_child[c]);
1427fa9e4066Sahrens 
1428fa9e4066Sahrens 	/*
14290e34b6a7Sbonwick 	 * If this is a top-level vdev, initialize its metaslabs.
1430fa9e4066Sahrens 	 */
1431560e6e96Seschrock 	if (vd == vd->vdev_top &&
1432560e6e96Seschrock 	    (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1433560e6e96Seschrock 	    vdev_metaslab_init(vd, 0) != 0))
1434560e6e96Seschrock 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1435560e6e96Seschrock 		    VDEV_AUX_CORRUPT_DATA);
1436fa9e4066Sahrens 
1437fa9e4066Sahrens 	/*
1438fa9e4066Sahrens 	 * If this is a leaf vdev, load its DTL.
1439fa9e4066Sahrens 	 */
1440560e6e96Seschrock 	if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1441560e6e96Seschrock 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1442560e6e96Seschrock 		    VDEV_AUX_CORRUPT_DATA);
1443fa9e4066Sahrens }
1444fa9e4066Sahrens 
144599653d4eSeschrock /*
1446fa94a07fSbrendan  * The special vdev case is used for hot spares and l2cache devices.  Its
1447fa94a07fSbrendan  * sole purpose it to set the vdev state for the associated vdev.  To do this,
1448fa94a07fSbrendan  * we make sure that we can open the underlying device, then try to read the
1449fa94a07fSbrendan  * label, and make sure that the label is sane and that it hasn't been
1450fa94a07fSbrendan  * repurposed to another pool.
145199653d4eSeschrock  */
145299653d4eSeschrock int
1453fa94a07fSbrendan vdev_validate_aux(vdev_t *vd)
145499653d4eSeschrock {
145599653d4eSeschrock 	nvlist_t *label;
145699653d4eSeschrock 	uint64_t guid, version;
145799653d4eSeschrock 	uint64_t state;
145899653d4eSeschrock 
1459c5904d13Seschrock 	if (vdev_is_dead(vd))
1460c5904d13Seschrock 		return (0);
1461c5904d13Seschrock 
146299653d4eSeschrock 	if ((label = vdev_label_read_config(vd)) == NULL) {
146399653d4eSeschrock 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
146499653d4eSeschrock 		    VDEV_AUX_CORRUPT_DATA);
146599653d4eSeschrock 		return (-1);
146699653d4eSeschrock 	}
146799653d4eSeschrock 
146899653d4eSeschrock 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1469e7437265Sahrens 	    version > SPA_VERSION ||
147099653d4eSeschrock 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
147199653d4eSeschrock 	    guid != vd->vdev_guid ||
147299653d4eSeschrock 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
147399653d4eSeschrock 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
147499653d4eSeschrock 		    VDEV_AUX_CORRUPT_DATA);
147599653d4eSeschrock 		nvlist_free(label);
147699653d4eSeschrock 		return (-1);
147799653d4eSeschrock 	}
147899653d4eSeschrock 
147999653d4eSeschrock 	/*
148099653d4eSeschrock 	 * We don't actually check the pool state here.  If it's in fact in
148199653d4eSeschrock 	 * use by another pool, we update this fact on the fly when requested.
148299653d4eSeschrock 	 */
148399653d4eSeschrock 	nvlist_free(label);
148499653d4eSeschrock 	return (0);
148599653d4eSeschrock }
148699653d4eSeschrock 
1487fa9e4066Sahrens void
1488fa9e4066Sahrens vdev_sync_done(vdev_t *vd, uint64_t txg)
1489fa9e4066Sahrens {
1490fa9e4066Sahrens 	metaslab_t *msp;
1491fa9e4066Sahrens 
1492fa9e4066Sahrens 	dprintf("%s txg %llu\n", vdev_description(vd), txg);
1493fa9e4066Sahrens 
1494fa9e4066Sahrens 	while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
1495fa9e4066Sahrens 		metaslab_sync_done(msp, txg);
1496fa9e4066Sahrens }
1497fa9e4066Sahrens 
1498fa9e4066Sahrens void
1499fa9e4066Sahrens vdev_sync(vdev_t *vd, uint64_t txg)
1500fa9e4066Sahrens {
1501fa9e4066Sahrens 	spa_t *spa = vd->vdev_spa;
1502fa9e4066Sahrens 	vdev_t *lvd;
1503fa9e4066Sahrens 	metaslab_t *msp;
1504ecc2d604Sbonwick 	dmu_tx_t *tx;
1505fa9e4066Sahrens 
1506fa9e4066Sahrens 	dprintf("%s txg %llu pass %d\n",
1507fa9e4066Sahrens 	    vdev_description(vd), (u_longlong_t)txg, spa_sync_pass(spa));
1508fa9e4066Sahrens 
1509ecc2d604Sbonwick 	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
1510ecc2d604Sbonwick 		ASSERT(vd == vd->vdev_top);
1511ecc2d604Sbonwick 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1512ecc2d604Sbonwick 		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
1513ecc2d604Sbonwick 		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
1514ecc2d604Sbonwick 		ASSERT(vd->vdev_ms_array != 0);
1515ecc2d604Sbonwick 		vdev_config_dirty(vd);
1516ecc2d604Sbonwick 		dmu_tx_commit(tx);
1517ecc2d604Sbonwick 	}
1518fa9e4066Sahrens 
1519ecc2d604Sbonwick 	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
1520fa9e4066Sahrens 		metaslab_sync(msp, txg);
1521ecc2d604Sbonwick 		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
1522ecc2d604Sbonwick 	}
1523fa9e4066Sahrens 
1524fa9e4066Sahrens 	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
1525fa9e4066Sahrens 		vdev_dtl_sync(lvd, txg);
1526fa9e4066Sahrens 
1527fa9e4066Sahrens 	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
1528fa9e4066Sahrens }
1529fa9e4066Sahrens 
1530fa9e4066Sahrens uint64_t
1531fa9e4066Sahrens vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
1532fa9e4066Sahrens {
1533fa9e4066Sahrens 	return (vd->vdev_ops->vdev_op_asize(vd, psize));
1534fa9e4066Sahrens }
1535fa9e4066Sahrens 
1536fa9e4066Sahrens const char *
1537fa9e4066Sahrens vdev_description(vdev_t *vd)
1538fa9e4066Sahrens {
1539fa9e4066Sahrens 	if (vd == NULL || vd->vdev_ops == NULL)
1540fa9e4066Sahrens 		return ("<unknown>");
1541fa9e4066Sahrens 
1542fa9e4066Sahrens 	if (vd->vdev_path != NULL)
1543fa9e4066Sahrens 		return (vd->vdev_path);
1544fa9e4066Sahrens 
1545fa9e4066Sahrens 	if (vd->vdev_parent == NULL)
1546fa9e4066Sahrens 		return (spa_name(vd->vdev_spa));
1547fa9e4066Sahrens 
1548fa9e4066Sahrens 	return (vd->vdev_ops->vdev_op_type);
1549fa9e4066Sahrens }
1550fa9e4066Sahrens 
15513d7072f8Seschrock /*
15523d7072f8Seschrock  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
15533d7072f8Seschrock  * not be opened, and no I/O is attempted.
15543d7072f8Seschrock  */
1555fa9e4066Sahrens int
15563d7072f8Seschrock vdev_fault(spa_t *spa, uint64_t guid)
1557fa9e4066Sahrens {
1558c5904d13Seschrock 	vdev_t *vd;
1559441d80aaSlling 	uint64_t txg;
1560fa9e4066Sahrens 
15610a4e9518Sgw 	/*
15620a4e9518Sgw 	 * Disregard a vdev fault request if the pool has
15630a4e9518Sgw 	 * experienced a complete failure.
15640a4e9518Sgw 	 *
15650a4e9518Sgw 	 * XXX - We do this here so that we don't hold the
15660a4e9518Sgw 	 * spa_namespace_lock in the event that we can't get
15670a4e9518Sgw 	 * the RW_WRITER spa_config_lock.
15680a4e9518Sgw 	 */
15690a4e9518Sgw 	if (spa_state(spa) == POOL_STATE_IO_FAILURE)
15700a4e9518Sgw 		return (EIO);
15710a4e9518Sgw 
1572441d80aaSlling 	txg = spa_vdev_enter(spa);
1573fa9e4066Sahrens 
1574c5904d13Seschrock 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1575441d80aaSlling 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
15763d7072f8Seschrock 	if (!vd->vdev_ops->vdev_op_leaf)
15773d7072f8Seschrock 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1578fa9e4066Sahrens 
15793d7072f8Seschrock 	/*
15803d7072f8Seschrock 	 * Faulted state takes precedence over degraded.
15813d7072f8Seschrock 	 */
15823d7072f8Seschrock 	vd->vdev_faulted = 1ULL;
15833d7072f8Seschrock 	vd->vdev_degraded = 0ULL;
15843d7072f8Seschrock 	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED,
15853d7072f8Seschrock 	    VDEV_AUX_ERR_EXCEEDED);
15863d7072f8Seschrock 
15873d7072f8Seschrock 	/*
15883d7072f8Seschrock 	 * If marking the vdev as faulted cause the toplevel vdev to become
15893d7072f8Seschrock 	 * unavailable, then back off and simply mark the vdev as degraded
15903d7072f8Seschrock 	 * instead.
15913d7072f8Seschrock 	 */
1592c5904d13Seschrock 	if (vdev_is_dead(vd->vdev_top) && vd->vdev_aux == NULL) {
15933d7072f8Seschrock 		vd->vdev_degraded = 1ULL;
15943d7072f8Seschrock 		vd->vdev_faulted = 0ULL;
15953d7072f8Seschrock 
15963d7072f8Seschrock 		/*
15973d7072f8Seschrock 		 * If we reopen the device and it's not dead, only then do we
15983d7072f8Seschrock 		 * mark it degraded.
15993d7072f8Seschrock 		 */
16003d7072f8Seschrock 		vdev_reopen(vd);
16013d7072f8Seschrock 
16020a4e9518Sgw 		if (vdev_readable(vd)) {
16033d7072f8Seschrock 			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
16043d7072f8Seschrock 			    VDEV_AUX_ERR_EXCEEDED);
16053d7072f8Seschrock 		}
16063d7072f8Seschrock 	}
16073d7072f8Seschrock 
16083d7072f8Seschrock 	vdev_config_dirty(vd->vdev_top);
16093d7072f8Seschrock 
16103d7072f8Seschrock 	(void) spa_vdev_exit(spa, NULL, txg, 0);
16113d7072f8Seschrock 
16123d7072f8Seschrock 	return (0);
16133d7072f8Seschrock }
16143d7072f8Seschrock 
16153d7072f8Seschrock /*
16163d7072f8Seschrock  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
16173d7072f8Seschrock  * user that something is wrong.  The vdev continues to operate as normal as far
16183d7072f8Seschrock  * as I/O is concerned.
16193d7072f8Seschrock  */
16203d7072f8Seschrock int
16213d7072f8Seschrock vdev_degrade(spa_t *spa, uint64_t guid)
16223d7072f8Seschrock {
1623c5904d13Seschrock 	vdev_t *vd;
16243d7072f8Seschrock 	uint64_t txg;
16253d7072f8Seschrock 
16260a4e9518Sgw 	/*
16270a4e9518Sgw 	 * Disregard a vdev fault request if the pool has
16280a4e9518Sgw 	 * experienced a complete failure.
16290a4e9518Sgw 	 *
16300a4e9518Sgw 	 * XXX - We do this here so that we don't hold the
16310a4e9518Sgw 	 * spa_namespace_lock in the event that we can't get
16320a4e9518Sgw 	 * the RW_WRITER spa_config_lock.
16330a4e9518Sgw 	 */
16340a4e9518Sgw 	if (spa_state(spa) == POOL_STATE_IO_FAILURE)
16350a4e9518Sgw 		return (EIO);
16360a4e9518Sgw 
16373d7072f8Seschrock 	txg = spa_vdev_enter(spa);
16383d7072f8Seschrock 
1639c5904d13Seschrock 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
16403d7072f8Seschrock 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
16410e34b6a7Sbonwick 	if (!vd->vdev_ops->vdev_op_leaf)
16420e34b6a7Sbonwick 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
16430e34b6a7Sbonwick 
16443d7072f8Seschrock 	/*
16453d7072f8Seschrock 	 * If the vdev is already faulted, then don't do anything.
16463d7072f8Seschrock 	 */
16473d7072f8Seschrock 	if (vd->vdev_faulted || vd->vdev_degraded) {
16483d7072f8Seschrock 		(void) spa_vdev_exit(spa, NULL, txg, 0);
16493d7072f8Seschrock 		return (0);
16503d7072f8Seschrock 	}
16513d7072f8Seschrock 
16523d7072f8Seschrock 	vd->vdev_degraded = 1ULL;
16533d7072f8Seschrock 	if (!vdev_is_dead(vd))
16543d7072f8Seschrock 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
16553d7072f8Seschrock 		    VDEV_AUX_ERR_EXCEEDED);
16563d7072f8Seschrock 	vdev_config_dirty(vd->vdev_top);
16573d7072f8Seschrock 
16583d7072f8Seschrock 	(void) spa_vdev_exit(spa, NULL, txg, 0);
16593d7072f8Seschrock 
16603d7072f8Seschrock 	return (0);
16613d7072f8Seschrock }
16623d7072f8Seschrock 
16633d7072f8Seschrock /*
16643d7072f8Seschrock  * Online the given vdev.  If 'unspare' is set, it implies two things.  First,
16653d7072f8Seschrock  * any attached spare device should be detached when the device finishes
16663d7072f8Seschrock  * resilvering.  Second, the online should be treated like a 'test' online case,
16673d7072f8Seschrock  * so no FMA events are generated if the device fails to open.
16683d7072f8Seschrock  */
16693d7072f8Seschrock int
16703d7072f8Seschrock vdev_online(spa_t *spa, uint64_t guid, uint64_t flags,
16713d7072f8Seschrock     vdev_state_t *newstate)
16723d7072f8Seschrock {
1673c5904d13Seschrock 	vdev_t *vd;
16743d7072f8Seschrock 	uint64_t txg;
16753d7072f8Seschrock 
16760a4e9518Sgw 	/*
16770a4e9518Sgw 	 * Disregard a vdev fault request if the pool has
16780a4e9518Sgw 	 * experienced a complete failure.
16790a4e9518Sgw 	 *
16800a4e9518Sgw 	 * XXX - We do this here so that we don't hold the
16810a4e9518Sgw 	 * spa_namespace_lock in the event that we can't get
16820a4e9518Sgw 	 * the RW_WRITER spa_config_lock.
16830a4e9518Sgw 	 */
16840a4e9518Sgw 	if (spa_state(spa) == POOL_STATE_IO_FAILURE)
16850a4e9518Sgw 		return (EIO);
16860a4e9518Sgw 
16873d7072f8Seschrock 	txg = spa_vdev_enter(spa);
16883d7072f8Seschrock 
1689c5904d13Seschrock 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
16903d7072f8Seschrock 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
16913d7072f8Seschrock 
16923d7072f8Seschrock 	if (!vd->vdev_ops->vdev_op_leaf)
16933d7072f8Seschrock 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1694fa9e4066Sahrens 
1695fa9e4066Sahrens 	vd->vdev_offline = B_FALSE;
1696441d80aaSlling 	vd->vdev_tmpoffline = B_FALSE;
16973d7072f8Seschrock 	vd->vdev_checkremove = (flags & ZFS_ONLINE_CHECKREMOVE) ?
16983d7072f8Seschrock 	    B_TRUE : B_FALSE;
16993d7072f8Seschrock 	vd->vdev_forcefault = (flags & ZFS_ONLINE_FORCEFAULT) ?
17003d7072f8Seschrock 	    B_TRUE : B_FALSE;
1701ea8dc4b6Seschrock 	vdev_reopen(vd->vdev_top);
17023d7072f8Seschrock 	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
17033d7072f8Seschrock 
17043d7072f8Seschrock 	if (newstate)
17053d7072f8Seschrock 		*newstate = vd->vdev_state;
17063d7072f8Seschrock 	if ((flags & ZFS_ONLINE_UNSPARE) &&
17073d7072f8Seschrock 	    !vdev_is_dead(vd) && vd->vdev_parent &&
17083d7072f8Seschrock 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
17093d7072f8Seschrock 	    vd->vdev_parent->vdev_child[0] == vd)
17103d7072f8Seschrock 		vd->vdev_unspare = B_TRUE;
1711fa9e4066Sahrens 
1712441d80aaSlling 	vdev_config_dirty(vd->vdev_top);
1713441d80aaSlling 
1714441d80aaSlling 	(void) spa_vdev_exit(spa, NULL, txg, 0);
1715fa9e4066Sahrens 
17163d7072f8Seschrock 	/*
17173d7072f8Seschrock 	 * Must hold spa_namespace_lock in order to post resilver sysevent
17183d7072f8Seschrock 	 * w/pool name.
17193d7072f8Seschrock 	 */
17203d7072f8Seschrock 	mutex_enter(&spa_namespace_lock);
1721*088f3894Sahrens 	VERIFY3U(spa_scrub(spa, POOL_SCRUB_RESILVER), ==, 0);
17223d7072f8Seschrock 	mutex_exit(&spa_namespace_lock);
1723fa9e4066Sahrens 
1724fa9e4066Sahrens 	return (0);
1725fa9e4066Sahrens }
1726fa9e4066Sahrens 
1727fa9e4066Sahrens int
17283d7072f8Seschrock vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
1729fa9e4066Sahrens {
1730c5904d13Seschrock 	vdev_t *vd;
1731441d80aaSlling 	uint64_t txg;
1732fa9e4066Sahrens 
17330a4e9518Sgw 	/*
17340a4e9518Sgw 	 * Disregard a vdev fault request if the pool has
17350a4e9518Sgw 	 * experienced a complete failure.
17360a4e9518Sgw 	 *
17370a4e9518Sgw 	 * XXX - We do this here so that we don't hold the
17380a4e9518Sgw 	 * spa_namespace_lock in the event that we can't get
17390a4e9518Sgw 	 * the RW_WRITER spa_config_lock.
17400a4e9518Sgw 	 */
17410a4e9518Sgw 	if (spa_state(spa) == POOL_STATE_IO_FAILURE)
17420a4e9518Sgw 		return (EIO);
17430a4e9518Sgw 
1744441d80aaSlling 	txg = spa_vdev_enter(spa);
1745fa9e4066Sahrens 
1746c5904d13Seschrock 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1747441d80aaSlling 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1748fa9e4066Sahrens 
17490e34b6a7Sbonwick 	if (!vd->vdev_ops->vdev_op_leaf)
17500e34b6a7Sbonwick 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
17510e34b6a7Sbonwick 
1752fa9e4066Sahrens 	/*
1753ecc2d604Sbonwick 	 * If the device isn't already offline, try to offline it.
1754fa9e4066Sahrens 	 */
1755ecc2d604Sbonwick 	if (!vd->vdev_offline) {
1756ecc2d604Sbonwick 		/*
1757ecc2d604Sbonwick 		 * If this device's top-level vdev has a non-empty DTL,
1758ecc2d604Sbonwick 		 * don't allow the device to be offlined.
1759ecc2d604Sbonwick 		 *
1760ecc2d604Sbonwick 		 * XXX -- make this more precise by allowing the offline
1761ecc2d604Sbonwick 		 * as long as the remaining devices don't have any DTL holes.
1762ecc2d604Sbonwick 		 */
1763ecc2d604Sbonwick 		if (vd->vdev_top->vdev_dtl_map.sm_space != 0)
1764ecc2d604Sbonwick 			return (spa_vdev_exit(spa, NULL, txg, EBUSY));
1765fa9e4066Sahrens 
1766ecc2d604Sbonwick 		/*
1767ecc2d604Sbonwick 		 * Offline this device and reopen its top-level vdev.
1768ecc2d604Sbonwick 		 * If this action results in the top-level vdev becoming
1769ecc2d604Sbonwick 		 * unusable, undo it and fail the request.
1770ecc2d604Sbonwick 		 */
1771ecc2d604Sbonwick 		vd->vdev_offline = B_TRUE;
1772ea8dc4b6Seschrock 		vdev_reopen(vd->vdev_top);
1773c5904d13Seschrock 		if (vdev_is_dead(vd->vdev_top) && vd->vdev_aux == NULL) {
1774ecc2d604Sbonwick 			vd->vdev_offline = B_FALSE;
1775ecc2d604Sbonwick 			vdev_reopen(vd->vdev_top);
1776ecc2d604Sbonwick 			return (spa_vdev_exit(spa, NULL, txg, EBUSY));
1777ecc2d604Sbonwick 		}
1778fa9e4066Sahrens 	}
1779fa9e4066Sahrens 
17803d7072f8Seschrock 	vd->vdev_tmpoffline = (flags & ZFS_OFFLINE_TEMPORARY) ?
17813d7072f8Seschrock 	    B_TRUE : B_FALSE;
1782ecc2d604Sbonwick 
1783ecc2d604Sbonwick 	vdev_config_dirty(vd->vdev_top);
1784441d80aaSlling 
1785441d80aaSlling 	return (spa_vdev_exit(spa, NULL, txg, 0));
1786fa9e4066Sahrens }
1787fa9e4066Sahrens 
1788ea8dc4b6Seschrock /*
1789ea8dc4b6Seschrock  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
1790ea8dc4b6Seschrock  * vdev_offline(), we assume the spa config is locked.  We also clear all
1791ea8dc4b6Seschrock  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
17920a4e9518Sgw  * If reopen is specified then attempt to reopen the vdev if the vdev is
17930a4e9518Sgw  * faulted or degraded.
1794ea8dc4b6Seschrock  */
1795ea8dc4b6Seschrock void
17960a4e9518Sgw vdev_clear(spa_t *spa, vdev_t *vd, boolean_t reopen_wanted)
1797fa9e4066Sahrens {
1798ea8dc4b6Seschrock 	int c;
1799fa9e4066Sahrens 
1800ea8dc4b6Seschrock 	if (vd == NULL)
1801ea8dc4b6Seschrock 		vd = spa->spa_root_vdev;
1802fa9e4066Sahrens 
1803ea8dc4b6Seschrock 	vd->vdev_stat.vs_read_errors = 0;
1804ea8dc4b6Seschrock 	vd->vdev_stat.vs_write_errors = 0;
1805ea8dc4b6Seschrock 	vd->vdev_stat.vs_checksum_errors = 0;
18060a4e9518Sgw 	vd->vdev_is_failing = B_FALSE;
1807fa9e4066Sahrens 
1808ea8dc4b6Seschrock 	for (c = 0; c < vd->vdev_children; c++)
18090a4e9518Sgw 		vdev_clear(spa, vd->vdev_child[c], reopen_wanted);
18103d7072f8Seschrock 
18113d7072f8Seschrock 	/*
18128a79c1b5Sek 	 * If we're in the FAULTED state or have experienced failed I/O, then
18138a79c1b5Sek 	 * clear the persistent state and attempt to reopen the device.  We
18148a79c1b5Sek 	 * also mark the vdev config dirty, so that the new faulted state is
18158a79c1b5Sek 	 * written out to disk.
18163d7072f8Seschrock 	 */
18178a79c1b5Sek 	if (reopen_wanted && (vd->vdev_faulted || vd->vdev_degraded ||
18188a79c1b5Sek 	    vd->vdev_stat.vs_aux == VDEV_AUX_IO_FAILURE)) {
18198a79c1b5Sek 		boolean_t resilver = (vd->vdev_faulted || vd->vdev_degraded);
18208a79c1b5Sek 
18213d7072f8Seschrock 		vd->vdev_faulted = vd->vdev_degraded = 0;
18223d7072f8Seschrock 		vdev_reopen(vd);
18233d7072f8Seschrock 		vdev_config_dirty(vd->vdev_top);
18243d7072f8Seschrock 
18258a79c1b5Sek 		if (resilver && vd->vdev_aux == NULL && !vdev_is_dead(vd))
1826bb8b5132Sek 			spa_async_request(spa, SPA_ASYNC_RESILVER);
18273d7072f8Seschrock 
18283d7072f8Seschrock 		spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
18293d7072f8Seschrock 	}
1830fa9e4066Sahrens }
1831fa9e4066Sahrens 
18320a4e9518Sgw int
18330a4e9518Sgw vdev_readable(vdev_t *vd)
18340a4e9518Sgw {
18350a4e9518Sgw 	/* XXPOLICY */
18360a4e9518Sgw 	return (!vdev_is_dead(vd));
18370a4e9518Sgw }
18380a4e9518Sgw 
18390a4e9518Sgw int
18400a4e9518Sgw vdev_writeable(vdev_t *vd)
18410a4e9518Sgw {
18421f7ad2e1Sgw 	return (!vdev_is_dead(vd) && !vd->vdev_is_failing);
18430a4e9518Sgw }
18440a4e9518Sgw 
1845fa9e4066Sahrens int
1846fa9e4066Sahrens vdev_is_dead(vdev_t *vd)
1847fa9e4066Sahrens {
184832b87932Sek 	/*
184932b87932Sek 	 * If the vdev experienced I/O failures, then the vdev is marked
185032b87932Sek 	 * as faulted (VDEV_STATE_FAULTED) for status output and FMA; however,
185132b87932Sek 	 * we need to allow access to the vdev for resumed I/Os (see
185232b87932Sek 	 * zio_vdev_resume_io() ).
185332b87932Sek 	 */
185432b87932Sek 	return (vd->vdev_state < VDEV_STATE_DEGRADED &&
185532b87932Sek 	    vd->vdev_stat.vs_aux != VDEV_AUX_IO_FAILURE);
1856fa9e4066Sahrens }
1857fa9e4066Sahrens 
1858fa9e4066Sahrens int
1859fa9e4066Sahrens vdev_error_inject(vdev_t *vd, zio_t *zio)
1860fa9e4066Sahrens {
1861fa9e4066Sahrens 	int error = 0;
1862fa9e4066Sahrens 
1863fa9e4066Sahrens 	if (vd->vdev_fault_mode == VDEV_FAULT_NONE)
1864fa9e4066Sahrens 		return (0);
1865fa9e4066Sahrens 
1866fa9e4066Sahrens 	if (((1ULL << zio->io_type) & vd->vdev_fault_mask) == 0)
1867fa9e4066Sahrens 		return (0);
1868fa9e4066Sahrens 
1869fa9e4066Sahrens 	switch (vd->vdev_fault_mode) {
1870fa9e4066Sahrens 	case VDEV_FAULT_RANDOM:
1871fa9e4066Sahrens 		if (spa_get_random(vd->vdev_fault_arg) == 0)
1872fa9e4066Sahrens 			error = EIO;
1873fa9e4066Sahrens 		break;
1874fa9e4066Sahrens 
1875fa9e4066Sahrens 	case VDEV_FAULT_COUNT:
1876fa9e4066Sahrens 		if ((int64_t)--vd->vdev_fault_arg <= 0)
1877fa9e4066Sahrens 			vd->vdev_fault_mode = VDEV_FAULT_NONE;
1878fa9e4066Sahrens 		error = EIO;
1879fa9e4066Sahrens 		break;
1880fa9e4066Sahrens 	}
1881fa9e4066Sahrens 
1882fa9e4066Sahrens 	return (error);
1883fa9e4066Sahrens }
1884fa9e4066Sahrens 
1885fa9e4066Sahrens /*
1886fa9e4066Sahrens  * Get statistics for the given vdev.
1887fa9e4066Sahrens  */
1888fa9e4066Sahrens void
1889fa9e4066Sahrens vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
1890fa9e4066Sahrens {
1891fa9e4066Sahrens 	vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
1892fa9e4066Sahrens 	int c, t;
1893fa9e4066Sahrens 
1894fa9e4066Sahrens 	mutex_enter(&vd->vdev_stat_lock);
1895fa9e4066Sahrens 	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
1896*088f3894Sahrens 	vs->vs_scrub_errors = vd->vdev_spa->spa_scrub_errors;
1897fa9e4066Sahrens 	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
1898fa9e4066Sahrens 	vs->vs_state = vd->vdev_state;
18992a79c5feSlling 	vs->vs_rsize = vdev_get_rsize(vd);
1900fa9e4066Sahrens 	mutex_exit(&vd->vdev_stat_lock);
1901fa9e4066Sahrens 
1902fa9e4066Sahrens 	/*
1903fa9e4066Sahrens 	 * If we're getting stats on the root vdev, aggregate the I/O counts
1904fa9e4066Sahrens 	 * over all top-level vdevs (i.e. the direct children of the root).
1905fa9e4066Sahrens 	 */
1906fa9e4066Sahrens 	if (vd == rvd) {
1907fa9e4066Sahrens 		for (c = 0; c < rvd->vdev_children; c++) {
1908fa9e4066Sahrens 			vdev_t *cvd = rvd->vdev_child[c];
1909fa9e4066Sahrens 			vdev_stat_t *cvs = &cvd->vdev_stat;
1910fa9e4066Sahrens 
1911fa9e4066Sahrens 			mutex_enter(&vd->vdev_stat_lock);
1912fa9e4066Sahrens 			for (t = 0; t < ZIO_TYPES; t++) {
1913fa9e4066Sahrens 				vs->vs_ops[t] += cvs->vs_ops[t];
1914fa9e4066Sahrens 				vs->vs_bytes[t] += cvs->vs_bytes[t];
1915fa9e4066Sahrens 			}
1916fa9e4066Sahrens 			vs->vs_read_errors += cvs->vs_read_errors;
1917fa9e4066Sahrens 			vs->vs_write_errors += cvs->vs_write_errors;
1918fa9e4066Sahrens 			vs->vs_checksum_errors += cvs->vs_checksum_errors;
1919fa9e4066Sahrens 			vs->vs_scrub_examined += cvs->vs_scrub_examined;
1920fa9e4066Sahrens 			mutex_exit(&vd->vdev_stat_lock);
1921fa9e4066Sahrens 		}
1922fa9e4066Sahrens 	}
1923fa9e4066Sahrens }
1924fa9e4066Sahrens 
1925fa94a07fSbrendan void
1926fa94a07fSbrendan vdev_clear_stats(vdev_t *vd)
1927fa94a07fSbrendan {
1928fa94a07fSbrendan 	mutex_enter(&vd->vdev_stat_lock);
1929fa94a07fSbrendan 	vd->vdev_stat.vs_space = 0;
1930fa94a07fSbrendan 	vd->vdev_stat.vs_dspace = 0;
1931fa94a07fSbrendan 	vd->vdev_stat.vs_alloc = 0;
1932fa94a07fSbrendan 	mutex_exit(&vd->vdev_stat_lock);
1933fa94a07fSbrendan }
1934fa94a07fSbrendan 
1935fa9e4066Sahrens void
1936fa9e4066Sahrens vdev_stat_update(zio_t *zio)
1937fa9e4066Sahrens {
1938fa9e4066Sahrens 	vdev_t *vd = zio->io_vd;
1939fa9e4066Sahrens 	vdev_t *pvd;
1940fa9e4066Sahrens 	uint64_t txg = zio->io_txg;
1941fa9e4066Sahrens 	vdev_stat_t *vs = &vd->vdev_stat;
1942fa9e4066Sahrens 	zio_type_t type = zio->io_type;
1943fa9e4066Sahrens 	int flags = zio->io_flags;
1944fa9e4066Sahrens 
1945fa9e4066Sahrens 	if (zio->io_error == 0) {
1946fa9e4066Sahrens 		if (!(flags & ZIO_FLAG_IO_BYPASS)) {
1947fa9e4066Sahrens 			mutex_enter(&vd->vdev_stat_lock);
1948fa9e4066Sahrens 			vs->vs_ops[type]++;
1949fa9e4066Sahrens 			vs->vs_bytes[type] += zio->io_size;
1950fa9e4066Sahrens 			mutex_exit(&vd->vdev_stat_lock);
1951fa9e4066Sahrens 		}
1952fa9e4066Sahrens 		if ((flags & ZIO_FLAG_IO_REPAIR) &&
1953fa9e4066Sahrens 		    zio->io_delegate_list == NULL) {
1954fa9e4066Sahrens 			mutex_enter(&vd->vdev_stat_lock);
1955d80c45e0Sbonwick 			if (flags & ZIO_FLAG_SCRUB_THREAD)
1956fa9e4066Sahrens 				vs->vs_scrub_repaired += zio->io_size;
1957fa9e4066Sahrens 			else
1958fa9e4066Sahrens 				vs->vs_self_healed += zio->io_size;
1959fa9e4066Sahrens 			mutex_exit(&vd->vdev_stat_lock);
1960fa9e4066Sahrens 		}
1961fa9e4066Sahrens 		return;
1962fa9e4066Sahrens 	}
1963fa9e4066Sahrens 
1964fa9e4066Sahrens 	if (flags & ZIO_FLAG_SPECULATIVE)
1965fa9e4066Sahrens 		return;
1966fa9e4066Sahrens 
19670a4e9518Sgw 	if (vdev_readable(vd)) {
1968fa9e4066Sahrens 		mutex_enter(&vd->vdev_stat_lock);
1969fa9e4066Sahrens 		if (type == ZIO_TYPE_READ) {
1970fa9e4066Sahrens 			if (zio->io_error == ECKSUM)
1971fa9e4066Sahrens 				vs->vs_checksum_errors++;
1972fa9e4066Sahrens 			else
1973fa9e4066Sahrens 				vs->vs_read_errors++;
1974fa9e4066Sahrens 		}
1975fa9e4066Sahrens 		if (type == ZIO_TYPE_WRITE)
1976fa9e4066Sahrens 			vs->vs_write_errors++;
1977fa9e4066Sahrens 		mutex_exit(&vd->vdev_stat_lock);
1978fa9e4066Sahrens 	}
1979fa9e4066Sahrens 
1980fa9e4066Sahrens 	if (type == ZIO_TYPE_WRITE) {
1981fa9e4066Sahrens 		if (txg == 0 || vd->vdev_children != 0)
1982fa9e4066Sahrens 			return;
1983d80c45e0Sbonwick 		if (flags & ZIO_FLAG_SCRUB_THREAD) {
1984fa9e4066Sahrens 			ASSERT(flags & ZIO_FLAG_IO_REPAIR);
1985fa9e4066Sahrens 			for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
1986fa9e4066Sahrens 				vdev_dtl_dirty(&pvd->vdev_dtl_scrub, txg, 1);
1987fa9e4066Sahrens 		}
1988fa9e4066Sahrens 		if (!(flags & ZIO_FLAG_IO_REPAIR)) {
1989fa9e4066Sahrens 			if (vdev_dtl_contains(&vd->vdev_dtl_map, txg, 1))
1990fa9e4066Sahrens 				return;
1991ecc2d604Sbonwick 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1992fa9e4066Sahrens 			for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
1993fa9e4066Sahrens 				vdev_dtl_dirty(&pvd->vdev_dtl_map, txg, 1);
1994fa9e4066Sahrens 		}
1995fa9e4066Sahrens 	}
1996fa9e4066Sahrens }
1997fa9e4066Sahrens 
1998fa9e4066Sahrens void
1999fa9e4066Sahrens vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete)
2000fa9e4066Sahrens {
2001fa9e4066Sahrens 	int c;
2002fa9e4066Sahrens 	vdev_stat_t *vs = &vd->vdev_stat;
2003fa9e4066Sahrens 
2004fa9e4066Sahrens 	for (c = 0; c < vd->vdev_children; c++)
2005fa9e4066Sahrens 		vdev_scrub_stat_update(vd->vdev_child[c], type, complete);
2006fa9e4066Sahrens 
2007fa9e4066Sahrens 	mutex_enter(&vd->vdev_stat_lock);
2008fa9e4066Sahrens 
2009fa9e4066Sahrens 	if (type == POOL_SCRUB_NONE) {
2010fa9e4066Sahrens 		/*
2011fa9e4066Sahrens 		 * Update completion and end time.  Leave everything else alone
2012fa9e4066Sahrens 		 * so we can report what happened during the previous scrub.
2013fa9e4066Sahrens 		 */
2014fa9e4066Sahrens 		vs->vs_scrub_complete = complete;
2015fa9e4066Sahrens 		vs->vs_scrub_end = gethrestime_sec();
2016fa9e4066Sahrens 	} else {
2017fa9e4066Sahrens 		vs->vs_scrub_type = type;
2018fa9e4066Sahrens 		vs->vs_scrub_complete = 0;
2019fa9e4066Sahrens 		vs->vs_scrub_examined = 0;
2020fa9e4066Sahrens 		vs->vs_scrub_repaired = 0;
2021fa9e4066Sahrens 		vs->vs_scrub_start = gethrestime_sec();
2022fa9e4066Sahrens 		vs->vs_scrub_end = 0;
2023fa9e4066Sahrens 	}
2024fa9e4066Sahrens 
2025fa9e4066Sahrens 	mutex_exit(&vd->vdev_stat_lock);
2026fa9e4066Sahrens }
2027fa9e4066Sahrens 
2028fa9e4066Sahrens /*
2029fa9e4066Sahrens  * Update the in-core space usage stats for this vdev and the root vdev.
2030fa9e4066Sahrens  */
2031fa9e4066Sahrens void
2032fa94a07fSbrendan vdev_space_update(vdev_t *vd, int64_t space_delta, int64_t alloc_delta,
2033fa94a07fSbrendan     boolean_t update_root)
2034fa9e4066Sahrens {
203599653d4eSeschrock 	int64_t dspace_delta = space_delta;
20368654d025Sperrin 	spa_t *spa = vd->vdev_spa;
20378654d025Sperrin 	vdev_t *rvd = spa->spa_root_vdev;
2038fa9e4066Sahrens 
20398654d025Sperrin 	ASSERT(vd == vd->vdev_top);
204099653d4eSeschrock 
20418654d025Sperrin 	/*
20428654d025Sperrin 	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
20438654d025Sperrin 	 * factor.  We must calculate this here and not at the root vdev
20448654d025Sperrin 	 * because the root vdev's psize-to-asize is simply the max of its
20458654d025Sperrin 	 * childrens', thus not accurate enough for us.
20468654d025Sperrin 	 */
20478654d025Sperrin 	ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
20488654d025Sperrin 	dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
20498654d025Sperrin 	    vd->vdev_deflate_ratio;
20508654d025Sperrin 
20518654d025Sperrin 	mutex_enter(&vd->vdev_stat_lock);
20528654d025Sperrin 	vd->vdev_stat.vs_space += space_delta;
20538654d025Sperrin 	vd->vdev_stat.vs_alloc += alloc_delta;
20548654d025Sperrin 	vd->vdev_stat.vs_dspace += dspace_delta;
20558654d025Sperrin 	mutex_exit(&vd->vdev_stat_lock);
20568654d025Sperrin 
2057fa94a07fSbrendan 	if (update_root) {
2058fa94a07fSbrendan 		ASSERT(rvd == vd->vdev_parent);
2059fa94a07fSbrendan 		ASSERT(vd->vdev_ms_count != 0);
2060fa94a07fSbrendan 
2061fa94a07fSbrendan 		/*
2062fa94a07fSbrendan 		 * Don't count non-normal (e.g. intent log) space as part of
2063fa94a07fSbrendan 		 * the pool's capacity.
2064fa94a07fSbrendan 		 */
2065fa94a07fSbrendan 		if (vd->vdev_mg->mg_class != spa->spa_normal_class)
2066fa94a07fSbrendan 			return;
20678654d025Sperrin 
2068fa94a07fSbrendan 		mutex_enter(&rvd->vdev_stat_lock);
2069fa94a07fSbrendan 		rvd->vdev_stat.vs_space += space_delta;
2070fa94a07fSbrendan 		rvd->vdev_stat.vs_alloc += alloc_delta;
2071fa94a07fSbrendan 		rvd->vdev_stat.vs_dspace += dspace_delta;
2072fa94a07fSbrendan 		mutex_exit(&rvd->vdev_stat_lock);
2073fa94a07fSbrendan 	}
2074fa9e4066Sahrens }
2075fa9e4066Sahrens 
2076fa9e4066Sahrens /*
2077fa9e4066Sahrens  * Mark a top-level vdev's config as dirty, placing it on the dirty list
2078fa9e4066Sahrens  * so that it will be written out next time the vdev configuration is synced.
2079fa9e4066Sahrens  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2080fa9e4066Sahrens  */
2081fa9e4066Sahrens void
2082fa9e4066Sahrens vdev_config_dirty(vdev_t *vd)
2083fa9e4066Sahrens {
2084fa9e4066Sahrens 	spa_t *spa = vd->vdev_spa;
2085fa9e4066Sahrens 	vdev_t *rvd = spa->spa_root_vdev;
2086fa9e4066Sahrens 	int c;
2087fa9e4066Sahrens 
2088c5904d13Seschrock 	/*
2089c5904d13Seschrock 	 * If this is an aux vdev (as with l2cache devices), then we update the
2090c5904d13Seschrock 	 * vdev config manually and set the sync flag.
2091c5904d13Seschrock 	 */
2092c5904d13Seschrock 	if (vd->vdev_aux != NULL) {
2093c5904d13Seschrock 		spa_aux_vdev_t *sav = vd->vdev_aux;
2094c5904d13Seschrock 		nvlist_t **aux;
2095c5904d13Seschrock 		uint_t naux;
2096c5904d13Seschrock 
2097c5904d13Seschrock 		for (c = 0; c < sav->sav_count; c++) {
2098c5904d13Seschrock 			if (sav->sav_vdevs[c] == vd)
2099c5904d13Seschrock 				break;
2100c5904d13Seschrock 		}
2101c5904d13Seschrock 
2102c5904d13Seschrock 		ASSERT(c < sav->sav_count);
2103c5904d13Seschrock 		sav->sav_sync = B_TRUE;
2104c5904d13Seschrock 
2105c5904d13Seschrock 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2106c5904d13Seschrock 		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) == 0);
2107c5904d13Seschrock 
2108c5904d13Seschrock 		ASSERT(c < naux);
2109c5904d13Seschrock 
2110c5904d13Seschrock 		/*
2111c5904d13Seschrock 		 * Setting the nvlist in the middle if the array is a little
2112c5904d13Seschrock 		 * sketchy, but it will work.
2113c5904d13Seschrock 		 */
2114c5904d13Seschrock 		nvlist_free(aux[c]);
2115c5904d13Seschrock 		aux[c] = vdev_config_generate(spa, vd, B_TRUE, B_FALSE, B_TRUE);
2116c5904d13Seschrock 
2117c5904d13Seschrock 		return;
2118c5904d13Seschrock 	}
2119c5904d13Seschrock 
21205dabedeeSbonwick 	/*
21215dabedeeSbonwick 	 * The dirty list is protected by the config lock.  The caller must
21225dabedeeSbonwick 	 * either hold the config lock as writer, or must be the sync thread
21235dabedeeSbonwick 	 * (which holds the lock as reader).  There's only one sync thread,
21245dabedeeSbonwick 	 * so this is sufficient to ensure mutual exclusion.
21255dabedeeSbonwick 	 */
21265dabedeeSbonwick 	ASSERT(spa_config_held(spa, RW_WRITER) ||
21275dabedeeSbonwick 	    dsl_pool_sync_context(spa_get_dsl(spa)));
21285dabedeeSbonwick 
2129fa9e4066Sahrens 	if (vd == rvd) {
2130fa9e4066Sahrens 		for (c = 0; c < rvd->vdev_children; c++)
2131fa9e4066Sahrens 			vdev_config_dirty(rvd->vdev_child[c]);
2132fa9e4066Sahrens 	} else {
2133fa9e4066Sahrens 		ASSERT(vd == vd->vdev_top);
2134fa9e4066Sahrens 
2135ecc2d604Sbonwick 		if (!list_link_active(&vd->vdev_dirty_node))
2136fa9e4066Sahrens 			list_insert_head(&spa->spa_dirty_list, vd);
2137fa9e4066Sahrens 	}
2138fa9e4066Sahrens }
2139fa9e4066Sahrens 
2140fa9e4066Sahrens void
2141fa9e4066Sahrens vdev_config_clean(vdev_t *vd)
2142fa9e4066Sahrens {
21435dabedeeSbonwick 	spa_t *spa = vd->vdev_spa;
21445dabedeeSbonwick 
21455dabedeeSbonwick 	ASSERT(spa_config_held(spa, RW_WRITER) ||
21465dabedeeSbonwick 	    dsl_pool_sync_context(spa_get_dsl(spa)));
21475dabedeeSbonwick 
2148ecc2d604Sbonwick 	ASSERT(list_link_active(&vd->vdev_dirty_node));
21495dabedeeSbonwick 	list_remove(&spa->spa_dirty_list, vd);
2150fa9e4066Sahrens }
2151fa9e4066Sahrens 
215232b87932Sek /*
215332b87932Sek  * Propagate vdev state up from children to parent.
215432b87932Sek  */
215544cd46caSbillm void
215644cd46caSbillm vdev_propagate_state(vdev_t *vd)
215744cd46caSbillm {
215844cd46caSbillm 	vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
215944cd46caSbillm 	int degraded = 0, faulted = 0;
216044cd46caSbillm 	int corrupted = 0;
216144cd46caSbillm 	int c;
216244cd46caSbillm 	vdev_t *child;
216344cd46caSbillm 
21643d7072f8Seschrock 	if (vd->vdev_children > 0) {
21653d7072f8Seschrock 		for (c = 0; c < vd->vdev_children; c++) {
21663d7072f8Seschrock 			child = vd->vdev_child[c];
216751ece835Seschrock 
216851ece835Seschrock 			if ((vdev_is_dead(child) && !vdev_readable(child)) ||
216951ece835Seschrock 			    child->vdev_stat.vs_aux == VDEV_AUX_IO_FAILURE) {
217051ece835Seschrock 				/*
217151ece835Seschrock 				 * Root special: if there is a top-level log
217251ece835Seschrock 				 * device, treat the root vdev as if it were
217351ece835Seschrock 				 * degraded.
217451ece835Seschrock 				 */
217551ece835Seschrock 				if (child->vdev_islog && vd == rvd)
217651ece835Seschrock 					degraded++;
217751ece835Seschrock 				else
217851ece835Seschrock 					faulted++;
217951ece835Seschrock 			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
21803d7072f8Seschrock 				degraded++;
218151ece835Seschrock 			}
218244cd46caSbillm 
21833d7072f8Seschrock 			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
21843d7072f8Seschrock 				corrupted++;
21853d7072f8Seschrock 		}
218644cd46caSbillm 
21873d7072f8Seschrock 		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
21883d7072f8Seschrock 
21893d7072f8Seschrock 		/*
21903d7072f8Seschrock 		 * Root special: if there is a toplevel vdev that cannot be
21913d7072f8Seschrock 		 * opened due to corrupted metadata, then propagate the root
21923d7072f8Seschrock 		 * vdev's aux state as 'corrupt' rather than 'insufficient
21933d7072f8Seschrock 		 * replicas'.
21943d7072f8Seschrock 		 */
21953d7072f8Seschrock 		if (corrupted && vd == rvd &&
21963d7072f8Seschrock 		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
21973d7072f8Seschrock 			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
21983d7072f8Seschrock 			    VDEV_AUX_CORRUPT_DATA);
21993d7072f8Seschrock 	}
22003d7072f8Seschrock 
220151ece835Seschrock 	if (vd->vdev_parent)
22023d7072f8Seschrock 		vdev_propagate_state(vd->vdev_parent);
220344cd46caSbillm }
220444cd46caSbillm 
2205fa9e4066Sahrens /*
2206ea8dc4b6Seschrock  * Set a vdev's state.  If this is during an open, we don't update the parent
2207ea8dc4b6Seschrock  * state, because we're in the process of opening children depth-first.
2208ea8dc4b6Seschrock  * Otherwise, we propagate the change to the parent.
2209ea8dc4b6Seschrock  *
2210ea8dc4b6Seschrock  * If this routine places a device in a faulted state, an appropriate ereport is
2211ea8dc4b6Seschrock  * generated.
2212fa9e4066Sahrens  */
2213fa9e4066Sahrens void
2214ea8dc4b6Seschrock vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2215fa9e4066Sahrens {
2216560e6e96Seschrock 	uint64_t save_state;
2217c5904d13Seschrock 	spa_t *spa = vd->vdev_spa;
2218ea8dc4b6Seschrock 
2219ea8dc4b6Seschrock 	if (state == vd->vdev_state) {
2220ea8dc4b6Seschrock 		vd->vdev_stat.vs_aux = aux;
2221fa9e4066Sahrens 		return;
2222ea8dc4b6Seschrock 	}
2223ea8dc4b6Seschrock 
2224560e6e96Seschrock 	save_state = vd->vdev_state;
2225fa9e4066Sahrens 
2226fa9e4066Sahrens 	vd->vdev_state = state;
2227fa9e4066Sahrens 	vd->vdev_stat.vs_aux = aux;
2228fa9e4066Sahrens 
22293d7072f8Seschrock 	/*
22303d7072f8Seschrock 	 * If we are setting the vdev state to anything but an open state, then
22313d7072f8Seschrock 	 * always close the underlying device.  Otherwise, we keep accessible
22323d7072f8Seschrock 	 * but invalid devices open forever.  We don't call vdev_close() itself,
22333d7072f8Seschrock 	 * because that implies some extra checks (offline, etc) that we don't
22343d7072f8Seschrock 	 * want here.  This is limited to leaf devices, because otherwise
22353d7072f8Seschrock 	 * closing the device will affect other children.
22363d7072f8Seschrock 	 */
22370a4e9518Sgw 	if (!vdev_readable(vd) && vd->vdev_ops->vdev_op_leaf)
22383d7072f8Seschrock 		vd->vdev_ops->vdev_op_close(vd);
22393d7072f8Seschrock 
22403d7072f8Seschrock 	if (vd->vdev_removed &&
22413d7072f8Seschrock 	    state == VDEV_STATE_CANT_OPEN &&
22423d7072f8Seschrock 	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
22433d7072f8Seschrock 		/*
22443d7072f8Seschrock 		 * If the previous state is set to VDEV_STATE_REMOVED, then this
22453d7072f8Seschrock 		 * device was previously marked removed and someone attempted to
22463d7072f8Seschrock 		 * reopen it.  If this failed due to a nonexistent device, then
22473d7072f8Seschrock 		 * keep the device in the REMOVED state.  We also let this be if
22483d7072f8Seschrock 		 * it is one of our special test online cases, which is only
22493d7072f8Seschrock 		 * attempting to online the device and shouldn't generate an FMA
22503d7072f8Seschrock 		 * fault.
22513d7072f8Seschrock 		 */
22523d7072f8Seschrock 		vd->vdev_state = VDEV_STATE_REMOVED;
22533d7072f8Seschrock 		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
22543d7072f8Seschrock 	} else if (state == VDEV_STATE_REMOVED) {
22553d7072f8Seschrock 		/*
22563d7072f8Seschrock 		 * Indicate to the ZFS DE that this device has been removed, and
22573d7072f8Seschrock 		 * any recent errors should be ignored.
22583d7072f8Seschrock 		 */
2259c5904d13Seschrock 		zfs_post_remove(spa, vd);
22603d7072f8Seschrock 		vd->vdev_removed = B_TRUE;
22613d7072f8Seschrock 	} else if (state == VDEV_STATE_CANT_OPEN) {
2262ea8dc4b6Seschrock 		/*
2263ea8dc4b6Seschrock 		 * If we fail to open a vdev during an import, we mark it as
2264ea8dc4b6Seschrock 		 * "not available", which signifies that it was never there to
2265ea8dc4b6Seschrock 		 * begin with.  Failure to open such a device is not considered
2266ea8dc4b6Seschrock 		 * an error.
2267ea8dc4b6Seschrock 		 */
2268c5904d13Seschrock 		if (spa->spa_load_state == SPA_LOAD_IMPORT &&
2269c5904d13Seschrock 		    !spa->spa_import_faulted &&
2270560e6e96Seschrock 		    vd->vdev_ops->vdev_op_leaf)
2271560e6e96Seschrock 			vd->vdev_not_present = 1;
2272560e6e96Seschrock 
2273560e6e96Seschrock 		/*
2274560e6e96Seschrock 		 * Post the appropriate ereport.  If the 'prevstate' field is
2275560e6e96Seschrock 		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
2276560e6e96Seschrock 		 * that this is part of a vdev_reopen().  In this case, we don't
2277560e6e96Seschrock 		 * want to post the ereport if the device was already in the
2278560e6e96Seschrock 		 * CANT_OPEN state beforehand.
22793d7072f8Seschrock 		 *
22803d7072f8Seschrock 		 * If the 'checkremove' flag is set, then this is an attempt to
22813d7072f8Seschrock 		 * online the device in response to an insertion event.  If we
22823d7072f8Seschrock 		 * hit this case, then we have detected an insertion event for a
22833d7072f8Seschrock 		 * faulted or offline device that wasn't in the removed state.
22843d7072f8Seschrock 		 * In this scenario, we don't post an ereport because we are
22853d7072f8Seschrock 		 * about to replace the device, or attempt an online with
22863d7072f8Seschrock 		 * vdev_forcefault, which will generate the fault for us.
2287560e6e96Seschrock 		 */
22883d7072f8Seschrock 		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
22893d7072f8Seschrock 		    !vd->vdev_not_present && !vd->vdev_checkremove &&
2290c5904d13Seschrock 		    vd != spa->spa_root_vdev) {
2291ea8dc4b6Seschrock 			const char *class;
2292ea8dc4b6Seschrock 
2293ea8dc4b6Seschrock 			switch (aux) {
2294ea8dc4b6Seschrock 			case VDEV_AUX_OPEN_FAILED:
2295ea8dc4b6Seschrock 				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
2296ea8dc4b6Seschrock 				break;
2297ea8dc4b6Seschrock 			case VDEV_AUX_CORRUPT_DATA:
2298ea8dc4b6Seschrock 				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
2299ea8dc4b6Seschrock 				break;
2300ea8dc4b6Seschrock 			case VDEV_AUX_NO_REPLICAS:
2301ea8dc4b6Seschrock 				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
2302ea8dc4b6Seschrock 				break;
2303ea8dc4b6Seschrock 			case VDEV_AUX_BAD_GUID_SUM:
2304ea8dc4b6Seschrock 				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
2305ea8dc4b6Seschrock 				break;
2306ea8dc4b6Seschrock 			case VDEV_AUX_TOO_SMALL:
2307ea8dc4b6Seschrock 				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
2308ea8dc4b6Seschrock 				break;
2309ea8dc4b6Seschrock 			case VDEV_AUX_BAD_LABEL:
2310ea8dc4b6Seschrock 				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
2311ea8dc4b6Seschrock 				break;
2312ea8dc4b6Seschrock 			default:
2313ea8dc4b6Seschrock 				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
2314ea8dc4b6Seschrock 			}
2315ea8dc4b6Seschrock 
2316c5904d13Seschrock 			zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
2317ea8dc4b6Seschrock 		}
2318ea8dc4b6Seschrock 
23193d7072f8Seschrock 		/* Erase any notion of persistent removed state */
23203d7072f8Seschrock 		vd->vdev_removed = B_FALSE;
23213d7072f8Seschrock 	} else {
23223d7072f8Seschrock 		vd->vdev_removed = B_FALSE;
23233d7072f8Seschrock 	}
2324ea8dc4b6Seschrock 
23253d7072f8Seschrock 	if (!isopen)
23263d7072f8Seschrock 		vdev_propagate_state(vd);
2327fa9e4066Sahrens }
232815e6edf1Sgw 
232915e6edf1Sgw /*
233015e6edf1Sgw  * Check the vdev configuration to ensure that it's capable of supporting
233115e6edf1Sgw  * a root pool. Currently, we do not support RAID-Z or partial configuration.
233215e6edf1Sgw  * In addition, only a single top-level vdev is allowed and none of the leaves
233315e6edf1Sgw  * can be wholedisks.
233415e6edf1Sgw  */
233515e6edf1Sgw boolean_t
233615e6edf1Sgw vdev_is_bootable(vdev_t *vd)
233715e6edf1Sgw {
233815e6edf1Sgw 	int c;
233915e6edf1Sgw 
234015e6edf1Sgw 	if (!vd->vdev_ops->vdev_op_leaf) {
234115e6edf1Sgw 		char *vdev_type = vd->vdev_ops->vdev_op_type;
234215e6edf1Sgw 
234315e6edf1Sgw 		if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
234415e6edf1Sgw 		    vd->vdev_children > 1) {
234515e6edf1Sgw 			return (B_FALSE);
234615e6edf1Sgw 		} else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
234715e6edf1Sgw 		    strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
234815e6edf1Sgw 			return (B_FALSE);
234915e6edf1Sgw 		}
235015e6edf1Sgw 	} else if (vd->vdev_wholedisk == 1) {
235115e6edf1Sgw 		return (B_FALSE);
235215e6edf1Sgw 	}
235315e6edf1Sgw 
235415e6edf1Sgw 	for (c = 0; c < vd->vdev_children; c++) {
235515e6edf1Sgw 		if (!vdev_is_bootable(vd->vdev_child[c]))
235615e6edf1Sgw 			return (B_FALSE);
235715e6edf1Sgw 	}
235815e6edf1Sgw 	return (B_TRUE);
235915e6edf1Sgw }
2360