xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa.c (revision dd50e0cc)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
25  * Copyright (c) 2015, Nexenta Systems, Inc.  All rights reserved.
26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27  * Copyright 2013 Saso Kiselkov. All rights reserved.
28  * Copyright (c) 2014 Integros [integros.com]
29  * Copyright 2016 Toomas Soome <tsoome@me.com>
30  * Copyright 2019 Joyent, Inc.
31  * Copyright (c) 2017, Intel Corporation.
32  * Copyright (c) 2017 Datto Inc.
33  * Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
34  */
35 
36 /*
37  * SPA: Storage Pool Allocator
38  *
39  * This file contains all the routines used when modifying on-disk SPA state.
40  * This includes opening, importing, destroying, exporting a pool, and syncing a
41  * pool.
42  */
43 
44 #include <sys/zfs_context.h>
45 #include <sys/fm/fs/zfs.h>
46 #include <sys/spa_impl.h>
47 #include <sys/zio.h>
48 #include <sys/zio_checksum.h>
49 #include <sys/dmu.h>
50 #include <sys/dmu_tx.h>
51 #include <sys/zap.h>
52 #include <sys/zil.h>
53 #include <sys/ddt.h>
54 #include <sys/vdev_impl.h>
55 #include <sys/vdev_removal.h>
56 #include <sys/vdev_indirect_mapping.h>
57 #include <sys/vdev_indirect_births.h>
58 #include <sys/vdev_initialize.h>
59 #include <sys/vdev_trim.h>
60 #include <sys/metaslab.h>
61 #include <sys/metaslab_impl.h>
62 #include <sys/mmp.h>
63 #include <sys/uberblock_impl.h>
64 #include <sys/txg.h>
65 #include <sys/avl.h>
66 #include <sys/bpobj.h>
67 #include <sys/dmu_traverse.h>
68 #include <sys/dmu_objset.h>
69 #include <sys/unique.h>
70 #include <sys/dsl_pool.h>
71 #include <sys/dsl_dataset.h>
72 #include <sys/dsl_dir.h>
73 #include <sys/dsl_prop.h>
74 #include <sys/dsl_synctask.h>
75 #include <sys/fs/zfs.h>
76 #include <sys/arc.h>
77 #include <sys/callb.h>
78 #include <sys/systeminfo.h>
79 #include <sys/spa_boot.h>
80 #include <sys/zfs_ioctl.h>
81 #include <sys/dsl_scan.h>
82 #include <sys/zfeature.h>
83 #include <sys/dsl_destroy.h>
84 #include <sys/abd.h>
85 
86 #ifdef	_KERNEL
87 #include <sys/bootprops.h>
88 #include <sys/callb.h>
89 #include <sys/cpupart.h>
90 #include <sys/pool.h>
91 #include <sys/sysdc.h>
92 #include <sys/zone.h>
93 #endif	/* _KERNEL */
94 
95 #include "zfs_prop.h"
96 #include "zfs_comutil.h"
97 
98 /*
99  * The interval, in seconds, at which failed configuration cache file writes
100  * should be retried.
101  */
102 int zfs_ccw_retry_interval = 300;
103 
104 typedef enum zti_modes {
105 	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
106 	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
107 	ZTI_MODE_NULL,			/* don't create a taskq */
108 	ZTI_NMODES
109 } zti_modes_t;
110 
111 #define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
112 #define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
113 #define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
114 
115 #define	ZTI_N(n)	ZTI_P(n, 1)
116 #define	ZTI_ONE		ZTI_N(1)
117 
118 typedef struct zio_taskq_info {
119 	zti_modes_t zti_mode;
120 	uint_t zti_value;
121 	uint_t zti_count;
122 } zio_taskq_info_t;
123 
124 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
125 	"issue", "issue_high", "intr", "intr_high"
126 };
127 
128 /*
129  * This table defines the taskq settings for each ZFS I/O type. When
130  * initializing a pool, we use this table to create an appropriately sized
131  * taskq. Some operations are low volume and therefore have a small, static
132  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
133  * macros. Other operations process a large amount of data; the ZTI_BATCH
134  * macro causes us to create a taskq oriented for throughput. Some operations
135  * are so high frequency and short-lived that the taskq itself can become a
136  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
137  * additional degree of parallelism specified by the number of threads per-
138  * taskq and the number of taskqs; when dispatching an event in this case, the
139  * particular taskq is chosen at random.
140  *
141  * The different taskq priorities are to handle the different contexts (issue
142  * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
143  * need to be handled with minimum delay.
144  */
145 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
146 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
147 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
148 	{ ZTI_N(8),	ZTI_NULL,	ZTI_P(12, 8),	ZTI_NULL }, /* READ */
149 	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
150 	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
151 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
152 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
153 	{ ZTI_N(4),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* TRIM */
154 };
155 
156 static void spa_sync_version(void *arg, dmu_tx_t *tx);
157 static void spa_sync_props(void *arg, dmu_tx_t *tx);
158 static boolean_t spa_has_active_shared_spare(spa_t *spa);
159 static int spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport);
160 static void spa_vdev_resilver_done(spa_t *spa);
161 
162 uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
163 id_t		zio_taskq_psrset_bind = PS_NONE;
164 boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
165 uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
166 
167 boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
168 extern int	zfs_sync_pass_deferred_free;
169 
170 /*
171  * Report any spa_load_verify errors found, but do not fail spa_load.
172  * This is used by zdb to analyze non-idle pools.
173  */
174 boolean_t	spa_load_verify_dryrun = B_FALSE;
175 
176 /*
177  * This (illegal) pool name is used when temporarily importing a spa_t in order
178  * to get the vdev stats associated with the imported devices.
179  */
180 #define	TRYIMPORT_NAME	"$import"
181 
182 /*
183  * For debugging purposes: print out vdev tree during pool import.
184  */
185 boolean_t	spa_load_print_vdev_tree = B_FALSE;
186 
187 /*
188  * A non-zero value for zfs_max_missing_tvds means that we allow importing
189  * pools with missing top-level vdevs. This is strictly intended for advanced
190  * pool recovery cases since missing data is almost inevitable. Pools with
191  * missing devices can only be imported read-only for safety reasons, and their
192  * fail-mode will be automatically set to "continue".
193  *
194  * With 1 missing vdev we should be able to import the pool and mount all
195  * datasets. User data that was not modified after the missing device has been
196  * added should be recoverable. This means that snapshots created prior to the
197  * addition of that device should be completely intact.
198  *
199  * With 2 missing vdevs, some datasets may fail to mount since there are
200  * dataset statistics that are stored as regular metadata. Some data might be
201  * recoverable if those vdevs were added recently.
202  *
203  * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
204  * may be missing entirely. Chances of data recovery are very low. Note that
205  * there are also risks of performing an inadvertent rewind as we might be
206  * missing all the vdevs with the latest uberblocks.
207  */
208 uint64_t	zfs_max_missing_tvds = 0;
209 
210 /*
211  * The parameters below are similar to zfs_max_missing_tvds but are only
212  * intended for a preliminary open of the pool with an untrusted config which
213  * might be incomplete or out-dated.
214  *
215  * We are more tolerant for pools opened from a cachefile since we could have
216  * an out-dated cachefile where a device removal was not registered.
217  * We could have set the limit arbitrarily high but in the case where devices
218  * are really missing we would want to return the proper error codes; we chose
219  * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
220  * and we get a chance to retrieve the trusted config.
221  */
222 uint64_t	zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
223 
224 /*
225  * In the case where config was assembled by scanning device paths (/dev/dsks
226  * by default) we are less tolerant since all the existing devices should have
227  * been detected and we want spa_load to return the right error codes.
228  */
229 uint64_t	zfs_max_missing_tvds_scan = 0;
230 
231 /*
232  * Interval in seconds at which to poll spare vdevs for health.
233  * Setting this to zero disables spare polling.
234  * Set to three hours by default.
235  */
236 uint_t		spa_spare_poll_interval_seconds = 60 * 60 * 3;
237 
238 /*
239  * Debugging aid that pauses spa_sync() towards the end.
240  */
241 boolean_t	zfs_pause_spa_sync = B_FALSE;
242 
243 /*
244  * ==========================================================================
245  * SPA properties routines
246  * ==========================================================================
247  */
248 
249 /*
250  * Add a (source=src, propname=propval) list to an nvlist.
251  */
252 static void
253 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
254     uint64_t intval, zprop_source_t src)
255 {
256 	const char *propname = zpool_prop_to_name(prop);
257 	nvlist_t *propval;
258 
259 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
260 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
261 
262 	if (strval != NULL)
263 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
264 	else
265 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
266 
267 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
268 	nvlist_free(propval);
269 }
270 
271 /*
272  * Get property values from the spa configuration.
273  */
274 static void
275 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
276 {
277 	vdev_t *rvd = spa->spa_root_vdev;
278 	dsl_pool_t *pool = spa->spa_dsl_pool;
279 	uint64_t size, alloc, cap, version;
280 	zprop_source_t src = ZPROP_SRC_NONE;
281 	spa_config_dirent_t *dp;
282 	metaslab_class_t *mc = spa_normal_class(spa);
283 
284 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
285 
286 	if (rvd != NULL) {
287 		alloc = metaslab_class_get_alloc(mc);
288 		alloc += metaslab_class_get_alloc(spa_special_class(spa));
289 		alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
290 
291 		size = metaslab_class_get_space(mc);
292 		size += metaslab_class_get_space(spa_special_class(spa));
293 		size += metaslab_class_get_space(spa_dedup_class(spa));
294 
295 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
296 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
297 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
298 		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
299 		    size - alloc, src);
300 		spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL,
301 		    spa->spa_checkpoint_info.sci_dspace, src);
302 
303 		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
304 		    metaslab_class_fragmentation(mc), src);
305 		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
306 		    metaslab_class_expandable_space(mc), src);
307 		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
308 		    (spa_mode(spa) == FREAD), src);
309 
310 		cap = (size == 0) ? 0 : (alloc * 100 / size);
311 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
312 
313 		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
314 		    ddt_get_pool_dedup_ratio(spa), src);
315 
316 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
317 		    rvd->vdev_state, src);
318 
319 		version = spa_version(spa);
320 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
321 			src = ZPROP_SRC_DEFAULT;
322 		else
323 			src = ZPROP_SRC_LOCAL;
324 		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
325 	}
326 
327 	if (pool != NULL) {
328 		/*
329 		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
330 		 * when opening pools before this version freedir will be NULL.
331 		 */
332 		if (pool->dp_free_dir != NULL) {
333 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
334 			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
335 			    src);
336 		} else {
337 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
338 			    NULL, 0, src);
339 		}
340 
341 		if (pool->dp_leak_dir != NULL) {
342 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
343 			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
344 			    src);
345 		} else {
346 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
347 			    NULL, 0, src);
348 		}
349 	}
350 
351 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
352 
353 	if (spa->spa_comment != NULL) {
354 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
355 		    0, ZPROP_SRC_LOCAL);
356 	}
357 
358 	if (spa->spa_root != NULL)
359 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
360 		    0, ZPROP_SRC_LOCAL);
361 
362 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
363 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
364 		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
365 	} else {
366 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
367 		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
368 	}
369 
370 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
371 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
372 		    DNODE_MAX_SIZE, ZPROP_SRC_NONE);
373 	} else {
374 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
375 		    DNODE_MIN_SIZE, ZPROP_SRC_NONE);
376 	}
377 
378 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
379 		if (dp->scd_path == NULL) {
380 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
381 			    "none", 0, ZPROP_SRC_LOCAL);
382 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
383 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
384 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
385 		}
386 	}
387 }
388 
389 /*
390  * Get zpool property values.
391  */
392 int
393 spa_prop_get(spa_t *spa, nvlist_t **nvp)
394 {
395 	objset_t *mos = spa->spa_meta_objset;
396 	zap_cursor_t zc;
397 	zap_attribute_t za;
398 	int err;
399 
400 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
401 
402 	mutex_enter(&spa->spa_props_lock);
403 
404 	/*
405 	 * Get properties from the spa config.
406 	 */
407 	spa_prop_get_config(spa, nvp);
408 
409 	/* If no pool property object, no more prop to get. */
410 	if (mos == NULL || spa->spa_pool_props_object == 0) {
411 		mutex_exit(&spa->spa_props_lock);
412 		return (0);
413 	}
414 
415 	/*
416 	 * Get properties from the MOS pool property object.
417 	 */
418 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
419 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
420 	    zap_cursor_advance(&zc)) {
421 		uint64_t intval = 0;
422 		char *strval = NULL;
423 		zprop_source_t src = ZPROP_SRC_DEFAULT;
424 		zpool_prop_t prop;
425 
426 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL)
427 			continue;
428 
429 		switch (za.za_integer_length) {
430 		case 8:
431 			/* integer property */
432 			if (za.za_first_integer !=
433 			    zpool_prop_default_numeric(prop))
434 				src = ZPROP_SRC_LOCAL;
435 
436 			if (prop == ZPOOL_PROP_BOOTFS) {
437 				dsl_pool_t *dp;
438 				dsl_dataset_t *ds = NULL;
439 
440 				dp = spa_get_dsl(spa);
441 				dsl_pool_config_enter(dp, FTAG);
442 				err = dsl_dataset_hold_obj(dp,
443 				    za.za_first_integer, FTAG, &ds);
444 				if (err != 0) {
445 					dsl_pool_config_exit(dp, FTAG);
446 					break;
447 				}
448 
449 				strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
450 				    KM_SLEEP);
451 				dsl_dataset_name(ds, strval);
452 				dsl_dataset_rele(ds, FTAG);
453 				dsl_pool_config_exit(dp, FTAG);
454 			} else {
455 				strval = NULL;
456 				intval = za.za_first_integer;
457 			}
458 
459 			spa_prop_add_list(*nvp, prop, strval, intval, src);
460 
461 			if (strval != NULL)
462 				kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
463 
464 			break;
465 
466 		case 1:
467 			/* string property */
468 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
469 			err = zap_lookup(mos, spa->spa_pool_props_object,
470 			    za.za_name, 1, za.za_num_integers, strval);
471 			if (err) {
472 				kmem_free(strval, za.za_num_integers);
473 				break;
474 			}
475 			spa_prop_add_list(*nvp, prop, strval, 0, src);
476 			kmem_free(strval, za.za_num_integers);
477 			break;
478 
479 		default:
480 			break;
481 		}
482 	}
483 	zap_cursor_fini(&zc);
484 	mutex_exit(&spa->spa_props_lock);
485 out:
486 	if (err && err != ENOENT) {
487 		nvlist_free(*nvp);
488 		*nvp = NULL;
489 		return (err);
490 	}
491 
492 	return (0);
493 }
494 
495 /*
496  * Validate the given pool properties nvlist and modify the list
497  * for the property values to be set.
498  */
499 static int
500 spa_prop_validate(spa_t *spa, nvlist_t *props)
501 {
502 	nvpair_t *elem;
503 	int error = 0, reset_bootfs = 0;
504 	uint64_t objnum = 0;
505 	boolean_t has_feature = B_FALSE;
506 
507 	elem = NULL;
508 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
509 		uint64_t intval;
510 		char *strval, *slash, *check, *fname;
511 		const char *propname = nvpair_name(elem);
512 		zpool_prop_t prop = zpool_name_to_prop(propname);
513 
514 		switch (prop) {
515 		case ZPOOL_PROP_INVAL:
516 			if (!zpool_prop_feature(propname)) {
517 				error = SET_ERROR(EINVAL);
518 				break;
519 			}
520 
521 			/*
522 			 * Sanitize the input.
523 			 */
524 			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
525 				error = SET_ERROR(EINVAL);
526 				break;
527 			}
528 
529 			if (nvpair_value_uint64(elem, &intval) != 0) {
530 				error = SET_ERROR(EINVAL);
531 				break;
532 			}
533 
534 			if (intval != 0) {
535 				error = SET_ERROR(EINVAL);
536 				break;
537 			}
538 
539 			fname = strchr(propname, '@') + 1;
540 			if (zfeature_lookup_name(fname, NULL) != 0) {
541 				error = SET_ERROR(EINVAL);
542 				break;
543 			}
544 
545 			has_feature = B_TRUE;
546 			break;
547 
548 		case ZPOOL_PROP_VERSION:
549 			error = nvpair_value_uint64(elem, &intval);
550 			if (!error &&
551 			    (intval < spa_version(spa) ||
552 			    intval > SPA_VERSION_BEFORE_FEATURES ||
553 			    has_feature))
554 				error = SET_ERROR(EINVAL);
555 			break;
556 
557 		case ZPOOL_PROP_DELEGATION:
558 		case ZPOOL_PROP_AUTOREPLACE:
559 		case ZPOOL_PROP_LISTSNAPS:
560 		case ZPOOL_PROP_AUTOEXPAND:
561 		case ZPOOL_PROP_AUTOTRIM:
562 			error = nvpair_value_uint64(elem, &intval);
563 			if (!error && intval > 1)
564 				error = SET_ERROR(EINVAL);
565 			break;
566 
567 		case ZPOOL_PROP_MULTIHOST:
568 			error = nvpair_value_uint64(elem, &intval);
569 			if (!error && intval > 1)
570 				error = SET_ERROR(EINVAL);
571 
572 			if (!error && !spa_get_hostid())
573 				error = SET_ERROR(ENOTSUP);
574 
575 			break;
576 
577 		case ZPOOL_PROP_BOOTFS:
578 			/*
579 			 * If the pool version is less than SPA_VERSION_BOOTFS,
580 			 * or the pool is still being created (version == 0),
581 			 * the bootfs property cannot be set.
582 			 */
583 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
584 				error = SET_ERROR(ENOTSUP);
585 				break;
586 			}
587 
588 			/*
589 			 * Make sure the vdev config is bootable
590 			 */
591 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
592 				error = SET_ERROR(ENOTSUP);
593 				break;
594 			}
595 
596 			reset_bootfs = 1;
597 
598 			error = nvpair_value_string(elem, &strval);
599 
600 			if (!error) {
601 				objset_t *os;
602 				uint64_t propval;
603 
604 				if (strval == NULL || strval[0] == '\0') {
605 					objnum = zpool_prop_default_numeric(
606 					    ZPOOL_PROP_BOOTFS);
607 					break;
608 				}
609 
610 				error = dmu_objset_hold(strval, FTAG, &os);
611 				if (error != 0)
612 					break;
613 
614 				/*
615 				 * Must be ZPL, and its property settings
616 				 * must be supported.
617 				 */
618 
619 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
620 					error = SET_ERROR(ENOTSUP);
621 				} else if ((error =
622 				    dsl_prop_get_int_ds(dmu_objset_ds(os),
623 				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
624 				    &propval)) == 0 &&
625 				    !BOOTFS_COMPRESS_VALID(propval)) {
626 					error = SET_ERROR(ENOTSUP);
627 				} else {
628 					objnum = dmu_objset_id(os);
629 				}
630 				dmu_objset_rele(os, FTAG);
631 			}
632 			break;
633 
634 		case ZPOOL_PROP_FAILUREMODE:
635 			error = nvpair_value_uint64(elem, &intval);
636 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
637 			    intval > ZIO_FAILURE_MODE_PANIC))
638 				error = SET_ERROR(EINVAL);
639 
640 			/*
641 			 * This is a special case which only occurs when
642 			 * the pool has completely failed. This allows
643 			 * the user to change the in-core failmode property
644 			 * without syncing it out to disk (I/Os might
645 			 * currently be blocked). We do this by returning
646 			 * EIO to the caller (spa_prop_set) to trick it
647 			 * into thinking we encountered a property validation
648 			 * error.
649 			 */
650 			if (!error && spa_suspended(spa)) {
651 				spa->spa_failmode = intval;
652 				error = SET_ERROR(EIO);
653 			}
654 			break;
655 
656 		case ZPOOL_PROP_CACHEFILE:
657 			if ((error = nvpair_value_string(elem, &strval)) != 0)
658 				break;
659 
660 			if (strval[0] == '\0')
661 				break;
662 
663 			if (strcmp(strval, "none") == 0)
664 				break;
665 
666 			if (strval[0] != '/') {
667 				error = SET_ERROR(EINVAL);
668 				break;
669 			}
670 
671 			slash = strrchr(strval, '/');
672 			ASSERT(slash != NULL);
673 
674 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
675 			    strcmp(slash, "/..") == 0)
676 				error = SET_ERROR(EINVAL);
677 			break;
678 
679 		case ZPOOL_PROP_COMMENT:
680 			if ((error = nvpair_value_string(elem, &strval)) != 0)
681 				break;
682 			for (check = strval; *check != '\0'; check++) {
683 				/*
684 				 * The kernel doesn't have an easy isprint()
685 				 * check.  For this kernel check, we merely
686 				 * check ASCII apart from DEL.  Fix this if
687 				 * there is an easy-to-use kernel isprint().
688 				 */
689 				if (*check >= 0x7f) {
690 					error = SET_ERROR(EINVAL);
691 					break;
692 				}
693 			}
694 			if (strlen(strval) > ZPROP_MAX_COMMENT)
695 				error = E2BIG;
696 			break;
697 
698 		case ZPOOL_PROP_DEDUPDITTO:
699 			if (spa_version(spa) < SPA_VERSION_DEDUP)
700 				error = SET_ERROR(ENOTSUP);
701 			else
702 				error = nvpair_value_uint64(elem, &intval);
703 			if (error == 0 &&
704 			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
705 				error = SET_ERROR(EINVAL);
706 			break;
707 		}
708 
709 		if (error)
710 			break;
711 	}
712 
713 	if (!error && reset_bootfs) {
714 		error = nvlist_remove(props,
715 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
716 
717 		if (!error) {
718 			error = nvlist_add_uint64(props,
719 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
720 		}
721 	}
722 
723 	return (error);
724 }
725 
726 void
727 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
728 {
729 	char *cachefile;
730 	spa_config_dirent_t *dp;
731 
732 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
733 	    &cachefile) != 0)
734 		return;
735 
736 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
737 	    KM_SLEEP);
738 
739 	if (cachefile[0] == '\0')
740 		dp->scd_path = spa_strdup(spa_config_path);
741 	else if (strcmp(cachefile, "none") == 0)
742 		dp->scd_path = NULL;
743 	else
744 		dp->scd_path = spa_strdup(cachefile);
745 
746 	list_insert_head(&spa->spa_config_list, dp);
747 	if (need_sync)
748 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
749 }
750 
751 int
752 spa_prop_set(spa_t *spa, nvlist_t *nvp)
753 {
754 	int error;
755 	nvpair_t *elem = NULL;
756 	boolean_t need_sync = B_FALSE;
757 
758 	if ((error = spa_prop_validate(spa, nvp)) != 0)
759 		return (error);
760 
761 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
762 		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
763 
764 		if (prop == ZPOOL_PROP_CACHEFILE ||
765 		    prop == ZPOOL_PROP_ALTROOT ||
766 		    prop == ZPOOL_PROP_READONLY)
767 			continue;
768 
769 		if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
770 			uint64_t ver;
771 
772 			if (prop == ZPOOL_PROP_VERSION) {
773 				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
774 			} else {
775 				ASSERT(zpool_prop_feature(nvpair_name(elem)));
776 				ver = SPA_VERSION_FEATURES;
777 				need_sync = B_TRUE;
778 			}
779 
780 			/* Save time if the version is already set. */
781 			if (ver == spa_version(spa))
782 				continue;
783 
784 			/*
785 			 * In addition to the pool directory object, we might
786 			 * create the pool properties object, the features for
787 			 * read object, the features for write object, or the
788 			 * feature descriptions object.
789 			 */
790 			error = dsl_sync_task(spa->spa_name, NULL,
791 			    spa_sync_version, &ver,
792 			    6, ZFS_SPACE_CHECK_RESERVED);
793 			if (error)
794 				return (error);
795 			continue;
796 		}
797 
798 		need_sync = B_TRUE;
799 		break;
800 	}
801 
802 	if (need_sync) {
803 		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
804 		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
805 	}
806 
807 	return (0);
808 }
809 
810 /*
811  * If the bootfs property value is dsobj, clear it.
812  */
813 void
814 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
815 {
816 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
817 		VERIFY(zap_remove(spa->spa_meta_objset,
818 		    spa->spa_pool_props_object,
819 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
820 		spa->spa_bootfs = 0;
821 	}
822 }
823 
824 /*ARGSUSED*/
825 static int
826 spa_change_guid_check(void *arg, dmu_tx_t *tx)
827 {
828 	uint64_t *newguid = arg;
829 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
830 	vdev_t *rvd = spa->spa_root_vdev;
831 	uint64_t vdev_state;
832 
833 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
834 		int error = (spa_has_checkpoint(spa)) ?
835 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
836 		return (SET_ERROR(error));
837 	}
838 
839 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
840 	vdev_state = rvd->vdev_state;
841 	spa_config_exit(spa, SCL_STATE, FTAG);
842 
843 	if (vdev_state != VDEV_STATE_HEALTHY)
844 		return (SET_ERROR(ENXIO));
845 
846 	ASSERT3U(spa_guid(spa), !=, *newguid);
847 
848 	return (0);
849 }
850 
851 static void
852 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
853 {
854 	uint64_t *newguid = arg;
855 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
856 	uint64_t oldguid;
857 	vdev_t *rvd = spa->spa_root_vdev;
858 
859 	oldguid = spa_guid(spa);
860 
861 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
862 	rvd->vdev_guid = *newguid;
863 	rvd->vdev_guid_sum += (*newguid - oldguid);
864 	vdev_config_dirty(rvd);
865 	spa_config_exit(spa, SCL_STATE, FTAG);
866 
867 	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
868 	    oldguid, *newguid);
869 }
870 
871 /*
872  * Change the GUID for the pool.  This is done so that we can later
873  * re-import a pool built from a clone of our own vdevs.  We will modify
874  * the root vdev's guid, our own pool guid, and then mark all of our
875  * vdevs dirty.  Note that we must make sure that all our vdevs are
876  * online when we do this, or else any vdevs that weren't present
877  * would be orphaned from our pool.  We are also going to issue a
878  * sysevent to update any watchers.
879  */
880 int
881 spa_change_guid(spa_t *spa)
882 {
883 	int error;
884 	uint64_t guid;
885 
886 	mutex_enter(&spa->spa_vdev_top_lock);
887 	mutex_enter(&spa_namespace_lock);
888 	guid = spa_generate_guid(NULL);
889 
890 	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
891 	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
892 
893 	if (error == 0) {
894 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
895 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
896 	}
897 
898 	mutex_exit(&spa_namespace_lock);
899 	mutex_exit(&spa->spa_vdev_top_lock);
900 
901 	return (error);
902 }
903 
904 /*
905  * ==========================================================================
906  * SPA state manipulation (open/create/destroy/import/export)
907  * ==========================================================================
908  */
909 
910 static int
911 spa_error_entry_compare(const void *a, const void *b)
912 {
913 	const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
914 	const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
915 	int ret;
916 
917 	ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
918 	    sizeof (zbookmark_phys_t));
919 
920 	return (TREE_ISIGN(ret));
921 }
922 
923 /*
924  * Utility function which retrieves copies of the current logs and
925  * re-initializes them in the process.
926  */
927 void
928 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
929 {
930 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
931 
932 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
933 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
934 
935 	avl_create(&spa->spa_errlist_scrub,
936 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
937 	    offsetof(spa_error_entry_t, se_avl));
938 	avl_create(&spa->spa_errlist_last,
939 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
940 	    offsetof(spa_error_entry_t, se_avl));
941 }
942 
943 static void
944 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
945 {
946 	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
947 	enum zti_modes mode = ztip->zti_mode;
948 	uint_t value = ztip->zti_value;
949 	uint_t count = ztip->zti_count;
950 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
951 	char name[32];
952 	uint_t flags = 0;
953 	boolean_t batch = B_FALSE;
954 
955 	if (mode == ZTI_MODE_NULL) {
956 		tqs->stqs_count = 0;
957 		tqs->stqs_taskq = NULL;
958 		return;
959 	}
960 
961 	ASSERT3U(count, >, 0);
962 
963 	tqs->stqs_count = count;
964 	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
965 
966 	switch (mode) {
967 	case ZTI_MODE_FIXED:
968 		ASSERT3U(value, >=, 1);
969 		value = MAX(value, 1);
970 		break;
971 
972 	case ZTI_MODE_BATCH:
973 		batch = B_TRUE;
974 		flags |= TASKQ_THREADS_CPU_PCT;
975 		value = zio_taskq_batch_pct;
976 		break;
977 
978 	default:
979 		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
980 		    "spa_activate()",
981 		    zio_type_name[t], zio_taskq_types[q], mode, value);
982 		break;
983 	}
984 
985 	for (uint_t i = 0; i < count; i++) {
986 		taskq_t *tq;
987 
988 		if (count > 1) {
989 			(void) snprintf(name, sizeof (name), "%s_%s_%u",
990 			    zio_type_name[t], zio_taskq_types[q], i);
991 		} else {
992 			(void) snprintf(name, sizeof (name), "%s_%s",
993 			    zio_type_name[t], zio_taskq_types[q]);
994 		}
995 
996 		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
997 			if (batch)
998 				flags |= TASKQ_DC_BATCH;
999 
1000 			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
1001 			    spa->spa_proc, zio_taskq_basedc, flags);
1002 		} else {
1003 			pri_t pri = maxclsyspri;
1004 			/*
1005 			 * The write issue taskq can be extremely CPU
1006 			 * intensive.  Run it at slightly lower priority
1007 			 * than the other taskqs.
1008 			 */
1009 			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
1010 				pri--;
1011 
1012 			tq = taskq_create_proc(name, value, pri, 50,
1013 			    INT_MAX, spa->spa_proc, flags);
1014 		}
1015 
1016 		tqs->stqs_taskq[i] = tq;
1017 	}
1018 }
1019 
1020 static void
1021 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1022 {
1023 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1024 
1025 	if (tqs->stqs_taskq == NULL) {
1026 		ASSERT0(tqs->stqs_count);
1027 		return;
1028 	}
1029 
1030 	for (uint_t i = 0; i < tqs->stqs_count; i++) {
1031 		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1032 		taskq_destroy(tqs->stqs_taskq[i]);
1033 	}
1034 
1035 	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1036 	tqs->stqs_taskq = NULL;
1037 }
1038 
1039 /*
1040  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1041  * Note that a type may have multiple discrete taskqs to avoid lock contention
1042  * on the taskq itself. In that case we choose which taskq at random by using
1043  * the low bits of gethrtime().
1044  */
1045 void
1046 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1047     task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
1048 {
1049 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1050 	taskq_t *tq;
1051 
1052 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
1053 	ASSERT3U(tqs->stqs_count, !=, 0);
1054 
1055 	if (tqs->stqs_count == 1) {
1056 		tq = tqs->stqs_taskq[0];
1057 	} else {
1058 		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
1059 	}
1060 
1061 	taskq_dispatch_ent(tq, func, arg, flags, ent);
1062 }
1063 
1064 static void
1065 spa_create_zio_taskqs(spa_t *spa)
1066 {
1067 	for (int t = 0; t < ZIO_TYPES; t++) {
1068 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1069 			spa_taskqs_init(spa, t, q);
1070 		}
1071 	}
1072 }
1073 
1074 #ifdef _KERNEL
1075 static void
1076 spa_thread(void *arg)
1077 {
1078 	callb_cpr_t cprinfo;
1079 
1080 	spa_t *spa = arg;
1081 	user_t *pu = PTOU(curproc);
1082 
1083 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1084 	    spa->spa_name);
1085 
1086 	ASSERT(curproc != &p0);
1087 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1088 	    "zpool-%s", spa->spa_name);
1089 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1090 
1091 	/* bind this thread to the requested psrset */
1092 	if (zio_taskq_psrset_bind != PS_NONE) {
1093 		pool_lock();
1094 		mutex_enter(&cpu_lock);
1095 		mutex_enter(&pidlock);
1096 		mutex_enter(&curproc->p_lock);
1097 
1098 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1099 		    0, NULL, NULL) == 0)  {
1100 			curthread->t_bind_pset = zio_taskq_psrset_bind;
1101 		} else {
1102 			cmn_err(CE_WARN,
1103 			    "Couldn't bind process for zfs pool \"%s\" to "
1104 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1105 		}
1106 
1107 		mutex_exit(&curproc->p_lock);
1108 		mutex_exit(&pidlock);
1109 		mutex_exit(&cpu_lock);
1110 		pool_unlock();
1111 	}
1112 
1113 	if (zio_taskq_sysdc) {
1114 		sysdc_thread_enter(curthread, 100, 0);
1115 	}
1116 
1117 	spa->spa_proc = curproc;
1118 	spa->spa_did = curthread->t_did;
1119 
1120 	spa_create_zio_taskqs(spa);
1121 
1122 	mutex_enter(&spa->spa_proc_lock);
1123 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1124 
1125 	spa->spa_proc_state = SPA_PROC_ACTIVE;
1126 	cv_broadcast(&spa->spa_proc_cv);
1127 
1128 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1129 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1130 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1131 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1132 
1133 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1134 	spa->spa_proc_state = SPA_PROC_GONE;
1135 	spa->spa_proc = &p0;
1136 	cv_broadcast(&spa->spa_proc_cv);
1137 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1138 
1139 	mutex_enter(&curproc->p_lock);
1140 	lwp_exit();
1141 }
1142 #endif
1143 
1144 /*
1145  * Activate an uninitialized pool.
1146  */
1147 static void
1148 spa_activate(spa_t *spa, int mode)
1149 {
1150 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1151 
1152 	spa->spa_state = POOL_STATE_ACTIVE;
1153 	spa->spa_mode = mode;
1154 
1155 	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1156 	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1157 	spa->spa_special_class = metaslab_class_create(spa, zfs_metaslab_ops);
1158 	spa->spa_dedup_class = metaslab_class_create(spa, zfs_metaslab_ops);
1159 
1160 	/* Try to create a covering process */
1161 	mutex_enter(&spa->spa_proc_lock);
1162 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1163 	ASSERT(spa->spa_proc == &p0);
1164 	spa->spa_did = 0;
1165 
1166 	/* Only create a process if we're going to be around a while. */
1167 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1168 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1169 		    NULL, 0) == 0) {
1170 			spa->spa_proc_state = SPA_PROC_CREATED;
1171 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1172 				cv_wait(&spa->spa_proc_cv,
1173 				    &spa->spa_proc_lock);
1174 			}
1175 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1176 			ASSERT(spa->spa_proc != &p0);
1177 			ASSERT(spa->spa_did != 0);
1178 		} else {
1179 #ifdef _KERNEL
1180 			cmn_err(CE_WARN,
1181 			    "Couldn't create process for zfs pool \"%s\"\n",
1182 			    spa->spa_name);
1183 #endif
1184 		}
1185 	}
1186 	mutex_exit(&spa->spa_proc_lock);
1187 
1188 	/* If we didn't create a process, we need to create our taskqs. */
1189 	if (spa->spa_proc == &p0) {
1190 		spa_create_zio_taskqs(spa);
1191 	}
1192 
1193 	for (size_t i = 0; i < TXG_SIZE; i++) {
1194 		spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL,
1195 		    ZIO_FLAG_CANFAIL);
1196 	}
1197 
1198 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1199 	    offsetof(vdev_t, vdev_config_dirty_node));
1200 	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1201 	    offsetof(objset_t, os_evicting_node));
1202 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1203 	    offsetof(vdev_t, vdev_state_dirty_node));
1204 
1205 	txg_list_create(&spa->spa_vdev_txg_list, spa,
1206 	    offsetof(struct vdev, vdev_txg_node));
1207 
1208 	avl_create(&spa->spa_errlist_scrub,
1209 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1210 	    offsetof(spa_error_entry_t, se_avl));
1211 	avl_create(&spa->spa_errlist_last,
1212 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1213 	    offsetof(spa_error_entry_t, se_avl));
1214 
1215 	spa_keystore_init(&spa->spa_keystore);
1216 
1217 	/*
1218 	 * The taskq to upgrade datasets in this pool. Currently used by
1219 	 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA.
1220 	 */
1221 	spa->spa_upgrade_taskq = taskq_create("z_upgrade", boot_ncpus,
1222 	    minclsyspri, 1, INT_MAX, TASKQ_DYNAMIC);
1223 }
1224 
1225 /*
1226  * Opposite of spa_activate().
1227  */
1228 static void
1229 spa_deactivate(spa_t *spa)
1230 {
1231 	ASSERT(spa->spa_sync_on == B_FALSE);
1232 	ASSERT(spa->spa_dsl_pool == NULL);
1233 	ASSERT(spa->spa_root_vdev == NULL);
1234 	ASSERT(spa->spa_async_zio_root == NULL);
1235 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1236 
1237 	spa_evicting_os_wait(spa);
1238 
1239 	if (spa->spa_upgrade_taskq) {
1240 		taskq_destroy(spa->spa_upgrade_taskq);
1241 		spa->spa_upgrade_taskq = NULL;
1242 	}
1243 
1244 	txg_list_destroy(&spa->spa_vdev_txg_list);
1245 
1246 	list_destroy(&spa->spa_config_dirty_list);
1247 	list_destroy(&spa->spa_evicting_os_list);
1248 	list_destroy(&spa->spa_state_dirty_list);
1249 
1250 	for (int t = 0; t < ZIO_TYPES; t++) {
1251 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1252 			spa_taskqs_fini(spa, t, q);
1253 		}
1254 	}
1255 
1256 	for (size_t i = 0; i < TXG_SIZE; i++) {
1257 		ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1258 		VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1259 		spa->spa_txg_zio[i] = NULL;
1260 	}
1261 
1262 	metaslab_class_destroy(spa->spa_normal_class);
1263 	spa->spa_normal_class = NULL;
1264 
1265 	metaslab_class_destroy(spa->spa_log_class);
1266 	spa->spa_log_class = NULL;
1267 
1268 	metaslab_class_destroy(spa->spa_special_class);
1269 	spa->spa_special_class = NULL;
1270 
1271 	metaslab_class_destroy(spa->spa_dedup_class);
1272 	spa->spa_dedup_class = NULL;
1273 
1274 	/*
1275 	 * If this was part of an import or the open otherwise failed, we may
1276 	 * still have errors left in the queues.  Empty them just in case.
1277 	 */
1278 	spa_errlog_drain(spa);
1279 	avl_destroy(&spa->spa_errlist_scrub);
1280 	avl_destroy(&spa->spa_errlist_last);
1281 
1282 	spa_keystore_fini(&spa->spa_keystore);
1283 
1284 	spa->spa_state = POOL_STATE_UNINITIALIZED;
1285 
1286 	mutex_enter(&spa->spa_proc_lock);
1287 	if (spa->spa_proc_state != SPA_PROC_NONE) {
1288 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1289 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1290 		cv_broadcast(&spa->spa_proc_cv);
1291 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1292 			ASSERT(spa->spa_proc != &p0);
1293 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1294 		}
1295 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1296 		spa->spa_proc_state = SPA_PROC_NONE;
1297 	}
1298 	ASSERT(spa->spa_proc == &p0);
1299 	mutex_exit(&spa->spa_proc_lock);
1300 
1301 	/*
1302 	 * We want to make sure spa_thread() has actually exited the ZFS
1303 	 * module, so that the module can't be unloaded out from underneath
1304 	 * it.
1305 	 */
1306 	if (spa->spa_did != 0) {
1307 		thread_join(spa->spa_did);
1308 		spa->spa_did = 0;
1309 	}
1310 }
1311 
1312 /*
1313  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1314  * will create all the necessary vdevs in the appropriate layout, with each vdev
1315  * in the CLOSED state.  This will prep the pool before open/creation/import.
1316  * All vdev validation is done by the vdev_alloc() routine.
1317  */
1318 static int
1319 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1320     uint_t id, int atype)
1321 {
1322 	nvlist_t **child;
1323 	uint_t children;
1324 	int error;
1325 
1326 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1327 		return (error);
1328 
1329 	if ((*vdp)->vdev_ops->vdev_op_leaf)
1330 		return (0);
1331 
1332 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1333 	    &child, &children);
1334 
1335 	if (error == ENOENT)
1336 		return (0);
1337 
1338 	if (error) {
1339 		vdev_free(*vdp);
1340 		*vdp = NULL;
1341 		return (SET_ERROR(EINVAL));
1342 	}
1343 
1344 	for (int c = 0; c < children; c++) {
1345 		vdev_t *vd;
1346 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1347 		    atype)) != 0) {
1348 			vdev_free(*vdp);
1349 			*vdp = NULL;
1350 			return (error);
1351 		}
1352 	}
1353 
1354 	ASSERT(*vdp != NULL);
1355 
1356 	return (0);
1357 }
1358 
1359 static boolean_t
1360 spa_should_flush_logs_on_unload(spa_t *spa)
1361 {
1362 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1363 		return (B_FALSE);
1364 
1365 	if (!spa_writeable(spa))
1366 		return (B_FALSE);
1367 
1368 	if (!spa->spa_sync_on)
1369 		return (B_FALSE);
1370 
1371 	if (spa_state(spa) != POOL_STATE_EXPORTED)
1372 		return (B_FALSE);
1373 
1374 	if (zfs_keep_log_spacemaps_at_export)
1375 		return (B_FALSE);
1376 
1377 	return (B_TRUE);
1378 }
1379 
1380 /*
1381  * Opens a transaction that will set the flag that will instruct
1382  * spa_sync to attempt to flush all the metaslabs for that txg.
1383  */
1384 static void
1385 spa_unload_log_sm_flush_all(spa_t *spa)
1386 {
1387 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1388 
1389 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1390 
1391 	ASSERT3U(spa->spa_log_flushall_txg, ==, 0);
1392 	spa->spa_log_flushall_txg = dmu_tx_get_txg(tx);
1393 
1394 	dmu_tx_commit(tx);
1395 	txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg);
1396 }
1397 
1398 static void
1399 spa_unload_log_sm_metadata(spa_t *spa)
1400 {
1401 	void *cookie = NULL;
1402 	spa_log_sm_t *sls;
1403 
1404 	while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg,
1405 	    &cookie)) != NULL) {
1406 		VERIFY0(sls->sls_mscount);
1407 		kmem_free(sls, sizeof (spa_log_sm_t));
1408 	}
1409 
1410 	for (log_summary_entry_t *e = list_head(&spa->spa_log_summary);
1411 	    e != NULL; e = list_head(&spa->spa_log_summary)) {
1412 		VERIFY0(e->lse_mscount);
1413 		list_remove(&spa->spa_log_summary, e);
1414 		kmem_free(e, sizeof (log_summary_entry_t));
1415 	}
1416 
1417 	spa->spa_unflushed_stats.sus_nblocks = 0;
1418 	spa->spa_unflushed_stats.sus_memused = 0;
1419 	spa->spa_unflushed_stats.sus_blocklimit = 0;
1420 }
1421 
1422 /*
1423  * Opposite of spa_load().
1424  */
1425 static void
1426 spa_unload(spa_t *spa)
1427 {
1428 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1429 	ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED);
1430 
1431 	spa_import_progress_remove(spa);
1432 	spa_load_note(spa, "UNLOADING");
1433 
1434 	/*
1435 	 * If the log space map feature is enabled and the pool is getting
1436 	 * exported (but not destroyed), we want to spend some time flushing
1437 	 * as many metaslabs as we can in an attempt to destroy log space
1438 	 * maps and save import time.
1439 	 */
1440 	if (spa_should_flush_logs_on_unload(spa))
1441 		spa_unload_log_sm_flush_all(spa);
1442 
1443 	/*
1444 	 * Stop async tasks.
1445 	 */
1446 	spa_async_suspend(spa);
1447 
1448 	if (spa->spa_root_vdev) {
1449 		vdev_t *root_vdev = spa->spa_root_vdev;
1450 		vdev_initialize_stop_all(root_vdev, VDEV_INITIALIZE_ACTIVE);
1451 		vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE);
1452 		vdev_autotrim_stop_all(spa);
1453 	}
1454 
1455 	/*
1456 	 * Stop syncing.
1457 	 */
1458 	if (spa->spa_sync_on) {
1459 		txg_sync_stop(spa->spa_dsl_pool);
1460 		spa->spa_sync_on = B_FALSE;
1461 	}
1462 
1463 	/*
1464 	 * This ensures that there is no async metaslab prefetching
1465 	 * while we attempt to unload the spa.
1466 	 */
1467 	if (spa->spa_root_vdev != NULL) {
1468 		for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++) {
1469 			vdev_t *vc = spa->spa_root_vdev->vdev_child[c];
1470 			if (vc->vdev_mg != NULL)
1471 				taskq_wait(vc->vdev_mg->mg_taskq);
1472 		}
1473 	}
1474 
1475 	if (spa->spa_mmp.mmp_thread)
1476 		mmp_thread_stop(spa);
1477 
1478 	/*
1479 	 * Wait for any outstanding async I/O to complete.
1480 	 */
1481 	if (spa->spa_async_zio_root != NULL) {
1482 		for (int i = 0; i < max_ncpus; i++)
1483 			(void) zio_wait(spa->spa_async_zio_root[i]);
1484 		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1485 		spa->spa_async_zio_root = NULL;
1486 	}
1487 
1488 	if (spa->spa_vdev_removal != NULL) {
1489 		spa_vdev_removal_destroy(spa->spa_vdev_removal);
1490 		spa->spa_vdev_removal = NULL;
1491 	}
1492 
1493 	if (spa->spa_condense_zthr != NULL) {
1494 		zthr_destroy(spa->spa_condense_zthr);
1495 		spa->spa_condense_zthr = NULL;
1496 	}
1497 
1498 	if (spa->spa_checkpoint_discard_zthr != NULL) {
1499 		zthr_destroy(spa->spa_checkpoint_discard_zthr);
1500 		spa->spa_checkpoint_discard_zthr = NULL;
1501 	}
1502 
1503 	spa_condense_fini(spa);
1504 
1505 	bpobj_close(&spa->spa_deferred_bpobj);
1506 
1507 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1508 
1509 	/*
1510 	 * Close all vdevs.
1511 	 */
1512 	if (spa->spa_root_vdev)
1513 		vdev_free(spa->spa_root_vdev);
1514 	ASSERT(spa->spa_root_vdev == NULL);
1515 
1516 	/*
1517 	 * Close the dsl pool.
1518 	 */
1519 	if (spa->spa_dsl_pool) {
1520 		dsl_pool_close(spa->spa_dsl_pool);
1521 		spa->spa_dsl_pool = NULL;
1522 		spa->spa_meta_objset = NULL;
1523 	}
1524 
1525 	ddt_unload(spa);
1526 	spa_unload_log_sm_metadata(spa);
1527 
1528 	/*
1529 	 * Drop and purge level 2 cache
1530 	 */
1531 	spa_l2cache_drop(spa);
1532 
1533 	for (int i = 0; i < spa->spa_spares.sav_count; i++)
1534 		vdev_free(spa->spa_spares.sav_vdevs[i]);
1535 	if (spa->spa_spares.sav_vdevs) {
1536 		kmem_free(spa->spa_spares.sav_vdevs,
1537 		    spa->spa_spares.sav_count * sizeof (void *));
1538 		spa->spa_spares.sav_vdevs = NULL;
1539 	}
1540 	if (spa->spa_spares.sav_config) {
1541 		nvlist_free(spa->spa_spares.sav_config);
1542 		spa->spa_spares.sav_config = NULL;
1543 	}
1544 	spa->spa_spares.sav_count = 0;
1545 
1546 	for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1547 		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1548 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1549 	}
1550 	if (spa->spa_l2cache.sav_vdevs) {
1551 		kmem_free(spa->spa_l2cache.sav_vdevs,
1552 		    spa->spa_l2cache.sav_count * sizeof (void *));
1553 		spa->spa_l2cache.sav_vdevs = NULL;
1554 	}
1555 	if (spa->spa_l2cache.sav_config) {
1556 		nvlist_free(spa->spa_l2cache.sav_config);
1557 		spa->spa_l2cache.sav_config = NULL;
1558 	}
1559 	spa->spa_l2cache.sav_count = 0;
1560 
1561 	spa->spa_async_suspended = 0;
1562 
1563 	spa->spa_indirect_vdevs_loaded = B_FALSE;
1564 
1565 	if (spa->spa_comment != NULL) {
1566 		spa_strfree(spa->spa_comment);
1567 		spa->spa_comment = NULL;
1568 	}
1569 
1570 	spa_config_exit(spa, SCL_ALL, spa);
1571 }
1572 
1573 /*
1574  * Load (or re-load) the current list of vdevs describing the active spares for
1575  * this pool.  When this is called, we have some form of basic information in
1576  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1577  * then re-generate a more complete list including status information.
1578  */
1579 void
1580 spa_load_spares(spa_t *spa)
1581 {
1582 	nvlist_t **spares;
1583 	uint_t nspares;
1584 	int i;
1585 	vdev_t *vd, *tvd;
1586 
1587 #ifndef _KERNEL
1588 	/*
1589 	 * zdb opens both the current state of the pool and the
1590 	 * checkpointed state (if present), with a different spa_t.
1591 	 *
1592 	 * As spare vdevs are shared among open pools, we skip loading
1593 	 * them when we load the checkpointed state of the pool.
1594 	 */
1595 	if (!spa_writeable(spa))
1596 		return;
1597 #endif
1598 
1599 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1600 
1601 	/*
1602 	 * First, close and free any existing spare vdevs.
1603 	 */
1604 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1605 		vd = spa->spa_spares.sav_vdevs[i];
1606 
1607 		/* Undo the call to spa_activate() below */
1608 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1609 		    B_FALSE)) != NULL && tvd->vdev_isspare)
1610 			spa_spare_remove(tvd);
1611 		vdev_close(vd);
1612 		vdev_free(vd);
1613 	}
1614 
1615 	if (spa->spa_spares.sav_vdevs)
1616 		kmem_free(spa->spa_spares.sav_vdevs,
1617 		    spa->spa_spares.sav_count * sizeof (void *));
1618 
1619 	if (spa->spa_spares.sav_config == NULL)
1620 		nspares = 0;
1621 	else
1622 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1623 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1624 
1625 	spa->spa_spares.sav_count = (int)nspares;
1626 	spa->spa_spares.sav_vdevs = NULL;
1627 
1628 	if (nspares == 0)
1629 		return;
1630 
1631 	/*
1632 	 * Construct the array of vdevs, opening them to get status in the
1633 	 * process.   For each spare, there is potentially two different vdev_t
1634 	 * structures associated with it: one in the list of spares (used only
1635 	 * for basic validation purposes) and one in the active vdev
1636 	 * configuration (if it's spared in).  During this phase we open and
1637 	 * validate each vdev on the spare list.  If the vdev also exists in the
1638 	 * active configuration, then we also mark this vdev as an active spare.
1639 	 */
1640 	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1641 	    KM_SLEEP);
1642 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1643 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1644 		    VDEV_ALLOC_SPARE) == 0);
1645 		ASSERT(vd != NULL);
1646 
1647 		spa->spa_spares.sav_vdevs[i] = vd;
1648 
1649 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1650 		    B_FALSE)) != NULL) {
1651 			if (!tvd->vdev_isspare)
1652 				spa_spare_add(tvd);
1653 
1654 			/*
1655 			 * We only mark the spare active if we were successfully
1656 			 * able to load the vdev.  Otherwise, importing a pool
1657 			 * with a bad active spare would result in strange
1658 			 * behavior, because multiple pool would think the spare
1659 			 * is actively in use.
1660 			 *
1661 			 * There is a vulnerability here to an equally bizarre
1662 			 * circumstance, where a dead active spare is later
1663 			 * brought back to life (onlined or otherwise).  Given
1664 			 * the rarity of this scenario, and the extra complexity
1665 			 * it adds, we ignore the possibility.
1666 			 */
1667 			if (!vdev_is_dead(tvd))
1668 				spa_spare_activate(tvd);
1669 		}
1670 
1671 		vd->vdev_top = vd;
1672 		vd->vdev_aux = &spa->spa_spares;
1673 
1674 		if (vdev_open(vd) != 0)
1675 			continue;
1676 
1677 		if (vdev_validate_aux(vd) == 0)
1678 			spa_spare_add(vd);
1679 	}
1680 
1681 	/*
1682 	 * Recompute the stashed list of spares, with status information
1683 	 * this time.
1684 	 */
1685 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1686 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1687 
1688 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1689 	    KM_SLEEP);
1690 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1691 		spares[i] = vdev_config_generate(spa,
1692 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1693 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1694 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1695 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1696 		nvlist_free(spares[i]);
1697 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1698 }
1699 
1700 /*
1701  * Load (or re-load) the current list of vdevs describing the active l2cache for
1702  * this pool.  When this is called, we have some form of basic information in
1703  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1704  * then re-generate a more complete list including status information.
1705  * Devices which are already active have their details maintained, and are
1706  * not re-opened.
1707  */
1708 void
1709 spa_load_l2cache(spa_t *spa)
1710 {
1711 	nvlist_t **l2cache;
1712 	uint_t nl2cache;
1713 	int i, j, oldnvdevs;
1714 	uint64_t guid;
1715 	vdev_t *vd, **oldvdevs, **newvdevs;
1716 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1717 
1718 #ifndef _KERNEL
1719 	/*
1720 	 * zdb opens both the current state of the pool and the
1721 	 * checkpointed state (if present), with a different spa_t.
1722 	 *
1723 	 * As L2 caches are part of the ARC which is shared among open
1724 	 * pools, we skip loading them when we load the checkpointed
1725 	 * state of the pool.
1726 	 */
1727 	if (!spa_writeable(spa))
1728 		return;
1729 #endif
1730 
1731 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1732 
1733 	if (sav->sav_config != NULL) {
1734 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1735 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1736 		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1737 	} else {
1738 		nl2cache = 0;
1739 		newvdevs = NULL;
1740 	}
1741 
1742 	oldvdevs = sav->sav_vdevs;
1743 	oldnvdevs = sav->sav_count;
1744 	sav->sav_vdevs = NULL;
1745 	sav->sav_count = 0;
1746 
1747 	/*
1748 	 * Process new nvlist of vdevs.
1749 	 */
1750 	for (i = 0; i < nl2cache; i++) {
1751 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1752 		    &guid) == 0);
1753 
1754 		newvdevs[i] = NULL;
1755 		for (j = 0; j < oldnvdevs; j++) {
1756 			vd = oldvdevs[j];
1757 			if (vd != NULL && guid == vd->vdev_guid) {
1758 				/*
1759 				 * Retain previous vdev for add/remove ops.
1760 				 */
1761 				newvdevs[i] = vd;
1762 				oldvdevs[j] = NULL;
1763 				break;
1764 			}
1765 		}
1766 
1767 		if (newvdevs[i] == NULL) {
1768 			/*
1769 			 * Create new vdev
1770 			 */
1771 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1772 			    VDEV_ALLOC_L2CACHE) == 0);
1773 			ASSERT(vd != NULL);
1774 			newvdevs[i] = vd;
1775 
1776 			/*
1777 			 * Commit this vdev as an l2cache device,
1778 			 * even if it fails to open.
1779 			 */
1780 			spa_l2cache_add(vd);
1781 
1782 			vd->vdev_top = vd;
1783 			vd->vdev_aux = sav;
1784 
1785 			spa_l2cache_activate(vd);
1786 
1787 			if (vdev_open(vd) != 0)
1788 				continue;
1789 
1790 			(void) vdev_validate_aux(vd);
1791 
1792 			if (!vdev_is_dead(vd))
1793 				l2arc_add_vdev(spa, vd);
1794 		}
1795 	}
1796 
1797 	/*
1798 	 * Purge vdevs that were dropped
1799 	 */
1800 	for (i = 0; i < oldnvdevs; i++) {
1801 		uint64_t pool;
1802 
1803 		vd = oldvdevs[i];
1804 		if (vd != NULL) {
1805 			ASSERT(vd->vdev_isl2cache);
1806 
1807 			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1808 			    pool != 0ULL && l2arc_vdev_present(vd))
1809 				l2arc_remove_vdev(vd);
1810 			vdev_clear_stats(vd);
1811 			vdev_free(vd);
1812 		}
1813 	}
1814 
1815 	if (oldvdevs)
1816 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1817 
1818 	if (sav->sav_config == NULL)
1819 		goto out;
1820 
1821 	sav->sav_vdevs = newvdevs;
1822 	sav->sav_count = (int)nl2cache;
1823 
1824 	/*
1825 	 * Recompute the stashed list of l2cache devices, with status
1826 	 * information this time.
1827 	 */
1828 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1829 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1830 
1831 	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1832 	for (i = 0; i < sav->sav_count; i++)
1833 		l2cache[i] = vdev_config_generate(spa,
1834 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1835 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1836 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1837 out:
1838 	for (i = 0; i < sav->sav_count; i++)
1839 		nvlist_free(l2cache[i]);
1840 	if (sav->sav_count)
1841 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1842 }
1843 
1844 static int
1845 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1846 {
1847 	dmu_buf_t *db;
1848 	char *packed = NULL;
1849 	size_t nvsize = 0;
1850 	int error;
1851 	*value = NULL;
1852 
1853 	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1854 	if (error != 0)
1855 		return (error);
1856 
1857 	nvsize = *(uint64_t *)db->db_data;
1858 	dmu_buf_rele(db, FTAG);
1859 
1860 	packed = kmem_alloc(nvsize, KM_SLEEP);
1861 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1862 	    DMU_READ_PREFETCH);
1863 	if (error == 0)
1864 		error = nvlist_unpack(packed, nvsize, value, 0);
1865 	kmem_free(packed, nvsize);
1866 
1867 	return (error);
1868 }
1869 
1870 /*
1871  * Concrete top-level vdevs that are not missing and are not logs. At every
1872  * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
1873  */
1874 static uint64_t
1875 spa_healthy_core_tvds(spa_t *spa)
1876 {
1877 	vdev_t *rvd = spa->spa_root_vdev;
1878 	uint64_t tvds = 0;
1879 
1880 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
1881 		vdev_t *vd = rvd->vdev_child[i];
1882 		if (vd->vdev_islog)
1883 			continue;
1884 		if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
1885 			tvds++;
1886 	}
1887 
1888 	return (tvds);
1889 }
1890 
1891 /*
1892  * Checks to see if the given vdev could not be opened, in which case we post a
1893  * sysevent to notify the autoreplace code that the device has been removed.
1894  */
1895 static void
1896 spa_check_removed(vdev_t *vd)
1897 {
1898 	for (uint64_t c = 0; c < vd->vdev_children; c++)
1899 		spa_check_removed(vd->vdev_child[c]);
1900 
1901 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1902 	    vdev_is_concrete(vd)) {
1903 		zfs_post_autoreplace(vd->vdev_spa, vd);
1904 		spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
1905 	}
1906 }
1907 
1908 static int
1909 spa_check_for_missing_logs(spa_t *spa)
1910 {
1911 	vdev_t *rvd = spa->spa_root_vdev;
1912 
1913 	/*
1914 	 * If we're doing a normal import, then build up any additional
1915 	 * diagnostic information about missing log devices.
1916 	 * We'll pass this up to the user for further processing.
1917 	 */
1918 	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1919 		nvlist_t **child, *nv;
1920 		uint64_t idx = 0;
1921 
1922 		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1923 		    KM_SLEEP);
1924 		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1925 
1926 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
1927 			vdev_t *tvd = rvd->vdev_child[c];
1928 
1929 			/*
1930 			 * We consider a device as missing only if it failed
1931 			 * to open (i.e. offline or faulted is not considered
1932 			 * as missing).
1933 			 */
1934 			if (tvd->vdev_islog &&
1935 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
1936 				child[idx++] = vdev_config_generate(spa, tvd,
1937 				    B_FALSE, VDEV_CONFIG_MISSING);
1938 			}
1939 		}
1940 
1941 		if (idx > 0) {
1942 			fnvlist_add_nvlist_array(nv,
1943 			    ZPOOL_CONFIG_CHILDREN, child, idx);
1944 			fnvlist_add_nvlist(spa->spa_load_info,
1945 			    ZPOOL_CONFIG_MISSING_DEVICES, nv);
1946 
1947 			for (uint64_t i = 0; i < idx; i++)
1948 				nvlist_free(child[i]);
1949 		}
1950 		nvlist_free(nv);
1951 		kmem_free(child, rvd->vdev_children * sizeof (char **));
1952 
1953 		if (idx > 0) {
1954 			spa_load_failed(spa, "some log devices are missing");
1955 			vdev_dbgmsg_print_tree(rvd, 2);
1956 			return (SET_ERROR(ENXIO));
1957 		}
1958 	} else {
1959 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
1960 			vdev_t *tvd = rvd->vdev_child[c];
1961 
1962 			if (tvd->vdev_islog &&
1963 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
1964 				spa_set_log_state(spa, SPA_LOG_CLEAR);
1965 				spa_load_note(spa, "some log devices are "
1966 				    "missing, ZIL is dropped.");
1967 				vdev_dbgmsg_print_tree(rvd, 2);
1968 				break;
1969 			}
1970 		}
1971 	}
1972 
1973 	return (0);
1974 }
1975 
1976 /*
1977  * Check for missing log devices
1978  */
1979 static boolean_t
1980 spa_check_logs(spa_t *spa)
1981 {
1982 	boolean_t rv = B_FALSE;
1983 	dsl_pool_t *dp = spa_get_dsl(spa);
1984 
1985 	switch (spa->spa_log_state) {
1986 	case SPA_LOG_MISSING:
1987 		/* need to recheck in case slog has been restored */
1988 	case SPA_LOG_UNKNOWN:
1989 		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1990 		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1991 		if (rv)
1992 			spa_set_log_state(spa, SPA_LOG_MISSING);
1993 		break;
1994 	}
1995 	return (rv);
1996 }
1997 
1998 static boolean_t
1999 spa_passivate_log(spa_t *spa)
2000 {
2001 	vdev_t *rvd = spa->spa_root_vdev;
2002 	boolean_t slog_found = B_FALSE;
2003 
2004 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2005 
2006 	if (!spa_has_slogs(spa))
2007 		return (B_FALSE);
2008 
2009 	for (int c = 0; c < rvd->vdev_children; c++) {
2010 		vdev_t *tvd = rvd->vdev_child[c];
2011 		metaslab_group_t *mg = tvd->vdev_mg;
2012 
2013 		if (tvd->vdev_islog) {
2014 			metaslab_group_passivate(mg);
2015 			slog_found = B_TRUE;
2016 		}
2017 	}
2018 
2019 	return (slog_found);
2020 }
2021 
2022 static void
2023 spa_activate_log(spa_t *spa)
2024 {
2025 	vdev_t *rvd = spa->spa_root_vdev;
2026 
2027 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2028 
2029 	for (int c = 0; c < rvd->vdev_children; c++) {
2030 		vdev_t *tvd = rvd->vdev_child[c];
2031 		metaslab_group_t *mg = tvd->vdev_mg;
2032 
2033 		if (tvd->vdev_islog)
2034 			metaslab_group_activate(mg);
2035 	}
2036 }
2037 
2038 int
2039 spa_reset_logs(spa_t *spa)
2040 {
2041 	int error;
2042 
2043 	error = dmu_objset_find(spa_name(spa), zil_reset,
2044 	    NULL, DS_FIND_CHILDREN);
2045 	if (error == 0) {
2046 		/*
2047 		 * We successfully offlined the log device, sync out the
2048 		 * current txg so that the "stubby" block can be removed
2049 		 * by zil_sync().
2050 		 */
2051 		txg_wait_synced(spa->spa_dsl_pool, 0);
2052 	}
2053 	return (error);
2054 }
2055 
2056 static void
2057 spa_aux_check_removed(spa_aux_vdev_t *sav)
2058 {
2059 	for (int i = 0; i < sav->sav_count; i++)
2060 		spa_check_removed(sav->sav_vdevs[i]);
2061 }
2062 
2063 void
2064 spa_claim_notify(zio_t *zio)
2065 {
2066 	spa_t *spa = zio->io_spa;
2067 
2068 	if (zio->io_error)
2069 		return;
2070 
2071 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
2072 	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
2073 		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
2074 	mutex_exit(&spa->spa_props_lock);
2075 }
2076 
2077 typedef struct spa_load_error {
2078 	uint64_t	sle_meta_count;
2079 	uint64_t	sle_data_count;
2080 } spa_load_error_t;
2081 
2082 static void
2083 spa_load_verify_done(zio_t *zio)
2084 {
2085 	blkptr_t *bp = zio->io_bp;
2086 	spa_load_error_t *sle = zio->io_private;
2087 	dmu_object_type_t type = BP_GET_TYPE(bp);
2088 	int error = zio->io_error;
2089 	spa_t *spa = zio->io_spa;
2090 
2091 	abd_free(zio->io_abd);
2092 	if (error) {
2093 		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
2094 		    type != DMU_OT_INTENT_LOG)
2095 			atomic_inc_64(&sle->sle_meta_count);
2096 		else
2097 			atomic_inc_64(&sle->sle_data_count);
2098 	}
2099 
2100 	mutex_enter(&spa->spa_scrub_lock);
2101 	spa->spa_load_verify_ios--;
2102 	cv_broadcast(&spa->spa_scrub_io_cv);
2103 	mutex_exit(&spa->spa_scrub_lock);
2104 }
2105 
2106 /*
2107  * Maximum number of concurrent scrub i/os to create while verifying
2108  * a pool while importing it.
2109  */
2110 int spa_load_verify_maxinflight = 10000;
2111 boolean_t spa_load_verify_metadata = B_TRUE;
2112 boolean_t spa_load_verify_data = B_TRUE;
2113 
2114 /*ARGSUSED*/
2115 static int
2116 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2117     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2118 {
2119 	if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
2120 		return (0);
2121 	/*
2122 	 * Note: normally this routine will not be called if
2123 	 * spa_load_verify_metadata is not set.  However, it may be useful
2124 	 * to manually set the flag after the traversal has begun.
2125 	 */
2126 	if (!spa_load_verify_metadata)
2127 		return (0);
2128 	if (!BP_IS_METADATA(bp) && !spa_load_verify_data)
2129 		return (0);
2130 
2131 	zio_t *rio = arg;
2132 	size_t size = BP_GET_PSIZE(bp);
2133 
2134 	mutex_enter(&spa->spa_scrub_lock);
2135 	while (spa->spa_load_verify_ios >= spa_load_verify_maxinflight)
2136 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2137 	spa->spa_load_verify_ios++;
2138 	mutex_exit(&spa->spa_scrub_lock);
2139 
2140 	zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2141 	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2142 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2143 	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2144 	return (0);
2145 }
2146 
2147 /* ARGSUSED */
2148 int
2149 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2150 {
2151 	if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2152 		return (SET_ERROR(ENAMETOOLONG));
2153 
2154 	return (0);
2155 }
2156 
2157 static int
2158 spa_load_verify(spa_t *spa)
2159 {
2160 	zio_t *rio;
2161 	spa_load_error_t sle = { 0 };
2162 	zpool_load_policy_t policy;
2163 	boolean_t verify_ok = B_FALSE;
2164 	int error = 0;
2165 
2166 	zpool_get_load_policy(spa->spa_config, &policy);
2167 
2168 	if (policy.zlp_rewind & ZPOOL_NEVER_REWIND)
2169 		return (0);
2170 
2171 	dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2172 	error = dmu_objset_find_dp(spa->spa_dsl_pool,
2173 	    spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2174 	    DS_FIND_CHILDREN);
2175 	dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2176 	if (error != 0)
2177 		return (error);
2178 
2179 	rio = zio_root(spa, NULL, &sle,
2180 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2181 
2182 	if (spa_load_verify_metadata) {
2183 		if (spa->spa_extreme_rewind) {
2184 			spa_load_note(spa, "performing a complete scan of the "
2185 			    "pool since extreme rewind is on. This may take "
2186 			    "a very long time.\n  (spa_load_verify_data=%u, "
2187 			    "spa_load_verify_metadata=%u)",
2188 			    spa_load_verify_data, spa_load_verify_metadata);
2189 		}
2190 		error = traverse_pool(spa, spa->spa_verify_min_txg,
2191 		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
2192 		    TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio);
2193 	}
2194 
2195 	(void) zio_wait(rio);
2196 
2197 	spa->spa_load_meta_errors = sle.sle_meta_count;
2198 	spa->spa_load_data_errors = sle.sle_data_count;
2199 
2200 	if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2201 		spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2202 		    "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2203 		    (u_longlong_t)sle.sle_data_count);
2204 	}
2205 
2206 	if (spa_load_verify_dryrun ||
2207 	    (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
2208 	    sle.sle_data_count <= policy.zlp_maxdata)) {
2209 		int64_t loss = 0;
2210 
2211 		verify_ok = B_TRUE;
2212 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2213 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2214 
2215 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2216 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2217 		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2218 		VERIFY(nvlist_add_int64(spa->spa_load_info,
2219 		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2220 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2221 		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2222 	} else {
2223 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2224 	}
2225 
2226 	if (spa_load_verify_dryrun)
2227 		return (0);
2228 
2229 	if (error) {
2230 		if (error != ENXIO && error != EIO)
2231 			error = SET_ERROR(EIO);
2232 		return (error);
2233 	}
2234 
2235 	return (verify_ok ? 0 : EIO);
2236 }
2237 
2238 /*
2239  * Find a value in the pool props object.
2240  */
2241 static void
2242 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2243 {
2244 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2245 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2246 }
2247 
2248 /*
2249  * Find a value in the pool directory object.
2250  */
2251 static int
2252 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2253 {
2254 	int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2255 	    name, sizeof (uint64_t), 1, val);
2256 
2257 	if (error != 0 && (error != ENOENT || log_enoent)) {
2258 		spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2259 		    "[error=%d]", name, error);
2260 	}
2261 
2262 	return (error);
2263 }
2264 
2265 static int
2266 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2267 {
2268 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2269 	return (SET_ERROR(err));
2270 }
2271 
2272 static void
2273 spa_spawn_aux_threads(spa_t *spa)
2274 {
2275 	ASSERT(spa_writeable(spa));
2276 
2277 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2278 
2279 	spa_start_indirect_condensing_thread(spa);
2280 
2281 	ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL);
2282 	spa->spa_checkpoint_discard_zthr =
2283 	    zthr_create(spa_checkpoint_discard_thread_check,
2284 	    spa_checkpoint_discard_thread, spa);
2285 }
2286 
2287 /*
2288  * Fix up config after a partly-completed split.  This is done with the
2289  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
2290  * pool have that entry in their config, but only the splitting one contains
2291  * a list of all the guids of the vdevs that are being split off.
2292  *
2293  * This function determines what to do with that list: either rejoin
2294  * all the disks to the pool, or complete the splitting process.  To attempt
2295  * the rejoin, each disk that is offlined is marked online again, and
2296  * we do a reopen() call.  If the vdev label for every disk that was
2297  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2298  * then we call vdev_split() on each disk, and complete the split.
2299  *
2300  * Otherwise we leave the config alone, with all the vdevs in place in
2301  * the original pool.
2302  */
2303 static void
2304 spa_try_repair(spa_t *spa, nvlist_t *config)
2305 {
2306 	uint_t extracted;
2307 	uint64_t *glist;
2308 	uint_t i, gcount;
2309 	nvlist_t *nvl;
2310 	vdev_t **vd;
2311 	boolean_t attempt_reopen;
2312 
2313 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2314 		return;
2315 
2316 	/* check that the config is complete */
2317 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2318 	    &glist, &gcount) != 0)
2319 		return;
2320 
2321 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2322 
2323 	/* attempt to online all the vdevs & validate */
2324 	attempt_reopen = B_TRUE;
2325 	for (i = 0; i < gcount; i++) {
2326 		if (glist[i] == 0)	/* vdev is hole */
2327 			continue;
2328 
2329 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2330 		if (vd[i] == NULL) {
2331 			/*
2332 			 * Don't bother attempting to reopen the disks;
2333 			 * just do the split.
2334 			 */
2335 			attempt_reopen = B_FALSE;
2336 		} else {
2337 			/* attempt to re-online it */
2338 			vd[i]->vdev_offline = B_FALSE;
2339 		}
2340 	}
2341 
2342 	if (attempt_reopen) {
2343 		vdev_reopen(spa->spa_root_vdev);
2344 
2345 		/* check each device to see what state it's in */
2346 		for (extracted = 0, i = 0; i < gcount; i++) {
2347 			if (vd[i] != NULL &&
2348 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2349 				break;
2350 			++extracted;
2351 		}
2352 	}
2353 
2354 	/*
2355 	 * If every disk has been moved to the new pool, or if we never
2356 	 * even attempted to look at them, then we split them off for
2357 	 * good.
2358 	 */
2359 	if (!attempt_reopen || gcount == extracted) {
2360 		for (i = 0; i < gcount; i++)
2361 			if (vd[i] != NULL)
2362 				vdev_split(vd[i]);
2363 		vdev_reopen(spa->spa_root_vdev);
2364 	}
2365 
2366 	kmem_free(vd, gcount * sizeof (vdev_t *));
2367 }
2368 
2369 static int
2370 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
2371 {
2372 	char *ereport = FM_EREPORT_ZFS_POOL;
2373 	int error;
2374 
2375 	spa->spa_load_state = state;
2376 	(void) spa_import_progress_set_state(spa, spa_load_state(spa));
2377 
2378 	gethrestime(&spa->spa_loaded_ts);
2379 	error = spa_load_impl(spa, type, &ereport);
2380 
2381 	/*
2382 	 * Don't count references from objsets that are already closed
2383 	 * and are making their way through the eviction process.
2384 	 */
2385 	spa_evicting_os_wait(spa);
2386 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
2387 	if (error) {
2388 		if (error != EEXIST) {
2389 			spa->spa_loaded_ts.tv_sec = 0;
2390 			spa->spa_loaded_ts.tv_nsec = 0;
2391 		}
2392 		if (error != EBADF) {
2393 			zfs_ereport_post(ereport, spa, NULL, NULL, NULL, 0, 0);
2394 		}
2395 	}
2396 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2397 	spa->spa_ena = 0;
2398 
2399 	(void) spa_import_progress_set_state(spa, spa_load_state(spa));
2400 
2401 	return (error);
2402 }
2403 
2404 /*
2405  * Count the number of per-vdev ZAPs associated with all of the vdevs in the
2406  * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
2407  * spa's per-vdev ZAP list.
2408  */
2409 static uint64_t
2410 vdev_count_verify_zaps(vdev_t *vd)
2411 {
2412 	spa_t *spa = vd->vdev_spa;
2413 	uint64_t total = 0;
2414 	if (vd->vdev_top_zap != 0) {
2415 		total++;
2416 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2417 		    spa->spa_all_vdev_zaps, vd->vdev_top_zap));
2418 	}
2419 	if (vd->vdev_leaf_zap != 0) {
2420 		total++;
2421 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2422 		    spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
2423 	}
2424 
2425 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
2426 		total += vdev_count_verify_zaps(vd->vdev_child[i]);
2427 	}
2428 
2429 	return (total);
2430 }
2431 
2432 /*
2433  * Determine whether the activity check is required.
2434  */
2435 static boolean_t
2436 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label,
2437     nvlist_t *config)
2438 {
2439 	uint64_t state = 0;
2440 	uint64_t hostid = 0;
2441 	uint64_t tryconfig_txg = 0;
2442 	uint64_t tryconfig_timestamp = 0;
2443 	uint16_t tryconfig_mmp_seq = 0;
2444 	nvlist_t *nvinfo;
2445 
2446 	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
2447 		nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
2448 		(void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
2449 		    &tryconfig_txg);
2450 		(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
2451 		    &tryconfig_timestamp);
2452 		(void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ,
2453 		    &tryconfig_mmp_seq);
2454 	}
2455 
2456 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
2457 
2458 	/*
2459 	 * Disable the MMP activity check - This is used by zdb which
2460 	 * is intended to be used on potentially active pools.
2461 	 */
2462 	if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
2463 		return (B_FALSE);
2464 
2465 	/*
2466 	 * Skip the activity check when the MMP feature is disabled.
2467 	 */
2468 	if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
2469 		return (B_FALSE);
2470 
2471 	/*
2472 	 * If the tryconfig_ values are nonzero, they are the results of an
2473 	 * earlier tryimport.  If they all match the uberblock we just found,
2474 	 * then the pool has not changed and we return false so we do not test
2475 	 * a second time.
2476 	 */
2477 	if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
2478 	    tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp &&
2479 	    tryconfig_mmp_seq && tryconfig_mmp_seq ==
2480 	    (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0))
2481 		return (B_FALSE);
2482 
2483 	/*
2484 	 * Allow the activity check to be skipped when importing the pool
2485 	 * on the same host which last imported it.  Since the hostid from
2486 	 * configuration may be stale use the one read from the label.
2487 	 */
2488 	if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID))
2489 		hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID);
2490 
2491 	if (hostid == spa_get_hostid())
2492 		return (B_FALSE);
2493 
2494 	/*
2495 	 * Skip the activity test when the pool was cleanly exported.
2496 	 */
2497 	if (state != POOL_STATE_ACTIVE)
2498 		return (B_FALSE);
2499 
2500 	return (B_TRUE);
2501 }
2502 
2503 /*
2504  * Nanoseconds the activity check must watch for changes on-disk.
2505  */
2506 static uint64_t
2507 spa_activity_check_duration(spa_t *spa, uberblock_t *ub)
2508 {
2509 	uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
2510 	uint64_t multihost_interval = MSEC2NSEC(
2511 	    MMP_INTERVAL_OK(zfs_multihost_interval));
2512 	uint64_t import_delay = MAX(NANOSEC, import_intervals *
2513 	    multihost_interval);
2514 
2515 	/*
2516 	 * Local tunables determine a minimum duration except for the case
2517 	 * where we know when the remote host will suspend the pool if MMP
2518 	 * writes do not land.
2519 	 *
2520 	 * See Big Theory comment at the top of mmp.c for the reasoning behind
2521 	 * these cases and times.
2522 	 */
2523 
2524 	ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100);
2525 
2526 	if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
2527 	    MMP_FAIL_INT(ub) > 0) {
2528 
2529 		/* MMP on remote host will suspend pool after failed writes */
2530 		import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) *
2531 		    MMP_IMPORT_SAFETY_FACTOR / 100;
2532 
2533 		zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp "
2534 		    "mmp_fails=%llu ub_mmp mmp_interval=%llu "
2535 		    "import_intervals=%u", import_delay, MMP_FAIL_INT(ub),
2536 		    MMP_INTERVAL(ub), import_intervals);
2537 
2538 	} else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
2539 	    MMP_FAIL_INT(ub) == 0) {
2540 
2541 		/* MMP on remote host will never suspend pool */
2542 		import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) +
2543 		    ub->ub_mmp_delay) * import_intervals);
2544 
2545 		zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp "
2546 		    "mmp_interval=%llu ub_mmp_delay=%llu "
2547 		    "import_intervals=%u", import_delay, MMP_INTERVAL(ub),
2548 		    ub->ub_mmp_delay, import_intervals);
2549 
2550 	} else if (MMP_VALID(ub)) {
2551 		/*
2552 		 * zfs-0.7 compatability case
2553 		 */
2554 
2555 		import_delay = MAX(import_delay, (multihost_interval +
2556 		    ub->ub_mmp_delay) * import_intervals);
2557 
2558 		zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu "
2559 		    "import_intervals=%u leaves=%u", import_delay,
2560 		    ub->ub_mmp_delay, import_intervals,
2561 		    vdev_count_leaves(spa));
2562 	} else {
2563 		/* Using local tunings is the only reasonable option */
2564 		zfs_dbgmsg("pool last imported on non-MMP aware "
2565 		    "host using import_delay=%llu multihost_interval=%llu "
2566 		    "import_intervals=%u", import_delay, multihost_interval,
2567 		    import_intervals);
2568 	}
2569 
2570 	return (import_delay);
2571 }
2572 
2573 /*
2574  * Perform the import activity check.  If the user canceled the import or
2575  * we detected activity then fail.
2576  */
2577 static int
2578 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config)
2579 {
2580 	uint64_t txg = ub->ub_txg;
2581 	uint64_t timestamp = ub->ub_timestamp;
2582 	uint64_t mmp_config = ub->ub_mmp_config;
2583 	uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0;
2584 	uint64_t import_delay;
2585 	hrtime_t import_expire;
2586 	nvlist_t *mmp_label = NULL;
2587 	vdev_t *rvd = spa->spa_root_vdev;
2588 	kcondvar_t cv;
2589 	kmutex_t mtx;
2590 	int error = 0;
2591 
2592 	cv_init(&cv, NULL, CV_DEFAULT, NULL);
2593 	mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
2594 	mutex_enter(&mtx);
2595 
2596 	/*
2597 	 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
2598 	 * during the earlier tryimport.  If the txg recorded there is 0 then
2599 	 * the pool is known to be active on another host.
2600 	 *
2601 	 * Otherwise, the pool might be in use on another host.  Check for
2602 	 * changes in the uberblocks on disk if necessary.
2603 	 */
2604 	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
2605 		nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
2606 		    ZPOOL_CONFIG_LOAD_INFO);
2607 
2608 		if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
2609 		    fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
2610 			vdev_uberblock_load(rvd, ub, &mmp_label);
2611 			error = SET_ERROR(EREMOTEIO);
2612 			goto out;
2613 		}
2614 	}
2615 
2616 	import_delay = spa_activity_check_duration(spa, ub);
2617 
2618 	/* Add a small random factor in case of simultaneous imports (0-25%) */
2619 	import_delay += import_delay * spa_get_random(250) / 1000;
2620 
2621 	import_expire = gethrtime() + import_delay;
2622 
2623 	while (gethrtime() < import_expire) {
2624 		(void) spa_import_progress_set_mmp_check(spa,
2625 		    NSEC2SEC(import_expire - gethrtime()));
2626 
2627 		vdev_uberblock_load(rvd, ub, &mmp_label);
2628 
2629 		if (txg != ub->ub_txg || timestamp != ub->ub_timestamp ||
2630 		    mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) {
2631 			zfs_dbgmsg("multihost activity detected "
2632 			    "txg %llu ub_txg  %llu "
2633 			    "timestamp %llu ub_timestamp  %llu "
2634 			    "mmp_config %#llx ub_mmp_config %#llx",
2635 			    txg, ub->ub_txg, timestamp, ub->ub_timestamp,
2636 			    mmp_config, ub->ub_mmp_config);
2637 
2638 			error = SET_ERROR(EREMOTEIO);
2639 			break;
2640 		}
2641 
2642 		if (mmp_label) {
2643 			nvlist_free(mmp_label);
2644 			mmp_label = NULL;
2645 		}
2646 
2647 		error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
2648 		if (error != -1) {
2649 			error = SET_ERROR(EINTR);
2650 			break;
2651 		}
2652 		error = 0;
2653 	}
2654 
2655 out:
2656 	mutex_exit(&mtx);
2657 	mutex_destroy(&mtx);
2658 	cv_destroy(&cv);
2659 
2660 	/*
2661 	 * If the pool is determined to be active store the status in the
2662 	 * spa->spa_load_info nvlist.  If the remote hostname or hostid are
2663 	 * available from configuration read from disk store them as well.
2664 	 * This allows 'zpool import' to generate a more useful message.
2665 	 *
2666 	 * ZPOOL_CONFIG_MMP_STATE    - observed pool status (mandatory)
2667 	 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
2668 	 * ZPOOL_CONFIG_MMP_HOSTID   - hostid from the active pool
2669 	 */
2670 	if (error == EREMOTEIO) {
2671 		char *hostname = "<unknown>";
2672 		uint64_t hostid = 0;
2673 
2674 		if (mmp_label) {
2675 			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
2676 				hostname = fnvlist_lookup_string(mmp_label,
2677 				    ZPOOL_CONFIG_HOSTNAME);
2678 				fnvlist_add_string(spa->spa_load_info,
2679 				    ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
2680 			}
2681 
2682 			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
2683 				hostid = fnvlist_lookup_uint64(mmp_label,
2684 				    ZPOOL_CONFIG_HOSTID);
2685 				fnvlist_add_uint64(spa->spa_load_info,
2686 				    ZPOOL_CONFIG_MMP_HOSTID, hostid);
2687 			}
2688 		}
2689 
2690 		fnvlist_add_uint64(spa->spa_load_info,
2691 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
2692 		fnvlist_add_uint64(spa->spa_load_info,
2693 		    ZPOOL_CONFIG_MMP_TXG, 0);
2694 
2695 		error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
2696 	}
2697 
2698 	if (mmp_label)
2699 		nvlist_free(mmp_label);
2700 
2701 	return (error);
2702 }
2703 
2704 static int
2705 spa_verify_host(spa_t *spa, nvlist_t *mos_config)
2706 {
2707 	uint64_t hostid;
2708 	char *hostname;
2709 	uint64_t myhostid = 0;
2710 
2711 	if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
2712 	    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2713 		hostname = fnvlist_lookup_string(mos_config,
2714 		    ZPOOL_CONFIG_HOSTNAME);
2715 
2716 		myhostid = zone_get_hostid(NULL);
2717 
2718 		if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
2719 			cmn_err(CE_WARN, "pool '%s' could not be "
2720 			    "loaded as it was last accessed by "
2721 			    "another system (host: %s hostid: 0x%llx). "
2722 			    "See: http://illumos.org/msg/ZFS-8000-EY",
2723 			    spa_name(spa), hostname, (u_longlong_t)hostid);
2724 			spa_load_failed(spa, "hostid verification failed: pool "
2725 			    "last accessed by host: %s (hostid: 0x%llx)",
2726 			    hostname, (u_longlong_t)hostid);
2727 			return (SET_ERROR(EBADF));
2728 		}
2729 	}
2730 
2731 	return (0);
2732 }
2733 
2734 static int
2735 spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
2736 {
2737 	int error = 0;
2738 	nvlist_t *nvtree, *nvl, *config = spa->spa_config;
2739 	int parse;
2740 	vdev_t *rvd;
2741 	uint64_t pool_guid;
2742 	char *comment;
2743 
2744 	/*
2745 	 * Versioning wasn't explicitly added to the label until later, so if
2746 	 * it's not present treat it as the initial version.
2747 	 */
2748 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2749 	    &spa->spa_ubsync.ub_version) != 0)
2750 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2751 
2752 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
2753 		spa_load_failed(spa, "invalid config provided: '%s' missing",
2754 		    ZPOOL_CONFIG_POOL_GUID);
2755 		return (SET_ERROR(EINVAL));
2756 	}
2757 
2758 	/*
2759 	 * If we are doing an import, ensure that the pool is not already
2760 	 * imported by checking if its pool guid already exists in the
2761 	 * spa namespace.
2762 	 *
2763 	 * The only case that we allow an already imported pool to be
2764 	 * imported again, is when the pool is checkpointed and we want to
2765 	 * look at its checkpointed state from userland tools like zdb.
2766 	 */
2767 #ifdef _KERNEL
2768 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
2769 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
2770 	    spa_guid_exists(pool_guid, 0)) {
2771 #else
2772 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
2773 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
2774 	    spa_guid_exists(pool_guid, 0) &&
2775 	    !spa_importing_readonly_checkpoint(spa)) {
2776 #endif
2777 		spa_load_failed(spa, "a pool with guid %llu is already open",
2778 		    (u_longlong_t)pool_guid);
2779 		return (SET_ERROR(EEXIST));
2780 	}
2781 
2782 	spa->spa_config_guid = pool_guid;
2783 
2784 	nvlist_free(spa->spa_load_info);
2785 	spa->spa_load_info = fnvlist_alloc();
2786 
2787 	ASSERT(spa->spa_comment == NULL);
2788 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2789 		spa->spa_comment = spa_strdup(comment);
2790 
2791 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2792 	    &spa->spa_config_txg);
2793 
2794 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
2795 		spa->spa_config_splitting = fnvlist_dup(nvl);
2796 
2797 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
2798 		spa_load_failed(spa, "invalid config provided: '%s' missing",
2799 		    ZPOOL_CONFIG_VDEV_TREE);
2800 		return (SET_ERROR(EINVAL));
2801 	}
2802 
2803 	/*
2804 	 * Create "The Godfather" zio to hold all async IOs
2805 	 */
2806 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2807 	    KM_SLEEP);
2808 	for (int i = 0; i < max_ncpus; i++) {
2809 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2810 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2811 		    ZIO_FLAG_GODFATHER);
2812 	}
2813 
2814 	/*
2815 	 * Parse the configuration into a vdev tree.  We explicitly set the
2816 	 * value that will be returned by spa_version() since parsing the
2817 	 * configuration requires knowing the version number.
2818 	 */
2819 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2820 	parse = (type == SPA_IMPORT_EXISTING ?
2821 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2822 	error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
2823 	spa_config_exit(spa, SCL_ALL, FTAG);
2824 
2825 	if (error != 0) {
2826 		spa_load_failed(spa, "unable to parse config [error=%d]",
2827 		    error);
2828 		return (error);
2829 	}
2830 
2831 	ASSERT(spa->spa_root_vdev == rvd);
2832 	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2833 	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2834 
2835 	if (type != SPA_IMPORT_ASSEMBLE) {
2836 		ASSERT(spa_guid(spa) == pool_guid);
2837 	}
2838 
2839 	return (0);
2840 }
2841 
2842 /*
2843  * Recursively open all vdevs in the vdev tree. This function is called twice:
2844  * first with the untrusted config, then with the trusted config.
2845  */
2846 static int
2847 spa_ld_open_vdevs(spa_t *spa)
2848 {
2849 	int error = 0;
2850 
2851 	/*
2852 	 * spa_missing_tvds_allowed defines how many top-level vdevs can be
2853 	 * missing/unopenable for the root vdev to be still considered openable.
2854 	 */
2855 	if (spa->spa_trust_config) {
2856 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
2857 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
2858 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
2859 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
2860 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
2861 	} else {
2862 		spa->spa_missing_tvds_allowed = 0;
2863 	}
2864 
2865 	spa->spa_missing_tvds_allowed =
2866 	    MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
2867 
2868 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2869 	error = vdev_open(spa->spa_root_vdev);
2870 	spa_config_exit(spa, SCL_ALL, FTAG);
2871 
2872 	if (spa->spa_missing_tvds != 0) {
2873 		spa_load_note(spa, "vdev tree has %lld missing top-level "
2874 		    "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
2875 		if (spa->spa_trust_config && (spa->spa_mode & FWRITE)) {
2876 			/*
2877 			 * Although theoretically we could allow users to open
2878 			 * incomplete pools in RW mode, we'd need to add a lot
2879 			 * of extra logic (e.g. adjust pool space to account
2880 			 * for missing vdevs).
2881 			 * This limitation also prevents users from accidentally
2882 			 * opening the pool in RW mode during data recovery and
2883 			 * damaging it further.
2884 			 */
2885 			spa_load_note(spa, "pools with missing top-level "
2886 			    "vdevs can only be opened in read-only mode.");
2887 			error = SET_ERROR(ENXIO);
2888 		} else {
2889 			spa_load_note(spa, "current settings allow for maximum "
2890 			    "%lld missing top-level vdevs at this stage.",
2891 			    (u_longlong_t)spa->spa_missing_tvds_allowed);
2892 		}
2893 	}
2894 	if (error != 0) {
2895 		spa_load_failed(spa, "unable to open vdev tree [error=%d]",
2896 		    error);
2897 	}
2898 	if (spa->spa_missing_tvds != 0 || error != 0)
2899 		vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
2900 
2901 	return (error);
2902 }
2903 
2904 /*
2905  * We need to validate the vdev labels against the configuration that
2906  * we have in hand. This function is called twice: first with an untrusted
2907  * config, then with a trusted config. The validation is more strict when the
2908  * config is trusted.
2909  */
2910 static int
2911 spa_ld_validate_vdevs(spa_t *spa)
2912 {
2913 	int error = 0;
2914 	vdev_t *rvd = spa->spa_root_vdev;
2915 
2916 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2917 	error = vdev_validate(rvd);
2918 	spa_config_exit(spa, SCL_ALL, FTAG);
2919 
2920 	if (error != 0) {
2921 		spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
2922 		return (error);
2923 	}
2924 
2925 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
2926 		spa_load_failed(spa, "cannot open vdev tree after invalidating "
2927 		    "some vdevs");
2928 		vdev_dbgmsg_print_tree(rvd, 2);
2929 		return (SET_ERROR(ENXIO));
2930 	}
2931 
2932 	return (0);
2933 }
2934 
2935 static void
2936 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
2937 {
2938 	spa->spa_state = POOL_STATE_ACTIVE;
2939 	spa->spa_ubsync = spa->spa_uberblock;
2940 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2941 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2942 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2943 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2944 	spa->spa_claim_max_txg = spa->spa_first_txg;
2945 	spa->spa_prev_software_version = ub->ub_software_version;
2946 }
2947 
2948 static int
2949 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
2950 {
2951 	vdev_t *rvd = spa->spa_root_vdev;
2952 	nvlist_t *label;
2953 	uberblock_t *ub = &spa->spa_uberblock;
2954 	boolean_t activity_check = B_FALSE;
2955 
2956 	/*
2957 	 * If we are opening the checkpointed state of the pool by
2958 	 * rewinding to it, at this point we will have written the
2959 	 * checkpointed uberblock to the vdev labels, so searching
2960 	 * the labels will find the right uberblock.  However, if
2961 	 * we are opening the checkpointed state read-only, we have
2962 	 * not modified the labels. Therefore, we must ignore the
2963 	 * labels and continue using the spa_uberblock that was set
2964 	 * by spa_ld_checkpoint_rewind.
2965 	 *
2966 	 * Note that it would be fine to ignore the labels when
2967 	 * rewinding (opening writeable) as well. However, if we
2968 	 * crash just after writing the labels, we will end up
2969 	 * searching the labels. Doing so in the common case means
2970 	 * that this code path gets exercised normally, rather than
2971 	 * just in the edge case.
2972 	 */
2973 	if (ub->ub_checkpoint_txg != 0 &&
2974 	    spa_importing_readonly_checkpoint(spa)) {
2975 		spa_ld_select_uberblock_done(spa, ub);
2976 		return (0);
2977 	}
2978 
2979 	/*
2980 	 * Find the best uberblock.
2981 	 */
2982 	vdev_uberblock_load(rvd, ub, &label);
2983 
2984 	/*
2985 	 * If we weren't able to find a single valid uberblock, return failure.
2986 	 */
2987 	if (ub->ub_txg == 0) {
2988 		nvlist_free(label);
2989 		spa_load_failed(spa, "no valid uberblock found");
2990 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2991 	}
2992 
2993 	if (spa->spa_load_max_txg != UINT64_MAX) {
2994 		(void) spa_import_progress_set_max_txg(spa,
2995 		    (u_longlong_t)spa->spa_load_max_txg);
2996 	}
2997 	spa_load_note(spa, "using uberblock with txg=%llu",
2998 	    (u_longlong_t)ub->ub_txg);
2999 
3000 	/*
3001 	 * For pools which have the multihost property on determine if the
3002 	 * pool is truly inactive and can be safely imported.  Prevent
3003 	 * hosts which don't have a hostid set from importing the pool.
3004 	 */
3005 	activity_check = spa_activity_check_required(spa, ub, label,
3006 	    spa->spa_config);
3007 	if (activity_check) {
3008 		if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
3009 		    spa_get_hostid() == 0) {
3010 			nvlist_free(label);
3011 			fnvlist_add_uint64(spa->spa_load_info,
3012 			    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
3013 			return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
3014 		}
3015 
3016 		int error = spa_activity_check(spa, ub, spa->spa_config);
3017 		if (error) {
3018 			nvlist_free(label);
3019 			return (error);
3020 		}
3021 
3022 		fnvlist_add_uint64(spa->spa_load_info,
3023 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
3024 		fnvlist_add_uint64(spa->spa_load_info,
3025 		    ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
3026 		fnvlist_add_uint16(spa->spa_load_info,
3027 		    ZPOOL_CONFIG_MMP_SEQ,
3028 		    (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0));
3029 	}
3030 
3031 	/*
3032 	 * If the pool has an unsupported version we can't open it.
3033 	 */
3034 	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
3035 		nvlist_free(label);
3036 		spa_load_failed(spa, "version %llu is not supported",
3037 		    (u_longlong_t)ub->ub_version);
3038 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
3039 	}
3040 
3041 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
3042 		nvlist_t *features;
3043 
3044 		/*
3045 		 * If we weren't able to find what's necessary for reading the
3046 		 * MOS in the label, return failure.
3047 		 */
3048 		if (label == NULL) {
3049 			spa_load_failed(spa, "label config unavailable");
3050 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3051 			    ENXIO));
3052 		}
3053 
3054 		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
3055 		    &features) != 0) {
3056 			nvlist_free(label);
3057 			spa_load_failed(spa, "invalid label: '%s' missing",
3058 			    ZPOOL_CONFIG_FEATURES_FOR_READ);
3059 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3060 			    ENXIO));
3061 		}
3062 
3063 		/*
3064 		 * Update our in-core representation with the definitive values
3065 		 * from the label.
3066 		 */
3067 		nvlist_free(spa->spa_label_features);
3068 		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
3069 	}
3070 
3071 	nvlist_free(label);
3072 
3073 	/*
3074 	 * Look through entries in the label nvlist's features_for_read. If
3075 	 * there is a feature listed there which we don't understand then we
3076 	 * cannot open a pool.
3077 	 */
3078 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
3079 		nvlist_t *unsup_feat;
3080 
3081 		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
3082 		    0);
3083 
3084 		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
3085 		    NULL); nvp != NULL;
3086 		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
3087 			if (!zfeature_is_supported(nvpair_name(nvp))) {
3088 				VERIFY(nvlist_add_string(unsup_feat,
3089 				    nvpair_name(nvp), "") == 0);
3090 			}
3091 		}
3092 
3093 		if (!nvlist_empty(unsup_feat)) {
3094 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
3095 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
3096 			nvlist_free(unsup_feat);
3097 			spa_load_failed(spa, "some features are unsupported");
3098 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
3099 			    ENOTSUP));
3100 		}
3101 
3102 		nvlist_free(unsup_feat);
3103 	}
3104 
3105 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
3106 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3107 		spa_try_repair(spa, spa->spa_config);
3108 		spa_config_exit(spa, SCL_ALL, FTAG);
3109 		nvlist_free(spa->spa_config_splitting);
3110 		spa->spa_config_splitting = NULL;
3111 	}
3112 
3113 	/*
3114 	 * Initialize internal SPA structures.
3115 	 */
3116 	spa_ld_select_uberblock_done(spa, ub);
3117 
3118 	return (0);
3119 }
3120 
3121 static int
3122 spa_ld_open_rootbp(spa_t *spa)
3123 {
3124 	int error = 0;
3125 	vdev_t *rvd = spa->spa_root_vdev;
3126 
3127 	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
3128 	if (error != 0) {
3129 		spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
3130 		    "[error=%d]", error);
3131 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3132 	}
3133 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
3134 
3135 	return (0);
3136 }
3137 
3138 static int
3139 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
3140     boolean_t reloading)
3141 {
3142 	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
3143 	nvlist_t *nv, *mos_config, *policy;
3144 	int error = 0, copy_error;
3145 	uint64_t healthy_tvds, healthy_tvds_mos;
3146 	uint64_t mos_config_txg;
3147 
3148 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
3149 	    != 0)
3150 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3151 
3152 	/*
3153 	 * If we're assembling a pool from a split, the config provided is
3154 	 * already trusted so there is nothing to do.
3155 	 */
3156 	if (type == SPA_IMPORT_ASSEMBLE)
3157 		return (0);
3158 
3159 	healthy_tvds = spa_healthy_core_tvds(spa);
3160 
3161 	if (load_nvlist(spa, spa->spa_config_object, &mos_config)
3162 	    != 0) {
3163 		spa_load_failed(spa, "unable to retrieve MOS config");
3164 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3165 	}
3166 
3167 	/*
3168 	 * If we are doing an open, pool owner wasn't verified yet, thus do
3169 	 * the verification here.
3170 	 */
3171 	if (spa->spa_load_state == SPA_LOAD_OPEN) {
3172 		error = spa_verify_host(spa, mos_config);
3173 		if (error != 0) {
3174 			nvlist_free(mos_config);
3175 			return (error);
3176 		}
3177 	}
3178 
3179 	nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
3180 
3181 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3182 
3183 	/*
3184 	 * Build a new vdev tree from the trusted config
3185 	 */
3186 	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
3187 
3188 	/*
3189 	 * Vdev paths in the MOS may be obsolete. If the untrusted config was
3190 	 * obtained by scanning /dev/dsk, then it will have the right vdev
3191 	 * paths. We update the trusted MOS config with this information.
3192 	 * We first try to copy the paths with vdev_copy_path_strict, which
3193 	 * succeeds only when both configs have exactly the same vdev tree.
3194 	 * If that fails, we fall back to a more flexible method that has a
3195 	 * best effort policy.
3196 	 */
3197 	copy_error = vdev_copy_path_strict(rvd, mrvd);
3198 	if (copy_error != 0 || spa_load_print_vdev_tree) {
3199 		spa_load_note(spa, "provided vdev tree:");
3200 		vdev_dbgmsg_print_tree(rvd, 2);
3201 		spa_load_note(spa, "MOS vdev tree:");
3202 		vdev_dbgmsg_print_tree(mrvd, 2);
3203 	}
3204 	if (copy_error != 0) {
3205 		spa_load_note(spa, "vdev_copy_path_strict failed, falling "
3206 		    "back to vdev_copy_path_relaxed");
3207 		vdev_copy_path_relaxed(rvd, mrvd);
3208 	}
3209 
3210 	vdev_close(rvd);
3211 	vdev_free(rvd);
3212 	spa->spa_root_vdev = mrvd;
3213 	rvd = mrvd;
3214 	spa_config_exit(spa, SCL_ALL, FTAG);
3215 
3216 	/*
3217 	 * We will use spa_config if we decide to reload the spa or if spa_load
3218 	 * fails and we rewind. We must thus regenerate the config using the
3219 	 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
3220 	 * pass settings on how to load the pool and is not stored in the MOS.
3221 	 * We copy it over to our new, trusted config.
3222 	 */
3223 	mos_config_txg = fnvlist_lookup_uint64(mos_config,
3224 	    ZPOOL_CONFIG_POOL_TXG);
3225 	nvlist_free(mos_config);
3226 	mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
3227 	if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
3228 	    &policy) == 0)
3229 		fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
3230 	spa_config_set(spa, mos_config);
3231 	spa->spa_config_source = SPA_CONFIG_SRC_MOS;
3232 
3233 	/*
3234 	 * Now that we got the config from the MOS, we should be more strict
3235 	 * in checking blkptrs and can make assumptions about the consistency
3236 	 * of the vdev tree. spa_trust_config must be set to true before opening
3237 	 * vdevs in order for them to be writeable.
3238 	 */
3239 	spa->spa_trust_config = B_TRUE;
3240 
3241 	/*
3242 	 * Open and validate the new vdev tree
3243 	 */
3244 	error = spa_ld_open_vdevs(spa);
3245 	if (error != 0)
3246 		return (error);
3247 
3248 	error = spa_ld_validate_vdevs(spa);
3249 	if (error != 0)
3250 		return (error);
3251 
3252 	if (copy_error != 0 || spa_load_print_vdev_tree) {
3253 		spa_load_note(spa, "final vdev tree:");
3254 		vdev_dbgmsg_print_tree(rvd, 2);
3255 	}
3256 
3257 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
3258 	    !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
3259 		/*
3260 		 * Sanity check to make sure that we are indeed loading the
3261 		 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
3262 		 * in the config provided and they happened to be the only ones
3263 		 * to have the latest uberblock, we could involuntarily perform
3264 		 * an extreme rewind.
3265 		 */
3266 		healthy_tvds_mos = spa_healthy_core_tvds(spa);
3267 		if (healthy_tvds_mos - healthy_tvds >=
3268 		    SPA_SYNC_MIN_VDEVS) {
3269 			spa_load_note(spa, "config provided misses too many "
3270 			    "top-level vdevs compared to MOS (%lld vs %lld). ",
3271 			    (u_longlong_t)healthy_tvds,
3272 			    (u_longlong_t)healthy_tvds_mos);
3273 			spa_load_note(spa, "vdev tree:");
3274 			vdev_dbgmsg_print_tree(rvd, 2);
3275 			if (reloading) {
3276 				spa_load_failed(spa, "config was already "
3277 				    "provided from MOS. Aborting.");
3278 				return (spa_vdev_err(rvd,
3279 				    VDEV_AUX_CORRUPT_DATA, EIO));
3280 			}
3281 			spa_load_note(spa, "spa must be reloaded using MOS "
3282 			    "config");
3283 			return (SET_ERROR(EAGAIN));
3284 		}
3285 	}
3286 
3287 	error = spa_check_for_missing_logs(spa);
3288 	if (error != 0)
3289 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
3290 
3291 	if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
3292 		spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
3293 		    "guid sum (%llu != %llu)",
3294 		    (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
3295 		    (u_longlong_t)rvd->vdev_guid_sum);
3296 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
3297 		    ENXIO));
3298 	}
3299 
3300 	return (0);
3301 }
3302 
3303 static int
3304 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
3305 {
3306 	int error = 0;
3307 	vdev_t *rvd = spa->spa_root_vdev;
3308 
3309 	/*
3310 	 * Everything that we read before spa_remove_init() must be stored
3311 	 * on concreted vdevs.  Therefore we do this as early as possible.
3312 	 */
3313 	error = spa_remove_init(spa);
3314 	if (error != 0) {
3315 		spa_load_failed(spa, "spa_remove_init failed [error=%d]",
3316 		    error);
3317 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3318 	}
3319 
3320 	/*
3321 	 * Retrieve information needed to condense indirect vdev mappings.
3322 	 */
3323 	error = spa_condense_init(spa);
3324 	if (error != 0) {
3325 		spa_load_failed(spa, "spa_condense_init failed [error=%d]",
3326 		    error);
3327 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3328 	}
3329 
3330 	return (0);
3331 }
3332 
3333 static int
3334 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
3335 {
3336 	int error = 0;
3337 	vdev_t *rvd = spa->spa_root_vdev;
3338 
3339 	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
3340 		boolean_t missing_feat_read = B_FALSE;
3341 		nvlist_t *unsup_feat, *enabled_feat;
3342 
3343 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
3344 		    &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
3345 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3346 		}
3347 
3348 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
3349 		    &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
3350 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3351 		}
3352 
3353 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
3354 		    &spa->spa_feat_desc_obj, B_TRUE) != 0) {
3355 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3356 		}
3357 
3358 		enabled_feat = fnvlist_alloc();
3359 		unsup_feat = fnvlist_alloc();
3360 
3361 		if (!spa_features_check(spa, B_FALSE,
3362 		    unsup_feat, enabled_feat))
3363 			missing_feat_read = B_TRUE;
3364 
3365 		if (spa_writeable(spa) ||
3366 		    spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
3367 			if (!spa_features_check(spa, B_TRUE,
3368 			    unsup_feat, enabled_feat)) {
3369 				*missing_feat_writep = B_TRUE;
3370 			}
3371 		}
3372 
3373 		fnvlist_add_nvlist(spa->spa_load_info,
3374 		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
3375 
3376 		if (!nvlist_empty(unsup_feat)) {
3377 			fnvlist_add_nvlist(spa->spa_load_info,
3378 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
3379 		}
3380 
3381 		fnvlist_free(enabled_feat);
3382 		fnvlist_free(unsup_feat);
3383 
3384 		if (!missing_feat_read) {
3385 			fnvlist_add_boolean(spa->spa_load_info,
3386 			    ZPOOL_CONFIG_CAN_RDONLY);
3387 		}
3388 
3389 		/*
3390 		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
3391 		 * twofold: to determine whether the pool is available for
3392 		 * import in read-write mode and (if it is not) whether the
3393 		 * pool is available for import in read-only mode. If the pool
3394 		 * is available for import in read-write mode, it is displayed
3395 		 * as available in userland; if it is not available for import
3396 		 * in read-only mode, it is displayed as unavailable in
3397 		 * userland. If the pool is available for import in read-only
3398 		 * mode but not read-write mode, it is displayed as unavailable
3399 		 * in userland with a special note that the pool is actually
3400 		 * available for open in read-only mode.
3401 		 *
3402 		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
3403 		 * missing a feature for write, we must first determine whether
3404 		 * the pool can be opened read-only before returning to
3405 		 * userland in order to know whether to display the
3406 		 * abovementioned note.
3407 		 */
3408 		if (missing_feat_read || (*missing_feat_writep &&
3409 		    spa_writeable(spa))) {
3410 			spa_load_failed(spa, "pool uses unsupported features");
3411 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
3412 			    ENOTSUP));
3413 		}
3414 
3415 		/*
3416 		 * Load refcounts for ZFS features from disk into an in-memory
3417 		 * cache during SPA initialization.
3418 		 */
3419 		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
3420 			uint64_t refcount;
3421 
3422 			error = feature_get_refcount_from_disk(spa,
3423 			    &spa_feature_table[i], &refcount);
3424 			if (error == 0) {
3425 				spa->spa_feat_refcount_cache[i] = refcount;
3426 			} else if (error == ENOTSUP) {
3427 				spa->spa_feat_refcount_cache[i] =
3428 				    SPA_FEATURE_DISABLED;
3429 			} else {
3430 				spa_load_failed(spa, "error getting refcount "
3431 				    "for feature %s [error=%d]",
3432 				    spa_feature_table[i].fi_guid, error);
3433 				return (spa_vdev_err(rvd,
3434 				    VDEV_AUX_CORRUPT_DATA, EIO));
3435 			}
3436 		}
3437 	}
3438 
3439 	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
3440 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
3441 		    &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
3442 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3443 	}
3444 
3445 	/*
3446 	 * Encryption was added before bookmark_v2, even though bookmark_v2
3447 	 * is now a dependency. If this pool has encryption enabled without
3448 	 * bookmark_v2, trigger an errata message.
3449 	 */
3450 	if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) &&
3451 	    !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) {
3452 		spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION;
3453 	}
3454 
3455 	return (0);
3456 }
3457 
3458 static int
3459 spa_ld_load_special_directories(spa_t *spa)
3460 {
3461 	int error = 0;
3462 	vdev_t *rvd = spa->spa_root_vdev;
3463 
3464 	spa->spa_is_initializing = B_TRUE;
3465 	error = dsl_pool_open(spa->spa_dsl_pool);
3466 	spa->spa_is_initializing = B_FALSE;
3467 	if (error != 0) {
3468 		spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
3469 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3470 	}
3471 
3472 	return (0);
3473 }
3474 
3475 static int
3476 spa_ld_get_props(spa_t *spa)
3477 {
3478 	int error = 0;
3479 	uint64_t obj;
3480 	vdev_t *rvd = spa->spa_root_vdev;
3481 
3482 	/* Grab the secret checksum salt from the MOS. */
3483 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3484 	    DMU_POOL_CHECKSUM_SALT, 1,
3485 	    sizeof (spa->spa_cksum_salt.zcs_bytes),
3486 	    spa->spa_cksum_salt.zcs_bytes);
3487 	if (error == ENOENT) {
3488 		/* Generate a new salt for subsequent use */
3489 		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
3490 		    sizeof (spa->spa_cksum_salt.zcs_bytes));
3491 	} else if (error != 0) {
3492 		spa_load_failed(spa, "unable to retrieve checksum salt from "
3493 		    "MOS [error=%d]", error);
3494 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3495 	}
3496 
3497 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
3498 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3499 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
3500 	if (error != 0) {
3501 		spa_load_failed(spa, "error opening deferred-frees bpobj "
3502 		    "[error=%d]", error);
3503 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3504 	}
3505 
3506 	/*
3507 	 * Load the bit that tells us to use the new accounting function
3508 	 * (raid-z deflation).  If we have an older pool, this will not
3509 	 * be present.
3510 	 */
3511 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
3512 	if (error != 0 && error != ENOENT)
3513 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3514 
3515 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
3516 	    &spa->spa_creation_version, B_FALSE);
3517 	if (error != 0 && error != ENOENT)
3518 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3519 
3520 	/*
3521 	 * Load the persistent error log.  If we have an older pool, this will
3522 	 * not be present.
3523 	 */
3524 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
3525 	    B_FALSE);
3526 	if (error != 0 && error != ENOENT)
3527 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3528 
3529 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
3530 	    &spa->spa_errlog_scrub, B_FALSE);
3531 	if (error != 0 && error != ENOENT)
3532 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3533 
3534 	/*
3535 	 * Load the history object.  If we have an older pool, this
3536 	 * will not be present.
3537 	 */
3538 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
3539 	if (error != 0 && error != ENOENT)
3540 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3541 
3542 	/*
3543 	 * Load the per-vdev ZAP map. If we have an older pool, this will not
3544 	 * be present; in this case, defer its creation to a later time to
3545 	 * avoid dirtying the MOS this early / out of sync context. See
3546 	 * spa_sync_config_object.
3547 	 */
3548 
3549 	/* The sentinel is only available in the MOS config. */
3550 	nvlist_t *mos_config;
3551 	if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
3552 		spa_load_failed(spa, "unable to retrieve MOS config");
3553 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3554 	}
3555 
3556 	error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
3557 	    &spa->spa_all_vdev_zaps, B_FALSE);
3558 
3559 	if (error == ENOENT) {
3560 		VERIFY(!nvlist_exists(mos_config,
3561 		    ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
3562 		spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
3563 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
3564 	} else if (error != 0) {
3565 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3566 	} else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
3567 		/*
3568 		 * An older version of ZFS overwrote the sentinel value, so
3569 		 * we have orphaned per-vdev ZAPs in the MOS. Defer their
3570 		 * destruction to later; see spa_sync_config_object.
3571 		 */
3572 		spa->spa_avz_action = AVZ_ACTION_DESTROY;
3573 		/*
3574 		 * We're assuming that no vdevs have had their ZAPs created
3575 		 * before this. Better be sure of it.
3576 		 */
3577 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
3578 	}
3579 	nvlist_free(mos_config);
3580 
3581 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3582 
3583 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
3584 	    B_FALSE);
3585 	if (error && error != ENOENT)
3586 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3587 
3588 	if (error == 0) {
3589 		uint64_t autoreplace;
3590 
3591 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
3592 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
3593 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
3594 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
3595 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
3596 		spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost);
3597 		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
3598 		    &spa->spa_dedup_ditto);
3599 		spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim);
3600 		spa->spa_autoreplace = (autoreplace != 0);
3601 	}
3602 
3603 	/*
3604 	 * If we are importing a pool with missing top-level vdevs,
3605 	 * we enforce that the pool doesn't panic or get suspended on
3606 	 * error since the likelihood of missing data is extremely high.
3607 	 */
3608 	if (spa->spa_missing_tvds > 0 &&
3609 	    spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
3610 	    spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3611 		spa_load_note(spa, "forcing failmode to 'continue' "
3612 		    "as some top level vdevs are missing");
3613 		spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
3614 	}
3615 
3616 	return (0);
3617 }
3618 
3619 static int
3620 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
3621 {
3622 	int error = 0;
3623 	vdev_t *rvd = spa->spa_root_vdev;
3624 
3625 	/*
3626 	 * If we're assembling the pool from the split-off vdevs of
3627 	 * an existing pool, we don't want to attach the spares & cache
3628 	 * devices.
3629 	 */
3630 
3631 	/*
3632 	 * Load any hot spares for this pool.
3633 	 */
3634 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
3635 	    B_FALSE);
3636 	if (error != 0 && error != ENOENT)
3637 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3638 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
3639 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
3640 		if (load_nvlist(spa, spa->spa_spares.sav_object,
3641 		    &spa->spa_spares.sav_config) != 0) {
3642 			spa_load_failed(spa, "error loading spares nvlist");
3643 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3644 		}
3645 
3646 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3647 		spa_load_spares(spa);
3648 		spa_config_exit(spa, SCL_ALL, FTAG);
3649 	} else if (error == 0) {
3650 		spa->spa_spares.sav_sync = B_TRUE;
3651 	}
3652 
3653 	/*
3654 	 * Load any level 2 ARC devices for this pool.
3655 	 */
3656 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
3657 	    &spa->spa_l2cache.sav_object, B_FALSE);
3658 	if (error != 0 && error != ENOENT)
3659 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3660 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
3661 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
3662 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
3663 		    &spa->spa_l2cache.sav_config) != 0) {
3664 			spa_load_failed(spa, "error loading l2cache nvlist");
3665 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3666 		}
3667 
3668 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3669 		spa_load_l2cache(spa);
3670 		spa_config_exit(spa, SCL_ALL, FTAG);
3671 	} else if (error == 0) {
3672 		spa->spa_l2cache.sav_sync = B_TRUE;
3673 	}
3674 
3675 	return (0);
3676 }
3677 
3678 static int
3679 spa_ld_load_vdev_metadata(spa_t *spa)
3680 {
3681 	int error = 0;
3682 	vdev_t *rvd = spa->spa_root_vdev;
3683 
3684 	/*
3685 	 * If the 'multihost' property is set, then never allow a pool to
3686 	 * be imported when the system hostid is zero.  The exception to
3687 	 * this rule is zdb which is always allowed to access pools.
3688 	 */
3689 	if (spa_multihost(spa) && spa_get_hostid() == 0 &&
3690 	    (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) {
3691 		fnvlist_add_uint64(spa->spa_load_info,
3692 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
3693 		return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
3694 	}
3695 
3696 	/*
3697 	 * If the 'autoreplace' property is set, then post a resource notifying
3698 	 * the ZFS DE that it should not issue any faults for unopenable
3699 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
3700 	 * unopenable vdevs so that the normal autoreplace handler can take
3701 	 * over.
3702 	 */
3703 	if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3704 		spa_check_removed(spa->spa_root_vdev);
3705 		/*
3706 		 * For the import case, this is done in spa_import(), because
3707 		 * at this point we're using the spare definitions from
3708 		 * the MOS config, not necessarily from the userland config.
3709 		 */
3710 		if (spa->spa_load_state != SPA_LOAD_IMPORT) {
3711 			spa_aux_check_removed(&spa->spa_spares);
3712 			spa_aux_check_removed(&spa->spa_l2cache);
3713 		}
3714 	}
3715 
3716 	/*
3717 	 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
3718 	 */
3719 	error = vdev_load(rvd);
3720 	if (error != 0) {
3721 		spa_load_failed(spa, "vdev_load failed [error=%d]", error);
3722 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3723 	}
3724 
3725 	error = spa_ld_log_spacemaps(spa);
3726 	if (error != 0) {
3727 		spa_load_failed(spa, "spa_ld_log_sm_data failed [error=%d]",
3728 		    error);
3729 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3730 	}
3731 
3732 	/*
3733 	 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
3734 	 */
3735 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3736 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
3737 	spa_config_exit(spa, SCL_ALL, FTAG);
3738 
3739 	return (0);
3740 }
3741 
3742 static int
3743 spa_ld_load_dedup_tables(spa_t *spa)
3744 {
3745 	int error = 0;
3746 	vdev_t *rvd = spa->spa_root_vdev;
3747 
3748 	error = ddt_load(spa);
3749 	if (error != 0) {
3750 		spa_load_failed(spa, "ddt_load failed [error=%d]", error);
3751 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3752 	}
3753 
3754 	return (0);
3755 }
3756 
3757 static int
3758 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, char **ereport)
3759 {
3760 	vdev_t *rvd = spa->spa_root_vdev;
3761 
3762 	if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
3763 		boolean_t missing = spa_check_logs(spa);
3764 		if (missing) {
3765 			if (spa->spa_missing_tvds != 0) {
3766 				spa_load_note(spa, "spa_check_logs failed "
3767 				    "so dropping the logs");
3768 			} else {
3769 				*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
3770 				spa_load_failed(spa, "spa_check_logs failed");
3771 				return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
3772 				    ENXIO));
3773 			}
3774 		}
3775 	}
3776 
3777 	return (0);
3778 }
3779 
3780 static int
3781 spa_ld_verify_pool_data(spa_t *spa)
3782 {
3783 	int error = 0;
3784 	vdev_t *rvd = spa->spa_root_vdev;
3785 
3786 	/*
3787 	 * We've successfully opened the pool, verify that we're ready
3788 	 * to start pushing transactions.
3789 	 */
3790 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3791 		error = spa_load_verify(spa);
3792 		if (error != 0) {
3793 			spa_load_failed(spa, "spa_load_verify failed "
3794 			    "[error=%d]", error);
3795 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3796 			    error));
3797 		}
3798 	}
3799 
3800 	return (0);
3801 }
3802 
3803 static void
3804 spa_ld_claim_log_blocks(spa_t *spa)
3805 {
3806 	dmu_tx_t *tx;
3807 	dsl_pool_t *dp = spa_get_dsl(spa);
3808 
3809 	/*
3810 	 * Claim log blocks that haven't been committed yet.
3811 	 * This must all happen in a single txg.
3812 	 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
3813 	 * invoked from zil_claim_log_block()'s i/o done callback.
3814 	 * Price of rollback is that we abandon the log.
3815 	 */
3816 	spa->spa_claiming = B_TRUE;
3817 
3818 	tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
3819 	(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
3820 	    zil_claim, tx, DS_FIND_CHILDREN);
3821 	dmu_tx_commit(tx);
3822 
3823 	spa->spa_claiming = B_FALSE;
3824 
3825 	spa_set_log_state(spa, SPA_LOG_GOOD);
3826 }
3827 
3828 static void
3829 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
3830     boolean_t update_config_cache)
3831 {
3832 	vdev_t *rvd = spa->spa_root_vdev;
3833 	int need_update = B_FALSE;
3834 
3835 	/*
3836 	 * If the config cache is stale, or we have uninitialized
3837 	 * metaslabs (see spa_vdev_add()), then update the config.
3838 	 *
3839 	 * If this is a verbatim import, trust the current
3840 	 * in-core spa_config and update the disk labels.
3841 	 */
3842 	if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
3843 	    spa->spa_load_state == SPA_LOAD_IMPORT ||
3844 	    spa->spa_load_state == SPA_LOAD_RECOVER ||
3845 	    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
3846 		need_update = B_TRUE;
3847 
3848 	for (int c = 0; c < rvd->vdev_children; c++)
3849 		if (rvd->vdev_child[c]->vdev_ms_array == 0)
3850 			need_update = B_TRUE;
3851 
3852 	/*
3853 	 * Update the config cache asychronously in case we're the
3854 	 * root pool, in which case the config cache isn't writable yet.
3855 	 */
3856 	if (need_update)
3857 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3858 }
3859 
3860 static void
3861 spa_ld_prepare_for_reload(spa_t *spa)
3862 {
3863 	int mode = spa->spa_mode;
3864 	int async_suspended = spa->spa_async_suspended;
3865 
3866 	spa_unload(spa);
3867 	spa_deactivate(spa);
3868 	spa_activate(spa, mode);
3869 
3870 	/*
3871 	 * We save the value of spa_async_suspended as it gets reset to 0 by
3872 	 * spa_unload(). We want to restore it back to the original value before
3873 	 * returning as we might be calling spa_async_resume() later.
3874 	 */
3875 	spa->spa_async_suspended = async_suspended;
3876 }
3877 
3878 static int
3879 spa_ld_read_checkpoint_txg(spa_t *spa)
3880 {
3881 	uberblock_t checkpoint;
3882 	int error = 0;
3883 
3884 	ASSERT0(spa->spa_checkpoint_txg);
3885 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
3886 
3887 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3888 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
3889 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
3890 
3891 	if (error == ENOENT)
3892 		return (0);
3893 
3894 	if (error != 0)
3895 		return (error);
3896 
3897 	ASSERT3U(checkpoint.ub_txg, !=, 0);
3898 	ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
3899 	ASSERT3U(checkpoint.ub_timestamp, !=, 0);
3900 	spa->spa_checkpoint_txg = checkpoint.ub_txg;
3901 	spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
3902 
3903 	return (0);
3904 }
3905 
3906 static int
3907 spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
3908 {
3909 	int error = 0;
3910 
3911 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
3912 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
3913 
3914 	/*
3915 	 * Never trust the config that is provided unless we are assembling
3916 	 * a pool following a split.
3917 	 * This means don't trust blkptrs and the vdev tree in general. This
3918 	 * also effectively puts the spa in read-only mode since
3919 	 * spa_writeable() checks for spa_trust_config to be true.
3920 	 * We will later load a trusted config from the MOS.
3921 	 */
3922 	if (type != SPA_IMPORT_ASSEMBLE)
3923 		spa->spa_trust_config = B_FALSE;
3924 
3925 	/*
3926 	 * Parse the config provided to create a vdev tree.
3927 	 */
3928 	error = spa_ld_parse_config(spa, type);
3929 	if (error != 0)
3930 		return (error);
3931 
3932 	spa_import_progress_add(spa);
3933 
3934 	/*
3935 	 * Now that we have the vdev tree, try to open each vdev. This involves
3936 	 * opening the underlying physical device, retrieving its geometry and
3937 	 * probing the vdev with a dummy I/O. The state of each vdev will be set
3938 	 * based on the success of those operations. After this we'll be ready
3939 	 * to read from the vdevs.
3940 	 */
3941 	error = spa_ld_open_vdevs(spa);
3942 	if (error != 0)
3943 		return (error);
3944 
3945 	/*
3946 	 * Read the label of each vdev and make sure that the GUIDs stored
3947 	 * there match the GUIDs in the config provided.
3948 	 * If we're assembling a new pool that's been split off from an
3949 	 * existing pool, the labels haven't yet been updated so we skip
3950 	 * validation for now.
3951 	 */
3952 	if (type != SPA_IMPORT_ASSEMBLE) {
3953 		error = spa_ld_validate_vdevs(spa);
3954 		if (error != 0)
3955 			return (error);
3956 	}
3957 
3958 	/*
3959 	 * Read all vdev labels to find the best uberblock (i.e. latest,
3960 	 * unless spa_load_max_txg is set) and store it in spa_uberblock. We
3961 	 * get the list of features required to read blkptrs in the MOS from
3962 	 * the vdev label with the best uberblock and verify that our version
3963 	 * of zfs supports them all.
3964 	 */
3965 	error = spa_ld_select_uberblock(spa, type);
3966 	if (error != 0)
3967 		return (error);
3968 
3969 	/*
3970 	 * Pass that uberblock to the dsl_pool layer which will open the root
3971 	 * blkptr. This blkptr points to the latest version of the MOS and will
3972 	 * allow us to read its contents.
3973 	 */
3974 	error = spa_ld_open_rootbp(spa);
3975 	if (error != 0)
3976 		return (error);
3977 
3978 	return (0);
3979 }
3980 
3981 static int
3982 spa_ld_checkpoint_rewind(spa_t *spa)
3983 {
3984 	uberblock_t checkpoint;
3985 	int error = 0;
3986 
3987 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
3988 	ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
3989 
3990 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3991 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
3992 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
3993 
3994 	if (error != 0) {
3995 		spa_load_failed(spa, "unable to retrieve checkpointed "
3996 		    "uberblock from the MOS config [error=%d]", error);
3997 
3998 		if (error == ENOENT)
3999 			error = ZFS_ERR_NO_CHECKPOINT;
4000 
4001 		return (error);
4002 	}
4003 
4004 	ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
4005 	ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
4006 
4007 	/*
4008 	 * We need to update the txg and timestamp of the checkpointed
4009 	 * uberblock to be higher than the latest one. This ensures that
4010 	 * the checkpointed uberblock is selected if we were to close and
4011 	 * reopen the pool right after we've written it in the vdev labels.
4012 	 * (also see block comment in vdev_uberblock_compare)
4013 	 */
4014 	checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
4015 	checkpoint.ub_timestamp = gethrestime_sec();
4016 
4017 	/*
4018 	 * Set current uberblock to be the checkpointed uberblock.
4019 	 */
4020 	spa->spa_uberblock = checkpoint;
4021 
4022 	/*
4023 	 * If we are doing a normal rewind, then the pool is open for
4024 	 * writing and we sync the "updated" checkpointed uberblock to
4025 	 * disk. Once this is done, we've basically rewound the whole
4026 	 * pool and there is no way back.
4027 	 *
4028 	 * There are cases when we don't want to attempt and sync the
4029 	 * checkpointed uberblock to disk because we are opening a
4030 	 * pool as read-only. Specifically, verifying the checkpointed
4031 	 * state with zdb, and importing the checkpointed state to get
4032 	 * a "preview" of its content.
4033 	 */
4034 	if (spa_writeable(spa)) {
4035 		vdev_t *rvd = spa->spa_root_vdev;
4036 
4037 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4038 		vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
4039 		int svdcount = 0;
4040 		int children = rvd->vdev_children;
4041 		int c0 = spa_get_random(children);
4042 
4043 		for (int c = 0; c < children; c++) {
4044 			vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
4045 
4046 			/* Stop when revisiting the first vdev */
4047 			if (c > 0 && svd[0] == vd)
4048 				break;
4049 
4050 			if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
4051 			    !vdev_is_concrete(vd))
4052 				continue;
4053 
4054 			svd[svdcount++] = vd;
4055 			if (svdcount == SPA_SYNC_MIN_VDEVS)
4056 				break;
4057 		}
4058 		error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
4059 		if (error == 0)
4060 			spa->spa_last_synced_guid = rvd->vdev_guid;
4061 		spa_config_exit(spa, SCL_ALL, FTAG);
4062 
4063 		if (error != 0) {
4064 			spa_load_failed(spa, "failed to write checkpointed "
4065 			    "uberblock to the vdev labels [error=%d]", error);
4066 			return (error);
4067 		}
4068 	}
4069 
4070 	return (0);
4071 }
4072 
4073 static int
4074 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
4075     boolean_t *update_config_cache)
4076 {
4077 	int error;
4078 
4079 	/*
4080 	 * Parse the config for pool, open and validate vdevs,
4081 	 * select an uberblock, and use that uberblock to open
4082 	 * the MOS.
4083 	 */
4084 	error = spa_ld_mos_init(spa, type);
4085 	if (error != 0)
4086 		return (error);
4087 
4088 	/*
4089 	 * Retrieve the trusted config stored in the MOS and use it to create
4090 	 * a new, exact version of the vdev tree, then reopen all vdevs.
4091 	 */
4092 	error = spa_ld_trusted_config(spa, type, B_FALSE);
4093 	if (error == EAGAIN) {
4094 		if (update_config_cache != NULL)
4095 			*update_config_cache = B_TRUE;
4096 
4097 		/*
4098 		 * Redo the loading process with the trusted config if it is
4099 		 * too different from the untrusted config.
4100 		 */
4101 		spa_ld_prepare_for_reload(spa);
4102 		spa_load_note(spa, "RELOADING");
4103 		error = spa_ld_mos_init(spa, type);
4104 		if (error != 0)
4105 			return (error);
4106 
4107 		error = spa_ld_trusted_config(spa, type, B_TRUE);
4108 		if (error != 0)
4109 			return (error);
4110 
4111 	} else if (error != 0) {
4112 		return (error);
4113 	}
4114 
4115 	return (0);
4116 }
4117 
4118 /*
4119  * Load an existing storage pool, using the config provided. This config
4120  * describes which vdevs are part of the pool and is later validated against
4121  * partial configs present in each vdev's label and an entire copy of the
4122  * config stored in the MOS.
4123  */
4124 static int
4125 spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport)
4126 {
4127 	int error = 0;
4128 	boolean_t missing_feat_write = B_FALSE;
4129 	boolean_t checkpoint_rewind =
4130 	    (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4131 	boolean_t update_config_cache = B_FALSE;
4132 
4133 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4134 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
4135 
4136 	spa_load_note(spa, "LOADING");
4137 
4138 	error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
4139 	if (error != 0)
4140 		return (error);
4141 
4142 	/*
4143 	 * If we are rewinding to the checkpoint then we need to repeat
4144 	 * everything we've done so far in this function but this time
4145 	 * selecting the checkpointed uberblock and using that to open
4146 	 * the MOS.
4147 	 */
4148 	if (checkpoint_rewind) {
4149 		/*
4150 		 * If we are rewinding to the checkpoint update config cache
4151 		 * anyway.
4152 		 */
4153 		update_config_cache = B_TRUE;
4154 
4155 		/*
4156 		 * Extract the checkpointed uberblock from the current MOS
4157 		 * and use this as the pool's uberblock from now on. If the
4158 		 * pool is imported as writeable we also write the checkpoint
4159 		 * uberblock to the labels, making the rewind permanent.
4160 		 */
4161 		error = spa_ld_checkpoint_rewind(spa);
4162 		if (error != 0)
4163 			return (error);
4164 
4165 		/*
4166 		 * Redo the loading process process again with the
4167 		 * checkpointed uberblock.
4168 		 */
4169 		spa_ld_prepare_for_reload(spa);
4170 		spa_load_note(spa, "LOADING checkpointed uberblock");
4171 		error = spa_ld_mos_with_trusted_config(spa, type, NULL);
4172 		if (error != 0)
4173 			return (error);
4174 	}
4175 
4176 	/*
4177 	 * Retrieve the checkpoint txg if the pool has a checkpoint.
4178 	 */
4179 	error = spa_ld_read_checkpoint_txg(spa);
4180 	if (error != 0)
4181 		return (error);
4182 
4183 	/*
4184 	 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
4185 	 * from the pool and their contents were re-mapped to other vdevs. Note
4186 	 * that everything that we read before this step must have been
4187 	 * rewritten on concrete vdevs after the last device removal was
4188 	 * initiated. Otherwise we could be reading from indirect vdevs before
4189 	 * we have loaded their mappings.
4190 	 */
4191 	error = spa_ld_open_indirect_vdev_metadata(spa);
4192 	if (error != 0)
4193 		return (error);
4194 
4195 	/*
4196 	 * Retrieve the full list of active features from the MOS and check if
4197 	 * they are all supported.
4198 	 */
4199 	error = spa_ld_check_features(spa, &missing_feat_write);
4200 	if (error != 0)
4201 		return (error);
4202 
4203 	/*
4204 	 * Load several special directories from the MOS needed by the dsl_pool
4205 	 * layer.
4206 	 */
4207 	error = spa_ld_load_special_directories(spa);
4208 	if (error != 0)
4209 		return (error);
4210 
4211 	/*
4212 	 * Retrieve pool properties from the MOS.
4213 	 */
4214 	error = spa_ld_get_props(spa);
4215 	if (error != 0)
4216 		return (error);
4217 
4218 	/*
4219 	 * Retrieve the list of auxiliary devices - cache devices and spares -
4220 	 * and open them.
4221 	 */
4222 	error = spa_ld_open_aux_vdevs(spa, type);
4223 	if (error != 0)
4224 		return (error);
4225 
4226 	/*
4227 	 * Load the metadata for all vdevs. Also check if unopenable devices
4228 	 * should be autoreplaced.
4229 	 */
4230 	error = spa_ld_load_vdev_metadata(spa);
4231 	if (error != 0)
4232 		return (error);
4233 
4234 	error = spa_ld_load_dedup_tables(spa);
4235 	if (error != 0)
4236 		return (error);
4237 
4238 	/*
4239 	 * Verify the logs now to make sure we don't have any unexpected errors
4240 	 * when we claim log blocks later.
4241 	 */
4242 	error = spa_ld_verify_logs(spa, type, ereport);
4243 	if (error != 0)
4244 		return (error);
4245 
4246 	if (missing_feat_write) {
4247 		ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
4248 
4249 		/*
4250 		 * At this point, we know that we can open the pool in
4251 		 * read-only mode but not read-write mode. We now have enough
4252 		 * information and can return to userland.
4253 		 */
4254 		return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
4255 		    ENOTSUP));
4256 	}
4257 
4258 	/*
4259 	 * Traverse the last txgs to make sure the pool was left off in a safe
4260 	 * state. When performing an extreme rewind, we verify the whole pool,
4261 	 * which can take a very long time.
4262 	 */
4263 	error = spa_ld_verify_pool_data(spa);
4264 	if (error != 0)
4265 		return (error);
4266 
4267 	/*
4268 	 * Calculate the deflated space for the pool. This must be done before
4269 	 * we write anything to the pool because we'd need to update the space
4270 	 * accounting using the deflated sizes.
4271 	 */
4272 	spa_update_dspace(spa);
4273 
4274 	/*
4275 	 * We have now retrieved all the information we needed to open the
4276 	 * pool. If we are importing the pool in read-write mode, a few
4277 	 * additional steps must be performed to finish the import.
4278 	 */
4279 	if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
4280 	    spa->spa_load_max_txg == UINT64_MAX)) {
4281 		uint64_t config_cache_txg = spa->spa_config_txg;
4282 
4283 		ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
4284 
4285 		/*
4286 		 * In case of a checkpoint rewind, log the original txg
4287 		 * of the checkpointed uberblock.
4288 		 */
4289 		if (checkpoint_rewind) {
4290 			spa_history_log_internal(spa, "checkpoint rewind",
4291 			    NULL, "rewound state to txg=%llu",
4292 			    (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
4293 		}
4294 
4295 		/*
4296 		 * Traverse the ZIL and claim all blocks.
4297 		 */
4298 		spa_ld_claim_log_blocks(spa);
4299 
4300 		/*
4301 		 * Kick-off the syncing thread.
4302 		 */
4303 		spa->spa_sync_on = B_TRUE;
4304 		txg_sync_start(spa->spa_dsl_pool);
4305 		mmp_thread_start(spa);
4306 
4307 		/*
4308 		 * Wait for all claims to sync.  We sync up to the highest
4309 		 * claimed log block birth time so that claimed log blocks
4310 		 * don't appear to be from the future.  spa_claim_max_txg
4311 		 * will have been set for us by ZIL traversal operations
4312 		 * performed above.
4313 		 */
4314 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
4315 
4316 		/*
4317 		 * Check if we need to request an update of the config. On the
4318 		 * next sync, we would update the config stored in vdev labels
4319 		 * and the cachefile (by default /etc/zfs/zpool.cache).
4320 		 */
4321 		spa_ld_check_for_config_update(spa, config_cache_txg,
4322 		    update_config_cache);
4323 
4324 		/*
4325 		 * Check all DTLs to see if anything needs resilvering.
4326 		 */
4327 		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
4328 		    vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))
4329 			spa_async_request(spa, SPA_ASYNC_RESILVER);
4330 
4331 		/*
4332 		 * Log the fact that we booted up (so that we can detect if
4333 		 * we rebooted in the middle of an operation).
4334 		 */
4335 		spa_history_log_version(spa, "open");
4336 
4337 		spa_restart_removal(spa);
4338 		spa_spawn_aux_threads(spa);
4339 
4340 		/*
4341 		 * Delete any inconsistent datasets.
4342 		 *
4343 		 * Note:
4344 		 * Since we may be issuing deletes for clones here,
4345 		 * we make sure to do so after we've spawned all the
4346 		 * auxiliary threads above (from which the livelist
4347 		 * deletion zthr is part of).
4348 		 */
4349 		(void) dmu_objset_find(spa_name(spa),
4350 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
4351 
4352 		/*
4353 		 * Clean up any stale temporary dataset userrefs.
4354 		 */
4355 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
4356 
4357 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4358 		vdev_initialize_restart(spa->spa_root_vdev);
4359 		vdev_trim_restart(spa->spa_root_vdev);
4360 		vdev_autotrim_restart(spa);
4361 		spa_config_exit(spa, SCL_CONFIG, FTAG);
4362 	}
4363 
4364 	spa_import_progress_remove(spa);
4365 	spa_load_note(spa, "LOADED");
4366 
4367 	return (0);
4368 }
4369 
4370 static int
4371 spa_load_retry(spa_t *spa, spa_load_state_t state)
4372 {
4373 	int mode = spa->spa_mode;
4374 
4375 	spa_unload(spa);
4376 	spa_deactivate(spa);
4377 
4378 	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
4379 
4380 	spa_activate(spa, mode);
4381 	spa_async_suspend(spa);
4382 
4383 	spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
4384 	    (u_longlong_t)spa->spa_load_max_txg);
4385 
4386 	return (spa_load(spa, state, SPA_IMPORT_EXISTING));
4387 }
4388 
4389 /*
4390  * If spa_load() fails this function will try loading prior txg's. If
4391  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
4392  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
4393  * function will not rewind the pool and will return the same error as
4394  * spa_load().
4395  */
4396 static int
4397 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
4398     int rewind_flags)
4399 {
4400 	nvlist_t *loadinfo = NULL;
4401 	nvlist_t *config = NULL;
4402 	int load_error, rewind_error;
4403 	uint64_t safe_rewind_txg;
4404 	uint64_t min_txg;
4405 
4406 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
4407 		spa->spa_load_max_txg = spa->spa_load_txg;
4408 		spa_set_log_state(spa, SPA_LOG_CLEAR);
4409 	} else {
4410 		spa->spa_load_max_txg = max_request;
4411 		if (max_request != UINT64_MAX)
4412 			spa->spa_extreme_rewind = B_TRUE;
4413 	}
4414 
4415 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
4416 	if (load_error == 0)
4417 		return (0);
4418 	if (load_error == ZFS_ERR_NO_CHECKPOINT) {
4419 		/*
4420 		 * When attempting checkpoint-rewind on a pool with no
4421 		 * checkpoint, we should not attempt to load uberblocks
4422 		 * from previous txgs when spa_load fails.
4423 		 */
4424 		ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4425 		spa_import_progress_remove(spa);
4426 		return (load_error);
4427 	}
4428 
4429 	if (spa->spa_root_vdev != NULL)
4430 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4431 
4432 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
4433 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
4434 
4435 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
4436 		nvlist_free(config);
4437 		spa_import_progress_remove(spa);
4438 		return (load_error);
4439 	}
4440 
4441 	if (state == SPA_LOAD_RECOVER) {
4442 		/* Price of rolling back is discarding txgs, including log */
4443 		spa_set_log_state(spa, SPA_LOG_CLEAR);
4444 	} else {
4445 		/*
4446 		 * If we aren't rolling back save the load info from our first
4447 		 * import attempt so that we can restore it after attempting
4448 		 * to rewind.
4449 		 */
4450 		loadinfo = spa->spa_load_info;
4451 		spa->spa_load_info = fnvlist_alloc();
4452 	}
4453 
4454 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
4455 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
4456 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
4457 	    TXG_INITIAL : safe_rewind_txg;
4458 
4459 	/*
4460 	 * Continue as long as we're finding errors, we're still within
4461 	 * the acceptable rewind range, and we're still finding uberblocks
4462 	 */
4463 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
4464 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
4465 		if (spa->spa_load_max_txg < safe_rewind_txg)
4466 			spa->spa_extreme_rewind = B_TRUE;
4467 		rewind_error = spa_load_retry(spa, state);
4468 	}
4469 
4470 	spa->spa_extreme_rewind = B_FALSE;
4471 	spa->spa_load_max_txg = UINT64_MAX;
4472 
4473 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
4474 		spa_config_set(spa, config);
4475 	else
4476 		nvlist_free(config);
4477 
4478 	if (state == SPA_LOAD_RECOVER) {
4479 		ASSERT3P(loadinfo, ==, NULL);
4480 		spa_import_progress_remove(spa);
4481 		return (rewind_error);
4482 	} else {
4483 		/* Store the rewind info as part of the initial load info */
4484 		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
4485 		    spa->spa_load_info);
4486 
4487 		/* Restore the initial load info */
4488 		fnvlist_free(spa->spa_load_info);
4489 		spa->spa_load_info = loadinfo;
4490 
4491 		spa_import_progress_remove(spa);
4492 		return (load_error);
4493 	}
4494 }
4495 
4496 /*
4497  * Pool Open/Import
4498  *
4499  * The import case is identical to an open except that the configuration is sent
4500  * down from userland, instead of grabbed from the configuration cache.  For the
4501  * case of an open, the pool configuration will exist in the
4502  * POOL_STATE_UNINITIALIZED state.
4503  *
4504  * The stats information (gen/count/ustats) is used to gather vdev statistics at
4505  * the same time open the pool, without having to keep around the spa_t in some
4506  * ambiguous state.
4507  */
4508 static int
4509 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
4510     nvlist_t **config)
4511 {
4512 	spa_t *spa;
4513 	spa_load_state_t state = SPA_LOAD_OPEN;
4514 	int error;
4515 	int locked = B_FALSE;
4516 
4517 	*spapp = NULL;
4518 
4519 	/*
4520 	 * As disgusting as this is, we need to support recursive calls to this
4521 	 * function because dsl_dir_open() is called during spa_load(), and ends
4522 	 * up calling spa_open() again.  The real fix is to figure out how to
4523 	 * avoid dsl_dir_open() calling this in the first place.
4524 	 */
4525 	if (mutex_owner(&spa_namespace_lock) != curthread) {
4526 		mutex_enter(&spa_namespace_lock);
4527 		locked = B_TRUE;
4528 	}
4529 
4530 	if ((spa = spa_lookup(pool)) == NULL) {
4531 		if (locked)
4532 			mutex_exit(&spa_namespace_lock);
4533 		return (SET_ERROR(ENOENT));
4534 	}
4535 
4536 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
4537 		zpool_load_policy_t policy;
4538 
4539 		zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
4540 		    &policy);
4541 		if (policy.zlp_rewind & ZPOOL_DO_REWIND)
4542 			state = SPA_LOAD_RECOVER;
4543 
4544 		spa_activate(spa, spa_mode_global);
4545 
4546 		if (state != SPA_LOAD_RECOVER)
4547 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4548 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
4549 
4550 		zfs_dbgmsg("spa_open_common: opening %s", pool);
4551 		error = spa_load_best(spa, state, policy.zlp_txg,
4552 		    policy.zlp_rewind);
4553 
4554 		if (error == EBADF) {
4555 			/*
4556 			 * If vdev_validate() returns failure (indicated by
4557 			 * EBADF), it indicates that one of the vdevs indicates
4558 			 * that the pool has been exported or destroyed.  If
4559 			 * this is the case, the config cache is out of sync and
4560 			 * we should remove the pool from the namespace.
4561 			 */
4562 			spa_unload(spa);
4563 			spa_deactivate(spa);
4564 			spa_write_cachefile(spa, B_TRUE, B_TRUE);
4565 			spa_remove(spa);
4566 			if (locked)
4567 				mutex_exit(&spa_namespace_lock);
4568 			return (SET_ERROR(ENOENT));
4569 		}
4570 
4571 		if (error) {
4572 			/*
4573 			 * We can't open the pool, but we still have useful
4574 			 * information: the state of each vdev after the
4575 			 * attempted vdev_open().  Return this to the user.
4576 			 */
4577 			if (config != NULL && spa->spa_config) {
4578 				VERIFY(nvlist_dup(spa->spa_config, config,
4579 				    KM_SLEEP) == 0);
4580 				VERIFY(nvlist_add_nvlist(*config,
4581 				    ZPOOL_CONFIG_LOAD_INFO,
4582 				    spa->spa_load_info) == 0);
4583 			}
4584 			spa_unload(spa);
4585 			spa_deactivate(spa);
4586 			spa->spa_last_open_failed = error;
4587 			if (locked)
4588 				mutex_exit(&spa_namespace_lock);
4589 			*spapp = NULL;
4590 			return (error);
4591 		}
4592 	}
4593 
4594 	spa_open_ref(spa, tag);
4595 
4596 	if (config != NULL)
4597 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4598 
4599 	/*
4600 	 * If we've recovered the pool, pass back any information we
4601 	 * gathered while doing the load.
4602 	 */
4603 	if (state == SPA_LOAD_RECOVER) {
4604 		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
4605 		    spa->spa_load_info) == 0);
4606 	}
4607 
4608 	if (locked) {
4609 		spa->spa_last_open_failed = 0;
4610 		spa->spa_last_ubsync_txg = 0;
4611 		spa->spa_load_txg = 0;
4612 		mutex_exit(&spa_namespace_lock);
4613 	}
4614 
4615 	*spapp = spa;
4616 
4617 	return (0);
4618 }
4619 
4620 int
4621 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
4622     nvlist_t **config)
4623 {
4624 	return (spa_open_common(name, spapp, tag, policy, config));
4625 }
4626 
4627 int
4628 spa_open(const char *name, spa_t **spapp, void *tag)
4629 {
4630 	return (spa_open_common(name, spapp, tag, NULL, NULL));
4631 }
4632 
4633 /*
4634  * Lookup the given spa_t, incrementing the inject count in the process,
4635  * preventing it from being exported or destroyed.
4636  */
4637 spa_t *
4638 spa_inject_addref(char *name)
4639 {
4640 	spa_t *spa;
4641 
4642 	mutex_enter(&spa_namespace_lock);
4643 	if ((spa = spa_lookup(name)) == NULL) {
4644 		mutex_exit(&spa_namespace_lock);
4645 		return (NULL);
4646 	}
4647 	spa->spa_inject_ref++;
4648 	mutex_exit(&spa_namespace_lock);
4649 
4650 	return (spa);
4651 }
4652 
4653 void
4654 spa_inject_delref(spa_t *spa)
4655 {
4656 	mutex_enter(&spa_namespace_lock);
4657 	spa->spa_inject_ref--;
4658 	mutex_exit(&spa_namespace_lock);
4659 }
4660 
4661 /*
4662  * Add spares device information to the nvlist.
4663  */
4664 static void
4665 spa_add_spares(spa_t *spa, nvlist_t *config)
4666 {
4667 	nvlist_t **spares;
4668 	uint_t i, nspares;
4669 	nvlist_t *nvroot;
4670 	uint64_t guid;
4671 	vdev_stat_t *vs;
4672 	uint_t vsc;
4673 	uint64_t pool;
4674 
4675 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4676 
4677 	if (spa->spa_spares.sav_count == 0)
4678 		return;
4679 
4680 	VERIFY(nvlist_lookup_nvlist(config,
4681 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
4682 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
4683 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
4684 	if (nspares != 0) {
4685 		VERIFY(nvlist_add_nvlist_array(nvroot,
4686 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4687 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
4688 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
4689 
4690 		/*
4691 		 * Go through and find any spares which have since been
4692 		 * repurposed as an active spare.  If this is the case, update
4693 		 * their status appropriately.
4694 		 */
4695 		for (i = 0; i < nspares; i++) {
4696 			VERIFY(nvlist_lookup_uint64(spares[i],
4697 			    ZPOOL_CONFIG_GUID, &guid) == 0);
4698 			if (spa_spare_exists(guid, &pool, NULL) &&
4699 			    pool != 0ULL) {
4700 				VERIFY(nvlist_lookup_uint64_array(
4701 				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
4702 				    (uint64_t **)&vs, &vsc) == 0);
4703 				vs->vs_state = VDEV_STATE_CANT_OPEN;
4704 				vs->vs_aux = VDEV_AUX_SPARED;
4705 			}
4706 		}
4707 	}
4708 }
4709 
4710 /*
4711  * Add l2cache device information to the nvlist, including vdev stats.
4712  */
4713 static void
4714 spa_add_l2cache(spa_t *spa, nvlist_t *config)
4715 {
4716 	nvlist_t **l2cache;
4717 	uint_t i, j, nl2cache;
4718 	nvlist_t *nvroot;
4719 	uint64_t guid;
4720 	vdev_t *vd;
4721 	vdev_stat_t *vs;
4722 	uint_t vsc;
4723 
4724 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4725 
4726 	if (spa->spa_l2cache.sav_count == 0)
4727 		return;
4728 
4729 	VERIFY(nvlist_lookup_nvlist(config,
4730 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
4731 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
4732 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
4733 	if (nl2cache != 0) {
4734 		VERIFY(nvlist_add_nvlist_array(nvroot,
4735 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4736 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
4737 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
4738 
4739 		/*
4740 		 * Update level 2 cache device stats.
4741 		 */
4742 
4743 		for (i = 0; i < nl2cache; i++) {
4744 			VERIFY(nvlist_lookup_uint64(l2cache[i],
4745 			    ZPOOL_CONFIG_GUID, &guid) == 0);
4746 
4747 			vd = NULL;
4748 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
4749 				if (guid ==
4750 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
4751 					vd = spa->spa_l2cache.sav_vdevs[j];
4752 					break;
4753 				}
4754 			}
4755 			ASSERT(vd != NULL);
4756 
4757 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
4758 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
4759 			    == 0);
4760 			vdev_get_stats(vd, vs);
4761 			vdev_config_generate_stats(vd, l2cache[i]);
4762 
4763 		}
4764 	}
4765 }
4766 
4767 static void
4768 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
4769 {
4770 	nvlist_t *features;
4771 	zap_cursor_t zc;
4772 	zap_attribute_t za;
4773 
4774 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4775 	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4776 
4777 	if (spa->spa_feat_for_read_obj != 0) {
4778 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
4779 		    spa->spa_feat_for_read_obj);
4780 		    zap_cursor_retrieve(&zc, &za) == 0;
4781 		    zap_cursor_advance(&zc)) {
4782 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
4783 			    za.za_num_integers == 1);
4784 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
4785 			    za.za_first_integer));
4786 		}
4787 		zap_cursor_fini(&zc);
4788 	}
4789 
4790 	if (spa->spa_feat_for_write_obj != 0) {
4791 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
4792 		    spa->spa_feat_for_write_obj);
4793 		    zap_cursor_retrieve(&zc, &za) == 0;
4794 		    zap_cursor_advance(&zc)) {
4795 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
4796 			    za.za_num_integers == 1);
4797 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
4798 			    za.za_first_integer));
4799 		}
4800 		zap_cursor_fini(&zc);
4801 	}
4802 
4803 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
4804 	    features) == 0);
4805 	nvlist_free(features);
4806 }
4807 
4808 int
4809 spa_get_stats(const char *name, nvlist_t **config,
4810     char *altroot, size_t buflen)
4811 {
4812 	int error;
4813 	spa_t *spa;
4814 
4815 	*config = NULL;
4816 	error = spa_open_common(name, &spa, FTAG, NULL, config);
4817 
4818 	if (spa != NULL) {
4819 		/*
4820 		 * This still leaves a window of inconsistency where the spares
4821 		 * or l2cache devices could change and the config would be
4822 		 * self-inconsistent.
4823 		 */
4824 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4825 
4826 		if (*config != NULL) {
4827 			uint64_t loadtimes[2];
4828 
4829 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
4830 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
4831 			VERIFY(nvlist_add_uint64_array(*config,
4832 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
4833 
4834 			VERIFY(nvlist_add_uint64(*config,
4835 			    ZPOOL_CONFIG_ERRCOUNT,
4836 			    spa_get_errlog_size(spa)) == 0);
4837 
4838 			if (spa_suspended(spa)) {
4839 				VERIFY(nvlist_add_uint64(*config,
4840 				    ZPOOL_CONFIG_SUSPENDED,
4841 				    spa->spa_failmode) == 0);
4842 				VERIFY(nvlist_add_uint64(*config,
4843 				    ZPOOL_CONFIG_SUSPENDED_REASON,
4844 				    spa->spa_suspended) == 0);
4845 			}
4846 
4847 			spa_add_spares(spa, *config);
4848 			spa_add_l2cache(spa, *config);
4849 			spa_add_feature_stats(spa, *config);
4850 		}
4851 	}
4852 
4853 	/*
4854 	 * We want to get the alternate root even for faulted pools, so we cheat
4855 	 * and call spa_lookup() directly.
4856 	 */
4857 	if (altroot) {
4858 		if (spa == NULL) {
4859 			mutex_enter(&spa_namespace_lock);
4860 			spa = spa_lookup(name);
4861 			if (spa)
4862 				spa_altroot(spa, altroot, buflen);
4863 			else
4864 				altroot[0] = '\0';
4865 			spa = NULL;
4866 			mutex_exit(&spa_namespace_lock);
4867 		} else {
4868 			spa_altroot(spa, altroot, buflen);
4869 		}
4870 	}
4871 
4872 	if (spa != NULL) {
4873 		spa_config_exit(spa, SCL_CONFIG, FTAG);
4874 		spa_close(spa, FTAG);
4875 	}
4876 
4877 	return (error);
4878 }
4879 
4880 /*
4881  * Validate that the auxiliary device array is well formed.  We must have an
4882  * array of nvlists, each which describes a valid leaf vdev.  If this is an
4883  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
4884  * specified, as long as they are well-formed.
4885  */
4886 static int
4887 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
4888     spa_aux_vdev_t *sav, const char *config, uint64_t version,
4889     vdev_labeltype_t label)
4890 {
4891 	nvlist_t **dev;
4892 	uint_t i, ndev;
4893 	vdev_t *vd;
4894 	int error;
4895 
4896 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4897 
4898 	/*
4899 	 * It's acceptable to have no devs specified.
4900 	 */
4901 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
4902 		return (0);
4903 
4904 	if (ndev == 0)
4905 		return (SET_ERROR(EINVAL));
4906 
4907 	/*
4908 	 * Make sure the pool is formatted with a version that supports this
4909 	 * device type.
4910 	 */
4911 	if (spa_version(spa) < version)
4912 		return (SET_ERROR(ENOTSUP));
4913 
4914 	/*
4915 	 * Set the pending device list so we correctly handle device in-use
4916 	 * checking.
4917 	 */
4918 	sav->sav_pending = dev;
4919 	sav->sav_npending = ndev;
4920 
4921 	for (i = 0; i < ndev; i++) {
4922 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
4923 		    mode)) != 0)
4924 			goto out;
4925 
4926 		if (!vd->vdev_ops->vdev_op_leaf) {
4927 			vdev_free(vd);
4928 			error = SET_ERROR(EINVAL);
4929 			goto out;
4930 		}
4931 
4932 		vd->vdev_top = vd;
4933 
4934 		if ((error = vdev_open(vd)) == 0 &&
4935 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
4936 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
4937 			    vd->vdev_guid) == 0);
4938 		}
4939 
4940 		vdev_free(vd);
4941 
4942 		if (error &&
4943 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
4944 			goto out;
4945 		else
4946 			error = 0;
4947 	}
4948 
4949 out:
4950 	sav->sav_pending = NULL;
4951 	sav->sav_npending = 0;
4952 	return (error);
4953 }
4954 
4955 static int
4956 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
4957 {
4958 	int error;
4959 
4960 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4961 
4962 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
4963 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
4964 	    VDEV_LABEL_SPARE)) != 0) {
4965 		return (error);
4966 	}
4967 
4968 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
4969 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
4970 	    VDEV_LABEL_L2CACHE));
4971 }
4972 
4973 static void
4974 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
4975     const char *config)
4976 {
4977 	int i;
4978 
4979 	if (sav->sav_config != NULL) {
4980 		nvlist_t **olddevs;
4981 		uint_t oldndevs;
4982 		nvlist_t **newdevs;
4983 
4984 		/*
4985 		 * Generate new dev list by concatentating with the
4986 		 * current dev list.
4987 		 */
4988 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
4989 		    &olddevs, &oldndevs) == 0);
4990 
4991 		newdevs = kmem_alloc(sizeof (void *) *
4992 		    (ndevs + oldndevs), KM_SLEEP);
4993 		for (i = 0; i < oldndevs; i++)
4994 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
4995 			    KM_SLEEP) == 0);
4996 		for (i = 0; i < ndevs; i++)
4997 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
4998 			    KM_SLEEP) == 0);
4999 
5000 		VERIFY(nvlist_remove(sav->sav_config, config,
5001 		    DATA_TYPE_NVLIST_ARRAY) == 0);
5002 
5003 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
5004 		    config, newdevs, ndevs + oldndevs) == 0);
5005 		for (i = 0; i < oldndevs + ndevs; i++)
5006 			nvlist_free(newdevs[i]);
5007 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
5008 	} else {
5009 		/*
5010 		 * Generate a new dev list.
5011 		 */
5012 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
5013 		    KM_SLEEP) == 0);
5014 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
5015 		    devs, ndevs) == 0);
5016 	}
5017 }
5018 
5019 /*
5020  * Stop and drop level 2 ARC devices
5021  */
5022 void
5023 spa_l2cache_drop(spa_t *spa)
5024 {
5025 	vdev_t *vd;
5026 	int i;
5027 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
5028 
5029 	for (i = 0; i < sav->sav_count; i++) {
5030 		uint64_t pool;
5031 
5032 		vd = sav->sav_vdevs[i];
5033 		ASSERT(vd != NULL);
5034 
5035 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
5036 		    pool != 0ULL && l2arc_vdev_present(vd))
5037 			l2arc_remove_vdev(vd);
5038 	}
5039 }
5040 
5041 /*
5042  * Verify encryption parameters for spa creation. If we are encrypting, we must
5043  * have the encryption feature flag enabled.
5044  */
5045 static int
5046 spa_create_check_encryption_params(dsl_crypto_params_t *dcp,
5047     boolean_t has_encryption)
5048 {
5049 	if (dcp->cp_crypt != ZIO_CRYPT_OFF &&
5050 	    dcp->cp_crypt != ZIO_CRYPT_INHERIT &&
5051 	    !has_encryption)
5052 		return (SET_ERROR(ENOTSUP));
5053 
5054 	return (dmu_objset_create_crypt_check(NULL, dcp, NULL));
5055 }
5056 
5057 /*
5058  * Pool Creation
5059  */
5060 int
5061 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
5062     nvlist_t *zplprops, dsl_crypto_params_t *dcp)
5063 {
5064 	spa_t *spa;
5065 	char *altroot = NULL;
5066 	vdev_t *rvd;
5067 	dsl_pool_t *dp;
5068 	dmu_tx_t *tx;
5069 	int error = 0;
5070 	uint64_t txg = TXG_INITIAL;
5071 	nvlist_t **spares, **l2cache;
5072 	uint_t nspares, nl2cache;
5073 	uint64_t version, obj;
5074 	boolean_t has_features;
5075 	char *poolname;
5076 	nvlist_t *nvl;
5077 	boolean_t has_encryption;
5078 	spa_feature_t feat;
5079 	char *feat_name;
5080 
5081 	if (props == NULL ||
5082 	    nvlist_lookup_string(props,
5083 	    zpool_prop_to_name(ZPOOL_PROP_TNAME), &poolname) != 0)
5084 		poolname = (char *)pool;
5085 
5086 	/*
5087 	 * If this pool already exists, return failure.
5088 	 */
5089 	mutex_enter(&spa_namespace_lock);
5090 	if (spa_lookup(poolname) != NULL) {
5091 		mutex_exit(&spa_namespace_lock);
5092 		return (SET_ERROR(EEXIST));
5093 	}
5094 
5095 	/*
5096 	 * Allocate a new spa_t structure.
5097 	 */
5098 	nvl = fnvlist_alloc();
5099 	fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
5100 	(void) nvlist_lookup_string(props,
5101 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5102 	spa = spa_add(poolname, nvl, altroot);
5103 	fnvlist_free(nvl);
5104 	spa_activate(spa, spa_mode_global);
5105 
5106 	if (props && (error = spa_prop_validate(spa, props))) {
5107 		spa_deactivate(spa);
5108 		spa_remove(spa);
5109 		mutex_exit(&spa_namespace_lock);
5110 		return (error);
5111 	}
5112 
5113 	/*
5114 	 * Temporary pool names should never be written to disk.
5115 	 */
5116 	if (poolname != pool)
5117 		spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
5118 
5119 	has_features = B_FALSE;
5120 	has_encryption = B_FALSE;
5121 	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
5122 	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
5123 		if (zpool_prop_feature(nvpair_name(elem))) {
5124 			has_features = B_TRUE;
5125 			feat_name = strchr(nvpair_name(elem), '@') + 1;
5126 			VERIFY0(zfeature_lookup_name(feat_name, &feat));
5127 			if (feat == SPA_FEATURE_ENCRYPTION)
5128 				has_encryption = B_TRUE;
5129 		}
5130 	}
5131 
5132 	/* verify encryption params, if they were provided */
5133 	if (dcp != NULL) {
5134 		error = spa_create_check_encryption_params(dcp, has_encryption);
5135 		if (error != 0) {
5136 			spa_deactivate(spa);
5137 			spa_remove(spa);
5138 			mutex_exit(&spa_namespace_lock);
5139 			return (error);
5140 		}
5141 	}
5142 
5143 	if (has_features || nvlist_lookup_uint64(props,
5144 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
5145 		version = SPA_VERSION;
5146 	}
5147 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5148 
5149 	spa->spa_first_txg = txg;
5150 	spa->spa_uberblock.ub_txg = txg - 1;
5151 	spa->spa_uberblock.ub_version = version;
5152 	spa->spa_ubsync = spa->spa_uberblock;
5153 	spa->spa_load_state = SPA_LOAD_CREATE;
5154 	spa->spa_removing_phys.sr_state = DSS_NONE;
5155 	spa->spa_removing_phys.sr_removing_vdev = -1;
5156 	spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
5157 	spa->spa_indirect_vdevs_loaded = B_TRUE;
5158 
5159 	/*
5160 	 * Create "The Godfather" zio to hold all async IOs
5161 	 */
5162 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
5163 	    KM_SLEEP);
5164 	for (int i = 0; i < max_ncpus; i++) {
5165 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
5166 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
5167 		    ZIO_FLAG_GODFATHER);
5168 	}
5169 
5170 	/*
5171 	 * Create the root vdev.
5172 	 */
5173 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5174 
5175 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
5176 
5177 	ASSERT(error != 0 || rvd != NULL);
5178 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
5179 
5180 	if (error == 0 && !zfs_allocatable_devs(nvroot))
5181 		error = SET_ERROR(EINVAL);
5182 
5183 	if (error == 0 &&
5184 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
5185 	    (error = spa_validate_aux(spa, nvroot, txg,
5186 	    VDEV_ALLOC_ADD)) == 0) {
5187 		/*
5188 		 * instantiate the metaslab groups (this will dirty the vdevs)
5189 		 * we can no longer error exit past this point
5190 		 */
5191 		for (int c = 0; error == 0 && c < rvd->vdev_children; c++) {
5192 			vdev_t *vd = rvd->vdev_child[c];
5193 
5194 			vdev_metaslab_set_size(vd);
5195 			vdev_expand(vd, txg);
5196 		}
5197 	}
5198 
5199 	spa_config_exit(spa, SCL_ALL, FTAG);
5200 
5201 	if (error != 0) {
5202 		spa_unload(spa);
5203 		spa_deactivate(spa);
5204 		spa_remove(spa);
5205 		mutex_exit(&spa_namespace_lock);
5206 		return (error);
5207 	}
5208 
5209 	/*
5210 	 * Get the list of spares, if specified.
5211 	 */
5212 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5213 	    &spares, &nspares) == 0) {
5214 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
5215 		    KM_SLEEP) == 0);
5216 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
5217 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
5218 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5219 		spa_load_spares(spa);
5220 		spa_config_exit(spa, SCL_ALL, FTAG);
5221 		spa->spa_spares.sav_sync = B_TRUE;
5222 	}
5223 
5224 	/*
5225 	 * Get the list of level 2 cache devices, if specified.
5226 	 */
5227 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5228 	    &l2cache, &nl2cache) == 0) {
5229 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
5230 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5231 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
5232 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
5233 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5234 		spa_load_l2cache(spa);
5235 		spa_config_exit(spa, SCL_ALL, FTAG);
5236 		spa->spa_l2cache.sav_sync = B_TRUE;
5237 	}
5238 
5239 	spa->spa_is_initializing = B_TRUE;
5240 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg);
5241 	spa->spa_is_initializing = B_FALSE;
5242 
5243 	/*
5244 	 * Create DDTs (dedup tables).
5245 	 */
5246 	ddt_create(spa);
5247 
5248 	spa_update_dspace(spa);
5249 
5250 	tx = dmu_tx_create_assigned(dp, txg);
5251 
5252 	/*
5253 	 * Create the pool config object.
5254 	 */
5255 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
5256 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
5257 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
5258 
5259 	if (zap_add(spa->spa_meta_objset,
5260 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
5261 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
5262 		cmn_err(CE_PANIC, "failed to add pool config");
5263 	}
5264 
5265 	if (zap_add(spa->spa_meta_objset,
5266 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
5267 	    sizeof (uint64_t), 1, &version, tx) != 0) {
5268 		cmn_err(CE_PANIC, "failed to add pool version");
5269 	}
5270 
5271 	/* Newly created pools with the right version are always deflated. */
5272 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
5273 		spa->spa_deflate = TRUE;
5274 		if (zap_add(spa->spa_meta_objset,
5275 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
5276 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
5277 			cmn_err(CE_PANIC, "failed to add deflate");
5278 		}
5279 	}
5280 
5281 	/*
5282 	 * Create the deferred-free bpobj.  Turn off compression
5283 	 * because sync-to-convergence takes longer if the blocksize
5284 	 * keeps changing.
5285 	 */
5286 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
5287 	dmu_object_set_compress(spa->spa_meta_objset, obj,
5288 	    ZIO_COMPRESS_OFF, tx);
5289 	if (zap_add(spa->spa_meta_objset,
5290 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
5291 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
5292 		cmn_err(CE_PANIC, "failed to add bpobj");
5293 	}
5294 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
5295 	    spa->spa_meta_objset, obj));
5296 
5297 	/*
5298 	 * Create the pool's history object.
5299 	 */
5300 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
5301 		spa_history_create_obj(spa, tx);
5302 
5303 	/*
5304 	 * Generate some random noise for salted checksums to operate on.
5305 	 */
5306 	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
5307 	    sizeof (spa->spa_cksum_salt.zcs_bytes));
5308 
5309 	/*
5310 	 * Set pool properties.
5311 	 */
5312 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
5313 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
5314 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
5315 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
5316 	spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST);
5317 	spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM);
5318 
5319 	if (props != NULL) {
5320 		spa_configfile_set(spa, props, B_FALSE);
5321 		spa_sync_props(props, tx);
5322 	}
5323 
5324 	dmu_tx_commit(tx);
5325 
5326 	spa->spa_sync_on = B_TRUE;
5327 	txg_sync_start(spa->spa_dsl_pool);
5328 	mmp_thread_start(spa);
5329 
5330 	/*
5331 	 * We explicitly wait for the first transaction to complete so that our
5332 	 * bean counters are appropriately updated.
5333 	 */
5334 	txg_wait_synced(spa->spa_dsl_pool, txg);
5335 
5336 	spa_spawn_aux_threads(spa);
5337 
5338 	spa_write_cachefile(spa, B_FALSE, B_TRUE);
5339 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
5340 
5341 	spa_history_log_version(spa, "create");
5342 
5343 	/*
5344 	 * Don't count references from objsets that are already closed
5345 	 * and are making their way through the eviction process.
5346 	 */
5347 	spa_evicting_os_wait(spa);
5348 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
5349 	spa->spa_load_state = SPA_LOAD_NONE;
5350 
5351 	mutex_exit(&spa_namespace_lock);
5352 
5353 	return (0);
5354 }
5355 
5356 #ifdef _KERNEL
5357 /*
5358  * Get the root pool information from the root disk, then import the root pool
5359  * during the system boot up time.
5360  */
5361 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
5362 
5363 static nvlist_t *
5364 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
5365 {
5366 	nvlist_t *config;
5367 	nvlist_t *nvtop, *nvroot;
5368 	uint64_t pgid;
5369 
5370 	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
5371 		return (NULL);
5372 
5373 	/*
5374 	 * Add this top-level vdev to the child array.
5375 	 */
5376 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
5377 	    &nvtop) == 0);
5378 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5379 	    &pgid) == 0);
5380 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
5381 
5382 	/*
5383 	 * Put this pool's top-level vdevs into a root vdev.
5384 	 */
5385 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5386 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
5387 	    VDEV_TYPE_ROOT) == 0);
5388 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
5389 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
5390 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
5391 	    &nvtop, 1) == 0);
5392 
5393 	/*
5394 	 * Replace the existing vdev_tree with the new root vdev in
5395 	 * this pool's configuration (remove the old, add the new).
5396 	 */
5397 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
5398 	nvlist_free(nvroot);
5399 	return (config);
5400 }
5401 
5402 /*
5403  * Walk the vdev tree and see if we can find a device with "better"
5404  * configuration. A configuration is "better" if the label on that
5405  * device has a more recent txg.
5406  */
5407 static void
5408 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
5409 {
5410 	for (int c = 0; c < vd->vdev_children; c++)
5411 		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
5412 
5413 	if (vd->vdev_ops->vdev_op_leaf) {
5414 		nvlist_t *label;
5415 		uint64_t label_txg;
5416 
5417 		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
5418 		    &label) != 0)
5419 			return;
5420 
5421 		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
5422 		    &label_txg) == 0);
5423 
5424 		/*
5425 		 * Do we have a better boot device?
5426 		 */
5427 		if (label_txg > *txg) {
5428 			*txg = label_txg;
5429 			*avd = vd;
5430 		}
5431 		nvlist_free(label);
5432 	}
5433 }
5434 
5435 /*
5436  * Import a root pool.
5437  *
5438  * For x86. devpath_list will consist of devid and/or physpath name of
5439  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
5440  * The GRUB "findroot" command will return the vdev we should boot.
5441  *
5442  * For Sparc, devpath_list consists the physpath name of the booting device
5443  * no matter the rootpool is a single device pool or a mirrored pool.
5444  * e.g.
5445  *	"/pci@1f,0/ide@d/disk@0,0:a"
5446  */
5447 int
5448 spa_import_rootpool(char *devpath, char *devid)
5449 {
5450 	spa_t *spa;
5451 	vdev_t *rvd, *bvd, *avd = NULL;
5452 	nvlist_t *config, *nvtop;
5453 	uint64_t guid, txg;
5454 	char *pname;
5455 	int error;
5456 
5457 	/*
5458 	 * Read the label from the boot device and generate a configuration.
5459 	 */
5460 	config = spa_generate_rootconf(devpath, devid, &guid);
5461 #if defined(_OBP) && defined(_KERNEL)
5462 	if (config == NULL) {
5463 		if (strstr(devpath, "/iscsi/ssd") != NULL) {
5464 			/* iscsi boot */
5465 			get_iscsi_bootpath_phy(devpath);
5466 			config = spa_generate_rootconf(devpath, devid, &guid);
5467 		}
5468 	}
5469 #endif
5470 	if (config == NULL) {
5471 		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
5472 		    devpath);
5473 		return (SET_ERROR(EIO));
5474 	}
5475 
5476 	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
5477 	    &pname) == 0);
5478 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
5479 
5480 	mutex_enter(&spa_namespace_lock);
5481 	if ((spa = spa_lookup(pname)) != NULL) {
5482 		/*
5483 		 * Remove the existing root pool from the namespace so that we
5484 		 * can replace it with the correct config we just read in.
5485 		 */
5486 		spa_remove(spa);
5487 	}
5488 
5489 	spa = spa_add(pname, config, NULL);
5490 	spa->spa_is_root = B_TRUE;
5491 	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
5492 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
5493 	    &spa->spa_ubsync.ub_version) != 0)
5494 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
5495 
5496 	/*
5497 	 * Build up a vdev tree based on the boot device's label config.
5498 	 */
5499 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
5500 	    &nvtop) == 0);
5501 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5502 	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
5503 	    VDEV_ALLOC_ROOTPOOL);
5504 	spa_config_exit(spa, SCL_ALL, FTAG);
5505 	if (error) {
5506 		mutex_exit(&spa_namespace_lock);
5507 		nvlist_free(config);
5508 		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
5509 		    pname);
5510 		return (error);
5511 	}
5512 
5513 	/*
5514 	 * Get the boot vdev.
5515 	 */
5516 	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
5517 		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
5518 		    (u_longlong_t)guid);
5519 		error = SET_ERROR(ENOENT);
5520 		goto out;
5521 	}
5522 
5523 	/*
5524 	 * Determine if there is a better boot device.
5525 	 */
5526 	avd = bvd;
5527 	spa_alt_rootvdev(rvd, &avd, &txg);
5528 	if (avd != bvd) {
5529 		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
5530 		    "try booting from '%s'", avd->vdev_path);
5531 		error = SET_ERROR(EINVAL);
5532 		goto out;
5533 	}
5534 
5535 	/*
5536 	 * If the boot device is part of a spare vdev then ensure that
5537 	 * we're booting off the active spare.
5538 	 */
5539 	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
5540 	    !bvd->vdev_isspare) {
5541 		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
5542 		    "try booting from '%s'",
5543 		    bvd->vdev_parent->
5544 		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
5545 		error = SET_ERROR(EINVAL);
5546 		goto out;
5547 	}
5548 
5549 	error = 0;
5550 out:
5551 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5552 	vdev_free(rvd);
5553 	spa_config_exit(spa, SCL_ALL, FTAG);
5554 	mutex_exit(&spa_namespace_lock);
5555 
5556 	nvlist_free(config);
5557 	return (error);
5558 }
5559 
5560 #endif
5561 
5562 /*
5563  * Import a non-root pool into the system.
5564  */
5565 int
5566 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
5567 {
5568 	spa_t *spa;
5569 	char *altroot = NULL;
5570 	spa_load_state_t state = SPA_LOAD_IMPORT;
5571 	zpool_load_policy_t policy;
5572 	uint64_t mode = spa_mode_global;
5573 	uint64_t readonly = B_FALSE;
5574 	int error;
5575 	nvlist_t *nvroot;
5576 	nvlist_t **spares, **l2cache;
5577 	uint_t nspares, nl2cache;
5578 
5579 	/*
5580 	 * If a pool with this name exists, return failure.
5581 	 */
5582 	mutex_enter(&spa_namespace_lock);
5583 	if (spa_lookup(pool) != NULL) {
5584 		mutex_exit(&spa_namespace_lock);
5585 		return (SET_ERROR(EEXIST));
5586 	}
5587 
5588 	/*
5589 	 * Create and initialize the spa structure.
5590 	 */
5591 	(void) nvlist_lookup_string(props,
5592 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5593 	(void) nvlist_lookup_uint64(props,
5594 	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
5595 	if (readonly)
5596 		mode = FREAD;
5597 	spa = spa_add(pool, config, altroot);
5598 	spa->spa_import_flags = flags;
5599 
5600 	/*
5601 	 * Verbatim import - Take a pool and insert it into the namespace
5602 	 * as if it had been loaded at boot.
5603 	 */
5604 	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
5605 		if (props != NULL)
5606 			spa_configfile_set(spa, props, B_FALSE);
5607 
5608 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
5609 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
5610 		zfs_dbgmsg("spa_import: verbatim import of %s", pool);
5611 		mutex_exit(&spa_namespace_lock);
5612 		return (0);
5613 	}
5614 
5615 	spa_activate(spa, mode);
5616 
5617 	/*
5618 	 * Don't start async tasks until we know everything is healthy.
5619 	 */
5620 	spa_async_suspend(spa);
5621 
5622 	zpool_get_load_policy(config, &policy);
5623 	if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5624 		state = SPA_LOAD_RECOVER;
5625 
5626 	spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
5627 
5628 	if (state != SPA_LOAD_RECOVER) {
5629 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5630 		zfs_dbgmsg("spa_import: importing %s", pool);
5631 	} else {
5632 		zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
5633 		    "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
5634 	}
5635 	error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
5636 
5637 	/*
5638 	 * Propagate anything learned while loading the pool and pass it
5639 	 * back to caller (i.e. rewind info, missing devices, etc).
5640 	 */
5641 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
5642 	    spa->spa_load_info) == 0);
5643 
5644 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5645 	/*
5646 	 * Toss any existing sparelist, as it doesn't have any validity
5647 	 * anymore, and conflicts with spa_has_spare().
5648 	 */
5649 	if (spa->spa_spares.sav_config) {
5650 		nvlist_free(spa->spa_spares.sav_config);
5651 		spa->spa_spares.sav_config = NULL;
5652 		spa_load_spares(spa);
5653 	}
5654 	if (spa->spa_l2cache.sav_config) {
5655 		nvlist_free(spa->spa_l2cache.sav_config);
5656 		spa->spa_l2cache.sav_config = NULL;
5657 		spa_load_l2cache(spa);
5658 	}
5659 
5660 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
5661 	    &nvroot) == 0);
5662 	if (error == 0)
5663 		error = spa_validate_aux(spa, nvroot, -1ULL,
5664 		    VDEV_ALLOC_SPARE);
5665 	if (error == 0)
5666 		error = spa_validate_aux(spa, nvroot, -1ULL,
5667 		    VDEV_ALLOC_L2CACHE);
5668 	spa_config_exit(spa, SCL_ALL, FTAG);
5669 
5670 	if (props != NULL)
5671 		spa_configfile_set(spa, props, B_FALSE);
5672 
5673 	if (error != 0 || (props && spa_writeable(spa) &&
5674 	    (error = spa_prop_set(spa, props)))) {
5675 		spa_unload(spa);
5676 		spa_deactivate(spa);
5677 		spa_remove(spa);
5678 		mutex_exit(&spa_namespace_lock);
5679 		return (error);
5680 	}
5681 
5682 	spa_async_resume(spa);
5683 
5684 	/*
5685 	 * Override any spares and level 2 cache devices as specified by
5686 	 * the user, as these may have correct device names/devids, etc.
5687 	 */
5688 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5689 	    &spares, &nspares) == 0) {
5690 		if (spa->spa_spares.sav_config)
5691 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
5692 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
5693 		else
5694 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
5695 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5696 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
5697 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
5698 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5699 		spa_load_spares(spa);
5700 		spa_config_exit(spa, SCL_ALL, FTAG);
5701 		spa->spa_spares.sav_sync = B_TRUE;
5702 	}
5703 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5704 	    &l2cache, &nl2cache) == 0) {
5705 		if (spa->spa_l2cache.sav_config)
5706 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
5707 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
5708 		else
5709 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
5710 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5711 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
5712 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
5713 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5714 		spa_load_l2cache(spa);
5715 		spa_config_exit(spa, SCL_ALL, FTAG);
5716 		spa->spa_l2cache.sav_sync = B_TRUE;
5717 	}
5718 
5719 	/*
5720 	 * Check for any removed devices.
5721 	 */
5722 	if (spa->spa_autoreplace) {
5723 		spa_aux_check_removed(&spa->spa_spares);
5724 		spa_aux_check_removed(&spa->spa_l2cache);
5725 	}
5726 
5727 	if (spa_writeable(spa)) {
5728 		/*
5729 		 * Update the config cache to include the newly-imported pool.
5730 		 */
5731 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5732 	}
5733 
5734 	/*
5735 	 * It's possible that the pool was expanded while it was exported.
5736 	 * We kick off an async task to handle this for us.
5737 	 */
5738 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
5739 
5740 	spa_history_log_version(spa, "import");
5741 
5742 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
5743 
5744 	mutex_exit(&spa_namespace_lock);
5745 
5746 	return (0);
5747 }
5748 
5749 nvlist_t *
5750 spa_tryimport(nvlist_t *tryconfig)
5751 {
5752 	nvlist_t *config = NULL;
5753 	char *poolname, *cachefile;
5754 	spa_t *spa;
5755 	uint64_t state;
5756 	int error;
5757 	zpool_load_policy_t policy;
5758 
5759 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
5760 		return (NULL);
5761 
5762 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
5763 		return (NULL);
5764 
5765 	/*
5766 	 * Create and initialize the spa structure.
5767 	 */
5768 	mutex_enter(&spa_namespace_lock);
5769 	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
5770 	spa_activate(spa, FREAD);
5771 
5772 	/*
5773 	 * Rewind pool if a max txg was provided.
5774 	 */
5775 	zpool_get_load_policy(spa->spa_config, &policy);
5776 	if (policy.zlp_txg != UINT64_MAX) {
5777 		spa->spa_load_max_txg = policy.zlp_txg;
5778 		spa->spa_extreme_rewind = B_TRUE;
5779 		zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
5780 		    poolname, (longlong_t)policy.zlp_txg);
5781 	} else {
5782 		zfs_dbgmsg("spa_tryimport: importing %s", poolname);
5783 	}
5784 
5785 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
5786 	    == 0) {
5787 		zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
5788 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
5789 	} else {
5790 		spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
5791 	}
5792 
5793 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
5794 
5795 	/*
5796 	 * If 'tryconfig' was at least parsable, return the current config.
5797 	 */
5798 	if (spa->spa_root_vdev != NULL) {
5799 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5800 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
5801 		    poolname) == 0);
5802 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5803 		    state) == 0);
5804 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
5805 		    spa->spa_uberblock.ub_timestamp) == 0);
5806 		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
5807 		    spa->spa_load_info) == 0);
5808 
5809 		/*
5810 		 * If the bootfs property exists on this pool then we
5811 		 * copy it out so that external consumers can tell which
5812 		 * pools are bootable.
5813 		 */
5814 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
5815 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
5816 
5817 			/*
5818 			 * We have to play games with the name since the
5819 			 * pool was opened as TRYIMPORT_NAME.
5820 			 */
5821 			if (dsl_dsobj_to_dsname(spa_name(spa),
5822 			    spa->spa_bootfs, tmpname) == 0) {
5823 				char *cp;
5824 				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
5825 
5826 				cp = strchr(tmpname, '/');
5827 				if (cp == NULL) {
5828 					(void) strlcpy(dsname, tmpname,
5829 					    MAXPATHLEN);
5830 				} else {
5831 					(void) snprintf(dsname, MAXPATHLEN,
5832 					    "%s/%s", poolname, ++cp);
5833 				}
5834 				VERIFY(nvlist_add_string(config,
5835 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
5836 				kmem_free(dsname, MAXPATHLEN);
5837 			}
5838 			kmem_free(tmpname, MAXPATHLEN);
5839 		}
5840 
5841 		/*
5842 		 * Add the list of hot spares and level 2 cache devices.
5843 		 */
5844 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5845 		spa_add_spares(spa, config);
5846 		spa_add_l2cache(spa, config);
5847 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5848 	}
5849 
5850 	spa_unload(spa);
5851 	spa_deactivate(spa);
5852 	spa_remove(spa);
5853 	mutex_exit(&spa_namespace_lock);
5854 
5855 	return (config);
5856 }
5857 
5858 /*
5859  * Pool export/destroy
5860  *
5861  * The act of destroying or exporting a pool is very simple.  We make sure there
5862  * is no more pending I/O and any references to the pool are gone.  Then, we
5863  * update the pool state and sync all the labels to disk, removing the
5864  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
5865  * we don't sync the labels or remove the configuration cache.
5866  */
5867 static int
5868 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
5869     boolean_t force, boolean_t hardforce)
5870 {
5871 	spa_t *spa;
5872 
5873 	if (oldconfig)
5874 		*oldconfig = NULL;
5875 
5876 	if (!(spa_mode_global & FWRITE))
5877 		return (SET_ERROR(EROFS));
5878 
5879 	mutex_enter(&spa_namespace_lock);
5880 	if ((spa = spa_lookup(pool)) == NULL) {
5881 		mutex_exit(&spa_namespace_lock);
5882 		return (SET_ERROR(ENOENT));
5883 	}
5884 
5885 	/*
5886 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
5887 	 * reacquire the namespace lock, and see if we can export.
5888 	 */
5889 	spa_open_ref(spa, FTAG);
5890 	mutex_exit(&spa_namespace_lock);
5891 	spa_async_suspend(spa);
5892 	mutex_enter(&spa_namespace_lock);
5893 	spa_close(spa, FTAG);
5894 
5895 	/*
5896 	 * The pool will be in core if it's openable,
5897 	 * in which case we can modify its state.
5898 	 */
5899 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
5900 
5901 		/*
5902 		 * Objsets may be open only because they're dirty, so we
5903 		 * have to force it to sync before checking spa_refcnt.
5904 		 */
5905 		txg_wait_synced(spa->spa_dsl_pool, 0);
5906 		spa_evicting_os_wait(spa);
5907 
5908 		/*
5909 		 * A pool cannot be exported or destroyed if there are active
5910 		 * references.  If we are resetting a pool, allow references by
5911 		 * fault injection handlers.
5912 		 */
5913 		if (!spa_refcount_zero(spa) ||
5914 		    (spa->spa_inject_ref != 0 &&
5915 		    new_state != POOL_STATE_UNINITIALIZED)) {
5916 			spa_async_resume(spa);
5917 			mutex_exit(&spa_namespace_lock);
5918 			return (SET_ERROR(EBUSY));
5919 		}
5920 
5921 		/*
5922 		 * A pool cannot be exported if it has an active shared spare.
5923 		 * This is to prevent other pools stealing the active spare
5924 		 * from an exported pool. At user's own will, such pool can
5925 		 * be forcedly exported.
5926 		 */
5927 		if (!force && new_state == POOL_STATE_EXPORTED &&
5928 		    spa_has_active_shared_spare(spa)) {
5929 			spa_async_resume(spa);
5930 			mutex_exit(&spa_namespace_lock);
5931 			return (SET_ERROR(EXDEV));
5932 		}
5933 
5934 		/*
5935 		 * We're about to export or destroy this pool. Make sure
5936 		 * we stop all initialization and trim activity here before
5937 		 * we set the spa_final_txg. This will ensure that all
5938 		 * dirty data resulting from the initialization is
5939 		 * committed to disk before we unload the pool.
5940 		 */
5941 		if (spa->spa_root_vdev != NULL) {
5942 			vdev_t *rvd = spa->spa_root_vdev;
5943 			vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE);
5944 			vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE);
5945 			vdev_autotrim_stop_all(spa);
5946 		}
5947 
5948 		/*
5949 		 * We want this to be reflected on every label,
5950 		 * so mark them all dirty.  spa_unload() will do the
5951 		 * final sync that pushes these changes out.
5952 		 */
5953 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
5954 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5955 			spa->spa_state = new_state;
5956 			spa->spa_final_txg = spa_last_synced_txg(spa) +
5957 			    TXG_DEFER_SIZE + 1;
5958 			vdev_config_dirty(spa->spa_root_vdev);
5959 			spa_config_exit(spa, SCL_ALL, FTAG);
5960 		}
5961 	}
5962 
5963 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
5964 
5965 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
5966 		spa_unload(spa);
5967 		spa_deactivate(spa);
5968 	}
5969 
5970 	if (oldconfig && spa->spa_config)
5971 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
5972 
5973 	if (new_state != POOL_STATE_UNINITIALIZED) {
5974 		if (!hardforce)
5975 			spa_write_cachefile(spa, B_TRUE, B_TRUE);
5976 		spa_remove(spa);
5977 	}
5978 	mutex_exit(&spa_namespace_lock);
5979 
5980 	return (0);
5981 }
5982 
5983 /*
5984  * Destroy a storage pool.
5985  */
5986 int
5987 spa_destroy(char *pool)
5988 {
5989 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
5990 	    B_FALSE, B_FALSE));
5991 }
5992 
5993 /*
5994  * Export a storage pool.
5995  */
5996 int
5997 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
5998     boolean_t hardforce)
5999 {
6000 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
6001 	    force, hardforce));
6002 }
6003 
6004 /*
6005  * Similar to spa_export(), this unloads the spa_t without actually removing it
6006  * from the namespace in any way.
6007  */
6008 int
6009 spa_reset(char *pool)
6010 {
6011 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
6012 	    B_FALSE, B_FALSE));
6013 }
6014 
6015 /*
6016  * ==========================================================================
6017  * Device manipulation
6018  * ==========================================================================
6019  */
6020 
6021 /*
6022  * Add a device to a storage pool.
6023  */
6024 int
6025 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
6026 {
6027 	uint64_t txg;
6028 	int error;
6029 	vdev_t *rvd = spa->spa_root_vdev;
6030 	vdev_t *vd, *tvd;
6031 	nvlist_t **spares, **l2cache;
6032 	uint_t nspares, nl2cache;
6033 
6034 	ASSERT(spa_writeable(spa));
6035 
6036 	txg = spa_vdev_enter(spa);
6037 
6038 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
6039 	    VDEV_ALLOC_ADD)) != 0)
6040 		return (spa_vdev_exit(spa, NULL, txg, error));
6041 
6042 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
6043 
6044 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
6045 	    &nspares) != 0)
6046 		nspares = 0;
6047 
6048 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
6049 	    &nl2cache) != 0)
6050 		nl2cache = 0;
6051 
6052 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
6053 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
6054 
6055 	if (vd->vdev_children != 0 &&
6056 	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
6057 		return (spa_vdev_exit(spa, vd, txg, error));
6058 
6059 	/*
6060 	 * We must validate the spares and l2cache devices after checking the
6061 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
6062 	 */
6063 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
6064 		return (spa_vdev_exit(spa, vd, txg, error));
6065 
6066 	/*
6067 	 * If we are in the middle of a device removal, we can only add
6068 	 * devices which match the existing devices in the pool.
6069 	 * If we are in the middle of a removal, or have some indirect
6070 	 * vdevs, we can not add raidz toplevels.
6071 	 */
6072 	if (spa->spa_vdev_removal != NULL ||
6073 	    spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
6074 		for (int c = 0; c < vd->vdev_children; c++) {
6075 			tvd = vd->vdev_child[c];
6076 			if (spa->spa_vdev_removal != NULL &&
6077 			    tvd->vdev_ashift != spa->spa_max_ashift) {
6078 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
6079 			}
6080 			/* Fail if top level vdev is raidz */
6081 			if (tvd->vdev_ops == &vdev_raidz_ops) {
6082 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
6083 			}
6084 			/*
6085 			 * Need the top level mirror to be
6086 			 * a mirror of leaf vdevs only
6087 			 */
6088 			if (tvd->vdev_ops == &vdev_mirror_ops) {
6089 				for (uint64_t cid = 0;
6090 				    cid < tvd->vdev_children; cid++) {
6091 					vdev_t *cvd = tvd->vdev_child[cid];
6092 					if (!cvd->vdev_ops->vdev_op_leaf) {
6093 						return (spa_vdev_exit(spa, vd,
6094 						    txg, EINVAL));
6095 					}
6096 				}
6097 			}
6098 		}
6099 	}
6100 
6101 	for (int c = 0; c < vd->vdev_children; c++) {
6102 		tvd = vd->vdev_child[c];
6103 		vdev_remove_child(vd, tvd);
6104 		tvd->vdev_id = rvd->vdev_children;
6105 		vdev_add_child(rvd, tvd);
6106 		vdev_config_dirty(tvd);
6107 	}
6108 
6109 	if (nspares != 0) {
6110 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
6111 		    ZPOOL_CONFIG_SPARES);
6112 		spa_load_spares(spa);
6113 		spa->spa_spares.sav_sync = B_TRUE;
6114 	}
6115 
6116 	if (nl2cache != 0) {
6117 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
6118 		    ZPOOL_CONFIG_L2CACHE);
6119 		spa_load_l2cache(spa);
6120 		spa->spa_l2cache.sav_sync = B_TRUE;
6121 	}
6122 
6123 	/*
6124 	 * We have to be careful when adding new vdevs to an existing pool.
6125 	 * If other threads start allocating from these vdevs before we
6126 	 * sync the config cache, and we lose power, then upon reboot we may
6127 	 * fail to open the pool because there are DVAs that the config cache
6128 	 * can't translate.  Therefore, we first add the vdevs without
6129 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
6130 	 * and then let spa_config_update() initialize the new metaslabs.
6131 	 *
6132 	 * spa_load() checks for added-but-not-initialized vdevs, so that
6133 	 * if we lose power at any point in this sequence, the remaining
6134 	 * steps will be completed the next time we load the pool.
6135 	 */
6136 	(void) spa_vdev_exit(spa, vd, txg, 0);
6137 
6138 	mutex_enter(&spa_namespace_lock);
6139 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6140 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
6141 	mutex_exit(&spa_namespace_lock);
6142 
6143 	return (0);
6144 }
6145 
6146 /*
6147  * Attach a device to a mirror.  The arguments are the path to any device
6148  * in the mirror, and the nvroot for the new device.  If the path specifies
6149  * a device that is not mirrored, we automatically insert the mirror vdev.
6150  *
6151  * If 'replacing' is specified, the new device is intended to replace the
6152  * existing device; in this case the two devices are made into their own
6153  * mirror using the 'replacing' vdev, which is functionally identical to
6154  * the mirror vdev (it actually reuses all the same ops) but has a few
6155  * extra rules: you can't attach to it after it's been created, and upon
6156  * completion of resilvering, the first disk (the one being replaced)
6157  * is automatically detached.
6158  */
6159 int
6160 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
6161 {
6162 	uint64_t txg, dtl_max_txg;
6163 	vdev_t *rvd = spa->spa_root_vdev;
6164 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
6165 	vdev_ops_t *pvops;
6166 	char *oldvdpath, *newvdpath;
6167 	int newvd_isspare;
6168 	int error;
6169 
6170 	ASSERT(spa_writeable(spa));
6171 
6172 	txg = spa_vdev_enter(spa);
6173 
6174 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
6175 
6176 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6177 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6178 		error = (spa_has_checkpoint(spa)) ?
6179 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6180 		return (spa_vdev_exit(spa, NULL, txg, error));
6181 	}
6182 
6183 	if (spa->spa_vdev_removal != NULL)
6184 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6185 
6186 	if (oldvd == NULL)
6187 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
6188 
6189 	if (!oldvd->vdev_ops->vdev_op_leaf)
6190 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6191 
6192 	pvd = oldvd->vdev_parent;
6193 
6194 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
6195 	    VDEV_ALLOC_ATTACH)) != 0)
6196 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6197 
6198 	if (newrootvd->vdev_children != 1)
6199 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6200 
6201 	newvd = newrootvd->vdev_child[0];
6202 
6203 	if (!newvd->vdev_ops->vdev_op_leaf)
6204 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6205 
6206 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
6207 		return (spa_vdev_exit(spa, newrootvd, txg, error));
6208 
6209 	/*
6210 	 * Spares can't replace logs
6211 	 */
6212 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
6213 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6214 
6215 	if (!replacing) {
6216 		/*
6217 		 * For attach, the only allowable parent is a mirror or the root
6218 		 * vdev.
6219 		 */
6220 		if (pvd->vdev_ops != &vdev_mirror_ops &&
6221 		    pvd->vdev_ops != &vdev_root_ops)
6222 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6223 
6224 		pvops = &vdev_mirror_ops;
6225 	} else {
6226 		/*
6227 		 * Active hot spares can only be replaced by inactive hot
6228 		 * spares.
6229 		 */
6230 		if (pvd->vdev_ops == &vdev_spare_ops &&
6231 		    oldvd->vdev_isspare &&
6232 		    !spa_has_spare(spa, newvd->vdev_guid))
6233 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6234 
6235 		/*
6236 		 * If the source is a hot spare, and the parent isn't already a
6237 		 * spare, then we want to create a new hot spare.  Otherwise, we
6238 		 * want to create a replacing vdev.  The user is not allowed to
6239 		 * attach to a spared vdev child unless the 'isspare' state is
6240 		 * the same (spare replaces spare, non-spare replaces
6241 		 * non-spare).
6242 		 */
6243 		if (pvd->vdev_ops == &vdev_replacing_ops &&
6244 		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
6245 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6246 		} else if (pvd->vdev_ops == &vdev_spare_ops &&
6247 		    newvd->vdev_isspare != oldvd->vdev_isspare) {
6248 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6249 		}
6250 
6251 		if (newvd->vdev_isspare)
6252 			pvops = &vdev_spare_ops;
6253 		else
6254 			pvops = &vdev_replacing_ops;
6255 	}
6256 
6257 	/*
6258 	 * Make sure the new device is big enough.
6259 	 */
6260 	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
6261 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
6262 
6263 	/*
6264 	 * The new device cannot have a higher alignment requirement
6265 	 * than the top-level vdev.
6266 	 */
6267 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
6268 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
6269 
6270 	/*
6271 	 * If this is an in-place replacement, update oldvd's path and devid
6272 	 * to make it distinguishable from newvd, and unopenable from now on.
6273 	 */
6274 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
6275 		spa_strfree(oldvd->vdev_path);
6276 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
6277 		    KM_SLEEP);
6278 		(void) sprintf(oldvd->vdev_path, "%s/%s",
6279 		    newvd->vdev_path, "old");
6280 		if (oldvd->vdev_devid != NULL) {
6281 			spa_strfree(oldvd->vdev_devid);
6282 			oldvd->vdev_devid = NULL;
6283 		}
6284 	}
6285 
6286 	/* mark the device being resilvered */
6287 	newvd->vdev_resilver_txg = txg;
6288 
6289 	/*
6290 	 * If the parent is not a mirror, or if we're replacing, insert the new
6291 	 * mirror/replacing/spare vdev above oldvd.
6292 	 */
6293 	if (pvd->vdev_ops != pvops)
6294 		pvd = vdev_add_parent(oldvd, pvops);
6295 
6296 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
6297 	ASSERT(pvd->vdev_ops == pvops);
6298 	ASSERT(oldvd->vdev_parent == pvd);
6299 
6300 	/*
6301 	 * Extract the new device from its root and add it to pvd.
6302 	 */
6303 	vdev_remove_child(newrootvd, newvd);
6304 	newvd->vdev_id = pvd->vdev_children;
6305 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
6306 	vdev_add_child(pvd, newvd);
6307 
6308 	tvd = newvd->vdev_top;
6309 	ASSERT(pvd->vdev_top == tvd);
6310 	ASSERT(tvd->vdev_parent == rvd);
6311 
6312 	vdev_config_dirty(tvd);
6313 
6314 	/*
6315 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
6316 	 * for any dmu_sync-ed blocks.  It will propagate upward when
6317 	 * spa_vdev_exit() calls vdev_dtl_reassess().
6318 	 */
6319 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
6320 
6321 	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
6322 	    dtl_max_txg - TXG_INITIAL);
6323 
6324 	if (newvd->vdev_isspare) {
6325 		spa_spare_activate(newvd);
6326 		spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
6327 	}
6328 
6329 	oldvdpath = spa_strdup(oldvd->vdev_path);
6330 	newvdpath = spa_strdup(newvd->vdev_path);
6331 	newvd_isspare = newvd->vdev_isspare;
6332 
6333 	/*
6334 	 * Mark newvd's DTL dirty in this txg.
6335 	 */
6336 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
6337 
6338 	/*
6339 	 * Schedule the resilver to restart in the future. We do this to
6340 	 * ensure that dmu_sync-ed blocks have been stitched into the
6341 	 * respective datasets. We do not do this if resilvers have been
6342 	 * deferred.
6343 	 */
6344 	if (dsl_scan_resilvering(spa_get_dsl(spa)) &&
6345 	    spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
6346 		vdev_set_deferred_resilver(spa, newvd);
6347 	else
6348 		dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
6349 
6350 	if (spa->spa_bootfs)
6351 		spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
6352 
6353 	spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
6354 
6355 	/*
6356 	 * Commit the config
6357 	 */
6358 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
6359 
6360 	spa_history_log_internal(spa, "vdev attach", NULL,
6361 	    "%s vdev=%s %s vdev=%s",
6362 	    replacing && newvd_isspare ? "spare in" :
6363 	    replacing ? "replace" : "attach", newvdpath,
6364 	    replacing ? "for" : "to", oldvdpath);
6365 
6366 	spa_strfree(oldvdpath);
6367 	spa_strfree(newvdpath);
6368 
6369 	return (0);
6370 }
6371 
6372 /*
6373  * Detach a device from a mirror or replacing vdev.
6374  *
6375  * If 'replace_done' is specified, only detach if the parent
6376  * is a replacing vdev.
6377  */
6378 int
6379 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
6380 {
6381 	uint64_t txg;
6382 	int error;
6383 	vdev_t *rvd = spa->spa_root_vdev;
6384 	vdev_t *vd, *pvd, *cvd, *tvd;
6385 	boolean_t unspare = B_FALSE;
6386 	uint64_t unspare_guid = 0;
6387 	char *vdpath;
6388 
6389 	ASSERT(spa_writeable(spa));
6390 
6391 	txg = spa_vdev_enter(spa);
6392 
6393 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
6394 
6395 	/*
6396 	 * Besides being called directly from the userland through the
6397 	 * ioctl interface, spa_vdev_detach() can be potentially called
6398 	 * at the end of spa_vdev_resilver_done().
6399 	 *
6400 	 * In the regular case, when we have a checkpoint this shouldn't
6401 	 * happen as we never empty the DTLs of a vdev during the scrub
6402 	 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
6403 	 * should never get here when we have a checkpoint.
6404 	 *
6405 	 * That said, even in a case when we checkpoint the pool exactly
6406 	 * as spa_vdev_resilver_done() calls this function everything
6407 	 * should be fine as the resilver will return right away.
6408 	 */
6409 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6410 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6411 		error = (spa_has_checkpoint(spa)) ?
6412 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6413 		return (spa_vdev_exit(spa, NULL, txg, error));
6414 	}
6415 
6416 	if (vd == NULL)
6417 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
6418 
6419 	if (!vd->vdev_ops->vdev_op_leaf)
6420 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6421 
6422 	pvd = vd->vdev_parent;
6423 
6424 	/*
6425 	 * If the parent/child relationship is not as expected, don't do it.
6426 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
6427 	 * vdev that's replacing B with C.  The user's intent in replacing
6428 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
6429 	 * the replace by detaching C, the expected behavior is to end up
6430 	 * M(A,B).  But suppose that right after deciding to detach C,
6431 	 * the replacement of B completes.  We would have M(A,C), and then
6432 	 * ask to detach C, which would leave us with just A -- not what
6433 	 * the user wanted.  To prevent this, we make sure that the
6434 	 * parent/child relationship hasn't changed -- in this example,
6435 	 * that C's parent is still the replacing vdev R.
6436 	 */
6437 	if (pvd->vdev_guid != pguid && pguid != 0)
6438 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6439 
6440 	/*
6441 	 * Only 'replacing' or 'spare' vdevs can be replaced.
6442 	 */
6443 	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
6444 	    pvd->vdev_ops != &vdev_spare_ops)
6445 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6446 
6447 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
6448 	    spa_version(spa) >= SPA_VERSION_SPARES);
6449 
6450 	/*
6451 	 * Only mirror, replacing, and spare vdevs support detach.
6452 	 */
6453 	if (pvd->vdev_ops != &vdev_replacing_ops &&
6454 	    pvd->vdev_ops != &vdev_mirror_ops &&
6455 	    pvd->vdev_ops != &vdev_spare_ops)
6456 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6457 
6458 	/*
6459 	 * If this device has the only valid copy of some data,
6460 	 * we cannot safely detach it.
6461 	 */
6462 	if (vdev_dtl_required(vd))
6463 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6464 
6465 	ASSERT(pvd->vdev_children >= 2);
6466 
6467 	/*
6468 	 * If we are detaching the second disk from a replacing vdev, then
6469 	 * check to see if we changed the original vdev's path to have "/old"
6470 	 * at the end in spa_vdev_attach().  If so, undo that change now.
6471 	 */
6472 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
6473 	    vd->vdev_path != NULL) {
6474 		size_t len = strlen(vd->vdev_path);
6475 
6476 		for (int c = 0; c < pvd->vdev_children; c++) {
6477 			cvd = pvd->vdev_child[c];
6478 
6479 			if (cvd == vd || cvd->vdev_path == NULL)
6480 				continue;
6481 
6482 			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
6483 			    strcmp(cvd->vdev_path + len, "/old") == 0) {
6484 				spa_strfree(cvd->vdev_path);
6485 				cvd->vdev_path = spa_strdup(vd->vdev_path);
6486 				break;
6487 			}
6488 		}
6489 	}
6490 
6491 	/*
6492 	 * If we are detaching the original disk from a spare, then it implies
6493 	 * that the spare should become a real disk, and be removed from the
6494 	 * active spare list for the pool.
6495 	 */
6496 	if (pvd->vdev_ops == &vdev_spare_ops &&
6497 	    vd->vdev_id == 0 &&
6498 	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
6499 		unspare = B_TRUE;
6500 
6501 	/*
6502 	 * Erase the disk labels so the disk can be used for other things.
6503 	 * This must be done after all other error cases are handled,
6504 	 * but before we disembowel vd (so we can still do I/O to it).
6505 	 * But if we can't do it, don't treat the error as fatal --
6506 	 * it may be that the unwritability of the disk is the reason
6507 	 * it's being detached!
6508 	 */
6509 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
6510 
6511 	/*
6512 	 * Remove vd from its parent and compact the parent's children.
6513 	 */
6514 	vdev_remove_child(pvd, vd);
6515 	vdev_compact_children(pvd);
6516 
6517 	/*
6518 	 * Remember one of the remaining children so we can get tvd below.
6519 	 */
6520 	cvd = pvd->vdev_child[pvd->vdev_children - 1];
6521 
6522 	/*
6523 	 * If we need to remove the remaining child from the list of hot spares,
6524 	 * do it now, marking the vdev as no longer a spare in the process.
6525 	 * We must do this before vdev_remove_parent(), because that can
6526 	 * change the GUID if it creates a new toplevel GUID.  For a similar
6527 	 * reason, we must remove the spare now, in the same txg as the detach;
6528 	 * otherwise someone could attach a new sibling, change the GUID, and
6529 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
6530 	 */
6531 	if (unspare) {
6532 		ASSERT(cvd->vdev_isspare);
6533 		spa_spare_remove(cvd);
6534 		unspare_guid = cvd->vdev_guid;
6535 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
6536 		cvd->vdev_unspare = B_TRUE;
6537 	}
6538 
6539 	/*
6540 	 * If the parent mirror/replacing vdev only has one child,
6541 	 * the parent is no longer needed.  Remove it from the tree.
6542 	 */
6543 	if (pvd->vdev_children == 1) {
6544 		if (pvd->vdev_ops == &vdev_spare_ops)
6545 			cvd->vdev_unspare = B_FALSE;
6546 		vdev_remove_parent(cvd);
6547 	}
6548 
6549 	/*
6550 	 * We don't set tvd until now because the parent we just removed
6551 	 * may have been the previous top-level vdev.
6552 	 */
6553 	tvd = cvd->vdev_top;
6554 	ASSERT(tvd->vdev_parent == rvd);
6555 
6556 	/*
6557 	 * Reevaluate the parent vdev state.
6558 	 */
6559 	vdev_propagate_state(cvd);
6560 
6561 	/*
6562 	 * If the 'autoexpand' property is set on the pool then automatically
6563 	 * try to expand the size of the pool. For example if the device we
6564 	 * just detached was smaller than the others, it may be possible to
6565 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
6566 	 * first so that we can obtain the updated sizes of the leaf vdevs.
6567 	 */
6568 	if (spa->spa_autoexpand) {
6569 		vdev_reopen(tvd);
6570 		vdev_expand(tvd, txg);
6571 	}
6572 
6573 	vdev_config_dirty(tvd);
6574 
6575 	/*
6576 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
6577 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
6578 	 * But first make sure we're not on any *other* txg's DTL list, to
6579 	 * prevent vd from being accessed after it's freed.
6580 	 */
6581 	vdpath = spa_strdup(vd->vdev_path);
6582 	for (int t = 0; t < TXG_SIZE; t++)
6583 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
6584 	vd->vdev_detached = B_TRUE;
6585 	vdev_dirty(tvd, VDD_DTL, vd, txg);
6586 
6587 	spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
6588 
6589 	/* hang on to the spa before we release the lock */
6590 	spa_open_ref(spa, FTAG);
6591 
6592 	error = spa_vdev_exit(spa, vd, txg, 0);
6593 
6594 	spa_history_log_internal(spa, "detach", NULL,
6595 	    "vdev=%s", vdpath);
6596 	spa_strfree(vdpath);
6597 
6598 	/*
6599 	 * If this was the removal of the original device in a hot spare vdev,
6600 	 * then we want to go through and remove the device from the hot spare
6601 	 * list of every other pool.
6602 	 */
6603 	if (unspare) {
6604 		spa_t *altspa = NULL;
6605 
6606 		mutex_enter(&spa_namespace_lock);
6607 		while ((altspa = spa_next(altspa)) != NULL) {
6608 			if (altspa->spa_state != POOL_STATE_ACTIVE ||
6609 			    altspa == spa)
6610 				continue;
6611 
6612 			spa_open_ref(altspa, FTAG);
6613 			mutex_exit(&spa_namespace_lock);
6614 			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
6615 			mutex_enter(&spa_namespace_lock);
6616 			spa_close(altspa, FTAG);
6617 		}
6618 		mutex_exit(&spa_namespace_lock);
6619 
6620 		/* search the rest of the vdevs for spares to remove */
6621 		spa_vdev_resilver_done(spa);
6622 	}
6623 
6624 	/* all done with the spa; OK to release */
6625 	mutex_enter(&spa_namespace_lock);
6626 	spa_close(spa, FTAG);
6627 	mutex_exit(&spa_namespace_lock);
6628 
6629 	return (error);
6630 }
6631 
6632 static int
6633 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
6634     list_t *vd_list)
6635 {
6636 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6637 
6638 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6639 
6640 	/* Look up vdev and ensure it's a leaf. */
6641 	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
6642 	if (vd == NULL || vd->vdev_detached) {
6643 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6644 		return (SET_ERROR(ENODEV));
6645 	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
6646 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6647 		return (SET_ERROR(EINVAL));
6648 	} else if (!vdev_writeable(vd)) {
6649 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6650 		return (SET_ERROR(EROFS));
6651 	}
6652 	mutex_enter(&vd->vdev_initialize_lock);
6653 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6654 
6655 	/*
6656 	 * When we activate an initialize action we check to see
6657 	 * if the vdev_initialize_thread is NULL. We do this instead
6658 	 * of using the vdev_initialize_state since there might be
6659 	 * a previous initialization process which has completed but
6660 	 * the thread is not exited.
6661 	 */
6662 	if (cmd_type == POOL_INITIALIZE_START &&
6663 	    (vd->vdev_initialize_thread != NULL ||
6664 	    vd->vdev_top->vdev_removing)) {
6665 		mutex_exit(&vd->vdev_initialize_lock);
6666 		return (SET_ERROR(EBUSY));
6667 	} else if (cmd_type == POOL_INITIALIZE_CANCEL &&
6668 	    (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE &&
6669 	    vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) {
6670 		mutex_exit(&vd->vdev_initialize_lock);
6671 		return (SET_ERROR(ESRCH));
6672 	} else if (cmd_type == POOL_INITIALIZE_SUSPEND &&
6673 	    vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) {
6674 		mutex_exit(&vd->vdev_initialize_lock);
6675 		return (SET_ERROR(ESRCH));
6676 	}
6677 
6678 	switch (cmd_type) {
6679 	case POOL_INITIALIZE_START:
6680 		vdev_initialize(vd);
6681 		break;
6682 	case POOL_INITIALIZE_CANCEL:
6683 		vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list);
6684 		break;
6685 	case POOL_INITIALIZE_SUSPEND:
6686 		vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list);
6687 		break;
6688 	default:
6689 		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
6690 	}
6691 	mutex_exit(&vd->vdev_initialize_lock);
6692 
6693 	return (0);
6694 }
6695 
6696 int
6697 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
6698     nvlist_t *vdev_errlist)
6699 {
6700 	int total_errors = 0;
6701 	list_t vd_list;
6702 
6703 	list_create(&vd_list, sizeof (vdev_t),
6704 	    offsetof(vdev_t, vdev_initialize_node));
6705 
6706 	/*
6707 	 * We hold the namespace lock through the whole function
6708 	 * to prevent any changes to the pool while we're starting or
6709 	 * stopping initialization. The config and state locks are held so that
6710 	 * we can properly assess the vdev state before we commit to
6711 	 * the initializing operation.
6712 	 */
6713 	mutex_enter(&spa_namespace_lock);
6714 
6715 	for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
6716 	    pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
6717 		uint64_t vdev_guid = fnvpair_value_uint64(pair);
6718 
6719 		int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type,
6720 		    &vd_list);
6721 		if (error != 0) {
6722 			char guid_as_str[MAXNAMELEN];
6723 
6724 			(void) snprintf(guid_as_str, sizeof (guid_as_str),
6725 			    "%llu", (unsigned long long)vdev_guid);
6726 			fnvlist_add_int64(vdev_errlist, guid_as_str, error);
6727 			total_errors++;
6728 		}
6729 	}
6730 
6731 	/* Wait for all initialize threads to stop. */
6732 	vdev_initialize_stop_wait(spa, &vd_list);
6733 
6734 	/* Sync out the initializing state */
6735 	txg_wait_synced(spa->spa_dsl_pool, 0);
6736 	mutex_exit(&spa_namespace_lock);
6737 
6738 	list_destroy(&vd_list);
6739 
6740 	return (total_errors);
6741 }
6742 
6743 static int
6744 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
6745     uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list)
6746 {
6747 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6748 
6749 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6750 
6751 	/* Look up vdev and ensure it's a leaf. */
6752 	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
6753 	if (vd == NULL || vd->vdev_detached) {
6754 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6755 		return (SET_ERROR(ENODEV));
6756 	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
6757 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6758 		return (SET_ERROR(EINVAL));
6759 	} else if (!vdev_writeable(vd)) {
6760 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6761 		return (SET_ERROR(EROFS));
6762 	} else if (!vd->vdev_has_trim) {
6763 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6764 		return (SET_ERROR(EOPNOTSUPP));
6765 	} else if (secure && !vd->vdev_has_securetrim) {
6766 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6767 		return (SET_ERROR(EOPNOTSUPP));
6768 	}
6769 	mutex_enter(&vd->vdev_trim_lock);
6770 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6771 
6772 	/*
6773 	 * When we activate a TRIM action we check to see if the
6774 	 * vdev_trim_thread is NULL. We do this instead of using the
6775 	 * vdev_trim_state since there might be a previous TRIM process
6776 	 * which has completed but the thread is not exited.
6777 	 */
6778 	if (cmd_type == POOL_TRIM_START &&
6779 	    (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing)) {
6780 		mutex_exit(&vd->vdev_trim_lock);
6781 		return (SET_ERROR(EBUSY));
6782 	} else if (cmd_type == POOL_TRIM_CANCEL &&
6783 	    (vd->vdev_trim_state != VDEV_TRIM_ACTIVE &&
6784 	    vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) {
6785 		mutex_exit(&vd->vdev_trim_lock);
6786 		return (SET_ERROR(ESRCH));
6787 	} else if (cmd_type == POOL_TRIM_SUSPEND &&
6788 	    vd->vdev_trim_state != VDEV_TRIM_ACTIVE) {
6789 		mutex_exit(&vd->vdev_trim_lock);
6790 		return (SET_ERROR(ESRCH));
6791 	}
6792 
6793 	switch (cmd_type) {
6794 	case POOL_TRIM_START:
6795 		vdev_trim(vd, rate, partial, secure);
6796 		break;
6797 	case POOL_TRIM_CANCEL:
6798 		vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list);
6799 		break;
6800 	case POOL_TRIM_SUSPEND:
6801 		vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list);
6802 		break;
6803 	default:
6804 		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
6805 	}
6806 	mutex_exit(&vd->vdev_trim_lock);
6807 
6808 	return (0);
6809 }
6810 
6811 /*
6812  * Initiates a manual TRIM for the requested vdevs. This kicks off individual
6813  * TRIM threads for each child vdev.  These threads pass over all of the free
6814  * space in the vdev's metaslabs and issues TRIM commands for that space.
6815  */
6816 int
6817 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate,
6818     boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist)
6819 {
6820 	int total_errors = 0;
6821 	list_t vd_list;
6822 
6823 	list_create(&vd_list, sizeof (vdev_t),
6824 	    offsetof(vdev_t, vdev_trim_node));
6825 
6826 	/*
6827 	 * We hold the namespace lock through the whole function
6828 	 * to prevent any changes to the pool while we're starting or
6829 	 * stopping TRIM. The config and state locks are held so that
6830 	 * we can properly assess the vdev state before we commit to
6831 	 * the TRIM operation.
6832 	 */
6833 	mutex_enter(&spa_namespace_lock);
6834 
6835 	for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
6836 	    pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
6837 		uint64_t vdev_guid = fnvpair_value_uint64(pair);
6838 
6839 		int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type,
6840 		    rate, partial, secure, &vd_list);
6841 		if (error != 0) {
6842 			char guid_as_str[MAXNAMELEN];
6843 
6844 			(void) snprintf(guid_as_str, sizeof (guid_as_str),
6845 			    "%llu", (unsigned long long)vdev_guid);
6846 			fnvlist_add_int64(vdev_errlist, guid_as_str, error);
6847 			total_errors++;
6848 		}
6849 	}
6850 
6851 	/* Wait for all TRIM threads to stop. */
6852 	vdev_trim_stop_wait(spa, &vd_list);
6853 
6854 	/* Sync out the TRIM state */
6855 	txg_wait_synced(spa->spa_dsl_pool, 0);
6856 	mutex_exit(&spa_namespace_lock);
6857 
6858 	list_destroy(&vd_list);
6859 
6860 	return (total_errors);
6861 }
6862 
6863 /*
6864  * Split a set of devices from their mirrors, and create a new pool from them.
6865  */
6866 int
6867 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
6868     nvlist_t *props, boolean_t exp)
6869 {
6870 	int error = 0;
6871 	uint64_t txg, *glist;
6872 	spa_t *newspa;
6873 	uint_t c, children, lastlog;
6874 	nvlist_t **child, *nvl, *tmp;
6875 	dmu_tx_t *tx;
6876 	char *altroot = NULL;
6877 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
6878 	boolean_t activate_slog;
6879 
6880 	ASSERT(spa_writeable(spa));
6881 
6882 	txg = spa_vdev_enter(spa);
6883 
6884 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6885 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6886 		error = (spa_has_checkpoint(spa)) ?
6887 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6888 		return (spa_vdev_exit(spa, NULL, txg, error));
6889 	}
6890 
6891 	/* clear the log and flush everything up to now */
6892 	activate_slog = spa_passivate_log(spa);
6893 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
6894 	error = spa_reset_logs(spa);
6895 	txg = spa_vdev_config_enter(spa);
6896 
6897 	if (activate_slog)
6898 		spa_activate_log(spa);
6899 
6900 	if (error != 0)
6901 		return (spa_vdev_exit(spa, NULL, txg, error));
6902 
6903 	/* check new spa name before going any further */
6904 	if (spa_lookup(newname) != NULL)
6905 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
6906 
6907 	/*
6908 	 * scan through all the children to ensure they're all mirrors
6909 	 */
6910 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
6911 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
6912 	    &children) != 0)
6913 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6914 
6915 	/* first, check to ensure we've got the right child count */
6916 	rvd = spa->spa_root_vdev;
6917 	lastlog = 0;
6918 	for (c = 0; c < rvd->vdev_children; c++) {
6919 		vdev_t *vd = rvd->vdev_child[c];
6920 
6921 		/* don't count the holes & logs as children */
6922 		if (vd->vdev_islog || !vdev_is_concrete(vd)) {
6923 			if (lastlog == 0)
6924 				lastlog = c;
6925 			continue;
6926 		}
6927 
6928 		lastlog = 0;
6929 	}
6930 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
6931 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6932 
6933 	/* next, ensure no spare or cache devices are part of the split */
6934 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
6935 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
6936 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6937 
6938 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
6939 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
6940 
6941 	/* then, loop over each vdev and validate it */
6942 	for (c = 0; c < children; c++) {
6943 		uint64_t is_hole = 0;
6944 
6945 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
6946 		    &is_hole);
6947 
6948 		if (is_hole != 0) {
6949 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
6950 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
6951 				continue;
6952 			} else {
6953 				error = SET_ERROR(EINVAL);
6954 				break;
6955 			}
6956 		}
6957 
6958 		/* which disk is going to be split? */
6959 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
6960 		    &glist[c]) != 0) {
6961 			error = SET_ERROR(EINVAL);
6962 			break;
6963 		}
6964 
6965 		/* look it up in the spa */
6966 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
6967 		if (vml[c] == NULL) {
6968 			error = SET_ERROR(ENODEV);
6969 			break;
6970 		}
6971 
6972 		/* make sure there's nothing stopping the split */
6973 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
6974 		    vml[c]->vdev_islog ||
6975 		    !vdev_is_concrete(vml[c]) ||
6976 		    vml[c]->vdev_isspare ||
6977 		    vml[c]->vdev_isl2cache ||
6978 		    !vdev_writeable(vml[c]) ||
6979 		    vml[c]->vdev_children != 0 ||
6980 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
6981 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
6982 			error = SET_ERROR(EINVAL);
6983 			break;
6984 		}
6985 
6986 		if (vdev_dtl_required(vml[c])) {
6987 			error = SET_ERROR(EBUSY);
6988 			break;
6989 		}
6990 
6991 		/* we need certain info from the top level */
6992 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
6993 		    vml[c]->vdev_top->vdev_ms_array) == 0);
6994 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
6995 		    vml[c]->vdev_top->vdev_ms_shift) == 0);
6996 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
6997 		    vml[c]->vdev_top->vdev_asize) == 0);
6998 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
6999 		    vml[c]->vdev_top->vdev_ashift) == 0);
7000 
7001 		/* transfer per-vdev ZAPs */
7002 		ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
7003 		VERIFY0(nvlist_add_uint64(child[c],
7004 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
7005 
7006 		ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
7007 		VERIFY0(nvlist_add_uint64(child[c],
7008 		    ZPOOL_CONFIG_VDEV_TOP_ZAP,
7009 		    vml[c]->vdev_parent->vdev_top_zap));
7010 	}
7011 
7012 	if (error != 0) {
7013 		kmem_free(vml, children * sizeof (vdev_t *));
7014 		kmem_free(glist, children * sizeof (uint64_t));
7015 		return (spa_vdev_exit(spa, NULL, txg, error));
7016 	}
7017 
7018 	/* stop writers from using the disks */
7019 	for (c = 0; c < children; c++) {
7020 		if (vml[c] != NULL)
7021 			vml[c]->vdev_offline = B_TRUE;
7022 	}
7023 	vdev_reopen(spa->spa_root_vdev);
7024 
7025 	/*
7026 	 * Temporarily record the splitting vdevs in the spa config.  This
7027 	 * will disappear once the config is regenerated.
7028 	 */
7029 	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
7030 	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
7031 	    glist, children) == 0);
7032 	kmem_free(glist, children * sizeof (uint64_t));
7033 
7034 	mutex_enter(&spa->spa_props_lock);
7035 	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
7036 	    nvl) == 0);
7037 	mutex_exit(&spa->spa_props_lock);
7038 	spa->spa_config_splitting = nvl;
7039 	vdev_config_dirty(spa->spa_root_vdev);
7040 
7041 	/* configure and create the new pool */
7042 	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
7043 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
7044 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
7045 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
7046 	    spa_version(spa)) == 0);
7047 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
7048 	    spa->spa_config_txg) == 0);
7049 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
7050 	    spa_generate_guid(NULL)) == 0);
7051 	VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
7052 	(void) nvlist_lookup_string(props,
7053 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
7054 
7055 	/* add the new pool to the namespace */
7056 	newspa = spa_add(newname, config, altroot);
7057 	newspa->spa_avz_action = AVZ_ACTION_REBUILD;
7058 	newspa->spa_config_txg = spa->spa_config_txg;
7059 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
7060 
7061 	/* release the spa config lock, retaining the namespace lock */
7062 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
7063 
7064 	if (zio_injection_enabled)
7065 		zio_handle_panic_injection(spa, FTAG, 1);
7066 
7067 	spa_activate(newspa, spa_mode_global);
7068 	spa_async_suspend(newspa);
7069 
7070 	/*
7071 	 * Temporarily stop the initializing and TRIM activity.  We set the
7072 	 * state to ACTIVE so that we know to resume initializing or TRIM
7073 	 * once the split has completed.
7074 	 */
7075 	list_t vd_initialize_list;
7076 	list_create(&vd_initialize_list, sizeof (vdev_t),
7077 	    offsetof(vdev_t, vdev_initialize_node));
7078 
7079 	list_t vd_trim_list;
7080 	list_create(&vd_trim_list, sizeof (vdev_t),
7081 	    offsetof(vdev_t, vdev_trim_node));
7082 
7083 	for (c = 0; c < children; c++) {
7084 		if (vml[c] != NULL) {
7085 			mutex_enter(&vml[c]->vdev_initialize_lock);
7086 			vdev_initialize_stop(vml[c],
7087 			    VDEV_INITIALIZE_ACTIVE, &vd_initialize_list);
7088 			mutex_exit(&vml[c]->vdev_initialize_lock);
7089 
7090 			mutex_enter(&vml[c]->vdev_trim_lock);
7091 			vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list);
7092 			mutex_exit(&vml[c]->vdev_trim_lock);
7093 		}
7094 	}
7095 
7096 	vdev_initialize_stop_wait(spa, &vd_initialize_list);
7097 	vdev_trim_stop_wait(spa, &vd_trim_list);
7098 
7099 	list_destroy(&vd_initialize_list);
7100 	list_destroy(&vd_trim_list);
7101 
7102 	newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
7103 
7104 	/* create the new pool from the disks of the original pool */
7105 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
7106 	if (error)
7107 		goto out;
7108 
7109 	/* if that worked, generate a real config for the new pool */
7110 	if (newspa->spa_root_vdev != NULL) {
7111 		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
7112 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
7113 		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
7114 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
7115 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
7116 		    B_TRUE));
7117 	}
7118 
7119 	/* set the props */
7120 	if (props != NULL) {
7121 		spa_configfile_set(newspa, props, B_FALSE);
7122 		error = spa_prop_set(newspa, props);
7123 		if (error)
7124 			goto out;
7125 	}
7126 
7127 	/* flush everything */
7128 	txg = spa_vdev_config_enter(newspa);
7129 	vdev_config_dirty(newspa->spa_root_vdev);
7130 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
7131 
7132 	if (zio_injection_enabled)
7133 		zio_handle_panic_injection(spa, FTAG, 2);
7134 
7135 	spa_async_resume(newspa);
7136 
7137 	/* finally, update the original pool's config */
7138 	txg = spa_vdev_config_enter(spa);
7139 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
7140 	error = dmu_tx_assign(tx, TXG_WAIT);
7141 	if (error != 0)
7142 		dmu_tx_abort(tx);
7143 	for (c = 0; c < children; c++) {
7144 		if (vml[c] != NULL) {
7145 			vdev_split(vml[c]);
7146 			if (error == 0)
7147 				spa_history_log_internal(spa, "detach", tx,
7148 				    "vdev=%s", vml[c]->vdev_path);
7149 
7150 			vdev_free(vml[c]);
7151 		}
7152 	}
7153 	spa->spa_avz_action = AVZ_ACTION_REBUILD;
7154 	vdev_config_dirty(spa->spa_root_vdev);
7155 	spa->spa_config_splitting = NULL;
7156 	nvlist_free(nvl);
7157 	if (error == 0)
7158 		dmu_tx_commit(tx);
7159 	(void) spa_vdev_exit(spa, NULL, txg, 0);
7160 
7161 	if (zio_injection_enabled)
7162 		zio_handle_panic_injection(spa, FTAG, 3);
7163 
7164 	/* split is complete; log a history record */
7165 	spa_history_log_internal(newspa, "split", NULL,
7166 	    "from pool %s", spa_name(spa));
7167 
7168 	kmem_free(vml, children * sizeof (vdev_t *));
7169 
7170 	/* if we're not going to mount the filesystems in userland, export */
7171 	if (exp)
7172 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
7173 		    B_FALSE, B_FALSE);
7174 
7175 	return (error);
7176 
7177 out:
7178 	spa_unload(newspa);
7179 	spa_deactivate(newspa);
7180 	spa_remove(newspa);
7181 
7182 	txg = spa_vdev_config_enter(spa);
7183 
7184 	/* re-online all offlined disks */
7185 	for (c = 0; c < children; c++) {
7186 		if (vml[c] != NULL)
7187 			vml[c]->vdev_offline = B_FALSE;
7188 	}
7189 
7190 	/* restart initializing or trimming disks as necessary */
7191 	spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
7192 	spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
7193 	spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
7194 
7195 	vdev_reopen(spa->spa_root_vdev);
7196 
7197 	nvlist_free(spa->spa_config_splitting);
7198 	spa->spa_config_splitting = NULL;
7199 	(void) spa_vdev_exit(spa, NULL, txg, error);
7200 
7201 	kmem_free(vml, children * sizeof (vdev_t *));
7202 	return (error);
7203 }
7204 
7205 /*
7206  * Find any device that's done replacing, or a vdev marked 'unspare' that's
7207  * currently spared, so we can detach it.
7208  */
7209 static vdev_t *
7210 spa_vdev_resilver_done_hunt(vdev_t *vd)
7211 {
7212 	vdev_t *newvd, *oldvd;
7213 
7214 	for (int c = 0; c < vd->vdev_children; c++) {
7215 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
7216 		if (oldvd != NULL)
7217 			return (oldvd);
7218 	}
7219 
7220 	/*
7221 	 * Check for a completed replacement.  We always consider the first
7222 	 * vdev in the list to be the oldest vdev, and the last one to be
7223 	 * the newest (see spa_vdev_attach() for how that works).  In
7224 	 * the case where the newest vdev is faulted, we will not automatically
7225 	 * remove it after a resilver completes.  This is OK as it will require
7226 	 * user intervention to determine which disk the admin wishes to keep.
7227 	 */
7228 	if (vd->vdev_ops == &vdev_replacing_ops) {
7229 		ASSERT(vd->vdev_children > 1);
7230 
7231 		newvd = vd->vdev_child[vd->vdev_children - 1];
7232 		oldvd = vd->vdev_child[0];
7233 
7234 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
7235 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
7236 		    !vdev_dtl_required(oldvd))
7237 			return (oldvd);
7238 	}
7239 
7240 	/*
7241 	 * Check for a completed resilver with the 'unspare' flag set.
7242 	 * Also potentially update faulted state.
7243 	 */
7244 	if (vd->vdev_ops == &vdev_spare_ops) {
7245 		vdev_t *first = vd->vdev_child[0];
7246 		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
7247 
7248 		if (last->vdev_unspare) {
7249 			oldvd = first;
7250 			newvd = last;
7251 		} else if (first->vdev_unspare) {
7252 			oldvd = last;
7253 			newvd = first;
7254 		} else {
7255 			oldvd = NULL;
7256 		}
7257 
7258 		if (oldvd != NULL &&
7259 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
7260 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
7261 		    !vdev_dtl_required(oldvd))
7262 			return (oldvd);
7263 
7264 		vdev_propagate_state(vd);
7265 
7266 		/*
7267 		 * If there are more than two spares attached to a disk,
7268 		 * and those spares are not required, then we want to
7269 		 * attempt to free them up now so that they can be used
7270 		 * by other pools.  Once we're back down to a single
7271 		 * disk+spare, we stop removing them.
7272 		 */
7273 		if (vd->vdev_children > 2) {
7274 			newvd = vd->vdev_child[1];
7275 
7276 			if (newvd->vdev_isspare && last->vdev_isspare &&
7277 			    vdev_dtl_empty(last, DTL_MISSING) &&
7278 			    vdev_dtl_empty(last, DTL_OUTAGE) &&
7279 			    !vdev_dtl_required(newvd))
7280 				return (newvd);
7281 		}
7282 	}
7283 
7284 	return (NULL);
7285 }
7286 
7287 static void
7288 spa_vdev_resilver_done(spa_t *spa)
7289 {
7290 	vdev_t *vd, *pvd, *ppvd;
7291 	uint64_t guid, sguid, pguid, ppguid;
7292 
7293 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7294 
7295 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
7296 		pvd = vd->vdev_parent;
7297 		ppvd = pvd->vdev_parent;
7298 		guid = vd->vdev_guid;
7299 		pguid = pvd->vdev_guid;
7300 		ppguid = ppvd->vdev_guid;
7301 		sguid = 0;
7302 		/*
7303 		 * If we have just finished replacing a hot spared device, then
7304 		 * we need to detach the parent's first child (the original hot
7305 		 * spare) as well.
7306 		 */
7307 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
7308 		    ppvd->vdev_children == 2) {
7309 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
7310 			sguid = ppvd->vdev_child[1]->vdev_guid;
7311 		}
7312 		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
7313 
7314 		spa_config_exit(spa, SCL_ALL, FTAG);
7315 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
7316 			return;
7317 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
7318 			return;
7319 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7320 	}
7321 
7322 	spa_config_exit(spa, SCL_ALL, FTAG);
7323 }
7324 
7325 /*
7326  * Update the stored path or FRU for this vdev.
7327  */
7328 int
7329 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
7330     boolean_t ispath)
7331 {
7332 	vdev_t *vd;
7333 	boolean_t sync = B_FALSE;
7334 
7335 	ASSERT(spa_writeable(spa));
7336 
7337 	spa_vdev_state_enter(spa, SCL_ALL);
7338 
7339 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
7340 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
7341 
7342 	if (!vd->vdev_ops->vdev_op_leaf)
7343 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
7344 
7345 	if (ispath) {
7346 		if (strcmp(value, vd->vdev_path) != 0) {
7347 			spa_strfree(vd->vdev_path);
7348 			vd->vdev_path = spa_strdup(value);
7349 			sync = B_TRUE;
7350 		}
7351 	} else {
7352 		if (vd->vdev_fru == NULL) {
7353 			vd->vdev_fru = spa_strdup(value);
7354 			sync = B_TRUE;
7355 		} else if (strcmp(value, vd->vdev_fru) != 0) {
7356 			spa_strfree(vd->vdev_fru);
7357 			vd->vdev_fru = spa_strdup(value);
7358 			sync = B_TRUE;
7359 		}
7360 	}
7361 
7362 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
7363 }
7364 
7365 int
7366 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
7367 {
7368 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
7369 }
7370 
7371 int
7372 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
7373 {
7374 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
7375 }
7376 
7377 /*
7378  * ==========================================================================
7379  * SPA Scanning
7380  * ==========================================================================
7381  */
7382 int
7383 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
7384 {
7385 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
7386 
7387 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
7388 		return (SET_ERROR(EBUSY));
7389 
7390 	return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
7391 }
7392 
7393 int
7394 spa_scan_stop(spa_t *spa)
7395 {
7396 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
7397 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
7398 		return (SET_ERROR(EBUSY));
7399 	return (dsl_scan_cancel(spa->spa_dsl_pool));
7400 }
7401 
7402 int
7403 spa_scan(spa_t *spa, pool_scan_func_t func)
7404 {
7405 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
7406 
7407 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
7408 		return (SET_ERROR(ENOTSUP));
7409 
7410 	if (func == POOL_SCAN_RESILVER &&
7411 	    !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
7412 		return (SET_ERROR(ENOTSUP));
7413 
7414 	/*
7415 	 * If a resilver was requested, but there is no DTL on a
7416 	 * writeable leaf device, we have nothing to do.
7417 	 */
7418 	if (func == POOL_SCAN_RESILVER &&
7419 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
7420 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
7421 		return (0);
7422 	}
7423 
7424 	return (dsl_scan(spa->spa_dsl_pool, func));
7425 }
7426 
7427 /*
7428  * ==========================================================================
7429  * SPA async task processing
7430  * ==========================================================================
7431  */
7432 
7433 static void
7434 spa_async_remove(spa_t *spa, vdev_t *vd)
7435 {
7436 	if (vd->vdev_remove_wanted) {
7437 		vd->vdev_remove_wanted = B_FALSE;
7438 		vd->vdev_delayed_close = B_FALSE;
7439 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
7440 
7441 		/*
7442 		 * We want to clear the stats, but we don't want to do a full
7443 		 * vdev_clear() as that will cause us to throw away
7444 		 * degraded/faulted state as well as attempt to reopen the
7445 		 * device, all of which is a waste.
7446 		 */
7447 		vd->vdev_stat.vs_read_errors = 0;
7448 		vd->vdev_stat.vs_write_errors = 0;
7449 		vd->vdev_stat.vs_checksum_errors = 0;
7450 
7451 		vdev_state_dirty(vd->vdev_top);
7452 	}
7453 
7454 	for (int c = 0; c < vd->vdev_children; c++)
7455 		spa_async_remove(spa, vd->vdev_child[c]);
7456 }
7457 
7458 static void
7459 spa_async_probe(spa_t *spa, vdev_t *vd)
7460 {
7461 	if (vd->vdev_probe_wanted) {
7462 		vd->vdev_probe_wanted = B_FALSE;
7463 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
7464 	}
7465 
7466 	for (int c = 0; c < vd->vdev_children; c++)
7467 		spa_async_probe(spa, vd->vdev_child[c]);
7468 }
7469 
7470 static void
7471 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
7472 {
7473 	sysevent_id_t eid;
7474 	nvlist_t *attr;
7475 	char *physpath;
7476 
7477 	if (!spa->spa_autoexpand)
7478 		return;
7479 
7480 	for (int c = 0; c < vd->vdev_children; c++) {
7481 		vdev_t *cvd = vd->vdev_child[c];
7482 		spa_async_autoexpand(spa, cvd);
7483 	}
7484 
7485 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
7486 		return;
7487 
7488 	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
7489 	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
7490 
7491 	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
7492 	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
7493 
7494 	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
7495 	    ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
7496 
7497 	nvlist_free(attr);
7498 	kmem_free(physpath, MAXPATHLEN);
7499 }
7500 
7501 static void
7502 spa_async_thread(void *arg)
7503 {
7504 	spa_t *spa = (spa_t *)arg;
7505 	dsl_pool_t *dp = spa->spa_dsl_pool;
7506 	int tasks;
7507 
7508 	ASSERT(spa->spa_sync_on);
7509 
7510 	mutex_enter(&spa->spa_async_lock);
7511 	tasks = spa->spa_async_tasks;
7512 	spa->spa_async_tasks = 0;
7513 	mutex_exit(&spa->spa_async_lock);
7514 
7515 	/*
7516 	 * See if the config needs to be updated.
7517 	 */
7518 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
7519 		uint64_t old_space, new_space;
7520 
7521 		mutex_enter(&spa_namespace_lock);
7522 		old_space = metaslab_class_get_space(spa_normal_class(spa));
7523 		old_space += metaslab_class_get_space(spa_special_class(spa));
7524 		old_space += metaslab_class_get_space(spa_dedup_class(spa));
7525 
7526 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
7527 
7528 		new_space = metaslab_class_get_space(spa_normal_class(spa));
7529 		new_space += metaslab_class_get_space(spa_special_class(spa));
7530 		new_space += metaslab_class_get_space(spa_dedup_class(spa));
7531 		mutex_exit(&spa_namespace_lock);
7532 
7533 		/*
7534 		 * If the pool grew as a result of the config update,
7535 		 * then log an internal history event.
7536 		 */
7537 		if (new_space != old_space) {
7538 			spa_history_log_internal(spa, "vdev online", NULL,
7539 			    "pool '%s' size: %llu(+%llu)",
7540 			    spa_name(spa), new_space, new_space - old_space);
7541 		}
7542 	}
7543 
7544 	/*
7545 	 * See if any devices need to be marked REMOVED.
7546 	 */
7547 	if (tasks & SPA_ASYNC_REMOVE) {
7548 		spa_vdev_state_enter(spa, SCL_NONE);
7549 		spa_async_remove(spa, spa->spa_root_vdev);
7550 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
7551 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
7552 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
7553 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
7554 		(void) spa_vdev_state_exit(spa, NULL, 0);
7555 	}
7556 
7557 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
7558 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7559 		spa_async_autoexpand(spa, spa->spa_root_vdev);
7560 		spa_config_exit(spa, SCL_CONFIG, FTAG);
7561 	}
7562 
7563 	/*
7564 	 * See if any devices need to be probed.
7565 	 */
7566 	if (tasks & SPA_ASYNC_PROBE) {
7567 		spa_vdev_state_enter(spa, SCL_NONE);
7568 		spa_async_probe(spa, spa->spa_root_vdev);
7569 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
7570 			spa_async_probe(spa, spa->spa_spares.sav_vdevs[i]);
7571 		(void) spa_vdev_state_exit(spa, NULL, 0);
7572 	}
7573 
7574 	/*
7575 	 * If any devices are done replacing, detach them.
7576 	 */
7577 	if (tasks & SPA_ASYNC_RESILVER_DONE)
7578 		spa_vdev_resilver_done(spa);
7579 
7580 	/*
7581 	 * Kick off a resilver.
7582 	 */
7583 	if (tasks & SPA_ASYNC_RESILVER &&
7584 	    (!dsl_scan_resilvering(dp) ||
7585 	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)))
7586 		dsl_resilver_restart(dp, 0);
7587 
7588 	if (tasks & SPA_ASYNC_INITIALIZE_RESTART) {
7589 		mutex_enter(&spa_namespace_lock);
7590 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7591 		vdev_initialize_restart(spa->spa_root_vdev);
7592 		spa_config_exit(spa, SCL_CONFIG, FTAG);
7593 		mutex_exit(&spa_namespace_lock);
7594 	}
7595 
7596 	if (tasks & SPA_ASYNC_TRIM_RESTART) {
7597 		mutex_enter(&spa_namespace_lock);
7598 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7599 		vdev_trim_restart(spa->spa_root_vdev);
7600 		spa_config_exit(spa, SCL_CONFIG, FTAG);
7601 		mutex_exit(&spa_namespace_lock);
7602 	}
7603 
7604 	if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) {
7605 		mutex_enter(&spa_namespace_lock);
7606 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7607 		vdev_autotrim_restart(spa);
7608 		spa_config_exit(spa, SCL_CONFIG, FTAG);
7609 		mutex_exit(&spa_namespace_lock);
7610 	}
7611 
7612 	/*
7613 	 * Let the world know that we're done.
7614 	 */
7615 	mutex_enter(&spa->spa_async_lock);
7616 	spa->spa_async_thread = NULL;
7617 	cv_broadcast(&spa->spa_async_cv);
7618 	mutex_exit(&spa->spa_async_lock);
7619 	thread_exit();
7620 }
7621 
7622 void
7623 spa_async_suspend(spa_t *spa)
7624 {
7625 	mutex_enter(&spa->spa_async_lock);
7626 	spa->spa_async_suspended++;
7627 	while (spa->spa_async_thread != NULL)
7628 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
7629 	mutex_exit(&spa->spa_async_lock);
7630 
7631 	spa_vdev_remove_suspend(spa);
7632 
7633 	zthr_t *condense_thread = spa->spa_condense_zthr;
7634 	if (condense_thread != NULL)
7635 		zthr_cancel(condense_thread);
7636 
7637 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
7638 	if (discard_thread != NULL)
7639 		zthr_cancel(discard_thread);
7640 }
7641 
7642 void
7643 spa_async_resume(spa_t *spa)
7644 {
7645 	mutex_enter(&spa->spa_async_lock);
7646 	ASSERT(spa->spa_async_suspended != 0);
7647 	spa->spa_async_suspended--;
7648 	mutex_exit(&spa->spa_async_lock);
7649 	spa_restart_removal(spa);
7650 
7651 	zthr_t *condense_thread = spa->spa_condense_zthr;
7652 	if (condense_thread != NULL)
7653 		zthr_resume(condense_thread);
7654 
7655 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
7656 	if (discard_thread != NULL)
7657 		zthr_resume(discard_thread);
7658 }
7659 
7660 static boolean_t
7661 spa_async_tasks_pending(spa_t *spa)
7662 {
7663 	uint_t non_config_tasks;
7664 	uint_t config_task;
7665 	boolean_t config_task_suspended;
7666 
7667 	non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
7668 	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
7669 	if (spa->spa_ccw_fail_time == 0) {
7670 		config_task_suspended = B_FALSE;
7671 	} else {
7672 		config_task_suspended =
7673 		    (gethrtime() - spa->spa_ccw_fail_time) <
7674 		    (zfs_ccw_retry_interval * NANOSEC);
7675 	}
7676 
7677 	return (non_config_tasks || (config_task && !config_task_suspended));
7678 }
7679 
7680 static void
7681 spa_async_dispatch(spa_t *spa)
7682 {
7683 	mutex_enter(&spa->spa_async_lock);
7684 	if (spa_async_tasks_pending(spa) &&
7685 	    !spa->spa_async_suspended &&
7686 	    spa->spa_async_thread == NULL &&
7687 	    rootdir != NULL)
7688 		spa->spa_async_thread = thread_create(NULL, 0,
7689 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
7690 	mutex_exit(&spa->spa_async_lock);
7691 }
7692 
7693 void
7694 spa_async_request(spa_t *spa, int task)
7695 {
7696 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
7697 	mutex_enter(&spa->spa_async_lock);
7698 	spa->spa_async_tasks |= task;
7699 	mutex_exit(&spa->spa_async_lock);
7700 }
7701 
7702 /*
7703  * ==========================================================================
7704  * SPA syncing routines
7705  * ==========================================================================
7706  */
7707 
7708 static int
7709 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
7710 {
7711 	bpobj_t *bpo = arg;
7712 	bpobj_enqueue(bpo, bp, tx);
7713 	return (0);
7714 }
7715 
7716 static int
7717 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
7718 {
7719 	zio_t *zio = arg;
7720 
7721 	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
7722 	    zio->io_flags));
7723 	return (0);
7724 }
7725 
7726 /*
7727  * Note: this simple function is not inlined to make it easier to dtrace the
7728  * amount of time spent syncing frees.
7729  */
7730 static void
7731 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
7732 {
7733 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
7734 	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
7735 	VERIFY(zio_wait(zio) == 0);
7736 }
7737 
7738 /*
7739  * Note: this simple function is not inlined to make it easier to dtrace the
7740  * amount of time spent syncing deferred frees.
7741  */
7742 static void
7743 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
7744 {
7745 	if (spa_sync_pass(spa) != 1)
7746 		return;
7747 
7748 	/*
7749 	 * Note:
7750 	 * If the log space map feature is active, we stop deferring
7751 	 * frees to the next TXG and therefore running this function
7752 	 * would be considered a no-op as spa_deferred_bpobj should
7753 	 * not have any entries.
7754 	 *
7755 	 * That said we run this function anyway (instead of returning
7756 	 * immediately) for the edge-case scenario where we just
7757 	 * activated the log space map feature in this TXG but we have
7758 	 * deferred frees from the previous TXG.
7759 	 */
7760 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
7761 	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
7762 	    spa_free_sync_cb, zio, tx), ==, 0);
7763 	VERIFY0(zio_wait(zio));
7764 }
7765 
7766 
7767 static void
7768 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
7769 {
7770 	char *packed = NULL;
7771 	size_t bufsize;
7772 	size_t nvsize = 0;
7773 	dmu_buf_t *db;
7774 
7775 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
7776 
7777 	/*
7778 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
7779 	 * information.  This avoids the dmu_buf_will_dirty() path and
7780 	 * saves us a pre-read to get data we don't actually care about.
7781 	 */
7782 	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
7783 	packed = kmem_alloc(bufsize, KM_SLEEP);
7784 
7785 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
7786 	    KM_SLEEP) == 0);
7787 	bzero(packed + nvsize, bufsize - nvsize);
7788 
7789 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
7790 
7791 	kmem_free(packed, bufsize);
7792 
7793 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
7794 	dmu_buf_will_dirty(db, tx);
7795 	*(uint64_t *)db->db_data = nvsize;
7796 	dmu_buf_rele(db, FTAG);
7797 }
7798 
7799 static void
7800 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
7801     const char *config, const char *entry)
7802 {
7803 	nvlist_t *nvroot;
7804 	nvlist_t **list;
7805 	int i;
7806 
7807 	if (!sav->sav_sync)
7808 		return;
7809 
7810 	/*
7811 	 * Update the MOS nvlist describing the list of available devices.
7812 	 * spa_validate_aux() will have already made sure this nvlist is
7813 	 * valid and the vdevs are labeled appropriately.
7814 	 */
7815 	if (sav->sav_object == 0) {
7816 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
7817 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
7818 		    sizeof (uint64_t), tx);
7819 		VERIFY(zap_update(spa->spa_meta_objset,
7820 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
7821 		    &sav->sav_object, tx) == 0);
7822 	}
7823 
7824 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
7825 	if (sav->sav_count == 0) {
7826 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
7827 	} else {
7828 		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
7829 		for (i = 0; i < sav->sav_count; i++)
7830 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
7831 			    B_FALSE, VDEV_CONFIG_L2CACHE);
7832 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
7833 		    sav->sav_count) == 0);
7834 		for (i = 0; i < sav->sav_count; i++)
7835 			nvlist_free(list[i]);
7836 		kmem_free(list, sav->sav_count * sizeof (void *));
7837 	}
7838 
7839 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
7840 	nvlist_free(nvroot);
7841 
7842 	sav->sav_sync = B_FALSE;
7843 }
7844 
7845 /*
7846  * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
7847  * The all-vdev ZAP must be empty.
7848  */
7849 static void
7850 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
7851 {
7852 	spa_t *spa = vd->vdev_spa;
7853 	if (vd->vdev_top_zap != 0) {
7854 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
7855 		    vd->vdev_top_zap, tx));
7856 	}
7857 	if (vd->vdev_leaf_zap != 0) {
7858 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
7859 		    vd->vdev_leaf_zap, tx));
7860 	}
7861 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
7862 		spa_avz_build(vd->vdev_child[i], avz, tx);
7863 	}
7864 }
7865 
7866 static void
7867 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
7868 {
7869 	nvlist_t *config;
7870 
7871 	/*
7872 	 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
7873 	 * its config may not be dirty but we still need to build per-vdev ZAPs.
7874 	 * Similarly, if the pool is being assembled (e.g. after a split), we
7875 	 * need to rebuild the AVZ although the config may not be dirty.
7876 	 */
7877 	if (list_is_empty(&spa->spa_config_dirty_list) &&
7878 	    spa->spa_avz_action == AVZ_ACTION_NONE)
7879 		return;
7880 
7881 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
7882 
7883 	ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
7884 	    spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
7885 	    spa->spa_all_vdev_zaps != 0);
7886 
7887 	if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
7888 		/* Make and build the new AVZ */
7889 		uint64_t new_avz = zap_create(spa->spa_meta_objset,
7890 		    DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
7891 		spa_avz_build(spa->spa_root_vdev, new_avz, tx);
7892 
7893 		/* Diff old AVZ with new one */
7894 		zap_cursor_t zc;
7895 		zap_attribute_t za;
7896 
7897 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
7898 		    spa->spa_all_vdev_zaps);
7899 		    zap_cursor_retrieve(&zc, &za) == 0;
7900 		    zap_cursor_advance(&zc)) {
7901 			uint64_t vdzap = za.za_first_integer;
7902 			if (zap_lookup_int(spa->spa_meta_objset, new_avz,
7903 			    vdzap) == ENOENT) {
7904 				/*
7905 				 * ZAP is listed in old AVZ but not in new one;
7906 				 * destroy it
7907 				 */
7908 				VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
7909 				    tx));
7910 			}
7911 		}
7912 
7913 		zap_cursor_fini(&zc);
7914 
7915 		/* Destroy the old AVZ */
7916 		VERIFY0(zap_destroy(spa->spa_meta_objset,
7917 		    spa->spa_all_vdev_zaps, tx));
7918 
7919 		/* Replace the old AVZ in the dir obj with the new one */
7920 		VERIFY0(zap_update(spa->spa_meta_objset,
7921 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
7922 		    sizeof (new_avz), 1, &new_avz, tx));
7923 
7924 		spa->spa_all_vdev_zaps = new_avz;
7925 	} else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
7926 		zap_cursor_t zc;
7927 		zap_attribute_t za;
7928 
7929 		/* Walk through the AVZ and destroy all listed ZAPs */
7930 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
7931 		    spa->spa_all_vdev_zaps);
7932 		    zap_cursor_retrieve(&zc, &za) == 0;
7933 		    zap_cursor_advance(&zc)) {
7934 			uint64_t zap = za.za_first_integer;
7935 			VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
7936 		}
7937 
7938 		zap_cursor_fini(&zc);
7939 
7940 		/* Destroy and unlink the AVZ itself */
7941 		VERIFY0(zap_destroy(spa->spa_meta_objset,
7942 		    spa->spa_all_vdev_zaps, tx));
7943 		VERIFY0(zap_remove(spa->spa_meta_objset,
7944 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
7945 		spa->spa_all_vdev_zaps = 0;
7946 	}
7947 
7948 	if (spa->spa_all_vdev_zaps == 0) {
7949 		spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
7950 		    DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
7951 		    DMU_POOL_VDEV_ZAP_MAP, tx);
7952 	}
7953 	spa->spa_avz_action = AVZ_ACTION_NONE;
7954 
7955 	/* Create ZAPs for vdevs that don't have them. */
7956 	vdev_construct_zaps(spa->spa_root_vdev, tx);
7957 
7958 	config = spa_config_generate(spa, spa->spa_root_vdev,
7959 	    dmu_tx_get_txg(tx), B_FALSE);
7960 
7961 	/*
7962 	 * If we're upgrading the spa version then make sure that
7963 	 * the config object gets updated with the correct version.
7964 	 */
7965 	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
7966 		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
7967 		    spa->spa_uberblock.ub_version);
7968 
7969 	spa_config_exit(spa, SCL_STATE, FTAG);
7970 
7971 	nvlist_free(spa->spa_config_syncing);
7972 	spa->spa_config_syncing = config;
7973 
7974 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
7975 }
7976 
7977 static void
7978 spa_sync_version(void *arg, dmu_tx_t *tx)
7979 {
7980 	uint64_t *versionp = arg;
7981 	uint64_t version = *versionp;
7982 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
7983 
7984 	/*
7985 	 * Setting the version is special cased when first creating the pool.
7986 	 */
7987 	ASSERT(tx->tx_txg != TXG_INITIAL);
7988 
7989 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
7990 	ASSERT(version >= spa_version(spa));
7991 
7992 	spa->spa_uberblock.ub_version = version;
7993 	vdev_config_dirty(spa->spa_root_vdev);
7994 	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
7995 }
7996 
7997 /*
7998  * Set zpool properties.
7999  */
8000 static void
8001 spa_sync_props(void *arg, dmu_tx_t *tx)
8002 {
8003 	nvlist_t *nvp = arg;
8004 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
8005 	objset_t *mos = spa->spa_meta_objset;
8006 	nvpair_t *elem = NULL;
8007 
8008 	mutex_enter(&spa->spa_props_lock);
8009 
8010 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
8011 		uint64_t intval;
8012 		char *strval, *fname;
8013 		zpool_prop_t prop;
8014 		const char *propname;
8015 		zprop_type_t proptype;
8016 		spa_feature_t fid;
8017 
8018 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
8019 		case ZPOOL_PROP_INVAL:
8020 			/*
8021 			 * We checked this earlier in spa_prop_validate().
8022 			 */
8023 			ASSERT(zpool_prop_feature(nvpair_name(elem)));
8024 
8025 			fname = strchr(nvpair_name(elem), '@') + 1;
8026 			VERIFY0(zfeature_lookup_name(fname, &fid));
8027 
8028 			spa_feature_enable(spa, fid, tx);
8029 			spa_history_log_internal(spa, "set", tx,
8030 			    "%s=enabled", nvpair_name(elem));
8031 			break;
8032 
8033 		case ZPOOL_PROP_VERSION:
8034 			intval = fnvpair_value_uint64(elem);
8035 			/*
8036 			 * The version is synced seperatly before other
8037 			 * properties and should be correct by now.
8038 			 */
8039 			ASSERT3U(spa_version(spa), >=, intval);
8040 			break;
8041 
8042 		case ZPOOL_PROP_ALTROOT:
8043 			/*
8044 			 * 'altroot' is a non-persistent property. It should
8045 			 * have been set temporarily at creation or import time.
8046 			 */
8047 			ASSERT(spa->spa_root != NULL);
8048 			break;
8049 
8050 		case ZPOOL_PROP_READONLY:
8051 		case ZPOOL_PROP_CACHEFILE:
8052 			/*
8053 			 * 'readonly' and 'cachefile' are also non-persisitent
8054 			 * properties.
8055 			 */
8056 			break;
8057 		case ZPOOL_PROP_COMMENT:
8058 			strval = fnvpair_value_string(elem);
8059 			if (spa->spa_comment != NULL)
8060 				spa_strfree(spa->spa_comment);
8061 			spa->spa_comment = spa_strdup(strval);
8062 			/*
8063 			 * We need to dirty the configuration on all the vdevs
8064 			 * so that their labels get updated.  It's unnecessary
8065 			 * to do this for pool creation since the vdev's
8066 			 * configuratoin has already been dirtied.
8067 			 */
8068 			if (tx->tx_txg != TXG_INITIAL)
8069 				vdev_config_dirty(spa->spa_root_vdev);
8070 			spa_history_log_internal(spa, "set", tx,
8071 			    "%s=%s", nvpair_name(elem), strval);
8072 			break;
8073 		default:
8074 			/*
8075 			 * Set pool property values in the poolprops mos object.
8076 			 */
8077 			if (spa->spa_pool_props_object == 0) {
8078 				spa->spa_pool_props_object =
8079 				    zap_create_link(mos, DMU_OT_POOL_PROPS,
8080 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
8081 				    tx);
8082 			}
8083 
8084 			/* normalize the property name */
8085 			propname = zpool_prop_to_name(prop);
8086 			proptype = zpool_prop_get_type(prop);
8087 
8088 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
8089 				ASSERT(proptype == PROP_TYPE_STRING);
8090 				strval = fnvpair_value_string(elem);
8091 				VERIFY0(zap_update(mos,
8092 				    spa->spa_pool_props_object, propname,
8093 				    1, strlen(strval) + 1, strval, tx));
8094 				spa_history_log_internal(spa, "set", tx,
8095 				    "%s=%s", nvpair_name(elem), strval);
8096 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
8097 				intval = fnvpair_value_uint64(elem);
8098 
8099 				if (proptype == PROP_TYPE_INDEX) {
8100 					const char *unused;
8101 					VERIFY0(zpool_prop_index_to_string(
8102 					    prop, intval, &unused));
8103 				}
8104 				VERIFY0(zap_update(mos,
8105 				    spa->spa_pool_props_object, propname,
8106 				    8, 1, &intval, tx));
8107 				spa_history_log_internal(spa, "set", tx,
8108 				    "%s=%lld", nvpair_name(elem), intval);
8109 			} else {
8110 				ASSERT(0); /* not allowed */
8111 			}
8112 
8113 			switch (prop) {
8114 			case ZPOOL_PROP_DELEGATION:
8115 				spa->spa_delegation = intval;
8116 				break;
8117 			case ZPOOL_PROP_BOOTFS:
8118 				spa->spa_bootfs = intval;
8119 				break;
8120 			case ZPOOL_PROP_FAILUREMODE:
8121 				spa->spa_failmode = intval;
8122 				break;
8123 			case ZPOOL_PROP_AUTOTRIM:
8124 				spa->spa_autotrim = intval;
8125 				spa_async_request(spa,
8126 				    SPA_ASYNC_AUTOTRIM_RESTART);
8127 				break;
8128 			case ZPOOL_PROP_AUTOEXPAND:
8129 				spa->spa_autoexpand = intval;
8130 				if (tx->tx_txg != TXG_INITIAL)
8131 					spa_async_request(spa,
8132 					    SPA_ASYNC_AUTOEXPAND);
8133 				break;
8134 			case ZPOOL_PROP_MULTIHOST:
8135 				spa->spa_multihost = intval;
8136 				break;
8137 			case ZPOOL_PROP_DEDUPDITTO:
8138 				spa->spa_dedup_ditto = intval;
8139 				break;
8140 			default:
8141 				break;
8142 			}
8143 		}
8144 
8145 	}
8146 
8147 	mutex_exit(&spa->spa_props_lock);
8148 }
8149 
8150 /*
8151  * Perform one-time upgrade on-disk changes.  spa_version() does not
8152  * reflect the new version this txg, so there must be no changes this
8153  * txg to anything that the upgrade code depends on after it executes.
8154  * Therefore this must be called after dsl_pool_sync() does the sync
8155  * tasks.
8156  */
8157 static void
8158 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
8159 {
8160 	if (spa_sync_pass(spa) != 1)
8161 		return;
8162 
8163 	dsl_pool_t *dp = spa->spa_dsl_pool;
8164 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
8165 
8166 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
8167 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
8168 		dsl_pool_create_origin(dp, tx);
8169 
8170 		/* Keeping the origin open increases spa_minref */
8171 		spa->spa_minref += 3;
8172 	}
8173 
8174 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
8175 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
8176 		dsl_pool_upgrade_clones(dp, tx);
8177 	}
8178 
8179 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
8180 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
8181 		dsl_pool_upgrade_dir_clones(dp, tx);
8182 
8183 		/* Keeping the freedir open increases spa_minref */
8184 		spa->spa_minref += 3;
8185 	}
8186 
8187 	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
8188 	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
8189 		spa_feature_create_zap_objects(spa, tx);
8190 	}
8191 
8192 	/*
8193 	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
8194 	 * when possibility to use lz4 compression for metadata was added
8195 	 * Old pools that have this feature enabled must be upgraded to have
8196 	 * this feature active
8197 	 */
8198 	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
8199 		boolean_t lz4_en = spa_feature_is_enabled(spa,
8200 		    SPA_FEATURE_LZ4_COMPRESS);
8201 		boolean_t lz4_ac = spa_feature_is_active(spa,
8202 		    SPA_FEATURE_LZ4_COMPRESS);
8203 
8204 		if (lz4_en && !lz4_ac)
8205 			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
8206 	}
8207 
8208 	/*
8209 	 * If we haven't written the salt, do so now.  Note that the
8210 	 * feature may not be activated yet, but that's fine since
8211 	 * the presence of this ZAP entry is backwards compatible.
8212 	 */
8213 	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
8214 	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
8215 		VERIFY0(zap_add(spa->spa_meta_objset,
8216 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
8217 		    sizeof (spa->spa_cksum_salt.zcs_bytes),
8218 		    spa->spa_cksum_salt.zcs_bytes, tx));
8219 	}
8220 
8221 	rrw_exit(&dp->dp_config_rwlock, FTAG);
8222 }
8223 
8224 static void
8225 vdev_indirect_state_sync_verify(vdev_t *vd)
8226 {
8227 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
8228 	vdev_indirect_births_t *vib = vd->vdev_indirect_births;
8229 
8230 	if (vd->vdev_ops == &vdev_indirect_ops) {
8231 		ASSERT(vim != NULL);
8232 		ASSERT(vib != NULL);
8233 	}
8234 
8235 	if (vdev_obsolete_sm_object(vd) != 0) {
8236 		ASSERT(vd->vdev_obsolete_sm != NULL);
8237 		ASSERT(vd->vdev_removing ||
8238 		    vd->vdev_ops == &vdev_indirect_ops);
8239 		ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
8240 		ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
8241 
8242 		ASSERT3U(vdev_obsolete_sm_object(vd), ==,
8243 		    space_map_object(vd->vdev_obsolete_sm));
8244 		ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
8245 		    space_map_allocated(vd->vdev_obsolete_sm));
8246 	}
8247 	ASSERT(vd->vdev_obsolete_segments != NULL);
8248 
8249 	/*
8250 	 * Since frees / remaps to an indirect vdev can only
8251 	 * happen in syncing context, the obsolete segments
8252 	 * tree must be empty when we start syncing.
8253 	 */
8254 	ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
8255 }
8256 
8257 /*
8258  * Set the top-level vdev's max queue depth. Evaluate each top-level's
8259  * async write queue depth in case it changed. The max queue depth will
8260  * not change in the middle of syncing out this txg.
8261  */
8262 static void
8263 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa)
8264 {
8265 	ASSERT(spa_writeable(spa));
8266 
8267 	vdev_t *rvd = spa->spa_root_vdev;
8268 	uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
8269 	    zfs_vdev_queue_depth_pct / 100;
8270 	metaslab_class_t *normal = spa_normal_class(spa);
8271 	metaslab_class_t *special = spa_special_class(spa);
8272 	metaslab_class_t *dedup = spa_dedup_class(spa);
8273 
8274 	uint64_t slots_per_allocator = 0;
8275 	for (int c = 0; c < rvd->vdev_children; c++) {
8276 		vdev_t *tvd = rvd->vdev_child[c];
8277 
8278 		metaslab_group_t *mg = tvd->vdev_mg;
8279 		if (mg == NULL || !metaslab_group_initialized(mg))
8280 			continue;
8281 
8282 		metaslab_class_t *mc = mg->mg_class;
8283 		if (mc != normal && mc != special && mc != dedup)
8284 			continue;
8285 
8286 		/*
8287 		 * It is safe to do a lock-free check here because only async
8288 		 * allocations look at mg_max_alloc_queue_depth, and async
8289 		 * allocations all happen from spa_sync().
8290 		 */
8291 		for (int i = 0; i < spa->spa_alloc_count; i++)
8292 			ASSERT0(zfs_refcount_count(
8293 			    &(mg->mg_alloc_queue_depth[i])));
8294 		mg->mg_max_alloc_queue_depth = max_queue_depth;
8295 
8296 		for (int i = 0; i < spa->spa_alloc_count; i++) {
8297 			mg->mg_cur_max_alloc_queue_depth[i] =
8298 			    zfs_vdev_def_queue_depth;
8299 		}
8300 		slots_per_allocator += zfs_vdev_def_queue_depth;
8301 	}
8302 
8303 	for (int i = 0; i < spa->spa_alloc_count; i++) {
8304 		ASSERT0(zfs_refcount_count(&normal->mc_alloc_slots[i]));
8305 		ASSERT0(zfs_refcount_count(&special->mc_alloc_slots[i]));
8306 		ASSERT0(zfs_refcount_count(&dedup->mc_alloc_slots[i]));
8307 		normal->mc_alloc_max_slots[i] = slots_per_allocator;
8308 		special->mc_alloc_max_slots[i] = slots_per_allocator;
8309 		dedup->mc_alloc_max_slots[i] = slots_per_allocator;
8310 	}
8311 	normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
8312 	special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
8313 	dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
8314 }
8315 
8316 static void
8317 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx)
8318 {
8319 	ASSERT(spa_writeable(spa));
8320 
8321 	vdev_t *rvd = spa->spa_root_vdev;
8322 	for (int c = 0; c < rvd->vdev_children; c++) {
8323 		vdev_t *vd = rvd->vdev_child[c];
8324 		vdev_indirect_state_sync_verify(vd);
8325 
8326 		if (vdev_indirect_should_condense(vd)) {
8327 			spa_condense_indirect_start_sync(vd, tx);
8328 			break;
8329 		}
8330 	}
8331 }
8332 
8333 static void
8334 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx)
8335 {
8336 	objset_t *mos = spa->spa_meta_objset;
8337 	dsl_pool_t *dp = spa->spa_dsl_pool;
8338 	uint64_t txg = tx->tx_txg;
8339 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
8340 
8341 	do {
8342 		int pass = ++spa->spa_sync_pass;
8343 
8344 		spa_sync_config_object(spa, tx);
8345 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
8346 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
8347 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
8348 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
8349 		spa_errlog_sync(spa, txg);
8350 		dsl_pool_sync(dp, txg);
8351 
8352 		if (pass < zfs_sync_pass_deferred_free ||
8353 		    spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
8354 			/*
8355 			 * If the log space map feature is active we don't
8356 			 * care about deferred frees and the deferred bpobj
8357 			 * as the log space map should effectively have the
8358 			 * same results (i.e. appending only to one object).
8359 			 */
8360 			spa_sync_frees(spa, free_bpl, tx);
8361 		} else {
8362 			/*
8363 			 * We can not defer frees in pass 1, because
8364 			 * we sync the deferred frees later in pass 1.
8365 			 */
8366 			ASSERT3U(pass, >, 1);
8367 			bplist_iterate(free_bpl, bpobj_enqueue_cb,
8368 			    &spa->spa_deferred_bpobj, tx);
8369 		}
8370 
8371 		ddt_sync(spa, txg);
8372 		dsl_scan_sync(dp, tx);
8373 		svr_sync(spa, tx);
8374 		spa_sync_upgrades(spa, tx);
8375 
8376 		spa_flush_metaslabs(spa, tx);
8377 
8378 		vdev_t *vd = NULL;
8379 		while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
8380 		    != NULL)
8381 			vdev_sync(vd, txg);
8382 
8383 		/*
8384 		 * Note: We need to check if the MOS is dirty because we could
8385 		 * have marked the MOS dirty without updating the uberblock
8386 		 * (e.g. if we have sync tasks but no dirty user data). We need
8387 		 * to check the uberblock's rootbp because it is updated if we
8388 		 * have synced out dirty data (though in this case the MOS will
8389 		 * most likely also be dirty due to second order effects, we
8390 		 * don't want to rely on that here).
8391 		 */
8392 		if (pass == 1 &&
8393 		    spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
8394 		    !dmu_objset_is_dirty(mos, txg)) {
8395 			/*
8396 			 * Nothing changed on the first pass, therefore this
8397 			 * TXG is a no-op. Avoid syncing deferred frees, so
8398 			 * that we can keep this TXG as a no-op.
8399 			 */
8400 			ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
8401 			ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
8402 			ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
8403 			ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg));
8404 			break;
8405 		}
8406 
8407 		spa_sync_deferred_frees(spa, tx);
8408 	} while (dmu_objset_is_dirty(mos, txg));
8409 }
8410 
8411 /*
8412  * Rewrite the vdev configuration (which includes the uberblock) to
8413  * commit the transaction group.
8414  *
8415  * If there are no dirty vdevs, we sync the uberblock to a few random
8416  * top-level vdevs that are known to be visible in the config cache
8417  * (see spa_vdev_add() for a complete description). If there *are* dirty
8418  * vdevs, sync the uberblock to all vdevs.
8419  */
8420 static void
8421 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx)
8422 {
8423 	vdev_t *rvd = spa->spa_root_vdev;
8424 	uint64_t txg = tx->tx_txg;
8425 
8426 	for (;;) {
8427 		int error = 0;
8428 
8429 		/*
8430 		 * We hold SCL_STATE to prevent vdev open/close/etc.
8431 		 * while we're attempting to write the vdev labels.
8432 		 */
8433 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8434 
8435 		if (list_is_empty(&spa->spa_config_dirty_list)) {
8436 			vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
8437 			int svdcount = 0;
8438 			int children = rvd->vdev_children;
8439 			int c0 = spa_get_random(children);
8440 
8441 			for (int c = 0; c < children; c++) {
8442 				vdev_t *vd =
8443 				    rvd->vdev_child[(c0 + c) % children];
8444 
8445 				/* Stop when revisiting the first vdev */
8446 				if (c > 0 && svd[0] == vd)
8447 					break;
8448 
8449 				if (vd->vdev_ms_array == 0 ||
8450 				    vd->vdev_islog ||
8451 				    !vdev_is_concrete(vd))
8452 					continue;
8453 
8454 				svd[svdcount++] = vd;
8455 				if (svdcount == SPA_SYNC_MIN_VDEVS)
8456 					break;
8457 			}
8458 			error = vdev_config_sync(svd, svdcount, txg);
8459 		} else {
8460 			error = vdev_config_sync(rvd->vdev_child,
8461 			    rvd->vdev_children, txg);
8462 		}
8463 
8464 		if (error == 0)
8465 			spa->spa_last_synced_guid = rvd->vdev_guid;
8466 
8467 		spa_config_exit(spa, SCL_STATE, FTAG);
8468 
8469 		if (error == 0)
8470 			break;
8471 		zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
8472 		zio_resume_wait(spa);
8473 	}
8474 }
8475 
8476 /*
8477  * Sync the specified transaction group.  New blocks may be dirtied as
8478  * part of the process, so we iterate until it converges.
8479  */
8480 void
8481 spa_sync(spa_t *spa, uint64_t txg)
8482 {
8483 	vdev_t *vd = NULL;
8484 
8485 	VERIFY(spa_writeable(spa));
8486 
8487 	/*
8488 	 * Wait for i/os issued in open context that need to complete
8489 	 * before this txg syncs.
8490 	 */
8491 	(void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]);
8492 	spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL,
8493 	    ZIO_FLAG_CANFAIL);
8494 
8495 	/*
8496 	 * Lock out configuration changes.
8497 	 */
8498 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8499 
8500 	spa->spa_syncing_txg = txg;
8501 	spa->spa_sync_pass = 0;
8502 
8503 	for (int i = 0; i < spa->spa_alloc_count; i++) {
8504 		mutex_enter(&spa->spa_alloc_locks[i]);
8505 		VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i]));
8506 		mutex_exit(&spa->spa_alloc_locks[i]);
8507 	}
8508 
8509 	/*
8510 	 * If there are any pending vdev state changes, convert them
8511 	 * into config changes that go out with this transaction group.
8512 	 */
8513 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8514 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
8515 		/*
8516 		 * We need the write lock here because, for aux vdevs,
8517 		 * calling vdev_config_dirty() modifies sav_config.
8518 		 * This is ugly and will become unnecessary when we
8519 		 * eliminate the aux vdev wart by integrating all vdevs
8520 		 * into the root vdev tree.
8521 		 */
8522 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8523 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
8524 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
8525 			vdev_state_clean(vd);
8526 			vdev_config_dirty(vd);
8527 		}
8528 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8529 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
8530 	}
8531 	spa_config_exit(spa, SCL_STATE, FTAG);
8532 
8533 	dsl_pool_t *dp = spa->spa_dsl_pool;
8534 	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
8535 
8536 	spa->spa_sync_starttime = gethrtime();
8537 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
8538 	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
8539 
8540 	/*
8541 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
8542 	 * set spa_deflate if we have no raid-z vdevs.
8543 	 */
8544 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
8545 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
8546 		vdev_t *rvd = spa->spa_root_vdev;
8547 
8548 		int i;
8549 		for (i = 0; i < rvd->vdev_children; i++) {
8550 			vd = rvd->vdev_child[i];
8551 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
8552 				break;
8553 		}
8554 		if (i == rvd->vdev_children) {
8555 			spa->spa_deflate = TRUE;
8556 			VERIFY0(zap_add(spa->spa_meta_objset,
8557 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
8558 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
8559 		}
8560 	}
8561 
8562 	spa_sync_adjust_vdev_max_queue_depth(spa);
8563 
8564 	spa_sync_condense_indirect(spa, tx);
8565 
8566 	spa_sync_iterate_to_convergence(spa, tx);
8567 
8568 #ifdef ZFS_DEBUG
8569 	if (!list_is_empty(&spa->spa_config_dirty_list)) {
8570 		/*
8571 		 * Make sure that the number of ZAPs for all the vdevs matches
8572 		 * the number of ZAPs in the per-vdev ZAP list. This only gets
8573 		 * called if the config is dirty; otherwise there may be
8574 		 * outstanding AVZ operations that weren't completed in
8575 		 * spa_sync_config_object.
8576 		 */
8577 		uint64_t all_vdev_zap_entry_count;
8578 		ASSERT0(zap_count(spa->spa_meta_objset,
8579 		    spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
8580 		ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
8581 		    all_vdev_zap_entry_count);
8582 	}
8583 #endif
8584 
8585 	if (spa->spa_vdev_removal != NULL) {
8586 		ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
8587 	}
8588 
8589 	spa_sync_rewrite_vdev_config(spa, tx);
8590 	dmu_tx_commit(tx);
8591 
8592 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
8593 
8594 	/*
8595 	 * Clear the dirty config list.
8596 	 */
8597 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
8598 		vdev_config_clean(vd);
8599 
8600 	/*
8601 	 * Now that the new config has synced transactionally,
8602 	 * let it become visible to the config cache.
8603 	 */
8604 	if (spa->spa_config_syncing != NULL) {
8605 		spa_config_set(spa, spa->spa_config_syncing);
8606 		spa->spa_config_txg = txg;
8607 		spa->spa_config_syncing = NULL;
8608 	}
8609 
8610 	dsl_pool_sync_done(dp, txg);
8611 
8612 	for (int i = 0; i < spa->spa_alloc_count; i++) {
8613 		mutex_enter(&spa->spa_alloc_locks[i]);
8614 		VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i]));
8615 		mutex_exit(&spa->spa_alloc_locks[i]);
8616 	}
8617 
8618 	/*
8619 	 * Update usable space statistics.
8620 	 */
8621 	while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
8622 	    != NULL)
8623 		vdev_sync_done(vd, txg);
8624 
8625 	metaslab_class_evict_old(spa->spa_normal_class, txg);
8626 	metaslab_class_evict_old(spa->spa_log_class, txg);
8627 
8628 	spa_sync_close_syncing_log_sm(spa);
8629 
8630 	spa_update_dspace(spa);
8631 
8632 	/*
8633 	 * It had better be the case that we didn't dirty anything
8634 	 * since vdev_config_sync().
8635 	 */
8636 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
8637 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
8638 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
8639 
8640 	while (zfs_pause_spa_sync)
8641 		delay(1);
8642 
8643 	spa->spa_sync_pass = 0;
8644 
8645 	/*
8646 	 * Update the last synced uberblock here. We want to do this at
8647 	 * the end of spa_sync() so that consumers of spa_last_synced_txg()
8648 	 * will be guaranteed that all the processing associated with
8649 	 * that txg has been completed.
8650 	 */
8651 	spa->spa_ubsync = spa->spa_uberblock;
8652 	spa_config_exit(spa, SCL_CONFIG, FTAG);
8653 
8654 	spa_handle_ignored_writes(spa);
8655 
8656 	/* Mark unused spares as needing a health check. */
8657 	if (spa_spare_poll_interval_seconds != 0 &&
8658 	    NSEC2SEC(gethrtime() - spa->spa_spares_last_polled) >
8659 	    spa_spare_poll_interval_seconds) {
8660 		spa_spare_poll(spa);
8661 		spa->spa_spares_last_polled = gethrtime();
8662 	}
8663 
8664 	/*
8665 	 * If any async tasks have been requested, kick them off.
8666 	 */
8667 	spa_async_dispatch(spa);
8668 }
8669 
8670 /*
8671  * Sync all pools.  We don't want to hold the namespace lock across these
8672  * operations, so we take a reference on the spa_t and drop the lock during the
8673  * sync.
8674  */
8675 void
8676 spa_sync_allpools(void)
8677 {
8678 	spa_t *spa = NULL;
8679 	mutex_enter(&spa_namespace_lock);
8680 	while ((spa = spa_next(spa)) != NULL) {
8681 		if (spa_state(spa) != POOL_STATE_ACTIVE ||
8682 		    !spa_writeable(spa) || spa_suspended(spa))
8683 			continue;
8684 		spa_open_ref(spa, FTAG);
8685 		mutex_exit(&spa_namespace_lock);
8686 		txg_wait_synced(spa_get_dsl(spa), 0);
8687 		mutex_enter(&spa_namespace_lock);
8688 		spa_close(spa, FTAG);
8689 	}
8690 	mutex_exit(&spa_namespace_lock);
8691 }
8692 
8693 /*
8694  * ==========================================================================
8695  * Miscellaneous routines
8696  * ==========================================================================
8697  */
8698 
8699 /*
8700  * Remove all pools in the system.
8701  */
8702 void
8703 spa_evict_all(void)
8704 {
8705 	spa_t *spa;
8706 
8707 	/*
8708 	 * Remove all cached state.  All pools should be closed now,
8709 	 * so every spa in the AVL tree should be unreferenced.
8710 	 */
8711 	mutex_enter(&spa_namespace_lock);
8712 	while ((spa = spa_next(NULL)) != NULL) {
8713 		/*
8714 		 * Stop async tasks.  The async thread may need to detach
8715 		 * a device that's been replaced, which requires grabbing
8716 		 * spa_namespace_lock, so we must drop it here.
8717 		 */
8718 		spa_open_ref(spa, FTAG);
8719 		mutex_exit(&spa_namespace_lock);
8720 		spa_async_suspend(spa);
8721 		mutex_enter(&spa_namespace_lock);
8722 		spa_close(spa, FTAG);
8723 
8724 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
8725 			spa_unload(spa);
8726 			spa_deactivate(spa);
8727 		}
8728 		spa_remove(spa);
8729 	}
8730 	mutex_exit(&spa_namespace_lock);
8731 }
8732 
8733 vdev_t *
8734 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
8735 {
8736 	vdev_t *vd;
8737 	int i;
8738 
8739 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
8740 		return (vd);
8741 
8742 	if (aux) {
8743 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
8744 			vd = spa->spa_l2cache.sav_vdevs[i];
8745 			if (vd->vdev_guid == guid)
8746 				return (vd);
8747 		}
8748 
8749 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
8750 			vd = spa->spa_spares.sav_vdevs[i];
8751 			if (vd->vdev_guid == guid)
8752 				return (vd);
8753 		}
8754 	}
8755 
8756 	return (NULL);
8757 }
8758 
8759 void
8760 spa_upgrade(spa_t *spa, uint64_t version)
8761 {
8762 	ASSERT(spa_writeable(spa));
8763 
8764 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
8765 
8766 	/*
8767 	 * This should only be called for a non-faulted pool, and since a
8768 	 * future version would result in an unopenable pool, this shouldn't be
8769 	 * possible.
8770 	 */
8771 	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
8772 	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
8773 
8774 	spa->spa_uberblock.ub_version = version;
8775 	vdev_config_dirty(spa->spa_root_vdev);
8776 
8777 	spa_config_exit(spa, SCL_ALL, FTAG);
8778 
8779 	txg_wait_synced(spa_get_dsl(spa), 0);
8780 }
8781 
8782 boolean_t
8783 spa_has_spare(spa_t *spa, uint64_t guid)
8784 {
8785 	int i;
8786 	uint64_t spareguid;
8787 	spa_aux_vdev_t *sav = &spa->spa_spares;
8788 
8789 	for (i = 0; i < sav->sav_count; i++)
8790 		if (sav->sav_vdevs[i]->vdev_guid == guid)
8791 			return (B_TRUE);
8792 
8793 	for (i = 0; i < sav->sav_npending; i++) {
8794 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
8795 		    &spareguid) == 0 && spareguid == guid)
8796 			return (B_TRUE);
8797 	}
8798 
8799 	return (B_FALSE);
8800 }
8801 
8802 /*
8803  * Check if a pool has an active shared spare device.
8804  * Note: reference count of an active spare is 2, as a spare and as a replace
8805  */
8806 static boolean_t
8807 spa_has_active_shared_spare(spa_t *spa)
8808 {
8809 	int i, refcnt;
8810 	uint64_t pool;
8811 	spa_aux_vdev_t *sav = &spa->spa_spares;
8812 
8813 	for (i = 0; i < sav->sav_count; i++) {
8814 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
8815 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
8816 		    refcnt > 2)
8817 			return (B_TRUE);
8818 	}
8819 
8820 	return (B_FALSE);
8821 }
8822 
8823 uint64_t
8824 spa_total_metaslabs(spa_t *spa)
8825 {
8826 	vdev_t *rvd = spa->spa_root_vdev;
8827 	uint64_t m = 0;
8828 
8829 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
8830 		vdev_t *vd = rvd->vdev_child[c];
8831 		if (!vdev_is_concrete(vd))
8832 			continue;
8833 		m += vd->vdev_ms_count;
8834 	}
8835 	return (m);
8836 }
8837 
8838 sysevent_t *
8839 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
8840 {
8841 	sysevent_t		*ev = NULL;
8842 #ifdef _KERNEL
8843 	sysevent_attr_list_t	*attr = NULL;
8844 	sysevent_value_t	value;
8845 
8846 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
8847 	    SE_SLEEP);
8848 	ASSERT(ev != NULL);
8849 
8850 	value.value_type = SE_DATA_TYPE_STRING;
8851 	value.value.sv_string = spa_name(spa);
8852 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
8853 		goto done;
8854 
8855 	value.value_type = SE_DATA_TYPE_UINT64;
8856 	value.value.sv_uint64 = spa_guid(spa);
8857 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
8858 		goto done;
8859 
8860 	if (vd) {
8861 		value.value_type = SE_DATA_TYPE_UINT64;
8862 		value.value.sv_uint64 = vd->vdev_guid;
8863 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
8864 		    SE_SLEEP) != 0)
8865 			goto done;
8866 
8867 		if (vd->vdev_path) {
8868 			value.value_type = SE_DATA_TYPE_STRING;
8869 			value.value.sv_string = vd->vdev_path;
8870 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
8871 			    &value, SE_SLEEP) != 0)
8872 				goto done;
8873 		}
8874 	}
8875 
8876 	if (hist_nvl != NULL) {
8877 		fnvlist_merge((nvlist_t *)attr, hist_nvl);
8878 	}
8879 
8880 	if (sysevent_attach_attributes(ev, attr) != 0)
8881 		goto done;
8882 	attr = NULL;
8883 
8884 done:
8885 	if (attr)
8886 		sysevent_free_attr(attr);
8887 
8888 #endif
8889 	return (ev);
8890 }
8891 
8892 void
8893 spa_event_post(sysevent_t *ev)
8894 {
8895 #ifdef _KERNEL
8896 	sysevent_id_t		eid;
8897 
8898 	(void) log_sysevent(ev, SE_SLEEP, &eid);
8899 	sysevent_free(ev);
8900 #endif
8901 }
8902 
8903 void
8904 spa_event_discard(sysevent_t *ev)
8905 {
8906 #ifdef _KERNEL
8907 	sysevent_free(ev);
8908 #endif
8909 }
8910 
8911 /*
8912  * Post a sysevent corresponding to the given event.  The 'name' must be one of
8913  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
8914  * filled in from the spa and (optionally) the vdev and history nvl.  This
8915  * doesn't do anything in the userland libzpool, as we don't want consumers to
8916  * misinterpret ztest or zdb as real changes.
8917  */
8918 void
8919 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
8920 {
8921 	spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
8922 }
8923