xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa.c (revision 9b088140)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
25  * Copyright (c) 2015, Nexenta Systems, Inc.  All rights reserved.
26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27  * Copyright 2013 Saso Kiselkov. All rights reserved.
28  * Copyright (c) 2014 Integros [integros.com]
29  * Copyright 2016 Toomas Soome <tsoome@me.com>
30  * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
31  * Copyright 2019 Joyent, Inc.
32  * Copyright (c) 2017, Intel Corporation.
33  * Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
34  * Copyright 2020 Joshua M. Clulow <josh@sysmgr.org>
35  */
36 
37 /*
38  * SPA: Storage Pool Allocator
39  *
40  * This file contains all the routines used when modifying on-disk SPA state.
41  * This includes opening, importing, destroying, exporting a pool, and syncing a
42  * pool.
43  */
44 
45 #include <sys/zfs_context.h>
46 #include <sys/fm/fs/zfs.h>
47 #include <sys/spa_impl.h>
48 #include <sys/zio.h>
49 #include <sys/zio_checksum.h>
50 #include <sys/dmu.h>
51 #include <sys/dmu_tx.h>
52 #include <sys/zap.h>
53 #include <sys/zil.h>
54 #include <sys/ddt.h>
55 #include <sys/vdev_impl.h>
56 #include <sys/vdev_removal.h>
57 #include <sys/vdev_indirect_mapping.h>
58 #include <sys/vdev_indirect_births.h>
59 #include <sys/vdev_initialize.h>
60 #include <sys/vdev_trim.h>
61 #include <sys/metaslab.h>
62 #include <sys/metaslab_impl.h>
63 #include <sys/mmp.h>
64 #include <sys/uberblock_impl.h>
65 #include <sys/txg.h>
66 #include <sys/avl.h>
67 #include <sys/bpobj.h>
68 #include <sys/dmu_traverse.h>
69 #include <sys/dmu_objset.h>
70 #include <sys/unique.h>
71 #include <sys/dsl_pool.h>
72 #include <sys/dsl_dataset.h>
73 #include <sys/dsl_dir.h>
74 #include <sys/dsl_prop.h>
75 #include <sys/dsl_synctask.h>
76 #include <sys/fs/zfs.h>
77 #include <sys/arc.h>
78 #include <sys/callb.h>
79 #include <sys/systeminfo.h>
80 #include <sys/spa_boot.h>
81 #include <sys/zfs_ioctl.h>
82 #include <sys/dsl_scan.h>
83 #include <sys/zfeature.h>
84 #include <sys/dsl_destroy.h>
85 #include <sys/abd.h>
86 
87 #ifdef	_KERNEL
88 #include <sys/bootprops.h>
89 #include <sys/callb.h>
90 #include <sys/cpupart.h>
91 #include <sys/pool.h>
92 #include <sys/sysdc.h>
93 #include <sys/zone.h>
94 #endif	/* _KERNEL */
95 
96 #include "zfs_prop.h"
97 #include "zfs_comutil.h"
98 
99 /*
100  * The interval, in seconds, at which failed configuration cache file writes
101  * should be retried.
102  */
103 int zfs_ccw_retry_interval = 300;
104 
105 typedef enum zti_modes {
106 	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
107 	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
108 	ZTI_MODE_NULL,			/* don't create a taskq */
109 	ZTI_NMODES
110 } zti_modes_t;
111 
112 #define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
113 #define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
114 #define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
115 
116 #define	ZTI_N(n)	ZTI_P(n, 1)
117 #define	ZTI_ONE		ZTI_N(1)
118 
119 typedef struct zio_taskq_info {
120 	zti_modes_t zti_mode;
121 	uint_t zti_value;
122 	uint_t zti_count;
123 } zio_taskq_info_t;
124 
125 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
126 	"issue", "issue_high", "intr", "intr_high"
127 };
128 
129 /*
130  * This table defines the taskq settings for each ZFS I/O type. When
131  * initializing a pool, we use this table to create an appropriately sized
132  * taskq. Some operations are low volume and therefore have a small, static
133  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
134  * macros. Other operations process a large amount of data; the ZTI_BATCH
135  * macro causes us to create a taskq oriented for throughput. Some operations
136  * are so high frequency and short-lived that the taskq itself can become a
137  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
138  * additional degree of parallelism specified by the number of threads per-
139  * taskq and the number of taskqs; when dispatching an event in this case, the
140  * particular taskq is chosen at random.
141  *
142  * The different taskq priorities are to handle the different contexts (issue
143  * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
144  * need to be handled with minimum delay.
145  */
146 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
147 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
148 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
149 	{ ZTI_N(8),	ZTI_NULL,	ZTI_P(12, 8),	ZTI_NULL }, /* READ */
150 	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
151 	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
152 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
153 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
154 	{ ZTI_N(4),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* TRIM */
155 };
156 
157 static void spa_sync_version(void *arg, dmu_tx_t *tx);
158 static void spa_sync_props(void *arg, dmu_tx_t *tx);
159 static boolean_t spa_has_active_shared_spare(spa_t *spa);
160 static int spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport);
161 static void spa_vdev_resilver_done(spa_t *spa);
162 
163 uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
164 id_t		zio_taskq_psrset_bind = PS_NONE;
165 boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
166 uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
167 
168 boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
169 extern int	zfs_sync_pass_deferred_free;
170 
171 /*
172  * Report any spa_load_verify errors found, but do not fail spa_load.
173  * This is used by zdb to analyze non-idle pools.
174  */
175 boolean_t	spa_load_verify_dryrun = B_FALSE;
176 
177 /*
178  * This (illegal) pool name is used when temporarily importing a spa_t in order
179  * to get the vdev stats associated with the imported devices.
180  */
181 #define	TRYIMPORT_NAME	"$import"
182 
183 /*
184  * For debugging purposes: print out vdev tree during pool import.
185  */
186 boolean_t	spa_load_print_vdev_tree = B_FALSE;
187 
188 /*
189  * A non-zero value for zfs_max_missing_tvds means that we allow importing
190  * pools with missing top-level vdevs. This is strictly intended for advanced
191  * pool recovery cases since missing data is almost inevitable. Pools with
192  * missing devices can only be imported read-only for safety reasons, and their
193  * fail-mode will be automatically set to "continue".
194  *
195  * With 1 missing vdev we should be able to import the pool and mount all
196  * datasets. User data that was not modified after the missing device has been
197  * added should be recoverable. This means that snapshots created prior to the
198  * addition of that device should be completely intact.
199  *
200  * With 2 missing vdevs, some datasets may fail to mount since there are
201  * dataset statistics that are stored as regular metadata. Some data might be
202  * recoverable if those vdevs were added recently.
203  *
204  * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
205  * may be missing entirely. Chances of data recovery are very low. Note that
206  * there are also risks of performing an inadvertent rewind as we might be
207  * missing all the vdevs with the latest uberblocks.
208  */
209 uint64_t	zfs_max_missing_tvds = 0;
210 
211 /*
212  * The parameters below are similar to zfs_max_missing_tvds but are only
213  * intended for a preliminary open of the pool with an untrusted config which
214  * might be incomplete or out-dated.
215  *
216  * We are more tolerant for pools opened from a cachefile since we could have
217  * an out-dated cachefile where a device removal was not registered.
218  * We could have set the limit arbitrarily high but in the case where devices
219  * are really missing we would want to return the proper error codes; we chose
220  * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
221  * and we get a chance to retrieve the trusted config.
222  */
223 uint64_t	zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
224 
225 /*
226  * In the case where config was assembled by scanning device paths (/dev/dsks
227  * by default) we are less tolerant since all the existing devices should have
228  * been detected and we want spa_load to return the right error codes.
229  */
230 uint64_t	zfs_max_missing_tvds_scan = 0;
231 
232 /*
233  * Interval in seconds at which to poll spare vdevs for health.
234  * Setting this to zero disables spare polling.
235  * Set to three hours by default.
236  */
237 uint_t		spa_spare_poll_interval_seconds = 60 * 60 * 3;
238 
239 /*
240  * Debugging aid that pauses spa_sync() towards the end.
241  */
242 boolean_t	zfs_pause_spa_sync = B_FALSE;
243 
244 /*
245  * ==========================================================================
246  * SPA properties routines
247  * ==========================================================================
248  */
249 
250 /*
251  * Add a (source=src, propname=propval) list to an nvlist.
252  */
253 static void
254 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
255     uint64_t intval, zprop_source_t src)
256 {
257 	const char *propname = zpool_prop_to_name(prop);
258 	nvlist_t *propval;
259 
260 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
261 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
262 
263 	if (strval != NULL)
264 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
265 	else
266 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
267 
268 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
269 	nvlist_free(propval);
270 }
271 
272 /*
273  * Get property values from the spa configuration.
274  */
275 static void
276 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
277 {
278 	vdev_t *rvd = spa->spa_root_vdev;
279 	dsl_pool_t *pool = spa->spa_dsl_pool;
280 	uint64_t size, alloc, cap, version;
281 	zprop_source_t src = ZPROP_SRC_NONE;
282 	spa_config_dirent_t *dp;
283 	metaslab_class_t *mc = spa_normal_class(spa);
284 
285 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
286 
287 	if (rvd != NULL) {
288 		alloc = metaslab_class_get_alloc(mc);
289 		alloc += metaslab_class_get_alloc(spa_special_class(spa));
290 		alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
291 
292 		size = metaslab_class_get_space(mc);
293 		size += metaslab_class_get_space(spa_special_class(spa));
294 		size += metaslab_class_get_space(spa_dedup_class(spa));
295 
296 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
297 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
298 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
299 		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
300 		    size - alloc, src);
301 		spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL,
302 		    spa->spa_checkpoint_info.sci_dspace, src);
303 
304 		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
305 		    metaslab_class_fragmentation(mc), src);
306 		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
307 		    metaslab_class_expandable_space(mc), src);
308 		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
309 		    (spa_mode(spa) == FREAD), src);
310 
311 		cap = (size == 0) ? 0 : (alloc * 100 / size);
312 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
313 
314 		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
315 		    ddt_get_pool_dedup_ratio(spa), src);
316 
317 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
318 		    rvd->vdev_state, src);
319 
320 		version = spa_version(spa);
321 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
322 			src = ZPROP_SRC_DEFAULT;
323 		else
324 			src = ZPROP_SRC_LOCAL;
325 		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
326 	}
327 
328 	if (pool != NULL) {
329 		/*
330 		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
331 		 * when opening pools before this version freedir will be NULL.
332 		 */
333 		if (pool->dp_free_dir != NULL) {
334 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
335 			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
336 			    src);
337 		} else {
338 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
339 			    NULL, 0, src);
340 		}
341 
342 		if (pool->dp_leak_dir != NULL) {
343 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
344 			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
345 			    src);
346 		} else {
347 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
348 			    NULL, 0, src);
349 		}
350 	}
351 
352 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
353 
354 	if (spa->spa_comment != NULL) {
355 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
356 		    0, ZPROP_SRC_LOCAL);
357 	}
358 
359 	if (spa->spa_root != NULL)
360 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
361 		    0, ZPROP_SRC_LOCAL);
362 
363 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
364 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
365 		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
366 	} else {
367 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
368 		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
369 	}
370 
371 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
372 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
373 		    DNODE_MAX_SIZE, ZPROP_SRC_NONE);
374 	} else {
375 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
376 		    DNODE_MIN_SIZE, ZPROP_SRC_NONE);
377 	}
378 
379 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
380 		if (dp->scd_path == NULL) {
381 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
382 			    "none", 0, ZPROP_SRC_LOCAL);
383 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
384 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
385 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
386 		}
387 	}
388 }
389 
390 /*
391  * Get zpool property values.
392  */
393 int
394 spa_prop_get(spa_t *spa, nvlist_t **nvp)
395 {
396 	objset_t *mos = spa->spa_meta_objset;
397 	zap_cursor_t zc;
398 	zap_attribute_t za;
399 	int err;
400 
401 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
402 
403 	mutex_enter(&spa->spa_props_lock);
404 
405 	/*
406 	 * Get properties from the spa config.
407 	 */
408 	spa_prop_get_config(spa, nvp);
409 
410 	/* If no pool property object, no more prop to get. */
411 	if (mos == NULL || spa->spa_pool_props_object == 0) {
412 		mutex_exit(&spa->spa_props_lock);
413 		return (0);
414 	}
415 
416 	/*
417 	 * Get properties from the MOS pool property object.
418 	 */
419 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
420 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
421 	    zap_cursor_advance(&zc)) {
422 		uint64_t intval = 0;
423 		char *strval = NULL;
424 		zprop_source_t src = ZPROP_SRC_DEFAULT;
425 		zpool_prop_t prop;
426 
427 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL)
428 			continue;
429 
430 		switch (za.za_integer_length) {
431 		case 8:
432 			/* integer property */
433 			if (za.za_first_integer !=
434 			    zpool_prop_default_numeric(prop))
435 				src = ZPROP_SRC_LOCAL;
436 
437 			if (prop == ZPOOL_PROP_BOOTFS) {
438 				dsl_pool_t *dp;
439 				dsl_dataset_t *ds = NULL;
440 
441 				dp = spa_get_dsl(spa);
442 				dsl_pool_config_enter(dp, FTAG);
443 				err = dsl_dataset_hold_obj(dp,
444 				    za.za_first_integer, FTAG, &ds);
445 				if (err != 0) {
446 					dsl_pool_config_exit(dp, FTAG);
447 					break;
448 				}
449 
450 				strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
451 				    KM_SLEEP);
452 				dsl_dataset_name(ds, strval);
453 				dsl_dataset_rele(ds, FTAG);
454 				dsl_pool_config_exit(dp, FTAG);
455 			} else {
456 				strval = NULL;
457 				intval = za.za_first_integer;
458 			}
459 
460 			spa_prop_add_list(*nvp, prop, strval, intval, src);
461 
462 			if (strval != NULL)
463 				kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
464 
465 			break;
466 
467 		case 1:
468 			/* string property */
469 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
470 			err = zap_lookup(mos, spa->spa_pool_props_object,
471 			    za.za_name, 1, za.za_num_integers, strval);
472 			if (err) {
473 				kmem_free(strval, za.za_num_integers);
474 				break;
475 			}
476 			spa_prop_add_list(*nvp, prop, strval, 0, src);
477 			kmem_free(strval, za.za_num_integers);
478 			break;
479 
480 		default:
481 			break;
482 		}
483 	}
484 	zap_cursor_fini(&zc);
485 	mutex_exit(&spa->spa_props_lock);
486 out:
487 	if (err && err != ENOENT) {
488 		nvlist_free(*nvp);
489 		*nvp = NULL;
490 		return (err);
491 	}
492 
493 	return (0);
494 }
495 
496 /*
497  * Validate the given pool properties nvlist and modify the list
498  * for the property values to be set.
499  */
500 static int
501 spa_prop_validate(spa_t *spa, nvlist_t *props)
502 {
503 	nvpair_t *elem;
504 	int error = 0, reset_bootfs = 0;
505 	uint64_t objnum = 0;
506 	boolean_t has_feature = B_FALSE;
507 
508 	elem = NULL;
509 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
510 		uint64_t intval;
511 		char *strval, *slash, *check, *fname;
512 		const char *propname = nvpair_name(elem);
513 		zpool_prop_t prop = zpool_name_to_prop(propname);
514 
515 		switch (prop) {
516 		case ZPOOL_PROP_INVAL:
517 			if (!zpool_prop_feature(propname)) {
518 				error = SET_ERROR(EINVAL);
519 				break;
520 			}
521 
522 			/*
523 			 * Sanitize the input.
524 			 */
525 			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
526 				error = SET_ERROR(EINVAL);
527 				break;
528 			}
529 
530 			if (nvpair_value_uint64(elem, &intval) != 0) {
531 				error = SET_ERROR(EINVAL);
532 				break;
533 			}
534 
535 			if (intval != 0) {
536 				error = SET_ERROR(EINVAL);
537 				break;
538 			}
539 
540 			fname = strchr(propname, '@') + 1;
541 			if (zfeature_lookup_name(fname, NULL) != 0) {
542 				error = SET_ERROR(EINVAL);
543 				break;
544 			}
545 
546 			has_feature = B_TRUE;
547 			break;
548 
549 		case ZPOOL_PROP_VERSION:
550 			error = nvpair_value_uint64(elem, &intval);
551 			if (!error &&
552 			    (intval < spa_version(spa) ||
553 			    intval > SPA_VERSION_BEFORE_FEATURES ||
554 			    has_feature))
555 				error = SET_ERROR(EINVAL);
556 			break;
557 
558 		case ZPOOL_PROP_DELEGATION:
559 		case ZPOOL_PROP_AUTOREPLACE:
560 		case ZPOOL_PROP_LISTSNAPS:
561 		case ZPOOL_PROP_AUTOEXPAND:
562 		case ZPOOL_PROP_AUTOTRIM:
563 			error = nvpair_value_uint64(elem, &intval);
564 			if (!error && intval > 1)
565 				error = SET_ERROR(EINVAL);
566 			break;
567 
568 		case ZPOOL_PROP_MULTIHOST:
569 			error = nvpair_value_uint64(elem, &intval);
570 			if (!error && intval > 1)
571 				error = SET_ERROR(EINVAL);
572 
573 			if (!error && !spa_get_hostid())
574 				error = SET_ERROR(ENOTSUP);
575 
576 			break;
577 
578 		case ZPOOL_PROP_BOOTFS:
579 			/*
580 			 * If the pool version is less than SPA_VERSION_BOOTFS,
581 			 * or the pool is still being created (version == 0),
582 			 * the bootfs property cannot be set.
583 			 */
584 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
585 				error = SET_ERROR(ENOTSUP);
586 				break;
587 			}
588 
589 			/*
590 			 * Make sure the vdev config is bootable
591 			 */
592 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
593 				error = SET_ERROR(ENOTSUP);
594 				break;
595 			}
596 
597 			reset_bootfs = 1;
598 
599 			error = nvpair_value_string(elem, &strval);
600 
601 			if (!error) {
602 				objset_t *os;
603 				uint64_t propval;
604 
605 				if (strval == NULL || strval[0] == '\0') {
606 					objnum = zpool_prop_default_numeric(
607 					    ZPOOL_PROP_BOOTFS);
608 					break;
609 				}
610 
611 				error = dmu_objset_hold(strval, FTAG, &os);
612 				if (error != 0)
613 					break;
614 
615 				/*
616 				 * Must be ZPL, and its property settings
617 				 * must be supported.
618 				 */
619 
620 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
621 					error = SET_ERROR(ENOTSUP);
622 				} else if ((error =
623 				    dsl_prop_get_int_ds(dmu_objset_ds(os),
624 				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
625 				    &propval)) == 0 &&
626 				    !BOOTFS_COMPRESS_VALID(propval)) {
627 					error = SET_ERROR(ENOTSUP);
628 				} else {
629 					objnum = dmu_objset_id(os);
630 				}
631 				dmu_objset_rele(os, FTAG);
632 			}
633 			break;
634 
635 		case ZPOOL_PROP_FAILUREMODE:
636 			error = nvpair_value_uint64(elem, &intval);
637 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
638 			    intval > ZIO_FAILURE_MODE_PANIC))
639 				error = SET_ERROR(EINVAL);
640 
641 			/*
642 			 * This is a special case which only occurs when
643 			 * the pool has completely failed. This allows
644 			 * the user to change the in-core failmode property
645 			 * without syncing it out to disk (I/Os might
646 			 * currently be blocked). We do this by returning
647 			 * EIO to the caller (spa_prop_set) to trick it
648 			 * into thinking we encountered a property validation
649 			 * error.
650 			 */
651 			if (!error && spa_suspended(spa)) {
652 				spa->spa_failmode = intval;
653 				error = SET_ERROR(EIO);
654 			}
655 			break;
656 
657 		case ZPOOL_PROP_CACHEFILE:
658 			if ((error = nvpair_value_string(elem, &strval)) != 0)
659 				break;
660 
661 			if (strval[0] == '\0')
662 				break;
663 
664 			if (strcmp(strval, "none") == 0)
665 				break;
666 
667 			if (strval[0] != '/') {
668 				error = SET_ERROR(EINVAL);
669 				break;
670 			}
671 
672 			slash = strrchr(strval, '/');
673 			ASSERT(slash != NULL);
674 
675 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
676 			    strcmp(slash, "/..") == 0)
677 				error = SET_ERROR(EINVAL);
678 			break;
679 
680 		case ZPOOL_PROP_COMMENT:
681 			if ((error = nvpair_value_string(elem, &strval)) != 0)
682 				break;
683 			for (check = strval; *check != '\0'; check++) {
684 				/*
685 				 * The kernel doesn't have an easy isprint()
686 				 * check.  For this kernel check, we merely
687 				 * check ASCII apart from DEL.  Fix this if
688 				 * there is an easy-to-use kernel isprint().
689 				 */
690 				if (*check >= 0x7f) {
691 					error = SET_ERROR(EINVAL);
692 					break;
693 				}
694 			}
695 			if (strlen(strval) > ZPROP_MAX_COMMENT)
696 				error = E2BIG;
697 			break;
698 
699 		case ZPOOL_PROP_DEDUPDITTO:
700 			if (spa_version(spa) < SPA_VERSION_DEDUP)
701 				error = SET_ERROR(ENOTSUP);
702 			else
703 				error = nvpair_value_uint64(elem, &intval);
704 			if (error == 0 &&
705 			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
706 				error = SET_ERROR(EINVAL);
707 			break;
708 		}
709 
710 		if (error)
711 			break;
712 	}
713 
714 	if (!error && reset_bootfs) {
715 		error = nvlist_remove(props,
716 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
717 
718 		if (!error) {
719 			error = nvlist_add_uint64(props,
720 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
721 		}
722 	}
723 
724 	return (error);
725 }
726 
727 void
728 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
729 {
730 	char *cachefile;
731 	spa_config_dirent_t *dp;
732 
733 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
734 	    &cachefile) != 0)
735 		return;
736 
737 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
738 	    KM_SLEEP);
739 
740 	if (cachefile[0] == '\0')
741 		dp->scd_path = spa_strdup(spa_config_path);
742 	else if (strcmp(cachefile, "none") == 0)
743 		dp->scd_path = NULL;
744 	else
745 		dp->scd_path = spa_strdup(cachefile);
746 
747 	list_insert_head(&spa->spa_config_list, dp);
748 	if (need_sync)
749 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
750 }
751 
752 int
753 spa_prop_set(spa_t *spa, nvlist_t *nvp)
754 {
755 	int error;
756 	nvpair_t *elem = NULL;
757 	boolean_t need_sync = B_FALSE;
758 
759 	if ((error = spa_prop_validate(spa, nvp)) != 0)
760 		return (error);
761 
762 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
763 		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
764 
765 		if (prop == ZPOOL_PROP_CACHEFILE ||
766 		    prop == ZPOOL_PROP_ALTROOT ||
767 		    prop == ZPOOL_PROP_READONLY)
768 			continue;
769 
770 		if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
771 			uint64_t ver;
772 
773 			if (prop == ZPOOL_PROP_VERSION) {
774 				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
775 			} else {
776 				ASSERT(zpool_prop_feature(nvpair_name(elem)));
777 				ver = SPA_VERSION_FEATURES;
778 				need_sync = B_TRUE;
779 			}
780 
781 			/* Save time if the version is already set. */
782 			if (ver == spa_version(spa))
783 				continue;
784 
785 			/*
786 			 * In addition to the pool directory object, we might
787 			 * create the pool properties object, the features for
788 			 * read object, the features for write object, or the
789 			 * feature descriptions object.
790 			 */
791 			error = dsl_sync_task(spa->spa_name, NULL,
792 			    spa_sync_version, &ver,
793 			    6, ZFS_SPACE_CHECK_RESERVED);
794 			if (error)
795 				return (error);
796 			continue;
797 		}
798 
799 		need_sync = B_TRUE;
800 		break;
801 	}
802 
803 	if (need_sync) {
804 		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
805 		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
806 	}
807 
808 	return (0);
809 }
810 
811 /*
812  * If the bootfs property value is dsobj, clear it.
813  */
814 void
815 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
816 {
817 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
818 		VERIFY(zap_remove(spa->spa_meta_objset,
819 		    spa->spa_pool_props_object,
820 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
821 		spa->spa_bootfs = 0;
822 	}
823 }
824 
825 /*ARGSUSED*/
826 static int
827 spa_change_guid_check(void *arg, dmu_tx_t *tx)
828 {
829 	uint64_t *newguid = arg;
830 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
831 	vdev_t *rvd = spa->spa_root_vdev;
832 	uint64_t vdev_state;
833 
834 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
835 		int error = (spa_has_checkpoint(spa)) ?
836 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
837 		return (SET_ERROR(error));
838 	}
839 
840 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
841 	vdev_state = rvd->vdev_state;
842 	spa_config_exit(spa, SCL_STATE, FTAG);
843 
844 	if (vdev_state != VDEV_STATE_HEALTHY)
845 		return (SET_ERROR(ENXIO));
846 
847 	ASSERT3U(spa_guid(spa), !=, *newguid);
848 
849 	return (0);
850 }
851 
852 static void
853 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
854 {
855 	uint64_t *newguid = arg;
856 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
857 	uint64_t oldguid;
858 	vdev_t *rvd = spa->spa_root_vdev;
859 
860 	oldguid = spa_guid(spa);
861 
862 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
863 	rvd->vdev_guid = *newguid;
864 	rvd->vdev_guid_sum += (*newguid - oldguid);
865 	vdev_config_dirty(rvd);
866 	spa_config_exit(spa, SCL_STATE, FTAG);
867 
868 	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
869 	    oldguid, *newguid);
870 }
871 
872 /*
873  * Change the GUID for the pool.  This is done so that we can later
874  * re-import a pool built from a clone of our own vdevs.  We will modify
875  * the root vdev's guid, our own pool guid, and then mark all of our
876  * vdevs dirty.  Note that we must make sure that all our vdevs are
877  * online when we do this, or else any vdevs that weren't present
878  * would be orphaned from our pool.  We are also going to issue a
879  * sysevent to update any watchers.
880  */
881 int
882 spa_change_guid(spa_t *spa)
883 {
884 	int error;
885 	uint64_t guid;
886 
887 	mutex_enter(&spa->spa_vdev_top_lock);
888 	mutex_enter(&spa_namespace_lock);
889 	guid = spa_generate_guid(NULL);
890 
891 	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
892 	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
893 
894 	if (error == 0) {
895 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
896 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
897 	}
898 
899 	mutex_exit(&spa_namespace_lock);
900 	mutex_exit(&spa->spa_vdev_top_lock);
901 
902 	return (error);
903 }
904 
905 /*
906  * ==========================================================================
907  * SPA state manipulation (open/create/destroy/import/export)
908  * ==========================================================================
909  */
910 
911 static int
912 spa_error_entry_compare(const void *a, const void *b)
913 {
914 	const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
915 	const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
916 	int ret;
917 
918 	ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
919 	    sizeof (zbookmark_phys_t));
920 
921 	return (TREE_ISIGN(ret));
922 }
923 
924 /*
925  * Utility function which retrieves copies of the current logs and
926  * re-initializes them in the process.
927  */
928 void
929 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
930 {
931 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
932 
933 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
934 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
935 
936 	avl_create(&spa->spa_errlist_scrub,
937 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
938 	    offsetof(spa_error_entry_t, se_avl));
939 	avl_create(&spa->spa_errlist_last,
940 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
941 	    offsetof(spa_error_entry_t, se_avl));
942 }
943 
944 static void
945 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
946 {
947 	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
948 	enum zti_modes mode = ztip->zti_mode;
949 	uint_t value = ztip->zti_value;
950 	uint_t count = ztip->zti_count;
951 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
952 	char name[32];
953 	uint_t flags = 0;
954 	boolean_t batch = B_FALSE;
955 
956 	if (mode == ZTI_MODE_NULL) {
957 		tqs->stqs_count = 0;
958 		tqs->stqs_taskq = NULL;
959 		return;
960 	}
961 
962 	ASSERT3U(count, >, 0);
963 
964 	tqs->stqs_count = count;
965 	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
966 
967 	switch (mode) {
968 	case ZTI_MODE_FIXED:
969 		ASSERT3U(value, >=, 1);
970 		value = MAX(value, 1);
971 		break;
972 
973 	case ZTI_MODE_BATCH:
974 		batch = B_TRUE;
975 		flags |= TASKQ_THREADS_CPU_PCT;
976 		value = zio_taskq_batch_pct;
977 		break;
978 
979 	default:
980 		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
981 		    "spa_activate()",
982 		    zio_type_name[t], zio_taskq_types[q], mode, value);
983 		break;
984 	}
985 
986 	for (uint_t i = 0; i < count; i++) {
987 		taskq_t *tq;
988 
989 		if (count > 1) {
990 			(void) snprintf(name, sizeof (name), "%s_%s_%u",
991 			    zio_type_name[t], zio_taskq_types[q], i);
992 		} else {
993 			(void) snprintf(name, sizeof (name), "%s_%s",
994 			    zio_type_name[t], zio_taskq_types[q]);
995 		}
996 
997 		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
998 			if (batch)
999 				flags |= TASKQ_DC_BATCH;
1000 
1001 			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
1002 			    spa->spa_proc, zio_taskq_basedc, flags);
1003 		} else {
1004 			pri_t pri = maxclsyspri;
1005 			/*
1006 			 * The write issue taskq can be extremely CPU
1007 			 * intensive.  Run it at slightly lower priority
1008 			 * than the other taskqs.
1009 			 */
1010 			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
1011 				pri--;
1012 
1013 			tq = taskq_create_proc(name, value, pri, 50,
1014 			    INT_MAX, spa->spa_proc, flags);
1015 		}
1016 
1017 		tqs->stqs_taskq[i] = tq;
1018 	}
1019 }
1020 
1021 static void
1022 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1023 {
1024 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1025 
1026 	if (tqs->stqs_taskq == NULL) {
1027 		ASSERT0(tqs->stqs_count);
1028 		return;
1029 	}
1030 
1031 	for (uint_t i = 0; i < tqs->stqs_count; i++) {
1032 		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1033 		taskq_destroy(tqs->stqs_taskq[i]);
1034 	}
1035 
1036 	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1037 	tqs->stqs_taskq = NULL;
1038 }
1039 
1040 /*
1041  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1042  * Note that a type may have multiple discrete taskqs to avoid lock contention
1043  * on the taskq itself. In that case we choose which taskq at random by using
1044  * the low bits of gethrtime().
1045  */
1046 void
1047 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1048     task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
1049 {
1050 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1051 	taskq_t *tq;
1052 
1053 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
1054 	ASSERT3U(tqs->stqs_count, !=, 0);
1055 
1056 	if (tqs->stqs_count == 1) {
1057 		tq = tqs->stqs_taskq[0];
1058 	} else {
1059 		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
1060 	}
1061 
1062 	taskq_dispatch_ent(tq, func, arg, flags, ent);
1063 }
1064 
1065 static void
1066 spa_create_zio_taskqs(spa_t *spa)
1067 {
1068 	for (int t = 0; t < ZIO_TYPES; t++) {
1069 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1070 			spa_taskqs_init(spa, t, q);
1071 		}
1072 	}
1073 }
1074 
1075 #ifdef _KERNEL
1076 static void
1077 spa_thread(void *arg)
1078 {
1079 	callb_cpr_t cprinfo;
1080 
1081 	spa_t *spa = arg;
1082 	user_t *pu = PTOU(curproc);
1083 
1084 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1085 	    spa->spa_name);
1086 
1087 	ASSERT(curproc != &p0);
1088 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1089 	    "zpool-%s", spa->spa_name);
1090 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1091 
1092 	/* bind this thread to the requested psrset */
1093 	if (zio_taskq_psrset_bind != PS_NONE) {
1094 		pool_lock();
1095 		mutex_enter(&cpu_lock);
1096 		mutex_enter(&pidlock);
1097 		mutex_enter(&curproc->p_lock);
1098 
1099 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1100 		    0, NULL, NULL) == 0)  {
1101 			curthread->t_bind_pset = zio_taskq_psrset_bind;
1102 		} else {
1103 			cmn_err(CE_WARN,
1104 			    "Couldn't bind process for zfs pool \"%s\" to "
1105 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1106 		}
1107 
1108 		mutex_exit(&curproc->p_lock);
1109 		mutex_exit(&pidlock);
1110 		mutex_exit(&cpu_lock);
1111 		pool_unlock();
1112 	}
1113 
1114 	if (zio_taskq_sysdc) {
1115 		sysdc_thread_enter(curthread, 100, 0);
1116 	}
1117 
1118 	spa->spa_proc = curproc;
1119 	spa->spa_did = curthread->t_did;
1120 
1121 	spa_create_zio_taskqs(spa);
1122 
1123 	mutex_enter(&spa->spa_proc_lock);
1124 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1125 
1126 	spa->spa_proc_state = SPA_PROC_ACTIVE;
1127 	cv_broadcast(&spa->spa_proc_cv);
1128 
1129 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1130 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1131 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1132 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1133 
1134 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1135 	spa->spa_proc_state = SPA_PROC_GONE;
1136 	spa->spa_proc = &p0;
1137 	cv_broadcast(&spa->spa_proc_cv);
1138 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1139 
1140 	mutex_enter(&curproc->p_lock);
1141 	lwp_exit();
1142 }
1143 #endif
1144 
1145 /*
1146  * Activate an uninitialized pool.
1147  */
1148 static void
1149 spa_activate(spa_t *spa, int mode)
1150 {
1151 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1152 
1153 	spa->spa_state = POOL_STATE_ACTIVE;
1154 	spa->spa_mode = mode;
1155 
1156 	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1157 	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1158 	spa->spa_special_class = metaslab_class_create(spa, zfs_metaslab_ops);
1159 	spa->spa_dedup_class = metaslab_class_create(spa, zfs_metaslab_ops);
1160 
1161 	/* Try to create a covering process */
1162 	mutex_enter(&spa->spa_proc_lock);
1163 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1164 	ASSERT(spa->spa_proc == &p0);
1165 	spa->spa_did = 0;
1166 
1167 	/* Only create a process if we're going to be around a while. */
1168 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1169 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1170 		    NULL, 0) == 0) {
1171 			spa->spa_proc_state = SPA_PROC_CREATED;
1172 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1173 				cv_wait(&spa->spa_proc_cv,
1174 				    &spa->spa_proc_lock);
1175 			}
1176 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1177 			ASSERT(spa->spa_proc != &p0);
1178 			ASSERT(spa->spa_did != 0);
1179 		} else {
1180 #ifdef _KERNEL
1181 			cmn_err(CE_WARN,
1182 			    "Couldn't create process for zfs pool \"%s\"\n",
1183 			    spa->spa_name);
1184 #endif
1185 		}
1186 	}
1187 	mutex_exit(&spa->spa_proc_lock);
1188 
1189 	/* If we didn't create a process, we need to create our taskqs. */
1190 	if (spa->spa_proc == &p0) {
1191 		spa_create_zio_taskqs(spa);
1192 	}
1193 
1194 	for (size_t i = 0; i < TXG_SIZE; i++) {
1195 		spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL,
1196 		    ZIO_FLAG_CANFAIL);
1197 	}
1198 
1199 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1200 	    offsetof(vdev_t, vdev_config_dirty_node));
1201 	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1202 	    offsetof(objset_t, os_evicting_node));
1203 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1204 	    offsetof(vdev_t, vdev_state_dirty_node));
1205 
1206 	txg_list_create(&spa->spa_vdev_txg_list, spa,
1207 	    offsetof(struct vdev, vdev_txg_node));
1208 
1209 	avl_create(&spa->spa_errlist_scrub,
1210 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1211 	    offsetof(spa_error_entry_t, se_avl));
1212 	avl_create(&spa->spa_errlist_last,
1213 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1214 	    offsetof(spa_error_entry_t, se_avl));
1215 
1216 	spa_keystore_init(&spa->spa_keystore);
1217 
1218 	/*
1219 	 * The taskq to upgrade datasets in this pool. Currently used by
1220 	 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA.
1221 	 */
1222 	spa->spa_upgrade_taskq = taskq_create("z_upgrade", boot_ncpus,
1223 	    minclsyspri, 1, INT_MAX, TASKQ_DYNAMIC);
1224 }
1225 
1226 /*
1227  * Opposite of spa_activate().
1228  */
1229 static void
1230 spa_deactivate(spa_t *spa)
1231 {
1232 	ASSERT(spa->spa_sync_on == B_FALSE);
1233 	ASSERT(spa->spa_dsl_pool == NULL);
1234 	ASSERT(spa->spa_root_vdev == NULL);
1235 	ASSERT(spa->spa_async_zio_root == NULL);
1236 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1237 
1238 	spa_evicting_os_wait(spa);
1239 
1240 	if (spa->spa_upgrade_taskq) {
1241 		taskq_destroy(spa->spa_upgrade_taskq);
1242 		spa->spa_upgrade_taskq = NULL;
1243 	}
1244 
1245 	txg_list_destroy(&spa->spa_vdev_txg_list);
1246 
1247 	list_destroy(&spa->spa_config_dirty_list);
1248 	list_destroy(&spa->spa_evicting_os_list);
1249 	list_destroy(&spa->spa_state_dirty_list);
1250 
1251 	for (int t = 0; t < ZIO_TYPES; t++) {
1252 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1253 			spa_taskqs_fini(spa, t, q);
1254 		}
1255 	}
1256 
1257 	for (size_t i = 0; i < TXG_SIZE; i++) {
1258 		ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1259 		VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1260 		spa->spa_txg_zio[i] = NULL;
1261 	}
1262 
1263 	metaslab_class_destroy(spa->spa_normal_class);
1264 	spa->spa_normal_class = NULL;
1265 
1266 	metaslab_class_destroy(spa->spa_log_class);
1267 	spa->spa_log_class = NULL;
1268 
1269 	metaslab_class_destroy(spa->spa_special_class);
1270 	spa->spa_special_class = NULL;
1271 
1272 	metaslab_class_destroy(spa->spa_dedup_class);
1273 	spa->spa_dedup_class = NULL;
1274 
1275 	/*
1276 	 * If this was part of an import or the open otherwise failed, we may
1277 	 * still have errors left in the queues.  Empty them just in case.
1278 	 */
1279 	spa_errlog_drain(spa);
1280 	avl_destroy(&spa->spa_errlist_scrub);
1281 	avl_destroy(&spa->spa_errlist_last);
1282 
1283 	spa_keystore_fini(&spa->spa_keystore);
1284 
1285 	spa->spa_state = POOL_STATE_UNINITIALIZED;
1286 
1287 	mutex_enter(&spa->spa_proc_lock);
1288 	if (spa->spa_proc_state != SPA_PROC_NONE) {
1289 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1290 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1291 		cv_broadcast(&spa->spa_proc_cv);
1292 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1293 			ASSERT(spa->spa_proc != &p0);
1294 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1295 		}
1296 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1297 		spa->spa_proc_state = SPA_PROC_NONE;
1298 	}
1299 	ASSERT(spa->spa_proc == &p0);
1300 	mutex_exit(&spa->spa_proc_lock);
1301 
1302 	/*
1303 	 * We want to make sure spa_thread() has actually exited the ZFS
1304 	 * module, so that the module can't be unloaded out from underneath
1305 	 * it.
1306 	 */
1307 	if (spa->spa_did != 0) {
1308 		thread_join(spa->spa_did);
1309 		spa->spa_did = 0;
1310 	}
1311 }
1312 
1313 /*
1314  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1315  * will create all the necessary vdevs in the appropriate layout, with each vdev
1316  * in the CLOSED state.  This will prep the pool before open/creation/import.
1317  * All vdev validation is done by the vdev_alloc() routine.
1318  */
1319 static int
1320 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1321     uint_t id, int atype)
1322 {
1323 	nvlist_t **child;
1324 	uint_t children;
1325 	int error;
1326 
1327 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1328 		return (error);
1329 
1330 	if ((*vdp)->vdev_ops->vdev_op_leaf)
1331 		return (0);
1332 
1333 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1334 	    &child, &children);
1335 
1336 	if (error == ENOENT)
1337 		return (0);
1338 
1339 	if (error) {
1340 		vdev_free(*vdp);
1341 		*vdp = NULL;
1342 		return (SET_ERROR(EINVAL));
1343 	}
1344 
1345 	for (int c = 0; c < children; c++) {
1346 		vdev_t *vd;
1347 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1348 		    atype)) != 0) {
1349 			vdev_free(*vdp);
1350 			*vdp = NULL;
1351 			return (error);
1352 		}
1353 	}
1354 
1355 	ASSERT(*vdp != NULL);
1356 
1357 	return (0);
1358 }
1359 
1360 static boolean_t
1361 spa_should_flush_logs_on_unload(spa_t *spa)
1362 {
1363 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1364 		return (B_FALSE);
1365 
1366 	if (!spa_writeable(spa))
1367 		return (B_FALSE);
1368 
1369 	if (!spa->spa_sync_on)
1370 		return (B_FALSE);
1371 
1372 	if (spa_state(spa) != POOL_STATE_EXPORTED)
1373 		return (B_FALSE);
1374 
1375 	if (zfs_keep_log_spacemaps_at_export)
1376 		return (B_FALSE);
1377 
1378 	return (B_TRUE);
1379 }
1380 
1381 /*
1382  * Opens a transaction that will set the flag that will instruct
1383  * spa_sync to attempt to flush all the metaslabs for that txg.
1384  */
1385 static void
1386 spa_unload_log_sm_flush_all(spa_t *spa)
1387 {
1388 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1389 
1390 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1391 
1392 	ASSERT3U(spa->spa_log_flushall_txg, ==, 0);
1393 	spa->spa_log_flushall_txg = dmu_tx_get_txg(tx);
1394 
1395 	dmu_tx_commit(tx);
1396 	txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg);
1397 }
1398 
1399 static void
1400 spa_unload_log_sm_metadata(spa_t *spa)
1401 {
1402 	void *cookie = NULL;
1403 	spa_log_sm_t *sls;
1404 
1405 	while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg,
1406 	    &cookie)) != NULL) {
1407 		VERIFY0(sls->sls_mscount);
1408 		kmem_free(sls, sizeof (spa_log_sm_t));
1409 	}
1410 
1411 	for (log_summary_entry_t *e = list_head(&spa->spa_log_summary);
1412 	    e != NULL; e = list_head(&spa->spa_log_summary)) {
1413 		VERIFY0(e->lse_mscount);
1414 		list_remove(&spa->spa_log_summary, e);
1415 		kmem_free(e, sizeof (log_summary_entry_t));
1416 	}
1417 
1418 	spa->spa_unflushed_stats.sus_nblocks = 0;
1419 	spa->spa_unflushed_stats.sus_memused = 0;
1420 	spa->spa_unflushed_stats.sus_blocklimit = 0;
1421 }
1422 
1423 /*
1424  * Opposite of spa_load().
1425  */
1426 static void
1427 spa_unload(spa_t *spa)
1428 {
1429 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1430 	ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED);
1431 
1432 	spa_import_progress_remove(spa);
1433 	spa_load_note(spa, "UNLOADING");
1434 
1435 	/*
1436 	 * If the log space map feature is enabled and the pool is getting
1437 	 * exported (but not destroyed), we want to spend some time flushing
1438 	 * as many metaslabs as we can in an attempt to destroy log space
1439 	 * maps and save import time.
1440 	 */
1441 	if (spa_should_flush_logs_on_unload(spa))
1442 		spa_unload_log_sm_flush_all(spa);
1443 
1444 	/*
1445 	 * Stop async tasks.
1446 	 */
1447 	spa_async_suspend(spa);
1448 
1449 	if (spa->spa_root_vdev) {
1450 		vdev_t *root_vdev = spa->spa_root_vdev;
1451 		vdev_initialize_stop_all(root_vdev, VDEV_INITIALIZE_ACTIVE);
1452 		vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE);
1453 		vdev_autotrim_stop_all(spa);
1454 	}
1455 
1456 	/*
1457 	 * Stop syncing.
1458 	 */
1459 	if (spa->spa_sync_on) {
1460 		txg_sync_stop(spa->spa_dsl_pool);
1461 		spa->spa_sync_on = B_FALSE;
1462 	}
1463 
1464 	/*
1465 	 * This ensures that there is no async metaslab prefetching
1466 	 * while we attempt to unload the spa.
1467 	 */
1468 	if (spa->spa_root_vdev != NULL) {
1469 		for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++) {
1470 			vdev_t *vc = spa->spa_root_vdev->vdev_child[c];
1471 			if (vc->vdev_mg != NULL)
1472 				taskq_wait(vc->vdev_mg->mg_taskq);
1473 		}
1474 	}
1475 
1476 	if (spa->spa_mmp.mmp_thread)
1477 		mmp_thread_stop(spa);
1478 
1479 	/*
1480 	 * Wait for any outstanding async I/O to complete.
1481 	 */
1482 	if (spa->spa_async_zio_root != NULL) {
1483 		for (int i = 0; i < max_ncpus; i++)
1484 			(void) zio_wait(spa->spa_async_zio_root[i]);
1485 		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1486 		spa->spa_async_zio_root = NULL;
1487 	}
1488 
1489 	if (spa->spa_vdev_removal != NULL) {
1490 		spa_vdev_removal_destroy(spa->spa_vdev_removal);
1491 		spa->spa_vdev_removal = NULL;
1492 	}
1493 
1494 	if (spa->spa_condense_zthr != NULL) {
1495 		zthr_destroy(spa->spa_condense_zthr);
1496 		spa->spa_condense_zthr = NULL;
1497 	}
1498 
1499 	if (spa->spa_checkpoint_discard_zthr != NULL) {
1500 		zthr_destroy(spa->spa_checkpoint_discard_zthr);
1501 		spa->spa_checkpoint_discard_zthr = NULL;
1502 	}
1503 
1504 	spa_condense_fini(spa);
1505 
1506 	bpobj_close(&spa->spa_deferred_bpobj);
1507 
1508 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1509 
1510 	/*
1511 	 * Close all vdevs.
1512 	 */
1513 	if (spa->spa_root_vdev)
1514 		vdev_free(spa->spa_root_vdev);
1515 	ASSERT(spa->spa_root_vdev == NULL);
1516 
1517 	/*
1518 	 * Close the dsl pool.
1519 	 */
1520 	if (spa->spa_dsl_pool) {
1521 		dsl_pool_close(spa->spa_dsl_pool);
1522 		spa->spa_dsl_pool = NULL;
1523 		spa->spa_meta_objset = NULL;
1524 	}
1525 
1526 	ddt_unload(spa);
1527 	spa_unload_log_sm_metadata(spa);
1528 
1529 	/*
1530 	 * Drop and purge level 2 cache
1531 	 */
1532 	spa_l2cache_drop(spa);
1533 
1534 	for (int i = 0; i < spa->spa_spares.sav_count; i++)
1535 		vdev_free(spa->spa_spares.sav_vdevs[i]);
1536 	if (spa->spa_spares.sav_vdevs) {
1537 		kmem_free(spa->spa_spares.sav_vdevs,
1538 		    spa->spa_spares.sav_count * sizeof (void *));
1539 		spa->spa_spares.sav_vdevs = NULL;
1540 	}
1541 	if (spa->spa_spares.sav_config) {
1542 		nvlist_free(spa->spa_spares.sav_config);
1543 		spa->spa_spares.sav_config = NULL;
1544 	}
1545 	spa->spa_spares.sav_count = 0;
1546 
1547 	for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1548 		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1549 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1550 	}
1551 	if (spa->spa_l2cache.sav_vdevs) {
1552 		kmem_free(spa->spa_l2cache.sav_vdevs,
1553 		    spa->spa_l2cache.sav_count * sizeof (void *));
1554 		spa->spa_l2cache.sav_vdevs = NULL;
1555 	}
1556 	if (spa->spa_l2cache.sav_config) {
1557 		nvlist_free(spa->spa_l2cache.sav_config);
1558 		spa->spa_l2cache.sav_config = NULL;
1559 	}
1560 	spa->spa_l2cache.sav_count = 0;
1561 
1562 	spa->spa_async_suspended = 0;
1563 
1564 	spa->spa_indirect_vdevs_loaded = B_FALSE;
1565 
1566 	if (spa->spa_comment != NULL) {
1567 		spa_strfree(spa->spa_comment);
1568 		spa->spa_comment = NULL;
1569 	}
1570 
1571 	spa_config_exit(spa, SCL_ALL, spa);
1572 }
1573 
1574 /*
1575  * Load (or re-load) the current list of vdevs describing the active spares for
1576  * this pool.  When this is called, we have some form of basic information in
1577  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1578  * then re-generate a more complete list including status information.
1579  */
1580 void
1581 spa_load_spares(spa_t *spa)
1582 {
1583 	nvlist_t **spares;
1584 	uint_t nspares;
1585 	int i;
1586 	vdev_t *vd, *tvd;
1587 
1588 #ifndef _KERNEL
1589 	/*
1590 	 * zdb opens both the current state of the pool and the
1591 	 * checkpointed state (if present), with a different spa_t.
1592 	 *
1593 	 * As spare vdevs are shared among open pools, we skip loading
1594 	 * them when we load the checkpointed state of the pool.
1595 	 */
1596 	if (!spa_writeable(spa))
1597 		return;
1598 #endif
1599 
1600 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1601 
1602 	/*
1603 	 * First, close and free any existing spare vdevs.
1604 	 */
1605 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1606 		vd = spa->spa_spares.sav_vdevs[i];
1607 
1608 		/* Undo the call to spa_activate() below */
1609 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1610 		    B_FALSE)) != NULL && tvd->vdev_isspare)
1611 			spa_spare_remove(tvd);
1612 		vdev_close(vd);
1613 		vdev_free(vd);
1614 	}
1615 
1616 	if (spa->spa_spares.sav_vdevs)
1617 		kmem_free(spa->spa_spares.sav_vdevs,
1618 		    spa->spa_spares.sav_count * sizeof (void *));
1619 
1620 	if (spa->spa_spares.sav_config == NULL)
1621 		nspares = 0;
1622 	else
1623 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1624 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1625 
1626 	spa->spa_spares.sav_count = (int)nspares;
1627 	spa->spa_spares.sav_vdevs = NULL;
1628 
1629 	if (nspares == 0)
1630 		return;
1631 
1632 	/*
1633 	 * Construct the array of vdevs, opening them to get status in the
1634 	 * process.   For each spare, there is potentially two different vdev_t
1635 	 * structures associated with it: one in the list of spares (used only
1636 	 * for basic validation purposes) and one in the active vdev
1637 	 * configuration (if it's spared in).  During this phase we open and
1638 	 * validate each vdev on the spare list.  If the vdev also exists in the
1639 	 * active configuration, then we also mark this vdev as an active spare.
1640 	 */
1641 	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1642 	    KM_SLEEP);
1643 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1644 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1645 		    VDEV_ALLOC_SPARE) == 0);
1646 		ASSERT(vd != NULL);
1647 
1648 		spa->spa_spares.sav_vdevs[i] = vd;
1649 
1650 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1651 		    B_FALSE)) != NULL) {
1652 			if (!tvd->vdev_isspare)
1653 				spa_spare_add(tvd);
1654 
1655 			/*
1656 			 * We only mark the spare active if we were successfully
1657 			 * able to load the vdev.  Otherwise, importing a pool
1658 			 * with a bad active spare would result in strange
1659 			 * behavior, because multiple pool would think the spare
1660 			 * is actively in use.
1661 			 *
1662 			 * There is a vulnerability here to an equally bizarre
1663 			 * circumstance, where a dead active spare is later
1664 			 * brought back to life (onlined or otherwise).  Given
1665 			 * the rarity of this scenario, and the extra complexity
1666 			 * it adds, we ignore the possibility.
1667 			 */
1668 			if (!vdev_is_dead(tvd))
1669 				spa_spare_activate(tvd);
1670 		}
1671 
1672 		vd->vdev_top = vd;
1673 		vd->vdev_aux = &spa->spa_spares;
1674 
1675 		if (vdev_open(vd) != 0)
1676 			continue;
1677 
1678 		if (vdev_validate_aux(vd) == 0)
1679 			spa_spare_add(vd);
1680 	}
1681 
1682 	/*
1683 	 * Recompute the stashed list of spares, with status information
1684 	 * this time.
1685 	 */
1686 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1687 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1688 
1689 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1690 	    KM_SLEEP);
1691 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1692 		spares[i] = vdev_config_generate(spa,
1693 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1694 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1695 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1696 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1697 		nvlist_free(spares[i]);
1698 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1699 }
1700 
1701 /*
1702  * Load (or re-load) the current list of vdevs describing the active l2cache for
1703  * this pool.  When this is called, we have some form of basic information in
1704  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1705  * then re-generate a more complete list including status information.
1706  * Devices which are already active have their details maintained, and are
1707  * not re-opened.
1708  */
1709 void
1710 spa_load_l2cache(spa_t *spa)
1711 {
1712 	nvlist_t **l2cache;
1713 	uint_t nl2cache;
1714 	int i, j, oldnvdevs;
1715 	uint64_t guid;
1716 	vdev_t *vd, **oldvdevs, **newvdevs;
1717 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1718 
1719 #ifndef _KERNEL
1720 	/*
1721 	 * zdb opens both the current state of the pool and the
1722 	 * checkpointed state (if present), with a different spa_t.
1723 	 *
1724 	 * As L2 caches are part of the ARC which is shared among open
1725 	 * pools, we skip loading them when we load the checkpointed
1726 	 * state of the pool.
1727 	 */
1728 	if (!spa_writeable(spa))
1729 		return;
1730 #endif
1731 
1732 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1733 
1734 	if (sav->sav_config != NULL) {
1735 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1736 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1737 		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1738 	} else {
1739 		nl2cache = 0;
1740 		newvdevs = NULL;
1741 	}
1742 
1743 	oldvdevs = sav->sav_vdevs;
1744 	oldnvdevs = sav->sav_count;
1745 	sav->sav_vdevs = NULL;
1746 	sav->sav_count = 0;
1747 
1748 	/*
1749 	 * Process new nvlist of vdevs.
1750 	 */
1751 	for (i = 0; i < nl2cache; i++) {
1752 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1753 		    &guid) == 0);
1754 
1755 		newvdevs[i] = NULL;
1756 		for (j = 0; j < oldnvdevs; j++) {
1757 			vd = oldvdevs[j];
1758 			if (vd != NULL && guid == vd->vdev_guid) {
1759 				/*
1760 				 * Retain previous vdev for add/remove ops.
1761 				 */
1762 				newvdevs[i] = vd;
1763 				oldvdevs[j] = NULL;
1764 				break;
1765 			}
1766 		}
1767 
1768 		if (newvdevs[i] == NULL) {
1769 			/*
1770 			 * Create new vdev
1771 			 */
1772 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1773 			    VDEV_ALLOC_L2CACHE) == 0);
1774 			ASSERT(vd != NULL);
1775 			newvdevs[i] = vd;
1776 
1777 			/*
1778 			 * Commit this vdev as an l2cache device,
1779 			 * even if it fails to open.
1780 			 */
1781 			spa_l2cache_add(vd);
1782 
1783 			vd->vdev_top = vd;
1784 			vd->vdev_aux = sav;
1785 
1786 			spa_l2cache_activate(vd);
1787 
1788 			if (vdev_open(vd) != 0)
1789 				continue;
1790 
1791 			(void) vdev_validate_aux(vd);
1792 
1793 			if (!vdev_is_dead(vd))
1794 				l2arc_add_vdev(spa, vd);
1795 		}
1796 	}
1797 
1798 	/*
1799 	 * Purge vdevs that were dropped
1800 	 */
1801 	for (i = 0; i < oldnvdevs; i++) {
1802 		uint64_t pool;
1803 
1804 		vd = oldvdevs[i];
1805 		if (vd != NULL) {
1806 			ASSERT(vd->vdev_isl2cache);
1807 
1808 			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1809 			    pool != 0ULL && l2arc_vdev_present(vd))
1810 				l2arc_remove_vdev(vd);
1811 			vdev_clear_stats(vd);
1812 			vdev_free(vd);
1813 		}
1814 	}
1815 
1816 	if (oldvdevs)
1817 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1818 
1819 	if (sav->sav_config == NULL)
1820 		goto out;
1821 
1822 	sav->sav_vdevs = newvdevs;
1823 	sav->sav_count = (int)nl2cache;
1824 
1825 	/*
1826 	 * Recompute the stashed list of l2cache devices, with status
1827 	 * information this time.
1828 	 */
1829 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1830 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1831 
1832 	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1833 	for (i = 0; i < sav->sav_count; i++)
1834 		l2cache[i] = vdev_config_generate(spa,
1835 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1836 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1837 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1838 out:
1839 	for (i = 0; i < sav->sav_count; i++)
1840 		nvlist_free(l2cache[i]);
1841 	if (sav->sav_count)
1842 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1843 }
1844 
1845 static int
1846 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1847 {
1848 	dmu_buf_t *db;
1849 	char *packed = NULL;
1850 	size_t nvsize = 0;
1851 	int error;
1852 	*value = NULL;
1853 
1854 	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1855 	if (error != 0)
1856 		return (error);
1857 
1858 	nvsize = *(uint64_t *)db->db_data;
1859 	dmu_buf_rele(db, FTAG);
1860 
1861 	packed = kmem_alloc(nvsize, KM_SLEEP);
1862 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1863 	    DMU_READ_PREFETCH);
1864 	if (error == 0)
1865 		error = nvlist_unpack(packed, nvsize, value, 0);
1866 	kmem_free(packed, nvsize);
1867 
1868 	return (error);
1869 }
1870 
1871 /*
1872  * Concrete top-level vdevs that are not missing and are not logs. At every
1873  * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
1874  */
1875 static uint64_t
1876 spa_healthy_core_tvds(spa_t *spa)
1877 {
1878 	vdev_t *rvd = spa->spa_root_vdev;
1879 	uint64_t tvds = 0;
1880 
1881 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
1882 		vdev_t *vd = rvd->vdev_child[i];
1883 		if (vd->vdev_islog)
1884 			continue;
1885 		if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
1886 			tvds++;
1887 	}
1888 
1889 	return (tvds);
1890 }
1891 
1892 /*
1893  * Checks to see if the given vdev could not be opened, in which case we post a
1894  * sysevent to notify the autoreplace code that the device has been removed.
1895  */
1896 static void
1897 spa_check_removed(vdev_t *vd)
1898 {
1899 	for (uint64_t c = 0; c < vd->vdev_children; c++)
1900 		spa_check_removed(vd->vdev_child[c]);
1901 
1902 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1903 	    vdev_is_concrete(vd)) {
1904 		zfs_post_autoreplace(vd->vdev_spa, vd);
1905 		spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
1906 	}
1907 }
1908 
1909 static int
1910 spa_check_for_missing_logs(spa_t *spa)
1911 {
1912 	vdev_t *rvd = spa->spa_root_vdev;
1913 
1914 	/*
1915 	 * If we're doing a normal import, then build up any additional
1916 	 * diagnostic information about missing log devices.
1917 	 * We'll pass this up to the user for further processing.
1918 	 */
1919 	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1920 		nvlist_t **child, *nv;
1921 		uint64_t idx = 0;
1922 
1923 		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1924 		    KM_SLEEP);
1925 		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1926 
1927 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
1928 			vdev_t *tvd = rvd->vdev_child[c];
1929 
1930 			/*
1931 			 * We consider a device as missing only if it failed
1932 			 * to open (i.e. offline or faulted is not considered
1933 			 * as missing).
1934 			 */
1935 			if (tvd->vdev_islog &&
1936 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
1937 				child[idx++] = vdev_config_generate(spa, tvd,
1938 				    B_FALSE, VDEV_CONFIG_MISSING);
1939 			}
1940 		}
1941 
1942 		if (idx > 0) {
1943 			fnvlist_add_nvlist_array(nv,
1944 			    ZPOOL_CONFIG_CHILDREN, child, idx);
1945 			fnvlist_add_nvlist(spa->spa_load_info,
1946 			    ZPOOL_CONFIG_MISSING_DEVICES, nv);
1947 
1948 			for (uint64_t i = 0; i < idx; i++)
1949 				nvlist_free(child[i]);
1950 		}
1951 		nvlist_free(nv);
1952 		kmem_free(child, rvd->vdev_children * sizeof (char **));
1953 
1954 		if (idx > 0) {
1955 			spa_load_failed(spa, "some log devices are missing");
1956 			vdev_dbgmsg_print_tree(rvd, 2);
1957 			return (SET_ERROR(ENXIO));
1958 		}
1959 	} else {
1960 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
1961 			vdev_t *tvd = rvd->vdev_child[c];
1962 
1963 			if (tvd->vdev_islog &&
1964 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
1965 				spa_set_log_state(spa, SPA_LOG_CLEAR);
1966 				spa_load_note(spa, "some log devices are "
1967 				    "missing, ZIL is dropped.");
1968 				vdev_dbgmsg_print_tree(rvd, 2);
1969 				break;
1970 			}
1971 		}
1972 	}
1973 
1974 	return (0);
1975 }
1976 
1977 /*
1978  * Check for missing log devices
1979  */
1980 static boolean_t
1981 spa_check_logs(spa_t *spa)
1982 {
1983 	boolean_t rv = B_FALSE;
1984 	dsl_pool_t *dp = spa_get_dsl(spa);
1985 
1986 	switch (spa->spa_log_state) {
1987 	case SPA_LOG_MISSING:
1988 		/* need to recheck in case slog has been restored */
1989 	case SPA_LOG_UNKNOWN:
1990 		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1991 		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1992 		if (rv)
1993 			spa_set_log_state(spa, SPA_LOG_MISSING);
1994 		break;
1995 	}
1996 	return (rv);
1997 }
1998 
1999 static boolean_t
2000 spa_passivate_log(spa_t *spa)
2001 {
2002 	vdev_t *rvd = spa->spa_root_vdev;
2003 	boolean_t slog_found = B_FALSE;
2004 
2005 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2006 
2007 	if (!spa_has_slogs(spa))
2008 		return (B_FALSE);
2009 
2010 	for (int c = 0; c < rvd->vdev_children; c++) {
2011 		vdev_t *tvd = rvd->vdev_child[c];
2012 		metaslab_group_t *mg = tvd->vdev_mg;
2013 
2014 		if (tvd->vdev_islog) {
2015 			metaslab_group_passivate(mg);
2016 			slog_found = B_TRUE;
2017 		}
2018 	}
2019 
2020 	return (slog_found);
2021 }
2022 
2023 static void
2024 spa_activate_log(spa_t *spa)
2025 {
2026 	vdev_t *rvd = spa->spa_root_vdev;
2027 
2028 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2029 
2030 	for (int c = 0; c < rvd->vdev_children; c++) {
2031 		vdev_t *tvd = rvd->vdev_child[c];
2032 		metaslab_group_t *mg = tvd->vdev_mg;
2033 
2034 		if (tvd->vdev_islog)
2035 			metaslab_group_activate(mg);
2036 	}
2037 }
2038 
2039 int
2040 spa_reset_logs(spa_t *spa)
2041 {
2042 	int error;
2043 
2044 	error = dmu_objset_find(spa_name(spa), zil_reset,
2045 	    NULL, DS_FIND_CHILDREN);
2046 	if (error == 0) {
2047 		/*
2048 		 * We successfully offlined the log device, sync out the
2049 		 * current txg so that the "stubby" block can be removed
2050 		 * by zil_sync().
2051 		 */
2052 		txg_wait_synced(spa->spa_dsl_pool, 0);
2053 	}
2054 	return (error);
2055 }
2056 
2057 static void
2058 spa_aux_check_removed(spa_aux_vdev_t *sav)
2059 {
2060 	for (int i = 0; i < sav->sav_count; i++)
2061 		spa_check_removed(sav->sav_vdevs[i]);
2062 }
2063 
2064 void
2065 spa_claim_notify(zio_t *zio)
2066 {
2067 	spa_t *spa = zio->io_spa;
2068 
2069 	if (zio->io_error)
2070 		return;
2071 
2072 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
2073 	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
2074 		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
2075 	mutex_exit(&spa->spa_props_lock);
2076 }
2077 
2078 typedef struct spa_load_error {
2079 	uint64_t	sle_meta_count;
2080 	uint64_t	sle_data_count;
2081 } spa_load_error_t;
2082 
2083 static void
2084 spa_load_verify_done(zio_t *zio)
2085 {
2086 	blkptr_t *bp = zio->io_bp;
2087 	spa_load_error_t *sle = zio->io_private;
2088 	dmu_object_type_t type = BP_GET_TYPE(bp);
2089 	int error = zio->io_error;
2090 	spa_t *spa = zio->io_spa;
2091 
2092 	abd_free(zio->io_abd);
2093 	if (error) {
2094 		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
2095 		    type != DMU_OT_INTENT_LOG)
2096 			atomic_inc_64(&sle->sle_meta_count);
2097 		else
2098 			atomic_inc_64(&sle->sle_data_count);
2099 	}
2100 
2101 	mutex_enter(&spa->spa_scrub_lock);
2102 	spa->spa_load_verify_ios--;
2103 	cv_broadcast(&spa->spa_scrub_io_cv);
2104 	mutex_exit(&spa->spa_scrub_lock);
2105 }
2106 
2107 /*
2108  * Maximum number of concurrent scrub i/os to create while verifying
2109  * a pool while importing it.
2110  */
2111 int spa_load_verify_maxinflight = 10000;
2112 boolean_t spa_load_verify_metadata = B_TRUE;
2113 boolean_t spa_load_verify_data = B_TRUE;
2114 
2115 /*ARGSUSED*/
2116 static int
2117 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2118     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2119 {
2120 	if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
2121 		return (0);
2122 	/*
2123 	 * Note: normally this routine will not be called if
2124 	 * spa_load_verify_metadata is not set.  However, it may be useful
2125 	 * to manually set the flag after the traversal has begun.
2126 	 */
2127 	if (!spa_load_verify_metadata)
2128 		return (0);
2129 	if (!BP_IS_METADATA(bp) && !spa_load_verify_data)
2130 		return (0);
2131 
2132 	zio_t *rio = arg;
2133 	size_t size = BP_GET_PSIZE(bp);
2134 
2135 	mutex_enter(&spa->spa_scrub_lock);
2136 	while (spa->spa_load_verify_ios >= spa_load_verify_maxinflight)
2137 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2138 	spa->spa_load_verify_ios++;
2139 	mutex_exit(&spa->spa_scrub_lock);
2140 
2141 	zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2142 	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2143 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2144 	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2145 	return (0);
2146 }
2147 
2148 /* ARGSUSED */
2149 int
2150 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2151 {
2152 	if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2153 		return (SET_ERROR(ENAMETOOLONG));
2154 
2155 	return (0);
2156 }
2157 
2158 static int
2159 spa_load_verify(spa_t *spa)
2160 {
2161 	zio_t *rio;
2162 	spa_load_error_t sle = { 0 };
2163 	zpool_load_policy_t policy;
2164 	boolean_t verify_ok = B_FALSE;
2165 	int error = 0;
2166 
2167 	zpool_get_load_policy(spa->spa_config, &policy);
2168 
2169 	if (policy.zlp_rewind & ZPOOL_NEVER_REWIND)
2170 		return (0);
2171 
2172 	dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2173 	error = dmu_objset_find_dp(spa->spa_dsl_pool,
2174 	    spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2175 	    DS_FIND_CHILDREN);
2176 	dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2177 	if (error != 0)
2178 		return (error);
2179 
2180 	rio = zio_root(spa, NULL, &sle,
2181 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2182 
2183 	if (spa_load_verify_metadata) {
2184 		if (spa->spa_extreme_rewind) {
2185 			spa_load_note(spa, "performing a complete scan of the "
2186 			    "pool since extreme rewind is on. This may take "
2187 			    "a very long time.\n  (spa_load_verify_data=%u, "
2188 			    "spa_load_verify_metadata=%u)",
2189 			    spa_load_verify_data, spa_load_verify_metadata);
2190 		}
2191 		error = traverse_pool(spa, spa->spa_verify_min_txg,
2192 		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
2193 		    TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio);
2194 	}
2195 
2196 	(void) zio_wait(rio);
2197 
2198 	spa->spa_load_meta_errors = sle.sle_meta_count;
2199 	spa->spa_load_data_errors = sle.sle_data_count;
2200 
2201 	if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2202 		spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2203 		    "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2204 		    (u_longlong_t)sle.sle_data_count);
2205 	}
2206 
2207 	if (spa_load_verify_dryrun ||
2208 	    (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
2209 	    sle.sle_data_count <= policy.zlp_maxdata)) {
2210 		int64_t loss = 0;
2211 
2212 		verify_ok = B_TRUE;
2213 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2214 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2215 
2216 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2217 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2218 		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2219 		VERIFY(nvlist_add_int64(spa->spa_load_info,
2220 		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2221 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2222 		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2223 	} else {
2224 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2225 	}
2226 
2227 	if (spa_load_verify_dryrun)
2228 		return (0);
2229 
2230 	if (error) {
2231 		if (error != ENXIO && error != EIO)
2232 			error = SET_ERROR(EIO);
2233 		return (error);
2234 	}
2235 
2236 	return (verify_ok ? 0 : EIO);
2237 }
2238 
2239 /*
2240  * Find a value in the pool props object.
2241  */
2242 static void
2243 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2244 {
2245 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2246 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2247 }
2248 
2249 /*
2250  * Find a value in the pool directory object.
2251  */
2252 static int
2253 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2254 {
2255 	int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2256 	    name, sizeof (uint64_t), 1, val);
2257 
2258 	if (error != 0 && (error != ENOENT || log_enoent)) {
2259 		spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2260 		    "[error=%d]", name, error);
2261 	}
2262 
2263 	return (error);
2264 }
2265 
2266 static int
2267 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2268 {
2269 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2270 	return (SET_ERROR(err));
2271 }
2272 
2273 static void
2274 spa_spawn_aux_threads(spa_t *spa)
2275 {
2276 	ASSERT(spa_writeable(spa));
2277 
2278 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2279 
2280 	spa_start_indirect_condensing_thread(spa);
2281 
2282 	ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL);
2283 	spa->spa_checkpoint_discard_zthr =
2284 	    zthr_create(spa_checkpoint_discard_thread_check,
2285 	    spa_checkpoint_discard_thread, spa);
2286 }
2287 
2288 /*
2289  * Fix up config after a partly-completed split.  This is done with the
2290  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
2291  * pool have that entry in their config, but only the splitting one contains
2292  * a list of all the guids of the vdevs that are being split off.
2293  *
2294  * This function determines what to do with that list: either rejoin
2295  * all the disks to the pool, or complete the splitting process.  To attempt
2296  * the rejoin, each disk that is offlined is marked online again, and
2297  * we do a reopen() call.  If the vdev label for every disk that was
2298  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2299  * then we call vdev_split() on each disk, and complete the split.
2300  *
2301  * Otherwise we leave the config alone, with all the vdevs in place in
2302  * the original pool.
2303  */
2304 static void
2305 spa_try_repair(spa_t *spa, nvlist_t *config)
2306 {
2307 	uint_t extracted;
2308 	uint64_t *glist;
2309 	uint_t i, gcount;
2310 	nvlist_t *nvl;
2311 	vdev_t **vd;
2312 	boolean_t attempt_reopen;
2313 
2314 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2315 		return;
2316 
2317 	/* check that the config is complete */
2318 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2319 	    &glist, &gcount) != 0)
2320 		return;
2321 
2322 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2323 
2324 	/* attempt to online all the vdevs & validate */
2325 	attempt_reopen = B_TRUE;
2326 	for (i = 0; i < gcount; i++) {
2327 		if (glist[i] == 0)	/* vdev is hole */
2328 			continue;
2329 
2330 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2331 		if (vd[i] == NULL) {
2332 			/*
2333 			 * Don't bother attempting to reopen the disks;
2334 			 * just do the split.
2335 			 */
2336 			attempt_reopen = B_FALSE;
2337 		} else {
2338 			/* attempt to re-online it */
2339 			vd[i]->vdev_offline = B_FALSE;
2340 		}
2341 	}
2342 
2343 	if (attempt_reopen) {
2344 		vdev_reopen(spa->spa_root_vdev);
2345 
2346 		/* check each device to see what state it's in */
2347 		for (extracted = 0, i = 0; i < gcount; i++) {
2348 			if (vd[i] != NULL &&
2349 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2350 				break;
2351 			++extracted;
2352 		}
2353 	}
2354 
2355 	/*
2356 	 * If every disk has been moved to the new pool, or if we never
2357 	 * even attempted to look at them, then we split them off for
2358 	 * good.
2359 	 */
2360 	if (!attempt_reopen || gcount == extracted) {
2361 		for (i = 0; i < gcount; i++)
2362 			if (vd[i] != NULL)
2363 				vdev_split(vd[i]);
2364 		vdev_reopen(spa->spa_root_vdev);
2365 	}
2366 
2367 	kmem_free(vd, gcount * sizeof (vdev_t *));
2368 }
2369 
2370 static int
2371 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
2372 {
2373 	char *ereport = FM_EREPORT_ZFS_POOL;
2374 	int error;
2375 
2376 	spa->spa_load_state = state;
2377 	(void) spa_import_progress_set_state(spa, spa_load_state(spa));
2378 
2379 	gethrestime(&spa->spa_loaded_ts);
2380 	error = spa_load_impl(spa, type, &ereport);
2381 
2382 	/*
2383 	 * Don't count references from objsets that are already closed
2384 	 * and are making their way through the eviction process.
2385 	 */
2386 	spa_evicting_os_wait(spa);
2387 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
2388 	if (error) {
2389 		if (error != EEXIST) {
2390 			spa->spa_loaded_ts.tv_sec = 0;
2391 			spa->spa_loaded_ts.tv_nsec = 0;
2392 		}
2393 		if (error != EBADF) {
2394 			(void) zfs_ereport_post(ereport, spa,
2395 			    NULL, NULL, NULL, 0, 0);
2396 		}
2397 	}
2398 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2399 	spa->spa_ena = 0;
2400 
2401 	(void) spa_import_progress_set_state(spa, spa_load_state(spa));
2402 
2403 	return (error);
2404 }
2405 
2406 /*
2407  * Count the number of per-vdev ZAPs associated with all of the vdevs in the
2408  * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
2409  * spa's per-vdev ZAP list.
2410  */
2411 static uint64_t
2412 vdev_count_verify_zaps(vdev_t *vd)
2413 {
2414 	spa_t *spa = vd->vdev_spa;
2415 	uint64_t total = 0;
2416 	if (vd->vdev_top_zap != 0) {
2417 		total++;
2418 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2419 		    spa->spa_all_vdev_zaps, vd->vdev_top_zap));
2420 	}
2421 	if (vd->vdev_leaf_zap != 0) {
2422 		total++;
2423 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2424 		    spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
2425 	}
2426 
2427 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
2428 		total += vdev_count_verify_zaps(vd->vdev_child[i]);
2429 	}
2430 
2431 	return (total);
2432 }
2433 
2434 /*
2435  * Determine whether the activity check is required.
2436  */
2437 static boolean_t
2438 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label,
2439     nvlist_t *config)
2440 {
2441 	uint64_t state = 0;
2442 	uint64_t hostid = 0;
2443 	uint64_t tryconfig_txg = 0;
2444 	uint64_t tryconfig_timestamp = 0;
2445 	uint16_t tryconfig_mmp_seq = 0;
2446 	nvlist_t *nvinfo;
2447 
2448 	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
2449 		nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
2450 		(void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
2451 		    &tryconfig_txg);
2452 		(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
2453 		    &tryconfig_timestamp);
2454 		(void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ,
2455 		    &tryconfig_mmp_seq);
2456 	}
2457 
2458 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
2459 
2460 	/*
2461 	 * Disable the MMP activity check - This is used by zdb which
2462 	 * is intended to be used on potentially active pools.
2463 	 */
2464 	if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
2465 		return (B_FALSE);
2466 
2467 	/*
2468 	 * Skip the activity check when the MMP feature is disabled.
2469 	 */
2470 	if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
2471 		return (B_FALSE);
2472 
2473 	/*
2474 	 * If the tryconfig_ values are nonzero, they are the results of an
2475 	 * earlier tryimport.  If they all match the uberblock we just found,
2476 	 * then the pool has not changed and we return false so we do not test
2477 	 * a second time.
2478 	 */
2479 	if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
2480 	    tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp &&
2481 	    tryconfig_mmp_seq && tryconfig_mmp_seq ==
2482 	    (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0))
2483 		return (B_FALSE);
2484 
2485 	/*
2486 	 * Allow the activity check to be skipped when importing the pool
2487 	 * on the same host which last imported it.  Since the hostid from
2488 	 * configuration may be stale use the one read from the label.
2489 	 */
2490 	if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID))
2491 		hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID);
2492 
2493 	if (hostid == spa_get_hostid())
2494 		return (B_FALSE);
2495 
2496 	/*
2497 	 * Skip the activity test when the pool was cleanly exported.
2498 	 */
2499 	if (state != POOL_STATE_ACTIVE)
2500 		return (B_FALSE);
2501 
2502 	return (B_TRUE);
2503 }
2504 
2505 /*
2506  * Nanoseconds the activity check must watch for changes on-disk.
2507  */
2508 static uint64_t
2509 spa_activity_check_duration(spa_t *spa, uberblock_t *ub)
2510 {
2511 	uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
2512 	uint64_t multihost_interval = MSEC2NSEC(
2513 	    MMP_INTERVAL_OK(zfs_multihost_interval));
2514 	uint64_t import_delay = MAX(NANOSEC, import_intervals *
2515 	    multihost_interval);
2516 
2517 	/*
2518 	 * Local tunables determine a minimum duration except for the case
2519 	 * where we know when the remote host will suspend the pool if MMP
2520 	 * writes do not land.
2521 	 *
2522 	 * See Big Theory comment at the top of mmp.c for the reasoning behind
2523 	 * these cases and times.
2524 	 */
2525 
2526 	ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100);
2527 
2528 	if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
2529 	    MMP_FAIL_INT(ub) > 0) {
2530 
2531 		/* MMP on remote host will suspend pool after failed writes */
2532 		import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) *
2533 		    MMP_IMPORT_SAFETY_FACTOR / 100;
2534 
2535 		zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp "
2536 		    "mmp_fails=%llu ub_mmp mmp_interval=%llu "
2537 		    "import_intervals=%u", import_delay, MMP_FAIL_INT(ub),
2538 		    MMP_INTERVAL(ub), import_intervals);
2539 
2540 	} else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
2541 	    MMP_FAIL_INT(ub) == 0) {
2542 
2543 		/* MMP on remote host will never suspend pool */
2544 		import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) +
2545 		    ub->ub_mmp_delay) * import_intervals);
2546 
2547 		zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp "
2548 		    "mmp_interval=%llu ub_mmp_delay=%llu "
2549 		    "import_intervals=%u", import_delay, MMP_INTERVAL(ub),
2550 		    ub->ub_mmp_delay, import_intervals);
2551 
2552 	} else if (MMP_VALID(ub)) {
2553 		/*
2554 		 * zfs-0.7 compatability case
2555 		 */
2556 
2557 		import_delay = MAX(import_delay, (multihost_interval +
2558 		    ub->ub_mmp_delay) * import_intervals);
2559 
2560 		zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu "
2561 		    "import_intervals=%u leaves=%u", import_delay,
2562 		    ub->ub_mmp_delay, import_intervals,
2563 		    vdev_count_leaves(spa));
2564 	} else {
2565 		/* Using local tunings is the only reasonable option */
2566 		zfs_dbgmsg("pool last imported on non-MMP aware "
2567 		    "host using import_delay=%llu multihost_interval=%llu "
2568 		    "import_intervals=%u", import_delay, multihost_interval,
2569 		    import_intervals);
2570 	}
2571 
2572 	return (import_delay);
2573 }
2574 
2575 /*
2576  * Perform the import activity check.  If the user canceled the import or
2577  * we detected activity then fail.
2578  */
2579 static int
2580 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config)
2581 {
2582 	uint64_t txg = ub->ub_txg;
2583 	uint64_t timestamp = ub->ub_timestamp;
2584 	uint64_t mmp_config = ub->ub_mmp_config;
2585 	uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0;
2586 	uint64_t import_delay;
2587 	hrtime_t import_expire;
2588 	nvlist_t *mmp_label = NULL;
2589 	vdev_t *rvd = spa->spa_root_vdev;
2590 	kcondvar_t cv;
2591 	kmutex_t mtx;
2592 	int error = 0;
2593 
2594 	cv_init(&cv, NULL, CV_DEFAULT, NULL);
2595 	mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
2596 	mutex_enter(&mtx);
2597 
2598 	/*
2599 	 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
2600 	 * during the earlier tryimport.  If the txg recorded there is 0 then
2601 	 * the pool is known to be active on another host.
2602 	 *
2603 	 * Otherwise, the pool might be in use on another host.  Check for
2604 	 * changes in the uberblocks on disk if necessary.
2605 	 */
2606 	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
2607 		nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
2608 		    ZPOOL_CONFIG_LOAD_INFO);
2609 
2610 		if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
2611 		    fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
2612 			vdev_uberblock_load(rvd, ub, &mmp_label);
2613 			error = SET_ERROR(EREMOTEIO);
2614 			goto out;
2615 		}
2616 	}
2617 
2618 	import_delay = spa_activity_check_duration(spa, ub);
2619 
2620 	/* Add a small random factor in case of simultaneous imports (0-25%) */
2621 	import_delay += import_delay * spa_get_random(250) / 1000;
2622 
2623 	import_expire = gethrtime() + import_delay;
2624 
2625 	while (gethrtime() < import_expire) {
2626 		(void) spa_import_progress_set_mmp_check(spa,
2627 		    NSEC2SEC(import_expire - gethrtime()));
2628 
2629 		vdev_uberblock_load(rvd, ub, &mmp_label);
2630 
2631 		if (txg != ub->ub_txg || timestamp != ub->ub_timestamp ||
2632 		    mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) {
2633 			zfs_dbgmsg("multihost activity detected "
2634 			    "txg %llu ub_txg  %llu "
2635 			    "timestamp %llu ub_timestamp  %llu "
2636 			    "mmp_config %#llx ub_mmp_config %#llx",
2637 			    txg, ub->ub_txg, timestamp, ub->ub_timestamp,
2638 			    mmp_config, ub->ub_mmp_config);
2639 
2640 			error = SET_ERROR(EREMOTEIO);
2641 			break;
2642 		}
2643 
2644 		if (mmp_label) {
2645 			nvlist_free(mmp_label);
2646 			mmp_label = NULL;
2647 		}
2648 
2649 		error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
2650 		if (error != -1) {
2651 			error = SET_ERROR(EINTR);
2652 			break;
2653 		}
2654 		error = 0;
2655 	}
2656 
2657 out:
2658 	mutex_exit(&mtx);
2659 	mutex_destroy(&mtx);
2660 	cv_destroy(&cv);
2661 
2662 	/*
2663 	 * If the pool is determined to be active store the status in the
2664 	 * spa->spa_load_info nvlist.  If the remote hostname or hostid are
2665 	 * available from configuration read from disk store them as well.
2666 	 * This allows 'zpool import' to generate a more useful message.
2667 	 *
2668 	 * ZPOOL_CONFIG_MMP_STATE    - observed pool status (mandatory)
2669 	 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
2670 	 * ZPOOL_CONFIG_MMP_HOSTID   - hostid from the active pool
2671 	 */
2672 	if (error == EREMOTEIO) {
2673 		char *hostname = "<unknown>";
2674 		uint64_t hostid = 0;
2675 
2676 		if (mmp_label) {
2677 			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
2678 				hostname = fnvlist_lookup_string(mmp_label,
2679 				    ZPOOL_CONFIG_HOSTNAME);
2680 				fnvlist_add_string(spa->spa_load_info,
2681 				    ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
2682 			}
2683 
2684 			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
2685 				hostid = fnvlist_lookup_uint64(mmp_label,
2686 				    ZPOOL_CONFIG_HOSTID);
2687 				fnvlist_add_uint64(spa->spa_load_info,
2688 				    ZPOOL_CONFIG_MMP_HOSTID, hostid);
2689 			}
2690 		}
2691 
2692 		fnvlist_add_uint64(spa->spa_load_info,
2693 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
2694 		fnvlist_add_uint64(spa->spa_load_info,
2695 		    ZPOOL_CONFIG_MMP_TXG, 0);
2696 
2697 		error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
2698 	}
2699 
2700 	if (mmp_label)
2701 		nvlist_free(mmp_label);
2702 
2703 	return (error);
2704 }
2705 
2706 static int
2707 spa_verify_host(spa_t *spa, nvlist_t *mos_config)
2708 {
2709 	uint64_t hostid;
2710 	char *hostname;
2711 	uint64_t myhostid = 0;
2712 
2713 	if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
2714 	    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2715 		hostname = fnvlist_lookup_string(mos_config,
2716 		    ZPOOL_CONFIG_HOSTNAME);
2717 
2718 		myhostid = zone_get_hostid(NULL);
2719 
2720 		if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
2721 			cmn_err(CE_WARN, "pool '%s' could not be "
2722 			    "loaded as it was last accessed by "
2723 			    "another system (host: %s hostid: 0x%llx). "
2724 			    "See: http://illumos.org/msg/ZFS-8000-EY",
2725 			    spa_name(spa), hostname, (u_longlong_t)hostid);
2726 			spa_load_failed(spa, "hostid verification failed: pool "
2727 			    "last accessed by host: %s (hostid: 0x%llx)",
2728 			    hostname, (u_longlong_t)hostid);
2729 			return (SET_ERROR(EBADF));
2730 		}
2731 	}
2732 
2733 	return (0);
2734 }
2735 
2736 static int
2737 spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
2738 {
2739 	int error = 0;
2740 	nvlist_t *nvtree, *nvl, *config = spa->spa_config;
2741 	int parse;
2742 	vdev_t *rvd;
2743 	uint64_t pool_guid;
2744 	char *comment;
2745 
2746 	/*
2747 	 * Versioning wasn't explicitly added to the label until later, so if
2748 	 * it's not present treat it as the initial version.
2749 	 */
2750 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2751 	    &spa->spa_ubsync.ub_version) != 0)
2752 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2753 
2754 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
2755 		spa_load_failed(spa, "invalid config provided: '%s' missing",
2756 		    ZPOOL_CONFIG_POOL_GUID);
2757 		return (SET_ERROR(EINVAL));
2758 	}
2759 
2760 	/*
2761 	 * If we are doing an import, ensure that the pool is not already
2762 	 * imported by checking if its pool guid already exists in the
2763 	 * spa namespace.
2764 	 *
2765 	 * The only case that we allow an already imported pool to be
2766 	 * imported again, is when the pool is checkpointed and we want to
2767 	 * look at its checkpointed state from userland tools like zdb.
2768 	 */
2769 #ifdef _KERNEL
2770 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
2771 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
2772 	    spa_guid_exists(pool_guid, 0)) {
2773 #else
2774 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
2775 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
2776 	    spa_guid_exists(pool_guid, 0) &&
2777 	    !spa_importing_readonly_checkpoint(spa)) {
2778 #endif
2779 		spa_load_failed(spa, "a pool with guid %llu is already open",
2780 		    (u_longlong_t)pool_guid);
2781 		return (SET_ERROR(EEXIST));
2782 	}
2783 
2784 	spa->spa_config_guid = pool_guid;
2785 
2786 	nvlist_free(spa->spa_load_info);
2787 	spa->spa_load_info = fnvlist_alloc();
2788 
2789 	ASSERT(spa->spa_comment == NULL);
2790 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2791 		spa->spa_comment = spa_strdup(comment);
2792 
2793 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2794 	    &spa->spa_config_txg);
2795 
2796 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
2797 		spa->spa_config_splitting = fnvlist_dup(nvl);
2798 
2799 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
2800 		spa_load_failed(spa, "invalid config provided: '%s' missing",
2801 		    ZPOOL_CONFIG_VDEV_TREE);
2802 		return (SET_ERROR(EINVAL));
2803 	}
2804 
2805 	/*
2806 	 * Create "The Godfather" zio to hold all async IOs
2807 	 */
2808 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2809 	    KM_SLEEP);
2810 	for (int i = 0; i < max_ncpus; i++) {
2811 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2812 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2813 		    ZIO_FLAG_GODFATHER);
2814 	}
2815 
2816 	/*
2817 	 * Parse the configuration into a vdev tree.  We explicitly set the
2818 	 * value that will be returned by spa_version() since parsing the
2819 	 * configuration requires knowing the version number.
2820 	 */
2821 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2822 	parse = (type == SPA_IMPORT_EXISTING ?
2823 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2824 	error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
2825 	spa_config_exit(spa, SCL_ALL, FTAG);
2826 
2827 	if (error != 0) {
2828 		spa_load_failed(spa, "unable to parse config [error=%d]",
2829 		    error);
2830 		return (error);
2831 	}
2832 
2833 	ASSERT(spa->spa_root_vdev == rvd);
2834 	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2835 	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2836 
2837 	if (type != SPA_IMPORT_ASSEMBLE) {
2838 		ASSERT(spa_guid(spa) == pool_guid);
2839 	}
2840 
2841 	return (0);
2842 }
2843 
2844 /*
2845  * Recursively open all vdevs in the vdev tree. This function is called twice:
2846  * first with the untrusted config, then with the trusted config.
2847  */
2848 static int
2849 spa_ld_open_vdevs(spa_t *spa)
2850 {
2851 	int error = 0;
2852 
2853 	/*
2854 	 * spa_missing_tvds_allowed defines how many top-level vdevs can be
2855 	 * missing/unopenable for the root vdev to be still considered openable.
2856 	 */
2857 	if (spa->spa_trust_config) {
2858 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
2859 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
2860 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
2861 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
2862 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
2863 	} else {
2864 		spa->spa_missing_tvds_allowed = 0;
2865 	}
2866 
2867 	spa->spa_missing_tvds_allowed =
2868 	    MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
2869 
2870 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2871 	error = vdev_open(spa->spa_root_vdev);
2872 	spa_config_exit(spa, SCL_ALL, FTAG);
2873 
2874 	if (spa->spa_missing_tvds != 0) {
2875 		spa_load_note(spa, "vdev tree has %lld missing top-level "
2876 		    "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
2877 		if (spa->spa_trust_config && (spa->spa_mode & FWRITE)) {
2878 			/*
2879 			 * Although theoretically we could allow users to open
2880 			 * incomplete pools in RW mode, we'd need to add a lot
2881 			 * of extra logic (e.g. adjust pool space to account
2882 			 * for missing vdevs).
2883 			 * This limitation also prevents users from accidentally
2884 			 * opening the pool in RW mode during data recovery and
2885 			 * damaging it further.
2886 			 */
2887 			spa_load_note(spa, "pools with missing top-level "
2888 			    "vdevs can only be opened in read-only mode.");
2889 			error = SET_ERROR(ENXIO);
2890 		} else {
2891 			spa_load_note(spa, "current settings allow for maximum "
2892 			    "%lld missing top-level vdevs at this stage.",
2893 			    (u_longlong_t)spa->spa_missing_tvds_allowed);
2894 		}
2895 	}
2896 	if (error != 0) {
2897 		spa_load_failed(spa, "unable to open vdev tree [error=%d]",
2898 		    error);
2899 	}
2900 	if (spa->spa_missing_tvds != 0 || error != 0)
2901 		vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
2902 
2903 	return (error);
2904 }
2905 
2906 /*
2907  * We need to validate the vdev labels against the configuration that
2908  * we have in hand. This function is called twice: first with an untrusted
2909  * config, then with a trusted config. The validation is more strict when the
2910  * config is trusted.
2911  */
2912 static int
2913 spa_ld_validate_vdevs(spa_t *spa)
2914 {
2915 	int error = 0;
2916 	vdev_t *rvd = spa->spa_root_vdev;
2917 
2918 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2919 	error = vdev_validate(rvd);
2920 	spa_config_exit(spa, SCL_ALL, FTAG);
2921 
2922 	if (error != 0) {
2923 		spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
2924 		return (error);
2925 	}
2926 
2927 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
2928 		spa_load_failed(spa, "cannot open vdev tree after invalidating "
2929 		    "some vdevs");
2930 		vdev_dbgmsg_print_tree(rvd, 2);
2931 		return (SET_ERROR(ENXIO));
2932 	}
2933 
2934 	return (0);
2935 }
2936 
2937 static void
2938 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
2939 {
2940 	spa->spa_state = POOL_STATE_ACTIVE;
2941 	spa->spa_ubsync = spa->spa_uberblock;
2942 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2943 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2944 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2945 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2946 	spa->spa_claim_max_txg = spa->spa_first_txg;
2947 	spa->spa_prev_software_version = ub->ub_software_version;
2948 }
2949 
2950 static int
2951 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
2952 {
2953 	vdev_t *rvd = spa->spa_root_vdev;
2954 	nvlist_t *label;
2955 	uberblock_t *ub = &spa->spa_uberblock;
2956 	boolean_t activity_check = B_FALSE;
2957 
2958 	/*
2959 	 * If we are opening the checkpointed state of the pool by
2960 	 * rewinding to it, at this point we will have written the
2961 	 * checkpointed uberblock to the vdev labels, so searching
2962 	 * the labels will find the right uberblock.  However, if
2963 	 * we are opening the checkpointed state read-only, we have
2964 	 * not modified the labels. Therefore, we must ignore the
2965 	 * labels and continue using the spa_uberblock that was set
2966 	 * by spa_ld_checkpoint_rewind.
2967 	 *
2968 	 * Note that it would be fine to ignore the labels when
2969 	 * rewinding (opening writeable) as well. However, if we
2970 	 * crash just after writing the labels, we will end up
2971 	 * searching the labels. Doing so in the common case means
2972 	 * that this code path gets exercised normally, rather than
2973 	 * just in the edge case.
2974 	 */
2975 	if (ub->ub_checkpoint_txg != 0 &&
2976 	    spa_importing_readonly_checkpoint(spa)) {
2977 		spa_ld_select_uberblock_done(spa, ub);
2978 		return (0);
2979 	}
2980 
2981 	/*
2982 	 * Find the best uberblock.
2983 	 */
2984 	vdev_uberblock_load(rvd, ub, &label);
2985 
2986 	/*
2987 	 * If we weren't able to find a single valid uberblock, return failure.
2988 	 */
2989 	if (ub->ub_txg == 0) {
2990 		nvlist_free(label);
2991 		spa_load_failed(spa, "no valid uberblock found");
2992 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2993 	}
2994 
2995 	if (spa->spa_load_max_txg != UINT64_MAX) {
2996 		(void) spa_import_progress_set_max_txg(spa,
2997 		    (u_longlong_t)spa->spa_load_max_txg);
2998 	}
2999 	spa_load_note(spa, "using uberblock with txg=%llu",
3000 	    (u_longlong_t)ub->ub_txg);
3001 
3002 	/*
3003 	 * For pools which have the multihost property on determine if the
3004 	 * pool is truly inactive and can be safely imported.  Prevent
3005 	 * hosts which don't have a hostid set from importing the pool.
3006 	 */
3007 	activity_check = spa_activity_check_required(spa, ub, label,
3008 	    spa->spa_config);
3009 	if (activity_check) {
3010 		if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
3011 		    spa_get_hostid() == 0) {
3012 			nvlist_free(label);
3013 			fnvlist_add_uint64(spa->spa_load_info,
3014 			    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
3015 			return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
3016 		}
3017 
3018 		int error = spa_activity_check(spa, ub, spa->spa_config);
3019 		if (error) {
3020 			nvlist_free(label);
3021 			return (error);
3022 		}
3023 
3024 		fnvlist_add_uint64(spa->spa_load_info,
3025 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
3026 		fnvlist_add_uint64(spa->spa_load_info,
3027 		    ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
3028 		fnvlist_add_uint16(spa->spa_load_info,
3029 		    ZPOOL_CONFIG_MMP_SEQ,
3030 		    (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0));
3031 	}
3032 
3033 	/*
3034 	 * If the pool has an unsupported version we can't open it.
3035 	 */
3036 	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
3037 		nvlist_free(label);
3038 		spa_load_failed(spa, "version %llu is not supported",
3039 		    (u_longlong_t)ub->ub_version);
3040 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
3041 	}
3042 
3043 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
3044 		nvlist_t *features;
3045 
3046 		/*
3047 		 * If we weren't able to find what's necessary for reading the
3048 		 * MOS in the label, return failure.
3049 		 */
3050 		if (label == NULL) {
3051 			spa_load_failed(spa, "label config unavailable");
3052 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3053 			    ENXIO));
3054 		}
3055 
3056 		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
3057 		    &features) != 0) {
3058 			nvlist_free(label);
3059 			spa_load_failed(spa, "invalid label: '%s' missing",
3060 			    ZPOOL_CONFIG_FEATURES_FOR_READ);
3061 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3062 			    ENXIO));
3063 		}
3064 
3065 		/*
3066 		 * Update our in-core representation with the definitive values
3067 		 * from the label.
3068 		 */
3069 		nvlist_free(spa->spa_label_features);
3070 		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
3071 	}
3072 
3073 	nvlist_free(label);
3074 
3075 	/*
3076 	 * Look through entries in the label nvlist's features_for_read. If
3077 	 * there is a feature listed there which we don't understand then we
3078 	 * cannot open a pool.
3079 	 */
3080 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
3081 		nvlist_t *unsup_feat;
3082 
3083 		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
3084 		    0);
3085 
3086 		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
3087 		    NULL); nvp != NULL;
3088 		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
3089 			if (!zfeature_is_supported(nvpair_name(nvp))) {
3090 				VERIFY(nvlist_add_string(unsup_feat,
3091 				    nvpair_name(nvp), "") == 0);
3092 			}
3093 		}
3094 
3095 		if (!nvlist_empty(unsup_feat)) {
3096 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
3097 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
3098 			nvlist_free(unsup_feat);
3099 			spa_load_failed(spa, "some features are unsupported");
3100 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
3101 			    ENOTSUP));
3102 		}
3103 
3104 		nvlist_free(unsup_feat);
3105 	}
3106 
3107 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
3108 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3109 		spa_try_repair(spa, spa->spa_config);
3110 		spa_config_exit(spa, SCL_ALL, FTAG);
3111 		nvlist_free(spa->spa_config_splitting);
3112 		spa->spa_config_splitting = NULL;
3113 	}
3114 
3115 	/*
3116 	 * Initialize internal SPA structures.
3117 	 */
3118 	spa_ld_select_uberblock_done(spa, ub);
3119 
3120 	return (0);
3121 }
3122 
3123 static int
3124 spa_ld_open_rootbp(spa_t *spa)
3125 {
3126 	int error = 0;
3127 	vdev_t *rvd = spa->spa_root_vdev;
3128 
3129 	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
3130 	if (error != 0) {
3131 		spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
3132 		    "[error=%d]", error);
3133 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3134 	}
3135 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
3136 
3137 	return (0);
3138 }
3139 
3140 static int
3141 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
3142     boolean_t reloading)
3143 {
3144 	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
3145 	nvlist_t *nv, *mos_config, *policy;
3146 	int error = 0, copy_error;
3147 	uint64_t healthy_tvds, healthy_tvds_mos;
3148 	uint64_t mos_config_txg;
3149 
3150 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
3151 	    != 0)
3152 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3153 
3154 	/*
3155 	 * If we're assembling a pool from a split, the config provided is
3156 	 * already trusted so there is nothing to do.
3157 	 */
3158 	if (type == SPA_IMPORT_ASSEMBLE)
3159 		return (0);
3160 
3161 	healthy_tvds = spa_healthy_core_tvds(spa);
3162 
3163 	if (load_nvlist(spa, spa->spa_config_object, &mos_config)
3164 	    != 0) {
3165 		spa_load_failed(spa, "unable to retrieve MOS config");
3166 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3167 	}
3168 
3169 	/*
3170 	 * If we are doing an open, pool owner wasn't verified yet, thus do
3171 	 * the verification here.
3172 	 */
3173 	if (spa->spa_load_state == SPA_LOAD_OPEN) {
3174 		error = spa_verify_host(spa, mos_config);
3175 		if (error != 0) {
3176 			nvlist_free(mos_config);
3177 			return (error);
3178 		}
3179 	}
3180 
3181 	nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
3182 
3183 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3184 
3185 	/*
3186 	 * Build a new vdev tree from the trusted config
3187 	 */
3188 	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
3189 
3190 	/*
3191 	 * Vdev paths in the MOS may be obsolete. If the untrusted config was
3192 	 * obtained by scanning /dev/dsk, then it will have the right vdev
3193 	 * paths. We update the trusted MOS config with this information.
3194 	 * We first try to copy the paths with vdev_copy_path_strict, which
3195 	 * succeeds only when both configs have exactly the same vdev tree.
3196 	 * If that fails, we fall back to a more flexible method that has a
3197 	 * best effort policy.
3198 	 */
3199 	copy_error = vdev_copy_path_strict(rvd, mrvd);
3200 	if (copy_error != 0 || spa_load_print_vdev_tree) {
3201 		spa_load_note(spa, "provided vdev tree:");
3202 		vdev_dbgmsg_print_tree(rvd, 2);
3203 		spa_load_note(spa, "MOS vdev tree:");
3204 		vdev_dbgmsg_print_tree(mrvd, 2);
3205 	}
3206 	if (copy_error != 0) {
3207 		spa_load_note(spa, "vdev_copy_path_strict failed, falling "
3208 		    "back to vdev_copy_path_relaxed");
3209 		vdev_copy_path_relaxed(rvd, mrvd);
3210 	}
3211 
3212 	vdev_close(rvd);
3213 	vdev_free(rvd);
3214 	spa->spa_root_vdev = mrvd;
3215 	rvd = mrvd;
3216 	spa_config_exit(spa, SCL_ALL, FTAG);
3217 
3218 	/*
3219 	 * We will use spa_config if we decide to reload the spa or if spa_load
3220 	 * fails and we rewind. We must thus regenerate the config using the
3221 	 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
3222 	 * pass settings on how to load the pool and is not stored in the MOS.
3223 	 * We copy it over to our new, trusted config.
3224 	 */
3225 	mos_config_txg = fnvlist_lookup_uint64(mos_config,
3226 	    ZPOOL_CONFIG_POOL_TXG);
3227 	nvlist_free(mos_config);
3228 	mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
3229 	if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
3230 	    &policy) == 0)
3231 		fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
3232 	spa_config_set(spa, mos_config);
3233 	spa->spa_config_source = SPA_CONFIG_SRC_MOS;
3234 
3235 	/*
3236 	 * Now that we got the config from the MOS, we should be more strict
3237 	 * in checking blkptrs and can make assumptions about the consistency
3238 	 * of the vdev tree. spa_trust_config must be set to true before opening
3239 	 * vdevs in order for them to be writeable.
3240 	 */
3241 	spa->spa_trust_config = B_TRUE;
3242 
3243 	/*
3244 	 * Open and validate the new vdev tree
3245 	 */
3246 	error = spa_ld_open_vdevs(spa);
3247 	if (error != 0)
3248 		return (error);
3249 
3250 	error = spa_ld_validate_vdevs(spa);
3251 	if (error != 0)
3252 		return (error);
3253 
3254 	if (copy_error != 0 || spa_load_print_vdev_tree) {
3255 		spa_load_note(spa, "final vdev tree:");
3256 		vdev_dbgmsg_print_tree(rvd, 2);
3257 	}
3258 
3259 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
3260 	    !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
3261 		/*
3262 		 * Sanity check to make sure that we are indeed loading the
3263 		 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
3264 		 * in the config provided and they happened to be the only ones
3265 		 * to have the latest uberblock, we could involuntarily perform
3266 		 * an extreme rewind.
3267 		 */
3268 		healthy_tvds_mos = spa_healthy_core_tvds(spa);
3269 		if (healthy_tvds_mos - healthy_tvds >=
3270 		    SPA_SYNC_MIN_VDEVS) {
3271 			spa_load_note(spa, "config provided misses too many "
3272 			    "top-level vdevs compared to MOS (%lld vs %lld). ",
3273 			    (u_longlong_t)healthy_tvds,
3274 			    (u_longlong_t)healthy_tvds_mos);
3275 			spa_load_note(spa, "vdev tree:");
3276 			vdev_dbgmsg_print_tree(rvd, 2);
3277 			if (reloading) {
3278 				spa_load_failed(spa, "config was already "
3279 				    "provided from MOS. Aborting.");
3280 				return (spa_vdev_err(rvd,
3281 				    VDEV_AUX_CORRUPT_DATA, EIO));
3282 			}
3283 			spa_load_note(spa, "spa must be reloaded using MOS "
3284 			    "config");
3285 			return (SET_ERROR(EAGAIN));
3286 		}
3287 	}
3288 
3289 	error = spa_check_for_missing_logs(spa);
3290 	if (error != 0)
3291 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
3292 
3293 	if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
3294 		spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
3295 		    "guid sum (%llu != %llu)",
3296 		    (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
3297 		    (u_longlong_t)rvd->vdev_guid_sum);
3298 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
3299 		    ENXIO));
3300 	}
3301 
3302 	return (0);
3303 }
3304 
3305 static int
3306 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
3307 {
3308 	int error = 0;
3309 	vdev_t *rvd = spa->spa_root_vdev;
3310 
3311 	/*
3312 	 * Everything that we read before spa_remove_init() must be stored
3313 	 * on concreted vdevs.  Therefore we do this as early as possible.
3314 	 */
3315 	error = spa_remove_init(spa);
3316 	if (error != 0) {
3317 		spa_load_failed(spa, "spa_remove_init failed [error=%d]",
3318 		    error);
3319 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3320 	}
3321 
3322 	/*
3323 	 * Retrieve information needed to condense indirect vdev mappings.
3324 	 */
3325 	error = spa_condense_init(spa);
3326 	if (error != 0) {
3327 		spa_load_failed(spa, "spa_condense_init failed [error=%d]",
3328 		    error);
3329 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3330 	}
3331 
3332 	return (0);
3333 }
3334 
3335 static int
3336 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
3337 {
3338 	int error = 0;
3339 	vdev_t *rvd = spa->spa_root_vdev;
3340 
3341 	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
3342 		boolean_t missing_feat_read = B_FALSE;
3343 		nvlist_t *unsup_feat, *enabled_feat;
3344 
3345 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
3346 		    &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
3347 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3348 		}
3349 
3350 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
3351 		    &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
3352 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3353 		}
3354 
3355 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
3356 		    &spa->spa_feat_desc_obj, B_TRUE) != 0) {
3357 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3358 		}
3359 
3360 		enabled_feat = fnvlist_alloc();
3361 		unsup_feat = fnvlist_alloc();
3362 
3363 		if (!spa_features_check(spa, B_FALSE,
3364 		    unsup_feat, enabled_feat))
3365 			missing_feat_read = B_TRUE;
3366 
3367 		if (spa_writeable(spa) ||
3368 		    spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
3369 			if (!spa_features_check(spa, B_TRUE,
3370 			    unsup_feat, enabled_feat)) {
3371 				*missing_feat_writep = B_TRUE;
3372 			}
3373 		}
3374 
3375 		fnvlist_add_nvlist(spa->spa_load_info,
3376 		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
3377 
3378 		if (!nvlist_empty(unsup_feat)) {
3379 			fnvlist_add_nvlist(spa->spa_load_info,
3380 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
3381 		}
3382 
3383 		fnvlist_free(enabled_feat);
3384 		fnvlist_free(unsup_feat);
3385 
3386 		if (!missing_feat_read) {
3387 			fnvlist_add_boolean(spa->spa_load_info,
3388 			    ZPOOL_CONFIG_CAN_RDONLY);
3389 		}
3390 
3391 		/*
3392 		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
3393 		 * twofold: to determine whether the pool is available for
3394 		 * import in read-write mode and (if it is not) whether the
3395 		 * pool is available for import in read-only mode. If the pool
3396 		 * is available for import in read-write mode, it is displayed
3397 		 * as available in userland; if it is not available for import
3398 		 * in read-only mode, it is displayed as unavailable in
3399 		 * userland. If the pool is available for import in read-only
3400 		 * mode but not read-write mode, it is displayed as unavailable
3401 		 * in userland with a special note that the pool is actually
3402 		 * available for open in read-only mode.
3403 		 *
3404 		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
3405 		 * missing a feature for write, we must first determine whether
3406 		 * the pool can be opened read-only before returning to
3407 		 * userland in order to know whether to display the
3408 		 * abovementioned note.
3409 		 */
3410 		if (missing_feat_read || (*missing_feat_writep &&
3411 		    spa_writeable(spa))) {
3412 			spa_load_failed(spa, "pool uses unsupported features");
3413 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
3414 			    ENOTSUP));
3415 		}
3416 
3417 		/*
3418 		 * Load refcounts for ZFS features from disk into an in-memory
3419 		 * cache during SPA initialization.
3420 		 */
3421 		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
3422 			uint64_t refcount;
3423 
3424 			error = feature_get_refcount_from_disk(spa,
3425 			    &spa_feature_table[i], &refcount);
3426 			if (error == 0) {
3427 				spa->spa_feat_refcount_cache[i] = refcount;
3428 			} else if (error == ENOTSUP) {
3429 				spa->spa_feat_refcount_cache[i] =
3430 				    SPA_FEATURE_DISABLED;
3431 			} else {
3432 				spa_load_failed(spa, "error getting refcount "
3433 				    "for feature %s [error=%d]",
3434 				    spa_feature_table[i].fi_guid, error);
3435 				return (spa_vdev_err(rvd,
3436 				    VDEV_AUX_CORRUPT_DATA, EIO));
3437 			}
3438 		}
3439 	}
3440 
3441 	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
3442 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
3443 		    &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
3444 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3445 	}
3446 
3447 	/*
3448 	 * Encryption was added before bookmark_v2, even though bookmark_v2
3449 	 * is now a dependency. If this pool has encryption enabled without
3450 	 * bookmark_v2, trigger an errata message.
3451 	 */
3452 	if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) &&
3453 	    !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) {
3454 		spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION;
3455 	}
3456 
3457 	return (0);
3458 }
3459 
3460 static int
3461 spa_ld_load_special_directories(spa_t *spa)
3462 {
3463 	int error = 0;
3464 	vdev_t *rvd = spa->spa_root_vdev;
3465 
3466 	spa->spa_is_initializing = B_TRUE;
3467 	error = dsl_pool_open(spa->spa_dsl_pool);
3468 	spa->spa_is_initializing = B_FALSE;
3469 	if (error != 0) {
3470 		spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
3471 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3472 	}
3473 
3474 	return (0);
3475 }
3476 
3477 static int
3478 spa_ld_get_props(spa_t *spa)
3479 {
3480 	int error = 0;
3481 	uint64_t obj;
3482 	vdev_t *rvd = spa->spa_root_vdev;
3483 
3484 	/* Grab the secret checksum salt from the MOS. */
3485 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3486 	    DMU_POOL_CHECKSUM_SALT, 1,
3487 	    sizeof (spa->spa_cksum_salt.zcs_bytes),
3488 	    spa->spa_cksum_salt.zcs_bytes);
3489 	if (error == ENOENT) {
3490 		/* Generate a new salt for subsequent use */
3491 		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
3492 		    sizeof (spa->spa_cksum_salt.zcs_bytes));
3493 	} else if (error != 0) {
3494 		spa_load_failed(spa, "unable to retrieve checksum salt from "
3495 		    "MOS [error=%d]", error);
3496 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3497 	}
3498 
3499 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
3500 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3501 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
3502 	if (error != 0) {
3503 		spa_load_failed(spa, "error opening deferred-frees bpobj "
3504 		    "[error=%d]", error);
3505 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3506 	}
3507 
3508 	/*
3509 	 * Load the bit that tells us to use the new accounting function
3510 	 * (raid-z deflation).  If we have an older pool, this will not
3511 	 * be present.
3512 	 */
3513 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
3514 	if (error != 0 && error != ENOENT)
3515 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3516 
3517 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
3518 	    &spa->spa_creation_version, B_FALSE);
3519 	if (error != 0 && error != ENOENT)
3520 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3521 
3522 	/*
3523 	 * Load the persistent error log.  If we have an older pool, this will
3524 	 * not be present.
3525 	 */
3526 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
3527 	    B_FALSE);
3528 	if (error != 0 && error != ENOENT)
3529 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3530 
3531 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
3532 	    &spa->spa_errlog_scrub, B_FALSE);
3533 	if (error != 0 && error != ENOENT)
3534 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3535 
3536 	/*
3537 	 * Load the history object.  If we have an older pool, this
3538 	 * will not be present.
3539 	 */
3540 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
3541 	if (error != 0 && error != ENOENT)
3542 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3543 
3544 	/*
3545 	 * Load the per-vdev ZAP map. If we have an older pool, this will not
3546 	 * be present; in this case, defer its creation to a later time to
3547 	 * avoid dirtying the MOS this early / out of sync context. See
3548 	 * spa_sync_config_object.
3549 	 */
3550 
3551 	/* The sentinel is only available in the MOS config. */
3552 	nvlist_t *mos_config;
3553 	if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
3554 		spa_load_failed(spa, "unable to retrieve MOS config");
3555 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3556 	}
3557 
3558 	error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
3559 	    &spa->spa_all_vdev_zaps, B_FALSE);
3560 
3561 	if (error == ENOENT) {
3562 		VERIFY(!nvlist_exists(mos_config,
3563 		    ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
3564 		spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
3565 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
3566 	} else if (error != 0) {
3567 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3568 	} else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
3569 		/*
3570 		 * An older version of ZFS overwrote the sentinel value, so
3571 		 * we have orphaned per-vdev ZAPs in the MOS. Defer their
3572 		 * destruction to later; see spa_sync_config_object.
3573 		 */
3574 		spa->spa_avz_action = AVZ_ACTION_DESTROY;
3575 		/*
3576 		 * We're assuming that no vdevs have had their ZAPs created
3577 		 * before this. Better be sure of it.
3578 		 */
3579 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
3580 	}
3581 	nvlist_free(mos_config);
3582 
3583 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3584 
3585 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
3586 	    B_FALSE);
3587 	if (error && error != ENOENT)
3588 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3589 
3590 	if (error == 0) {
3591 		uint64_t autoreplace;
3592 
3593 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
3594 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
3595 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
3596 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
3597 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
3598 		spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost);
3599 		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
3600 		    &spa->spa_dedup_ditto);
3601 		spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim);
3602 		spa->spa_autoreplace = (autoreplace != 0);
3603 	}
3604 
3605 	/*
3606 	 * If we are importing a pool with missing top-level vdevs,
3607 	 * we enforce that the pool doesn't panic or get suspended on
3608 	 * error since the likelihood of missing data is extremely high.
3609 	 */
3610 	if (spa->spa_missing_tvds > 0 &&
3611 	    spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
3612 	    spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3613 		spa_load_note(spa, "forcing failmode to 'continue' "
3614 		    "as some top level vdevs are missing");
3615 		spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
3616 	}
3617 
3618 	return (0);
3619 }
3620 
3621 static int
3622 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
3623 {
3624 	int error = 0;
3625 	vdev_t *rvd = spa->spa_root_vdev;
3626 
3627 	/*
3628 	 * If we're assembling the pool from the split-off vdevs of
3629 	 * an existing pool, we don't want to attach the spares & cache
3630 	 * devices.
3631 	 */
3632 
3633 	/*
3634 	 * Load any hot spares for this pool.
3635 	 */
3636 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
3637 	    B_FALSE);
3638 	if (error != 0 && error != ENOENT)
3639 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3640 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
3641 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
3642 		if (load_nvlist(spa, spa->spa_spares.sav_object,
3643 		    &spa->spa_spares.sav_config) != 0) {
3644 			spa_load_failed(spa, "error loading spares nvlist");
3645 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3646 		}
3647 
3648 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3649 		spa_load_spares(spa);
3650 		spa_config_exit(spa, SCL_ALL, FTAG);
3651 	} else if (error == 0) {
3652 		spa->spa_spares.sav_sync = B_TRUE;
3653 	}
3654 
3655 	/*
3656 	 * Load any level 2 ARC devices for this pool.
3657 	 */
3658 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
3659 	    &spa->spa_l2cache.sav_object, B_FALSE);
3660 	if (error != 0 && error != ENOENT)
3661 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3662 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
3663 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
3664 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
3665 		    &spa->spa_l2cache.sav_config) != 0) {
3666 			spa_load_failed(spa, "error loading l2cache nvlist");
3667 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3668 		}
3669 
3670 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3671 		spa_load_l2cache(spa);
3672 		spa_config_exit(spa, SCL_ALL, FTAG);
3673 	} else if (error == 0) {
3674 		spa->spa_l2cache.sav_sync = B_TRUE;
3675 	}
3676 
3677 	return (0);
3678 }
3679 
3680 static int
3681 spa_ld_load_vdev_metadata(spa_t *spa)
3682 {
3683 	int error = 0;
3684 	vdev_t *rvd = spa->spa_root_vdev;
3685 
3686 	/*
3687 	 * If the 'multihost' property is set, then never allow a pool to
3688 	 * be imported when the system hostid is zero.  The exception to
3689 	 * this rule is zdb which is always allowed to access pools.
3690 	 */
3691 	if (spa_multihost(spa) && spa_get_hostid() == 0 &&
3692 	    (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) {
3693 		fnvlist_add_uint64(spa->spa_load_info,
3694 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
3695 		return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
3696 	}
3697 
3698 	/*
3699 	 * If the 'autoreplace' property is set, then post a resource notifying
3700 	 * the ZFS DE that it should not issue any faults for unopenable
3701 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
3702 	 * unopenable vdevs so that the normal autoreplace handler can take
3703 	 * over.
3704 	 */
3705 	if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3706 		spa_check_removed(spa->spa_root_vdev);
3707 		/*
3708 		 * For the import case, this is done in spa_import(), because
3709 		 * at this point we're using the spare definitions from
3710 		 * the MOS config, not necessarily from the userland config.
3711 		 */
3712 		if (spa->spa_load_state != SPA_LOAD_IMPORT) {
3713 			spa_aux_check_removed(&spa->spa_spares);
3714 			spa_aux_check_removed(&spa->spa_l2cache);
3715 		}
3716 	}
3717 
3718 	/*
3719 	 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
3720 	 */
3721 	error = vdev_load(rvd);
3722 	if (error != 0) {
3723 		spa_load_failed(spa, "vdev_load failed [error=%d]", error);
3724 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3725 	}
3726 
3727 	error = spa_ld_log_spacemaps(spa);
3728 	if (error != 0) {
3729 		spa_load_failed(spa, "spa_ld_log_sm_data failed [error=%d]",
3730 		    error);
3731 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3732 	}
3733 
3734 	/*
3735 	 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
3736 	 */
3737 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3738 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
3739 	spa_config_exit(spa, SCL_ALL, FTAG);
3740 
3741 	return (0);
3742 }
3743 
3744 static int
3745 spa_ld_load_dedup_tables(spa_t *spa)
3746 {
3747 	int error = 0;
3748 	vdev_t *rvd = spa->spa_root_vdev;
3749 
3750 	error = ddt_load(spa);
3751 	if (error != 0) {
3752 		spa_load_failed(spa, "ddt_load failed [error=%d]", error);
3753 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3754 	}
3755 
3756 	return (0);
3757 }
3758 
3759 static int
3760 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, char **ereport)
3761 {
3762 	vdev_t *rvd = spa->spa_root_vdev;
3763 
3764 	if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
3765 		boolean_t missing = spa_check_logs(spa);
3766 		if (missing) {
3767 			if (spa->spa_missing_tvds != 0) {
3768 				spa_load_note(spa, "spa_check_logs failed "
3769 				    "so dropping the logs");
3770 			} else {
3771 				*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
3772 				spa_load_failed(spa, "spa_check_logs failed");
3773 				return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
3774 				    ENXIO));
3775 			}
3776 		}
3777 	}
3778 
3779 	return (0);
3780 }
3781 
3782 static int
3783 spa_ld_verify_pool_data(spa_t *spa)
3784 {
3785 	int error = 0;
3786 	vdev_t *rvd = spa->spa_root_vdev;
3787 
3788 	/*
3789 	 * We've successfully opened the pool, verify that we're ready
3790 	 * to start pushing transactions.
3791 	 */
3792 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3793 		error = spa_load_verify(spa);
3794 		if (error != 0) {
3795 			spa_load_failed(spa, "spa_load_verify failed "
3796 			    "[error=%d]", error);
3797 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3798 			    error));
3799 		}
3800 	}
3801 
3802 	return (0);
3803 }
3804 
3805 static void
3806 spa_ld_claim_log_blocks(spa_t *spa)
3807 {
3808 	dmu_tx_t *tx;
3809 	dsl_pool_t *dp = spa_get_dsl(spa);
3810 
3811 	/*
3812 	 * Claim log blocks that haven't been committed yet.
3813 	 * This must all happen in a single txg.
3814 	 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
3815 	 * invoked from zil_claim_log_block()'s i/o done callback.
3816 	 * Price of rollback is that we abandon the log.
3817 	 */
3818 	spa->spa_claiming = B_TRUE;
3819 
3820 	tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
3821 	(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
3822 	    zil_claim, tx, DS_FIND_CHILDREN);
3823 	dmu_tx_commit(tx);
3824 
3825 	spa->spa_claiming = B_FALSE;
3826 
3827 	spa_set_log_state(spa, SPA_LOG_GOOD);
3828 }
3829 
3830 static void
3831 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
3832     boolean_t update_config_cache)
3833 {
3834 	vdev_t *rvd = spa->spa_root_vdev;
3835 	int need_update = B_FALSE;
3836 
3837 	/*
3838 	 * If the config cache is stale, or we have uninitialized
3839 	 * metaslabs (see spa_vdev_add()), then update the config.
3840 	 *
3841 	 * If this is a verbatim import, trust the current
3842 	 * in-core spa_config and update the disk labels.
3843 	 */
3844 	if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
3845 	    spa->spa_load_state == SPA_LOAD_IMPORT ||
3846 	    spa->spa_load_state == SPA_LOAD_RECOVER ||
3847 	    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
3848 		need_update = B_TRUE;
3849 
3850 	for (int c = 0; c < rvd->vdev_children; c++)
3851 		if (rvd->vdev_child[c]->vdev_ms_array == 0)
3852 			need_update = B_TRUE;
3853 
3854 	/*
3855 	 * Update the config cache asychronously in case we're the
3856 	 * root pool, in which case the config cache isn't writable yet.
3857 	 */
3858 	if (need_update)
3859 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3860 }
3861 
3862 static void
3863 spa_ld_prepare_for_reload(spa_t *spa)
3864 {
3865 	int mode = spa->spa_mode;
3866 	int async_suspended = spa->spa_async_suspended;
3867 
3868 	spa_unload(spa);
3869 	spa_deactivate(spa);
3870 	spa_activate(spa, mode);
3871 
3872 	/*
3873 	 * We save the value of spa_async_suspended as it gets reset to 0 by
3874 	 * spa_unload(). We want to restore it back to the original value before
3875 	 * returning as we might be calling spa_async_resume() later.
3876 	 */
3877 	spa->spa_async_suspended = async_suspended;
3878 }
3879 
3880 static int
3881 spa_ld_read_checkpoint_txg(spa_t *spa)
3882 {
3883 	uberblock_t checkpoint;
3884 	int error = 0;
3885 
3886 	ASSERT0(spa->spa_checkpoint_txg);
3887 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
3888 
3889 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3890 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
3891 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
3892 
3893 	if (error == ENOENT)
3894 		return (0);
3895 
3896 	if (error != 0)
3897 		return (error);
3898 
3899 	ASSERT3U(checkpoint.ub_txg, !=, 0);
3900 	ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
3901 	ASSERT3U(checkpoint.ub_timestamp, !=, 0);
3902 	spa->spa_checkpoint_txg = checkpoint.ub_txg;
3903 	spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
3904 
3905 	return (0);
3906 }
3907 
3908 static int
3909 spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
3910 {
3911 	int error = 0;
3912 
3913 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
3914 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
3915 
3916 	/*
3917 	 * Never trust the config that is provided unless we are assembling
3918 	 * a pool following a split.
3919 	 * This means don't trust blkptrs and the vdev tree in general. This
3920 	 * also effectively puts the spa in read-only mode since
3921 	 * spa_writeable() checks for spa_trust_config to be true.
3922 	 * We will later load a trusted config from the MOS.
3923 	 */
3924 	if (type != SPA_IMPORT_ASSEMBLE)
3925 		spa->spa_trust_config = B_FALSE;
3926 
3927 	/*
3928 	 * Parse the config provided to create a vdev tree.
3929 	 */
3930 	error = spa_ld_parse_config(spa, type);
3931 	if (error != 0)
3932 		return (error);
3933 
3934 	spa_import_progress_add(spa);
3935 
3936 	/*
3937 	 * Now that we have the vdev tree, try to open each vdev. This involves
3938 	 * opening the underlying physical device, retrieving its geometry and
3939 	 * probing the vdev with a dummy I/O. The state of each vdev will be set
3940 	 * based on the success of those operations. After this we'll be ready
3941 	 * to read from the vdevs.
3942 	 */
3943 	error = spa_ld_open_vdevs(spa);
3944 	if (error != 0)
3945 		return (error);
3946 
3947 	/*
3948 	 * Read the label of each vdev and make sure that the GUIDs stored
3949 	 * there match the GUIDs in the config provided.
3950 	 * If we're assembling a new pool that's been split off from an
3951 	 * existing pool, the labels haven't yet been updated so we skip
3952 	 * validation for now.
3953 	 */
3954 	if (type != SPA_IMPORT_ASSEMBLE) {
3955 		error = spa_ld_validate_vdevs(spa);
3956 		if (error != 0)
3957 			return (error);
3958 	}
3959 
3960 	/*
3961 	 * Read all vdev labels to find the best uberblock (i.e. latest,
3962 	 * unless spa_load_max_txg is set) and store it in spa_uberblock. We
3963 	 * get the list of features required to read blkptrs in the MOS from
3964 	 * the vdev label with the best uberblock and verify that our version
3965 	 * of zfs supports them all.
3966 	 */
3967 	error = spa_ld_select_uberblock(spa, type);
3968 	if (error != 0)
3969 		return (error);
3970 
3971 	/*
3972 	 * Pass that uberblock to the dsl_pool layer which will open the root
3973 	 * blkptr. This blkptr points to the latest version of the MOS and will
3974 	 * allow us to read its contents.
3975 	 */
3976 	error = spa_ld_open_rootbp(spa);
3977 	if (error != 0)
3978 		return (error);
3979 
3980 	return (0);
3981 }
3982 
3983 static int
3984 spa_ld_checkpoint_rewind(spa_t *spa)
3985 {
3986 	uberblock_t checkpoint;
3987 	int error = 0;
3988 
3989 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
3990 	ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
3991 
3992 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3993 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
3994 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
3995 
3996 	if (error != 0) {
3997 		spa_load_failed(spa, "unable to retrieve checkpointed "
3998 		    "uberblock from the MOS config [error=%d]", error);
3999 
4000 		if (error == ENOENT)
4001 			error = ZFS_ERR_NO_CHECKPOINT;
4002 
4003 		return (error);
4004 	}
4005 
4006 	ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
4007 	ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
4008 
4009 	/*
4010 	 * We need to update the txg and timestamp of the checkpointed
4011 	 * uberblock to be higher than the latest one. This ensures that
4012 	 * the checkpointed uberblock is selected if we were to close and
4013 	 * reopen the pool right after we've written it in the vdev labels.
4014 	 * (also see block comment in vdev_uberblock_compare)
4015 	 */
4016 	checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
4017 	checkpoint.ub_timestamp = gethrestime_sec();
4018 
4019 	/*
4020 	 * Set current uberblock to be the checkpointed uberblock.
4021 	 */
4022 	spa->spa_uberblock = checkpoint;
4023 
4024 	/*
4025 	 * If we are doing a normal rewind, then the pool is open for
4026 	 * writing and we sync the "updated" checkpointed uberblock to
4027 	 * disk. Once this is done, we've basically rewound the whole
4028 	 * pool and there is no way back.
4029 	 *
4030 	 * There are cases when we don't want to attempt and sync the
4031 	 * checkpointed uberblock to disk because we are opening a
4032 	 * pool as read-only. Specifically, verifying the checkpointed
4033 	 * state with zdb, and importing the checkpointed state to get
4034 	 * a "preview" of its content.
4035 	 */
4036 	if (spa_writeable(spa)) {
4037 		vdev_t *rvd = spa->spa_root_vdev;
4038 
4039 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4040 		vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
4041 		int svdcount = 0;
4042 		int children = rvd->vdev_children;
4043 		int c0 = spa_get_random(children);
4044 
4045 		for (int c = 0; c < children; c++) {
4046 			vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
4047 
4048 			/* Stop when revisiting the first vdev */
4049 			if (c > 0 && svd[0] == vd)
4050 				break;
4051 
4052 			if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
4053 			    !vdev_is_concrete(vd))
4054 				continue;
4055 
4056 			svd[svdcount++] = vd;
4057 			if (svdcount == SPA_SYNC_MIN_VDEVS)
4058 				break;
4059 		}
4060 		error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
4061 		if (error == 0)
4062 			spa->spa_last_synced_guid = rvd->vdev_guid;
4063 		spa_config_exit(spa, SCL_ALL, FTAG);
4064 
4065 		if (error != 0) {
4066 			spa_load_failed(spa, "failed to write checkpointed "
4067 			    "uberblock to the vdev labels [error=%d]", error);
4068 			return (error);
4069 		}
4070 	}
4071 
4072 	return (0);
4073 }
4074 
4075 static int
4076 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
4077     boolean_t *update_config_cache)
4078 {
4079 	int error;
4080 
4081 	/*
4082 	 * Parse the config for pool, open and validate vdevs,
4083 	 * select an uberblock, and use that uberblock to open
4084 	 * the MOS.
4085 	 */
4086 	error = spa_ld_mos_init(spa, type);
4087 	if (error != 0)
4088 		return (error);
4089 
4090 	/*
4091 	 * Retrieve the trusted config stored in the MOS and use it to create
4092 	 * a new, exact version of the vdev tree, then reopen all vdevs.
4093 	 */
4094 	error = spa_ld_trusted_config(spa, type, B_FALSE);
4095 	if (error == EAGAIN) {
4096 		if (update_config_cache != NULL)
4097 			*update_config_cache = B_TRUE;
4098 
4099 		/*
4100 		 * Redo the loading process with the trusted config if it is
4101 		 * too different from the untrusted config.
4102 		 */
4103 		spa_ld_prepare_for_reload(spa);
4104 		spa_load_note(spa, "RELOADING");
4105 		error = spa_ld_mos_init(spa, type);
4106 		if (error != 0)
4107 			return (error);
4108 
4109 		error = spa_ld_trusted_config(spa, type, B_TRUE);
4110 		if (error != 0)
4111 			return (error);
4112 
4113 	} else if (error != 0) {
4114 		return (error);
4115 	}
4116 
4117 	return (0);
4118 }
4119 
4120 /*
4121  * Load an existing storage pool, using the config provided. This config
4122  * describes which vdevs are part of the pool and is later validated against
4123  * partial configs present in each vdev's label and an entire copy of the
4124  * config stored in the MOS.
4125  */
4126 static int
4127 spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport)
4128 {
4129 	int error = 0;
4130 	boolean_t missing_feat_write = B_FALSE;
4131 	boolean_t checkpoint_rewind =
4132 	    (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4133 	boolean_t update_config_cache = B_FALSE;
4134 
4135 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4136 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
4137 
4138 	spa_load_note(spa, "LOADING");
4139 
4140 	error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
4141 	if (error != 0)
4142 		return (error);
4143 
4144 	/*
4145 	 * If we are rewinding to the checkpoint then we need to repeat
4146 	 * everything we've done so far in this function but this time
4147 	 * selecting the checkpointed uberblock and using that to open
4148 	 * the MOS.
4149 	 */
4150 	if (checkpoint_rewind) {
4151 		/*
4152 		 * If we are rewinding to the checkpoint update config cache
4153 		 * anyway.
4154 		 */
4155 		update_config_cache = B_TRUE;
4156 
4157 		/*
4158 		 * Extract the checkpointed uberblock from the current MOS
4159 		 * and use this as the pool's uberblock from now on. If the
4160 		 * pool is imported as writeable we also write the checkpoint
4161 		 * uberblock to the labels, making the rewind permanent.
4162 		 */
4163 		error = spa_ld_checkpoint_rewind(spa);
4164 		if (error != 0)
4165 			return (error);
4166 
4167 		/*
4168 		 * Redo the loading process process again with the
4169 		 * checkpointed uberblock.
4170 		 */
4171 		spa_ld_prepare_for_reload(spa);
4172 		spa_load_note(spa, "LOADING checkpointed uberblock");
4173 		error = spa_ld_mos_with_trusted_config(spa, type, NULL);
4174 		if (error != 0)
4175 			return (error);
4176 	}
4177 
4178 	/*
4179 	 * Retrieve the checkpoint txg if the pool has a checkpoint.
4180 	 */
4181 	error = spa_ld_read_checkpoint_txg(spa);
4182 	if (error != 0)
4183 		return (error);
4184 
4185 	/*
4186 	 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
4187 	 * from the pool and their contents were re-mapped to other vdevs. Note
4188 	 * that everything that we read before this step must have been
4189 	 * rewritten on concrete vdevs after the last device removal was
4190 	 * initiated. Otherwise we could be reading from indirect vdevs before
4191 	 * we have loaded their mappings.
4192 	 */
4193 	error = spa_ld_open_indirect_vdev_metadata(spa);
4194 	if (error != 0)
4195 		return (error);
4196 
4197 	/*
4198 	 * Retrieve the full list of active features from the MOS and check if
4199 	 * they are all supported.
4200 	 */
4201 	error = spa_ld_check_features(spa, &missing_feat_write);
4202 	if (error != 0)
4203 		return (error);
4204 
4205 	/*
4206 	 * Load several special directories from the MOS needed by the dsl_pool
4207 	 * layer.
4208 	 */
4209 	error = spa_ld_load_special_directories(spa);
4210 	if (error != 0)
4211 		return (error);
4212 
4213 	/*
4214 	 * Retrieve pool properties from the MOS.
4215 	 */
4216 	error = spa_ld_get_props(spa);
4217 	if (error != 0)
4218 		return (error);
4219 
4220 	/*
4221 	 * Retrieve the list of auxiliary devices - cache devices and spares -
4222 	 * and open them.
4223 	 */
4224 	error = spa_ld_open_aux_vdevs(spa, type);
4225 	if (error != 0)
4226 		return (error);
4227 
4228 	/*
4229 	 * Load the metadata for all vdevs. Also check if unopenable devices
4230 	 * should be autoreplaced.
4231 	 */
4232 	error = spa_ld_load_vdev_metadata(spa);
4233 	if (error != 0)
4234 		return (error);
4235 
4236 	error = spa_ld_load_dedup_tables(spa);
4237 	if (error != 0)
4238 		return (error);
4239 
4240 	/*
4241 	 * Verify the logs now to make sure we don't have any unexpected errors
4242 	 * when we claim log blocks later.
4243 	 */
4244 	error = spa_ld_verify_logs(spa, type, ereport);
4245 	if (error != 0)
4246 		return (error);
4247 
4248 	if (missing_feat_write) {
4249 		ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
4250 
4251 		/*
4252 		 * At this point, we know that we can open the pool in
4253 		 * read-only mode but not read-write mode. We now have enough
4254 		 * information and can return to userland.
4255 		 */
4256 		return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
4257 		    ENOTSUP));
4258 	}
4259 
4260 	/*
4261 	 * Traverse the last txgs to make sure the pool was left off in a safe
4262 	 * state. When performing an extreme rewind, we verify the whole pool,
4263 	 * which can take a very long time.
4264 	 */
4265 	error = spa_ld_verify_pool_data(spa);
4266 	if (error != 0)
4267 		return (error);
4268 
4269 	/*
4270 	 * Calculate the deflated space for the pool. This must be done before
4271 	 * we write anything to the pool because we'd need to update the space
4272 	 * accounting using the deflated sizes.
4273 	 */
4274 	spa_update_dspace(spa);
4275 
4276 	/*
4277 	 * We have now retrieved all the information we needed to open the
4278 	 * pool. If we are importing the pool in read-write mode, a few
4279 	 * additional steps must be performed to finish the import.
4280 	 */
4281 	if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
4282 	    spa->spa_load_max_txg == UINT64_MAX)) {
4283 		uint64_t config_cache_txg = spa->spa_config_txg;
4284 
4285 		ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
4286 
4287 		/*
4288 		 * In case of a checkpoint rewind, log the original txg
4289 		 * of the checkpointed uberblock.
4290 		 */
4291 		if (checkpoint_rewind) {
4292 			spa_history_log_internal(spa, "checkpoint rewind",
4293 			    NULL, "rewound state to txg=%llu",
4294 			    (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
4295 		}
4296 
4297 		/*
4298 		 * Traverse the ZIL and claim all blocks.
4299 		 */
4300 		spa_ld_claim_log_blocks(spa);
4301 
4302 		/*
4303 		 * Kick-off the syncing thread.
4304 		 */
4305 		spa->spa_sync_on = B_TRUE;
4306 		txg_sync_start(spa->spa_dsl_pool);
4307 		mmp_thread_start(spa);
4308 
4309 		/*
4310 		 * Wait for all claims to sync.  We sync up to the highest
4311 		 * claimed log block birth time so that claimed log blocks
4312 		 * don't appear to be from the future.  spa_claim_max_txg
4313 		 * will have been set for us by ZIL traversal operations
4314 		 * performed above.
4315 		 */
4316 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
4317 
4318 		/*
4319 		 * Check if we need to request an update of the config. On the
4320 		 * next sync, we would update the config stored in vdev labels
4321 		 * and the cachefile (by default /etc/zfs/zpool.cache).
4322 		 */
4323 		spa_ld_check_for_config_update(spa, config_cache_txg,
4324 		    update_config_cache);
4325 
4326 		/*
4327 		 * Check all DTLs to see if anything needs resilvering.
4328 		 */
4329 		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
4330 		    vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))
4331 			spa_async_request(spa, SPA_ASYNC_RESILVER);
4332 
4333 		/*
4334 		 * Log the fact that we booted up (so that we can detect if
4335 		 * we rebooted in the middle of an operation).
4336 		 */
4337 		spa_history_log_version(spa, "open");
4338 
4339 		spa_restart_removal(spa);
4340 		spa_spawn_aux_threads(spa);
4341 
4342 		/*
4343 		 * Delete any inconsistent datasets.
4344 		 *
4345 		 * Note:
4346 		 * Since we may be issuing deletes for clones here,
4347 		 * we make sure to do so after we've spawned all the
4348 		 * auxiliary threads above (from which the livelist
4349 		 * deletion zthr is part of).
4350 		 */
4351 		(void) dmu_objset_find(spa_name(spa),
4352 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
4353 
4354 		/*
4355 		 * Clean up any stale temporary dataset userrefs.
4356 		 */
4357 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
4358 
4359 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4360 		vdev_initialize_restart(spa->spa_root_vdev);
4361 		vdev_trim_restart(spa->spa_root_vdev);
4362 		vdev_autotrim_restart(spa);
4363 		spa_config_exit(spa, SCL_CONFIG, FTAG);
4364 	}
4365 
4366 	spa_import_progress_remove(spa);
4367 	spa_load_note(spa, "LOADED");
4368 
4369 	return (0);
4370 }
4371 
4372 static int
4373 spa_load_retry(spa_t *spa, spa_load_state_t state)
4374 {
4375 	int mode = spa->spa_mode;
4376 
4377 	spa_unload(spa);
4378 	spa_deactivate(spa);
4379 
4380 	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
4381 
4382 	spa_activate(spa, mode);
4383 	spa_async_suspend(spa);
4384 
4385 	spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
4386 	    (u_longlong_t)spa->spa_load_max_txg);
4387 
4388 	return (spa_load(spa, state, SPA_IMPORT_EXISTING));
4389 }
4390 
4391 /*
4392  * If spa_load() fails this function will try loading prior txg's. If
4393  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
4394  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
4395  * function will not rewind the pool and will return the same error as
4396  * spa_load().
4397  */
4398 static int
4399 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
4400     int rewind_flags)
4401 {
4402 	nvlist_t *loadinfo = NULL;
4403 	nvlist_t *config = NULL;
4404 	int load_error, rewind_error;
4405 	uint64_t safe_rewind_txg;
4406 	uint64_t min_txg;
4407 
4408 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
4409 		spa->spa_load_max_txg = spa->spa_load_txg;
4410 		spa_set_log_state(spa, SPA_LOG_CLEAR);
4411 	} else {
4412 		spa->spa_load_max_txg = max_request;
4413 		if (max_request != UINT64_MAX)
4414 			spa->spa_extreme_rewind = B_TRUE;
4415 	}
4416 
4417 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
4418 	if (load_error == 0)
4419 		return (0);
4420 	if (load_error == ZFS_ERR_NO_CHECKPOINT) {
4421 		/*
4422 		 * When attempting checkpoint-rewind on a pool with no
4423 		 * checkpoint, we should not attempt to load uberblocks
4424 		 * from previous txgs when spa_load fails.
4425 		 */
4426 		ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4427 		spa_import_progress_remove(spa);
4428 		return (load_error);
4429 	}
4430 
4431 	if (spa->spa_root_vdev != NULL)
4432 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4433 
4434 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
4435 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
4436 
4437 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
4438 		nvlist_free(config);
4439 		spa_import_progress_remove(spa);
4440 		return (load_error);
4441 	}
4442 
4443 	if (state == SPA_LOAD_RECOVER) {
4444 		/* Price of rolling back is discarding txgs, including log */
4445 		spa_set_log_state(spa, SPA_LOG_CLEAR);
4446 	} else {
4447 		/*
4448 		 * If we aren't rolling back save the load info from our first
4449 		 * import attempt so that we can restore it after attempting
4450 		 * to rewind.
4451 		 */
4452 		loadinfo = spa->spa_load_info;
4453 		spa->spa_load_info = fnvlist_alloc();
4454 	}
4455 
4456 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
4457 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
4458 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
4459 	    TXG_INITIAL : safe_rewind_txg;
4460 
4461 	/*
4462 	 * Continue as long as we're finding errors, we're still within
4463 	 * the acceptable rewind range, and we're still finding uberblocks
4464 	 */
4465 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
4466 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
4467 		if (spa->spa_load_max_txg < safe_rewind_txg)
4468 			spa->spa_extreme_rewind = B_TRUE;
4469 		rewind_error = spa_load_retry(spa, state);
4470 	}
4471 
4472 	spa->spa_extreme_rewind = B_FALSE;
4473 	spa->spa_load_max_txg = UINT64_MAX;
4474 
4475 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
4476 		spa_config_set(spa, config);
4477 	else
4478 		nvlist_free(config);
4479 
4480 	if (state == SPA_LOAD_RECOVER) {
4481 		ASSERT3P(loadinfo, ==, NULL);
4482 		spa_import_progress_remove(spa);
4483 		return (rewind_error);
4484 	} else {
4485 		/* Store the rewind info as part of the initial load info */
4486 		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
4487 		    spa->spa_load_info);
4488 
4489 		/* Restore the initial load info */
4490 		fnvlist_free(spa->spa_load_info);
4491 		spa->spa_load_info = loadinfo;
4492 
4493 		spa_import_progress_remove(spa);
4494 		return (load_error);
4495 	}
4496 }
4497 
4498 /*
4499  * Pool Open/Import
4500  *
4501  * The import case is identical to an open except that the configuration is sent
4502  * down from userland, instead of grabbed from the configuration cache.  For the
4503  * case of an open, the pool configuration will exist in the
4504  * POOL_STATE_UNINITIALIZED state.
4505  *
4506  * The stats information (gen/count/ustats) is used to gather vdev statistics at
4507  * the same time open the pool, without having to keep around the spa_t in some
4508  * ambiguous state.
4509  */
4510 static int
4511 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
4512     nvlist_t **config)
4513 {
4514 	spa_t *spa;
4515 	spa_load_state_t state = SPA_LOAD_OPEN;
4516 	int error;
4517 	int locked = B_FALSE;
4518 
4519 	*spapp = NULL;
4520 
4521 	/*
4522 	 * As disgusting as this is, we need to support recursive calls to this
4523 	 * function because dsl_dir_open() is called during spa_load(), and ends
4524 	 * up calling spa_open() again.  The real fix is to figure out how to
4525 	 * avoid dsl_dir_open() calling this in the first place.
4526 	 */
4527 	if (mutex_owner(&spa_namespace_lock) != curthread) {
4528 		mutex_enter(&spa_namespace_lock);
4529 		locked = B_TRUE;
4530 	}
4531 
4532 	if ((spa = spa_lookup(pool)) == NULL) {
4533 		if (locked)
4534 			mutex_exit(&spa_namespace_lock);
4535 		return (SET_ERROR(ENOENT));
4536 	}
4537 
4538 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
4539 		zpool_load_policy_t policy;
4540 
4541 		zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
4542 		    &policy);
4543 		if (policy.zlp_rewind & ZPOOL_DO_REWIND)
4544 			state = SPA_LOAD_RECOVER;
4545 
4546 		spa_activate(spa, spa_mode_global);
4547 
4548 		if (state != SPA_LOAD_RECOVER)
4549 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4550 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
4551 
4552 		zfs_dbgmsg("spa_open_common: opening %s", pool);
4553 		error = spa_load_best(spa, state, policy.zlp_txg,
4554 		    policy.zlp_rewind);
4555 
4556 		if (error == EBADF) {
4557 			/*
4558 			 * If vdev_validate() returns failure (indicated by
4559 			 * EBADF), it indicates that one of the vdevs indicates
4560 			 * that the pool has been exported or destroyed.  If
4561 			 * this is the case, the config cache is out of sync and
4562 			 * we should remove the pool from the namespace.
4563 			 */
4564 			spa_unload(spa);
4565 			spa_deactivate(spa);
4566 			spa_write_cachefile(spa, B_TRUE, B_TRUE);
4567 			spa_remove(spa);
4568 			if (locked)
4569 				mutex_exit(&spa_namespace_lock);
4570 			return (SET_ERROR(ENOENT));
4571 		}
4572 
4573 		if (error) {
4574 			/*
4575 			 * We can't open the pool, but we still have useful
4576 			 * information: the state of each vdev after the
4577 			 * attempted vdev_open().  Return this to the user.
4578 			 */
4579 			if (config != NULL && spa->spa_config) {
4580 				VERIFY(nvlist_dup(spa->spa_config, config,
4581 				    KM_SLEEP) == 0);
4582 				VERIFY(nvlist_add_nvlist(*config,
4583 				    ZPOOL_CONFIG_LOAD_INFO,
4584 				    spa->spa_load_info) == 0);
4585 			}
4586 			spa_unload(spa);
4587 			spa_deactivate(spa);
4588 			spa->spa_last_open_failed = error;
4589 			if (locked)
4590 				mutex_exit(&spa_namespace_lock);
4591 			*spapp = NULL;
4592 			return (error);
4593 		}
4594 	}
4595 
4596 	spa_open_ref(spa, tag);
4597 
4598 	if (config != NULL)
4599 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4600 
4601 	/*
4602 	 * If we've recovered the pool, pass back any information we
4603 	 * gathered while doing the load.
4604 	 */
4605 	if (state == SPA_LOAD_RECOVER) {
4606 		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
4607 		    spa->spa_load_info) == 0);
4608 	}
4609 
4610 	if (locked) {
4611 		spa->spa_last_open_failed = 0;
4612 		spa->spa_last_ubsync_txg = 0;
4613 		spa->spa_load_txg = 0;
4614 		mutex_exit(&spa_namespace_lock);
4615 	}
4616 
4617 	*spapp = spa;
4618 
4619 	return (0);
4620 }
4621 
4622 int
4623 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
4624     nvlist_t **config)
4625 {
4626 	return (spa_open_common(name, spapp, tag, policy, config));
4627 }
4628 
4629 int
4630 spa_open(const char *name, spa_t **spapp, void *tag)
4631 {
4632 	return (spa_open_common(name, spapp, tag, NULL, NULL));
4633 }
4634 
4635 /*
4636  * Lookup the given spa_t, incrementing the inject count in the process,
4637  * preventing it from being exported or destroyed.
4638  */
4639 spa_t *
4640 spa_inject_addref(char *name)
4641 {
4642 	spa_t *spa;
4643 
4644 	mutex_enter(&spa_namespace_lock);
4645 	if ((spa = spa_lookup(name)) == NULL) {
4646 		mutex_exit(&spa_namespace_lock);
4647 		return (NULL);
4648 	}
4649 	spa->spa_inject_ref++;
4650 	mutex_exit(&spa_namespace_lock);
4651 
4652 	return (spa);
4653 }
4654 
4655 void
4656 spa_inject_delref(spa_t *spa)
4657 {
4658 	mutex_enter(&spa_namespace_lock);
4659 	spa->spa_inject_ref--;
4660 	mutex_exit(&spa_namespace_lock);
4661 }
4662 
4663 /*
4664  * Add spares device information to the nvlist.
4665  */
4666 static void
4667 spa_add_spares(spa_t *spa, nvlist_t *config)
4668 {
4669 	nvlist_t **spares;
4670 	uint_t i, nspares;
4671 	nvlist_t *nvroot;
4672 	uint64_t guid;
4673 	vdev_stat_t *vs;
4674 	uint_t vsc;
4675 	uint64_t pool;
4676 
4677 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4678 
4679 	if (spa->spa_spares.sav_count == 0)
4680 		return;
4681 
4682 	VERIFY(nvlist_lookup_nvlist(config,
4683 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
4684 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
4685 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
4686 	if (nspares != 0) {
4687 		VERIFY(nvlist_add_nvlist_array(nvroot,
4688 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4689 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
4690 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
4691 
4692 		/*
4693 		 * Go through and find any spares which have since been
4694 		 * repurposed as an active spare.  If this is the case, update
4695 		 * their status appropriately.
4696 		 */
4697 		for (i = 0; i < nspares; i++) {
4698 			VERIFY(nvlist_lookup_uint64(spares[i],
4699 			    ZPOOL_CONFIG_GUID, &guid) == 0);
4700 			if (spa_spare_exists(guid, &pool, NULL) &&
4701 			    pool != 0ULL) {
4702 				VERIFY(nvlist_lookup_uint64_array(
4703 				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
4704 				    (uint64_t **)&vs, &vsc) == 0);
4705 				vs->vs_state = VDEV_STATE_CANT_OPEN;
4706 				vs->vs_aux = VDEV_AUX_SPARED;
4707 			}
4708 		}
4709 	}
4710 }
4711 
4712 /*
4713  * Add l2cache device information to the nvlist, including vdev stats.
4714  */
4715 static void
4716 spa_add_l2cache(spa_t *spa, nvlist_t *config)
4717 {
4718 	nvlist_t **l2cache;
4719 	uint_t i, j, nl2cache;
4720 	nvlist_t *nvroot;
4721 	uint64_t guid;
4722 	vdev_t *vd;
4723 	vdev_stat_t *vs;
4724 	uint_t vsc;
4725 
4726 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4727 
4728 	if (spa->spa_l2cache.sav_count == 0)
4729 		return;
4730 
4731 	VERIFY(nvlist_lookup_nvlist(config,
4732 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
4733 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
4734 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
4735 	if (nl2cache != 0) {
4736 		VERIFY(nvlist_add_nvlist_array(nvroot,
4737 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4738 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
4739 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
4740 
4741 		/*
4742 		 * Update level 2 cache device stats.
4743 		 */
4744 
4745 		for (i = 0; i < nl2cache; i++) {
4746 			VERIFY(nvlist_lookup_uint64(l2cache[i],
4747 			    ZPOOL_CONFIG_GUID, &guid) == 0);
4748 
4749 			vd = NULL;
4750 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
4751 				if (guid ==
4752 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
4753 					vd = spa->spa_l2cache.sav_vdevs[j];
4754 					break;
4755 				}
4756 			}
4757 			ASSERT(vd != NULL);
4758 
4759 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
4760 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
4761 			    == 0);
4762 			vdev_get_stats(vd, vs);
4763 			vdev_config_generate_stats(vd, l2cache[i]);
4764 
4765 		}
4766 	}
4767 }
4768 
4769 static void
4770 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
4771 {
4772 	nvlist_t *features;
4773 	zap_cursor_t zc;
4774 	zap_attribute_t za;
4775 
4776 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4777 	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4778 
4779 	if (spa->spa_feat_for_read_obj != 0) {
4780 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
4781 		    spa->spa_feat_for_read_obj);
4782 		    zap_cursor_retrieve(&zc, &za) == 0;
4783 		    zap_cursor_advance(&zc)) {
4784 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
4785 			    za.za_num_integers == 1);
4786 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
4787 			    za.za_first_integer));
4788 		}
4789 		zap_cursor_fini(&zc);
4790 	}
4791 
4792 	if (spa->spa_feat_for_write_obj != 0) {
4793 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
4794 		    spa->spa_feat_for_write_obj);
4795 		    zap_cursor_retrieve(&zc, &za) == 0;
4796 		    zap_cursor_advance(&zc)) {
4797 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
4798 			    za.za_num_integers == 1);
4799 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
4800 			    za.za_first_integer));
4801 		}
4802 		zap_cursor_fini(&zc);
4803 	}
4804 
4805 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
4806 	    features) == 0);
4807 	nvlist_free(features);
4808 }
4809 
4810 int
4811 spa_get_stats(const char *name, nvlist_t **config,
4812     char *altroot, size_t buflen)
4813 {
4814 	int error;
4815 	spa_t *spa;
4816 
4817 	*config = NULL;
4818 	error = spa_open_common(name, &spa, FTAG, NULL, config);
4819 
4820 	if (spa != NULL) {
4821 		/*
4822 		 * This still leaves a window of inconsistency where the spares
4823 		 * or l2cache devices could change and the config would be
4824 		 * self-inconsistent.
4825 		 */
4826 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4827 
4828 		if (*config != NULL) {
4829 			uint64_t loadtimes[2];
4830 
4831 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
4832 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
4833 			VERIFY(nvlist_add_uint64_array(*config,
4834 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
4835 
4836 			VERIFY(nvlist_add_uint64(*config,
4837 			    ZPOOL_CONFIG_ERRCOUNT,
4838 			    spa_get_errlog_size(spa)) == 0);
4839 
4840 			if (spa_suspended(spa)) {
4841 				VERIFY(nvlist_add_uint64(*config,
4842 				    ZPOOL_CONFIG_SUSPENDED,
4843 				    spa->spa_failmode) == 0);
4844 				VERIFY(nvlist_add_uint64(*config,
4845 				    ZPOOL_CONFIG_SUSPENDED_REASON,
4846 				    spa->spa_suspended) == 0);
4847 			}
4848 
4849 			spa_add_spares(spa, *config);
4850 			spa_add_l2cache(spa, *config);
4851 			spa_add_feature_stats(spa, *config);
4852 		}
4853 	}
4854 
4855 	/*
4856 	 * We want to get the alternate root even for faulted pools, so we cheat
4857 	 * and call spa_lookup() directly.
4858 	 */
4859 	if (altroot) {
4860 		if (spa == NULL) {
4861 			mutex_enter(&spa_namespace_lock);
4862 			spa = spa_lookup(name);
4863 			if (spa)
4864 				spa_altroot(spa, altroot, buflen);
4865 			else
4866 				altroot[0] = '\0';
4867 			spa = NULL;
4868 			mutex_exit(&spa_namespace_lock);
4869 		} else {
4870 			spa_altroot(spa, altroot, buflen);
4871 		}
4872 	}
4873 
4874 	if (spa != NULL) {
4875 		spa_config_exit(spa, SCL_CONFIG, FTAG);
4876 		spa_close(spa, FTAG);
4877 	}
4878 
4879 	return (error);
4880 }
4881 
4882 /*
4883  * Validate that the auxiliary device array is well formed.  We must have an
4884  * array of nvlists, each which describes a valid leaf vdev.  If this is an
4885  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
4886  * specified, as long as they are well-formed.
4887  */
4888 static int
4889 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
4890     spa_aux_vdev_t *sav, const char *config, uint64_t version,
4891     vdev_labeltype_t label)
4892 {
4893 	nvlist_t **dev;
4894 	uint_t i, ndev;
4895 	vdev_t *vd;
4896 	int error;
4897 
4898 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4899 
4900 	/*
4901 	 * It's acceptable to have no devs specified.
4902 	 */
4903 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
4904 		return (0);
4905 
4906 	if (ndev == 0)
4907 		return (SET_ERROR(EINVAL));
4908 
4909 	/*
4910 	 * Make sure the pool is formatted with a version that supports this
4911 	 * device type.
4912 	 */
4913 	if (spa_version(spa) < version)
4914 		return (SET_ERROR(ENOTSUP));
4915 
4916 	/*
4917 	 * Set the pending device list so we correctly handle device in-use
4918 	 * checking.
4919 	 */
4920 	sav->sav_pending = dev;
4921 	sav->sav_npending = ndev;
4922 
4923 	for (i = 0; i < ndev; i++) {
4924 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
4925 		    mode)) != 0)
4926 			goto out;
4927 
4928 		if (!vd->vdev_ops->vdev_op_leaf) {
4929 			vdev_free(vd);
4930 			error = SET_ERROR(EINVAL);
4931 			goto out;
4932 		}
4933 
4934 		vd->vdev_top = vd;
4935 
4936 		if ((error = vdev_open(vd)) == 0 &&
4937 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
4938 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
4939 			    vd->vdev_guid) == 0);
4940 		}
4941 
4942 		vdev_free(vd);
4943 
4944 		if (error &&
4945 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
4946 			goto out;
4947 		else
4948 			error = 0;
4949 	}
4950 
4951 out:
4952 	sav->sav_pending = NULL;
4953 	sav->sav_npending = 0;
4954 	return (error);
4955 }
4956 
4957 static int
4958 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
4959 {
4960 	int error;
4961 
4962 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4963 
4964 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
4965 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
4966 	    VDEV_LABEL_SPARE)) != 0) {
4967 		return (error);
4968 	}
4969 
4970 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
4971 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
4972 	    VDEV_LABEL_L2CACHE));
4973 }
4974 
4975 static void
4976 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
4977     const char *config)
4978 {
4979 	int i;
4980 
4981 	if (sav->sav_config != NULL) {
4982 		nvlist_t **olddevs;
4983 		uint_t oldndevs;
4984 		nvlist_t **newdevs;
4985 
4986 		/*
4987 		 * Generate new dev list by concatentating with the
4988 		 * current dev list.
4989 		 */
4990 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
4991 		    &olddevs, &oldndevs) == 0);
4992 
4993 		newdevs = kmem_alloc(sizeof (void *) *
4994 		    (ndevs + oldndevs), KM_SLEEP);
4995 		for (i = 0; i < oldndevs; i++)
4996 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
4997 			    KM_SLEEP) == 0);
4998 		for (i = 0; i < ndevs; i++)
4999 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
5000 			    KM_SLEEP) == 0);
5001 
5002 		VERIFY(nvlist_remove(sav->sav_config, config,
5003 		    DATA_TYPE_NVLIST_ARRAY) == 0);
5004 
5005 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
5006 		    config, newdevs, ndevs + oldndevs) == 0);
5007 		for (i = 0; i < oldndevs + ndevs; i++)
5008 			nvlist_free(newdevs[i]);
5009 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
5010 	} else {
5011 		/*
5012 		 * Generate a new dev list.
5013 		 */
5014 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
5015 		    KM_SLEEP) == 0);
5016 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
5017 		    devs, ndevs) == 0);
5018 	}
5019 }
5020 
5021 /*
5022  * Stop and drop level 2 ARC devices
5023  */
5024 void
5025 spa_l2cache_drop(spa_t *spa)
5026 {
5027 	vdev_t *vd;
5028 	int i;
5029 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
5030 
5031 	for (i = 0; i < sav->sav_count; i++) {
5032 		uint64_t pool;
5033 
5034 		vd = sav->sav_vdevs[i];
5035 		ASSERT(vd != NULL);
5036 
5037 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
5038 		    pool != 0ULL && l2arc_vdev_present(vd))
5039 			l2arc_remove_vdev(vd);
5040 	}
5041 }
5042 
5043 /*
5044  * Verify encryption parameters for spa creation. If we are encrypting, we must
5045  * have the encryption feature flag enabled.
5046  */
5047 static int
5048 spa_create_check_encryption_params(dsl_crypto_params_t *dcp,
5049     boolean_t has_encryption)
5050 {
5051 	if (dcp->cp_crypt != ZIO_CRYPT_OFF &&
5052 	    dcp->cp_crypt != ZIO_CRYPT_INHERIT &&
5053 	    !has_encryption)
5054 		return (SET_ERROR(ENOTSUP));
5055 
5056 	return (dmu_objset_create_crypt_check(NULL, dcp, NULL));
5057 }
5058 
5059 /*
5060  * Pool Creation
5061  */
5062 int
5063 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
5064     nvlist_t *zplprops, dsl_crypto_params_t *dcp)
5065 {
5066 	spa_t *spa;
5067 	char *altroot = NULL;
5068 	vdev_t *rvd;
5069 	dsl_pool_t *dp;
5070 	dmu_tx_t *tx;
5071 	int error = 0;
5072 	uint64_t txg = TXG_INITIAL;
5073 	nvlist_t **spares, **l2cache;
5074 	uint_t nspares, nl2cache;
5075 	uint64_t version, obj;
5076 	boolean_t has_features;
5077 	char *poolname;
5078 	nvlist_t *nvl;
5079 	boolean_t has_encryption;
5080 	spa_feature_t feat;
5081 	char *feat_name;
5082 
5083 	if (props == NULL ||
5084 	    nvlist_lookup_string(props,
5085 	    zpool_prop_to_name(ZPOOL_PROP_TNAME), &poolname) != 0)
5086 		poolname = (char *)pool;
5087 
5088 	/*
5089 	 * If this pool already exists, return failure.
5090 	 */
5091 	mutex_enter(&spa_namespace_lock);
5092 	if (spa_lookup(poolname) != NULL) {
5093 		mutex_exit(&spa_namespace_lock);
5094 		return (SET_ERROR(EEXIST));
5095 	}
5096 
5097 	/*
5098 	 * Allocate a new spa_t structure.
5099 	 */
5100 	nvl = fnvlist_alloc();
5101 	fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
5102 	(void) nvlist_lookup_string(props,
5103 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5104 	spa = spa_add(poolname, nvl, altroot);
5105 	fnvlist_free(nvl);
5106 	spa_activate(spa, spa_mode_global);
5107 
5108 	if (props && (error = spa_prop_validate(spa, props))) {
5109 		spa_deactivate(spa);
5110 		spa_remove(spa);
5111 		mutex_exit(&spa_namespace_lock);
5112 		return (error);
5113 	}
5114 
5115 	/*
5116 	 * Temporary pool names should never be written to disk.
5117 	 */
5118 	if (poolname != pool)
5119 		spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
5120 
5121 	has_features = B_FALSE;
5122 	has_encryption = B_FALSE;
5123 	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
5124 	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
5125 		if (zpool_prop_feature(nvpair_name(elem))) {
5126 			has_features = B_TRUE;
5127 			feat_name = strchr(nvpair_name(elem), '@') + 1;
5128 			VERIFY0(zfeature_lookup_name(feat_name, &feat));
5129 			if (feat == SPA_FEATURE_ENCRYPTION)
5130 				has_encryption = B_TRUE;
5131 		}
5132 	}
5133 
5134 	/* verify encryption params, if they were provided */
5135 	if (dcp != NULL) {
5136 		error = spa_create_check_encryption_params(dcp, has_encryption);
5137 		if (error != 0) {
5138 			spa_deactivate(spa);
5139 			spa_remove(spa);
5140 			mutex_exit(&spa_namespace_lock);
5141 			return (error);
5142 		}
5143 	}
5144 
5145 	if (has_features || nvlist_lookup_uint64(props,
5146 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
5147 		version = SPA_VERSION;
5148 	}
5149 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5150 
5151 	spa->spa_first_txg = txg;
5152 	spa->spa_uberblock.ub_txg = txg - 1;
5153 	spa->spa_uberblock.ub_version = version;
5154 	spa->spa_ubsync = spa->spa_uberblock;
5155 	spa->spa_load_state = SPA_LOAD_CREATE;
5156 	spa->spa_removing_phys.sr_state = DSS_NONE;
5157 	spa->spa_removing_phys.sr_removing_vdev = -1;
5158 	spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
5159 	spa->spa_indirect_vdevs_loaded = B_TRUE;
5160 
5161 	/*
5162 	 * Create "The Godfather" zio to hold all async IOs
5163 	 */
5164 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
5165 	    KM_SLEEP);
5166 	for (int i = 0; i < max_ncpus; i++) {
5167 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
5168 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
5169 		    ZIO_FLAG_GODFATHER);
5170 	}
5171 
5172 	/*
5173 	 * Create the root vdev.
5174 	 */
5175 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5176 
5177 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
5178 
5179 	ASSERT(error != 0 || rvd != NULL);
5180 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
5181 
5182 	if (error == 0 && !zfs_allocatable_devs(nvroot))
5183 		error = SET_ERROR(EINVAL);
5184 
5185 	if (error == 0 &&
5186 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
5187 	    (error = spa_validate_aux(spa, nvroot, txg,
5188 	    VDEV_ALLOC_ADD)) == 0) {
5189 		/*
5190 		 * instantiate the metaslab groups (this will dirty the vdevs)
5191 		 * we can no longer error exit past this point
5192 		 */
5193 		for (int c = 0; error == 0 && c < rvd->vdev_children; c++) {
5194 			vdev_t *vd = rvd->vdev_child[c];
5195 
5196 			vdev_metaslab_set_size(vd);
5197 			vdev_expand(vd, txg);
5198 		}
5199 	}
5200 
5201 	spa_config_exit(spa, SCL_ALL, FTAG);
5202 
5203 	if (error != 0) {
5204 		spa_unload(spa);
5205 		spa_deactivate(spa);
5206 		spa_remove(spa);
5207 		mutex_exit(&spa_namespace_lock);
5208 		return (error);
5209 	}
5210 
5211 	/*
5212 	 * Get the list of spares, if specified.
5213 	 */
5214 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5215 	    &spares, &nspares) == 0) {
5216 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
5217 		    KM_SLEEP) == 0);
5218 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
5219 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
5220 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5221 		spa_load_spares(spa);
5222 		spa_config_exit(spa, SCL_ALL, FTAG);
5223 		spa->spa_spares.sav_sync = B_TRUE;
5224 	}
5225 
5226 	/*
5227 	 * Get the list of level 2 cache devices, if specified.
5228 	 */
5229 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5230 	    &l2cache, &nl2cache) == 0) {
5231 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
5232 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5233 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
5234 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
5235 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5236 		spa_load_l2cache(spa);
5237 		spa_config_exit(spa, SCL_ALL, FTAG);
5238 		spa->spa_l2cache.sav_sync = B_TRUE;
5239 	}
5240 
5241 	spa->spa_is_initializing = B_TRUE;
5242 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg);
5243 	spa->spa_is_initializing = B_FALSE;
5244 
5245 	/*
5246 	 * Create DDTs (dedup tables).
5247 	 */
5248 	ddt_create(spa);
5249 
5250 	spa_update_dspace(spa);
5251 
5252 	tx = dmu_tx_create_assigned(dp, txg);
5253 
5254 	/*
5255 	 * Create the pool config object.
5256 	 */
5257 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
5258 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
5259 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
5260 
5261 	if (zap_add(spa->spa_meta_objset,
5262 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
5263 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
5264 		cmn_err(CE_PANIC, "failed to add pool config");
5265 	}
5266 
5267 	if (zap_add(spa->spa_meta_objset,
5268 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
5269 	    sizeof (uint64_t), 1, &version, tx) != 0) {
5270 		cmn_err(CE_PANIC, "failed to add pool version");
5271 	}
5272 
5273 	/* Newly created pools with the right version are always deflated. */
5274 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
5275 		spa->spa_deflate = TRUE;
5276 		if (zap_add(spa->spa_meta_objset,
5277 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
5278 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
5279 			cmn_err(CE_PANIC, "failed to add deflate");
5280 		}
5281 	}
5282 
5283 	/*
5284 	 * Create the deferred-free bpobj.  Turn off compression
5285 	 * because sync-to-convergence takes longer if the blocksize
5286 	 * keeps changing.
5287 	 */
5288 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
5289 	dmu_object_set_compress(spa->spa_meta_objset, obj,
5290 	    ZIO_COMPRESS_OFF, tx);
5291 	if (zap_add(spa->spa_meta_objset,
5292 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
5293 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
5294 		cmn_err(CE_PANIC, "failed to add bpobj");
5295 	}
5296 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
5297 	    spa->spa_meta_objset, obj));
5298 
5299 	/*
5300 	 * Create the pool's history object.
5301 	 */
5302 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
5303 		spa_history_create_obj(spa, tx);
5304 
5305 	/*
5306 	 * Generate some random noise for salted checksums to operate on.
5307 	 */
5308 	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
5309 	    sizeof (spa->spa_cksum_salt.zcs_bytes));
5310 
5311 	/*
5312 	 * Set pool properties.
5313 	 */
5314 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
5315 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
5316 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
5317 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
5318 	spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST);
5319 	spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM);
5320 
5321 	if (props != NULL) {
5322 		spa_configfile_set(spa, props, B_FALSE);
5323 		spa_sync_props(props, tx);
5324 	}
5325 
5326 	dmu_tx_commit(tx);
5327 
5328 	spa->spa_sync_on = B_TRUE;
5329 	txg_sync_start(spa->spa_dsl_pool);
5330 	mmp_thread_start(spa);
5331 
5332 	/*
5333 	 * We explicitly wait for the first transaction to complete so that our
5334 	 * bean counters are appropriately updated.
5335 	 */
5336 	txg_wait_synced(spa->spa_dsl_pool, txg);
5337 
5338 	spa_spawn_aux_threads(spa);
5339 
5340 	spa_write_cachefile(spa, B_FALSE, B_TRUE);
5341 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
5342 
5343 	spa_history_log_version(spa, "create");
5344 
5345 	/*
5346 	 * Don't count references from objsets that are already closed
5347 	 * and are making their way through the eviction process.
5348 	 */
5349 	spa_evicting_os_wait(spa);
5350 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
5351 	spa->spa_load_state = SPA_LOAD_NONE;
5352 
5353 	mutex_exit(&spa_namespace_lock);
5354 
5355 	return (0);
5356 }
5357 
5358 #ifdef _KERNEL
5359 /*
5360  * Get the root pool information from the root disk, then import the root pool
5361  * during the system boot up time.
5362  */
5363 static nvlist_t *
5364 spa_generate_rootconf(const char *devpath, const char *devid, uint64_t *guid,
5365     uint64_t pool_guid)
5366 {
5367 	nvlist_t *config;
5368 	nvlist_t *nvtop, *nvroot;
5369 	uint64_t pgid;
5370 
5371 	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
5372 		return (NULL);
5373 
5374 	/*
5375 	 * Add this top-level vdev to the child array.
5376 	 */
5377 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
5378 	    &nvtop) == 0);
5379 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5380 	    &pgid) == 0);
5381 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
5382 
5383 	if (pool_guid != 0 && pool_guid != pgid) {
5384 		/*
5385 		 * The boot loader provided a pool GUID, but it does not match
5386 		 * the one we found in the label.  Return failure so that we
5387 		 * can fall back to the full device scan.
5388 		 */
5389 		zfs_dbgmsg("spa_generate_rootconf: loader pool guid %llu != "
5390 		    "label pool guid %llu", (u_longlong_t)pool_guid,
5391 		    (u_longlong_t)pgid);
5392 		nvlist_free(config);
5393 		return (NULL);
5394 	}
5395 
5396 	/*
5397 	 * Put this pool's top-level vdevs into a root vdev.
5398 	 */
5399 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5400 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
5401 	    VDEV_TYPE_ROOT) == 0);
5402 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
5403 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
5404 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
5405 	    &nvtop, 1) == 0);
5406 
5407 	/*
5408 	 * Replace the existing vdev_tree with the new root vdev in
5409 	 * this pool's configuration (remove the old, add the new).
5410 	 */
5411 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
5412 	nvlist_free(nvroot);
5413 	return (config);
5414 }
5415 
5416 /*
5417  * Walk the vdev tree and see if we can find a device with "better"
5418  * configuration. A configuration is "better" if the label on that
5419  * device has a more recent txg.
5420  */
5421 static void
5422 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
5423 {
5424 	for (int c = 0; c < vd->vdev_children; c++)
5425 		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
5426 
5427 	if (vd->vdev_ops->vdev_op_leaf) {
5428 		nvlist_t *label;
5429 		uint64_t label_txg;
5430 
5431 		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
5432 		    &label) != 0)
5433 			return;
5434 
5435 		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
5436 		    &label_txg) == 0);
5437 
5438 		/*
5439 		 * Do we have a better boot device?
5440 		 */
5441 		if (label_txg > *txg) {
5442 			*txg = label_txg;
5443 			*avd = vd;
5444 		}
5445 		nvlist_free(label);
5446 	}
5447 }
5448 
5449 /*
5450  * Import a root pool.
5451  *
5452  * For x86. devpath_list will consist of devid and/or physpath name of
5453  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
5454  * The GRUB "findroot" command will return the vdev we should boot.
5455  *
5456  * For Sparc, devpath_list consists the physpath name of the booting device
5457  * no matter the rootpool is a single device pool or a mirrored pool.
5458  * e.g.
5459  *	"/pci@1f,0/ide@d/disk@0,0:a"
5460  */
5461 int
5462 spa_import_rootpool(char *devpath, char *devid, uint64_t pool_guid,
5463     uint64_t vdev_guid)
5464 {
5465 	spa_t *spa;
5466 	vdev_t *rvd, *bvd, *avd = NULL;
5467 	nvlist_t *config, *nvtop;
5468 	uint64_t guid, txg;
5469 	char *pname;
5470 	int error;
5471 	const char *altdevpath = NULL;
5472 
5473 	/*
5474 	 * Read the label from the boot device and generate a configuration.
5475 	 */
5476 	config = spa_generate_rootconf(devpath, devid, &guid, pool_guid);
5477 #if defined(_OBP) && defined(_KERNEL)
5478 	if (config == NULL) {
5479 		if (strstr(devpath, "/iscsi/ssd") != NULL) {
5480 			/* iscsi boot */
5481 			get_iscsi_bootpath_phy(devpath);
5482 			config = spa_generate_rootconf(devpath, devid, &guid,
5483 			    pool_guid);
5484 		}
5485 	}
5486 #endif
5487 
5488 	/*
5489 	 * We were unable to import the pool using the /devices path or devid
5490 	 * provided by the boot loader.  This may be the case if the boot
5491 	 * device has been connected to a different location in the system, or
5492 	 * if a new boot environment has changed the driver used to access the
5493 	 * boot device.
5494 	 *
5495 	 * Attempt an exhaustive scan of all visible block devices to see if we
5496 	 * can locate an alternative /devices path with a label that matches
5497 	 * the expected pool and vdev GUID.
5498 	 */
5499 	if (config == NULL && (altdevpath =
5500 	    vdev_disk_preroot_lookup(pool_guid, vdev_guid)) != NULL) {
5501 		cmn_err(CE_NOTE, "Original /devices path (%s) not available; "
5502 		    "ZFS is trying an alternate path (%s)", devpath,
5503 		    altdevpath);
5504 		config = spa_generate_rootconf(altdevpath, NULL, &guid,
5505 		    pool_guid);
5506 	}
5507 
5508 	if (config == NULL) {
5509 		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
5510 		    devpath);
5511 		return (SET_ERROR(EIO));
5512 	}
5513 
5514 	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
5515 	    &pname) == 0);
5516 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
5517 
5518 	mutex_enter(&spa_namespace_lock);
5519 	if ((spa = spa_lookup(pname)) != NULL) {
5520 		/*
5521 		 * Remove the existing root pool from the namespace so that we
5522 		 * can replace it with the correct config we just read in.
5523 		 */
5524 		spa_remove(spa);
5525 	}
5526 
5527 	spa = spa_add(pname, config, NULL);
5528 	spa->spa_is_root = B_TRUE;
5529 	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
5530 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
5531 	    &spa->spa_ubsync.ub_version) != 0)
5532 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
5533 
5534 	/*
5535 	 * Build up a vdev tree based on the boot device's label config.
5536 	 */
5537 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
5538 	    &nvtop) == 0);
5539 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5540 	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
5541 	    VDEV_ALLOC_ROOTPOOL);
5542 	spa_config_exit(spa, SCL_ALL, FTAG);
5543 	if (error) {
5544 		mutex_exit(&spa_namespace_lock);
5545 		nvlist_free(config);
5546 		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
5547 		    pname);
5548 		return (error);
5549 	}
5550 
5551 	/*
5552 	 * Get the boot vdev.
5553 	 */
5554 	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
5555 		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
5556 		    (u_longlong_t)guid);
5557 		error = SET_ERROR(ENOENT);
5558 		goto out;
5559 	}
5560 
5561 	/*
5562 	 * Determine if there is a better boot device.
5563 	 */
5564 	avd = bvd;
5565 	spa_alt_rootvdev(rvd, &avd, &txg);
5566 	if (avd != bvd) {
5567 		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
5568 		    "try booting from '%s'", avd->vdev_path);
5569 		error = SET_ERROR(EINVAL);
5570 		goto out;
5571 	}
5572 
5573 	/*
5574 	 * If the boot device is part of a spare vdev then ensure that
5575 	 * we're booting off the active spare.
5576 	 */
5577 	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
5578 	    !bvd->vdev_isspare) {
5579 		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
5580 		    "try booting from '%s'",
5581 		    bvd->vdev_parent->
5582 		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
5583 		error = SET_ERROR(EINVAL);
5584 		goto out;
5585 	}
5586 
5587 	error = 0;
5588 out:
5589 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5590 	vdev_free(rvd);
5591 	spa_config_exit(spa, SCL_ALL, FTAG);
5592 	mutex_exit(&spa_namespace_lock);
5593 
5594 	nvlist_free(config);
5595 	return (error);
5596 }
5597 
5598 #endif
5599 
5600 /*
5601  * Import a non-root pool into the system.
5602  */
5603 int
5604 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
5605 {
5606 	spa_t *spa;
5607 	char *altroot = NULL;
5608 	spa_load_state_t state = SPA_LOAD_IMPORT;
5609 	zpool_load_policy_t policy;
5610 	uint64_t mode = spa_mode_global;
5611 	uint64_t readonly = B_FALSE;
5612 	int error;
5613 	nvlist_t *nvroot;
5614 	nvlist_t **spares, **l2cache;
5615 	uint_t nspares, nl2cache;
5616 
5617 	/*
5618 	 * If a pool with this name exists, return failure.
5619 	 */
5620 	mutex_enter(&spa_namespace_lock);
5621 	if (spa_lookup(pool) != NULL) {
5622 		mutex_exit(&spa_namespace_lock);
5623 		return (SET_ERROR(EEXIST));
5624 	}
5625 
5626 	/*
5627 	 * Create and initialize the spa structure.
5628 	 */
5629 	(void) nvlist_lookup_string(props,
5630 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5631 	(void) nvlist_lookup_uint64(props,
5632 	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
5633 	if (readonly)
5634 		mode = FREAD;
5635 	spa = spa_add(pool, config, altroot);
5636 	spa->spa_import_flags = flags;
5637 
5638 	/*
5639 	 * Verbatim import - Take a pool and insert it into the namespace
5640 	 * as if it had been loaded at boot.
5641 	 */
5642 	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
5643 		if (props != NULL)
5644 			spa_configfile_set(spa, props, B_FALSE);
5645 
5646 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
5647 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
5648 		zfs_dbgmsg("spa_import: verbatim import of %s", pool);
5649 		mutex_exit(&spa_namespace_lock);
5650 		return (0);
5651 	}
5652 
5653 	spa_activate(spa, mode);
5654 
5655 	/*
5656 	 * Don't start async tasks until we know everything is healthy.
5657 	 */
5658 	spa_async_suspend(spa);
5659 
5660 	zpool_get_load_policy(config, &policy);
5661 	if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5662 		state = SPA_LOAD_RECOVER;
5663 
5664 	spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
5665 
5666 	if (state != SPA_LOAD_RECOVER) {
5667 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5668 		zfs_dbgmsg("spa_import: importing %s", pool);
5669 	} else {
5670 		zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
5671 		    "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
5672 	}
5673 	error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
5674 
5675 	/*
5676 	 * Propagate anything learned while loading the pool and pass it
5677 	 * back to caller (i.e. rewind info, missing devices, etc).
5678 	 */
5679 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
5680 	    spa->spa_load_info) == 0);
5681 
5682 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5683 	/*
5684 	 * Toss any existing sparelist, as it doesn't have any validity
5685 	 * anymore, and conflicts with spa_has_spare().
5686 	 */
5687 	if (spa->spa_spares.sav_config) {
5688 		nvlist_free(spa->spa_spares.sav_config);
5689 		spa->spa_spares.sav_config = NULL;
5690 		spa_load_spares(spa);
5691 	}
5692 	if (spa->spa_l2cache.sav_config) {
5693 		nvlist_free(spa->spa_l2cache.sav_config);
5694 		spa->spa_l2cache.sav_config = NULL;
5695 		spa_load_l2cache(spa);
5696 	}
5697 
5698 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
5699 	    &nvroot) == 0);
5700 	if (error == 0)
5701 		error = spa_validate_aux(spa, nvroot, -1ULL,
5702 		    VDEV_ALLOC_SPARE);
5703 	if (error == 0)
5704 		error = spa_validate_aux(spa, nvroot, -1ULL,
5705 		    VDEV_ALLOC_L2CACHE);
5706 	spa_config_exit(spa, SCL_ALL, FTAG);
5707 
5708 	if (props != NULL)
5709 		spa_configfile_set(spa, props, B_FALSE);
5710 
5711 	if (error != 0 || (props && spa_writeable(spa) &&
5712 	    (error = spa_prop_set(spa, props)))) {
5713 		spa_unload(spa);
5714 		spa_deactivate(spa);
5715 		spa_remove(spa);
5716 		mutex_exit(&spa_namespace_lock);
5717 		return (error);
5718 	}
5719 
5720 	spa_async_resume(spa);
5721 
5722 	/*
5723 	 * Override any spares and level 2 cache devices as specified by
5724 	 * the user, as these may have correct device names/devids, etc.
5725 	 */
5726 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5727 	    &spares, &nspares) == 0) {
5728 		if (spa->spa_spares.sav_config)
5729 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
5730 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
5731 		else
5732 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
5733 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5734 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
5735 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
5736 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5737 		spa_load_spares(spa);
5738 		spa_config_exit(spa, SCL_ALL, FTAG);
5739 		spa->spa_spares.sav_sync = B_TRUE;
5740 	}
5741 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5742 	    &l2cache, &nl2cache) == 0) {
5743 		if (spa->spa_l2cache.sav_config)
5744 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
5745 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
5746 		else
5747 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
5748 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5749 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
5750 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
5751 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5752 		spa_load_l2cache(spa);
5753 		spa_config_exit(spa, SCL_ALL, FTAG);
5754 		spa->spa_l2cache.sav_sync = B_TRUE;
5755 	}
5756 
5757 	/*
5758 	 * Check for any removed devices.
5759 	 */
5760 	if (spa->spa_autoreplace) {
5761 		spa_aux_check_removed(&spa->spa_spares);
5762 		spa_aux_check_removed(&spa->spa_l2cache);
5763 	}
5764 
5765 	if (spa_writeable(spa)) {
5766 		/*
5767 		 * Update the config cache to include the newly-imported pool.
5768 		 */
5769 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5770 	}
5771 
5772 	/*
5773 	 * It's possible that the pool was expanded while it was exported.
5774 	 * We kick off an async task to handle this for us.
5775 	 */
5776 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
5777 
5778 	spa_history_log_version(spa, "import");
5779 
5780 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
5781 
5782 	mutex_exit(&spa_namespace_lock);
5783 
5784 	return (0);
5785 }
5786 
5787 nvlist_t *
5788 spa_tryimport(nvlist_t *tryconfig)
5789 {
5790 	nvlist_t *config = NULL;
5791 	char *poolname, *cachefile;
5792 	spa_t *spa;
5793 	uint64_t state;
5794 	int error;
5795 	zpool_load_policy_t policy;
5796 
5797 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
5798 		return (NULL);
5799 
5800 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
5801 		return (NULL);
5802 
5803 	/*
5804 	 * Create and initialize the spa structure.
5805 	 */
5806 	mutex_enter(&spa_namespace_lock);
5807 	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
5808 	spa_activate(spa, FREAD);
5809 
5810 	/*
5811 	 * Rewind pool if a max txg was provided.
5812 	 */
5813 	zpool_get_load_policy(spa->spa_config, &policy);
5814 	if (policy.zlp_txg != UINT64_MAX) {
5815 		spa->spa_load_max_txg = policy.zlp_txg;
5816 		spa->spa_extreme_rewind = B_TRUE;
5817 		zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
5818 		    poolname, (longlong_t)policy.zlp_txg);
5819 	} else {
5820 		zfs_dbgmsg("spa_tryimport: importing %s", poolname);
5821 	}
5822 
5823 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
5824 	    == 0) {
5825 		zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
5826 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
5827 	} else {
5828 		spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
5829 	}
5830 
5831 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
5832 
5833 	/*
5834 	 * If 'tryconfig' was at least parsable, return the current config.
5835 	 */
5836 	if (spa->spa_root_vdev != NULL) {
5837 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5838 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
5839 		    poolname) == 0);
5840 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5841 		    state) == 0);
5842 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
5843 		    spa->spa_uberblock.ub_timestamp) == 0);
5844 		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
5845 		    spa->spa_load_info) == 0);
5846 
5847 		/*
5848 		 * If the bootfs property exists on this pool then we
5849 		 * copy it out so that external consumers can tell which
5850 		 * pools are bootable.
5851 		 */
5852 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
5853 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
5854 
5855 			/*
5856 			 * We have to play games with the name since the
5857 			 * pool was opened as TRYIMPORT_NAME.
5858 			 */
5859 			if (dsl_dsobj_to_dsname(spa_name(spa),
5860 			    spa->spa_bootfs, tmpname) == 0) {
5861 				char *cp;
5862 				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
5863 
5864 				cp = strchr(tmpname, '/');
5865 				if (cp == NULL) {
5866 					(void) strlcpy(dsname, tmpname,
5867 					    MAXPATHLEN);
5868 				} else {
5869 					(void) snprintf(dsname, MAXPATHLEN,
5870 					    "%s/%s", poolname, ++cp);
5871 				}
5872 				VERIFY(nvlist_add_string(config,
5873 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
5874 				kmem_free(dsname, MAXPATHLEN);
5875 			}
5876 			kmem_free(tmpname, MAXPATHLEN);
5877 		}
5878 
5879 		/*
5880 		 * Add the list of hot spares and level 2 cache devices.
5881 		 */
5882 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5883 		spa_add_spares(spa, config);
5884 		spa_add_l2cache(spa, config);
5885 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5886 	}
5887 
5888 	spa_unload(spa);
5889 	spa_deactivate(spa);
5890 	spa_remove(spa);
5891 	mutex_exit(&spa_namespace_lock);
5892 
5893 	return (config);
5894 }
5895 
5896 /*
5897  * Pool export/destroy
5898  *
5899  * The act of destroying or exporting a pool is very simple.  We make sure there
5900  * is no more pending I/O and any references to the pool are gone.  Then, we
5901  * update the pool state and sync all the labels to disk, removing the
5902  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
5903  * we don't sync the labels or remove the configuration cache.
5904  */
5905 static int
5906 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
5907     boolean_t force, boolean_t hardforce)
5908 {
5909 	spa_t *spa;
5910 
5911 	if (oldconfig)
5912 		*oldconfig = NULL;
5913 
5914 	if (!(spa_mode_global & FWRITE))
5915 		return (SET_ERROR(EROFS));
5916 
5917 	mutex_enter(&spa_namespace_lock);
5918 	if ((spa = spa_lookup(pool)) == NULL) {
5919 		mutex_exit(&spa_namespace_lock);
5920 		return (SET_ERROR(ENOENT));
5921 	}
5922 
5923 	/*
5924 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
5925 	 * reacquire the namespace lock, and see if we can export.
5926 	 */
5927 	spa_open_ref(spa, FTAG);
5928 	mutex_exit(&spa_namespace_lock);
5929 	spa_async_suspend(spa);
5930 	mutex_enter(&spa_namespace_lock);
5931 	spa_close(spa, FTAG);
5932 
5933 	/*
5934 	 * The pool will be in core if it's openable,
5935 	 * in which case we can modify its state.
5936 	 */
5937 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
5938 
5939 		/*
5940 		 * Objsets may be open only because they're dirty, so we
5941 		 * have to force it to sync before checking spa_refcnt.
5942 		 */
5943 		txg_wait_synced(spa->spa_dsl_pool, 0);
5944 		spa_evicting_os_wait(spa);
5945 
5946 		/*
5947 		 * A pool cannot be exported or destroyed if there are active
5948 		 * references.  If we are resetting a pool, allow references by
5949 		 * fault injection handlers.
5950 		 */
5951 		if (!spa_refcount_zero(spa) ||
5952 		    (spa->spa_inject_ref != 0 &&
5953 		    new_state != POOL_STATE_UNINITIALIZED)) {
5954 			spa_async_resume(spa);
5955 			mutex_exit(&spa_namespace_lock);
5956 			return (SET_ERROR(EBUSY));
5957 		}
5958 
5959 		/*
5960 		 * A pool cannot be exported if it has an active shared spare.
5961 		 * This is to prevent other pools stealing the active spare
5962 		 * from an exported pool. At user's own will, such pool can
5963 		 * be forcedly exported.
5964 		 */
5965 		if (!force && new_state == POOL_STATE_EXPORTED &&
5966 		    spa_has_active_shared_spare(spa)) {
5967 			spa_async_resume(spa);
5968 			mutex_exit(&spa_namespace_lock);
5969 			return (SET_ERROR(EXDEV));
5970 		}
5971 
5972 		/*
5973 		 * We're about to export or destroy this pool. Make sure
5974 		 * we stop all initialization and trim activity here before
5975 		 * we set the spa_final_txg. This will ensure that all
5976 		 * dirty data resulting from the initialization is
5977 		 * committed to disk before we unload the pool.
5978 		 */
5979 		if (spa->spa_root_vdev != NULL) {
5980 			vdev_t *rvd = spa->spa_root_vdev;
5981 			vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE);
5982 			vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE);
5983 			vdev_autotrim_stop_all(spa);
5984 		}
5985 
5986 		/*
5987 		 * We want this to be reflected on every label,
5988 		 * so mark them all dirty.  spa_unload() will do the
5989 		 * final sync that pushes these changes out.
5990 		 */
5991 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
5992 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5993 			spa->spa_state = new_state;
5994 			spa->spa_final_txg = spa_last_synced_txg(spa) +
5995 			    TXG_DEFER_SIZE + 1;
5996 			vdev_config_dirty(spa->spa_root_vdev);
5997 			spa_config_exit(spa, SCL_ALL, FTAG);
5998 		}
5999 	}
6000 
6001 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
6002 
6003 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6004 		spa_unload(spa);
6005 		spa_deactivate(spa);
6006 	}
6007 
6008 	if (oldconfig && spa->spa_config)
6009 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
6010 
6011 	if (new_state != POOL_STATE_UNINITIALIZED) {
6012 		if (!hardforce)
6013 			spa_write_cachefile(spa, B_TRUE, B_TRUE);
6014 		spa_remove(spa);
6015 	}
6016 	mutex_exit(&spa_namespace_lock);
6017 
6018 	return (0);
6019 }
6020 
6021 /*
6022  * Destroy a storage pool.
6023  */
6024 int
6025 spa_destroy(char *pool)
6026 {
6027 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
6028 	    B_FALSE, B_FALSE));
6029 }
6030 
6031 /*
6032  * Export a storage pool.
6033  */
6034 int
6035 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
6036     boolean_t hardforce)
6037 {
6038 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
6039 	    force, hardforce));
6040 }
6041 
6042 /*
6043  * Similar to spa_export(), this unloads the spa_t without actually removing it
6044  * from the namespace in any way.
6045  */
6046 int
6047 spa_reset(char *pool)
6048 {
6049 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
6050 	    B_FALSE, B_FALSE));
6051 }
6052 
6053 /*
6054  * ==========================================================================
6055  * Device manipulation
6056  * ==========================================================================
6057  */
6058 
6059 /*
6060  * Add a device to a storage pool.
6061  */
6062 int
6063 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
6064 {
6065 	uint64_t txg;
6066 	int error;
6067 	vdev_t *rvd = spa->spa_root_vdev;
6068 	vdev_t *vd, *tvd;
6069 	nvlist_t **spares, **l2cache;
6070 	uint_t nspares, nl2cache;
6071 
6072 	ASSERT(spa_writeable(spa));
6073 
6074 	txg = spa_vdev_enter(spa);
6075 
6076 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
6077 	    VDEV_ALLOC_ADD)) != 0)
6078 		return (spa_vdev_exit(spa, NULL, txg, error));
6079 
6080 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
6081 
6082 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
6083 	    &nspares) != 0)
6084 		nspares = 0;
6085 
6086 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
6087 	    &nl2cache) != 0)
6088 		nl2cache = 0;
6089 
6090 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
6091 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
6092 
6093 	if (vd->vdev_children != 0 &&
6094 	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
6095 		return (spa_vdev_exit(spa, vd, txg, error));
6096 
6097 	/*
6098 	 * We must validate the spares and l2cache devices after checking the
6099 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
6100 	 */
6101 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
6102 		return (spa_vdev_exit(spa, vd, txg, error));
6103 
6104 	/*
6105 	 * If we are in the middle of a device removal, we can only add
6106 	 * devices which match the existing devices in the pool.
6107 	 * If we are in the middle of a removal, or have some indirect
6108 	 * vdevs, we can not add raidz toplevels.
6109 	 */
6110 	if (spa->spa_vdev_removal != NULL ||
6111 	    spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
6112 		for (int c = 0; c < vd->vdev_children; c++) {
6113 			tvd = vd->vdev_child[c];
6114 			if (spa->spa_vdev_removal != NULL &&
6115 			    tvd->vdev_ashift != spa->spa_max_ashift) {
6116 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
6117 			}
6118 			/* Fail if top level vdev is raidz */
6119 			if (tvd->vdev_ops == &vdev_raidz_ops) {
6120 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
6121 			}
6122 			/*
6123 			 * Need the top level mirror to be
6124 			 * a mirror of leaf vdevs only
6125 			 */
6126 			if (tvd->vdev_ops == &vdev_mirror_ops) {
6127 				for (uint64_t cid = 0;
6128 				    cid < tvd->vdev_children; cid++) {
6129 					vdev_t *cvd = tvd->vdev_child[cid];
6130 					if (!cvd->vdev_ops->vdev_op_leaf) {
6131 						return (spa_vdev_exit(spa, vd,
6132 						    txg, EINVAL));
6133 					}
6134 				}
6135 			}
6136 		}
6137 	}
6138 
6139 	for (int c = 0; c < vd->vdev_children; c++) {
6140 		tvd = vd->vdev_child[c];
6141 		vdev_remove_child(vd, tvd);
6142 		tvd->vdev_id = rvd->vdev_children;
6143 		vdev_add_child(rvd, tvd);
6144 		vdev_config_dirty(tvd);
6145 	}
6146 
6147 	if (nspares != 0) {
6148 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
6149 		    ZPOOL_CONFIG_SPARES);
6150 		spa_load_spares(spa);
6151 		spa->spa_spares.sav_sync = B_TRUE;
6152 	}
6153 
6154 	if (nl2cache != 0) {
6155 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
6156 		    ZPOOL_CONFIG_L2CACHE);
6157 		spa_load_l2cache(spa);
6158 		spa->spa_l2cache.sav_sync = B_TRUE;
6159 	}
6160 
6161 	/*
6162 	 * We have to be careful when adding new vdevs to an existing pool.
6163 	 * If other threads start allocating from these vdevs before we
6164 	 * sync the config cache, and we lose power, then upon reboot we may
6165 	 * fail to open the pool because there are DVAs that the config cache
6166 	 * can't translate.  Therefore, we first add the vdevs without
6167 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
6168 	 * and then let spa_config_update() initialize the new metaslabs.
6169 	 *
6170 	 * spa_load() checks for added-but-not-initialized vdevs, so that
6171 	 * if we lose power at any point in this sequence, the remaining
6172 	 * steps will be completed the next time we load the pool.
6173 	 */
6174 	(void) spa_vdev_exit(spa, vd, txg, 0);
6175 
6176 	mutex_enter(&spa_namespace_lock);
6177 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6178 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
6179 	mutex_exit(&spa_namespace_lock);
6180 
6181 	return (0);
6182 }
6183 
6184 /*
6185  * Attach a device to a mirror.  The arguments are the path to any device
6186  * in the mirror, and the nvroot for the new device.  If the path specifies
6187  * a device that is not mirrored, we automatically insert the mirror vdev.
6188  *
6189  * If 'replacing' is specified, the new device is intended to replace the
6190  * existing device; in this case the two devices are made into their own
6191  * mirror using the 'replacing' vdev, which is functionally identical to
6192  * the mirror vdev (it actually reuses all the same ops) but has a few
6193  * extra rules: you can't attach to it after it's been created, and upon
6194  * completion of resilvering, the first disk (the one being replaced)
6195  * is automatically detached.
6196  */
6197 int
6198 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
6199 {
6200 	uint64_t txg, dtl_max_txg;
6201 	vdev_t *rvd = spa->spa_root_vdev;
6202 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
6203 	vdev_ops_t *pvops;
6204 	char *oldvdpath, *newvdpath;
6205 	int newvd_isspare;
6206 	int error;
6207 
6208 	ASSERT(spa_writeable(spa));
6209 
6210 	txg = spa_vdev_enter(spa);
6211 
6212 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
6213 
6214 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6215 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6216 		error = (spa_has_checkpoint(spa)) ?
6217 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6218 		return (spa_vdev_exit(spa, NULL, txg, error));
6219 	}
6220 
6221 	if (spa->spa_vdev_removal != NULL)
6222 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6223 
6224 	if (oldvd == NULL)
6225 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
6226 
6227 	if (!oldvd->vdev_ops->vdev_op_leaf)
6228 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6229 
6230 	pvd = oldvd->vdev_parent;
6231 
6232 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
6233 	    VDEV_ALLOC_ATTACH)) != 0)
6234 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6235 
6236 	if (newrootvd->vdev_children != 1)
6237 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6238 
6239 	newvd = newrootvd->vdev_child[0];
6240 
6241 	if (!newvd->vdev_ops->vdev_op_leaf)
6242 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6243 
6244 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
6245 		return (spa_vdev_exit(spa, newrootvd, txg, error));
6246 
6247 	/*
6248 	 * Spares can't replace logs
6249 	 */
6250 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
6251 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6252 
6253 	if (!replacing) {
6254 		/*
6255 		 * For attach, the only allowable parent is a mirror or the root
6256 		 * vdev.
6257 		 */
6258 		if (pvd->vdev_ops != &vdev_mirror_ops &&
6259 		    pvd->vdev_ops != &vdev_root_ops)
6260 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6261 
6262 		pvops = &vdev_mirror_ops;
6263 	} else {
6264 		/*
6265 		 * Active hot spares can only be replaced by inactive hot
6266 		 * spares.
6267 		 */
6268 		if (pvd->vdev_ops == &vdev_spare_ops &&
6269 		    oldvd->vdev_isspare &&
6270 		    !spa_has_spare(spa, newvd->vdev_guid))
6271 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6272 
6273 		/*
6274 		 * If the source is a hot spare, and the parent isn't already a
6275 		 * spare, then we want to create a new hot spare.  Otherwise, we
6276 		 * want to create a replacing vdev.  The user is not allowed to
6277 		 * attach to a spared vdev child unless the 'isspare' state is
6278 		 * the same (spare replaces spare, non-spare replaces
6279 		 * non-spare).
6280 		 */
6281 		if (pvd->vdev_ops == &vdev_replacing_ops &&
6282 		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
6283 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6284 		} else if (pvd->vdev_ops == &vdev_spare_ops &&
6285 		    newvd->vdev_isspare != oldvd->vdev_isspare) {
6286 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6287 		}
6288 
6289 		if (newvd->vdev_isspare)
6290 			pvops = &vdev_spare_ops;
6291 		else
6292 			pvops = &vdev_replacing_ops;
6293 	}
6294 
6295 	/*
6296 	 * Make sure the new device is big enough.
6297 	 */
6298 	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
6299 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
6300 
6301 	/*
6302 	 * The new device cannot have a higher alignment requirement
6303 	 * than the top-level vdev.
6304 	 */
6305 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
6306 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
6307 
6308 	/*
6309 	 * If this is an in-place replacement, update oldvd's path and devid
6310 	 * to make it distinguishable from newvd, and unopenable from now on.
6311 	 */
6312 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
6313 		spa_strfree(oldvd->vdev_path);
6314 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
6315 		    KM_SLEEP);
6316 		(void) sprintf(oldvd->vdev_path, "%s/%s",
6317 		    newvd->vdev_path, "old");
6318 		if (oldvd->vdev_devid != NULL) {
6319 			spa_strfree(oldvd->vdev_devid);
6320 			oldvd->vdev_devid = NULL;
6321 		}
6322 	}
6323 
6324 	/* mark the device being resilvered */
6325 	newvd->vdev_resilver_txg = txg;
6326 
6327 	/*
6328 	 * If the parent is not a mirror, or if we're replacing, insert the new
6329 	 * mirror/replacing/spare vdev above oldvd.
6330 	 */
6331 	if (pvd->vdev_ops != pvops)
6332 		pvd = vdev_add_parent(oldvd, pvops);
6333 
6334 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
6335 	ASSERT(pvd->vdev_ops == pvops);
6336 	ASSERT(oldvd->vdev_parent == pvd);
6337 
6338 	/*
6339 	 * Extract the new device from its root and add it to pvd.
6340 	 */
6341 	vdev_remove_child(newrootvd, newvd);
6342 	newvd->vdev_id = pvd->vdev_children;
6343 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
6344 	vdev_add_child(pvd, newvd);
6345 
6346 	tvd = newvd->vdev_top;
6347 	ASSERT(pvd->vdev_top == tvd);
6348 	ASSERT(tvd->vdev_parent == rvd);
6349 
6350 	vdev_config_dirty(tvd);
6351 
6352 	/*
6353 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
6354 	 * for any dmu_sync-ed blocks.  It will propagate upward when
6355 	 * spa_vdev_exit() calls vdev_dtl_reassess().
6356 	 */
6357 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
6358 
6359 	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
6360 	    dtl_max_txg - TXG_INITIAL);
6361 
6362 	if (newvd->vdev_isspare) {
6363 		spa_spare_activate(newvd);
6364 		spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
6365 	}
6366 
6367 	oldvdpath = spa_strdup(oldvd->vdev_path);
6368 	newvdpath = spa_strdup(newvd->vdev_path);
6369 	newvd_isspare = newvd->vdev_isspare;
6370 
6371 	/*
6372 	 * Mark newvd's DTL dirty in this txg.
6373 	 */
6374 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
6375 
6376 	/*
6377 	 * Schedule the resilver to restart in the future. We do this to
6378 	 * ensure that dmu_sync-ed blocks have been stitched into the
6379 	 * respective datasets. We do not do this if resilvers have been
6380 	 * deferred.
6381 	 */
6382 	if (dsl_scan_resilvering(spa_get_dsl(spa)) &&
6383 	    spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
6384 		vdev_defer_resilver(newvd);
6385 	else
6386 		dsl_scan_restart_resilver(spa->spa_dsl_pool, dtl_max_txg);
6387 
6388 	if (spa->spa_bootfs)
6389 		spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
6390 
6391 	spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
6392 
6393 	/*
6394 	 * Commit the config
6395 	 */
6396 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
6397 
6398 	spa_history_log_internal(spa, "vdev attach", NULL,
6399 	    "%s vdev=%s %s vdev=%s",
6400 	    replacing && newvd_isspare ? "spare in" :
6401 	    replacing ? "replace" : "attach", newvdpath,
6402 	    replacing ? "for" : "to", oldvdpath);
6403 
6404 	spa_strfree(oldvdpath);
6405 	spa_strfree(newvdpath);
6406 
6407 	return (0);
6408 }
6409 
6410 /*
6411  * Detach a device from a mirror or replacing vdev.
6412  *
6413  * If 'replace_done' is specified, only detach if the parent
6414  * is a replacing vdev.
6415  */
6416 int
6417 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
6418 {
6419 	uint64_t txg;
6420 	int error;
6421 	vdev_t *rvd = spa->spa_root_vdev;
6422 	vdev_t *vd, *pvd, *cvd, *tvd;
6423 	boolean_t unspare = B_FALSE;
6424 	uint64_t unspare_guid = 0;
6425 	char *vdpath;
6426 
6427 	ASSERT(spa_writeable(spa));
6428 
6429 	txg = spa_vdev_enter(spa);
6430 
6431 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
6432 
6433 	/*
6434 	 * Besides being called directly from the userland through the
6435 	 * ioctl interface, spa_vdev_detach() can be potentially called
6436 	 * at the end of spa_vdev_resilver_done().
6437 	 *
6438 	 * In the regular case, when we have a checkpoint this shouldn't
6439 	 * happen as we never empty the DTLs of a vdev during the scrub
6440 	 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
6441 	 * should never get here when we have a checkpoint.
6442 	 *
6443 	 * That said, even in a case when we checkpoint the pool exactly
6444 	 * as spa_vdev_resilver_done() calls this function everything
6445 	 * should be fine as the resilver will return right away.
6446 	 */
6447 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6448 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6449 		error = (spa_has_checkpoint(spa)) ?
6450 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6451 		return (spa_vdev_exit(spa, NULL, txg, error));
6452 	}
6453 
6454 	if (vd == NULL)
6455 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
6456 
6457 	if (!vd->vdev_ops->vdev_op_leaf)
6458 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6459 
6460 	pvd = vd->vdev_parent;
6461 
6462 	/*
6463 	 * If the parent/child relationship is not as expected, don't do it.
6464 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
6465 	 * vdev that's replacing B with C.  The user's intent in replacing
6466 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
6467 	 * the replace by detaching C, the expected behavior is to end up
6468 	 * M(A,B).  But suppose that right after deciding to detach C,
6469 	 * the replacement of B completes.  We would have M(A,C), and then
6470 	 * ask to detach C, which would leave us with just A -- not what
6471 	 * the user wanted.  To prevent this, we make sure that the
6472 	 * parent/child relationship hasn't changed -- in this example,
6473 	 * that C's parent is still the replacing vdev R.
6474 	 */
6475 	if (pvd->vdev_guid != pguid && pguid != 0)
6476 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6477 
6478 	/*
6479 	 * Only 'replacing' or 'spare' vdevs can be replaced.
6480 	 */
6481 	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
6482 	    pvd->vdev_ops != &vdev_spare_ops)
6483 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6484 
6485 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
6486 	    spa_version(spa) >= SPA_VERSION_SPARES);
6487 
6488 	/*
6489 	 * Only mirror, replacing, and spare vdevs support detach.
6490 	 */
6491 	if (pvd->vdev_ops != &vdev_replacing_ops &&
6492 	    pvd->vdev_ops != &vdev_mirror_ops &&
6493 	    pvd->vdev_ops != &vdev_spare_ops)
6494 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6495 
6496 	/*
6497 	 * If this device has the only valid copy of some data,
6498 	 * we cannot safely detach it.
6499 	 */
6500 	if (vdev_dtl_required(vd))
6501 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6502 
6503 	ASSERT(pvd->vdev_children >= 2);
6504 
6505 	/*
6506 	 * If we are detaching the second disk from a replacing vdev, then
6507 	 * check to see if we changed the original vdev's path to have "/old"
6508 	 * at the end in spa_vdev_attach().  If so, undo that change now.
6509 	 */
6510 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
6511 	    vd->vdev_path != NULL) {
6512 		size_t len = strlen(vd->vdev_path);
6513 
6514 		for (int c = 0; c < pvd->vdev_children; c++) {
6515 			cvd = pvd->vdev_child[c];
6516 
6517 			if (cvd == vd || cvd->vdev_path == NULL)
6518 				continue;
6519 
6520 			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
6521 			    strcmp(cvd->vdev_path + len, "/old") == 0) {
6522 				spa_strfree(cvd->vdev_path);
6523 				cvd->vdev_path = spa_strdup(vd->vdev_path);
6524 				break;
6525 			}
6526 		}
6527 	}
6528 
6529 	/*
6530 	 * If we are detaching the original disk from a spare, then it implies
6531 	 * that the spare should become a real disk, and be removed from the
6532 	 * active spare list for the pool.
6533 	 */
6534 	if (pvd->vdev_ops == &vdev_spare_ops &&
6535 	    vd->vdev_id == 0 &&
6536 	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
6537 		unspare = B_TRUE;
6538 
6539 	/*
6540 	 * Erase the disk labels so the disk can be used for other things.
6541 	 * This must be done after all other error cases are handled,
6542 	 * but before we disembowel vd (so we can still do I/O to it).
6543 	 * But if we can't do it, don't treat the error as fatal --
6544 	 * it may be that the unwritability of the disk is the reason
6545 	 * it's being detached!
6546 	 */
6547 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
6548 
6549 	/*
6550 	 * Remove vd from its parent and compact the parent's children.
6551 	 */
6552 	vdev_remove_child(pvd, vd);
6553 	vdev_compact_children(pvd);
6554 
6555 	/*
6556 	 * Remember one of the remaining children so we can get tvd below.
6557 	 */
6558 	cvd = pvd->vdev_child[pvd->vdev_children - 1];
6559 
6560 	/*
6561 	 * If we need to remove the remaining child from the list of hot spares,
6562 	 * do it now, marking the vdev as no longer a spare in the process.
6563 	 * We must do this before vdev_remove_parent(), because that can
6564 	 * change the GUID if it creates a new toplevel GUID.  For a similar
6565 	 * reason, we must remove the spare now, in the same txg as the detach;
6566 	 * otherwise someone could attach a new sibling, change the GUID, and
6567 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
6568 	 */
6569 	if (unspare) {
6570 		ASSERT(cvd->vdev_isspare);
6571 		spa_spare_remove(cvd);
6572 		unspare_guid = cvd->vdev_guid;
6573 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
6574 		cvd->vdev_unspare = B_TRUE;
6575 	}
6576 
6577 	/*
6578 	 * If the parent mirror/replacing vdev only has one child,
6579 	 * the parent is no longer needed.  Remove it from the tree.
6580 	 */
6581 	if (pvd->vdev_children == 1) {
6582 		if (pvd->vdev_ops == &vdev_spare_ops)
6583 			cvd->vdev_unspare = B_FALSE;
6584 		vdev_remove_parent(cvd);
6585 	}
6586 
6587 	/*
6588 	 * We don't set tvd until now because the parent we just removed
6589 	 * may have been the previous top-level vdev.
6590 	 */
6591 	tvd = cvd->vdev_top;
6592 	ASSERT(tvd->vdev_parent == rvd);
6593 
6594 	/*
6595 	 * Reevaluate the parent vdev state.
6596 	 */
6597 	vdev_propagate_state(cvd);
6598 
6599 	/*
6600 	 * If the 'autoexpand' property is set on the pool then automatically
6601 	 * try to expand the size of the pool. For example if the device we
6602 	 * just detached was smaller than the others, it may be possible to
6603 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
6604 	 * first so that we can obtain the updated sizes of the leaf vdevs.
6605 	 */
6606 	if (spa->spa_autoexpand) {
6607 		vdev_reopen(tvd);
6608 		vdev_expand(tvd, txg);
6609 	}
6610 
6611 	vdev_config_dirty(tvd);
6612 
6613 	/*
6614 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
6615 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
6616 	 * But first make sure we're not on any *other* txg's DTL list, to
6617 	 * prevent vd from being accessed after it's freed.
6618 	 */
6619 	vdpath = spa_strdup(vd->vdev_path);
6620 	for (int t = 0; t < TXG_SIZE; t++)
6621 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
6622 	vd->vdev_detached = B_TRUE;
6623 	vdev_dirty(tvd, VDD_DTL, vd, txg);
6624 
6625 	spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
6626 
6627 	/* hang on to the spa before we release the lock */
6628 	spa_open_ref(spa, FTAG);
6629 
6630 	error = spa_vdev_exit(spa, vd, txg, 0);
6631 
6632 	spa_history_log_internal(spa, "detach", NULL,
6633 	    "vdev=%s", vdpath);
6634 	spa_strfree(vdpath);
6635 
6636 	/*
6637 	 * If this was the removal of the original device in a hot spare vdev,
6638 	 * then we want to go through and remove the device from the hot spare
6639 	 * list of every other pool.
6640 	 */
6641 	if (unspare) {
6642 		spa_t *altspa = NULL;
6643 
6644 		mutex_enter(&spa_namespace_lock);
6645 		while ((altspa = spa_next(altspa)) != NULL) {
6646 			if (altspa->spa_state != POOL_STATE_ACTIVE ||
6647 			    altspa == spa)
6648 				continue;
6649 
6650 			spa_open_ref(altspa, FTAG);
6651 			mutex_exit(&spa_namespace_lock);
6652 			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
6653 			mutex_enter(&spa_namespace_lock);
6654 			spa_close(altspa, FTAG);
6655 		}
6656 		mutex_exit(&spa_namespace_lock);
6657 
6658 		/* search the rest of the vdevs for spares to remove */
6659 		spa_vdev_resilver_done(spa);
6660 	}
6661 
6662 	/* all done with the spa; OK to release */
6663 	mutex_enter(&spa_namespace_lock);
6664 	spa_close(spa, FTAG);
6665 	mutex_exit(&spa_namespace_lock);
6666 
6667 	return (error);
6668 }
6669 
6670 static int
6671 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
6672     list_t *vd_list)
6673 {
6674 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6675 
6676 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6677 
6678 	/* Look up vdev and ensure it's a leaf. */
6679 	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
6680 	if (vd == NULL || vd->vdev_detached) {
6681 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6682 		return (SET_ERROR(ENODEV));
6683 	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
6684 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6685 		return (SET_ERROR(EINVAL));
6686 	} else if (!vdev_writeable(vd)) {
6687 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6688 		return (SET_ERROR(EROFS));
6689 	}
6690 	mutex_enter(&vd->vdev_initialize_lock);
6691 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6692 
6693 	/*
6694 	 * When we activate an initialize action we check to see
6695 	 * if the vdev_initialize_thread is NULL. We do this instead
6696 	 * of using the vdev_initialize_state since there might be
6697 	 * a previous initialization process which has completed but
6698 	 * the thread is not exited.
6699 	 */
6700 	if (cmd_type == POOL_INITIALIZE_START &&
6701 	    (vd->vdev_initialize_thread != NULL ||
6702 	    vd->vdev_top->vdev_removing)) {
6703 		mutex_exit(&vd->vdev_initialize_lock);
6704 		return (SET_ERROR(EBUSY));
6705 	} else if (cmd_type == POOL_INITIALIZE_CANCEL &&
6706 	    (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE &&
6707 	    vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) {
6708 		mutex_exit(&vd->vdev_initialize_lock);
6709 		return (SET_ERROR(ESRCH));
6710 	} else if (cmd_type == POOL_INITIALIZE_SUSPEND &&
6711 	    vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) {
6712 		mutex_exit(&vd->vdev_initialize_lock);
6713 		return (SET_ERROR(ESRCH));
6714 	}
6715 
6716 	switch (cmd_type) {
6717 	case POOL_INITIALIZE_START:
6718 		vdev_initialize(vd);
6719 		break;
6720 	case POOL_INITIALIZE_CANCEL:
6721 		vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list);
6722 		break;
6723 	case POOL_INITIALIZE_SUSPEND:
6724 		vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list);
6725 		break;
6726 	default:
6727 		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
6728 	}
6729 	mutex_exit(&vd->vdev_initialize_lock);
6730 
6731 	return (0);
6732 }
6733 
6734 int
6735 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
6736     nvlist_t *vdev_errlist)
6737 {
6738 	int total_errors = 0;
6739 	list_t vd_list;
6740 
6741 	list_create(&vd_list, sizeof (vdev_t),
6742 	    offsetof(vdev_t, vdev_initialize_node));
6743 
6744 	/*
6745 	 * We hold the namespace lock through the whole function
6746 	 * to prevent any changes to the pool while we're starting or
6747 	 * stopping initialization. The config and state locks are held so that
6748 	 * we can properly assess the vdev state before we commit to
6749 	 * the initializing operation.
6750 	 */
6751 	mutex_enter(&spa_namespace_lock);
6752 
6753 	for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
6754 	    pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
6755 		uint64_t vdev_guid = fnvpair_value_uint64(pair);
6756 
6757 		int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type,
6758 		    &vd_list);
6759 		if (error != 0) {
6760 			char guid_as_str[MAXNAMELEN];
6761 
6762 			(void) snprintf(guid_as_str, sizeof (guid_as_str),
6763 			    "%llu", (unsigned long long)vdev_guid);
6764 			fnvlist_add_int64(vdev_errlist, guid_as_str, error);
6765 			total_errors++;
6766 		}
6767 	}
6768 
6769 	/* Wait for all initialize threads to stop. */
6770 	vdev_initialize_stop_wait(spa, &vd_list);
6771 
6772 	/* Sync out the initializing state */
6773 	txg_wait_synced(spa->spa_dsl_pool, 0);
6774 	mutex_exit(&spa_namespace_lock);
6775 
6776 	list_destroy(&vd_list);
6777 
6778 	return (total_errors);
6779 }
6780 
6781 static int
6782 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
6783     uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list)
6784 {
6785 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6786 
6787 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6788 
6789 	/* Look up vdev and ensure it's a leaf. */
6790 	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
6791 	if (vd == NULL || vd->vdev_detached) {
6792 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6793 		return (SET_ERROR(ENODEV));
6794 	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
6795 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6796 		return (SET_ERROR(EINVAL));
6797 	} else if (!vdev_writeable(vd)) {
6798 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6799 		return (SET_ERROR(EROFS));
6800 	} else if (!vd->vdev_has_trim) {
6801 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6802 		return (SET_ERROR(EOPNOTSUPP));
6803 	} else if (secure && !vd->vdev_has_securetrim) {
6804 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6805 		return (SET_ERROR(EOPNOTSUPP));
6806 	}
6807 	mutex_enter(&vd->vdev_trim_lock);
6808 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6809 
6810 	/*
6811 	 * When we activate a TRIM action we check to see if the
6812 	 * vdev_trim_thread is NULL. We do this instead of using the
6813 	 * vdev_trim_state since there might be a previous TRIM process
6814 	 * which has completed but the thread is not exited.
6815 	 */
6816 	if (cmd_type == POOL_TRIM_START &&
6817 	    (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing)) {
6818 		mutex_exit(&vd->vdev_trim_lock);
6819 		return (SET_ERROR(EBUSY));
6820 	} else if (cmd_type == POOL_TRIM_CANCEL &&
6821 	    (vd->vdev_trim_state != VDEV_TRIM_ACTIVE &&
6822 	    vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) {
6823 		mutex_exit(&vd->vdev_trim_lock);
6824 		return (SET_ERROR(ESRCH));
6825 	} else if (cmd_type == POOL_TRIM_SUSPEND &&
6826 	    vd->vdev_trim_state != VDEV_TRIM_ACTIVE) {
6827 		mutex_exit(&vd->vdev_trim_lock);
6828 		return (SET_ERROR(ESRCH));
6829 	}
6830 
6831 	switch (cmd_type) {
6832 	case POOL_TRIM_START:
6833 		vdev_trim(vd, rate, partial, secure);
6834 		break;
6835 	case POOL_TRIM_CANCEL:
6836 		vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list);
6837 		break;
6838 	case POOL_TRIM_SUSPEND:
6839 		vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list);
6840 		break;
6841 	default:
6842 		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
6843 	}
6844 	mutex_exit(&vd->vdev_trim_lock);
6845 
6846 	return (0);
6847 }
6848 
6849 /*
6850  * Initiates a manual TRIM for the requested vdevs. This kicks off individual
6851  * TRIM threads for each child vdev.  These threads pass over all of the free
6852  * space in the vdev's metaslabs and issues TRIM commands for that space.
6853  */
6854 int
6855 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate,
6856     boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist)
6857 {
6858 	int total_errors = 0;
6859 	list_t vd_list;
6860 
6861 	list_create(&vd_list, sizeof (vdev_t),
6862 	    offsetof(vdev_t, vdev_trim_node));
6863 
6864 	/*
6865 	 * We hold the namespace lock through the whole function
6866 	 * to prevent any changes to the pool while we're starting or
6867 	 * stopping TRIM. The config and state locks are held so that
6868 	 * we can properly assess the vdev state before we commit to
6869 	 * the TRIM operation.
6870 	 */
6871 	mutex_enter(&spa_namespace_lock);
6872 
6873 	for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
6874 	    pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
6875 		uint64_t vdev_guid = fnvpair_value_uint64(pair);
6876 
6877 		int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type,
6878 		    rate, partial, secure, &vd_list);
6879 		if (error != 0) {
6880 			char guid_as_str[MAXNAMELEN];
6881 
6882 			(void) snprintf(guid_as_str, sizeof (guid_as_str),
6883 			    "%llu", (unsigned long long)vdev_guid);
6884 			fnvlist_add_int64(vdev_errlist, guid_as_str, error);
6885 			total_errors++;
6886 		}
6887 	}
6888 
6889 	/* Wait for all TRIM threads to stop. */
6890 	vdev_trim_stop_wait(spa, &vd_list);
6891 
6892 	/* Sync out the TRIM state */
6893 	txg_wait_synced(spa->spa_dsl_pool, 0);
6894 	mutex_exit(&spa_namespace_lock);
6895 
6896 	list_destroy(&vd_list);
6897 
6898 	return (total_errors);
6899 }
6900 
6901 /*
6902  * Split a set of devices from their mirrors, and create a new pool from them.
6903  */
6904 int
6905 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
6906     nvlist_t *props, boolean_t exp)
6907 {
6908 	int error = 0;
6909 	uint64_t txg, *glist;
6910 	spa_t *newspa;
6911 	uint_t c, children, lastlog;
6912 	nvlist_t **child, *nvl, *tmp;
6913 	dmu_tx_t *tx;
6914 	char *altroot = NULL;
6915 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
6916 	boolean_t activate_slog;
6917 
6918 	ASSERT(spa_writeable(spa));
6919 
6920 	txg = spa_vdev_enter(spa);
6921 
6922 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6923 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6924 		error = (spa_has_checkpoint(spa)) ?
6925 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6926 		return (spa_vdev_exit(spa, NULL, txg, error));
6927 	}
6928 
6929 	/* clear the log and flush everything up to now */
6930 	activate_slog = spa_passivate_log(spa);
6931 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
6932 	error = spa_reset_logs(spa);
6933 	txg = spa_vdev_config_enter(spa);
6934 
6935 	if (activate_slog)
6936 		spa_activate_log(spa);
6937 
6938 	if (error != 0)
6939 		return (spa_vdev_exit(spa, NULL, txg, error));
6940 
6941 	/* check new spa name before going any further */
6942 	if (spa_lookup(newname) != NULL)
6943 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
6944 
6945 	/*
6946 	 * scan through all the children to ensure they're all mirrors
6947 	 */
6948 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
6949 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
6950 	    &children) != 0)
6951 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6952 
6953 	/* first, check to ensure we've got the right child count */
6954 	rvd = spa->spa_root_vdev;
6955 	lastlog = 0;
6956 	for (c = 0; c < rvd->vdev_children; c++) {
6957 		vdev_t *vd = rvd->vdev_child[c];
6958 
6959 		/* don't count the holes & logs as children */
6960 		if (vd->vdev_islog || !vdev_is_concrete(vd)) {
6961 			if (lastlog == 0)
6962 				lastlog = c;
6963 			continue;
6964 		}
6965 
6966 		lastlog = 0;
6967 	}
6968 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
6969 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6970 
6971 	/* next, ensure no spare or cache devices are part of the split */
6972 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
6973 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
6974 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6975 
6976 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
6977 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
6978 
6979 	/* then, loop over each vdev and validate it */
6980 	for (c = 0; c < children; c++) {
6981 		uint64_t is_hole = 0;
6982 
6983 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
6984 		    &is_hole);
6985 
6986 		if (is_hole != 0) {
6987 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
6988 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
6989 				continue;
6990 			} else {
6991 				error = SET_ERROR(EINVAL);
6992 				break;
6993 			}
6994 		}
6995 
6996 		/* which disk is going to be split? */
6997 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
6998 		    &glist[c]) != 0) {
6999 			error = SET_ERROR(EINVAL);
7000 			break;
7001 		}
7002 
7003 		/* look it up in the spa */
7004 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
7005 		if (vml[c] == NULL) {
7006 			error = SET_ERROR(ENODEV);
7007 			break;
7008 		}
7009 
7010 		/* make sure there's nothing stopping the split */
7011 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
7012 		    vml[c]->vdev_islog ||
7013 		    !vdev_is_concrete(vml[c]) ||
7014 		    vml[c]->vdev_isspare ||
7015 		    vml[c]->vdev_isl2cache ||
7016 		    !vdev_writeable(vml[c]) ||
7017 		    vml[c]->vdev_children != 0 ||
7018 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
7019 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
7020 			error = SET_ERROR(EINVAL);
7021 			break;
7022 		}
7023 
7024 		if (vdev_dtl_required(vml[c])) {
7025 			error = SET_ERROR(EBUSY);
7026 			break;
7027 		}
7028 
7029 		/* we need certain info from the top level */
7030 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
7031 		    vml[c]->vdev_top->vdev_ms_array) == 0);
7032 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
7033 		    vml[c]->vdev_top->vdev_ms_shift) == 0);
7034 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
7035 		    vml[c]->vdev_top->vdev_asize) == 0);
7036 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
7037 		    vml[c]->vdev_top->vdev_ashift) == 0);
7038 
7039 		/* transfer per-vdev ZAPs */
7040 		ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
7041 		VERIFY0(nvlist_add_uint64(child[c],
7042 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
7043 
7044 		ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
7045 		VERIFY0(nvlist_add_uint64(child[c],
7046 		    ZPOOL_CONFIG_VDEV_TOP_ZAP,
7047 		    vml[c]->vdev_parent->vdev_top_zap));
7048 	}
7049 
7050 	if (error != 0) {
7051 		kmem_free(vml, children * sizeof (vdev_t *));
7052 		kmem_free(glist, children * sizeof (uint64_t));
7053 		return (spa_vdev_exit(spa, NULL, txg, error));
7054 	}
7055 
7056 	/* stop writers from using the disks */
7057 	for (c = 0; c < children; c++) {
7058 		if (vml[c] != NULL)
7059 			vml[c]->vdev_offline = B_TRUE;
7060 	}
7061 	vdev_reopen(spa->spa_root_vdev);
7062 
7063 	/*
7064 	 * Temporarily record the splitting vdevs in the spa config.  This
7065 	 * will disappear once the config is regenerated.
7066 	 */
7067 	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
7068 	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
7069 	    glist, children) == 0);
7070 	kmem_free(glist, children * sizeof (uint64_t));
7071 
7072 	mutex_enter(&spa->spa_props_lock);
7073 	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
7074 	    nvl) == 0);
7075 	mutex_exit(&spa->spa_props_lock);
7076 	spa->spa_config_splitting = nvl;
7077 	vdev_config_dirty(spa->spa_root_vdev);
7078 
7079 	/* configure and create the new pool */
7080 	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
7081 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
7082 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
7083 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
7084 	    spa_version(spa)) == 0);
7085 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
7086 	    spa->spa_config_txg) == 0);
7087 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
7088 	    spa_generate_guid(NULL)) == 0);
7089 	VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
7090 	(void) nvlist_lookup_string(props,
7091 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
7092 
7093 	/* add the new pool to the namespace */
7094 	newspa = spa_add(newname, config, altroot);
7095 	newspa->spa_avz_action = AVZ_ACTION_REBUILD;
7096 	newspa->spa_config_txg = spa->spa_config_txg;
7097 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
7098 
7099 	/* release the spa config lock, retaining the namespace lock */
7100 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
7101 
7102 	if (zio_injection_enabled)
7103 		zio_handle_panic_injection(spa, FTAG, 1);
7104 
7105 	spa_activate(newspa, spa_mode_global);
7106 	spa_async_suspend(newspa);
7107 
7108 	/*
7109 	 * Temporarily stop the initializing and TRIM activity.  We set the
7110 	 * state to ACTIVE so that we know to resume initializing or TRIM
7111 	 * once the split has completed.
7112 	 */
7113 	list_t vd_initialize_list;
7114 	list_create(&vd_initialize_list, sizeof (vdev_t),
7115 	    offsetof(vdev_t, vdev_initialize_node));
7116 
7117 	list_t vd_trim_list;
7118 	list_create(&vd_trim_list, sizeof (vdev_t),
7119 	    offsetof(vdev_t, vdev_trim_node));
7120 
7121 	for (c = 0; c < children; c++) {
7122 		if (vml[c] != NULL) {
7123 			mutex_enter(&vml[c]->vdev_initialize_lock);
7124 			vdev_initialize_stop(vml[c],
7125 			    VDEV_INITIALIZE_ACTIVE, &vd_initialize_list);
7126 			mutex_exit(&vml[c]->vdev_initialize_lock);
7127 
7128 			mutex_enter(&vml[c]->vdev_trim_lock);
7129 			vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list);
7130 			mutex_exit(&vml[c]->vdev_trim_lock);
7131 		}
7132 	}
7133 
7134 	vdev_initialize_stop_wait(spa, &vd_initialize_list);
7135 	vdev_trim_stop_wait(spa, &vd_trim_list);
7136 
7137 	list_destroy(&vd_initialize_list);
7138 	list_destroy(&vd_trim_list);
7139 
7140 	newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
7141 
7142 	/* create the new pool from the disks of the original pool */
7143 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
7144 	if (error)
7145 		goto out;
7146 
7147 	/* if that worked, generate a real config for the new pool */
7148 	if (newspa->spa_root_vdev != NULL) {
7149 		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
7150 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
7151 		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
7152 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
7153 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
7154 		    B_TRUE));
7155 	}
7156 
7157 	/* set the props */
7158 	if (props != NULL) {
7159 		spa_configfile_set(newspa, props, B_FALSE);
7160 		error = spa_prop_set(newspa, props);
7161 		if (error)
7162 			goto out;
7163 	}
7164 
7165 	/* flush everything */
7166 	txg = spa_vdev_config_enter(newspa);
7167 	vdev_config_dirty(newspa->spa_root_vdev);
7168 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
7169 
7170 	if (zio_injection_enabled)
7171 		zio_handle_panic_injection(spa, FTAG, 2);
7172 
7173 	spa_async_resume(newspa);
7174 
7175 	/* finally, update the original pool's config */
7176 	txg = spa_vdev_config_enter(spa);
7177 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
7178 	error = dmu_tx_assign(tx, TXG_WAIT);
7179 	if (error != 0)
7180 		dmu_tx_abort(tx);
7181 	for (c = 0; c < children; c++) {
7182 		if (vml[c] != NULL) {
7183 			vdev_split(vml[c]);
7184 			if (error == 0)
7185 				spa_history_log_internal(spa, "detach", tx,
7186 				    "vdev=%s", vml[c]->vdev_path);
7187 
7188 			vdev_free(vml[c]);
7189 		}
7190 	}
7191 	spa->spa_avz_action = AVZ_ACTION_REBUILD;
7192 	vdev_config_dirty(spa->spa_root_vdev);
7193 	spa->spa_config_splitting = NULL;
7194 	nvlist_free(nvl);
7195 	if (error == 0)
7196 		dmu_tx_commit(tx);
7197 	(void) spa_vdev_exit(spa, NULL, txg, 0);
7198 
7199 	if (zio_injection_enabled)
7200 		zio_handle_panic_injection(spa, FTAG, 3);
7201 
7202 	/* split is complete; log a history record */
7203 	spa_history_log_internal(newspa, "split", NULL,
7204 	    "from pool %s", spa_name(spa));
7205 
7206 	kmem_free(vml, children * sizeof (vdev_t *));
7207 
7208 	/* if we're not going to mount the filesystems in userland, export */
7209 	if (exp)
7210 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
7211 		    B_FALSE, B_FALSE);
7212 
7213 	return (error);
7214 
7215 out:
7216 	spa_unload(newspa);
7217 	spa_deactivate(newspa);
7218 	spa_remove(newspa);
7219 
7220 	txg = spa_vdev_config_enter(spa);
7221 
7222 	/* re-online all offlined disks */
7223 	for (c = 0; c < children; c++) {
7224 		if (vml[c] != NULL)
7225 			vml[c]->vdev_offline = B_FALSE;
7226 	}
7227 
7228 	/* restart initializing or trimming disks as necessary */
7229 	spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
7230 	spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
7231 	spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
7232 
7233 	vdev_reopen(spa->spa_root_vdev);
7234 
7235 	nvlist_free(spa->spa_config_splitting);
7236 	spa->spa_config_splitting = NULL;
7237 	(void) spa_vdev_exit(spa, NULL, txg, error);
7238 
7239 	kmem_free(vml, children * sizeof (vdev_t *));
7240 	return (error);
7241 }
7242 
7243 /*
7244  * Find any device that's done replacing, or a vdev marked 'unspare' that's
7245  * currently spared, so we can detach it.
7246  */
7247 static vdev_t *
7248 spa_vdev_resilver_done_hunt(vdev_t *vd)
7249 {
7250 	vdev_t *newvd, *oldvd;
7251 
7252 	for (int c = 0; c < vd->vdev_children; c++) {
7253 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
7254 		if (oldvd != NULL)
7255 			return (oldvd);
7256 	}
7257 
7258 	/*
7259 	 * Check for a completed replacement.  We always consider the first
7260 	 * vdev in the list to be the oldest vdev, and the last one to be
7261 	 * the newest (see spa_vdev_attach() for how that works).  In
7262 	 * the case where the newest vdev is faulted, we will not automatically
7263 	 * remove it after a resilver completes.  This is OK as it will require
7264 	 * user intervention to determine which disk the admin wishes to keep.
7265 	 */
7266 	if (vd->vdev_ops == &vdev_replacing_ops) {
7267 		ASSERT(vd->vdev_children > 1);
7268 
7269 		newvd = vd->vdev_child[vd->vdev_children - 1];
7270 		oldvd = vd->vdev_child[0];
7271 
7272 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
7273 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
7274 		    !vdev_dtl_required(oldvd))
7275 			return (oldvd);
7276 	}
7277 
7278 	/*
7279 	 * Check for a completed resilver with the 'unspare' flag set.
7280 	 * Also potentially update faulted state.
7281 	 */
7282 	if (vd->vdev_ops == &vdev_spare_ops) {
7283 		vdev_t *first = vd->vdev_child[0];
7284 		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
7285 
7286 		if (last->vdev_unspare) {
7287 			oldvd = first;
7288 			newvd = last;
7289 		} else if (first->vdev_unspare) {
7290 			oldvd = last;
7291 			newvd = first;
7292 		} else {
7293 			oldvd = NULL;
7294 		}
7295 
7296 		if (oldvd != NULL &&
7297 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
7298 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
7299 		    !vdev_dtl_required(oldvd))
7300 			return (oldvd);
7301 
7302 		vdev_propagate_state(vd);
7303 
7304 		/*
7305 		 * If there are more than two spares attached to a disk,
7306 		 * and those spares are not required, then we want to
7307 		 * attempt to free them up now so that they can be used
7308 		 * by other pools.  Once we're back down to a single
7309 		 * disk+spare, we stop removing them.
7310 		 */
7311 		if (vd->vdev_children > 2) {
7312 			newvd = vd->vdev_child[1];
7313 
7314 			if (newvd->vdev_isspare && last->vdev_isspare &&
7315 			    vdev_dtl_empty(last, DTL_MISSING) &&
7316 			    vdev_dtl_empty(last, DTL_OUTAGE) &&
7317 			    !vdev_dtl_required(newvd))
7318 				return (newvd);
7319 		}
7320 	}
7321 
7322 	return (NULL);
7323 }
7324 
7325 static void
7326 spa_vdev_resilver_done(spa_t *spa)
7327 {
7328 	vdev_t *vd, *pvd, *ppvd;
7329 	uint64_t guid, sguid, pguid, ppguid;
7330 
7331 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7332 
7333 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
7334 		pvd = vd->vdev_parent;
7335 		ppvd = pvd->vdev_parent;
7336 		guid = vd->vdev_guid;
7337 		pguid = pvd->vdev_guid;
7338 		ppguid = ppvd->vdev_guid;
7339 		sguid = 0;
7340 		/*
7341 		 * If we have just finished replacing a hot spared device, then
7342 		 * we need to detach the parent's first child (the original hot
7343 		 * spare) as well.
7344 		 */
7345 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
7346 		    ppvd->vdev_children == 2) {
7347 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
7348 			sguid = ppvd->vdev_child[1]->vdev_guid;
7349 		}
7350 		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
7351 
7352 		spa_config_exit(spa, SCL_ALL, FTAG);
7353 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
7354 			return;
7355 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
7356 			return;
7357 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7358 	}
7359 
7360 	spa_config_exit(spa, SCL_ALL, FTAG);
7361 }
7362 
7363 /*
7364  * Update the stored path or FRU for this vdev.
7365  */
7366 int
7367 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
7368     boolean_t ispath)
7369 {
7370 	vdev_t *vd;
7371 	boolean_t sync = B_FALSE;
7372 
7373 	ASSERT(spa_writeable(spa));
7374 
7375 	spa_vdev_state_enter(spa, SCL_ALL);
7376 
7377 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
7378 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
7379 
7380 	if (!vd->vdev_ops->vdev_op_leaf)
7381 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
7382 
7383 	if (ispath) {
7384 		if (strcmp(value, vd->vdev_path) != 0) {
7385 			spa_strfree(vd->vdev_path);
7386 			vd->vdev_path = spa_strdup(value);
7387 			sync = B_TRUE;
7388 		}
7389 	} else {
7390 		if (vd->vdev_fru == NULL) {
7391 			vd->vdev_fru = spa_strdup(value);
7392 			sync = B_TRUE;
7393 		} else if (strcmp(value, vd->vdev_fru) != 0) {
7394 			spa_strfree(vd->vdev_fru);
7395 			vd->vdev_fru = spa_strdup(value);
7396 			sync = B_TRUE;
7397 		}
7398 	}
7399 
7400 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
7401 }
7402 
7403 int
7404 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
7405 {
7406 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
7407 }
7408 
7409 int
7410 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
7411 {
7412 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
7413 }
7414 
7415 /*
7416  * ==========================================================================
7417  * SPA Scanning
7418  * ==========================================================================
7419  */
7420 int
7421 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
7422 {
7423 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
7424 
7425 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
7426 		return (SET_ERROR(EBUSY));
7427 
7428 	return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
7429 }
7430 
7431 int
7432 spa_scan_stop(spa_t *spa)
7433 {
7434 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
7435 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
7436 		return (SET_ERROR(EBUSY));
7437 	return (dsl_scan_cancel(spa->spa_dsl_pool));
7438 }
7439 
7440 int
7441 spa_scan(spa_t *spa, pool_scan_func_t func)
7442 {
7443 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
7444 
7445 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
7446 		return (SET_ERROR(ENOTSUP));
7447 
7448 	if (func == POOL_SCAN_RESILVER &&
7449 	    !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
7450 		return (SET_ERROR(ENOTSUP));
7451 
7452 	/*
7453 	 * If a resilver was requested, but there is no DTL on a
7454 	 * writeable leaf device, we have nothing to do.
7455 	 */
7456 	if (func == POOL_SCAN_RESILVER &&
7457 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
7458 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
7459 		return (0);
7460 	}
7461 
7462 	return (dsl_scan(spa->spa_dsl_pool, func));
7463 }
7464 
7465 /*
7466  * ==========================================================================
7467  * SPA async task processing
7468  * ==========================================================================
7469  */
7470 
7471 static void
7472 spa_async_remove(spa_t *spa, vdev_t *vd)
7473 {
7474 	if (vd->vdev_remove_wanted) {
7475 		vd->vdev_remove_wanted = B_FALSE;
7476 		vd->vdev_delayed_close = B_FALSE;
7477 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
7478 
7479 		/*
7480 		 * We want to clear the stats, but we don't want to do a full
7481 		 * vdev_clear() as that will cause us to throw away
7482 		 * degraded/faulted state as well as attempt to reopen the
7483 		 * device, all of which is a waste.
7484 		 */
7485 		vd->vdev_stat.vs_read_errors = 0;
7486 		vd->vdev_stat.vs_write_errors = 0;
7487 		vd->vdev_stat.vs_checksum_errors = 0;
7488 
7489 		vdev_state_dirty(vd->vdev_top);
7490 	}
7491 
7492 	for (int c = 0; c < vd->vdev_children; c++)
7493 		spa_async_remove(spa, vd->vdev_child[c]);
7494 }
7495 
7496 static void
7497 spa_async_probe(spa_t *spa, vdev_t *vd)
7498 {
7499 	if (vd->vdev_probe_wanted) {
7500 		vd->vdev_probe_wanted = B_FALSE;
7501 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
7502 	}
7503 
7504 	for (int c = 0; c < vd->vdev_children; c++)
7505 		spa_async_probe(spa, vd->vdev_child[c]);
7506 }
7507 
7508 static void
7509 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
7510 {
7511 	sysevent_id_t eid;
7512 	nvlist_t *attr;
7513 	char *physpath;
7514 
7515 	if (!spa->spa_autoexpand)
7516 		return;
7517 
7518 	for (int c = 0; c < vd->vdev_children; c++) {
7519 		vdev_t *cvd = vd->vdev_child[c];
7520 		spa_async_autoexpand(spa, cvd);
7521 	}
7522 
7523 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
7524 		return;
7525 
7526 	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
7527 	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
7528 
7529 	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
7530 	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
7531 
7532 	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
7533 	    ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
7534 
7535 	nvlist_free(attr);
7536 	kmem_free(physpath, MAXPATHLEN);
7537 }
7538 
7539 static void
7540 spa_async_thread(void *arg)
7541 {
7542 	spa_t *spa = (spa_t *)arg;
7543 	dsl_pool_t *dp = spa->spa_dsl_pool;
7544 	int tasks;
7545 
7546 	ASSERT(spa->spa_sync_on);
7547 
7548 	mutex_enter(&spa->spa_async_lock);
7549 	tasks = spa->spa_async_tasks;
7550 	spa->spa_async_tasks = 0;
7551 	mutex_exit(&spa->spa_async_lock);
7552 
7553 	/*
7554 	 * See if the config needs to be updated.
7555 	 */
7556 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
7557 		uint64_t old_space, new_space;
7558 
7559 		mutex_enter(&spa_namespace_lock);
7560 		old_space = metaslab_class_get_space(spa_normal_class(spa));
7561 		old_space += metaslab_class_get_space(spa_special_class(spa));
7562 		old_space += metaslab_class_get_space(spa_dedup_class(spa));
7563 
7564 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
7565 
7566 		new_space = metaslab_class_get_space(spa_normal_class(spa));
7567 		new_space += metaslab_class_get_space(spa_special_class(spa));
7568 		new_space += metaslab_class_get_space(spa_dedup_class(spa));
7569 		mutex_exit(&spa_namespace_lock);
7570 
7571 		/*
7572 		 * If the pool grew as a result of the config update,
7573 		 * then log an internal history event.
7574 		 */
7575 		if (new_space != old_space) {
7576 			spa_history_log_internal(spa, "vdev online", NULL,
7577 			    "pool '%s' size: %llu(+%llu)",
7578 			    spa_name(spa), new_space, new_space - old_space);
7579 		}
7580 	}
7581 
7582 	/*
7583 	 * See if any devices need to be marked REMOVED.
7584 	 */
7585 	if (tasks & SPA_ASYNC_REMOVE) {
7586 		spa_vdev_state_enter(spa, SCL_NONE);
7587 		spa_async_remove(spa, spa->spa_root_vdev);
7588 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
7589 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
7590 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
7591 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
7592 		(void) spa_vdev_state_exit(spa, NULL, 0);
7593 	}
7594 
7595 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
7596 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7597 		spa_async_autoexpand(spa, spa->spa_root_vdev);
7598 		spa_config_exit(spa, SCL_CONFIG, FTAG);
7599 	}
7600 
7601 	/*
7602 	 * See if any devices need to be probed.
7603 	 */
7604 	if (tasks & SPA_ASYNC_PROBE) {
7605 		spa_vdev_state_enter(spa, SCL_NONE);
7606 		spa_async_probe(spa, spa->spa_root_vdev);
7607 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
7608 			spa_async_probe(spa, spa->spa_spares.sav_vdevs[i]);
7609 		(void) spa_vdev_state_exit(spa, NULL, 0);
7610 	}
7611 
7612 	/*
7613 	 * If any devices are done replacing, detach them.
7614 	 */
7615 	if (tasks & SPA_ASYNC_RESILVER_DONE)
7616 		spa_vdev_resilver_done(spa);
7617 
7618 	/*
7619 	 * Kick off a resilver.
7620 	 */
7621 	if (tasks & SPA_ASYNC_RESILVER &&
7622 	    (!dsl_scan_resilvering(dp) ||
7623 	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)))
7624 		dsl_scan_restart_resilver(dp, 0);
7625 
7626 	if (tasks & SPA_ASYNC_INITIALIZE_RESTART) {
7627 		mutex_enter(&spa_namespace_lock);
7628 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7629 		vdev_initialize_restart(spa->spa_root_vdev);
7630 		spa_config_exit(spa, SCL_CONFIG, FTAG);
7631 		mutex_exit(&spa_namespace_lock);
7632 	}
7633 
7634 	if (tasks & SPA_ASYNC_TRIM_RESTART) {
7635 		mutex_enter(&spa_namespace_lock);
7636 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7637 		vdev_trim_restart(spa->spa_root_vdev);
7638 		spa_config_exit(spa, SCL_CONFIG, FTAG);
7639 		mutex_exit(&spa_namespace_lock);
7640 	}
7641 
7642 	if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) {
7643 		mutex_enter(&spa_namespace_lock);
7644 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7645 		vdev_autotrim_restart(spa);
7646 		spa_config_exit(spa, SCL_CONFIG, FTAG);
7647 		mutex_exit(&spa_namespace_lock);
7648 	}
7649 
7650 	/*
7651 	 * Let the world know that we're done.
7652 	 */
7653 	mutex_enter(&spa->spa_async_lock);
7654 	spa->spa_async_thread = NULL;
7655 	cv_broadcast(&spa->spa_async_cv);
7656 	mutex_exit(&spa->spa_async_lock);
7657 	thread_exit();
7658 }
7659 
7660 void
7661 spa_async_suspend(spa_t *spa)
7662 {
7663 	mutex_enter(&spa->spa_async_lock);
7664 	spa->spa_async_suspended++;
7665 	while (spa->spa_async_thread != NULL)
7666 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
7667 	mutex_exit(&spa->spa_async_lock);
7668 
7669 	spa_vdev_remove_suspend(spa);
7670 
7671 	zthr_t *condense_thread = spa->spa_condense_zthr;
7672 	if (condense_thread != NULL)
7673 		zthr_cancel(condense_thread);
7674 
7675 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
7676 	if (discard_thread != NULL)
7677 		zthr_cancel(discard_thread);
7678 }
7679 
7680 void
7681 spa_async_resume(spa_t *spa)
7682 {
7683 	mutex_enter(&spa->spa_async_lock);
7684 	ASSERT(spa->spa_async_suspended != 0);
7685 	spa->spa_async_suspended--;
7686 	mutex_exit(&spa->spa_async_lock);
7687 	spa_restart_removal(spa);
7688 
7689 	zthr_t *condense_thread = spa->spa_condense_zthr;
7690 	if (condense_thread != NULL)
7691 		zthr_resume(condense_thread);
7692 
7693 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
7694 	if (discard_thread != NULL)
7695 		zthr_resume(discard_thread);
7696 }
7697 
7698 static boolean_t
7699 spa_async_tasks_pending(spa_t *spa)
7700 {
7701 	uint_t non_config_tasks;
7702 	uint_t config_task;
7703 	boolean_t config_task_suspended;
7704 
7705 	non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
7706 	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
7707 	if (spa->spa_ccw_fail_time == 0) {
7708 		config_task_suspended = B_FALSE;
7709 	} else {
7710 		config_task_suspended =
7711 		    (gethrtime() - spa->spa_ccw_fail_time) <
7712 		    (zfs_ccw_retry_interval * NANOSEC);
7713 	}
7714 
7715 	return (non_config_tasks || (config_task && !config_task_suspended));
7716 }
7717 
7718 static void
7719 spa_async_dispatch(spa_t *spa)
7720 {
7721 	mutex_enter(&spa->spa_async_lock);
7722 	if (spa_async_tasks_pending(spa) &&
7723 	    !spa->spa_async_suspended &&
7724 	    spa->spa_async_thread == NULL &&
7725 	    rootdir != NULL)
7726 		spa->spa_async_thread = thread_create(NULL, 0,
7727 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
7728 	mutex_exit(&spa->spa_async_lock);
7729 }
7730 
7731 void
7732 spa_async_request(spa_t *spa, int task)
7733 {
7734 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
7735 	mutex_enter(&spa->spa_async_lock);
7736 	spa->spa_async_tasks |= task;
7737 	mutex_exit(&spa->spa_async_lock);
7738 }
7739 
7740 int
7741 spa_async_tasks(spa_t *spa)
7742 {
7743 	return (spa->spa_async_tasks);
7744 }
7745 
7746 /*
7747  * ==========================================================================
7748  * SPA syncing routines
7749  * ==========================================================================
7750  */
7751 
7752 static int
7753 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
7754 {
7755 	bpobj_t *bpo = arg;
7756 	bpobj_enqueue(bpo, bp, tx);
7757 	return (0);
7758 }
7759 
7760 static int
7761 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
7762 {
7763 	zio_t *zio = arg;
7764 
7765 	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
7766 	    zio->io_flags));
7767 	return (0);
7768 }
7769 
7770 /*
7771  * Note: this simple function is not inlined to make it easier to dtrace the
7772  * amount of time spent syncing frees.
7773  */
7774 static void
7775 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
7776 {
7777 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
7778 	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
7779 	VERIFY(zio_wait(zio) == 0);
7780 }
7781 
7782 /*
7783  * Note: this simple function is not inlined to make it easier to dtrace the
7784  * amount of time spent syncing deferred frees.
7785  */
7786 static void
7787 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
7788 {
7789 	if (spa_sync_pass(spa) != 1)
7790 		return;
7791 
7792 	/*
7793 	 * Note:
7794 	 * If the log space map feature is active, we stop deferring
7795 	 * frees to the next TXG and therefore running this function
7796 	 * would be considered a no-op as spa_deferred_bpobj should
7797 	 * not have any entries.
7798 	 *
7799 	 * That said we run this function anyway (instead of returning
7800 	 * immediately) for the edge-case scenario where we just
7801 	 * activated the log space map feature in this TXG but we have
7802 	 * deferred frees from the previous TXG.
7803 	 */
7804 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
7805 	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
7806 	    spa_free_sync_cb, zio, tx), ==, 0);
7807 	VERIFY0(zio_wait(zio));
7808 }
7809 
7810 
7811 static void
7812 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
7813 {
7814 	char *packed = NULL;
7815 	size_t bufsize;
7816 	size_t nvsize = 0;
7817 	dmu_buf_t *db;
7818 
7819 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
7820 
7821 	/*
7822 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
7823 	 * information.  This avoids the dmu_buf_will_dirty() path and
7824 	 * saves us a pre-read to get data we don't actually care about.
7825 	 */
7826 	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
7827 	packed = kmem_alloc(bufsize, KM_SLEEP);
7828 
7829 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
7830 	    KM_SLEEP) == 0);
7831 	bzero(packed + nvsize, bufsize - nvsize);
7832 
7833 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
7834 
7835 	kmem_free(packed, bufsize);
7836 
7837 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
7838 	dmu_buf_will_dirty(db, tx);
7839 	*(uint64_t *)db->db_data = nvsize;
7840 	dmu_buf_rele(db, FTAG);
7841 }
7842 
7843 static void
7844 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
7845     const char *config, const char *entry)
7846 {
7847 	nvlist_t *nvroot;
7848 	nvlist_t **list;
7849 	int i;
7850 
7851 	if (!sav->sav_sync)
7852 		return;
7853 
7854 	/*
7855 	 * Update the MOS nvlist describing the list of available devices.
7856 	 * spa_validate_aux() will have already made sure this nvlist is
7857 	 * valid and the vdevs are labeled appropriately.
7858 	 */
7859 	if (sav->sav_object == 0) {
7860 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
7861 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
7862 		    sizeof (uint64_t), tx);
7863 		VERIFY(zap_update(spa->spa_meta_objset,
7864 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
7865 		    &sav->sav_object, tx) == 0);
7866 	}
7867 
7868 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
7869 	if (sav->sav_count == 0) {
7870 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
7871 	} else {
7872 		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
7873 		for (i = 0; i < sav->sav_count; i++)
7874 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
7875 			    B_FALSE, VDEV_CONFIG_L2CACHE);
7876 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
7877 		    sav->sav_count) == 0);
7878 		for (i = 0; i < sav->sav_count; i++)
7879 			nvlist_free(list[i]);
7880 		kmem_free(list, sav->sav_count * sizeof (void *));
7881 	}
7882 
7883 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
7884 	nvlist_free(nvroot);
7885 
7886 	sav->sav_sync = B_FALSE;
7887 }
7888 
7889 /*
7890  * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
7891  * The all-vdev ZAP must be empty.
7892  */
7893 static void
7894 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
7895 {
7896 	spa_t *spa = vd->vdev_spa;
7897 	if (vd->vdev_top_zap != 0) {
7898 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
7899 		    vd->vdev_top_zap, tx));
7900 	}
7901 	if (vd->vdev_leaf_zap != 0) {
7902 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
7903 		    vd->vdev_leaf_zap, tx));
7904 	}
7905 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
7906 		spa_avz_build(vd->vdev_child[i], avz, tx);
7907 	}
7908 }
7909 
7910 static void
7911 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
7912 {
7913 	nvlist_t *config;
7914 
7915 	/*
7916 	 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
7917 	 * its config may not be dirty but we still need to build per-vdev ZAPs.
7918 	 * Similarly, if the pool is being assembled (e.g. after a split), we
7919 	 * need to rebuild the AVZ although the config may not be dirty.
7920 	 */
7921 	if (list_is_empty(&spa->spa_config_dirty_list) &&
7922 	    spa->spa_avz_action == AVZ_ACTION_NONE)
7923 		return;
7924 
7925 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
7926 
7927 	ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
7928 	    spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
7929 	    spa->spa_all_vdev_zaps != 0);
7930 
7931 	if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
7932 		/* Make and build the new AVZ */
7933 		uint64_t new_avz = zap_create(spa->spa_meta_objset,
7934 		    DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
7935 		spa_avz_build(spa->spa_root_vdev, new_avz, tx);
7936 
7937 		/* Diff old AVZ with new one */
7938 		zap_cursor_t zc;
7939 		zap_attribute_t za;
7940 
7941 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
7942 		    spa->spa_all_vdev_zaps);
7943 		    zap_cursor_retrieve(&zc, &za) == 0;
7944 		    zap_cursor_advance(&zc)) {
7945 			uint64_t vdzap = za.za_first_integer;
7946 			if (zap_lookup_int(spa->spa_meta_objset, new_avz,
7947 			    vdzap) == ENOENT) {
7948 				/*
7949 				 * ZAP is listed in old AVZ but not in new one;
7950 				 * destroy it
7951 				 */
7952 				VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
7953 				    tx));
7954 			}
7955 		}
7956 
7957 		zap_cursor_fini(&zc);
7958 
7959 		/* Destroy the old AVZ */
7960 		VERIFY0(zap_destroy(spa->spa_meta_objset,
7961 		    spa->spa_all_vdev_zaps, tx));
7962 
7963 		/* Replace the old AVZ in the dir obj with the new one */
7964 		VERIFY0(zap_update(spa->spa_meta_objset,
7965 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
7966 		    sizeof (new_avz), 1, &new_avz, tx));
7967 
7968 		spa->spa_all_vdev_zaps = new_avz;
7969 	} else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
7970 		zap_cursor_t zc;
7971 		zap_attribute_t za;
7972 
7973 		/* Walk through the AVZ and destroy all listed ZAPs */
7974 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
7975 		    spa->spa_all_vdev_zaps);
7976 		    zap_cursor_retrieve(&zc, &za) == 0;
7977 		    zap_cursor_advance(&zc)) {
7978 			uint64_t zap = za.za_first_integer;
7979 			VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
7980 		}
7981 
7982 		zap_cursor_fini(&zc);
7983 
7984 		/* Destroy and unlink the AVZ itself */
7985 		VERIFY0(zap_destroy(spa->spa_meta_objset,
7986 		    spa->spa_all_vdev_zaps, tx));
7987 		VERIFY0(zap_remove(spa->spa_meta_objset,
7988 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
7989 		spa->spa_all_vdev_zaps = 0;
7990 	}
7991 
7992 	if (spa->spa_all_vdev_zaps == 0) {
7993 		spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
7994 		    DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
7995 		    DMU_POOL_VDEV_ZAP_MAP, tx);
7996 	}
7997 	spa->spa_avz_action = AVZ_ACTION_NONE;
7998 
7999 	/* Create ZAPs for vdevs that don't have them. */
8000 	vdev_construct_zaps(spa->spa_root_vdev, tx);
8001 
8002 	config = spa_config_generate(spa, spa->spa_root_vdev,
8003 	    dmu_tx_get_txg(tx), B_FALSE);
8004 
8005 	/*
8006 	 * If we're upgrading the spa version then make sure that
8007 	 * the config object gets updated with the correct version.
8008 	 */
8009 	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
8010 		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
8011 		    spa->spa_uberblock.ub_version);
8012 
8013 	spa_config_exit(spa, SCL_STATE, FTAG);
8014 
8015 	nvlist_free(spa->spa_config_syncing);
8016 	spa->spa_config_syncing = config;
8017 
8018 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
8019 }
8020 
8021 static void
8022 spa_sync_version(void *arg, dmu_tx_t *tx)
8023 {
8024 	uint64_t *versionp = arg;
8025 	uint64_t version = *versionp;
8026 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
8027 
8028 	/*
8029 	 * Setting the version is special cased when first creating the pool.
8030 	 */
8031 	ASSERT(tx->tx_txg != TXG_INITIAL);
8032 
8033 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
8034 	ASSERT(version >= spa_version(spa));
8035 
8036 	spa->spa_uberblock.ub_version = version;
8037 	vdev_config_dirty(spa->spa_root_vdev);
8038 	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
8039 }
8040 
8041 /*
8042  * Set zpool properties.
8043  */
8044 static void
8045 spa_sync_props(void *arg, dmu_tx_t *tx)
8046 {
8047 	nvlist_t *nvp = arg;
8048 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
8049 	objset_t *mos = spa->spa_meta_objset;
8050 	nvpair_t *elem = NULL;
8051 
8052 	mutex_enter(&spa->spa_props_lock);
8053 
8054 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
8055 		uint64_t intval;
8056 		char *strval, *fname;
8057 		zpool_prop_t prop;
8058 		const char *propname;
8059 		zprop_type_t proptype;
8060 		spa_feature_t fid;
8061 
8062 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
8063 		case ZPOOL_PROP_INVAL:
8064 			/*
8065 			 * We checked this earlier in spa_prop_validate().
8066 			 */
8067 			ASSERT(zpool_prop_feature(nvpair_name(elem)));
8068 
8069 			fname = strchr(nvpair_name(elem), '@') + 1;
8070 			VERIFY0(zfeature_lookup_name(fname, &fid));
8071 
8072 			spa_feature_enable(spa, fid, tx);
8073 			spa_history_log_internal(spa, "set", tx,
8074 			    "%s=enabled", nvpair_name(elem));
8075 			break;
8076 
8077 		case ZPOOL_PROP_VERSION:
8078 			intval = fnvpair_value_uint64(elem);
8079 			/*
8080 			 * The version is synced seperatly before other
8081 			 * properties and should be correct by now.
8082 			 */
8083 			ASSERT3U(spa_version(spa), >=, intval);
8084 			break;
8085 
8086 		case ZPOOL_PROP_ALTROOT:
8087 			/*
8088 			 * 'altroot' is a non-persistent property. It should
8089 			 * have been set temporarily at creation or import time.
8090 			 */
8091 			ASSERT(spa->spa_root != NULL);
8092 			break;
8093 
8094 		case ZPOOL_PROP_READONLY:
8095 		case ZPOOL_PROP_CACHEFILE:
8096 			/*
8097 			 * 'readonly' and 'cachefile' are also non-persisitent
8098 			 * properties.
8099 			 */
8100 			break;
8101 		case ZPOOL_PROP_COMMENT:
8102 			strval = fnvpair_value_string(elem);
8103 			if (spa->spa_comment != NULL)
8104 				spa_strfree(spa->spa_comment);
8105 			spa->spa_comment = spa_strdup(strval);
8106 			/*
8107 			 * We need to dirty the configuration on all the vdevs
8108 			 * so that their labels get updated.  It's unnecessary
8109 			 * to do this for pool creation since the vdev's
8110 			 * configuratoin has already been dirtied.
8111 			 */
8112 			if (tx->tx_txg != TXG_INITIAL)
8113 				vdev_config_dirty(spa->spa_root_vdev);
8114 			spa_history_log_internal(spa, "set", tx,
8115 			    "%s=%s", nvpair_name(elem), strval);
8116 			break;
8117 		default:
8118 			/*
8119 			 * Set pool property values in the poolprops mos object.
8120 			 */
8121 			if (spa->spa_pool_props_object == 0) {
8122 				spa->spa_pool_props_object =
8123 				    zap_create_link(mos, DMU_OT_POOL_PROPS,
8124 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
8125 				    tx);
8126 			}
8127 
8128 			/* normalize the property name */
8129 			propname = zpool_prop_to_name(prop);
8130 			proptype = zpool_prop_get_type(prop);
8131 
8132 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
8133 				ASSERT(proptype == PROP_TYPE_STRING);
8134 				strval = fnvpair_value_string(elem);
8135 				VERIFY0(zap_update(mos,
8136 				    spa->spa_pool_props_object, propname,
8137 				    1, strlen(strval) + 1, strval, tx));
8138 				spa_history_log_internal(spa, "set", tx,
8139 				    "%s=%s", nvpair_name(elem), strval);
8140 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
8141 				intval = fnvpair_value_uint64(elem);
8142 
8143 				if (proptype == PROP_TYPE_INDEX) {
8144 					const char *unused;
8145 					VERIFY0(zpool_prop_index_to_string(
8146 					    prop, intval, &unused));
8147 				}
8148 				VERIFY0(zap_update(mos,
8149 				    spa->spa_pool_props_object, propname,
8150 				    8, 1, &intval, tx));
8151 				spa_history_log_internal(spa, "set", tx,
8152 				    "%s=%lld", nvpair_name(elem), intval);
8153 			} else {
8154 				ASSERT(0); /* not allowed */
8155 			}
8156 
8157 			switch (prop) {
8158 			case ZPOOL_PROP_DELEGATION:
8159 				spa->spa_delegation = intval;
8160 				break;
8161 			case ZPOOL_PROP_BOOTFS:
8162 				spa->spa_bootfs = intval;
8163 				break;
8164 			case ZPOOL_PROP_FAILUREMODE:
8165 				spa->spa_failmode = intval;
8166 				break;
8167 			case ZPOOL_PROP_AUTOTRIM:
8168 				spa->spa_autotrim = intval;
8169 				spa_async_request(spa,
8170 				    SPA_ASYNC_AUTOTRIM_RESTART);
8171 				break;
8172 			case ZPOOL_PROP_AUTOEXPAND:
8173 				spa->spa_autoexpand = intval;
8174 				if (tx->tx_txg != TXG_INITIAL)
8175 					spa_async_request(spa,
8176 					    SPA_ASYNC_AUTOEXPAND);
8177 				break;
8178 			case ZPOOL_PROP_MULTIHOST:
8179 				spa->spa_multihost = intval;
8180 				break;
8181 			case ZPOOL_PROP_DEDUPDITTO:
8182 				spa->spa_dedup_ditto = intval;
8183 				break;
8184 			default:
8185 				break;
8186 			}
8187 		}
8188 
8189 	}
8190 
8191 	mutex_exit(&spa->spa_props_lock);
8192 }
8193 
8194 /*
8195  * Perform one-time upgrade on-disk changes.  spa_version() does not
8196  * reflect the new version this txg, so there must be no changes this
8197  * txg to anything that the upgrade code depends on after it executes.
8198  * Therefore this must be called after dsl_pool_sync() does the sync
8199  * tasks.
8200  */
8201 static void
8202 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
8203 {
8204 	if (spa_sync_pass(spa) != 1)
8205 		return;
8206 
8207 	dsl_pool_t *dp = spa->spa_dsl_pool;
8208 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
8209 
8210 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
8211 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
8212 		dsl_pool_create_origin(dp, tx);
8213 
8214 		/* Keeping the origin open increases spa_minref */
8215 		spa->spa_minref += 3;
8216 	}
8217 
8218 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
8219 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
8220 		dsl_pool_upgrade_clones(dp, tx);
8221 	}
8222 
8223 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
8224 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
8225 		dsl_pool_upgrade_dir_clones(dp, tx);
8226 
8227 		/* Keeping the freedir open increases spa_minref */
8228 		spa->spa_minref += 3;
8229 	}
8230 
8231 	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
8232 	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
8233 		spa_feature_create_zap_objects(spa, tx);
8234 	}
8235 
8236 	/*
8237 	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
8238 	 * when possibility to use lz4 compression for metadata was added
8239 	 * Old pools that have this feature enabled must be upgraded to have
8240 	 * this feature active
8241 	 */
8242 	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
8243 		boolean_t lz4_en = spa_feature_is_enabled(spa,
8244 		    SPA_FEATURE_LZ4_COMPRESS);
8245 		boolean_t lz4_ac = spa_feature_is_active(spa,
8246 		    SPA_FEATURE_LZ4_COMPRESS);
8247 
8248 		if (lz4_en && !lz4_ac)
8249 			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
8250 	}
8251 
8252 	/*
8253 	 * If we haven't written the salt, do so now.  Note that the
8254 	 * feature may not be activated yet, but that's fine since
8255 	 * the presence of this ZAP entry is backwards compatible.
8256 	 */
8257 	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
8258 	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
8259 		VERIFY0(zap_add(spa->spa_meta_objset,
8260 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
8261 		    sizeof (spa->spa_cksum_salt.zcs_bytes),
8262 		    spa->spa_cksum_salt.zcs_bytes, tx));
8263 	}
8264 
8265 	rrw_exit(&dp->dp_config_rwlock, FTAG);
8266 }
8267 
8268 static void
8269 vdev_indirect_state_sync_verify(vdev_t *vd)
8270 {
8271 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
8272 	vdev_indirect_births_t *vib = vd->vdev_indirect_births;
8273 
8274 	if (vd->vdev_ops == &vdev_indirect_ops) {
8275 		ASSERT(vim != NULL);
8276 		ASSERT(vib != NULL);
8277 	}
8278 
8279 	if (vdev_obsolete_sm_object(vd) != 0) {
8280 		ASSERT(vd->vdev_obsolete_sm != NULL);
8281 		ASSERT(vd->vdev_removing ||
8282 		    vd->vdev_ops == &vdev_indirect_ops);
8283 		ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
8284 		ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
8285 
8286 		ASSERT3U(vdev_obsolete_sm_object(vd), ==,
8287 		    space_map_object(vd->vdev_obsolete_sm));
8288 		ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
8289 		    space_map_allocated(vd->vdev_obsolete_sm));
8290 	}
8291 	ASSERT(vd->vdev_obsolete_segments != NULL);
8292 
8293 	/*
8294 	 * Since frees / remaps to an indirect vdev can only
8295 	 * happen in syncing context, the obsolete segments
8296 	 * tree must be empty when we start syncing.
8297 	 */
8298 	ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
8299 }
8300 
8301 /*
8302  * Set the top-level vdev's max queue depth. Evaluate each top-level's
8303  * async write queue depth in case it changed. The max queue depth will
8304  * not change in the middle of syncing out this txg.
8305  */
8306 static void
8307 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa)
8308 {
8309 	ASSERT(spa_writeable(spa));
8310 
8311 	vdev_t *rvd = spa->spa_root_vdev;
8312 	uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
8313 	    zfs_vdev_queue_depth_pct / 100;
8314 	metaslab_class_t *normal = spa_normal_class(spa);
8315 	metaslab_class_t *special = spa_special_class(spa);
8316 	metaslab_class_t *dedup = spa_dedup_class(spa);
8317 
8318 	uint64_t slots_per_allocator = 0;
8319 	for (int c = 0; c < rvd->vdev_children; c++) {
8320 		vdev_t *tvd = rvd->vdev_child[c];
8321 
8322 		metaslab_group_t *mg = tvd->vdev_mg;
8323 		if (mg == NULL || !metaslab_group_initialized(mg))
8324 			continue;
8325 
8326 		metaslab_class_t *mc = mg->mg_class;
8327 		if (mc != normal && mc != special && mc != dedup)
8328 			continue;
8329 
8330 		/*
8331 		 * It is safe to do a lock-free check here because only async
8332 		 * allocations look at mg_max_alloc_queue_depth, and async
8333 		 * allocations all happen from spa_sync().
8334 		 */
8335 		for (int i = 0; i < spa->spa_alloc_count; i++)
8336 			ASSERT0(zfs_refcount_count(
8337 			    &(mg->mg_alloc_queue_depth[i])));
8338 		mg->mg_max_alloc_queue_depth = max_queue_depth;
8339 
8340 		for (int i = 0; i < spa->spa_alloc_count; i++) {
8341 			mg->mg_cur_max_alloc_queue_depth[i] =
8342 			    zfs_vdev_def_queue_depth;
8343 		}
8344 		slots_per_allocator += zfs_vdev_def_queue_depth;
8345 	}
8346 
8347 	for (int i = 0; i < spa->spa_alloc_count; i++) {
8348 		ASSERT0(zfs_refcount_count(&normal->mc_alloc_slots[i]));
8349 		ASSERT0(zfs_refcount_count(&special->mc_alloc_slots[i]));
8350 		ASSERT0(zfs_refcount_count(&dedup->mc_alloc_slots[i]));
8351 		normal->mc_alloc_max_slots[i] = slots_per_allocator;
8352 		special->mc_alloc_max_slots[i] = slots_per_allocator;
8353 		dedup->mc_alloc_max_slots[i] = slots_per_allocator;
8354 	}
8355 	normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
8356 	special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
8357 	dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
8358 }
8359 
8360 static void
8361 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx)
8362 {
8363 	ASSERT(spa_writeable(spa));
8364 
8365 	vdev_t *rvd = spa->spa_root_vdev;
8366 	for (int c = 0; c < rvd->vdev_children; c++) {
8367 		vdev_t *vd = rvd->vdev_child[c];
8368 		vdev_indirect_state_sync_verify(vd);
8369 
8370 		if (vdev_indirect_should_condense(vd)) {
8371 			spa_condense_indirect_start_sync(vd, tx);
8372 			break;
8373 		}
8374 	}
8375 }
8376 
8377 static void
8378 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx)
8379 {
8380 	objset_t *mos = spa->spa_meta_objset;
8381 	dsl_pool_t *dp = spa->spa_dsl_pool;
8382 	uint64_t txg = tx->tx_txg;
8383 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
8384 
8385 	do {
8386 		int pass = ++spa->spa_sync_pass;
8387 
8388 		spa_sync_config_object(spa, tx);
8389 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
8390 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
8391 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
8392 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
8393 		spa_errlog_sync(spa, txg);
8394 		dsl_pool_sync(dp, txg);
8395 
8396 		if (pass < zfs_sync_pass_deferred_free ||
8397 		    spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
8398 			/*
8399 			 * If the log space map feature is active we don't
8400 			 * care about deferred frees and the deferred bpobj
8401 			 * as the log space map should effectively have the
8402 			 * same results (i.e. appending only to one object).
8403 			 */
8404 			spa_sync_frees(spa, free_bpl, tx);
8405 		} else {
8406 			/*
8407 			 * We can not defer frees in pass 1, because
8408 			 * we sync the deferred frees later in pass 1.
8409 			 */
8410 			ASSERT3U(pass, >, 1);
8411 			bplist_iterate(free_bpl, bpobj_enqueue_cb,
8412 			    &spa->spa_deferred_bpobj, tx);
8413 		}
8414 
8415 		ddt_sync(spa, txg);
8416 		dsl_scan_sync(dp, tx);
8417 		svr_sync(spa, tx);
8418 		spa_sync_upgrades(spa, tx);
8419 
8420 		spa_flush_metaslabs(spa, tx);
8421 
8422 		vdev_t *vd = NULL;
8423 		while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
8424 		    != NULL)
8425 			vdev_sync(vd, txg);
8426 
8427 		/*
8428 		 * Note: We need to check if the MOS is dirty because we could
8429 		 * have marked the MOS dirty without updating the uberblock
8430 		 * (e.g. if we have sync tasks but no dirty user data). We need
8431 		 * to check the uberblock's rootbp because it is updated if we
8432 		 * have synced out dirty data (though in this case the MOS will
8433 		 * most likely also be dirty due to second order effects, we
8434 		 * don't want to rely on that here).
8435 		 */
8436 		if (pass == 1 &&
8437 		    spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
8438 		    !dmu_objset_is_dirty(mos, txg)) {
8439 			/*
8440 			 * Nothing changed on the first pass, therefore this
8441 			 * TXG is a no-op. Avoid syncing deferred frees, so
8442 			 * that we can keep this TXG as a no-op.
8443 			 */
8444 			ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
8445 			ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
8446 			ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
8447 			ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg));
8448 			break;
8449 		}
8450 
8451 		spa_sync_deferred_frees(spa, tx);
8452 	} while (dmu_objset_is_dirty(mos, txg));
8453 }
8454 
8455 /*
8456  * Rewrite the vdev configuration (which includes the uberblock) to
8457  * commit the transaction group.
8458  *
8459  * If there are no dirty vdevs, we sync the uberblock to a few random
8460  * top-level vdevs that are known to be visible in the config cache
8461  * (see spa_vdev_add() for a complete description). If there *are* dirty
8462  * vdevs, sync the uberblock to all vdevs.
8463  */
8464 static void
8465 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx)
8466 {
8467 	vdev_t *rvd = spa->spa_root_vdev;
8468 	uint64_t txg = tx->tx_txg;
8469 
8470 	for (;;) {
8471 		int error = 0;
8472 
8473 		/*
8474 		 * We hold SCL_STATE to prevent vdev open/close/etc.
8475 		 * while we're attempting to write the vdev labels.
8476 		 */
8477 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8478 
8479 		if (list_is_empty(&spa->spa_config_dirty_list)) {
8480 			vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
8481 			int svdcount = 0;
8482 			int children = rvd->vdev_children;
8483 			int c0 = spa_get_random(children);
8484 
8485 			for (int c = 0; c < children; c++) {
8486 				vdev_t *vd =
8487 				    rvd->vdev_child[(c0 + c) % children];
8488 
8489 				/* Stop when revisiting the first vdev */
8490 				if (c > 0 && svd[0] == vd)
8491 					break;
8492 
8493 				if (vd->vdev_ms_array == 0 ||
8494 				    vd->vdev_islog ||
8495 				    !vdev_is_concrete(vd))
8496 					continue;
8497 
8498 				svd[svdcount++] = vd;
8499 				if (svdcount == SPA_SYNC_MIN_VDEVS)
8500 					break;
8501 			}
8502 			error = vdev_config_sync(svd, svdcount, txg);
8503 		} else {
8504 			error = vdev_config_sync(rvd->vdev_child,
8505 			    rvd->vdev_children, txg);
8506 		}
8507 
8508 		if (error == 0)
8509 			spa->spa_last_synced_guid = rvd->vdev_guid;
8510 
8511 		spa_config_exit(spa, SCL_STATE, FTAG);
8512 
8513 		if (error == 0)
8514 			break;
8515 		zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
8516 		zio_resume_wait(spa);
8517 	}
8518 }
8519 
8520 /*
8521  * Sync the specified transaction group.  New blocks may be dirtied as
8522  * part of the process, so we iterate until it converges.
8523  */
8524 void
8525 spa_sync(spa_t *spa, uint64_t txg)
8526 {
8527 	vdev_t *vd = NULL;
8528 
8529 	VERIFY(spa_writeable(spa));
8530 
8531 	/*
8532 	 * Wait for i/os issued in open context that need to complete
8533 	 * before this txg syncs.
8534 	 */
8535 	(void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]);
8536 	spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL,
8537 	    ZIO_FLAG_CANFAIL);
8538 
8539 	/*
8540 	 * Lock out configuration changes.
8541 	 */
8542 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8543 
8544 	spa->spa_syncing_txg = txg;
8545 	spa->spa_sync_pass = 0;
8546 
8547 	for (int i = 0; i < spa->spa_alloc_count; i++) {
8548 		mutex_enter(&spa->spa_alloc_locks[i]);
8549 		VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i]));
8550 		mutex_exit(&spa->spa_alloc_locks[i]);
8551 	}
8552 
8553 	/*
8554 	 * If there are any pending vdev state changes, convert them
8555 	 * into config changes that go out with this transaction group.
8556 	 */
8557 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8558 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
8559 		/*
8560 		 * We need the write lock here because, for aux vdevs,
8561 		 * calling vdev_config_dirty() modifies sav_config.
8562 		 * This is ugly and will become unnecessary when we
8563 		 * eliminate the aux vdev wart by integrating all vdevs
8564 		 * into the root vdev tree.
8565 		 */
8566 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8567 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
8568 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
8569 			vdev_state_clean(vd);
8570 			vdev_config_dirty(vd);
8571 		}
8572 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8573 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
8574 	}
8575 	spa_config_exit(spa, SCL_STATE, FTAG);
8576 
8577 	dsl_pool_t *dp = spa->spa_dsl_pool;
8578 	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
8579 
8580 	spa->spa_sync_starttime = gethrtime();
8581 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
8582 	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
8583 
8584 	/*
8585 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
8586 	 * set spa_deflate if we have no raid-z vdevs.
8587 	 */
8588 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
8589 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
8590 		vdev_t *rvd = spa->spa_root_vdev;
8591 
8592 		int i;
8593 		for (i = 0; i < rvd->vdev_children; i++) {
8594 			vd = rvd->vdev_child[i];
8595 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
8596 				break;
8597 		}
8598 		if (i == rvd->vdev_children) {
8599 			spa->spa_deflate = TRUE;
8600 			VERIFY0(zap_add(spa->spa_meta_objset,
8601 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
8602 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
8603 		}
8604 	}
8605 
8606 	spa_sync_adjust_vdev_max_queue_depth(spa);
8607 
8608 	spa_sync_condense_indirect(spa, tx);
8609 
8610 	spa_sync_iterate_to_convergence(spa, tx);
8611 
8612 #ifdef ZFS_DEBUG
8613 	if (!list_is_empty(&spa->spa_config_dirty_list)) {
8614 		/*
8615 		 * Make sure that the number of ZAPs for all the vdevs matches
8616 		 * the number of ZAPs in the per-vdev ZAP list. This only gets
8617 		 * called if the config is dirty; otherwise there may be
8618 		 * outstanding AVZ operations that weren't completed in
8619 		 * spa_sync_config_object.
8620 		 */
8621 		uint64_t all_vdev_zap_entry_count;
8622 		ASSERT0(zap_count(spa->spa_meta_objset,
8623 		    spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
8624 		ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
8625 		    all_vdev_zap_entry_count);
8626 	}
8627 #endif
8628 
8629 	if (spa->spa_vdev_removal != NULL) {
8630 		ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
8631 	}
8632 
8633 	spa_sync_rewrite_vdev_config(spa, tx);
8634 	dmu_tx_commit(tx);
8635 
8636 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
8637 
8638 	/*
8639 	 * Clear the dirty config list.
8640 	 */
8641 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
8642 		vdev_config_clean(vd);
8643 
8644 	/*
8645 	 * Now that the new config has synced transactionally,
8646 	 * let it become visible to the config cache.
8647 	 */
8648 	if (spa->spa_config_syncing != NULL) {
8649 		spa_config_set(spa, spa->spa_config_syncing);
8650 		spa->spa_config_txg = txg;
8651 		spa->spa_config_syncing = NULL;
8652 	}
8653 
8654 	dsl_pool_sync_done(dp, txg);
8655 
8656 	for (int i = 0; i < spa->spa_alloc_count; i++) {
8657 		mutex_enter(&spa->spa_alloc_locks[i]);
8658 		VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i]));
8659 		mutex_exit(&spa->spa_alloc_locks[i]);
8660 	}
8661 
8662 	/*
8663 	 * Update usable space statistics.
8664 	 */
8665 	while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
8666 	    != NULL)
8667 		vdev_sync_done(vd, txg);
8668 
8669 	metaslab_class_evict_old(spa->spa_normal_class, txg);
8670 	metaslab_class_evict_old(spa->spa_log_class, txg);
8671 
8672 	spa_sync_close_syncing_log_sm(spa);
8673 
8674 	spa_update_dspace(spa);
8675 
8676 	/*
8677 	 * It had better be the case that we didn't dirty anything
8678 	 * since vdev_config_sync().
8679 	 */
8680 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
8681 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
8682 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
8683 
8684 	while (zfs_pause_spa_sync)
8685 		delay(1);
8686 
8687 	spa->spa_sync_pass = 0;
8688 
8689 	/*
8690 	 * Update the last synced uberblock here. We want to do this at
8691 	 * the end of spa_sync() so that consumers of spa_last_synced_txg()
8692 	 * will be guaranteed that all the processing associated with
8693 	 * that txg has been completed.
8694 	 */
8695 	spa->spa_ubsync = spa->spa_uberblock;
8696 	spa_config_exit(spa, SCL_CONFIG, FTAG);
8697 
8698 	spa_handle_ignored_writes(spa);
8699 
8700 	/* Mark unused spares as needing a health check. */
8701 	if (spa_spare_poll_interval_seconds != 0 &&
8702 	    NSEC2SEC(gethrtime() - spa->spa_spares_last_polled) >
8703 	    spa_spare_poll_interval_seconds) {
8704 		spa_spare_poll(spa);
8705 		spa->spa_spares_last_polled = gethrtime();
8706 	}
8707 
8708 	/*
8709 	 * If any async tasks have been requested, kick them off.
8710 	 */
8711 	spa_async_dispatch(spa);
8712 }
8713 
8714 /*
8715  * Sync all pools.  We don't want to hold the namespace lock across these
8716  * operations, so we take a reference on the spa_t and drop the lock during the
8717  * sync.
8718  */
8719 void
8720 spa_sync_allpools(void)
8721 {
8722 	spa_t *spa = NULL;
8723 	mutex_enter(&spa_namespace_lock);
8724 	while ((spa = spa_next(spa)) != NULL) {
8725 		if (spa_state(spa) != POOL_STATE_ACTIVE ||
8726 		    !spa_writeable(spa) || spa_suspended(spa))
8727 			continue;
8728 		spa_open_ref(spa, FTAG);
8729 		mutex_exit(&spa_namespace_lock);
8730 		txg_wait_synced(spa_get_dsl(spa), 0);
8731 		mutex_enter(&spa_namespace_lock);
8732 		spa_close(spa, FTAG);
8733 	}
8734 	mutex_exit(&spa_namespace_lock);
8735 }
8736 
8737 /*
8738  * ==========================================================================
8739  * Miscellaneous routines
8740  * ==========================================================================
8741  */
8742 
8743 /*
8744  * Remove all pools in the system.
8745  */
8746 void
8747 spa_evict_all(void)
8748 {
8749 	spa_t *spa;
8750 
8751 	/*
8752 	 * Remove all cached state.  All pools should be closed now,
8753 	 * so every spa in the AVL tree should be unreferenced.
8754 	 */
8755 	mutex_enter(&spa_namespace_lock);
8756 	while ((spa = spa_next(NULL)) != NULL) {
8757 		/*
8758 		 * Stop async tasks.  The async thread may need to detach
8759 		 * a device that's been replaced, which requires grabbing
8760 		 * spa_namespace_lock, so we must drop it here.
8761 		 */
8762 		spa_open_ref(spa, FTAG);
8763 		mutex_exit(&spa_namespace_lock);
8764 		spa_async_suspend(spa);
8765 		mutex_enter(&spa_namespace_lock);
8766 		spa_close(spa, FTAG);
8767 
8768 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
8769 			spa_unload(spa);
8770 			spa_deactivate(spa);
8771 		}
8772 		spa_remove(spa);
8773 	}
8774 	mutex_exit(&spa_namespace_lock);
8775 }
8776 
8777 vdev_t *
8778 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
8779 {
8780 	vdev_t *vd;
8781 	int i;
8782 
8783 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
8784 		return (vd);
8785 
8786 	if (aux) {
8787 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
8788 			vd = spa->spa_l2cache.sav_vdevs[i];
8789 			if (vd->vdev_guid == guid)
8790 				return (vd);
8791 		}
8792 
8793 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
8794 			vd = spa->spa_spares.sav_vdevs[i];
8795 			if (vd->vdev_guid == guid)
8796 				return (vd);
8797 		}
8798 	}
8799 
8800 	return (NULL);
8801 }
8802 
8803 void
8804 spa_upgrade(spa_t *spa, uint64_t version)
8805 {
8806 	ASSERT(spa_writeable(spa));
8807 
8808 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
8809 
8810 	/*
8811 	 * This should only be called for a non-faulted pool, and since a
8812 	 * future version would result in an unopenable pool, this shouldn't be
8813 	 * possible.
8814 	 */
8815 	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
8816 	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
8817 
8818 	spa->spa_uberblock.ub_version = version;
8819 	vdev_config_dirty(spa->spa_root_vdev);
8820 
8821 	spa_config_exit(spa, SCL_ALL, FTAG);
8822 
8823 	txg_wait_synced(spa_get_dsl(spa), 0);
8824 }
8825 
8826 boolean_t
8827 spa_has_spare(spa_t *spa, uint64_t guid)
8828 {
8829 	int i;
8830 	uint64_t spareguid;
8831 	spa_aux_vdev_t *sav = &spa->spa_spares;
8832 
8833 	for (i = 0; i < sav->sav_count; i++)
8834 		if (sav->sav_vdevs[i]->vdev_guid == guid)
8835 			return (B_TRUE);
8836 
8837 	for (i = 0; i < sav->sav_npending; i++) {
8838 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
8839 		    &spareguid) == 0 && spareguid == guid)
8840 			return (B_TRUE);
8841 	}
8842 
8843 	return (B_FALSE);
8844 }
8845 
8846 /*
8847  * Check if a pool has an active shared spare device.
8848  * Note: reference count of an active spare is 2, as a spare and as a replace
8849  */
8850 static boolean_t
8851 spa_has_active_shared_spare(spa_t *spa)
8852 {
8853 	int i, refcnt;
8854 	uint64_t pool;
8855 	spa_aux_vdev_t *sav = &spa->spa_spares;
8856 
8857 	for (i = 0; i < sav->sav_count; i++) {
8858 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
8859 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
8860 		    refcnt > 2)
8861 			return (B_TRUE);
8862 	}
8863 
8864 	return (B_FALSE);
8865 }
8866 
8867 uint64_t
8868 spa_total_metaslabs(spa_t *spa)
8869 {
8870 	vdev_t *rvd = spa->spa_root_vdev;
8871 	uint64_t m = 0;
8872 
8873 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
8874 		vdev_t *vd = rvd->vdev_child[c];
8875 		if (!vdev_is_concrete(vd))
8876 			continue;
8877 		m += vd->vdev_ms_count;
8878 	}
8879 	return (m);
8880 }
8881 
8882 sysevent_t *
8883 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
8884 {
8885 	sysevent_t		*ev = NULL;
8886 #ifdef _KERNEL
8887 	sysevent_attr_list_t	*attr = NULL;
8888 	sysevent_value_t	value;
8889 
8890 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
8891 	    SE_SLEEP);
8892 	ASSERT(ev != NULL);
8893 
8894 	value.value_type = SE_DATA_TYPE_STRING;
8895 	value.value.sv_string = spa_name(spa);
8896 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
8897 		goto done;
8898 
8899 	value.value_type = SE_DATA_TYPE_UINT64;
8900 	value.value.sv_uint64 = spa_guid(spa);
8901 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
8902 		goto done;
8903 
8904 	if (vd) {
8905 		value.value_type = SE_DATA_TYPE_UINT64;
8906 		value.value.sv_uint64 = vd->vdev_guid;
8907 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
8908 		    SE_SLEEP) != 0)
8909 			goto done;
8910 
8911 		if (vd->vdev_path) {
8912 			value.value_type = SE_DATA_TYPE_STRING;
8913 			value.value.sv_string = vd->vdev_path;
8914 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
8915 			    &value, SE_SLEEP) != 0)
8916 				goto done;
8917 		}
8918 	}
8919 
8920 	if (hist_nvl != NULL) {
8921 		fnvlist_merge((nvlist_t *)attr, hist_nvl);
8922 	}
8923 
8924 	if (sysevent_attach_attributes(ev, attr) != 0)
8925 		goto done;
8926 	attr = NULL;
8927 
8928 done:
8929 	if (attr)
8930 		sysevent_free_attr(attr);
8931 
8932 #endif
8933 	return (ev);
8934 }
8935 
8936 void
8937 spa_event_post(sysevent_t *ev)
8938 {
8939 #ifdef _KERNEL
8940 	sysevent_id_t		eid;
8941 
8942 	(void) log_sysevent(ev, SE_SLEEP, &eid);
8943 	sysevent_free(ev);
8944 #endif
8945 }
8946 
8947 void
8948 spa_event_discard(sysevent_t *ev)
8949 {
8950 #ifdef _KERNEL
8951 	sysevent_free(ev);
8952 #endif
8953 }
8954 
8955 /*
8956  * Post a sysevent corresponding to the given event.  The 'name' must be one of
8957  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
8958  * filled in from the spa and (optionally) the vdev and history nvl.  This
8959  * doesn't do anything in the userland libzpool, as we don't want consumers to
8960  * misinterpret ztest or zdb as real changes.
8961  */
8962 void
8963 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
8964 {
8965 	spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
8966 }
8967