xref: /illumos-gate/usr/src/uts/common/fs/zfs/metaslab.c (revision a0b03b16)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25  * Copyright (c) 2014 Integros [integros.com]
26  */
27 
28 #include <sys/zfs_context.h>
29 #include <sys/dmu.h>
30 #include <sys/dmu_tx.h>
31 #include <sys/space_map.h>
32 #include <sys/metaslab_impl.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/zio.h>
35 #include <sys/spa_impl.h>
36 #include <sys/zfeature.h>
37 #include <sys/vdev_indirect_mapping.h>
38 #include <sys/zap.h>
39 
40 #define	GANG_ALLOCATION(flags) \
41 	((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER))
42 
43 uint64_t metaslab_aliquot = 512ULL << 10;
44 uint64_t metaslab_force_ganging = SPA_MAXBLOCKSIZE + 1;	/* force gang blocks */
45 
46 /*
47  * Since we can touch multiple metaslabs (and their respective space maps)
48  * with each transaction group, we benefit from having a smaller space map
49  * block size since it allows us to issue more I/O operations scattered
50  * around the disk.
51  */
52 int zfs_metaslab_sm_blksz = (1 << 12);
53 
54 /*
55  * The in-core space map representation is more compact than its on-disk form.
56  * The zfs_condense_pct determines how much more compact the in-core
57  * space map representation must be before we compact it on-disk.
58  * Values should be greater than or equal to 100.
59  */
60 int zfs_condense_pct = 200;
61 
62 /*
63  * Condensing a metaslab is not guaranteed to actually reduce the amount of
64  * space used on disk. In particular, a space map uses data in increments of
65  * MAX(1 << ashift, space_map_blksize), so a metaslab might use the
66  * same number of blocks after condensing. Since the goal of condensing is to
67  * reduce the number of IOPs required to read the space map, we only want to
68  * condense when we can be sure we will reduce the number of blocks used by the
69  * space map. Unfortunately, we cannot precisely compute whether or not this is
70  * the case in metaslab_should_condense since we are holding ms_lock. Instead,
71  * we apply the following heuristic: do not condense a spacemap unless the
72  * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold
73  * blocks.
74  */
75 int zfs_metaslab_condense_block_threshold = 4;
76 
77 /*
78  * The zfs_mg_noalloc_threshold defines which metaslab groups should
79  * be eligible for allocation. The value is defined as a percentage of
80  * free space. Metaslab groups that have more free space than
81  * zfs_mg_noalloc_threshold are always eligible for allocations. Once
82  * a metaslab group's free space is less than or equal to the
83  * zfs_mg_noalloc_threshold the allocator will avoid allocating to that
84  * group unless all groups in the pool have reached zfs_mg_noalloc_threshold.
85  * Once all groups in the pool reach zfs_mg_noalloc_threshold then all
86  * groups are allowed to accept allocations. Gang blocks are always
87  * eligible to allocate on any metaslab group. The default value of 0 means
88  * no metaslab group will be excluded based on this criterion.
89  */
90 int zfs_mg_noalloc_threshold = 0;
91 
92 /*
93  * Metaslab groups are considered eligible for allocations if their
94  * fragmenation metric (measured as a percentage) is less than or equal to
95  * zfs_mg_fragmentation_threshold. If a metaslab group exceeds this threshold
96  * then it will be skipped unless all metaslab groups within the metaslab
97  * class have also crossed this threshold.
98  */
99 int zfs_mg_fragmentation_threshold = 85;
100 
101 /*
102  * Allow metaslabs to keep their active state as long as their fragmentation
103  * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An
104  * active metaslab that exceeds this threshold will no longer keep its active
105  * status allowing better metaslabs to be selected.
106  */
107 int zfs_metaslab_fragmentation_threshold = 70;
108 
109 /*
110  * When set will load all metaslabs when pool is first opened.
111  */
112 int metaslab_debug_load = 0;
113 
114 /*
115  * When set will prevent metaslabs from being unloaded.
116  */
117 int metaslab_debug_unload = 0;
118 
119 /*
120  * Minimum size which forces the dynamic allocator to change
121  * it's allocation strategy.  Once the space map cannot satisfy
122  * an allocation of this size then it switches to using more
123  * aggressive strategy (i.e search by size rather than offset).
124  */
125 uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE;
126 
127 /*
128  * The minimum free space, in percent, which must be available
129  * in a space map to continue allocations in a first-fit fashion.
130  * Once the space map's free space drops below this level we dynamically
131  * switch to using best-fit allocations.
132  */
133 int metaslab_df_free_pct = 4;
134 
135 /*
136  * A metaslab is considered "free" if it contains a contiguous
137  * segment which is greater than metaslab_min_alloc_size.
138  */
139 uint64_t metaslab_min_alloc_size = DMU_MAX_ACCESS;
140 
141 /*
142  * Percentage of all cpus that can be used by the metaslab taskq.
143  */
144 int metaslab_load_pct = 50;
145 
146 /*
147  * Determines how many txgs a metaslab may remain loaded without having any
148  * allocations from it. As long as a metaslab continues to be used we will
149  * keep it loaded.
150  */
151 int metaslab_unload_delay = TXG_SIZE * 2;
152 
153 /*
154  * Max number of metaslabs per group to preload.
155  */
156 int metaslab_preload_limit = SPA_DVAS_PER_BP;
157 
158 /*
159  * Enable/disable preloading of metaslab.
160  */
161 boolean_t metaslab_preload_enabled = B_TRUE;
162 
163 /*
164  * Enable/disable fragmentation weighting on metaslabs.
165  */
166 boolean_t metaslab_fragmentation_factor_enabled = B_TRUE;
167 
168 /*
169  * Enable/disable lba weighting (i.e. outer tracks are given preference).
170  */
171 boolean_t metaslab_lba_weighting_enabled = B_TRUE;
172 
173 /*
174  * Enable/disable metaslab group biasing.
175  */
176 boolean_t metaslab_bias_enabled = B_TRUE;
177 
178 /*
179  * Enable/disable remapping of indirect DVAs to their concrete vdevs.
180  */
181 boolean_t zfs_remap_blkptr_enable = B_TRUE;
182 
183 /*
184  * Enable/disable segment-based metaslab selection.
185  */
186 boolean_t zfs_metaslab_segment_weight_enabled = B_TRUE;
187 
188 /*
189  * When using segment-based metaslab selection, we will continue
190  * allocating from the active metaslab until we have exhausted
191  * zfs_metaslab_switch_threshold of its buckets.
192  */
193 int zfs_metaslab_switch_threshold = 2;
194 
195 /*
196  * Internal switch to enable/disable the metaslab allocation tracing
197  * facility.
198  */
199 boolean_t metaslab_trace_enabled = B_TRUE;
200 
201 /*
202  * Maximum entries that the metaslab allocation tracing facility will keep
203  * in a given list when running in non-debug mode. We limit the number
204  * of entries in non-debug mode to prevent us from using up too much memory.
205  * The limit should be sufficiently large that we don't expect any allocation
206  * to every exceed this value. In debug mode, the system will panic if this
207  * limit is ever reached allowing for further investigation.
208  */
209 uint64_t metaslab_trace_max_entries = 5000;
210 
211 static uint64_t metaslab_weight(metaslab_t *);
212 static void metaslab_set_fragmentation(metaslab_t *);
213 static void metaslab_free_impl(vdev_t *, uint64_t, uint64_t, boolean_t);
214 static void metaslab_check_free_impl(vdev_t *, uint64_t, uint64_t);
215 static void metaslab_passivate(metaslab_t *msp, uint64_t weight);
216 static uint64_t metaslab_weight_from_range_tree(metaslab_t *msp);
217 
218 kmem_cache_t *metaslab_alloc_trace_cache;
219 
220 /*
221  * ==========================================================================
222  * Metaslab classes
223  * ==========================================================================
224  */
225 metaslab_class_t *
226 metaslab_class_create(spa_t *spa, metaslab_ops_t *ops)
227 {
228 	metaslab_class_t *mc;
229 
230 	mc = kmem_zalloc(sizeof (metaslab_class_t), KM_SLEEP);
231 
232 	mc->mc_spa = spa;
233 	mc->mc_rotor = NULL;
234 	mc->mc_ops = ops;
235 	mutex_init(&mc->mc_lock, NULL, MUTEX_DEFAULT, NULL);
236 	mc->mc_alloc_slots = kmem_zalloc(spa->spa_alloc_count *
237 	    sizeof (refcount_t), KM_SLEEP);
238 	mc->mc_alloc_max_slots = kmem_zalloc(spa->spa_alloc_count *
239 	    sizeof (uint64_t), KM_SLEEP);
240 	for (int i = 0; i < spa->spa_alloc_count; i++)
241 		refcount_create_tracked(&mc->mc_alloc_slots[i]);
242 
243 	return (mc);
244 }
245 
246 void
247 metaslab_class_destroy(metaslab_class_t *mc)
248 {
249 	ASSERT(mc->mc_rotor == NULL);
250 	ASSERT(mc->mc_alloc == 0);
251 	ASSERT(mc->mc_deferred == 0);
252 	ASSERT(mc->mc_space == 0);
253 	ASSERT(mc->mc_dspace == 0);
254 
255 	for (int i = 0; i < mc->mc_spa->spa_alloc_count; i++)
256 		refcount_destroy(&mc->mc_alloc_slots[i]);
257 	kmem_free(mc->mc_alloc_slots, mc->mc_spa->spa_alloc_count *
258 	    sizeof (refcount_t));
259 	kmem_free(mc->mc_alloc_max_slots, mc->mc_spa->spa_alloc_count *
260 	    sizeof (uint64_t));
261 	mutex_destroy(&mc->mc_lock);
262 	kmem_free(mc, sizeof (metaslab_class_t));
263 }
264 
265 int
266 metaslab_class_validate(metaslab_class_t *mc)
267 {
268 	metaslab_group_t *mg;
269 	vdev_t *vd;
270 
271 	/*
272 	 * Must hold one of the spa_config locks.
273 	 */
274 	ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
275 	    spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
276 
277 	if ((mg = mc->mc_rotor) == NULL)
278 		return (0);
279 
280 	do {
281 		vd = mg->mg_vd;
282 		ASSERT(vd->vdev_mg != NULL);
283 		ASSERT3P(vd->vdev_top, ==, vd);
284 		ASSERT3P(mg->mg_class, ==, mc);
285 		ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
286 	} while ((mg = mg->mg_next) != mc->mc_rotor);
287 
288 	return (0);
289 }
290 
291 void
292 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
293     int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
294 {
295 	atomic_add_64(&mc->mc_alloc, alloc_delta);
296 	atomic_add_64(&mc->mc_deferred, defer_delta);
297 	atomic_add_64(&mc->mc_space, space_delta);
298 	atomic_add_64(&mc->mc_dspace, dspace_delta);
299 }
300 
301 uint64_t
302 metaslab_class_get_alloc(metaslab_class_t *mc)
303 {
304 	return (mc->mc_alloc);
305 }
306 
307 uint64_t
308 metaslab_class_get_deferred(metaslab_class_t *mc)
309 {
310 	return (mc->mc_deferred);
311 }
312 
313 uint64_t
314 metaslab_class_get_space(metaslab_class_t *mc)
315 {
316 	return (mc->mc_space);
317 }
318 
319 uint64_t
320 metaslab_class_get_dspace(metaslab_class_t *mc)
321 {
322 	return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
323 }
324 
325 void
326 metaslab_class_histogram_verify(metaslab_class_t *mc)
327 {
328 	vdev_t *rvd = mc->mc_spa->spa_root_vdev;
329 	uint64_t *mc_hist;
330 	int i;
331 
332 	if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
333 		return;
334 
335 	mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
336 	    KM_SLEEP);
337 
338 	for (int c = 0; c < rvd->vdev_children; c++) {
339 		vdev_t *tvd = rvd->vdev_child[c];
340 		metaslab_group_t *mg = tvd->vdev_mg;
341 
342 		/*
343 		 * Skip any holes, uninitialized top-levels, or
344 		 * vdevs that are not in this metalab class.
345 		 */
346 		if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
347 		    mg->mg_class != mc) {
348 			continue;
349 		}
350 
351 		for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
352 			mc_hist[i] += mg->mg_histogram[i];
353 	}
354 
355 	for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
356 		VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]);
357 
358 	kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
359 }
360 
361 /*
362  * Calculate the metaslab class's fragmentation metric. The metric
363  * is weighted based on the space contribution of each metaslab group.
364  * The return value will be a number between 0 and 100 (inclusive), or
365  * ZFS_FRAG_INVALID if the metric has not been set. See comment above the
366  * zfs_frag_table for more information about the metric.
367  */
368 uint64_t
369 metaslab_class_fragmentation(metaslab_class_t *mc)
370 {
371 	vdev_t *rvd = mc->mc_spa->spa_root_vdev;
372 	uint64_t fragmentation = 0;
373 
374 	spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
375 
376 	for (int c = 0; c < rvd->vdev_children; c++) {
377 		vdev_t *tvd = rvd->vdev_child[c];
378 		metaslab_group_t *mg = tvd->vdev_mg;
379 
380 		/*
381 		 * Skip any holes, uninitialized top-levels,
382 		 * or vdevs that are not in this metalab class.
383 		 */
384 		if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
385 		    mg->mg_class != mc) {
386 			continue;
387 		}
388 
389 		/*
390 		 * If a metaslab group does not contain a fragmentation
391 		 * metric then just bail out.
392 		 */
393 		if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
394 			spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
395 			return (ZFS_FRAG_INVALID);
396 		}
397 
398 		/*
399 		 * Determine how much this metaslab_group is contributing
400 		 * to the overall pool fragmentation metric.
401 		 */
402 		fragmentation += mg->mg_fragmentation *
403 		    metaslab_group_get_space(mg);
404 	}
405 	fragmentation /= metaslab_class_get_space(mc);
406 
407 	ASSERT3U(fragmentation, <=, 100);
408 	spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
409 	return (fragmentation);
410 }
411 
412 /*
413  * Calculate the amount of expandable space that is available in
414  * this metaslab class. If a device is expanded then its expandable
415  * space will be the amount of allocatable space that is currently not
416  * part of this metaslab class.
417  */
418 uint64_t
419 metaslab_class_expandable_space(metaslab_class_t *mc)
420 {
421 	vdev_t *rvd = mc->mc_spa->spa_root_vdev;
422 	uint64_t space = 0;
423 
424 	spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
425 	for (int c = 0; c < rvd->vdev_children; c++) {
426 		uint64_t tspace;
427 		vdev_t *tvd = rvd->vdev_child[c];
428 		metaslab_group_t *mg = tvd->vdev_mg;
429 
430 		if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
431 		    mg->mg_class != mc) {
432 			continue;
433 		}
434 
435 		/*
436 		 * Calculate if we have enough space to add additional
437 		 * metaslabs. We report the expandable space in terms
438 		 * of the metaslab size since that's the unit of expansion.
439 		 * Adjust by efi system partition size.
440 		 */
441 		tspace = tvd->vdev_max_asize - tvd->vdev_asize;
442 		if (tspace > mc->mc_spa->spa_bootsize) {
443 			tspace -= mc->mc_spa->spa_bootsize;
444 		}
445 		space += P2ALIGN(tspace, 1ULL << tvd->vdev_ms_shift);
446 	}
447 	spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
448 	return (space);
449 }
450 
451 static int
452 metaslab_compare(const void *x1, const void *x2)
453 {
454 	const metaslab_t *m1 = x1;
455 	const metaslab_t *m2 = x2;
456 
457 	int sort1 = 0;
458 	int sort2 = 0;
459 	if (m1->ms_allocator != -1 && m1->ms_primary)
460 		sort1 = 1;
461 	else if (m1->ms_allocator != -1 && !m1->ms_primary)
462 		sort1 = 2;
463 	if (m2->ms_allocator != -1 && m2->ms_primary)
464 		sort2 = 1;
465 	else if (m2->ms_allocator != -1 && !m2->ms_primary)
466 		sort2 = 2;
467 
468 	/*
469 	 * Sort inactive metaslabs first, then primaries, then secondaries. When
470 	 * selecting a metaslab to allocate from, an allocator first tries its
471 	 * primary, then secondary active metaslab. If it doesn't have active
472 	 * metaslabs, or can't allocate from them, it searches for an inactive
473 	 * metaslab to activate. If it can't find a suitable one, it will steal
474 	 * a primary or secondary metaslab from another allocator.
475 	 */
476 	if (sort1 < sort2)
477 		return (-1);
478 	if (sort1 > sort2)
479 		return (1);
480 
481 	if (m1->ms_weight < m2->ms_weight)
482 		return (1);
483 	if (m1->ms_weight > m2->ms_weight)
484 		return (-1);
485 
486 	/*
487 	 * If the weights are identical, use the offset to force uniqueness.
488 	 */
489 	if (m1->ms_start < m2->ms_start)
490 		return (-1);
491 	if (m1->ms_start > m2->ms_start)
492 		return (1);
493 
494 	ASSERT3P(m1, ==, m2);
495 
496 	return (0);
497 }
498 
499 /*
500  * Verify that the space accounting on disk matches the in-core range_trees.
501  */
502 void
503 metaslab_verify_space(metaslab_t *msp, uint64_t txg)
504 {
505 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
506 	uint64_t allocated = 0;
507 	uint64_t sm_free_space, msp_free_space;
508 
509 	ASSERT(MUTEX_HELD(&msp->ms_lock));
510 
511 	if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
512 		return;
513 
514 	/*
515 	 * We can only verify the metaslab space when we're called
516 	 * from syncing context with a loaded metaslab that has an allocated
517 	 * space map. Calling this in non-syncing context does not
518 	 * provide a consistent view of the metaslab since we're performing
519 	 * allocations in the future.
520 	 */
521 	if (txg != spa_syncing_txg(spa) || msp->ms_sm == NULL ||
522 	    !msp->ms_loaded)
523 		return;
524 
525 	sm_free_space = msp->ms_size - space_map_allocated(msp->ms_sm) -
526 	    space_map_alloc_delta(msp->ms_sm);
527 
528 	/*
529 	 * Account for future allocations since we would have already
530 	 * deducted that space from the ms_freetree.
531 	 */
532 	for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
533 		allocated +=
534 		    range_tree_space(msp->ms_allocating[(txg + t) & TXG_MASK]);
535 	}
536 
537 	msp_free_space = range_tree_space(msp->ms_allocatable) + allocated +
538 	    msp->ms_deferspace + range_tree_space(msp->ms_freed);
539 
540 	VERIFY3U(sm_free_space, ==, msp_free_space);
541 }
542 
543 /*
544  * ==========================================================================
545  * Metaslab groups
546  * ==========================================================================
547  */
548 /*
549  * Update the allocatable flag and the metaslab group's capacity.
550  * The allocatable flag is set to true if the capacity is below
551  * the zfs_mg_noalloc_threshold or has a fragmentation value that is
552  * greater than zfs_mg_fragmentation_threshold. If a metaslab group
553  * transitions from allocatable to non-allocatable or vice versa then the
554  * metaslab group's class is updated to reflect the transition.
555  */
556 static void
557 metaslab_group_alloc_update(metaslab_group_t *mg)
558 {
559 	vdev_t *vd = mg->mg_vd;
560 	metaslab_class_t *mc = mg->mg_class;
561 	vdev_stat_t *vs = &vd->vdev_stat;
562 	boolean_t was_allocatable;
563 	boolean_t was_initialized;
564 
565 	ASSERT(vd == vd->vdev_top);
566 	ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_READER), ==,
567 	    SCL_ALLOC);
568 
569 	mutex_enter(&mg->mg_lock);
570 	was_allocatable = mg->mg_allocatable;
571 	was_initialized = mg->mg_initialized;
572 
573 	mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) /
574 	    (vs->vs_space + 1);
575 
576 	mutex_enter(&mc->mc_lock);
577 
578 	/*
579 	 * If the metaslab group was just added then it won't
580 	 * have any space until we finish syncing out this txg.
581 	 * At that point we will consider it initialized and available
582 	 * for allocations.  We also don't consider non-activated
583 	 * metaslab groups (e.g. vdevs that are in the middle of being removed)
584 	 * to be initialized, because they can't be used for allocation.
585 	 */
586 	mg->mg_initialized = metaslab_group_initialized(mg);
587 	if (!was_initialized && mg->mg_initialized) {
588 		mc->mc_groups++;
589 	} else if (was_initialized && !mg->mg_initialized) {
590 		ASSERT3U(mc->mc_groups, >, 0);
591 		mc->mc_groups--;
592 	}
593 	if (mg->mg_initialized)
594 		mg->mg_no_free_space = B_FALSE;
595 
596 	/*
597 	 * A metaslab group is considered allocatable if it has plenty
598 	 * of free space or is not heavily fragmented. We only take
599 	 * fragmentation into account if the metaslab group has a valid
600 	 * fragmentation metric (i.e. a value between 0 and 100).
601 	 */
602 	mg->mg_allocatable = (mg->mg_activation_count > 0 &&
603 	    mg->mg_free_capacity > zfs_mg_noalloc_threshold &&
604 	    (mg->mg_fragmentation == ZFS_FRAG_INVALID ||
605 	    mg->mg_fragmentation <= zfs_mg_fragmentation_threshold));
606 
607 	/*
608 	 * The mc_alloc_groups maintains a count of the number of
609 	 * groups in this metaslab class that are still above the
610 	 * zfs_mg_noalloc_threshold. This is used by the allocating
611 	 * threads to determine if they should avoid allocations to
612 	 * a given group. The allocator will avoid allocations to a group
613 	 * if that group has reached or is below the zfs_mg_noalloc_threshold
614 	 * and there are still other groups that are above the threshold.
615 	 * When a group transitions from allocatable to non-allocatable or
616 	 * vice versa we update the metaslab class to reflect that change.
617 	 * When the mc_alloc_groups value drops to 0 that means that all
618 	 * groups have reached the zfs_mg_noalloc_threshold making all groups
619 	 * eligible for allocations. This effectively means that all devices
620 	 * are balanced again.
621 	 */
622 	if (was_allocatable && !mg->mg_allocatable)
623 		mc->mc_alloc_groups--;
624 	else if (!was_allocatable && mg->mg_allocatable)
625 		mc->mc_alloc_groups++;
626 	mutex_exit(&mc->mc_lock);
627 
628 	mutex_exit(&mg->mg_lock);
629 }
630 
631 metaslab_group_t *
632 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd, int allocators)
633 {
634 	metaslab_group_t *mg;
635 
636 	mg = kmem_zalloc(sizeof (metaslab_group_t), KM_SLEEP);
637 	mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
638 	mutex_init(&mg->mg_ms_initialize_lock, NULL, MUTEX_DEFAULT, NULL);
639 	cv_init(&mg->mg_ms_initialize_cv, NULL, CV_DEFAULT, NULL);
640 	mg->mg_primaries = kmem_zalloc(allocators * sizeof (metaslab_t *),
641 	    KM_SLEEP);
642 	mg->mg_secondaries = kmem_zalloc(allocators * sizeof (metaslab_t *),
643 	    KM_SLEEP);
644 	avl_create(&mg->mg_metaslab_tree, metaslab_compare,
645 	    sizeof (metaslab_t), offsetof(struct metaslab, ms_group_node));
646 	mg->mg_vd = vd;
647 	mg->mg_class = mc;
648 	mg->mg_activation_count = 0;
649 	mg->mg_initialized = B_FALSE;
650 	mg->mg_no_free_space = B_TRUE;
651 	mg->mg_allocators = allocators;
652 
653 	mg->mg_alloc_queue_depth = kmem_zalloc(allocators * sizeof (refcount_t),
654 	    KM_SLEEP);
655 	mg->mg_cur_max_alloc_queue_depth = kmem_zalloc(allocators *
656 	    sizeof (uint64_t), KM_SLEEP);
657 	for (int i = 0; i < allocators; i++) {
658 		refcount_create_tracked(&mg->mg_alloc_queue_depth[i]);
659 		mg->mg_cur_max_alloc_queue_depth[i] = 0;
660 	}
661 
662 	mg->mg_taskq = taskq_create("metaslab_group_taskq", metaslab_load_pct,
663 	    minclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT);
664 
665 	return (mg);
666 }
667 
668 void
669 metaslab_group_destroy(metaslab_group_t *mg)
670 {
671 	ASSERT(mg->mg_prev == NULL);
672 	ASSERT(mg->mg_next == NULL);
673 	/*
674 	 * We may have gone below zero with the activation count
675 	 * either because we never activated in the first place or
676 	 * because we're done, and possibly removing the vdev.
677 	 */
678 	ASSERT(mg->mg_activation_count <= 0);
679 
680 	taskq_destroy(mg->mg_taskq);
681 	avl_destroy(&mg->mg_metaslab_tree);
682 	kmem_free(mg->mg_primaries, mg->mg_allocators * sizeof (metaslab_t *));
683 	kmem_free(mg->mg_secondaries, mg->mg_allocators *
684 	    sizeof (metaslab_t *));
685 	mutex_destroy(&mg->mg_lock);
686 	mutex_destroy(&mg->mg_ms_initialize_lock);
687 	cv_destroy(&mg->mg_ms_initialize_cv);
688 
689 	for (int i = 0; i < mg->mg_allocators; i++) {
690 		refcount_destroy(&mg->mg_alloc_queue_depth[i]);
691 		mg->mg_cur_max_alloc_queue_depth[i] = 0;
692 	}
693 	kmem_free(mg->mg_alloc_queue_depth, mg->mg_allocators *
694 	    sizeof (refcount_t));
695 	kmem_free(mg->mg_cur_max_alloc_queue_depth, mg->mg_allocators *
696 	    sizeof (uint64_t));
697 
698 	kmem_free(mg, sizeof (metaslab_group_t));
699 }
700 
701 void
702 metaslab_group_activate(metaslab_group_t *mg)
703 {
704 	metaslab_class_t *mc = mg->mg_class;
705 	metaslab_group_t *mgprev, *mgnext;
706 
707 	ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER), !=, 0);
708 
709 	ASSERT(mc->mc_rotor != mg);
710 	ASSERT(mg->mg_prev == NULL);
711 	ASSERT(mg->mg_next == NULL);
712 	ASSERT(mg->mg_activation_count <= 0);
713 
714 	if (++mg->mg_activation_count <= 0)
715 		return;
716 
717 	mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children);
718 	metaslab_group_alloc_update(mg);
719 
720 	if ((mgprev = mc->mc_rotor) == NULL) {
721 		mg->mg_prev = mg;
722 		mg->mg_next = mg;
723 	} else {
724 		mgnext = mgprev->mg_next;
725 		mg->mg_prev = mgprev;
726 		mg->mg_next = mgnext;
727 		mgprev->mg_next = mg;
728 		mgnext->mg_prev = mg;
729 	}
730 	mc->mc_rotor = mg;
731 }
732 
733 /*
734  * Passivate a metaslab group and remove it from the allocation rotor.
735  * Callers must hold both the SCL_ALLOC and SCL_ZIO lock prior to passivating
736  * a metaslab group. This function will momentarily drop spa_config_locks
737  * that are lower than the SCL_ALLOC lock (see comment below).
738  */
739 void
740 metaslab_group_passivate(metaslab_group_t *mg)
741 {
742 	metaslab_class_t *mc = mg->mg_class;
743 	spa_t *spa = mc->mc_spa;
744 	metaslab_group_t *mgprev, *mgnext;
745 	int locks = spa_config_held(spa, SCL_ALL, RW_WRITER);
746 
747 	ASSERT3U(spa_config_held(spa, SCL_ALLOC | SCL_ZIO, RW_WRITER), ==,
748 	    (SCL_ALLOC | SCL_ZIO));
749 
750 	if (--mg->mg_activation_count != 0) {
751 		ASSERT(mc->mc_rotor != mg);
752 		ASSERT(mg->mg_prev == NULL);
753 		ASSERT(mg->mg_next == NULL);
754 		ASSERT(mg->mg_activation_count < 0);
755 		return;
756 	}
757 
758 	/*
759 	 * The spa_config_lock is an array of rwlocks, ordered as
760 	 * follows (from highest to lowest):
761 	 *	SCL_CONFIG > SCL_STATE > SCL_L2ARC > SCL_ALLOC >
762 	 *	SCL_ZIO > SCL_FREE > SCL_VDEV
763 	 * (For more information about the spa_config_lock see spa_misc.c)
764 	 * The higher the lock, the broader its coverage. When we passivate
765 	 * a metaslab group, we must hold both the SCL_ALLOC and the SCL_ZIO
766 	 * config locks. However, the metaslab group's taskq might be trying
767 	 * to preload metaslabs so we must drop the SCL_ZIO lock and any
768 	 * lower locks to allow the I/O to complete. At a minimum,
769 	 * we continue to hold the SCL_ALLOC lock, which prevents any future
770 	 * allocations from taking place and any changes to the vdev tree.
771 	 */
772 	spa_config_exit(spa, locks & ~(SCL_ZIO - 1), spa);
773 	taskq_wait(mg->mg_taskq);
774 	spa_config_enter(spa, locks & ~(SCL_ZIO - 1), spa, RW_WRITER);
775 	metaslab_group_alloc_update(mg);
776 	for (int i = 0; i < mg->mg_allocators; i++) {
777 		metaslab_t *msp = mg->mg_primaries[i];
778 		if (msp != NULL) {
779 			mutex_enter(&msp->ms_lock);
780 			metaslab_passivate(msp,
781 			    metaslab_weight_from_range_tree(msp));
782 			mutex_exit(&msp->ms_lock);
783 		}
784 		msp = mg->mg_secondaries[i];
785 		if (msp != NULL) {
786 			mutex_enter(&msp->ms_lock);
787 			metaslab_passivate(msp,
788 			    metaslab_weight_from_range_tree(msp));
789 			mutex_exit(&msp->ms_lock);
790 		}
791 	}
792 
793 	mgprev = mg->mg_prev;
794 	mgnext = mg->mg_next;
795 
796 	if (mg == mgnext) {
797 		mc->mc_rotor = NULL;
798 	} else {
799 		mc->mc_rotor = mgnext;
800 		mgprev->mg_next = mgnext;
801 		mgnext->mg_prev = mgprev;
802 	}
803 
804 	mg->mg_prev = NULL;
805 	mg->mg_next = NULL;
806 }
807 
808 boolean_t
809 metaslab_group_initialized(metaslab_group_t *mg)
810 {
811 	vdev_t *vd = mg->mg_vd;
812 	vdev_stat_t *vs = &vd->vdev_stat;
813 
814 	return (vs->vs_space != 0 && mg->mg_activation_count > 0);
815 }
816 
817 uint64_t
818 metaslab_group_get_space(metaslab_group_t *mg)
819 {
820 	return ((1ULL << mg->mg_vd->vdev_ms_shift) * mg->mg_vd->vdev_ms_count);
821 }
822 
823 void
824 metaslab_group_histogram_verify(metaslab_group_t *mg)
825 {
826 	uint64_t *mg_hist;
827 	vdev_t *vd = mg->mg_vd;
828 	uint64_t ashift = vd->vdev_ashift;
829 	int i;
830 
831 	if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
832 		return;
833 
834 	mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
835 	    KM_SLEEP);
836 
837 	ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=,
838 	    SPACE_MAP_HISTOGRAM_SIZE + ashift);
839 
840 	for (int m = 0; m < vd->vdev_ms_count; m++) {
841 		metaslab_t *msp = vd->vdev_ms[m];
842 
843 		if (msp->ms_sm == NULL)
844 			continue;
845 
846 		for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
847 			mg_hist[i + ashift] +=
848 			    msp->ms_sm->sm_phys->smp_histogram[i];
849 	}
850 
851 	for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++)
852 		VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]);
853 
854 	kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
855 }
856 
857 static void
858 metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp)
859 {
860 	metaslab_class_t *mc = mg->mg_class;
861 	uint64_t ashift = mg->mg_vd->vdev_ashift;
862 
863 	ASSERT(MUTEX_HELD(&msp->ms_lock));
864 	if (msp->ms_sm == NULL)
865 		return;
866 
867 	mutex_enter(&mg->mg_lock);
868 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
869 		mg->mg_histogram[i + ashift] +=
870 		    msp->ms_sm->sm_phys->smp_histogram[i];
871 		mc->mc_histogram[i + ashift] +=
872 		    msp->ms_sm->sm_phys->smp_histogram[i];
873 	}
874 	mutex_exit(&mg->mg_lock);
875 }
876 
877 void
878 metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp)
879 {
880 	metaslab_class_t *mc = mg->mg_class;
881 	uint64_t ashift = mg->mg_vd->vdev_ashift;
882 
883 	ASSERT(MUTEX_HELD(&msp->ms_lock));
884 	if (msp->ms_sm == NULL)
885 		return;
886 
887 	mutex_enter(&mg->mg_lock);
888 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
889 		ASSERT3U(mg->mg_histogram[i + ashift], >=,
890 		    msp->ms_sm->sm_phys->smp_histogram[i]);
891 		ASSERT3U(mc->mc_histogram[i + ashift], >=,
892 		    msp->ms_sm->sm_phys->smp_histogram[i]);
893 
894 		mg->mg_histogram[i + ashift] -=
895 		    msp->ms_sm->sm_phys->smp_histogram[i];
896 		mc->mc_histogram[i + ashift] -=
897 		    msp->ms_sm->sm_phys->smp_histogram[i];
898 	}
899 	mutex_exit(&mg->mg_lock);
900 }
901 
902 static void
903 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
904 {
905 	ASSERT(msp->ms_group == NULL);
906 	mutex_enter(&mg->mg_lock);
907 	msp->ms_group = mg;
908 	msp->ms_weight = 0;
909 	avl_add(&mg->mg_metaslab_tree, msp);
910 	mutex_exit(&mg->mg_lock);
911 
912 	mutex_enter(&msp->ms_lock);
913 	metaslab_group_histogram_add(mg, msp);
914 	mutex_exit(&msp->ms_lock);
915 }
916 
917 static void
918 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
919 {
920 	mutex_enter(&msp->ms_lock);
921 	metaslab_group_histogram_remove(mg, msp);
922 	mutex_exit(&msp->ms_lock);
923 
924 	mutex_enter(&mg->mg_lock);
925 	ASSERT(msp->ms_group == mg);
926 	avl_remove(&mg->mg_metaslab_tree, msp);
927 	msp->ms_group = NULL;
928 	mutex_exit(&mg->mg_lock);
929 }
930 
931 static void
932 metaslab_group_sort_impl(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
933 {
934 	ASSERT(MUTEX_HELD(&mg->mg_lock));
935 	ASSERT(msp->ms_group == mg);
936 	avl_remove(&mg->mg_metaslab_tree, msp);
937 	msp->ms_weight = weight;
938 	avl_add(&mg->mg_metaslab_tree, msp);
939 
940 }
941 
942 static void
943 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
944 {
945 	/*
946 	 * Although in principle the weight can be any value, in
947 	 * practice we do not use values in the range [1, 511].
948 	 */
949 	ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0);
950 	ASSERT(MUTEX_HELD(&msp->ms_lock));
951 
952 	mutex_enter(&mg->mg_lock);
953 	metaslab_group_sort_impl(mg, msp, weight);
954 	mutex_exit(&mg->mg_lock);
955 }
956 
957 /*
958  * Calculate the fragmentation for a given metaslab group. We can use
959  * a simple average here since all metaslabs within the group must have
960  * the same size. The return value will be a value between 0 and 100
961  * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this
962  * group have a fragmentation metric.
963  */
964 uint64_t
965 metaslab_group_fragmentation(metaslab_group_t *mg)
966 {
967 	vdev_t *vd = mg->mg_vd;
968 	uint64_t fragmentation = 0;
969 	uint64_t valid_ms = 0;
970 
971 	for (int m = 0; m < vd->vdev_ms_count; m++) {
972 		metaslab_t *msp = vd->vdev_ms[m];
973 
974 		if (msp->ms_fragmentation == ZFS_FRAG_INVALID)
975 			continue;
976 
977 		valid_ms++;
978 		fragmentation += msp->ms_fragmentation;
979 	}
980 
981 	if (valid_ms <= vd->vdev_ms_count / 2)
982 		return (ZFS_FRAG_INVALID);
983 
984 	fragmentation /= valid_ms;
985 	ASSERT3U(fragmentation, <=, 100);
986 	return (fragmentation);
987 }
988 
989 /*
990  * Determine if a given metaslab group should skip allocations. A metaslab
991  * group should avoid allocations if its free capacity is less than the
992  * zfs_mg_noalloc_threshold or its fragmentation metric is greater than
993  * zfs_mg_fragmentation_threshold and there is at least one metaslab group
994  * that can still handle allocations. If the allocation throttle is enabled
995  * then we skip allocations to devices that have reached their maximum
996  * allocation queue depth unless the selected metaslab group is the only
997  * eligible group remaining.
998  */
999 static boolean_t
1000 metaslab_group_allocatable(metaslab_group_t *mg, metaslab_group_t *rotor,
1001     uint64_t psize, int allocator)
1002 {
1003 	spa_t *spa = mg->mg_vd->vdev_spa;
1004 	metaslab_class_t *mc = mg->mg_class;
1005 
1006 	/*
1007 	 * We can only consider skipping this metaslab group if it's
1008 	 * in the normal metaslab class and there are other metaslab
1009 	 * groups to select from. Otherwise, we always consider it eligible
1010 	 * for allocations.
1011 	 */
1012 	if (mc != spa_normal_class(spa) || mc->mc_groups <= 1)
1013 		return (B_TRUE);
1014 
1015 	/*
1016 	 * If the metaslab group's mg_allocatable flag is set (see comments
1017 	 * in metaslab_group_alloc_update() for more information) and
1018 	 * the allocation throttle is disabled then allow allocations to this
1019 	 * device. However, if the allocation throttle is enabled then
1020 	 * check if we have reached our allocation limit (mg_alloc_queue_depth)
1021 	 * to determine if we should allow allocations to this metaslab group.
1022 	 * If all metaslab groups are no longer considered allocatable
1023 	 * (mc_alloc_groups == 0) or we're trying to allocate the smallest
1024 	 * gang block size then we allow allocations on this metaslab group
1025 	 * regardless of the mg_allocatable or throttle settings.
1026 	 */
1027 	if (mg->mg_allocatable) {
1028 		metaslab_group_t *mgp;
1029 		int64_t qdepth;
1030 		uint64_t qmax = mg->mg_cur_max_alloc_queue_depth[allocator];
1031 
1032 		if (!mc->mc_alloc_throttle_enabled)
1033 			return (B_TRUE);
1034 
1035 		/*
1036 		 * If this metaslab group does not have any free space, then
1037 		 * there is no point in looking further.
1038 		 */
1039 		if (mg->mg_no_free_space)
1040 			return (B_FALSE);
1041 
1042 		qdepth = refcount_count(&mg->mg_alloc_queue_depth[allocator]);
1043 
1044 		/*
1045 		 * If this metaslab group is below its qmax or it's
1046 		 * the only allocatable metasable group, then attempt
1047 		 * to allocate from it.
1048 		 */
1049 		if (qdepth < qmax || mc->mc_alloc_groups == 1)
1050 			return (B_TRUE);
1051 		ASSERT3U(mc->mc_alloc_groups, >, 1);
1052 
1053 		/*
1054 		 * Since this metaslab group is at or over its qmax, we
1055 		 * need to determine if there are metaslab groups after this
1056 		 * one that might be able to handle this allocation. This is
1057 		 * racy since we can't hold the locks for all metaslab
1058 		 * groups at the same time when we make this check.
1059 		 */
1060 		for (mgp = mg->mg_next; mgp != rotor; mgp = mgp->mg_next) {
1061 			qmax = mgp->mg_cur_max_alloc_queue_depth[allocator];
1062 
1063 			qdepth = refcount_count(
1064 			    &mgp->mg_alloc_queue_depth[allocator]);
1065 
1066 			/*
1067 			 * If there is another metaslab group that
1068 			 * might be able to handle the allocation, then
1069 			 * we return false so that we skip this group.
1070 			 */
1071 			if (qdepth < qmax && !mgp->mg_no_free_space)
1072 				return (B_FALSE);
1073 		}
1074 
1075 		/*
1076 		 * We didn't find another group to handle the allocation
1077 		 * so we can't skip this metaslab group even though
1078 		 * we are at or over our qmax.
1079 		 */
1080 		return (B_TRUE);
1081 
1082 	} else if (mc->mc_alloc_groups == 0 || psize == SPA_MINBLOCKSIZE) {
1083 		return (B_TRUE);
1084 	}
1085 	return (B_FALSE);
1086 }
1087 
1088 /*
1089  * ==========================================================================
1090  * Range tree callbacks
1091  * ==========================================================================
1092  */
1093 
1094 /*
1095  * Comparison function for the private size-ordered tree. Tree is sorted
1096  * by size, larger sizes at the end of the tree.
1097  */
1098 static int
1099 metaslab_rangesize_compare(const void *x1, const void *x2)
1100 {
1101 	const range_seg_t *r1 = x1;
1102 	const range_seg_t *r2 = x2;
1103 	uint64_t rs_size1 = r1->rs_end - r1->rs_start;
1104 	uint64_t rs_size2 = r2->rs_end - r2->rs_start;
1105 
1106 	if (rs_size1 < rs_size2)
1107 		return (-1);
1108 	if (rs_size1 > rs_size2)
1109 		return (1);
1110 
1111 	if (r1->rs_start < r2->rs_start)
1112 		return (-1);
1113 
1114 	if (r1->rs_start > r2->rs_start)
1115 		return (1);
1116 
1117 	return (0);
1118 }
1119 
1120 /*
1121  * Create any block allocator specific components. The current allocators
1122  * rely on using both a size-ordered range_tree_t and an array of uint64_t's.
1123  */
1124 static void
1125 metaslab_rt_create(range_tree_t *rt, void *arg)
1126 {
1127 	metaslab_t *msp = arg;
1128 
1129 	ASSERT3P(rt->rt_arg, ==, msp);
1130 	ASSERT(msp->ms_allocatable == NULL);
1131 
1132 	avl_create(&msp->ms_allocatable_by_size, metaslab_rangesize_compare,
1133 	    sizeof (range_seg_t), offsetof(range_seg_t, rs_pp_node));
1134 }
1135 
1136 /*
1137  * Destroy the block allocator specific components.
1138  */
1139 static void
1140 metaslab_rt_destroy(range_tree_t *rt, void *arg)
1141 {
1142 	metaslab_t *msp = arg;
1143 
1144 	ASSERT3P(rt->rt_arg, ==, msp);
1145 	ASSERT3P(msp->ms_allocatable, ==, rt);
1146 	ASSERT0(avl_numnodes(&msp->ms_allocatable_by_size));
1147 
1148 	avl_destroy(&msp->ms_allocatable_by_size);
1149 }
1150 
1151 static void
1152 metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg)
1153 {
1154 	metaslab_t *msp = arg;
1155 
1156 	ASSERT3P(rt->rt_arg, ==, msp);
1157 	ASSERT3P(msp->ms_allocatable, ==, rt);
1158 	VERIFY(!msp->ms_condensing);
1159 	avl_add(&msp->ms_allocatable_by_size, rs);
1160 }
1161 
1162 static void
1163 metaslab_rt_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
1164 {
1165 	metaslab_t *msp = arg;
1166 
1167 	ASSERT3P(rt->rt_arg, ==, msp);
1168 	ASSERT3P(msp->ms_allocatable, ==, rt);
1169 	VERIFY(!msp->ms_condensing);
1170 	avl_remove(&msp->ms_allocatable_by_size, rs);
1171 }
1172 
1173 static void
1174 metaslab_rt_vacate(range_tree_t *rt, void *arg)
1175 {
1176 	metaslab_t *msp = arg;
1177 
1178 	ASSERT3P(rt->rt_arg, ==, msp);
1179 	ASSERT3P(msp->ms_allocatable, ==, rt);
1180 
1181 	/*
1182 	 * Normally one would walk the tree freeing nodes along the way.
1183 	 * Since the nodes are shared with the range trees we can avoid
1184 	 * walking all nodes and just reinitialize the avl tree. The nodes
1185 	 * will be freed by the range tree, so we don't want to free them here.
1186 	 */
1187 	avl_create(&msp->ms_allocatable_by_size, metaslab_rangesize_compare,
1188 	    sizeof (range_seg_t), offsetof(range_seg_t, rs_pp_node));
1189 }
1190 
1191 static range_tree_ops_t metaslab_rt_ops = {
1192 	metaslab_rt_create,
1193 	metaslab_rt_destroy,
1194 	metaslab_rt_add,
1195 	metaslab_rt_remove,
1196 	metaslab_rt_vacate
1197 };
1198 
1199 /*
1200  * ==========================================================================
1201  * Common allocator routines
1202  * ==========================================================================
1203  */
1204 
1205 /*
1206  * Return the maximum contiguous segment within the metaslab.
1207  */
1208 uint64_t
1209 metaslab_block_maxsize(metaslab_t *msp)
1210 {
1211 	avl_tree_t *t = &msp->ms_allocatable_by_size;
1212 	range_seg_t *rs;
1213 
1214 	if (t == NULL || (rs = avl_last(t)) == NULL)
1215 		return (0ULL);
1216 
1217 	return (rs->rs_end - rs->rs_start);
1218 }
1219 
1220 static range_seg_t *
1221 metaslab_block_find(avl_tree_t *t, uint64_t start, uint64_t size)
1222 {
1223 	range_seg_t *rs, rsearch;
1224 	avl_index_t where;
1225 
1226 	rsearch.rs_start = start;
1227 	rsearch.rs_end = start + size;
1228 
1229 	rs = avl_find(t, &rsearch, &where);
1230 	if (rs == NULL) {
1231 		rs = avl_nearest(t, where, AVL_AFTER);
1232 	}
1233 
1234 	return (rs);
1235 }
1236 
1237 /*
1238  * This is a helper function that can be used by the allocator to find
1239  * a suitable block to allocate. This will search the specified AVL
1240  * tree looking for a block that matches the specified criteria.
1241  */
1242 static uint64_t
1243 metaslab_block_picker(avl_tree_t *t, uint64_t *cursor, uint64_t size,
1244     uint64_t align)
1245 {
1246 	range_seg_t *rs = metaslab_block_find(t, *cursor, size);
1247 
1248 	while (rs != NULL) {
1249 		uint64_t offset = P2ROUNDUP(rs->rs_start, align);
1250 
1251 		if (offset + size <= rs->rs_end) {
1252 			*cursor = offset + size;
1253 			return (offset);
1254 		}
1255 		rs = AVL_NEXT(t, rs);
1256 	}
1257 
1258 	/*
1259 	 * If we know we've searched the whole map (*cursor == 0), give up.
1260 	 * Otherwise, reset the cursor to the beginning and try again.
1261 	 */
1262 	if (*cursor == 0)
1263 		return (-1ULL);
1264 
1265 	*cursor = 0;
1266 	return (metaslab_block_picker(t, cursor, size, align));
1267 }
1268 
1269 /*
1270  * ==========================================================================
1271  * The first-fit block allocator
1272  * ==========================================================================
1273  */
1274 static uint64_t
1275 metaslab_ff_alloc(metaslab_t *msp, uint64_t size)
1276 {
1277 	/*
1278 	 * Find the largest power of 2 block size that evenly divides the
1279 	 * requested size. This is used to try to allocate blocks with similar
1280 	 * alignment from the same area of the metaslab (i.e. same cursor
1281 	 * bucket) but it does not guarantee that other allocations sizes
1282 	 * may exist in the same region.
1283 	 */
1284 	uint64_t align = size & -size;
1285 	uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
1286 	avl_tree_t *t = &msp->ms_allocatable->rt_root;
1287 
1288 	return (metaslab_block_picker(t, cursor, size, align));
1289 }
1290 
1291 static metaslab_ops_t metaslab_ff_ops = {
1292 	metaslab_ff_alloc
1293 };
1294 
1295 /*
1296  * ==========================================================================
1297  * Dynamic block allocator -
1298  * Uses the first fit allocation scheme until space get low and then
1299  * adjusts to a best fit allocation method. Uses metaslab_df_alloc_threshold
1300  * and metaslab_df_free_pct to determine when to switch the allocation scheme.
1301  * ==========================================================================
1302  */
1303 static uint64_t
1304 metaslab_df_alloc(metaslab_t *msp, uint64_t size)
1305 {
1306 	/*
1307 	 * Find the largest power of 2 block size that evenly divides the
1308 	 * requested size. This is used to try to allocate blocks with similar
1309 	 * alignment from the same area of the metaslab (i.e. same cursor
1310 	 * bucket) but it does not guarantee that other allocations sizes
1311 	 * may exist in the same region.
1312 	 */
1313 	uint64_t align = size & -size;
1314 	uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
1315 	range_tree_t *rt = msp->ms_allocatable;
1316 	avl_tree_t *t = &rt->rt_root;
1317 	uint64_t max_size = metaslab_block_maxsize(msp);
1318 	int free_pct = range_tree_space(rt) * 100 / msp->ms_size;
1319 
1320 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1321 	ASSERT3U(avl_numnodes(t), ==,
1322 	    avl_numnodes(&msp->ms_allocatable_by_size));
1323 
1324 	if (max_size < size)
1325 		return (-1ULL);
1326 
1327 	/*
1328 	 * If we're running low on space switch to using the size
1329 	 * sorted AVL tree (best-fit).
1330 	 */
1331 	if (max_size < metaslab_df_alloc_threshold ||
1332 	    free_pct < metaslab_df_free_pct) {
1333 		t = &msp->ms_allocatable_by_size;
1334 		*cursor = 0;
1335 	}
1336 
1337 	return (metaslab_block_picker(t, cursor, size, 1ULL));
1338 }
1339 
1340 static metaslab_ops_t metaslab_df_ops = {
1341 	metaslab_df_alloc
1342 };
1343 
1344 /*
1345  * ==========================================================================
1346  * Cursor fit block allocator -
1347  * Select the largest region in the metaslab, set the cursor to the beginning
1348  * of the range and the cursor_end to the end of the range. As allocations
1349  * are made advance the cursor. Continue allocating from the cursor until
1350  * the range is exhausted and then find a new range.
1351  * ==========================================================================
1352  */
1353 static uint64_t
1354 metaslab_cf_alloc(metaslab_t *msp, uint64_t size)
1355 {
1356 	range_tree_t *rt = msp->ms_allocatable;
1357 	avl_tree_t *t = &msp->ms_allocatable_by_size;
1358 	uint64_t *cursor = &msp->ms_lbas[0];
1359 	uint64_t *cursor_end = &msp->ms_lbas[1];
1360 	uint64_t offset = 0;
1361 
1362 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1363 	ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&rt->rt_root));
1364 
1365 	ASSERT3U(*cursor_end, >=, *cursor);
1366 
1367 	if ((*cursor + size) > *cursor_end) {
1368 		range_seg_t *rs;
1369 
1370 		rs = avl_last(&msp->ms_allocatable_by_size);
1371 		if (rs == NULL || (rs->rs_end - rs->rs_start) < size)
1372 			return (-1ULL);
1373 
1374 		*cursor = rs->rs_start;
1375 		*cursor_end = rs->rs_end;
1376 	}
1377 
1378 	offset = *cursor;
1379 	*cursor += size;
1380 
1381 	return (offset);
1382 }
1383 
1384 static metaslab_ops_t metaslab_cf_ops = {
1385 	metaslab_cf_alloc
1386 };
1387 
1388 /*
1389  * ==========================================================================
1390  * New dynamic fit allocator -
1391  * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift
1392  * contiguous blocks. If no region is found then just use the largest segment
1393  * that remains.
1394  * ==========================================================================
1395  */
1396 
1397 /*
1398  * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift)
1399  * to request from the allocator.
1400  */
1401 uint64_t metaslab_ndf_clump_shift = 4;
1402 
1403 static uint64_t
1404 metaslab_ndf_alloc(metaslab_t *msp, uint64_t size)
1405 {
1406 	avl_tree_t *t = &msp->ms_allocatable->rt_root;
1407 	avl_index_t where;
1408 	range_seg_t *rs, rsearch;
1409 	uint64_t hbit = highbit64(size);
1410 	uint64_t *cursor = &msp->ms_lbas[hbit - 1];
1411 	uint64_t max_size = metaslab_block_maxsize(msp);
1412 
1413 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1414 	ASSERT3U(avl_numnodes(t), ==,
1415 	    avl_numnodes(&msp->ms_allocatable_by_size));
1416 
1417 	if (max_size < size)
1418 		return (-1ULL);
1419 
1420 	rsearch.rs_start = *cursor;
1421 	rsearch.rs_end = *cursor + size;
1422 
1423 	rs = avl_find(t, &rsearch, &where);
1424 	if (rs == NULL || (rs->rs_end - rs->rs_start) < size) {
1425 		t = &msp->ms_allocatable_by_size;
1426 
1427 		rsearch.rs_start = 0;
1428 		rsearch.rs_end = MIN(max_size,
1429 		    1ULL << (hbit + metaslab_ndf_clump_shift));
1430 		rs = avl_find(t, &rsearch, &where);
1431 		if (rs == NULL)
1432 			rs = avl_nearest(t, where, AVL_AFTER);
1433 		ASSERT(rs != NULL);
1434 	}
1435 
1436 	if ((rs->rs_end - rs->rs_start) >= size) {
1437 		*cursor = rs->rs_start + size;
1438 		return (rs->rs_start);
1439 	}
1440 	return (-1ULL);
1441 }
1442 
1443 static metaslab_ops_t metaslab_ndf_ops = {
1444 	metaslab_ndf_alloc
1445 };
1446 
1447 metaslab_ops_t *zfs_metaslab_ops = &metaslab_df_ops;
1448 
1449 /*
1450  * ==========================================================================
1451  * Metaslabs
1452  * ==========================================================================
1453  */
1454 
1455 /*
1456  * Wait for any in-progress metaslab loads to complete.
1457  */
1458 static void
1459 metaslab_load_wait(metaslab_t *msp)
1460 {
1461 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1462 
1463 	while (msp->ms_loading) {
1464 		ASSERT(!msp->ms_loaded);
1465 		cv_wait(&msp->ms_load_cv, &msp->ms_lock);
1466 	}
1467 }
1468 
1469 static int
1470 metaslab_load_impl(metaslab_t *msp)
1471 {
1472 	int error = 0;
1473 
1474 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1475 	ASSERT(msp->ms_loading);
1476 
1477 	/*
1478 	 * Nobody else can manipulate a loading metaslab, so it's now safe
1479 	 * to drop the lock. This way we don't have to hold the lock while
1480 	 * reading the spacemap from disk.
1481 	 */
1482 	mutex_exit(&msp->ms_lock);
1483 
1484 	/*
1485 	 * If the space map has not been allocated yet, then treat
1486 	 * all the space in the metaslab as free and add it to ms_allocatable.
1487 	 */
1488 	if (msp->ms_sm != NULL) {
1489 		error = space_map_load(msp->ms_sm, msp->ms_allocatable,
1490 		    SM_FREE);
1491 	} else {
1492 		range_tree_add(msp->ms_allocatable,
1493 		    msp->ms_start, msp->ms_size);
1494 	}
1495 
1496 	mutex_enter(&msp->ms_lock);
1497 
1498 	if (error != 0)
1499 		return (error);
1500 
1501 	ASSERT3P(msp->ms_group, !=, NULL);
1502 	msp->ms_loaded = B_TRUE;
1503 
1504 	/*
1505 	 * If the metaslab already has a spacemap, then we need to
1506 	 * remove all segments from the defer tree; otherwise, the
1507 	 * metaslab is completely empty and we can skip this.
1508 	 */
1509 	if (msp->ms_sm != NULL) {
1510 		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1511 			range_tree_walk(msp->ms_defer[t],
1512 			    range_tree_remove, msp->ms_allocatable);
1513 		}
1514 	}
1515 	msp->ms_max_size = metaslab_block_maxsize(msp);
1516 
1517 	return (0);
1518 }
1519 
1520 int
1521 metaslab_load(metaslab_t *msp)
1522 {
1523 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1524 
1525 	/*
1526 	 * There may be another thread loading the same metaslab, if that's
1527 	 * the case just wait until the other thread is done and return.
1528 	 */
1529 	metaslab_load_wait(msp);
1530 	if (msp->ms_loaded)
1531 		return (0);
1532 	VERIFY(!msp->ms_loading);
1533 
1534 	msp->ms_loading = B_TRUE;
1535 	int error = metaslab_load_impl(msp);
1536 	msp->ms_loading = B_FALSE;
1537 	cv_broadcast(&msp->ms_load_cv);
1538 
1539 	return (error);
1540 }
1541 
1542 void
1543 metaslab_unload(metaslab_t *msp)
1544 {
1545 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1546 	range_tree_vacate(msp->ms_allocatable, NULL, NULL);
1547 	msp->ms_loaded = B_FALSE;
1548 	msp->ms_weight &= ~METASLAB_ACTIVE_MASK;
1549 	msp->ms_max_size = 0;
1550 }
1551 
1552 int
1553 metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object, uint64_t txg,
1554     metaslab_t **msp)
1555 {
1556 	vdev_t *vd = mg->mg_vd;
1557 	objset_t *mos = vd->vdev_spa->spa_meta_objset;
1558 	metaslab_t *ms;
1559 	int error;
1560 
1561 	ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
1562 	mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL);
1563 	mutex_init(&ms->ms_sync_lock, NULL, MUTEX_DEFAULT, NULL);
1564 	cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL);
1565 
1566 	ms->ms_id = id;
1567 	ms->ms_start = id << vd->vdev_ms_shift;
1568 	ms->ms_size = 1ULL << vd->vdev_ms_shift;
1569 	ms->ms_allocator = -1;
1570 	ms->ms_new = B_TRUE;
1571 
1572 	/*
1573 	 * We only open space map objects that already exist. All others
1574 	 * will be opened when we finally allocate an object for it.
1575 	 */
1576 	if (object != 0) {
1577 		error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start,
1578 		    ms->ms_size, vd->vdev_ashift);
1579 
1580 		if (error != 0) {
1581 			kmem_free(ms, sizeof (metaslab_t));
1582 			return (error);
1583 		}
1584 
1585 		ASSERT(ms->ms_sm != NULL);
1586 	}
1587 
1588 	/*
1589 	 * We create the main range tree here, but we don't create the
1590 	 * other range trees until metaslab_sync_done().  This serves
1591 	 * two purposes: it allows metaslab_sync_done() to detect the
1592 	 * addition of new space; and for debugging, it ensures that we'd
1593 	 * data fault on any attempt to use this metaslab before it's ready.
1594 	 */
1595 	ms->ms_allocatable = range_tree_create(&metaslab_rt_ops, ms);
1596 	metaslab_group_add(mg, ms);
1597 
1598 	metaslab_set_fragmentation(ms);
1599 
1600 	/*
1601 	 * If we're opening an existing pool (txg == 0) or creating
1602 	 * a new one (txg == TXG_INITIAL), all space is available now.
1603 	 * If we're adding space to an existing pool, the new space
1604 	 * does not become available until after this txg has synced.
1605 	 * The metaslab's weight will also be initialized when we sync
1606 	 * out this txg. This ensures that we don't attempt to allocate
1607 	 * from it before we have initialized it completely.
1608 	 */
1609 	if (txg <= TXG_INITIAL)
1610 		metaslab_sync_done(ms, 0);
1611 
1612 	/*
1613 	 * If metaslab_debug_load is set and we're initializing a metaslab
1614 	 * that has an allocated space map object then load the its space
1615 	 * map so that can verify frees.
1616 	 */
1617 	if (metaslab_debug_load && ms->ms_sm != NULL) {
1618 		mutex_enter(&ms->ms_lock);
1619 		VERIFY0(metaslab_load(ms));
1620 		mutex_exit(&ms->ms_lock);
1621 	}
1622 
1623 	if (txg != 0) {
1624 		vdev_dirty(vd, 0, NULL, txg);
1625 		vdev_dirty(vd, VDD_METASLAB, ms, txg);
1626 	}
1627 
1628 	*msp = ms;
1629 
1630 	return (0);
1631 }
1632 
1633 void
1634 metaslab_fini(metaslab_t *msp)
1635 {
1636 	metaslab_group_t *mg = msp->ms_group;
1637 
1638 	metaslab_group_remove(mg, msp);
1639 
1640 	mutex_enter(&msp->ms_lock);
1641 	VERIFY(msp->ms_group == NULL);
1642 	vdev_space_update(mg->mg_vd, -space_map_allocated(msp->ms_sm),
1643 	    0, -msp->ms_size);
1644 	space_map_close(msp->ms_sm);
1645 
1646 	metaslab_unload(msp);
1647 	range_tree_destroy(msp->ms_allocatable);
1648 	range_tree_destroy(msp->ms_freeing);
1649 	range_tree_destroy(msp->ms_freed);
1650 
1651 	for (int t = 0; t < TXG_SIZE; t++) {
1652 		range_tree_destroy(msp->ms_allocating[t]);
1653 	}
1654 
1655 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1656 		range_tree_destroy(msp->ms_defer[t]);
1657 	}
1658 	ASSERT0(msp->ms_deferspace);
1659 
1660 	range_tree_destroy(msp->ms_checkpointing);
1661 
1662 	mutex_exit(&msp->ms_lock);
1663 	cv_destroy(&msp->ms_load_cv);
1664 	mutex_destroy(&msp->ms_lock);
1665 	mutex_destroy(&msp->ms_sync_lock);
1666 	ASSERT3U(msp->ms_allocator, ==, -1);
1667 
1668 	kmem_free(msp, sizeof (metaslab_t));
1669 }
1670 
1671 #define	FRAGMENTATION_TABLE_SIZE	17
1672 
1673 /*
1674  * This table defines a segment size based fragmentation metric that will
1675  * allow each metaslab to derive its own fragmentation value. This is done
1676  * by calculating the space in each bucket of the spacemap histogram and
1677  * multiplying that by the fragmetation metric in this table. Doing
1678  * this for all buckets and dividing it by the total amount of free
1679  * space in this metaslab (i.e. the total free space in all buckets) gives
1680  * us the fragmentation metric. This means that a high fragmentation metric
1681  * equates to most of the free space being comprised of small segments.
1682  * Conversely, if the metric is low, then most of the free space is in
1683  * large segments. A 10% change in fragmentation equates to approximately
1684  * double the number of segments.
1685  *
1686  * This table defines 0% fragmented space using 16MB segments. Testing has
1687  * shown that segments that are greater than or equal to 16MB do not suffer
1688  * from drastic performance problems. Using this value, we derive the rest
1689  * of the table. Since the fragmentation value is never stored on disk, it
1690  * is possible to change these calculations in the future.
1691  */
1692 int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = {
1693 	100,	/* 512B	*/
1694 	100,	/* 1K	*/
1695 	98,	/* 2K	*/
1696 	95,	/* 4K	*/
1697 	90,	/* 8K	*/
1698 	80,	/* 16K	*/
1699 	70,	/* 32K	*/
1700 	60,	/* 64K	*/
1701 	50,	/* 128K	*/
1702 	40,	/* 256K	*/
1703 	30,	/* 512K	*/
1704 	20,	/* 1M	*/
1705 	15,	/* 2M	*/
1706 	10,	/* 4M	*/
1707 	5,	/* 8M	*/
1708 	0	/* 16M	*/
1709 };
1710 
1711 /*
1712  * Calclate the metaslab's fragmentation metric. A return value
1713  * of ZFS_FRAG_INVALID means that the metaslab has not been upgraded and does
1714  * not support this metric. Otherwise, the return value should be in the
1715  * range [0, 100].
1716  */
1717 static void
1718 metaslab_set_fragmentation(metaslab_t *msp)
1719 {
1720 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1721 	uint64_t fragmentation = 0;
1722 	uint64_t total = 0;
1723 	boolean_t feature_enabled = spa_feature_is_enabled(spa,
1724 	    SPA_FEATURE_SPACEMAP_HISTOGRAM);
1725 
1726 	if (!feature_enabled) {
1727 		msp->ms_fragmentation = ZFS_FRAG_INVALID;
1728 		return;
1729 	}
1730 
1731 	/*
1732 	 * A null space map means that the entire metaslab is free
1733 	 * and thus is not fragmented.
1734 	 */
1735 	if (msp->ms_sm == NULL) {
1736 		msp->ms_fragmentation = 0;
1737 		return;
1738 	}
1739 
1740 	/*
1741 	 * If this metaslab's space map has not been upgraded, flag it
1742 	 * so that we upgrade next time we encounter it.
1743 	 */
1744 	if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) {
1745 		uint64_t txg = spa_syncing_txg(spa);
1746 		vdev_t *vd = msp->ms_group->mg_vd;
1747 
1748 		/*
1749 		 * If we've reached the final dirty txg, then we must
1750 		 * be shutting down the pool. We don't want to dirty
1751 		 * any data past this point so skip setting the condense
1752 		 * flag. We can retry this action the next time the pool
1753 		 * is imported.
1754 		 */
1755 		if (spa_writeable(spa) && txg < spa_final_dirty_txg(spa)) {
1756 			msp->ms_condense_wanted = B_TRUE;
1757 			vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
1758 			zfs_dbgmsg("txg %llu, requesting force condense: "
1759 			    "ms_id %llu, vdev_id %llu", txg, msp->ms_id,
1760 			    vd->vdev_id);
1761 		}
1762 		msp->ms_fragmentation = ZFS_FRAG_INVALID;
1763 		return;
1764 	}
1765 
1766 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1767 		uint64_t space = 0;
1768 		uint8_t shift = msp->ms_sm->sm_shift;
1769 
1770 		int idx = MIN(shift - SPA_MINBLOCKSHIFT + i,
1771 		    FRAGMENTATION_TABLE_SIZE - 1);
1772 
1773 		if (msp->ms_sm->sm_phys->smp_histogram[i] == 0)
1774 			continue;
1775 
1776 		space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift);
1777 		total += space;
1778 
1779 		ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE);
1780 		fragmentation += space * zfs_frag_table[idx];
1781 	}
1782 
1783 	if (total > 0)
1784 		fragmentation /= total;
1785 	ASSERT3U(fragmentation, <=, 100);
1786 
1787 	msp->ms_fragmentation = fragmentation;
1788 }
1789 
1790 /*
1791  * Compute a weight -- a selection preference value -- for the given metaslab.
1792  * This is based on the amount of free space, the level of fragmentation,
1793  * the LBA range, and whether the metaslab is loaded.
1794  */
1795 static uint64_t
1796 metaslab_space_weight(metaslab_t *msp)
1797 {
1798 	metaslab_group_t *mg = msp->ms_group;
1799 	vdev_t *vd = mg->mg_vd;
1800 	uint64_t weight, space;
1801 
1802 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1803 	ASSERT(!vd->vdev_removing);
1804 
1805 	/*
1806 	 * The baseline weight is the metaslab's free space.
1807 	 */
1808 	space = msp->ms_size - space_map_allocated(msp->ms_sm);
1809 
1810 	if (metaslab_fragmentation_factor_enabled &&
1811 	    msp->ms_fragmentation != ZFS_FRAG_INVALID) {
1812 		/*
1813 		 * Use the fragmentation information to inversely scale
1814 		 * down the baseline weight. We need to ensure that we
1815 		 * don't exclude this metaslab completely when it's 100%
1816 		 * fragmented. To avoid this we reduce the fragmented value
1817 		 * by 1.
1818 		 */
1819 		space = (space * (100 - (msp->ms_fragmentation - 1))) / 100;
1820 
1821 		/*
1822 		 * If space < SPA_MINBLOCKSIZE, then we will not allocate from
1823 		 * this metaslab again. The fragmentation metric may have
1824 		 * decreased the space to something smaller than
1825 		 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE
1826 		 * so that we can consume any remaining space.
1827 		 */
1828 		if (space > 0 && space < SPA_MINBLOCKSIZE)
1829 			space = SPA_MINBLOCKSIZE;
1830 	}
1831 	weight = space;
1832 
1833 	/*
1834 	 * Modern disks have uniform bit density and constant angular velocity.
1835 	 * Therefore, the outer recording zones are faster (higher bandwidth)
1836 	 * than the inner zones by the ratio of outer to inner track diameter,
1837 	 * which is typically around 2:1.  We account for this by assigning
1838 	 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
1839 	 * In effect, this means that we'll select the metaslab with the most
1840 	 * free bandwidth rather than simply the one with the most free space.
1841 	 */
1842 	if (metaslab_lba_weighting_enabled) {
1843 		weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count;
1844 		ASSERT(weight >= space && weight <= 2 * space);
1845 	}
1846 
1847 	/*
1848 	 * If this metaslab is one we're actively using, adjust its
1849 	 * weight to make it preferable to any inactive metaslab so
1850 	 * we'll polish it off. If the fragmentation on this metaslab
1851 	 * has exceed our threshold, then don't mark it active.
1852 	 */
1853 	if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID &&
1854 	    msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) {
1855 		weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
1856 	}
1857 
1858 	WEIGHT_SET_SPACEBASED(weight);
1859 	return (weight);
1860 }
1861 
1862 /*
1863  * Return the weight of the specified metaslab, according to the segment-based
1864  * weighting algorithm. The metaslab must be loaded. This function can
1865  * be called within a sync pass since it relies only on the metaslab's
1866  * range tree which is always accurate when the metaslab is loaded.
1867  */
1868 static uint64_t
1869 metaslab_weight_from_range_tree(metaslab_t *msp)
1870 {
1871 	uint64_t weight = 0;
1872 	uint32_t segments = 0;
1873 
1874 	ASSERT(msp->ms_loaded);
1875 
1876 	for (int i = RANGE_TREE_HISTOGRAM_SIZE - 1; i >= SPA_MINBLOCKSHIFT;
1877 	    i--) {
1878 		uint8_t shift = msp->ms_group->mg_vd->vdev_ashift;
1879 		int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
1880 
1881 		segments <<= 1;
1882 		segments += msp->ms_allocatable->rt_histogram[i];
1883 
1884 		/*
1885 		 * The range tree provides more precision than the space map
1886 		 * and must be downgraded so that all values fit within the
1887 		 * space map's histogram. This allows us to compare loaded
1888 		 * vs. unloaded metaslabs to determine which metaslab is
1889 		 * considered "best".
1890 		 */
1891 		if (i > max_idx)
1892 			continue;
1893 
1894 		if (segments != 0) {
1895 			WEIGHT_SET_COUNT(weight, segments);
1896 			WEIGHT_SET_INDEX(weight, i);
1897 			WEIGHT_SET_ACTIVE(weight, 0);
1898 			break;
1899 		}
1900 	}
1901 	return (weight);
1902 }
1903 
1904 /*
1905  * Calculate the weight based on the on-disk histogram. This should only
1906  * be called after a sync pass has completely finished since the on-disk
1907  * information is updated in metaslab_sync().
1908  */
1909 static uint64_t
1910 metaslab_weight_from_spacemap(metaslab_t *msp)
1911 {
1912 	uint64_t weight = 0;
1913 
1914 	for (int i = SPACE_MAP_HISTOGRAM_SIZE - 1; i >= 0; i--) {
1915 		if (msp->ms_sm->sm_phys->smp_histogram[i] != 0) {
1916 			WEIGHT_SET_COUNT(weight,
1917 			    msp->ms_sm->sm_phys->smp_histogram[i]);
1918 			WEIGHT_SET_INDEX(weight, i +
1919 			    msp->ms_sm->sm_shift);
1920 			WEIGHT_SET_ACTIVE(weight, 0);
1921 			break;
1922 		}
1923 	}
1924 	return (weight);
1925 }
1926 
1927 /*
1928  * Compute a segment-based weight for the specified metaslab. The weight
1929  * is determined by highest bucket in the histogram. The information
1930  * for the highest bucket is encoded into the weight value.
1931  */
1932 static uint64_t
1933 metaslab_segment_weight(metaslab_t *msp)
1934 {
1935 	metaslab_group_t *mg = msp->ms_group;
1936 	uint64_t weight = 0;
1937 	uint8_t shift = mg->mg_vd->vdev_ashift;
1938 
1939 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1940 
1941 	/*
1942 	 * The metaslab is completely free.
1943 	 */
1944 	if (space_map_allocated(msp->ms_sm) == 0) {
1945 		int idx = highbit64(msp->ms_size) - 1;
1946 		int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
1947 
1948 		if (idx < max_idx) {
1949 			WEIGHT_SET_COUNT(weight, 1ULL);
1950 			WEIGHT_SET_INDEX(weight, idx);
1951 		} else {
1952 			WEIGHT_SET_COUNT(weight, 1ULL << (idx - max_idx));
1953 			WEIGHT_SET_INDEX(weight, max_idx);
1954 		}
1955 		WEIGHT_SET_ACTIVE(weight, 0);
1956 		ASSERT(!WEIGHT_IS_SPACEBASED(weight));
1957 
1958 		return (weight);
1959 	}
1960 
1961 	ASSERT3U(msp->ms_sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
1962 
1963 	/*
1964 	 * If the metaslab is fully allocated then just make the weight 0.
1965 	 */
1966 	if (space_map_allocated(msp->ms_sm) == msp->ms_size)
1967 		return (0);
1968 	/*
1969 	 * If the metaslab is already loaded, then use the range tree to
1970 	 * determine the weight. Otherwise, we rely on the space map information
1971 	 * to generate the weight.
1972 	 */
1973 	if (msp->ms_loaded) {
1974 		weight = metaslab_weight_from_range_tree(msp);
1975 	} else {
1976 		weight = metaslab_weight_from_spacemap(msp);
1977 	}
1978 
1979 	/*
1980 	 * If the metaslab was active the last time we calculated its weight
1981 	 * then keep it active. We want to consume the entire region that
1982 	 * is associated with this weight.
1983 	 */
1984 	if (msp->ms_activation_weight != 0 && weight != 0)
1985 		WEIGHT_SET_ACTIVE(weight, WEIGHT_GET_ACTIVE(msp->ms_weight));
1986 	return (weight);
1987 }
1988 
1989 /*
1990  * Determine if we should attempt to allocate from this metaslab. If the
1991  * metaslab has a maximum size then we can quickly determine if the desired
1992  * allocation size can be satisfied. Otherwise, if we're using segment-based
1993  * weighting then we can determine the maximum allocation that this metaslab
1994  * can accommodate based on the index encoded in the weight. If we're using
1995  * space-based weights then rely on the entire weight (excluding the weight
1996  * type bit).
1997  */
1998 boolean_t
1999 metaslab_should_allocate(metaslab_t *msp, uint64_t asize)
2000 {
2001 	boolean_t should_allocate;
2002 
2003 	if (msp->ms_max_size != 0)
2004 		return (msp->ms_max_size >= asize);
2005 
2006 	if (!WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
2007 		/*
2008 		 * The metaslab segment weight indicates segments in the
2009 		 * range [2^i, 2^(i+1)), where i is the index in the weight.
2010 		 * Since the asize might be in the middle of the range, we
2011 		 * should attempt the allocation if asize < 2^(i+1).
2012 		 */
2013 		should_allocate = (asize <
2014 		    1ULL << (WEIGHT_GET_INDEX(msp->ms_weight) + 1));
2015 	} else {
2016 		should_allocate = (asize <=
2017 		    (msp->ms_weight & ~METASLAB_WEIGHT_TYPE));
2018 	}
2019 	return (should_allocate);
2020 }
2021 
2022 static uint64_t
2023 metaslab_weight(metaslab_t *msp)
2024 {
2025 	vdev_t *vd = msp->ms_group->mg_vd;
2026 	spa_t *spa = vd->vdev_spa;
2027 	uint64_t weight;
2028 
2029 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2030 
2031 	/*
2032 	 * If this vdev is in the process of being removed, there is nothing
2033 	 * for us to do here.
2034 	 */
2035 	if (vd->vdev_removing)
2036 		return (0);
2037 
2038 	metaslab_set_fragmentation(msp);
2039 
2040 	/*
2041 	 * Update the maximum size if the metaslab is loaded. This will
2042 	 * ensure that we get an accurate maximum size if newly freed space
2043 	 * has been added back into the free tree.
2044 	 */
2045 	if (msp->ms_loaded)
2046 		msp->ms_max_size = metaslab_block_maxsize(msp);
2047 
2048 	/*
2049 	 * Segment-based weighting requires space map histogram support.
2050 	 */
2051 	if (zfs_metaslab_segment_weight_enabled &&
2052 	    spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) &&
2053 	    (msp->ms_sm == NULL || msp->ms_sm->sm_dbuf->db_size ==
2054 	    sizeof (space_map_phys_t))) {
2055 		weight = metaslab_segment_weight(msp);
2056 	} else {
2057 		weight = metaslab_space_weight(msp);
2058 	}
2059 	return (weight);
2060 }
2061 
2062 static int
2063 metaslab_activate_allocator(metaslab_group_t *mg, metaslab_t *msp,
2064     int allocator, uint64_t activation_weight)
2065 {
2066 	/*
2067 	 * If we're activating for the claim code, we don't want to actually
2068 	 * set the metaslab up for a specific allocator.
2069 	 */
2070 	if (activation_weight == METASLAB_WEIGHT_CLAIM)
2071 		return (0);
2072 	metaslab_t **arr = (activation_weight == METASLAB_WEIGHT_PRIMARY ?
2073 	    mg->mg_primaries : mg->mg_secondaries);
2074 
2075 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2076 	mutex_enter(&mg->mg_lock);
2077 	if (arr[allocator] != NULL) {
2078 		mutex_exit(&mg->mg_lock);
2079 		return (EEXIST);
2080 	}
2081 
2082 	arr[allocator] = msp;
2083 	ASSERT3S(msp->ms_allocator, ==, -1);
2084 	msp->ms_allocator = allocator;
2085 	msp->ms_primary = (activation_weight == METASLAB_WEIGHT_PRIMARY);
2086 	mutex_exit(&mg->mg_lock);
2087 
2088 	return (0);
2089 }
2090 
2091 static int
2092 metaslab_activate(metaslab_t *msp, int allocator, uint64_t activation_weight)
2093 {
2094 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2095 
2096 	if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
2097 		int error = metaslab_load(msp);
2098 		if (error != 0) {
2099 			metaslab_group_sort(msp->ms_group, msp, 0);
2100 			return (error);
2101 		}
2102 		if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
2103 			/*
2104 			 * The metaslab was activated for another allocator
2105 			 * while we were waiting, we should reselect.
2106 			 */
2107 			return (EBUSY);
2108 		}
2109 		if ((error = metaslab_activate_allocator(msp->ms_group, msp,
2110 		    allocator, activation_weight)) != 0) {
2111 			return (error);
2112 		}
2113 
2114 		msp->ms_activation_weight = msp->ms_weight;
2115 		metaslab_group_sort(msp->ms_group, msp,
2116 		    msp->ms_weight | activation_weight);
2117 	}
2118 	ASSERT(msp->ms_loaded);
2119 	ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
2120 
2121 	return (0);
2122 }
2123 
2124 static void
2125 metaslab_passivate_allocator(metaslab_group_t *mg, metaslab_t *msp,
2126     uint64_t weight)
2127 {
2128 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2129 	if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
2130 		metaslab_group_sort(mg, msp, weight);
2131 		return;
2132 	}
2133 
2134 	mutex_enter(&mg->mg_lock);
2135 	ASSERT3P(msp->ms_group, ==, mg);
2136 	if (msp->ms_primary) {
2137 		ASSERT3U(0, <=, msp->ms_allocator);
2138 		ASSERT3U(msp->ms_allocator, <, mg->mg_allocators);
2139 		ASSERT3P(mg->mg_primaries[msp->ms_allocator], ==, msp);
2140 		ASSERT(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
2141 		mg->mg_primaries[msp->ms_allocator] = NULL;
2142 	} else {
2143 		ASSERT(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
2144 		ASSERT3P(mg->mg_secondaries[msp->ms_allocator], ==, msp);
2145 		mg->mg_secondaries[msp->ms_allocator] = NULL;
2146 	}
2147 	msp->ms_allocator = -1;
2148 	metaslab_group_sort_impl(mg, msp, weight);
2149 	mutex_exit(&mg->mg_lock);
2150 }
2151 
2152 static void
2153 metaslab_passivate(metaslab_t *msp, uint64_t weight)
2154 {
2155 	uint64_t size = weight & ~METASLAB_WEIGHT_TYPE;
2156 
2157 	/*
2158 	 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
2159 	 * this metaslab again.  In that case, it had better be empty,
2160 	 * or we would be leaving space on the table.
2161 	 */
2162 	ASSERT(size >= SPA_MINBLOCKSIZE ||
2163 	    range_tree_is_empty(msp->ms_allocatable));
2164 	ASSERT0(weight & METASLAB_ACTIVE_MASK);
2165 
2166 	msp->ms_activation_weight = 0;
2167 	metaslab_passivate_allocator(msp->ms_group, msp, weight);
2168 	ASSERT((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0);
2169 }
2170 
2171 /*
2172  * Segment-based metaslabs are activated once and remain active until
2173  * we either fail an allocation attempt (similar to space-based metaslabs)
2174  * or have exhausted the free space in zfs_metaslab_switch_threshold
2175  * buckets since the metaslab was activated. This function checks to see
2176  * if we've exhaused the zfs_metaslab_switch_threshold buckets in the
2177  * metaslab and passivates it proactively. This will allow us to select a
2178  * metaslabs with larger contiguous region if any remaining within this
2179  * metaslab group. If we're in sync pass > 1, then we continue using this
2180  * metaslab so that we don't dirty more block and cause more sync passes.
2181  */
2182 void
2183 metaslab_segment_may_passivate(metaslab_t *msp)
2184 {
2185 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2186 
2187 	if (WEIGHT_IS_SPACEBASED(msp->ms_weight) || spa_sync_pass(spa) > 1)
2188 		return;
2189 
2190 	/*
2191 	 * Since we are in the middle of a sync pass, the most accurate
2192 	 * information that is accessible to us is the in-core range tree
2193 	 * histogram; calculate the new weight based on that information.
2194 	 */
2195 	uint64_t weight = metaslab_weight_from_range_tree(msp);
2196 	int activation_idx = WEIGHT_GET_INDEX(msp->ms_activation_weight);
2197 	int current_idx = WEIGHT_GET_INDEX(weight);
2198 
2199 	if (current_idx <= activation_idx - zfs_metaslab_switch_threshold)
2200 		metaslab_passivate(msp, weight);
2201 }
2202 
2203 static void
2204 metaslab_preload(void *arg)
2205 {
2206 	metaslab_t *msp = arg;
2207 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2208 
2209 	ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock));
2210 
2211 	mutex_enter(&msp->ms_lock);
2212 	(void) metaslab_load(msp);
2213 	msp->ms_selected_txg = spa_syncing_txg(spa);
2214 	mutex_exit(&msp->ms_lock);
2215 }
2216 
2217 static void
2218 metaslab_group_preload(metaslab_group_t *mg)
2219 {
2220 	spa_t *spa = mg->mg_vd->vdev_spa;
2221 	metaslab_t *msp;
2222 	avl_tree_t *t = &mg->mg_metaslab_tree;
2223 	int m = 0;
2224 
2225 	if (spa_shutting_down(spa) || !metaslab_preload_enabled) {
2226 		taskq_wait(mg->mg_taskq);
2227 		return;
2228 	}
2229 
2230 	mutex_enter(&mg->mg_lock);
2231 
2232 	/*
2233 	 * Load the next potential metaslabs
2234 	 */
2235 	for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) {
2236 		ASSERT3P(msp->ms_group, ==, mg);
2237 
2238 		/*
2239 		 * We preload only the maximum number of metaslabs specified
2240 		 * by metaslab_preload_limit. If a metaslab is being forced
2241 		 * to condense then we preload it too. This will ensure
2242 		 * that force condensing happens in the next txg.
2243 		 */
2244 		if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) {
2245 			continue;
2246 		}
2247 
2248 		VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload,
2249 		    msp, TQ_SLEEP) != NULL);
2250 	}
2251 	mutex_exit(&mg->mg_lock);
2252 }
2253 
2254 /*
2255  * Determine if the space map's on-disk footprint is past our tolerance
2256  * for inefficiency. We would like to use the following criteria to make
2257  * our decision:
2258  *
2259  * 1. The size of the space map object should not dramatically increase as a
2260  * result of writing out the free space range tree.
2261  *
2262  * 2. The minimal on-disk space map representation is zfs_condense_pct/100
2263  * times the size than the free space range tree representation
2264  * (i.e. zfs_condense_pct = 110 and in-core = 1MB, minimal = 1.1MB).
2265  *
2266  * 3. The on-disk size of the space map should actually decrease.
2267  *
2268  * Unfortunately, we cannot compute the on-disk size of the space map in this
2269  * context because we cannot accurately compute the effects of compression, etc.
2270  * Instead, we apply the heuristic described in the block comment for
2271  * zfs_metaslab_condense_block_threshold - we only condense if the space used
2272  * is greater than a threshold number of blocks.
2273  */
2274 static boolean_t
2275 metaslab_should_condense(metaslab_t *msp)
2276 {
2277 	space_map_t *sm = msp->ms_sm;
2278 	vdev_t *vd = msp->ms_group->mg_vd;
2279 	uint64_t vdev_blocksize = 1 << vd->vdev_ashift;
2280 	uint64_t current_txg = spa_syncing_txg(vd->vdev_spa);
2281 
2282 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2283 	ASSERT(msp->ms_loaded);
2284 
2285 	/*
2286 	 * Allocations and frees in early passes are generally more space
2287 	 * efficient (in terms of blocks described in space map entries)
2288 	 * than the ones in later passes (e.g. we don't compress after
2289 	 * sync pass 5) and condensing a metaslab multiple times in a txg
2290 	 * could degrade performance.
2291 	 *
2292 	 * Thus we prefer condensing each metaslab at most once every txg at
2293 	 * the earliest sync pass possible. If a metaslab is eligible for
2294 	 * condensing again after being considered for condensing within the
2295 	 * same txg, it will hopefully be dirty in the next txg where it will
2296 	 * be condensed at an earlier pass.
2297 	 */
2298 	if (msp->ms_condense_checked_txg == current_txg)
2299 		return (B_FALSE);
2300 	msp->ms_condense_checked_txg = current_txg;
2301 
2302 	/*
2303 	 * We always condense metaslabs that are empty and metaslabs for
2304 	 * which a condense request has been made.
2305 	 */
2306 	if (avl_is_empty(&msp->ms_allocatable_by_size) ||
2307 	    msp->ms_condense_wanted)
2308 		return (B_TRUE);
2309 
2310 	uint64_t object_size = space_map_length(msp->ms_sm);
2311 	uint64_t optimal_size = space_map_estimate_optimal_size(sm,
2312 	    msp->ms_allocatable, SM_NO_VDEVID);
2313 
2314 	dmu_object_info_t doi;
2315 	dmu_object_info_from_db(sm->sm_dbuf, &doi);
2316 	uint64_t record_size = MAX(doi.doi_data_block_size, vdev_blocksize);
2317 
2318 	return (object_size >= (optimal_size * zfs_condense_pct / 100) &&
2319 	    object_size > zfs_metaslab_condense_block_threshold * record_size);
2320 }
2321 
2322 /*
2323  * Condense the on-disk space map representation to its minimized form.
2324  * The minimized form consists of a small number of allocations followed by
2325  * the entries of the free range tree.
2326  */
2327 static void
2328 metaslab_condense(metaslab_t *msp, uint64_t txg, dmu_tx_t *tx)
2329 {
2330 	range_tree_t *condense_tree;
2331 	space_map_t *sm = msp->ms_sm;
2332 
2333 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2334 	ASSERT(msp->ms_loaded);
2335 
2336 	zfs_dbgmsg("condensing: txg %llu, msp[%llu] %p, vdev id %llu, "
2337 	    "spa %s, smp size %llu, segments %lu, forcing condense=%s", txg,
2338 	    msp->ms_id, msp, msp->ms_group->mg_vd->vdev_id,
2339 	    msp->ms_group->mg_vd->vdev_spa->spa_name,
2340 	    space_map_length(msp->ms_sm),
2341 	    avl_numnodes(&msp->ms_allocatable->rt_root),
2342 	    msp->ms_condense_wanted ? "TRUE" : "FALSE");
2343 
2344 	msp->ms_condense_wanted = B_FALSE;
2345 
2346 	/*
2347 	 * Create an range tree that is 100% allocated. We remove segments
2348 	 * that have been freed in this txg, any deferred frees that exist,
2349 	 * and any allocation in the future. Removing segments should be
2350 	 * a relatively inexpensive operation since we expect these trees to
2351 	 * have a small number of nodes.
2352 	 */
2353 	condense_tree = range_tree_create(NULL, NULL);
2354 	range_tree_add(condense_tree, msp->ms_start, msp->ms_size);
2355 
2356 	range_tree_walk(msp->ms_freeing, range_tree_remove, condense_tree);
2357 	range_tree_walk(msp->ms_freed, range_tree_remove, condense_tree);
2358 
2359 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2360 		range_tree_walk(msp->ms_defer[t],
2361 		    range_tree_remove, condense_tree);
2362 	}
2363 
2364 	for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
2365 		range_tree_walk(msp->ms_allocating[(txg + t) & TXG_MASK],
2366 		    range_tree_remove, condense_tree);
2367 	}
2368 
2369 	/*
2370 	 * We're about to drop the metaslab's lock thus allowing
2371 	 * other consumers to change it's content. Set the
2372 	 * metaslab's ms_condensing flag to ensure that
2373 	 * allocations on this metaslab do not occur while we're
2374 	 * in the middle of committing it to disk. This is only critical
2375 	 * for ms_allocatable as all other range trees use per txg
2376 	 * views of their content.
2377 	 */
2378 	msp->ms_condensing = B_TRUE;
2379 
2380 	mutex_exit(&msp->ms_lock);
2381 	space_map_truncate(sm, zfs_metaslab_sm_blksz, tx);
2382 
2383 	/*
2384 	 * While we would ideally like to create a space map representation
2385 	 * that consists only of allocation records, doing so can be
2386 	 * prohibitively expensive because the in-core free tree can be
2387 	 * large, and therefore computationally expensive to subtract
2388 	 * from the condense_tree. Instead we sync out two trees, a cheap
2389 	 * allocation only tree followed by the in-core free tree. While not
2390 	 * optimal, this is typically close to optimal, and much cheaper to
2391 	 * compute.
2392 	 */
2393 	space_map_write(sm, condense_tree, SM_ALLOC, SM_NO_VDEVID, tx);
2394 	range_tree_vacate(condense_tree, NULL, NULL);
2395 	range_tree_destroy(condense_tree);
2396 
2397 	space_map_write(sm, msp->ms_allocatable, SM_FREE, SM_NO_VDEVID, tx);
2398 	mutex_enter(&msp->ms_lock);
2399 	msp->ms_condensing = B_FALSE;
2400 }
2401 
2402 /*
2403  * Write a metaslab to disk in the context of the specified transaction group.
2404  */
2405 void
2406 metaslab_sync(metaslab_t *msp, uint64_t txg)
2407 {
2408 	metaslab_group_t *mg = msp->ms_group;
2409 	vdev_t *vd = mg->mg_vd;
2410 	spa_t *spa = vd->vdev_spa;
2411 	objset_t *mos = spa_meta_objset(spa);
2412 	range_tree_t *alloctree = msp->ms_allocating[txg & TXG_MASK];
2413 	dmu_tx_t *tx;
2414 	uint64_t object = space_map_object(msp->ms_sm);
2415 
2416 	ASSERT(!vd->vdev_ishole);
2417 
2418 	/*
2419 	 * This metaslab has just been added so there's no work to do now.
2420 	 */
2421 	if (msp->ms_freeing == NULL) {
2422 		ASSERT3P(alloctree, ==, NULL);
2423 		return;
2424 	}
2425 
2426 	ASSERT3P(alloctree, !=, NULL);
2427 	ASSERT3P(msp->ms_freeing, !=, NULL);
2428 	ASSERT3P(msp->ms_freed, !=, NULL);
2429 	ASSERT3P(msp->ms_checkpointing, !=, NULL);
2430 
2431 	/*
2432 	 * Normally, we don't want to process a metaslab if there are no
2433 	 * allocations or frees to perform. However, if the metaslab is being
2434 	 * forced to condense and it's loaded, we need to let it through.
2435 	 */
2436 	if (range_tree_is_empty(alloctree) &&
2437 	    range_tree_is_empty(msp->ms_freeing) &&
2438 	    range_tree_is_empty(msp->ms_checkpointing) &&
2439 	    !(msp->ms_loaded && msp->ms_condense_wanted))
2440 		return;
2441 
2442 
2443 	VERIFY(txg <= spa_final_dirty_txg(spa));
2444 
2445 	/*
2446 	 * The only state that can actually be changing concurrently with
2447 	 * metaslab_sync() is the metaslab's ms_allocatable.  No other
2448 	 * thread can be modifying this txg's alloc, freeing,
2449 	 * freed, or space_map_phys_t.  We drop ms_lock whenever we
2450 	 * could call into the DMU, because the DMU can call down to us
2451 	 * (e.g. via zio_free()) at any time.
2452 	 *
2453 	 * The spa_vdev_remove_thread() can be reading metaslab state
2454 	 * concurrently, and it is locked out by the ms_sync_lock.  Note
2455 	 * that the ms_lock is insufficient for this, because it is dropped
2456 	 * by space_map_write().
2457 	 */
2458 	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2459 
2460 	if (msp->ms_sm == NULL) {
2461 		uint64_t new_object;
2462 
2463 		new_object = space_map_alloc(mos, zfs_metaslab_sm_blksz, tx);
2464 		VERIFY3U(new_object, !=, 0);
2465 
2466 		VERIFY0(space_map_open(&msp->ms_sm, mos, new_object,
2467 		    msp->ms_start, msp->ms_size, vd->vdev_ashift));
2468 		ASSERT(msp->ms_sm != NULL);
2469 	}
2470 
2471 	if (!range_tree_is_empty(msp->ms_checkpointing) &&
2472 	    vd->vdev_checkpoint_sm == NULL) {
2473 		ASSERT(spa_has_checkpoint(spa));
2474 
2475 		uint64_t new_object = space_map_alloc(mos,
2476 		    vdev_standard_sm_blksz, tx);
2477 		VERIFY3U(new_object, !=, 0);
2478 
2479 		VERIFY0(space_map_open(&vd->vdev_checkpoint_sm,
2480 		    mos, new_object, 0, vd->vdev_asize, vd->vdev_ashift));
2481 		ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
2482 
2483 		/*
2484 		 * We save the space map object as an entry in vdev_top_zap
2485 		 * so it can be retrieved when the pool is reopened after an
2486 		 * export or through zdb.
2487 		 */
2488 		VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset,
2489 		    vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
2490 		    sizeof (new_object), 1, &new_object, tx));
2491 	}
2492 
2493 	mutex_enter(&msp->ms_sync_lock);
2494 	mutex_enter(&msp->ms_lock);
2495 
2496 	/*
2497 	 * Note: metaslab_condense() clears the space map's histogram.
2498 	 * Therefore we must verify and remove this histogram before
2499 	 * condensing.
2500 	 */
2501 	metaslab_group_histogram_verify(mg);
2502 	metaslab_class_histogram_verify(mg->mg_class);
2503 	metaslab_group_histogram_remove(mg, msp);
2504 
2505 	if (msp->ms_loaded && metaslab_should_condense(msp)) {
2506 		metaslab_condense(msp, txg, tx);
2507 	} else {
2508 		mutex_exit(&msp->ms_lock);
2509 		space_map_write(msp->ms_sm, alloctree, SM_ALLOC,
2510 		    SM_NO_VDEVID, tx);
2511 		space_map_write(msp->ms_sm, msp->ms_freeing, SM_FREE,
2512 		    SM_NO_VDEVID, tx);
2513 		mutex_enter(&msp->ms_lock);
2514 	}
2515 
2516 	if (!range_tree_is_empty(msp->ms_checkpointing)) {
2517 		ASSERT(spa_has_checkpoint(spa));
2518 		ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
2519 
2520 		/*
2521 		 * Since we are doing writes to disk and the ms_checkpointing
2522 		 * tree won't be changing during that time, we drop the
2523 		 * ms_lock while writing to the checkpoint space map.
2524 		 */
2525 		mutex_exit(&msp->ms_lock);
2526 		space_map_write(vd->vdev_checkpoint_sm,
2527 		    msp->ms_checkpointing, SM_FREE, SM_NO_VDEVID, tx);
2528 		mutex_enter(&msp->ms_lock);
2529 		space_map_update(vd->vdev_checkpoint_sm);
2530 
2531 		spa->spa_checkpoint_info.sci_dspace +=
2532 		    range_tree_space(msp->ms_checkpointing);
2533 		vd->vdev_stat.vs_checkpoint_space +=
2534 		    range_tree_space(msp->ms_checkpointing);
2535 		ASSERT3U(vd->vdev_stat.vs_checkpoint_space, ==,
2536 		    -vd->vdev_checkpoint_sm->sm_alloc);
2537 
2538 		range_tree_vacate(msp->ms_checkpointing, NULL, NULL);
2539 	}
2540 
2541 	if (msp->ms_loaded) {
2542 		/*
2543 		 * When the space map is loaded, we have an accurate
2544 		 * histogram in the range tree. This gives us an opportunity
2545 		 * to bring the space map's histogram up-to-date so we clear
2546 		 * it first before updating it.
2547 		 */
2548 		space_map_histogram_clear(msp->ms_sm);
2549 		space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
2550 
2551 		/*
2552 		 * Since we've cleared the histogram we need to add back
2553 		 * any free space that has already been processed, plus
2554 		 * any deferred space. This allows the on-disk histogram
2555 		 * to accurately reflect all free space even if some space
2556 		 * is not yet available for allocation (i.e. deferred).
2557 		 */
2558 		space_map_histogram_add(msp->ms_sm, msp->ms_freed, tx);
2559 
2560 		/*
2561 		 * Add back any deferred free space that has not been
2562 		 * added back into the in-core free tree yet. This will
2563 		 * ensure that we don't end up with a space map histogram
2564 		 * that is completely empty unless the metaslab is fully
2565 		 * allocated.
2566 		 */
2567 		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2568 			space_map_histogram_add(msp->ms_sm,
2569 			    msp->ms_defer[t], tx);
2570 		}
2571 	}
2572 
2573 	/*
2574 	 * Always add the free space from this sync pass to the space
2575 	 * map histogram. We want to make sure that the on-disk histogram
2576 	 * accounts for all free space. If the space map is not loaded,
2577 	 * then we will lose some accuracy but will correct it the next
2578 	 * time we load the space map.
2579 	 */
2580 	space_map_histogram_add(msp->ms_sm, msp->ms_freeing, tx);
2581 
2582 	metaslab_group_histogram_add(mg, msp);
2583 	metaslab_group_histogram_verify(mg);
2584 	metaslab_class_histogram_verify(mg->mg_class);
2585 
2586 	/*
2587 	 * For sync pass 1, we avoid traversing this txg's free range tree
2588 	 * and instead will just swap the pointers for freeing and
2589 	 * freed. We can safely do this since the freed_tree is
2590 	 * guaranteed to be empty on the initial pass.
2591 	 */
2592 	if (spa_sync_pass(spa) == 1) {
2593 		range_tree_swap(&msp->ms_freeing, &msp->ms_freed);
2594 	} else {
2595 		range_tree_vacate(msp->ms_freeing,
2596 		    range_tree_add, msp->ms_freed);
2597 	}
2598 	range_tree_vacate(alloctree, NULL, NULL);
2599 
2600 	ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
2601 	ASSERT0(range_tree_space(msp->ms_allocating[TXG_CLEAN(txg)
2602 	    & TXG_MASK]));
2603 	ASSERT0(range_tree_space(msp->ms_freeing));
2604 	ASSERT0(range_tree_space(msp->ms_checkpointing));
2605 
2606 	mutex_exit(&msp->ms_lock);
2607 
2608 	if (object != space_map_object(msp->ms_sm)) {
2609 		object = space_map_object(msp->ms_sm);
2610 		dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
2611 		    msp->ms_id, sizeof (uint64_t), &object, tx);
2612 	}
2613 	mutex_exit(&msp->ms_sync_lock);
2614 	dmu_tx_commit(tx);
2615 }
2616 
2617 /*
2618  * Called after a transaction group has completely synced to mark
2619  * all of the metaslab's free space as usable.
2620  */
2621 void
2622 metaslab_sync_done(metaslab_t *msp, uint64_t txg)
2623 {
2624 	metaslab_group_t *mg = msp->ms_group;
2625 	vdev_t *vd = mg->mg_vd;
2626 	spa_t *spa = vd->vdev_spa;
2627 	range_tree_t **defer_tree;
2628 	int64_t alloc_delta, defer_delta;
2629 	boolean_t defer_allowed = B_TRUE;
2630 
2631 	ASSERT(!vd->vdev_ishole);
2632 
2633 	mutex_enter(&msp->ms_lock);
2634 
2635 	/*
2636 	 * If this metaslab is just becoming available, initialize its
2637 	 * range trees and add its capacity to the vdev.
2638 	 */
2639 	if (msp->ms_freed == NULL) {
2640 		for (int t = 0; t < TXG_SIZE; t++) {
2641 			ASSERT(msp->ms_allocating[t] == NULL);
2642 
2643 			msp->ms_allocating[t] = range_tree_create(NULL, NULL);
2644 		}
2645 
2646 		ASSERT3P(msp->ms_freeing, ==, NULL);
2647 		msp->ms_freeing = range_tree_create(NULL, NULL);
2648 
2649 		ASSERT3P(msp->ms_freed, ==, NULL);
2650 		msp->ms_freed = range_tree_create(NULL, NULL);
2651 
2652 		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2653 			ASSERT(msp->ms_defer[t] == NULL);
2654 
2655 			msp->ms_defer[t] = range_tree_create(NULL, NULL);
2656 		}
2657 
2658 		ASSERT3P(msp->ms_checkpointing, ==, NULL);
2659 		msp->ms_checkpointing = range_tree_create(NULL, NULL);
2660 
2661 		vdev_space_update(vd, 0, 0, msp->ms_size);
2662 	}
2663 	ASSERT0(range_tree_space(msp->ms_freeing));
2664 	ASSERT0(range_tree_space(msp->ms_checkpointing));
2665 
2666 	defer_tree = &msp->ms_defer[txg % TXG_DEFER_SIZE];
2667 
2668 	uint64_t free_space = metaslab_class_get_space(spa_normal_class(spa)) -
2669 	    metaslab_class_get_alloc(spa_normal_class(spa));
2670 	if (free_space <= spa_get_slop_space(spa) || vd->vdev_removing) {
2671 		defer_allowed = B_FALSE;
2672 	}
2673 
2674 	defer_delta = 0;
2675 	alloc_delta = space_map_alloc_delta(msp->ms_sm);
2676 	if (defer_allowed) {
2677 		defer_delta = range_tree_space(msp->ms_freed) -
2678 		    range_tree_space(*defer_tree);
2679 	} else {
2680 		defer_delta -= range_tree_space(*defer_tree);
2681 	}
2682 
2683 	vdev_space_update(vd, alloc_delta + defer_delta, defer_delta, 0);
2684 
2685 	/*
2686 	 * If there's a metaslab_load() in progress, wait for it to complete
2687 	 * so that we have a consistent view of the in-core space map.
2688 	 */
2689 	metaslab_load_wait(msp);
2690 
2691 	/*
2692 	 * Move the frees from the defer_tree back to the free
2693 	 * range tree (if it's loaded). Swap the freed_tree and
2694 	 * the defer_tree -- this is safe to do because we've
2695 	 * just emptied out the defer_tree.
2696 	 */
2697 	range_tree_vacate(*defer_tree,
2698 	    msp->ms_loaded ? range_tree_add : NULL, msp->ms_allocatable);
2699 	if (defer_allowed) {
2700 		range_tree_swap(&msp->ms_freed, defer_tree);
2701 	} else {
2702 		range_tree_vacate(msp->ms_freed,
2703 		    msp->ms_loaded ? range_tree_add : NULL,
2704 		    msp->ms_allocatable);
2705 	}
2706 	space_map_update(msp->ms_sm);
2707 
2708 	msp->ms_deferspace += defer_delta;
2709 	ASSERT3S(msp->ms_deferspace, >=, 0);
2710 	ASSERT3S(msp->ms_deferspace, <=, msp->ms_size);
2711 	if (msp->ms_deferspace != 0) {
2712 		/*
2713 		 * Keep syncing this metaslab until all deferred frees
2714 		 * are back in circulation.
2715 		 */
2716 		vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
2717 	}
2718 
2719 	if (msp->ms_new) {
2720 		msp->ms_new = B_FALSE;
2721 		mutex_enter(&mg->mg_lock);
2722 		mg->mg_ms_ready++;
2723 		mutex_exit(&mg->mg_lock);
2724 	}
2725 	/*
2726 	 * Calculate the new weights before unloading any metaslabs.
2727 	 * This will give us the most accurate weighting.
2728 	 */
2729 	metaslab_group_sort(mg, msp, metaslab_weight(msp) |
2730 	    (msp->ms_weight & METASLAB_ACTIVE_MASK));
2731 
2732 	/*
2733 	 * If the metaslab is loaded and we've not tried to load or allocate
2734 	 * from it in 'metaslab_unload_delay' txgs, then unload it.
2735 	 */
2736 	if (msp->ms_loaded &&
2737 	    msp->ms_initializing == 0 &&
2738 	    msp->ms_selected_txg + metaslab_unload_delay < txg) {
2739 		for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
2740 			VERIFY0(range_tree_space(
2741 			    msp->ms_allocating[(txg + t) & TXG_MASK]));
2742 		}
2743 		if (msp->ms_allocator != -1) {
2744 			metaslab_passivate(msp, msp->ms_weight &
2745 			    ~METASLAB_ACTIVE_MASK);
2746 		}
2747 
2748 		if (!metaslab_debug_unload)
2749 			metaslab_unload(msp);
2750 	}
2751 
2752 	ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
2753 	ASSERT0(range_tree_space(msp->ms_freeing));
2754 	ASSERT0(range_tree_space(msp->ms_freed));
2755 	ASSERT0(range_tree_space(msp->ms_checkpointing));
2756 
2757 	mutex_exit(&msp->ms_lock);
2758 }
2759 
2760 void
2761 metaslab_sync_reassess(metaslab_group_t *mg)
2762 {
2763 	spa_t *spa = mg->mg_class->mc_spa;
2764 
2765 	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
2766 	metaslab_group_alloc_update(mg);
2767 	mg->mg_fragmentation = metaslab_group_fragmentation(mg);
2768 
2769 	/*
2770 	 * Preload the next potential metaslabs but only on active
2771 	 * metaslab groups. We can get into a state where the metaslab
2772 	 * is no longer active since we dirty metaslabs as we remove a
2773 	 * a device, thus potentially making the metaslab group eligible
2774 	 * for preloading.
2775 	 */
2776 	if (mg->mg_activation_count > 0) {
2777 		metaslab_group_preload(mg);
2778 	}
2779 	spa_config_exit(spa, SCL_ALLOC, FTAG);
2780 }
2781 
2782 static uint64_t
2783 metaslab_distance(metaslab_t *msp, dva_t *dva)
2784 {
2785 	uint64_t ms_shift = msp->ms_group->mg_vd->vdev_ms_shift;
2786 	uint64_t offset = DVA_GET_OFFSET(dva) >> ms_shift;
2787 	uint64_t start = msp->ms_id;
2788 
2789 	if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
2790 		return (1ULL << 63);
2791 
2792 	if (offset < start)
2793 		return ((start - offset) << ms_shift);
2794 	if (offset > start)
2795 		return ((offset - start) << ms_shift);
2796 	return (0);
2797 }
2798 
2799 /*
2800  * ==========================================================================
2801  * Metaslab allocation tracing facility
2802  * ==========================================================================
2803  */
2804 kstat_t *metaslab_trace_ksp;
2805 kstat_named_t metaslab_trace_over_limit;
2806 
2807 void
2808 metaslab_alloc_trace_init(void)
2809 {
2810 	ASSERT(metaslab_alloc_trace_cache == NULL);
2811 	metaslab_alloc_trace_cache = kmem_cache_create(
2812 	    "metaslab_alloc_trace_cache", sizeof (metaslab_alloc_trace_t),
2813 	    0, NULL, NULL, NULL, NULL, NULL, 0);
2814 	metaslab_trace_ksp = kstat_create("zfs", 0, "metaslab_trace_stats",
2815 	    "misc", KSTAT_TYPE_NAMED, 1, KSTAT_FLAG_VIRTUAL);
2816 	if (metaslab_trace_ksp != NULL) {
2817 		metaslab_trace_ksp->ks_data = &metaslab_trace_over_limit;
2818 		kstat_named_init(&metaslab_trace_over_limit,
2819 		    "metaslab_trace_over_limit", KSTAT_DATA_UINT64);
2820 		kstat_install(metaslab_trace_ksp);
2821 	}
2822 }
2823 
2824 void
2825 metaslab_alloc_trace_fini(void)
2826 {
2827 	if (metaslab_trace_ksp != NULL) {
2828 		kstat_delete(metaslab_trace_ksp);
2829 		metaslab_trace_ksp = NULL;
2830 	}
2831 	kmem_cache_destroy(metaslab_alloc_trace_cache);
2832 	metaslab_alloc_trace_cache = NULL;
2833 }
2834 
2835 /*
2836  * Add an allocation trace element to the allocation tracing list.
2837  */
2838 static void
2839 metaslab_trace_add(zio_alloc_list_t *zal, metaslab_group_t *mg,
2840     metaslab_t *msp, uint64_t psize, uint32_t dva_id, uint64_t offset,
2841     int allocator)
2842 {
2843 	if (!metaslab_trace_enabled)
2844 		return;
2845 
2846 	/*
2847 	 * When the tracing list reaches its maximum we remove
2848 	 * the second element in the list before adding a new one.
2849 	 * By removing the second element we preserve the original
2850 	 * entry as a clue to what allocations steps have already been
2851 	 * performed.
2852 	 */
2853 	if (zal->zal_size == metaslab_trace_max_entries) {
2854 		metaslab_alloc_trace_t *mat_next;
2855 #ifdef DEBUG
2856 		panic("too many entries in allocation list");
2857 #endif
2858 		atomic_inc_64(&metaslab_trace_over_limit.value.ui64);
2859 		zal->zal_size--;
2860 		mat_next = list_next(&zal->zal_list, list_head(&zal->zal_list));
2861 		list_remove(&zal->zal_list, mat_next);
2862 		kmem_cache_free(metaslab_alloc_trace_cache, mat_next);
2863 	}
2864 
2865 	metaslab_alloc_trace_t *mat =
2866 	    kmem_cache_alloc(metaslab_alloc_trace_cache, KM_SLEEP);
2867 	list_link_init(&mat->mat_list_node);
2868 	mat->mat_mg = mg;
2869 	mat->mat_msp = msp;
2870 	mat->mat_size = psize;
2871 	mat->mat_dva_id = dva_id;
2872 	mat->mat_offset = offset;
2873 	mat->mat_weight = 0;
2874 	mat->mat_allocator = allocator;
2875 
2876 	if (msp != NULL)
2877 		mat->mat_weight = msp->ms_weight;
2878 
2879 	/*
2880 	 * The list is part of the zio so locking is not required. Only
2881 	 * a single thread will perform allocations for a given zio.
2882 	 */
2883 	list_insert_tail(&zal->zal_list, mat);
2884 	zal->zal_size++;
2885 
2886 	ASSERT3U(zal->zal_size, <=, metaslab_trace_max_entries);
2887 }
2888 
2889 void
2890 metaslab_trace_init(zio_alloc_list_t *zal)
2891 {
2892 	list_create(&zal->zal_list, sizeof (metaslab_alloc_trace_t),
2893 	    offsetof(metaslab_alloc_trace_t, mat_list_node));
2894 	zal->zal_size = 0;
2895 }
2896 
2897 void
2898 metaslab_trace_fini(zio_alloc_list_t *zal)
2899 {
2900 	metaslab_alloc_trace_t *mat;
2901 
2902 	while ((mat = list_remove_head(&zal->zal_list)) != NULL)
2903 		kmem_cache_free(metaslab_alloc_trace_cache, mat);
2904 	list_destroy(&zal->zal_list);
2905 	zal->zal_size = 0;
2906 }
2907 
2908 /*
2909  * ==========================================================================
2910  * Metaslab block operations
2911  * ==========================================================================
2912  */
2913 
2914 static void
2915 metaslab_group_alloc_increment(spa_t *spa, uint64_t vdev, void *tag, int flags,
2916     int allocator)
2917 {
2918 	if (!(flags & METASLAB_ASYNC_ALLOC) ||
2919 	    (flags & METASLAB_DONT_THROTTLE))
2920 		return;
2921 
2922 	metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
2923 	if (!mg->mg_class->mc_alloc_throttle_enabled)
2924 		return;
2925 
2926 	(void) refcount_add(&mg->mg_alloc_queue_depth[allocator], tag);
2927 }
2928 
2929 static void
2930 metaslab_group_increment_qdepth(metaslab_group_t *mg, int allocator)
2931 {
2932 	uint64_t max = mg->mg_max_alloc_queue_depth;
2933 	uint64_t cur = mg->mg_cur_max_alloc_queue_depth[allocator];
2934 	while (cur < max) {
2935 		if (atomic_cas_64(&mg->mg_cur_max_alloc_queue_depth[allocator],
2936 		    cur, cur + 1) == cur) {
2937 			atomic_inc_64(
2938 			    &mg->mg_class->mc_alloc_max_slots[allocator]);
2939 			return;
2940 		}
2941 		cur = mg->mg_cur_max_alloc_queue_depth[allocator];
2942 	}
2943 }
2944 
2945 void
2946 metaslab_group_alloc_decrement(spa_t *spa, uint64_t vdev, void *tag, int flags,
2947     int allocator, boolean_t io_complete)
2948 {
2949 	if (!(flags & METASLAB_ASYNC_ALLOC) ||
2950 	    (flags & METASLAB_DONT_THROTTLE))
2951 		return;
2952 
2953 	metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
2954 	if (!mg->mg_class->mc_alloc_throttle_enabled)
2955 		return;
2956 
2957 	(void) refcount_remove(&mg->mg_alloc_queue_depth[allocator], tag);
2958 	if (io_complete)
2959 		metaslab_group_increment_qdepth(mg, allocator);
2960 }
2961 
2962 void
2963 metaslab_group_alloc_verify(spa_t *spa, const blkptr_t *bp, void *tag,
2964     int allocator)
2965 {
2966 #ifdef ZFS_DEBUG
2967 	const dva_t *dva = bp->blk_dva;
2968 	int ndvas = BP_GET_NDVAS(bp);
2969 
2970 	for (int d = 0; d < ndvas; d++) {
2971 		uint64_t vdev = DVA_GET_VDEV(&dva[d]);
2972 		metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
2973 		VERIFY(refcount_not_held(&mg->mg_alloc_queue_depth[allocator],
2974 		    tag));
2975 	}
2976 #endif
2977 }
2978 
2979 static uint64_t
2980 metaslab_block_alloc(metaslab_t *msp, uint64_t size, uint64_t txg)
2981 {
2982 	uint64_t start;
2983 	range_tree_t *rt = msp->ms_allocatable;
2984 	metaslab_class_t *mc = msp->ms_group->mg_class;
2985 
2986 	VERIFY(!msp->ms_condensing);
2987 	VERIFY0(msp->ms_initializing);
2988 
2989 	start = mc->mc_ops->msop_alloc(msp, size);
2990 	if (start != -1ULL) {
2991 		metaslab_group_t *mg = msp->ms_group;
2992 		vdev_t *vd = mg->mg_vd;
2993 
2994 		VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift));
2995 		VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
2996 		VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size);
2997 		range_tree_remove(rt, start, size);
2998 
2999 		if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
3000 			vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
3001 
3002 		range_tree_add(msp->ms_allocating[txg & TXG_MASK], start, size);
3003 
3004 		/* Track the last successful allocation */
3005 		msp->ms_alloc_txg = txg;
3006 		metaslab_verify_space(msp, txg);
3007 	}
3008 
3009 	/*
3010 	 * Now that we've attempted the allocation we need to update the
3011 	 * metaslab's maximum block size since it may have changed.
3012 	 */
3013 	msp->ms_max_size = metaslab_block_maxsize(msp);
3014 	return (start);
3015 }
3016 
3017 /*
3018  * Find the metaslab with the highest weight that is less than what we've
3019  * already tried.  In the common case, this means that we will examine each
3020  * metaslab at most once. Note that concurrent callers could reorder metaslabs
3021  * by activation/passivation once we have dropped the mg_lock. If a metaslab is
3022  * activated by another thread, and we fail to allocate from the metaslab we
3023  * have selected, we may not try the newly-activated metaslab, and instead
3024  * activate another metaslab.  This is not optimal, but generally does not cause
3025  * any problems (a possible exception being if every metaslab is completely full
3026  * except for the the newly-activated metaslab which we fail to examine).
3027  */
3028 static metaslab_t *
3029 find_valid_metaslab(metaslab_group_t *mg, uint64_t activation_weight,
3030     dva_t *dva, int d, uint64_t min_distance, uint64_t asize, int allocator,
3031     zio_alloc_list_t *zal, metaslab_t *search, boolean_t *was_active)
3032 {
3033 	avl_index_t idx;
3034 	avl_tree_t *t = &mg->mg_metaslab_tree;
3035 	metaslab_t *msp = avl_find(t, search, &idx);
3036 	if (msp == NULL)
3037 		msp = avl_nearest(t, idx, AVL_AFTER);
3038 
3039 	for (; msp != NULL; msp = AVL_NEXT(t, msp)) {
3040 		int i;
3041 		if (!metaslab_should_allocate(msp, asize)) {
3042 			metaslab_trace_add(zal, mg, msp, asize, d,
3043 			    TRACE_TOO_SMALL, allocator);
3044 			continue;
3045 		}
3046 
3047 		/*
3048 			 * If the selected metaslab is condensing or being
3049 			 * initialized, skip it.
3050 		 */
3051 			if (msp->ms_condensing || msp->ms_initializing > 0)
3052 			continue;
3053 
3054 		*was_active = msp->ms_allocator != -1;
3055 		/*
3056 		 * If we're activating as primary, this is our first allocation
3057 		 * from this disk, so we don't need to check how close we are.
3058 		 * If the metaslab under consideration was already active,
3059 		 * we're getting desperate enough to steal another allocator's
3060 		 * metaslab, so we still don't care about distances.
3061 		 */
3062 		if (activation_weight == METASLAB_WEIGHT_PRIMARY || *was_active)
3063 			break;
3064 
3065 		uint64_t target_distance = min_distance
3066 		    + (space_map_allocated(msp->ms_sm) != 0 ? 0 :
3067 		    min_distance >> 1);
3068 
3069 		for (i = 0; i < d; i++) {
3070 			if (metaslab_distance(msp, &dva[i]) < target_distance)
3071 				break;
3072 		}
3073 		if (i == d)
3074 			break;
3075 	}
3076 
3077 	if (msp != NULL) {
3078 		search->ms_weight = msp->ms_weight;
3079 		search->ms_start = msp->ms_start + 1;
3080 		search->ms_allocator = msp->ms_allocator;
3081 		search->ms_primary = msp->ms_primary;
3082 	}
3083 	return (msp);
3084 }
3085 
3086 /* ARGSUSED */
3087 static uint64_t
3088 metaslab_group_alloc_normal(metaslab_group_t *mg, zio_alloc_list_t *zal,
3089     uint64_t asize, uint64_t txg, uint64_t min_distance, dva_t *dva, int d,
3090     int allocator)
3091 {
3092 	metaslab_t *msp = NULL;
3093 	uint64_t offset = -1ULL;
3094 	uint64_t activation_weight;
3095 
3096 	activation_weight = METASLAB_WEIGHT_PRIMARY;
3097 	for (int i = 0; i < d; i++) {
3098 		if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
3099 		    DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
3100 			activation_weight = METASLAB_WEIGHT_SECONDARY;
3101 		} else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
3102 		    DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
3103 			activation_weight = METASLAB_WEIGHT_CLAIM;
3104 			break;
3105 		}
3106 	}
3107 
3108 	/*
3109 	 * If we don't have enough metaslabs active to fill the entire array, we
3110 	 * just use the 0th slot.
3111 	 */
3112 	if (mg->mg_ms_ready < mg->mg_allocators * 3)
3113 		allocator = 0;
3114 
3115 	ASSERT3U(mg->mg_vd->vdev_ms_count, >=, 2);
3116 
3117 	metaslab_t *search = kmem_alloc(sizeof (*search), KM_SLEEP);
3118 	search->ms_weight = UINT64_MAX;
3119 	search->ms_start = 0;
3120 	/*
3121 	 * At the end of the metaslab tree are the already-active metaslabs,
3122 	 * first the primaries, then the secondaries. When we resume searching
3123 	 * through the tree, we need to consider ms_allocator and ms_primary so
3124 	 * we start in the location right after where we left off, and don't
3125 	 * accidentally loop forever considering the same metaslabs.
3126 	 */
3127 	search->ms_allocator = -1;
3128 	search->ms_primary = B_TRUE;
3129 	for (;;) {
3130 		boolean_t was_active = B_FALSE;
3131 
3132 		mutex_enter(&mg->mg_lock);
3133 
3134 		if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
3135 		    mg->mg_primaries[allocator] != NULL) {
3136 			msp = mg->mg_primaries[allocator];
3137 			was_active = B_TRUE;
3138 		} else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
3139 		    mg->mg_secondaries[allocator] != NULL) {
3140 			msp = mg->mg_secondaries[allocator];
3141 			was_active = B_TRUE;
3142 		} else {
3143 			msp = find_valid_metaslab(mg, activation_weight, dva, d,
3144 			    min_distance, asize, allocator, zal, search,
3145 			    &was_active);
3146 		}
3147 
3148 		mutex_exit(&mg->mg_lock);
3149 		if (msp == NULL) {
3150 			kmem_free(search, sizeof (*search));
3151 			return (-1ULL);
3152 		}
3153 
3154 		mutex_enter(&msp->ms_lock);
3155 		/*
3156 		 * Ensure that the metaslab we have selected is still
3157 		 * capable of handling our request. It's possible that
3158 		 * another thread may have changed the weight while we
3159 		 * were blocked on the metaslab lock. We check the
3160 		 * active status first to see if we need to reselect
3161 		 * a new metaslab.
3162 		 */
3163 		if (was_active && !(msp->ms_weight & METASLAB_ACTIVE_MASK)) {
3164 			mutex_exit(&msp->ms_lock);
3165 			continue;
3166 		}
3167 
3168 		/*
3169 		 * If the metaslab is freshly activated for an allocator that
3170 		 * isn't the one we're allocating from, or if it's a primary and
3171 		 * we're seeking a secondary (or vice versa), we go back and
3172 		 * select a new metaslab.
3173 		 */
3174 		if (!was_active && (msp->ms_weight & METASLAB_ACTIVE_MASK) &&
3175 		    (msp->ms_allocator != -1) &&
3176 		    (msp->ms_allocator != allocator || ((activation_weight ==
3177 		    METASLAB_WEIGHT_PRIMARY) != msp->ms_primary))) {
3178 			mutex_exit(&msp->ms_lock);
3179 			continue;
3180 		}
3181 
3182 		if (msp->ms_weight & METASLAB_WEIGHT_CLAIM &&
3183 		    activation_weight != METASLAB_WEIGHT_CLAIM) {
3184 			metaslab_passivate(msp, msp->ms_weight &
3185 			    ~METASLAB_WEIGHT_CLAIM);
3186 			mutex_exit(&msp->ms_lock);
3187 			continue;
3188 		}
3189 
3190 		if (metaslab_activate(msp, allocator, activation_weight) != 0) {
3191 			mutex_exit(&msp->ms_lock);
3192 			continue;
3193 		}
3194 
3195 		msp->ms_selected_txg = txg;
3196 
3197 		/*
3198 		 * Now that we have the lock, recheck to see if we should
3199 		 * continue to use this metaslab for this allocation. The
3200 		 * the metaslab is now loaded so metaslab_should_allocate() can
3201 		 * accurately determine if the allocation attempt should
3202 		 * proceed.
3203 		 */
3204 		if (!metaslab_should_allocate(msp, asize)) {
3205 			/* Passivate this metaslab and select a new one. */
3206 			metaslab_trace_add(zal, mg, msp, asize, d,
3207 			    TRACE_TOO_SMALL, allocator);
3208 			goto next;
3209 		}
3210 
3211 		/*
3212 		 * If this metaslab is currently condensing then pick again as
3213 		 * we can't manipulate this metaslab until it's committed
3214 		 * to disk. If this metaslab is being initialized, we shouldn't
3215 		 * allocate from it since the allocated region might be
3216 		 * overwritten after allocation.
3217 		 */
3218 		if (msp->ms_condensing) {
3219 			metaslab_trace_add(zal, mg, msp, asize, d,
3220 			    TRACE_CONDENSING, allocator);
3221 			metaslab_passivate(msp, msp->ms_weight &
3222 			    ~METASLAB_ACTIVE_MASK);
3223 			mutex_exit(&msp->ms_lock);
3224 			continue;
3225 		} else if (msp->ms_initializing > 0) {
3226 			metaslab_trace_add(zal, mg, msp, asize, d,
3227 			    TRACE_INITIALIZING, allocator);
3228 			metaslab_passivate(msp, msp->ms_weight &
3229 			    ~METASLAB_ACTIVE_MASK);
3230 			mutex_exit(&msp->ms_lock);
3231 			continue;
3232 		}
3233 
3234 		offset = metaslab_block_alloc(msp, asize, txg);
3235 		metaslab_trace_add(zal, mg, msp, asize, d, offset, allocator);
3236 
3237 		if (offset != -1ULL) {
3238 			/* Proactively passivate the metaslab, if needed */
3239 			metaslab_segment_may_passivate(msp);
3240 			break;
3241 		}
3242 next:
3243 		ASSERT(msp->ms_loaded);
3244 
3245 		/*
3246 		 * We were unable to allocate from this metaslab so determine
3247 		 * a new weight for this metaslab. Now that we have loaded
3248 		 * the metaslab we can provide a better hint to the metaslab
3249 		 * selector.
3250 		 *
3251 		 * For space-based metaslabs, we use the maximum block size.
3252 		 * This information is only available when the metaslab
3253 		 * is loaded and is more accurate than the generic free
3254 		 * space weight that was calculated by metaslab_weight().
3255 		 * This information allows us to quickly compare the maximum
3256 		 * available allocation in the metaslab to the allocation
3257 		 * size being requested.
3258 		 *
3259 		 * For segment-based metaslabs, determine the new weight
3260 		 * based on the highest bucket in the range tree. We
3261 		 * explicitly use the loaded segment weight (i.e. the range
3262 		 * tree histogram) since it contains the space that is
3263 		 * currently available for allocation and is accurate
3264 		 * even within a sync pass.
3265 		 */
3266 		if (WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
3267 			uint64_t weight = metaslab_block_maxsize(msp);
3268 			WEIGHT_SET_SPACEBASED(weight);
3269 			metaslab_passivate(msp, weight);
3270 		} else {
3271 			metaslab_passivate(msp,
3272 			    metaslab_weight_from_range_tree(msp));
3273 		}
3274 
3275 		/*
3276 		 * We have just failed an allocation attempt, check
3277 		 * that metaslab_should_allocate() agrees. Otherwise,
3278 		 * we may end up in an infinite loop retrying the same
3279 		 * metaslab.
3280 		 */
3281 		ASSERT(!metaslab_should_allocate(msp, asize));
3282 		mutex_exit(&msp->ms_lock);
3283 	}
3284 	mutex_exit(&msp->ms_lock);
3285 	kmem_free(search, sizeof (*search));
3286 	return (offset);
3287 }
3288 
3289 static uint64_t
3290 metaslab_group_alloc(metaslab_group_t *mg, zio_alloc_list_t *zal,
3291     uint64_t asize, uint64_t txg, uint64_t min_distance, dva_t *dva, int d,
3292     int allocator)
3293 {
3294 	uint64_t offset;
3295 	ASSERT(mg->mg_initialized);
3296 
3297 	offset = metaslab_group_alloc_normal(mg, zal, asize, txg,
3298 	    min_distance, dva, d, allocator);
3299 
3300 	mutex_enter(&mg->mg_lock);
3301 	if (offset == -1ULL) {
3302 		mg->mg_failed_allocations++;
3303 		metaslab_trace_add(zal, mg, NULL, asize, d,
3304 		    TRACE_GROUP_FAILURE, allocator);
3305 		if (asize == SPA_GANGBLOCKSIZE) {
3306 			/*
3307 			 * This metaslab group was unable to allocate
3308 			 * the minimum gang block size so it must be out of
3309 			 * space. We must notify the allocation throttle
3310 			 * to start skipping allocation attempts to this
3311 			 * metaslab group until more space becomes available.
3312 			 * Note: this failure cannot be caused by the
3313 			 * allocation throttle since the allocation throttle
3314 			 * is only responsible for skipping devices and
3315 			 * not failing block allocations.
3316 			 */
3317 			mg->mg_no_free_space = B_TRUE;
3318 		}
3319 	}
3320 	mg->mg_allocations++;
3321 	mutex_exit(&mg->mg_lock);
3322 	return (offset);
3323 }
3324 
3325 /*
3326  * If we have to write a ditto block (i.e. more than one DVA for a given BP)
3327  * on the same vdev as an existing DVA of this BP, then try to allocate it
3328  * at least (vdev_asize / (2 ^ ditto_same_vdev_distance_shift)) away from the
3329  * existing DVAs.
3330  */
3331 int ditto_same_vdev_distance_shift = 3;
3332 
3333 /*
3334  * Allocate a block for the specified i/o.
3335  */
3336 int
3337 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
3338     dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags,
3339     zio_alloc_list_t *zal, int allocator)
3340 {
3341 	metaslab_group_t *mg, *rotor;
3342 	vdev_t *vd;
3343 	boolean_t try_hard = B_FALSE;
3344 
3345 	ASSERT(!DVA_IS_VALID(&dva[d]));
3346 
3347 	/*
3348 	 * For testing, make some blocks above a certain size be gang blocks.
3349 	 */
3350 	if (psize >= metaslab_force_ganging && (ddi_get_lbolt() & 3) == 0) {
3351 		metaslab_trace_add(zal, NULL, NULL, psize, d, TRACE_FORCE_GANG,
3352 		    allocator);
3353 		return (SET_ERROR(ENOSPC));
3354 	}
3355 
3356 	/*
3357 	 * Start at the rotor and loop through all mgs until we find something.
3358 	 * Note that there's no locking on mc_rotor or mc_aliquot because
3359 	 * nothing actually breaks if we miss a few updates -- we just won't
3360 	 * allocate quite as evenly.  It all balances out over time.
3361 	 *
3362 	 * If we are doing ditto or log blocks, try to spread them across
3363 	 * consecutive vdevs.  If we're forced to reuse a vdev before we've
3364 	 * allocated all of our ditto blocks, then try and spread them out on
3365 	 * that vdev as much as possible.  If it turns out to not be possible,
3366 	 * gradually lower our standards until anything becomes acceptable.
3367 	 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
3368 	 * gives us hope of containing our fault domains to something we're
3369 	 * able to reason about.  Otherwise, any two top-level vdev failures
3370 	 * will guarantee the loss of data.  With consecutive allocation,
3371 	 * only two adjacent top-level vdev failures will result in data loss.
3372 	 *
3373 	 * If we are doing gang blocks (hintdva is non-NULL), try to keep
3374 	 * ourselves on the same vdev as our gang block header.  That
3375 	 * way, we can hope for locality in vdev_cache, plus it makes our
3376 	 * fault domains something tractable.
3377 	 */
3378 	if (hintdva) {
3379 		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
3380 
3381 		/*
3382 		 * It's possible the vdev we're using as the hint no
3383 		 * longer exists or its mg has been closed (e.g. by
3384 		 * device removal).  Consult the rotor when
3385 		 * all else fails.
3386 		 */
3387 		if (vd != NULL && vd->vdev_mg != NULL) {
3388 			mg = vd->vdev_mg;
3389 
3390 			if (flags & METASLAB_HINTBP_AVOID &&
3391 			    mg->mg_next != NULL)
3392 				mg = mg->mg_next;
3393 		} else {
3394 			mg = mc->mc_rotor;
3395 		}
3396 	} else if (d != 0) {
3397 		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
3398 		mg = vd->vdev_mg->mg_next;
3399 	} else {
3400 		mg = mc->mc_rotor;
3401 	}
3402 
3403 	/*
3404 	 * If the hint put us into the wrong metaslab class, or into a
3405 	 * metaslab group that has been passivated, just follow the rotor.
3406 	 */
3407 	if (mg->mg_class != mc || mg->mg_activation_count <= 0)
3408 		mg = mc->mc_rotor;
3409 
3410 	rotor = mg;
3411 top:
3412 	do {
3413 		boolean_t allocatable;
3414 
3415 		ASSERT(mg->mg_activation_count == 1);
3416 		vd = mg->mg_vd;
3417 
3418 		/*
3419 		 * Don't allocate from faulted devices.
3420 		 */
3421 		if (try_hard) {
3422 			spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
3423 			allocatable = vdev_allocatable(vd);
3424 			spa_config_exit(spa, SCL_ZIO, FTAG);
3425 		} else {
3426 			allocatable = vdev_allocatable(vd);
3427 		}
3428 
3429 		/*
3430 		 * Determine if the selected metaslab group is eligible
3431 		 * for allocations. If we're ganging then don't allow
3432 		 * this metaslab group to skip allocations since that would
3433 		 * inadvertently return ENOSPC and suspend the pool
3434 		 * even though space is still available.
3435 		 */
3436 		if (allocatable && !GANG_ALLOCATION(flags) && !try_hard) {
3437 			allocatable = metaslab_group_allocatable(mg, rotor,
3438 			    psize, allocator);
3439 		}
3440 
3441 		if (!allocatable) {
3442 			metaslab_trace_add(zal, mg, NULL, psize, d,
3443 			    TRACE_NOT_ALLOCATABLE, allocator);
3444 			goto next;
3445 		}
3446 
3447 		ASSERT(mg->mg_initialized);
3448 
3449 		/*
3450 		 * Avoid writing single-copy data to a failing,
3451 		 * non-redundant vdev, unless we've already tried all
3452 		 * other vdevs.
3453 		 */
3454 		if ((vd->vdev_stat.vs_write_errors > 0 ||
3455 		    vd->vdev_state < VDEV_STATE_HEALTHY) &&
3456 		    d == 0 && !try_hard && vd->vdev_children == 0) {
3457 			metaslab_trace_add(zal, mg, NULL, psize, d,
3458 			    TRACE_VDEV_ERROR, allocator);
3459 			goto next;
3460 		}
3461 
3462 		ASSERT(mg->mg_class == mc);
3463 
3464 		/*
3465 		 * If we don't need to try hard, then require that the
3466 		 * block be 1/8th of the device away from any other DVAs
3467 		 * in this BP.  If we are trying hard, allow any offset
3468 		 * to be used (distance=0).
3469 		 */
3470 		uint64_t distance = 0;
3471 		if (!try_hard) {
3472 			distance = vd->vdev_asize >>
3473 			    ditto_same_vdev_distance_shift;
3474 			if (distance <= (1ULL << vd->vdev_ms_shift))
3475 				distance = 0;
3476 		}
3477 
3478 		uint64_t asize = vdev_psize_to_asize(vd, psize);
3479 		ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
3480 
3481 		uint64_t offset = metaslab_group_alloc(mg, zal, asize, txg,
3482 		    distance, dva, d, allocator);
3483 
3484 		if (offset != -1ULL) {
3485 			/*
3486 			 * If we've just selected this metaslab group,
3487 			 * figure out whether the corresponding vdev is
3488 			 * over- or under-used relative to the pool,
3489 			 * and set an allocation bias to even it out.
3490 			 */
3491 			if (mc->mc_aliquot == 0 && metaslab_bias_enabled) {
3492 				vdev_stat_t *vs = &vd->vdev_stat;
3493 				int64_t vu, cu;
3494 
3495 				vu = (vs->vs_alloc * 100) / (vs->vs_space + 1);
3496 				cu = (mc->mc_alloc * 100) / (mc->mc_space + 1);
3497 
3498 				/*
3499 				 * Calculate how much more or less we should
3500 				 * try to allocate from this device during
3501 				 * this iteration around the rotor.
3502 				 * For example, if a device is 80% full
3503 				 * and the pool is 20% full then we should
3504 				 * reduce allocations by 60% on this device.
3505 				 *
3506 				 * mg_bias = (20 - 80) * 512K / 100 = -307K
3507 				 *
3508 				 * This reduces allocations by 307K for this
3509 				 * iteration.
3510 				 */
3511 				mg->mg_bias = ((cu - vu) *
3512 				    (int64_t)mg->mg_aliquot) / 100;
3513 			} else if (!metaslab_bias_enabled) {
3514 				mg->mg_bias = 0;
3515 			}
3516 
3517 			if (atomic_add_64_nv(&mc->mc_aliquot, asize) >=
3518 			    mg->mg_aliquot + mg->mg_bias) {
3519 				mc->mc_rotor = mg->mg_next;
3520 				mc->mc_aliquot = 0;
3521 			}
3522 
3523 			DVA_SET_VDEV(&dva[d], vd->vdev_id);
3524 			DVA_SET_OFFSET(&dva[d], offset);
3525 			DVA_SET_GANG(&dva[d], !!(flags & METASLAB_GANG_HEADER));
3526 			DVA_SET_ASIZE(&dva[d], asize);
3527 
3528 			return (0);
3529 		}
3530 next:
3531 		mc->mc_rotor = mg->mg_next;
3532 		mc->mc_aliquot = 0;
3533 	} while ((mg = mg->mg_next) != rotor);
3534 
3535 	/*
3536 	 * If we haven't tried hard, do so now.
3537 	 */
3538 	if (!try_hard) {
3539 		try_hard = B_TRUE;
3540 		goto top;
3541 	}
3542 
3543 	bzero(&dva[d], sizeof (dva_t));
3544 
3545 	metaslab_trace_add(zal, rotor, NULL, psize, d, TRACE_ENOSPC, allocator);
3546 	return (SET_ERROR(ENOSPC));
3547 }
3548 
3549 void
3550 metaslab_free_concrete(vdev_t *vd, uint64_t offset, uint64_t asize,
3551     boolean_t checkpoint)
3552 {
3553 	metaslab_t *msp;
3554 	spa_t *spa = vd->vdev_spa;
3555 
3556 	ASSERT(vdev_is_concrete(vd));
3557 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
3558 	ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
3559 
3560 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
3561 
3562 	VERIFY(!msp->ms_condensing);
3563 	VERIFY3U(offset, >=, msp->ms_start);
3564 	VERIFY3U(offset + asize, <=, msp->ms_start + msp->ms_size);
3565 	VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
3566 	VERIFY0(P2PHASE(asize, 1ULL << vd->vdev_ashift));
3567 
3568 	metaslab_check_free_impl(vd, offset, asize);
3569 
3570 	mutex_enter(&msp->ms_lock);
3571 	if (range_tree_is_empty(msp->ms_freeing) &&
3572 	    range_tree_is_empty(msp->ms_checkpointing)) {
3573 		vdev_dirty(vd, VDD_METASLAB, msp, spa_syncing_txg(spa));
3574 	}
3575 
3576 	if (checkpoint) {
3577 		ASSERT(spa_has_checkpoint(spa));
3578 		range_tree_add(msp->ms_checkpointing, offset, asize);
3579 	} else {
3580 		range_tree_add(msp->ms_freeing, offset, asize);
3581 	}
3582 	mutex_exit(&msp->ms_lock);
3583 }
3584 
3585 /* ARGSUSED */
3586 void
3587 metaslab_free_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
3588     uint64_t size, void *arg)
3589 {
3590 	boolean_t *checkpoint = arg;
3591 
3592 	ASSERT3P(checkpoint, !=, NULL);
3593 
3594 	if (vd->vdev_ops->vdev_op_remap != NULL)
3595 		vdev_indirect_mark_obsolete(vd, offset, size);
3596 	else
3597 		metaslab_free_impl(vd, offset, size, *checkpoint);
3598 }
3599 
3600 static void
3601 metaslab_free_impl(vdev_t *vd, uint64_t offset, uint64_t size,
3602     boolean_t checkpoint)
3603 {
3604 	spa_t *spa = vd->vdev_spa;
3605 
3606 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
3607 
3608 	if (spa_syncing_txg(spa) > spa_freeze_txg(spa))
3609 		return;
3610 
3611 	if (spa->spa_vdev_removal != NULL &&
3612 	    spa->spa_vdev_removal->svr_vdev_id == vd->vdev_id &&
3613 	    vdev_is_concrete(vd)) {
3614 		/*
3615 		 * Note: we check if the vdev is concrete because when
3616 		 * we complete the removal, we first change the vdev to be
3617 		 * an indirect vdev (in open context), and then (in syncing
3618 		 * context) clear spa_vdev_removal.
3619 		 */
3620 		free_from_removing_vdev(vd, offset, size);
3621 	} else if (vd->vdev_ops->vdev_op_remap != NULL) {
3622 		vdev_indirect_mark_obsolete(vd, offset, size);
3623 		vd->vdev_ops->vdev_op_remap(vd, offset, size,
3624 		    metaslab_free_impl_cb, &checkpoint);
3625 	} else {
3626 		metaslab_free_concrete(vd, offset, size, checkpoint);
3627 	}
3628 }
3629 
3630 typedef struct remap_blkptr_cb_arg {
3631 	blkptr_t *rbca_bp;
3632 	spa_remap_cb_t rbca_cb;
3633 	vdev_t *rbca_remap_vd;
3634 	uint64_t rbca_remap_offset;
3635 	void *rbca_cb_arg;
3636 } remap_blkptr_cb_arg_t;
3637 
3638 void
3639 remap_blkptr_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
3640     uint64_t size, void *arg)
3641 {
3642 	remap_blkptr_cb_arg_t *rbca = arg;
3643 	blkptr_t *bp = rbca->rbca_bp;
3644 
3645 	/* We can not remap split blocks. */
3646 	if (size != DVA_GET_ASIZE(&bp->blk_dva[0]))
3647 		return;
3648 	ASSERT0(inner_offset);
3649 
3650 	if (rbca->rbca_cb != NULL) {
3651 		/*
3652 		 * At this point we know that we are not handling split
3653 		 * blocks and we invoke the callback on the previous
3654 		 * vdev which must be indirect.
3655 		 */
3656 		ASSERT3P(rbca->rbca_remap_vd->vdev_ops, ==, &vdev_indirect_ops);
3657 
3658 		rbca->rbca_cb(rbca->rbca_remap_vd->vdev_id,
3659 		    rbca->rbca_remap_offset, size, rbca->rbca_cb_arg);
3660 
3661 		/* set up remap_blkptr_cb_arg for the next call */
3662 		rbca->rbca_remap_vd = vd;
3663 		rbca->rbca_remap_offset = offset;
3664 	}
3665 
3666 	/*
3667 	 * The phys birth time is that of dva[0].  This ensures that we know
3668 	 * when each dva was written, so that resilver can determine which
3669 	 * blocks need to be scrubbed (i.e. those written during the time
3670 	 * the vdev was offline).  It also ensures that the key used in
3671 	 * the ARC hash table is unique (i.e. dva[0] + phys_birth).  If
3672 	 * we didn't change the phys_birth, a lookup in the ARC for a
3673 	 * remapped BP could find the data that was previously stored at
3674 	 * this vdev + offset.
3675 	 */
3676 	vdev_t *oldvd = vdev_lookup_top(vd->vdev_spa,
3677 	    DVA_GET_VDEV(&bp->blk_dva[0]));
3678 	vdev_indirect_births_t *vib = oldvd->vdev_indirect_births;
3679 	bp->blk_phys_birth = vdev_indirect_births_physbirth(vib,
3680 	    DVA_GET_OFFSET(&bp->blk_dva[0]), DVA_GET_ASIZE(&bp->blk_dva[0]));
3681 
3682 	DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id);
3683 	DVA_SET_OFFSET(&bp->blk_dva[0], offset);
3684 }
3685 
3686 /*
3687  * If the block pointer contains any indirect DVAs, modify them to refer to
3688  * concrete DVAs.  Note that this will sometimes not be possible, leaving
3689  * the indirect DVA in place.  This happens if the indirect DVA spans multiple
3690  * segments in the mapping (i.e. it is a "split block").
3691  *
3692  * If the BP was remapped, calls the callback on the original dva (note the
3693  * callback can be called multiple times if the original indirect DVA refers
3694  * to another indirect DVA, etc).
3695  *
3696  * Returns TRUE if the BP was remapped.
3697  */
3698 boolean_t
3699 spa_remap_blkptr(spa_t *spa, blkptr_t *bp, spa_remap_cb_t callback, void *arg)
3700 {
3701 	remap_blkptr_cb_arg_t rbca;
3702 
3703 	if (!zfs_remap_blkptr_enable)
3704 		return (B_FALSE);
3705 
3706 	if (!spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS))
3707 		return (B_FALSE);
3708 
3709 	/*
3710 	 * Dedup BP's can not be remapped, because ddt_phys_select() depends
3711 	 * on DVA[0] being the same in the BP as in the DDT (dedup table).
3712 	 */
3713 	if (BP_GET_DEDUP(bp))
3714 		return (B_FALSE);
3715 
3716 	/*
3717 	 * Gang blocks can not be remapped, because
3718 	 * zio_checksum_gang_verifier() depends on the DVA[0] that's in
3719 	 * the BP used to read the gang block header (GBH) being the same
3720 	 * as the DVA[0] that we allocated for the GBH.
3721 	 */
3722 	if (BP_IS_GANG(bp))
3723 		return (B_FALSE);
3724 
3725 	/*
3726 	 * Embedded BP's have no DVA to remap.
3727 	 */
3728 	if (BP_GET_NDVAS(bp) < 1)
3729 		return (B_FALSE);
3730 
3731 	/*
3732 	 * Note: we only remap dva[0].  If we remapped other dvas, we
3733 	 * would no longer know what their phys birth txg is.
3734 	 */
3735 	dva_t *dva = &bp->blk_dva[0];
3736 
3737 	uint64_t offset = DVA_GET_OFFSET(dva);
3738 	uint64_t size = DVA_GET_ASIZE(dva);
3739 	vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
3740 
3741 	if (vd->vdev_ops->vdev_op_remap == NULL)
3742 		return (B_FALSE);
3743 
3744 	rbca.rbca_bp = bp;
3745 	rbca.rbca_cb = callback;
3746 	rbca.rbca_remap_vd = vd;
3747 	rbca.rbca_remap_offset = offset;
3748 	rbca.rbca_cb_arg = arg;
3749 
3750 	/*
3751 	 * remap_blkptr_cb() will be called in order for each level of
3752 	 * indirection, until a concrete vdev is reached or a split block is
3753 	 * encountered. old_vd and old_offset are updated within the callback
3754 	 * as we go from the one indirect vdev to the next one (either concrete
3755 	 * or indirect again) in that order.
3756 	 */
3757 	vd->vdev_ops->vdev_op_remap(vd, offset, size, remap_blkptr_cb, &rbca);
3758 
3759 	/* Check if the DVA wasn't remapped because it is a split block */
3760 	if (DVA_GET_VDEV(&rbca.rbca_bp->blk_dva[0]) == vd->vdev_id)
3761 		return (B_FALSE);
3762 
3763 	return (B_TRUE);
3764 }
3765 
3766 /*
3767  * Undo the allocation of a DVA which happened in the given transaction group.
3768  */
3769 void
3770 metaslab_unalloc_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
3771 {
3772 	metaslab_t *msp;
3773 	vdev_t *vd;
3774 	uint64_t vdev = DVA_GET_VDEV(dva);
3775 	uint64_t offset = DVA_GET_OFFSET(dva);
3776 	uint64_t size = DVA_GET_ASIZE(dva);
3777 
3778 	ASSERT(DVA_IS_VALID(dva));
3779 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
3780 
3781 	if (txg > spa_freeze_txg(spa))
3782 		return;
3783 
3784 	if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
3785 	    (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
3786 		cmn_err(CE_WARN, "metaslab_free_dva(): bad DVA %llu:%llu",
3787 		    (u_longlong_t)vdev, (u_longlong_t)offset);
3788 		ASSERT(0);
3789 		return;
3790 	}
3791 
3792 	ASSERT(!vd->vdev_removing);
3793 	ASSERT(vdev_is_concrete(vd));
3794 	ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
3795 	ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
3796 
3797 	if (DVA_GET_GANG(dva))
3798 		size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
3799 
3800 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
3801 
3802 	mutex_enter(&msp->ms_lock);
3803 	range_tree_remove(msp->ms_allocating[txg & TXG_MASK],
3804 	    offset, size);
3805 
3806 	VERIFY(!msp->ms_condensing);
3807 	VERIFY3U(offset, >=, msp->ms_start);
3808 	VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size);
3809 	VERIFY3U(range_tree_space(msp->ms_allocatable) + size, <=,
3810 	    msp->ms_size);
3811 	VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
3812 	VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
3813 	range_tree_add(msp->ms_allocatable, offset, size);
3814 	mutex_exit(&msp->ms_lock);
3815 }
3816 
3817 /*
3818  * Free the block represented by the given DVA.
3819  */
3820 void
3821 metaslab_free_dva(spa_t *spa, const dva_t *dva, boolean_t checkpoint)
3822 {
3823 	uint64_t vdev = DVA_GET_VDEV(dva);
3824 	uint64_t offset = DVA_GET_OFFSET(dva);
3825 	uint64_t size = DVA_GET_ASIZE(dva);
3826 	vdev_t *vd = vdev_lookup_top(spa, vdev);
3827 
3828 	ASSERT(DVA_IS_VALID(dva));
3829 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
3830 
3831 	if (DVA_GET_GANG(dva)) {
3832 		size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
3833 	}
3834 
3835 	metaslab_free_impl(vd, offset, size, checkpoint);
3836 }
3837 
3838 /*
3839  * Reserve some allocation slots. The reservation system must be called
3840  * before we call into the allocator. If there aren't any available slots
3841  * then the I/O will be throttled until an I/O completes and its slots are
3842  * freed up. The function returns true if it was successful in placing
3843  * the reservation.
3844  */
3845 boolean_t
3846 metaslab_class_throttle_reserve(metaslab_class_t *mc, int slots, int allocator,
3847     zio_t *zio, int flags)
3848 {
3849 	uint64_t available_slots = 0;
3850 	boolean_t slot_reserved = B_FALSE;
3851 	uint64_t max = mc->mc_alloc_max_slots[allocator];
3852 
3853 	ASSERT(mc->mc_alloc_throttle_enabled);
3854 	mutex_enter(&mc->mc_lock);
3855 
3856 	uint64_t reserved_slots =
3857 	    refcount_count(&mc->mc_alloc_slots[allocator]);
3858 	if (reserved_slots < max)
3859 		available_slots = max - reserved_slots;
3860 
3861 	if (slots <= available_slots || GANG_ALLOCATION(flags)) {
3862 		/*
3863 		 * We reserve the slots individually so that we can unreserve
3864 		 * them individually when an I/O completes.
3865 		 */
3866 		for (int d = 0; d < slots; d++) {
3867 			reserved_slots =
3868 			    refcount_add(&mc->mc_alloc_slots[allocator],
3869 			    zio);
3870 		}
3871 		zio->io_flags |= ZIO_FLAG_IO_ALLOCATING;
3872 		slot_reserved = B_TRUE;
3873 	}
3874 
3875 	mutex_exit(&mc->mc_lock);
3876 	return (slot_reserved);
3877 }
3878 
3879 void
3880 metaslab_class_throttle_unreserve(metaslab_class_t *mc, int slots,
3881     int allocator, zio_t *zio)
3882 {
3883 	ASSERT(mc->mc_alloc_throttle_enabled);
3884 	mutex_enter(&mc->mc_lock);
3885 	for (int d = 0; d < slots; d++) {
3886 		(void) refcount_remove(&mc->mc_alloc_slots[allocator],
3887 		    zio);
3888 	}
3889 	mutex_exit(&mc->mc_lock);
3890 }
3891 
3892 static int
3893 metaslab_claim_concrete(vdev_t *vd, uint64_t offset, uint64_t size,
3894     uint64_t txg)
3895 {
3896 	metaslab_t *msp;
3897 	spa_t *spa = vd->vdev_spa;
3898 	int error = 0;
3899 
3900 	if (offset >> vd->vdev_ms_shift >= vd->vdev_ms_count)
3901 		return (ENXIO);
3902 
3903 	ASSERT3P(vd->vdev_ms, !=, NULL);
3904 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
3905 
3906 	mutex_enter(&msp->ms_lock);
3907 
3908 	if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded)
3909 		error = metaslab_activate(msp, 0, METASLAB_WEIGHT_CLAIM);
3910 	/*
3911 	 * No need to fail in that case; someone else has activated the
3912 	 * metaslab, but that doesn't preclude us from using it.
3913 	 */
3914 	if (error == EBUSY)
3915 		error = 0;
3916 
3917 	if (error == 0 &&
3918 	    !range_tree_contains(msp->ms_allocatable, offset, size))
3919 		error = SET_ERROR(ENOENT);
3920 
3921 	if (error || txg == 0) {	/* txg == 0 indicates dry run */
3922 		mutex_exit(&msp->ms_lock);
3923 		return (error);
3924 	}
3925 
3926 	VERIFY(!msp->ms_condensing);
3927 	VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
3928 	VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
3929 	VERIFY3U(range_tree_space(msp->ms_allocatable) - size, <=,
3930 	    msp->ms_size);
3931 	range_tree_remove(msp->ms_allocatable, offset, size);
3932 
3933 	if (spa_writeable(spa)) {	/* don't dirty if we're zdb(1M) */
3934 		if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
3935 			vdev_dirty(vd, VDD_METASLAB, msp, txg);
3936 		range_tree_add(msp->ms_allocating[txg & TXG_MASK],
3937 		    offset, size);
3938 	}
3939 
3940 	mutex_exit(&msp->ms_lock);
3941 
3942 	return (0);
3943 }
3944 
3945 typedef struct metaslab_claim_cb_arg_t {
3946 	uint64_t	mcca_txg;
3947 	int		mcca_error;
3948 } metaslab_claim_cb_arg_t;
3949 
3950 /* ARGSUSED */
3951 static void
3952 metaslab_claim_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
3953     uint64_t size, void *arg)
3954 {
3955 	metaslab_claim_cb_arg_t *mcca_arg = arg;
3956 
3957 	if (mcca_arg->mcca_error == 0) {
3958 		mcca_arg->mcca_error = metaslab_claim_concrete(vd, offset,
3959 		    size, mcca_arg->mcca_txg);
3960 	}
3961 }
3962 
3963 int
3964 metaslab_claim_impl(vdev_t *vd, uint64_t offset, uint64_t size, uint64_t txg)
3965 {
3966 	if (vd->vdev_ops->vdev_op_remap != NULL) {
3967 		metaslab_claim_cb_arg_t arg;
3968 
3969 		/*
3970 		 * Only zdb(1M) can claim on indirect vdevs.  This is used
3971 		 * to detect leaks of mapped space (that are not accounted
3972 		 * for in the obsolete counts, spacemap, or bpobj).
3973 		 */
3974 		ASSERT(!spa_writeable(vd->vdev_spa));
3975 		arg.mcca_error = 0;
3976 		arg.mcca_txg = txg;
3977 
3978 		vd->vdev_ops->vdev_op_remap(vd, offset, size,
3979 		    metaslab_claim_impl_cb, &arg);
3980 
3981 		if (arg.mcca_error == 0) {
3982 			arg.mcca_error = metaslab_claim_concrete(vd,
3983 			    offset, size, txg);
3984 		}
3985 		return (arg.mcca_error);
3986 	} else {
3987 		return (metaslab_claim_concrete(vd, offset, size, txg));
3988 	}
3989 }
3990 
3991 /*
3992  * Intent log support: upon opening the pool after a crash, notify the SPA
3993  * of blocks that the intent log has allocated for immediate write, but
3994  * which are still considered free by the SPA because the last transaction
3995  * group didn't commit yet.
3996  */
3997 static int
3998 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
3999 {
4000 	uint64_t vdev = DVA_GET_VDEV(dva);
4001 	uint64_t offset = DVA_GET_OFFSET(dva);
4002 	uint64_t size = DVA_GET_ASIZE(dva);
4003 	vdev_t *vd;
4004 
4005 	if ((vd = vdev_lookup_top(spa, vdev)) == NULL) {
4006 		return (SET_ERROR(ENXIO));
4007 	}
4008 
4009 	ASSERT(DVA_IS_VALID(dva));
4010 
4011 	if (DVA_GET_GANG(dva))
4012 		size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
4013 
4014 	return (metaslab_claim_impl(vd, offset, size, txg));
4015 }
4016 
4017 int
4018 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
4019     int ndvas, uint64_t txg, blkptr_t *hintbp, int flags,
4020     zio_alloc_list_t *zal, zio_t *zio, int allocator)
4021 {
4022 	dva_t *dva = bp->blk_dva;
4023 	dva_t *hintdva = hintbp->blk_dva;
4024 	int error = 0;
4025 
4026 	ASSERT(bp->blk_birth == 0);
4027 	ASSERT(BP_PHYSICAL_BIRTH(bp) == 0);
4028 
4029 	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
4030 
4031 	if (mc->mc_rotor == NULL) {	/* no vdevs in this class */
4032 		spa_config_exit(spa, SCL_ALLOC, FTAG);
4033 		return (SET_ERROR(ENOSPC));
4034 	}
4035 
4036 	ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
4037 	ASSERT(BP_GET_NDVAS(bp) == 0);
4038 	ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
4039 	ASSERT3P(zal, !=, NULL);
4040 
4041 	for (int d = 0; d < ndvas; d++) {
4042 		error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
4043 		    txg, flags, zal, allocator);
4044 		if (error != 0) {
4045 			for (d--; d >= 0; d--) {
4046 				metaslab_unalloc_dva(spa, &dva[d], txg);
4047 				metaslab_group_alloc_decrement(spa,
4048 				    DVA_GET_VDEV(&dva[d]), zio, flags,
4049 				    allocator, B_FALSE);
4050 				bzero(&dva[d], sizeof (dva_t));
4051 			}
4052 			spa_config_exit(spa, SCL_ALLOC, FTAG);
4053 			return (error);
4054 		} else {
4055 			/*
4056 			 * Update the metaslab group's queue depth
4057 			 * based on the newly allocated dva.
4058 			 */
4059 			metaslab_group_alloc_increment(spa,
4060 			    DVA_GET_VDEV(&dva[d]), zio, flags, allocator);
4061 		}
4062 
4063 	}
4064 	ASSERT(error == 0);
4065 	ASSERT(BP_GET_NDVAS(bp) == ndvas);
4066 
4067 	spa_config_exit(spa, SCL_ALLOC, FTAG);
4068 
4069 	BP_SET_BIRTH(bp, txg, txg);
4070 
4071 	return (0);
4072 }
4073 
4074 void
4075 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
4076 {
4077 	const dva_t *dva = bp->blk_dva;
4078 	int ndvas = BP_GET_NDVAS(bp);
4079 
4080 	ASSERT(!BP_IS_HOLE(bp));
4081 	ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa));
4082 
4083 	/*
4084 	 * If we have a checkpoint for the pool we need to make sure that
4085 	 * the blocks that we free that are part of the checkpoint won't be
4086 	 * reused until the checkpoint is discarded or we revert to it.
4087 	 *
4088 	 * The checkpoint flag is passed down the metaslab_free code path
4089 	 * and is set whenever we want to add a block to the checkpoint's
4090 	 * accounting. That is, we "checkpoint" blocks that existed at the
4091 	 * time the checkpoint was created and are therefore referenced by
4092 	 * the checkpointed uberblock.
4093 	 *
4094 	 * Note that, we don't checkpoint any blocks if the current
4095 	 * syncing txg <= spa_checkpoint_txg. We want these frees to sync
4096 	 * normally as they will be referenced by the checkpointed uberblock.
4097 	 */
4098 	boolean_t checkpoint = B_FALSE;
4099 	if (bp->blk_birth <= spa->spa_checkpoint_txg &&
4100 	    spa_syncing_txg(spa) > spa->spa_checkpoint_txg) {
4101 		/*
4102 		 * At this point, if the block is part of the checkpoint
4103 		 * there is no way it was created in the current txg.
4104 		 */
4105 		ASSERT(!now);
4106 		ASSERT3U(spa_syncing_txg(spa), ==, txg);
4107 		checkpoint = B_TRUE;
4108 	}
4109 
4110 	spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
4111 
4112 	for (int d = 0; d < ndvas; d++) {
4113 		if (now) {
4114 			metaslab_unalloc_dva(spa, &dva[d], txg);
4115 		} else {
4116 			ASSERT3U(txg, ==, spa_syncing_txg(spa));
4117 			metaslab_free_dva(spa, &dva[d], checkpoint);
4118 		}
4119 	}
4120 
4121 	spa_config_exit(spa, SCL_FREE, FTAG);
4122 }
4123 
4124 int
4125 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
4126 {
4127 	const dva_t *dva = bp->blk_dva;
4128 	int ndvas = BP_GET_NDVAS(bp);
4129 	int error = 0;
4130 
4131 	ASSERT(!BP_IS_HOLE(bp));
4132 
4133 	if (txg != 0) {
4134 		/*
4135 		 * First do a dry run to make sure all DVAs are claimable,
4136 		 * so we don't have to unwind from partial failures below.
4137 		 */
4138 		if ((error = metaslab_claim(spa, bp, 0)) != 0)
4139 			return (error);
4140 	}
4141 
4142 	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
4143 
4144 	for (int d = 0; d < ndvas; d++)
4145 		if ((error = metaslab_claim_dva(spa, &dva[d], txg)) != 0)
4146 			break;
4147 
4148 	spa_config_exit(spa, SCL_ALLOC, FTAG);
4149 
4150 	ASSERT(error == 0 || txg == 0);
4151 
4152 	return (error);
4153 }
4154 
4155 /* ARGSUSED */
4156 static void
4157 metaslab_check_free_impl_cb(uint64_t inner, vdev_t *vd, uint64_t offset,
4158     uint64_t size, void *arg)
4159 {
4160 	if (vd->vdev_ops == &vdev_indirect_ops)
4161 		return;
4162 
4163 	metaslab_check_free_impl(vd, offset, size);
4164 }
4165 
4166 static void
4167 metaslab_check_free_impl(vdev_t *vd, uint64_t offset, uint64_t size)
4168 {
4169 	metaslab_t *msp;
4170 	spa_t *spa = vd->vdev_spa;
4171 
4172 	if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
4173 		return;
4174 
4175 	if (vd->vdev_ops->vdev_op_remap != NULL) {
4176 		vd->vdev_ops->vdev_op_remap(vd, offset, size,
4177 		    metaslab_check_free_impl_cb, NULL);
4178 		return;
4179 	}
4180 
4181 	ASSERT(vdev_is_concrete(vd));
4182 	ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
4183 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
4184 
4185 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
4186 
4187 	mutex_enter(&msp->ms_lock);
4188 	if (msp->ms_loaded)
4189 		range_tree_verify(msp->ms_allocatable, offset, size);
4190 
4191 	range_tree_verify(msp->ms_freeing, offset, size);
4192 	range_tree_verify(msp->ms_checkpointing, offset, size);
4193 	range_tree_verify(msp->ms_freed, offset, size);
4194 	for (int j = 0; j < TXG_DEFER_SIZE; j++)
4195 		range_tree_verify(msp->ms_defer[j], offset, size);
4196 	mutex_exit(&msp->ms_lock);
4197 }
4198 
4199 void
4200 metaslab_check_free(spa_t *spa, const blkptr_t *bp)
4201 {
4202 	if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
4203 		return;
4204 
4205 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
4206 	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
4207 		uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
4208 		vdev_t *vd = vdev_lookup_top(spa, vdev);
4209 		uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
4210 		uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]);
4211 
4212 		if (DVA_GET_GANG(&bp->blk_dva[i]))
4213 			size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
4214 
4215 		ASSERT3P(vd, !=, NULL);
4216 
4217 		metaslab_check_free_impl(vd, offset, size);
4218 	}
4219 	spa_config_exit(spa, SCL_VDEV, FTAG);
4220 }
4221