xref: /illumos-gate/usr/src/uts/common/fs/zfs/dsl_pool.c (revision ff5177ee)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2016 by Delphix. All rights reserved.
24  * Copyright (c) 2013 Steven Hartland. All rights reserved.
25  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26  * Copyright (c) 2014 Integros [integros.com]
27  * Copyright 2016 Nexenta Systems, Inc.  All rights reserved.
28  */
29 
30 #include <sys/dsl_pool.h>
31 #include <sys/dsl_dataset.h>
32 #include <sys/dsl_prop.h>
33 #include <sys/dsl_dir.h>
34 #include <sys/dsl_synctask.h>
35 #include <sys/dsl_scan.h>
36 #include <sys/dnode.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/dmu_objset.h>
39 #include <sys/arc.h>
40 #include <sys/zap.h>
41 #include <sys/zio.h>
42 #include <sys/zfs_context.h>
43 #include <sys/fs/zfs.h>
44 #include <sys/zfs_znode.h>
45 #include <sys/spa_impl.h>
46 #include <sys/dsl_deadlist.h>
47 #include <sys/bptree.h>
48 #include <sys/zfeature.h>
49 #include <sys/zil_impl.h>
50 #include <sys/dsl_userhold.h>
51 
52 /*
53  * ZFS Write Throttle
54  * ------------------
55  *
56  * ZFS must limit the rate of incoming writes to the rate at which it is able
57  * to sync data modifications to the backend storage. Throttling by too much
58  * creates an artificial limit; throttling by too little can only be sustained
59  * for short periods and would lead to highly lumpy performance. On a per-pool
60  * basis, ZFS tracks the amount of modified (dirty) data. As operations change
61  * data, the amount of dirty data increases; as ZFS syncs out data, the amount
62  * of dirty data decreases. When the amount of dirty data exceeds a
63  * predetermined threshold further modifications are blocked until the amount
64  * of dirty data decreases (as data is synced out).
65  *
66  * The limit on dirty data is tunable, and should be adjusted according to
67  * both the IO capacity and available memory of the system. The larger the
68  * window, the more ZFS is able to aggregate and amortize metadata (and data)
69  * changes. However, memory is a limited resource, and allowing for more dirty
70  * data comes at the cost of keeping other useful data in memory (for example
71  * ZFS data cached by the ARC).
72  *
73  * Implementation
74  *
75  * As buffers are modified dsl_pool_willuse_space() increments both the per-
76  * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of
77  * dirty space used; dsl_pool_dirty_space() decrements those values as data
78  * is synced out from dsl_pool_sync(). While only the poolwide value is
79  * relevant, the per-txg value is useful for debugging. The tunable
80  * zfs_dirty_data_max determines the dirty space limit. Once that value is
81  * exceeded, new writes are halted until space frees up.
82  *
83  * The zfs_dirty_data_sync tunable dictates the threshold at which we
84  * ensure that there is a txg syncing (see the comment in txg.c for a full
85  * description of transaction group stages).
86  *
87  * The IO scheduler uses both the dirty space limit and current amount of
88  * dirty data as inputs. Those values affect the number of concurrent IOs ZFS
89  * issues. See the comment in vdev_queue.c for details of the IO scheduler.
90  *
91  * The delay is also calculated based on the amount of dirty data.  See the
92  * comment above dmu_tx_delay() for details.
93  */
94 
95 /*
96  * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory,
97  * capped at zfs_dirty_data_max_max.  It can also be overridden in /etc/system.
98  */
99 uint64_t zfs_dirty_data_max;
100 uint64_t zfs_dirty_data_max_max = 4ULL * 1024 * 1024 * 1024;
101 int zfs_dirty_data_max_percent = 10;
102 
103 /*
104  * If there is at least this much dirty data, push out a txg.
105  */
106 uint64_t zfs_dirty_data_sync = 64 * 1024 * 1024;
107 
108 /*
109  * Once there is this amount of dirty data, the dmu_tx_delay() will kick in
110  * and delay each transaction.
111  * This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
112  */
113 int zfs_delay_min_dirty_percent = 60;
114 
115 /*
116  * This controls how quickly the delay approaches infinity.
117  * Larger values cause it to delay more for a given amount of dirty data.
118  * Therefore larger values will cause there to be less dirty data for a
119  * given throughput.
120  *
121  * For the smoothest delay, this value should be about 1 billion divided
122  * by the maximum number of operations per second.  This will smoothly
123  * handle between 10x and 1/10th this number.
124  *
125  * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the
126  * multiply in dmu_tx_delay().
127  */
128 uint64_t zfs_delay_scale = 1000 * 1000 * 1000 / 2000;
129 
130 
131 hrtime_t zfs_throttle_delay = MSEC2NSEC(10);
132 hrtime_t zfs_throttle_resolution = MSEC2NSEC(10);
133 
134 int
135 dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp)
136 {
137 	uint64_t obj;
138 	int err;
139 
140 	err = zap_lookup(dp->dp_meta_objset,
141 	    dsl_dir_phys(dp->dp_root_dir)->dd_child_dir_zapobj,
142 	    name, sizeof (obj), 1, &obj);
143 	if (err)
144 		return (err);
145 
146 	return (dsl_dir_hold_obj(dp, obj, name, dp, ddp));
147 }
148 
149 static dsl_pool_t *
150 dsl_pool_open_impl(spa_t *spa, uint64_t txg)
151 {
152 	dsl_pool_t *dp;
153 	blkptr_t *bp = spa_get_rootblkptr(spa);
154 
155 	dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP);
156 	dp->dp_spa = spa;
157 	dp->dp_meta_rootbp = *bp;
158 	rrw_init(&dp->dp_config_rwlock, B_TRUE);
159 	txg_init(dp, txg);
160 
161 	txg_list_create(&dp->dp_dirty_datasets,
162 	    offsetof(dsl_dataset_t, ds_dirty_link));
163 	txg_list_create(&dp->dp_dirty_zilogs,
164 	    offsetof(zilog_t, zl_dirty_link));
165 	txg_list_create(&dp->dp_dirty_dirs,
166 	    offsetof(dsl_dir_t, dd_dirty_link));
167 	txg_list_create(&dp->dp_sync_tasks,
168 	    offsetof(dsl_sync_task_t, dst_node));
169 
170 	mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);
171 	cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL);
172 
173 	dp->dp_vnrele_taskq = taskq_create("zfs_vn_rele_taskq", 1, minclsyspri,
174 	    1, 4, 0);
175 
176 	return (dp);
177 }
178 
179 int
180 dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp)
181 {
182 	int err;
183 	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
184 
185 	err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp,
186 	    &dp->dp_meta_objset);
187 	if (err != 0)
188 		dsl_pool_close(dp);
189 	else
190 		*dpp = dp;
191 
192 	return (err);
193 }
194 
195 int
196 dsl_pool_open(dsl_pool_t *dp)
197 {
198 	int err;
199 	dsl_dir_t *dd;
200 	dsl_dataset_t *ds;
201 	uint64_t obj;
202 
203 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
204 	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
205 	    DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1,
206 	    &dp->dp_root_dir_obj);
207 	if (err)
208 		goto out;
209 
210 	err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
211 	    NULL, dp, &dp->dp_root_dir);
212 	if (err)
213 		goto out;
214 
215 	err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir);
216 	if (err)
217 		goto out;
218 
219 	if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) {
220 		err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd);
221 		if (err)
222 			goto out;
223 		err = dsl_dataset_hold_obj(dp,
224 		    dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds);
225 		if (err == 0) {
226 			err = dsl_dataset_hold_obj(dp,
227 			    dsl_dataset_phys(ds)->ds_prev_snap_obj, dp,
228 			    &dp->dp_origin_snap);
229 			dsl_dataset_rele(ds, FTAG);
230 		}
231 		dsl_dir_rele(dd, dp);
232 		if (err)
233 			goto out;
234 	}
235 
236 	if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
237 		err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME,
238 		    &dp->dp_free_dir);
239 		if (err)
240 			goto out;
241 
242 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
243 		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj);
244 		if (err)
245 			goto out;
246 		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
247 		    dp->dp_meta_objset, obj));
248 	}
249 
250 	/*
251 	 * Note: errors ignored, because the leak dir will not exist if we
252 	 * have not encountered a leak yet.
253 	 */
254 	(void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME,
255 	    &dp->dp_leak_dir);
256 
257 	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) {
258 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
259 		    DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
260 		    &dp->dp_bptree_obj);
261 		if (err != 0)
262 			goto out;
263 	}
264 
265 	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) {
266 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
267 		    DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1,
268 		    &dp->dp_empty_bpobj);
269 		if (err != 0)
270 			goto out;
271 	}
272 
273 	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
274 	    DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
275 	    &dp->dp_tmp_userrefs_obj);
276 	if (err == ENOENT)
277 		err = 0;
278 	if (err)
279 		goto out;
280 
281 	err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);
282 
283 out:
284 	rrw_exit(&dp->dp_config_rwlock, FTAG);
285 	return (err);
286 }
287 
288 void
289 dsl_pool_close(dsl_pool_t *dp)
290 {
291 	/*
292 	 * Drop our references from dsl_pool_open().
293 	 *
294 	 * Since we held the origin_snap from "syncing" context (which
295 	 * includes pool-opening context), it actually only got a "ref"
296 	 * and not a hold, so just drop that here.
297 	 */
298 	if (dp->dp_origin_snap)
299 		dsl_dataset_rele(dp->dp_origin_snap, dp);
300 	if (dp->dp_mos_dir)
301 		dsl_dir_rele(dp->dp_mos_dir, dp);
302 	if (dp->dp_free_dir)
303 		dsl_dir_rele(dp->dp_free_dir, dp);
304 	if (dp->dp_leak_dir)
305 		dsl_dir_rele(dp->dp_leak_dir, dp);
306 	if (dp->dp_root_dir)
307 		dsl_dir_rele(dp->dp_root_dir, dp);
308 
309 	bpobj_close(&dp->dp_free_bpobj);
310 
311 	/* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */
312 	if (dp->dp_meta_objset)
313 		dmu_objset_evict(dp->dp_meta_objset);
314 
315 	txg_list_destroy(&dp->dp_dirty_datasets);
316 	txg_list_destroy(&dp->dp_dirty_zilogs);
317 	txg_list_destroy(&dp->dp_sync_tasks);
318 	txg_list_destroy(&dp->dp_dirty_dirs);
319 
320 	/*
321 	 * We can't set retry to TRUE since we're explicitly specifying
322 	 * a spa to flush. This is good enough; any missed buffers for
323 	 * this spa won't cause trouble, and they'll eventually fall
324 	 * out of the ARC just like any other unused buffer.
325 	 */
326 	arc_flush(dp->dp_spa, FALSE);
327 
328 	txg_fini(dp);
329 	dsl_scan_fini(dp);
330 	dmu_buf_user_evict_wait();
331 
332 	rrw_destroy(&dp->dp_config_rwlock);
333 	mutex_destroy(&dp->dp_lock);
334 	taskq_destroy(dp->dp_vnrele_taskq);
335 	if (dp->dp_blkstats)
336 		kmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
337 	kmem_free(dp, sizeof (dsl_pool_t));
338 }
339 
340 dsl_pool_t *
341 dsl_pool_create(spa_t *spa, nvlist_t *zplprops, uint64_t txg)
342 {
343 	int err;
344 	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
345 	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
346 	objset_t *os;
347 	dsl_dataset_t *ds;
348 	uint64_t obj;
349 
350 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
351 
352 	/* create and open the MOS (meta-objset) */
353 	dp->dp_meta_objset = dmu_objset_create_impl(spa,
354 	    NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx);
355 
356 	/* create the pool directory */
357 	err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
358 	    DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx);
359 	ASSERT0(err);
360 
361 	/* Initialize scan structures */
362 	VERIFY0(dsl_scan_init(dp, txg));
363 
364 	/* create and open the root dir */
365 	dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
366 	VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
367 	    NULL, dp, &dp->dp_root_dir));
368 
369 	/* create and open the meta-objset dir */
370 	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx);
371 	VERIFY0(dsl_pool_open_special_dir(dp,
372 	    MOS_DIR_NAME, &dp->dp_mos_dir));
373 
374 	if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
375 		/* create and open the free dir */
376 		(void) dsl_dir_create_sync(dp, dp->dp_root_dir,
377 		    FREE_DIR_NAME, tx);
378 		VERIFY0(dsl_pool_open_special_dir(dp,
379 		    FREE_DIR_NAME, &dp->dp_free_dir));
380 
381 		/* create and open the free_bplist */
382 		obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
383 		VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
384 		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0);
385 		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
386 		    dp->dp_meta_objset, obj));
387 	}
388 
389 	if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB)
390 		dsl_pool_create_origin(dp, tx);
391 
392 	/* create the root dataset */
393 	obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, 0, tx);
394 
395 	/* create the root objset */
396 	VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, &ds));
397 	rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
398 	os = dmu_objset_create_impl(dp->dp_spa, ds,
399 	    dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx);
400 	rrw_exit(&ds->ds_bp_rwlock, FTAG);
401 #ifdef _KERNEL
402 	zfs_create_fs(os, kcred, zplprops, tx);
403 #endif
404 	dsl_dataset_rele(ds, FTAG);
405 
406 	dmu_tx_commit(tx);
407 
408 	rrw_exit(&dp->dp_config_rwlock, FTAG);
409 
410 	return (dp);
411 }
412 
413 /*
414  * Account for the meta-objset space in its placeholder dsl_dir.
415  */
416 void
417 dsl_pool_mos_diduse_space(dsl_pool_t *dp,
418     int64_t used, int64_t comp, int64_t uncomp)
419 {
420 	ASSERT3U(comp, ==, uncomp); /* it's all metadata */
421 	mutex_enter(&dp->dp_lock);
422 	dp->dp_mos_used_delta += used;
423 	dp->dp_mos_compressed_delta += comp;
424 	dp->dp_mos_uncompressed_delta += uncomp;
425 	mutex_exit(&dp->dp_lock);
426 }
427 
428 static void
429 dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx)
430 {
431 	zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
432 	dmu_objset_sync(dp->dp_meta_objset, zio, tx);
433 	VERIFY0(zio_wait(zio));
434 	dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
435 	spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
436 }
437 
438 static void
439 dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta)
440 {
441 	ASSERT(MUTEX_HELD(&dp->dp_lock));
442 
443 	if (delta < 0)
444 		ASSERT3U(-delta, <=, dp->dp_dirty_total);
445 
446 	dp->dp_dirty_total += delta;
447 
448 	/*
449 	 * Note: we signal even when increasing dp_dirty_total.
450 	 * This ensures forward progress -- each thread wakes the next waiter.
451 	 */
452 	if (dp->dp_dirty_total <= zfs_dirty_data_max)
453 		cv_signal(&dp->dp_spaceavail_cv);
454 }
455 
456 void
457 dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
458 {
459 	zio_t *zio;
460 	dmu_tx_t *tx;
461 	dsl_dir_t *dd;
462 	dsl_dataset_t *ds;
463 	objset_t *mos = dp->dp_meta_objset;
464 	list_t synced_datasets;
465 
466 	list_create(&synced_datasets, sizeof (dsl_dataset_t),
467 	    offsetof(dsl_dataset_t, ds_synced_link));
468 
469 	tx = dmu_tx_create_assigned(dp, txg);
470 
471 	/*
472 	 * Write out all dirty blocks of dirty datasets.
473 	 */
474 	zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
475 	while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
476 		/*
477 		 * We must not sync any non-MOS datasets twice, because
478 		 * we may have taken a snapshot of them.  However, we
479 		 * may sync newly-created datasets on pass 2.
480 		 */
481 		ASSERT(!list_link_active(&ds->ds_synced_link));
482 		list_insert_tail(&synced_datasets, ds);
483 		dsl_dataset_sync(ds, zio, tx);
484 	}
485 	VERIFY0(zio_wait(zio));
486 
487 	/*
488 	 * We have written all of the accounted dirty data, so our
489 	 * dp_space_towrite should now be zero.  However, some seldom-used
490 	 * code paths do not adhere to this (e.g. dbuf_undirty(), also
491 	 * rounding error in dbuf_write_physdone).
492 	 * Shore up the accounting of any dirtied space now.
493 	 */
494 	dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg);
495 
496 	/*
497 	 * Update the long range free counter after
498 	 * we're done syncing user data
499 	 */
500 	mutex_enter(&dp->dp_lock);
501 	ASSERT(spa_sync_pass(dp->dp_spa) == 1 ||
502 	    dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] == 0);
503 	dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] = 0;
504 	mutex_exit(&dp->dp_lock);
505 
506 	/*
507 	 * After the data blocks have been written (ensured by the zio_wait()
508 	 * above), update the user/group space accounting.
509 	 */
510 	for (ds = list_head(&synced_datasets); ds != NULL;
511 	    ds = list_next(&synced_datasets, ds)) {
512 		dmu_objset_do_userquota_updates(ds->ds_objset, tx);
513 	}
514 
515 	/*
516 	 * Sync the datasets again to push out the changes due to
517 	 * userspace updates.  This must be done before we process the
518 	 * sync tasks, so that any snapshots will have the correct
519 	 * user accounting information (and we won't get confused
520 	 * about which blocks are part of the snapshot).
521 	 */
522 	zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
523 	while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
524 		ASSERT(list_link_active(&ds->ds_synced_link));
525 		dmu_buf_rele(ds->ds_dbuf, ds);
526 		dsl_dataset_sync(ds, zio, tx);
527 	}
528 	VERIFY0(zio_wait(zio));
529 
530 	/*
531 	 * Now that the datasets have been completely synced, we can
532 	 * clean up our in-memory structures accumulated while syncing:
533 	 *
534 	 *  - move dead blocks from the pending deadlist to the on-disk deadlist
535 	 *  - release hold from dsl_dataset_dirty()
536 	 */
537 	while ((ds = list_remove_head(&synced_datasets)) != NULL) {
538 		dsl_dataset_sync_done(ds, tx);
539 	}
540 	while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) {
541 		dsl_dir_sync(dd, tx);
542 	}
543 
544 	/*
545 	 * The MOS's space is accounted for in the pool/$MOS
546 	 * (dp_mos_dir).  We can't modify the mos while we're syncing
547 	 * it, so we remember the deltas and apply them here.
548 	 */
549 	if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 ||
550 	    dp->dp_mos_uncompressed_delta != 0) {
551 		dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD,
552 		    dp->dp_mos_used_delta,
553 		    dp->dp_mos_compressed_delta,
554 		    dp->dp_mos_uncompressed_delta, tx);
555 		dp->dp_mos_used_delta = 0;
556 		dp->dp_mos_compressed_delta = 0;
557 		dp->dp_mos_uncompressed_delta = 0;
558 	}
559 
560 	if (list_head(&mos->os_dirty_dnodes[txg & TXG_MASK]) != NULL ||
561 	    list_head(&mos->os_free_dnodes[txg & TXG_MASK]) != NULL) {
562 		dsl_pool_sync_mos(dp, tx);
563 	}
564 
565 	/*
566 	 * If we modify a dataset in the same txg that we want to destroy it,
567 	 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it.
568 	 * dsl_dir_destroy_check() will fail if there are unexpected holds.
569 	 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf
570 	 * and clearing the hold on it) before we process the sync_tasks.
571 	 * The MOS data dirtied by the sync_tasks will be synced on the next
572 	 * pass.
573 	 */
574 	if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
575 		dsl_sync_task_t *dst;
576 		/*
577 		 * No more sync tasks should have been added while we
578 		 * were syncing.
579 		 */
580 		ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
581 		while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL)
582 			dsl_sync_task_sync(dst, tx);
583 	}
584 
585 	dmu_tx_commit(tx);
586 
587 	DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg);
588 }
589 
590 void
591 dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
592 {
593 	zilog_t *zilog;
594 
595 	while (zilog = txg_list_head(&dp->dp_dirty_zilogs, txg)) {
596 		dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
597 		/*
598 		 * We don't remove the zilog from the dp_dirty_zilogs
599 		 * list until after we've cleaned it. This ensures that
600 		 * callers of zilog_is_dirty() receive an accurate
601 		 * answer when they are racing with the spa sync thread.
602 		 */
603 		zil_clean(zilog, txg);
604 		(void) txg_list_remove_this(&dp->dp_dirty_zilogs, zilog, txg);
605 		ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
606 		dmu_buf_rele(ds->ds_dbuf, zilog);
607 	}
608 	ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg));
609 }
610 
611 /*
612  * TRUE if the current thread is the tx_sync_thread or if we
613  * are being called from SPA context during pool initialization.
614  */
615 int
616 dsl_pool_sync_context(dsl_pool_t *dp)
617 {
618 	return (curthread == dp->dp_tx.tx_sync_thread ||
619 	    spa_is_initializing(dp->dp_spa));
620 }
621 
622 uint64_t
623 dsl_pool_adjustedsize(dsl_pool_t *dp, boolean_t netfree)
624 {
625 	uint64_t space, resv;
626 
627 	/*
628 	 * If we're trying to assess whether it's OK to do a free,
629 	 * cut the reservation in half to allow forward progress
630 	 * (e.g. make it possible to rm(1) files from a full pool).
631 	 */
632 	space = spa_get_dspace(dp->dp_spa);
633 	resv = spa_get_slop_space(dp->dp_spa);
634 	if (netfree)
635 		resv >>= 1;
636 
637 	return (space - resv);
638 }
639 
640 boolean_t
641 dsl_pool_need_dirty_delay(dsl_pool_t *dp)
642 {
643 	uint64_t delay_min_bytes =
644 	    zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
645 	boolean_t rv;
646 
647 	mutex_enter(&dp->dp_lock);
648 	if (dp->dp_dirty_total > zfs_dirty_data_sync)
649 		txg_kick(dp);
650 	rv = (dp->dp_dirty_total > delay_min_bytes);
651 	mutex_exit(&dp->dp_lock);
652 	return (rv);
653 }
654 
655 void
656 dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
657 {
658 	if (space > 0) {
659 		mutex_enter(&dp->dp_lock);
660 		dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space;
661 		dsl_pool_dirty_delta(dp, space);
662 		mutex_exit(&dp->dp_lock);
663 	}
664 }
665 
666 void
667 dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg)
668 {
669 	ASSERT3S(space, >=, 0);
670 	if (space == 0)
671 		return;
672 	mutex_enter(&dp->dp_lock);
673 	if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) {
674 		/* XXX writing something we didn't dirty? */
675 		space = dp->dp_dirty_pertxg[txg & TXG_MASK];
676 	}
677 	ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space);
678 	dp->dp_dirty_pertxg[txg & TXG_MASK] -= space;
679 	ASSERT3U(dp->dp_dirty_total, >=, space);
680 	dsl_pool_dirty_delta(dp, -space);
681 	mutex_exit(&dp->dp_lock);
682 }
683 
684 /* ARGSUSED */
685 static int
686 upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
687 {
688 	dmu_tx_t *tx = arg;
689 	dsl_dataset_t *ds, *prev = NULL;
690 	int err;
691 
692 	err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
693 	if (err)
694 		return (err);
695 
696 	while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
697 		err = dsl_dataset_hold_obj(dp,
698 		    dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
699 		if (err) {
700 			dsl_dataset_rele(ds, FTAG);
701 			return (err);
702 		}
703 
704 		if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object)
705 			break;
706 		dsl_dataset_rele(ds, FTAG);
707 		ds = prev;
708 		prev = NULL;
709 	}
710 
711 	if (prev == NULL) {
712 		prev = dp->dp_origin_snap;
713 
714 		/*
715 		 * The $ORIGIN can't have any data, or the accounting
716 		 * will be wrong.
717 		 */
718 		rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
719 		ASSERT0(dsl_dataset_phys(prev)->ds_bp.blk_birth);
720 		rrw_exit(&ds->ds_bp_rwlock, FTAG);
721 
722 		/* The origin doesn't get attached to itself */
723 		if (ds->ds_object == prev->ds_object) {
724 			dsl_dataset_rele(ds, FTAG);
725 			return (0);
726 		}
727 
728 		dmu_buf_will_dirty(ds->ds_dbuf, tx);
729 		dsl_dataset_phys(ds)->ds_prev_snap_obj = prev->ds_object;
730 		dsl_dataset_phys(ds)->ds_prev_snap_txg =
731 		    dsl_dataset_phys(prev)->ds_creation_txg;
732 
733 		dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
734 		dsl_dir_phys(ds->ds_dir)->dd_origin_obj = prev->ds_object;
735 
736 		dmu_buf_will_dirty(prev->ds_dbuf, tx);
737 		dsl_dataset_phys(prev)->ds_num_children++;
738 
739 		if (dsl_dataset_phys(ds)->ds_next_snap_obj == 0) {
740 			ASSERT(ds->ds_prev == NULL);
741 			VERIFY0(dsl_dataset_hold_obj(dp,
742 			    dsl_dataset_phys(ds)->ds_prev_snap_obj,
743 			    ds, &ds->ds_prev));
744 		}
745 	}
746 
747 	ASSERT3U(dsl_dir_phys(ds->ds_dir)->dd_origin_obj, ==, prev->ds_object);
748 	ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_obj, ==, prev->ds_object);
749 
750 	if (dsl_dataset_phys(prev)->ds_next_clones_obj == 0) {
751 		dmu_buf_will_dirty(prev->ds_dbuf, tx);
752 		dsl_dataset_phys(prev)->ds_next_clones_obj =
753 		    zap_create(dp->dp_meta_objset,
754 		    DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
755 	}
756 	VERIFY0(zap_add_int(dp->dp_meta_objset,
757 	    dsl_dataset_phys(prev)->ds_next_clones_obj, ds->ds_object, tx));
758 
759 	dsl_dataset_rele(ds, FTAG);
760 	if (prev != dp->dp_origin_snap)
761 		dsl_dataset_rele(prev, FTAG);
762 	return (0);
763 }
764 
765 void
766 dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx)
767 {
768 	ASSERT(dmu_tx_is_syncing(tx));
769 	ASSERT(dp->dp_origin_snap != NULL);
770 
771 	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb,
772 	    tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
773 }
774 
775 /* ARGSUSED */
776 static int
777 upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
778 {
779 	dmu_tx_t *tx = arg;
780 	objset_t *mos = dp->dp_meta_objset;
781 
782 	if (dsl_dir_phys(ds->ds_dir)->dd_origin_obj != 0) {
783 		dsl_dataset_t *origin;
784 
785 		VERIFY0(dsl_dataset_hold_obj(dp,
786 		    dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &origin));
787 
788 		if (dsl_dir_phys(origin->ds_dir)->dd_clones == 0) {
789 			dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
790 			dsl_dir_phys(origin->ds_dir)->dd_clones =
791 			    zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE,
792 			    0, tx);
793 		}
794 
795 		VERIFY0(zap_add_int(dp->dp_meta_objset,
796 		    dsl_dir_phys(origin->ds_dir)->dd_clones,
797 		    ds->ds_object, tx));
798 
799 		dsl_dataset_rele(origin, FTAG);
800 	}
801 	return (0);
802 }
803 
804 void
805 dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx)
806 {
807 	ASSERT(dmu_tx_is_syncing(tx));
808 	uint64_t obj;
809 
810 	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx);
811 	VERIFY0(dsl_pool_open_special_dir(dp,
812 	    FREE_DIR_NAME, &dp->dp_free_dir));
813 
814 	/*
815 	 * We can't use bpobj_alloc(), because spa_version() still
816 	 * returns the old version, and we need a new-version bpobj with
817 	 * subobj support.  So call dmu_object_alloc() directly.
818 	 */
819 	obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ,
820 	    SPA_OLD_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx);
821 	VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
822 	    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
823 	VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj));
824 
825 	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
826 	    upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
827 }
828 
829 void
830 dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx)
831 {
832 	uint64_t dsobj;
833 	dsl_dataset_t *ds;
834 
835 	ASSERT(dmu_tx_is_syncing(tx));
836 	ASSERT(dp->dp_origin_snap == NULL);
837 	ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER));
838 
839 	/* create the origin dir, ds, & snap-ds */
840 	dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME,
841 	    NULL, 0, kcred, tx);
842 	VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
843 	dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx);
844 	VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj,
845 	    dp, &dp->dp_origin_snap));
846 	dsl_dataset_rele(ds, FTAG);
847 }
848 
849 taskq_t *
850 dsl_pool_vnrele_taskq(dsl_pool_t *dp)
851 {
852 	return (dp->dp_vnrele_taskq);
853 }
854 
855 /*
856  * Walk through the pool-wide zap object of temporary snapshot user holds
857  * and release them.
858  */
859 void
860 dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp)
861 {
862 	zap_attribute_t za;
863 	zap_cursor_t zc;
864 	objset_t *mos = dp->dp_meta_objset;
865 	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
866 	nvlist_t *holds;
867 
868 	if (zapobj == 0)
869 		return;
870 	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
871 
872 	holds = fnvlist_alloc();
873 
874 	for (zap_cursor_init(&zc, mos, zapobj);
875 	    zap_cursor_retrieve(&zc, &za) == 0;
876 	    zap_cursor_advance(&zc)) {
877 		char *htag;
878 		nvlist_t *tags;
879 
880 		htag = strchr(za.za_name, '-');
881 		*htag = '\0';
882 		++htag;
883 		if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) {
884 			tags = fnvlist_alloc();
885 			fnvlist_add_boolean(tags, htag);
886 			fnvlist_add_nvlist(holds, za.za_name, tags);
887 			fnvlist_free(tags);
888 		} else {
889 			fnvlist_add_boolean(tags, htag);
890 		}
891 	}
892 	dsl_dataset_user_release_tmp(dp, holds);
893 	fnvlist_free(holds);
894 	zap_cursor_fini(&zc);
895 }
896 
897 /*
898  * Create the pool-wide zap object for storing temporary snapshot holds.
899  */
900 void
901 dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx)
902 {
903 	objset_t *mos = dp->dp_meta_objset;
904 
905 	ASSERT(dp->dp_tmp_userrefs_obj == 0);
906 	ASSERT(dmu_tx_is_syncing(tx));
907 
908 	dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS,
909 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx);
910 }
911 
912 static int
913 dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj,
914     const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding)
915 {
916 	objset_t *mos = dp->dp_meta_objset;
917 	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
918 	char *name;
919 	int error;
920 
921 	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
922 	ASSERT(dmu_tx_is_syncing(tx));
923 
924 	/*
925 	 * If the pool was created prior to SPA_VERSION_USERREFS, the
926 	 * zap object for temporary holds might not exist yet.
927 	 */
928 	if (zapobj == 0) {
929 		if (holding) {
930 			dsl_pool_user_hold_create_obj(dp, tx);
931 			zapobj = dp->dp_tmp_userrefs_obj;
932 		} else {
933 			return (SET_ERROR(ENOENT));
934 		}
935 	}
936 
937 	name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag);
938 	if (holding)
939 		error = zap_add(mos, zapobj, name, 8, 1, &now, tx);
940 	else
941 		error = zap_remove(mos, zapobj, name, tx);
942 	strfree(name);
943 
944 	return (error);
945 }
946 
947 /*
948  * Add a temporary hold for the given dataset object and tag.
949  */
950 int
951 dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
952     uint64_t now, dmu_tx_t *tx)
953 {
954 	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE));
955 }
956 
957 /*
958  * Release a temporary hold for the given dataset object and tag.
959  */
960 int
961 dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
962     dmu_tx_t *tx)
963 {
964 	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, NULL,
965 	    tx, B_FALSE));
966 }
967 
968 /*
969  * DSL Pool Configuration Lock
970  *
971  * The dp_config_rwlock protects against changes to DSL state (e.g. dataset
972  * creation / destruction / rename / property setting).  It must be held for
973  * read to hold a dataset or dsl_dir.  I.e. you must call
974  * dsl_pool_config_enter() or dsl_pool_hold() before calling
975  * dsl_{dataset,dir}_hold{_obj}.  In most circumstances, the dp_config_rwlock
976  * must be held continuously until all datasets and dsl_dirs are released.
977  *
978  * The only exception to this rule is that if a "long hold" is placed on
979  * a dataset, then the dp_config_rwlock may be dropped while the dataset
980  * is still held.  The long hold will prevent the dataset from being
981  * destroyed -- the destroy will fail with EBUSY.  A long hold can be
982  * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset
983  * (by calling dsl_{dataset,objset}_{try}own{_obj}).
984  *
985  * Legitimate long-holders (including owners) should be long-running, cancelable
986  * tasks that should cause "zfs destroy" to fail.  This includes DMU
987  * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open),
988  * "zfs send", and "zfs diff".  There are several other long-holders whose
989  * uses are suboptimal (e.g. "zfs promote", and zil_suspend()).
990  *
991  * The usual formula for long-holding would be:
992  * dsl_pool_hold()
993  * dsl_dataset_hold()
994  * ... perform checks ...
995  * dsl_dataset_long_hold()
996  * dsl_pool_rele()
997  * ... perform long-running task ...
998  * dsl_dataset_long_rele()
999  * dsl_dataset_rele()
1000  *
1001  * Note that when the long hold is released, the dataset is still held but
1002  * the pool is not held.  The dataset may change arbitrarily during this time
1003  * (e.g. it could be destroyed).  Therefore you shouldn't do anything to the
1004  * dataset except release it.
1005  *
1006  * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only
1007  * or modifying operations.
1008  *
1009  * Modifying operations should generally use dsl_sync_task().  The synctask
1010  * infrastructure enforces proper locking strategy with respect to the
1011  * dp_config_rwlock.  See the comment above dsl_sync_task() for details.
1012  *
1013  * Read-only operations will manually hold the pool, then the dataset, obtain
1014  * information from the dataset, then release the pool and dataset.
1015  * dmu_objset_{hold,rele}() are convenience routines that also do the pool
1016  * hold/rele.
1017  */
1018 
1019 int
1020 dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp)
1021 {
1022 	spa_t *spa;
1023 	int error;
1024 
1025 	error = spa_open(name, &spa, tag);
1026 	if (error == 0) {
1027 		*dp = spa_get_dsl(spa);
1028 		dsl_pool_config_enter(*dp, tag);
1029 	}
1030 	return (error);
1031 }
1032 
1033 void
1034 dsl_pool_rele(dsl_pool_t *dp, void *tag)
1035 {
1036 	dsl_pool_config_exit(dp, tag);
1037 	spa_close(dp->dp_spa, tag);
1038 }
1039 
1040 void
1041 dsl_pool_config_enter(dsl_pool_t *dp, void *tag)
1042 {
1043 	/*
1044 	 * We use a "reentrant" reader-writer lock, but not reentrantly.
1045 	 *
1046 	 * The rrwlock can (with the track_all flag) track all reading threads,
1047 	 * which is very useful for debugging which code path failed to release
1048 	 * the lock, and for verifying that the *current* thread does hold
1049 	 * the lock.
1050 	 *
1051 	 * (Unlike a rwlock, which knows that N threads hold it for
1052 	 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE
1053 	 * if any thread holds it for read, even if this thread doesn't).
1054 	 */
1055 	ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1056 	rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
1057 }
1058 
1059 void
1060 dsl_pool_config_enter_prio(dsl_pool_t *dp, void *tag)
1061 {
1062 	ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1063 	rrw_enter_read_prio(&dp->dp_config_rwlock, tag);
1064 }
1065 
1066 void
1067 dsl_pool_config_exit(dsl_pool_t *dp, void *tag)
1068 {
1069 	rrw_exit(&dp->dp_config_rwlock, tag);
1070 }
1071 
1072 boolean_t
1073 dsl_pool_config_held(dsl_pool_t *dp)
1074 {
1075 	return (RRW_LOCK_HELD(&dp->dp_config_rwlock));
1076 }
1077 
1078 boolean_t
1079 dsl_pool_config_held_writer(dsl_pool_t *dp)
1080 {
1081 	return (RRW_WRITE_HELD(&dp->dp_config_rwlock));
1082 }
1083