xref: /illumos-gate/usr/src/uts/common/fs/zfs/dsl_pool.c (revision b852c2f5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
24  * Copyright (c) 2013 Steven Hartland. All rights reserved.
25  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26  * Copyright (c) 2014 Integros [integros.com]
27  * Copyright 2016 Nexenta Systems, Inc.  All rights reserved.
28  */
29 
30 #include <sys/dsl_pool.h>
31 #include <sys/dsl_dataset.h>
32 #include <sys/dsl_prop.h>
33 #include <sys/dsl_dir.h>
34 #include <sys/dsl_synctask.h>
35 #include <sys/dsl_scan.h>
36 #include <sys/dnode.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/dmu_objset.h>
39 #include <sys/arc.h>
40 #include <sys/zap.h>
41 #include <sys/zio.h>
42 #include <sys/zfs_context.h>
43 #include <sys/fs/zfs.h>
44 #include <sys/zfs_znode.h>
45 #include <sys/spa_impl.h>
46 #include <sys/dsl_deadlist.h>
47 #include <sys/bptree.h>
48 #include <sys/zfeature.h>
49 #include <sys/zil_impl.h>
50 #include <sys/dsl_userhold.h>
51 
52 /*
53  * ZFS Write Throttle
54  * ------------------
55  *
56  * ZFS must limit the rate of incoming writes to the rate at which it is able
57  * to sync data modifications to the backend storage. Throttling by too much
58  * creates an artificial limit; throttling by too little can only be sustained
59  * for short periods and would lead to highly lumpy performance. On a per-pool
60  * basis, ZFS tracks the amount of modified (dirty) data. As operations change
61  * data, the amount of dirty data increases; as ZFS syncs out data, the amount
62  * of dirty data decreases. When the amount of dirty data exceeds a
63  * predetermined threshold further modifications are blocked until the amount
64  * of dirty data decreases (as data is synced out).
65  *
66  * The limit on dirty data is tunable, and should be adjusted according to
67  * both the IO capacity and available memory of the system. The larger the
68  * window, the more ZFS is able to aggregate and amortize metadata (and data)
69  * changes. However, memory is a limited resource, and allowing for more dirty
70  * data comes at the cost of keeping other useful data in memory (for example
71  * ZFS data cached by the ARC).
72  *
73  * Implementation
74  *
75  * As buffers are modified dsl_pool_willuse_space() increments both the per-
76  * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of
77  * dirty space used; dsl_pool_dirty_space() decrements those values as data
78  * is synced out from dsl_pool_sync(). While only the poolwide value is
79  * relevant, the per-txg value is useful for debugging. The tunable
80  * zfs_dirty_data_max determines the dirty space limit. Once that value is
81  * exceeded, new writes are halted until space frees up.
82  *
83  * The zfs_dirty_data_sync tunable dictates the threshold at which we
84  * ensure that there is a txg syncing (see the comment in txg.c for a full
85  * description of transaction group stages).
86  *
87  * The IO scheduler uses both the dirty space limit and current amount of
88  * dirty data as inputs. Those values affect the number of concurrent IOs ZFS
89  * issues. See the comment in vdev_queue.c for details of the IO scheduler.
90  *
91  * The delay is also calculated based on the amount of dirty data.  See the
92  * comment above dmu_tx_delay() for details.
93  */
94 
95 /*
96  * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory,
97  * capped at zfs_dirty_data_max_max.  It can also be overridden in /etc/system.
98  */
99 uint64_t zfs_dirty_data_max;
100 uint64_t zfs_dirty_data_max_max = 4ULL * 1024 * 1024 * 1024;
101 int zfs_dirty_data_max_percent = 10;
102 
103 /*
104  * If there is at least this much dirty data, push out a txg.
105  */
106 uint64_t zfs_dirty_data_sync = 64 * 1024 * 1024;
107 
108 /*
109  * Once there is this amount of dirty data, the dmu_tx_delay() will kick in
110  * and delay each transaction.
111  * This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
112  */
113 int zfs_delay_min_dirty_percent = 60;
114 
115 /*
116  * This controls how quickly the delay approaches infinity.
117  * Larger values cause it to delay more for a given amount of dirty data.
118  * Therefore larger values will cause there to be less dirty data for a
119  * given throughput.
120  *
121  * For the smoothest delay, this value should be about 1 billion divided
122  * by the maximum number of operations per second.  This will smoothly
123  * handle between 10x and 1/10th this number.
124  *
125  * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the
126  * multiply in dmu_tx_delay().
127  */
128 uint64_t zfs_delay_scale = 1000 * 1000 * 1000 / 2000;
129 
130 /*
131  * This determines the number of threads used by the dp_sync_taskq.
132  */
133 int zfs_sync_taskq_batch_pct = 75;
134 
135 /*
136  * These tunables determine the behavior of how zil_itxg_clean() is
137  * called via zil_clean() in the context of spa_sync(). When an itxg
138  * list needs to be cleaned, TQ_NOSLEEP will be used when dispatching.
139  * If the dispatch fails, the call to zil_itxg_clean() will occur
140  * synchronously in the context of spa_sync(), which can negatively
141  * impact the performance of spa_sync() (e.g. in the case of the itxg
142  * list having a large number of itxs that needs to be cleaned).
143  *
144  * Thus, these tunables can be used to manipulate the behavior of the
145  * taskq used by zil_clean(); they determine the number of taskq entries
146  * that are pre-populated when the taskq is first created (via the
147  * "zfs_zil_clean_taskq_minalloc" tunable) and the maximum number of
148  * taskq entries that are cached after an on-demand allocation (via the
149  * "zfs_zil_clean_taskq_maxalloc").
150  *
151  * The idea being, we want to try reasonably hard to ensure there will
152  * already be a taskq entry pre-allocated by the time that it is needed
153  * by zil_clean(). This way, we can avoid the possibility of an
154  * on-demand allocation of a new taskq entry from failing, which would
155  * result in zil_itxg_clean() being called synchronously from zil_clean()
156  * (which can adversely affect performance of spa_sync()).
157  *
158  * Additionally, the number of threads used by the taskq can be
159  * configured via the "zfs_zil_clean_taskq_nthr_pct" tunable.
160  */
161 int zfs_zil_clean_taskq_nthr_pct = 100;
162 int zfs_zil_clean_taskq_minalloc = 1024;
163 int zfs_zil_clean_taskq_maxalloc = 1024 * 1024;
164 
165 int
166 dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp)
167 {
168 	uint64_t obj;
169 	int err;
170 
171 	err = zap_lookup(dp->dp_meta_objset,
172 	    dsl_dir_phys(dp->dp_root_dir)->dd_child_dir_zapobj,
173 	    name, sizeof (obj), 1, &obj);
174 	if (err)
175 		return (err);
176 
177 	return (dsl_dir_hold_obj(dp, obj, name, dp, ddp));
178 }
179 
180 static dsl_pool_t *
181 dsl_pool_open_impl(spa_t *spa, uint64_t txg)
182 {
183 	dsl_pool_t *dp;
184 	blkptr_t *bp = spa_get_rootblkptr(spa);
185 
186 	dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP);
187 	dp->dp_spa = spa;
188 	dp->dp_meta_rootbp = *bp;
189 	rrw_init(&dp->dp_config_rwlock, B_TRUE);
190 	txg_init(dp, txg);
191 
192 	txg_list_create(&dp->dp_dirty_datasets, spa,
193 	    offsetof(dsl_dataset_t, ds_dirty_link));
194 	txg_list_create(&dp->dp_dirty_zilogs, spa,
195 	    offsetof(zilog_t, zl_dirty_link));
196 	txg_list_create(&dp->dp_dirty_dirs, spa,
197 	    offsetof(dsl_dir_t, dd_dirty_link));
198 	txg_list_create(&dp->dp_sync_tasks, spa,
199 	    offsetof(dsl_sync_task_t, dst_node));
200 
201 	dp->dp_sync_taskq = taskq_create("dp_sync_taskq",
202 	    zfs_sync_taskq_batch_pct, minclsyspri, 1, INT_MAX,
203 	    TASKQ_THREADS_CPU_PCT);
204 
205 	dp->dp_zil_clean_taskq = taskq_create("dp_zil_clean_taskq",
206 	    zfs_zil_clean_taskq_nthr_pct, minclsyspri,
207 	    zfs_zil_clean_taskq_minalloc,
208 	    zfs_zil_clean_taskq_maxalloc,
209 	    TASKQ_PREPOPULATE | TASKQ_THREADS_CPU_PCT);
210 
211 	mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);
212 	cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL);
213 
214 	dp->dp_vnrele_taskq = taskq_create("zfs_vn_rele_taskq", 1, minclsyspri,
215 	    1, 4, 0);
216 
217 	return (dp);
218 }
219 
220 int
221 dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp)
222 {
223 	int err;
224 	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
225 
226 	err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp,
227 	    &dp->dp_meta_objset);
228 	if (err != 0)
229 		dsl_pool_close(dp);
230 	else
231 		*dpp = dp;
232 
233 	return (err);
234 }
235 
236 int
237 dsl_pool_open(dsl_pool_t *dp)
238 {
239 	int err;
240 	dsl_dir_t *dd;
241 	dsl_dataset_t *ds;
242 	uint64_t obj;
243 
244 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
245 	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
246 	    DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1,
247 	    &dp->dp_root_dir_obj);
248 	if (err)
249 		goto out;
250 
251 	err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
252 	    NULL, dp, &dp->dp_root_dir);
253 	if (err)
254 		goto out;
255 
256 	err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir);
257 	if (err)
258 		goto out;
259 
260 	if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) {
261 		err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd);
262 		if (err)
263 			goto out;
264 		err = dsl_dataset_hold_obj(dp,
265 		    dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds);
266 		if (err == 0) {
267 			err = dsl_dataset_hold_obj(dp,
268 			    dsl_dataset_phys(ds)->ds_prev_snap_obj, dp,
269 			    &dp->dp_origin_snap);
270 			dsl_dataset_rele(ds, FTAG);
271 		}
272 		dsl_dir_rele(dd, dp);
273 		if (err)
274 			goto out;
275 	}
276 
277 	if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
278 		err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME,
279 		    &dp->dp_free_dir);
280 		if (err)
281 			goto out;
282 
283 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
284 		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj);
285 		if (err)
286 			goto out;
287 		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
288 		    dp->dp_meta_objset, obj));
289 	}
290 
291 	/*
292 	 * Note: errors ignored, because the leak dir will not exist if we
293 	 * have not encountered a leak yet.
294 	 */
295 	(void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME,
296 	    &dp->dp_leak_dir);
297 
298 	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) {
299 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
300 		    DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
301 		    &dp->dp_bptree_obj);
302 		if (err != 0)
303 			goto out;
304 	}
305 
306 	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) {
307 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
308 		    DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1,
309 		    &dp->dp_empty_bpobj);
310 		if (err != 0)
311 			goto out;
312 	}
313 
314 	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
315 	    DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
316 	    &dp->dp_tmp_userrefs_obj);
317 	if (err == ENOENT)
318 		err = 0;
319 	if (err)
320 		goto out;
321 
322 	err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);
323 
324 out:
325 	rrw_exit(&dp->dp_config_rwlock, FTAG);
326 	return (err);
327 }
328 
329 void
330 dsl_pool_close(dsl_pool_t *dp)
331 {
332 	/*
333 	 * Drop our references from dsl_pool_open().
334 	 *
335 	 * Since we held the origin_snap from "syncing" context (which
336 	 * includes pool-opening context), it actually only got a "ref"
337 	 * and not a hold, so just drop that here.
338 	 */
339 	if (dp->dp_origin_snap)
340 		dsl_dataset_rele(dp->dp_origin_snap, dp);
341 	if (dp->dp_mos_dir)
342 		dsl_dir_rele(dp->dp_mos_dir, dp);
343 	if (dp->dp_free_dir)
344 		dsl_dir_rele(dp->dp_free_dir, dp);
345 	if (dp->dp_leak_dir)
346 		dsl_dir_rele(dp->dp_leak_dir, dp);
347 	if (dp->dp_root_dir)
348 		dsl_dir_rele(dp->dp_root_dir, dp);
349 
350 	bpobj_close(&dp->dp_free_bpobj);
351 
352 	/* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */
353 	if (dp->dp_meta_objset)
354 		dmu_objset_evict(dp->dp_meta_objset);
355 
356 	txg_list_destroy(&dp->dp_dirty_datasets);
357 	txg_list_destroy(&dp->dp_dirty_zilogs);
358 	txg_list_destroy(&dp->dp_sync_tasks);
359 	txg_list_destroy(&dp->dp_dirty_dirs);
360 
361 	taskq_destroy(dp->dp_zil_clean_taskq);
362 	taskq_destroy(dp->dp_sync_taskq);
363 
364 	/*
365 	 * We can't set retry to TRUE since we're explicitly specifying
366 	 * a spa to flush. This is good enough; any missed buffers for
367 	 * this spa won't cause trouble, and they'll eventually fall
368 	 * out of the ARC just like any other unused buffer.
369 	 */
370 	arc_flush(dp->dp_spa, FALSE);
371 
372 	txg_fini(dp);
373 	dsl_scan_fini(dp);
374 	dmu_buf_user_evict_wait();
375 
376 	rrw_destroy(&dp->dp_config_rwlock);
377 	mutex_destroy(&dp->dp_lock);
378 	taskq_destroy(dp->dp_vnrele_taskq);
379 	if (dp->dp_blkstats)
380 		kmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
381 	kmem_free(dp, sizeof (dsl_pool_t));
382 }
383 
384 dsl_pool_t *
385 dsl_pool_create(spa_t *spa, nvlist_t *zplprops, uint64_t txg)
386 {
387 	int err;
388 	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
389 	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
390 	dsl_dataset_t *ds;
391 	uint64_t obj;
392 
393 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
394 
395 	/* create and open the MOS (meta-objset) */
396 	dp->dp_meta_objset = dmu_objset_create_impl(spa,
397 	    NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx);
398 
399 	/* create the pool directory */
400 	err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
401 	    DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx);
402 	ASSERT0(err);
403 
404 	/* Initialize scan structures */
405 	VERIFY0(dsl_scan_init(dp, txg));
406 
407 	/* create and open the root dir */
408 	dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
409 	VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
410 	    NULL, dp, &dp->dp_root_dir));
411 
412 	/* create and open the meta-objset dir */
413 	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx);
414 	VERIFY0(dsl_pool_open_special_dir(dp,
415 	    MOS_DIR_NAME, &dp->dp_mos_dir));
416 
417 	if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
418 		/* create and open the free dir */
419 		(void) dsl_dir_create_sync(dp, dp->dp_root_dir,
420 		    FREE_DIR_NAME, tx);
421 		VERIFY0(dsl_pool_open_special_dir(dp,
422 		    FREE_DIR_NAME, &dp->dp_free_dir));
423 
424 		/* create and open the free_bplist */
425 		obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
426 		VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
427 		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0);
428 		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
429 		    dp->dp_meta_objset, obj));
430 	}
431 
432 	if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB)
433 		dsl_pool_create_origin(dp, tx);
434 
435 	/* create the root dataset */
436 	obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, 0, tx);
437 
438 	/* create the root objset */
439 	VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, &ds));
440 #ifdef _KERNEL
441 	{
442 		objset_t *os;
443 		rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
444 		os = dmu_objset_create_impl(dp->dp_spa, ds,
445 		    dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx);
446 		rrw_exit(&ds->ds_bp_rwlock, FTAG);
447 		zfs_create_fs(os, kcred, zplprops, tx);
448 	}
449 #endif
450 	dsl_dataset_rele(ds, FTAG);
451 
452 	dmu_tx_commit(tx);
453 
454 	rrw_exit(&dp->dp_config_rwlock, FTAG);
455 
456 	return (dp);
457 }
458 
459 /*
460  * Account for the meta-objset space in its placeholder dsl_dir.
461  */
462 void
463 dsl_pool_mos_diduse_space(dsl_pool_t *dp,
464     int64_t used, int64_t comp, int64_t uncomp)
465 {
466 	ASSERT3U(comp, ==, uncomp); /* it's all metadata */
467 	mutex_enter(&dp->dp_lock);
468 	dp->dp_mos_used_delta += used;
469 	dp->dp_mos_compressed_delta += comp;
470 	dp->dp_mos_uncompressed_delta += uncomp;
471 	mutex_exit(&dp->dp_lock);
472 }
473 
474 static void
475 dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx)
476 {
477 	zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
478 	dmu_objset_sync(dp->dp_meta_objset, zio, tx);
479 	VERIFY0(zio_wait(zio));
480 	dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
481 	spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
482 }
483 
484 static void
485 dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta)
486 {
487 	ASSERT(MUTEX_HELD(&dp->dp_lock));
488 
489 	if (delta < 0)
490 		ASSERT3U(-delta, <=, dp->dp_dirty_total);
491 
492 	dp->dp_dirty_total += delta;
493 
494 	/*
495 	 * Note: we signal even when increasing dp_dirty_total.
496 	 * This ensures forward progress -- each thread wakes the next waiter.
497 	 */
498 	if (dp->dp_dirty_total < zfs_dirty_data_max)
499 		cv_signal(&dp->dp_spaceavail_cv);
500 }
501 
502 void
503 dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
504 {
505 	zio_t *zio;
506 	dmu_tx_t *tx;
507 	dsl_dir_t *dd;
508 	dsl_dataset_t *ds;
509 	objset_t *mos = dp->dp_meta_objset;
510 	list_t synced_datasets;
511 
512 	list_create(&synced_datasets, sizeof (dsl_dataset_t),
513 	    offsetof(dsl_dataset_t, ds_synced_link));
514 
515 	tx = dmu_tx_create_assigned(dp, txg);
516 
517 	/*
518 	 * Write out all dirty blocks of dirty datasets.
519 	 */
520 	zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
521 	while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
522 		/*
523 		 * We must not sync any non-MOS datasets twice, because
524 		 * we may have taken a snapshot of them.  However, we
525 		 * may sync newly-created datasets on pass 2.
526 		 */
527 		ASSERT(!list_link_active(&ds->ds_synced_link));
528 		list_insert_tail(&synced_datasets, ds);
529 		dsl_dataset_sync(ds, zio, tx);
530 	}
531 	VERIFY0(zio_wait(zio));
532 
533 	/*
534 	 * We have written all of the accounted dirty data, so our
535 	 * dp_space_towrite should now be zero.  However, some seldom-used
536 	 * code paths do not adhere to this (e.g. dbuf_undirty(), also
537 	 * rounding error in dbuf_write_physdone).
538 	 * Shore up the accounting of any dirtied space now.
539 	 */
540 	dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg);
541 
542 	/*
543 	 * Update the long range free counter after
544 	 * we're done syncing user data
545 	 */
546 	mutex_enter(&dp->dp_lock);
547 	ASSERT(spa_sync_pass(dp->dp_spa) == 1 ||
548 	    dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] == 0);
549 	dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] = 0;
550 	mutex_exit(&dp->dp_lock);
551 
552 	/*
553 	 * After the data blocks have been written (ensured by the zio_wait()
554 	 * above), update the user/group space accounting.  This happens
555 	 * in tasks dispatched to dp_sync_taskq, so wait for them before
556 	 * continuing.
557 	 */
558 	for (ds = list_head(&synced_datasets); ds != NULL;
559 	    ds = list_next(&synced_datasets, ds)) {
560 		dmu_objset_do_userquota_updates(ds->ds_objset, tx);
561 	}
562 	taskq_wait(dp->dp_sync_taskq);
563 
564 	/*
565 	 * Sync the datasets again to push out the changes due to
566 	 * userspace updates.  This must be done before we process the
567 	 * sync tasks, so that any snapshots will have the correct
568 	 * user accounting information (and we won't get confused
569 	 * about which blocks are part of the snapshot).
570 	 */
571 	zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
572 	while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
573 		ASSERT(list_link_active(&ds->ds_synced_link));
574 		dmu_buf_rele(ds->ds_dbuf, ds);
575 		dsl_dataset_sync(ds, zio, tx);
576 	}
577 	VERIFY0(zio_wait(zio));
578 
579 	/*
580 	 * Now that the datasets have been completely synced, we can
581 	 * clean up our in-memory structures accumulated while syncing:
582 	 *
583 	 *  - move dead blocks from the pending deadlist to the on-disk deadlist
584 	 *  - release hold from dsl_dataset_dirty()
585 	 */
586 	while ((ds = list_remove_head(&synced_datasets)) != NULL) {
587 		dsl_dataset_sync_done(ds, tx);
588 	}
589 	while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) {
590 		dsl_dir_sync(dd, tx);
591 	}
592 
593 	/*
594 	 * The MOS's space is accounted for in the pool/$MOS
595 	 * (dp_mos_dir).  We can't modify the mos while we're syncing
596 	 * it, so we remember the deltas and apply them here.
597 	 */
598 	if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 ||
599 	    dp->dp_mos_uncompressed_delta != 0) {
600 		dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD,
601 		    dp->dp_mos_used_delta,
602 		    dp->dp_mos_compressed_delta,
603 		    dp->dp_mos_uncompressed_delta, tx);
604 		dp->dp_mos_used_delta = 0;
605 		dp->dp_mos_compressed_delta = 0;
606 		dp->dp_mos_uncompressed_delta = 0;
607 	}
608 
609 	if (!multilist_is_empty(mos->os_dirty_dnodes[txg & TXG_MASK])) {
610 		dsl_pool_sync_mos(dp, tx);
611 	}
612 
613 	/*
614 	 * If we modify a dataset in the same txg that we want to destroy it,
615 	 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it.
616 	 * dsl_dir_destroy_check() will fail if there are unexpected holds.
617 	 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf
618 	 * and clearing the hold on it) before we process the sync_tasks.
619 	 * The MOS data dirtied by the sync_tasks will be synced on the next
620 	 * pass.
621 	 */
622 	if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
623 		dsl_sync_task_t *dst;
624 		/*
625 		 * No more sync tasks should have been added while we
626 		 * were syncing.
627 		 */
628 		ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
629 		while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL)
630 			dsl_sync_task_sync(dst, tx);
631 	}
632 
633 	dmu_tx_commit(tx);
634 
635 	DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg);
636 }
637 
638 void
639 dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
640 {
641 	zilog_t *zilog;
642 
643 	while (zilog = txg_list_head(&dp->dp_dirty_zilogs, txg)) {
644 		dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
645 		/*
646 		 * We don't remove the zilog from the dp_dirty_zilogs
647 		 * list until after we've cleaned it. This ensures that
648 		 * callers of zilog_is_dirty() receive an accurate
649 		 * answer when they are racing with the spa sync thread.
650 		 */
651 		zil_clean(zilog, txg);
652 		(void) txg_list_remove_this(&dp->dp_dirty_zilogs, zilog, txg);
653 		ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
654 		dmu_buf_rele(ds->ds_dbuf, zilog);
655 	}
656 	ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg));
657 }
658 
659 /*
660  * TRUE if the current thread is the tx_sync_thread or if we
661  * are being called from SPA context during pool initialization.
662  */
663 int
664 dsl_pool_sync_context(dsl_pool_t *dp)
665 {
666 	return (curthread == dp->dp_tx.tx_sync_thread ||
667 	    spa_is_initializing(dp->dp_spa) ||
668 	    taskq_member(dp->dp_sync_taskq, curthread));
669 }
670 
671 uint64_t
672 dsl_pool_adjustedsize(dsl_pool_t *dp, boolean_t netfree)
673 {
674 	uint64_t space, resv;
675 
676 	/*
677 	 * If we're trying to assess whether it's OK to do a free,
678 	 * cut the reservation in half to allow forward progress
679 	 * (e.g. make it possible to rm(1) files from a full pool).
680 	 */
681 	space = spa_get_dspace(dp->dp_spa);
682 	resv = spa_get_slop_space(dp->dp_spa);
683 	if (netfree)
684 		resv >>= 1;
685 
686 	return (space - resv);
687 }
688 
689 boolean_t
690 dsl_pool_need_dirty_delay(dsl_pool_t *dp)
691 {
692 	uint64_t delay_min_bytes =
693 	    zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
694 	boolean_t rv;
695 
696 	mutex_enter(&dp->dp_lock);
697 	if (dp->dp_dirty_total > zfs_dirty_data_sync)
698 		txg_kick(dp);
699 	rv = (dp->dp_dirty_total > delay_min_bytes);
700 	mutex_exit(&dp->dp_lock);
701 	return (rv);
702 }
703 
704 void
705 dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
706 {
707 	if (space > 0) {
708 		mutex_enter(&dp->dp_lock);
709 		dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space;
710 		dsl_pool_dirty_delta(dp, space);
711 		mutex_exit(&dp->dp_lock);
712 	}
713 }
714 
715 void
716 dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg)
717 {
718 	ASSERT3S(space, >=, 0);
719 	if (space == 0)
720 		return;
721 	mutex_enter(&dp->dp_lock);
722 	if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) {
723 		/* XXX writing something we didn't dirty? */
724 		space = dp->dp_dirty_pertxg[txg & TXG_MASK];
725 	}
726 	ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space);
727 	dp->dp_dirty_pertxg[txg & TXG_MASK] -= space;
728 	ASSERT3U(dp->dp_dirty_total, >=, space);
729 	dsl_pool_dirty_delta(dp, -space);
730 	mutex_exit(&dp->dp_lock);
731 }
732 
733 /* ARGSUSED */
734 static int
735 upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
736 {
737 	dmu_tx_t *tx = arg;
738 	dsl_dataset_t *ds, *prev = NULL;
739 	int err;
740 
741 	err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
742 	if (err)
743 		return (err);
744 
745 	while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
746 		err = dsl_dataset_hold_obj(dp,
747 		    dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
748 		if (err) {
749 			dsl_dataset_rele(ds, FTAG);
750 			return (err);
751 		}
752 
753 		if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object)
754 			break;
755 		dsl_dataset_rele(ds, FTAG);
756 		ds = prev;
757 		prev = NULL;
758 	}
759 
760 	if (prev == NULL) {
761 		prev = dp->dp_origin_snap;
762 
763 		/*
764 		 * The $ORIGIN can't have any data, or the accounting
765 		 * will be wrong.
766 		 */
767 		rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
768 		ASSERT0(dsl_dataset_phys(prev)->ds_bp.blk_birth);
769 		rrw_exit(&ds->ds_bp_rwlock, FTAG);
770 
771 		/* The origin doesn't get attached to itself */
772 		if (ds->ds_object == prev->ds_object) {
773 			dsl_dataset_rele(ds, FTAG);
774 			return (0);
775 		}
776 
777 		dmu_buf_will_dirty(ds->ds_dbuf, tx);
778 		dsl_dataset_phys(ds)->ds_prev_snap_obj = prev->ds_object;
779 		dsl_dataset_phys(ds)->ds_prev_snap_txg =
780 		    dsl_dataset_phys(prev)->ds_creation_txg;
781 
782 		dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
783 		dsl_dir_phys(ds->ds_dir)->dd_origin_obj = prev->ds_object;
784 
785 		dmu_buf_will_dirty(prev->ds_dbuf, tx);
786 		dsl_dataset_phys(prev)->ds_num_children++;
787 
788 		if (dsl_dataset_phys(ds)->ds_next_snap_obj == 0) {
789 			ASSERT(ds->ds_prev == NULL);
790 			VERIFY0(dsl_dataset_hold_obj(dp,
791 			    dsl_dataset_phys(ds)->ds_prev_snap_obj,
792 			    ds, &ds->ds_prev));
793 		}
794 	}
795 
796 	ASSERT3U(dsl_dir_phys(ds->ds_dir)->dd_origin_obj, ==, prev->ds_object);
797 	ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_obj, ==, prev->ds_object);
798 
799 	if (dsl_dataset_phys(prev)->ds_next_clones_obj == 0) {
800 		dmu_buf_will_dirty(prev->ds_dbuf, tx);
801 		dsl_dataset_phys(prev)->ds_next_clones_obj =
802 		    zap_create(dp->dp_meta_objset,
803 		    DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
804 	}
805 	VERIFY0(zap_add_int(dp->dp_meta_objset,
806 	    dsl_dataset_phys(prev)->ds_next_clones_obj, ds->ds_object, tx));
807 
808 	dsl_dataset_rele(ds, FTAG);
809 	if (prev != dp->dp_origin_snap)
810 		dsl_dataset_rele(prev, FTAG);
811 	return (0);
812 }
813 
814 void
815 dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx)
816 {
817 	ASSERT(dmu_tx_is_syncing(tx));
818 	ASSERT(dp->dp_origin_snap != NULL);
819 
820 	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb,
821 	    tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
822 }
823 
824 /* ARGSUSED */
825 static int
826 upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
827 {
828 	dmu_tx_t *tx = arg;
829 	objset_t *mos = dp->dp_meta_objset;
830 
831 	if (dsl_dir_phys(ds->ds_dir)->dd_origin_obj != 0) {
832 		dsl_dataset_t *origin;
833 
834 		VERIFY0(dsl_dataset_hold_obj(dp,
835 		    dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &origin));
836 
837 		if (dsl_dir_phys(origin->ds_dir)->dd_clones == 0) {
838 			dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
839 			dsl_dir_phys(origin->ds_dir)->dd_clones =
840 			    zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE,
841 			    0, tx);
842 		}
843 
844 		VERIFY0(zap_add_int(dp->dp_meta_objset,
845 		    dsl_dir_phys(origin->ds_dir)->dd_clones,
846 		    ds->ds_object, tx));
847 
848 		dsl_dataset_rele(origin, FTAG);
849 	}
850 	return (0);
851 }
852 
853 void
854 dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx)
855 {
856 	ASSERT(dmu_tx_is_syncing(tx));
857 	uint64_t obj;
858 
859 	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx);
860 	VERIFY0(dsl_pool_open_special_dir(dp,
861 	    FREE_DIR_NAME, &dp->dp_free_dir));
862 
863 	/*
864 	 * We can't use bpobj_alloc(), because spa_version() still
865 	 * returns the old version, and we need a new-version bpobj with
866 	 * subobj support.  So call dmu_object_alloc() directly.
867 	 */
868 	obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ,
869 	    SPA_OLD_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx);
870 	VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
871 	    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
872 	VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj));
873 
874 	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
875 	    upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
876 }
877 
878 void
879 dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx)
880 {
881 	uint64_t dsobj;
882 	dsl_dataset_t *ds;
883 
884 	ASSERT(dmu_tx_is_syncing(tx));
885 	ASSERT(dp->dp_origin_snap == NULL);
886 	ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER));
887 
888 	/* create the origin dir, ds, & snap-ds */
889 	dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME,
890 	    NULL, 0, kcred, tx);
891 	VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
892 	dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx);
893 	VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj,
894 	    dp, &dp->dp_origin_snap));
895 	dsl_dataset_rele(ds, FTAG);
896 }
897 
898 taskq_t *
899 dsl_pool_vnrele_taskq(dsl_pool_t *dp)
900 {
901 	return (dp->dp_vnrele_taskq);
902 }
903 
904 /*
905  * Walk through the pool-wide zap object of temporary snapshot user holds
906  * and release them.
907  */
908 void
909 dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp)
910 {
911 	zap_attribute_t za;
912 	zap_cursor_t zc;
913 	objset_t *mos = dp->dp_meta_objset;
914 	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
915 	nvlist_t *holds;
916 
917 	if (zapobj == 0)
918 		return;
919 	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
920 
921 	holds = fnvlist_alloc();
922 
923 	for (zap_cursor_init(&zc, mos, zapobj);
924 	    zap_cursor_retrieve(&zc, &za) == 0;
925 	    zap_cursor_advance(&zc)) {
926 		char *htag;
927 		nvlist_t *tags;
928 
929 		htag = strchr(za.za_name, '-');
930 		*htag = '\0';
931 		++htag;
932 		if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) {
933 			tags = fnvlist_alloc();
934 			fnvlist_add_boolean(tags, htag);
935 			fnvlist_add_nvlist(holds, za.za_name, tags);
936 			fnvlist_free(tags);
937 		} else {
938 			fnvlist_add_boolean(tags, htag);
939 		}
940 	}
941 	dsl_dataset_user_release_tmp(dp, holds);
942 	fnvlist_free(holds);
943 	zap_cursor_fini(&zc);
944 }
945 
946 /*
947  * Create the pool-wide zap object for storing temporary snapshot holds.
948  */
949 void
950 dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx)
951 {
952 	objset_t *mos = dp->dp_meta_objset;
953 
954 	ASSERT(dp->dp_tmp_userrefs_obj == 0);
955 	ASSERT(dmu_tx_is_syncing(tx));
956 
957 	dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS,
958 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx);
959 }
960 
961 static int
962 dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj,
963     const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding)
964 {
965 	objset_t *mos = dp->dp_meta_objset;
966 	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
967 	char *name;
968 	int error;
969 
970 	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
971 	ASSERT(dmu_tx_is_syncing(tx));
972 
973 	/*
974 	 * If the pool was created prior to SPA_VERSION_USERREFS, the
975 	 * zap object for temporary holds might not exist yet.
976 	 */
977 	if (zapobj == 0) {
978 		if (holding) {
979 			dsl_pool_user_hold_create_obj(dp, tx);
980 			zapobj = dp->dp_tmp_userrefs_obj;
981 		} else {
982 			return (SET_ERROR(ENOENT));
983 		}
984 	}
985 
986 	name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag);
987 	if (holding)
988 		error = zap_add(mos, zapobj, name, 8, 1, &now, tx);
989 	else
990 		error = zap_remove(mos, zapobj, name, tx);
991 	strfree(name);
992 
993 	return (error);
994 }
995 
996 /*
997  * Add a temporary hold for the given dataset object and tag.
998  */
999 int
1000 dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
1001     uint64_t now, dmu_tx_t *tx)
1002 {
1003 	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE));
1004 }
1005 
1006 /*
1007  * Release a temporary hold for the given dataset object and tag.
1008  */
1009 int
1010 dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
1011     dmu_tx_t *tx)
1012 {
1013 	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, NULL,
1014 	    tx, B_FALSE));
1015 }
1016 
1017 /*
1018  * DSL Pool Configuration Lock
1019  *
1020  * The dp_config_rwlock protects against changes to DSL state (e.g. dataset
1021  * creation / destruction / rename / property setting).  It must be held for
1022  * read to hold a dataset or dsl_dir.  I.e. you must call
1023  * dsl_pool_config_enter() or dsl_pool_hold() before calling
1024  * dsl_{dataset,dir}_hold{_obj}.  In most circumstances, the dp_config_rwlock
1025  * must be held continuously until all datasets and dsl_dirs are released.
1026  *
1027  * The only exception to this rule is that if a "long hold" is placed on
1028  * a dataset, then the dp_config_rwlock may be dropped while the dataset
1029  * is still held.  The long hold will prevent the dataset from being
1030  * destroyed -- the destroy will fail with EBUSY.  A long hold can be
1031  * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset
1032  * (by calling dsl_{dataset,objset}_{try}own{_obj}).
1033  *
1034  * Legitimate long-holders (including owners) should be long-running, cancelable
1035  * tasks that should cause "zfs destroy" to fail.  This includes DMU
1036  * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open),
1037  * "zfs send", and "zfs diff".  There are several other long-holders whose
1038  * uses are suboptimal (e.g. "zfs promote", and zil_suspend()).
1039  *
1040  * The usual formula for long-holding would be:
1041  * dsl_pool_hold()
1042  * dsl_dataset_hold()
1043  * ... perform checks ...
1044  * dsl_dataset_long_hold()
1045  * dsl_pool_rele()
1046  * ... perform long-running task ...
1047  * dsl_dataset_long_rele()
1048  * dsl_dataset_rele()
1049  *
1050  * Note that when the long hold is released, the dataset is still held but
1051  * the pool is not held.  The dataset may change arbitrarily during this time
1052  * (e.g. it could be destroyed).  Therefore you shouldn't do anything to the
1053  * dataset except release it.
1054  *
1055  * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only
1056  * or modifying operations.
1057  *
1058  * Modifying operations should generally use dsl_sync_task().  The synctask
1059  * infrastructure enforces proper locking strategy with respect to the
1060  * dp_config_rwlock.  See the comment above dsl_sync_task() for details.
1061  *
1062  * Read-only operations will manually hold the pool, then the dataset, obtain
1063  * information from the dataset, then release the pool and dataset.
1064  * dmu_objset_{hold,rele}() are convenience routines that also do the pool
1065  * hold/rele.
1066  */
1067 
1068 int
1069 dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp)
1070 {
1071 	spa_t *spa;
1072 	int error;
1073 
1074 	error = spa_open(name, &spa, tag);
1075 	if (error == 0) {
1076 		*dp = spa_get_dsl(spa);
1077 		dsl_pool_config_enter(*dp, tag);
1078 	}
1079 	return (error);
1080 }
1081 
1082 void
1083 dsl_pool_rele(dsl_pool_t *dp, void *tag)
1084 {
1085 	dsl_pool_config_exit(dp, tag);
1086 	spa_close(dp->dp_spa, tag);
1087 }
1088 
1089 void
1090 dsl_pool_config_enter(dsl_pool_t *dp, void *tag)
1091 {
1092 	/*
1093 	 * We use a "reentrant" reader-writer lock, but not reentrantly.
1094 	 *
1095 	 * The rrwlock can (with the track_all flag) track all reading threads,
1096 	 * which is very useful for debugging which code path failed to release
1097 	 * the lock, and for verifying that the *current* thread does hold
1098 	 * the lock.
1099 	 *
1100 	 * (Unlike a rwlock, which knows that N threads hold it for
1101 	 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE
1102 	 * if any thread holds it for read, even if this thread doesn't).
1103 	 */
1104 	ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1105 	rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
1106 }
1107 
1108 void
1109 dsl_pool_config_enter_prio(dsl_pool_t *dp, void *tag)
1110 {
1111 	ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1112 	rrw_enter_read_prio(&dp->dp_config_rwlock, tag);
1113 }
1114 
1115 void
1116 dsl_pool_config_exit(dsl_pool_t *dp, void *tag)
1117 {
1118 	rrw_exit(&dp->dp_config_rwlock, tag);
1119 }
1120 
1121 boolean_t
1122 dsl_pool_config_held(dsl_pool_t *dp)
1123 {
1124 	return (RRW_LOCK_HELD(&dp->dp_config_rwlock));
1125 }
1126 
1127 boolean_t
1128 dsl_pool_config_held_writer(dsl_pool_t *dp)
1129 {
1130 	return (RRW_WRITE_HELD(&dp->dp_config_rwlock));
1131 }
1132