xref: /illumos-gate/usr/src/uts/common/fs/zfs/dsl_pool.c (revision 216d7723)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
24  * Copyright (c) 2013 Steven Hartland. All rights reserved.
25  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26  * Copyright (c) 2014 Integros [integros.com]
27  * Copyright 2016 Nexenta Systems, Inc.  All rights reserved.
28  */
29 
30 #include <sys/dsl_pool.h>
31 #include <sys/dsl_dataset.h>
32 #include <sys/dsl_prop.h>
33 #include <sys/dsl_dir.h>
34 #include <sys/dsl_synctask.h>
35 #include <sys/dsl_scan.h>
36 #include <sys/dnode.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/dmu_objset.h>
39 #include <sys/arc.h>
40 #include <sys/zap.h>
41 #include <sys/zio.h>
42 #include <sys/zfs_context.h>
43 #include <sys/fs/zfs.h>
44 #include <sys/zfs_znode.h>
45 #include <sys/spa_impl.h>
46 #include <sys/dsl_deadlist.h>
47 #include <sys/bptree.h>
48 #include <sys/zfeature.h>
49 #include <sys/zil_impl.h>
50 #include <sys/dsl_userhold.h>
51 
52 /*
53  * ZFS Write Throttle
54  * ------------------
55  *
56  * ZFS must limit the rate of incoming writes to the rate at which it is able
57  * to sync data modifications to the backend storage. Throttling by too much
58  * creates an artificial limit; throttling by too little can only be sustained
59  * for short periods and would lead to highly lumpy performance. On a per-pool
60  * basis, ZFS tracks the amount of modified (dirty) data. As operations change
61  * data, the amount of dirty data increases; as ZFS syncs out data, the amount
62  * of dirty data decreases. When the amount of dirty data exceeds a
63  * predetermined threshold further modifications are blocked until the amount
64  * of dirty data decreases (as data is synced out).
65  *
66  * The limit on dirty data is tunable, and should be adjusted according to
67  * both the IO capacity and available memory of the system. The larger the
68  * window, the more ZFS is able to aggregate and amortize metadata (and data)
69  * changes. However, memory is a limited resource, and allowing for more dirty
70  * data comes at the cost of keeping other useful data in memory (for example
71  * ZFS data cached by the ARC).
72  *
73  * Implementation
74  *
75  * As buffers are modified dsl_pool_willuse_space() increments both the per-
76  * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of
77  * dirty space used; dsl_pool_dirty_space() decrements those values as data
78  * is synced out from dsl_pool_sync(). While only the poolwide value is
79  * relevant, the per-txg value is useful for debugging. The tunable
80  * zfs_dirty_data_max determines the dirty space limit. Once that value is
81  * exceeded, new writes are halted until space frees up.
82  *
83  * The zfs_dirty_data_sync tunable dictates the threshold at which we
84  * ensure that there is a txg syncing (see the comment in txg.c for a full
85  * description of transaction group stages).
86  *
87  * The IO scheduler uses both the dirty space limit and current amount of
88  * dirty data as inputs. Those values affect the number of concurrent IOs ZFS
89  * issues. See the comment in vdev_queue.c for details of the IO scheduler.
90  *
91  * The delay is also calculated based on the amount of dirty data.  See the
92  * comment above dmu_tx_delay() for details.
93  */
94 
95 /*
96  * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory,
97  * capped at zfs_dirty_data_max_max.  It can also be overridden in /etc/system.
98  */
99 uint64_t zfs_dirty_data_max;
100 uint64_t zfs_dirty_data_max_max = 4ULL * 1024 * 1024 * 1024;
101 int zfs_dirty_data_max_percent = 10;
102 
103 /*
104  * If there is at least this much dirty data, push out a txg.
105  */
106 uint64_t zfs_dirty_data_sync = 64 * 1024 * 1024;
107 
108 /*
109  * Once there is this amount of dirty data, the dmu_tx_delay() will kick in
110  * and delay each transaction.
111  * This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
112  */
113 int zfs_delay_min_dirty_percent = 60;
114 
115 /*
116  * This controls how quickly the delay approaches infinity.
117  * Larger values cause it to delay more for a given amount of dirty data.
118  * Therefore larger values will cause there to be less dirty data for a
119  * given throughput.
120  *
121  * For the smoothest delay, this value should be about 1 billion divided
122  * by the maximum number of operations per second.  This will smoothly
123  * handle between 10x and 1/10th this number.
124  *
125  * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the
126  * multiply in dmu_tx_delay().
127  */
128 uint64_t zfs_delay_scale = 1000 * 1000 * 1000 / 2000;
129 
130 /*
131  * This determines the number of threads used by the dp_sync_taskq.
132  */
133 int zfs_sync_taskq_batch_pct = 75;
134 
135 /*
136  * These tunables determine the behavior of how zil_itxg_clean() is
137  * called via zil_clean() in the context of spa_sync(). When an itxg
138  * list needs to be cleaned, TQ_NOSLEEP will be used when dispatching.
139  * If the dispatch fails, the call to zil_itxg_clean() will occur
140  * synchronously in the context of spa_sync(), which can negatively
141  * impact the performance of spa_sync() (e.g. in the case of the itxg
142  * list having a large number of itxs that needs to be cleaned).
143  *
144  * Thus, these tunables can be used to manipulate the behavior of the
145  * taskq used by zil_clean(); they determine the number of taskq entries
146  * that are pre-populated when the taskq is first created (via the
147  * "zfs_zil_clean_taskq_minalloc" tunable) and the maximum number of
148  * taskq entries that are cached after an on-demand allocation (via the
149  * "zfs_zil_clean_taskq_maxalloc").
150  *
151  * The idea being, we want to try reasonably hard to ensure there will
152  * already be a taskq entry pre-allocated by the time that it is needed
153  * by zil_clean(). This way, we can avoid the possibility of an
154  * on-demand allocation of a new taskq entry from failing, which would
155  * result in zil_itxg_clean() being called synchronously from zil_clean()
156  * (which can adversely affect performance of spa_sync()).
157  *
158  * Additionally, the number of threads used by the taskq can be
159  * configured via the "zfs_zil_clean_taskq_nthr_pct" tunable.
160  */
161 int zfs_zil_clean_taskq_nthr_pct = 100;
162 int zfs_zil_clean_taskq_minalloc = 1024;
163 int zfs_zil_clean_taskq_maxalloc = 1024 * 1024;
164 
165 int
166 dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp)
167 {
168 	uint64_t obj;
169 	int err;
170 
171 	err = zap_lookup(dp->dp_meta_objset,
172 	    dsl_dir_phys(dp->dp_root_dir)->dd_child_dir_zapobj,
173 	    name, sizeof (obj), 1, &obj);
174 	if (err)
175 		return (err);
176 
177 	return (dsl_dir_hold_obj(dp, obj, name, dp, ddp));
178 }
179 
180 static dsl_pool_t *
181 dsl_pool_open_impl(spa_t *spa, uint64_t txg)
182 {
183 	dsl_pool_t *dp;
184 	blkptr_t *bp = spa_get_rootblkptr(spa);
185 
186 	dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP);
187 	dp->dp_spa = spa;
188 	dp->dp_meta_rootbp = *bp;
189 	rrw_init(&dp->dp_config_rwlock, B_TRUE);
190 	txg_init(dp, txg);
191 
192 	txg_list_create(&dp->dp_dirty_datasets, spa,
193 	    offsetof(dsl_dataset_t, ds_dirty_link));
194 	txg_list_create(&dp->dp_dirty_zilogs, spa,
195 	    offsetof(zilog_t, zl_dirty_link));
196 	txg_list_create(&dp->dp_dirty_dirs, spa,
197 	    offsetof(dsl_dir_t, dd_dirty_link));
198 	txg_list_create(&dp->dp_sync_tasks, spa,
199 	    offsetof(dsl_sync_task_t, dst_node));
200 
201 	dp->dp_sync_taskq = taskq_create("dp_sync_taskq",
202 	    zfs_sync_taskq_batch_pct, minclsyspri, 1, INT_MAX,
203 	    TASKQ_THREADS_CPU_PCT);
204 
205 	dp->dp_zil_clean_taskq = taskq_create("dp_zil_clean_taskq",
206 	    zfs_zil_clean_taskq_nthr_pct, minclsyspri,
207 	    zfs_zil_clean_taskq_minalloc,
208 	    zfs_zil_clean_taskq_maxalloc,
209 	    TASKQ_PREPOPULATE | TASKQ_THREADS_CPU_PCT);
210 
211 	mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);
212 	cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL);
213 
214 	dp->dp_vnrele_taskq = taskq_create("zfs_vn_rele_taskq", 1, minclsyspri,
215 	    1, 4, 0);
216 
217 	return (dp);
218 }
219 
220 int
221 dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp)
222 {
223 	int err;
224 	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
225 
226 	err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp,
227 	    &dp->dp_meta_objset);
228 	if (err != 0)
229 		dsl_pool_close(dp);
230 	else
231 		*dpp = dp;
232 
233 	return (err);
234 }
235 
236 int
237 dsl_pool_open(dsl_pool_t *dp)
238 {
239 	int err;
240 	dsl_dir_t *dd;
241 	dsl_dataset_t *ds;
242 	uint64_t obj;
243 
244 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
245 	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
246 	    DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1,
247 	    &dp->dp_root_dir_obj);
248 	if (err)
249 		goto out;
250 
251 	err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
252 	    NULL, dp, &dp->dp_root_dir);
253 	if (err)
254 		goto out;
255 
256 	err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir);
257 	if (err)
258 		goto out;
259 
260 	if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) {
261 		err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd);
262 		if (err)
263 			goto out;
264 		err = dsl_dataset_hold_obj(dp,
265 		    dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds);
266 		if (err == 0) {
267 			err = dsl_dataset_hold_obj(dp,
268 			    dsl_dataset_phys(ds)->ds_prev_snap_obj, dp,
269 			    &dp->dp_origin_snap);
270 			dsl_dataset_rele(ds, FTAG);
271 		}
272 		dsl_dir_rele(dd, dp);
273 		if (err)
274 			goto out;
275 	}
276 
277 	if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
278 		err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME,
279 		    &dp->dp_free_dir);
280 		if (err)
281 			goto out;
282 
283 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
284 		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj);
285 		if (err)
286 			goto out;
287 		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
288 		    dp->dp_meta_objset, obj));
289 	}
290 
291 	/*
292 	 * Note: errors ignored, because the leak dir will not exist if we
293 	 * have not encountered a leak yet.
294 	 */
295 	(void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME,
296 	    &dp->dp_leak_dir);
297 
298 	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) {
299 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
300 		    DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
301 		    &dp->dp_bptree_obj);
302 		if (err != 0)
303 			goto out;
304 	}
305 
306 	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) {
307 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
308 		    DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1,
309 		    &dp->dp_empty_bpobj);
310 		if (err != 0)
311 			goto out;
312 	}
313 
314 	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
315 	    DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
316 	    &dp->dp_tmp_userrefs_obj);
317 	if (err == ENOENT)
318 		err = 0;
319 	if (err)
320 		goto out;
321 
322 	err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);
323 
324 out:
325 	rrw_exit(&dp->dp_config_rwlock, FTAG);
326 	return (err);
327 }
328 
329 void
330 dsl_pool_close(dsl_pool_t *dp)
331 {
332 	/*
333 	 * Drop our references from dsl_pool_open().
334 	 *
335 	 * Since we held the origin_snap from "syncing" context (which
336 	 * includes pool-opening context), it actually only got a "ref"
337 	 * and not a hold, so just drop that here.
338 	 */
339 	if (dp->dp_origin_snap)
340 		dsl_dataset_rele(dp->dp_origin_snap, dp);
341 	if (dp->dp_mos_dir)
342 		dsl_dir_rele(dp->dp_mos_dir, dp);
343 	if (dp->dp_free_dir)
344 		dsl_dir_rele(dp->dp_free_dir, dp);
345 	if (dp->dp_leak_dir)
346 		dsl_dir_rele(dp->dp_leak_dir, dp);
347 	if (dp->dp_root_dir)
348 		dsl_dir_rele(dp->dp_root_dir, dp);
349 
350 	bpobj_close(&dp->dp_free_bpobj);
351 
352 	/* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */
353 	if (dp->dp_meta_objset)
354 		dmu_objset_evict(dp->dp_meta_objset);
355 
356 	txg_list_destroy(&dp->dp_dirty_datasets);
357 	txg_list_destroy(&dp->dp_dirty_zilogs);
358 	txg_list_destroy(&dp->dp_sync_tasks);
359 	txg_list_destroy(&dp->dp_dirty_dirs);
360 
361 	taskq_destroy(dp->dp_zil_clean_taskq);
362 	taskq_destroy(dp->dp_sync_taskq);
363 
364 	/*
365 	 * We can't set retry to TRUE since we're explicitly specifying
366 	 * a spa to flush. This is good enough; any missed buffers for
367 	 * this spa won't cause trouble, and they'll eventually fall
368 	 * out of the ARC just like any other unused buffer.
369 	 */
370 	arc_flush(dp->dp_spa, FALSE);
371 
372 	txg_fini(dp);
373 	dsl_scan_fini(dp);
374 	dmu_buf_user_evict_wait();
375 
376 	rrw_destroy(&dp->dp_config_rwlock);
377 	mutex_destroy(&dp->dp_lock);
378 	taskq_destroy(dp->dp_vnrele_taskq);
379 	if (dp->dp_blkstats)
380 		kmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
381 	kmem_free(dp, sizeof (dsl_pool_t));
382 }
383 
384 dsl_pool_t *
385 dsl_pool_create(spa_t *spa, nvlist_t *zplprops, uint64_t txg)
386 {
387 	int err;
388 	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
389 	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
390 	objset_t *os;
391 	dsl_dataset_t *ds;
392 	uint64_t obj;
393 
394 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
395 
396 	/* create and open the MOS (meta-objset) */
397 	dp->dp_meta_objset = dmu_objset_create_impl(spa,
398 	    NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx);
399 
400 	/* create the pool directory */
401 	err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
402 	    DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx);
403 	ASSERT0(err);
404 
405 	/* Initialize scan structures */
406 	VERIFY0(dsl_scan_init(dp, txg));
407 
408 	/* create and open the root dir */
409 	dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
410 	VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
411 	    NULL, dp, &dp->dp_root_dir));
412 
413 	/* create and open the meta-objset dir */
414 	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx);
415 	VERIFY0(dsl_pool_open_special_dir(dp,
416 	    MOS_DIR_NAME, &dp->dp_mos_dir));
417 
418 	if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
419 		/* create and open the free dir */
420 		(void) dsl_dir_create_sync(dp, dp->dp_root_dir,
421 		    FREE_DIR_NAME, tx);
422 		VERIFY0(dsl_pool_open_special_dir(dp,
423 		    FREE_DIR_NAME, &dp->dp_free_dir));
424 
425 		/* create and open the free_bplist */
426 		obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
427 		VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
428 		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0);
429 		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
430 		    dp->dp_meta_objset, obj));
431 	}
432 
433 	if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB)
434 		dsl_pool_create_origin(dp, tx);
435 
436 	/* create the root dataset */
437 	obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, 0, tx);
438 
439 	/* create the root objset */
440 	VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, &ds));
441 	rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
442 	os = dmu_objset_create_impl(dp->dp_spa, ds,
443 	    dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx);
444 	rrw_exit(&ds->ds_bp_rwlock, FTAG);
445 #ifdef _KERNEL
446 	zfs_create_fs(os, kcred, zplprops, tx);
447 #endif
448 	dsl_dataset_rele(ds, FTAG);
449 
450 	dmu_tx_commit(tx);
451 
452 	rrw_exit(&dp->dp_config_rwlock, FTAG);
453 
454 	return (dp);
455 }
456 
457 /*
458  * Account for the meta-objset space in its placeholder dsl_dir.
459  */
460 void
461 dsl_pool_mos_diduse_space(dsl_pool_t *dp,
462     int64_t used, int64_t comp, int64_t uncomp)
463 {
464 	ASSERT3U(comp, ==, uncomp); /* it's all metadata */
465 	mutex_enter(&dp->dp_lock);
466 	dp->dp_mos_used_delta += used;
467 	dp->dp_mos_compressed_delta += comp;
468 	dp->dp_mos_uncompressed_delta += uncomp;
469 	mutex_exit(&dp->dp_lock);
470 }
471 
472 static void
473 dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx)
474 {
475 	zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
476 	dmu_objset_sync(dp->dp_meta_objset, zio, tx);
477 	VERIFY0(zio_wait(zio));
478 	dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
479 	spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
480 }
481 
482 static void
483 dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta)
484 {
485 	ASSERT(MUTEX_HELD(&dp->dp_lock));
486 
487 	if (delta < 0)
488 		ASSERT3U(-delta, <=, dp->dp_dirty_total);
489 
490 	dp->dp_dirty_total += delta;
491 
492 	/*
493 	 * Note: we signal even when increasing dp_dirty_total.
494 	 * This ensures forward progress -- each thread wakes the next waiter.
495 	 */
496 	if (dp->dp_dirty_total < zfs_dirty_data_max)
497 		cv_signal(&dp->dp_spaceavail_cv);
498 }
499 
500 void
501 dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
502 {
503 	zio_t *zio;
504 	dmu_tx_t *tx;
505 	dsl_dir_t *dd;
506 	dsl_dataset_t *ds;
507 	objset_t *mos = dp->dp_meta_objset;
508 	list_t synced_datasets;
509 
510 	list_create(&synced_datasets, sizeof (dsl_dataset_t),
511 	    offsetof(dsl_dataset_t, ds_synced_link));
512 
513 	tx = dmu_tx_create_assigned(dp, txg);
514 
515 	/*
516 	 * Write out all dirty blocks of dirty datasets.
517 	 */
518 	zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
519 	while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
520 		/*
521 		 * We must not sync any non-MOS datasets twice, because
522 		 * we may have taken a snapshot of them.  However, we
523 		 * may sync newly-created datasets on pass 2.
524 		 */
525 		ASSERT(!list_link_active(&ds->ds_synced_link));
526 		list_insert_tail(&synced_datasets, ds);
527 		dsl_dataset_sync(ds, zio, tx);
528 	}
529 	VERIFY0(zio_wait(zio));
530 
531 	/*
532 	 * We have written all of the accounted dirty data, so our
533 	 * dp_space_towrite should now be zero.  However, some seldom-used
534 	 * code paths do not adhere to this (e.g. dbuf_undirty(), also
535 	 * rounding error in dbuf_write_physdone).
536 	 * Shore up the accounting of any dirtied space now.
537 	 */
538 	dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg);
539 
540 	/*
541 	 * Update the long range free counter after
542 	 * we're done syncing user data
543 	 */
544 	mutex_enter(&dp->dp_lock);
545 	ASSERT(spa_sync_pass(dp->dp_spa) == 1 ||
546 	    dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] == 0);
547 	dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] = 0;
548 	mutex_exit(&dp->dp_lock);
549 
550 	/*
551 	 * After the data blocks have been written (ensured by the zio_wait()
552 	 * above), update the user/group space accounting.  This happens
553 	 * in tasks dispatched to dp_sync_taskq, so wait for them before
554 	 * continuing.
555 	 */
556 	for (ds = list_head(&synced_datasets); ds != NULL;
557 	    ds = list_next(&synced_datasets, ds)) {
558 		dmu_objset_do_userquota_updates(ds->ds_objset, tx);
559 	}
560 	taskq_wait(dp->dp_sync_taskq);
561 
562 	/*
563 	 * Sync the datasets again to push out the changes due to
564 	 * userspace updates.  This must be done before we process the
565 	 * sync tasks, so that any snapshots will have the correct
566 	 * user accounting information (and we won't get confused
567 	 * about which blocks are part of the snapshot).
568 	 */
569 	zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
570 	while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
571 		ASSERT(list_link_active(&ds->ds_synced_link));
572 		dmu_buf_rele(ds->ds_dbuf, ds);
573 		dsl_dataset_sync(ds, zio, tx);
574 	}
575 	VERIFY0(zio_wait(zio));
576 
577 	/*
578 	 * Now that the datasets have been completely synced, we can
579 	 * clean up our in-memory structures accumulated while syncing:
580 	 *
581 	 *  - move dead blocks from the pending deadlist to the on-disk deadlist
582 	 *  - release hold from dsl_dataset_dirty()
583 	 */
584 	while ((ds = list_remove_head(&synced_datasets)) != NULL) {
585 		dsl_dataset_sync_done(ds, tx);
586 	}
587 	while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) {
588 		dsl_dir_sync(dd, tx);
589 	}
590 
591 	/*
592 	 * The MOS's space is accounted for in the pool/$MOS
593 	 * (dp_mos_dir).  We can't modify the mos while we're syncing
594 	 * it, so we remember the deltas and apply them here.
595 	 */
596 	if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 ||
597 	    dp->dp_mos_uncompressed_delta != 0) {
598 		dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD,
599 		    dp->dp_mos_used_delta,
600 		    dp->dp_mos_compressed_delta,
601 		    dp->dp_mos_uncompressed_delta, tx);
602 		dp->dp_mos_used_delta = 0;
603 		dp->dp_mos_compressed_delta = 0;
604 		dp->dp_mos_uncompressed_delta = 0;
605 	}
606 
607 	if (!multilist_is_empty(mos->os_dirty_dnodes[txg & TXG_MASK])) {
608 		dsl_pool_sync_mos(dp, tx);
609 	}
610 
611 	/*
612 	 * If we modify a dataset in the same txg that we want to destroy it,
613 	 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it.
614 	 * dsl_dir_destroy_check() will fail if there are unexpected holds.
615 	 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf
616 	 * and clearing the hold on it) before we process the sync_tasks.
617 	 * The MOS data dirtied by the sync_tasks will be synced on the next
618 	 * pass.
619 	 */
620 	if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
621 		dsl_sync_task_t *dst;
622 		/*
623 		 * No more sync tasks should have been added while we
624 		 * were syncing.
625 		 */
626 		ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
627 		while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL)
628 			dsl_sync_task_sync(dst, tx);
629 	}
630 
631 	dmu_tx_commit(tx);
632 
633 	DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg);
634 }
635 
636 void
637 dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
638 {
639 	zilog_t *zilog;
640 
641 	while (zilog = txg_list_head(&dp->dp_dirty_zilogs, txg)) {
642 		dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
643 		/*
644 		 * We don't remove the zilog from the dp_dirty_zilogs
645 		 * list until after we've cleaned it. This ensures that
646 		 * callers of zilog_is_dirty() receive an accurate
647 		 * answer when they are racing with the spa sync thread.
648 		 */
649 		zil_clean(zilog, txg);
650 		(void) txg_list_remove_this(&dp->dp_dirty_zilogs, zilog, txg);
651 		ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
652 		dmu_buf_rele(ds->ds_dbuf, zilog);
653 	}
654 	ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg));
655 }
656 
657 /*
658  * TRUE if the current thread is the tx_sync_thread or if we
659  * are being called from SPA context during pool initialization.
660  */
661 int
662 dsl_pool_sync_context(dsl_pool_t *dp)
663 {
664 	return (curthread == dp->dp_tx.tx_sync_thread ||
665 	    spa_is_initializing(dp->dp_spa) ||
666 	    taskq_member(dp->dp_sync_taskq, curthread));
667 }
668 
669 uint64_t
670 dsl_pool_adjustedsize(dsl_pool_t *dp, boolean_t netfree)
671 {
672 	uint64_t space, resv;
673 
674 	/*
675 	 * If we're trying to assess whether it's OK to do a free,
676 	 * cut the reservation in half to allow forward progress
677 	 * (e.g. make it possible to rm(1) files from a full pool).
678 	 */
679 	space = spa_get_dspace(dp->dp_spa);
680 	resv = spa_get_slop_space(dp->dp_spa);
681 	if (netfree)
682 		resv >>= 1;
683 
684 	return (space - resv);
685 }
686 
687 boolean_t
688 dsl_pool_need_dirty_delay(dsl_pool_t *dp)
689 {
690 	uint64_t delay_min_bytes =
691 	    zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
692 	boolean_t rv;
693 
694 	mutex_enter(&dp->dp_lock);
695 	if (dp->dp_dirty_total > zfs_dirty_data_sync)
696 		txg_kick(dp);
697 	rv = (dp->dp_dirty_total > delay_min_bytes);
698 	mutex_exit(&dp->dp_lock);
699 	return (rv);
700 }
701 
702 void
703 dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
704 {
705 	if (space > 0) {
706 		mutex_enter(&dp->dp_lock);
707 		dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space;
708 		dsl_pool_dirty_delta(dp, space);
709 		mutex_exit(&dp->dp_lock);
710 	}
711 }
712 
713 void
714 dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg)
715 {
716 	ASSERT3S(space, >=, 0);
717 	if (space == 0)
718 		return;
719 	mutex_enter(&dp->dp_lock);
720 	if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) {
721 		/* XXX writing something we didn't dirty? */
722 		space = dp->dp_dirty_pertxg[txg & TXG_MASK];
723 	}
724 	ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space);
725 	dp->dp_dirty_pertxg[txg & TXG_MASK] -= space;
726 	ASSERT3U(dp->dp_dirty_total, >=, space);
727 	dsl_pool_dirty_delta(dp, -space);
728 	mutex_exit(&dp->dp_lock);
729 }
730 
731 /* ARGSUSED */
732 static int
733 upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
734 {
735 	dmu_tx_t *tx = arg;
736 	dsl_dataset_t *ds, *prev = NULL;
737 	int err;
738 
739 	err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
740 	if (err)
741 		return (err);
742 
743 	while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
744 		err = dsl_dataset_hold_obj(dp,
745 		    dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
746 		if (err) {
747 			dsl_dataset_rele(ds, FTAG);
748 			return (err);
749 		}
750 
751 		if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object)
752 			break;
753 		dsl_dataset_rele(ds, FTAG);
754 		ds = prev;
755 		prev = NULL;
756 	}
757 
758 	if (prev == NULL) {
759 		prev = dp->dp_origin_snap;
760 
761 		/*
762 		 * The $ORIGIN can't have any data, or the accounting
763 		 * will be wrong.
764 		 */
765 		rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
766 		ASSERT0(dsl_dataset_phys(prev)->ds_bp.blk_birth);
767 		rrw_exit(&ds->ds_bp_rwlock, FTAG);
768 
769 		/* The origin doesn't get attached to itself */
770 		if (ds->ds_object == prev->ds_object) {
771 			dsl_dataset_rele(ds, FTAG);
772 			return (0);
773 		}
774 
775 		dmu_buf_will_dirty(ds->ds_dbuf, tx);
776 		dsl_dataset_phys(ds)->ds_prev_snap_obj = prev->ds_object;
777 		dsl_dataset_phys(ds)->ds_prev_snap_txg =
778 		    dsl_dataset_phys(prev)->ds_creation_txg;
779 
780 		dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
781 		dsl_dir_phys(ds->ds_dir)->dd_origin_obj = prev->ds_object;
782 
783 		dmu_buf_will_dirty(prev->ds_dbuf, tx);
784 		dsl_dataset_phys(prev)->ds_num_children++;
785 
786 		if (dsl_dataset_phys(ds)->ds_next_snap_obj == 0) {
787 			ASSERT(ds->ds_prev == NULL);
788 			VERIFY0(dsl_dataset_hold_obj(dp,
789 			    dsl_dataset_phys(ds)->ds_prev_snap_obj,
790 			    ds, &ds->ds_prev));
791 		}
792 	}
793 
794 	ASSERT3U(dsl_dir_phys(ds->ds_dir)->dd_origin_obj, ==, prev->ds_object);
795 	ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_obj, ==, prev->ds_object);
796 
797 	if (dsl_dataset_phys(prev)->ds_next_clones_obj == 0) {
798 		dmu_buf_will_dirty(prev->ds_dbuf, tx);
799 		dsl_dataset_phys(prev)->ds_next_clones_obj =
800 		    zap_create(dp->dp_meta_objset,
801 		    DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
802 	}
803 	VERIFY0(zap_add_int(dp->dp_meta_objset,
804 	    dsl_dataset_phys(prev)->ds_next_clones_obj, ds->ds_object, tx));
805 
806 	dsl_dataset_rele(ds, FTAG);
807 	if (prev != dp->dp_origin_snap)
808 		dsl_dataset_rele(prev, FTAG);
809 	return (0);
810 }
811 
812 void
813 dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx)
814 {
815 	ASSERT(dmu_tx_is_syncing(tx));
816 	ASSERT(dp->dp_origin_snap != NULL);
817 
818 	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb,
819 	    tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
820 }
821 
822 /* ARGSUSED */
823 static int
824 upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
825 {
826 	dmu_tx_t *tx = arg;
827 	objset_t *mos = dp->dp_meta_objset;
828 
829 	if (dsl_dir_phys(ds->ds_dir)->dd_origin_obj != 0) {
830 		dsl_dataset_t *origin;
831 
832 		VERIFY0(dsl_dataset_hold_obj(dp,
833 		    dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &origin));
834 
835 		if (dsl_dir_phys(origin->ds_dir)->dd_clones == 0) {
836 			dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
837 			dsl_dir_phys(origin->ds_dir)->dd_clones =
838 			    zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE,
839 			    0, tx);
840 		}
841 
842 		VERIFY0(zap_add_int(dp->dp_meta_objset,
843 		    dsl_dir_phys(origin->ds_dir)->dd_clones,
844 		    ds->ds_object, tx));
845 
846 		dsl_dataset_rele(origin, FTAG);
847 	}
848 	return (0);
849 }
850 
851 void
852 dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx)
853 {
854 	ASSERT(dmu_tx_is_syncing(tx));
855 	uint64_t obj;
856 
857 	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx);
858 	VERIFY0(dsl_pool_open_special_dir(dp,
859 	    FREE_DIR_NAME, &dp->dp_free_dir));
860 
861 	/*
862 	 * We can't use bpobj_alloc(), because spa_version() still
863 	 * returns the old version, and we need a new-version bpobj with
864 	 * subobj support.  So call dmu_object_alloc() directly.
865 	 */
866 	obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ,
867 	    SPA_OLD_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx);
868 	VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
869 	    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
870 	VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj));
871 
872 	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
873 	    upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
874 }
875 
876 void
877 dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx)
878 {
879 	uint64_t dsobj;
880 	dsl_dataset_t *ds;
881 
882 	ASSERT(dmu_tx_is_syncing(tx));
883 	ASSERT(dp->dp_origin_snap == NULL);
884 	ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER));
885 
886 	/* create the origin dir, ds, & snap-ds */
887 	dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME,
888 	    NULL, 0, kcred, tx);
889 	VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
890 	dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx);
891 	VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj,
892 	    dp, &dp->dp_origin_snap));
893 	dsl_dataset_rele(ds, FTAG);
894 }
895 
896 taskq_t *
897 dsl_pool_vnrele_taskq(dsl_pool_t *dp)
898 {
899 	return (dp->dp_vnrele_taskq);
900 }
901 
902 /*
903  * Walk through the pool-wide zap object of temporary snapshot user holds
904  * and release them.
905  */
906 void
907 dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp)
908 {
909 	zap_attribute_t za;
910 	zap_cursor_t zc;
911 	objset_t *mos = dp->dp_meta_objset;
912 	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
913 	nvlist_t *holds;
914 
915 	if (zapobj == 0)
916 		return;
917 	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
918 
919 	holds = fnvlist_alloc();
920 
921 	for (zap_cursor_init(&zc, mos, zapobj);
922 	    zap_cursor_retrieve(&zc, &za) == 0;
923 	    zap_cursor_advance(&zc)) {
924 		char *htag;
925 		nvlist_t *tags;
926 
927 		htag = strchr(za.za_name, '-');
928 		*htag = '\0';
929 		++htag;
930 		if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) {
931 			tags = fnvlist_alloc();
932 			fnvlist_add_boolean(tags, htag);
933 			fnvlist_add_nvlist(holds, za.za_name, tags);
934 			fnvlist_free(tags);
935 		} else {
936 			fnvlist_add_boolean(tags, htag);
937 		}
938 	}
939 	dsl_dataset_user_release_tmp(dp, holds);
940 	fnvlist_free(holds);
941 	zap_cursor_fini(&zc);
942 }
943 
944 /*
945  * Create the pool-wide zap object for storing temporary snapshot holds.
946  */
947 void
948 dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx)
949 {
950 	objset_t *mos = dp->dp_meta_objset;
951 
952 	ASSERT(dp->dp_tmp_userrefs_obj == 0);
953 	ASSERT(dmu_tx_is_syncing(tx));
954 
955 	dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS,
956 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx);
957 }
958 
959 static int
960 dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj,
961     const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding)
962 {
963 	objset_t *mos = dp->dp_meta_objset;
964 	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
965 	char *name;
966 	int error;
967 
968 	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
969 	ASSERT(dmu_tx_is_syncing(tx));
970 
971 	/*
972 	 * If the pool was created prior to SPA_VERSION_USERREFS, the
973 	 * zap object for temporary holds might not exist yet.
974 	 */
975 	if (zapobj == 0) {
976 		if (holding) {
977 			dsl_pool_user_hold_create_obj(dp, tx);
978 			zapobj = dp->dp_tmp_userrefs_obj;
979 		} else {
980 			return (SET_ERROR(ENOENT));
981 		}
982 	}
983 
984 	name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag);
985 	if (holding)
986 		error = zap_add(mos, zapobj, name, 8, 1, &now, tx);
987 	else
988 		error = zap_remove(mos, zapobj, name, tx);
989 	strfree(name);
990 
991 	return (error);
992 }
993 
994 /*
995  * Add a temporary hold for the given dataset object and tag.
996  */
997 int
998 dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
999     uint64_t now, dmu_tx_t *tx)
1000 {
1001 	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE));
1002 }
1003 
1004 /*
1005  * Release a temporary hold for the given dataset object and tag.
1006  */
1007 int
1008 dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
1009     dmu_tx_t *tx)
1010 {
1011 	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, NULL,
1012 	    tx, B_FALSE));
1013 }
1014 
1015 /*
1016  * DSL Pool Configuration Lock
1017  *
1018  * The dp_config_rwlock protects against changes to DSL state (e.g. dataset
1019  * creation / destruction / rename / property setting).  It must be held for
1020  * read to hold a dataset or dsl_dir.  I.e. you must call
1021  * dsl_pool_config_enter() or dsl_pool_hold() before calling
1022  * dsl_{dataset,dir}_hold{_obj}.  In most circumstances, the dp_config_rwlock
1023  * must be held continuously until all datasets and dsl_dirs are released.
1024  *
1025  * The only exception to this rule is that if a "long hold" is placed on
1026  * a dataset, then the dp_config_rwlock may be dropped while the dataset
1027  * is still held.  The long hold will prevent the dataset from being
1028  * destroyed -- the destroy will fail with EBUSY.  A long hold can be
1029  * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset
1030  * (by calling dsl_{dataset,objset}_{try}own{_obj}).
1031  *
1032  * Legitimate long-holders (including owners) should be long-running, cancelable
1033  * tasks that should cause "zfs destroy" to fail.  This includes DMU
1034  * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open),
1035  * "zfs send", and "zfs diff".  There are several other long-holders whose
1036  * uses are suboptimal (e.g. "zfs promote", and zil_suspend()).
1037  *
1038  * The usual formula for long-holding would be:
1039  * dsl_pool_hold()
1040  * dsl_dataset_hold()
1041  * ... perform checks ...
1042  * dsl_dataset_long_hold()
1043  * dsl_pool_rele()
1044  * ... perform long-running task ...
1045  * dsl_dataset_long_rele()
1046  * dsl_dataset_rele()
1047  *
1048  * Note that when the long hold is released, the dataset is still held but
1049  * the pool is not held.  The dataset may change arbitrarily during this time
1050  * (e.g. it could be destroyed).  Therefore you shouldn't do anything to the
1051  * dataset except release it.
1052  *
1053  * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only
1054  * or modifying operations.
1055  *
1056  * Modifying operations should generally use dsl_sync_task().  The synctask
1057  * infrastructure enforces proper locking strategy with respect to the
1058  * dp_config_rwlock.  See the comment above dsl_sync_task() for details.
1059  *
1060  * Read-only operations will manually hold the pool, then the dataset, obtain
1061  * information from the dataset, then release the pool and dataset.
1062  * dmu_objset_{hold,rele}() are convenience routines that also do the pool
1063  * hold/rele.
1064  */
1065 
1066 int
1067 dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp)
1068 {
1069 	spa_t *spa;
1070 	int error;
1071 
1072 	error = spa_open(name, &spa, tag);
1073 	if (error == 0) {
1074 		*dp = spa_get_dsl(spa);
1075 		dsl_pool_config_enter(*dp, tag);
1076 	}
1077 	return (error);
1078 }
1079 
1080 void
1081 dsl_pool_rele(dsl_pool_t *dp, void *tag)
1082 {
1083 	dsl_pool_config_exit(dp, tag);
1084 	spa_close(dp->dp_spa, tag);
1085 }
1086 
1087 void
1088 dsl_pool_config_enter(dsl_pool_t *dp, void *tag)
1089 {
1090 	/*
1091 	 * We use a "reentrant" reader-writer lock, but not reentrantly.
1092 	 *
1093 	 * The rrwlock can (with the track_all flag) track all reading threads,
1094 	 * which is very useful for debugging which code path failed to release
1095 	 * the lock, and for verifying that the *current* thread does hold
1096 	 * the lock.
1097 	 *
1098 	 * (Unlike a rwlock, which knows that N threads hold it for
1099 	 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE
1100 	 * if any thread holds it for read, even if this thread doesn't).
1101 	 */
1102 	ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1103 	rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
1104 }
1105 
1106 void
1107 dsl_pool_config_enter_prio(dsl_pool_t *dp, void *tag)
1108 {
1109 	ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1110 	rrw_enter_read_prio(&dp->dp_config_rwlock, tag);
1111 }
1112 
1113 void
1114 dsl_pool_config_exit(dsl_pool_t *dp, void *tag)
1115 {
1116 	rrw_exit(&dp->dp_config_rwlock, tag);
1117 }
1118 
1119 boolean_t
1120 dsl_pool_config_held(dsl_pool_t *dp)
1121 {
1122 	return (RRW_LOCK_HELD(&dp->dp_config_rwlock));
1123 }
1124 
1125 boolean_t
1126 dsl_pool_config_held_writer(dsl_pool_t *dp)
1127 {
1128 	return (RRW_WRITE_HELD(&dp->dp_config_rwlock));
1129 }
1130