1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25 * Copyright (c) 2014, Joyent, Inc. All rights reserved.
26 * Copyright 2014 HybridCluster. All rights reserved.
27 * Copyright 2016 RackTop Systems.
28 * Copyright (c) 2014 Integros [integros.com]
29 */
30
31 #include <sys/dmu.h>
32 #include <sys/dmu_impl.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/dbuf.h>
35 #include <sys/dnode.h>
36 #include <sys/zfs_context.h>
37 #include <sys/dmu_objset.h>
38 #include <sys/dmu_traverse.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/dsl_dir.h>
41 #include <sys/dsl_prop.h>
42 #include <sys/dsl_pool.h>
43 #include <sys/dsl_synctask.h>
44 #include <sys/zfs_ioctl.h>
45 #include <sys/zap.h>
46 #include <sys/zio_checksum.h>
47 #include <sys/zfs_znode.h>
48 #include <zfs_fletcher.h>
49 #include <sys/avl.h>
50 #include <sys/ddt.h>
51 #include <sys/zfs_onexit.h>
52 #include <sys/dmu_recv.h>
53 #include <sys/dsl_destroy.h>
54 #include <sys/blkptr.h>
55 #include <sys/dsl_bookmark.h>
56 #include <sys/zfeature.h>
57 #include <sys/bqueue.h>
58
59 int zfs_recv_queue_length = SPA_MAXBLOCKSIZE;
60
61 static char *dmu_recv_tag = "dmu_recv_tag";
62 const char *recv_clone_name = "%recv";
63
64 static void byteswap_record(dmu_replay_record_t *drr);
65
66 typedef struct dmu_recv_begin_arg {
67 const char *drba_origin;
68 dmu_recv_cookie_t *drba_cookie;
69 cred_t *drba_cred;
70 dsl_crypto_params_t *drba_dcp;
71 } dmu_recv_begin_arg_t;
72
73 static int
recv_begin_check_existing_impl(dmu_recv_begin_arg_t * drba,dsl_dataset_t * ds,uint64_t fromguid,uint64_t featureflags)74 recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds,
75 uint64_t fromguid, uint64_t featureflags)
76 {
77 uint64_t val;
78 int error;
79 dsl_pool_t *dp = ds->ds_dir->dd_pool;
80 boolean_t encrypted = ds->ds_dir->dd_crypto_obj != 0;
81 boolean_t raw = (featureflags & DMU_BACKUP_FEATURE_RAW) != 0;
82 boolean_t embed = (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) != 0;
83
84 /* temporary clone name must not exist */
85 error = zap_lookup(dp->dp_meta_objset,
86 dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name,
87 8, 1, &val);
88 if (error != ENOENT)
89 return (error == 0 ? EBUSY : error);
90
91 /* new snapshot name must not exist */
92 error = zap_lookup(dp->dp_meta_objset,
93 dsl_dataset_phys(ds)->ds_snapnames_zapobj,
94 drba->drba_cookie->drc_tosnap, 8, 1, &val);
95 if (error != ENOENT)
96 return (error == 0 ? EEXIST : error);
97
98 /*
99 * Check snapshot limit before receiving. We'll recheck again at the
100 * end, but might as well abort before receiving if we're already over
101 * the limit.
102 *
103 * Note that we do not check the file system limit with
104 * dsl_dir_fscount_check because the temporary %clones don't count
105 * against that limit.
106 */
107 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT,
108 NULL, drba->drba_cred);
109 if (error != 0)
110 return (error);
111
112 if (fromguid != 0) {
113 dsl_dataset_t *snap;
114 uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
115
116 /* Can't raw receive on top of an unencrypted dataset */
117 if (!encrypted && raw)
118 return (SET_ERROR(EINVAL));
119
120 /* Encryption is incompatible with embedded data */
121 if (encrypted && embed)
122 return (SET_ERROR(EINVAL));
123
124 /* Find snapshot in this dir that matches fromguid. */
125 while (obj != 0) {
126 error = dsl_dataset_hold_obj(dp, obj, FTAG,
127 &snap);
128 if (error != 0)
129 return (SET_ERROR(ENODEV));
130 if (snap->ds_dir != ds->ds_dir) {
131 dsl_dataset_rele(snap, FTAG);
132 return (SET_ERROR(ENODEV));
133 }
134 if (dsl_dataset_phys(snap)->ds_guid == fromguid)
135 break;
136 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
137 dsl_dataset_rele(snap, FTAG);
138 }
139 if (obj == 0)
140 return (SET_ERROR(ENODEV));
141
142 if (drba->drba_cookie->drc_force) {
143 drba->drba_cookie->drc_fromsnapobj = obj;
144 } else {
145 /*
146 * If we are not forcing, there must be no
147 * changes since fromsnap.
148 */
149 if (dsl_dataset_modified_since_snap(ds, snap)) {
150 dsl_dataset_rele(snap, FTAG);
151 return (SET_ERROR(ETXTBSY));
152 }
153 drba->drba_cookie->drc_fromsnapobj =
154 ds->ds_prev->ds_object;
155 }
156
157 dsl_dataset_rele(snap, FTAG);
158 } else {
159 /* if full, then must be forced */
160 if (!drba->drba_cookie->drc_force)
161 return (SET_ERROR(EEXIST));
162
163 /*
164 * We don't support using zfs recv -F to blow away
165 * encrypted filesystems. This would require the
166 * dsl dir to point to the old encryption key and
167 * the new one at the same time during the receive.
168 */
169 if ((!encrypted && raw) || encrypted)
170 return (SET_ERROR(EINVAL));
171
172 /*
173 * Perform the same encryption checks we would if
174 * we were creating a new dataset from scratch.
175 */
176 if (!raw) {
177 boolean_t will_encrypt;
178
179 error = dmu_objset_create_crypt_check(
180 ds->ds_dir->dd_parent, drba->drba_dcp,
181 &will_encrypt);
182 if (error != 0)
183 return (error);
184
185 if (will_encrypt && embed)
186 return (SET_ERROR(EINVAL));
187 }
188
189 drba->drba_cookie->drc_fromsnapobj = 0;
190 }
191
192 return (0);
193
194 }
195
196 static int
dmu_recv_begin_check(void * arg,dmu_tx_t * tx)197 dmu_recv_begin_check(void *arg, dmu_tx_t *tx)
198 {
199 dmu_recv_begin_arg_t *drba = arg;
200 dsl_pool_t *dp = dmu_tx_pool(tx);
201 struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
202 uint64_t fromguid = drrb->drr_fromguid;
203 int flags = drrb->drr_flags;
204 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
205 int error;
206 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
207 dsl_dataset_t *ds;
208 const char *tofs = drba->drba_cookie->drc_tofs;
209
210 /* already checked */
211 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
212 ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING));
213
214 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
215 DMU_COMPOUNDSTREAM ||
216 drrb->drr_type >= DMU_OST_NUMTYPES ||
217 ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL))
218 return (SET_ERROR(EINVAL));
219
220 /* Verify pool version supports SA if SA_SPILL feature set */
221 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
222 spa_version(dp->dp_spa) < SPA_VERSION_SA)
223 return (SET_ERROR(ENOTSUP));
224
225 if (drba->drba_cookie->drc_resumable &&
226 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET))
227 return (SET_ERROR(ENOTSUP));
228
229 /*
230 * The receiving code doesn't know how to translate a WRITE_EMBEDDED
231 * record to a plain WRITE record, so the pool must have the
232 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED
233 * records. Same with WRITE_EMBEDDED records that use LZ4 compression.
234 */
235 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
236 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA))
237 return (SET_ERROR(ENOTSUP));
238 if ((featureflags & DMU_BACKUP_FEATURE_LZ4) &&
239 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS))
240 return (SET_ERROR(ENOTSUP));
241
242 /*
243 * The receiving code doesn't know how to translate large blocks
244 * to smaller ones, so the pool must have the LARGE_BLOCKS
245 * feature enabled if the stream has LARGE_BLOCKS. Same with
246 * large dnodes.
247 */
248 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
249 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS))
250 return (SET_ERROR(ENOTSUP));
251 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) &&
252 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_DNODE))
253 return (SET_ERROR(ENOTSUP));
254
255 if (featureflags & DMU_BACKUP_FEATURE_RAW) {
256 /* raw receives require the encryption feature */
257 if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION))
258 return (SET_ERROR(ENOTSUP));
259
260 /* embedded data is incompatible with encryption and raw recv */
261 if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)
262 return (SET_ERROR(EINVAL));
263
264 /* raw receives require spill block allocation flag */
265 if (!(flags & DRR_FLAG_SPILL_BLOCK))
266 return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING));
267 } else {
268 dsflags |= DS_HOLD_FLAG_DECRYPT;
269 }
270
271 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
272 if (error == 0) {
273 /* target fs already exists; recv into temp clone */
274
275 /* Can't recv a clone into an existing fs */
276 if (flags & DRR_FLAG_CLONE || drba->drba_origin) {
277 dsl_dataset_rele_flags(ds, dsflags, FTAG);
278 return (SET_ERROR(EINVAL));
279 }
280
281 error = recv_begin_check_existing_impl(drba, ds, fromguid,
282 featureflags);
283 dsl_dataset_rele_flags(ds, dsflags, FTAG);
284 } else if (error == ENOENT) {
285 /* target fs does not exist; must be a full backup or clone */
286 char buf[ZFS_MAX_DATASET_NAME_LEN];
287
288 /*
289 * If it's a non-clone incremental, we are missing the
290 * target fs, so fail the recv.
291 */
292 if (fromguid != 0 && !(flags & DRR_FLAG_CLONE ||
293 drba->drba_origin))
294 return (SET_ERROR(ENOENT));
295
296 /*
297 * If we're receiving a full send as a clone, and it doesn't
298 * contain all the necessary free records and freeobject
299 * records, reject it.
300 */
301 if (fromguid == 0 && drba->drba_origin &&
302 !(flags & DRR_FLAG_FREERECORDS))
303 return (SET_ERROR(EINVAL));
304
305 /* Open the parent of tofs */
306 ASSERT3U(strlen(tofs), <, sizeof (buf));
307 (void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1);
308 error = dsl_dataset_hold(dp, buf, FTAG, &ds);
309 if (error != 0)
310 return (error);
311
312 if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0 &&
313 drba->drba_origin == NULL) {
314 boolean_t will_encrypt;
315
316 /*
317 * Check that we aren't breaking any encryption rules
318 * and that we have all the parameters we need to
319 * create an encrypted dataset if necessary. If we are
320 * making an encrypted dataset the stream can't have
321 * embedded data.
322 */
323 error = dmu_objset_create_crypt_check(ds->ds_dir,
324 drba->drba_dcp, &will_encrypt);
325 if (error != 0) {
326 dsl_dataset_rele(ds, FTAG);
327 return (error);
328 }
329
330 if (will_encrypt &&
331 (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
332 dsl_dataset_rele(ds, FTAG);
333 return (SET_ERROR(EINVAL));
334 }
335 }
336
337 /*
338 * Check filesystem and snapshot limits before receiving. We'll
339 * recheck snapshot limits again at the end (we create the
340 * filesystems and increment those counts during begin_sync).
341 */
342 error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
343 ZFS_PROP_FILESYSTEM_LIMIT, NULL, drba->drba_cred);
344 if (error != 0) {
345 dsl_dataset_rele(ds, FTAG);
346 return (error);
347 }
348
349 error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
350 ZFS_PROP_SNAPSHOT_LIMIT, NULL, drba->drba_cred);
351 if (error != 0) {
352 dsl_dataset_rele(ds, FTAG);
353 return (error);
354 }
355
356 if (drba->drba_origin != NULL) {
357 dsl_dataset_t *origin;
358
359 error = dsl_dataset_hold(dp, drba->drba_origin,
360 FTAG, &origin);
361 if (error != 0) {
362 dsl_dataset_rele(ds, FTAG);
363 return (error);
364 }
365 if (!origin->ds_is_snapshot) {
366 dsl_dataset_rele(origin, FTAG);
367 dsl_dataset_rele(ds, FTAG);
368 return (SET_ERROR(EINVAL));
369 }
370 if (dsl_dataset_phys(origin)->ds_guid != fromguid &&
371 fromguid != 0) {
372 dsl_dataset_rele(origin, FTAG);
373 dsl_dataset_rele(ds, FTAG);
374 return (SET_ERROR(ENODEV));
375 }
376 if (origin->ds_dir->dd_crypto_obj != 0 &&
377 (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
378 dsl_dataset_rele(origin, FTAG);
379 dsl_dataset_rele(ds, FTAG);
380 return (SET_ERROR(EINVAL));
381 }
382 dsl_dataset_rele(origin, FTAG);
383 }
384 dsl_dataset_rele(ds, FTAG);
385 error = 0;
386 }
387 return (error);
388 }
389
390 static void
dmu_recv_begin_sync(void * arg,dmu_tx_t * tx)391 dmu_recv_begin_sync(void *arg, dmu_tx_t *tx)
392 {
393 dmu_recv_begin_arg_t *drba = arg;
394 dsl_pool_t *dp = dmu_tx_pool(tx);
395 objset_t *mos = dp->dp_meta_objset;
396 struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
397 const char *tofs = drba->drba_cookie->drc_tofs;
398 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
399 dsl_dataset_t *ds, *newds;
400 objset_t *os;
401 uint64_t dsobj;
402 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
403 int error;
404 uint64_t crflags = 0;
405 dsl_crypto_params_t dummy_dcp = { 0 };
406 dsl_crypto_params_t *dcp = drba->drba_dcp;
407
408 if (drrb->drr_flags & DRR_FLAG_CI_DATA)
409 crflags |= DS_FLAG_CI_DATASET;
410
411 if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0)
412 dsflags |= DS_HOLD_FLAG_DECRYPT;
413
414 /*
415 * Raw, non-incremental recvs always use a dummy dcp with
416 * the raw cmd set. Raw incremental recvs do not use a dcp
417 * since the encryption parameters are already set in stone.
418 */
419 if (dcp == NULL && drba->drba_cookie->drc_fromsnapobj == 0 &&
420 drba->drba_origin == NULL) {
421 ASSERT3P(dcp, ==, NULL);
422 dcp = &dummy_dcp;
423
424 if (featureflags & DMU_BACKUP_FEATURE_RAW)
425 dcp->cp_cmd = DCP_CMD_RAW_RECV;
426 }
427
428 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
429 if (error == 0) {
430 /* create temporary clone */
431 dsl_dataset_t *snap = NULL;
432
433 if (drba->drba_cookie->drc_fromsnapobj != 0) {
434 VERIFY0(dsl_dataset_hold_obj(dp,
435 drba->drba_cookie->drc_fromsnapobj, FTAG, &snap));
436 ASSERT3P(dcp, ==, NULL);
437 }
438
439 dsobj = dsl_dataset_create_sync(ds->ds_dir, recv_clone_name,
440 snap, crflags, drba->drba_cred, dcp, tx);
441 if (drba->drba_cookie->drc_fromsnapobj != 0)
442 dsl_dataset_rele(snap, FTAG);
443 dsl_dataset_rele_flags(ds, dsflags, FTAG);
444 } else {
445 dsl_dir_t *dd;
446 const char *tail;
447 dsl_dataset_t *origin = NULL;
448
449 VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail));
450
451 if (drba->drba_origin != NULL) {
452 VERIFY0(dsl_dataset_hold(dp, drba->drba_origin,
453 FTAG, &origin));
454 ASSERT3P(dcp, ==, NULL);
455 }
456
457 /* Create new dataset. */
458 dsobj = dsl_dataset_create_sync(dd, strrchr(tofs, '/') + 1,
459 origin, crflags, drba->drba_cred, dcp, tx);
460 if (origin != NULL)
461 dsl_dataset_rele(origin, FTAG);
462 dsl_dir_rele(dd, FTAG);
463 drba->drba_cookie->drc_newfs = B_TRUE;
464 }
465
466 VERIFY0(dsl_dataset_own_obj(dp, dsobj, dsflags, dmu_recv_tag, &newds));
467 VERIFY0(dmu_objset_from_ds(newds, &os));
468
469 if (drba->drba_cookie->drc_resumable) {
470 dsl_dataset_zapify(newds, tx);
471 if (drrb->drr_fromguid != 0) {
472 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID,
473 8, 1, &drrb->drr_fromguid, tx));
474 }
475 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID,
476 8, 1, &drrb->drr_toguid, tx));
477 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME,
478 1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx));
479 uint64_t one = 1;
480 uint64_t zero = 0;
481 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT,
482 8, 1, &one, tx));
483 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET,
484 8, 1, &zero, tx));
485 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES,
486 8, 1, &zero, tx));
487 if (featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) {
488 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_LARGEBLOCK,
489 8, 1, &one, tx));
490 }
491 if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) {
492 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK,
493 8, 1, &one, tx));
494 }
495 if (featureflags & DMU_BACKUP_FEATURE_COMPRESSED) {
496 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_COMPRESSOK,
497 8, 1, &one, tx));
498 }
499 if (featureflags & DMU_BACKUP_FEATURE_RAW) {
500 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_RAWOK,
501 8, 1, &one, tx));
502 }
503 }
504
505 /*
506 * Usually the os->os_encrypted value is tied to the presence of a
507 * DSL Crypto Key object in the dd. However, that will not be received
508 * until dmu_recv_stream(), so we set the value manually for now.
509 */
510 if (featureflags & DMU_BACKUP_FEATURE_RAW) {
511 os->os_encrypted = B_TRUE;
512 drba->drba_cookie->drc_raw = B_TRUE;
513 }
514
515 dmu_buf_will_dirty(newds->ds_dbuf, tx);
516 dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT;
517
518 /*
519 * If we actually created a non-clone, we need to create the objset
520 * in our new dataset. If this is a raw send we postpone this until
521 * dmu_recv_stream() so that we can allocate the metadnode with the
522 * properties from the DRR_BEGIN payload.
523 */
524 rrw_enter(&newds->ds_bp_rwlock, RW_READER, FTAG);
525 if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds)) &&
526 (featureflags & DMU_BACKUP_FEATURE_RAW) == 0) {
527 (void) dmu_objset_create_impl(dp->dp_spa,
528 newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx);
529 }
530 rrw_exit(&newds->ds_bp_rwlock, FTAG);
531
532 drba->drba_cookie->drc_ds = newds;
533
534 spa_history_log_internal_ds(newds, "receive", tx, "");
535 }
536
537 static int
dmu_recv_resume_begin_check(void * arg,dmu_tx_t * tx)538 dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx)
539 {
540 dmu_recv_begin_arg_t *drba = arg;
541 dsl_pool_t *dp = dmu_tx_pool(tx);
542 struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
543 int error;
544 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
545 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
546 dsl_dataset_t *ds;
547 const char *tofs = drba->drba_cookie->drc_tofs;
548
549 /* 6 extra bytes for /%recv */
550 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
551
552 /* already checked */
553 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
554 ASSERT(featureflags & DMU_BACKUP_FEATURE_RESUMING);
555
556 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
557 DMU_COMPOUNDSTREAM ||
558 drrb->drr_type >= DMU_OST_NUMTYPES)
559 return (SET_ERROR(EINVAL));
560
561 /* Verify pool version supports SA if SA_SPILL feature set */
562 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
563 spa_version(dp->dp_spa) < SPA_VERSION_SA)
564 return (SET_ERROR(ENOTSUP));
565
566 /*
567 * The receiving code doesn't know how to translate a WRITE_EMBEDDED
568 * record to a plain WRITE record, so the pool must have the
569 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED
570 * records. Same with WRITE_EMBEDDED records that use LZ4 compression.
571 */
572 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
573 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA))
574 return (SET_ERROR(ENOTSUP));
575 if ((featureflags & DMU_BACKUP_FEATURE_LZ4) &&
576 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS))
577 return (SET_ERROR(ENOTSUP));
578
579 /*
580 * The receiving code doesn't know how to translate large blocks
581 * to smaller ones, so the pool must have the LARGE_BLOCKS
582 * feature enabled if the stream has LARGE_BLOCKS. Same with
583 * large dnodes.
584 */
585 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
586 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS))
587 return (SET_ERROR(ENOTSUP));
588 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) &&
589 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_DNODE))
590 return (SET_ERROR(ENOTSUP));
591
592 (void) snprintf(recvname, sizeof (recvname), "%s/%s",
593 tofs, recv_clone_name);
594
595 if (featureflags & DMU_BACKUP_FEATURE_RAW) {
596 /* raw receives require spill block allocation flag */
597 if (!(drrb->drr_flags & DRR_FLAG_SPILL_BLOCK))
598 return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING));
599 } else {
600 dsflags |= DS_HOLD_FLAG_DECRYPT;
601 }
602
603 if (dsl_dataset_hold_flags(dp, recvname, dsflags, FTAG, &ds) != 0) {
604 /* %recv does not exist; continue in tofs */
605 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
606 if (error != 0)
607 return (error);
608 }
609
610 /* check that ds is marked inconsistent */
611 if (!DS_IS_INCONSISTENT(ds)) {
612 dsl_dataset_rele_flags(ds, dsflags, FTAG);
613 return (SET_ERROR(EINVAL));
614 }
615
616 /* check that there is resuming data, and that the toguid matches */
617 if (!dsl_dataset_is_zapified(ds)) {
618 dsl_dataset_rele_flags(ds, dsflags, FTAG);
619 return (SET_ERROR(EINVAL));
620 }
621 uint64_t val;
622 error = zap_lookup(dp->dp_meta_objset, ds->ds_object,
623 DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val);
624 if (error != 0 || drrb->drr_toguid != val) {
625 dsl_dataset_rele_flags(ds, dsflags, FTAG);
626 return (SET_ERROR(EINVAL));
627 }
628
629 /*
630 * Check if the receive is still running. If so, it will be owned.
631 * Note that nothing else can own the dataset (e.g. after the receive
632 * fails) because it will be marked inconsistent.
633 */
634 if (dsl_dataset_has_owner(ds)) {
635 dsl_dataset_rele_flags(ds, dsflags, FTAG);
636 return (SET_ERROR(EBUSY));
637 }
638
639 /* There should not be any snapshots of this fs yet. */
640 if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) {
641 dsl_dataset_rele_flags(ds, dsflags, FTAG);
642 return (SET_ERROR(EINVAL));
643 }
644
645 /*
646 * Note: resume point will be checked when we process the first WRITE
647 * record.
648 */
649
650 /* check that the origin matches */
651 val = 0;
652 (void) zap_lookup(dp->dp_meta_objset, ds->ds_object,
653 DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val);
654 if (drrb->drr_fromguid != val) {
655 dsl_dataset_rele_flags(ds, dsflags, FTAG);
656 return (SET_ERROR(EINVAL));
657 }
658
659 dsl_dataset_rele_flags(ds, dsflags, FTAG);
660 return (0);
661 }
662
663 static void
dmu_recv_resume_begin_sync(void * arg,dmu_tx_t * tx)664 dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx)
665 {
666 dmu_recv_begin_arg_t *drba = arg;
667 dsl_pool_t *dp = dmu_tx_pool(tx);
668 const char *tofs = drba->drba_cookie->drc_tofs;
669 struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
670 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
671 dsl_dataset_t *ds;
672 objset_t *os;
673 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
674 uint64_t dsobj;
675 /* 6 extra bytes for /%recv */
676 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
677
678 (void) snprintf(recvname, sizeof (recvname), "%s/%s",
679 tofs, recv_clone_name);
680
681 if (featureflags & DMU_BACKUP_FEATURE_RAW) {
682 drba->drba_cookie->drc_raw = B_TRUE;
683 } else {
684 dsflags |= DS_HOLD_FLAG_DECRYPT;
685 }
686
687 if (dsl_dataset_hold_flags(dp, recvname, dsflags, FTAG, &ds) != 0) {
688 /* %recv does not exist; continue in tofs */
689 VERIFY0(dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds));
690 drba->drba_cookie->drc_newfs = B_TRUE;
691 }
692
693 /* clear the inconsistent flag so that we can own it */
694 ASSERT(DS_IS_INCONSISTENT(ds));
695 dmu_buf_will_dirty(ds->ds_dbuf, tx);
696 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
697 dsobj = ds->ds_object;
698 dsl_dataset_rele_flags(ds, dsflags, FTAG);
699
700 VERIFY0(dsl_dataset_own_obj(dp, dsobj, dsflags, dmu_recv_tag, &ds));
701 VERIFY0(dmu_objset_from_ds(ds, &os));
702
703 dmu_buf_will_dirty(ds->ds_dbuf, tx);
704 dsl_dataset_phys(ds)->ds_flags |= DS_FLAG_INCONSISTENT;
705
706 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
707 ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)) ||
708 drba->drba_cookie->drc_raw);
709 rrw_exit(&ds->ds_bp_rwlock, FTAG);
710
711 drba->drba_cookie->drc_ds = ds;
712
713 spa_history_log_internal_ds(ds, "resume receive", tx, "");
714 }
715
716 /*
717 * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin()
718 * succeeds; otherwise we will leak the holds on the datasets.
719 */
720 int
dmu_recv_begin(char * tofs,char * tosnap,dmu_replay_record_t * drr_begin,boolean_t force,boolean_t resumable,nvlist_t * localprops,nvlist_t * hidden_args,char * origin,dmu_recv_cookie_t * drc)721 dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin,
722 boolean_t force, boolean_t resumable, nvlist_t *localprops,
723 nvlist_t *hidden_args, char *origin, dmu_recv_cookie_t *drc)
724 {
725 dmu_recv_begin_arg_t drba = { 0 };
726
727 bzero(drc, sizeof (dmu_recv_cookie_t));
728 drc->drc_drr_begin = drr_begin;
729 drc->drc_drrb = &drr_begin->drr_u.drr_begin;
730 drc->drc_tosnap = tosnap;
731 drc->drc_tofs = tofs;
732 drc->drc_force = force;
733 drc->drc_resumable = resumable;
734 drc->drc_cred = CRED();
735 drc->drc_clone = (origin != NULL);
736
737 if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) {
738 drc->drc_byteswap = B_TRUE;
739 (void) fletcher_4_incremental_byteswap(drr_begin,
740 sizeof (dmu_replay_record_t), &drc->drc_cksum);
741 byteswap_record(drr_begin);
742 } else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) {
743 (void) fletcher_4_incremental_native(drr_begin,
744 sizeof (dmu_replay_record_t), &drc->drc_cksum);
745 } else {
746 return (SET_ERROR(EINVAL));
747 }
748
749 if (drc->drc_drrb->drr_flags & DRR_FLAG_SPILL_BLOCK)
750 drc->drc_spill = B_TRUE;
751
752 drba.drba_origin = origin;
753 drba.drba_cookie = drc;
754 drba.drba_cred = CRED();
755
756 if (DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) &
757 DMU_BACKUP_FEATURE_RESUMING) {
758 return (dsl_sync_task(tofs,
759 dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync,
760 &drba, 5, ZFS_SPACE_CHECK_NORMAL));
761 } else {
762 int err;
763
764 /*
765 * For non-raw, non-incremental, non-resuming receives the
766 * user can specify encryption parameters on the command line
767 * with "zfs recv -o". For these receives we create a dcp and
768 * pass it to the sync task. Creating the dcp will implicitly
769 * remove the encryption params from the localprops nvlist,
770 * which avoids errors when trying to set these normally
771 * read-only properties. Any other kind of receive that
772 * attempts to set these properties will fail as a result.
773 */
774 if ((DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) &
775 DMU_BACKUP_FEATURE_RAW) == 0 &&
776 origin == NULL && drc->drc_drrb->drr_fromguid == 0) {
777 err = dsl_crypto_params_create_nvlist(DCP_CMD_NONE,
778 localprops, hidden_args, &drba.drba_dcp);
779 if (err != 0)
780 return (err);
781 }
782
783 err = dsl_sync_task(tofs,
784 dmu_recv_begin_check, dmu_recv_begin_sync,
785 &drba, 5, ZFS_SPACE_CHECK_NORMAL);
786 dsl_crypto_params_free(drba.drba_dcp, !!err);
787
788 return (err);
789 }
790 }
791
792 struct receive_record_arg {
793 dmu_replay_record_t header;
794 void *payload; /* Pointer to a buffer containing the payload */
795 /*
796 * If the record is a write, pointer to the arc_buf_t containing the
797 * payload.
798 */
799 arc_buf_t *arc_buf;
800 int payload_size;
801 uint64_t bytes_read; /* bytes read from stream when record created */
802 boolean_t eos_marker; /* Marks the end of the stream */
803 bqueue_node_t node;
804 };
805
806 struct receive_writer_arg {
807 objset_t *os;
808 boolean_t byteswap;
809 bqueue_t q;
810
811 /*
812 * These three args are used to signal to the main thread that we're
813 * done.
814 */
815 kmutex_t mutex;
816 kcondvar_t cv;
817 boolean_t done;
818
819 int err;
820 /* A map from guid to dataset to help handle dedup'd streams. */
821 avl_tree_t *guid_to_ds_map;
822 boolean_t resumable;
823 boolean_t raw; /* DMU_BACKUP_FEATURE_RAW set */
824 boolean_t spill; /* DRR_FLAG_SPILL_BLOCK set */
825 uint64_t last_object;
826 uint64_t last_offset;
827 uint64_t max_object; /* highest object ID referenced in stream */
828 uint64_t bytes_read; /* bytes read when current record created */
829
830 /* Encryption parameters for the last received DRR_OBJECT_RANGE */
831 boolean_t or_crypt_params_present;
832 uint64_t or_firstobj;
833 uint64_t or_numslots;
834 uint8_t or_salt[ZIO_DATA_SALT_LEN];
835 uint8_t or_iv[ZIO_DATA_IV_LEN];
836 uint8_t or_mac[ZIO_DATA_MAC_LEN];
837 boolean_t or_byteorder;
838 };
839
840 struct objlist {
841 list_t list; /* List of struct receive_objnode. */
842 /*
843 * Last object looked up. Used to assert that objects are being looked
844 * up in ascending order.
845 */
846 uint64_t last_lookup;
847 };
848
849 struct receive_objnode {
850 list_node_t node;
851 uint64_t object;
852 };
853
854 struct receive_arg {
855 objset_t *os;
856 vnode_t *vp; /* The vnode to read the stream from */
857 uint64_t voff; /* The current offset in the stream */
858 uint64_t bytes_read;
859 /*
860 * A record that has had its payload read in, but hasn't yet been handed
861 * off to the worker thread.
862 */
863 struct receive_record_arg *rrd;
864 /* A record that has had its header read in, but not its payload. */
865 struct receive_record_arg *next_rrd;
866 zio_cksum_t cksum;
867 zio_cksum_t prev_cksum;
868 int err;
869 boolean_t byteswap;
870 boolean_t raw;
871 uint64_t featureflags;
872 /* Sorted list of objects not to issue prefetches for. */
873 struct objlist ignore_objlist;
874 };
875
876 typedef struct guid_map_entry {
877 uint64_t guid;
878 boolean_t raw;
879 dsl_dataset_t *gme_ds;
880 avl_node_t avlnode;
881 } guid_map_entry_t;
882
883 static int
guid_compare(const void * arg1,const void * arg2)884 guid_compare(const void *arg1, const void *arg2)
885 {
886 const guid_map_entry_t *gmep1 = (const guid_map_entry_t *)arg1;
887 const guid_map_entry_t *gmep2 = (const guid_map_entry_t *)arg2;
888
889 return (TREE_CMP(gmep1->guid, gmep2->guid));
890 }
891
892 static void
free_guid_map_onexit(void * arg)893 free_guid_map_onexit(void *arg)
894 {
895 avl_tree_t *ca = arg;
896 void *cookie = NULL;
897 guid_map_entry_t *gmep;
898
899 while ((gmep = avl_destroy_nodes(ca, &cookie)) != NULL) {
900 ds_hold_flags_t dsflags = DS_HOLD_FLAG_DECRYPT;
901
902 if (gmep->raw) {
903 gmep->gme_ds->ds_objset->os_raw_receive = B_FALSE;
904 dsflags &= ~DS_HOLD_FLAG_DECRYPT;
905 }
906
907 dsl_dataset_disown(gmep->gme_ds, dsflags, gmep);
908 kmem_free(gmep, sizeof (guid_map_entry_t));
909 }
910 avl_destroy(ca);
911 kmem_free(ca, sizeof (avl_tree_t));
912 }
913
914 static int
receive_read(struct receive_arg * ra,int len,void * buf)915 receive_read(struct receive_arg *ra, int len, void *buf)
916 {
917 int done = 0;
918
919 /*
920 * The code doesn't rely on this (lengths being multiples of 8). See
921 * comment in dump_bytes.
922 */
923 ASSERT(len % 8 == 0 ||
924 (ra->featureflags & DMU_BACKUP_FEATURE_RAW) != 0);
925
926 while (done < len) {
927 ssize_t resid;
928
929 ra->err = vn_rdwr(UIO_READ, ra->vp,
930 (char *)buf + done, len - done,
931 ra->voff, UIO_SYSSPACE, FAPPEND,
932 RLIM64_INFINITY, CRED(), &resid);
933
934 if (resid == len - done) {
935 /*
936 * Note: ECKSUM indicates that the receive
937 * was interrupted and can potentially be resumed.
938 */
939 ra->err = SET_ERROR(ECKSUM);
940 }
941 ra->voff += len - done - resid;
942 done = len - resid;
943 if (ra->err != 0)
944 return (ra->err);
945 }
946
947 ra->bytes_read += len;
948
949 ASSERT3U(done, ==, len);
950 return (0);
951 }
952
953 static void
byteswap_record(dmu_replay_record_t * drr)954 byteswap_record(dmu_replay_record_t *drr)
955 {
956 #define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X))
957 #define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X))
958 drr->drr_type = BSWAP_32(drr->drr_type);
959 drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen);
960
961 switch (drr->drr_type) {
962 case DRR_BEGIN:
963 DO64(drr_begin.drr_magic);
964 DO64(drr_begin.drr_versioninfo);
965 DO64(drr_begin.drr_creation_time);
966 DO32(drr_begin.drr_type);
967 DO32(drr_begin.drr_flags);
968 DO64(drr_begin.drr_toguid);
969 DO64(drr_begin.drr_fromguid);
970 break;
971 case DRR_OBJECT:
972 DO64(drr_object.drr_object);
973 DO32(drr_object.drr_type);
974 DO32(drr_object.drr_bonustype);
975 DO32(drr_object.drr_blksz);
976 DO32(drr_object.drr_bonuslen);
977 DO32(drr_object.drr_raw_bonuslen);
978 DO64(drr_object.drr_toguid);
979 DO64(drr_object.drr_maxblkid);
980 break;
981 case DRR_FREEOBJECTS:
982 DO64(drr_freeobjects.drr_firstobj);
983 DO64(drr_freeobjects.drr_numobjs);
984 DO64(drr_freeobjects.drr_toguid);
985 break;
986 case DRR_WRITE:
987 DO64(drr_write.drr_object);
988 DO32(drr_write.drr_type);
989 DO64(drr_write.drr_offset);
990 DO64(drr_write.drr_logical_size);
991 DO64(drr_write.drr_toguid);
992 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum);
993 DO64(drr_write.drr_key.ddk_prop);
994 DO64(drr_write.drr_compressed_size);
995 break;
996 case DRR_WRITE_BYREF:
997 DO64(drr_write_byref.drr_object);
998 DO64(drr_write_byref.drr_offset);
999 DO64(drr_write_byref.drr_length);
1000 DO64(drr_write_byref.drr_toguid);
1001 DO64(drr_write_byref.drr_refguid);
1002 DO64(drr_write_byref.drr_refobject);
1003 DO64(drr_write_byref.drr_refoffset);
1004 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write_byref.
1005 drr_key.ddk_cksum);
1006 DO64(drr_write_byref.drr_key.ddk_prop);
1007 break;
1008 case DRR_WRITE_EMBEDDED:
1009 DO64(drr_write_embedded.drr_object);
1010 DO64(drr_write_embedded.drr_offset);
1011 DO64(drr_write_embedded.drr_length);
1012 DO64(drr_write_embedded.drr_toguid);
1013 DO32(drr_write_embedded.drr_lsize);
1014 DO32(drr_write_embedded.drr_psize);
1015 break;
1016 case DRR_FREE:
1017 DO64(drr_free.drr_object);
1018 DO64(drr_free.drr_offset);
1019 DO64(drr_free.drr_length);
1020 DO64(drr_free.drr_toguid);
1021 break;
1022 case DRR_SPILL:
1023 DO64(drr_spill.drr_object);
1024 DO64(drr_spill.drr_length);
1025 DO64(drr_spill.drr_toguid);
1026 DO64(drr_spill.drr_compressed_size);
1027 DO32(drr_spill.drr_type);
1028 break;
1029 case DRR_OBJECT_RANGE:
1030 DO64(drr_object_range.drr_firstobj);
1031 DO64(drr_object_range.drr_numslots);
1032 DO64(drr_object_range.drr_toguid);
1033 break;
1034 case DRR_END:
1035 DO64(drr_end.drr_toguid);
1036 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum);
1037 break;
1038 }
1039
1040 if (drr->drr_type != DRR_BEGIN) {
1041 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum);
1042 }
1043
1044 #undef DO64
1045 #undef DO32
1046 }
1047
1048 static inline uint8_t
deduce_nblkptr(dmu_object_type_t bonus_type,uint64_t bonus_size)1049 deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size)
1050 {
1051 if (bonus_type == DMU_OT_SA) {
1052 return (1);
1053 } else {
1054 return (1 +
1055 ((DN_OLD_MAX_BONUSLEN -
1056 MIN(DN_OLD_MAX_BONUSLEN, bonus_size)) >> SPA_BLKPTRSHIFT));
1057 }
1058 }
1059
1060 static void
save_resume_state(struct receive_writer_arg * rwa,uint64_t object,uint64_t offset,dmu_tx_t * tx)1061 save_resume_state(struct receive_writer_arg *rwa,
1062 uint64_t object, uint64_t offset, dmu_tx_t *tx)
1063 {
1064 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
1065
1066 if (!rwa->resumable)
1067 return;
1068
1069 /*
1070 * We use ds_resume_bytes[] != 0 to indicate that we need to
1071 * update this on disk, so it must not be 0.
1072 */
1073 ASSERT(rwa->bytes_read != 0);
1074
1075 /*
1076 * We only resume from write records, which have a valid
1077 * (non-meta-dnode) object number.
1078 */
1079 ASSERT(object != 0);
1080
1081 /*
1082 * For resuming to work correctly, we must receive records in order,
1083 * sorted by object,offset. This is checked by the callers, but
1084 * assert it here for good measure.
1085 */
1086 ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]);
1087 ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] ||
1088 offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]);
1089 ASSERT3U(rwa->bytes_read, >=,
1090 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]);
1091
1092 rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object;
1093 rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset;
1094 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read;
1095 }
1096
1097 int receive_object_delay_frac = 0;
1098
1099 static int
receive_object(struct receive_writer_arg * rwa,struct drr_object * drro,void * data)1100 receive_object(struct receive_writer_arg *rwa, struct drr_object *drro,
1101 void *data)
1102 {
1103 dmu_object_info_t doi;
1104 dmu_tx_t *tx;
1105 uint64_t object;
1106 int err;
1107 uint8_t dn_slots = drro->drr_dn_slots != 0 ?
1108 drro->drr_dn_slots : DNODE_MIN_SLOTS;
1109
1110 if (receive_object_delay_frac != 0 &&
1111 spa_get_random(receive_object_delay_frac) == 0)
1112 delay(1);
1113
1114 if (drro->drr_type == DMU_OT_NONE ||
1115 !DMU_OT_IS_VALID(drro->drr_type) ||
1116 !DMU_OT_IS_VALID(drro->drr_bonustype) ||
1117 drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS ||
1118 drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS ||
1119 P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) ||
1120 drro->drr_blksz < SPA_MINBLOCKSIZE ||
1121 drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) ||
1122 drro->drr_bonuslen >
1123 DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(rwa->os))) ||
1124 dn_slots >
1125 (spa_maxdnodesize(dmu_objset_spa(rwa->os)) >> DNODE_SHIFT)) {
1126 return (SET_ERROR(EINVAL));
1127 }
1128
1129 if (rwa->raw) {
1130 /*
1131 * We should have received a DRR_OBJECT_RANGE record
1132 * containing this block and stored it in rwa.
1133 */
1134 if (drro->drr_object < rwa->or_firstobj ||
1135 drro->drr_object >= rwa->or_firstobj + rwa->or_numslots ||
1136 drro->drr_raw_bonuslen < drro->drr_bonuslen ||
1137 drro->drr_indblkshift > SPA_MAXBLOCKSHIFT ||
1138 drro->drr_nlevels > DN_MAX_LEVELS ||
1139 drro->drr_nblkptr > DN_MAX_NBLKPTR ||
1140 DN_SLOTS_TO_BONUSLEN(drro->drr_dn_slots) <
1141 drro->drr_raw_bonuslen)
1142 return (SET_ERROR(EINVAL));
1143 } else {
1144
1145 /*
1146 * The DRR_OBJECT_SPILL flag is valid when the DRR_BEGIN
1147 * record indicates this by setting DRR_FLAG_SPILL_BLOCK.
1148 */
1149 if (((drro->drr_flags & ~(DRR_OBJECT_SPILL))) ||
1150 (!rwa->spill && DRR_OBJECT_HAS_SPILL(drro->drr_flags))) {
1151 return (SET_ERROR(EINVAL));
1152 }
1153
1154 if (drro->drr_raw_bonuslen != 0 || drro->drr_nblkptr != 0 ||
1155 drro->drr_indblkshift != 0 || drro->drr_nlevels != 0) {
1156 return (SET_ERROR(EINVAL));
1157 }
1158 }
1159
1160 err = dmu_object_info(rwa->os, drro->drr_object, &doi);
1161
1162 if (err != 0 && err != ENOENT && err != EEXIST)
1163 return (SET_ERROR(EINVAL));
1164
1165 if (drro->drr_object > rwa->max_object)
1166 rwa->max_object = drro->drr_object;
1167
1168 /*
1169 * If we are losing blkptrs or changing the block size this must
1170 * be a new file instance. We must clear out the previous file
1171 * contents before we can change this type of metadata in the dnode.
1172 * Raw receives will also check that the indirect structure of the
1173 * dnode hasn't changed.
1174 */
1175 if (err == 0) {
1176 uint32_t indblksz = drro->drr_indblkshift ?
1177 1ULL << drro->drr_indblkshift : 0;
1178 int nblkptr = deduce_nblkptr(drro->drr_bonustype,
1179 drro->drr_bonuslen);
1180 boolean_t did_free = B_FALSE;
1181
1182 object = drro->drr_object;
1183
1184 /* nblkptr should be bounded by the bonus size and type */
1185 if (rwa->raw && nblkptr != drro->drr_nblkptr)
1186 return (SET_ERROR(EINVAL));
1187
1188 /*
1189 * Check for indicators that the object was freed and
1190 * reallocated. For all sends, these indicators are:
1191 * - A changed block size
1192 * - A smaller nblkptr
1193 * - A changed dnode size
1194 * For raw sends we also check a few other fields to
1195 * ensure we are preserving the objset structure exactly
1196 * as it was on the receive side:
1197 * - A changed indirect block size
1198 * - A smaller nlevels
1199 */
1200 if (drro->drr_blksz != doi.doi_data_block_size ||
1201 nblkptr < doi.doi_nblkptr ||
1202 dn_slots != doi.doi_dnodesize >> DNODE_SHIFT ||
1203 (rwa->raw &&
1204 (indblksz != doi.doi_metadata_block_size ||
1205 drro->drr_nlevels < doi.doi_indirection))) {
1206 err = dmu_free_long_range(rwa->os,
1207 drro->drr_object, 0, DMU_OBJECT_END);
1208 if (err != 0)
1209 return (SET_ERROR(EINVAL));
1210 else
1211 did_free = B_TRUE;
1212 }
1213
1214 /*
1215 * The dmu does not currently support decreasing nlevels
1216 * or changing the number of dnode slots on an object. For
1217 * non-raw sends, this does not matter and the new object
1218 * can just use the previous one's nlevels. For raw sends,
1219 * however, the structure of the received dnode (including
1220 * nlevels and dnode slots) must match that of the send
1221 * side. Therefore, instead of using dmu_object_reclaim(),
1222 * we must free the object completely and call
1223 * dmu_object_claim_dnsize() instead.
1224 */
1225 if ((rwa->raw && drro->drr_nlevels < doi.doi_indirection) ||
1226 dn_slots != doi.doi_dnodesize >> DNODE_SHIFT) {
1227 err = dmu_free_long_object(rwa->os, drro->drr_object);
1228 if (err != 0)
1229 return (SET_ERROR(EINVAL));
1230
1231 txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1232 object = DMU_NEW_OBJECT;
1233 }
1234
1235 /*
1236 * For raw receives, free everything beyond the new incoming
1237 * maxblkid. Normally this would be done with a DRR_FREE
1238 * record that would come after this DRR_OBJECT record is
1239 * processed. However, for raw receives we manually set the
1240 * maxblkid from the drr_maxblkid and so we must first free
1241 * everything above that blkid to ensure the DMU is always
1242 * consistent with itself. We will never free the first block
1243 * of the object here because a maxblkid of 0 could indicate
1244 * an object with a single block or one with no blocks. This
1245 * free may be skipped when dmu_free_long_range() was called
1246 * above since it covers the entire object's contents.
1247 */
1248 if (rwa->raw && object != DMU_NEW_OBJECT && !did_free) {
1249 err = dmu_free_long_range(rwa->os, drro->drr_object,
1250 (drro->drr_maxblkid + 1) * doi.doi_data_block_size,
1251 DMU_OBJECT_END);
1252 if (err != 0)
1253 return (SET_ERROR(EINVAL));
1254 }
1255 } else if (err == EEXIST) {
1256 /*
1257 * The object requested is currently an interior slot of a
1258 * multi-slot dnode. This will be resolved when the next txg
1259 * is synced out, since the send stream will have told us
1260 * to free this slot when we freed the associated dnode
1261 * earlier in the stream.
1262 */
1263 txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1264
1265 if (dmu_object_info(rwa->os, drro->drr_object, NULL) != ENOENT)
1266 return (SET_ERROR(EINVAL));
1267
1268 /* object was freed and we are about to allocate a new one */
1269 object = DMU_NEW_OBJECT;
1270 } else {
1271 /* object is free and we are about to allocate a new one */
1272 object = DMU_NEW_OBJECT;
1273 }
1274
1275 /*
1276 * If this is a multi-slot dnode there is a chance that this
1277 * object will expand into a slot that is already used by
1278 * another object from the previous snapshot. We must free
1279 * these objects before we attempt to allocate the new dnode.
1280 */
1281 if (dn_slots > 1) {
1282 boolean_t need_sync = B_FALSE;
1283
1284 for (uint64_t slot = drro->drr_object + 1;
1285 slot < drro->drr_object + dn_slots;
1286 slot++) {
1287 dmu_object_info_t slot_doi;
1288
1289 err = dmu_object_info(rwa->os, slot, &slot_doi);
1290 if (err == ENOENT || err == EEXIST)
1291 continue;
1292 else if (err != 0)
1293 return (err);
1294
1295 err = dmu_free_long_object(rwa->os, slot);
1296
1297 if (err != 0)
1298 return (err);
1299
1300 need_sync = B_TRUE;
1301 }
1302
1303 if (need_sync)
1304 txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1305 }
1306
1307 tx = dmu_tx_create(rwa->os);
1308 dmu_tx_hold_bonus(tx, object);
1309 dmu_tx_hold_write(tx, object, 0, 0);
1310 err = dmu_tx_assign(tx, TXG_WAIT);
1311 if (err != 0) {
1312 dmu_tx_abort(tx);
1313 return (err);
1314 }
1315
1316 if (object == DMU_NEW_OBJECT) {
1317 /* Currently free, wants to be allocated */
1318 err = dmu_object_claim_dnsize(rwa->os, drro->drr_object,
1319 drro->drr_type, drro->drr_blksz,
1320 drro->drr_bonustype, drro->drr_bonuslen,
1321 dn_slots << DNODE_SHIFT, tx);
1322 } else if (drro->drr_type != doi.doi_type ||
1323 drro->drr_blksz != doi.doi_data_block_size ||
1324 drro->drr_bonustype != doi.doi_bonus_type ||
1325 drro->drr_bonuslen != doi.doi_bonus_size) {
1326 /* Currently allocated, but with different properties */
1327 err = dmu_object_reclaim_dnsize(rwa->os, drro->drr_object,
1328 drro->drr_type, drro->drr_blksz,
1329 drro->drr_bonustype, drro->drr_bonuslen,
1330 dn_slots << DNODE_SHIFT, rwa->spill ?
1331 DRR_OBJECT_HAS_SPILL(drro->drr_flags) : B_FALSE, tx);
1332 } else if (rwa->spill && !DRR_OBJECT_HAS_SPILL(drro->drr_flags)) {
1333 /*
1334 * Currently allocated, the existing version of this object
1335 * may reference a spill block that is no longer allocated
1336 * at the source and needs to be freed.
1337 */
1338 err = dmu_object_rm_spill(rwa->os, drro->drr_object, tx);
1339 }
1340
1341 if (err != 0) {
1342 dmu_tx_commit(tx);
1343 return (SET_ERROR(EINVAL));
1344 }
1345
1346 if (rwa->or_crypt_params_present) {
1347 /*
1348 * Set the crypt params for the buffer associated with this
1349 * range of dnodes. This causes the blkptr_t to have the
1350 * same crypt params (byteorder, salt, iv, mac) as on the
1351 * sending side.
1352 *
1353 * Since we are committing this tx now, it is possible for
1354 * the dnode block to end up on-disk with the incorrect MAC,
1355 * if subsequent objects in this block are received in a
1356 * different txg. However, since the dataset is marked as
1357 * inconsistent, no code paths will do a non-raw read (or
1358 * decrypt the block / verify the MAC). The receive code and
1359 * scrub code can safely do raw reads and verify the
1360 * checksum. They don't need to verify the MAC.
1361 */
1362 dmu_buf_t *db = NULL;
1363 uint64_t offset = rwa->or_firstobj * DNODE_MIN_SIZE;
1364
1365 err = dmu_buf_hold_by_dnode(DMU_META_DNODE(rwa->os),
1366 offset, FTAG, &db, DMU_READ_PREFETCH | DMU_READ_NO_DECRYPT);
1367 if (err != 0) {
1368 dmu_tx_commit(tx);
1369 return (SET_ERROR(EINVAL));
1370 }
1371
1372 dmu_buf_set_crypt_params(db, rwa->or_byteorder,
1373 rwa->or_salt, rwa->or_iv, rwa->or_mac, tx);
1374
1375 dmu_buf_rele(db, FTAG);
1376
1377 rwa->or_crypt_params_present = B_FALSE;
1378 }
1379
1380 dmu_object_set_checksum(rwa->os, drro->drr_object,
1381 drro->drr_checksumtype, tx);
1382 dmu_object_set_compress(rwa->os, drro->drr_object,
1383 drro->drr_compress, tx);
1384
1385 /* handle more restrictive dnode structuring for raw recvs */
1386 if (rwa->raw) {
1387 /*
1388 * Set the indirect block size, block shift, nlevels.
1389 * This will not fail because we ensured all of the
1390 * blocks were freed earlier if this is a new object.
1391 * For non-new objects block size and indirect block
1392 * shift cannot change and nlevels can only increase.
1393 */
1394 VERIFY0(dmu_object_set_blocksize(rwa->os, drro->drr_object,
1395 drro->drr_blksz, drro->drr_indblkshift, tx));
1396 VERIFY0(dmu_object_set_nlevels(rwa->os, drro->drr_object,
1397 drro->drr_nlevels, tx));
1398
1399 /*
1400 * Set the maxblkid. This will always succeed because
1401 * we freed all blocks beyond the new maxblkid above.
1402 */
1403 VERIFY0(dmu_object_set_maxblkid(rwa->os, drro->drr_object,
1404 drro->drr_maxblkid, tx));
1405 }
1406
1407 if (data != NULL) {
1408 dmu_buf_t *db;
1409 dnode_t *dn;
1410 uint32_t flags = DMU_READ_NO_PREFETCH;
1411
1412 if (rwa->raw)
1413 flags |= DMU_READ_NO_DECRYPT;
1414
1415 VERIFY0(dnode_hold(rwa->os, drro->drr_object, FTAG, &dn));
1416 VERIFY0(dmu_bonus_hold_by_dnode(dn, FTAG, &db, flags));
1417
1418 dmu_buf_will_dirty(db, tx);
1419
1420 ASSERT3U(db->db_size, >=, drro->drr_bonuslen);
1421 bcopy(data, db->db_data, DRR_OBJECT_PAYLOAD_SIZE(drro));
1422
1423 /*
1424 * Raw bonus buffers have their byteorder determined by the
1425 * DRR_OBJECT_RANGE record.
1426 */
1427 if (rwa->byteswap && !rwa->raw) {
1428 dmu_object_byteswap_t byteswap =
1429 DMU_OT_BYTESWAP(drro->drr_bonustype);
1430 dmu_ot_byteswap[byteswap].ob_func(db->db_data,
1431 DRR_OBJECT_PAYLOAD_SIZE(drro));
1432 }
1433 dmu_buf_rele(db, FTAG);
1434 dnode_rele(dn, FTAG);
1435 }
1436 dmu_tx_commit(tx);
1437
1438 return (0);
1439 }
1440
1441 /* ARGSUSED */
1442 static int
receive_freeobjects(struct receive_writer_arg * rwa,struct drr_freeobjects * drrfo)1443 receive_freeobjects(struct receive_writer_arg *rwa,
1444 struct drr_freeobjects *drrfo)
1445 {
1446 uint64_t obj;
1447 int next_err = 0;
1448
1449 if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj)
1450 return (SET_ERROR(EINVAL));
1451
1452 for (obj = drrfo->drr_firstobj == 0 ? 1 : drrfo->drr_firstobj;
1453 obj < drrfo->drr_firstobj + drrfo->drr_numobjs && next_err == 0;
1454 next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) {
1455 dmu_object_info_t doi;
1456 int err;
1457
1458 err = dmu_object_info(rwa->os, obj, &doi);
1459 if (err == ENOENT)
1460 continue;
1461 else if (err != 0)
1462 return (err);
1463
1464 err = dmu_free_long_object(rwa->os, obj);
1465
1466 if (err != 0)
1467 return (err);
1468
1469 if (obj > rwa->max_object)
1470 rwa->max_object = obj;
1471 }
1472 if (next_err != ESRCH)
1473 return (next_err);
1474 return (0);
1475 }
1476
1477 static int
receive_write(struct receive_writer_arg * rwa,struct drr_write * drrw,arc_buf_t * abuf)1478 receive_write(struct receive_writer_arg *rwa, struct drr_write *drrw,
1479 arc_buf_t *abuf)
1480 {
1481 int err;
1482 dmu_tx_t *tx;
1483 dnode_t *dn;
1484
1485 if (drrw->drr_offset + drrw->drr_logical_size < drrw->drr_offset ||
1486 !DMU_OT_IS_VALID(drrw->drr_type))
1487 return (SET_ERROR(EINVAL));
1488
1489 /*
1490 * For resuming to work, records must be in increasing order
1491 * by (object, offset).
1492 */
1493 if (drrw->drr_object < rwa->last_object ||
1494 (drrw->drr_object == rwa->last_object &&
1495 drrw->drr_offset < rwa->last_offset)) {
1496 return (SET_ERROR(EINVAL));
1497 }
1498 rwa->last_object = drrw->drr_object;
1499 rwa->last_offset = drrw->drr_offset;
1500
1501 if (rwa->last_object > rwa->max_object)
1502 rwa->max_object = rwa->last_object;
1503
1504 if (dmu_object_info(rwa->os, drrw->drr_object, NULL) != 0)
1505 return (SET_ERROR(EINVAL));
1506
1507 tx = dmu_tx_create(rwa->os);
1508 dmu_tx_hold_write(tx, drrw->drr_object,
1509 drrw->drr_offset, drrw->drr_logical_size);
1510 err = dmu_tx_assign(tx, TXG_WAIT);
1511 if (err != 0) {
1512 dmu_tx_abort(tx);
1513 return (err);
1514 }
1515
1516 if (rwa->byteswap && !arc_is_encrypted(abuf) &&
1517 arc_get_compression(abuf) == ZIO_COMPRESS_OFF) {
1518 dmu_object_byteswap_t byteswap =
1519 DMU_OT_BYTESWAP(drrw->drr_type);
1520 dmu_ot_byteswap[byteswap].ob_func(abuf->b_data,
1521 DRR_WRITE_PAYLOAD_SIZE(drrw));
1522 }
1523
1524 VERIFY0(dnode_hold(rwa->os, drrw->drr_object, FTAG, &dn));
1525 err = dmu_assign_arcbuf_by_dnode(dn, drrw->drr_offset, abuf, tx);
1526 if (err != 0) {
1527 dnode_rele(dn, FTAG);
1528 dmu_tx_commit(tx);
1529 return (err);
1530 }
1531 dnode_rele(dn, FTAG);
1532
1533 /*
1534 * Note: If the receive fails, we want the resume stream to start
1535 * with the same record that we last successfully received (as opposed
1536 * to the next record), so that we can verify that we are
1537 * resuming from the correct location.
1538 */
1539 save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx);
1540 dmu_tx_commit(tx);
1541
1542 return (0);
1543 }
1544
1545 /*
1546 * Handle a DRR_WRITE_BYREF record. This record is used in dedup'ed
1547 * streams to refer to a copy of the data that is already on the
1548 * system because it came in earlier in the stream. This function
1549 * finds the earlier copy of the data, and uses that copy instead of
1550 * data from the stream to fulfill this write.
1551 */
1552 static int
receive_write_byref(struct receive_writer_arg * rwa,struct drr_write_byref * drrwbr)1553 receive_write_byref(struct receive_writer_arg *rwa,
1554 struct drr_write_byref *drrwbr)
1555 {
1556 dmu_tx_t *tx;
1557 int err;
1558 guid_map_entry_t gmesrch;
1559 guid_map_entry_t *gmep;
1560 avl_index_t where;
1561 objset_t *ref_os = NULL;
1562 int flags = DMU_READ_PREFETCH;
1563 dmu_buf_t *dbp;
1564
1565 if (drrwbr->drr_offset + drrwbr->drr_length < drrwbr->drr_offset)
1566 return (SET_ERROR(EINVAL));
1567
1568 /*
1569 * If the GUID of the referenced dataset is different from the
1570 * GUID of the target dataset, find the referenced dataset.
1571 */
1572 if (drrwbr->drr_toguid != drrwbr->drr_refguid) {
1573 gmesrch.guid = drrwbr->drr_refguid;
1574 if ((gmep = avl_find(rwa->guid_to_ds_map, &gmesrch,
1575 &where)) == NULL) {
1576 return (SET_ERROR(EINVAL));
1577 }
1578 if (dmu_objset_from_ds(gmep->gme_ds, &ref_os))
1579 return (SET_ERROR(EINVAL));
1580 } else {
1581 ref_os = rwa->os;
1582 }
1583
1584 if (drrwbr->drr_object > rwa->max_object)
1585 rwa->max_object = drrwbr->drr_object;
1586
1587 if (rwa->raw)
1588 flags |= DMU_READ_NO_DECRYPT;
1589
1590 /* may return either a regular db or an encrypted one */
1591 err = dmu_buf_hold(ref_os, drrwbr->drr_refobject,
1592 drrwbr->drr_refoffset, FTAG, &dbp, flags);
1593 if (err != 0)
1594 return (err);
1595
1596 tx = dmu_tx_create(rwa->os);
1597
1598 dmu_tx_hold_write(tx, drrwbr->drr_object,
1599 drrwbr->drr_offset, drrwbr->drr_length);
1600 err = dmu_tx_assign(tx, TXG_WAIT);
1601 if (err != 0) {
1602 dmu_tx_abort(tx);
1603 return (err);
1604 }
1605
1606 if (rwa->raw) {
1607 dmu_copy_from_buf(rwa->os, drrwbr->drr_object,
1608 drrwbr->drr_offset, dbp, tx);
1609 } else {
1610 dmu_write(rwa->os, drrwbr->drr_object,
1611 drrwbr->drr_offset, drrwbr->drr_length, dbp->db_data, tx);
1612 }
1613 dmu_buf_rele(dbp, FTAG);
1614
1615 /* See comment in restore_write. */
1616 save_resume_state(rwa, drrwbr->drr_object, drrwbr->drr_offset, tx);
1617 dmu_tx_commit(tx);
1618 return (0);
1619 }
1620
1621 static int
receive_write_embedded(struct receive_writer_arg * rwa,struct drr_write_embedded * drrwe,void * data)1622 receive_write_embedded(struct receive_writer_arg *rwa,
1623 struct drr_write_embedded *drrwe, void *data)
1624 {
1625 dmu_tx_t *tx;
1626 int err;
1627
1628 if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset)
1629 return (EINVAL);
1630
1631 if (drrwe->drr_psize > BPE_PAYLOAD_SIZE)
1632 return (EINVAL);
1633
1634 if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES)
1635 return (EINVAL);
1636 if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS)
1637 return (EINVAL);
1638 if (rwa->raw)
1639 return (SET_ERROR(EINVAL));
1640
1641 if (drrwe->drr_object > rwa->max_object)
1642 rwa->max_object = drrwe->drr_object;
1643
1644 tx = dmu_tx_create(rwa->os);
1645
1646 dmu_tx_hold_write(tx, drrwe->drr_object,
1647 drrwe->drr_offset, drrwe->drr_length);
1648 err = dmu_tx_assign(tx, TXG_WAIT);
1649 if (err != 0) {
1650 dmu_tx_abort(tx);
1651 return (err);
1652 }
1653
1654 dmu_write_embedded(rwa->os, drrwe->drr_object,
1655 drrwe->drr_offset, data, drrwe->drr_etype,
1656 drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize,
1657 rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx);
1658
1659 /* See comment in restore_write. */
1660 save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx);
1661 dmu_tx_commit(tx);
1662 return (0);
1663 }
1664
1665 static int
receive_spill(struct receive_writer_arg * rwa,struct drr_spill * drrs,arc_buf_t * abuf)1666 receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs,
1667 arc_buf_t *abuf)
1668 {
1669 dmu_tx_t *tx;
1670 dmu_buf_t *db, *db_spill;
1671 int err;
1672 uint32_t flags = 0;
1673
1674 if (drrs->drr_length < SPA_MINBLOCKSIZE ||
1675 drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os)))
1676 return (SET_ERROR(EINVAL));
1677
1678 /*
1679 * This is an unmodified spill block which was added to the stream
1680 * to resolve an issue with incorrectly removing spill blocks. It
1681 * should be ignored by current versions of the code which support
1682 * the DRR_FLAG_SPILL_BLOCK flag.
1683 */
1684 if (rwa->spill && DRR_SPILL_IS_UNMODIFIED(drrs->drr_flags)) {
1685 dmu_return_arcbuf(abuf);
1686 return (0);
1687 }
1688
1689 if (rwa->raw) {
1690 if (!DMU_OT_IS_VALID(drrs->drr_type) ||
1691 drrs->drr_compressiontype >= ZIO_COMPRESS_FUNCTIONS ||
1692 drrs->drr_compressed_size == 0)
1693 return (SET_ERROR(EINVAL));
1694
1695 flags |= DMU_READ_NO_DECRYPT;
1696 }
1697
1698 if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0)
1699 return (SET_ERROR(EINVAL));
1700
1701 if (drrs->drr_object > rwa->max_object)
1702 rwa->max_object = drrs->drr_object;
1703
1704 VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db));
1705 if ((err = dmu_spill_hold_by_bonus(db, DMU_READ_NO_DECRYPT, FTAG,
1706 &db_spill)) != 0) {
1707 dmu_buf_rele(db, FTAG);
1708 return (err);
1709 }
1710
1711 tx = dmu_tx_create(rwa->os);
1712
1713 dmu_tx_hold_spill(tx, db->db_object);
1714
1715 err = dmu_tx_assign(tx, TXG_WAIT);
1716 if (err != 0) {
1717 dmu_buf_rele(db, FTAG);
1718 dmu_buf_rele(db_spill, FTAG);
1719 dmu_tx_abort(tx);
1720 return (err);
1721 }
1722
1723 /*
1724 * Spill blocks may both grow and shrink. When a change in size
1725 * occurs any existing dbuf must be updated to match the logical
1726 * size of the provided arc_buf_t.
1727 */
1728 if (db_spill->db_size != drrs->drr_length) {
1729 dmu_buf_will_fill(db_spill, tx);
1730 VERIFY(0 == dbuf_spill_set_blksz(db_spill,
1731 drrs->drr_length, tx));
1732 }
1733
1734 if (rwa->byteswap && !arc_is_encrypted(abuf) &&
1735 arc_get_compression(abuf) == ZIO_COMPRESS_OFF) {
1736 dmu_object_byteswap_t byteswap =
1737 DMU_OT_BYTESWAP(drrs->drr_type);
1738 dmu_ot_byteswap[byteswap].ob_func(abuf->b_data,
1739 DRR_SPILL_PAYLOAD_SIZE(drrs));
1740 }
1741
1742 dbuf_assign_arcbuf((dmu_buf_impl_t *)db_spill, abuf, tx);
1743
1744 dmu_buf_rele(db, FTAG);
1745 dmu_buf_rele(db_spill, FTAG);
1746
1747 dmu_tx_commit(tx);
1748 return (0);
1749 }
1750
1751 /* ARGSUSED */
1752 static int
receive_free(struct receive_writer_arg * rwa,struct drr_free * drrf)1753 receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf)
1754 {
1755 int err;
1756
1757 if (drrf->drr_length != DMU_OBJECT_END &&
1758 drrf->drr_offset + drrf->drr_length < drrf->drr_offset)
1759 return (SET_ERROR(EINVAL));
1760
1761 if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0)
1762 return (SET_ERROR(EINVAL));
1763
1764 if (drrf->drr_object > rwa->max_object)
1765 rwa->max_object = drrf->drr_object;
1766
1767 err = dmu_free_long_range(rwa->os, drrf->drr_object,
1768 drrf->drr_offset, drrf->drr_length);
1769
1770 return (err);
1771 }
1772
1773 static int
receive_object_range(struct receive_writer_arg * rwa,struct drr_object_range * drror)1774 receive_object_range(struct receive_writer_arg *rwa,
1775 struct drr_object_range *drror)
1776 {
1777 /*
1778 * By default, we assume this block is in our native format
1779 * (ZFS_HOST_BYTEORDER). We then take into account whether
1780 * the send stream is byteswapped (rwa->byteswap). Finally,
1781 * we need to byteswap again if this particular block was
1782 * in non-native format on the send side.
1783 */
1784 boolean_t byteorder = ZFS_HOST_BYTEORDER ^ rwa->byteswap ^
1785 !!DRR_IS_RAW_BYTESWAPPED(drror->drr_flags);
1786
1787 /*
1788 * Since dnode block sizes are constant, we should not need to worry
1789 * about making sure that the dnode block size is the same on the
1790 * sending and receiving sides for the time being. For non-raw sends,
1791 * this does not matter (and in fact we do not send a DRR_OBJECT_RANGE
1792 * record at all). Raw sends require this record type because the
1793 * encryption parameters are used to protect an entire block of bonus
1794 * buffers. If the size of dnode blocks ever becomes variable,
1795 * handling will need to be added to ensure that dnode block sizes
1796 * match on the sending and receiving side.
1797 */
1798 if (drror->drr_numslots != DNODES_PER_BLOCK ||
1799 P2PHASE(drror->drr_firstobj, DNODES_PER_BLOCK) != 0 ||
1800 !rwa->raw)
1801 return (SET_ERROR(EINVAL));
1802
1803 if (drror->drr_firstobj > rwa->max_object)
1804 rwa->max_object = drror->drr_firstobj;
1805
1806 /*
1807 * The DRR_OBJECT_RANGE handling must be deferred to receive_object()
1808 * so that the block of dnodes is not written out when it's empty,
1809 * and converted to a HOLE BP.
1810 */
1811 rwa->or_crypt_params_present = B_TRUE;
1812 rwa->or_firstobj = drror->drr_firstobj;
1813 rwa->or_numslots = drror->drr_numslots;
1814 bcopy(drror->drr_salt, rwa->or_salt, ZIO_DATA_SALT_LEN);
1815 bcopy(drror->drr_iv, rwa->or_iv, ZIO_DATA_IV_LEN);
1816 bcopy(drror->drr_mac, rwa->or_mac, ZIO_DATA_MAC_LEN);
1817 rwa->or_byteorder = byteorder;
1818
1819 return (0);
1820 }
1821
1822 /* used to destroy the drc_ds on error */
1823 static void
dmu_recv_cleanup_ds(dmu_recv_cookie_t * drc)1824 dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc)
1825 {
1826 dsl_dataset_t *ds = drc->drc_ds;
1827 ds_hold_flags_t dsflags;
1828
1829 dsflags = (drc->drc_raw) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT;
1830 /*
1831 * Wait for the txg sync before cleaning up the receive. For
1832 * resumable receives, this ensures that our resume state has
1833 * been written out to disk. For raw receives, this ensures
1834 * that the user accounting code will not attempt to do anything
1835 * after we stopped receiving the dataset.
1836 */
1837 txg_wait_synced(ds->ds_dir->dd_pool, 0);
1838 ds->ds_objset->os_raw_receive = B_FALSE;
1839
1840 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
1841 if (drc->drc_resumable && !BP_IS_HOLE(dsl_dataset_get_blkptr(ds))) {
1842 rrw_exit(&ds->ds_bp_rwlock, FTAG);
1843 dsl_dataset_disown(ds, dsflags, dmu_recv_tag);
1844 } else {
1845 char name[ZFS_MAX_DATASET_NAME_LEN];
1846 rrw_exit(&ds->ds_bp_rwlock, FTAG);
1847 dsl_dataset_name(ds, name);
1848 dsl_dataset_disown(ds, dsflags, dmu_recv_tag);
1849 (void) dsl_destroy_head(name);
1850 }
1851 }
1852
1853 static void
receive_cksum(struct receive_arg * ra,int len,void * buf)1854 receive_cksum(struct receive_arg *ra, int len, void *buf)
1855 {
1856 if (ra->byteswap) {
1857 (void) fletcher_4_incremental_byteswap(buf, len, &ra->cksum);
1858 } else {
1859 (void) fletcher_4_incremental_native(buf, len, &ra->cksum);
1860 }
1861 }
1862
1863 /*
1864 * Read the payload into a buffer of size len, and update the current record's
1865 * payload field.
1866 * Allocate ra->next_rrd and read the next record's header into
1867 * ra->next_rrd->header.
1868 * Verify checksum of payload and next record.
1869 */
1870 static int
receive_read_payload_and_next_header(struct receive_arg * ra,int len,void * buf)1871 receive_read_payload_and_next_header(struct receive_arg *ra, int len, void *buf)
1872 {
1873 int err;
1874
1875 if (len != 0) {
1876 ASSERT3U(len, <=, SPA_MAXBLOCKSIZE);
1877 err = receive_read(ra, len, buf);
1878 if (err != 0)
1879 return (err);
1880 receive_cksum(ra, len, buf);
1881
1882 /* note: rrd is NULL when reading the begin record's payload */
1883 if (ra->rrd != NULL) {
1884 ra->rrd->payload = buf;
1885 ra->rrd->payload_size = len;
1886 ra->rrd->bytes_read = ra->bytes_read;
1887 }
1888 }
1889
1890 ra->prev_cksum = ra->cksum;
1891
1892 ra->next_rrd = kmem_zalloc(sizeof (*ra->next_rrd), KM_SLEEP);
1893 err = receive_read(ra, sizeof (ra->next_rrd->header),
1894 &ra->next_rrd->header);
1895 ra->next_rrd->bytes_read = ra->bytes_read;
1896
1897 if (err != 0) {
1898 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
1899 ra->next_rrd = NULL;
1900 return (err);
1901 }
1902 if (ra->next_rrd->header.drr_type == DRR_BEGIN) {
1903 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
1904 ra->next_rrd = NULL;
1905 return (SET_ERROR(EINVAL));
1906 }
1907
1908 /*
1909 * Note: checksum is of everything up to but not including the
1910 * checksum itself.
1911 */
1912 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
1913 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
1914 receive_cksum(ra,
1915 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
1916 &ra->next_rrd->header);
1917
1918 zio_cksum_t cksum_orig =
1919 ra->next_rrd->header.drr_u.drr_checksum.drr_checksum;
1920 zio_cksum_t *cksump =
1921 &ra->next_rrd->header.drr_u.drr_checksum.drr_checksum;
1922
1923 if (ra->byteswap)
1924 byteswap_record(&ra->next_rrd->header);
1925
1926 if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) &&
1927 !ZIO_CHECKSUM_EQUAL(ra->cksum, *cksump)) {
1928 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
1929 ra->next_rrd = NULL;
1930 return (SET_ERROR(ECKSUM));
1931 }
1932
1933 receive_cksum(ra, sizeof (cksum_orig), &cksum_orig);
1934
1935 return (0);
1936 }
1937
1938 static void
objlist_create(struct objlist * list)1939 objlist_create(struct objlist *list)
1940 {
1941 list_create(&list->list, sizeof (struct receive_objnode),
1942 offsetof(struct receive_objnode, node));
1943 list->last_lookup = 0;
1944 }
1945
1946 static void
objlist_destroy(struct objlist * list)1947 objlist_destroy(struct objlist *list)
1948 {
1949 for (struct receive_objnode *n = list_remove_head(&list->list);
1950 n != NULL; n = list_remove_head(&list->list)) {
1951 kmem_free(n, sizeof (*n));
1952 }
1953 list_destroy(&list->list);
1954 }
1955
1956 /*
1957 * This function looks through the objlist to see if the specified object number
1958 * is contained in the objlist. In the process, it will remove all object
1959 * numbers in the list that are smaller than the specified object number. Thus,
1960 * any lookup of an object number smaller than a previously looked up object
1961 * number will always return false; therefore, all lookups should be done in
1962 * ascending order.
1963 */
1964 static boolean_t
objlist_exists(struct objlist * list,uint64_t object)1965 objlist_exists(struct objlist *list, uint64_t object)
1966 {
1967 struct receive_objnode *node = list_head(&list->list);
1968 ASSERT3U(object, >=, list->last_lookup);
1969 list->last_lookup = object;
1970 while (node != NULL && node->object < object) {
1971 VERIFY3P(node, ==, list_remove_head(&list->list));
1972 kmem_free(node, sizeof (*node));
1973 node = list_head(&list->list);
1974 }
1975 return (node != NULL && node->object == object);
1976 }
1977
1978 /*
1979 * The objlist is a list of object numbers stored in ascending order. However,
1980 * the insertion of new object numbers does not seek out the correct location to
1981 * store a new object number; instead, it appends it to the list for simplicity.
1982 * Thus, any users must take care to only insert new object numbers in ascending
1983 * order.
1984 */
1985 static void
objlist_insert(struct objlist * list,uint64_t object)1986 objlist_insert(struct objlist *list, uint64_t object)
1987 {
1988 struct receive_objnode *node = kmem_zalloc(sizeof (*node), KM_SLEEP);
1989 node->object = object;
1990 #ifdef ZFS_DEBUG
1991 struct receive_objnode *last_object = list_tail(&list->list);
1992 uint64_t last_objnum = (last_object != NULL ? last_object->object : 0);
1993 ASSERT3U(node->object, >, last_objnum);
1994 #endif
1995 list_insert_tail(&list->list, node);
1996 }
1997
1998 /*
1999 * Issue the prefetch reads for any necessary indirect blocks.
2000 *
2001 * We use the object ignore list to tell us whether or not to issue prefetches
2002 * for a given object. We do this for both correctness (in case the blocksize
2003 * of an object has changed) and performance (if the object doesn't exist, don't
2004 * needlessly try to issue prefetches). We also trim the list as we go through
2005 * the stream to prevent it from growing to an unbounded size.
2006 *
2007 * The object numbers within will always be in sorted order, and any write
2008 * records we see will also be in sorted order, but they're not sorted with
2009 * respect to each other (i.e. we can get several object records before
2010 * receiving each object's write records). As a result, once we've reached a
2011 * given object number, we can safely remove any reference to lower object
2012 * numbers in the ignore list. In practice, we receive up to 32 object records
2013 * before receiving write records, so the list can have up to 32 nodes in it.
2014 */
2015 /* ARGSUSED */
2016 static void
receive_read_prefetch(struct receive_arg * ra,uint64_t object,uint64_t offset,uint64_t length)2017 receive_read_prefetch(struct receive_arg *ra,
2018 uint64_t object, uint64_t offset, uint64_t length)
2019 {
2020 if (!objlist_exists(&ra->ignore_objlist, object)) {
2021 dmu_prefetch(ra->os, object, 1, offset, length,
2022 ZIO_PRIORITY_SYNC_READ);
2023 }
2024 }
2025
2026 /*
2027 * Read records off the stream, issuing any necessary prefetches.
2028 */
2029 static int
receive_read_record(struct receive_arg * ra)2030 receive_read_record(struct receive_arg *ra)
2031 {
2032 int err;
2033
2034 switch (ra->rrd->header.drr_type) {
2035 case DRR_OBJECT:
2036 {
2037 struct drr_object *drro = &ra->rrd->header.drr_u.drr_object;
2038 uint32_t size = DRR_OBJECT_PAYLOAD_SIZE(drro);
2039 void *buf = NULL;
2040 dmu_object_info_t doi;
2041
2042 if (size != 0)
2043 buf = kmem_zalloc(size, KM_SLEEP);
2044
2045 err = receive_read_payload_and_next_header(ra, size, buf);
2046 if (err != 0) {
2047 kmem_free(buf, size);
2048 return (err);
2049 }
2050 err = dmu_object_info(ra->os, drro->drr_object, &doi);
2051 /*
2052 * See receive_read_prefetch for an explanation why we're
2053 * storing this object in the ignore_obj_list.
2054 */
2055 if (err == ENOENT || err == EEXIST ||
2056 (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) {
2057 objlist_insert(&ra->ignore_objlist, drro->drr_object);
2058 err = 0;
2059 }
2060 return (err);
2061 }
2062 case DRR_FREEOBJECTS:
2063 {
2064 err = receive_read_payload_and_next_header(ra, 0, NULL);
2065 return (err);
2066 }
2067 case DRR_WRITE:
2068 {
2069 struct drr_write *drrw = &ra->rrd->header.drr_u.drr_write;
2070 arc_buf_t *abuf;
2071 boolean_t is_meta = DMU_OT_IS_METADATA(drrw->drr_type);
2072
2073 if (ra->raw) {
2074 boolean_t byteorder = ZFS_HOST_BYTEORDER ^
2075 !!DRR_IS_RAW_BYTESWAPPED(drrw->drr_flags) ^
2076 ra->byteswap;
2077
2078 abuf = arc_loan_raw_buf(dmu_objset_spa(ra->os),
2079 drrw->drr_object, byteorder, drrw->drr_salt,
2080 drrw->drr_iv, drrw->drr_mac, drrw->drr_type,
2081 drrw->drr_compressed_size, drrw->drr_logical_size,
2082 drrw->drr_compressiontype);
2083 } else if (DRR_WRITE_COMPRESSED(drrw)) {
2084 ASSERT3U(drrw->drr_compressed_size, >, 0);
2085 ASSERT3U(drrw->drr_logical_size, >=,
2086 drrw->drr_compressed_size);
2087 ASSERT(!is_meta);
2088 abuf = arc_loan_compressed_buf(
2089 dmu_objset_spa(ra->os),
2090 drrw->drr_compressed_size, drrw->drr_logical_size,
2091 drrw->drr_compressiontype);
2092 } else {
2093 abuf = arc_loan_buf(dmu_objset_spa(ra->os),
2094 is_meta, drrw->drr_logical_size);
2095 }
2096
2097 err = receive_read_payload_and_next_header(ra,
2098 DRR_WRITE_PAYLOAD_SIZE(drrw), abuf->b_data);
2099 if (err != 0) {
2100 dmu_return_arcbuf(abuf);
2101 return (err);
2102 }
2103 ra->rrd->arc_buf = abuf;
2104 receive_read_prefetch(ra, drrw->drr_object, drrw->drr_offset,
2105 drrw->drr_logical_size);
2106 return (err);
2107 }
2108 case DRR_WRITE_BYREF:
2109 {
2110 struct drr_write_byref *drrwb =
2111 &ra->rrd->header.drr_u.drr_write_byref;
2112 err = receive_read_payload_and_next_header(ra, 0, NULL);
2113 receive_read_prefetch(ra, drrwb->drr_object, drrwb->drr_offset,
2114 drrwb->drr_length);
2115 return (err);
2116 }
2117 case DRR_WRITE_EMBEDDED:
2118 {
2119 struct drr_write_embedded *drrwe =
2120 &ra->rrd->header.drr_u.drr_write_embedded;
2121 uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8);
2122 void *buf = kmem_zalloc(size, KM_SLEEP);
2123
2124 err = receive_read_payload_and_next_header(ra, size, buf);
2125 if (err != 0) {
2126 kmem_free(buf, size);
2127 return (err);
2128 }
2129
2130 receive_read_prefetch(ra, drrwe->drr_object, drrwe->drr_offset,
2131 drrwe->drr_length);
2132 return (err);
2133 }
2134 case DRR_FREE:
2135 {
2136 /*
2137 * It might be beneficial to prefetch indirect blocks here, but
2138 * we don't really have the data to decide for sure.
2139 */
2140 err = receive_read_payload_and_next_header(ra, 0, NULL);
2141 return (err);
2142 }
2143 case DRR_END:
2144 {
2145 struct drr_end *drre = &ra->rrd->header.drr_u.drr_end;
2146 if (!ZIO_CHECKSUM_EQUAL(ra->prev_cksum, drre->drr_checksum))
2147 return (SET_ERROR(ECKSUM));
2148 return (0);
2149 }
2150 case DRR_SPILL:
2151 {
2152 struct drr_spill *drrs = &ra->rrd->header.drr_u.drr_spill;
2153 arc_buf_t *abuf;
2154 int len = DRR_SPILL_PAYLOAD_SIZE(drrs);
2155
2156 /* DRR_SPILL records are either raw or uncompressed */
2157 if (ra->raw) {
2158 boolean_t byteorder = ZFS_HOST_BYTEORDER ^
2159 !!DRR_IS_RAW_BYTESWAPPED(drrs->drr_flags) ^
2160 ra->byteswap;
2161
2162 abuf = arc_loan_raw_buf(dmu_objset_spa(ra->os),
2163 dmu_objset_id(ra->os), byteorder, drrs->drr_salt,
2164 drrs->drr_iv, drrs->drr_mac, drrs->drr_type,
2165 drrs->drr_compressed_size, drrs->drr_length,
2166 drrs->drr_compressiontype);
2167 } else {
2168 abuf = arc_loan_buf(dmu_objset_spa(ra->os),
2169 DMU_OT_IS_METADATA(drrs->drr_type),
2170 drrs->drr_length);
2171 }
2172
2173 err = receive_read_payload_and_next_header(ra, len,
2174 abuf->b_data);
2175 if (err != 0) {
2176 dmu_return_arcbuf(abuf);
2177 return (err);
2178 }
2179 ra->rrd->arc_buf = abuf;
2180 return (err);
2181 }
2182 case DRR_OBJECT_RANGE:
2183 {
2184 err = receive_read_payload_and_next_header(ra, 0, NULL);
2185 return (err);
2186 }
2187 default:
2188 return (SET_ERROR(EINVAL));
2189 }
2190 }
2191
2192 /*
2193 * Commit the records to the pool.
2194 */
2195 static int
receive_process_record(struct receive_writer_arg * rwa,struct receive_record_arg * rrd)2196 receive_process_record(struct receive_writer_arg *rwa,
2197 struct receive_record_arg *rrd)
2198 {
2199 int err;
2200
2201 /* Processing in order, therefore bytes_read should be increasing. */
2202 ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read);
2203 rwa->bytes_read = rrd->bytes_read;
2204
2205 switch (rrd->header.drr_type) {
2206 case DRR_OBJECT:
2207 {
2208 struct drr_object *drro = &rrd->header.drr_u.drr_object;
2209 err = receive_object(rwa, drro, rrd->payload);
2210 kmem_free(rrd->payload, rrd->payload_size);
2211 rrd->payload = NULL;
2212 return (err);
2213 }
2214 case DRR_FREEOBJECTS:
2215 {
2216 struct drr_freeobjects *drrfo =
2217 &rrd->header.drr_u.drr_freeobjects;
2218 return (receive_freeobjects(rwa, drrfo));
2219 }
2220 case DRR_WRITE:
2221 {
2222 struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2223 err = receive_write(rwa, drrw, rrd->arc_buf);
2224 /* if receive_write() is successful, it consumes the arc_buf */
2225 if (err != 0)
2226 dmu_return_arcbuf(rrd->arc_buf);
2227 rrd->arc_buf = NULL;
2228 rrd->payload = NULL;
2229 return (err);
2230 }
2231 case DRR_WRITE_BYREF:
2232 {
2233 struct drr_write_byref *drrwbr =
2234 &rrd->header.drr_u.drr_write_byref;
2235 return (receive_write_byref(rwa, drrwbr));
2236 }
2237 case DRR_WRITE_EMBEDDED:
2238 {
2239 struct drr_write_embedded *drrwe =
2240 &rrd->header.drr_u.drr_write_embedded;
2241 err = receive_write_embedded(rwa, drrwe, rrd->payload);
2242 kmem_free(rrd->payload, rrd->payload_size);
2243 rrd->payload = NULL;
2244 return (err);
2245 }
2246 case DRR_FREE:
2247 {
2248 struct drr_free *drrf = &rrd->header.drr_u.drr_free;
2249 return (receive_free(rwa, drrf));
2250 }
2251 case DRR_SPILL:
2252 {
2253 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
2254 err = receive_spill(rwa, drrs, rrd->arc_buf);
2255 /* if receive_spill() is successful, it consumes the arc_buf */
2256 if (err != 0)
2257 dmu_return_arcbuf(rrd->arc_buf);
2258 rrd->arc_buf = NULL;
2259 rrd->payload = NULL;
2260 return (err);
2261 }
2262 case DRR_OBJECT_RANGE:
2263 {
2264 struct drr_object_range *drror =
2265 &rrd->header.drr_u.drr_object_range;
2266 return (receive_object_range(rwa, drror));
2267 }
2268 default:
2269 return (SET_ERROR(EINVAL));
2270 }
2271 }
2272
2273 /*
2274 * dmu_recv_stream's worker thread; pull records off the queue, and then call
2275 * receive_process_record When we're done, signal the main thread and exit.
2276 */
2277 static void
receive_writer_thread(void * arg)2278 receive_writer_thread(void *arg)
2279 {
2280 struct receive_writer_arg *rwa = arg;
2281 struct receive_record_arg *rrd;
2282 for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker;
2283 rrd = bqueue_dequeue(&rwa->q)) {
2284 /*
2285 * If there's an error, the main thread will stop putting things
2286 * on the queue, but we need to clear everything in it before we
2287 * can exit.
2288 */
2289 if (rwa->err == 0) {
2290 rwa->err = receive_process_record(rwa, rrd);
2291 } else if (rrd->arc_buf != NULL) {
2292 dmu_return_arcbuf(rrd->arc_buf);
2293 rrd->arc_buf = NULL;
2294 rrd->payload = NULL;
2295 } else if (rrd->payload != NULL) {
2296 kmem_free(rrd->payload, rrd->payload_size);
2297 rrd->payload = NULL;
2298 }
2299 kmem_free(rrd, sizeof (*rrd));
2300 }
2301 kmem_free(rrd, sizeof (*rrd));
2302 mutex_enter(&rwa->mutex);
2303 rwa->done = B_TRUE;
2304 cv_signal(&rwa->cv);
2305 mutex_exit(&rwa->mutex);
2306 thread_exit();
2307 }
2308
2309 static int
resume_check(struct receive_arg * ra,nvlist_t * begin_nvl)2310 resume_check(struct receive_arg *ra, nvlist_t *begin_nvl)
2311 {
2312 uint64_t val;
2313 objset_t *mos = dmu_objset_pool(ra->os)->dp_meta_objset;
2314 uint64_t dsobj = dmu_objset_id(ra->os);
2315 uint64_t resume_obj, resume_off;
2316
2317 if (nvlist_lookup_uint64(begin_nvl,
2318 "resume_object", &resume_obj) != 0 ||
2319 nvlist_lookup_uint64(begin_nvl,
2320 "resume_offset", &resume_off) != 0) {
2321 return (SET_ERROR(EINVAL));
2322 }
2323 VERIFY0(zap_lookup(mos, dsobj,
2324 DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val));
2325 if (resume_obj != val)
2326 return (SET_ERROR(EINVAL));
2327 VERIFY0(zap_lookup(mos, dsobj,
2328 DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val));
2329 if (resume_off != val)
2330 return (SET_ERROR(EINVAL));
2331
2332 return (0);
2333 }
2334
2335 /*
2336 * Read in the stream's records, one by one, and apply them to the pool. There
2337 * are two threads involved; the thread that calls this function will spin up a
2338 * worker thread, read the records off the stream one by one, and issue
2339 * prefetches for any necessary indirect blocks. It will then push the records
2340 * onto an internal blocking queue. The worker thread will pull the records off
2341 * the queue, and actually write the data into the DMU. This way, the worker
2342 * thread doesn't have to wait for reads to complete, since everything it needs
2343 * (the indirect blocks) will be prefetched.
2344 *
2345 * NB: callers *must* call dmu_recv_end() if this succeeds.
2346 */
2347 int
dmu_recv_stream(dmu_recv_cookie_t * drc,vnode_t * vp,offset_t * voffp,int cleanup_fd,uint64_t * action_handlep)2348 dmu_recv_stream(dmu_recv_cookie_t *drc, vnode_t *vp, offset_t *voffp,
2349 int cleanup_fd, uint64_t *action_handlep)
2350 {
2351 int err = 0;
2352 struct receive_arg ra = { 0 };
2353 struct receive_writer_arg rwa = { 0 };
2354 int featureflags;
2355 nvlist_t *begin_nvl = NULL;
2356
2357 ra.byteswap = drc->drc_byteswap;
2358 ra.raw = drc->drc_raw;
2359 ra.cksum = drc->drc_cksum;
2360 ra.vp = vp;
2361 ra.voff = *voffp;
2362
2363 if (dsl_dataset_is_zapified(drc->drc_ds)) {
2364 (void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset,
2365 drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES,
2366 sizeof (ra.bytes_read), 1, &ra.bytes_read);
2367 }
2368
2369 objlist_create(&ra.ignore_objlist);
2370
2371 /* these were verified in dmu_recv_begin */
2372 ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==,
2373 DMU_SUBSTREAM);
2374 ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES);
2375
2376 /*
2377 * Open the objset we are modifying.
2378 */
2379 VERIFY0(dmu_objset_from_ds(drc->drc_ds, &ra.os));
2380
2381 ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT);
2382
2383 featureflags = DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo);
2384 ra.featureflags = featureflags;
2385
2386 ASSERT0(ra.os->os_encrypted &&
2387 (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA));
2388
2389 /* if this stream is dedup'ed, set up the avl tree for guid mapping */
2390 if (featureflags & DMU_BACKUP_FEATURE_DEDUP) {
2391 minor_t minor;
2392
2393 if (cleanup_fd == -1) {
2394 err = SET_ERROR(EBADF);
2395 goto out;
2396 }
2397 err = zfs_onexit_fd_hold(cleanup_fd, &minor);
2398 if (err != 0) {
2399 cleanup_fd = -1;
2400 goto out;
2401 }
2402
2403 if (*action_handlep == 0) {
2404 rwa.guid_to_ds_map =
2405 kmem_alloc(sizeof (avl_tree_t), KM_SLEEP);
2406 avl_create(rwa.guid_to_ds_map, guid_compare,
2407 sizeof (guid_map_entry_t),
2408 offsetof(guid_map_entry_t, avlnode));
2409 err = zfs_onexit_add_cb(minor,
2410 free_guid_map_onexit, rwa.guid_to_ds_map,
2411 action_handlep);
2412 if (err != 0)
2413 goto out;
2414 } else {
2415 err = zfs_onexit_cb_data(minor, *action_handlep,
2416 (void **)&rwa.guid_to_ds_map);
2417 if (err != 0)
2418 goto out;
2419 }
2420
2421 drc->drc_guid_to_ds_map = rwa.guid_to_ds_map;
2422 }
2423
2424 uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen;
2425 void *payload = NULL;
2426 if (payloadlen != 0)
2427 payload = kmem_alloc(payloadlen, KM_SLEEP);
2428
2429 err = receive_read_payload_and_next_header(&ra, payloadlen, payload);
2430 if (err != 0) {
2431 if (payloadlen != 0)
2432 kmem_free(payload, payloadlen);
2433 goto out;
2434 }
2435 if (payloadlen != 0) {
2436 err = nvlist_unpack(payload, payloadlen, &begin_nvl, KM_SLEEP);
2437 kmem_free(payload, payloadlen);
2438 if (err != 0)
2439 goto out;
2440 }
2441
2442 /* handle DSL encryption key payload */
2443 if (featureflags & DMU_BACKUP_FEATURE_RAW) {
2444 nvlist_t *keynvl = NULL;
2445
2446 ASSERT(ra.os->os_encrypted);
2447 ASSERT(drc->drc_raw);
2448
2449 err = nvlist_lookup_nvlist(begin_nvl, "crypt_keydata", &keynvl);
2450 if (err != 0)
2451 goto out;
2452
2453 /*
2454 * If this is a new dataset we set the key immediately.
2455 * Otherwise we don't want to change the key until we
2456 * are sure the rest of the receive succeeded so we stash
2457 * the keynvl away until then.
2458 */
2459 err = dsl_crypto_recv_raw(spa_name(ra.os->os_spa),
2460 drc->drc_ds->ds_object, drc->drc_fromsnapobj,
2461 drc->drc_drrb->drr_type, keynvl, drc->drc_newfs);
2462 if (err != 0)
2463 goto out;
2464
2465 /* see comment in dmu_recv_end_sync() */
2466 drc->drc_ivset_guid = 0;
2467 (void) nvlist_lookup_uint64(keynvl, "to_ivset_guid",
2468 &drc->drc_ivset_guid);
2469
2470 if (!drc->drc_newfs)
2471 drc->drc_keynvl = fnvlist_dup(keynvl);
2472 }
2473
2474 if (featureflags & DMU_BACKUP_FEATURE_RESUMING) {
2475 err = resume_check(&ra, begin_nvl);
2476 if (err != 0)
2477 goto out;
2478 }
2479
2480 (void) bqueue_init(&rwa.q,
2481 MAX(zfs_recv_queue_length, 2 * zfs_max_recordsize),
2482 offsetof(struct receive_record_arg, node));
2483 cv_init(&rwa.cv, NULL, CV_DEFAULT, NULL);
2484 mutex_init(&rwa.mutex, NULL, MUTEX_DEFAULT, NULL);
2485 rwa.os = ra.os;
2486 rwa.byteswap = drc->drc_byteswap;
2487 rwa.resumable = drc->drc_resumable;
2488 rwa.raw = drc->drc_raw;
2489 rwa.spill = drc->drc_spill;
2490 rwa.os->os_raw_receive = drc->drc_raw;
2491
2492 (void) thread_create(NULL, 0, receive_writer_thread, &rwa, 0, curproc,
2493 TS_RUN, minclsyspri);
2494 /*
2495 * We're reading rwa.err without locks, which is safe since we are the
2496 * only reader, and the worker thread is the only writer. It's ok if we
2497 * miss a write for an iteration or two of the loop, since the writer
2498 * thread will keep freeing records we send it until we send it an eos
2499 * marker.
2500 *
2501 * We can leave this loop in 3 ways: First, if rwa.err is
2502 * non-zero. In that case, the writer thread will free the rrd we just
2503 * pushed. Second, if we're interrupted; in that case, either it's the
2504 * first loop and ra.rrd was never allocated, or it's later, and ra.rrd
2505 * has been handed off to the writer thread who will free it. Finally,
2506 * if receive_read_record fails or we're at the end of the stream, then
2507 * we free ra.rrd and exit.
2508 */
2509 while (rwa.err == 0) {
2510 if (issig(JUSTLOOKING) && issig(FORREAL)) {
2511 err = SET_ERROR(EINTR);
2512 break;
2513 }
2514
2515 ASSERT3P(ra.rrd, ==, NULL);
2516 ra.rrd = ra.next_rrd;
2517 ra.next_rrd = NULL;
2518 /* Allocates and loads header into ra.next_rrd */
2519 err = receive_read_record(&ra);
2520
2521 if (ra.rrd->header.drr_type == DRR_END || err != 0) {
2522 kmem_free(ra.rrd, sizeof (*ra.rrd));
2523 ra.rrd = NULL;
2524 break;
2525 }
2526
2527 bqueue_enqueue(&rwa.q, ra.rrd,
2528 sizeof (struct receive_record_arg) + ra.rrd->payload_size);
2529 ra.rrd = NULL;
2530 }
2531 ASSERT3P(ra.rrd, ==, NULL);
2532 ra.rrd = kmem_zalloc(sizeof (*ra.rrd), KM_SLEEP);
2533 ra.rrd->eos_marker = B_TRUE;
2534 bqueue_enqueue(&rwa.q, ra.rrd, 1);
2535
2536 mutex_enter(&rwa.mutex);
2537 while (!rwa.done) {
2538 cv_wait(&rwa.cv, &rwa.mutex);
2539 }
2540 mutex_exit(&rwa.mutex);
2541
2542 /*
2543 * If we are receiving a full stream as a clone, all object IDs which
2544 * are greater than the maximum ID referenced in the stream are
2545 * by definition unused and must be freed. Note that it's possible that
2546 * we've resumed this send and the first record we received was the END
2547 * record. In that case, max_object would be 0, but we shouldn't start
2548 * freeing all objects from there; instead we should start from the
2549 * resumeobj.
2550 */
2551 if (drc->drc_clone && drc->drc_drrb->drr_fromguid == 0) {
2552 uint64_t obj;
2553 if (nvlist_lookup_uint64(begin_nvl, "resume_object", &obj) != 0)
2554 obj = 0;
2555 if (rwa.max_object > obj)
2556 obj = rwa.max_object;
2557 obj++;
2558 int free_err = 0;
2559 int next_err = 0;
2560
2561 while (next_err == 0) {
2562 free_err = dmu_free_long_object(rwa.os, obj);
2563 if (free_err != 0 && free_err != ENOENT)
2564 break;
2565
2566 next_err = dmu_object_next(rwa.os, &obj, FALSE, 0);
2567 }
2568
2569 if (err == 0) {
2570 if (free_err != 0 && free_err != ENOENT)
2571 err = free_err;
2572 else if (next_err != ESRCH)
2573 err = next_err;
2574 }
2575 }
2576
2577 cv_destroy(&rwa.cv);
2578 mutex_destroy(&rwa.mutex);
2579 bqueue_destroy(&rwa.q);
2580 if (err == 0)
2581 err = rwa.err;
2582
2583 out:
2584 /*
2585 * If we hit an error before we started the receive_writer_thread
2586 * we need to clean up the next_rrd we create by processing the
2587 * DRR_BEGIN record.
2588 */
2589 if (ra.next_rrd != NULL)
2590 kmem_free(ra.next_rrd, sizeof (*ra.next_rrd));
2591
2592 nvlist_free(begin_nvl);
2593 if ((featureflags & DMU_BACKUP_FEATURE_DEDUP) && (cleanup_fd != -1))
2594 zfs_onexit_fd_rele(cleanup_fd);
2595
2596 if (err != 0) {
2597 /*
2598 * Clean up references. If receive is not resumable,
2599 * destroy what we created, so we don't leave it in
2600 * the inconsistent state.
2601 */
2602 dmu_recv_cleanup_ds(drc);
2603 nvlist_free(drc->drc_keynvl);
2604 }
2605
2606 *voffp = ra.voff;
2607 objlist_destroy(&ra.ignore_objlist);
2608 return (err);
2609 }
2610
2611 static int
dmu_recv_end_check(void * arg,dmu_tx_t * tx)2612 dmu_recv_end_check(void *arg, dmu_tx_t *tx)
2613 {
2614 dmu_recv_cookie_t *drc = arg;
2615 dsl_pool_t *dp = dmu_tx_pool(tx);
2616 int error;
2617
2618 ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag);
2619
2620 if (!drc->drc_newfs) {
2621 dsl_dataset_t *origin_head;
2622
2623 error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head);
2624 if (error != 0)
2625 return (error);
2626 if (drc->drc_force) {
2627 /*
2628 * We will destroy any snapshots in tofs (i.e. before
2629 * origin_head) that are after the origin (which is
2630 * the snap before drc_ds, because drc_ds can not
2631 * have any snaps of its own).
2632 */
2633 uint64_t obj;
2634
2635 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
2636 while (obj !=
2637 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
2638 dsl_dataset_t *snap;
2639 error = dsl_dataset_hold_obj(dp, obj, FTAG,
2640 &snap);
2641 if (error != 0)
2642 break;
2643 if (snap->ds_dir != origin_head->ds_dir)
2644 error = SET_ERROR(EINVAL);
2645 if (error == 0) {
2646 error = dsl_destroy_snapshot_check_impl(
2647 snap, B_FALSE);
2648 }
2649 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
2650 dsl_dataset_rele(snap, FTAG);
2651 if (error != 0)
2652 break;
2653 }
2654 if (error != 0) {
2655 dsl_dataset_rele(origin_head, FTAG);
2656 return (error);
2657 }
2658 }
2659 if (drc->drc_keynvl != NULL) {
2660 error = dsl_crypto_recv_raw_key_check(drc->drc_ds,
2661 drc->drc_keynvl, tx);
2662 if (error != 0) {
2663 dsl_dataset_rele(origin_head, FTAG);
2664 return (error);
2665 }
2666 }
2667
2668 error = dsl_dataset_clone_swap_check_impl(drc->drc_ds,
2669 origin_head, drc->drc_force, drc->drc_owner, tx);
2670 if (error != 0) {
2671 dsl_dataset_rele(origin_head, FTAG);
2672 return (error);
2673 }
2674 error = dsl_dataset_snapshot_check_impl(origin_head,
2675 drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred);
2676 dsl_dataset_rele(origin_head, FTAG);
2677 if (error != 0)
2678 return (error);
2679
2680 error = dsl_destroy_head_check_impl(drc->drc_ds, 1);
2681 } else {
2682 error = dsl_dataset_snapshot_check_impl(drc->drc_ds,
2683 drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred);
2684 }
2685 return (error);
2686 }
2687
2688 static void
dmu_recv_end_sync(void * arg,dmu_tx_t * tx)2689 dmu_recv_end_sync(void *arg, dmu_tx_t *tx)
2690 {
2691 dmu_recv_cookie_t *drc = arg;
2692 dsl_pool_t *dp = dmu_tx_pool(tx);
2693 boolean_t encrypted = drc->drc_ds->ds_dir->dd_crypto_obj != 0;
2694
2695 spa_history_log_internal_ds(drc->drc_ds, "finish receiving",
2696 tx, "snap=%s", drc->drc_tosnap);
2697 drc->drc_ds->ds_objset->os_raw_receive = B_FALSE;
2698
2699 if (!drc->drc_newfs) {
2700 dsl_dataset_t *origin_head;
2701
2702 VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG,
2703 &origin_head));
2704
2705 if (drc->drc_force) {
2706 /*
2707 * Destroy any snapshots of drc_tofs (origin_head)
2708 * after the origin (the snap before drc_ds).
2709 */
2710 uint64_t obj;
2711
2712 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
2713 while (obj !=
2714 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
2715 dsl_dataset_t *snap;
2716 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG,
2717 &snap));
2718 ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir);
2719 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
2720 dsl_destroy_snapshot_sync_impl(snap,
2721 B_FALSE, tx);
2722 dsl_dataset_rele(snap, FTAG);
2723 }
2724 }
2725 if (drc->drc_keynvl != NULL) {
2726 dsl_crypto_recv_raw_key_sync(drc->drc_ds,
2727 drc->drc_keynvl, tx);
2728 nvlist_free(drc->drc_keynvl);
2729 drc->drc_keynvl = NULL;
2730 }
2731
2732 VERIFY3P(drc->drc_ds->ds_prev, ==, origin_head->ds_prev);
2733
2734 dsl_dataset_clone_swap_sync_impl(drc->drc_ds,
2735 origin_head, tx);
2736 dsl_dataset_snapshot_sync_impl(origin_head,
2737 drc->drc_tosnap, tx);
2738
2739 /* set snapshot's creation time and guid */
2740 dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx);
2741 dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time =
2742 drc->drc_drrb->drr_creation_time;
2743 dsl_dataset_phys(origin_head->ds_prev)->ds_guid =
2744 drc->drc_drrb->drr_toguid;
2745 dsl_dataset_phys(origin_head->ds_prev)->ds_flags &=
2746 ~DS_FLAG_INCONSISTENT;
2747
2748 dmu_buf_will_dirty(origin_head->ds_dbuf, tx);
2749 dsl_dataset_phys(origin_head)->ds_flags &=
2750 ~DS_FLAG_INCONSISTENT;
2751
2752 drc->drc_newsnapobj =
2753 dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
2754
2755 dsl_dataset_rele(origin_head, FTAG);
2756 dsl_destroy_head_sync_impl(drc->drc_ds, tx);
2757
2758 if (drc->drc_owner != NULL)
2759 VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner);
2760 } else {
2761 dsl_dataset_t *ds = drc->drc_ds;
2762
2763 dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx);
2764
2765 /* set snapshot's creation time and guid */
2766 dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx);
2767 dsl_dataset_phys(ds->ds_prev)->ds_creation_time =
2768 drc->drc_drrb->drr_creation_time;
2769 dsl_dataset_phys(ds->ds_prev)->ds_guid =
2770 drc->drc_drrb->drr_toguid;
2771 dsl_dataset_phys(ds->ds_prev)->ds_flags &=
2772 ~DS_FLAG_INCONSISTENT;
2773
2774 dmu_buf_will_dirty(ds->ds_dbuf, tx);
2775 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
2776 if (dsl_dataset_has_resume_receive_state(ds)) {
2777 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
2778 DS_FIELD_RESUME_FROMGUID, tx);
2779 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
2780 DS_FIELD_RESUME_OBJECT, tx);
2781 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
2782 DS_FIELD_RESUME_OFFSET, tx);
2783 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
2784 DS_FIELD_RESUME_BYTES, tx);
2785 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
2786 DS_FIELD_RESUME_TOGUID, tx);
2787 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
2788 DS_FIELD_RESUME_TONAME, tx);
2789 }
2790 drc->drc_newsnapobj =
2791 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj;
2792 }
2793
2794 /*
2795 * If this is a raw receive, the crypt_keydata nvlist will include
2796 * a to_ivset_guid for us to set on the new snapshot. This value
2797 * will override the value generated by the snapshot code. However,
2798 * this value may not be present, because older implementations of
2799 * the raw send code did not include this value, and we are still
2800 * allowed to receive them if the zfs_disable_ivset_guid_check
2801 * tunable is set, in which case we will leave the newly-generated
2802 * value.
2803 */
2804 if (drc->drc_raw && drc->drc_ivset_guid != 0) {
2805 dmu_object_zapify(dp->dp_meta_objset, drc->drc_newsnapobj,
2806 DMU_OT_DSL_DATASET, tx);
2807 VERIFY0(zap_update(dp->dp_meta_objset, drc->drc_newsnapobj,
2808 DS_FIELD_IVSET_GUID, sizeof (uint64_t), 1,
2809 &drc->drc_ivset_guid, tx));
2810 }
2811
2812 /*
2813 * Release the hold from dmu_recv_begin. This must be done before
2814 * we return to open context, so that when we free the dataset's dnode
2815 * we can evict its bonus buffer. Since the dataset may be destroyed
2816 * at this point (and therefore won't have a valid pointer to the spa)
2817 * we release the key mapping manually here while we do have a valid
2818 * pointer, if it exists.
2819 */
2820 if (!drc->drc_raw && encrypted) {
2821 (void) spa_keystore_remove_mapping(dmu_tx_pool(tx)->dp_spa,
2822 drc->drc_ds->ds_object, drc->drc_ds);
2823 }
2824 dsl_dataset_disown(drc->drc_ds, 0, dmu_recv_tag);
2825 drc->drc_ds = NULL;
2826 }
2827
2828 static int
add_ds_to_guidmap(const char * name,avl_tree_t * guid_map,uint64_t snapobj,boolean_t raw)2829 add_ds_to_guidmap(const char *name, avl_tree_t *guid_map, uint64_t snapobj,
2830 boolean_t raw)
2831 {
2832 dsl_pool_t *dp;
2833 dsl_dataset_t *snapds;
2834 guid_map_entry_t *gmep;
2835 objset_t *os;
2836 ds_hold_flags_t dsflags;
2837 int err;
2838
2839 ASSERT(guid_map != NULL);
2840
2841 dsflags = (raw) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT;
2842 err = dsl_pool_hold(name, FTAG, &dp);
2843 if (err != 0)
2844 return (err);
2845 gmep = kmem_alloc(sizeof (*gmep), KM_SLEEP);
2846 err = dsl_dataset_own_obj(dp, snapobj, dsflags, gmep, &snapds);
2847 if (err == 0) {
2848 /*
2849 * If this is a deduplicated raw send stream, we need
2850 * to make sure that we can still read raw blocks from
2851 * earlier datasets in the stream, so we set the
2852 * os_raw_receive flag now.
2853 */
2854 if (raw) {
2855 err = dmu_objset_from_ds(snapds, &os);
2856 if (err != 0) {
2857 dsl_dataset_disown(snapds, dsflags, FTAG);
2858 dsl_pool_rele(dp, FTAG);
2859 kmem_free(gmep, sizeof (*gmep));
2860 return (err);
2861 }
2862 os->os_raw_receive = B_TRUE;
2863 }
2864
2865 gmep->raw = raw;
2866 gmep->guid = dsl_dataset_phys(snapds)->ds_guid;
2867 gmep->gme_ds = snapds;
2868 avl_add(guid_map, gmep);
2869 } else {
2870 kmem_free(gmep, sizeof (*gmep));
2871 }
2872
2873 dsl_pool_rele(dp, FTAG);
2874 return (err);
2875 }
2876
2877 static int dmu_recv_end_modified_blocks = 3;
2878
2879 static int
dmu_recv_existing_end(dmu_recv_cookie_t * drc)2880 dmu_recv_existing_end(dmu_recv_cookie_t *drc)
2881 {
2882 #ifdef _KERNEL
2883 /*
2884 * We will be destroying the ds; make sure its origin is unmounted if
2885 * necessary.
2886 */
2887 char name[ZFS_MAX_DATASET_NAME_LEN];
2888 dsl_dataset_name(drc->drc_ds, name);
2889 zfs_destroy_unmount_origin(name);
2890 #endif
2891
2892 return (dsl_sync_task(drc->drc_tofs,
2893 dmu_recv_end_check, dmu_recv_end_sync, drc,
2894 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
2895 }
2896
2897 static int
dmu_recv_new_end(dmu_recv_cookie_t * drc)2898 dmu_recv_new_end(dmu_recv_cookie_t *drc)
2899 {
2900 return (dsl_sync_task(drc->drc_tofs,
2901 dmu_recv_end_check, dmu_recv_end_sync, drc,
2902 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
2903 }
2904
2905 int
dmu_recv_end(dmu_recv_cookie_t * drc,void * owner)2906 dmu_recv_end(dmu_recv_cookie_t *drc, void *owner)
2907 {
2908 int error;
2909
2910 drc->drc_owner = owner;
2911
2912 if (drc->drc_newfs)
2913 error = dmu_recv_new_end(drc);
2914 else
2915 error = dmu_recv_existing_end(drc);
2916
2917 if (error != 0) {
2918 dmu_recv_cleanup_ds(drc);
2919 nvlist_free(drc->drc_keynvl);
2920 } else if (drc->drc_guid_to_ds_map != NULL) {
2921 (void) add_ds_to_guidmap(drc->drc_tofs, drc->drc_guid_to_ds_map,
2922 drc->drc_newsnapobj, drc->drc_raw);
2923 }
2924 return (error);
2925 }
2926
2927 /*
2928 * Return TRUE if this objset is currently being received into.
2929 */
2930 boolean_t
dmu_objset_is_receiving(objset_t * os)2931 dmu_objset_is_receiving(objset_t *os)
2932 {
2933 return (os->os_dsl_dataset != NULL &&
2934 os->os_dsl_dataset->ds_owner == dmu_recv_tag);
2935 }
2936