xref: /illumos-gate/usr/src/uts/common/fs/zfs/dmu.c (revision 99aa8b55)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2016 by Delphix. All rights reserved.
24  */
25 /* Copyright (c) 2013 by Saso Kiselkov. All rights reserved. */
26 /* Copyright (c) 2013, Joyent, Inc. All rights reserved. */
27 /* Copyright 2016 Nexenta Systems, Inc. All rights reserved. */
28 
29 #include <sys/dmu.h>
30 #include <sys/dmu_impl.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/dbuf.h>
33 #include <sys/dnode.h>
34 #include <sys/zfs_context.h>
35 #include <sys/dmu_objset.h>
36 #include <sys/dmu_traverse.h>
37 #include <sys/dsl_dataset.h>
38 #include <sys/dsl_dir.h>
39 #include <sys/dsl_pool.h>
40 #include <sys/dsl_synctask.h>
41 #include <sys/dsl_prop.h>
42 #include <sys/dmu_zfetch.h>
43 #include <sys/zfs_ioctl.h>
44 #include <sys/zap.h>
45 #include <sys/zio_checksum.h>
46 #include <sys/zio_compress.h>
47 #include <sys/sa.h>
48 #include <sys/zfeature.h>
49 #ifdef _KERNEL
50 #include <sys/vmsystm.h>
51 #include <sys/zfs_znode.h>
52 #endif
53 
54 /*
55  * Enable/disable nopwrite feature.
56  */
57 int zfs_nopwrite_enabled = 1;
58 
59 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
60 	{	DMU_BSWAP_UINT8,	TRUE,	"unallocated"		},
61 	{	DMU_BSWAP_ZAP,		TRUE,	"object directory"	},
62 	{	DMU_BSWAP_UINT64,	TRUE,	"object array"		},
63 	{	DMU_BSWAP_UINT8,	TRUE,	"packed nvlist"		},
64 	{	DMU_BSWAP_UINT64,	TRUE,	"packed nvlist size"	},
65 	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj"			},
66 	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj header"		},
67 	{	DMU_BSWAP_UINT64,	TRUE,	"SPA space map header"	},
68 	{	DMU_BSWAP_UINT64,	TRUE,	"SPA space map"		},
69 	{	DMU_BSWAP_UINT64,	TRUE,	"ZIL intent log"	},
70 	{	DMU_BSWAP_DNODE,	TRUE,	"DMU dnode"		},
71 	{	DMU_BSWAP_OBJSET,	TRUE,	"DMU objset"		},
72 	{	DMU_BSWAP_UINT64,	TRUE,	"DSL directory"		},
73 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL directory child map"},
74 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dataset snap map"	},
75 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL props"		},
76 	{	DMU_BSWAP_UINT64,	TRUE,	"DSL dataset"		},
77 	{	DMU_BSWAP_ZNODE,	TRUE,	"ZFS znode"		},
78 	{	DMU_BSWAP_OLDACL,	TRUE,	"ZFS V0 ACL"		},
79 	{	DMU_BSWAP_UINT8,	FALSE,	"ZFS plain file"	},
80 	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS directory"		},
81 	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS master node"	},
82 	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS delete queue"	},
83 	{	DMU_BSWAP_UINT8,	FALSE,	"zvol object"		},
84 	{	DMU_BSWAP_ZAP,		TRUE,	"zvol prop"		},
85 	{	DMU_BSWAP_UINT8,	FALSE,	"other uint8[]"		},
86 	{	DMU_BSWAP_UINT64,	FALSE,	"other uint64[]"	},
87 	{	DMU_BSWAP_ZAP,		TRUE,	"other ZAP"		},
88 	{	DMU_BSWAP_ZAP,		TRUE,	"persistent error log"	},
89 	{	DMU_BSWAP_UINT8,	TRUE,	"SPA history"		},
90 	{	DMU_BSWAP_UINT64,	TRUE,	"SPA history offsets"	},
91 	{	DMU_BSWAP_ZAP,		TRUE,	"Pool properties"	},
92 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL permissions"	},
93 	{	DMU_BSWAP_ACL,		TRUE,	"ZFS ACL"		},
94 	{	DMU_BSWAP_UINT8,	TRUE,	"ZFS SYSACL"		},
95 	{	DMU_BSWAP_UINT8,	TRUE,	"FUID table"		},
96 	{	DMU_BSWAP_UINT64,	TRUE,	"FUID table size"	},
97 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dataset next clones"},
98 	{	DMU_BSWAP_ZAP,		TRUE,	"scan work queue"	},
99 	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS user/group used"	},
100 	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS user/group quota"	},
101 	{	DMU_BSWAP_ZAP,		TRUE,	"snapshot refcount tags"},
102 	{	DMU_BSWAP_ZAP,		TRUE,	"DDT ZAP algorithm"	},
103 	{	DMU_BSWAP_ZAP,		TRUE,	"DDT statistics"	},
104 	{	DMU_BSWAP_UINT8,	TRUE,	"System attributes"	},
105 	{	DMU_BSWAP_ZAP,		TRUE,	"SA master node"	},
106 	{	DMU_BSWAP_ZAP,		TRUE,	"SA attr registration"	},
107 	{	DMU_BSWAP_ZAP,		TRUE,	"SA attr layouts"	},
108 	{	DMU_BSWAP_ZAP,		TRUE,	"scan translations"	},
109 	{	DMU_BSWAP_UINT8,	FALSE,	"deduplicated block"	},
110 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL deadlist map"	},
111 	{	DMU_BSWAP_UINT64,	TRUE,	"DSL deadlist map hdr"	},
112 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dir clones"	},
113 	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj subobj"		}
114 };
115 
116 const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
117 	{	byteswap_uint8_array,	"uint8"		},
118 	{	byteswap_uint16_array,	"uint16"	},
119 	{	byteswap_uint32_array,	"uint32"	},
120 	{	byteswap_uint64_array,	"uint64"	},
121 	{	zap_byteswap,		"zap"		},
122 	{	dnode_buf_byteswap,	"dnode"		},
123 	{	dmu_objset_byteswap,	"objset"	},
124 	{	zfs_znode_byteswap,	"znode"		},
125 	{	zfs_oldacl_byteswap,	"oldacl"	},
126 	{	zfs_acl_byteswap,	"acl"		}
127 };
128 
129 int
130 dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset,
131     void *tag, dmu_buf_t **dbp)
132 {
133 	uint64_t blkid;
134 	dmu_buf_impl_t *db;
135 
136 	blkid = dbuf_whichblock(dn, 0, offset);
137 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
138 	db = dbuf_hold(dn, blkid, tag);
139 	rw_exit(&dn->dn_struct_rwlock);
140 
141 	if (db == NULL) {
142 		*dbp = NULL;
143 		return (SET_ERROR(EIO));
144 	}
145 
146 	*dbp = &db->db;
147 	return (0);
148 }
149 int
150 dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
151     void *tag, dmu_buf_t **dbp)
152 {
153 	dnode_t *dn;
154 	uint64_t blkid;
155 	dmu_buf_impl_t *db;
156 	int err;
157 
158 	err = dnode_hold(os, object, FTAG, &dn);
159 	if (err)
160 		return (err);
161 	blkid = dbuf_whichblock(dn, 0, offset);
162 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
163 	db = dbuf_hold(dn, blkid, tag);
164 	rw_exit(&dn->dn_struct_rwlock);
165 	dnode_rele(dn, FTAG);
166 
167 	if (db == NULL) {
168 		*dbp = NULL;
169 		return (SET_ERROR(EIO));
170 	}
171 
172 	*dbp = &db->db;
173 	return (err);
174 }
175 
176 int
177 dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
178     void *tag, dmu_buf_t **dbp, int flags)
179 {
180 	int err;
181 	int db_flags = DB_RF_CANFAIL;
182 
183 	if (flags & DMU_READ_NO_PREFETCH)
184 		db_flags |= DB_RF_NOPREFETCH;
185 
186 	err = dmu_buf_hold_noread_by_dnode(dn, offset, tag, dbp);
187 	if (err == 0) {
188 		dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
189 		err = dbuf_read(db, NULL, db_flags);
190 		if (err != 0) {
191 			dbuf_rele(db, tag);
192 			*dbp = NULL;
193 		}
194 	}
195 
196 	return (err);
197 }
198 
199 int
200 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
201     void *tag, dmu_buf_t **dbp, int flags)
202 {
203 	int err;
204 	int db_flags = DB_RF_CANFAIL;
205 
206 	if (flags & DMU_READ_NO_PREFETCH)
207 		db_flags |= DB_RF_NOPREFETCH;
208 
209 	err = dmu_buf_hold_noread(os, object, offset, tag, dbp);
210 	if (err == 0) {
211 		dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
212 		err = dbuf_read(db, NULL, db_flags);
213 		if (err != 0) {
214 			dbuf_rele(db, tag);
215 			*dbp = NULL;
216 		}
217 	}
218 
219 	return (err);
220 }
221 
222 int
223 dmu_bonus_max(void)
224 {
225 	return (DN_MAX_BONUSLEN);
226 }
227 
228 int
229 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
230 {
231 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
232 	dnode_t *dn;
233 	int error;
234 
235 	DB_DNODE_ENTER(db);
236 	dn = DB_DNODE(db);
237 
238 	if (dn->dn_bonus != db) {
239 		error = SET_ERROR(EINVAL);
240 	} else if (newsize < 0 || newsize > db_fake->db_size) {
241 		error = SET_ERROR(EINVAL);
242 	} else {
243 		dnode_setbonuslen(dn, newsize, tx);
244 		error = 0;
245 	}
246 
247 	DB_DNODE_EXIT(db);
248 	return (error);
249 }
250 
251 int
252 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
253 {
254 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
255 	dnode_t *dn;
256 	int error;
257 
258 	DB_DNODE_ENTER(db);
259 	dn = DB_DNODE(db);
260 
261 	if (!DMU_OT_IS_VALID(type)) {
262 		error = SET_ERROR(EINVAL);
263 	} else if (dn->dn_bonus != db) {
264 		error = SET_ERROR(EINVAL);
265 	} else {
266 		dnode_setbonus_type(dn, type, tx);
267 		error = 0;
268 	}
269 
270 	DB_DNODE_EXIT(db);
271 	return (error);
272 }
273 
274 dmu_object_type_t
275 dmu_get_bonustype(dmu_buf_t *db_fake)
276 {
277 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
278 	dnode_t *dn;
279 	dmu_object_type_t type;
280 
281 	DB_DNODE_ENTER(db);
282 	dn = DB_DNODE(db);
283 	type = dn->dn_bonustype;
284 	DB_DNODE_EXIT(db);
285 
286 	return (type);
287 }
288 
289 int
290 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
291 {
292 	dnode_t *dn;
293 	int error;
294 
295 	error = dnode_hold(os, object, FTAG, &dn);
296 	dbuf_rm_spill(dn, tx);
297 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
298 	dnode_rm_spill(dn, tx);
299 	rw_exit(&dn->dn_struct_rwlock);
300 	dnode_rele(dn, FTAG);
301 	return (error);
302 }
303 
304 /*
305  * returns ENOENT, EIO, or 0.
306  */
307 int
308 dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp)
309 {
310 	dnode_t *dn;
311 	dmu_buf_impl_t *db;
312 	int error;
313 
314 	error = dnode_hold(os, object, FTAG, &dn);
315 	if (error)
316 		return (error);
317 
318 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
319 	if (dn->dn_bonus == NULL) {
320 		rw_exit(&dn->dn_struct_rwlock);
321 		rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
322 		if (dn->dn_bonus == NULL)
323 			dbuf_create_bonus(dn);
324 	}
325 	db = dn->dn_bonus;
326 
327 	/* as long as the bonus buf is held, the dnode will be held */
328 	if (refcount_add(&db->db_holds, tag) == 1) {
329 		VERIFY(dnode_add_ref(dn, db));
330 		atomic_inc_32(&dn->dn_dbufs_count);
331 	}
332 
333 	/*
334 	 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
335 	 * hold and incrementing the dbuf count to ensure that dnode_move() sees
336 	 * a dnode hold for every dbuf.
337 	 */
338 	rw_exit(&dn->dn_struct_rwlock);
339 
340 	dnode_rele(dn, FTAG);
341 
342 	VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH));
343 
344 	*dbp = &db->db;
345 	return (0);
346 }
347 
348 /*
349  * returns ENOENT, EIO, or 0.
350  *
351  * This interface will allocate a blank spill dbuf when a spill blk
352  * doesn't already exist on the dnode.
353  *
354  * if you only want to find an already existing spill db, then
355  * dmu_spill_hold_existing() should be used.
356  */
357 int
358 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp)
359 {
360 	dmu_buf_impl_t *db = NULL;
361 	int err;
362 
363 	if ((flags & DB_RF_HAVESTRUCT) == 0)
364 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
365 
366 	db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
367 
368 	if ((flags & DB_RF_HAVESTRUCT) == 0)
369 		rw_exit(&dn->dn_struct_rwlock);
370 
371 	ASSERT(db != NULL);
372 	err = dbuf_read(db, NULL, flags);
373 	if (err == 0)
374 		*dbp = &db->db;
375 	else
376 		dbuf_rele(db, tag);
377 	return (err);
378 }
379 
380 int
381 dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
382 {
383 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
384 	dnode_t *dn;
385 	int err;
386 
387 	DB_DNODE_ENTER(db);
388 	dn = DB_DNODE(db);
389 
390 	if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
391 		err = SET_ERROR(EINVAL);
392 	} else {
393 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
394 
395 		if (!dn->dn_have_spill) {
396 			err = SET_ERROR(ENOENT);
397 		} else {
398 			err = dmu_spill_hold_by_dnode(dn,
399 			    DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
400 		}
401 
402 		rw_exit(&dn->dn_struct_rwlock);
403 	}
404 
405 	DB_DNODE_EXIT(db);
406 	return (err);
407 }
408 
409 int
410 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
411 {
412 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
413 	dnode_t *dn;
414 	int err;
415 
416 	DB_DNODE_ENTER(db);
417 	dn = DB_DNODE(db);
418 	err = dmu_spill_hold_by_dnode(dn, DB_RF_CANFAIL, tag, dbp);
419 	DB_DNODE_EXIT(db);
420 
421 	return (err);
422 }
423 
424 /*
425  * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
426  * to take a held dnode rather than <os, object> -- the lookup is wasteful,
427  * and can induce severe lock contention when writing to several files
428  * whose dnodes are in the same block.
429  */
430 static int
431 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
432     boolean_t read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags)
433 {
434 	dmu_buf_t **dbp;
435 	uint64_t blkid, nblks, i;
436 	uint32_t dbuf_flags;
437 	int err;
438 	zio_t *zio;
439 
440 	ASSERT(length <= DMU_MAX_ACCESS);
441 
442 	/*
443 	 * Note: We directly notify the prefetch code of this read, so that
444 	 * we can tell it about the multi-block read.  dbuf_read() only knows
445 	 * about the one block it is accessing.
446 	 */
447 	dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT |
448 	    DB_RF_NOPREFETCH;
449 
450 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
451 	if (dn->dn_datablkshift) {
452 		int blkshift = dn->dn_datablkshift;
453 		nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) -
454 		    P2ALIGN(offset, 1ULL << blkshift)) >> blkshift;
455 	} else {
456 		if (offset + length > dn->dn_datablksz) {
457 			zfs_panic_recover("zfs: accessing past end of object "
458 			    "%llx/%llx (size=%u access=%llu+%llu)",
459 			    (longlong_t)dn->dn_objset->
460 			    os_dsl_dataset->ds_object,
461 			    (longlong_t)dn->dn_object, dn->dn_datablksz,
462 			    (longlong_t)offset, (longlong_t)length);
463 			rw_exit(&dn->dn_struct_rwlock);
464 			return (SET_ERROR(EIO));
465 		}
466 		nblks = 1;
467 	}
468 	dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
469 
470 	zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL);
471 	blkid = dbuf_whichblock(dn, 0, offset);
472 	for (i = 0; i < nblks; i++) {
473 		dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag);
474 		if (db == NULL) {
475 			rw_exit(&dn->dn_struct_rwlock);
476 			dmu_buf_rele_array(dbp, nblks, tag);
477 			zio_nowait(zio);
478 			return (SET_ERROR(EIO));
479 		}
480 
481 		/* initiate async i/o */
482 		if (read)
483 			(void) dbuf_read(db, zio, dbuf_flags);
484 		dbp[i] = &db->db;
485 	}
486 
487 	if ((flags & DMU_READ_NO_PREFETCH) == 0 &&
488 	    DNODE_META_IS_CACHEABLE(dn) && length <= zfetch_array_rd_sz) {
489 		dmu_zfetch(&dn->dn_zfetch, blkid, nblks,
490 		    read && DNODE_IS_CACHEABLE(dn));
491 	}
492 	rw_exit(&dn->dn_struct_rwlock);
493 
494 	/* wait for async i/o */
495 	err = zio_wait(zio);
496 	if (err) {
497 		dmu_buf_rele_array(dbp, nblks, tag);
498 		return (err);
499 	}
500 
501 	/* wait for other io to complete */
502 	if (read) {
503 		for (i = 0; i < nblks; i++) {
504 			dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
505 			mutex_enter(&db->db_mtx);
506 			while (db->db_state == DB_READ ||
507 			    db->db_state == DB_FILL)
508 				cv_wait(&db->db_changed, &db->db_mtx);
509 			if (db->db_state == DB_UNCACHED)
510 				err = SET_ERROR(EIO);
511 			mutex_exit(&db->db_mtx);
512 			if (err) {
513 				dmu_buf_rele_array(dbp, nblks, tag);
514 				return (err);
515 			}
516 		}
517 	}
518 
519 	*numbufsp = nblks;
520 	*dbpp = dbp;
521 	return (0);
522 }
523 
524 static int
525 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
526     uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
527 {
528 	dnode_t *dn;
529 	int err;
530 
531 	err = dnode_hold(os, object, FTAG, &dn);
532 	if (err)
533 		return (err);
534 
535 	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
536 	    numbufsp, dbpp, DMU_READ_PREFETCH);
537 
538 	dnode_rele(dn, FTAG);
539 
540 	return (err);
541 }
542 
543 int
544 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
545     uint64_t length, boolean_t read, void *tag, int *numbufsp,
546     dmu_buf_t ***dbpp)
547 {
548 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
549 	dnode_t *dn;
550 	int err;
551 
552 	DB_DNODE_ENTER(db);
553 	dn = DB_DNODE(db);
554 	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
555 	    numbufsp, dbpp, DMU_READ_PREFETCH);
556 	DB_DNODE_EXIT(db);
557 
558 	return (err);
559 }
560 
561 void
562 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag)
563 {
564 	int i;
565 	dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
566 
567 	if (numbufs == 0)
568 		return;
569 
570 	for (i = 0; i < numbufs; i++) {
571 		if (dbp[i])
572 			dbuf_rele(dbp[i], tag);
573 	}
574 
575 	kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
576 }
577 
578 /*
579  * Issue prefetch i/os for the given blocks.  If level is greater than 0, the
580  * indirect blocks prefeteched will be those that point to the blocks containing
581  * the data starting at offset, and continuing to offset + len.
582  *
583  * Note that if the indirect blocks above the blocks being prefetched are not in
584  * cache, they will be asychronously read in.
585  */
586 void
587 dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
588     uint64_t len, zio_priority_t pri)
589 {
590 	dnode_t *dn;
591 	uint64_t blkid;
592 	int nblks, err;
593 
594 	if (len == 0) {  /* they're interested in the bonus buffer */
595 		dn = DMU_META_DNODE(os);
596 
597 		if (object == 0 || object >= DN_MAX_OBJECT)
598 			return;
599 
600 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
601 		blkid = dbuf_whichblock(dn, level,
602 		    object * sizeof (dnode_phys_t));
603 		dbuf_prefetch(dn, level, blkid, pri, 0);
604 		rw_exit(&dn->dn_struct_rwlock);
605 		return;
606 	}
607 
608 	/*
609 	 * XXX - Note, if the dnode for the requested object is not
610 	 * already cached, we will do a *synchronous* read in the
611 	 * dnode_hold() call.  The same is true for any indirects.
612 	 */
613 	err = dnode_hold(os, object, FTAG, &dn);
614 	if (err != 0)
615 		return;
616 
617 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
618 	/*
619 	 * offset + len - 1 is the last byte we want to prefetch for, and offset
620 	 * is the first.  Then dbuf_whichblk(dn, level, off + len - 1) is the
621 	 * last block we want to prefetch, and dbuf_whichblock(dn, level,
622 	 * offset)  is the first.  Then the number we need to prefetch is the
623 	 * last - first + 1.
624 	 */
625 	if (level > 0 || dn->dn_datablkshift != 0) {
626 		nblks = dbuf_whichblock(dn, level, offset + len - 1) -
627 		    dbuf_whichblock(dn, level, offset) + 1;
628 	} else {
629 		nblks = (offset < dn->dn_datablksz);
630 	}
631 
632 	if (nblks != 0) {
633 		blkid = dbuf_whichblock(dn, level, offset);
634 		for (int i = 0; i < nblks; i++)
635 			dbuf_prefetch(dn, level, blkid + i, pri, 0);
636 	}
637 
638 	rw_exit(&dn->dn_struct_rwlock);
639 
640 	dnode_rele(dn, FTAG);
641 }
642 
643 /*
644  * Get the next "chunk" of file data to free.  We traverse the file from
645  * the end so that the file gets shorter over time (if we crashes in the
646  * middle, this will leave us in a better state).  We find allocated file
647  * data by simply searching the allocated level 1 indirects.
648  *
649  * On input, *start should be the first offset that does not need to be
650  * freed (e.g. "offset + length").  On return, *start will be the first
651  * offset that should be freed.
652  */
653 static int
654 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum)
655 {
656 	uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
657 	/* bytes of data covered by a level-1 indirect block */
658 	uint64_t iblkrange =
659 	    dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
660 
661 	ASSERT3U(minimum, <=, *start);
662 
663 	if (*start - minimum <= iblkrange * maxblks) {
664 		*start = minimum;
665 		return (0);
666 	}
667 	ASSERT(ISP2(iblkrange));
668 
669 	for (uint64_t blks = 0; *start > minimum && blks < maxblks; blks++) {
670 		int err;
671 
672 		/*
673 		 * dnode_next_offset(BACKWARDS) will find an allocated L1
674 		 * indirect block at or before the input offset.  We must
675 		 * decrement *start so that it is at the end of the region
676 		 * to search.
677 		 */
678 		(*start)--;
679 		err = dnode_next_offset(dn,
680 		    DNODE_FIND_BACKWARDS, start, 2, 1, 0);
681 
682 		/* if there are no indirect blocks before start, we are done */
683 		if (err == ESRCH) {
684 			*start = minimum;
685 			break;
686 		} else if (err != 0) {
687 			return (err);
688 		}
689 
690 		/* set start to the beginning of this L1 indirect */
691 		*start = P2ALIGN(*start, iblkrange);
692 	}
693 	if (*start < minimum)
694 		*start = minimum;
695 	return (0);
696 }
697 
698 /*
699  * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set,
700  * otherwise return false.
701  * Used below in dmu_free_long_range_impl() to enable abort when unmounting
702  */
703 /*ARGSUSED*/
704 static boolean_t
705 dmu_objset_zfs_unmounting(objset_t *os)
706 {
707 #ifdef _KERNEL
708 	if (dmu_objset_type(os) == DMU_OST_ZFS)
709 		return (zfs_get_vfs_flag_unmounted(os));
710 #endif
711 	return (B_FALSE);
712 }
713 
714 static int
715 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
716     uint64_t length)
717 {
718 	uint64_t object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
719 	int err;
720 
721 	if (offset >= object_size)
722 		return (0);
723 
724 	if (length == DMU_OBJECT_END || offset + length > object_size)
725 		length = object_size - offset;
726 
727 	while (length != 0) {
728 		uint64_t chunk_end, chunk_begin;
729 
730 		if (dmu_objset_zfs_unmounting(dn->dn_objset))
731 			return (SET_ERROR(EINTR));
732 
733 		chunk_end = chunk_begin = offset + length;
734 
735 		/* move chunk_begin backwards to the beginning of this chunk */
736 		err = get_next_chunk(dn, &chunk_begin, offset);
737 		if (err)
738 			return (err);
739 		ASSERT3U(chunk_begin, >=, offset);
740 		ASSERT3U(chunk_begin, <=, chunk_end);
741 
742 		dmu_tx_t *tx = dmu_tx_create(os);
743 		dmu_tx_hold_free(tx, dn->dn_object,
744 		    chunk_begin, chunk_end - chunk_begin);
745 
746 		/*
747 		 * Mark this transaction as typically resulting in a net
748 		 * reduction in space used.
749 		 */
750 		dmu_tx_mark_netfree(tx);
751 		err = dmu_tx_assign(tx, TXG_WAIT);
752 		if (err) {
753 			dmu_tx_abort(tx);
754 			return (err);
755 		}
756 		dnode_free_range(dn, chunk_begin, chunk_end - chunk_begin, tx);
757 		dmu_tx_commit(tx);
758 
759 		length -= chunk_end - chunk_begin;
760 	}
761 	return (0);
762 }
763 
764 int
765 dmu_free_long_range(objset_t *os, uint64_t object,
766     uint64_t offset, uint64_t length)
767 {
768 	dnode_t *dn;
769 	int err;
770 
771 	err = dnode_hold(os, object, FTAG, &dn);
772 	if (err != 0)
773 		return (err);
774 	err = dmu_free_long_range_impl(os, dn, offset, length);
775 
776 	/*
777 	 * It is important to zero out the maxblkid when freeing the entire
778 	 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
779 	 * will take the fast path, and (b) dnode_reallocate() can verify
780 	 * that the entire file has been freed.
781 	 */
782 	if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
783 		dn->dn_maxblkid = 0;
784 
785 	dnode_rele(dn, FTAG);
786 	return (err);
787 }
788 
789 int
790 dmu_free_long_object(objset_t *os, uint64_t object)
791 {
792 	dmu_tx_t *tx;
793 	int err;
794 
795 	err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
796 	if (err != 0)
797 		return (err);
798 
799 	tx = dmu_tx_create(os);
800 	dmu_tx_hold_bonus(tx, object);
801 	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
802 	dmu_tx_mark_netfree(tx);
803 	err = dmu_tx_assign(tx, TXG_WAIT);
804 	if (err == 0) {
805 		err = dmu_object_free(os, object, tx);
806 		dmu_tx_commit(tx);
807 	} else {
808 		dmu_tx_abort(tx);
809 	}
810 
811 	return (err);
812 }
813 
814 int
815 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
816     uint64_t size, dmu_tx_t *tx)
817 {
818 	dnode_t *dn;
819 	int err = dnode_hold(os, object, FTAG, &dn);
820 	if (err)
821 		return (err);
822 	ASSERT(offset < UINT64_MAX);
823 	ASSERT(size == -1ULL || size <= UINT64_MAX - offset);
824 	dnode_free_range(dn, offset, size, tx);
825 	dnode_rele(dn, FTAG);
826 	return (0);
827 }
828 
829 int
830 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
831     void *buf, uint32_t flags)
832 {
833 	dnode_t *dn;
834 	dmu_buf_t **dbp;
835 	int numbufs, err;
836 
837 	err = dnode_hold(os, object, FTAG, &dn);
838 	if (err)
839 		return (err);
840 
841 	/*
842 	 * Deal with odd block sizes, where there can't be data past the first
843 	 * block.  If we ever do the tail block optimization, we will need to
844 	 * handle that here as well.
845 	 */
846 	if (dn->dn_maxblkid == 0) {
847 		int newsz = offset > dn->dn_datablksz ? 0 :
848 		    MIN(size, dn->dn_datablksz - offset);
849 		bzero((char *)buf + newsz, size - newsz);
850 		size = newsz;
851 	}
852 
853 	while (size > 0) {
854 		uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
855 		int i;
856 
857 		/*
858 		 * NB: we could do this block-at-a-time, but it's nice
859 		 * to be reading in parallel.
860 		 */
861 		err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
862 		    TRUE, FTAG, &numbufs, &dbp, flags);
863 		if (err)
864 			break;
865 
866 		for (i = 0; i < numbufs; i++) {
867 			int tocpy;
868 			int bufoff;
869 			dmu_buf_t *db = dbp[i];
870 
871 			ASSERT(size > 0);
872 
873 			bufoff = offset - db->db_offset;
874 			tocpy = (int)MIN(db->db_size - bufoff, size);
875 
876 			bcopy((char *)db->db_data + bufoff, buf, tocpy);
877 
878 			offset += tocpy;
879 			size -= tocpy;
880 			buf = (char *)buf + tocpy;
881 		}
882 		dmu_buf_rele_array(dbp, numbufs, FTAG);
883 	}
884 	dnode_rele(dn, FTAG);
885 	return (err);
886 }
887 
888 void
889 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
890     const void *buf, dmu_tx_t *tx)
891 {
892 	dmu_buf_t **dbp;
893 	int numbufs, i;
894 
895 	if (size == 0)
896 		return;
897 
898 	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
899 	    FALSE, FTAG, &numbufs, &dbp));
900 
901 	for (i = 0; i < numbufs; i++) {
902 		int tocpy;
903 		int bufoff;
904 		dmu_buf_t *db = dbp[i];
905 
906 		ASSERT(size > 0);
907 
908 		bufoff = offset - db->db_offset;
909 		tocpy = (int)MIN(db->db_size - bufoff, size);
910 
911 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
912 
913 		if (tocpy == db->db_size)
914 			dmu_buf_will_fill(db, tx);
915 		else
916 			dmu_buf_will_dirty(db, tx);
917 
918 		bcopy(buf, (char *)db->db_data + bufoff, tocpy);
919 
920 		if (tocpy == db->db_size)
921 			dmu_buf_fill_done(db, tx);
922 
923 		offset += tocpy;
924 		size -= tocpy;
925 		buf = (char *)buf + tocpy;
926 	}
927 	dmu_buf_rele_array(dbp, numbufs, FTAG);
928 }
929 
930 void
931 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
932     dmu_tx_t *tx)
933 {
934 	dmu_buf_t **dbp;
935 	int numbufs, i;
936 
937 	if (size == 0)
938 		return;
939 
940 	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
941 	    FALSE, FTAG, &numbufs, &dbp));
942 
943 	for (i = 0; i < numbufs; i++) {
944 		dmu_buf_t *db = dbp[i];
945 
946 		dmu_buf_will_not_fill(db, tx);
947 	}
948 	dmu_buf_rele_array(dbp, numbufs, FTAG);
949 }
950 
951 void
952 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
953     void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
954     int compressed_size, int byteorder, dmu_tx_t *tx)
955 {
956 	dmu_buf_t *db;
957 
958 	ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES);
959 	ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS);
960 	VERIFY0(dmu_buf_hold_noread(os, object, offset,
961 	    FTAG, &db));
962 
963 	dmu_buf_write_embedded(db,
964 	    data, (bp_embedded_type_t)etype, (enum zio_compress)comp,
965 	    uncompressed_size, compressed_size, byteorder, tx);
966 
967 	dmu_buf_rele(db, FTAG);
968 }
969 
970 /*
971  * DMU support for xuio
972  */
973 kstat_t *xuio_ksp = NULL;
974 
975 int
976 dmu_xuio_init(xuio_t *xuio, int nblk)
977 {
978 	dmu_xuio_t *priv;
979 	uio_t *uio = &xuio->xu_uio;
980 
981 	uio->uio_iovcnt = nblk;
982 	uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP);
983 
984 	priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP);
985 	priv->cnt = nblk;
986 	priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP);
987 	priv->iovp = uio->uio_iov;
988 	XUIO_XUZC_PRIV(xuio) = priv;
989 
990 	if (XUIO_XUZC_RW(xuio) == UIO_READ)
991 		XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk);
992 	else
993 		XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk);
994 
995 	return (0);
996 }
997 
998 void
999 dmu_xuio_fini(xuio_t *xuio)
1000 {
1001 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1002 	int nblk = priv->cnt;
1003 
1004 	kmem_free(priv->iovp, nblk * sizeof (iovec_t));
1005 	kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *));
1006 	kmem_free(priv, sizeof (dmu_xuio_t));
1007 
1008 	if (XUIO_XUZC_RW(xuio) == UIO_READ)
1009 		XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk);
1010 	else
1011 		XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk);
1012 }
1013 
1014 /*
1015  * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf }
1016  * and increase priv->next by 1.
1017  */
1018 int
1019 dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n)
1020 {
1021 	struct iovec *iov;
1022 	uio_t *uio = &xuio->xu_uio;
1023 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1024 	int i = priv->next++;
1025 
1026 	ASSERT(i < priv->cnt);
1027 	ASSERT(off + n <= arc_buf_size(abuf));
1028 	iov = uio->uio_iov + i;
1029 	iov->iov_base = (char *)abuf->b_data + off;
1030 	iov->iov_len = n;
1031 	priv->bufs[i] = abuf;
1032 	return (0);
1033 }
1034 
1035 int
1036 dmu_xuio_cnt(xuio_t *xuio)
1037 {
1038 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1039 	return (priv->cnt);
1040 }
1041 
1042 arc_buf_t *
1043 dmu_xuio_arcbuf(xuio_t *xuio, int i)
1044 {
1045 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1046 
1047 	ASSERT(i < priv->cnt);
1048 	return (priv->bufs[i]);
1049 }
1050 
1051 void
1052 dmu_xuio_clear(xuio_t *xuio, int i)
1053 {
1054 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1055 
1056 	ASSERT(i < priv->cnt);
1057 	priv->bufs[i] = NULL;
1058 }
1059 
1060 static void
1061 xuio_stat_init(void)
1062 {
1063 	xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc",
1064 	    KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t),
1065 	    KSTAT_FLAG_VIRTUAL);
1066 	if (xuio_ksp != NULL) {
1067 		xuio_ksp->ks_data = &xuio_stats;
1068 		kstat_install(xuio_ksp);
1069 	}
1070 }
1071 
1072 static void
1073 xuio_stat_fini(void)
1074 {
1075 	if (xuio_ksp != NULL) {
1076 		kstat_delete(xuio_ksp);
1077 		xuio_ksp = NULL;
1078 	}
1079 }
1080 
1081 void
1082 xuio_stat_wbuf_copied(void)
1083 {
1084 	XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1085 }
1086 
1087 void
1088 xuio_stat_wbuf_nocopy(void)
1089 {
1090 	XUIOSTAT_BUMP(xuiostat_wbuf_nocopy);
1091 }
1092 
1093 #ifdef _KERNEL
1094 static int
1095 dmu_read_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size)
1096 {
1097 	dmu_buf_t **dbp;
1098 	int numbufs, i, err;
1099 	xuio_t *xuio = NULL;
1100 
1101 	/*
1102 	 * NB: we could do this block-at-a-time, but it's nice
1103 	 * to be reading in parallel.
1104 	 */
1105 	err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1106 	    TRUE, FTAG, &numbufs, &dbp, 0);
1107 	if (err)
1108 		return (err);
1109 
1110 	if (uio->uio_extflg == UIO_XUIO)
1111 		xuio = (xuio_t *)uio;
1112 
1113 	for (i = 0; i < numbufs; i++) {
1114 		int tocpy;
1115 		int bufoff;
1116 		dmu_buf_t *db = dbp[i];
1117 
1118 		ASSERT(size > 0);
1119 
1120 		bufoff = uio->uio_loffset - db->db_offset;
1121 		tocpy = (int)MIN(db->db_size - bufoff, size);
1122 
1123 		if (xuio) {
1124 			dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
1125 			arc_buf_t *dbuf_abuf = dbi->db_buf;
1126 			arc_buf_t *abuf = dbuf_loan_arcbuf(dbi);
1127 			err = dmu_xuio_add(xuio, abuf, bufoff, tocpy);
1128 			if (!err) {
1129 				uio->uio_resid -= tocpy;
1130 				uio->uio_loffset += tocpy;
1131 			}
1132 
1133 			if (abuf == dbuf_abuf)
1134 				XUIOSTAT_BUMP(xuiostat_rbuf_nocopy);
1135 			else
1136 				XUIOSTAT_BUMP(xuiostat_rbuf_copied);
1137 		} else {
1138 			err = uiomove((char *)db->db_data + bufoff, tocpy,
1139 			    UIO_READ, uio);
1140 		}
1141 		if (err)
1142 			break;
1143 
1144 		size -= tocpy;
1145 	}
1146 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1147 
1148 	return (err);
1149 }
1150 
1151 /*
1152  * Read 'size' bytes into the uio buffer.
1153  * From object zdb->db_object.
1154  * Starting at offset uio->uio_loffset.
1155  *
1156  * If the caller already has a dbuf in the target object
1157  * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(),
1158  * because we don't have to find the dnode_t for the object.
1159  */
1160 int
1161 dmu_read_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size)
1162 {
1163 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1164 	dnode_t *dn;
1165 	int err;
1166 
1167 	if (size == 0)
1168 		return (0);
1169 
1170 	DB_DNODE_ENTER(db);
1171 	dn = DB_DNODE(db);
1172 	err = dmu_read_uio_dnode(dn, uio, size);
1173 	DB_DNODE_EXIT(db);
1174 
1175 	return (err);
1176 }
1177 
1178 /*
1179  * Read 'size' bytes into the uio buffer.
1180  * From the specified object
1181  * Starting at offset uio->uio_loffset.
1182  */
1183 int
1184 dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size)
1185 {
1186 	dnode_t *dn;
1187 	int err;
1188 
1189 	if (size == 0)
1190 		return (0);
1191 
1192 	err = dnode_hold(os, object, FTAG, &dn);
1193 	if (err)
1194 		return (err);
1195 
1196 	err = dmu_read_uio_dnode(dn, uio, size);
1197 
1198 	dnode_rele(dn, FTAG);
1199 
1200 	return (err);
1201 }
1202 
1203 static int
1204 dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx)
1205 {
1206 	dmu_buf_t **dbp;
1207 	int numbufs;
1208 	int err = 0;
1209 	int i;
1210 
1211 	err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1212 	    FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
1213 	if (err)
1214 		return (err);
1215 
1216 	for (i = 0; i < numbufs; i++) {
1217 		int tocpy;
1218 		int bufoff;
1219 		dmu_buf_t *db = dbp[i];
1220 
1221 		ASSERT(size > 0);
1222 
1223 		bufoff = uio->uio_loffset - db->db_offset;
1224 		tocpy = (int)MIN(db->db_size - bufoff, size);
1225 
1226 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1227 
1228 		if (tocpy == db->db_size)
1229 			dmu_buf_will_fill(db, tx);
1230 		else
1231 			dmu_buf_will_dirty(db, tx);
1232 
1233 		/*
1234 		 * XXX uiomove could block forever (eg. nfs-backed
1235 		 * pages).  There needs to be a uiolockdown() function
1236 		 * to lock the pages in memory, so that uiomove won't
1237 		 * block.
1238 		 */
1239 		err = uiomove((char *)db->db_data + bufoff, tocpy,
1240 		    UIO_WRITE, uio);
1241 
1242 		if (tocpy == db->db_size)
1243 			dmu_buf_fill_done(db, tx);
1244 
1245 		if (err)
1246 			break;
1247 
1248 		size -= tocpy;
1249 	}
1250 
1251 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1252 	return (err);
1253 }
1254 
1255 /*
1256  * Write 'size' bytes from the uio buffer.
1257  * To object zdb->db_object.
1258  * Starting at offset uio->uio_loffset.
1259  *
1260  * If the caller already has a dbuf in the target object
1261  * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(),
1262  * because we don't have to find the dnode_t for the object.
1263  */
1264 int
1265 dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size,
1266     dmu_tx_t *tx)
1267 {
1268 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1269 	dnode_t *dn;
1270 	int err;
1271 
1272 	if (size == 0)
1273 		return (0);
1274 
1275 	DB_DNODE_ENTER(db);
1276 	dn = DB_DNODE(db);
1277 	err = dmu_write_uio_dnode(dn, uio, size, tx);
1278 	DB_DNODE_EXIT(db);
1279 
1280 	return (err);
1281 }
1282 
1283 /*
1284  * Write 'size' bytes from the uio buffer.
1285  * To the specified object.
1286  * Starting at offset uio->uio_loffset.
1287  */
1288 int
1289 dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size,
1290     dmu_tx_t *tx)
1291 {
1292 	dnode_t *dn;
1293 	int err;
1294 
1295 	if (size == 0)
1296 		return (0);
1297 
1298 	err = dnode_hold(os, object, FTAG, &dn);
1299 	if (err)
1300 		return (err);
1301 
1302 	err = dmu_write_uio_dnode(dn, uio, size, tx);
1303 
1304 	dnode_rele(dn, FTAG);
1305 
1306 	return (err);
1307 }
1308 
1309 int
1310 dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1311     page_t *pp, dmu_tx_t *tx)
1312 {
1313 	dmu_buf_t **dbp;
1314 	int numbufs, i;
1315 	int err;
1316 
1317 	if (size == 0)
1318 		return (0);
1319 
1320 	err = dmu_buf_hold_array(os, object, offset, size,
1321 	    FALSE, FTAG, &numbufs, &dbp);
1322 	if (err)
1323 		return (err);
1324 
1325 	for (i = 0; i < numbufs; i++) {
1326 		int tocpy, copied, thiscpy;
1327 		int bufoff;
1328 		dmu_buf_t *db = dbp[i];
1329 		caddr_t va;
1330 
1331 		ASSERT(size > 0);
1332 		ASSERT3U(db->db_size, >=, PAGESIZE);
1333 
1334 		bufoff = offset - db->db_offset;
1335 		tocpy = (int)MIN(db->db_size - bufoff, size);
1336 
1337 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1338 
1339 		if (tocpy == db->db_size)
1340 			dmu_buf_will_fill(db, tx);
1341 		else
1342 			dmu_buf_will_dirty(db, tx);
1343 
1344 		for (copied = 0; copied < tocpy; copied += PAGESIZE) {
1345 			ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff);
1346 			thiscpy = MIN(PAGESIZE, tocpy - copied);
1347 			va = zfs_map_page(pp, S_READ);
1348 			bcopy(va, (char *)db->db_data + bufoff, thiscpy);
1349 			zfs_unmap_page(pp, va);
1350 			pp = pp->p_next;
1351 			bufoff += PAGESIZE;
1352 		}
1353 
1354 		if (tocpy == db->db_size)
1355 			dmu_buf_fill_done(db, tx);
1356 
1357 		offset += tocpy;
1358 		size -= tocpy;
1359 	}
1360 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1361 	return (err);
1362 }
1363 #endif
1364 
1365 /*
1366  * Allocate a loaned anonymous arc buffer.
1367  */
1368 arc_buf_t *
1369 dmu_request_arcbuf(dmu_buf_t *handle, int size)
1370 {
1371 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1372 
1373 	return (arc_loan_buf(db->db_objset->os_spa, size));
1374 }
1375 
1376 /*
1377  * Free a loaned arc buffer.
1378  */
1379 void
1380 dmu_return_arcbuf(arc_buf_t *buf)
1381 {
1382 	arc_return_buf(buf, FTAG);
1383 	arc_buf_destroy(buf, FTAG);
1384 }
1385 
1386 /*
1387  * When possible directly assign passed loaned arc buffer to a dbuf.
1388  * If this is not possible copy the contents of passed arc buf via
1389  * dmu_write().
1390  */
1391 void
1392 dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1393     dmu_tx_t *tx)
1394 {
1395 	dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
1396 	dnode_t *dn;
1397 	dmu_buf_impl_t *db;
1398 	uint32_t blksz = (uint32_t)arc_buf_size(buf);
1399 	uint64_t blkid;
1400 
1401 	DB_DNODE_ENTER(dbuf);
1402 	dn = DB_DNODE(dbuf);
1403 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1404 	blkid = dbuf_whichblock(dn, 0, offset);
1405 	VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL);
1406 	rw_exit(&dn->dn_struct_rwlock);
1407 	DB_DNODE_EXIT(dbuf);
1408 
1409 	/*
1410 	 * We can only assign if the offset is aligned, the arc buf is the
1411 	 * same size as the dbuf, and the dbuf is not metadata.  It
1412 	 * can't be metadata because the loaned arc buf comes from the
1413 	 * user-data kmem arena.
1414 	 */
1415 	if (offset == db->db.db_offset && blksz == db->db.db_size &&
1416 	    DBUF_GET_BUFC_TYPE(db) == ARC_BUFC_DATA) {
1417 		dbuf_assign_arcbuf(db, buf, tx);
1418 		dbuf_rele(db, FTAG);
1419 	} else {
1420 		objset_t *os;
1421 		uint64_t object;
1422 
1423 		DB_DNODE_ENTER(dbuf);
1424 		dn = DB_DNODE(dbuf);
1425 		os = dn->dn_objset;
1426 		object = dn->dn_object;
1427 		DB_DNODE_EXIT(dbuf);
1428 
1429 		dbuf_rele(db, FTAG);
1430 		dmu_write(os, object, offset, blksz, buf->b_data, tx);
1431 		dmu_return_arcbuf(buf);
1432 		XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1433 	}
1434 }
1435 
1436 typedef struct {
1437 	dbuf_dirty_record_t	*dsa_dr;
1438 	dmu_sync_cb_t		*dsa_done;
1439 	zgd_t			*dsa_zgd;
1440 	dmu_tx_t		*dsa_tx;
1441 } dmu_sync_arg_t;
1442 
1443 /* ARGSUSED */
1444 static void
1445 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1446 {
1447 	dmu_sync_arg_t *dsa = varg;
1448 	dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
1449 	blkptr_t *bp = zio->io_bp;
1450 
1451 	if (zio->io_error == 0) {
1452 		if (BP_IS_HOLE(bp)) {
1453 			/*
1454 			 * A block of zeros may compress to a hole, but the
1455 			 * block size still needs to be known for replay.
1456 			 */
1457 			BP_SET_LSIZE(bp, db->db_size);
1458 		} else if (!BP_IS_EMBEDDED(bp)) {
1459 			ASSERT(BP_GET_LEVEL(bp) == 0);
1460 			bp->blk_fill = 1;
1461 		}
1462 	}
1463 }
1464 
1465 static void
1466 dmu_sync_late_arrival_ready(zio_t *zio)
1467 {
1468 	dmu_sync_ready(zio, NULL, zio->io_private);
1469 }
1470 
1471 /* ARGSUSED */
1472 static void
1473 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1474 {
1475 	dmu_sync_arg_t *dsa = varg;
1476 	dbuf_dirty_record_t *dr = dsa->dsa_dr;
1477 	dmu_buf_impl_t *db = dr->dr_dbuf;
1478 
1479 	mutex_enter(&db->db_mtx);
1480 	ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
1481 	if (zio->io_error == 0) {
1482 		dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1483 		if (dr->dt.dl.dr_nopwrite) {
1484 			blkptr_t *bp = zio->io_bp;
1485 			blkptr_t *bp_orig = &zio->io_bp_orig;
1486 			uint8_t chksum = BP_GET_CHECKSUM(bp_orig);
1487 
1488 			ASSERT(BP_EQUAL(bp, bp_orig));
1489 			ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
1490 			ASSERT(zio_checksum_table[chksum].ci_flags &
1491 			    ZCHECKSUM_FLAG_NOPWRITE);
1492 		}
1493 		dr->dt.dl.dr_overridden_by = *zio->io_bp;
1494 		dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1495 		dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
1496 
1497 		/*
1498 		 * Old style holes are filled with all zeros, whereas
1499 		 * new-style holes maintain their lsize, type, level,
1500 		 * and birth time (see zio_write_compress). While we
1501 		 * need to reset the BP_SET_LSIZE() call that happened
1502 		 * in dmu_sync_ready for old style holes, we do *not*
1503 		 * want to wipe out the information contained in new
1504 		 * style holes. Thus, only zero out the block pointer if
1505 		 * it's an old style hole.
1506 		 */
1507 		if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) &&
1508 		    dr->dt.dl.dr_overridden_by.blk_birth == 0)
1509 			BP_ZERO(&dr->dt.dl.dr_overridden_by);
1510 	} else {
1511 		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1512 	}
1513 	cv_broadcast(&db->db_changed);
1514 	mutex_exit(&db->db_mtx);
1515 
1516 	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1517 
1518 	kmem_free(dsa, sizeof (*dsa));
1519 }
1520 
1521 static void
1522 dmu_sync_late_arrival_done(zio_t *zio)
1523 {
1524 	blkptr_t *bp = zio->io_bp;
1525 	dmu_sync_arg_t *dsa = zio->io_private;
1526 	blkptr_t *bp_orig = &zio->io_bp_orig;
1527 
1528 	if (zio->io_error == 0 && !BP_IS_HOLE(bp)) {
1529 		/*
1530 		 * If we didn't allocate a new block (i.e. ZIO_FLAG_NOPWRITE)
1531 		 * then there is nothing to do here. Otherwise, free the
1532 		 * newly allocated block in this txg.
1533 		 */
1534 		if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
1535 			ASSERT(BP_EQUAL(bp, bp_orig));
1536 		} else {
1537 			ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1538 			ASSERT(zio->io_bp->blk_birth == zio->io_txg);
1539 			ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1540 			zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1541 		}
1542 	}
1543 
1544 	dmu_tx_commit(dsa->dsa_tx);
1545 
1546 	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1547 
1548 	kmem_free(dsa, sizeof (*dsa));
1549 }
1550 
1551 static int
1552 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
1553     zio_prop_t *zp, zbookmark_phys_t *zb)
1554 {
1555 	dmu_sync_arg_t *dsa;
1556 	dmu_tx_t *tx;
1557 
1558 	tx = dmu_tx_create(os);
1559 	dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1560 	if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
1561 		dmu_tx_abort(tx);
1562 		/* Make zl_get_data do txg_waited_synced() */
1563 		return (SET_ERROR(EIO));
1564 	}
1565 
1566 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1567 	dsa->dsa_dr = NULL;
1568 	dsa->dsa_done = done;
1569 	dsa->dsa_zgd = zgd;
1570 	dsa->dsa_tx = tx;
1571 
1572 	zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx),
1573 	    zgd->zgd_bp, zgd->zgd_db->db_data, zgd->zgd_db->db_size,
1574 	    zp, dmu_sync_late_arrival_ready, NULL,
1575 	    NULL, dmu_sync_late_arrival_done, dsa, ZIO_PRIORITY_SYNC_WRITE,
1576 	    ZIO_FLAG_CANFAIL, zb));
1577 
1578 	return (0);
1579 }
1580 
1581 /*
1582  * Intent log support: sync the block associated with db to disk.
1583  * N.B. and XXX: the caller is responsible for making sure that the
1584  * data isn't changing while dmu_sync() is writing it.
1585  *
1586  * Return values:
1587  *
1588  *	EEXIST: this txg has already been synced, so there's nothing to do.
1589  *		The caller should not log the write.
1590  *
1591  *	ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1592  *		The caller should not log the write.
1593  *
1594  *	EALREADY: this block is already in the process of being synced.
1595  *		The caller should track its progress (somehow).
1596  *
1597  *	EIO: could not do the I/O.
1598  *		The caller should do a txg_wait_synced().
1599  *
1600  *	0: the I/O has been initiated.
1601  *		The caller should log this blkptr in the done callback.
1602  *		It is possible that the I/O will fail, in which case
1603  *		the error will be reported to the done callback and
1604  *		propagated to pio from zio_done().
1605  */
1606 int
1607 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
1608 {
1609 	blkptr_t *bp = zgd->zgd_bp;
1610 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
1611 	objset_t *os = db->db_objset;
1612 	dsl_dataset_t *ds = os->os_dsl_dataset;
1613 	dbuf_dirty_record_t *dr;
1614 	dmu_sync_arg_t *dsa;
1615 	zbookmark_phys_t zb;
1616 	zio_prop_t zp;
1617 	dnode_t *dn;
1618 
1619 	ASSERT(pio != NULL);
1620 	ASSERT(txg != 0);
1621 
1622 	SET_BOOKMARK(&zb, ds->ds_object,
1623 	    db->db.db_object, db->db_level, db->db_blkid);
1624 
1625 	DB_DNODE_ENTER(db);
1626 	dn = DB_DNODE(db);
1627 	dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
1628 	DB_DNODE_EXIT(db);
1629 
1630 	/*
1631 	 * If we're frozen (running ziltest), we always need to generate a bp.
1632 	 */
1633 	if (txg > spa_freeze_txg(os->os_spa))
1634 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1635 
1636 	/*
1637 	 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1638 	 * and us.  If we determine that this txg is not yet syncing,
1639 	 * but it begins to sync a moment later, that's OK because the
1640 	 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
1641 	 */
1642 	mutex_enter(&db->db_mtx);
1643 
1644 	if (txg <= spa_last_synced_txg(os->os_spa)) {
1645 		/*
1646 		 * This txg has already synced.  There's nothing to do.
1647 		 */
1648 		mutex_exit(&db->db_mtx);
1649 		return (SET_ERROR(EEXIST));
1650 	}
1651 
1652 	if (txg <= spa_syncing_txg(os->os_spa)) {
1653 		/*
1654 		 * This txg is currently syncing, so we can't mess with
1655 		 * the dirty record anymore; just write a new log block.
1656 		 */
1657 		mutex_exit(&db->db_mtx);
1658 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1659 	}
1660 
1661 	dr = db->db_last_dirty;
1662 	while (dr && dr->dr_txg != txg)
1663 		dr = dr->dr_next;
1664 
1665 	if (dr == NULL) {
1666 		/*
1667 		 * There's no dr for this dbuf, so it must have been freed.
1668 		 * There's no need to log writes to freed blocks, so we're done.
1669 		 */
1670 		mutex_exit(&db->db_mtx);
1671 		return (SET_ERROR(ENOENT));
1672 	}
1673 
1674 	ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg);
1675 
1676 	/*
1677 	 * Assume the on-disk data is X, the current syncing data (in
1678 	 * txg - 1) is Y, and the current in-memory data is Z (currently
1679 	 * in dmu_sync).
1680 	 *
1681 	 * We usually want to perform a nopwrite if X and Z are the
1682 	 * same.  However, if Y is different (i.e. the BP is going to
1683 	 * change before this write takes effect), then a nopwrite will
1684 	 * be incorrect - we would override with X, which could have
1685 	 * been freed when Y was written.
1686 	 *
1687 	 * (Note that this is not a concern when we are nop-writing from
1688 	 * syncing context, because X and Y must be identical, because
1689 	 * all previous txgs have been synced.)
1690 	 *
1691 	 * Therefore, we disable nopwrite if the current BP could change
1692 	 * before this TXG.  There are two ways it could change: by
1693 	 * being dirty (dr_next is non-NULL), or by being freed
1694 	 * (dnode_block_freed()).  This behavior is verified by
1695 	 * zio_done(), which VERIFYs that the override BP is identical
1696 	 * to the on-disk BP.
1697 	 */
1698 	DB_DNODE_ENTER(db);
1699 	dn = DB_DNODE(db);
1700 	if (dr->dr_next != NULL || dnode_block_freed(dn, db->db_blkid))
1701 		zp.zp_nopwrite = B_FALSE;
1702 	DB_DNODE_EXIT(db);
1703 
1704 	ASSERT(dr->dr_txg == txg);
1705 	if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
1706 	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
1707 		/*
1708 		 * We have already issued a sync write for this buffer,
1709 		 * or this buffer has already been synced.  It could not
1710 		 * have been dirtied since, or we would have cleared the state.
1711 		 */
1712 		mutex_exit(&db->db_mtx);
1713 		return (SET_ERROR(EALREADY));
1714 	}
1715 
1716 	ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
1717 	dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
1718 	mutex_exit(&db->db_mtx);
1719 
1720 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1721 	dsa->dsa_dr = dr;
1722 	dsa->dsa_done = done;
1723 	dsa->dsa_zgd = zgd;
1724 	dsa->dsa_tx = NULL;
1725 
1726 	zio_nowait(arc_write(pio, os->os_spa, txg,
1727 	    bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db),
1728 	    &zp, dmu_sync_ready, NULL, NULL, dmu_sync_done, dsa,
1729 	    ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb));
1730 
1731 	return (0);
1732 }
1733 
1734 int
1735 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
1736     dmu_tx_t *tx)
1737 {
1738 	dnode_t *dn;
1739 	int err;
1740 
1741 	err = dnode_hold(os, object, FTAG, &dn);
1742 	if (err)
1743 		return (err);
1744 	err = dnode_set_blksz(dn, size, ibs, tx);
1745 	dnode_rele(dn, FTAG);
1746 	return (err);
1747 }
1748 
1749 void
1750 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
1751     dmu_tx_t *tx)
1752 {
1753 	dnode_t *dn;
1754 
1755 	/*
1756 	 * Send streams include each object's checksum function.  This
1757 	 * check ensures that the receiving system can understand the
1758 	 * checksum function transmitted.
1759 	 */
1760 	ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS);
1761 
1762 	VERIFY0(dnode_hold(os, object, FTAG, &dn));
1763 	ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS);
1764 	dn->dn_checksum = checksum;
1765 	dnode_setdirty(dn, tx);
1766 	dnode_rele(dn, FTAG);
1767 }
1768 
1769 void
1770 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
1771     dmu_tx_t *tx)
1772 {
1773 	dnode_t *dn;
1774 
1775 	/*
1776 	 * Send streams include each object's compression function.  This
1777 	 * check ensures that the receiving system can understand the
1778 	 * compression function transmitted.
1779 	 */
1780 	ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS);
1781 
1782 	VERIFY0(dnode_hold(os, object, FTAG, &dn));
1783 	dn->dn_compress = compress;
1784 	dnode_setdirty(dn, tx);
1785 	dnode_rele(dn, FTAG);
1786 }
1787 
1788 int zfs_mdcomp_disable = 0;
1789 
1790 /*
1791  * When the "redundant_metadata" property is set to "most", only indirect
1792  * blocks of this level and higher will have an additional ditto block.
1793  */
1794 int zfs_redundant_metadata_most_ditto_level = 2;
1795 
1796 void
1797 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
1798 {
1799 	dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
1800 	boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
1801 	    (wp & WP_SPILL));
1802 	enum zio_checksum checksum = os->os_checksum;
1803 	enum zio_compress compress = os->os_compress;
1804 	enum zio_checksum dedup_checksum = os->os_dedup_checksum;
1805 	boolean_t dedup = B_FALSE;
1806 	boolean_t nopwrite = B_FALSE;
1807 	boolean_t dedup_verify = os->os_dedup_verify;
1808 	int copies = os->os_copies;
1809 
1810 	/*
1811 	 * We maintain different write policies for each of the following
1812 	 * types of data:
1813 	 *	 1. metadata
1814 	 *	 2. preallocated blocks (i.e. level-0 blocks of a dump device)
1815 	 *	 3. all other level 0 blocks
1816 	 */
1817 	if (ismd) {
1818 		if (zfs_mdcomp_disable) {
1819 			compress = ZIO_COMPRESS_EMPTY;
1820 		} else {
1821 			/*
1822 			 * XXX -- we should design a compression algorithm
1823 			 * that specializes in arrays of bps.
1824 			 */
1825 			compress = zio_compress_select(os->os_spa,
1826 			    ZIO_COMPRESS_ON, ZIO_COMPRESS_ON);
1827 		}
1828 
1829 		/*
1830 		 * Metadata always gets checksummed.  If the data
1831 		 * checksum is multi-bit correctable, and it's not a
1832 		 * ZBT-style checksum, then it's suitable for metadata
1833 		 * as well.  Otherwise, the metadata checksum defaults
1834 		 * to fletcher4.
1835 		 */
1836 		if (!(zio_checksum_table[checksum].ci_flags &
1837 		    ZCHECKSUM_FLAG_METADATA) ||
1838 		    (zio_checksum_table[checksum].ci_flags &
1839 		    ZCHECKSUM_FLAG_EMBEDDED))
1840 			checksum = ZIO_CHECKSUM_FLETCHER_4;
1841 
1842 		if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL ||
1843 		    (os->os_redundant_metadata ==
1844 		    ZFS_REDUNDANT_METADATA_MOST &&
1845 		    (level >= zfs_redundant_metadata_most_ditto_level ||
1846 		    DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))))
1847 			copies++;
1848 	} else if (wp & WP_NOFILL) {
1849 		ASSERT(level == 0);
1850 
1851 		/*
1852 		 * If we're writing preallocated blocks, we aren't actually
1853 		 * writing them so don't set any policy properties.  These
1854 		 * blocks are currently only used by an external subsystem
1855 		 * outside of zfs (i.e. dump) and not written by the zio
1856 		 * pipeline.
1857 		 */
1858 		compress = ZIO_COMPRESS_OFF;
1859 		checksum = ZIO_CHECKSUM_NOPARITY;
1860 	} else {
1861 		compress = zio_compress_select(os->os_spa, dn->dn_compress,
1862 		    compress);
1863 
1864 		checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
1865 		    zio_checksum_select(dn->dn_checksum, checksum) :
1866 		    dedup_checksum;
1867 
1868 		/*
1869 		 * Determine dedup setting.  If we are in dmu_sync(),
1870 		 * we won't actually dedup now because that's all
1871 		 * done in syncing context; but we do want to use the
1872 		 * dedup checkum.  If the checksum is not strong
1873 		 * enough to ensure unique signatures, force
1874 		 * dedup_verify.
1875 		 */
1876 		if (dedup_checksum != ZIO_CHECKSUM_OFF) {
1877 			dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
1878 			if (!(zio_checksum_table[checksum].ci_flags &
1879 			    ZCHECKSUM_FLAG_DEDUP))
1880 				dedup_verify = B_TRUE;
1881 		}
1882 
1883 		/*
1884 		 * Enable nopwrite if we have secure enough checksum
1885 		 * algorithm (see comment in zio_nop_write) and
1886 		 * compression is enabled.  We don't enable nopwrite if
1887 		 * dedup is enabled as the two features are mutually
1888 		 * exclusive.
1889 		 */
1890 		nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags &
1891 		    ZCHECKSUM_FLAG_NOPWRITE) &&
1892 		    compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
1893 	}
1894 
1895 	zp->zp_checksum = checksum;
1896 	zp->zp_compress = compress;
1897 	zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
1898 	zp->zp_level = level;
1899 	zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa));
1900 	zp->zp_dedup = dedup;
1901 	zp->zp_dedup_verify = dedup && dedup_verify;
1902 	zp->zp_nopwrite = nopwrite;
1903 }
1904 
1905 int
1906 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
1907 {
1908 	dnode_t *dn;
1909 	int err;
1910 
1911 	/*
1912 	 * Sync any current changes before
1913 	 * we go trundling through the block pointers.
1914 	 */
1915 	err = dmu_object_wait_synced(os, object);
1916 	if (err) {
1917 		return (err);
1918 	}
1919 
1920 	err = dnode_hold(os, object, FTAG, &dn);
1921 	if (err) {
1922 		return (err);
1923 	}
1924 
1925 	err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
1926 	dnode_rele(dn, FTAG);
1927 
1928 	return (err);
1929 }
1930 
1931 /*
1932  * Given the ZFS object, if it contains any dirty nodes
1933  * this function flushes all dirty blocks to disk. This
1934  * ensures the DMU object info is updated. A more efficient
1935  * future version might just find the TXG with the maximum
1936  * ID and wait for that to be synced.
1937  */
1938 int
1939 dmu_object_wait_synced(objset_t *os, uint64_t object)
1940 {
1941 	dnode_t *dn;
1942 	int error, i;
1943 
1944 	error = dnode_hold(os, object, FTAG, &dn);
1945 	if (error) {
1946 		return (error);
1947 	}
1948 
1949 	for (i = 0; i < TXG_SIZE; i++) {
1950 		if (list_link_active(&dn->dn_dirty_link[i])) {
1951 			break;
1952 		}
1953 	}
1954 	dnode_rele(dn, FTAG);
1955 	if (i != TXG_SIZE) {
1956 		txg_wait_synced(dmu_objset_pool(os), 0);
1957 	}
1958 
1959 	return (0);
1960 }
1961 
1962 void
1963 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
1964 {
1965 	dnode_phys_t *dnp;
1966 
1967 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1968 	mutex_enter(&dn->dn_mtx);
1969 
1970 	dnp = dn->dn_phys;
1971 
1972 	doi->doi_data_block_size = dn->dn_datablksz;
1973 	doi->doi_metadata_block_size = dn->dn_indblkshift ?
1974 	    1ULL << dn->dn_indblkshift : 0;
1975 	doi->doi_type = dn->dn_type;
1976 	doi->doi_bonus_type = dn->dn_bonustype;
1977 	doi->doi_bonus_size = dn->dn_bonuslen;
1978 	doi->doi_indirection = dn->dn_nlevels;
1979 	doi->doi_checksum = dn->dn_checksum;
1980 	doi->doi_compress = dn->dn_compress;
1981 	doi->doi_nblkptr = dn->dn_nblkptr;
1982 	doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
1983 	doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
1984 	doi->doi_fill_count = 0;
1985 	for (int i = 0; i < dnp->dn_nblkptr; i++)
1986 		doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]);
1987 
1988 	mutex_exit(&dn->dn_mtx);
1989 	rw_exit(&dn->dn_struct_rwlock);
1990 }
1991 
1992 /*
1993  * Get information on a DMU object.
1994  * If doi is NULL, just indicates whether the object exists.
1995  */
1996 int
1997 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
1998 {
1999 	dnode_t *dn;
2000 	int err = dnode_hold(os, object, FTAG, &dn);
2001 
2002 	if (err)
2003 		return (err);
2004 
2005 	if (doi != NULL)
2006 		dmu_object_info_from_dnode(dn, doi);
2007 
2008 	dnode_rele(dn, FTAG);
2009 	return (0);
2010 }
2011 
2012 /*
2013  * As above, but faster; can be used when you have a held dbuf in hand.
2014  */
2015 void
2016 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
2017 {
2018 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2019 
2020 	DB_DNODE_ENTER(db);
2021 	dmu_object_info_from_dnode(DB_DNODE(db), doi);
2022 	DB_DNODE_EXIT(db);
2023 }
2024 
2025 /*
2026  * Faster still when you only care about the size.
2027  * This is specifically optimized for zfs_getattr().
2028  */
2029 void
2030 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
2031     u_longlong_t *nblk512)
2032 {
2033 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2034 	dnode_t *dn;
2035 
2036 	DB_DNODE_ENTER(db);
2037 	dn = DB_DNODE(db);
2038 
2039 	*blksize = dn->dn_datablksz;
2040 	/* add 1 for dnode space */
2041 	*nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
2042 	    SPA_MINBLOCKSHIFT) + 1;
2043 	DB_DNODE_EXIT(db);
2044 }
2045 
2046 void
2047 byteswap_uint64_array(void *vbuf, size_t size)
2048 {
2049 	uint64_t *buf = vbuf;
2050 	size_t count = size >> 3;
2051 	int i;
2052 
2053 	ASSERT((size & 7) == 0);
2054 
2055 	for (i = 0; i < count; i++)
2056 		buf[i] = BSWAP_64(buf[i]);
2057 }
2058 
2059 void
2060 byteswap_uint32_array(void *vbuf, size_t size)
2061 {
2062 	uint32_t *buf = vbuf;
2063 	size_t count = size >> 2;
2064 	int i;
2065 
2066 	ASSERT((size & 3) == 0);
2067 
2068 	for (i = 0; i < count; i++)
2069 		buf[i] = BSWAP_32(buf[i]);
2070 }
2071 
2072 void
2073 byteswap_uint16_array(void *vbuf, size_t size)
2074 {
2075 	uint16_t *buf = vbuf;
2076 	size_t count = size >> 1;
2077 	int i;
2078 
2079 	ASSERT((size & 1) == 0);
2080 
2081 	for (i = 0; i < count; i++)
2082 		buf[i] = BSWAP_16(buf[i]);
2083 }
2084 
2085 /* ARGSUSED */
2086 void
2087 byteswap_uint8_array(void *vbuf, size_t size)
2088 {
2089 }
2090 
2091 void
2092 dmu_init(void)
2093 {
2094 	zfs_dbgmsg_init();
2095 	sa_cache_init();
2096 	xuio_stat_init();
2097 	dmu_objset_init();
2098 	dnode_init();
2099 	zfetch_init();
2100 	l2arc_init();
2101 	arc_init();
2102 	dbuf_init();
2103 }
2104 
2105 void
2106 dmu_fini(void)
2107 {
2108 	arc_fini(); /* arc depends on l2arc, so arc must go first */
2109 	l2arc_fini();
2110 	zfetch_fini();
2111 	dbuf_fini();
2112 	dnode_fini();
2113 	dmu_objset_fini();
2114 	xuio_stat_fini();
2115 	sa_cache_fini();
2116 	zfs_dbgmsg_fini();
2117 }
2118