xref: /illumos-gate/usr/src/uts/common/fs/zfs/dmu.c (revision 084fd14f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 /*
25  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26  * Copyright 2019 Joyent, Inc.
27  * Copyright 2016 Nexenta Systems, Inc. All rights reserved.
28  * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
29  * Copyright (c) 2018 DilOS
30  */
31 
32 #include <sys/dmu.h>
33 #include <sys/dmu_impl.h>
34 #include <sys/dmu_tx.h>
35 #include <sys/dbuf.h>
36 #include <sys/dnode.h>
37 #include <sys/zfs_context.h>
38 #include <sys/dmu_objset.h>
39 #include <sys/dmu_traverse.h>
40 #include <sys/dsl_dataset.h>
41 #include <sys/dsl_dir.h>
42 #include <sys/dsl_pool.h>
43 #include <sys/dsl_synctask.h>
44 #include <sys/dsl_prop.h>
45 #include <sys/dmu_zfetch.h>
46 #include <sys/zfs_ioctl.h>
47 #include <sys/zap.h>
48 #include <sys/zio_checksum.h>
49 #include <sys/zio_compress.h>
50 #include <sys/sa.h>
51 #include <sys/zfeature.h>
52 #include <sys/abd.h>
53 #ifdef _KERNEL
54 #include <sys/vmsystm.h>
55 #include <sys/zfs_znode.h>
56 #endif
57 
58 static xuio_stats_t xuio_stats = {
59 	{ "onloan_read_buf",	KSTAT_DATA_UINT64 },
60 	{ "onloan_write_buf",	KSTAT_DATA_UINT64 },
61 	{ "read_buf_copied",	KSTAT_DATA_UINT64 },
62 	{ "read_buf_nocopy",	KSTAT_DATA_UINT64 },
63 	{ "write_buf_copied",	KSTAT_DATA_UINT64 },
64 	{ "write_buf_nocopy",	KSTAT_DATA_UINT64 }
65 };
66 
67 #define	XUIOSTAT_INCR(stat, val)	\
68 	atomic_add_64(&xuio_stats.stat.value.ui64, (val))
69 #define	XUIOSTAT_BUMP(stat)	XUIOSTAT_INCR(stat, 1)
70 
71 /*
72  * Enable/disable nopwrite feature.
73  */
74 int zfs_nopwrite_enabled = 1;
75 
76 /*
77  * Tunable to control percentage of dirtied blocks from frees in one TXG.
78  * After this threshold is crossed, additional dirty blocks from frees
79  * wait until the next TXG.
80  * A value of zero will disable this throttle.
81  */
82 uint32_t zfs_per_txg_dirty_frees_percent = 30;
83 
84 /*
85  * This can be used for testing, to ensure that certain actions happen
86  * while in the middle of a remap (which might otherwise complete too
87  * quickly).
88  */
89 int zfs_object_remap_one_indirect_delay_ticks = 0;
90 
91 /*
92  * Limit the amount we can prefetch with one call to this amount.  This
93  * helps to limit the amount of memory that can be used by prefetching.
94  * Larger objects should be prefetched a bit at a time.
95  */
96 uint64_t dmu_prefetch_max = 8 * SPA_MAXBLOCKSIZE;
97 
98 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
99 	{ DMU_BSWAP_UINT8,  TRUE,  FALSE, FALSE, "unallocated"		},
100 	{ DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "object directory"	},
101 	{ DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "object array"		},
102 	{ DMU_BSWAP_UINT8,  TRUE,  FALSE, FALSE, "packed nvlist"	},
103 	{ DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "packed nvlist size"	},
104 	{ DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "bpobj"	},
105 	{ DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "bpobj header"		},
106 	{ DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "SPA space map header"	},
107 	{ DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "SPA space map"	},
108 	{ DMU_BSWAP_UINT64, TRUE,  FALSE, TRUE,  "ZIL intent log"	},
109 	{ DMU_BSWAP_DNODE,  TRUE,  FALSE, TRUE,  "DMU dnode"	},
110 	{ DMU_BSWAP_OBJSET, TRUE,  TRUE,  FALSE, "DMU objset"	},
111 	{ DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "DSL directory"	},
112 	{ DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL directory child map" },
113 	{ DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL dataset snap map"	},
114 	{ DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL props"	},
115 	{ DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "DSL dataset"	},
116 	{ DMU_BSWAP_ZNODE,  TRUE,  FALSE, FALSE, "ZFS znode"	},
117 	{ DMU_BSWAP_OLDACL, TRUE,  FALSE, TRUE,  "ZFS V0 ACL"	},
118 	{ DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "ZFS plain file"	},
119 	{ DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS directory"	},
120 	{ DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "ZFS master node"	},
121 	{ DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS delete queue"	},
122 	{ DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "zvol object"	},
123 	{ DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "zvol prop"	},
124 	{ DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "other uint8[]"	},
125 	{ DMU_BSWAP_UINT64, FALSE, FALSE, TRUE,  "other uint64[]"	},
126 	{ DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "other ZAP"	},
127 	{ DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "persistent error log"	},
128 	{ DMU_BSWAP_UINT8,  TRUE,  FALSE, FALSE, "SPA history"	},
129 	{ DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "SPA history offsets"	},
130 	{ DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "Pool properties"	},
131 	{ DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL permissions"	},
132 	{ DMU_BSWAP_ACL,    TRUE,  FALSE, TRUE,  "ZFS ACL"	},
133 	{ DMU_BSWAP_UINT8,  TRUE,  FALSE, TRUE,  "ZFS SYSACL"	},
134 	{ DMU_BSWAP_UINT8,  TRUE,  FALSE, TRUE,  "FUID table"	},
135 	{ DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "FUID table size"	},
136 	{ DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL dataset next clones" },
137 	{ DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "scan work queue"	},
138 	{ DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS user/group/project used"},
139 	{ DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS user/group/proj quota"},
140 	{ DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "snapshot refcount tags" },
141 	{ DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "DDT ZAP algorithm"	},
142 	{ DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "DDT statistics"	},
143 	{ DMU_BSWAP_UINT8,  TRUE,  FALSE, TRUE,  "System attributes"	},
144 	{ DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "SA master node"	},
145 	{ DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "SA attr registration"	},
146 	{ DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "SA attr layouts"	},
147 	{ DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "scan translations"	},
148 	{ DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "deduplicated block"	},
149 	{ DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL deadlist map" },
150 	{ DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "DSL deadlist map hdr"	},
151 	{ DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL dir clones"	},
152 	{ DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "bpobj subobj"		}
153 };
154 
155 const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
156 	{	byteswap_uint8_array,	"uint8"		},
157 	{	byteswap_uint16_array,	"uint16"	},
158 	{	byteswap_uint32_array,	"uint32"	},
159 	{	byteswap_uint64_array,	"uint64"	},
160 	{	zap_byteswap,		"zap"		},
161 	{	dnode_buf_byteswap,	"dnode"		},
162 	{	dmu_objset_byteswap,	"objset"	},
163 	{	zfs_znode_byteswap,	"znode"		},
164 	{	zfs_oldacl_byteswap,	"oldacl"	},
165 	{	zfs_acl_byteswap,	"acl"		}
166 };
167 
168 int
169 dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset,
170     void *tag, dmu_buf_t **dbp)
171 {
172 	uint64_t blkid;
173 	dmu_buf_impl_t *db;
174 
175 	blkid = dbuf_whichblock(dn, 0, offset);
176 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
177 	db = dbuf_hold(dn, blkid, tag);
178 	rw_exit(&dn->dn_struct_rwlock);
179 
180 	if (db == NULL) {
181 		*dbp = NULL;
182 		return (SET_ERROR(EIO));
183 	}
184 
185 	*dbp = &db->db;
186 	return (0);
187 }
188 int
189 dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
190     void *tag, dmu_buf_t **dbp)
191 {
192 	dnode_t *dn;
193 	uint64_t blkid;
194 	dmu_buf_impl_t *db;
195 	int err;
196 
197 	err = dnode_hold(os, object, FTAG, &dn);
198 	if (err)
199 		return (err);
200 	blkid = dbuf_whichblock(dn, 0, offset);
201 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
202 	db = dbuf_hold(dn, blkid, tag);
203 	rw_exit(&dn->dn_struct_rwlock);
204 	dnode_rele(dn, FTAG);
205 
206 	if (db == NULL) {
207 		*dbp = NULL;
208 		return (SET_ERROR(EIO));
209 	}
210 
211 	*dbp = &db->db;
212 	return (err);
213 }
214 
215 int
216 dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
217     void *tag, dmu_buf_t **dbp, int flags)
218 {
219 	int err;
220 	int db_flags = DB_RF_CANFAIL;
221 
222 	if (flags & DMU_READ_NO_PREFETCH)
223 		db_flags |= DB_RF_NOPREFETCH;
224 	if (flags & DMU_READ_NO_DECRYPT)
225 		db_flags |= DB_RF_NO_DECRYPT;
226 
227 	err = dmu_buf_hold_noread_by_dnode(dn, offset, tag, dbp);
228 	if (err == 0) {
229 		dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
230 		err = dbuf_read(db, NULL, db_flags);
231 		if (err != 0) {
232 			dbuf_rele(db, tag);
233 			*dbp = NULL;
234 		}
235 	}
236 
237 	return (err);
238 }
239 
240 int
241 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
242     void *tag, dmu_buf_t **dbp, int flags)
243 {
244 	int err;
245 	int db_flags = DB_RF_CANFAIL;
246 
247 	if (flags & DMU_READ_NO_PREFETCH)
248 		db_flags |= DB_RF_NOPREFETCH;
249 	if (flags & DMU_READ_NO_DECRYPT)
250 		db_flags |= DB_RF_NO_DECRYPT;
251 
252 	err = dmu_buf_hold_noread(os, object, offset, tag, dbp);
253 	if (err == 0) {
254 		dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
255 		err = dbuf_read(db, NULL, db_flags);
256 		if (err != 0) {
257 			dbuf_rele(db, tag);
258 			*dbp = NULL;
259 		}
260 	}
261 
262 	return (err);
263 }
264 
265 int
266 dmu_bonus_max(void)
267 {
268 	return (DN_OLD_MAX_BONUSLEN);
269 }
270 
271 int
272 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
273 {
274 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
275 	dnode_t *dn;
276 	int error;
277 
278 	DB_DNODE_ENTER(db);
279 	dn = DB_DNODE(db);
280 
281 	if (dn->dn_bonus != db) {
282 		error = SET_ERROR(EINVAL);
283 	} else if (newsize < 0 || newsize > db_fake->db_size) {
284 		error = SET_ERROR(EINVAL);
285 	} else {
286 		dnode_setbonuslen(dn, newsize, tx);
287 		error = 0;
288 	}
289 
290 	DB_DNODE_EXIT(db);
291 	return (error);
292 }
293 
294 int
295 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
296 {
297 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
298 	dnode_t *dn;
299 	int error;
300 
301 	DB_DNODE_ENTER(db);
302 	dn = DB_DNODE(db);
303 
304 	if (!DMU_OT_IS_VALID(type)) {
305 		error = SET_ERROR(EINVAL);
306 	} else if (dn->dn_bonus != db) {
307 		error = SET_ERROR(EINVAL);
308 	} else {
309 		dnode_setbonus_type(dn, type, tx);
310 		error = 0;
311 	}
312 
313 	DB_DNODE_EXIT(db);
314 	return (error);
315 }
316 
317 dmu_object_type_t
318 dmu_get_bonustype(dmu_buf_t *db_fake)
319 {
320 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
321 	dnode_t *dn;
322 	dmu_object_type_t type;
323 
324 	DB_DNODE_ENTER(db);
325 	dn = DB_DNODE(db);
326 	type = dn->dn_bonustype;
327 	DB_DNODE_EXIT(db);
328 
329 	return (type);
330 }
331 
332 int
333 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
334 {
335 	dnode_t *dn;
336 	int error;
337 
338 	error = dnode_hold(os, object, FTAG, &dn);
339 	dbuf_rm_spill(dn, tx);
340 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
341 	dnode_rm_spill(dn, tx);
342 	rw_exit(&dn->dn_struct_rwlock);
343 	dnode_rele(dn, FTAG);
344 	return (error);
345 }
346 
347 /*
348  * Lookup and hold the bonus buffer for the provided dnode.  If the dnode
349  * has not yet been allocated a new bonus dbuf a will be allocated.
350  * Returns ENOENT, EIO, or 0.
351  */
352 int dmu_bonus_hold_by_dnode(dnode_t *dn, void *tag, dmu_buf_t **dbp,
353     uint32_t flags)
354 {
355 	dmu_buf_impl_t *db;
356 	int error;
357 	uint32_t db_flags = DB_RF_MUST_SUCCEED;
358 
359 	if (flags & DMU_READ_NO_PREFETCH)
360 		db_flags |= DB_RF_NOPREFETCH;
361 	if (flags & DMU_READ_NO_DECRYPT)
362 		db_flags |= DB_RF_NO_DECRYPT;
363 
364 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
365 	if (dn->dn_bonus == NULL) {
366 		rw_exit(&dn->dn_struct_rwlock);
367 		rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
368 		if (dn->dn_bonus == NULL)
369 			dbuf_create_bonus(dn);
370 	}
371 	db = dn->dn_bonus;
372 
373 	/* as long as the bonus buf is held, the dnode will be held */
374 	if (zfs_refcount_add(&db->db_holds, tag) == 1) {
375 		VERIFY(dnode_add_ref(dn, db));
376 		atomic_inc_32(&dn->dn_dbufs_count);
377 	}
378 
379 	/*
380 	 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
381 	 * hold and incrementing the dbuf count to ensure that dnode_move() sees
382 	 * a dnode hold for every dbuf.
383 	 */
384 	rw_exit(&dn->dn_struct_rwlock);
385 
386 	error = dbuf_read(db, NULL, db_flags);
387 	if (error) {
388 		dnode_evict_bonus(dn);
389 		dbuf_rele(db, tag);
390 		*dbp = NULL;
391 		return (error);
392 	}
393 
394 	*dbp = &db->db;
395 	return (0);
396 }
397 
398 /*
399  * returns ENOENT, EIO, or 0.
400  */
401 int
402 dmu_bonus_hold_impl(objset_t *os, uint64_t object, void *tag, uint32_t flags,
403     dmu_buf_t **dbp)
404 {
405 	dnode_t *dn;
406 	dmu_buf_impl_t *db;
407 	int error;
408 	uint32_t db_flags = DB_RF_MUST_SUCCEED;
409 
410 	if (flags & DMU_READ_NO_PREFETCH)
411 		db_flags |= DB_RF_NOPREFETCH;
412 	if (flags & DMU_READ_NO_DECRYPT)
413 		db_flags |= DB_RF_NO_DECRYPT;
414 
415 	error = dnode_hold(os, object, FTAG, &dn);
416 	if (error)
417 		return (error);
418 
419 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
420 	if (dn->dn_bonus == NULL) {
421 		rw_exit(&dn->dn_struct_rwlock);
422 		rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
423 		if (dn->dn_bonus == NULL)
424 			dbuf_create_bonus(dn);
425 	}
426 	db = dn->dn_bonus;
427 
428 	/* as long as the bonus buf is held, the dnode will be held */
429 	if (zfs_refcount_add(&db->db_holds, tag) == 1) {
430 		VERIFY(dnode_add_ref(dn, db));
431 		atomic_inc_32(&dn->dn_dbufs_count);
432 	}
433 
434 	/*
435 	 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
436 	 * hold and incrementing the dbuf count to ensure that dnode_move() sees
437 	 * a dnode hold for every dbuf.
438 	 */
439 	rw_exit(&dn->dn_struct_rwlock);
440 
441 	dnode_rele(dn, FTAG);
442 
443 	error = dbuf_read(db, NULL, db_flags);
444 	if (error) {
445 		dnode_evict_bonus(dn);
446 		dbuf_rele(db, tag);
447 		*dbp = NULL;
448 		return (error);
449 	}
450 
451 	*dbp = &db->db;
452 	return (0);
453 }
454 
455 int
456 dmu_bonus_hold(objset_t *os, uint64_t obj, void *tag, dmu_buf_t **dbp)
457 {
458 	return (dmu_bonus_hold_impl(os, obj, tag, DMU_READ_NO_PREFETCH, dbp));
459 }
460 
461 /*
462  * returns ENOENT, EIO, or 0.
463  *
464  * This interface will allocate a blank spill dbuf when a spill blk
465  * doesn't already exist on the dnode.
466  *
467  * if you only want to find an already existing spill db, then
468  * dmu_spill_hold_existing() should be used.
469  */
470 int
471 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp)
472 {
473 	dmu_buf_impl_t *db = NULL;
474 	int err;
475 
476 	if ((flags & DB_RF_HAVESTRUCT) == 0)
477 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
478 
479 	db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
480 
481 	if ((flags & DB_RF_HAVESTRUCT) == 0)
482 		rw_exit(&dn->dn_struct_rwlock);
483 
484 	ASSERT(db != NULL);
485 	err = dbuf_read(db, NULL, flags);
486 	if (err == 0)
487 		*dbp = &db->db;
488 	else
489 		dbuf_rele(db, tag);
490 	return (err);
491 }
492 
493 int
494 dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
495 {
496 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
497 	dnode_t *dn;
498 	int err;
499 
500 	DB_DNODE_ENTER(db);
501 	dn = DB_DNODE(db);
502 
503 	if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
504 		err = SET_ERROR(EINVAL);
505 	} else {
506 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
507 
508 		if (!dn->dn_have_spill) {
509 			err = SET_ERROR(ENOENT);
510 		} else {
511 			err = dmu_spill_hold_by_dnode(dn,
512 			    DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
513 		}
514 
515 		rw_exit(&dn->dn_struct_rwlock);
516 	}
517 
518 	DB_DNODE_EXIT(db);
519 	return (err);
520 }
521 
522 int
523 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, uint32_t flags, void *tag,
524     dmu_buf_t **dbp)
525 {
526 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
527 	dnode_t *dn;
528 	int err;
529 	uint32_t db_flags = DB_RF_CANFAIL;
530 
531 	if (flags & DMU_READ_NO_DECRYPT)
532 		db_flags |= DB_RF_NO_DECRYPT;
533 
534 	DB_DNODE_ENTER(db);
535 	dn = DB_DNODE(db);
536 	err = dmu_spill_hold_by_dnode(dn, db_flags, tag, dbp);
537 	DB_DNODE_EXIT(db);
538 
539 	return (err);
540 }
541 
542 /*
543  * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
544  * to take a held dnode rather than <os, object> -- the lookup is wasteful,
545  * and can induce severe lock contention when writing to several files
546  * whose dnodes are in the same block.
547  */
548 int
549 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
550     boolean_t read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags)
551 {
552 	dmu_buf_t **dbp;
553 	uint64_t blkid, nblks, i;
554 	uint32_t dbuf_flags;
555 	int err;
556 	zio_t *zio;
557 
558 	ASSERT(length <= DMU_MAX_ACCESS);
559 
560 	/*
561 	 * Note: We directly notify the prefetch code of this read, so that
562 	 * we can tell it about the multi-block read.  dbuf_read() only knows
563 	 * about the one block it is accessing.
564 	 */
565 	dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT |
566 	    DB_RF_NOPREFETCH;
567 
568 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
569 	if (dn->dn_datablkshift) {
570 		int blkshift = dn->dn_datablkshift;
571 		nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) -
572 		    P2ALIGN(offset, 1ULL << blkshift)) >> blkshift;
573 	} else {
574 		if (offset + length > dn->dn_datablksz) {
575 			zfs_panic_recover("zfs: accessing past end of object "
576 			    "%llx/%llx (size=%u access=%llu+%llu)",
577 			    (longlong_t)dn->dn_objset->
578 			    os_dsl_dataset->ds_object,
579 			    (longlong_t)dn->dn_object, dn->dn_datablksz,
580 			    (longlong_t)offset, (longlong_t)length);
581 			rw_exit(&dn->dn_struct_rwlock);
582 			return (SET_ERROR(EIO));
583 		}
584 		nblks = 1;
585 	}
586 	dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
587 
588 	zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL);
589 	blkid = dbuf_whichblock(dn, 0, offset);
590 	for (i = 0; i < nblks; i++) {
591 		dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag);
592 		if (db == NULL) {
593 			rw_exit(&dn->dn_struct_rwlock);
594 			dmu_buf_rele_array(dbp, nblks, tag);
595 			zio_nowait(zio);
596 			return (SET_ERROR(EIO));
597 		}
598 
599 		/* initiate async i/o */
600 		if (read)
601 			(void) dbuf_read(db, zio, dbuf_flags);
602 		dbp[i] = &db->db;
603 	}
604 
605 	if ((flags & DMU_READ_NO_PREFETCH) == 0 &&
606 	    DNODE_META_IS_CACHEABLE(dn) && length <= zfetch_array_rd_sz) {
607 		dmu_zfetch(&dn->dn_zfetch, blkid, nblks,
608 		    read && DNODE_IS_CACHEABLE(dn));
609 	}
610 	rw_exit(&dn->dn_struct_rwlock);
611 
612 	/* wait for async i/o */
613 	err = zio_wait(zio);
614 	if (err) {
615 		dmu_buf_rele_array(dbp, nblks, tag);
616 		return (err);
617 	}
618 
619 	/* wait for other io to complete */
620 	if (read) {
621 		for (i = 0; i < nblks; i++) {
622 			dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
623 			mutex_enter(&db->db_mtx);
624 			while (db->db_state == DB_READ ||
625 			    db->db_state == DB_FILL)
626 				cv_wait(&db->db_changed, &db->db_mtx);
627 			if (db->db_state == DB_UNCACHED)
628 				err = SET_ERROR(EIO);
629 			mutex_exit(&db->db_mtx);
630 			if (err) {
631 				dmu_buf_rele_array(dbp, nblks, tag);
632 				return (err);
633 			}
634 		}
635 	}
636 
637 	*numbufsp = nblks;
638 	*dbpp = dbp;
639 	return (0);
640 }
641 
642 static int
643 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
644     uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
645 {
646 	dnode_t *dn;
647 	int err;
648 
649 	err = dnode_hold(os, object, FTAG, &dn);
650 	if (err)
651 		return (err);
652 
653 	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
654 	    numbufsp, dbpp, DMU_READ_PREFETCH);
655 
656 	dnode_rele(dn, FTAG);
657 
658 	return (err);
659 }
660 
661 int
662 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
663     uint64_t length, boolean_t read, void *tag, int *numbufsp,
664     dmu_buf_t ***dbpp)
665 {
666 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
667 	dnode_t *dn;
668 	int err;
669 
670 	DB_DNODE_ENTER(db);
671 	dn = DB_DNODE(db);
672 	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
673 	    numbufsp, dbpp, DMU_READ_PREFETCH);
674 	DB_DNODE_EXIT(db);
675 
676 	return (err);
677 }
678 
679 void
680 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag)
681 {
682 	int i;
683 	dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
684 
685 	if (numbufs == 0)
686 		return;
687 
688 	for (i = 0; i < numbufs; i++) {
689 		if (dbp[i])
690 			dbuf_rele(dbp[i], tag);
691 	}
692 
693 	kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
694 }
695 
696 /*
697  * Issue prefetch i/os for the given blocks.  If level is greater than 0, the
698  * indirect blocks prefeteched will be those that point to the blocks containing
699  * the data starting at offset, and continuing to offset + len.
700  *
701  * Note that if the indirect blocks above the blocks being prefetched are not
702  * in cache, they will be asychronously read in.
703  */
704 void
705 dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
706     uint64_t len, zio_priority_t pri)
707 {
708 	dnode_t *dn;
709 	uint64_t blkid;
710 	int nblks, err;
711 
712 	if (len == 0) {  /* they're interested in the bonus buffer */
713 		dn = DMU_META_DNODE(os);
714 
715 		if (object == 0 || object >= DN_MAX_OBJECT)
716 			return;
717 
718 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
719 		blkid = dbuf_whichblock(dn, level,
720 		    object * sizeof (dnode_phys_t));
721 		dbuf_prefetch(dn, level, blkid, pri, 0);
722 		rw_exit(&dn->dn_struct_rwlock);
723 		return;
724 	}
725 
726 	/*
727 	 * See comment before the definition of dmu_prefetch_max.
728 	 */
729 	len = MIN(len, dmu_prefetch_max);
730 
731 	/*
732 	 * XXX - Note, if the dnode for the requested object is not
733 	 * already cached, we will do a *synchronous* read in the
734 	 * dnode_hold() call.  The same is true for any indirects.
735 	 */
736 	err = dnode_hold(os, object, FTAG, &dn);
737 	if (err != 0)
738 		return;
739 
740 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
741 	/*
742 	 * offset + len - 1 is the last byte we want to prefetch for, and offset
743 	 * is the first.  Then dbuf_whichblk(dn, level, off + len - 1) is the
744 	 * last block we want to prefetch, and dbuf_whichblock(dn, level,
745 	 * offset)  is the first.  Then the number we need to prefetch is the
746 	 * last - first + 1.
747 	 */
748 	if (level > 0 || dn->dn_datablkshift != 0) {
749 		nblks = dbuf_whichblock(dn, level, offset + len - 1) -
750 		    dbuf_whichblock(dn, level, offset) + 1;
751 	} else {
752 		nblks = (offset < dn->dn_datablksz);
753 	}
754 
755 	if (nblks != 0) {
756 		blkid = dbuf_whichblock(dn, level, offset);
757 		for (int i = 0; i < nblks; i++)
758 			dbuf_prefetch(dn, level, blkid + i, pri, 0);
759 	}
760 
761 	rw_exit(&dn->dn_struct_rwlock);
762 
763 	dnode_rele(dn, FTAG);
764 }
765 
766 /*
767  * Get the next "chunk" of file data to free.  We traverse the file from
768  * the end so that the file gets shorter over time (if we crashes in the
769  * middle, this will leave us in a better state).  We find allocated file
770  * data by simply searching the allocated level 1 indirects.
771  *
772  * On input, *start should be the first offset that does not need to be
773  * freed (e.g. "offset + length").  On return, *start will be the first
774  * offset that should be freed.
775  */
776 static int
777 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum)
778 {
779 	uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
780 	/* bytes of data covered by a level-1 indirect block */
781 	uint64_t iblkrange =
782 	    dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
783 
784 	ASSERT3U(minimum, <=, *start);
785 
786 	if (*start - minimum <= iblkrange * maxblks) {
787 		*start = minimum;
788 		return (0);
789 	}
790 	ASSERT(ISP2(iblkrange));
791 
792 	for (uint64_t blks = 0; *start > minimum && blks < maxblks; blks++) {
793 		int err;
794 
795 		/*
796 		 * dnode_next_offset(BACKWARDS) will find an allocated L1
797 		 * indirect block at or before the input offset.  We must
798 		 * decrement *start so that it is at the end of the region
799 		 * to search.
800 		 */
801 		(*start)--;
802 		err = dnode_next_offset(dn,
803 		    DNODE_FIND_BACKWARDS, start, 2, 1, 0);
804 
805 		/* if there are no indirect blocks before start, we are done */
806 		if (err == ESRCH) {
807 			*start = minimum;
808 			break;
809 		} else if (err != 0) {
810 			return (err);
811 		}
812 
813 		/* set start to the beginning of this L1 indirect */
814 		*start = P2ALIGN(*start, iblkrange);
815 	}
816 	if (*start < minimum)
817 		*start = minimum;
818 	return (0);
819 }
820 
821 /*
822  * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set,
823  * otherwise return false.
824  * Used below in dmu_free_long_range_impl() to enable abort when unmounting
825  */
826 /*ARGSUSED*/
827 static boolean_t
828 dmu_objset_zfs_unmounting(objset_t *os)
829 {
830 #ifdef _KERNEL
831 	if (dmu_objset_type(os) == DMU_OST_ZFS)
832 		return (zfs_get_vfs_flag_unmounted(os));
833 #endif
834 	return (B_FALSE);
835 }
836 
837 static int
838 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
839     uint64_t length)
840 {
841 	uint64_t object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
842 	int err;
843 	uint64_t dirty_frees_threshold;
844 	dsl_pool_t *dp = dmu_objset_pool(os);
845 
846 	if (offset >= object_size)
847 		return (0);
848 
849 	if (zfs_per_txg_dirty_frees_percent <= 100)
850 		dirty_frees_threshold =
851 		    zfs_per_txg_dirty_frees_percent * zfs_dirty_data_max / 100;
852 	else
853 		dirty_frees_threshold = zfs_dirty_data_max / 4;
854 
855 	if (length == DMU_OBJECT_END || offset + length > object_size)
856 		length = object_size - offset;
857 
858 	while (length != 0) {
859 		uint64_t chunk_end, chunk_begin, chunk_len;
860 		uint64_t long_free_dirty_all_txgs = 0;
861 		dmu_tx_t *tx;
862 
863 		if (dmu_objset_zfs_unmounting(dn->dn_objset))
864 			return (SET_ERROR(EINTR));
865 
866 		chunk_end = chunk_begin = offset + length;
867 
868 		/* move chunk_begin backwards to the beginning of this chunk */
869 		err = get_next_chunk(dn, &chunk_begin, offset);
870 		if (err)
871 			return (err);
872 		ASSERT3U(chunk_begin, >=, offset);
873 		ASSERT3U(chunk_begin, <=, chunk_end);
874 
875 		chunk_len = chunk_end - chunk_begin;
876 
877 		mutex_enter(&dp->dp_lock);
878 		for (int t = 0; t < TXG_SIZE; t++) {
879 			long_free_dirty_all_txgs +=
880 			    dp->dp_long_free_dirty_pertxg[t];
881 		}
882 		mutex_exit(&dp->dp_lock);
883 
884 		/*
885 		 * To avoid filling up a TXG with just frees wait for
886 		 * the next TXG to open before freeing more chunks if
887 		 * we have reached the threshold of frees
888 		 */
889 		if (dirty_frees_threshold != 0 &&
890 		    long_free_dirty_all_txgs >= dirty_frees_threshold) {
891 			txg_wait_open(dp, 0, B_TRUE);
892 			continue;
893 		}
894 
895 		tx = dmu_tx_create(os);
896 		dmu_tx_hold_free(tx, dn->dn_object, chunk_begin, chunk_len);
897 
898 		/*
899 		 * Mark this transaction as typically resulting in a net
900 		 * reduction in space used.
901 		 */
902 		dmu_tx_mark_netfree(tx);
903 		err = dmu_tx_assign(tx, TXG_WAIT);
904 		if (err) {
905 			dmu_tx_abort(tx);
906 			return (err);
907 		}
908 
909 		mutex_enter(&dp->dp_lock);
910 		dp->dp_long_free_dirty_pertxg[dmu_tx_get_txg(tx) & TXG_MASK] +=
911 		    chunk_len;
912 		mutex_exit(&dp->dp_lock);
913 		DTRACE_PROBE3(free__long__range,
914 		    uint64_t, long_free_dirty_all_txgs, uint64_t, chunk_len,
915 		    uint64_t, dmu_tx_get_txg(tx));
916 		dnode_free_range(dn, chunk_begin, chunk_len, tx);
917 
918 		dmu_tx_commit(tx);
919 
920 		length -= chunk_len;
921 	}
922 	return (0);
923 }
924 
925 int
926 dmu_free_long_range(objset_t *os, uint64_t object,
927     uint64_t offset, uint64_t length)
928 {
929 	dnode_t *dn;
930 	int err;
931 
932 	err = dnode_hold(os, object, FTAG, &dn);
933 	if (err != 0)
934 		return (err);
935 	err = dmu_free_long_range_impl(os, dn, offset, length);
936 
937 	/*
938 	 * It is important to zero out the maxblkid when freeing the entire
939 	 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
940 	 * will take the fast path, and (b) dnode_reallocate() can verify
941 	 * that the entire file has been freed.
942 	 */
943 	if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
944 		dn->dn_maxblkid = 0;
945 
946 	dnode_rele(dn, FTAG);
947 	return (err);
948 }
949 
950 int
951 dmu_free_long_object(objset_t *os, uint64_t object)
952 {
953 	dmu_tx_t *tx;
954 	int err;
955 
956 	err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
957 	if (err != 0)
958 		return (err);
959 
960 	tx = dmu_tx_create(os);
961 	dmu_tx_hold_bonus(tx, object);
962 	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
963 	dmu_tx_mark_netfree(tx);
964 	err = dmu_tx_assign(tx, TXG_WAIT);
965 	if (err == 0) {
966 		if (err == 0)
967 			err = dmu_object_free(os, object, tx);
968 
969 		dmu_tx_commit(tx);
970 	} else {
971 		dmu_tx_abort(tx);
972 	}
973 
974 	return (err);
975 }
976 
977 int
978 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
979     uint64_t size, dmu_tx_t *tx)
980 {
981 	dnode_t *dn;
982 	int err = dnode_hold(os, object, FTAG, &dn);
983 	if (err)
984 		return (err);
985 	ASSERT(offset < UINT64_MAX);
986 	ASSERT(size == DMU_OBJECT_END || size <= UINT64_MAX - offset);
987 	dnode_free_range(dn, offset, size, tx);
988 	dnode_rele(dn, FTAG);
989 	return (0);
990 }
991 
992 static int
993 dmu_read_impl(dnode_t *dn, uint64_t offset, uint64_t size,
994     void *buf, uint32_t flags)
995 {
996 	dmu_buf_t **dbp;
997 	int numbufs, err = 0;
998 
999 	/*
1000 	 * Deal with odd block sizes, where there can't be data past the first
1001 	 * block.  If we ever do the tail block optimization, we will need to
1002 	 * handle that here as well.
1003 	 */
1004 	if (dn->dn_maxblkid == 0) {
1005 		int newsz = offset > dn->dn_datablksz ? 0 :
1006 		    MIN(size, dn->dn_datablksz - offset);
1007 		bzero((char *)buf + newsz, size - newsz);
1008 		size = newsz;
1009 	}
1010 
1011 	while (size > 0) {
1012 		uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
1013 		int i;
1014 
1015 		/*
1016 		 * NB: we could do this block-at-a-time, but it's nice
1017 		 * to be reading in parallel.
1018 		 */
1019 		err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
1020 		    TRUE, FTAG, &numbufs, &dbp, flags);
1021 		if (err)
1022 			break;
1023 
1024 		for (i = 0; i < numbufs; i++) {
1025 			int tocpy;
1026 			int bufoff;
1027 			dmu_buf_t *db = dbp[i];
1028 
1029 			ASSERT(size > 0);
1030 
1031 			bufoff = offset - db->db_offset;
1032 			tocpy = (int)MIN(db->db_size - bufoff, size);
1033 
1034 			bcopy((char *)db->db_data + bufoff, buf, tocpy);
1035 
1036 			offset += tocpy;
1037 			size -= tocpy;
1038 			buf = (char *)buf + tocpy;
1039 		}
1040 		dmu_buf_rele_array(dbp, numbufs, FTAG);
1041 	}
1042 	return (err);
1043 }
1044 
1045 int
1046 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1047     void *buf, uint32_t flags)
1048 {
1049 	dnode_t *dn;
1050 	int err;
1051 
1052 	err = dnode_hold(os, object, FTAG, &dn);
1053 	if (err != 0)
1054 		return (err);
1055 
1056 	err = dmu_read_impl(dn, offset, size, buf, flags);
1057 	dnode_rele(dn, FTAG);
1058 	return (err);
1059 }
1060 
1061 int
1062 dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf,
1063     uint32_t flags)
1064 {
1065 	return (dmu_read_impl(dn, offset, size, buf, flags));
1066 }
1067 
1068 static void
1069 dmu_write_impl(dmu_buf_t **dbp, int numbufs, uint64_t offset, uint64_t size,
1070     const void *buf, dmu_tx_t *tx)
1071 {
1072 	int i;
1073 
1074 	for (i = 0; i < numbufs; i++) {
1075 		int tocpy;
1076 		int bufoff;
1077 		dmu_buf_t *db = dbp[i];
1078 
1079 		ASSERT(size > 0);
1080 
1081 		bufoff = offset - db->db_offset;
1082 		tocpy = (int)MIN(db->db_size - bufoff, size);
1083 
1084 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1085 
1086 		if (tocpy == db->db_size)
1087 			dmu_buf_will_fill(db, tx);
1088 		else
1089 			dmu_buf_will_dirty(db, tx);
1090 
1091 		bcopy(buf, (char *)db->db_data + bufoff, tocpy);
1092 
1093 		if (tocpy == db->db_size)
1094 			dmu_buf_fill_done(db, tx);
1095 
1096 		offset += tocpy;
1097 		size -= tocpy;
1098 		buf = (char *)buf + tocpy;
1099 	}
1100 }
1101 
1102 void
1103 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1104     const void *buf, dmu_tx_t *tx)
1105 {
1106 	dmu_buf_t **dbp;
1107 	int numbufs;
1108 
1109 	if (size == 0)
1110 		return;
1111 
1112 	VERIFY0(dmu_buf_hold_array(os, object, offset, size,
1113 	    FALSE, FTAG, &numbufs, &dbp));
1114 	dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
1115 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1116 }
1117 
1118 void
1119 dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size,
1120     const void *buf, dmu_tx_t *tx)
1121 {
1122 	dmu_buf_t **dbp;
1123 	int numbufs;
1124 
1125 	if (size == 0)
1126 		return;
1127 
1128 	VERIFY0(dmu_buf_hold_array_by_dnode(dn, offset, size,
1129 	    FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH));
1130 	dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
1131 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1132 }
1133 
1134 static int
1135 dmu_object_remap_one_indirect(objset_t *os, dnode_t *dn,
1136     uint64_t last_removal_txg, uint64_t offset)
1137 {
1138 	uint64_t l1blkid = dbuf_whichblock(dn, 1, offset);
1139 	int err = 0;
1140 
1141 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1142 	dmu_buf_impl_t *dbuf = dbuf_hold_level(dn, 1, l1blkid, FTAG);
1143 	ASSERT3P(dbuf, !=, NULL);
1144 
1145 	/*
1146 	 * If the block hasn't been written yet, this default will ensure
1147 	 * we don't try to remap it.
1148 	 */
1149 	uint64_t birth = UINT64_MAX;
1150 	ASSERT3U(last_removal_txg, !=, UINT64_MAX);
1151 	if (dbuf->db_blkptr != NULL)
1152 		birth = dbuf->db_blkptr->blk_birth;
1153 	rw_exit(&dn->dn_struct_rwlock);
1154 
1155 	/*
1156 	 * If this L1 was already written after the last removal, then we've
1157 	 * already tried to remap it.
1158 	 */
1159 	if (birth <= last_removal_txg &&
1160 	    dbuf_read(dbuf, NULL, DB_RF_MUST_SUCCEED) == 0 &&
1161 	    dbuf_can_remap(dbuf)) {
1162 		dmu_tx_t *tx = dmu_tx_create(os);
1163 		dmu_tx_hold_remap_l1indirect(tx, dn->dn_object);
1164 		err = dmu_tx_assign(tx, TXG_WAIT);
1165 		if (err == 0) {
1166 			(void) dbuf_dirty(dbuf, tx);
1167 			dmu_tx_commit(tx);
1168 		} else {
1169 			dmu_tx_abort(tx);
1170 		}
1171 	}
1172 
1173 	dbuf_rele(dbuf, FTAG);
1174 
1175 	delay(zfs_object_remap_one_indirect_delay_ticks);
1176 
1177 	return (err);
1178 }
1179 
1180 /*
1181  * Remap all blockpointers in the object, if possible, so that they reference
1182  * only concrete vdevs.
1183  *
1184  * To do this, iterate over the L0 blockpointers and remap any that reference
1185  * an indirect vdev. Note that we only examine L0 blockpointers; since we
1186  * cannot guarantee that we can remap all blockpointer anyways (due to split
1187  * blocks), we do not want to make the code unnecessarily complicated to
1188  * catch the unlikely case that there is an L1 block on an indirect vdev that
1189  * contains no indirect blockpointers.
1190  */
1191 int
1192 dmu_object_remap_indirects(objset_t *os, uint64_t object,
1193     uint64_t last_removal_txg)
1194 {
1195 	uint64_t offset, l1span;
1196 	int err;
1197 	dnode_t *dn;
1198 
1199 	err = dnode_hold(os, object, FTAG, &dn);
1200 	if (err != 0) {
1201 		return (err);
1202 	}
1203 
1204 	if (dn->dn_nlevels <= 1) {
1205 		if (issig(JUSTLOOKING) && issig(FORREAL)) {
1206 			err = SET_ERROR(EINTR);
1207 		}
1208 
1209 		/*
1210 		 * If the dnode has no indirect blocks, we cannot dirty them.
1211 		 * We still want to remap the blkptr(s) in the dnode if
1212 		 * appropriate, so mark it as dirty.
1213 		 */
1214 		if (err == 0 && dnode_needs_remap(dn)) {
1215 			dmu_tx_t *tx = dmu_tx_create(os);
1216 			dmu_tx_hold_bonus(tx, dn->dn_object);
1217 			if ((err = dmu_tx_assign(tx, TXG_WAIT)) == 0) {
1218 				dnode_setdirty(dn, tx);
1219 				dmu_tx_commit(tx);
1220 			} else {
1221 				dmu_tx_abort(tx);
1222 			}
1223 		}
1224 
1225 		dnode_rele(dn, FTAG);
1226 		return (err);
1227 	}
1228 
1229 	offset = 0;
1230 	l1span = 1ULL << (dn->dn_indblkshift - SPA_BLKPTRSHIFT +
1231 	    dn->dn_datablkshift);
1232 	/*
1233 	 * Find the next L1 indirect that is not a hole.
1234 	 */
1235 	while (dnode_next_offset(dn, 0, &offset, 2, 1, 0) == 0) {
1236 		if (issig(JUSTLOOKING) && issig(FORREAL)) {
1237 			err = SET_ERROR(EINTR);
1238 			break;
1239 		}
1240 		if ((err = dmu_object_remap_one_indirect(os, dn,
1241 		    last_removal_txg, offset)) != 0) {
1242 			break;
1243 		}
1244 		offset += l1span;
1245 	}
1246 
1247 	dnode_rele(dn, FTAG);
1248 	return (err);
1249 }
1250 
1251 void
1252 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1253     dmu_tx_t *tx)
1254 {
1255 	dmu_buf_t **dbp;
1256 	int numbufs, i;
1257 
1258 	if (size == 0)
1259 		return;
1260 
1261 	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
1262 	    FALSE, FTAG, &numbufs, &dbp));
1263 
1264 	for (i = 0; i < numbufs; i++) {
1265 		dmu_buf_t *db = dbp[i];
1266 
1267 		dmu_buf_will_not_fill(db, tx);
1268 	}
1269 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1270 }
1271 
1272 void
1273 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
1274     void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
1275     int compressed_size, int byteorder, dmu_tx_t *tx)
1276 {
1277 	dmu_buf_t *db;
1278 
1279 	ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES);
1280 	ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS);
1281 	VERIFY0(dmu_buf_hold_noread(os, object, offset,
1282 	    FTAG, &db));
1283 
1284 	dmu_buf_write_embedded(db,
1285 	    data, (bp_embedded_type_t)etype, (enum zio_compress)comp,
1286 	    uncompressed_size, compressed_size, byteorder, tx);
1287 
1288 	dmu_buf_rele(db, FTAG);
1289 }
1290 
1291 /*
1292  * DMU support for xuio
1293  */
1294 kstat_t *xuio_ksp = NULL;
1295 
1296 int
1297 dmu_xuio_init(xuio_t *xuio, int nblk)
1298 {
1299 	dmu_xuio_t *priv;
1300 	uio_t *uio = &xuio->xu_uio;
1301 
1302 	uio->uio_iovcnt = nblk;
1303 	uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP);
1304 
1305 	priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP);
1306 	priv->cnt = nblk;
1307 	priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP);
1308 	priv->iovp = uio->uio_iov;
1309 	XUIO_XUZC_PRIV(xuio) = priv;
1310 
1311 	if (XUIO_XUZC_RW(xuio) == UIO_READ)
1312 		XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk);
1313 	else
1314 		XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk);
1315 
1316 	return (0);
1317 }
1318 
1319 void
1320 dmu_xuio_fini(xuio_t *xuio)
1321 {
1322 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1323 	int nblk = priv->cnt;
1324 
1325 	kmem_free(priv->iovp, nblk * sizeof (iovec_t));
1326 	kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *));
1327 	kmem_free(priv, sizeof (dmu_xuio_t));
1328 
1329 	if (XUIO_XUZC_RW(xuio) == UIO_READ)
1330 		XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk);
1331 	else
1332 		XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk);
1333 }
1334 
1335 /*
1336  * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf }
1337  * and increase priv->next by 1.
1338  */
1339 int
1340 dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n)
1341 {
1342 	struct iovec *iov;
1343 	uio_t *uio = &xuio->xu_uio;
1344 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1345 	int i = priv->next++;
1346 
1347 	ASSERT(i < priv->cnt);
1348 	ASSERT(off + n <= arc_buf_lsize(abuf));
1349 	iov = uio->uio_iov + i;
1350 	iov->iov_base = (char *)abuf->b_data + off;
1351 	iov->iov_len = n;
1352 	priv->bufs[i] = abuf;
1353 	return (0);
1354 }
1355 
1356 int
1357 dmu_xuio_cnt(xuio_t *xuio)
1358 {
1359 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1360 	return (priv->cnt);
1361 }
1362 
1363 arc_buf_t *
1364 dmu_xuio_arcbuf(xuio_t *xuio, int i)
1365 {
1366 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1367 
1368 	ASSERT(i < priv->cnt);
1369 	return (priv->bufs[i]);
1370 }
1371 
1372 void
1373 dmu_xuio_clear(xuio_t *xuio, int i)
1374 {
1375 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1376 
1377 	ASSERT(i < priv->cnt);
1378 	priv->bufs[i] = NULL;
1379 }
1380 
1381 static void
1382 xuio_stat_init(void)
1383 {
1384 	xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc",
1385 	    KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t),
1386 	    KSTAT_FLAG_VIRTUAL);
1387 	if (xuio_ksp != NULL) {
1388 		xuio_ksp->ks_data = &xuio_stats;
1389 		kstat_install(xuio_ksp);
1390 	}
1391 }
1392 
1393 static void
1394 xuio_stat_fini(void)
1395 {
1396 	if (xuio_ksp != NULL) {
1397 		kstat_delete(xuio_ksp);
1398 		xuio_ksp = NULL;
1399 	}
1400 }
1401 
1402 void
1403 xuio_stat_wbuf_copied(void)
1404 {
1405 	XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1406 }
1407 
1408 void
1409 xuio_stat_wbuf_nocopy(void)
1410 {
1411 	XUIOSTAT_BUMP(xuiostat_wbuf_nocopy);
1412 }
1413 
1414 #ifdef _KERNEL
1415 int
1416 dmu_read_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size)
1417 {
1418 	dmu_buf_t **dbp;
1419 	int numbufs, i, err;
1420 	xuio_t *xuio = NULL;
1421 
1422 	/*
1423 	 * NB: we could do this block-at-a-time, but it's nice
1424 	 * to be reading in parallel.
1425 	 */
1426 	err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1427 	    TRUE, FTAG, &numbufs, &dbp, 0);
1428 	if (err)
1429 		return (err);
1430 
1431 	if (uio->uio_extflg == UIO_XUIO)
1432 		xuio = (xuio_t *)uio;
1433 
1434 	for (i = 0; i < numbufs; i++) {
1435 		int tocpy;
1436 		int bufoff;
1437 		dmu_buf_t *db = dbp[i];
1438 
1439 		ASSERT(size > 0);
1440 
1441 		bufoff = uio->uio_loffset - db->db_offset;
1442 		tocpy = (int)MIN(db->db_size - bufoff, size);
1443 
1444 		if (xuio) {
1445 			dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
1446 			arc_buf_t *dbuf_abuf = dbi->db_buf;
1447 			arc_buf_t *abuf = dbuf_loan_arcbuf(dbi);
1448 			err = dmu_xuio_add(xuio, abuf, bufoff, tocpy);
1449 			if (!err) {
1450 				uio->uio_resid -= tocpy;
1451 				uio->uio_loffset += tocpy;
1452 			}
1453 
1454 			if (abuf == dbuf_abuf)
1455 				XUIOSTAT_BUMP(xuiostat_rbuf_nocopy);
1456 			else
1457 				XUIOSTAT_BUMP(xuiostat_rbuf_copied);
1458 		} else {
1459 			err = uiomove((char *)db->db_data + bufoff, tocpy,
1460 			    UIO_READ, uio);
1461 		}
1462 		if (err)
1463 			break;
1464 
1465 		size -= tocpy;
1466 	}
1467 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1468 
1469 	return (err);
1470 }
1471 
1472 /*
1473  * Read 'size' bytes into the uio buffer.
1474  * From object zdb->db_object.
1475  * Starting at offset uio->uio_loffset.
1476  *
1477  * If the caller already has a dbuf in the target object
1478  * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(),
1479  * because we don't have to find the dnode_t for the object.
1480  */
1481 int
1482 dmu_read_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size)
1483 {
1484 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1485 	dnode_t *dn;
1486 	int err;
1487 
1488 	if (size == 0)
1489 		return (0);
1490 
1491 	DB_DNODE_ENTER(db);
1492 	dn = DB_DNODE(db);
1493 	err = dmu_read_uio_dnode(dn, uio, size);
1494 	DB_DNODE_EXIT(db);
1495 
1496 	return (err);
1497 }
1498 
1499 /*
1500  * Read 'size' bytes into the uio buffer.
1501  * From the specified object
1502  * Starting at offset uio->uio_loffset.
1503  */
1504 int
1505 dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size)
1506 {
1507 	dnode_t *dn;
1508 	int err;
1509 
1510 	if (size == 0)
1511 		return (0);
1512 
1513 	err = dnode_hold(os, object, FTAG, &dn);
1514 	if (err)
1515 		return (err);
1516 
1517 	err = dmu_read_uio_dnode(dn, uio, size);
1518 
1519 	dnode_rele(dn, FTAG);
1520 
1521 	return (err);
1522 }
1523 
1524 int
1525 dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx)
1526 {
1527 	dmu_buf_t **dbp;
1528 	int numbufs;
1529 	int err = 0;
1530 	int i;
1531 
1532 	err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1533 	    FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
1534 	if (err)
1535 		return (err);
1536 
1537 	for (i = 0; i < numbufs; i++) {
1538 		int tocpy;
1539 		int bufoff;
1540 		dmu_buf_t *db = dbp[i];
1541 
1542 		ASSERT(size > 0);
1543 
1544 		bufoff = uio->uio_loffset - db->db_offset;
1545 		tocpy = (int)MIN(db->db_size - bufoff, size);
1546 
1547 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1548 
1549 		if (tocpy == db->db_size)
1550 			dmu_buf_will_fill(db, tx);
1551 		else
1552 			dmu_buf_will_dirty(db, tx);
1553 
1554 		/*
1555 		 * XXX uiomove could block forever (eg. nfs-backed
1556 		 * pages).  There needs to be a uiolockdown() function
1557 		 * to lock the pages in memory, so that uiomove won't
1558 		 * block.
1559 		 */
1560 		err = uiomove((char *)db->db_data + bufoff, tocpy,
1561 		    UIO_WRITE, uio);
1562 
1563 		if (tocpy == db->db_size)
1564 			dmu_buf_fill_done(db, tx);
1565 
1566 		if (err)
1567 			break;
1568 
1569 		size -= tocpy;
1570 	}
1571 
1572 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1573 	return (err);
1574 }
1575 
1576 /*
1577  * Write 'size' bytes from the uio buffer.
1578  * To object zdb->db_object.
1579  * Starting at offset uio->uio_loffset.
1580  *
1581  * If the caller already has a dbuf in the target object
1582  * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(),
1583  * because we don't have to find the dnode_t for the object.
1584  */
1585 int
1586 dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size,
1587     dmu_tx_t *tx)
1588 {
1589 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1590 	dnode_t *dn;
1591 	int err;
1592 
1593 	if (size == 0)
1594 		return (0);
1595 
1596 	DB_DNODE_ENTER(db);
1597 	dn = DB_DNODE(db);
1598 	err = dmu_write_uio_dnode(dn, uio, size, tx);
1599 	DB_DNODE_EXIT(db);
1600 
1601 	return (err);
1602 }
1603 
1604 /*
1605  * Write 'size' bytes from the uio buffer.
1606  * To the specified object.
1607  * Starting at offset uio->uio_loffset.
1608  */
1609 int
1610 dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size,
1611     dmu_tx_t *tx)
1612 {
1613 	dnode_t *dn;
1614 	int err;
1615 
1616 	if (size == 0)
1617 		return (0);
1618 
1619 	err = dnode_hold(os, object, FTAG, &dn);
1620 	if (err)
1621 		return (err);
1622 
1623 	err = dmu_write_uio_dnode(dn, uio, size, tx);
1624 
1625 	dnode_rele(dn, FTAG);
1626 
1627 	return (err);
1628 }
1629 
1630 int
1631 dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1632     page_t *pp, dmu_tx_t *tx)
1633 {
1634 	dmu_buf_t **dbp;
1635 	int numbufs, i;
1636 	int err;
1637 
1638 	if (size == 0)
1639 		return (0);
1640 
1641 	err = dmu_buf_hold_array(os, object, offset, size,
1642 	    FALSE, FTAG, &numbufs, &dbp);
1643 	if (err)
1644 		return (err);
1645 
1646 	for (i = 0; i < numbufs; i++) {
1647 		int tocpy, copied, thiscpy;
1648 		int bufoff;
1649 		dmu_buf_t *db = dbp[i];
1650 		caddr_t va;
1651 
1652 		ASSERT(size > 0);
1653 		ASSERT3U(db->db_size, >=, PAGESIZE);
1654 
1655 		bufoff = offset - db->db_offset;
1656 		tocpy = (int)MIN(db->db_size - bufoff, size);
1657 
1658 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1659 
1660 		if (tocpy == db->db_size)
1661 			dmu_buf_will_fill(db, tx);
1662 		else
1663 			dmu_buf_will_dirty(db, tx);
1664 
1665 		for (copied = 0; copied < tocpy; copied += PAGESIZE) {
1666 			ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff);
1667 			thiscpy = MIN(PAGESIZE, tocpy - copied);
1668 			va = zfs_map_page(pp, S_READ);
1669 			bcopy(va, (char *)db->db_data + bufoff, thiscpy);
1670 			zfs_unmap_page(pp, va);
1671 			pp = pp->p_next;
1672 			bufoff += PAGESIZE;
1673 		}
1674 
1675 		if (tocpy == db->db_size)
1676 			dmu_buf_fill_done(db, tx);
1677 
1678 		offset += tocpy;
1679 		size -= tocpy;
1680 	}
1681 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1682 	return (err);
1683 }
1684 #endif
1685 
1686 /*
1687  * Allocate a loaned anonymous arc buffer.
1688  */
1689 arc_buf_t *
1690 dmu_request_arcbuf(dmu_buf_t *handle, int size)
1691 {
1692 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1693 
1694 	return (arc_loan_buf(db->db_objset->os_spa, B_FALSE, size));
1695 }
1696 
1697 /*
1698  * Free a loaned arc buffer.
1699  */
1700 void
1701 dmu_return_arcbuf(arc_buf_t *buf)
1702 {
1703 	arc_return_buf(buf, FTAG);
1704 	arc_buf_destroy(buf, FTAG);
1705 }
1706 
1707 void
1708 dmu_copy_from_buf(objset_t *os, uint64_t object, uint64_t offset,
1709     dmu_buf_t *handle, dmu_tx_t *tx)
1710 {
1711 	dmu_buf_t *dst_handle;
1712 	dmu_buf_impl_t *dstdb;
1713 	dmu_buf_impl_t *srcdb = (dmu_buf_impl_t *)handle;
1714 	dmu_object_type_t type;
1715 	arc_buf_t *abuf;
1716 	uint64_t datalen;
1717 	boolean_t byteorder;
1718 	uint8_t salt[ZIO_DATA_SALT_LEN];
1719 	uint8_t iv[ZIO_DATA_IV_LEN];
1720 	uint8_t mac[ZIO_DATA_MAC_LEN];
1721 
1722 	ASSERT3P(srcdb->db_buf, !=, NULL);
1723 
1724 	/* hold the db that we want to write to */
1725 	VERIFY0(dmu_buf_hold(os, object, offset, FTAG, &dst_handle,
1726 	    DMU_READ_NO_DECRYPT));
1727 	dstdb = (dmu_buf_impl_t *)dst_handle;
1728 	datalen = arc_buf_size(srcdb->db_buf);
1729 
1730 	DB_DNODE_ENTER(dstdb);
1731 	type = DB_DNODE(dstdb)->dn_type;
1732 	DB_DNODE_EXIT(dstdb);
1733 
1734 	/* allocated an arc buffer that matches the type of srcdb->db_buf */
1735 	if (arc_is_encrypted(srcdb->db_buf)) {
1736 		arc_get_raw_params(srcdb->db_buf, &byteorder, salt, iv, mac);
1737 		abuf = arc_loan_raw_buf(os->os_spa, dmu_objset_id(os),
1738 		    byteorder, salt, iv, mac, type,
1739 		    datalen, arc_buf_lsize(srcdb->db_buf),
1740 		    arc_get_compression(srcdb->db_buf));
1741 	} else {
1742 		/* we won't get a compressed db back from dmu_buf_hold() */
1743 		ASSERT3U(arc_get_compression(srcdb->db_buf),
1744 		    ==, ZIO_COMPRESS_OFF);
1745 		abuf = arc_loan_buf(os->os_spa,
1746 		    DMU_OT_IS_METADATA(type), datalen);
1747 	}
1748 
1749 	ASSERT3U(datalen, ==, arc_buf_size(abuf));
1750 
1751 	/* copy the data to the new buffer and assign it to the dstdb */
1752 	bcopy(srcdb->db_buf->b_data, abuf->b_data, datalen);
1753 	dbuf_assign_arcbuf(dstdb, abuf, tx);
1754 	dmu_buf_rele(dst_handle, FTAG);
1755 }
1756 
1757 /*
1758  * When possible directly assign passed loaned arc buffer to a dbuf.
1759  * If this is not possible copy the contents of passed arc buf via
1760  * dmu_write().
1761  */
1762 int
1763 dmu_assign_arcbuf_by_dnode(dnode_t *dn, uint64_t offset, arc_buf_t *buf,
1764     dmu_tx_t *tx)
1765 {
1766 	dmu_buf_impl_t *db;
1767 	objset_t *os = dn->dn_objset;
1768 	uint64_t object = dn->dn_object;
1769 	uint32_t blksz = (uint32_t)arc_buf_lsize(buf);
1770 	uint64_t blkid;
1771 
1772 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1773 	blkid = dbuf_whichblock(dn, 0, offset);
1774 	db = dbuf_hold(dn, blkid, FTAG);
1775 	if (db == NULL)
1776 		return (SET_ERROR(EIO));
1777 	rw_exit(&dn->dn_struct_rwlock);
1778 
1779 	/*
1780 	 * We can only assign if the offset is aligned, the arc buf is the
1781 	 * same size as the dbuf, and the dbuf is not metadata.
1782 	 */
1783 	if (offset == db->db.db_offset && blksz == db->db.db_size) {
1784 		dbuf_assign_arcbuf(db, buf, tx);
1785 		dbuf_rele(db, FTAG);
1786 	} else {
1787 		/* compressed bufs must always be assignable to their dbuf */
1788 		ASSERT3U(arc_get_compression(buf), ==, ZIO_COMPRESS_OFF);
1789 		ASSERT(!(buf->b_flags & ARC_BUF_FLAG_COMPRESSED));
1790 
1791 		os = dn->dn_objset;
1792 		object = dn->dn_object;
1793 		dbuf_rele(db, FTAG);
1794 		dmu_write(os, object, offset, blksz, buf->b_data, tx);
1795 		dmu_return_arcbuf(buf);
1796 		XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1797 	}
1798 
1799 	return (0);
1800 }
1801 
1802 int
1803 dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1804     dmu_tx_t *tx)
1805 {
1806 	int err;
1807 	dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
1808 
1809 	DB_DNODE_ENTER(dbuf);
1810 	err = dmu_assign_arcbuf_by_dnode(DB_DNODE(dbuf), offset, buf, tx);
1811 	DB_DNODE_EXIT(dbuf);
1812 
1813 	return (err);
1814 }
1815 
1816 typedef struct {
1817 	dbuf_dirty_record_t	*dsa_dr;
1818 	dmu_sync_cb_t		*dsa_done;
1819 	zgd_t			*dsa_zgd;
1820 	dmu_tx_t		*dsa_tx;
1821 } dmu_sync_arg_t;
1822 
1823 /* ARGSUSED */
1824 static void
1825 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1826 {
1827 	dmu_sync_arg_t *dsa = varg;
1828 	dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
1829 	blkptr_t *bp = zio->io_bp;
1830 
1831 	if (zio->io_error == 0) {
1832 		if (BP_IS_HOLE(bp)) {
1833 			/*
1834 			 * A block of zeros may compress to a hole, but the
1835 			 * block size still needs to be known for replay.
1836 			 */
1837 			BP_SET_LSIZE(bp, db->db_size);
1838 		} else if (!BP_IS_EMBEDDED(bp)) {
1839 			ASSERT(BP_GET_LEVEL(bp) == 0);
1840 			BP_SET_FILL(bp, 1);
1841 		}
1842 	}
1843 }
1844 
1845 static void
1846 dmu_sync_late_arrival_ready(zio_t *zio)
1847 {
1848 	dmu_sync_ready(zio, NULL, zio->io_private);
1849 }
1850 
1851 /* ARGSUSED */
1852 static void
1853 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1854 {
1855 	dmu_sync_arg_t *dsa = varg;
1856 	dbuf_dirty_record_t *dr = dsa->dsa_dr;
1857 	dmu_buf_impl_t *db = dr->dr_dbuf;
1858 	zgd_t *zgd = dsa->dsa_zgd;
1859 
1860 	/*
1861 	 * Record the vdev(s) backing this blkptr so they can be flushed after
1862 	 * the writes for the lwb have completed.
1863 	 */
1864 	if (zio->io_error == 0) {
1865 		zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1866 	}
1867 
1868 	mutex_enter(&db->db_mtx);
1869 	ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
1870 	if (zio->io_error == 0) {
1871 		dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1872 		if (dr->dt.dl.dr_nopwrite) {
1873 			blkptr_t *bp = zio->io_bp;
1874 			blkptr_t *bp_orig = &zio->io_bp_orig;
1875 			uint8_t chksum = BP_GET_CHECKSUM(bp_orig);
1876 
1877 			ASSERT(BP_EQUAL(bp, bp_orig));
1878 			VERIFY(BP_EQUAL(bp, db->db_blkptr));
1879 			ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
1880 			ASSERT(zio_checksum_table[chksum].ci_flags &
1881 			    ZCHECKSUM_FLAG_NOPWRITE);
1882 		}
1883 		dr->dt.dl.dr_overridden_by = *zio->io_bp;
1884 		dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1885 		dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
1886 
1887 		/*
1888 		 * Old style holes are filled with all zeros, whereas
1889 		 * new-style holes maintain their lsize, type, level,
1890 		 * and birth time (see zio_write_compress). While we
1891 		 * need to reset the BP_SET_LSIZE() call that happened
1892 		 * in dmu_sync_ready for old style holes, we do *not*
1893 		 * want to wipe out the information contained in new
1894 		 * style holes. Thus, only zero out the block pointer if
1895 		 * it's an old style hole.
1896 		 */
1897 		if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) &&
1898 		    dr->dt.dl.dr_overridden_by.blk_birth == 0)
1899 			BP_ZERO(&dr->dt.dl.dr_overridden_by);
1900 	} else {
1901 		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1902 	}
1903 	cv_broadcast(&db->db_changed);
1904 	mutex_exit(&db->db_mtx);
1905 
1906 	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1907 
1908 	kmem_free(dsa, sizeof (*dsa));
1909 }
1910 
1911 static void
1912 dmu_sync_late_arrival_done(zio_t *zio)
1913 {
1914 	blkptr_t *bp = zio->io_bp;
1915 	dmu_sync_arg_t *dsa = zio->io_private;
1916 	blkptr_t *bp_orig = &zio->io_bp_orig;
1917 	zgd_t *zgd = dsa->dsa_zgd;
1918 
1919 	if (zio->io_error == 0) {
1920 		/*
1921 		 * Record the vdev(s) backing this blkptr so they can be
1922 		 * flushed after the writes for the lwb have completed.
1923 		 */
1924 		zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1925 
1926 		if (!BP_IS_HOLE(bp)) {
1927 			ASSERT(!(zio->io_flags & ZIO_FLAG_NOPWRITE));
1928 			ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1929 			ASSERT(zio->io_bp->blk_birth == zio->io_txg);
1930 			ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1931 			zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1932 		}
1933 	}
1934 
1935 	dmu_tx_commit(dsa->dsa_tx);
1936 
1937 	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1938 
1939 	abd_put(zio->io_abd);
1940 	kmem_free(dsa, sizeof (*dsa));
1941 }
1942 
1943 static int
1944 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
1945     zio_prop_t *zp, zbookmark_phys_t *zb)
1946 {
1947 	dmu_sync_arg_t *dsa;
1948 	dmu_tx_t *tx;
1949 
1950 	tx = dmu_tx_create(os);
1951 	dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1952 	if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
1953 		dmu_tx_abort(tx);
1954 		/* Make zl_get_data do txg_waited_synced() */
1955 		return (SET_ERROR(EIO));
1956 	}
1957 
1958 	/*
1959 	 * In order to prevent the zgd's lwb from being free'd prior to
1960 	 * dmu_sync_late_arrival_done() being called, we have to ensure
1961 	 * the lwb's "max txg" takes this tx's txg into account.
1962 	 */
1963 	zil_lwb_add_txg(zgd->zgd_lwb, dmu_tx_get_txg(tx));
1964 
1965 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1966 	dsa->dsa_dr = NULL;
1967 	dsa->dsa_done = done;
1968 	dsa->dsa_zgd = zgd;
1969 	dsa->dsa_tx = tx;
1970 
1971 	/*
1972 	 * Since we are currently syncing this txg, it's nontrivial to
1973 	 * determine what BP to nopwrite against, so we disable nopwrite.
1974 	 *
1975 	 * When syncing, the db_blkptr is initially the BP of the previous
1976 	 * txg.  We can not nopwrite against it because it will be changed
1977 	 * (this is similar to the non-late-arrival case where the dbuf is
1978 	 * dirty in a future txg).
1979 	 *
1980 	 * Then dbuf_write_ready() sets bp_blkptr to the location we will write.
1981 	 * We can not nopwrite against it because although the BP will not
1982 	 * (typically) be changed, the data has not yet been persisted to this
1983 	 * location.
1984 	 *
1985 	 * Finally, when dbuf_write_done() is called, it is theoretically
1986 	 * possible to always nopwrite, because the data that was written in
1987 	 * this txg is the same data that we are trying to write.  However we
1988 	 * would need to check that this dbuf is not dirty in any future
1989 	 * txg's (as we do in the normal dmu_sync() path). For simplicity, we
1990 	 * don't nopwrite in this case.
1991 	 */
1992 	zp->zp_nopwrite = B_FALSE;
1993 
1994 	zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1995 	    abd_get_from_buf(zgd->zgd_db->db_data, zgd->zgd_db->db_size),
1996 	    zgd->zgd_db->db_size, zgd->zgd_db->db_size, zp,
1997 	    dmu_sync_late_arrival_ready, NULL, NULL, dmu_sync_late_arrival_done,
1998 	    dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
1999 
2000 	return (0);
2001 }
2002 
2003 /*
2004  * Intent log support: sync the block associated with db to disk.
2005  * N.B. and XXX: the caller is responsible for making sure that the
2006  * data isn't changing while dmu_sync() is writing it.
2007  *
2008  * Return values:
2009  *
2010  *	EEXIST: this txg has already been synced, so there's nothing to do.
2011  *		The caller should not log the write.
2012  *
2013  *	ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
2014  *		The caller should not log the write.
2015  *
2016  *	EALREADY: this block is already in the process of being synced.
2017  *		The caller should track its progress (somehow).
2018  *
2019  *	EIO: could not do the I/O.
2020  *		The caller should do a txg_wait_synced().
2021  *
2022  *	0: the I/O has been initiated.
2023  *		The caller should log this blkptr in the done callback.
2024  *		It is possible that the I/O will fail, in which case
2025  *		the error will be reported to the done callback and
2026  *		propagated to pio from zio_done().
2027  */
2028 int
2029 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
2030 {
2031 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
2032 	objset_t *os = db->db_objset;
2033 	dsl_dataset_t *ds = os->os_dsl_dataset;
2034 	dbuf_dirty_record_t *dr;
2035 	dmu_sync_arg_t *dsa;
2036 	zbookmark_phys_t zb;
2037 	zio_prop_t zp;
2038 	dnode_t *dn;
2039 
2040 	ASSERT(pio != NULL);
2041 	ASSERT(txg != 0);
2042 
2043 	SET_BOOKMARK(&zb, ds->ds_object,
2044 	    db->db.db_object, db->db_level, db->db_blkid);
2045 
2046 	DB_DNODE_ENTER(db);
2047 	dn = DB_DNODE(db);
2048 	dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
2049 	DB_DNODE_EXIT(db);
2050 
2051 	/*
2052 	 * If we're frozen (running ziltest), we always need to generate a bp.
2053 	 */
2054 	if (txg > spa_freeze_txg(os->os_spa))
2055 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
2056 
2057 	/*
2058 	 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
2059 	 * and us.  If we determine that this txg is not yet syncing,
2060 	 * but it begins to sync a moment later, that's OK because the
2061 	 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
2062 	 */
2063 	mutex_enter(&db->db_mtx);
2064 
2065 	if (txg <= spa_last_synced_txg(os->os_spa)) {
2066 		/*
2067 		 * This txg has already synced.  There's nothing to do.
2068 		 */
2069 		mutex_exit(&db->db_mtx);
2070 		return (SET_ERROR(EEXIST));
2071 	}
2072 
2073 	if (txg <= spa_syncing_txg(os->os_spa)) {
2074 		/*
2075 		 * This txg is currently syncing, so we can't mess with
2076 		 * the dirty record anymore; just write a new log block.
2077 		 */
2078 		mutex_exit(&db->db_mtx);
2079 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
2080 	}
2081 
2082 	dr = db->db_last_dirty;
2083 	while (dr && dr->dr_txg != txg)
2084 		dr = dr->dr_next;
2085 
2086 	if (dr == NULL) {
2087 		/*
2088 		 * There's no dr for this dbuf, so it must have been freed.
2089 		 * There's no need to log writes to freed blocks, so we're done.
2090 		 */
2091 		mutex_exit(&db->db_mtx);
2092 		return (SET_ERROR(ENOENT));
2093 	}
2094 
2095 	ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg);
2096 
2097 	if (db->db_blkptr != NULL) {
2098 		/*
2099 		 * We need to fill in zgd_bp with the current blkptr so that
2100 		 * the nopwrite code can check if we're writing the same
2101 		 * data that's already on disk.  We can only nopwrite if we
2102 		 * are sure that after making the copy, db_blkptr will not
2103 		 * change until our i/o completes.  We ensure this by
2104 		 * holding the db_mtx, and only allowing nopwrite if the
2105 		 * block is not already dirty (see below).  This is verified
2106 		 * by dmu_sync_done(), which VERIFYs that the db_blkptr has
2107 		 * not changed.
2108 		 */
2109 		*zgd->zgd_bp = *db->db_blkptr;
2110 	}
2111 
2112 	/*
2113 	 * Assume the on-disk data is X, the current syncing data (in
2114 	 * txg - 1) is Y, and the current in-memory data is Z (currently
2115 	 * in dmu_sync).
2116 	 *
2117 	 * We usually want to perform a nopwrite if X and Z are the
2118 	 * same.  However, if Y is different (i.e. the BP is going to
2119 	 * change before this write takes effect), then a nopwrite will
2120 	 * be incorrect - we would override with X, which could have
2121 	 * been freed when Y was written.
2122 	 *
2123 	 * (Note that this is not a concern when we are nop-writing from
2124 	 * syncing context, because X and Y must be identical, because
2125 	 * all previous txgs have been synced.)
2126 	 *
2127 	 * Therefore, we disable nopwrite if the current BP could change
2128 	 * before this TXG.  There are two ways it could change: by
2129 	 * being dirty (dr_next is non-NULL), or by being freed
2130 	 * (dnode_block_freed()).  This behavior is verified by
2131 	 * zio_done(), which VERIFYs that the override BP is identical
2132 	 * to the on-disk BP.
2133 	 */
2134 	DB_DNODE_ENTER(db);
2135 	dn = DB_DNODE(db);
2136 	if (dr->dr_next != NULL || dnode_block_freed(dn, db->db_blkid))
2137 		zp.zp_nopwrite = B_FALSE;
2138 	DB_DNODE_EXIT(db);
2139 
2140 	ASSERT(dr->dr_txg == txg);
2141 	if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
2142 	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
2143 		/*
2144 		 * We have already issued a sync write for this buffer,
2145 		 * or this buffer has already been synced.  It could not
2146 		 * have been dirtied since, or we would have cleared the state.
2147 		 */
2148 		mutex_exit(&db->db_mtx);
2149 		return (SET_ERROR(EALREADY));
2150 	}
2151 
2152 	ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
2153 	dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
2154 	mutex_exit(&db->db_mtx);
2155 
2156 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
2157 	dsa->dsa_dr = dr;
2158 	dsa->dsa_done = done;
2159 	dsa->dsa_zgd = zgd;
2160 	dsa->dsa_tx = NULL;
2161 
2162 	zio_nowait(arc_write(pio, os->os_spa, txg,
2163 	    zgd->zgd_bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db),
2164 	    &zp, dmu_sync_ready, NULL, NULL, dmu_sync_done, dsa,
2165 	    ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb));
2166 
2167 	return (0);
2168 }
2169 
2170 int
2171 dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels, dmu_tx_t *tx)
2172 {
2173 	dnode_t *dn;
2174 	int err;
2175 
2176 	err = dnode_hold(os, object, FTAG, &dn);
2177 	if (err)
2178 		return (err);
2179 	err = dnode_set_nlevels(dn, nlevels, tx);
2180 	dnode_rele(dn, FTAG);
2181 	return (err);
2182 }
2183 
2184 int
2185 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
2186     dmu_tx_t *tx)
2187 {
2188 	dnode_t *dn;
2189 	int err;
2190 
2191 	err = dnode_hold(os, object, FTAG, &dn);
2192 	if (err)
2193 		return (err);
2194 	err = dnode_set_blksz(dn, size, ibs, tx);
2195 	dnode_rele(dn, FTAG);
2196 	return (err);
2197 }
2198 
2199 int
2200 dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid,
2201     dmu_tx_t *tx)
2202 {
2203 	dnode_t *dn;
2204 	int err;
2205 
2206 	err = dnode_hold(os, object, FTAG, &dn);
2207 	if (err)
2208 		return (err);
2209 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2210 	dnode_new_blkid(dn, maxblkid, tx, B_FALSE, B_TRUE);
2211 	rw_exit(&dn->dn_struct_rwlock);
2212 	dnode_rele(dn, FTAG);
2213 	return (0);
2214 }
2215 
2216 void
2217 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
2218     dmu_tx_t *tx)
2219 {
2220 	dnode_t *dn;
2221 
2222 	/*
2223 	 * Send streams include each object's checksum function.  This
2224 	 * check ensures that the receiving system can understand the
2225 	 * checksum function transmitted.
2226 	 */
2227 	ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS);
2228 
2229 	VERIFY0(dnode_hold(os, object, FTAG, &dn));
2230 	ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS);
2231 	dn->dn_checksum = checksum;
2232 	dnode_setdirty(dn, tx);
2233 	dnode_rele(dn, FTAG);
2234 }
2235 
2236 void
2237 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
2238     dmu_tx_t *tx)
2239 {
2240 	dnode_t *dn;
2241 
2242 	/*
2243 	 * Send streams include each object's compression function.  This
2244 	 * check ensures that the receiving system can understand the
2245 	 * compression function transmitted.
2246 	 */
2247 	ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS);
2248 
2249 	VERIFY0(dnode_hold(os, object, FTAG, &dn));
2250 	dn->dn_compress = compress;
2251 	dnode_setdirty(dn, tx);
2252 	dnode_rele(dn, FTAG);
2253 }
2254 
2255 /*
2256  * When the "redundant_metadata" property is set to "most", only indirect
2257  * blocks of this level and higher will have an additional ditto block.
2258  */
2259 int zfs_redundant_metadata_most_ditto_level = 2;
2260 
2261 void
2262 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
2263 {
2264 	dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
2265 	boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
2266 	    (wp & WP_SPILL));
2267 	enum zio_checksum checksum = os->os_checksum;
2268 	enum zio_compress compress = os->os_compress;
2269 	enum zio_checksum dedup_checksum = os->os_dedup_checksum;
2270 	boolean_t dedup = B_FALSE;
2271 	boolean_t nopwrite = B_FALSE;
2272 	boolean_t dedup_verify = os->os_dedup_verify;
2273 	boolean_t encrypt = B_FALSE;
2274 	int copies = os->os_copies;
2275 
2276 	/*
2277 	 * We maintain different write policies for each of the following
2278 	 * types of data:
2279 	 *	 1. metadata
2280 	 *	 2. preallocated blocks (i.e. level-0 blocks of a dump device)
2281 	 *	 3. all other level 0 blocks
2282 	 */
2283 	if (ismd) {
2284 		/*
2285 		 * XXX -- we should design a compression algorithm
2286 		 * that specializes in arrays of bps.
2287 		 */
2288 		compress = zio_compress_select(os->os_spa,
2289 		    ZIO_COMPRESS_ON, ZIO_COMPRESS_ON);
2290 
2291 		/*
2292 		 * Metadata always gets checksummed.  If the data
2293 		 * checksum is multi-bit correctable, and it's not a
2294 		 * ZBT-style checksum, then it's suitable for metadata
2295 		 * as well.  Otherwise, the metadata checksum defaults
2296 		 * to fletcher4.
2297 		 */
2298 		if (!(zio_checksum_table[checksum].ci_flags &
2299 		    ZCHECKSUM_FLAG_METADATA) ||
2300 		    (zio_checksum_table[checksum].ci_flags &
2301 		    ZCHECKSUM_FLAG_EMBEDDED))
2302 			checksum = ZIO_CHECKSUM_FLETCHER_4;
2303 
2304 		if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL ||
2305 		    (os->os_redundant_metadata ==
2306 		    ZFS_REDUNDANT_METADATA_MOST &&
2307 		    (level >= zfs_redundant_metadata_most_ditto_level ||
2308 		    DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))))
2309 			copies++;
2310 	} else if (wp & WP_NOFILL) {
2311 		ASSERT(level == 0);
2312 
2313 		/*
2314 		 * If we're writing preallocated blocks, we aren't actually
2315 		 * writing them so don't set any policy properties.  These
2316 		 * blocks are currently only used by an external subsystem
2317 		 * outside of zfs (i.e. dump) and not written by the zio
2318 		 * pipeline.
2319 		 */
2320 		compress = ZIO_COMPRESS_OFF;
2321 		checksum = ZIO_CHECKSUM_NOPARITY;
2322 	} else {
2323 		compress = zio_compress_select(os->os_spa, dn->dn_compress,
2324 		    compress);
2325 
2326 		checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
2327 		    zio_checksum_select(dn->dn_checksum, checksum) :
2328 		    dedup_checksum;
2329 
2330 		/*
2331 		 * Determine dedup setting.  If we are in dmu_sync(),
2332 		 * we won't actually dedup now because that's all
2333 		 * done in syncing context; but we do want to use the
2334 		 * dedup checkum.  If the checksum is not strong
2335 		 * enough to ensure unique signatures, force
2336 		 * dedup_verify.
2337 		 */
2338 		if (dedup_checksum != ZIO_CHECKSUM_OFF) {
2339 			dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
2340 			if (!(zio_checksum_table[checksum].ci_flags &
2341 			    ZCHECKSUM_FLAG_DEDUP))
2342 				dedup_verify = B_TRUE;
2343 		}
2344 
2345 		/*
2346 		 * Enable nopwrite if we have secure enough checksum
2347 		 * algorithm (see comment in zio_nop_write) and
2348 		 * compression is enabled.  We don't enable nopwrite if
2349 		 * dedup is enabled as the two features are mutually
2350 		 * exclusive.
2351 		 */
2352 		nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags &
2353 		    ZCHECKSUM_FLAG_NOPWRITE) &&
2354 		    compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
2355 	}
2356 
2357 	/*
2358 	 * All objects in an encrypted objset are protected from modification
2359 	 * via a MAC. Encrypted objects store their IV and salt in the last DVA
2360 	 * in the bp, so we cannot use all copies. Encrypted objects are also
2361 	 * not subject to nopwrite since writing the same data will still
2362 	 * result in a new ciphertext. Only encrypted blocks can be dedup'd
2363 	 * to avoid ambiguity in the dedup code since the DDT does not store
2364 	 * object types.
2365 	 */
2366 	if (os->os_encrypted && (wp & WP_NOFILL) == 0) {
2367 		encrypt = B_TRUE;
2368 
2369 		if (DMU_OT_IS_ENCRYPTED(type)) {
2370 			copies = MIN(copies, SPA_DVAS_PER_BP - 1);
2371 			nopwrite = B_FALSE;
2372 		} else {
2373 			dedup = B_FALSE;
2374 		}
2375 
2376 		if (level <= 0 &&
2377 		    (type == DMU_OT_DNODE || type == DMU_OT_OBJSET)) {
2378 			compress = ZIO_COMPRESS_EMPTY;
2379 		}
2380 	}
2381 
2382 	zp->zp_compress = compress;
2383 	zp->zp_checksum = checksum;
2384 	zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
2385 	zp->zp_level = level;
2386 	zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa));
2387 	zp->zp_dedup = dedup;
2388 	zp->zp_dedup_verify = dedup && dedup_verify;
2389 	zp->zp_nopwrite = nopwrite;
2390 	zp->zp_zpl_smallblk = DMU_OT_IS_FILE(zp->zp_type) ?
2391 	    os->os_zpl_special_smallblock : 0;
2392 	zp->zp_encrypt = encrypt;
2393 	zp->zp_byteorder = ZFS_HOST_BYTEORDER;
2394 	bzero(zp->zp_salt, ZIO_DATA_SALT_LEN);
2395 	bzero(zp->zp_iv, ZIO_DATA_IV_LEN);
2396 	bzero(zp->zp_mac, ZIO_DATA_MAC_LEN);
2397 }
2398 
2399 int
2400 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
2401 {
2402 	dnode_t *dn;
2403 	int err;
2404 
2405 	/*
2406 	 * Sync any current changes before
2407 	 * we go trundling through the block pointers.
2408 	 */
2409 	err = dmu_object_wait_synced(os, object);
2410 	if (err) {
2411 		return (err);
2412 	}
2413 
2414 	err = dnode_hold(os, object, FTAG, &dn);
2415 	if (err) {
2416 		return (err);
2417 	}
2418 
2419 	err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
2420 	dnode_rele(dn, FTAG);
2421 
2422 	return (err);
2423 }
2424 
2425 /*
2426  * Given the ZFS object, if it contains any dirty nodes
2427  * this function flushes all dirty blocks to disk. This
2428  * ensures the DMU object info is updated. A more efficient
2429  * future version might just find the TXG with the maximum
2430  * ID and wait for that to be synced.
2431  */
2432 int
2433 dmu_object_wait_synced(objset_t *os, uint64_t object)
2434 {
2435 	dnode_t *dn;
2436 	int error, i;
2437 
2438 	error = dnode_hold(os, object, FTAG, &dn);
2439 	if (error) {
2440 		return (error);
2441 	}
2442 
2443 	for (i = 0; i < TXG_SIZE; i++) {
2444 		if (list_link_active(&dn->dn_dirty_link[i])) {
2445 			break;
2446 		}
2447 	}
2448 	dnode_rele(dn, FTAG);
2449 	if (i != TXG_SIZE) {
2450 		txg_wait_synced(dmu_objset_pool(os), 0);
2451 	}
2452 
2453 	return (0);
2454 }
2455 
2456 void
2457 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2458 {
2459 	dnode_phys_t *dnp;
2460 
2461 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
2462 	mutex_enter(&dn->dn_mtx);
2463 
2464 	dnp = dn->dn_phys;
2465 
2466 	doi->doi_data_block_size = dn->dn_datablksz;
2467 	doi->doi_metadata_block_size = dn->dn_indblkshift ?
2468 	    1ULL << dn->dn_indblkshift : 0;
2469 	doi->doi_type = dn->dn_type;
2470 	doi->doi_bonus_type = dn->dn_bonustype;
2471 	doi->doi_bonus_size = dn->dn_bonuslen;
2472 	doi->doi_dnodesize = dn->dn_num_slots << DNODE_SHIFT;
2473 	doi->doi_indirection = dn->dn_nlevels;
2474 	doi->doi_checksum = dn->dn_checksum;
2475 	doi->doi_compress = dn->dn_compress;
2476 	doi->doi_nblkptr = dn->dn_nblkptr;
2477 	doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
2478 	doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
2479 	doi->doi_fill_count = 0;
2480 	for (int i = 0; i < dnp->dn_nblkptr; i++)
2481 		doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]);
2482 
2483 	mutex_exit(&dn->dn_mtx);
2484 	rw_exit(&dn->dn_struct_rwlock);
2485 }
2486 
2487 /*
2488  * Get information on a DMU object.
2489  * If doi is NULL, just indicates whether the object exists.
2490  */
2491 int
2492 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
2493 {
2494 	dnode_t *dn;
2495 	int err = dnode_hold(os, object, FTAG, &dn);
2496 
2497 	if (err)
2498 		return (err);
2499 
2500 	if (doi != NULL)
2501 		dmu_object_info_from_dnode(dn, doi);
2502 
2503 	dnode_rele(dn, FTAG);
2504 	return (0);
2505 }
2506 
2507 /*
2508  * As above, but faster; can be used when you have a held dbuf in hand.
2509  */
2510 void
2511 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
2512 {
2513 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2514 
2515 	DB_DNODE_ENTER(db);
2516 	dmu_object_info_from_dnode(DB_DNODE(db), doi);
2517 	DB_DNODE_EXIT(db);
2518 }
2519 
2520 /*
2521  * Faster still when you only care about the size.
2522  * This is specifically optimized for zfs_getattr().
2523  */
2524 void
2525 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
2526     u_longlong_t *nblk512)
2527 {
2528 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2529 	dnode_t *dn;
2530 
2531 	DB_DNODE_ENTER(db);
2532 	dn = DB_DNODE(db);
2533 
2534 	*blksize = dn->dn_datablksz;
2535 	/* add in number of slots used for the dnode itself */
2536 	*nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
2537 	    SPA_MINBLOCKSHIFT) + dn->dn_num_slots;
2538 	DB_DNODE_EXIT(db);
2539 }
2540 
2541 void
2542 dmu_object_dnsize_from_db(dmu_buf_t *db_fake, int *dnsize)
2543 {
2544 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2545 	dnode_t *dn;
2546 
2547 	DB_DNODE_ENTER(db);
2548 	dn = DB_DNODE(db);
2549 	*dnsize = dn->dn_num_slots << DNODE_SHIFT;
2550 	DB_DNODE_EXIT(db);
2551 }
2552 
2553 void
2554 byteswap_uint64_array(void *vbuf, size_t size)
2555 {
2556 	uint64_t *buf = vbuf;
2557 	size_t count = size >> 3;
2558 	int i;
2559 
2560 	ASSERT((size & 7) == 0);
2561 
2562 	for (i = 0; i < count; i++)
2563 		buf[i] = BSWAP_64(buf[i]);
2564 }
2565 
2566 void
2567 byteswap_uint32_array(void *vbuf, size_t size)
2568 {
2569 	uint32_t *buf = vbuf;
2570 	size_t count = size >> 2;
2571 	int i;
2572 
2573 	ASSERT((size & 3) == 0);
2574 
2575 	for (i = 0; i < count; i++)
2576 		buf[i] = BSWAP_32(buf[i]);
2577 }
2578 
2579 void
2580 byteswap_uint16_array(void *vbuf, size_t size)
2581 {
2582 	uint16_t *buf = vbuf;
2583 	size_t count = size >> 1;
2584 	int i;
2585 
2586 	ASSERT((size & 1) == 0);
2587 
2588 	for (i = 0; i < count; i++)
2589 		buf[i] = BSWAP_16(buf[i]);
2590 }
2591 
2592 /* ARGSUSED */
2593 void
2594 byteswap_uint8_array(void *vbuf, size_t size)
2595 {
2596 }
2597 
2598 void
2599 dmu_init(void)
2600 {
2601 	abd_init();
2602 	zfs_dbgmsg_init();
2603 	sa_cache_init();
2604 	xuio_stat_init();
2605 	dmu_objset_init();
2606 	dnode_init();
2607 	zfetch_init();
2608 	l2arc_init();
2609 	arc_init();
2610 	dbuf_init();
2611 }
2612 
2613 void
2614 dmu_fini(void)
2615 {
2616 	arc_fini(); /* arc depends on l2arc, so arc must go first */
2617 	l2arc_fini();
2618 	zfetch_fini();
2619 	dbuf_fini();
2620 	dnode_fini();
2621 	dmu_objset_fini();
2622 	xuio_stat_fini();
2623 	sa_cache_fini();
2624 	zfs_dbgmsg_fini();
2625 	abd_fini();
2626 }
2627