1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved. 25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 26 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 28 * Copyright (c) 2014 Integros [integros.com] 29 */ 30 31 #include <sys/zfs_context.h> 32 #include <sys/dmu.h> 33 #include <sys/dmu_send.h> 34 #include <sys/dmu_impl.h> 35 #include <sys/dbuf.h> 36 #include <sys/dmu_objset.h> 37 #include <sys/dsl_dataset.h> 38 #include <sys/dsl_dir.h> 39 #include <sys/dmu_tx.h> 40 #include <sys/spa.h> 41 #include <sys/zio.h> 42 #include <sys/dmu_zfetch.h> 43 #include <sys/sa.h> 44 #include <sys/sa_impl.h> 45 #include <sys/zfeature.h> 46 #include <sys/blkptr.h> 47 #include <sys/range_tree.h> 48 #include <sys/callb.h> 49 #include <sys/abd.h> 50 #include <sys/vdev.h> 51 #include <sys/cityhash.h> 52 #include <sys/spa_impl.h> 53 54 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx); 55 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx); 56 57 #ifndef __lint 58 extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu, 59 dmu_buf_evict_func_t *evict_func_sync, 60 dmu_buf_evict_func_t *evict_func_async, 61 dmu_buf_t **clear_on_evict_dbufp); 62 #endif /* ! __lint */ 63 64 /* 65 * Global data structures and functions for the dbuf cache. 66 */ 67 static kmem_cache_t *dbuf_kmem_cache; 68 static taskq_t *dbu_evict_taskq; 69 70 static kthread_t *dbuf_cache_evict_thread; 71 static kmutex_t dbuf_evict_lock; 72 static kcondvar_t dbuf_evict_cv; 73 static boolean_t dbuf_evict_thread_exit; 74 75 /* 76 * There are two dbuf caches; each dbuf can only be in one of them at a time. 77 * 78 * 1. Cache of metadata dbufs, to help make read-heavy administrative commands 79 * from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs 80 * that represent the metadata that describes filesystems/snapshots/ 81 * bookmarks/properties/etc. We only evict from this cache when we export a 82 * pool, to short-circuit as much I/O as possible for all administrative 83 * commands that need the metadata. There is no eviction policy for this 84 * cache, because we try to only include types in it which would occupy a 85 * very small amount of space per object but create a large impact on the 86 * performance of these commands. Instead, after it reaches a maximum size 87 * (which should only happen on very small memory systems with a very large 88 * number of filesystem objects), we stop taking new dbufs into the 89 * metadata cache, instead putting them in the normal dbuf cache. 90 * 91 * 2. LRU cache of dbufs. The "dbuf cache" maintains a list of dbufs that 92 * are not currently held but have been recently released. These dbufs 93 * are not eligible for arc eviction until they are aged out of the cache. 94 * Dbufs that are aged out of the cache will be immediately destroyed and 95 * become eligible for arc eviction. 96 * 97 * Dbufs are added to these caches once the last hold is released. If a dbuf is 98 * later accessed and still exists in the dbuf cache, then it will be removed 99 * from the cache and later re-added to the head of the cache. 100 * 101 * If a given dbuf meets the requirements for the metadata cache, it will go 102 * there, otherwise it will be considered for the generic LRU dbuf cache. The 103 * caches and the refcounts tracking their sizes are stored in an array indexed 104 * by those caches' matching enum values (from dbuf_cached_state_t). 105 */ 106 typedef struct dbuf_cache { 107 multilist_t *cache; 108 zfs_refcount_t size; 109 } dbuf_cache_t; 110 dbuf_cache_t dbuf_caches[DB_CACHE_MAX]; 111 112 /* Size limits for the caches */ 113 uint64_t dbuf_cache_max_bytes = 0; 114 uint64_t dbuf_metadata_cache_max_bytes = 0; 115 /* Set the default sizes of the caches to log2 fraction of arc size */ 116 int dbuf_cache_shift = 5; 117 int dbuf_metadata_cache_shift = 6; 118 119 /* 120 * For diagnostic purposes, this is incremented whenever we can't add 121 * something to the metadata cache because it's full, and instead put 122 * the data in the regular dbuf cache. 123 */ 124 uint64_t dbuf_metadata_cache_overflow; 125 126 /* 127 * The LRU dbuf cache uses a three-stage eviction policy: 128 * - A low water marker designates when the dbuf eviction thread 129 * should stop evicting from the dbuf cache. 130 * - When we reach the maximum size (aka mid water mark), we 131 * signal the eviction thread to run. 132 * - The high water mark indicates when the eviction thread 133 * is unable to keep up with the incoming load and eviction must 134 * happen in the context of the calling thread. 135 * 136 * The dbuf cache: 137 * (max size) 138 * low water mid water hi water 139 * +----------------------------------------+----------+----------+ 140 * | | | | 141 * | | | | 142 * | | | | 143 * | | | | 144 * +----------------------------------------+----------+----------+ 145 * stop signal evict 146 * evicting eviction directly 147 * thread 148 * 149 * The high and low water marks indicate the operating range for the eviction 150 * thread. The low water mark is, by default, 90% of the total size of the 151 * cache and the high water mark is at 110% (both of these percentages can be 152 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct, 153 * respectively). The eviction thread will try to ensure that the cache remains 154 * within this range by waking up every second and checking if the cache is 155 * above the low water mark. The thread can also be woken up by callers adding 156 * elements into the cache if the cache is larger than the mid water (i.e max 157 * cache size). Once the eviction thread is woken up and eviction is required, 158 * it will continue evicting buffers until it's able to reduce the cache size 159 * to the low water mark. If the cache size continues to grow and hits the high 160 * water mark, then callers adding elments to the cache will begin to evict 161 * directly from the cache until the cache is no longer above the high water 162 * mark. 163 */ 164 165 /* 166 * The percentage above and below the maximum cache size. 167 */ 168 uint_t dbuf_cache_hiwater_pct = 10; 169 uint_t dbuf_cache_lowater_pct = 10; 170 171 /* ARGSUSED */ 172 static int 173 dbuf_cons(void *vdb, void *unused, int kmflag) 174 { 175 dmu_buf_impl_t *db = vdb; 176 bzero(db, sizeof (dmu_buf_impl_t)); 177 178 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL); 179 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL); 180 multilist_link_init(&db->db_cache_link); 181 zfs_refcount_create(&db->db_holds); 182 183 return (0); 184 } 185 186 /* ARGSUSED */ 187 static void 188 dbuf_dest(void *vdb, void *unused) 189 { 190 dmu_buf_impl_t *db = vdb; 191 mutex_destroy(&db->db_mtx); 192 cv_destroy(&db->db_changed); 193 ASSERT(!multilist_link_active(&db->db_cache_link)); 194 zfs_refcount_destroy(&db->db_holds); 195 } 196 197 /* 198 * dbuf hash table routines 199 */ 200 static dbuf_hash_table_t dbuf_hash_table; 201 202 static uint64_t dbuf_hash_count; 203 204 /* 205 * We use Cityhash for this. It's fast, and has good hash properties without 206 * requiring any large static buffers. 207 */ 208 static uint64_t 209 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid) 210 { 211 return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid)); 212 } 213 214 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \ 215 ((dbuf)->db.db_object == (obj) && \ 216 (dbuf)->db_objset == (os) && \ 217 (dbuf)->db_level == (level) && \ 218 (dbuf)->db_blkid == (blkid)) 219 220 dmu_buf_impl_t * 221 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid) 222 { 223 dbuf_hash_table_t *h = &dbuf_hash_table; 224 uint64_t hv = dbuf_hash(os, obj, level, blkid); 225 uint64_t idx = hv & h->hash_table_mask; 226 dmu_buf_impl_t *db; 227 228 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 229 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) { 230 if (DBUF_EQUAL(db, os, obj, level, blkid)) { 231 mutex_enter(&db->db_mtx); 232 if (db->db_state != DB_EVICTING) { 233 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 234 return (db); 235 } 236 mutex_exit(&db->db_mtx); 237 } 238 } 239 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 240 return (NULL); 241 } 242 243 static dmu_buf_impl_t * 244 dbuf_find_bonus(objset_t *os, uint64_t object) 245 { 246 dnode_t *dn; 247 dmu_buf_impl_t *db = NULL; 248 249 if (dnode_hold(os, object, FTAG, &dn) == 0) { 250 rw_enter(&dn->dn_struct_rwlock, RW_READER); 251 if (dn->dn_bonus != NULL) { 252 db = dn->dn_bonus; 253 mutex_enter(&db->db_mtx); 254 } 255 rw_exit(&dn->dn_struct_rwlock); 256 dnode_rele(dn, FTAG); 257 } 258 return (db); 259 } 260 261 /* 262 * Insert an entry into the hash table. If there is already an element 263 * equal to elem in the hash table, then the already existing element 264 * will be returned and the new element will not be inserted. 265 * Otherwise returns NULL. 266 */ 267 static dmu_buf_impl_t * 268 dbuf_hash_insert(dmu_buf_impl_t *db) 269 { 270 dbuf_hash_table_t *h = &dbuf_hash_table; 271 objset_t *os = db->db_objset; 272 uint64_t obj = db->db.db_object; 273 int level = db->db_level; 274 uint64_t blkid = db->db_blkid; 275 uint64_t hv = dbuf_hash(os, obj, level, blkid); 276 uint64_t idx = hv & h->hash_table_mask; 277 dmu_buf_impl_t *dbf; 278 279 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 280 for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) { 281 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) { 282 mutex_enter(&dbf->db_mtx); 283 if (dbf->db_state != DB_EVICTING) { 284 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 285 return (dbf); 286 } 287 mutex_exit(&dbf->db_mtx); 288 } 289 } 290 291 mutex_enter(&db->db_mtx); 292 db->db_hash_next = h->hash_table[idx]; 293 h->hash_table[idx] = db; 294 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 295 atomic_inc_64(&dbuf_hash_count); 296 297 return (NULL); 298 } 299 300 /* 301 * Remove an entry from the hash table. It must be in the EVICTING state. 302 */ 303 static void 304 dbuf_hash_remove(dmu_buf_impl_t *db) 305 { 306 dbuf_hash_table_t *h = &dbuf_hash_table; 307 uint64_t hv = dbuf_hash(db->db_objset, db->db.db_object, 308 db->db_level, db->db_blkid); 309 uint64_t idx = hv & h->hash_table_mask; 310 dmu_buf_impl_t *dbf, **dbp; 311 312 /* 313 * We musn't hold db_mtx to maintain lock ordering: 314 * DBUF_HASH_MUTEX > db_mtx. 315 */ 316 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 317 ASSERT(db->db_state == DB_EVICTING); 318 ASSERT(!MUTEX_HELD(&db->db_mtx)); 319 320 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 321 dbp = &h->hash_table[idx]; 322 while ((dbf = *dbp) != db) { 323 dbp = &dbf->db_hash_next; 324 ASSERT(dbf != NULL); 325 } 326 *dbp = db->db_hash_next; 327 db->db_hash_next = NULL; 328 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 329 atomic_dec_64(&dbuf_hash_count); 330 } 331 332 typedef enum { 333 DBVU_EVICTING, 334 DBVU_NOT_EVICTING 335 } dbvu_verify_type_t; 336 337 static void 338 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type) 339 { 340 #ifdef ZFS_DEBUG 341 int64_t holds; 342 343 if (db->db_user == NULL) 344 return; 345 346 /* Only data blocks support the attachment of user data. */ 347 ASSERT(db->db_level == 0); 348 349 /* Clients must resolve a dbuf before attaching user data. */ 350 ASSERT(db->db.db_data != NULL); 351 ASSERT3U(db->db_state, ==, DB_CACHED); 352 353 holds = zfs_refcount_count(&db->db_holds); 354 if (verify_type == DBVU_EVICTING) { 355 /* 356 * Immediate eviction occurs when holds == dirtycnt. 357 * For normal eviction buffers, holds is zero on 358 * eviction, except when dbuf_fix_old_data() calls 359 * dbuf_clear_data(). However, the hold count can grow 360 * during eviction even though db_mtx is held (see 361 * dmu_bonus_hold() for an example), so we can only 362 * test the generic invariant that holds >= dirtycnt. 363 */ 364 ASSERT3U(holds, >=, db->db_dirtycnt); 365 } else { 366 if (db->db_user_immediate_evict == TRUE) 367 ASSERT3U(holds, >=, db->db_dirtycnt); 368 else 369 ASSERT3U(holds, >, 0); 370 } 371 #endif 372 } 373 374 static void 375 dbuf_evict_user(dmu_buf_impl_t *db) 376 { 377 dmu_buf_user_t *dbu = db->db_user; 378 379 ASSERT(MUTEX_HELD(&db->db_mtx)); 380 381 if (dbu == NULL) 382 return; 383 384 dbuf_verify_user(db, DBVU_EVICTING); 385 db->db_user = NULL; 386 387 #ifdef ZFS_DEBUG 388 if (dbu->dbu_clear_on_evict_dbufp != NULL) 389 *dbu->dbu_clear_on_evict_dbufp = NULL; 390 #endif 391 392 /* 393 * There are two eviction callbacks - one that we call synchronously 394 * and one that we invoke via a taskq. The async one is useful for 395 * avoiding lock order reversals and limiting stack depth. 396 * 397 * Note that if we have a sync callback but no async callback, 398 * it's likely that the sync callback will free the structure 399 * containing the dbu. In that case we need to take care to not 400 * dereference dbu after calling the sync evict func. 401 */ 402 boolean_t has_async = (dbu->dbu_evict_func_async != NULL); 403 404 if (dbu->dbu_evict_func_sync != NULL) 405 dbu->dbu_evict_func_sync(dbu); 406 407 if (has_async) { 408 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async, 409 dbu, 0, &dbu->dbu_tqent); 410 } 411 } 412 413 boolean_t 414 dbuf_is_metadata(dmu_buf_impl_t *db) 415 { 416 if (db->db_level > 0) { 417 return (B_TRUE); 418 } else { 419 boolean_t is_metadata; 420 421 DB_DNODE_ENTER(db); 422 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type); 423 DB_DNODE_EXIT(db); 424 425 return (is_metadata); 426 } 427 } 428 429 /* 430 * This returns whether this dbuf should be stored in the metadata cache, which 431 * is based on whether it's from one of the dnode types that store data related 432 * to traversing dataset hierarchies. 433 */ 434 static boolean_t 435 dbuf_include_in_metadata_cache(dmu_buf_impl_t *db) 436 { 437 DB_DNODE_ENTER(db); 438 dmu_object_type_t type = DB_DNODE(db)->dn_type; 439 DB_DNODE_EXIT(db); 440 441 /* Check if this dbuf is one of the types we care about */ 442 if (DMU_OT_IS_METADATA_CACHED(type)) { 443 /* If we hit this, then we set something up wrong in dmu_ot */ 444 ASSERT(DMU_OT_IS_METADATA(type)); 445 446 /* 447 * Sanity check for small-memory systems: don't allocate too 448 * much memory for this purpose. 449 */ 450 if (zfs_refcount_count( 451 &dbuf_caches[DB_DBUF_METADATA_CACHE].size) > 452 dbuf_metadata_cache_max_bytes) { 453 dbuf_metadata_cache_overflow++; 454 DTRACE_PROBE1(dbuf__metadata__cache__overflow, 455 dmu_buf_impl_t *, db); 456 return (B_FALSE); 457 } 458 459 return (B_TRUE); 460 } 461 462 return (B_FALSE); 463 } 464 465 /* 466 * This function *must* return indices evenly distributed between all 467 * sublists of the multilist. This is needed due to how the dbuf eviction 468 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly 469 * distributed between all sublists and uses this assumption when 470 * deciding which sublist to evict from and how much to evict from it. 471 */ 472 unsigned int 473 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj) 474 { 475 dmu_buf_impl_t *db = obj; 476 477 /* 478 * The assumption here, is the hash value for a given 479 * dmu_buf_impl_t will remain constant throughout it's lifetime 480 * (i.e. it's objset, object, level and blkid fields don't change). 481 * Thus, we don't need to store the dbuf's sublist index 482 * on insertion, as this index can be recalculated on removal. 483 * 484 * Also, the low order bits of the hash value are thought to be 485 * distributed evenly. Otherwise, in the case that the multilist 486 * has a power of two number of sublists, each sublists' usage 487 * would not be evenly distributed. 488 */ 489 return (dbuf_hash(db->db_objset, db->db.db_object, 490 db->db_level, db->db_blkid) % 491 multilist_get_num_sublists(ml)); 492 } 493 494 static inline boolean_t 495 dbuf_cache_above_hiwater(void) 496 { 497 uint64_t dbuf_cache_hiwater_bytes = 498 (dbuf_cache_max_bytes * dbuf_cache_hiwater_pct) / 100; 499 500 return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) > 501 dbuf_cache_max_bytes + dbuf_cache_hiwater_bytes); 502 } 503 504 static inline boolean_t 505 dbuf_cache_above_lowater(void) 506 { 507 uint64_t dbuf_cache_lowater_bytes = 508 (dbuf_cache_max_bytes * dbuf_cache_lowater_pct) / 100; 509 510 return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) > 511 dbuf_cache_max_bytes - dbuf_cache_lowater_bytes); 512 } 513 514 /* 515 * Evict the oldest eligible dbuf from the dbuf cache. 516 */ 517 static void 518 dbuf_evict_one(void) 519 { 520 int idx = multilist_get_random_index(dbuf_caches[DB_DBUF_CACHE].cache); 521 multilist_sublist_t *mls = multilist_sublist_lock( 522 dbuf_caches[DB_DBUF_CACHE].cache, idx); 523 524 ASSERT(!MUTEX_HELD(&dbuf_evict_lock)); 525 526 dmu_buf_impl_t *db = multilist_sublist_tail(mls); 527 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) { 528 db = multilist_sublist_prev(mls, db); 529 } 530 531 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db, 532 multilist_sublist_t *, mls); 533 534 if (db != NULL) { 535 multilist_sublist_remove(mls, db); 536 multilist_sublist_unlock(mls); 537 (void) zfs_refcount_remove_many( 538 &dbuf_caches[DB_DBUF_CACHE].size, 539 db->db.db_size, db); 540 ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE); 541 db->db_caching_status = DB_NO_CACHE; 542 dbuf_destroy(db); 543 } else { 544 multilist_sublist_unlock(mls); 545 } 546 } 547 548 /* 549 * The dbuf evict thread is responsible for aging out dbufs from the 550 * cache. Once the cache has reached it's maximum size, dbufs are removed 551 * and destroyed. The eviction thread will continue running until the size 552 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged 553 * out of the cache it is destroyed and becomes eligible for arc eviction. 554 */ 555 /* ARGSUSED */ 556 static void 557 dbuf_evict_thread(void *unused) 558 { 559 callb_cpr_t cpr; 560 561 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG); 562 563 mutex_enter(&dbuf_evict_lock); 564 while (!dbuf_evict_thread_exit) { 565 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 566 CALLB_CPR_SAFE_BEGIN(&cpr); 567 (void) cv_timedwait_hires(&dbuf_evict_cv, 568 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0); 569 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock); 570 } 571 mutex_exit(&dbuf_evict_lock); 572 573 /* 574 * Keep evicting as long as we're above the low water mark 575 * for the cache. We do this without holding the locks to 576 * minimize lock contention. 577 */ 578 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 579 dbuf_evict_one(); 580 } 581 582 mutex_enter(&dbuf_evict_lock); 583 } 584 585 dbuf_evict_thread_exit = B_FALSE; 586 cv_broadcast(&dbuf_evict_cv); 587 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */ 588 thread_exit(); 589 } 590 591 /* 592 * Wake up the dbuf eviction thread if the dbuf cache is at its max size. 593 * If the dbuf cache is at its high water mark, then evict a dbuf from the 594 * dbuf cache using the callers context. 595 */ 596 static void 597 dbuf_evict_notify(void) 598 { 599 /* 600 * We check if we should evict without holding the dbuf_evict_lock, 601 * because it's OK to occasionally make the wrong decision here, 602 * and grabbing the lock results in massive lock contention. 603 */ 604 if (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) > 605 dbuf_cache_max_bytes) { 606 if (dbuf_cache_above_hiwater()) 607 dbuf_evict_one(); 608 cv_signal(&dbuf_evict_cv); 609 } 610 } 611 612 void 613 dbuf_init(void) 614 { 615 uint64_t hsize = 1ULL << 16; 616 dbuf_hash_table_t *h = &dbuf_hash_table; 617 int i; 618 619 /* 620 * The hash table is big enough to fill all of physical memory 621 * with an average 4K block size. The table will take up 622 * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers). 623 */ 624 while (hsize * 4096 < physmem * PAGESIZE) 625 hsize <<= 1; 626 627 retry: 628 h->hash_table_mask = hsize - 1; 629 h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP); 630 if (h->hash_table == NULL) { 631 /* XXX - we should really return an error instead of assert */ 632 ASSERT(hsize > (1ULL << 10)); 633 hsize >>= 1; 634 goto retry; 635 } 636 637 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t", 638 sizeof (dmu_buf_impl_t), 639 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0); 640 641 for (i = 0; i < DBUF_MUTEXES; i++) 642 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL); 643 644 /* 645 * Setup the parameters for the dbuf caches. We set the sizes of the 646 * dbuf cache and the metadata cache to 1/32nd and 1/16th (default) 647 * of the size of the ARC, respectively. If the values are set in 648 * /etc/system and they're not greater than the size of the ARC, then 649 * we honor that value. 650 */ 651 if (dbuf_cache_max_bytes == 0 || 652 dbuf_cache_max_bytes >= arc_max_bytes()) { 653 dbuf_cache_max_bytes = arc_max_bytes() >> dbuf_cache_shift; 654 } 655 if (dbuf_metadata_cache_max_bytes == 0 || 656 dbuf_metadata_cache_max_bytes >= arc_max_bytes()) { 657 dbuf_metadata_cache_max_bytes = 658 arc_max_bytes() >> dbuf_metadata_cache_shift; 659 } 660 661 /* 662 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc 663 * configuration is not required. 664 */ 665 dbu_evict_taskq = taskq_create("dbu_evict", 1, minclsyspri, 0, 0, 0); 666 667 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) { 668 dbuf_caches[dcs].cache = 669 multilist_create(sizeof (dmu_buf_impl_t), 670 offsetof(dmu_buf_impl_t, db_cache_link), 671 dbuf_cache_multilist_index_func); 672 zfs_refcount_create(&dbuf_caches[dcs].size); 673 } 674 675 dbuf_evict_thread_exit = B_FALSE; 676 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL); 677 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL); 678 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread, 679 NULL, 0, &p0, TS_RUN, minclsyspri); 680 } 681 682 void 683 dbuf_fini(void) 684 { 685 dbuf_hash_table_t *h = &dbuf_hash_table; 686 int i; 687 688 for (i = 0; i < DBUF_MUTEXES; i++) 689 mutex_destroy(&h->hash_mutexes[i]); 690 kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *)); 691 kmem_cache_destroy(dbuf_kmem_cache); 692 taskq_destroy(dbu_evict_taskq); 693 694 mutex_enter(&dbuf_evict_lock); 695 dbuf_evict_thread_exit = B_TRUE; 696 while (dbuf_evict_thread_exit) { 697 cv_signal(&dbuf_evict_cv); 698 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock); 699 } 700 mutex_exit(&dbuf_evict_lock); 701 702 mutex_destroy(&dbuf_evict_lock); 703 cv_destroy(&dbuf_evict_cv); 704 705 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) { 706 zfs_refcount_destroy(&dbuf_caches[dcs].size); 707 multilist_destroy(dbuf_caches[dcs].cache); 708 } 709 } 710 711 /* 712 * Other stuff. 713 */ 714 715 #ifdef ZFS_DEBUG 716 static void 717 dbuf_verify(dmu_buf_impl_t *db) 718 { 719 dnode_t *dn; 720 dbuf_dirty_record_t *dr; 721 722 ASSERT(MUTEX_HELD(&db->db_mtx)); 723 724 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY)) 725 return; 726 727 ASSERT(db->db_objset != NULL); 728 DB_DNODE_ENTER(db); 729 dn = DB_DNODE(db); 730 if (dn == NULL) { 731 ASSERT(db->db_parent == NULL); 732 ASSERT(db->db_blkptr == NULL); 733 } else { 734 ASSERT3U(db->db.db_object, ==, dn->dn_object); 735 ASSERT3P(db->db_objset, ==, dn->dn_objset); 736 ASSERT3U(db->db_level, <, dn->dn_nlevels); 737 ASSERT(db->db_blkid == DMU_BONUS_BLKID || 738 db->db_blkid == DMU_SPILL_BLKID || 739 !avl_is_empty(&dn->dn_dbufs)); 740 } 741 if (db->db_blkid == DMU_BONUS_BLKID) { 742 ASSERT(dn != NULL); 743 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 744 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID); 745 } else if (db->db_blkid == DMU_SPILL_BLKID) { 746 ASSERT(dn != NULL); 747 ASSERT0(db->db.db_offset); 748 } else { 749 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size); 750 } 751 752 for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next) 753 ASSERT(dr->dr_dbuf == db); 754 755 for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next) 756 ASSERT(dr->dr_dbuf == db); 757 758 /* 759 * We can't assert that db_size matches dn_datablksz because it 760 * can be momentarily different when another thread is doing 761 * dnode_set_blksz(). 762 */ 763 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) { 764 dr = db->db_data_pending; 765 /* 766 * It should only be modified in syncing context, so 767 * make sure we only have one copy of the data. 768 */ 769 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf); 770 } 771 772 /* verify db->db_blkptr */ 773 if (db->db_blkptr) { 774 if (db->db_parent == dn->dn_dbuf) { 775 /* db is pointed to by the dnode */ 776 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */ 777 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object)) 778 ASSERT(db->db_parent == NULL); 779 else 780 ASSERT(db->db_parent != NULL); 781 if (db->db_blkid != DMU_SPILL_BLKID) 782 ASSERT3P(db->db_blkptr, ==, 783 &dn->dn_phys->dn_blkptr[db->db_blkid]); 784 } else { 785 /* db is pointed to by an indirect block */ 786 int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT; 787 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1); 788 ASSERT3U(db->db_parent->db.db_object, ==, 789 db->db.db_object); 790 /* 791 * dnode_grow_indblksz() can make this fail if we don't 792 * have the struct_rwlock. XXX indblksz no longer 793 * grows. safe to do this now? 794 */ 795 if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 796 ASSERT3P(db->db_blkptr, ==, 797 ((blkptr_t *)db->db_parent->db.db_data + 798 db->db_blkid % epb)); 799 } 800 } 801 } 802 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) && 803 (db->db_buf == NULL || db->db_buf->b_data) && 804 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID && 805 db->db_state != DB_FILL && !dn->dn_free_txg) { 806 /* 807 * If the blkptr isn't set but they have nonzero data, 808 * it had better be dirty, otherwise we'll lose that 809 * data when we evict this buffer. 810 * 811 * There is an exception to this rule for indirect blocks; in 812 * this case, if the indirect block is a hole, we fill in a few 813 * fields on each of the child blocks (importantly, birth time) 814 * to prevent hole birth times from being lost when you 815 * partially fill in a hole. 816 */ 817 if (db->db_dirtycnt == 0) { 818 if (db->db_level == 0) { 819 uint64_t *buf = db->db.db_data; 820 int i; 821 822 for (i = 0; i < db->db.db_size >> 3; i++) { 823 ASSERT(buf[i] == 0); 824 } 825 } else { 826 blkptr_t *bps = db->db.db_data; 827 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==, 828 db->db.db_size); 829 /* 830 * We want to verify that all the blkptrs in the 831 * indirect block are holes, but we may have 832 * automatically set up a few fields for them. 833 * We iterate through each blkptr and verify 834 * they only have those fields set. 835 */ 836 for (int i = 0; 837 i < db->db.db_size / sizeof (blkptr_t); 838 i++) { 839 blkptr_t *bp = &bps[i]; 840 ASSERT(ZIO_CHECKSUM_IS_ZERO( 841 &bp->blk_cksum)); 842 ASSERT( 843 DVA_IS_EMPTY(&bp->blk_dva[0]) && 844 DVA_IS_EMPTY(&bp->blk_dva[1]) && 845 DVA_IS_EMPTY(&bp->blk_dva[2])); 846 ASSERT0(bp->blk_fill); 847 ASSERT0(bp->blk_pad[0]); 848 ASSERT0(bp->blk_pad[1]); 849 ASSERT(!BP_IS_EMBEDDED(bp)); 850 ASSERT(BP_IS_HOLE(bp)); 851 ASSERT0(bp->blk_phys_birth); 852 } 853 } 854 } 855 } 856 DB_DNODE_EXIT(db); 857 } 858 #endif 859 860 static void 861 dbuf_clear_data(dmu_buf_impl_t *db) 862 { 863 ASSERT(MUTEX_HELD(&db->db_mtx)); 864 dbuf_evict_user(db); 865 ASSERT3P(db->db_buf, ==, NULL); 866 db->db.db_data = NULL; 867 if (db->db_state != DB_NOFILL) 868 db->db_state = DB_UNCACHED; 869 } 870 871 static void 872 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf) 873 { 874 ASSERT(MUTEX_HELD(&db->db_mtx)); 875 ASSERT(buf != NULL); 876 877 db->db_buf = buf; 878 ASSERT(buf->b_data != NULL); 879 db->db.db_data = buf->b_data; 880 } 881 882 /* 883 * Loan out an arc_buf for read. Return the loaned arc_buf. 884 */ 885 arc_buf_t * 886 dbuf_loan_arcbuf(dmu_buf_impl_t *db) 887 { 888 arc_buf_t *abuf; 889 890 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 891 mutex_enter(&db->db_mtx); 892 if (arc_released(db->db_buf) || zfs_refcount_count(&db->db_holds) > 1) { 893 int blksz = db->db.db_size; 894 spa_t *spa = db->db_objset->os_spa; 895 896 mutex_exit(&db->db_mtx); 897 abuf = arc_loan_buf(spa, B_FALSE, blksz); 898 bcopy(db->db.db_data, abuf->b_data, blksz); 899 } else { 900 abuf = db->db_buf; 901 arc_loan_inuse_buf(abuf, db); 902 db->db_buf = NULL; 903 dbuf_clear_data(db); 904 mutex_exit(&db->db_mtx); 905 } 906 return (abuf); 907 } 908 909 /* 910 * Calculate which level n block references the data at the level 0 offset 911 * provided. 912 */ 913 uint64_t 914 dbuf_whichblock(dnode_t *dn, int64_t level, uint64_t offset) 915 { 916 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) { 917 /* 918 * The level n blkid is equal to the level 0 blkid divided by 919 * the number of level 0s in a level n block. 920 * 921 * The level 0 blkid is offset >> datablkshift = 922 * offset / 2^datablkshift. 923 * 924 * The number of level 0s in a level n is the number of block 925 * pointers in an indirect block, raised to the power of level. 926 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level = 927 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)). 928 * 929 * Thus, the level n blkid is: offset / 930 * ((2^datablkshift)*(2^(level*(indblkshift - SPA_BLKPTRSHIFT))) 931 * = offset / 2^(datablkshift + level * 932 * (indblkshift - SPA_BLKPTRSHIFT)) 933 * = offset >> (datablkshift + level * 934 * (indblkshift - SPA_BLKPTRSHIFT)) 935 */ 936 return (offset >> (dn->dn_datablkshift + level * 937 (dn->dn_indblkshift - SPA_BLKPTRSHIFT))); 938 } else { 939 ASSERT3U(offset, <, dn->dn_datablksz); 940 return (0); 941 } 942 } 943 944 static void 945 dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb) 946 { 947 dmu_buf_impl_t *db = vdb; 948 949 mutex_enter(&db->db_mtx); 950 ASSERT3U(db->db_state, ==, DB_READ); 951 /* 952 * All reads are synchronous, so we must have a hold on the dbuf 953 */ 954 ASSERT(zfs_refcount_count(&db->db_holds) > 0); 955 ASSERT(db->db_buf == NULL); 956 ASSERT(db->db.db_data == NULL); 957 if (buf == NULL) { 958 /* i/o error */ 959 ASSERT(zio == NULL || zio->io_error != 0); 960 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 961 ASSERT3P(db->db_buf, ==, NULL); 962 db->db_state = DB_UNCACHED; 963 } else if (db->db_level == 0 && db->db_freed_in_flight) { 964 /* freed in flight */ 965 ASSERT(zio == NULL || zio->io_error == 0); 966 arc_release(buf, db); 967 bzero(buf->b_data, db->db.db_size); 968 arc_buf_freeze(buf); 969 db->db_freed_in_flight = FALSE; 970 dbuf_set_data(db, buf); 971 db->db_state = DB_CACHED; 972 } else { 973 /* success */ 974 ASSERT(zio == NULL || zio->io_error == 0); 975 dbuf_set_data(db, buf); 976 db->db_state = DB_CACHED; 977 } 978 cv_broadcast(&db->db_changed); 979 dbuf_rele_and_unlock(db, NULL, B_FALSE); 980 } 981 982 static void 983 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags) 984 { 985 dnode_t *dn; 986 zbookmark_phys_t zb; 987 arc_flags_t aflags = ARC_FLAG_NOWAIT; 988 989 DB_DNODE_ENTER(db); 990 dn = DB_DNODE(db); 991 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 992 /* We need the struct_rwlock to prevent db_blkptr from changing. */ 993 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 994 ASSERT(MUTEX_HELD(&db->db_mtx)); 995 ASSERT(db->db_state == DB_UNCACHED); 996 ASSERT(db->db_buf == NULL); 997 998 if (db->db_blkid == DMU_BONUS_BLKID) { 999 /* 1000 * The bonus length stored in the dnode may be less than 1001 * the maximum available space in the bonus buffer. 1002 */ 1003 int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen); 1004 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 1005 1006 ASSERT3U(bonuslen, <=, db->db.db_size); 1007 db->db.db_data = zio_buf_alloc(max_bonuslen); 1008 arc_space_consume(max_bonuslen, ARC_SPACE_BONUS); 1009 if (bonuslen < max_bonuslen) 1010 bzero(db->db.db_data, max_bonuslen); 1011 if (bonuslen) 1012 bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen); 1013 DB_DNODE_EXIT(db); 1014 db->db_state = DB_CACHED; 1015 mutex_exit(&db->db_mtx); 1016 return; 1017 } 1018 1019 /* 1020 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync() 1021 * processes the delete record and clears the bp while we are waiting 1022 * for the dn_mtx (resulting in a "no" from block_freed). 1023 */ 1024 if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) || 1025 (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) || 1026 BP_IS_HOLE(db->db_blkptr)))) { 1027 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1028 1029 dbuf_set_data(db, arc_alloc_buf(db->db_objset->os_spa, db, type, 1030 db->db.db_size)); 1031 bzero(db->db.db_data, db->db.db_size); 1032 1033 if (db->db_blkptr != NULL && db->db_level > 0 && 1034 BP_IS_HOLE(db->db_blkptr) && 1035 db->db_blkptr->blk_birth != 0) { 1036 blkptr_t *bps = db->db.db_data; 1037 for (int i = 0; i < ((1 << 1038 DB_DNODE(db)->dn_indblkshift) / sizeof (blkptr_t)); 1039 i++) { 1040 blkptr_t *bp = &bps[i]; 1041 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, 1042 1 << dn->dn_indblkshift); 1043 BP_SET_LSIZE(bp, 1044 BP_GET_LEVEL(db->db_blkptr) == 1 ? 1045 dn->dn_datablksz : 1046 BP_GET_LSIZE(db->db_blkptr)); 1047 BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr)); 1048 BP_SET_LEVEL(bp, 1049 BP_GET_LEVEL(db->db_blkptr) - 1); 1050 BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0); 1051 } 1052 } 1053 DB_DNODE_EXIT(db); 1054 db->db_state = DB_CACHED; 1055 mutex_exit(&db->db_mtx); 1056 return; 1057 } 1058 1059 DB_DNODE_EXIT(db); 1060 1061 db->db_state = DB_READ; 1062 mutex_exit(&db->db_mtx); 1063 1064 if (DBUF_IS_L2CACHEABLE(db)) 1065 aflags |= ARC_FLAG_L2CACHE; 1066 1067 SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ? 1068 db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET, 1069 db->db.db_object, db->db_level, db->db_blkid); 1070 1071 dbuf_add_ref(db, NULL); 1072 1073 (void) arc_read(zio, db->db_objset->os_spa, db->db_blkptr, 1074 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, 1075 (flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED, 1076 &aflags, &zb); 1077 } 1078 1079 /* 1080 * This is our just-in-time copy function. It makes a copy of buffers that 1081 * have been modified in a previous transaction group before we access them in 1082 * the current active group. 1083 * 1084 * This function is used in three places: when we are dirtying a buffer for the 1085 * first time in a txg, when we are freeing a range in a dnode that includes 1086 * this buffer, and when we are accessing a buffer which was received compressed 1087 * and later referenced in a WRITE_BYREF record. 1088 * 1089 * Note that when we are called from dbuf_free_range() we do not put a hold on 1090 * the buffer, we just traverse the active dbuf list for the dnode. 1091 */ 1092 static void 1093 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg) 1094 { 1095 dbuf_dirty_record_t *dr = db->db_last_dirty; 1096 1097 ASSERT(MUTEX_HELD(&db->db_mtx)); 1098 ASSERT(db->db.db_data != NULL); 1099 ASSERT(db->db_level == 0); 1100 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT); 1101 1102 if (dr == NULL || 1103 (dr->dt.dl.dr_data != 1104 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf))) 1105 return; 1106 1107 /* 1108 * If the last dirty record for this dbuf has not yet synced 1109 * and its referencing the dbuf data, either: 1110 * reset the reference to point to a new copy, 1111 * or (if there a no active holders) 1112 * just null out the current db_data pointer. 1113 */ 1114 ASSERT(dr->dr_txg >= txg - 2); 1115 if (db->db_blkid == DMU_BONUS_BLKID) { 1116 /* Note that the data bufs here are zio_bufs */ 1117 dnode_t *dn = DB_DNODE(db); 1118 int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 1119 dr->dt.dl.dr_data = zio_buf_alloc(bonuslen); 1120 arc_space_consume(bonuslen, ARC_SPACE_BONUS); 1121 bcopy(db->db.db_data, dr->dt.dl.dr_data, bonuslen); 1122 } else if (zfs_refcount_count(&db->db_holds) > db->db_dirtycnt) { 1123 int size = arc_buf_size(db->db_buf); 1124 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1125 spa_t *spa = db->db_objset->os_spa; 1126 enum zio_compress compress_type = 1127 arc_get_compression(db->db_buf); 1128 1129 if (compress_type == ZIO_COMPRESS_OFF) { 1130 dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size); 1131 } else { 1132 ASSERT3U(type, ==, ARC_BUFC_DATA); 1133 dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db, 1134 size, arc_buf_lsize(db->db_buf), compress_type); 1135 } 1136 bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size); 1137 } else { 1138 db->db_buf = NULL; 1139 dbuf_clear_data(db); 1140 } 1141 } 1142 1143 int 1144 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags) 1145 { 1146 int err = 0; 1147 boolean_t prefetch; 1148 dnode_t *dn; 1149 1150 /* 1151 * We don't have to hold the mutex to check db_state because it 1152 * can't be freed while we have a hold on the buffer. 1153 */ 1154 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1155 1156 if (db->db_state == DB_NOFILL) 1157 return (SET_ERROR(EIO)); 1158 1159 DB_DNODE_ENTER(db); 1160 dn = DB_DNODE(db); 1161 if ((flags & DB_RF_HAVESTRUCT) == 0) 1162 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1163 1164 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1165 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL && 1166 DBUF_IS_CACHEABLE(db); 1167 1168 mutex_enter(&db->db_mtx); 1169 if (db->db_state == DB_CACHED) { 1170 /* 1171 * If the arc buf is compressed, we need to decompress it to 1172 * read the data. This could happen during the "zfs receive" of 1173 * a stream which is compressed and deduplicated. 1174 */ 1175 if (db->db_buf != NULL && 1176 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF) { 1177 dbuf_fix_old_data(db, 1178 spa_syncing_txg(dmu_objset_spa(db->db_objset))); 1179 err = arc_decompress(db->db_buf); 1180 dbuf_set_data(db, db->db_buf); 1181 } 1182 mutex_exit(&db->db_mtx); 1183 if (prefetch) 1184 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE); 1185 if ((flags & DB_RF_HAVESTRUCT) == 0) 1186 rw_exit(&dn->dn_struct_rwlock); 1187 DB_DNODE_EXIT(db); 1188 } else if (db->db_state == DB_UNCACHED) { 1189 spa_t *spa = dn->dn_objset->os_spa; 1190 boolean_t need_wait = B_FALSE; 1191 1192 if (zio == NULL && 1193 db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) { 1194 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 1195 need_wait = B_TRUE; 1196 } 1197 dbuf_read_impl(db, zio, flags); 1198 1199 /* dbuf_read_impl has dropped db_mtx for us */ 1200 1201 if (prefetch) 1202 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE); 1203 1204 if ((flags & DB_RF_HAVESTRUCT) == 0) 1205 rw_exit(&dn->dn_struct_rwlock); 1206 DB_DNODE_EXIT(db); 1207 1208 if (need_wait) 1209 err = zio_wait(zio); 1210 } else { 1211 /* 1212 * Another reader came in while the dbuf was in flight 1213 * between UNCACHED and CACHED. Either a writer will finish 1214 * writing the buffer (sending the dbuf to CACHED) or the 1215 * first reader's request will reach the read_done callback 1216 * and send the dbuf to CACHED. Otherwise, a failure 1217 * occurred and the dbuf went to UNCACHED. 1218 */ 1219 mutex_exit(&db->db_mtx); 1220 if (prefetch) 1221 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE); 1222 if ((flags & DB_RF_HAVESTRUCT) == 0) 1223 rw_exit(&dn->dn_struct_rwlock); 1224 DB_DNODE_EXIT(db); 1225 1226 /* Skip the wait per the caller's request. */ 1227 mutex_enter(&db->db_mtx); 1228 if ((flags & DB_RF_NEVERWAIT) == 0) { 1229 while (db->db_state == DB_READ || 1230 db->db_state == DB_FILL) { 1231 ASSERT(db->db_state == DB_READ || 1232 (flags & DB_RF_HAVESTRUCT) == 0); 1233 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *, 1234 db, zio_t *, zio); 1235 cv_wait(&db->db_changed, &db->db_mtx); 1236 } 1237 if (db->db_state == DB_UNCACHED) 1238 err = SET_ERROR(EIO); 1239 } 1240 mutex_exit(&db->db_mtx); 1241 } 1242 1243 return (err); 1244 } 1245 1246 static void 1247 dbuf_noread(dmu_buf_impl_t *db) 1248 { 1249 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1250 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1251 mutex_enter(&db->db_mtx); 1252 while (db->db_state == DB_READ || db->db_state == DB_FILL) 1253 cv_wait(&db->db_changed, &db->db_mtx); 1254 if (db->db_state == DB_UNCACHED) { 1255 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1256 spa_t *spa = db->db_objset->os_spa; 1257 1258 ASSERT(db->db_buf == NULL); 1259 ASSERT(db->db.db_data == NULL); 1260 dbuf_set_data(db, arc_alloc_buf(spa, db, type, db->db.db_size)); 1261 db->db_state = DB_FILL; 1262 } else if (db->db_state == DB_NOFILL) { 1263 dbuf_clear_data(db); 1264 } else { 1265 ASSERT3U(db->db_state, ==, DB_CACHED); 1266 } 1267 mutex_exit(&db->db_mtx); 1268 } 1269 1270 void 1271 dbuf_unoverride(dbuf_dirty_record_t *dr) 1272 { 1273 dmu_buf_impl_t *db = dr->dr_dbuf; 1274 blkptr_t *bp = &dr->dt.dl.dr_overridden_by; 1275 uint64_t txg = dr->dr_txg; 1276 1277 ASSERT(MUTEX_HELD(&db->db_mtx)); 1278 /* 1279 * This assert is valid because dmu_sync() expects to be called by 1280 * a zilog's get_data while holding a range lock. This call only 1281 * comes from dbuf_dirty() callers who must also hold a range lock. 1282 */ 1283 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC); 1284 ASSERT(db->db_level == 0); 1285 1286 if (db->db_blkid == DMU_BONUS_BLKID || 1287 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN) 1288 return; 1289 1290 ASSERT(db->db_data_pending != dr); 1291 1292 /* free this block */ 1293 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite) 1294 zio_free(db->db_objset->os_spa, txg, bp); 1295 1296 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1297 dr->dt.dl.dr_nopwrite = B_FALSE; 1298 1299 /* 1300 * Release the already-written buffer, so we leave it in 1301 * a consistent dirty state. Note that all callers are 1302 * modifying the buffer, so they will immediately do 1303 * another (redundant) arc_release(). Therefore, leave 1304 * the buf thawed to save the effort of freezing & 1305 * immediately re-thawing it. 1306 */ 1307 arc_release(dr->dt.dl.dr_data, db); 1308 } 1309 1310 /* 1311 * Evict (if its unreferenced) or clear (if its referenced) any level-0 1312 * data blocks in the free range, so that any future readers will find 1313 * empty blocks. 1314 */ 1315 void 1316 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid, 1317 dmu_tx_t *tx) 1318 { 1319 dmu_buf_impl_t db_search; 1320 dmu_buf_impl_t *db, *db_next; 1321 uint64_t txg = tx->tx_txg; 1322 avl_index_t where; 1323 1324 if (end_blkid > dn->dn_maxblkid && 1325 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID)) 1326 end_blkid = dn->dn_maxblkid; 1327 dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid); 1328 1329 db_search.db_level = 0; 1330 db_search.db_blkid = start_blkid; 1331 db_search.db_state = DB_SEARCH; 1332 1333 mutex_enter(&dn->dn_dbufs_mtx); 1334 db = avl_find(&dn->dn_dbufs, &db_search, &where); 1335 ASSERT3P(db, ==, NULL); 1336 1337 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 1338 1339 for (; db != NULL; db = db_next) { 1340 db_next = AVL_NEXT(&dn->dn_dbufs, db); 1341 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1342 1343 if (db->db_level != 0 || db->db_blkid > end_blkid) { 1344 break; 1345 } 1346 ASSERT3U(db->db_blkid, >=, start_blkid); 1347 1348 /* found a level 0 buffer in the range */ 1349 mutex_enter(&db->db_mtx); 1350 if (dbuf_undirty(db, tx)) { 1351 /* mutex has been dropped and dbuf destroyed */ 1352 continue; 1353 } 1354 1355 if (db->db_state == DB_UNCACHED || 1356 db->db_state == DB_NOFILL || 1357 db->db_state == DB_EVICTING) { 1358 ASSERT(db->db.db_data == NULL); 1359 mutex_exit(&db->db_mtx); 1360 continue; 1361 } 1362 if (db->db_state == DB_READ || db->db_state == DB_FILL) { 1363 /* will be handled in dbuf_read_done or dbuf_rele */ 1364 db->db_freed_in_flight = TRUE; 1365 mutex_exit(&db->db_mtx); 1366 continue; 1367 } 1368 if (zfs_refcount_count(&db->db_holds) == 0) { 1369 ASSERT(db->db_buf); 1370 dbuf_destroy(db); 1371 continue; 1372 } 1373 /* The dbuf is referenced */ 1374 1375 if (db->db_last_dirty != NULL) { 1376 dbuf_dirty_record_t *dr = db->db_last_dirty; 1377 1378 if (dr->dr_txg == txg) { 1379 /* 1380 * This buffer is "in-use", re-adjust the file 1381 * size to reflect that this buffer may 1382 * contain new data when we sync. 1383 */ 1384 if (db->db_blkid != DMU_SPILL_BLKID && 1385 db->db_blkid > dn->dn_maxblkid) 1386 dn->dn_maxblkid = db->db_blkid; 1387 dbuf_unoverride(dr); 1388 } else { 1389 /* 1390 * This dbuf is not dirty in the open context. 1391 * Either uncache it (if its not referenced in 1392 * the open context) or reset its contents to 1393 * empty. 1394 */ 1395 dbuf_fix_old_data(db, txg); 1396 } 1397 } 1398 /* clear the contents if its cached */ 1399 if (db->db_state == DB_CACHED) { 1400 ASSERT(db->db.db_data != NULL); 1401 arc_release(db->db_buf, db); 1402 bzero(db->db.db_data, db->db.db_size); 1403 arc_buf_freeze(db->db_buf); 1404 } 1405 1406 mutex_exit(&db->db_mtx); 1407 } 1408 mutex_exit(&dn->dn_dbufs_mtx); 1409 } 1410 1411 void 1412 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx) 1413 { 1414 arc_buf_t *buf, *obuf; 1415 int osize = db->db.db_size; 1416 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1417 dnode_t *dn; 1418 1419 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1420 1421 DB_DNODE_ENTER(db); 1422 dn = DB_DNODE(db); 1423 1424 /* XXX does *this* func really need the lock? */ 1425 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 1426 1427 /* 1428 * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held 1429 * is OK, because there can be no other references to the db 1430 * when we are changing its size, so no concurrent DB_FILL can 1431 * be happening. 1432 */ 1433 /* 1434 * XXX we should be doing a dbuf_read, checking the return 1435 * value and returning that up to our callers 1436 */ 1437 dmu_buf_will_dirty(&db->db, tx); 1438 1439 /* create the data buffer for the new block */ 1440 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size); 1441 1442 /* copy old block data to the new block */ 1443 obuf = db->db_buf; 1444 bcopy(obuf->b_data, buf->b_data, MIN(osize, size)); 1445 /* zero the remainder */ 1446 if (size > osize) 1447 bzero((uint8_t *)buf->b_data + osize, size - osize); 1448 1449 mutex_enter(&db->db_mtx); 1450 dbuf_set_data(db, buf); 1451 arc_buf_destroy(obuf, db); 1452 db->db.db_size = size; 1453 1454 if (db->db_level == 0) { 1455 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg); 1456 db->db_last_dirty->dt.dl.dr_data = buf; 1457 } 1458 mutex_exit(&db->db_mtx); 1459 1460 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx); 1461 DB_DNODE_EXIT(db); 1462 } 1463 1464 void 1465 dbuf_release_bp(dmu_buf_impl_t *db) 1466 { 1467 objset_t *os = db->db_objset; 1468 1469 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os))); 1470 ASSERT(arc_released(os->os_phys_buf) || 1471 list_link_active(&os->os_dsl_dataset->ds_synced_link)); 1472 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf)); 1473 1474 (void) arc_release(db->db_buf, db); 1475 } 1476 1477 /* 1478 * We already have a dirty record for this TXG, and we are being 1479 * dirtied again. 1480 */ 1481 static void 1482 dbuf_redirty(dbuf_dirty_record_t *dr) 1483 { 1484 dmu_buf_impl_t *db = dr->dr_dbuf; 1485 1486 ASSERT(MUTEX_HELD(&db->db_mtx)); 1487 1488 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) { 1489 /* 1490 * If this buffer has already been written out, 1491 * we now need to reset its state. 1492 */ 1493 dbuf_unoverride(dr); 1494 if (db->db.db_object != DMU_META_DNODE_OBJECT && 1495 db->db_state != DB_NOFILL) { 1496 /* Already released on initial dirty, so just thaw. */ 1497 ASSERT(arc_released(db->db_buf)); 1498 arc_buf_thaw(db->db_buf); 1499 } 1500 } 1501 } 1502 1503 dbuf_dirty_record_t * 1504 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 1505 { 1506 dnode_t *dn; 1507 objset_t *os; 1508 dbuf_dirty_record_t **drp, *dr; 1509 int drop_struct_lock = FALSE; 1510 int txgoff = tx->tx_txg & TXG_MASK; 1511 1512 ASSERT(tx->tx_txg != 0); 1513 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1514 DMU_TX_DIRTY_BUF(tx, db); 1515 1516 DB_DNODE_ENTER(db); 1517 dn = DB_DNODE(db); 1518 /* 1519 * Shouldn't dirty a regular buffer in syncing context. Private 1520 * objects may be dirtied in syncing context, but only if they 1521 * were already pre-dirtied in open context. 1522 */ 1523 #ifdef DEBUG 1524 if (dn->dn_objset->os_dsl_dataset != NULL) { 1525 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, 1526 RW_READER, FTAG); 1527 } 1528 ASSERT(!dmu_tx_is_syncing(tx) || 1529 BP_IS_HOLE(dn->dn_objset->os_rootbp) || 1530 DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 1531 dn->dn_objset->os_dsl_dataset == NULL); 1532 if (dn->dn_objset->os_dsl_dataset != NULL) 1533 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG); 1534 #endif 1535 /* 1536 * We make this assert for private objects as well, but after we 1537 * check if we're already dirty. They are allowed to re-dirty 1538 * in syncing context. 1539 */ 1540 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 1541 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 1542 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 1543 1544 mutex_enter(&db->db_mtx); 1545 /* 1546 * XXX make this true for indirects too? The problem is that 1547 * transactions created with dmu_tx_create_assigned() from 1548 * syncing context don't bother holding ahead. 1549 */ 1550 ASSERT(db->db_level != 0 || 1551 db->db_state == DB_CACHED || db->db_state == DB_FILL || 1552 db->db_state == DB_NOFILL); 1553 1554 mutex_enter(&dn->dn_mtx); 1555 /* 1556 * Don't set dirtyctx to SYNC if we're just modifying this as we 1557 * initialize the objset. 1558 */ 1559 if (dn->dn_dirtyctx == DN_UNDIRTIED) { 1560 if (dn->dn_objset->os_dsl_dataset != NULL) { 1561 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, 1562 RW_READER, FTAG); 1563 } 1564 if (!BP_IS_HOLE(dn->dn_objset->os_rootbp)) { 1565 dn->dn_dirtyctx = (dmu_tx_is_syncing(tx) ? 1566 DN_DIRTY_SYNC : DN_DIRTY_OPEN); 1567 ASSERT(dn->dn_dirtyctx_firstset == NULL); 1568 dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP); 1569 } 1570 if (dn->dn_objset->os_dsl_dataset != NULL) { 1571 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, 1572 FTAG); 1573 } 1574 } 1575 1576 if (tx->tx_txg > dn->dn_dirty_txg) 1577 dn->dn_dirty_txg = tx->tx_txg; 1578 mutex_exit(&dn->dn_mtx); 1579 1580 if (db->db_blkid == DMU_SPILL_BLKID) 1581 dn->dn_have_spill = B_TRUE; 1582 1583 /* 1584 * If this buffer is already dirty, we're done. 1585 */ 1586 drp = &db->db_last_dirty; 1587 ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg || 1588 db->db.db_object == DMU_META_DNODE_OBJECT); 1589 while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg) 1590 drp = &dr->dr_next; 1591 if (dr && dr->dr_txg == tx->tx_txg) { 1592 DB_DNODE_EXIT(db); 1593 1594 dbuf_redirty(dr); 1595 mutex_exit(&db->db_mtx); 1596 return (dr); 1597 } 1598 1599 /* 1600 * Only valid if not already dirty. 1601 */ 1602 ASSERT(dn->dn_object == 0 || 1603 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 1604 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 1605 1606 ASSERT3U(dn->dn_nlevels, >, db->db_level); 1607 1608 /* 1609 * We should only be dirtying in syncing context if it's the 1610 * mos or we're initializing the os or it's a special object. 1611 * However, we are allowed to dirty in syncing context provided 1612 * we already dirtied it in open context. Hence we must make 1613 * this assertion only if we're not already dirty. 1614 */ 1615 os = dn->dn_objset; 1616 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa)); 1617 #ifdef DEBUG 1618 if (dn->dn_objset->os_dsl_dataset != NULL) 1619 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG); 1620 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 1621 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp)); 1622 if (dn->dn_objset->os_dsl_dataset != NULL) 1623 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG); 1624 #endif 1625 ASSERT(db->db.db_size != 0); 1626 1627 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 1628 1629 if (db->db_blkid != DMU_BONUS_BLKID) { 1630 dmu_objset_willuse_space(os, db->db.db_size, tx); 1631 } 1632 1633 /* 1634 * If this buffer is dirty in an old transaction group we need 1635 * to make a copy of it so that the changes we make in this 1636 * transaction group won't leak out when we sync the older txg. 1637 */ 1638 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP); 1639 if (db->db_level == 0) { 1640 void *data_old = db->db_buf; 1641 1642 if (db->db_state != DB_NOFILL) { 1643 if (db->db_blkid == DMU_BONUS_BLKID) { 1644 dbuf_fix_old_data(db, tx->tx_txg); 1645 data_old = db->db.db_data; 1646 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) { 1647 /* 1648 * Release the data buffer from the cache so 1649 * that we can modify it without impacting 1650 * possible other users of this cached data 1651 * block. Note that indirect blocks and 1652 * private objects are not released until the 1653 * syncing state (since they are only modified 1654 * then). 1655 */ 1656 arc_release(db->db_buf, db); 1657 dbuf_fix_old_data(db, tx->tx_txg); 1658 data_old = db->db_buf; 1659 } 1660 ASSERT(data_old != NULL); 1661 } 1662 dr->dt.dl.dr_data = data_old; 1663 } else { 1664 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL); 1665 list_create(&dr->dt.di.dr_children, 1666 sizeof (dbuf_dirty_record_t), 1667 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 1668 } 1669 if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL) 1670 dr->dr_accounted = db->db.db_size; 1671 dr->dr_dbuf = db; 1672 dr->dr_txg = tx->tx_txg; 1673 dr->dr_next = *drp; 1674 *drp = dr; 1675 1676 /* 1677 * We could have been freed_in_flight between the dbuf_noread 1678 * and dbuf_dirty. We win, as though the dbuf_noread() had 1679 * happened after the free. 1680 */ 1681 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1682 db->db_blkid != DMU_SPILL_BLKID) { 1683 mutex_enter(&dn->dn_mtx); 1684 if (dn->dn_free_ranges[txgoff] != NULL) { 1685 range_tree_clear(dn->dn_free_ranges[txgoff], 1686 db->db_blkid, 1); 1687 } 1688 mutex_exit(&dn->dn_mtx); 1689 db->db_freed_in_flight = FALSE; 1690 } 1691 1692 /* 1693 * This buffer is now part of this txg 1694 */ 1695 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg); 1696 db->db_dirtycnt += 1; 1697 ASSERT3U(db->db_dirtycnt, <=, 3); 1698 1699 mutex_exit(&db->db_mtx); 1700 1701 if (db->db_blkid == DMU_BONUS_BLKID || 1702 db->db_blkid == DMU_SPILL_BLKID) { 1703 mutex_enter(&dn->dn_mtx); 1704 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1705 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 1706 mutex_exit(&dn->dn_mtx); 1707 dnode_setdirty(dn, tx); 1708 DB_DNODE_EXIT(db); 1709 return (dr); 1710 } 1711 1712 /* 1713 * The dn_struct_rwlock prevents db_blkptr from changing 1714 * due to a write from syncing context completing 1715 * while we are running, so we want to acquire it before 1716 * looking at db_blkptr. 1717 */ 1718 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 1719 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1720 drop_struct_lock = TRUE; 1721 } 1722 1723 /* 1724 * We need to hold the dn_struct_rwlock to make this assertion, 1725 * because it protects dn_phys / dn_next_nlevels from changing. 1726 */ 1727 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) || 1728 dn->dn_phys->dn_nlevels > db->db_level || 1729 dn->dn_next_nlevels[txgoff] > db->db_level || 1730 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level || 1731 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level); 1732 1733 /* 1734 * If we are overwriting a dedup BP, then unless it is snapshotted, 1735 * when we get to syncing context we will need to decrement its 1736 * refcount in the DDT. Prefetch the relevant DDT block so that 1737 * syncing context won't have to wait for the i/o. 1738 */ 1739 ddt_prefetch(os->os_spa, db->db_blkptr); 1740 1741 if (db->db_level == 0) { 1742 dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock); 1743 ASSERT(dn->dn_maxblkid >= db->db_blkid); 1744 } 1745 1746 if (db->db_level+1 < dn->dn_nlevels) { 1747 dmu_buf_impl_t *parent = db->db_parent; 1748 dbuf_dirty_record_t *di; 1749 int parent_held = FALSE; 1750 1751 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) { 1752 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1753 1754 parent = dbuf_hold_level(dn, db->db_level+1, 1755 db->db_blkid >> epbs, FTAG); 1756 ASSERT(parent != NULL); 1757 parent_held = TRUE; 1758 } 1759 if (drop_struct_lock) 1760 rw_exit(&dn->dn_struct_rwlock); 1761 ASSERT3U(db->db_level+1, ==, parent->db_level); 1762 di = dbuf_dirty(parent, tx); 1763 if (parent_held) 1764 dbuf_rele(parent, FTAG); 1765 1766 mutex_enter(&db->db_mtx); 1767 /* 1768 * Since we've dropped the mutex, it's possible that 1769 * dbuf_undirty() might have changed this out from under us. 1770 */ 1771 if (db->db_last_dirty == dr || 1772 dn->dn_object == DMU_META_DNODE_OBJECT) { 1773 mutex_enter(&di->dt.di.dr_mtx); 1774 ASSERT3U(di->dr_txg, ==, tx->tx_txg); 1775 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1776 list_insert_tail(&di->dt.di.dr_children, dr); 1777 mutex_exit(&di->dt.di.dr_mtx); 1778 dr->dr_parent = di; 1779 } 1780 mutex_exit(&db->db_mtx); 1781 } else { 1782 ASSERT(db->db_level+1 == dn->dn_nlevels); 1783 ASSERT(db->db_blkid < dn->dn_nblkptr); 1784 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf); 1785 mutex_enter(&dn->dn_mtx); 1786 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1787 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 1788 mutex_exit(&dn->dn_mtx); 1789 if (drop_struct_lock) 1790 rw_exit(&dn->dn_struct_rwlock); 1791 } 1792 1793 dnode_setdirty(dn, tx); 1794 DB_DNODE_EXIT(db); 1795 return (dr); 1796 } 1797 1798 /* 1799 * Undirty a buffer in the transaction group referenced by the given 1800 * transaction. Return whether this evicted the dbuf. 1801 */ 1802 static boolean_t 1803 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 1804 { 1805 dnode_t *dn; 1806 uint64_t txg = tx->tx_txg; 1807 dbuf_dirty_record_t *dr, **drp; 1808 1809 ASSERT(txg != 0); 1810 1811 /* 1812 * Due to our use of dn_nlevels below, this can only be called 1813 * in open context, unless we are operating on the MOS. 1814 * From syncing context, dn_nlevels may be different from the 1815 * dn_nlevels used when dbuf was dirtied. 1816 */ 1817 ASSERT(db->db_objset == 1818 dmu_objset_pool(db->db_objset)->dp_meta_objset || 1819 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset))); 1820 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1821 ASSERT0(db->db_level); 1822 ASSERT(MUTEX_HELD(&db->db_mtx)); 1823 1824 /* 1825 * If this buffer is not dirty, we're done. 1826 */ 1827 for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next) 1828 if (dr->dr_txg <= txg) 1829 break; 1830 if (dr == NULL || dr->dr_txg < txg) 1831 return (B_FALSE); 1832 ASSERT(dr->dr_txg == txg); 1833 ASSERT(dr->dr_dbuf == db); 1834 1835 DB_DNODE_ENTER(db); 1836 dn = DB_DNODE(db); 1837 1838 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 1839 1840 ASSERT(db->db.db_size != 0); 1841 1842 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset), 1843 dr->dr_accounted, txg); 1844 1845 *drp = dr->dr_next; 1846 1847 /* 1848 * Note that there are three places in dbuf_dirty() 1849 * where this dirty record may be put on a list. 1850 * Make sure to do a list_remove corresponding to 1851 * every one of those list_insert calls. 1852 */ 1853 if (dr->dr_parent) { 1854 mutex_enter(&dr->dr_parent->dt.di.dr_mtx); 1855 list_remove(&dr->dr_parent->dt.di.dr_children, dr); 1856 mutex_exit(&dr->dr_parent->dt.di.dr_mtx); 1857 } else if (db->db_blkid == DMU_SPILL_BLKID || 1858 db->db_level + 1 == dn->dn_nlevels) { 1859 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf); 1860 mutex_enter(&dn->dn_mtx); 1861 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr); 1862 mutex_exit(&dn->dn_mtx); 1863 } 1864 DB_DNODE_EXIT(db); 1865 1866 if (db->db_state != DB_NOFILL) { 1867 dbuf_unoverride(dr); 1868 1869 ASSERT(db->db_buf != NULL); 1870 ASSERT(dr->dt.dl.dr_data != NULL); 1871 if (dr->dt.dl.dr_data != db->db_buf) 1872 arc_buf_destroy(dr->dt.dl.dr_data, db); 1873 } 1874 1875 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 1876 1877 ASSERT(db->db_dirtycnt > 0); 1878 db->db_dirtycnt -= 1; 1879 1880 if (zfs_refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) { 1881 ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf)); 1882 dbuf_destroy(db); 1883 return (B_TRUE); 1884 } 1885 1886 return (B_FALSE); 1887 } 1888 1889 void 1890 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) 1891 { 1892 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1893 int rf = DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH; 1894 1895 ASSERT(tx->tx_txg != 0); 1896 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1897 1898 /* 1899 * Quick check for dirtyness. For already dirty blocks, this 1900 * reduces runtime of this function by >90%, and overall performance 1901 * by 50% for some workloads (e.g. file deletion with indirect blocks 1902 * cached). 1903 */ 1904 mutex_enter(&db->db_mtx); 1905 dbuf_dirty_record_t *dr; 1906 for (dr = db->db_last_dirty; 1907 dr != NULL && dr->dr_txg >= tx->tx_txg; dr = dr->dr_next) { 1908 /* 1909 * It's possible that it is already dirty but not cached, 1910 * because there are some calls to dbuf_dirty() that don't 1911 * go through dmu_buf_will_dirty(). 1912 */ 1913 if (dr->dr_txg == tx->tx_txg && db->db_state == DB_CACHED) { 1914 /* This dbuf is already dirty and cached. */ 1915 dbuf_redirty(dr); 1916 mutex_exit(&db->db_mtx); 1917 return; 1918 } 1919 } 1920 mutex_exit(&db->db_mtx); 1921 1922 DB_DNODE_ENTER(db); 1923 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock)) 1924 rf |= DB_RF_HAVESTRUCT; 1925 DB_DNODE_EXIT(db); 1926 (void) dbuf_read(db, NULL, rf); 1927 (void) dbuf_dirty(db, tx); 1928 } 1929 1930 void 1931 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 1932 { 1933 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1934 1935 db->db_state = DB_NOFILL; 1936 1937 dmu_buf_will_fill(db_fake, tx); 1938 } 1939 1940 void 1941 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 1942 { 1943 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1944 1945 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1946 ASSERT(tx->tx_txg != 0); 1947 ASSERT(db->db_level == 0); 1948 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1949 1950 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT || 1951 dmu_tx_private_ok(tx)); 1952 1953 dbuf_noread(db); 1954 (void) dbuf_dirty(db, tx); 1955 } 1956 1957 #pragma weak dmu_buf_fill_done = dbuf_fill_done 1958 /* ARGSUSED */ 1959 void 1960 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx) 1961 { 1962 mutex_enter(&db->db_mtx); 1963 DBUF_VERIFY(db); 1964 1965 if (db->db_state == DB_FILL) { 1966 if (db->db_level == 0 && db->db_freed_in_flight) { 1967 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1968 /* we were freed while filling */ 1969 /* XXX dbuf_undirty? */ 1970 bzero(db->db.db_data, db->db.db_size); 1971 db->db_freed_in_flight = FALSE; 1972 } 1973 db->db_state = DB_CACHED; 1974 cv_broadcast(&db->db_changed); 1975 } 1976 mutex_exit(&db->db_mtx); 1977 } 1978 1979 void 1980 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data, 1981 bp_embedded_type_t etype, enum zio_compress comp, 1982 int uncompressed_size, int compressed_size, int byteorder, 1983 dmu_tx_t *tx) 1984 { 1985 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 1986 struct dirty_leaf *dl; 1987 dmu_object_type_t type; 1988 1989 if (etype == BP_EMBEDDED_TYPE_DATA) { 1990 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset), 1991 SPA_FEATURE_EMBEDDED_DATA)); 1992 } 1993 1994 DB_DNODE_ENTER(db); 1995 type = DB_DNODE(db)->dn_type; 1996 DB_DNODE_EXIT(db); 1997 1998 ASSERT0(db->db_level); 1999 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2000 2001 dmu_buf_will_not_fill(dbuf, tx); 2002 2003 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg); 2004 dl = &db->db_last_dirty->dt.dl; 2005 encode_embedded_bp_compressed(&dl->dr_overridden_by, 2006 data, comp, uncompressed_size, compressed_size); 2007 BPE_SET_ETYPE(&dl->dr_overridden_by, etype); 2008 BP_SET_TYPE(&dl->dr_overridden_by, type); 2009 BP_SET_LEVEL(&dl->dr_overridden_by, 0); 2010 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder); 2011 2012 dl->dr_override_state = DR_OVERRIDDEN; 2013 dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg; 2014 } 2015 2016 /* 2017 * Directly assign a provided arc buf to a given dbuf if it's not referenced 2018 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf. 2019 */ 2020 void 2021 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx) 2022 { 2023 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2024 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2025 ASSERT(db->db_level == 0); 2026 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf)); 2027 ASSERT(buf != NULL); 2028 ASSERT(arc_buf_lsize(buf) == db->db.db_size); 2029 ASSERT(tx->tx_txg != 0); 2030 2031 arc_return_buf(buf, db); 2032 ASSERT(arc_released(buf)); 2033 2034 mutex_enter(&db->db_mtx); 2035 2036 while (db->db_state == DB_READ || db->db_state == DB_FILL) 2037 cv_wait(&db->db_changed, &db->db_mtx); 2038 2039 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED); 2040 2041 if (db->db_state == DB_CACHED && 2042 zfs_refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) { 2043 mutex_exit(&db->db_mtx); 2044 (void) dbuf_dirty(db, tx); 2045 bcopy(buf->b_data, db->db.db_data, db->db.db_size); 2046 arc_buf_destroy(buf, db); 2047 xuio_stat_wbuf_copied(); 2048 return; 2049 } 2050 2051 xuio_stat_wbuf_nocopy(); 2052 if (db->db_state == DB_CACHED) { 2053 dbuf_dirty_record_t *dr = db->db_last_dirty; 2054 2055 ASSERT(db->db_buf != NULL); 2056 if (dr != NULL && dr->dr_txg == tx->tx_txg) { 2057 ASSERT(dr->dt.dl.dr_data == db->db_buf); 2058 if (!arc_released(db->db_buf)) { 2059 ASSERT(dr->dt.dl.dr_override_state == 2060 DR_OVERRIDDEN); 2061 arc_release(db->db_buf, db); 2062 } 2063 dr->dt.dl.dr_data = buf; 2064 arc_buf_destroy(db->db_buf, db); 2065 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) { 2066 arc_release(db->db_buf, db); 2067 arc_buf_destroy(db->db_buf, db); 2068 } 2069 db->db_buf = NULL; 2070 } 2071 ASSERT(db->db_buf == NULL); 2072 dbuf_set_data(db, buf); 2073 db->db_state = DB_FILL; 2074 mutex_exit(&db->db_mtx); 2075 (void) dbuf_dirty(db, tx); 2076 dmu_buf_fill_done(&db->db, tx); 2077 } 2078 2079 void 2080 dbuf_destroy(dmu_buf_impl_t *db) 2081 { 2082 dnode_t *dn; 2083 dmu_buf_impl_t *parent = db->db_parent; 2084 dmu_buf_impl_t *dndb; 2085 2086 ASSERT(MUTEX_HELD(&db->db_mtx)); 2087 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 2088 2089 if (db->db_buf != NULL) { 2090 arc_buf_destroy(db->db_buf, db); 2091 db->db_buf = NULL; 2092 } 2093 2094 if (db->db_blkid == DMU_BONUS_BLKID) { 2095 int slots = DB_DNODE(db)->dn_num_slots; 2096 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots); 2097 if (db->db.db_data != NULL) { 2098 zio_buf_free(db->db.db_data, bonuslen); 2099 arc_space_return(bonuslen, ARC_SPACE_BONUS); 2100 db->db_state = DB_UNCACHED; 2101 } 2102 } 2103 2104 dbuf_clear_data(db); 2105 2106 if (multilist_link_active(&db->db_cache_link)) { 2107 ASSERT(db->db_caching_status == DB_DBUF_CACHE || 2108 db->db_caching_status == DB_DBUF_METADATA_CACHE); 2109 2110 multilist_remove(dbuf_caches[db->db_caching_status].cache, db); 2111 (void) zfs_refcount_remove_many( 2112 &dbuf_caches[db->db_caching_status].size, 2113 db->db.db_size, db); 2114 2115 db->db_caching_status = DB_NO_CACHE; 2116 } 2117 2118 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); 2119 ASSERT(db->db_data_pending == NULL); 2120 2121 db->db_state = DB_EVICTING; 2122 db->db_blkptr = NULL; 2123 2124 /* 2125 * Now that db_state is DB_EVICTING, nobody else can find this via 2126 * the hash table. We can now drop db_mtx, which allows us to 2127 * acquire the dn_dbufs_mtx. 2128 */ 2129 mutex_exit(&db->db_mtx); 2130 2131 DB_DNODE_ENTER(db); 2132 dn = DB_DNODE(db); 2133 dndb = dn->dn_dbuf; 2134 if (db->db_blkid != DMU_BONUS_BLKID) { 2135 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx); 2136 if (needlock) 2137 mutex_enter(&dn->dn_dbufs_mtx); 2138 avl_remove(&dn->dn_dbufs, db); 2139 atomic_dec_32(&dn->dn_dbufs_count); 2140 membar_producer(); 2141 DB_DNODE_EXIT(db); 2142 if (needlock) 2143 mutex_exit(&dn->dn_dbufs_mtx); 2144 /* 2145 * Decrementing the dbuf count means that the hold corresponding 2146 * to the removed dbuf is no longer discounted in dnode_move(), 2147 * so the dnode cannot be moved until after we release the hold. 2148 * The membar_producer() ensures visibility of the decremented 2149 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually 2150 * release any lock. 2151 */ 2152 mutex_enter(&dn->dn_mtx); 2153 dnode_rele_and_unlock(dn, db, B_TRUE); 2154 db->db_dnode_handle = NULL; 2155 2156 dbuf_hash_remove(db); 2157 } else { 2158 DB_DNODE_EXIT(db); 2159 } 2160 2161 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 2162 2163 db->db_parent = NULL; 2164 2165 ASSERT(db->db_buf == NULL); 2166 ASSERT(db->db.db_data == NULL); 2167 ASSERT(db->db_hash_next == NULL); 2168 ASSERT(db->db_blkptr == NULL); 2169 ASSERT(db->db_data_pending == NULL); 2170 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); 2171 ASSERT(!multilist_link_active(&db->db_cache_link)); 2172 2173 kmem_cache_free(dbuf_kmem_cache, db); 2174 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 2175 2176 /* 2177 * If this dbuf is referenced from an indirect dbuf, 2178 * decrement the ref count on the indirect dbuf. 2179 */ 2180 if (parent && parent != dndb) { 2181 mutex_enter(&parent->db_mtx); 2182 dbuf_rele_and_unlock(parent, db, B_TRUE); 2183 } 2184 } 2185 2186 /* 2187 * Note: While bpp will always be updated if the function returns success, 2188 * parentp will not be updated if the dnode does not have dn_dbuf filled in; 2189 * this happens when the dnode is the meta-dnode, or a userused or groupused 2190 * object. 2191 */ 2192 static int 2193 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse, 2194 dmu_buf_impl_t **parentp, blkptr_t **bpp) 2195 { 2196 *parentp = NULL; 2197 *bpp = NULL; 2198 2199 ASSERT(blkid != DMU_BONUS_BLKID); 2200 2201 if (blkid == DMU_SPILL_BLKID) { 2202 mutex_enter(&dn->dn_mtx); 2203 if (dn->dn_have_spill && 2204 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 2205 *bpp = DN_SPILL_BLKPTR(dn->dn_phys); 2206 else 2207 *bpp = NULL; 2208 dbuf_add_ref(dn->dn_dbuf, NULL); 2209 *parentp = dn->dn_dbuf; 2210 mutex_exit(&dn->dn_mtx); 2211 return (0); 2212 } 2213 2214 int nlevels = 2215 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels; 2216 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2217 2218 ASSERT3U(level * epbs, <, 64); 2219 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2220 /* 2221 * This assertion shouldn't trip as long as the max indirect block size 2222 * is less than 1M. The reason for this is that up to that point, 2223 * the number of levels required to address an entire object with blocks 2224 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In 2225 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55 2226 * (i.e. we can address the entire object), objects will all use at most 2227 * N-1 levels and the assertion won't overflow. However, once epbs is 2228 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be 2229 * enough to address an entire object, so objects will have 5 levels, 2230 * but then this assertion will overflow. 2231 * 2232 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we 2233 * need to redo this logic to handle overflows. 2234 */ 2235 ASSERT(level >= nlevels || 2236 ((nlevels - level - 1) * epbs) + 2237 highbit64(dn->dn_phys->dn_nblkptr) <= 64); 2238 if (level >= nlevels || 2239 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr << 2240 ((nlevels - level - 1) * epbs)) || 2241 (fail_sparse && 2242 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) { 2243 /* the buffer has no parent yet */ 2244 return (SET_ERROR(ENOENT)); 2245 } else if (level < nlevels-1) { 2246 /* this block is referenced from an indirect block */ 2247 int err = dbuf_hold_impl(dn, level+1, 2248 blkid >> epbs, fail_sparse, FALSE, NULL, parentp); 2249 if (err) 2250 return (err); 2251 err = dbuf_read(*parentp, NULL, 2252 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL)); 2253 if (err) { 2254 dbuf_rele(*parentp, NULL); 2255 *parentp = NULL; 2256 return (err); 2257 } 2258 *bpp = ((blkptr_t *)(*parentp)->db.db_data) + 2259 (blkid & ((1ULL << epbs) - 1)); 2260 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs))) 2261 ASSERT(BP_IS_HOLE(*bpp)); 2262 return (0); 2263 } else { 2264 /* the block is referenced from the dnode */ 2265 ASSERT3U(level, ==, nlevels-1); 2266 ASSERT(dn->dn_phys->dn_nblkptr == 0 || 2267 blkid < dn->dn_phys->dn_nblkptr); 2268 if (dn->dn_dbuf) { 2269 dbuf_add_ref(dn->dn_dbuf, NULL); 2270 *parentp = dn->dn_dbuf; 2271 } 2272 *bpp = &dn->dn_phys->dn_blkptr[blkid]; 2273 return (0); 2274 } 2275 } 2276 2277 static dmu_buf_impl_t * 2278 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid, 2279 dmu_buf_impl_t *parent, blkptr_t *blkptr) 2280 { 2281 objset_t *os = dn->dn_objset; 2282 dmu_buf_impl_t *db, *odb; 2283 2284 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2285 ASSERT(dn->dn_type != DMU_OT_NONE); 2286 2287 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP); 2288 2289 db->db_objset = os; 2290 db->db.db_object = dn->dn_object; 2291 db->db_level = level; 2292 db->db_blkid = blkid; 2293 db->db_last_dirty = NULL; 2294 db->db_dirtycnt = 0; 2295 db->db_dnode_handle = dn->dn_handle; 2296 db->db_parent = parent; 2297 db->db_blkptr = blkptr; 2298 2299 db->db_user = NULL; 2300 db->db_user_immediate_evict = FALSE; 2301 db->db_freed_in_flight = FALSE; 2302 db->db_pending_evict = FALSE; 2303 2304 if (blkid == DMU_BONUS_BLKID) { 2305 ASSERT3P(parent, ==, dn->dn_dbuf); 2306 db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) - 2307 (dn->dn_nblkptr-1) * sizeof (blkptr_t); 2308 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 2309 db->db.db_offset = DMU_BONUS_BLKID; 2310 db->db_state = DB_UNCACHED; 2311 db->db_caching_status = DB_NO_CACHE; 2312 /* the bonus dbuf is not placed in the hash table */ 2313 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 2314 return (db); 2315 } else if (blkid == DMU_SPILL_BLKID) { 2316 db->db.db_size = (blkptr != NULL) ? 2317 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE; 2318 db->db.db_offset = 0; 2319 } else { 2320 int blocksize = 2321 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz; 2322 db->db.db_size = blocksize; 2323 db->db.db_offset = db->db_blkid * blocksize; 2324 } 2325 2326 /* 2327 * Hold the dn_dbufs_mtx while we get the new dbuf 2328 * in the hash table *and* added to the dbufs list. 2329 * This prevents a possible deadlock with someone 2330 * trying to look up this dbuf before its added to the 2331 * dn_dbufs list. 2332 */ 2333 mutex_enter(&dn->dn_dbufs_mtx); 2334 db->db_state = DB_EVICTING; 2335 if ((odb = dbuf_hash_insert(db)) != NULL) { 2336 /* someone else inserted it first */ 2337 kmem_cache_free(dbuf_kmem_cache, db); 2338 mutex_exit(&dn->dn_dbufs_mtx); 2339 return (odb); 2340 } 2341 avl_add(&dn->dn_dbufs, db); 2342 2343 db->db_state = DB_UNCACHED; 2344 db->db_caching_status = DB_NO_CACHE; 2345 mutex_exit(&dn->dn_dbufs_mtx); 2346 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 2347 2348 if (parent && parent != dn->dn_dbuf) 2349 dbuf_add_ref(parent, db); 2350 2351 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 2352 zfs_refcount_count(&dn->dn_holds) > 0); 2353 (void) zfs_refcount_add(&dn->dn_holds, db); 2354 atomic_inc_32(&dn->dn_dbufs_count); 2355 2356 dprintf_dbuf(db, "db=%p\n", db); 2357 2358 return (db); 2359 } 2360 2361 typedef struct dbuf_prefetch_arg { 2362 spa_t *dpa_spa; /* The spa to issue the prefetch in. */ 2363 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */ 2364 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */ 2365 int dpa_curlevel; /* The current level that we're reading */ 2366 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */ 2367 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */ 2368 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */ 2369 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */ 2370 } dbuf_prefetch_arg_t; 2371 2372 /* 2373 * Actually issue the prefetch read for the block given. 2374 */ 2375 static void 2376 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp) 2377 { 2378 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) 2379 return; 2380 2381 arc_flags_t aflags = 2382 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH; 2383 2384 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 2385 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level); 2386 ASSERT(dpa->dpa_zio != NULL); 2387 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, NULL, NULL, 2388 dpa->dpa_prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 2389 &aflags, &dpa->dpa_zb); 2390 } 2391 2392 /* 2393 * Called when an indirect block above our prefetch target is read in. This 2394 * will either read in the next indirect block down the tree or issue the actual 2395 * prefetch if the next block down is our target. 2396 */ 2397 static void 2398 dbuf_prefetch_indirect_done(zio_t *zio, arc_buf_t *abuf, void *private) 2399 { 2400 dbuf_prefetch_arg_t *dpa = private; 2401 2402 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel); 2403 ASSERT3S(dpa->dpa_curlevel, >, 0); 2404 2405 if (abuf == NULL) { 2406 ASSERT(zio == NULL || zio->io_error != 0); 2407 kmem_free(dpa, sizeof (*dpa)); 2408 return; 2409 } 2410 ASSERT(zio == NULL || zio->io_error == 0); 2411 2412 /* 2413 * The dpa_dnode is only valid if we are called with a NULL 2414 * zio. This indicates that the arc_read() returned without 2415 * first calling zio_read() to issue a physical read. Once 2416 * a physical read is made the dpa_dnode must be invalidated 2417 * as the locks guarding it may have been dropped. If the 2418 * dpa_dnode is still valid, then we want to add it to the dbuf 2419 * cache. To do so, we must hold the dbuf associated with the block 2420 * we just prefetched, read its contents so that we associate it 2421 * with an arc_buf_t, and then release it. 2422 */ 2423 if (zio != NULL) { 2424 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel); 2425 if (zio->io_flags & ZIO_FLAG_RAW) { 2426 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size); 2427 } else { 2428 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size); 2429 } 2430 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa); 2431 2432 dpa->dpa_dnode = NULL; 2433 } else if (dpa->dpa_dnode != NULL) { 2434 uint64_t curblkid = dpa->dpa_zb.zb_blkid >> 2435 (dpa->dpa_epbs * (dpa->dpa_curlevel - 2436 dpa->dpa_zb.zb_level)); 2437 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode, 2438 dpa->dpa_curlevel, curblkid, FTAG); 2439 (void) dbuf_read(db, NULL, 2440 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT); 2441 dbuf_rele(db, FTAG); 2442 } 2443 2444 dpa->dpa_curlevel--; 2445 2446 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >> 2447 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level)); 2448 blkptr_t *bp = ((blkptr_t *)abuf->b_data) + 2449 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs); 2450 if (BP_IS_HOLE(bp)) { 2451 kmem_free(dpa, sizeof (*dpa)); 2452 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) { 2453 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid); 2454 dbuf_issue_final_prefetch(dpa, bp); 2455 kmem_free(dpa, sizeof (*dpa)); 2456 } else { 2457 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 2458 zbookmark_phys_t zb; 2459 2460 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 2461 if (dpa->dpa_aflags & ARC_FLAG_L2CACHE) 2462 iter_aflags |= ARC_FLAG_L2CACHE; 2463 2464 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 2465 2466 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset, 2467 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid); 2468 2469 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 2470 bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio, 2471 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 2472 &iter_aflags, &zb); 2473 } 2474 2475 arc_buf_destroy(abuf, private); 2476 } 2477 2478 /* 2479 * Issue prefetch reads for the given block on the given level. If the indirect 2480 * blocks above that block are not in memory, we will read them in 2481 * asynchronously. As a result, this call never blocks waiting for a read to 2482 * complete. 2483 */ 2484 void 2485 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio, 2486 arc_flags_t aflags) 2487 { 2488 blkptr_t bp; 2489 int epbs, nlevels, curlevel; 2490 uint64_t curblkid; 2491 2492 ASSERT(blkid != DMU_BONUS_BLKID); 2493 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2494 2495 if (blkid > dn->dn_maxblkid) 2496 return; 2497 2498 if (dnode_block_freed(dn, blkid)) 2499 return; 2500 2501 /* 2502 * This dnode hasn't been written to disk yet, so there's nothing to 2503 * prefetch. 2504 */ 2505 nlevels = dn->dn_phys->dn_nlevels; 2506 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0) 2507 return; 2508 2509 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 2510 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level)) 2511 return; 2512 2513 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object, 2514 level, blkid); 2515 if (db != NULL) { 2516 mutex_exit(&db->db_mtx); 2517 /* 2518 * This dbuf already exists. It is either CACHED, or 2519 * (we assume) about to be read or filled. 2520 */ 2521 return; 2522 } 2523 2524 /* 2525 * Find the closest ancestor (indirect block) of the target block 2526 * that is present in the cache. In this indirect block, we will 2527 * find the bp that is at curlevel, curblkid. 2528 */ 2529 curlevel = level; 2530 curblkid = blkid; 2531 while (curlevel < nlevels - 1) { 2532 int parent_level = curlevel + 1; 2533 uint64_t parent_blkid = curblkid >> epbs; 2534 dmu_buf_impl_t *db; 2535 2536 if (dbuf_hold_impl(dn, parent_level, parent_blkid, 2537 FALSE, TRUE, FTAG, &db) == 0) { 2538 blkptr_t *bpp = db->db_buf->b_data; 2539 bp = bpp[P2PHASE(curblkid, 1 << epbs)]; 2540 dbuf_rele(db, FTAG); 2541 break; 2542 } 2543 2544 curlevel = parent_level; 2545 curblkid = parent_blkid; 2546 } 2547 2548 if (curlevel == nlevels - 1) { 2549 /* No cached indirect blocks found. */ 2550 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr); 2551 bp = dn->dn_phys->dn_blkptr[curblkid]; 2552 } 2553 if (BP_IS_HOLE(&bp)) 2554 return; 2555 2556 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp)); 2557 2558 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL, 2559 ZIO_FLAG_CANFAIL); 2560 2561 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP); 2562 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 2563 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 2564 dn->dn_object, level, blkid); 2565 dpa->dpa_curlevel = curlevel; 2566 dpa->dpa_prio = prio; 2567 dpa->dpa_aflags = aflags; 2568 dpa->dpa_spa = dn->dn_objset->os_spa; 2569 dpa->dpa_dnode = dn; 2570 dpa->dpa_epbs = epbs; 2571 dpa->dpa_zio = pio; 2572 2573 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 2574 if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level)) 2575 dpa->dpa_aflags |= ARC_FLAG_L2CACHE; 2576 2577 /* 2578 * If we have the indirect just above us, no need to do the asynchronous 2579 * prefetch chain; we'll just run the last step ourselves. If we're at 2580 * a higher level, though, we want to issue the prefetches for all the 2581 * indirect blocks asynchronously, so we can go on with whatever we were 2582 * doing. 2583 */ 2584 if (curlevel == level) { 2585 ASSERT3U(curblkid, ==, blkid); 2586 dbuf_issue_final_prefetch(dpa, &bp); 2587 kmem_free(dpa, sizeof (*dpa)); 2588 } else { 2589 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 2590 zbookmark_phys_t zb; 2591 2592 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 2593 if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level)) 2594 iter_aflags |= ARC_FLAG_L2CACHE; 2595 2596 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 2597 dn->dn_object, curlevel, curblkid); 2598 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 2599 &bp, dbuf_prefetch_indirect_done, dpa, prio, 2600 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 2601 &iter_aflags, &zb); 2602 } 2603 /* 2604 * We use pio here instead of dpa_zio since it's possible that 2605 * dpa may have already been freed. 2606 */ 2607 zio_nowait(pio); 2608 } 2609 2610 /* 2611 * Returns with db_holds incremented, and db_mtx not held. 2612 * Note: dn_struct_rwlock must be held. 2613 */ 2614 int 2615 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, 2616 boolean_t fail_sparse, boolean_t fail_uncached, 2617 void *tag, dmu_buf_impl_t **dbp) 2618 { 2619 dmu_buf_impl_t *db, *parent = NULL; 2620 2621 ASSERT(blkid != DMU_BONUS_BLKID); 2622 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2623 ASSERT3U(dn->dn_nlevels, >, level); 2624 2625 *dbp = NULL; 2626 top: 2627 /* dbuf_find() returns with db_mtx held */ 2628 db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid); 2629 2630 if (db == NULL) { 2631 blkptr_t *bp = NULL; 2632 int err; 2633 2634 if (fail_uncached) 2635 return (SET_ERROR(ENOENT)); 2636 2637 ASSERT3P(parent, ==, NULL); 2638 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp); 2639 if (fail_sparse) { 2640 if (err == 0 && bp && BP_IS_HOLE(bp)) 2641 err = SET_ERROR(ENOENT); 2642 if (err) { 2643 if (parent) 2644 dbuf_rele(parent, NULL); 2645 return (err); 2646 } 2647 } 2648 if (err && err != ENOENT) 2649 return (err); 2650 db = dbuf_create(dn, level, blkid, parent, bp); 2651 } 2652 2653 if (fail_uncached && db->db_state != DB_CACHED) { 2654 mutex_exit(&db->db_mtx); 2655 return (SET_ERROR(ENOENT)); 2656 } 2657 2658 if (db->db_buf != NULL) { 2659 arc_buf_access(db->db_buf); 2660 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data); 2661 } 2662 2663 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf)); 2664 2665 /* 2666 * If this buffer is currently syncing out, and we are are 2667 * still referencing it from db_data, we need to make a copy 2668 * of it in case we decide we want to dirty it again in this txg. 2669 */ 2670 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 2671 dn->dn_object != DMU_META_DNODE_OBJECT && 2672 db->db_state == DB_CACHED && db->db_data_pending) { 2673 dbuf_dirty_record_t *dr = db->db_data_pending; 2674 2675 if (dr->dt.dl.dr_data == db->db_buf) { 2676 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 2677 2678 dbuf_set_data(db, 2679 arc_alloc_buf(dn->dn_objset->os_spa, db, type, 2680 db->db.db_size)); 2681 bcopy(dr->dt.dl.dr_data->b_data, db->db.db_data, 2682 db->db.db_size); 2683 } 2684 } 2685 2686 if (multilist_link_active(&db->db_cache_link)) { 2687 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 2688 ASSERT(db->db_caching_status == DB_DBUF_CACHE || 2689 db->db_caching_status == DB_DBUF_METADATA_CACHE); 2690 2691 multilist_remove(dbuf_caches[db->db_caching_status].cache, db); 2692 (void) zfs_refcount_remove_many( 2693 &dbuf_caches[db->db_caching_status].size, 2694 db->db.db_size, db); 2695 2696 db->db_caching_status = DB_NO_CACHE; 2697 } 2698 (void) zfs_refcount_add(&db->db_holds, tag); 2699 DBUF_VERIFY(db); 2700 mutex_exit(&db->db_mtx); 2701 2702 /* NOTE: we can't rele the parent until after we drop the db_mtx */ 2703 if (parent) 2704 dbuf_rele(parent, NULL); 2705 2706 ASSERT3P(DB_DNODE(db), ==, dn); 2707 ASSERT3U(db->db_blkid, ==, blkid); 2708 ASSERT3U(db->db_level, ==, level); 2709 *dbp = db; 2710 2711 return (0); 2712 } 2713 2714 dmu_buf_impl_t * 2715 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag) 2716 { 2717 return (dbuf_hold_level(dn, 0, blkid, tag)); 2718 } 2719 2720 dmu_buf_impl_t * 2721 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag) 2722 { 2723 dmu_buf_impl_t *db; 2724 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db); 2725 return (err ? NULL : db); 2726 } 2727 2728 void 2729 dbuf_create_bonus(dnode_t *dn) 2730 { 2731 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 2732 2733 ASSERT(dn->dn_bonus == NULL); 2734 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL); 2735 } 2736 2737 int 2738 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx) 2739 { 2740 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2741 dnode_t *dn; 2742 2743 if (db->db_blkid != DMU_SPILL_BLKID) 2744 return (SET_ERROR(ENOTSUP)); 2745 if (blksz == 0) 2746 blksz = SPA_MINBLOCKSIZE; 2747 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset))); 2748 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE); 2749 2750 DB_DNODE_ENTER(db); 2751 dn = DB_DNODE(db); 2752 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 2753 dbuf_new_size(db, blksz, tx); 2754 rw_exit(&dn->dn_struct_rwlock); 2755 DB_DNODE_EXIT(db); 2756 2757 return (0); 2758 } 2759 2760 void 2761 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx) 2762 { 2763 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx); 2764 } 2765 2766 #pragma weak dmu_buf_add_ref = dbuf_add_ref 2767 void 2768 dbuf_add_ref(dmu_buf_impl_t *db, void *tag) 2769 { 2770 int64_t holds = zfs_refcount_add(&db->db_holds, tag); 2771 ASSERT3S(holds, >, 1); 2772 } 2773 2774 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref 2775 boolean_t 2776 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid, 2777 void *tag) 2778 { 2779 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2780 dmu_buf_impl_t *found_db; 2781 boolean_t result = B_FALSE; 2782 2783 if (db->db_blkid == DMU_BONUS_BLKID) 2784 found_db = dbuf_find_bonus(os, obj); 2785 else 2786 found_db = dbuf_find(os, obj, 0, blkid); 2787 2788 if (found_db != NULL) { 2789 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) { 2790 (void) zfs_refcount_add(&db->db_holds, tag); 2791 result = B_TRUE; 2792 } 2793 mutex_exit(&db->db_mtx); 2794 } 2795 return (result); 2796 } 2797 2798 /* 2799 * If you call dbuf_rele() you had better not be referencing the dnode handle 2800 * unless you have some other direct or indirect hold on the dnode. (An indirect 2801 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.) 2802 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the 2803 * dnode's parent dbuf evicting its dnode handles. 2804 */ 2805 void 2806 dbuf_rele(dmu_buf_impl_t *db, void *tag) 2807 { 2808 mutex_enter(&db->db_mtx); 2809 dbuf_rele_and_unlock(db, tag, B_FALSE); 2810 } 2811 2812 void 2813 dmu_buf_rele(dmu_buf_t *db, void *tag) 2814 { 2815 dbuf_rele((dmu_buf_impl_t *)db, tag); 2816 } 2817 2818 /* 2819 * dbuf_rele() for an already-locked dbuf. This is necessary to allow 2820 * db_dirtycnt and db_holds to be updated atomically. The 'evicting' 2821 * argument should be set if we are already in the dbuf-evicting code 2822 * path, in which case we don't want to recursively evict. This allows us to 2823 * avoid deeply nested stacks that would have a call flow similar to this: 2824 * 2825 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify() 2826 * ^ | 2827 * | | 2828 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+ 2829 * 2830 */ 2831 void 2832 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag, boolean_t evicting) 2833 { 2834 int64_t holds; 2835 2836 ASSERT(MUTEX_HELD(&db->db_mtx)); 2837 DBUF_VERIFY(db); 2838 2839 /* 2840 * Remove the reference to the dbuf before removing its hold on the 2841 * dnode so we can guarantee in dnode_move() that a referenced bonus 2842 * buffer has a corresponding dnode hold. 2843 */ 2844 holds = zfs_refcount_remove(&db->db_holds, tag); 2845 ASSERT(holds >= 0); 2846 2847 /* 2848 * We can't freeze indirects if there is a possibility that they 2849 * may be modified in the current syncing context. 2850 */ 2851 if (db->db_buf != NULL && 2852 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) { 2853 arc_buf_freeze(db->db_buf); 2854 } 2855 2856 if (holds == db->db_dirtycnt && 2857 db->db_level == 0 && db->db_user_immediate_evict) 2858 dbuf_evict_user(db); 2859 2860 if (holds == 0) { 2861 if (db->db_blkid == DMU_BONUS_BLKID) { 2862 dnode_t *dn; 2863 boolean_t evict_dbuf = db->db_pending_evict; 2864 2865 /* 2866 * If the dnode moves here, we cannot cross this 2867 * barrier until the move completes. 2868 */ 2869 DB_DNODE_ENTER(db); 2870 2871 dn = DB_DNODE(db); 2872 atomic_dec_32(&dn->dn_dbufs_count); 2873 2874 /* 2875 * Decrementing the dbuf count means that the bonus 2876 * buffer's dnode hold is no longer discounted in 2877 * dnode_move(). The dnode cannot move until after 2878 * the dnode_rele() below. 2879 */ 2880 DB_DNODE_EXIT(db); 2881 2882 /* 2883 * Do not reference db after its lock is dropped. 2884 * Another thread may evict it. 2885 */ 2886 mutex_exit(&db->db_mtx); 2887 2888 if (evict_dbuf) 2889 dnode_evict_bonus(dn); 2890 2891 dnode_rele(dn, db); 2892 } else if (db->db_buf == NULL) { 2893 /* 2894 * This is a special case: we never associated this 2895 * dbuf with any data allocated from the ARC. 2896 */ 2897 ASSERT(db->db_state == DB_UNCACHED || 2898 db->db_state == DB_NOFILL); 2899 dbuf_destroy(db); 2900 } else if (arc_released(db->db_buf)) { 2901 /* 2902 * This dbuf has anonymous data associated with it. 2903 */ 2904