xref: /illumos-gate/usr/src/uts/common/fs/zfs/arc.c (revision a3874b8b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2018, Joyent, Inc.
24  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25  * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
26  * Copyright 2017 Nexenta Systems, Inc.  All rights reserved.
27  */
28 
29 /*
30  * DVA-based Adjustable Replacement Cache
31  *
32  * While much of the theory of operation used here is
33  * based on the self-tuning, low overhead replacement cache
34  * presented by Megiddo and Modha at FAST 2003, there are some
35  * significant differences:
36  *
37  * 1. The Megiddo and Modha model assumes any page is evictable.
38  * Pages in its cache cannot be "locked" into memory.  This makes
39  * the eviction algorithm simple: evict the last page in the list.
40  * This also make the performance characteristics easy to reason
41  * about.  Our cache is not so simple.  At any given moment, some
42  * subset of the blocks in the cache are un-evictable because we
43  * have handed out a reference to them.  Blocks are only evictable
44  * when there are no external references active.  This makes
45  * eviction far more problematic:  we choose to evict the evictable
46  * blocks that are the "lowest" in the list.
47  *
48  * There are times when it is not possible to evict the requested
49  * space.  In these circumstances we are unable to adjust the cache
50  * size.  To prevent the cache growing unbounded at these times we
51  * implement a "cache throttle" that slows the flow of new data
52  * into the cache until we can make space available.
53  *
54  * 2. The Megiddo and Modha model assumes a fixed cache size.
55  * Pages are evicted when the cache is full and there is a cache
56  * miss.  Our model has a variable sized cache.  It grows with
57  * high use, but also tries to react to memory pressure from the
58  * operating system: decreasing its size when system memory is
59  * tight.
60  *
61  * 3. The Megiddo and Modha model assumes a fixed page size. All
62  * elements of the cache are therefore exactly the same size.  So
63  * when adjusting the cache size following a cache miss, its simply
64  * a matter of choosing a single page to evict.  In our model, we
65  * have variable sized cache blocks (rangeing from 512 bytes to
66  * 128K bytes).  We therefore choose a set of blocks to evict to make
67  * space for a cache miss that approximates as closely as possible
68  * the space used by the new block.
69  *
70  * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
71  * by N. Megiddo & D. Modha, FAST 2003
72  */
73 
74 /*
75  * The locking model:
76  *
77  * A new reference to a cache buffer can be obtained in two
78  * ways: 1) via a hash table lookup using the DVA as a key,
79  * or 2) via one of the ARC lists.  The arc_read() interface
80  * uses method 1, while the internal ARC algorithms for
81  * adjusting the cache use method 2.  We therefore provide two
82  * types of locks: 1) the hash table lock array, and 2) the
83  * ARC list locks.
84  *
85  * Buffers do not have their own mutexes, rather they rely on the
86  * hash table mutexes for the bulk of their protection (i.e. most
87  * fields in the arc_buf_hdr_t are protected by these mutexes).
88  *
89  * buf_hash_find() returns the appropriate mutex (held) when it
90  * locates the requested buffer in the hash table.  It returns
91  * NULL for the mutex if the buffer was not in the table.
92  *
93  * buf_hash_remove() expects the appropriate hash mutex to be
94  * already held before it is invoked.
95  *
96  * Each ARC state also has a mutex which is used to protect the
97  * buffer list associated with the state.  When attempting to
98  * obtain a hash table lock while holding an ARC list lock you
99  * must use: mutex_tryenter() to avoid deadlock.  Also note that
100  * the active state mutex must be held before the ghost state mutex.
101  *
102  * Note that the majority of the performance stats are manipulated
103  * with atomic operations.
104  *
105  * The L2ARC uses the l2ad_mtx on each vdev for the following:
106  *
107  *	- L2ARC buflist creation
108  *	- L2ARC buflist eviction
109  *	- L2ARC write completion, which walks L2ARC buflists
110  *	- ARC header destruction, as it removes from L2ARC buflists
111  *	- ARC header release, as it removes from L2ARC buflists
112  */
113 
114 /*
115  * ARC operation:
116  *
117  * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
118  * This structure can point either to a block that is still in the cache or to
119  * one that is only accessible in an L2 ARC device, or it can provide
120  * information about a block that was recently evicted. If a block is
121  * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
122  * information to retrieve it from the L2ARC device. This information is
123  * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
124  * that is in this state cannot access the data directly.
125  *
126  * Blocks that are actively being referenced or have not been evicted
127  * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
128  * the arc_buf_hdr_t that will point to the data block in memory. A block can
129  * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
130  * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and
131  * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd).
132  *
133  * The L1ARC's data pointer may or may not be uncompressed. The ARC has the
134  * ability to store the physical data (b_pabd) associated with the DVA of the
135  * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block,
136  * it will match its on-disk compression characteristics. This behavior can be
137  * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
138  * compressed ARC functionality is disabled, the b_pabd will point to an
139  * uncompressed version of the on-disk data.
140  *
141  * Data in the L1ARC is not accessed by consumers of the ARC directly. Each
142  * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it.
143  * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC
144  * consumer. The ARC will provide references to this data and will keep it
145  * cached until it is no longer in use. The ARC caches only the L1ARC's physical
146  * data block and will evict any arc_buf_t that is no longer referenced. The
147  * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the
148  * "overhead_size" kstat.
149  *
150  * Depending on the consumer, an arc_buf_t can be requested in uncompressed or
151  * compressed form. The typical case is that consumers will want uncompressed
152  * data, and when that happens a new data buffer is allocated where the data is
153  * decompressed for them to use. Currently the only consumer who wants
154  * compressed arc_buf_t's is "zfs send", when it streams data exactly as it
155  * exists on disk. When this happens, the arc_buf_t's data buffer is shared
156  * with the arc_buf_hdr_t.
157  *
158  * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The
159  * first one is owned by a compressed send consumer (and therefore references
160  * the same compressed data buffer as the arc_buf_hdr_t) and the second could be
161  * used by any other consumer (and has its own uncompressed copy of the data
162  * buffer).
163  *
164  *   arc_buf_hdr_t
165  *   +-----------+
166  *   | fields    |
167  *   | common to |
168  *   | L1- and   |
169  *   | L2ARC     |
170  *   +-----------+
171  *   | l2arc_buf_hdr_t
172  *   |           |
173  *   +-----------+
174  *   | l1arc_buf_hdr_t
175  *   |           |              arc_buf_t
176  *   | b_buf     +------------>+-----------+      arc_buf_t
177  *   | b_pabd    +-+           |b_next     +---->+-----------+
178  *   +-----------+ |           |-----------|     |b_next     +-->NULL
179  *                 |           |b_comp = T |     +-----------+
180  *                 |           |b_data     +-+   |b_comp = F |
181  *                 |           +-----------+ |   |b_data     +-+
182  *                 +->+------+               |   +-----------+ |
183  *        compressed  |      |               |                 |
184  *           data     |      |<--------------+                 | uncompressed
185  *                    +------+          compressed,            |     data
186  *                                        shared               +-->+------+
187  *                                         data                    |      |
188  *                                                                 |      |
189  *                                                                 +------+
190  *
191  * When a consumer reads a block, the ARC must first look to see if the
192  * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new
193  * arc_buf_t and either copies uncompressed data into a new data buffer from an
194  * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a
195  * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the
196  * hdr is compressed and the desired compression characteristics of the
197  * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the
198  * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be
199  * the last buffer in the hdr's b_buf list, however a shared compressed buf can
200  * be anywhere in the hdr's list.
201  *
202  * The diagram below shows an example of an uncompressed ARC hdr that is
203  * sharing its data with an arc_buf_t (note that the shared uncompressed buf is
204  * the last element in the buf list):
205  *
206  *                arc_buf_hdr_t
207  *                +-----------+
208  *                |           |
209  *                |           |
210  *                |           |
211  *                +-----------+
212  * l2arc_buf_hdr_t|           |
213  *                |           |
214  *                +-----------+
215  * l1arc_buf_hdr_t|           |
216  *                |           |                 arc_buf_t    (shared)
217  *                |    b_buf  +------------>+---------+      arc_buf_t
218  *                |           |             |b_next   +---->+---------+
219  *                |  b_pabd   +-+           |---------|     |b_next   +-->NULL
220  *                +-----------+ |           |         |     +---------+
221  *                              |           |b_data   +-+   |         |
222  *                              |           +---------+ |   |b_data   +-+
223  *                              +->+------+             |   +---------+ |
224  *                                 |      |             |               |
225  *                   uncompressed  |      |             |               |
226  *                        data     +------+             |               |
227  *                                    ^                 +->+------+     |
228  *                                    |       uncompressed |      |     |
229  *                                    |           data     |      |     |
230  *                                    |                    +------+     |
231  *                                    +---------------------------------+
232  *
233  * Writing to the ARC requires that the ARC first discard the hdr's b_pabd
234  * since the physical block is about to be rewritten. The new data contents
235  * will be contained in the arc_buf_t. As the I/O pipeline performs the write,
236  * it may compress the data before writing it to disk. The ARC will be called
237  * with the transformed data and will bcopy the transformed on-disk block into
238  * a newly allocated b_pabd. Writes are always done into buffers which have
239  * either been loaned (and hence are new and don't have other readers) or
240  * buffers which have been released (and hence have their own hdr, if there
241  * were originally other readers of the buf's original hdr). This ensures that
242  * the ARC only needs to update a single buf and its hdr after a write occurs.
243  *
244  * When the L2ARC is in use, it will also take advantage of the b_pabd. The
245  * L2ARC will always write the contents of b_pabd to the L2ARC. This means
246  * that when compressed ARC is enabled that the L2ARC blocks are identical
247  * to the on-disk block in the main data pool. This provides a significant
248  * advantage since the ARC can leverage the bp's checksum when reading from the
249  * L2ARC to determine if the contents are valid. However, if the compressed
250  * ARC is disabled, then the L2ARC's block must be transformed to look
251  * like the physical block in the main data pool before comparing the
252  * checksum and determining its validity.
253  */
254 
255 #include <sys/spa.h>
256 #include <sys/zio.h>
257 #include <sys/spa_impl.h>
258 #include <sys/zio_compress.h>
259 #include <sys/zio_checksum.h>
260 #include <sys/zfs_context.h>
261 #include <sys/arc.h>
262 #include <sys/refcount.h>
263 #include <sys/vdev.h>
264 #include <sys/vdev_impl.h>
265 #include <sys/dsl_pool.h>
266 #include <sys/zio_checksum.h>
267 #include <sys/multilist.h>
268 #include <sys/abd.h>
269 #ifdef _KERNEL
270 #include <sys/vmsystm.h>
271 #include <vm/anon.h>
272 #include <sys/fs/swapnode.h>
273 #include <sys/dnlc.h>
274 #endif
275 #include <sys/callb.h>
276 #include <sys/kstat.h>
277 #include <sys/zthr.h>
278 #include <zfs_fletcher.h>
279 #include <sys/aggsum.h>
280 #include <sys/cityhash.h>
281 
282 #ifndef _KERNEL
283 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
284 boolean_t arc_watch = B_FALSE;
285 int arc_procfd;
286 #endif
287 
288 /*
289  * This thread's job is to keep enough free memory in the system, by
290  * calling arc_kmem_reap_now() plus arc_shrink(), which improves
291  * arc_available_memory().
292  */
293 static zthr_t		*arc_reap_zthr;
294 
295 /*
296  * This thread's job is to keep arc_size under arc_c, by calling
297  * arc_adjust(), which improves arc_is_overflowing().
298  */
299 static zthr_t		*arc_adjust_zthr;
300 
301 static kmutex_t		arc_adjust_lock;
302 static kcondvar_t	arc_adjust_waiters_cv;
303 static boolean_t	arc_adjust_needed = B_FALSE;
304 
305 uint_t arc_reduce_dnlc_percent = 3;
306 
307 /*
308  * The number of headers to evict in arc_evict_state_impl() before
309  * dropping the sublist lock and evicting from another sublist. A lower
310  * value means we're more likely to evict the "correct" header (i.e. the
311  * oldest header in the arc state), but comes with higher overhead
312  * (i.e. more invocations of arc_evict_state_impl()).
313  */
314 int zfs_arc_evict_batch_limit = 10;
315 
316 /* number of seconds before growing cache again */
317 int arc_grow_retry = 60;
318 
319 /*
320  * Minimum time between calls to arc_kmem_reap_soon().  Note that this will
321  * be converted to ticks, so with the default hz=100, a setting of 15 ms
322  * will actually wait 2 ticks, or 20ms.
323  */
324 int arc_kmem_cache_reap_retry_ms = 1000;
325 
326 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */
327 int zfs_arc_overflow_shift = 8;
328 
329 /* shift of arc_c for calculating both min and max arc_p */
330 int arc_p_min_shift = 4;
331 
332 /* log2(fraction of arc to reclaim) */
333 int arc_shrink_shift = 7;
334 
335 /*
336  * log2(fraction of ARC which must be free to allow growing).
337  * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
338  * when reading a new block into the ARC, we will evict an equal-sized block
339  * from the ARC.
340  *
341  * This must be less than arc_shrink_shift, so that when we shrink the ARC,
342  * we will still not allow it to grow.
343  */
344 int			arc_no_grow_shift = 5;
345 
346 
347 /*
348  * minimum lifespan of a prefetch block in clock ticks
349  * (initialized in arc_init())
350  */
351 static int		zfs_arc_min_prefetch_ms = 1;
352 static int		zfs_arc_min_prescient_prefetch_ms = 6;
353 
354 /*
355  * If this percent of memory is free, don't throttle.
356  */
357 int arc_lotsfree_percent = 10;
358 
359 static boolean_t arc_initialized;
360 
361 /*
362  * The arc has filled available memory and has now warmed up.
363  */
364 static boolean_t arc_warm;
365 
366 /*
367  * log2 fraction of the zio arena to keep free.
368  */
369 int arc_zio_arena_free_shift = 2;
370 
371 /*
372  * These tunables are for performance analysis.
373  */
374 uint64_t zfs_arc_max;
375 uint64_t zfs_arc_min;
376 uint64_t zfs_arc_meta_limit = 0;
377 uint64_t zfs_arc_meta_min = 0;
378 int zfs_arc_grow_retry = 0;
379 int zfs_arc_shrink_shift = 0;
380 int zfs_arc_p_min_shift = 0;
381 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
382 
383 /*
384  * ARC dirty data constraints for arc_tempreserve_space() throttle
385  */
386 uint_t zfs_arc_dirty_limit_percent = 50;	/* total dirty data limit */
387 uint_t zfs_arc_anon_limit_percent = 25;		/* anon block dirty limit */
388 uint_t zfs_arc_pool_dirty_percent = 20;		/* each pool's anon allowance */
389 
390 boolean_t zfs_compressed_arc_enabled = B_TRUE;
391 
392 /*
393  * Note that buffers can be in one of 6 states:
394  *	ARC_anon	- anonymous (discussed below)
395  *	ARC_mru		- recently used, currently cached
396  *	ARC_mru_ghost	- recentely used, no longer in cache
397  *	ARC_mfu		- frequently used, currently cached
398  *	ARC_mfu_ghost	- frequently used, no longer in cache
399  *	ARC_l2c_only	- exists in L2ARC but not other states
400  * When there are no active references to the buffer, they are
401  * are linked onto a list in one of these arc states.  These are
402  * the only buffers that can be evicted or deleted.  Within each
403  * state there are multiple lists, one for meta-data and one for
404  * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
405  * etc.) is tracked separately so that it can be managed more
406  * explicitly: favored over data, limited explicitly.
407  *
408  * Anonymous buffers are buffers that are not associated with
409  * a DVA.  These are buffers that hold dirty block copies
410  * before they are written to stable storage.  By definition,
411  * they are "ref'd" and are considered part of arc_mru
412  * that cannot be freed.  Generally, they will aquire a DVA
413  * as they are written and migrate onto the arc_mru list.
414  *
415  * The ARC_l2c_only state is for buffers that are in the second
416  * level ARC but no longer in any of the ARC_m* lists.  The second
417  * level ARC itself may also contain buffers that are in any of
418  * the ARC_m* states - meaning that a buffer can exist in two
419  * places.  The reason for the ARC_l2c_only state is to keep the
420  * buffer header in the hash table, so that reads that hit the
421  * second level ARC benefit from these fast lookups.
422  */
423 
424 typedef struct arc_state {
425 	/*
426 	 * list of evictable buffers
427 	 */
428 	multilist_t *arcs_list[ARC_BUFC_NUMTYPES];
429 	/*
430 	 * total amount of evictable data in this state
431 	 */
432 	zfs_refcount_t arcs_esize[ARC_BUFC_NUMTYPES];
433 	/*
434 	 * total amount of data in this state; this includes: evictable,
435 	 * non-evictable, ARC_BUFC_DATA, and ARC_BUFC_METADATA.
436 	 */
437 	zfs_refcount_t arcs_size;
438 } arc_state_t;
439 
440 /* The 6 states: */
441 static arc_state_t ARC_anon;
442 static arc_state_t ARC_mru;
443 static arc_state_t ARC_mru_ghost;
444 static arc_state_t ARC_mfu;
445 static arc_state_t ARC_mfu_ghost;
446 static arc_state_t ARC_l2c_only;
447 
448 typedef struct arc_stats {
449 	kstat_named_t arcstat_hits;
450 	kstat_named_t arcstat_misses;
451 	kstat_named_t arcstat_demand_data_hits;
452 	kstat_named_t arcstat_demand_data_misses;
453 	kstat_named_t arcstat_demand_metadata_hits;
454 	kstat_named_t arcstat_demand_metadata_misses;
455 	kstat_named_t arcstat_prefetch_data_hits;
456 	kstat_named_t arcstat_prefetch_data_misses;
457 	kstat_named_t arcstat_prefetch_metadata_hits;
458 	kstat_named_t arcstat_prefetch_metadata_misses;
459 	kstat_named_t arcstat_mru_hits;
460 	kstat_named_t arcstat_mru_ghost_hits;
461 	kstat_named_t arcstat_mfu_hits;
462 	kstat_named_t arcstat_mfu_ghost_hits;
463 	kstat_named_t arcstat_deleted;
464 	/*
465 	 * Number of buffers that could not be evicted because the hash lock
466 	 * was held by another thread.  The lock may not necessarily be held
467 	 * by something using the same buffer, since hash locks are shared
468 	 * by multiple buffers.
469 	 */
470 	kstat_named_t arcstat_mutex_miss;
471 	/*
472 	 * Number of buffers skipped when updating the access state due to the
473 	 * header having already been released after acquiring the hash lock.
474 	 */
475 	kstat_named_t arcstat_access_skip;
476 	/*
477 	 * Number of buffers skipped because they have I/O in progress, are
478 	 * indirect prefetch buffers that have not lived long enough, or are
479 	 * not from the spa we're trying to evict from.
480 	 */
481 	kstat_named_t arcstat_evict_skip;
482 	/*
483 	 * Number of times arc_evict_state() was unable to evict enough
484 	 * buffers to reach it's target amount.
485 	 */
486 	kstat_named_t arcstat_evict_not_enough;
487 	kstat_named_t arcstat_evict_l2_cached;
488 	kstat_named_t arcstat_evict_l2_eligible;
489 	kstat_named_t arcstat_evict_l2_ineligible;
490 	kstat_named_t arcstat_evict_l2_skip;
491 	kstat_named_t arcstat_hash_elements;
492 	kstat_named_t arcstat_hash_elements_max;
493 	kstat_named_t arcstat_hash_collisions;
494 	kstat_named_t arcstat_hash_chains;
495 	kstat_named_t arcstat_hash_chain_max;
496 	kstat_named_t arcstat_p;
497 	kstat_named_t arcstat_c;
498 	kstat_named_t arcstat_c_min;
499 	kstat_named_t arcstat_c_max;
500 	/* Not updated directly; only synced in arc_kstat_update. */
501 	kstat_named_t arcstat_size;
502 	/*
503 	 * Number of compressed bytes stored in the arc_buf_hdr_t's b_pabd.
504 	 * Note that the compressed bytes may match the uncompressed bytes
505 	 * if the block is either not compressed or compressed arc is disabled.
506 	 */
507 	kstat_named_t arcstat_compressed_size;
508 	/*
509 	 * Uncompressed size of the data stored in b_pabd. If compressed
510 	 * arc is disabled then this value will be identical to the stat
511 	 * above.
512 	 */
513 	kstat_named_t arcstat_uncompressed_size;
514 	/*
515 	 * Number of bytes stored in all the arc_buf_t's. This is classified
516 	 * as "overhead" since this data is typically short-lived and will
517 	 * be evicted from the arc when it becomes unreferenced unless the
518 	 * zfs_keep_uncompressed_metadata or zfs_keep_uncompressed_level
519 	 * values have been set (see comment in dbuf.c for more information).
520 	 */
521 	kstat_named_t arcstat_overhead_size;
522 	/*
523 	 * Number of bytes consumed by internal ARC structures necessary
524 	 * for tracking purposes; these structures are not actually
525 	 * backed by ARC buffers. This includes arc_buf_hdr_t structures
526 	 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only
527 	 * caches), and arc_buf_t structures (allocated via arc_buf_t
528 	 * cache).
529 	 * Not updated directly; only synced in arc_kstat_update.
530 	 */
531 	kstat_named_t arcstat_hdr_size;
532 	/*
533 	 * Number of bytes consumed by ARC buffers of type equal to
534 	 * ARC_BUFC_DATA. This is generally consumed by buffers backing
535 	 * on disk user data (e.g. plain file contents).
536 	 * Not updated directly; only synced in arc_kstat_update.
537 	 */
538 	kstat_named_t arcstat_data_size;
539 	/*
540 	 * Number of bytes consumed by ARC buffers of type equal to
541 	 * ARC_BUFC_METADATA. This is generally consumed by buffers
542 	 * backing on disk data that is used for internal ZFS
543 	 * structures (e.g. ZAP, dnode, indirect blocks, etc).
544 	 * Not updated directly; only synced in arc_kstat_update.
545 	 */
546 	kstat_named_t arcstat_metadata_size;
547 	/*
548 	 * Number of bytes consumed by various buffers and structures
549 	 * not actually backed with ARC buffers. This includes bonus
550 	 * buffers (allocated directly via zio_buf_* functions),
551 	 * dmu_buf_impl_t structures (allocated via dmu_buf_impl_t
552 	 * cache), and dnode_t structures (allocated via dnode_t cache).
553 	 * Not updated directly; only synced in arc_kstat_update.
554 	 */
555 	kstat_named_t arcstat_other_size;
556 	/*
557 	 * Total number of bytes consumed by ARC buffers residing in the
558 	 * arc_anon state. This includes *all* buffers in the arc_anon
559 	 * state; e.g. data, metadata, evictable, and unevictable buffers
560 	 * are all included in this value.
561 	 * Not updated directly; only synced in arc_kstat_update.
562 	 */
563 	kstat_named_t arcstat_anon_size;
564 	/*
565 	 * Number of bytes consumed by ARC buffers that meet the
566 	 * following criteria: backing buffers of type ARC_BUFC_DATA,
567 	 * residing in the arc_anon state, and are eligible for eviction
568 	 * (e.g. have no outstanding holds on the buffer).
569 	 * Not updated directly; only synced in arc_kstat_update.
570 	 */
571 	kstat_named_t arcstat_anon_evictable_data;
572 	/*
573 	 * Number of bytes consumed by ARC buffers that meet the
574 	 * following criteria: backing buffers of type ARC_BUFC_METADATA,
575 	 * residing in the arc_anon state, and are eligible for eviction
576 	 * (e.g. have no outstanding holds on the buffer).
577 	 * Not updated directly; only synced in arc_kstat_update.
578 	 */
579 	kstat_named_t arcstat_anon_evictable_metadata;
580 	/*
581 	 * Total number of bytes consumed by ARC buffers residing in the
582 	 * arc_mru state. This includes *all* buffers in the arc_mru
583 	 * state; e.g. data, metadata, evictable, and unevictable buffers
584 	 * are all included in this value.
585 	 * Not updated directly; only synced in arc_kstat_update.
586 	 */
587 	kstat_named_t arcstat_mru_size;
588 	/*
589 	 * Number of bytes consumed by ARC buffers that meet the
590 	 * following criteria: backing buffers of type ARC_BUFC_DATA,
591 	 * residing in the arc_mru state, and are eligible for eviction
592 	 * (e.g. have no outstanding holds on the buffer).
593 	 * Not updated directly; only synced in arc_kstat_update.
594 	 */
595 	kstat_named_t arcstat_mru_evictable_data;
596 	/*
597 	 * Number of bytes consumed by ARC buffers that meet the
598 	 * following criteria: backing buffers of type ARC_BUFC_METADATA,
599 	 * residing in the arc_mru state, and are eligible for eviction
600 	 * (e.g. have no outstanding holds on the buffer).
601 	 * Not updated directly; only synced in arc_kstat_update.
602 	 */
603 	kstat_named_t arcstat_mru_evictable_metadata;
604 	/*
605 	 * Total number of bytes that *would have been* consumed by ARC
606 	 * buffers in the arc_mru_ghost state. The key thing to note
607 	 * here, is the fact that this size doesn't actually indicate
608 	 * RAM consumption. The ghost lists only consist of headers and
609 	 * don't actually have ARC buffers linked off of these headers.
610 	 * Thus, *if* the headers had associated ARC buffers, these
611 	 * buffers *would have* consumed this number of bytes.
612 	 * Not updated directly; only synced in arc_kstat_update.
613 	 */
614 	kstat_named_t arcstat_mru_ghost_size;
615 	/*
616 	 * Number of bytes that *would have been* consumed by ARC
617 	 * buffers that are eligible for eviction, of type
618 	 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state.
619 	 * Not updated directly; only synced in arc_kstat_update.
620 	 */
621 	kstat_named_t arcstat_mru_ghost_evictable_data;
622 	/*
623 	 * Number of bytes that *would have been* consumed by ARC
624 	 * buffers that are eligible for eviction, of type
625 	 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
626 	 * Not updated directly; only synced in arc_kstat_update.
627 	 */
628 	kstat_named_t arcstat_mru_ghost_evictable_metadata;
629 	/*
630 	 * Total number of bytes consumed by ARC buffers residing in the
631 	 * arc_mfu state. This includes *all* buffers in the arc_mfu
632 	 * state; e.g. data, metadata, evictable, and unevictable buffers
633 	 * are all included in this value.
634 	 * Not updated directly; only synced in arc_kstat_update.
635 	 */
636 	kstat_named_t arcstat_mfu_size;
637 	/*
638 	 * Number of bytes consumed by ARC buffers that are eligible for
639 	 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu
640 	 * state.
641 	 * Not updated directly; only synced in arc_kstat_update.
642 	 */
643 	kstat_named_t arcstat_mfu_evictable_data;
644 	/*
645 	 * Number of bytes consumed by ARC buffers that are eligible for
646 	 * eviction, of type ARC_BUFC_METADATA, and reside in the
647 	 * arc_mfu state.
648 	 * Not updated directly; only synced in arc_kstat_update.
649 	 */
650 	kstat_named_t arcstat_mfu_evictable_metadata;
651 	/*
652 	 * Total number of bytes that *would have been* consumed by ARC
653 	 * buffers in the arc_mfu_ghost state. See the comment above
654 	 * arcstat_mru_ghost_size for more details.
655 	 * Not updated directly; only synced in arc_kstat_update.
656 	 */
657 	kstat_named_t arcstat_mfu_ghost_size;
658 	/*
659 	 * Number of bytes that *would have been* consumed by ARC
660 	 * buffers that are eligible for eviction, of type
661 	 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state.
662 	 * Not updated directly; only synced in arc_kstat_update.
663 	 */
664 	kstat_named_t arcstat_mfu_ghost_evictable_data;
665 	/*
666 	 * Number of bytes that *would have been* consumed by ARC
667 	 * buffers that are eligible for eviction, of type
668 	 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
669 	 * Not updated directly; only synced in arc_kstat_update.
670 	 */
671 	kstat_named_t arcstat_mfu_ghost_evictable_metadata;
672 	kstat_named_t arcstat_l2_hits;
673 	kstat_named_t arcstat_l2_misses;
674 	kstat_named_t arcstat_l2_feeds;
675 	kstat_named_t arcstat_l2_rw_clash;
676 	kstat_named_t arcstat_l2_read_bytes;
677 	kstat_named_t arcstat_l2_write_bytes;
678 	kstat_named_t arcstat_l2_writes_sent;
679 	kstat_named_t arcstat_l2_writes_done;
680 	kstat_named_t arcstat_l2_writes_error;
681 	kstat_named_t arcstat_l2_writes_lock_retry;
682 	kstat_named_t arcstat_l2_evict_lock_retry;
683 	kstat_named_t arcstat_l2_evict_reading;
684 	kstat_named_t arcstat_l2_evict_l1cached;
685 	kstat_named_t arcstat_l2_free_on_write;
686 	kstat_named_t arcstat_l2_abort_lowmem;
687 	kstat_named_t arcstat_l2_cksum_bad;
688 	kstat_named_t arcstat_l2_io_error;
689 	kstat_named_t arcstat_l2_lsize;
690 	kstat_named_t arcstat_l2_psize;
691 	/* Not updated directly; only synced in arc_kstat_update. */
692 	kstat_named_t arcstat_l2_hdr_size;
693 	kstat_named_t arcstat_memory_throttle_count;
694 	/* Not updated directly; only synced in arc_kstat_update. */
695 	kstat_named_t arcstat_meta_used;
696 	kstat_named_t arcstat_meta_limit;
697 	kstat_named_t arcstat_meta_max;
698 	kstat_named_t arcstat_meta_min;
699 	kstat_named_t arcstat_async_upgrade_sync;
700 	kstat_named_t arcstat_demand_hit_predictive_prefetch;
701 	kstat_named_t arcstat_demand_hit_prescient_prefetch;
702 } arc_stats_t;
703 
704 static arc_stats_t arc_stats = {
705 	{ "hits",			KSTAT_DATA_UINT64 },
706 	{ "misses",			KSTAT_DATA_UINT64 },
707 	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
708 	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
709 	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
710 	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
711 	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
712 	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
713 	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
714 	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
715 	{ "mru_hits",			KSTAT_DATA_UINT64 },
716 	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
717 	{ "mfu_hits",			KSTAT_DATA_UINT64 },
718 	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
719 	{ "deleted",			KSTAT_DATA_UINT64 },
720 	{ "mutex_miss",			KSTAT_DATA_UINT64 },
721 	{ "access_skip",		KSTAT_DATA_UINT64 },
722 	{ "evict_skip",			KSTAT_DATA_UINT64 },
723 	{ "evict_not_enough",		KSTAT_DATA_UINT64 },
724 	{ "evict_l2_cached",		KSTAT_DATA_UINT64 },
725 	{ "evict_l2_eligible",		KSTAT_DATA_UINT64 },
726 	{ "evict_l2_ineligible",	KSTAT_DATA_UINT64 },
727 	{ "evict_l2_skip",		KSTAT_DATA_UINT64 },
728 	{ "hash_elements",		KSTAT_DATA_UINT64 },
729 	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
730 	{ "hash_collisions",		KSTAT_DATA_UINT64 },
731 	{ "hash_chains",		KSTAT_DATA_UINT64 },
732 	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
733 	{ "p",				KSTAT_DATA_UINT64 },
734 	{ "c",				KSTAT_DATA_UINT64 },
735 	{ "c_min",			KSTAT_DATA_UINT64 },
736 	{ "c_max",			KSTAT_DATA_UINT64 },
737 	{ "size",			KSTAT_DATA_UINT64 },
738 	{ "compressed_size",		KSTAT_DATA_UINT64 },
739 	{ "uncompressed_size",		KSTAT_DATA_UINT64 },
740 	{ "overhead_size",		KSTAT_DATA_UINT64 },
741 	{ "hdr_size",			KSTAT_DATA_UINT64 },
742 	{ "data_size",			KSTAT_DATA_UINT64 },
743 	{ "metadata_size",		KSTAT_DATA_UINT64 },
744 	{ "other_size",			KSTAT_DATA_UINT64 },
745 	{ "anon_size",			KSTAT_DATA_UINT64 },
746 	{ "anon_evictable_data",	KSTAT_DATA_UINT64 },
747 	{ "anon_evictable_metadata",	KSTAT_DATA_UINT64 },
748 	{ "mru_size",			KSTAT_DATA_UINT64 },
749 	{ "mru_evictable_data",		KSTAT_DATA_UINT64 },
750 	{ "mru_evictable_metadata",	KSTAT_DATA_UINT64 },
751 	{ "mru_ghost_size",		KSTAT_DATA_UINT64 },
752 	{ "mru_ghost_evictable_data",	KSTAT_DATA_UINT64 },
753 	{ "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
754 	{ "mfu_size",			KSTAT_DATA_UINT64 },
755 	{ "mfu_evictable_data",		KSTAT_DATA_UINT64 },
756 	{ "mfu_evictable_metadata",	KSTAT_DATA_UINT64 },
757 	{ "mfu_ghost_size",		KSTAT_DATA_UINT64 },
758 	{ "mfu_ghost_evictable_data",	KSTAT_DATA_UINT64 },
759 	{ "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
760 	{ "l2_hits",			KSTAT_DATA_UINT64 },
761 	{ "l2_misses",			KSTAT_DATA_UINT64 },
762 	{ "l2_feeds",			KSTAT_DATA_UINT64 },
763 	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
764 	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
765 	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
766 	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
767 	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
768 	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
769 	{ "l2_writes_lock_retry",	KSTAT_DATA_UINT64 },
770 	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
771 	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
772 	{ "l2_evict_l1cached",		KSTAT_DATA_UINT64 },
773 	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
774 	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
775 	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
776 	{ "l2_io_error",		KSTAT_DATA_UINT64 },
777 	{ "l2_size",			KSTAT_DATA_UINT64 },
778 	{ "l2_asize",			KSTAT_DATA_UINT64 },
779 	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
780 	{ "memory_throttle_count",	KSTAT_DATA_UINT64 },
781 	{ "arc_meta_used",		KSTAT_DATA_UINT64 },
782 	{ "arc_meta_limit",		KSTAT_DATA_UINT64 },
783 	{ "arc_meta_max",		KSTAT_DATA_UINT64 },
784 	{ "arc_meta_min",		KSTAT_DATA_UINT64 },
785 	{ "async_upgrade_sync",		KSTAT_DATA_UINT64 },
786 	{ "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
787 	{ "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64 },
788 };
789 
790 #define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
791 
792 #define	ARCSTAT_INCR(stat, val) \
793 	atomic_add_64(&arc_stats.stat.value.ui64, (val))
794 
795 #define	ARCSTAT_BUMP(stat)	ARCSTAT_INCR(stat, 1)
796 #define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
797 
798 #define	ARCSTAT_MAX(stat, val) {					\
799 	uint64_t m;							\
800 	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
801 	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
802 		continue;						\
803 }
804 
805 #define	ARCSTAT_MAXSTAT(stat) \
806 	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
807 
808 /*
809  * We define a macro to allow ARC hits/misses to be easily broken down by
810  * two separate conditions, giving a total of four different subtypes for
811  * each of hits and misses (so eight statistics total).
812  */
813 #define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
814 	if (cond1) {							\
815 		if (cond2) {						\
816 			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
817 		} else {						\
818 			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
819 		}							\
820 	} else {							\
821 		if (cond2) {						\
822 			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
823 		} else {						\
824 			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
825 		}							\
826 	}
827 
828 kstat_t			*arc_ksp;
829 static arc_state_t	*arc_anon;
830 static arc_state_t	*arc_mru;
831 static arc_state_t	*arc_mru_ghost;
832 static arc_state_t	*arc_mfu;
833 static arc_state_t	*arc_mfu_ghost;
834 static arc_state_t	*arc_l2c_only;
835 
836 /*
837  * There are several ARC variables that are critical to export as kstats --
838  * but we don't want to have to grovel around in the kstat whenever we wish to
839  * manipulate them.  For these variables, we therefore define them to be in
840  * terms of the statistic variable.  This assures that we are not introducing
841  * the possibility of inconsistency by having shadow copies of the variables,
842  * while still allowing the code to be readable.
843  */
844 #define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
845 #define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
846 #define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
847 #define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
848 #define	arc_meta_limit	ARCSTAT(arcstat_meta_limit) /* max size for metadata */
849 #define	arc_meta_min	ARCSTAT(arcstat_meta_min) /* min size for metadata */
850 #define	arc_meta_max	ARCSTAT(arcstat_meta_max) /* max size of metadata */
851 
852 /* compressed size of entire arc */
853 #define	arc_compressed_size	ARCSTAT(arcstat_compressed_size)
854 /* uncompressed size of entire arc */
855 #define	arc_uncompressed_size	ARCSTAT(arcstat_uncompressed_size)
856 /* number of bytes in the arc from arc_buf_t's */
857 #define	arc_overhead_size	ARCSTAT(arcstat_overhead_size)
858 
859 /*
860  * There are also some ARC variables that we want to export, but that are
861  * updated so often that having the canonical representation be the statistic
862  * variable causes a performance bottleneck. We want to use aggsum_t's for these
863  * instead, but still be able to export the kstat in the same way as before.
864  * The solution is to always use the aggsum version, except in the kstat update
865  * callback.
866  */
867 aggsum_t arc_size;
868 aggsum_t arc_meta_used;
869 aggsum_t astat_data_size;
870 aggsum_t astat_metadata_size;
871 aggsum_t astat_hdr_size;
872 aggsum_t astat_other_size;
873 aggsum_t astat_l2_hdr_size;
874 
875 static int		arc_no_grow;	/* Don't try to grow cache size */
876 static hrtime_t		arc_growtime;
877 static uint64_t		arc_tempreserve;
878 static uint64_t		arc_loaned_bytes;
879 
880 typedef struct arc_callback arc_callback_t;
881 
882 struct arc_callback {
883 	void			*acb_private;
884 	arc_read_done_func_t	*acb_done;
885 	arc_buf_t		*acb_buf;
886 	boolean_t		acb_compressed;
887 	zio_t			*acb_zio_dummy;
888 	zio_t			*acb_zio_head;
889 	arc_callback_t		*acb_next;
890 };
891 
892 typedef struct arc_write_callback arc_write_callback_t;
893 
894 struct arc_write_callback {
895 	void			*awcb_private;
896 	arc_write_done_func_t	*awcb_ready;
897 	arc_write_done_func_t	*awcb_children_ready;
898 	arc_write_done_func_t	*awcb_physdone;
899 	arc_write_done_func_t	*awcb_done;
900 	arc_buf_t		*awcb_buf;
901 };
902 
903 /*
904  * ARC buffers are separated into multiple structs as a memory saving measure:
905  *   - Common fields struct, always defined, and embedded within it:
906  *       - L2-only fields, always allocated but undefined when not in L2ARC
907  *       - L1-only fields, only allocated when in L1ARC
908  *
909  *           Buffer in L1                     Buffer only in L2
910  *    +------------------------+          +------------------------+
911  *    | arc_buf_hdr_t          |          | arc_buf_hdr_t          |
912  *    |                        |          |                        |
913  *    |                        |          |                        |
914  *    |                        |          |                        |
915  *    +------------------------+          +------------------------+
916  *    | l2arc_buf_hdr_t        |          | l2arc_buf_hdr_t        |
917  *    | (undefined if L1-only) |          |                        |
918  *    +------------------------+          +------------------------+
919  *    | l1arc_buf_hdr_t        |
920  *    |                        |
921  *    |                        |
922  *    |                        |
923  *    |                        |
924  *    +------------------------+
925  *
926  * Because it's possible for the L2ARC to become extremely large, we can wind
927  * up eating a lot of memory in L2ARC buffer headers, so the size of a header
928  * is minimized by only allocating the fields necessary for an L1-cached buffer
929  * when a header is actually in the L1 cache. The sub-headers (l1arc_buf_hdr and
930  * l2arc_buf_hdr) are embedded rather than allocated separately to save a couple
931  * words in pointers. arc_hdr_realloc() is used to switch a header between
932  * these two allocation states.
933  */
934 typedef struct l1arc_buf_hdr {
935 	kmutex_t		b_freeze_lock;
936 	zio_cksum_t		*b_freeze_cksum;
937 #ifdef ZFS_DEBUG
938 	/*
939 	 * Used for debugging with kmem_flags - by allocating and freeing
940 	 * b_thawed when the buffer is thawed, we get a record of the stack
941 	 * trace that thawed it.
942 	 */
943 	void			*b_thawed;
944 #endif
945 
946 	arc_buf_t		*b_buf;
947 	uint32_t		b_bufcnt;
948 	/* for waiting on writes to complete */
949 	kcondvar_t		b_cv;
950 	uint8_t			b_byteswap;
951 
952 	/* protected by arc state mutex */
953 	arc_state_t		*b_state;
954 	multilist_node_t	b_arc_node;
955 
956 	/* updated atomically */
957 	clock_t			b_arc_access;
958 
959 	/* self protecting */
960 	zfs_refcount_t		b_refcnt;
961 
962 	arc_callback_t		*b_acb;
963 	abd_t			*b_pabd;
964 } l1arc_buf_hdr_t;
965 
966 typedef struct l2arc_dev l2arc_dev_t;
967 
968 typedef struct l2arc_buf_hdr {
969 	/* protected by arc_buf_hdr mutex */
970 	l2arc_dev_t		*b_dev;		/* L2ARC device */
971 	uint64_t		b_daddr;	/* disk address, offset byte */
972 
973 	list_node_t		b_l2node;
974 } l2arc_buf_hdr_t;
975 
976 struct arc_buf_hdr {
977 	/* protected by hash lock */
978 	dva_t			b_dva;
979 	uint64_t		b_birth;
980 
981 	arc_buf_contents_t	b_type;
982 	arc_buf_hdr_t		*b_hash_next;
983 	arc_flags_t		b_flags;
984 
985 	/*
986 	 * This field stores the size of the data buffer after
987 	 * compression, and is set in the arc's zio completion handlers.
988 	 * It is in units of SPA_MINBLOCKSIZE (e.g. 1 == 512 bytes).
989 	 *
990 	 * While the block pointers can store up to 32MB in their psize
991 	 * field, we can only store up to 32MB minus 512B. This is due
992 	 * to the bp using a bias of 1, whereas we use a bias of 0 (i.e.
993 	 * a field of zeros represents 512B in the bp). We can't use a
994 	 * bias of 1 since we need to reserve a psize of zero, here, to
995 	 * represent holes and embedded blocks.
996 	 *
997 	 * This isn't a problem in practice, since the maximum size of a
998 	 * buffer is limited to 16MB, so we never need to store 32MB in
999 	 * this field. Even in the upstream illumos code base, the
1000 	 * maximum size of a buffer is limited to 16MB.
1001 	 */
1002 	uint16_t		b_psize;
1003 
1004 	/*
1005 	 * This field stores the size of the data buffer before
1006 	 * compression, and cannot change once set. It is in units
1007 	 * of SPA_MINBLOCKSIZE (e.g. 2 == 1024 bytes)
1008 	 */
1009 	uint16_t		b_lsize;	/* immutable */
1010 	uint64_t		b_spa;		/* immutable */
1011 
1012 	/* L2ARC fields. Undefined when not in L2ARC. */
1013 	l2arc_buf_hdr_t		b_l2hdr;
1014 	/* L1ARC fields. Undefined when in l2arc_only state */
1015 	l1arc_buf_hdr_t		b_l1hdr;
1016 };
1017 
1018 #define	GHOST_STATE(state)	\
1019 	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
1020 	(state) == arc_l2c_only)
1021 
1022 #define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
1023 #define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
1024 #define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_FLAG_IO_ERROR)
1025 #define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_FLAG_PREFETCH)
1026 #define	HDR_PRESCIENT_PREFETCH(hdr)	\
1027 	((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH)
1028 #define	HDR_COMPRESSION_ENABLED(hdr)	\
1029 	((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)
1030 
1031 #define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_FLAG_L2CACHE)
1032 #define	HDR_L2_READING(hdr)	\
1033 	(((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) &&	\
1034 	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
1035 #define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITING)
1036 #define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
1037 #define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
1038 #define	HDR_SHARED_DATA(hdr)	((hdr)->b_flags & ARC_FLAG_SHARED_DATA)
1039 
1040 #define	HDR_ISTYPE_METADATA(hdr)	\
1041 	((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
1042 #define	HDR_ISTYPE_DATA(hdr)	(!HDR_ISTYPE_METADATA(hdr))
1043 
1044 #define	HDR_HAS_L1HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
1045 #define	HDR_HAS_L2HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
1046 
1047 /* For storing compression mode in b_flags */
1048 #define	HDR_COMPRESS_OFFSET	(highbit64(ARC_FLAG_COMPRESS_0) - 1)
1049 
1050 #define	HDR_GET_COMPRESS(hdr)	((enum zio_compress)BF32_GET((hdr)->b_flags, \
1051 	HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
1052 #define	HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
1053 	HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));
1054 
1055 #define	ARC_BUF_LAST(buf)	((buf)->b_next == NULL)
1056 #define	ARC_BUF_SHARED(buf)	((buf)->b_flags & ARC_BUF_FLAG_SHARED)
1057 #define	ARC_BUF_COMPRESSED(buf)	((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED)
1058 
1059 /*
1060  * Other sizes
1061  */
1062 
1063 #define	HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
1064 #define	HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
1065 
1066 /*
1067  * Hash table routines
1068  */
1069 
1070 #define	HT_LOCK_PAD	64
1071 
1072 struct ht_lock {
1073 	kmutex_t	ht_lock;
1074 #ifdef _KERNEL
1075 	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
1076 #endif
1077 };
1078 
1079 #define	BUF_LOCKS 256
1080 typedef struct buf_hash_table {
1081 	uint64_t ht_mask;
1082 	arc_buf_hdr_t **ht_table;
1083 	struct ht_lock ht_locks[BUF_LOCKS];
1084 } buf_hash_table_t;
1085 
1086 static buf_hash_table_t buf_hash_table;
1087 
1088 #define	BUF_HASH_INDEX(spa, dva, birth) \
1089 	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
1090 #define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
1091 #define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
1092 #define	HDR_LOCK(hdr) \
1093 	(BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
1094 
1095 uint64_t zfs_crc64_table[256];
1096 
1097 /*
1098  * Level 2 ARC
1099  */
1100 
1101 #define	L2ARC_WRITE_SIZE	(8 * 1024 * 1024)	/* initial write max */
1102 #define	L2ARC_HEADROOM		2			/* num of writes */
1103 /*
1104  * If we discover during ARC scan any buffers to be compressed, we boost
1105  * our headroom for the next scanning cycle by this percentage multiple.
1106  */
1107 #define	L2ARC_HEADROOM_BOOST	200
1108 #define	L2ARC_FEED_SECS		1		/* caching interval secs */
1109 #define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
1110 
1111 #define	l2arc_writes_sent	ARCSTAT(arcstat_l2_writes_sent)
1112 #define	l2arc_writes_done	ARCSTAT(arcstat_l2_writes_done)
1113 
1114 /* L2ARC Performance Tunables */
1115 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* default max write size */
1116 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra write during warmup */
1117 uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* number of dev writes */
1118 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
1119 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
1120 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval milliseconds */
1121 boolean_t l2arc_noprefetch = B_TRUE;		/* don't cache prefetch bufs */
1122 boolean_t l2arc_feed_again = B_TRUE;		/* turbo warmup */
1123 boolean_t l2arc_norw = B_TRUE;			/* no reads during writes */
1124 
1125 /*
1126  * L2ARC Internals
1127  */
1128 struct l2arc_dev {
1129 	vdev_t			*l2ad_vdev;	/* vdev */
1130 	spa_t			*l2ad_spa;	/* spa */
1131 	uint64_t		l2ad_hand;	/* next write location */
1132 	uint64_t		l2ad_start;	/* first addr on device */
1133 	uint64_t		l2ad_end;	/* last addr on device */
1134 	boolean_t		l2ad_first;	/* first sweep through */
1135 	boolean_t		l2ad_writing;	/* currently writing */
1136 	kmutex_t		l2ad_mtx;	/* lock for buffer list */
1137 	list_t			l2ad_buflist;	/* buffer list */
1138 	list_node_t		l2ad_node;	/* device list node */
1139 	zfs_refcount_t		l2ad_alloc;	/* allocated bytes */
1140 };
1141 
1142 static list_t L2ARC_dev_list;			/* device list */
1143 static list_t *l2arc_dev_list;			/* device list pointer */
1144 static kmutex_t l2arc_dev_mtx;			/* device list mutex */
1145 static l2arc_dev_t *l2arc_dev_last;		/* last device used */
1146 static list_t L2ARC_free_on_write;		/* free after write buf list */
1147 static list_t *l2arc_free_on_write;		/* free after write list ptr */
1148 static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
1149 static uint64_t l2arc_ndev;			/* number of devices */
1150 
1151 typedef struct l2arc_read_callback {
1152 	arc_buf_hdr_t		*l2rcb_hdr;		/* read header */
1153 	blkptr_t		l2rcb_bp;		/* original blkptr */
1154 	zbookmark_phys_t	l2rcb_zb;		/* original bookmark */
1155 	int			l2rcb_flags;		/* original flags */
1156 	abd_t			*l2rcb_abd;		/* temporary buffer */
1157 } l2arc_read_callback_t;
1158 
1159 typedef struct l2arc_write_callback {
1160 	l2arc_dev_t	*l2wcb_dev;		/* device info */
1161 	arc_buf_hdr_t	*l2wcb_head;		/* head of write buflist */
1162 } l2arc_write_callback_t;
1163 
1164 typedef struct l2arc_data_free {
1165 	/* protected by l2arc_free_on_write_mtx */
1166 	abd_t		*l2df_abd;
1167 	size_t		l2df_size;
1168 	arc_buf_contents_t l2df_type;
1169 	list_node_t	l2df_list_node;
1170 } l2arc_data_free_t;
1171 
1172 static kmutex_t l2arc_feed_thr_lock;
1173 static kcondvar_t l2arc_feed_thr_cv;
1174 static uint8_t l2arc_thread_exit;
1175 
1176 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, void *);
1177 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *);
1178 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, void *);
1179 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, void *);
1180 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *);
1181 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag);
1182 static void arc_hdr_free_pabd(arc_buf_hdr_t *);
1183 static void arc_hdr_alloc_pabd(arc_buf_hdr_t *);
1184 static void arc_access(arc_buf_hdr_t *, kmutex_t *);
1185 static boolean_t arc_is_overflowing();
1186 static void arc_buf_watch(arc_buf_t *);
1187 
1188 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
1189 static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
1190 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
1191 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
1192 
1193 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
1194 static void l2arc_read_done(zio_t *);
1195 
1196 
1197 /*
1198  * We use Cityhash for this. It's fast, and has good hash properties without
1199  * requiring any large static buffers.
1200  */
1201 static uint64_t
1202 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
1203 {
1204 	return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth));
1205 }
1206 
1207 #define	HDR_EMPTY(hdr)						\
1208 	((hdr)->b_dva.dva_word[0] == 0 &&			\
1209 	(hdr)->b_dva.dva_word[1] == 0)
1210 
1211 #define	HDR_EQUAL(spa, dva, birth, hdr)				\
1212 	((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
1213 	((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
1214 	((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)
1215 
1216 static void
1217 buf_discard_identity(arc_buf_hdr_t *hdr)
1218 {
1219 	hdr->b_dva.dva_word[0] = 0;
1220 	hdr->b_dva.dva_word[1] = 0;
1221 	hdr->b_birth = 0;
1222 }
1223 
1224 static arc_buf_hdr_t *
1225 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
1226 {
1227 	const dva_t *dva = BP_IDENTITY(bp);
1228 	uint64_t birth = BP_PHYSICAL_BIRTH(bp);
1229 	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
1230 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1231 	arc_buf_hdr_t *hdr;
1232 
1233 	mutex_enter(hash_lock);
1234 	for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1235 	    hdr = hdr->b_hash_next) {
1236 		if (HDR_EQUAL(spa, dva, birth, hdr)) {
1237 			*lockp = hash_lock;
1238 			return (hdr);
1239 		}
1240 	}
1241 	mutex_exit(hash_lock);
1242 	*lockp = NULL;
1243 	return (NULL);
1244 }
1245 
1246 /*
1247  * Insert an entry into the hash table.  If there is already an element
1248  * equal to elem in the hash table, then the already existing element
1249  * will be returned and the new element will not be inserted.
1250  * Otherwise returns NULL.
1251  * If lockp == NULL, the caller is assumed to already hold the hash lock.
1252  */
1253 static arc_buf_hdr_t *
1254 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
1255 {
1256 	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1257 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1258 	arc_buf_hdr_t *fhdr;
1259 	uint32_t i;
1260 
1261 	ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1262 	ASSERT(hdr->b_birth != 0);
1263 	ASSERT(!HDR_IN_HASH_TABLE(hdr));
1264 
1265 	if (lockp != NULL) {
1266 		*lockp = hash_lock;
1267 		mutex_enter(hash_lock);
1268 	} else {
1269 		ASSERT(MUTEX_HELD(hash_lock));
1270 	}
1271 
1272 	for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1273 	    fhdr = fhdr->b_hash_next, i++) {
1274 		if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
1275 			return (fhdr);
1276 	}
1277 
1278 	hdr->b_hash_next = buf_hash_table.ht_table[idx];
1279 	buf_hash_table.ht_table[idx] = hdr;
1280 	arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1281 
1282 	/* collect some hash table performance data */
1283 	if (i > 0) {
1284 		ARCSTAT_BUMP(arcstat_hash_collisions);
1285 		if (i == 1)
1286 			ARCSTAT_BUMP(arcstat_hash_chains);
1287 
1288 		ARCSTAT_MAX(arcstat_hash_chain_max, i);
1289 	}
1290 
1291 	ARCSTAT_BUMP(arcstat_hash_elements);
1292 	ARCSTAT_MAXSTAT(arcstat_hash_elements);
1293 
1294 	return (NULL);
1295 }
1296 
1297 static void
1298 buf_hash_remove(arc_buf_hdr_t *hdr)
1299 {
1300 	arc_buf_hdr_t *fhdr, **hdrp;
1301 	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1302 
1303 	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1304 	ASSERT(HDR_IN_HASH_TABLE(hdr));
1305 
1306 	hdrp = &buf_hash_table.ht_table[idx];
1307 	while ((fhdr = *hdrp) != hdr) {
1308 		ASSERT3P(fhdr, !=, NULL);
1309 		hdrp = &fhdr->b_hash_next;
1310 	}
1311 	*hdrp = hdr->b_hash_next;
1312 	hdr->b_hash_next = NULL;
1313 	arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1314 
1315 	/* collect some hash table performance data */
1316 	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
1317 
1318 	if (buf_hash_table.ht_table[idx] &&
1319 	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1320 		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1321 }
1322 
1323 /*
1324  * Global data structures and functions for the buf kmem cache.
1325  */
1326 static kmem_cache_t *hdr_full_cache;
1327 static kmem_cache_t *hdr_l2only_cache;
1328 static kmem_cache_t *buf_cache;
1329 
1330 static void
1331 buf_fini(void)
1332 {
1333 	int i;
1334 
1335 	kmem_free(buf_hash_table.ht_table,
1336 	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
1337 	for (i = 0; i < BUF_LOCKS; i++)
1338 		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
1339 	kmem_cache_destroy(hdr_full_cache);
1340 	kmem_cache_destroy(hdr_l2only_cache);
1341 	kmem_cache_destroy(buf_cache);
1342 }
1343 
1344 /*
1345  * Constructor callback - called when the cache is empty
1346  * and a new buf is requested.
1347  */
1348 /* ARGSUSED */
1349 static int
1350 hdr_full_cons(void *vbuf, void *unused, int kmflag)
1351 {
1352 	arc_buf_hdr_t *hdr = vbuf;
1353 
1354 	bzero(hdr, HDR_FULL_SIZE);
1355 	cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
1356 	zfs_refcount_create(&hdr->b_l1hdr.b_refcnt);
1357 	mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1358 	multilist_link_init(&hdr->b_l1hdr.b_arc_node);
1359 	arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1360 
1361 	return (0);
1362 }
1363 
1364 /* ARGSUSED */
1365 static int
1366 hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1367 {
1368 	arc_buf_hdr_t *hdr = vbuf;
1369 
1370 	bzero(hdr, HDR_L2ONLY_SIZE);
1371 	arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1372 
1373 	return (0);
1374 }
1375 
1376 /* ARGSUSED */
1377 static int
1378 buf_cons(void *vbuf, void *unused, int kmflag)
1379 {
1380 	arc_buf_t *buf = vbuf;
1381 
1382 	bzero(buf, sizeof (arc_buf_t));
1383 	mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1384 	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1385 
1386 	return (0);
1387 }
1388 
1389 /*
1390  * Destructor callback - called when a cached buf is
1391  * no longer required.
1392  */
1393 /* ARGSUSED */
1394 static void
1395 hdr_full_dest(void *vbuf, void *unused)
1396 {
1397 	arc_buf_hdr_t *hdr = vbuf;
1398 
1399 	ASSERT(HDR_EMPTY(hdr));
1400 	cv_destroy(&hdr->b_l1hdr.b_cv);
1401 	zfs_refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1402 	mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1403 	ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1404 	arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1405 }
1406 
1407 /* ARGSUSED */
1408 static void
1409 hdr_l2only_dest(void *vbuf, void *unused)
1410 {
1411 	arc_buf_hdr_t *hdr = vbuf;
1412 
1413 	ASSERT(HDR_EMPTY(hdr));
1414 	arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1415 }
1416 
1417 /* ARGSUSED */
1418 static void
1419 buf_dest(void *vbuf, void *unused)
1420 {
1421 	arc_buf_t *buf = vbuf;
1422 
1423 	mutex_destroy(&buf->b_evict_lock);
1424 	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1425 }
1426 
1427 /*
1428  * Reclaim callback -- invoked when memory is low.
1429  */
1430 /* ARGSUSED */
1431 static void
1432 hdr_recl(void *unused)
1433 {
1434 	dprintf("hdr_recl called\n");
1435 	/*
1436 	 * umem calls the reclaim func when we destroy the buf cache,
1437 	 * which is after we do arc_fini().
1438 	 */
1439 	if (arc_initialized)
1440 		zthr_wakeup(arc_reap_zthr);
1441 }
1442 
1443 static void
1444 buf_init(void)
1445 {
1446 	uint64_t *ct;
1447 	uint64_t hsize = 1ULL << 12;
1448 	int i, j;
1449 
1450 	/*
1451 	 * The hash table is big enough to fill all of physical memory
1452 	 * with an average block size of zfs_arc_average_blocksize (default 8K).
1453 	 * By default, the table will take up
1454 	 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1455 	 */
1456 	while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE)
1457 		hsize <<= 1;
1458 retry:
1459 	buf_hash_table.ht_mask = hsize - 1;
1460 	buf_hash_table.ht_table =
1461 	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1462 	if (buf_hash_table.ht_table == NULL) {
1463 		ASSERT(hsize > (1ULL << 8));
1464 		hsize >>= 1;
1465 		goto retry;
1466 	}
1467 
1468 	hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1469 	    0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0);
1470 	hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1471 	    HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl,
1472 	    NULL, NULL, 0);
1473 	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1474 	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1475 
1476 	for (i = 0; i < 256; i++)
1477 		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1478 			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1479 
1480 	for (i = 0; i < BUF_LOCKS; i++) {
1481 		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1482 		    NULL, MUTEX_DEFAULT, NULL);
1483 	}
1484 }
1485 
1486 /*
1487  * This is the size that the buf occupies in memory. If the buf is compressed,
1488  * it will correspond to the compressed size. You should use this method of
1489  * getting the buf size unless you explicitly need the logical size.
1490  */
1491 int32_t
1492 arc_buf_size(arc_buf_t *buf)
1493 {
1494 	return (ARC_BUF_COMPRESSED(buf) ?
1495 	    HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr));
1496 }
1497 
1498 int32_t
1499 arc_buf_lsize(arc_buf_t *buf)
1500 {
1501 	return (HDR_GET_LSIZE(buf->b_hdr));
1502 }
1503 
1504 enum zio_compress
1505 arc_get_compression(arc_buf_t *buf)
1506 {
1507 	return (ARC_BUF_COMPRESSED(buf) ?
1508 	    HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF);
1509 }
1510 
1511 #define	ARC_MINTIME	(hz>>4) /* 62 ms */
1512 
1513 static inline boolean_t
1514 arc_buf_is_shared(arc_buf_t *buf)
1515 {
1516 	boolean_t shared = (buf->b_data != NULL &&
1517 	    buf->b_hdr->b_l1hdr.b_pabd != NULL &&
1518 	    abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) &&
1519 	    buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd));
1520 	IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr));
1521 	IMPLY(shared, ARC_BUF_SHARED(buf));
1522 	IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf));
1523 
1524 	/*
1525 	 * It would be nice to assert arc_can_share() too, but the "hdr isn't
1526 	 * already being shared" requirement prevents us from doing that.
1527 	 */
1528 
1529 	return (shared);
1530 }
1531 
1532 /*
1533  * Free the checksum associated with this header. If there is no checksum, this
1534  * is a no-op.
1535  */
1536 static inline void
1537 arc_cksum_free(arc_buf_hdr_t *hdr)
1538 {
1539 	ASSERT(HDR_HAS_L1HDR(hdr));
1540 	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1541 	if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1542 		kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t));
1543 		hdr->b_l1hdr.b_freeze_cksum = NULL;
1544 	}
1545 	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1546 }
1547 
1548 /*
1549  * Return true iff at least one of the bufs on hdr is not compressed.
1550  */
1551 static boolean_t
1552 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr)
1553 {
1554 	for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) {
1555 		if (!ARC_BUF_COMPRESSED(b)) {
1556 			return (B_TRUE);
1557 		}
1558 	}
1559 	return (B_FALSE);
1560 }
1561 
1562 /*
1563  * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data
1564  * matches the checksum that is stored in the hdr. If there is no checksum,
1565  * or if the buf is compressed, this is a no-op.
1566  */
1567 static void
1568 arc_cksum_verify(arc_buf_t *buf)
1569 {
1570 	arc_buf_hdr_t *hdr = buf->b_hdr;
1571 	zio_cksum_t zc;
1572 
1573 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1574 		return;
1575 
1576 	if (ARC_BUF_COMPRESSED(buf)) {
1577 		ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
1578 		    arc_hdr_has_uncompressed_buf(hdr));
1579 		return;
1580 	}
1581 
1582 	ASSERT(HDR_HAS_L1HDR(hdr));
1583 
1584 	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1585 	if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) {
1586 		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1587 		return;
1588 	}
1589 
1590 	fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc);
1591 	if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc))
1592 		panic("buffer modified while frozen!");
1593 	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1594 }
1595 
1596 static boolean_t
1597 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio)
1598 {
1599 	enum zio_compress compress = BP_GET_COMPRESS(zio->io_bp);
1600 	boolean_t valid_cksum;
1601 
1602 	ASSERT(!BP_IS_EMBEDDED(zio->io_bp));
1603 	VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr));
1604 
1605 	/*
1606 	 * We rely on the blkptr's checksum to determine if the block
1607 	 * is valid or not. When compressed arc is enabled, the l2arc
1608 	 * writes the block to the l2arc just as it appears in the pool.
1609 	 * This allows us to use the blkptr's checksum to validate the
1610 	 * data that we just read off of the l2arc without having to store
1611 	 * a separate checksum in the arc_buf_hdr_t. However, if compressed
1612 	 * arc is disabled, then the data written to the l2arc is always
1613 	 * uncompressed and won't match the block as it exists in the main
1614 	 * pool. When this is the case, we must first compress it if it is
1615 	 * compressed on the main pool before we can validate the checksum.
1616 	 */
1617 	if (!HDR_COMPRESSION_ENABLED(hdr) && compress != ZIO_COMPRESS_OFF) {
1618 		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1619 		uint64_t lsize = HDR_GET_LSIZE(hdr);
1620 		uint64_t csize;
1621 
1622 		abd_t *cdata = abd_alloc_linear(HDR_GET_PSIZE(hdr), B_TRUE);
1623 		csize = zio_compress_data(compress, zio->io_abd,
1624 		    abd_to_buf(cdata), lsize);
1625 
1626 		ASSERT3U(csize, <=, HDR_GET_PSIZE(hdr));
1627 		if (csize < HDR_GET_PSIZE(hdr)) {
1628 			/*
1629 			 * Compressed blocks are always a multiple of the
1630 			 * smallest ashift in the pool. Ideally, we would
1631 			 * like to round up the csize to the next
1632 			 * spa_min_ashift but that value may have changed
1633 			 * since the block was last written. Instead,
1634 			 * we rely on the fact that the hdr's psize
1635 			 * was set to the psize of the block when it was
1636 			 * last written. We set the csize to that value
1637 			 * and zero out any part that should not contain
1638 			 * data.
1639 			 */
1640 			abd_zero_off(cdata, csize, HDR_GET_PSIZE(hdr) - csize);
1641 			csize = HDR_GET_PSIZE(hdr);
1642 		}
1643 		zio_push_transform(zio, cdata, csize, HDR_GET_PSIZE(hdr), NULL);
1644 	}
1645 
1646 	/*
1647 	 * Block pointers always store the checksum for the logical data.
1648 	 * If the block pointer has the gang bit set, then the checksum
1649 	 * it represents is for the reconstituted data and not for an
1650 	 * individual gang member. The zio pipeline, however, must be able to
1651 	 * determine the checksum of each of the gang constituents so it
1652 	 * treats the checksum comparison differently than what we need
1653 	 * for l2arc blocks. This prevents us from using the
1654 	 * zio_checksum_error() interface directly. Instead we must call the
1655 	 * zio_checksum_error_impl() so that we can ensure the checksum is
1656 	 * generated using the correct checksum algorithm and accounts for the
1657 	 * logical I/O size and not just a gang fragment.
1658 	 */
1659 	valid_cksum = (zio_checksum_error_impl(zio->io_spa, zio->io_bp,
1660 	    BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size,
1661 	    zio->io_offset, NULL) == 0);
1662 	zio_pop_transforms(zio);
1663 	return (valid_cksum);
1664 }
1665 
1666 /*
1667  * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a
1668  * checksum and attaches it to the buf's hdr so that we can ensure that the buf
1669  * isn't modified later on. If buf is compressed or there is already a checksum
1670  * on the hdr, this is a no-op (we only checksum uncompressed bufs).
1671  */
1672 static void
1673 arc_cksum_compute(arc_buf_t *buf)
1674 {
1675 	arc_buf_hdr_t *hdr = buf->b_hdr;
1676 
1677 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1678 		return;
1679 
1680 	ASSERT(HDR_HAS_L1HDR(hdr));
1681 
1682 	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1683 	if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1684 		ASSERT(arc_hdr_has_uncompressed_buf(hdr));
1685 		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1686 		return;
1687 	} else if (ARC_BUF_COMPRESSED(buf)) {
1688 		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1689 		return;
1690 	}
1691 
1692 	ASSERT(!ARC_BUF_COMPRESSED(buf));
1693 	hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
1694 	    KM_SLEEP);
1695 	fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL,
1696 	    hdr->b_l1hdr.b_freeze_cksum);
1697 	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1698 	arc_buf_watch(buf);
1699 }
1700 
1701 #ifndef _KERNEL
1702 typedef struct procctl {
1703 	long cmd;
1704 	prwatch_t prwatch;
1705 } procctl_t;
1706 #endif
1707 
1708 /* ARGSUSED */
1709 static void
1710 arc_buf_unwatch(arc_buf_t *buf)
1711 {
1712 #ifndef _KERNEL
1713 	if (arc_watch) {
1714 		int result;
1715 		procctl_t ctl;
1716 		ctl.cmd = PCWATCH;
1717 		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1718 		ctl.prwatch.pr_size = 0;
1719 		ctl.prwatch.pr_wflags = 0;
1720 		result = write(arc_procfd, &ctl, sizeof (ctl));
1721 		ASSERT3U(result, ==, sizeof (ctl));
1722 	}
1723 #endif
1724 }
1725 
1726 /* ARGSUSED */
1727 static void
1728 arc_buf_watch(arc_buf_t *buf)
1729 {
1730 #ifndef _KERNEL
1731 	if (arc_watch) {
1732 		int result;
1733 		procctl_t ctl;
1734 		ctl.cmd = PCWATCH;
1735 		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1736 		ctl.prwatch.pr_size = arc_buf_size(buf);
1737 		ctl.prwatch.pr_wflags = WA_WRITE;
1738 		result = write(arc_procfd, &ctl, sizeof (ctl));
1739 		ASSERT3U(result, ==, sizeof (ctl));
1740 	}
1741 #endif
1742 }
1743 
1744 static arc_buf_contents_t
1745 arc_buf_type(arc_buf_hdr_t *hdr)
1746 {
1747 	arc_buf_contents_t type;
1748 	if (HDR_ISTYPE_METADATA(hdr)) {
1749 		type = ARC_BUFC_METADATA;
1750 	} else {
1751 		type = ARC_BUFC_DATA;
1752 	}
1753 	VERIFY3U(hdr->b_type, ==, type);
1754 	return (type);
1755 }
1756 
1757 boolean_t
1758 arc_is_metadata(arc_buf_t *buf)
1759 {
1760 	return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0);
1761 }
1762 
1763 static uint32_t
1764 arc_bufc_to_flags(arc_buf_contents_t type)
1765 {
1766 	switch (type) {
1767 	case ARC_BUFC_DATA:
1768 		/* metadata field is 0 if buffer contains normal data */
1769 		return (0);
1770 	case ARC_BUFC_METADATA:
1771 		return (ARC_FLAG_BUFC_METADATA);
1772 	default:
1773 		break;
1774 	}
1775 	panic("undefined ARC buffer type!");
1776 	return ((uint32_t)-1);
1777 }
1778 
1779 void
1780 arc_buf_thaw(arc_buf_t *buf)
1781 {
1782 	arc_buf_hdr_t *hdr = buf->b_hdr;
1783 
1784 	ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
1785 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1786 
1787 	arc_cksum_verify(buf);
1788 
1789 	/*
1790 	 * Compressed buffers do not manipulate the b_freeze_cksum or
1791 	 * allocate b_thawed.
1792 	 */
1793 	if (ARC_BUF_COMPRESSED(buf)) {
1794 		ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
1795 		    arc_hdr_has_uncompressed_buf(hdr));
1796 		return;
1797 	}
1798 
1799 	ASSERT(HDR_HAS_L1HDR(hdr));
1800 	arc_cksum_free(hdr);
1801 
1802 	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1803 #ifdef ZFS_DEBUG
1804 	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1805 		if (hdr->b_l1hdr.b_thawed != NULL)
1806 			kmem_free(hdr->b_l1hdr.b_thawed, 1);
1807 		hdr->b_l1hdr.b_thawed = kmem_alloc(1, KM_SLEEP);
1808 	}
1809 #endif
1810 
1811 	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1812 
1813 	arc_buf_unwatch(buf);
1814 }
1815 
1816 void
1817 arc_buf_freeze(arc_buf_t *buf)
1818 {
1819 	arc_buf_hdr_t *hdr = buf->b_hdr;
1820 	kmutex_t *hash_lock;
1821 
1822 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1823 		return;
1824 
1825 	if (ARC_BUF_COMPRESSED(buf)) {
1826 		ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
1827 		    arc_hdr_has_uncompressed_buf(hdr));
1828 		return;
1829 	}
1830 
1831 	hash_lock = HDR_LOCK(hdr);
1832 	mutex_enter(hash_lock);
1833 
1834 	ASSERT(HDR_HAS_L1HDR(hdr));
1835 	ASSERT(hdr->b_l1hdr.b_freeze_cksum != NULL ||
1836 	    hdr->b_l1hdr.b_state == arc_anon);
1837 	arc_cksum_compute(buf);
1838 	mutex_exit(hash_lock);
1839 }
1840 
1841 /*
1842  * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
1843  * the following functions should be used to ensure that the flags are
1844  * updated in a thread-safe way. When manipulating the flags either
1845  * the hash_lock must be held or the hdr must be undiscoverable. This
1846  * ensures that we're not racing with any other threads when updating
1847  * the flags.
1848  */
1849 static inline void
1850 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1851 {
1852 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1853 	hdr->b_flags |= flags;
1854 }
1855 
1856 static inline void
1857 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1858 {
1859 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1860 	hdr->b_flags &= ~flags;
1861 }
1862 
1863 /*
1864  * Setting the compression bits in the arc_buf_hdr_t's b_flags is
1865  * done in a special way since we have to clear and set bits
1866  * at the same time. Consumers that wish to set the compression bits
1867  * must use this function to ensure that the flags are updated in
1868  * thread-safe manner.
1869  */
1870 static void
1871 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp)
1872 {
1873 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1874 
1875 	/*
1876 	 * Holes and embedded blocks will always have a psize = 0 so
1877 	 * we ignore the compression of the blkptr and set the
1878 	 * arc_buf_hdr_t's compression to ZIO_COMPRESS_OFF.
1879 	 * Holes and embedded blocks remain anonymous so we don't
1880 	 * want to uncompress them. Mark them as uncompressed.
1881 	 */
1882 	if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) {
1883 		arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1884 		HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF);
1885 		ASSERT(!HDR_COMPRESSION_ENABLED(hdr));
1886 		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1887 	} else {
1888 		arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1889 		HDR_SET_COMPRESS(hdr, cmp);
1890 		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp);
1891 		ASSERT(HDR_COMPRESSION_ENABLED(hdr));
1892 	}
1893 }
1894 
1895 /*
1896  * Looks for another buf on the same hdr which has the data decompressed, copies
1897  * from it, and returns true. If no such buf exists, returns false.
1898  */
1899 static boolean_t
1900 arc_buf_try_copy_decompressed_data(arc_buf_t *buf)
1901 {
1902 	arc_buf_hdr_t *hdr = buf->b_hdr;
1903 	boolean_t copied = B_FALSE;
1904 
1905 	ASSERT(HDR_HAS_L1HDR(hdr));
1906 	ASSERT3P(buf->b_data, !=, NULL);
1907 	ASSERT(!ARC_BUF_COMPRESSED(buf));
1908 
1909 	for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL;
1910 	    from = from->b_next) {
1911 		/* can't use our own data buffer */
1912 		if (from == buf) {
1913 			continue;
1914 		}
1915 
1916 		if (!ARC_BUF_COMPRESSED(from)) {
1917 			bcopy(from->b_data, buf->b_data, arc_buf_size(buf));
1918 			copied = B_TRUE;
1919 			break;
1920 		}
1921 	}
1922 
1923 	/*
1924 	 * There were no decompressed bufs, so there should not be a
1925 	 * checksum on the hdr either.
1926 	 */
1927 	EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL);
1928 
1929 	return (copied);
1930 }
1931 
1932 /*
1933  * Given a buf that has a data buffer attached to it, this function will
1934  * efficiently fill the buf with data of the specified compression setting from
1935  * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr
1936  * are already sharing a data buf, no copy is performed.
1937  *
1938  * If the buf is marked as compressed but uncompressed data was requested, this
1939  * will allocate a new data buffer for the buf, remove that flag, and fill the
1940  * buf with uncompressed data. You can't request a compressed buf on a hdr with
1941  * uncompressed data, and (since we haven't added support for it yet) if you
1942  * want compressed data your buf must already be marked as compressed and have
1943  * the correct-sized data buffer.
1944  */
1945 static int
1946 arc_buf_fill(arc_buf_t *buf, boolean_t compressed)
1947 {
1948 	arc_buf_hdr_t *hdr = buf->b_hdr;
1949 	boolean_t hdr_compressed = (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
1950 	dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap;
1951 
1952 	ASSERT3P(buf->b_data, !=, NULL);
1953 	IMPLY(compressed, hdr_compressed);
1954 	IMPLY(compressed, ARC_BUF_COMPRESSED(buf));
1955 
1956 	if (hdr_compressed == compressed) {
1957 		if (!arc_buf_is_shared(buf)) {
1958 			abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd,
1959 			    arc_buf_size(buf));
1960 		}
1961 	} else {
1962 		ASSERT(hdr_compressed);
1963 		ASSERT(!compressed);
1964 		ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr));
1965 
1966 		/*
1967 		 * If the buf is sharing its data with the hdr, unlink it and
1968 		 * allocate a new data buffer for the buf.
1969 		 */
1970 		if (arc_buf_is_shared(buf)) {
1971 			ASSERT(ARC_BUF_COMPRESSED(buf));
1972 
1973 			/* We need to give the buf it's own b_data */
1974 			buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
1975 			buf->b_data =
1976 			    arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
1977 			arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
1978 
1979 			/* Previously overhead was 0; just add new overhead */
1980 			ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
1981 		} else if (ARC_BUF_COMPRESSED(buf)) {
1982 			/* We need to reallocate the buf's b_data */
1983 			arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr),
1984 			    buf);
1985 			buf->b_data =
1986 			    arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
1987 
1988 			/* We increased the size of b_data; update overhead */
1989 			ARCSTAT_INCR(arcstat_overhead_size,
1990 			    HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr));
1991 		}
1992 
1993 		/*
1994 		 * Regardless of the buf's previous compression settings, it
1995 		 * should not be compressed at the end of this function.
1996 		 */
1997 		buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
1998 
1999 		/*
2000 		 * Try copying the data from another buf which already has a
2001 		 * decompressed version. If that's not possible, it's time to
2002 		 * bite the bullet and decompress the data from the hdr.
2003 		 */
2004 		if (arc_buf_try_copy_decompressed_data(buf)) {
2005 			/* Skip byteswapping and checksumming (already done) */
2006 			ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, !=, NULL);
2007 			return (0);
2008 		} else {
2009 			int error = zio_decompress_data(HDR_GET_COMPRESS(hdr),
2010 			    hdr->b_l1hdr.b_pabd, buf->b_data,
2011 			    HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
2012 
2013 			/*
2014 			 * Absent hardware errors or software bugs, this should
2015 			 * be impossible, but log it anyway so we can debug it.
2016 			 */
2017 			if (error != 0) {
2018 				zfs_dbgmsg(
2019 				    "hdr %p, compress %d, psize %d, lsize %d",
2020 				    hdr, HDR_GET_COMPRESS(hdr),
2021 				    HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
2022 				return (SET_ERROR(EIO));
2023 			}
2024 		}
2025 	}
2026 
2027 	/* Byteswap the buf's data if necessary */
2028 	if (bswap != DMU_BSWAP_NUMFUNCS) {
2029 		ASSERT(!HDR_SHARED_DATA(hdr));
2030 		ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS);
2031 		dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr));
2032 	}
2033 
2034 	/* Compute the hdr's checksum if necessary */
2035 	arc_cksum_compute(buf);
2036 
2037 	return (0);
2038 }
2039 
2040 int
2041 arc_decompress(arc_buf_t *buf)
2042 {
2043 	return (arc_buf_fill(buf, B_FALSE));
2044 }
2045 
2046 /*
2047  * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t.
2048  */
2049 static uint64_t
2050 arc_hdr_size(arc_buf_hdr_t *hdr)
2051 {
2052 	uint64_t size;
2053 
2054 	if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
2055 	    HDR_GET_PSIZE(hdr) > 0) {
2056 		size = HDR_GET_PSIZE(hdr);
2057 	} else {
2058 		ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0);
2059 		size = HDR_GET_LSIZE(hdr);
2060 	}
2061 	return (size);
2062 }
2063 
2064 /*
2065  * Increment the amount of evictable space in the arc_state_t's refcount.
2066  * We account for the space used by the hdr and the arc buf individually
2067  * so that we can add and remove them from the refcount individually.
2068  */
2069 static void
2070 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state)
2071 {
2072 	arc_buf_contents_t type = arc_buf_type(hdr);
2073 
2074 	ASSERT(HDR_HAS_L1HDR(hdr));
2075 
2076 	if (GHOST_STATE(state)) {
2077 		ASSERT0(hdr->b_l1hdr.b_bufcnt);
2078 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2079 		ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2080 		(void) zfs_refcount_add_many(&state->arcs_esize[type],
2081 		    HDR_GET_LSIZE(hdr), hdr);
2082 		return;
2083 	}
2084 
2085 	ASSERT(!GHOST_STATE(state));
2086 	if (hdr->b_l1hdr.b_pabd != NULL) {
2087 		(void) zfs_refcount_add_many(&state->arcs_esize[type],
2088 		    arc_hdr_size(hdr), hdr);
2089 	}
2090 	for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2091 	    buf = buf->b_next) {
2092 		if (arc_buf_is_shared(buf))
2093 			continue;
2094 		(void) zfs_refcount_add_many(&state->arcs_esize[type],
2095 		    arc_buf_size(buf), buf);
2096 	}
2097 }
2098 
2099 /*
2100  * Decrement the amount of evictable space in the arc_state_t's refcount.
2101  * We account for the space used by the hdr and the arc buf individually
2102  * so that we can add and remove them from the refcount individually.
2103  */
2104 static void
2105 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state)
2106 {
2107 	arc_buf_contents_t type = arc_buf_type(hdr);
2108 
2109 	ASSERT(HDR_HAS_L1HDR(hdr));
2110 
2111 	if (GHOST_STATE(state)) {
2112 		ASSERT0(hdr->b_l1hdr.b_bufcnt);
2113 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2114 		ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2115 		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
2116 		    HDR_GET_LSIZE(hdr), hdr);
2117 		return;
2118 	}
2119 
2120 	ASSERT(!GHOST_STATE(state));
2121 	if (hdr->b_l1hdr.b_pabd != NULL) {
2122 		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
2123 		    arc_hdr_size(hdr), hdr);
2124 	}
2125 	for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2126 	    buf = buf->b_next) {
2127 		if (arc_buf_is_shared(buf))
2128 			continue;
2129 		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
2130 		    arc_buf_size(buf), buf);
2131 	}
2132 }
2133 
2134 /*
2135  * Add a reference to this hdr indicating that someone is actively
2136  * referencing that memory. When the refcount transitions from 0 to 1,
2137  * we remove it from the respective arc_state_t list to indicate that
2138  * it is not evictable.
2139  */
2140 static void
2141 add_reference(arc_buf_hdr_t *hdr, void *tag)
2142 {
2143 	ASSERT(HDR_HAS_L1HDR(hdr));
2144 	if (!MUTEX_HELD(HDR_LOCK(hdr))) {
2145 		ASSERT(hdr->b_l1hdr.b_state == arc_anon);
2146 		ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2147 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2148 	}
2149 
2150 	arc_state_t *state = hdr->b_l1hdr.b_state;
2151 
2152 	if ((zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
2153 	    (state != arc_anon)) {
2154 		/* We don't use the L2-only state list. */
2155 		if (state != arc_l2c_only) {
2156 			multilist_remove(state->arcs_list[arc_buf_type(hdr)],
2157 			    hdr);
2158 			arc_evictable_space_decrement(hdr, state);
2159 		}
2160 		/* remove the prefetch flag if we get a reference */
2161 		arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
2162 	}
2163 }
2164 
2165 /*
2166  * Remove a reference from this hdr. When the reference transitions from
2167  * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
2168  * list making it eligible for eviction.
2169  */
2170 static int
2171 remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
2172 {
2173 	int cnt;
2174 	arc_state_t *state = hdr->b_l1hdr.b_state;
2175 
2176 	ASSERT(HDR_HAS_L1HDR(hdr));
2177 	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
2178 	ASSERT(!GHOST_STATE(state));
2179 
2180 	/*
2181 	 * arc_l2c_only counts as a ghost state so we don't need to explicitly
2182 	 * check to prevent usage of the arc_l2c_only list.
2183 	 */
2184 	if (((cnt = zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
2185 	    (state != arc_anon)) {
2186 		multilist_insert(state->arcs_list[arc_buf_type(hdr)], hdr);
2187 		ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
2188 		arc_evictable_space_increment(hdr, state);
2189 	}
2190 	return (cnt);
2191 }
2192 
2193 /*
2194  * Move the supplied buffer to the indicated state. The hash lock
2195  * for the buffer must be held by the caller.
2196  */
2197 static void
2198 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
2199     kmutex_t *hash_lock)
2200 {
2201 	arc_state_t *old_state;
2202 	int64_t refcnt;
2203 	uint32_t bufcnt;
2204 	boolean_t update_old, update_new;
2205 	arc_buf_contents_t buftype = arc_buf_type(hdr);
2206 
2207 	/*
2208 	 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
2209 	 * in arc_read() when bringing a buffer out of the L2ARC.  However, the
2210 	 * L1 hdr doesn't always exist when we change state to arc_anon before
2211 	 * destroying a header, in which case reallocating to add the L1 hdr is
2212 	 * pointless.
2213 	 */
2214 	if (HDR_HAS_L1HDR(hdr)) {
2215 		old_state = hdr->b_l1hdr.b_state;
2216 		refcnt = zfs_refcount_count(&hdr->b_l1hdr.b_refcnt);
2217 		bufcnt = hdr->b_l1hdr.b_bufcnt;
2218 		update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL);
2219 	} else {
2220 		old_state = arc_l2c_only;
2221 		refcnt = 0;
2222 		bufcnt = 0;
2223 		update_old = B_FALSE;
2224 	}
2225 	update_new = update_old;
2226 
2227 	ASSERT(MUTEX_HELD(hash_lock));
2228 	ASSERT3P(new_state, !=, old_state);
2229 	ASSERT(!GHOST_STATE(new_state) || bufcnt == 0);
2230 	ASSERT(old_state != arc_anon || bufcnt <= 1);
2231 
2232 	/*
2233 	 * If this buffer is evictable, transfer it from the
2234 	 * old state list to the new state list.
2235 	 */
2236 	if (refcnt == 0) {
2237 		if (old_state != arc_anon && old_state != arc_l2c_only) {
2238 			ASSERT(HDR_HAS_L1HDR(hdr));
2239 			multilist_remove(old_state->arcs_list[buftype], hdr);
2240 
2241 			if (GHOST_STATE(old_state)) {
2242 				ASSERT0(bufcnt);
2243 				ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2244 				update_old = B_TRUE;
2245 			}
2246 			arc_evictable_space_decrement(hdr, old_state);
2247 		}
2248 		if (new_state != arc_anon && new_state != arc_l2c_only) {
2249 
2250 			/*
2251 			 * An L1 header always exists here, since if we're
2252 			 * moving to some L1-cached state (i.e. not l2c_only or
2253 			 * anonymous), we realloc the header to add an L1hdr
2254 			 * beforehand.
2255 			 */
2256 			ASSERT(HDR_HAS_L1HDR(hdr));
2257 			multilist_insert(new_state->arcs_list[buftype], hdr);
2258 
2259 			if (GHOST_STATE(new_state)) {
2260 				ASSERT0(bufcnt);
2261 				ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2262 				update_new = B_TRUE;
2263 			}
2264 			arc_evictable_space_increment(hdr, new_state);
2265 		}
2266 	}
2267 
2268 	ASSERT(!HDR_EMPTY(hdr));
2269 	if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
2270 		buf_hash_remove(hdr);
2271 
2272 	/* adjust state sizes (ignore arc_l2c_only) */
2273 
2274 	if (update_new && new_state != arc_l2c_only) {
2275 		ASSERT(HDR_HAS_L1HDR(hdr));
2276 		if (GHOST_STATE(new_state)) {
2277 			ASSERT0(bufcnt);
2278 
2279 			/*
2280 			 * When moving a header to a ghost state, we first
2281 			 * remove all arc buffers. Thus, we'll have a
2282 			 * bufcnt of zero, and no arc buffer to use for
2283 			 * the reference. As a result, we use the arc
2284 			 * header pointer for the reference.
2285 			 */
2286 			(void) zfs_refcount_add_many(&new_state->arcs_size,
2287 			    HDR_GET_LSIZE(hdr), hdr);
2288 			ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2289 		} else {
2290 			uint32_t buffers = 0;
2291 
2292 			/*
2293 			 * Each individual buffer holds a unique reference,
2294 			 * thus we must remove each of these references one
2295 			 * at a time.
2296 			 */
2297 			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2298 			    buf = buf->b_next) {
2299 				ASSERT3U(bufcnt, !=, 0);
2300 				buffers++;
2301 
2302 				/*
2303 				 * When the arc_buf_t is sharing the data
2304 				 * block with the hdr, the owner of the
2305 				 * reference belongs to the hdr. Only
2306 				 * add to the refcount if the arc_buf_t is
2307 				 * not shared.
2308 				 */
2309 				if (arc_buf_is_shared(buf))
2310 					continue;
2311 
2312 				(void) zfs_refcount_add_many(
2313 				    &new_state->arcs_size,
2314 				    arc_buf_size(buf), buf);
2315 			}
2316 			ASSERT3U(bufcnt, ==, buffers);
2317 
2318 			if (hdr->b_l1hdr.b_pabd != NULL) {
2319 				(void) zfs_refcount_add_many(
2320 				    &new_state->arcs_size,
2321 				    arc_hdr_size(hdr), hdr);
2322 			} else {
2323 				ASSERT(GHOST_STATE(old_state));
2324 			}
2325 		}
2326 	}
2327 
2328 	if (update_old && old_state != arc_l2c_only) {
2329 		ASSERT(HDR_HAS_L1HDR(hdr));
2330 		if (GHOST_STATE(old_state)) {
2331 			ASSERT0(bufcnt);
2332 			ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2333 
2334 			/*
2335 			 * When moving a header off of a ghost state,
2336 			 * the header will not contain any arc buffers.
2337 			 * We use the arc header pointer for the reference
2338 			 * which is exactly what we did when we put the
2339 			 * header on the ghost state.
2340 			 */
2341 
2342 			(void) zfs_refcount_remove_many(&old_state->arcs_size,
2343 			    HDR_GET_LSIZE(hdr), hdr);
2344 		} else {
2345 			uint32_t buffers = 0;
2346 
2347 			/*
2348 			 * Each individual buffer holds a unique reference,
2349 			 * thus we must remove each of these references one
2350 			 * at a time.
2351 			 */
2352 			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2353 			    buf = buf->b_next) {
2354 				ASSERT3U(bufcnt, !=, 0);
2355 				buffers++;
2356 
2357 				/*
2358 				 * When the arc_buf_t is sharing the data
2359 				 * block with the hdr, the owner of the
2360 				 * reference belongs to the hdr. Only
2361 				 * add to the refcount if the arc_buf_t is
2362 				 * not shared.
2363 				 */
2364 				if (arc_buf_is_shared(buf))
2365 					continue;
2366 
2367 				(void) zfs_refcount_remove_many(
2368 				    &old_state->arcs_size, arc_buf_size(buf),
2369 				    buf);
2370 			}
2371 			ASSERT3U(bufcnt, ==, buffers);
2372 			ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2373 			(void) zfs_refcount_remove_many(
2374 			    &old_state->arcs_size, arc_hdr_size(hdr), hdr);
2375 		}
2376 	}
2377 
2378 	if (HDR_HAS_L1HDR(hdr))
2379 		hdr->b_l1hdr.b_state = new_state;
2380 
2381 	/*
2382 	 * L2 headers should never be on the L2 state list since they don't
2383 	 * have L1 headers allocated.
2384 	 */
2385 	ASSERT(multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
2386 	    multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
2387 }
2388 
2389 void
2390 arc_space_consume(uint64_t space, arc_space_type_t type)
2391 {
2392 	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2393 
2394 	switch (type) {
2395 	case ARC_SPACE_DATA:
2396 		aggsum_add(&astat_data_size, space);
2397 		break;
2398 	case ARC_SPACE_META:
2399 		aggsum_add(&astat_metadata_size, space);
2400 		break;
2401 	case ARC_SPACE_OTHER:
2402 		aggsum_add(&astat_other_size, space);
2403 		break;
2404 	case ARC_SPACE_HDRS:
2405 		aggsum_add(&astat_hdr_size, space);
2406 		break;
2407 	case ARC_SPACE_L2HDRS:
2408 		aggsum_add(&astat_l2_hdr_size, space);
2409 		break;
2410 	}
2411 
2412 	if (type != ARC_SPACE_DATA)
2413 		aggsum_add(&arc_meta_used, space);
2414 
2415 	aggsum_add(&arc_size, space);
2416 }
2417 
2418 void
2419 arc_space_return(uint64_t space, arc_space_type_t type)
2420 {
2421 	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2422 
2423 	switch (type) {
2424 	case ARC_SPACE_DATA:
2425 		aggsum_add(&astat_data_size, -space);
2426 		break;
2427 	case ARC_SPACE_META:
2428 		aggsum_add(&astat_metadata_size, -space);
2429 		break;
2430 	case ARC_SPACE_OTHER:
2431 		aggsum_add(&astat_other_size, -space);
2432 		break;
2433 	case ARC_SPACE_HDRS:
2434 		aggsum_add(&astat_hdr_size, -space);
2435 		break;
2436 	case ARC_SPACE_L2HDRS:
2437 		aggsum_add(&astat_l2_hdr_size, -space);
2438 		break;
2439 	}
2440 
2441 	if (type != ARC_SPACE_DATA) {
2442 		ASSERT(aggsum_compare(&arc_meta_used, space) >= 0);
2443 		/*
2444 		 * We use the upper bound here rather than the precise value
2445 		 * because the arc_meta_max value doesn't need to be
2446 		 * precise. It's only consumed by humans via arcstats.
2447 		 */
2448 		if (arc_meta_max < aggsum_upper_bound(&arc_meta_used))
2449 			arc_meta_max = aggsum_upper_bound(&arc_meta_used);
2450 		aggsum_add(&arc_meta_used, -space);
2451 	}
2452 
2453 	ASSERT(aggsum_compare(&arc_size, space) >= 0);
2454 	aggsum_add(&arc_size, -space);
2455 }
2456 
2457 /*
2458  * Given a hdr and a buf, returns whether that buf can share its b_data buffer
2459  * with the hdr's b_pabd.
2460  */
2461 static boolean_t
2462 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2463 {
2464 	/*
2465 	 * The criteria for sharing a hdr's data are:
2466 	 * 1. the hdr's compression matches the buf's compression
2467 	 * 2. the hdr doesn't need to be byteswapped
2468 	 * 3. the hdr isn't already being shared
2469 	 * 4. the buf is either compressed or it is the last buf in the hdr list
2470 	 *
2471 	 * Criterion #4 maintains the invariant that shared uncompressed
2472 	 * bufs must be the final buf in the hdr's b_buf list. Reading this, you
2473 	 * might ask, "if a compressed buf is allocated first, won't that be the
2474 	 * last thing in the list?", but in that case it's impossible to create
2475 	 * a shared uncompressed buf anyway (because the hdr must be compressed
2476 	 * to have the compressed buf). You might also think that #3 is
2477 	 * sufficient to make this guarantee, however it's possible
2478 	 * (specifically in the rare L2ARC write race mentioned in
2479 	 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that
2480 	 * is sharable, but wasn't at the time of its allocation. Rather than
2481 	 * allow a new shared uncompressed buf to be created and then shuffle
2482 	 * the list around to make it the last element, this simply disallows
2483 	 * sharing if the new buf isn't the first to be added.
2484 	 */
2485 	ASSERT3P(buf->b_hdr, ==, hdr);
2486 	boolean_t hdr_compressed = HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF;
2487 	boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0;
2488 	return (buf_compressed == hdr_compressed &&
2489 	    hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS &&
2490 	    !HDR_SHARED_DATA(hdr) &&
2491 	    (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf)));
2492 }
2493 
2494 /*
2495  * Allocate a buf for this hdr. If you care about the data that's in the hdr,
2496  * or if you want a compressed buffer, pass those flags in. Returns 0 if the
2497  * copy was made successfully, or an error code otherwise.
2498  */
2499 static int
2500 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, void *tag, boolean_t compressed,
2501     boolean_t fill, arc_buf_t **ret)
2502 {
2503 	arc_buf_t *buf;
2504 
2505 	ASSERT(HDR_HAS_L1HDR(hdr));
2506 	ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2507 	VERIFY(hdr->b_type == ARC_BUFC_DATA ||
2508 	    hdr->b_type == ARC_BUFC_METADATA);
2509 	ASSERT3P(ret, !=, NULL);
2510 	ASSERT3P(*ret, ==, NULL);
2511 
2512 	buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2513 	buf->b_hdr = hdr;
2514 	buf->b_data = NULL;
2515 	buf->b_next = hdr->b_l1hdr.b_buf;
2516 	buf->b_flags = 0;
2517 
2518 	add_reference(hdr, tag);
2519 
2520 	/*
2521 	 * We're about to change the hdr's b_flags. We must either
2522 	 * hold the hash_lock or be undiscoverable.
2523 	 */
2524 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2525 
2526 	/*
2527 	 * Only honor requests for compressed bufs if the hdr is actually
2528 	 * compressed.
2529 	 */
2530 	if (compressed && HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF)
2531 		buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2532 
2533 	/*
2534 	 * If the hdr's data can be shared then we share the data buffer and
2535 	 * set the appropriate bit in the hdr's b_flags to indicate the hdr is
2536 	 * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new
2537 	 * buffer to store the buf's data.
2538 	 *
2539 	 * There are two additional restrictions here because we're sharing
2540 	 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be
2541 	 * actively involved in an L2ARC write, because if this buf is used by
2542 	 * an arc_write() then the hdr's data buffer will be released when the
2543 	 * write completes, even though the L2ARC write might still be using it.
2544 	 * Second, the hdr's ABD must be linear so that the buf's user doesn't
2545 	 * need to be ABD-aware.
2546 	 */
2547 	boolean_t can_share = arc_can_share(hdr, buf) && !HDR_L2_WRITING(hdr) &&
2548 	    abd_is_linear(hdr->b_l1hdr.b_pabd);
2549 
2550 	/* Set up b_data and sharing */
2551 	if (can_share) {
2552 		buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd);
2553 		buf->b_flags |= ARC_BUF_FLAG_SHARED;
2554 		arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2555 	} else {
2556 		buf->b_data =
2557 		    arc_get_data_buf(hdr, arc_buf_size(buf), buf);
2558 		ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
2559 	}
2560 	VERIFY3P(buf->b_data, !=, NULL);
2561 
2562 	hdr->b_l1hdr.b_buf = buf;
2563 	hdr->b_l1hdr.b_bufcnt += 1;
2564 
2565 	/*
2566 	 * If the user wants the data from the hdr, we need to either copy or
2567 	 * decompress the data.
2568 	 */
2569 	if (fill) {
2570 		return (arc_buf_fill(buf, ARC_BUF_COMPRESSED(buf) != 0));
2571 	}
2572 
2573 	return (0);
2574 }
2575 
2576 static char *arc_onloan_tag = "onloan";
2577 
2578 static inline void
2579 arc_loaned_bytes_update(int64_t delta)
2580 {
2581 	atomic_add_64(&arc_loaned_bytes, delta);
2582 
2583 	/* assert that it did not wrap around */
2584 	ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
2585 }
2586 
2587 /*
2588  * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2589  * flight data by arc_tempreserve_space() until they are "returned". Loaned
2590  * buffers must be returned to the arc before they can be used by the DMU or
2591  * freed.
2592  */
2593 arc_buf_t *
2594 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size)
2595 {
2596 	arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag,
2597 	    is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size);
2598 
2599 	arc_loaned_bytes_update(arc_buf_size(buf));
2600 
2601 	return (buf);
2602 }
2603 
2604 arc_buf_t *
2605 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize,
2606     enum zio_compress compression_type)
2607 {
2608 	arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag,
2609 	    psize, lsize, compression_type);
2610 
2611 	arc_loaned_bytes_update(arc_buf_size(buf));
2612 
2613 	return (buf);
2614 }
2615 
2616 
2617 /*
2618  * Return a loaned arc buffer to the arc.
2619  */
2620 void
2621 arc_return_buf(arc_buf_t *buf, void *tag)
2622 {
2623 	arc_buf_hdr_t *hdr = buf->b_hdr;
2624 
2625 	ASSERT3P(buf->b_data, !=, NULL);
2626 	ASSERT(HDR_HAS_L1HDR(hdr));
2627 	(void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2628 	(void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2629 
2630 	arc_loaned_bytes_update(-arc_buf_size(buf));
2631 }
2632 
2633 /* Detach an arc_buf from a dbuf (tag) */
2634 void
2635 arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
2636 {
2637 	arc_buf_hdr_t *hdr = buf->b_hdr;
2638 
2639 	ASSERT3P(buf->b_data, !=, NULL);
2640 	ASSERT(HDR_HAS_L1HDR(hdr));
2641 	(void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2642 	(void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
2643 
2644 	arc_loaned_bytes_update(arc_buf_size(buf));
2645 }
2646 
2647 static void
2648 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type)
2649 {
2650 	l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP);
2651 
2652 	df->l2df_abd = abd;
2653 	df->l2df_size = size;
2654 	df->l2df_type = type;
2655 	mutex_enter(&l2arc_free_on_write_mtx);
2656 	list_insert_head(l2arc_free_on_write, df);
2657 	mutex_exit(&l2arc_free_on_write_mtx);
2658 }
2659 
2660 static void
2661 arc_hdr_free_on_write(arc_buf_hdr_t *hdr)
2662 {
2663 	arc_state_t *state = hdr->b_l1hdr.b_state;
2664 	arc_buf_contents_t type = arc_buf_type(hdr);
2665 	uint64_t size = arc_hdr_size(hdr);
2666 
2667 	/* protected by hash lock, if in the hash table */
2668 	if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
2669 		ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2670 		ASSERT(state != arc_anon && state != arc_l2c_only);
2671 
2672 		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
2673 		    size, hdr);
2674 	}
2675 	(void) zfs_refcount_remove_many(&state->arcs_size, size, hdr);
2676 	if (type == ARC_BUFC_METADATA) {
2677 		arc_space_return(size, ARC_SPACE_META);
2678 	} else {
2679 		ASSERT(type == ARC_BUFC_DATA);
2680 		arc_space_return(size, ARC_SPACE_DATA);
2681 	}
2682 
2683 	l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type);
2684 }
2685 
2686 /*
2687  * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
2688  * data buffer, we transfer the refcount ownership to the hdr and update
2689  * the appropriate kstats.
2690  */
2691 static void
2692 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2693 {
2694 	arc_state_t *state = hdr->b_l1hdr.b_state;
2695 
2696 	ASSERT(arc_can_share(hdr, buf));
2697 	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2698 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2699 
2700 	/*
2701 	 * Start sharing the data buffer. We transfer the
2702 	 * refcount ownership to the hdr since it always owns
2703 	 * the refcount whenever an arc_buf_t is shared.
2704 	 */
2705 	zfs_refcount_transfer_ownership(&state->arcs_size, buf, hdr);
2706 	hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf));
2707 	abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd,
2708 	    HDR_ISTYPE_METADATA(hdr));
2709 	arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2710 	buf->b_flags |= ARC_BUF_FLAG_SHARED;
2711 
2712 	/*
2713 	 * Since we've transferred ownership to the hdr we need
2714 	 * to increment its compressed and uncompressed kstats and
2715 	 * decrement the overhead size.
2716 	 */
2717 	ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
2718 	ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
2719 	ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf));
2720 }
2721 
2722 static void
2723 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2724 {
2725 	arc_state_t *state = hdr->b_l1hdr.b_state;
2726 
2727 	ASSERT(arc_buf_is_shared(buf));
2728 	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2729 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2730 
2731 	/*
2732 	 * We are no longer sharing this buffer so we need
2733 	 * to transfer its ownership to the rightful owner.
2734 	 */
2735 	zfs_refcount_transfer_ownership(&state->arcs_size, hdr, buf);
2736 	arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2737 	abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd);
2738 	abd_put(hdr->b_l1hdr.b_pabd);
2739 	hdr->b_l1hdr.b_pabd = NULL;
2740 	buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
2741 
2742 	/*
2743 	 * Since the buffer is no longer shared between
2744 	 * the arc buf and the hdr, count it as overhead.
2745 	 */
2746 	ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
2747 	ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
2748 	ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
2749 }
2750 
2751 /*
2752  * Remove an arc_buf_t from the hdr's buf list and return the last
2753  * arc_buf_t on the list. If no buffers remain on the list then return
2754  * NULL.
2755  */
2756 static arc_buf_t *
2757 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2758 {
2759 	ASSERT(HDR_HAS_L1HDR(hdr));
2760 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2761 
2762 	arc_buf_t **bufp = &hdr->b_l1hdr.b_buf;
2763 	arc_buf_t *lastbuf = NULL;
2764 
2765 	/*
2766 	 * Remove the buf from the hdr list and locate the last
2767 	 * remaining buffer on the list.
2768 	 */
2769 	while (*bufp != NULL) {
2770 		if (*bufp == buf)
2771 			*bufp = buf->b_next;
2772 
2773 		/*
2774 		 * If we've removed a buffer in the middle of
2775 		 * the list then update the lastbuf and update
2776 		 * bufp.
2777 		 */
2778 		if (*bufp != NULL) {
2779 			lastbuf = *bufp;
2780 			bufp = &(*bufp)->b_next;
2781 		}
2782 	}
2783 	buf->b_next = NULL;
2784 	ASSERT3P(lastbuf, !=, buf);
2785 	IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL);
2786 	IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL);
2787 	IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf));
2788 
2789 	return (lastbuf);
2790 }
2791 
2792 /*
2793  * Free up buf->b_data and pull the arc_buf_t off of the the arc_buf_hdr_t's
2794  * list and free it.
2795  */
2796 static void
2797 arc_buf_destroy_impl(arc_buf_t *buf)
2798 {
2799 	arc_buf_hdr_t *hdr = buf->b_hdr;
2800 
2801 	/*
2802 	 * Free up the data associated with the buf but only if we're not
2803 	 * sharing this with the hdr. If we are sharing it with the hdr, the
2804 	 * hdr is responsible for doing the free.
2805 	 */
2806 	if (buf->b_data != NULL) {
2807 		/*
2808 		 * We're about to change the hdr's b_flags. We must either
2809 		 * hold the hash_lock or be undiscoverable.
2810 		 */
2811 		ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2812 
2813 		arc_cksum_verify(buf);
2814 		arc_buf_unwatch(buf);
2815 
2816 		if (arc_buf_is_shared(buf)) {
2817 			arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2818 		} else {
2819 			uint64_t size = arc_buf_size(buf);
2820 			arc_free_data_buf(hdr, buf->b_data, size, buf);
2821 			ARCSTAT_INCR(arcstat_overhead_size, -size);
2822 		}
2823 		buf->b_data = NULL;
2824 
2825 		ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
2826 		hdr->b_l1hdr.b_bufcnt -= 1;
2827 	}
2828 
2829 	arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
2830 
2831 	if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
2832 		/*
2833 		 * If the current arc_buf_t is sharing its data buffer with the
2834 		 * hdr, then reassign the hdr's b_pabd to share it with the new
2835 		 * buffer at the end of the list. The shared buffer is always
2836 		 * the last one on the hdr's buffer list.
2837 		 *
2838 		 * There is an equivalent case for compressed bufs, but since
2839 		 * they aren't guaranteed to be the last buf in the list and
2840 		 * that is an exceedingly rare case, we just allow that space be
2841 		 * wasted temporarily.
2842 		 */
2843 		if (lastbuf != NULL) {
2844 			/* Only one buf can be shared at once */
2845 			VERIFY(!arc_buf_is_shared(lastbuf));
2846 			/* hdr is uncompressed so can't have compressed buf */
2847 			VERIFY(!ARC_BUF_COMPRESSED(lastbuf));
2848 
2849 			ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2850 			arc_hdr_free_pabd(hdr);
2851 
2852 			/*
2853 			 * We must setup a new shared block between the
2854 			 * last buffer and the hdr. The data would have
2855 			 * been allocated by the arc buf so we need to transfer
2856 			 * ownership to the hdr since it's now being shared.
2857 			 */
2858 			arc_share_buf(hdr, lastbuf);
2859 		}
2860 	} else if (HDR_SHARED_DATA(hdr)) {
2861 		/*
2862 		 * Uncompressed shared buffers are always at the end
2863 		 * of the list. Compressed buffers don't have the
2864 		 * same requirements. This makes it hard to
2865 		 * simply assert that the lastbuf is shared so
2866 		 * we rely on the hdr's compression flags to determine
2867 		 * if we have a compressed, shared buffer.
2868 		 */
2869 		ASSERT3P(lastbuf, !=, NULL);
2870 		ASSERT(arc_buf_is_shared(lastbuf) ||
2871 		    HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
2872 	}
2873 
2874 	/*
2875 	 * Free the checksum if we're removing the last uncompressed buf from
2876 	 * this hdr.
2877 	 */
2878 	if (!arc_hdr_has_uncompressed_buf(hdr)) {
2879 		arc_cksum_free(hdr);
2880 	}
2881 
2882 	/* clean up the buf */
2883 	buf->b_hdr = NULL;
2884 	kmem_cache_free(buf_cache, buf);
2885 }
2886 
2887 static void
2888 arc_hdr_alloc_pabd(arc_buf_hdr_t *hdr)
2889 {
2890 	ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2891 	ASSERT(HDR_HAS_L1HDR(hdr));
2892 	ASSERT(!HDR_SHARED_DATA(hdr));
2893 
2894 	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2895 	hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr);
2896 	hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
2897 	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2898 
2899 	ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
2900 	ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
2901 }
2902 
2903 static void
2904 arc_hdr_free_pabd(arc_buf_hdr_t *hdr)
2905 {
2906 	ASSERT(HDR_HAS_L1HDR(hdr));
2907 	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2908 
2909 	/*
2910 	 * If the hdr is currently being written to the l2arc then
2911 	 * we defer freeing the data by adding it to the l2arc_free_on_write
2912 	 * list. The l2arc will free the data once it's finished
2913 	 * writing it to the l2arc device.
2914 	 */
2915 	if (HDR_L2_WRITING(hdr)) {
2916 		arc_hdr_free_on_write(hdr);
2917 		ARCSTAT_BUMP(arcstat_l2_free_on_write);
2918 	} else {
2919 		arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
2920 		    arc_hdr_size(hdr), hdr);
2921 	}
2922 	hdr->b_l1hdr.b_pabd = NULL;
2923 	hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
2924 
2925 	ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
2926 	ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
2927 }
2928 
2929 static arc_buf_hdr_t *
2930 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize,
2931     enum zio_compress compression_type, arc_buf_contents_t type)
2932 {
2933 	arc_buf_hdr_t *hdr;
2934 
2935 	VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA);
2936 
2937 	hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
2938 	ASSERT(HDR_EMPTY(hdr));
2939 	ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
2940 	ASSERT3P(hdr->b_l1hdr.b_thawed, ==, NULL);
2941 	HDR_SET_PSIZE(hdr, psize);
2942 	HDR_SET_LSIZE(hdr, lsize);
2943 	hdr->b_spa = spa;
2944 	hdr->b_type = type;
2945 	hdr->b_flags = 0;
2946 	arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR);
2947 	arc_hdr_set_compress(hdr, compression_type);
2948 
2949 	hdr->b_l1hdr.b_state = arc_anon;
2950 	hdr->b_l1hdr.b_arc_access = 0;
2951 	hdr->b_l1hdr.b_bufcnt = 0;
2952 	hdr->b_l1hdr.b_buf = NULL;
2953 
2954 	/*
2955 	 * Allocate the hdr's buffer. This will contain either
2956 	 * the compressed or uncompressed data depending on the block
2957 	 * it references and compressed arc enablement.
2958 	 */
2959 	arc_hdr_alloc_pabd(hdr);
2960 	ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2961 
2962 	return (hdr);
2963 }
2964 
2965 /*
2966  * Transition between the two allocation states for the arc_buf_hdr struct.
2967  * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
2968  * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
2969  * version is used when a cache buffer is only in the L2ARC in order to reduce
2970  * memory usage.
2971  */
2972 static arc_buf_hdr_t *
2973 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
2974 {
2975 	ASSERT(HDR_HAS_L2HDR(hdr));
2976 
2977 	arc_buf_hdr_t *nhdr;
2978 	l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
2979 
2980 	ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
2981 	    (old == hdr_l2only_cache && new == hdr_full_cache));
2982 
2983 	nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
2984 
2985 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
2986 	buf_hash_remove(hdr);
2987 
2988 	bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
2989 
2990 	if (new == hdr_full_cache) {
2991 		arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR);
2992 		/*
2993 		 * arc_access and arc_change_state need to be aware that a
2994 		 * header has just come out of L2ARC, so we set its state to
2995 		 * l2c_only even though it's about to change.
2996 		 */
2997 		nhdr->b_l1hdr.b_state = arc_l2c_only;
2998 
2999 		/* Verify previous threads set to NULL before freeing */
3000 		ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL);
3001 	} else {
3002 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3003 		ASSERT0(hdr->b_l1hdr.b_bufcnt);
3004 		ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3005 
3006 		/*
3007 		 * If we've reached here, We must have been called from
3008 		 * arc_evict_hdr(), as such we should have already been
3009 		 * removed from any ghost list we were previously on
3010 		 * (which protects us from racing with arc_evict_state),
3011 		 * thus no locking is needed during this check.
3012 		 */
3013 		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3014 
3015 		/*
3016 		 * A buffer must not be moved into the arc_l2c_only
3017 		 * state if it's not finished being written out to the
3018 		 * l2arc device. Otherwise, the b_l1hdr.b_pabd field
3019 		 * might try to be accessed, even though it was removed.
3020 		 */
3021 		VERIFY(!HDR_L2_WRITING(hdr));
3022 		VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3023 
3024 #ifdef ZFS_DEBUG
3025 		if (hdr->b_l1hdr.b_thawed != NULL) {
3026 			kmem_free(hdr->b_l1hdr.b_thawed, 1);
3027 			hdr->b_l1hdr.b_thawed = NULL;
3028 		}
3029 #endif
3030 
3031 		arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3032 	}
3033 	/*
3034 	 * The header has been reallocated so we need to re-insert it into any
3035 	 * lists it was on.
3036 	 */
3037 	(void) buf_hash_insert(nhdr, NULL);
3038 
3039 	ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
3040 
3041 	mutex_enter(&dev->l2ad_mtx);
3042 
3043 	/*
3044 	 * We must place the realloc'ed header back into the list at
3045 	 * the same spot. Otherwise, if it's placed earlier in the list,
3046 	 * l2arc_write_buffers() could find it during the function's
3047 	 * write phase, and try to write it out to the l2arc.
3048 	 */
3049 	list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
3050 	list_remove(&dev->l2ad_buflist, hdr);
3051 
3052 	mutex_exit(&dev->l2ad_mtx);
3053 
3054 	/*
3055 	 * Since we're using the pointer address as the tag when
3056 	 * incrementing and decrementing the l2ad_alloc refcount, we
3057 	 * must remove the old pointer (that we're about to destroy) and
3058 	 * add the new pointer to the refcount. Otherwise we'd remove
3059 	 * the wrong pointer address when calling arc_hdr_destroy() later.
3060 	 */
3061 
3062 	(void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr),
3063 	    hdr);
3064 	(void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(nhdr),
3065 	    nhdr);
3066 
3067 	buf_discard_identity(hdr);
3068 	kmem_cache_free(old, hdr);
3069 
3070 	return (nhdr);
3071 }
3072 
3073 /*
3074  * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
3075  * The buf is returned thawed since we expect the consumer to modify it.
3076  */
3077 arc_buf_t *
3078 arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size)
3079 {
3080 	arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size,
3081 	    ZIO_COMPRESS_OFF, type);
3082 	ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
3083 
3084 	arc_buf_t *buf = NULL;
3085 	VERIFY0(arc_buf_alloc_impl(hdr, tag, B_FALSE, B_FALSE, &buf));
3086 	arc_buf_thaw(buf);
3087 
3088 	return (buf);
3089 }
3090 
3091 /*
3092  * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this
3093  * for bufs containing metadata.
3094  */
3095 arc_buf_t *
3096 arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize,
3097     enum zio_compress compression_type)
3098 {
3099 	ASSERT3U(lsize, >, 0);
3100 	ASSERT3U(lsize, >=, psize);
3101 	ASSERT(compression_type > ZIO_COMPRESS_OFF);
3102 	ASSERT(compression_type < ZIO_COMPRESS_FUNCTIONS);
3103 
3104 	arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
3105 	    compression_type, ARC_BUFC_DATA);
3106 	ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
3107 
3108 	arc_buf_t *buf = NULL;
3109 	VERIFY0(arc_buf_alloc_impl(hdr, tag, B_TRUE, B_FALSE, &buf));
3110 	arc_buf_thaw(buf);
3111 	ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3112 
3113 	if (!arc_buf_is_shared(buf)) {
3114 		/*
3115 		 * To ensure that the hdr has the correct data in it if we call
3116 		 * arc_decompress() on this buf before it's been written to
3117 		 * disk, it's easiest if we just set up sharing between the
3118 		 * buf and the hdr.
3119 		 */
3120 		ASSERT(!abd_is_linear(hdr->b_l1hdr.b_pabd));
3121 		arc_hdr_free_pabd(hdr);
3122 		arc_share_buf(hdr, buf);
3123 	}
3124 
3125 	return (buf);
3126 }
3127 
3128 static void
3129 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
3130 {
3131 	l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
3132 	l2arc_dev_t *dev = l2hdr->b_dev;
3133 	uint64_t psize = arc_hdr_size(hdr);
3134 
3135 	ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
3136 	ASSERT(HDR_HAS_L2HDR(hdr));
3137 
3138 	list_remove(&dev->l2ad_buflist, hdr);
3139 
3140 	ARCSTAT_INCR(arcstat_l2_psize, -psize);
3141 	ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr));
3142 
3143 	vdev_space_update(dev->l2ad_vdev, -psize, 0, 0);
3144 
3145 	(void) zfs_refcount_remove_many(&dev->l2ad_alloc, psize, hdr);
3146 	arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
3147 }
3148 
3149 static void
3150 arc_hdr_destroy(arc_buf_hdr_t *hdr)
3151 {
3152 	if (HDR_HAS_L1HDR(hdr)) {
3153 		ASSERT(hdr->b_l1hdr.b_buf == NULL ||
3154 		    hdr->b_l1hdr.b_bufcnt > 0);
3155 		ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3156 		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3157 	}
3158 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3159 	ASSERT(!HDR_IN_HASH_TABLE(hdr));
3160 
3161 	if (!HDR_EMPTY(hdr))
3162 		buf_discard_identity(hdr);
3163 
3164 	if (HDR_HAS_L2HDR(hdr)) {
3165 		l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3166 		boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
3167 
3168 		if (!buflist_held)
3169 			mutex_enter(&dev->l2ad_mtx);
3170 
3171 		/*
3172 		 * Even though we checked this conditional above, we
3173 		 * need to check this again now that we have the
3174 		 * l2ad_mtx. This is because we could be racing with
3175 		 * another thread calling l2arc_evict() which might have
3176 		 * destroyed this header's L2 portion as we were waiting
3177 		 * to acquire the l2ad_mtx. If that happens, we don't
3178 		 * want to re-destroy the header's L2 portion.
3179 		 */
3180 		if (HDR_HAS_L2HDR(hdr))
3181 			arc_hdr_l2hdr_destroy(hdr);
3182 
3183 		if (!buflist_held)
3184 			mutex_exit(&dev->l2ad_mtx);
3185 	}
3186 
3187 	if (HDR_HAS_L1HDR(hdr)) {
3188 		arc_cksum_free(hdr);
3189 
3190 		while (hdr->b_l1hdr.b_buf != NULL)
3191 			arc_buf_destroy_impl(hdr->b_l1hdr.b_buf);
3192 
3193 #ifdef ZFS_DEBUG
3194 		if (hdr->b_l1hdr.b_thawed != NULL) {
3195 			kmem_free(hdr->b_l1hdr.b_thawed, 1);
3196 			hdr->b_l1hdr.b_thawed = NULL;
3197 		}
3198 #endif
3199 
3200 		if (hdr->b_l1hdr.b_pabd != NULL) {
3201 			arc_hdr_free_pabd(hdr);
3202 		}
3203 	}
3204 
3205 	ASSERT3P(hdr->b_hash_next, ==, NULL);
3206 	if (HDR_HAS_L1HDR(hdr)) {
3207 		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3208 		ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
3209 		kmem_cache_free(hdr_full_cache, hdr);
3210 	} else {
3211 		kmem_cache_free(hdr_l2only_cache, hdr);
3212 	}
3213 }
3214 
3215 void
3216 arc_buf_destroy(arc_buf_t *buf, void* tag)
3217 {
3218 	arc_buf_hdr_t *hdr = buf->b_hdr;
3219 	kmutex_t *hash_lock = HDR_LOCK(hdr);
3220 
3221 	if (hdr->b_l1hdr.b_state == arc_anon) {
3222 		ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
3223 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3224 		VERIFY0(remove_reference(hdr, NULL, tag));
3225 		arc_hdr_destroy(hdr);
3226 		return;
3227 	}
3228 
3229 	mutex_enter(hash_lock);
3230 	ASSERT3P(hdr, ==, buf->b_hdr);
3231 	ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
3232 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3233 	ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon);
3234 	ASSERT3P(buf->b_data, !=, NULL);
3235 
3236 	(void) remove_reference(hdr, hash_lock, tag);
3237 	arc_buf_destroy_impl(buf);
3238 	mutex_exit(hash_lock);
3239 }
3240 
3241 /*
3242  * Evict the arc_buf_hdr that is provided as a parameter. The resultant
3243  * state of the header is dependent on it's state prior to entering this
3244  * function. The following transitions are possible:
3245  *
3246  *    - arc_mru -> arc_mru_ghost
3247  *    - arc_mfu -> arc_mfu_ghost
3248  *    - arc_mru_ghost -> arc_l2c_only
3249  *    - arc_mru_ghost -> deleted
3250  *    - arc_mfu_ghost -> arc_l2c_only
3251  *    - arc_mfu_ghost -> deleted
3252  */
3253 static int64_t
3254 arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
3255 {
3256 	arc_state_t *evicted_state, *state;
3257 	int64_t bytes_evicted = 0;
3258 	int min_lifetime = HDR_PRESCIENT_PREFETCH(hdr) ?
3259 	    zfs_arc_min_prescient_prefetch_ms : zfs_arc_min_prefetch_ms;
3260 
3261 	ASSERT(MUTEX_HELD(hash_lock));
3262 	ASSERT(HDR_HAS_L1HDR(hdr));
3263 
3264 	state = hdr->b_l1hdr.b_state;
3265 	if (GHOST_STATE(state)) {
3266 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3267 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3268 
3269 		/*
3270 		 * l2arc_write_buffers() relies on a header's L1 portion
3271 		 * (i.e. its b_pabd field) during it's write phase.
3272 		 * Thus, we cannot push a header onto the arc_l2c_only
3273 		 * state (removing it's L1 piece) until the header is
3274 		 * done being written to the l2arc.
3275 		 */
3276 		if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
3277 			ARCSTAT_BUMP(arcstat_evict_l2_skip);
3278 			return (bytes_evicted);
3279 		}
3280 
3281 		ARCSTAT_BUMP(arcstat_deleted);
3282 		bytes_evicted += HDR_GET_LSIZE(hdr);
3283 
3284 		DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
3285 
3286 		ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3287 		if (HDR_HAS_L2HDR(hdr)) {
3288 			/*
3289 			 * This buffer is cached on the 2nd Level ARC;
3290 			 * don't destroy the header.
3291 			 */
3292 			arc_change_state(arc_l2c_only, hdr, hash_lock);
3293 			/*
3294 			 * dropping from L1+L2 cached to L2-only,
3295 			 * realloc to remove the L1 header.
3296 			 */
3297 			hdr = arc_hdr_realloc(hdr, hdr_full_cache,
3298 			    hdr_l2only_cache);
3299 		} else {
3300 			arc_change_state(arc_anon, hdr, hash_lock);
3301 			arc_hdr_destroy(hdr);
3302 		}
3303 		return (bytes_evicted);
3304 	}
3305 
3306 	ASSERT(state == arc_mru || state == arc_mfu);
3307 	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
3308 
3309 	/* prefetch buffers have a minimum lifespan */
3310 	if (HDR_IO_IN_PROGRESS(hdr) ||
3311 	    ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
3312 	    ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access < min_lifetime * hz)) {
3313 		ARCSTAT_BUMP(arcstat_evict_skip);
3314 		return (bytes_evicted);
3315 	}
3316 
3317 	ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt));
3318 	while (hdr->b_l1hdr.b_buf) {
3319 		arc_buf_t *buf = hdr->b_l1hdr.b_buf;
3320 		if (!mutex_tryenter(&buf->b_evict_lock)) {
3321 			ARCSTAT_BUMP(arcstat_mutex_miss);
3322 			break;
3323 		}
3324 		if (buf->b_data != NULL)
3325 			bytes_evicted += HDR_GET_LSIZE(hdr);
3326 		mutex_exit(&buf->b_evict_lock);
3327 		arc_buf_destroy_impl(buf);
3328 	}
3329 
3330 	if (HDR_HAS_L2HDR(hdr)) {
3331 		ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr));
3332 	} else {
3333 		if (l2arc_write_eligible(hdr->b_spa, hdr)) {
3334 			ARCSTAT_INCR(arcstat_evict_l2_eligible,
3335 			    HDR_GET_LSIZE(hdr));
3336 		} else {
3337 			ARCSTAT_INCR(arcstat_evict_l2_ineligible,
3338 			    HDR_GET_LSIZE(hdr));
3339 		}
3340 	}
3341 
3342 	if (hdr->b_l1hdr.b_bufcnt == 0) {
3343 		arc_cksum_free(hdr);
3344 
3345 		bytes_evicted += arc_hdr_size(hdr);
3346 
3347 		/*
3348 		 * If this hdr is being evicted and has a compressed
3349 		 * buffer then we discard it here before we change states.
3350 		 * This ensures that the accounting is updated correctly
3351 		 * in arc_free_data_impl().
3352 		 */
3353 		arc_hdr_free_pabd(hdr);
3354 
3355 		arc_change_state(evicted_state, hdr, hash_lock);
3356 		ASSERT(HDR_IN_HASH_TABLE(hdr));
3357 		arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
3358 		DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
3359 	}
3360 
3361 	return (bytes_evicted);
3362 }
3363 
3364 static uint64_t
3365 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
3366     uint64_t spa, int64_t bytes)
3367 {
3368 	multilist_sublist_t *mls;
3369 	uint64_t bytes_evicted = 0;
3370 	arc_buf_hdr_t *hdr;
3371 	kmutex_t *hash_lock;
3372 	int evict_count = 0;
3373 
3374 	ASSERT3P(marker, !=, NULL);
3375 	IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
3376 
3377 	mls = multilist_sublist_lock(ml, idx);
3378 
3379 	for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
3380 	    hdr = multilist_sublist_prev(mls, marker)) {
3381 		if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
3382 		    (evict_count >= zfs_arc_evict_batch_limit))
3383 			break;
3384 
3385 		/*
3386 		 * To keep our iteration location, move the marker
3387 		 * forward. Since we're not holding hdr's hash lock, we
3388 		 * must be very careful and not remove 'hdr' from the
3389 		 * sublist. Otherwise, other consumers might mistake the
3390 		 * 'hdr' as not being on a sublist when they call the
3391 		 * multilist_link_active() function (they all rely on
3392 		 * the hash lock protecting concurrent insertions and
3393 		 * removals). multilist_sublist_move_forward() was
3394 		 * specifically implemented to ensure this is the case
3395 		 * (only 'marker' will be removed and re-inserted).
3396 		 */
3397 		multilist_sublist_move_forward(mls, marker);
3398 
3399 		/*
3400 		 * The only case where the b_spa field should ever be
3401 		 * zero, is the marker headers inserted by
3402 		 * arc_evict_state(). It's possible for multiple threads
3403 		 * to be calling arc_evict_state() concurrently (e.g.
3404 		 * dsl_pool_close() and zio_inject_fault()), so we must
3405 		 * skip any markers we see from these other threads.
3406 		 */
3407 		if (hdr->b_spa == 0)
3408 			continue;
3409 
3410 		/* we're only interested in evicting buffers of a certain spa */
3411 		if (spa != 0 && hdr->b_spa != spa) {
3412 			ARCSTAT_BUMP(arcstat_evict_skip);
3413 			continue;
3414 		}
3415 
3416 		hash_lock = HDR_LOCK(hdr);
3417 
3418 		/*
3419 		 * We aren't calling this function from any code path
3420 		 * that would already be holding a hash lock, so we're
3421 		 * asserting on this assumption to be defensive in case
3422 		 * this ever changes. Without this check, it would be
3423 		 * possible to incorrectly increment arcstat_mutex_miss
3424 		 * below (e.g. if the code changed such that we called
3425 		 * this function with a hash lock held).
3426 		 */
3427 		ASSERT(!MUTEX_HELD(hash_lock));
3428 
3429 		if (mutex_tryenter(hash_lock)) {
3430 			uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
3431 			mutex_exit(hash_lock);
3432 
3433 			bytes_evicted += evicted;
3434 
3435 			/*
3436 			 * If evicted is zero, arc_evict_hdr() must have
3437 			 * decided to skip this header, don't increment
3438 			 * evict_count in this case.
3439 			 */
3440 			if (evicted != 0)
3441 				evict_count++;
3442 
3443 			/*
3444 			 * If arc_size isn't overflowing, signal any
3445 			 * threads that might happen to be waiting.
3446 			 *
3447 			 * For each header evicted, we wake up a single
3448 			 * thread. If we used cv_broadcast, we could
3449 			 * wake up "too many" threads causing arc_size
3450 			 * to significantly overflow arc_c; since
3451 			 * arc_get_data_impl() doesn't check for overflow
3452 			 * when it's woken up (it doesn't because it's
3453 			 * possible for the ARC to be overflowing while
3454 			 * full of un-evictable buffers, and the
3455 			 * function should proceed in this case).
3456 			 *
3457 			 * If threads are left sleeping, due to not
3458 			 * using cv_broadcast here, they will be woken
3459 			 * up via cv_broadcast in arc_adjust_cb() just
3460 			 * before arc_adjust_zthr sleeps.
3461 			 */
3462 			mutex_enter(&arc_adjust_lock);
3463 			if (!arc_is_overflowing())
3464 				cv_signal(&arc_adjust_waiters_cv);
3465 			mutex_exit(&arc_adjust_lock);
3466 		} else {
3467 			ARCSTAT_BUMP(arcstat_mutex_miss);
3468 		}
3469 	}
3470 
3471 	multilist_sublist_unlock(mls);
3472 
3473 	return (bytes_evicted);
3474 }
3475 
3476 /*
3477  * Evict buffers from the given arc state, until we've removed the
3478  * specified number of bytes. Move the removed buffers to the
3479  * appropriate evict state.
3480  *
3481  * This function makes a "best effort". It skips over any buffers
3482  * it can't get a hash_lock on, and so, may not catch all candidates.
3483  * It may also return without evicting as much space as requested.
3484  *
3485  * If bytes is specified using the special value ARC_EVICT_ALL, this
3486  * will evict all available (i.e. unlocked and evictable) buffers from
3487  * the given arc state; which is used by arc_flush().
3488  */
3489 static uint64_t
3490 arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
3491     arc_buf_contents_t type)
3492 {
3493 	uint64_t total_evicted = 0;
3494 	multilist_t *ml = state->arcs_list[type];
3495 	int num_sublists;
3496 	arc_buf_hdr_t **markers;
3497 
3498 	IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
3499 
3500 	num_sublists = multilist_get_num_sublists(ml);
3501 
3502 	/*
3503 	 * If we've tried to evict from each sublist, made some
3504 	 * progress, but still have not hit the target number of bytes
3505 	 * to evict, we want to keep trying. The markers allow us to
3506 	 * pick up where we left off for each individual sublist, rather
3507 	 * than starting from the tail each time.
3508 	 */
3509 	markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
3510 	for (int i = 0; i < num_sublists; i++) {
3511 		markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
3512 
3513 		/*
3514 		 * A b_spa of 0 is used to indicate that this header is
3515 		 * a marker. This fact is used in arc_adjust_type() and
3516 		 * arc_evict_state_impl().
3517 		 */
3518 		markers[i]->b_spa = 0;
3519 
3520 		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
3521 		multilist_sublist_insert_tail(mls, markers[i]);
3522 		multilist_sublist_unlock(mls);
3523 	}
3524 
3525 	/*
3526 	 * While we haven't hit our target number of bytes to evict, or
3527 	 * we're evicting all available buffers.
3528 	 */
3529 	while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
3530 		/*
3531 		 * Start eviction using a randomly selected sublist,
3532 		 * this is to try and evenly balance eviction across all
3533 		 * sublists. Always starting at the same sublist
3534 		 * (e.g. index 0) would cause evictions to favor certain
3535 		 * sublists over others.
3536 		 */
3537 		int sublist_idx = multilist_get_random_index(ml);
3538 		uint64_t scan_evicted = 0;
3539 
3540 		for (int i = 0; i < num_sublists; i++) {
3541 			uint64_t bytes_remaining;
3542 			uint64_t bytes_evicted;
3543 
3544 			if (bytes == ARC_EVICT_ALL)
3545 				bytes_remaining = ARC_EVICT_ALL;
3546 			else if (total_evicted < bytes)
3547 				bytes_remaining = bytes - total_evicted;
3548 			else
3549 				break;
3550 
3551 			bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
3552 			    markers[sublist_idx], spa, bytes_remaining);
3553 
3554 			scan_evicted += bytes_evicted;
3555 			total_evicted += bytes_evicted;
3556 
3557 			/* we've reached the end, wrap to the beginning */
3558 			if (++sublist_idx >= num_sublists)
3559 				sublist_idx = 0;
3560 		}
3561 
3562 		/*
3563 		 * If we didn't evict anything during this scan, we have
3564 		 * no reason to believe we'll evict more during another
3565 		 * scan, so break the loop.
3566 		 */
3567 		if (scan_evicted == 0) {
3568 			/* This isn't possible, let's make that obvious */
3569 			ASSERT3S(bytes, !=, 0);
3570 
3571 			/*
3572 			 * When bytes is ARC_EVICT_ALL, the only way to
3573 			 * break the loop is when scan_evicted is zero.
3574 			 * In that case, we actually have evicted enough,
3575 			 * so we don't want to increment the kstat.
3576 			 */
3577 			if (bytes != ARC_EVICT_ALL) {
3578 				ASSERT3S(total_evicted, <, bytes);
3579 				ARCSTAT_BUMP(arcstat_evict_not_enough);
3580 			}
3581 
3582 			break;
3583 		}
3584 	}
3585 
3586 	for (int i = 0; i < num_sublists; i++) {
3587 		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
3588 		multilist_sublist_remove(mls, markers[i]);
3589 		multilist_sublist_unlock(mls);
3590 
3591 		kmem_cache_free(hdr_full_cache, markers[i]);
3592 	}
3593 	kmem_free(markers, sizeof (*markers) * num_sublists);
3594 
3595 	return (total_evicted);
3596 }
3597 
3598 /*
3599  * Flush all "evictable" data of the given type from the arc state
3600  * specified. This will not evict any "active" buffers (i.e. referenced).
3601  *
3602  * When 'retry' is set to B_FALSE, the function will make a single pass
3603  * over the state and evict any buffers that it can. Since it doesn't
3604  * continually retry the eviction, it might end up leaving some buffers
3605  * in the ARC due to lock misses.
3606  *
3607  * When 'retry' is set to B_TRUE, the function will continually retry the
3608  * eviction until *all* evictable buffers have been removed from the
3609  * state. As a result, if concurrent insertions into the state are
3610  * allowed (e.g. if the ARC isn't shutting down), this function might
3611  * wind up in an infinite loop, continually trying to evict buffers.
3612  */
3613 static uint64_t
3614 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
3615     boolean_t retry)
3616 {
3617 	uint64_t evicted = 0;
3618 
3619 	while (zfs_refcount_count(&state->arcs_esize[type]) != 0) {
3620 		evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
3621 
3622 		if (!retry)
3623 			break;
3624 	}
3625 
3626 	return (evicted);
3627 }
3628 
3629 /*
3630  * Evict the specified number of bytes from the state specified,
3631  * restricting eviction to the spa and type given. This function
3632  * prevents us from trying to evict more from a state's list than
3633  * is "evictable", and to skip evicting altogether when passed a
3634  * negative value for "bytes". In contrast, arc_evict_state() will
3635  * evict everything it can, when passed a negative value for "bytes".
3636  */
3637 static uint64_t
3638 arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
3639     arc_buf_contents_t type)
3640 {
3641 	int64_t delta;
3642 
3643 	if (bytes > 0 && zfs_refcount_count(&state->arcs_esize[type]) > 0) {
3644 		delta = MIN(zfs_refcount_count(&state->arcs_esize[type]),
3645 		    bytes);
3646 		return (arc_evict_state(state, spa, delta, type));
3647 	}
3648 
3649 	return (0);
3650 }
3651 
3652 /*
3653  * Evict metadata buffers from the cache, such that arc_meta_used is
3654  * capped by the arc_meta_limit tunable.
3655  */
3656 static uint64_t
3657 arc_adjust_meta(uint64_t meta_used)
3658 {
3659 	uint64_t total_evicted = 0;
3660 	int64_t target;
3661 
3662 	/*
3663 	 * If we're over the meta limit, we want to evict enough
3664 	 * metadata to get back under the meta limit. We don't want to
3665 	 * evict so much that we drop the MRU below arc_p, though. If
3666 	 * we're over the meta limit more than we're over arc_p, we
3667 	 * evict some from the MRU here, and some from the MFU below.
3668 	 */
3669 	target = MIN((int64_t)(meta_used - arc_meta_limit),
3670 	    (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) +
3671 	    zfs_refcount_count(&arc_mru->arcs_size) - arc_p));
3672 
3673 	total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3674 
3675 	/*
3676 	 * Similar to the above, we want to evict enough bytes to get us
3677 	 * below the meta limit, but not so much as to drop us below the
3678 	 * space allotted to the MFU (which is defined as arc_c - arc_p).
3679 	 */
3680 	target = MIN((int64_t)(meta_used - arc_meta_limit),
3681 	    (int64_t)(zfs_refcount_count(&arc_mfu->arcs_size) -
3682 	    (arc_c - arc_p)));
3683 
3684 	total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3685 
3686 	return (total_evicted);
3687 }
3688 
3689 /*
3690  * Return the type of the oldest buffer in the given arc state
3691  *
3692  * This function will select a random sublist of type ARC_BUFC_DATA and
3693  * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
3694  * is compared, and the type which contains the "older" buffer will be
3695  * returned.
3696  */
3697 static arc_buf_contents_t
3698 arc_adjust_type(arc_state_t *state)
3699 {
3700 	multilist_t *data_ml = state->arcs_list[ARC_BUFC_DATA];
3701 	multilist_t *meta_ml = state->arcs_list[ARC_BUFC_METADATA];
3702 	int data_idx = multilist_get_random_index(data_ml);
3703 	int meta_idx = multilist_get_random_index(meta_ml);
3704 	multilist_sublist_t *data_mls;
3705 	multilist_sublist_t *meta_mls;
3706 	arc_buf_contents_t type;
3707 	arc_buf_hdr_t *data_hdr;
3708 	arc_buf_hdr_t *meta_hdr;
3709 
3710 	/*
3711 	 * We keep the sublist lock until we're finished, to prevent
3712 	 * the headers from being destroyed via arc_evict_state().
3713 	 */
3714 	data_mls = multilist_sublist_lock(data_ml, data_idx);
3715 	meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
3716 
3717 	/*
3718 	 * These two loops are to ensure we skip any markers that
3719 	 * might be at the tail of the lists due to arc_evict_state().
3720 	 */
3721 
3722 	for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
3723 	    data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
3724 		if (data_hdr->b_spa != 0)
3725 			break;
3726 	}
3727 
3728 	for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
3729 	    meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
3730 		if (meta_hdr->b_spa != 0)
3731 			break;
3732 	}
3733 
3734 	if (data_hdr == NULL && meta_hdr == NULL) {
3735 		type = ARC_BUFC_DATA;
3736 	} else if (data_hdr == NULL) {
3737 		ASSERT3P(meta_hdr, !=, NULL);
3738 		type = ARC_BUFC_METADATA;
3739 	} else if (meta_hdr == NULL) {
3740 		ASSERT3P(data_hdr, !=, NULL);
3741 		type = ARC_BUFC_DATA;
3742 	} else {
3743 		ASSERT3P(data_hdr, !=, NULL);
3744 		ASSERT3P(meta_hdr, !=, NULL);
3745 
3746 		/* The headers can't be on the sublist without an L1 header */
3747 		ASSERT(HDR_HAS_L1HDR(data_hdr));
3748 		ASSERT(HDR_HAS_L1HDR(meta_hdr));
3749 
3750 		if (data_hdr->b_l1hdr.b_arc_access <
3751 		    meta_hdr->b_l1hdr.b_arc_access) {
3752 			type = ARC_BUFC_DATA;
3753 		} else {
3754 			type = ARC_BUFC_METADATA;
3755 		}
3756 	}
3757 
3758 	multilist_sublist_unlock(meta_mls);
3759 	multilist_sublist_unlock(data_mls);
3760 
3761 	return (type);
3762 }
3763 
3764 /*
3765  * Evict buffers from the cache, such that arc_size is capped by arc_c.
3766  */
3767 static uint64_t
3768 arc_adjust(void)
3769 {
3770 	uint64_t total_evicted = 0;
3771 	uint64_t bytes;
3772 	int64_t target;
3773 	uint64_t asize = aggsum_value(&arc_size);
3774 	uint64_t ameta = aggsum_value(&arc_meta_used);
3775 
3776 	/*
3777 	 * If we're over arc_meta_limit, we want to correct that before
3778 	 * potentially evicting data buffers below.
3779 	 */
3780 	total_evicted += arc_adjust_meta(ameta);
3781 
3782 	/*
3783 	 * Adjust MRU size
3784 	 *
3785 	 * If we're over the target cache size, we want to evict enough
3786 	 * from the list to get back to our target size. We don't want
3787 	 * to evict too much from the MRU, such that it drops below
3788 	 * arc_p. So, if we're over our target cache size more than
3789 	 * the MRU is over arc_p, we'll evict enough to get back to
3790 	 * arc_p here, and then evict more from the MFU below.
3791 	 */
3792 	target = MIN((int64_t)(asize - arc_c),
3793 	    (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) +
3794 	    zfs_refcount_count(&arc_mru->arcs_size) + ameta - arc_p));
3795 
3796 	/*
3797 	 * If we're below arc_meta_min, always prefer to evict data.
3798 	 * Otherwise, try to satisfy the requested number of bytes to
3799 	 * evict from the type which contains older buffers; in an
3800 	 * effort to keep newer buffers in the cache regardless of their
3801 	 * type. If we cannot satisfy the number of bytes from this
3802 	 * type, spill over into the next type.
3803 	 */
3804 	if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
3805 	    ameta > arc_meta_min) {
3806 		bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3807 		total_evicted += bytes;
3808 
3809 		/*
3810 		 * If we couldn't evict our target number of bytes from
3811 		 * metadata, we try to get the rest from data.
3812 		 */
3813 		target -= bytes;
3814 
3815 		total_evicted +=
3816 		    arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3817 	} else {
3818 		bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3819 		total_evicted += bytes;
3820 
3821 		/*
3822 		 * If we couldn't evict our target number of bytes from
3823 		 * data, we try to get the rest from metadata.
3824 		 */
3825 		target -= bytes;
3826 
3827 		total_evicted +=
3828 		    arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3829 	}
3830 
3831 	/*
3832 	 * Adjust MFU size
3833 	 *
3834 	 * Now that we've tried to evict enough from the MRU to get its
3835 	 * size back to arc_p, if we're still above the target cache
3836 	 * size, we evict the rest from the MFU.
3837 	 */
3838 	target = asize - arc_c;
3839 
3840 	if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA &&
3841 	    ameta > arc_meta_min) {
3842 		bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3843 		total_evicted += bytes;
3844 
3845 		/*
3846 		 * If we couldn't evict our target number of bytes from
3847 		 * metadata, we try to get the rest from data.
3848 		 */
3849 		target -= bytes;
3850 
3851 		total_evicted +=
3852 		    arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3853 	} else {
3854 		bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3855 		total_evicted += bytes;
3856 
3857 		/*
3858 		 * If we couldn't evict our target number of bytes from
3859 		 * data, we try to get the rest from data.
3860 		 */
3861 		target -= bytes;
3862 
3863 		total_evicted +=
3864 		    arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3865 	}
3866 
3867 	/*
3868 	 * Adjust ghost lists
3869 	 *
3870 	 * In addition to the above, the ARC also defines target values
3871 	 * for the ghost lists. The sum of the mru list and mru ghost
3872 	 * list should never exceed the target size of the cache, and
3873 	 * the sum of the mru list, mfu list, mru ghost list, and mfu
3874 	 * ghost list should never exceed twice the target size of the
3875 	 * cache. The following logic enforces these limits on the ghost
3876 	 * caches, and evicts from them as needed.
3877 	 */
3878 	target = zfs_refcount_count(&arc_mru->arcs_size) +
3879 	    zfs_refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
3880 
3881 	bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
3882 	total_evicted += bytes;
3883 
3884 	target -= bytes;
3885 
3886 	total_evicted +=
3887 	    arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
3888 
3889 	/*
3890 	 * We assume the sum of the mru list and mfu list is less than
3891 	 * or equal to arc_c (we enforced this above), which means we
3892 	 * can use the simpler of the two equations below:
3893 	 *
3894 	 *	mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
3895 	 *		    mru ghost + mfu ghost <= arc_c
3896 	 */
3897 	target = zfs_refcount_count(&arc_mru_ghost->arcs_size) +
3898 	    zfs_refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
3899 
3900 	bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
3901 	total_evicted += bytes;
3902 
3903 	target -= bytes;
3904 
3905 	total_evicted +=
3906 	    arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
3907 
3908 	return (total_evicted);
3909 }
3910 
3911 void
3912 arc_flush(spa_t *spa, boolean_t retry)
3913 {
3914 	uint64_t guid = 0;
3915 
3916 	/*
3917 	 * If retry is B_TRUE, a spa must not be specified since we have
3918 	 * no good way to determine if all of a spa's buffers have been
3919 	 * evicted from an arc state.
3920 	 */
3921 	ASSERT(!retry || spa == 0);
3922 
3923 	if (spa != NULL)
3924 		guid = spa_load_guid(spa);
3925 
3926 	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
3927 	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
3928 
3929 	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
3930 	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
3931 
3932 	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
3933 	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
3934 
3935 	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
3936 	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
3937 }
3938 
3939 static void
3940 arc_reduce_target_size(int64_t to_free)
3941 {
3942 	uint64_t asize = aggsum_value(&arc_size);
3943 	if (arc_c > arc_c_min) {
3944 
3945 		if (arc_c > arc_c_min + to_free)
3946 			atomic_add_64(&arc_c, -to_free);
3947 		else
3948 			arc_c = arc_c_min;
3949 
3950 		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
3951 		if (asize < arc_c)
3952 			arc_c = MAX(asize, arc_c_min);
3953 		if (arc_p > arc_c)
3954 			arc_p = (arc_c >> 1);
3955 		ASSERT(arc_c >= arc_c_min);
3956 		ASSERT((int64_t)arc_p >= 0);
3957 	}
3958 
3959 	if (asize > arc_c) {
3960 		/* See comment in arc_adjust_cb_check() on why lock+flag */
3961 		mutex_enter(&arc_adjust_lock);
3962 		arc_adjust_needed = B_TRUE;
3963 		mutex_exit(&arc_adjust_lock);
3964 		zthr_wakeup(arc_adjust_zthr);
3965 	}
3966 }
3967 
3968 typedef enum free_memory_reason_t {
3969 	FMR_UNKNOWN,
3970 	FMR_NEEDFREE,
3971 	FMR_LOTSFREE,
3972 	FMR_SWAPFS_MINFREE,
3973 	FMR_PAGES_PP_MAXIMUM,
3974 	FMR_HEAP_ARENA,
3975 	FMR_ZIO_ARENA,
3976 } free_memory_reason_t;
3977 
3978 int64_t last_free_memory;
3979 free_memory_reason_t last_free_reason;
3980 
3981 /*
3982  * Additional reserve of pages for pp_reserve.
3983  */
3984 int64_t arc_pages_pp_reserve = 64;
3985 
3986 /*
3987  * Additional reserve of pages for swapfs.
3988  */
3989 int64_t arc_swapfs_reserve = 64;
3990 
3991 /*
3992  * Return the amount of memory that can be consumed before reclaim will be
3993  * needed.  Positive if there is sufficient free memory, negative indicates
3994  * the amount of memory that needs to be freed up.
3995  */
3996 static int64_t
3997 arc_available_memory(void)
3998 {
3999 	int64_t lowest = INT64_MAX;
4000 	int64_t n;
4001 	free_memory_reason_t r = FMR_UNKNOWN;
4002 
4003 #ifdef _KERNEL
4004 	if (needfree > 0) {
4005 		n = PAGESIZE * (-needfree);
4006 		if (n < lowest) {
4007 			lowest = n;
4008 			r = FMR_NEEDFREE;
4009 		}
4010 	}
4011 
4012 	/*
4013 	 * check that we're out of range of the pageout scanner.  It starts to
4014 	 * schedule paging if freemem is less than lotsfree and needfree.
4015 	 * lotsfree is the high-water mark for pageout, and needfree is the
4016 	 * number of needed free pages.  We add extra pages here to make sure
4017 	 * the scanner doesn't start up while we're freeing memory.
4018 	 */
4019 	n = PAGESIZE * (freemem - lotsfree - needfree - desfree);
4020 	if (n < lowest) {
4021 		lowest = n;
4022 		r = FMR_LOTSFREE;
4023 	}
4024 
4025 	/*
4026 	 * check to make sure that swapfs has enough space so that anon
4027 	 * reservations can still succeed. anon_resvmem() checks that the
4028 	 * availrmem is greater than swapfs_minfree, and the number of reserved
4029 	 * swap pages.  We also add a bit of extra here just to prevent
4030 	 * circumstances from getting really dire.
4031 	 */
4032 	n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve -
4033 	    desfree - arc_swapfs_reserve);
4034 	if (n < lowest) {
4035 		lowest = n;
4036 		r = FMR_SWAPFS_MINFREE;
4037 	}
4038 
4039 
4040 	/*
4041 	 * Check that we have enough availrmem that memory locking (e.g., via
4042 	 * mlock(3C) or memcntl(2)) can still succeed.  (pages_pp_maximum
4043 	 * stores the number of pages that cannot be locked; when availrmem
4044 	 * drops below pages_pp_maximum, page locking mechanisms such as
4045 	 * page_pp_lock() will fail.)
4046 	 */
4047 	n = PAGESIZE * (availrmem - pages_pp_maximum -
4048 	    arc_pages_pp_reserve);
4049 	if (n < lowest) {
4050 		lowest = n;
4051 		r = FMR_PAGES_PP_MAXIMUM;
4052 	}
4053 
4054 #if defined(__i386)
4055 	/*
4056 	 * If we're on an i386 platform, it's possible that we'll exhaust the
4057 	 * kernel heap space before we ever run out of available physical
4058 	 * memory.  Most checks of the size of the heap_area compare against
4059 	 * tune.t_minarmem, which is the minimum available real memory that we
4060 	 * can have in the system.  However, this is generally fixed at 25 pages
4061 	 * which is so low that it's useless.  In this comparison, we seek to
4062 	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
4063 	 * heap is allocated.  (Or, in the calculation, if less than 1/4th is
4064 	 * free)
4065 	 */
4066 	n = (int64_t)vmem_size(heap_arena, VMEM_FREE) -
4067 	    (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2);
4068 	if (n < lowest) {
4069 		lowest = n;
4070 		r = FMR_HEAP_ARENA;
4071 	}
4072 #endif
4073 
4074 	/*
4075 	 * If zio data pages are being allocated out of a separate heap segment,
4076 	 * then enforce that the size of available vmem for this arena remains
4077 	 * above about 1/4th (1/(2^arc_zio_arena_free_shift)) free.
4078 	 *
4079 	 * Note that reducing the arc_zio_arena_free_shift keeps more virtual
4080 	 * memory (in the zio_arena) free, which can avoid memory
4081 	 * fragmentation issues.
4082 	 */
4083 	if (zio_arena != NULL) {
4084 		n = (int64_t)vmem_size(zio_arena, VMEM_FREE) -
4085 		    (vmem_size(zio_arena, VMEM_ALLOC) >>
4086 		    arc_zio_arena_free_shift);
4087 		if (n < lowest) {
4088 			lowest = n;
4089 			r = FMR_ZIO_ARENA;
4090 		}
4091 	}
4092 #else
4093 	/* Every 100 calls, free a small amount */
4094 	if (spa_get_random(100) == 0)
4095 		lowest = -1024;
4096 #endif
4097 
4098 	last_free_memory = lowest;
4099 	last_free_reason = r;
4100 
4101 	return (lowest);
4102 }
4103 
4104 
4105 /*
4106  * Determine if the system is under memory pressure and is asking
4107  * to reclaim memory. A return value of B_TRUE indicates that the system
4108  * is under memory pressure and that the arc should adjust accordingly.
4109  */
4110 static boolean_t
4111 arc_reclaim_needed(void)
4112 {
4113 	return (arc_available_memory() < 0);
4114 }
4115 
4116 static void
4117 arc_kmem_reap_soon(void)
4118 {
4119 	size_t			i;
4120 	kmem_cache_t		*prev_cache = NULL;
4121 	kmem_cache_t		*prev_data_cache = NULL;
4122 	extern kmem_cache_t	*zio_buf_cache[];
4123 	extern kmem_cache_t	*zio_data_buf_cache[];
4124 	extern kmem_cache_t	*range_seg_cache;
4125 	extern kmem_cache_t	*abd_chunk_cache;
4126 
4127 #ifdef _KERNEL
4128 	if (aggsum_compare(&arc_meta_used, arc_meta_limit) >= 0) {
4129 		/*
4130 		 * We are exceeding our meta-data cache limit.
4131 		 * Purge some DNLC entries to release holds on meta-data.
4132 		 */
4133 		dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
4134 	}
4135 #if defined(__i386)
4136 	/*
4137 	 * Reclaim unused memory from all kmem caches.
4138 	 */
4139 	kmem_reap();
4140 #endif
4141 #endif
4142 
4143 	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
4144 		if (zio_buf_cache[i] != prev_cache) {
4145 			prev_cache = zio_buf_cache[i];
4146 			kmem_cache_reap_soon(zio_buf_cache[i]);
4147 		}
4148 		if (zio_data_buf_cache[i] != prev_data_cache) {
4149 			prev_data_cache = zio_data_buf_cache[i];
4150 			kmem_cache_reap_soon(zio_data_buf_cache[i]);
4151 		}
4152 	}
4153 	kmem_cache_reap_soon(abd_chunk_cache);
4154 	kmem_cache_reap_soon(buf_cache);
4155 	kmem_cache_reap_soon(hdr_full_cache);
4156 	kmem_cache_reap_soon(hdr_l2only_cache);
4157 	kmem_cache_reap_soon(range_seg_cache);
4158 
4159 	if (zio_arena != NULL) {
4160 		/*
4161 		 * Ask the vmem arena to reclaim unused memory from its
4162 		 * quantum caches.
4163 		 */
4164 		vmem_qcache_reap(zio_arena);
4165 	}
4166 }
4167 
4168 /* ARGSUSED */
4169 static boolean_t
4170 arc_adjust_cb_check(void *arg, zthr_t *zthr)
4171 {
4172 	/*
4173 	 * This is necessary in order for the mdb ::arc dcmd to
4174 	 * show up to date information. Since the ::arc command
4175 	 * does not call the kstat's update function, without
4176 	 * this call, the command may show stale stats for the
4177 	 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
4178 	 * with this change, the data might be up to 1 second
4179 	 * out of date(the arc_adjust_zthr has a maximum sleep
4180 	 * time of 1 second); but that should suffice.  The
4181 	 * arc_state_t structures can be queried directly if more
4182 	 * accurate information is needed.
4183 	 */
4184 	if (arc_ksp != NULL)
4185 		arc_ksp->ks_update(arc_ksp, KSTAT_READ);
4186 
4187 	/*
4188 	 * We have to rely on arc_get_data_impl() to tell us when to adjust,
4189 	 * rather than checking if we are overflowing here, so that we are
4190 	 * sure to not leave arc_get_data_impl() waiting on
4191 	 * arc_adjust_waiters_cv.  If we have become "not overflowing" since
4192 	 * arc_get_data_impl() checked, we need to wake it up.  We could
4193 	 * broadcast the CV here, but arc_get_data_impl() may have not yet
4194 	 * gone to sleep.  We would need to use a mutex to ensure that this
4195 	 * function doesn't broadcast until arc_get_data_impl() has gone to
4196 	 * sleep (e.g. the arc_adjust_lock).  However, the lock ordering of
4197 	 * such a lock would necessarily be incorrect with respect to the
4198 	 * zthr_lock, which is held before this function is called, and is
4199 	 * held by arc_get_data_impl() when it calls zthr_wakeup().
4200 	 */
4201 	return (arc_adjust_needed);
4202 }
4203 
4204 /*
4205  * Keep arc_size under arc_c by running arc_adjust which evicts data
4206  * from the ARC.
4207  */
4208 /* ARGSUSED */
4209 static void
4210 arc_adjust_cb(void *arg, zthr_t *zthr)
4211 {
4212 	uint64_t evicted = 0;
4213 
4214 	/* Evict from cache */
4215 	evicted = arc_adjust();
4216 
4217 	/*
4218 	 * If evicted is zero, we couldn't evict anything
4219 	 * via arc_adjust(). This could be due to hash lock
4220 	 * collisions, but more likely due to the majority of
4221 	 * arc buffers being unevictable. Therefore, even if
4222 	 * arc_size is above arc_c, another pass is unlikely to
4223 	 * be helpful and could potentially cause us to enter an
4224 	 * infinite loop.  Additionally, zthr_iscancelled() is
4225 	 * checked here so that if the arc is shutting down, the
4226 	 * broadcast will wake any remaining arc adjust waiters.
4227 	 */
4228 	mutex_enter(&arc_adjust_lock);
4229 	arc_adjust_needed = !zthr_iscancelled(arc_adjust_zthr) &&
4230 	    evicted > 0 && aggsum_compare(&arc_size, arc_c) > 0;
4231 	if (!arc_adjust_needed) {
4232 		/*
4233 		 * We're either no longer overflowing, or we
4234 		 * can't evict anything more, so we should wake
4235 		 * up any waiters.
4236 		 */
4237 		cv_broadcast(&arc_adjust_waiters_cv);
4238 	}
4239 	mutex_exit(&arc_adjust_lock);
4240 }
4241 
4242 /* ARGSUSED */
4243 static boolean_t
4244 arc_reap_cb_check(void *arg, zthr_t *zthr)
4245 {
4246 	int64_t free_memory = arc_available_memory();
4247 
4248 	/*
4249 	 * If a kmem reap is already active, don't schedule more.  We must
4250 	 * check for this because kmem_cache_reap_soon() won't actually
4251 	 * block on the cache being reaped (this is to prevent callers from
4252 	 * becoming implicitly blocked by a system-wide kmem reap -- which,
4253 	 * on a system with many, many full magazines, can take minutes).
4254 	 */
4255 	if (!kmem_cache_reap_active() &&
4256 	    free_memory < 0) {
4257 		arc_no_grow = B_TRUE;
4258 		arc_warm = B_TRUE;
4259 		/*
4260 		 * Wait at least zfs_grow_retry (default 60) seconds
4261 		 * before considering growing.
4262 		 */
4263 		arc_growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
4264 		return (B_TRUE);
4265 	} else if (free_memory < arc_c >> arc_no_grow_shift) {
4266 		arc_no_grow = B_TRUE;
4267 	} else if (gethrtime() >= arc_growtime) {
4268 		arc_no_grow = B_FALSE;
4269 	}
4270 
4271 	return (B_FALSE);
4272 }
4273 
4274 /*
4275  * Keep enough free memory in the system by reaping the ARC's kmem
4276  * caches.  To cause more slabs to be reapable, we may reduce the
4277  * target size of the cache (arc_c), causing the arc_adjust_cb()
4278  * to free more buffers.
4279  */
4280 /* ARGSUSED */
4281 static void
4282 arc_reap_cb(void *arg, zthr_t *zthr)
4283 {
4284 	int64_t free_memory;
4285 
4286 	/*
4287 	 * Kick off asynchronous kmem_reap()'s of all our caches.
4288 	 */
4289 	arc_kmem_reap_soon();
4290 
4291 	/*
4292 	 * Wait at least arc_kmem_cache_reap_retry_ms between
4293 	 * arc_kmem_reap_soon() calls. Without this check it is possible to
4294 	 * end up in a situation where we spend lots of time reaping
4295 	 * caches, while we're near arc_c_min.  Waiting here also gives the
4296 	 * subsequent free memory check a chance of finding that the
4297 	 * asynchronous reap has already freed enough memory, and we don't
4298 	 * need to call arc_reduce_target_size().
4299 	 */
4300 	delay((hz * arc_kmem_cache_reap_retry_ms + 999) / 1000);
4301 
4302 	/*
4303 	 * Reduce the target size as needed to maintain the amount of free
4304 	 * memory in the system at a fraction of the arc_size (1/128th by
4305 	 * default).  If oversubscribed (free_memory < 0) then reduce the
4306 	 * target arc_size by the deficit amount plus the fractional
4307 	 * amount.  If free memory is positive but less then the fractional
4308 	 * amount, reduce by what is needed to hit the fractional amount.
4309 	 */
4310 	free_memory = arc_available_memory();
4311 
4312 	int64_t to_free =
4313 	    (arc_c >> arc_shrink_shift) - free_memory;
4314 	if (to_free > 0) {
4315 #ifdef _KERNEL
4316 		to_free = MAX(to_free, ptob(needfree));
4317 #endif
4318 		arc_reduce_target_size(to_free);
4319 	}
4320 }
4321 
4322 /*
4323  * Adapt arc info given the number of bytes we are trying to add and
4324  * the state that we are comming from.  This function is only called
4325  * when we are adding new content to the cache.
4326  */
4327 static void
4328 arc_adapt(int bytes, arc_state_t *state)
4329 {
4330 	int mult;
4331 	uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
4332 	int64_t mrug_size = zfs_refcount_count(&arc_mru_ghost->arcs_size);
4333 	int64_t mfug_size = zfs_refcount_count(&arc_mfu_ghost->arcs_size);
4334 
4335 	if (state == arc_l2c_only)
4336 		return;
4337 
4338 	ASSERT(bytes > 0);
4339 	/*
4340 	 * Adapt the target size of the MRU list:
4341 	 *	- if we just hit in the MRU ghost list, then increase
4342 	 *	  the target size of the MRU list.
4343 	 *	- if we just hit in the MFU ghost list, then increase
4344 	 *	  the target size of the MFU list by decreasing the
4345 	 *	  target size of the MRU list.
4346 	 */
4347 	if (state == arc_mru_ghost) {
4348 		mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
4349 		mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
4350 
4351 		arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
4352 	} else if (state == arc_mfu_ghost) {
4353 		uint64_t delta;
4354 
4355 		mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
4356 		mult = MIN(mult, 10);
4357 
4358 		delta = MIN(bytes * mult, arc_p);
4359 		arc_p = MAX(arc_p_min, arc_p - delta);
4360 	}
4361 	ASSERT((int64_t)arc_p >= 0);
4362 
4363 	/*
4364 	 * Wake reap thread if we do not have any available memory
4365 	 */
4366 	if (arc_reclaim_needed()) {
4367 		zthr_wakeup(arc_reap_zthr);
4368 		return;
4369 	}
4370 
4371 
4372 	if (arc_no_grow)
4373 		return;
4374 
4375 	if (arc_c >= arc_c_max)
4376 		return;
4377 
4378 	/*
4379 	 * If we're within (2 * maxblocksize) bytes of the target
4380 	 * cache size, increment the target cache size
4381 	 */
4382 	if (aggsum_compare(&arc_size, arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) >
4383 	    0) {
4384 		atomic_add_64(&arc_c, (int64_t)bytes);
4385 		if (arc_c > arc_c_max)
4386 			arc_c = arc_c_max;
4387 		else if (state == arc_anon)
4388 			atomic_add_64(&arc_p, (int64_t)bytes);
4389 		if (arc_p > arc_c)
4390 			arc_p = arc_c;
4391 	}
4392 	ASSERT((int64_t)arc_p >= 0);
4393 }
4394 
4395 /*
4396  * Check if arc_size has grown past our upper threshold, determined by
4397  * zfs_arc_overflow_shift.
4398  */
4399 static boolean_t
4400 arc_is_overflowing(void)
4401 {
4402 	/* Always allow at least one block of overflow */
4403 	uint64_t overflow = MAX(SPA_MAXBLOCKSIZE,
4404 	    arc_c >> zfs_arc_overflow_shift);
4405 
4406 	/*
4407 	 * We just compare the lower bound here for performance reasons. Our
4408 	 * primary goals are to make sure that the arc never grows without
4409 	 * bound, and that it can reach its maximum size. This check
4410 	 * accomplishes both goals. The maximum amount we could run over by is
4411 	 * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block
4412 	 * in the ARC. In practice, that's in the tens of MB, which is low
4413 	 * enough to be safe.
4414 	 */
4415 	return (aggsum_lower_bound(&arc_size) >= arc_c + overflow);
4416 }
4417 
4418 static abd_t *
4419 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4420 {
4421 	arc_buf_contents_t type = arc_buf_type(hdr);
4422 
4423 	arc_get_data_impl(hdr, size, tag);
4424 	if (type == ARC_BUFC_METADATA) {
4425 		return (abd_alloc(size, B_TRUE));
4426 	} else {
4427 		ASSERT(type == ARC_BUFC_DATA);
4428 		return (abd_alloc(size, B_FALSE));
4429 	}
4430 }
4431 
4432 static void *
4433 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4434 {
4435 	arc_buf_contents_t type = arc_buf_type(hdr);
4436 
4437 	arc_get_data_impl(hdr, size, tag);
4438 	if (type == ARC_BUFC_METADATA) {
4439 		return (zio_buf_alloc(size));
4440 	} else {
4441 		ASSERT(type == ARC_BUFC_DATA);
4442 		return (zio_data_buf_alloc(size));
4443 	}
4444 }
4445 
4446 /*
4447  * Allocate a block and return it to the caller. If we are hitting the
4448  * hard limit for the cache size, we must sleep, waiting for the eviction
4449  * thread to catch up. If we're past the target size but below the hard
4450  * limit, we'll only signal the reclaim thread and continue on.
4451  */
4452 static void
4453 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4454 {
4455 	arc_state_t *state = hdr->b_l1hdr.b_state;
4456 	arc_buf_contents_t type = arc_buf_type(hdr);
4457 
4458 	arc_adapt(size, state);
4459 
4460 	/*
4461 	 * If arc_size is currently overflowing, and has grown past our
4462 	 * upper limit, we must be adding data faster than the evict
4463 	 * thread can evict. Thus, to ensure we don't compound the
4464 	 * problem by adding more data and forcing arc_size to grow even
4465 	 * further past it's target size, we halt and wait for the
4466 	 * eviction thread to catch up.
4467 	 *
4468 	 * It's also possible that the reclaim thread is unable to evict
4469 	 * enough buffers to get arc_size below the overflow limit (e.g.
4470 	 * due to buffers being un-evictable, or hash lock collisions).
4471 	 * In this case, we want to proceed regardless if we're
4472 	 * overflowing; thus we don't use a while loop here.
4473 	 */
4474 	if (arc_is_overflowing()) {
4475 		mutex_enter(&arc_adjust_lock);
4476 
4477 		/*
4478 		 * Now that we've acquired the lock, we may no longer be
4479 		 * over the overflow limit, lets check.
4480 		 *
4481 		 * We're ignoring the case of spurious wake ups. If that
4482 		 * were to happen, it'd let this thread consume an ARC
4483 		 * buffer before it should have (i.e. before we're under
4484 		 * the overflow limit and were signalled by the reclaim
4485 		 * thread). As long as that is a rare occurrence, it
4486 		 * shouldn't cause any harm.
4487 		 */
4488 		if (arc_is_overflowing()) {
4489 			arc_adjust_needed = B_TRUE;
4490 			zthr_wakeup(arc_adjust_zthr);
4491 			(void) cv_wait(&arc_adjust_waiters_cv,
4492 			    &arc_adjust_lock);
4493 		}
4494 		mutex_exit(&arc_adjust_lock);
4495 	}
4496 
4497 	VERIFY3U(hdr->b_type, ==, type);
4498 	if (type == ARC_BUFC_METADATA) {
4499 		arc_space_consume(size, ARC_SPACE_META);
4500 	} else {
4501 		arc_space_consume(size, ARC_SPACE_DATA);
4502 	}
4503 
4504 	/*
4505 	 * Update the state size.  Note that ghost states have a
4506 	 * "ghost size" and so don't need to be updated.
4507 	 */
4508 	if (!GHOST_STATE(state)) {
4509 
4510 		(void) zfs_refcount_add_many(&state->arcs_size, size, tag);
4511 
4512 		/*
4513 		 * If this is reached via arc_read, the link is
4514 		 * protected by the hash lock. If reached via
4515 		 * arc_buf_alloc, the header should not be accessed by
4516 		 * any other thread. And, if reached via arc_read_done,
4517 		 * the hash lock will protect it if it's found in the
4518 		 * hash table; otherwise no other thread should be
4519 		 * trying to [add|remove]_reference it.
4520 		 */
4521 		if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
4522 			ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4523 			(void) zfs_refcount_add_many(&state->arcs_esize[type],
4524 			    size, tag);
4525 		}
4526 
4527 		/*
4528 		 * If we are growing the cache, and we are adding anonymous
4529 		 * data, and we have outgrown arc_p, update arc_p
4530 		 */
4531 		if (aggsum_compare(&arc_size, arc_c) < 0 &&
4532 		    hdr->b_l1hdr.b_state == arc_anon &&
4533 		    (zfs_refcount_count(&arc_anon->arcs_size) +
4534 		    zfs_refcount_count(&arc_mru->arcs_size) > arc_p))
4535 			arc_p = MIN(arc_c, arc_p + size);
4536 	}
4537 }
4538 
4539 static void
4540 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, void *tag)
4541 {
4542 	arc_free_data_impl(hdr, size, tag);
4543 	abd_free(abd);
4544 }
4545 
4546 static void
4547 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, void *tag)
4548 {
4549 	arc_buf_contents_t type = arc_buf_type(hdr);
4550 
4551 	arc_free_data_impl(hdr, size, tag);
4552 	if (type == ARC_BUFC_METADATA) {
4553 		zio_buf_free(buf, size);
4554 	} else {
4555 		ASSERT(type == ARC_BUFC_DATA);
4556 		zio_data_buf_free(buf, size);
4557 	}
4558 }
4559 
4560 /*
4561  * Free the arc data buffer.
4562  */
4563 static void
4564 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4565 {
4566 	arc_state_t *state = hdr->b_l1hdr.b_state;
4567 	arc_buf_contents_t type = arc_buf_type(hdr);
4568 
4569 	/* protected by hash lock, if in the hash table */
4570 	if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
4571 		ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4572 		ASSERT(state != arc_anon && state != arc_l2c_only);
4573 
4574 		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
4575 		    size, tag);
4576 	}
4577 	(void) zfs_refcount_remove_many(&state->arcs_size, size, tag);
4578 
4579 	VERIFY3U(hdr->b_type, ==, type);
4580 	if (type == ARC_BUFC_METADATA) {
4581 		arc_space_return(size, ARC_SPACE_META);
4582 	} else {
4583 		ASSERT(type == ARC_BUFC_DATA);
4584 		arc_space_return(size, ARC_SPACE_DATA);
4585 	}
4586 }
4587 
4588 /*
4589  * This routine is called whenever a buffer is accessed.
4590  * NOTE: the hash lock is dropped in this function.
4591  */
4592 static void
4593 arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
4594 {
4595 	clock_t now;
4596 
4597 	ASSERT(MUTEX_HELD(hash_lock));
4598 	ASSERT(HDR_HAS_L1HDR(hdr));
4599 
4600 	if (hdr->b_l1hdr.b_state == arc_anon) {
4601 		/*
4602 		 * This buffer is not in the cache, and does not
4603 		 * appear in our "ghost" list.  Add the new buffer
4604 		 * to the MRU state.
4605 		 */
4606 
4607 		ASSERT0(hdr->b_l1hdr.b_arc_access);
4608 		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4609 		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
4610 		arc_change_state(arc_mru, hdr, hash_lock);
4611 
4612 	} else if (hdr->b_l1hdr.b_state == arc_mru) {
4613 		now = ddi_get_lbolt();
4614 
4615 		/*
4616 		 * If this buffer is here because of a prefetch, then either:
4617 		 * - clear the flag if this is a "referencing" read
4618 		 *   (any subsequent access will bump this into the MFU state).
4619 		 * or
4620 		 * - move the buffer to the head of the list if this is
4621 		 *   another prefetch (to make it less likely to be evicted).
4622 		 */
4623 		if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) {
4624 			if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
4625 				/* link protected by hash lock */
4626 				ASSERT(multilist_link_active(
4627 				    &hdr->b_l1hdr.b_arc_node));
4628 			} else {
4629 				arc_hdr_clear_flags(hdr,
4630 				    ARC_FLAG_PREFETCH |
4631 				    ARC_FLAG_PRESCIENT_PREFETCH);
4632 				ARCSTAT_BUMP(arcstat_mru_hits);
4633 			}
4634 			hdr->b_l1hdr.b_arc_access = now;
4635 			return;
4636 		}
4637 
4638 		/*
4639 		 * This buffer has been "accessed" only once so far,
4640 		 * but it is still in the cache. Move it to the MFU
4641 		 * state.
4642 		 */
4643 		if (now > hdr->b_l1hdr.b_arc_access + ARC_MINTIME) {
4644 			/*
4645 			 * More than 125ms have passed since we
4646 			 * instantiated this buffer.  Move it to the
4647 			 * most frequently used state.
4648 			 */
4649 			hdr->b_l1hdr.b_arc_access = now;
4650 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4651 			arc_change_state(arc_mfu, hdr, hash_lock);
4652 		}
4653 		ARCSTAT_BUMP(arcstat_mru_hits);
4654 	} else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
4655 		arc_state_t	*new_state;
4656 		/*
4657 		 * This buffer has been "accessed" recently, but
4658 		 * was evicted from the cache.  Move it to the
4659 		 * MFU state.
4660 		 */
4661 
4662 		if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) {
4663 			new_state = arc_mru;
4664 			if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) > 0) {
4665 				arc_hdr_clear_flags(hdr,
4666 				    ARC_FLAG_PREFETCH |
4667 				    ARC_FLAG_PRESCIENT_PREFETCH);
4668 			}
4669 			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
4670 		} else {
4671 			new_state = arc_mfu;
4672 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4673 		}
4674 
4675 		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4676 		arc_change_state(new_state, hdr, hash_lock);
4677 
4678 		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
4679 	} else if (hdr->b_l1hdr.b_state == arc_mfu) {
4680 		/*
4681 		 * This buffer has been accessed more than once and is
4682 		 * still in the cache.  Keep it in the MFU state.
4683 		 *
4684 		 * NOTE: an add_reference() that occurred when we did
4685 		 * the arc_read() will have kicked this off the list.
4686 		 * If it was a prefetch, we will explicitly move it to
4687 		 * the head of the list now.
4688 		 */
4689 		ARCSTAT_BUMP(arcstat_mfu_hits);
4690 		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4691 	} else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
4692 		arc_state_t	*new_state = arc_mfu;
4693 		/*
4694 		 * This buffer has been accessed more than once but has
4695 		 * been evicted from the cache.  Move it back to the
4696 		 * MFU state.
4697 		 */
4698 
4699 		if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) {
4700 			/*
4701 			 * This is a prefetch access...
4702 			 * move this block back to the MRU state.
4703 			 */
4704 			new_state = arc_mru;
4705 		}
4706 
4707 		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4708 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4709 		arc_change_state(new_state, hdr, hash_lock);
4710 
4711 		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
4712 	} else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
4713 		/*
4714 		 * This buffer is on the 2nd Level ARC.
4715 		 */
4716 
4717 		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4718 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4719 		arc_change_state(arc_mfu, hdr, hash_lock);
4720 	} else {
4721 		ASSERT(!"invalid arc state");
4722 	}
4723 }
4724 
4725 /*
4726  * This routine is called by dbuf_hold() to update the arc_access() state
4727  * which otherwise would be skipped for entries in the dbuf cache.
4728  */
4729 void
4730 arc_buf_access(arc_buf_t *buf)
4731 {
4732 	mutex_enter(&buf->b_evict_lock);
4733 	arc_buf_hdr_t *hdr = buf->b_hdr;
4734 
4735 	/*
4736 	 * Avoid taking the hash_lock when possible as an optimization.
4737 	 * The header must be checked again under the hash_lock in order
4738 	 * to handle the case where it is concurrently being released.
4739 	 */
4740 	if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) {
4741 		mutex_exit(&buf->b_evict_lock);
4742 		return;
4743 	}
4744 
4745 	kmutex_t *hash_lock = HDR_LOCK(hdr);
4746 	mutex_enter(hash_lock);
4747 
4748 	if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) {
4749 		mutex_exit(hash_lock);
4750 		mutex_exit(&buf->b_evict_lock);
4751 		ARCSTAT_BUMP(arcstat_access_skip);
4752 		return;
4753 	}
4754 
4755 	mutex_exit(&buf->b_evict_lock);
4756 
4757 	ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
4758 	    hdr->b_l1hdr.b_state == arc_mfu);
4759 
4760 	DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
4761 	arc_access(hdr, hash_lock);
4762 	mutex_exit(hash_lock);
4763 
4764 	ARCSTAT_BUMP(arcstat_hits);
4765 	ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
4766 	    demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, metadata, hits);
4767 }
4768 
4769 /* a generic arc_read_done_func_t which you can use */
4770 /* ARGSUSED */
4771 void
4772 arc_bcopy_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
4773     arc_buf_t *buf, void *arg)
4774 {
4775 	if (buf == NULL)
4776 		return;
4777 
4778 	bcopy(buf->b_data, arg, arc_buf_size(buf));
4779 	arc_buf_destroy(buf, arg);
4780 }
4781 
4782 /* a generic arc_read_done_func_t */
4783 void
4784 arc_getbuf_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
4785     arc_buf_t *buf, void *arg)
4786 {
4787 	arc_buf_t **bufp = arg;
4788 
4789 	if (buf == NULL) {
4790 		ASSERT(zio == NULL || zio->io_error != 0);
4791 		*bufp = NULL;
4792 	} else {
4793 		ASSERT(zio == NULL || zio->io_error == 0);
4794 		*bufp = buf;
4795 		ASSERT(buf->b_data != NULL);
4796 	}
4797 }
4798 
4799 static void
4800 arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp)
4801 {
4802 	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
4803 		ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0);
4804 		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
4805 	} else {
4806 		if (HDR_COMPRESSION_ENABLED(hdr)) {
4807 			ASSERT3U(HDR_GET_COMPRESS(hdr), ==,
4808 			    BP_GET_COMPRESS(bp));
4809 		}
4810 		ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
4811 		ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp));
4812 	}
4813 }
4814 
4815 static void
4816 arc_read_done(zio_t *zio)
4817 {
4818 	arc_buf_hdr_t	*hdr = zio->io_private;
4819 	kmutex_t	*hash_lock = NULL;
4820 	arc_callback_t	*callback_list;
4821 	arc_callback_t	*acb;
4822 	boolean_t	freeable = B_FALSE;
4823 
4824 	/*
4825 	 * The hdr was inserted into hash-table and removed from lists
4826 	 * prior to starting I/O.  We should find this header, since
4827 	 * it's in the hash table, and it should be legit since it's
4828 	 * not possible to evict it during the I/O.  The only possible
4829 	 * reason for it not to be found is if we were freed during the
4830 	 * read.
4831 	 */
4832 	if (HDR_IN_HASH_TABLE(hdr)) {
4833 		ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
4834 		ASSERT3U(hdr->b_dva.dva_word[0], ==,
4835 		    BP_IDENTITY(zio->io_bp)->dva_word[0]);
4836 		ASSERT3U(hdr->b_dva.dva_word[1], ==,
4837 		    BP_IDENTITY(zio->io_bp)->dva_word[1]);
4838 
4839 		arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp,
4840 		    &hash_lock);
4841 
4842 		ASSERT((found == hdr &&
4843 		    DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
4844 		    (found == hdr && HDR_L2_READING(hdr)));
4845 		ASSERT3P(hash_lock, !=, NULL);
4846 	}
4847 
4848 	if (zio->io_error == 0) {
4849 		/* byteswap if necessary */
4850 		if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
4851 			if (BP_GET_LEVEL(zio->io_bp) > 0) {
4852 				hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
4853 			} else {
4854 				hdr->b_l1hdr.b_byteswap =
4855 				    DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
4856 			}
4857 		} else {
4858 			hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
4859 		}
4860 	}
4861 
4862 	arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED);
4863 	if (l2arc_noprefetch && HDR_PREFETCH(hdr))
4864 		arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE);
4865 
4866 	callback_list = hdr->b_l1hdr.b_acb;
4867 	ASSERT3P(callback_list, !=, NULL);
4868 
4869 	if (hash_lock && zio->io_error == 0 &&
4870 	    hdr->b_l1hdr.b_state == arc_anon) {
4871 		/*
4872 		 * Only call arc_access on anonymous buffers.  This is because
4873 		 * if we've issued an I/O for an evicted buffer, we've already
4874 		 * called arc_access (to prevent any simultaneous readers from
4875 		 * getting confused).
4876 		 */
4877 		arc_access(hdr, hash_lock);
4878 	}
4879 
4880 	/*
4881 	 * If a read request has a callback (i.e. acb_done is not NULL), then we
4882 	 * make a buf containing the data according to the parameters which were
4883 	 * passed in. The implementation of arc_buf_alloc_impl() ensures that we
4884 	 * aren't needlessly decompressing the data multiple times.
4885 	 */
4886 	int callback_cnt = 0;
4887 	for (acb = callback_list; acb != NULL; acb = acb->acb_next) {
4888 		if (!acb->acb_done)
4889 			continue;
4890 
4891 		callback_cnt++;
4892 
4893 		if (zio->io_error != 0)
4894 			continue;
4895 
4896 		int error = arc_buf_alloc_impl(hdr, acb->acb_private,
4897 		    acb->acb_compressed, B_TRUE, &acb->acb_buf);
4898 		if (error != 0) {
4899 			/*
4900 			 * Decompression failed.  Set io_error
4901 			 * so that when we call acb_done (below),
4902 			 * we will indicate that the read failed.
4903 			 * Note that in the unusual case where one
4904 			 * callback is compressed and another
4905 			 * uncompressed, we will mark all of them
4906 			 * as failed, even though the uncompressed
4907 			 * one can't actually fail.  In this case,
4908 			 * the hdr will not be anonymous, because
4909 			 * if there are multiple callbacks, it's
4910 			 * because multiple threads found the same
4911 			 * arc buf in the hash table.
4912 			 */
4913 			zio->io_error = error;
4914 		}
4915 	}
4916 	/*
4917 	 * If there are multiple callbacks, we must have the hash lock,
4918 	 * because the only way for multiple threads to find this hdr is
4919 	 * in the hash table.  This ensures that if there are multiple
4920 	 * callbacks, the hdr is not anonymous.  If it were anonymous,
4921 	 * we couldn't use arc_buf_destroy() in the error case below.
4922 	 */
4923 	ASSERT(callback_cnt < 2 || hash_lock != NULL);
4924 
4925 	hdr->b_l1hdr.b_acb = NULL;
4926 	arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
4927 	if (callback_cnt == 0) {
4928 		ASSERT(HDR_PREFETCH(hdr));
4929 		ASSERT0(hdr->b_l1hdr.b_bufcnt);
4930 		ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
4931 	}
4932 
4933 	ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
4934 	    callback_list != NULL);
4935 
4936 	if (zio->io_error == 0) {
4937 		arc_hdr_verify(hdr, zio->io_bp);
4938 	} else {
4939 		arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
4940 		if (hdr->b_l1hdr.b_state != arc_anon)
4941 			arc_change_state(arc_anon, hdr, hash_lock);
4942 		if (HDR_IN_HASH_TABLE(hdr))
4943 			buf_hash_remove(hdr);
4944 		freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
4945 	}
4946 
4947 	/*
4948 	 * Broadcast before we drop the hash_lock to avoid the possibility
4949 	 * that the hdr (and hence the cv) might be freed before we get to
4950 	 * the cv_broadcast().
4951 	 */
4952 	cv_broadcast(&hdr->b_l1hdr.b_cv);
4953 
4954 	if (hash_lock != NULL) {
4955 		mutex_exit(hash_lock);
4956 	} else {
4957 		/*
4958 		 * This block was freed while we waited for the read to
4959 		 * complete.  It has been removed from the hash table and
4960 		 * moved to the anonymous state (so that it won't show up
4961 		 * in the cache).
4962 		 */
4963 		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
4964 		freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
4965 	}
4966 
4967 	/* execute each callback and free its structure */
4968 	while ((acb = callback_list) != NULL) {
4969 		if (acb->acb_done != NULL) {
4970 			if (zio->io_error != 0 && acb->acb_buf != NULL) {
4971 				/*
4972 				 * If arc_buf_alloc_impl() fails during
4973 				 * decompression, the buf will still be
4974 				 * allocated, and needs to be freed here.
4975 				 */
4976 				arc_buf_destroy(acb->acb_buf, acb->acb_private);
4977 				acb->acb_buf = NULL;
4978 			}
4979 			acb->acb_done(zio, &zio->io_bookmark, zio->io_bp,
4980 			    acb->acb_buf, acb->acb_private);
4981 		}
4982 
4983 		if (acb->acb_zio_dummy != NULL) {
4984 			acb->acb_zio_dummy->io_error = zio->io_error;
4985 			zio_nowait(acb->acb_zio_dummy);
4986 		}
4987 
4988 		callback_list = acb->acb_next;
4989 		kmem_free(acb, sizeof (arc_callback_t));
4990 	}
4991 
4992 	if (freeable)
4993 		arc_hdr_destroy(hdr);
4994 }
4995 
4996 /*
4997  * "Read" the block at the specified DVA (in bp) via the
4998  * cache.  If the block is found in the cache, invoke the provided
4999  * callback immediately and return.  Note that the `zio' parameter
5000  * in the callback will be NULL in this case, since no IO was
5001  * required.  If the block is not in the cache pass the read request
5002  * on to the spa with a substitute callback function, so that the
5003  * requested block will be added to the cache.
5004  *
5005  * If a read request arrives for a block that has a read in-progress,
5006  * either wait for the in-progress read to complete (and return the
5007  * results); or, if this is a read with a "done" func, add a record
5008  * to the read to invoke the "done" func when the read completes,
5009  * and return; or just return.
5010  *
5011  * arc_read_done() will invoke all the requested "done" functions
5012  * for readers of this block.
5013  */
5014 int
5015 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_read_done_func_t *done,
5016     void *private, zio_priority_t priority, int zio_flags,
5017     arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
5018 {
5019 	arc_buf_hdr_t *hdr = NULL;
5020 	kmutex_t *hash_lock = NULL;
5021 	zio_t *rzio;
5022 	uint64_t guid = spa_load_guid(spa);
5023 	boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW) != 0;
5024 	int rc = 0;
5025 
5026 	ASSERT(!BP_IS_EMBEDDED(bp) ||
5027 	    BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
5028 
5029 top:
5030 	if (!BP_IS_EMBEDDED(bp)) {
5031 		/*
5032 		 * Embedded BP's have no DVA and require no I/O to "read".
5033 		 * Create an anonymous arc buf to back it.
5034 		 */
5035 		hdr = buf_hash_find(guid, bp, &hash_lock);
5036 	}
5037 
5038 	if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_pabd != NULL) {
5039 		arc_buf_t *buf = NULL;
5040 		*arc_flags |= ARC_FLAG_CACHED;
5041 
5042 		if (HDR_IO_IN_PROGRESS(hdr)) {
5043 			zio_t *head_zio = hdr->b_l1hdr.b_acb->acb_zio_head;
5044 
5045 			ASSERT3P(head_zio, !=, NULL);
5046 			if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
5047 			    priority == ZIO_PRIORITY_SYNC_READ) {
5048 				/*
5049 				 * This is a sync read that needs to wait for
5050 				 * an in-flight async read. Request that the
5051 				 * zio have its priority upgraded.
5052 				 */
5053 				zio_change_priority(head_zio, priority);
5054 				DTRACE_PROBE1(arc__async__upgrade__sync,
5055 				    arc_buf_hdr_t *, hdr);
5056 				ARCSTAT_BUMP(arcstat_async_upgrade_sync);
5057 			}
5058 			if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
5059 				arc_hdr_clear_flags(hdr,
5060 				    ARC_FLAG_PREDICTIVE_PREFETCH);
5061 			}
5062 
5063 			if (*arc_flags & ARC_FLAG_WAIT) {
5064 				cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
5065 				mutex_exit(hash_lock);
5066 				goto top;
5067 			}
5068 			ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
5069 
5070 			if (done) {
5071 				arc_callback_t *acb = NULL;
5072 
5073 				acb = kmem_zalloc(sizeof (arc_callback_t),
5074 				    KM_SLEEP);
5075 				acb->acb_done = done;
5076 				acb->acb_private = private;
5077 				acb->acb_compressed = compressed_read;
5078 				if (pio != NULL)
5079 					acb->acb_zio_dummy = zio_null(pio,
5080 					    spa, NULL, NULL, NULL, zio_flags);
5081 
5082 				ASSERT3P(acb->acb_done, !=, NULL);
5083 				acb->acb_zio_head = head_zio;
5084 				acb->acb_next = hdr->b_l1hdr.b_acb;
5085 				hdr->b_l1hdr.b_acb = acb;
5086 				mutex_exit(hash_lock);
5087 				return (0);
5088 			}
5089 			mutex_exit(hash_lock);
5090 			return (0);
5091 		}
5092 
5093 		ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5094 		    hdr->b_l1hdr.b_state == arc_mfu);
5095 
5096 		if (done) {
5097 			if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
5098 				/*
5099 				 * This is a demand read which does not have to
5100 				 * wait for i/o because we did a predictive
5101 				 * prefetch i/o for it, which has completed.
5102 				 */
5103 				DTRACE_PROBE1(
5104 				    arc__demand__hit__predictive__prefetch,
5105 				    arc_buf_hdr_t *, hdr);
5106 				ARCSTAT_BUMP(
5107 				    arcstat_demand_hit_predictive_prefetch);
5108 				arc_hdr_clear_flags(hdr,
5109 				    ARC_FLAG_PREDICTIVE_PREFETCH);
5110 			}
5111 
5112 			if (hdr->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) {
5113 				ARCSTAT_BUMP(
5114 				    arcstat_demand_hit_prescient_prefetch);
5115 				arc_hdr_clear_flags(hdr,
5116 				    ARC_FLAG_PRESCIENT_PREFETCH);
5117 			}
5118 
5119 			ASSERT(!BP_IS_EMBEDDED(bp) || !BP_IS_HOLE(bp));
5120 
5121 			/* Get a buf with the desired data in it. */
5122 			rc = arc_buf_alloc_impl(hdr, private,
5123 			    compressed_read, B_TRUE, &buf);
5124 			if (rc != 0) {
5125 				arc_buf_destroy(buf, private);
5126 				buf = NULL;
5127 			}
5128 			ASSERT((zio_flags & ZIO_FLAG_SPECULATIVE) ||
5129 			    rc == 0 || rc != ENOENT);
5130 		} else if (*arc_flags & ARC_FLAG_PREFETCH &&
5131 		    zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
5132 			arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
5133 		}
5134 		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
5135 		arc_access(hdr, hash_lock);
5136 		if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH)
5137 			arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH);
5138 		if (*arc_flags & ARC_FLAG_L2CACHE)
5139 			arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5140 		mutex_exit(hash_lock);
5141 		ARCSTAT_BUMP(arcstat_hits);
5142 		ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
5143 		    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
5144 		    data, metadata, hits);
5145 
5146 		if (done)
5147 			done(NULL, zb, bp, buf, private);
5148 	} else {
5149 		uint64_t lsize = BP_GET_LSIZE(bp);
5150 		uint64_t psize = BP_GET_PSIZE(bp);
5151 		arc_callback_t *acb;
5152 		vdev_t *vd = NULL;
5153 		uint64_t addr = 0;
5154 		boolean_t devw = B_FALSE;
5155 		uint64_t size;
5156 
5157 		if (hdr == NULL) {
5158 			/* this block is not in the cache */
5159 			arc_buf_hdr_t *exists = NULL;
5160 			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
5161 			hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
5162 			    BP_GET_COMPRESS(bp), type);
5163 
5164 			if (!BP_IS_EMBEDDED(bp)) {
5165 				hdr->b_dva = *BP_IDENTITY(bp);
5166 				hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
5167 				exists = buf_hash_insert(hdr, &hash_lock);
5168 			}
5169 			if (exists != NULL) {
5170 				/* somebody beat us to the hash insert */
5171 				mutex_exit(hash_lock);
5172 				buf_discard_identity(hdr);
5173 				arc_hdr_destroy(hdr);
5174 				goto top; /* restart the IO request */
5175 			}
5176 		} else {
5177 			/*
5178 			 * This block is in the ghost cache. If it was L2-only
5179 			 * (and thus didn't have an L1 hdr), we realloc the
5180 			 * header to add an L1 hdr.
5181 			 */
5182 			if (!HDR_HAS_L1HDR(hdr)) {
5183 				hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
5184 				    hdr_full_cache);
5185 			}
5186 			ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
5187 			ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state));
5188 			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5189 			ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5190 			ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
5191 			ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
5192 
5193 			/*
5194 			 * This is a delicate dance that we play here.
5195 			 * This hdr is in the ghost list so we access it
5196 			 * to move it out of the ghost list before we
5197 			 * initiate the read. If it's a prefetch then
5198 			 * it won't have a callback so we'll remove the
5199 			 * reference that arc_buf_alloc_impl() created. We
5200 			 * do this after we've called arc_access() to
5201 			 * avoid hitting an assert in remove_reference().
5202 			 */
5203 			arc_access(hdr, hash_lock);
5204 			arc_hdr_alloc_pabd(hdr);
5205 		}
5206 		ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
5207 		size = arc_hdr_size(hdr);
5208 
5209 		/*
5210 		 * If compression is enabled on the hdr, then will do
5211 		 * RAW I/O and will store the compressed data in the hdr's
5212 		 * data block. Otherwise, the hdr's data block will contain
5213 		 * the uncompressed data.
5214 		 */
5215 		if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) {
5216 			zio_flags |= ZIO_FLAG_RAW;
5217 		}
5218 
5219 		if (*arc_flags & ARC_FLAG_PREFETCH)
5220 			arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
5221 		if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH)
5222 			arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH);
5223 
5224 		if (*arc_flags & ARC_FLAG_L2CACHE)
5225 			arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5226 		if (BP_GET_LEVEL(bp) > 0)
5227 			arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT);
5228 		if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH)
5229 			arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH);
5230 		ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
5231 
5232 		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
5233 		acb->acb_done = done;
5234 		acb->acb_private = private;
5235 		acb->acb_compressed = compressed_read;
5236 
5237 		ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5238 		hdr->b_l1hdr.b_acb = acb;
5239 		arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5240 
5241 		if (HDR_HAS_L2HDR(hdr) &&
5242 		    (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
5243 			devw = hdr->b_l2hdr.b_dev->l2ad_writing;
5244 			addr = hdr->b_l2hdr.b_daddr;
5245 			/*
5246 			 * Lock out L2ARC device removal.
5247 			 */
5248 			if (vdev_is_dead(vd) ||
5249 			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
5250 				vd = NULL;
5251 		}
5252 
5253 		/*
5254 		 * We count both async reads and scrub IOs as asynchronous so
5255 		 * that both can be upgraded in the event of a cache hit while
5256 		 * the read IO is still in-flight.
5257 		 */
5258 		if (priority == ZIO_PRIORITY_ASYNC_READ ||
5259 		    priority == ZIO_PRIORITY_SCRUB)
5260 			arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
5261 		else
5262 			arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
5263 
5264 		/*
5265 		 * At this point, we have a level 1 cache miss.  Try again in
5266 		 * L2ARC if possible.
5267 		 */
5268 		ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize);
5269 
5270 		DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
5271 		    uint64_t, lsize, zbookmark_phys_t *, zb);
5272 		ARCSTAT_BUMP(arcstat_misses);
5273 		ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
5274 		    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
5275 		    data, metadata, misses);
5276 
5277 		if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
5278 			/*
5279 			 * Read from the L2ARC if the following are true:
5280 			 * 1. The L2ARC vdev was previously cached.
5281 			 * 2. This buffer still has L2ARC metadata.
5282 			 * 3. This buffer isn't currently writing to the L2ARC.
5283 			 * 4. The L2ARC entry wasn't evicted, which may
5284 			 *    also have invalidated the vdev.
5285 			 * 5. This isn't prefetch and l2arc_noprefetch is set.
5286 			 */
5287 			if (HDR_HAS_L2HDR(hdr) &&
5288 			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
5289 			    !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
5290 				l2arc_read_callback_t *cb;
5291 				abd_t *abd;
5292 				uint64_t asize;
5293 
5294 				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
5295 				ARCSTAT_BUMP(arcstat_l2_hits);
5296 
5297 				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
5298 				    KM_SLEEP);
5299 				cb->l2rcb_hdr = hdr;
5300 				cb->l2rcb_bp = *bp;
5301 				cb->l2rcb_zb = *zb;
5302 				cb->l2rcb_flags = zio_flags;
5303 
5304 				asize = vdev_psize_to_asize(vd, size);
5305 				if (asize != size) {
5306 					abd = abd_alloc_for_io(asize,
5307 					    HDR_ISTYPE_METADATA(hdr));
5308 					cb->l2rcb_abd = abd;
5309 				} else {
5310 					abd = hdr->b_l1hdr.b_pabd;
5311 				}
5312 
5313 				ASSERT(addr >= VDEV_LABEL_START_SIZE &&
5314 				    addr + asize <= vd->vdev_psize -
5315 				    VDEV_LABEL_END_SIZE);
5316 
5317 				/*
5318 				 * l2arc read.  The SCL_L2ARC lock will be
5319 				 * released by l2arc_read_done().
5320 				 * Issue a null zio if the underlying buffer
5321 				 * was squashed to zero size by compression.
5322 				 */
5323 				ASSERT3U(HDR_GET_COMPRESS(hdr), !=,
5324 				    ZIO_COMPRESS_EMPTY);
5325 				rzio = zio_read_phys(pio, vd, addr,
5326 				    asize, abd,
5327 				    ZIO_CHECKSUM_OFF,
5328 				    l2arc_read_done, cb, priority,
5329 				    zio_flags | ZIO_FLAG_DONT_CACHE |
5330 				    ZIO_FLAG_CANFAIL |
5331 				    ZIO_FLAG_DONT_PROPAGATE |
5332 				    ZIO_FLAG_DONT_RETRY, B_FALSE);
5333 				acb->acb_zio_head = rzio;
5334 
5335 				if (hash_lock != NULL)
5336 					mutex_exit(hash_lock);
5337 
5338 				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
5339 				    zio_t *, rzio);
5340 				ARCSTAT_INCR(arcstat_l2_read_bytes, size);
5341 
5342 				if (*arc_flags & ARC_FLAG_NOWAIT) {
5343 					zio_nowait(rzio);
5344 					return (0);
5345 				}
5346 
5347 				ASSERT(*arc_flags & ARC_FLAG_WAIT);
5348 				if (zio_wait(rzio) == 0)
5349 					return (0);
5350 
5351 				/* l2arc read error; goto zio_read() */
5352 				if (hash_lock != NULL)
5353 					mutex_enter(hash_lock);
5354 			} else {
5355 				DTRACE_PROBE1(l2arc__miss,
5356 				    arc_buf_hdr_t *, hdr);
5357 				ARCSTAT_BUMP(arcstat_l2_misses);
5358 				if (HDR_L2_WRITING(hdr))
5359 					ARCSTAT_BUMP(arcstat_l2_rw_clash);
5360 				spa_config_exit(spa, SCL_L2ARC, vd);
5361 			}
5362 		} else {
5363 			if (vd != NULL)
5364 				spa_config_exit(spa, SCL_L2ARC, vd);
5365 			if (l2arc_ndev != 0) {
5366 				DTRACE_PROBE1(l2arc__miss,
5367 				    arc_buf_hdr_t *, hdr);
5368 				ARCSTAT_BUMP(arcstat_l2_misses);
5369 			}
5370 		}
5371 
5372 		rzio = zio_read(pio, spa, bp, hdr->b_l1hdr.b_pabd, size,
5373 		    arc_read_done, hdr, priority, zio_flags, zb);
5374 		acb->acb_zio_head = rzio;
5375 
5376 		if (hash_lock != NULL)
5377 			mutex_exit(hash_lock);
5378 
5379 		if (*arc_flags & ARC_FLAG_WAIT)
5380 			return (zio_wait(rzio));
5381 
5382 		ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
5383 		zio_nowait(rzio);
5384 	}
5385 	return (0);
5386 }
5387 
5388 /*
5389  * Notify the arc that a block was freed, and thus will never be used again.
5390  */
5391 void
5392 arc_freed(spa_t *spa, const blkptr_t *bp)
5393 {
5394 	arc_buf_hdr_t *hdr;
5395 	kmutex_t *hash_lock;
5396 	uint64_t guid = spa_load_guid(spa);
5397 
5398 	ASSERT(!BP_IS_EMBEDDED(bp));
5399 
5400 	hdr = buf_hash_find(guid, bp, &hash_lock);
5401 	if (hdr == NULL)
5402 		return;
5403 
5404 	/*
5405 	 * We might be trying to free a block that is still doing I/O
5406 	 * (i.e. prefetch) or has a reference (i.e. a dedup-ed,
5407 	 * dmu_sync-ed block). If this block is being prefetched, then it
5408 	 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr
5409 	 * until the I/O completes. A block may also have a reference if it is
5410 	 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
5411 	 * have written the new block to its final resting place on disk but
5412 	 * without the dedup flag set. This would have left the hdr in the MRU
5413 	 * state and discoverable. When the txg finally syncs it detects that
5414 	 * the block was overridden in open context and issues an override I/O.
5415 	 * Since this is a dedup block, the override I/O will determine if the
5416 	 * block is already in the DDT. If so, then it will replace the io_bp
5417 	 * with the bp from the DDT and allow the I/O to finish. When the I/O
5418 	 * reaches the done callback, dbuf_write_override_done, it will
5419 	 * check to see if the io_bp and io_bp_override are identical.
5420 	 * If they are not, then it indicates that the bp was replaced with
5421 	 * the bp in the DDT and the override bp is freed. This allows
5422 	 * us to arrive here with a reference on a block that is being
5423 	 * freed. So if we have an I/O in progress, or a reference to
5424 	 * this hdr, then we don't destroy the hdr.
5425 	 */
5426 	if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) &&
5427 	    zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) {
5428 		arc_change_state(arc_anon, hdr, hash_lock);
5429 		arc_hdr_destroy(hdr);
5430 		mutex_exit(hash_lock);
5431 	} else {
5432 		mutex_exit(hash_lock);
5433 	}
5434 
5435 }
5436 
5437 /*
5438  * Release this buffer from the cache, making it an anonymous buffer.  This
5439  * must be done after a read and prior to modifying the buffer contents.
5440  * If the buffer has more than one reference, we must make
5441  * a new hdr for the buffer.
5442  */
5443 void
5444 arc_release(arc_buf_t *buf, void *tag)
5445 {
5446 	arc_buf_hdr_t *hdr = buf->b_hdr;
5447 
5448 	/*
5449 	 * It would be nice to assert that if it's DMU metadata (level >
5450 	 * 0 || it's the dnode file), then it must be syncing context.
5451 	 * But we don't know that information at this level.
5452 	 */
5453 
5454 	mutex_enter(&buf->b_evict_lock);
5455 
5456 	ASSERT(HDR_HAS_L1HDR(hdr));
5457 
5458 	/*
5459 	 * We don't grab the hash lock prior to this check, because if
5460 	 * the buffer's header is in the arc_anon state, it won't be
5461 	 * linked into the hash table.
5462 	 */
5463 	if (hdr->b_l1hdr.b_state == arc_anon) {
5464 		mutex_exit(&buf->b_evict_lock);
5465 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5466 		ASSERT(!HDR_IN_HASH_TABLE(hdr));
5467 		ASSERT(!HDR_HAS_L2HDR(hdr));
5468 		ASSERT(HDR_EMPTY(hdr));
5469 
5470 		ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
5471 		ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
5472 		ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
5473 
5474 		hdr->b_l1hdr.b_arc_access = 0;
5475 
5476 		/*
5477 		 * If the buf is being overridden then it may already
5478 		 * have a hdr that is not empty.
5479 		 */
5480 		buf_discard_identity(hdr);
5481 		arc_buf_thaw(buf);
5482 
5483 		return;
5484 	}
5485 
5486 	kmutex_t *hash_lock = HDR_LOCK(hdr);
5487 	mutex_enter(hash_lock);
5488 
5489 	/*
5490 	 * This assignment is only valid as long as the hash_lock is
5491 	 * held, we must be careful not to reference state or the
5492 	 * b_state field after dropping the lock.
5493 	 */
5494 	arc_state_t *state = hdr->b_l1hdr.b_state;
5495 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
5496 	ASSERT3P(state, !=, arc_anon);
5497 
5498 	/* this buffer is not on any list */
5499 	ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0);
5500 
5501 	if (HDR_HAS_L2HDR(hdr)) {
5502 		mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
5503 
5504 		/*
5505 		 * We have to recheck this conditional again now that
5506 		 * we're holding the l2ad_mtx to prevent a race with
5507 		 * another thread which might be concurrently calling
5508 		 * l2arc_evict(). In that case, l2arc_evict() might have
5509 		 * destroyed the header's L2 portion as we were waiting
5510 		 * to acquire the l2ad_mtx.
5511 		 */
5512 		if (HDR_HAS_L2HDR(hdr))
5513 			arc_hdr_l2hdr_destroy(hdr);
5514 
5515 		mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
5516 	}
5517 
5518 	/*
5519 	 * Do we have more than one buf?
5520 	 */
5521 	if (hdr->b_l1hdr.b_bufcnt > 1) {
5522 		arc_buf_hdr_t *nhdr;
5523 		uint64_t spa = hdr->b_spa;
5524 		uint64_t psize = HDR_GET_PSIZE(hdr);
5525 		uint64_t lsize = HDR_GET_LSIZE(hdr);
5526 		enum zio_compress compress = HDR_GET_COMPRESS(hdr);
5527 		arc_buf_contents_t type = arc_buf_type(hdr);
5528 		VERIFY3U(hdr->b_type, ==, type);
5529 
5530 		ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
5531 		(void) remove_reference(hdr, hash_lock, tag);
5532 
5533 		if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) {
5534 			ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
5535 			ASSERT(ARC_BUF_LAST(buf));
5536 		}
5537 
5538 		/*
5539 		 * Pull the data off of this hdr and attach it to
5540 		 * a new anonymous hdr. Also find the last buffer
5541 		 * in the hdr's buffer list.
5542 		 */
5543 		arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
5544 		ASSERT3P(lastbuf, !=, NULL);
5545 
5546 		/*
5547 		 * If the current arc_buf_t and the hdr are sharing their data
5548 		 * buffer, then we must stop sharing that block.
5549 		 */
5550 		if (arc_buf_is_shared(buf)) {
5551 			VERIFY(!arc_buf_is_shared(lastbuf));
5552 
5553 			/*
5554 			 * First, sever the block sharing relationship between
5555 			 * buf and the arc_buf_hdr_t.
5556 			 */
5557 			arc_unshare_buf(hdr, buf);
5558 
5559 			/*
5560 			 * Now we need to recreate the hdr's b_pabd. Since we
5561 			 * have lastbuf handy, we try to share with it, but if
5562 			 * we can't then we allocate a new b_pabd and copy the
5563 			 * data from buf into it.
5564 			 */
5565 			if (arc_can_share(hdr, lastbuf)) {
5566 				arc_share_buf(hdr, lastbuf);
5567 			} else {
5568 				arc_hdr_alloc_pabd(hdr);
5569 				abd_copy_from_buf(hdr->b_l1hdr.b_pabd,
5570 				    buf->b_data, psize);
5571 			}
5572 			VERIFY3P(lastbuf->b_data, !=, NULL);
5573 		} else if (HDR_SHARED_DATA(hdr)) {
5574 			/*
5575 			 * Uncompressed shared buffers are always at the end
5576 			 * of the list. Compressed buffers don't have the
5577 			 * same requirements. This makes it hard to
5578 			 * simply assert that the lastbuf is shared so
5579 			 * we rely on the hdr's compression flags to determine
5580 			 * if we have a compressed, shared buffer.
5581 			 */
5582 			ASSERT(arc_buf_is_shared(lastbuf) ||
5583 			    HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
5584 			ASSERT(!ARC_BUF_SHARED(buf));
5585 		}
5586 		ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
5587 		ASSERT3P(state, !=, arc_l2c_only);
5588 
5589 		(void) zfs_refcount_remove_many(&state->arcs_size,
5590 		    arc_buf_size(buf), buf);
5591 
5592 		if (zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
5593 			ASSERT3P(state, !=, arc_l2c_only);
5594 			(void) zfs_refcount_remove_many(
5595 			    &state->arcs_esize[type],
5596 			    arc_buf_size(buf), buf);
5597 		}
5598 
5599 		hdr->b_l1hdr.b_bufcnt -= 1;
5600 		arc_cksum_verify(buf);
5601 		arc_buf_unwatch(buf);
5602 
5603 		mutex_exit(hash_lock);
5604 
5605 		/*
5606 		 * Allocate a new hdr. The new hdr will contain a b_pabd
5607 		 * buffer which will be freed in arc_write().
5608 		 */
5609 		nhdr = arc_hdr_alloc(spa, psize, lsize, compress, type);
5610 		ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL);
5611 		ASSERT0(nhdr->b_l1hdr.b_bufcnt);
5612 		ASSERT0(zfs_refcount_count(&nhdr->b_l1hdr.b_refcnt));
5613 		VERIFY3U(nhdr->b_type, ==, type);
5614 		ASSERT(!HDR_SHARED_DATA(nhdr));
5615 
5616 		nhdr->b_l1hdr.b_buf = buf;
5617 		nhdr->b_l1hdr.b_bufcnt = 1;
5618 		(void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
5619 		buf->b_hdr = nhdr;
5620 
5621 		mutex_exit(&buf->b_evict_lock);
5622 		(void) zfs_refcount_add_many(&arc_anon->arcs_size,
5623 		    arc_buf_size(buf), buf);
5624 	} else {
5625 		mutex_exit(&buf->b_evict_lock);
5626 		ASSERT(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
5627 		/* protected by hash lock, or hdr is on arc_anon */
5628 		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
5629 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5630 		arc_change_state(arc_anon, hdr, hash_lock);
5631 		hdr->b_l1hdr.b_arc_access = 0;
5632 		mutex_exit(hash_lock);
5633 
5634 		buf_discard_identity(hdr);
5635 		arc_buf_thaw(buf);
5636 	}
5637 }
5638 
5639 int
5640 arc_released(arc_buf_t *buf)
5641 {
5642 	int released;
5643 
5644 	mutex_enter(&buf->b_evict_lock);
5645 	released = (buf->b_data != NULL &&
5646 	    buf->b_hdr->b_l1hdr.b_state == arc_anon);
5647 	mutex_exit(&buf->b_evict_lock);
5648 	return (released);
5649 }
5650 
5651 #ifdef ZFS_DEBUG
5652 int
5653 arc_referenced(arc_buf_t *buf)
5654 {
5655 	int referenced;
5656 
5657 	mutex_enter(&buf->b_evict_lock);
5658 	referenced = (zfs_refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
5659 	mutex_exit(&buf->b_evict_lock);
5660 	return (referenced);
5661 }
5662 #endif
5663 
5664 static void
5665 arc_write_ready(zio_t *zio)
5666 {
5667 	arc_write_callback_t *callback = zio->io_private;
5668 	arc_buf_t *buf = callback->awcb_buf;
5669 	arc_buf_hdr_t *hdr = buf->b_hdr;
5670 	uint64_t psize = BP_IS_HOLE(zio->io_bp) ? 0 : BP_GET_PSIZE(zio->io_bp);
5671 
5672 	ASSERT(HDR_HAS_L1HDR(hdr));
5673 	ASSERT(!zfs_refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
5674 	ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
5675 
5676 	/*
5677 	 * If we're reexecuting this zio because the pool suspended, then
5678 	 * cleanup any state that was previously set the first time the
5679 	 * callback was invoked.
5680 	 */
5681 	if (zio->io_flags & ZIO_FLAG_REEXECUTED) {
5682 		arc_cksum_free(hdr);
5683 		arc_buf_unwatch(buf);
5684 		if (hdr->b_l1hdr.b_pabd != NULL) {
5685 			if (arc_buf_is_shared(buf)) {
5686 				arc_unshare_buf(hdr, buf);
5687 			} else {
5688 				arc_hdr_free_pabd(hdr);
5689 			}
5690 		}
5691 	}
5692 	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
5693 	ASSERT(!HDR_SHARED_DATA(hdr));
5694 	ASSERT(!arc_buf_is_shared(buf));
5695 
5696 	callback->awcb_ready(zio, buf, callback->awcb_private);
5697 
5698 	if (HDR_IO_IN_PROGRESS(hdr))
5699 		ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED);
5700 
5701 	arc_cksum_compute(buf);
5702 	arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5703 
5704 	enum zio_compress compress;
5705 	if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
5706 		compress = ZIO_COMPRESS_OFF;
5707 	} else {
5708 		ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(zio->io_bp));
5709 		compress = BP_GET_COMPRESS(zio->io_bp);
5710 	}
5711 	HDR_SET_PSIZE(hdr, psize);
5712 	arc_hdr_set_compress(hdr, compress);
5713 
5714 
5715 	/*
5716 	 * Fill the hdr with data. If the hdr is compressed, the data we want
5717 	 * is available from the zio, otherwise we can take it from the buf.
5718 	 *
5719 	 * We might be able to share the buf's data with the hdr here. However,
5720 	 * doing so would cause the ARC to be full of linear ABDs if we write a
5721 	 * lot of shareable data. As a compromise, we check whether scattered
5722 	 * ABDs are allowed, and assume that if they are then the user wants
5723 	 * the ARC to be primarily filled with them regardless of the data being
5724 	 * written. Therefore, if they're allowed then we allocate one and copy
5725 	 * the data into it; otherwise, we share the data directly if we can.
5726 	 */
5727 	if (zfs_abd_scatter_enabled || !arc_can_share(hdr, buf)) {
5728 		arc_hdr_alloc_pabd(hdr);
5729 
5730 		/*
5731 		 * Ideally, we would always copy the io_abd into b_pabd, but the
5732 		 * user may have disabled compressed ARC, thus we must check the
5733 		 * hdr's compression setting rather than the io_bp's.
5734 		 */
5735 		if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) {
5736 			ASSERT3U(BP_GET_COMPRESS(zio->io_bp), !=,
5737 			    ZIO_COMPRESS_OFF);
5738 			ASSERT3U(psize, >, 0);
5739 
5740 			abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize);
5741 		} else {
5742 			ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr));
5743 
5744 			abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data,
5745 			    arc_buf_size(buf));
5746 		}
5747 	} else {
5748 		ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd));
5749 		ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf));
5750 		ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
5751 
5752 		arc_share_buf(hdr, buf);
5753 	}
5754 
5755 	arc_hdr_verify(hdr, zio->io_bp);
5756 }
5757 
5758 static void
5759 arc_write_children_ready(zio_t *zio)
5760 {
5761 	arc_write_callback_t *callback = zio->io_private;
5762 	arc_buf_t *buf = callback->awcb_buf;
5763 
5764 	callback->awcb_children_ready(zio, buf, callback->awcb_private);
5765 }
5766 
5767 /*
5768  * The SPA calls this callback for each physical write that happens on behalf
5769  * of a logical write.  See the comment in dbuf_write_physdone() for details.
5770  */
5771 static void
5772 arc_write_physdone(zio_t *zio)
5773 {
5774 	arc_write_callback_t *cb = zio->io_private;
5775 	if (cb->awcb_physdone != NULL)
5776 		cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
5777 }
5778 
5779 static void
5780 arc_write_done(zio_t *zio)
5781 {
5782 	arc_write_callback_t *callback = zio->io_private;
5783 	arc_buf_t *buf = callback->awcb_buf;
5784 	arc_buf_hdr_t *hdr = buf->b_hdr;
5785 
5786 	ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5787 
5788 	if (zio->io_error == 0) {
5789 		arc_hdr_verify(hdr, zio->io_bp);
5790 
5791 		if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
5792 			buf_discard_identity(hdr);
5793 		} else {
5794 			hdr->b_dva = *BP_IDENTITY(zio->io_bp);
5795 			hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
5796 		}
5797 	} else {
5798 		ASSERT(HDR_EMPTY(hdr));
5799 	}
5800 
5801 	/*
5802 	 * If the block to be written was all-zero or compressed enough to be
5803 	 * embedded in the BP, no write was performed so there will be no
5804 	 * dva/birth/checksum.  The buffer must therefore remain anonymous
5805 	 * (and uncached).
5806 	 */
5807 	if (!HDR_EMPTY(hdr)) {
5808 		arc_buf_hdr_t *exists;
5809 		kmutex_t *hash_lock;
5810 
5811 		ASSERT3U(zio->io_error, ==, 0);
5812 
5813 		arc_cksum_verify(buf);
5814 
5815 		exists = buf_hash_insert(hdr, &hash_lock);
5816 		if (exists != NULL) {
5817 			/*
5818 			 * This can only happen if we overwrite for
5819 			 * sync-to-convergence, because we remove
5820 			 * buffers from the hash table when we arc_free().
5821 			 */
5822 			if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
5823 				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
5824 					panic("bad overwrite, hdr=%p exists=%p",
5825 					    (void *)hdr, (void *)exists);
5826 				ASSERT(zfs_refcount_is_zero(
5827 				    &exists->b_l1hdr.b_refcnt));
5828 				arc_change_state(arc_anon, exists, hash_lock);
5829 				mutex_exit(hash_lock);
5830 				arc_hdr_destroy(exists);
5831 				exists = buf_hash_insert(hdr, &hash_lock);
5832 				ASSERT3P(exists, ==, NULL);
5833 			} else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
5834 				/* nopwrite */
5835 				ASSERT(zio->io_prop.zp_nopwrite);
5836 				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
5837 					panic("bad nopwrite, hdr=%p exists=%p",
5838 					    (void *)hdr, (void *)exists);
5839 			} else {
5840 				/* Dedup */
5841 				ASSERT(hdr->b_l1hdr.b_bufcnt == 1);
5842 				ASSERT(hdr->b_l1hdr.b_state == arc_anon);
5843 				ASSERT(BP_GET_DEDUP(zio->io_bp));
5844 				ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
5845 			}
5846 		}
5847 		arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5848 		/* if it's not anon, we are doing a scrub */
5849 		if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
5850 			arc_access(hdr, hash_lock);
5851 		mutex_exit(hash_lock);
5852 	} else {
5853 		arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5854 	}
5855 
5856 	ASSERT(!zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5857 	callback->awcb_done(zio, buf, callback->awcb_private);
5858 
5859 	abd_put(zio->io_abd);
5860 	kmem_free(callback, sizeof (arc_write_callback_t));
5861 }
5862 
5863 zio_t *
5864 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, arc_buf_t *buf,
5865     boolean_t l2arc, const zio_prop_t *zp, arc_write_done_func_t *ready,
5866     arc_write_done_func_t *children_ready, arc_write_done_func_t *physdone,
5867     arc_write_done_func_t *done, void *private, zio_priority_t priority,
5868     int zio_flags, const zbookmark_phys_t *zb)
5869 {
5870 	arc_buf_hdr_t *hdr = buf->b_hdr;
5871 	arc_write_callback_t *callback;
5872 	zio_t *zio;
5873 	zio_prop_t localprop = *zp;
5874 
5875 	ASSERT3P(ready, !=, NULL);
5876 	ASSERT3P(done, !=, NULL);
5877 	ASSERT(!HDR_IO_ERROR(hdr));
5878 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5879 	ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5880 	ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
5881 	if (l2arc)
5882 		arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5883 	if (ARC_BUF_COMPRESSED(buf)) {
5884 		/*
5885 		 * We're writing a pre-compressed buffer.  Make the
5886 		 * compression algorithm requested by the zio_prop_t match
5887 		 * the pre-compressed buffer's compression algorithm.
5888 		 */
5889 		localprop.zp_compress = HDR_GET_COMPRESS(hdr);
5890 
5891 		ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf));
5892 		zio_flags |= ZIO_FLAG_RAW;
5893 	}
5894 	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
5895 	callback->awcb_ready = ready;
5896 	callback->awcb_children_ready = children_ready;
5897 	callback->awcb_physdone = physdone;
5898 	callback->awcb_done = done;
5899 	callback->awcb_private = private;
5900 	callback->awcb_buf = buf;
5901 
5902 	/*
5903 	 * The hdr's b_pabd is now stale, free it now. A new data block
5904 	 * will be allocated when the zio pipeline calls arc_write_ready().
5905 	 */
5906 	if (hdr->b_l1hdr.b_pabd != NULL) {
5907 		/*
5908 		 * If the buf is currently sharing the data block with
5909 		 * the hdr then we need to break that relationship here.
5910 		 * The hdr will remain with a NULL data pointer and the
5911 		 * buf will take sole ownership of the block.
5912 		 */
5913 		if (arc_buf_is_shared(buf)) {
5914 			arc_unshare_buf(hdr, buf);
5915 		} else {
5916 			arc_hdr_free_pabd(hdr);
5917 		}
5918 		VERIFY3P(buf->b_data, !=, NULL);
5919 		arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF);
5920 	}
5921 	ASSERT(!arc_buf_is_shared(buf));
5922 	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
5923 
5924 	zio = zio_write(pio, spa, txg, bp,
5925 	    abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)),
5926 	    HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready,
5927 	    (children_ready != NULL) ? arc_write_children_ready : NULL,
5928 	    arc_write_physdone, arc_write_done, callback,
5929 	    priority, zio_flags, zb);
5930 
5931 	return (zio);
5932 }
5933 
5934 static int
5935 arc_memory_throttle(spa_t *spa, uint64_t reserve, uint64_t txg)
5936 {
5937 #ifdef _KERNEL
5938 	uint64_t available_memory = ptob(freemem);
5939 
5940 #if defined(__i386)
5941 	available_memory =
5942 	    MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
5943 #endif
5944 
5945 	if (freemem > physmem * arc_lotsfree_percent / 100)
5946 		return (0);
5947 
5948 	if (txg > spa->spa_lowmem_last_txg) {
5949 		spa->spa_lowmem_last_txg = txg;
5950 		spa->spa_lowmem_page_load = 0;
5951 	}
5952 	/*
5953 	 * If we are in pageout, we know that memory is already tight,
5954 	 * the arc is already going to be evicting, so we just want to
5955 	 * continue to let page writes occur as quickly as possible.
5956 	 */
5957 	if (curproc == proc_pageout) {
5958 		if (spa->spa_lowmem_page_load >
5959 		    MAX(ptob(minfree), available_memory) / 4)
5960 			return (SET_ERROR(ERESTART));
5961 		/* Note: reserve is inflated, so we deflate */
5962 		atomic_add_64(&spa->spa_lowmem_page_load, reserve / 8);
5963 		return (0);
5964 	} else if (spa->spa_lowmem_page_load > 0 && arc_reclaim_needed()) {
5965 		/* memory is low, delay before restarting */
5966 		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
5967 		return (SET_ERROR(EAGAIN));
5968 	}
5969 	spa->spa_lowmem_page_load = 0;
5970 #endif /* _KERNEL */
5971 	return (0);
5972 }
5973 
5974 void
5975 arc_tempreserve_clear(uint64_t reserve)
5976 {
5977 	atomic_add_64(&arc_tempreserve, -reserve);
5978 	ASSERT((int64_t)arc_tempreserve >= 0);
5979 }
5980 
5981 int
5982 arc_tempreserve_space(spa_t *spa, uint64_t reserve, uint64_t txg)
5983 {
5984 	int error;
5985 	uint64_t anon_size;
5986 
5987 	if (reserve > arc_c/4 && !arc_no_grow)
5988 		arc_c = MIN(arc_c_max, reserve * 4);
5989 	if (reserve > arc_c)
5990 		return (SET_ERROR(ENOMEM));
5991 
5992 	/*
5993 	 * Don't count loaned bufs as in flight dirty data to prevent long
5994 	 * network delays from blocking transactions that are ready to be
5995 	 * assigned to a txg.
5996 	 */
5997 
5998 	/* assert that it has not wrapped around */
5999 	ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
6000 
6001 	anon_size = MAX((int64_t)(zfs_refcount_count(&arc_anon->arcs_size) -
6002 	    arc_loaned_bytes), 0);
6003 
6004 	/*
6005 	 * Writes will, almost always, require additional memory allocations
6006 	 * in order to compress/encrypt/etc the data.  We therefore need to
6007 	 * make sure that there is sufficient available memory for this.
6008 	 */
6009 	error = arc_memory_throttle(spa, reserve, txg);
6010 	if (error != 0)
6011 		return (error);
6012 
6013 	/*
6014 	 * Throttle writes when the amount of dirty data in the cache
6015 	 * gets too large.  We try to keep the cache less than half full
6016 	 * of dirty blocks so that our sync times don't grow too large.
6017 	 *
6018 	 * In the case of one pool being built on another pool, we want
6019 	 * to make sure we don't end up throttling the lower (backing)
6020 	 * pool when the upper pool is the majority contributor to dirty
6021 	 * data. To insure we make forward progress during throttling, we
6022 	 * also check the current pool's net dirty data and only throttle
6023 	 * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty
6024 	 * data in the cache.
6025 	 *
6026 	 * Note: if two requests come in concurrently, we might let them
6027 	 * both succeed, when one of them should fail.  Not a huge deal.
6028 	 */
6029 	uint64_t total_dirty = reserve + arc_tempreserve + anon_size;
6030 	uint64_t spa_dirty_anon = spa_dirty_data(spa);
6031 
6032 	if (total_dirty > arc_c * zfs_arc_dirty_limit_percent / 100 &&
6033 	    anon_size > arc_c * zfs_arc_anon_limit_percent / 100 &&
6034 	    spa_dirty_anon > anon_size * zfs_arc_pool_dirty_percent / 100) {
6035 		uint64_t meta_esize =
6036 		    zfs_refcount_count(
6037 		    &arc_anon->arcs_esize[ARC_BUFC_METADATA]);
6038 		uint64_t data_esize =
6039 		    zfs_refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
6040 		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
6041 		    "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
6042 		    arc_tempreserve >> 10, meta_esize >> 10,
6043 		    data_esize >> 10, reserve >> 10, arc_c >> 10);
6044 		return (SET_ERROR(ERESTART));
6045 	}
6046 	atomic_add_64(&arc_tempreserve, reserve);
6047 	return (0);
6048 }
6049 
6050 static void
6051 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
6052     kstat_named_t *evict_data, kstat_named_t *evict_metadata)
6053 {
6054 	size->value.ui64 = zfs_refcount_count(&state->arcs_size);
6055 	evict_data->value.ui64 =
6056 	    zfs_refcount_count(&state->arcs_esize[ARC_BUFC_DATA]);
6057 	evict_metadata->value.ui64 =
6058 	    zfs_refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]);
6059 }
6060 
6061 static int
6062 arc_kstat_update(kstat_t *ksp, int rw)
6063 {
6064 	arc_stats_t *as = ksp->ks_data;
6065 
6066 	if (rw == KSTAT_WRITE) {
6067 		return (EACCES);
6068 	} else {
6069 		arc_kstat_update_state(arc_anon,
6070 		    &as->arcstat_anon_size,
6071 		    &as->arcstat_anon_evictable_data,
6072 		    &as->arcstat_anon_evictable_metadata);
6073 		arc_kstat_update_state(arc_mru,
6074 		    &as->arcstat_mru_size,
6075 		    &as->arcstat_mru_evictable_data,
6076 		    &as->arcstat_mru_evictable_metadata);
6077 		arc_kstat_update_state(arc_mru_ghost,
6078 		    &as->arcstat_mru_ghost_size,
6079 		    &as->arcstat_mru_ghost_evictable_data,
6080 		    &as->arcstat_mru_ghost_evictable_metadata);
6081 		arc_kstat_update_state(arc_mfu,
6082 		    &as->arcstat_mfu_size,
6083 		    &as->arcstat_mfu_evictable_data,
6084 		    &as->arcstat_mfu_evictable_metadata);
6085 		arc_kstat_update_state(arc_mfu_ghost,
6086 		    &as->arcstat_mfu_ghost_size,
6087 		    &as->arcstat_mfu_ghost_evictable_data,
6088 		    &as->arcstat_mfu_ghost_evictable_metadata);
6089 
6090 		ARCSTAT(arcstat_size) = aggsum_value(&arc_size);
6091 		ARCSTAT(arcstat_meta_used) = aggsum_value(&arc_meta_used);
6092 		ARCSTAT(arcstat_data_size) = aggsum_value(&astat_data_size);
6093 		ARCSTAT(arcstat_metadata_size) =
6094 		    aggsum_value(&astat_metadata_size);
6095 		ARCSTAT(arcstat_hdr_size) = aggsum_value(&astat_hdr_size);
6096 		ARCSTAT(arcstat_other_size) = aggsum_value(&astat_other_size);
6097 		ARCSTAT(arcstat_l2_hdr_size) = aggsum_value(&astat_l2_hdr_size);
6098 	}
6099 
6100 	return (0);
6101 }
6102 
6103 /*
6104  * This function *must* return indices evenly distributed between all
6105  * sublists of the multilist. This is needed due to how the ARC eviction
6106  * code is laid out; arc_evict_state() assumes ARC buffers are evenly
6107  * distributed between all sublists and uses this assumption when
6108  * deciding which sublist to evict from and how much to evict from it.
6109  */
6110 unsigned int
6111 arc_state_multilist_index_func(multilist_t *ml, void *obj)
6112 {
6113 	arc_buf_hdr_t *hdr = obj;
6114 
6115 	/*
6116 	 * We rely on b_dva to generate evenly distributed index
6117 	 * numbers using buf_hash below. So, as an added precaution,
6118 	 * let's make sure we never add empty buffers to the arc lists.
6119 	 */
6120 	ASSERT(!HDR_EMPTY(hdr));
6121 
6122 	/*
6123 	 * The assumption here, is the hash value for a given
6124 	 * arc_buf_hdr_t will remain constant throughout it's lifetime
6125 	 * (i.e. it's b_spa, b_dva, and b_birth fields don't change).
6126 	 * Thus, we don't need to store the header's sublist index
6127 	 * on insertion, as this index can be recalculated on removal.
6128 	 *
6129 	 * Also, the low order bits of the hash value are thought to be
6130 	 * distributed evenly. Otherwise, in the case that the multilist
6131 	 * has a power of two number of sublists, each sublists' usage
6132 	 * would not be evenly distributed.
6133 	 */
6134 	return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
6135 	    multilist_get_num_sublists(ml));
6136 }
6137 
6138 static void
6139 arc_state_init(void)
6140 {
6141 	arc_anon = &ARC_anon;
6142 	arc_mru = &ARC_mru;
6143 	arc_mru_ghost = &ARC_mru_ghost;
6144 	arc_mfu = &ARC_mfu;
6145 	arc_mfu_ghost = &ARC_mfu_ghost;
6146 	arc_l2c_only = &ARC_l2c_only;
6147 
6148 	arc_mru->arcs_list[ARC_BUFC_METADATA] =
6149 	    multilist_create(sizeof (arc_buf_hdr_t),
6150 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6151 	    arc_state_multilist_index_func);
6152 	arc_mru->arcs_list[ARC_BUFC_DATA] =
6153 	    multilist_create(sizeof (arc_buf_hdr_t),
6154 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6155 	    arc_state_multilist_index_func);
6156 	arc_mru_ghost->arcs_list[ARC_BUFC_METADATA] =
6157 	    multilist_create(sizeof (arc_buf_hdr_t),
6158 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6159 	    arc_state_multilist_index_func);
6160 	arc_mru_ghost->arcs_list[ARC_BUFC_DATA] =
6161 	    multilist_create(sizeof (arc_buf_hdr_t),
6162 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6163 	    arc_state_multilist_index_func);
6164 	arc_mfu->arcs_list[ARC_BUFC_METADATA] =
6165 	    multilist_create(sizeof (arc_buf_hdr_t),
6166 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6167 	    arc_state_multilist_index_func);
6168 	arc_mfu->arcs_list[ARC_BUFC_DATA] =
6169 	    multilist_create(sizeof (arc_buf_hdr_t),
6170 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6171 	    arc_state_multilist_index_func);
6172 	arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA] =
6173 	    multilist_create(sizeof (arc_buf_hdr_t),
6174 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6175 	    arc_state_multilist_index_func);
6176 	arc_mfu_ghost->arcs_list[ARC_BUFC_DATA] =
6177 	    multilist_create(sizeof (arc_buf_hdr_t),
6178 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6179 	    arc_state_multilist_index_func);
6180 	arc_l2c_only->arcs_list[ARC_BUFC_METADATA] =
6181 	    multilist_create(sizeof (arc_buf_hdr_t),
6182 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6183 	    arc_state_multilist_index_func);
6184 	arc_l2c_only->arcs_list[ARC_BUFC_DATA] =
6185 	    multilist_create(sizeof (arc_buf_hdr_t),
6186 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6187 	    arc_state_multilist_index_func);
6188 
6189 	zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
6190 	zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
6191 	zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
6192 	zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
6193 	zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
6194 	zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
6195 	zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
6196 	zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
6197 	zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
6198 	zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
6199 	zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
6200 	zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
6201 
6202 	zfs_refcount_create(&arc_anon->arcs_size);
6203 	zfs_refcount_create(&arc_mru->arcs_size);
6204 	zfs_refcount_create(&arc_mru_ghost->arcs_size);
6205 	zfs_refcount_create(&arc_mfu->arcs_size);
6206 	zfs_refcount_create(&arc_mfu_ghost->arcs_size);
6207 	zfs_refcount_create(&arc_l2c_only->arcs_size);
6208 
6209 	aggsum_init(&arc_meta_used, 0);
6210 	aggsum_init(&arc_size, 0);
6211 	aggsum_init(&astat_data_size, 0);
6212 	aggsum_init(&astat_metadata_size, 0);
6213 	aggsum_init(&astat_hdr_size, 0);
6214 	aggsum_init(&astat_other_size, 0);
6215 	aggsum_init(&astat_l2_hdr_size, 0);
6216 }
6217 
6218 static void
6219 arc_state_fini(void)
6220 {
6221 	zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
6222 	zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
6223 	zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
6224 	zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
6225 	zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
6226 	zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
6227 	zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
6228 	zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
6229 	zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
6230 	zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
6231 	zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
6232 	zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
6233 
6234 	zfs_refcount_destroy(&arc_anon->arcs_size);
6235 	zfs_refcount_destroy(&arc_mru->arcs_size);
6236 	zfs_refcount_destroy(&arc_mru_ghost->arcs_size);
6237 	zfs_refcount_destroy(&arc_mfu->arcs_size);
6238 	zfs_refcount_destroy(&arc_mfu_ghost->arcs_size);
6239 	zfs_refcount_destroy(&arc_l2c_only->arcs_size);
6240 
6241 	multilist_destroy(arc_mru->arcs_list[ARC_BUFC_METADATA]);
6242 	multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
6243 	multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_METADATA]);
6244 	multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
6245 	multilist_destroy(arc_mru->arcs_list[ARC_BUFC_DATA]);
6246 	multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
6247 	multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_DATA]);
6248 	multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
6249 
6250 	aggsum_fini(&arc_meta_used);
6251 	aggsum_fini(&arc_size);
6252 	aggsum_fini(&astat_data_size);
6253 	aggsum_fini(&astat_metadata_size);
6254 	aggsum_fini(&astat_hdr_size);
6255 	aggsum_fini(&astat_other_size);
6256 	aggsum_fini(&astat_l2_hdr_size);
6257 }
6258 
6259 uint64_t
6260 arc_max_bytes(void)
6261 {
6262 	return (arc_c_max);
6263 }
6264 
6265 void
6266 arc_init(void)
6267 {
6268 	/*
6269 	 * allmem is "all memory that we could possibly use".
6270 	 */
6271 #ifdef _KERNEL
6272 	uint64_t allmem = ptob(physmem - swapfs_minfree);
6273 #else
6274 	uint64_t allmem = (physmem * PAGESIZE) / 2;
6275 #endif
6276 	mutex_init(&arc_adjust_lock, NULL, MUTEX_DEFAULT, NULL);
6277 	cv_init(&arc_adjust_waiters_cv, NULL, CV_DEFAULT, NULL);
6278 
6279 	/* set min cache to 1/32 of all memory, or 64MB, whichever is more */
6280 	arc_c_min = MAX(allmem / 32, 64 << 20);
6281 	/* set max to 3/4 of all memory, or all but 1GB, whichever is more */
6282 	if (allmem >= 1 << 30)
6283 		arc_c_max = allmem - (1 << 30);
6284 	else
6285 		arc_c_max = arc_c_min;
6286 	arc_c_max = MAX(allmem * 3 / 4, arc_c_max);
6287 
6288 	/*
6289 	 * In userland, there's only the memory pressure that we artificially
6290 	 * create (see arc_available_memory()).  Don't let arc_c get too
6291 	 * small, because it can cause transactions to be larger than
6292 	 * arc_c, causing arc_tempreserve_space() to fail.
6293 	 */
6294 #ifndef _KERNEL
6295 	arc_c_min = arc_c_max / 2;
6296 #endif
6297 
6298 	/*
6299 	 * Allow the tunables to override our calculations if they are
6300 	 * reasonable (ie. over 64MB)
6301 	 */
6302 	if (zfs_arc_max > 64 << 20 && zfs_arc_max < allmem) {
6303 		arc_c_max = zfs_arc_max;
6304 		arc_c_min = MIN(arc_c_min, arc_c_max);
6305 	}
6306 	if (zfs_arc_min > 64 << 20 && zfs_arc_min <= arc_c_max)
6307 		arc_c_min = zfs_arc_min;
6308 
6309 	arc_c = arc_c_max;
6310 	arc_p = (arc_c >> 1);
6311 
6312 	/* limit meta-data to 1/4 of the arc capacity */
6313 	arc_meta_limit = arc_c_max / 4;
6314 
6315 #ifdef _KERNEL
6316 	/*
6317 	 * Metadata is stored in the kernel's heap.  Don't let us
6318 	 * use more than half the heap for the ARC.
6319 	 */
6320 	arc_meta_limit = MIN(arc_meta_limit,
6321 	    vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 2);
6322 #endif
6323 
6324 	/* Allow the tunable to override if it is reasonable */
6325 	if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
6326 		arc_meta_limit = zfs_arc_meta_limit;
6327 
6328 	if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
6329 		arc_c_min = arc_meta_limit / 2;
6330 
6331 	if (zfs_arc_meta_min > 0) {
6332 		arc_meta_min = zfs_arc_meta_min;
6333 	} else {
6334 		arc_meta_min = arc_c_min / 2;
6335 	}
6336 
6337 	if (zfs_arc_grow_retry > 0)
6338 		arc_grow_retry = zfs_arc_grow_retry;
6339 
6340 	if (zfs_arc_shrink_shift > 0)
6341 		arc_shrink_shift = zfs_arc_shrink_shift;
6342 
6343 	/*
6344 	 * Ensure that arc_no_grow_shift is less than arc_shrink_shift.
6345 	 */
6346 	if (arc_no_grow_shift >= arc_shrink_shift)
6347 		arc_no_grow_shift = arc_shrink_shift - 1;
6348 
6349 	if (zfs_arc_p_min_shift > 0)
6350 		arc_p_min_shift = zfs_arc_p_min_shift;
6351 
6352 	/* if kmem_flags are set, lets try to use less memory */
6353 	if (kmem_debugging())
6354 		arc_c = arc_c / 2;
6355 	if (arc_c < arc_c_min)
6356 		arc_c = arc_c_min;
6357 
6358 	arc_state_init();
6359 
6360 	/*
6361 	 * The arc must be "uninitialized", so that hdr_recl() (which is
6362 	 * registered by buf_init()) will not access arc_reap_zthr before
6363 	 * it is created.
6364 	 */
6365 	ASSERT(!arc_initialized);
6366 	buf_init();
6367 
6368 	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
6369 	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
6370 
6371 	if (arc_ksp != NULL) {
6372 		arc_ksp->ks_data = &arc_stats;
6373 		arc_ksp->ks_update = arc_kstat_update;
6374 		kstat_install(arc_ksp);
6375 	}
6376 
6377 	arc_adjust_zthr = zthr_create(arc_adjust_cb_check,
6378 	    arc_adjust_cb, NULL);
6379 	arc_reap_zthr = zthr_create_timer(arc_reap_cb_check,
6380 	    arc_reap_cb, NULL, SEC2NSEC(1));
6381 
6382 	arc_initialized = B_TRUE;
6383 	arc_warm = B_FALSE;
6384 
6385 	/*
6386 	 * Calculate maximum amount of dirty data per pool.
6387 	 *
6388 	 * If it has been set by /etc/system, take that.
6389 	 * Otherwise, use a percentage of physical memory defined by
6390 	 * zfs_dirty_data_max_percent (default 10%) with a cap at
6391 	 * zfs_dirty_data_max_max (default 4GB).
6392 	 */
6393 	if (zfs_dirty_data_max == 0) {
6394 		zfs_dirty_data_max = physmem * PAGESIZE *
6395 		    zfs_dirty_data_max_percent / 100;
6396 		zfs_dirty_data_max = MIN(zfs_dirty_data_max,
6397 		    zfs_dirty_data_max_max);
6398 	}
6399 }
6400 
6401 void
6402 arc_fini(void)
6403 {
6404 	/* Use B_TRUE to ensure *all* buffers are evicted */
6405 	arc_flush(NULL, B_TRUE);
6406 
6407 	arc_initialized = B_FALSE;
6408 
6409 	if (arc_ksp != NULL) {
6410 		kstat_delete(arc_ksp);
6411 		arc_ksp = NULL;
6412 	}
6413 
6414 	(void) zthr_cancel(arc_adjust_zthr);
6415 	zthr_destroy(arc_adjust_zthr);
6416 
6417 	(void) zthr_cancel(arc_reap_zthr);
6418 	zthr_destroy(arc_reap_zthr);
6419 
6420 	mutex_destroy(&arc_adjust_lock);
6421 	cv_destroy(&arc_adjust_waiters_cv);
6422 
6423 	/*
6424 	 * buf_fini() must proceed arc_state_fini() because buf_fin() may
6425 	 * trigger the release of kmem magazines, which can callback to
6426 	 * arc_space_return() which accesses aggsums freed in act_state_fini().
6427 	 */
6428 	buf_fini();
6429 	arc_state_fini();
6430 
6431 	ASSERT0(arc_loaned_bytes);
6432 }
6433 
6434 /*
6435  * Level 2 ARC
6436  *
6437  * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
6438  * It uses dedicated storage devices to hold cached data, which are populated
6439  * using large infrequent writes.  The main role of this cache is to boost
6440  * the performance of random read workloads.  The intended L2ARC devices
6441  * include short-stroked disks, solid state disks, and other media with
6442  * substantially faster read latency than disk.
6443  *
6444  *                 +-----------------------+
6445  *                 |         ARC           |
6446  *                 +-----------------------+
6447  *                    |         ^     ^
6448  *                    |         |     |
6449  *      l2arc_feed_thread()    arc_read()
6450  *                    |         |     |
6451  *                    |  l2arc read   |
6452  *                    V         |     |
6453  *               +---------------+    |
6454  *               |     L2ARC     |    |
6455  *               +---------------+    |
6456  *                   |    ^           |
6457  *          l2arc_write() |           |
6458  *                   |    |           |
6459  *                   V    |           |
6460  *                 +-------+      +-------+
6461  *                 | vdev  |      | vdev  |
6462  *                 | cache |      | cache |
6463  *                 +-------+      +-------+
6464  *                 +=========+     .-----.
6465  *                 :  L2ARC  :    |-_____-|
6466  *                 : devices :    | Disks |
6467  *                 +=========+    `-_____-'
6468  *
6469  * Read requests are satisfied from the following sources, in order:
6470  *
6471  *	1) ARC
6472  *	2) vdev cache of L2ARC devices
6473  *	3) L2ARC devices
6474  *	4) vdev cache of disks
6475  *	5) disks
6476  *
6477  * Some L2ARC device types exhibit extremely slow write performance.
6478  * To accommodate for this there are some significant differences between
6479  * the L2ARC and traditional cache design:
6480  *
6481  * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
6482  * the ARC behave as usual, freeing buffers and placing headers on ghost
6483  * lists.  The ARC does not send buffers to the L2ARC during eviction as
6484  * this would add inflated write latencies for all ARC memory pressure.
6485  *
6486  * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
6487  * It does this by periodically scanning buffers from the eviction-end of
6488  * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
6489  * not already there. It scans until a headroom of buffers is satisfied,
6490  * which itself is a buffer for ARC eviction. If a compressible buffer is
6491  * found during scanning and selected for writing to an L2ARC device, we
6492  * temporarily boost scanning headroom during the next scan cycle to make
6493  * sure we adapt to compression effects (which might significantly reduce
6494  * the data volume we write to L2ARC). The thread that does this is
6495  * l2arc_feed_thread(), illustrated below; example sizes are included to
6496  * provide a better sense of ratio than this diagram:
6497  *
6498  *	       head -->                        tail
6499  *	        +---------------------+----------+
6500  *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
6501  *	        +---------------------+----------+   |   o L2ARC eligible
6502  *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
6503  *	        +---------------------+----------+   |
6504  *	             15.9 Gbytes      ^ 32 Mbytes    |
6505  *	                           headroom          |
6506  *	                                      l2arc_feed_thread()
6507  *	                                             |
6508  *	                 l2arc write hand <--[oooo]--'
6509  *	                         |           8 Mbyte
6510  *	                         |          write max
6511  *	                         V
6512  *		  +==============================+
6513  *	L2ARC dev |####|#|###|###|    |####| ... |
6514  *	          +==============================+
6515  *	                     32 Gbytes
6516  *
6517  * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
6518  * evicted, then the L2ARC has cached a buffer much sooner than it probably
6519  * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
6520  * safe to say that this is an uncommon case, since buffers at the end of
6521  * the ARC lists have moved there due to inactivity.
6522  *
6523  * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
6524  * then the L2ARC simply misses copying some buffers.  This serves as a
6525  * pressure valve to prevent heavy read workloads from both stalling the ARC
6526  * with waits and clogging the L2ARC with writes.  This also helps prevent
6527  * the potential for the L2ARC to churn if it attempts to cache content too
6528  * quickly, such as during backups of the entire pool.
6529  *
6530  * 5. After system boot and before the ARC has filled main memory, there are
6531  * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
6532  * lists can remain mostly static.  Instead of searching from tail of these
6533  * lists as pictured, the l2arc_feed_thread() will search from the list heads
6534  * for eligible buffers, greatly increasing its chance of finding them.
6535  *
6536  * The L2ARC device write speed is also boosted during this time so that
6537  * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
6538  * there are no L2ARC reads, and no fear of degrading read performance
6539  * through increased writes.
6540  *
6541  * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
6542  * the vdev queue can aggregate them into larger and fewer writes.  Each
6543  * device is written to in a rotor fashion, sweeping writes through
6544  * available space then repeating.
6545  *
6546  * 7. The L2ARC does not store dirty content.  It never needs to flush
6547  * write buffers back to disk based storage.
6548  *
6549  * 8. If an ARC buffer is written (and dirtied) which also exists in the
6550  * L2ARC, the now stale L2ARC buffer is immediately dropped.
6551  *
6552  * The performance of the L2ARC can be tweaked by a number of tunables, which
6553  * may be necessary for different workloads:
6554  *
6555  *	l2arc_write_max		max write bytes per interval
6556  *	l2arc_write_boost	extra write bytes during device warmup
6557  *	l2arc_noprefetch	skip caching prefetched buffers
6558  *	l2arc_headroom		number of max device writes to precache
6559  *	l2arc_headroom_boost	when we find compressed buffers during ARC
6560  *				scanning, we multiply headroom by this
6561  *				percentage factor for the next scan cycle,
6562  *				since more compressed buffers are likely to
6563  *				be present
6564  *	l2arc_feed_secs		seconds between L2ARC writing
6565  *
6566  * Tunables may be removed or added as future performance improvements are
6567  * integrated, and also may become zpool properties.
6568  *
6569  * There are three key functions that control how the L2ARC warms up:
6570  *
6571  *	l2arc_write_eligible()	check if a buffer is eligible to cache
6572  *	l2arc_write_size()	calculate how much to write
6573  *	l2arc_write_interval()	calculate sleep delay between writes
6574  *
6575  * These three functions determine what to write, how much, and how quickly
6576  * to send writes.
6577  */
6578 
6579 static boolean_t
6580 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
6581 {
6582 	/*
6583 	 * A buffer is *not* eligible for the L2ARC if it:
6584 	 * 1. belongs to a different spa.
6585 	 * 2. is already cached on the L2ARC.
6586 	 * 3. has an I/O in progress (it may be an incomplete read).
6587 	 * 4. is flagged not eligible (zfs property).
6588 	 */
6589 	if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) ||
6590 	    HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr))
6591 		return (B_FALSE);
6592 
6593 	return (B_TRUE);
6594 }
6595 
6596 static uint64_t
6597 l2arc_write_size(void)
6598 {
6599 	uint64_t size;
6600 
6601 	/*
6602 	 * Make sure our globals have meaningful values in case the user
6603 	 * altered them.
6604 	 */
6605 	size = l2arc_write_max;
6606 	if (size == 0) {
6607 		cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
6608 		    "be greater than zero, resetting it to the default (%d)",
6609 		    L2ARC_WRITE_SIZE);
6610 		size = l2arc_write_max = L2ARC_WRITE_SIZE;
6611 	}
6612 
6613 	if (arc_warm == B_FALSE)
6614 		size += l2arc_write_boost;
6615 
6616 	return (size);
6617 
6618 }
6619 
6620 static clock_t
6621 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
6622 {
6623 	clock_t interval, next, now;
6624 
6625 	/*
6626 	 * If the ARC lists are busy, increase our write rate; if the
6627 	 * lists are stale, idle back.  This is achieved by checking
6628 	 * how much we previously wrote - if it was more than half of
6629 	 * what we wanted, schedule the next write much sooner.
6630 	 */
6631 	if (l2arc_feed_again && wrote > (wanted / 2))
6632 		interval = (hz * l2arc_feed_min_ms) / 1000;
6633 	else
6634 		interval = hz * l2arc_feed_secs;
6635 
6636 	now = ddi_get_lbolt();
6637 	next = MAX(now, MIN(now + interval, began + interval));
6638 
6639 	return (next);
6640 }
6641 
6642 /*
6643  * Cycle through L2ARC devices.  This is how L2ARC load balances.
6644  * If a device is returned, this also returns holding the spa config lock.
6645  */
6646 static l2arc_dev_t *
6647 l2arc_dev_get_next(void)
6648 {
6649 	l2arc_dev_t *first, *next = NULL;
6650 
6651 	/*
6652 	 * Lock out the removal of spas (spa_namespace_lock), then removal
6653 	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
6654 	 * both locks will be dropped and a spa config lock held instead.
6655 	 */
6656 	mutex_enter(&spa_namespace_lock);
6657 	mutex_enter(&l2arc_dev_mtx);
6658 
6659 	/* if there are no vdevs, there is nothing to do */
6660 	if (l2arc_ndev == 0)
6661 		goto out;
6662 
6663 	first = NULL;
6664 	next = l2arc_dev_last;
6665 	do {
6666 		/* loop around the list looking for a non-faulted vdev */
6667 		if (next == NULL) {
6668 			next = list_head(l2arc_dev_list);
6669 		} else {
6670 			next = list_next(l2arc_dev_list, next);
6671 			if (next == NULL)
6672 				next = list_head(l2arc_dev_list);
6673 		}
6674 
6675 		/* if we have come back to the start, bail out */
6676 		if (first == NULL)
6677 			first = next;
6678 		else if (next == first)
6679 			break;
6680 
6681 	} while (vdev_is_dead(next->l2ad_vdev));
6682 
6683 	/* if we were unable to find any usable vdevs, return NULL */
6684 	if (vdev_is_dead(next->l2ad_vdev))
6685 		next = NULL;
6686 
6687 	l2arc_dev_last = next;
6688 
6689 out:
6690 	mutex_exit(&l2arc_dev_mtx);
6691 
6692 	/*
6693 	 * Grab the config lock to prevent the 'next' device from being
6694 	 * removed while we are writing to it.
6695 	 */
6696 	if (next != NULL)
6697 		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
6698 	mutex_exit(&spa_namespace_lock);
6699 
6700 	return (next);
6701 }
6702 
6703 /*
6704  * Free buffers that were tagged for destruction.
6705  */
6706 static void
6707 l2arc_do_free_on_write()
6708 {
6709 	list_t *buflist;
6710 	l2arc_data_free_t *df, *df_prev;
6711 
6712 	mutex_enter(&l2arc_free_on_write_mtx);
6713 	buflist = l2arc_free_on_write;
6714 
6715 	for (df = list_tail(buflist); df; df = df_prev) {
6716 		df_prev = list_prev(buflist, df);
6717 		ASSERT3P(df->l2df_abd, !=, NULL);
6718 		abd_free(df->l2df_abd);
6719 		list_remove(buflist, df);
6720 		kmem_free(df, sizeof (l2arc_data_free_t));
6721 	}
6722 
6723 	mutex_exit(&l2arc_free_on_write_mtx);
6724 }
6725 
6726 /*
6727  * A write to a cache device has completed.  Update all headers to allow
6728  * reads from these buffers to begin.
6729  */
6730 static void
6731 l2arc_write_done(zio_t *zio)
6732 {
6733 	l2arc_write_callback_t *cb;
6734 	l2arc_dev_t *dev;
6735 	list_t *buflist;
6736 	arc_buf_hdr_t *head, *hdr, *hdr_prev;
6737 	kmutex_t *hash_lock;
6738 	int64_t bytes_dropped = 0;
6739 
6740 	cb = zio->io_private;
6741 	ASSERT3P(cb, !=, NULL);
6742 	dev = cb->l2wcb_dev;
6743 	ASSERT3P(dev, !=, NULL);
6744 	head = cb->l2wcb_head;
6745 	ASSERT3P(head, !=, NULL);
6746 	buflist = &dev->l2ad_buflist;
6747 	ASSERT3P(buflist, !=, NULL);
6748 	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
6749 	    l2arc_write_callback_t *, cb);
6750 
6751 	if (zio->io_error != 0)
6752 		ARCSTAT_BUMP(arcstat_l2_writes_error);
6753 
6754 	/*
6755 	 * All writes completed, or an error was hit.
6756 	 */
6757 top:
6758 	mutex_enter(&dev->l2ad_mtx);
6759 	for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
6760 		hdr_prev = list_prev(buflist, hdr);
6761 
6762 		hash_lock = HDR_LOCK(hdr);
6763 
6764 		/*
6765 		 * We cannot use mutex_enter or else we can deadlock
6766 		 * with l2arc_write_buffers (due to swapping the order
6767 		 * the hash lock and l2ad_mtx are taken).
6768 		 */
6769 		if (!mutex_tryenter(hash_lock)) {
6770 			/*
6771 			 * Missed the hash lock. We must retry so we
6772 			 * don't leave the ARC_FLAG_L2_WRITING bit set.
6773 			 */
6774 			ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
6775 
6776 			/*
6777 			 * We don't want to rescan the headers we've
6778 			 * already marked as having been written out, so
6779 			 * we reinsert the head node so we can pick up
6780 			 * where we left off.
6781 			 */
6782 			list_remove(buflist, head);
6783 			list_insert_after(buflist, hdr, head);
6784 
6785 			mutex_exit(&dev->l2ad_mtx);
6786 
6787 			/*
6788 			 * We wait for the hash lock to become available
6789 			 * to try and prevent busy waiting, and increase
6790 			 * the chance we'll be able to acquire the lock
6791 			 * the next time around.
6792 			 */
6793 			mutex_enter(hash_lock);
6794 			mutex_exit(hash_lock);
6795 			goto top;
6796 		}
6797 
6798 		/*
6799 		 * We could not have been moved into the arc_l2c_only
6800 		 * state while in-flight due to our ARC_FLAG_L2_WRITING
6801 		 * bit being set. Let's just ensure that's being enforced.
6802 		 */
6803 		ASSERT(HDR_HAS_L1HDR(hdr));
6804 
6805 		if (zio->io_error != 0) {
6806 			/*
6807 			 * Error - drop L2ARC entry.
6808 			 */
6809 			list_remove(buflist, hdr);
6810 			arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
6811 
6812 			ARCSTAT_INCR(arcstat_l2_psize, -arc_hdr_size(hdr));
6813 			ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr));
6814 
6815 			bytes_dropped += arc_hdr_size(hdr);
6816 			(void) zfs_refcount_remove_many(&dev->l2ad_alloc,
6817 			    arc_hdr_size(hdr), hdr);
6818 		}
6819 
6820 		/*
6821 		 * Allow ARC to begin reads and ghost list evictions to
6822 		 * this L2ARC entry.
6823 		 */
6824 		arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING);
6825 
6826 		mutex_exit(hash_lock);
6827 	}
6828 
6829 	atomic_inc_64(&l2arc_writes_done);
6830 	list_remove(buflist, head);
6831 	ASSERT(!HDR_HAS_L1HDR(head));
6832 	kmem_cache_free(hdr_l2only_cache, head);
6833 	mutex_exit(&dev->l2ad_mtx);
6834 
6835 	vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
6836 
6837 	l2arc_do_free_on_write();
6838 
6839 	kmem_free(cb, sizeof (l2arc_write_callback_t));
6840 }
6841 
6842 /*
6843  * A read to a cache device completed.  Validate buffer contents before
6844  * handing over to the regular ARC routines.
6845  */
6846 static void
6847 l2arc_read_done(zio_t *zio)
6848 {
6849 	l2arc_read_callback_t *cb;
6850 	arc_buf_hdr_t *hdr;
6851 	kmutex_t *hash_lock;
6852 	boolean_t valid_cksum;
6853 
6854 	ASSERT3P(zio->io_vd, !=, NULL);
6855 	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
6856 
6857 	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
6858 
6859 	cb = zio->io_private;
6860 	ASSERT3P(cb, !=, NULL);
6861 	hdr = cb->l2rcb_hdr;
6862 	ASSERT3P(hdr, !=, NULL);
6863 
6864 	hash_lock = HDR_LOCK(hdr);
6865 	mutex_enter(hash_lock);
6866 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
6867 
6868 	/*
6869 	 * If the data was read into a temporary buffer,
6870 	 * move it and free the buffer.
6871 	 */
6872 	if (cb->l2rcb_abd != NULL) {
6873 		ASSERT3U(arc_hdr_size(hdr), <, zio->io_size);
6874 		if (zio->io_error == 0) {
6875 			abd_copy(hdr->b_l1hdr.b_pabd, cb->l2rcb_abd,
6876 			    arc_hdr_size(hdr));
6877 		}
6878 
6879 		/*
6880 		 * The following must be done regardless of whether
6881 		 * there was an error:
6882 		 * - free the temporary buffer
6883 		 * - point zio to the real ARC buffer
6884 		 * - set zio size accordingly
6885 		 * These are required because zio is either re-used for
6886 		 * an I/O of the block in the case of the error
6887 		 * or the zio is passed to arc_read_done() and it
6888 		 * needs real data.
6889 		 */
6890 		abd_free(cb->l2rcb_abd);
6891 		zio->io_size = zio->io_orig_size = arc_hdr_size(hdr);
6892 		zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd;
6893 	}
6894 
6895 	ASSERT3P(zio->io_abd, !=, NULL);
6896 
6897 	/*
6898 	 * Check this survived the L2ARC journey.
6899 	 */
6900 	ASSERT3P(zio->io_abd, ==, hdr->b_l1hdr.b_pabd);
6901 	zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
6902 	zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
6903 
6904 	valid_cksum = arc_cksum_is_equal(hdr, zio);
6905 	if (valid_cksum && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
6906 		mutex_exit(hash_lock);
6907 		zio->io_private = hdr;
6908 		arc_read_done(zio);
6909 	} else {
6910 		mutex_exit(hash_lock);
6911 		/*
6912 		 * Buffer didn't survive caching.  Increment stats and
6913 		 * reissue to the original storage device.
6914 		 */
6915 		if (zio->io_error != 0) {
6916 			ARCSTAT_BUMP(arcstat_l2_io_error);
6917 		} else {
6918 			zio->io_error = SET_ERROR(EIO);
6919 		}
6920 		if (!valid_cksum)
6921 			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
6922 
6923 		/*
6924 		 * If there's no waiter, issue an async i/o to the primary
6925 		 * storage now.  If there *is* a waiter, the caller must
6926 		 * issue the i/o in a context where it's OK to block.
6927 		 */
6928 		if (zio->io_waiter == NULL) {
6929 			zio_t *pio = zio_unique_parent(zio);
6930 
6931 			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
6932 
6933 			zio_nowait(zio_read(pio, zio->io_spa, zio->io_bp,
6934 			    hdr->b_l1hdr.b_pabd, zio->io_size, arc_read_done,
6935 			    hdr, zio->io_priority, cb->l2rcb_flags,
6936 			    &cb->l2rcb_zb));
6937 		}
6938 	}
6939 
6940 	kmem_free(cb, sizeof (l2arc_read_callback_t));
6941 }
6942 
6943 /*
6944  * This is the list priority from which the L2ARC will search for pages to
6945  * cache.  This is used within loops (0..3) to cycle through lists in the
6946  * desired order.  This order can have a significant effect on cache
6947  * performance.
6948  *
6949  * Currently the metadata lists are hit first, MFU then MRU, followed by
6950  * the data lists.  This function returns a locked list, and also returns
6951  * the lock pointer.
6952  */
6953 static multilist_sublist_t *
6954 l2arc_sublist_lock(int list_num)
6955 {
6956 	multilist_t *ml = NULL;
6957 	unsigned int idx;
6958 
6959 	ASSERT(list_num >= 0 && list_num <= 3);
6960 
6961 	switch (list_num) {
6962 	case 0:
6963 		ml = arc_mfu->arcs_list[ARC_BUFC_METADATA];
6964 		break;
6965 	case 1:
6966 		ml = arc_mru->arcs_list[ARC_BUFC_METADATA];
6967 		break;
6968 	case 2:
6969 		ml = arc_mfu->arcs_list[ARC_BUFC_DATA];
6970 		break;
6971 	case 3:
6972 		ml = arc_mru->arcs_list[ARC_BUFC_DATA];
6973 		break;
6974 	}
6975 
6976 	/*
6977 	 * Return a randomly-selected sublist. This is acceptable
6978 	 * because the caller feeds only a little bit of data for each
6979 	 * call (8MB). Subsequent calls will result in different
6980 	 * sublists being selected.
6981 	 */
6982 	idx = multilist_get_random_index(ml);
6983 	return (multilist_sublist_lock(ml, idx));
6984 }
6985 
6986 /*
6987  * Evict buffers from the device write hand to the distance specified in
6988  * bytes.  This distance may span populated buffers, it may span nothing.
6989  * This is clearing a region on the L2ARC device ready for writing.
6990  * If the 'all' boolean is set, every buffer is evicted.
6991  */
6992 static void
6993 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
6994 {
6995 	list_t *buflist;
6996 	arc_buf_hdr_t *hdr, *hdr_prev;
6997 	kmutex_t *hash_lock;
6998 	uint64_t taddr;
6999 
7000 	buflist = &dev->l2ad_buflist;
7001 
7002 	if (!all && dev->l2ad_first) {
7003 		/*
7004 		 * This is the first sweep through the device.  There is
7005 		 * nothing to evict.
7006 		 */
7007 		return;
7008 	}
7009 
7010 	if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
7011 		/*
7012 		 * When nearing the end of the device, evict to the end
7013 		 * before the device write hand jumps to the start.
7014 		 */
7015 		taddr = dev->l2ad_end;
7016 	} else {
7017 		taddr = dev->l2ad_hand + distance;
7018 	}
7019 	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
7020 	    uint64_t, taddr, boolean_t, all);
7021 
7022 top:
7023 	mutex_enter(&dev->l2ad_mtx);
7024 	for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
7025 		hdr_prev = list_prev(buflist, hdr);
7026 
7027 		hash_lock = HDR_LOCK(hdr);
7028 
7029 		/*
7030 		 * We cannot use mutex_enter or else we can deadlock
7031 		 * with l2arc_write_buffers (due to swapping the order
7032 		 * the hash lock and l2ad_mtx are taken).
7033 		 */
7034 		if (!mutex_tryenter(hash_lock)) {
7035 			/*
7036 			 * Missed the hash lock.  Retry.
7037 			 */
7038 			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
7039 			mutex_exit(&dev->l2ad_mtx);
7040 			mutex_enter(hash_lock);
7041 			mutex_exit(hash_lock);
7042 			goto top;
7043 		}
7044 
7045 		/*
7046 		 * A header can't be on this list if it doesn't have L2 header.
7047 		 */
7048 		ASSERT(HDR_HAS_L2HDR(hdr));
7049 
7050 		/* Ensure this header has finished being written. */
7051 		ASSERT(!HDR_L2_WRITING(hdr));
7052 		ASSERT(!HDR_L2_WRITE_HEAD(hdr));
7053 
7054 		if (!all && (hdr->b_l2hdr.b_daddr >= taddr ||
7055 		    hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
7056 			/*
7057 			 * We've evicted to the target address,
7058 			 * or the end of the device.
7059 			 */
7060 			mutex_exit(hash_lock);
7061 			break;
7062 		}
7063 
7064 		if (!HDR_HAS_L1HDR(hdr)) {
7065 			ASSERT(!HDR_L2_READING(hdr));
7066 			/*
7067 			 * This doesn't exist in the ARC.  Destroy.
7068 			 * arc_hdr_destroy() will call list_remove()
7069 			 * and decrement arcstat_l2_lsize.
7070 			 */
7071 			arc_change_state(arc_anon, hdr, hash_lock);
7072 			arc_hdr_destroy(hdr);
7073 		} else {
7074 			ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
7075 			ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
7076 			/*
7077 			 * Invalidate issued or about to be issued
7078 			 * reads, since we may be about to write
7079 			 * over this location.
7080 			 */
7081 			if (HDR_L2_READING(hdr)) {
7082 				ARCSTAT_BUMP(arcstat_l2_evict_reading);
7083 				arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED);
7084 			}
7085 
7086 			arc_hdr_l2hdr_destroy(hdr);
7087 		}
7088 		mutex_exit(hash_lock);
7089 	}
7090 	mutex_exit(&dev->l2ad_mtx);
7091 }
7092 
7093 /*
7094  * Find and write ARC buffers to the L2ARC device.
7095  *
7096  * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
7097  * for reading until they have completed writing.
7098  * The headroom_boost is an in-out parameter used to maintain headroom boost
7099  * state between calls to this function.
7100  *
7101  * Returns the number of bytes actually written (which may be smaller than
7102  * the delta by which the device hand has changed due to alignment).
7103  */
7104 static uint64_t
7105 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
7106 {
7107 	arc_buf_hdr_t *hdr, *hdr_prev, *head;
7108 	uint64_t write_asize, write_psize, write_lsize, headroom;
7109 	boolean_t full;
7110 	l2arc_write_callback_t *cb;
7111 	zio_t *pio, *wzio;
7112 	uint64_t guid = spa_load_guid(spa);
7113 
7114 	ASSERT3P(dev->l2ad_vdev, !=, NULL);
7115 
7116 	pio = NULL;
7117 	write_lsize = write_asize = write_psize = 0;
7118 	full = B_FALSE;
7119 	head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
7120 	arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR);
7121 
7122 	/*
7123 	 * Copy buffers for L2ARC writing.
7124 	 */
7125 	for (int try = 0; try <= 3; try++) {
7126 		multilist_sublist_t *mls = l2arc_sublist_lock(try);
7127 		uint64_t passed_sz = 0;
7128 
7129 		/*
7130 		 * L2ARC fast warmup.
7131 		 *
7132 		 * Until the ARC is warm and starts to evict, read from the
7133 		 * head of the ARC lists rather than the tail.
7134 		 */
7135 		if (arc_warm == B_FALSE)
7136 			hdr = multilist_sublist_head(mls);
7137 		else
7138 			hdr = multilist_sublist_tail(mls);
7139 
7140 		headroom = target_sz * l2arc_headroom;
7141 		if (zfs_compressed_arc_enabled)
7142 			headroom = (headroom * l2arc_headroom_boost) / 100;
7143 
7144 		for (; hdr; hdr = hdr_prev) {
7145 			kmutex_t *hash_lock;
7146 
7147 			if (arc_warm == B_FALSE)
7148 				hdr_prev = multilist_sublist_next(mls, hdr);
7149 			else
7150 				hdr_prev = multilist_sublist_prev(mls, hdr);
7151 
7152 			hash_lock = HDR_LOCK(hdr);
7153 			if (!mutex_tryenter(hash_lock)) {
7154 				/*
7155 				 * Skip this buffer rather than waiting.
7156 				 */
7157 				continue;
7158 			}
7159 
7160 			passed_sz += HDR_GET_LSIZE(hdr);
7161 			if (passed_sz > headroom) {
7162 				/*
7163 				 * Searched too far.
7164 				 */
7165 				mutex_exit(hash_lock);
7166 				break;
7167 			}
7168 
7169 			if (!l2arc_write_eligible(guid, hdr)) {
7170 				mutex_exit(hash_lock);
7171 				continue;
7172 			}
7173 
7174 			/*
7175 			 * We rely on the L1 portion of the header below, so
7176 			 * it's invalid for this header to have been evicted out
7177 			 * of the ghost cache, prior to being written out. The
7178 			 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
7179 			 */
7180 			ASSERT(HDR_HAS_L1HDR(hdr));
7181 
7182 			ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
7183 			ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
7184 			ASSERT3U(arc_hdr_size(hdr), >, 0);
7185 			uint64_t psize = arc_hdr_size(hdr);
7186 			uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev,
7187 			    psize);
7188 
7189 			if ((write_asize + asize) > target_sz) {
7190 				full = B_TRUE;
7191 				mutex_exit(hash_lock);
7192 				break;
7193 			}
7194 
7195 			if (pio == NULL) {
7196 				/*
7197 				 * Insert a dummy header on the buflist so
7198 				 * l2arc_write_done() can find where the
7199 				 * write buffers begin without searching.
7200 				 */
7201 				mutex_enter(&dev->l2ad_mtx);
7202 				list_insert_head(&dev->l2ad_buflist, head);
7203 				mutex_exit(&dev->l2ad_mtx);
7204 
7205 				cb = kmem_alloc(
7206 				    sizeof (l2arc_write_callback_t), KM_SLEEP);
7207 				cb->l2wcb_dev = dev;
7208 				cb->l2wcb_head = head;
7209 				pio = zio_root(spa, l2arc_write_done, cb,
7210 				    ZIO_FLAG_CANFAIL);
7211 			}
7212 
7213 			hdr->b_l2hdr.b_dev = dev;
7214 			hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
7215 			arc_hdr_set_flags(hdr,
7216 			    ARC_FLAG_L2_WRITING | ARC_FLAG_HAS_L2HDR);
7217 
7218 			mutex_enter(&dev->l2ad_mtx);
7219 			list_insert_head(&dev->l2ad_buflist, hdr);
7220 			mutex_exit(&dev->l2ad_mtx);
7221 
7222 			(void) zfs_refcount_add_many(&dev->l2ad_alloc, psize,
7223 			    hdr);
7224 
7225 			/*
7226 			 * Normally the L2ARC can use the hdr's data, but if
7227 			 * we're sharing data between the hdr and one of its
7228 			 * bufs, L2ARC needs its own copy of the data so that
7229 			 * the ZIO below can't race with the buf consumer.
7230 			 * Another case where we need to create a copy of the
7231 			 * data is when the buffer size is not device-aligned
7232 			 * and we need to pad the block to make it such.
7233 			 * That also keeps the clock hand suitably aligned.
7234 			 *
7235 			 * To ensure that the copy will be available for the
7236 			 * lifetime of the ZIO and be cleaned up afterwards, we
7237 			 * add it to the l2arc_free_on_write queue.
7238 			 */
7239 			abd_t *to_write;
7240 			if (!HDR_SHARED_DATA(hdr) && psize == asize) {
7241 				to_write = hdr->b_l1hdr.b_pabd;
7242 			} else {
7243 				to_write = abd_alloc_for_io(asize,
7244 				    HDR_ISTYPE_METADATA(hdr));
7245 				abd_copy(to_write, hdr->b_l1hdr.b_pabd, psize);
7246 				if (asize != psize) {
7247 					abd_zero_off(to_write, psize,
7248 					    asize - psize);
7249 				}
7250 				l2arc_free_abd_on_write(to_write, asize,
7251 				    arc_buf_type(hdr));
7252 			}
7253 			wzio = zio_write_phys(pio, dev->l2ad_vdev,
7254 			    hdr->b_l2hdr.b_daddr, asize, to_write,
7255 			    ZIO_CHECKSUM_OFF, NULL, hdr,
7256 			    ZIO_PRIORITY_ASYNC_WRITE,
7257 			    ZIO_FLAG_CANFAIL, B_FALSE);
7258 
7259 			write_lsize += HDR_GET_LSIZE(hdr);
7260 			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
7261 			    zio_t *, wzio);
7262 
7263 			write_psize += psize;
7264 			write_asize += asize;
7265 			dev->l2ad_hand += asize;
7266 
7267 			mutex_exit(hash_lock);
7268 
7269 			(void) zio_nowait(wzio);
7270 		}
7271 
7272 		multilist_sublist_unlock(mls);
7273 
7274 		if (full == B_TRUE)
7275 			break;
7276 	}
7277 
7278 	/* No buffers selected for writing? */
7279 	if (pio == NULL) {
7280 		ASSERT0(write_lsize);
7281 		ASSERT(!HDR_HAS_L1HDR(head));
7282 		kmem_cache_free(hdr_l2only_cache, head);
7283 		return (0);
7284 	}
7285 
7286 	ASSERT3U(write_asize, <=, target_sz);
7287 	ARCSTAT_BUMP(arcstat_l2_writes_sent);
7288 	ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize);
7289 	ARCSTAT_INCR(arcstat_l2_lsize, write_lsize);
7290 	ARCSTAT_INCR(arcstat_l2_psize, write_psize);
7291 	vdev_space_update(dev->l2ad_vdev, write_psize, 0, 0);
7292 
7293 	/*
7294 	 * Bump device hand to the device start if it is approaching the end.
7295 	 * l2arc_evict() will already have evicted ahead for this case.
7296 	 */
7297 	if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
7298 		dev->l2ad_hand = dev->l2ad_start;
7299 		dev->l2ad_first = B_FALSE;
7300 	}
7301 
7302 	dev->l2ad_writing = B_TRUE;
7303 	(void) zio_wait(pio);
7304 	dev->l2ad_writing = B_FALSE;
7305 
7306 	return (write_asize);
7307 }
7308 
7309 /*
7310  * This thread feeds the L2ARC at regular intervals.  This is the beating
7311  * heart of the L2ARC.
7312  */
7313 /* ARGSUSED */
7314 static void
7315 l2arc_feed_thread(void *unused)
7316 {
7317 	callb_cpr_t cpr;
7318 	l2arc_dev_t *dev;
7319 	spa_t *spa;
7320 	uint64_t size, wrote;
7321 	clock_t begin, next = ddi_get_lbolt();
7322 
7323 	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
7324 
7325 	mutex_enter(&l2arc_feed_thr_lock);
7326 
7327 	while (l2arc_thread_exit == 0) {
7328 		CALLB_CPR_SAFE_BEGIN(&cpr);
7329 		(void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
7330 		    next);
7331 		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
7332 		next = ddi_get_lbolt() + hz;
7333 
7334 		/*
7335 		 * Quick check for L2ARC devices.
7336 		 */
7337 		mutex_enter(&l2arc_dev_mtx);
7338 		if (l2arc_ndev == 0) {
7339 			mutex_exit(&l2arc_dev_mtx);
7340 			continue;
7341 		}
7342 		mutex_exit(&l2arc_dev_mtx);
7343 		begin = ddi_get_lbolt();
7344 
7345 		/*
7346 		 * This selects the next l2arc device to write to, and in
7347 		 * doing so the next spa to feed from: dev->l2ad_spa.   This
7348 		 * will return NULL if there are now no l2arc devices or if
7349 		 * they are all faulted.
7350 		 *
7351 		 * If a device is returned, its spa's config lock is also
7352 		 * held to prevent device removal.  l2arc_dev_get_next()
7353 		 * will grab and release l2arc_dev_mtx.
7354 		 */
7355 		if ((dev = l2arc_dev_get_next()) == NULL)
7356 			continue;
7357 
7358 		spa = dev->l2ad_spa;
7359 		ASSERT3P(spa, !=, NULL);
7360 
7361 		/*
7362 		 * If the pool is read-only then force the feed thread to
7363 		 * sleep a little longer.
7364 		 */
7365 		if (!spa_writeable(spa)) {
7366 			next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
7367 			spa_config_exit(spa, SCL_L2ARC, dev);
7368 			continue;
7369 		}
7370 
7371 		/*
7372 		 * Avoid contributing to memory pressure.
7373 		 */
7374 		if (arc_reclaim_needed()) {
7375 			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
7376 			spa_config_exit(spa, SCL_L2ARC, dev);
7377 			continue;
7378 		}
7379 
7380 		ARCSTAT_BUMP(arcstat_l2_feeds);
7381 
7382 		size = l2arc_write_size();
7383 
7384 		/*
7385 		 * Evict L2ARC buffers that will be overwritten.
7386 		 */
7387 		l2arc_evict(dev, size, B_FALSE);
7388 
7389 		/*
7390 		 * Write ARC buffers.
7391 		 */
7392 		wrote = l2arc_write_buffers(spa, dev, size);
7393 
7394 		/*
7395 		 * Calculate interval between writes.
7396 		 */
7397 		next = l2arc_write_interval(begin, size, wrote);
7398 		spa_config_exit(spa, SCL_L2ARC, dev);
7399 	}
7400 
7401 	l2arc_thread_exit = 0;
7402 	cv_broadcast(&l2arc_feed_thr_cv);
7403 	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
7404 	thread_exit();
7405 }
7406 
7407 boolean_t
7408 l2arc_vdev_present(vdev_t *vd)
7409 {
7410 	l2arc_dev_t *dev;
7411 
7412 	mutex_enter(&l2arc_dev_mtx);
7413 	for (dev = list_head(l2arc_dev_list); dev != NULL;
7414 	    dev = list_next(l2arc_dev_list, dev)) {
7415 		if (dev->l2ad_vdev == vd)
7416 			break;
7417 	}
7418 	mutex_exit(&l2arc_dev_mtx);
7419 
7420 	return (dev != NULL);
7421 }
7422 
7423 /*
7424  * Add a vdev for use by the L2ARC.  By this point the spa has already
7425  * validated the vdev and opened it.
7426  */
7427 void
7428 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
7429 {
7430 	l2arc_dev_t *adddev;
7431 
7432 	ASSERT(!l2arc_vdev_present(vd));
7433 
7434 	/*
7435 	 * Create a new l2arc device entry.
7436 	 */
7437 	adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
7438 	adddev->l2ad_spa = spa;
7439 	adddev->l2ad_vdev = vd;
7440 	adddev->l2ad_start = VDEV_LABEL_START_SIZE;
7441 	adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
7442 	adddev->l2ad_hand = adddev->l2ad_start;
7443 	adddev->l2ad_first = B_TRUE;
7444 	adddev->l2ad_writing = B_FALSE;
7445 
7446 	mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
7447 	/*
7448 	 * This is a list of all ARC buffers that are still valid on the
7449 	 * device.
7450 	 */
7451 	list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
7452 	    offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
7453 
7454 	vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
7455 	zfs_refcount_create(&adddev->l2ad_alloc);
7456 
7457 	/*
7458 	 * Add device to global list
7459 	 */
7460 	mutex_enter(&l2arc_dev_mtx);
7461 	list_insert_head(l2arc_dev_list, adddev);
7462 	atomic_inc_64(&l2arc_ndev);
7463 	mutex_exit(&l2arc_dev_mtx);
7464 }
7465 
7466 /*
7467  * Remove a vdev from the L2ARC.
7468  */
7469 void
7470 l2arc_remove_vdev(vdev_t *vd)
7471 {
7472 	l2arc_dev_t *dev, *nextdev, *remdev = NULL;
7473 
7474 	/*
7475 	 * Find the device by vdev
7476 	 */
7477 	mutex_enter(&l2arc_dev_mtx);
7478 	for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
7479 		nextdev = list_next(l2arc_dev_list, dev);
7480 		if (vd == dev->l2ad_vdev) {
7481 			remdev = dev;
7482 			break;
7483 		}
7484 	}
7485 	ASSERT3P(remdev, !=, NULL);
7486 
7487 	/*
7488 	 * Remove device from global list
7489 	 */
7490 	list_remove(l2arc_dev_list, remdev);
7491 	l2arc_dev_last = NULL;		/* may have been invalidated */
7492 	atomic_dec_64(&l2arc_ndev);
7493 	mutex_exit(&l2arc_dev_mtx);
7494 
7495 	/*
7496 	 * Clear all buflists and ARC references.  L2ARC device flush.
7497 	 */
7498 	l2arc_evict(remdev, 0, B_TRUE);
7499 	list_destroy(&remdev->l2ad_buflist);
7500 	mutex_destroy(&remdev->l2ad_mtx);
7501 	zfs_refcount_destroy(&remdev->l2ad_alloc);
7502 	kmem_free(remdev, sizeof (l2arc_dev_t));
7503 }
7504 
7505 void
7506 l2arc_init(void)
7507 {
7508 	l2arc_thread_exit = 0;
7509 	l2arc_ndev = 0;
7510 	l2arc_writes_sent = 0;
7511 	l2arc_writes_done = 0;
7512 
7513 	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
7514 	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
7515 	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
7516 	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
7517 
7518 	l2arc_dev_list = &L2ARC_dev_list;
7519 	l2arc_free_on_write = &L2ARC_free_on_write;
7520 	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
7521 	    offsetof(l2arc_dev_t, l2ad_node));
7522 	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
7523 	    offsetof(l2arc_data_free_t, l2df_list_node));
7524 }
7525 
7526 void
7527 l2arc_fini(void)
7528 {
7529 	/*
7530 	 * This is called from dmu_fini(), which is called from spa_fini();
7531 	 * Because of this, we can assume that all l2arc devices have
7532 	 * already been removed when the pools themselves were removed.
7533 	 */
7534 
7535 	l2arc_do_free_on_write();
7536 
7537 	mutex_destroy(&l2arc_feed_thr_lock);
7538 	cv_destroy(&l2arc_feed_thr_cv);
7539 	mutex_destroy(&l2arc_dev_mtx);
7540 	mutex_destroy(&l2arc_free_on_write_mtx);
7541 
7542 	list_destroy(l2arc_dev_list);
7543 	list_destroy(l2arc_free_on_write);
7544 }
7545 
7546 void
7547 l2arc_start(void)
7548 {
7549 	if (!(spa_mode_global & FWRITE))
7550 		return;
7551 
7552 	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
7553 	    TS_RUN, minclsyspri);
7554 }
7555 
7556 void
7557 l2arc_stop(void)
7558 {
7559 	if (!(spa_mode_global & FWRITE))
7560 		return;
7561 
7562 	mutex_enter(&l2arc_feed_thr_lock);
7563 	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
7564 	l2arc_thread_exit = 1;
7565 	while (l2arc_thread_exit != 0)
7566 		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
7567 	mutex_exit(&l2arc_feed_thr_lock);
7568 }
7569