xref: /illumos-gate/usr/src/uts/common/fs/zfs/abd.c (revision e86372a0)
1 /*
2  * This file and its contents are supplied under the terms of the
3  * Common Development and Distribution License ("CDDL"), version 1.0.
4  * You may only use this file in accordance with the terms of version
5  * 1.0 of the CDDL.
6  *
7  * A full copy of the text of the CDDL should have accompanied this
8  * source.  A copy of the CDDL is also available via the Internet at
9  * http://www.illumos.org/license/CDDL.
10  */
11 
12 /*
13  * Copyright (c) 2014 by Chunwei Chen. All rights reserved.
14  * Copyright (c) 2019 by Delphix. All rights reserved.
15  * Copyright 2020 Joyent, Inc.
16  */
17 
18 /*
19  * ARC buffer data (ABD).
20  *
21  * ABDs are an abstract data structure for the ARC which can use two
22  * different ways of storing the underlying data:
23  *
24  * (a) Linear buffer. In this case, all the data in the ABD is stored in one
25  *     contiguous buffer in memory (from a zio_[data_]buf_* kmem cache).
26  *
27  *         +-------------------+
28  *         | ABD (linear)      |
29  *         |   abd_flags = ... |
30  *         |   abd_size = ...  |     +--------------------------------+
31  *         |   abd_buf ------------->| raw buffer of size abd_size    |
32  *         +-------------------+     +--------------------------------+
33  *              no abd_chunks
34  *
35  * (b) Scattered buffer. In this case, the data in the ABD is split into
36  *     equal-sized chunks (from the abd_chunk_cache kmem_cache), with pointers
37  *     to the chunks recorded in an array at the end of the ABD structure.
38  *
39  *         +-------------------+
40  *         | ABD (scattered)   |
41  *         |   abd_flags = ... |
42  *         |   abd_size = ...  |
43  *         |   abd_offset = 0  |                           +-----------+
44  *         |   abd_chunks[0] ----------------------------->| chunk 0   |
45  *         |   abd_chunks[1] ---------------------+        +-----------+
46  *         |   ...             |                  |        +-----------+
47  *         |   abd_chunks[N-1] ---------+         +------->| chunk 1   |
48  *         +-------------------+        |                  +-----------+
49  *                                      |                      ...
50  *                                      |                  +-----------+
51  *                                      +----------------->| chunk N-1 |
52  *                                                         +-----------+
53  *
54  * Using a large proportion of scattered ABDs decreases ARC fragmentation since
55  * when we are at the limit of allocatable space, using equal-size chunks will
56  * allow us to quickly reclaim enough space for a new large allocation (assuming
57  * it is also scattered).
58  *
59  * In addition to directly allocating a linear or scattered ABD, it is also
60  * possible to create an ABD by requesting the "sub-ABD" starting at an offset
61  * within an existing ABD. In linear buffers this is simple (set abd_buf of
62  * the new ABD to the starting point within the original raw buffer), but
63  * scattered ABDs are a little more complex. The new ABD makes a copy of the
64  * relevant abd_chunks pointers (but not the underlying data). However, to
65  * provide arbitrary rather than only chunk-aligned starting offsets, it also
66  * tracks an abd_offset field which represents the starting point of the data
67  * within the first chunk in abd_chunks. For both linear and scattered ABDs,
68  * creating an offset ABD marks the original ABD as the offset's parent, and the
69  * original ABD's abd_children refcount is incremented. This data allows us to
70  * ensure the root ABD isn't deleted before its children.
71  *
72  * Most consumers should never need to know what type of ABD they're using --
73  * the ABD public API ensures that it's possible to transparently switch from
74  * using a linear ABD to a scattered one when doing so would be beneficial.
75  *
76  * If you need to use the data within an ABD directly, if you know it's linear
77  * (because you allocated it) you can use abd_to_buf() to access the underlying
78  * raw buffer. Otherwise, you should use one of the abd_borrow_buf* functions
79  * which will allocate a raw buffer if necessary. Use the abd_return_buf*
80  * functions to return any raw buffers that are no longer necessary when you're
81  * done using them.
82  *
83  * There are a variety of ABD APIs that implement basic buffer operations:
84  * compare, copy, read, write, and fill with zeroes. If you need a custom
85  * function which progressively accesses the whole ABD, use the abd_iterate_*
86  * functions.
87  */
88 
89 #include <sys/abd.h>
90 #include <sys/param.h>
91 #include <sys/zio.h>
92 #include <sys/zfs_context.h>
93 #include <sys/zfs_znode.h>
94 
95 typedef struct abd_stats {
96 	kstat_named_t abdstat_struct_size;
97 	kstat_named_t abdstat_scatter_cnt;
98 	kstat_named_t abdstat_scatter_data_size;
99 	kstat_named_t abdstat_scatter_chunk_waste;
100 	kstat_named_t abdstat_linear_cnt;
101 	kstat_named_t abdstat_linear_data_size;
102 } abd_stats_t;
103 
104 static abd_stats_t abd_stats = {
105 	/* Amount of memory occupied by all of the abd_t struct allocations */
106 	{ "struct_size",			KSTAT_DATA_UINT64 },
107 	/*
108 	 * The number of scatter ABDs which are currently allocated, excluding
109 	 * ABDs which don't own their data (for instance the ones which were
110 	 * allocated through abd_get_offset()).
111 	 */
112 	{ "scatter_cnt",			KSTAT_DATA_UINT64 },
113 	/* Amount of data stored in all scatter ABDs tracked by scatter_cnt */
114 	{ "scatter_data_size",			KSTAT_DATA_UINT64 },
115 	/*
116 	 * The amount of space wasted at the end of the last chunk across all
117 	 * scatter ABDs tracked by scatter_cnt.
118 	 */
119 	{ "scatter_chunk_waste",		KSTAT_DATA_UINT64 },
120 	/*
121 	 * The number of linear ABDs which are currently allocated, excluding
122 	 * ABDs which don't own their data (for instance the ones which were
123 	 * allocated through abd_get_offset() and abd_get_from_buf()). If an
124 	 * ABD takes ownership of its buf then it will become tracked.
125 	 */
126 	{ "linear_cnt",				KSTAT_DATA_UINT64 },
127 	/* Amount of data stored in all linear ABDs tracked by linear_cnt */
128 	{ "linear_data_size",			KSTAT_DATA_UINT64 },
129 };
130 
131 #define	ABDSTAT(stat)		(abd_stats.stat.value.ui64)
132 #define	ABDSTAT_INCR(stat, val) \
133 	atomic_add_64(&abd_stats.stat.value.ui64, (val))
134 #define	ABDSTAT_BUMP(stat)	ABDSTAT_INCR(stat, 1)
135 #define	ABDSTAT_BUMPDOWN(stat)	ABDSTAT_INCR(stat, -1)
136 
137 /*
138  * It is possible to make all future ABDs be linear by setting this to B_FALSE.
139  * Otherwise, ABDs are allocated scattered by default unless the caller uses
140  * abd_alloc_linear().
141  */
142 boolean_t zfs_abd_scatter_enabled = B_TRUE;
143 
144 /*
145  * zfs_abd_scatter_min_size is the minimum allocation size to use scatter
146  * ABD's.  Smaller allocations will use linear ABD's which uses
147  * zio_[data_]buf_alloc().
148  *
149  * Scatter ABD's use at least one page each, so sub-page allocations waste
150  * some space when allocated as scatter (e.g. 2KB scatter allocation wastes
151  * half of each page).  Using linear ABD's for small allocations means that
152  * they will be put on slabs which contain many allocations.  This can
153  * improve memory efficiency, but it also makes it much harder for ARC
154  * evictions to actually free pages, because all the buffers on one slab need
155  * to be freed in order for the slab (and underlying pages) to be freed.
156  * Typically, 512B and 1KB kmem caches have 16 buffers per slab, so it's
157  * possible for them to actually waste more memory than scatter (one page per
158  * buf = wasting 3/4 or 7/8th; one buf per slab = wasting 15/16th).
159  *
160  * Spill blocks are typically 512B and are heavily used on systems running
161  * selinux with the default dnode size and the `xattr=sa` property set.
162  *
163  * By default we use linear allocations for 512B and 1KB, and scatter
164  * allocations for larger (1.5KB and up).
165  */
166 int zfs_abd_scatter_min_size = 512 * 3;
167 
168 /*
169  * The size of the chunks ABD allocates. Because the sizes allocated from the
170  * kmem_cache can't change, this tunable can only be modified at boot. Changing
171  * it at runtime would cause ABD iteration to work incorrectly for ABDs which
172  * were allocated with the old size, so a safeguard has been put in place which
173  * will cause the machine to panic if you change it and try to access the data
174  * within a scattered ABD.
175  */
176 size_t zfs_abd_chunk_size = 4096;
177 
178 #ifdef _KERNEL
179 extern vmem_t *zio_alloc_arena;
180 #endif
181 
182 kmem_cache_t *abd_chunk_cache;
183 static kstat_t *abd_ksp;
184 
185 extern inline boolean_t abd_is_linear(abd_t *abd);
186 extern inline void abd_copy(abd_t *dabd, abd_t *sabd, size_t size);
187 extern inline void abd_copy_from_buf(abd_t *abd, const void *buf, size_t size);
188 extern inline void abd_copy_to_buf(void* buf, abd_t *abd, size_t size);
189 extern inline int abd_cmp_buf(abd_t *abd, const void *buf, size_t size);
190 extern inline void abd_zero(abd_t *abd, size_t size);
191 
192 static void *
193 abd_alloc_chunk()
194 {
195 	void *c = kmem_cache_alloc(abd_chunk_cache, KM_PUSHPAGE);
196 	ASSERT3P(c, !=, NULL);
197 	return (c);
198 }
199 
200 static void
201 abd_free_chunk(void *c)
202 {
203 	kmem_cache_free(abd_chunk_cache, c);
204 }
205 
206 void
207 abd_init(void)
208 {
209 	vmem_t *data_alloc_arena = NULL;
210 
211 #ifdef _KERNEL
212 	data_alloc_arena = zio_alloc_arena;
213 #endif
214 
215 	/*
216 	 * Since ABD chunks do not appear in crash dumps, we pass KMC_NOTOUCH
217 	 * so that no allocator metadata is stored with the buffers.
218 	 */
219 	abd_chunk_cache = kmem_cache_create("abd_chunk", zfs_abd_chunk_size, 0,
220 	    NULL, NULL, NULL, NULL, data_alloc_arena, KMC_NOTOUCH);
221 
222 	abd_ksp = kstat_create("zfs", 0, "abdstats", "misc", KSTAT_TYPE_NAMED,
223 	    sizeof (abd_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
224 	if (abd_ksp != NULL) {
225 		abd_ksp->ks_data = &abd_stats;
226 		kstat_install(abd_ksp);
227 	}
228 }
229 
230 void
231 abd_fini(void)
232 {
233 	if (abd_ksp != NULL) {
234 		kstat_delete(abd_ksp);
235 		abd_ksp = NULL;
236 	}
237 
238 	kmem_cache_destroy(abd_chunk_cache);
239 	abd_chunk_cache = NULL;
240 }
241 
242 static inline size_t
243 abd_chunkcnt_for_bytes(size_t size)
244 {
245 	return (P2ROUNDUP(size, zfs_abd_chunk_size) / zfs_abd_chunk_size);
246 }
247 
248 static inline size_t
249 abd_scatter_chunkcnt(abd_t *abd)
250 {
251 	ASSERT(!abd_is_linear(abd));
252 	return (abd_chunkcnt_for_bytes(
253 	    abd->abd_u.abd_scatter.abd_offset + abd->abd_size));
254 }
255 
256 static inline void
257 abd_verify(abd_t *abd)
258 {
259 	ASSERT3U(abd->abd_size, >, 0);
260 	ASSERT3U(abd->abd_size, <=, SPA_MAXBLOCKSIZE);
261 	ASSERT3U(abd->abd_flags, ==, abd->abd_flags & (ABD_FLAG_LINEAR |
262 	    ABD_FLAG_OWNER | ABD_FLAG_META));
263 	IMPLY(abd->abd_parent != NULL, !(abd->abd_flags & ABD_FLAG_OWNER));
264 	IMPLY(abd->abd_flags & ABD_FLAG_META, abd->abd_flags & ABD_FLAG_OWNER);
265 	if (abd_is_linear(abd)) {
266 		ASSERT3P(abd->abd_u.abd_linear.abd_buf, !=, NULL);
267 	} else {
268 		ASSERT3U(abd->abd_u.abd_scatter.abd_offset, <,
269 		    zfs_abd_chunk_size);
270 		size_t n = abd_scatter_chunkcnt(abd);
271 		for (int i = 0; i < n; i++) {
272 			ASSERT3P(
273 			    abd->abd_u.abd_scatter.abd_chunks[i], !=, NULL);
274 		}
275 	}
276 }
277 
278 static inline abd_t *
279 abd_alloc_struct(size_t chunkcnt)
280 {
281 	size_t size = offsetof(abd_t, abd_u.abd_scatter.abd_chunks[chunkcnt]);
282 	abd_t *abd = kmem_alloc(size, KM_PUSHPAGE);
283 	ASSERT3P(abd, !=, NULL);
284 	ABDSTAT_INCR(abdstat_struct_size, size);
285 
286 	return (abd);
287 }
288 
289 static inline void
290 abd_free_struct(abd_t *abd)
291 {
292 	size_t chunkcnt = abd_is_linear(abd) ? 0 : abd_scatter_chunkcnt(abd);
293 	int size = offsetof(abd_t, abd_u.abd_scatter.abd_chunks[chunkcnt]);
294 	kmem_free(abd, size);
295 	ABDSTAT_INCR(abdstat_struct_size, -size);
296 }
297 
298 /*
299  * Allocate an ABD, along with its own underlying data buffers. Use this if you
300  * don't care whether the ABD is linear or not.
301  */
302 abd_t *
303 abd_alloc(size_t size, boolean_t is_metadata)
304 {
305 	/* see the comment above zfs_abd_scatter_min_size */
306 	if (!zfs_abd_scatter_enabled || size < zfs_abd_scatter_min_size)
307 		return (abd_alloc_linear(size, is_metadata));
308 
309 	VERIFY3U(size, <=, SPA_MAXBLOCKSIZE);
310 
311 	size_t n = abd_chunkcnt_for_bytes(size);
312 	abd_t *abd = abd_alloc_struct(n);
313 
314 	abd->abd_flags = ABD_FLAG_OWNER;
315 	if (is_metadata) {
316 		abd->abd_flags |= ABD_FLAG_META;
317 	}
318 	abd->abd_size = size;
319 	abd->abd_parent = NULL;
320 	zfs_refcount_create(&abd->abd_children);
321 
322 	abd->abd_u.abd_scatter.abd_offset = 0;
323 	abd->abd_u.abd_scatter.abd_chunk_size = zfs_abd_chunk_size;
324 
325 	for (int i = 0; i < n; i++) {
326 		void *c = abd_alloc_chunk();
327 		ASSERT3P(c, !=, NULL);
328 		abd->abd_u.abd_scatter.abd_chunks[i] = c;
329 	}
330 
331 	ABDSTAT_BUMP(abdstat_scatter_cnt);
332 	ABDSTAT_INCR(abdstat_scatter_data_size, size);
333 	ABDSTAT_INCR(abdstat_scatter_chunk_waste,
334 	    n * zfs_abd_chunk_size - size);
335 
336 	return (abd);
337 }
338 
339 static void
340 abd_free_scatter(abd_t *abd)
341 {
342 	size_t n = abd_scatter_chunkcnt(abd);
343 	for (int i = 0; i < n; i++) {
344 		abd_free_chunk(abd->abd_u.abd_scatter.abd_chunks[i]);
345 	}
346 
347 	zfs_refcount_destroy(&abd->abd_children);
348 	ABDSTAT_BUMPDOWN(abdstat_scatter_cnt);
349 	ABDSTAT_INCR(abdstat_scatter_data_size, -(int)abd->abd_size);
350 	ABDSTAT_INCR(abdstat_scatter_chunk_waste,
351 	    abd->abd_size - n * zfs_abd_chunk_size);
352 
353 	abd_free_struct(abd);
354 }
355 
356 /*
357  * Allocate an ABD that must be linear, along with its own underlying data
358  * buffer. Only use this when it would be very annoying to write your ABD
359  * consumer with a scattered ABD.
360  */
361 abd_t *
362 abd_alloc_linear(size_t size, boolean_t is_metadata)
363 {
364 	abd_t *abd = abd_alloc_struct(0);
365 
366 	VERIFY3U(size, <=, SPA_MAXBLOCKSIZE);
367 
368 	abd->abd_flags = ABD_FLAG_LINEAR | ABD_FLAG_OWNER;
369 	if (is_metadata) {
370 		abd->abd_flags |= ABD_FLAG_META;
371 	}
372 	abd->abd_size = size;
373 	abd->abd_parent = NULL;
374 	zfs_refcount_create(&abd->abd_children);
375 
376 	if (is_metadata) {
377 		abd->abd_u.abd_linear.abd_buf = zio_buf_alloc(size);
378 	} else {
379 		abd->abd_u.abd_linear.abd_buf = zio_data_buf_alloc(size);
380 	}
381 
382 	ABDSTAT_BUMP(abdstat_linear_cnt);
383 	ABDSTAT_INCR(abdstat_linear_data_size, size);
384 
385 	return (abd);
386 }
387 
388 static void
389 abd_free_linear(abd_t *abd)
390 {
391 	if (abd->abd_flags & ABD_FLAG_META) {
392 		zio_buf_free(abd->abd_u.abd_linear.abd_buf, abd->abd_size);
393 	} else {
394 		zio_data_buf_free(abd->abd_u.abd_linear.abd_buf, abd->abd_size);
395 	}
396 
397 	zfs_refcount_destroy(&abd->abd_children);
398 	ABDSTAT_BUMPDOWN(abdstat_linear_cnt);
399 	ABDSTAT_INCR(abdstat_linear_data_size, -(int)abd->abd_size);
400 
401 	abd_free_struct(abd);
402 }
403 
404 /*
405  * Free an ABD. Only use this on ABDs allocated with abd_alloc() or
406  * abd_alloc_linear().
407  */
408 void
409 abd_free(abd_t *abd)
410 {
411 	abd_verify(abd);
412 	ASSERT3P(abd->abd_parent, ==, NULL);
413 	ASSERT(abd->abd_flags & ABD_FLAG_OWNER);
414 	if (abd_is_linear(abd))
415 		abd_free_linear(abd);
416 	else
417 		abd_free_scatter(abd);
418 }
419 
420 /*
421  * Allocate an ABD of the same format (same metadata flag, same scatterize
422  * setting) as another ABD.
423  */
424 abd_t *
425 abd_alloc_sametype(abd_t *sabd, size_t size)
426 {
427 	boolean_t is_metadata = (sabd->abd_flags & ABD_FLAG_META) != 0;
428 	if (abd_is_linear(sabd)) {
429 		return (abd_alloc_linear(size, is_metadata));
430 	} else {
431 		return (abd_alloc(size, is_metadata));
432 	}
433 }
434 
435 /*
436  * If we're going to use this ABD for doing I/O using the block layer, the
437  * consumer of the ABD data doesn't care if it's scattered or not, and we don't
438  * plan to store this ABD in memory for a long period of time, we should
439  * allocate the ABD type that requires the least data copying to do the I/O.
440  *
441  * Currently this is linear ABDs, however if ldi_strategy() can ever issue I/Os
442  * using a scatter/gather list we should switch to that and replace this call
443  * with vanilla abd_alloc().
444  */
445 abd_t *
446 abd_alloc_for_io(size_t size, boolean_t is_metadata)
447 {
448 	return (abd_alloc_linear(size, is_metadata));
449 }
450 
451 /*
452  * Allocate a new ABD to point to offset off of sabd. It shares the underlying
453  * buffer data with sabd. Use abd_put() to free. sabd must not be freed while
454  * any derived ABDs exist.
455  */
456 /* ARGSUSED */
457 static inline abd_t *
458 abd_get_offset_impl(abd_t *sabd, size_t off, size_t size)
459 {
460 	abd_t *abd;
461 
462 	abd_verify(sabd);
463 	ASSERT3U(off, <=, sabd->abd_size);
464 
465 	if (abd_is_linear(sabd)) {
466 		abd = abd_alloc_struct(0);
467 
468 		/*
469 		 * Even if this buf is filesystem metadata, we only track that
470 		 * if we own the underlying data buffer, which is not true in
471 		 * this case. Therefore, we don't ever use ABD_FLAG_META here.
472 		 */
473 		abd->abd_flags = ABD_FLAG_LINEAR;
474 
475 		abd->abd_u.abd_linear.abd_buf =
476 		    (char *)sabd->abd_u.abd_linear.abd_buf + off;
477 	} else {
478 		size_t new_offset = sabd->abd_u.abd_scatter.abd_offset + off;
479 		size_t chunkcnt = abd_scatter_chunkcnt(sabd) -
480 		    (new_offset / zfs_abd_chunk_size);
481 
482 		abd = abd_alloc_struct(chunkcnt);
483 
484 		/*
485 		 * Even if this buf is filesystem metadata, we only track that
486 		 * if we own the underlying data buffer, which is not true in
487 		 * this case. Therefore, we don't ever use ABD_FLAG_META here.
488 		 */
489 		abd->abd_flags = 0;
490 
491 		abd->abd_u.abd_scatter.abd_offset =
492 		    new_offset % zfs_abd_chunk_size;
493 		abd->abd_u.abd_scatter.abd_chunk_size = zfs_abd_chunk_size;
494 
495 		/* Copy the scatterlist starting at the correct offset */
496 		(void) memcpy(&abd->abd_u.abd_scatter.abd_chunks,
497 		    &sabd->abd_u.abd_scatter.abd_chunks[new_offset /
498 		    zfs_abd_chunk_size],
499 		    chunkcnt * sizeof (void *));
500 	}
501 
502 	abd->abd_size = sabd->abd_size - off;
503 	abd->abd_parent = sabd;
504 	zfs_refcount_create(&abd->abd_children);
505 	(void) zfs_refcount_add_many(&sabd->abd_children, abd->abd_size, abd);
506 
507 	return (abd);
508 }
509 
510 abd_t *
511 abd_get_offset(abd_t *sabd, size_t off)
512 {
513 	size_t size = sabd->abd_size > off ? sabd->abd_size - off : 0;
514 
515 	VERIFY3U(size, >, 0);
516 
517 	return (abd_get_offset_impl(sabd, off, size));
518 }
519 
520 abd_t *
521 abd_get_offset_size(abd_t *sabd, size_t off, size_t size)
522 {
523 	ASSERT3U(off + size, <=, sabd->abd_size);
524 
525 	return (abd_get_offset_impl(sabd, off, size));
526 }
527 
528 
529 /*
530  * Allocate a linear ABD structure for buf. You must free this with abd_put()
531  * since the resulting ABD doesn't own its own buffer.
532  */
533 abd_t *
534 abd_get_from_buf(void *buf, size_t size)
535 {
536 	abd_t *abd = abd_alloc_struct(0);
537 
538 	VERIFY3U(size, <=, SPA_MAXBLOCKSIZE);
539 
540 	/*
541 	 * Even if this buf is filesystem metadata, we only track that if we
542 	 * own the underlying data buffer, which is not true in this case.
543 	 * Therefore, we don't ever use ABD_FLAG_META here.
544 	 */
545 	abd->abd_flags = ABD_FLAG_LINEAR;
546 	abd->abd_size = size;
547 	abd->abd_parent = NULL;
548 	zfs_refcount_create(&abd->abd_children);
549 
550 	abd->abd_u.abd_linear.abd_buf = buf;
551 
552 	return (abd);
553 }
554 
555 /*
556  * Free an ABD allocated from abd_get_offset() or abd_get_from_buf(). Will not
557  * free the underlying scatterlist or buffer.
558  */
559 void
560 abd_put(abd_t *abd)
561 {
562 	abd_verify(abd);
563 	ASSERT(!(abd->abd_flags & ABD_FLAG_OWNER));
564 
565 	if (abd->abd_parent != NULL) {
566 		(void) zfs_refcount_remove_many(&abd->abd_parent->abd_children,
567 		    abd->abd_size, abd);
568 	}
569 
570 	zfs_refcount_destroy(&abd->abd_children);
571 	abd_free_struct(abd);
572 }
573 
574 /*
575  * Get the raw buffer associated with a linear ABD.
576  */
577 void *
578 abd_to_buf(abd_t *abd)
579 {
580 	ASSERT(abd_is_linear(abd));
581 	abd_verify(abd);
582 	return (abd->abd_u.abd_linear.abd_buf);
583 }
584 
585 /*
586  * Borrow a raw buffer from an ABD without copying the contents of the ABD
587  * into the buffer. If the ABD is scattered, this will allocate a raw buffer
588  * whose contents are undefined. To copy over the existing data in the ABD, use
589  * abd_borrow_buf_copy() instead.
590  */
591 void *
592 abd_borrow_buf(abd_t *abd, size_t n)
593 {
594 	void *buf;
595 	abd_verify(abd);
596 	ASSERT3U(abd->abd_size, >=, n);
597 	if (abd_is_linear(abd)) {
598 		buf = abd_to_buf(abd);
599 	} else {
600 		buf = zio_buf_alloc(n);
601 	}
602 	(void) zfs_refcount_add_many(&abd->abd_children, n, buf);
603 
604 	return (buf);
605 }
606 
607 void *
608 abd_borrow_buf_copy(abd_t *abd, size_t n)
609 {
610 	void *buf = abd_borrow_buf(abd, n);
611 	if (!abd_is_linear(abd)) {
612 		abd_copy_to_buf(buf, abd, n);
613 	}
614 	return (buf);
615 }
616 
617 /*
618  * Return a borrowed raw buffer to an ABD. If the ABD is scattered, this will
619  * not change the contents of the ABD and will ASSERT that you didn't modify
620  * the buffer since it was borrowed. If you want any changes you made to buf to
621  * be copied back to abd, use abd_return_buf_copy() instead.
622  */
623 void
624 abd_return_buf(abd_t *abd, void *buf, size_t n)
625 {
626 	abd_verify(abd);
627 	ASSERT3U(abd->abd_size, >=, n);
628 	if (abd_is_linear(abd)) {
629 		ASSERT3P(buf, ==, abd_to_buf(abd));
630 	} else {
631 		ASSERT0(abd_cmp_buf(abd, buf, n));
632 		zio_buf_free(buf, n);
633 	}
634 	(void) zfs_refcount_remove_many(&abd->abd_children, n, buf);
635 }
636 
637 void
638 abd_return_buf_copy(abd_t *abd, void *buf, size_t n)
639 {
640 	if (!abd_is_linear(abd)) {
641 		abd_copy_from_buf(abd, buf, n);
642 	}
643 	abd_return_buf(abd, buf, n);
644 }
645 
646 /*
647  * Give this ABD ownership of the buffer that it's storing. Can only be used on
648  * linear ABDs which were allocated via abd_get_from_buf(), or ones allocated
649  * with abd_alloc_linear() which subsequently released ownership of their buf
650  * with abd_release_ownership_of_buf().
651  */
652 void
653 abd_take_ownership_of_buf(abd_t *abd, boolean_t is_metadata)
654 {
655 	ASSERT(abd_is_linear(abd));
656 	ASSERT(!(abd->abd_flags & ABD_FLAG_OWNER));
657 	abd_verify(abd);
658 
659 	abd->abd_flags |= ABD_FLAG_OWNER;
660 	if (is_metadata) {
661 		abd->abd_flags |= ABD_FLAG_META;
662 	}
663 
664 	ABDSTAT_BUMP(abdstat_linear_cnt);
665 	ABDSTAT_INCR(abdstat_linear_data_size, abd->abd_size);
666 }
667 
668 void
669 abd_release_ownership_of_buf(abd_t *abd)
670 {
671 	ASSERT(abd_is_linear(abd));
672 	ASSERT(abd->abd_flags & ABD_FLAG_OWNER);
673 	abd_verify(abd);
674 
675 	abd->abd_flags &= ~ABD_FLAG_OWNER;
676 	/* Disable this flag since we no longer own the data buffer */
677 	abd->abd_flags &= ~ABD_FLAG_META;
678 
679 	ABDSTAT_BUMPDOWN(abdstat_linear_cnt);
680 	ABDSTAT_INCR(abdstat_linear_data_size, -(int)abd->abd_size);
681 }
682 
683 struct abd_iter {
684 	abd_t		*iter_abd;	/* ABD being iterated through */
685 	size_t		iter_pos;	/* position (relative to abd_offset) */
686 	void		*iter_mapaddr;	/* addr corresponding to iter_pos */
687 	size_t		iter_mapsize;	/* length of data valid at mapaddr */
688 };
689 
690 static inline size_t
691 abd_iter_scatter_chunk_offset(struct abd_iter *aiter)
692 {
693 	ASSERT(!abd_is_linear(aiter->iter_abd));
694 	return ((aiter->iter_abd->abd_u.abd_scatter.abd_offset +
695 	    aiter->iter_pos) % zfs_abd_chunk_size);
696 }
697 
698 static inline size_t
699 abd_iter_scatter_chunk_index(struct abd_iter *aiter)
700 {
701 	ASSERT(!abd_is_linear(aiter->iter_abd));
702 	return ((aiter->iter_abd->abd_u.abd_scatter.abd_offset +
703 	    aiter->iter_pos) / zfs_abd_chunk_size);
704 }
705 
706 /*
707  * Initialize the abd_iter.
708  */
709 static void
710 abd_iter_init(struct abd_iter *aiter, abd_t *abd)
711 {
712 	abd_verify(abd);
713 	aiter->iter_abd = abd;
714 	aiter->iter_pos = 0;
715 	aiter->iter_mapaddr = NULL;
716 	aiter->iter_mapsize = 0;
717 }
718 
719 /*
720  * Advance the iterator by a certain amount. Cannot be called when a chunk is
721  * in use. This can be safely called when the aiter has already exhausted, in
722  * which case this does nothing.
723  */
724 static void
725 abd_iter_advance(struct abd_iter *aiter, size_t amount)
726 {
727 	ASSERT3P(aiter->iter_mapaddr, ==, NULL);
728 	ASSERT0(aiter->iter_mapsize);
729 
730 	/* There's nothing left to advance to, so do nothing */
731 	if (aiter->iter_pos == aiter->iter_abd->abd_size)
732 		return;
733 
734 	aiter->iter_pos += amount;
735 }
736 
737 /*
738  * Map the current chunk into aiter. This can be safely called when the aiter
739  * has already exhausted, in which case this does nothing.
740  */
741 static void
742 abd_iter_map(struct abd_iter *aiter)
743 {
744 	void *paddr;
745 	size_t offset = 0;
746 
747 	ASSERT3P(aiter->iter_mapaddr, ==, NULL);
748 	ASSERT0(aiter->iter_mapsize);
749 
750 	/* Panic if someone has changed zfs_abd_chunk_size */
751 	IMPLY(!abd_is_linear(aiter->iter_abd), zfs_abd_chunk_size ==
752 	    aiter->iter_abd->abd_u.abd_scatter.abd_chunk_size);
753 
754 	/* There's nothing left to iterate over, so do nothing */
755 	if (aiter->iter_pos == aiter->iter_abd->abd_size)
756 		return;
757 
758 	if (abd_is_linear(aiter->iter_abd)) {
759 		offset = aiter->iter_pos;
760 		aiter->iter_mapsize = aiter->iter_abd->abd_size - offset;
761 		paddr = aiter->iter_abd->abd_u.abd_linear.abd_buf;
762 	} else {
763 		size_t index = abd_iter_scatter_chunk_index(aiter);
764 		offset = abd_iter_scatter_chunk_offset(aiter);
765 		aiter->iter_mapsize = MIN(zfs_abd_chunk_size - offset,
766 		    aiter->iter_abd->abd_size - aiter->iter_pos);
767 		paddr = aiter->iter_abd->abd_u.abd_scatter.abd_chunks[index];
768 	}
769 	aiter->iter_mapaddr = (char *)paddr + offset;
770 }
771 
772 /*
773  * Unmap the current chunk from aiter. This can be safely called when the aiter
774  * has already exhausted, in which case this does nothing.
775  */
776 static void
777 abd_iter_unmap(struct abd_iter *aiter)
778 {
779 	/* There's nothing left to unmap, so do nothing */
780 	if (aiter->iter_pos == aiter->iter_abd->abd_size)
781 		return;
782 
783 	ASSERT3P(aiter->iter_mapaddr, !=, NULL);
784 	ASSERT3U(aiter->iter_mapsize, >, 0);
785 
786 	aiter->iter_mapaddr = NULL;
787 	aiter->iter_mapsize = 0;
788 }
789 
790 int
791 abd_iterate_func(abd_t *abd, size_t off, size_t size,
792     abd_iter_func_t *func, void *private)
793 {
794 	int ret = 0;
795 	struct abd_iter aiter;
796 
797 	abd_verify(abd);
798 	ASSERT3U(off + size, <=, abd->abd_size);
799 
800 	abd_iter_init(&aiter, abd);
801 	abd_iter_advance(&aiter, off);
802 
803 	while (size > 0) {
804 		abd_iter_map(&aiter);
805 
806 		size_t len = MIN(aiter.iter_mapsize, size);
807 		ASSERT3U(len, >, 0);
808 
809 		ret = func(aiter.iter_mapaddr, len, private);
810 
811 		abd_iter_unmap(&aiter);
812 
813 		if (ret != 0)
814 			break;
815 
816 		size -= len;
817 		abd_iter_advance(&aiter, len);
818 	}
819 
820 	return (ret);
821 }
822 
823 struct buf_arg {
824 	void *arg_buf;
825 };
826 
827 static int
828 abd_copy_to_buf_off_cb(void *buf, size_t size, void *private)
829 {
830 	struct buf_arg *ba_ptr = private;
831 
832 	(void) memcpy(ba_ptr->arg_buf, buf, size);
833 	ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size;
834 
835 	return (0);
836 }
837 
838 /*
839  * Copy abd to buf. (off is the offset in abd.)
840  */
841 void
842 abd_copy_to_buf_off(void *buf, abd_t *abd, size_t off, size_t size)
843 {
844 	struct buf_arg ba_ptr = { buf };
845 
846 	(void) abd_iterate_func(abd, off, size, abd_copy_to_buf_off_cb,
847 	    &ba_ptr);
848 }
849 
850 static int
851 abd_cmp_buf_off_cb(void *buf, size_t size, void *private)
852 {
853 	int ret;
854 	struct buf_arg *ba_ptr = private;
855 
856 	ret = memcmp(buf, ba_ptr->arg_buf, size);
857 	ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size;
858 
859 	return (ret);
860 }
861 
862 /*
863  * Compare the contents of abd to buf. (off is the offset in abd.)
864  */
865 int
866 abd_cmp_buf_off(abd_t *abd, const void *buf, size_t off, size_t size)
867 {
868 	struct buf_arg ba_ptr = { (void *) buf };
869 
870 	return (abd_iterate_func(abd, off, size, abd_cmp_buf_off_cb, &ba_ptr));
871 }
872 
873 static int
874 abd_copy_from_buf_off_cb(void *buf, size_t size, void *private)
875 {
876 	struct buf_arg *ba_ptr = private;
877 
878 	(void) memcpy(buf, ba_ptr->arg_buf, size);
879 	ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size;
880 
881 	return (0);
882 }
883 
884 /*
885  * Copy from buf to abd. (off is the offset in abd.)
886  */
887 void
888 abd_copy_from_buf_off(abd_t *abd, const void *buf, size_t off, size_t size)
889 {
890 	struct buf_arg ba_ptr = { (void *) buf };
891 
892 	(void) abd_iterate_func(abd, off, size, abd_copy_from_buf_off_cb,
893 	    &ba_ptr);
894 }
895 
896 /*ARGSUSED*/
897 static int
898 abd_zero_off_cb(void *buf, size_t size, void *private)
899 {
900 	(void) memset(buf, 0, size);
901 	return (0);
902 }
903 
904 /*
905  * Zero out the abd from a particular offset to the end.
906  */
907 void
908 abd_zero_off(abd_t *abd, size_t off, size_t size)
909 {
910 	(void) abd_iterate_func(abd, off, size, abd_zero_off_cb, NULL);
911 }
912 
913 /*
914  * Iterate over two ABDs and call func incrementally on the two ABDs' data in
915  * equal-sized chunks (passed to func as raw buffers). func could be called many
916  * times during this iteration.
917  */
918 int
919 abd_iterate_func2(abd_t *dabd, abd_t *sabd, size_t doff, size_t soff,
920     size_t size, abd_iter_func2_t *func, void *private)
921 {
922 	int ret = 0;
923 	struct abd_iter daiter, saiter;
924 
925 	abd_verify(dabd);
926 	abd_verify(sabd);
927 
928 	ASSERT3U(doff + size, <=, dabd->abd_size);
929 	ASSERT3U(soff + size, <=, sabd->abd_size);
930 
931 	abd_iter_init(&daiter, dabd);
932 	abd_iter_init(&saiter, sabd);
933 	abd_iter_advance(&daiter, doff);
934 	abd_iter_advance(&saiter, soff);
935 
936 	while (size > 0) {
937 		abd_iter_map(&daiter);
938 		abd_iter_map(&saiter);
939 
940 		size_t dlen = MIN(daiter.iter_mapsize, size);
941 		size_t slen = MIN(saiter.iter_mapsize, size);
942 		size_t len = MIN(dlen, slen);
943 		ASSERT(dlen > 0 || slen > 0);
944 
945 		ret = func(daiter.iter_mapaddr, saiter.iter_mapaddr, len,
946 		    private);
947 
948 		abd_iter_unmap(&saiter);
949 		abd_iter_unmap(&daiter);
950 
951 		if (ret != 0)
952 			break;
953 
954 		size -= len;
955 		abd_iter_advance(&daiter, len);
956 		abd_iter_advance(&saiter, len);
957 	}
958 
959 	return (ret);
960 }
961 
962 /*ARGSUSED*/
963 static int
964 abd_copy_off_cb(void *dbuf, void *sbuf, size_t size, void *private)
965 {
966 	(void) memcpy(dbuf, sbuf, size);
967 	return (0);
968 }
969 
970 /*
971  * Copy from sabd to dabd starting from soff and doff.
972  */
973 void
974 abd_copy_off(abd_t *dabd, abd_t *sabd, size_t doff, size_t soff, size_t size)
975 {
976 	(void) abd_iterate_func2(dabd, sabd, doff, soff, size,
977 	    abd_copy_off_cb, NULL);
978 }
979 
980 /*ARGSUSED*/
981 static int
982 abd_cmp_cb(void *bufa, void *bufb, size_t size, void *private)
983 {
984 	return (memcmp(bufa, bufb, size));
985 }
986 
987 /*
988  * Compares the first size bytes of two ABDs.
989  */
990 int
991 abd_cmp(abd_t *dabd, abd_t *sabd, size_t size)
992 {
993 	return (abd_iterate_func2(dabd, sabd, 0, 0, size, abd_cmp_cb, NULL));
994 }
995 
996 /*
997  * Iterate over code ABDs and a data ABD and call @func_raidz_gen.
998  *
999  * @cabds          parity ABDs, must have equal size
1000  * @dabd           data ABD. Can be NULL (in this case @dsize = 0)
1001  * @func_raidz_gen should be implemented so that its behaviour
1002  *                 is the same when taking linear and when taking scatter
1003  */
1004 void
1005 abd_raidz_gen_iterate(abd_t **cabds, abd_t *dabd,
1006     ssize_t csize, ssize_t dsize, const unsigned parity,
1007     void (*func_raidz_gen)(void **, const void *, size_t, size_t))
1008 {
1009 	int i;
1010 	ssize_t len, dlen;
1011 	struct abd_iter caiters[3];
1012 	struct abd_iter daiter = {0};
1013 	void *caddrs[3];
1014 
1015 	ASSERT3U(parity, <=, 3);
1016 
1017 	for (i = 0; i < parity; i++)
1018 		abd_iter_init(&caiters[i], cabds[i]);
1019 
1020 	if (dabd)
1021 		abd_iter_init(&daiter, dabd);
1022 
1023 	ASSERT3S(dsize, >=, 0);
1024 
1025 #ifdef _KERNEL
1026 	kpreempt_disable();
1027 #endif
1028 	while (csize > 0) {
1029 		len = csize;
1030 
1031 		if (dabd && dsize > 0)
1032 			abd_iter_map(&daiter);
1033 
1034 		for (i = 0; i < parity; i++) {
1035 			abd_iter_map(&caiters[i]);
1036 			caddrs[i] = caiters[i].iter_mapaddr;
1037 		}
1038 
1039 		switch (parity) {
1040 			case 3:
1041 				len = MIN(caiters[2].iter_mapsize, len);
1042 				/* falls through */
1043 			case 2:
1044 				len = MIN(caiters[1].iter_mapsize, len);
1045 				/* falls through */
1046 			case 1:
1047 				len = MIN(caiters[0].iter_mapsize, len);
1048 		}
1049 
1050 		/* must be progressive */
1051 		ASSERT3S(len, >, 0);
1052 
1053 		if (dabd && dsize > 0) {
1054 			/* this needs precise iter.length */
1055 			len = MIN(daiter.iter_mapsize, len);
1056 			len = MIN(dsize, len);
1057 			dlen = len;
1058 		} else
1059 			dlen = 0;
1060 
1061 		/* must be progressive */
1062 		ASSERT3S(len, >, 0);
1063 		/*
1064 		 * The iterated function likely will not do well if each
1065 		 * segment except the last one is not multiple of 512 (raidz).
1066 		 */
1067 		ASSERT3U(((uint64_t)len & 511ULL), ==, 0);
1068 
1069 		func_raidz_gen(caddrs, daiter.iter_mapaddr, len, dlen);
1070 
1071 		for (i = parity-1; i >= 0; i--) {
1072 			abd_iter_unmap(&caiters[i]);
1073 			abd_iter_advance(&caiters[i], len);
1074 		}
1075 
1076 		if (dabd && dsize > 0) {
1077 			abd_iter_unmap(&daiter);
1078 			abd_iter_advance(&daiter, dlen);
1079 			dsize -= dlen;
1080 		}
1081 
1082 		csize -= len;
1083 
1084 		ASSERT3S(dsize, >=, 0);
1085 		ASSERT3S(csize, >=, 0);
1086 	}
1087 #ifdef _KERNEL
1088 	kpreempt_enable();
1089 #endif
1090 }
1091 
1092 /*
1093  * Iterate over code ABDs and data reconstruction target ABDs and call
1094  * @func_raidz_rec. Function maps at most 6 pages atomically.
1095  *
1096  * @cabds           parity ABDs, must have equal size
1097  * @tabds           rec target ABDs, at most 3
1098  * @tsize           size of data target columns
1099  * @func_raidz_rec  expects syndrome data in target columns. Function
1100  *                  reconstructs data and overwrites target columns.
1101  */
1102 void
1103 abd_raidz_rec_iterate(abd_t **cabds, abd_t **tabds,
1104     ssize_t tsize, const unsigned parity,
1105     void (*func_raidz_rec)(void **t, const size_t tsize, void **c,
1106     const unsigned *mul),
1107     const unsigned *mul)
1108 {
1109 	int i;
1110 	ssize_t len;
1111 	struct abd_iter citers[3];
1112 	struct abd_iter xiters[3];
1113 	void *caddrs[3], *xaddrs[3];
1114 
1115 	ASSERT3U(parity, <=, 3);
1116 
1117 	for (i = 0; i < parity; i++) {
1118 		abd_iter_init(&citers[i], cabds[i]);
1119 		abd_iter_init(&xiters[i], tabds[i]);
1120 	}
1121 
1122 #ifdef _KERNEL
1123 	kpreempt_disable();
1124 #endif
1125 	while (tsize > 0) {
1126 
1127 		for (i = 0; i < parity; i++) {
1128 			abd_iter_map(&citers[i]);
1129 			abd_iter_map(&xiters[i]);
1130 			caddrs[i] = citers[i].iter_mapaddr;
1131 			xaddrs[i] = xiters[i].iter_mapaddr;
1132 		}
1133 
1134 		len = tsize;
1135 		switch (parity) {
1136 			case 3:
1137 				len = MIN(xiters[2].iter_mapsize, len);
1138 				len = MIN(citers[2].iter_mapsize, len);
1139 				/* falls through */
1140 			case 2:
1141 				len = MIN(xiters[1].iter_mapsize, len);
1142 				len = MIN(citers[1].iter_mapsize, len);
1143 				/* falls through */
1144 			case 1:
1145 				len = MIN(xiters[0].iter_mapsize, len);
1146 				len = MIN(citers[0].iter_mapsize, len);
1147 		}
1148 		/* must be progressive */
1149 		ASSERT3S(len, >, 0);
1150 		/*
1151 		 * The iterated function likely will not do well if each
1152 		 * segment except the last one is not multiple of 512 (raidz).
1153 		 */
1154 		ASSERT3U(((uint64_t)len & 511ULL), ==, 0);
1155 
1156 		func_raidz_rec(xaddrs, len, caddrs, mul);
1157 
1158 		for (i = parity-1; i >= 0; i--) {
1159 			abd_iter_unmap(&xiters[i]);
1160 			abd_iter_unmap(&citers[i]);
1161 			abd_iter_advance(&xiters[i], len);
1162 			abd_iter_advance(&citers[i], len);
1163 		}
1164 
1165 		tsize -= len;
1166 		ASSERT3S(tsize, >=, 0);
1167 	}
1168 #ifdef _KERNEL
1169 	kpreempt_enable();
1170 #endif
1171 }
1172