xref: /illumos-gate/usr/src/uts/common/fs/vfs.c (revision 5f10ef69)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2014, Joyent, Inc. All rights reserved.
25  * Copyright 2016 Toomas Soome <tsoome@me.com>
26  * Copyright (c) 2016 by Delphix. All rights reserved.
27  * Copyright 2016 Nexenta Systems, Inc.
28  */
29 
30 /*	Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T	*/
31 /*	  All Rights Reserved  	*/
32 
33 /*
34  * University Copyright- Copyright (c) 1982, 1986, 1988
35  * The Regents of the University of California
36  * All Rights Reserved
37  *
38  * University Acknowledgment- Portions of this document are derived from
39  * software developed by the University of California, Berkeley, and its
40  * contributors.
41  */
42 
43 #include <sys/types.h>
44 #include <sys/t_lock.h>
45 #include <sys/param.h>
46 #include <sys/errno.h>
47 #include <sys/user.h>
48 #include <sys/fstyp.h>
49 #include <sys/kmem.h>
50 #include <sys/systm.h>
51 #include <sys/proc.h>
52 #include <sys/mount.h>
53 #include <sys/vfs.h>
54 #include <sys/vfs_opreg.h>
55 #include <sys/fem.h>
56 #include <sys/mntent.h>
57 #include <sys/stat.h>
58 #include <sys/statvfs.h>
59 #include <sys/statfs.h>
60 #include <sys/cred.h>
61 #include <sys/vnode.h>
62 #include <sys/rwstlock.h>
63 #include <sys/dnlc.h>
64 #include <sys/file.h>
65 #include <sys/time.h>
66 #include <sys/atomic.h>
67 #include <sys/cmn_err.h>
68 #include <sys/buf.h>
69 #include <sys/swap.h>
70 #include <sys/debug.h>
71 #include <sys/vnode.h>
72 #include <sys/modctl.h>
73 #include <sys/ddi.h>
74 #include <sys/pathname.h>
75 #include <sys/bootconf.h>
76 #include <sys/dumphdr.h>
77 #include <sys/dc_ki.h>
78 #include <sys/poll.h>
79 #include <sys/sunddi.h>
80 #include <sys/sysmacros.h>
81 #include <sys/zone.h>
82 #include <sys/policy.h>
83 #include <sys/ctfs.h>
84 #include <sys/objfs.h>
85 #include <sys/console.h>
86 #include <sys/reboot.h>
87 #include <sys/attr.h>
88 #include <sys/zio.h>
89 #include <sys/spa.h>
90 #include <sys/lofi.h>
91 #include <sys/bootprops.h>
92 
93 #include <vm/page.h>
94 
95 #include <fs/fs_subr.h>
96 /* Private interfaces to create vopstats-related data structures */
97 extern void		initialize_vopstats(vopstats_t *);
98 extern vopstats_t	*get_fstype_vopstats(struct vfs *, struct vfssw *);
99 extern vsk_anchor_t	*get_vskstat_anchor(struct vfs *);
100 
101 static void vfs_clearmntopt_nolock(mntopts_t *, const char *, int);
102 static void vfs_setmntopt_nolock(mntopts_t *, const char *,
103     const char *, int, int);
104 static int  vfs_optionisset_nolock(const mntopts_t *, const char *, char **);
105 static void vfs_freemnttab(struct vfs *);
106 static void vfs_freeopt(mntopt_t *);
107 static void vfs_swapopttbl_nolock(mntopts_t *, mntopts_t *);
108 static void vfs_swapopttbl(mntopts_t *, mntopts_t *);
109 static void vfs_copyopttbl_extend(const mntopts_t *, mntopts_t *, int);
110 static void vfs_createopttbl_extend(mntopts_t *, const char *,
111     const mntopts_t *);
112 static char **vfs_copycancelopt_extend(char **const, int);
113 static void vfs_freecancelopt(char **);
114 static void getrootfs(char **, char **);
115 static int getmacpath(dev_info_t *, void *);
116 static void vfs_mnttabvp_setup(void);
117 
118 struct ipmnt {
119 	struct ipmnt	*mip_next;
120 	dev_t		mip_dev;
121 	struct vfs	*mip_vfsp;
122 };
123 
124 static kmutex_t		vfs_miplist_mutex;
125 static struct ipmnt	*vfs_miplist = NULL;
126 static struct ipmnt	*vfs_miplist_end = NULL;
127 
128 static kmem_cache_t *vfs_cache;	/* Pointer to VFS kmem cache */
129 
130 /*
131  * VFS global data.
132  */
133 vnode_t *rootdir;		/* pointer to root inode vnode. */
134 vnode_t *devicesdir;		/* pointer to inode of devices root */
135 vnode_t	*devdir;		/* pointer to inode of dev root */
136 
137 char *server_rootpath;		/* root path for diskless clients */
138 char *server_hostname;		/* hostname of diskless server */
139 
140 static struct vfs root;
141 static struct vfs devices;
142 static struct vfs dev;
143 struct vfs *rootvfs = &root;	/* pointer to root vfs; head of VFS list. */
144 rvfs_t *rvfs_list;		/* array of vfs ptrs for vfs hash list */
145 int vfshsz = 512;		/* # of heads/locks in vfs hash arrays */
146 				/* must be power of 2!	*/
147 timespec_t vfs_mnttab_ctime;	/* mnttab created time */
148 timespec_t vfs_mnttab_mtime;	/* mnttab last modified time */
149 char *vfs_dummyfstype = "\0";
150 struct pollhead vfs_pollhd;	/* for mnttab pollers */
151 struct vnode *vfs_mntdummyvp;	/* to fake mnttab read/write for file events */
152 int	mntfstype;		/* will be set once mnt fs is mounted */
153 
154 /*
155  * Table for generic options recognized in the VFS layer and acted
156  * on at this level before parsing file system specific options.
157  * The nosuid option is stronger than any of the devices and setuid
158  * options, so those are canceled when nosuid is seen.
159  *
160  * All options which are added here need to be added to the
161  * list of standard options in usr/src/cmd/fs.d/fslib.c as well.
162  */
163 /*
164  * VFS Mount options table
165  */
166 static char *ro_cancel[] = { MNTOPT_RW, NULL };
167 static char *rw_cancel[] = { MNTOPT_RO, NULL };
168 static char *suid_cancel[] = { MNTOPT_NOSUID, NULL };
169 static char *nosuid_cancel[] = { MNTOPT_SUID, MNTOPT_DEVICES, MNTOPT_NODEVICES,
170     MNTOPT_NOSETUID, MNTOPT_SETUID, NULL };
171 static char *devices_cancel[] = { MNTOPT_NODEVICES, NULL };
172 static char *nodevices_cancel[] = { MNTOPT_DEVICES, NULL };
173 static char *setuid_cancel[] = { MNTOPT_NOSETUID, NULL };
174 static char *nosetuid_cancel[] = { MNTOPT_SETUID, NULL };
175 static char *nbmand_cancel[] = { MNTOPT_NONBMAND, NULL };
176 static char *nonbmand_cancel[] = { MNTOPT_NBMAND, NULL };
177 static char *exec_cancel[] = { MNTOPT_NOEXEC, NULL };
178 static char *noexec_cancel[] = { MNTOPT_EXEC, NULL };
179 
180 static const mntopt_t mntopts[] = {
181 /*
182  *	option name		cancel options		default arg	flags
183  */
184 	{ MNTOPT_REMOUNT,	NULL,			NULL,
185 		MO_NODISPLAY, (void *)0 },
186 	{ MNTOPT_RO,		ro_cancel,		NULL,		0,
187 		(void *)0 },
188 	{ MNTOPT_RW,		rw_cancel,		NULL,		0,
189 		(void *)0 },
190 	{ MNTOPT_SUID,		suid_cancel,		NULL,		0,
191 		(void *)0 },
192 	{ MNTOPT_NOSUID,	nosuid_cancel,		NULL,		0,
193 		(void *)0 },
194 	{ MNTOPT_DEVICES,	devices_cancel,		NULL,		0,
195 		(void *)0 },
196 	{ MNTOPT_NODEVICES,	nodevices_cancel,	NULL,		0,
197 		(void *)0 },
198 	{ MNTOPT_SETUID,	setuid_cancel,		NULL,		0,
199 		(void *)0 },
200 	{ MNTOPT_NOSETUID,	nosetuid_cancel,	NULL,		0,
201 		(void *)0 },
202 	{ MNTOPT_NBMAND,	nbmand_cancel,		NULL,		0,
203 		(void *)0 },
204 	{ MNTOPT_NONBMAND,	nonbmand_cancel,	NULL,		0,
205 		(void *)0 },
206 	{ MNTOPT_EXEC,		exec_cancel,		NULL,		0,
207 		(void *)0 },
208 	{ MNTOPT_NOEXEC,	noexec_cancel,		NULL,		0,
209 		(void *)0 },
210 };
211 
212 const mntopts_t vfs_mntopts = {
213 	sizeof (mntopts) / sizeof (mntopt_t),
214 	(mntopt_t *)&mntopts[0]
215 };
216 
217 /*
218  * File system operation dispatch functions.
219  */
220 
221 int
222 fsop_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
223 {
224 	return (*(vfsp)->vfs_op->vfs_mount)(vfsp, mvp, uap, cr);
225 }
226 
227 int
228 fsop_unmount(vfs_t *vfsp, int flag, cred_t *cr)
229 {
230 	return (*(vfsp)->vfs_op->vfs_unmount)(vfsp, flag, cr);
231 }
232 
233 int
234 fsop_root(vfs_t *vfsp, vnode_t **vpp)
235 {
236 	refstr_t *mntpt;
237 	int ret = (*(vfsp)->vfs_op->vfs_root)(vfsp, vpp);
238 	/*
239 	 * Make sure this root has a path.  With lofs, it is possible to have
240 	 * a NULL mountpoint.
241 	 */
242 	if (ret == 0 && vfsp->vfs_mntpt != NULL && (*vpp)->v_path == NULL) {
243 		mntpt = vfs_getmntpoint(vfsp);
244 		vn_setpath_str(*vpp, refstr_value(mntpt),
245 		    strlen(refstr_value(mntpt)));
246 		refstr_rele(mntpt);
247 	}
248 
249 	return (ret);
250 }
251 
252 int
253 fsop_statfs(vfs_t *vfsp, statvfs64_t *sp)
254 {
255 	return (*(vfsp)->vfs_op->vfs_statvfs)(vfsp, sp);
256 }
257 
258 int
259 fsop_sync(vfs_t *vfsp, short flag, cred_t *cr)
260 {
261 	return (*(vfsp)->vfs_op->vfs_sync)(vfsp, flag, cr);
262 }
263 
264 int
265 fsop_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
266 {
267 	/*
268 	 * In order to handle system attribute fids in a manner
269 	 * transparent to the underlying fs, we embed the fid for
270 	 * the sysattr parent object in the sysattr fid and tack on
271 	 * some extra bytes that only the sysattr layer knows about.
272 	 *
273 	 * This guarantees that sysattr fids are larger than other fids
274 	 * for this vfs. If the vfs supports the sysattr view interface
275 	 * (as indicated by VFSFT_SYSATTR_VIEWS), we cannot have a size
276 	 * collision with XATTR_FIDSZ.
277 	 */
278 	if (vfs_has_feature(vfsp, VFSFT_SYSATTR_VIEWS) &&
279 	    fidp->fid_len == XATTR_FIDSZ)
280 		return (xattr_dir_vget(vfsp, vpp, fidp));
281 
282 	return (*(vfsp)->vfs_op->vfs_vget)(vfsp, vpp, fidp);
283 }
284 
285 int
286 fsop_mountroot(vfs_t *vfsp, enum whymountroot reason)
287 {
288 	return (*(vfsp)->vfs_op->vfs_mountroot)(vfsp, reason);
289 }
290 
291 void
292 fsop_freefs(vfs_t *vfsp)
293 {
294 	(*(vfsp)->vfs_op->vfs_freevfs)(vfsp);
295 }
296 
297 int
298 fsop_vnstate(vfs_t *vfsp, vnode_t *vp, vntrans_t nstate)
299 {
300 	return ((*(vfsp)->vfs_op->vfs_vnstate)(vfsp, vp, nstate));
301 }
302 
303 int
304 fsop_sync_by_kind(int fstype, short flag, cred_t *cr)
305 {
306 	ASSERT((fstype >= 0) && (fstype < nfstype));
307 
308 	if (ALLOCATED_VFSSW(&vfssw[fstype]) && VFS_INSTALLED(&vfssw[fstype]))
309 		return (*vfssw[fstype].vsw_vfsops.vfs_sync) (NULL, flag, cr);
310 	else
311 		return (ENOTSUP);
312 }
313 
314 /*
315  * File system initialization.  vfs_setfsops() must be called from a file
316  * system's init routine.
317  */
318 
319 static int
320 fs_copyfsops(const fs_operation_def_t *template, vfsops_t *actual,
321     int *unused_ops)
322 {
323 	static const fs_operation_trans_def_t vfs_ops_table[] = {
324 		VFSNAME_MOUNT, offsetof(vfsops_t, vfs_mount),
325 			fs_nosys, fs_nosys,
326 
327 		VFSNAME_UNMOUNT, offsetof(vfsops_t, vfs_unmount),
328 			fs_nosys, fs_nosys,
329 
330 		VFSNAME_ROOT, offsetof(vfsops_t, vfs_root),
331 			fs_nosys, fs_nosys,
332 
333 		VFSNAME_STATVFS, offsetof(vfsops_t, vfs_statvfs),
334 			fs_nosys, fs_nosys,
335 
336 		VFSNAME_SYNC, offsetof(vfsops_t, vfs_sync),
337 			(fs_generic_func_p) fs_sync,
338 			(fs_generic_func_p) fs_sync,	/* No errors allowed */
339 
340 		VFSNAME_VGET, offsetof(vfsops_t, vfs_vget),
341 			fs_nosys, fs_nosys,
342 
343 		VFSNAME_MOUNTROOT, offsetof(vfsops_t, vfs_mountroot),
344 			fs_nosys, fs_nosys,
345 
346 		VFSNAME_FREEVFS, offsetof(vfsops_t, vfs_freevfs),
347 			(fs_generic_func_p)fs_freevfs,
348 			(fs_generic_func_p)fs_freevfs,	/* Shouldn't fail */
349 
350 		VFSNAME_VNSTATE, offsetof(vfsops_t, vfs_vnstate),
351 			(fs_generic_func_p)fs_nosys,
352 			(fs_generic_func_p)fs_nosys,
353 
354 		NULL, 0, NULL, NULL
355 	};
356 
357 	return (fs_build_vector(actual, unused_ops, vfs_ops_table, template));
358 }
359 
360 void
361 zfs_boot_init(void)
362 {
363 	if (strcmp(rootfs.bo_fstype, MNTTYPE_ZFS) == 0)
364 		spa_boot_init();
365 }
366 
367 int
368 vfs_setfsops(int fstype, const fs_operation_def_t *template, vfsops_t **actual)
369 {
370 	int error;
371 	int unused_ops;
372 
373 	/*
374 	 * Verify that fstype refers to a valid fs.  Note that
375 	 * 0 is valid since it's used to set "stray" ops.
376 	 */
377 	if ((fstype < 0) || (fstype >= nfstype))
378 		return (EINVAL);
379 
380 	if (!ALLOCATED_VFSSW(&vfssw[fstype]))
381 		return (EINVAL);
382 
383 	/* Set up the operations vector. */
384 
385 	error = fs_copyfsops(template, &vfssw[fstype].vsw_vfsops, &unused_ops);
386 
387 	if (error != 0)
388 		return (error);
389 
390 	vfssw[fstype].vsw_flag |= VSW_INSTALLED;
391 
392 	if (actual != NULL)
393 		*actual = &vfssw[fstype].vsw_vfsops;
394 
395 #if DEBUG
396 	if (unused_ops != 0)
397 		cmn_err(CE_WARN, "vfs_setfsops: %s: %d operations supplied "
398 		    "but not used", vfssw[fstype].vsw_name, unused_ops);
399 #endif
400 
401 	return (0);
402 }
403 
404 int
405 vfs_makefsops(const fs_operation_def_t *template, vfsops_t **actual)
406 {
407 	int error;
408 	int unused_ops;
409 
410 	*actual = (vfsops_t *)kmem_alloc(sizeof (vfsops_t), KM_SLEEP);
411 
412 	error = fs_copyfsops(template, *actual, &unused_ops);
413 	if (error != 0) {
414 		kmem_free(*actual, sizeof (vfsops_t));
415 		*actual = NULL;
416 		return (error);
417 	}
418 
419 	return (0);
420 }
421 
422 /*
423  * Free a vfsops structure created as a result of vfs_makefsops().
424  * NOTE: For a vfsops structure initialized by vfs_setfsops(), use
425  * vfs_freevfsops_by_type().
426  */
427 void
428 vfs_freevfsops(vfsops_t *vfsops)
429 {
430 	kmem_free(vfsops, sizeof (vfsops_t));
431 }
432 
433 /*
434  * Since the vfsops structure is part of the vfssw table and wasn't
435  * really allocated, we're not really freeing anything.  We keep
436  * the name for consistency with vfs_freevfsops().  We do, however,
437  * need to take care of a little bookkeeping.
438  * NOTE: For a vfsops structure created by vfs_setfsops(), use
439  * vfs_freevfsops_by_type().
440  */
441 int
442 vfs_freevfsops_by_type(int fstype)
443 {
444 
445 	/* Verify that fstype refers to a loaded fs (and not fsid 0). */
446 	if ((fstype <= 0) || (fstype >= nfstype))
447 		return (EINVAL);
448 
449 	WLOCK_VFSSW();
450 	if ((vfssw[fstype].vsw_flag & VSW_INSTALLED) == 0) {
451 		WUNLOCK_VFSSW();
452 		return (EINVAL);
453 	}
454 
455 	vfssw[fstype].vsw_flag &= ~VSW_INSTALLED;
456 	WUNLOCK_VFSSW();
457 
458 	return (0);
459 }
460 
461 /* Support routines used to reference vfs_op */
462 
463 /* Set the operations vector for a vfs */
464 void
465 vfs_setops(vfs_t *vfsp, vfsops_t *vfsops)
466 {
467 	vfsops_t	*op;
468 
469 	ASSERT(vfsp != NULL);
470 	ASSERT(vfsops != NULL);
471 
472 	op = vfsp->vfs_op;
473 	membar_consumer();
474 	if (vfsp->vfs_femhead == NULL &&
475 	    atomic_cas_ptr(&vfsp->vfs_op, op, vfsops) == op) {
476 		return;
477 	}
478 	fsem_setvfsops(vfsp, vfsops);
479 }
480 
481 /* Retrieve the operations vector for a vfs */
482 vfsops_t *
483 vfs_getops(vfs_t *vfsp)
484 {
485 	vfsops_t	*op;
486 
487 	ASSERT(vfsp != NULL);
488 
489 	op = vfsp->vfs_op;
490 	membar_consumer();
491 	if (vfsp->vfs_femhead == NULL && op == vfsp->vfs_op) {
492 		return (op);
493 	} else {
494 		return (fsem_getvfsops(vfsp));
495 	}
496 }
497 
498 /*
499  * Returns non-zero (1) if the vfsops matches that of the vfs.
500  * Returns zero (0) if not.
501  */
502 int
503 vfs_matchops(vfs_t *vfsp, vfsops_t *vfsops)
504 {
505 	return (vfs_getops(vfsp) == vfsops);
506 }
507 
508 /*
509  * Returns non-zero (1) if the file system has installed a non-default,
510  * non-error vfs_sync routine.  Returns zero (0) otherwise.
511  */
512 int
513 vfs_can_sync(vfs_t *vfsp)
514 {
515 	/* vfs_sync() routine is not the default/error function */
516 	return (vfs_getops(vfsp)->vfs_sync != fs_sync);
517 }
518 
519 /*
520  * Initialize a vfs structure.
521  */
522 void
523 vfs_init(vfs_t *vfsp, vfsops_t *op, void *data)
524 {
525 	/* Other initialization has been moved to vfs_alloc() */
526 	vfsp->vfs_count = 0;
527 	vfsp->vfs_next = vfsp;
528 	vfsp->vfs_prev = vfsp;
529 	vfsp->vfs_zone_next = vfsp;
530 	vfsp->vfs_zone_prev = vfsp;
531 	vfsp->vfs_lofi_id = 0;
532 	sema_init(&vfsp->vfs_reflock, 1, NULL, SEMA_DEFAULT, NULL);
533 	vfsimpl_setup(vfsp);
534 	vfsp->vfs_data = (data);
535 	vfs_setops((vfsp), (op));
536 }
537 
538 /*
539  * Allocate and initialize the vfs implementation private data
540  * structure, vfs_impl_t.
541  */
542 void
543 vfsimpl_setup(vfs_t *vfsp)
544 {
545 	int i;
546 
547 	if (vfsp->vfs_implp != NULL) {
548 		return;
549 	}
550 
551 	vfsp->vfs_implp = kmem_alloc(sizeof (vfs_impl_t), KM_SLEEP);
552 	/* Note that these are #define'd in vfs.h */
553 	vfsp->vfs_vskap = NULL;
554 	vfsp->vfs_fstypevsp = NULL;
555 
556 	/* Set size of counted array, then zero the array */
557 	vfsp->vfs_featureset[0] = VFS_FEATURE_MAXSZ - 1;
558 	for (i = 1; i <  VFS_FEATURE_MAXSZ; i++) {
559 		vfsp->vfs_featureset[i] = 0;
560 	}
561 }
562 
563 /*
564  * Release the vfs_impl_t structure, if it exists. Some unbundled
565  * filesystems may not use the newer version of vfs and thus
566  * would not contain this implementation private data structure.
567  */
568 void
569 vfsimpl_teardown(vfs_t *vfsp)
570 {
571 	vfs_impl_t	*vip = vfsp->vfs_implp;
572 
573 	if (vip == NULL)
574 		return;
575 
576 	kmem_free(vfsp->vfs_implp, sizeof (vfs_impl_t));
577 	vfsp->vfs_implp = NULL;
578 }
579 
580 /*
581  * VFS system calls: mount, umount, syssync, statfs, fstatfs, statvfs,
582  * fstatvfs, and sysfs moved to common/syscall.
583  */
584 
585 /*
586  * Update every mounted file system.  We call the vfs_sync operation of
587  * each file system type, passing it a NULL vfsp to indicate that all
588  * mounted file systems of that type should be updated.
589  */
590 void
591 vfs_sync(int flag)
592 {
593 	struct vfssw *vswp;
594 	RLOCK_VFSSW();
595 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
596 		if (ALLOCATED_VFSSW(vswp) && VFS_INSTALLED(vswp)) {
597 			vfs_refvfssw(vswp);
598 			RUNLOCK_VFSSW();
599 			(void) (*vswp->vsw_vfsops.vfs_sync)(NULL, flag,
600 			    CRED());
601 			vfs_unrefvfssw(vswp);
602 			RLOCK_VFSSW();
603 		}
604 	}
605 	RUNLOCK_VFSSW();
606 }
607 
608 void
609 sync(void)
610 {
611 	vfs_sync(0);
612 }
613 
614 /*
615  * External routines.
616  */
617 
618 krwlock_t vfssw_lock;	/* lock accesses to vfssw */
619 
620 /*
621  * Lock for accessing the vfs linked list.  Initialized in vfs_mountroot(),
622  * but otherwise should be accessed only via vfs_list_lock() and
623  * vfs_list_unlock().  Also used to protect the timestamp for mods to the list.
624  */
625 static krwlock_t vfslist;
626 
627 /*
628  * Mount devfs on /devices. This is done right after root is mounted
629  * to provide device access support for the system
630  */
631 static void
632 vfs_mountdevices(void)
633 {
634 	struct vfssw *vsw;
635 	struct vnode *mvp;
636 	struct mounta mounta = {	/* fake mounta for devfs_mount() */
637 		NULL,
638 		NULL,
639 		MS_SYSSPACE,
640 		NULL,
641 		NULL,
642 		0,
643 		NULL,
644 		0
645 	};
646 
647 	/*
648 	 * _init devfs module to fill in the vfssw
649 	 */
650 	if (modload("fs", "devfs") == -1)
651 		panic("Cannot _init devfs module");
652 
653 	/*
654 	 * Hold vfs
655 	 */
656 	RLOCK_VFSSW();
657 	vsw = vfs_getvfsswbyname("devfs");
658 	VFS_INIT(&devices, &vsw->vsw_vfsops, NULL);
659 	VFS_HOLD(&devices);
660 
661 	/*
662 	 * Locate mount point
663 	 */
664 	if (lookupname("/devices", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp))
665 		panic("Cannot find /devices");
666 
667 	/*
668 	 * Perform the mount of /devices
669 	 */
670 	if (VFS_MOUNT(&devices, mvp, &mounta, CRED()))
671 		panic("Cannot mount /devices");
672 
673 	RUNLOCK_VFSSW();
674 
675 	/*
676 	 * Set appropriate members and add to vfs list for mnttab display
677 	 */
678 	vfs_setresource(&devices, "/devices", 0);
679 	vfs_setmntpoint(&devices, "/devices", 0);
680 
681 	/*
682 	 * Hold the root of /devices so it won't go away
683 	 */
684 	if (VFS_ROOT(&devices, &devicesdir))
685 		panic("vfs_mountdevices: not devices root");
686 
687 	if (vfs_lock(&devices) != 0) {
688 		VN_RELE(devicesdir);
689 		cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /devices");
690 		return;
691 	}
692 
693 	if (vn_vfswlock(mvp) != 0) {
694 		vfs_unlock(&devices);
695 		VN_RELE(devicesdir);
696 		cmn_err(CE_NOTE, "Cannot acquire vfswlock of /devices");
697 		return;
698 	}
699 
700 	vfs_add(mvp, &devices, 0);
701 	vn_vfsunlock(mvp);
702 	vfs_unlock(&devices);
703 	VN_RELE(devicesdir);
704 }
705 
706 /*
707  * mount the first instance of /dev  to root and remain mounted
708  */
709 static void
710 vfs_mountdev1(void)
711 {
712 	struct vfssw *vsw;
713 	struct vnode *mvp;
714 	struct mounta mounta = {	/* fake mounta for sdev_mount() */
715 		NULL,
716 		NULL,
717 		MS_SYSSPACE | MS_OVERLAY,
718 		NULL,
719 		NULL,
720 		0,
721 		NULL,
722 		0
723 	};
724 
725 	/*
726 	 * _init dev module to fill in the vfssw
727 	 */
728 	if (modload("fs", "dev") == -1)
729 		cmn_err(CE_PANIC, "Cannot _init dev module\n");
730 
731 	/*
732 	 * Hold vfs
733 	 */
734 	RLOCK_VFSSW();
735 	vsw = vfs_getvfsswbyname("dev");
736 	VFS_INIT(&dev, &vsw->vsw_vfsops, NULL);
737 	VFS_HOLD(&dev);
738 
739 	/*
740 	 * Locate mount point
741 	 */
742 	if (lookupname("/dev", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp))
743 		cmn_err(CE_PANIC, "Cannot find /dev\n");
744 
745 	/*
746 	 * Perform the mount of /dev
747 	 */
748 	if (VFS_MOUNT(&dev, mvp, &mounta, CRED()))
749 		cmn_err(CE_PANIC, "Cannot mount /dev 1\n");
750 
751 	RUNLOCK_VFSSW();
752 
753 	/*
754 	 * Set appropriate members and add to vfs list for mnttab display
755 	 */
756 	vfs_setresource(&dev, "/dev", 0);
757 	vfs_setmntpoint(&dev, "/dev", 0);
758 
759 	/*
760 	 * Hold the root of /dev so it won't go away
761 	 */
762 	if (VFS_ROOT(&dev, &devdir))
763 		cmn_err(CE_PANIC, "vfs_mountdev1: not dev root");
764 
765 	if (vfs_lock(&dev) != 0) {
766 		VN_RELE(devdir);
767 		cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /dev");
768 		return;
769 	}
770 
771 	if (vn_vfswlock(mvp) != 0) {
772 		vfs_unlock(&dev);
773 		VN_RELE(devdir);
774 		cmn_err(CE_NOTE, "Cannot acquire vfswlock of /dev");
775 		return;
776 	}
777 
778 	vfs_add(mvp, &dev, 0);
779 	vn_vfsunlock(mvp);
780 	vfs_unlock(&dev);
781 	VN_RELE(devdir);
782 }
783 
784 /*
785  * Mount required filesystem. This is done right after root is mounted.
786  */
787 static void
788 vfs_mountfs(char *module, char *spec, char *path)
789 {
790 	struct vnode *mvp;
791 	struct mounta mounta;
792 	vfs_t *vfsp;
793 
794 	mounta.flags = MS_SYSSPACE | MS_DATA;
795 	mounta.fstype = module;
796 	mounta.spec = spec;
797 	mounta.dir = path;
798 	if (lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) {
799 		cmn_err(CE_WARN, "Cannot find %s", path);
800 		return;
801 	}
802 	if (domount(NULL, &mounta, mvp, CRED(), &vfsp))
803 		cmn_err(CE_WARN, "Cannot mount %s", path);
804 	else
805 		VFS_RELE(vfsp);
806 	VN_RELE(mvp);
807 }
808 
809 /*
810  * vfs_mountroot is called by main() to mount the root filesystem.
811  */
812 void
813 vfs_mountroot(void)
814 {
815 	struct vnode	*rvp = NULL;
816 	char		*path;
817 	size_t		plen;
818 	struct vfssw	*vswp;
819 	proc_t		*p;
820 
821 	rw_init(&vfssw_lock, NULL, RW_DEFAULT, NULL);
822 	rw_init(&vfslist, NULL, RW_DEFAULT, NULL);
823 
824 	/*
825 	 * Alloc the vfs hash bucket array and locks
826 	 */
827 	rvfs_list = kmem_zalloc(vfshsz * sizeof (rvfs_t), KM_SLEEP);
828 
829 	/*
830 	 * Call machine-dependent routine "rootconf" to choose a root
831 	 * file system type.
832 	 */
833 	if (rootconf())
834 		panic("vfs_mountroot: cannot mount root");
835 	/*
836 	 * Get vnode for '/'.  Set up rootdir, u.u_rdir and u.u_cdir
837 	 * to point to it.  These are used by lookuppn() so that it
838 	 * knows where to start from ('/' or '.').
839 	 */
840 	vfs_setmntpoint(rootvfs, "/", 0);
841 	if (VFS_ROOT(rootvfs, &rootdir))
842 		panic("vfs_mountroot: no root vnode");
843 
844 	/*
845 	 * At this point, the process tree consists of p0 and possibly some
846 	 * direct children of p0.  (i.e. there are no grandchildren)
847 	 *
848 	 * Walk through them all, setting their current directory.
849 	 */
850 	mutex_enter(&pidlock);
851 	for (p = practive; p != NULL; p = p->p_next) {
852 		ASSERT(p == &p0 || p->p_parent == &p0);
853 
854 		PTOU(p)->u_cdir = rootdir;
855 		VN_HOLD(PTOU(p)->u_cdir);
856 		PTOU(p)->u_rdir = NULL;
857 	}
858 	mutex_exit(&pidlock);
859 
860 	/*
861 	 * Setup the global zone's rootvp, now that it exists.
862 	 */
863 	global_zone->zone_rootvp = rootdir;
864 	VN_HOLD(global_zone->zone_rootvp);
865 
866 	/*
867 	 * Notify the module code that it can begin using the
868 	 * root filesystem instead of the boot program's services.
869 	 */
870 	modrootloaded = 1;
871 
872 	/*
873 	 * Special handling for a ZFS root file system.
874 	 */
875 	zfs_boot_init();
876 
877 	/*
878 	 * Set up mnttab information for root
879 	 */
880 	vfs_setresource(rootvfs, rootfs.bo_name, 0);
881 
882 	/*
883 	 * Notify cluster software that the root filesystem is available.
884 	 */
885 	clboot_mountroot();
886 
887 	/* Now that we're all done with the root FS, set up its vopstats */
888 	if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) != NULL) {
889 		/* Set flag for statistics collection */
890 		if (vswp->vsw_flag & VSW_STATS) {
891 			initialize_vopstats(&rootvfs->vfs_vopstats);
892 			rootvfs->vfs_flag |= VFS_STATS;
893 			rootvfs->vfs_fstypevsp =
894 			    get_fstype_vopstats(rootvfs, vswp);
895 			rootvfs->vfs_vskap = get_vskstat_anchor(rootvfs);
896 		}
897 		vfs_unrefvfssw(vswp);
898 	}
899 
900 	/*
901 	 * Mount /devices, /dev instance 1, /system/contract, /etc/mnttab,
902 	 * /etc/svc/volatile, /etc/dfs/sharetab, /system/object, and /proc.
903 	 */
904 	vfs_mountdevices();
905 	vfs_mountdev1();
906 
907 	vfs_mountfs("ctfs", "ctfs", CTFS_ROOT);
908 	vfs_mountfs("proc", "/proc", "/proc");
909 	vfs_mountfs("mntfs", "/etc/mnttab", "/etc/mnttab");
910 	vfs_mountfs("tmpfs", "/etc/svc/volatile", "/etc/svc/volatile");
911 	vfs_mountfs("objfs", "objfs", OBJFS_ROOT);
912 	vfs_mountfs("bootfs", "bootfs", "/system/boot");
913 
914 	if (getzoneid() == GLOBAL_ZONEID) {
915 		vfs_mountfs("sharefs", "sharefs", "/etc/dfs/sharetab");
916 	}
917 
918 	if (strcmp(rootfs.bo_fstype, "zfs") != 0) {
919 		/*
920 		 * Look up the root device via devfs so that a dv_node is
921 		 * created for it. The vnode is never VN_RELE()ed.
922 		 * We allocate more than MAXPATHLEN so that the
923 		 * buffer passed to i_ddi_prompath_to_devfspath() is
924 		 * exactly MAXPATHLEN (the function expects a buffer
925 		 * of that length).
926 		 */
927 		plen = strlen("/devices");
928 		path = kmem_alloc(plen + MAXPATHLEN, KM_SLEEP);
929 		(void) strcpy(path, "/devices");
930 
931 		if (i_ddi_prompath_to_devfspath(rootfs.bo_name, path + plen)
932 		    != DDI_SUCCESS ||
933 		    lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &rvp)) {
934 
935 			/* NUL terminate in case "path" has garbage */
936 			path[plen + MAXPATHLEN - 1] = '\0';
937 #ifdef	DEBUG
938 			cmn_err(CE_WARN, "!Cannot lookup root device: %s",
939 			    path);
940 #endif
941 		}
942 		kmem_free(path, plen + MAXPATHLEN);
943 	}
944 
945 	vfs_mnttabvp_setup();
946 }
947 
948 /*
949  * Check to see if our "block device" is actually a file.  If so,
950  * automatically add a lofi device, and keep track of this fact.
951  */
952 static int
953 lofi_add(const char *fsname, struct vfs *vfsp,
954     mntopts_t *mntopts, struct mounta *uap)
955 {
956 	int fromspace = (uap->flags & MS_SYSSPACE) ?
957 	    UIO_SYSSPACE : UIO_USERSPACE;
958 	struct lofi_ioctl *li = NULL;
959 	struct vnode *vp = NULL;
960 	struct pathname	pn = { NULL };
961 	ldi_ident_t ldi_id;
962 	ldi_handle_t ldi_hdl;
963 	vfssw_t *vfssw;
964 	int id;
965 	int err = 0;
966 
967 	if ((vfssw = vfs_getvfssw(fsname)) == NULL)
968 		return (0);
969 
970 	if (!(vfssw->vsw_flag & VSW_CANLOFI)) {
971 		vfs_unrefvfssw(vfssw);
972 		return (0);
973 	}
974 
975 	vfs_unrefvfssw(vfssw);
976 	vfssw = NULL;
977 
978 	if (pn_get(uap->spec, fromspace, &pn) != 0)
979 		return (0);
980 
981 	if (lookupname(uap->spec, fromspace, FOLLOW, NULL, &vp) != 0)
982 		goto out;
983 
984 	if (vp->v_type != VREG)
985 		goto out;
986 
987 	/* OK, this is a lofi mount. */
988 
989 	if ((uap->flags & (MS_REMOUNT|MS_GLOBAL)) ||
990 	    vfs_optionisset_nolock(mntopts, MNTOPT_SUID, NULL) ||
991 	    vfs_optionisset_nolock(mntopts, MNTOPT_SETUID, NULL) ||
992 	    vfs_optionisset_nolock(mntopts, MNTOPT_DEVICES, NULL)) {
993 		err = EINVAL;
994 		goto out;
995 	}
996 
997 	ldi_id = ldi_ident_from_anon();
998 	li = kmem_zalloc(sizeof (*li), KM_SLEEP);
999 	(void) strlcpy(li->li_filename, pn.pn_path, MAXPATHLEN);
1000 
1001 	err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred,
1002 	    &ldi_hdl, ldi_id);
1003 
1004 	if (err)
1005 		goto out2;
1006 
1007 	err = ldi_ioctl(ldi_hdl, LOFI_MAP_FILE, (intptr_t)li,
1008 	    FREAD | FWRITE | FKIOCTL, kcred, &id);
1009 
1010 	(void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred);
1011 
1012 	if (!err)
1013 		vfsp->vfs_lofi_id = id;
1014 
1015 out2:
1016 	ldi_ident_release(ldi_id);
1017 out:
1018 	if (li != NULL)
1019 		kmem_free(li, sizeof (*li));
1020 	if (vp != NULL)
1021 		VN_RELE(vp);
1022 	pn_free(&pn);
1023 	return (err);
1024 }
1025 
1026 static void
1027 lofi_remove(struct vfs *vfsp)
1028 {
1029 	struct lofi_ioctl *li = NULL;
1030 	ldi_ident_t ldi_id;
1031 	ldi_handle_t ldi_hdl;
1032 	int err;
1033 
1034 	if (vfsp->vfs_lofi_id == 0)
1035 		return;
1036 
1037 	ldi_id = ldi_ident_from_anon();
1038 
1039 	li = kmem_zalloc(sizeof (*li), KM_SLEEP);
1040 	li->li_id = vfsp->vfs_lofi_id;
1041 	li->li_cleanup = B_TRUE;
1042 
1043 	err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred,
1044 	    &ldi_hdl, ldi_id);
1045 
1046 	if (err)
1047 		goto out;
1048 
1049 	err = ldi_ioctl(ldi_hdl, LOFI_UNMAP_FILE_MINOR, (intptr_t)li,
1050 	    FREAD | FWRITE | FKIOCTL, kcred, NULL);
1051 
1052 	(void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred);
1053 
1054 	if (!err)
1055 		vfsp->vfs_lofi_id = 0;
1056 
1057 out:
1058 	ldi_ident_release(ldi_id);
1059 	if (li != NULL)
1060 		kmem_free(li, sizeof (*li));
1061 }
1062 
1063 /*
1064  * Common mount code.  Called from the system call entry point, from autofs,
1065  * nfsv4 trigger mounts, and from pxfs.
1066  *
1067  * Takes the effective file system type, mount arguments, the mount point
1068  * vnode, flags specifying whether the mount is a remount and whether it
1069  * should be entered into the vfs list, and credentials.  Fills in its vfspp
1070  * parameter with the mounted file system instance's vfs.
1071  *
1072  * Note that the effective file system type is specified as a string.  It may
1073  * be null, in which case it's determined from the mount arguments, and may
1074  * differ from the type specified in the mount arguments; this is a hook to
1075  * allow interposition when instantiating file system instances.
1076  *
1077  * The caller is responsible for releasing its own hold on the mount point
1078  * vp (this routine does its own hold when necessary).
1079  * Also note that for remounts, the mount point vp should be the vnode for
1080  * the root of the file system rather than the vnode that the file system
1081  * is mounted on top of.
1082  */
1083 int
1084 domount(char *fsname, struct mounta *uap, vnode_t *vp, struct cred *credp,
1085     struct vfs **vfspp)
1086 {
1087 	struct vfssw	*vswp;
1088 	vfsops_t	*vfsops;
1089 	struct vfs	*vfsp;
1090 	struct vnode	*bvp;
1091 	dev_t		bdev = 0;
1092 	mntopts_t	mnt_mntopts;
1093 	int		error = 0;
1094 	int		copyout_error = 0;
1095 	int		ovflags;
1096 	char		*opts = uap->optptr;
1097 	char		*inargs = opts;
1098 	int		optlen = uap->optlen;
1099 	int		remount;
1100 	int		rdonly;
1101 	int		nbmand = 0;
1102 	int		delmip = 0;
1103 	int		addmip = 0;
1104 	int		splice = ((uap->flags & MS_NOSPLICE) == 0);
1105 	int		fromspace = (uap->flags & MS_SYSSPACE) ?
1106 	    UIO_SYSSPACE : UIO_USERSPACE;
1107 	char		*resource = NULL, *mountpt = NULL;
1108 	refstr_t	*oldresource, *oldmntpt;
1109 	struct pathname	pn, rpn;
1110 	vsk_anchor_t	*vskap;
1111 	char fstname[FSTYPSZ];
1112 	zone_t		*zone;
1113 
1114 	/*
1115 	 * The v_flag value for the mount point vp is permanently set
1116 	 * to VVFSLOCK so that no one bypasses the vn_vfs*locks routine
1117 	 * for mount point locking.
1118 	 */
1119 	mutex_enter(&vp->v_lock);
1120 	vp->v_flag |= VVFSLOCK;
1121 	mutex_exit(&vp->v_lock);
1122 
1123 	mnt_mntopts.mo_count = 0;
1124 	/*
1125 	 * Find the ops vector to use to invoke the file system-specific mount
1126 	 * method.  If the fsname argument is non-NULL, use it directly.
1127 	 * Otherwise, dig the file system type information out of the mount
1128 	 * arguments.
1129 	 *
1130 	 * A side effect is to hold the vfssw entry.
1131 	 *
1132 	 * Mount arguments can be specified in several ways, which are
1133 	 * distinguished by flag bit settings.  The preferred way is to set
1134 	 * MS_OPTIONSTR, indicating an 8 argument mount with the file system
1135 	 * type supplied as a character string and the last two arguments
1136 	 * being a pointer to a character buffer and the size of the buffer.
1137 	 * On entry, the buffer holds a null terminated list of options; on
1138 	 * return, the string is the list of options the file system
1139 	 * recognized. If MS_DATA is set arguments five and six point to a
1140 	 * block of binary data which the file system interprets.
1141 	 * A further wrinkle is that some callers don't set MS_FSS and MS_DATA
1142 	 * consistently with these conventions.  To handle them, we check to
1143 	 * see whether the pointer to the file system name has a numeric value
1144 	 * less than 256.  If so, we treat it as an index.
1145 	 */
1146 	if (fsname != NULL) {
1147 		if ((vswp = vfs_getvfssw(fsname)) == NULL) {
1148 			return (EINVAL);
1149 		}
1150 	} else if (uap->flags & (MS_OPTIONSTR | MS_DATA | MS_FSS)) {
1151 		size_t n;
1152 		uint_t fstype;
1153 
1154 		fsname = fstname;
1155 
1156 		if ((fstype = (uintptr_t)uap->fstype) < 256) {
1157 			RLOCK_VFSSW();
1158 			if (fstype == 0 || fstype >= nfstype ||
1159 			    !ALLOCATED_VFSSW(&vfssw[fstype])) {
1160 				RUNLOCK_VFSSW();
1161 				return (EINVAL);
1162 			}
1163 			(void) strcpy(fsname, vfssw[fstype].vsw_name);
1164 			RUNLOCK_VFSSW();
1165 			if ((vswp = vfs_getvfssw(fsname)) == NULL)
1166 				return (EINVAL);
1167 		} else {
1168 			/*
1169 			 * Handle either kernel or user address space.
1170 			 */
1171 			if (uap->flags & MS_SYSSPACE) {
1172 				error = copystr(uap->fstype, fsname,
1173 				    FSTYPSZ, &n);
1174 			} else {
1175 				error = copyinstr(uap->fstype, fsname,
1176 				    FSTYPSZ, &n);
1177 			}
1178 			if (error) {
1179 				if (error == ENAMETOOLONG)
1180 					return (EINVAL);
1181 				return (error);
1182 			}
1183 			if ((vswp = vfs_getvfssw(fsname)) == NULL)
1184 				return (EINVAL);
1185 		}
1186 	} else {
1187 		if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) == NULL)
1188 			return (EINVAL);
1189 		fsname = vswp->vsw_name;
1190 	}
1191 	if (!VFS_INSTALLED(vswp))
1192 		return (EINVAL);
1193 
1194 	if ((error = secpolicy_fs_allowed_mount(fsname)) != 0)  {
1195 		vfs_unrefvfssw(vswp);
1196 		return (error);
1197 	}
1198 
1199 	vfsops = &vswp->vsw_vfsops;
1200 
1201 	vfs_copyopttbl(&vswp->vsw_optproto, &mnt_mntopts);
1202 	/*
1203 	 * Fetch mount options and parse them for generic vfs options
1204 	 */
1205 	if (uap->flags & MS_OPTIONSTR) {
1206 		/*
1207 		 * Limit the buffer size
1208 		 */
1209 		if (optlen < 0 || optlen > MAX_MNTOPT_STR) {
1210 			error = EINVAL;
1211 			goto errout;
1212 		}
1213 		if ((uap->flags & MS_SYSSPACE) == 0) {
1214 			inargs = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP);
1215 			inargs[0] = '\0';
1216 			if (optlen) {
1217 				error = copyinstr(opts, inargs, (size_t)optlen,
1218 				    NULL);
1219 				if (error) {
1220 					goto errout;
1221 				}
1222 			}
1223 		}
1224 		vfs_parsemntopts(&mnt_mntopts, inargs, 0);
1225 	}
1226 	/*
1227 	 * Flag bits override the options string.
1228 	 */
1229 	if (uap->flags & MS_REMOUNT)
1230 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_REMOUNT, NULL, 0, 0);
1231 	if (uap->flags & MS_RDONLY)
1232 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_RO, NULL, 0, 0);
1233 	if (uap->flags & MS_NOSUID)
1234 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0);
1235 
1236 	/*
1237 	 * Check if this is a remount; must be set in the option string and
1238 	 * the file system must support a remount option.
1239 	 */
1240 	if (remount = vfs_optionisset_nolock(&mnt_mntopts,
1241 	    MNTOPT_REMOUNT, NULL)) {
1242 		if (!(vswp->vsw_flag & VSW_CANREMOUNT)) {
1243 			error = ENOTSUP;
1244 			goto errout;
1245 		}
1246 		uap->flags |= MS_REMOUNT;
1247 	}
1248 
1249 	/*
1250 	 * uap->flags and vfs_optionisset() should agree.
1251 	 */
1252 	if (rdonly = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_RO, NULL)) {
1253 		uap->flags |= MS_RDONLY;
1254 	}
1255 	if (vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL)) {
1256 		uap->flags |= MS_NOSUID;
1257 	}
1258 	nbmand = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NBMAND, NULL);
1259 	ASSERT(splice || !remount);
1260 	/*
1261 	 * If we are splicing the fs into the namespace,
1262 	 * perform mount point checks.
1263 	 *
1264 	 * We want to resolve the path for the mount point to eliminate
1265 	 * '.' and ".." and symlinks in mount points; we can't do the
1266 	 * same for the resource string, since it would turn
1267 	 * "/dev/dsk/c0t0d0s0" into "/devices/pci@...".  We need to do
1268 	 * this before grabbing vn_vfswlock(), because otherwise we
1269 	 * would deadlock with lookuppn().
1270 	 */
1271 	if (splice) {
1272 		ASSERT(vp->v_count > 0);
1273 
1274 		/*
1275 		 * Pick up mount point and device from appropriate space.
1276 		 */
1277 		if (pn_get(uap->spec, fromspace, &pn) == 0) {
1278 			resource = kmem_alloc(pn.pn_pathlen + 1,
1279 			    KM_SLEEP);
1280 			(void) strcpy(resource, pn.pn_path);
1281 			pn_free(&pn);
1282 		}
1283 		/*
1284 		 * Do a lookupname prior to taking the
1285 		 * writelock. Mark this as completed if
1286 		 * successful for later cleanup and addition to
1287 		 * the mount in progress table.
1288 		 */
1289 		if ((uap->flags & MS_GLOBAL) == 0 &&
1290 		    lookupname(uap->spec, fromspace,
1291 		    FOLLOW, NULL, &bvp) == 0) {
1292 			addmip = 1;
1293 		}
1294 
1295 		if ((error = pn_get(uap->dir, fromspace, &pn)) == 0) {
1296 			pathname_t *pnp;
1297 
1298 			if (*pn.pn_path != '/') {
1299 				error = EINVAL;
1300 				pn_free(&pn);
1301 				goto errout;
1302 			}
1303 			pn_alloc(&rpn);
1304 			/*
1305 			 * Kludge to prevent autofs from deadlocking with
1306 			 * itself when it calls domount().
1307 			 *
1308 			 * If autofs is calling, it is because it is doing
1309 			 * (autofs) mounts in the process of an NFS mount.  A
1310 			 * lookuppn() here would cause us to block waiting for
1311 			 * said NFS mount to complete, which can't since this
1312 			 * is the thread that was supposed to doing it.
1313 			 */
1314 			if (fromspace == UIO_USERSPACE) {
1315 				if ((error = lookuppn(&pn, &rpn, FOLLOW, NULL,
1316 				    NULL)) == 0) {
1317 					pnp = &rpn;
1318 				} else {
1319 					/*
1320 					 * The file disappeared or otherwise
1321 					 * became inaccessible since we opened
1322 					 * it; might as well fail the mount
1323 					 * since the mount point is no longer
1324 					 * accessible.
1325 					 */
1326 					pn_free(&rpn);
1327 					pn_free(&pn);
1328 					goto errout;
1329 				}
1330 			} else {
1331 				pnp = &pn;
1332 			}
1333 			mountpt = kmem_alloc(pnp->pn_pathlen + 1, KM_SLEEP);
1334 			(void) strcpy(mountpt, pnp->pn_path);
1335 
1336 			/*
1337 			 * If the addition of the zone's rootpath
1338 			 * would push us over a total path length
1339 			 * of MAXPATHLEN, we fail the mount with
1340 			 * ENAMETOOLONG, which is what we would have
1341 			 * gotten if we were trying to perform the same
1342 			 * mount in the global zone.
1343 			 *
1344 			 * strlen() doesn't count the trailing
1345 			 * '\0', but zone_rootpathlen counts both a
1346 			 * trailing '/' and the terminating '\0'.
1347 			 */
1348 			if ((curproc->p_zone->zone_rootpathlen - 1 +
1349 			    strlen(mountpt)) > MAXPATHLEN ||
1350 			    (resource != NULL &&
1351 			    (curproc->p_zone->zone_rootpathlen - 1 +
1352 			    strlen(resource)) > MAXPATHLEN)) {
1353 				error = ENAMETOOLONG;
1354 			}
1355 
1356 			pn_free(&rpn);
1357 			pn_free(&pn);
1358 		}
1359 
1360 		if (error)
1361 			goto errout;
1362 
1363 		/*
1364 		 * Prevent path name resolution from proceeding past
1365 		 * the mount point.
1366 		 */
1367 		if (vn_vfswlock(vp) != 0) {
1368 			error = EBUSY;
1369 			goto errout;
1370 		}
1371 
1372 		/*
1373 		 * Verify that it's legitimate to establish a mount on
1374 		 * the prospective mount point.
1375 		 */
1376 		if (vn_mountedvfs(vp) != NULL) {
1377 			/*
1378 			 * The mount point lock was obtained after some
1379 			 * other thread raced through and established a mount.
1380 			 */
1381 			vn_vfsunlock(vp);
1382 			error = EBUSY;
1383 			goto errout;
1384 		}
1385 		if (vp->v_flag & VNOMOUNT) {
1386 			vn_vfsunlock(vp);
1387 			error = EINVAL;
1388 			goto errout;
1389 		}
1390 	}
1391 	if ((uap->flags & (MS_DATA | MS_OPTIONSTR)) == 0) {
1392 		uap->dataptr = NULL;
1393 		uap->datalen = 0;
1394 	}
1395 
1396 	/*
1397 	 * If this is a remount, we don't want to create a new VFS.
1398 	 * Instead, we pass the existing one with a remount flag.
1399 	 */
1400 	if (remount) {
1401 		/*
1402 		 * Confirm that the mount point is the root vnode of the
1403 		 * file system that is being remounted.
1404 		 * This can happen if the user specifies a different
1405 		 * mount point directory pathname in the (re)mount command.
1406 		 *
1407 		 * Code below can only be reached if splice is true, so it's
1408 		 * safe to do vn_vfsunlock() here.
1409 		 */
1410 		if ((vp->v_flag & VROOT) == 0) {
1411 			vn_vfsunlock(vp);
1412 			error = ENOENT;
1413 			goto errout;
1414 		}
1415 		/*
1416 		 * Disallow making file systems read-only unless file system
1417 		 * explicitly allows it in its vfssw.  Ignore other flags.
1418 		 */
1419 		if (rdonly && vn_is_readonly(vp) == 0 &&
1420 		    (vswp->vsw_flag & VSW_CANRWRO) == 0) {
1421 			vn_vfsunlock(vp);
1422 			error = EINVAL;
1423 			goto errout;
1424 		}
1425 		/*
1426 		 * Disallow changing the NBMAND disposition of the file
1427 		 * system on remounts.
1428 		 */
1429 		if ((nbmand && ((vp->v_vfsp->vfs_flag & VFS_NBMAND) == 0)) ||
1430 		    (!nbmand && (vp->v_vfsp->vfs_flag & VFS_NBMAND))) {
1431 			vn_vfsunlock(vp);
1432 			error = EINVAL;
1433 			goto errout;
1434 		}
1435 		vfsp = vp->v_vfsp;
1436 		ovflags = vfsp->vfs_flag;
1437 		vfsp->vfs_flag |= VFS_REMOUNT;
1438 		vfsp->vfs_flag &= ~VFS_RDONLY;
1439 	} else {
1440 		vfsp = vfs_alloc(KM_SLEEP);
1441 		VFS_INIT(vfsp, vfsops, NULL);
1442 	}
1443 
1444 	VFS_HOLD(vfsp);
1445 
1446 	if ((error = lofi_add(fsname, vfsp, &mnt_mntopts, uap)) != 0) {
1447 		if (!remount) {
1448 			if (splice)
1449 				vn_vfsunlock(vp);
1450 			vfs_free(vfsp);
1451 		} else {
1452 			vn_vfsunlock(vp);
1453 			VFS_RELE(vfsp);
1454 		}
1455 		goto errout;
1456 	}
1457 
1458 	/*
1459 	 * PRIV_SYS_MOUNT doesn't mean you can become root.
1460 	 */
1461 	if (vfsp->vfs_lofi_id != 0) {
1462 		uap->flags |= MS_NOSUID;
1463 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0);
1464 	}
1465 
1466 	/*
1467 	 * The vfs_reflock is not used anymore the code below explicitly
1468 	 * holds it preventing others accesing it directly.
1469 	 */
1470 	if ((sema_tryp(&vfsp->vfs_reflock) == 0) &&
1471 	    !(vfsp->vfs_flag & VFS_REMOUNT))
1472 		cmn_err(CE_WARN,
1473 		    "mount type %s couldn't get vfs_reflock", vswp->vsw_name);
1474 
1475 	/*
1476 	 * Lock the vfs. If this is a remount we want to avoid spurious umount
1477 	 * failures that happen as a side-effect of fsflush() and other mount
1478 	 * and unmount operations that might be going on simultaneously and
1479 	 * may have locked the vfs currently. To not return EBUSY immediately
1480 	 * here we use vfs_lock_wait() instead vfs_lock() for the remount case.
1481 	 */
1482 	if (!remount) {
1483 		if (error = vfs_lock(vfsp)) {
1484 			vfsp->vfs_flag = ovflags;
1485 
1486 			lofi_remove(vfsp);
1487 
1488 			if (splice)
1489 				vn_vfsunlock(vp);
1490 			vfs_free(vfsp);
1491 			goto errout;
1492 		}
1493 	} else {
1494 		vfs_lock_wait(vfsp);
1495 	}
1496 
1497 	/*
1498 	 * Add device to mount in progress table, global mounts require special
1499 	 * handling. It is possible that we have already done the lookupname
1500 	 * on a spliced, non-global fs. If so, we don't want to do it again
1501 	 * since we cannot do a lookupname after taking the
1502 	 * wlock above. This case is for a non-spliced, non-global filesystem.
1503 	 */
1504 	if (!addmip) {
1505 		if ((uap->flags & MS_GLOBAL) == 0 &&
1506 		    lookupname(uap->spec, fromspace, FOLLOW, NULL, &bvp) == 0) {
1507 			addmip = 1;
1508 		}
1509 	}
1510 
1511 	if (addmip) {
1512 		vnode_t *lvp = NULL;
1513 
1514 		error = vfs_get_lofi(vfsp, &lvp);
1515 		if (error > 0) {
1516 			lofi_remove(vfsp);
1517 
1518 			if (splice)
1519 				vn_vfsunlock(vp);
1520 			vfs_unlock(vfsp);
1521 
1522 			if (remount) {
1523 				VFS_RELE(vfsp);
1524 			} else {
1525 				vfs_free(vfsp);
1526 			}
1527 
1528 			goto errout;
1529 		} else if (error == -1) {
1530 			bdev = bvp->v_rdev;
1531 			VN_RELE(bvp);
1532 		} else {
1533 			bdev = lvp->v_rdev;
1534 			VN_RELE(lvp);
1535 			VN_RELE(bvp);
1536 		}
1537 
1538 		vfs_addmip(bdev, vfsp);
1539 		addmip = 0;
1540 		delmip = 1;
1541 	}
1542 	/*
1543 	 * Invalidate cached entry for the mount point.
1544 	 */
1545 	if (splice)
1546 		dnlc_purge_vp(vp);
1547 
1548 	/*
1549 	 * If have an option string but the filesystem doesn't supply a
1550 	 * prototype options table, create a table with the global
1551 	 * options and sufficient room to accept all the options in the
1552 	 * string.  Then parse the passed in option string
1553 	 * accepting all the options in the string.  This gives us an
1554 	 * option table with all the proper cancel properties for the
1555 	 * global options.
1556 	 *
1557 	 * Filesystems that supply a prototype options table are handled
1558 	 * earlier in this function.
1559 	 */
1560 	if (uap->flags & MS_OPTIONSTR) {
1561 		if (!(vswp->vsw_flag & VSW_HASPROTO)) {
1562 			mntopts_t tmp_mntopts;
1563 
1564 			tmp_mntopts.mo_count = 0;
1565 			vfs_createopttbl_extend(&tmp_mntopts, inargs,
1566 			    &mnt_mntopts);
1567 			vfs_parsemntopts(&tmp_mntopts, inargs, 1);
1568 			vfs_swapopttbl_nolock(&mnt_mntopts, &tmp_mntopts);
1569 			vfs_freeopttbl(&tmp_mntopts);
1570 		}
1571 	}
1572 
1573 	/*
1574 	 * Serialize with zone state transitions.
1575 	 * See vfs_list_add; zone mounted into is:
1576 	 * 	zone_find_by_path(refstr_value(vfsp->vfs_mntpt))
1577 	 * not the zone doing the mount (curproc->p_zone), but if we're already
1578 	 * inside a NGZ, then we know what zone we are.
1579 	 */
1580 	if (INGLOBALZONE(curproc)) {
1581 		zone = zone_find_by_path(mountpt);
1582 		ASSERT(zone != NULL);
1583 	} else {
1584 		zone = curproc->p_zone;
1585 		/*
1586 		 * zone_find_by_path does a hold, so do one here too so that
1587 		 * we can do a zone_rele after mount_completed.
1588 		 */
1589 		zone_hold(zone);
1590 	}
1591 	mount_in_progress(zone);
1592 	/*
1593 	 * Instantiate (or reinstantiate) the file system.  If appropriate,
1594 	 * splice it into the file system name space.
1595 	 *
1596 	 * We want VFS_MOUNT() to be able to override the vfs_resource
1597 	 * string if necessary (ie, mntfs), and also for a remount to
1598 	 * change the same (necessary when remounting '/' during boot).
1599 	 * So we set up vfs_mntpt and vfs_resource to what we think they
1600 	 * should be, then hand off control to VFS_MOUNT() which can
1601 	 * override this.
1602 	 *
1603 	 * For safety's sake, when changing vfs_resource or vfs_mntpt of
1604 	 * a vfs which is on the vfs list (i.e. during a remount), we must
1605 	 * never set those fields to NULL. Several bits of code make
1606 	 * assumptions that the fields are always valid.
1607 	 */
1608 	vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts);
1609 	if (remount) {
1610 		if ((oldresource = vfsp->vfs_resource) != NULL)
1611 			refstr_hold(oldresource);
1612 		if ((oldmntpt = vfsp->vfs_mntpt) != NULL)
1613 			refstr_hold(oldmntpt);
1614 	}
1615 	vfs_setresource(vfsp, resource, 0);
1616 	vfs_setmntpoint(vfsp, mountpt, 0);
1617 
1618 	/*
1619 	 * going to mount on this vnode, so notify.
1620 	 */
1621 	vnevent_mountedover(vp, NULL);
1622 	error = VFS_MOUNT(vfsp, vp, uap, credp);
1623 
1624 	if (uap->flags & MS_RDONLY)
1625 		vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1626 	if (uap->flags & MS_NOSUID)
1627 		vfs_setmntopt(vfsp, MNTOPT_NOSUID, NULL, 0);
1628 	if (uap->flags & MS_GLOBAL)
1629 		vfs_setmntopt(vfsp, MNTOPT_GLOBAL, NULL, 0);
1630 
1631 	if (error) {
1632 		lofi_remove(vfsp);
1633 
1634 		if (remount) {
1635 			/* put back pre-remount options */
1636 			vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts);
1637 			vfs_setmntpoint(vfsp, refstr_value(oldmntpt),
1638 			    VFSSP_VERBATIM);
1639 			if (oldmntpt)
1640 				refstr_rele(oldmntpt);
1641 			vfs_setresource(vfsp, refstr_value(oldresource),
1642 			    VFSSP_VERBATIM);
1643 			if (oldresource)
1644 				refstr_rele(oldresource);
1645 			vfsp->vfs_flag = ovflags;
1646 			vfs_unlock(vfsp);
1647 			VFS_RELE(vfsp);
1648 		} else {
1649 			vfs_unlock(vfsp);
1650 			vfs_freemnttab(vfsp);
1651 			vfs_free(vfsp);
1652 		}
1653 	} else {
1654 		/*
1655 		 * Set the mount time to now
1656 		 */
1657 		vfsp->vfs_mtime = ddi_get_time();
1658 		if (remount) {
1659 			vfsp->vfs_flag &= ~VFS_REMOUNT;
1660 			if (oldresource)
1661 				refstr_rele(oldresource);
1662 			if (oldmntpt)
1663 				refstr_rele(oldmntpt);
1664 		} else if (splice) {
1665 			/*
1666 			 * Link vfsp into the name space at the mount
1667 			 * point. Vfs_add() is responsible for
1668 			 * holding the mount point which will be
1669 			 * released when vfs_remove() is called.
1670 			 */
1671 			vfs_add(vp, vfsp, uap->flags);
1672 		} else {
1673 			/*
1674 			 * Hold the reference to file system which is
1675 			 * not linked into the name space.
1676 			 */
1677 			vfsp->vfs_zone = NULL;
1678 			VFS_HOLD(vfsp);
1679 			vfsp->vfs_vnodecovered = NULL;
1680 		}
1681 		/*
1682 		 * Set flags for global options encountered
1683 		 */
1684 		if (vfs_optionisset(vfsp, MNTOPT_RO, NULL))
1685 			vfsp->vfs_flag |= VFS_RDONLY;
1686 		else
1687 			vfsp->vfs_flag &= ~VFS_RDONLY;
1688 		if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
1689 			vfsp->vfs_flag |= (VFS_NOSETUID|VFS_NODEVICES);
1690 		} else {
1691 			if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL))
1692 				vfsp->vfs_flag |= VFS_NODEVICES;
1693 			else
1694 				vfsp->vfs_flag &= ~VFS_NODEVICES;
1695 			if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL))
1696 				vfsp->vfs_flag |= VFS_NOSETUID;
1697 			else
1698 				vfsp->vfs_flag &= ~VFS_NOSETUID;
1699 		}
1700 		if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL))
1701 			vfsp->vfs_flag |= VFS_NBMAND;
1702 		else
1703 			vfsp->vfs_flag &= ~VFS_NBMAND;
1704 
1705 		if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL))
1706 			vfsp->vfs_flag |= VFS_XATTR;
1707 		else
1708 			vfsp->vfs_flag &= ~VFS_XATTR;
1709 
1710 		if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL))
1711 			vfsp->vfs_flag |= VFS_NOEXEC;
1712 		else
1713 			vfsp->vfs_flag &= ~VFS_NOEXEC;
1714 
1715 		/*
1716 		 * Now construct the output option string of options
1717 		 * we recognized.
1718 		 */
1719 		if (uap->flags & MS_OPTIONSTR) {
1720 			vfs_list_read_lock();
1721 			copyout_error = vfs_buildoptionstr(
1722 			    &vfsp->vfs_mntopts, inargs, optlen);
1723 			vfs_list_unlock();
1724 			if (copyout_error == 0 &&
1725 			    (uap->flags & MS_SYSSPACE) == 0) {
1726 				copyout_error = copyoutstr(inargs, opts,
1727 				    optlen, NULL);
1728 			}
1729 		}
1730 
1731 		/*
1732 		 * If this isn't a remount, set up the vopstats before
1733 		 * anyone can touch this. We only allow spliced file
1734 		 * systems (file systems which are in the namespace) to
1735 		 * have the VFS_STATS flag set.
1736 		 * NOTE: PxFS mounts the underlying file system with
1737 		 * MS_NOSPLICE set and copies those vfs_flags to its private
1738 		 * vfs structure. As a result, PxFS should never have
1739 		 * the VFS_STATS flag or else we might access the vfs
1740 		 * statistics-related fields prior to them being
1741 		 * properly initialized.
1742 		 */
1743 		if (!remount && (vswp->vsw_flag & VSW_STATS) && splice) {
1744 			initialize_vopstats(&vfsp->vfs_vopstats);
1745 			/*
1746 			 * We need to set vfs_vskap to NULL because there's
1747 			 * a chance it won't be set below.  This is checked
1748 			 * in teardown_vopstats() so we can't have garbage.
1749 			 */
1750 			vfsp->vfs_vskap = NULL;
1751 			vfsp->vfs_flag |= VFS_STATS;
1752 			vfsp->vfs_fstypevsp = get_fstype_vopstats(vfsp, vswp);
1753 		}
1754 
1755 		if (vswp->vsw_flag & VSW_XID)
1756 			vfsp->vfs_flag |= VFS_XID;
1757 
1758 		vfs_unlock(vfsp);
1759 	}
1760 	mount_completed(zone);
1761 	zone_rele(zone);
1762 	if (splice)
1763 		vn_vfsunlock(vp);
1764 
1765 	if ((error == 0) && (copyout_error == 0)) {
1766 		if (!remount) {
1767 			/*
1768 			 * Don't call get_vskstat_anchor() while holding
1769 			 * locks since it allocates memory and calls
1770 			 * VFS_STATVFS().  For NFS, the latter can generate
1771 			 * an over-the-wire call.
1772 			 */
1773 			vskap = get_vskstat_anchor(vfsp);
1774 			/* Only take the lock if we have something to do */
1775 			if (vskap != NULL) {
1776 				vfs_lock_wait(vfsp);
1777 				if (vfsp->vfs_flag & VFS_STATS) {
1778 					vfsp->vfs_vskap = vskap;
1779 				}
1780 				vfs_unlock(vfsp);
1781 			}
1782 		}
1783 		/* Return vfsp to caller. */
1784 		*vfspp = vfsp;
1785 	}
1786 errout:
1787 	vfs_freeopttbl(&mnt_mntopts);
1788 	if (resource != NULL)
1789 		kmem_free(resource, strlen(resource) + 1);
1790 	if (mountpt != NULL)
1791 		kmem_free(mountpt, strlen(mountpt) + 1);
1792 	/*
1793 	 * It is possible we errored prior to adding to mount in progress
1794 	 * table. Must free vnode we acquired with successful lookupname.
1795 	 */
1796 	if (addmip)
1797 		VN_RELE(bvp);
1798 	if (delmip)
1799 		vfs_delmip(vfsp);
1800 	ASSERT(vswp != NULL);
1801 	vfs_unrefvfssw(vswp);
1802 	if (inargs != opts)
1803 		kmem_free(inargs, MAX_MNTOPT_STR);
1804 	if (copyout_error) {
1805 		lofi_remove(vfsp);
1806 		VFS_RELE(vfsp);
1807 		error = copyout_error;
1808 	}
1809 	return (error);
1810 }
1811 
1812 static void
1813 vfs_setpath(
1814     struct vfs *vfsp,		/* vfs being updated */
1815     refstr_t **refp,		/* Ref-count string to contain the new path */
1816     const char *newpath,	/* Path to add to refp (above) */
1817     uint32_t flag)		/* flag */
1818 {
1819 	size_t len;
1820 	refstr_t *ref;
1821 	zone_t *zone = curproc->p_zone;
1822 	char *sp;
1823 	int have_list_lock = 0;
1824 
1825 	ASSERT(!VFS_ON_LIST(vfsp) || vfs_lock_held(vfsp));
1826 
1827 	/*
1828 	 * New path must be less than MAXPATHLEN because mntfs
1829 	 * will only display up to MAXPATHLEN bytes. This is currently
1830 	 * safe, because domount() uses pn_get(), and other callers
1831 	 * similarly cap the size to fewer than MAXPATHLEN bytes.
1832 	 */
1833 
1834 	ASSERT(strlen(newpath) < MAXPATHLEN);
1835 
1836 	/* mntfs requires consistency while vfs list lock is held */
1837 
1838 	if (VFS_ON_LIST(vfsp)) {
1839 		have_list_lock = 1;
1840 		vfs_list_lock();
1841 	}
1842 
1843 	if (*refp != NULL)
1844 		refstr_rele(*refp);
1845 
1846 	/*
1847 	 * If we are in a non-global zone then we prefix the supplied path,
1848 	 * newpath, with the zone's root path, with two exceptions. The first
1849 	 * is where we have been explicitly directed to avoid doing so; this
1850 	 * will be the case following a failed remount, where the path supplied
1851 	 * will be a saved version which must now be restored. The second
1852 	 * exception is where newpath is not a pathname but a descriptive name,
1853 	 * e.g. "procfs".
1854 	 */
1855 	if (zone == global_zone || (flag & VFSSP_VERBATIM) || *newpath != '/') {
1856 		ref = refstr_alloc(newpath);
1857 		goto out;
1858 	}
1859 
1860 	/*
1861 	 * Truncate the trailing '/' in the zoneroot, and merge
1862 	 * in the zone's rootpath with the "newpath" (resource
1863 	 * or mountpoint) passed in.
1864 	 *
1865 	 * The size of the required buffer is thus the size of
1866 	 * the buffer required for the passed-in newpath
1867 	 * (strlen(newpath) + 1), plus the size of the buffer
1868 	 * required to hold zone_rootpath (zone_rootpathlen)
1869 	 * minus one for one of the now-superfluous NUL
1870 	 * terminations, minus one for the trailing '/'.
1871 	 *
1872 	 * That gives us:
1873 	 *
1874 	 * (strlen(newpath) + 1) + zone_rootpathlen - 1 - 1
1875 	 *
1876 	 * Which is what we have below.
1877 	 */
1878 
1879 	len = strlen(newpath) + zone->zone_rootpathlen - 1;
1880 	sp = kmem_alloc(len, KM_SLEEP);
1881 
1882 	/*
1883 	 * Copy everything including the trailing slash, which
1884 	 * we then overwrite with the NUL character.
1885 	 */
1886 
1887 	(void) strcpy(sp, zone->zone_rootpath);
1888 	sp[zone->zone_rootpathlen - 2] = '\0';
1889 	(void) strcat(sp, newpath);
1890 
1891 	ref = refstr_alloc(sp);
1892 	kmem_free(sp, len);
1893 out:
1894 	*refp = ref;
1895 
1896 	if (have_list_lock) {
1897 		vfs_mnttab_modtimeupd();
1898 		vfs_list_unlock();
1899 	}
1900 }
1901 
1902 /*
1903  * Record a mounted resource name in a vfs structure.
1904  * If vfsp is already mounted, caller must hold the vfs lock.
1905  */
1906 void
1907 vfs_setresource(struct vfs *vfsp, const char *resource, uint32_t flag)
1908 {
1909 	if (resource == NULL || resource[0] == '\0')
1910 		resource = VFS_NORESOURCE;
1911 	vfs_setpath(vfsp, &vfsp->vfs_resource, resource, flag);
1912 }
1913 
1914 /*
1915  * Record a mount point name in a vfs structure.
1916  * If vfsp is already mounted, caller must hold the vfs lock.
1917  */
1918 void
1919 vfs_setmntpoint(struct vfs *vfsp, const char *mntpt, uint32_t flag)
1920 {
1921 	if (mntpt == NULL || mntpt[0] == '\0')
1922 		mntpt = VFS_NOMNTPT;
1923 	vfs_setpath(vfsp, &vfsp->vfs_mntpt, mntpt, flag);
1924 }
1925 
1926 /* Returns the vfs_resource. Caller must call refstr_rele() when finished. */
1927 
1928 refstr_t *
1929 vfs_getresource(const struct vfs *vfsp)
1930 {
1931 	refstr_t *resource;
1932 
1933 	vfs_list_read_lock();
1934 	resource = vfsp->vfs_resource;
1935 	refstr_hold(resource);
1936 	vfs_list_unlock();
1937 
1938 	return (resource);
1939 }
1940 
1941 /* Returns the vfs_mntpt. Caller must call refstr_rele() when finished. */
1942 
1943 refstr_t *
1944 vfs_getmntpoint(const struct vfs *vfsp)
1945 {
1946 	refstr_t *mntpt;
1947 
1948 	vfs_list_read_lock();
1949 	mntpt = vfsp->vfs_mntpt;
1950 	refstr_hold(mntpt);
1951 	vfs_list_unlock();
1952 
1953 	return (mntpt);
1954 }
1955 
1956 /*
1957  * Create an empty options table with enough empty slots to hold all
1958  * The options in the options string passed as an argument.
1959  * Potentially prepend another options table.
1960  *
1961  * Note: caller is responsible for locking the vfs list, if needed,
1962  *       to protect mops.
1963  */
1964 static void
1965 vfs_createopttbl_extend(mntopts_t *mops, const char *opts,
1966     const mntopts_t *mtmpl)
1967 {
1968 	const char *s = opts;
1969 	uint_t count;
1970 
1971 	if (opts == NULL || *opts == '\0') {
1972 		count = 0;
1973 	} else {
1974 		count = 1;
1975 
1976 		/*
1977 		 * Count number of options in the string
1978 		 */
1979 		for (s = strchr(s, ','); s != NULL; s = strchr(s, ',')) {
1980 			count++;
1981 			s++;
1982 		}
1983 	}
1984 	vfs_copyopttbl_extend(mtmpl, mops, count);
1985 }
1986 
1987 /*
1988  * Create an empty options table with enough empty slots to hold all
1989  * The options in the options string passed as an argument.
1990  *
1991  * This function is *not* for general use by filesystems.
1992  *
1993  * Note: caller is responsible for locking the vfs list, if needed,
1994  *       to protect mops.
1995  */
1996 void
1997 vfs_createopttbl(mntopts_t *mops, const char *opts)
1998 {
1999 	vfs_createopttbl_extend(mops, opts, NULL);
2000 }
2001 
2002 
2003 /*
2004  * Swap two mount options tables
2005  */
2006 static void
2007 vfs_swapopttbl_nolock(mntopts_t *optbl1, mntopts_t *optbl2)
2008 {
2009 	uint_t tmpcnt;
2010 	mntopt_t *tmplist;
2011 
2012 	tmpcnt = optbl2->mo_count;
2013 	tmplist = optbl2->mo_list;
2014 	optbl2->mo_count = optbl1->mo_count;
2015 	optbl2->mo_list = optbl1->mo_list;
2016 	optbl1->mo_count = tmpcnt;
2017 	optbl1->mo_list = tmplist;
2018 }
2019 
2020 static void
2021 vfs_swapopttbl(mntopts_t *optbl1, mntopts_t *optbl2)
2022 {
2023 	vfs_list_lock();
2024 	vfs_swapopttbl_nolock(optbl1, optbl2);
2025 	vfs_mnttab_modtimeupd();
2026 	vfs_list_unlock();
2027 }
2028 
2029 static char **
2030 vfs_copycancelopt_extend(char **const moc, int extend)
2031 {
2032 	int i = 0;
2033 	int j;
2034 	char **result;
2035 
2036 	if (moc != NULL) {
2037 		for (; moc[i] != NULL; i++)
2038 			/* count number of options to cancel */;
2039 	}
2040 
2041 	if (i + extend == 0)
2042 		return (NULL);
2043 
2044 	result = kmem_alloc((i + extend + 1) * sizeof (char *), KM_SLEEP);
2045 
2046 	for (j = 0; j < i; j++) {
2047 		result[j] = kmem_alloc(strlen(moc[j]) + 1, KM_SLEEP);
2048 		(void) strcpy(result[j], moc[j]);
2049 	}
2050 	for (; j <= i + extend; j++)
2051 		result[j] = NULL;
2052 
2053 	return (result);
2054 }
2055 
2056 static void
2057 vfs_copyopt(const mntopt_t *s, mntopt_t *d)
2058 {
2059 	char *sp, *dp;
2060 
2061 	d->mo_flags = s->mo_flags;
2062 	d->mo_data = s->mo_data;
2063 	sp = s->mo_name;
2064 	if (sp != NULL) {
2065 		dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP);
2066 		(void) strcpy(dp, sp);
2067 		d->mo_name = dp;
2068 	} else {
2069 		d->mo_name = NULL; /* should never happen */
2070 	}
2071 
2072 	d->mo_cancel = vfs_copycancelopt_extend(s->mo_cancel, 0);
2073 
2074 	sp = s->mo_arg;
2075 	if (sp != NULL) {
2076 		dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP);
2077 		(void) strcpy(dp, sp);
2078 		d->mo_arg = dp;
2079 	} else {
2080 		d->mo_arg = NULL;
2081 	}
2082 }
2083 
2084 /*
2085  * Copy a mount options table, possibly allocating some spare
2086  * slots at the end.  It is permissible to copy_extend the NULL table.
2087  */
2088 static void
2089 vfs_copyopttbl_extend(const mntopts_t *smo, mntopts_t *dmo, int extra)
2090 {
2091 	uint_t i, count;
2092 	mntopt_t *motbl;
2093 
2094 	/*
2095 	 * Clear out any existing stuff in the options table being initialized
2096 	 */
2097 	vfs_freeopttbl(dmo);
2098 	count = (smo == NULL) ? 0 : smo->mo_count;
2099 	if ((count + extra) == 0)	/* nothing to do */
2100 		return;
2101 	dmo->mo_count = count + extra;
2102 	motbl = kmem_zalloc((count + extra) * sizeof (mntopt_t), KM_SLEEP);
2103 	dmo->mo_list = motbl;
2104 	for (i = 0; i < count; i++) {
2105 		vfs_copyopt(&smo->mo_list[i], &motbl[i]);
2106 	}
2107 	for (i = count; i < count + extra; i++) {
2108 		motbl[i].mo_flags = MO_EMPTY;
2109 	}
2110 }
2111 
2112 /*
2113  * Copy a mount options table.
2114  *
2115  * This function is *not* for general use by filesystems.
2116  *
2117  * Note: caller is responsible for locking the vfs list, if needed,
2118  *       to protect smo and dmo.
2119  */
2120 void
2121 vfs_copyopttbl(const mntopts_t *smo, mntopts_t *dmo)
2122 {
2123 	vfs_copyopttbl_extend(smo, dmo, 0);
2124 }
2125 
2126 static char **
2127 vfs_mergecancelopts(const mntopt_t *mop1, const mntopt_t *mop2)
2128 {
2129 	int c1 = 0;
2130 	int c2 = 0;
2131 	char **result;
2132 	char **sp1, **sp2, **dp;
2133 
2134 	/*
2135 	 * First we count both lists of cancel options.
2136 	 * If either is NULL or has no elements, we return a copy of
2137 	 * the other.
2138 	 */
2139 	if (mop1->mo_cancel != NULL) {
2140 		for (; mop1->mo_cancel[c1] != NULL; c1++)
2141 			/* count cancel options in mop1 */;
2142 	}
2143 
2144 	if (c1 == 0)
2145 		return (vfs_copycancelopt_extend(mop2->mo_cancel, 0));
2146 
2147 	if (mop2->mo_cancel != NULL) {
2148 		for (; mop2->mo_cancel[c2] != NULL; c2++)
2149 			/* count cancel options in mop2 */;
2150 	}
2151 
2152 	result = vfs_copycancelopt_extend(mop1->mo_cancel, c2);
2153 
2154 	if (c2 == 0)
2155 		return (result);
2156 
2157 	/*
2158 	 * When we get here, we've got two sets of cancel options;
2159 	 * we need to merge the two sets.  We know that the result
2160 	 * array has "c1+c2+1" entries and in the end we might shrink
2161 	 * it.
2162 	 * Result now has a copy of the c1 entries from mop1; we'll
2163 	 * now lookup all the entries of mop2 in mop1 and copy it if
2164 	 * it is unique.
2165 	 * This operation is O(n^2) but it's only called once per
2166 	 * filesystem per duplicate option.  This is a situation
2167 	 * which doesn't arise with the filesystems in ON and
2168 	 * n is generally 1.
2169 	 */
2170 
2171 	dp = &result[c1];
2172 	for (sp2 = mop2->mo_cancel; *sp2 != NULL; sp2++) {
2173 		for (sp1 = mop1->mo_cancel; *sp1 != NULL; sp1++) {
2174 			if (strcmp(*sp1, *sp2) == 0)
2175 				break;
2176 		}
2177 		if (*sp1 == NULL) {
2178 			/*
2179 			 * Option *sp2 not found in mop1, so copy it.
2180 			 * The calls to vfs_copycancelopt_extend()
2181 			 * guarantee that there's enough room.
2182 			 */
2183 			*dp = kmem_alloc(strlen(*sp2) + 1, KM_SLEEP);
2184 			(void) strcpy(*dp++, *sp2);
2185 		}
2186 	}
2187 	if (dp != &result[c1+c2]) {
2188 		size_t bytes = (dp - result + 1) * sizeof (char *);
2189 		char **nres = kmem_alloc(bytes, KM_SLEEP);
2190 
2191 		bcopy(result, nres, bytes);
2192 		kmem_free(result, (c1 + c2 + 1) * sizeof (char *));
2193 		result = nres;
2194 	}
2195 	return (result);
2196 }
2197 
2198 /*
2199  * Merge two mount option tables (outer and inner) into one.  This is very
2200  * similar to "merging" global variables and automatic variables in C.
2201  *
2202  * This isn't (and doesn't have to be) fast.
2203  *
2204  * This function is *not* for general use by filesystems.
2205  *
2206  * Note: caller is responsible for locking the vfs list, if needed,
2207  *       to protect omo, imo & dmo.
2208  */
2209 void
2210 vfs_mergeopttbl(const mntopts_t *omo, const mntopts_t *imo, mntopts_t *dmo)
2211 {
2212 	uint_t i, count;
2213 	mntopt_t *mop, *motbl;
2214 	uint_t freeidx;
2215 
2216 	/*
2217 	 * First determine how much space we need to allocate.
2218 	 */
2219 	count = omo->mo_count;
2220 	for (i = 0; i < imo->mo_count; i++) {
2221 		if (imo->mo_list[i].mo_flags & MO_EMPTY)
2222 			continue;
2223 		if (vfs_hasopt(omo, imo->mo_list[i].mo_name) == NULL)
2224 			count++;
2225 	}
2226 	ASSERT(count >= omo->mo_count &&
2227 	    count <= omo->mo_count + imo->mo_count);
2228 	motbl = kmem_alloc(count * sizeof (mntopt_t), KM_SLEEP);
2229 	for (i = 0; i < omo->mo_count; i++)
2230 		vfs_copyopt(&omo->mo_list[i], &motbl[i]);
2231 	freeidx = omo->mo_count;
2232 	for (i = 0; i < imo->mo_count; i++) {
2233 		if (imo->mo_list[i].mo_flags & MO_EMPTY)
2234 			continue;
2235 		if ((mop = vfs_hasopt(omo, imo->mo_list[i].mo_name)) != NULL) {
2236 			char **newcanp;
2237 			uint_t index = mop - omo->mo_list;
2238 
2239 			newcanp = vfs_mergecancelopts(mop, &motbl[index]);
2240 
2241 			vfs_freeopt(&motbl[index]);
2242 			vfs_copyopt(&imo->mo_list[i], &motbl[index]);
2243 
2244 			vfs_freecancelopt(motbl[index].mo_cancel);
2245 			motbl[index].mo_cancel = newcanp;
2246 		} else {
2247 			/*
2248 			 * If it's a new option, just copy it over to the first
2249 			 * free location.
2250 			 */
2251 			vfs_copyopt(&imo->mo_list[i], &motbl[freeidx++]);
2252 		}
2253 	}
2254 	dmo->mo_count = count;
2255 	dmo->mo_list = motbl;
2256 }
2257 
2258 /*
2259  * Functions to set and clear mount options in a mount options table.
2260  */
2261 
2262 /*
2263  * Clear a mount option, if it exists.
2264  *
2265  * The update_mnttab arg indicates whether mops is part of a vfs that is on
2266  * the vfs list.
2267  */
2268 static void
2269 vfs_clearmntopt_nolock(mntopts_t *mops, const char *opt, int update_mnttab)
2270 {
2271 	struct mntopt *mop;
2272 	uint_t i, count;
2273 
2274 	ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist));
2275 
2276 	count = mops->mo_count;
2277 	for (i = 0; i < count; i++) {
2278 		mop = &mops->mo_list[i];
2279 
2280 		if (mop->mo_flags & MO_EMPTY)
2281 			continue;
2282 		if (strcmp(opt, mop->mo_name))
2283 			continue;
2284 		mop->mo_flags &= ~MO_SET;
2285 		if (mop->mo_arg != NULL) {
2286 			kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2287 		}
2288 		mop->mo_arg = NULL;
2289 		if (update_mnttab)
2290 			vfs_mnttab_modtimeupd();
2291 		break;
2292 	}
2293 }
2294 
2295 void
2296 vfs_clearmntopt(struct vfs *vfsp, const char *opt)
2297 {
2298 	int gotlock = 0;
2299 
2300 	if (VFS_ON_LIST(vfsp)) {
2301 		gotlock = 1;
2302 		vfs_list_lock();
2303 	}
2304 	vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, opt, gotlock);
2305 	if (gotlock)
2306 		vfs_list_unlock();
2307 }
2308 
2309 
2310 /*
2311  * Set a mount option on.  If it's not found in the table, it's silently
2312  * ignored.  If the option has MO_IGNORE set, it is still set unless the
2313  * VFS_NOFORCEOPT bit is set in the flags.  Also, VFS_DISPLAY/VFS_NODISPLAY flag
2314  * bits can be used to toggle the MO_NODISPLAY bit for the option.
2315  * If the VFS_CREATEOPT flag bit is set then the first option slot with
2316  * MO_EMPTY set is created as the option passed in.
2317  *
2318  * The update_mnttab arg indicates whether mops is part of a vfs that is on
2319  * the vfs list.
2320  */
2321 static void
2322 vfs_setmntopt_nolock(mntopts_t *mops, const char *opt,
2323     const char *arg, int flags, int update_mnttab)
2324 {
2325 	mntopt_t *mop;
2326 	uint_t i, count;
2327 	char *sp;
2328 
2329 	ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist));
2330 
2331 	if (flags & VFS_CREATEOPT) {
2332 		if (vfs_hasopt(mops, opt) != NULL) {
2333 			flags &= ~VFS_CREATEOPT;
2334 		}
2335 	}
2336 	count = mops->mo_count;
2337 	for (i = 0; i < count; i++) {
2338 		mop = &mops->mo_list[i];
2339 
2340 		if (mop->mo_flags & MO_EMPTY) {
2341 			if ((flags & VFS_CREATEOPT) == 0)
2342 				continue;
2343 			sp = kmem_alloc(strlen(opt) + 1, KM_SLEEP);
2344 			(void) strcpy(sp, opt);
2345 			mop->mo_name = sp;
2346 			if (arg != NULL)
2347 				mop->mo_flags = MO_HASVALUE;
2348 			else
2349 				mop->mo_flags = 0;
2350 		} else if (strcmp(opt, mop->mo_name)) {
2351 			continue;
2352 		}
2353 		if ((mop->mo_flags & MO_IGNORE) && (flags & VFS_NOFORCEOPT))
2354 			break;
2355 		if (arg != NULL && (mop->mo_flags & MO_HASVALUE) != 0) {
2356 			sp = kmem_alloc(strlen(arg) + 1, KM_SLEEP);
2357 			(void) strcpy(sp, arg);
2358 		} else {
2359 			sp = NULL;
2360 		}
2361 		if (mop->mo_arg != NULL)
2362 			kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2363 		mop->mo_arg = sp;
2364 		if (flags & VFS_DISPLAY)
2365 			mop->mo_flags &= ~MO_NODISPLAY;
2366 		if (flags & VFS_NODISPLAY)
2367 			mop->mo_flags |= MO_NODISPLAY;
2368 		mop->mo_flags |= MO_SET;
2369 		if (mop->mo_cancel != NULL) {
2370 			char **cp;
2371 
2372 			for (cp = mop->mo_cancel; *cp != NULL; cp++)
2373 				vfs_clearmntopt_nolock(mops, *cp, 0);
2374 		}
2375 		if (update_mnttab)
2376 			vfs_mnttab_modtimeupd();
2377 		break;
2378 	}
2379 }
2380 
2381 void
2382 vfs_setmntopt(struct vfs *vfsp, const char *opt, const char *arg, int flags)
2383 {
2384 	int gotlock = 0;
2385 
2386 	if (VFS_ON_LIST(vfsp)) {
2387 		gotlock = 1;
2388 		vfs_list_lock();
2389 	}
2390 	vfs_setmntopt_nolock(&vfsp->vfs_mntopts, opt, arg, flags, gotlock);
2391 	if (gotlock)
2392 		vfs_list_unlock();
2393 }
2394 
2395 
2396 /*
2397  * Add a "tag" option to a mounted file system's options list.
2398  *
2399  * Note: caller is responsible for locking the vfs list, if needed,
2400  *       to protect mops.
2401  */
2402 static mntopt_t *
2403 vfs_addtag(mntopts_t *mops, const char *tag)
2404 {
2405 	uint_t count;
2406 	mntopt_t *mop, *motbl;
2407 
2408 	count = mops->mo_count + 1;
2409 	motbl = kmem_zalloc(count * sizeof (mntopt_t), KM_SLEEP);
2410 	if (mops->mo_count) {
2411 		size_t len = (count - 1) * sizeof (mntopt_t);
2412 
2413 		bcopy(mops->mo_list, motbl, len);
2414 		kmem_free(mops->mo_list, len);
2415 	}
2416 	mops->mo_count = count;
2417 	mops->mo_list = motbl;
2418 	mop = &motbl[count - 1];
2419 	mop->mo_flags = MO_TAG;
2420 	mop->mo_name = kmem_alloc(strlen(tag) + 1, KM_SLEEP);
2421 	(void) strcpy(mop->mo_name, tag);
2422 	return (mop);
2423 }
2424 
2425 /*
2426  * Allow users to set arbitrary "tags" in a vfs's mount options.
2427  * Broader use within the kernel is discouraged.
2428  */
2429 int
2430 vfs_settag(uint_t major, uint_t minor, const char *mntpt, const char *tag,
2431     cred_t *cr)
2432 {
2433 	vfs_t *vfsp;
2434 	mntopts_t *mops;
2435 	mntopt_t *mop;
2436 	int found = 0;
2437 	dev_t dev = makedevice(major, minor);
2438 	int err = 0;
2439 	char *buf = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP);
2440 
2441 	/*
2442 	 * Find the desired mounted file system
2443 	 */
2444 	vfs_list_lock();
2445 	vfsp = rootvfs;
2446 	do {
2447 		if (vfsp->vfs_dev == dev &&
2448 		    strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) {
2449 			found = 1;
2450 			break;
2451 		}
2452 		vfsp = vfsp->vfs_next;
2453 	} while (vfsp != rootvfs);
2454 
2455 	if (!found) {
2456 		err = EINVAL;
2457 		goto out;
2458 	}
2459 	err = secpolicy_fs_config(cr, vfsp);
2460 	if (err != 0)
2461 		goto out;
2462 
2463 	mops = &vfsp->vfs_mntopts;
2464 	/*
2465 	 * Add tag if it doesn't already exist
2466 	 */
2467 	if ((mop = vfs_hasopt(mops, tag)) == NULL) {
2468 		int len;
2469 
2470 		(void) vfs_buildoptionstr(mops, buf, MAX_MNTOPT_STR);
2471 		len = strlen(buf);
2472 		if (len + strlen(tag) + 2 > MAX_MNTOPT_STR) {
2473 			err = ENAMETOOLONG;
2474 			goto out;
2475 		}
2476 		mop = vfs_addtag(mops, tag);
2477 	}
2478 	if ((mop->mo_flags & MO_TAG) == 0) {
2479 		err = EINVAL;
2480 		goto out;
2481 	}
2482 	vfs_setmntopt_nolock(mops, tag, NULL, 0, 1);
2483 out:
2484 	vfs_list_unlock();
2485 	kmem_free(buf, MAX_MNTOPT_STR);
2486 	return (err);
2487 }
2488 
2489 /*
2490  * Allow users to remove arbitrary "tags" in a vfs's mount options.
2491  * Broader use within the kernel is discouraged.
2492  */
2493 int
2494 vfs_clrtag(uint_t major, uint_t minor, const char *mntpt, const char *tag,
2495     cred_t *cr)
2496 {
2497 	vfs_t *vfsp;
2498 	mntopt_t *mop;
2499 	int found = 0;
2500 	dev_t dev = makedevice(major, minor);
2501 	int err = 0;
2502 
2503 	/*
2504 	 * Find the desired mounted file system
2505 	 */
2506 	vfs_list_lock();
2507 	vfsp = rootvfs;
2508 	do {
2509 		if (vfsp->vfs_dev == dev &&
2510 		    strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) {
2511 			found = 1;
2512 			break;
2513 		}
2514 		vfsp = vfsp->vfs_next;
2515 	} while (vfsp != rootvfs);
2516 
2517 	if (!found) {
2518 		err = EINVAL;
2519 		goto out;
2520 	}
2521 	err = secpolicy_fs_config(cr, vfsp);
2522 	if (err != 0)
2523 		goto out;
2524 
2525 	if ((mop = vfs_hasopt(&vfsp->vfs_mntopts, tag)) == NULL) {
2526 		err = EINVAL;
2527 		goto out;
2528 	}
2529 	if ((mop->mo_flags & MO_TAG) == 0) {
2530 		err = EINVAL;
2531 		goto out;
2532 	}
2533 	vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, tag, 1);
2534 out:
2535 	vfs_list_unlock();
2536 	return (err);
2537 }
2538 
2539 /*
2540  * Function to parse an option string and fill in a mount options table.
2541  * Unknown options are silently ignored.  The input option string is modified
2542  * by replacing separators with nulls.  If the create flag is set, options
2543  * not found in the table are just added on the fly.  The table must have
2544  * an option slot marked MO_EMPTY to add an option on the fly.
2545  *
2546  * This function is *not* for general use by filesystems.
2547  *
2548  * Note: caller is responsible for locking the vfs list, if needed,
2549  *       to protect mops..
2550  */
2551 void
2552 vfs_parsemntopts(mntopts_t *mops, char *osp, int create)
2553 {
2554 	char *s = osp, *p, *nextop, *valp, *cp, *ep;
2555 	int setflg = VFS_NOFORCEOPT;
2556 
2557 	if (osp == NULL)
2558 		return;
2559 	while (*s != '\0') {
2560 		p = strchr(s, ',');	/* find next option */
2561 		if (p == NULL) {
2562 			cp = NULL;
2563 			p = s + strlen(s);
2564 		} else {
2565 			cp = p;		/* save location of comma */
2566 			*p++ = '\0';	/* mark end and point to next option */
2567 		}
2568 		nextop = p;
2569 		p = strchr(s, '=');	/* look for value */
2570 		if (p == NULL) {
2571 			valp = NULL;	/* no value supplied */
2572 		} else {
2573 			ep = p;		/* save location of equals */
2574 			*p++ = '\0';	/* end option and point to value */
2575 			valp = p;
2576 		}
2577 		/*
2578 		 * set option into options table
2579 		 */
2580 		if (create)
2581 			setflg |= VFS_CREATEOPT;
2582 		vfs_setmntopt_nolock(mops, s, valp, setflg, 0);
2583 		if (cp != NULL)
2584 			*cp = ',';	/* restore the comma */
2585 		if (valp != NULL)
2586 			*ep = '=';	/* restore the equals */
2587 		s = nextop;
2588 	}
2589 }
2590 
2591 /*
2592  * Function to inquire if an option exists in a mount options table.
2593  * Returns a pointer to the option if it exists, else NULL.
2594  *
2595  * This function is *not* for general use by filesystems.
2596  *
2597  * Note: caller is responsible for locking the vfs list, if needed,
2598  *       to protect mops.
2599  */
2600 struct mntopt *
2601 vfs_hasopt(const mntopts_t *mops, const char *opt)
2602 {
2603 	struct mntopt *mop;
2604 	uint_t i, count;
2605 
2606 	count = mops->mo_count;
2607 	for (i = 0; i < count; i++) {
2608 		mop = &mops->mo_list[i];
2609 
2610 		if (mop->mo_flags & MO_EMPTY)
2611 			continue;
2612 		if (strcmp(opt, mop->mo_name) == 0)
2613 			return (mop);
2614 	}
2615 	return (NULL);
2616 }
2617 
2618 /*
2619  * Function to inquire if an option is set in a mount options table.
2620  * Returns non-zero if set and fills in the arg pointer with a pointer to
2621  * the argument string or NULL if there is no argument string.
2622  */
2623 static int
2624 vfs_optionisset_nolock(const mntopts_t *mops, const char *opt, char **argp)
2625 {
2626 	struct mntopt *mop;
2627 	uint_t i, count;
2628 
2629 	count = mops->mo_count;
2630 	for (i = 0; i < count; i++) {
2631 		mop = &mops->mo_list[i];
2632 
2633 		if (mop->mo_flags & MO_EMPTY)
2634 			continue;
2635 		if (strcmp(opt, mop->mo_name))
2636 			continue;
2637 		if ((mop->mo_flags & MO_SET) == 0)
2638 			return (0);
2639 		if (argp != NULL && (mop->mo_flags & MO_HASVALUE) != 0)
2640 			*argp = mop->mo_arg;
2641 		return (1);
2642 	}
2643 	return (0);
2644 }
2645 
2646 
2647 int
2648 vfs_optionisset(const struct vfs *vfsp, const char *opt, char **argp)
2649 {
2650 	int ret;
2651 
2652 	vfs_list_read_lock();
2653 	ret = vfs_optionisset_nolock(&vfsp->vfs_mntopts, opt, argp);
2654 	vfs_list_unlock();
2655 	return (ret);
2656 }
2657 
2658 
2659 /*
2660  * Construct a comma separated string of the options set in the given
2661  * mount table, return the string in the given buffer.  Return non-zero if
2662  * the buffer would overflow.
2663  *
2664  * This function is *not* for general use by filesystems.
2665  *
2666  * Note: caller is responsible for locking the vfs list, if needed,
2667  *       to protect mp.
2668  */
2669 int
2670 vfs_buildoptionstr(const mntopts_t *mp, char *buf, int len)
2671 {
2672 	char *cp;
2673 	uint_t i;
2674 
2675 	buf[0] = '\0';
2676 	cp = buf;
2677 	for (i = 0; i < mp->mo_count; i++) {
2678 		struct mntopt *mop;
2679 
2680 		mop = &mp->mo_list[i];
2681 		if (mop->mo_flags & MO_SET) {
2682 			int optlen, comma = 0;
2683 
2684 			if (buf[0] != '\0')
2685 				comma = 1;
2686 			optlen = strlen(mop->mo_name);
2687 			if (strlen(buf) + comma + optlen + 1 > len)
2688 				goto err;
2689 			if (comma)
2690 				*cp++ = ',';
2691 			(void) strcpy(cp, mop->mo_name);
2692 			cp += optlen;
2693 			/*
2694 			 * Append option value if there is one
2695 			 */
2696 			if (mop->mo_arg != NULL) {
2697 				int arglen;
2698 
2699 				arglen = strlen(mop->mo_arg);
2700 				if (strlen(buf) + arglen + 2 > len)
2701 					goto err;
2702 				*cp++ = '=';
2703 				(void) strcpy(cp, mop->mo_arg);
2704 				cp += arglen;
2705 			}
2706 		}
2707 	}
2708 	return (0);
2709 err:
2710 	return (EOVERFLOW);
2711 }
2712 
2713 static void
2714 vfs_freecancelopt(char **moc)
2715 {
2716 	if (moc != NULL) {
2717 		int ccnt = 0;
2718 		char **cp;
2719 
2720 		for (cp = moc; *cp != NULL; cp++) {
2721 			kmem_free(*cp, strlen(*cp) + 1);
2722 			ccnt++;
2723 		}
2724 		kmem_free(moc, (ccnt + 1) * sizeof (char *));
2725 	}
2726 }
2727 
2728 static void
2729 vfs_freeopt(mntopt_t *mop)
2730 {
2731 	if (mop->mo_name != NULL)
2732 		kmem_free(mop->mo_name, strlen(mop->mo_name) + 1);
2733 
2734 	vfs_freecancelopt(mop->mo_cancel);
2735 
2736 	if (mop->mo_arg != NULL)
2737 		kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2738 }
2739 
2740 /*
2741  * Free a mount options table
2742  *
2743  * This function is *not* for general use by filesystems.
2744  *
2745  * Note: caller is responsible for locking the vfs list, if needed,
2746  *       to protect mp.
2747  */
2748 void
2749 vfs_freeopttbl(mntopts_t *mp)
2750 {
2751 	uint_t i, count;
2752 
2753 	count = mp->mo_count;
2754 	for (i = 0; i < count; i++) {
2755 		vfs_freeopt(&mp->mo_list[i]);
2756 	}
2757 	if (count) {
2758 		kmem_free(mp->mo_list, sizeof (mntopt_t) * count);
2759 		mp->mo_count = 0;
2760 		mp->mo_list = NULL;
2761 	}
2762 }
2763 
2764 
2765 /* ARGSUSED */
2766 static int
2767 vfs_mntdummyread(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred,
2768     caller_context_t *ct)
2769 {
2770 	return (0);
2771 }
2772 
2773 /* ARGSUSED */
2774 static int
2775 vfs_mntdummywrite(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred,
2776     caller_context_t *ct)
2777 {
2778 	return (0);
2779 }
2780 
2781 /*
2782  * The dummy vnode is currently used only by file events notification
2783  * module which is just interested in the timestamps.
2784  */
2785 /* ARGSUSED */
2786 static int
2787 vfs_mntdummygetattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2788     caller_context_t *ct)
2789 {
2790 	bzero(vap, sizeof (vattr_t));
2791 	vap->va_type = VREG;
2792 	vap->va_nlink = 1;
2793 	vap->va_ctime = vfs_mnttab_ctime;
2794 	/*
2795 	 * it is ok to just copy mtime as the time will be monotonically
2796 	 * increasing.
2797 	 */
2798 	vap->va_mtime = vfs_mnttab_mtime;
2799 	vap->va_atime = vap->va_mtime;
2800 	return (0);
2801 }
2802 
2803 static void
2804 vfs_mnttabvp_setup(void)
2805 {
2806 	vnode_t *tvp;
2807 	vnodeops_t *vfs_mntdummyvnops;
2808 	const fs_operation_def_t mnt_dummyvnodeops_template[] = {
2809 		VOPNAME_READ, 		{ .vop_read = vfs_mntdummyread },
2810 		VOPNAME_WRITE, 		{ .vop_write = vfs_mntdummywrite },
2811 		VOPNAME_GETATTR,	{ .vop_getattr = vfs_mntdummygetattr },
2812 		VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
2813 		NULL,			NULL
2814 	};
2815 
2816 	if (vn_make_ops("mnttab", mnt_dummyvnodeops_template,
2817 	    &vfs_mntdummyvnops) != 0) {
2818 		cmn_err(CE_WARN, "vfs_mnttabvp_setup: vn_make_ops failed");
2819 		/* Shouldn't happen, but not bad enough to panic */
2820 		return;
2821 	}
2822 
2823 	/*
2824 	 * A global dummy vnode is allocated to represent mntfs files.
2825 	 * The mntfs file (/etc/mnttab) can be monitored for file events
2826 	 * and receive an event when mnttab changes. Dummy VOP calls
2827 	 * will be made on this vnode. The file events notification module
2828 	 * intercepts this vnode and delivers relevant events.
2829 	 */
2830 	tvp = vn_alloc(KM_SLEEP);
2831 	tvp->v_flag = VNOMOUNT|VNOMAP|VNOSWAP|VNOCACHE;
2832 	vn_setops(tvp, vfs_mntdummyvnops);
2833 	tvp->v_type = VREG;
2834 	/*
2835 	 * The mnt dummy ops do not reference v_data.
2836 	 * No other module intercepting this vnode should either.
2837 	 * Just set it to point to itself.
2838 	 */
2839 	tvp->v_data = (caddr_t)tvp;
2840 	tvp->v_vfsp = rootvfs;
2841 	vfs_mntdummyvp = tvp;
2842 }
2843 
2844 /*
2845  * performs fake read/write ops
2846  */
2847 static void
2848 vfs_mnttab_rwop(int rw)
2849 {
2850 	struct uio	uio;
2851 	struct iovec	iov;
2852 	char	buf[1];
2853 
2854 	if (vfs_mntdummyvp == NULL)
2855 		return;
2856 
2857 	bzero(&uio, sizeof (uio));
2858 	bzero(&iov, sizeof (iov));
2859 	iov.iov_base = buf;
2860 	iov.iov_len = 0;
2861 	uio.uio_iov = &iov;
2862 	uio.uio_iovcnt = 1;
2863 	uio.uio_loffset = 0;
2864 	uio.uio_segflg = UIO_SYSSPACE;
2865 	uio.uio_resid = 0;
2866 	if (rw) {
2867 		(void) VOP_WRITE(vfs_mntdummyvp, &uio, 0, kcred, NULL);
2868 	} else {
2869 		(void) VOP_READ(vfs_mntdummyvp, &uio, 0, kcred, NULL);
2870 	}
2871 }
2872 
2873 /*
2874  * Generate a write operation.
2875  */
2876 void
2877 vfs_mnttab_writeop(void)
2878 {
2879 	vfs_mnttab_rwop(1);
2880 }
2881 
2882 /*
2883  * Generate a read operation.
2884  */
2885 void
2886 vfs_mnttab_readop(void)
2887 {
2888 	vfs_mnttab_rwop(0);
2889 }
2890 
2891 /*
2892  * Free any mnttab information recorded in the vfs struct.
2893  * The vfs must not be on the vfs list.
2894  */
2895 static void
2896 vfs_freemnttab(struct vfs *vfsp)
2897 {
2898 	ASSERT(!VFS_ON_LIST(vfsp));
2899 
2900 	/*
2901 	 * Free device and mount point information
2902 	 */
2903 	if (vfsp->vfs_mntpt != NULL) {
2904 		refstr_rele(vfsp->vfs_mntpt);
2905 		vfsp->vfs_mntpt = NULL;
2906 	}
2907 	if (vfsp->vfs_resource != NULL) {
2908 		refstr_rele(vfsp->vfs_resource);
2909 		vfsp->vfs_resource = NULL;
2910 	}
2911 	/*
2912 	 * Now free mount options information
2913 	 */
2914 	vfs_freeopttbl(&vfsp->vfs_mntopts);
2915 }
2916 
2917 /*
2918  * Return the last mnttab modification time
2919  */
2920 void
2921 vfs_mnttab_modtime(timespec_t *ts)
2922 {
2923 	ASSERT(RW_LOCK_HELD(&vfslist));
2924 	*ts = vfs_mnttab_mtime;
2925 }
2926 
2927 /*
2928  * See if mnttab is changed
2929  */
2930 void
2931 vfs_mnttab_poll(timespec_t *old, struct pollhead **phpp)
2932 {
2933 	int changed;
2934 
2935 	*phpp = (struct pollhead *)NULL;
2936 
2937 	/*
2938 	 * Note: don't grab vfs list lock before accessing vfs_mnttab_mtime.
2939 	 * Can lead to deadlock against vfs_mnttab_modtimeupd(). It is safe
2940 	 * to not grab the vfs list lock because tv_sec is monotonically
2941 	 * increasing.
2942 	 */
2943 
2944 	changed = (old->tv_nsec != vfs_mnttab_mtime.tv_nsec) ||
2945 	    (old->tv_sec != vfs_mnttab_mtime.tv_sec);
2946 	if (!changed) {
2947 		*phpp = &vfs_pollhd;
2948 	}
2949 }
2950 
2951 /* Provide a unique and monotonically-increasing timestamp. */
2952 void
2953 vfs_mono_time(timespec_t *ts)
2954 {
2955 	static volatile hrtime_t hrt;		/* The saved time. */
2956 	hrtime_t	newhrt, oldhrt;		/* For effecting the CAS. */
2957 	timespec_t	newts;
2958 
2959 	/*
2960 	 * Try gethrestime() first, but be prepared to fabricate a sensible
2961 	 * answer at the first sign of any trouble.
2962 	 */
2963 	gethrestime(&newts);
2964 	newhrt = ts2hrt(&newts);
2965 	for (;;) {
2966 		oldhrt = hrt;
2967 		if (newhrt <= hrt)
2968 			newhrt = hrt + 1;
2969 		if (atomic_cas_64((uint64_t *)&hrt, oldhrt, newhrt) == oldhrt)
2970 			break;
2971 	}
2972 	hrt2ts(newhrt, ts);
2973 }
2974 
2975 /*
2976  * Update the mnttab modification time and wake up any waiters for
2977  * mnttab changes
2978  */
2979 void
2980 vfs_mnttab_modtimeupd()
2981 {
2982 	hrtime_t oldhrt, newhrt;
2983 
2984 	ASSERT(RW_WRITE_HELD(&vfslist));
2985 	oldhrt = ts2hrt(&vfs_mnttab_mtime);
2986 	gethrestime(&vfs_mnttab_mtime);
2987 	newhrt = ts2hrt(&vfs_mnttab_mtime);
2988 	if (oldhrt == (hrtime_t)0)
2989 		vfs_mnttab_ctime = vfs_mnttab_mtime;
2990 	/*
2991 	 * Attempt to provide unique mtime (like uniqtime but not).
2992 	 */
2993 	if (newhrt == oldhrt) {
2994 		newhrt++;
2995 		hrt2ts(newhrt, &vfs_mnttab_mtime);
2996 	}
2997 	pollwakeup(&vfs_pollhd, (short)POLLRDBAND);
2998 	vfs_mnttab_writeop();
2999 }
3000 
3001 int
3002 dounmount(struct vfs *vfsp, int flag, cred_t *cr)
3003 {
3004 	vnode_t *coveredvp;
3005 	int error;
3006 	extern void teardown_vopstats(vfs_t *);
3007 
3008 	/*
3009 	 * Get covered vnode. This will be NULL if the vfs is not linked
3010 	 * into the file system name space (i.e., domount() with MNT_NOSPICE).
3011 	 */
3012 	coveredvp = vfsp->vfs_vnodecovered;
3013 	ASSERT(coveredvp == NULL || vn_vfswlock_held(coveredvp));
3014 
3015 	/*
3016 	 * Purge all dnlc entries for this vfs.
3017 	 */
3018 	(void) dnlc_purge_vfsp(vfsp, 0);
3019 
3020 	/* For forcible umount, skip VFS_SYNC() since it may hang */
3021 	if ((flag & MS_FORCE) == 0)
3022 		(void) VFS_SYNC(vfsp, 0, cr);
3023 
3024 	/*
3025 	 * Lock the vfs to maintain fs status quo during unmount.  This
3026 	 * has to be done after the sync because ufs_update tries to acquire
3027 	 * the vfs_reflock.
3028 	 */
3029 	vfs_lock_wait(vfsp);
3030 
3031 	if (error = VFS_UNMOUNT(vfsp, flag, cr)) {
3032 		vfs_unlock(vfsp);
3033 		if (coveredvp != NULL)
3034 			vn_vfsunlock(coveredvp);
3035 	} else if (coveredvp != NULL) {
3036 		teardown_vopstats(vfsp);
3037 		/*
3038 		 * vfs_remove() will do a VN_RELE(vfsp->vfs_vnodecovered)
3039 		 * when it frees vfsp so we do a VN_HOLD() so we can
3040 		 * continue to use coveredvp afterwards.
3041 		 */
3042 		VN_HOLD(coveredvp);
3043 		vfs_remove(vfsp);
3044 		vn_vfsunlock(coveredvp);
3045 		VN_RELE(coveredvp);
3046 	} else {
3047 		teardown_vopstats(vfsp);
3048 		/*
3049 		 * Release the reference to vfs that is not linked
3050 		 * into the name space.
3051 		 */
3052 		vfs_unlock(vfsp);
3053 		VFS_RELE(vfsp);
3054 	}
3055 	return (error);
3056 }
3057 
3058 
3059 /*
3060  * Vfs_unmountall() is called by uadmin() to unmount all
3061  * mounted file systems (except the root file system) during shutdown.
3062  * It follows the existing locking protocol when traversing the vfs list
3063  * to sync and unmount vfses. Even though there should be no
3064  * other thread running while the system is shutting down, it is prudent
3065  * to still follow the locking protocol.
3066  */
3067 void
3068 vfs_unmountall(void)
3069 {
3070 	struct vfs *vfsp;
3071 	struct vfs *prev_vfsp = NULL;
3072 	int error;
3073 
3074 	/*
3075 	 * Toss all dnlc entries now so that the per-vfs sync
3076 	 * and unmount operations don't have to slog through
3077 	 * a bunch of uninteresting vnodes over and over again.
3078 	 */
3079 	dnlc_purge();
3080 
3081 	vfs_list_lock();
3082 	for (vfsp = rootvfs->vfs_prev; vfsp != rootvfs; vfsp = prev_vfsp) {
3083 		prev_vfsp = vfsp->vfs_prev;
3084 
3085 		if (vfs_lock(vfsp) != 0)
3086 			continue;
3087 		error = vn_vfswlock(vfsp->vfs_vnodecovered);
3088 		vfs_unlock(vfsp);
3089 		if (error)
3090 			continue;
3091 
3092 		vfs_list_unlock();
3093 
3094 		(void) VFS_SYNC(vfsp, SYNC_CLOSE, CRED());
3095 		(void) dounmount(vfsp, 0, CRED());
3096 
3097 		/*
3098 		 * Since we dropped the vfslist lock above we must
3099 		 * verify that next_vfsp still exists, else start over.
3100 		 */
3101 		vfs_list_lock();
3102 		for (vfsp = rootvfs->vfs_prev;
3103 		    vfsp != rootvfs; vfsp = vfsp->vfs_prev)
3104 			if (vfsp == prev_vfsp)
3105 				break;
3106 		if (vfsp == rootvfs && prev_vfsp != rootvfs)
3107 			prev_vfsp = rootvfs->vfs_prev;
3108 	}
3109 	vfs_list_unlock();
3110 }
3111 
3112 /*
3113  * Called to add an entry to the end of the vfs mount in progress list
3114  */
3115 void
3116 vfs_addmip(dev_t dev, struct vfs *vfsp)
3117 {
3118 	struct ipmnt *mipp;
3119 
3120 	mipp = (struct ipmnt *)kmem_alloc(sizeof (struct ipmnt), KM_SLEEP);
3121 	mipp->mip_next = NULL;
3122 	mipp->mip_dev = dev;
3123 	mipp->mip_vfsp = vfsp;
3124 	mutex_enter(&vfs_miplist_mutex);
3125 	if (vfs_miplist_end != NULL)
3126 		vfs_miplist_end->mip_next = mipp;
3127 	else
3128 		vfs_miplist = mipp;
3129 	vfs_miplist_end = mipp;
3130 	mutex_exit(&vfs_miplist_mutex);
3131 }
3132 
3133 /*
3134  * Called to remove an entry from the mount in progress list
3135  * Either because the mount completed or it failed.
3136  */
3137 void
3138 vfs_delmip(struct vfs *vfsp)
3139 {
3140 	struct ipmnt *mipp, *mipprev;
3141 
3142 	mutex_enter(&vfs_miplist_mutex);
3143 	mipprev = NULL;
3144 	for (mipp = vfs_miplist;
3145 	    mipp && mipp->mip_vfsp != vfsp; mipp = mipp->mip_next) {
3146 		mipprev = mipp;
3147 	}
3148 	if (mipp == NULL)
3149 		return; /* shouldn't happen */
3150 	if (mipp == vfs_miplist_end)
3151 		vfs_miplist_end = mipprev;
3152 	if (mipprev == NULL)
3153 		vfs_miplist = mipp->mip_next;
3154 	else
3155 		mipprev->mip_next = mipp->mip_next;
3156 	mutex_exit(&vfs_miplist_mutex);
3157 	kmem_free(mipp, sizeof (struct ipmnt));
3158 }
3159 
3160 /*
3161  * vfs_add is called by a specific filesystem's mount routine to add
3162  * the new vfs into the vfs list/hash and to cover the mounted-on vnode.
3163  * The vfs should already have been locked by the caller.
3164  *
3165  * coveredvp is NULL if this is the root.
3166  */
3167 void
3168 vfs_add(vnode_t *coveredvp, struct vfs *vfsp, int mflag)
3169 {
3170 	int newflag;
3171 
3172 	ASSERT(vfs_lock_held(vfsp));
3173 	VFS_HOLD(vfsp);
3174 	newflag = vfsp->vfs_flag;
3175 	if (mflag & MS_RDONLY)
3176 		newflag |= VFS_RDONLY;
3177 	else
3178 		newflag &= ~VFS_RDONLY;
3179 	if (mflag & MS_NOSUID)
3180 		newflag |= (VFS_NOSETUID|VFS_NODEVICES);
3181 	else
3182 		newflag &= ~(VFS_NOSETUID|VFS_NODEVICES);
3183 	if (mflag & MS_NOMNTTAB)
3184 		newflag |= VFS_NOMNTTAB;
3185 	else
3186 		newflag &= ~VFS_NOMNTTAB;
3187 
3188 	if (coveredvp != NULL) {
3189 		ASSERT(vn_vfswlock_held(coveredvp));
3190 		coveredvp->v_vfsmountedhere = vfsp;
3191 		VN_HOLD(coveredvp);
3192 	}
3193 	vfsp->vfs_vnodecovered = coveredvp;
3194 	vfsp->vfs_flag = newflag;
3195 
3196 	vfs_list_add(vfsp);
3197 }
3198 
3199 /*
3200  * Remove a vfs from the vfs list, null out the pointer from the
3201  * covered vnode to the vfs (v_vfsmountedhere), and null out the pointer
3202  * from the vfs to the covered vnode (vfs_vnodecovered). Release the
3203  * reference to the vfs and to the covered vnode.
3204  *
3205  * Called from dounmount after it's confirmed with the file system
3206  * that the unmount is legal.
3207  */
3208 void
3209 vfs_remove(struct vfs *vfsp)
3210 {
3211 	vnode_t *vp;
3212 
3213 	ASSERT(vfs_lock_held(vfsp));
3214 
3215 	/*
3216 	 * Can't unmount root.  Should never happen because fs will
3217 	 * be busy.
3218 	 */
3219 	if (vfsp == rootvfs)
3220 		panic("vfs_remove: unmounting root");
3221 
3222 	vfs_list_remove(vfsp);
3223 
3224 	/*
3225 	 * Unhook from the file system name space.
3226 	 */
3227 	vp = vfsp->vfs_vnodecovered;
3228 	ASSERT(vn_vfswlock_held(vp));
3229 	vp->v_vfsmountedhere = NULL;
3230 	vfsp->vfs_vnodecovered = NULL;
3231 	VN_RELE(vp);
3232 
3233 	/*
3234 	 * Release lock and wakeup anybody waiting.
3235 	 */
3236 	vfs_unlock(vfsp);
3237 	VFS_RELE(vfsp);
3238 }
3239 
3240 /*
3241  * Lock a filesystem to prevent access to it while mounting,
3242  * unmounting and syncing.  Return EBUSY immediately if lock
3243  * can't be acquired.
3244  */
3245 int
3246 vfs_lock(vfs_t *vfsp)
3247 {
3248 	vn_vfslocks_entry_t *vpvfsentry;
3249 
3250 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3251 	if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER))
3252 		return (0);
3253 
3254 	vn_vfslocks_rele(vpvfsentry);
3255 	return (EBUSY);
3256 }
3257 
3258 int
3259 vfs_rlock(vfs_t *vfsp)
3260 {
3261 	vn_vfslocks_entry_t *vpvfsentry;
3262 
3263 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3264 
3265 	if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER))
3266 		return (0);
3267 
3268 	vn_vfslocks_rele(vpvfsentry);
3269 	return (EBUSY);
3270 }
3271 
3272 void
3273 vfs_lock_wait(vfs_t *vfsp)
3274 {
3275 	vn_vfslocks_entry_t *vpvfsentry;
3276 
3277 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3278 	rwst_enter(&vpvfsentry->ve_lock, RW_WRITER);
3279 }
3280 
3281 void
3282 vfs_rlock_wait(vfs_t *vfsp)
3283 {
3284 	vn_vfslocks_entry_t *vpvfsentry;
3285 
3286 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3287 	rwst_enter(&vpvfsentry->ve_lock, RW_READER);
3288 }
3289 
3290 /*
3291  * Unlock a locked filesystem.
3292  */
3293 void
3294 vfs_unlock(vfs_t *vfsp)
3295 {
3296 	vn_vfslocks_entry_t *vpvfsentry;
3297 
3298 	/*
3299 	 * vfs_unlock will mimic sema_v behaviour to fix 4748018.
3300 	 * And these changes should remain for the patch changes as it is.
3301 	 */
3302 	if (panicstr)
3303 		return;
3304 
3305 	/*
3306 	 * ve_refcount needs to be dropped twice here.
3307 	 * 1. To release refernce after a call to vfs_locks_getlock()
3308 	 * 2. To release the reference from the locking routines like
3309 	 *    vfs_rlock_wait/vfs_wlock_wait/vfs_wlock etc,.
3310 	 */
3311 
3312 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3313 	vn_vfslocks_rele(vpvfsentry);
3314 
3315 	rwst_exit(&vpvfsentry->ve_lock);
3316 	vn_vfslocks_rele(vpvfsentry);
3317 }
3318 
3319 /*
3320  * Utility routine that allows a filesystem to construct its
3321  * fsid in "the usual way" - by munging some underlying dev_t and
3322  * the filesystem type number into the 64-bit fsid.  Note that
3323  * this implicitly relies on dev_t persistence to make filesystem
3324  * id's persistent.
3325  *
3326  * There's nothing to prevent an individual fs from constructing its
3327  * fsid in a different way, and indeed they should.
3328  *
3329  * Since we want fsids to be 32-bit quantities (so that they can be
3330  * exported identically by either 32-bit or 64-bit APIs, as well as
3331  * the fact that fsid's are "known" to NFS), we compress the device
3332  * number given down to 32-bits, and panic if that isn't possible.
3333  */
3334 void
3335 vfs_make_fsid(fsid_t *fsi, dev_t dev, int val)
3336 {
3337 	if (!cmpldev((dev32_t *)&fsi->val[0], dev))
3338 		panic("device number too big for fsid!");
3339 	fsi->val[1] = val;
3340 }
3341 
3342 int
3343 vfs_lock_held(vfs_t *vfsp)
3344 {
3345 	int held;
3346 	vn_vfslocks_entry_t *vpvfsentry;
3347 
3348 	/*
3349 	 * vfs_lock_held will mimic sema_held behaviour
3350 	 * if panicstr is set. And these changes should remain
3351 	 * for the patch changes as it is.
3352 	 */
3353 	if (panicstr)
3354 		return (1);
3355 
3356 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3357 	held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER);
3358 
3359 	vn_vfslocks_rele(vpvfsentry);
3360 	return (held);
3361 }
3362 
3363 struct _kthread *
3364 vfs_lock_owner(vfs_t *vfsp)
3365 {
3366 	struct _kthread *owner;
3367 	vn_vfslocks_entry_t *vpvfsentry;
3368 
3369 	/*
3370 	 * vfs_wlock_held will mimic sema_held behaviour
3371 	 * if panicstr is set. And these changes should remain
3372 	 * for the patch changes as it is.
3373 	 */
3374 	if (panicstr)
3375 		return (NULL);
3376 
3377 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3378 	owner = rwst_owner(&vpvfsentry->ve_lock);
3379 
3380 	vn_vfslocks_rele(vpvfsentry);
3381 	return (owner);
3382 }
3383 
3384 /*
3385  * vfs list locking.
3386  *
3387  * Rather than manipulate the vfslist lock directly, we abstract into lock
3388  * and unlock routines to allow the locking implementation to be changed for
3389  * clustering.
3390  *
3391  * Whenever the vfs list is modified through its hash links, the overall list
3392  * lock must be obtained before locking the relevant hash bucket.  But to see
3393  * whether a given vfs is on the list, it suffices to obtain the lock for the
3394  * hash bucket without getting the overall list lock.  (See getvfs() below.)
3395  */
3396 
3397 void
3398 vfs_list_lock()
3399 {
3400 	rw_enter(&vfslist, RW_WRITER);
3401 }
3402 
3403 void
3404 vfs_list_read_lock()
3405 {
3406 	rw_enter(&vfslist, RW_READER);
3407 }
3408 
3409 void
3410 vfs_list_unlock()
3411 {
3412 	rw_exit(&vfslist);
3413 }
3414 
3415 /*
3416  * Low level worker routines for adding entries to and removing entries from
3417  * the vfs list.
3418  */
3419 
3420 static void
3421 vfs_hash_add(struct vfs *vfsp, int insert_at_head)
3422 {
3423 	int vhno;
3424 	struct vfs **hp;
3425 	dev_t dev;
3426 
3427 	ASSERT(RW_WRITE_HELD(&vfslist));
3428 
3429 	dev = expldev(vfsp->vfs_fsid.val[0]);
3430 	vhno = VFSHASH(getmajor(dev), getminor(dev));
3431 
3432 	mutex_enter(&rvfs_list[vhno].rvfs_lock);
3433 
3434 	/*
3435 	 * Link into the hash table, inserting it at the end, so that LOFS
3436 	 * with the same fsid as UFS (or other) file systems will not hide the
3437 	 * UFS.
3438 	 */
3439 	if (insert_at_head) {
3440 		vfsp->vfs_hash = rvfs_list[vhno].rvfs_head;
3441 		rvfs_list[vhno].rvfs_head = vfsp;
3442 	} else {
3443 		for (hp = &rvfs_list[vhno].rvfs_head; *hp != NULL;
3444 		    hp = &(*hp)->vfs_hash)
3445 			continue;
3446 		/*
3447 		 * hp now contains the address of the pointer to update
3448 		 * to effect the insertion.
3449 		 */
3450 		vfsp->vfs_hash = NULL;
3451 		*hp = vfsp;
3452 	}
3453 
3454 	rvfs_list[vhno].rvfs_len++;
3455 	mutex_exit(&rvfs_list[vhno].rvfs_lock);
3456 }
3457 
3458 
3459 static void
3460 vfs_hash_remove(struct vfs *vfsp)
3461 {
3462 	int vhno;
3463 	struct vfs *tvfsp;
3464 	dev_t dev;
3465 
3466 	ASSERT(RW_WRITE_HELD(&vfslist));
3467 
3468 	dev = expldev(vfsp->vfs_fsid.val[0]);
3469 	vhno = VFSHASH(getmajor(dev), getminor(dev));
3470 
3471 	mutex_enter(&rvfs_list[vhno].rvfs_lock);
3472 
3473 	/*
3474 	 * Remove from hash.
3475 	 */
3476 	if (rvfs_list[vhno].rvfs_head == vfsp) {
3477 		rvfs_list[vhno].rvfs_head = vfsp->vfs_hash;
3478 		rvfs_list[vhno].rvfs_len--;
3479 		goto foundit;
3480 	}
3481 	for (tvfsp = rvfs_list[vhno].rvfs_head; tvfsp != NULL;
3482 	    tvfsp = tvfsp->vfs_hash) {
3483 		if (tvfsp->vfs_hash == vfsp) {
3484 			tvfsp->vfs_hash = vfsp->vfs_hash;
3485 			rvfs_list[vhno].rvfs_len--;
3486 			goto foundit;
3487 		}
3488 	}
3489 	cmn_err(CE_WARN, "vfs_list_remove: vfs not found in hash");
3490 
3491 foundit:
3492 
3493 	mutex_exit(&rvfs_list[vhno].rvfs_lock);
3494 }
3495 
3496 
3497 void
3498 vfs_list_add(struct vfs *vfsp)
3499 {
3500 	zone_t *zone;
3501 
3502 	/*
3503 	 * Typically, the vfs_t will have been created on behalf of the file
3504 	 * system in vfs_init, where it will have been provided with a
3505 	 * vfs_impl_t. This, however, might be lacking if the vfs_t was created
3506 	 * by an unbundled file system. We therefore check for such an example
3507 	 * before stamping the vfs_t with its creation time for the benefit of
3508 	 * mntfs.
3509 	 */
3510 	if (vfsp->vfs_implp == NULL)
3511 		vfsimpl_setup(vfsp);
3512 	vfs_mono_time(&vfsp->vfs_hrctime);
3513 
3514 	/*
3515 	 * The zone that owns the mount is the one that performed the mount.
3516 	 * Note that this isn't necessarily the same as the zone mounted into.
3517 	 * The corresponding zone_rele_ref() will be done when the vfs_t
3518 	 * is being free'd.
3519 	 */
3520 	vfsp->vfs_zone = curproc->p_zone;
3521 	zone_init_ref(&vfsp->vfs_implp->vi_zone_ref);
3522 	zone_hold_ref(vfsp->vfs_zone, &vfsp->vfs_implp->vi_zone_ref,
3523 	    ZONE_REF_VFS);
3524 
3525 	/*
3526 	 * Find the zone mounted into, and put this mount on its vfs list.
3527 	 */
3528 	zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
3529 	ASSERT(zone != NULL);
3530 	/*
3531 	 * Special casing for the root vfs.  This structure is allocated
3532 	 * statically and hooked onto rootvfs at link time.  During the
3533 	 * vfs_mountroot call at system startup time, the root file system's
3534 	 * VFS_MOUNTROOT routine will call vfs_add with this root vfs struct
3535 	 * as argument.  The code below must detect and handle this special
3536 	 * case.  The only apparent justification for this special casing is
3537 	 * to ensure that the root file system appears at the head of the
3538 	 * list.
3539 	 *
3540 	 * XXX:	I'm assuming that it's ok to do normal list locking when
3541 	 *	adding the entry for the root file system (this used to be
3542 	 *	done with no locks held).
3543 	 */
3544 	vfs_list_lock();
3545 	/*
3546 	 * Link into the vfs list proper.
3547 	 */
3548 	if (vfsp == &root) {
3549 		/*
3550 		 * Assert: This vfs is already on the list as its first entry.
3551 		 * Thus, there's nothing to do.
3552 		 */
3553 		ASSERT(rootvfs == vfsp);
3554 		/*
3555 		 * Add it to the head of the global zone's vfslist.
3556 		 */
3557 		ASSERT(zone == global_zone);
3558 		ASSERT(zone->zone_vfslist == NULL);
3559 		zone->zone_vfslist = vfsp;
3560 	} else {
3561 		/*
3562 		 * Link to end of list using vfs_prev (as rootvfs is now a
3563 		 * doubly linked circular list) so list is in mount order for
3564 		 * mnttab use.
3565 		 */
3566 		rootvfs->vfs_prev->vfs_next = vfsp;
3567 		vfsp->vfs_prev = rootvfs->vfs_prev;
3568 		rootvfs->vfs_prev = vfsp;
3569 		vfsp->vfs_next = rootvfs;
3570 
3571 		/*
3572 		 * Do it again for the zone-private list (which may be NULL).
3573 		 */
3574 		if (zone->zone_vfslist == NULL) {
3575 			ASSERT(zone != global_zone);
3576 			zone->zone_vfslist = vfsp;
3577 		} else {
3578 			zone->zone_vfslist->vfs_zone_prev->vfs_zone_next = vfsp;
3579 			vfsp->vfs_zone_prev = zone->zone_vfslist->vfs_zone_prev;
3580 			zone->zone_vfslist->vfs_zone_prev = vfsp;
3581 			vfsp->vfs_zone_next = zone->zone_vfslist;
3582 		}
3583 	}
3584 
3585 	/*
3586 	 * Link into the hash table, inserting it at the end, so that LOFS
3587 	 * with the same fsid as UFS (or other) file systems will not hide
3588 	 * the UFS.
3589 	 */
3590 	vfs_hash_add(vfsp, 0);
3591 
3592 	/*
3593 	 * update the mnttab modification time
3594 	 */
3595 	vfs_mnttab_modtimeupd();
3596 	vfs_list_unlock();
3597 	zone_rele(zone);
3598 }
3599 
3600 void
3601 vfs_list_remove(struct vfs *vfsp)
3602 {
3603 	zone_t *zone;
3604 
3605 	zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
3606 	ASSERT(zone != NULL);
3607 	/*
3608 	 * Callers are responsible for preventing attempts to unmount the
3609 	 * root.
3610 	 */
3611 	ASSERT(vfsp != rootvfs);
3612 
3613 	vfs_list_lock();
3614 
3615 	/*
3616 	 * Remove from hash.
3617 	 */
3618 	vfs_hash_remove(vfsp);
3619 
3620 	/*
3621 	 * Remove from vfs list.
3622 	 */
3623 	vfsp->vfs_prev->vfs_next = vfsp->vfs_next;
3624 	vfsp->vfs_next->vfs_prev = vfsp->vfs_prev;
3625 	vfsp->vfs_next = vfsp->vfs_prev = NULL;
3626 
3627 	/*
3628 	 * Remove from zone-specific vfs list.
3629 	 */
3630 	if (zone->zone_vfslist == vfsp)
3631 		zone->zone_vfslist = vfsp->vfs_zone_next;
3632 
3633 	if (vfsp->vfs_zone_next == vfsp) {
3634 		ASSERT(vfsp->vfs_zone_prev == vfsp);
3635 		ASSERT(zone->zone_vfslist == vfsp);
3636 		zone->zone_vfslist = NULL;
3637 	}
3638 
3639 	vfsp->vfs_zone_prev->vfs_zone_next = vfsp->vfs_zone_next;
3640 	vfsp->vfs_zone_next->vfs_zone_prev = vfsp->vfs_zone_prev;
3641 	vfsp->vfs_zone_next = vfsp->vfs_zone_prev = NULL;
3642 
3643 	/*
3644 	 * update the mnttab modification time
3645 	 */
3646 	vfs_mnttab_modtimeupd();
3647 	vfs_list_unlock();
3648 	zone_rele(zone);
3649 }
3650 
3651 struct vfs *
3652 getvfs(fsid_t *fsid)
3653 {
3654 	struct vfs *vfsp;
3655 	int val0 = fsid->val[0];
3656 	int val1 = fsid->val[1];
3657 	dev_t dev = expldev(val0);
3658 	int vhno = VFSHASH(getmajor(dev), getminor(dev));
3659 	kmutex_t *hmp = &rvfs_list[vhno].rvfs_lock;
3660 
3661 	mutex_enter(hmp);
3662 	for (vfsp = rvfs_list[vhno].rvfs_head; vfsp; vfsp = vfsp->vfs_hash) {
3663 		if (vfsp->vfs_fsid.val[0] == val0 &&
3664 		    vfsp->vfs_fsid.val[1] == val1) {
3665 			VFS_HOLD(vfsp);
3666 			mutex_exit(hmp);
3667 			return (vfsp);
3668 		}
3669 	}
3670 	mutex_exit(hmp);
3671 	return (NULL);
3672 }
3673 
3674 /*
3675  * Search the vfs mount in progress list for a specified device/vfs entry.
3676  * Returns 0 if the first entry in the list that the device matches has the
3677  * given vfs pointer as well.  If the device matches but a different vfs
3678  * pointer is encountered in the list before the given vfs pointer then
3679  * a 1 is returned.
3680  */
3681 
3682 int
3683 vfs_devmounting(dev_t dev, struct vfs *vfsp)
3684 {
3685 	int retval = 0;
3686 	struct ipmnt *mipp;
3687 
3688 	mutex_enter(&vfs_miplist_mutex);
3689 	for (mipp = vfs_miplist; mipp != NULL; mipp = mipp->mip_next) {
3690 		if (mipp->mip_dev == dev) {
3691 			if (mipp->mip_vfsp != vfsp)
3692 				retval = 1;
3693 			break;
3694 		}
3695 	}
3696 	mutex_exit(&vfs_miplist_mutex);
3697 	return (retval);
3698 }
3699 
3700 /*
3701  * Search the vfs list for a specified device.  Returns 1, if entry is found
3702  * or 0 if no suitable entry is found.
3703  */
3704 
3705 int
3706 vfs_devismounted(dev_t dev)
3707 {
3708 	struct vfs *vfsp;
3709 	int found;
3710 
3711 	vfs_list_read_lock();
3712 	vfsp = rootvfs;
3713 	found = 0;
3714 	do {
3715 		if (vfsp->vfs_dev == dev) {
3716 			found = 1;
3717 			break;
3718 		}
3719 		vfsp = vfsp->vfs_next;
3720 	} while (vfsp != rootvfs);
3721 
3722 	vfs_list_unlock();
3723 	return (found);
3724 }
3725 
3726 /*
3727  * Search the vfs list for a specified device.  Returns a pointer to it
3728  * or NULL if no suitable entry is found. The caller of this routine
3729  * is responsible for releasing the returned vfs pointer.
3730  */
3731 struct vfs *
3732 vfs_dev2vfsp(dev_t dev)
3733 {
3734 	struct vfs *vfsp;
3735 	int found;
3736 
3737 	vfs_list_read_lock();
3738 	vfsp = rootvfs;
3739 	found = 0;
3740 	do {
3741 		/*
3742 		 * The following could be made more efficient by making
3743 		 * the entire loop use vfs_zone_next if the call is from
3744 		 * a zone.  The only callers, however, ustat(2) and
3745 		 * umount2(2), don't seem to justify the added
3746 		 * complexity at present.
3747 		 */
3748 		if (vfsp->vfs_dev == dev &&
3749 		    ZONE_PATH_VISIBLE(refstr_value(vfsp->vfs_mntpt),
3750 		    curproc->p_zone)) {
3751 			VFS_HOLD(vfsp);
3752 			found = 1;
3753 			break;
3754 		}
3755 		vfsp = vfsp->vfs_next;
3756 	} while (vfsp != rootvfs);
3757 	vfs_list_unlock();
3758 	return (found ? vfsp: NULL);
3759 }
3760 
3761 /*
3762  * Search the vfs list for a specified mntpoint.  Returns a pointer to it
3763  * or NULL if no suitable entry is found. The caller of this routine
3764  * is responsible for releasing the returned vfs pointer.
3765  *
3766  * Note that if multiple mntpoints match, the last one matching is
3767  * returned in an attempt to return the "top" mount when overlay
3768  * mounts are covering the same mount point.  This is accomplished by starting
3769  * at the end of the list and working our way backwards, stopping at the first
3770  * matching mount.
3771  */
3772 struct vfs *
3773 vfs_mntpoint2vfsp(const char *mp)
3774 {
3775 	struct vfs *vfsp;
3776 	struct vfs *retvfsp = NULL;
3777 	zone_t *zone = curproc->p_zone;
3778 	struct vfs *list;
3779 
3780 	vfs_list_read_lock();
3781 	if (getzoneid() == GLOBAL_ZONEID) {
3782 		/*
3783 		 * The global zone may see filesystems in any zone.
3784 		 */
3785 		vfsp = rootvfs->vfs_prev;
3786 		do {
3787 			if (strcmp(refstr_value(vfsp->vfs_mntpt), mp) == 0) {
3788 				retvfsp = vfsp;
3789 				break;
3790 			}
3791 			vfsp = vfsp->vfs_prev;
3792 		} while (vfsp != rootvfs->vfs_prev);
3793 	} else if ((list = zone->zone_vfslist) != NULL) {
3794 		const char *mntpt;
3795 
3796 		vfsp = list->vfs_zone_prev;
3797 		do {
3798 			mntpt = refstr_value(vfsp->vfs_mntpt);
3799 			mntpt = ZONE_PATH_TRANSLATE(mntpt, zone);
3800 			if (strcmp(mntpt, mp) == 0) {
3801 				retvfsp = vfsp;
3802 				break;
3803 			}
3804 			vfsp = vfsp->vfs_zone_prev;
3805 		} while (vfsp != list->vfs_zone_prev);
3806 	}
3807 	if (retvfsp)
3808 		VFS_HOLD(retvfsp);
3809 	vfs_list_unlock();
3810 	return (retvfsp);
3811 }
3812 
3813 /*
3814  * Search the vfs list for a specified vfsops.
3815  * if vfs entry is found then return 1, else 0.
3816  */
3817 int
3818 vfs_opsinuse(vfsops_t *ops)
3819 {
3820 	struct vfs *vfsp;
3821 	int found;
3822 
3823 	vfs_list_read_lock();
3824 	vfsp = rootvfs;
3825 	found = 0;
3826 	do {
3827 		if (vfs_getops(vfsp) == ops) {
3828 			found = 1;
3829 			break;
3830 		}
3831 		vfsp = vfsp->vfs_next;
3832 	} while (vfsp != rootvfs);
3833 	vfs_list_unlock();
3834 	return (found);
3835 }
3836 
3837 /*
3838  * Allocate an entry in vfssw for a file system type
3839  */
3840 struct vfssw *
3841 allocate_vfssw(const char *type)
3842 {
3843 	struct vfssw *vswp;
3844 
3845 	if (type[0] == '\0' || strlen(type) + 1 > _ST_FSTYPSZ) {
3846 		/*
3847 		 * The vfssw table uses the empty string to identify an
3848 		 * available entry; we cannot add any type which has
3849 		 * a leading NUL. The string length is limited to
3850 		 * the size of the st_fstype array in struct stat.
3851 		 */
3852 		return (NULL);
3853 	}
3854 
3855 	ASSERT(VFSSW_WRITE_LOCKED());
3856 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++)
3857 		if (!ALLOCATED_VFSSW(vswp)) {
3858 			vswp->vsw_name = kmem_alloc(strlen(type) + 1, KM_SLEEP);
3859 			(void) strcpy(vswp->vsw_name, type);
3860 			ASSERT(vswp->vsw_count == 0);
3861 			vswp->vsw_count = 1;
3862 			mutex_init(&vswp->vsw_lock, NULL, MUTEX_DEFAULT, NULL);
3863 			return (vswp);
3864 		}
3865 	return (NULL);
3866 }
3867 
3868 /*
3869  * Impose additional layer of translation between vfstype names
3870  * and module names in the filesystem.
3871  */
3872 static const char *
3873 vfs_to_modname(const char *vfstype)
3874 {
3875 	if (strcmp(vfstype, "proc") == 0) {
3876 		vfstype = "procfs";
3877 	} else if (strcmp(vfstype, "fd") == 0) {
3878 		vfstype = "fdfs";
3879 	} else if (strncmp(vfstype, "nfs", 3) == 0) {
3880 		vfstype = "nfs";
3881 	}
3882 
3883 	return (vfstype);
3884 }
3885 
3886 /*
3887  * Find a vfssw entry given a file system type name.
3888  * Try to autoload the filesystem if it's not found.
3889  * If it's installed, return the vfssw locked to prevent unloading.
3890  */
3891 struct vfssw *
3892 vfs_getvfssw(const char *type)
3893 {
3894 	struct vfssw *vswp;
3895 	const char *modname;
3896 
3897 	RLOCK_VFSSW();
3898 	vswp = vfs_getvfsswbyname(type);
3899 	modname = vfs_to_modname(type);
3900 
3901 	if (rootdir == NULL) {
3902 		/*
3903 		 * If we haven't yet loaded the root file system, then our
3904 		 * _init won't be called until later. Allocate vfssw entry,
3905 		 * because mod_installfs won't be called.
3906 		 */
3907 		if (vswp == NULL) {
3908 			RUNLOCK_VFSSW();
3909 			WLOCK_VFSSW();
3910 			if ((vswp = vfs_getvfsswbyname(type)) == NULL) {
3911 				if ((vswp = allocate_vfssw(type)) == NULL) {
3912 					WUNLOCK_VFSSW();
3913 					return (NULL);
3914 				}
3915 			}
3916 			WUNLOCK_VFSSW();
3917 			RLOCK_VFSSW();
3918 		}
3919 		if (!VFS_INSTALLED(vswp)) {
3920 			RUNLOCK_VFSSW();
3921 			(void) modloadonly("fs", modname);
3922 		} else
3923 			RUNLOCK_VFSSW();
3924 		return (vswp);
3925 	}
3926 
3927 	/*
3928 	 * Try to load the filesystem.  Before calling modload(), we drop
3929 	 * our lock on the VFS switch table, and pick it up after the
3930 	 * module is loaded.  However, there is a potential race:  the
3931 	 * module could be unloaded after the call to modload() completes
3932 	 * but before we pick up the lock and drive on.  Therefore,
3933 	 * we keep reloading the module until we've loaded the module
3934 	 * _and_ we have the lock on the VFS switch table.
3935 	 */
3936 	while (vswp == NULL || !VFS_INSTALLED(vswp)) {
3937 		RUNLOCK_VFSSW();
3938 		if (modload("fs", modname) == -1)
3939 			return (NULL);
3940 		RLOCK_VFSSW();
3941 		if (vswp == NULL)
3942 			if ((vswp = vfs_getvfsswbyname(type)) == NULL)
3943 				break;
3944 	}
3945 	RUNLOCK_VFSSW();
3946 
3947 	return (vswp);
3948 }
3949 
3950 /*
3951  * Find a vfssw entry given a file system type name.
3952  */
3953 struct vfssw *
3954 vfs_getvfsswbyname(const char *type)
3955 {
3956 	struct vfssw *vswp;
3957 
3958 	ASSERT(VFSSW_LOCKED());
3959 	if (type == NULL || *type == '\0')
3960 		return (NULL);
3961 
3962 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
3963 		if (strcmp(type, vswp->vsw_name) == 0) {
3964 			vfs_refvfssw(vswp);
3965 			return (vswp);
3966 		}
3967 	}
3968 
3969 	return (NULL);
3970 }
3971 
3972 /*
3973  * Find a vfssw entry given a set of vfsops.
3974  */
3975 struct vfssw *
3976 vfs_getvfsswbyvfsops(vfsops_t *vfsops)
3977 {
3978 	struct vfssw *vswp;
3979 
3980 	RLOCK_VFSSW();
3981 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
3982 		if (ALLOCATED_VFSSW(vswp) && &vswp->vsw_vfsops == vfsops) {
3983 			vfs_refvfssw(vswp);
3984 			RUNLOCK_VFSSW();
3985 			return (vswp);
3986 		}
3987 	}
3988 	RUNLOCK_VFSSW();
3989 
3990 	return (NULL);
3991 }
3992 
3993 /*
3994  * Reference a vfssw entry.
3995  */
3996 void
3997 vfs_refvfssw(struct vfssw *vswp)
3998 {
3999 
4000 	mutex_enter(&vswp->vsw_lock);
4001 	vswp->vsw_count++;
4002 	mutex_exit(&vswp->vsw_lock);
4003 }
4004 
4005 /*
4006  * Unreference a vfssw entry.
4007  */
4008 void
4009 vfs_unrefvfssw(struct vfssw *vswp)
4010 {
4011 
4012 	mutex_enter(&vswp->vsw_lock);
4013 	vswp->vsw_count--;
4014 	mutex_exit(&vswp->vsw_lock);
4015 }
4016 
4017 static int sync_retries = 20;	/* number of retries when not making progress */
4018 static int sync_triesleft;	/* portion of sync_retries remaining */
4019 
4020 static pgcnt_t old_pgcnt, new_pgcnt;
4021 static int new_bufcnt, old_bufcnt;
4022 
4023 /*
4024  * Sync all of the mounted filesystems, and then wait for the actual i/o to
4025  * complete.  We wait by counting the number of dirty pages and buffers,
4026  * pushing them out using bio_busy() and page_busy(), and then counting again.
4027  * This routine is used during the uadmin A_SHUTDOWN code.  It should only
4028  * be used after some higher-level mechanism has quiesced the system so that
4029  * new writes are not being initiated while we are waiting for completion.
4030  *
4031  * To ensure finite running time, our algorithm uses sync_triesleft (a progress
4032  * counter used by the vfs_syncall() loop below). It is declared above so
4033  * it can be found easily in the debugger.
4034  *
4035  * The sync_triesleft counter is updated by vfs_syncall() itself.  If we make
4036  * sync_retries consecutive calls to bio_busy() and page_busy() without
4037  * decreasing either the number of dirty buffers or dirty pages below the
4038  * lowest count we have seen so far, we give up and return from vfs_syncall().
4039  *
4040  * Each loop iteration ends with a call to delay() one second to allow time for
4041  * i/o completion and to permit the user time to read our progress messages.
4042  */
4043 void
4044 vfs_syncall(void)
4045 {
4046 	if (rootdir == NULL && !modrootloaded)
4047 		return; /* no filesystems have been loaded yet */
4048 
4049 	printf("syncing file systems...");
4050 	sync();
4051 
4052 	sync_triesleft = sync_retries;
4053 
4054 	old_bufcnt = new_bufcnt = INT_MAX;
4055 	old_pgcnt = new_pgcnt = ULONG_MAX;
4056 
4057 	while (sync_triesleft > 0) {
4058 		old_bufcnt = MIN(old_bufcnt, new_bufcnt);
4059 		old_pgcnt = MIN(old_pgcnt, new_pgcnt);
4060 
4061 		new_bufcnt = bio_busy(B_TRUE);
4062 		new_pgcnt = page_busy(B_TRUE);
4063 
4064 		if (new_bufcnt == 0 && new_pgcnt == 0)
4065 			break;
4066 
4067 		if (new_bufcnt < old_bufcnt || new_pgcnt < old_pgcnt)
4068 			sync_triesleft = sync_retries;
4069 		else
4070 			sync_triesleft--;
4071 
4072 		if (new_bufcnt)
4073 			printf(" [%d]", new_bufcnt);
4074 		if (new_pgcnt)
4075 			printf(" %lu", new_pgcnt);
4076 
4077 		delay(hz);
4078 	}
4079 
4080 	if (new_bufcnt != 0 || new_pgcnt != 0)
4081 		printf(" done (not all i/o completed)\n");
4082 	else
4083 		printf(" done\n");
4084 
4085 	delay(hz);
4086 }
4087 
4088 /*
4089  * Map VFS flags to statvfs flags.  These shouldn't really be separate
4090  * flags at all.
4091  */
4092 uint_t
4093 vf_to_stf(uint_t vf)
4094 {
4095 	uint_t stf = 0;
4096 
4097 	if (vf & VFS_RDONLY)
4098 		stf |= ST_RDONLY;
4099 	if (vf & VFS_NOSETUID)
4100 		stf |= ST_NOSUID;
4101 	if (vf & VFS_NOTRUNC)
4102 		stf |= ST_NOTRUNC;
4103 
4104 	return (stf);
4105 }
4106 
4107 /*
4108  * Entries for (illegal) fstype 0.
4109  */
4110 /* ARGSUSED */
4111 int
4112 vfsstray_sync(struct vfs *vfsp, short arg, struct cred *cr)
4113 {
4114 	cmn_err(CE_PANIC, "stray vfs operation");
4115 	return (0);
4116 }
4117 
4118 /*
4119  * Entries for (illegal) fstype 0.
4120  */
4121 int
4122 vfsstray(void)
4123 {
4124 	cmn_err(CE_PANIC, "stray vfs operation");
4125 	return (0);
4126 }
4127 
4128 /*
4129  * Support for dealing with forced UFS unmount and its interaction with
4130  * LOFS. Could be used by any filesystem.
4131  * See bug 1203132.
4132  */
4133 int
4134 vfs_EIO(void)
4135 {
4136 	return (EIO);
4137 }
4138 
4139 /*
4140  * We've gotta define the op for sync separately, since the compiler gets
4141  * confused if we mix and match ANSI and normal style prototypes when
4142  * a "short" argument is present and spits out a warning.
4143  */
4144 /*ARGSUSED*/
4145 int
4146 vfs_EIO_sync(struct vfs *vfsp, short arg, struct cred *cr)
4147 {
4148 	return (EIO);
4149 }
4150 
4151 vfs_t EIO_vfs;
4152 vfsops_t *EIO_vfsops;
4153 
4154 /*
4155  * Called from startup() to initialize all loaded vfs's
4156  */
4157 void
4158 vfsinit(void)
4159 {
4160 	struct vfssw *vswp;
4161 	int error;
4162 	extern int vopstats_enabled;
4163 	extern void vopstats_startup();
4164 
4165 	static const fs_operation_def_t EIO_vfsops_template[] = {
4166 		VFSNAME_MOUNT,		{ .error = vfs_EIO },
4167 		VFSNAME_UNMOUNT,	{ .error = vfs_EIO },
4168 		VFSNAME_ROOT,		{ .error = vfs_EIO },
4169 		VFSNAME_STATVFS,	{ .error = vfs_EIO },
4170 		VFSNAME_SYNC, 		{ .vfs_sync = vfs_EIO_sync },
4171 		VFSNAME_VGET,		{ .error = vfs_EIO },
4172 		VFSNAME_MOUNTROOT,	{ .error = vfs_EIO },
4173 		VFSNAME_FREEVFS,	{ .error = vfs_EIO },
4174 		VFSNAME_VNSTATE,	{ .error = vfs_EIO },
4175 		NULL, NULL
4176 	};
4177 
4178 	static const fs_operation_def_t stray_vfsops_template[] = {
4179 		VFSNAME_MOUNT,		{ .error = vfsstray },
4180 		VFSNAME_UNMOUNT,	{ .error = vfsstray },
4181 		VFSNAME_ROOT,		{ .error = vfsstray },
4182 		VFSNAME_STATVFS,	{ .error = vfsstray },
4183 		VFSNAME_SYNC, 		{ .vfs_sync = vfsstray_sync },
4184 		VFSNAME_VGET,		{ .error = vfsstray },
4185 		VFSNAME_MOUNTROOT,	{ .error = vfsstray },
4186 		VFSNAME_FREEVFS,	{ .error = vfsstray },
4187 		VFSNAME_VNSTATE,	{ .error = vfsstray },
4188 		NULL, NULL
4189 	};
4190 
4191 	/* Create vfs cache */
4192 	vfs_cache = kmem_cache_create("vfs_cache", sizeof (struct vfs),
4193 	    sizeof (uintptr_t), NULL, NULL, NULL, NULL, NULL, 0);
4194 
4195 	/* Initialize the vnode cache (file systems may use it during init). */
4196 	vn_create_cache();
4197 
4198 	/* Setup event monitor framework */
4199 	fem_init();
4200 
4201 	/* Initialize the dummy stray file system type. */
4202 	error = vfs_setfsops(0, stray_vfsops_template, NULL);
4203 
4204 	/* Initialize the dummy EIO file system. */
4205 	error = vfs_makefsops(EIO_vfsops_template, &EIO_vfsops);
4206 	if (error != 0) {
4207 		cmn_err(CE_WARN, "vfsinit: bad EIO vfs ops template");
4208 		/* Shouldn't happen, but not bad enough to panic */
4209 	}
4210 
4211 	VFS_INIT(&EIO_vfs, EIO_vfsops, (caddr_t)NULL);
4212 
4213 	/*
4214 	 * Default EIO_vfs.vfs_flag to VFS_UNMOUNTED so a lookup
4215 	 * on this vfs can immediately notice it's invalid.
4216 	 */
4217 	EIO_vfs.vfs_flag |= VFS_UNMOUNTED;
4218 
4219 	/*
4220 	 * Call the init routines of non-loadable filesystems only.
4221 	 * Filesystems which are loaded as separate modules will be
4222 	 * initialized by the module loading code instead.
4223 	 */
4224 
4225 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
4226 		RLOCK_VFSSW();
4227 		if (vswp->vsw_init != NULL)
4228 			(*vswp->vsw_init)(vswp - vfssw, vswp->vsw_name);
4229 		RUNLOCK_VFSSW();
4230 	}
4231 
4232 	vopstats_startup();
4233 
4234 	if (vopstats_enabled) {
4235 		/* EIO_vfs can collect stats, but we don't retrieve them */
4236 		initialize_vopstats(&EIO_vfs.vfs_vopstats);
4237 		EIO_vfs.vfs_fstypevsp = NULL;
4238 		EIO_vfs.vfs_vskap = NULL;
4239 		EIO_vfs.vfs_flag |= VFS_STATS;
4240 	}
4241 
4242 	xattr_init();
4243 
4244 	reparse_point_init();
4245 }
4246 
4247 vfs_t *
4248 vfs_alloc(int kmflag)
4249 {
4250 	vfs_t *vfsp;
4251 
4252 	vfsp = kmem_cache_alloc(vfs_cache, kmflag);
4253 
4254 	/*
4255 	 * Do the simplest initialization here.
4256 	 * Everything else gets done in vfs_init()
4257 	 */
4258 	bzero(vfsp, sizeof (vfs_t));
4259 	return (vfsp);
4260 }
4261 
4262 void
4263 vfs_free(vfs_t *vfsp)
4264 {
4265 	/*
4266 	 * One would be tempted to assert that "vfsp->vfs_count == 0".
4267 	 * The problem is that this gets called out of domount() with
4268 	 * a partially initialized vfs and a vfs_count of 1.  This is
4269 	 * also called from vfs_rele() with a vfs_count of 0.  We can't
4270 	 * call VFS_RELE() from domount() if VFS_MOUNT() hasn't successfully
4271 	 * returned.  This is because VFS_MOUNT() fully initializes the
4272 	 * vfs structure and its associated data.  VFS_RELE() will call
4273 	 * VFS_FREEVFS() which may panic the system if the data structures
4274 	 * aren't fully initialized from a successful VFS_MOUNT()).
4275 	 */
4276 
4277 	/* If FEM was in use, make sure everything gets cleaned up */
4278 	if (vfsp->vfs_femhead) {
4279 		ASSERT(vfsp->vfs_femhead->femh_list == NULL);
4280 		mutex_destroy(&vfsp->vfs_femhead->femh_lock);
4281 		kmem_free(vfsp->vfs_femhead, sizeof (*(vfsp->vfs_femhead)));
4282 		vfsp->vfs_femhead = NULL;
4283 	}
4284 
4285 	if (vfsp->vfs_implp)
4286 		vfsimpl_teardown(vfsp);
4287 	sema_destroy(&vfsp->vfs_reflock);
4288 	kmem_cache_free(vfs_cache, vfsp);
4289 }
4290 
4291 /*
4292  * Increments the vfs reference count by one atomically.
4293  */
4294 void
4295 vfs_hold(vfs_t *vfsp)
4296 {
4297 	atomic_inc_32(&vfsp->vfs_count);
4298 	ASSERT(vfsp->vfs_count != 0);
4299 }
4300 
4301 /*
4302  * Decrements the vfs reference count by one atomically. When
4303  * vfs reference count becomes zero, it calls the file system
4304  * specific vfs_freevfs() to free up the resources.
4305  */
4306 void
4307 vfs_rele(vfs_t *vfsp)
4308 {
4309 	ASSERT(vfsp->vfs_count != 0);
4310 	if (atomic_dec_32_nv(&vfsp->vfs_count) == 0) {
4311 		VFS_FREEVFS(vfsp);
4312 		lofi_remove(vfsp);
4313 		if (vfsp->vfs_zone)
4314 			zone_rele_ref(&vfsp->vfs_implp->vi_zone_ref,
4315 			    ZONE_REF_VFS);
4316 		vfs_freemnttab(vfsp);
4317 		vfs_free(vfsp);
4318 	}
4319 }
4320 
4321 /*
4322  * Generic operations vector support.
4323  *
4324  * This is used to build operations vectors for both the vfs and vnode.
4325  * It's normally called only when a file system is loaded.
4326  *
4327  * There are many possible algorithms for this, including the following:
4328  *
4329  *   (1) scan the list of known operations; for each, see if the file system
4330  *       includes an entry for it, and fill it in as appropriate.
4331  *
4332  *   (2) set up defaults for all known operations.  scan the list of ops
4333  *       supplied by the file system; for each which is both supplied and
4334  *       known, fill it in.
4335  *
4336  *   (3) sort the lists of known ops & supplied ops; scan the list, filling
4337  *       in entries as we go.
4338  *
4339  * we choose (1) for simplicity, and because performance isn't critical here.
4340  * note that (2) could be sped up using a precomputed hash table on known ops.
4341  * (3) could be faster than either, but only if the lists were very large or
4342  * supplied in sorted order.
4343  *
4344  */
4345 
4346 int
4347 fs_build_vector(void *vector, int *unused_ops,
4348     const fs_operation_trans_def_t *translation,
4349     const fs_operation_def_t *operations)
4350 {
4351 	int i, num_trans, num_ops, used;
4352 
4353 	/*
4354 	 * Count the number of translations and the number of supplied
4355 	 * operations.
4356 	 */
4357 
4358 	{
4359 		const fs_operation_trans_def_t *p;
4360 
4361 		for (num_trans = 0, p = translation;
4362 		    p->name != NULL;
4363 		    num_trans++, p++)
4364 			;
4365 	}
4366 
4367 	{
4368 		const fs_operation_def_t *p;
4369 
4370 		for (num_ops = 0, p = operations;
4371 		    p->name != NULL;
4372 		    num_ops++, p++)
4373 			;
4374 	}
4375 
4376 	/* Walk through each operation known to our caller.  There will be */
4377 	/* one entry in the supplied "translation table" for each. */
4378 
4379 	used = 0;
4380 
4381 	for (i = 0; i < num_trans; i++) {
4382 		int j, found;
4383 		char *curname;
4384 		fs_generic_func_p result;
4385 		fs_generic_func_p *location;
4386 
4387 		curname = translation[i].name;
4388 
4389 		/* Look for a matching operation in the list supplied by the */
4390 		/* file system. */
4391 
4392 		found = 0;
4393 
4394 		for (j = 0; j < num_ops; j++) {
4395 			if (strcmp(operations[j].name, curname) == 0) {
4396 				used++;
4397 				found = 1;
4398 				break;
4399 			}
4400 		}
4401 
4402 		/*
4403 		 * If the file system is using a "placeholder" for default
4404 		 * or error functions, grab the appropriate function out of
4405 		 * the translation table.  If the file system didn't supply
4406 		 * this operation at all, use the default function.
4407 		 */
4408 
4409 		if (found) {
4410 			result = operations[j].func.fs_generic;
4411 			if (result == fs_default) {
4412 				result = translation[i].defaultFunc;
4413 			} else if (result == fs_error) {
4414 				result = translation[i].errorFunc;
4415 			} else if (result == NULL) {
4416 				/* Null values are PROHIBITED */
4417 				return (EINVAL);
4418 			}
4419 		} else {
4420 			result = translation[i].defaultFunc;
4421 		}
4422 
4423 		/* Now store the function into the operations vector. */
4424 
4425 		location = (fs_generic_func_p *)
4426 		    (((char *)vector) + translation[i].offset);
4427 
4428 		*location = result;
4429 	}
4430 
4431 	*unused_ops = num_ops - used;
4432 
4433 	return (0);
4434 }
4435 
4436 /* Placeholder functions, should never be called. */
4437 
4438 int
4439 fs_error(void)
4440 {
4441 	cmn_err(CE_PANIC, "fs_error called");
4442 	return (0);
4443 }
4444 
4445 int
4446 fs_default(void)
4447 {
4448 	cmn_err(CE_PANIC, "fs_default called");
4449 	return (0);
4450 }
4451 
4452 #ifdef __sparc
4453 
4454 /*
4455  * Part of the implementation of booting off a mirrored root
4456  * involves a change of dev_t for the root device.  To
4457  * accomplish this, first remove the existing hash table
4458  * entry for the root device, convert to the new dev_t,
4459  * then re-insert in the hash table at the head of the list.
4460  */
4461 void
4462 vfs_root_redev(vfs_t *vfsp, dev_t ndev, int fstype)
4463 {
4464 	vfs_list_lock();
4465 
4466 	vfs_hash_remove(vfsp);
4467 
4468 	vfsp->vfs_dev = ndev;
4469 	vfs_make_fsid(&vfsp->vfs_fsid, ndev, fstype);
4470 
4471 	vfs_hash_add(vfsp, 1);
4472 
4473 	vfs_list_unlock();
4474 }
4475 
4476 #else /* x86 NEWBOOT */
4477 
4478 #if defined(__x86)
4479 extern int hvmboot_rootconf();
4480 #endif /* __x86 */
4481 
4482 extern ib_boot_prop_t *iscsiboot_prop;
4483 
4484 int
4485 rootconf()
4486 {
4487 	int error;
4488 	struct vfssw *vsw;
4489 	extern void pm_init();
4490 	char *fstyp, *fsmod;
4491 	int ret = -1;
4492 
4493 	getrootfs(&fstyp, &fsmod);
4494 
4495 #if defined(__x86)
4496 	/*
4497 	 * hvmboot_rootconf() is defined in the hvm_bootstrap misc module,
4498 	 * which lives in /platform/i86hvm, and hence is only available when
4499 	 * booted in an x86 hvm environment.  If the hvm_bootstrap misc module
4500 	 * is not available then the modstub for this function will return 0.
4501 	 * If the hvm_bootstrap misc module is available it will be loaded
4502 	 * and hvmboot_rootconf() will be invoked.
4503 	 */
4504 	if (error = hvmboot_rootconf())
4505 		return (error);
4506 #endif /* __x86 */
4507 
4508 	if (error = clboot_rootconf())
4509 		return (error);
4510 
4511 	if (modload("fs", fsmod) == -1)
4512 		panic("Cannot _init %s module", fsmod);
4513 
4514 	RLOCK_VFSSW();
4515 	vsw = vfs_getvfsswbyname(fstyp);
4516 	RUNLOCK_VFSSW();
4517 	if (vsw == NULL) {
4518 		cmn_err(CE_CONT, "Cannot find %s filesystem\n", fstyp);
4519 		return (ENXIO);
4520 	}
4521 	VFS_INIT(rootvfs, &vsw->vsw_vfsops, 0);
4522 	VFS_HOLD(rootvfs);
4523 
4524 	/* always mount readonly first */
4525 	rootvfs->vfs_flag |= VFS_RDONLY;
4526 
4527 	pm_init();
4528 
4529 	if (netboot && iscsiboot_prop) {
4530 		cmn_err(CE_WARN, "NFS boot and iSCSI boot"
4531 		    " shouldn't happen in the same time");
4532 		return (EINVAL);
4533 	}
4534 
4535 	if (netboot || iscsiboot_prop) {
4536 		ret = strplumb();
4537 		if (ret != 0) {
4538 			cmn_err(CE_WARN, "Cannot plumb network device %d", ret);
4539 			return (EFAULT);
4540 		}
4541 	}
4542 
4543 	if ((ret == 0) && iscsiboot_prop) {
4544 		ret = modload("drv", "iscsi");
4545 		/* -1 indicates fail */
4546 		if (ret == -1) {
4547 			cmn_err(CE_WARN, "Failed to load iscsi module");
4548 			iscsi_boot_prop_free();
4549 			return (EINVAL);
4550 		} else {
4551 			if (!i_ddi_attach_pseudo_node("iscsi")) {
4552 				cmn_err(CE_WARN,
4553 				    "Failed to attach iscsi driver");
4554 				iscsi_boot_prop_free();
4555 				return (ENODEV);
4556 			}
4557 		}
4558 	}
4559 
4560 	error = VFS_MOUNTROOT(rootvfs, ROOT_INIT);
4561 	vfs_unrefvfssw(vsw);
4562 	rootdev = rootvfs->vfs_dev;
4563 
4564 	if (error)
4565 		cmn_err(CE_CONT, "Cannot mount root on %s fstype %s\n",
4566 		    rootfs.bo_name, fstyp);
4567 	else
4568 		cmn_err(CE_CONT, "?root on %s fstype %s\n",
4569 		    rootfs.bo_name, fstyp);
4570 	return (error);
4571 }
4572 
4573 /*
4574  * XXX this is called by nfs only and should probably be removed
4575  * If booted with ASKNAME, prompt on the console for a filesystem
4576  * name and return it.
4577  */
4578 void
4579 getfsname(char *askfor, char *name, size_t namelen)
4580 {
4581 	if (boothowto & RB_ASKNAME) {
4582 		printf("%s name: ", askfor);
4583 		console_gets(name, namelen);
4584 	}
4585 }
4586 
4587 /*
4588  * Init the root filesystem type (rootfs.bo_fstype) from the "fstype"
4589  * property.
4590  *
4591  * Filesystem types starting with the prefix "nfs" are diskless clients;
4592  * init the root filename name (rootfs.bo_name), too.
4593  *
4594  * If we are booting via NFS we currently have these options:
4595  *	nfs -	dynamically choose NFS V2, V3, or V4 (default)
4596  *	nfs2 -	force NFS V2
4597  *	nfs3 -	force NFS V3
4598  *	nfs4 -	force NFS V4
4599  * Because we need to maintain backward compatibility with the naming
4600  * convention that the NFS V2 filesystem name is "nfs" (see vfs_conf.c)
4601  * we need to map "nfs" => "nfsdyn" and "nfs2" => "nfs".  The dynamic
4602  * nfs module will map the type back to either "nfs", "nfs3", or "nfs4".
4603  * This is only for root filesystems, all other uses will expect
4604  * that "nfs" == NFS V2.
4605  */
4606 static void
4607 getrootfs(char **fstypp, char **fsmodp)
4608 {
4609 	char *propstr = NULL;
4610 
4611 	/*
4612 	 * Check fstype property; for diskless it should be one of "nfs",
4613 	 * "nfs2", "nfs3" or "nfs4".
4614 	 */
4615 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4616 	    DDI_PROP_DONTPASS, "fstype", &propstr)
4617 	    == DDI_SUCCESS) {
4618 		(void) strncpy(rootfs.bo_fstype, propstr, BO_MAXFSNAME);
4619 		ddi_prop_free(propstr);
4620 
4621 	/*
4622 	 * if the boot property 'fstype' is not set, but 'zfs-bootfs' is set,
4623 	 * assume the type of this root filesystem is 'zfs'.
4624 	 */
4625 	} else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4626 	    DDI_PROP_DONTPASS, "zfs-bootfs", &propstr)
4627 	    == DDI_SUCCESS) {
4628 		(void) strncpy(rootfs.bo_fstype, "zfs", BO_MAXFSNAME);
4629 		ddi_prop_free(propstr);
4630 	}
4631 
4632 	if (strncmp(rootfs.bo_fstype, "nfs", 3) != 0) {
4633 		*fstypp = *fsmodp = rootfs.bo_fstype;
4634 		return;
4635 	}
4636 
4637 	++netboot;
4638 
4639 	if (strcmp(rootfs.bo_fstype, "nfs2") == 0)
4640 		(void) strcpy(rootfs.bo_fstype, "nfs");
4641 	else if (strcmp(rootfs.bo_fstype, "nfs") == 0)
4642 		(void) strcpy(rootfs.bo_fstype, "nfsdyn");
4643 
4644 	/*
4645 	 * check if path to network interface is specified in bootpath
4646 	 * or by a hypervisor domain configuration file.
4647 	 * XXPV - enable strlumb_get_netdev_path()
4648 	 */
4649 	if (ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), DDI_PROP_DONTPASS,
4650 	    "xpv-nfsroot")) {
4651 		(void) strcpy(rootfs.bo_name, "/xpvd/xnf@0");
4652 	} else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4653 	    DDI_PROP_DONTPASS, "bootpath", &propstr)
4654 	    == DDI_SUCCESS) {
4655 		(void) strncpy(rootfs.bo_name, propstr, BO_MAXOBJNAME);
4656 		ddi_prop_free(propstr);
4657 	} else {
4658 		rootfs.bo_name[0] = '\0';
4659 	}
4660 	*fstypp = rootfs.bo_fstype;
4661 	*fsmodp = "nfs";
4662 }
4663 #endif
4664 
4665 /*
4666  * VFS feature routines
4667  */
4668 
4669 #define	VFTINDEX(feature)	(((feature) >> 32) & 0xFFFFFFFF)
4670 #define	VFTBITS(feature)	((feature) & 0xFFFFFFFFLL)
4671 
4672 /* Register a feature in the vfs */
4673 void
4674 vfs_set_feature(vfs_t *vfsp, vfs_feature_t feature)
4675 {
4676 	/* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4677 	if (vfsp->vfs_implp == NULL)
4678 		return;
4679 
4680 	vfsp->vfs_featureset[VFTINDEX(feature)] |= VFTBITS(feature);
4681 }
4682 
4683 void
4684 vfs_clear_feature(vfs_t *vfsp, vfs_feature_t feature)
4685 {
4686 	/* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4687 	if (vfsp->vfs_implp == NULL)
4688 		return;
4689 	vfsp->vfs_featureset[VFTINDEX(feature)] &= VFTBITS(~feature);
4690 }
4691 
4692 /*
4693  * Query a vfs for a feature.
4694  * Returns 1 if feature is present, 0 if not
4695  */
4696 int
4697 vfs_has_feature(vfs_t *vfsp, vfs_feature_t feature)
4698 {
4699 	int	ret = 0;
4700 
4701 	/* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4702 	if (vfsp->vfs_implp == NULL)
4703 		return (ret);
4704 
4705 	if (vfsp->vfs_featureset[VFTINDEX(feature)] & VFTBITS(feature))
4706 		ret = 1;
4707 
4708 	return (ret);
4709 }
4710 
4711 /*
4712  * Propagate feature set from one vfs to another
4713  */
4714 void
4715 vfs_propagate_features(vfs_t *from, vfs_t *to)
4716 {
4717 	int i;
4718 
4719 	if (to->vfs_implp == NULL || from->vfs_implp == NULL)
4720 		return;
4721 
4722 	for (i = 1; i <= to->vfs_featureset[0]; i++) {
4723 		to->vfs_featureset[i] = from->vfs_featureset[i];
4724 	}
4725 }
4726 
4727 #define	LOFINODE_PATH "/dev/lofi/%d"
4728 
4729 /*
4730  * Return the vnode for the lofi node if there's a lofi mount in place.
4731  * Returns -1 when there's no lofi node, 0 on success, and > 0 on
4732  * failure.
4733  */
4734 int
4735 vfs_get_lofi(vfs_t *vfsp, vnode_t **vpp)
4736 {
4737 	char *path = NULL;
4738 	int strsize;
4739 	int err;
4740 
4741 	if (vfsp->vfs_lofi_id == 0) {
4742 		*vpp = NULL;
4743 		return (-1);
4744 	}
4745 
4746 	strsize = snprintf(NULL, 0, LOFINODE_PATH, vfsp->vfs_lofi_id);
4747 	path = kmem_alloc(strsize + 1, KM_SLEEP);
4748 	(void) snprintf(path, strsize + 1, LOFINODE_PATH, vfsp->vfs_lofi_id);
4749 
4750 	/*
4751 	 * We may be inside a zone, so we need to use the /dev path, but
4752 	 * it's created asynchronously, so we wait here.
4753 	 */
4754 	for (;;) {
4755 		err = lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, vpp);
4756 
4757 		if (err != ENOENT)
4758 			break;
4759 
4760 		if ((err = delay_sig(hz / 8)) == EINTR)
4761 			break;
4762 	}
4763 
4764 	if (err)
4765 		*vpp = NULL;
4766 
4767 	kmem_free(path, strsize + 1);
4768 	return (err);
4769 }
4770