xref: /illumos-gate/usr/src/uts/common/fs/nfs/nfs_client.c (revision 5dae4443)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  *
25  *  	Copyright (c) 1983,1984,1985,1986,1987,1988,1989  AT&T.
26  *	All rights reserved.
27  */
28 
29 #pragma ident	"%Z%%M%	%I%	%E% SMI"
30 
31 #include <sys/param.h>
32 #include <sys/types.h>
33 #include <sys/systm.h>
34 #include <sys/thread.h>
35 #include <sys/t_lock.h>
36 #include <sys/time.h>
37 #include <sys/vnode.h>
38 #include <sys/vfs.h>
39 #include <sys/errno.h>
40 #include <sys/buf.h>
41 #include <sys/stat.h>
42 #include <sys/cred.h>
43 #include <sys/kmem.h>
44 #include <sys/debug.h>
45 #include <sys/dnlc.h>
46 #include <sys/vmsystm.h>
47 #include <sys/flock.h>
48 #include <sys/share.h>
49 #include <sys/cmn_err.h>
50 #include <sys/tiuser.h>
51 #include <sys/sysmacros.h>
52 #include <sys/callb.h>
53 #include <sys/acl.h>
54 #include <sys/kstat.h>
55 #include <sys/signal.h>
56 #include <sys/list.h>
57 #include <sys/zone.h>
58 
59 #include <rpc/types.h>
60 #include <rpc/xdr.h>
61 #include <rpc/auth.h>
62 #include <rpc/clnt.h>
63 
64 #include <nfs/nfs.h>
65 #include <nfs/nfs_clnt.h>
66 
67 #include <nfs/rnode.h>
68 #include <nfs/nfs_acl.h>
69 #include <nfs/lm.h>
70 
71 #include <vm/hat.h>
72 #include <vm/as.h>
73 #include <vm/page.h>
74 #include <vm/pvn.h>
75 #include <vm/seg.h>
76 #include <vm/seg_map.h>
77 #include <vm/seg_vn.h>
78 
79 static void	nfs3_attr_cache(vnode_t *, vattr_t *, vattr_t *, hrtime_t,
80 			cred_t *);
81 static int	nfs_getattr_cache(vnode_t *, struct vattr *);
82 static int	nfs_remove_locking_id(vnode_t *, int, char *, char *, int *);
83 
84 struct mi_globals {
85 	kmutex_t	mig_lock;  /* lock protecting mig_list */
86 	list_t		mig_list;  /* list of NFS v2 or v3 mounts in zone */
87 	boolean_t	mig_destructor_called;
88 };
89 
90 static zone_key_t mi_list_key;
91 
92 /* Debugging flag for PC file shares. */
93 extern int	share_debug;
94 
95 /*
96  * Attributes caching:
97  *
98  * Attributes are cached in the rnode in struct vattr form.
99  * There is a time associated with the cached attributes (r_attrtime)
100  * which tells whether the attributes are valid. The time is initialized
101  * to the difference between current time and the modify time of the vnode
102  * when new attributes are cached. This allows the attributes for
103  * files that have changed recently to be timed out sooner than for files
104  * that have not changed for a long time. There are minimum and maximum
105  * timeout values that can be set per mount point.
106  */
107 
108 int
109 nfs_waitfor_purge_complete(vnode_t *vp)
110 {
111 	rnode_t *rp;
112 	k_sigset_t smask;
113 
114 	rp = VTOR(vp);
115 	if (rp->r_serial != NULL && rp->r_serial != curthread) {
116 		mutex_enter(&rp->r_statelock);
117 		sigintr(&smask, VTOMI(vp)->mi_flags & MI_INT);
118 		while (rp->r_serial != NULL) {
119 			if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
120 				sigunintr(&smask);
121 				mutex_exit(&rp->r_statelock);
122 				return (EINTR);
123 			}
124 		}
125 		sigunintr(&smask);
126 		mutex_exit(&rp->r_statelock);
127 	}
128 	return (0);
129 }
130 
131 /*
132  * Validate caches by checking cached attributes. If the cached
133  * attributes have timed out, then get new attributes from the server.
134  * As a side affect, this will do cache invalidation if the attributes
135  * have changed.
136  *
137  * If the attributes have not timed out and if there is a cache
138  * invalidation being done by some other thread, then wait until that
139  * thread has completed the cache invalidation.
140  */
141 int
142 nfs_validate_caches(vnode_t *vp, cred_t *cr)
143 {
144 	int error;
145 	struct vattr va;
146 
147 	if (ATTRCACHE_VALID(vp)) {
148 		error = nfs_waitfor_purge_complete(vp);
149 		if (error)
150 			return (error);
151 		return (0);
152 	}
153 
154 	va.va_mask = AT_ALL;
155 	return (nfs_getattr_otw(vp, &va, cr));
156 }
157 
158 /*
159  * Validate caches by checking cached attributes. If the cached
160  * attributes have timed out, then get new attributes from the server.
161  * As a side affect, this will do cache invalidation if the attributes
162  * have changed.
163  *
164  * If the attributes have not timed out and if there is a cache
165  * invalidation being done by some other thread, then wait until that
166  * thread has completed the cache invalidation.
167  */
168 int
169 nfs3_validate_caches(vnode_t *vp, cred_t *cr)
170 {
171 	int error;
172 	struct vattr va;
173 
174 	if (ATTRCACHE_VALID(vp)) {
175 		error = nfs_waitfor_purge_complete(vp);
176 		if (error)
177 			return (error);
178 		return (0);
179 	}
180 
181 	va.va_mask = AT_ALL;
182 	return (nfs3_getattr_otw(vp, &va, cr));
183 }
184 
185 /*
186  * Purge all of the various NFS `data' caches.
187  */
188 void
189 nfs_purge_caches(vnode_t *vp, int purge_dnlc, cred_t *cr)
190 {
191 	rnode_t *rp;
192 	char *contents;
193 	int size;
194 	int error;
195 
196 	/*
197 	 * Purge the DNLC for any entries which refer to this file.
198 	 * Avoid recursive entry into dnlc_purge_vp() in case of a directory.
199 	 */
200 	rp = VTOR(vp);
201 	mutex_enter(&rp->r_statelock);
202 	if (vp->v_count > 1 &&
203 	    (vp->v_type == VDIR || purge_dnlc == NFS_PURGE_DNLC) &&
204 	    !(rp->r_flags & RINDNLCPURGE)) {
205 		/*
206 		 * Set the RINDNLCPURGE flag to prevent recursive entry
207 		 * into dnlc_purge_vp()
208 		 */
209 		if (vp->v_type == VDIR)
210 			rp->r_flags |= RINDNLCPURGE;
211 		mutex_exit(&rp->r_statelock);
212 		dnlc_purge_vp(vp);
213 		mutex_enter(&rp->r_statelock);
214 		if (rp->r_flags & RINDNLCPURGE)
215 			rp->r_flags &= ~RINDNLCPURGE;
216 	}
217 
218 	/*
219 	 * Clear any readdir state bits and purge the readlink response cache.
220 	 */
221 	contents = rp->r_symlink.contents;
222 	size = rp->r_symlink.size;
223 	rp->r_symlink.contents = NULL;
224 	mutex_exit(&rp->r_statelock);
225 
226 	if (contents != NULL) {
227 
228 		kmem_free((void *)contents, size);
229 	}
230 
231 	/*
232 	 * Flush the page cache.
233 	 */
234 	if (vn_has_cached_data(vp)) {
235 		error = VOP_PUTPAGE(vp, (u_offset_t)0, 0, B_INVAL, cr);
236 		if (error && (error == ENOSPC || error == EDQUOT)) {
237 			mutex_enter(&rp->r_statelock);
238 			if (!rp->r_error)
239 				rp->r_error = error;
240 			mutex_exit(&rp->r_statelock);
241 		}
242 	}
243 
244 	/*
245 	 * Flush the readdir response cache.
246 	 */
247 	if (HAVE_RDDIR_CACHE(rp))
248 		nfs_purge_rddir_cache(vp);
249 }
250 
251 /*
252  * Purge the readdir cache of all entries
253  */
254 void
255 nfs_purge_rddir_cache(vnode_t *vp)
256 {
257 	rnode_t *rp;
258 	rddir_cache *rdc;
259 	rddir_cache *nrdc;
260 
261 	rp = VTOR(vp);
262 top:
263 	mutex_enter(&rp->r_statelock);
264 	rp->r_direof = NULL;
265 	rp->r_flags &= ~RLOOKUP;
266 	rp->r_flags |= RREADDIRPLUS;
267 	rdc = avl_first(&rp->r_dir);
268 	while (rdc != NULL) {
269 		nrdc = AVL_NEXT(&rp->r_dir, rdc);
270 		avl_remove(&rp->r_dir, rdc);
271 		rddir_cache_rele(rdc);
272 		rdc = nrdc;
273 	}
274 	mutex_exit(&rp->r_statelock);
275 }
276 
277 /*
278  * Do a cache check based on the post-operation attributes.
279  * Then make them the new cached attributes.  If no attributes
280  * were returned, then mark the attributes as timed out.
281  */
282 void
283 nfs3_cache_post_op_attr(vnode_t *vp, post_op_attr *poap, hrtime_t t, cred_t *cr)
284 {
285 	vattr_t attr;
286 
287 	if (!poap->attributes) {
288 		PURGE_ATTRCACHE(vp);
289 		return;
290 	}
291 	(void) nfs3_cache_fattr3(vp, &poap->attr, &attr, t, cr);
292 }
293 
294 /*
295  * Same as above, but using a vattr
296  */
297 void
298 nfs3_cache_post_op_vattr(vnode_t *vp, post_op_vattr *poap, hrtime_t t,
299     cred_t *cr)
300 {
301 	if (!poap->attributes) {
302 		PURGE_ATTRCACHE(vp);
303 		return;
304 	}
305 	nfs_attr_cache(vp, poap->fres.vap, t, cr);
306 }
307 
308 /*
309  * Do a cache check based on the weak cache consistency attributes.
310  * These consist of a small set of pre-operation attributes and the
311  * full set of post-operation attributes.
312  *
313  * If we are given the pre-operation attributes, then use them to
314  * check the validity of the various caches.  Then, if we got the
315  * post-operation attributes, make them the new cached attributes.
316  * If we didn't get the post-operation attributes, then mark the
317  * attribute cache as timed out so that the next reference will
318  * cause a GETATTR to the server to refresh with the current
319  * attributes.
320  *
321  * Otherwise, if we didn't get the pre-operation attributes, but
322  * we did get the post-operation attributes, then use these
323  * attributes to check the validity of the various caches.  This
324  * will probably cause a flush of the caches because if the
325  * operation succeeded, the attributes of the object were changed
326  * in some way from the old post-operation attributes.  This
327  * should be okay because it is the safe thing to do.  After
328  * checking the data caches, then we make these the new cached
329  * attributes.
330  *
331  * Otherwise, we didn't get either the pre- or post-operation
332  * attributes.  Simply mark the attribute cache as timed out so
333  * the next reference will cause a GETATTR to the server to
334  * refresh with the current attributes.
335  *
336  * If an error occurred trying to convert the over the wire
337  * attributes to a vattr, then simply mark the attribute cache as
338  * timed out.
339  */
340 void
341 nfs3_cache_wcc_data(vnode_t *vp, wcc_data *wccp, hrtime_t t, cred_t *cr)
342 {
343 	vattr_t bva;
344 	vattr_t ava;
345 
346 	if (wccp->after.attributes) {
347 		if (fattr3_to_vattr(vp, &wccp->after.attr, &ava)) {
348 			PURGE_ATTRCACHE(vp);
349 			return;
350 		}
351 		if (wccp->before.attributes) {
352 			bva.va_ctime.tv_sec = wccp->before.attr.ctime.seconds;
353 			bva.va_ctime.tv_nsec = wccp->before.attr.ctime.nseconds;
354 			bva.va_mtime.tv_sec = wccp->before.attr.mtime.seconds;
355 			bva.va_mtime.tv_nsec = wccp->before.attr.mtime.nseconds;
356 			bva.va_size = wccp->before.attr.size;
357 			nfs3_attr_cache(vp, &bva, &ava, t, cr);
358 		} else
359 			nfs_attr_cache(vp, &ava, t, cr);
360 	} else {
361 		PURGE_ATTRCACHE(vp);
362 	}
363 }
364 
365 /*
366  * Set attributes cache for given vnode using nfsattr.
367  *
368  * This routine does not do cache validation with the attributes.
369  *
370  * If an error occurred trying to convert the over the wire
371  * attributes to a vattr, then simply mark the attribute cache as
372  * timed out.
373  */
374 void
375 nfs_attrcache(vnode_t *vp, struct nfsfattr *na, hrtime_t t)
376 {
377 	rnode_t *rp;
378 	struct vattr va;
379 
380 	if (!nattr_to_vattr(vp, na, &va)) {
381 		rp = VTOR(vp);
382 		mutex_enter(&rp->r_statelock);
383 		if (rp->r_mtime <= t)
384 			nfs_attrcache_va(vp, &va);
385 		mutex_exit(&rp->r_statelock);
386 	} else {
387 		PURGE_ATTRCACHE(vp);
388 	}
389 }
390 
391 /*
392  * Set attributes cache for given vnode using fattr3.
393  *
394  * This routine does not do cache validation with the attributes.
395  *
396  * If an error occurred trying to convert the over the wire
397  * attributes to a vattr, then simply mark the attribute cache as
398  * timed out.
399  */
400 void
401 nfs3_attrcache(vnode_t *vp, fattr3 *na, hrtime_t t)
402 {
403 	rnode_t *rp;
404 	struct vattr va;
405 
406 	if (!fattr3_to_vattr(vp, na, &va)) {
407 		rp = VTOR(vp);
408 		mutex_enter(&rp->r_statelock);
409 		if (rp->r_mtime <= t)
410 			nfs_attrcache_va(vp, &va);
411 		mutex_exit(&rp->r_statelock);
412 	} else {
413 		PURGE_ATTRCACHE(vp);
414 	}
415 }
416 
417 /*
418  * Do a cache check based on attributes returned over the wire.  The
419  * new attributes are cached.
420  *
421  * If an error occurred trying to convert the over the wire attributes
422  * to a vattr, then just return that error.
423  *
424  * As a side affect, the vattr argument is filled in with the converted
425  * attributes.
426  */
427 int
428 nfs_cache_fattr(vnode_t *vp, struct nfsfattr *na, vattr_t *vap, hrtime_t t,
429     cred_t *cr)
430 {
431 	int error;
432 
433 	error = nattr_to_vattr(vp, na, vap);
434 	if (error)
435 		return (error);
436 	nfs_attr_cache(vp, vap, t, cr);
437 	return (0);
438 }
439 
440 /*
441  * Do a cache check based on attributes returned over the wire.  The
442  * new attributes are cached.
443  *
444  * If an error occurred trying to convert the over the wire attributes
445  * to a vattr, then just return that error.
446  *
447  * As a side affect, the vattr argument is filled in with the converted
448  * attributes.
449  */
450 int
451 nfs3_cache_fattr3(vnode_t *vp, fattr3 *na, vattr_t *vap, hrtime_t t, cred_t *cr)
452 {
453 	int error;
454 
455 	error = fattr3_to_vattr(vp, na, vap);
456 	if (error)
457 		return (error);
458 	nfs_attr_cache(vp, vap, t, cr);
459 	return (0);
460 }
461 
462 /*
463  * Use the passed in virtual attributes to check to see whether the
464  * data and metadata caches are valid, cache the new attributes, and
465  * then do the cache invalidation if required.
466  *
467  * The cache validation and caching of the new attributes is done
468  * atomically via the use of the mutex, r_statelock.  If required,
469  * the cache invalidation is done atomically w.r.t. the cache
470  * validation and caching of the attributes via the pseudo lock,
471  * r_serial.
472  *
473  * This routine is used to do cache validation and attributes caching
474  * for operations with a single set of post operation attributes.
475  */
476 void
477 nfs_attr_cache(vnode_t *vp, vattr_t *vap, hrtime_t t, cred_t *cr)
478 {
479 	rnode_t *rp;
480 	int mtime_changed;
481 	int ctime_changed;
482 	vsecattr_t *vsp;
483 	int was_serial;
484 
485 	rp = VTOR(vp);
486 
487 	mutex_enter(&rp->r_statelock);
488 
489 	if (rp->r_serial != curthread) {
490 		klwp_t *lwp = ttolwp(curthread);
491 
492 		was_serial = 0;
493 		if (lwp != NULL)
494 			lwp->lwp_nostop++;
495 		while (rp->r_serial != NULL) {
496 			if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
497 				mutex_exit(&rp->r_statelock);
498 				if (lwp != NULL)
499 					lwp->lwp_nostop--;
500 				return;
501 			}
502 		}
503 		if (lwp != NULL)
504 			lwp->lwp_nostop--;
505 	} else
506 		was_serial = 1;
507 
508 	if (rp->r_mtime > t) {
509 		mutex_exit(&rp->r_statelock);
510 		return;
511 	}
512 
513 	if (!(rp->r_flags & RWRITEATTR)) {
514 		if (!CACHE_VALID(rp, vap->va_mtime, vap->va_size))
515 			mtime_changed = 1;
516 		else
517 			mtime_changed = 0;
518 		if (rp->r_attr.va_ctime.tv_sec != vap->va_ctime.tv_sec ||
519 		    rp->r_attr.va_ctime.tv_nsec != vap->va_ctime.tv_nsec)
520 			ctime_changed = 1;
521 		else
522 			ctime_changed = 0;
523 	} else if (rp->r_size != vap->va_size &&
524 		    (!vn_has_cached_data(vp) ||
525 		    (!(rp->r_flags & RDIRTY) && rp->r_count == 0))) {
526 		mtime_changed = 1;
527 		ctime_changed = 0;
528 	} else {
529 		mtime_changed = 0;
530 		ctime_changed = 0;
531 	}
532 
533 	nfs_attrcache_va(vp, vap);
534 
535 	if (!mtime_changed && !ctime_changed) {
536 		mutex_exit(&rp->r_statelock);
537 		return;
538 	}
539 
540 	rp->r_serial = curthread;
541 
542 	mutex_exit(&rp->r_statelock);
543 
544 	if (mtime_changed)
545 		nfs_purge_caches(vp, NFS_NOPURGE_DNLC, cr);
546 
547 	if (ctime_changed) {
548 		(void) nfs_access_purge_rp(rp);
549 		if (rp->r_secattr != NULL) {
550 			mutex_enter(&rp->r_statelock);
551 			vsp = rp->r_secattr;
552 			rp->r_secattr = NULL;
553 			mutex_exit(&rp->r_statelock);
554 			if (vsp != NULL)
555 				nfs_acl_free(vsp);
556 		}
557 	}
558 
559 	if (!was_serial) {
560 		mutex_enter(&rp->r_statelock);
561 		rp->r_serial = NULL;
562 		cv_broadcast(&rp->r_cv);
563 		mutex_exit(&rp->r_statelock);
564 	}
565 }
566 
567 /*
568  * Use the passed in "before" virtual attributes to check to see
569  * whether the data and metadata caches are valid, cache the "after"
570  * new attributes, and then do the cache invalidation if required.
571  *
572  * The cache validation and caching of the new attributes is done
573  * atomically via the use of the mutex, r_statelock.  If required,
574  * the cache invalidation is done atomically w.r.t. the cache
575  * validation and caching of the attributes via the pseudo lock,
576  * r_serial.
577  *
578  * This routine is used to do cache validation and attributes caching
579  * for operations with both pre operation attributes and post operation
580  * attributes.
581  */
582 static void
583 nfs3_attr_cache(vnode_t *vp, vattr_t *bvap, vattr_t *avap, hrtime_t t,
584     cred_t *cr)
585 {
586 	rnode_t *rp;
587 	int mtime_changed;
588 	int ctime_changed;
589 	vsecattr_t *vsp;
590 	int was_serial;
591 
592 	rp = VTOR(vp);
593 
594 	mutex_enter(&rp->r_statelock);
595 
596 	if (rp->r_serial != curthread) {
597 		klwp_t *lwp = ttolwp(curthread);
598 
599 		was_serial = 0;
600 		if (lwp != NULL)
601 			lwp->lwp_nostop++;
602 		while (rp->r_serial != NULL) {
603 			if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
604 				mutex_exit(&rp->r_statelock);
605 				if (lwp != NULL)
606 					lwp->lwp_nostop--;
607 				return;
608 			}
609 		}
610 		if (lwp != NULL)
611 			lwp->lwp_nostop--;
612 	} else
613 		was_serial = 1;
614 
615 	if (rp->r_mtime > t) {
616 		mutex_exit(&rp->r_statelock);
617 		return;
618 	}
619 
620 	if (!(rp->r_flags & RWRITEATTR)) {
621 		if (!CACHE_VALID(rp, bvap->va_mtime, bvap->va_size))
622 			mtime_changed = 1;
623 		else
624 			mtime_changed = 0;
625 		if (rp->r_attr.va_ctime.tv_sec != bvap->va_ctime.tv_sec ||
626 		    rp->r_attr.va_ctime.tv_nsec != bvap->va_ctime.tv_nsec)
627 			ctime_changed = 1;
628 		else
629 			ctime_changed = 0;
630 	} else {
631 		mtime_changed = 0;
632 		ctime_changed = 0;
633 	}
634 
635 	nfs_attrcache_va(vp, avap);
636 
637 	if (!mtime_changed && !ctime_changed) {
638 		mutex_exit(&rp->r_statelock);
639 		return;
640 	}
641 
642 	rp->r_serial = curthread;
643 
644 	mutex_exit(&rp->r_statelock);
645 
646 	if (mtime_changed)
647 		nfs_purge_caches(vp, NFS_NOPURGE_DNLC, cr);
648 
649 	if (ctime_changed) {
650 		(void) nfs_access_purge_rp(rp);
651 		if (rp->r_secattr != NULL) {
652 			mutex_enter(&rp->r_statelock);
653 			vsp = rp->r_secattr;
654 			rp->r_secattr = NULL;
655 			mutex_exit(&rp->r_statelock);
656 			if (vsp != NULL)
657 				nfs_acl_free(vsp);
658 		}
659 	}
660 
661 	if (!was_serial) {
662 		mutex_enter(&rp->r_statelock);
663 		rp->r_serial = NULL;
664 		cv_broadcast(&rp->r_cv);
665 		mutex_exit(&rp->r_statelock);
666 	}
667 }
668 
669 /*
670  * Set attributes cache for given vnode using virtual attributes.
671  *
672  * Set the timeout value on the attribute cache and fill it
673  * with the passed in attributes.
674  *
675  * The caller must be holding r_statelock.
676  */
677 void
678 nfs_attrcache_va(vnode_t *vp, struct vattr *va)
679 {
680 	rnode_t *rp;
681 	mntinfo_t *mi;
682 	hrtime_t delta;
683 	hrtime_t now;
684 
685 	rp = VTOR(vp);
686 
687 	ASSERT(MUTEX_HELD(&rp->r_statelock));
688 
689 	now = gethrtime();
690 
691 	mi = VTOMI(vp);
692 
693 	/*
694 	 * Delta is the number of nanoseconds that we will
695 	 * cache the attributes of the file.  It is based on
696 	 * the number of nanoseconds since the last time that
697 	 * we detected a change.  The assumption is that files
698 	 * that changed recently are likely to change again.
699 	 * There is a minimum and a maximum for regular files
700 	 * and for directories which is enforced though.
701 	 *
702 	 * Using the time since last change was detected
703 	 * eliminates direct comparison or calculation
704 	 * using mixed client and server times.  NFS does
705 	 * not make any assumptions regarding the client
706 	 * and server clocks being synchronized.
707 	 */
708 	if (va->va_mtime.tv_sec != rp->r_attr.va_mtime.tv_sec ||
709 	    va->va_mtime.tv_nsec != rp->r_attr.va_mtime.tv_nsec ||
710 	    va->va_size != rp->r_attr.va_size)
711 		rp->r_mtime = now;
712 
713 	if ((mi->mi_flags & MI_NOAC) || (vp->v_flag & VNOCACHE))
714 		delta = 0;
715 	else {
716 		delta = now - rp->r_mtime;
717 		if (vp->v_type == VDIR) {
718 			if (delta < mi->mi_acdirmin)
719 				delta = mi->mi_acdirmin;
720 			else if (delta > mi->mi_acdirmax)
721 				delta = mi->mi_acdirmax;
722 		} else {
723 			if (delta < mi->mi_acregmin)
724 				delta = mi->mi_acregmin;
725 			else if (delta > mi->mi_acregmax)
726 				delta = mi->mi_acregmax;
727 		}
728 	}
729 	rp->r_attrtime = now + delta;
730 	rp->r_attr = *va;
731 	/*
732 	 * Update the size of the file if there is no cached data or if
733 	 * the cached data is clean and there is no data being written
734 	 * out.
735 	 */
736 	if (rp->r_size != va->va_size &&
737 	    (!vn_has_cached_data(vp) ||
738 	    (!(rp->r_flags & RDIRTY) && rp->r_count == 0)))
739 		rp->r_size = va->va_size;
740 	nfs_setswaplike(vp, va);
741 	rp->r_flags &= ~RWRITEATTR;
742 }
743 
744 /*
745  * Fill in attribute from the cache.
746  * If valid, then return 0 to indicate that no error occurred,
747  * otherwise return 1 to indicate that an error occurred.
748  */
749 static int
750 nfs_getattr_cache(vnode_t *vp, struct vattr *vap)
751 {
752 	rnode_t *rp;
753 
754 	rp = VTOR(vp);
755 	mutex_enter(&rp->r_statelock);
756 	if (ATTRCACHE_VALID(vp)) {
757 		/*
758 		 * Cached attributes are valid
759 		 */
760 		*vap = rp->r_attr;
761 		mutex_exit(&rp->r_statelock);
762 		return (0);
763 	}
764 	mutex_exit(&rp->r_statelock);
765 	return (1);
766 }
767 
768 /*
769  * Get attributes over-the-wire and update attributes cache
770  * if no error occurred in the over-the-wire operation.
771  * Return 0 if successful, otherwise error.
772  */
773 int
774 nfs_getattr_otw(vnode_t *vp, struct vattr *vap, cred_t *cr)
775 {
776 	int error;
777 	struct nfsattrstat ns;
778 	int douprintf;
779 	mntinfo_t *mi;
780 	failinfo_t fi;
781 	hrtime_t t;
782 
783 	mi = VTOMI(vp);
784 	fi.vp = vp;
785 	fi.fhp = NULL;		/* no need to update, filehandle not copied */
786 	fi.copyproc = nfscopyfh;
787 	fi.lookupproc = nfslookup;
788 	fi.xattrdirproc = acl_getxattrdir2;
789 
790 	if (mi->mi_flags & MI_ACL) {
791 		error = acl_getattr2_otw(vp, vap, cr);
792 		if (mi->mi_flags & MI_ACL)
793 			return (error);
794 	}
795 
796 	douprintf = 1;
797 
798 	t = gethrtime();
799 
800 	error = rfs2call(mi, RFS_GETATTR,
801 			xdr_fhandle, (caddr_t)VTOFH(vp),
802 			xdr_attrstat, (caddr_t)&ns, cr,
803 			&douprintf, &ns.ns_status, 0, &fi);
804 
805 	if (!error) {
806 		error = geterrno(ns.ns_status);
807 		if (!error)
808 			error = nfs_cache_fattr(vp, &ns.ns_attr, vap, t, cr);
809 		else {
810 			PURGE_STALE_FH(error, vp, cr);
811 		}
812 	}
813 
814 	return (error);
815 }
816 
817 /*
818  * Return either cached ot remote attributes. If get remote attr
819  * use them to check and invalidate caches, then cache the new attributes.
820  */
821 int
822 nfsgetattr(vnode_t *vp, struct vattr *vap, cred_t *cr)
823 {
824 	int error;
825 	rnode_t *rp;
826 
827 	/*
828 	 * If we've got cached attributes, we're done, otherwise go
829 	 * to the server to get attributes, which will update the cache
830 	 * in the process.
831 	 */
832 	error = nfs_getattr_cache(vp, vap);
833 	if (error)
834 		error = nfs_getattr_otw(vp, vap, cr);
835 
836 	/* Return the client's view of file size */
837 	rp = VTOR(vp);
838 	mutex_enter(&rp->r_statelock);
839 	vap->va_size = rp->r_size;
840 	mutex_exit(&rp->r_statelock);
841 
842 	return (error);
843 }
844 
845 /*
846  * Get attributes over-the-wire and update attributes cache
847  * if no error occurred in the over-the-wire operation.
848  * Return 0 if successful, otherwise error.
849  */
850 int
851 nfs3_getattr_otw(vnode_t *vp, struct vattr *vap, cred_t *cr)
852 {
853 	int error;
854 	GETATTR3args args;
855 	GETATTR3vres res;
856 	int douprintf;
857 	failinfo_t fi;
858 	hrtime_t t;
859 
860 	args.object = *VTOFH3(vp);
861 	fi.vp = vp;
862 	fi.fhp = (caddr_t)&args.object;
863 	fi.copyproc = nfs3copyfh;
864 	fi.lookupproc = nfs3lookup;
865 	fi.xattrdirproc = acl_getxattrdir3;
866 	res.fres.vp = vp;
867 	res.fres.vap = vap;
868 
869 	douprintf = 1;
870 
871 	t = gethrtime();
872 
873 	error = rfs3call(VTOMI(vp), NFSPROC3_GETATTR,
874 	    xdr_nfs_fh3, (caddr_t)&args,
875 	    xdr_GETATTR3vres, (caddr_t)&res, cr,
876 	    &douprintf, &res.status, 0, &fi);
877 
878 	if (error)
879 		return (error);
880 
881 	error = geterrno3(res.status);
882 	if (error) {
883 		PURGE_STALE_FH(error, vp, cr);
884 		return (error);
885 	}
886 
887 	/*
888 	 * Catch status codes that indicate fattr3 to vattr translation failure
889 	 */
890 	if (res.fres.status)
891 		return (res.fres.status);
892 
893 	nfs_attr_cache(vp, vap, t, cr);
894 	return (0);
895 }
896 
897 /*
898  * Return either cached or remote attributes. If get remote attr
899  * use them to check and invalidate caches, then cache the new attributes.
900  */
901 int
902 nfs3getattr(vnode_t *vp, struct vattr *vap, cred_t *cr)
903 {
904 	int error;
905 	rnode_t *rp;
906 
907 	/*
908 	 * If we've got cached attributes, we're done, otherwise go
909 	 * to the server to get attributes, which will update the cache
910 	 * in the process.
911 	 */
912 	error = nfs_getattr_cache(vp, vap);
913 	if (error)
914 		error = nfs3_getattr_otw(vp, vap, cr);
915 
916 	/* Return the client's view of file size */
917 	rp = VTOR(vp);
918 	mutex_enter(&rp->r_statelock);
919 	vap->va_size = rp->r_size;
920 	mutex_exit(&rp->r_statelock);
921 
922 	return (error);
923 }
924 
925 vtype_t nf_to_vt[] = {
926 	VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK
927 };
928 /*
929  * Convert NFS Version 2 over the network attributes to the local
930  * virtual attributes.  The mapping between the UID_NOBODY/GID_NOBODY
931  * network representation and the local representation is done here.
932  * Returns 0 for success, error if failed due to overflow.
933  */
934 int
935 nattr_to_vattr(vnode_t *vp, struct nfsfattr *na, struct vattr *vap)
936 {
937 	/* overflow in time attributes? */
938 #ifndef _LP64
939 	if (!NFS2_FATTR_TIME_OK(na))
940 		return (EOVERFLOW);
941 #endif
942 
943 	if (na->na_type < NFNON || na->na_type > NFSOC)
944 		vap->va_type = VBAD;
945 	else
946 		vap->va_type = nf_to_vt[na->na_type];
947 	vap->va_mode = na->na_mode;
948 	vap->va_uid = (na->na_uid == NFS_UID_NOBODY) ? UID_NOBODY : na->na_uid;
949 	vap->va_gid = (na->na_gid == NFS_GID_NOBODY) ? GID_NOBODY : na->na_gid;
950 	vap->va_fsid = vp->v_vfsp->vfs_dev;
951 	vap->va_nodeid = na->na_nodeid;
952 	vap->va_nlink = na->na_nlink;
953 	vap->va_size = na->na_size;	/* keep for cache validation */
954 	/*
955 	 * nfs protocol defines times as unsigned so don't extend sign,
956 	 * unless sysadmin set nfs_allow_preepoch_time.
957 	 */
958 	NFS_TIME_T_CONVERT(vap->va_atime.tv_sec, na->na_atime.tv_sec);
959 	vap->va_atime.tv_nsec = (uint32_t)(na->na_atime.tv_usec * 1000);
960 	NFS_TIME_T_CONVERT(vap->va_mtime.tv_sec, na->na_mtime.tv_sec);
961 	vap->va_mtime.tv_nsec = (uint32_t)(na->na_mtime.tv_usec * 1000);
962 	NFS_TIME_T_CONVERT(vap->va_ctime.tv_sec, na->na_ctime.tv_sec);
963 	vap->va_ctime.tv_nsec = (uint32_t)(na->na_ctime.tv_usec * 1000);
964 	/*
965 	 * Shannon's law - uncompress the received dev_t
966 	 * if the top half of is zero indicating a response
967 	 * from an `older style' OS. Except for when it is a
968 	 * `new style' OS sending the maj device of zero,
969 	 * in which case the algorithm still works because the
970 	 * fact that it is a new style server
971 	 * is hidden by the minor device not being greater
972 	 * than 255 (a requirement in this case).
973 	 */
974 	if ((na->na_rdev & 0xffff0000) == 0)
975 		vap->va_rdev = nfsv2_expdev(na->na_rdev);
976 	else
977 		vap->va_rdev = expldev(na->na_rdev);
978 
979 	vap->va_nblocks = na->na_blocks;
980 	switch (na->na_type) {
981 	case NFBLK:
982 		vap->va_blksize = DEV_BSIZE;
983 		break;
984 
985 	case NFCHR:
986 		vap->va_blksize = MAXBSIZE;
987 		break;
988 
989 	case NFSOC:
990 	default:
991 		vap->va_blksize = na->na_blocksize;
992 		break;
993 	}
994 	/*
995 	 * This bit of ugliness is a hack to preserve the
996 	 * over-the-wire protocols for named-pipe vnodes.
997 	 * It remaps the special over-the-wire type to the
998 	 * VFIFO type. (see note in nfs.h)
999 	 */
1000 	if (NA_ISFIFO(na)) {
1001 		vap->va_type = VFIFO;
1002 		vap->va_mode = (vap->va_mode & ~S_IFMT) | S_IFIFO;
1003 		vap->va_rdev = 0;
1004 		vap->va_blksize = na->na_blocksize;
1005 	}
1006 	vap->va_seq = 0;
1007 	return (0);
1008 }
1009 
1010 /*
1011  * Convert NFS Version 3 over the network attributes to the local
1012  * virtual attributes.  The mapping between the UID_NOBODY/GID_NOBODY
1013  * network representation and the local representation is done here.
1014  */
1015 vtype_t nf3_to_vt[] = {
1016 	VBAD, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO
1017 };
1018 
1019 int
1020 fattr3_to_vattr(vnode_t *vp, fattr3 *na, struct vattr *vap)
1021 {
1022 
1023 #ifndef _LP64
1024 	/* overflow in time attributes? */
1025 	if (!NFS3_FATTR_TIME_OK(na))
1026 		return (EOVERFLOW);
1027 #endif
1028 	if (!NFS3_SIZE_OK(na->size))
1029 		/* file too big */
1030 		return (EFBIG);
1031 
1032 	vap->va_mask = AT_ALL;
1033 
1034 	if (na->type < NF3REG || na->type > NF3FIFO)
1035 		vap->va_type = VBAD;
1036 	else
1037 		vap->va_type = nf3_to_vt[na->type];
1038 	vap->va_mode = na->mode;
1039 	vap->va_uid = (na->uid == NFS_UID_NOBODY) ? UID_NOBODY : (uid_t)na->uid;
1040 	vap->va_gid = (na->gid == NFS_GID_NOBODY) ? GID_NOBODY : (gid_t)na->gid;
1041 	vap->va_fsid = vp->v_vfsp->vfs_dev;
1042 	vap->va_nodeid = na->fileid;
1043 	vap->va_nlink = na->nlink;
1044 	vap->va_size = na->size;
1045 
1046 	/*
1047 	 * nfs protocol defines times as unsigned so don't extend sign,
1048 	 * unless sysadmin set nfs_allow_preepoch_time.
1049 	 */
1050 	NFS_TIME_T_CONVERT(vap->va_atime.tv_sec, na->atime.seconds);
1051 	vap->va_atime.tv_nsec = (uint32_t)na->atime.nseconds;
1052 	NFS_TIME_T_CONVERT(vap->va_mtime.tv_sec, na->mtime.seconds);
1053 	vap->va_mtime.tv_nsec = (uint32_t)na->mtime.nseconds;
1054 	NFS_TIME_T_CONVERT(vap->va_ctime.tv_sec, na->ctime.seconds);
1055 	vap->va_ctime.tv_nsec = (uint32_t)na->ctime.nseconds;
1056 
1057 	switch (na->type) {
1058 	case NF3BLK:
1059 		vap->va_rdev = makedevice(na->rdev.specdata1,
1060 					na->rdev.specdata2);
1061 		vap->va_blksize = DEV_BSIZE;
1062 		vap->va_nblocks = 0;
1063 		break;
1064 	case NF3CHR:
1065 		vap->va_rdev = makedevice(na->rdev.specdata1,
1066 					na->rdev.specdata2);
1067 		vap->va_blksize = MAXBSIZE;
1068 		vap->va_nblocks = 0;
1069 		break;
1070 	case NF3REG:
1071 	case NF3DIR:
1072 	case NF3LNK:
1073 		vap->va_rdev = 0;
1074 		vap->va_blksize = MAXBSIZE;
1075 		vap->va_nblocks = (u_longlong_t)
1076 		    ((na->used + (size3)DEV_BSIZE - (size3)1) /
1077 		    (size3)DEV_BSIZE);
1078 		break;
1079 	case NF3SOCK:
1080 	case NF3FIFO:
1081 	default:
1082 		vap->va_rdev = 0;
1083 		vap->va_blksize = MAXBSIZE;
1084 		vap->va_nblocks = 0;
1085 		break;
1086 	}
1087 	vap->va_seq = 0;
1088 	return (0);
1089 }
1090 
1091 /*
1092  * Asynchronous I/O parameters.  nfs_async_threads is the high-water mark
1093  * for the demand-based allocation of async threads per-mount.  The
1094  * nfs_async_timeout is the amount of time a thread will live after it
1095  * becomes idle, unless new I/O requests are received before the thread
1096  * dies.  See nfs_async_putpage and nfs_async_start.
1097  */
1098 
1099 int nfs_async_timeout = -1;	/* uninitialized */
1100 
1101 static void	nfs_async_start(struct vfs *);
1102 
1103 static void
1104 free_async_args(struct nfs_async_reqs *args)
1105 {
1106 	rnode_t *rp;
1107 
1108 	if (args->a_io != NFS_INACTIVE) {
1109 		rp = VTOR(args->a_vp);
1110 		mutex_enter(&rp->r_statelock);
1111 		rp->r_count--;
1112 		if (args->a_io == NFS_PUTAPAGE ||
1113 		    args->a_io == NFS_PAGEIO)
1114 			rp->r_awcount--;
1115 		cv_broadcast(&rp->r_cv);
1116 		mutex_exit(&rp->r_statelock);
1117 		VN_RELE(args->a_vp);
1118 	}
1119 	crfree(args->a_cred);
1120 	kmem_free(args, sizeof (*args));
1121 }
1122 
1123 /*
1124  * Cross-zone thread creation and NFS access is disallowed, yet fsflush() and
1125  * pageout(), running in the global zone, have legitimate reasons to do
1126  * VOP_PUTPAGE(B_ASYNC) on other zones' NFS mounts.  We avoid the problem by
1127  * use of a a per-mount "asynchronous requests manager thread" which is
1128  * signaled by the various asynchronous work routines when there is
1129  * asynchronous work to be done.  It is responsible for creating new
1130  * worker threads if necessary, and notifying existing worker threads
1131  * that there is work to be done.
1132  *
1133  * In other words, it will "take the specifications from the customers and
1134  * give them to the engineers."
1135  *
1136  * Worker threads die off of their own accord if they are no longer
1137  * needed.
1138  *
1139  * This thread is killed when the zone is going away or the filesystem
1140  * is being unmounted.
1141  */
1142 void
1143 nfs_async_manager(vfs_t *vfsp)
1144 {
1145 	callb_cpr_t cprinfo;
1146 	mntinfo_t *mi;
1147 	uint_t max_threads;
1148 
1149 	mi = VFTOMI(vfsp);
1150 
1151 	CALLB_CPR_INIT(&cprinfo, &mi->mi_async_lock, callb_generic_cpr,
1152 		    "nfs_async_manager");
1153 
1154 	mutex_enter(&mi->mi_async_lock);
1155 	/*
1156 	 * We want to stash the max number of threads that this mount was
1157 	 * allowed so we can use it later when the variable is set to zero as
1158 	 * part of the zone/mount going away.
1159 	 *
1160 	 * We want to be able to create at least one thread to handle
1161 	 * asyncrhonous inactive calls.
1162 	 */
1163 	max_threads = MAX(mi->mi_max_threads, 1);
1164 	mutex_enter(&mi->mi_lock);
1165 	/*
1166 	 * We don't want to wait for mi_max_threads to go to zero, since that
1167 	 * happens as part of a failed unmount, but this thread should only
1168 	 * exit when the mount/zone is really going away.
1169 	 *
1170 	 * Once MI_ASYNC_MGR_STOP is set, no more async operations will be
1171 	 * attempted: the various _async_*() functions know to do things
1172 	 * inline if mi_max_threads == 0.  Henceforth we just drain out the
1173 	 * outstanding requests.
1174 	 *
1175 	 * Note that we still create zthreads even if we notice the zone is
1176 	 * shutting down (MI_ASYNC_MGR_STOP is set); this may cause the zone
1177 	 * shutdown sequence to take slightly longer in some cases, but
1178 	 * doesn't violate the protocol, as all threads will exit as soon as
1179 	 * they're done processing the remaining requests.
1180 	 */
1181 	while (!(mi->mi_flags & MI_ASYNC_MGR_STOP) ||
1182 	    mi->mi_async_req_count > 0) {
1183 		mutex_exit(&mi->mi_lock);
1184 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
1185 		cv_wait(&mi->mi_async_reqs_cv, &mi->mi_async_lock);
1186 		CALLB_CPR_SAFE_END(&cprinfo, &mi->mi_async_lock);
1187 		while (mi->mi_async_req_count > 0) {
1188 			/*
1189 			 * Paranoia: If the mount started out having
1190 			 * (mi->mi_max_threads == 0), and the value was
1191 			 * later changed (via a debugger or somesuch),
1192 			 * we could be confused since we will think we
1193 			 * can't create any threads, and the calling
1194 			 * code (which looks at the current value of
1195 			 * mi->mi_max_threads, now non-zero) thinks we
1196 			 * can.
1197 			 *
1198 			 * So, because we're paranoid, we create threads
1199 			 * up to the maximum of the original and the
1200 			 * current value. This means that future
1201 			 * (debugger-induced) lowerings of
1202 			 * mi->mi_max_threads are ignored for our
1203 			 * purposes, but who told them they could change
1204 			 * random values on a live kernel anyhow?
1205 			 */
1206 			if (mi->mi_threads <
1207 			    MAX(mi->mi_max_threads, max_threads)) {
1208 				mi->mi_threads++;
1209 				mutex_exit(&mi->mi_async_lock);
1210 				VFS_HOLD(vfsp);	/* hold for new thread */
1211 				(void) zthread_create(NULL, 0, nfs_async_start,
1212 				    vfsp, 0, minclsyspri);
1213 				mutex_enter(&mi->mi_async_lock);
1214 			}
1215 			cv_signal(&mi->mi_async_work_cv);
1216 			ASSERT(mi->mi_async_req_count != 0);
1217 			mi->mi_async_req_count--;
1218 		}
1219 		mutex_enter(&mi->mi_lock);
1220 	}
1221 	mutex_exit(&mi->mi_lock);
1222 	/*
1223 	 * Let everyone know we're done.
1224 	 */
1225 	mi->mi_manager_thread = NULL;
1226 	cv_broadcast(&mi->mi_async_cv);
1227 
1228 	/*
1229 	 * There is no explicit call to mutex_exit(&mi->mi_async_lock)
1230 	 * since CALLB_CPR_EXIT is actually responsible for releasing
1231 	 * 'mi_async_lock'.
1232 	 */
1233 	CALLB_CPR_EXIT(&cprinfo);
1234 	VFS_RELE(vfsp);	/* release thread's hold */
1235 	zthread_exit();
1236 }
1237 
1238 /*
1239  * Signal (and wait for) the async manager thread to clean up and go away.
1240  */
1241 void
1242 nfs_async_manager_stop(vfs_t *vfsp)
1243 {
1244 	mntinfo_t *mi = VFTOMI(vfsp);
1245 
1246 	mutex_enter(&mi->mi_async_lock);
1247 	mutex_enter(&mi->mi_lock);
1248 	mi->mi_flags |= MI_ASYNC_MGR_STOP;
1249 	mutex_exit(&mi->mi_lock);
1250 	cv_broadcast(&mi->mi_async_reqs_cv);
1251 	while (mi->mi_manager_thread != NULL)
1252 		cv_wait(&mi->mi_async_cv, &mi->mi_async_lock);
1253 	mutex_exit(&mi->mi_async_lock);
1254 }
1255 
1256 int
1257 nfs_async_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr,
1258 	struct seg *seg, cred_t *cr, void (*readahead)(vnode_t *,
1259 	u_offset_t, caddr_t, struct seg *, cred_t *))
1260 {
1261 	rnode_t *rp;
1262 	mntinfo_t *mi;
1263 	struct nfs_async_reqs *args;
1264 
1265 	rp = VTOR(vp);
1266 	ASSERT(rp->r_freef == NULL);
1267 
1268 	mi = VTOMI(vp);
1269 
1270 	/*
1271 	 * If addr falls in a different segment, don't bother doing readahead.
1272 	 */
1273 	if (addr >= seg->s_base + seg->s_size)
1274 		return (-1);
1275 
1276 	/*
1277 	 * If we can't allocate a request structure, punt on the readahead.
1278 	 */
1279 	if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
1280 		return (-1);
1281 
1282 	/*
1283 	 * If a lock operation is pending, don't initiate any new
1284 	 * readaheads.  Otherwise, bump r_count to indicate the new
1285 	 * asynchronous I/O.
1286 	 */
1287 	if (!nfs_rw_tryenter(&rp->r_lkserlock, RW_READER)) {
1288 		kmem_free(args, sizeof (*args));
1289 		return (-1);
1290 	}
1291 	mutex_enter(&rp->r_statelock);
1292 	rp->r_count++;
1293 	mutex_exit(&rp->r_statelock);
1294 	nfs_rw_exit(&rp->r_lkserlock);
1295 
1296 	args->a_next = NULL;
1297 #ifdef DEBUG
1298 	args->a_queuer = curthread;
1299 #endif
1300 	VN_HOLD(vp);
1301 	args->a_vp = vp;
1302 	ASSERT(cr != NULL);
1303 	crhold(cr);
1304 	args->a_cred = cr;
1305 	args->a_io = NFS_READ_AHEAD;
1306 	args->a_nfs_readahead = readahead;
1307 	args->a_nfs_blkoff = blkoff;
1308 	args->a_nfs_seg = seg;
1309 	args->a_nfs_addr = addr;
1310 
1311 	mutex_enter(&mi->mi_async_lock);
1312 
1313 	/*
1314 	 * If asyncio has been disabled, don't bother readahead.
1315 	 */
1316 	if (mi->mi_max_threads == 0) {
1317 		mutex_exit(&mi->mi_async_lock);
1318 		goto noasync;
1319 	}
1320 
1321 	/*
1322 	 * Link request structure into the async list and
1323 	 * wakeup async thread to do the i/o.
1324 	 */
1325 	if (mi->mi_async_reqs[NFS_READ_AHEAD] == NULL) {
1326 		mi->mi_async_reqs[NFS_READ_AHEAD] = args;
1327 		mi->mi_async_tail[NFS_READ_AHEAD] = args;
1328 	} else {
1329 		mi->mi_async_tail[NFS_READ_AHEAD]->a_next = args;
1330 		mi->mi_async_tail[NFS_READ_AHEAD] = args;
1331 	}
1332 
1333 	if (mi->mi_io_kstats) {
1334 		mutex_enter(&mi->mi_lock);
1335 		kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1336 		mutex_exit(&mi->mi_lock);
1337 	}
1338 
1339 	mi->mi_async_req_count++;
1340 	ASSERT(mi->mi_async_req_count != 0);
1341 	cv_signal(&mi->mi_async_reqs_cv);
1342 	mutex_exit(&mi->mi_async_lock);
1343 	return (0);
1344 
1345 noasync:
1346 	mutex_enter(&rp->r_statelock);
1347 	rp->r_count--;
1348 	cv_broadcast(&rp->r_cv);
1349 	mutex_exit(&rp->r_statelock);
1350 	VN_RELE(vp);
1351 	crfree(cr);
1352 	kmem_free(args, sizeof (*args));
1353 	return (-1);
1354 }
1355 
1356 int
1357 nfs_async_putapage(vnode_t *vp, page_t *pp, u_offset_t off, size_t len,
1358 	int flags, cred_t *cr, int (*putapage)(vnode_t *, page_t *,
1359 	u_offset_t, size_t, int, cred_t *))
1360 {
1361 	rnode_t *rp;
1362 	mntinfo_t *mi;
1363 	struct nfs_async_reqs *args;
1364 
1365 	ASSERT(flags & B_ASYNC);
1366 	ASSERT(vp->v_vfsp != NULL);
1367 
1368 	rp = VTOR(vp);
1369 	ASSERT(rp->r_count > 0);
1370 
1371 	mi = VTOMI(vp);
1372 
1373 	/*
1374 	 * If we can't allocate a request structure, do the putpage
1375 	 * operation synchronously in this thread's context.
1376 	 */
1377 	if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
1378 		goto noasync;
1379 
1380 	args->a_next = NULL;
1381 #ifdef DEBUG
1382 	args->a_queuer = curthread;
1383 #endif
1384 	VN_HOLD(vp);
1385 	args->a_vp = vp;
1386 	ASSERT(cr != NULL);
1387 	crhold(cr);
1388 	args->a_cred = cr;
1389 	args->a_io = NFS_PUTAPAGE;
1390 	args->a_nfs_putapage = putapage;
1391 	args->a_nfs_pp = pp;
1392 	args->a_nfs_off = off;
1393 	args->a_nfs_len = (uint_t)len;
1394 	args->a_nfs_flags = flags;
1395 
1396 	mutex_enter(&mi->mi_async_lock);
1397 
1398 	/*
1399 	 * If asyncio has been disabled, then make a synchronous request.
1400 	 * This check is done a second time in case async io was diabled
1401 	 * while this thread was blocked waiting for memory pressure to
1402 	 * reduce or for the queue to drain.
1403 	 */
1404 	if (mi->mi_max_threads == 0) {
1405 		mutex_exit(&mi->mi_async_lock);
1406 		goto noasync;
1407 	}
1408 
1409 	/*
1410 	 * Link request structure into the async list and
1411 	 * wakeup async thread to do the i/o.
1412 	 */
1413 	if (mi->mi_async_reqs[NFS_PUTAPAGE] == NULL) {
1414 		mi->mi_async_reqs[NFS_PUTAPAGE] = args;
1415 		mi->mi_async_tail[NFS_PUTAPAGE] = args;
1416 	} else {
1417 		mi->mi_async_tail[NFS_PUTAPAGE]->a_next = args;
1418 		mi->mi_async_tail[NFS_PUTAPAGE] = args;
1419 	}
1420 
1421 	mutex_enter(&rp->r_statelock);
1422 	rp->r_count++;
1423 	rp->r_awcount++;
1424 	mutex_exit(&rp->r_statelock);
1425 
1426 	if (mi->mi_io_kstats) {
1427 		mutex_enter(&mi->mi_lock);
1428 		kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1429 		mutex_exit(&mi->mi_lock);
1430 	}
1431 
1432 	mi->mi_async_req_count++;
1433 	ASSERT(mi->mi_async_req_count != 0);
1434 	cv_signal(&mi->mi_async_reqs_cv);
1435 	mutex_exit(&mi->mi_async_lock);
1436 	return (0);
1437 
1438 noasync:
1439 	if (args != NULL) {
1440 		VN_RELE(vp);
1441 		crfree(cr);
1442 		kmem_free(args, sizeof (*args));
1443 	}
1444 
1445 	if (curproc == proc_pageout || curproc == proc_fsflush) {
1446 		/*
1447 		 * If we get here in the context of the pageout/fsflush,
1448 		 * we refuse to do a sync write, because this may hang
1449 		 * pageout (and the machine). In this case, we just
1450 		 * re-mark the page as dirty and punt on the page.
1451 		 *
1452 		 * Make sure B_FORCE isn't set.  We can re-mark the
1453 		 * pages as dirty and unlock the pages in one swoop by
1454 		 * passing in B_ERROR to pvn_write_done().  However,
1455 		 * we should make sure B_FORCE isn't set - we don't
1456 		 * want the page tossed before it gets written out.
1457 		 */
1458 		if (flags & B_FORCE)
1459 			flags &= ~(B_INVAL | B_FORCE);
1460 		pvn_write_done(pp, flags | B_ERROR);
1461 		return (0);
1462 	}
1463 	if (nfs_zone() != mi->mi_zone) {
1464 		/*
1465 		 * So this was a cross-zone sync putpage.  We pass in B_ERROR
1466 		 * to pvn_write_done() to re-mark the pages as dirty and unlock
1467 		 * them.
1468 		 *
1469 		 * We don't want to clear B_FORCE here as the caller presumably
1470 		 * knows what they're doing if they set it.
1471 		 */
1472 		pvn_write_done(pp, flags | B_ERROR);
1473 		return (EPERM);
1474 	}
1475 	return ((*putapage)(vp, pp, off, len, flags, cr));
1476 }
1477 
1478 int
1479 nfs_async_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
1480 	int flags, cred_t *cr, int (*pageio)(vnode_t *, page_t *, u_offset_t,
1481 	size_t, int, cred_t *))
1482 {
1483 	rnode_t *rp;
1484 	mntinfo_t *mi;
1485 	struct nfs_async_reqs *args;
1486 
1487 	ASSERT(flags & B_ASYNC);
1488 	ASSERT(vp->v_vfsp != NULL);
1489 
1490 	rp = VTOR(vp);
1491 	ASSERT(rp->r_count > 0);
1492 
1493 	mi = VTOMI(vp);
1494 
1495 	/*
1496 	 * If we can't allocate a request structure, do the pageio
1497 	 * request synchronously in this thread's context.
1498 	 */
1499 	if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
1500 		goto noasync;
1501 
1502 	args->a_next = NULL;
1503 #ifdef DEBUG
1504 	args->a_queuer = curthread;
1505 #endif
1506 	VN_HOLD(vp);
1507 	args->a_vp = vp;
1508 	ASSERT(cr != NULL);
1509 	crhold(cr);
1510 	args->a_cred = cr;
1511 	args->a_io = NFS_PAGEIO;
1512 	args->a_nfs_pageio = pageio;
1513 	args->a_nfs_pp = pp;
1514 	args->a_nfs_off = io_off;
1515 	args->a_nfs_len = (uint_t)io_len;
1516 	args->a_nfs_flags = flags;
1517 
1518 	mutex_enter(&mi->mi_async_lock);
1519 
1520 	/*
1521 	 * If asyncio has been disabled, then make a synchronous request.
1522 	 * This check is done a second time in case async io was diabled
1523 	 * while this thread was blocked waiting for memory pressure to
1524 	 * reduce or for the queue to drain.
1525 	 */
1526 	if (mi->mi_max_threads == 0) {
1527 		mutex_exit(&mi->mi_async_lock);
1528 		goto noasync;
1529 	}
1530 
1531 	/*
1532 	 * Link request structure into the async list and
1533 	 * wakeup async thread to do the i/o.
1534 	 */
1535 	if (mi->mi_async_reqs[NFS_PAGEIO] == NULL) {
1536 		mi->mi_async_reqs[NFS_PAGEIO] = args;
1537 		mi->mi_async_tail[NFS_PAGEIO] = args;
1538 	} else {
1539 		mi->mi_async_tail[NFS_PAGEIO]->a_next = args;
1540 		mi->mi_async_tail[NFS_PAGEIO] = args;
1541 	}
1542 
1543 	mutex_enter(&rp->r_statelock);
1544 	rp->r_count++;
1545 	rp->r_awcount++;
1546 	mutex_exit(&rp->r_statelock);
1547 
1548 	if (mi->mi_io_kstats) {
1549 		mutex_enter(&mi->mi_lock);
1550 		kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1551 		mutex_exit(&mi->mi_lock);
1552 	}
1553 
1554 	mi->mi_async_req_count++;
1555 	ASSERT(mi->mi_async_req_count != 0);
1556 	cv_signal(&mi->mi_async_reqs_cv);
1557 	mutex_exit(&mi->mi_async_lock);
1558 	return (0);
1559 
1560 noasync:
1561 	if (args != NULL) {
1562 		VN_RELE(vp);
1563 		crfree(cr);
1564 		kmem_free(args, sizeof (*args));
1565 	}
1566 
1567 	/*
1568 	 * If we can't do it ASYNC, for reads we do nothing (but cleanup
1569 	 * the page list), for writes we do it synchronously, except for
1570 	 * proc_pageout/proc_fsflush as described below.
1571 	 */
1572 	if (flags & B_READ) {
1573 		pvn_read_done(pp, flags | B_ERROR);
1574 		return (0);
1575 	}
1576 
1577 	if (curproc == proc_pageout || curproc == proc_fsflush) {
1578 		/*
1579 		 * If we get here in the context of the pageout/fsflush,
1580 		 * we refuse to do a sync write, because this may hang
1581 		 * pageout/fsflush (and the machine). In this case, we just
1582 		 * re-mark the page as dirty and punt on the page.
1583 		 *
1584 		 * Make sure B_FORCE isn't set.  We can re-mark the
1585 		 * pages as dirty and unlock the pages in one swoop by
1586 		 * passing in B_ERROR to pvn_write_done().  However,
1587 		 * we should make sure B_FORCE isn't set - we don't
1588 		 * want the page tossed before it gets written out.
1589 		 */
1590 		if (flags & B_FORCE)
1591 			flags &= ~(B_INVAL | B_FORCE);
1592 		pvn_write_done(pp, flags | B_ERROR);
1593 		return (0);
1594 	}
1595 
1596 	if (nfs_zone() != mi->mi_zone) {
1597 		/*
1598 		 * So this was a cross-zone sync pageio.  We pass in B_ERROR
1599 		 * to pvn_write_done() to re-mark the pages as dirty and unlock
1600 		 * them.
1601 		 *
1602 		 * We don't want to clear B_FORCE here as the caller presumably
1603 		 * knows what they're doing if they set it.
1604 		 */
1605 		pvn_write_done(pp, flags | B_ERROR);
1606 		return (EPERM);
1607 	}
1608 	return ((*pageio)(vp, pp, io_off, io_len, flags, cr));
1609 }
1610 
1611 void
1612 nfs_async_readdir(vnode_t *vp, rddir_cache *rdc, cred_t *cr,
1613 	int (*readdir)(vnode_t *, rddir_cache *, cred_t *))
1614 {
1615 	rnode_t *rp;
1616 	mntinfo_t *mi;
1617 	struct nfs_async_reqs *args;
1618 
1619 	rp = VTOR(vp);
1620 	ASSERT(rp->r_freef == NULL);
1621 
1622 	mi = VTOMI(vp);
1623 
1624 	/*
1625 	 * If we can't allocate a request structure, do the readdir
1626 	 * operation synchronously in this thread's context.
1627 	 */
1628 	if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
1629 		goto noasync;
1630 
1631 	args->a_next = NULL;
1632 #ifdef DEBUG
1633 	args->a_queuer = curthread;
1634 #endif
1635 	VN_HOLD(vp);
1636 	args->a_vp = vp;
1637 	ASSERT(cr != NULL);
1638 	crhold(cr);
1639 	args->a_cred = cr;
1640 	args->a_io = NFS_READDIR;
1641 	args->a_nfs_readdir = readdir;
1642 	args->a_nfs_rdc = rdc;
1643 
1644 	mutex_enter(&mi->mi_async_lock);
1645 
1646 	/*
1647 	 * If asyncio has been disabled, then make a synchronous request.
1648 	 */
1649 	if (mi->mi_max_threads == 0) {
1650 		mutex_exit(&mi->mi_async_lock);
1651 		goto noasync;
1652 	}
1653 
1654 	/*
1655 	 * Link request structure into the async list and
1656 	 * wakeup async thread to do the i/o.
1657 	 */
1658 	if (mi->mi_async_reqs[NFS_READDIR] == NULL) {
1659 		mi->mi_async_reqs[NFS_READDIR] = args;
1660 		mi->mi_async_tail[NFS_READDIR] = args;
1661 	} else {
1662 		mi->mi_async_tail[NFS_READDIR]->a_next = args;
1663 		mi->mi_async_tail[NFS_READDIR] = args;
1664 	}
1665 
1666 	mutex_enter(&rp->r_statelock);
1667 	rp->r_count++;
1668 	mutex_exit(&rp->r_statelock);
1669 
1670 	if (mi->mi_io_kstats) {
1671 		mutex_enter(&mi->mi_lock);
1672 		kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1673 		mutex_exit(&mi->mi_lock);
1674 	}
1675 
1676 	mi->mi_async_req_count++;
1677 	ASSERT(mi->mi_async_req_count != 0);
1678 	cv_signal(&mi->mi_async_reqs_cv);
1679 	mutex_exit(&mi->mi_async_lock);
1680 	return;
1681 
1682 noasync:
1683 	if (args != NULL) {
1684 		VN_RELE(vp);
1685 		crfree(cr);
1686 		kmem_free(args, sizeof (*args));
1687 	}
1688 
1689 	rdc->entries = NULL;
1690 	mutex_enter(&rp->r_statelock);
1691 	ASSERT(rdc->flags & RDDIR);
1692 	rdc->flags &= ~RDDIR;
1693 	rdc->flags |= RDDIRREQ;
1694 	/*
1695 	 * Check the flag to see if RDDIRWAIT is set. If RDDIRWAIT
1696 	 * is set, wakeup the thread sleeping in cv_wait_sig().
1697 	 * The woken up thread will reset the flag to RDDIR and will
1698 	 * continue with the readdir opeartion.
1699 	 */
1700 	if (rdc->flags & RDDIRWAIT) {
1701 		rdc->flags &= ~RDDIRWAIT;
1702 		cv_broadcast(&rdc->cv);
1703 	}
1704 	mutex_exit(&rp->r_statelock);
1705 	rddir_cache_rele(rdc);
1706 }
1707 
1708 void
1709 nfs_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count,
1710 	cred_t *cr, void (*commit)(vnode_t *, page_t *, offset3, count3,
1711 	cred_t *))
1712 {
1713 	rnode_t *rp;
1714 	mntinfo_t *mi;
1715 	struct nfs_async_reqs *args;
1716 	page_t *pp;
1717 
1718 	rp = VTOR(vp);
1719 	mi = VTOMI(vp);
1720 
1721 	/*
1722 	 * If we can't allocate a request structure, do the commit
1723 	 * operation synchronously in this thread's context.
1724 	 */
1725 	if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
1726 		goto noasync;
1727 
1728 	args->a_next = NULL;
1729 #ifdef DEBUG
1730 	args->a_queuer = curthread;
1731 #endif
1732 	VN_HOLD(vp);
1733 	args->a_vp = vp;
1734 	ASSERT(cr != NULL);
1735 	crhold(cr);
1736 	args->a_cred = cr;
1737 	args->a_io = NFS_COMMIT;
1738 	args->a_nfs_commit = commit;
1739 	args->a_nfs_plist = plist;
1740 	args->a_nfs_offset = offset;
1741 	args->a_nfs_count = count;
1742 
1743 	mutex_enter(&mi->mi_async_lock);
1744 
1745 	/*
1746 	 * If asyncio has been disabled, then make a synchronous request.
1747 	 * This check is done a second time in case async io was diabled
1748 	 * while this thread was blocked waiting for memory pressure to
1749 	 * reduce or for the queue to drain.
1750 	 */
1751 	if (mi->mi_max_threads == 0) {
1752 		mutex_exit(&mi->mi_async_lock);
1753 		goto noasync;
1754 	}
1755 
1756 	/*
1757 	 * Link request structure into the async list and
1758 	 * wakeup async thread to do the i/o.
1759 	 */
1760 	if (mi->mi_async_reqs[NFS_COMMIT] == NULL) {
1761 		mi->mi_async_reqs[NFS_COMMIT] = args;
1762 		mi->mi_async_tail[NFS_COMMIT] = args;
1763 	} else {
1764 		mi->mi_async_tail[NFS_COMMIT]->a_next = args;
1765 		mi->mi_async_tail[NFS_COMMIT] = args;
1766 	}
1767 
1768 	mutex_enter(&rp->r_statelock);
1769 	rp->r_count++;
1770 	mutex_exit(&rp->r_statelock);
1771 
1772 	if (mi->mi_io_kstats) {
1773 		mutex_enter(&mi->mi_lock);
1774 		kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1775 		mutex_exit(&mi->mi_lock);
1776 	}
1777 
1778 	mi->mi_async_req_count++;
1779 	ASSERT(mi->mi_async_req_count != 0);
1780 	cv_signal(&mi->mi_async_reqs_cv);
1781 	mutex_exit(&mi->mi_async_lock);
1782 	return;
1783 
1784 noasync:
1785 	if (args != NULL) {
1786 		VN_RELE(vp);
1787 		crfree(cr);
1788 		kmem_free(args, sizeof (*args));
1789 	}
1790 
1791 	if (curproc == proc_pageout || curproc == proc_fsflush ||
1792 	    nfs_zone() != mi->mi_zone) {
1793 		while (plist != NULL) {
1794 			pp = plist;
1795 			page_sub(&plist, pp);
1796 			pp->p_fsdata = C_COMMIT;
1797 			page_unlock(pp);
1798 		}
1799 		return;
1800 	}
1801 	(*commit)(vp, plist, offset, count, cr);
1802 }
1803 
1804 void
1805 nfs_async_inactive(vnode_t *vp, cred_t *cr,
1806     void (*inactive)(vnode_t *, cred_t *))
1807 {
1808 	mntinfo_t *mi;
1809 	struct nfs_async_reqs *args;
1810 
1811 	mi = VTOMI(vp);
1812 
1813 	args = kmem_alloc(sizeof (*args), KM_SLEEP);
1814 	args->a_next = NULL;
1815 #ifdef DEBUG
1816 	args->a_queuer = curthread;
1817 #endif
1818 	args->a_vp = vp;
1819 	ASSERT(cr != NULL);
1820 	crhold(cr);
1821 	args->a_cred = cr;
1822 	args->a_io = NFS_INACTIVE;
1823 	args->a_nfs_inactive = inactive;
1824 
1825 	/*
1826 	 * Note that we don't check mi->mi_max_threads here, since we
1827 	 * *need* to get rid of this vnode regardless of whether someone
1828 	 * set nfs3_max_threads/nfs_max_threads to zero in /etc/system.
1829 	 *
1830 	 * The manager thread knows about this and is willing to create
1831 	 * at least one thread to accomodate us.
1832 	 */
1833 	mutex_enter(&mi->mi_async_lock);
1834 	if (mi->mi_manager_thread == NULL) {
1835 		rnode_t *rp = VTOR(vp);
1836 
1837 		mutex_exit(&mi->mi_async_lock);
1838 		crfree(cr);	/* drop our reference */
1839 		kmem_free(args, sizeof (*args));
1840 		/*
1841 		 * We can't do an over-the-wire call since we're in the wrong
1842 		 * zone, so we need to clean up state as best we can and then
1843 		 * throw away the vnode.
1844 		 */
1845 		mutex_enter(&rp->r_statelock);
1846 		if (rp->r_unldvp != NULL) {
1847 			vnode_t *unldvp;
1848 			char *unlname;
1849 			cred_t *unlcred;
1850 
1851 			unldvp = rp->r_unldvp;
1852 			rp->r_unldvp = NULL;
1853 			unlname = rp->r_unlname;
1854 			rp->r_unlname = NULL;
1855 			unlcred = rp->r_unlcred;
1856 			rp->r_unlcred = NULL;
1857 			mutex_exit(&rp->r_statelock);
1858 
1859 			VN_RELE(unldvp);
1860 			kmem_free(unlname, MAXNAMELEN);
1861 			crfree(unlcred);
1862 		} else {
1863 			mutex_exit(&rp->r_statelock);
1864 		}
1865 		/*
1866 		 * No need to explicitly throw away any cached pages.  The
1867 		 * eventual rinactive() will attempt a synchronous
1868 		 * VOP_PUTPAGE() which will immediately fail since the request
1869 		 * is coming from the wrong zone, and then will proceed to call
1870 		 * nfs_invalidate_pages() which will clean things up for us.
1871 		 */
1872 		rp_addfree(VTOR(vp), cr);
1873 		return;
1874 	}
1875 
1876 	if (mi->mi_async_reqs[NFS_INACTIVE] == NULL) {
1877 		mi->mi_async_reqs[NFS_INACTIVE] = args;
1878 	} else {
1879 		mi->mi_async_tail[NFS_INACTIVE]->a_next = args;
1880 	}
1881 	mi->mi_async_tail[NFS_INACTIVE] = args;
1882 	/*
1883 	 * Don't increment r_count, since we're trying to get rid of the vnode.
1884 	 */
1885 
1886 	mi->mi_async_req_count++;
1887 	ASSERT(mi->mi_async_req_count != 0);
1888 	cv_signal(&mi->mi_async_reqs_cv);
1889 	mutex_exit(&mi->mi_async_lock);
1890 }
1891 
1892 /*
1893  * The async queues for each mounted file system are arranged as a
1894  * set of queues, one for each async i/o type.  Requests are taken
1895  * from the queues in a round-robin fashion.  A number of consecutive
1896  * requests are taken from each queue before moving on to the next
1897  * queue.  This functionality may allow the NFS Version 2 server to do
1898  * write clustering, even if the client is mixing writes and reads
1899  * because it will take multiple write requests from the queue
1900  * before processing any of the other async i/o types.
1901  *
1902  * XXX The nfs_async_start thread is unsafe in the light of the present
1903  * model defined by cpr to suspend the system. Specifically over the
1904  * wire calls are cpr-unsafe. The thread should be reevaluated in
1905  * case of future updates to the cpr model.
1906  */
1907 static void
1908 nfs_async_start(struct vfs *vfsp)
1909 {
1910 	struct nfs_async_reqs *args;
1911 	mntinfo_t *mi = VFTOMI(vfsp);
1912 	clock_t time_left = 1;
1913 	callb_cpr_t cprinfo;
1914 	int i;
1915 
1916 	/*
1917 	 * Dynamic initialization of nfs_async_timeout to allow nfs to be
1918 	 * built in an implementation independent manner.
1919 	 */
1920 	if (nfs_async_timeout == -1)
1921 		nfs_async_timeout = NFS_ASYNC_TIMEOUT;
1922 
1923 	CALLB_CPR_INIT(&cprinfo, &mi->mi_async_lock, callb_generic_cpr, "nas");
1924 
1925 	mutex_enter(&mi->mi_async_lock);
1926 	for (;;) {
1927 		/*
1928 		 * Find the next queue containing an entry.  We start
1929 		 * at the current queue pointer and then round robin
1930 		 * through all of them until we either find a non-empty
1931 		 * queue or have looked through all of them.
1932 		 */
1933 		for (i = 0; i < NFS_ASYNC_TYPES; i++) {
1934 			args = *mi->mi_async_curr;
1935 			if (args != NULL)
1936 				break;
1937 			mi->mi_async_curr++;
1938 			if (mi->mi_async_curr ==
1939 			    &mi->mi_async_reqs[NFS_ASYNC_TYPES])
1940 				mi->mi_async_curr = &mi->mi_async_reqs[0];
1941 		}
1942 		/*
1943 		 * If we didn't find a entry, then block until woken up
1944 		 * again and then look through the queues again.
1945 		 */
1946 		if (args == NULL) {
1947 			/*
1948 			 * Exiting is considered to be safe for CPR as well
1949 			 */
1950 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
1951 
1952 			/*
1953 			 * Wakeup thread waiting to unmount the file
1954 			 * system only if all async threads are inactive.
1955 			 *
1956 			 * If we've timed-out and there's nothing to do,
1957 			 * then get rid of this thread.
1958 			 */
1959 			if (mi->mi_max_threads == 0 || time_left <= 0) {
1960 				if (--mi->mi_threads == 0)
1961 					cv_signal(&mi->mi_async_cv);
1962 				CALLB_CPR_EXIT(&cprinfo);
1963 				VFS_RELE(vfsp);	/* release thread's hold */
1964 				zthread_exit();
1965 				/* NOTREACHED */
1966 			}
1967 			time_left = cv_timedwait(&mi->mi_async_work_cv,
1968 			    &mi->mi_async_lock, nfs_async_timeout + lbolt);
1969 
1970 			CALLB_CPR_SAFE_END(&cprinfo, &mi->mi_async_lock);
1971 
1972 			continue;
1973 		}
1974 		time_left = 1;
1975 
1976 		/*
1977 		 * Remove the request from the async queue and then
1978 		 * update the current async request queue pointer.  If
1979 		 * the current queue is empty or we have removed enough
1980 		 * consecutive entries from it, then reset the counter
1981 		 * for this queue and then move the current pointer to
1982 		 * the next queue.
1983 		 */
1984 		*mi->mi_async_curr = args->a_next;
1985 		if (*mi->mi_async_curr == NULL ||
1986 		    --mi->mi_async_clusters[args->a_io] == 0) {
1987 			mi->mi_async_clusters[args->a_io] =
1988 						mi->mi_async_init_clusters;
1989 			mi->mi_async_curr++;
1990 			if (mi->mi_async_curr ==
1991 			    &mi->mi_async_reqs[NFS_ASYNC_TYPES])
1992 				mi->mi_async_curr = &mi->mi_async_reqs[0];
1993 		}
1994 
1995 		if (args->a_io != NFS_INACTIVE && mi->mi_io_kstats) {
1996 			mutex_enter(&mi->mi_lock);
1997 			kstat_waitq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
1998 			mutex_exit(&mi->mi_lock);
1999 		}
2000 
2001 		mutex_exit(&mi->mi_async_lock);
2002 
2003 		/*
2004 		 * Obtain arguments from the async request structure.
2005 		 */
2006 		if (args->a_io == NFS_READ_AHEAD && mi->mi_max_threads > 0) {
2007 			(*args->a_nfs_readahead)(args->a_vp, args->a_nfs_blkoff,
2008 					args->a_nfs_addr, args->a_nfs_seg,
2009 					args->a_cred);
2010 		} else if (args->a_io == NFS_PUTAPAGE) {
2011 			(void) (*args->a_nfs_putapage)(args->a_vp,
2012 					args->a_nfs_pp, args->a_nfs_off,
2013 					args->a_nfs_len, args->a_nfs_flags,
2014 					args->a_cred);
2015 		} else if (args->a_io == NFS_PAGEIO) {
2016 			(void) (*args->a_nfs_pageio)(args->a_vp,
2017 					args->a_nfs_pp, args->a_nfs_off,
2018 					args->a_nfs_len, args->a_nfs_flags,
2019 					args->a_cred);
2020 		} else if (args->a_io == NFS_READDIR) {
2021 			(void) ((*args->a_nfs_readdir)(args->a_vp,
2022 					args->a_nfs_rdc, args->a_cred));
2023 		} else if (args->a_io == NFS_COMMIT) {
2024 			(*args->a_nfs_commit)(args->a_vp, args->a_nfs_plist,
2025 					args->a_nfs_offset, args->a_nfs_count,
2026 					args->a_cred);
2027 		} else if (args->a_io == NFS_INACTIVE) {
2028 			(*args->a_nfs_inactive)(args->a_vp, args->a_cred);
2029 		}
2030 
2031 		/*
2032 		 * Now, release the vnode and free the credentials
2033 		 * structure.
2034 		 */
2035 		free_async_args(args);
2036 		/*
2037 		 * Reacquire the mutex because it will be needed above.
2038 		 */
2039 		mutex_enter(&mi->mi_async_lock);
2040 	}
2041 }
2042 
2043 void
2044 nfs_async_stop(struct vfs *vfsp)
2045 {
2046 	mntinfo_t *mi = VFTOMI(vfsp);
2047 
2048 	/*
2049 	 * Wait for all outstanding async operations to complete and for the
2050 	 * worker threads to exit.
2051 	 */
2052 	mutex_enter(&mi->mi_async_lock);
2053 	mi->mi_max_threads = 0;
2054 	cv_broadcast(&mi->mi_async_work_cv);
2055 	while (mi->mi_threads != 0)
2056 		cv_wait(&mi->mi_async_cv, &mi->mi_async_lock);
2057 	mutex_exit(&mi->mi_async_lock);
2058 }
2059 
2060 /*
2061  * nfs_async_stop_sig:
2062  * Wait for all outstanding putpage operation to complete. If a signal
2063  * is deliver we will abort and return non-zero. If we can put all the
2064  * pages we will return 0. This routine is called from nfs_unmount and
2065  * nfs3_unmount to make these operations interruptable.
2066  */
2067 int
2068 nfs_async_stop_sig(struct vfs *vfsp)
2069 {
2070 	mntinfo_t *mi = VFTOMI(vfsp);
2071 	ushort_t omax;
2072 	int rval;
2073 
2074 	/*
2075 	 * Wait for all outstanding async operations to complete and for the
2076 	 * worker threads to exit.
2077 	 */
2078 	mutex_enter(&mi->mi_async_lock);
2079 	omax = mi->mi_max_threads;
2080 	mi->mi_max_threads = 0;
2081 	/*
2082 	 * Tell all the worker threads to exit.
2083 	 */
2084 	cv_broadcast(&mi->mi_async_work_cv);
2085 	while (mi->mi_threads != 0) {
2086 		if (!cv_wait_sig(&mi->mi_async_cv, &mi->mi_async_lock))
2087 			break;
2088 	}
2089 	rval = (mi->mi_threads != 0);	/* Interrupted */
2090 	if (rval)
2091 		mi->mi_max_threads = omax;
2092 	mutex_exit(&mi->mi_async_lock);
2093 
2094 	return (rval);
2095 }
2096 
2097 int
2098 writerp(rnode_t *rp, caddr_t base, int tcount, struct uio *uio, int pgcreated)
2099 {
2100 	int pagecreate;
2101 	int n;
2102 	int saved_n;
2103 	caddr_t saved_base;
2104 	u_offset_t offset;
2105 	int error;
2106 	int sm_error;
2107 
2108 	ASSERT(tcount <= MAXBSIZE && tcount <= uio->uio_resid);
2109 	ASSERT(((uintptr_t)base & MAXBOFFSET) + tcount <= MAXBSIZE);
2110 	ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_WRITER));
2111 
2112 	/*
2113 	 * Move bytes in at most PAGESIZE chunks. We must avoid
2114 	 * spanning pages in uiomove() because page faults may cause
2115 	 * the cache to be invalidated out from under us. The r_size is not
2116 	 * updated until after the uiomove. If we push the last page of a
2117 	 * file before r_size is correct, we will lose the data written past
2118 	 * the current (and invalid) r_size.
2119 	 */
2120 	do {
2121 		offset = uio->uio_loffset;
2122 		pagecreate = 0;
2123 
2124 		/*
2125 		 * n is the number of bytes required to satisfy the request
2126 		 *   or the number of bytes to fill out the page.
2127 		 */
2128 		n = (int)MIN((PAGESIZE - ((uintptr_t)base & PAGEOFFSET)),
2129 		    tcount);
2130 
2131 		/*
2132 		 * Check to see if we can skip reading in the page
2133 		 * and just allocate the memory.  We can do this
2134 		 * if we are going to rewrite the entire mapping
2135 		 * or if we are going to write to or beyond the current
2136 		 * end of file from the beginning of the mapping.
2137 		 *
2138 		 * The read of r_size is now protected by r_statelock.
2139 		 */
2140 		mutex_enter(&rp->r_statelock);
2141 		/*
2142 		 * When pgcreated is nonzero the caller has already done
2143 		 * a segmap_getmapflt with forcefault 0 and S_WRITE. With
2144 		 * segkpm this means we already have at least one page
2145 		 * created and mapped at base.
2146 		 */
2147 		pagecreate = pgcreated ||
2148 			(((uintptr_t)base & PAGEOFFSET) == 0 &&
2149 			(n == PAGESIZE || ((offset + n) >= rp->r_size)));
2150 
2151 		mutex_exit(&rp->r_statelock);
2152 		if (pagecreate) {
2153 			/*
2154 			 * The last argument tells segmap_pagecreate() to
2155 			 * always lock the page, as opposed to sometimes
2156 			 * returning with the page locked. This way we avoid a
2157 			 * fault on the ensuing uiomove(), but also
2158 			 * more importantly (to fix bug 1094402) we can
2159 			 * call segmap_fault() to unlock the page in all
2160 			 * cases. An alternative would be to modify
2161 			 * segmap_pagecreate() to tell us when it is
2162 			 * locking a page, but that's a fairly major
2163 			 * interface change.
2164 			 */
2165 			if (pgcreated == 0)
2166 				(void) segmap_pagecreate(segkmap, base,
2167 							(uint_t)n, 1);
2168 			saved_base = base;
2169 			saved_n = n;
2170 		}
2171 
2172 		/*
2173 		 * The number of bytes of data in the last page can not
2174 		 * be accurately be determined while page is being
2175 		 * uiomove'd to and the size of the file being updated.
2176 		 * Thus, inform threads which need to know accurately
2177 		 * how much data is in the last page of the file.  They
2178 		 * will not do the i/o immediately, but will arrange for
2179 		 * the i/o to happen later when this modify operation
2180 		 * will have finished.
2181 		 */
2182 		ASSERT(!(rp->r_flags & RMODINPROGRESS));
2183 		mutex_enter(&rp->r_statelock);
2184 		rp->r_flags |= RMODINPROGRESS;
2185 		rp->r_modaddr = (offset & MAXBMASK);
2186 		mutex_exit(&rp->r_statelock);
2187 
2188 		error = uiomove(base, n, UIO_WRITE, uio);
2189 
2190 		/*
2191 		 * r_size is the maximum number of
2192 		 * bytes known to be in the file.
2193 		 * Make sure it is at least as high as the
2194 		 * first unwritten byte pointed to by uio_loffset.
2195 		 */
2196 		mutex_enter(&rp->r_statelock);
2197 		if (rp->r_size < uio->uio_loffset)
2198 			rp->r_size = uio->uio_loffset;
2199 		rp->r_flags &= ~RMODINPROGRESS;
2200 		rp->r_flags |= RDIRTY;
2201 		mutex_exit(&rp->r_statelock);
2202 
2203 		/* n = # of bytes written */
2204 		n = (int)(uio->uio_loffset - offset);
2205 		base += n;
2206 		tcount -= n;
2207 		/*
2208 		 * If we created pages w/o initializing them completely,
2209 		 * we need to zero the part that wasn't set up.
2210 		 * This happens on a most EOF write cases and if
2211 		 * we had some sort of error during the uiomove.
2212 		 */
2213 		if (pagecreate) {
2214 			if ((uio->uio_loffset & PAGEOFFSET) || n == 0)
2215 				(void) kzero(base, PAGESIZE - n);
2216 
2217 			if (pgcreated) {
2218 				/*
2219 				 * Caller is responsible for this page,
2220 				 * it was not created in this loop.
2221 				 */
2222 				pgcreated = 0;
2223 			} else {
2224 				/*
2225 				 * For bug 1094402: segmap_pagecreate locks
2226 				 * page. Unlock it. This also unlocks the
2227 				 * pages allocated by page_create_va() in
2228 				 * segmap_pagecreate().
2229 				 */
2230 				sm_error = segmap_fault(kas.a_hat, segkmap,
2231 						saved_base, saved_n,
2232 						F_SOFTUNLOCK, S_WRITE);
2233 				if (error == 0)
2234 					error = sm_error;
2235 			}
2236 		}
2237 	} while (tcount > 0 && error == 0);
2238 
2239 	return (error);
2240 }
2241 
2242 int
2243 nfs_putpages(vnode_t *vp, u_offset_t off, size_t len, int flags, cred_t *cr)
2244 {
2245 	rnode_t *rp;
2246 	page_t *pp;
2247 	u_offset_t eoff;
2248 	u_offset_t io_off;
2249 	size_t io_len;
2250 	int error;
2251 	int rdirty;
2252 	int err;
2253 
2254 	rp = VTOR(vp);
2255 	ASSERT(rp->r_count > 0);
2256 
2257 	if (!vn_has_cached_data(vp))
2258 		return (0);
2259 
2260 	ASSERT(vp->v_type != VCHR);
2261 
2262 	/*
2263 	 * If ROUTOFSPACE is set, then all writes turn into B_INVAL
2264 	 * writes.  B_FORCE is set to force the VM system to actually
2265 	 * invalidate the pages, even if the i/o failed.  The pages
2266 	 * need to get invalidated because they can't be written out
2267 	 * because there isn't any space left on either the server's
2268 	 * file system or in the user's disk quota.  The B_FREE bit
2269 	 * is cleared to avoid confusion as to whether this is a
2270 	 * request to place the page on the freelist or to destroy
2271 	 * it.
2272 	 */
2273 	if ((rp->r_flags & ROUTOFSPACE) ||
2274 	    (vp->v_vfsp->vfs_flag & VFS_UNMOUNTED))
2275 		flags = (flags & ~B_FREE) | B_INVAL | B_FORCE;
2276 
2277 	if (len == 0) {
2278 		/*
2279 		 * If doing a full file synchronous operation, then clear
2280 		 * the RDIRTY bit.  If a page gets dirtied while the flush
2281 		 * is happening, then RDIRTY will get set again.  The
2282 		 * RDIRTY bit must get cleared before the flush so that
2283 		 * we don't lose this information.
2284 		 *
2285 		 * If there are no full file async write operations
2286 		 * pending and RDIRTY bit is set, clear it.
2287 		 */
2288 		if (off == (u_offset_t)0 &&
2289 		    !(flags & B_ASYNC) &&
2290 		    (rp->r_flags & RDIRTY)) {
2291 			mutex_enter(&rp->r_statelock);
2292 			rdirty = (rp->r_flags & RDIRTY);
2293 			rp->r_flags &= ~RDIRTY;
2294 			mutex_exit(&rp->r_statelock);
2295 		} else if (flags & B_ASYNC && off == (u_offset_t)0) {
2296 			mutex_enter(&rp->r_statelock);
2297 			if (rp->r_flags & RDIRTY && rp->r_awcount == 0) {
2298 				rdirty = (rp->r_flags & RDIRTY);
2299 				rp->r_flags &= ~RDIRTY;
2300 			}
2301 			mutex_exit(&rp->r_statelock);
2302 		} else
2303 			rdirty = 0;
2304 
2305 		/*
2306 		 * Search the entire vp list for pages >= off, and flush
2307 		 * the dirty pages.
2308 		 */
2309 		error = pvn_vplist_dirty(vp, off, rp->r_putapage,
2310 					flags, cr);
2311 
2312 		/*
2313 		 * If an error occured and the file was marked as dirty
2314 		 * before and we aren't forcibly invalidating pages, then
2315 		 * reset the RDIRTY flag.
2316 		 */
2317 		if (error && rdirty &&
2318 		    (flags & (B_INVAL | B_FORCE)) != (B_INVAL | B_FORCE)) {
2319 			mutex_enter(&rp->r_statelock);
2320 			rp->r_flags |= RDIRTY;
2321 			mutex_exit(&rp->r_statelock);
2322 		}
2323 	} else {
2324 		/*
2325 		 * Do a range from [off...off + len) looking for pages
2326 		 * to deal with.
2327 		 */
2328 		error = 0;
2329 #ifdef lint
2330 		io_len = 0;
2331 #endif
2332 		eoff = off + len;
2333 		mutex_enter(&rp->r_statelock);
2334 		for (io_off = off; io_off < eoff && io_off < rp->r_size;
2335 		    io_off += io_len) {
2336 			mutex_exit(&rp->r_statelock);
2337 			/*
2338 			 * If we are not invalidating, synchronously
2339 			 * freeing or writing pages use the routine
2340 			 * page_lookup_nowait() to prevent reclaiming
2341 			 * them from the free list.
2342 			 */
2343 			if ((flags & B_INVAL) || !(flags & B_ASYNC)) {
2344 				pp = page_lookup(vp, io_off,
2345 				    (flags & (B_INVAL | B_FREE)) ?
2346 				    SE_EXCL : SE_SHARED);
2347 			} else {
2348 				pp = page_lookup_nowait(vp, io_off,
2349 				    (flags & B_FREE) ? SE_EXCL : SE_SHARED);
2350 			}
2351 
2352 			if (pp == NULL || !pvn_getdirty(pp, flags))
2353 				io_len = PAGESIZE;
2354 			else {
2355 				err = (*rp->r_putapage)(vp, pp, &io_off,
2356 				    &io_len, flags, cr);
2357 				if (!error)
2358 					error = err;
2359 				/*
2360 				 * "io_off" and "io_len" are returned as
2361 				 * the range of pages we actually wrote.
2362 				 * This allows us to skip ahead more quickly
2363 				 * since several pages may've been dealt
2364 				 * with by this iteration of the loop.
2365 				 */
2366 			}
2367 			mutex_enter(&rp->r_statelock);
2368 		}
2369 		mutex_exit(&rp->r_statelock);
2370 	}
2371 
2372 	return (error);
2373 }
2374 
2375 void
2376 nfs_invalidate_pages(vnode_t *vp, u_offset_t off, cred_t *cr)
2377 {
2378 	rnode_t *rp;
2379 
2380 	rp = VTOR(vp);
2381 	mutex_enter(&rp->r_statelock);
2382 	while (rp->r_flags & RTRUNCATE)
2383 		cv_wait(&rp->r_cv, &rp->r_statelock);
2384 	rp->r_flags |= RTRUNCATE;
2385 	if (off == (u_offset_t)0) {
2386 		rp->r_flags &= ~RDIRTY;
2387 		if (!(rp->r_flags & RSTALE))
2388 			rp->r_error = 0;
2389 	}
2390 	rp->r_truncaddr = off;
2391 	mutex_exit(&rp->r_statelock);
2392 	(void) pvn_vplist_dirty(vp, off, rp->r_putapage,
2393 		B_INVAL | B_TRUNC, cr);
2394 	mutex_enter(&rp->r_statelock);
2395 	rp->r_flags &= ~RTRUNCATE;
2396 	cv_broadcast(&rp->r_cv);
2397 	mutex_exit(&rp->r_statelock);
2398 }
2399 
2400 static int nfs_write_error_to_cons_only = 0;
2401 #define	MSG(x)	(nfs_write_error_to_cons_only ? (x) : (x) + 1)
2402 
2403 /*
2404  * Print a file handle
2405  */
2406 void
2407 nfs_printfhandle(nfs_fhandle *fhp)
2408 {
2409 	int *ip;
2410 	char *buf;
2411 	size_t bufsize;
2412 	char *cp;
2413 
2414 	/*
2415 	 * 13 == "(file handle:"
2416 	 * maximum of NFS_FHANDLE / sizeof (*ip) elements in fh_buf times
2417 	 *	1 == ' '
2418 	 *	8 == maximum strlen of "%x"
2419 	 * 3 == ")\n\0"
2420 	 */
2421 	bufsize = 13 + ((NFS_FHANDLE_LEN / sizeof (*ip)) * (1 + 8)) + 3;
2422 	buf = kmem_alloc(bufsize, KM_NOSLEEP);
2423 	if (buf == NULL)
2424 		return;
2425 
2426 	cp = buf;
2427 	(void) strcpy(cp, "(file handle:");
2428 	while (*cp != '\0')
2429 		cp++;
2430 	for (ip = (int *)fhp->fh_buf;
2431 	    ip < (int *)&fhp->fh_buf[fhp->fh_len];
2432 	    ip++) {
2433 		(void) sprintf(cp, " %x", *ip);
2434 		while (*cp != '\0')
2435 			cp++;
2436 	}
2437 	(void) strcpy(cp, ")\n");
2438 
2439 	zcmn_err(getzoneid(), CE_CONT, MSG("^%s"), buf);
2440 
2441 	kmem_free(buf, bufsize);
2442 }
2443 
2444 /*
2445  * Notify the system administrator that an NFS write error has
2446  * occurred.
2447  */
2448 
2449 /* seconds between ENOSPC/EDQUOT messages */
2450 clock_t nfs_write_error_interval = 5;
2451 
2452 void
2453 nfs_write_error(vnode_t *vp, int error, cred_t *cr)
2454 {
2455 	mntinfo_t *mi;
2456 
2457 	mi = VTOMI(vp);
2458 	/*
2459 	 * In case of forced unmount or zone shutdown, do not print any
2460 	 * messages since it can flood the console with error messages.
2461 	 */
2462 	if (FS_OR_ZONE_GONE(mi->mi_vfsp))
2463 		return;
2464 
2465 	/*
2466 	 * No use in flooding the console with ENOSPC
2467 	 * messages from the same file system.
2468 	 */
2469 	if ((error != ENOSPC && error != EDQUOT) ||
2470 	    lbolt - mi->mi_printftime > 0) {
2471 		zoneid_t zoneid = mi->mi_zone->zone_id;
2472 
2473 #ifdef DEBUG
2474 		nfs_perror(error, "NFS%ld write error on host %s: %m.\n",
2475 		    mi->mi_vers, VTOR(vp)->r_server->sv_hostname, NULL);
2476 #else
2477 		nfs_perror(error, "NFS write error on host %s: %m.\n",
2478 		    VTOR(vp)->r_server->sv_hostname, NULL);
2479 #endif
2480 		if (error == ENOSPC || error == EDQUOT) {
2481 			zcmn_err(zoneid, CE_CONT,
2482 			    MSG("^File: userid=%d, groupid=%d\n"),
2483 			    crgetuid(cr), crgetgid(cr));
2484 			if (crgetuid(CRED()) != crgetuid(cr) ||
2485 			    crgetgid(CRED()) != crgetgid(cr)) {
2486 				zcmn_err(zoneid, CE_CONT,
2487 				    MSG("^User: userid=%d, groupid=%d\n"),
2488 				    crgetuid(CRED()), crgetgid(CRED()));
2489 			}
2490 			mi->mi_printftime = lbolt +
2491 			    nfs_write_error_interval * hz;
2492 		}
2493 		nfs_printfhandle(&VTOR(vp)->r_fh);
2494 #ifdef DEBUG
2495 		if (error == EACCES) {
2496 			zcmn_err(zoneid, CE_CONT,
2497 			    MSG("^nfs_bio: cred is%s kcred\n"),
2498 			    cr == kcred ? "" : " not");
2499 		}
2500 #endif
2501 	}
2502 }
2503 
2504 /* ARGSUSED */
2505 static void *
2506 nfs_mi_init(zoneid_t zoneid)
2507 {
2508 	struct mi_globals *mig;
2509 
2510 	mig = kmem_alloc(sizeof (*mig), KM_SLEEP);
2511 	mutex_init(&mig->mig_lock, NULL, MUTEX_DEFAULT, NULL);
2512 	list_create(&mig->mig_list, sizeof (mntinfo_t),
2513 	    offsetof(mntinfo_t, mi_zone_node));
2514 	mig->mig_destructor_called = B_FALSE;
2515 	return (mig);
2516 }
2517 
2518 /*
2519  * Callback routine to tell all NFS mounts in the zone to stop creating new
2520  * threads.  Existing threads should exit.
2521  */
2522 /* ARGSUSED */
2523 static void
2524 nfs_mi_shutdown(zoneid_t zoneid, void *data)
2525 {
2526 	struct mi_globals *mig = data;
2527 	mntinfo_t *mi;
2528 
2529 	ASSERT(mig != NULL);
2530 again:
2531 	mutex_enter(&mig->mig_lock);
2532 	for (mi = list_head(&mig->mig_list); mi != NULL;
2533 	    mi = list_next(&mig->mig_list, mi)) {
2534 
2535 		/*
2536 		 * If we've done the shutdown work for this FS, skip.
2537 		 * Once we go off the end of the list, we're done.
2538 		 */
2539 		if (mi->mi_flags & MI_DEAD)
2540 			continue;
2541 
2542 		/*
2543 		 * We will do work, so not done.  Get a hold on the FS.
2544 		 */
2545 		VFS_HOLD(mi->mi_vfsp);
2546 
2547 		/*
2548 		 * purge the DNLC for this filesystem
2549 		 */
2550 		(void) dnlc_purge_vfsp(mi->mi_vfsp, 0);
2551 
2552 		mutex_enter(&mi->mi_async_lock);
2553 		/*
2554 		 * Tell existing async worker threads to exit.
2555 		 */
2556 		mi->mi_max_threads = 0;
2557 		cv_broadcast(&mi->mi_async_work_cv);
2558 		/*
2559 		 * Set MI_ASYNC_MGR_STOP so the async manager thread starts
2560 		 * getting ready to exit when it's done with its current work.
2561 		 * Also set MI_DEAD to note we've acted on this FS.
2562 		 */
2563 		mutex_enter(&mi->mi_lock);
2564 		mi->mi_flags |= (MI_ASYNC_MGR_STOP|MI_DEAD);
2565 		mutex_exit(&mi->mi_lock);
2566 		/*
2567 		 * Wake up the async manager thread.
2568 		 */
2569 		cv_broadcast(&mi->mi_async_reqs_cv);
2570 		mutex_exit(&mi->mi_async_lock);
2571 
2572 		/*
2573 		 * Drop lock and release FS, which may change list, then repeat.
2574 		 * We're done when every mi has been done or the list is empty.
2575 		 */
2576 		mutex_exit(&mig->mig_lock);
2577 		VFS_RELE(mi->mi_vfsp);
2578 		goto again;
2579 	}
2580 	mutex_exit(&mig->mig_lock);
2581 }
2582 
2583 static void
2584 nfs_mi_free_globals(struct mi_globals *mig)
2585 {
2586 	list_destroy(&mig->mig_list);	/* makes sure the list is empty */
2587 	mutex_destroy(&mig->mig_lock);
2588 	kmem_free(mig, sizeof (*mig));
2589 
2590 }
2591 
2592 /* ARGSUSED */
2593 static void
2594 nfs_mi_destroy(zoneid_t zoneid, void *data)
2595 {
2596 	struct mi_globals *mig = data;
2597 
2598 	ASSERT(mig != NULL);
2599 	mutex_enter(&mig->mig_lock);
2600 	if (list_head(&mig->mig_list) != NULL) {
2601 		/* Still waiting for VFS_FREEVFS() */
2602 		mig->mig_destructor_called = B_TRUE;
2603 		mutex_exit(&mig->mig_lock);
2604 		return;
2605 	}
2606 	nfs_mi_free_globals(mig);
2607 }
2608 
2609 /*
2610  * Add an NFS mount to the per-zone list of NFS mounts.
2611  */
2612 void
2613 nfs_mi_zonelist_add(mntinfo_t *mi)
2614 {
2615 	struct mi_globals *mig;
2616 
2617 	mig = zone_getspecific(mi_list_key, mi->mi_zone);
2618 	mutex_enter(&mig->mig_lock);
2619 	list_insert_head(&mig->mig_list, mi);
2620 	mutex_exit(&mig->mig_lock);
2621 }
2622 
2623 /*
2624  * Remove an NFS mount from the per-zone list of NFS mounts.
2625  */
2626 static void
2627 nfs_mi_zonelist_remove(mntinfo_t *mi)
2628 {
2629 	struct mi_globals *mig;
2630 
2631 	mig = zone_getspecific(mi_list_key, mi->mi_zone);
2632 	mutex_enter(&mig->mig_lock);
2633 	list_remove(&mig->mig_list, mi);
2634 	/*
2635 	 * We can be called asynchronously by VFS_FREEVFS() after the zone
2636 	 * shutdown/destroy callbacks have executed; if so, clean up the zone's
2637 	 * mi globals.
2638 	 */
2639 	if (list_head(&mig->mig_list) == NULL &&
2640 	    mig->mig_destructor_called == B_TRUE) {
2641 		nfs_mi_free_globals(mig);
2642 		return;
2643 	}
2644 	mutex_exit(&mig->mig_lock);
2645 }
2646 
2647 /*
2648  * NFS Client initialization routine.  This routine should only be called
2649  * once.  It performs the following tasks:
2650  *	- Initalize all global locks
2651  * 	- Call sub-initialization routines (localize access to variables)
2652  */
2653 int
2654 nfs_clntinit(void)
2655 {
2656 #ifdef DEBUG
2657 	static boolean_t nfs_clntup = B_FALSE;
2658 #endif
2659 	int error;
2660 
2661 #ifdef DEBUG
2662 	ASSERT(nfs_clntup == B_FALSE);
2663 #endif
2664 
2665 	error = nfs_subrinit();
2666 	if (error)
2667 		return (error);
2668 
2669 	error = nfs_vfsinit();
2670 	if (error) {
2671 		/*
2672 		 * Cleanup nfs_subrinit() work
2673 		 */
2674 		nfs_subrfini();
2675 		return (error);
2676 	}
2677 	zone_key_create(&mi_list_key, nfs_mi_init, nfs_mi_shutdown,
2678 	    nfs_mi_destroy);
2679 
2680 	nfs4_clnt_init();
2681 
2682 #ifdef DEBUG
2683 	nfs_clntup = B_TRUE;
2684 #endif
2685 
2686 	return (0);
2687 }
2688 
2689 /*
2690  * This routine is only called if the NFS Client has been initialized but
2691  * the module failed to be installed. This routine will cleanup the previously
2692  * allocated/initialized work.
2693  */
2694 void
2695 nfs_clntfini(void)
2696 {
2697 	(void) zone_key_delete(mi_list_key);
2698 	nfs_subrfini();
2699 	nfs_vfsfini();
2700 	nfs4_clnt_fini();
2701 }
2702 
2703 /*
2704  * nfs_lockrelease:
2705  *
2706  * Release any locks on the given vnode that are held by the current
2707  * process.
2708  */
2709 void
2710 nfs_lockrelease(vnode_t *vp, int flag, offset_t offset, cred_t *cr)
2711 {
2712 	flock64_t ld;
2713 	struct shrlock shr;
2714 	char *buf;
2715 	int remote_lock_possible;
2716 	int ret;
2717 
2718 	ASSERT((uintptr_t)vp > KERNELBASE);
2719 
2720 	/*
2721 	 * Generate an explicit unlock operation for the entire file.  As a
2722 	 * partial optimization, only generate the unlock if there is a
2723 	 * lock registered for the file.  We could check whether this
2724 	 * particular process has any locks on the file, but that would
2725 	 * require the local locking code to provide yet another query
2726 	 * routine.  Note that no explicit synchronization is needed here.
2727 	 * At worst, flk_has_remote_locks() will return a false positive,
2728 	 * in which case the unlock call wastes time but doesn't harm
2729 	 * correctness.
2730 	 *
2731 	 * In addition, an unlock request is generated if the process
2732 	 * is listed as possibly having a lock on the file because the
2733 	 * server and client lock managers may have gotten out of sync.
2734 	 * N.B. It is important to make sure nfs_remove_locking_id() is
2735 	 * called here even if flk_has_remote_locks(vp) reports true.
2736 	 * If it is not called and there is an entry on the process id
2737 	 * list, that entry will never get removed.
2738 	 */
2739 	remote_lock_possible = nfs_remove_locking_id(vp, RLMPL_PID,
2740 	    (char *)&(ttoproc(curthread)->p_pid), NULL, NULL);
2741 	if (remote_lock_possible || flk_has_remote_locks(vp)) {
2742 		ld.l_type = F_UNLCK;	/* set to unlock entire file */
2743 		ld.l_whence = 0;	/* unlock from start of file */
2744 		ld.l_start = 0;
2745 		ld.l_len = 0;		/* do entire file */
2746 		ret = VOP_FRLOCK(vp, F_SETLK, &ld, flag, offset, NULL, cr);
2747 
2748 		if (ret != 0) {
2749 			/*
2750 			 * If VOP_FRLOCK fails, make sure we unregister
2751 			 * local locks before we continue.
2752 			 */
2753 			ld.l_pid = ttoproc(curthread)->p_pid;
2754 			lm_register_lock_locally(vp, NULL, &ld, flag, offset);
2755 #ifdef DEBUG
2756 			nfs_perror(ret,
2757 			    "NFS lock release error on vp %p: %m.\n",
2758 			    (void *)vp, NULL);
2759 #endif
2760 		}
2761 
2762 		/*
2763 		 * The call to VOP_FRLOCK may put the pid back on the
2764 		 * list.  We need to remove it.
2765 		 */
2766 		(void) nfs_remove_locking_id(vp, RLMPL_PID,
2767 		    (char *)&(ttoproc(curthread)->p_pid), NULL, NULL);
2768 	}
2769 
2770 	/*
2771 	 * As long as the vp has a share matching our pid,
2772 	 * pluck it off and unshare it.  There are circumstances in
2773 	 * which the call to nfs_remove_locking_id() may put the
2774 	 * owner back on the list, in which case we simply do a
2775 	 * redundant and harmless unshare.
2776 	 */
2777 	buf = kmem_alloc(MAX_SHR_OWNER_LEN, KM_SLEEP);
2778 	while (nfs_remove_locking_id(vp, RLMPL_OWNER,
2779 	    (char *)NULL, buf, &shr.s_own_len)) {
2780 		shr.s_owner = buf;
2781 		shr.s_access = 0;
2782 		shr.s_deny = 0;
2783 		shr.s_sysid = 0;
2784 		shr.s_pid = curproc->p_pid;
2785 
2786 		ret = VOP_SHRLOCK(vp, F_UNSHARE, &shr, flag, cr);
2787 #ifdef DEBUG
2788 		if (ret != 0) {
2789 			nfs_perror(ret,
2790 			    "NFS share release error on vp %p: %m.\n",
2791 			    (void *)vp, NULL);
2792 		}
2793 #endif
2794 	}
2795 	kmem_free(buf, MAX_SHR_OWNER_LEN);
2796 }
2797 
2798 /*
2799  * nfs_lockcompletion:
2800  *
2801  * If the vnode has a lock that makes it unsafe to cache the file, mark it
2802  * as non cachable (set VNOCACHE bit).
2803  */
2804 
2805 void
2806 nfs_lockcompletion(vnode_t *vp, int cmd)
2807 {
2808 #ifdef DEBUG
2809 	rnode_t *rp = VTOR(vp);
2810 
2811 	ASSERT(nfs_rw_lock_held(&rp->r_lkserlock, RW_WRITER));
2812 #endif
2813 
2814 	if (cmd == F_SETLK || cmd == F_SETLKW) {
2815 		if (!lm_safemap(vp)) {
2816 			mutex_enter(&vp->v_lock);
2817 			vp->v_flag |= VNOCACHE;
2818 			mutex_exit(&vp->v_lock);
2819 		} else {
2820 			mutex_enter(&vp->v_lock);
2821 			vp->v_flag &= ~VNOCACHE;
2822 			mutex_exit(&vp->v_lock);
2823 		}
2824 	}
2825 	/*
2826 	 * The cached attributes of the file are stale after acquiring
2827 	 * the lock on the file. They were updated when the file was
2828 	 * opened, but not updated when the lock was acquired. Therefore the
2829 	 * cached attributes are invalidated after the lock is obtained.
2830 	 */
2831 	PURGE_ATTRCACHE(vp);
2832 }
2833 
2834 /*
2835  * The lock manager holds state making it possible for the client
2836  * and server to be out of sync.  For example, if the response from
2837  * the server granting a lock request is lost, the server will think
2838  * the lock is granted and the client will think the lock is lost.
2839  * The client can tell when it is not positive if it is in sync with
2840  * the server.
2841  *
2842  * To deal with this, a list of processes for which the client is
2843  * not sure if the server holds a lock is attached to the rnode.
2844  * When such a process closes the rnode, an unlock request is sent
2845  * to the server to unlock the entire file.
2846  *
2847  * The list is kept as a singularly linked NULL terminated list.
2848  * Because it is only added to under extreme error conditions, the
2849  * list shouldn't get very big.  DEBUG kernels print a message if
2850  * the list gets bigger than nfs_lmpl_high_water.  This is arbitrarily
2851  * choosen to be 8, but can be tuned at runtime.
2852  */
2853 #ifdef DEBUG
2854 /* int nfs_lmpl_high_water = 8; */
2855 int nfs_lmpl_high_water = 128;
2856 int nfs_cnt_add_locking_id = 0;
2857 int nfs_len_add_locking_id = 0;
2858 #endif /* DEBUG */
2859 
2860 /*
2861  * Record that the nfs lock manager server may be holding a lock on
2862  * a vnode for a process.
2863  *
2864  * Because the nfs lock manager server holds state, it is possible
2865  * for the server to get out of sync with the client.  This routine is called
2866  * from the client when it is no longer sure if the server is in sync
2867  * with the client.  nfs_lockrelease() will then notice this and send
2868  * an unlock request when the file is closed
2869  */
2870 void
2871 nfs_add_locking_id(vnode_t *vp, pid_t pid, int type, char *id, int len)
2872 {
2873 	rnode_t *rp;
2874 	lmpl_t *new;
2875 	lmpl_t *cur;
2876 	lmpl_t **lmplp;
2877 #ifdef DEBUG
2878 	int list_len = 1;
2879 #endif /* DEBUG */
2880 
2881 #ifdef DEBUG
2882 	++nfs_cnt_add_locking_id;
2883 #endif /* DEBUG */
2884 	/*
2885 	 * allocate new lmpl_t now so we don't sleep
2886 	 * later after grabbing mutexes
2887 	 */
2888 	ASSERT(len < MAX_SHR_OWNER_LEN);
2889 	new = kmem_alloc(sizeof (*new), KM_SLEEP);
2890 	new->lmpl_type = type;
2891 	new->lmpl_pid = pid;
2892 	new->lmpl_owner = kmem_alloc(len, KM_SLEEP);
2893 	bcopy(id, new->lmpl_owner, len);
2894 	new->lmpl_own_len = len;
2895 	new->lmpl_next = (lmpl_t *)NULL;
2896 #ifdef DEBUG
2897 	if (type == RLMPL_PID) {
2898 		ASSERT(len == sizeof (pid_t));
2899 		ASSERT(pid == *(pid_t *)new->lmpl_owner);
2900 	} else {
2901 		ASSERT(type == RLMPL_OWNER);
2902 	}
2903 #endif
2904 
2905 	rp = VTOR(vp);
2906 	mutex_enter(&rp->r_statelock);
2907 
2908 	/*
2909 	 * Add this id to the list for this rnode only if the
2910 	 * rnode is active and the id is not already there.
2911 	 */
2912 	ASSERT(rp->r_flags & RHASHED);
2913 	lmplp = &(rp->r_lmpl);
2914 	for (cur = rp->r_lmpl; cur != (lmpl_t *)NULL; cur = cur->lmpl_next) {
2915 		if (cur->lmpl_pid == pid &&
2916 		    cur->lmpl_type == type &&
2917 		    cur->lmpl_own_len == len &&
2918 		    bcmp(cur->lmpl_owner, new->lmpl_owner, len) == 0) {
2919 			kmem_free(new->lmpl_owner, len);
2920 			kmem_free(new, sizeof (*new));
2921 			break;
2922 		}
2923 		lmplp = &cur->lmpl_next;
2924 #ifdef DEBUG
2925 		++list_len;
2926 #endif /* DEBUG */
2927 	}
2928 	if (cur == (lmpl_t *)NULL) {
2929 		*lmplp = new;
2930 #ifdef DEBUG
2931 		if (list_len > nfs_len_add_locking_id) {
2932 			nfs_len_add_locking_id = list_len;
2933 		}
2934 		if (list_len > nfs_lmpl_high_water) {
2935 			cmn_err(CE_WARN, "nfs_add_locking_id: long list "
2936 			    "vp=%p is %d", (void *)vp, list_len);
2937 		}
2938 #endif /* DEBUG */
2939 	}
2940 
2941 #ifdef DEBUG
2942 	if (share_debug) {
2943 		int nitems = 0;
2944 		int npids = 0;
2945 		int nowners = 0;
2946 
2947 		/*
2948 		 * Count the number of things left on r_lmpl after the remove.
2949 		 */
2950 		for (cur = rp->r_lmpl; cur != (lmpl_t *)NULL;
2951 		    cur = cur->lmpl_next) {
2952 			nitems++;
2953 			if (cur->lmpl_type == RLMPL_PID) {
2954 				npids++;
2955 			} else if (cur->lmpl_type == RLMPL_OWNER) {
2956 				nowners++;
2957 			} else {
2958 				cmn_err(CE_PANIC, "nfs_add_locking_id: "
2959 				    "unrecognised lmpl_type %d",
2960 				    cur->lmpl_type);
2961 			}
2962 		}
2963 
2964 		cmn_err(CE_CONT, "nfs_add_locking_id(%s): %d PIDs + %d "
2965 		    "OWNs = %d items left on r_lmpl\n",
2966 		    (type == RLMPL_PID) ? "P" : "O", npids, nowners, nitems);
2967 	}
2968 #endif
2969 
2970 	mutex_exit(&rp->r_statelock);
2971 }
2972 
2973 /*
2974  * Remove an id from the lock manager id list.
2975  *
2976  * If the id is not in the list return 0.  If it was found and
2977  * removed, return 1.
2978  */
2979 static int
2980 nfs_remove_locking_id(vnode_t *vp, int type, char *id, char *rid, int *rlen)
2981 {
2982 	lmpl_t *cur;
2983 	lmpl_t **lmplp;
2984 	rnode_t *rp;
2985 	int rv = 0;
2986 
2987 	ASSERT(type == RLMPL_PID || type == RLMPL_OWNER);
2988 
2989 	rp = VTOR(vp);
2990 
2991 	mutex_enter(&rp->r_statelock);
2992 	ASSERT(rp->r_flags & RHASHED);
2993 	lmplp = &(rp->r_lmpl);
2994 
2995 	/*
2996 	 * Search through the list and remove the entry for this id
2997 	 * if it is there.  The special case id == NULL allows removal
2998 	 * of the first share on the r_lmpl list belonging to the
2999 	 * current process (if any), without regard to further details
3000 	 * of its identity.
3001 	 */
3002 	for (cur = rp->r_lmpl; cur != (lmpl_t *)NULL; cur = cur->lmpl_next) {
3003 		if (cur->lmpl_type == type &&
3004 		    cur->lmpl_pid == curproc->p_pid &&
3005 		    (id == (char *)NULL ||
3006 		    bcmp(cur->lmpl_owner, id, cur->lmpl_own_len) == 0)) {
3007 			*lmplp = cur->lmpl_next;
3008 			ASSERT(cur->lmpl_own_len < MAX_SHR_OWNER_LEN);
3009 			if (rid != NULL) {
3010 				bcopy(cur->lmpl_owner, rid, cur->lmpl_own_len);
3011 				*rlen = cur->lmpl_own_len;
3012 			}
3013 			kmem_free(cur->lmpl_owner, cur->lmpl_own_len);
3014 			kmem_free(cur, sizeof (*cur));
3015 			rv = 1;
3016 			break;
3017 		}
3018 		lmplp = &cur->lmpl_next;
3019 	}
3020 
3021 #ifdef DEBUG
3022 	if (share_debug) {
3023 		int nitems = 0;
3024 		int npids = 0;
3025 		int nowners = 0;
3026 
3027 		/*
3028 		 * Count the number of things left on r_lmpl after the remove.
3029 		 */
3030 		for (cur = rp->r_lmpl; cur != (lmpl_t *)NULL;
3031 				cur = cur->lmpl_next) {
3032 			nitems++;
3033 			if (cur->lmpl_type == RLMPL_PID) {
3034 				npids++;
3035 			} else if (cur->lmpl_type == RLMPL_OWNER) {
3036 				nowners++;
3037 			} else {
3038 				cmn_err(CE_PANIC,
3039 					"nrli: unrecognised lmpl_type %d",
3040 					cur->lmpl_type);
3041 			}
3042 		}
3043 
3044 		cmn_err(CE_CONT,
3045 		"nrli(%s): %d PIDs + %d OWNs = %d items left on r_lmpl\n",
3046 			(type == RLMPL_PID) ? "P" : "O",
3047 			npids,
3048 			nowners,
3049 			nitems);
3050 	}
3051 #endif
3052 
3053 	mutex_exit(&rp->r_statelock);
3054 	return (rv);
3055 }
3056 
3057 void
3058 nfs_free_mi(mntinfo_t *mi)
3059 {
3060 	ASSERT(mi->mi_flags & MI_ASYNC_MGR_STOP);
3061 	ASSERT(mi->mi_manager_thread == NULL);
3062 	ASSERT(mi->mi_threads == 0);
3063 
3064 	/*
3065 	 * Remove the node from the global list before we start tearing it down.
3066 	 */
3067 	nfs_mi_zonelist_remove(mi);
3068 	if (mi->mi_klmconfig) {
3069 		lm_free_config(mi->mi_klmconfig);
3070 		kmem_free(mi->mi_klmconfig, sizeof (struct knetconfig));
3071 	}
3072 	mutex_destroy(&mi->mi_lock);
3073 	mutex_destroy(&mi->mi_remap_lock);
3074 	mutex_destroy(&mi->mi_async_lock);
3075 	cv_destroy(&mi->mi_failover_cv);
3076 	cv_destroy(&mi->mi_async_work_cv);
3077 	cv_destroy(&mi->mi_async_reqs_cv);
3078 	cv_destroy(&mi->mi_async_cv);
3079 	zone_rele(mi->mi_zone);
3080 	kmem_free(mi, sizeof (*mi));
3081 }
3082 
3083 static int
3084 mnt_kstat_update(kstat_t *ksp, int rw)
3085 {
3086 	mntinfo_t *mi;
3087 	struct mntinfo_kstat *mik;
3088 	vfs_t *vfsp;
3089 	int i;
3090 
3091 	/* this is a read-only kstat. Bail out on a write */
3092 	if (rw == KSTAT_WRITE)
3093 		return (EACCES);
3094 
3095 	/*
3096 	 * We don't want to wait here as kstat_chain_lock could be held by
3097 	 * dounmount(). dounmount() takes vfs_reflock before the chain lock
3098 	 * and thus could lead to a deadlock.
3099 	 */
3100 	vfsp = (struct vfs *)ksp->ks_private;
3101 
3102 
3103 	mi = VFTOMI(vfsp);
3104 
3105 	mik = (struct mntinfo_kstat *)ksp->ks_data;
3106 
3107 	(void) strcpy(mik->mik_proto, mi->mi_curr_serv->sv_knconf->knc_proto);
3108 	mik->mik_vers = (uint32_t)mi->mi_vers;
3109 	mik->mik_flags = mi->mi_flags;
3110 	mik->mik_secmod = mi->mi_curr_serv->sv_secdata->secmod;
3111 	mik->mik_curread = (uint32_t)mi->mi_curread;
3112 	mik->mik_curwrite = (uint32_t)mi->mi_curwrite;
3113 	mik->mik_retrans = mi->mi_retrans;
3114 	mik->mik_timeo = mi->mi_timeo;
3115 	mik->mik_acregmin = HR2SEC(mi->mi_acregmin);
3116 	mik->mik_acregmax = HR2SEC(mi->mi_acregmax);
3117 	mik->mik_acdirmin = HR2SEC(mi->mi_acdirmin);
3118 	mik->mik_acdirmax = HR2SEC(mi->mi_acdirmax);
3119 	for (i = 0; i < NFS_CALLTYPES + 1; i++) {
3120 		mik->mik_timers[i].srtt = (uint32_t)mi->mi_timers[i].rt_srtt;
3121 		mik->mik_timers[i].deviate =
3122 		    (uint32_t)mi->mi_timers[i].rt_deviate;
3123 		mik->mik_timers[i].rtxcur =
3124 		    (uint32_t)mi->mi_timers[i].rt_rtxcur;
3125 	}
3126 	mik->mik_noresponse = (uint32_t)mi->mi_noresponse;
3127 	mik->mik_failover = (uint32_t)mi->mi_failover;
3128 	mik->mik_remap = (uint32_t)mi->mi_remap;
3129 	(void) strcpy(mik->mik_curserver, mi->mi_curr_serv->sv_hostname);
3130 
3131 	return (0);
3132 }
3133 
3134 void
3135 nfs_mnt_kstat_init(struct vfs *vfsp)
3136 {
3137 	mntinfo_t *mi = VFTOMI(vfsp);
3138 
3139 	/*
3140 	 * Create the version specific kstats.
3141 	 *
3142 	 * PSARC 2001/697 Contract Private Interface
3143 	 * All nfs kstats are under SunMC contract
3144 	 * Please refer to the PSARC listed above and contact
3145 	 * SunMC before making any changes!
3146 	 *
3147 	 * Changes must be reviewed by Solaris File Sharing
3148 	 * Changes must be communicated to contract-2001-697@sun.com
3149 	 *
3150 	 */
3151 
3152 	mi->mi_io_kstats = kstat_create_zone("nfs", getminor(vfsp->vfs_dev),
3153 	    NULL, "nfs", KSTAT_TYPE_IO, 1, 0, mi->mi_zone->zone_id);
3154 	if (mi->mi_io_kstats) {
3155 		if (mi->mi_zone->zone_id != GLOBAL_ZONEID)
3156 			kstat_zone_add(mi->mi_io_kstats, GLOBAL_ZONEID);
3157 		mi->mi_io_kstats->ks_lock = &mi->mi_lock;
3158 		kstat_install(mi->mi_io_kstats);
3159 	}
3160 
3161 	if ((mi->mi_ro_kstats = kstat_create_zone("nfs",
3162 	    getminor(vfsp->vfs_dev), "mntinfo", "misc", KSTAT_TYPE_RAW,
3163 	    sizeof (struct mntinfo_kstat), 0, mi->mi_zone->zone_id)) != NULL) {
3164 		if (mi->mi_zone->zone_id != GLOBAL_ZONEID)
3165 			kstat_zone_add(mi->mi_ro_kstats, GLOBAL_ZONEID);
3166 		mi->mi_ro_kstats->ks_update = mnt_kstat_update;
3167 		mi->mi_ro_kstats->ks_private = (void *)vfsp;
3168 		kstat_install(mi->mi_ro_kstats);
3169 	}
3170 }
3171 
3172 nfs_delmapcall_t *
3173 nfs_init_delmapcall()
3174 {
3175 	nfs_delmapcall_t	*delmap_call;
3176 
3177 	delmap_call = kmem_alloc(sizeof (nfs_delmapcall_t), KM_SLEEP);
3178 	delmap_call->call_id = curthread;
3179 	delmap_call->error = 0;
3180 
3181 	return (delmap_call);
3182 }
3183 
3184 void
3185 nfs_free_delmapcall(nfs_delmapcall_t *delmap_call)
3186 {
3187 	kmem_free(delmap_call, sizeof (nfs_delmapcall_t));
3188 }
3189 
3190 /*
3191  * Searches for the current delmap caller (based on curthread) in the list of
3192  * callers.  If it is found, we remove it and free the delmap caller.
3193  * Returns:
3194  *	0 if the caller wasn't found
3195  *	1 if the caller was found, removed and freed.  *errp is set to what
3196  * 	the result of the delmap was.
3197  */
3198 int
3199 nfs_find_and_delete_delmapcall(rnode_t *rp, int *errp)
3200 {
3201 	nfs_delmapcall_t	*delmap_call;
3202 
3203 	/*
3204 	 * If the list doesn't exist yet, we create it and return
3205 	 * that the caller wasn't found.  No list = no callers.
3206 	 */
3207 	mutex_enter(&rp->r_statelock);
3208 	if (!(rp->r_flags & RDELMAPLIST)) {
3209 		/* The list does not exist */
3210 		list_create(&rp->r_indelmap, sizeof (nfs_delmapcall_t),
3211 		    offsetof(nfs_delmapcall_t, call_node));
3212 		rp->r_flags |= RDELMAPLIST;
3213 		mutex_exit(&rp->r_statelock);
3214 		return (0);
3215 	} else {
3216 		/* The list exists so search it */
3217 		for (delmap_call = list_head(&rp->r_indelmap);
3218 		    delmap_call != NULL;
3219 		    delmap_call = list_next(&rp->r_indelmap, delmap_call)) {
3220 			if (delmap_call->call_id == curthread) {
3221 				/* current caller is in the list */
3222 				*errp = delmap_call->error;
3223 				list_remove(&rp->r_indelmap, delmap_call);
3224 				mutex_exit(&rp->r_statelock);
3225 				nfs_free_delmapcall(delmap_call);
3226 				return (1);
3227 			}
3228 		}
3229 	}
3230 	mutex_exit(&rp->r_statelock);
3231 	return (0);
3232 }
3233