xref: /illumos-gate/usr/src/uts/common/fs/gfs.c (revision ade42b55)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /* Portions Copyright 2007 Shivakumar GN */
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 /*
27  * Copyright (c) 2017 by Delphix. All rights reserved.
28  */
29 
30 #include <sys/types.h>
31 #include <sys/cmn_err.h>
32 #include <sys/debug.h>
33 #include <sys/dirent.h>
34 #include <sys/kmem.h>
35 #include <sys/mman.h>
36 #include <sys/mutex.h>
37 #include <sys/sysmacros.h>
38 #include <sys/systm.h>
39 #include <sys/sunddi.h>
40 #include <sys/uio.h>
41 #include <sys/vmsystm.h>
42 #include <sys/vfs.h>
43 #include <sys/vnode.h>
44 
45 #include <vm/as.h>
46 #include <vm/seg_vn.h>
47 
48 #include <sys/gfs.h>
49 
50 /*
51  * Generic pseudo-filesystem routines.
52  *
53  * There are significant similarities between the implementation of certain file
54  * system entry points across different filesystems.  While one could attempt to
55  * "choke up on the bat" and incorporate common functionality into a VOP
56  * preamble or postamble, such an approach is limited in the benefit it can
57  * provide.  In this file we instead define a toolkit of routines which can be
58  * called from a filesystem (with in-kernel pseudo-filesystems being the focus
59  * of the exercise) in a more component-like fashion.
60  *
61  * There are three basic classes of routines:
62  *
63  * 1) Lowlevel support routines
64  *
65  *    These routines are designed to play a support role for existing
66  *    pseudo-filesystems (such as procfs).  They simplify common tasks,
67  *    without forcing the filesystem to hand over management to GFS.  The
68  *    routines covered are:
69  *
70  *	gfs_readdir_init()
71  *	gfs_readdir_emit()
72  *	gfs_readdir_emitn()
73  *	gfs_readdir_pred()
74  *	gfs_readdir_fini()
75  *	gfs_lookup_dot()
76  *
77  * 2) Complete GFS management
78  *
79  *    These routines take a more active role in management of the
80  *    pseudo-filesystem.  They handle the relationship between vnode private
81  *    data and VFS data, as well as the relationship between vnodes in the
82  *    directory hierarchy.
83  *
84  *    In order to use these interfaces, the first member of every private
85  *    v_data must be a gfs_file_t or a gfs_dir_t.  This hands over all control
86  *    to GFS.
87  *
88  * 	gfs_file_create()
89  * 	gfs_dir_create()
90  * 	gfs_root_create()
91  *
92  *	gfs_file_inactive()
93  *	gfs_dir_inactive()
94  *	gfs_dir_lookup()
95  *	gfs_dir_readdir()
96  *
97  * 	gfs_vop_inactive()
98  * 	gfs_vop_lookup()
99  * 	gfs_vop_readdir()
100  * 	gfs_vop_map()
101  *
102  * 3) Single File pseudo-filesystems
103  *
104  *    This routine creates a rooted file to be overlayed ontop of another
105  *    file in the physical filespace.
106  *
107  *    Note that the parent is NULL (actually the vfs), but there is nothing
108  *    technically keeping such a file from utilizing the "Complete GFS
109  *    management" set of routines.
110  *
111  * 	gfs_root_create_file()
112  */
113 
114 /*
115  * gfs_make_opsvec: take an array of vnode type definitions and create
116  * their vnodeops_t structures
117  *
118  * This routine takes an array of gfs_opsvec_t's.  It could
119  * alternatively take an array of gfs_opsvec_t*'s, which would allow
120  * vnode types to be completely defined in files external to the caller
121  * of gfs_make_opsvec().  As it stands, much more sharing takes place --
122  * both the caller and the vnode type provider need to access gfsv_ops
123  * and gfsv_template, and the caller also needs to know gfsv_name.
124  */
125 int
gfs_make_opsvec(gfs_opsvec_t * vec)126 gfs_make_opsvec(gfs_opsvec_t *vec)
127 {
128 	int error, i;
129 
130 	for (i = 0; ; i++) {
131 		if (vec[i].gfsv_name == NULL)
132 			return (0);
133 		error = vn_make_ops(vec[i].gfsv_name, vec[i].gfsv_template,
134 		    vec[i].gfsv_ops);
135 		if (error)
136 			break;
137 	}
138 
139 	cmn_err(CE_WARN, "gfs_make_opsvec: bad vnode ops template for '%s'",
140 	    vec[i].gfsv_name);
141 	for (i--; i >= 0; i--) {
142 		vn_freevnodeops(*vec[i].gfsv_ops);
143 		*vec[i].gfsv_ops = NULL;
144 	}
145 	return (error);
146 }
147 
148 /*
149  * Low level directory routines
150  *
151  * These routines provide some simple abstractions for reading directories.
152  * They are designed to be used by existing pseudo filesystems (namely procfs)
153  * that already have a complicated management infrastructure.
154  */
155 
156 /*
157  * gfs_get_parent_ino: used to obtain a parent inode number and the
158  * inode number of the given vnode in preparation for calling gfs_readdir_init.
159  */
160 int
gfs_get_parent_ino(vnode_t * dvp,cred_t * cr,caller_context_t * ct,ino64_t * pino,ino64_t * ino)161 gfs_get_parent_ino(vnode_t *dvp, cred_t *cr, caller_context_t *ct,
162     ino64_t *pino, ino64_t *ino)
163 {
164 	vnode_t *parent;
165 	gfs_dir_t *dp = dvp->v_data;
166 	int error;
167 
168 	*ino = dp->gfsd_file.gfs_ino;
169 	parent = dp->gfsd_file.gfs_parent;
170 
171 	if (parent == NULL) {
172 		*pino = *ino;		/* root of filesystem */
173 	} else if (dvp->v_flag & V_XATTRDIR) {
174 		vattr_t va;
175 
176 		va.va_mask = AT_NODEID;
177 		error = VOP_GETATTR(parent, &va, 0, cr, ct);
178 		if (error)
179 			return (error);
180 		*pino = va.va_nodeid;
181 	} else {
182 		*pino = ((gfs_file_t *)(parent->v_data))->gfs_ino;
183 	}
184 
185 	return (0);
186 }
187 
188 /*
189  * gfs_readdir_init: initiate a generic readdir
190  *   st		- a pointer to an uninitialized gfs_readdir_state_t structure
191  *   name_max	- the directory's maximum file name length
192  *   ureclen	- the exported file-space record length (1 for non-legacy FSs)
193  *   uiop	- the uiop passed to readdir
194  *   parent	- the parent directory's inode
195  *   self	- this directory's inode
196  *   flags	- flags from VOP_READDIR
197  *
198  * Returns 0 or a non-zero errno.
199  *
200  * Typical VOP_READDIR usage of gfs_readdir_*:
201  *
202  *	if ((error = gfs_readdir_init(...)) != 0)
203  *		return (error);
204  *	eof = 0;
205  *	while ((error = gfs_readdir_pred(..., &voffset)) != 0) {
206  *		if (!consumer_entry_at(voffset))
207  *			voffset = consumer_next_entry(voffset);
208  *		if (consumer_eof(voffset)) {
209  *			eof = 1
210  *			break;
211  *		}
212  *		if ((error = gfs_readdir_emit(..., voffset,
213  *		    consumer_ino(voffset), consumer_name(voffset))) != 0)
214  *			break;
215  *	}
216  *	return (gfs_readdir_fini(..., error, eofp, eof));
217  *
218  * As you can see, a zero result from gfs_readdir_pred() or
219  * gfs_readdir_emit() indicates that processing should continue,
220  * whereas a non-zero result indicates that the loop should terminate.
221  * Most consumers need do nothing more than let gfs_readdir_fini()
222  * determine what the cause of failure was and return the appropriate
223  * value.
224  */
225 int
gfs_readdir_init(gfs_readdir_state_t * st,int name_max,int ureclen,uio_t * uiop,ino64_t parent,ino64_t self,int flags)226 gfs_readdir_init(gfs_readdir_state_t *st, int name_max, int ureclen,
227     uio_t *uiop, ino64_t parent, ino64_t self, int flags)
228 {
229 	size_t dirent_size;
230 
231 	if (uiop->uio_loffset < 0 || uiop->uio_resid <= 0 ||
232 	    (uiop->uio_loffset % ureclen) != 0)
233 		return (EINVAL);
234 
235 	st->grd_ureclen = ureclen;
236 	st->grd_oresid = uiop->uio_resid;
237 	st->grd_namlen = name_max;
238 	if (flags & V_RDDIR_ENTFLAGS)
239 		dirent_size = EDIRENT_RECLEN(st->grd_namlen);
240 	else
241 		dirent_size = DIRENT64_RECLEN(st->grd_namlen);
242 	st->grd_dirent = kmem_zalloc(dirent_size, KM_SLEEP);
243 	st->grd_parent = parent;
244 	st->grd_self = self;
245 	st->grd_flags = flags;
246 
247 	return (0);
248 }
249 
250 /*
251  * gfs_readdir_emit_int: internal routine to emit directory entry
252  *
253  *   st		- the current readdir state, which must have d_ino/ed_ino
254  *		  and d_name/ed_name set
255  *   uiop	- caller-supplied uio pointer
256  *   next	- the offset of the next entry
257  */
258 static int
gfs_readdir_emit_int(gfs_readdir_state_t * st,uio_t * uiop,offset_t next)259 gfs_readdir_emit_int(gfs_readdir_state_t *st, uio_t *uiop, offset_t next)
260 {
261 	int reclen;
262 	dirent64_t *dp;
263 	edirent_t *edp;
264 
265 	if (st->grd_flags & V_RDDIR_ENTFLAGS) {
266 		edp = st->grd_dirent;
267 		reclen = EDIRENT_RECLEN(strlen(edp->ed_name));
268 	} else {
269 		dp = st->grd_dirent;
270 		reclen = DIRENT64_RECLEN(strlen(dp->d_name));
271 	}
272 
273 	if (reclen > uiop->uio_resid) {
274 		/*
275 		 * Error if no entries were returned yet
276 		 */
277 		if (uiop->uio_resid == st->grd_oresid)
278 			return (EINVAL);
279 		return (-1);
280 	}
281 
282 	if (st->grd_flags & V_RDDIR_ENTFLAGS) {
283 		edp->ed_off = next;
284 		edp->ed_reclen = (ushort_t)reclen;
285 	} else {
286 		dp->d_off = next;
287 		dp->d_reclen = (ushort_t)reclen;
288 	}
289 
290 	if (uiomove((caddr_t)st->grd_dirent, reclen, UIO_READ, uiop))
291 		return (EFAULT);
292 
293 	uiop->uio_loffset = next;
294 
295 	return (0);
296 }
297 
298 /*
299  * gfs_readdir_emit: emit a directory entry
300  *   voff       - the virtual offset (obtained from gfs_readdir_pred)
301  *   ino        - the entry's inode
302  *   name       - the entry's name
303  *   eflags	- value for ed_eflags (if processing edirent_t)
304  *
305  * Returns a 0 on success, a non-zero errno on failure, or -1 if the
306  * readdir loop should terminate.  A non-zero result (either errno or
307  * -1) from this function is typically passed directly to
308  * gfs_readdir_fini().
309  */
310 int
gfs_readdir_emit(gfs_readdir_state_t * st,uio_t * uiop,offset_t voff,ino64_t ino,const char * name,int eflags)311 gfs_readdir_emit(gfs_readdir_state_t *st, uio_t *uiop, offset_t voff,
312     ino64_t ino, const char *name, int eflags)
313 {
314 	offset_t off = (voff + 2) * st->grd_ureclen;
315 
316 	if (st->grd_flags & V_RDDIR_ENTFLAGS) {
317 		edirent_t *edp = st->grd_dirent;
318 
319 		edp->ed_ino = ino;
320 		(void) strncpy(edp->ed_name, name, st->grd_namlen);
321 		edp->ed_eflags = eflags;
322 	} else {
323 		dirent64_t *dp = st->grd_dirent;
324 
325 		dp->d_ino = ino;
326 		(void) strncpy(dp->d_name, name, st->grd_namlen);
327 	}
328 
329 	/*
330 	 * Inter-entry offsets are invalid, so we assume a record size of
331 	 * grd_ureclen and explicitly set the offset appropriately.
332 	 */
333 	return (gfs_readdir_emit_int(st, uiop, off + st->grd_ureclen));
334 }
335 
336 /*
337  * gfs_readdir_emitn: like gfs_readdir_emit(), but takes an integer
338  * instead of a string for the entry's name.
339  */
340 int
gfs_readdir_emitn(gfs_readdir_state_t * st,uio_t * uiop,offset_t voff,ino64_t ino,unsigned long num)341 gfs_readdir_emitn(gfs_readdir_state_t *st, uio_t *uiop, offset_t voff,
342     ino64_t ino, unsigned long num)
343 {
344 	char buf[40];
345 
346 	numtos(num, buf);
347 	return (gfs_readdir_emit(st, uiop, voff, ino, buf, 0));
348 }
349 
350 /*
351  * gfs_readdir_pred: readdir loop predicate
352  *   voffp - a pointer in which the next virtual offset should be stored
353  *
354  * Returns a 0 on success, a non-zero errno on failure, or -1 if the
355  * readdir loop should terminate.  A non-zero result (either errno or
356  * -1) from this function is typically passed directly to
357  * gfs_readdir_fini().
358  */
359 int
gfs_readdir_pred(gfs_readdir_state_t * st,uio_t * uiop,offset_t * voffp)360 gfs_readdir_pred(gfs_readdir_state_t *st, uio_t *uiop, offset_t *voffp)
361 {
362 	offset_t off, voff;
363 	int error;
364 
365 top:
366 	if (uiop->uio_resid <= 0)
367 		return (-1);
368 
369 	off = uiop->uio_loffset / st->grd_ureclen;
370 	voff = off - 2;
371 	if (off == 0) {
372 		if ((error = gfs_readdir_emit(st, uiop, voff, st->grd_self,
373 		    ".", 0)) == 0)
374 			goto top;
375 	} else if (off == 1) {
376 		if ((error = gfs_readdir_emit(st, uiop, voff, st->grd_parent,
377 		    "..", 0)) == 0)
378 			goto top;
379 	} else {
380 		*voffp = voff;
381 		return (0);
382 	}
383 
384 	return (error);
385 }
386 
387 /*
388  * gfs_readdir_fini: generic readdir cleanup
389  *   error	- if positive, an error to return
390  *   eofp	- the eofp passed to readdir
391  *   eof	- the eof value
392  *
393  * Returns a 0 on success, a non-zero errno on failure.  This result
394  * should be returned from readdir.
395  */
396 int
gfs_readdir_fini(gfs_readdir_state_t * st,int error,int * eofp,int eof)397 gfs_readdir_fini(gfs_readdir_state_t *st, int error, int *eofp, int eof)
398 {
399 	size_t dirent_size;
400 
401 	if (st->grd_flags & V_RDDIR_ENTFLAGS)
402 		dirent_size = EDIRENT_RECLEN(st->grd_namlen);
403 	else
404 		dirent_size = DIRENT64_RECLEN(st->grd_namlen);
405 	kmem_free(st->grd_dirent, dirent_size);
406 	if (error > 0)
407 		return (error);
408 	if (eofp)
409 		*eofp = eof;
410 	return (0);
411 }
412 
413 /*
414  * gfs_lookup_dot
415  *
416  * Performs a basic check for "." and ".." directory entries.
417  */
418 int
gfs_lookup_dot(vnode_t ** vpp,vnode_t * dvp,vnode_t * pvp,const char * nm)419 gfs_lookup_dot(vnode_t **vpp, vnode_t *dvp, vnode_t *pvp, const char *nm)
420 {
421 	if (*nm == '\0' || strcmp(nm, ".") == 0) {
422 		VN_HOLD(dvp);
423 		*vpp = dvp;
424 		return (0);
425 	} else if (strcmp(nm, "..") == 0) {
426 		if (pvp == NULL) {
427 			ASSERT(dvp->v_flag & VROOT);
428 			VN_HOLD(dvp);
429 			*vpp = dvp;
430 		} else {
431 			VN_HOLD(pvp);
432 			*vpp = pvp;
433 		}
434 		return (0);
435 	}
436 
437 	return (-1);
438 }
439 
440 /*
441  * gfs_file_create(): create a new GFS file
442  *
443  *   size	- size of private data structure (v_data)
444  *   pvp	- parent vnode (GFS directory)
445  *   ops	- vnode operations vector
446  *
447  * In order to use this interface, the parent vnode must have been created by
448  * gfs_dir_create(), and the private data stored in v_data must have a
449  * 'gfs_file_t' as its first field.
450  *
451  * Given these constraints, this routine will automatically:
452  *
453  * 	- Allocate v_data for the vnode
454  * 	- Initialize necessary fields in the vnode
455  * 	- Hold the parent
456  */
457 vnode_t *
gfs_file_create(size_t size,vnode_t * pvp,vnodeops_t * ops)458 gfs_file_create(size_t size, vnode_t *pvp, vnodeops_t *ops)
459 {
460 	gfs_file_t *fp;
461 	vnode_t *vp;
462 
463 	/*
464 	 * Allocate vnode and internal data structure
465 	 */
466 	fp = kmem_zalloc(size, KM_SLEEP);
467 	vp = vn_alloc(KM_SLEEP);
468 
469 	/*
470 	 * Set up various pointers
471 	 */
472 	fp->gfs_vnode = vp;
473 	fp->gfs_parent = pvp;
474 	vp->v_data = fp;
475 	fp->gfs_size = size;
476 	fp->gfs_type = GFS_FILE;
477 
478 	/*
479 	 * Initialize vnode and hold parent.
480 	 */
481 	vn_setops(vp, ops);
482 	if (pvp) {
483 		VN_SET_VFS_TYPE_DEV(vp, pvp->v_vfsp, VREG, 0);
484 		VN_HOLD(pvp);
485 	}
486 
487 	return (vp);
488 }
489 
490 /*
491  * gfs_dir_create: creates a new directory in the parent
492  *
493  *   size	- size of private data structure (v_data)
494  *   pvp	- parent vnode (GFS directory)
495  *   ops	- vnode operations vector
496  *   entries	- NULL-terminated list of static entries (if any)
497  *   maxlen	- maximum length of a directory entry
498  *   readdir_cb	- readdir callback (see gfs_dir_readdir)
499  *   inode_cb	- inode callback (see gfs_dir_readdir)
500  *   lookup_cb	- lookup callback (see gfs_dir_lookup)
501  *
502  * In order to use this function, the first member of the private vnode
503  * structure (v_data) must be a gfs_dir_t.  For each directory, there are
504  * static entries, defined when the structure is initialized, and dynamic
505  * entries, retrieved through callbacks.
506  *
507  * If a directory has static entries, then it must supply a inode callback,
508  * which will compute the inode number based on the parent and the index.
509  * For a directory with dynamic entries, the caller must supply a readdir
510  * callback and a lookup callback.  If a static lookup fails, we fall back to
511  * the supplied lookup callback, if any.
512  *
513  * This function also performs the same initialization as gfs_file_create().
514  */
515 vnode_t *
gfs_dir_create(size_t struct_size,vnode_t * pvp,vnodeops_t * ops,gfs_dirent_t * entries,gfs_inode_cb inode_cb,int maxlen,gfs_readdir_cb readdir_cb,gfs_lookup_cb lookup_cb)516 gfs_dir_create(size_t struct_size, vnode_t *pvp, vnodeops_t *ops,
517     gfs_dirent_t *entries, gfs_inode_cb inode_cb, int maxlen,
518     gfs_readdir_cb readdir_cb, gfs_lookup_cb lookup_cb)
519 {
520 	vnode_t *vp;
521 	gfs_dir_t *dp;
522 	gfs_dirent_t *de;
523 
524 	vp = gfs_file_create(struct_size, pvp, ops);
525 	vp->v_type = VDIR;
526 
527 	dp = vp->v_data;
528 	dp->gfsd_file.gfs_type = GFS_DIR;
529 	dp->gfsd_maxlen = maxlen;
530 
531 	if (entries != NULL) {
532 		for (de = entries; de->gfse_name != NULL; de++)
533 			dp->gfsd_nstatic++;
534 
535 		dp->gfsd_static = kmem_alloc(
536 		    dp->gfsd_nstatic * sizeof (gfs_dirent_t), KM_SLEEP);
537 		bcopy(entries, dp->gfsd_static,
538 		    dp->gfsd_nstatic * sizeof (gfs_dirent_t));
539 	}
540 
541 	dp->gfsd_readdir = readdir_cb;
542 	dp->gfsd_lookup = lookup_cb;
543 	dp->gfsd_inode = inode_cb;
544 
545 	mutex_init(&dp->gfsd_lock, NULL, MUTEX_DEFAULT, NULL);
546 
547 	return (vp);
548 }
549 
550 /*
551  * gfs_root_create(): create a root vnode for a GFS filesystem
552  *
553  * Similar to gfs_dir_create(), this creates a root vnode for a filesystem.  The
554  * only difference is that it takes a vfs_t instead of a vnode_t as its parent.
555  */
556 vnode_t *
gfs_root_create(size_t size,vfs_t * vfsp,vnodeops_t * ops,ino64_t ino,gfs_dirent_t * entries,gfs_inode_cb inode_cb,int maxlen,gfs_readdir_cb readdir_cb,gfs_lookup_cb lookup_cb)557 gfs_root_create(size_t size, vfs_t *vfsp, vnodeops_t *ops, ino64_t ino,
558     gfs_dirent_t *entries, gfs_inode_cb inode_cb, int maxlen,
559     gfs_readdir_cb readdir_cb, gfs_lookup_cb lookup_cb)
560 {
561 	vnode_t *vp = gfs_dir_create(size, NULL, ops, entries, inode_cb,
562 	    maxlen, readdir_cb, lookup_cb);
563 
564 	/* Manually set the inode */
565 	((gfs_file_t *)vp->v_data)->gfs_ino = ino;
566 
567 	VFS_HOLD(vfsp);
568 	VN_SET_VFS_TYPE_DEV(vp, vfsp, VDIR, 0);
569 	vp->v_flag |= VROOT | VNOCACHE | VNOMAP | VNOSWAP | VNOMOUNT;
570 
571 	return (vp);
572 }
573 
574 /*
575  * gfs_root_create_file(): create a root vnode for a GFS file as a filesystem
576  *
577  * Similar to gfs_root_create(), this creates a root vnode for a file to
578  * be the pseudo-filesystem.
579  */
580 vnode_t *
gfs_root_create_file(size_t size,vfs_t * vfsp,vnodeops_t * ops,ino64_t ino)581 gfs_root_create_file(size_t size, vfs_t *vfsp, vnodeops_t *ops, ino64_t ino)
582 {
583 	vnode_t	*vp = gfs_file_create(size, NULL, ops);
584 
585 	((gfs_file_t *)vp->v_data)->gfs_ino = ino;
586 
587 	VFS_HOLD(vfsp);
588 	VN_SET_VFS_TYPE_DEV(vp, vfsp, VREG, 0);
589 	vp->v_flag |= VROOT | VNOCACHE | VNOMAP | VNOSWAP | VNOMOUNT;
590 
591 	return (vp);
592 }
593 
594 /*
595  * gfs_file_inactive()
596  *
597  * Called from the VOP_INACTIVE() routine.  If necessary, this routine will
598  * remove the given vnode from the parent directory and clean up any references
599  * in the VFS layer.
600  *
601  * If the vnode was not removed (due to a race with vget), then NULL is
602  * returned.  Otherwise, a pointer to the private data is returned.
603  */
604 void *
gfs_file_inactive(vnode_t * vp)605 gfs_file_inactive(vnode_t *vp)
606 {
607 	int i;
608 	gfs_dirent_t *ge = NULL;
609 	gfs_file_t *fp = vp->v_data;
610 	gfs_dir_t *dp = NULL;
611 	void *data;
612 
613 	if (fp->gfs_parent == NULL || (vp->v_flag & V_XATTRDIR))
614 		goto found;
615 
616 	dp = fp->gfs_parent->v_data;
617 
618 	/*
619 	 * First, see if this vnode is cached in the parent.
620 	 */
621 	gfs_dir_lock(dp);
622 
623 	/*
624 	 * Find it in the set of static entries.
625 	 */
626 	for (i = 0; i < dp->gfsd_nstatic; i++)  {
627 		ge = &dp->gfsd_static[i];
628 
629 		if (ge->gfse_vnode == vp)
630 			goto found;
631 	}
632 
633 	/*
634 	 * If 'ge' is NULL, then it is a dynamic entry.
635 	 */
636 	ge = NULL;
637 
638 found:
639 	if (vp->v_flag & V_XATTRDIR) {
640 		mutex_enter(&fp->gfs_parent->v_lock);
641 	}
642 	mutex_enter(&vp->v_lock);
643 	if (vp->v_count == 1) {
644 		/*
645 		 * Really remove this vnode
646 		 */
647 		data = vp->v_data;
648 		if (ge != NULL) {
649 			/*
650 			 * If this was a statically cached entry, simply set the
651 			 * cached vnode to NULL.
652 			 */
653 			ge->gfse_vnode = NULL;
654 		}
655 		if (vp->v_flag & V_XATTRDIR) {
656 			fp->gfs_parent->v_xattrdir = NULL;
657 			mutex_exit(&fp->gfs_parent->v_lock);
658 		}
659 		mutex_exit(&vp->v_lock);
660 
661 		/*
662 		 * Free vnode and release parent
663 		 */
664 		if (fp->gfs_parent) {
665 			if (dp) {
666 				gfs_dir_unlock(dp);
667 			}
668 			VN_RELE(fp->gfs_parent);
669 		} else {
670 			ASSERT(vp->v_vfsp != NULL);
671 			VFS_RELE(vp->v_vfsp);
672 		}
673 		vn_free(vp);
674 	} else {
675 		VN_RELE_LOCKED(vp);
676 		data = NULL;
677 		mutex_exit(&vp->v_lock);
678 		if (vp->v_flag & V_XATTRDIR) {
679 			mutex_exit(&fp->gfs_parent->v_lock);
680 		}
681 		if (dp)
682 			gfs_dir_unlock(dp);
683 	}
684 
685 	return (data);
686 }
687 
688 /*
689  * gfs_dir_inactive()
690  *
691  * Same as above, but for directories.
692  */
693 void *
gfs_dir_inactive(vnode_t * vp)694 gfs_dir_inactive(vnode_t *vp)
695 {
696 	gfs_dir_t *dp;
697 
698 	ASSERT(vp->v_type == VDIR);
699 
700 	if ((dp = gfs_file_inactive(vp)) != NULL) {
701 		mutex_destroy(&dp->gfsd_lock);
702 		if (dp->gfsd_nstatic)
703 			kmem_free(dp->gfsd_static,
704 			    dp->gfsd_nstatic * sizeof (gfs_dirent_t));
705 	}
706 
707 	return (dp);
708 }
709 
710 /*
711  * gfs_dir_lookup_dynamic()
712  *
713  * This routine looks up the provided name amongst the dynamic entries
714  * in the gfs directory and returns the corresponding vnode, if found.
715  *
716  * The gfs directory is expected to be locked by the caller prior to
717  * calling this function.  The directory will be unlocked during the
718  * execution of this function, but will be locked upon return from the
719  * function.  This function returns 0 on success, non-zero on error.
720  *
721  * The dynamic lookups are performed by invoking the lookup
722  * callback, which is passed to this function as the first argument.
723  * The arguments to the callback are:
724  *
725  * int gfs_lookup_cb(vnode_t *pvp, const char *nm, vnode_t **vpp, cred_t *cr,
726  *     int flags, int *deflgs, pathname_t *rpnp);
727  *
728  *	pvp	- parent vnode
729  *	nm	- name of entry
730  *	vpp	- pointer to resulting vnode
731  *	cr	- pointer to cred
732  *	flags	- flags value from lookup request
733  *		ignored here; currently only used to request
734  *		insensitive lookups
735  *	direntflgs - output parameter, directory entry flags
736  *		ignored here; currently only used to indicate a lookup
737  *		has more than one possible match when case is not considered
738  *	realpnp	- output parameter, real pathname
739  *		ignored here; when lookup was performed case-insensitively,
740  *		this field contains the "real" name of the file.
741  *
742  * 	Returns 0 on success, non-zero on error.
743  */
744 static int
gfs_dir_lookup_dynamic(gfs_lookup_cb callback,gfs_dir_t * dp,const char * nm,vnode_t * dvp,vnode_t ** vpp,cred_t * cr,int flags,int * direntflags,pathname_t * realpnp)745 gfs_dir_lookup_dynamic(gfs_lookup_cb callback, gfs_dir_t *dp,
746     const char *nm, vnode_t *dvp, vnode_t **vpp, cred_t *cr, int flags,
747     int *direntflags, pathname_t *realpnp)
748 {
749 	gfs_file_t *fp;
750 	ino64_t ino;
751 	int ret;
752 
753 	ASSERT(GFS_DIR_LOCKED(dp));
754 
755 	/*
756 	 * Drop the directory lock, as the lookup routine
757 	 * will need to allocate memory, or otherwise deadlock on this
758 	 * directory.
759 	 */
760 	gfs_dir_unlock(dp);
761 	ret = callback(dvp, nm, vpp, &ino, cr, flags, direntflags, realpnp);
762 	gfs_dir_lock(dp);
763 
764 	/*
765 	 * The callback for extended attributes returns a vnode
766 	 * with v_data from an underlying fs.
767 	 */
768 	if (ret == 0 && !IS_XATTRDIR(dvp)) {
769 		fp = (gfs_file_t *)((*vpp)->v_data);
770 		fp->gfs_index = -1;
771 		fp->gfs_ino = ino;
772 	}
773 
774 	return (ret);
775 }
776 
777 /*
778  * gfs_dir_lookup_static()
779  *
780  * This routine looks up the provided name amongst the static entries
781  * in the gfs directory and returns the corresponding vnode, if found.
782  * The first argument to the function is a pointer to the comparison
783  * function this function should use to decide if names are a match.
784  *
785  * If a match is found, and GFS_CACHE_VNODE is set and the vnode
786  * exists, we simply return the existing vnode.  Otherwise, we call
787  * the static entry's callback routine, caching the result if
788  * necessary.  If the idx pointer argument is non-NULL, we use it to
789  * return the index of the matching static entry.
790  *
791  * The gfs directory is expected to be locked by the caller prior to calling
792  * this function.  The directory may be unlocked during the execution of
793  * this function, but will be locked upon return from the function.
794  *
795  * This function returns 0 if a match is found, ENOENT if not.
796  */
797 static int
gfs_dir_lookup_static(int (* compare)(const char *,const char *),gfs_dir_t * dp,const char * nm,vnode_t * dvp,int * idx,vnode_t ** vpp,pathname_t * rpnp)798 gfs_dir_lookup_static(int (*compare)(const char *, const char *),
799     gfs_dir_t *dp, const char *nm, vnode_t *dvp, int *idx,
800     vnode_t **vpp, pathname_t *rpnp)
801 {
802 	gfs_dirent_t *ge;
803 	vnode_t *vp = NULL;
804 	int i;
805 
806 	ASSERT(GFS_DIR_LOCKED(dp));
807 
808 	/*
809 	 * Search static entries.
810 	 */
811 	for (i = 0; i < dp->gfsd_nstatic; i++) {
812 		ge = &dp->gfsd_static[i];
813 
814 		if (compare(ge->gfse_name, nm) == 0) {
815 			if (rpnp)
816 				(void) strlcpy(rpnp->pn_buf, ge->gfse_name,
817 				    rpnp->pn_bufsize);
818 
819 			if (ge->gfse_vnode) {
820 				ASSERT(ge->gfse_flags & GFS_CACHE_VNODE);
821 				vp = ge->gfse_vnode;
822 				VN_HOLD(vp);
823 				break;
824 			}
825 
826 			/*
827 			 * We drop the directory lock, as the constructor will
828 			 * need to do KM_SLEEP allocations.  If we return from
829 			 * the constructor only to find that a parallel
830 			 * operation has completed, and GFS_CACHE_VNODE is set
831 			 * for this entry, we discard the result in favor of
832 			 * the cached vnode.
833 			 */
834 			gfs_dir_unlock(dp);
835 			vp = ge->gfse_ctor(dvp);
836 			gfs_dir_lock(dp);
837 
838 			((gfs_file_t *)vp->v_data)->gfs_index = i;
839 
840 			/* Set the inode according to the callback. */
841 			((gfs_file_t *)vp->v_data)->gfs_ino =
842 			    dp->gfsd_inode(dvp, i);
843 
844 			if (ge->gfse_flags & GFS_CACHE_VNODE) {
845 				if (ge->gfse_vnode == NULL) {
846 					ge->gfse_vnode = vp;
847 				} else {
848 					/*
849 					 * A parallel constructor beat us to it;
850 					 * return existing vnode.  We have to be
851 					 * careful because we can't release the
852 					 * current vnode while holding the
853 					 * directory lock; its inactive routine
854 					 * will try to lock this directory.
855 					 */
856 					vnode_t *oldvp = vp;
857 					vp = ge->gfse_vnode;
858 					VN_HOLD(vp);
859 
860 					gfs_dir_unlock(dp);
861 					VN_RELE(oldvp);
862 					gfs_dir_lock(dp);
863 				}
864 			}
865 			break;
866 		}
867 	}
868 
869 	if (vp == NULL)
870 		return (ENOENT);
871 	else if (idx)
872 		*idx = i;
873 	*vpp = vp;
874 	return (0);
875 }
876 
877 /*
878  * gfs_dir_lookup()
879  *
880  * Looks up the given name in the directory and returns the corresponding
881  * vnode, if found.
882  *
883  * First, we search statically defined entries, if any, with a call to
884  * gfs_dir_lookup_static().  If no static entry is found, and we have
885  * a callback function we try a dynamic lookup via gfs_dir_lookup_dynamic().
886  *
887  * This function returns 0 on success, non-zero on error.
888  */
889 int
gfs_dir_lookup(vnode_t * dvp,const char * nm,vnode_t ** vpp,cred_t * cr,int flags,int * direntflags,pathname_t * realpnp)890 gfs_dir_lookup(vnode_t *dvp, const char *nm, vnode_t **vpp, cred_t *cr,
891     int flags, int *direntflags, pathname_t *realpnp)
892 {
893 	gfs_dir_t *dp = dvp->v_data;
894 	boolean_t casecheck;
895 	vnode_t *dynvp = NULL;
896 	vnode_t *vp = NULL;
897 	int (*compare)(const char *, const char *);
898 	int error, idx;
899 
900 	ASSERT(dvp->v_type == VDIR);
901 
902 	if (gfs_lookup_dot(vpp, dvp, dp->gfsd_file.gfs_parent, nm) == 0)
903 		return (0);
904 
905 	casecheck = (flags & FIGNORECASE) != 0 && direntflags != NULL;
906 	if (vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) ||
907 	    (flags & FIGNORECASE))
908 		compare = strcasecmp;
909 	else
910 		compare = strcmp;
911 
912 	gfs_dir_lock(dp);
913 
914 	error = gfs_dir_lookup_static(compare, dp, nm, dvp, &idx, &vp, realpnp);
915 
916 	if (vp && casecheck) {
917 		gfs_dirent_t *ge;
918 		int i;
919 
920 		for (i = idx + 1; i < dp->gfsd_nstatic; i++) {
921 			ge = &dp->gfsd_static[i];
922 
923 			if (strcasecmp(ge->gfse_name, nm) == 0) {
924 				*direntflags |= ED_CASE_CONFLICT;
925 				goto out;
926 			}
927 		}
928 	}
929 
930 	if ((error || casecheck) && dp->gfsd_lookup)
931 		error = gfs_dir_lookup_dynamic(dp->gfsd_lookup, dp, nm, dvp,
932 		    &dynvp, cr, flags, direntflags, vp ? NULL : realpnp);
933 
934 	if (vp && dynvp) {
935 		/* static and dynamic entries are case-insensitive conflict */
936 		ASSERT(casecheck);
937 		*direntflags |= ED_CASE_CONFLICT;
938 		VN_RELE(dynvp);
939 	} else if (vp == NULL) {
940 		vp = dynvp;
941 	} else if (error == ENOENT) {
942 		error = 0;
943 	} else if (error) {
944 		VN_RELE(vp);
945 		vp = NULL;
946 	}
947 
948 out:
949 	gfs_dir_unlock(dp);
950 
951 	*vpp = vp;
952 	return (error);
953 }
954 
955 /*
956  * gfs_dir_readdir: does a readdir() on the given directory
957  *
958  *    dvp	- directory vnode
959  *    uiop	- uio structure
960  *    eofp	- eof pointer
961  *    data	- arbitrary data passed to readdir callback
962  *
963  * This routine does all the readdir() dirty work.  Even so, the caller must
964  * supply two callbacks in order to get full compatibility.
965  *
966  * If the directory contains static entries, an inode callback must be
967  * specified.  This avoids having to create every vnode and call VOP_GETATTR()
968  * when reading the directory.  This function has the following arguments:
969  *
970  *	ino_t gfs_inode_cb(vnode_t *vp, int index);
971  *
972  * 	vp	- vnode for the directory
973  * 	index	- index in original gfs_dirent_t array
974  *
975  * 	Returns the inode number for the given entry.
976  *
977  * For directories with dynamic entries, a readdir callback must be provided.
978  * This is significantly more complex, thanks to the particulars of
979  * VOP_READDIR().
980  *
981  *	int gfs_readdir_cb(vnode_t *vp, void *dp, int *eofp,
982  *	    offset_t *off, offset_t *nextoff, void *data, int flags)
983  *
984  *	vp	- directory vnode
985  *	dp	- directory entry, sized according to maxlen given to
986  *		  gfs_dir_create().  callback must fill in d_name and
987  *		  d_ino (if a dirent64_t), or ed_name, ed_ino, and ed_eflags
988  *		  (if an edirent_t). edirent_t is used if V_RDDIR_ENTFLAGS
989  *		  is set in 'flags'.
990  *	eofp	- callback must set to 1 when EOF has been reached
991  *	off	- on entry, the last offset read from the directory.  Callback
992  *		  must set to the offset of the current entry, typically left
993  *		  untouched.
994  *	nextoff	- callback must set to offset of next entry.  Typically
995  *		  (off + 1)
996  *	data	- caller-supplied data
997  *	flags	- VOP_READDIR flags
998  *
999  *	Return 0 on success, or error on failure.
1000  */
1001 int
gfs_dir_readdir(vnode_t * dvp,uio_t * uiop,int * eofp,void * data,cred_t * cr,caller_context_t * ct,int flags)1002 gfs_dir_readdir(vnode_t *dvp, uio_t *uiop, int *eofp, void *data, cred_t *cr,
1003     caller_context_t *ct, int flags)
1004 {
1005 	gfs_readdir_state_t gstate;
1006 	int error, eof = 0;
1007 	ino64_t ino, pino;
1008 	offset_t off, next;
1009 	gfs_dir_t *dp = dvp->v_data;
1010 
1011 	error = gfs_get_parent_ino(dvp, cr, ct, &pino, &ino);
1012 	if (error)
1013 		return (error);
1014 
1015 	if ((error = gfs_readdir_init(&gstate, dp->gfsd_maxlen, 1, uiop,
1016 	    pino, ino, flags)) != 0)
1017 		return (error);
1018 
1019 	while ((error = gfs_readdir_pred(&gstate, uiop, &off)) == 0 &&
1020 	    !eof) {
1021 
1022 		if (off >= 0 && off < dp->gfsd_nstatic) {
1023 			ino = dp->gfsd_inode(dvp, off);
1024 
1025 			if ((error = gfs_readdir_emit(&gstate, uiop,
1026 			    off, ino, dp->gfsd_static[off].gfse_name, 0))
1027 			    != 0)
1028 				break;
1029 
1030 		} else if (dp->gfsd_readdir) {
1031 			off -= dp->gfsd_nstatic;
1032 
1033 			if ((error = dp->gfsd_readdir(dvp,
1034 			    gstate.grd_dirent, &eof, &off, &next,
1035 			    data, flags)) != 0 || eof)
1036 				break;
1037 
1038 			off += dp->gfsd_nstatic + 2;
1039 			next += dp->gfsd_nstatic + 2;
1040 
1041 			if ((error = gfs_readdir_emit_int(&gstate, uiop,
1042 			    next)) != 0)
1043 				break;
1044 		} else {
1045 			/*
1046 			 * Offset is beyond the end of the static entries, and
1047 			 * we have no dynamic entries.  Set EOF.
1048 			 */
1049 			eof = 1;
1050 		}
1051 	}
1052 
1053 	return (gfs_readdir_fini(&gstate, error, eofp, eof));
1054 }
1055 
1056 
1057 /*
1058  * gfs_vop_lookup: VOP_LOOKUP() entry point
1059  *
1060  * For use directly in vnode ops table.  Given a GFS directory, calls
1061  * gfs_dir_lookup() as necessary.
1062  */
1063 /* ARGSUSED */
1064 int
gfs_vop_lookup(vnode_t * dvp,char * nm,vnode_t ** vpp,pathname_t * pnp,int flags,vnode_t * rdir,cred_t * cr,caller_context_t * ct,int * direntflags,pathname_t * realpnp)1065 gfs_vop_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp,
1066     int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,
1067     int *direntflags, pathname_t *realpnp)
1068 {
1069 	return (gfs_dir_lookup(dvp, nm, vpp, cr, flags, direntflags, realpnp));
1070 }
1071 
1072 /*
1073  * gfs_vop_readdir: VOP_READDIR() entry point
1074  *
1075  * For use directly in vnode ops table.  Given a GFS directory, calls
1076  * gfs_dir_readdir() as necessary.
1077  */
1078 /* ARGSUSED */
1079 int
gfs_vop_readdir(vnode_t * vp,uio_t * uiop,cred_t * cr,int * eofp,caller_context_t * ct,int flags)1080 gfs_vop_readdir(vnode_t *vp, uio_t *uiop, cred_t *cr, int *eofp,
1081     caller_context_t *ct, int flags)
1082 {
1083 	return (gfs_dir_readdir(vp, uiop, eofp, NULL, cr, ct, flags));
1084 }
1085 
1086 
1087 /*
1088  * gfs_vop_map: VOP_MAP() entry point
1089  *
1090  * Convenient routine for handling pseudo-files that wish to allow mmap() calls.
1091  * This function only works for readonly files, and uses the read function for
1092  * the vnode to fill in the data.  The mapped data is immediately faulted in and
1093  * filled with the necessary data during this call; there are no getpage() or
1094  * putpage() routines.
1095  */
1096 /* ARGSUSED */
1097 int
gfs_vop_map(vnode_t * vp,offset_t off,struct as * as,caddr_t * addrp,size_t len,uchar_t prot,uchar_t maxprot,uint_t flags,cred_t * cred,caller_context_t * ct)1098 gfs_vop_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
1099     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cred,
1100     caller_context_t *ct)
1101 {
1102 	int rv;
1103 	ssize_t resid = len;
1104 
1105 	/*
1106 	 * Check for bad parameters
1107 	 */
1108 #ifdef _ILP32
1109 	if (len > MAXOFF_T)
1110 		return (ENOMEM);
1111 #endif
1112 	if (vp->v_flag & VNOMAP)
1113 		return (ENOTSUP);
1114 	if (off > MAXOFF_T)
1115 		return (EFBIG);
1116 	if ((long)off < 0 || (long)(off + len) < 0)
1117 		return (EINVAL);
1118 	if (vp->v_type != VREG)
1119 		return (ENODEV);
1120 	if ((prot & (PROT_EXEC | PROT_WRITE)) != 0)
1121 		return (EACCES);
1122 
1123 	/*
1124 	 * Find appropriate address if needed, otherwise clear address range.
1125 	 */
1126 	as_rangelock(as);
1127 	rv = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
1128 	if (rv != 0) {
1129 		as_rangeunlock(as);
1130 		return (rv);
1131 	}
1132 
1133 	/*
1134 	 * Create mapping
1135 	 */
1136 	rv = as_map(as, *addrp, len, segvn_create, zfod_argsp);
1137 	as_rangeunlock(as);
1138 	if (rv != 0)
1139 		return (rv);
1140 
1141 	/*
1142 	 * Fill with data from read()
1143 	 */
1144 	rv = vn_rdwr(UIO_READ, vp, *addrp, len, off, UIO_USERSPACE,
1145 	    0, (rlim64_t)0, cred, &resid);
1146 
1147 	if (rv == 0 && resid != 0)
1148 		rv = ENXIO;
1149 
1150 	if (rv != 0) {
1151 		as_rangelock(as);
1152 		(void) as_unmap(as, *addrp, len);
1153 		as_rangeunlock(as);
1154 	}
1155 
1156 	return (rv);
1157 }
1158 
1159 /*
1160  * gfs_vop_inactive: VOP_INACTIVE() entry point
1161  *
1162  * Given a vnode that is a GFS file or directory, call gfs_file_inactive() or
1163  * gfs_dir_inactive() as necessary, and kmem_free()s associated private data.
1164  */
1165 /* ARGSUSED */
1166 void
gfs_vop_inactive(vnode_t * vp,cred_t * cr,caller_context_t * ct)1167 gfs_vop_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
1168 {
1169 	gfs_file_t *fp = vp->v_data;
1170 	void *data;
1171 
1172 	if (fp->gfs_type == GFS_DIR)
1173 		data = gfs_dir_inactive(vp);
1174 	else
1175 		data = gfs_file_inactive(vp);
1176 
1177 	if (data != NULL)
1178 		kmem_free(data, fp->gfs_size);
1179 }
1180