1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2011 NetApp, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  */
30 /*
31  * This file and its contents are supplied under the terms of the
32  * Common Development and Distribution License ("CDDL"), version 1.0.
33  * You may only use this file in accordance with the terms of version
34  * 1.0 of the CDDL.
35  *
36  * A full copy of the text of the CDDL should have accompanied this
37  * source.  A copy of the CDDL is also available via the Internet at
38  * http://www.illumos.org/license/CDDL.
39  *
40  * Copyright 2015 Pluribus Networks Inc.
41  * Copyright 2019 Joyent, Inc.
42  * Copyright 2021 Oxide Computer Company
43  */
44 
45 #include <sys/cdefs.h>
46 __FBSDID("$FreeBSD$");
47 
48 #include <sys/param.h>
49 #include <sys/sysctl.h>
50 #include <sys/ioctl.h>
51 #ifdef	__FreeBSD__
52 #include <sys/linker.h>
53 #endif
54 #include <sys/mman.h>
55 #include <sys/module.h>
56 #include <sys/_iovec.h>
57 #include <sys/cpuset.h>
58 
59 #include <x86/segments.h>
60 #include <machine/specialreg.h>
61 
62 #include <errno.h>
63 #include <stdio.h>
64 #include <stdlib.h>
65 #include <assert.h>
66 #include <string.h>
67 #include <fcntl.h>
68 #include <unistd.h>
69 
70 #include <libutil.h>
71 
72 #include <machine/vmm.h>
73 #include <machine/vmm_dev.h>
74 
75 #include "vmmapi.h"
76 
77 #define	MB	(1024 * 1024UL)
78 #define	GB	(1024 * 1024 * 1024UL)
79 
80 #ifndef __FreeBSD__
81 /* shim to no-op for now */
82 #define	MAP_NOCORE		0
83 #define	MAP_ALIGNED_SUPER	0
84 
85 /* Rely on PROT_NONE for guard purposes */
86 #define	MAP_GUARD		(MAP_PRIVATE | MAP_ANON | MAP_NORESERVE)
87 
88 #define	_Thread_local		__thread
89 #endif
90 
91 /*
92  * Size of the guard region before and after the virtual address space
93  * mapping the guest physical memory. This must be a multiple of the
94  * superpage size for performance reasons.
95  */
96 #define	VM_MMAP_GUARD_SIZE	(4 * MB)
97 
98 #define	PROT_RW		(PROT_READ | PROT_WRITE)
99 #define	PROT_ALL	(PROT_READ | PROT_WRITE | PROT_EXEC)
100 
101 struct vmctx {
102 	int	fd;
103 	uint32_t lowmem_limit;
104 	int	memflags;
105 	size_t	lowmem;
106 	size_t	highmem;
107 	char	*baseaddr;
108 	char	*name;
109 };
110 
111 #ifdef	__FreeBSD__
112 #define	CREATE(x)  sysctlbyname("hw.vmm.create", NULL, NULL, (x), strlen((x)))
113 #define	DESTROY(x) sysctlbyname("hw.vmm.destroy", NULL, NULL, (x), strlen((x)))
114 
115 int
vm_create(const char * name)116 vm_create(const char *name)
117 {
118 	/* Try to load vmm(4) module before creating a guest. */
119 	if (modfind("vmm") < 0)
120 		kldload("vmm");
121 	return (CREATE(name));
122 }
123 
124 void
vm_destroy(struct vmctx * vm)125 vm_destroy(struct vmctx *vm)
126 {
127 	assert(vm != NULL);
128 
129 	if (vm->fd >= 0)
130 		close(vm->fd);
131 	DESTROY(vm->name);
132 
133 	free(vm);
134 }
135 
136 #else
137 static int
vm_do_ctl(int cmd,void * req)138 vm_do_ctl(int cmd, void *req)
139 {
140 	int ctl_fd;
141 
142 	ctl_fd = open(VMM_CTL_DEV, O_EXCL | O_RDWR);
143 	if (ctl_fd < 0) {
144 		return (-1);
145 	}
146 
147 	if (ioctl(ctl_fd, cmd, req) == -1) {
148 		int err = errno;
149 
150 		/* Do not lose ioctl errno through the close(2) */
151 		(void) close(ctl_fd);
152 		errno = err;
153 		return (-1);
154 	}
155 	(void) close(ctl_fd);
156 
157 	return (0);
158 }
159 
160 int
vm_create(const char * name,uint64_t flags)161 vm_create(const char *name, uint64_t flags)
162 {
163 	struct vm_create_req req;
164 
165 	(void) strncpy(req.name, name, VM_MAX_NAMELEN);
166 	req.flags = flags;
167 
168 	return (vm_do_ctl(VMM_CREATE_VM, &req));
169 }
170 
171 void
vm_close(struct vmctx * vm)172 vm_close(struct vmctx *vm)
173 {
174 	assert(vm != NULL);
175 	assert(vm->fd >= 0);
176 
177 	(void) close(vm->fd);
178 
179 	free(vm);
180 }
181 
182 void
vm_destroy(struct vmctx * vm)183 vm_destroy(struct vmctx *vm)
184 {
185 	struct vm_destroy_req req;
186 
187 	assert(vm != NULL);
188 
189 	if (vm->fd >= 0) {
190 		(void) close(vm->fd);
191 		vm->fd = -1;
192 	}
193 
194 	(void) strncpy(req.name, vm->name, VM_MAX_NAMELEN);
195 	(void) vm_do_ctl(VMM_DESTROY_VM, &req);
196 
197 	free(vm);
198 }
199 #endif
200 
201 static int
vm_device_open(const char * name)202 vm_device_open(const char *name)
203 {
204 	int fd, len;
205 	char *vmfile;
206 
207 	len = strlen("/dev/vmm/") + strlen(name) + 1;
208 	vmfile = malloc(len);
209 	assert(vmfile != NULL);
210 	snprintf(vmfile, len, "/dev/vmm/%s", name);
211 
212 	/* Open the device file */
213 	fd = open(vmfile, O_RDWR, 0);
214 
215 	free(vmfile);
216 	return (fd);
217 }
218 
219 struct vmctx *
vm_open(const char * name)220 vm_open(const char *name)
221 {
222 	struct vmctx *vm;
223 	int saved_errno;
224 
225 	vm = malloc(sizeof(struct vmctx) + strlen(name) + 1);
226 	assert(vm != NULL);
227 
228 	vm->fd = -1;
229 	vm->memflags = 0;
230 	vm->lowmem_limit = 3 * GB;
231 	vm->name = (char *)(vm + 1);
232 	strcpy(vm->name, name);
233 
234 	if ((vm->fd = vm_device_open(vm->name)) < 0)
235 		goto err;
236 
237 	return (vm);
238 err:
239 	saved_errno = errno;
240 	free(vm);
241 	errno = saved_errno;
242 	return (NULL);
243 }
244 
245 
246 int
vm_parse_memsize(const char * opt,size_t * ret_memsize)247 vm_parse_memsize(const char *opt, size_t *ret_memsize)
248 {
249 	char *endptr;
250 	size_t optval;
251 	int error;
252 
253 	optval = strtoul(opt, &endptr, 0);
254 	if (*opt != '\0' && *endptr == '\0') {
255 		/*
256 		 * For the sake of backward compatibility if the memory size
257 		 * specified on the command line is less than a megabyte then
258 		 * it is interpreted as being in units of MB.
259 		 */
260 		if (optval < MB)
261 			optval *= MB;
262 		*ret_memsize = optval;
263 		error = 0;
264 	} else
265 		error = expand_number(opt, ret_memsize);
266 
267 	return (error);
268 }
269 
270 uint32_t
vm_get_lowmem_limit(struct vmctx * ctx)271 vm_get_lowmem_limit(struct vmctx *ctx)
272 {
273 
274 	return (ctx->lowmem_limit);
275 }
276 
277 void
vm_set_lowmem_limit(struct vmctx * ctx,uint32_t limit)278 vm_set_lowmem_limit(struct vmctx *ctx, uint32_t limit)
279 {
280 
281 	ctx->lowmem_limit = limit;
282 }
283 
284 void
vm_set_memflags(struct vmctx * ctx,int flags)285 vm_set_memflags(struct vmctx *ctx, int flags)
286 {
287 
288 	ctx->memflags = flags;
289 }
290 
291 int
vm_get_memflags(struct vmctx * ctx)292 vm_get_memflags(struct vmctx *ctx)
293 {
294 
295 	return (ctx->memflags);
296 }
297 
298 /*
299  * Map segment 'segid' starting at 'off' into guest address range [gpa,gpa+len).
300  */
301 int
vm_mmap_memseg(struct vmctx * ctx,vm_paddr_t gpa,int segid,vm_ooffset_t off,size_t len,int prot)302 vm_mmap_memseg(struct vmctx *ctx, vm_paddr_t gpa, int segid, vm_ooffset_t off,
303     size_t len, int prot)
304 {
305 	struct vm_memmap memmap;
306 	int error, flags;
307 
308 	memmap.gpa = gpa;
309 	memmap.segid = segid;
310 	memmap.segoff = off;
311 	memmap.len = len;
312 	memmap.prot = prot;
313 	memmap.flags = 0;
314 
315 	if (ctx->memflags & VM_MEM_F_WIRED)
316 		memmap.flags |= VM_MEMMAP_F_WIRED;
317 
318 	/*
319 	 * If this mapping already exists then don't create it again. This
320 	 * is the common case for SYSMEM mappings created by bhyveload(8).
321 	 */
322 	error = vm_mmap_getnext(ctx, &gpa, &segid, &off, &len, &prot, &flags);
323 	if (error == 0 && gpa == memmap.gpa) {
324 		if (segid != memmap.segid || off != memmap.segoff ||
325 		    prot != memmap.prot || flags != memmap.flags) {
326 			errno = EEXIST;
327 			return (-1);
328 		} else {
329 			return (0);
330 		}
331 	}
332 
333 	error = ioctl(ctx->fd, VM_MMAP_MEMSEG, &memmap);
334 	return (error);
335 }
336 
337 int
vm_munmap_memseg(struct vmctx * ctx,vm_paddr_t gpa,size_t len)338 vm_munmap_memseg(struct vmctx *ctx, vm_paddr_t gpa, size_t len)
339 {
340 	struct vm_munmap munmap;
341 	int error;
342 
343 	munmap.gpa = gpa;
344 	munmap.len = len;
345 
346 	error = ioctl(ctx->fd, VM_MUNMAP_MEMSEG, &munmap);
347 	return (error);
348 }
349 
350 int
vm_mmap_getnext(struct vmctx * ctx,vm_paddr_t * gpa,int * segid,vm_ooffset_t * segoff,size_t * len,int * prot,int * flags)351 vm_mmap_getnext(struct vmctx *ctx, vm_paddr_t *gpa, int *segid,
352     vm_ooffset_t *segoff, size_t *len, int *prot, int *flags)
353 {
354 	struct vm_memmap memmap;
355 	int error;
356 
357 	bzero(&memmap, sizeof(struct vm_memmap));
358 	memmap.gpa = *gpa;
359 	error = ioctl(ctx->fd, VM_MMAP_GETNEXT, &memmap);
360 	if (error == 0) {
361 		*gpa = memmap.gpa;
362 		*segid = memmap.segid;
363 		*segoff = memmap.segoff;
364 		*len = memmap.len;
365 		*prot = memmap.prot;
366 		*flags = memmap.flags;
367 	}
368 	return (error);
369 }
370 
371 /*
372  * Return 0 if the segments are identical and non-zero otherwise.
373  *
374  * This is slightly complicated by the fact that only device memory segments
375  * are named.
376  */
377 static int
cmpseg(size_t len,const char * str,size_t len2,const char * str2)378 cmpseg(size_t len, const char *str, size_t len2, const char *str2)
379 {
380 
381 	if (len == len2) {
382 		if ((!str && !str2) || (str && str2 && !strcmp(str, str2)))
383 			return (0);
384 	}
385 	return (-1);
386 }
387 
388 static int
vm_alloc_memseg(struct vmctx * ctx,int segid,size_t len,const char * name)389 vm_alloc_memseg(struct vmctx *ctx, int segid, size_t len, const char *name)
390 {
391 	struct vm_memseg memseg;
392 	size_t n;
393 	int error;
394 
395 	/*
396 	 * If the memory segment has already been created then just return.
397 	 * This is the usual case for the SYSMEM segment created by userspace
398 	 * loaders like bhyveload(8).
399 	 */
400 	error = vm_get_memseg(ctx, segid, &memseg.len, memseg.name,
401 	    sizeof(memseg.name));
402 	if (error)
403 		return (error);
404 
405 	if (memseg.len != 0) {
406 		if (cmpseg(len, name, memseg.len, VM_MEMSEG_NAME(&memseg))) {
407 			errno = EINVAL;
408 			return (-1);
409 		} else {
410 			return (0);
411 		}
412 	}
413 
414 	bzero(&memseg, sizeof(struct vm_memseg));
415 	memseg.segid = segid;
416 	memseg.len = len;
417 	if (name != NULL) {
418 		n = strlcpy(memseg.name, name, sizeof(memseg.name));
419 		if (n >= sizeof(memseg.name)) {
420 			errno = ENAMETOOLONG;
421 			return (-1);
422 		}
423 	}
424 
425 	error = ioctl(ctx->fd, VM_ALLOC_MEMSEG, &memseg);
426 	return (error);
427 }
428 
429 int
vm_get_memseg(struct vmctx * ctx,int segid,size_t * lenp,char * namebuf,size_t bufsize)430 vm_get_memseg(struct vmctx *ctx, int segid, size_t *lenp, char *namebuf,
431     size_t bufsize)
432 {
433 	struct vm_memseg memseg;
434 	size_t n;
435 	int error;
436 
437 	memseg.segid = segid;
438 	error = ioctl(ctx->fd, VM_GET_MEMSEG, &memseg);
439 	if (error == 0) {
440 		*lenp = memseg.len;
441 		n = strlcpy(namebuf, memseg.name, bufsize);
442 		if (n >= bufsize) {
443 			errno = ENAMETOOLONG;
444 			error = -1;
445 		}
446 	}
447 	return (error);
448 }
449 
450 static int
451 #ifdef __FreeBSD__
setup_memory_segment(struct vmctx * ctx,vm_paddr_t gpa,size_t len,char * base)452 setup_memory_segment(struct vmctx *ctx, vm_paddr_t gpa, size_t len, char *base)
453 #else
454 setup_memory_segment(struct vmctx *ctx, int segid, vm_paddr_t gpa, size_t len,
455     char *base)
456 #endif
457 {
458 	char *ptr;
459 	int error, flags;
460 
461 	/* Map 'len' bytes starting at 'gpa' in the guest address space */
462 #ifdef __FreeBSD__
463 	error = vm_mmap_memseg(ctx, gpa, VM_SYSMEM, gpa, len, PROT_ALL);
464 #else
465 	/*
466 	 * As we use two segments for lowmem/highmem the offset within the
467 	 * segment is 0 on illumos.
468 	 */
469 	error = vm_mmap_memseg(ctx, gpa, segid, 0, len, PROT_ALL);
470 #endif
471 	if (error)
472 		return (error);
473 
474 	flags = MAP_SHARED | MAP_FIXED;
475 	if ((ctx->memflags & VM_MEM_F_INCORE) == 0)
476 		flags |= MAP_NOCORE;
477 
478 	/* mmap into the process address space on the host */
479 	ptr = mmap(base + gpa, len, PROT_RW, flags, ctx->fd, gpa);
480 	if (ptr == MAP_FAILED)
481 		return (-1);
482 
483 	return (0);
484 }
485 
486 int
vm_setup_memory(struct vmctx * ctx,size_t memsize,enum vm_mmap_style vms)487 vm_setup_memory(struct vmctx *ctx, size_t memsize, enum vm_mmap_style vms)
488 {
489 	size_t objsize, len;
490 	vm_paddr_t gpa;
491 	char *baseaddr, *ptr;
492 	int error;
493 
494 	assert(vms == VM_MMAP_ALL);
495 
496 	/*
497 	 * If 'memsize' cannot fit entirely in the 'lowmem' segment then
498 	 * create another 'highmem' segment above 4GB for the remainder.
499 	 */
500 	if (memsize > ctx->lowmem_limit) {
501 		ctx->lowmem = ctx->lowmem_limit;
502 		ctx->highmem = memsize - ctx->lowmem_limit;
503 		objsize = 4*GB + ctx->highmem;
504 	} else {
505 		ctx->lowmem = memsize;
506 		ctx->highmem = 0;
507 		objsize = ctx->lowmem;
508 	}
509 
510 #ifdef __FreeBSD__
511 	error = vm_alloc_memseg(ctx, VM_SYSMEM, objsize, NULL);
512 	if (error)
513 		return (error);
514 #endif
515 
516 	/*
517 	 * Stake out a contiguous region covering the guest physical memory
518 	 * and the adjoining guard regions.
519 	 */
520 	len = VM_MMAP_GUARD_SIZE + objsize + VM_MMAP_GUARD_SIZE;
521 	ptr = mmap(NULL, len, PROT_NONE, MAP_GUARD | MAP_ALIGNED_SUPER, -1, 0);
522 	if (ptr == MAP_FAILED)
523 		return (-1);
524 
525 	baseaddr = ptr + VM_MMAP_GUARD_SIZE;
526 
527 #ifdef __FreeBSD__
528 	if (ctx->highmem > 0) {
529 		gpa = 4*GB;
530 		len = ctx->highmem;
531 		error = setup_memory_segment(ctx, gpa, len, baseaddr);
532 		if (error)
533 			return (error);
534 	}
535 
536 	if (ctx->lowmem > 0) {
537 		gpa = 0;
538 		len = ctx->lowmem;
539 		error = setup_memory_segment(ctx, gpa, len, baseaddr);
540 		if (error)
541 			return (error);
542 	}
543 #else
544 	if (ctx->highmem > 0) {
545 		error = vm_alloc_memseg(ctx, VM_HIGHMEM, ctx->highmem, NULL);
546 		if (error)
547 			return (error);
548 		gpa = 4*GB;
549 		len = ctx->highmem;
550 		error = setup_memory_segment(ctx, VM_HIGHMEM, gpa, len, baseaddr);
551 		if (error)
552 			return (error);
553 	}
554 
555 	if (ctx->lowmem > 0) {
556 		error = vm_alloc_memseg(ctx, VM_LOWMEM, ctx->lowmem, NULL);
557 		if (error)
558 			return (error);
559 		gpa = 0;
560 		len = ctx->lowmem;
561 		error = setup_memory_segment(ctx, VM_LOWMEM, gpa, len, baseaddr);
562 		if (error)
563 			return (error);
564 	}
565 #endif
566 
567 	ctx->baseaddr = baseaddr;
568 
569 	return (0);
570 }
571 
572 /*
573  * Returns a non-NULL pointer if [gaddr, gaddr+len) is entirely contained in
574  * the lowmem or highmem regions.
575  *
576  * In particular return NULL if [gaddr, gaddr+len) falls in guest MMIO region.
577  * The instruction emulation code depends on this behavior.
578  */
579 void *
vm_map_gpa(struct vmctx * ctx,vm_paddr_t gaddr,size_t len)580 vm_map_gpa(struct vmctx *ctx, vm_paddr_t gaddr, size_t len)
581 {
582 
583 	if (ctx->lowmem > 0) {
584 		if (gaddr < ctx->lowmem && len <= ctx->lowmem &&
585 		    gaddr + len <= ctx->lowmem)
586 			return (ctx->baseaddr + gaddr);
587 	}
588 
589 	if (ctx->highmem > 0) {
590                 if (gaddr >= 4*GB) {
591 			if (gaddr < 4*GB + ctx->highmem &&
592 			    len <= ctx->highmem &&
593 			    gaddr + len <= 4*GB + ctx->highmem)
594 				return (ctx->baseaddr + gaddr);
595 		}
596 	}
597 
598 	return (NULL);
599 }
600 
601 size_t
vm_get_lowmem_size(struct vmctx * ctx)602 vm_get_lowmem_size(struct vmctx *ctx)
603 {
604 
605 	return (ctx->lowmem);
606 }
607 
608 size_t
vm_get_highmem_size(struct vmctx * ctx)609 vm_get_highmem_size(struct vmctx *ctx)
610 {
611 
612 	return (ctx->highmem);
613 }
614 
615 #ifndef __FreeBSD__
616 int
vm_get_devmem_offset(struct vmctx * ctx,int segid,off_t * mapoff)617 vm_get_devmem_offset(struct vmctx *ctx, int segid, off_t *mapoff)
618 {
619 	struct vm_devmem_offset vdo;
620 	int error;
621 
622 	vdo.segid = segid;
623 	error = ioctl(ctx->fd, VM_DEVMEM_GETOFFSET, &vdo);
624 	if (error == 0)
625 		*mapoff = vdo.offset;
626 
627 	return (error);
628 }
629 #endif
630 
631 void *
vm_create_devmem(struct vmctx * ctx,int segid,const char * name,size_t len)632 vm_create_devmem(struct vmctx *ctx, int segid, const char *name, size_t len)
633 {
634 #ifdef	__FreeBSD__
635 	char pathname[MAXPATHLEN];
636 #endif
637 	size_t len2;
638 	char *base, *ptr;
639 	int fd, error, flags;
640 	off_t mapoff;
641 
642 	fd = -1;
643 	ptr = MAP_FAILED;
644 	if (name == NULL || strlen(name) == 0) {
645 		errno = EINVAL;
646 		goto done;
647 	}
648 
649 	error = vm_alloc_memseg(ctx, segid, len, name);
650 	if (error)
651 		goto done;
652 
653 #ifdef	__FreeBSD__
654 	strlcpy(pathname, "/dev/vmm.io/", sizeof(pathname));
655 	strlcat(pathname, ctx->name, sizeof(pathname));
656 	strlcat(pathname, ".", sizeof(pathname));
657 	strlcat(pathname, name, sizeof(pathname));
658 
659 	fd = open(pathname, O_RDWR);
660 	if (fd < 0)
661 		goto done;
662 #else
663 	if (vm_get_devmem_offset(ctx, segid, &mapoff) != 0)
664 		goto done;
665 #endif
666 
667 	/*
668 	 * Stake out a contiguous region covering the device memory and the
669 	 * adjoining guard regions.
670 	 */
671 	len2 = VM_MMAP_GUARD_SIZE + len + VM_MMAP_GUARD_SIZE;
672 	base = mmap(NULL, len2, PROT_NONE, MAP_GUARD | MAP_ALIGNED_SUPER, -1,
673 	    0);
674 	if (base == MAP_FAILED)
675 		goto done;
676 
677 	flags = MAP_SHARED | MAP_FIXED;
678 	if ((ctx->memflags & VM_MEM_F_INCORE) == 0)
679 		flags |= MAP_NOCORE;
680 
681 #ifdef	__FreeBSD__
682 	/* mmap the devmem region in the host address space */
683 	ptr = mmap(base + VM_MMAP_GUARD_SIZE, len, PROT_RW, flags, fd, 0);
684 #else
685 	/* mmap the devmem region in the host address space */
686 	ptr = mmap(base + VM_MMAP_GUARD_SIZE, len, PROT_RW, flags, ctx->fd,
687 	    mapoff);
688 #endif
689 done:
690 	if (fd >= 0)
691 		close(fd);
692 	return (ptr);
693 }
694 
695 int
vm_set_desc(struct vmctx * ctx,int vcpu,int reg,uint64_t base,uint32_t limit,uint32_t access)696 vm_set_desc(struct vmctx *ctx, int vcpu, int reg,
697 	    uint64_t base, uint32_t limit, uint32_t access)
698 {
699 	int error;
700 	struct vm_seg_desc vmsegdesc;
701 
702 	bzero(&vmsegdesc, sizeof(vmsegdesc));
703 	vmsegdesc.cpuid = vcpu;
704 	vmsegdesc.regnum = reg;
705 	vmsegdesc.desc.base = base;
706 	vmsegdesc.desc.limit = limit;
707 	vmsegdesc.desc.access = access;
708 
709 	error = ioctl(ctx->fd, VM_SET_SEGMENT_DESCRIPTOR, &vmsegdesc);
710 	return (error);
711 }
712 
713 int
vm_get_desc(struct vmctx * ctx,int vcpu,int reg,uint64_t * base,uint32_t * limit,uint32_t * access)714 vm_get_desc(struct vmctx *ctx, int vcpu, int reg,
715 	    uint64_t *base, uint32_t *limit, uint32_t *access)
716 {
717 	int error;
718 	struct vm_seg_desc vmsegdesc;
719 
720 	bzero(&vmsegdesc, sizeof(vmsegdesc));
721 	vmsegdesc.cpuid = vcpu;
722 	vmsegdesc.regnum = reg;
723 
724 	error = ioctl(ctx->fd, VM_GET_SEGMENT_DESCRIPTOR, &vmsegdesc);
725 	if (error == 0) {
726 		*base = vmsegdesc.desc.base;
727 		*limit = vmsegdesc.desc.limit;
728 		*access = vmsegdesc.desc.access;
729 	}
730 	return (error);
731 }
732 
733 int
vm_get_seg_desc(struct vmctx * ctx,int vcpu,int reg,struct seg_desc * seg_desc)734 vm_get_seg_desc(struct vmctx *ctx, int vcpu, int reg, struct seg_desc *seg_desc)
735 {
736 	int error;
737 
738 	error = vm_get_desc(ctx, vcpu, reg, &seg_desc->base, &seg_desc->limit,
739 	    &seg_desc->access);
740 	return (error);
741 }
742 
743 int
vm_set_register(struct vmctx * ctx,int vcpu,int reg,uint64_t val)744 vm_set_register(struct vmctx *ctx, int vcpu, int reg, uint64_t val)
745 {
746 	int error;
747 	struct vm_register vmreg;
748 
749 	bzero(&vmreg, sizeof(vmreg));
750 	vmreg.cpuid = vcpu;
751 	vmreg.regnum = reg;
752 	vmreg.regval = val;
753 
754 	error = ioctl(ctx->fd, VM_SET_REGISTER, &vmreg);
755 	return (error);
756 }
757 
758 int
vm_get_register(struct vmctx * ctx,int vcpu,int reg,uint64_t * ret_val)759 vm_get_register(struct vmctx *ctx, int vcpu, int reg, uint64_t *ret_val)
760 {
761 	int error;
762 	struct vm_register vmreg;
763 
764 	bzero(&vmreg, sizeof(vmreg));
765 	vmreg.cpuid = vcpu;
766 	vmreg.regnum = reg;
767 
768 	error = ioctl(ctx->fd, VM_GET_REGISTER, &vmreg);
769 	*ret_val = vmreg.regval;
770 	return (error);
771 }
772 
773 int
vm_set_register_set(struct vmctx * ctx,int vcpu,unsigned int count,const int * regnums,uint64_t * regvals)774 vm_set_register_set(struct vmctx *ctx, int vcpu, unsigned int count,
775     const int *regnums, uint64_t *regvals)
776 {
777 	int error;
778 	struct vm_register_set vmregset;
779 
780 	bzero(&vmregset, sizeof(vmregset));
781 	vmregset.cpuid = vcpu;
782 	vmregset.count = count;
783 	vmregset.regnums = regnums;
784 	vmregset.regvals = regvals;
785 
786 	error = ioctl(ctx->fd, VM_SET_REGISTER_SET, &vmregset);
787 	return (error);
788 }
789 
790 int
vm_get_register_set(struct vmctx * ctx,int vcpu,unsigned int count,const int * regnums,uint64_t * regvals)791 vm_get_register_set(struct vmctx *ctx, int vcpu, unsigned int count,
792     const int *regnums, uint64_t *regvals)
793 {
794 	int error;
795 	struct vm_register_set vmregset;
796 
797 	bzero(&vmregset, sizeof(vmregset));
798 	vmregset.cpuid = vcpu;
799 	vmregset.count = count;
800 	vmregset.regnums = regnums;
801 	vmregset.regvals = regvals;
802 
803 	error = ioctl(ctx->fd, VM_GET_REGISTER_SET, &vmregset);
804 	return (error);
805 }
806 
807 int
vm_run(struct vmctx * ctx,int vcpu,const struct vm_entry * vm_entry,struct vm_exit * vm_exit)808 vm_run(struct vmctx *ctx, int vcpu, const struct vm_entry *vm_entry,
809     struct vm_exit *vm_exit)
810 {
811 	struct vm_entry entry;
812 
813 	bcopy(vm_entry, &entry, sizeof (entry));
814 	entry.cpuid = vcpu;
815 	entry.exit_data = vm_exit;
816 
817 	return (ioctl(ctx->fd, VM_RUN, &entry));
818 }
819 
820 int
vm_suspend(struct vmctx * ctx,enum vm_suspend_how how)821 vm_suspend(struct vmctx *ctx, enum vm_suspend_how how)
822 {
823 	struct vm_suspend vmsuspend;
824 
825 	bzero(&vmsuspend, sizeof(vmsuspend));
826 	vmsuspend.how = how;
827 	return (ioctl(ctx->fd, VM_SUSPEND, &vmsuspend));
828 }
829 
830 #ifndef __FreeBSD__
831 int
vm_reinit(struct vmctx * ctx,uint64_t flags)832 vm_reinit(struct vmctx *ctx, uint64_t flags)
833 {
834 	struct vm_reinit reinit = {
835 		.flags = flags
836 	};
837 
838 	return (ioctl(ctx->fd, VM_REINIT, &reinit));
839 }
840 #else
841 int
vm_reinit(struct vmctx * ctx)842 vm_reinit(struct vmctx *ctx)
843 {
844 
845 	return (ioctl(ctx->fd, VM_REINIT, 0));
846 }
847 #endif
848 
849 int
vm_inject_exception(struct vmctx * ctx,int vcpu,int vector,int errcode_valid,uint32_t errcode,int restart_instruction)850 vm_inject_exception(struct vmctx *ctx, int vcpu, int vector, int errcode_valid,
851     uint32_t errcode, int restart_instruction)
852 {
853 	struct vm_exception exc;
854 
855 	exc.cpuid = vcpu;
856 	exc.vector = vector;
857 	exc.error_code = errcode;
858 	exc.error_code_valid = errcode_valid;
859 	exc.restart_instruction = restart_instruction;
860 
861 	return (ioctl(ctx->fd, VM_INJECT_EXCEPTION, &exc));
862 }
863 
864 #ifndef __FreeBSD__
865 void
vm_inject_fault(struct vmctx * ctx,int vcpu,int vector,int errcode_valid,int errcode)866 vm_inject_fault(struct vmctx *ctx, int vcpu, int vector, int errcode_valid,
867     int errcode)
868 {
869 	int error;
870 	struct vm_exception exc;
871 
872 	exc.cpuid = vcpu;
873 	exc.vector = vector;
874 	exc.error_code = errcode;
875 	exc.error_code_valid = errcode_valid;
876 	exc.restart_instruction = 1;
877 	error = ioctl(ctx->fd, VM_INJECT_EXCEPTION, &exc);
878 
879 	assert(error == 0);
880 }
881 #endif /* __FreeBSD__ */
882 
883 int
vm_apicid2vcpu(struct vmctx * ctx __unused,int apicid)884 vm_apicid2vcpu(struct vmctx *ctx __unused, int apicid)
885 {
886 	/*
887 	 * The apic id associated with the 'vcpu' has the same numerical value
888 	 * as the 'vcpu' itself.
889 	 */
890 	return (apicid);
891 }
892 
893 int
vm_lapic_irq(struct vmctx * ctx,int vcpu,int vector)894 vm_lapic_irq(struct vmctx *ctx, int vcpu, int vector)
895 {
896 	struct vm_lapic_irq vmirq;
897 
898 	bzero(&vmirq, sizeof(vmirq));
899 	vmirq.cpuid = vcpu;
900 	vmirq.vector = vector;
901 
902 	return (ioctl(ctx->fd, VM_LAPIC_IRQ, &vmirq));
903 }
904 
905 int
vm_lapic_local_irq(struct vmctx * ctx,int vcpu,int vector)906 vm_lapic_local_irq(struct vmctx *ctx, int vcpu, int vector)
907 {
908 	struct vm_lapic_irq vmirq;
909 
910 	bzero(&vmirq, sizeof(vmirq));
911 	vmirq.cpuid = vcpu;
912 	vmirq.vector = vector;
913 
914 	return (ioctl(ctx->fd, VM_LAPIC_LOCAL_IRQ, &vmirq));
915 }
916 
917 int
vm_lapic_msi(struct vmctx * ctx,uint64_t addr,uint64_t msg)918 vm_lapic_msi(struct vmctx *ctx, uint64_t addr, uint64_t msg)
919 {
920 	struct vm_lapic_msi vmmsi;
921 
922 	bzero(&vmmsi, sizeof(vmmsi));
923 	vmmsi.addr = addr;
924 	vmmsi.msg = msg;
925 
926 	return (ioctl(ctx->fd, VM_LAPIC_MSI, &vmmsi));
927 }
928 
929 int
vm_ioapic_assert_irq(struct vmctx * ctx,int irq)930 vm_ioapic_assert_irq(struct vmctx *ctx, int irq)
931 {
932 	struct vm_ioapic_irq ioapic_irq;
933 
934 	bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq));
935 	ioapic_irq.irq = irq;
936 
937 	return (ioctl(ctx->fd, VM_IOAPIC_ASSERT_IRQ, &ioapic_irq));
938 }
939 
940 int
vm_ioapic_deassert_irq(struct vmctx * ctx,int irq)941 vm_ioapic_deassert_irq(struct vmctx *ctx, int irq)
942 {
943 	struct vm_ioapic_irq ioapic_irq;
944 
945 	bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq));
946 	ioapic_irq.irq = irq;
947 
948 	return (ioctl(ctx->fd, VM_IOAPIC_DEASSERT_IRQ, &ioapic_irq));
949 }
950 
951 int
vm_ioapic_pulse_irq(struct vmctx * ctx,int irq)952 vm_ioapic_pulse_irq(struct vmctx *ctx, int irq)
953 {
954 	struct vm_ioapic_irq ioapic_irq;
955 
956 	bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq));
957 	ioapic_irq.irq = irq;
958 
959 	return (ioctl(ctx->fd, VM_IOAPIC_PULSE_IRQ, &ioapic_irq));
960 }
961 
962 int
vm_ioapic_pincount(struct vmctx * ctx,int * pincount)963 vm_ioapic_pincount(struct vmctx *ctx, int *pincount)
964 {
965 
966 	return (ioctl(ctx->fd, VM_IOAPIC_PINCOUNT, pincount));
967 }
968 
969 int
vm_readwrite_kernemu_device(struct vmctx * ctx,int vcpu,vm_paddr_t gpa,bool write,int size,uint64_t * value)970 vm_readwrite_kernemu_device(struct vmctx *ctx, int vcpu, vm_paddr_t gpa,
971     bool write, int size, uint64_t *value)
972 {
973 	struct vm_readwrite_kernemu_device irp = {
974 		.vcpuid = vcpu,
975 		.access_width = fls(size) - 1,
976 		.gpa = gpa,
977 		.value = write ? *value : ~0ul,
978 	};
979 	long cmd = (write ? VM_SET_KERNEMU_DEV : VM_GET_KERNEMU_DEV);
980 	int rc;
981 
982 	rc = ioctl(ctx->fd, cmd, &irp);
983 	if (rc == 0 && !write)
984 		*value = irp.value;
985 	return (rc);
986 }
987 
988 int
vm_isa_assert_irq(struct vmctx * ctx,int atpic_irq,int ioapic_irq)989 vm_isa_assert_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq)
990 {
991 	struct vm_isa_irq isa_irq;
992 
993 	bzero(&isa_irq, sizeof(struct vm_isa_irq));
994 	isa_irq.atpic_irq = atpic_irq;
995 	isa_irq.ioapic_irq = ioapic_irq;
996 
997 	return (ioctl(ctx->fd, VM_ISA_ASSERT_IRQ, &isa_irq));
998 }
999 
1000 int
vm_isa_deassert_irq(struct vmctx * ctx,int atpic_irq,int ioapic_irq)1001 vm_isa_deassert_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq)
1002 {
1003 	struct vm_isa_irq isa_irq;
1004 
1005 	bzero(&isa_irq, sizeof(struct vm_isa_irq));
1006 	isa_irq.atpic_irq = atpic_irq;
1007 	isa_irq.ioapic_irq = ioapic_irq;
1008 
1009 	return (ioctl(ctx->fd, VM_ISA_DEASSERT_IRQ, &isa_irq));
1010 }
1011 
1012 int
vm_isa_pulse_irq(struct vmctx * ctx,int atpic_irq,int ioapic_irq)1013 vm_isa_pulse_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq)
1014 {
1015 	struct vm_isa_irq isa_irq;
1016 
1017 	bzero(&isa_irq, sizeof(struct vm_isa_irq));
1018 	isa_irq.atpic_irq = atpic_irq;
1019 	isa_irq.ioapic_irq = ioapic_irq;
1020 
1021 	return (ioctl(ctx->fd, VM_ISA_PULSE_IRQ, &isa_irq));
1022 }
1023 
1024 int
vm_isa_set_irq_trigger(struct vmctx * ctx,int atpic_irq,enum vm_intr_trigger trigger)1025 vm_isa_set_irq_trigger(struct vmctx *ctx, int atpic_irq,
1026     enum vm_intr_trigger trigger)
1027 {
1028 	struct vm_isa_irq_trigger isa_irq_trigger;
1029 
1030 	bzero(&isa_irq_trigger, sizeof(struct vm_isa_irq_trigger));
1031 	isa_irq_trigger.atpic_irq = atpic_irq;
1032 	isa_irq_trigger.trigger = trigger;
1033 
1034 	return (ioctl(ctx->fd, VM_ISA_SET_IRQ_TRIGGER, &isa_irq_trigger));
1035 }
1036 
1037 int
vm_inject_nmi(struct vmctx * ctx,int vcpu)1038 vm_inject_nmi(struct vmctx *ctx, int vcpu)
1039 {
1040 	struct vm_nmi vmnmi;
1041 
1042 	bzero(&vmnmi, sizeof(vmnmi));
1043 	vmnmi.cpuid = vcpu;
1044 
1045 	return (ioctl(ctx->fd, VM_INJECT_NMI, &vmnmi));
1046 }
1047 
1048 static const char *capstrmap[] = {
1049 	[VM_CAP_HALT_EXIT]  = "hlt_exit",
1050 	[VM_CAP_MTRAP_EXIT] = "mtrap_exit",
1051 	[VM_CAP_PAUSE_EXIT] = "pause_exit",
1052 #ifdef __FreeBSD__
1053 	[VM_CAP_UNRESTRICTED_GUEST] = "unrestricted_guest",
1054 #endif
1055 	[VM_CAP_ENABLE_INVPCID] = "enable_invpcid",
1056 	[VM_CAP_BPT_EXIT] = "bpt_exit",
1057 };
1058 
1059 int
vm_capability_name2type(const char * capname)1060 vm_capability_name2type(const char *capname)
1061 {
1062 	int i;
1063 
1064 	for (i = 0; i < (int)nitems(capstrmap); i++) {
1065 		if (strcmp(capstrmap[i], capname) == 0)
1066 			return (i);
1067 	}
1068 
1069 	return (-1);
1070 }
1071 
1072 const char *
vm_capability_type2name(int type)1073 vm_capability_type2name(int type)
1074 {
1075 	if (type >= 0 && type < (int)nitems(capstrmap))
1076 		return (capstrmap[type]);
1077 
1078 	return (NULL);
1079 }
1080 
1081 int
vm_get_capability(struct vmctx * ctx,int vcpu,enum vm_cap_type cap,int * retval)1082 vm_get_capability(struct vmctx *ctx, int vcpu, enum vm_cap_type cap,
1083 		  int *retval)
1084 {
1085 	int error;
1086 	struct vm_capability vmcap;
1087 
1088 	bzero(&vmcap, sizeof(vmcap));
1089 	vmcap.cpuid = vcpu;
1090 	vmcap.captype = cap;
1091 
1092 	error = ioctl(ctx->fd, VM_GET_CAPABILITY, &vmcap);
1093 	*retval = vmcap.capval;
1094 	return (error);
1095 }
1096 
1097 int
vm_set_capability(struct vmctx * ctx,int vcpu,enum vm_cap_type cap,int val)1098 vm_set_capability(struct vmctx *ctx, int vcpu, enum vm_cap_type cap, int val)
1099 {
1100 	struct vm_capability vmcap;
1101 
1102 	bzero(&vmcap, sizeof(vmcap));
1103 	vmcap.cpuid = vcpu;
1104 	vmcap.captype = cap;
1105 	vmcap.capval = val;
1106 
1107 	return (ioctl(ctx->fd, VM_SET_CAPABILITY, &vmcap));
1108 }
1109 
1110 #ifdef __FreeBSD__
1111 int
vm_assign_pptdev(struct vmctx * ctx,int bus,int slot,int func)1112 vm_assign_pptdev(struct vmctx *ctx, int bus, int slot, int func)
1113 {
1114 	struct vm_pptdev pptdev;
1115 
1116 	bzero(&pptdev, sizeof(pptdev));
1117 	pptdev.bus = bus;
1118 	pptdev.slot = slot;
1119 	pptdev.func = func;
1120 
1121 	return (ioctl(ctx->fd, VM_BIND_PPTDEV, &pptdev));
1122 }
1123 
1124 int
vm_unassign_pptdev(struct vmctx * ctx,int bus,int slot,int func)1125 vm_unassign_pptdev(struct vmctx *ctx, int bus, int slot, int func)
1126 {
1127 	struct vm_pptdev pptdev;
1128 
1129 	bzero(&pptdev, sizeof(pptdev));
1130 	pptdev.bus = bus;
1131 	pptdev.slot = slot;
1132 	pptdev.func = func;
1133 
1134 	return (ioctl(ctx->fd, VM_UNBIND_PPTDEV, &pptdev));
1135 }
1136 
1137 int
vm_map_pptdev_mmio(struct vmctx * ctx,int bus,int slot,int func,vm_paddr_t gpa,size_t len,vm_paddr_t hpa)1138 vm_map_pptdev_mmio(struct vmctx *ctx, int bus, int slot, int func,
1139 		   vm_paddr_t gpa, size_t len, vm_paddr_t hpa)
1140 {
1141 	struct vm_pptdev_mmio pptmmio;
1142 
1143 	bzero(&pptmmio, sizeof(pptmmio));
1144 	pptmmio.bus = bus;
1145 	pptmmio.slot = slot;
1146 	pptmmio.func = func;
1147 	pptmmio.gpa = gpa;
1148 	pptmmio.len = len;
1149 	pptmmio.hpa = hpa;
1150 
1151 	return (ioctl(ctx->fd, VM_MAP_PPTDEV_MMIO, &pptmmio));
1152 }
1153 
1154 int
vm_unmap_pptdev_mmio(struct vmctx * ctx,int bus,int slot,int func,vm_paddr_t gpa,size_t len)1155 vm_unmap_pptdev_mmio(struct vmctx *ctx, int bus, int slot, int func,
1156 		     vm_paddr_t gpa, size_t len)
1157 {
1158 	struct vm_pptdev_mmio pptmmio;
1159 
1160 	bzero(&pptmmio, sizeof(pptmmio));
1161 	pptmmio.bus = bus;
1162 	pptmmio.slot = slot;
1163 	pptmmio.func = func;
1164 	pptmmio.gpa = gpa;
1165 	pptmmio.len = len;
1166 
1167 	return (ioctl(ctx->fd, VM_UNMAP_PPTDEV_MMIO, &pptmmio));
1168 }
1169 
1170 int
vm_setup_pptdev_msi(struct vmctx * ctx,int vcpu,int bus,int slot,int func,uint64_t addr,uint64_t msg,int numvec)1171 vm_setup_pptdev_msi(struct vmctx *ctx, int vcpu, int bus, int slot, int func,
1172     uint64_t addr, uint64_t msg, int numvec)
1173 {
1174 	struct vm_pptdev_msi pptmsi;
1175 
1176 	bzero(&pptmsi, sizeof(pptmsi));
1177 	pptmsi.vcpu = vcpu;
1178 	pptmsi.bus = bus;
1179 	pptmsi.slot = slot;
1180 	pptmsi.func = func;
1181 	pptmsi.msg = msg;
1182 	pptmsi.addr = addr;
1183 	pptmsi.numvec = numvec;
1184 
1185 	return (ioctl(ctx->fd, VM_PPTDEV_MSI, &pptmsi));
1186 }
1187 
1188 int
vm_setup_pptdev_msix(struct vmctx * ctx,int vcpu,int bus,int slot,int func,int idx,uint64_t addr,uint64_t msg,uint32_t vector_control)1189 vm_setup_pptdev_msix(struct vmctx *ctx, int vcpu, int bus, int slot, int func,
1190     int idx, uint64_t addr, uint64_t msg, uint32_t vector_control)
1191 {
1192 	struct vm_pptdev_msix pptmsix;
1193 
1194 	bzero(&pptmsix, sizeof(pptmsix));
1195 	pptmsix.vcpu = vcpu;
1196 	pptmsix.bus = bus;
1197 	pptmsix.slot = slot;
1198 	pptmsix.func = func;
1199 	pptmsix.idx = idx;
1200 	pptmsix.msg = msg;
1201 	pptmsix.addr = addr;
1202 	pptmsix.vector_control = vector_control;
1203 
1204 	return ioctl(ctx->fd, VM_PPTDEV_MSIX, &pptmsix);
1205 }
1206 
1207 int
vm_get_pptdev_limits(struct vmctx * ctx,int bus,int slot,int func,int * msi_limit,int * msix_limit)1208 vm_get_pptdev_limits(struct vmctx *ctx, int bus, int slot, int func,
1209     int *msi_limit, int *msix_limit)
1210 {
1211 	struct vm_pptdev_limits pptlimits;
1212 	int error;
1213 
1214 	bzero(&pptlimits, sizeof (pptlimits));
1215 	pptlimits.bus = bus;
1216 	pptlimits.slot = slot;
1217 	pptlimits.func = func;
1218 
1219 	error = ioctl(ctx->fd, VM_GET_PPTDEV_LIMITS, &pptlimits);
1220 
1221 	*msi_limit = pptlimits.msi_limit;
1222 	*msix_limit = pptlimits.msix_limit;
1223 
1224 	return (error);
1225 }
1226 
1227 int
vm_disable_pptdev_msix(struct vmctx * ctx,int bus,int slot,int func)1228 vm_disable_pptdev_msix(struct vmctx *ctx, int bus, int slot, int func)
1229 {
1230 	struct vm_pptdev ppt;
1231 
1232 	bzero(&ppt, sizeof(ppt));
1233 	ppt.bus = bus;
1234 	ppt.slot = slot;
1235 	ppt.func = func;
1236 
1237 	return ioctl(ctx->fd, VM_PPTDEV_DISABLE_MSIX, &ppt);
1238 }
1239 
1240 #else /* __FreeBSD__ */
1241 
1242 int
vm_assign_pptdev(struct vmctx * ctx,int pptfd)1243 vm_assign_pptdev(struct vmctx *ctx, int pptfd)
1244 {
1245 	struct vm_pptdev pptdev;
1246 
1247 	pptdev.pptfd = pptfd;
1248 	return (ioctl(ctx->fd, VM_BIND_PPTDEV, &pptdev));
1249 }
1250 
1251 int
vm_unassign_pptdev(struct vmctx * ctx,int pptfd)1252 vm_unassign_pptdev(struct vmctx *ctx, int pptfd)
1253 {
1254 	struct vm_pptdev pptdev;
1255 
1256 	pptdev.pptfd = pptfd;
1257 	return (ioctl(ctx->fd, VM_UNBIND_PPTDEV, &pptdev));
1258 }
1259 
1260 int
vm_map_pptdev_mmio(struct vmctx * ctx,int pptfd,vm_paddr_t gpa,size_t len,vm_paddr_t hpa)1261 vm_map_pptdev_mmio(struct vmctx *ctx, int pptfd, vm_paddr_t gpa, size_t len,
1262     vm_paddr_t hpa)
1263 {
1264 	struct vm_pptdev_mmio pptmmio;
1265 
1266 	pptmmio.pptfd = pptfd;
1267 	pptmmio.gpa = gpa;
1268 	pptmmio.len = len;
1269 	pptmmio.hpa = hpa;
1270 	return (ioctl(ctx->fd, VM_MAP_PPTDEV_MMIO, &pptmmio));
1271 }
1272 
1273 int
vm_unmap_pptdev_mmio(struct vmctx * ctx,int pptfd,vm_paddr_t gpa,size_t len)1274 vm_unmap_pptdev_mmio(struct vmctx *ctx, int pptfd, vm_paddr_t gpa, size_t len)
1275 {
1276 	struct vm_pptdev_mmio pptmmio;
1277 
1278 	bzero(&pptmmio, sizeof(pptmmio));
1279 	pptmmio.pptfd = pptfd;
1280 	pptmmio.gpa = gpa;
1281 	pptmmio.len = len;
1282 
1283 	return (ioctl(ctx->fd, VM_UNMAP_PPTDEV_MMIO, &pptmmio));
1284 }
1285 
1286 int
vm_setup_pptdev_msi(struct vmctx * ctx,int vcpu,int pptfd,uint64_t addr,uint64_t msg,int numvec)1287 vm_setup_pptdev_msi(struct vmctx *ctx, int vcpu, int pptfd, uint64_t addr,
1288     uint64_t msg, int numvec)
1289 {
1290 	struct vm_pptdev_msi pptmsi;
1291 
1292 	pptmsi.vcpu = vcpu;
1293 	pptmsi.pptfd = pptfd;
1294 	pptmsi.msg = msg;
1295 	pptmsi.addr = addr;
1296 	pptmsi.numvec = numvec;
1297 	return (ioctl(ctx->fd, VM_PPTDEV_MSI, &pptmsi));
1298 }
1299 
1300 int
vm_setup_pptdev_msix(struct vmctx * ctx,int vcpu,int pptfd,int idx,uint64_t addr,uint64_t msg,uint32_t vector_control)1301 vm_setup_pptdev_msix(struct vmctx *ctx, int vcpu, int pptfd, int idx,
1302     uint64_t addr, uint64_t msg, uint32_t vector_control)
1303 {
1304 	struct vm_pptdev_msix pptmsix;
1305 
1306 	pptmsix.vcpu = vcpu;
1307 	pptmsix.pptfd = pptfd;
1308 	pptmsix.idx = idx;
1309 	pptmsix.msg = msg;
1310 	pptmsix.addr = addr;
1311 	pptmsix.vector_control = vector_control;
1312 	return ioctl(ctx->fd, VM_PPTDEV_MSIX, &pptmsix);
1313 }
1314 
1315 int
vm_get_pptdev_limits(struct vmctx * ctx,int pptfd,int * msi_limit,int * msix_limit)1316 vm_get_pptdev_limits(struct vmctx *ctx, int pptfd, int *msi_limit,
1317     int *msix_limit)
1318 {
1319 	struct vm_pptdev_limits pptlimits;
1320 	int error;
1321 
1322 	bzero(&pptlimits, sizeof (pptlimits));
1323 	pptlimits.pptfd = pptfd;
1324 	error = ioctl(ctx->fd, VM_GET_PPTDEV_LIMITS, &pptlimits);
1325 
1326 	*msi_limit = pptlimits.msi_limit;
1327 	*msix_limit = pptlimits.msix_limit;
1328 	return (error);
1329 }
1330 
1331 int
vm_disable_pptdev_msix(struct vmctx * ctx,int pptfd)1332 vm_disable_pptdev_msix(struct vmctx *ctx, int pptfd)
1333 {
1334 	struct vm_pptdev pptdev;
1335 
1336 	pptdev.pptfd = pptfd;
1337 	return (ioctl(ctx->fd, VM_PPTDEV_DISABLE_MSIX, &pptdev));
1338 }
1339 #endif /* __FreeBSD__ */
1340 
1341 uint64_t *
vm_get_stats(struct vmctx * ctx,int vcpu,struct timeval * ret_tv,int * ret_entries)1342 vm_get_stats(struct vmctx *ctx, int vcpu, struct timeval *ret_tv,
1343 	     int *ret_entries)
1344 {
1345 	static _Thread_local uint64_t *stats_buf;
1346 	static _Thread_local uint32_t stats_count;
1347 	uint64_t *new_stats;
1348 	struct vm_stats vmstats;
1349 	uint32_t count, index;
1350 	bool have_stats;
1351 
1352 	have_stats = false;
1353 	vmstats.cpuid = vcpu;
1354 	count = 0;
1355 	for (index = 0;; index += nitems(vmstats.statbuf)) {
1356 		vmstats.index = index;
1357 		if (ioctl(ctx->fd, VM_STATS_IOC, &vmstats) != 0)
1358 			break;
1359 		if (stats_count < index + vmstats.num_entries) {
1360 			new_stats = reallocarray(stats_buf,
1361 			    index + vmstats.num_entries, sizeof(uint64_t));
1362 			if (new_stats == NULL) {
1363 				errno = ENOMEM;
1364 				return (NULL);
1365 			}
1366 			stats_count = index + vmstats.num_entries;
1367 			stats_buf = new_stats;
1368 		}
1369 		memcpy(stats_buf + index, vmstats.statbuf,
1370 		    vmstats.num_entries * sizeof(uint64_t));
1371 		count += vmstats.num_entries;
1372 		have_stats = true;
1373 
1374 		if (vmstats.num_entries != nitems(vmstats.statbuf))
1375 			break;
1376 	}
1377 
1378 	if (have_stats) {
1379 		if (ret_entries)
1380 			*ret_entries = count;
1381 		if (ret_tv)
1382 			*ret_tv = vmstats.tv;
1383 		return (stats_buf);
1384 	}
1385 
1386 	return (NULL);
1387 }
1388 
1389 const char *
vm_get_stat_desc(struct vmctx * ctx,int index)1390 vm_get_stat_desc(struct vmctx *ctx, int index)
1391 {
1392 	static struct vm_stat_desc statdesc;
1393 
1394 	statdesc.index = index;
1395 	if (ioctl(ctx->fd, VM_STAT_DESC, &statdesc) == 0)
1396 		return (statdesc.desc);
1397 	else
1398 		return (NULL);
1399 }
1400 
1401 int
vm_get_x2apic_state(struct vmctx * ctx,int vcpu,enum x2apic_state * state)1402 vm_get_x2apic_state(struct vmctx *ctx, int vcpu, enum x2apic_state *state)
1403 {
1404 	int error;
1405 	struct vm_x2apic x2apic;
1406 
1407 	bzero(&x2apic, sizeof(x2apic));
1408 	x2apic.cpuid = vcpu;
1409 
1410 	error = ioctl(ctx->fd, VM_GET_X2APIC_STATE, &x2apic);
1411 	*state = x2apic.state;
1412 	return (error);
1413 }
1414 
1415 int
vm_set_x2apic_state(struct vmctx * ctx,int vcpu,enum x2apic_state state)1416 vm_set_x2apic_state(struct vmctx *ctx, int vcpu, enum x2apic_state state)
1417 {
1418 	int error;
1419 	struct vm_x2apic x2apic;
1420 
1421 	bzero(&x2apic, sizeof(x2apic));
1422 	x2apic.cpuid = vcpu;
1423 	x2apic.state = state;
1424 
1425 	error = ioctl(ctx->fd, VM_SET_X2APIC_STATE, &x2apic);
1426 
1427 	return (error);
1428 }
1429 
1430 #ifndef __FreeBSD__
1431 int
vcpu_reset(struct vmctx * vmctx,int vcpu)1432 vcpu_reset(struct vmctx *vmctx, int vcpu)
1433 {
1434 	struct vm_vcpu_reset vvr;
1435 
1436 	vvr.vcpuid = vcpu;
1437 	vvr.kind = VRK_RESET;
1438 
1439 	return (ioctl(vmctx->fd, VM_RESET_CPU, &vvr));
1440 }
1441 #else /* __FreeBSD__ */
1442 /*
1443  * From Intel Vol 3a:
1444  * Table 9-1. IA-32 Processor States Following Power-up, Reset or INIT
1445  */
1446 int
vcpu_reset(struct vmctx * vmctx,int vcpu)1447 vcpu_reset(struct vmctx *vmctx, int vcpu)
1448 {
1449 	int error;
1450 	uint64_t rflags, rip, cr0, cr4, zero, desc_base, rdx;
1451 	uint32_t desc_access, desc_limit;
1452 	uint16_t sel;
1453 
1454 	zero = 0;
1455 
1456 	rflags = 0x2;
1457 	error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RFLAGS, rflags);
1458 	if (error)
1459 		goto done;
1460 
1461 	rip = 0xfff0;
1462 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RIP, rip)) != 0)
1463 		goto done;
1464 
1465 	cr0 = CR0_NE;
1466 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR0, cr0)) != 0)
1467 		goto done;
1468 
1469 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR3, zero)) != 0)
1470 		goto done;
1471 
1472 	cr4 = 0;
1473 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR4, cr4)) != 0)
1474 		goto done;
1475 
1476 	/*
1477 	 * CS: present, r/w, accessed, 16-bit, byte granularity, usable
1478 	 */
1479 	desc_base = 0xffff0000;
1480 	desc_limit = 0xffff;
1481 	desc_access = 0x0093;
1482 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_CS,
1483 			    desc_base, desc_limit, desc_access);
1484 	if (error)
1485 		goto done;
1486 
1487 	sel = 0xf000;
1488 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CS, sel)) != 0)
1489 		goto done;
1490 
1491 	/*
1492 	 * SS,DS,ES,FS,GS: present, r/w, accessed, 16-bit, byte granularity
1493 	 */
1494 	desc_base = 0;
1495 	desc_limit = 0xffff;
1496 	desc_access = 0x0093;
1497 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_SS,
1498 			    desc_base, desc_limit, desc_access);
1499 	if (error)
1500 		goto done;
1501 
1502 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_DS,
1503 			    desc_base, desc_limit, desc_access);
1504 	if (error)
1505 		goto done;
1506 
1507 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_ES,
1508 			    desc_base, desc_limit, desc_access);
1509 	if (error)
1510 		goto done;
1511 
1512 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_FS,
1513 			    desc_base, desc_limit, desc_access);
1514 	if (error)
1515 		goto done;
1516 
1517 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_GS,
1518 			    desc_base, desc_limit, desc_access);
1519 	if (error)
1520 		goto done;
1521 
1522 	sel = 0;
1523 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_SS, sel)) != 0)
1524 		goto done;
1525 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_DS, sel)) != 0)
1526 		goto done;
1527 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_ES, sel)) != 0)
1528 		goto done;
1529 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_FS, sel)) != 0)
1530 		goto done;
1531 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_GS, sel)) != 0)
1532 		goto done;
1533 
1534 	/* General purpose registers */
1535 	rdx = 0xf00;
1536 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RAX, zero)) != 0)
1537 		goto done;
1538 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RBX, zero)) != 0)
1539 		goto done;
1540 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RCX, zero)) != 0)
1541 		goto done;
1542 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RDX, rdx)) != 0)
1543 		goto done;
1544 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RSI, zero)) != 0)
1545 		goto done;
1546 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RDI, zero)) != 0)
1547 		goto done;
1548 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RBP, zero)) != 0)
1549 		goto done;
1550 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RSP, zero)) != 0)
1551 		goto done;
1552 
1553 	/* GDTR, IDTR */
1554 	desc_base = 0;
1555 	desc_limit = 0xffff;
1556 	desc_access = 0;
1557 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_GDTR,
1558 			    desc_base, desc_limit, desc_access);
1559 	if (error != 0)
1560 		goto done;
1561 
1562 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_IDTR,
1563 			    desc_base, desc_limit, desc_access);
1564 	if (error != 0)
1565 		goto done;
1566 
1567 	/* TR */
1568 	desc_base = 0;
1569 	desc_limit = 0xffff;
1570 	desc_access = 0x0000008b;
1571 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_TR, 0, 0, desc_access);
1572 	if (error)
1573 		goto done;
1574 
1575 	sel = 0;
1576 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_TR, sel)) != 0)
1577 		goto done;
1578 
1579 	/* LDTR */
1580 	desc_base = 0;
1581 	desc_limit = 0xffff;
1582 	desc_access = 0x00000082;
1583 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_LDTR, desc_base,
1584 			    desc_limit, desc_access);
1585 	if (error)
1586 		goto done;
1587 
1588 	sel = 0;
1589 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_LDTR, 0)) != 0)
1590 		goto done;
1591 
1592 	/* XXX cr2, debug registers */
1593 
1594 	error = 0;
1595 done:
1596 	return (error);
1597 }
1598 #endif /* __FreeBSD__ */
1599 
1600 int
vm_get_gpa_pmap(struct vmctx * ctx,uint64_t gpa,uint64_t * pte,int * num)1601 vm_get_gpa_pmap(struct vmctx *ctx, uint64_t gpa, uint64_t *pte, int *num)
1602 {
1603 	int error, i;
1604 	struct vm_gpa_pte gpapte;
1605 
1606 	bzero(&gpapte, sizeof(gpapte));
1607 	gpapte.gpa = gpa;
1608 
1609 	error = ioctl(ctx->fd, VM_GET_GPA_PMAP, &gpapte);
1610 
1611 	if (error == 0) {
1612 		*num = gpapte.ptenum;
1613 		for (i = 0; i < gpapte.ptenum; i++)
1614 			pte[i] = gpapte.pte[i];
1615 	}
1616 
1617 	return (error);
1618 }
1619 
1620 int
vm_get_hpet_capabilities(struct vmctx * ctx,uint32_t * capabilities)1621 vm_get_hpet_capabilities(struct vmctx *ctx, uint32_t *capabilities)
1622 {
1623 	int error;
1624 	struct vm_hpet_cap cap;
1625 
1626 	bzero(&cap, sizeof(struct vm_hpet_cap));
1627 	error = ioctl(ctx->fd, VM_GET_HPET_CAPABILITIES, &cap);
1628 	if (capabilities != NULL)
1629 		*capabilities = cap.capabilities;
1630 	return (error);
1631 }
1632 
1633 int
vm_gla2gpa(struct vmctx * ctx,int vcpu,struct vm_guest_paging * paging,uint64_t gla,int prot,uint64_t * gpa,int * fault)1634 vm_gla2gpa(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging,
1635     uint64_t gla, int prot, uint64_t *gpa, int *fault)
1636 {
1637 	struct vm_gla2gpa gg;
1638 	int error;
1639 
1640 	bzero(&gg, sizeof(struct vm_gla2gpa));
1641 	gg.vcpuid = vcpu;
1642 	gg.prot = prot;
1643 	gg.gla = gla;
1644 	gg.paging = *paging;
1645 
1646 	error = ioctl(ctx->fd, VM_GLA2GPA, &gg);
1647 	if (error == 0) {
1648 		*fault = gg.fault;
1649 		*gpa = gg.gpa;
1650 	}
1651 	return (error);
1652 }
1653 
1654 int
vm_gla2gpa_nofault(struct vmctx * ctx,int vcpu,struct vm_guest_paging * paging,uint64_t gla,int prot,uint64_t * gpa,int * fault)1655 vm_gla2gpa_nofault(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging,
1656     uint64_t gla, int prot, uint64_t *gpa, int *fault)
1657 {
1658 	struct vm_gla2gpa gg;
1659 	int error;
1660 
1661 	bzero(&gg, sizeof(struct vm_gla2gpa));
1662 	gg.vcpuid = vcpu;
1663 	gg.prot = prot;
1664 	gg.gla = gla;
1665 	gg.paging = *paging;
1666 
1667 	error = ioctl(ctx->fd, VM_GLA2GPA_NOFAULT, &gg);
1668 	if (error == 0) {
1669 		*fault = gg.fault;
1670 		*gpa = gg.gpa;
1671 	}
1672 	return (error);
1673 }
1674 
1675 #ifndef min
1676 #define	min(a,b)	(((a) < (b)) ? (a) : (b))
1677 #endif
1678 
1679 int
vm_copy_setup(struct vmctx * ctx,int vcpu,struct vm_guest_paging * paging,uint64_t gla,size_t len,int prot,struct iovec * iov,int iovcnt,int * fault)1680 vm_copy_setup(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging,
1681     uint64_t gla, size_t len, int prot, struct iovec *iov, int iovcnt,
1682     int *fault)
1683 {
1684 	void *va;
1685 	uint64_t gpa, off;
1686 	int error, i, n;
1687 
1688 	for (i = 0; i < iovcnt; i++) {
1689 		iov[i].iov_base = 0;
1690 		iov[i].iov_len = 0;
1691 	}
1692 
1693 	while (len) {
1694 		assert(iovcnt > 0);
1695 		error = vm_gla2gpa(ctx, vcpu, paging, gla, prot, &gpa, fault);
1696 		if (error || *fault)
1697 			return (error);
1698 
1699 		off = gpa & PAGE_MASK;
1700 		n = MIN(len, PAGE_SIZE - off);
1701 
1702 		va = vm_map_gpa(ctx, gpa, n);
1703 		if (va == NULL)
1704 			return (EFAULT);
1705 
1706 		iov->iov_base = va;
1707 		iov->iov_len = n;
1708 		iov++;
1709 		iovcnt--;
1710 
1711 		gla += n;
1712 		len -= n;
1713 	}
1714 	return (0);
1715 }
1716 
1717 void
vm_copy_teardown(struct vmctx * ctx __unused,int vcpu __unused,struct iovec * iov __unused,int iovcnt __unused)1718 vm_copy_teardown(struct vmctx *ctx __unused, int vcpu __unused,
1719     struct iovec *iov __unused, int iovcnt __unused)
1720 {
1721 }
1722 
1723 void
vm_copyin(struct vmctx * ctx __unused,int vcpu __unused,struct iovec * iov,void * vp,size_t len)1724 vm_copyin(struct vmctx *ctx __unused, int vcpu __unused, struct iovec *iov,
1725     void *vp, size_t len)
1726 {
1727 	const char *src;
1728 	char *dst;
1729 	size_t n;
1730 
1731 	dst = vp;
1732 	while (len) {
1733 		assert(iov->iov_len);
1734 		n = min(len, iov->iov_len);
1735 		src = iov->iov_base;
1736 		bcopy(src, dst, n);
1737 
1738 		iov++;
1739 		dst += n;
1740 		len -= n;
1741 	}
1742 }
1743 
1744 void
vm_copyout(struct vmctx * ctx __unused,int vcpu __unused,const void * vp,struct iovec * iov,size_t len)1745 vm_copyout(struct vmctx *ctx __unused, int vcpu __unused, const void *vp,
1746     struct iovec *iov, size_t len)
1747 {
1748 	const char *src;
1749 	char *dst;
1750 	size_t n;
1751 
1752 	src = vp;
1753 	while (len) {
1754 		assert(iov->iov_len);
1755 		n = min(len, iov->iov_len);
1756 		dst = iov->iov_base;
1757 		bcopy(src, dst, n);
1758 
1759 		iov++;
1760 		src += n;
1761 		len -= n;
1762 	}
1763 }
1764 
1765 static int
vm_get_cpus(struct vmctx * ctx,int which,cpuset_t * cpus)1766 vm_get_cpus(struct vmctx *ctx, int which, cpuset_t *cpus)
1767 {
1768 	struct vm_cpuset vm_cpuset;
1769 	int error;
1770 
1771 	bzero(&vm_cpuset, sizeof(struct vm_cpuset));
1772 	vm_cpuset.which = which;
1773 	vm_cpuset.cpusetsize = sizeof(cpuset_t);
1774 	vm_cpuset.cpus = cpus;
1775 
1776 	error = ioctl(ctx->fd, VM_GET_CPUS, &vm_cpuset);
1777 	return (error);
1778 }
1779 
1780 int
vm_active_cpus(struct vmctx * ctx,cpuset_t * cpus)1781 vm_active_cpus(struct vmctx *ctx, cpuset_t *cpus)
1782 {
1783 
1784 	return (vm_get_cpus(ctx, VM_ACTIVE_CPUS, cpus));
1785 }
1786 
1787 int
vm_suspended_cpus(struct vmctx * ctx,cpuset_t * cpus)1788 vm_suspended_cpus(struct vmctx *ctx, cpuset_t *cpus)
1789 {
1790 
1791 	return (vm_get_cpus(ctx, VM_SUSPENDED_CPUS, cpus));
1792 }
1793 
1794 int
vm_debug_cpus(struct vmctx * ctx,cpuset_t * cpus)1795 vm_debug_cpus(struct vmctx *ctx, cpuset_t *cpus)
1796 {
1797 
1798 	return (vm_get_cpus(ctx, VM_DEBUG_CPUS, cpus));
1799 }
1800 
1801 int
vm_activate_cpu(struct vmctx * ctx,int vcpu)1802 vm_activate_cpu(struct vmctx *ctx, int vcpu)
1803 {
1804 	struct vm_activate_cpu ac;
1805 	int error;
1806 
1807 	bzero(&ac, sizeof(struct vm_activate_cpu));
1808 	ac.vcpuid = vcpu;
1809 	error = ioctl(ctx->fd, VM_ACTIVATE_CPU, &ac);
1810 	return (error);
1811 }
1812 
1813 int
vm_suspend_cpu(struct vmctx * ctx,int vcpu)1814 vm_suspend_cpu(struct vmctx *ctx, int vcpu)
1815 {
1816 	struct vm_activate_cpu ac;
1817 	int error;
1818 
1819 	bzero(&ac, sizeof(struct vm_activate_cpu));
1820 	ac.vcpuid = vcpu;
1821 	error = ioctl(ctx->fd, VM_SUSPEND_CPU, &ac);
1822 	return (error);
1823 }
1824 
1825 int
vm_resume_cpu(struct vmctx * ctx,int vcpu)1826 vm_resume_cpu(struct vmctx *ctx, int vcpu)
1827 {
1828 	struct vm_activate_cpu ac;
1829 	int error;
1830 
1831 	bzero(&ac, sizeof(struct vm_activate_cpu));
1832 	ac.vcpuid = vcpu;
1833 	error = ioctl(ctx->fd, VM_RESUME_CPU, &ac);
1834 	return (error);
1835 }
1836 
1837 int
vm_get_intinfo(struct vmctx * ctx,int vcpu,uint64_t * info1,uint64_t * info2)1838 vm_get_intinfo(struct vmctx *ctx, int vcpu, uint64_t *info1, uint64_t *info2)
1839 {
1840 	struct vm_intinfo vmii;
1841 	int error;
1842 
1843 	bzero(&vmii, sizeof(struct vm_intinfo));
1844 	vmii.vcpuid = vcpu;
1845 	error = ioctl(ctx->fd, VM_GET_INTINFO, &vmii);
1846 	if (error == 0) {
1847 		*info1 = vmii.info1;
1848 		*info2 = vmii.info2;
1849 	}
1850 	return (error);
1851 }
1852 
1853 int
vm_set_intinfo(struct vmctx * ctx,int vcpu,uint64_t info1)1854 vm_set_intinfo(struct vmctx *ctx, int vcpu, uint64_t info1)
1855 {
1856 	struct vm_intinfo vmii;
1857 	int error;
1858 
1859 	bzero(&vmii, sizeof(struct vm_intinfo));
1860 	vmii.vcpuid = vcpu;
1861 	vmii.info1 = info1;
1862 	error = ioctl(ctx->fd, VM_SET_INTINFO, &vmii);
1863 	return (error);
1864 }
1865 
1866 int
vm_rtc_write(struct vmctx * ctx,int offset,uint8_t value)1867 vm_rtc_write(struct vmctx *ctx, int offset, uint8_t value)
1868 {
1869 	struct vm_rtc_data rtcdata;
1870 	int error;
1871 
1872 	bzero(&rtcdata, sizeof(struct vm_rtc_data));
1873 	rtcdata.offset = offset;
1874 	rtcdata.value = value;
1875 	error = ioctl(ctx->fd, VM_RTC_WRITE, &rtcdata);
1876 	return (error);
1877 }
1878 
1879 int
vm_rtc_read(struct vmctx * ctx,int offset,uint8_t * retval)1880 vm_rtc_read(struct vmctx *ctx, int offset, uint8_t *retval)
1881 {
1882 	struct vm_rtc_data rtcdata;
1883 	int error;
1884 
1885 	bzero(&rtcdata, sizeof(struct vm_rtc_data));
1886 	rtcdata.offset = offset;
1887 	error = ioctl(ctx->fd, VM_RTC_READ, &rtcdata);
1888 	if (error == 0)
1889 		*retval = rtcdata.value;
1890 	return (error);
1891 }
1892 
1893 int
vm_rtc_settime(struct vmctx * ctx,time_t secs)1894 vm_rtc_settime(struct vmctx *ctx, time_t secs)
1895 {
1896 	struct vm_rtc_time rtctime;
1897 	int error;
1898 
1899 	bzero(&rtctime, sizeof(struct vm_rtc_time));
1900 	rtctime.secs = secs;
1901 	error = ioctl(ctx->fd, VM_RTC_SETTIME, &rtctime);
1902 	return (error);
1903 }
1904 
1905 int
vm_rtc_gettime(struct vmctx * ctx,time_t * secs)1906 vm_rtc_gettime(struct vmctx *ctx, time_t *secs)
1907 {
1908 	struct vm_rtc_time rtctime;
1909 	int error;
1910 
1911 	bzero(&rtctime, sizeof(struct vm_rtc_time));
1912 	error = ioctl(ctx->fd, VM_RTC_GETTIME, &rtctime);
1913 	if (error == 0)
1914 		*secs = rtctime.secs;
1915 	return (error);
1916 }
1917 
1918 int
vm_restart_instruction(void * arg,int vcpu)1919 vm_restart_instruction(void *arg, int vcpu)
1920 {
1921 	struct vmctx *ctx = arg;
1922 
1923 	return (ioctl(ctx->fd, VM_RESTART_INSTRUCTION, &vcpu));
1924 }
1925 
1926 int
vm_set_topology(struct vmctx * ctx,uint16_t sockets,uint16_t cores,uint16_t threads,uint16_t maxcpus)1927 vm_set_topology(struct vmctx *ctx,
1928     uint16_t sockets, uint16_t cores, uint16_t threads, uint16_t maxcpus)
1929 {
1930 	struct vm_cpu_topology topology;
1931 
1932 	bzero(&topology, sizeof (struct vm_cpu_topology));
1933 	topology.sockets = sockets;
1934 	topology.cores = cores;
1935 	topology.threads = threads;
1936 	topology.maxcpus = maxcpus;
1937 	return (ioctl(ctx->fd, VM_SET_TOPOLOGY, &topology));
1938 }
1939 
1940 int
vm_get_topology(struct vmctx * ctx,uint16_t * sockets,uint16_t * cores,uint16_t * threads,uint16_t * maxcpus)1941 vm_get_topology(struct vmctx *ctx,
1942     uint16_t *sockets, uint16_t *cores, uint16_t *threads, uint16_t *maxcpus)
1943 {
1944 	struct vm_cpu_topology topology;
1945 	int error;
1946 
1947 	bzero(&topology, sizeof (struct vm_cpu_topology));
1948 	error = ioctl(ctx->fd, VM_GET_TOPOLOGY, &topology);
1949 	if (error == 0) {
1950 		*sockets = topology.sockets;
1951 		*cores = topology.cores;
1952 		*threads = topology.threads;
1953 		*maxcpus = topology.maxcpus;
1954 	}
1955 	return (error);
1956 }
1957 
1958 int
vm_get_device_fd(struct vmctx * ctx)1959 vm_get_device_fd(struct vmctx *ctx)
1960 {
1961 
1962 	return (ctx->fd);
1963 }
1964 
1965 #ifndef __FreeBSD__
1966 int
vm_pmtmr_set_location(struct vmctx * ctx,uint16_t ioport)1967 vm_pmtmr_set_location(struct vmctx *ctx, uint16_t ioport)
1968 {
1969 	return (ioctl(ctx->fd, VM_PMTMR_LOCATE, ioport));
1970 }
1971 
1972 int
vm_wrlock_cycle(struct vmctx * ctx)1973 vm_wrlock_cycle(struct vmctx *ctx)
1974 {
1975 	if (ioctl(ctx->fd, VM_WRLOCK_CYCLE, 0) != 0) {
1976 		return (errno);
1977 	}
1978 	return (0);
1979 }
1980 
1981 int
vm_get_run_state(struct vmctx * ctx,int vcpu,enum vcpu_run_state * state,uint8_t * sipi_vector)1982 vm_get_run_state(struct vmctx *ctx, int vcpu, enum vcpu_run_state *state,
1983     uint8_t *sipi_vector)
1984 {
1985 	struct vm_run_state data;
1986 
1987 	data.vcpuid = vcpu;
1988 	if (ioctl(ctx->fd, VM_GET_RUN_STATE, &data) != 0) {
1989 		return (errno);
1990 	}
1991 
1992 	*state = data.state;
1993 	*sipi_vector = data.sipi_vector;
1994 	return (0);
1995 }
1996 
1997 int
vm_set_run_state(struct vmctx * ctx,int vcpu,enum vcpu_run_state state,uint8_t sipi_vector)1998 vm_set_run_state(struct vmctx *ctx, int vcpu, enum vcpu_run_state state,
1999     uint8_t sipi_vector)
2000 {
2001 	struct vm_run_state data;
2002 
2003 	data.vcpuid = vcpu;
2004 	data.state = state;
2005 	data.sipi_vector = sipi_vector;
2006 	if (ioctl(ctx->fd, VM_SET_RUN_STATE, &data) != 0) {
2007 		return (errno);
2008 	}
2009 
2010 	return (0);
2011 }
2012 
2013 #endif /* __FreeBSD__ */
2014 
2015 #ifdef __FreeBSD__
2016 const cap_ioctl_t *
vm_get_ioctls(size_t * len)2017 vm_get_ioctls(size_t *len)
2018 {
2019 	cap_ioctl_t *cmds;
2020 	/* keep in sync with machine/vmm_dev.h */
2021 	static const cap_ioctl_t vm_ioctl_cmds[] = { VM_RUN, VM_SUSPEND, VM_REINIT,
2022 	    VM_ALLOC_MEMSEG, VM_GET_MEMSEG, VM_MMAP_MEMSEG, VM_MMAP_MEMSEG,
2023 	    VM_MMAP_GETNEXT, VM_MUNMAP_MEMSEG, VM_SET_REGISTER, VM_GET_REGISTER,
2024 	    VM_SET_SEGMENT_DESCRIPTOR, VM_GET_SEGMENT_DESCRIPTOR,
2025 	    VM_SET_REGISTER_SET, VM_GET_REGISTER_SET,
2026 	    VM_SET_KERNEMU_DEV, VM_GET_KERNEMU_DEV,
2027 	    VM_INJECT_EXCEPTION, VM_LAPIC_IRQ, VM_LAPIC_LOCAL_IRQ,
2028 	    VM_LAPIC_MSI, VM_IOAPIC_ASSERT_IRQ, VM_IOAPIC_DEASSERT_IRQ,
2029 	    VM_IOAPIC_PULSE_IRQ, VM_IOAPIC_PINCOUNT, VM_ISA_ASSERT_IRQ,
2030 	    VM_ISA_DEASSERT_IRQ, VM_ISA_PULSE_IRQ, VM_ISA_SET_IRQ_TRIGGER,
2031 	    VM_SET_CAPABILITY, VM_GET_CAPABILITY, VM_BIND_PPTDEV,
2032 	    VM_UNBIND_PPTDEV, VM_MAP_PPTDEV_MMIO, VM_PPTDEV_MSI,
2033 	    VM_PPTDEV_MSIX, VM_UNMAP_PPTDEV_MMIO, VM_PPTDEV_DISABLE_MSIX,
2034 	    VM_INJECT_NMI, VM_STATS, VM_STAT_DESC,
2035 	    VM_SET_X2APIC_STATE, VM_GET_X2APIC_STATE,
2036 	    VM_GET_HPET_CAPABILITIES, VM_GET_GPA_PMAP, VM_GLA2GPA,
2037 	    VM_GLA2GPA_NOFAULT,
2038 	    VM_ACTIVATE_CPU, VM_GET_CPUS, VM_SUSPEND_CPU, VM_RESUME_CPU,
2039 	    VM_SET_INTINFO, VM_GET_INTINFO,
2040 	    VM_RTC_WRITE, VM_RTC_READ, VM_RTC_SETTIME, VM_RTC_GETTIME,
2041 	    VM_RESTART_INSTRUCTION, VM_SET_TOPOLOGY, VM_GET_TOPOLOGY };
2042 
2043 	if (len == NULL) {
2044 		cmds = malloc(sizeof(vm_ioctl_cmds));
2045 		if (cmds == NULL)
2046 			return (NULL);
2047 		bcopy(vm_ioctl_cmds, cmds, sizeof(vm_ioctl_cmds));
2048 		return (cmds);
2049 	}
2050 
2051 	*len = nitems(vm_ioctl_cmds);
2052 	return (NULL);
2053 }
2054 #endif /* __FreeBSD__ */
2055