xref: /illumos-gate/usr/src/lib/libumem/common/umem.c (revision 38849194)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Copyright 2012 Joyent, Inc.  All rights reserved.
25  * Use is subject to license terms.
26  */
27 
28 /*
29  * based on usr/src/uts/common/os/kmem.c r1.64 from 2001/12/18
30  *
31  * The slab allocator, as described in the following two papers:
32  *
33  *	Jeff Bonwick,
34  *	The Slab Allocator: An Object-Caching Kernel Memory Allocator.
35  *	Proceedings of the Summer 1994 Usenix Conference.
36  *	Available as /shared/sac/PSARC/1994/028/materials/kmem.pdf.
37  *
38  *	Jeff Bonwick and Jonathan Adams,
39  *	Magazines and vmem: Extending the Slab Allocator to Many CPUs and
40  *	Arbitrary Resources.
41  *	Proceedings of the 2001 Usenix Conference.
42  *	Available as /shared/sac/PSARC/2000/550/materials/vmem.pdf.
43  *
44  * 1. Overview
45  * -----------
46  * umem is very close to kmem in implementation.  There are four major
47  * areas of divergence:
48  *
49  *	* Initialization
50  *
51  *	* CPU handling
52  *
53  *	* umem_update()
54  *
55  *	* KM_SLEEP v.s. UMEM_NOFAIL
56  *
57  *	* lock ordering
58  *
59  * 2. Initialization
60  * -----------------
61  * kmem is initialized early on in boot, and knows that no one will call
62  * into it before it is ready.  umem does not have these luxuries. Instead,
63  * initialization is divided into two phases:
64  *
65  *	* library initialization, and
66  *
67  *	* first use
68  *
69  * umem's full initialization happens at the time of the first allocation
70  * request (via malloc() and friends, umem_alloc(), or umem_zalloc()),
71  * or the first call to umem_cache_create().
72  *
73  * umem_free(), and umem_cache_alloc() do not require special handling,
74  * since the only way to get valid arguments for them is to successfully
75  * call a function from the first group.
76  *
77  * 2.1. Library Initialization: umem_startup()
78  * -------------------------------------------
79  * umem_startup() is libumem.so's .init section.  It calls pthread_atfork()
80  * to install the handlers necessary for umem's Fork1-Safety.  Because of
81  * race condition issues, all other pre-umem_init() initialization is done
82  * statically (i.e. by the dynamic linker).
83  *
84  * For standalone use, umem_startup() returns everything to its initial
85  * state.
86  *
87  * 2.2. First use: umem_init()
88  * ------------------------------
89  * The first time any memory allocation function is used, we have to
90  * create the backing caches and vmem arenas which are needed for it.
91  * umem_init() is the central point for that task.  When it completes,
92  * umem_ready is either UMEM_READY (all set) or UMEM_READY_INIT_FAILED (unable
93  * to initialize, probably due to lack of memory).
94  *
95  * There are four different paths from which umem_init() is called:
96  *
97  *	* from umem_alloc() or umem_zalloc(), with 0 < size < UMEM_MAXBUF,
98  *
99  *	* from umem_alloc() or umem_zalloc(), with size > UMEM_MAXBUF,
100  *
101  *	* from umem_cache_create(), and
102  *
103  *	* from memalign(), with align > UMEM_ALIGN.
104  *
105  * The last three just check if umem is initialized, and call umem_init()
106  * if it is not.  For performance reasons, the first case is more complicated.
107  *
108  * 2.2.1. umem_alloc()/umem_zalloc(), with 0 < size < UMEM_MAXBUF
109  * -----------------------------------------------------------------
110  * In this case, umem_cache_alloc(&umem_null_cache, ...) is called.
111  * There is special case code in which causes any allocation on
112  * &umem_null_cache to fail by returning (NULL), regardless of the
113  * flags argument.
114  *
115  * So umem_cache_alloc() returns NULL, and umem_alloc()/umem_zalloc() call
116  * umem_alloc_retry().  umem_alloc_retry() sees that the allocation
117  * was agains &umem_null_cache, and calls umem_init().
118  *
119  * If initialization is successful, umem_alloc_retry() returns 1, which
120  * causes umem_alloc()/umem_zalloc() to start over, which causes it to load
121  * the (now valid) cache pointer from umem_alloc_table.
122  *
123  * 2.2.2. Dealing with race conditions
124  * -----------------------------------
125  * There are a couple race conditions resulting from the initialization
126  * code that we have to guard against:
127  *
128  *	* In umem_cache_create(), there is a special UMC_INTERNAL cflag
129  *	that is passed for caches created during initialization.  It
130  *	is illegal for a user to try to create a UMC_INTERNAL cache.
131  *	This allows initialization to proceed, but any other
132  *	umem_cache_create()s will block by calling umem_init().
133  *
134  *	* Since umem_null_cache has a 1-element cache_cpu, it's cache_cpu_mask
135  *	is always zero.  umem_cache_alloc uses cp->cache_cpu_mask to
136  *	mask the cpu number.  This prevents a race between grabbing a
137  *	cache pointer out of umem_alloc_table and growing the cpu array.
138  *
139  *
140  * 3. CPU handling
141  * ---------------
142  * kmem uses the CPU's sequence number to determine which "cpu cache" to
143  * use for an allocation.  Currently, there is no way to get the sequence
144  * number in userspace.
145  *
146  * umem keeps track of cpu information in umem_cpus, an array of umem_max_ncpus
147  * umem_cpu_t structures.  CURCPU() is a a "hint" function, which we then mask
148  * with either umem_cpu_mask or cp->cache_cpu_mask to find the actual "cpu" id.
149  * The mechanics of this is all in the CPU(mask) macro.
150  *
151  * Currently, umem uses _lwp_self() as its hint.
152  *
153  *
154  * 4. The update thread
155  * --------------------
156  * kmem uses a task queue, kmem_taskq, to do periodic maintenance on
157  * every kmem cache.  vmem has a periodic timeout for hash table resizing.
158  * The kmem_taskq also provides a separate context for kmem_cache_reap()'s
159  * to be done in, avoiding issues of the context of kmem_reap() callers.
160  *
161  * Instead, umem has the concept of "updates", which are asynchronous requests
162  * for work attached to single caches.  All caches with pending work are
163  * on a doubly linked list rooted at the umem_null_cache.  All update state
164  * is protected by the umem_update_lock mutex, and the umem_update_cv is used
165  * for notification between threads.
166  *
167  * 4.1. Cache states with regards to updates
168  * -----------------------------------------
169  * A given cache is in one of three states:
170  *
171  * Inactive		cache_uflags is zero, cache_u{next,prev} are NULL
172  *
173  * Work Requested	cache_uflags is non-zero (but UMU_ACTIVE is not set),
174  *			cache_u{next,prev} link the cache onto the global
175  *			update list
176  *
177  * Active		cache_uflags has UMU_ACTIVE set, cache_u{next,prev}
178  *			are NULL, and either umem_update_thr or
179  *			umem_st_update_thr are actively doing work on the
180  *			cache.
181  *
182  * An update can be added to any cache in any state -- if the cache is
183  * Inactive, it transitions to being Work Requested.  If the cache is
184  * Active, the worker will notice the new update and act on it before
185  * transitioning the cache to the Inactive state.
186  *
187  * If a cache is in the Active state, UMU_NOTIFY can be set, which asks
188  * the worker to broadcast the umem_update_cv when it has finished.
189  *
190  * 4.2. Update interface
191  * ---------------------
192  * umem_add_update() adds an update to a particular cache.
193  * umem_updateall() adds an update to all caches.
194  * umem_remove_updates() returns a cache to the Inactive state.
195  *
196  * umem_process_updates() process all caches in the Work Requested state.
197  *
198  * 4.3. Reaping
199  * ------------
200  * When umem_reap() is called (at the time of heap growth), it schedule
201  * UMU_REAP updates on every cache.  It then checks to see if the update
202  * thread exists (umem_update_thr != 0).  If it is, it broadcasts
203  * the umem_update_cv to wake the update thread up, and returns.
204  *
205  * If the update thread does not exist (umem_update_thr == 0), and the
206  * program currently has multiple threads, umem_reap() attempts to create
207  * a new update thread.
208  *
209  * If the process is not multithreaded, or the creation fails, umem_reap()
210  * calls umem_st_update() to do an inline update.
211  *
212  * 4.4. The update thread
213  * ----------------------
214  * The update thread spends most of its time in cond_timedwait() on the
215  * umem_update_cv.  It wakes up under two conditions:
216  *
217  *	* The timedwait times out, in which case it needs to run a global
218  *	update, or
219  *
220  *	* someone cond_broadcast(3THR)s the umem_update_cv, in which case
221  *	it needs to check if there are any caches in the Work Requested
222  *	state.
223  *
224  * When it is time for another global update, umem calls umem_cache_update()
225  * on every cache, then calls vmem_update(), which tunes the vmem structures.
226  * umem_cache_update() can request further work using umem_add_update().
227  *
228  * After any work from the global update completes, the update timer is
229  * reset to umem_reap_interval seconds in the future.  This makes the
230  * updates self-throttling.
231  *
232  * Reaps are similarly self-throttling.  After a UMU_REAP update has
233  * been scheduled on all caches, umem_reap() sets a flag and wakes up the
234  * update thread.  The update thread notices the flag, and resets the
235  * reap state.
236  *
237  * 4.5. Inline updates
238  * -------------------
239  * If the update thread is not running, umem_st_update() is used instead.  It
240  * immediately does a global update (as above), then calls
241  * umem_process_updates() to process both the reaps that umem_reap() added and
242  * any work generated by the global update.  Afterwards, it resets the reap
243  * state.
244  *
245  * While the umem_st_update() is running, umem_st_update_thr holds the thread
246  * id of the thread performing the update.
247  *
248  * 4.6. Updates and fork1()
249  * ------------------------
250  * umem has fork1() pre- and post-handlers which lock up (and release) every
251  * mutex in every cache.  They also lock up the umem_update_lock.  Since
252  * fork1() only copies over a single lwp, other threads (including the update
253  * thread) could have been actively using a cache in the parent.  This
254  * can lead to inconsistencies in the child process.
255  *
256  * Because we locked all of the mutexes, the only possible inconsistancies are:
257  *
258  *	* a umem_cache_alloc() could leak its buffer.
259  *
260  *	* a caller of umem_depot_alloc() could leak a magazine, and all the
261  *	buffers contained in it.
262  *
263  *	* a cache could be in the Active update state.  In the child, there
264  *	would be no thread actually working on it.
265  *
266  *	* a umem_hash_rescale() could leak the new hash table.
267  *
268  *	* a umem_magazine_resize() could be in progress.
269  *
270  *	* a umem_reap() could be in progress.
271  *
272  * The memory leaks we can't do anything about.  umem_release_child() resets
273  * the update state, moves any caches in the Active state to the Work Requested
274  * state.  This might cause some updates to be re-run, but UMU_REAP and
275  * UMU_HASH_RESCALE are effectively idempotent, and the worst that can
276  * happen from umem_magazine_resize() is resizing the magazine twice in close
277  * succession.
278  *
279  * Much of the cleanup in umem_release_child() is skipped if
280  * umem_st_update_thr == thr_self().  This is so that applications which call
281  * fork1() from a cache callback does not break.  Needless to say, any such
282  * application is tremendously broken.
283  *
284  *
285  * 5. KM_SLEEP v.s. UMEM_NOFAIL
286  * ----------------------------
287  * Allocations against kmem and vmem have two basic modes:  SLEEP and
288  * NOSLEEP.  A sleeping allocation is will go to sleep (waiting for
289  * more memory) instead of failing (returning NULL).
290  *
291  * SLEEP allocations presume an extremely multithreaded model, with
292  * a lot of allocation and deallocation activity.  umem cannot presume
293  * that its clients have any particular type of behavior.  Instead,
294  * it provides two types of allocations:
295  *
296  *	* UMEM_DEFAULT, equivalent to KM_NOSLEEP (i.e. return NULL on
297  *	failure)
298  *
299  *	* UMEM_NOFAIL, which, on failure, calls an optional callback
300  *	(registered with umem_nofail_callback()).
301  *
302  * The callback is invoked with no locks held, and can do an arbitrary
303  * amount of work.  It then has a choice between:
304  *
305  *	* Returning UMEM_CALLBACK_RETRY, which will cause the allocation
306  *	to be restarted.
307  *
308  *	* Returning UMEM_CALLBACK_EXIT(status), which will cause exit(2)
309  *	to be invoked with status.  If multiple threads attempt to do
310  *	this simultaneously, only one will call exit(2).
311  *
312  *	* Doing some kind of non-local exit (thr_exit(3thr), longjmp(3C),
313  *	etc.)
314  *
315  * The default callback returns UMEM_CALLBACK_EXIT(255).
316  *
317  * To have these callbacks without risk of state corruption (in the case of
318  * a non-local exit), we have to ensure that the callbacks get invoked
319  * close to the original allocation, with no inconsistent state or held
320  * locks.  The following steps are taken:
321  *
322  *	* All invocations of vmem are VM_NOSLEEP.
323  *
324  *	* All constructor callbacks (which can themselves to allocations)
325  *	are passed UMEM_DEFAULT as their required allocation argument.  This
326  *	way, the constructor will fail, allowing the highest-level allocation
327  *	invoke the nofail callback.
328  *
329  *	If a constructor callback _does_ do a UMEM_NOFAIL allocation, and
330  *	the nofail callback does a non-local exit, we will leak the
331  *	partially-constructed buffer.
332  *
333  *
334  * 6. Lock Ordering
335  * ----------------
336  * umem has a few more locks than kmem does, mostly in the update path.  The
337  * overall lock ordering (earlier locks must be acquired first) is:
338  *
339  *	umem_init_lock
340  *
341  *	vmem_list_lock
342  *	vmem_nosleep_lock.vmpl_mutex
343  *	vmem_t's:
344  *		vm_lock
345  *	sbrk_lock
346  *
347  *	umem_cache_lock
348  *	umem_update_lock
349  *	umem_flags_lock
350  *	umem_cache_t's:
351  *		cache_cpu[*].cc_lock
352  *		cache_depot_lock
353  *		cache_lock
354  *	umem_log_header_t's:
355  *		lh_cpu[*].clh_lock
356  *		lh_lock
357  *
358  * 7. Changing UMEM_MAXBUF
359  * -----------------------
360  *
361  * When changing UMEM_MAXBUF extra care has to be taken. It is not sufficient to
362  * simply increase this number. First, one must update the umem_alloc_table to
363  * have the appropriate number of entires based upon the new size. If this is
364  * not done, this will lead to libumem blowing an assertion.
365  *
366  * The second place to update, which is not required, is the umem_alloc_sizes.
367  * These determine the default cache sizes that we're going to support.
368  */
369 
370 #include <umem_impl.h>
371 #include <sys/vmem_impl_user.h>
372 #include "umem_base.h"
373 #include "vmem_base.h"
374 
375 #include <sys/processor.h>
376 #include <sys/sysmacros.h>
377 
378 #include <alloca.h>
379 #include <errno.h>
380 #include <limits.h>
381 #include <stdio.h>
382 #include <stdlib.h>
383 #include <string.h>
384 #include <strings.h>
385 #include <signal.h>
386 #include <unistd.h>
387 #include <atomic.h>
388 
389 #include "misc.h"
390 
391 #define	UMEM_VMFLAGS(umflag)	(VM_NOSLEEP)
392 
393 size_t pagesize;
394 
395 /*
396  * The default set of caches to back umem_alloc().
397  * These sizes should be reevaluated periodically.
398  *
399  * We want allocations that are multiples of the coherency granularity
400  * (64 bytes) to be satisfied from a cache which is a multiple of 64
401  * bytes, so that it will be 64-byte aligned.  For all multiples of 64,
402  * the next kmem_cache_size greater than or equal to it must be a
403  * multiple of 64.
404  *
405  * This table must be in sorted order, from smallest to highest.  The
406  * highest slot must be UMEM_MAXBUF, and every slot afterwards must be
407  * zero.
408  */
409 static int umem_alloc_sizes[] = {
410 #ifdef _LP64
411 	1 * 8,
412 	1 * 16,
413 	2 * 16,
414 	3 * 16,
415 #else
416 	1 * 8,
417 	2 * 8,
418 	3 * 8,
419 	4 * 8,		5 * 8,		6 * 8,		7 * 8,
420 #endif
421 	4 * 16,		5 * 16,		6 * 16,		7 * 16,
422 	4 * 32,		5 * 32,		6 * 32,		7 * 32,
423 	4 * 64,		5 * 64,		6 * 64,		7 * 64,
424 	4 * 128,	5 * 128,	6 * 128,	7 * 128,
425 	P2ALIGN(8192 / 7, 64),
426 	P2ALIGN(8192 / 6, 64),
427 	P2ALIGN(8192 / 5, 64),
428 	P2ALIGN(8192 / 4, 64), 2304,
429 	P2ALIGN(8192 / 3, 64),
430 	P2ALIGN(8192 / 2, 64), 4544,
431 	P2ALIGN(8192 / 1, 64), 9216,
432 	4096 * 3,
433 	8192 * 2,				/* = 8192 * 2 */
434 	24576, 32768, 40960, 49152, 57344, 65536, 73728, 81920,
435 	90112, 98304, 106496, 114688, 122880, UMEM_MAXBUF, /* 128k */
436 	/* 24 slots for user expansion */
437 	0, 0, 0, 0, 0, 0, 0, 0,
438 	0, 0, 0, 0, 0, 0, 0, 0,
439 	0, 0, 0, 0, 0, 0, 0, 0,
440 };
441 #define	NUM_ALLOC_SIZES (sizeof (umem_alloc_sizes) / sizeof (*umem_alloc_sizes))
442 
443 static umem_magtype_t umem_magtype[] = {
444 	{ 1,	8,	3200,	65536	},
445 	{ 3,	16,	256,	32768	},
446 	{ 7,	32,	64,	16384	},
447 	{ 15,	64,	0,	8192	},
448 	{ 31,	64,	0,	4096	},
449 	{ 47,	64,	0,	2048	},
450 	{ 63,	64,	0,	1024	},
451 	{ 95,	64,	0,	512	},
452 	{ 143,	64,	0,	0	},
453 };
454 
455 /*
456  * umem tunables
457  */
458 uint32_t umem_max_ncpus;	/* # of CPU caches. */
459 
460 uint32_t umem_stack_depth = 15; /* # stack frames in a bufctl_audit */
461 uint32_t umem_reap_interval = 10; /* max reaping rate (seconds) */
462 uint_t umem_depot_contention = 2; /* max failed trylocks per real interval */
463 uint_t umem_abort = 1;		/* whether to abort on error */
464 uint_t umem_output = 0;		/* whether to write to standard error */
465 uint_t umem_logging = 0;	/* umem_log_enter() override */
466 uint32_t umem_mtbf = 0;		/* mean time between failures [default: off] */
467 size_t umem_transaction_log_size; /* size of transaction log */
468 size_t umem_content_log_size;	/* size of content log */
469 size_t umem_failure_log_size;	/* failure log [4 pages per CPU] */
470 size_t umem_slab_log_size;	/* slab create log [4 pages per CPU] */
471 size_t umem_content_maxsave = 256; /* UMF_CONTENTS max bytes to log */
472 size_t umem_lite_minsize = 0;	/* minimum buffer size for UMF_LITE */
473 size_t umem_lite_maxalign = 1024; /* maximum buffer alignment for UMF_LITE */
474 size_t umem_maxverify;		/* maximum bytes to inspect in debug routines */
475 size_t umem_minfirewall;	/* hardware-enforced redzone threshold */
476 
477 uint_t umem_flags = 0;
478 
479 mutex_t			umem_init_lock;		/* locks initialization */
480 cond_t			umem_init_cv;		/* initialization CV */
481 thread_t		umem_init_thr;		/* thread initializing */
482 int			umem_init_env_ready;	/* environ pre-initted */
483 int			umem_ready = UMEM_READY_STARTUP;
484 
485 static umem_nofail_callback_t *nofail_callback;
486 static mutex_t		umem_nofail_exit_lock;
487 static thread_t		umem_nofail_exit_thr;
488 
489 static umem_cache_t	*umem_slab_cache;
490 static umem_cache_t	*umem_bufctl_cache;
491 static umem_cache_t	*umem_bufctl_audit_cache;
492 
493 mutex_t			umem_flags_lock;
494 
495 static vmem_t		*heap_arena;
496 static vmem_alloc_t	*heap_alloc;
497 static vmem_free_t	*heap_free;
498 
499 static vmem_t		*umem_internal_arena;
500 static vmem_t		*umem_cache_arena;
501 static vmem_t		*umem_hash_arena;
502 static vmem_t		*umem_log_arena;
503 static vmem_t		*umem_oversize_arena;
504 static vmem_t		*umem_va_arena;
505 static vmem_t		*umem_default_arena;
506 static vmem_t		*umem_firewall_va_arena;
507 static vmem_t		*umem_firewall_arena;
508 
509 vmem_t			*umem_memalign_arena;
510 
511 umem_log_header_t *umem_transaction_log;
512 umem_log_header_t *umem_content_log;
513 umem_log_header_t *umem_failure_log;
514 umem_log_header_t *umem_slab_log;
515 
516 #define	CPUHINT()		(thr_self())
517 #define	CPUHINT_MAX()		INT_MAX
518 
519 #define	CPU(mask)		(umem_cpus + (CPUHINT() & (mask)))
520 static umem_cpu_t umem_startup_cpu = {	/* initial, single, cpu */
521 	UMEM_CACHE_SIZE(0),
522 	0
523 };
524 
525 static uint32_t umem_cpu_mask = 0;			/* global cpu mask */
526 static umem_cpu_t *umem_cpus = &umem_startup_cpu;	/* cpu list */
527 
528 volatile uint32_t umem_reaping;
529 
530 thread_t		umem_update_thr;
531 struct timeval		umem_update_next;	/* timeofday of next update */
532 volatile thread_t	umem_st_update_thr;	/* only used when single-thd */
533 
534 #define	IN_UPDATE()	(thr_self() == umem_update_thr || \
535 			    thr_self() == umem_st_update_thr)
536 #define	IN_REAP()	IN_UPDATE()
537 
538 mutex_t			umem_update_lock;	/* cache_u{next,prev,flags} */
539 cond_t			umem_update_cv;
540 
541 volatile hrtime_t umem_reap_next;	/* min hrtime of next reap */
542 
543 mutex_t			umem_cache_lock;	/* inter-cache linkage only */
544 
545 #ifdef UMEM_STANDALONE
546 umem_cache_t		umem_null_cache;
547 static const umem_cache_t umem_null_cache_template = {
548 #else
549 umem_cache_t		umem_null_cache = {
550 #endif
551 	0, 0, 0, 0, 0,
552 	0, 0,
553 	0, 0,
554 	0, 0,
555 	"invalid_cache",
556 	0, 0,
557 	NULL, NULL, NULL, NULL,
558 	NULL,
559 	0, 0, 0, 0,
560 	&umem_null_cache, &umem_null_cache,
561 	&umem_null_cache, &umem_null_cache,
562 	0,
563 	DEFAULTMUTEX,				/* start of slab layer */
564 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
565 	&umem_null_cache.cache_nullslab,
566 	{
567 		&umem_null_cache,
568 		NULL,
569 		&umem_null_cache.cache_nullslab,
570 		&umem_null_cache.cache_nullslab,
571 		NULL,
572 		-1,
573 		0
574 	},
575 	NULL,
576 	NULL,
577 	DEFAULTMUTEX,				/* start of depot layer */
578 	NULL, {
579 		NULL, 0, 0, 0, 0
580 	}, {
581 		NULL, 0, 0, 0, 0
582 	}, {
583 		{
584 			DEFAULTMUTEX,		/* start of CPU cache */
585 			0, 0, NULL, NULL, -1, -1, 0
586 		}
587 	}
588 };
589 
590 #define	ALLOC_TABLE_4 \
591 	&umem_null_cache, &umem_null_cache, &umem_null_cache, &umem_null_cache
592 
593 #define	ALLOC_TABLE_64 \
594 	ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, \
595 	ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, \
596 	ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, \
597 	ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4
598 
599 #define	ALLOC_TABLE_1024 \
600 	ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, \
601 	ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, \
602 	ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, \
603 	ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64
604 
605 static umem_cache_t *umem_alloc_table[UMEM_MAXBUF >> UMEM_ALIGN_SHIFT] = {
606 	ALLOC_TABLE_1024,
607 	ALLOC_TABLE_1024,
608 	ALLOC_TABLE_1024,
609 	ALLOC_TABLE_1024,
610 	ALLOC_TABLE_1024,
611 	ALLOC_TABLE_1024,
612 	ALLOC_TABLE_1024,
613 	ALLOC_TABLE_1024,
614 	ALLOC_TABLE_1024,
615 	ALLOC_TABLE_1024,
616 	ALLOC_TABLE_1024,
617 	ALLOC_TABLE_1024,
618 	ALLOC_TABLE_1024,
619 	ALLOC_TABLE_1024,
620 	ALLOC_TABLE_1024,
621 	ALLOC_TABLE_1024
622 };
623 
624 
625 /* Used to constrain audit-log stack traces */
626 caddr_t			umem_min_stack;
627 caddr_t			umem_max_stack;
628 
629 
630 #define	UMERR_MODIFIED	0	/* buffer modified while on freelist */
631 #define	UMERR_REDZONE	1	/* redzone violation (write past end of buf) */
632 #define	UMERR_DUPFREE	2	/* freed a buffer twice */
633 #define	UMERR_BADADDR	3	/* freed a bad (unallocated) address */
634 #define	UMERR_BADBUFTAG	4	/* buftag corrupted */
635 #define	UMERR_BADBUFCTL	5	/* bufctl corrupted */
636 #define	UMERR_BADCACHE	6	/* freed a buffer to the wrong cache */
637 #define	UMERR_BADSIZE	7	/* alloc size != free size */
638 #define	UMERR_BADBASE	8	/* buffer base address wrong */
639 
640 struct {
641 	hrtime_t	ump_timestamp;	/* timestamp of error */
642 	int		ump_error;	/* type of umem error (UMERR_*) */
643 	void		*ump_buffer;	/* buffer that induced abort */
644 	void		*ump_realbuf;	/* real start address for buffer */
645 	umem_cache_t	*ump_cache;	/* buffer's cache according to client */
646 	umem_cache_t	*ump_realcache;	/* actual cache containing buffer */
647 	umem_slab_t	*ump_slab;	/* slab accoring to umem_findslab() */
648 	umem_bufctl_t	*ump_bufctl;	/* bufctl */
649 } umem_abort_info;
650 
651 static void
652 copy_pattern(uint64_t pattern, void *buf_arg, size_t size)
653 {
654 	uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
655 	uint64_t *buf = buf_arg;
656 
657 	while (buf < bufend)
658 		*buf++ = pattern;
659 }
660 
661 static void *
662 verify_pattern(uint64_t pattern, void *buf_arg, size_t size)
663 {
664 	uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
665 	uint64_t *buf;
666 
667 	for (buf = buf_arg; buf < bufend; buf++)
668 		if (*buf != pattern)
669 			return (buf);
670 	return (NULL);
671 }
672 
673 static void *
674 verify_and_copy_pattern(uint64_t old, uint64_t new, void *buf_arg, size_t size)
675 {
676 	uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
677 	uint64_t *buf;
678 
679 	for (buf = buf_arg; buf < bufend; buf++) {
680 		if (*buf != old) {
681 			copy_pattern(old, buf_arg,
682 			    (char *)buf - (char *)buf_arg);
683 			return (buf);
684 		}
685 		*buf = new;
686 	}
687 
688 	return (NULL);
689 }
690 
691 void
692 umem_cache_applyall(void (*func)(umem_cache_t *))
693 {
694 	umem_cache_t *cp;
695 
696 	(void) mutex_lock(&umem_cache_lock);
697 	for (cp = umem_null_cache.cache_next; cp != &umem_null_cache;
698 	    cp = cp->cache_next)
699 		func(cp);
700 	(void) mutex_unlock(&umem_cache_lock);
701 }
702 
703 static void
704 umem_add_update_unlocked(umem_cache_t *cp, int flags)
705 {
706 	umem_cache_t *cnext, *cprev;
707 
708 	flags &= ~UMU_ACTIVE;
709 
710 	if (!flags)
711 		return;
712 
713 	if (cp->cache_uflags & UMU_ACTIVE) {
714 		cp->cache_uflags |= flags;
715 	} else {
716 		if (cp->cache_unext != NULL) {
717 			ASSERT(cp->cache_uflags != 0);
718 			cp->cache_uflags |= flags;
719 		} else {
720 			ASSERT(cp->cache_uflags == 0);
721 			cp->cache_uflags = flags;
722 			cp->cache_unext = cnext = &umem_null_cache;
723 			cp->cache_uprev = cprev = umem_null_cache.cache_uprev;
724 			cnext->cache_uprev = cp;
725 			cprev->cache_unext = cp;
726 		}
727 	}
728 }
729 
730 static void
731 umem_add_update(umem_cache_t *cp, int flags)
732 {
733 	(void) mutex_lock(&umem_update_lock);
734 
735 	umem_add_update_unlocked(cp, flags);
736 
737 	if (!IN_UPDATE())
738 		(void) cond_broadcast(&umem_update_cv);
739 
740 	(void) mutex_unlock(&umem_update_lock);
741 }
742 
743 /*
744  * Remove a cache from the update list, waiting for any in-progress work to
745  * complete first.
746  */
747 static void
748 umem_remove_updates(umem_cache_t *cp)
749 {
750 	(void) mutex_lock(&umem_update_lock);
751 
752 	/*
753 	 * Get it out of the active state
754 	 */
755 	while (cp->cache_uflags & UMU_ACTIVE) {
756 		int cancel_state;
757 
758 		ASSERT(cp->cache_unext == NULL);
759 
760 		cp->cache_uflags |= UMU_NOTIFY;
761 
762 		/*
763 		 * Make sure the update state is sane, before we wait
764 		 */
765 		ASSERT(umem_update_thr != 0 || umem_st_update_thr != 0);
766 		ASSERT(umem_update_thr != thr_self() &&
767 		    umem_st_update_thr != thr_self());
768 
769 		(void) pthread_setcancelstate(PTHREAD_CANCEL_DISABLE,
770 		    &cancel_state);
771 		(void) cond_wait(&umem_update_cv, &umem_update_lock);
772 		(void) pthread_setcancelstate(cancel_state, NULL);
773 	}
774 	/*
775 	 * Get it out of the Work Requested state
776 	 */
777 	if (cp->cache_unext != NULL) {
778 		cp->cache_uprev->cache_unext = cp->cache_unext;
779 		cp->cache_unext->cache_uprev = cp->cache_uprev;
780 		cp->cache_uprev = cp->cache_unext = NULL;
781 		cp->cache_uflags = 0;
782 	}
783 	/*
784 	 * Make sure it is in the Inactive state
785 	 */
786 	ASSERT(cp->cache_unext == NULL && cp->cache_uflags == 0);
787 	(void) mutex_unlock(&umem_update_lock);
788 }
789 
790 static void
791 umem_updateall(int flags)
792 {
793 	umem_cache_t *cp;
794 
795 	/*
796 	 * NOTE:  To prevent deadlock, umem_cache_lock is always acquired first.
797 	 *
798 	 * (umem_add_update is called from things run via umem_cache_applyall)
799 	 */
800 	(void) mutex_lock(&umem_cache_lock);
801 	(void) mutex_lock(&umem_update_lock);
802 
803 	for (cp = umem_null_cache.cache_next; cp != &umem_null_cache;
804 	    cp = cp->cache_next)
805 		umem_add_update_unlocked(cp, flags);
806 
807 	if (!IN_UPDATE())
808 		(void) cond_broadcast(&umem_update_cv);
809 
810 	(void) mutex_unlock(&umem_update_lock);
811 	(void) mutex_unlock(&umem_cache_lock);
812 }
813 
814 /*
815  * Debugging support.  Given a buffer address, find its slab.
816  */
817 static umem_slab_t *
818 umem_findslab(umem_cache_t *cp, void *buf)
819 {
820 	umem_slab_t *sp;
821 
822 	(void) mutex_lock(&cp->cache_lock);
823 	for (sp = cp->cache_nullslab.slab_next;
824 	    sp != &cp->cache_nullslab; sp = sp->slab_next) {
825 		if (UMEM_SLAB_MEMBER(sp, buf)) {
826 			(void) mutex_unlock(&cp->cache_lock);
827 			return (sp);
828 		}
829 	}
830 	(void) mutex_unlock(&cp->cache_lock);
831 
832 	return (NULL);
833 }
834 
835 static void
836 umem_error(int error, umem_cache_t *cparg, void *bufarg)
837 {
838 	umem_buftag_t *btp = NULL;
839 	umem_bufctl_t *bcp = NULL;
840 	umem_cache_t *cp = cparg;
841 	umem_slab_t *sp;
842 	uint64_t *off;
843 	void *buf = bufarg;
844 
845 	int old_logging = umem_logging;
846 
847 	umem_logging = 0;	/* stop logging when a bad thing happens */
848 
849 	umem_abort_info.ump_timestamp = gethrtime();
850 
851 	sp = umem_findslab(cp, buf);
852 	if (sp == NULL) {
853 		for (cp = umem_null_cache.cache_prev; cp != &umem_null_cache;
854 		    cp = cp->cache_prev) {
855 			if ((sp = umem_findslab(cp, buf)) != NULL)
856 				break;
857 		}
858 	}
859 
860 	if (sp == NULL) {
861 		cp = NULL;
862 		error = UMERR_BADADDR;
863 	} else {
864 		if (cp != cparg)
865 			error = UMERR_BADCACHE;
866 		else
867 			buf = (char *)bufarg - ((uintptr_t)bufarg -
868 			    (uintptr_t)sp->slab_base) % cp->cache_chunksize;
869 		if (buf != bufarg)
870 			error = UMERR_BADBASE;
871 		if (cp->cache_flags & UMF_BUFTAG)
872 			btp = UMEM_BUFTAG(cp, buf);
873 		if (cp->cache_flags & UMF_HASH) {
874 			(void) mutex_lock(&cp->cache_lock);
875 			for (bcp = *UMEM_HASH(cp, buf); bcp; bcp = bcp->bc_next)
876 				if (bcp->bc_addr == buf)
877 					break;
878 			(void) mutex_unlock(&cp->cache_lock);
879 			if (bcp == NULL && btp != NULL)
880 				bcp = btp->bt_bufctl;
881 			if (umem_findslab(cp->cache_bufctl_cache, bcp) ==
882 			    NULL || P2PHASE((uintptr_t)bcp, UMEM_ALIGN) ||
883 			    bcp->bc_addr != buf) {
884 				error = UMERR_BADBUFCTL;
885 				bcp = NULL;
886 			}
887 		}
888 	}
889 
890 	umem_abort_info.ump_error = error;
891 	umem_abort_info.ump_buffer = bufarg;
892 	umem_abort_info.ump_realbuf = buf;
893 	umem_abort_info.ump_cache = cparg;
894 	umem_abort_info.ump_realcache = cp;
895 	umem_abort_info.ump_slab = sp;
896 	umem_abort_info.ump_bufctl = bcp;
897 
898 	umem_printf("umem allocator: ");
899 
900 	switch (error) {
901 
902 	case UMERR_MODIFIED:
903 		umem_printf("buffer modified after being freed\n");
904 		off = verify_pattern(UMEM_FREE_PATTERN, buf, cp->cache_verify);
905 		if (off == NULL)	/* shouldn't happen */
906 			off = buf;
907 		umem_printf("modification occurred at offset 0x%lx "
908 		    "(0x%llx replaced by 0x%llx)\n",
909 		    (uintptr_t)off - (uintptr_t)buf,
910 		    (longlong_t)UMEM_FREE_PATTERN, (longlong_t)*off);
911 		break;
912 
913 	case UMERR_REDZONE:
914 		umem_printf("redzone violation: write past end of buffer\n");
915 		break;
916 
917 	case UMERR_BADADDR:
918 		umem_printf("invalid free: buffer not in cache\n");
919 		break;
920 
921 	case UMERR_DUPFREE:
922 		umem_printf("duplicate free: buffer freed twice\n");
923 		break;
924 
925 	case UMERR_BADBUFTAG:
926 		umem_printf("boundary tag corrupted\n");
927 		umem_printf("bcp ^ bxstat = %lx, should be %lx\n",
928 		    (intptr_t)btp->bt_bufctl ^ btp->bt_bxstat,
929 		    UMEM_BUFTAG_FREE);
930 		break;
931 
932 	case UMERR_BADBUFCTL:
933 		umem_printf("bufctl corrupted\n");
934 		break;
935 
936 	case UMERR_BADCACHE:
937 		umem_printf("buffer freed to wrong cache\n");
938 		umem_printf("buffer was allocated from %s,\n", cp->cache_name);
939 		umem_printf("caller attempting free to %s.\n",
940 		    cparg->cache_name);
941 		break;
942 
943 	case UMERR_BADSIZE:
944 		umem_printf("bad free: free size (%u) != alloc size (%u)\n",
945 		    UMEM_SIZE_DECODE(((uint32_t *)btp)[0]),
946 		    UMEM_SIZE_DECODE(((uint32_t *)btp)[1]));
947 		break;
948 
949 	case UMERR_BADBASE:
950 		umem_printf("bad free: free address (%p) != alloc address "
951 		    "(%p)\n", bufarg, buf);
952 		break;
953 	}
954 
955 	umem_printf("buffer=%p  bufctl=%p  cache: %s\n",
956 	    bufarg, (void *)bcp, cparg->cache_name);
957 
958 	if (bcp != NULL && (cp->cache_flags & UMF_AUDIT) &&
959 	    error != UMERR_BADBUFCTL) {
960 		int d;
961 		timespec_t ts;
962 		hrtime_t diff;
963 		umem_bufctl_audit_t *bcap = (umem_bufctl_audit_t *)bcp;
964 
965 		diff = umem_abort_info.ump_timestamp - bcap->bc_timestamp;
966 		ts.tv_sec = diff / NANOSEC;
967 		ts.tv_nsec = diff % NANOSEC;
968 
969 		umem_printf("previous transaction on buffer %p:\n", buf);
970 		umem_printf("thread=%p  time=T-%ld.%09ld  slab=%p  cache: %s\n",
971 		    (void *)(intptr_t)bcap->bc_thread, ts.tv_sec, ts.tv_nsec,
972 		    (void *)sp, cp->cache_name);
973 		for (d = 0; d < MIN(bcap->bc_depth, umem_stack_depth); d++) {
974 			(void) print_sym((void *)bcap->bc_stack[d]);
975 			umem_printf("\n");
976 		}
977 	}
978 
979 	umem_err_recoverable("umem: heap corruption detected");
980 
981 	umem_logging = old_logging;	/* resume logging */
982 }
983 
984 void
985 umem_nofail_callback(umem_nofail_callback_t *cb)
986 {
987 	nofail_callback = cb;
988 }
989 
990 static int
991 umem_alloc_retry(umem_cache_t *cp, int umflag)
992 {
993 	if (cp == &umem_null_cache) {
994 		if (umem_init())
995 			return (1);				/* retry */
996 		/*
997 		 * Initialization failed.  Do normal failure processing.
998 		 */
999 	}
1000 	if (umflag & UMEM_NOFAIL) {
1001 		int def_result = UMEM_CALLBACK_EXIT(255);
1002 		int result = def_result;
1003 		umem_nofail_callback_t *callback = nofail_callback;
1004 
1005 		if (callback != NULL)
1006 			result = callback();
1007 
1008 		if (result == UMEM_CALLBACK_RETRY)
1009 			return (1);
1010 
1011 		if ((result & ~0xFF) != UMEM_CALLBACK_EXIT(0)) {
1012 			log_message("nofail callback returned %x\n", result);
1013 			result = def_result;
1014 		}
1015 
1016 		/*
1017 		 * only one thread will call exit
1018 		 */
1019 		if (umem_nofail_exit_thr == thr_self())
1020 			umem_panic("recursive UMEM_CALLBACK_EXIT()\n");
1021 
1022 		(void) mutex_lock(&umem_nofail_exit_lock);
1023 		umem_nofail_exit_thr = thr_self();
1024 		exit(result & 0xFF);
1025 		/*NOTREACHED*/
1026 	}
1027 	return (0);
1028 }
1029 
1030 static umem_log_header_t *
1031 umem_log_init(size_t logsize)
1032 {
1033 	umem_log_header_t *lhp;
1034 	int nchunks = 4 * umem_max_ncpus;
1035 	size_t lhsize = offsetof(umem_log_header_t, lh_cpu[umem_max_ncpus]);
1036 	int i;
1037 
1038 	if (logsize == 0)
1039 		return (NULL);
1040 
1041 	/*
1042 	 * Make sure that lhp->lh_cpu[] is nicely aligned
1043 	 * to prevent false sharing of cache lines.
1044 	 */
1045 	lhsize = P2ROUNDUP(lhsize, UMEM_ALIGN);
1046 	lhp = vmem_xalloc(umem_log_arena, lhsize, 64, P2NPHASE(lhsize, 64), 0,
1047 	    NULL, NULL, VM_NOSLEEP);
1048 	if (lhp == NULL)
1049 		goto fail;
1050 
1051 	bzero(lhp, lhsize);
1052 
1053 	(void) mutex_init(&lhp->lh_lock, USYNC_THREAD, NULL);
1054 	lhp->lh_nchunks = nchunks;
1055 	lhp->lh_chunksize = P2ROUNDUP(logsize / nchunks, PAGESIZE);
1056 	if (lhp->lh_chunksize == 0)
1057 		lhp->lh_chunksize = PAGESIZE;
1058 
1059 	lhp->lh_base = vmem_alloc(umem_log_arena,
1060 	    lhp->lh_chunksize * nchunks, VM_NOSLEEP);
1061 	if (lhp->lh_base == NULL)
1062 		goto fail;
1063 
1064 	lhp->lh_free = vmem_alloc(umem_log_arena,
1065 	    nchunks * sizeof (int), VM_NOSLEEP);
1066 	if (lhp->lh_free == NULL)
1067 		goto fail;
1068 
1069 	bzero(lhp->lh_base, lhp->lh_chunksize * nchunks);
1070 
1071 	for (i = 0; i < umem_max_ncpus; i++) {
1072 		umem_cpu_log_header_t *clhp = &lhp->lh_cpu[i];
1073 		(void) mutex_init(&clhp->clh_lock, USYNC_THREAD, NULL);
1074 		clhp->clh_chunk = i;
1075 	}
1076 
1077 	for (i = umem_max_ncpus; i < nchunks; i++)
1078 		lhp->lh_free[i] = i;
1079 
1080 	lhp->lh_head = umem_max_ncpus;
1081 	lhp->lh_tail = 0;
1082 
1083 	return (lhp);
1084 
1085 fail:
1086 	if (lhp != NULL) {
1087 		if (lhp->lh_base != NULL)
1088 			vmem_free(umem_log_arena, lhp->lh_base,
1089 			    lhp->lh_chunksize * nchunks);
1090 
1091 		vmem_xfree(umem_log_arena, lhp, lhsize);
1092 	}
1093 	return (NULL);
1094 }
1095 
1096 static void *
1097 umem_log_enter(umem_log_header_t *lhp, void *data, size_t size)
1098 {
1099 	void *logspace;
1100 	umem_cpu_log_header_t *clhp =
1101 	    &lhp->lh_cpu[CPU(umem_cpu_mask)->cpu_number];
1102 
1103 	if (lhp == NULL || umem_logging == 0)
1104 		return (NULL);
1105 
1106 	(void) mutex_lock(&clhp->clh_lock);
1107 	clhp->clh_hits++;
1108 	if (size > clhp->clh_avail) {
1109 		(void) mutex_lock(&lhp->lh_lock);
1110 		lhp->lh_hits++;
1111 		lhp->lh_free[lhp->lh_tail] = clhp->clh_chunk;
1112 		lhp->lh_tail = (lhp->lh_tail + 1) % lhp->lh_nchunks;
1113 		clhp->clh_chunk = lhp->lh_free[lhp->lh_head];
1114 		lhp->lh_head = (lhp->lh_head + 1) % lhp->lh_nchunks;
1115 		clhp->clh_current = lhp->lh_base +
1116 		    clhp->clh_chunk * lhp->lh_chunksize;
1117 		clhp->clh_avail = lhp->lh_chunksize;
1118 		if (size > lhp->lh_chunksize)
1119 			size = lhp->lh_chunksize;
1120 		(void) mutex_unlock(&lhp->lh_lock);
1121 	}
1122 	logspace = clhp->clh_current;
1123 	clhp->clh_current += size;
1124 	clhp->clh_avail -= size;
1125 	bcopy(data, logspace, size);
1126 	(void) mutex_unlock(&clhp->clh_lock);
1127 	return (logspace);
1128 }
1129 
1130 #define	UMEM_AUDIT(lp, cp, bcp)						\
1131 {									\
1132 	umem_bufctl_audit_t *_bcp = (umem_bufctl_audit_t *)(bcp);	\
1133 	_bcp->bc_timestamp = gethrtime();				\
1134 	_bcp->bc_thread = thr_self();					\
1135 	_bcp->bc_depth = getpcstack(_bcp->bc_stack, umem_stack_depth,	\
1136 	    (cp != NULL) && (cp->cache_flags & UMF_CHECKSIGNAL));	\
1137 	_bcp->bc_lastlog = umem_log_enter((lp), _bcp,			\
1138 	    UMEM_BUFCTL_AUDIT_SIZE);					\
1139 }
1140 
1141 static void
1142 umem_log_event(umem_log_header_t *lp, umem_cache_t *cp,
1143 	umem_slab_t *sp, void *addr)
1144 {
1145 	umem_bufctl_audit_t *bcp;
1146 	UMEM_LOCAL_BUFCTL_AUDIT(&bcp);
1147 
1148 	bzero(bcp, UMEM_BUFCTL_AUDIT_SIZE);
1149 	bcp->bc_addr = addr;
1150 	bcp->bc_slab = sp;
1151 	bcp->bc_cache = cp;
1152 	UMEM_AUDIT(lp, cp, bcp);
1153 }
1154 
1155 /*
1156  * Create a new slab for cache cp.
1157  */
1158 static umem_slab_t *
1159 umem_slab_create(umem_cache_t *cp, int umflag)
1160 {
1161 	size_t slabsize = cp->cache_slabsize;
1162 	size_t chunksize = cp->cache_chunksize;
1163 	int cache_flags = cp->cache_flags;
1164 	size_t color, chunks;
1165 	char *buf, *slab;
1166 	umem_slab_t *sp;
1167 	umem_bufctl_t *bcp;
1168 	vmem_t *vmp = cp->cache_arena;
1169 
1170 	color = cp->cache_color + cp->cache_align;
1171 	if (color > cp->cache_maxcolor)
1172 		color = cp->cache_mincolor;
1173 	cp->cache_color = color;
1174 
1175 	slab = vmem_alloc(vmp, slabsize, UMEM_VMFLAGS(umflag));
1176 
1177 	if (slab == NULL)
1178 		goto vmem_alloc_failure;
1179 
1180 	ASSERT(P2PHASE((uintptr_t)slab, vmp->vm_quantum) == 0);
1181 
1182 	if (!(cp->cache_cflags & UMC_NOTOUCH) &&
1183 	    (cp->cache_flags & UMF_DEADBEEF))
1184 		copy_pattern(UMEM_UNINITIALIZED_PATTERN, slab, slabsize);
1185 
1186 	if (cache_flags & UMF_HASH) {
1187 		if ((sp = _umem_cache_alloc(umem_slab_cache, umflag)) == NULL)
1188 			goto slab_alloc_failure;
1189 		chunks = (slabsize - color) / chunksize;
1190 	} else {
1191 		sp = UMEM_SLAB(cp, slab);
1192 		chunks = (slabsize - sizeof (umem_slab_t) - color) / chunksize;
1193 	}
1194 
1195 	sp->slab_cache	= cp;
1196 	sp->slab_head	= NULL;
1197 	sp->slab_refcnt	= 0;
1198 	sp->slab_base	= buf = slab + color;
1199 	sp->slab_chunks	= chunks;
1200 
1201 	ASSERT(chunks > 0);
1202 	while (chunks-- != 0) {
1203 		if (cache_flags & UMF_HASH) {
1204 			bcp = _umem_cache_alloc(cp->cache_bufctl_cache, umflag);
1205 			if (bcp == NULL)
1206 				goto bufctl_alloc_failure;
1207 			if (cache_flags & UMF_AUDIT) {
1208 				umem_bufctl_audit_t *bcap =
1209 				    (umem_bufctl_audit_t *)bcp;
1210 				bzero(bcap, UMEM_BUFCTL_AUDIT_SIZE);
1211 				bcap->bc_cache = cp;
1212 			}
1213 			bcp->bc_addr = buf;
1214 			bcp->bc_slab = sp;
1215 		} else {
1216 			bcp = UMEM_BUFCTL(cp, buf);
1217 		}
1218 		if (cache_flags & UMF_BUFTAG) {
1219 			umem_buftag_t *btp = UMEM_BUFTAG(cp, buf);
1220 			btp->bt_redzone = UMEM_REDZONE_PATTERN;
1221 			btp->bt_bufctl = bcp;
1222 			btp->bt_bxstat = (intptr_t)bcp ^ UMEM_BUFTAG_FREE;
1223 			if (cache_flags & UMF_DEADBEEF) {
1224 				copy_pattern(UMEM_FREE_PATTERN, buf,
1225 				    cp->cache_verify);
1226 			}
1227 		}
1228 		bcp->bc_next = sp->slab_head;
1229 		sp->slab_head = bcp;
1230 		buf += chunksize;
1231 	}
1232 
1233 	umem_log_event(umem_slab_log, cp, sp, slab);
1234 
1235 	return (sp);
1236 
1237 bufctl_alloc_failure:
1238 
1239 	while ((bcp = sp->slab_head) != NULL) {
1240 		sp->slab_head = bcp->bc_next;
1241 		_umem_cache_free(cp->cache_bufctl_cache, bcp);
1242 	}
1243 	_umem_cache_free(umem_slab_cache, sp);
1244 
1245 slab_alloc_failure:
1246 
1247 	vmem_free(vmp, slab, slabsize);
1248 
1249 vmem_alloc_failure:
1250 
1251 	umem_log_event(umem_failure_log, cp, NULL, NULL);
1252 	atomic_add_64(&cp->cache_alloc_fail, 1);
1253 
1254 	return (NULL);
1255 }
1256 
1257 /*
1258  * Destroy a slab.
1259  */
1260 static void
1261 umem_slab_destroy(umem_cache_t *cp, umem_slab_t *sp)
1262 {
1263 	vmem_t *vmp = cp->cache_arena;
1264 	void *slab = (void *)P2ALIGN((uintptr_t)sp->slab_base, vmp->vm_quantum);
1265 
1266 	if (cp->cache_flags & UMF_HASH) {
1267 		umem_bufctl_t *bcp;
1268 		while ((bcp = sp->slab_head) != NULL) {
1269 			sp->slab_head = bcp->bc_next;
1270 			_umem_cache_free(cp->cache_bufctl_cache, bcp);
1271 		}
1272 		_umem_cache_free(umem_slab_cache, sp);
1273 	}
1274 	vmem_free(vmp, slab, cp->cache_slabsize);
1275 }
1276 
1277 /*
1278  * Allocate a raw (unconstructed) buffer from cp's slab layer.
1279  */
1280 static void *
1281 umem_slab_alloc(umem_cache_t *cp, int umflag)
1282 {
1283 	umem_bufctl_t *bcp, **hash_bucket;
1284 	umem_slab_t *sp;
1285 	void *buf;
1286 
1287 	(void) mutex_lock(&cp->cache_lock);
1288 	cp->cache_slab_alloc++;
1289 	sp = cp->cache_freelist;
1290 	ASSERT(sp->slab_cache == cp);
1291 	if (sp->slab_head == NULL) {
1292 		/*
1293 		 * The freelist is empty.  Create a new slab.
1294 		 */
1295 		(void) mutex_unlock(&cp->cache_lock);
1296 		if (cp == &umem_null_cache)
1297 			return (NULL);
1298 		if ((sp = umem_slab_create(cp, umflag)) == NULL)
1299 			return (NULL);
1300 		(void) mutex_lock(&cp->cache_lock);
1301 		cp->cache_slab_create++;
1302 		if ((cp->cache_buftotal += sp->slab_chunks) > cp->cache_bufmax)
1303 			cp->cache_bufmax = cp->cache_buftotal;
1304 		sp->slab_next = cp->cache_freelist;
1305 		sp->slab_prev = cp->cache_freelist->slab_prev;
1306 		sp->slab_next->slab_prev = sp;
1307 		sp->slab_prev->slab_next = sp;
1308 		cp->cache_freelist = sp;
1309 	}
1310 
1311 	sp->slab_refcnt++;
1312 	ASSERT(sp->slab_refcnt <= sp->slab_chunks);
1313 
1314 	/*
1315 	 * If we're taking the last buffer in the slab,
1316 	 * remove the slab from the cache's freelist.
1317 	 */
1318 	bcp = sp->slab_head;
1319 	if ((sp->slab_head = bcp->bc_next) == NULL) {
1320 		cp->cache_freelist = sp->slab_next;
1321 		ASSERT(sp->slab_refcnt == sp->slab_chunks);
1322 	}
1323 
1324 	if (cp->cache_flags & UMF_HASH) {
1325 		/*
1326 		 * Add buffer to allocated-address hash table.
1327 		 */
1328 		buf = bcp->bc_addr;
1329 		hash_bucket = UMEM_HASH(cp, buf);
1330 		bcp->bc_next = *hash_bucket;
1331 		*hash_bucket = bcp;
1332 		if ((cp->cache_flags & (UMF_AUDIT | UMF_BUFTAG)) == UMF_AUDIT) {
1333 			UMEM_AUDIT(umem_transaction_log, cp, bcp);
1334 		}
1335 	} else {
1336 		buf = UMEM_BUF(cp, bcp);
1337 	}
1338 
1339 	ASSERT(UMEM_SLAB_MEMBER(sp, buf));
1340 
1341 	(void) mutex_unlock(&cp->cache_lock);
1342 
1343 	return (buf);
1344 }
1345 
1346 /*
1347  * Free a raw (unconstructed) buffer to cp's slab layer.
1348  */
1349 static void
1350 umem_slab_free(umem_cache_t *cp, void *buf)
1351 {
1352 	umem_slab_t *sp;
1353 	umem_bufctl_t *bcp, **prev_bcpp;
1354 
1355 	ASSERT(buf != NULL);
1356 
1357 	(void) mutex_lock(&cp->cache_lock);
1358 	cp->cache_slab_free++;
1359 
1360 	if (cp->cache_flags & UMF_HASH) {
1361 		/*
1362 		 * Look up buffer in allocated-address hash table.
1363 		 */
1364 		prev_bcpp = UMEM_HASH(cp, buf);
1365 		while ((bcp = *prev_bcpp) != NULL) {
1366 			if (bcp->bc_addr == buf) {
1367 				*prev_bcpp = bcp->bc_next;
1368 				sp = bcp->bc_slab;
1369 				break;
1370 			}
1371 			cp->cache_lookup_depth++;
1372 			prev_bcpp = &bcp->bc_next;
1373 		}
1374 	} else {
1375 		bcp = UMEM_BUFCTL(cp, buf);
1376 		sp = UMEM_SLAB(cp, buf);
1377 	}
1378 
1379 	if (bcp == NULL || sp->slab_cache != cp || !UMEM_SLAB_MEMBER(sp, buf)) {
1380 		(void) mutex_unlock(&cp->cache_lock);
1381 		umem_error(UMERR_BADADDR, cp, buf);
1382 		return;
1383 	}
1384 
1385 	if ((cp->cache_flags & (UMF_AUDIT | UMF_BUFTAG)) == UMF_AUDIT) {
1386 		if (cp->cache_flags & UMF_CONTENTS)
1387 			((umem_bufctl_audit_t *)bcp)->bc_contents =
1388 			    umem_log_enter(umem_content_log, buf,
1389 			    cp->cache_contents);
1390 		UMEM_AUDIT(umem_transaction_log, cp, bcp);
1391 	}
1392 
1393 	/*
1394 	 * If this slab isn't currently on the freelist, put it there.
1395 	 */
1396 	if (sp->slab_head == NULL) {
1397 		ASSERT(sp->slab_refcnt == sp->slab_chunks);
1398 		ASSERT(cp->cache_freelist != sp);
1399 		sp->slab_next->slab_prev = sp->slab_prev;
1400 		sp->slab_prev->slab_next = sp->slab_next;
1401 		sp->slab_next = cp->cache_freelist;
1402 		sp->slab_prev = cp->cache_freelist->slab_prev;
1403 		sp->slab_next->slab_prev = sp;
1404 		sp->slab_prev->slab_next = sp;
1405 		cp->cache_freelist = sp;
1406 	}
1407 
1408 	bcp->bc_next = sp->slab_head;
1409 	sp->slab_head = bcp;
1410 
1411 	ASSERT(sp->slab_refcnt >= 1);
1412 	if (--sp->slab_refcnt == 0) {
1413 		/*
1414 		 * There are no outstanding allocations from this slab,
1415 		 * so we can reclaim the memory.
1416 		 */
1417 		sp->slab_next->slab_prev = sp->slab_prev;
1418 		sp->slab_prev->slab_next = sp->slab_next;
1419 		if (sp == cp->cache_freelist)
1420 			cp->cache_freelist = sp->slab_next;
1421 		cp->cache_slab_destroy++;
1422 		cp->cache_buftotal -= sp->slab_chunks;
1423 		(void) mutex_unlock(&cp->cache_lock);
1424 		umem_slab_destroy(cp, sp);
1425 		return;
1426 	}
1427 	(void) mutex_unlock(&cp->cache_lock);
1428 }
1429 
1430 static int
1431 umem_cache_alloc_debug(umem_cache_t *cp, void *buf, int umflag)
1432 {
1433 	umem_buftag_t *btp = UMEM_BUFTAG(cp, buf);
1434 	umem_bufctl_audit_t *bcp = (umem_bufctl_audit_t *)btp->bt_bufctl;
1435 	uint32_t mtbf;
1436 	int flags_nfatal;
1437 
1438 	if (btp->bt_bxstat != ((intptr_t)bcp ^ UMEM_BUFTAG_FREE)) {
1439 		umem_error(UMERR_BADBUFTAG, cp, buf);
1440 		return (-1);
1441 	}
1442 
1443 	btp->bt_bxstat = (intptr_t)bcp ^ UMEM_BUFTAG_ALLOC;
1444 
1445 	if ((cp->cache_flags & UMF_HASH) && bcp->bc_addr != buf) {
1446 		umem_error(UMERR_BADBUFCTL, cp, buf);
1447 		return (-1);
1448 	}
1449 
1450 	btp->bt_redzone = UMEM_REDZONE_PATTERN;
1451 
1452 	if (cp->cache_flags & UMF_DEADBEEF) {
1453 		if (verify_and_copy_pattern(UMEM_FREE_PATTERN,
1454 		    UMEM_UNINITIALIZED_PATTERN, buf, cp->cache_verify)) {
1455 			umem_error(UMERR_MODIFIED, cp, buf);
1456 			return (-1);
1457 		}
1458 	}
1459 
1460 	if ((mtbf = umem_mtbf | cp->cache_mtbf) != 0 &&
1461 	    gethrtime() % mtbf == 0 &&
1462 	    (umflag & (UMEM_FATAL_FLAGS)) == 0) {
1463 		umem_log_event(umem_failure_log, cp, NULL, NULL);
1464 	} else {
1465 		mtbf = 0;
1466 	}
1467 
1468 	/*
1469 	 * We do not pass fatal flags on to the constructor.  This prevents
1470 	 * leaking buffers in the event of a subordinate constructor failing.
1471 	 */
1472 	flags_nfatal = UMEM_DEFAULT;
1473 	if (mtbf || (cp->cache_constructor != NULL &&
1474 	    cp->cache_constructor(buf, cp->cache_private, flags_nfatal) != 0)) {
1475 		atomic_add_64(&cp->cache_alloc_fail, 1);
1476 		btp->bt_bxstat = (intptr_t)bcp ^ UMEM_BUFTAG_FREE;
1477 		copy_pattern(UMEM_FREE_PATTERN, buf, cp->cache_verify);
1478 		umem_slab_free(cp, buf);
1479 		return (-1);
1480 	}
1481 
1482 	if (cp->cache_flags & UMF_AUDIT) {
1483 		UMEM_AUDIT(umem_transaction_log, cp, bcp);
1484 	}
1485 
1486 	return (0);
1487 }
1488 
1489 static int
1490 umem_cache_free_debug(umem_cache_t *cp, void *buf)
1491 {
1492 	umem_buftag_t *btp = UMEM_BUFTAG(cp, buf);
1493 	umem_bufctl_audit_t *bcp = (umem_bufctl_audit_t *)btp->bt_bufctl;
1494 	umem_slab_t *sp;
1495 
1496 	if (btp->bt_bxstat != ((intptr_t)bcp ^ UMEM_BUFTAG_ALLOC)) {
1497 		if (btp->bt_bxstat == ((intptr_t)bcp ^ UMEM_BUFTAG_FREE)) {
1498 			umem_error(UMERR_DUPFREE, cp, buf);
1499 			return (-1);
1500 		}
1501 		sp = umem_findslab(cp, buf);
1502 		if (sp == NULL || sp->slab_cache != cp)
1503 			umem_error(UMERR_BADADDR, cp, buf);
1504 		else
1505 			umem_error(UMERR_REDZONE, cp, buf);
1506 		return (-1);
1507 	}
1508 
1509 	btp->bt_bxstat = (intptr_t)bcp ^ UMEM_BUFTAG_FREE;
1510 
1511 	if ((cp->cache_flags & UMF_HASH) && bcp->bc_addr != buf) {
1512 		umem_error(UMERR_BADBUFCTL, cp, buf);
1513 		return (-1);
1514 	}
1515 
1516 	if (btp->bt_redzone != UMEM_REDZONE_PATTERN) {
1517 		umem_error(UMERR_REDZONE, cp, buf);
1518 		return (-1);
1519 	}
1520 
1521 	if (cp->cache_flags & UMF_AUDIT) {
1522 		if (cp->cache_flags & UMF_CONTENTS)
1523 			bcp->bc_contents = umem_log_enter(umem_content_log,
1524 			    buf, cp->cache_contents);
1525 		UMEM_AUDIT(umem_transaction_log, cp, bcp);
1526 	}
1527 
1528 	if (cp->cache_destructor != NULL)
1529 		cp->cache_destructor(buf, cp->cache_private);
1530 
1531 	if (cp->cache_flags & UMF_DEADBEEF)
1532 		copy_pattern(UMEM_FREE_PATTERN, buf, cp->cache_verify);
1533 
1534 	return (0);
1535 }
1536 
1537 /*
1538  * Free each object in magazine mp to cp's slab layer, and free mp itself.
1539  */
1540 static void
1541 umem_magazine_destroy(umem_cache_t *cp, umem_magazine_t *mp, int nrounds)
1542 {
1543 	int round;
1544 
1545 	ASSERT(cp->cache_next == NULL || IN_UPDATE());
1546 
1547 	for (round = 0; round < nrounds; round++) {
1548 		void *buf = mp->mag_round[round];
1549 
1550 		if ((cp->cache_flags & UMF_DEADBEEF) &&
1551 		    verify_pattern(UMEM_FREE_PATTERN, buf,
1552 		    cp->cache_verify) != NULL) {
1553 			umem_error(UMERR_MODIFIED, cp, buf);
1554 			continue;
1555 		}
1556 
1557 		if (!(cp->cache_flags & UMF_BUFTAG) &&
1558 		    cp->cache_destructor != NULL)
1559 			cp->cache_destructor(buf, cp->cache_private);
1560 
1561 		umem_slab_free(cp, buf);
1562 	}
1563 	ASSERT(UMEM_MAGAZINE_VALID(cp, mp));
1564 	_umem_cache_free(cp->cache_magtype->mt_cache, mp);
1565 }
1566 
1567 /*
1568  * Allocate a magazine from the depot.
1569  */
1570 static umem_magazine_t *
1571 umem_depot_alloc(umem_cache_t *cp, umem_maglist_t *mlp)
1572 {
1573 	umem_magazine_t *mp;
1574 
1575 	/*
1576 	 * If we can't get the depot lock without contention,
1577 	 * update our contention count.  We use the depot
1578 	 * contention rate to determine whether we need to
1579 	 * increase the magazine size for better scalability.
1580 	 */
1581 	if (mutex_trylock(&cp->cache_depot_lock) != 0) {
1582 		(void) mutex_lock(&cp->cache_depot_lock);
1583 		cp->cache_depot_contention++;
1584 	}
1585 
1586 	if ((mp = mlp->ml_list) != NULL) {
1587 		ASSERT(UMEM_MAGAZINE_VALID(cp, mp));
1588 		mlp->ml_list = mp->mag_next;
1589 		if (--mlp->ml_total < mlp->ml_min)
1590 			mlp->ml_min = mlp->ml_total;
1591 		mlp->ml_alloc++;
1592 	}
1593 
1594 	(void) mutex_unlock(&cp->cache_depot_lock);
1595 
1596 	return (mp);
1597 }
1598 
1599 /*
1600  * Free a magazine to the depot.
1601  */
1602 static void
1603 umem_depot_free(umem_cache_t *cp, umem_maglist_t *mlp, umem_magazine_t *mp)
1604 {
1605 	(void) mutex_lock(&cp->cache_depot_lock);
1606 	ASSERT(UMEM_MAGAZINE_VALID(cp, mp));
1607 	mp->mag_next = mlp->ml_list;
1608 	mlp->ml_list = mp;
1609 	mlp->ml_total++;
1610 	(void) mutex_unlock(&cp->cache_depot_lock);
1611 }
1612 
1613 /*
1614  * Update the working set statistics for cp's depot.
1615  */
1616 static void
1617 umem_depot_ws_update(umem_cache_t *cp)
1618 {
1619 	(void) mutex_lock(&cp->cache_depot_lock);
1620 	cp->cache_full.ml_reaplimit = cp->cache_full.ml_min;
1621 	cp->cache_full.ml_min = cp->cache_full.ml_total;
1622 	cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_min;
1623 	cp->cache_empty.ml_min = cp->cache_empty.ml_total;
1624 	(void) mutex_unlock(&cp->cache_depot_lock);
1625 }
1626 
1627 /*
1628  * Reap all magazines that have fallen out of the depot's working set.
1629  */
1630 static void
1631 umem_depot_ws_reap(umem_cache_t *cp)
1632 {
1633 	long reap;
1634 	umem_magazine_t *mp;
1635 
1636 	ASSERT(cp->cache_next == NULL || IN_REAP());
1637 
1638 	reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
1639 	while (reap-- && (mp = umem_depot_alloc(cp, &cp->cache_full)) != NULL)
1640 		umem_magazine_destroy(cp, mp, cp->cache_magtype->mt_magsize);
1641 
1642 	reap = MIN(cp->cache_empty.ml_reaplimit, cp->cache_empty.ml_min);
1643 	while (reap-- && (mp = umem_depot_alloc(cp, &cp->cache_empty)) != NULL)
1644 		umem_magazine_destroy(cp, mp, 0);
1645 }
1646 
1647 static void
1648 umem_cpu_reload(umem_cpu_cache_t *ccp, umem_magazine_t *mp, int rounds)
1649 {
1650 	ASSERT((ccp->cc_loaded == NULL && ccp->cc_rounds == -1) ||
1651 	    (ccp->cc_loaded && ccp->cc_rounds + rounds == ccp->cc_magsize));
1652 	ASSERT(ccp->cc_magsize > 0);
1653 
1654 	ccp->cc_ploaded = ccp->cc_loaded;
1655 	ccp->cc_prounds = ccp->cc_rounds;
1656 	ccp->cc_loaded = mp;
1657 	ccp->cc_rounds = rounds;
1658 }
1659 
1660 /*
1661  * Allocate a constructed object from cache cp.
1662  */
1663 #pragma weak umem_cache_alloc = _umem_cache_alloc
1664 void *
1665 _umem_cache_alloc(umem_cache_t *cp, int umflag)
1666 {
1667 	umem_cpu_cache_t *ccp;
1668 	umem_magazine_t *fmp;
1669 	void *buf;
1670 	int flags_nfatal;
1671 
1672 retry:
1673 	ccp = UMEM_CPU_CACHE(cp, CPU(cp->cache_cpu_mask));
1674 	(void) mutex_lock(&ccp->cc_lock);
1675 	for (;;) {
1676 		/*
1677 		 * If there's an object available in the current CPU's
1678 		 * loaded magazine, just take it and return.
1679 		 */
1680 		if (ccp->cc_rounds > 0) {
1681 			buf = ccp->cc_loaded->mag_round[--ccp->cc_rounds];
1682 			ccp->cc_alloc++;
1683 			(void) mutex_unlock(&ccp->cc_lock);
1684 			if ((ccp->cc_flags & UMF_BUFTAG) &&
1685 			    umem_cache_alloc_debug(cp, buf, umflag) == -1) {
1686 				if (umem_alloc_retry(cp, umflag)) {
1687 					goto retry;
1688 				}
1689 
1690 				return (NULL);
1691 			}
1692 			return (buf);
1693 		}
1694 
1695 		/*
1696 		 * The loaded magazine is empty.  If the previously loaded
1697 		 * magazine was full, exchange them and try again.
1698 		 */
1699 		if (ccp->cc_prounds > 0) {
1700 			umem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds);
1701 			continue;
1702 		}
1703 
1704 		/*
1705 		 * If the magazine layer is disabled, break out now.
1706 		 */
1707 		if (ccp->cc_magsize == 0)
1708 			break;
1709 
1710 		/*
1711 		 * Try to get a full magazine from the depot.
1712 		 */
1713 		fmp = umem_depot_alloc(cp, &cp->cache_full);
1714 		if (fmp != NULL) {
1715 			if (ccp->cc_ploaded != NULL)
1716 				umem_depot_free(cp, &cp->cache_empty,
1717 				    ccp->cc_ploaded);
1718 			umem_cpu_reload(ccp, fmp, ccp->cc_magsize);
1719 			continue;
1720 		}
1721 
1722 		/*
1723 		 * There are no full magazines in the depot,
1724 		 * so fall through to the slab layer.
1725 		 */
1726 		break;
1727 	}
1728 	(void) mutex_unlock(&ccp->cc_lock);
1729 
1730 	/*
1731 	 * We couldn't allocate a constructed object from the magazine layer,
1732 	 * so get a raw buffer from the slab layer and apply its constructor.
1733 	 */
1734 	buf = umem_slab_alloc(cp, umflag);
1735 
1736 	if (buf == NULL) {
1737 		if (cp == &umem_null_cache)
1738 			return (NULL);
1739 		if (umem_alloc_retry(cp, umflag)) {
1740 			goto retry;
1741 		}
1742 
1743 		return (NULL);
1744 	}
1745 
1746 	if (cp->cache_flags & UMF_BUFTAG) {
1747 		/*
1748 		 * Let umem_cache_alloc_debug() apply the constructor for us.
1749 		 */
1750 		if (umem_cache_alloc_debug(cp, buf, umflag) == -1) {
1751 			if (umem_alloc_retry(cp, umflag)) {
1752 				goto retry;
1753 			}
1754 			return (NULL);
1755 		}
1756 		return (buf);
1757 	}
1758 
1759 	/*
1760 	 * We do not pass fatal flags on to the constructor.  This prevents
1761 	 * leaking buffers in the event of a subordinate constructor failing.
1762 	 */
1763 	flags_nfatal = UMEM_DEFAULT;
1764 	if (cp->cache_constructor != NULL &&
1765 	    cp->cache_constructor(buf, cp->cache_private, flags_nfatal) != 0) {
1766 		atomic_add_64(&cp->cache_alloc_fail, 1);
1767 		umem_slab_free(cp, buf);
1768 
1769 		if (umem_alloc_retry(cp, umflag)) {
1770 			goto retry;
1771 		}
1772 		return (NULL);
1773 	}
1774 
1775 	return (buf);
1776 }
1777 
1778 /*
1779  * Free a constructed object to cache cp.
1780  */
1781 #pragma weak umem_cache_free = _umem_cache_free
1782 void
1783 _umem_cache_free(umem_cache_t *cp, void *buf)
1784 {
1785 	umem_cpu_cache_t *ccp = UMEM_CPU_CACHE(cp, CPU(cp->cache_cpu_mask));
1786 	umem_magazine_t *emp;
1787 	umem_magtype_t *mtp;
1788 
1789 	if (ccp->cc_flags & UMF_BUFTAG)
1790 		if (umem_cache_free_debug(cp, buf) == -1)
1791 			return;
1792 
1793 	(void) mutex_lock(&ccp->cc_lock);
1794 	for (;;) {
1795 		/*
1796 		 * If there's a slot available in the current CPU's
1797 		 * loaded magazine, just put the object there and return.
1798 		 */
1799 		if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) {
1800 			ccp->cc_loaded->mag_round[ccp->cc_rounds++] = buf;
1801 			ccp->cc_free++;
1802 			(void) mutex_unlock(&ccp->cc_lock);
1803 			return;
1804 		}
1805 
1806 		/*
1807 		 * The loaded magazine is full.  If the previously loaded
1808 		 * magazine was empty, exchange them and try again.
1809 		 */
1810 		if (ccp->cc_prounds == 0) {
1811 			umem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds);
1812 			continue;
1813 		}
1814 
1815 		/*
1816 		 * If the magazine layer is disabled, break out now.
1817 		 */
1818 		if (ccp->cc_magsize == 0)
1819 			break;
1820 
1821 		/*
1822 		 * Try to get an empty magazine from the depot.
1823 		 */
1824 		emp = umem_depot_alloc(cp, &cp->cache_empty);
1825 		if (emp != NULL) {
1826 			if (ccp->cc_ploaded != NULL)
1827 				umem_depot_free(cp, &cp->cache_full,
1828 				    ccp->cc_ploaded);
1829 			umem_cpu_reload(ccp, emp, 0);
1830 			continue;
1831 		}
1832 
1833 		/*
1834 		 * There are no empty magazines in the depot,
1835 		 * so try to allocate a new one.  We must drop all locks
1836 		 * across umem_cache_alloc() because lower layers may
1837 		 * attempt to allocate from this cache.
1838 		 */
1839 		mtp = cp->cache_magtype;
1840 		(void) mutex_unlock(&ccp->cc_lock);
1841 		emp = _umem_cache_alloc(mtp->mt_cache, UMEM_DEFAULT);
1842 		(void) mutex_lock(&ccp->cc_lock);
1843 
1844 		if (emp != NULL) {
1845 			/*
1846 			 * We successfully allocated an empty magazine.
1847 			 * However, we had to drop ccp->cc_lock to do it,
1848 			 * so the cache's magazine size may have changed.
1849 			 * If so, free the magazine and try again.
1850 			 */
1851 			if (ccp->cc_magsize != mtp->mt_magsize) {
1852 				(void) mutex_unlock(&ccp->cc_lock);
1853 				_umem_cache_free(mtp->mt_cache, emp);
1854 				(void) mutex_lock(&ccp->cc_lock);
1855 				continue;
1856 			}
1857 
1858 			/*
1859 			 * We got a magazine of the right size.  Add it to
1860 			 * the depot and try the whole dance again.
1861 			 */
1862 			umem_depot_free(cp, &cp->cache_empty, emp);
1863 			continue;
1864 		}
1865 
1866 		/*
1867 		 * We couldn't allocate an empty magazine,
1868 		 * so fall through to the slab layer.
1869 		 */
1870 		break;
1871 	}
1872 	(void) mutex_unlock(&ccp->cc_lock);
1873 
1874 	/*
1875 	 * We couldn't free our constructed object to the magazine layer,
1876 	 * so apply its destructor and free it to the slab layer.
1877 	 * Note that if UMF_BUFTAG is in effect, umem_cache_free_debug()
1878 	 * will have already applied the destructor.
1879 	 */
1880 	if (!(cp->cache_flags & UMF_BUFTAG) && cp->cache_destructor != NULL)
1881 		cp->cache_destructor(buf, cp->cache_private);
1882 
1883 	umem_slab_free(cp, buf);
1884 }
1885 
1886 #pragma weak umem_zalloc = _umem_zalloc
1887 void *
1888 _umem_zalloc(size_t size, int umflag)
1889 {
1890 	size_t index = (size - 1) >> UMEM_ALIGN_SHIFT;
1891 	void *buf;
1892 
1893 retry:
1894 	if (index < UMEM_MAXBUF >> UMEM_ALIGN_SHIFT) {
1895 		umem_cache_t *cp = umem_alloc_table[index];
1896 		buf = _umem_cache_alloc(cp, umflag);
1897 		if (buf != NULL) {
1898 			if (cp->cache_flags & UMF_BUFTAG) {
1899 				umem_buftag_t *btp = UMEM_BUFTAG(cp, buf);
1900 				((uint8_t *)buf)[size] = UMEM_REDZONE_BYTE;
1901 				((uint32_t *)btp)[1] = UMEM_SIZE_ENCODE(size);
1902 			}
1903 			bzero(buf, size);
1904 		} else if (umem_alloc_retry(cp, umflag))
1905 			goto retry;
1906 	} else {
1907 		buf = _umem_alloc(size, umflag);	/* handles failure */
1908 		if (buf != NULL)
1909 			bzero(buf, size);
1910 	}
1911 	return (buf);
1912 }
1913 
1914 #pragma weak umem_alloc = _umem_alloc
1915 void *
1916 _umem_alloc(size_t size, int umflag)
1917 {
1918 	size_t index = (size - 1) >> UMEM_ALIGN_SHIFT;
1919 	void *buf;
1920 umem_alloc_retry:
1921 	if (index < UMEM_MAXBUF >> UMEM_ALIGN_SHIFT) {
1922 		umem_cache_t *cp = umem_alloc_table[index];
1923 		buf = _umem_cache_alloc(cp, umflag);
1924 		if ((cp->cache_flags & UMF_BUFTAG) && buf != NULL) {
1925 			umem_buftag_t *btp = UMEM_BUFTAG(cp, buf);
1926 			((uint8_t *)buf)[size] = UMEM_REDZONE_BYTE;
1927 			((uint32_t *)btp)[1] = UMEM_SIZE_ENCODE(size);
1928 		}
1929 		if (buf == NULL && umem_alloc_retry(cp, umflag))
1930 			goto umem_alloc_retry;
1931 		return (buf);
1932 	}
1933 	if (size == 0)
1934 		return (NULL);
1935 	if (umem_oversize_arena == NULL) {
1936 		if (umem_init())
1937 			ASSERT(umem_oversize_arena != NULL);
1938 		else
1939 			return (NULL);
1940 	}
1941 	buf = vmem_alloc(umem_oversize_arena, size, UMEM_VMFLAGS(umflag));
1942 	if (buf == NULL) {
1943 		umem_log_event(umem_failure_log, NULL, NULL, (void *)size);
1944 		if (umem_alloc_retry(NULL, umflag))
1945 			goto umem_alloc_retry;
1946 	}
1947 	return (buf);
1948 }
1949 
1950 #pragma weak umem_alloc_align = _umem_alloc_align
1951 void *
1952 _umem_alloc_align(size_t size, size_t align, int umflag)
1953 {
1954 	void *buf;
1955 
1956 	if (size == 0)
1957 		return (NULL);
1958 	if ((align & (align - 1)) != 0)
1959 		return (NULL);
1960 	if (align < UMEM_ALIGN)
1961 		align = UMEM_ALIGN;
1962 
1963 umem_alloc_align_retry:
1964 	if (umem_memalign_arena == NULL) {
1965 		if (umem_init())
1966 			ASSERT(umem_oversize_arena != NULL);
1967 		else
1968 			return (NULL);
1969 	}
1970 	buf = vmem_xalloc(umem_memalign_arena, size, align, 0, 0, NULL, NULL,
1971 	    UMEM_VMFLAGS(umflag));
1972 	if (buf == NULL) {
1973 		umem_log_event(umem_failure_log, NULL, NULL, (void *)size);
1974 		if (umem_alloc_retry(NULL, umflag))
1975 			goto umem_alloc_align_retry;
1976 	}
1977 	return (buf);
1978 }
1979 
1980 #pragma weak umem_free = _umem_free
1981 void
1982 _umem_free(void *buf, size_t size)
1983 {
1984 	size_t index = (size - 1) >> UMEM_ALIGN_SHIFT;
1985 
1986 	if (index < UMEM_MAXBUF >> UMEM_ALIGN_SHIFT) {
1987 		umem_cache_t *cp = umem_alloc_table[index];
1988 		if (cp->cache_flags & UMF_BUFTAG) {
1989 			umem_buftag_t *btp = UMEM_BUFTAG(cp, buf);
1990 			uint32_t *ip = (uint32_t *)btp;
1991 			if (ip[1] != UMEM_SIZE_ENCODE(size)) {
1992 				if (*(uint64_t *)buf == UMEM_FREE_PATTERN) {
1993 					umem_error(UMERR_DUPFREE, cp, buf);
1994 					return;
1995 				}
1996 				if (UMEM_SIZE_VALID(ip[1])) {
1997 					ip[0] = UMEM_SIZE_ENCODE(size);
1998 					umem_error(UMERR_BADSIZE, cp, buf);
1999 				} else {
2000 					umem_error(UMERR_REDZONE, cp, buf);
2001 				}
2002 				return;
2003 			}
2004 			if (((uint8_t *)buf)[size] != UMEM_REDZONE_BYTE) {
2005 				umem_error(UMERR_REDZONE, cp, buf);
2006 				return;
2007 			}
2008 			btp->bt_redzone = UMEM_REDZONE_PATTERN;
2009 		}
2010 		_umem_cache_free(cp, buf);
2011 	} else {
2012 		if (buf == NULL && size == 0)
2013 			return;
2014 		vmem_free(umem_oversize_arena, buf, size);
2015 	}
2016 }
2017 
2018 #pragma weak umem_free_align = _umem_free_align
2019 void
2020 _umem_free_align(void *buf, size_t size)
2021 {
2022 	if (buf == NULL && size == 0)
2023 		return;
2024 	vmem_xfree(umem_memalign_arena, buf, size);
2025 }
2026 
2027 static void *
2028 umem_firewall_va_alloc(vmem_t *vmp, size_t size, int vmflag)
2029 {
2030 	size_t realsize = size + vmp->vm_quantum;
2031 
2032 	/*
2033 	 * Annoying edge case: if 'size' is just shy of ULONG_MAX, adding
2034 	 * vm_quantum will cause integer wraparound.  Check for this, and
2035 	 * blow off the firewall page in this case.  Note that such a
2036 	 * giant allocation (the entire address space) can never be
2037 	 * satisfied, so it will either fail immediately (VM_NOSLEEP)
2038 	 * or sleep forever (VM_SLEEP).  Thus, there is no need for a
2039 	 * corresponding check in umem_firewall_va_free().
2040 	 */
2041 	if (realsize < size)
2042 		realsize = size;
2043 
2044 	return (vmem_alloc(vmp, realsize, vmflag | VM_NEXTFIT));
2045 }
2046 
2047 static void
2048 umem_firewall_va_free(vmem_t *vmp, void *addr, size_t size)
2049 {
2050 	vmem_free(vmp, addr, size + vmp->vm_quantum);
2051 }
2052 
2053 /*
2054  * Reclaim all unused memory from a cache.
2055  */
2056 static void
2057 umem_cache_reap(umem_cache_t *cp)
2058 {
2059 	/*
2060 	 * Ask the cache's owner to free some memory if possible.
2061 	 * The idea is to handle things like the inode cache, which
2062 	 * typically sits on a bunch of memory that it doesn't truly
2063 	 * *need*.  Reclaim policy is entirely up to the owner; this
2064 	 * callback is just an advisory plea for help.
2065 	 */
2066 	if (cp->cache_reclaim != NULL)
2067 		cp->cache_reclaim(cp->cache_private);
2068 
2069 	umem_depot_ws_reap(cp);
2070 }
2071 
2072 /*
2073  * Purge all magazines from a cache and set its magazine limit to zero.
2074  * All calls are serialized by being done by the update thread, except for
2075  * the final call from umem_cache_destroy().
2076  */
2077 static void
2078 umem_cache_magazine_purge(umem_cache_t *cp)
2079 {
2080 	umem_cpu_cache_t *ccp;
2081 	umem_magazine_t *mp, *pmp;
2082 	int rounds, prounds, cpu_seqid;
2083 
2084 	ASSERT(cp->cache_next == NULL || IN_UPDATE());
2085 
2086 	for (cpu_seqid = 0; cpu_seqid < umem_max_ncpus; cpu_seqid++) {
2087 		ccp = &cp->cache_cpu[cpu_seqid];
2088 
2089 		(void) mutex_lock(&ccp->cc_lock);
2090 		mp = ccp->cc_loaded;
2091 		pmp = ccp->cc_ploaded;
2092 		rounds = ccp->cc_rounds;
2093 		prounds = ccp->cc_prounds;
2094 		ccp->cc_loaded = NULL;
2095 		ccp->cc_ploaded = NULL;
2096 		ccp->cc_rounds = -1;
2097 		ccp->cc_prounds = -1;
2098 		ccp->cc_magsize = 0;
2099 		(void) mutex_unlock(&ccp->cc_lock);
2100 
2101 		if (mp)
2102 			umem_magazine_destroy(cp, mp, rounds);
2103 		if (pmp)
2104 			umem_magazine_destroy(cp, pmp, prounds);
2105 	}
2106 
2107 	/*
2108 	 * Updating the working set statistics twice in a row has the
2109 	 * effect of setting the working set size to zero, so everything
2110 	 * is eligible for reaping.
2111 	 */
2112 	umem_depot_ws_update(cp);
2113 	umem_depot_ws_update(cp);
2114 
2115 	umem_depot_ws_reap(cp);
2116 }
2117 
2118 /*
2119  * Enable per-cpu magazines on a cache.
2120  */
2121 static void
2122 umem_cache_magazine_enable(umem_cache_t *cp)
2123 {
2124 	int cpu_seqid;
2125 
2126 	if (cp->cache_flags & UMF_NOMAGAZINE)
2127 		return;
2128 
2129 	for (cpu_seqid = 0; cpu_seqid < umem_max_ncpus; cpu_seqid++) {
2130 		umem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
2131 		(void) mutex_lock(&ccp->cc_lock);
2132 		ccp->cc_magsize = cp->cache_magtype->mt_magsize;
2133 		(void) mutex_unlock(&ccp->cc_lock);
2134 	}
2135 
2136 }
2137 
2138 /*
2139  * Recompute a cache's magazine size.  The trade-off is that larger magazines
2140  * provide a higher transfer rate with the depot, while smaller magazines
2141  * reduce memory consumption.  Magazine resizing is an expensive operation;
2142  * it should not be done frequently.
2143  *
2144  * Changes to the magazine size are serialized by only having one thread
2145  * doing updates. (the update thread)
2146  *
2147  * Note: at present this only grows the magazine size.  It might be useful
2148  * to allow shrinkage too.
2149  */
2150 static void
2151 umem_cache_magazine_resize(umem_cache_t *cp)
2152 {
2153 	umem_magtype_t *mtp = cp->cache_magtype;
2154 
2155 	ASSERT(IN_UPDATE());
2156 
2157 	if (cp->cache_chunksize < mtp->mt_maxbuf) {
2158 		umem_cache_magazine_purge(cp);
2159 		(void) mutex_lock(&cp->cache_depot_lock);
2160 		cp->cache_magtype = ++mtp;
2161 		cp->cache_depot_contention_prev =
2162 		    cp->cache_depot_contention + INT_MAX;
2163 		(void) mutex_unlock(&cp->cache_depot_lock);
2164 		umem_cache_magazine_enable(cp);
2165 	}
2166 }
2167 
2168 /*
2169  * Rescale a cache's hash table, so that the table size is roughly the
2170  * cache size.  We want the average lookup time to be extremely small.
2171  */
2172 static void
2173 umem_hash_rescale(umem_cache_t *cp)
2174 {
2175 	umem_bufctl_t **old_table, **new_table, *bcp;
2176 	size_t old_size, new_size, h;
2177 
2178 	ASSERT(IN_UPDATE());
2179 
2180 	new_size = MAX(UMEM_HASH_INITIAL,
2181 	    1 << (highbit(3 * cp->cache_buftotal + 4) - 2));
2182 	old_size = cp->cache_hash_mask + 1;
2183 
2184 	if ((old_size >> 1) <= new_size && new_size <= (old_size << 1))
2185 		return;
2186 
2187 	new_table = vmem_alloc(umem_hash_arena, new_size * sizeof (void *),
2188 	    VM_NOSLEEP);
2189 	if (new_table == NULL)
2190 		return;
2191 	bzero(new_table, new_size * sizeof (void *));
2192 
2193 	(void) mutex_lock(&cp->cache_lock);
2194 
2195 	old_size = cp->cache_hash_mask + 1;
2196 	old_table = cp->cache_hash_table;
2197 
2198 	cp->cache_hash_mask = new_size - 1;
2199 	cp->cache_hash_table = new_table;
2200 	cp->cache_rescale++;
2201 
2202 	for (h = 0; h < old_size; h++) {
2203 		bcp = old_table[h];
2204 		while (bcp != NULL) {
2205 			void *addr = bcp->bc_addr;
2206 			umem_bufctl_t *next_bcp = bcp->bc_next;
2207 			umem_bufctl_t **hash_bucket = UMEM_HASH(cp, addr);
2208 			bcp->bc_next = *hash_bucket;
2209 			*hash_bucket = bcp;
2210 			bcp = next_bcp;
2211 		}
2212 	}
2213 
2214 	(void) mutex_unlock(&cp->cache_lock);
2215 
2216 	vmem_free(umem_hash_arena, old_table, old_size * sizeof (void *));
2217 }
2218 
2219 /*
2220  * Perform periodic maintenance on a cache: hash rescaling,
2221  * depot working-set update, and magazine resizing.
2222  */
2223 void
2224 umem_cache_update(umem_cache_t *cp)
2225 {
2226 	int update_flags = 0;
2227 
2228 	ASSERT(MUTEX_HELD(&umem_cache_lock));
2229 
2230 	/*
2231 	 * If the cache has become much larger or smaller than its hash table,
2232 	 * fire off a request to rescale the hash table.
2233 	 */
2234 	(void) mutex_lock(&cp->cache_lock);
2235 
2236 	if ((cp->cache_flags & UMF_HASH) &&
2237 	    (cp->cache_buftotal > (cp->cache_hash_mask << 1) ||
2238 	    (cp->cache_buftotal < (cp->cache_hash_mask >> 1) &&
2239 	    cp->cache_hash_mask > UMEM_HASH_INITIAL)))
2240 		update_flags |= UMU_HASH_RESCALE;
2241 
2242 	(void) mutex_unlock(&cp->cache_lock);
2243 
2244 	/*
2245 	 * Update the depot working set statistics.
2246 	 */
2247 	umem_depot_ws_update(cp);
2248 
2249 	/*
2250 	 * If there's a lot of contention in the depot,
2251 	 * increase the magazine size.
2252 	 */
2253 	(void) mutex_lock(&cp->cache_depot_lock);
2254 
2255 	if (cp->cache_chunksize < cp->cache_magtype->mt_maxbuf &&
2256 	    (int)(cp->cache_depot_contention -
2257 	    cp->cache_depot_contention_prev) > umem_depot_contention)
2258 		update_flags |= UMU_MAGAZINE_RESIZE;
2259 
2260 	cp->cache_depot_contention_prev = cp->cache_depot_contention;
2261 
2262 	(void) mutex_unlock(&cp->cache_depot_lock);
2263 
2264 	if (update_flags)
2265 		umem_add_update(cp, update_flags);
2266 }
2267 
2268 /*
2269  * Runs all pending updates.
2270  *
2271  * The update lock must be held on entrance, and will be held on exit.
2272  */
2273 void
2274 umem_process_updates(void)
2275 {
2276 	ASSERT(MUTEX_HELD(&umem_update_lock));
2277 
2278 	while (umem_null_cache.cache_unext != &umem_null_cache) {
2279 		int notify = 0;
2280 		umem_cache_t *cp = umem_null_cache.cache_unext;
2281 
2282 		cp->cache_uprev->cache_unext = cp->cache_unext;
2283 		cp->cache_unext->cache_uprev = cp->cache_uprev;
2284 		cp->cache_uprev = cp->cache_unext = NULL;
2285 
2286 		ASSERT(!(cp->cache_uflags & UMU_ACTIVE));
2287 
2288 		while (cp->cache_uflags) {
2289 			int uflags = (cp->cache_uflags |= UMU_ACTIVE);
2290 			(void) mutex_unlock(&umem_update_lock);
2291 
2292 			/*
2293 			 * The order here is important.  Each step can speed up
2294 			 * later steps.
2295 			 */
2296 
2297 			if (uflags & UMU_HASH_RESCALE)
2298 				umem_hash_rescale(cp);
2299 
2300 			if (uflags & UMU_MAGAZINE_RESIZE)
2301 				umem_cache_magazine_resize(cp);
2302 
2303 			if (uflags & UMU_REAP)
2304 				umem_cache_reap(cp);
2305 
2306 			(void) mutex_lock(&umem_update_lock);
2307 
2308 			/*
2309 			 * check if anyone has requested notification
2310 			 */
2311 			if (cp->cache_uflags & UMU_NOTIFY) {
2312 				uflags |= UMU_NOTIFY;
2313 				notify = 1;
2314 			}
2315 			cp->cache_uflags &= ~uflags;
2316 		}
2317 		if (notify)
2318 			(void) cond_broadcast(&umem_update_cv);
2319 	}
2320 }
2321 
2322 #ifndef UMEM_STANDALONE
2323 static void
2324 umem_st_update(void)
2325 {
2326 	ASSERT(MUTEX_HELD(&umem_update_lock));
2327 	ASSERT(umem_update_thr == 0 && umem_st_update_thr == 0);
2328 
2329 	umem_st_update_thr = thr_self();
2330 
2331 	(void) mutex_unlock(&umem_update_lock);
2332 
2333 	vmem_update(NULL);
2334 	umem_cache_applyall(umem_cache_update);
2335 
2336 	(void) mutex_lock(&umem_update_lock);
2337 
2338 	umem_process_updates();	/* does all of the requested work */
2339 
2340 	umem_reap_next = gethrtime() +
2341 	    (hrtime_t)umem_reap_interval * NANOSEC;
2342 
2343 	umem_reaping = UMEM_REAP_DONE;
2344 
2345 	umem_st_update_thr = 0;
2346 }
2347 #endif
2348 
2349 /*
2350  * Reclaim all unused memory from all caches.  Called from vmem when memory
2351  * gets tight.  Must be called with no locks held.
2352  *
2353  * This just requests a reap on all caches, and notifies the update thread.
2354  */
2355 void
2356 umem_reap(void)
2357 {
2358 #ifndef UMEM_STANDALONE
2359 	extern int __nthreads(void);
2360 #endif
2361 
2362 	if (umem_ready != UMEM_READY || umem_reaping != UMEM_REAP_DONE ||
2363 	    gethrtime() < umem_reap_next)
2364 		return;
2365 
2366 	(void) mutex_lock(&umem_update_lock);
2367 
2368 	if (umem_reaping != UMEM_REAP_DONE || gethrtime() < umem_reap_next) {
2369 		(void) mutex_unlock(&umem_update_lock);
2370 		return;
2371 	}
2372 	umem_reaping = UMEM_REAP_ADDING;	/* lock out other reaps */
2373 
2374 	(void) mutex_unlock(&umem_update_lock);
2375 
2376 	umem_updateall(UMU_REAP);
2377 
2378 	(void) mutex_lock(&umem_update_lock);
2379 
2380 	umem_reaping = UMEM_REAP_ACTIVE;
2381 
2382 	/* Standalone is single-threaded */
2383 #ifndef UMEM_STANDALONE
2384 	if (umem_update_thr == 0) {
2385 		/*
2386 		 * The update thread does not exist.  If the process is
2387 		 * multi-threaded, create it.  If not, or the creation fails,
2388 		 * do the update processing inline.
2389 		 */
2390 		ASSERT(umem_st_update_thr == 0);
2391 
2392 		if (__nthreads() <= 1 || umem_create_update_thread() == 0)
2393 			umem_st_update();
2394 	}
2395 
2396 	(void) cond_broadcast(&umem_update_cv);	/* wake up the update thread */
2397 #endif
2398 
2399 	(void) mutex_unlock(&umem_update_lock);
2400 }
2401 
2402 umem_cache_t *
2403 umem_cache_create(
2404 	char *name,		/* descriptive name for this cache */
2405 	size_t bufsize,		/* size of the objects it manages */
2406 	size_t align,		/* required object alignment */
2407 	umem_constructor_t *constructor, /* object constructor */
2408 	umem_destructor_t *destructor, /* object destructor */
2409 	umem_reclaim_t *reclaim, /* memory reclaim callback */
2410 	void *private,		/* pass-thru arg for constr/destr/reclaim */
2411 	vmem_t *vmp,		/* vmem source for slab allocation */
2412 	int cflags)		/* cache creation flags */
2413 {
2414 	int cpu_seqid;
2415 	size_t chunksize;
2416 	umem_cache_t *cp, *cnext, *cprev;
2417 	umem_magtype_t *mtp;
2418 	size_t csize;
2419 	size_t phase;
2420 
2421 	/*
2422 	 * The init thread is allowed to create internal and quantum caches.
2423 	 *
2424 	 * Other threads must wait until until initialization is complete.
2425 	 */
2426 	if (umem_init_thr == thr_self())
2427 		ASSERT((cflags & (UMC_INTERNAL | UMC_QCACHE)) != 0);
2428 	else {
2429 		ASSERT(!(cflags & UMC_INTERNAL));
2430 		if (umem_ready != UMEM_READY && umem_init() == 0) {
2431 			errno = EAGAIN;
2432 			return (NULL);
2433 		}
2434 	}
2435 
2436 	csize = UMEM_CACHE_SIZE(umem_max_ncpus);
2437 	phase = P2NPHASE(csize, UMEM_CPU_CACHE_SIZE);
2438 
2439 	if (vmp == NULL)
2440 		vmp = umem_default_arena;
2441 
2442 	ASSERT(P2PHASE(phase, UMEM_ALIGN) == 0);
2443 
2444 	/*
2445 	 * Check that the arguments are reasonable
2446 	 */
2447 	if ((align & (align - 1)) != 0 || align > vmp->vm_quantum ||
2448 	    ((cflags & UMC_NOHASH) && (cflags & UMC_NOTOUCH)) ||
2449 	    name == NULL || bufsize == 0) {
2450 		errno = EINVAL;
2451 		return (NULL);
2452 	}
2453 
2454 	/*
2455 	 * If align == 0, we set it to the minimum required alignment.
2456 	 *
2457 	 * If align < UMEM_ALIGN, we round it up to UMEM_ALIGN, unless
2458 	 * UMC_NOTOUCH was passed.
2459 	 */
2460 	if (align == 0) {
2461 		if (P2ROUNDUP(bufsize, UMEM_ALIGN) >= UMEM_SECOND_ALIGN)
2462 			align = UMEM_SECOND_ALIGN;
2463 		else
2464 			align = UMEM_ALIGN;
2465 	} else if (align < UMEM_ALIGN && (cflags & UMC_NOTOUCH) == 0)
2466 		align = UMEM_ALIGN;
2467 
2468 
2469 	/*
2470 	 * Get a umem_cache structure.  We arrange that cp->cache_cpu[]
2471 	 * is aligned on a UMEM_CPU_CACHE_SIZE boundary to prevent
2472 	 * false sharing of per-CPU data.
2473 	 */
2474 	cp = vmem_xalloc(umem_cache_arena, csize, UMEM_CPU_CACHE_SIZE, phase,
2475 	    0, NULL, NULL, VM_NOSLEEP);
2476 
2477 	if (cp == NULL) {
2478 		errno = EAGAIN;
2479 		return (NULL);
2480 	}
2481 
2482 	bzero(cp, csize);
2483 
2484 	(void) mutex_lock(&umem_flags_lock);
2485 	if (umem_flags & UMF_RANDOMIZE)
2486 		umem_flags = (((umem_flags | ~UMF_RANDOM) + 1) & UMF_RANDOM) |
2487 		    UMF_RANDOMIZE;
2488 	cp->cache_flags = umem_flags | (cflags & UMF_DEBUG);
2489 	(void) mutex_unlock(&umem_flags_lock);
2490 
2491 	/*
2492 	 * Make sure all the various flags are reasonable.
2493 	 */
2494 	if (cp->cache_flags & UMF_LITE) {
2495 		if (bufsize >= umem_lite_minsize &&
2496 		    align <= umem_lite_maxalign &&
2497 		    P2PHASE(bufsize, umem_lite_maxalign) != 0) {
2498 			cp->cache_flags |= UMF_BUFTAG;
2499 			cp->cache_flags &= ~(UMF_AUDIT | UMF_FIREWALL);
2500 		} else {
2501 			cp->cache_flags &= ~UMF_DEBUG;
2502 		}
2503 	}
2504 
2505 	if ((cflags & UMC_QCACHE) && (cp->cache_flags & UMF_AUDIT))
2506 		cp->cache_flags |= UMF_NOMAGAZINE;
2507 
2508 	if (cflags & UMC_NODEBUG)
2509 		cp->cache_flags &= ~UMF_DEBUG;
2510 
2511 	if (cflags & UMC_NOTOUCH)
2512 		cp->cache_flags &= ~UMF_TOUCH;
2513 
2514 	if (cflags & UMC_NOHASH)
2515 		cp->cache_flags &= ~(UMF_AUDIT | UMF_FIREWALL);
2516 
2517 	if (cflags & UMC_NOMAGAZINE)
2518 		cp->cache_flags |= UMF_NOMAGAZINE;
2519 
2520 	if ((cp->cache_flags & UMF_AUDIT) && !(cflags & UMC_NOTOUCH))
2521 		cp->cache_flags |= UMF_REDZONE;
2522 
2523 	if ((cp->cache_flags & UMF_BUFTAG) && bufsize >= umem_minfirewall &&
2524 	    !(cp->cache_flags & UMF_LITE) && !(cflags & UMC_NOHASH))
2525 		cp->cache_flags |= UMF_FIREWALL;
2526 
2527 	if (vmp != umem_default_arena || umem_firewall_arena == NULL)
2528 		cp->cache_flags &= ~UMF_FIREWALL;
2529 
2530 	if (cp->cache_flags & UMF_FIREWALL) {
2531 		cp->cache_flags &= ~UMF_BUFTAG;
2532 		cp->cache_flags |= UMF_NOMAGAZINE;
2533 		ASSERT(vmp == umem_default_arena);
2534 		vmp = umem_firewall_arena;
2535 	}
2536 
2537 	/*
2538 	 * Set cache properties.
2539 	 */
2540 	(void) strncpy(cp->cache_name, name, sizeof (cp->cache_name) - 1);
2541 	cp->cache_bufsize = bufsize;
2542 	cp->cache_align = align;
2543 	cp->cache_constructor = constructor;
2544 	cp->cache_destructor = destructor;
2545 	cp->cache_reclaim = reclaim;
2546 	cp->cache_private = private;
2547 	cp->cache_arena = vmp;
2548 	cp->cache_cflags = cflags;
2549 	cp->cache_cpu_mask = umem_cpu_mask;
2550 
2551 	/*
2552 	 * Determine the chunk size.
2553 	 */
2554 	chunksize = bufsize;
2555 
2556 	if (align >= UMEM_ALIGN) {
2557 		chunksize = P2ROUNDUP(chunksize, UMEM_ALIGN);
2558 		cp->cache_bufctl = chunksize - UMEM_ALIGN;
2559 	}
2560 
2561 	if (cp->cache_flags & UMF_BUFTAG) {
2562 		cp->cache_bufctl = chunksize;
2563 		cp->cache_buftag = chunksize;
2564 		chunksize += sizeof (umem_buftag_t);
2565 	}
2566 
2567 	if (cp->cache_flags & UMF_DEADBEEF) {
2568 		cp->cache_verify = MIN(cp->cache_buftag, umem_maxverify);
2569 		if (cp->cache_flags & UMF_LITE)
2570 			cp->cache_verify = MIN(cp->cache_verify, UMEM_ALIGN);
2571 	}
2572 
2573 	cp->cache_contents = MIN(cp->cache_bufctl, umem_content_maxsave);
2574 
2575 	cp->cache_chunksize = chunksize = P2ROUNDUP(chunksize, align);
2576 
2577 	if (chunksize < bufsize) {
2578 		errno = ENOMEM;
2579 		goto fail;
2580 	}
2581 
2582 	/*
2583 	 * Now that we know the chunk size, determine the optimal slab size.
2584 	 */
2585 	if (vmp == umem_firewall_arena) {
2586 		cp->cache_slabsize = P2ROUNDUP(chunksize, vmp->vm_quantum);
2587 		cp->cache_mincolor = cp->cache_slabsize - chunksize;
2588 		cp->cache_maxcolor = cp->cache_mincolor;
2589 		cp->cache_flags |= UMF_HASH;
2590 		ASSERT(!(cp->cache_flags & UMF_BUFTAG));
2591 	} else if ((cflags & UMC_NOHASH) || (!(cflags & UMC_NOTOUCH) &&
2592 	    !(cp->cache_flags & UMF_AUDIT) &&
2593 	    chunksize < vmp->vm_quantum / UMEM_VOID_FRACTION)) {
2594 		cp->cache_slabsize = vmp->vm_quantum;
2595 		cp->cache_mincolor = 0;
2596 		cp->cache_maxcolor =
2597 		    (cp->cache_slabsize - sizeof (umem_slab_t)) % chunksize;
2598 
2599 		if (chunksize + sizeof (umem_slab_t) > cp->cache_slabsize) {
2600 			errno = EINVAL;
2601 			goto fail;
2602 		}
2603 		ASSERT(!(cp->cache_flags & UMF_AUDIT));
2604 	} else {
2605 		size_t chunks, bestfit, waste, slabsize;
2606 		size_t minwaste = LONG_MAX;
2607 
2608 		for (chunks = 1; chunks <= UMEM_VOID_FRACTION; chunks++) {
2609 			slabsize = P2ROUNDUP(chunksize * chunks,
2610 			    vmp->vm_quantum);
2611 			/*
2612 			 * check for overflow
2613 			 */
2614 			if ((slabsize / chunks) < chunksize) {
2615 				errno = ENOMEM;
2616 				goto fail;
2617 			}
2618 			chunks = slabsize / chunksize;
2619 			waste = (slabsize % chunksize) / chunks;
2620 			if (waste < minwaste) {
2621 				minwaste = waste;
2622 				bestfit = slabsize;
2623 			}
2624 		}
2625 		if (cflags & UMC_QCACHE)
2626 			bestfit = MAX(1 << highbit(3 * vmp->vm_qcache_max), 64);
2627 		cp->cache_slabsize = bestfit;
2628 		cp->cache_mincolor = 0;
2629 		cp->cache_maxcolor = bestfit % chunksize;
2630 		cp->cache_flags |= UMF_HASH;
2631 	}
2632 
2633 	if (cp->cache_flags & UMF_HASH) {
2634 		ASSERT(!(cflags & UMC_NOHASH));
2635 		cp->cache_bufctl_cache = (cp->cache_flags & UMF_AUDIT) ?
2636 		    umem_bufctl_audit_cache : umem_bufctl_cache;
2637 	}
2638 
2639 	if (cp->cache_maxcolor >= vmp->vm_quantum)
2640 		cp->cache_maxcolor = vmp->vm_quantum - 1;
2641 
2642 	cp->cache_color = cp->cache_mincolor;
2643 
2644 	/*
2645 	 * Initialize the rest of the slab layer.
2646 	 */
2647 	(void) mutex_init(&cp->cache_lock, USYNC_THREAD, NULL);
2648 
2649 	cp->cache_freelist = &cp->cache_nullslab;
2650 	cp->cache_nullslab.slab_cache = cp;
2651 	cp->cache_nullslab.slab_refcnt = -1;
2652 	cp->cache_nullslab.slab_next = &cp->cache_nullslab;
2653 	cp->cache_nullslab.slab_prev = &cp->cache_nullslab;
2654 
2655 	if (cp->cache_flags & UMF_HASH) {
2656 		cp->cache_hash_table = vmem_alloc(umem_hash_arena,
2657 		    UMEM_HASH_INITIAL * sizeof (void *), VM_NOSLEEP);
2658 		if (cp->cache_hash_table == NULL) {
2659 			errno = EAGAIN;
2660 			goto fail_lock;
2661 		}
2662 		bzero(cp->cache_hash_table,
2663 		    UMEM_HASH_INITIAL * sizeof (void *));
2664 		cp->cache_hash_mask = UMEM_HASH_INITIAL - 1;
2665 		cp->cache_hash_shift = highbit((ulong_t)chunksize) - 1;
2666 	}
2667 
2668 	/*
2669 	 * Initialize the depot.
2670 	 */
2671 	(void) mutex_init(&cp->cache_depot_lock, USYNC_THREAD, NULL);
2672 
2673 	for (mtp = umem_magtype; chunksize <= mtp->mt_minbuf; mtp++)
2674 		continue;
2675 
2676 	cp->cache_magtype = mtp;
2677 
2678 	/*
2679 	 * Initialize the CPU layer.
2680 	 */
2681 	for (cpu_seqid = 0; cpu_seqid < umem_max_ncpus; cpu_seqid++) {
2682 		umem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
2683 		(void) mutex_init(&ccp->cc_lock, USYNC_THREAD, NULL);
2684 		ccp->cc_flags = cp->cache_flags;
2685 		ccp->cc_rounds = -1;
2686 		ccp->cc_prounds = -1;
2687 	}
2688 
2689 	/*
2690 	 * Add the cache to the global list.  This makes it visible
2691 	 * to umem_update(), so the cache must be ready for business.
2692 	 */
2693 	(void) mutex_lock(&umem_cache_lock);
2694 	cp->cache_next = cnext = &umem_null_cache;
2695 	cp->cache_prev = cprev = umem_null_cache.cache_prev;
2696 	cnext->cache_prev = cp;
2697 	cprev->cache_next = cp;
2698 	(void) mutex_unlock(&umem_cache_lock);
2699 
2700 	if (umem_ready == UMEM_READY)
2701 		umem_cache_magazine_enable(cp);
2702 
2703 	return (cp);
2704 
2705 fail_lock:
2706 	(void) mutex_destroy(&cp->cache_lock);
2707 fail:
2708 	vmem_xfree(umem_cache_arena, cp, csize);
2709 	return (NULL);
2710 }
2711 
2712 void
2713 umem_cache_destroy(umem_cache_t *cp)
2714 {
2715 	int cpu_seqid;
2716 
2717 	/*
2718 	 * Remove the cache from the global cache list so that no new updates
2719 	 * will be scheduled on its behalf, wait for any pending tasks to
2720 	 * complete, purge the cache, and then destroy it.
2721 	 */
2722 	(void) mutex_lock(&umem_cache_lock);
2723 	cp->cache_prev->cache_next = cp->cache_next;
2724 	cp->cache_next->cache_prev = cp->cache_prev;
2725 	cp->cache_prev = cp->cache_next = NULL;
2726 	(void) mutex_unlock(&umem_cache_lock);
2727 
2728 	umem_remove_updates(cp);
2729 
2730 	umem_cache_magazine_purge(cp);
2731 
2732 	(void) mutex_lock(&cp->cache_lock);
2733 	if (cp->cache_buftotal != 0)
2734 		log_message("umem_cache_destroy: '%s' (%p) not empty\n",
2735 		    cp->cache_name, (void *)cp);
2736 	cp->cache_reclaim = NULL;
2737 	/*
2738 	 * The cache is now dead.  There should be no further activity.
2739 	 * We enforce this by setting land mines in the constructor and
2740 	 * destructor routines that induce a segmentation fault if invoked.
2741 	 */
2742 	cp->cache_constructor = (umem_constructor_t *)1;
2743 	cp->cache_destructor = (umem_destructor_t *)2;
2744 	(void) mutex_unlock(&cp->cache_lock);
2745 
2746 	if (cp->cache_hash_table != NULL)
2747 		vmem_free(umem_hash_arena, cp->cache_hash_table,
2748 		    (cp->cache_hash_mask + 1) * sizeof (void *));
2749 
2750 	for (cpu_seqid = 0; cpu_seqid < umem_max_ncpus; cpu_seqid++)
2751 		(void) mutex_destroy(&cp->cache_cpu[cpu_seqid].cc_lock);
2752 
2753 	(void) mutex_destroy(&cp->cache_depot_lock);
2754 	(void) mutex_destroy(&cp->cache_lock);
2755 
2756 	vmem_free(umem_cache_arena, cp, UMEM_CACHE_SIZE(umem_max_ncpus));
2757 }
2758 
2759 void
2760 umem_alloc_sizes_clear(void)
2761 {
2762 	int i;
2763 
2764 	umem_alloc_sizes[0] = UMEM_MAXBUF;
2765 	for (i = 1; i < NUM_ALLOC_SIZES; i++)
2766 		umem_alloc_sizes[i] = 0;
2767 }
2768 
2769 void
2770 umem_alloc_sizes_add(size_t size_arg)
2771 {
2772 	int i, j;
2773 	size_t size = size_arg;
2774 
2775 	if (size == 0) {
2776 		log_message("size_add: cannot add zero-sized cache\n",
2777 		    size, UMEM_MAXBUF);
2778 		return;
2779 	}
2780 
2781 	if (size > UMEM_MAXBUF) {
2782 		log_message("size_add: %ld > %d, cannot add\n", size,
2783 		    UMEM_MAXBUF);
2784 		return;
2785 	}
2786 
2787 	if (umem_alloc_sizes[NUM_ALLOC_SIZES - 1] != 0) {
2788 		log_message("size_add: no space in alloc_table for %d\n",
2789 		    size);
2790 		return;
2791 	}
2792 
2793 	if (P2PHASE(size, UMEM_ALIGN) != 0) {
2794 		size = P2ROUNDUP(size, UMEM_ALIGN);
2795 		log_message("size_add: rounding %d up to %d\n", size_arg,
2796 		    size);
2797 	}
2798 
2799 	for (i = 0; i < NUM_ALLOC_SIZES; i++) {
2800 		int cur = umem_alloc_sizes[i];
2801 		if (cur == size) {
2802 			log_message("size_add: %ld already in table\n",
2803 			    size);
2804 			return;
2805 		}
2806 		if (cur > size)
2807 			break;
2808 	}
2809 
2810 	for (j = NUM_ALLOC_SIZES - 1; j > i; j--)
2811 		umem_alloc_sizes[j] = umem_alloc_sizes[j-1];
2812 	umem_alloc_sizes[i] = size;
2813 }
2814 
2815 void
2816 umem_alloc_sizes_remove(size_t size)
2817 {
2818 	int i;
2819 
2820 	if (size == UMEM_MAXBUF) {
2821 		log_message("size_remove: cannot remove %ld\n", size);
2822 		return;
2823 	}
2824 
2825 	for (i = 0; i < NUM_ALLOC_SIZES; i++) {
2826 		int cur = umem_alloc_sizes[i];
2827 		if (cur == size)
2828 			break;
2829 		else if (cur > size || cur == 0) {
2830 			log_message("size_remove: %ld not found in table\n",
2831 			    size);
2832 			return;
2833 		}
2834 	}
2835 
2836 	for (; i + 1 < NUM_ALLOC_SIZES; i++)
2837 		umem_alloc_sizes[i] = umem_alloc_sizes[i+1];
2838 	umem_alloc_sizes[i] = 0;
2839 }
2840 
2841 static int
2842 umem_cache_init(void)
2843 {
2844 	int i;
2845 	size_t size, max_size;
2846 	umem_cache_t *cp;
2847 	umem_magtype_t *mtp;
2848 	char name[UMEM_CACHE_NAMELEN + 1];
2849 	umem_cache_t *umem_alloc_caches[NUM_ALLOC_SIZES];
2850 
2851 	for (i = 0; i < sizeof (umem_magtype) / sizeof (*mtp); i++) {
2852 		mtp = &umem_magtype[i];
2853 		(void) snprintf(name, sizeof (name), "umem_magazine_%d",
2854 		    mtp->mt_magsize);
2855 		mtp->mt_cache = umem_cache_create(name,
2856 		    (mtp->mt_magsize + 1) * sizeof (void *),
2857 		    mtp->mt_align, NULL, NULL, NULL, NULL,
2858 		    umem_internal_arena, UMC_NOHASH | UMC_INTERNAL);
2859 		if (mtp->mt_cache == NULL)
2860 			return (0);
2861 	}
2862 
2863 	umem_slab_cache = umem_cache_create("umem_slab_cache",
2864 	    sizeof (umem_slab_t), 0, NULL, NULL, NULL, NULL,
2865 	    umem_internal_arena, UMC_NOHASH | UMC_INTERNAL);
2866 
2867 	if (umem_slab_cache == NULL)
2868 		return (0);
2869 
2870 	umem_bufctl_cache = umem_cache_create("umem_bufctl_cache",
2871 	    sizeof (umem_bufctl_t), 0, NULL, NULL, NULL, NULL,
2872 	    umem_internal_arena, UMC_NOHASH | UMC_INTERNAL);
2873 
2874 	if (umem_bufctl_cache == NULL)
2875 		return (0);
2876 
2877 	/*
2878 	 * The size of the umem_bufctl_audit structure depends upon
2879 	 * umem_stack_depth.   See umem_impl.h for details on the size
2880 	 * restrictions.
2881 	 */
2882 
2883 	size = UMEM_BUFCTL_AUDIT_SIZE_DEPTH(umem_stack_depth);
2884 	max_size = UMEM_BUFCTL_AUDIT_MAX_SIZE;
2885 
2886 	if (size > max_size) {			/* too large -- truncate */
2887 		int max_frames = UMEM_MAX_STACK_DEPTH;
2888 
2889 		ASSERT(UMEM_BUFCTL_AUDIT_SIZE_DEPTH(max_frames) <= max_size);
2890 
2891 		umem_stack_depth = max_frames;
2892 		size = UMEM_BUFCTL_AUDIT_SIZE_DEPTH(umem_stack_depth);
2893 	}
2894 
2895 	umem_bufctl_audit_cache = umem_cache_create("umem_bufctl_audit_cache",
2896 	    size, 0, NULL, NULL, NULL, NULL, umem_internal_arena,
2897 	    UMC_NOHASH | UMC_INTERNAL);
2898 
2899 	if (umem_bufctl_audit_cache == NULL)
2900 		return (0);
2901 
2902 	if (vmem_backend & VMEM_BACKEND_MMAP)
2903 		umem_va_arena = vmem_create("umem_va",
2904 		    NULL, 0, pagesize,
2905 		    vmem_alloc, vmem_free, heap_arena,
2906 		    8 * pagesize, VM_NOSLEEP);
2907 	else
2908 		umem_va_arena = heap_arena;
2909 
2910 	if (umem_va_arena == NULL)
2911 		return (0);
2912 
2913 	umem_default_arena = vmem_create("umem_default",
2914 	    NULL, 0, pagesize,
2915 	    heap_alloc, heap_free, umem_va_arena,
2916 	    0, VM_NOSLEEP);
2917 
2918 	if (umem_default_arena == NULL)
2919 		return (0);
2920 
2921 	/*
2922 	 * make sure the umem_alloc table initializer is correct
2923 	 */
2924 	i = sizeof (umem_alloc_table) / sizeof (*umem_alloc_table);
2925 	ASSERT(umem_alloc_table[i - 1] == &umem_null_cache);
2926 
2927 	/*
2928 	 * Create the default caches to back umem_alloc()
2929 	 */
2930 	for (i = 0; i < NUM_ALLOC_SIZES; i++) {
2931 		size_t cache_size = umem_alloc_sizes[i];
2932 		size_t align = 0;
2933 
2934 		if (cache_size == 0)
2935 			break;		/* 0 terminates the list */
2936 
2937 		/*
2938 		 * If they allocate a multiple of the coherency granularity,
2939 		 * they get a coherency-granularity-aligned address.
2940 		 */
2941 		if (IS_P2ALIGNED(cache_size, 64))
2942 			align = 64;
2943 		if (IS_P2ALIGNED(cache_size, pagesize))
2944 			align = pagesize;
2945 		(void) snprintf(name, sizeof (name), "umem_alloc_%lu",
2946 		    (long)cache_size);
2947 
2948 		cp = umem_cache_create(name, cache_size, align,
2949 		    NULL, NULL, NULL, NULL, NULL, UMC_INTERNAL);
2950 		if (cp == NULL)
2951 			return (0);
2952 
2953 		umem_alloc_caches[i] = cp;
2954 	}
2955 
2956 	/*
2957 	 * Initialization cannot fail at this point.  Make the caches
2958 	 * visible to umem_alloc() and friends.
2959 	 */
2960 	size = UMEM_ALIGN;
2961 	for (i = 0; i < NUM_ALLOC_SIZES; i++) {
2962 		size_t cache_size = umem_alloc_sizes[i];
2963 
2964 		if (cache_size == 0)
2965 			break;		/* 0 terminates the list */
2966 
2967 		cp = umem_alloc_caches[i];
2968 
2969 		while (size <= cache_size) {
2970 			umem_alloc_table[(size - 1) >> UMEM_ALIGN_SHIFT] = cp;
2971 			size += UMEM_ALIGN;
2972 		}
2973 	}
2974 	ASSERT(size - UMEM_ALIGN == UMEM_MAXBUF);
2975 	return (1);
2976 }
2977 
2978 /*
2979  * umem_startup() is called early on, and must be called explicitly if we're
2980  * the standalone version.
2981  */
2982 #ifdef UMEM_STANDALONE
2983 void
2984 #else
2985 #pragma init(umem_startup)
2986 static void
2987 #endif
2988 umem_startup(caddr_t start, size_t len, size_t pagesize, caddr_t minstack,
2989     caddr_t maxstack)
2990 {
2991 #ifdef UMEM_STANDALONE
2992 	int idx;
2993 	/* Standalone doesn't fork */
2994 #else
2995 	umem_forkhandler_init(); /* register the fork handler */
2996 #endif
2997 
2998 #ifdef __lint
2999 	/* make lint happy */
3000 	minstack = maxstack;
3001 #endif
3002 
3003 #ifdef UMEM_STANDALONE
3004 	umem_ready = UMEM_READY_STARTUP;
3005 	umem_init_env_ready = 0;
3006 
3007 	umem_min_stack = minstack;
3008 	umem_max_stack = maxstack;
3009 
3010 	nofail_callback = NULL;
3011 	umem_slab_cache = NULL;
3012 	umem_bufctl_cache = NULL;
3013 	umem_bufctl_audit_cache = NULL;
3014 	heap_arena = NULL;
3015 	heap_alloc = NULL;
3016 	heap_free = NULL;
3017 	umem_internal_arena = NULL;
3018 	umem_cache_arena = NULL;
3019 	umem_hash_arena = NULL;
3020 	umem_log_arena = NULL;
3021 	umem_oversize_arena = NULL;
3022 	umem_va_arena = NULL;
3023 	umem_default_arena = NULL;
3024 	umem_firewall_va_arena = NULL;
3025 	umem_firewall_arena = NULL;
3026 	umem_memalign_arena = NULL;
3027 	umem_transaction_log = NULL;
3028 	umem_content_log = NULL;
3029 	umem_failure_log = NULL;
3030 	umem_slab_log = NULL;
3031 	umem_cpu_mask = 0;
3032 
3033 	umem_cpus = &umem_startup_cpu;
3034 	umem_startup_cpu.cpu_cache_offset = UMEM_CACHE_SIZE(0);
3035 	umem_startup_cpu.cpu_number = 0;
3036 
3037 	bcopy(&umem_null_cache_template, &umem_null_cache,
3038 	    sizeof (umem_cache_t));
3039 
3040 	for (idx = 0; idx < (UMEM_MAXBUF >> UMEM_ALIGN_SHIFT); idx++)
3041 		umem_alloc_table[idx] = &umem_null_cache;
3042 #endif
3043 
3044 	/*
3045 	 * Perform initialization specific to the way we've been compiled
3046 	 * (library or standalone)
3047 	 */
3048 	umem_type_init(start, len, pagesize);
3049 
3050 	vmem_startup();
3051 }
3052 
3053 int
3054 umem_init(void)
3055 {
3056 	size_t maxverify, minfirewall;
3057 	size_t size;
3058 	int idx;
3059 	umem_cpu_t *new_cpus;
3060 
3061 	vmem_t *memalign_arena, *oversize_arena;
3062 
3063 	if (thr_self() != umem_init_thr) {
3064 		/*
3065 		 * The usual case -- non-recursive invocation of umem_init().
3066 		 */
3067 		(void) mutex_lock(&umem_init_lock);
3068 		if (umem_ready != UMEM_READY_STARTUP) {
3069 			/*
3070 			 * someone else beat us to initializing umem.  Wait
3071 			 * for them to complete, then return.
3072 			 */
3073 			while (umem_ready == UMEM_READY_INITING) {
3074 				int cancel_state;
3075 
3076 				(void) pthread_setcancelstate(
3077 				    PTHREAD_CANCEL_DISABLE, &cancel_state);
3078 				(void) cond_wait(&umem_init_cv,
3079 				    &umem_init_lock);
3080 				(void) pthread_setcancelstate(
3081 				    cancel_state, NULL);
3082 			}
3083 			ASSERT(umem_ready == UMEM_READY ||
3084 			    umem_ready == UMEM_READY_INIT_FAILED);
3085 			(void) mutex_unlock(&umem_init_lock);
3086 			return (umem_ready == UMEM_READY);
3087 		}
3088 
3089 		ASSERT(umem_ready == UMEM_READY_STARTUP);
3090 		ASSERT(umem_init_env_ready == 0);
3091 
3092 		umem_ready = UMEM_READY_INITING;
3093 		umem_init_thr = thr_self();
3094 
3095 		(void) mutex_unlock(&umem_init_lock);
3096 		umem_setup_envvars(0);		/* can recurse -- see below */
3097 		if (umem_init_env_ready) {
3098 			/*
3099 			 * initialization was completed already
3100 			 */
3101 			ASSERT(umem_ready == UMEM_READY ||
3102 			    umem_ready == UMEM_READY_INIT_FAILED);
3103 			ASSERT(umem_init_thr == 0);
3104 			return (umem_ready == UMEM_READY);
3105 		}
3106 	} else if (!umem_init_env_ready) {
3107 		/*
3108 		 * The umem_setup_envvars() call (above) makes calls into
3109 		 * the dynamic linker and directly into user-supplied code.
3110 		 * Since we cannot know what that code will do, we could be
3111 		 * recursively invoked (by, say, a malloc() call in the code
3112 		 * itself, or in a (C++) _init section it causes to be fired).
3113 		 *
3114 		 * This code is where we end up if such recursion occurs.  We
3115 		 * first clean up any partial results in the envvar code, then
3116 		 * proceed to finish initialization processing in the recursive
3117 		 * call.  The original call will notice this, and return
3118 		 * immediately.
3119 		 */
3120 		umem_setup_envvars(1);		/* clean up any partial state */
3121 	} else {
3122 		umem_panic(
3123 		    "recursive allocation while initializing umem\n");
3124 	}
3125 	umem_init_env_ready = 1;
3126 
3127 	/*
3128 	 * From this point until we finish, recursion into umem_init() will
3129 	 * cause a umem_panic().
3130 	 */
3131 	maxverify = minfirewall = ULONG_MAX;
3132 
3133 	/* LINTED constant condition */
3134 	if (sizeof (umem_cpu_cache_t) != UMEM_CPU_CACHE_SIZE) {
3135 		umem_panic("sizeof (umem_cpu_cache_t) = %d, should be %d\n",
3136 		    sizeof (umem_cpu_cache_t), UMEM_CPU_CACHE_SIZE);
3137 	}
3138 
3139 	umem_max_ncpus = umem_get_max_ncpus();
3140 
3141 	/*
3142 	 * load tunables from environment
3143 	 */
3144 	umem_process_envvars();
3145 
3146 	if (issetugid())
3147 		umem_mtbf = 0;
3148 
3149 	/*
3150 	 * set up vmem
3151 	 */
3152 	if (!(umem_flags & UMF_AUDIT))
3153 		vmem_no_debug();
3154 
3155 	heap_arena = vmem_heap_arena(&heap_alloc, &heap_free);
3156 
3157 	pagesize = heap_arena->vm_quantum;
3158 
3159 	umem_internal_arena = vmem_create("umem_internal", NULL, 0, pagesize,
3160 	    heap_alloc, heap_free, heap_arena, 0, VM_NOSLEEP);
3161 
3162 	umem_default_arena = umem_internal_arena;
3163 
3164 	if (umem_internal_arena == NULL)
3165 		goto fail;
3166 
3167 	umem_cache_arena = vmem_create("umem_cache", NULL, 0, UMEM_ALIGN,
3168 	    vmem_alloc, vmem_free, umem_internal_arena, 0, VM_NOSLEEP);
3169 
3170 	umem_hash_arena = vmem_create("umem_hash", NULL, 0, UMEM_ALIGN,
3171 	    vmem_alloc, vmem_free, umem_internal_arena, 0, VM_NOSLEEP);
3172 
3173 	umem_log_arena = vmem_create("umem_log", NULL, 0, UMEM_ALIGN,
3174 	    heap_alloc, heap_free, heap_arena, 0, VM_NOSLEEP);
3175 
3176 	umem_firewall_va_arena = vmem_create("umem_firewall_va",
3177 	    NULL, 0, pagesize,
3178 	    umem_firewall_va_alloc, umem_firewall_va_free, heap_arena,
3179 	    0, VM_NOSLEEP);
3180 
3181 	if (umem_cache_arena == NULL || umem_hash_arena == NULL ||
3182 	    umem_log_arena == NULL || umem_firewall_va_arena == NULL)
3183 		goto fail;
3184 
3185 	umem_firewall_arena = vmem_create("umem_firewall", NULL, 0, pagesize,
3186 	    heap_alloc, heap_free, umem_firewall_va_arena, 0,
3187 	    VM_NOSLEEP);
3188 
3189 	if (umem_firewall_arena == NULL)
3190 		goto fail;
3191 
3192 	oversize_arena = vmem_create("umem_oversize", NULL, 0, pagesize,
3193 	    heap_alloc, heap_free, minfirewall < ULONG_MAX ?
3194 	    umem_firewall_va_arena : heap_arena, 0, VM_NOSLEEP);
3195 
3196 	memalign_arena = vmem_create("umem_memalign", NULL, 0, UMEM_ALIGN,
3197 	    heap_alloc, heap_free, minfirewall < ULONG_MAX ?
3198 	    umem_firewall_va_arena : heap_arena, 0, VM_NOSLEEP);
3199 
3200 	if (oversize_arena == NULL || memalign_arena == NULL)
3201 		goto fail;
3202 
3203 	if (umem_max_ncpus > CPUHINT_MAX())
3204 		umem_max_ncpus = CPUHINT_MAX();
3205 
3206 	while ((umem_max_ncpus & (umem_max_ncpus - 1)) != 0)
3207 		umem_max_ncpus++;
3208 
3209 	if (umem_max_ncpus == 0)
3210 		umem_max_ncpus = 1;
3211 
3212 	size = umem_max_ncpus * sizeof (umem_cpu_t);
3213 	new_cpus = vmem_alloc(umem_internal_arena, size, VM_NOSLEEP);
3214 	if (new_cpus == NULL)
3215 		goto fail;
3216 
3217 	bzero(new_cpus, size);
3218 	for (idx = 0; idx < umem_max_ncpus; idx++) {
3219 		new_cpus[idx].cpu_number = idx;
3220 		new_cpus[idx].cpu_cache_offset = UMEM_CACHE_SIZE(idx);
3221 	}
3222 	umem_cpus = new_cpus;
3223 	umem_cpu_mask = (umem_max_ncpus - 1);
3224 
3225 	if (umem_maxverify == 0)
3226 		umem_maxverify = maxverify;
3227 
3228 	if (umem_minfirewall == 0)
3229 		umem_minfirewall = minfirewall;
3230 
3231 	/*
3232 	 * Set up updating and reaping
3233 	 */
3234 	umem_reap_next = gethrtime() + NANOSEC;
3235 
3236 #ifndef UMEM_STANDALONE
3237 	(void) gettimeofday(&umem_update_next, NULL);
3238 #endif
3239 
3240 	/*
3241 	 * Set up logging -- failure here is okay, since it will just disable
3242 	 * the logs
3243 	 */
3244 	if (umem_logging) {
3245 		umem_transaction_log = umem_log_init(umem_transaction_log_size);
3246 		umem_content_log = umem_log_init(umem_content_log_size);
3247 		umem_failure_log = umem_log_init(umem_failure_log_size);
3248 		umem_slab_log = umem_log_init(umem_slab_log_size);
3249 	}
3250 
3251 	/*
3252 	 * Set up caches -- if successful, initialization cannot fail, since
3253 	 * allocations from other threads can now succeed.
3254 	 */
3255 	if (umem_cache_init() == 0) {
3256 		log_message("unable to create initial caches\n");
3257 		goto fail;
3258 	}
3259 	umem_oversize_arena = oversize_arena;
3260 	umem_memalign_arena = memalign_arena;
3261 
3262 	umem_cache_applyall(umem_cache_magazine_enable);
3263 
3264 	/*
3265 	 * initialization done, ready to go
3266 	 */
3267 	(void) mutex_lock(&umem_init_lock);
3268 	umem_ready = UMEM_READY;
3269 	umem_init_thr = 0;
3270 	(void) cond_broadcast(&umem_init_cv);
3271 	(void) mutex_unlock(&umem_init_lock);
3272 	return (1);
3273 
3274 fail:
3275 	log_message("umem initialization failed\n");
3276 
3277 	(void) mutex_lock(&umem_init_lock);
3278 	umem_ready = UMEM_READY_INIT_FAILED;
3279 	umem_init_thr = 0;
3280 	(void) cond_broadcast(&umem_init_cv);
3281 	(void) mutex_unlock(&umem_init_lock);
3282 	return (0);
3283 }
3284