xref: /illumos-gate/usr/src/lib/libsqlite/src/encode.c (revision 1da57d55)
1 /*
2 ** 2002 April 25
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains helper routines used to translate binary data into
13 ** a null-terminated string (suitable for use in SQLite) and back again.
14 ** These are convenience routines for use by people who want to store binary
15 ** data in an SQLite database.  The code in this file is not used by any other
16 ** part of the SQLite library.
17 **
18 ** $Id: encode.c,v 1.12 2004/03/17 18:44:46 drh Exp $
19 */
20 #include <string.h>
21 #include <assert.h>
22 
23 /*
24 ** How This Encoder Works
25 **
26 ** The output is allowed to contain any character except 0x27 (') and
27 ** 0x00.  This is accomplished by using an escape character to encode
28 ** 0x27 and 0x00 as a two-byte sequence.  The escape character is always
29 ** 0x01.  An 0x00 is encoded as the two byte sequence 0x01 0x01.  The
30 ** 0x27 character is encoded as the two byte sequence 0x01 0x28.  Finally,
31 ** the escape character itself is encoded as the two-character sequence
32 ** 0x01 0x02.
33 **
34 ** To summarize, the encoder works by using an escape sequences as follows:
35 **
36 **       0x00  ->  0x01 0x01
37 **       0x01  ->  0x01 0x02
38 **       0x27  ->  0x01 0x28
39 **
40 ** If that were all the encoder did, it would work, but in certain cases
41 ** it could double the size of the encoded string.  For example, to
42 ** encode a string of 100 0x27 characters would require 100 instances of
43 ** the 0x01 0x03 escape sequence resulting in a 200-character output.
44 ** We would prefer to keep the size of the encoded string smaller than
45 ** this.
46 **
47 ** To minimize the encoding size, we first add a fixed offset value to each
48 ** byte in the sequence.  The addition is modulo 256.  (That is to say, if
49 ** the sum of the original character value and the offset exceeds 256, then
50 ** the higher order bits are truncated.)  The offset is chosen to minimize
51 ** the number of characters in the string that need to be escaped.  For
52 ** example, in the case above where the string was composed of 100 0x27
53 ** characters, the offset might be 0x01.  Each of the 0x27 characters would
54 ** then be converted into an 0x28 character which would not need to be
55 ** escaped at all and so the 100 character input string would be converted
56 ** into just 100 characters of output.  Actually 101 characters of output -
57 ** we have to record the offset used as the first byte in the sequence so
58 ** that the string can be decoded.  Since the offset value is stored as
59 ** part of the output string and the output string is not allowed to contain
60 ** characters 0x00 or 0x27, the offset cannot be 0x00 or 0x27.
61 **
62 ** Here, then, are the encoding steps:
63 **
64 **     (1)   Choose an offset value and make it the first character of
65 **           output.
66 **
67 **     (2)   Copy each input character into the output buffer, one by
68 **           one, adding the offset value as you copy.
69 **
70 **     (3)   If the value of an input character plus offset is 0x00, replace
71 **           that one character by the two-character sequence 0x01 0x01.
72 **           If the sum is 0x01, replace it with 0x01 0x02.  If the sum
73 **           is 0x27, replace it with 0x01 0x03.
74 **
75 **     (4)   Put a 0x00 terminator at the end of the output.
76 **
77 ** Decoding is obvious:
78 **
79 **     (5)   Copy encoded characters except the first into the decode
80 **           buffer.  Set the first encoded character aside for use as
81 **           the offset in step 7 below.
82 **
83 **     (6)   Convert each 0x01 0x01 sequence into a single character 0x00.
84 **           Convert 0x01 0x02 into 0x01.  Convert 0x01 0x28 into 0x27.
85 **
86 **     (7)   Subtract the offset value that was the first character of
87 **           the encoded buffer from all characters in the output buffer.
88 **
89 ** The only tricky part is step (1) - how to compute an offset value to
90 ** minimize the size of the output buffer.  This is accomplished by testing
91 ** all offset values and picking the one that results in the fewest number
92 ** of escapes.  To do that, we first scan the entire input and count the
93 ** number of occurances of each character value in the input.  Suppose
94 ** the number of 0x00 characters is N(0), the number of occurances of 0x01
95 ** is N(1), and so forth up to the number of occurances of 0xff is N(255).
96 ** An offset of 0 is not allowed so we don't have to test it.  The number
97 ** of escapes required for an offset of 1 is N(1)+N(2)+N(40).  The number
98 ** of escapes required for an offset of 2 is N(2)+N(3)+N(41).  And so forth.
99 ** In this way we find the offset that gives the minimum number of escapes,
100 ** and thus minimizes the length of the output string.
101 */
102 
103 /*
104 ** Encode a binary buffer "in" of size n bytes so that it contains
105 ** no instances of characters '\'' or '\000'.  The output is
106 ** null-terminated and can be used as a string value in an INSERT
107 ** or UPDATE statement.  Use sqlite_decode_binary() to convert the
108 ** string back into its original binary.
109 **
110 ** The result is written into a preallocated output buffer "out".
111 ** "out" must be able to hold at least 2 +(257*n)/254 bytes.
112 ** In other words, the output will be expanded by as much as 3
113 ** bytes for every 254 bytes of input plus 2 bytes of fixed overhead.
114 ** (This is approximately 2 + 1.0118*n or about a 1.2% size increase.)
115 **
116 ** The return value is the number of characters in the encoded
117 ** string, excluding the "\000" terminator.
118 **
119 ** If out==NULL then no output is generated but the routine still returns
120 ** the number of characters that would have been generated if out had
121 ** not been NULL.
122 */
sqlite_encode_binary(const unsigned char * in,int n,unsigned char * out)123 int sqlite_encode_binary(const unsigned char *in, int n, unsigned char *out){
124   int i, j, e, m;
125   unsigned char x;
126   int cnt[256];
127   if( n<=0 ){
128     if( out ){
129       out[0] = 'x';
130       out[1] = 0;
131     }
132     return 1;
133   }
134   memset(cnt, 0, sizeof(cnt));
135   for(i=n-1; i>=0; i--){ cnt[in[i]]++; }
136   m = n;
137   for(i=1; i<256; i++){
138     int sum;
139     if( i=='\'' ) continue;
140     sum = cnt[i] + cnt[(i+1)&0xff] + cnt[(i+'\'')&0xff];
141     if( sum<m ){
142       m = sum;
143       e = i;
144       if( m==0 ) break;
145     }
146   }
147   if( out==0 ){
148     return n+m+1;
149   }
150   out[0] = e;
151   j = 1;
152   for(i=0; i<n; i++){
153     x = in[i] - e;
154     if( x==0 || x==1 || x=='\''){
155       out[j++] = 1;
156       x++;
157     }
158     out[j++] = x;
159   }
160   out[j] = 0;
161   assert( j==n+m+1 );
162   return j;
163 }
164 
165 /*
166 ** Decode the string "in" into binary data and write it into "out".
167 ** This routine reverses the encoding created by sqlite_encode_binary().
168 ** The output will always be a few bytes less than the input.  The number
169 ** of bytes of output is returned.  If the input is not a well-formed
170 ** encoding, -1 is returned.
171 **
172 ** The "in" and "out" parameters may point to the same buffer in order
173 ** to decode a string in place.
174 */
sqlite_decode_binary(const unsigned char * in,unsigned char * out)175 int sqlite_decode_binary(const unsigned char *in, unsigned char *out){
176   int i, e;
177   unsigned char c;
178   e = *(in++);
179   i = 0;
180   while( (c = *(in++))!=0 ){
181     if( c==1 ){
182       c = *(in++) - 1;
183     }
184     out[i++] = c + e;
185   }
186   return i;
187 }
188 
189 #ifdef ENCODER_TEST
190 #include <stdio.h>
191 /*
192 ** The subroutines above are not tested by the usual test suite.  To test
193 ** these routines, compile just this one file with a -DENCODER_TEST=1 option
194 ** and run the result.
195 */
main(int argc,char ** argv)196 int main(int argc, char **argv){
197   int i, j, n, m, nOut, nByteIn, nByteOut;
198   unsigned char in[30000];
199   unsigned char out[33000];
200 
201   nByteIn = nByteOut = 0;
202   for(i=0; i<sizeof(in); i++){
203     printf("Test %d: ", i+1);
204     n = rand() % (i+1);
205     if( i%100==0 ){
206       int k;
207       for(j=k=0; j<n; j++){
208         /* if( k==0 || k=='\'' ) k++; */
209         in[j] = k;
210         k = (k+1)&0xff;
211       }
212     }else{
213       for(j=0; j<n; j++) in[j] = rand() & 0xff;
214     }
215     nByteIn += n;
216     nOut = sqlite_encode_binary(in, n, out);
217     nByteOut += nOut;
218     if( nOut!=strlen(out) ){
219       printf(" ERROR return value is %d instead of %d\n", nOut, strlen(out));
220       exit(1);
221     }
222     if( nOut!=sqlite_encode_binary(in, n, 0) ){
223       printf(" ERROR actual output size disagrees with predicted size\n");
224       exit(1);
225     }
226     m = (256*n + 1262)/253;
227     printf("size %d->%d (max %d)", n, strlen(out)+1, m);
228     if( strlen(out)+1>m ){
229       printf(" ERROR output too big\n");
230       exit(1);
231     }
232     for(j=0; out[j]; j++){
233       if( out[j]=='\'' ){
234         printf(" ERROR contains (')\n");
235         exit(1);
236       }
237     }
238     j = sqlite_decode_binary(out, out);
239     if( j!=n ){
240       printf(" ERROR decode size %d\n", j);
241       exit(1);
242     }
243     if( memcmp(in, out, n)!=0 ){
244       printf(" ERROR decode mismatch\n");
245       exit(1);
246     }
247     printf(" OK\n");
248   }
249   fprintf(stderr,"Finished.  Total encoding: %d->%d bytes\n",
250           nByteIn, nByteOut);
251   fprintf(stderr,"Avg size increase: %.3f%%\n",
252     (nByteOut-nByteIn)*100.0/(double)nByteIn);
253 }
254 #endif /* ENCODER_TEST */
255