xref: /illumos-gate/usr/src/lib/libnsl/key/xcrypt.c (revision 61961e0f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 
23 /*
24  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
25  * Use is subject to license terms.
26  */
27 
28 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
29 /* All Rights Reserved */
30 
31 /*
32  * Portions of this source code were derived from Berkeley 4.3 BSD
33  * under license from the Regents of the University of California.
34  */
35 
36 #pragma ident	"%Z%%M%	%I%	%E% SMI"
37 
38 /*
39  * xcrypt.c: Hex encryption/decryption and utility routines
40  */
41 
42 #include <stdio.h>
43 #include <stdlib.h>
44 #include <sys/types.h>
45 #include <rpc/rpc.h>
46 #include <rpc/key_prot.h>   /* for KEYCHECKSUMSIZE */
47 #include <rpc/des_crypt.h>
48 #include <string.h>
49 #include <rpcsvc/nis_dhext.h>
50 #include <md5.h>
51 
52 #define	MD5HEXSIZE	32
53 
54 extern int bin2hex(int len, unsigned char *binnum, char *hexnum);
55 extern int hex2bin(int len, char *hexnum, char *binnum);
56 static char hex[];	/* forward */
57 static char hexval();
58 
59 int passwd2des(char *, char *);
60 static int weak_DES_key(des_block);
61 
62 /* EXPORT DELETE START */
63 /*
64  * For export control reasons, we want to limit the maximum size of
65  * data that can be encrypted or decrypted.  We limit this to 1024
66  * bits of key data, which amounts to 128 bytes.
67  *
68  * For the extended DH project, we have increased it to
69  * 144 bytes (128key + 16checksum) to accomadate all the 128 bytes
70  * being used by the new 1024bit keys plus 16 bytes MD5 checksum.
71  * We discussed this with Sun's export control office and lawyers
72  * and we have reason to believe this is ok for export.
73  */
74 #define	MAX_KEY_CRYPT_LEN	144
75 /* EXPORT DELETE END */
76 
77 /*
78  * Encrypt a secret key given passwd
79  * The secret key is passed and returned in hex notation.
80  * Its length must be a multiple of 16 hex digits (64 bits).
81  */
82 int
83 xencrypt(secret, passwd)
84 	char *secret;
85 	char *passwd;
86 {
87 /* EXPORT DELETE START */
88 	char key[8];
89 	char ivec[8];
90 	char *buf;
91 	int err;
92 	int len;
93 
94 	len = (int)strlen(secret) / 2;
95 	if (len > MAX_KEY_CRYPT_LEN)
96 		return (0);
97 	buf = malloc((unsigned)len);
98 	(void) hex2bin(len, secret, buf);
99 	(void) passwd2des(passwd, key);
100 	(void) memset(ivec, 0, 8);
101 
102 	err = cbc_crypt(key, buf, len, DES_ENCRYPT | DES_HW, ivec);
103 	if (DES_FAILED(err)) {
104 		free(buf);
105 		return (0);
106 	}
107 	(void) bin2hex(len, (unsigned char *) buf, secret);
108 	free(buf);
109 	return (1);
110 #if 0
111 /* EXPORT DELETE END */
112 	return (0);
113 /* EXPORT DELETE START */
114 #endif
115 /* EXPORT DELETE END */
116 }
117 
118 /*
119  * Decrypt secret key using passwd
120  * The secret key is passed and returned in hex notation.
121  * Once again, the length is a multiple of 16 hex digits
122  */
123 int
124 xdecrypt(secret, passwd)
125 	char *secret;
126 	char *passwd;
127 {
128 /* EXPORT DELETE START */
129 	char key[8];
130 	char ivec[8];
131 	char *buf;
132 	int err;
133 	int len;
134 
135 	len = (int)strlen(secret) / 2;
136 	if (len > MAX_KEY_CRYPT_LEN)
137 		return (0);
138 	buf = malloc((unsigned)len);
139 
140 	(void) hex2bin(len, secret, buf);
141 	(void) passwd2des(passwd, key);
142 	(void) memset(ivec, 0, 8);
143 
144 	err = cbc_crypt(key, buf, len, DES_DECRYPT | DES_HW, ivec);
145 	if (DES_FAILED(err)) {
146 		free(buf);
147 		return (0);
148 	}
149 	(void) bin2hex(len, (unsigned char *) buf, secret);
150 	free(buf);
151 	return (1);
152 #if 0
153 /* EXPORT DELETE END */
154 	return (0);
155 /* EXPORT DELETE START */
156 #endif
157 /* EXPORT DELETE END */
158 }
159 
160 /*
161  * Turn password into DES key
162  */
163 int
164 passwd2des(pw, key)
165 	char *pw;
166 	char *key;
167 {
168 	int i;
169 
170 	(void) memset(key, 0, 8);
171 	for (i = 0; *pw; i = (i+1) % 8) {
172 		key[i] ^= *pw++ << 1;
173 	}
174 	des_setparity(key);
175 	return (1);
176 }
177 
178 
179 /*
180  * Hex to binary conversion
181  */
182 int
183 hex2bin(len, hexnum, binnum)
184 	int len;
185 	char *hexnum;
186 	char *binnum;
187 {
188 	int i;
189 
190 	for (i = 0; i < len; i++) {
191 		*binnum++ = 16 * hexval(hexnum[2 * i]) +
192 					hexval(hexnum[2 * i + 1]);
193 	}
194 	return (1);
195 }
196 
197 /*
198  * Binary to hex conversion
199  */
200 int
201 bin2hex(len, binnum, hexnum)
202 	int len;
203 	unsigned char *binnum;
204 	char *hexnum;
205 {
206 	int i;
207 	unsigned val;
208 
209 	for (i = 0; i < len; i++) {
210 		val = binnum[i];
211 		hexnum[i*2] = hex[val >> 4];
212 		hexnum[i*2+1] = hex[val & 0xf];
213 	}
214 	hexnum[len*2] = 0;
215 	return (1);
216 }
217 
218 static char hex[16] = {
219 	'0', '1', '2', '3', '4', '5', '6', '7',
220 	'8', '9', 'a', 'b', 'c', 'd', 'e', 'f',
221 };
222 
223 static char
224 hexval(c)
225 	char c;
226 {
227 	if (c >= '0' && c <= '9') {
228 		return (c - '0');
229 	} else if (c >= 'a' && c <= 'z') {
230 		return (c - 'a' + 10);
231 	} else if (c >= 'A' && c <= 'Z') {
232 		return (c - 'A' + 10);
233 	} else {
234 		return (-1);
235 	}
236 }
237 
238 /*
239  * Generic key length/algorithm version of xencrypt().
240  *
241  * Encrypt a secret key given passwd.
242  * The secret key is passed in hex notation.
243  * Arg encrypted_secret will be set to point to the encrypted
244  * secret key (NUL term, hex notation).
245  *
246  * Its length must be a multiple of 16 hex digits (64 bits).
247  *
248  * For 192-0 (AUTH_DES), then encrypt using the same method as xencrypt().
249  *
250  * If arg do_chksum is TRUE, append the checksum before the encrypt.
251  * For 192-0, the checksum is done the same as in xencrypt().  For
252  * bigger keys, MD5 is used.
253  *
254  * Arg netname can be NULL for 192-0.
255  */
256 int
257 xencrypt_g(
258 	char *secret,			/* in  */
259 	keylen_t keylen,		/* in  */
260 	algtype_t algtype,		/* in  */
261 	const char *passwd,		/* in  */
262 	const char netname[],  		/* in  */
263 	char **encrypted_secret,	/* out */
264 	bool_t do_chksum)		/* in  */
265 {
266 /* EXPORT DELETE START */
267 	des_block key;
268 	char ivec[8];
269 	char *binkeybuf;
270 	int err;
271 	const int classic_des = keylen == 192 && algtype == 0;
272 	const int hexkeybytes = BITS2NIBBLES(keylen);
273 	const int keychecksumsize = classic_des ? KEYCHECKSUMSIZE : MD5HEXSIZE;
274 	const int binkeybytes = do_chksum ? keylen/8 + keychecksumsize/2 :
275 		keylen/8;
276 	const int bufsize = do_chksum ? hexkeybytes + keychecksumsize + 1 :
277 		hexkeybytes + 1;
278 	char *hexkeybuf;
279 
280 	if (!secret || !keylen || !passwd || !encrypted_secret)
281 		return (0);
282 
283 	if ((hexkeybuf = malloc(bufsize)) == 0)
284 		return (0);
285 
286 	(void) memcpy(hexkeybuf, secret, hexkeybytes);
287 	if (do_chksum)
288 		if (classic_des) {
289 			(void) memcpy(hexkeybuf + hexkeybytes, secret,
290 					keychecksumsize);
291 		} else {
292 			MD5_CTX md5_ctx;
293 			char md5hexbuf[MD5HEXSIZE + 1] = {0};
294 			uint8_t digest[MD5HEXSIZE/2];
295 
296 			MD5Init(&md5_ctx);
297 			MD5Update(&md5_ctx, (unsigned char *)hexkeybuf,
298 					hexkeybytes);
299 			MD5Final(digest, &md5_ctx);
300 
301 			/* convert md5 binary digest to hex */
302 			(void) bin2hex(MD5HEXSIZE/2, digest, md5hexbuf);
303 
304 			/* append the hex md5 string to the end of the key */
305 			(void) memcpy(hexkeybuf + hexkeybytes,
306 					(void *)md5hexbuf, MD5HEXSIZE);
307 		}
308 	hexkeybuf[bufsize - 1] = 0;
309 
310 	if (binkeybytes > MAX_KEY_CRYPT_LEN) {
311 		free(hexkeybuf);
312 		return (0);
313 	}
314 	if ((binkeybuf = malloc((unsigned)binkeybytes)) == 0) {
315 		free(hexkeybuf);
316 		return (0);
317 	}
318 
319 	(void) hex2bin(binkeybytes, hexkeybuf, binkeybuf);
320 	if (classic_des)
321 		(void) passwd2des((char *)passwd, key.c);
322 	else
323 		if (netname)
324 			(void) passwd2des_g(passwd, netname,
325 					(int)strlen(netname), &key, FALSE);
326 		else {
327 			free(hexkeybuf);
328 			return (0);
329 		}
330 
331 	(void) memset(ivec, 0, 8);
332 
333 	err = cbc_crypt(key.c, binkeybuf, binkeybytes, DES_ENCRYPT | DES_HW,
334 			ivec);
335 	if (DES_FAILED(err)) {
336 		free(hexkeybuf);
337 		free(binkeybuf);
338 		return (0);
339 	}
340 	(void) bin2hex(binkeybytes, (unsigned char *) binkeybuf, hexkeybuf);
341 	free(binkeybuf);
342 	*encrypted_secret = hexkeybuf;
343 	return (1);
344 #if 0
345 /* EXPORT DELETE END */
346 	return (0);
347 /* EXPORT DELETE START */
348 #endif
349 /* EXPORT DELETE END */
350 }
351 
352 /*
353  * Generic key len and alg type for version of xdecrypt.
354  *
355  * Decrypt secret key using passwd.  The decrypted secret key
356  * *overwrites* the supplied encrypted secret key.
357  * The secret key is passed and returned in hex notation.
358  * Once again, the length is a multiple of 16 hex digits.
359  *
360  * If 'do_chksum' is TRUE, the 'secret' buffer is assumed to contain
361  * a checksum calculated by a call to xencrypt_g().
362  *
363  * If keylen is 192 and algtype is 0, then decrypt the same way
364  * as xdecrypt().
365  *
366  * Arg netname can be NULL for 192-0.
367  */
368 int
369 xdecrypt_g(
370 	char *secret,		/* out  */
371 	int keylen,		/* in  */
372 	int algtype,		/* in  */
373 	const char *passwd,	/* in  */
374 	const char netname[],	/* in  */
375 	bool_t do_chksum)	/* in  */
376 {
377 /* EXPORT DELETE START */
378 	des_block key;
379 	char ivec[8];
380 	char *buf;
381 	int err;
382 	int len;
383 	const int classic_des = keylen == 192 && algtype == 0;
384 	const int hexkeybytes = BITS2NIBBLES(keylen);
385 	const int keychecksumsize = classic_des ? KEYCHECKSUMSIZE : MD5HEXSIZE;
386 
387 	len = (int)strlen(secret) / 2;
388 	if (len > MAX_KEY_CRYPT_LEN)
389 		return (0);
390 	if ((buf = malloc((unsigned)len)) == 0)
391 		return (0);
392 
393 	(void) hex2bin(len, secret, buf);
394 	if (classic_des)
395 		(void) passwd2des((char *)passwd, key.c);
396 	else
397 		if (netname)
398 			(void) passwd2des_g(passwd, netname,
399 					(int)strlen(netname), &key, FALSE);
400 		else {
401 			free(buf);
402 			return (0);
403 		}
404 	(void) memset(ivec, 0, 8);
405 
406 	err = cbc_crypt(key.c, buf, len, DES_DECRYPT | DES_HW, ivec);
407 	if (DES_FAILED(err)) {
408 		free(buf);
409 		return (0);
410 	}
411 	(void) bin2hex(len, (unsigned char *) buf, secret);
412 	free(buf);
413 
414 	if (do_chksum)
415 		if (classic_des) {
416 			if (memcmp(secret, &(secret[hexkeybytes]),
417 					keychecksumsize) != 0) {
418 				secret[0] = 0;
419 				return (0);
420 			}
421 		} else {
422 			MD5_CTX md5_ctx;
423 			char md5hexbuf[MD5HEXSIZE + 1] = {0};
424 			uint8_t digest[MD5HEXSIZE/2];
425 
426 			MD5Init(&md5_ctx);
427 			MD5Update(&md5_ctx, (unsigned char *)secret,
428 					hexkeybytes);
429 			MD5Final(digest, &md5_ctx);
430 
431 			/* convert md5 binary digest to hex */
432 			(void) bin2hex(MD5HEXSIZE/2, digest, md5hexbuf);
433 
434 			/* does the digest match the appended one? */
435 			if (memcmp(&(secret[hexkeybytes]),
436 					md5hexbuf, MD5HEXSIZE) != 0) {
437 				secret[0] = 0;
438 				return (0);
439 			}
440 		}
441 
442 	secret[hexkeybytes] = '\0';
443 
444 	return (1);
445 #if 0
446 /* EXPORT DELETE END */
447 	return (0);
448 /* EXPORT DELETE START */
449 #endif
450 /* EXPORT DELETE END */
451 }
452 
453 
454 /*
455  * Modified version of passwd2des(). passwd2des_g() uses the Kerberos
456  * RFC 1510 algorithm to generate a DES key from a user password
457  * and mix-in string. The mix-in is expected to be the netname.
458  * This function to be used only for extended Diffie-Hellman keys.
459  *
460  * If altarg is TRUE, reverse the concat of passwd and mix-in.
461  */
462 int
463 passwd2des_g(
464 	const char *pw,
465 	const char *mixin,
466 	int len,
467 	des_block *key, /* out */
468 	bool_t altalg)
469 {
470 
471 	int  i, j, incr = 1;
472 	des_block ivec, tkey;
473 	char *text;
474 	int  plen, tlen;
475 
476 	(void) memset(tkey.c, 0, 8);
477 	(void) memset(ivec.c, 0, 8);
478 
479 
480 /*
481  * Concatentate the password and the mix-in string, fan-fold and XOR them
482  * to the required eight byte initial DES key. Since passwords can be
483  * expected to use mostly seven bit ASCII, left shift the password one
484  * bit in order to preserve as much key space as possible.
485  */
486 
487 #define	KEYLEN sizeof (tkey.c)
488 	plen = strlen(pw);
489 	tlen = ((plen + len + (KEYLEN-1))/KEYLEN)*KEYLEN;
490 	if ((text = malloc(tlen)) == NULL) {
491 		return (0);
492 	}
493 
494 	(void) memset(text, 0, tlen);
495 
496 	if (!altalg) {
497 
498 /*
499  * Concatenate the password and the mix-in string, fan-fold and XOR them
500  * to the required eight byte initial DES key. Since passwords can be
501  * expected to use mostly seven bit ASCII, left shift the password one
502  * bit in order to preserve as much key space as possible.
503  */
504 		(void) memcpy(text, pw, plen);
505 		(void) memcpy(&text[plen], mixin, len);
506 
507 		for (i = 0, j = 0; pw[j]; j++) {
508 			tkey.c[i] ^= pw[j] << 1;
509 			i += incr;
510 			if (i == 8) {
511 				i = 7;
512 				incr = -incr;
513 			} else if (i == -1) {
514 				i = 0;
515 				incr = -incr;
516 			}
517 		}
518 
519 		for (j = 0; j < len; j++) {
520 			tkey.c[i] ^= mixin[j];
521 			i += incr;
522 			if (i == 8) {
523 				i = 7;
524 				incr = -incr;
525 			} else if (i == -1) {
526 				i = 0;
527 				incr = -incr;
528 			}
529 		}
530 	} else {  /* use alternative algorithm */
531 		(void) memcpy(text, mixin, len);
532 		(void) memcpy(&text[len], pw, plen);
533 
534 		for (i = 0, j = 0; j < len; j++) {
535 			tkey.c[i] ^= mixin[j];
536 			i += incr;
537 			if (i == 8) {
538 				i = 7;
539 				incr = -incr;
540 			} else if (i == -1) {
541 				i = 0;
542 				incr = -incr;
543 			}
544 		}
545 
546 		for (j = 0; pw[j]; j++) {
547 			tkey.c[i] ^= pw[j] << 1;
548 			i += incr;
549 			if (i == 8) {
550 				i = 7;
551 				incr = -incr;
552 			} else if (i == -1) {
553 				i = 0;
554 				incr = -incr;
555 			}
556 		}
557 	}
558 	des_setparity_g(&tkey);
559 
560 	/*
561 	 * Use the temporary key to produce a DES CBC checksum for the text
562 	 * string; cbc_crypt returns the checksum in the ivec.
563 	 */
564 	(void) cbc_crypt(tkey.c, text, tlen, DES_ENCRYPT|DES_HW, ivec.c);
565 	des_setparity_g(&ivec);
566 	free(text);
567 
568 	if (weak_DES_key(ivec)) {
569 		ivec.c[7] ^= 0xf0;
570 		/*
571 		 *  XORing with 0xf0 preserves parity, so no need to check
572 		 *  that again.
573 		 */
574 	}
575 
576 	(void) memcpy((*key).c, ivec.c, sizeof (ivec.c));
577 
578 	return (1);
579 
580 }
581 
582 struct DESkey {
583 	uint32_t h1;
584 	uint32_t h2;
585 };
586 
587 /*
588  * Weak and semiweak keys from "Applied Cryptography", second edition,
589  * by Bruce Schneier, Wiley 1996.
590  */
591 static struct DESkey weakDESkeys[] = {
592 	/* Weak keys */
593 	{0x01010101, 0x01010101},
594 	{0x1f1f1f1f, 0x1f1f1f1f},
595 	{0xe0e0e0e0, 0xe0e0e0e0},
596 	{0xfefefefe, 0xfefefefe},
597 	/* Semiweak keys */
598 	{0x01fe01fe, 0x01fe01fe},
599 	{0x1fe01fe0, 0x0ef10ef1},
600 	{0x01e001e0, 0x01f101f1},
601 	{0x1ffe1ffe, 0x0efe0efe},
602 	{0x011f011f, 0x010e010e},
603 	{0xe0fee0fe, 0xf1fef1fe},
604 	{0xfe01fe01, 0xfe01fe01},
605 	{0xe01fe01f, 0xf10ef10e},
606 	{0xe001e001, 0xf101f101},
607 	{0xfe1ffe1f, 0xfe0efe0e},
608 	{0x1f011f01, 0x0e010e01},
609 	{0xfee0fee0, 0xfef1fef1}
610 };
611 
612 static int
613 weak_DES_key(des_block db)
614 {
615 	int i;
616 
617 	for (i = 0; i < sizeof (weakDESkeys)/sizeof (struct DESkey); i++) {
618 		if (weakDESkeys[i].h1 == db.key.high &&
619 			weakDESkeys[i].h2 == db.key.low)
620 			return (1);
621 	}
622 
623 	return (0);
624 }
625