xref: /illumos-gate/usr/src/lib/libc/i386/fp/_X_cplx_mul.c (revision c764c31d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2004 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * _X_cplx_mul(z, w) returns z * w with infinities handled according
29  * to C99.
30  *
31  * If z and w are both finite, _X_cplx_mul(z, w) delivers the complex
32  * product according to the usual formula: let a = Re(z), b = Im(z),
33  * c = Re(w), and d = Im(w); then _X_cplx_mul(z, w) delivers x + I * y
34  * where x = a * c - b * d and y = a * d + b * c.  Note that if both
35  * ac and bd overflow, then at least one of ad or bc must also over-
36  * flow, and vice versa, so that if one component of the product is
37  * NaN, the other is infinite.  (Such a value is considered infinite
38  * according to C99.)
39  *
40  * If one of z or w is infinite and the other is either finite nonzero
41  * or infinite, _X_cplx_mul delivers an infinite result.  If one factor
42  * is infinite and the other is zero, _X_cplx_mul delivers NaN + I * NaN.
43  * C99 doesn't specify the latter case.
44  *
45  * C99 also doesn't specify what should happen if either z or w is a
46  * complex NaN (i.e., neither finite nor infinite).  This implementation
47  * delivers NaN + I * NaN in this case.
48  *
49  * This implementation can raise spurious underflow, overflow, invalid
50  * operation, and inexact exceptions.  C99 allows this.
51  */
52 
53 #if !defined(i386) && !defined(__i386) && !defined(__amd64)
54 #error This code is for x86 only
55 #endif
56 
57 static union {
58 	int	i;
59 	float	f;
60 } inf = {
61 	0x7f800000
62 };
63 
64 /*
65  * Return +1 if x is +Inf, -1 if x is -Inf, and 0 otherwise
66  */
67 static int
testinfl(long double x)68 testinfl(long double x)
69 {
70 	union {
71 		int		i[3];
72 		long double	e;
73 	} xx;
74 
75 	xx.e = x;
76 	if ((xx.i[2] & 0x7fff) != 0x7fff || ((xx.i[1] << 1) | xx.i[0]) != 0)
77 		return (0);
78 	return (1 | ((xx.i[2] << 16) >> 31));
79 }
80 
81 long double _Complex
_X_cplx_mul(long double _Complex z,long double _Complex w)82 _X_cplx_mul(long double _Complex z, long double _Complex w)
83 {
84 	long double _Complex	v = 0;
85 	long double		a, b, c, d, x, y;
86 	int			recalc, i, j;
87 
88 	/*
89 	 * The following is equivalent to
90 	 *
91 	 *  a = creall(z); b = cimagl(z);
92 	 *  c = creall(w); d = cimagl(w);
93 	 */
94 	a = ((long double *)&z)[0];
95 	b = ((long double *)&z)[1];
96 	c = ((long double *)&w)[0];
97 	d = ((long double *)&w)[1];
98 
99 	x = a * c - b * d;
100 	y = a * d + b * c;
101 
102 	if (x != x && y != y) {
103 		/*
104 		 * Both x and y are NaN, so z and w can't both be finite.
105 		 * If at least one of z or w is a complex NaN, and neither
106 		 * is infinite, then we might as well deliver NaN + I * NaN.
107 		 * So the only cases to check are when one of z or w is
108 		 * infinite.
109 		 */
110 		recalc = 0;
111 		i = testinfl(a);
112 		j = testinfl(b);
113 		if (i | j) { /* z is infinite */
114 			/* "factor out" infinity */
115 			a = i;
116 			b = j;
117 			recalc = 1;
118 		}
119 		i = testinfl(c);
120 		j = testinfl(d);
121 		if (i | j) { /* w is infinite */
122 			/* "factor out" infinity */
123 			c = i;
124 			d = j;
125 			recalc = 1;
126 		}
127 		if (recalc) {
128 			x = inf.f * (a * c - b * d);
129 			y = inf.f * (a * d + b * c);
130 		}
131 	}
132 
133 	/*
134 	 * The following is equivalent to
135 	 *
136 	 *  return x + I * y;
137 	 */
138 	((long double *)&v)[0] = x;
139 	((long double *)&v)[1] = y;
140 	return (v);
141 }
142