1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * This file contains routines for sending and receiving SCSI commands.  The
31  * higher level logic is contained in ds_scsi.c.
32  */
33 
34 #include <assert.h>
35 #include <sys/types.h>
36 #include <sys/param.h>
37 #include <inttypes.h>
38 #include <stdio.h>
39 #include <stdlib.h>
40 #include <string.h>
41 #include <errno.h>
42 #include <stdarg.h>
43 #include <limits.h>
44 #include <utility.h>
45 #include <unistd.h>
46 #include <stropts.h>
47 #include <alloca.h>
48 
49 #include "ds_scsi.h"
50 #include "ds_scsi_uscsi.h"
51 
52 #define	MSGBUFLEN 64
53 #define	USCSI_DEFAULT_TIMEOUT	45
54 #define	USCSI_TIMEOUT_MAX	INT_MAX
55 
56 static diskaddr_t scsi_extract_sense_info_descr(
57     struct scsi_descr_sense_hdr *sdsp, int rqlen);
58 static void scsi_print_extended_sense(struct scsi_extended_sense *rq,
59     int rqlen);
60 static void scsi_print_descr_sense(struct scsi_descr_sense_hdr *rq, int rqlen);
61 
62 typedef struct slist {
63 	char	*str;
64 	int	value;
65 } slist_t;
66 
67 static char *
68 find_string(slist_t *slist, int match_value)
69 {
70 	for (; slist->str != NULL; slist++) {
71 		if (slist->value == match_value) {
72 			return (slist->str);
73 		}
74 	}
75 
76 	return ((char *)NULL);
77 }
78 
79 /*
80  * Strings for printing mode sense page control values
81  */
82 static slist_t page_control_strings[] = {
83 	{ "current",	PC_CURRENT },
84 	{ "changeable",	PC_CHANGEABLE },
85 	{ "default",	PC_DEFAULT },
86 	{ "saved",	PC_SAVED },
87 	{ NULL,		0 }
88 };
89 
90 /*
91  * Strings for printing the mode select options
92  */
93 static slist_t mode_select_strings[] = {
94 	{ "",		0 },
95 	{ "(pf)",	MODE_SELECT_PF },
96 	{ "(sp)",	MODE_SELECT_SP },
97 	{ "(pf,sp)",	MODE_SELECT_PF|MODE_SELECT_SP },
98 	{ NULL,		0 }
99 };
100 
101 static slist_t sensekey_strings[] = {
102 	{ "No sense error", 	KEY_NO_SENSE		},
103 	{ "Recoverable error",	KEY_RECOVERABLE_ERROR	},
104 	{ "Not ready error",	KEY_NOT_READY		},
105 	{ "Medium error",	KEY_MEDIUM_ERROR	},
106 	{ "Hardware error",	KEY_HARDWARE_ERROR	},
107 	{ "Illegal request",	KEY_ILLEGAL_REQUEST	},
108 	{ "Unit attention error", KEY_UNIT_ATTENTION	},
109 	{ "Write protect error", KEY_WRITE_PROTECT	},
110 	{ "Blank check error",	KEY_BLANK_CHECK		},
111 	{ "Vendor unique error", KEY_VENDOR_UNIQUE	},
112 	{ "Copy aborted error",	KEY_COPY_ABORTED	},
113 	{ "Aborted command",	KEY_ABORTED_COMMAND	},
114 	{ "Equal error",	KEY_EQUAL		},
115 	{ "Volume overflow",	KEY_VOLUME_OVERFLOW	},
116 	{ "Miscompare error",	KEY_MISCOMPARE		},
117 	{ "Reserved error",	KEY_RESERVED		},
118 	{ NULL,			0			}
119 };
120 
121 static slist_t scsi_cmdname_strings[] = {
122 	{ "mode select",	SCMD_MODE_SELECT	},
123 	{ "mode sense",		SCMD_MODE_SENSE		},
124 	{ "mode select(10)",	SCMD_MODE_SELECT_G1	},
125 	{ "mode sense(10)",	SCMD_MODE_SENSE_G1	},
126 	{ "log sense",		SCMD_LOG_SENSE_G1	},
127 	{ "request sense",	SCMD_REQUEST_SENSE	},
128 	{ NULL,			0			}
129 };
130 
131 static struct _scsi_asq_key_strings {
132 	uint_t asc;
133 	uint_t ascq;
134 	const char *message;
135 } extended_sense_list[] = {
136 	{ 0x00, 0x00, "no additional sense info" },
137 	{ 0x00, 0x01, "filemark detected" },
138 	{ 0x00, 0x02, "end of partition/medium detected" },
139 	{ 0x00, 0x03, "setmark detected" },
140 	{ 0x00, 0x04, "begining of partition/medium detected" },
141 	{ 0x00, 0x05, "end of data detected" },
142 	{ 0x00, 0x06, "i/o process terminated" },
143 	{ 0x00, 0x11, "audio play operation in progress" },
144 	{ 0x00, 0x12, "audio play operation paused" },
145 	{ 0x00, 0x13, "audio play operation successfully completed" },
146 	{ 0x00, 0x14, "audio play operation stopped due to error" },
147 	{ 0x00, 0x15, "no current audio status to return" },
148 	{ 0x00, 0x16, "operation in progress" },
149 	{ 0x00, 0x17, "cleaning requested" },
150 	{ 0x00, 0x18, "erase operation in progress" },
151 	{ 0x00, 0x19, "locate operation in progress" },
152 	{ 0x00, 0x1A, "rewind operation in progress" },
153 	{ 0x00, 0x1B, "set capacity operation in progress" },
154 	{ 0x00, 0x1C, "verify operation in progress" },
155 	{ 0x01, 0x00, "no index/sector signal" },
156 	{ 0x02, 0x00, "no seek complete" },
157 	{ 0x03, 0x00, "peripheral device write fault" },
158 	{ 0x03, 0x01, "no write current" },
159 	{ 0x03, 0x02, "excessive write errors" },
160 	{ 0x04, 0x00, "LUN not ready" },
161 	{ 0x04, 0x01, "LUN is becoming ready" },
162 	{ 0x04, 0x02, "LUN initializing command required" },
163 	{ 0x04, 0x03, "LUN not ready intervention required" },
164 	{ 0x04, 0x04, "LUN not ready format in progress" },
165 	{ 0x04, 0x05, "LUN not ready, rebuild in progress" },
166 	{ 0x04, 0x06, "LUN not ready, recalculation in progress" },
167 	{ 0x04, 0x07, "LUN not ready, operation in progress" },
168 	{ 0x04, 0x08, "LUN not ready, long write in progress" },
169 	{ 0x04, 0x09, "LUN not ready, self-test in progress" },
170 	{ 0x04, 0x0A, "LUN not accessible, asymmetric access state "
171 		"transition" },
172 	{ 0x04, 0x0B, "LUN not accessible, target port in standby state" },
173 	{ 0x04, 0x0C, "LUN not accessible, target port in unavailable state" },
174 	{ 0x04, 0x10, "LUN not ready, auxiliary memory not accessible" },
175 	{ 0x05, 0x00, "LUN does not respond to selection" },
176 	{ 0x06, 0x00, "reference position found" },
177 	{ 0x07, 0x00, "multiple peripheral devices selected" },
178 	{ 0x08, 0x00, "LUN communication failure" },
179 	{ 0x08, 0x01, "LUN communication time-out" },
180 	{ 0x08, 0x02, "LUN communication parity error" },
181 	{ 0x08, 0x03, "LUN communication crc error (ultra-DMA/32)" },
182 	{ 0x08, 0x04, "unreachable copy target" },
183 	{ 0x09, 0x00, "track following error" },
184 	{ 0x09, 0x01, "tracking servo failure" },
185 	{ 0x09, 0x02, "focus servo failure" },
186 	{ 0x09, 0x03, "spindle servo failure" },
187 	{ 0x09, 0x04, "head select fault" },
188 	{ 0x0a, 0x00, "error log overflow" },
189 	{ 0x0b, 0x00, "warning" },
190 	{ 0x0b, 0x01, "warning - specified temperature exceeded" },
191 	{ 0x0b, 0x02, "warning - enclosure degraded" },
192 	{ 0x0c, 0x00, "write error" },
193 	{ 0x0c, 0x01, "write error - recovered with auto reallocation" },
194 	{ 0x0c, 0x02, "write error - auto reallocation failed" },
195 	{ 0x0c, 0x03, "write error - recommend reassignment" },
196 	{ 0x0c, 0x04, "compression check miscompare error" },
197 	{ 0x0c, 0x05, "data expansion occurred during compression" },
198 	{ 0x0c, 0x06, "block not compressible" },
199 	{ 0x0c, 0x07, "write error - recovery needed" },
200 	{ 0x0c, 0x08, "write error - recovery failed" },
201 	{ 0x0c, 0x09, "write error - loss of streaming" },
202 	{ 0x0c, 0x0a, "write error - padding blocks added" },
203 	{ 0x0c, 0x0b, "auxiliary memory write error" },
204 	{ 0x0c, 0x0c, "write error - unexpected unsolicited data" },
205 	{ 0x0c, 0x0d, "write error - not enough unsolicited data" },
206 	{ 0x0d, 0x00, "error detected by third party temporary initiator" },
207 	{ 0x0d, 0x01, "third party device failure" },
208 	{ 0x0d, 0x02, "copy target device not reachable" },
209 	{ 0x0d, 0x03, "incorrect copy target device type" },
210 	{ 0x0d, 0x04, "copy target device data underrun" },
211 	{ 0x0d, 0x05, "copy target device data overrun" },
212 	{ 0x0e, 0x00, "invalid information unit" },
213 	{ 0x0e, 0x01, "information unit too short" },
214 	{ 0x0e, 0x02, "information unit too long" },
215 	{ 0x10, 0x00, "ID CRC or ECC error" },
216 	{ 0x11, 0x00, "unrecovered read error" },
217 	{ 0x11, 0x01, "read retries exhausted" },
218 	{ 0x11, 0x02, "error too long to correct" },
219 	{ 0x11, 0x03, "multiple read errors" },
220 	{ 0x11, 0x04, "unrecovered read error - auto reallocate failed" },
221 	{ 0x11, 0x05, "L-EC uncorrectable error" },
222 	{ 0x11, 0x06, "CIRC unrecovered error" },
223 	{ 0x11, 0x07, "data re-synchronization error" },
224 	{ 0x11, 0x08, "incomplete block read" },
225 	{ 0x11, 0x09, "no gap found" },
226 	{ 0x11, 0x0a, "miscorrected error" },
227 	{ 0x11, 0x0b, "unrecovered read error - recommend reassignment" },
228 	{ 0x11, 0x0c, "unrecovered read error - recommend rewrite the data" },
229 	{ 0x11, 0x0d, "de-compression crc error" },
230 	{ 0x11, 0x0e, "cannot decompress using declared algorithm" },
231 	{ 0x11, 0x0f, "error reading UPC/EAN number" },
232 	{ 0x11, 0x10, "error reading ISRC number" },
233 	{ 0x11, 0x11, "read error - loss of streaming" },
234 	{ 0x11, 0x12, "auxiliary memory read error" },
235 	{ 0x11, 0x13, "read error - failed retransmission request" },
236 	{ 0x12, 0x00, "address mark not found for ID field" },
237 	{ 0x13, 0x00, "address mark not found for data field" },
238 	{ 0x14, 0x00, "recorded entity not found" },
239 	{ 0x14, 0x01, "record not found" },
240 	{ 0x14, 0x02, "filemark or setmark not found" },
241 	{ 0x14, 0x03, "end-of-data not found" },
242 	{ 0x14, 0x04, "block sequence error" },
243 	{ 0x14, 0x05, "record not found - recommend reassignment" },
244 	{ 0x14, 0x06, "record not found - data auto-reallocated" },
245 	{ 0x14, 0x07, "locate operation failure" },
246 	{ 0x15, 0x00, "random positioning error" },
247 	{ 0x15, 0x01, "mechanical positioning error" },
248 	{ 0x15, 0x02, "positioning error detected by read of medium" },
249 	{ 0x16, 0x00, "data sync mark error" },
250 	{ 0x16, 0x01, "data sync error - data rewritten" },
251 	{ 0x16, 0x02, "data sync error - recommend rewrite" },
252 	{ 0x16, 0x03, "data sync error - data auto-reallocated" },
253 	{ 0x16, 0x04, "data sync error - recommend reassignment" },
254 	{ 0x17, 0x00, "recovered data with no error correction" },
255 	{ 0x17, 0x01, "recovered data with retries" },
256 	{ 0x17, 0x02, "recovered data with positive head offset" },
257 	{ 0x17, 0x03, "recovered data with negative head offset" },
258 	{ 0x17, 0x04, "recovered data with retries and/or CIRC applied" },
259 	{ 0x17, 0x05, "recovered data using previous sector id" },
260 	{ 0x17, 0x06, "recovered data without ECC - data auto-reallocated" },
261 	{ 0x17, 0x07, "recovered data without ECC - recommend reassignment" },
262 	{ 0x17, 0x08, "recovered data without ECC - recommend rewrite" },
263 	{ 0x17, 0x09, "recovered data without ECC - data rewritten" },
264 	{ 0x18, 0x00, "recovered data with error correction" },
265 	{ 0x18, 0x01, "recovered data with error corr. & retries applied" },
266 	{ 0x18, 0x02, "recovered data - data auto-reallocated" },
267 	{ 0x18, 0x03, "recovered data with CIRC" },
268 	{ 0x18, 0x04, "recovered data with L-EC" },
269 	{ 0x18, 0x05, "recovered data - recommend reassignment" },
270 	{ 0x18, 0x06, "recovered data - recommend rewrite" },
271 	{ 0x18, 0x07, "recovered data with ECC - data rewritten" },
272 	{ 0x18, 0x08, "recovered data with linking" },
273 	{ 0x19, 0x00, "defect list error" },
274 	{ 0x1a, 0x00, "parameter list length error" },
275 	{ 0x1b, 0x00, "synchronous data xfer error" },
276 	{ 0x1c, 0x00, "defect list not found" },
277 	{ 0x1c, 0x01, "primary defect list not found" },
278 	{ 0x1c, 0x02, "grown defect list not found" },
279 	{ 0x1d, 0x00, "miscompare during verify" },
280 	{ 0x1e, 0x00, "recovered ID with ECC" },
281 	{ 0x1f, 0x00, "partial defect list transfer" },
282 	{ 0x20, 0x00, "invalid command operation code" },
283 	{ 0x20, 0x01, "access denied - initiator pending-enrolled" },
284 	{ 0x20, 0x02, "access denied - no access rights" },
285 	{ 0x20, 0x03, "access denied - invalid mgmt id key" },
286 	{ 0x20, 0x04, "illegal command while in write capable state" },
287 	{ 0x20, 0x06, "illegal command while in explicit address mode" },
288 	{ 0x20, 0x07, "illegal command while in implicit address mode" },
289 	{ 0x20, 0x08, "access denied - enrollment conflict" },
290 	{ 0x20, 0x09, "access denied - invalid lu identifier" },
291 	{ 0x20, 0x0a, "access denied - invalid proxy token" },
292 	{ 0x20, 0x0b, "access denied - ACL LUN conflict" },
293 	{ 0x21, 0x00, "logical block address out of range" },
294 	{ 0x21, 0x01, "invalid element address" },
295 	{ 0x21, 0x02, "invalid address for write" },
296 	{ 0x22, 0x00, "illegal function" },
297 	{ 0x24, 0x00, "invalid field in cdb" },
298 	{ 0x24, 0x01, "cdb decryption error" },
299 	{ 0x25, 0x00, "LUN not supported" },
300 	{ 0x26, 0x00, "invalid field in param list" },
301 	{ 0x26, 0x01, "parameter not supported" },
302 	{ 0x26, 0x02, "parameter value invalid" },
303 	{ 0x26, 0x03, "threshold parameters not supported" },
304 	{ 0x26, 0x04, "invalid release of persistent reservation" },
305 	{ 0x26, 0x05, "data decryption error" },
306 	{ 0x26, 0x06, "too many target descriptors" },
307 	{ 0x26, 0x07, "unsupported target descriptor type code" },
308 	{ 0x26, 0x08, "too many segment descriptors" },
309 	{ 0x26, 0x09, "unsupported segment descriptor type code" },
310 	{ 0x26, 0x0a, "unexpected inexact segment" },
311 	{ 0x26, 0x0b, "inline data length exceeded" },
312 	{ 0x26, 0x0c, "invalid operation for copy source or destination" },
313 	{ 0x26, 0x0d, "copy segment granularity violation" },
314 	{ 0x27, 0x00, "write protected" },
315 	{ 0x27, 0x01, "hardware write protected" },
316 	{ 0x27, 0x02, "LUN software write protected" },
317 	{ 0x27, 0x03, "associated write protect" },
318 	{ 0x27, 0x04, "persistent write protect" },
319 	{ 0x27, 0x05, "permanent write protect" },
320 	{ 0x27, 0x06, "conditional write protect" },
321 	{ 0x28, 0x00, "medium may have changed" },
322 	{ 0x28, 0x01, "import or export element accessed" },
323 	{ 0x29, 0x00, "power on, reset, or bus reset occurred" },
324 	{ 0x29, 0x01, "power on occurred" },
325 	{ 0x29, 0x02, "scsi bus reset occurred" },
326 	{ 0x29, 0x03, "bus device reset message occurred" },
327 	{ 0x29, 0x04, "device internal reset" },
328 	{ 0x29, 0x05, "transceiver mode changed to single-ended" },
329 	{ 0x29, 0x06, "transceiver mode changed to LVD" },
330 	{ 0x29, 0x07, "i_t nexus loss occurred" },
331 	{ 0x2a, 0x00, "parameters changed" },
332 	{ 0x2a, 0x01, "mode parameters changed" },
333 	{ 0x2a, 0x02, "log parameters changed" },
334 	{ 0x2a, 0x03, "reservations preempted" },
335 	{ 0x2a, 0x04, "reservations released" },
336 	{ 0x2a, 0x05, "registrations preempted" },
337 	{ 0x2a, 0x06, "asymmetric access state changed" },
338 	{ 0x2a, 0x07, "implicit asymmetric access state transition failed" },
339 	{ 0x2b, 0x00, "copy cannot execute since host cannot disconnect" },
340 	{ 0x2c, 0x00, "command sequence error" },
341 	{ 0x2c, 0x03, "current program area is not empty" },
342 	{ 0x2c, 0x04, "current program area is empty" },
343 	{ 0x2c, 0x06, "persistent prevent conflict" },
344 	{ 0x2c, 0x07, "previous busy status" },
345 	{ 0x2c, 0x08, "previous task set full status" },
346 	{ 0x2c, 0x09, "previous reservation conflict status" },
347 	{ 0x2d, 0x00, "overwrite error on update in place" },
348 	{ 0x2e, 0x00, "insufficient time for operation" },
349 	{ 0x2f, 0x00, "commands cleared by another initiator" },
350 	{ 0x30, 0x00, "incompatible medium installed" },
351 	{ 0x30, 0x01, "cannot read medium - unknown format" },
352 	{ 0x30, 0x02, "cannot read medium - incompatible format" },
353 	{ 0x30, 0x03, "cleaning cartridge installed" },
354 	{ 0x30, 0x04, "cannot write medium - unknown format" },
355 	{ 0x30, 0x05, "cannot write medium - incompatible format" },
356 	{ 0x30, 0x06, "cannot format medium - incompatible medium" },
357 	{ 0x30, 0x07, "cleaning failure" },
358 	{ 0x30, 0x08, "cannot write - application code mismatch" },
359 	{ 0x30, 0x09, "current session not fixated for append" },
360 	{ 0x30, 0x10, "medium not formatted" },
361 	{ 0x31, 0x00, "medium format corrupted" },
362 	{ 0x31, 0x01, "format command failed" },
363 	{ 0x31, 0x02, "zoned formatting failed due to spare linking" },
364 	{ 0x32, 0x00, "no defect spare location available" },
365 	{ 0x32, 0x01, "defect list update failure" },
366 	{ 0x33, 0x00, "tape length error" },
367 	{ 0x34, 0x00, "enclosure failure" },
368 	{ 0x35, 0x00, "enclosure services failure" },
369 	{ 0x35, 0x01, "unsupported enclosure function" },
370 	{ 0x35, 0x02, "enclosure services unavailable" },
371 	{ 0x35, 0x03, "enclosure services transfer failure" },
372 	{ 0x35, 0x04, "enclosure services transfer refused" },
373 	{ 0x36, 0x00, "ribbon, ink, or toner failure" },
374 	{ 0x37, 0x00, "rounded parameter" },
375 	{ 0x39, 0x00, "saving parameters not supported" },
376 	{ 0x3a, 0x00, "medium not present" },
377 	{ 0x3a, 0x01, "medium not present - tray closed" },
378 	{ 0x3a, 0x02, "medium not present - tray open" },
379 	{ 0x3a, 0x03, "medium not present - loadable" },
380 	{ 0x3a, 0x04, "medium not present - medium auxiliary memory "
381 		"accessible" },
382 	{ 0x3b, 0x00, "sequential positioning error" },
383 	{ 0x3b, 0x01, "tape position error at beginning-of-medium" },
384 	{ 0x3b, 0x02, "tape position error at end-of-medium" },
385 	{ 0x3b, 0x08, "reposition error" },
386 	{ 0x3b, 0x0c, "position past beginning of medium" },
387 	{ 0x3b, 0x0d, "medium destination element full" },
388 	{ 0x3b, 0x0e, "medium source element empty" },
389 	{ 0x3b, 0x0f, "end of medium reached" },
390 	{ 0x3b, 0x11, "medium magazine not accessible" },
391 	{ 0x3b, 0x12, "medium magazine removed" },
392 	{ 0x3b, 0x13, "medium magazine inserted" },
393 	{ 0x3b, 0x14, "medium magazine locked" },
394 	{ 0x3b, 0x15, "medium magazine unlocked" },
395 	{ 0x3b, 0x16, "mechanical positioning or changer error" },
396 	{ 0x3d, 0x00, "invalid bits in indentify message" },
397 	{ 0x3e, 0x00, "LUN has not self-configured yet" },
398 	{ 0x3e, 0x01, "LUN failure" },
399 	{ 0x3e, 0x02, "timeout on LUN" },
400 	{ 0x3e, 0x03, "LUN failed self-test" },
401 	{ 0x3e, 0x04, "LUN unable to update self-test log" },
402 	{ 0x3f, 0x00, "target operating conditions have changed" },
403 	{ 0x3f, 0x01, "microcode has been changed" },
404 	{ 0x3f, 0x02, "changed operating definition" },
405 	{ 0x3f, 0x03, "inquiry data has changed" },
406 	{ 0x3f, 0x04, "component device attached" },
407 	{ 0x3f, 0x05, "device identifier changed" },
408 	{ 0x3f, 0x06, "redundancy group created or modified" },
409 	{ 0x3f, 0x07, "redundancy group deleted" },
410 	{ 0x3f, 0x08, "spare created or modified" },
411 	{ 0x3f, 0x09, "spare deleted" },
412 	{ 0x3f, 0x0a, "volume set created or modified" },
413 	{ 0x3f, 0x0b, "volume set deleted" },
414 	{ 0x3f, 0x0c, "volume set deassigned" },
415 	{ 0x3f, 0x0d, "volume set reassigned" },
416 	{ 0x3f, 0x0e, "reported LUNs data has changed" },
417 	{ 0x3f, 0x0f, "echo buffer overwritten" },
418 	{ 0x3f, 0x10, "medium loadable" },
419 	{ 0x3f, 0x11, "medium auxiliary memory accessible" },
420 	{ 0x40, 0x00, "ram failure" },
421 	{ 0x41, 0x00, "data path failure" },
422 	{ 0x42, 0x00, "power-on or self-test failure" },
423 	{ 0x43, 0x00, "message error" },
424 	{ 0x44, 0x00, "internal target failure" },
425 	{ 0x45, 0x00, "select or reselect failure" },
426 	{ 0x46, 0x00, "unsuccessful soft reset" },
427 	{ 0x47, 0x00, "scsi parity error" },
428 	{ 0x47, 0x01, "data phase crc error detected" },
429 	{ 0x47, 0x02, "scsi parity error detected during st data phase" },
430 	{ 0x47, 0x03, "information unit iucrc error detected" },
431 	{ 0x47, 0x04, "asynchronous information protection error detected" },
432 	{ 0x47, 0x05, "protocol service crc error" },
433 	{ 0x47, 0x7f, "some commands cleared by iscsi protocol event" },
434 	{ 0x48, 0x00, "initiator detected error message received" },
435 	{ 0x49, 0x00, "invalid message error" },
436 	{ 0x4a, 0x00, "command phase error" },
437 	{ 0x4b, 0x00, "data phase error" },
438 	{ 0x4b, 0x01, "invalid target port transfer tag received" },
439 	{ 0x4b, 0x02, "too much write data" },
440 	{ 0x4b, 0x03, "ack/nak timeout" },
441 	{ 0x4b, 0x04, "nak received" },
442 	{ 0x4b, 0x05, "data offset error" },
443 	{ 0x4c, 0x00, "logical unit failed self-configuration" },
444 	{ 0x4d, 0x00, "tagged overlapped commands (ASCQ = queue tag)" },
445 	{ 0x4e, 0x00, "overlapped commands attempted" },
446 	{ 0x50, 0x00, "write append error" },
447 	{ 0x51, 0x00, "erase failure" },
448 	{ 0x52, 0x00, "cartridge fault" },
449 	{ 0x53, 0x00, "media load or eject failed" },
450 	{ 0x53, 0x01, "unload tape failure" },
451 	{ 0x53, 0x02, "medium removal prevented" },
452 	{ 0x54, 0x00, "scsi to host system interface failure" },
453 	{ 0x55, 0x00, "system resource failure" },
454 	{ 0x55, 0x01, "system buffer full" },
455 	{ 0x55, 0x02, "insufficient reservation resources" },
456 	{ 0x55, 0x03, "insufficient resources" },
457 	{ 0x55, 0x04, "insufficient registration resources" },
458 	{ 0x55, 0x05, "insufficient access control resources" },
459 	{ 0x55, 0x06, "auxiliary memory out of space" },
460 	{ 0x57, 0x00, "unable to recover TOC" },
461 	{ 0x58, 0x00, "generation does not exist" },
462 	{ 0x59, 0x00, "updated block read" },
463 	{ 0x5a, 0x00, "operator request or state change input" },
464 	{ 0x5a, 0x01, "operator medium removal request" },
465 	{ 0x5a, 0x02, "operator selected write protect" },
466 	{ 0x5a, 0x03, "operator selected write permit" },
467 	{ 0x5b, 0x00, "log exception" },
468 	{ 0x5b, 0x01, "threshold condition met" },
469 	{ 0x5b, 0x02, "log counter at maximum" },
470 	{ 0x5b, 0x03, "log list codes exhausted" },
471 	{ 0x5c, 0x00, "RPL status change" },
472 	{ 0x5c, 0x01, "spindles synchronized" },
473 	{ 0x5c, 0x02, "spindles not synchronized" },
474 	{ 0x5d, 0x00, "drive operation marginal, service immediately"
475 		    " (failure prediction threshold exceeded)" },
476 	{ 0x5d, 0x01, "media failure prediction threshold exceeded" },
477 	{ 0x5d, 0x02, "LUN failure prediction threshold exceeded" },
478 	{ 0x5d, 0x03, "spare area exhaustion prediction threshold exceeded" },
479 	{ 0x5d, 0x10, "hardware impending failure general hard drive failure" },
480 	{ 0x5d, 0x11, "hardware impending failure drive error rate too high" },
481 	{ 0x5d, 0x12, "hardware impending failure data error rate too high" },
482 	{ 0x5d, 0x13, "hardware impending failure seek error rate too high" },
483 	{ 0x5d, 0x14, "hardware impending failure too many block reassigns" },
484 	{ 0x5d, 0x15, "hardware impending failure access times too high" },
485 	{ 0x5d, 0x16, "hardware impending failure start unit times too high" },
486 	{ 0x5d, 0x17, "hardware impending failure channel parametrics" },
487 	{ 0x5d, 0x18, "hardware impending failure controller detected" },
488 	{ 0x5d, 0x19, "hardware impending failure throughput performance" },
489 	{ 0x5d, 0x1a, "hardware impending failure seek time performance" },
490 	{ 0x5d, 0x1b, "hardware impending failure spin-up retry count" },
491 	{ 0x5d, 0x1c, "hardware impending failure drive calibration retry "
492 		"count" },
493 	{ 0x5d, 0x20, "controller impending failure general hard drive "
494 		"failure" },
495 	{ 0x5d, 0x21, "controller impending failure drive error rate too "
496 		"high" },
497 	{ 0x5d, 0x22, "controller impending failure data error rate too high" },
498 	{ 0x5d, 0x23, "controller impending failure seek error rate too high" },
499 	{ 0x5d, 0x24, "controller impending failure too many block reassigns" },
500 	{ 0x5d, 0x25, "controller impending failure access times too high" },
501 	{ 0x5d, 0x26, "controller impending failure start unit times too "
502 		"high" },
503 	{ 0x5d, 0x27, "controller impending failure channel parametrics" },
504 	{ 0x5d, 0x28, "controller impending failure controller detected" },
505 	{ 0x5d, 0x29, "controller impending failure throughput performance" },
506 	{ 0x5d, 0x2a, "controller impending failure seek time performance" },
507 	{ 0x5d, 0x2b, "controller impending failure spin-up retry count" },
508 	{ 0x5d, 0x2c, "controller impending failure drive calibration retry "
509 		"cnt" },
510 	{ 0x5d, 0x30, "data channel impending failure general hard drive "
511 		"failure" },
512 	{ 0x5d, 0x31, "data channel impending failure drive error rate too "
513 		"high" },
514 	{ 0x5d, 0x32, "data channel impending failure data error rate too "
515 		"high" },
516 	{ 0x5d, 0x33, "data channel impending failure seek error rate too "
517 		"high" },
518 	{ 0x5d, 0x34, "data channel impending failure too many block "
519 		"reassigns" },
520 	{ 0x5d, 0x35, "data channel impending failure access times too high" },
521 	{ 0x5d, 0x36, "data channel impending failure start unit times too "
522 		"high" },
523 	{ 0x5d, 0x37, "data channel impending failure channel parametrics" },
524 	{ 0x5d, 0x38, "data channel impending failure controller detected" },
525 	{ 0x5d, 0x39, "data channel impending failure throughput performance" },
526 	{ 0x5d, 0x3a, "data channel impending failure seek time performance" },
527 	{ 0x5d, 0x3b, "data channel impending failure spin-up retry count" },
528 	{ 0x5d, 0x3c, "data channel impending failure drive calibrate retry "
529 		"cnt" },
530 	{ 0x5d, 0x40, "servo impending failure general hard drive failure" },
531 	{ 0x5d, 0x41, "servo impending failure drive error rate too high" },
532 	{ 0x5d, 0x42, "servo impending failure data error rate too high" },
533 	{ 0x5d, 0x43, "servo impending failure seek error rate too high" },
534 	{ 0x5d, 0x44, "servo impending failure too many block reassigns" },
535 	{ 0x5d, 0x45, "servo impending failure access times too high" },
536 	{ 0x5d, 0x46, "servo impending failure start unit times too high" },
537 	{ 0x5d, 0x47, "servo impending failure channel parametrics" },
538 	{ 0x5d, 0x48, "servo impending failure controller detected" },
539 	{ 0x5d, 0x49, "servo impending failure throughput performance" },
540 	{ 0x5d, 0x4a, "servo impending failure seek time performance" },
541 	{ 0x5d, 0x4b, "servo impending failure spin-up retry count" },
542 	{ 0x5d, 0x4c, "servo impending failure drive calibration retry count" },
543 	{ 0x5d, 0x50, "spindle impending failure general hard drive failure" },
544 	{ 0x5d, 0x51, "spindle impending failure drive error rate too high" },
545 	{ 0x5d, 0x52, "spindle impending failure data error rate too high" },
546 	{ 0x5d, 0x53, "spindle impending failure seek error rate too high" },
547 	{ 0x5d, 0x54, "spindle impending failure too many block reassigns" },
548 	{ 0x5d, 0x55, "spindle impending failure access times too high" },
549 	{ 0x5d, 0x56, "spindle impending failure start unit times too high" },
550 	{ 0x5d, 0x57, "spindle impending failure channel parametrics" },
551 	{ 0x5d, 0x58, "spindle impending failure controller detected" },
552 	{ 0x5d, 0x59, "spindle impending failure throughput performance" },
553 	{ 0x5d, 0x5a, "spindle impending failure seek time performance" },
554 	{ 0x5d, 0x5b, "spindle impending failure spin-up retry count" },
555 	{ 0x5d, 0x5c, "spindle impending failure drive calibration retry "
556 		"count" },
557 	{ 0x5d, 0x60, "firmware impending failure general hard drive failure" },
558 	{ 0x5d, 0x61, "firmware impending failure drive error rate too high" },
559 	{ 0x5d, 0x62, "firmware impending failure data error rate too high" },
560 	{ 0x5d, 0x63, "firmware impending failure seek error rate too high" },
561 	{ 0x5d, 0x64, "firmware impending failure too many block reassigns" },
562 	{ 0x5d, 0x65, "firmware impending failure access times too high" },
563 	{ 0x5d, 0x66, "firmware impending failure start unit times too high" },
564 	{ 0x5d, 0x67, "firmware impending failure channel parametrics" },
565 	{ 0x5d, 0x68, "firmware impending failure controller detected" },
566 	{ 0x5d, 0x69, "firmware impending failure throughput performance" },
567 	{ 0x5d, 0x6a, "firmware impending failure seek time performance" },
568 	{ 0x5d, 0x6b, "firmware impending failure spin-up retry count" },
569 	{ 0x5d, 0x6c, "firmware impending failure drive calibration retry "
570 		"count" },
571 	{ 0x5d, 0xff, "failure prediction threshold exceeded (false)" },
572 	{ 0x5e, 0x00, "low power condition active" },
573 	{ 0x5e, 0x01, "idle condition activated by timer" },
574 	{ 0x5e, 0x02, "standby condition activated by timer" },
575 	{ 0x5e, 0x03, "idle condition activated by command" },
576 	{ 0x5e, 0x04, "standby condition activated by command" },
577 	{ 0x60, 0x00, "lamp failure" },
578 	{ 0x61, 0x00, "video aquisition error" },
579 	{ 0x62, 0x00, "scan head positioning error" },
580 	{ 0x63, 0x00, "end of user area encountered on this track" },
581 	{ 0x63, 0x01, "packet does not fit in available space" },
582 	{ 0x64, 0x00, "illegal mode for this track" },
583 	{ 0x64, 0x01, "invalid packet size" },
584 	{ 0x65, 0x00, "voltage fault" },
585 	{ 0x66, 0x00, "automatic document feeder cover up" },
586 	{ 0x67, 0x00, "configuration failure" },
587 	{ 0x67, 0x01, "configuration of incapable LUNs failed" },
588 	{ 0x67, 0x02, "add LUN failed" },
589 	{ 0x67, 0x03, "modification of LUN failed" },
590 	{ 0x67, 0x04, "exchange of LUN failed" },
591 	{ 0x67, 0x05, "remove of LUN failed" },
592 	{ 0x67, 0x06, "attachment of LUN failed" },
593 	{ 0x67, 0x07, "creation of LUN failed" },
594 	{ 0x67, 0x08, "assign failure occurred" },
595 	{ 0x67, 0x09, "multiply assigned LUN" },
596 	{ 0x67, 0x0a, "set target port groups command failed" },
597 	{ 0x68, 0x00, "logical unit not configured" },
598 	{ 0x69, 0x00, "data loss on logical unit" },
599 	{ 0x69, 0x01, "multiple LUN failures" },
600 	{ 0x69, 0x02, "parity/data mismatch" },
601 	{ 0x6a, 0x00, "informational, refer to log" },
602 	{ 0x6b, 0x00, "state change has occured" },
603 	{ 0x6b, 0x01, "redundancy level got better" },
604 	{ 0x6b, 0x02, "redundancy level got worse" },
605 	{ 0x6c, 0x00, "rebuild failure occured" },
606 	{ 0x6d, 0x00, "recalculate failure occured" },
607 	{ 0x6e, 0x00, "command to logical unit failed" },
608 	{ 0x6f, 0x00, "copy protect key exchange failure authentication "
609 		"failure" },
610 	{ 0x6f, 0x01, "copy protect key exchange failure key not present" },
611 	{ 0x6f, 0x02, "copy protect key exchange failure key not established" },
612 	{ 0x6f, 0x03, "read of scrambled sector without authentication" },
613 	{ 0x6f, 0x04, "media region code is mismatched to LUN region" },
614 	{ 0x6f, 0x05, "drive region must be permanent/region reset count "
615 		"error" },
616 	{ 0x70, 0xffff, "decompression exception short algorithm id of ASCQ" },
617 	{ 0x71, 0x00, "decompression exception long algorithm id" },
618 	{ 0x72, 0x00, "session fixation error" },
619 	{ 0x72, 0x01, "session fixation error writing lead-in" },
620 	{ 0x72, 0x02, "session fixation error writing lead-out" },
621 	{ 0x72, 0x03, "session fixation error - incomplete track in session" },
622 	{ 0x72, 0x04, "empty or partially written reserved track" },
623 	{ 0x72, 0x05, "no more track reservations allowed" },
624 	{ 0x73, 0x00, "cd control error" },
625 	{ 0x73, 0x01, "power calibration area almost full" },
626 	{ 0x73, 0x02, "power calibration area is full" },
627 	{ 0x73, 0x03, "power calibration area error" },
628 	{ 0x73, 0x04, "program memory area update failure" },
629 	{ 0x73, 0x05, "program memory area is full" },
630 	{ 0x73, 0x06, "rma/pma is almost full" },
631 	{ 0xffff, 0xffff, NULL }
632 };
633 
634 /*
635  * Given an asc (Additional Sense Code) and ascq (Additional Sense Code
636  * Qualifier), return a string describing the error information.
637  */
638 static char *
639 scsi_util_asc_ascq_name(uint_t asc, uint_t ascq, char *buf, int buflen)
640 {
641 	int i = 0;
642 
643 	while (extended_sense_list[i].asc != 0xffff) {
644 		if ((asc == extended_sense_list[i].asc) &&
645 		    ((ascq == extended_sense_list[i].ascq) ||
646 		    (extended_sense_list[i].ascq == 0xffff))) {
647 			return ((char *)extended_sense_list[i].message);
648 		}
649 		i++;
650 	}
651 	(void) snprintf(buf, buflen, "<vendor unique code 0x%x>", asc);
652 	return (buf);
653 }
654 
655 /*
656  * Dumps detailed information about a particular SCSI error condition.
657  */
658 static void
659 scsi_printerr(struct uscsi_cmd *ucmd, struct scsi_extended_sense *rq, int rqlen)
660 {
661 	diskaddr_t	blkno;
662 	struct scsi_descr_sense_hdr *sdsp = (struct scsi_descr_sense_hdr *)rq;
663 	char msgbuf[MSGBUFLEN];
664 
665 	if (find_string(sensekey_strings, rq->es_key) == NULL)
666 		dprintf("unknown error");
667 
668 	dprintf("during %s:",
669 	    find_string(scsi_cmdname_strings, ucmd->uscsi_cdb[0]));
670 
671 	/*
672 	 * Get asc, ascq and info field from sense data.  There are two
673 	 * possible formats (fixed sense data and descriptor sense data)
674 	 * depending on the value of es_code.
675 	 */
676 	switch (rq->es_code) {
677 	case CODE_FMT_DESCR_CURRENT:
678 	case CODE_FMT_DESCR_DEFERRED:
679 		blkno = (diskaddr_t)scsi_extract_sense_info_descr(sdsp, rqlen);
680 		if (blkno != (diskaddr_t)-1)
681 			dprintf(": block %lld (0x%llx)", blkno, blkno);
682 		dprintf("\n");
683 		dprintf("ASC: 0x%x   ASCQ: 0x%x    (%s)\n",
684 		    sdsp->ds_add_code, sdsp->ds_qual_code,
685 		    scsi_util_asc_ascq_name(sdsp->ds_add_code,
686 		    sdsp->ds_qual_code, msgbuf, MSGBUFLEN));
687 
688 		break;
689 
690 	case CODE_FMT_FIXED_CURRENT:
691 	case CODE_FMT_FIXED_DEFERRED:
692 	default:
693 		if (rq->es_valid) {
694 			blkno = (rq->es_info_1 << 24) |
695 			    (rq->es_info_2 << 16) |
696 			    (rq->es_info_3 << 8) | rq->es_info_4;
697 			dprintf(": block %lld (0x%llx)", blkno, blkno);
698 		}
699 		dprintf("\n");
700 		if (rq->es_add_len >= 6) {
701 			dprintf("ASC: 0x%x   ASCQ: 0x%x    (%s)\n",
702 			    rq->es_add_code,
703 			    rq->es_qual_code,
704 			    scsi_util_asc_ascq_name(rq->es_add_code,
705 			    rq->es_qual_code, msgbuf, MSGBUFLEN));
706 		}
707 		break;
708 	}
709 
710 	if (rq->es_key == KEY_ILLEGAL_REQUEST) {
711 		ddump("cmd:", (caddr_t)ucmd,
712 		    sizeof (struct uscsi_cmd));
713 		ddump("cdb:", (caddr_t)ucmd->uscsi_cdb,
714 		    ucmd->uscsi_cdblen);
715 	}
716 	ddump("sense:", (caddr_t)rq, rqlen);
717 
718 	switch (rq->es_code) {
719 	case CODE_FMT_DESCR_CURRENT:
720 	case CODE_FMT_DESCR_DEFERRED:
721 		scsi_print_descr_sense(sdsp, rqlen);
722 		break;
723 	case CODE_FMT_FIXED_CURRENT:
724 	case CODE_FMT_FIXED_DEFERRED:
725 	default:
726 		scsi_print_extended_sense(rq, rqlen);
727 		break;
728 	}
729 }
730 
731 /*
732  * Retrieve "information" field from descriptor format sense data.  Iterates
733  * through each sense descriptor looking for the information descriptor and
734  * returns the information field from that descriptor.
735  */
736 static diskaddr_t
737 scsi_extract_sense_info_descr(struct scsi_descr_sense_hdr *sdsp, int rqlen)
738 {
739 	diskaddr_t result;
740 	uint8_t *descr_offset;
741 	int valid_sense_length;
742 	struct scsi_information_sense_descr *isd;
743 
744 	/*
745 	 * Initialize result to -1 indicating there is no information
746 	 * descriptor
747 	 */
748 	result = (diskaddr_t)-1;
749 
750 	/*
751 	 * The first descriptor will immediately follow the header
752 	 */
753 	descr_offset = (uint8_t *)(sdsp+1);
754 
755 	/*
756 	 * Calculate the amount of valid sense data
757 	 */
758 	valid_sense_length =
759 	    MIN((sizeof (struct scsi_descr_sense_hdr) +
760 	    sdsp->ds_addl_sense_length), rqlen);
761 
762 	/*
763 	 * Iterate through the list of descriptors, stopping when we run out of
764 	 * sense data
765 	 */
766 	while ((descr_offset + sizeof (struct scsi_information_sense_descr)) <=
767 	    (uint8_t *)sdsp + valid_sense_length) {
768 		/*
769 		 * Check if this is an information descriptor.  We can use the
770 		 * scsi_information_sense_descr structure as a template since
771 		 * the first two fields are always the same
772 		 */
773 		isd = (struct scsi_information_sense_descr *)descr_offset;
774 		if (isd->isd_descr_type == DESCR_INFORMATION) {
775 			/*
776 			 * Found an information descriptor.  Copy the
777 			 * information field.  There will only be one
778 			 * information descriptor so we can stop looking.
779 			 */
780 			result =
781 			    (((diskaddr_t)isd->isd_information[0] << 56) |
782 			    ((diskaddr_t)isd->isd_information[1] << 48) |
783 			    ((diskaddr_t)isd->isd_information[2] << 40) |
784 			    ((diskaddr_t)isd->isd_information[3] << 32) |
785 			    ((diskaddr_t)isd->isd_information[4] << 24) |
786 			    ((diskaddr_t)isd->isd_information[5] << 16) |
787 			    ((diskaddr_t)isd->isd_information[6] << 8)  |
788 			    ((diskaddr_t)isd->isd_information[7]));
789 			break;
790 		}
791 
792 		/*
793 		 * Get pointer to the next descriptor.  The "additional length"
794 		 * field holds the length of the descriptor except for the
795 		 * "type" and "additional length" fields, so we need to add 2 to
796 		 * get the total length.
797 		 */
798 		descr_offset += (isd->isd_addl_length + 2);
799 	}
800 
801 	return (result);
802 }
803 
804 /*
805  * Display the full scsi_extended_sense as returned by the device
806  */
807 static void
808 scsi_print_extended_sense(struct scsi_extended_sense *rq, int rqlen)
809 {
810 	static char *scsi_extended_sense_labels[] = {
811 	    "Request sense valid:             ",
812 	    "Error class and code:            ",
813 	    "Segment number:                  ",
814 	    "Filemark:                        ",
815 	    "End-of-medium:                   ",
816 	    "Incorrect length indicator:      ",
817 	    "Sense key:                       ",
818 	    "Information field:               ",
819 	    "Additional sense length:         ",
820 	    "Command-specific information:    ",
821 	    "Additional sense code:           ",
822 	    "Additional sense code qualifier: ",
823 	    "Field replaceable unit code:     ",
824 	    "Sense-key specific:              ",
825 	    "Additional sense bytes:          "
826 	};
827 
828 	char **p = scsi_extended_sense_labels;
829 
830 	if (rqlen < (sizeof (*rq) - 2) || !rq->es_valid) {
831 		/*
832 		 * target should be capable of returning at least 18
833 		 * bytes of data, i.e upto rq->es_skey_specific field.
834 		 * The additional sense bytes (2 or more ...) are optional.
835 		 */
836 		return;
837 	}
838 
839 	dprintf("\n%s%s\n", *p++, rq->es_valid ? "yes" : "no");
840 	dprintf("%s0x%02x\n", *p++, (rq->es_class << 4) + rq->es_code);
841 	dprintf("%s%d\n", *p++, rq->es_segnum);
842 	dprintf("%s%s\n", *p++, rq->es_filmk ? "yes" : "no");
843 	dprintf("%s%s\n", *p++, rq->es_eom ? "yes" : "no");
844 	dprintf("%s%s\n", *p++, rq->es_ili ? "yes" : "no");
845 	dprintf("%s%d\n", *p++, rq->es_key);
846 
847 	dprintf("%s0x%02x 0x%02x 0x%02x 0x%02x\n", *p++, rq->es_info_1,
848 	    rq->es_info_2, rq->es_info_3, rq->es_info_4);
849 	dprintf("%s%d\n", *p++, rq->es_add_len);
850 	dprintf("%s0x%02x 0x%02x 0x%02x 0x%02x\n", *p++,
851 	    rq->es_cmd_info[0], rq->es_cmd_info[1], rq->es_cmd_info[2],
852 	    rq->es_cmd_info[3]);
853 	dprintf("%s0x%02x = %d\n", *p++, rq->es_add_code,
854 	    rq->es_add_code);
855 	dprintf("%s0x%02x = %d\n", *p++, rq->es_qual_code,
856 	    rq->es_qual_code);
857 	dprintf("%s%d\n", *p++, rq->es_fru_code);
858 	dprintf("%s0x%02x 0x%02x 0x%02x\n", *p++,
859 	    rq->es_skey_specific[0], rq->es_skey_specific[1],
860 	    rq->es_skey_specific[2]);
861 	if (rqlen >= sizeof (*rq)) {
862 		dprintf("%s0x%02x 0x%02x%s\n", *p, rq->es_add_info[0],
863 		    rq->es_add_info[1], (rqlen > sizeof (*rq)) ? " ..." : "");
864 	}
865 
866 	dprintf("\n");
867 }
868 
869 /*
870  * Display the full descriptor sense data as returned by the device
871  */
872 static void
873 scsi_print_descr_sense(struct scsi_descr_sense_hdr *rq, int rqlen)
874 {
875 	/*
876 	 * Labels for the various fields of the scsi_descr_sense_hdr structure
877 	 */
878 	static char *scsi_descr_sense_labels[] = {
879 	    "Error class and code:            ",
880 	    "Sense key:                       ",
881 	    "Additional sense length:         ",
882 	    "Additional sense code:           ",
883 	    "Additional sense code qualifier: ",
884 	    "Additional sense bytes:          "
885 	};
886 
887 	struct scsi_information_sense_descr *isd;
888 	uint8_t	*descr_offset;
889 	int valid_sense_length;
890 	char **p = scsi_descr_sense_labels;
891 
892 	/* Target must return at least 8 bytes of data */
893 	if (rqlen < sizeof (struct scsi_descr_sense_hdr))
894 		return;
895 
896 	/* Print descriptor sense header */
897 	dprintf("%s0x%02x\n", *p++, (rq->ds_class << 4) + rq->ds_code);
898 	dprintf("%s%d\n", *p++, rq->ds_key);
899 
900 	dprintf("%s%d\n", *p++, rq->ds_addl_sense_length);
901 	dprintf("%s0x%02x = %d\n", *p++, rq->ds_add_code,
902 	    rq->ds_add_code);
903 	dprintf("%s0x%02x = %d\n", *p++, rq->ds_qual_code,
904 	    rq->ds_qual_code);
905 	dprintf("\n");
906 
907 	/*
908 	 * Now print any sense descriptors.   The first descriptor will
909 	 * immediately follow the header
910 	 */
911 	descr_offset = (uint8_t *)(rq+1); /* Pointer arithmetic */
912 
913 	/*
914 	 * Calculate the amount of valid sense data
915 	 */
916 	valid_sense_length =
917 	    MIN((sizeof (struct scsi_descr_sense_hdr) +
918 	    rq->ds_addl_sense_length), rqlen);
919 
920 	/*
921 	 * Iterate through the list of descriptors, stopping when we
922 	 * run out of sense data.  Descriptor format is:
923 	 *
924 	 * <Descriptor type> <Descriptor length> <Descriptor data> ...
925 	 */
926 	while ((descr_offset + *(descr_offset + 1)) <=
927 	    (uint8_t *)rq + valid_sense_length) {
928 		/*
929 		 * Determine descriptor type.  We can use the
930 		 * scsi_information_sense_descr structure as a
931 		 * template since the first two fields are always the
932 		 * same.
933 		 */
934 		isd = (struct scsi_information_sense_descr *)descr_offset;
935 		switch (isd->isd_descr_type) {
936 		case DESCR_INFORMATION: {
937 			uint64_t information;
938 
939 			information =
940 			    (((uint64_t)isd->isd_information[0] << 56) |
941 			    ((uint64_t)isd->isd_information[1] << 48) |
942 			    ((uint64_t)isd->isd_information[2] << 40) |
943 			    ((uint64_t)isd->isd_information[3] << 32) |
944 			    ((uint64_t)isd->isd_information[4] << 24) |
945 			    ((uint64_t)isd->isd_information[5] << 16) |
946 			    ((uint64_t)isd->isd_information[6] << 8)  |
947 			    ((uint64_t)isd->isd_information[7]));
948 			dprintf("Information field:               "
949 			    "%0" PRIx64 "\n", information);
950 			break;
951 		}
952 		case DESCR_COMMAND_SPECIFIC: {
953 			struct scsi_cmd_specific_sense_descr *c =
954 			    (struct scsi_cmd_specific_sense_descr *)isd;
955 			uint64_t cmd_specific;
956 
957 			cmd_specific =
958 			    (((uint64_t)c->css_cmd_specific_info[0] << 56) |
959 			    ((uint64_t)c->css_cmd_specific_info[1] << 48) |
960 			    ((uint64_t)c->css_cmd_specific_info[2] << 40) |
961 			    ((uint64_t)c->css_cmd_specific_info[3] << 32) |
962 			    ((uint64_t)c->css_cmd_specific_info[4] << 24) |
963 			    ((uint64_t)c->css_cmd_specific_info[5] << 16) |
964 			    ((uint64_t)c->css_cmd_specific_info[6] << 8)  |
965 			    ((uint64_t)c->css_cmd_specific_info[7]));
966 			dprintf("Command-specific information:    "
967 			    "%0" PRIx64 "\n", cmd_specific);
968 			break;
969 		}
970 		case DESCR_SENSE_KEY_SPECIFIC: {
971 			struct scsi_sk_specific_sense_descr *ssd =
972 			    (struct scsi_sk_specific_sense_descr *)isd;
973 			uint8_t *sk_spec_ptr = (uint8_t *)&ssd->sss_data;
974 			dprintf("Sense-key specific:              "
975 			    "0x%02x 0x%02x 0x%02x\n", sk_spec_ptr[0],
976 			    sk_spec_ptr[1], sk_spec_ptr[2]);
977 			break;
978 		}
979 		case DESCR_FRU: {
980 			struct scsi_fru_sense_descr *fsd =
981 			    (struct scsi_fru_sense_descr *)isd;
982 			dprintf("Field replaceable unit code:     "
983 			    "%d\n", fsd->fs_fru_code);
984 			break;
985 		}
986 		case DESCR_BLOCK_COMMANDS: {
987 			struct scsi_block_cmd_sense_descr *bsd =
988 			    (struct scsi_block_cmd_sense_descr *)isd;
989 			dprintf("Incorrect length indicator:      "
990 			    "%s\n", bsd->bcs_ili ? "yes" : "no");
991 			break;
992 		}
993 		default:
994 			/* Ignore */
995 			break;
996 		}
997 
998 		/*
999 		 * Get pointer to the next descriptor.  The "additional
1000 		 * length" field holds the length of the descriptor except
1001 		 * for the "type" and "additional length" fields, so
1002 		 * we need to add 2 to get the total length.
1003 		 */
1004 		descr_offset += (isd->isd_addl_length + 2);
1005 	}
1006 
1007 	dprintf("\n");
1008 }
1009 
1010 static int
1011 uscsi_timeout(void)
1012 {
1013 	const char *env = getenv("USCSI_TIMEOUT");
1014 	static int timeo = -1;
1015 	int i;
1016 
1017 	if (timeo > 0)
1018 		return (timeo);
1019 
1020 	if (env != NULL) {
1021 		i = atoi(env);
1022 		if (i > USCSI_TIMEOUT_MAX)
1023 			i = USCSI_TIMEOUT_MAX;
1024 		else if (i < 0)
1025 			i = USCSI_DEFAULT_TIMEOUT;
1026 	} else
1027 		i = USCSI_DEFAULT_TIMEOUT;
1028 
1029 	timeo = i;
1030 	return (i);
1031 }
1032 
1033 /*
1034  * Execute a command and determine the result.  Uses the "uscsi" ioctl
1035  * interface, which is fully supported.
1036  *
1037  * If the user wants request sense data to be returned in case of error then ,
1038  * the "uscsi_cmd" structure should have the request sense buffer allocated in
1039  * uscsi_rqbuf.
1040  */
1041 static int
1042 uscsi_cmd(int fd, struct uscsi_cmd *ucmd, void *rqbuf, int *rqlen)
1043 {
1044 	struct scsi_extended_sense *rq;
1045 	int status;
1046 
1047 	/*
1048 	 * Set function flags for driver.
1049 	 */
1050 	ucmd->uscsi_flags = USCSI_ISOLATE;
1051 	if (!ds_debug)
1052 		ucmd->uscsi_flags |= USCSI_SILENT;
1053 
1054 	/*
1055 	 * If this command will perform a read, set the USCSI_READ flag
1056 	 */
1057 	if (ucmd->uscsi_buflen > 0) {
1058 		/*
1059 		 * uscsi_cdb is declared as a caddr_t, so any CDB
1060 		 * command byte with the MSB set will result in a
1061 		 * compiler error unless we cast to an unsigned value.
1062 		 */
1063 		switch ((uint8_t)ucmd->uscsi_cdb[0]) {
1064 		case SCMD_MODE_SENSE:
1065 		case SCMD_MODE_SENSE_G1:
1066 		case SCMD_LOG_SENSE_G1:
1067 		case SCMD_REQUEST_SENSE:
1068 			ucmd->uscsi_flags |= USCSI_READ;
1069 			break;
1070 
1071 		case SCMD_MODE_SELECT:
1072 		case SCMD_MODE_SELECT_G1:
1073 			/* LINTED */
1074 			ucmd->uscsi_flags |= USCSI_WRITE;
1075 			break;
1076 		default:
1077 			assert(0);
1078 			break;
1079 		}
1080 	}
1081 
1082 	/* Set timeout */
1083 	ucmd->uscsi_timeout = uscsi_timeout();
1084 
1085 	/*
1086 	 * Set up Request Sense buffer
1087 	 */
1088 
1089 	if (ucmd->uscsi_rqbuf == NULL)  {
1090 		ucmd->uscsi_rqbuf = rqbuf;
1091 		ucmd->uscsi_rqlen = *rqlen;
1092 		ucmd->uscsi_rqresid = *rqlen;
1093 	}
1094 	if (ucmd->uscsi_rqbuf)
1095 		ucmd->uscsi_flags |= USCSI_RQENABLE;
1096 	ucmd->uscsi_rqstatus = IMPOSSIBLE_SCSI_STATUS;
1097 
1098 	if (ucmd->uscsi_rqbuf != NULL && ucmd->uscsi_rqlen > 0)
1099 		(void) memset(ucmd->uscsi_rqbuf, 0, ucmd->uscsi_rqlen);
1100 
1101 	/*
1102 	 * Execute the ioctl
1103 	 */
1104 	status = ioctl(fd, USCSICMD, ucmd);
1105 	if (status == 0 && ucmd->uscsi_status == 0)
1106 		return (status);
1107 
1108 	/*
1109 	 * If an automatic Request Sense gave us valid info about the error, we
1110 	 * may be able to use that to print a reasonable error msg.
1111 	 */
1112 	if (ucmd->uscsi_rqstatus == IMPOSSIBLE_SCSI_STATUS) {
1113 		dprintf("No request sense for command %s\n",
1114 		    find_string(scsi_cmdname_strings,
1115 		    ucmd->uscsi_cdb[0]));
1116 		return (-1);
1117 	}
1118 	if (ucmd->uscsi_rqstatus != STATUS_GOOD) {
1119 		dprintf("Request sense status for command %s: 0x%x\n",
1120 		    find_string(scsi_cmdname_strings,
1121 		    ucmd->uscsi_cdb[0]),
1122 		    ucmd->uscsi_rqstatus);
1123 		return (-1);
1124 	}
1125 
1126 	rq = (struct scsi_extended_sense *)ucmd->uscsi_rqbuf;
1127 	*rqlen = ucmd->uscsi_rqlen - ucmd->uscsi_rqresid;
1128 
1129 	if ((((int)rq->es_add_len) + 8) < MIN_REQUEST_SENSE_LEN ||
1130 	    rq->es_class != CLASS_EXTENDED_SENSE ||
1131 	    *rqlen < MIN_REQUEST_SENSE_LEN) {
1132 		dprintf("Request sense for command %s failed\n",
1133 		    find_string(scsi_cmdname_strings,
1134 		    ucmd->uscsi_cdb[0]));
1135 
1136 		dprintf("Sense data:\n");
1137 		ddump(NULL, (caddr_t)rqbuf, *rqlen);
1138 
1139 		return (-1);
1140 	}
1141 
1142 	/*
1143 	 * If the failed command is a Mode Select, and the
1144 	 * target is indicating that it has rounded one of
1145 	 * the mode select parameters, as defined in the SCSI-2
1146 	 * specification, then we should accept the command
1147 	 * as successful.
1148 	 */
1149 	if (ucmd->uscsi_cdb[0] == SCMD_MODE_SELECT ||
1150 	    ucmd->uscsi_cdb[0] == SCMD_MODE_SELECT_G1) {
1151 		if (rq->es_key == KEY_RECOVERABLE_ERROR &&
1152 		    rq->es_add_code == ROUNDED_PARAMETER &&
1153 		    rq->es_qual_code == 0) {
1154 			return (0);
1155 		}
1156 	}
1157 
1158 	if (ds_debug)
1159 		scsi_printerr(ucmd, rq, *rqlen);
1160 	if (rq->es_key != KEY_RECOVERABLE_ERROR)
1161 		return (-1);
1162 	return (0);
1163 }
1164 
1165 int
1166 uscsi_request_sense(int fd, caddr_t buf, int buflen, void *rqbuf, int *rqblen)
1167 {
1168 	struct uscsi_cmd ucmd;
1169 	union scsi_cdb cdb;
1170 	int status;
1171 
1172 	(void) memset(buf, 0, buflen);
1173 	(void) memset(&ucmd, 0, sizeof (ucmd));
1174 	(void) memset(&cdb, 0, sizeof (union scsi_cdb));
1175 	cdb.scc_cmd = SCMD_REQUEST_SENSE;
1176 	FORMG0COUNT(&cdb, (uchar_t)buflen);
1177 	ucmd.uscsi_cdb = (caddr_t)&cdb;
1178 	ucmd.uscsi_cdblen = CDB_GROUP0;
1179 	ucmd.uscsi_bufaddr = buf;
1180 	ucmd.uscsi_buflen = buflen;
1181 	status = uscsi_cmd(fd, &ucmd, rqbuf, rqblen);
1182 	if (status)
1183 		dprintf("Request sense failed\n");
1184 	if (status == 0)
1185 		ddump("Request Sense data:", buf, buflen);
1186 
1187 	return (status);
1188 }
1189 
1190 /*
1191  * Execute a uscsi mode sense command.  This can only be used to return one page
1192  * at a time.  Return the mode header/block descriptor and the actual page data
1193  * separately - this allows us to support devices which return either 0 or 1
1194  * block descriptors.  Whatever a device gives us in the mode header/block
1195  * descriptor will be returned to it upon subsequent mode selects.
1196  */
1197 int
1198 uscsi_mode_sense(int fd, int page_code, int page_control, caddr_t page_data,
1199     int page_size, struct scsi_ms_header *header, void *rqbuf, int *rqblen)
1200 {
1201 	caddr_t mode_sense_buf;
1202 	struct mode_header *hdr;
1203 	struct mode_page *pg;
1204 	int nbytes;
1205 	struct uscsi_cmd ucmd;
1206 	union scsi_cdb cdb;
1207 	int status;
1208 	int maximum;
1209 	char *pc;
1210 
1211 	assert(page_size >= 0 && page_size < 256);
1212 	assert(page_control == PC_CURRENT || page_control == PC_CHANGEABLE ||
1213 	    page_control == PC_DEFAULT || page_control == PC_SAVED);
1214 
1215 	nbytes = sizeof (struct scsi_ms_header) + page_size;
1216 	mode_sense_buf = alloca((uint_t)nbytes);
1217 
1218 	/*
1219 	 * Build and execute the uscsi ioctl
1220 	 */
1221 	(void) memset(mode_sense_buf, 0, nbytes);
1222 	(void) memset(&ucmd, 0, sizeof (ucmd));
1223 	(void) memset(&cdb, 0, sizeof (union scsi_cdb));
1224 	cdb.scc_cmd = SCMD_MODE_SENSE;
1225 	FORMG0COUNT(&cdb, (uchar_t)nbytes);
1226 	cdb.cdb_opaque[2] = page_control | page_code;
1227 	ucmd.uscsi_cdb = (caddr_t)&cdb;
1228 	ucmd.uscsi_cdblen = CDB_GROUP0;
1229 	ucmd.uscsi_bufaddr = mode_sense_buf;
1230 	ucmd.uscsi_buflen = nbytes;
1231 	status = uscsi_cmd(fd, &ucmd, rqbuf, rqblen);
1232 	if (status) {
1233 		dprintf("Mode sense page 0x%x failed\n", page_code);
1234 		return (-1);
1235 	}
1236 
1237 	ddump("RAW MODE SENSE BUFFER", mode_sense_buf, nbytes);
1238 
1239 	/*
1240 	 * Verify that the returned data looks reasonable, find the actual page
1241 	 * data, and copy it into the user's buffer.  Copy the mode_header and
1242 	 * block_descriptor into the header structure, which can then be used to
1243 	 * return the same data to the drive when issuing a mode select.
1244 	 */
1245 	hdr = (struct mode_header *)mode_sense_buf;
1246 	(void) memset((caddr_t)header, 0, sizeof (struct scsi_ms_header));
1247 	if (hdr->bdesc_length != sizeof (struct block_descriptor) &&
1248 	    hdr->bdesc_length != 0) {
1249 		dprintf("\nMode sense page 0x%x: block descriptor "
1250 		    "length %d incorrect\n", page_code, hdr->bdesc_length);
1251 		ddump("Mode sense:", mode_sense_buf, nbytes);
1252 		return (-1);
1253 	}
1254 	(void) memcpy((caddr_t)header, mode_sense_buf,
1255 	    (int)(MODE_HEADER_LENGTH + hdr->bdesc_length));
1256 	pg = (struct mode_page *)((ulong_t)mode_sense_buf +
1257 	    MODE_HEADER_LENGTH + hdr->bdesc_length);
1258 
1259 	if (page_code == MODEPAGE_ALLPAGES) {
1260 		/* special case */
1261 
1262 		(void) memcpy(page_data, (caddr_t)pg,
1263 		    (hdr->length + sizeof (header->ms_header.length)) -
1264 		    (MODE_HEADER_LENGTH + hdr->bdesc_length));
1265 
1266 		pc = find_string(page_control_strings, page_control);
1267 		dprintf("\nMode sense page 0x%x (%s):\n", page_code,
1268 		    pc != NULL ? pc : "");
1269 		ddump("header:", (caddr_t)header,
1270 		    sizeof (struct scsi_ms_header));
1271 		ddump("data:", page_data,
1272 		    (hdr->length +
1273 		    sizeof (header->ms_header.length)) -
1274 		    (MODE_HEADER_LENGTH + hdr->bdesc_length));
1275 
1276 		return (0);
1277 	}
1278 
1279 	if (pg->code != page_code) {
1280 		dprintf("\nMode sense page 0x%x: incorrect page code 0x%x\n",
1281 		    page_code, pg->code);
1282 		ddump("Mode sense:", mode_sense_buf, nbytes);
1283 		return (-1);
1284 	}
1285 
1286 	/*
1287 	 * Accept up to "page_size" bytes of mode sense data.  This allows us to
1288 	 * accept both CCS and SCSI-2 structures, as long as we request the
1289 	 * greater of the two.
1290 	 */
1291 	maximum = page_size - sizeof (struct mode_page);
1292 	if (((int)pg->length) > maximum) {
1293 		dprintf("Mode sense page 0x%x: incorrect page "
1294 		    "length %d - expected max %d\n",
1295 		    page_code, pg->length, maximum);
1296 		ddump("Mode sense:", mode_sense_buf, nbytes);
1297 		return (-1);
1298 	}
1299 
1300 	(void) memcpy(page_data, (caddr_t)pg, MODESENSE_PAGE_LEN(pg));
1301 
1302 	pc = find_string(page_control_strings, page_control);
1303 	dprintf("\nMode sense page 0x%x (%s):\n", page_code,
1304 	    pc != NULL ? pc : "");
1305 	ddump("header:", (caddr_t)header, sizeof (struct scsi_ms_header));
1306 	ddump("data:", page_data, MODESENSE_PAGE_LEN(pg));
1307 
1308 	return (0);
1309 }
1310 
1311 /*
1312  * Execute a uscsi MODE SENSE(10) command.  This can only be used to return one
1313  * page at a time.  Return the mode header/block descriptor and the actual page
1314  * data separately - this allows us to support devices which return either 0 or
1315  * 1 block descriptors.  Whatever a device gives us in the mode header/block
1316  * descriptor will be returned to it upon subsequent mode selects.
1317  */
1318 int
1319 uscsi_mode_sense_10(int fd, int page_code, int page_control,
1320     caddr_t page_data, int page_size, struct scsi_ms_header_g1 *header,
1321     void *rqbuf, int *rqblen)
1322 {
1323 	caddr_t mode_sense_buf;
1324 	struct mode_header_g1 *hdr;
1325 	struct mode_page *pg;
1326 	int nbytes;
1327 	struct uscsi_cmd ucmd;
1328 	union scsi_cdb cdb;
1329 	int status;
1330 	int maximum;
1331 	ushort_t length, bdesc_length;
1332 	char *pc;
1333 
1334 	assert(page_size >= 0 && page_size < UINT16_MAX);
1335 	assert(page_control == PC_CURRENT || page_control == PC_CHANGEABLE ||
1336 	    page_control == PC_DEFAULT || page_control == PC_SAVED);
1337 
1338 	nbytes = sizeof (struct scsi_ms_header_g1) + page_size;
1339 	mode_sense_buf = alloca((uint_t)nbytes);
1340 
1341 	(void) memset(mode_sense_buf, 0, nbytes);
1342 	(void) memset((char *)&ucmd, 0, sizeof (ucmd));
1343 	(void) memset((char *)&cdb, 0, sizeof (union scsi_cdb));
1344 	cdb.scc_cmd = SCMD_MODE_SENSE_G1;
1345 	FORMG1COUNT(&cdb, (uint16_t)nbytes);
1346 	cdb.cdb_opaque[2] = page_control | page_code;
1347 	ucmd.uscsi_cdb = (caddr_t)&cdb;
1348 	ucmd.uscsi_cdblen = CDB_GROUP1;
1349 	ucmd.uscsi_bufaddr = mode_sense_buf;
1350 	ucmd.uscsi_buflen = nbytes;
1351 
1352 	status = uscsi_cmd(fd, &ucmd, rqbuf, rqblen);
1353 	if (status) {
1354 		dprintf("Mode sense(10) page 0x%x failed\n",
1355 		    page_code);
1356 		return (-1);
1357 	}
1358 
1359 	ddump("RAW MODE SENSE(10) BUFFER", mode_sense_buf, nbytes);
1360 
1361 	/*
1362 	 * Verify that the returned data looks reasonable, find the actual page
1363 	 * data, and copy it into the user's buffer.  Copy the mode_header and
1364 	 * block_descriptor into the header structure, which can then be used to
1365 	 * return the same data to the drive when issuing a mode select.
1366 	 */
1367 	/* LINTED */
1368 	hdr = (struct mode_header_g1 *)mode_sense_buf;
1369 
1370 	length = BE_16(hdr->length);
1371 	bdesc_length = BE_16(hdr->bdesc_length);
1372 
1373 	(void) memset((caddr_t)header, 0, sizeof (struct scsi_ms_header_g1));
1374 	if (bdesc_length != sizeof (struct block_descriptor) &&
1375 	    bdesc_length != 0) {
1376 		dprintf("\nMode sense(10) page 0x%x: block descriptor "
1377 		    "length %d incorrect\n", page_code, bdesc_length);
1378 		ddump("Mode sense(10):", mode_sense_buf, nbytes);
1379 		return (-1);
1380 	}
1381 	(void) memcpy((caddr_t)header, mode_sense_buf,
1382 	    (int)(MODE_HEADER_LENGTH_G1 + bdesc_length));
1383 	pg = (struct mode_page *)((ulong_t)mode_sense_buf +
1384 	    MODE_HEADER_LENGTH_G1 + bdesc_length);
1385 
1386 	if (page_code == MODEPAGE_ALLPAGES) {
1387 		/* special case */
1388 
1389 		(void) memcpy(page_data, (caddr_t)pg,
1390 		    (length + sizeof (header->ms_header.length)) -
1391 		    (MODE_HEADER_LENGTH_G1 + bdesc_length));
1392 
1393 		pc = find_string(page_control_strings, page_control);
1394 		dprintf("\nMode sense(10) page 0x%x (%s):\n",
1395 		    page_code, pc != NULL ? pc : "");
1396 		ddump("header:", (caddr_t)header,
1397 		    MODE_HEADER_LENGTH_G1 + bdesc_length);
1398 
1399 		ddump("data:", page_data,
1400 		    (length + sizeof (header->ms_header.length)) -
1401 		    (MODE_HEADER_LENGTH_G1 + bdesc_length));
1402 
1403 		return (0);
1404 	}
1405 
1406 	if (pg->code != page_code) {
1407 		dprintf("\nMode sense(10) page 0x%x: incorrect page "
1408 		    "code 0x%x\n", page_code, pg->code);
1409 		ddump("Mode sense(10):", mode_sense_buf, nbytes);
1410 		return (-1);
1411 	}
1412 
1413 	/*
1414 	 * Accept up to "page_size" bytes of mode sense data.  This allows us to
1415 	 * accept both CCS and SCSI-2 structures, as long as we request the
1416 	 * greater of the two.
1417 	 */
1418 	maximum = page_size - sizeof (struct mode_page);
1419 	if (((int)pg->length) > maximum) {
1420 		dprintf("Mode sense(10) page 0x%x: incorrect page "
1421 		    "length %d - expected max %d\n",
1422 		    page_code, pg->length, maximum);
1423 		ddump("Mode sense(10):", mode_sense_buf,
1424 		    nbytes);
1425 		return (-1);
1426 	}
1427 
1428 	(void) memcpy(page_data, (caddr_t)pg, MODESENSE_PAGE_LEN(pg));
1429 
1430 	pc = find_string(page_control_strings, page_control);
1431 	dprintf("\nMode sense(10) page 0x%x (%s):\n", page_code,
1432 	    pc != NULL ? pc : "");
1433 	ddump("header:", (caddr_t)header,
1434 	    sizeof (struct scsi_ms_header_g1));
1435 	ddump("data:", page_data, MODESENSE_PAGE_LEN(pg));
1436 
1437 	return (0);
1438 }
1439 
1440 /*
1441  * Execute a uscsi mode select command.
1442  */
1443 int
1444 uscsi_mode_select(int fd, int page_code, int options, caddr_t page_data,
1445     int page_size, struct scsi_ms_header *header, void *rqbuf, int *rqblen)
1446 {
1447 	caddr_t mode_select_buf;
1448 	int nbytes;
1449 	struct uscsi_cmd ucmd;
1450 	union scsi_cdb cdb;
1451 	int status;
1452 	char *s;
1453 
1454 	assert(((struct mode_page *)page_data)->ps == 0);
1455 	assert(header->ms_header.length == 0);
1456 	assert(header->ms_header.device_specific == 0);
1457 	assert((options & ~(MODE_SELECT_SP|MODE_SELECT_PF)) == 0);
1458 
1459 	nbytes = sizeof (struct scsi_ms_header) + page_size;
1460 	mode_select_buf = alloca((uint_t)nbytes);
1461 
1462 	/*
1463 	 * Build the mode select data out of the header and page data This
1464 	 * allows us to support devices which return either 0 or 1 block
1465 	 * descriptors.
1466 	 */
1467 	(void) memset(mode_select_buf, 0, nbytes);
1468 	nbytes = MODE_HEADER_LENGTH;
1469 	if (header->ms_header.bdesc_length ==
1470 	    sizeof (struct block_descriptor)) {
1471 		nbytes += sizeof (struct block_descriptor);
1472 	}
1473 
1474 	s = find_string(mode_select_strings,
1475 	    options & (MODE_SELECT_SP|MODE_SELECT_PF));
1476 	dprintf("\nMode select page 0x%x%s:\n", page_code,
1477 	    s != NULL ? s : "");
1478 	ddump("header:", (caddr_t)header, nbytes);
1479 	ddump("data:", (caddr_t)page_data, page_size);
1480 
1481 	/*
1482 	 * Put the header and data together
1483 	 */
1484 	(void) memcpy(mode_select_buf, (caddr_t)header, nbytes);
1485 	(void) memcpy(mode_select_buf + nbytes, page_data, page_size);
1486 	nbytes += page_size;
1487 
1488 	/*
1489 	 * Build and execute the uscsi ioctl
1490 	 */
1491 	(void) memset((char *)&ucmd, 0, sizeof (ucmd));
1492 	(void) memset((char *)&cdb, 0, sizeof (union scsi_cdb));
1493 	cdb.scc_cmd = SCMD_MODE_SELECT;
1494 	FORMG0COUNT(&cdb, (uchar_t)nbytes);
1495 	cdb.cdb_opaque[1] = (uchar_t)options;
1496 	ucmd.uscsi_cdb = (caddr_t)&cdb;
1497 	ucmd.uscsi_cdblen = CDB_GROUP0;
1498 	ucmd.uscsi_bufaddr = mode_select_buf;
1499 	ucmd.uscsi_buflen = nbytes;
1500 	status = uscsi_cmd(fd, &ucmd, rqbuf, rqblen);
1501 
1502 	if (status)
1503 		dprintf("Mode select page 0x%x failed\n", page_code);
1504 
1505 	return (status);
1506 }
1507 
1508 /*
1509  * Execute a uscsi mode select(10) command.
1510  */
1511 int
1512 uscsi_mode_select_10(int fd, int page_code, int options,
1513     caddr_t page_data, int page_size, struct scsi_ms_header_g1 *header,
1514     void *rqbuf, int *rqblen)
1515 {
1516 	caddr_t				mode_select_buf;
1517 	int				nbytes;
1518 	struct uscsi_cmd		ucmd;
1519 	union scsi_cdb			cdb;
1520 	int				status;
1521 	char				*s;
1522 
1523 	assert(((struct mode_page *)page_data)->ps == 0);
1524 	assert(header->ms_header.length == 0);
1525 	assert(header->ms_header.device_specific == 0);
1526 	assert((options & ~(MODE_SELECT_SP|MODE_SELECT_PF)) == 0);
1527 
1528 	nbytes = sizeof (struct scsi_ms_header_g1) + page_size;
1529 	mode_select_buf = alloca((uint_t)nbytes);
1530 
1531 	/*
1532 	 * Build the mode select data out of the header and page data
1533 	 * This allows us to support devices which return either
1534 	 * 0 or 1 block descriptors.
1535 	 */
1536 	(void) memset(mode_select_buf, 0, nbytes);
1537 	nbytes = sizeof (struct mode_header_g1);
1538 	if (BE_16(header->ms_header.bdesc_length) ==
1539 	    sizeof (struct block_descriptor)) {
1540 		nbytes += sizeof (struct block_descriptor);
1541 	}
1542 
1543 	/*
1544 	 * Dump the structures
1545 	 */
1546 	s = find_string(mode_select_strings,
1547 	    options & (MODE_SELECT_SP|MODE_SELECT_PF));
1548 	dprintf("\nMode select(10) page 0x%x%s:\n", page_code,
1549 	    s != NULL ? s : "");
1550 	ddump("header:", (caddr_t)header, nbytes);
1551 	ddump("data:", (caddr_t)page_data, page_size);
1552 
1553 	/*
1554 	 * Put the header and data together
1555 	 */
1556 	(void) memcpy(mode_select_buf, (caddr_t)header, nbytes);
1557 	(void) memcpy(mode_select_buf + nbytes, page_data, page_size);
1558 	nbytes += page_size;
1559 
1560 	/*
1561 	 * Build and execute the uscsi ioctl
1562 	 */
1563 	(void) memset((char *)&ucmd, 0, sizeof (ucmd));
1564 	(void) memset((char *)&cdb, 0, sizeof (union scsi_cdb));
1565 	cdb.scc_cmd = SCMD_MODE_SELECT_G1;
1566 	FORMG1COUNT(&cdb, (uint16_t)nbytes);
1567 	cdb.cdb_opaque[1] = (uchar_t)options;
1568 	ucmd.uscsi_cdb = (caddr_t)&cdb;
1569 	ucmd.uscsi_cdblen = CDB_GROUP1;
1570 	ucmd.uscsi_bufaddr = mode_select_buf;
1571 	ucmd.uscsi_buflen = nbytes;
1572 	status = uscsi_cmd(fd, &ucmd, rqbuf, rqblen);
1573 
1574 	if (status)
1575 		dprintf("Mode select(10) page 0x%x failed\n", page_code);
1576 
1577 	return (status);
1578 }
1579 
1580 int
1581 uscsi_log_sense(int fd, int page_code, int page_control, caddr_t page_data,
1582     int page_size, void *rqbuf, int *rqblen)
1583 {
1584 	caddr_t log_sense_buf;
1585 	scsi_log_header_t *hdr;
1586 	struct uscsi_cmd ucmd;
1587 	union scsi_cdb cdb;
1588 	int status;
1589 	ushort_t len;
1590 	char *pc;
1591 
1592 	assert(page_size >= 0 && page_size < UINT16_MAX);
1593 	assert(page_control == PC_CURRENT || page_control == PC_CHANGEABLE ||
1594 	    page_control == PC_DEFAULT || page_control == PC_SAVED);
1595 
1596 	if (page_size < sizeof (scsi_log_header_t))
1597 		return (-1);
1598 
1599 	log_sense_buf = alloca((uint_t)page_size);
1600 
1601 	/*
1602 	 * Build and execute the uscsi ioctl
1603 	 */
1604 	(void) memset(log_sense_buf, 0, page_size);
1605 	(void) memset((char *)&ucmd, 0, sizeof (ucmd));
1606 	(void) memset((char *)&cdb, 0, sizeof (union scsi_cdb));
1607 	cdb.scc_cmd = SCMD_LOG_SENSE_G1;
1608 	FORMG1COUNT(&cdb, (uint16_t)page_size);
1609 	cdb.cdb_opaque[2] = page_control | page_code;
1610 	ucmd.uscsi_cdb = (caddr_t)&cdb;
1611 	ucmd.uscsi_cdblen = CDB_GROUP1;
1612 	ucmd.uscsi_bufaddr = log_sense_buf;
1613 	ucmd.uscsi_buflen = page_size;
1614 	status = uscsi_cmd(fd, &ucmd, rqbuf, rqblen);
1615 	if (status) {
1616 		dprintf("Log sense page 0x%x failed\n", page_code);
1617 		return (-1);
1618 	}
1619 
1620 	/*
1621 	 * Verify that the returned data looks reasonable, then copy it into the
1622 	 * user's buffer.
1623 	 */
1624 	hdr = (scsi_log_header_t *)log_sense_buf;
1625 
1626 	/*
1627 	 * Ensure we have a host-understandable length field
1628 	 */
1629 	len = BE_16(hdr->lh_length);
1630 
1631 	if (hdr->lh_code != page_code) {
1632 		dprintf("\nLog sense page 0x%x: incorrect page code 0x%x\n",
1633 		    page_code, hdr->lh_code);
1634 		ddump("Log sense:", log_sense_buf, page_size);
1635 		return (-1);
1636 	}
1637 
1638 	ddump("LOG SENSE RAW OUTPUT", log_sense_buf,
1639 	    sizeof (scsi_log_header_t) + len);
1640 
1641 	/*
1642 	 * Accept up to "page_size" bytes of mode sense data.  This allows us to
1643 	 * accept both CCS and SCSI-2 structures, as long as we request the
1644 	 * greater of the two.
1645 	 */
1646 	(void) memcpy(page_data, (caddr_t)hdr, len +
1647 	    sizeof (scsi_log_header_t));
1648 
1649 	pc = find_string(page_control_strings, page_control);
1650 	dprintf("\nLog sense page 0x%x (%s):\n", page_code,
1651 	    pc != NULL ? pc : "");
1652 	ddump("header:", (caddr_t)hdr,
1653 	    sizeof (scsi_log_header_t));
1654 	ddump("data:", (caddr_t)hdr +
1655 	    sizeof (scsi_log_header_t), len);
1656 
1657 	return (0);
1658 }
1659