xref: /illumos-gate/usr/src/common/elfcap/elfcap.c (revision 245ac945)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2015, Joyent, Inc.
25  */
26 
27 /* LINTLIBRARY */
28 
29 /*
30  * String conversion routine for hardware capabilities types.
31  */
32 #include	<strings.h>
33 #include	<stdio.h>
34 #include	<ctype.h>
35 #include	<sys/machelf.h>
36 #include	<sys/elf.h>
37 #include	<sys/auxv_SPARC.h>
38 #include	<sys/auxv_386.h>
39 #include	<elfcap.h>
40 
41 /*
42  * Given a literal string, generate an initialization for an
43  * elfcap_str_t value.
44  */
45 #define	STRDESC(_str) { _str, sizeof (_str) - 1 }
46 
47 /*
48  * The items in the elfcap_desc_t arrays are required to be
49  * ordered so that the array index is related to the
50  * c_val field as:
51  *
52  *	array[ndx].c_val = 2^ndx
53  *
54  * meaning that
55  *
56  *	array[0].c_val = 2^0 = 1
57  *	array[1].c_val = 2^1 = 2
58  *	array[2].c_val = 2^2 = 4
59  *	.
60  *	.
61  *	.
62  *
63  * Since 0 is not a valid value for the c_val field, we use it to
64  * mark an array entry that is a placeholder. This can happen if there
65  * is a hole in the assigned bits.
66  *
67  * The RESERVED_ELFCAP_DESC macro is used to reserve such holes.
68  */
69 #define	RESERVED_ELFCAP_DESC { 0, { NULL, 0 }, { NULL, 0 }, { NULL, 0 } }
70 
71 /*
72  * Define separators for output string processing. This must be kept in
73  * sync with the elfcap_fmt_t values in elfcap.h.
74  */
75 static const elfcap_str_t format[] = {
76 	STRDESC(" "),			/* ELFCAP_FMT_SNGSPACE */
77 	STRDESC("  "),			/* ELFCAP_FMT_DBLSPACE */
78 	STRDESC(" | ")			/* ELFCAP_FMT_PIPSPACE */
79 };
80 #define	FORMAT_NELTS	(sizeof (format) / sizeof (format[0]))
81 
82 
83 
84 /*
85  * Define all known software capabilities in all the supported styles.
86  * Order the capabilities by their numeric value. See SF1_SUNW_
87  * values in sys/elf.h.
88  */
89 static const elfcap_desc_t sf1[ELFCAP_NUM_SF1] = {
90 	{						/* 0x00000001 */
91 		SF1_SUNW_FPKNWN, STRDESC("SF1_SUNW_FPKNWN"),
92 		STRDESC("FPKNWN"), STRDESC("fpknwn")
93 	},
94 	{						/* 0x00000002 */
95 		SF1_SUNW_FPUSED, STRDESC("SF1_SUNW_FPUSED"),
96 		STRDESC("FPUSED"), STRDESC("fpused"),
97 	},
98 	{						/* 0x00000004 */
99 		SF1_SUNW_ADDR32, STRDESC("SF1_SUNW_ADDR32"),
100 		STRDESC("ADDR32"), STRDESC("addr32"),
101 	}
102 };
103 
104 
105 
106 /*
107  * Order the SPARC hardware capabilities to match their numeric value.  See
108  * AV_SPARC_ values in sys/auxv_SPARC.h.
109  */
110 static const elfcap_desc_t hw1_sparc[ELFCAP_NUM_HW1_SPARC] = {
111 	{						/* 0x00000001 */
112 		AV_SPARC_MUL32, STRDESC("AV_SPARC_MUL32"),
113 		STRDESC("MUL32"), STRDESC("mul32"),
114 	},
115 	{						/* 0x00000002 */
116 		AV_SPARC_DIV32, STRDESC("AV_SPARC_DIV32"),
117 		STRDESC("DIV32"), STRDESC("div32"),
118 	},
119 	{						/* 0x00000004 */
120 		AV_SPARC_FSMULD, STRDESC("AV_SPARC_FSMULD"),
121 		STRDESC("FSMULD"), STRDESC("fsmuld"),
122 	},
123 	{						/* 0x00000008 */
124 		AV_SPARC_V8PLUS, STRDESC("AV_SPARC_V8PLUS"),
125 		STRDESC("V8PLUS"), STRDESC("v8plus"),
126 	},
127 	{						/* 0x00000010 */
128 		AV_SPARC_POPC, STRDESC("AV_SPARC_POPC"),
129 		STRDESC("POPC"), STRDESC("popc"),
130 	},
131 	{						/* 0x00000020 */
132 		AV_SPARC_VIS, STRDESC("AV_SPARC_VIS"),
133 		STRDESC("VIS"), STRDESC("vis"),
134 	},
135 	{						/* 0x00000040 */
136 		AV_SPARC_VIS2, STRDESC("AV_SPARC_VIS2"),
137 		STRDESC("VIS2"), STRDESC("vis2"),
138 	},
139 	{						/* 0x00000080 */
140 		AV_SPARC_ASI_BLK_INIT, STRDESC("AV_SPARC_ASI_BLK_INIT"),
141 		STRDESC("ASI_BLK_INIT"), STRDESC("asi_blk_init"),
142 	},
143 	{						/* 0x00000100 */
144 		AV_SPARC_FMAF, STRDESC("AV_SPARC_FMAF"),
145 		STRDESC("FMAF"), STRDESC("fmaf"),
146 	},
147 	RESERVED_ELFCAP_DESC,				/* 0x00000200 */
148 	{						/* 0x00000400 */
149 		AV_SPARC_VIS3, STRDESC("AV_SPARC_VIS3"),
150 		STRDESC("VIS3"), STRDESC("vis3"),
151 	},
152 	{						/* 0x00000800 */
153 		AV_SPARC_HPC, STRDESC("AV_SPARC_HPC"),
154 		STRDESC("HPC"), STRDESC("hpc"),
155 	},
156 	{						/* 0x00001000 */
157 		AV_SPARC_RANDOM, STRDESC("AV_SPARC_RANDOM"),
158 		STRDESC("RANDOM"), STRDESC("random"),
159 	},
160 	{						/* 0x00002000 */
161 		AV_SPARC_TRANS, STRDESC("AV_SPARC_TRANS"),
162 		STRDESC("TRANS"), STRDESC("trans"),
163 	},
164 	{						/* 0x00004000 */
165 		AV_SPARC_FJFMAU, STRDESC("AV_SPARC_FJFMAU"),
166 		STRDESC("FJFMAU"), STRDESC("fjfmau"),
167 	},
168 	{						/* 0x00008000 */
169 		AV_SPARC_IMA, STRDESC("AV_SPARC_IMA"),
170 		STRDESC("IMA"), STRDESC("ima"),
171 	},
172 	{						/* 0x00010000 */
173 		AV_SPARC_ASI_CACHE_SPARING,
174 		STRDESC("AV_SPARC_ASI_CACHE_SPARING"),
175 		STRDESC("CSPARE"), STRDESC("cspare"),
176 	}
177 };
178 
179 
180 
181 /*
182  * Order the Intel hardware capabilities to match their numeric value.  See
183  * AV_386_ values in sys/auxv_386.h.
184  */
185 static const elfcap_desc_t hw1_386[ELFCAP_NUM_HW1_386] = {
186 	{						/* 0x00000001 */
187 		AV_386_FPU, STRDESC("AV_386_FPU"),
188 		STRDESC("FPU"), STRDESC("fpu"),
189 	},
190 	{						/* 0x00000002 */
191 		AV_386_TSC, STRDESC("AV_386_TSC"),
192 		STRDESC("TSC"), STRDESC("tsc"),
193 	},
194 	{						/* 0x00000004 */
195 		AV_386_CX8, STRDESC("AV_386_CX8"),
196 		STRDESC("CX8"), STRDESC("cx8"),
197 	},
198 	{						/* 0x00000008 */
199 		AV_386_SEP, STRDESC("AV_386_SEP"),
200 		STRDESC("SEP"), STRDESC("sep"),
201 	},
202 	{						/* 0x00000010 */
203 		AV_386_AMD_SYSC, STRDESC("AV_386_AMD_SYSC"),
204 		STRDESC("AMD_SYSC"), STRDESC("amd_sysc"),
205 	},
206 	{						/* 0x00000020 */
207 		AV_386_CMOV, STRDESC("AV_386_CMOV"),
208 		STRDESC("CMOV"), STRDESC("cmov"),
209 	},
210 	{						/* 0x00000040 */
211 		AV_386_MMX, STRDESC("AV_386_MMX"),
212 		STRDESC("MMX"), STRDESC("mmx"),
213 	},
214 	{						/* 0x00000080 */
215 		AV_386_AMD_MMX, STRDESC("AV_386_AMD_MMX"),
216 		STRDESC("AMD_MMX"), STRDESC("amd_mmx"),
217 	},
218 	{						/* 0x00000100 */
219 		AV_386_AMD_3DNow, STRDESC("AV_386_AMD_3DNow"),
220 		STRDESC("AMD_3DNow"), STRDESC("amd_3dnow"),
221 	},
222 	{						/* 0x00000200 */
223 		AV_386_AMD_3DNowx, STRDESC("AV_386_AMD_3DNowx"),
224 		STRDESC("AMD_3DNowx"), STRDESC("amd_3dnowx"),
225 	},
226 	{						/* 0x00000400 */
227 		AV_386_FXSR, STRDESC("AV_386_FXSR"),
228 		STRDESC("FXSR"), STRDESC("fxsr"),
229 	},
230 	{						/* 0x00000800 */
231 		AV_386_SSE, STRDESC("AV_386_SSE"),
232 		STRDESC("SSE"), STRDESC("sse"),
233 	},
234 	{						/* 0x00001000 */
235 		AV_386_SSE2, STRDESC("AV_386_SSE2"),
236 		STRDESC("SSE2"), STRDESC("sse2"),
237 	},
238 	/* 0x02000 withdrawn - do not assign */
239 	{						/* 0x00004000 */
240 		AV_386_SSE3, STRDESC("AV_386_SSE3"),
241 		STRDESC("SSE3"), STRDESC("sse3"),
242 	},
243 	/* 0x08000 withdrawn - do not assign */
244 	{						/* 0x00010000 */
245 		AV_386_CX16, STRDESC("AV_386_CX16"),
246 		STRDESC("CX16"), STRDESC("cx16"),
247 	},
248 	{						/* 0x00020000 */
249 		AV_386_AHF, STRDESC("AV_386_AHF"),
250 		STRDESC("AHF"), STRDESC("ahf"),
251 	},
252 	{						/* 0x00040000 */
253 		AV_386_TSCP, STRDESC("AV_386_TSCP"),
254 		STRDESC("TSCP"), STRDESC("tscp"),
255 	},
256 	{						/* 0x00080000 */
257 		AV_386_AMD_SSE4A, STRDESC("AV_386_AMD_SSE4A"),
258 		STRDESC("AMD_SSE4A"), STRDESC("amd_sse4a"),
259 	},
260 	{						/* 0x00100000 */
261 		AV_386_POPCNT, STRDESC("AV_386_POPCNT"),
262 		STRDESC("POPCNT"), STRDESC("popcnt"),
263 	},
264 	{						/* 0x00200000 */
265 		AV_386_AMD_LZCNT, STRDESC("AV_386_AMD_LZCNT"),
266 		STRDESC("AMD_LZCNT"), STRDESC("amd_lzcnt"),
267 	},
268 	{						/* 0x00400000 */
269 		AV_386_SSSE3, STRDESC("AV_386_SSSE3"),
270 		STRDESC("SSSE3"), STRDESC("ssse3"),
271 	},
272 	{						/* 0x00800000 */
273 		AV_386_SSE4_1, STRDESC("AV_386_SSE4_1"),
274 		STRDESC("SSE4.1"), STRDESC("sse4.1"),
275 	},
276 	{						/* 0x01000000 */
277 		AV_386_SSE4_2, STRDESC("AV_386_SSE4_2"),
278 		STRDESC("SSE4.2"), STRDESC("sse4.2"),
279 	},
280 	{						/* 0x02000000 */
281 		AV_386_MOVBE, STRDESC("AV_386_MOVBE"),
282 		STRDESC("MOVBE"), STRDESC("movbe"),
283 	},
284 	{						/* 0x04000000 */
285 		AV_386_AES, STRDESC("AV_386_AES"),
286 		STRDESC("AES"), STRDESC("aes"),
287 	},
288 	{						/* 0x08000000 */
289 		AV_386_PCLMULQDQ, STRDESC("AV_386_PCLMULQDQ"),
290 		STRDESC("PCLMULQDQ"), STRDESC("pclmulqdq"),
291 	},
292 	{						/* 0x10000000 */
293 		AV_386_XSAVE, STRDESC("AV_386_XSAVE"),
294 		STRDESC("XSAVE"), STRDESC("xsave"),
295 	},
296 	{						/* 0x20000000 */
297 		AV_386_AVX, STRDESC("AV_386_AVX"),
298 		STRDESC("AVX"), STRDESC("avx"),
299 	},
300 	{						/* 0x40000000 */
301 		AV_386_VMX, STRDESC("AV_386_VMX"),
302 		STRDESC("VMX"), STRDESC("vmx"),
303 	},
304 	{						/* 0x80000000 */
305 		AV_386_AMD_SVM, STRDESC("AV_386_AMD_SVM"),
306 		STRDESC("AMD_SVM"), STRDESC("amd_svm"),
307 	}
308 };
309 
310 static const elfcap_desc_t hw2_386[ELFCAP_NUM_HW2_386] = {
311 	{						/* 0x00000001 */
312 		AV_386_2_F16C, STRDESC("AV_386_2_F16C"),
313 		STRDESC("F16C"), STRDESC("f16c"),
314 	},
315 	{						/* 0x00000002 */
316 		AV_386_2_RDRAND, STRDESC("AV_386_2_RDRAND"),
317 		STRDESC("RDRAND"), STRDESC("rdrand"),
318 	},
319 	{						/* 0x00000004 */
320 		AV_386_2_BMI1, STRDESC("AV_386_2_BMI1"),
321 		STRDESC("BMI1"), STRDESC("bmi1"),
322 	},
323 	{						/* 0x00000008 */
324 		AV_386_2_BMI2, STRDESC("AV_386_2_BMI2"),
325 		STRDESC("BMI2"), STRDESC("bmi2"),
326 	},
327 	{						/* 0x00000010 */
328 		AV_386_2_FMA, STRDESC("AV_386_2_FMA"),
329 		STRDESC("FMA"), STRDESC("fma"),
330 	},
331 	{						/* 0x00000020 */
332 		AV_386_2_AVX2, STRDESC("AV_386_2_AVX2"),
333 		STRDESC("AVX2"), STRDESC("avx2"),
334 	},
335 };
336 
337 /*
338  * Concatenate a token to the string buffer.  This can be a capabilities token
339  * or a separator token.
340  */
341 static elfcap_err_t
342 token(char **ostr, size_t *olen, const elfcap_str_t *nstr)
343 {
344 	if (*olen < nstr->s_len)
345 		return (ELFCAP_ERR_BUFOVFL);
346 
347 	(void) strcat(*ostr, nstr->s_str);
348 	*ostr += nstr->s_len;
349 	*olen -= nstr->s_len;
350 
351 	return (ELFCAP_ERR_NONE);
352 }
353 
354 static elfcap_err_t
355 get_str_desc(elfcap_style_t style, const elfcap_desc_t *cdp,
356     const elfcap_str_t **ret_str)
357 {
358 	switch (ELFCAP_STYLE_MASK(style)) {
359 	case ELFCAP_STYLE_FULL:
360 		*ret_str = &cdp->c_full;
361 		break;
362 	case ELFCAP_STYLE_UC:
363 		*ret_str = &cdp->c_uc;
364 		break;
365 	case ELFCAP_STYLE_LC:
366 		*ret_str = &cdp->c_lc;
367 		break;
368 	default:
369 		return (ELFCAP_ERR_INVSTYLE);
370 	}
371 
372 	return (ELFCAP_ERR_NONE);
373 }
374 
375 
376 /*
377  * Expand a capabilities value into the strings defined in the associated
378  * capabilities descriptor.
379  */
380 static elfcap_err_t
381 expand(elfcap_style_t style, elfcap_mask_t val, const elfcap_desc_t *cdp,
382     uint_t cnum, char *str, size_t slen, elfcap_fmt_t fmt)
383 {
384 	uint_t			cnt;
385 	int			follow = 0, err;
386 	const elfcap_str_t	*nstr;
387 
388 	if (val == 0)
389 		return (ELFCAP_ERR_NONE);
390 
391 	for (cnt = cnum; cnt > 0; cnt--) {
392 		uint_t mask = cdp[cnt - 1].c_val;
393 
394 		if ((val & mask) != 0) {
395 			if (follow++ && ((err = token(&str, &slen,
396 			    &format[fmt])) != ELFCAP_ERR_NONE))
397 				return (err);
398 
399 			err = get_str_desc(style, &cdp[cnt - 1], &nstr);
400 			if (err != ELFCAP_ERR_NONE)
401 				return (err);
402 			if ((err = token(&str, &slen, nstr)) != ELFCAP_ERR_NONE)
403 				return (err);
404 
405 			val = val & ~mask;
406 		}
407 	}
408 
409 	/*
410 	 * If there are any unknown bits remaining display the numeric value.
411 	 */
412 	if (val) {
413 		if (follow && ((err = token(&str, &slen, &format[fmt])) !=
414 		    ELFCAP_ERR_NONE))
415 			return (err);
416 
417 		(void) snprintf(str, slen, "0x%x", val);
418 	}
419 	return (ELFCAP_ERR_NONE);
420 }
421 
422 /*
423  * Expand a CA_SUNW_HW_1 value.
424  */
425 elfcap_err_t
426 elfcap_hw1_to_str(elfcap_style_t style, elfcap_mask_t val, char *str,
427     size_t len, elfcap_fmt_t fmt, ushort_t mach)
428 {
429 	/*
430 	 * Initialize the string buffer, and validate the format request.
431 	 */
432 	*str = '\0';
433 	if ((fmt < 0) || (fmt >= FORMAT_NELTS))
434 		return (ELFCAP_ERR_INVFMT);
435 
436 	if ((mach == EM_386) || (mach == EM_IA_64) || (mach == EM_AMD64))
437 		return (expand(style, val, &hw1_386[0], ELFCAP_NUM_HW1_386,
438 		    str, len, fmt));
439 
440 	if ((mach == EM_SPARC) || (mach == EM_SPARC32PLUS) ||
441 	    (mach == EM_SPARCV9))
442 		return (expand(style, val, hw1_sparc, ELFCAP_NUM_HW1_SPARC,
443 		    str, len, fmt));
444 
445 	return (ELFCAP_ERR_UNKMACH);
446 }
447 
448 /*
449  * Expand a CA_SUNW_HW_2 value.
450  */
451 elfcap_err_t
452 elfcap_hw2_to_str(elfcap_style_t style, elfcap_mask_t val, char *str,
453     size_t len, elfcap_fmt_t fmt, ushort_t mach)
454 {
455 	/*
456 	 * Initialize the string buffer, and validate the format request.
457 	 */
458 	*str = '\0';
459 	if ((fmt < 0) || (fmt >= FORMAT_NELTS))
460 		return (ELFCAP_ERR_INVFMT);
461 
462 	if ((mach == EM_386) || (mach == EM_IA_64) || (mach == EM_AMD64))
463 		return (expand(style, val, &hw2_386[0], ELFCAP_NUM_HW2_386,
464 		    str, len, fmt));
465 
466 	return (expand(style, val, NULL, 0, str, len, fmt));
467 }
468 
469 /*
470  * Expand a CA_SUNW_SF_1 value.  Note, that at present these capabilities are
471  * common across all platforms.  The use of "mach" is therefore redundant, but
472  * is retained for compatibility with the interface of elfcap_hw1_to_str(), and
473  * possible future expansion.
474  */
475 elfcap_err_t
476 /* ARGSUSED4 */
477 elfcap_sf1_to_str(elfcap_style_t style, elfcap_mask_t val, char *str,
478     size_t len, elfcap_fmt_t fmt, ushort_t mach)
479 {
480 	/*
481 	 * Initialize the string buffer, and validate the format request.
482 	 */
483 	*str = '\0';
484 	if ((fmt < 0) || (fmt >= FORMAT_NELTS))
485 		return (ELFCAP_ERR_INVFMT);
486 
487 	return (expand(style, val, &sf1[0], ELFCAP_NUM_SF1, str, len, fmt));
488 }
489 
490 /*
491  * Given a capability tag type and value, map it to a string representation.
492  */
493 elfcap_err_t
494 elfcap_tag_to_str(elfcap_style_t style, uint64_t tag, elfcap_mask_t val,
495     char *str, size_t len, elfcap_fmt_t fmt, ushort_t mach)
496 {
497 	switch (tag) {
498 	case CA_SUNW_HW_1:
499 		return (elfcap_hw1_to_str(style, val, str, len, fmt, mach));
500 
501 	case CA_SUNW_SF_1:
502 		return (elfcap_sf1_to_str(style, val, str, len, fmt, mach));
503 
504 	case CA_SUNW_HW_2:
505 		return (elfcap_hw2_to_str(style, val, str, len, fmt, mach));
506 
507 	}
508 
509 	return (ELFCAP_ERR_UNKTAG);
510 }
511 
512 /*
513  * Determine a capabilities value from a capabilities string.
514  */
515 static elfcap_mask_t
516 value(elfcap_style_t style, const char *str, const elfcap_desc_t *cdp,
517     uint_t cnum)
518 {
519 	const elfcap_str_t	*nstr;
520 	uint_t	num;
521 	int	err;
522 
523 	for (num = 0; num < cnum; num++) {
524 		/*
525 		 * Skip "reserved" bits. These are unassigned bits in the
526 		 * middle of the assigned range.
527 		 */
528 		if (cdp[num].c_val == 0)
529 			continue;
530 
531 		if ((err = get_str_desc(style, &cdp[num], &nstr)) != 0)
532 			return (err);
533 		if (style & ELFCAP_STYLE_F_ICMP) {
534 			if (strcasecmp(str, nstr->s_str) == 0)
535 				return (cdp[num].c_val);
536 		} else {
537 			if (strcmp(str, nstr->s_str) == 0)
538 				return (cdp[num].c_val);
539 		}
540 	}
541 
542 	return (0);
543 }
544 
545 elfcap_mask_t
546 elfcap_sf1_from_str(elfcap_style_t style, const char *str, ushort_t mach)
547 {
548 	return (value(style, str, &sf1[0], ELFCAP_NUM_SF1));
549 }
550 
551 elfcap_mask_t
552 elfcap_hw1_from_str(elfcap_style_t style, const char *str, ushort_t mach)
553 {
554 	if ((mach == EM_386) || (mach == EM_IA_64) || (mach == EM_AMD64))
555 		return (value(style, str, &hw1_386[0], ELFCAP_NUM_HW1_386));
556 
557 	if ((mach == EM_SPARC) || (mach == EM_SPARC32PLUS) ||
558 	    (mach == EM_SPARCV9))
559 		return (value(style, str, hw1_sparc, ELFCAP_NUM_HW1_SPARC));
560 
561 	return (0);
562 }
563 elfcap_mask_t
564 elfcap_hw2_from_str(elfcap_style_t style, const char *str, ushort_t mach)
565 {
566 	if ((mach == EM_386) || (mach == EM_IA_64) || (mach == EM_AMD64))
567 		return (value(style, str, &hw2_386[0], ELFCAP_NUM_HW2_386));
568 
569 	return (0);
570 }
571 
572 /*
573  * Given a capability tag type and value, return the capabilities values
574  * contained in the string.
575  */
576 elfcap_mask_t
577 elfcap_tag_from_str(elfcap_style_t style, uint64_t tag, const char *str,
578     ushort_t mach)
579 {
580 	switch (tag) {
581 	case CA_SUNW_HW_1:
582 		return (elfcap_hw1_from_str(style, str, mach));
583 
584 	case CA_SUNW_SF_1:
585 		return (elfcap_sf1_from_str(style, str, mach));
586 
587 	case CA_SUNW_HW_2:
588 		return (elfcap_hw2_from_str(style, str, mach));
589 	}
590 
591 	return (0);
592 }
593 
594 /*
595  * These functions allow the caller to get direct access to the
596  * cap descriptors.
597  */
598 const elfcap_desc_t *
599 elfcap_getdesc_hw1_sparc(void)
600 {
601 	return (hw1_sparc);
602 }
603 
604 const elfcap_desc_t *
605 elfcap_getdesc_hw1_386(void)
606 {
607 	return (hw1_386);
608 }
609 
610 const elfcap_desc_t *
611 elfcap_getdesc_sf1(void)
612 {
613 	return (sf1);
614 }
615