xref: /illumos-gate/usr/src/common/crypto/md5/md5.c (revision 8de5c4f4)
1 /*
2  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
3  * Use is subject to license terms.
4  */
5 
6 /*
7  * Cleaned-up and optimized version of MD5, based on the reference
8  * implementation provided in RFC 1321.  See RSA Copyright information
9  * below.
10  */
11 
12 /*
13  * MD5C.C - RSA Data Security, Inc., MD5 message-digest algorithm
14  */
15 
16 /*
17  * Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991. All
18  * rights reserved.
19  *
20  * License to copy and use this software is granted provided that it
21  * is identified as the "RSA Data Security, Inc. MD5 Message-Digest
22  * Algorithm" in all material mentioning or referencing this software
23  * or this function.
24  *
25  * License is also granted to make and use derivative works provided
26  * that such works are identified as "derived from the RSA Data
27  * Security, Inc. MD5 Message-Digest Algorithm" in all material
28  * mentioning or referencing the derived work.
29  *
30  * RSA Data Security, Inc. makes no representations concerning either
31  * the merchantability of this software or the suitability of this
32  * software for any particular purpose. It is provided "as is"
33  * without express or implied warranty of any kind.
34  *
35  * These notices must be retained in any copies of any part of this
36  * documentation and/or software.
37  */
38 
39 #ifndef _KERNEL
40 #include <stdint.h>
41 #endif /* _KERNEL */
42 
43 #include <sys/types.h>
44 #include <sys/md5.h>
45 #include <sys/md5_consts.h>	/* MD5_CONST() optimization */
46 #include "md5_byteswap.h"
47 #if	!defined(_KERNEL) || defined(_BOOT)
48 #include <strings.h>
49 #endif /* !_KERNEL || _BOOT */
50 
51 #ifdef _KERNEL
52 #include <sys/systm.h>
53 #endif /* _KERNEL */
54 
55 static void Encode(uint8_t *, const uint32_t *, size_t);
56 
57 #if !defined(__amd64)
58 static void MD5Transform(uint32_t, uint32_t, uint32_t, uint32_t, MD5_CTX *,
59     const uint8_t [64]);
60 #else
61 void md5_block_asm_host_order(MD5_CTX *ctx, const void *inpp,
62     unsigned int input_length_in_blocks);
63 #endif /* !defined(__amd64) */
64 
65 static uint8_t PADDING[64] = { 0x80, /* all zeros */ };
66 
67 /*
68  * F, G, H and I are the basic MD5 functions.
69  */
70 #define	F(b, c, d)	(((b) & (c)) | ((~b) & (d)))
71 #define	G(b, c, d)	(((b) & (d)) | ((c) & (~d)))
72 #define	H(b, c, d)	((b) ^ (c) ^ (d))
73 #define	I(b, c, d)	((c) ^ ((b) | (~d)))
74 
75 /*
76  * ROTATE_LEFT rotates x left n bits.
77  */
78 #define	ROTATE_LEFT(x, n)	\
79 	(((x) << (n)) | ((x) >> ((sizeof (x) << 3) - (n))))
80 
81 /*
82  * FF, GG, HH, and II transformations for rounds 1, 2, 3, and 4.
83  * Rotation is separate from addition to prevent recomputation.
84  */
85 
86 #define	FF(a, b, c, d, x, s, ac) { \
87 	(a) += F((b), (c), (d)) + (x) + ((unsigned long long)(ac)); \
88 	(a) = ROTATE_LEFT((a), (s)); \
89 	(a) += (b); \
90 	}
91 
92 #define	GG(a, b, c, d, x, s, ac) { \
93 	(a) += G((b), (c), (d)) + (x) + ((unsigned long long)(ac)); \
94 	(a) = ROTATE_LEFT((a), (s)); \
95 	(a) += (b); \
96 	}
97 
98 #define	HH(a, b, c, d, x, s, ac) { \
99 	(a) += H((b), (c), (d)) + (x) + ((unsigned long long)(ac)); \
100 	(a) = ROTATE_LEFT((a), (s)); \
101 	(a) += (b); \
102 	}
103 
104 #define	II(a, b, c, d, x, s, ac) { \
105 	(a) += I((b), (c), (d)) + (x) + ((unsigned long long)(ac)); \
106 	(a) = ROTATE_LEFT((a), (s)); \
107 	(a) += (b); \
108 	}
109 
110 /*
111  * Loading 32-bit constants on a RISC is expensive since it involves both a
112  * `sethi' and an `or'.  thus, we instead have the compiler generate `ld's to
113  * load the constants from an array called `md5_consts'.  however, on intel
114  * (and other CISC processors), it is cheaper to load the constant
115  * directly.  thus, the c code in MD5Transform() uses the macro MD5_CONST()
116  * which either expands to a constant or an array reference, depending on the
117  * architecture the code is being compiled for.
118  *
119  * Right now, i386 and amd64 are the CISC exceptions.
120  * If we get another CISC ISA, we'll have to change the ifdef.
121  */
122 
123 #if defined(__i386) || defined(__amd64)
124 
125 #define	MD5_CONST(x)		(MD5_CONST_ ## x)
126 #define	MD5_CONST_e(x)		MD5_CONST(x)
127 #define	MD5_CONST_o(x)		MD5_CONST(x)
128 
129 #else
130 /*
131  * sparc/RISC optimization:
132  *
133  * while it is somewhat counter-intuitive, on sparc (and presumably other RISC
134  * machines), it is more efficient to place all the constants used in this
135  * function in an array and load the values out of the array than to manually
136  * load the constants.  this is because setting a register to a 32-bit value
137  * takes two ops in most cases: a `sethi' and an `or', but loading a 32-bit
138  * value from memory only takes one `ld' (or `lduw' on v9).  while this
139  * increases memory usage, the compiler can find enough other things to do
140  * while waiting to keep the pipeline does not stall.  additionally, it is
141  * likely that many of these constants are cached so that later accesses do
142  * not even go out to the bus.
143  *
144  * this array is declared `static' to keep the compiler from having to
145  * bcopy() this array onto the stack frame of MD5Transform() each time it is
146  * called -- which is unacceptably expensive.
147  *
148  * the `const' is to ensure that callers are good citizens and do not try to
149  * munge the array.  since these routines are going to be called from inside
150  * multithreaded kernelland, this is a good safety check. -- `constants' will
151  * end up in .rodata.
152  *
153  * unfortunately, loading from an array in this manner hurts performance under
154  * intel (and presumably other CISC machines).  so, there is a macro,
155  * MD5_CONST(), used in MD5Transform(), that either expands to a reference to
156  * this array, or to the actual constant, depending on what platform this code
157  * is compiled for.
158  */
159 
160 #ifdef sun4v
161 
162 /*
163  * Going to load these consts in 8B chunks, so need to enforce 8B alignment
164  */
165 
166 /* CSTYLED */
167 #pragma align 64 (md5_consts)
168 #define	_MD5_CHECK_ALIGNMENT
169 
170 #endif /* sun4v */
171 
172 static const uint32_t md5_consts[] = {
173 	MD5_CONST_0,	MD5_CONST_1,	MD5_CONST_2,	MD5_CONST_3,
174 	MD5_CONST_4,	MD5_CONST_5,	MD5_CONST_6,	MD5_CONST_7,
175 	MD5_CONST_8,	MD5_CONST_9,	MD5_CONST_10,	MD5_CONST_11,
176 	MD5_CONST_12,	MD5_CONST_13,	MD5_CONST_14,	MD5_CONST_15,
177 	MD5_CONST_16,	MD5_CONST_17,	MD5_CONST_18,	MD5_CONST_19,
178 	MD5_CONST_20,	MD5_CONST_21,	MD5_CONST_22,	MD5_CONST_23,
179 	MD5_CONST_24,	MD5_CONST_25,	MD5_CONST_26,	MD5_CONST_27,
180 	MD5_CONST_28,	MD5_CONST_29,	MD5_CONST_30,	MD5_CONST_31,
181 	MD5_CONST_32,	MD5_CONST_33,	MD5_CONST_34,	MD5_CONST_35,
182 	MD5_CONST_36,	MD5_CONST_37,	MD5_CONST_38,	MD5_CONST_39,
183 	MD5_CONST_40,	MD5_CONST_41,	MD5_CONST_42,	MD5_CONST_43,
184 	MD5_CONST_44,	MD5_CONST_45,	MD5_CONST_46,	MD5_CONST_47,
185 	MD5_CONST_48,	MD5_CONST_49,	MD5_CONST_50,	MD5_CONST_51,
186 	MD5_CONST_52,	MD5_CONST_53,	MD5_CONST_54,	MD5_CONST_55,
187 	MD5_CONST_56,	MD5_CONST_57,	MD5_CONST_58,	MD5_CONST_59,
188 	MD5_CONST_60,	MD5_CONST_61,	MD5_CONST_62,	MD5_CONST_63
189 };
190 
191 
192 #ifdef sun4v
193 /*
194  * To reduce the number of loads, load consts in 64-bit
195  * chunks and then split.
196  *
197  * No need to mask upper 32-bits, as just interested in
198  * low 32-bits (saves an & operation and means that this
199  * optimization doesn't increases the icount.
200  */
201 #define	MD5_CONST_e(x)		(md5_consts64[x/2] >> 32)
202 #define	MD5_CONST_o(x)		(md5_consts64[x/2])
203 
204 #else
205 
206 #define	MD5_CONST_e(x)		(md5_consts[x])
207 #define	MD5_CONST_o(x)		(md5_consts[x])
208 
209 #endif /* sun4v */
210 
211 #endif
212 
213 /*
214  * MD5Init()
215  *
216  * purpose: initializes the md5 context and begins and md5 digest operation
217  *   input: MD5_CTX *	: the context to initialize.
218  *  output: void
219  */
220 
221 void
MD5Init(MD5_CTX * ctx)222 MD5Init(MD5_CTX *ctx)
223 {
224 	ctx->count[0] = ctx->count[1] = 0;
225 
226 	/* load magic initialization constants */
227 	ctx->state[0] = MD5_INIT_CONST_1;
228 	ctx->state[1] = MD5_INIT_CONST_2;
229 	ctx->state[2] = MD5_INIT_CONST_3;
230 	ctx->state[3] = MD5_INIT_CONST_4;
231 }
232 
233 /*
234  * MD5Update()
235  *
236  * purpose: continues an md5 digest operation, using the message block
237  *          to update the context.
238  *   input: MD5_CTX *	: the context to update
239  *          uint8_t *	: the message block
240  *          uint32_t    : the length of the message block in bytes
241  *  output: void
242  *
243  * MD5 crunches in 64-byte blocks.  All numeric constants here are related to
244  * that property of MD5.
245  */
246 
247 void
MD5Update(MD5_CTX * ctx,const void * inpp,unsigned int input_len)248 MD5Update(MD5_CTX *ctx, const void *inpp, unsigned int input_len)
249 {
250 	uint32_t		i, buf_index, buf_len;
251 #ifdef	sun4v
252 	uint32_t		old_asi;
253 #endif	/* sun4v */
254 #if defined(__amd64)
255 	uint32_t		block_count;
256 #endif /* !defined(__amd64) */
257 	const unsigned char 	*input = (const unsigned char *)inpp;
258 
259 	/* compute (number of bytes computed so far) mod 64 */
260 	buf_index = (ctx->count[0] >> 3) & 0x3F;
261 
262 	/* update number of bits hashed into this MD5 computation so far */
263 	if ((ctx->count[0] += (input_len << 3)) < (input_len << 3))
264 		ctx->count[1]++;
265 	ctx->count[1] += (input_len >> 29);
266 
267 	buf_len = 64 - buf_index;
268 
269 	/* transform as many times as possible */
270 	i = 0;
271 	if (input_len >= buf_len) {
272 
273 		/*
274 		 * general optimization:
275 		 *
276 		 * only do initial bcopy() and MD5Transform() if
277 		 * buf_index != 0.  if buf_index == 0, we're just
278 		 * wasting our time doing the bcopy() since there
279 		 * wasn't any data left over from a previous call to
280 		 * MD5Update().
281 		 */
282 
283 #ifdef sun4v
284 		/*
285 		 * For N1 use %asi register. However, costly to repeatedly set
286 		 * in MD5Transform. Therefore, set once here.
287 		 * Should probably restore the old value afterwards...
288 		 */
289 		old_asi = get_little();
290 		set_little(0x88);
291 #endif /* sun4v */
292 
293 		if (buf_index) {
294 			bcopy(input, &ctx->buf_un.buf8[buf_index], buf_len);
295 
296 #if !defined(__amd64)
297 			MD5Transform(ctx->state[0], ctx->state[1],
298 			    ctx->state[2], ctx->state[3], ctx,
299 			    ctx->buf_un.buf8);
300 #else
301 			md5_block_asm_host_order(ctx, ctx->buf_un.buf8, 1);
302 #endif /* !defined(__amd64) */
303 
304 			i = buf_len;
305 		}
306 
307 #if !defined(__amd64)
308 		for (; i + 63 < input_len; i += 64)
309 			MD5Transform(ctx->state[0], ctx->state[1],
310 			    ctx->state[2], ctx->state[3], ctx, &input[i]);
311 
312 #else
313 		block_count = (input_len - i) >> 6;
314 		if (block_count > 0) {
315 			md5_block_asm_host_order(ctx, &input[i], block_count);
316 			i += block_count << 6;
317 		}
318 #endif /* !defined(__amd64) */
319 
320 
321 #ifdef sun4v
322 		/*
323 		 * Restore old %ASI value
324 		 */
325 		set_little(old_asi);
326 #endif /* sun4v */
327 
328 		/*
329 		 * general optimization:
330 		 *
331 		 * if i and input_len are the same, return now instead
332 		 * of calling bcopy(), since the bcopy() in this
333 		 * case will be an expensive nop.
334 		 */
335 
336 		if (input_len == i)
337 			return;
338 
339 		buf_index = 0;
340 	}
341 
342 	/* buffer remaining input */
343 	bcopy(&input[i], &ctx->buf_un.buf8[buf_index], input_len - i);
344 }
345 
346 /*
347  * MD5Final()
348  *
349  * purpose: ends an md5 digest operation, finalizing the message digest and
350  *          zeroing the context.
351  *   input: uchar_t *	: a buffer to store the digest in
352  *			: The function actually uses void* because many
353  *			: callers pass things other than uchar_t here.
354  *          MD5_CTX *   : the context to finalize, save, and zero
355  *  output: void
356  */
357 
358 void
MD5Final(void * digest,MD5_CTX * ctx)359 MD5Final(void *digest, MD5_CTX *ctx)
360 {
361 	uint8_t		bitcount_le[sizeof (ctx->count)];
362 	uint32_t	index = (ctx->count[0] >> 3) & 0x3f;
363 
364 	/* store bit count, little endian */
365 	Encode(bitcount_le, ctx->count, sizeof (bitcount_le));
366 
367 	/* pad out to 56 mod 64 */
368 	MD5Update(ctx, PADDING, ((index < 56) ? 56 : 120) - index);
369 
370 	/* append length (before padding) */
371 	MD5Update(ctx, bitcount_le, sizeof (bitcount_le));
372 
373 	/* store state in digest */
374 	Encode(digest, ctx->state, sizeof (ctx->state));
375 
376 	/* zeroize sensitive information */
377 	bzero(ctx, sizeof (*ctx));
378 }
379 
380 #ifndef	_KERNEL
381 
382 void
md5_calc(unsigned char * output,unsigned char * input,unsigned int inlen)383 md5_calc(unsigned char *output, unsigned char *input, unsigned int inlen)
384 {
385 	MD5_CTX context;
386 
387 	MD5Init(&context);
388 	MD5Update(&context, input, inlen);
389 	MD5Final(output, &context);
390 }
391 
392 #endif	/* !_KERNEL */
393 
394 #if !defined(__amd64)
395 /*
396  * sparc register window optimization:
397  *
398  * `a', `b', `c', and `d' are passed into MD5Transform explicitly
399  * since it increases the number of registers available to the
400  * compiler.  under this scheme, these variables can be held in
401  * %i0 - %i3, which leaves more local and out registers available.
402  */
403 
404 /*
405  * MD5Transform()
406  *
407  * purpose: md5 transformation -- updates the digest based on `block'
408  *   input: uint32_t	: bytes  1 -  4 of the digest
409  *          uint32_t	: bytes  5 -  8 of the digest
410  *          uint32_t	: bytes  9 - 12 of the digest
411  *          uint32_t	: bytes 12 - 16 of the digest
412  *          MD5_CTX *   : the context to update
413  *          uint8_t [64]: the block to use to update the digest
414  *  output: void
415  */
416 
417 static void
MD5Transform(uint32_t a,uint32_t b,uint32_t c,uint32_t d,MD5_CTX * ctx,const uint8_t block[64])418 MD5Transform(uint32_t a, uint32_t b, uint32_t c, uint32_t d,
419     MD5_CTX *ctx, const uint8_t block[64])
420 {
421 	/*
422 	 * general optimization:
423 	 *
424 	 * use individual integers instead of using an array.  this is a
425 	 * win, although the amount it wins by seems to vary quite a bit.
426 	 */
427 
428 	register uint32_t	x_0, x_1, x_2,  x_3,  x_4,  x_5,  x_6,  x_7;
429 	register uint32_t	x_8, x_9, x_10, x_11, x_12, x_13, x_14, x_15;
430 #ifdef sun4v
431 	unsigned long long 	*md5_consts64;
432 
433 		/* LINTED E_BAD_PTR_CAST_ALIGN */
434 	md5_consts64 = (unsigned long long *) md5_consts;
435 #endif	/* sun4v */
436 
437 	/*
438 	 * general optimization:
439 	 *
440 	 * the compiler (at least SC4.2/5.x) generates better code if
441 	 * variable use is localized.  in this case, swapping the integers in
442 	 * this order allows `x_0 'to be swapped nearest to its first use in
443 	 * FF(), and likewise for `x_1' and up.  note that the compiler
444 	 * prefers this to doing each swap right before the FF() that
445 	 * uses it.
446 	 */
447 
448 	/*
449 	 * sparc v9/v8plus optimization:
450 	 *
451 	 * if `block' is already aligned on a 4-byte boundary, use the
452 	 * optimized load_little_32() directly.  otherwise, bcopy()
453 	 * into a buffer that *is* aligned on a 4-byte boundary and
454 	 * then do the load_little_32() on that buffer.  benchmarks
455 	 * have shown that using the bcopy() is better than loading
456 	 * the bytes individually and doing the endian-swap by hand.
457 	 *
458 	 * even though it's quite tempting to assign to do:
459 	 *
460 	 * blk = bcopy(blk, ctx->buf_un.buf32, sizeof (ctx->buf_un.buf32));
461 	 *
462 	 * and only have one set of LOAD_LITTLE_32()'s, the compiler (at least
463 	 * SC4.2/5.x) *does not* like that, so please resist the urge.
464 	 */
465 
466 #ifdef _MD5_CHECK_ALIGNMENT
467 	if ((uintptr_t)block & 0x3) {		/* not 4-byte aligned? */
468 		bcopy(block, ctx->buf_un.buf32, sizeof (ctx->buf_un.buf32));
469 
470 #ifdef sun4v
471 		x_15 = LOAD_LITTLE_32_f(ctx->buf_un.buf32);
472 		x_14 = LOAD_LITTLE_32_e(ctx->buf_un.buf32);
473 		x_13 = LOAD_LITTLE_32_d(ctx->buf_un.buf32);
474 		x_12 = LOAD_LITTLE_32_c(ctx->buf_un.buf32);
475 		x_11 = LOAD_LITTLE_32_b(ctx->buf_un.buf32);
476 		x_10 = LOAD_LITTLE_32_a(ctx->buf_un.buf32);
477 		x_9  = LOAD_LITTLE_32_9(ctx->buf_un.buf32);
478 		x_8  = LOAD_LITTLE_32_8(ctx->buf_un.buf32);
479 		x_7  = LOAD_LITTLE_32_7(ctx->buf_un.buf32);
480 		x_6  = LOAD_LITTLE_32_6(ctx->buf_un.buf32);
481 		x_5  = LOAD_LITTLE_32_5(ctx->buf_un.buf32);
482 		x_4  = LOAD_LITTLE_32_4(ctx->buf_un.buf32);
483 		x_3  = LOAD_LITTLE_32_3(ctx->buf_un.buf32);
484 		x_2  = LOAD_LITTLE_32_2(ctx->buf_un.buf32);
485 		x_1  = LOAD_LITTLE_32_1(ctx->buf_un.buf32);
486 		x_0  = LOAD_LITTLE_32_0(ctx->buf_un.buf32);
487 #else
488 		x_15 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 15);
489 		x_14 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 14);
490 		x_13 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 13);
491 		x_12 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 12);
492 		x_11 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 11);
493 		x_10 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 10);
494 		x_9  = LOAD_LITTLE_32(ctx->buf_un.buf32 +  9);
495 		x_8  = LOAD_LITTLE_32(ctx->buf_un.buf32 +  8);
496 		x_7  = LOAD_LITTLE_32(ctx->buf_un.buf32 +  7);
497 		x_6  = LOAD_LITTLE_32(ctx->buf_un.buf32 +  6);
498 		x_5  = LOAD_LITTLE_32(ctx->buf_un.buf32 +  5);
499 		x_4  = LOAD_LITTLE_32(ctx->buf_un.buf32 +  4);
500 		x_3  = LOAD_LITTLE_32(ctx->buf_un.buf32 +  3);
501 		x_2  = LOAD_LITTLE_32(ctx->buf_un.buf32 +  2);
502 		x_1  = LOAD_LITTLE_32(ctx->buf_un.buf32 +  1);
503 		x_0  = LOAD_LITTLE_32(ctx->buf_un.buf32 +  0);
504 #endif /* sun4v */
505 	} else
506 #endif
507 	{
508 
509 #ifdef sun4v
510 		/* LINTED E_BAD_PTR_CAST_ALIGN */
511 		x_15 = LOAD_LITTLE_32_f(block);
512 		/* LINTED E_BAD_PTR_CAST_ALIGN */
513 		x_14 = LOAD_LITTLE_32_e(block);
514 		/* LINTED E_BAD_PTR_CAST_ALIGN */
515 		x_13 = LOAD_LITTLE_32_d(block);
516 		/* LINTED E_BAD_PTR_CAST_ALIGN */
517 		x_12 = LOAD_LITTLE_32_c(block);
518 		/* LINTED E_BAD_PTR_CAST_ALIGN */
519 		x_11 = LOAD_LITTLE_32_b(block);
520 		/* LINTED E_BAD_PTR_CAST_ALIGN */
521 		x_10 = LOAD_LITTLE_32_a(block);
522 		/* LINTED E_BAD_PTR_CAST_ALIGN */
523 		x_9  = LOAD_LITTLE_32_9(block);
524 		/* LINTED E_BAD_PTR_CAST_ALIGN */
525 		x_8  = LOAD_LITTLE_32_8(block);
526 		/* LINTED E_BAD_PTR_CAST_ALIGN */
527 		x_7  = LOAD_LITTLE_32_7(block);
528 		/* LINTED E_BAD_PTR_CAST_ALIGN */
529 		x_6  = LOAD_LITTLE_32_6(block);
530 		/* LINTED E_BAD_PTR_CAST_ALIGN */
531 		x_5  = LOAD_LITTLE_32_5(block);
532 		/* LINTED E_BAD_PTR_CAST_ALIGN */
533 		x_4  = LOAD_LITTLE_32_4(block);
534 		/* LINTED E_BAD_PTR_CAST_ALIGN */
535 		x_3  = LOAD_LITTLE_32_3(block);
536 		/* LINTED E_BAD_PTR_CAST_ALIGN */
537 		x_2  = LOAD_LITTLE_32_2(block);
538 		/* LINTED E_BAD_PTR_CAST_ALIGN */
539 		x_1  = LOAD_LITTLE_32_1(block);
540 		/* LINTED E_BAD_PTR_CAST_ALIGN */
541 		x_0  = LOAD_LITTLE_32_0(block);
542 #else
543 		x_15 = LOAD_LITTLE_32(block + 60);
544 		x_14 = LOAD_LITTLE_32(block + 56);
545 		x_13 = LOAD_LITTLE_32(block + 52);
546 		x_12 = LOAD_LITTLE_32(block + 48);
547 		x_11 = LOAD_LITTLE_32(block + 44);
548 		x_10 = LOAD_LITTLE_32(block + 40);
549 		x_9  = LOAD_LITTLE_32(block + 36);
550 		x_8  = LOAD_LITTLE_32(block + 32);
551 		x_7  = LOAD_LITTLE_32(block + 28);
552 		x_6  = LOAD_LITTLE_32(block + 24);
553 		x_5  = LOAD_LITTLE_32(block + 20);
554 		x_4  = LOAD_LITTLE_32(block + 16);
555 		x_3  = LOAD_LITTLE_32(block + 12);
556 		x_2  = LOAD_LITTLE_32(block +  8);
557 		x_1  = LOAD_LITTLE_32(block +  4);
558 		x_0  = LOAD_LITTLE_32(block +  0);
559 #endif /* sun4v */
560 	}
561 
562 	/* round 1 */
563 	FF(a, b, c, d, 	x_0, MD5_SHIFT_11, MD5_CONST_e(0));  /* 1 */
564 	FF(d, a, b, c, 	x_1, MD5_SHIFT_12, MD5_CONST_o(1));  /* 2 */
565 	FF(c, d, a, b, 	x_2, MD5_SHIFT_13, MD5_CONST_e(2));  /* 3 */
566 	FF(b, c, d, a, 	x_3, MD5_SHIFT_14, MD5_CONST_o(3));  /* 4 */
567 	FF(a, b, c, d, 	x_4, MD5_SHIFT_11, MD5_CONST_e(4));  /* 5 */
568 	FF(d, a, b, c, 	x_5, MD5_SHIFT_12, MD5_CONST_o(5));  /* 6 */
569 	FF(c, d, a, b, 	x_6, MD5_SHIFT_13, MD5_CONST_e(6));  /* 7 */
570 	FF(b, c, d, a, 	x_7, MD5_SHIFT_14, MD5_CONST_o(7));  /* 8 */
571 	FF(a, b, c, d, 	x_8, MD5_SHIFT_11, MD5_CONST_e(8));  /* 9 */
572 	FF(d, a, b, c, 	x_9, MD5_SHIFT_12, MD5_CONST_o(9));  /* 10 */
573 	FF(c, d, a, b, x_10, MD5_SHIFT_13, MD5_CONST_e(10)); /* 11 */
574 	FF(b, c, d, a, x_11, MD5_SHIFT_14, MD5_CONST_o(11)); /* 12 */
575 	FF(a, b, c, d, x_12, MD5_SHIFT_11, MD5_CONST_e(12)); /* 13 */
576 	FF(d, a, b, c, x_13, MD5_SHIFT_12, MD5_CONST_o(13)); /* 14 */
577 	FF(c, d, a, b, x_14, MD5_SHIFT_13, MD5_CONST_e(14)); /* 15 */
578 	FF(b, c, d, a, x_15, MD5_SHIFT_14, MD5_CONST_o(15)); /* 16 */
579 
580 	/* round 2 */
581 	GG(a, b, c, d,  x_1, MD5_SHIFT_21, MD5_CONST_e(16)); /* 17 */
582 	GG(d, a, b, c,  x_6, MD5_SHIFT_22, MD5_CONST_o(17)); /* 18 */
583 	GG(c, d, a, b, x_11, MD5_SHIFT_23, MD5_CONST_e(18)); /* 19 */
584 	GG(b, c, d, a,  x_0, MD5_SHIFT_24, MD5_CONST_o(19)); /* 20 */
585 	GG(a, b, c, d,  x_5, MD5_SHIFT_21, MD5_CONST_e(20)); /* 21 */
586 	GG(d, a, b, c, x_10, MD5_SHIFT_22, MD5_CONST_o(21)); /* 22 */
587 	GG(c, d, a, b, x_15, MD5_SHIFT_23, MD5_CONST_e(22)); /* 23 */
588 	GG(b, c, d, a,  x_4, MD5_SHIFT_24, MD5_CONST_o(23)); /* 24 */
589 	GG(a, b, c, d,  x_9, MD5_SHIFT_21, MD5_CONST_e(24)); /* 25 */
590 	GG(d, a, b, c, x_14, MD5_SHIFT_22, MD5_CONST_o(25)); /* 26 */
591 	GG(c, d, a, b,  x_3, MD5_SHIFT_23, MD5_CONST_e(26)); /* 27 */
592 	GG(b, c, d, a,  x_8, MD5_SHIFT_24, MD5_CONST_o(27)); /* 28 */
593 	GG(a, b, c, d, x_13, MD5_SHIFT_21, MD5_CONST_e(28)); /* 29 */
594 	GG(d, a, b, c,  x_2, MD5_SHIFT_22, MD5_CONST_o(29)); /* 30 */
595 	GG(c, d, a, b,  x_7, MD5_SHIFT_23, MD5_CONST_e(30)); /* 31 */
596 	GG(b, c, d, a, x_12, MD5_SHIFT_24, MD5_CONST_o(31)); /* 32 */
597 
598 	/* round 3 */
599 	HH(a, b, c, d,  x_5, MD5_SHIFT_31, MD5_CONST_e(32)); /* 33 */
600 	HH(d, a, b, c,  x_8, MD5_SHIFT_32, MD5_CONST_o(33)); /* 34 */
601 	HH(c, d, a, b, x_11, MD5_SHIFT_33, MD5_CONST_e(34)); /* 35 */
602 	HH(b, c, d, a, x_14, MD5_SHIFT_34, MD5_CONST_o(35)); /* 36 */
603 	HH(a, b, c, d,  x_1, MD5_SHIFT_31, MD5_CONST_e(36)); /* 37 */
604 	HH(d, a, b, c,  x_4, MD5_SHIFT_32, MD5_CONST_o(37)); /* 38 */
605 	HH(c, d, a, b,  x_7, MD5_SHIFT_33, MD5_CONST_e(38)); /* 39 */
606 	HH(b, c, d, a, x_10, MD5_SHIFT_34, MD5_CONST_o(39)); /* 40 */
607 	HH(a, b, c, d, x_13, MD5_SHIFT_31, MD5_CONST_e(40)); /* 41 */
608 	HH(d, a, b, c,  x_0, MD5_SHIFT_32, MD5_CONST_o(41)); /* 42 */
609 	HH(c, d, a, b,  x_3, MD5_SHIFT_33, MD5_CONST_e(42)); /* 43 */
610 	HH(b, c, d, a,  x_6, MD5_SHIFT_34, MD5_CONST_o(43)); /* 44 */
611 	HH(a, b, c, d,  x_9, MD5_SHIFT_31, MD5_CONST_e(44)); /* 45 */
612 	HH(d, a, b, c, x_12, MD5_SHIFT_32, MD5_CONST_o(45)); /* 46 */
613 	HH(c, d, a, b, x_15, MD5_SHIFT_33, MD5_CONST_e(46)); /* 47 */
614 	HH(b, c, d, a,  x_2, MD5_SHIFT_34, MD5_CONST_o(47)); /* 48 */
615 
616 	/* round 4 */
617 	II(a, b, c, d,  x_0, MD5_SHIFT_41, MD5_CONST_e(48)); /* 49 */
618 	II(d, a, b, c,  x_7, MD5_SHIFT_42, MD5_CONST_o(49)); /* 50 */
619 	II(c, d, a, b, x_14, MD5_SHIFT_43, MD5_CONST_e(50)); /* 51 */
620 	II(b, c, d, a,  x_5, MD5_SHIFT_44, MD5_CONST_o(51)); /* 52 */
621 	II(a, b, c, d, x_12, MD5_SHIFT_41, MD5_CONST_e(52)); /* 53 */
622 	II(d, a, b, c,  x_3, MD5_SHIFT_42, MD5_CONST_o(53)); /* 54 */
623 	II(c, d, a, b, x_10, MD5_SHIFT_43, MD5_CONST_e(54)); /* 55 */
624 	II(b, c, d, a,  x_1, MD5_SHIFT_44, MD5_CONST_o(55)); /* 56 */
625 	II(a, b, c, d,  x_8, MD5_SHIFT_41, MD5_CONST_e(56)); /* 57 */
626 	II(d, a, b, c, x_15, MD5_SHIFT_42, MD5_CONST_o(57)); /* 58 */
627 	II(c, d, a, b,  x_6, MD5_SHIFT_43, MD5_CONST_e(58)); /* 59 */
628 	II(b, c, d, a, x_13, MD5_SHIFT_44, MD5_CONST_o(59)); /* 60 */
629 	II(a, b, c, d,  x_4, MD5_SHIFT_41, MD5_CONST_e(60)); /* 61 */
630 	II(d, a, b, c, x_11, MD5_SHIFT_42, MD5_CONST_o(61)); /* 62 */
631 	II(c, d, a, b,  x_2, MD5_SHIFT_43, MD5_CONST_e(62)); /* 63 */
632 	II(b, c, d, a,  x_9, MD5_SHIFT_44, MD5_CONST_o(63)); /* 64 */
633 
634 	ctx->state[0] += a;
635 	ctx->state[1] += b;
636 	ctx->state[2] += c;
637 	ctx->state[3] += d;
638 
639 	/*
640 	 * zeroize sensitive information -- compiler will optimize
641 	 * this out if everything is kept in registers
642 	 */
643 
644 	x_0 = x_1  = x_2  = x_3  = x_4  = x_5  = x_6  = x_7 = x_8 = 0;
645 	x_9 = x_10 = x_11 = x_12 = x_13 = x_14 = x_15 = 0;
646 }
647 #endif /* !defined(__amd64) */
648 
649 /*
650  * Encode()
651  *
652  * purpose: to convert a list of numbers from big endian to little endian
653  *   input: uint8_t *	: place to store the converted little endian numbers
654  *	    uint32_t *	: place to get numbers to convert from
655  *          size_t	: the length of the input in bytes
656  *  output: void
657  */
658 
659 static void
Encode(uint8_t * _RESTRICT_KYWD output,const uint32_t * _RESTRICT_KYWD input,size_t input_len)660 Encode(uint8_t *_RESTRICT_KYWD output, const uint32_t *_RESTRICT_KYWD input,
661     size_t input_len)
662 {
663 	size_t		i, j;
664 
665 	for (i = 0, j = 0; j < input_len; i++, j += sizeof (uint32_t)) {
666 
667 #ifdef _LITTLE_ENDIAN
668 
669 #ifdef _MD5_CHECK_ALIGNMENT
670 		if ((uintptr_t)output & 0x3)	/* Not 4-byte aligned */
671 			bcopy(input + i, output + j, 4);
672 		else *(uint32_t *)(output + j) = input[i];
673 #else
674 		/*LINTED E_BAD_PTR_CAST_ALIGN*/
675 		*(uint32_t *)(output + j) = input[i];
676 #endif /* _MD5_CHECK_ALIGNMENT */
677 
678 #else	/* big endian -- will work on little endian, but slowly */
679 
680 		output[j] = input[i] & 0xff;
681 		output[j + 1] = (input[i] >> 8)  & 0xff;
682 		output[j + 2] = (input[i] >> 16) & 0xff;
683 		output[j + 3] = (input[i] >> 24) & 0xff;
684 #endif
685 	}
686 }
687