xref: /illumos-gate/usr/src/cmd/ztest/ztest.c (revision f06dce2c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2016 by Delphix. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2013 Steven Hartland. All rights reserved.
26  * Copyright (c) 2014 Integros [integros.com]
27  * Copyright 2017 Joyent, Inc.
28  * Copyright 2017 RackTop Systems.
29  */
30 
31 /*
32  * The objective of this program is to provide a DMU/ZAP/SPA stress test
33  * that runs entirely in userland, is easy to use, and easy to extend.
34  *
35  * The overall design of the ztest program is as follows:
36  *
37  * (1) For each major functional area (e.g. adding vdevs to a pool,
38  *     creating and destroying datasets, reading and writing objects, etc)
39  *     we have a simple routine to test that functionality.  These
40  *     individual routines do not have to do anything "stressful".
41  *
42  * (2) We turn these simple functionality tests into a stress test by
43  *     running them all in parallel, with as many threads as desired,
44  *     and spread across as many datasets, objects, and vdevs as desired.
45  *
46  * (3) While all this is happening, we inject faults into the pool to
47  *     verify that self-healing data really works.
48  *
49  * (4) Every time we open a dataset, we change its checksum and compression
50  *     functions.  Thus even individual objects vary from block to block
51  *     in which checksum they use and whether they're compressed.
52  *
53  * (5) To verify that we never lose on-disk consistency after a crash,
54  *     we run the entire test in a child of the main process.
55  *     At random times, the child self-immolates with a SIGKILL.
56  *     This is the software equivalent of pulling the power cord.
57  *     The parent then runs the test again, using the existing
58  *     storage pool, as many times as desired. If backwards compatibility
59  *     testing is enabled ztest will sometimes run the "older" version
60  *     of ztest after a SIGKILL.
61  *
62  * (6) To verify that we don't have future leaks or temporal incursions,
63  *     many of the functional tests record the transaction group number
64  *     as part of their data.  When reading old data, they verify that
65  *     the transaction group number is less than the current, open txg.
66  *     If you add a new test, please do this if applicable.
67  *
68  * When run with no arguments, ztest runs for about five minutes and
69  * produces no output if successful.  To get a little bit of information,
70  * specify -V.  To get more information, specify -VV, and so on.
71  *
72  * To turn this into an overnight stress test, use -T to specify run time.
73  *
74  * You can ask more more vdevs [-v], datasets [-d], or threads [-t]
75  * to increase the pool capacity, fanout, and overall stress level.
76  *
77  * Use the -k option to set the desired frequency of kills.
78  *
79  * When ztest invokes itself it passes all relevant information through a
80  * temporary file which is mmap-ed in the child process. This allows shared
81  * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always
82  * stored at offset 0 of this file and contains information on the size and
83  * number of shared structures in the file. The information stored in this file
84  * must remain backwards compatible with older versions of ztest so that
85  * ztest can invoke them during backwards compatibility testing (-B).
86  */
87 
88 #include <sys/zfs_context.h>
89 #include <sys/spa.h>
90 #include <sys/dmu.h>
91 #include <sys/txg.h>
92 #include <sys/dbuf.h>
93 #include <sys/zap.h>
94 #include <sys/dmu_objset.h>
95 #include <sys/poll.h>
96 #include <sys/stat.h>
97 #include <sys/time.h>
98 #include <sys/wait.h>
99 #include <sys/mman.h>
100 #include <sys/resource.h>
101 #include <sys/zio.h>
102 #include <sys/zil.h>
103 #include <sys/zil_impl.h>
104 #include <sys/vdev_impl.h>
105 #include <sys/vdev_file.h>
106 #include <sys/spa_impl.h>
107 #include <sys/metaslab_impl.h>
108 #include <sys/dsl_prop.h>
109 #include <sys/dsl_dataset.h>
110 #include <sys/dsl_destroy.h>
111 #include <sys/dsl_scan.h>
112 #include <sys/zio_checksum.h>
113 #include <sys/refcount.h>
114 #include <sys/zfeature.h>
115 #include <sys/dsl_userhold.h>
116 #include <sys/abd.h>
117 #include <stdio.h>
118 #include <stdio_ext.h>
119 #include <stdlib.h>
120 #include <unistd.h>
121 #include <signal.h>
122 #include <umem.h>
123 #include <dlfcn.h>
124 #include <ctype.h>
125 #include <math.h>
126 #include <sys/fs/zfs.h>
127 #include <libnvpair.h>
128 #include <libcmdutils.h>
129 
130 static int ztest_fd_data = -1;
131 static int ztest_fd_rand = -1;
132 
133 typedef struct ztest_shared_hdr {
134 	uint64_t	zh_hdr_size;
135 	uint64_t	zh_opts_size;
136 	uint64_t	zh_size;
137 	uint64_t	zh_stats_size;
138 	uint64_t	zh_stats_count;
139 	uint64_t	zh_ds_size;
140 	uint64_t	zh_ds_count;
141 } ztest_shared_hdr_t;
142 
143 static ztest_shared_hdr_t *ztest_shared_hdr;
144 
145 typedef struct ztest_shared_opts {
146 	char zo_pool[ZFS_MAX_DATASET_NAME_LEN];
147 	char zo_dir[ZFS_MAX_DATASET_NAME_LEN];
148 	char zo_alt_ztest[MAXNAMELEN];
149 	char zo_alt_libpath[MAXNAMELEN];
150 	uint64_t zo_vdevs;
151 	uint64_t zo_vdevtime;
152 	size_t zo_vdev_size;
153 	int zo_ashift;
154 	int zo_mirrors;
155 	int zo_raidz;
156 	int zo_raidz_parity;
157 	int zo_datasets;
158 	int zo_threads;
159 	uint64_t zo_passtime;
160 	uint64_t zo_killrate;
161 	int zo_verbose;
162 	int zo_init;
163 	uint64_t zo_time;
164 	uint64_t zo_maxloops;
165 	uint64_t zo_metaslab_gang_bang;
166 } ztest_shared_opts_t;
167 
168 static const ztest_shared_opts_t ztest_opts_defaults = {
169 	.zo_pool = { 'z', 't', 'e', 's', 't', '\0' },
170 	.zo_dir = { '/', 't', 'm', 'p', '\0' },
171 	.zo_alt_ztest = { '\0' },
172 	.zo_alt_libpath = { '\0' },
173 	.zo_vdevs = 5,
174 	.zo_ashift = SPA_MINBLOCKSHIFT,
175 	.zo_mirrors = 2,
176 	.zo_raidz = 4,
177 	.zo_raidz_parity = 1,
178 	.zo_vdev_size = SPA_MINDEVSIZE * 4,	/* 256m default size */
179 	.zo_datasets = 7,
180 	.zo_threads = 23,
181 	.zo_passtime = 60,		/* 60 seconds */
182 	.zo_killrate = 70,		/* 70% kill rate */
183 	.zo_verbose = 0,
184 	.zo_init = 1,
185 	.zo_time = 300,			/* 5 minutes */
186 	.zo_maxloops = 50,		/* max loops during spa_freeze() */
187 	.zo_metaslab_gang_bang = 32 << 10
188 };
189 
190 extern uint64_t metaslab_gang_bang;
191 extern uint64_t metaslab_df_alloc_threshold;
192 extern uint64_t zfs_deadman_synctime_ms;
193 extern int metaslab_preload_limit;
194 extern boolean_t zfs_compressed_arc_enabled;
195 extern boolean_t zfs_abd_scatter_enabled;
196 
197 static ztest_shared_opts_t *ztest_shared_opts;
198 static ztest_shared_opts_t ztest_opts;
199 
200 typedef struct ztest_shared_ds {
201 	uint64_t	zd_seq;
202 } ztest_shared_ds_t;
203 
204 static ztest_shared_ds_t *ztest_shared_ds;
205 #define	ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d])
206 
207 #define	BT_MAGIC	0x123456789abcdefULL
208 #define	MAXFAULTS() \
209 	(MAX(zs->zs_mirrors, 1) * (ztest_opts.zo_raidz_parity + 1) - 1)
210 
211 enum ztest_io_type {
212 	ZTEST_IO_WRITE_TAG,
213 	ZTEST_IO_WRITE_PATTERN,
214 	ZTEST_IO_WRITE_ZEROES,
215 	ZTEST_IO_TRUNCATE,
216 	ZTEST_IO_SETATTR,
217 	ZTEST_IO_REWRITE,
218 	ZTEST_IO_TYPES
219 };
220 
221 typedef struct ztest_block_tag {
222 	uint64_t	bt_magic;
223 	uint64_t	bt_objset;
224 	uint64_t	bt_object;
225 	uint64_t	bt_offset;
226 	uint64_t	bt_gen;
227 	uint64_t	bt_txg;
228 	uint64_t	bt_crtxg;
229 } ztest_block_tag_t;
230 
231 typedef struct bufwad {
232 	uint64_t	bw_index;
233 	uint64_t	bw_txg;
234 	uint64_t	bw_data;
235 } bufwad_t;
236 
237 /*
238  * XXX -- fix zfs range locks to be generic so we can use them here.
239  */
240 typedef enum {
241 	RL_READER,
242 	RL_WRITER,
243 	RL_APPEND
244 } rl_type_t;
245 
246 typedef struct rll {
247 	void		*rll_writer;
248 	int		rll_readers;
249 	kmutex_t	rll_lock;
250 	kcondvar_t	rll_cv;
251 } rll_t;
252 
253 typedef struct rl {
254 	uint64_t	rl_object;
255 	uint64_t	rl_offset;
256 	uint64_t	rl_size;
257 	rll_t		*rl_lock;
258 } rl_t;
259 
260 #define	ZTEST_RANGE_LOCKS	64
261 #define	ZTEST_OBJECT_LOCKS	64
262 
263 /*
264  * Object descriptor.  Used as a template for object lookup/create/remove.
265  */
266 typedef struct ztest_od {
267 	uint64_t	od_dir;
268 	uint64_t	od_object;
269 	dmu_object_type_t od_type;
270 	dmu_object_type_t od_crtype;
271 	uint64_t	od_blocksize;
272 	uint64_t	od_crblocksize;
273 	uint64_t	od_gen;
274 	uint64_t	od_crgen;
275 	char		od_name[ZFS_MAX_DATASET_NAME_LEN];
276 } ztest_od_t;
277 
278 /*
279  * Per-dataset state.
280  */
281 typedef struct ztest_ds {
282 	ztest_shared_ds_t *zd_shared;
283 	objset_t	*zd_os;
284 	krwlock_t	zd_zilog_lock;
285 	zilog_t		*zd_zilog;
286 	ztest_od_t	*zd_od;		/* debugging aid */
287 	char		zd_name[ZFS_MAX_DATASET_NAME_LEN];
288 	kmutex_t	zd_dirobj_lock;
289 	rll_t		zd_object_lock[ZTEST_OBJECT_LOCKS];
290 	rll_t		zd_range_lock[ZTEST_RANGE_LOCKS];
291 } ztest_ds_t;
292 
293 /*
294  * Per-iteration state.
295  */
296 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id);
297 
298 typedef struct ztest_info {
299 	ztest_func_t	*zi_func;	/* test function */
300 	uint64_t	zi_iters;	/* iterations per execution */
301 	uint64_t	*zi_interval;	/* execute every <interval> seconds */
302 } ztest_info_t;
303 
304 typedef struct ztest_shared_callstate {
305 	uint64_t	zc_count;	/* per-pass count */
306 	uint64_t	zc_time;	/* per-pass time */
307 	uint64_t	zc_next;	/* next time to call this function */
308 } ztest_shared_callstate_t;
309 
310 static ztest_shared_callstate_t *ztest_shared_callstate;
311 #define	ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c])
312 
313 /*
314  * Note: these aren't static because we want dladdr() to work.
315  */
316 ztest_func_t ztest_dmu_read_write;
317 ztest_func_t ztest_dmu_write_parallel;
318 ztest_func_t ztest_dmu_object_alloc_free;
319 ztest_func_t ztest_dmu_commit_callbacks;
320 ztest_func_t ztest_zap;
321 ztest_func_t ztest_zap_parallel;
322 ztest_func_t ztest_zil_commit;
323 ztest_func_t ztest_zil_remount;
324 ztest_func_t ztest_dmu_read_write_zcopy;
325 ztest_func_t ztest_dmu_objset_create_destroy;
326 ztest_func_t ztest_dmu_prealloc;
327 ztest_func_t ztest_fzap;
328 ztest_func_t ztest_dmu_snapshot_create_destroy;
329 ztest_func_t ztest_dsl_prop_get_set;
330 ztest_func_t ztest_spa_prop_get_set;
331 ztest_func_t ztest_spa_create_destroy;
332 ztest_func_t ztest_fault_inject;
333 ztest_func_t ztest_ddt_repair;
334 ztest_func_t ztest_dmu_snapshot_hold;
335 ztest_func_t ztest_spa_rename;
336 ztest_func_t ztest_scrub;
337 ztest_func_t ztest_dsl_dataset_promote_busy;
338 ztest_func_t ztest_vdev_attach_detach;
339 ztest_func_t ztest_vdev_LUN_growth;
340 ztest_func_t ztest_vdev_add_remove;
341 ztest_func_t ztest_vdev_aux_add_remove;
342 ztest_func_t ztest_split_pool;
343 ztest_func_t ztest_reguid;
344 ztest_func_t ztest_spa_upgrade;
345 ztest_func_t ztest_device_removal;
346 ztest_func_t ztest_remap_blocks;
347 
348 uint64_t zopt_always = 0ULL * NANOSEC;		/* all the time */
349 uint64_t zopt_incessant = 1ULL * NANOSEC / 10;	/* every 1/10 second */
350 uint64_t zopt_often = 1ULL * NANOSEC;		/* every second */
351 uint64_t zopt_sometimes = 10ULL * NANOSEC;	/* every 10 seconds */
352 uint64_t zopt_rarely = 60ULL * NANOSEC;		/* every 60 seconds */
353 
354 ztest_info_t ztest_info[] = {
355 	{ ztest_dmu_read_write,			1,	&zopt_always	},
356 	{ ztest_dmu_write_parallel,		10,	&zopt_always	},
357 	{ ztest_dmu_object_alloc_free,		1,	&zopt_always	},
358 	{ ztest_dmu_commit_callbacks,		1,	&zopt_always	},
359 	{ ztest_zap,				30,	&zopt_always	},
360 	{ ztest_zap_parallel,			100,	&zopt_always	},
361 	{ ztest_split_pool,			1,	&zopt_always	},
362 	{ ztest_zil_commit,			1,	&zopt_incessant	},
363 	{ ztest_zil_remount,			1,	&zopt_sometimes	},
364 	{ ztest_dmu_read_write_zcopy,		1,	&zopt_often	},
365 	{ ztest_dmu_objset_create_destroy,	1,	&zopt_often	},
366 	{ ztest_dsl_prop_get_set,		1,	&zopt_often	},
367 	{ ztest_spa_prop_get_set,		1,	&zopt_sometimes	},
368 #if 0
369 	{ ztest_dmu_prealloc,			1,	&zopt_sometimes	},
370 #endif
371 	{ ztest_fzap,				1,	&zopt_sometimes	},
372 	{ ztest_dmu_snapshot_create_destroy,	1,	&zopt_sometimes	},
373 	{ ztest_spa_create_destroy,		1,	&zopt_sometimes	},
374 	{ ztest_fault_inject,			1,	&zopt_sometimes	},
375 	{ ztest_ddt_repair,			1,	&zopt_sometimes	},
376 	{ ztest_dmu_snapshot_hold,		1,	&zopt_sometimes	},
377 	{ ztest_reguid,				1,	&zopt_rarely	},
378 	{ ztest_spa_rename,			1,	&zopt_rarely	},
379 	{ ztest_scrub,				1,	&zopt_rarely	},
380 	{ ztest_spa_upgrade,			1,	&zopt_rarely	},
381 	{ ztest_dsl_dataset_promote_busy,	1,	&zopt_rarely	},
382 	{ ztest_vdev_attach_detach,		1,	&zopt_sometimes	},
383 	{ ztest_vdev_LUN_growth,		1,	&zopt_rarely	},
384 	{ ztest_vdev_add_remove,		1,
385 	    &ztest_opts.zo_vdevtime				},
386 	{ ztest_vdev_aux_add_remove,		1,
387 	    &ztest_opts.zo_vdevtime				},
388 	{ ztest_device_removal,			1,	&zopt_sometimes	},
389 	{ ztest_remap_blocks,			1,	&zopt_sometimes }
390 };
391 
392 #define	ZTEST_FUNCS	(sizeof (ztest_info) / sizeof (ztest_info_t))
393 
394 /*
395  * The following struct is used to hold a list of uncalled commit callbacks.
396  * The callbacks are ordered by txg number.
397  */
398 typedef struct ztest_cb_list {
399 	kmutex_t zcl_callbacks_lock;
400 	list_t	zcl_callbacks;
401 } ztest_cb_list_t;
402 
403 /*
404  * Stuff we need to share writably between parent and child.
405  */
406 typedef struct ztest_shared {
407 	boolean_t	zs_do_init;
408 	hrtime_t	zs_proc_start;
409 	hrtime_t	zs_proc_stop;
410 	hrtime_t	zs_thread_start;
411 	hrtime_t	zs_thread_stop;
412 	hrtime_t	zs_thread_kill;
413 	uint64_t	zs_enospc_count;
414 	uint64_t	zs_vdev_next_leaf;
415 	uint64_t	zs_vdev_aux;
416 	uint64_t	zs_alloc;
417 	uint64_t	zs_space;
418 	uint64_t	zs_splits;
419 	uint64_t	zs_mirrors;
420 	uint64_t	zs_metaslab_sz;
421 	uint64_t	zs_metaslab_df_alloc_threshold;
422 	uint64_t	zs_guid;
423 } ztest_shared_t;
424 
425 #define	ID_PARALLEL	-1ULL
426 
427 static char ztest_dev_template[] = "%s/%s.%llua";
428 static char ztest_aux_template[] = "%s/%s.%s.%llu";
429 ztest_shared_t *ztest_shared;
430 
431 static spa_t *ztest_spa = NULL;
432 static ztest_ds_t *ztest_ds;
433 
434 static kmutex_t ztest_vdev_lock;
435 
436 /*
437  * The ztest_name_lock protects the pool and dataset namespace used by
438  * the individual tests. To modify the namespace, consumers must grab
439  * this lock as writer. Grabbing the lock as reader will ensure that the
440  * namespace does not change while the lock is held.
441  */
442 static krwlock_t ztest_name_lock;
443 
444 static boolean_t ztest_dump_core = B_TRUE;
445 static boolean_t ztest_exiting;
446 
447 /* Global commit callback list */
448 static ztest_cb_list_t zcl;
449 
450 enum ztest_object {
451 	ZTEST_META_DNODE = 0,
452 	ZTEST_DIROBJ,
453 	ZTEST_OBJECTS
454 };
455 
456 static void usage(boolean_t) __NORETURN;
457 
458 /*
459  * These libumem hooks provide a reasonable set of defaults for the allocator's
460  * debugging facilities.
461  */
462 const char *
463 _umem_debug_init()
464 {
465 	return ("default,verbose"); /* $UMEM_DEBUG setting */
466 }
467 
468 const char *
469 _umem_logging_init(void)
470 {
471 	return ("fail,contents"); /* $UMEM_LOGGING setting */
472 }
473 
474 #define	FATAL_MSG_SZ	1024
475 
476 char *fatal_msg;
477 
478 static void
479 fatal(int do_perror, char *message, ...)
480 {
481 	va_list args;
482 	int save_errno = errno;
483 	char buf[FATAL_MSG_SZ];
484 
485 	(void) fflush(stdout);
486 
487 	va_start(args, message);
488 	(void) sprintf(buf, "ztest: ");
489 	/* LINTED */
490 	(void) vsprintf(buf + strlen(buf), message, args);
491 	va_end(args);
492 	if (do_perror) {
493 		(void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf),
494 		    ": %s", strerror(save_errno));
495 	}
496 	(void) fprintf(stderr, "%s\n", buf);
497 	fatal_msg = buf;			/* to ease debugging */
498 	if (ztest_dump_core)
499 		abort();
500 	exit(3);
501 }
502 
503 static int
504 str2shift(const char *buf)
505 {
506 	const char *ends = "BKMGTPEZ";
507 	int i;
508 
509 	if (buf[0] == '\0')
510 		return (0);
511 	for (i = 0; i < strlen(ends); i++) {
512 		if (toupper(buf[0]) == ends[i])
513 			break;
514 	}
515 	if (i == strlen(ends)) {
516 		(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n",
517 		    buf);
518 		usage(B_FALSE);
519 	}
520 	if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) {
521 		return (10*i);
522 	}
523 	(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf);
524 	usage(B_FALSE);
525 	/* NOTREACHED */
526 }
527 
528 static uint64_t
529 nicenumtoull(const char *buf)
530 {
531 	char *end;
532 	uint64_t val;
533 
534 	val = strtoull(buf, &end, 0);
535 	if (end == buf) {
536 		(void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf);
537 		usage(B_FALSE);
538 	} else if (end[0] == '.') {
539 		double fval = strtod(buf, &end);
540 		fval *= pow(2, str2shift(end));
541 		if (fval > UINT64_MAX) {
542 			(void) fprintf(stderr, "ztest: value too large: %s\n",
543 			    buf);
544 			usage(B_FALSE);
545 		}
546 		val = (uint64_t)fval;
547 	} else {
548 		int shift = str2shift(end);
549 		if (shift >= 64 || (val << shift) >> shift != val) {
550 			(void) fprintf(stderr, "ztest: value too large: %s\n",
551 			    buf);
552 			usage(B_FALSE);
553 		}
554 		val <<= shift;
555 	}
556 	return (val);
557 }
558 
559 static void
560 usage(boolean_t requested)
561 {
562 	const ztest_shared_opts_t *zo = &ztest_opts_defaults;
563 
564 	char nice_vdev_size[NN_NUMBUF_SZ];
565 	char nice_gang_bang[NN_NUMBUF_SZ];
566 	FILE *fp = requested ? stdout : stderr;
567 
568 	nicenum(zo->zo_vdev_size, nice_vdev_size, sizeof (nice_vdev_size));
569 	nicenum(zo->zo_metaslab_gang_bang, nice_gang_bang,
570 	    sizeof (nice_gang_bang));
571 
572 	(void) fprintf(fp, "Usage: %s\n"
573 	    "\t[-v vdevs (default: %llu)]\n"
574 	    "\t[-s size_of_each_vdev (default: %s)]\n"
575 	    "\t[-a alignment_shift (default: %d)] use 0 for random\n"
576 	    "\t[-m mirror_copies (default: %d)]\n"
577 	    "\t[-r raidz_disks (default: %d)]\n"
578 	    "\t[-R raidz_parity (default: %d)]\n"
579 	    "\t[-d datasets (default: %d)]\n"
580 	    "\t[-t threads (default: %d)]\n"
581 	    "\t[-g gang_block_threshold (default: %s)]\n"
582 	    "\t[-i init_count (default: %d)] initialize pool i times\n"
583 	    "\t[-k kill_percentage (default: %llu%%)]\n"
584 	    "\t[-p pool_name (default: %s)]\n"
585 	    "\t[-f dir (default: %s)] file directory for vdev files\n"
586 	    "\t[-V] verbose (use multiple times for ever more blather)\n"
587 	    "\t[-E] use existing pool instead of creating new one\n"
588 	    "\t[-T time (default: %llu sec)] total run time\n"
589 	    "\t[-F freezeloops (default: %llu)] max loops in spa_freeze()\n"
590 	    "\t[-P passtime (default: %llu sec)] time per pass\n"
591 	    "\t[-B alt_ztest (default: <none>)] alternate ztest path\n"
592 	    "\t[-o variable=value] ... set global variable to an unsigned\n"
593 	    "\t    32-bit integer value\n"
594 	    "\t[-h] (print help)\n"
595 	    "",
596 	    zo->zo_pool,
597 	    (u_longlong_t)zo->zo_vdevs,			/* -v */
598 	    nice_vdev_size,				/* -s */
599 	    zo->zo_ashift,				/* -a */
600 	    zo->zo_mirrors,				/* -m */
601 	    zo->zo_raidz,				/* -r */
602 	    zo->zo_raidz_parity,			/* -R */
603 	    zo->zo_datasets,				/* -d */
604 	    zo->zo_threads,				/* -t */
605 	    nice_gang_bang,				/* -g */
606 	    zo->zo_init,				/* -i */
607 	    (u_longlong_t)zo->zo_killrate,		/* -k */
608 	    zo->zo_pool,				/* -p */
609 	    zo->zo_dir,					/* -f */
610 	    (u_longlong_t)zo->zo_time,			/* -T */
611 	    (u_longlong_t)zo->zo_maxloops,		/* -F */
612 	    (u_longlong_t)zo->zo_passtime);
613 	exit(requested ? 0 : 1);
614 }
615 
616 static void
617 process_options(int argc, char **argv)
618 {
619 	char *path;
620 	ztest_shared_opts_t *zo = &ztest_opts;
621 
622 	int opt;
623 	uint64_t value;
624 	char altdir[MAXNAMELEN] = { 0 };
625 
626 	bcopy(&ztest_opts_defaults, zo, sizeof (*zo));
627 
628 	while ((opt = getopt(argc, argv,
629 	    "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:hF:B:o:")) != EOF) {
630 		value = 0;
631 		switch (opt) {
632 		case 'v':
633 		case 's':
634 		case 'a':
635 		case 'm':
636 		case 'r':
637 		case 'R':
638 		case 'd':
639 		case 't':
640 		case 'g':
641 		case 'i':
642 		case 'k':
643 		case 'T':
644 		case 'P':
645 		case 'F':
646 			value = nicenumtoull(optarg);
647 		}
648 		switch (opt) {
649 		case 'v':
650 			zo->zo_vdevs = value;
651 			break;
652 		case 's':
653 			zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value);
654 			break;
655 		case 'a':
656 			zo->zo_ashift = value;
657 			break;
658 		case 'm':
659 			zo->zo_mirrors = value;
660 			break;
661 		case 'r':
662 			zo->zo_raidz = MAX(1, value);
663 			break;
664 		case 'R':
665 			zo->zo_raidz_parity = MIN(MAX(value, 1), 3);
666 			break;
667 		case 'd':
668 			zo->zo_datasets = MAX(1, value);
669 			break;
670 		case 't':
671 			zo->zo_threads = MAX(1, value);
672 			break;
673 		case 'g':
674 			zo->zo_metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1,
675 			    value);
676 			break;
677 		case 'i':
678 			zo->zo_init = value;
679 			break;
680 		case 'k':
681 			zo->zo_killrate = value;
682 			break;
683 		case 'p':
684 			(void) strlcpy(zo->zo_pool, optarg,
685 			    sizeof (zo->zo_pool));
686 			break;
687 		case 'f':
688 			path = realpath(optarg, NULL);
689 			if (path == NULL) {
690 				(void) fprintf(stderr, "error: %s: %s\n",
691 				    optarg, strerror(errno));
692 				usage(B_FALSE);
693 			} else {
694 				(void) strlcpy(zo->zo_dir, path,
695 				    sizeof (zo->zo_dir));
696 			}
697 			break;
698 		case 'V':
699 			zo->zo_verbose++;
700 			break;
701 		case 'E':
702 			zo->zo_init = 0;
703 			break;
704 		case 'T':
705 			zo->zo_time = value;
706 			break;
707 		case 'P':
708 			zo->zo_passtime = MAX(1, value);
709 			break;
710 		case 'F':
711 			zo->zo_maxloops = MAX(1, value);
712 			break;
713 		case 'B':
714 			(void) strlcpy(altdir, optarg, sizeof (altdir));
715 			break;
716 		case 'o':
717 			if (set_global_var(optarg) != 0)
718 				usage(B_FALSE);
719 			break;
720 		case 'h':
721 			usage(B_TRUE);
722 			break;
723 		case '?':
724 		default:
725 			usage(B_FALSE);
726 			break;
727 		}
728 	}
729 
730 	zo->zo_raidz_parity = MIN(zo->zo_raidz_parity, zo->zo_raidz - 1);
731 
732 	zo->zo_vdevtime =
733 	    (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs :
734 	    UINT64_MAX >> 2);
735 
736 	if (strlen(altdir) > 0) {
737 		char *cmd;
738 		char *realaltdir;
739 		char *bin;
740 		char *ztest;
741 		char *isa;
742 		int isalen;
743 
744 		cmd = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
745 		realaltdir = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
746 
747 		VERIFY(NULL != realpath(getexecname(), cmd));
748 		if (0 != access(altdir, F_OK)) {
749 			ztest_dump_core = B_FALSE;
750 			fatal(B_TRUE, "invalid alternate ztest path: %s",
751 			    altdir);
752 		}
753 		VERIFY(NULL != realpath(altdir, realaltdir));
754 
755 		/*
756 		 * 'cmd' should be of the form "<anything>/usr/bin/<isa>/ztest".
757 		 * We want to extract <isa> to determine if we should use
758 		 * 32 or 64 bit binaries.
759 		 */
760 		bin = strstr(cmd, "/usr/bin/");
761 		ztest = strstr(bin, "/ztest");
762 		isa = bin + 9;
763 		isalen = ztest - isa;
764 		(void) snprintf(zo->zo_alt_ztest, sizeof (zo->zo_alt_ztest),
765 		    "%s/usr/bin/%.*s/ztest", realaltdir, isalen, isa);
766 		(void) snprintf(zo->zo_alt_libpath, sizeof (zo->zo_alt_libpath),
767 		    "%s/usr/lib/%.*s", realaltdir, isalen, isa);
768 
769 		if (0 != access(zo->zo_alt_ztest, X_OK)) {
770 			ztest_dump_core = B_FALSE;
771 			fatal(B_TRUE, "invalid alternate ztest: %s",
772 			    zo->zo_alt_ztest);
773 		} else if (0 != access(zo->zo_alt_libpath, X_OK)) {
774 			ztest_dump_core = B_FALSE;
775 			fatal(B_TRUE, "invalid alternate lib directory %s",
776 			    zo->zo_alt_libpath);
777 		}
778 
779 		umem_free(cmd, MAXPATHLEN);
780 		umem_free(realaltdir, MAXPATHLEN);
781 	}
782 }
783 
784 static void
785 ztest_kill(ztest_shared_t *zs)
786 {
787 	zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa));
788 	zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa));
789 
790 	/*
791 	 * Before we kill off ztest, make sure that the config is updated.
792 	 * See comment above spa_write_cachefile().
793 	 */
794 	mutex_enter(&spa_namespace_lock);
795 	spa_write_cachefile(ztest_spa, B_FALSE, B_FALSE);
796 	mutex_exit(&spa_namespace_lock);
797 
798 	zfs_dbgmsg_print(FTAG);
799 	(void) kill(getpid(), SIGKILL);
800 }
801 
802 static uint64_t
803 ztest_random(uint64_t range)
804 {
805 	uint64_t r;
806 
807 	ASSERT3S(ztest_fd_rand, >=, 0);
808 
809 	if (range == 0)
810 		return (0);
811 
812 	if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r))
813 		fatal(1, "short read from /dev/urandom");
814 
815 	return (r % range);
816 }
817 
818 /* ARGSUSED */
819 static void
820 ztest_record_enospc(const char *s)
821 {
822 	ztest_shared->zs_enospc_count++;
823 }
824 
825 static uint64_t
826 ztest_get_ashift(void)
827 {
828 	if (ztest_opts.zo_ashift == 0)
829 		return (SPA_MINBLOCKSHIFT + ztest_random(5));
830 	return (ztest_opts.zo_ashift);
831 }
832 
833 static nvlist_t *
834 make_vdev_file(char *path, char *aux, char *pool, size_t size, uint64_t ashift)
835 {
836 	char pathbuf[MAXPATHLEN];
837 	uint64_t vdev;
838 	nvlist_t *file;
839 
840 	if (ashift == 0)
841 		ashift = ztest_get_ashift();
842 
843 	if (path == NULL) {
844 		path = pathbuf;
845 
846 		if (aux != NULL) {
847 			vdev = ztest_shared->zs_vdev_aux;
848 			(void) snprintf(path, sizeof (pathbuf),
849 			    ztest_aux_template, ztest_opts.zo_dir,
850 			    pool == NULL ? ztest_opts.zo_pool : pool,
851 			    aux, vdev);
852 		} else {
853 			vdev = ztest_shared->zs_vdev_next_leaf++;
854 			(void) snprintf(path, sizeof (pathbuf),
855 			    ztest_dev_template, ztest_opts.zo_dir,
856 			    pool == NULL ? ztest_opts.zo_pool : pool, vdev);
857 		}
858 	}
859 
860 	if (size != 0) {
861 		int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666);
862 		if (fd == -1)
863 			fatal(1, "can't open %s", path);
864 		if (ftruncate(fd, size) != 0)
865 			fatal(1, "can't ftruncate %s", path);
866 		(void) close(fd);
867 	}
868 
869 	VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0);
870 	VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0);
871 	VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0);
872 	VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0);
873 
874 	return (file);
875 }
876 
877 static nvlist_t *
878 make_vdev_raidz(char *path, char *aux, char *pool, size_t size,
879     uint64_t ashift, int r)
880 {
881 	nvlist_t *raidz, **child;
882 	int c;
883 
884 	if (r < 2)
885 		return (make_vdev_file(path, aux, pool, size, ashift));
886 	child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL);
887 
888 	for (c = 0; c < r; c++)
889 		child[c] = make_vdev_file(path, aux, pool, size, ashift);
890 
891 	VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0);
892 	VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE,
893 	    VDEV_TYPE_RAIDZ) == 0);
894 	VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY,
895 	    ztest_opts.zo_raidz_parity) == 0);
896 	VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN,
897 	    child, r) == 0);
898 
899 	for (c = 0; c < r; c++)
900 		nvlist_free(child[c]);
901 
902 	umem_free(child, r * sizeof (nvlist_t *));
903 
904 	return (raidz);
905 }
906 
907 static nvlist_t *
908 make_vdev_mirror(char *path, char *aux, char *pool, size_t size,
909     uint64_t ashift, int r, int m)
910 {
911 	nvlist_t *mirror, **child;
912 	int c;
913 
914 	if (m < 1)
915 		return (make_vdev_raidz(path, aux, pool, size, ashift, r));
916 
917 	child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL);
918 
919 	for (c = 0; c < m; c++)
920 		child[c] = make_vdev_raidz(path, aux, pool, size, ashift, r);
921 
922 	VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0);
923 	VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE,
924 	    VDEV_TYPE_MIRROR) == 0);
925 	VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN,
926 	    child, m) == 0);
927 
928 	for (c = 0; c < m; c++)
929 		nvlist_free(child[c]);
930 
931 	umem_free(child, m * sizeof (nvlist_t *));
932 
933 	return (mirror);
934 }
935 
936 static nvlist_t *
937 make_vdev_root(char *path, char *aux, char *pool, size_t size, uint64_t ashift,
938     int log, int r, int m, int t)
939 {
940 	nvlist_t *root, **child;
941 	int c;
942 
943 	ASSERT(t > 0);
944 
945 	child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL);
946 
947 	for (c = 0; c < t; c++) {
948 		child[c] = make_vdev_mirror(path, aux, pool, size, ashift,
949 		    r, m);
950 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG,
951 		    log) == 0);
952 	}
953 
954 	VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0);
955 	VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0);
956 	VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN,
957 	    child, t) == 0);
958 
959 	for (c = 0; c < t; c++)
960 		nvlist_free(child[c]);
961 
962 	umem_free(child, t * sizeof (nvlist_t *));
963 
964 	return (root);
965 }
966 
967 /*
968  * Find a random spa version. Returns back a random spa version in the
969  * range [initial_version, SPA_VERSION_FEATURES].
970  */
971 static uint64_t
972 ztest_random_spa_version(uint64_t initial_version)
973 {
974 	uint64_t version = initial_version;
975 
976 	if (version <= SPA_VERSION_BEFORE_FEATURES) {
977 		version = version +
978 		    ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1);
979 	}
980 
981 	if (version > SPA_VERSION_BEFORE_FEATURES)
982 		version = SPA_VERSION_FEATURES;
983 
984 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
985 	return (version);
986 }
987 
988 static int
989 ztest_random_blocksize(void)
990 {
991 	uint64_t block_shift;
992 	/*
993 	 * Choose a block size >= the ashift.
994 	 * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks.
995 	 */
996 	int maxbs = SPA_OLD_MAXBLOCKSHIFT;
997 	if (spa_maxblocksize(ztest_spa) == SPA_MAXBLOCKSIZE)
998 		maxbs = 20;
999 	block_shift = ztest_random(maxbs - ztest_spa->spa_max_ashift + 1);
1000 	return (1 << (SPA_MINBLOCKSHIFT + block_shift));
1001 }
1002 
1003 static int
1004 ztest_random_ibshift(void)
1005 {
1006 	return (DN_MIN_INDBLKSHIFT +
1007 	    ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1));
1008 }
1009 
1010 static uint64_t
1011 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok)
1012 {
1013 	uint64_t top;
1014 	vdev_t *rvd = spa->spa_root_vdev;
1015 	vdev_t *tvd;
1016 
1017 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1018 
1019 	do {
1020 		top = ztest_random(rvd->vdev_children);
1021 		tvd = rvd->vdev_child[top];
1022 	} while (!vdev_is_concrete(tvd) || (tvd->vdev_islog && !log_ok) ||
1023 	    tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL);
1024 
1025 	return (top);
1026 }
1027 
1028 static uint64_t
1029 ztest_random_dsl_prop(zfs_prop_t prop)
1030 {
1031 	uint64_t value;
1032 
1033 	do {
1034 		value = zfs_prop_random_value(prop, ztest_random(-1ULL));
1035 	} while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF);
1036 
1037 	return (value);
1038 }
1039 
1040 static int
1041 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value,
1042     boolean_t inherit)
1043 {
1044 	const char *propname = zfs_prop_to_name(prop);
1045 	const char *valname;
1046 	char setpoint[MAXPATHLEN];
1047 	uint64_t curval;
1048 	int error;
1049 
1050 	error = dsl_prop_set_int(osname, propname,
1051 	    (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value);
1052 
1053 	if (error == ENOSPC) {
1054 		ztest_record_enospc(FTAG);
1055 		return (error);
1056 	}
1057 	ASSERT0(error);
1058 
1059 	VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint));
1060 
1061 	if (ztest_opts.zo_verbose >= 6) {
1062 		VERIFY(zfs_prop_index_to_string(prop, curval, &valname) == 0);
1063 		(void) printf("%s %s = %s at '%s'\n",
1064 		    osname, propname, valname, setpoint);
1065 	}
1066 
1067 	return (error);
1068 }
1069 
1070 static int
1071 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value)
1072 {
1073 	spa_t *spa = ztest_spa;
1074 	nvlist_t *props = NULL;
1075 	int error;
1076 
1077 	VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0);
1078 	VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0);
1079 
1080 	error = spa_prop_set(spa, props);
1081 
1082 	nvlist_free(props);
1083 
1084 	if (error == ENOSPC) {
1085 		ztest_record_enospc(FTAG);
1086 		return (error);
1087 	}
1088 	ASSERT0(error);
1089 
1090 	return (error);
1091 }
1092 
1093 static void
1094 ztest_rll_init(rll_t *rll)
1095 {
1096 	rll->rll_writer = NULL;
1097 	rll->rll_readers = 0;
1098 	mutex_init(&rll->rll_lock, NULL, USYNC_THREAD, NULL);
1099 	cv_init(&rll->rll_cv, NULL, USYNC_THREAD, NULL);
1100 }
1101 
1102 static void
1103 ztest_rll_destroy(rll_t *rll)
1104 {
1105 	ASSERT(rll->rll_writer == NULL);
1106 	ASSERT(rll->rll_readers == 0);
1107 	mutex_destroy(&rll->rll_lock);
1108 	cv_destroy(&rll->rll_cv);
1109 }
1110 
1111 static void
1112 ztest_rll_lock(rll_t *rll, rl_type_t type)
1113 {
1114 	mutex_enter(&rll->rll_lock);
1115 
1116 	if (type == RL_READER) {
1117 		while (rll->rll_writer != NULL)
1118 			cv_wait(&rll->rll_cv, &rll->rll_lock);
1119 		rll->rll_readers++;
1120 	} else {
1121 		while (rll->rll_writer != NULL || rll->rll_readers)
1122 			cv_wait(&rll->rll_cv, &rll->rll_lock);
1123 		rll->rll_writer = curthread;
1124 	}
1125 
1126 	mutex_exit(&rll->rll_lock);
1127 }
1128 
1129 static void
1130 ztest_rll_unlock(rll_t *rll)
1131 {
1132 	mutex_enter(&rll->rll_lock);
1133 
1134 	if (rll->rll_writer) {
1135 		ASSERT(rll->rll_readers == 0);
1136 		rll->rll_writer = NULL;
1137 	} else {
1138 		ASSERT(rll->rll_readers != 0);
1139 		ASSERT(rll->rll_writer == NULL);
1140 		rll->rll_readers--;
1141 	}
1142 
1143 	if (rll->rll_writer == NULL && rll->rll_readers == 0)
1144 		cv_broadcast(&rll->rll_cv);
1145 
1146 	mutex_exit(&rll->rll_lock);
1147 }
1148 
1149 static void
1150 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type)
1151 {
1152 	rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1153 
1154 	ztest_rll_lock(rll, type);
1155 }
1156 
1157 static void
1158 ztest_object_unlock(ztest_ds_t *zd, uint64_t object)
1159 {
1160 	rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1161 
1162 	ztest_rll_unlock(rll);
1163 }
1164 
1165 static rl_t *
1166 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset,
1167     uint64_t size, rl_type_t type)
1168 {
1169 	uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1));
1170 	rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)];
1171 	rl_t *rl;
1172 
1173 	rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL);
1174 	rl->rl_object = object;
1175 	rl->rl_offset = offset;
1176 	rl->rl_size = size;
1177 	rl->rl_lock = rll;
1178 
1179 	ztest_rll_lock(rll, type);
1180 
1181 	return (rl);
1182 }
1183 
1184 static void
1185 ztest_range_unlock(rl_t *rl)
1186 {
1187 	rll_t *rll = rl->rl_lock;
1188 
1189 	ztest_rll_unlock(rll);
1190 
1191 	umem_free(rl, sizeof (*rl));
1192 }
1193 
1194 static void
1195 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os)
1196 {
1197 	zd->zd_os = os;
1198 	zd->zd_zilog = dmu_objset_zil(os);
1199 	zd->zd_shared = szd;
1200 	dmu_objset_name(os, zd->zd_name);
1201 
1202 	if (zd->zd_shared != NULL)
1203 		zd->zd_shared->zd_seq = 0;
1204 
1205 	rw_init(&zd->zd_zilog_lock, NULL, USYNC_THREAD, NULL);
1206 	mutex_init(&zd->zd_dirobj_lock, NULL, USYNC_THREAD, NULL);
1207 
1208 	for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1209 		ztest_rll_init(&zd->zd_object_lock[l]);
1210 
1211 	for (int l = 0; l < ZTEST_RANGE_LOCKS; l++)
1212 		ztest_rll_init(&zd->zd_range_lock[l]);
1213 }
1214 
1215 static void
1216 ztest_zd_fini(ztest_ds_t *zd)
1217 {
1218 	mutex_destroy(&zd->zd_dirobj_lock);
1219 
1220 	for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1221 		ztest_rll_destroy(&zd->zd_object_lock[l]);
1222 
1223 	for (int l = 0; l < ZTEST_RANGE_LOCKS; l++)
1224 		ztest_rll_destroy(&zd->zd_range_lock[l]);
1225 }
1226 
1227 #define	TXG_MIGHTWAIT	(ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT)
1228 
1229 static uint64_t
1230 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag)
1231 {
1232 	uint64_t txg;
1233 	int error;
1234 
1235 	/*
1236 	 * Attempt to assign tx to some transaction group.
1237 	 */
1238 	error = dmu_tx_assign(tx, txg_how);
1239 	if (error) {
1240 		if (error == ERESTART) {
1241 			ASSERT(txg_how == TXG_NOWAIT);
1242 			dmu_tx_wait(tx);
1243 		} else {
1244 			ASSERT3U(error, ==, ENOSPC);
1245 			ztest_record_enospc(tag);
1246 		}
1247 		dmu_tx_abort(tx);
1248 		return (0);
1249 	}
1250 	txg = dmu_tx_get_txg(tx);
1251 	ASSERT(txg != 0);
1252 	return (txg);
1253 }
1254 
1255 static void
1256 ztest_pattern_set(void *buf, uint64_t size, uint64_t value)
1257 {
1258 	uint64_t *ip = buf;
1259 	uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size);
1260 
1261 	while (ip < ip_end)
1262 		*ip++ = value;
1263 }
1264 
1265 static boolean_t
1266 ztest_pattern_match(void *buf, uint64_t size, uint64_t value)
1267 {
1268 	uint64_t *ip = buf;
1269 	uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size);
1270 	uint64_t diff = 0;
1271 
1272 	while (ip < ip_end)
1273 		diff |= (value - *ip++);
1274 
1275 	return (diff == 0);
1276 }
1277 
1278 static void
1279 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1280     uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg)
1281 {
1282 	bt->bt_magic = BT_MAGIC;
1283 	bt->bt_objset = dmu_objset_id(os);
1284 	bt->bt_object = object;
1285 	bt->bt_offset = offset;
1286 	bt->bt_gen = gen;
1287 	bt->bt_txg = txg;
1288 	bt->bt_crtxg = crtxg;
1289 }
1290 
1291 static void
1292 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1293     uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg)
1294 {
1295 	ASSERT3U(bt->bt_magic, ==, BT_MAGIC);
1296 	ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os));
1297 	ASSERT3U(bt->bt_object, ==, object);
1298 	ASSERT3U(bt->bt_offset, ==, offset);
1299 	ASSERT3U(bt->bt_gen, <=, gen);
1300 	ASSERT3U(bt->bt_txg, <=, txg);
1301 	ASSERT3U(bt->bt_crtxg, ==, crtxg);
1302 }
1303 
1304 static ztest_block_tag_t *
1305 ztest_bt_bonus(dmu_buf_t *db)
1306 {
1307 	dmu_object_info_t doi;
1308 	ztest_block_tag_t *bt;
1309 
1310 	dmu_object_info_from_db(db, &doi);
1311 	ASSERT3U(doi.doi_bonus_size, <=, db->db_size);
1312 	ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt));
1313 	bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt));
1314 
1315 	return (bt);
1316 }
1317 
1318 /*
1319  * ZIL logging ops
1320  */
1321 
1322 #define	lrz_type	lr_mode
1323 #define	lrz_blocksize	lr_uid
1324 #define	lrz_ibshift	lr_gid
1325 #define	lrz_bonustype	lr_rdev
1326 #define	lrz_bonuslen	lr_crtime[1]
1327 
1328 static void
1329 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr)
1330 {
1331 	char *name = (void *)(lr + 1);		/* name follows lr */
1332 	size_t namesize = strlen(name) + 1;
1333 	itx_t *itx;
1334 
1335 	if (zil_replaying(zd->zd_zilog, tx))
1336 		return;
1337 
1338 	itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize);
1339 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1340 	    sizeof (*lr) + namesize - sizeof (lr_t));
1341 
1342 	zil_itx_assign(zd->zd_zilog, itx, tx);
1343 }
1344 
1345 static void
1346 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object)
1347 {
1348 	char *name = (void *)(lr + 1);		/* name follows lr */
1349 	size_t namesize = strlen(name) + 1;
1350 	itx_t *itx;
1351 
1352 	if (zil_replaying(zd->zd_zilog, tx))
1353 		return;
1354 
1355 	itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize);
1356 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1357 	    sizeof (*lr) + namesize - sizeof (lr_t));
1358 
1359 	itx->itx_oid = object;
1360 	zil_itx_assign(zd->zd_zilog, itx, tx);
1361 }
1362 
1363 static void
1364 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr)
1365 {
1366 	itx_t *itx;
1367 	itx_wr_state_t write_state = ztest_random(WR_NUM_STATES);
1368 
1369 	if (zil_replaying(zd->zd_zilog, tx))
1370 		return;
1371 
1372 	if (lr->lr_length > ZIL_MAX_LOG_DATA)
1373 		write_state = WR_INDIRECT;
1374 
1375 	itx = zil_itx_create(TX_WRITE,
1376 	    sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0));
1377 
1378 	if (write_state == WR_COPIED &&
1379 	    dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length,
1380 	    ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) {
1381 		zil_itx_destroy(itx);
1382 		itx = zil_itx_create(TX_WRITE, sizeof (*lr));
1383 		write_state = WR_NEED_COPY;
1384 	}
1385 	itx->itx_private = zd;
1386 	itx->itx_wr_state = write_state;
1387 	itx->itx_sync = (ztest_random(8) == 0);
1388 
1389 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1390 	    sizeof (*lr) - sizeof (lr_t));
1391 
1392 	zil_itx_assign(zd->zd_zilog, itx, tx);
1393 }
1394 
1395 static void
1396 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr)
1397 {
1398 	itx_t *itx;
1399 
1400 	if (zil_replaying(zd->zd_zilog, tx))
1401 		return;
1402 
1403 	itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
1404 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1405 	    sizeof (*lr) - sizeof (lr_t));
1406 
1407 	itx->itx_sync = B_FALSE;
1408 	zil_itx_assign(zd->zd_zilog, itx, tx);
1409 }
1410 
1411 static void
1412 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr)
1413 {
1414 	itx_t *itx;
1415 
1416 	if (zil_replaying(zd->zd_zilog, tx))
1417 		return;
1418 
1419 	itx = zil_itx_create(TX_SETATTR, sizeof (*lr));
1420 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1421 	    sizeof (*lr) - sizeof (lr_t));
1422 
1423 	itx->itx_sync = B_FALSE;
1424 	zil_itx_assign(zd->zd_zilog, itx, tx);
1425 }
1426 
1427 /*
1428  * ZIL replay ops
1429  */
1430 static int
1431 ztest_replay_create(void *arg1, void *arg2, boolean_t byteswap)
1432 {
1433 	ztest_ds_t *zd = arg1;
1434 	lr_create_t *lr = arg2;
1435 	char *name = (void *)(lr + 1);		/* name follows lr */
1436 	objset_t *os = zd->zd_os;
1437 	ztest_block_tag_t *bbt;
1438 	dmu_buf_t *db;
1439 	dmu_tx_t *tx;
1440 	uint64_t txg;
1441 	int error = 0;
1442 
1443 	if (byteswap)
1444 		byteswap_uint64_array(lr, sizeof (*lr));
1445 
1446 	ASSERT(lr->lr_doid == ZTEST_DIROBJ);
1447 	ASSERT(name[0] != '\0');
1448 
1449 	tx = dmu_tx_create(os);
1450 
1451 	dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name);
1452 
1453 	if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1454 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1455 	} else {
1456 		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1457 	}
1458 
1459 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1460 	if (txg == 0)
1461 		return (ENOSPC);
1462 
1463 	ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid);
1464 
1465 	if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1466 		if (lr->lr_foid == 0) {
1467 			lr->lr_foid = zap_create(os,
1468 			    lr->lrz_type, lr->lrz_bonustype,
1469 			    lr->lrz_bonuslen, tx);
1470 		} else {
1471 			error = zap_create_claim(os, lr->lr_foid,
1472 			    lr->lrz_type, lr->lrz_bonustype,
1473 			    lr->lrz_bonuslen, tx);
1474 		}
1475 	} else {
1476 		if (lr->lr_foid == 0) {
1477 			lr->lr_foid = dmu_object_alloc(os,
1478 			    lr->lrz_type, 0, lr->lrz_bonustype,
1479 			    lr->lrz_bonuslen, tx);
1480 		} else {
1481 			error = dmu_object_claim(os, lr->lr_foid,
1482 			    lr->lrz_type, 0, lr->lrz_bonustype,
1483 			    lr->lrz_bonuslen, tx);
1484 		}
1485 	}
1486 
1487 	if (error) {
1488 		ASSERT3U(error, ==, EEXIST);
1489 		ASSERT(zd->zd_zilog->zl_replay);
1490 		dmu_tx_commit(tx);
1491 		return (error);
1492 	}
1493 
1494 	ASSERT(lr->lr_foid != 0);
1495 
1496 	if (lr->lrz_type != DMU_OT_ZAP_OTHER)
1497 		VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid,
1498 		    lr->lrz_blocksize, lr->lrz_ibshift, tx));
1499 
1500 	VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1501 	bbt = ztest_bt_bonus(db);
1502 	dmu_buf_will_dirty(db, tx);
1503 	ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_gen, txg, txg);
1504 	dmu_buf_rele(db, FTAG);
1505 
1506 	VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1,
1507 	    &lr->lr_foid, tx));
1508 
1509 	(void) ztest_log_create(zd, tx, lr);
1510 
1511 	dmu_tx_commit(tx);
1512 
1513 	return (0);
1514 }
1515 
1516 static int
1517 ztest_replay_remove(void *arg1, void *arg2, boolean_t byteswap)
1518 {
1519 	ztest_ds_t *zd = arg1;
1520 	lr_remove_t *lr = arg2;
1521 	char *name = (void *)(lr + 1);		/* name follows lr */
1522 	objset_t *os = zd->zd_os;
1523 	dmu_object_info_t doi;
1524 	dmu_tx_t *tx;
1525 	uint64_t object, txg;
1526 
1527 	if (byteswap)
1528 		byteswap_uint64_array(lr, sizeof (*lr));
1529 
1530 	ASSERT(lr->lr_doid == ZTEST_DIROBJ);
1531 	ASSERT(name[0] != '\0');
1532 
1533 	VERIFY3U(0, ==,
1534 	    zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object));
1535 	ASSERT(object != 0);
1536 
1537 	ztest_object_lock(zd, object, RL_WRITER);
1538 
1539 	VERIFY3U(0, ==, dmu_object_info(os, object, &doi));
1540 
1541 	tx = dmu_tx_create(os);
1542 
1543 	dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name);
1544 	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
1545 
1546 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1547 	if (txg == 0) {
1548 		ztest_object_unlock(zd, object);
1549 		return (ENOSPC);
1550 	}
1551 
1552 	if (doi.doi_type == DMU_OT_ZAP_OTHER) {
1553 		VERIFY3U(0, ==, zap_destroy(os, object, tx));
1554 	} else {
1555 		VERIFY3U(0, ==, dmu_object_free(os, object, tx));
1556 	}
1557 
1558 	VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx));
1559 
1560 	(void) ztest_log_remove(zd, tx, lr, object);
1561 
1562 	dmu_tx_commit(tx);
1563 
1564 	ztest_object_unlock(zd, object);
1565 
1566 	return (0);
1567 }
1568 
1569 static int
1570 ztest_replay_write(void *arg1, void *arg2, boolean_t byteswap)
1571 {
1572 	ztest_ds_t *zd = arg1;
1573 	lr_write_t *lr = arg2;
1574 	objset_t *os = zd->zd_os;
1575 	void *data = lr + 1;			/* data follows lr */
1576 	uint64_t offset, length;
1577 	ztest_block_tag_t *bt = data;
1578 	ztest_block_tag_t *bbt;
1579 	uint64_t gen, txg, lrtxg, crtxg;
1580 	dmu_object_info_t doi;
1581 	dmu_tx_t *tx;
1582 	dmu_buf_t *db;
1583 	arc_buf_t *abuf = NULL;
1584 	rl_t *rl;
1585 
1586 	if (byteswap)
1587 		byteswap_uint64_array(lr, sizeof (*lr));
1588 
1589 	offset = lr->lr_offset;
1590 	length = lr->lr_length;
1591 
1592 	/* If it's a dmu_sync() block, write the whole block */
1593 	if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
1594 		uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
1595 		if (length < blocksize) {
1596 			offset -= offset % blocksize;
1597 			length = blocksize;
1598 		}
1599 	}
1600 
1601 	if (bt->bt_magic == BSWAP_64(BT_MAGIC))
1602 		byteswap_uint64_array(bt, sizeof (*bt));
1603 
1604 	if (bt->bt_magic != BT_MAGIC)
1605 		bt = NULL;
1606 
1607 	ztest_object_lock(zd, lr->lr_foid, RL_READER);
1608 	rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER);
1609 
1610 	VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1611 
1612 	dmu_object_info_from_db(db, &doi);
1613 
1614 	bbt = ztest_bt_bonus(db);
1615 	ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1616 	gen = bbt->bt_gen;
1617 	crtxg = bbt->bt_crtxg;
1618 	lrtxg = lr->lr_common.lrc_txg;
1619 
1620 	tx = dmu_tx_create(os);
1621 
1622 	dmu_tx_hold_write(tx, lr->lr_foid, offset, length);
1623 
1624 	if (ztest_random(8) == 0 && length == doi.doi_data_block_size &&
1625 	    P2PHASE(offset, length) == 0)
1626 		abuf = dmu_request_arcbuf(db, length);
1627 
1628 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1629 	if (txg == 0) {
1630 		if (abuf != NULL)
1631 			dmu_return_arcbuf(abuf);
1632 		dmu_buf_rele(db, FTAG);
1633 		ztest_range_unlock(rl);
1634 		ztest_object_unlock(zd, lr->lr_foid);
1635 		return (ENOSPC);
1636 	}
1637 
1638 	if (bt != NULL) {
1639 		/*
1640 		 * Usually, verify the old data before writing new data --
1641 		 * but not always, because we also want to verify correct
1642 		 * behavior when the data was not recently read into cache.
1643 		 */
1644 		ASSERT(offset % doi.doi_data_block_size == 0);
1645 		if (ztest_random(4) != 0) {
1646 			int prefetch = ztest_random(2) ?
1647 			    DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH;
1648 			ztest_block_tag_t rbt;
1649 
1650 			VERIFY(dmu_read(os, lr->lr_foid, offset,
1651 			    sizeof (rbt), &rbt, prefetch) == 0);
1652 			if (rbt.bt_magic == BT_MAGIC) {
1653 				ztest_bt_verify(&rbt, os, lr->lr_foid,
1654 				    offset, gen, txg, crtxg);
1655 			}
1656 		}
1657 
1658 		/*
1659 		 * Writes can appear to be newer than the bonus buffer because
1660 		 * the ztest_get_data() callback does a dmu_read() of the
1661 		 * open-context data, which may be different than the data
1662 		 * as it was when the write was generated.
1663 		 */
1664 		if (zd->zd_zilog->zl_replay) {
1665 			ztest_bt_verify(bt, os, lr->lr_foid, offset,
1666 			    MAX(gen, bt->bt_gen), MAX(txg, lrtxg),
1667 			    bt->bt_crtxg);
1668 		}
1669 
1670 		/*
1671 		 * Set the bt's gen/txg to the bonus buffer's gen/txg
1672 		 * so that all of the usual ASSERTs will work.
1673 		 */
1674 		ztest_bt_generate(bt, os, lr->lr_foid, offset, gen, txg, crtxg);
1675 	}
1676 
1677 	if (abuf == NULL) {
1678 		dmu_write(os, lr->lr_foid, offset, length, data, tx);
1679 	} else {
1680 		bcopy(data, abuf->b_data, length);
1681 		dmu_assign_arcbuf(db, offset, abuf, tx);
1682 	}
1683 
1684 	(void) ztest_log_write(zd, tx, lr);
1685 
1686 	dmu_buf_rele(db, FTAG);
1687 
1688 	dmu_tx_commit(tx);
1689 
1690 	ztest_range_unlock(rl);
1691 	ztest_object_unlock(zd, lr->lr_foid);
1692 
1693 	return (0);
1694 }
1695 
1696 static int
1697 ztest_replay_truncate(void *arg1, void *arg2, boolean_t byteswap)
1698 {
1699 	ztest_ds_t *zd = arg1;
1700 	lr_truncate_t *lr = arg2;
1701 	objset_t *os = zd->zd_os;
1702 	dmu_tx_t *tx;
1703 	uint64_t txg;
1704 	rl_t *rl;
1705 
1706 	if (byteswap)
1707 		byteswap_uint64_array(lr, sizeof (*lr));
1708 
1709 	ztest_object_lock(zd, lr->lr_foid, RL_READER);
1710 	rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length,
1711 	    RL_WRITER);
1712 
1713 	tx = dmu_tx_create(os);
1714 
1715 	dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length);
1716 
1717 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1718 	if (txg == 0) {
1719 		ztest_range_unlock(rl);
1720 		ztest_object_unlock(zd, lr->lr_foid);
1721 		return (ENOSPC);
1722 	}
1723 
1724 	VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset,
1725 	    lr->lr_length, tx) == 0);
1726 
1727 	(void) ztest_log_truncate(zd, tx, lr);
1728 
1729 	dmu_tx_commit(tx);
1730 
1731 	ztest_range_unlock(rl);
1732 	ztest_object_unlock(zd, lr->lr_foid);
1733 
1734 	return (0);
1735 }
1736 
1737 static int
1738 ztest_replay_setattr(void *arg1, void *arg2, boolean_t byteswap)
1739 {
1740 	ztest_ds_t *zd = arg1;
1741 	lr_setattr_t *lr = arg2;
1742 	objset_t *os = zd->zd_os;
1743 	dmu_tx_t *tx;
1744 	dmu_buf_t *db;
1745 	ztest_block_tag_t *bbt;
1746 	uint64_t txg, lrtxg, crtxg;
1747 
1748 	if (byteswap)
1749 		byteswap_uint64_array(lr, sizeof (*lr));
1750 
1751 	ztest_object_lock(zd, lr->lr_foid, RL_WRITER);
1752 
1753 	VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1754 
1755 	tx = dmu_tx_create(os);
1756 	dmu_tx_hold_bonus(tx, lr->lr_foid);
1757 
1758 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1759 	if (txg == 0) {
1760 		dmu_buf_rele(db, FTAG);
1761 		ztest_object_unlock(zd, lr->lr_foid);
1762 		return (ENOSPC);
1763 	}
1764 
1765 	bbt = ztest_bt_bonus(db);
1766 	ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1767 	crtxg = bbt->bt_crtxg;
1768 	lrtxg = lr->lr_common.lrc_txg;
1769 
1770 	if (zd->zd_zilog->zl_replay) {
1771 		ASSERT(lr->lr_size != 0);
1772 		ASSERT(lr->lr_mode != 0);
1773 		ASSERT(lrtxg != 0);
1774 	} else {
1775 		/*
1776 		 * Randomly change the size and increment the generation.
1777 		 */
1778 		lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) *
1779 		    sizeof (*bbt);
1780 		lr->lr_mode = bbt->bt_gen + 1;
1781 		ASSERT(lrtxg == 0);
1782 	}
1783 
1784 	/*
1785 	 * Verify that the current bonus buffer is not newer than our txg.
1786 	 */
1787 	ztest_bt_verify(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode,
1788 	    MAX(txg, lrtxg), crtxg);
1789 
1790 	dmu_buf_will_dirty(db, tx);
1791 
1792 	ASSERT3U(lr->lr_size, >=, sizeof (*bbt));
1793 	ASSERT3U(lr->lr_size, <=, db->db_size);
1794 	VERIFY0(dmu_set_bonus(db, lr->lr_size, tx));
1795 	bbt = ztest_bt_bonus(db);
1796 
1797 	ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, txg, crtxg);
1798 
1799 	dmu_buf_rele(db, FTAG);
1800 
1801 	(void) ztest_log_setattr(zd, tx, lr);
1802 
1803 	dmu_tx_commit(tx);
1804 
1805 	ztest_object_unlock(zd, lr->lr_foid);
1806 
1807 	return (0);
1808 }
1809 
1810 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = {
1811 	NULL,			/* 0 no such transaction type */
1812 	ztest_replay_create,	/* TX_CREATE */
1813 	NULL,			/* TX_MKDIR */
1814 	NULL,			/* TX_MKXATTR */
1815 	NULL,			/* TX_SYMLINK */
1816 	ztest_replay_remove,	/* TX_REMOVE */
1817 	NULL,			/* TX_RMDIR */
1818 	NULL,			/* TX_LINK */
1819 	NULL,			/* TX_RENAME */
1820 	ztest_replay_write,	/* TX_WRITE */
1821 	ztest_replay_truncate,	/* TX_TRUNCATE */
1822 	ztest_replay_setattr,	/* TX_SETATTR */
1823 	NULL,			/* TX_ACL */
1824 	NULL,			/* TX_CREATE_ACL */
1825 	NULL,			/* TX_CREATE_ATTR */
1826 	NULL,			/* TX_CREATE_ACL_ATTR */
1827 	NULL,			/* TX_MKDIR_ACL */
1828 	NULL,			/* TX_MKDIR_ATTR */
1829 	NULL,			/* TX_MKDIR_ACL_ATTR */
1830 	NULL,			/* TX_WRITE2 */
1831 };
1832 
1833 /*
1834  * ZIL get_data callbacks
1835  */
1836 
1837 static void
1838 ztest_get_done(zgd_t *zgd, int error)
1839 {
1840 	ztest_ds_t *zd = zgd->zgd_private;
1841 	uint64_t object = zgd->zgd_rl->rl_object;
1842 
1843 	if (zgd->zgd_db)
1844 		dmu_buf_rele(zgd->zgd_db, zgd);
1845 
1846 	ztest_range_unlock(zgd->zgd_rl);
1847 	ztest_object_unlock(zd, object);
1848 
1849 	if (error == 0 && zgd->zgd_bp)
1850 		zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1851 
1852 	umem_free(zgd, sizeof (*zgd));
1853 }
1854 
1855 static int
1856 ztest_get_data(void *arg, lr_write_t *lr, char *buf, struct lwb *lwb,
1857     zio_t *zio)
1858 {
1859 	ztest_ds_t *zd = arg;
1860 	objset_t *os = zd->zd_os;
1861 	uint64_t object = lr->lr_foid;
1862 	uint64_t offset = lr->lr_offset;
1863 	uint64_t size = lr->lr_length;
1864 	uint64_t txg = lr->lr_common.lrc_txg;
1865 	uint64_t crtxg;
1866 	dmu_object_info_t doi;
1867 	dmu_buf_t *db;
1868 	zgd_t *zgd;
1869 	int error;
1870 
1871 	ASSERT3P(lwb, !=, NULL);
1872 	ASSERT3P(zio, !=, NULL);
1873 	ASSERT3U(size, !=, 0);
1874 
1875 	ztest_object_lock(zd, object, RL_READER);
1876 	error = dmu_bonus_hold(os, object, FTAG, &db);
1877 	if (error) {
1878 		ztest_object_unlock(zd, object);
1879 		return (error);
1880 	}
1881 
1882 	crtxg = ztest_bt_bonus(db)->bt_crtxg;
1883 
1884 	if (crtxg == 0 || crtxg > txg) {
1885 		dmu_buf_rele(db, FTAG);
1886 		ztest_object_unlock(zd, object);
1887 		return (ENOENT);
1888 	}
1889 
1890 	dmu_object_info_from_db(db, &doi);
1891 	dmu_buf_rele(db, FTAG);
1892 	db = NULL;
1893 
1894 	zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL);
1895 	zgd->zgd_lwb = lwb;
1896 	zgd->zgd_private = zd;
1897 
1898 	if (buf != NULL) {	/* immediate write */
1899 		zgd->zgd_rl = ztest_range_lock(zd, object, offset, size,
1900 		    RL_READER);
1901 
1902 		error = dmu_read(os, object, offset, size, buf,
1903 		    DMU_READ_NO_PREFETCH);
1904 		ASSERT(error == 0);
1905 	} else {
1906 		size = doi.doi_data_block_size;
1907 		if (ISP2(size)) {
1908 			offset = P2ALIGN(offset, size);
1909 		} else {
1910 			ASSERT(offset < size);
1911 			offset = 0;
1912 		}
1913 
1914 		zgd->zgd_rl = ztest_range_lock(zd, object, offset, size,
1915 		    RL_READER);
1916 
1917 		error = dmu_buf_hold(os, object, offset, zgd, &db,
1918 		    DMU_READ_NO_PREFETCH);
1919 
1920 		if (error == 0) {
1921 			blkptr_t *bp = &lr->lr_blkptr;
1922 
1923 			zgd->zgd_db = db;
1924 			zgd->zgd_bp = bp;
1925 
1926 			ASSERT(db->db_offset == offset);
1927 			ASSERT(db->db_size == size);
1928 
1929 			error = dmu_sync(zio, lr->lr_common.lrc_txg,
1930 			    ztest_get_done, zgd);
1931 
1932 			if (error == 0)
1933 				return (0);
1934 		}
1935 	}
1936 
1937 	ztest_get_done(zgd, error);
1938 
1939 	return (error);
1940 }
1941 
1942 static void *
1943 ztest_lr_alloc(size_t lrsize, char *name)
1944 {
1945 	char *lr;
1946 	size_t namesize = name ? strlen(name) + 1 : 0;
1947 
1948 	lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL);
1949 
1950 	if (name)
1951 		bcopy(name, lr + lrsize, namesize);
1952 
1953 	return (lr);
1954 }
1955 
1956 void
1957 ztest_lr_free(void *lr, size_t lrsize, char *name)
1958 {
1959 	size_t namesize = name ? strlen(name) + 1 : 0;
1960 
1961 	umem_free(lr, lrsize + namesize);
1962 }
1963 
1964 /*
1965  * Lookup a bunch of objects.  Returns the number of objects not found.
1966  */
1967 static int
1968 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count)
1969 {
1970 	int missing = 0;
1971 	int error;
1972 
1973 	ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
1974 
1975 	for (int i = 0; i < count; i++, od++) {
1976 		od->od_object = 0;
1977 		error = zap_lookup(zd->zd_os, od->od_dir, od->od_name,
1978 		    sizeof (uint64_t), 1, &od->od_object);
1979 		if (error) {
1980 			ASSERT(error == ENOENT);
1981 			ASSERT(od->od_object == 0);
1982 			missing++;
1983 		} else {
1984 			dmu_buf_t *db;
1985 			ztest_block_tag_t *bbt;
1986 			dmu_object_info_t doi;
1987 
1988 			ASSERT(od->od_object != 0);
1989 			ASSERT(missing == 0);	/* there should be no gaps */
1990 
1991 			ztest_object_lock(zd, od->od_object, RL_READER);
1992 			VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os,
1993 			    od->od_object, FTAG, &db));
1994 			dmu_object_info_from_db(db, &doi);
1995 			bbt = ztest_bt_bonus(db);
1996 			ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1997 			od->od_type = doi.doi_type;
1998 			od->od_blocksize = doi.doi_data_block_size;
1999 			od->od_gen = bbt->bt_gen;
2000 			dmu_buf_rele(db, FTAG);
2001 			ztest_object_unlock(zd, od->od_object);
2002 		}
2003 	}
2004 
2005 	return (missing);
2006 }
2007 
2008 static int
2009 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count)
2010 {
2011 	int missing = 0;
2012 
2013 	ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2014 
2015 	for (int i = 0; i < count; i++, od++) {
2016 		if (missing) {
2017 			od->od_object = 0;
2018 			missing++;
2019 			continue;
2020 		}
2021 
2022 		lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2023 
2024 		lr->lr_doid = od->od_dir;
2025 		lr->lr_foid = 0;	/* 0 to allocate, > 0 to claim */
2026 		lr->lrz_type = od->od_crtype;
2027 		lr->lrz_blocksize = od->od_crblocksize;
2028 		lr->lrz_ibshift = ztest_random_ibshift();
2029 		lr->lrz_bonustype = DMU_OT_UINT64_OTHER;
2030 		lr->lrz_bonuslen = dmu_bonus_max();
2031 		lr->lr_gen = od->od_crgen;
2032 		lr->lr_crtime[0] = time(NULL);
2033 
2034 		if (ztest_replay_create(zd, lr, B_FALSE) != 0) {
2035 			ASSERT(missing == 0);
2036 			od->od_object = 0;
2037 			missing++;
2038 		} else {
2039 			od->od_object = lr->lr_foid;
2040 			od->od_type = od->od_crtype;
2041 			od->od_blocksize = od->od_crblocksize;
2042 			od->od_gen = od->od_crgen;
2043 			ASSERT(od->od_object != 0);
2044 		}
2045 
2046 		ztest_lr_free(lr, sizeof (*lr), od->od_name);
2047 	}
2048 
2049 	return (missing);
2050 }
2051 
2052 static int
2053 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count)
2054 {
2055 	int missing = 0;
2056 	int error;
2057 
2058 	ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2059 
2060 	od += count - 1;
2061 
2062 	for (int i = count - 1; i >= 0; i--, od--) {
2063 		if (missing) {
2064 			missing++;
2065 			continue;
2066 		}
2067 
2068 		/*
2069 		 * No object was found.
2070 		 */
2071 		if (od->od_object == 0)
2072 			continue;
2073 
2074 		lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2075 
2076 		lr->lr_doid = od->od_dir;
2077 
2078 		if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) {
2079 			ASSERT3U(error, ==, ENOSPC);
2080 			missing++;
2081 		} else {
2082 			od->od_object = 0;
2083 		}
2084 		ztest_lr_free(lr, sizeof (*lr), od->od_name);
2085 	}
2086 
2087 	return (missing);
2088 }
2089 
2090 static int
2091 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size,
2092     void *data)
2093 {
2094 	lr_write_t *lr;
2095 	int error;
2096 
2097 	lr = ztest_lr_alloc(sizeof (*lr) + size, NULL);
2098 
2099 	lr->lr_foid = object;
2100 	lr->lr_offset = offset;
2101 	lr->lr_length = size;
2102 	lr->lr_blkoff = 0;
2103 	BP_ZERO(&lr->lr_blkptr);
2104 
2105 	bcopy(data, lr + 1, size);
2106 
2107 	error = ztest_replay_write(zd, lr, B_FALSE);
2108 
2109 	ztest_lr_free(lr, sizeof (*lr) + size, NULL);
2110 
2111 	return (error);
2112 }
2113 
2114 static int
2115 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2116 {
2117 	lr_truncate_t *lr;
2118 	int error;
2119 
2120 	lr = ztest_lr_alloc(sizeof (*lr), NULL);
2121 
2122 	lr->lr_foid = object;
2123 	lr->lr_offset = offset;
2124 	lr->lr_length = size;
2125 
2126 	error = ztest_replay_truncate(zd, lr, B_FALSE);
2127 
2128 	ztest_lr_free(lr, sizeof (*lr), NULL);
2129 
2130 	return (error);
2131 }
2132 
2133 static int
2134 ztest_setattr(ztest_ds_t *zd, uint64_t object)
2135 {
2136 	lr_setattr_t *lr;
2137 	int error;
2138 
2139 	lr = ztest_lr_alloc(sizeof (*lr), NULL);
2140 
2141 	lr->lr_foid = object;
2142 	lr->lr_size = 0;
2143 	lr->lr_mode = 0;
2144 
2145 	error = ztest_replay_setattr(zd, lr, B_FALSE);
2146 
2147 	ztest_lr_free(lr, sizeof (*lr), NULL);
2148 
2149 	return (error);
2150 }
2151 
2152 static void
2153 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2154 {
2155 	objset_t *os = zd->zd_os;
2156 	dmu_tx_t *tx;
2157 	uint64_t txg;
2158 	rl_t *rl;
2159 
2160 	txg_wait_synced(dmu_objset_pool(os), 0);
2161 
2162 	ztest_object_lock(zd, object, RL_READER);
2163 	rl = ztest_range_lock(zd, object, offset, size, RL_WRITER);
2164 
2165 	tx = dmu_tx_create(os);
2166 
2167 	dmu_tx_hold_write(tx, object, offset, size);
2168 
2169 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2170 
2171 	if (txg != 0) {
2172 		dmu_prealloc(os, object, offset, size, tx);
2173 		dmu_tx_commit(tx);
2174 		txg_wait_synced(dmu_objset_pool(os), txg);
2175 	} else {
2176 		(void) dmu_free_long_range(os, object, offset, size);
2177 	}
2178 
2179 	ztest_range_unlock(rl);
2180 	ztest_object_unlock(zd, object);
2181 }
2182 
2183 static void
2184 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset)
2185 {
2186 	int err;
2187 	ztest_block_tag_t wbt;
2188 	dmu_object_info_t doi;
2189 	enum ztest_io_type io_type;
2190 	uint64_t blocksize;
2191 	void *data;
2192 
2193 	VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0);
2194 	blocksize = doi.doi_data_block_size;
2195 	data = umem_alloc(blocksize, UMEM_NOFAIL);
2196 
2197 	/*
2198 	 * Pick an i/o type at random, biased toward writing block tags.
2199 	 */
2200 	io_type = ztest_random(ZTEST_IO_TYPES);
2201 	if (ztest_random(2) == 0)
2202 		io_type = ZTEST_IO_WRITE_TAG;
2203 
2204 	rw_enter(&zd->zd_zilog_lock, RW_READER);
2205 
2206 	switch (io_type) {
2207 
2208 	case ZTEST_IO_WRITE_TAG:
2209 		ztest_bt_generate(&wbt, zd->zd_os, object, offset, 0, 0, 0);
2210 		(void) ztest_write(zd, object, offset, sizeof (wbt), &wbt);
2211 		break;
2212 
2213 	case ZTEST_IO_WRITE_PATTERN:
2214 		(void) memset(data, 'a' + (object + offset) % 5, blocksize);
2215 		if (ztest_random(2) == 0) {
2216 			/*
2217 			 * Induce fletcher2 collisions to ensure that
2218 			 * zio_ddt_collision() detects and resolves them
2219 			 * when using fletcher2-verify for deduplication.
2220 			 */
2221 			((uint64_t *)data)[0] ^= 1ULL << 63;
2222 			((uint64_t *)data)[4] ^= 1ULL << 63;
2223 		}
2224 		(void) ztest_write(zd, object, offset, blocksize, data);
2225 		break;
2226 
2227 	case ZTEST_IO_WRITE_ZEROES:
2228 		bzero(data, blocksize);
2229 		(void) ztest_write(zd, object, offset, blocksize, data);
2230 		break;
2231 
2232 	case ZTEST_IO_TRUNCATE:
2233 		(void) ztest_truncate(zd, object, offset, blocksize);
2234 		break;
2235 
2236 	case ZTEST_IO_SETATTR:
2237 		(void) ztest_setattr(zd, object);
2238 		break;
2239 
2240 	case ZTEST_IO_REWRITE:
2241 		rw_enter(&ztest_name_lock, RW_READER);
2242 		err = ztest_dsl_prop_set_uint64(zd->zd_name,
2243 		    ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa),
2244 		    B_FALSE);
2245 		VERIFY(err == 0 || err == ENOSPC);
2246 		err = ztest_dsl_prop_set_uint64(zd->zd_name,
2247 		    ZFS_PROP_COMPRESSION,
2248 		    ztest_random_dsl_prop(ZFS_PROP_COMPRESSION),
2249 		    B_FALSE);
2250 		VERIFY(err == 0 || err == ENOSPC);
2251 		rw_exit(&ztest_name_lock);
2252 
2253 		VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data,
2254 		    DMU_READ_NO_PREFETCH));
2255 
2256 		(void) ztest_write(zd, object, offset, blocksize, data);
2257 		break;
2258 	}
2259 
2260 	rw_exit(&zd->zd_zilog_lock);
2261 
2262 	umem_free(data, blocksize);
2263 }
2264 
2265 /*
2266  * Initialize an object description template.
2267  */
2268 static void
2269 ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index,
2270     dmu_object_type_t type, uint64_t blocksize, uint64_t gen)
2271 {
2272 	od->od_dir = ZTEST_DIROBJ;
2273 	od->od_object = 0;
2274 
2275 	od->od_crtype = type;
2276 	od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize();
2277 	od->od_crgen = gen;
2278 
2279 	od->od_type = DMU_OT_NONE;
2280 	od->od_blocksize = 0;
2281 	od->od_gen = 0;
2282 
2283 	(void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]",
2284 	    tag, (int64_t)id, index);
2285 }
2286 
2287 /*
2288  * Lookup or create the objects for a test using the od template.
2289  * If the objects do not all exist, or if 'remove' is specified,
2290  * remove any existing objects and create new ones.  Otherwise,
2291  * use the existing objects.
2292  */
2293 static int
2294 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove)
2295 {
2296 	int count = size / sizeof (*od);
2297 	int rv = 0;
2298 
2299 	mutex_enter(&zd->zd_dirobj_lock);
2300 	if ((ztest_lookup(zd, od, count) != 0 || remove) &&
2301 	    (ztest_remove(zd, od, count) != 0 ||
2302 	    ztest_create(zd, od, count) != 0))
2303 		rv = -1;
2304 	zd->zd_od = od;
2305 	mutex_exit(&zd->zd_dirobj_lock);
2306 
2307 	return (rv);
2308 }
2309 
2310 /* ARGSUSED */
2311 void
2312 ztest_zil_commit(ztest_ds_t *zd, uint64_t id)
2313 {
2314 	zilog_t *zilog = zd->zd_zilog;
2315 
2316 	rw_enter(&zd->zd_zilog_lock, RW_READER);
2317 
2318 	zil_commit(zilog, ztest_random(ZTEST_OBJECTS));
2319 
2320 	/*
2321 	 * Remember the committed values in zd, which is in parent/child
2322 	 * shared memory.  If we die, the next iteration of ztest_run()
2323 	 * will verify that the log really does contain this record.
2324 	 */
2325 	mutex_enter(&zilog->zl_lock);
2326 	ASSERT(zd->zd_shared != NULL);
2327 	ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq);
2328 	zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq;
2329 	mutex_exit(&zilog->zl_lock);
2330 
2331 	rw_exit(&zd->zd_zilog_lock);
2332 }
2333 
2334 /*
2335  * This function is designed to simulate the operations that occur during a
2336  * mount/unmount operation.  We hold the dataset across these operations in an
2337  * attempt to expose any implicit assumptions about ZIL management.
2338  */
2339 /* ARGSUSED */
2340 void
2341 ztest_zil_remount(ztest_ds_t *zd, uint64_t id)
2342 {
2343 	objset_t *os = zd->zd_os;
2344 
2345 	/*
2346 	 * We grab the zd_dirobj_lock to ensure that no other thread is
2347 	 * updating the zil (i.e. adding in-memory log records) and the
2348 	 * zd_zilog_lock to block any I/O.
2349 	 */
2350 	mutex_enter(&zd->zd_dirobj_lock);
2351 	rw_enter(&zd->zd_zilog_lock, RW_WRITER);
2352 
2353 	/* zfsvfs_teardown() */
2354 	zil_close(zd->zd_zilog);
2355 
2356 	/* zfsvfs_setup() */
2357 	VERIFY(zil_open(os, ztest_get_data) == zd->zd_zilog);
2358 	zil_replay(os, zd, ztest_replay_vector);
2359 
2360 	rw_exit(&zd->zd_zilog_lock);
2361 	mutex_exit(&zd->zd_dirobj_lock);
2362 }
2363 
2364 /*
2365  * Verify that we can't destroy an active pool, create an existing pool,
2366  * or create a pool with a bad vdev spec.
2367  */
2368 /* ARGSUSED */
2369 void
2370 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id)
2371 {
2372 	ztest_shared_opts_t *zo = &ztest_opts;
2373 	spa_t *spa;
2374 	nvlist_t *nvroot;
2375 
2376 	/*
2377 	 * Attempt to create using a bad file.
2378 	 */
2379 	nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1);
2380 	VERIFY3U(ENOENT, ==,
2381 	    spa_create("ztest_bad_file", nvroot, NULL, NULL));
2382 	nvlist_free(nvroot);
2383 
2384 	/*
2385 	 * Attempt to create using a bad mirror.
2386 	 */
2387 	nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 2, 1);
2388 	VERIFY3U(ENOENT, ==,
2389 	    spa_create("ztest_bad_mirror", nvroot, NULL, NULL));
2390 	nvlist_free(nvroot);
2391 
2392 	/*
2393 	 * Attempt to create an existing pool.  It shouldn't matter
2394 	 * what's in the nvroot; we should fail with EEXIST.
2395 	 */
2396 	rw_enter(&ztest_name_lock, RW_READER);
2397 	nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1);
2398 	VERIFY3U(EEXIST, ==, spa_create(zo->zo_pool, nvroot, NULL, NULL));
2399 	nvlist_free(nvroot);
2400 	VERIFY3U(0, ==, spa_open(zo->zo_pool, &spa, FTAG));
2401 	VERIFY3U(EBUSY, ==, spa_destroy(zo->zo_pool));
2402 	spa_close(spa, FTAG);
2403 
2404 	rw_exit(&ztest_name_lock);
2405 }
2406 
2407 /* ARGSUSED */
2408 void
2409 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id)
2410 {
2411 	spa_t *spa;
2412 	uint64_t initial_version = SPA_VERSION_INITIAL;
2413 	uint64_t version, newversion;
2414 	nvlist_t *nvroot, *props;
2415 	char *name;
2416 
2417 	mutex_enter(&ztest_vdev_lock);
2418 	name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool);
2419 
2420 	/*
2421 	 * Clean up from previous runs.
2422 	 */
2423 	(void) spa_destroy(name);
2424 
2425 	nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0,
2426 	    0, ztest_opts.zo_raidz, ztest_opts.zo_mirrors, 1);
2427 
2428 	/*
2429 	 * If we're configuring a RAIDZ device then make sure that the
2430 	 * the initial version is capable of supporting that feature.
2431 	 */
2432 	switch (ztest_opts.zo_raidz_parity) {
2433 	case 0:
2434 	case 1:
2435 		initial_version = SPA_VERSION_INITIAL;
2436 		break;
2437 	case 2:
2438 		initial_version = SPA_VERSION_RAIDZ2;
2439 		break;
2440 	case 3:
2441 		initial_version = SPA_VERSION_RAIDZ3;
2442 		break;
2443 	}
2444 
2445 	/*
2446 	 * Create a pool with a spa version that can be upgraded. Pick
2447 	 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES.
2448 	 */
2449 	do {
2450 		version = ztest_random_spa_version(initial_version);
2451 	} while (version > SPA_VERSION_BEFORE_FEATURES);
2452 
2453 	props = fnvlist_alloc();
2454 	fnvlist_add_uint64(props,
2455 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), version);
2456 	VERIFY0(spa_create(name, nvroot, props, NULL));
2457 	fnvlist_free(nvroot);
2458 	fnvlist_free(props);
2459 
2460 	VERIFY0(spa_open(name, &spa, FTAG));
2461 	VERIFY3U(spa_version(spa), ==, version);
2462 	newversion = ztest_random_spa_version(version + 1);
2463 
2464 	if (ztest_opts.zo_verbose >= 4) {
2465 		(void) printf("upgrading spa version from %llu to %llu\n",
2466 		    (u_longlong_t)version, (u_longlong_t)newversion);
2467 	}
2468 
2469 	spa_upgrade(spa, newversion);
2470 	VERIFY3U(spa_version(spa), >, version);
2471 	VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config,
2472 	    zpool_prop_to_name(ZPOOL_PROP_VERSION)));
2473 	spa_close(spa, FTAG);
2474 
2475 	strfree(name);
2476 	mutex_exit(&ztest_vdev_lock);
2477 }
2478 
2479 static vdev_t *
2480 vdev_lookup_by_path(vdev_t *vd, const char *path)
2481 {
2482 	vdev_t *mvd;
2483 
2484 	if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0)
2485 		return (vd);
2486 
2487 	for (int c = 0; c < vd->vdev_children; c++)
2488 		if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) !=
2489 		    NULL)
2490 			return (mvd);
2491 
2492 	return (NULL);
2493 }
2494 
2495 /*
2496  * Find the first available hole which can be used as a top-level.
2497  */
2498 int
2499 find_vdev_hole(spa_t *spa)
2500 {
2501 	vdev_t *rvd = spa->spa_root_vdev;
2502 	int c;
2503 
2504 	ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV);
2505 
2506 	for (c = 0; c < rvd->vdev_children; c++) {
2507 		vdev_t *cvd = rvd->vdev_child[c];
2508 
2509 		if (cvd->vdev_ishole)
2510 			break;
2511 	}
2512 	return (c);
2513 }
2514 
2515 /*
2516  * Verify that vdev_add() works as expected.
2517  */
2518 /* ARGSUSED */
2519 void
2520 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id)
2521 {
2522 	ztest_shared_t *zs = ztest_shared;
2523 	spa_t *spa = ztest_spa;
2524 	uint64_t leaves;
2525 	uint64_t guid;
2526 	nvlist_t *nvroot;
2527 	int error;
2528 
2529 	mutex_enter(&ztest_vdev_lock);
2530 	leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz;
2531 
2532 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2533 
2534 	ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves;
2535 
2536 	/*
2537 	 * If we have slogs then remove them 1/4 of the time.
2538 	 */
2539 	if (spa_has_slogs(spa) && ztest_random(4) == 0) {
2540 		/*
2541 		 * Grab the guid from the head of the log class rotor.
2542 		 */
2543 		guid = spa_log_class(spa)->mc_rotor->mg_vd->vdev_guid;
2544 
2545 		spa_config_exit(spa, SCL_VDEV, FTAG);
2546 
2547 		/*
2548 		 * We have to grab the zs_name_lock as writer to
2549 		 * prevent a race between removing a slog (dmu_objset_find)
2550 		 * and destroying a dataset. Removing the slog will
2551 		 * grab a reference on the dataset which may cause
2552 		 * dmu_objset_destroy() to fail with EBUSY thus
2553 		 * leaving the dataset in an inconsistent state.
2554 		 */
2555 		rw_enter(&ztest_name_lock, RW_WRITER);
2556 		error = spa_vdev_remove(spa, guid, B_FALSE);
2557 		rw_exit(&ztest_name_lock);
2558 
2559 		if (error && error != EEXIST)
2560 			fatal(0, "spa_vdev_remove() = %d", error);
2561 	} else {
2562 		spa_config_exit(spa, SCL_VDEV, FTAG);
2563 
2564 		/*
2565 		 * Make 1/4 of the devices be log devices.
2566 		 */
2567 		nvroot = make_vdev_root(NULL, NULL, NULL,
2568 		    ztest_opts.zo_vdev_size, 0,
2569 		    ztest_random(4) == 0, ztest_opts.zo_raidz,
2570 		    zs->zs_mirrors, 1);
2571 
2572 		error = spa_vdev_add(spa, nvroot);
2573 		nvlist_free(nvroot);
2574 
2575 		if (error == ENOSPC)
2576 			ztest_record_enospc("spa_vdev_add");
2577 		else if (error != 0)
2578 			fatal(0, "spa_vdev_add() = %d", error);
2579 	}
2580 
2581 	mutex_exit(&ztest_vdev_lock);
2582 }
2583 
2584 /*
2585  * Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
2586  */
2587 /* ARGSUSED */
2588 void
2589 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id)
2590 {
2591 	ztest_shared_t *zs = ztest_shared;
2592 	spa_t *spa = ztest_spa;
2593 	vdev_t *rvd = spa->spa_root_vdev;
2594 	spa_aux_vdev_t *sav;
2595 	char *aux;
2596 	uint64_t guid = 0;
2597 	int error;
2598 
2599 	if (ztest_random(2) == 0) {
2600 		sav = &spa->spa_spares;
2601 		aux = ZPOOL_CONFIG_SPARES;
2602 	} else {
2603 		sav = &spa->spa_l2cache;
2604 		aux = ZPOOL_CONFIG_L2CACHE;
2605 	}
2606 
2607 	mutex_enter(&ztest_vdev_lock);
2608 
2609 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2610 
2611 	if (sav->sav_count != 0 && ztest_random(4) == 0) {
2612 		/*
2613 		 * Pick a random device to remove.
2614 		 */
2615 		guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid;
2616 	} else {
2617 		/*
2618 		 * Find an unused device we can add.
2619 		 */
2620 		zs->zs_vdev_aux = 0;
2621 		for (;;) {
2622 			char path[MAXPATHLEN];
2623 			int c;
2624 			(void) snprintf(path, sizeof (path), ztest_aux_template,
2625 			    ztest_opts.zo_dir, ztest_opts.zo_pool, aux,
2626 			    zs->zs_vdev_aux);
2627 			for (c = 0; c < sav->sav_count; c++)
2628 				if (strcmp(sav->sav_vdevs[c]->vdev_path,
2629 				    path) == 0)
2630 					break;
2631 			if (c == sav->sav_count &&
2632 			    vdev_lookup_by_path(rvd, path) == NULL)
2633 				break;
2634 			zs->zs_vdev_aux++;
2635 		}
2636 	}
2637 
2638 	spa_config_exit(spa, SCL_VDEV, FTAG);
2639 
2640 	if (guid == 0) {
2641 		/*
2642 		 * Add a new device.
2643 		 */
2644 		nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL,
2645 		    (ztest_opts.zo_vdev_size * 5) / 4, 0, 0, 0, 0, 1);
2646 		error = spa_vdev_add(spa, nvroot);
2647 		if (error != 0)
2648 			fatal(0, "spa_vdev_add(%p) = %d", nvroot, error);
2649 		nvlist_free(nvroot);
2650 	} else {
2651 		/*
2652 		 * Remove an existing device.  Sometimes, dirty its
2653 		 * vdev state first to make sure we handle removal
2654 		 * of devices that have pending state changes.
2655 		 */
2656 		if (ztest_random(2) == 0)
2657 			(void) vdev_online(spa, guid, 0, NULL);
2658 
2659 		error = spa_vdev_remove(spa, guid, B_FALSE);
2660 		if (error != 0 && error != EBUSY)
2661 			fatal(0, "spa_vdev_remove(%llu) = %d", guid, error);
2662 	}
2663 
2664 	mutex_exit(&ztest_vdev_lock);
2665 }
2666 
2667 /*
2668  * split a pool if it has mirror tlvdevs
2669  */
2670 /* ARGSUSED */
2671 void
2672 ztest_split_pool(ztest_ds_t *zd, uint64_t id)
2673 {
2674 	ztest_shared_t *zs = ztest_shared;
2675 	spa_t *spa = ztest_spa;
2676 	vdev_t *rvd = spa->spa_root_vdev;
2677 	nvlist_t *tree, **child, *config, *split, **schild;
2678 	uint_t c, children, schildren = 0, lastlogid = 0;
2679 	int error = 0;
2680 
2681 	mutex_enter(&ztest_vdev_lock);
2682 
2683 	/* ensure we have a useable config; mirrors of raidz aren't supported */
2684 	if (zs->zs_mirrors < 3 || ztest_opts.zo_raidz > 1) {
2685 		mutex_exit(&ztest_vdev_lock);
2686 		return;
2687 	}
2688 
2689 	/* clean up the old pool, if any */
2690 	(void) spa_destroy("splitp");
2691 
2692 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2693 
2694 	/* generate a config from the existing config */
2695 	mutex_enter(&spa->spa_props_lock);
2696 	VERIFY(nvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE,
2697 	    &tree) == 0);
2698 	mutex_exit(&spa->spa_props_lock);
2699 
2700 	VERIFY(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child,
2701 	    &children) == 0);
2702 
2703 	schild = malloc(rvd->vdev_children * sizeof (nvlist_t *));
2704 	for (c = 0; c < children; c++) {
2705 		vdev_t *tvd = rvd->vdev_child[c];
2706 		nvlist_t **mchild;
2707 		uint_t mchildren;
2708 
2709 		if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) {
2710 			VERIFY(nvlist_alloc(&schild[schildren], NV_UNIQUE_NAME,
2711 			    0) == 0);
2712 			VERIFY(nvlist_add_string(schild[schildren],
2713 			    ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0);
2714 			VERIFY(nvlist_add_uint64(schild[schildren],
2715 			    ZPOOL_CONFIG_IS_HOLE, 1) == 0);
2716 			if (lastlogid == 0)
2717 				lastlogid = schildren;
2718 			++schildren;
2719 			continue;
2720 		}
2721 		lastlogid = 0;
2722 		VERIFY(nvlist_lookup_nvlist_array(child[c],
2723 		    ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0);
2724 		VERIFY(nvlist_dup(mchild[0], &schild[schildren++], 0) == 0);
2725 	}
2726 
2727 	/* OK, create a config that can be used to split */
2728 	VERIFY(nvlist_alloc(&split, NV_UNIQUE_NAME, 0) == 0);
2729 	VERIFY(nvlist_add_string(split, ZPOOL_CONFIG_TYPE,
2730 	    VDEV_TYPE_ROOT) == 0);
2731 	VERIFY(nvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild,
2732 	    lastlogid != 0 ? lastlogid : schildren) == 0);
2733 
2734 	VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, 0) == 0);
2735 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split) == 0);
2736 
2737 	for (c = 0; c < schildren; c++)
2738 		nvlist_free(schild[c]);
2739 	free(schild);
2740 	nvlist_free(split);
2741 
2742 	spa_config_exit(spa, SCL_VDEV, FTAG);
2743 
2744 	rw_enter(&ztest_name_lock, RW_WRITER);
2745 	error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE);
2746 	rw_exit(&ztest_name_lock);
2747 
2748 	nvlist_free(config);
2749 
2750 	if (error == 0) {
2751 		(void) printf("successful split - results:\n");
2752 		mutex_enter(&spa_namespace_lock);
2753 		show_pool_stats(spa);
2754 		show_pool_stats(spa_lookup("splitp"));
2755 		mutex_exit(&spa_namespace_lock);
2756 		++zs->zs_splits;
2757 		--zs->zs_mirrors;
2758 	}
2759 	mutex_exit(&ztest_vdev_lock);
2760 
2761 }
2762 
2763 /*
2764  * Verify that we can attach and detach devices.
2765  */
2766 /* ARGSUSED */
2767 void
2768 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
2769 {
2770 	ztest_shared_t *zs = ztest_shared;
2771 	spa_t *spa = ztest_spa;
2772 	spa_aux_vdev_t *sav = &spa->spa_spares;
2773 	vdev_t *rvd = spa->spa_root_vdev;
2774 	vdev_t *oldvd, *newvd, *pvd;
2775 	nvlist_t *root;
2776 	uint64_t leaves;
2777 	uint64_t leaf, top;
2778 	uint64_t ashift = ztest_get_ashift();
2779 	uint64_t oldguid, pguid;
2780 	uint64_t oldsize, newsize;
2781 	char oldpath[MAXPATHLEN], newpath[MAXPATHLEN];
2782 	int replacing;
2783 	int oldvd_has_siblings = B_FALSE;
2784 	int newvd_is_spare = B_FALSE;
2785 	int oldvd_is_log;
2786 	int error, expected_error;
2787 
2788 	mutex_enter(&ztest_vdev_lock);
2789 	leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz;
2790 
2791 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2792 
2793 	/*
2794 	 * If a vdev is in the process of being removed, its removal may
2795 	 * finish while we are in progress, leading to an unexpected error
2796 	 * value.  Don't bother trying to attach while we are in the middle
2797 	 * of removal.
2798 	 */
2799 	if (spa->spa_vdev_removal != NULL) {
2800 		spa_config_exit(spa, SCL_ALL, FTAG);
2801 		mutex_exit(&ztest_vdev_lock);
2802 		return;
2803 	}
2804 
2805 	/*
2806 	 * Decide whether to do an attach or a replace.
2807 	 */
2808 	replacing = ztest_random(2);
2809 
2810 	/*
2811 	 * Pick a random top-level vdev.
2812 	 */
2813 	top = ztest_random_vdev_top(spa, B_TRUE);
2814 
2815 	/*
2816 	 * Pick a random leaf within it.
2817 	 */
2818 	leaf = ztest_random(leaves);
2819 
2820 	/*
2821 	 * Locate this vdev.
2822 	 */
2823 	oldvd = rvd->vdev_child[top];
2824 	if (zs->zs_mirrors >= 1) {
2825 		ASSERT(oldvd->vdev_ops == &vdev_mirror_ops);
2826 		ASSERT(oldvd->vdev_children >= zs->zs_mirrors);
2827 		oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raidz];
2828 	}
2829 	if (ztest_opts.zo_raidz > 1) {
2830 		ASSERT(oldvd->vdev_ops == &vdev_raidz_ops);
2831 		ASSERT(oldvd->vdev_children == ztest_opts.zo_raidz);
2832 		oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raidz];
2833 	}
2834 
2835 	/*
2836 	 * If we're already doing an attach or replace, oldvd may be a
2837 	 * mirror vdev -- in which case, pick a random child.
2838 	 */
2839 	while (oldvd->vdev_children != 0) {
2840 		oldvd_has_siblings = B_TRUE;
2841 		ASSERT(oldvd->vdev_children >= 2);
2842 		oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)];
2843 	}
2844 
2845 	oldguid = oldvd->vdev_guid;
2846 	oldsize = vdev_get_min_asize(oldvd);
2847 	oldvd_is_log = oldvd->vdev_top->vdev_islog;
2848 	(void) strcpy(oldpath, oldvd->vdev_path);
2849 	pvd = oldvd->vdev_parent;
2850 	pguid = pvd->vdev_guid;
2851 
2852 	/*
2853 	 * If oldvd has siblings, then half of the time, detach it.
2854 	 */
2855 	if (oldvd_has_siblings && ztest_random(2) == 0) {
2856 		spa_config_exit(spa, SCL_ALL, FTAG);
2857 		error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE);
2858 		if (error != 0 && error != ENODEV && error != EBUSY &&
2859 		    error != ENOTSUP)
2860 			fatal(0, "detach (%s) returned %d", oldpath, error);
2861 		mutex_exit(&ztest_vdev_lock);
2862 		return;
2863 	}
2864 
2865 	/*
2866 	 * For the new vdev, choose with equal probability between the two
2867 	 * standard paths (ending in either 'a' or 'b') or a random hot spare.
2868 	 */
2869 	if (sav->sav_count != 0 && ztest_random(3) == 0) {
2870 		newvd = sav->sav_vdevs[ztest_random(sav->sav_count)];
2871 		newvd_is_spare = B_TRUE;
2872 		(void) strcpy(newpath, newvd->vdev_path);
2873 	} else {
2874 		(void) snprintf(newpath, sizeof (newpath), ztest_dev_template,
2875 		    ztest_opts.zo_dir, ztest_opts.zo_pool,
2876 		    top * leaves + leaf);
2877 		if (ztest_random(2) == 0)
2878 			newpath[strlen(newpath) - 1] = 'b';
2879 		newvd = vdev_lookup_by_path(rvd, newpath);
2880 	}
2881 
2882 	if (newvd) {
2883 		/*
2884 		 * Reopen to ensure the vdev's asize field isn't stale.
2885 		 */
2886 		vdev_reopen(newvd);
2887 		newsize = vdev_get_min_asize(newvd);
2888 	} else {
2889 		/*
2890 		 * Make newsize a little bigger or smaller than oldsize.
2891 		 * If it's smaller, the attach should fail.
2892 		 * If it's larger, and we're doing a replace,
2893 		 * we should get dynamic LUN growth when we're done.
2894 		 */
2895 		newsize = 10 * oldsize / (9 + ztest_random(3));
2896 	}
2897 
2898 	/*
2899 	 * If pvd is not a mirror or root, the attach should fail with ENOTSUP,
2900 	 * unless it's a replace; in that case any non-replacing parent is OK.
2901 	 *
2902 	 * If newvd is already part of the pool, it should fail with EBUSY.
2903 	 *
2904 	 * If newvd is too small, it should fail with EOVERFLOW.
2905 	 */
2906 	if (pvd->vdev_ops != &vdev_mirror_ops &&
2907 	    pvd->vdev_ops != &vdev_root_ops && (!replacing ||
2908 	    pvd->vdev_ops == &vdev_replacing_ops ||
2909 	    pvd->vdev_ops == &vdev_spare_ops))
2910 		expected_error = ENOTSUP;
2911 	else if (newvd_is_spare && (!replacing || oldvd_is_log))
2912 		expected_error = ENOTSUP;
2913 	else if (newvd == oldvd)
2914 		expected_error = replacing ? 0 : EBUSY;
2915 	else if (vdev_lookup_by_path(rvd, newpath) != NULL)
2916 		expected_error = EBUSY;
2917 	else if (newsize < oldsize)
2918 		expected_error = EOVERFLOW;
2919 	else if (ashift > oldvd->vdev_top->vdev_ashift)
2920 		expected_error = EDOM;
2921 	else
2922 		expected_error = 0;
2923 
2924 	spa_config_exit(spa, SCL_ALL, FTAG);
2925 
2926 	/*
2927 	 * Build the nvlist describing newpath.
2928 	 */
2929 	root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0,
2930 	    ashift, 0, 0, 0, 1);
2931 
2932 	error = spa_vdev_attach(spa, oldguid, root, replacing);
2933 
2934 	nvlist_free(root);
2935 
2936 	/*
2937 	 * If our parent was the replacing vdev, but the replace completed,
2938 	 * then instead of failing with ENOTSUP we may either succeed,
2939 	 * fail with ENODEV, or fail with EOVERFLOW.
2940 	 */
2941 	if (expected_error == ENOTSUP &&
2942 	    (error == 0 || error == ENODEV || error == EOVERFLOW))
2943 		expected_error = error;
2944 
2945 	/*
2946 	 * If someone grew the LUN, the replacement may be too small.
2947 	 */
2948 	if (error == EOVERFLOW || error == EBUSY)
2949 		expected_error = error;
2950 
2951 	/* XXX workaround 6690467 */
2952 	if (error != expected_error && expected_error != EBUSY) {
2953 		fatal(0, "attach (%s %llu, %s %llu, %d) "
2954 		    "returned %d, expected %d",
2955 		    oldpath, oldsize, newpath,
2956 		    newsize, replacing, error, expected_error);
2957 	}
2958 
2959 	mutex_exit(&ztest_vdev_lock);
2960 }
2961 
2962 /* ARGSUSED */
2963 void
2964 ztest_device_removal(ztest_ds_t *zd, uint64_t id)
2965 {
2966 	spa_t *spa = ztest_spa;
2967 	vdev_t *vd;
2968 	uint64_t guid;
2969 
2970 	mutex_enter(&ztest_vdev_lock);
2971 
2972 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2973 	vd = vdev_lookup_top(spa, ztest_random_vdev_top(spa, B_FALSE));
2974 	guid = vd->vdev_guid;
2975 	spa_config_exit(spa, SCL_VDEV, FTAG);
2976 
2977 	(void) spa_vdev_remove(spa, guid, B_FALSE);
2978 
2979 	mutex_exit(&ztest_vdev_lock);
2980 }
2981 
2982 /*
2983  * Callback function which expands the physical size of the vdev.
2984  */
2985 vdev_t *
2986 grow_vdev(vdev_t *vd, void *arg)
2987 {
2988 	spa_t *spa = vd->vdev_spa;
2989 	size_t *newsize = arg;
2990 	size_t fsize;
2991 	int fd;
2992 
2993 	ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
2994 	ASSERT(vd->vdev_ops->vdev_op_leaf);
2995 
2996 	if ((fd = open(vd->vdev_path, O_RDWR)) == -1)
2997 		return (vd);
2998 
2999 	fsize = lseek(fd, 0, SEEK_END);
3000 	(void) ftruncate(fd, *newsize);
3001 
3002 	if (ztest_opts.zo_verbose >= 6) {
3003 		(void) printf("%s grew from %lu to %lu bytes\n",
3004 		    vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize);
3005 	}
3006 	(void) close(fd);
3007 	return (NULL);
3008 }
3009 
3010 /*
3011  * Callback function which expands a given vdev by calling vdev_online().
3012  */
3013 /* ARGSUSED */
3014 vdev_t *
3015 online_vdev(vdev_t *vd, void *arg)
3016 {
3017 	spa_t *spa = vd->vdev_spa;
3018 	vdev_t *tvd = vd->vdev_top;
3019 	uint64_t guid = vd->vdev_guid;
3020 	uint64_t generation = spa->spa_config_generation + 1;
3021 	vdev_state_t newstate = VDEV_STATE_UNKNOWN;
3022 	int error;
3023 
3024 	ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
3025 	ASSERT(vd->vdev_ops->vdev_op_leaf);
3026 
3027 	/* Calling vdev_online will initialize the new metaslabs */
3028 	spa_config_exit(spa, SCL_STATE, spa);
3029 	error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate);
3030 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3031 
3032 	/*
3033 	 * If vdev_online returned an error or the underlying vdev_open
3034 	 * failed then we abort the expand. The only way to know that
3035 	 * vdev_open fails is by checking the returned newstate.
3036 	 */
3037 	if (error || newstate != VDEV_STATE_HEALTHY) {
3038 		if (ztest_opts.zo_verbose >= 5) {
3039 			(void) printf("Unable to expand vdev, state %llu, "
3040 			    "error %d\n", (u_longlong_t)newstate, error);
3041 		}
3042 		return (vd);
3043 	}
3044 	ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY);
3045 
3046 	/*
3047 	 * Since we dropped the lock we need to ensure that we're
3048 	 * still talking to the original vdev. It's possible this
3049 	 * vdev may have been detached/replaced while we were
3050 	 * trying to online it.
3051 	 */
3052 	if (generation != spa->spa_config_generation) {
3053 		if (ztest_opts.zo_verbose >= 5) {
3054 			(void) printf("vdev configuration has changed, "
3055 			    "guid %llu, state %llu, expected gen %llu, "
3056 			    "got gen %llu\n",
3057 			    (u_longlong_t)guid,
3058 			    (u_longlong_t)tvd->vdev_state,
3059 			    (u_longlong_t)generation,
3060 			    (u_longlong_t)spa->spa_config_generation);
3061 		}
3062 		return (vd);
3063 	}
3064 	return (NULL);
3065 }
3066 
3067 /*
3068  * Traverse the vdev tree calling the supplied function.
3069  * We continue to walk the tree until we either have walked all
3070  * children or we receive a non-NULL return from the callback.
3071  * If a NULL callback is passed, then we just return back the first
3072  * leaf vdev we encounter.
3073  */
3074 vdev_t *
3075 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg)
3076 {
3077 	if (vd->vdev_ops->vdev_op_leaf) {
3078 		if (func == NULL)
3079 			return (vd);
3080 		else
3081 			return (func(vd, arg));
3082 	}
3083 
3084 	for (uint_t c = 0; c < vd->vdev_children; c++) {
3085 		vdev_t *cvd = vd->vdev_child[c];
3086 		if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL)
3087 			return (cvd);
3088 	}
3089 	return (NULL);
3090 }
3091 
3092 /*
3093  * Verify that dynamic LUN growth works as expected.
3094  */
3095 /* ARGSUSED */
3096 void
3097 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id)
3098 {
3099 	spa_t *spa = ztest_spa;
3100 	vdev_t *vd, *tvd;
3101 	metaslab_class_t *mc;
3102 	metaslab_group_t *mg;
3103 	size_t psize, newsize;
3104 	uint64_t top;
3105 	uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count;
3106 
3107 	mutex_enter(&ztest_vdev_lock);
3108 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3109 
3110 	/*
3111 	 * If there is a vdev removal in progress, it could complete while
3112 	 * we are running, in which case we would not be able to verify
3113 	 * that the metaslab_class space increased (because it decreases
3114 	 * when the device removal completes).
3115 	 */
3116 	if (spa->spa_vdev_removal != NULL) {
3117 		spa_config_exit(spa, SCL_STATE, FTAG);
3118 		mutex_exit(&ztest_vdev_lock);
3119 		return;
3120 	}
3121 
3122 	top = ztest_random_vdev_top(spa, B_TRUE);
3123 
3124 	tvd = spa->spa_root_vdev->vdev_child[top];
3125 	mg = tvd->vdev_mg;
3126 	mc = mg->mg_class;
3127 	old_ms_count = tvd->vdev_ms_count;
3128 	old_class_space = metaslab_class_get_space(mc);
3129 
3130 	/*
3131 	 * Determine the size of the first leaf vdev associated with
3132 	 * our top-level device.
3133 	 */
3134 	vd = vdev_walk_tree(tvd, NULL, NULL);
3135 	ASSERT3P(vd, !=, NULL);
3136 	ASSERT(vd->vdev_ops->vdev_op_leaf);
3137 
3138 	psize = vd->vdev_psize;
3139 
3140 	/*
3141 	 * We only try to expand the vdev if it's healthy, less than 4x its
3142 	 * original size, and it has a valid psize.
3143 	 */
3144 	if (tvd->vdev_state != VDEV_STATE_HEALTHY ||
3145 	    psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) {
3146 		spa_config_exit(spa, SCL_STATE, spa);
3147 		mutex_exit(&ztest_vdev_lock);
3148 		return;
3149 	}
3150 	ASSERT(psize > 0);
3151 	newsize = psize + psize / 8;
3152 	ASSERT3U(newsize, >, psize);
3153 
3154 	if (ztest_opts.zo_verbose >= 6) {
3155 		(void) printf("Expanding LUN %s from %lu to %lu\n",
3156 		    vd->vdev_path, (ulong_t)psize, (ulong_t)newsize);
3157 	}
3158 
3159 	/*
3160 	 * Growing the vdev is a two step process:
3161 	 *	1). expand the physical size (i.e. relabel)
3162 	 *	2). online the vdev to create the new metaslabs
3163 	 */
3164 	if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL ||
3165 	    vdev_walk_tree(tvd, online_vdev, NULL) != NULL ||
3166 	    tvd->vdev_state != VDEV_STATE_HEALTHY) {
3167 		if (ztest_opts.zo_verbose >= 5) {
3168 			(void) printf("Could not expand LUN because "
3169 			    "the vdev configuration changed.\n");
3170 		}
3171 		spa_config_exit(spa, SCL_STATE, spa);
3172 		mutex_exit(&ztest_vdev_lock);
3173 		return;
3174 	}
3175 
3176 	spa_config_exit(spa, SCL_STATE, spa);
3177 
3178 	/*
3179 	 * Expanding the LUN will update the config asynchronously,
3180 	 * thus we must wait for the async thread to complete any
3181 	 * pending tasks before proceeding.
3182 	 */
3183 	for (;;) {
3184 		boolean_t done;
3185 		mutex_enter(&spa->spa_async_lock);
3186 		done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks);
3187 		mutex_exit(&spa->spa_async_lock);
3188 		if (done)
3189 			break;
3190 		txg_wait_synced(spa_get_dsl(spa), 0);
3191 		(void) poll(NULL, 0, 100);
3192 	}
3193 
3194 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3195 
3196 	tvd = spa->spa_root_vdev->vdev_child[top];
3197 	new_ms_count = tvd->vdev_ms_count;
3198 	new_class_space = metaslab_class_get_space(mc);
3199 
3200 	if (tvd->vdev_mg != mg || mg->mg_class != mc) {
3201 		if (ztest_opts.zo_verbose >= 5) {
3202 			(void) printf("Could not verify LUN expansion due to "
3203 			    "intervening vdev offline or remove.\n");
3204 		}
3205 		spa_config_exit(spa, SCL_STATE, spa);
3206 		mutex_exit(&ztest_vdev_lock);
3207 		return;
3208 	}
3209 
3210 	/*
3211 	 * Make sure we were able to grow the vdev.
3212 	 */
3213 	if (new_ms_count <= old_ms_count) {
3214 		fatal(0, "LUN expansion failed: ms_count %llu < %llu\n",
3215 		    old_ms_count, new_ms_count);
3216 	}
3217 
3218 	/*
3219 	 * Make sure we were able to grow the pool.
3220 	 */
3221 	if (new_class_space <= old_class_space) {
3222 		fatal(0, "LUN expansion failed: class_space %llu < %llu\n",
3223 		    old_class_space, new_class_space);
3224 	}
3225 
3226 	if (ztest_opts.zo_verbose >= 5) {
3227 		char oldnumbuf[NN_NUMBUF_SZ], newnumbuf[NN_NUMBUF_SZ];
3228 
3229 		nicenum(old_class_space, oldnumbuf, sizeof (oldnumbuf));
3230 		nicenum(new_class_space, newnumbuf, sizeof (newnumbuf));
3231 		(void) printf("%s grew from %s to %s\n",
3232 		    spa->spa_name, oldnumbuf, newnumbuf);
3233 	}
3234 
3235 	spa_config_exit(spa, SCL_STATE, spa);
3236 	mutex_exit(&ztest_vdev_lock);
3237 }
3238 
3239 /*
3240  * Verify that dmu_objset_{create,destroy,open,close} work as expected.
3241  */
3242 /* ARGSUSED */
3243 static void
3244 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
3245 {
3246 	/*
3247 	 * Create the objects common to all ztest datasets.
3248 	 */
3249 	VERIFY(zap_create_claim(os, ZTEST_DIROBJ,
3250 	    DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0);
3251 }
3252 
3253 static int
3254 ztest_dataset_create(char *dsname)
3255 {
3256 	uint64_t zilset = ztest_random(100);
3257 	int err = dmu_objset_create(dsname, DMU_OST_OTHER, 0,
3258 	    ztest_objset_create_cb, NULL);
3259 
3260 	if (err || zilset < 80)
3261 		return (err);
3262 
3263 	if (ztest_opts.zo_verbose >= 6)
3264 		(void) printf("Setting dataset %s to sync always\n", dsname);
3265 	return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC,
3266 	    ZFS_SYNC_ALWAYS, B_FALSE));
3267 }
3268 
3269 /* ARGSUSED */
3270 static int
3271 ztest_objset_destroy_cb(const char *name, void *arg)
3272 {
3273 	objset_t *os;
3274 	dmu_object_info_t doi;
3275 	int error;
3276 
3277 	/*
3278 	 * Verify that the dataset contains a directory object.
3279 	 */
3280 	VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, FTAG, &os));
3281 	error = dmu_object_info(os, ZTEST_DIROBJ, &doi);
3282 	if (error != ENOENT) {
3283 		/* We could have crashed in the middle of destroying it */
3284 		ASSERT0(error);
3285 		ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER);
3286 		ASSERT3S(doi.doi_physical_blocks_512, >=, 0);
3287 	}
3288 	dmu_objset_disown(os, FTAG);
3289 
3290 	/*
3291 	 * Destroy the dataset.
3292 	 */
3293 	if (strchr(name, '@') != NULL) {
3294 		VERIFY0(dsl_destroy_snapshot(name, B_TRUE));
3295 	} else {
3296 		error = dsl_destroy_head(name);
3297 		/* There could be a hold on this dataset */
3298 		if (error != EBUSY)
3299 			ASSERT0(error);
3300 	}
3301 	return (0);
3302 }
3303 
3304 static boolean_t
3305 ztest_snapshot_create(char *osname, uint64_t id)
3306 {
3307 	char snapname[ZFS_MAX_DATASET_NAME_LEN];
3308 	int error;
3309 
3310 	(void) snprintf(snapname, sizeof (snapname), "%llu", (u_longlong_t)id);
3311 
3312 	error = dmu_objset_snapshot_one(osname, snapname);
3313 	if (error == ENOSPC) {
3314 		ztest_record_enospc(FTAG);
3315 		return (B_FALSE);
3316 	}
3317 	if (error != 0 && error != EEXIST) {
3318 		fatal(0, "ztest_snapshot_create(%s@%s) = %d", osname,
3319 		    snapname, error);
3320 	}
3321 	return (B_TRUE);
3322 }
3323 
3324 static boolean_t
3325 ztest_snapshot_destroy(char *osname, uint64_t id)
3326 {
3327 	char snapname[ZFS_MAX_DATASET_NAME_LEN];
3328 	int error;
3329 
3330 	(void) snprintf(snapname, sizeof (snapname), "%s@%llu", osname,
3331 	    (u_longlong_t)id);
3332 
3333 	error = dsl_destroy_snapshot(snapname, B_FALSE);
3334 	if (error != 0 && error != ENOENT)
3335 		fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error);
3336 	return (B_TRUE);
3337 }
3338 
3339 /* ARGSUSED */
3340 void
3341 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id)
3342 {
3343 	ztest_ds_t zdtmp;
3344 	int iters;
3345 	int error;
3346 	objset_t *os, *os2;
3347 	char name[ZFS_MAX_DATASET_NAME_LEN];
3348 	zilog_t *zilog;
3349 
3350 	rw_enter(&ztest_name_lock, RW_READER);
3351 
3352 	(void) snprintf(name, sizeof (name), "%s/temp_%llu",
3353 	    ztest_opts.zo_pool, (u_longlong_t)id);
3354 
3355 	/*
3356 	 * If this dataset exists from a previous run, process its replay log
3357 	 * half of the time.  If we don't replay it, then dmu_objset_destroy()
3358 	 * (invoked from ztest_objset_destroy_cb()) should just throw it away.
3359 	 */
3360 	if (ztest_random(2) == 0 &&
3361 	    dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) {
3362 		ztest_zd_init(&zdtmp, NULL, os);
3363 		zil_replay(os, &zdtmp, ztest_replay_vector);
3364 		ztest_zd_fini(&zdtmp);
3365 		dmu_objset_disown(os, FTAG);
3366 	}
3367 
3368 	/*
3369 	 * There may be an old instance of the dataset we're about to
3370 	 * create lying around from a previous run.  If so, destroy it
3371 	 * and all of its snapshots.
3372 	 */
3373 	(void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
3374 	    DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
3375 
3376 	/*
3377 	 * Verify that the destroyed dataset is no longer in the namespace.
3378 	 */
3379 	VERIFY3U(ENOENT, ==, dmu_objset_own(name, DMU_OST_OTHER, B_TRUE,
3380 	    FTAG, &os));
3381 
3382 	/*
3383 	 * Verify that we can create a new dataset.
3384 	 */
3385 	error = ztest_dataset_create(name);
3386 	if (error) {
3387 		if (error == ENOSPC) {
3388 			ztest_record_enospc(FTAG);
3389 			rw_exit(&ztest_name_lock);
3390 			return;
3391 		}
3392 		fatal(0, "dmu_objset_create(%s) = %d", name, error);
3393 	}
3394 
3395 	VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os));
3396 
3397 	ztest_zd_init(&zdtmp, NULL, os);
3398 
3399 	/*
3400 	 * Open the intent log for it.
3401 	 */
3402 	zilog = zil_open(os, ztest_get_data);
3403 
3404 	/*
3405 	 * Put some objects in there, do a little I/O to them,
3406 	 * and randomly take a couple of snapshots along the way.
3407 	 */
3408 	iters = ztest_random(5);
3409 	for (int i = 0; i < iters; i++) {
3410 		ztest_dmu_object_alloc_free(&zdtmp, id);
3411 		if (ztest_random(iters) == 0)
3412 			(void) ztest_snapshot_create(name, i);
3413 	}
3414 
3415 	/*
3416 	 * Verify that we cannot create an existing dataset.
3417 	 */
3418 	VERIFY3U(EEXIST, ==,
3419 	    dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL));
3420 
3421 	/*
3422 	 * Verify that we can hold an objset that is also owned.
3423 	 */
3424 	VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2));
3425 	dmu_objset_rele(os2, FTAG);
3426 
3427 	/*
3428 	 * Verify that we cannot own an objset that is already owned.
3429 	 */
3430 	VERIFY3U(EBUSY, ==,
3431 	    dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2));
3432 
3433 	zil_close(zilog);
3434 	dmu_objset_disown(os, FTAG);
3435 	ztest_zd_fini(&zdtmp);
3436 
3437 	rw_exit(&ztest_name_lock);
3438 }
3439 
3440 /*
3441  * Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
3442  */
3443 void
3444 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id)
3445 {
3446 	rw_enter(&ztest_name_lock, RW_READER);
3447 	(void) ztest_snapshot_destroy(zd->zd_name, id);
3448 	(void) ztest_snapshot_create(zd->zd_name, id);
3449 	rw_exit(&ztest_name_lock);
3450 }
3451 
3452 /*
3453  * Cleanup non-standard snapshots and clones.
3454  */
3455 void
3456 ztest_dsl_dataset_cleanup(char *osname, uint64_t id)
3457 {
3458 	char snap1name[ZFS_MAX_DATASET_NAME_LEN];
3459 	char clone1name[ZFS_MAX_DATASET_NAME_LEN];
3460 	char snap2name[ZFS_MAX_DATASET_NAME_LEN];
3461 	char clone2name[ZFS_MAX_DATASET_NAME_LEN];
3462 	char snap3name[ZFS_MAX_DATASET_NAME_LEN];
3463 	int error;
3464 
3465 	(void) snprintf(snap1name, sizeof (snap1name),
3466 	    "%s@s1_%llu", osname, id);
3467 	(void) snprintf(clone1name, sizeof (clone1name),
3468 	    "%s/c1_%llu", osname, id);
3469 	(void) snprintf(snap2name, sizeof (snap2name),
3470 	    "%s@s2_%llu", clone1name, id);
3471 	(void) snprintf(clone2name, sizeof (clone2name),
3472 	    "%s/c2_%llu", osname, id);
3473 	(void) snprintf(snap3name, sizeof (snap3name),
3474 	    "%s@s3_%llu", clone1name, id);
3475 
3476 	error = dsl_destroy_head(clone2name);
3477 	if (error && error != ENOENT)
3478 		fatal(0, "dsl_destroy_head(%s) = %d", clone2name, error);
3479 	error = dsl_destroy_snapshot(snap3name, B_FALSE);
3480 	if (error && error != ENOENT)
3481 		fatal(0, "dsl_destroy_snapshot(%s) = %d", snap3name, error);
3482 	error = dsl_destroy_snapshot(snap2name, B_FALSE);
3483 	if (error && error != ENOENT)
3484 		fatal(0, "dsl_destroy_snapshot(%s) = %d", snap2name, error);
3485 	error = dsl_destroy_head(clone1name);
3486 	if (error && error != ENOENT)
3487 		fatal(0, "dsl_destroy_head(%s) = %d", clone1name, error);
3488 	error = dsl_destroy_snapshot(snap1name, B_FALSE);
3489 	if (error && error != ENOENT)
3490 		fatal(0, "dsl_destroy_snapshot(%s) = %d", snap1name, error);
3491 }
3492 
3493 /*
3494  * Verify dsl_dataset_promote handles EBUSY
3495  */
3496 void
3497 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id)
3498 {
3499 	objset_t *os;
3500 	char snap1name[ZFS_MAX_DATASET_NAME_LEN];
3501 	char clone1name[ZFS_MAX_DATASET_NAME_LEN];
3502 	char snap2name[ZFS_MAX_DATASET_NAME_LEN];
3503 	char clone2name[ZFS_MAX_DATASET_NAME_LEN];
3504 	char snap3name[ZFS_MAX_DATASET_NAME_LEN];
3505 	char *osname = zd->zd_name;
3506 	int error;
3507 
3508 	rw_enter(&ztest_name_lock, RW_READER);
3509 
3510 	ztest_dsl_dataset_cleanup(osname, id);
3511 
3512 	(void) snprintf(snap1name, sizeof (snap1name),
3513 	    "%s@s1_%llu", osname, id);
3514 	(void) snprintf(clone1name, sizeof (clone1name),
3515 	    "%s/c1_%llu", osname, id);
3516 	(void) snprintf(snap2name, sizeof (snap2name),
3517 	    "%s@s2_%llu", clone1name, id);
3518 	(void) snprintf(clone2name, sizeof (clone2name),
3519 	    "%s/c2_%llu", osname, id);
3520 	(void) snprintf(snap3name, sizeof (snap3name),
3521 	    "%s@s3_%llu", clone1name, id);
3522 
3523 	error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1);
3524 	if (error && error != EEXIST) {
3525 		if (error == ENOSPC) {
3526 			ztest_record_enospc(FTAG);
3527 			goto out;
3528 		}
3529 		fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error);
3530 	}
3531 
3532 	error = dmu_objset_clone(clone1name, snap1name);
3533 	if (error) {
3534 		if (error == ENOSPC) {
3535 			ztest_record_enospc(FTAG);
3536 			goto out;
3537 		}
3538 		fatal(0, "dmu_objset_create(%s) = %d", clone1name, error);
3539 	}
3540 
3541 	error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1);
3542 	if (error && error != EEXIST) {
3543 		if (error == ENOSPC) {
3544 			ztest_record_enospc(FTAG);
3545 			goto out;
3546 		}
3547 		fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error);
3548 	}
3549 
3550 	error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1);
3551 	if (error && error != EEXIST) {
3552 		if (error == ENOSPC) {
3553 			ztest_record_enospc(FTAG);
3554 			goto out;
3555 		}
3556 		fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error);
3557 	}
3558 
3559 	error = dmu_objset_clone(clone2name, snap3name);
3560 	if (error) {
3561 		if (error == ENOSPC) {
3562 			ztest_record_enospc(FTAG);
3563 			goto out;
3564 		}
3565 		fatal(0, "dmu_objset_create(%s) = %d", clone2name, error);
3566 	}
3567 
3568 	error = dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, FTAG, &os);
3569 	if (error)
3570 		fatal(0, "dmu_objset_own(%s) = %d", snap2name, error);
3571 	error = dsl_dataset_promote(clone2name, NULL);
3572 	if (error == ENOSPC) {
3573 		dmu_objset_disown(os, FTAG);
3574 		ztest_record_enospc(FTAG);
3575 		goto out;
3576 	}
3577 	if (error != EBUSY)
3578 		fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name,
3579 		    error);
3580 	dmu_objset_disown(os, FTAG);
3581 
3582 out:
3583 	ztest_dsl_dataset_cleanup(osname, id);
3584 
3585 	rw_exit(&ztest_name_lock);
3586 }
3587 
3588 /*
3589  * Verify that dmu_object_{alloc,free} work as expected.
3590  */
3591 void
3592 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id)
3593 {
3594 	ztest_od_t od[4];
3595 	int batchsize = sizeof (od) / sizeof (od[0]);
3596 
3597 	for (int b = 0; b < batchsize; b++)
3598 		ztest_od_init(&od[b], id, FTAG, b, DMU_OT_UINT64_OTHER, 0, 0);
3599 
3600 	/*
3601 	 * Destroy the previous batch of objects, create a new batch,
3602 	 * and do some I/O on the new objects.
3603 	 */
3604 	if (ztest_object_init(zd, od, sizeof (od), B_TRUE) != 0)
3605 		return;
3606 
3607 	while (ztest_random(4 * batchsize) != 0)
3608 		ztest_io(zd, od[ztest_random(batchsize)].od_object,
3609 		    ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
3610 }
3611 
3612 /*
3613  * Verify that dmu_{read,write} work as expected.
3614  */
3615 void
3616 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id)
3617 {
3618 	objset_t *os = zd->zd_os;
3619 	ztest_od_t od[2];
3620 	dmu_tx_t *tx;
3621 	int i, freeit, error;
3622 	uint64_t n, s, txg;
3623 	bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT;
3624 	uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
3625 	uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t);
3626 	uint64_t regions = 997;
3627 	uint64_t stride = 123456789ULL;
3628 	uint64_t width = 40;
3629 	int free_percent = 5;
3630 
3631 	/*
3632 	 * This test uses two objects, packobj and bigobj, that are always
3633 	 * updated together (i.e. in the same tx) so that their contents are
3634 	 * in sync and can be compared.  Their contents relate to each other
3635 	 * in a simple way: packobj is a dense array of 'bufwad' structures,
3636 	 * while bigobj is a sparse array of the same bufwads.  Specifically,
3637 	 * for any index n, there are three bufwads that should be identical:
3638 	 *
3639 	 *	packobj, at offset n * sizeof (bufwad_t)
3640 	 *	bigobj, at the head of the nth chunk
3641 	 *	bigobj, at the tail of the nth chunk
3642 	 *
3643 	 * The chunk size is arbitrary. It doesn't have to be a power of two,
3644 	 * and it doesn't have any relation to the object blocksize.
3645 	 * The only requirement is that it can hold at least two bufwads.
3646 	 *
3647 	 * Normally, we write the bufwad to each of these locations.
3648 	 * However, free_percent of the time we instead write zeroes to
3649 	 * packobj and perform a dmu_free_range() on bigobj.  By comparing
3650 	 * bigobj to packobj, we can verify that the DMU is correctly
3651 	 * tracking which parts of an object are allocated and free,
3652 	 * and that the contents of the allocated blocks are correct.
3653 	 */
3654 
3655 	/*
3656 	 * Read the directory info.  If it's the first time, set things up.
3657 	 */
3658 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, chunksize);
3659 	ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize);
3660 
3661 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
3662 		return;
3663 
3664 	bigobj = od[0].od_object;
3665 	packobj = od[1].od_object;
3666 	chunksize = od[0].od_gen;
3667 	ASSERT(chunksize == od[1].od_gen);
3668 
3669 	/*
3670 	 * Prefetch a random chunk of the big object.
3671 	 * Our aim here is to get some async reads in flight
3672 	 * for blocks that we may free below; the DMU should
3673 	 * handle this race correctly.
3674 	 */
3675 	n = ztest_random(regions) * stride + ztest_random(width);
3676 	s = 1 + ztest_random(2 * width - 1);
3677 	dmu_prefetch(os, bigobj, 0, n * chunksize, s * chunksize,
3678 	    ZIO_PRIORITY_SYNC_READ);
3679 
3680 	/*
3681 	 * Pick a random index and compute the offsets into packobj and bigobj.
3682 	 */
3683 	n = ztest_random(regions) * stride + ztest_random(width);
3684 	s = 1 + ztest_random(width - 1);
3685 
3686 	packoff = n * sizeof (bufwad_t);
3687 	packsize = s * sizeof (bufwad_t);
3688 
3689 	bigoff = n * chunksize;
3690 	bigsize = s * chunksize;
3691 
3692 	packbuf = umem_alloc(packsize, UMEM_NOFAIL);
3693 	bigbuf = umem_alloc(bigsize, UMEM_NOFAIL);
3694 
3695 	/*
3696 	 * free_percent of the time, free a range of bigobj rather than
3697 	 * overwriting it.
3698 	 */
3699 	freeit = (ztest_random(100) < free_percent);
3700 
3701 	/*
3702 	 * Read the current contents of our objects.
3703 	 */
3704 	error = dmu_read(os, packobj, packoff, packsize, packbuf,
3705 	    DMU_READ_PREFETCH);
3706 	ASSERT0(error);
3707 	error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf,
3708 	    DMU_READ_PREFETCH);
3709 	ASSERT0(error);
3710 
3711 	/*
3712 	 * Get a tx for the mods to both packobj and bigobj.
3713 	 */
3714 	tx = dmu_tx_create(os);
3715 
3716 	dmu_tx_hold_write(tx, packobj, packoff, packsize);
3717 
3718 	if (freeit)
3719 		dmu_tx_hold_free(tx, bigobj, bigoff, bigsize);
3720 	else
3721 		dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
3722 
3723 	/* This accounts for setting the checksum/compression. */
3724 	dmu_tx_hold_bonus(tx, bigobj);
3725 
3726 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
3727 	if (txg == 0) {
3728 		umem_free(packbuf, packsize);
3729 		umem_free(bigbuf, bigsize);
3730 		return;
3731 	}
3732 
3733 	enum zio_checksum cksum;
3734 	do {
3735 		cksum = (enum zio_checksum)
3736 		    ztest_random_dsl_prop(ZFS_PROP_CHECKSUM);
3737 	} while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS);
3738 	dmu_object_set_checksum(os, bigobj, cksum, tx);
3739 
3740 	enum zio_compress comp;
3741 	do {
3742 		comp = (enum zio_compress)
3743 		    ztest_random_dsl_prop(ZFS_PROP_COMPRESSION);
3744 	} while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS);
3745 	dmu_object_set_compress(os, bigobj, comp, tx);
3746 
3747 	/*
3748 	 * For each index from n to n + s, verify that the existing bufwad
3749 	 * in packobj matches the bufwads at the head and tail of the
3750 	 * corresponding chunk in bigobj.  Then update all three bufwads
3751 	 * with the new values we want to write out.
3752 	 */
3753 	for (i = 0; i < s; i++) {
3754 		/* LINTED */
3755 		pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
3756 		/* LINTED */
3757 		bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
3758 		/* LINTED */
3759 		bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
3760 
3761 		ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
3762 		ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
3763 
3764 		if (pack->bw_txg > txg)
3765 			fatal(0, "future leak: got %llx, open txg is %llx",
3766 			    pack->bw_txg, txg);
3767 
3768 		if (pack->bw_data != 0 && pack->bw_index != n + i)
3769 			fatal(0, "wrong index: got %llx, wanted %llx+%llx",
3770 			    pack->bw_index, n, i);
3771 
3772 		if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
3773 			fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
3774 
3775 		if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
3776 			fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
3777 
3778 		if (freeit) {
3779 			bzero(pack, sizeof (bufwad_t));
3780 		} else {
3781 			pack->bw_index = n + i;
3782 			pack->bw_txg = txg;
3783 			pack->bw_data = 1 + ztest_random(-2ULL);
3784 		}
3785 		*bigH = *pack;
3786 		*bigT = *pack;
3787 	}
3788 
3789 	/*
3790 	 * We've verified all the old bufwads, and made new ones.
3791 	 * Now write them out.
3792 	 */
3793 	dmu_write(os, packobj, packoff, packsize, packbuf, tx);
3794 
3795 	if (freeit) {
3796 		if (ztest_opts.zo_verbose >= 7) {
3797 			(void) printf("freeing offset %llx size %llx"
3798 			    " txg %llx\n",
3799 			    (u_longlong_t)bigoff,
3800 			    (u_longlong_t)bigsize,
3801 			    (u_longlong_t)txg);
3802 		}
3803 		VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx));
3804 	} else {
3805 		if (ztest_opts.zo_verbose >= 7) {
3806 			(void) printf("writing offset %llx size %llx"
3807 			    " txg %llx\n",
3808 			    (u_longlong_t)bigoff,
3809 			    (u_longlong_t)bigsize,
3810 			    (u_longlong_t)txg);
3811 		}
3812 		dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx);
3813 	}
3814 
3815 	dmu_tx_commit(tx);
3816 
3817 	/*
3818 	 * Sanity check the stuff we just wrote.
3819 	 */
3820 	{
3821 		void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
3822 		void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
3823 
3824 		VERIFY(0 == dmu_read(os, packobj, packoff,
3825 		    packsize, packcheck, DMU_READ_PREFETCH));
3826 		VERIFY(0 == dmu_read(os, bigobj, bigoff,
3827 		    bigsize, bigcheck, DMU_READ_PREFETCH));
3828 
3829 		ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
3830 		ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
3831 
3832 		umem_free(packcheck, packsize);
3833 		umem_free(bigcheck, bigsize);
3834 	}
3835 
3836 	umem_free(packbuf, packsize);
3837 	umem_free(bigbuf, bigsize);
3838 }
3839 
3840 void
3841 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf,
3842     uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg)
3843 {
3844 	uint64_t i;
3845 	bufwad_t *pack;
3846 	bufwad_t *bigH;
3847 	bufwad_t *bigT;
3848 
3849 	/*
3850 	 * For each index from n to n + s, verify that the existing bufwad
3851 	 * in packobj matches the bufwads at the head and tail of the
3852 	 * corresponding chunk in bigobj.  Then update all three bufwads
3853 	 * with the new values we want to write out.
3854 	 */
3855 	for (i = 0; i < s; i++) {
3856 		/* LINTED */
3857 		pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
3858 		/* LINTED */
3859 		bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
3860 		/* LINTED */
3861 		bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
3862 
3863 		ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
3864 		ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
3865 
3866 		if (pack->bw_txg > txg)
3867 			fatal(0, "future leak: got %llx, open txg is %llx",
3868 			    pack->bw_txg, txg);
3869 
3870 		if (pack->bw_data != 0 && pack->bw_index != n + i)
3871 			fatal(0, "wrong index: got %llx, wanted %llx+%llx",
3872 			    pack->bw_index, n, i);
3873 
3874 		if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
3875 			fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
3876 
3877 		if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
3878 			fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
3879 
3880 		pack->bw_index = n + i;
3881 		pack->bw_txg = txg;
3882 		pack->bw_data = 1 + ztest_random(-2ULL);
3883 
3884 		*bigH = *pack;
3885 		*bigT = *pack;
3886 	}
3887 }
3888 
3889 void
3890 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id)
3891 {
3892 	objset_t *os = zd->zd_os;
3893 	ztest_od_t od[2];
3894 	dmu_tx_t *tx;
3895 	uint64_t i;
3896 	int error;
3897 	uint64_t n, s, txg;
3898 	bufwad_t *packbuf, *bigbuf;
3899 	uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
3900 	uint64_t blocksize = ztest_random_blocksize();
3901 	uint64_t chunksize = blocksize;
3902 	uint64_t regions = 997;
3903 	uint64_t stride = 123456789ULL;
3904 	uint64_t width = 9;
3905 	dmu_buf_t *bonus_db;
3906 	arc_buf_t **bigbuf_arcbufs;
3907 	dmu_object_info_t doi;
3908 
3909 	/*
3910 	 * This test uses two objects, packobj and bigobj, that are always
3911 	 * updated together (i.e. in the same tx) so that their contents are
3912 	 * in sync and can be compared.  Their contents relate to each other
3913 	 * in a simple way: packobj is a dense array of 'bufwad' structures,
3914 	 * while bigobj is a sparse array of the same bufwads.  Specifically,
3915 	 * for any index n, there are three bufwads that should be identical:
3916 	 *
3917 	 *	packobj, at offset n * sizeof (bufwad_t)
3918 	 *	bigobj, at the head of the nth chunk
3919 	 *	bigobj, at the tail of the nth chunk
3920 	 *
3921 	 * The chunk size is set equal to bigobj block size so that
3922 	 * dmu_assign_arcbuf() can be tested for object updates.
3923 	 */
3924 
3925 	/*
3926 	 * Read the directory info.  If it's the first time, set things up.
3927 	 */
3928 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0);
3929 	ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize);
3930 
3931 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
3932 		return;
3933 
3934 	bigobj = od[0].od_object;
3935 	packobj = od[1].od_object;
3936 	blocksize = od[0].od_blocksize;
3937 	chunksize = blocksize;
3938 	ASSERT(chunksize == od[1].od_gen);
3939 
3940 	VERIFY(dmu_object_info(os, bigobj, &doi) == 0);
3941 	VERIFY(ISP2(doi.doi_data_block_size));
3942 	VERIFY(chunksize == doi.doi_data_block_size);
3943 	VERIFY(chunksize >= 2 * sizeof (bufwad_t));
3944 
3945 	/*
3946 	 * Pick a random index and compute the offsets into packobj and bigobj.
3947 	 */
3948 	n = ztest_random(regions) * stride + ztest_random(width);
3949 	s = 1 + ztest_random(width - 1);
3950 
3951 	packoff = n * sizeof (bufwad_t);
3952 	packsize = s * sizeof (bufwad_t);
3953 
3954 	bigoff = n * chunksize;
3955 	bigsize = s * chunksize;
3956 
3957 	packbuf = umem_zalloc(packsize, UMEM_NOFAIL);
3958 	bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL);
3959 
3960 	VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db));
3961 
3962 	bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL);
3963 
3964 	/*
3965 	 * Iteration 0 test zcopy for DB_UNCACHED dbufs.
3966 	 * Iteration 1 test zcopy to already referenced dbufs.
3967 	 * Iteration 2 test zcopy to dirty dbuf in the same txg.
3968 	 * Iteration 3 test zcopy to dbuf dirty in previous txg.
3969 	 * Iteration 4 test zcopy when dbuf is no longer dirty.
3970 	 * Iteration 5 test zcopy when it can't be done.
3971 	 * Iteration 6 one more zcopy write.
3972 	 */
3973 	for (i = 0; i < 7; i++) {
3974 		uint64_t j;
3975 		uint64_t off;
3976 
3977 		/*
3978 		 * In iteration 5 (i == 5) use arcbufs
3979 		 * that don't match bigobj blksz to test
3980 		 * dmu_assign_arcbuf() when it can't directly
3981 		 * assign an arcbuf to a dbuf.
3982 		 */
3983 		for (j = 0; j < s; j++) {
3984 			if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
3985 				bigbuf_arcbufs[j] =
3986 				    dmu_request_arcbuf(bonus_db, chunksize);
3987 			} else {
3988 				bigbuf_arcbufs[2 * j] =
3989 				    dmu_request_arcbuf(bonus_db, chunksize / 2);
3990 				bigbuf_arcbufs[2 * j + 1] =
3991 				    dmu_request_arcbuf(bonus_db, chunksize / 2);
3992 			}
3993 		}
3994 
3995 		/*
3996 		 * Get a tx for the mods to both packobj and bigobj.
3997 		 */
3998 		tx = dmu_tx_create(os);
3999 
4000 		dmu_tx_hold_write(tx, packobj, packoff, packsize);
4001 		dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
4002 
4003 		txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4004 		if (txg == 0) {
4005 			umem_free(packbuf, packsize);
4006 			umem_free(bigbuf, bigsize);
4007 			for (j = 0; j < s; j++) {
4008 				if (i != 5 ||
4009 				    chunksize < (SPA_MINBLOCKSIZE * 2)) {
4010 					dmu_return_arcbuf(bigbuf_arcbufs[j]);
4011 				} else {
4012 					dmu_return_arcbuf(
4013 					    bigbuf_arcbufs[2 * j]);
4014 					dmu_return_arcbuf(
4015 					    bigbuf_arcbufs[2 * j + 1]);
4016 				}
4017 			}
4018 			umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
4019 			dmu_buf_rele(bonus_db, FTAG);
4020 			return;
4021 		}
4022 
4023 		/*
4024 		 * 50% of the time don't read objects in the 1st iteration to
4025 		 * test dmu_assign_arcbuf() for the case when there're no
4026 		 * existing dbufs for the specified offsets.
4027 		 */
4028 		if (i != 0 || ztest_random(2) != 0) {
4029 			error = dmu_read(os, packobj, packoff,
4030 			    packsize, packbuf, DMU_READ_PREFETCH);
4031 			ASSERT0(error);
4032 			error = dmu_read(os, bigobj, bigoff, bigsize,
4033 			    bigbuf, DMU_READ_PREFETCH);
4034 			ASSERT0(error);
4035 		}
4036 		compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize,
4037 		    n, chunksize, txg);
4038 
4039 		/*
4040 		 * We've verified all the old bufwads, and made new ones.
4041 		 * Now write them out.
4042 		 */
4043 		dmu_write(os, packobj, packoff, packsize, packbuf, tx);
4044 		if (ztest_opts.zo_verbose >= 7) {
4045 			(void) printf("writing offset %llx size %llx"
4046 			    " txg %llx\n",
4047 			    (u_longlong_t)bigoff,
4048 			    (u_longlong_t)bigsize,
4049 			    (u_longlong_t)txg);
4050 		}
4051 		for (off = bigoff, j = 0; j < s; j++, off += chunksize) {
4052 			dmu_buf_t *dbt;
4053 			if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
4054 				bcopy((caddr_t)bigbuf + (off - bigoff),
4055 				    bigbuf_arcbufs[j]->b_data, chunksize);
4056 			} else {
4057 				bcopy((caddr_t)bigbuf + (off - bigoff),
4058 				    bigbuf_arcbufs[2 * j]->b_data,
4059 				    chunksize / 2);
4060 				bcopy((caddr_t)bigbuf + (off - bigoff) +
4061 				    chunksize / 2,
4062 				    bigbuf_arcbufs[2 * j + 1]->b_data,
4063 				    chunksize / 2);
4064 			}
4065 
4066 			if (i == 1) {
4067 				VERIFY(dmu_buf_hold(os, bigobj, off,
4068 				    FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0);
4069 			}
4070 			if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
4071 				dmu_assign_arcbuf(bonus_db, off,
4072 				    bigbuf_arcbufs[j], tx);
4073 			} else {
4074 				dmu_assign_arcbuf(bonus_db, off,
4075 				    bigbuf_arcbufs[2 * j], tx);
4076 				dmu_assign_arcbuf(bonus_db,
4077 				    off + chunksize / 2,
4078 				    bigbuf_arcbufs[2 * j + 1], tx);
4079 			}
4080 			if (i == 1) {
4081 				dmu_buf_rele(dbt, FTAG);
4082 			}
4083 		}
4084 		dmu_tx_commit(tx);
4085 
4086 		/*
4087 		 * Sanity check the stuff we just wrote.
4088 		 */
4089 		{
4090 			void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
4091 			void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
4092 
4093 			VERIFY(0 == dmu_read(os, packobj, packoff,
4094 			    packsize, packcheck, DMU_READ_PREFETCH));
4095 			VERIFY(0 == dmu_read(os, bigobj, bigoff,
4096 			    bigsize, bigcheck, DMU_READ_PREFETCH));
4097 
4098 			ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
4099 			ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
4100 
4101 			umem_free(packcheck, packsize);
4102 			umem_free(bigcheck, bigsize);
4103 		}
4104 		if (i == 2) {
4105 			txg_wait_open(dmu_objset_pool(os), 0);
4106 		} else if (i == 3) {
4107 			txg_wait_synced(dmu_objset_pool(os), 0);
4108 		}
4109 	}
4110 
4111 	dmu_buf_rele(bonus_db, FTAG);
4112 	umem_free(packbuf, packsize);
4113 	umem_free(bigbuf, bigsize);
4114 	umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
4115 }
4116 
4117 /* ARGSUSED */
4118 void
4119 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id)
4120 {
4121 	ztest_od_t od[1];
4122 	uint64_t offset = (1ULL << (ztest_random(20) + 43)) +
4123 	    (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
4124 
4125 	/*
4126 	 * Have multiple threads write to large offsets in an object
4127 	 * to verify that parallel writes to an object -- even to the
4128 	 * same blocks within the object -- doesn't cause any trouble.
4129 	 */
4130 	ztest_od_init(&od[0], ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0);
4131 
4132 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4133 		return;
4134 
4135 	while (ztest_random(10) != 0)
4136 		ztest_io(zd, od[0].od_object, offset);
4137 }
4138 
4139 void
4140 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id)
4141 {
4142 	ztest_od_t od[1];
4143 	uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) +
4144 	    (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
4145 	uint64_t count = ztest_random(20) + 1;
4146 	uint64_t blocksize = ztest_random_blocksize();
4147 	void *data;
4148 
4149 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0);
4150 
4151 	if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0)
4152 		return;
4153 
4154 	if (ztest_truncate(zd, od[0].od_object, offset, count * blocksize) != 0)
4155 		return;
4156 
4157 	ztest_prealloc(zd, od[0].od_object, offset, count * blocksize);
4158 
4159 	data = umem_zalloc(blocksize, UMEM_NOFAIL);
4160 
4161 	while (ztest_random(count) != 0) {
4162 		uint64_t randoff = offset + (ztest_random(count) * blocksize);
4163 		if (ztest_write(zd, od[0].od_object, randoff, blocksize,
4164 		    data) != 0)
4165 			break;
4166 		while (ztest_random(4) != 0)
4167 			ztest_io(zd, od[0].od_object, randoff);
4168 	}
4169 
4170 	umem_free(data, blocksize);
4171 }
4172 
4173 /*
4174  * Verify that zap_{create,destroy,add,remove,update} work as expected.
4175  */
4176 #define	ZTEST_ZAP_MIN_INTS	1
4177 #define	ZTEST_ZAP_MAX_INTS	4
4178 #define	ZTEST_ZAP_MAX_PROPS	1000
4179 
4180 void
4181 ztest_zap(ztest_ds_t *zd, uint64_t id)
4182 {
4183 	objset_t *os = zd->zd_os;
4184 	ztest_od_t od[1];
4185 	uint64_t object;
4186 	uint64_t txg, last_txg;
4187 	uint64_t value[ZTEST_ZAP_MAX_INTS];
4188 	uint64_t zl_ints, zl_intsize, prop;
4189 	int i, ints;
4190 	dmu_tx_t *tx;
4191 	char propname[100], txgname[100];
4192 	int error;
4193 	char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
4194 
4195 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0);
4196 
4197 	if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0)
4198 		return;
4199 
4200 	object = od[0].od_object;
4201 
4202 	/*
4203 	 * Generate a known hash collision, and verify that
4204 	 * we can lookup and remove both entries.
4205 	 */
4206 	tx = dmu_tx_create(os);
4207 	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4208 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4209 	if (txg == 0)
4210 		return;
4211 	for (i = 0; i < 2; i++) {
4212 		value[i] = i;
4213 		VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t),
4214 		    1, &value[i], tx));
4215 	}
4216 	for (i = 0; i < 2; i++) {
4217 		VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i],
4218 		    sizeof (uint64_t), 1, &value[i], tx));
4219 		VERIFY3U(0, ==,
4220 		    zap_length(os, object, hc[i], &zl_intsize, &zl_ints));
4221 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4222 		ASSERT3U(zl_ints, ==, 1);
4223 	}
4224 	for (i = 0; i < 2; i++) {
4225 		VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx));
4226 	}
4227 	dmu_tx_commit(tx);
4228 
4229 	/*
4230 	 * Generate a buch of random entries.
4231 	 */
4232 	ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS);
4233 
4234 	prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
4235 	(void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
4236 	(void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
4237 	bzero(value, sizeof (value));
4238 	last_txg = 0;
4239 
4240 	/*
4241 	 * If these zap entries already exist, validate their contents.
4242 	 */
4243 	error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
4244 	if (error == 0) {
4245 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4246 		ASSERT3U(zl_ints, ==, 1);
4247 
4248 		VERIFY(zap_lookup(os, object, txgname, zl_intsize,
4249 		    zl_ints, &last_txg) == 0);
4250 
4251 		VERIFY(zap_length(os, object, propname, &zl_intsize,
4252 		    &zl_ints) == 0);
4253 
4254 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4255 		ASSERT3U(zl_ints, ==, ints);
4256 
4257 		VERIFY(zap_lookup(os, object, propname, zl_intsize,
4258 		    zl_ints, value) == 0);
4259 
4260 		for (i = 0; i < ints; i++) {
4261 			ASSERT3U(value[i], ==, last_txg + object + i);
4262 		}
4263 	} else {
4264 		ASSERT3U(error, ==, ENOENT);
4265 	}
4266 
4267 	/*
4268 	 * Atomically update two entries in our zap object.
4269 	 * The first is named txg_%llu, and contains the txg
4270 	 * in which the property was last updated.  The second
4271 	 * is named prop_%llu, and the nth element of its value
4272 	 * should be txg + object + n.
4273 	 */
4274 	tx = dmu_tx_create(os);
4275 	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4276 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4277 	if (txg == 0)
4278 		return;
4279 
4280 	if (last_txg > txg)
4281 		fatal(0, "zap future leak: old %llu new %llu", last_txg, txg);
4282 
4283 	for (i = 0; i < ints; i++)
4284 		value[i] = txg + object + i;
4285 
4286 	VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t),
4287 	    1, &txg, tx));
4288 	VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t),
4289 	    ints, value, tx));
4290 
4291 	dmu_tx_commit(tx);
4292 
4293 	/*
4294 	 * Remove a random pair of entries.
4295 	 */
4296 	prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
4297 	(void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
4298 	(void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
4299 
4300 	error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
4301 
4302 	if (error == ENOENT)
4303 		return;
4304 
4305 	ASSERT0(error);
4306 
4307 	tx = dmu_tx_create(os);
4308 	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4309 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4310 	if (txg == 0)
4311 		return;
4312 	VERIFY3U(0, ==, zap_remove(os, object, txgname, tx));
4313 	VERIFY3U(0, ==, zap_remove(os, object, propname, tx));
4314 	dmu_tx_commit(tx);
4315 }
4316 
4317 /*
4318  * Testcase to test the upgrading of a microzap to fatzap.
4319  */
4320 void
4321 ztest_fzap(ztest_ds_t *zd, uint64_t id)
4322 {
4323 	objset_t *os = zd->zd_os;
4324 	ztest_od_t od[1];
4325 	uint64_t object, txg;
4326 
4327 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0);
4328 
4329 	if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0)
4330 		return;
4331 
4332 	object = od[0].od_object;
4333 
4334 	/*
4335 	 * Add entries to this ZAP and make sure it spills over
4336 	 * and gets upgraded to a fatzap. Also, since we are adding
4337 	 * 2050 entries we should see ptrtbl growth and leaf-block split.
4338 	 */
4339 	for (int i = 0; i < 2050; i++) {
4340 		char name[ZFS_MAX_DATASET_NAME_LEN];
4341 		uint64_t value = i;
4342 		dmu_tx_t *tx;
4343 		int error;
4344 
4345 		(void) snprintf(name, sizeof (name), "fzap-%llu-%llu",
4346 		    id, value);
4347 
4348 		tx = dmu_tx_create(os);
4349 		dmu_tx_hold_zap(tx, object, B_TRUE, name);
4350 		txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4351 		if (txg == 0)
4352 			return;
4353 		error = zap_add(os, object, name, sizeof (uint64_t), 1,
4354 		    &value, tx);
4355 		ASSERT(error == 0 || error == EEXIST);
4356 		dmu_tx_commit(tx);
4357 	}
4358 }
4359 
4360 /* ARGSUSED */
4361 void
4362 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id)
4363 {
4364 	objset_t *os = zd->zd_os;
4365 	ztest_od_t od[1];
4366 	uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc;
4367 	dmu_tx_t *tx;
4368 	int i, namelen, error;
4369 	int micro = ztest_random(2);
4370 	char name[20], string_value[20];
4371 	void *data;
4372 
4373 	ztest_od_init(&od[0], ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0);
4374 
4375 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4376 		return;
4377 
4378 	object = od[0].od_object;
4379 
4380 	/*
4381 	 * Generate a random name of the form 'xxx.....' where each
4382 	 * x is a random printable character and the dots are dots.
4383 	 * There are 94 such characters, and the name length goes from
4384 	 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
4385 	 */
4386 	namelen = ztest_random(sizeof (name) - 5) + 5 + 1;
4387 
4388 	for (i = 0; i < 3; i++)
4389 		name[i] = '!' + ztest_random('~' - '!' + 1);
4390 	for (; i < namelen - 1; i++)
4391 		name[i] = '.';
4392 	name[i] = '\0';
4393 
4394 	if ((namelen & 1) || micro) {
4395 		wsize = sizeof (txg);
4396 		wc = 1;
4397 		data = &txg;
4398 	} else {
4399 		wsize = 1;
4400 		wc = namelen;
4401 		data = string_value;
4402 	}
4403 
4404 	count = -1ULL;
4405 	VERIFY0(zap_count(os, object, &count));
4406 	ASSERT(count != -1ULL);
4407 
4408 	/*
4409 	 * Select an operation: length, lookup, add, update, remove.
4410 	 */
4411 	i = ztest_random(5);
4412 
4413 	if (i >= 2) {
4414 		tx = dmu_tx_create(os);
4415 		dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4416 		txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4417 		if (txg == 0)
4418 			return;
4419 		bcopy(name, string_value, namelen);
4420 	} else {
4421 		tx = NULL;
4422 		txg = 0;
4423 		bzero(string_value, namelen);
4424 	}
4425 
4426 	switch (i) {
4427 
4428 	case 0:
4429 		error = zap_length(os, object, name, &zl_wsize, &zl_wc);
4430 		if (error == 0) {
4431 			ASSERT3U(wsize, ==, zl_wsize);
4432 			ASSERT3U(wc, ==, zl_wc);
4433 		} else {
4434 			ASSERT3U(error, ==, ENOENT);
4435 		}
4436 		break;
4437 
4438 	case 1:
4439 		error = zap_lookup(os, object, name, wsize, wc, data);
4440 		if (error == 0) {
4441 			if (data == string_value &&
4442 			    bcmp(name, data, namelen) != 0)
4443 				fatal(0, "name '%s' != val '%s' len %d",
4444 				    name, data, namelen);
4445 		} else {
4446 			ASSERT3U(error, ==, ENOENT);
4447 		}
4448 		break;
4449 
4450 	case 2:
4451 		error = zap_add(os, object, name, wsize, wc, data, tx);
4452 		ASSERT(error == 0 || error == EEXIST);
4453 		break;
4454 
4455 	case 3:
4456 		VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0);
4457 		break;
4458 
4459 	case 4:
4460 		error = zap_remove(os, object, name, tx);
4461 		ASSERT(error == 0 || error == ENOENT);
4462 		break;
4463 	}
4464 
4465 	if (tx != NULL)
4466 		dmu_tx_commit(tx);
4467 }
4468 
4469 /*
4470  * Commit callback data.
4471  */
4472 typedef struct ztest_cb_data {
4473 	list_node_t		zcd_node;
4474 	uint64_t		zcd_txg;
4475 	int			zcd_expected_err;
4476 	boolean_t		zcd_added;
4477 	boolean_t		zcd_called;
4478 	spa_t			*zcd_spa;
4479 } ztest_cb_data_t;
4480 
4481 /* This is the actual commit callback function */
4482 static void
4483 ztest_commit_callback(void *arg, int error)
4484 {
4485 	ztest_cb_data_t *data = arg;
4486 	uint64_t synced_txg;
4487 
4488 	VERIFY(data != NULL);
4489 	VERIFY3S(data->zcd_expected_err, ==, error);
4490 	VERIFY(!data->zcd_called);
4491 
4492 	synced_txg = spa_last_synced_txg(data->zcd_spa);
4493 	if (data->zcd_txg > synced_txg)
4494 		fatal(0, "commit callback of txg %" PRIu64 " called prematurely"
4495 		    ", last synced txg = %" PRIu64 "\n", data->zcd_txg,
4496 		    synced_txg);
4497 
4498 	data->zcd_called = B_TRUE;
4499 
4500 	if (error == ECANCELED) {
4501 		ASSERT0(data->zcd_txg);
4502 		ASSERT(!data->zcd_added);
4503 
4504 		/*
4505 		 * The private callback data should be destroyed here, but
4506 		 * since we are going to check the zcd_called field after
4507 		 * dmu_tx_abort(), we will destroy it there.
4508 		 */
4509 		return;
4510 	}
4511 
4512 	/* Was this callback added to the global callback list? */
4513 	if (!data->zcd_added)
4514 		goto out;
4515 
4516 	ASSERT3U(data->zcd_txg, !=, 0);
4517 
4518 	/* Remove our callback from the list */
4519 	mutex_enter(&zcl.zcl_callbacks_lock);
4520 	list_remove(&zcl.zcl_callbacks, data);
4521 	mutex_exit(&zcl.zcl_callbacks_lock);
4522 
4523 out:
4524 	umem_free(data, sizeof (ztest_cb_data_t));
4525 }
4526 
4527 /* Allocate and initialize callback data structure */
4528 static ztest_cb_data_t *
4529 ztest_create_cb_data(objset_t *os, uint64_t txg)
4530 {
4531 	ztest_cb_data_t *cb_data;
4532 
4533 	cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL);
4534 
4535 	cb_data->zcd_txg = txg;
4536 	cb_data->zcd_spa = dmu_objset_spa(os);
4537 
4538 	return (cb_data);
4539 }
4540 
4541 /*
4542  * If a number of txgs equal to this threshold have been created after a commit
4543  * callback has been registered but not called, then we assume there is an
4544  * implementation bug.
4545  */
4546 #define	ZTEST_COMMIT_CALLBACK_THRESH	(TXG_CONCURRENT_STATES + 2)
4547 
4548 /*
4549  * Commit callback test.
4550  */
4551 void
4552 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id)
4553 {
4554 	objset_t *os = zd->zd_os;
4555 	ztest_od_t od[1];
4556 	dmu_tx_t *tx;
4557 	ztest_cb_data_t *cb_data[3], *tmp_cb;
4558 	uint64_t old_txg, txg;
4559 	int i, error;
4560 
4561 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0);
4562 
4563 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4564 		return;
4565 
4566 	tx = dmu_tx_create(os);
4567 
4568 	cb_data[0] = ztest_create_cb_data(os, 0);
4569 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]);
4570 
4571 	dmu_tx_hold_write(tx, od[0].od_object, 0, sizeof (uint64_t));
4572 
4573 	/* Every once in a while, abort the transaction on purpose */
4574 	if (ztest_random(100) == 0)
4575 		error = -1;
4576 
4577 	if (!error)
4578 		error = dmu_tx_assign(tx, TXG_NOWAIT);
4579 
4580 	txg = error ? 0 : dmu_tx_get_txg(tx);
4581 
4582 	cb_data[0]->zcd_txg = txg;
4583 	cb_data[1] = ztest_create_cb_data(os, txg);
4584 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]);
4585 
4586 	if (error) {
4587 		/*
4588 		 * It's not a strict requirement to call the registered
4589 		 * callbacks from inside dmu_tx_abort(), but that's what
4590 		 * it's supposed to happen in the current implementation
4591 		 * so we will check for that.
4592 		 */
4593 		for (i = 0; i < 2; i++) {
4594 			cb_data[i]->zcd_expected_err = ECANCELED;
4595 			VERIFY(!cb_data[i]->zcd_called);
4596 		}
4597 
4598 		dmu_tx_abort(tx);
4599 
4600 		for (i = 0; i < 2; i++) {
4601 			VERIFY(cb_data[i]->zcd_called);
4602 			umem_free(cb_data[i], sizeof (ztest_cb_data_t));
4603 		}
4604 
4605 		return;
4606 	}
4607 
4608 	cb_data[2] = ztest_create_cb_data(os, txg);
4609 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]);
4610 
4611 	/*
4612 	 * Read existing data to make sure there isn't a future leak.
4613 	 */
4614 	VERIFY(0 == dmu_read(os, od[0].od_object, 0, sizeof (uint64_t),
4615 	    &old_txg, DMU_READ_PREFETCH));
4616 
4617 	if (old_txg > txg)
4618 		fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64,
4619 		    old_txg, txg);
4620 
4621 	dmu_write(os, od[0].od_object, 0, sizeof (uint64_t), &txg, tx);
4622 
4623 	mutex_enter(&zcl.zcl_callbacks_lock);
4624 
4625 	/*
4626 	 * Since commit callbacks don't have any ordering requirement and since
4627 	 * it is theoretically possible for a commit callback to be called
4628 	 * after an arbitrary amount of time has elapsed since its txg has been
4629 	 * synced, it is difficult to reliably determine whether a commit
4630 	 * callback hasn't been called due to high load or due to a flawed
4631 	 * implementation.
4632 	 *
4633 	 * In practice, we will assume that if after a certain number of txgs a
4634 	 * commit callback hasn't been called, then most likely there's an
4635 	 * implementation bug..
4636 	 */
4637 	tmp_cb = list_head(&zcl.zcl_callbacks);
4638 	if (tmp_cb != NULL &&
4639 	    (txg - ZTEST_COMMIT_CALLBACK_THRESH) > tmp_cb->zcd_txg) {
4640 		fatal(0, "Commit callback threshold exceeded, oldest txg: %"
4641 		    PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg);
4642 	}
4643 
4644 	/*
4645 	 * Let's find the place to insert our callbacks.
4646 	 *
4647 	 * Even though the list is ordered by txg, it is possible for the
4648 	 * insertion point to not be the end because our txg may already be
4649 	 * quiescing at this point and other callbacks in the open txg
4650 	 * (from other objsets) may have sneaked in.
4651 	 */
4652 	tmp_cb = list_tail(&zcl.zcl_callbacks);
4653 	while (tmp_cb != NULL && tmp_cb->zcd_txg > txg)
4654 		tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb);
4655 
4656 	/* Add the 3 callbacks to the list */
4657 	for (i = 0; i < 3; i++) {
4658 		if (tmp_cb == NULL)
4659 			list_insert_head(&zcl.zcl_callbacks, cb_data[i]);
4660 		else
4661 			list_insert_after(&zcl.zcl_callbacks, tmp_cb,
4662 			    cb_data[i]);
4663 
4664 		cb_data[i]->zcd_added = B_TRUE;
4665 		VERIFY(!cb_data[i]->zcd_called);
4666 
4667 		tmp_cb = cb_data[i];
4668 	}
4669 
4670 	mutex_exit(&zcl.zcl_callbacks_lock);
4671 
4672 	dmu_tx_commit(tx);
4673 }
4674 
4675 /* ARGSUSED */
4676 void
4677 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id)
4678 {
4679 	zfs_prop_t proplist[] = {
4680 		ZFS_PROP_CHECKSUM,
4681 		ZFS_PROP_COMPRESSION,
4682 		ZFS_PROP_COPIES,
4683 		ZFS_PROP_DEDUP
4684 	};
4685 
4686 	rw_enter(&ztest_name_lock, RW_READER);
4687 
4688 	for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++)
4689 		(void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p],
4690 		    ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2));
4691 
4692 	rw_exit(&ztest_name_lock);
4693 }
4694 
4695 /* ARGSUSED */
4696 void
4697 ztest_remap_blocks(ztest_ds_t *zd, uint64_t id)
4698 {
4699 	rw_enter(&ztest_name_lock, RW_READER);
4700 
4701 	int error = dmu_objset_remap_indirects(zd->zd_name);
4702 	if (error == ENOSPC)
4703 		error = 0;
4704 	ASSERT0(error);
4705 
4706 	rw_exit(&ztest_name_lock);
4707 }
4708 
4709 /* ARGSUSED */
4710 void
4711 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id)
4712 {
4713 	nvlist_t *props = NULL;
4714 
4715 	rw_enter(&ztest_name_lock, RW_READER);
4716 
4717 	(void) ztest_spa_prop_set_uint64(ZPOOL_PROP_DEDUPDITTO,
4718 	    ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN));
4719 
4720 	VERIFY0(spa_prop_get(ztest_spa, &props));
4721 
4722 	if (ztest_opts.zo_verbose >= 6)
4723 		dump_nvlist(props, 4);
4724 
4725 	nvlist_free(props);
4726 
4727 	rw_exit(&ztest_name_lock);
4728 }
4729 
4730 static int
4731 user_release_one(const char *snapname, const char *holdname)
4732 {
4733 	nvlist_t *snaps, *holds;
4734 	int error;
4735 
4736 	snaps = fnvlist_alloc();
4737 	holds = fnvlist_alloc();
4738 	fnvlist_add_boolean(holds, holdname);
4739 	fnvlist_add_nvlist(snaps, snapname, holds);
4740 	fnvlist_free(holds);
4741 	error = dsl_dataset_user_release(snaps, NULL);
4742 	fnvlist_free(snaps);
4743 	return (error);
4744 }
4745 
4746 /*
4747  * Test snapshot hold/release and deferred destroy.
4748  */
4749 void
4750 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id)
4751 {
4752 	int error;
4753 	objset_t *os = zd->zd_os;
4754 	objset_t *origin;
4755 	char snapname[100];
4756 	char fullname[100];
4757 	char clonename[100];
4758 	char tag[100];
4759 	char osname[ZFS_MAX_DATASET_NAME_LEN];
4760 	nvlist_t *holds;
4761 
4762 	rw_enter(&ztest_name_lock, RW_READER);
4763 
4764 	dmu_objset_name(os, osname);
4765 
4766 	(void) snprintf(snapname, sizeof (snapname), "sh1_%llu", id);
4767 	(void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname);
4768 	(void) snprintf(clonename, sizeof (clonename),
4769 	    "%s/ch1_%llu", osname, id);
4770 	(void) snprintf(tag, sizeof (tag), "tag_%llu", id);
4771 
4772 	/*
4773 	 * Clean up from any previous run.
4774 	 */
4775 	error = dsl_destroy_head(clonename);
4776 	if (error != ENOENT)
4777 		ASSERT0(error);
4778 	error = user_release_one(fullname, tag);
4779 	if (error != ESRCH && error != ENOENT)
4780 		ASSERT0(error);
4781 	error = dsl_destroy_snapshot(fullname, B_FALSE);
4782 	if (error != ENOENT)
4783 		ASSERT0(error);
4784 
4785 	/*
4786 	 * Create snapshot, clone it, mark snap for deferred destroy,
4787 	 * destroy clone, verify snap was also destroyed.
4788 	 */
4789 	error = dmu_objset_snapshot_one(osname, snapname);
4790 	if (error) {
4791 		if (error == ENOSPC) {
4792 			ztest_record_enospc("dmu_objset_snapshot");
4793 			goto out;
4794 		}
4795 		fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
4796 	}
4797 
4798 	error = dmu_objset_clone(clonename, fullname);
4799 	if (error) {
4800 		if (error == ENOSPC) {
4801 			ztest_record_enospc("dmu_objset_clone");
4802 			goto out;
4803 		}
4804 		fatal(0, "dmu_objset_clone(%s) = %d", clonename, error);
4805 	}
4806 
4807 	error = dsl_destroy_snapshot(fullname, B_TRUE);
4808 	if (error) {
4809 		fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
4810 		    fullname, error);
4811 	}
4812 
4813 	error = dsl_destroy_head(clonename);
4814 	if (error)
4815 		fatal(0, "dsl_destroy_head(%s) = %d", clonename, error);
4816 
4817 	error = dmu_objset_hold(fullname, FTAG, &origin);
4818 	if (error != ENOENT)
4819 		fatal(0, "dmu_objset_hold(%s) = %d", fullname, error);
4820 
4821 	/*
4822 	 * Create snapshot, add temporary hold, verify that we can't
4823 	 * destroy a held snapshot, mark for deferred destroy,
4824 	 * release hold, verify snapshot was destroyed.
4825 	 */
4826 	error = dmu_objset_snapshot_one(osname, snapname);
4827 	if (error) {
4828 		if (error == ENOSPC) {
4829 			ztest_record_enospc("dmu_objset_snapshot");
4830 			goto out;
4831 		}
4832 		fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
4833 	}
4834 
4835 	holds = fnvlist_alloc();
4836 	fnvlist_add_string(holds, fullname, tag);
4837 	error = dsl_dataset_user_hold(holds, 0, NULL);
4838 	fnvlist_free(holds);
4839 
4840 	if (error == ENOSPC) {
4841 		ztest_record_enospc("dsl_dataset_user_hold");
4842 		goto out;
4843 	} else if (error) {
4844 		fatal(0, "dsl_dataset_user_hold(%s, %s) = %u",
4845 		    fullname, tag, error);
4846 	}
4847 
4848 	error = dsl_destroy_snapshot(fullname, B_FALSE);
4849 	if (error != EBUSY) {
4850 		fatal(0, "dsl_destroy_snapshot(%s, B_FALSE) = %d",
4851 		    fullname, error);
4852 	}
4853 
4854 	error = dsl_destroy_snapshot(fullname, B_TRUE);
4855 	if (error) {
4856 		fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
4857 		    fullname, error);
4858 	}
4859 
4860 	error = user_release_one(fullname, tag);
4861 	if (error)
4862 		fatal(0, "user_release_one(%s, %s) = %d", fullname, tag, error);
4863 
4864 	VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT);
4865 
4866 out:
4867 	rw_exit(&ztest_name_lock);
4868 }
4869 
4870 /*
4871  * Inject random faults into the on-disk data.
4872  */
4873 /* ARGSUSED */
4874 void
4875 ztest_fault_inject(ztest_ds_t *zd, uint64_t id)
4876 {
4877 	ztest_shared_t *zs = ztest_shared;
4878 	spa_t *spa = ztest_spa;
4879 	int fd;
4880 	uint64_t offset;
4881 	uint64_t leaves;
4882 	uint64_t bad = 0x1990c0ffeedecade;
4883 	uint64_t top, leaf;
4884 	char path0[MAXPATHLEN];
4885 	char pathrand[MAXPATHLEN];
4886 	size_t fsize;
4887 	int bshift = SPA_MAXBLOCKSHIFT + 2;
4888 	int iters = 1000;
4889 	int maxfaults;
4890 	int mirror_save;
4891 	vdev_t *vd0 = NULL;
4892 	uint64_t guid0 = 0;
4893 	boolean_t islog = B_FALSE;
4894 
4895 	mutex_enter(&ztest_vdev_lock);
4896 	maxfaults = MAXFAULTS();
4897 	leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz;
4898 	mirror_save = zs->zs_mirrors;
4899 	mutex_exit(&ztest_vdev_lock);
4900 
4901 	ASSERT(leaves >= 1);
4902 
4903 	/*
4904 	 * Grab the name lock as reader. There are some operations
4905 	 * which don't like to have their vdevs changed while
4906 	 * they are in progress (i.e. spa_change_guid). Those
4907 	 * operations will have grabbed the name lock as writer.
4908 	 */
4909 	rw_enter(&ztest_name_lock, RW_READER);
4910 
4911 	/*
4912 	 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
4913 	 */
4914 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
4915 
4916 	if (ztest_random(2) == 0) {
4917 		/*
4918 		 * Inject errors on a normal data device or slog device.
4919 		 */
4920 		top = ztest_random_vdev_top(spa, B_TRUE);
4921 		leaf = ztest_random(leaves) + zs->zs_splits;
4922 
4923 		/*
4924 		 * Generate paths to the first leaf in this top-level vdev,
4925 		 * and to the random leaf we selected.  We'll induce transient
4926 		 * write failures and random online/offline activity on leaf 0,
4927 		 * and we'll write random garbage to the randomly chosen leaf.
4928 		 */
4929 		(void) snprintf(path0, sizeof (path0), ztest_dev_template,
4930 		    ztest_opts.zo_dir, ztest_opts.zo_pool,
4931 		    top * leaves + zs->zs_splits);
4932 		(void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template,
4933 		    ztest_opts.zo_dir, ztest_opts.zo_pool,
4934 		    top * leaves + leaf);
4935 
4936 		vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0);
4937 		if (vd0 != NULL && vd0->vdev_top->vdev_islog)
4938 			islog = B_TRUE;
4939 
4940 		/*
4941 		 * If the top-level vdev needs to be resilvered
4942 		 * then we only allow faults on the device that is
4943 		 * resilvering.
4944 		 */
4945 		if (vd0 != NULL && maxfaults != 1 &&
4946 		    (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) ||
4947 		    vd0->vdev_resilver_txg != 0)) {
4948 			/*
4949 			 * Make vd0 explicitly claim to be unreadable,
4950 			 * or unwriteable, or reach behind its back
4951 			 * and close the underlying fd.  We can do this if
4952 			 * maxfaults == 0 because we'll fail and reexecute,
4953 			 * and we can do it if maxfaults >= 2 because we'll
4954 			 * have enough redundancy.  If maxfaults == 1, the
4955 			 * combination of this with injection of random data
4956 			 * corruption below exceeds the pool's fault tolerance.
4957 			 */
4958 			vdev_file_t *vf = vd0->vdev_tsd;
4959 
4960 			zfs_dbgmsg("injecting fault to vdev %llu; maxfaults=%d",
4961 			    (long long)vd0->vdev_id, (int)maxfaults);
4962 
4963 			if (vf != NULL && ztest_random(3) == 0) {
4964 				(void) close(vf->vf_vnode->v_fd);
4965 				vf->vf_vnode->v_fd = -1;
4966 			} else if (ztest_random(2) == 0) {
4967 				vd0->vdev_cant_read = B_TRUE;
4968 			} else {
4969 				vd0->vdev_cant_write = B_TRUE;
4970 			}
4971 			guid0 = vd0->vdev_guid;
4972 		}
4973 	} else {
4974 		/*
4975 		 * Inject errors on an l2cache device.
4976 		 */
4977 		spa_aux_vdev_t *sav = &spa->spa_l2cache;
4978 
4979 		if (sav->sav_count == 0) {
4980 			spa_config_exit(spa, SCL_STATE, FTAG);
4981 			rw_exit(&ztest_name_lock);
4982 			return;
4983 		}
4984 		vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)];
4985 		guid0 = vd0->vdev_guid;
4986 		(void) strcpy(path0, vd0->vdev_path);
4987 		(void) strcpy(pathrand, vd0->vdev_path);
4988 
4989 		leaf = 0;
4990 		leaves = 1;
4991 		maxfaults = INT_MAX;	/* no limit on cache devices */
4992 	}
4993 
4994 	spa_config_exit(spa, SCL_STATE, FTAG);
4995 	rw_exit(&ztest_name_lock);
4996 
4997 	/*
4998 	 * If we can tolerate two or more faults, or we're dealing
4999 	 * with a slog, randomly online/offline vd0.
5000 	 */
5001 	if ((maxfaults >= 2 || islog) && guid0 != 0) {
5002 		if (ztest_random(10) < 6) {
5003 			int flags = (ztest_random(2) == 0 ?
5004 			    ZFS_OFFLINE_TEMPORARY : 0);
5005 
5006 			/*
5007 			 * We have to grab the zs_name_lock as writer to
5008 			 * prevent a race between offlining a slog and
5009 			 * destroying a dataset. Offlining the slog will
5010 			 * grab a reference on the dataset which may cause
5011 			 * dmu_objset_destroy() to fail with EBUSY thus
5012 			 * leaving the dataset in an inconsistent state.
5013 			 */
5014 			if (islog)
5015 				rw_enter(&ztest_name_lock, RW_WRITER);
5016 
5017 			VERIFY(vdev_offline(spa, guid0, flags) != EBUSY);
5018 
5019 			if (islog)
5020 				rw_exit(&ztest_name_lock);
5021 		} else {
5022 			/*
5023 			 * Ideally we would like to be able to randomly
5024 			 * call vdev_[on|off]line without holding locks
5025 			 * to force unpredictable failures but the side
5026 			 * effects of vdev_[on|off]line prevent us from
5027 			 * doing so. We grab the ztest_vdev_lock here to
5028 			 * prevent a race between injection testing and
5029 			 * aux_vdev removal.
5030 			 */
5031 			mutex_enter(&ztest_vdev_lock);
5032 			(void) vdev_online(spa, guid0, 0, NULL);
5033 			mutex_exit(&ztest_vdev_lock);
5034 		}
5035 	}
5036 
5037 	if (maxfaults == 0)
5038 		return;
5039 
5040 	/*
5041 	 * We have at least single-fault tolerance, so inject data corruption.
5042 	 */
5043 	fd = open(pathrand, O_RDWR);
5044 
5045 	if (fd == -1)	/* we hit a gap in the device namespace */
5046 		return;
5047 
5048 	fsize = lseek(fd, 0, SEEK_END);
5049 
5050 	while (--iters != 0) {
5051 		/*
5052 		 * The offset must be chosen carefully to ensure that
5053 		 * we do not inject a given logical block with errors
5054 		 * on two different leaf devices, because ZFS can not
5055 		 * tolerate that (if maxfaults==1).
5056 		 *
5057 		 * We divide each leaf into chunks of size
5058 		 * (# leaves * SPA_MAXBLOCKSIZE * 4).  Within each chunk
5059 		 * there is a series of ranges to which we can inject errors.
5060 		 * Each range can accept errors on only a single leaf vdev.
5061 		 * The error injection ranges are separated by ranges
5062 		 * which we will not inject errors on any device (DMZs).
5063 		 * Each DMZ must be large enough such that a single block
5064 		 * can not straddle it, so that a single block can not be
5065 		 * a target in two different injection ranges (on different
5066 		 * leaf vdevs).
5067 		 *
5068 		 * For example, with 3 leaves, each chunk looks like:
5069 		 *    0 to  32M: injection range for leaf 0
5070 		 *  32M to  64M: DMZ - no injection allowed
5071 		 *  64M to  96M: injection range for leaf 1
5072 		 *  96M to 128M: DMZ - no injection allowed
5073 		 * 128M to 160M: injection range for leaf 2
5074 		 * 160M to 192M: DMZ - no injection allowed
5075 		 */
5076 		offset = ztest_random(fsize / (leaves << bshift)) *
5077 		    (leaves << bshift) + (leaf << bshift) +
5078 		    (ztest_random(1ULL << (bshift - 1)) & -8ULL);
5079 
5080 		/*
5081 		 * Only allow damage to the labels at one end of the vdev.
5082 		 *
5083 		 * If all labels are damaged, the device will be totally
5084 		 * inaccessible, which will result in loss of data,
5085 		 * because we also damage (parts of) the other side of
5086 		 * the mirror/raidz.
5087 		 *
5088 		 * Additionally, we will always have both an even and an
5089 		 * odd label, so that we can handle crashes in the
5090 		 * middle of vdev_config_sync().
5091 		 */
5092 		if ((leaf & 1) == 0 && offset < VDEV_LABEL_START_SIZE)
5093 			continue;
5094 
5095 		/*
5096 		 * The two end labels are stored at the "end" of the disk, but
5097 		 * the end of the disk (vdev_psize) is aligned to
5098 		 * sizeof (vdev_label_t).
5099 		 */
5100 		uint64_t psize = P2ALIGN(fsize, sizeof (vdev_label_t));
5101 		if ((leaf & 1) == 1 &&
5102 		    offset + sizeof (bad) > psize - VDEV_LABEL_END_SIZE)
5103 			continue;
5104 
5105 		mutex_enter(&ztest_vdev_lock);
5106 		if (mirror_save != zs->zs_mirrors) {
5107 			mutex_exit(&ztest_vdev_lock);
5108 			(void) close(fd);
5109 			return;
5110 		}
5111 
5112 		if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad))
5113 			fatal(1, "can't inject bad word at 0x%llx in %s",
5114 			    offset, pathrand);
5115 
5116 		mutex_exit(&ztest_vdev_lock);
5117 
5118 		if (ztest_opts.zo_verbose >= 7)
5119 			(void) printf("injected bad word into %s,"
5120 			    " offset 0x%llx\n", pathrand, (u_longlong_t)offset);
5121 	}
5122 
5123 	(void) close(fd);
5124 }
5125 
5126 /*
5127  * Verify that DDT repair works as expected.
5128  */
5129 void
5130 ztest_ddt_repair(ztest_ds_t *zd, uint64_t id)
5131 {
5132 	ztest_shared_t *zs = ztest_shared;
5133 	spa_t *spa = ztest_spa;
5134 	objset_t *os = zd->zd_os;
5135 	ztest_od_t od[1];
5136 	uint64_t object, blocksize, txg, pattern, psize;
5137 	enum zio_checksum checksum = spa_dedup_checksum(spa);
5138 	dmu_buf_t *db;
5139 	dmu_tx_t *tx;
5140 	abd_t *abd;
5141 	blkptr_t blk;
5142 	int copies = 2 * ZIO_DEDUPDITTO_MIN;
5143 
5144 	blocksize = ztest_random_blocksize();
5145 	blocksize = MIN(blocksize, 2048);	/* because we write so many */
5146 
5147 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0);
5148 
5149 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
5150 		return;
5151 
5152 	/*
5153 	 * Take the name lock as writer to prevent anyone else from changing
5154 	 * the pool and dataset properies we need to maintain during this test.
5155 	 */
5156 	rw_enter(&ztest_name_lock, RW_WRITER);
5157 
5158 	if (ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_DEDUP, checksum,
5159 	    B_FALSE) != 0 ||
5160 	    ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COPIES, 1,
5161 	    B_FALSE) != 0) {
5162 		rw_exit(&ztest_name_lock);
5163 		return;
5164 	}
5165 
5166 	dmu_objset_stats_t dds;
5167 	dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
5168 	dmu_objset_fast_stat(os, &dds);
5169 	dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
5170 
5171 	object = od[0].od_object;
5172 	blocksize = od[0].od_blocksize;
5173 	pattern = zs->zs_guid ^ dds.dds_guid;
5174 
5175 	ASSERT(object != 0);
5176 
5177 	tx = dmu_tx_create(os);
5178 	dmu_tx_hold_write(tx, object, 0, copies * blocksize);
5179 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
5180 	if (txg == 0) {
5181 		rw_exit(&ztest_name_lock);
5182 		return;
5183 	}
5184 
5185 	/*
5186 	 * Write all the copies of our block.
5187 	 */
5188 	for (int i = 0; i < copies; i++) {
5189 		uint64_t offset = i * blocksize;
5190 		int error = dmu_buf_hold(os, object, offset, FTAG, &db,
5191 		    DMU_READ_NO_PREFETCH);
5192 		if (error != 0) {
5193 			fatal(B_FALSE, "dmu_buf_hold(%p, %llu, %llu) = %u",
5194 			    os, (long long)object, (long long) offset, error);
5195 		}
5196 		ASSERT(db->db_offset == offset);
5197 		ASSERT(db->db_size == blocksize);
5198 		ASSERT(ztest_pattern_match(db->db_data, db->db_size, pattern) ||
5199 		    ztest_pattern_match(db->db_data, db->db_size, 0ULL));
5200 		dmu_buf_will_fill(db, tx);
5201 		ztest_pattern_set(db->db_data, db->db_size, pattern);
5202 		dmu_buf_rele(db, FTAG);
5203 	}
5204 
5205 	dmu_tx_commit(tx);
5206 	txg_wait_synced(spa_get_dsl(spa), txg);
5207 
5208 	/*
5209 	 * Find out what block we got.
5210 	 */
5211 	VERIFY0(dmu_buf_hold(os, object, 0, FTAG, &db,
5212 	    DMU_READ_NO_PREFETCH));
5213 	blk = *((dmu_buf_impl_t *)db)->db_blkptr;
5214 	dmu_buf_rele(db, FTAG);
5215 
5216 	/*
5217 	 * Damage the block.  Dedup-ditto will save us when we read it later.
5218 	 */
5219 	psize = BP_GET_PSIZE(&blk);
5220 	abd = abd_alloc_linear(psize, B_TRUE);
5221 	ztest_pattern_set(abd_to_buf(abd), psize, ~pattern);
5222 
5223 	(void) zio_wait(zio_rewrite(NULL, spa, 0, &blk,
5224 	    abd, psize, NULL, NULL, ZIO_PRIORITY_SYNC_WRITE,
5225 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_INDUCE_DAMAGE, NULL));
5226 
5227 	abd_free(abd);
5228 
5229 	rw_exit(&ztest_name_lock);
5230 }
5231 
5232 /*
5233  * Scrub the pool.
5234  */
5235 /* ARGSUSED */
5236 void
5237 ztest_scrub(ztest_ds_t *zd, uint64_t id)
5238 {
5239 	spa_t *spa = ztest_spa;
5240 
5241 	(void) spa_scan(spa, POOL_SCAN_SCRUB);
5242 	(void) poll(NULL, 0, 100); /* wait a moment, then force a restart */
5243 	(void) spa_scan(spa, POOL_SCAN_SCRUB);
5244 }
5245 
5246 /*
5247  * Change the guid for the pool.
5248  */
5249 /* ARGSUSED */
5250 void
5251 ztest_reguid(ztest_ds_t *zd, uint64_t id)
5252 {
5253 	spa_t *spa = ztest_spa;
5254 	uint64_t orig, load;
5255 	int error;
5256 
5257 	orig = spa_guid(spa);
5258 	load = spa_load_guid(spa);
5259 
5260 	rw_enter(&ztest_name_lock, RW_WRITER);
5261 	error = spa_change_guid(spa);
5262 	rw_exit(&ztest_name_lock);
5263 
5264 	if (error != 0)
5265 		return;
5266 
5267 	if (ztest_opts.zo_verbose >= 4) {
5268 		(void) printf("Changed guid old %llu -> %llu\n",
5269 		    (u_longlong_t)orig, (u_longlong_t)spa_guid(spa));
5270 	}
5271 
5272 	VERIFY3U(orig, !=, spa_guid(spa));
5273 	VERIFY3U(load, ==, spa_load_guid(spa));
5274 }
5275 
5276 /*
5277  * Rename the pool to a different name and then rename it back.
5278  */
5279 /* ARGSUSED */
5280 void
5281 ztest_spa_rename(ztest_ds_t *zd, uint64_t id)
5282 {
5283 	char *oldname, *newname;
5284 	spa_t *spa;
5285 
5286 	rw_enter(&ztest_name_lock, RW_WRITER);
5287 
5288 	oldname = ztest_opts.zo_pool;
5289 	newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL);
5290 	(void) strcpy(newname, oldname);
5291 	(void) strcat(newname, "_tmp");
5292 
5293 	/*
5294 	 * Do the rename
5295 	 */
5296 	VERIFY3U(0, ==, spa_rename(oldname, newname));
5297 
5298 	/*
5299 	 * Try to open it under the old name, which shouldn't exist
5300 	 */
5301 	VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
5302 
5303 	/*
5304 	 * Open it under the new name and make sure it's still the same spa_t.
5305 	 */
5306 	VERIFY3U(0, ==, spa_open(newname, &spa, FTAG));
5307 
5308 	ASSERT(spa == ztest_spa);
5309 	spa_close(spa, FTAG);
5310 
5311 	/*
5312 	 * Rename it back to the original
5313 	 */
5314 	VERIFY3U(0, ==, spa_rename(newname, oldname));
5315 
5316 	/*
5317 	 * Make sure it can still be opened
5318 	 */
5319 	VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG));
5320 
5321 	ASSERT(spa == ztest_spa);
5322 	spa_close(spa, FTAG);
5323 
5324 	umem_free(newname, strlen(newname) + 1);
5325 
5326 	rw_exit(&ztest_name_lock);
5327 }
5328 
5329 /*
5330  * Verify pool integrity by running zdb.
5331  */
5332 static void
5333 ztest_run_zdb(char *pool)
5334 {
5335 	int status;
5336 	char zdb[MAXPATHLEN + MAXNAMELEN + 20];
5337 	char zbuf[1024];
5338 	char *bin;
5339 	char *ztest;
5340 	char *isa;
5341 	int isalen;
5342 	FILE *fp;
5343 
5344 	(void) realpath(getexecname(), zdb);
5345 
5346 	/* zdb lives in /usr/sbin, while ztest lives in /usr/bin */
5347 	bin = strstr(zdb, "/usr/bin/");
5348 	ztest = strstr(bin, "/ztest");
5349 	isa = bin + 8;
5350 	isalen = ztest - isa;
5351 	isa = strdup(isa);
5352 	/* LINTED */
5353 	(void) sprintf(bin,
5354 	    "/usr/sbin%.*s/zdb -bcc%s%s -G -d -U %s %s",
5355 	    isalen,
5356 	    isa,
5357 	    ztest_opts.zo_verbose >= 3 ? "s" : "",
5358 	    ztest_opts.zo_verbose >= 4 ? "v" : "",
5359 	    spa_config_path,
5360 	    pool);
5361 	free(isa);
5362 
5363 	if (ztest_opts.zo_verbose >= 5)
5364 		(void) printf("Executing %s\n", strstr(zdb, "zdb "));
5365 
5366 	fp = popen(zdb, "r");
5367 
5368 	while (fgets(zbuf, sizeof (zbuf), fp) != NULL)
5369 		if (ztest_opts.zo_verbose >= 3)
5370 			(void) printf("%s", zbuf);
5371 
5372 	status = pclose(fp);
5373 
5374 	if (status == 0)
5375 		return;
5376 
5377 	ztest_dump_core = 0;
5378 	if (WIFEXITED(status))
5379 		fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status));
5380 	else
5381 		fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status));
5382 }
5383 
5384 static void
5385 ztest_walk_pool_directory(char *header)
5386 {
5387 	spa_t *spa = NULL;
5388 
5389 	if (ztest_opts.zo_verbose >= 6)
5390 		(void) printf("%s\n", header);
5391 
5392 	mutex_enter(&spa_namespace_lock);
5393 	while ((spa = spa_next(spa)) != NULL)
5394 		if (ztest_opts.zo_verbose >= 6)
5395 			(void) printf("\t%s\n", spa_name(spa));
5396 	mutex_exit(&spa_namespace_lock);
5397 }
5398 
5399 static void
5400 ztest_spa_import_export(char *oldname, char *newname)
5401 {
5402 	nvlist_t *config, *newconfig;
5403 	uint64_t pool_guid;
5404 	spa_t *spa;
5405 	int error;
5406 
5407 	if (ztest_opts.zo_verbose >= 4) {
5408 		(void) printf("import/export: old = %s, new = %s\n",
5409 		    oldname, newname);
5410 	}
5411 
5412 	/*
5413 	 * Clean up from previous runs.
5414 	 */
5415 	(void) spa_destroy(newname);
5416 
5417 	/*
5418 	 * Get the pool's configuration and guid.
5419 	 */
5420 	VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG));
5421 
5422 	/*
5423 	 * Kick off a scrub to tickle scrub/export races.
5424 	 */
5425 	if (ztest_random(2) == 0)
5426 		(void) spa_scan(spa, POOL_SCAN_SCRUB);
5427 
5428 	pool_guid = spa_guid(spa);
5429 	spa_close(spa, FTAG);
5430 
5431 	ztest_walk_pool_directory("pools before export");
5432 
5433 	/*
5434 	 * Export it.
5435 	 */
5436 	VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE));
5437 
5438 	ztest_walk_pool_directory("pools after export");
5439 
5440 	/*
5441 	 * Try to import it.
5442 	 */
5443 	newconfig = spa_tryimport(config);
5444 	ASSERT(newconfig != NULL);
5445 	nvlist_free(newconfig);
5446 
5447 	/*
5448 	 * Import it under the new name.
5449 	 */
5450 	error = spa_import(newname, config, NULL, 0);
5451 	if (error != 0) {
5452 		dump_nvlist(config, 0);
5453 		fatal(B_FALSE, "couldn't import pool %s as %s: error %u",
5454 		    oldname, newname, error);
5455 	}
5456 
5457 	ztest_walk_pool_directory("pools after import");
5458 
5459 	/*
5460 	 * Try to import it again -- should fail with EEXIST.
5461 	 */
5462 	VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0));
5463 
5464 	/*
5465 	 * Try to import it under a different name -- should fail with EEXIST.
5466 	 */
5467 	VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0));
5468 
5469 	/*
5470 	 * Verify that the pool is no longer visible under the old name.
5471 	 */
5472 	VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
5473 
5474 	/*
5475 	 * Verify that we can open and close the pool using the new name.
5476 	 */
5477 	VERIFY3U(0, ==, spa_open(newname, &spa, FTAG));
5478 	ASSERT(pool_guid == spa_guid(spa));
5479 	spa_close(spa, FTAG);
5480 
5481 	nvlist_free(config);
5482 }
5483 
5484 static void
5485 ztest_resume(spa_t *spa)
5486 {
5487 	if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6)
5488 		(void) printf("resuming from suspended state\n");
5489 	spa_vdev_state_enter(spa, SCL_NONE);
5490 	vdev_clear(spa, NULL);
5491 	(void) spa_vdev_state_exit(spa, NULL, 0);
5492 	(void) zio_resume(spa);
5493 }
5494 
5495 static void *
5496 ztest_resume_thread(void *arg)
5497 {
5498 	spa_t *spa = arg;
5499 
5500 	while (!ztest_exiting) {
5501 		if (spa_suspended(spa))
5502 			ztest_resume(spa);
5503 		(void) poll(NULL, 0, 100);
5504 
5505 		/*
5506 		 * Periodically change the zfs_compressed_arc_enabled setting.
5507 		 */
5508 		if (ztest_random(10) == 0)
5509 			zfs_compressed_arc_enabled = ztest_random(2);
5510 
5511 		/*
5512 		 * Periodically change the zfs_abd_scatter_enabled setting.
5513 		 */
5514 		if (ztest_random(10) == 0)
5515 			zfs_abd_scatter_enabled = ztest_random(2);
5516 	}
5517 	return (NULL);
5518 }
5519 
5520 static void *
5521 ztest_deadman_thread(void *arg)
5522 {
5523 	ztest_shared_t *zs = arg;
5524 	spa_t *spa = ztest_spa;
5525 	hrtime_t delta, total = 0;
5526 
5527 	for (;;) {
5528 		delta = zs->zs_thread_stop - zs->zs_thread_start +
5529 		    MSEC2NSEC(zfs_deadman_synctime_ms);
5530 
5531 		(void) poll(NULL, 0, (int)NSEC2MSEC(delta));
5532 
5533 		/*
5534 		 * If the pool is suspended then fail immediately. Otherwise,
5535 		 * check to see if the pool is making any progress. If
5536 		 * vdev_deadman() discovers that there hasn't been any recent
5537 		 * I/Os then it will end up aborting the tests.
5538 		 */
5539 		if (spa_suspended(spa) || spa->spa_root_vdev == NULL) {
5540 			fatal(0, "aborting test after %llu seconds because "
5541 			    "pool has transitioned to a suspended state.",
5542 			    zfs_deadman_synctime_ms / 1000);
5543 			return (NULL);
5544 		}
5545 		vdev_deadman(spa->spa_root_vdev);
5546 
5547 		total += zfs_deadman_synctime_ms/1000;
5548 		(void) printf("ztest has been running for %lld seconds\n",
5549 		    total);
5550 	}
5551 }
5552 
5553 static void
5554 ztest_execute(int test, ztest_info_t *zi, uint64_t id)
5555 {
5556 	ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets];
5557 	ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test);
5558 	hrtime_t functime = gethrtime();
5559 
5560 	for (int i = 0; i < zi->zi_iters; i++)
5561 		zi->zi_func(zd, id);
5562 
5563 	functime = gethrtime() - functime;
5564 
5565 	atomic_add_64(&zc->zc_count, 1);
5566 	atomic_add_64(&zc->zc_time, functime);
5567 
5568 	if (ztest_opts.zo_verbose >= 4) {
5569 		Dl_info dli;
5570 		(void) dladdr((void *)zi->zi_func, &dli);
5571 		(void) printf("%6.2f sec in %s\n",
5572 		    (double)functime / NANOSEC, dli.dli_sname);
5573 	}
5574 }
5575 
5576 static void *
5577 ztest_thread(void *arg)
5578 {
5579 	int rand;
5580 	uint64_t id = (uintptr_t)arg;
5581 	ztest_shared_t *zs = ztest_shared;
5582 	uint64_t call_next;
5583 	hrtime_t now;
5584 	ztest_info_t *zi;
5585 	ztest_shared_callstate_t *zc;
5586 
5587 	while ((now = gethrtime()) < zs->zs_thread_stop) {
5588 		/*
5589 		 * See if it's time to force a crash.
5590 		 */
5591 		if (now > zs->zs_thread_kill)
5592 			ztest_kill(zs);
5593 
5594 		/*
5595 		 * If we're getting ENOSPC with some regularity, stop.
5596 		 */
5597 		if (zs->zs_enospc_count > 10)
5598 			break;
5599 
5600 		/*
5601 		 * Pick a random function to execute.
5602 		 */
5603 		rand = ztest_random(ZTEST_FUNCS);
5604 		zi = &ztest_info[rand];
5605 		zc = ZTEST_GET_SHARED_CALLSTATE(rand);
5606 		call_next = zc->zc_next;
5607 
5608 		if (now >= call_next &&
5609 		    atomic_cas_64(&zc->zc_next, call_next, call_next +
5610 		    ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) {
5611 			ztest_execute(rand, zi, id);
5612 		}
5613 	}
5614 
5615 	return (NULL);
5616 }
5617 
5618 static void
5619 ztest_dataset_name(char *dsname, char *pool, int d)
5620 {
5621 	(void) snprintf(dsname, ZFS_MAX_DATASET_NAME_LEN, "%s/ds_%d", pool, d);
5622 }
5623 
5624 static void
5625 ztest_dataset_destroy(int d)
5626 {
5627 	char name[ZFS_MAX_DATASET_NAME_LEN];
5628 
5629 	ztest_dataset_name(name, ztest_opts.zo_pool, d);
5630 
5631 	if (ztest_opts.zo_verbose >= 3)
5632 		(void) printf("Destroying %s to free up space\n", name);
5633 
5634 	/*
5635 	 * Cleanup any non-standard clones and snapshots.  In general,
5636 	 * ztest thread t operates on dataset (t % zopt_datasets),
5637 	 * so there may be more than one thing to clean up.
5638 	 */
5639 	for (int t = d; t < ztest_opts.zo_threads;
5640 	    t += ztest_opts.zo_datasets) {
5641 		ztest_dsl_dataset_cleanup(name, t);
5642 	}
5643 
5644 	(void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
5645 	    DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
5646 }
5647 
5648 static void
5649 ztest_dataset_dirobj_verify(ztest_ds_t *zd)
5650 {
5651 	uint64_t usedobjs, dirobjs, scratch;
5652 
5653 	/*
5654 	 * ZTEST_DIROBJ is the object directory for the entire dataset.
5655 	 * Therefore, the number of objects in use should equal the
5656 	 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself.
5657 	 * If not, we have an object leak.
5658 	 *
5659 	 * Note that we can only check this in ztest_dataset_open(),
5660 	 * when the open-context and syncing-context values agree.
5661 	 * That's because zap_count() returns the open-context value,
5662 	 * while dmu_objset_space() returns the rootbp fill count.
5663 	 */
5664 	VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs));
5665 	dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch);
5666 	ASSERT3U(dirobjs + 1, ==, usedobjs);
5667 }
5668 
5669 static int
5670 ztest_dataset_open(int d)
5671 {
5672 	ztest_ds_t *zd = &ztest_ds[d];
5673 	uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq;
5674 	objset_t *os;
5675 	zilog_t *zilog;
5676 	char name[ZFS_MAX_DATASET_NAME_LEN];
5677 	int error;
5678 
5679 	ztest_dataset_name(name, ztest_opts.zo_pool, d);
5680 
5681 	rw_enter(&ztest_name_lock, RW_READER);
5682 
5683 	error = ztest_dataset_create(name);
5684 	if (error == ENOSPC) {
5685 		rw_exit(&ztest_name_lock);
5686 		ztest_record_enospc(FTAG);
5687 		return (error);
5688 	}
5689 	ASSERT(error == 0 || error == EEXIST);
5690 
5691 	VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, zd, &os));
5692 	rw_exit(&ztest_name_lock);
5693 
5694 	ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os);
5695 
5696 	zilog = zd->zd_zilog;
5697 
5698 	if (zilog->zl_header->zh_claim_lr_seq != 0 &&
5699 	    zilog->zl_header->zh_claim_lr_seq < committed_seq)
5700 		fatal(0, "missing log records: claimed %llu < committed %llu",
5701 		    zilog->zl_header->zh_claim_lr_seq, committed_seq);
5702 
5703 	ztest_dataset_dirobj_verify(zd);
5704 
5705 	zil_replay(os, zd, ztest_replay_vector);
5706 
5707 	ztest_dataset_dirobj_verify(zd);
5708 
5709 	if (ztest_opts.zo_verbose >= 6)
5710 		(void) printf("%s replay %llu blocks, %llu records, seq %llu\n",
5711 		    zd->zd_name,
5712 		    (u_longlong_t)zilog->zl_parse_blk_count,
5713 		    (u_longlong_t)zilog->zl_parse_lr_count,
5714 		    (u_longlong_t)zilog->zl_replaying_seq);
5715 
5716 	zilog = zil_open(os, ztest_get_data);
5717 
5718 	if (zilog->zl_replaying_seq != 0 &&
5719 	    zilog->zl_replaying_seq < committed_seq)
5720 		fatal(0, "missing log records: replayed %llu < committed %llu",
5721 		    zilog->zl_replaying_seq, committed_seq);
5722 
5723 	return (0);
5724 }
5725 
5726 static void
5727 ztest_dataset_close(int d)
5728 {
5729 	ztest_ds_t *zd = &ztest_ds[d];
5730 
5731 	zil_close(zd->zd_zilog);
5732 	dmu_objset_disown(zd->zd_os, zd);
5733 
5734 	ztest_zd_fini(zd);
5735 }
5736 
5737 /*
5738  * Kick off threads to run tests on all datasets in parallel.
5739  */
5740 static void
5741 ztest_run(ztest_shared_t *zs)
5742 {
5743 	thread_t *tid;
5744 	spa_t *spa;
5745 	objset_t *os;
5746 	thread_t resume_tid;
5747 	int error;
5748 
5749 	ztest_exiting = B_FALSE;
5750 
5751 	/*
5752 	 * Initialize parent/child shared state.
5753 	 */
5754 	mutex_init(&ztest_vdev_lock, NULL, USYNC_THREAD, NULL);
5755 	rw_init(&ztest_name_lock, NULL, USYNC_THREAD, NULL);
5756 
5757 	zs->zs_thread_start = gethrtime();
5758 	zs->zs_thread_stop =
5759 	    zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC;
5760 	zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop);
5761 	zs->zs_thread_kill = zs->zs_thread_stop;
5762 	if (ztest_random(100) < ztest_opts.zo_killrate) {
5763 		zs->zs_thread_kill -=
5764 		    ztest_random(ztest_opts.zo_passtime * NANOSEC);
5765 	}
5766 
5767 	mutex_init(&zcl.zcl_callbacks_lock, NULL, USYNC_THREAD, NULL);
5768 
5769 	list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t),
5770 	    offsetof(ztest_cb_data_t, zcd_node));
5771 
5772 	/*
5773 	 * Open our pool.
5774 	 */
5775 	kernel_init(FREAD | FWRITE);
5776 	VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
5777 	spa->spa_debug = B_TRUE;
5778 	metaslab_preload_limit = ztest_random(20) + 1;
5779 	ztest_spa = spa;
5780 
5781 	dmu_objset_stats_t dds;
5782 	VERIFY0(dmu_objset_own(ztest_opts.zo_pool,
5783 	    DMU_OST_ANY, B_TRUE, FTAG, &os));
5784 	dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
5785 	dmu_objset_fast_stat(os, &dds);
5786 	dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
5787 	zs->zs_guid = dds.dds_guid;
5788 	dmu_objset_disown(os, FTAG);
5789 
5790 	spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN;
5791 
5792 	/*
5793 	 * We don't expect the pool to suspend unless maxfaults == 0,
5794 	 * in which case ztest_fault_inject() temporarily takes away
5795 	 * the only valid replica.
5796 	 */
5797 	if (MAXFAULTS() == 0)
5798 		spa->spa_failmode = ZIO_FAILURE_MODE_WAIT;
5799 	else
5800 		spa->spa_failmode = ZIO_FAILURE_MODE_PANIC;
5801 
5802 	/*
5803 	 * Create a thread to periodically resume suspended I/O.
5804 	 */
5805 	VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND,
5806 	    &resume_tid) == 0);
5807 
5808 	/*
5809 	 * Create a deadman thread to abort() if we hang.
5810 	 */
5811 	VERIFY(thr_create(0, 0, ztest_deadman_thread, zs, THR_BOUND,
5812 	    NULL) == 0);
5813 
5814 	/*
5815 	 * Verify that we can safely inquire about about any object,
5816 	 * whether it's allocated or not.  To make it interesting,
5817 	 * we probe a 5-wide window around each power of two.
5818 	 * This hits all edge cases, including zero and the max.
5819 	 */
5820 	for (int t = 0; t < 64; t++) {
5821 		for (int d = -5; d <= 5; d++) {
5822 			error = dmu_object_info(spa->spa_meta_objset,
5823 			    (1ULL << t) + d, NULL);
5824 			ASSERT(error == 0 || error == ENOENT ||
5825 			    error == EINVAL);
5826 		}
5827 	}
5828 
5829 	/*
5830 	 * If we got any ENOSPC errors on the previous run, destroy something.
5831 	 */
5832 	if (zs->zs_enospc_count != 0) {
5833 		int d = ztest_random(ztest_opts.zo_datasets);
5834 		ztest_dataset_destroy(d);
5835 	}
5836 	zs->zs_enospc_count = 0;
5837 
5838 	tid = umem_zalloc(ztest_opts.zo_threads * sizeof (thread_t),
5839 	    UMEM_NOFAIL);
5840 
5841 	if (ztest_opts.zo_verbose >= 4)
5842 		(void) printf("starting main threads...\n");
5843 
5844 	/*
5845 	 * Kick off all the tests that run in parallel.
5846 	 */
5847 	for (int t = 0; t < ztest_opts.zo_threads; t++) {
5848 		if (t < ztest_opts.zo_datasets &&
5849 		    ztest_dataset_open(t) != 0)
5850 			return;
5851 		VERIFY(thr_create(0, 0, ztest_thread, (void *)(uintptr_t)t,
5852 		    THR_BOUND, &tid[t]) == 0);
5853 	}
5854 
5855 	/*
5856 	 * Wait for all of the tests to complete.  We go in reverse order
5857 	 * so we don't close datasets while threads are still using them.
5858 	 */
5859 	for (int t = ztest_opts.zo_threads - 1; t >= 0; t--) {
5860 		VERIFY(thr_join(tid[t], NULL, NULL) == 0);
5861 		if (t < ztest_opts.zo_datasets)
5862 			ztest_dataset_close(t);
5863 	}
5864 
5865 	txg_wait_synced(spa_get_dsl(spa), 0);
5866 
5867 	zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
5868 	zs->zs_space = metaslab_class_get_space(spa_normal_class(spa));
5869 	zfs_dbgmsg_print(FTAG);
5870 
5871 	umem_free(tid, ztest_opts.zo_threads * sizeof (thread_t));
5872 
5873 	/* Kill the resume thread */
5874 	ztest_exiting = B_TRUE;
5875 	VERIFY(thr_join(resume_tid, NULL, NULL) == 0);
5876 	ztest_resume(spa);
5877 
5878 	/*
5879 	 * Right before closing the pool, kick off a bunch of async I/O;
5880 	 * spa_close() should wait for it to complete.
5881 	 */
5882 	for (uint64_t object = 1; object < 50; object++) {
5883 		dmu_prefetch(spa->spa_meta_objset, object, 0, 0, 1ULL << 20,
5884 		    ZIO_PRIORITY_SYNC_READ);
5885 	}
5886 
5887 	spa_close(spa, FTAG);
5888 
5889 	/*
5890 	 * Verify that we can loop over all pools.
5891 	 */
5892 	mutex_enter(&spa_namespace_lock);
5893 	for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa))
5894 		if (ztest_opts.zo_verbose > 3)
5895 			(void) printf("spa_next: found %s\n", spa_name(spa));
5896 	mutex_exit(&spa_namespace_lock);
5897 
5898 	/*
5899 	 * Verify that we can export the pool and reimport it under a
5900 	 * different name.
5901 	 */
5902 	if (ztest_random(2) == 0) {
5903 		char name[ZFS_MAX_DATASET_NAME_LEN];
5904 		(void) snprintf(name, sizeof (name), "%s_import",
5905 		    ztest_opts.zo_pool);
5906 		ztest_spa_import_export(ztest_opts.zo_pool, name);
5907 		ztest_spa_import_export(name, ztest_opts.zo_pool);
5908 	}
5909 
5910 	kernel_fini();
5911 
5912 	list_destroy(&zcl.zcl_callbacks);
5913 
5914 	mutex_destroy(&zcl.zcl_callbacks_lock);
5915 
5916 	rw_destroy(&ztest_name_lock);
5917 	mutex_destroy(&ztest_vdev_lock);
5918 }
5919 
5920 static void
5921 ztest_freeze(void)
5922 {
5923 	ztest_ds_t *zd = &ztest_ds[0];
5924 	spa_t *spa;
5925 	int numloops = 0;
5926 
5927 	if (ztest_opts.zo_verbose >= 3)
5928 		(void) printf("testing spa_freeze()...\n");
5929 
5930 	kernel_init(FREAD | FWRITE);
5931 	VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
5932 	VERIFY3U(0, ==, ztest_dataset_open(0));
5933 	spa->spa_debug = B_TRUE;
5934 	ztest_spa = spa;
5935 
5936 	/*
5937 	 * Force the first log block to be transactionally allocated.
5938 	 * We have to do this before we freeze the pool -- otherwise
5939 	 * the log chain won't be anchored.
5940 	 */
5941 	while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) {
5942 		ztest_dmu_object_alloc_free(zd, 0);
5943 		zil_commit(zd->zd_zilog, 0);
5944 	}
5945 
5946 	txg_wait_synced(spa_get_dsl(spa), 0);
5947 
5948 	/*
5949 	 * Freeze the pool.  This stops spa_sync() from doing anything,
5950 	 * so that the only way to record changes from now on is the ZIL.
5951 	 */
5952 	spa_freeze(spa);
5953 
5954 	/*
5955 	 * Because it is hard to predict how much space a write will actually
5956 	 * require beforehand, we leave ourselves some fudge space to write over
5957 	 * capacity.
5958 	 */
5959 	uint64_t capacity = metaslab_class_get_space(spa_normal_class(spa)) / 2;
5960 
5961 	/*
5962 	 * Run tests that generate log records but don't alter the pool config
5963 	 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc).
5964 	 * We do a txg_wait_synced() after each iteration to force the txg
5965 	 * to increase well beyond the last synced value in the uberblock.
5966 	 * The ZIL should be OK with that.
5967 	 *
5968 	 * Run a random number of times less than zo_maxloops and ensure we do
5969 	 * not run out of space on the pool.
5970 	 */
5971 	while (ztest_random(10) != 0 &&
5972 	    numloops++ < ztest_opts.zo_maxloops &&
5973 	    metaslab_class_get_alloc(spa_normal_class(spa)) < capacity) {
5974 		ztest_od_t od;
5975 		ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0);
5976 		VERIFY0(ztest_object_init(zd, &od, sizeof (od), B_FALSE));
5977 		ztest_io(zd, od.od_object,
5978 		    ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
5979 		txg_wait_synced(spa_get_dsl(spa), 0);
5980 	}
5981 
5982 	/*
5983 	 * Commit all of the changes we just generated.
5984 	 */
5985 	zil_commit(zd->zd_zilog, 0);
5986 	txg_wait_synced(spa_get_dsl(spa), 0);
5987 
5988 	/*
5989 	 * Close our dataset and close the pool.
5990 	 */
5991 	ztest_dataset_close(0);
5992 	spa_close(spa, FTAG);
5993 	kernel_fini();
5994 
5995 	/*
5996 	 * Open and close the pool and dataset to induce log replay.
5997 	 */
5998 	kernel_init(FREAD | FWRITE);
5999 	VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
6000 	ASSERT(spa_freeze_txg(spa) == UINT64_MAX);
6001 	VERIFY3U(0, ==, ztest_dataset_open(0));
6002 	ztest_dataset_close(0);
6003 
6004 	spa->spa_debug = B_TRUE;
6005 	ztest_spa = spa;
6006 	txg_wait_synced(spa_get_dsl(spa), 0);
6007 	ztest_reguid(NULL, 0);
6008 
6009 	spa_close(spa, FTAG);
6010 	kernel_fini();
6011 }
6012 
6013 void
6014 print_time(hrtime_t t, char *timebuf)
6015 {
6016 	hrtime_t s = t / NANOSEC;
6017 	hrtime_t m = s / 60;
6018 	hrtime_t h = m / 60;
6019 	hrtime_t d = h / 24;
6020 
6021 	s -= m * 60;
6022 	m -= h * 60;
6023 	h -= d * 24;
6024 
6025 	timebuf[0] = '\0';
6026 
6027 	if (d)
6028 		(void) sprintf(timebuf,
6029 		    "%llud%02lluh%02llum%02llus", d, h, m, s);
6030 	else if (h)
6031 		(void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s);
6032 	else if (m)
6033 		(void) sprintf(timebuf, "%llum%02llus", m, s);
6034 	else
6035 		(void) sprintf(timebuf, "%llus", s);
6036 }
6037 
6038 static nvlist_t *
6039 make_random_props()
6040 {
6041 	nvlist_t *props;
6042 
6043 	VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0);
6044 	if (ztest_random(2) == 0)
6045 		return (props);
6046 	VERIFY(nvlist_add_uint64(props, "autoreplace", 1) == 0);
6047 
6048 	return (props);
6049 }
6050 
6051 /*
6052  * Create a storage pool with the given name and initial vdev size.
6053  * Then test spa_freeze() functionality.
6054  */
6055 static void
6056 ztest_init(ztest_shared_t *zs)
6057 {
6058 	spa_t *spa;
6059 	nvlist_t *nvroot, *props;
6060 
6061 	mutex_init(&ztest_vdev_lock, NULL, USYNC_THREAD, NULL);
6062 	rw_init(&ztest_name_lock, NULL, USYNC_THREAD, NULL);
6063 
6064 	kernel_init(FREAD | FWRITE);
6065 
6066 	/*
6067 	 * Create the storage pool.
6068 	 */
6069 	(void) spa_destroy(ztest_opts.zo_pool);
6070 	ztest_shared->zs_vdev_next_leaf = 0;
6071 	zs->zs_splits = 0;
6072 	zs->zs_mirrors = ztest_opts.zo_mirrors;
6073 	nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
6074 	    0, ztest_opts.zo_raidz, zs->zs_mirrors, 1);
6075 	props = make_random_props();
6076 	for (int i = 0; i < SPA_FEATURES; i++) {
6077 		char buf[1024];
6078 		(void) snprintf(buf, sizeof (buf), "feature@%s",
6079 		    spa_feature_table[i].fi_uname);
6080 		VERIFY3U(0, ==, nvlist_add_uint64(props, buf, 0));
6081 	}
6082 	VERIFY3U(0, ==, spa_create(ztest_opts.zo_pool, nvroot, props, NULL));
6083 	nvlist_free(nvroot);
6084 	nvlist_free(props);
6085 
6086 	VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
6087 	zs->zs_metaslab_sz =
6088 	    1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
6089 
6090 	spa_close(spa, FTAG);
6091 
6092 	kernel_fini();
6093 
6094 	ztest_run_zdb(ztest_opts.zo_pool);
6095 
6096 	ztest_freeze();
6097 
6098 	ztest_run_zdb(ztest_opts.zo_pool);
6099 
6100 	rw_destroy(&ztest_name_lock);
6101 	mutex_destroy(&ztest_vdev_lock);
6102 }
6103 
6104 static void
6105 setup_data_fd(void)
6106 {
6107 	static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX";
6108 
6109 	ztest_fd_data = mkstemp(ztest_name_data);
6110 	ASSERT3S(ztest_fd_data, >=, 0);
6111 	(void) unlink(ztest_name_data);
6112 }
6113 
6114 
6115 static int
6116 shared_data_size(ztest_shared_hdr_t *hdr)
6117 {
6118 	int size;
6119 
6120 	size = hdr->zh_hdr_size;
6121 	size += hdr->zh_opts_size;
6122 	size += hdr->zh_size;
6123 	size += hdr->zh_stats_size * hdr->zh_stats_count;
6124 	size += hdr->zh_ds_size * hdr->zh_ds_count;
6125 
6126 	return (size);
6127 }
6128 
6129 static void
6130 setup_hdr(void)
6131 {
6132 	int size;
6133 	ztest_shared_hdr_t *hdr;
6134 
6135 	hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
6136 	    PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
6137 	ASSERT(hdr != MAP_FAILED);
6138 
6139 	VERIFY3U(0, ==, ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t)));
6140 
6141 	hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t);
6142 	hdr->zh_opts_size = sizeof (ztest_shared_opts_t);
6143 	hdr->zh_size = sizeof (ztest_shared_t);
6144 	hdr->zh_stats_size = sizeof (ztest_shared_callstate_t);
6145 	hdr->zh_stats_count = ZTEST_FUNCS;
6146 	hdr->zh_ds_size = sizeof (ztest_shared_ds_t);
6147 	hdr->zh_ds_count = ztest_opts.zo_datasets;
6148 
6149 	size = shared_data_size(hdr);
6150 	VERIFY3U(0, ==, ftruncate(ztest_fd_data, size));
6151 
6152 	(void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
6153 }
6154 
6155 static void
6156 setup_data(void)
6157 {
6158 	int size, offset;
6159 	ztest_shared_hdr_t *hdr;
6160 	uint8_t *buf;
6161 
6162 	hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
6163 	    PROT_READ, MAP_SHARED, ztest_fd_data, 0);
6164 	ASSERT(hdr != MAP_FAILED);
6165 
6166 	size = shared_data_size(hdr);
6167 
6168 	(void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
6169 	hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()),
6170 	    PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
6171 	ASSERT(hdr != MAP_FAILED);
6172 	buf = (uint8_t *)hdr;
6173 
6174 	offset = hdr->zh_hdr_size;
6175 	ztest_shared_opts = (void *)&buf[offset];
6176 	offset += hdr->zh_opts_size;
6177 	ztest_shared = (void *)&buf[offset];
6178 	offset += hdr->zh_size;
6179 	ztest_shared_callstate = (void *)&buf[offset];
6180 	offset += hdr->zh_stats_size * hdr->zh_stats_count;
6181 	ztest_shared_ds = (void *)&buf[offset];
6182 }
6183 
6184 static boolean_t
6185 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp)
6186 {
6187 	pid_t pid;
6188 	int status;
6189 	char *cmdbuf = NULL;
6190 
6191 	pid = fork();
6192 
6193 	if (cmd == NULL) {
6194 		cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
6195 		(void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN);
6196 		cmd = cmdbuf;
6197 	}
6198 
6199 	if (pid == -1)
6200 		fatal(1, "fork failed");
6201 
6202 	if (pid == 0) {	/* child */
6203 		char *emptyargv[2] = { cmd, NULL };
6204 		char fd_data_str[12];
6205 
6206 		struct rlimit rl = { 1024, 1024 };
6207 		(void) setrlimit(RLIMIT_NOFILE, &rl);
6208 
6209 		(void) close(ztest_fd_rand);
6210 		VERIFY3U(11, >=,
6211 		    snprintf(fd_data_str, 12, "%d", ztest_fd_data));
6212 		VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1));
6213 
6214 		(void) enable_extended_FILE_stdio(-1, -1);
6215 		if (libpath != NULL)
6216 			VERIFY(0 == setenv("LD_LIBRARY_PATH", libpath, 1));
6217 		(void) execv(cmd, emptyargv);
6218 		ztest_dump_core = B_FALSE;
6219 		fatal(B_TRUE, "exec failed: %s", cmd);
6220 	}
6221 
6222 	if (cmdbuf != NULL) {
6223 		umem_free(cmdbuf, MAXPATHLEN);
6224 		cmd = NULL;
6225 	}
6226 
6227 	while (waitpid(pid, &status, 0) != pid)
6228 		continue;
6229 	if (statusp != NULL)
6230 		*statusp = status;
6231 
6232 	if (WIFEXITED(status)) {
6233 		if (WEXITSTATUS(status) != 0) {
6234 			(void) fprintf(stderr, "child exited with code %d\n",
6235 			    WEXITSTATUS(status));
6236 			exit(2);
6237 		}
6238 		return (B_FALSE);
6239 	} else if (WIFSIGNALED(status)) {
6240 		if (!ignorekill || WTERMSIG(status) != SIGKILL) {
6241 			(void) fprintf(stderr, "child died with signal %d\n",
6242 			    WTERMSIG(status));
6243 			exit(3);
6244 		}
6245 		return (B_TRUE);
6246 	} else {
6247 		(void) fprintf(stderr, "something strange happened to child\n");
6248 		exit(4);
6249 		/* NOTREACHED */
6250 	}
6251 }
6252 
6253 static void
6254 ztest_run_init(void)
6255 {
6256 	ztest_shared_t *zs = ztest_shared;
6257 
6258 	ASSERT(ztest_opts.zo_init != 0);
6259 
6260 	/*
6261 	 * Blow away any existing copy of zpool.cache
6262 	 */
6263 	(void) remove(spa_config_path);
6264 
6265 	/*
6266 	 * Create and initialize our storage pool.
6267 	 */
6268 	for (int i = 1; i <= ztest_opts.zo_init; i++) {
6269 		bzero(zs, sizeof (ztest_shared_t));
6270 		if (ztest_opts.zo_verbose >= 3 &&
6271 		    ztest_opts.zo_init != 1) {
6272 			(void) printf("ztest_init(), pass %d\n", i);
6273 		}
6274 		ztest_init(zs);
6275 	}
6276 }
6277 
6278 int
6279 main(int argc, char **argv)
6280 {
6281 	int kills = 0;
6282 	int iters = 0;
6283 	int older = 0;
6284 	int newer = 0;
6285 	ztest_shared_t *zs;
6286 	ztest_info_t *zi;
6287 	ztest_shared_callstate_t *zc;
6288 	char timebuf[100];
6289 	char numbuf[NN_NUMBUF_SZ];
6290 	spa_t *spa;
6291 	char *cmd;
6292 	boolean_t hasalt;
6293 	char *fd_data_str = getenv("ZTEST_FD_DATA");
6294 
6295 	(void) setvbuf(stdout, NULL, _IOLBF, 0);
6296 
6297 	dprintf_setup(&argc, argv);
6298 	zfs_deadman_synctime_ms = 300000;
6299 
6300 	ztest_fd_rand = open("/dev/urandom", O_RDONLY);
6301 	ASSERT3S(ztest_fd_rand, >=, 0);
6302 
6303 	if (!fd_data_str) {
6304 		process_options(argc, argv);
6305 
6306 		setup_data_fd();
6307 		setup_hdr();
6308 		setup_data();
6309 		bcopy(&ztest_opts, ztest_shared_opts,
6310 		    sizeof (*ztest_shared_opts));
6311 	} else {
6312 		ztest_fd_data = atoi(fd_data_str);
6313 		setup_data();
6314 		bcopy(ztest_shared_opts, &ztest_opts, sizeof (ztest_opts));
6315 	}
6316 	ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count);
6317 
6318 	/* Override location of zpool.cache */
6319 	VERIFY3U(asprintf((char **)&spa_config_path, "%s/zpool.cache",
6320 	    ztest_opts.zo_dir), !=, -1);
6321 
6322 	ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t),
6323 	    UMEM_NOFAIL);
6324 	zs = ztest_shared;
6325 
6326 	if (fd_data_str) {
6327 		metaslab_gang_bang = ztest_opts.zo_metaslab_gang_bang;
6328 		metaslab_df_alloc_threshold =
6329 		    zs->zs_metaslab_df_alloc_threshold;
6330 
6331 		if (zs->zs_do_init)
6332 			ztest_run_init();
6333 		else
6334 			ztest_run(zs);
6335 		exit(0);
6336 	}
6337 
6338 	hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0);
6339 
6340 	if (ztest_opts.zo_verbose >= 1) {
6341 		(void) printf("%llu vdevs, %d datasets, %d threads,"
6342 		    " %llu seconds...\n",
6343 		    (u_longlong_t)ztest_opts.zo_vdevs,
6344 		    ztest_opts.zo_datasets,
6345 		    ztest_opts.zo_threads,
6346 		    (u_longlong_t)ztest_opts.zo_time);
6347 	}
6348 
6349 	cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
6350 	(void) strlcpy(cmd, getexecname(), MAXNAMELEN);
6351 
6352 	zs->zs_do_init = B_TRUE;
6353 	if (strlen(ztest_opts.zo_alt_ztest) != 0) {
6354 		if (ztest_opts.zo_verbose >= 1) {
6355 			(void) printf("Executing older ztest for "
6356 			    "initialization: %s\n", ztest_opts.zo_alt_ztest);
6357 		}
6358 		VERIFY(!exec_child(ztest_opts.zo_alt_ztest,
6359 		    ztest_opts.zo_alt_libpath, B_FALSE, NULL));
6360 	} else {
6361 		VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL));
6362 	}
6363 	zs->zs_do_init = B_FALSE;
6364 
6365 	zs->zs_proc_start = gethrtime();
6366 	zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC;
6367 
6368 	for (int f = 0; f < ZTEST_FUNCS; f++) {
6369 		zi = &ztest_info[f];
6370 		zc = ZTEST_GET_SHARED_CALLSTATE(f);
6371 		if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop)
6372 			zc->zc_next = UINT64_MAX;
6373 		else
6374 			zc->zc_next = zs->zs_proc_start +
6375 			    ztest_random(2 * zi->zi_interval[0] + 1);
6376 	}
6377 
6378 	/*
6379 	 * Run the tests in a loop.  These tests include fault injection
6380 	 * to verify that self-healing data works, and forced crashes
6381 	 * to verify that we never lose on-disk consistency.
6382 	 */
6383 	while (gethrtime() < zs->zs_proc_stop) {
6384 		int status;
6385 		boolean_t killed;
6386 
6387 		/*
6388 		 * Initialize the workload counters for each function.
6389 		 */
6390 		for (int f = 0; f < ZTEST_FUNCS; f++) {
6391 			zc = ZTEST_GET_SHARED_CALLSTATE(f);
6392 			zc->zc_count = 0;
6393 			zc->zc_time = 0;
6394 		}
6395 
6396 		/* Set the allocation switch size */
6397 		zs->zs_metaslab_df_alloc_threshold =
6398 		    ztest_random(zs->zs_metaslab_sz / 4) + 1;
6399 
6400 		if (!hasalt || ztest_random(2) == 0) {
6401 			if (hasalt && ztest_opts.zo_verbose >= 1) {
6402 				(void) printf("Executing newer ztest: %s\n",
6403 				    cmd);
6404 			}
6405 			newer++;
6406 			killed = exec_child(cmd, NULL, B_TRUE, &status);
6407 		} else {
6408 			if (hasalt && ztest_opts.zo_verbose >= 1) {
6409 				(void) printf("Executing older ztest: %s\n",
6410 				    ztest_opts.zo_alt_ztest);
6411 			}
6412 			older++;
6413 			killed = exec_child(ztest_opts.zo_alt_ztest,
6414 			    ztest_opts.zo_alt_libpath, B_TRUE, &status);
6415 		}
6416 
6417 		if (killed)
6418 			kills++;
6419 		iters++;
6420 
6421 		if (ztest_opts.zo_verbose >= 1) {
6422 			hrtime_t now = gethrtime();
6423 
6424 			now = MIN(now, zs->zs_proc_stop);
6425 			print_time(zs->zs_proc_stop - now, timebuf);
6426 			nicenum(zs->zs_space, numbuf, sizeof (numbuf));
6427 
6428 			(void) printf("Pass %3d, %8s, %3llu ENOSPC, "
6429 			    "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
6430 			    iters,
6431 			    WIFEXITED(status) ? "Complete" : "SIGKILL",
6432 			    (u_longlong_t)zs->zs_enospc_count,
6433 			    100.0 * zs->zs_alloc / zs->zs_space,
6434 			    numbuf,
6435 			    100.0 * (now - zs->zs_proc_start) /
6436 			    (ztest_opts.zo_time * NANOSEC), timebuf);
6437 		}
6438 
6439 		if (ztest_opts.zo_verbose >= 2) {
6440 			(void) printf("\nWorkload summary:\n\n");
6441 			(void) printf("%7s %9s   %s\n",
6442 			    "Calls", "Time", "Function");
6443 			(void) printf("%7s %9s   %s\n",
6444 			    "-----", "----", "--------");
6445 			for (int f = 0; f < ZTEST_FUNCS; f++) {
6446 				Dl_info dli;
6447 
6448 				zi = &ztest_info[f];
6449 				zc = ZTEST_GET_SHARED_CALLSTATE(f);
6450 				print_time(zc->zc_time, timebuf);
6451 				(void) dladdr((void *)zi->zi_func, &dli);
6452 				(void) printf("%7llu %9s   %s\n",
6453 				    (u_longlong_t)zc->zc_count, timebuf,
6454 				    dli.dli_sname);
6455 			}
6456 			(void) printf("\n");
6457 		}
6458 
6459 		/*
6460 		 * It's possible that we killed a child during a rename test,
6461 		 * in which case we'll have a 'ztest_tmp' pool lying around
6462 		 * instead of 'ztest'.  Do a blind rename in case this happened.
6463 		 */
6464 		kernel_init(FREAD);
6465 		if (spa_open(ztest_opts.zo_pool, &spa, FTAG) == 0) {
6466 			spa_close(spa, FTAG);
6467 		} else {
6468 			char tmpname[ZFS_MAX_DATASET_NAME_LEN];
6469 			kernel_fini();
6470 			kernel_init(FREAD | FWRITE);
6471 			(void) snprintf(tmpname, sizeof (tmpname), "%s_tmp",
6472 			    ztest_opts.zo_pool);
6473 			(void) spa_rename(tmpname, ztest_opts.zo_pool);
6474 		}
6475 		kernel_fini();
6476 
6477 		ztest_run_zdb(ztest_opts.zo_pool);
6478 	}
6479 
6480 	if (ztest_opts.zo_verbose >= 1) {
6481 		if (hasalt) {
6482 			(void) printf("%d runs of older ztest: %s\n", older,
6483 			    ztest_opts.zo_alt_ztest);
6484 			(void) printf("%d runs of newer ztest: %s\n", newer,
6485 			    cmd);
6486 		}
6487 		(void) printf("%d killed, %d completed, %.0f%% kill rate\n",
6488 		    kills, iters - kills, (100.0 * kills) / MAX(1, iters));
6489 	}
6490 
6491 	umem_free(cmd, MAXNAMELEN);
6492 
6493 	return (0);
6494 }
6495