xref: /illumos-gate/usr/src/cmd/ztest/ztest.c (revision 54811da5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2013 Steven Hartland. All rights reserved.
26  * Copyright (c) 2014 Integros [integros.com]
27  * Copyright 2017 Joyent, Inc.
28  * Copyright 2017 RackTop Systems.
29  */
30 
31 /*
32  * The objective of this program is to provide a DMU/ZAP/SPA stress test
33  * that runs entirely in userland, is easy to use, and easy to extend.
34  *
35  * The overall design of the ztest program is as follows:
36  *
37  * (1) For each major functional area (e.g. adding vdevs to a pool,
38  *     creating and destroying datasets, reading and writing objects, etc)
39  *     we have a simple routine to test that functionality.  These
40  *     individual routines do not have to do anything "stressful".
41  *
42  * (2) We turn these simple functionality tests into a stress test by
43  *     running them all in parallel, with as many threads as desired,
44  *     and spread across as many datasets, objects, and vdevs as desired.
45  *
46  * (3) While all this is happening, we inject faults into the pool to
47  *     verify that self-healing data really works.
48  *
49  * (4) Every time we open a dataset, we change its checksum and compression
50  *     functions.  Thus even individual objects vary from block to block
51  *     in which checksum they use and whether they're compressed.
52  *
53  * (5) To verify that we never lose on-disk consistency after a crash,
54  *     we run the entire test in a child of the main process.
55  *     At random times, the child self-immolates with a SIGKILL.
56  *     This is the software equivalent of pulling the power cord.
57  *     The parent then runs the test again, using the existing
58  *     storage pool, as many times as desired. If backwards compatibility
59  *     testing is enabled ztest will sometimes run the "older" version
60  *     of ztest after a SIGKILL.
61  *
62  * (6) To verify that we don't have future leaks or temporal incursions,
63  *     many of the functional tests record the transaction group number
64  *     as part of their data.  When reading old data, they verify that
65  *     the transaction group number is less than the current, open txg.
66  *     If you add a new test, please do this if applicable.
67  *
68  * When run with no arguments, ztest runs for about five minutes and
69  * produces no output if successful.  To get a little bit of information,
70  * specify -V.  To get more information, specify -VV, and so on.
71  *
72  * To turn this into an overnight stress test, use -T to specify run time.
73  *
74  * You can ask more more vdevs [-v], datasets [-d], or threads [-t]
75  * to increase the pool capacity, fanout, and overall stress level.
76  *
77  * Use the -k option to set the desired frequency of kills.
78  *
79  * When ztest invokes itself it passes all relevant information through a
80  * temporary file which is mmap-ed in the child process. This allows shared
81  * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always
82  * stored at offset 0 of this file and contains information on the size and
83  * number of shared structures in the file. The information stored in this file
84  * must remain backwards compatible with older versions of ztest so that
85  * ztest can invoke them during backwards compatibility testing (-B).
86  */
87 
88 #include <sys/zfs_context.h>
89 #include <sys/spa.h>
90 #include <sys/dmu.h>
91 #include <sys/txg.h>
92 #include <sys/dbuf.h>
93 #include <sys/zap.h>
94 #include <sys/dmu_objset.h>
95 #include <sys/poll.h>
96 #include <sys/stat.h>
97 #include <sys/time.h>
98 #include <sys/wait.h>
99 #include <sys/mman.h>
100 #include <sys/resource.h>
101 #include <sys/zio.h>
102 #include <sys/zil.h>
103 #include <sys/zil_impl.h>
104 #include <sys/vdev_impl.h>
105 #include <sys/vdev_file.h>
106 #include <sys/vdev_initialize.h>
107 #include <sys/spa_impl.h>
108 #include <sys/metaslab_impl.h>
109 #include <sys/dsl_prop.h>
110 #include <sys/dsl_dataset.h>
111 #include <sys/dsl_destroy.h>
112 #include <sys/dsl_scan.h>
113 #include <sys/zio_checksum.h>
114 #include <sys/refcount.h>
115 #include <sys/zfeature.h>
116 #include <sys/dsl_userhold.h>
117 #include <sys/abd.h>
118 #include <stdio.h>
119 #include <stdio_ext.h>
120 #include <stdlib.h>
121 #include <unistd.h>
122 #include <signal.h>
123 #include <umem.h>
124 #include <dlfcn.h>
125 #include <ctype.h>
126 #include <math.h>
127 #include <sys/fs/zfs.h>
128 #include <libnvpair.h>
129 #include <libcmdutils.h>
130 
131 static int ztest_fd_data = -1;
132 static int ztest_fd_rand = -1;
133 
134 typedef struct ztest_shared_hdr {
135 	uint64_t	zh_hdr_size;
136 	uint64_t	zh_opts_size;
137 	uint64_t	zh_size;
138 	uint64_t	zh_stats_size;
139 	uint64_t	zh_stats_count;
140 	uint64_t	zh_ds_size;
141 	uint64_t	zh_ds_count;
142 } ztest_shared_hdr_t;
143 
144 static ztest_shared_hdr_t *ztest_shared_hdr;
145 
146 typedef struct ztest_shared_opts {
147 	char zo_pool[ZFS_MAX_DATASET_NAME_LEN];
148 	char zo_dir[ZFS_MAX_DATASET_NAME_LEN];
149 	char zo_alt_ztest[MAXNAMELEN];
150 	char zo_alt_libpath[MAXNAMELEN];
151 	uint64_t zo_vdevs;
152 	uint64_t zo_vdevtime;
153 	size_t zo_vdev_size;
154 	int zo_ashift;
155 	int zo_mirrors;
156 	int zo_raidz;
157 	int zo_raidz_parity;
158 	int zo_datasets;
159 	int zo_threads;
160 	uint64_t zo_passtime;
161 	uint64_t zo_killrate;
162 	int zo_verbose;
163 	int zo_init;
164 	uint64_t zo_time;
165 	uint64_t zo_maxloops;
166 	uint64_t zo_metaslab_force_ganging;
167 } ztest_shared_opts_t;
168 
169 static const ztest_shared_opts_t ztest_opts_defaults = {
170 	.zo_pool = { 'z', 't', 'e', 's', 't', '\0' },
171 	.zo_dir = { '/', 't', 'm', 'p', '\0' },
172 	.zo_alt_ztest = { '\0' },
173 	.zo_alt_libpath = { '\0' },
174 	.zo_vdevs = 5,
175 	.zo_ashift = SPA_MINBLOCKSHIFT,
176 	.zo_mirrors = 2,
177 	.zo_raidz = 4,
178 	.zo_raidz_parity = 1,
179 	.zo_vdev_size = SPA_MINDEVSIZE * 4,	/* 256m default size */
180 	.zo_datasets = 7,
181 	.zo_threads = 23,
182 	.zo_passtime = 60,		/* 60 seconds */
183 	.zo_killrate = 70,		/* 70% kill rate */
184 	.zo_verbose = 0,
185 	.zo_init = 1,
186 	.zo_time = 300,			/* 5 minutes */
187 	.zo_maxloops = 50,		/* max loops during spa_freeze() */
188 	.zo_metaslab_force_ganging = 32 << 10
189 };
190 
191 extern uint64_t metaslab_force_ganging;
192 extern uint64_t metaslab_df_alloc_threshold;
193 extern uint64_t zfs_deadman_synctime_ms;
194 extern int metaslab_preload_limit;
195 extern boolean_t zfs_compressed_arc_enabled;
196 extern boolean_t zfs_abd_scatter_enabled;
197 extern int dmu_object_alloc_chunk_shift;
198 extern boolean_t zfs_force_some_double_word_sm_entries;
199 
200 static ztest_shared_opts_t *ztest_shared_opts;
201 static ztest_shared_opts_t ztest_opts;
202 
203 typedef struct ztest_shared_ds {
204 	uint64_t	zd_seq;
205 } ztest_shared_ds_t;
206 
207 static ztest_shared_ds_t *ztest_shared_ds;
208 #define	ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d])
209 
210 #define	BT_MAGIC	0x123456789abcdefULL
211 #define	MAXFAULTS() \
212 	(MAX(zs->zs_mirrors, 1) * (ztest_opts.zo_raidz_parity + 1) - 1)
213 
214 enum ztest_io_type {
215 	ZTEST_IO_WRITE_TAG,
216 	ZTEST_IO_WRITE_PATTERN,
217 	ZTEST_IO_WRITE_ZEROES,
218 	ZTEST_IO_TRUNCATE,
219 	ZTEST_IO_SETATTR,
220 	ZTEST_IO_REWRITE,
221 	ZTEST_IO_TYPES
222 };
223 
224 typedef struct ztest_block_tag {
225 	uint64_t	bt_magic;
226 	uint64_t	bt_objset;
227 	uint64_t	bt_object;
228 	uint64_t	bt_dnodesize;
229 	uint64_t	bt_offset;
230 	uint64_t	bt_gen;
231 	uint64_t	bt_txg;
232 	uint64_t	bt_crtxg;
233 } ztest_block_tag_t;
234 
235 typedef struct bufwad {
236 	uint64_t	bw_index;
237 	uint64_t	bw_txg;
238 	uint64_t	bw_data;
239 } bufwad_t;
240 
241 /*
242  * It would be better to use a rangelock_t per object.  Unfortunately
243  * the rangelock_t is not a drop-in replacement for rl_t, because we
244  * still need to map from object ID to rangelock_t.
245  */
246 typedef enum {
247 	RL_READER,
248 	RL_WRITER,
249 	RL_APPEND
250 } rl_type_t;
251 
252 typedef struct rll {
253 	void		*rll_writer;
254 	int		rll_readers;
255 	kmutex_t	rll_lock;
256 	kcondvar_t	rll_cv;
257 } rll_t;
258 
259 typedef struct rl {
260 	uint64_t	rl_object;
261 	uint64_t	rl_offset;
262 	uint64_t	rl_size;
263 	rll_t		*rl_lock;
264 } rl_t;
265 
266 #define	ZTEST_RANGE_LOCKS	64
267 #define	ZTEST_OBJECT_LOCKS	64
268 
269 /*
270  * Object descriptor.  Used as a template for object lookup/create/remove.
271  */
272 typedef struct ztest_od {
273 	uint64_t	od_dir;
274 	uint64_t	od_object;
275 	dmu_object_type_t od_type;
276 	dmu_object_type_t od_crtype;
277 	uint64_t	od_blocksize;
278 	uint64_t	od_crblocksize;
279 	uint64_t	od_crdnodesize;
280 	uint64_t	od_gen;
281 	uint64_t	od_crgen;
282 	char		od_name[ZFS_MAX_DATASET_NAME_LEN];
283 } ztest_od_t;
284 
285 /*
286  * Per-dataset state.
287  */
288 typedef struct ztest_ds {
289 	ztest_shared_ds_t *zd_shared;
290 	objset_t	*zd_os;
291 	krwlock_t	zd_zilog_lock;
292 	zilog_t		*zd_zilog;
293 	ztest_od_t	*zd_od;		/* debugging aid */
294 	char		zd_name[ZFS_MAX_DATASET_NAME_LEN];
295 	kmutex_t	zd_dirobj_lock;
296 	rll_t		zd_object_lock[ZTEST_OBJECT_LOCKS];
297 	rll_t		zd_range_lock[ZTEST_RANGE_LOCKS];
298 } ztest_ds_t;
299 
300 /*
301  * Per-iteration state.
302  */
303 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id);
304 
305 typedef struct ztest_info {
306 	ztest_func_t	*zi_func;	/* test function */
307 	uint64_t	zi_iters;	/* iterations per execution */
308 	uint64_t	*zi_interval;	/* execute every <interval> seconds */
309 } ztest_info_t;
310 
311 typedef struct ztest_shared_callstate {
312 	uint64_t	zc_count;	/* per-pass count */
313 	uint64_t	zc_time;	/* per-pass time */
314 	uint64_t	zc_next;	/* next time to call this function */
315 } ztest_shared_callstate_t;
316 
317 static ztest_shared_callstate_t *ztest_shared_callstate;
318 #define	ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c])
319 
320 /*
321  * Note: these aren't static because we want dladdr() to work.
322  */
323 ztest_func_t ztest_dmu_read_write;
324 ztest_func_t ztest_dmu_write_parallel;
325 ztest_func_t ztest_dmu_object_alloc_free;
326 ztest_func_t ztest_dmu_object_next_chunk;
327 ztest_func_t ztest_dmu_commit_callbacks;
328 ztest_func_t ztest_zap;
329 ztest_func_t ztest_zap_parallel;
330 ztest_func_t ztest_zil_commit;
331 ztest_func_t ztest_zil_remount;
332 ztest_func_t ztest_dmu_read_write_zcopy;
333 ztest_func_t ztest_dmu_objset_create_destroy;
334 ztest_func_t ztest_dmu_prealloc;
335 ztest_func_t ztest_fzap;
336 ztest_func_t ztest_dmu_snapshot_create_destroy;
337 ztest_func_t ztest_dsl_prop_get_set;
338 ztest_func_t ztest_spa_prop_get_set;
339 ztest_func_t ztest_spa_create_destroy;
340 ztest_func_t ztest_fault_inject;
341 ztest_func_t ztest_ddt_repair;
342 ztest_func_t ztest_dmu_snapshot_hold;
343 ztest_func_t ztest_scrub;
344 ztest_func_t ztest_dsl_dataset_promote_busy;
345 ztest_func_t ztest_vdev_attach_detach;
346 ztest_func_t ztest_vdev_LUN_growth;
347 ztest_func_t ztest_vdev_add_remove;
348 ztest_func_t ztest_vdev_aux_add_remove;
349 ztest_func_t ztest_split_pool;
350 ztest_func_t ztest_reguid;
351 ztest_func_t ztest_spa_upgrade;
352 ztest_func_t ztest_device_removal;
353 ztest_func_t ztest_remap_blocks;
354 ztest_func_t ztest_spa_checkpoint_create_discard;
355 ztest_func_t ztest_initialize;
356 ztest_func_t ztest_verify_dnode_bt;
357 
358 uint64_t zopt_always = 0ULL * NANOSEC;		/* all the time */
359 uint64_t zopt_incessant = 1ULL * NANOSEC / 10;	/* every 1/10 second */
360 uint64_t zopt_often = 1ULL * NANOSEC;		/* every second */
361 uint64_t zopt_sometimes = 10ULL * NANOSEC;	/* every 10 seconds */
362 uint64_t zopt_rarely = 60ULL * NANOSEC;		/* every 60 seconds */
363 
364 ztest_info_t ztest_info[] = {
365 	{ ztest_dmu_read_write,			1,	&zopt_always	},
366 	{ ztest_dmu_write_parallel,		10,	&zopt_always	},
367 	{ ztest_dmu_object_alloc_free,		1,	&zopt_always	},
368 	{ ztest_dmu_object_next_chunk,		1,	&zopt_sometimes	},
369 	{ ztest_dmu_commit_callbacks,		1,	&zopt_always	},
370 	{ ztest_zap,				30,	&zopt_always	},
371 	{ ztest_zap_parallel,			100,	&zopt_always	},
372 	{ ztest_split_pool,			1,	&zopt_always	},
373 	{ ztest_zil_commit,			1,	&zopt_incessant	},
374 	{ ztest_zil_remount,			1,	&zopt_sometimes	},
375 	{ ztest_dmu_read_write_zcopy,		1,	&zopt_often	},
376 	{ ztest_dmu_objset_create_destroy,	1,	&zopt_often	},
377 	{ ztest_dsl_prop_get_set,		1,	&zopt_often	},
378 	{ ztest_spa_prop_get_set,		1,	&zopt_sometimes	},
379 #if 0
380 	{ ztest_dmu_prealloc,			1,	&zopt_sometimes	},
381 #endif
382 	{ ztest_fzap,				1,	&zopt_sometimes	},
383 	{ ztest_dmu_snapshot_create_destroy,	1,	&zopt_sometimes	},
384 	{ ztest_spa_create_destroy,		1,	&zopt_sometimes	},
385 	{ ztest_fault_inject,			1,	&zopt_sometimes	},
386 	{ ztest_ddt_repair,			1,	&zopt_sometimes	},
387 	{ ztest_dmu_snapshot_hold,		1,	&zopt_sometimes	},
388 	{ ztest_reguid,				1,	&zopt_rarely	},
389 	{ ztest_scrub,				1,	&zopt_rarely	},
390 	{ ztest_spa_upgrade,			1,	&zopt_rarely	},
391 	{ ztest_dsl_dataset_promote_busy,	1,	&zopt_rarely	},
392 	{ ztest_vdev_attach_detach,		1,	&zopt_sometimes	},
393 	{ ztest_vdev_LUN_growth,		1,	&zopt_rarely	},
394 	{ ztest_vdev_add_remove,		1,
395 	    &ztest_opts.zo_vdevtime				},
396 	{ ztest_vdev_aux_add_remove,		1,
397 	    &ztest_opts.zo_vdevtime				},
398 	{ ztest_device_removal,			1,	&zopt_sometimes	},
399 	{ ztest_remap_blocks,			1,	&zopt_sometimes },
400 	{ ztest_spa_checkpoint_create_discard,	1,	&zopt_rarely	},
401 	{ ztest_initialize,			1,	&zopt_sometimes },
402 	{ ztest_verify_dnode_bt,		1,	&zopt_sometimes }
403 };
404 
405 #define	ZTEST_FUNCS	(sizeof (ztest_info) / sizeof (ztest_info_t))
406 
407 /*
408  * The following struct is used to hold a list of uncalled commit callbacks.
409  * The callbacks are ordered by txg number.
410  */
411 typedef struct ztest_cb_list {
412 	kmutex_t zcl_callbacks_lock;
413 	list_t	zcl_callbacks;
414 } ztest_cb_list_t;
415 
416 /*
417  * Stuff we need to share writably between parent and child.
418  */
419 typedef struct ztest_shared {
420 	boolean_t	zs_do_init;
421 	hrtime_t	zs_proc_start;
422 	hrtime_t	zs_proc_stop;
423 	hrtime_t	zs_thread_start;
424 	hrtime_t	zs_thread_stop;
425 	hrtime_t	zs_thread_kill;
426 	uint64_t	zs_enospc_count;
427 	uint64_t	zs_vdev_next_leaf;
428 	uint64_t	zs_vdev_aux;
429 	uint64_t	zs_alloc;
430 	uint64_t	zs_space;
431 	uint64_t	zs_splits;
432 	uint64_t	zs_mirrors;
433 	uint64_t	zs_metaslab_sz;
434 	uint64_t	zs_metaslab_df_alloc_threshold;
435 	uint64_t	zs_guid;
436 } ztest_shared_t;
437 
438 #define	ID_PARALLEL	-1ULL
439 
440 static char ztest_dev_template[] = "%s/%s.%llua";
441 static char ztest_aux_template[] = "%s/%s.%s.%llu";
442 ztest_shared_t *ztest_shared;
443 
444 static spa_t *ztest_spa = NULL;
445 static ztest_ds_t *ztest_ds;
446 
447 static kmutex_t ztest_vdev_lock;
448 static boolean_t ztest_device_removal_active = B_FALSE;
449 static kmutex_t ztest_checkpoint_lock;
450 
451 /*
452  * The ztest_name_lock protects the pool and dataset namespace used by
453  * the individual tests. To modify the namespace, consumers must grab
454  * this lock as writer. Grabbing the lock as reader will ensure that the
455  * namespace does not change while the lock is held.
456  */
457 static krwlock_t ztest_name_lock;
458 
459 static boolean_t ztest_dump_core = B_TRUE;
460 static boolean_t ztest_exiting;
461 
462 /* Global commit callback list */
463 static ztest_cb_list_t zcl;
464 
465 enum ztest_object {
466 	ZTEST_META_DNODE = 0,
467 	ZTEST_DIROBJ,
468 	ZTEST_OBJECTS
469 };
470 
471 static void usage(boolean_t) __NORETURN;
472 
473 /*
474  * These libumem hooks provide a reasonable set of defaults for the allocator's
475  * debugging facilities.
476  */
477 const char *
478 _umem_debug_init()
479 {
480 	return ("default,verbose"); /* $UMEM_DEBUG setting */
481 }
482 
483 const char *
484 _umem_logging_init(void)
485 {
486 	return ("fail,contents"); /* $UMEM_LOGGING setting */
487 }
488 
489 #define	FATAL_MSG_SZ	1024
490 
491 char *fatal_msg;
492 
493 static void
494 fatal(int do_perror, char *message, ...)
495 {
496 	va_list args;
497 	int save_errno = errno;
498 	char buf[FATAL_MSG_SZ];
499 
500 	(void) fflush(stdout);
501 
502 	va_start(args, message);
503 	(void) sprintf(buf, "ztest: ");
504 	/* LINTED */
505 	(void) vsprintf(buf + strlen(buf), message, args);
506 	va_end(args);
507 	if (do_perror) {
508 		(void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf),
509 		    ": %s", strerror(save_errno));
510 	}
511 	(void) fprintf(stderr, "%s\n", buf);
512 	fatal_msg = buf;			/* to ease debugging */
513 	if (ztest_dump_core)
514 		abort();
515 	exit(3);
516 }
517 
518 static int
519 str2shift(const char *buf)
520 {
521 	const char *ends = "BKMGTPEZ";
522 	int i;
523 
524 	if (buf[0] == '\0')
525 		return (0);
526 	for (i = 0; i < strlen(ends); i++) {
527 		if (toupper(buf[0]) == ends[i])
528 			break;
529 	}
530 	if (i == strlen(ends)) {
531 		(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n",
532 		    buf);
533 		usage(B_FALSE);
534 	}
535 	if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) {
536 		return (10*i);
537 	}
538 	(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf);
539 	usage(B_FALSE);
540 	/* NOTREACHED */
541 }
542 
543 static uint64_t
544 nicenumtoull(const char *buf)
545 {
546 	char *end;
547 	uint64_t val;
548 
549 	val = strtoull(buf, &end, 0);
550 	if (end == buf) {
551 		(void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf);
552 		usage(B_FALSE);
553 	} else if (end[0] == '.') {
554 		double fval = strtod(buf, &end);
555 		fval *= pow(2, str2shift(end));
556 		if (fval > UINT64_MAX) {
557 			(void) fprintf(stderr, "ztest: value too large: %s\n",
558 			    buf);
559 			usage(B_FALSE);
560 		}
561 		val = (uint64_t)fval;
562 	} else {
563 		int shift = str2shift(end);
564 		if (shift >= 64 || (val << shift) >> shift != val) {
565 			(void) fprintf(stderr, "ztest: value too large: %s\n",
566 			    buf);
567 			usage(B_FALSE);
568 		}
569 		val <<= shift;
570 	}
571 	return (val);
572 }
573 
574 static void
575 usage(boolean_t requested)
576 {
577 	const ztest_shared_opts_t *zo = &ztest_opts_defaults;
578 
579 	char nice_vdev_size[NN_NUMBUF_SZ];
580 	char nice_force_ganging[NN_NUMBUF_SZ];
581 	FILE *fp = requested ? stdout : stderr;
582 
583 	nicenum(zo->zo_vdev_size, nice_vdev_size, sizeof (nice_vdev_size));
584 	nicenum(zo->zo_metaslab_force_ganging, nice_force_ganging,
585 	    sizeof (nice_force_ganging));
586 
587 	(void) fprintf(fp, "Usage: %s\n"
588 	    "\t[-v vdevs (default: %llu)]\n"
589 	    "\t[-s size_of_each_vdev (default: %s)]\n"
590 	    "\t[-a alignment_shift (default: %d)] use 0 for random\n"
591 	    "\t[-m mirror_copies (default: %d)]\n"
592 	    "\t[-r raidz_disks (default: %d)]\n"
593 	    "\t[-R raidz_parity (default: %d)]\n"
594 	    "\t[-d datasets (default: %d)]\n"
595 	    "\t[-t threads (default: %d)]\n"
596 	    "\t[-g gang_block_threshold (default: %s)]\n"
597 	    "\t[-i init_count (default: %d)] initialize pool i times\n"
598 	    "\t[-k kill_percentage (default: %llu%%)]\n"
599 	    "\t[-p pool_name (default: %s)]\n"
600 	    "\t[-f dir (default: %s)] file directory for vdev files\n"
601 	    "\t[-V] verbose (use multiple times for ever more blather)\n"
602 	    "\t[-E] use existing pool instead of creating new one\n"
603 	    "\t[-T time (default: %llu sec)] total run time\n"
604 	    "\t[-F freezeloops (default: %llu)] max loops in spa_freeze()\n"
605 	    "\t[-P passtime (default: %llu sec)] time per pass\n"
606 	    "\t[-B alt_ztest (default: <none>)] alternate ztest path\n"
607 	    "\t[-o variable=value] ... set global variable to an unsigned\n"
608 	    "\t    32-bit integer value\n"
609 	    "\t[-h] (print help)\n"
610 	    "",
611 	    zo->zo_pool,
612 	    (u_longlong_t)zo->zo_vdevs,			/* -v */
613 	    nice_vdev_size,				/* -s */
614 	    zo->zo_ashift,				/* -a */
615 	    zo->zo_mirrors,				/* -m */
616 	    zo->zo_raidz,				/* -r */
617 	    zo->zo_raidz_parity,			/* -R */
618 	    zo->zo_datasets,				/* -d */
619 	    zo->zo_threads,				/* -t */
620 	    nice_force_ganging,				/* -g */
621 	    zo->zo_init,				/* -i */
622 	    (u_longlong_t)zo->zo_killrate,		/* -k */
623 	    zo->zo_pool,				/* -p */
624 	    zo->zo_dir,					/* -f */
625 	    (u_longlong_t)zo->zo_time,			/* -T */
626 	    (u_longlong_t)zo->zo_maxloops,		/* -F */
627 	    (u_longlong_t)zo->zo_passtime);
628 	exit(requested ? 0 : 1);
629 }
630 
631 static void
632 process_options(int argc, char **argv)
633 {
634 	char *path;
635 	ztest_shared_opts_t *zo = &ztest_opts;
636 
637 	int opt;
638 	uint64_t value;
639 	char altdir[MAXNAMELEN] = { 0 };
640 
641 	bcopy(&ztest_opts_defaults, zo, sizeof (*zo));
642 
643 	while ((opt = getopt(argc, argv,
644 	    "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:hF:B:o:")) != EOF) {
645 		value = 0;
646 		switch (opt) {
647 		case 'v':
648 		case 's':
649 		case 'a':
650 		case 'm':
651 		case 'r':
652 		case 'R':
653 		case 'd':
654 		case 't':
655 		case 'g':
656 		case 'i':
657 		case 'k':
658 		case 'T':
659 		case 'P':
660 		case 'F':
661 			value = nicenumtoull(optarg);
662 		}
663 		switch (opt) {
664 		case 'v':
665 			zo->zo_vdevs = value;
666 			break;
667 		case 's':
668 			zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value);
669 			break;
670 		case 'a':
671 			zo->zo_ashift = value;
672 			break;
673 		case 'm':
674 			zo->zo_mirrors = value;
675 			break;
676 		case 'r':
677 			zo->zo_raidz = MAX(1, value);
678 			break;
679 		case 'R':
680 			zo->zo_raidz_parity = MIN(MAX(value, 1), 3);
681 			break;
682 		case 'd':
683 			zo->zo_datasets = MAX(1, value);
684 			break;
685 		case 't':
686 			zo->zo_threads = MAX(1, value);
687 			break;
688 		case 'g':
689 			zo->zo_metaslab_force_ganging =
690 			    MAX(SPA_MINBLOCKSIZE << 1, value);
691 			break;
692 		case 'i':
693 			zo->zo_init = value;
694 			break;
695 		case 'k':
696 			zo->zo_killrate = value;
697 			break;
698 		case 'p':
699 			(void) strlcpy(zo->zo_pool, optarg,
700 			    sizeof (zo->zo_pool));
701 			break;
702 		case 'f':
703 			path = realpath(optarg, NULL);
704 			if (path == NULL) {
705 				(void) fprintf(stderr, "error: %s: %s\n",
706 				    optarg, strerror(errno));
707 				usage(B_FALSE);
708 			} else {
709 				(void) strlcpy(zo->zo_dir, path,
710 				    sizeof (zo->zo_dir));
711 			}
712 			break;
713 		case 'V':
714 			zo->zo_verbose++;
715 			break;
716 		case 'E':
717 			zo->zo_init = 0;
718 			break;
719 		case 'T':
720 			zo->zo_time = value;
721 			break;
722 		case 'P':
723 			zo->zo_passtime = MAX(1, value);
724 			break;
725 		case 'F':
726 			zo->zo_maxloops = MAX(1, value);
727 			break;
728 		case 'B':
729 			(void) strlcpy(altdir, optarg, sizeof (altdir));
730 			break;
731 		case 'o':
732 			if (set_global_var(optarg) != 0)
733 				usage(B_FALSE);
734 			break;
735 		case 'h':
736 			usage(B_TRUE);
737 			break;
738 		case '?':
739 		default:
740 			usage(B_FALSE);
741 			break;
742 		}
743 	}
744 
745 	zo->zo_raidz_parity = MIN(zo->zo_raidz_parity, zo->zo_raidz - 1);
746 
747 	zo->zo_vdevtime =
748 	    (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs :
749 	    UINT64_MAX >> 2);
750 
751 	if (strlen(altdir) > 0) {
752 		char *cmd;
753 		char *realaltdir;
754 		char *bin;
755 		char *ztest;
756 		char *isa;
757 		int isalen;
758 
759 		cmd = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
760 		realaltdir = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
761 
762 		VERIFY(NULL != realpath(getexecname(), cmd));
763 		if (0 != access(altdir, F_OK)) {
764 			ztest_dump_core = B_FALSE;
765 			fatal(B_TRUE, "invalid alternate ztest path: %s",
766 			    altdir);
767 		}
768 		VERIFY(NULL != realpath(altdir, realaltdir));
769 
770 		/*
771 		 * 'cmd' should be of the form "<anything>/usr/bin/<isa>/ztest".
772 		 * We want to extract <isa> to determine if we should use
773 		 * 32 or 64 bit binaries.
774 		 */
775 		bin = strstr(cmd, "/usr/bin/");
776 		ztest = strstr(bin, "/ztest");
777 		isa = bin + 9;
778 		isalen = ztest - isa;
779 		(void) snprintf(zo->zo_alt_ztest, sizeof (zo->zo_alt_ztest),
780 		    "%s/usr/bin/%.*s/ztest", realaltdir, isalen, isa);
781 		(void) snprintf(zo->zo_alt_libpath, sizeof (zo->zo_alt_libpath),
782 		    "%s/usr/lib/%.*s", realaltdir, isalen, isa);
783 
784 		if (0 != access(zo->zo_alt_ztest, X_OK)) {
785 			ztest_dump_core = B_FALSE;
786 			fatal(B_TRUE, "invalid alternate ztest: %s",
787 			    zo->zo_alt_ztest);
788 		} else if (0 != access(zo->zo_alt_libpath, X_OK)) {
789 			ztest_dump_core = B_FALSE;
790 			fatal(B_TRUE, "invalid alternate lib directory %s",
791 			    zo->zo_alt_libpath);
792 		}
793 
794 		umem_free(cmd, MAXPATHLEN);
795 		umem_free(realaltdir, MAXPATHLEN);
796 	}
797 }
798 
799 static void
800 ztest_kill(ztest_shared_t *zs)
801 {
802 	zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa));
803 	zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa));
804 
805 	/*
806 	 * Before we kill off ztest, make sure that the config is updated.
807 	 * See comment above spa_write_cachefile().
808 	 */
809 	mutex_enter(&spa_namespace_lock);
810 	spa_write_cachefile(ztest_spa, B_FALSE, B_FALSE);
811 	mutex_exit(&spa_namespace_lock);
812 
813 	zfs_dbgmsg_print(FTAG);
814 	(void) kill(getpid(), SIGKILL);
815 }
816 
817 static uint64_t
818 ztest_random(uint64_t range)
819 {
820 	uint64_t r;
821 
822 	ASSERT3S(ztest_fd_rand, >=, 0);
823 
824 	if (range == 0)
825 		return (0);
826 
827 	if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r))
828 		fatal(1, "short read from /dev/urandom");
829 
830 	return (r % range);
831 }
832 
833 /* ARGSUSED */
834 static void
835 ztest_record_enospc(const char *s)
836 {
837 	ztest_shared->zs_enospc_count++;
838 }
839 
840 static uint64_t
841 ztest_get_ashift(void)
842 {
843 	if (ztest_opts.zo_ashift == 0)
844 		return (SPA_MINBLOCKSHIFT + ztest_random(5));
845 	return (ztest_opts.zo_ashift);
846 }
847 
848 static nvlist_t *
849 make_vdev_file(char *path, char *aux, char *pool, size_t size, uint64_t ashift)
850 {
851 	char pathbuf[MAXPATHLEN];
852 	uint64_t vdev;
853 	nvlist_t *file;
854 
855 	if (ashift == 0)
856 		ashift = ztest_get_ashift();
857 
858 	if (path == NULL) {
859 		path = pathbuf;
860 
861 		if (aux != NULL) {
862 			vdev = ztest_shared->zs_vdev_aux;
863 			(void) snprintf(path, sizeof (pathbuf),
864 			    ztest_aux_template, ztest_opts.zo_dir,
865 			    pool == NULL ? ztest_opts.zo_pool : pool,
866 			    aux, vdev);
867 		} else {
868 			vdev = ztest_shared->zs_vdev_next_leaf++;
869 			(void) snprintf(path, sizeof (pathbuf),
870 			    ztest_dev_template, ztest_opts.zo_dir,
871 			    pool == NULL ? ztest_opts.zo_pool : pool, vdev);
872 		}
873 	}
874 
875 	if (size != 0) {
876 		int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666);
877 		if (fd == -1)
878 			fatal(1, "can't open %s", path);
879 		if (ftruncate(fd, size) != 0)
880 			fatal(1, "can't ftruncate %s", path);
881 		(void) close(fd);
882 	}
883 
884 	VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0);
885 	VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0);
886 	VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0);
887 	VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0);
888 
889 	return (file);
890 }
891 
892 static nvlist_t *
893 make_vdev_raidz(char *path, char *aux, char *pool, size_t size,
894     uint64_t ashift, int r)
895 {
896 	nvlist_t *raidz, **child;
897 	int c;
898 
899 	if (r < 2)
900 		return (make_vdev_file(path, aux, pool, size, ashift));
901 	child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL);
902 
903 	for (c = 0; c < r; c++)
904 		child[c] = make_vdev_file(path, aux, pool, size, ashift);
905 
906 	VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0);
907 	VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE,
908 	    VDEV_TYPE_RAIDZ) == 0);
909 	VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY,
910 	    ztest_opts.zo_raidz_parity) == 0);
911 	VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN,
912 	    child, r) == 0);
913 
914 	for (c = 0; c < r; c++)
915 		nvlist_free(child[c]);
916 
917 	umem_free(child, r * sizeof (nvlist_t *));
918 
919 	return (raidz);
920 }
921 
922 static nvlist_t *
923 make_vdev_mirror(char *path, char *aux, char *pool, size_t size,
924     uint64_t ashift, int r, int m)
925 {
926 	nvlist_t *mirror, **child;
927 	int c;
928 
929 	if (m < 1)
930 		return (make_vdev_raidz(path, aux, pool, size, ashift, r));
931 
932 	child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL);
933 
934 	for (c = 0; c < m; c++)
935 		child[c] = make_vdev_raidz(path, aux, pool, size, ashift, r);
936 
937 	VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0);
938 	VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE,
939 	    VDEV_TYPE_MIRROR) == 0);
940 	VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN,
941 	    child, m) == 0);
942 
943 	for (c = 0; c < m; c++)
944 		nvlist_free(child[c]);
945 
946 	umem_free(child, m * sizeof (nvlist_t *));
947 
948 	return (mirror);
949 }
950 
951 static nvlist_t *
952 make_vdev_root(char *path, char *aux, char *pool, size_t size, uint64_t ashift,
953     int log, int r, int m, int t)
954 {
955 	nvlist_t *root, **child;
956 	int c;
957 
958 	ASSERT(t > 0);
959 
960 	child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL);
961 
962 	for (c = 0; c < t; c++) {
963 		child[c] = make_vdev_mirror(path, aux, pool, size, ashift,
964 		    r, m);
965 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG,
966 		    log) == 0);
967 	}
968 
969 	VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0);
970 	VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0);
971 	VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN,
972 	    child, t) == 0);
973 
974 	for (c = 0; c < t; c++)
975 		nvlist_free(child[c]);
976 
977 	umem_free(child, t * sizeof (nvlist_t *));
978 
979 	return (root);
980 }
981 
982 /*
983  * Find a random spa version. Returns back a random spa version in the
984  * range [initial_version, SPA_VERSION_FEATURES].
985  */
986 static uint64_t
987 ztest_random_spa_version(uint64_t initial_version)
988 {
989 	uint64_t version = initial_version;
990 
991 	if (version <= SPA_VERSION_BEFORE_FEATURES) {
992 		version = version +
993 		    ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1);
994 	}
995 
996 	if (version > SPA_VERSION_BEFORE_FEATURES)
997 		version = SPA_VERSION_FEATURES;
998 
999 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
1000 	return (version);
1001 }
1002 
1003 static int
1004 ztest_random_blocksize(void)
1005 {
1006 	uint64_t block_shift;
1007 	/*
1008 	 * Choose a block size >= the ashift.
1009 	 * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks.
1010 	 */
1011 	int maxbs = SPA_OLD_MAXBLOCKSHIFT;
1012 	if (spa_maxblocksize(ztest_spa) == SPA_MAXBLOCKSIZE)
1013 		maxbs = 20;
1014 	block_shift = ztest_random(maxbs - ztest_spa->spa_max_ashift + 1);
1015 	return (1 << (SPA_MINBLOCKSHIFT + block_shift));
1016 }
1017 
1018 static int
1019 ztest_random_dnodesize(void)
1020 {
1021 	int slots;
1022 	int max_slots = spa_maxdnodesize(ztest_spa) >> DNODE_SHIFT;
1023 
1024 	if (max_slots == DNODE_MIN_SLOTS)
1025 		return (DNODE_MIN_SIZE);
1026 
1027 	/*
1028 	 * Weight the random distribution more heavily toward smaller
1029 	 * dnode sizes since that is more likely to reflect real-world
1030 	 * usage.
1031 	 */
1032 	ASSERT3U(max_slots, >, 4);
1033 	switch (ztest_random(10)) {
1034 	case 0:
1035 		slots = 5 + ztest_random(max_slots - 4);
1036 		break;
1037 	case 1 ... 4:
1038 		slots = 2 + ztest_random(3);
1039 		break;
1040 	default:
1041 		slots = 1;
1042 		break;
1043 	}
1044 
1045 	return (slots << DNODE_SHIFT);
1046 }
1047 
1048 static int
1049 ztest_random_ibshift(void)
1050 {
1051 	return (DN_MIN_INDBLKSHIFT +
1052 	    ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1));
1053 }
1054 
1055 static uint64_t
1056 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok)
1057 {
1058 	uint64_t top;
1059 	vdev_t *rvd = spa->spa_root_vdev;
1060 	vdev_t *tvd;
1061 
1062 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1063 
1064 	do {
1065 		top = ztest_random(rvd->vdev_children);
1066 		tvd = rvd->vdev_child[top];
1067 	} while (!vdev_is_concrete(tvd) || (tvd->vdev_islog && !log_ok) ||
1068 	    tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL);
1069 
1070 	return (top);
1071 }
1072 
1073 static uint64_t
1074 ztest_random_dsl_prop(zfs_prop_t prop)
1075 {
1076 	uint64_t value;
1077 
1078 	do {
1079 		value = zfs_prop_random_value(prop, ztest_random(-1ULL));
1080 	} while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF);
1081 
1082 	return (value);
1083 }
1084 
1085 static int
1086 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value,
1087     boolean_t inherit)
1088 {
1089 	const char *propname = zfs_prop_to_name(prop);
1090 	const char *valname;
1091 	char setpoint[MAXPATHLEN];
1092 	uint64_t curval;
1093 	int error;
1094 
1095 	error = dsl_prop_set_int(osname, propname,
1096 	    (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value);
1097 
1098 	if (error == ENOSPC) {
1099 		ztest_record_enospc(FTAG);
1100 		return (error);
1101 	}
1102 	ASSERT0(error);
1103 
1104 	VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint));
1105 
1106 	if (ztest_opts.zo_verbose >= 6) {
1107 		VERIFY(zfs_prop_index_to_string(prop, curval, &valname) == 0);
1108 		(void) printf("%s %s = %s at '%s'\n",
1109 		    osname, propname, valname, setpoint);
1110 	}
1111 
1112 	return (error);
1113 }
1114 
1115 static int
1116 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value)
1117 {
1118 	spa_t *spa = ztest_spa;
1119 	nvlist_t *props = NULL;
1120 	int error;
1121 
1122 	VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0);
1123 	VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0);
1124 
1125 	error = spa_prop_set(spa, props);
1126 
1127 	nvlist_free(props);
1128 
1129 	if (error == ENOSPC) {
1130 		ztest_record_enospc(FTAG);
1131 		return (error);
1132 	}
1133 	ASSERT0(error);
1134 
1135 	return (error);
1136 }
1137 
1138 static void
1139 ztest_rll_init(rll_t *rll)
1140 {
1141 	rll->rll_writer = NULL;
1142 	rll->rll_readers = 0;
1143 	mutex_init(&rll->rll_lock, NULL, USYNC_THREAD, NULL);
1144 	cv_init(&rll->rll_cv, NULL, USYNC_THREAD, NULL);
1145 }
1146 
1147 static void
1148 ztest_rll_destroy(rll_t *rll)
1149 {
1150 	ASSERT(rll->rll_writer == NULL);
1151 	ASSERT(rll->rll_readers == 0);
1152 	mutex_destroy(&rll->rll_lock);
1153 	cv_destroy(&rll->rll_cv);
1154 }
1155 
1156 static void
1157 ztest_rll_lock(rll_t *rll, rl_type_t type)
1158 {
1159 	mutex_enter(&rll->rll_lock);
1160 
1161 	if (type == RL_READER) {
1162 		while (rll->rll_writer != NULL)
1163 			cv_wait(&rll->rll_cv, &rll->rll_lock);
1164 		rll->rll_readers++;
1165 	} else {
1166 		while (rll->rll_writer != NULL || rll->rll_readers)
1167 			cv_wait(&rll->rll_cv, &rll->rll_lock);
1168 		rll->rll_writer = curthread;
1169 	}
1170 
1171 	mutex_exit(&rll->rll_lock);
1172 }
1173 
1174 static void
1175 ztest_rll_unlock(rll_t *rll)
1176 {
1177 	mutex_enter(&rll->rll_lock);
1178 
1179 	if (rll->rll_writer) {
1180 		ASSERT(rll->rll_readers == 0);
1181 		rll->rll_writer = NULL;
1182 	} else {
1183 		ASSERT(rll->rll_readers != 0);
1184 		ASSERT(rll->rll_writer == NULL);
1185 		rll->rll_readers--;
1186 	}
1187 
1188 	if (rll->rll_writer == NULL && rll->rll_readers == 0)
1189 		cv_broadcast(&rll->rll_cv);
1190 
1191 	mutex_exit(&rll->rll_lock);
1192 }
1193 
1194 static void
1195 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type)
1196 {
1197 	rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1198 
1199 	ztest_rll_lock(rll, type);
1200 }
1201 
1202 static void
1203 ztest_object_unlock(ztest_ds_t *zd, uint64_t object)
1204 {
1205 	rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1206 
1207 	ztest_rll_unlock(rll);
1208 }
1209 
1210 static rl_t *
1211 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset,
1212     uint64_t size, rl_type_t type)
1213 {
1214 	uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1));
1215 	rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)];
1216 	rl_t *rl;
1217 
1218 	rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL);
1219 	rl->rl_object = object;
1220 	rl->rl_offset = offset;
1221 	rl->rl_size = size;
1222 	rl->rl_lock = rll;
1223 
1224 	ztest_rll_lock(rll, type);
1225 
1226 	return (rl);
1227 }
1228 
1229 static void
1230 ztest_range_unlock(rl_t *rl)
1231 {
1232 	rll_t *rll = rl->rl_lock;
1233 
1234 	ztest_rll_unlock(rll);
1235 
1236 	umem_free(rl, sizeof (*rl));
1237 }
1238 
1239 static void
1240 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os)
1241 {
1242 	zd->zd_os = os;
1243 	zd->zd_zilog = dmu_objset_zil(os);
1244 	zd->zd_shared = szd;
1245 	dmu_objset_name(os, zd->zd_name);
1246 
1247 	if (zd->zd_shared != NULL)
1248 		zd->zd_shared->zd_seq = 0;
1249 
1250 	rw_init(&zd->zd_zilog_lock, NULL, USYNC_THREAD, NULL);
1251 	mutex_init(&zd->zd_dirobj_lock, NULL, USYNC_THREAD, NULL);
1252 
1253 	for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1254 		ztest_rll_init(&zd->zd_object_lock[l]);
1255 
1256 	for (int l = 0; l < ZTEST_RANGE_LOCKS; l++)
1257 		ztest_rll_init(&zd->zd_range_lock[l]);
1258 }
1259 
1260 static void
1261 ztest_zd_fini(ztest_ds_t *zd)
1262 {
1263 	mutex_destroy(&zd->zd_dirobj_lock);
1264 
1265 	for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1266 		ztest_rll_destroy(&zd->zd_object_lock[l]);
1267 
1268 	for (int l = 0; l < ZTEST_RANGE_LOCKS; l++)
1269 		ztest_rll_destroy(&zd->zd_range_lock[l]);
1270 }
1271 
1272 #define	TXG_MIGHTWAIT	(ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT)
1273 
1274 static uint64_t
1275 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag)
1276 {
1277 	uint64_t txg;
1278 	int error;
1279 
1280 	/*
1281 	 * Attempt to assign tx to some transaction group.
1282 	 */
1283 	error = dmu_tx_assign(tx, txg_how);
1284 	if (error) {
1285 		if (error == ERESTART) {
1286 			ASSERT(txg_how == TXG_NOWAIT);
1287 			dmu_tx_wait(tx);
1288 		} else {
1289 			ASSERT3U(error, ==, ENOSPC);
1290 			ztest_record_enospc(tag);
1291 		}
1292 		dmu_tx_abort(tx);
1293 		return (0);
1294 	}
1295 	txg = dmu_tx_get_txg(tx);
1296 	ASSERT(txg != 0);
1297 	return (txg);
1298 }
1299 
1300 static void
1301 ztest_pattern_set(void *buf, uint64_t size, uint64_t value)
1302 {
1303 	uint64_t *ip = buf;
1304 	uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size);
1305 
1306 	while (ip < ip_end)
1307 		*ip++ = value;
1308 }
1309 
1310 static boolean_t
1311 ztest_pattern_match(void *buf, uint64_t size, uint64_t value)
1312 {
1313 	uint64_t *ip = buf;
1314 	uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size);
1315 	uint64_t diff = 0;
1316 
1317 	while (ip < ip_end)
1318 		diff |= (value - *ip++);
1319 
1320 	return (diff == 0);
1321 }
1322 
1323 static void
1324 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1325     uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg,
1326     uint64_t crtxg)
1327 {
1328 	bt->bt_magic = BT_MAGIC;
1329 	bt->bt_objset = dmu_objset_id(os);
1330 	bt->bt_object = object;
1331 	bt->bt_dnodesize = dnodesize;
1332 	bt->bt_offset = offset;
1333 	bt->bt_gen = gen;
1334 	bt->bt_txg = txg;
1335 	bt->bt_crtxg = crtxg;
1336 }
1337 
1338 static void
1339 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1340     uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg,
1341     uint64_t crtxg)
1342 {
1343 	ASSERT3U(bt->bt_magic, ==, BT_MAGIC);
1344 	ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os));
1345 	ASSERT3U(bt->bt_object, ==, object);
1346 	ASSERT3U(bt->bt_dnodesize, ==, dnodesize);
1347 	ASSERT3U(bt->bt_offset, ==, offset);
1348 	ASSERT3U(bt->bt_gen, <=, gen);
1349 	ASSERT3U(bt->bt_txg, <=, txg);
1350 	ASSERT3U(bt->bt_crtxg, ==, crtxg);
1351 }
1352 
1353 static ztest_block_tag_t *
1354 ztest_bt_bonus(dmu_buf_t *db)
1355 {
1356 	dmu_object_info_t doi;
1357 	ztest_block_tag_t *bt;
1358 
1359 	dmu_object_info_from_db(db, &doi);
1360 	ASSERT3U(doi.doi_bonus_size, <=, db->db_size);
1361 	ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt));
1362 	bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt));
1363 
1364 	return (bt);
1365 }
1366 
1367 /*
1368  * Generate a token to fill up unused bonus buffer space.  Try to make
1369  * it unique to the object, generation, and offset to verify that data
1370  * is not getting overwritten by data from other dnodes.
1371  */
1372 #define	ZTEST_BONUS_FILL_TOKEN(obj, ds, gen, offset)	\
1373 	(((ds) << 48) | ((gen) << 32) | ((obj) << 8) | (offset))
1374 
1375 /*
1376  * Fill up the unused bonus buffer region before the block tag with a
1377  * verifiable pattern. Filling the whole bonus area with non-zero data
1378  * helps ensure that all dnode traversal code properly skips the
1379  * interior regions of large dnodes.
1380  */
1381 void
1382 ztest_fill_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj,
1383     objset_t *os, uint64_t gen)
1384 {
1385 	uint64_t *bonusp;
1386 
1387 	ASSERT(IS_P2ALIGNED((char *)end - (char *)db->db_data, 8));
1388 
1389 	for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) {
1390 		uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os),
1391 		    gen, bonusp - (uint64_t *)db->db_data);
1392 		*bonusp = token;
1393 	}
1394 }
1395 
1396 /*
1397  * Verify that the unused area of a bonus buffer is filled with the
1398  * expected tokens.
1399  */
1400 void
1401 ztest_verify_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj,
1402     objset_t *os, uint64_t gen)
1403 {
1404 	uint64_t *bonusp;
1405 
1406 	for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) {
1407 		uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os),
1408 		    gen, bonusp - (uint64_t *)db->db_data);
1409 		VERIFY3U(*bonusp, ==, token);
1410 	}
1411 }
1412 
1413 /*
1414  * ZIL logging ops
1415  */
1416 
1417 #define	lrz_type	lr_mode
1418 #define	lrz_blocksize	lr_uid
1419 #define	lrz_ibshift	lr_gid
1420 #define	lrz_bonustype	lr_rdev
1421 #define	lrz_dnodesize	lr_crtime[1]
1422 
1423 static void
1424 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr)
1425 {
1426 	char *name = (void *)(lr + 1);		/* name follows lr */
1427 	size_t namesize = strlen(name) + 1;
1428 	itx_t *itx;
1429 
1430 	if (zil_replaying(zd->zd_zilog, tx))
1431 		return;
1432 
1433 	itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize);
1434 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1435 	    sizeof (*lr) + namesize - sizeof (lr_t));
1436 
1437 	zil_itx_assign(zd->zd_zilog, itx, tx);
1438 }
1439 
1440 static void
1441 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object)
1442 {
1443 	char *name = (void *)(lr + 1);		/* name follows lr */
1444 	size_t namesize = strlen(name) + 1;
1445 	itx_t *itx;
1446 
1447 	if (zil_replaying(zd->zd_zilog, tx))
1448 		return;
1449 
1450 	itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize);
1451 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1452 	    sizeof (*lr) + namesize - sizeof (lr_t));
1453 
1454 	itx->itx_oid = object;
1455 	zil_itx_assign(zd->zd_zilog, itx, tx);
1456 }
1457 
1458 static void
1459 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr)
1460 {
1461 	itx_t *itx;
1462 	itx_wr_state_t write_state = ztest_random(WR_NUM_STATES);
1463 
1464 	if (zil_replaying(zd->zd_zilog, tx))
1465 		return;
1466 
1467 	if (lr->lr_length > ZIL_MAX_LOG_DATA)
1468 		write_state = WR_INDIRECT;
1469 
1470 	itx = zil_itx_create(TX_WRITE,
1471 	    sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0));
1472 
1473 	if (write_state == WR_COPIED &&
1474 	    dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length,
1475 	    ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) {
1476 		zil_itx_destroy(itx);
1477 		itx = zil_itx_create(TX_WRITE, sizeof (*lr));
1478 		write_state = WR_NEED_COPY;
1479 	}
1480 	itx->itx_private = zd;
1481 	itx->itx_wr_state = write_state;
1482 	itx->itx_sync = (ztest_random(8) == 0);
1483 
1484 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1485 	    sizeof (*lr) - sizeof (lr_t));
1486 
1487 	zil_itx_assign(zd->zd_zilog, itx, tx);
1488 }
1489 
1490 static void
1491 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr)
1492 {
1493 	itx_t *itx;
1494 
1495 	if (zil_replaying(zd->zd_zilog, tx))
1496 		return;
1497 
1498 	itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
1499 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1500 	    sizeof (*lr) - sizeof (lr_t));
1501 
1502 	itx->itx_sync = B_FALSE;
1503 	zil_itx_assign(zd->zd_zilog, itx, tx);
1504 }
1505 
1506 static void
1507 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr)
1508 {
1509 	itx_t *itx;
1510 
1511 	if (zil_replaying(zd->zd_zilog, tx))
1512 		return;
1513 
1514 	itx = zil_itx_create(TX_SETATTR, sizeof (*lr));
1515 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1516 	    sizeof (*lr) - sizeof (lr_t));
1517 
1518 	itx->itx_sync = B_FALSE;
1519 	zil_itx_assign(zd->zd_zilog, itx, tx);
1520 }
1521 
1522 /*
1523  * ZIL replay ops
1524  */
1525 static int
1526 ztest_replay_create(void *arg1, void *arg2, boolean_t byteswap)
1527 {
1528 	ztest_ds_t *zd = arg1;
1529 	lr_create_t *lr = arg2;
1530 	char *name = (void *)(lr + 1);		/* name follows lr */
1531 	objset_t *os = zd->zd_os;
1532 	ztest_block_tag_t *bbt;
1533 	dmu_buf_t *db;
1534 	dmu_tx_t *tx;
1535 	uint64_t txg;
1536 	int error = 0;
1537 	int bonuslen;
1538 
1539 	if (byteswap)
1540 		byteswap_uint64_array(lr, sizeof (*lr));
1541 
1542 	ASSERT(lr->lr_doid == ZTEST_DIROBJ);
1543 	ASSERT(name[0] != '\0');
1544 
1545 	tx = dmu_tx_create(os);
1546 
1547 	dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name);
1548 
1549 	if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1550 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1551 	} else {
1552 		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1553 	}
1554 
1555 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1556 	if (txg == 0)
1557 		return (ENOSPC);
1558 
1559 	ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid);
1560 	bonuslen = DN_BONUS_SIZE(lr->lrz_dnodesize);
1561 
1562 	if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1563 		if (lr->lr_foid == 0) {
1564 			lr->lr_foid = zap_create_dnsize(os,
1565 			    lr->lrz_type, lr->lrz_bonustype,
1566 			    bonuslen, lr->lrz_dnodesize, tx);
1567 		} else {
1568 			error = zap_create_claim_dnsize(os, lr->lr_foid,
1569 			    lr->lrz_type, lr->lrz_bonustype,
1570 			    bonuslen, lr->lrz_dnodesize, tx);
1571 		}
1572 	} else {
1573 		if (lr->lr_foid == 0) {
1574 			lr->lr_foid = dmu_object_alloc_dnsize(os,
1575 			    lr->lrz_type, 0, lr->lrz_bonustype,
1576 			    bonuslen, lr->lrz_dnodesize, tx);
1577 		} else {
1578 			error = dmu_object_claim_dnsize(os, lr->lr_foid,
1579 			    lr->lrz_type, 0, lr->lrz_bonustype,
1580 			    bonuslen, lr->lrz_dnodesize, tx);
1581 		}
1582 	}
1583 
1584 	if (error) {
1585 		ASSERT3U(error, ==, EEXIST);
1586 		ASSERT(zd->zd_zilog->zl_replay);
1587 		dmu_tx_commit(tx);
1588 		return (error);
1589 	}
1590 
1591 	ASSERT(lr->lr_foid != 0);
1592 
1593 	if (lr->lrz_type != DMU_OT_ZAP_OTHER)
1594 		VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid,
1595 		    lr->lrz_blocksize, lr->lrz_ibshift, tx));
1596 
1597 	VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1598 	bbt = ztest_bt_bonus(db);
1599 	dmu_buf_will_dirty(db, tx);
1600 	ztest_bt_generate(bbt, os, lr->lr_foid, lr->lrz_dnodesize, -1ULL,
1601 	    lr->lr_gen, txg, txg);
1602 	ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, lr->lr_gen);
1603 	dmu_buf_rele(db, FTAG);
1604 
1605 	VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1,
1606 	    &lr->lr_foid, tx));
1607 
1608 	(void) ztest_log_create(zd, tx, lr);
1609 
1610 	dmu_tx_commit(tx);
1611 
1612 	return (0);
1613 }
1614 
1615 static int
1616 ztest_replay_remove(void *arg1, void *arg2, boolean_t byteswap)
1617 {
1618 	ztest_ds_t *zd = arg1;
1619 	lr_remove_t *lr = arg2;
1620 	char *name = (void *)(lr + 1);		/* name follows lr */
1621 	objset_t *os = zd->zd_os;
1622 	dmu_object_info_t doi;
1623 	dmu_tx_t *tx;
1624 	uint64_t object, txg;
1625 
1626 	if (byteswap)
1627 		byteswap_uint64_array(lr, sizeof (*lr));
1628 
1629 	ASSERT(lr->lr_doid == ZTEST_DIROBJ);
1630 	ASSERT(name[0] != '\0');
1631 
1632 	VERIFY3U(0, ==,
1633 	    zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object));
1634 	ASSERT(object != 0);
1635 
1636 	ztest_object_lock(zd, object, RL_WRITER);
1637 
1638 	VERIFY3U(0, ==, dmu_object_info(os, object, &doi));
1639 
1640 	tx = dmu_tx_create(os);
1641 
1642 	dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name);
1643 	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
1644 
1645 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1646 	if (txg == 0) {
1647 		ztest_object_unlock(zd, object);
1648 		return (ENOSPC);
1649 	}
1650 
1651 	if (doi.doi_type == DMU_OT_ZAP_OTHER) {
1652 		VERIFY3U(0, ==, zap_destroy(os, object, tx));
1653 	} else {
1654 		VERIFY3U(0, ==, dmu_object_free(os, object, tx));
1655 	}
1656 
1657 	VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx));
1658 
1659 	(void) ztest_log_remove(zd, tx, lr, object);
1660 
1661 	dmu_tx_commit(tx);
1662 
1663 	ztest_object_unlock(zd, object);
1664 
1665 	return (0);
1666 }
1667 
1668 static int
1669 ztest_replay_write(void *arg1, void *arg2, boolean_t byteswap)
1670 {
1671 	ztest_ds_t *zd = arg1;
1672 	lr_write_t *lr = arg2;
1673 	objset_t *os = zd->zd_os;
1674 	void *data = lr + 1;			/* data follows lr */
1675 	uint64_t offset, length;
1676 	ztest_block_tag_t *bt = data;
1677 	ztest_block_tag_t *bbt;
1678 	uint64_t gen, txg, lrtxg, crtxg;
1679 	dmu_object_info_t doi;
1680 	dmu_tx_t *tx;
1681 	dmu_buf_t *db;
1682 	arc_buf_t *abuf = NULL;
1683 	rl_t *rl;
1684 
1685 	if (byteswap)
1686 		byteswap_uint64_array(lr, sizeof (*lr));
1687 
1688 	offset = lr->lr_offset;
1689 	length = lr->lr_length;
1690 
1691 	/* If it's a dmu_sync() block, write the whole block */
1692 	if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
1693 		uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
1694 		if (length < blocksize) {
1695 			offset -= offset % blocksize;
1696 			length = blocksize;
1697 		}
1698 	}
1699 
1700 	if (bt->bt_magic == BSWAP_64(BT_MAGIC))
1701 		byteswap_uint64_array(bt, sizeof (*bt));
1702 
1703 	if (bt->bt_magic != BT_MAGIC)
1704 		bt = NULL;
1705 
1706 	ztest_object_lock(zd, lr->lr_foid, RL_READER);
1707 	rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER);
1708 
1709 	VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1710 
1711 	dmu_object_info_from_db(db, &doi);
1712 
1713 	bbt = ztest_bt_bonus(db);
1714 	ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1715 	gen = bbt->bt_gen;
1716 	crtxg = bbt->bt_crtxg;
1717 	lrtxg = lr->lr_common.lrc_txg;
1718 
1719 	tx = dmu_tx_create(os);
1720 
1721 	dmu_tx_hold_write(tx, lr->lr_foid, offset, length);
1722 
1723 	if (ztest_random(8) == 0 && length == doi.doi_data_block_size &&
1724 	    P2PHASE(offset, length) == 0)
1725 		abuf = dmu_request_arcbuf(db, length);
1726 
1727 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1728 	if (txg == 0) {
1729 		if (abuf != NULL)
1730 			dmu_return_arcbuf(abuf);
1731 		dmu_buf_rele(db, FTAG);
1732 		ztest_range_unlock(rl);
1733 		ztest_object_unlock(zd, lr->lr_foid);
1734 		return (ENOSPC);
1735 	}
1736 
1737 	if (bt != NULL) {
1738 		/*
1739 		 * Usually, verify the old data before writing new data --
1740 		 * but not always, because we also want to verify correct
1741 		 * behavior when the data was not recently read into cache.
1742 		 */
1743 		ASSERT(offset % doi.doi_data_block_size == 0);
1744 		if (ztest_random(4) != 0) {
1745 			int prefetch = ztest_random(2) ?
1746 			    DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH;
1747 			ztest_block_tag_t rbt;
1748 
1749 			VERIFY(dmu_read(os, lr->lr_foid, offset,
1750 			    sizeof (rbt), &rbt, prefetch) == 0);
1751 			if (rbt.bt_magic == BT_MAGIC) {
1752 				ztest_bt_verify(&rbt, os, lr->lr_foid, 0,
1753 				    offset, gen, txg, crtxg);
1754 			}
1755 		}
1756 
1757 		/*
1758 		 * Writes can appear to be newer than the bonus buffer because
1759 		 * the ztest_get_data() callback does a dmu_read() of the
1760 		 * open-context data, which may be different than the data
1761 		 * as it was when the write was generated.
1762 		 */
1763 		if (zd->zd_zilog->zl_replay) {
1764 			ztest_bt_verify(bt, os, lr->lr_foid, 0, offset,
1765 			    MAX(gen, bt->bt_gen), MAX(txg, lrtxg),
1766 			    bt->bt_crtxg);
1767 		}
1768 
1769 		/*
1770 		 * Set the bt's gen/txg to the bonus buffer's gen/txg
1771 		 * so that all of the usual ASSERTs will work.
1772 		 */
1773 		ztest_bt_generate(bt, os, lr->lr_foid, 0, offset, gen, txg,
1774 		    crtxg);
1775 	}
1776 
1777 	if (abuf == NULL) {
1778 		dmu_write(os, lr->lr_foid, offset, length, data, tx);
1779 	} else {
1780 		bcopy(data, abuf->b_data, length);
1781 		dmu_assign_arcbuf(db, offset, abuf, tx);
1782 	}
1783 
1784 	(void) ztest_log_write(zd, tx, lr);
1785 
1786 	dmu_buf_rele(db, FTAG);
1787 
1788 	dmu_tx_commit(tx);
1789 
1790 	ztest_range_unlock(rl);
1791 	ztest_object_unlock(zd, lr->lr_foid);
1792 
1793 	return (0);
1794 }
1795 
1796 static int
1797 ztest_replay_truncate(void *arg1, void *arg2, boolean_t byteswap)
1798 {
1799 	ztest_ds_t *zd = arg1;
1800 	lr_truncate_t *lr = arg2;
1801 	objset_t *os = zd->zd_os;
1802 	dmu_tx_t *tx;
1803 	uint64_t txg;
1804 	rl_t *rl;
1805 
1806 	if (byteswap)
1807 		byteswap_uint64_array(lr, sizeof (*lr));
1808 
1809 	ztest_object_lock(zd, lr->lr_foid, RL_READER);
1810 	rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length,
1811 	    RL_WRITER);
1812 
1813 	tx = dmu_tx_create(os);
1814 
1815 	dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length);
1816 
1817 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1818 	if (txg == 0) {
1819 		ztest_range_unlock(rl);
1820 		ztest_object_unlock(zd, lr->lr_foid);
1821 		return (ENOSPC);
1822 	}
1823 
1824 	VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset,
1825 	    lr->lr_length, tx) == 0);
1826 
1827 	(void) ztest_log_truncate(zd, tx, lr);
1828 
1829 	dmu_tx_commit(tx);
1830 
1831 	ztest_range_unlock(rl);
1832 	ztest_object_unlock(zd, lr->lr_foid);
1833 
1834 	return (0);
1835 }
1836 
1837 static int
1838 ztest_replay_setattr(void *arg1, void *arg2, boolean_t byteswap)
1839 {
1840 	ztest_ds_t *zd = arg1;
1841 	lr_setattr_t *lr = arg2;
1842 	objset_t *os = zd->zd_os;
1843 	dmu_tx_t *tx;
1844 	dmu_buf_t *db;
1845 	ztest_block_tag_t *bbt;
1846 	uint64_t txg, lrtxg, crtxg, dnodesize;
1847 
1848 	if (byteswap)
1849 		byteswap_uint64_array(lr, sizeof (*lr));
1850 
1851 	ztest_object_lock(zd, lr->lr_foid, RL_WRITER);
1852 
1853 	VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1854 
1855 	tx = dmu_tx_create(os);
1856 	dmu_tx_hold_bonus(tx, lr->lr_foid);
1857 
1858 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1859 	if (txg == 0) {
1860 		dmu_buf_rele(db, FTAG);
1861 		ztest_object_unlock(zd, lr->lr_foid);
1862 		return (ENOSPC);
1863 	}
1864 
1865 	bbt = ztest_bt_bonus(db);
1866 	ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1867 	crtxg = bbt->bt_crtxg;
1868 	lrtxg = lr->lr_common.lrc_txg;
1869 	dnodesize = bbt->bt_dnodesize;
1870 
1871 	if (zd->zd_zilog->zl_replay) {
1872 		ASSERT(lr->lr_size != 0);
1873 		ASSERT(lr->lr_mode != 0);
1874 		ASSERT(lrtxg != 0);
1875 	} else {
1876 		/*
1877 		 * Randomly change the size and increment the generation.
1878 		 */
1879 		lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) *
1880 		    sizeof (*bbt);
1881 		lr->lr_mode = bbt->bt_gen + 1;
1882 		ASSERT(lrtxg == 0);
1883 	}
1884 
1885 	/*
1886 	 * Verify that the current bonus buffer is not newer than our txg.
1887 	 */
1888 	ztest_bt_verify(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode,
1889 	    MAX(txg, lrtxg), crtxg);
1890 
1891 	dmu_buf_will_dirty(db, tx);
1892 
1893 	ASSERT3U(lr->lr_size, >=, sizeof (*bbt));
1894 	ASSERT3U(lr->lr_size, <=, db->db_size);
1895 	VERIFY0(dmu_set_bonus(db, lr->lr_size, tx));
1896 	bbt = ztest_bt_bonus(db);
1897 
1898 	ztest_bt_generate(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode,
1899 	    txg, crtxg);
1900 	ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, bbt->bt_gen);
1901 
1902 	dmu_buf_rele(db, FTAG);
1903 
1904 	(void) ztest_log_setattr(zd, tx, lr);
1905 
1906 	dmu_tx_commit(tx);
1907 
1908 	ztest_object_unlock(zd, lr->lr_foid);
1909 
1910 	return (0);
1911 }
1912 
1913 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = {
1914 	NULL,			/* 0 no such transaction type */
1915 	ztest_replay_create,	/* TX_CREATE */
1916 	NULL,			/* TX_MKDIR */
1917 	NULL,			/* TX_MKXATTR */
1918 	NULL,			/* TX_SYMLINK */
1919 	ztest_replay_remove,	/* TX_REMOVE */
1920 	NULL,			/* TX_RMDIR */
1921 	NULL,			/* TX_LINK */
1922 	NULL,			/* TX_RENAME */
1923 	ztest_replay_write,	/* TX_WRITE */
1924 	ztest_replay_truncate,	/* TX_TRUNCATE */
1925 	ztest_replay_setattr,	/* TX_SETATTR */
1926 	NULL,			/* TX_ACL */
1927 	NULL,			/* TX_CREATE_ACL */
1928 	NULL,			/* TX_CREATE_ATTR */
1929 	NULL,			/* TX_CREATE_ACL_ATTR */
1930 	NULL,			/* TX_MKDIR_ACL */
1931 	NULL,			/* TX_MKDIR_ATTR */
1932 	NULL,			/* TX_MKDIR_ACL_ATTR */
1933 	NULL,			/* TX_WRITE2 */
1934 };
1935 
1936 /*
1937  * ZIL get_data callbacks
1938  */
1939 
1940 /* ARGSUSED */
1941 static void
1942 ztest_get_done(zgd_t *zgd, int error)
1943 {
1944 	ztest_ds_t *zd = zgd->zgd_private;
1945 	uint64_t object = ((rl_t *)zgd->zgd_lr)->rl_object;
1946 
1947 	if (zgd->zgd_db)
1948 		dmu_buf_rele(zgd->zgd_db, zgd);
1949 
1950 	ztest_range_unlock((rl_t *)zgd->zgd_lr);
1951 	ztest_object_unlock(zd, object);
1952 
1953 	umem_free(zgd, sizeof (*zgd));
1954 }
1955 
1956 static int
1957 ztest_get_data(void *arg, lr_write_t *lr, char *buf, struct lwb *lwb,
1958     zio_t *zio)
1959 {
1960 	ztest_ds_t *zd = arg;
1961 	objset_t *os = zd->zd_os;
1962 	uint64_t object = lr->lr_foid;
1963 	uint64_t offset = lr->lr_offset;
1964 	uint64_t size = lr->lr_length;
1965 	uint64_t txg = lr->lr_common.lrc_txg;
1966 	uint64_t crtxg;
1967 	dmu_object_info_t doi;
1968 	dmu_buf_t *db;
1969 	zgd_t *zgd;
1970 	int error;
1971 
1972 	ASSERT3P(lwb, !=, NULL);
1973 	ASSERT3P(zio, !=, NULL);
1974 	ASSERT3U(size, !=, 0);
1975 
1976 	ztest_object_lock(zd, object, RL_READER);
1977 	error = dmu_bonus_hold(os, object, FTAG, &db);
1978 	if (error) {
1979 		ztest_object_unlock(zd, object);
1980 		return (error);
1981 	}
1982 
1983 	crtxg = ztest_bt_bonus(db)->bt_crtxg;
1984 
1985 	if (crtxg == 0 || crtxg > txg) {
1986 		dmu_buf_rele(db, FTAG);
1987 		ztest_object_unlock(zd, object);
1988 		return (ENOENT);
1989 	}
1990 
1991 	dmu_object_info_from_db(db, &doi);
1992 	dmu_buf_rele(db, FTAG);
1993 	db = NULL;
1994 
1995 	zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL);
1996 	zgd->zgd_lwb = lwb;
1997 	zgd->zgd_private = zd;
1998 
1999 	if (buf != NULL) {	/* immediate write */
2000 		zgd->zgd_lr = (struct locked_range *)ztest_range_lock(zd,
2001 		    object, offset, size, RL_READER);
2002 
2003 		error = dmu_read(os, object, offset, size, buf,
2004 		    DMU_READ_NO_PREFETCH);
2005 		ASSERT(error == 0);
2006 	} else {
2007 		size = doi.doi_data_block_size;
2008 		if (ISP2(size)) {
2009 			offset = P2ALIGN(offset, size);
2010 		} else {
2011 			ASSERT(offset < size);
2012 			offset = 0;
2013 		}
2014 
2015 		zgd->zgd_lr = (struct locked_range *)ztest_range_lock(zd,
2016 		    object, offset, size, RL_READER);
2017 
2018 		error = dmu_buf_hold(os, object, offset, zgd, &db,
2019 		    DMU_READ_NO_PREFETCH);
2020 
2021 		if (error == 0) {
2022 			blkptr_t *bp = &lr->lr_blkptr;
2023 
2024 			zgd->zgd_db = db;
2025 			zgd->zgd_bp = bp;
2026 
2027 			ASSERT(db->db_offset == offset);
2028 			ASSERT(db->db_size == size);
2029 
2030 			error = dmu_sync(zio, lr->lr_common.lrc_txg,
2031 			    ztest_get_done, zgd);
2032 
2033 			if (error == 0)
2034 				return (0);
2035 		}
2036 	}
2037 
2038 	ztest_get_done(zgd, error);
2039 
2040 	return (error);
2041 }
2042 
2043 static void *
2044 ztest_lr_alloc(size_t lrsize, char *name)
2045 {
2046 	char *lr;
2047 	size_t namesize = name ? strlen(name) + 1 : 0;
2048 
2049 	lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL);
2050 
2051 	if (name)
2052 		bcopy(name, lr + lrsize, namesize);
2053 
2054 	return (lr);
2055 }
2056 
2057 void
2058 ztest_lr_free(void *lr, size_t lrsize, char *name)
2059 {
2060 	size_t namesize = name ? strlen(name) + 1 : 0;
2061 
2062 	umem_free(lr, lrsize + namesize);
2063 }
2064 
2065 /*
2066  * Lookup a bunch of objects.  Returns the number of objects not found.
2067  */
2068 static int
2069 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count)
2070 {
2071 	int missing = 0;
2072 	int error;
2073 
2074 	ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2075 
2076 	for (int i = 0; i < count; i++, od++) {
2077 		od->od_object = 0;
2078 		error = zap_lookup(zd->zd_os, od->od_dir, od->od_name,
2079 		    sizeof (uint64_t), 1, &od->od_object);
2080 		if (error) {
2081 			ASSERT(error == ENOENT);
2082 			ASSERT(od->od_object == 0);
2083 			missing++;
2084 		} else {
2085 			dmu_buf_t *db;
2086 			ztest_block_tag_t *bbt;
2087 			dmu_object_info_t doi;
2088 
2089 			ASSERT(od->od_object != 0);
2090 			ASSERT(missing == 0);	/* there should be no gaps */
2091 
2092 			ztest_object_lock(zd, od->od_object, RL_READER);
2093 			VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os,
2094 			    od->od_object, FTAG, &db));
2095 			dmu_object_info_from_db(db, &doi);
2096 			bbt = ztest_bt_bonus(db);
2097 			ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2098 			od->od_type = doi.doi_type;
2099 			od->od_blocksize = doi.doi_data_block_size;
2100 			od->od_gen = bbt->bt_gen;
2101 			dmu_buf_rele(db, FTAG);
2102 			ztest_object_unlock(zd, od->od_object);
2103 		}
2104 	}
2105 
2106 	return (missing);
2107 }
2108 
2109 static int
2110 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count)
2111 {
2112 	int missing = 0;
2113 
2114 	ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2115 
2116 	for (int i = 0; i < count; i++, od++) {
2117 		if (missing) {
2118 			od->od_object = 0;
2119 			missing++;
2120 			continue;
2121 		}
2122 
2123 		lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2124 
2125 		lr->lr_doid = od->od_dir;
2126 		lr->lr_foid = 0;	/* 0 to allocate, > 0 to claim */
2127 		lr->lrz_type = od->od_crtype;
2128 		lr->lrz_blocksize = od->od_crblocksize;
2129 		lr->lrz_ibshift = ztest_random_ibshift();
2130 		lr->lrz_bonustype = DMU_OT_UINT64_OTHER;
2131 		lr->lrz_dnodesize = od->od_crdnodesize;
2132 		lr->lr_gen = od->od_crgen;
2133 		lr->lr_crtime[0] = time(NULL);
2134 
2135 		if (ztest_replay_create(zd, lr, B_FALSE) != 0) {
2136 			ASSERT(missing == 0);
2137 			od->od_object = 0;
2138 			missing++;
2139 		} else {
2140 			od->od_object = lr->lr_foid;
2141 			od->od_type = od->od_crtype;
2142 			od->od_blocksize = od->od_crblocksize;
2143 			od->od_gen = od->od_crgen;
2144 			ASSERT(od->od_object != 0);
2145 		}
2146 
2147 		ztest_lr_free(lr, sizeof (*lr), od->od_name);
2148 	}
2149 
2150 	return (missing);
2151 }
2152 
2153 static int
2154 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count)
2155 {
2156 	int missing = 0;
2157 	int error;
2158 
2159 	ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2160 
2161 	od += count - 1;
2162 
2163 	for (int i = count - 1; i >= 0; i--, od--) {
2164 		if (missing) {
2165 			missing++;
2166 			continue;
2167 		}
2168 
2169 		/*
2170 		 * No object was found.
2171 		 */
2172 		if (od->od_object == 0)
2173 			continue;
2174 
2175 		lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2176 
2177 		lr->lr_doid = od->od_dir;
2178 
2179 		if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) {
2180 			ASSERT3U(error, ==, ENOSPC);
2181 			missing++;
2182 		} else {
2183 			od->od_object = 0;
2184 		}
2185 		ztest_lr_free(lr, sizeof (*lr), od->od_name);
2186 	}
2187 
2188 	return (missing);
2189 }
2190 
2191 static int
2192 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size,
2193     void *data)
2194 {
2195 	lr_write_t *lr;
2196 	int error;
2197 
2198 	lr = ztest_lr_alloc(sizeof (*lr) + size, NULL);
2199 
2200 	lr->lr_foid = object;
2201 	lr->lr_offset = offset;
2202 	lr->lr_length = size;
2203 	lr->lr_blkoff = 0;
2204 	BP_ZERO(&lr->lr_blkptr);
2205 
2206 	bcopy(data, lr + 1, size);
2207 
2208 	error = ztest_replay_write(zd, lr, B_FALSE);
2209 
2210 	ztest_lr_free(lr, sizeof (*lr) + size, NULL);
2211 
2212 	return (error);
2213 }
2214 
2215 static int
2216 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2217 {
2218 	lr_truncate_t *lr;
2219 	int error;
2220 
2221 	lr = ztest_lr_alloc(sizeof (*lr), NULL);
2222 
2223 	lr->lr_foid = object;
2224 	lr->lr_offset = offset;
2225 	lr->lr_length = size;
2226 
2227 	error = ztest_replay_truncate(zd, lr, B_FALSE);
2228 
2229 	ztest_lr_free(lr, sizeof (*lr), NULL);
2230 
2231 	return (error);
2232 }
2233 
2234 static int
2235 ztest_setattr(ztest_ds_t *zd, uint64_t object)
2236 {
2237 	lr_setattr_t *lr;
2238 	int error;
2239 
2240 	lr = ztest_lr_alloc(sizeof (*lr), NULL);
2241 
2242 	lr->lr_foid = object;
2243 	lr->lr_size = 0;
2244 	lr->lr_mode = 0;
2245 
2246 	error = ztest_replay_setattr(zd, lr, B_FALSE);
2247 
2248 	ztest_lr_free(lr, sizeof (*lr), NULL);
2249 
2250 	return (error);
2251 }
2252 
2253 static void
2254 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2255 {
2256 	objset_t *os = zd->zd_os;
2257 	dmu_tx_t *tx;
2258 	uint64_t txg;
2259 	rl_t *rl;
2260 
2261 	txg_wait_synced(dmu_objset_pool(os), 0);
2262 
2263 	ztest_object_lock(zd, object, RL_READER);
2264 	rl = ztest_range_lock(zd, object, offset, size, RL_WRITER);
2265 
2266 	tx = dmu_tx_create(os);
2267 
2268 	dmu_tx_hold_write(tx, object, offset, size);
2269 
2270 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2271 
2272 	if (txg != 0) {
2273 		dmu_prealloc(os, object, offset, size, tx);
2274 		dmu_tx_commit(tx);
2275 		txg_wait_synced(dmu_objset_pool(os), txg);
2276 	} else {
2277 		(void) dmu_free_long_range(os, object, offset, size);
2278 	}
2279 
2280 	ztest_range_unlock(rl);
2281 	ztest_object_unlock(zd, object);
2282 }
2283 
2284 static void
2285 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset)
2286 {
2287 	int err;
2288 	ztest_block_tag_t wbt;
2289 	dmu_object_info_t doi;
2290 	enum ztest_io_type io_type;
2291 	uint64_t blocksize;
2292 	void *data;
2293 
2294 	VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0);
2295 	blocksize = doi.doi_data_block_size;
2296 	data = umem_alloc(blocksize, UMEM_NOFAIL);
2297 
2298 	/*
2299 	 * Pick an i/o type at random, biased toward writing block tags.
2300 	 */
2301 	io_type = ztest_random(ZTEST_IO_TYPES);
2302 	if (ztest_random(2) == 0)
2303 		io_type = ZTEST_IO_WRITE_TAG;
2304 
2305 	rw_enter(&zd->zd_zilog_lock, RW_READER);
2306 
2307 	switch (io_type) {
2308 
2309 	case ZTEST_IO_WRITE_TAG:
2310 		ztest_bt_generate(&wbt, zd->zd_os, object, doi.doi_dnodesize,
2311 		    offset, 0, 0, 0);
2312 		(void) ztest_write(zd, object, offset, sizeof (wbt), &wbt);
2313 		break;
2314 
2315 	case ZTEST_IO_WRITE_PATTERN:
2316 		(void) memset(data, 'a' + (object + offset) % 5, blocksize);
2317 		if (ztest_random(2) == 0) {
2318 			/*
2319 			 * Induce fletcher2 collisions to ensure that
2320 			 * zio_ddt_collision() detects and resolves them
2321 			 * when using fletcher2-verify for deduplication.
2322 			 */
2323 			((uint64_t *)data)[0] ^= 1ULL << 63;
2324 			((uint64_t *)data)[4] ^= 1ULL << 63;
2325 		}
2326 		(void) ztest_write(zd, object, offset, blocksize, data);
2327 		break;
2328 
2329 	case ZTEST_IO_WRITE_ZEROES:
2330 		bzero(data, blocksize);
2331 		(void) ztest_write(zd, object, offset, blocksize, data);
2332 		break;
2333 
2334 	case ZTEST_IO_TRUNCATE:
2335 		(void) ztest_truncate(zd, object, offset, blocksize);
2336 		break;
2337 
2338 	case ZTEST_IO_SETATTR:
2339 		(void) ztest_setattr(zd, object);
2340 		break;
2341 
2342 	case ZTEST_IO_REWRITE:
2343 		rw_enter(&ztest_name_lock, RW_READER);
2344 		err = ztest_dsl_prop_set_uint64(zd->zd_name,
2345 		    ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa),
2346 		    B_FALSE);
2347 		VERIFY(err == 0 || err == ENOSPC);
2348 		err = ztest_dsl_prop_set_uint64(zd->zd_name,
2349 		    ZFS_PROP_COMPRESSION,
2350 		    ztest_random_dsl_prop(ZFS_PROP_COMPRESSION),
2351 		    B_FALSE);
2352 		VERIFY(err == 0 || err == ENOSPC);
2353 		rw_exit(&ztest_name_lock);
2354 
2355 		VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data,
2356 		    DMU_READ_NO_PREFETCH));
2357 
2358 		(void) ztest_write(zd, object, offset, blocksize, data);
2359 		break;
2360 	}
2361 
2362 	rw_exit(&zd->zd_zilog_lock);
2363 
2364 	umem_free(data, blocksize);
2365 }
2366 
2367 /*
2368  * Initialize an object description template.
2369  */
2370 static void
2371 ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index,
2372     dmu_object_type_t type, uint64_t blocksize, uint64_t dnodesize,
2373     uint64_t gen)
2374 {
2375 	od->od_dir = ZTEST_DIROBJ;
2376 	od->od_object = 0;
2377 
2378 	od->od_crtype = type;
2379 	od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize();
2380 	od->od_crdnodesize = dnodesize ? dnodesize : ztest_random_dnodesize();
2381 	od->od_crgen = gen;
2382 
2383 	od->od_type = DMU_OT_NONE;
2384 	od->od_blocksize = 0;
2385 	od->od_gen = 0;
2386 
2387 	(void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]",
2388 	    tag, (int64_t)id, index);
2389 }
2390 
2391 /*
2392  * Lookup or create the objects for a test using the od template.
2393  * If the objects do not all exist, or if 'remove' is specified,
2394  * remove any existing objects and create new ones.  Otherwise,
2395  * use the existing objects.
2396  */
2397 static int
2398 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove)
2399 {
2400 	int count = size / sizeof (*od);
2401 	int rv = 0;
2402 
2403 	mutex_enter(&zd->zd_dirobj_lock);
2404 	if ((ztest_lookup(zd, od, count) != 0 || remove) &&
2405 	    (ztest_remove(zd, od, count) != 0 ||
2406 	    ztest_create(zd, od, count) != 0))
2407 		rv = -1;
2408 	zd->zd_od = od;
2409 	mutex_exit(&zd->zd_dirobj_lock);
2410 
2411 	return (rv);
2412 }
2413 
2414 /* ARGSUSED */
2415 void
2416 ztest_zil_commit(ztest_ds_t *zd, uint64_t id)
2417 {
2418 	zilog_t *zilog = zd->zd_zilog;
2419 
2420 	rw_enter(&zd->zd_zilog_lock, RW_READER);
2421 
2422 	zil_commit(zilog, ztest_random(ZTEST_OBJECTS));
2423 
2424 	/*
2425 	 * Remember the committed values in zd, which is in parent/child
2426 	 * shared memory.  If we die, the next iteration of ztest_run()
2427 	 * will verify that the log really does contain this record.
2428 	 */
2429 	mutex_enter(&zilog->zl_lock);
2430 	ASSERT(zd->zd_shared != NULL);
2431 	ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq);
2432 	zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq;
2433 	mutex_exit(&zilog->zl_lock);
2434 
2435 	rw_exit(&zd->zd_zilog_lock);
2436 }
2437 
2438 /*
2439  * This function is designed to simulate the operations that occur during a
2440  * mount/unmount operation.  We hold the dataset across these operations in an
2441  * attempt to expose any implicit assumptions about ZIL management.
2442  */
2443 /* ARGSUSED */
2444 void
2445 ztest_zil_remount(ztest_ds_t *zd, uint64_t id)
2446 {
2447 	objset_t *os = zd->zd_os;
2448 
2449 	/*
2450 	 * We grab the zd_dirobj_lock to ensure that no other thread is
2451 	 * updating the zil (i.e. adding in-memory log records) and the
2452 	 * zd_zilog_lock to block any I/O.
2453 	 */
2454 	mutex_enter(&zd->zd_dirobj_lock);
2455 	rw_enter(&zd->zd_zilog_lock, RW_WRITER);
2456 
2457 	/* zfsvfs_teardown() */
2458 	zil_close(zd->zd_zilog);
2459 
2460 	/* zfsvfs_setup() */
2461 	VERIFY(zil_open(os, ztest_get_data) == zd->zd_zilog);
2462 	zil_replay(os, zd, ztest_replay_vector);
2463 
2464 	rw_exit(&zd->zd_zilog_lock);
2465 	mutex_exit(&zd->zd_dirobj_lock);
2466 }
2467 
2468 /*
2469  * Verify that we can't destroy an active pool, create an existing pool,
2470  * or create a pool with a bad vdev spec.
2471  */
2472 /* ARGSUSED */
2473 void
2474 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id)
2475 {
2476 	ztest_shared_opts_t *zo = &ztest_opts;
2477 	spa_t *spa;
2478 	nvlist_t *nvroot;
2479 
2480 	/*
2481 	 * Attempt to create using a bad file.
2482 	 */
2483 	nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1);
2484 	VERIFY3U(ENOENT, ==,
2485 	    spa_create("ztest_bad_file", nvroot, NULL, NULL));
2486 	nvlist_free(nvroot);
2487 
2488 	/*
2489 	 * Attempt to create using a bad mirror.
2490 	 */
2491 	nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 2, 1);
2492 	VERIFY3U(ENOENT, ==,
2493 	    spa_create("ztest_bad_mirror", nvroot, NULL, NULL));
2494 	nvlist_free(nvroot);
2495 
2496 	/*
2497 	 * Attempt to create an existing pool.  It shouldn't matter
2498 	 * what's in the nvroot; we should fail with EEXIST.
2499 	 */
2500 	rw_enter(&ztest_name_lock, RW_READER);
2501 	nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1);
2502 	VERIFY3U(EEXIST, ==, spa_create(zo->zo_pool, nvroot, NULL, NULL));
2503 	nvlist_free(nvroot);
2504 	VERIFY3U(0, ==, spa_open(zo->zo_pool, &spa, FTAG));
2505 	VERIFY3U(EBUSY, ==, spa_destroy(zo->zo_pool));
2506 	spa_close(spa, FTAG);
2507 
2508 	rw_exit(&ztest_name_lock);
2509 }
2510 
2511 /* ARGSUSED */
2512 void
2513 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id)
2514 {
2515 	spa_t *spa;
2516 	uint64_t initial_version = SPA_VERSION_INITIAL;
2517 	uint64_t version, newversion;
2518 	nvlist_t *nvroot, *props;
2519 	char *name;
2520 
2521 	mutex_enter(&ztest_vdev_lock);
2522 	name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool);
2523 
2524 	/*
2525 	 * Clean up from previous runs.
2526 	 */
2527 	(void) spa_destroy(name);
2528 
2529 	nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0,
2530 	    0, ztest_opts.zo_raidz, ztest_opts.zo_mirrors, 1);
2531 
2532 	/*
2533 	 * If we're configuring a RAIDZ device then make sure that the
2534 	 * the initial version is capable of supporting that feature.
2535 	 */
2536 	switch (ztest_opts.zo_raidz_parity) {
2537 	case 0:
2538 	case 1:
2539 		initial_version = SPA_VERSION_INITIAL;
2540 		break;
2541 	case 2:
2542 		initial_version = SPA_VERSION_RAIDZ2;
2543 		break;
2544 	case 3:
2545 		initial_version = SPA_VERSION_RAIDZ3;
2546 		break;
2547 	}
2548 
2549 	/*
2550 	 * Create a pool with a spa version that can be upgraded. Pick
2551 	 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES.
2552 	 */
2553 	do {
2554 		version = ztest_random_spa_version(initial_version);
2555 	} while (version > SPA_VERSION_BEFORE_FEATURES);
2556 
2557 	props = fnvlist_alloc();
2558 	fnvlist_add_uint64(props,
2559 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), version);
2560 	VERIFY0(spa_create(name, nvroot, props, NULL));
2561 	fnvlist_free(nvroot);
2562 	fnvlist_free(props);
2563 
2564 	VERIFY0(spa_open(name, &spa, FTAG));
2565 	VERIFY3U(spa_version(spa), ==, version);
2566 	newversion = ztest_random_spa_version(version + 1);
2567 
2568 	if (ztest_opts.zo_verbose >= 4) {
2569 		(void) printf("upgrading spa version from %llu to %llu\n",
2570 		    (u_longlong_t)version, (u_longlong_t)newversion);
2571 	}
2572 
2573 	spa_upgrade(spa, newversion);
2574 	VERIFY3U(spa_version(spa), >, version);
2575 	VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config,
2576 	    zpool_prop_to_name(ZPOOL_PROP_VERSION)));
2577 	spa_close(spa, FTAG);
2578 
2579 	strfree(name);
2580 	mutex_exit(&ztest_vdev_lock);
2581 }
2582 
2583 static void
2584 ztest_spa_checkpoint(spa_t *spa)
2585 {
2586 	ASSERT(MUTEX_HELD(&ztest_checkpoint_lock));
2587 
2588 	int error = spa_checkpoint(spa->spa_name);
2589 
2590 	switch (error) {
2591 	case 0:
2592 	case ZFS_ERR_DEVRM_IN_PROGRESS:
2593 	case ZFS_ERR_DISCARDING_CHECKPOINT:
2594 	case ZFS_ERR_CHECKPOINT_EXISTS:
2595 		break;
2596 	case ENOSPC:
2597 		ztest_record_enospc(FTAG);
2598 		break;
2599 	default:
2600 		fatal(0, "spa_checkpoint(%s) = %d", spa->spa_name, error);
2601 	}
2602 }
2603 
2604 static void
2605 ztest_spa_discard_checkpoint(spa_t *spa)
2606 {
2607 	ASSERT(MUTEX_HELD(&ztest_checkpoint_lock));
2608 
2609 	int error = spa_checkpoint_discard(spa->spa_name);
2610 
2611 	switch (error) {
2612 	case 0:
2613 	case ZFS_ERR_DISCARDING_CHECKPOINT:
2614 	case ZFS_ERR_NO_CHECKPOINT:
2615 		break;
2616 	default:
2617 		fatal(0, "spa_discard_checkpoint(%s) = %d",
2618 		    spa->spa_name, error);
2619 	}
2620 
2621 }
2622 
2623 /* ARGSUSED */
2624 void
2625 ztest_spa_checkpoint_create_discard(ztest_ds_t *zd, uint64_t id)
2626 {
2627 	spa_t *spa = ztest_spa;
2628 
2629 	mutex_enter(&ztest_checkpoint_lock);
2630 	if (ztest_random(2) == 0) {
2631 		ztest_spa_checkpoint(spa);
2632 	} else {
2633 		ztest_spa_discard_checkpoint(spa);
2634 	}
2635 	mutex_exit(&ztest_checkpoint_lock);
2636 }
2637 
2638 
2639 static vdev_t *
2640 vdev_lookup_by_path(vdev_t *vd, const char *path)
2641 {
2642 	vdev_t *mvd;
2643 
2644 	if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0)
2645 		return (vd);
2646 
2647 	for (int c = 0; c < vd->vdev_children; c++)
2648 		if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) !=
2649 		    NULL)
2650 			return (mvd);
2651 
2652 	return (NULL);
2653 }
2654 
2655 /*
2656  * Find the first available hole which can be used as a top-level.
2657  */
2658 int
2659 find_vdev_hole(spa_t *spa)
2660 {
2661 	vdev_t *rvd = spa->spa_root_vdev;
2662 	int c;
2663 
2664 	ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV);
2665 
2666 	for (c = 0; c < rvd->vdev_children; c++) {
2667 		vdev_t *cvd = rvd->vdev_child[c];
2668 
2669 		if (cvd->vdev_ishole)
2670 			break;
2671 	}
2672 	return (c);
2673 }
2674 
2675 /*
2676  * Verify that vdev_add() works as expected.
2677  */
2678 /* ARGSUSED */
2679 void
2680 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id)
2681 {
2682 	ztest_shared_t *zs = ztest_shared;
2683 	spa_t *spa = ztest_spa;
2684 	uint64_t leaves;
2685 	uint64_t guid;
2686 	nvlist_t *nvroot;
2687 	int error;
2688 
2689 	mutex_enter(&ztest_vdev_lock);
2690 	leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz;
2691 
2692 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2693 
2694 	ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves;
2695 
2696 	/*
2697 	 * If we have slogs then remove them 1/4 of the time.
2698 	 */
2699 	if (spa_has_slogs(spa) && ztest_random(4) == 0) {
2700 		/*
2701 		 * Grab the guid from the head of the log class rotor.
2702 		 */
2703 		guid = spa_log_class(spa)->mc_rotor->mg_vd->vdev_guid;
2704 
2705 		spa_config_exit(spa, SCL_VDEV, FTAG);
2706 
2707 		/*
2708 		 * We have to grab the zs_name_lock as writer to
2709 		 * prevent a race between removing a slog (dmu_objset_find)
2710 		 * and destroying a dataset. Removing the slog will
2711 		 * grab a reference on the dataset which may cause
2712 		 * dmu_objset_destroy() to fail with EBUSY thus
2713 		 * leaving the dataset in an inconsistent state.
2714 		 */
2715 		rw_enter(&ztest_name_lock, RW_WRITER);
2716 		error = spa_vdev_remove(spa, guid, B_FALSE);
2717 		rw_exit(&ztest_name_lock);
2718 
2719 		switch (error) {
2720 		case 0:
2721 		case EEXIST:
2722 		case ZFS_ERR_CHECKPOINT_EXISTS:
2723 		case ZFS_ERR_DISCARDING_CHECKPOINT:
2724 			break;
2725 		default:
2726 			fatal(0, "spa_vdev_remove() = %d", error);
2727 		}
2728 	} else {
2729 		spa_config_exit(spa, SCL_VDEV, FTAG);
2730 
2731 		/*
2732 		 * Make 1/4 of the devices be log devices.
2733 		 */
2734 		nvroot = make_vdev_root(NULL, NULL, NULL,
2735 		    ztest_opts.zo_vdev_size, 0,
2736 		    ztest_random(4) == 0, ztest_opts.zo_raidz,
2737 		    zs->zs_mirrors, 1);
2738 
2739 		error = spa_vdev_add(spa, nvroot);
2740 		nvlist_free(nvroot);
2741 
2742 		switch (error) {
2743 		case 0:
2744 			break;
2745 		case ENOSPC:
2746 			ztest_record_enospc("spa_vdev_add");
2747 			break;
2748 		default:
2749 			fatal(0, "spa_vdev_add() = %d", error);
2750 		}
2751 	}
2752 
2753 	mutex_exit(&ztest_vdev_lock);
2754 }
2755 
2756 /*
2757  * Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
2758  */
2759 /* ARGSUSED */
2760 void
2761 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id)
2762 {
2763 	ztest_shared_t *zs = ztest_shared;
2764 	spa_t *spa = ztest_spa;
2765 	vdev_t *rvd = spa->spa_root_vdev;
2766 	spa_aux_vdev_t *sav;
2767 	char *aux;
2768 	uint64_t guid = 0;
2769 	int error;
2770 
2771 	if (ztest_random(2) == 0) {
2772 		sav = &spa->spa_spares;
2773 		aux = ZPOOL_CONFIG_SPARES;
2774 	} else {
2775 		sav = &spa->spa_l2cache;
2776 		aux = ZPOOL_CONFIG_L2CACHE;
2777 	}
2778 
2779 	mutex_enter(&ztest_vdev_lock);
2780 
2781 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2782 
2783 	if (sav->sav_count != 0 && ztest_random(4) == 0) {
2784 		/*
2785 		 * Pick a random device to remove.
2786 		 */
2787 		guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid;
2788 	} else {
2789 		/*
2790 		 * Find an unused device we can add.
2791 		 */
2792 		zs->zs_vdev_aux = 0;
2793 		for (;;) {
2794 			char path[MAXPATHLEN];
2795 			int c;
2796 			(void) snprintf(path, sizeof (path), ztest_aux_template,
2797 			    ztest_opts.zo_dir, ztest_opts.zo_pool, aux,
2798 			    zs->zs_vdev_aux);
2799 			for (c = 0; c < sav->sav_count; c++)
2800 				if (strcmp(sav->sav_vdevs[c]->vdev_path,
2801 				    path) == 0)
2802 					break;
2803 			if (c == sav->sav_count &&
2804 			    vdev_lookup_by_path(rvd, path) == NULL)
2805 				break;
2806 			zs->zs_vdev_aux++;
2807 		}
2808 	}
2809 
2810 	spa_config_exit(spa, SCL_VDEV, FTAG);
2811 
2812 	if (guid == 0) {
2813 		/*
2814 		 * Add a new device.
2815 		 */
2816 		nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL,
2817 		    (ztest_opts.zo_vdev_size * 5) / 4, 0, 0, 0, 0, 1);
2818 		error = spa_vdev_add(spa, nvroot);
2819 
2820 		switch (error) {
2821 		case 0:
2822 			break;
2823 		default:
2824 			fatal(0, "spa_vdev_add(%p) = %d", nvroot, error);
2825 		}
2826 		nvlist_free(nvroot);
2827 	} else {
2828 		/*
2829 		 * Remove an existing device.  Sometimes, dirty its
2830 		 * vdev state first to make sure we handle removal
2831 		 * of devices that have pending state changes.
2832 		 */
2833 		if (ztest_random(2) == 0)
2834 			(void) vdev_online(spa, guid, 0, NULL);
2835 
2836 		error = spa_vdev_remove(spa, guid, B_FALSE);
2837 
2838 		switch (error) {
2839 		case 0:
2840 		case EBUSY:
2841 		case ZFS_ERR_CHECKPOINT_EXISTS:
2842 		case ZFS_ERR_DISCARDING_CHECKPOINT:
2843 			break;
2844 		default:
2845 			fatal(0, "spa_vdev_remove(%llu) = %d", guid, error);
2846 		}
2847 	}
2848 
2849 	mutex_exit(&ztest_vdev_lock);
2850 }
2851 
2852 /*
2853  * split a pool if it has mirror tlvdevs
2854  */
2855 /* ARGSUSED */
2856 void
2857 ztest_split_pool(ztest_ds_t *zd, uint64_t id)
2858 {
2859 	ztest_shared_t *zs = ztest_shared;
2860 	spa_t *spa = ztest_spa;
2861 	vdev_t *rvd = spa->spa_root_vdev;
2862 	nvlist_t *tree, **child, *config, *split, **schild;
2863 	uint_t c, children, schildren = 0, lastlogid = 0;
2864 	int error = 0;
2865 
2866 	mutex_enter(&ztest_vdev_lock);
2867 
2868 	/* ensure we have a useable config; mirrors of raidz aren't supported */
2869 	if (zs->zs_mirrors < 3 || ztest_opts.zo_raidz > 1) {
2870 		mutex_exit(&ztest_vdev_lock);
2871 		return;
2872 	}
2873 
2874 	/* clean up the old pool, if any */
2875 	(void) spa_destroy("splitp");
2876 
2877 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2878 
2879 	/* generate a config from the existing config */
2880 	mutex_enter(&spa->spa_props_lock);
2881 	VERIFY(nvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE,
2882 	    &tree) == 0);
2883 	mutex_exit(&spa->spa_props_lock);
2884 
2885 	VERIFY(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child,
2886 	    &children) == 0);
2887 
2888 	schild = malloc(rvd->vdev_children * sizeof (nvlist_t *));
2889 	for (c = 0; c < children; c++) {
2890 		vdev_t *tvd = rvd->vdev_child[c];
2891 		nvlist_t **mchild;
2892 		uint_t mchildren;
2893 
2894 		if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) {
2895 			VERIFY(nvlist_alloc(&schild[schildren], NV_UNIQUE_NAME,
2896 			    0) == 0);
2897 			VERIFY(nvlist_add_string(schild[schildren],
2898 			    ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0);
2899 			VERIFY(nvlist_add_uint64(schild[schildren],
2900 			    ZPOOL_CONFIG_IS_HOLE, 1) == 0);
2901 			if (lastlogid == 0)
2902 				lastlogid = schildren;
2903 			++schildren;
2904 			continue;
2905 		}
2906 		lastlogid = 0;
2907 		VERIFY(nvlist_lookup_nvlist_array(child[c],
2908 		    ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0);
2909 		VERIFY(nvlist_dup(mchild[0], &schild[schildren++], 0) == 0);
2910 	}
2911 
2912 	/* OK, create a config that can be used to split */
2913 	VERIFY(nvlist_alloc(&split, NV_UNIQUE_NAME, 0) == 0);
2914 	VERIFY(nvlist_add_string(split, ZPOOL_CONFIG_TYPE,
2915 	    VDEV_TYPE_ROOT) == 0);
2916 	VERIFY(nvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild,
2917 	    lastlogid != 0 ? lastlogid : schildren) == 0);
2918 
2919 	VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, 0) == 0);
2920 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split) == 0);
2921 
2922 	for (c = 0; c < schildren; c++)
2923 		nvlist_free(schild[c]);
2924 	free(schild);
2925 	nvlist_free(split);
2926 
2927 	spa_config_exit(spa, SCL_VDEV, FTAG);
2928 
2929 	rw_enter(&ztest_name_lock, RW_WRITER);
2930 	error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE);
2931 	rw_exit(&ztest_name_lock);
2932 
2933 	nvlist_free(config);
2934 
2935 	if (error == 0) {
2936 		(void) printf("successful split - results:\n");
2937 		mutex_enter(&spa_namespace_lock);
2938 		show_pool_stats(spa);
2939 		show_pool_stats(spa_lookup("splitp"));
2940 		mutex_exit(&spa_namespace_lock);
2941 		++zs->zs_splits;
2942 		--zs->zs_mirrors;
2943 	}
2944 	mutex_exit(&ztest_vdev_lock);
2945 }
2946 
2947 /*
2948  * Verify that we can attach and detach devices.
2949  */
2950 /* ARGSUSED */
2951 void
2952 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
2953 {
2954 	ztest_shared_t *zs = ztest_shared;
2955 	spa_t *spa = ztest_spa;
2956 	spa_aux_vdev_t *sav = &spa->spa_spares;
2957 	vdev_t *rvd = spa->spa_root_vdev;
2958 	vdev_t *oldvd, *newvd, *pvd;
2959 	nvlist_t *root;
2960 	uint64_t leaves;
2961 	uint64_t leaf, top;
2962 	uint64_t ashift = ztest_get_ashift();
2963 	uint64_t oldguid, pguid;
2964 	uint64_t oldsize, newsize;
2965 	char oldpath[MAXPATHLEN], newpath[MAXPATHLEN];
2966 	int replacing;
2967 	int oldvd_has_siblings = B_FALSE;
2968 	int newvd_is_spare = B_FALSE;
2969 	int oldvd_is_log;
2970 	int error, expected_error;
2971 
2972 	mutex_enter(&ztest_vdev_lock);
2973 	leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz;
2974 
2975 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2976 
2977 	/*
2978 	 * If a vdev is in the process of being removed, its removal may
2979 	 * finish while we are in progress, leading to an unexpected error
2980 	 * value.  Don't bother trying to attach while we are in the middle
2981 	 * of removal.
2982 	 */
2983 	if (ztest_device_removal_active) {
2984 		spa_config_exit(spa, SCL_ALL, FTAG);
2985 		mutex_exit(&ztest_vdev_lock);
2986 		return;
2987 	}
2988 
2989 	/*
2990 	 * Decide whether to do an attach or a replace.
2991 	 */
2992 	replacing = ztest_random(2);
2993 
2994 	/*
2995 	 * Pick a random top-level vdev.
2996 	 */
2997 	top = ztest_random_vdev_top(spa, B_TRUE);
2998 
2999 	/*
3000 	 * Pick a random leaf within it.
3001 	 */
3002 	leaf = ztest_random(leaves);
3003 
3004 	/*
3005 	 * Locate this vdev.
3006 	 */
3007 	oldvd = rvd->vdev_child[top];
3008 	if (zs->zs_mirrors >= 1) {
3009 		ASSERT(oldvd->vdev_ops == &vdev_mirror_ops);
3010 		ASSERT(oldvd->vdev_children >= zs->zs_mirrors);
3011 		oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raidz];
3012 	}
3013 	if (ztest_opts.zo_raidz > 1) {
3014 		ASSERT(oldvd->vdev_ops == &vdev_raidz_ops);
3015 		ASSERT(oldvd->vdev_children == ztest_opts.zo_raidz);
3016 		oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raidz];
3017 	}
3018 
3019 	/*
3020 	 * If we're already doing an attach or replace, oldvd may be a
3021 	 * mirror vdev -- in which case, pick a random child.
3022 	 */
3023 	while (oldvd->vdev_children != 0) {
3024 		oldvd_has_siblings = B_TRUE;
3025 		ASSERT(oldvd->vdev_children >= 2);
3026 		oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)];
3027 	}
3028 
3029 	oldguid = oldvd->vdev_guid;
3030 	oldsize = vdev_get_min_asize(oldvd);
3031 	oldvd_is_log = oldvd->vdev_top->vdev_islog;
3032 	(void) strcpy(oldpath, oldvd->vdev_path);
3033 	pvd = oldvd->vdev_parent;
3034 	pguid = pvd->vdev_guid;
3035 
3036 	/*
3037 	 * If oldvd has siblings, then half of the time, detach it.
3038 	 */
3039 	if (oldvd_has_siblings && ztest_random(2) == 0) {
3040 		spa_config_exit(spa, SCL_ALL, FTAG);
3041 		error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE);
3042 		if (error != 0 && error != ENODEV && error != EBUSY &&
3043 		    error != ENOTSUP && error != ZFS_ERR_CHECKPOINT_EXISTS &&
3044 		    error != ZFS_ERR_DISCARDING_CHECKPOINT)
3045 			fatal(0, "detach (%s) returned %d", oldpath, error);
3046 		mutex_exit(&ztest_vdev_lock);
3047 		return;
3048 	}
3049 
3050 	/*
3051 	 * For the new vdev, choose with equal probability between the two
3052 	 * standard paths (ending in either 'a' or 'b') or a random hot spare.
3053 	 */
3054 	if (sav->sav_count != 0 && ztest_random(3) == 0) {
3055 		newvd = sav->sav_vdevs[ztest_random(sav->sav_count)];
3056 		newvd_is_spare = B_TRUE;
3057 		(void) strcpy(newpath, newvd->vdev_path);
3058 	} else {
3059 		(void) snprintf(newpath, sizeof (newpath), ztest_dev_template,
3060 		    ztest_opts.zo_dir, ztest_opts.zo_pool,
3061 		    top * leaves + leaf);
3062 		if (ztest_random(2) == 0)
3063 			newpath[strlen(newpath) - 1] = 'b';
3064 		newvd = vdev_lookup_by_path(rvd, newpath);
3065 	}
3066 
3067 	if (newvd) {
3068 		/*
3069 		 * Reopen to ensure the vdev's asize field isn't stale.
3070 		 */
3071 		vdev_reopen(newvd);
3072 		newsize = vdev_get_min_asize(newvd);
3073 	} else {
3074 		/*
3075 		 * Make newsize a little bigger or smaller than oldsize.
3076 		 * If it's smaller, the attach should fail.
3077 		 * If it's larger, and we're doing a replace,
3078 		 * we should get dynamic LUN growth when we're done.
3079 		 */
3080 		newsize = 10 * oldsize / (9 + ztest_random(3));
3081 	}
3082 
3083 	/*
3084 	 * If pvd is not a mirror or root, the attach should fail with ENOTSUP,
3085 	 * unless it's a replace; in that case any non-replacing parent is OK.
3086 	 *
3087 	 * If newvd is already part of the pool, it should fail with EBUSY.
3088 	 *
3089 	 * If newvd is too small, it should fail with EOVERFLOW.
3090 	 */
3091 	if (pvd->vdev_ops != &vdev_mirror_ops &&
3092 	    pvd->vdev_ops != &vdev_root_ops && (!replacing ||
3093 	    pvd->vdev_ops == &vdev_replacing_ops ||
3094 	    pvd->vdev_ops == &vdev_spare_ops))
3095 		expected_error = ENOTSUP;
3096 	else if (newvd_is_spare && (!replacing || oldvd_is_log))
3097 		expected_error = ENOTSUP;
3098 	else if (newvd == oldvd)
3099 		expected_error = replacing ? 0 : EBUSY;
3100 	else if (vdev_lookup_by_path(rvd, newpath) != NULL)
3101 		expected_error = EBUSY;
3102 	else if (newsize < oldsize)
3103 		expected_error = EOVERFLOW;
3104 	else if (ashift > oldvd->vdev_top->vdev_ashift)
3105 		expected_error = EDOM;
3106 	else
3107 		expected_error = 0;
3108 
3109 	spa_config_exit(spa, SCL_ALL, FTAG);
3110 
3111 	/*
3112 	 * Build the nvlist describing newpath.
3113 	 */
3114 	root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0,
3115 	    ashift, 0, 0, 0, 1);
3116 
3117 	error = spa_vdev_attach(spa, oldguid, root, replacing);
3118 
3119 	nvlist_free(root);
3120 
3121 	/*
3122 	 * If our parent was the replacing vdev, but the replace completed,
3123 	 * then instead of failing with ENOTSUP we may either succeed,
3124 	 * fail with ENODEV, or fail with EOVERFLOW.
3125 	 */
3126 	if (expected_error == ENOTSUP &&
3127 	    (error == 0 || error == ENODEV || error == EOVERFLOW))
3128 		expected_error = error;
3129 
3130 	/*
3131 	 * If someone grew the LUN, the replacement may be too small.
3132 	 */
3133 	if (error == EOVERFLOW || error == EBUSY)
3134 		expected_error = error;
3135 
3136 	if (error == ZFS_ERR_CHECKPOINT_EXISTS ||
3137 	    error == ZFS_ERR_DISCARDING_CHECKPOINT)
3138 		expected_error = error;
3139 
3140 	/* XXX workaround 6690467 */
3141 	if (error != expected_error && expected_error != EBUSY) {
3142 		fatal(0, "attach (%s %llu, %s %llu, %d) "
3143 		    "returned %d, expected %d",
3144 		    oldpath, oldsize, newpath,
3145 		    newsize, replacing, error, expected_error);
3146 	}
3147 
3148 	mutex_exit(&ztest_vdev_lock);
3149 }
3150 
3151 /* ARGSUSED */
3152 void
3153 ztest_device_removal(ztest_ds_t *zd, uint64_t id)
3154 {
3155 	spa_t *spa = ztest_spa;
3156 	vdev_t *vd;
3157 	uint64_t guid;
3158 	int error;
3159 
3160 	mutex_enter(&ztest_vdev_lock);
3161 
3162 	if (ztest_device_removal_active) {
3163 		mutex_exit(&ztest_vdev_lock);
3164 		return;
3165 	}
3166 
3167 	/*
3168 	 * Remove a random top-level vdev and wait for removal to finish.
3169 	 */
3170 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3171 	vd = vdev_lookup_top(spa, ztest_random_vdev_top(spa, B_FALSE));
3172 	guid = vd->vdev_guid;
3173 	spa_config_exit(spa, SCL_VDEV, FTAG);
3174 
3175 	error = spa_vdev_remove(spa, guid, B_FALSE);
3176 	if (error == 0) {
3177 		ztest_device_removal_active = B_TRUE;
3178 		mutex_exit(&ztest_vdev_lock);
3179 
3180 		while (spa->spa_vdev_removal != NULL)
3181 			txg_wait_synced(spa_get_dsl(spa), 0);
3182 	} else {
3183 		mutex_exit(&ztest_vdev_lock);
3184 		return;
3185 	}
3186 
3187 	/*
3188 	 * The pool needs to be scrubbed after completing device removal.
3189 	 * Failure to do so may result in checksum errors due to the
3190 	 * strategy employed by ztest_fault_inject() when selecting which
3191 	 * offset are redundant and can be damaged.
3192 	 */
3193 	error = spa_scan(spa, POOL_SCAN_SCRUB);
3194 	if (error == 0) {
3195 		while (dsl_scan_scrubbing(spa_get_dsl(spa)))
3196 			txg_wait_synced(spa_get_dsl(spa), 0);
3197 	}
3198 
3199 	mutex_enter(&ztest_vdev_lock);
3200 	ztest_device_removal_active = B_FALSE;
3201 	mutex_exit(&ztest_vdev_lock);
3202 }
3203 
3204 /*
3205  * Callback function which expands the physical size of the vdev.
3206  */
3207 vdev_t *
3208 grow_vdev(vdev_t *vd, void *arg)
3209 {
3210 	spa_t *spa = vd->vdev_spa;
3211 	size_t *newsize = arg;
3212 	size_t fsize;
3213 	int fd;
3214 
3215 	ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
3216 	ASSERT(vd->vdev_ops->vdev_op_leaf);
3217 
3218 	if ((fd = open(vd->vdev_path, O_RDWR)) == -1)
3219 		return (vd);
3220 
3221 	fsize = lseek(fd, 0, SEEK_END);
3222 	(void) ftruncate(fd, *newsize);
3223 
3224 	if (ztest_opts.zo_verbose >= 6) {
3225 		(void) printf("%s grew from %lu to %lu bytes\n",
3226 		    vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize);
3227 	}
3228 	(void) close(fd);
3229 	return (NULL);
3230 }
3231 
3232 /*
3233  * Callback function which expands a given vdev by calling vdev_online().
3234  */
3235 /* ARGSUSED */
3236 vdev_t *
3237 online_vdev(vdev_t *vd, void *arg)
3238 {
3239 	spa_t *spa = vd->vdev_spa;
3240 	vdev_t *tvd = vd->vdev_top;
3241 	uint64_t guid = vd->vdev_guid;
3242 	uint64_t generation = spa->spa_config_generation + 1;
3243 	vdev_state_t newstate = VDEV_STATE_UNKNOWN;
3244 	int error;
3245 
3246 	ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
3247 	ASSERT(vd->vdev_ops->vdev_op_leaf);
3248 
3249 	/* Calling vdev_online will initialize the new metaslabs */
3250 	spa_config_exit(spa, SCL_STATE, spa);
3251 	error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate);
3252 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3253 
3254 	/*
3255 	 * If vdev_online returned an error or the underlying vdev_open
3256 	 * failed then we abort the expand. The only way to know that
3257 	 * vdev_open fails is by checking the returned newstate.
3258 	 */
3259 	if (error || newstate != VDEV_STATE_HEALTHY) {
3260 		if (ztest_opts.zo_verbose >= 5) {
3261 			(void) printf("Unable to expand vdev, state %llu, "
3262 			    "error %d\n", (u_longlong_t)newstate, error);
3263 		}
3264 		return (vd);
3265 	}
3266 	ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY);
3267 
3268 	/*
3269 	 * Since we dropped the lock we need to ensure that we're
3270 	 * still talking to the original vdev. It's possible this
3271 	 * vdev may have been detached/replaced while we were
3272 	 * trying to online it.
3273 	 */
3274 	if (generation != spa->spa_config_generation) {
3275 		if (ztest_opts.zo_verbose >= 5) {
3276 			(void) printf("vdev configuration has changed, "
3277 			    "guid %llu, state %llu, expected gen %llu, "
3278 			    "got gen %llu\n",
3279 			    (u_longlong_t)guid,
3280 			    (u_longlong_t)tvd->vdev_state,
3281 			    (u_longlong_t)generation,
3282 			    (u_longlong_t)spa->spa_config_generation);
3283 		}
3284 		return (vd);
3285 	}
3286 	return (NULL);
3287 }
3288 
3289 /*
3290  * Traverse the vdev tree calling the supplied function.
3291  * We continue to walk the tree until we either have walked all
3292  * children or we receive a non-NULL return from the callback.
3293  * If a NULL callback is passed, then we just return back the first
3294  * leaf vdev we encounter.
3295  */
3296 vdev_t *
3297 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg)
3298 {
3299 	if (vd->vdev_ops->vdev_op_leaf) {
3300 		if (func == NULL)
3301 			return (vd);
3302 		else
3303 			return (func(vd, arg));
3304 	}
3305 
3306 	for (uint_t c = 0; c < vd->vdev_children; c++) {
3307 		vdev_t *cvd = vd->vdev_child[c];
3308 		if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL)
3309 			return (cvd);
3310 	}
3311 	return (NULL);
3312 }
3313 
3314 /*
3315  * Verify that dynamic LUN growth works as expected.
3316  */
3317 /* ARGSUSED */
3318 void
3319 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id)
3320 {
3321 	spa_t *spa = ztest_spa;
3322 	vdev_t *vd, *tvd;
3323 	metaslab_class_t *mc;
3324 	metaslab_group_t *mg;
3325 	size_t psize, newsize;
3326 	uint64_t top;
3327 	uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count;
3328 
3329 	mutex_enter(&ztest_checkpoint_lock);
3330 	mutex_enter(&ztest_vdev_lock);
3331 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3332 
3333 	/*
3334 	 * If there is a vdev removal in progress, it could complete while
3335 	 * we are running, in which case we would not be able to verify
3336 	 * that the metaslab_class space increased (because it decreases
3337 	 * when the device removal completes).
3338 	 */
3339 	if (ztest_device_removal_active) {
3340 		spa_config_exit(spa, SCL_STATE, spa);
3341 		mutex_exit(&ztest_vdev_lock);
3342 		mutex_exit(&ztest_checkpoint_lock);
3343 		return;
3344 	}
3345 
3346 	top = ztest_random_vdev_top(spa, B_TRUE);
3347 
3348 	tvd = spa->spa_root_vdev->vdev_child[top];
3349 	mg = tvd->vdev_mg;
3350 	mc = mg->mg_class;
3351 	old_ms_count = tvd->vdev_ms_count;
3352 	old_class_space = metaslab_class_get_space(mc);
3353 
3354 	/*
3355 	 * Determine the size of the first leaf vdev associated with
3356 	 * our top-level device.
3357 	 */
3358 	vd = vdev_walk_tree(tvd, NULL, NULL);
3359 	ASSERT3P(vd, !=, NULL);
3360 	ASSERT(vd->vdev_ops->vdev_op_leaf);
3361 
3362 	psize = vd->vdev_psize;
3363 
3364 	/*
3365 	 * We only try to expand the vdev if it's healthy, less than 4x its
3366 	 * original size, and it has a valid psize.
3367 	 */
3368 	if (tvd->vdev_state != VDEV_STATE_HEALTHY ||
3369 	    psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) {
3370 		spa_config_exit(spa, SCL_STATE, spa);
3371 		mutex_exit(&ztest_vdev_lock);
3372 		mutex_exit(&ztest_checkpoint_lock);
3373 		return;
3374 	}
3375 	ASSERT(psize > 0);
3376 	newsize = psize + psize / 8;
3377 	ASSERT3U(newsize, >, psize);
3378 
3379 	if (ztest_opts.zo_verbose >= 6) {
3380 		(void) printf("Expanding LUN %s from %lu to %lu\n",
3381 		    vd->vdev_path, (ulong_t)psize, (ulong_t)newsize);
3382 	}
3383 
3384 	/*
3385 	 * Growing the vdev is a two step process:
3386 	 *	1). expand the physical size (i.e. relabel)
3387 	 *	2). online the vdev to create the new metaslabs
3388 	 */
3389 	if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL ||
3390 	    vdev_walk_tree(tvd, online_vdev, NULL) != NULL ||
3391 	    tvd->vdev_state != VDEV_STATE_HEALTHY) {
3392 		if (ztest_opts.zo_verbose >= 5) {
3393 			(void) printf("Could not expand LUN because "
3394 			    "the vdev configuration changed.\n");
3395 		}
3396 		spa_config_exit(spa, SCL_STATE, spa);
3397 		mutex_exit(&ztest_vdev_lock);
3398 		mutex_exit(&ztest_checkpoint_lock);
3399 		return;
3400 	}
3401 
3402 	spa_config_exit(spa, SCL_STATE, spa);
3403 
3404 	/*
3405 	 * Expanding the LUN will update the config asynchronously,
3406 	 * thus we must wait for the async thread to complete any
3407 	 * pending tasks before proceeding.
3408 	 */
3409 	for (;;) {
3410 		boolean_t done;
3411 		mutex_enter(&spa->spa_async_lock);
3412 		done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks);
3413 		mutex_exit(&spa->spa_async_lock);
3414 		if (done)
3415 			break;
3416 		txg_wait_synced(spa_get_dsl(spa), 0);
3417 		(void) poll(NULL, 0, 100);
3418 	}
3419 
3420 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3421 
3422 	tvd = spa->spa_root_vdev->vdev_child[top];
3423 	new_ms_count = tvd->vdev_ms_count;
3424 	new_class_space = metaslab_class_get_space(mc);
3425 
3426 	if (tvd->vdev_mg != mg || mg->mg_class != mc) {
3427 		if (ztest_opts.zo_verbose >= 5) {
3428 			(void) printf("Could not verify LUN expansion due to "
3429 			    "intervening vdev offline or remove.\n");
3430 		}
3431 		spa_config_exit(spa, SCL_STATE, spa);
3432 		mutex_exit(&ztest_vdev_lock);
3433 		mutex_exit(&ztest_checkpoint_lock);
3434 		return;
3435 	}
3436 
3437 	/*
3438 	 * Make sure we were able to grow the vdev.
3439 	 */
3440 	if (new_ms_count <= old_ms_count) {
3441 		fatal(0, "LUN expansion failed: ms_count %llu < %llu\n",
3442 		    old_ms_count, new_ms_count);
3443 	}
3444 
3445 	/*
3446 	 * Make sure we were able to grow the pool.
3447 	 */
3448 	if (new_class_space <= old_class_space) {
3449 		fatal(0, "LUN expansion failed: class_space %llu < %llu\n",
3450 		    old_class_space, new_class_space);
3451 	}
3452 
3453 	if (ztest_opts.zo_verbose >= 5) {
3454 		char oldnumbuf[NN_NUMBUF_SZ], newnumbuf[NN_NUMBUF_SZ];
3455 
3456 		nicenum(old_class_space, oldnumbuf, sizeof (oldnumbuf));
3457 		nicenum(new_class_space, newnumbuf, sizeof (newnumbuf));
3458 		(void) printf("%s grew from %s to %s\n",
3459 		    spa->spa_name, oldnumbuf, newnumbuf);
3460 	}
3461 
3462 	spa_config_exit(spa, SCL_STATE, spa);
3463 	mutex_exit(&ztest_vdev_lock);
3464 	mutex_exit(&ztest_checkpoint_lock);
3465 }
3466 
3467 /*
3468  * Verify that dmu_objset_{create,destroy,open,close} work as expected.
3469  */
3470 /* ARGSUSED */
3471 static void
3472 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
3473 {
3474 	/*
3475 	 * Create the objects common to all ztest datasets.
3476 	 */
3477 	VERIFY(zap_create_claim(os, ZTEST_DIROBJ,
3478 	    DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0);
3479 }
3480 
3481 static int
3482 ztest_dataset_create(char *dsname)
3483 {
3484 	uint64_t zilset = ztest_random(100);
3485 	int err = dmu_objset_create(dsname, DMU_OST_OTHER, 0,
3486 	    ztest_objset_create_cb, NULL);
3487 
3488 	if (err || zilset < 80)
3489 		return (err);
3490 
3491 	if (ztest_opts.zo_verbose >= 6)
3492 		(void) printf("Setting dataset %s to sync always\n", dsname);
3493 	return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC,
3494 	    ZFS_SYNC_ALWAYS, B_FALSE));
3495 }
3496 
3497 /* ARGSUSED */
3498 static int
3499 ztest_objset_destroy_cb(const char *name, void *arg)
3500 {
3501 	objset_t *os;
3502 	dmu_object_info_t doi;
3503 	int error;
3504 
3505 	/*
3506 	 * Verify that the dataset contains a directory object.
3507 	 */
3508 	VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, FTAG, &os));
3509 	error = dmu_object_info(os, ZTEST_DIROBJ, &doi);
3510 	if (error != ENOENT) {
3511 		/* We could have crashed in the middle of destroying it */
3512 		ASSERT0(error);
3513 		ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER);
3514 		ASSERT3S(doi.doi_physical_blocks_512, >=, 0);
3515 	}
3516 	dmu_objset_disown(os, FTAG);
3517 
3518 	/*
3519 	 * Destroy the dataset.
3520 	 */
3521 	if (strchr(name, '@') != NULL) {
3522 		VERIFY0(dsl_destroy_snapshot(name, B_TRUE));
3523 	} else {
3524 		error = dsl_destroy_head(name);
3525 		/* There could be a hold on this dataset */
3526 		if (error != EBUSY)
3527 			ASSERT0(error);
3528 	}
3529 	return (0);
3530 }
3531 
3532 static boolean_t
3533 ztest_snapshot_create(char *osname, uint64_t id)
3534 {
3535 	char snapname[ZFS_MAX_DATASET_NAME_LEN];
3536 	int error;
3537 
3538 	(void) snprintf(snapname, sizeof (snapname), "%llu", (u_longlong_t)id);
3539 
3540 	error = dmu_objset_snapshot_one(osname, snapname);
3541 	if (error == ENOSPC) {
3542 		ztest_record_enospc(FTAG);
3543 		return (B_FALSE);
3544 	}
3545 	if (error != 0 && error != EEXIST) {
3546 		fatal(0, "ztest_snapshot_create(%s@%s) = %d", osname,
3547 		    snapname, error);
3548 	}
3549 	return (B_TRUE);
3550 }
3551 
3552 static boolean_t
3553 ztest_snapshot_destroy(char *osname, uint64_t id)
3554 {
3555 	char snapname[ZFS_MAX_DATASET_NAME_LEN];
3556 	int error;
3557 
3558 	(void) snprintf(snapname, sizeof (snapname), "%s@%llu", osname,
3559 	    (u_longlong_t)id);
3560 
3561 	error = dsl_destroy_snapshot(snapname, B_FALSE);
3562 	if (error != 0 && error != ENOENT)
3563 		fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error);
3564 	return (B_TRUE);
3565 }
3566 
3567 /* ARGSUSED */
3568 void
3569 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id)
3570 {
3571 	ztest_ds_t zdtmp;
3572 	int iters;
3573 	int error;
3574 	objset_t *os, *os2;
3575 	char name[ZFS_MAX_DATASET_NAME_LEN];
3576 	zilog_t *zilog;
3577 
3578 	rw_enter(&ztest_name_lock, RW_READER);
3579 
3580 	(void) snprintf(name, sizeof (name), "%s/temp_%llu",
3581 	    ztest_opts.zo_pool, (u_longlong_t)id);
3582 
3583 	/*
3584 	 * If this dataset exists from a previous run, process its replay log
3585 	 * half of the time.  If we don't replay it, then dmu_objset_destroy()
3586 	 * (invoked from ztest_objset_destroy_cb()) should just throw it away.
3587 	 */
3588 	if (ztest_random(2) == 0 &&
3589 	    dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) {
3590 		ztest_zd_init(&zdtmp, NULL, os);
3591 		zil_replay(os, &zdtmp, ztest_replay_vector);
3592 		ztest_zd_fini(&zdtmp);
3593 		dmu_objset_disown(os, FTAG);
3594 	}
3595 
3596 	/*
3597 	 * There may be an old instance of the dataset we're about to
3598 	 * create lying around from a previous run.  If so, destroy it
3599 	 * and all of its snapshots.
3600 	 */
3601 	(void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
3602 	    DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
3603 
3604 	/*
3605 	 * Verify that the destroyed dataset is no longer in the namespace.
3606 	 */
3607 	VERIFY3U(ENOENT, ==, dmu_objset_own(name, DMU_OST_OTHER, B_TRUE,
3608 	    FTAG, &os));
3609 
3610 	/*
3611 	 * Verify that we can create a new dataset.
3612 	 */
3613 	error = ztest_dataset_create(name);
3614 	if (error) {
3615 		if (error == ENOSPC) {
3616 			ztest_record_enospc(FTAG);
3617 			rw_exit(&ztest_name_lock);
3618 			return;
3619 		}
3620 		fatal(0, "dmu_objset_create(%s) = %d", name, error);
3621 	}
3622 
3623 	VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os));
3624 
3625 	ztest_zd_init(&zdtmp, NULL, os);
3626 
3627 	/*
3628 	 * Open the intent log for it.
3629 	 */
3630 	zilog = zil_open(os, ztest_get_data);
3631 
3632 	/*
3633 	 * Put some objects in there, do a little I/O to them,
3634 	 * and randomly take a couple of snapshots along the way.
3635 	 */
3636 	iters = ztest_random(5);
3637 	for (int i = 0; i < iters; i++) {
3638 		ztest_dmu_object_alloc_free(&zdtmp, id);
3639 		if (ztest_random(iters) == 0)
3640 			(void) ztest_snapshot_create(name, i);
3641 	}
3642 
3643 	/*
3644 	 * Verify that we cannot create an existing dataset.
3645 	 */
3646 	VERIFY3U(EEXIST, ==,
3647 	    dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL));
3648 
3649 	/*
3650 	 * Verify that we can hold an objset that is also owned.
3651 	 */
3652 	VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2));
3653 	dmu_objset_rele(os2, FTAG);
3654 
3655 	/*
3656 	 * Verify that we cannot own an objset that is already owned.
3657 	 */
3658 	VERIFY3U(EBUSY, ==,
3659 	    dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2));
3660 
3661 	zil_close(zilog);
3662 	dmu_objset_disown(os, FTAG);
3663 	ztest_zd_fini(&zdtmp);
3664 
3665 	rw_exit(&ztest_name_lock);
3666 }
3667 
3668 /*
3669  * Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
3670  */
3671 void
3672 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id)
3673 {
3674 	rw_enter(&ztest_name_lock, RW_READER);
3675 	(void) ztest_snapshot_destroy(zd->zd_name, id);
3676 	(void) ztest_snapshot_create(zd->zd_name, id);
3677 	rw_exit(&ztest_name_lock);
3678 }
3679 
3680 /*
3681  * Cleanup non-standard snapshots and clones.
3682  */
3683 void
3684 ztest_dsl_dataset_cleanup(char *osname, uint64_t id)
3685 {
3686 	char snap1name[ZFS_MAX_DATASET_NAME_LEN];
3687 	char clone1name[ZFS_MAX_DATASET_NAME_LEN];
3688 	char snap2name[ZFS_MAX_DATASET_NAME_LEN];
3689 	char clone2name[ZFS_MAX_DATASET_NAME_LEN];
3690 	char snap3name[ZFS_MAX_DATASET_NAME_LEN];
3691 	int error;
3692 
3693 	(void) snprintf(snap1name, sizeof (snap1name),
3694 	    "%s@s1_%llu", osname, id);
3695 	(void) snprintf(clone1name, sizeof (clone1name),
3696 	    "%s/c1_%llu", osname, id);
3697 	(void) snprintf(snap2name, sizeof (snap2name),
3698 	    "%s@s2_%llu", clone1name, id);
3699 	(void) snprintf(clone2name, sizeof (clone2name),
3700 	    "%s/c2_%llu", osname, id);
3701 	(void) snprintf(snap3name, sizeof (snap3name),
3702 	    "%s@s3_%llu", clone1name, id);
3703 
3704 	error = dsl_destroy_head(clone2name);
3705 	if (error && error != ENOENT)
3706 		fatal(0, "dsl_destroy_head(%s) = %d", clone2name, error);
3707 	error = dsl_destroy_snapshot(snap3name, B_FALSE);
3708 	if (error && error != ENOENT)
3709 		fatal(0, "dsl_destroy_snapshot(%s) = %d", snap3name, error);
3710 	error = dsl_destroy_snapshot(snap2name, B_FALSE);
3711 	if (error && error != ENOENT)
3712 		fatal(0, "dsl_destroy_snapshot(%s) = %d", snap2name, error);
3713 	error = dsl_destroy_head(clone1name);
3714 	if (error && error != ENOENT)
3715 		fatal(0, "dsl_destroy_head(%s) = %d", clone1name, error);
3716 	error = dsl_destroy_snapshot(snap1name, B_FALSE);
3717 	if (error && error != ENOENT)
3718 		fatal(0, "dsl_destroy_snapshot(%s) = %d", snap1name, error);
3719 }
3720 
3721 /*
3722  * Verify dsl_dataset_promote handles EBUSY
3723  */
3724 void
3725 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id)
3726 {
3727 	objset_t *os;
3728 	char snap1name[ZFS_MAX_DATASET_NAME_LEN];
3729 	char clone1name[ZFS_MAX_DATASET_NAME_LEN];
3730 	char snap2name[ZFS_MAX_DATASET_NAME_LEN];
3731 	char clone2name[ZFS_MAX_DATASET_NAME_LEN];
3732 	char snap3name[ZFS_MAX_DATASET_NAME_LEN];
3733 	char *osname = zd->zd_name;
3734 	int error;
3735 
3736 	rw_enter(&ztest_name_lock, RW_READER);
3737 
3738 	ztest_dsl_dataset_cleanup(osname, id);
3739 
3740 	(void) snprintf(snap1name, sizeof (snap1name),
3741 	    "%s@s1_%llu", osname, id);
3742 	(void) snprintf(clone1name, sizeof (clone1name),
3743 	    "%s/c1_%llu", osname, id);
3744 	(void) snprintf(snap2name, sizeof (snap2name),
3745 	    "%s@s2_%llu", clone1name, id);
3746 	(void) snprintf(clone2name, sizeof (clone2name),
3747 	    "%s/c2_%llu", osname, id);
3748 	(void) snprintf(snap3name, sizeof (snap3name),
3749 	    "%s@s3_%llu", clone1name, id);
3750 
3751 	error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1);
3752 	if (error && error != EEXIST) {
3753 		if (error == ENOSPC) {
3754 			ztest_record_enospc(FTAG);
3755 			goto out;
3756 		}
3757 		fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error);
3758 	}
3759 
3760 	error = dmu_objset_clone(clone1name, snap1name);
3761 	if (error) {
3762 		if (error == ENOSPC) {
3763 			ztest_record_enospc(FTAG);
3764 			goto out;
3765 		}
3766 		fatal(0, "dmu_objset_create(%s) = %d", clone1name, error);
3767 	}
3768 
3769 	error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1);
3770 	if (error && error != EEXIST) {
3771 		if (error == ENOSPC) {
3772 			ztest_record_enospc(FTAG);
3773 			goto out;
3774 		}
3775 		fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error);
3776 	}
3777 
3778 	error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1);
3779 	if (error && error != EEXIST) {
3780 		if (error == ENOSPC) {
3781 			ztest_record_enospc(FTAG);
3782 			goto out;
3783 		}
3784 		fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error);
3785 	}
3786 
3787 	error = dmu_objset_clone(clone2name, snap3name);
3788 	if (error) {
3789 		if (error == ENOSPC) {
3790 			ztest_record_enospc(FTAG);
3791 			goto out;
3792 		}
3793 		fatal(0, "dmu_objset_create(%s) = %d", clone2name, error);
3794 	}
3795 
3796 	error = dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, FTAG, &os);
3797 	if (error)
3798 		fatal(0, "dmu_objset_own(%s) = %d", snap2name, error);
3799 	error = dsl_dataset_promote(clone2name, NULL);
3800 	if (error == ENOSPC) {
3801 		dmu_objset_disown(os, FTAG);
3802 		ztest_record_enospc(FTAG);
3803 		goto out;
3804 	}
3805 	if (error != EBUSY)
3806 		fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name,
3807 		    error);
3808 	dmu_objset_disown(os, FTAG);
3809 
3810 out:
3811 	ztest_dsl_dataset_cleanup(osname, id);
3812 
3813 	rw_exit(&ztest_name_lock);
3814 }
3815 
3816 /*
3817  * Verify that dmu_object_{alloc,free} work as expected.
3818  */
3819 void
3820 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id)
3821 {
3822 	ztest_od_t od[4];
3823 	int batchsize = sizeof (od) / sizeof (od[0]);
3824 
3825 	for (int b = 0; b < batchsize; b++) {
3826 		ztest_od_init(&od[b], id, FTAG, b, DMU_OT_UINT64_OTHER,
3827 		    0, 0, 0);
3828 	}
3829 
3830 	/*
3831 	 * Destroy the previous batch of objects, create a new batch,
3832 	 * and do some I/O on the new objects.
3833 	 */
3834 	if (ztest_object_init(zd, od, sizeof (od), B_TRUE) != 0)
3835 		return;
3836 
3837 	while (ztest_random(4 * batchsize) != 0)
3838 		ztest_io(zd, od[ztest_random(batchsize)].od_object,
3839 		    ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
3840 }
3841 
3842 /*
3843  * Rewind the global allocator to verify object allocation backfilling.
3844  */
3845 void
3846 ztest_dmu_object_next_chunk(ztest_ds_t *zd, uint64_t id)
3847 {
3848 	objset_t *os = zd->zd_os;
3849 	int dnodes_per_chunk = 1 << dmu_object_alloc_chunk_shift;
3850 	uint64_t object;
3851 
3852 	/*
3853 	 * Rewind the global allocator randomly back to a lower object number
3854 	 * to force backfilling and reclamation of recently freed dnodes.
3855 	 */
3856 	mutex_enter(&os->os_obj_lock);
3857 	object = ztest_random(os->os_obj_next_chunk);
3858 	os->os_obj_next_chunk = P2ALIGN(object, dnodes_per_chunk);
3859 	mutex_exit(&os->os_obj_lock);
3860 }
3861 
3862 /*
3863  * Verify that dmu_{read,write} work as expected.
3864  */
3865 void
3866 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id)
3867 {
3868 	objset_t *os = zd->zd_os;
3869 	ztest_od_t od[2];
3870 	dmu_tx_t *tx;
3871 	int i, freeit, error;
3872 	uint64_t n, s, txg;
3873 	bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT;
3874 	uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
3875 	uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t);
3876 	uint64_t regions = 997;
3877 	uint64_t stride = 123456789ULL;
3878 	uint64_t width = 40;
3879 	int free_percent = 5;
3880 
3881 	/*
3882 	 * This test uses two objects, packobj and bigobj, that are always
3883 	 * updated together (i.e. in the same tx) so that their contents are
3884 	 * in sync and can be compared.  Their contents relate to each other
3885 	 * in a simple way: packobj is a dense array of 'bufwad' structures,
3886 	 * while bigobj is a sparse array of the same bufwads.  Specifically,
3887 	 * for any index n, there are three bufwads that should be identical:
3888 	 *
3889 	 *	packobj, at offset n * sizeof (bufwad_t)
3890 	 *	bigobj, at the head of the nth chunk
3891 	 *	bigobj, at the tail of the nth chunk
3892 	 *
3893 	 * The chunk size is arbitrary. It doesn't have to be a power of two,
3894 	 * and it doesn't have any relation to the object blocksize.
3895 	 * The only requirement is that it can hold at least two bufwads.
3896 	 *
3897 	 * Normally, we write the bufwad to each of these locations.
3898 	 * However, free_percent of the time we instead write zeroes to
3899 	 * packobj and perform a dmu_free_range() on bigobj.  By comparing
3900 	 * bigobj to packobj, we can verify that the DMU is correctly
3901 	 * tracking which parts of an object are allocated and free,
3902 	 * and that the contents of the allocated blocks are correct.
3903 	 */
3904 
3905 	/*
3906 	 * Read the directory info.  If it's the first time, set things up.
3907 	 */
3908 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0,
3909 	    chunksize);
3910 	ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0,
3911 	    chunksize);
3912 
3913 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
3914 		return;
3915 
3916 	bigobj = od[0].od_object;
3917 	packobj = od[1].od_object;
3918 	chunksize = od[0].od_gen;
3919 	ASSERT(chunksize == od[1].od_gen);
3920 
3921 	/*
3922 	 * Prefetch a random chunk of the big object.
3923 	 * Our aim here is to get some async reads in flight
3924 	 * for blocks that we may free below; the DMU should
3925 	 * handle this race correctly.
3926 	 */
3927 	n = ztest_random(regions) * stride + ztest_random(width);
3928 	s = 1 + ztest_random(2 * width - 1);
3929 	dmu_prefetch(os, bigobj, 0, n * chunksize, s * chunksize,
3930 	    ZIO_PRIORITY_SYNC_READ);
3931 
3932 	/*
3933 	 * Pick a random index and compute the offsets into packobj and bigobj.
3934 	 */
3935 	n = ztest_random(regions) * stride + ztest_random(width);
3936 	s = 1 + ztest_random(width - 1);
3937 
3938 	packoff = n * sizeof (bufwad_t);
3939 	packsize = s * sizeof (bufwad_t);
3940 
3941 	bigoff = n * chunksize;
3942 	bigsize = s * chunksize;
3943 
3944 	packbuf = umem_alloc(packsize, UMEM_NOFAIL);
3945 	bigbuf = umem_alloc(bigsize, UMEM_NOFAIL);
3946 
3947 	/*
3948 	 * free_percent of the time, free a range of bigobj rather than
3949 	 * overwriting it.
3950 	 */
3951 	freeit = (ztest_random(100) < free_percent);
3952 
3953 	/*
3954 	 * Read the current contents of our objects.
3955 	 */
3956 	error = dmu_read(os, packobj, packoff, packsize, packbuf,
3957 	    DMU_READ_PREFETCH);
3958 	ASSERT0(error);
3959 	error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf,
3960 	    DMU_READ_PREFETCH);
3961 	ASSERT0(error);
3962 
3963 	/*
3964 	 * Get a tx for the mods to both packobj and bigobj.
3965 	 */
3966 	tx = dmu_tx_create(os);
3967 
3968 	dmu_tx_hold_write(tx, packobj, packoff, packsize);
3969 
3970 	if (freeit)
3971 		dmu_tx_hold_free(tx, bigobj, bigoff, bigsize);
3972 	else
3973 		dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
3974 
3975 	/* This accounts for setting the checksum/compression. */
3976 	dmu_tx_hold_bonus(tx, bigobj);
3977 
3978 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
3979 	if (txg == 0) {
3980 		umem_free(packbuf, packsize);
3981 		umem_free(bigbuf, bigsize);
3982 		return;
3983 	}
3984 
3985 	enum zio_checksum cksum;
3986 	do {
3987 		cksum = (enum zio_checksum)
3988 		    ztest_random_dsl_prop(ZFS_PROP_CHECKSUM);
3989 	} while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS);
3990 	dmu_object_set_checksum(os, bigobj, cksum, tx);
3991 
3992 	enum zio_compress comp;
3993 	do {
3994 		comp = (enum zio_compress)
3995 		    ztest_random_dsl_prop(ZFS_PROP_COMPRESSION);
3996 	} while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS);
3997 	dmu_object_set_compress(os, bigobj, comp, tx);
3998 
3999 	/*
4000 	 * For each index from n to n + s, verify that the existing bufwad
4001 	 * in packobj matches the bufwads at the head and tail of the
4002 	 * corresponding chunk in bigobj.  Then update all three bufwads
4003 	 * with the new values we want to write out.
4004 	 */
4005 	for (i = 0; i < s; i++) {
4006 		/* LINTED */
4007 		pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
4008 		/* LINTED */
4009 		bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
4010 		/* LINTED */
4011 		bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
4012 
4013 		ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
4014 		ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
4015 
4016 		if (pack->bw_txg > txg)
4017 			fatal(0, "future leak: got %llx, open txg is %llx",
4018 			    pack->bw_txg, txg);
4019 
4020 		if (pack->bw_data != 0 && pack->bw_index != n + i)
4021 			fatal(0, "wrong index: got %llx, wanted %llx+%llx",
4022 			    pack->bw_index, n, i);
4023 
4024 		if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
4025 			fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
4026 
4027 		if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
4028 			fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
4029 
4030 		if (freeit) {
4031 			bzero(pack, sizeof (bufwad_t));
4032 		} else {
4033 			pack->bw_index = n + i;
4034 			pack->bw_txg = txg;
4035 			pack->bw_data = 1 + ztest_random(-2ULL);
4036 		}
4037 		*bigH = *pack;
4038 		*bigT = *pack;
4039 	}
4040 
4041 	/*
4042 	 * We've verified all the old bufwads, and made new ones.
4043 	 * Now write them out.
4044 	 */
4045 	dmu_write(os, packobj, packoff, packsize, packbuf, tx);
4046 
4047 	if (freeit) {
4048 		if (ztest_opts.zo_verbose >= 7) {
4049 			(void) printf("freeing offset %llx size %llx"
4050 			    " txg %llx\n",
4051 			    (u_longlong_t)bigoff,
4052 			    (u_longlong_t)bigsize,
4053 			    (u_longlong_t)txg);
4054 		}
4055 		VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx));
4056 	} else {
4057 		if (ztest_opts.zo_verbose >= 7) {
4058 			(void) printf("writing offset %llx size %llx"
4059 			    " txg %llx\n",
4060 			    (u_longlong_t)bigoff,
4061 			    (u_longlong_t)bigsize,
4062 			    (u_longlong_t)txg);
4063 		}
4064 		dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx);
4065 	}
4066 
4067 	dmu_tx_commit(tx);
4068 
4069 	/*
4070 	 * Sanity check the stuff we just wrote.
4071 	 */
4072 	{
4073 		void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
4074 		void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
4075 
4076 		VERIFY(0 == dmu_read(os, packobj, packoff,
4077 		    packsize, packcheck, DMU_READ_PREFETCH));
4078 		VERIFY(0 == dmu_read(os, bigobj, bigoff,
4079 		    bigsize, bigcheck, DMU_READ_PREFETCH));
4080 
4081 		ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
4082 		ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
4083 
4084 		umem_free(packcheck, packsize);
4085 		umem_free(bigcheck, bigsize);
4086 	}
4087 
4088 	umem_free(packbuf, packsize);
4089 	umem_free(bigbuf, bigsize);
4090 }
4091 
4092 void
4093 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf,
4094     uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg)
4095 {
4096 	uint64_t i;
4097 	bufwad_t *pack;
4098 	bufwad_t *bigH;
4099 	bufwad_t *bigT;
4100 
4101 	/*
4102 	 * For each index from n to n + s, verify that the existing bufwad
4103 	 * in packobj matches the bufwads at the head and tail of the
4104 	 * corresponding chunk in bigobj.  Then update all three bufwads
4105 	 * with the new values we want to write out.
4106 	 */
4107 	for (i = 0; i < s; i++) {
4108 		/* LINTED */
4109 		pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
4110 		/* LINTED */
4111 		bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
4112 		/* LINTED */
4113 		bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
4114 
4115 		ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
4116 		ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
4117 
4118 		if (pack->bw_txg > txg)
4119 			fatal(0, "future leak: got %llx, open txg is %llx",
4120 			    pack->bw_txg, txg);
4121 
4122 		if (pack->bw_data != 0 && pack->bw_index != n + i)
4123 			fatal(0, "wrong index: got %llx, wanted %llx+%llx",
4124 			    pack->bw_index, n, i);
4125 
4126 		if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
4127 			fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
4128 
4129 		if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
4130 			fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
4131 
4132 		pack->bw_index = n + i;
4133 		pack->bw_txg = txg;
4134 		pack->bw_data = 1 + ztest_random(-2ULL);
4135 
4136 		*bigH = *pack;
4137 		*bigT = *pack;
4138 	}
4139 }
4140 
4141 void
4142 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id)
4143 {
4144 	objset_t *os = zd->zd_os;
4145 	ztest_od_t od[2];
4146 	dmu_tx_t *tx;
4147 	uint64_t i;
4148 	int error;
4149 	uint64_t n, s, txg;
4150 	bufwad_t *packbuf, *bigbuf;
4151 	uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
4152 	uint64_t blocksize = ztest_random_blocksize();
4153 	uint64_t chunksize = blocksize;
4154 	uint64_t regions = 997;
4155 	uint64_t stride = 123456789ULL;
4156 	uint64_t width = 9;
4157 	dmu_buf_t *bonus_db;
4158 	arc_buf_t **bigbuf_arcbufs;
4159 	dmu_object_info_t doi;
4160 
4161 	/*
4162 	 * This test uses two objects, packobj and bigobj, that are always
4163 	 * updated together (i.e. in the same tx) so that their contents are
4164 	 * in sync and can be compared.  Their contents relate to each other
4165 	 * in a simple way: packobj is a dense array of 'bufwad' structures,
4166 	 * while bigobj is a sparse array of the same bufwads.  Specifically,
4167 	 * for any index n, there are three bufwads that should be identical:
4168 	 *
4169 	 *	packobj, at offset n * sizeof (bufwad_t)
4170 	 *	bigobj, at the head of the nth chunk
4171 	 *	bigobj, at the tail of the nth chunk
4172 	 *
4173 	 * The chunk size is set equal to bigobj block size so that
4174 	 * dmu_assign_arcbuf() can be tested for object updates.
4175 	 */
4176 
4177 	/*
4178 	 * Read the directory info.  If it's the first time, set things up.
4179 	 */
4180 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize,
4181 	    0, 0);
4182 	ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0,
4183 	    chunksize);
4184 
4185 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4186 		return;
4187 
4188 	bigobj = od[0].od_object;
4189 	packobj = od[1].od_object;
4190 	blocksize = od[0].od_blocksize;
4191 	chunksize = blocksize;
4192 	ASSERT(chunksize == od[1].od_gen);
4193 
4194 	VERIFY(dmu_object_info(os, bigobj, &doi) == 0);
4195 	VERIFY(ISP2(doi.doi_data_block_size));
4196 	VERIFY(chunksize == doi.doi_data_block_size);
4197 	VERIFY(chunksize >= 2 * sizeof (bufwad_t));
4198 
4199 	/*
4200 	 * Pick a random index and compute the offsets into packobj and bigobj.
4201 	 */
4202 	n = ztest_random(regions) * stride + ztest_random(width);
4203 	s = 1 + ztest_random(width - 1);
4204 
4205 	packoff = n * sizeof (bufwad_t);
4206 	packsize = s * sizeof (bufwad_t);
4207 
4208 	bigoff = n * chunksize;
4209 	bigsize = s * chunksize;
4210 
4211 	packbuf = umem_zalloc(packsize, UMEM_NOFAIL);
4212 	bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL);
4213 
4214 	VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db));
4215 
4216 	bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL);
4217 
4218 	/*
4219 	 * Iteration 0 test zcopy for DB_UNCACHED dbufs.
4220 	 * Iteration 1 test zcopy to already referenced dbufs.
4221 	 * Iteration 2 test zcopy to dirty dbuf in the same txg.
4222 	 * Iteration 3 test zcopy to dbuf dirty in previous txg.
4223 	 * Iteration 4 test zcopy when dbuf is no longer dirty.
4224 	 * Iteration 5 test zcopy when it can't be done.
4225 	 * Iteration 6 one more zcopy write.
4226 	 */
4227 	for (i = 0; i < 7; i++) {
4228 		uint64_t j;
4229 		uint64_t off;
4230 
4231 		/*
4232 		 * In iteration 5 (i == 5) use arcbufs
4233 		 * that don't match bigobj blksz to test
4234 		 * dmu_assign_arcbuf() when it can't directly
4235 		 * assign an arcbuf to a dbuf.
4236 		 */
4237 		for (j = 0; j < s; j++) {
4238 			if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
4239 				bigbuf_arcbufs[j] =
4240 				    dmu_request_arcbuf(bonus_db, chunksize);
4241 			} else {
4242 				bigbuf_arcbufs[2 * j] =
4243 				    dmu_request_arcbuf(bonus_db, chunksize / 2);
4244 				bigbuf_arcbufs[2 * j + 1] =
4245 				    dmu_request_arcbuf(bonus_db, chunksize / 2);
4246 			}
4247 		}
4248 
4249 		/*
4250 		 * Get a tx for the mods to both packobj and bigobj.
4251 		 */
4252 		tx = dmu_tx_create(os);
4253 
4254 		dmu_tx_hold_write(tx, packobj, packoff, packsize);
4255 		dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
4256 
4257 		txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4258 		if (txg == 0) {
4259 			umem_free(packbuf, packsize);
4260 			umem_free(bigbuf, bigsize);
4261 			for (j = 0; j < s; j++) {
4262 				if (i != 5 ||
4263 				    chunksize < (SPA_MINBLOCKSIZE * 2)) {
4264 					dmu_return_arcbuf(bigbuf_arcbufs[j]);
4265 				} else {
4266 					dmu_return_arcbuf(
4267 					    bigbuf_arcbufs[2 * j]);
4268 					dmu_return_arcbuf(
4269 					    bigbuf_arcbufs[2 * j + 1]);
4270 				}
4271 			}
4272 			umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
4273 			dmu_buf_rele(bonus_db, FTAG);
4274 			return;
4275 		}
4276 
4277 		/*
4278 		 * 50% of the time don't read objects in the 1st iteration to
4279 		 * test dmu_assign_arcbuf() for the case when there're no
4280 		 * existing dbufs for the specified offsets.
4281 		 */
4282 		if (i != 0 || ztest_random(2) != 0) {
4283 			error = dmu_read(os, packobj, packoff,
4284 			    packsize, packbuf, DMU_READ_PREFETCH);
4285 			ASSERT0(error);
4286 			error = dmu_read(os, bigobj, bigoff, bigsize,
4287 			    bigbuf, DMU_READ_PREFETCH);
4288 			ASSERT0(error);
4289 		}
4290 		compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize,
4291 		    n, chunksize, txg);
4292 
4293 		/*
4294 		 * We've verified all the old bufwads, and made new ones.
4295 		 * Now write them out.
4296 		 */
4297 		dmu_write(os, packobj, packoff, packsize, packbuf, tx);
4298 		if (ztest_opts.zo_verbose >= 7) {
4299 			(void) printf("writing offset %llx size %llx"
4300 			    " txg %llx\n",
4301 			    (u_longlong_t)bigoff,
4302 			    (u_longlong_t)bigsize,
4303 			    (u_longlong_t)txg);
4304 		}
4305 		for (off = bigoff, j = 0; j < s; j++, off += chunksize) {
4306 			dmu_buf_t *dbt;
4307 			if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
4308 				bcopy((caddr_t)bigbuf + (off - bigoff),
4309 				    bigbuf_arcbufs[j]->b_data, chunksize);
4310 			} else {
4311 				bcopy((caddr_t)bigbuf + (off - bigoff),
4312 				    bigbuf_arcbufs[2 * j]->b_data,
4313 				    chunksize / 2);
4314 				bcopy((caddr_t)bigbuf + (off - bigoff) +
4315 				    chunksize / 2,
4316 				    bigbuf_arcbufs[2 * j + 1]->b_data,
4317 				    chunksize / 2);
4318 			}
4319 
4320 			if (i == 1) {
4321 				VERIFY(dmu_buf_hold(os, bigobj, off,
4322 				    FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0);
4323 			}
4324 			if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
4325 				dmu_assign_arcbuf(bonus_db, off,
4326 				    bigbuf_arcbufs[j], tx);
4327 			} else {
4328 				dmu_assign_arcbuf(bonus_db, off,
4329 				    bigbuf_arcbufs[2 * j], tx);
4330 				dmu_assign_arcbuf(bonus_db,
4331 				    off + chunksize / 2,
4332 				    bigbuf_arcbufs[2 * j + 1], tx);
4333 			}
4334 			if (i == 1) {
4335 				dmu_buf_rele(dbt, FTAG);
4336 			}
4337 		}
4338 		dmu_tx_commit(tx);
4339 
4340 		/*
4341 		 * Sanity check the stuff we just wrote.
4342 		 */
4343 		{
4344 			void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
4345 			void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
4346 
4347 			VERIFY(0 == dmu_read(os, packobj, packoff,
4348 			    packsize, packcheck, DMU_READ_PREFETCH));
4349 			VERIFY(0 == dmu_read(os, bigobj, bigoff,
4350 			    bigsize, bigcheck, DMU_READ_PREFETCH));
4351 
4352 			ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
4353 			ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
4354 
4355 			umem_free(packcheck, packsize);
4356 			umem_free(bigcheck, bigsize);
4357 		}
4358 		if (i == 2) {
4359 			txg_wait_open(dmu_objset_pool(os), 0);
4360 		} else if (i == 3) {
4361 			txg_wait_synced(dmu_objset_pool(os), 0);
4362 		}
4363 	}
4364 
4365 	dmu_buf_rele(bonus_db, FTAG);
4366 	umem_free(packbuf, packsize);
4367 	umem_free(bigbuf, bigsize);
4368 	umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
4369 }
4370 
4371 /* ARGSUSED */
4372 void
4373 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id)
4374 {
4375 	ztest_od_t od[1];
4376 	uint64_t offset = (1ULL << (ztest_random(20) + 43)) +
4377 	    (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
4378 
4379 	/*
4380 	 * Have multiple threads write to large offsets in an object
4381 	 * to verify that parallel writes to an object -- even to the
4382 	 * same blocks within the object -- doesn't cause any trouble.
4383 	 */
4384 	ztest_od_init(&od[0], ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER,
4385 	    0, 0, 0);
4386 
4387 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4388 		return;
4389 
4390 	while (ztest_random(10) != 0)
4391 		ztest_io(zd, od[0].od_object, offset);
4392 }
4393 
4394 void
4395 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id)
4396 {
4397 	ztest_od_t od[1];
4398 	uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) +
4399 	    (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
4400 	uint64_t count = ztest_random(20) + 1;
4401 	uint64_t blocksize = ztest_random_blocksize();
4402 	void *data;
4403 
4404 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize,
4405 	    0, 0);
4406 
4407 	if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0)
4408 		return;
4409 
4410 	if (ztest_truncate(zd, od[0].od_object, offset, count * blocksize) != 0)
4411 		return;
4412 
4413 	ztest_prealloc(zd, od[0].od_object, offset, count * blocksize);
4414 
4415 	data = umem_zalloc(blocksize, UMEM_NOFAIL);
4416 
4417 	while (ztest_random(count) != 0) {
4418 		uint64_t randoff = offset + (ztest_random(count) * blocksize);
4419 		if (ztest_write(zd, od[0].od_object, randoff, blocksize,
4420 		    data) != 0)
4421 			break;
4422 		while (ztest_random(4) != 0)
4423 			ztest_io(zd, od[0].od_object, randoff);
4424 	}
4425 
4426 	umem_free(data, blocksize);
4427 }
4428 
4429 /*
4430  * Verify that zap_{create,destroy,add,remove,update} work as expected.
4431  */
4432 #define	ZTEST_ZAP_MIN_INTS	1
4433 #define	ZTEST_ZAP_MAX_INTS	4
4434 #define	ZTEST_ZAP_MAX_PROPS	1000
4435 
4436 void
4437 ztest_zap(ztest_ds_t *zd, uint64_t id)
4438 {
4439 	objset_t *os = zd->zd_os;
4440 	ztest_od_t od[1];
4441 	uint64_t object;
4442 	uint64_t txg, last_txg;
4443 	uint64_t value[ZTEST_ZAP_MAX_INTS];
4444 	uint64_t zl_ints, zl_intsize, prop;
4445 	int i, ints;
4446 	dmu_tx_t *tx;
4447 	char propname[100], txgname[100];
4448 	int error;
4449 	char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
4450 
4451 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0);
4452 
4453 	if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0)
4454 		return;
4455 
4456 	object = od[0].od_object;
4457 
4458 	/*
4459 	 * Generate a known hash collision, and verify that
4460 	 * we can lookup and remove both entries.
4461 	 */
4462 	tx = dmu_tx_create(os);
4463 	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4464 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4465 	if (txg == 0)
4466 		return;
4467 	for (i = 0; i < 2; i++) {
4468 		value[i] = i;
4469 		VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t),
4470 		    1, &value[i], tx));
4471 	}
4472 	for (i = 0; i < 2; i++) {
4473 		VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i],
4474 		    sizeof (uint64_t), 1, &value[i], tx));
4475 		VERIFY3U(0, ==,
4476 		    zap_length(os, object, hc[i], &zl_intsize, &zl_ints));
4477 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4478 		ASSERT3U(zl_ints, ==, 1);
4479 	}
4480 	for (i = 0; i < 2; i++) {
4481 		VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx));
4482 	}
4483 	dmu_tx_commit(tx);
4484 
4485 	/*
4486 	 * Generate a buch of random entries.
4487 	 */
4488 	ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS);
4489 
4490 	prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
4491 	(void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
4492 	(void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
4493 	bzero(value, sizeof (value));
4494 	last_txg = 0;
4495 
4496 	/*
4497 	 * If these zap entries already exist, validate their contents.
4498 	 */
4499 	error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
4500 	if (error == 0) {
4501 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4502 		ASSERT3U(zl_ints, ==, 1);
4503 
4504 		VERIFY(zap_lookup(os, object, txgname, zl_intsize,
4505 		    zl_ints, &last_txg) == 0);
4506 
4507 		VERIFY(zap_length(os, object, propname, &zl_intsize,
4508 		    &zl_ints) == 0);
4509 
4510 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4511 		ASSERT3U(zl_ints, ==, ints);
4512 
4513 		VERIFY(zap_lookup(os, object, propname, zl_intsize,
4514 		    zl_ints, value) == 0);
4515 
4516 		for (i = 0; i < ints; i++) {
4517 			ASSERT3U(value[i], ==, last_txg + object + i);
4518 		}
4519 	} else {
4520 		ASSERT3U(error, ==, ENOENT);
4521 	}
4522 
4523 	/*
4524 	 * Atomically update two entries in our zap object.
4525 	 * The first is named txg_%llu, and contains the txg
4526 	 * in which the property was last updated.  The second
4527 	 * is named prop_%llu, and the nth element of its value
4528 	 * should be txg + object + n.
4529 	 */
4530 	tx = dmu_tx_create(os);
4531 	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4532 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4533 	if (txg == 0)
4534 		return;
4535 
4536 	if (last_txg > txg)
4537 		fatal(0, "zap future leak: old %llu new %llu", last_txg, txg);
4538 
4539 	for (i = 0; i < ints; i++)
4540 		value[i] = txg + object + i;
4541 
4542 	VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t),
4543 	    1, &txg, tx));
4544 	VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t),
4545 	    ints, value, tx));
4546 
4547 	dmu_tx_commit(tx);
4548 
4549 	/*
4550 	 * Remove a random pair of entries.
4551 	 */
4552 	prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
4553 	(void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
4554 	(void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
4555 
4556 	error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
4557 
4558 	if (error == ENOENT)
4559 		return;
4560 
4561 	ASSERT0(error);
4562 
4563 	tx = dmu_tx_create(os);
4564 	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4565 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4566 	if (txg == 0)
4567 		return;
4568 	VERIFY3U(0, ==, zap_remove(os, object, txgname, tx));
4569 	VERIFY3U(0, ==, zap_remove(os, object, propname, tx));
4570 	dmu_tx_commit(tx);
4571 }
4572 
4573 /*
4574  * Testcase to test the upgrading of a microzap to fatzap.
4575  */
4576 void
4577 ztest_fzap(ztest_ds_t *zd, uint64_t id)
4578 {
4579 	objset_t *os = zd->zd_os;
4580 	ztest_od_t od[1];
4581 	uint64_t object, txg;
4582 
4583 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0);
4584 
4585 	if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0)
4586 		return;
4587 
4588 	object = od[0].od_object;
4589 
4590 	/*
4591 	 * Add entries to this ZAP and make sure it spills over
4592 	 * and gets upgraded to a fatzap. Also, since we are adding
4593 	 * 2050 entries we should see ptrtbl growth and leaf-block split.
4594 	 */
4595 	for (int i = 0; i < 2050; i++) {
4596 		char name[ZFS_MAX_DATASET_NAME_LEN];
4597 		uint64_t value = i;
4598 		dmu_tx_t *tx;
4599 		int error;
4600 
4601 		(void) snprintf(name, sizeof (name), "fzap-%llu-%llu",
4602 		    id, value);
4603 
4604 		tx = dmu_tx_create(os);
4605 		dmu_tx_hold_zap(tx, object, B_TRUE, name);
4606 		txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4607 		if (txg == 0)
4608 			return;
4609 		error = zap_add(os, object, name, sizeof (uint64_t), 1,
4610 		    &value, tx);
4611 		ASSERT(error == 0 || error == EEXIST);
4612 		dmu_tx_commit(tx);
4613 	}
4614 }
4615 
4616 /* ARGSUSED */
4617 void
4618 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id)
4619 {
4620 	objset_t *os = zd->zd_os;
4621 	ztest_od_t od[1];
4622 	uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc;
4623 	dmu_tx_t *tx;
4624 	int i, namelen, error;
4625 	int micro = ztest_random(2);
4626 	char name[20], string_value[20];
4627 	void *data;
4628 
4629 	ztest_od_init(&od[0], ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER,
4630 	    0, 0, 0);
4631 
4632 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4633 		return;
4634 
4635 	object = od[0].od_object;
4636 
4637 	/*
4638 	 * Generate a random name of the form 'xxx.....' where each
4639 	 * x is a random printable character and the dots are dots.
4640 	 * There are 94 such characters, and the name length goes from
4641 	 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
4642 	 */
4643 	namelen = ztest_random(sizeof (name) - 5) + 5 + 1;
4644 
4645 	for (i = 0; i < 3; i++)
4646 		name[i] = '!' + ztest_random('~' - '!' + 1);
4647 	for (; i < namelen - 1; i++)
4648 		name[i] = '.';
4649 	name[i] = '\0';
4650 
4651 	if ((namelen & 1) || micro) {
4652 		wsize = sizeof (txg);
4653 		wc = 1;
4654 		data = &txg;
4655 	} else {
4656 		wsize = 1;
4657 		wc = namelen;
4658 		data = string_value;
4659 	}
4660 
4661 	count = -1ULL;
4662 	VERIFY0(zap_count(os, object, &count));
4663 	ASSERT(count != -1ULL);
4664 
4665 	/*
4666 	 * Select an operation: length, lookup, add, update, remove.
4667 	 */
4668 	i = ztest_random(5);
4669 
4670 	if (i >= 2) {
4671 		tx = dmu_tx_create(os);
4672 		dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4673 		txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4674 		if (txg == 0)
4675 			return;
4676 		bcopy(name, string_value, namelen);
4677 	} else {
4678 		tx = NULL;
4679 		txg = 0;
4680 		bzero(string_value, namelen);
4681 	}
4682 
4683 	switch (i) {
4684 
4685 	case 0:
4686 		error = zap_length(os, object, name, &zl_wsize, &zl_wc);
4687 		if (error == 0) {
4688 			ASSERT3U(wsize, ==, zl_wsize);
4689 			ASSERT3U(wc, ==, zl_wc);
4690 		} else {
4691 			ASSERT3U(error, ==, ENOENT);
4692 		}
4693 		break;
4694 
4695 	case 1:
4696 		error = zap_lookup(os, object, name, wsize, wc, data);
4697 		if (error == 0) {
4698 			if (data == string_value &&
4699 			    bcmp(name, data, namelen) != 0)
4700 				fatal(0, "name '%s' != val '%s' len %d",
4701 				    name, data, namelen);
4702 		} else {
4703 			ASSERT3U(error, ==, ENOENT);
4704 		}
4705 		break;
4706 
4707 	case 2:
4708 		error = zap_add(os, object, name, wsize, wc, data, tx);
4709 		ASSERT(error == 0 || error == EEXIST);
4710 		break;
4711 
4712 	case 3:
4713 		VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0);
4714 		break;
4715 
4716 	case 4:
4717 		error = zap_remove(os, object, name, tx);
4718 		ASSERT(error == 0 || error == ENOENT);
4719 		break;
4720 	}
4721 
4722 	if (tx != NULL)
4723 		dmu_tx_commit(tx);
4724 }
4725 
4726 /*
4727  * Commit callback data.
4728  */
4729 typedef struct ztest_cb_data {
4730 	list_node_t		zcd_node;
4731 	uint64_t		zcd_txg;
4732 	int			zcd_expected_err;
4733 	boolean_t		zcd_added;
4734 	boolean_t		zcd_called;
4735 	spa_t			*zcd_spa;
4736 } ztest_cb_data_t;
4737 
4738 /* This is the actual commit callback function */
4739 static void
4740 ztest_commit_callback(void *arg, int error)
4741 {
4742 	ztest_cb_data_t *data = arg;
4743 	uint64_t synced_txg;
4744 
4745 	VERIFY(data != NULL);
4746 	VERIFY3S(data->zcd_expected_err, ==, error);
4747 	VERIFY(!data->zcd_called);
4748 
4749 	synced_txg = spa_last_synced_txg(data->zcd_spa);
4750 	if (data->zcd_txg > synced_txg)
4751 		fatal(0, "commit callback of txg %" PRIu64 " called prematurely"
4752 		    ", last synced txg = %" PRIu64 "\n", data->zcd_txg,
4753 		    synced_txg);
4754 
4755 	data->zcd_called = B_TRUE;
4756 
4757 	if (error == ECANCELED) {
4758 		ASSERT0(data->zcd_txg);
4759 		ASSERT(!data->zcd_added);
4760 
4761 		/*
4762 		 * The private callback data should be destroyed here, but
4763 		 * since we are going to check the zcd_called field after
4764 		 * dmu_tx_abort(), we will destroy it there.
4765 		 */
4766 		return;
4767 	}
4768 
4769 	/* Was this callback added to the global callback list? */
4770 	if (!data->zcd_added)
4771 		goto out;
4772 
4773 	ASSERT3U(data->zcd_txg, !=, 0);
4774 
4775 	/* Remove our callback from the list */
4776 	mutex_enter(&zcl.zcl_callbacks_lock);
4777 	list_remove(&zcl.zcl_callbacks, data);
4778 	mutex_exit(&zcl.zcl_callbacks_lock);
4779 
4780 out:
4781 	umem_free(data, sizeof (ztest_cb_data_t));
4782 }
4783 
4784 /* Allocate and initialize callback data structure */
4785 static ztest_cb_data_t *
4786 ztest_create_cb_data(objset_t *os, uint64_t txg)
4787 {
4788 	ztest_cb_data_t *cb_data;
4789 
4790 	cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL);
4791 
4792 	cb_data->zcd_txg = txg;
4793 	cb_data->zcd_spa = dmu_objset_spa(os);
4794 
4795 	return (cb_data);
4796 }
4797 
4798 /*
4799  * If a number of txgs equal to this threshold have been created after a commit
4800  * callback has been registered but not called, then we assume there is an
4801  * implementation bug.
4802  */
4803 #define	ZTEST_COMMIT_CALLBACK_THRESH	(TXG_CONCURRENT_STATES + 2)
4804 
4805 /*
4806  * Commit callback test.
4807  */
4808 void
4809 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id)
4810 {
4811 	objset_t *os = zd->zd_os;
4812 	ztest_od_t od[1];
4813 	dmu_tx_t *tx;
4814 	ztest_cb_data_t *cb_data[3], *tmp_cb;
4815 	uint64_t old_txg, txg;
4816 	int i, error;
4817 
4818 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
4819 
4820 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4821 		return;
4822 
4823 	tx = dmu_tx_create(os);
4824 
4825 	cb_data[0] = ztest_create_cb_data(os, 0);
4826 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]);
4827 
4828 	dmu_tx_hold_write(tx, od[0].od_object, 0, sizeof (uint64_t));
4829 
4830 	/* Every once in a while, abort the transaction on purpose */
4831 	if (ztest_random(100) == 0)
4832 		error = -1;
4833 
4834 	if (!error)
4835 		error = dmu_tx_assign(tx, TXG_NOWAIT);
4836 
4837 	txg = error ? 0 : dmu_tx_get_txg(tx);
4838 
4839 	cb_data[0]->zcd_txg = txg;
4840 	cb_data[1] = ztest_create_cb_data(os, txg);
4841 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]);
4842 
4843 	if (error) {
4844 		/*
4845 		 * It's not a strict requirement to call the registered
4846 		 * callbacks from inside dmu_tx_abort(), but that's what
4847 		 * it's supposed to happen in the current implementation
4848 		 * so we will check for that.
4849 		 */
4850 		for (i = 0; i < 2; i++) {
4851 			cb_data[i]->zcd_expected_err = ECANCELED;
4852 			VERIFY(!cb_data[i]->zcd_called);
4853 		}
4854 
4855 		dmu_tx_abort(tx);
4856 
4857 		for (i = 0; i < 2; i++) {
4858 			VERIFY(cb_data[i]->zcd_called);
4859 			umem_free(cb_data[i], sizeof (ztest_cb_data_t));
4860 		}
4861 
4862 		return;
4863 	}
4864 
4865 	cb_data[2] = ztest_create_cb_data(os, txg);
4866 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]);
4867 
4868 	/*
4869 	 * Read existing data to make sure there isn't a future leak.
4870 	 */
4871 	VERIFY(0 == dmu_read(os, od[0].od_object, 0, sizeof (uint64_t),
4872 	    &old_txg, DMU_READ_PREFETCH));
4873 
4874 	if (old_txg > txg)
4875 		fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64,
4876 		    old_txg, txg);
4877 
4878 	dmu_write(os, od[0].od_object, 0, sizeof (uint64_t), &txg, tx);
4879 
4880 	mutex_enter(&zcl.zcl_callbacks_lock);
4881 
4882 	/*
4883 	 * Since commit callbacks don't have any ordering requirement and since
4884 	 * it is theoretically possible for a commit callback to be called
4885 	 * after an arbitrary amount of time has elapsed since its txg has been
4886 	 * synced, it is difficult to reliably determine whether a commit
4887 	 * callback hasn't been called due to high load or due to a flawed
4888 	 * implementation.
4889 	 *
4890 	 * In practice, we will assume that if after a certain number of txgs a
4891 	 * commit callback hasn't been called, then most likely there's an
4892 	 * implementation bug..
4893 	 */
4894 	tmp_cb = list_head(&zcl.zcl_callbacks);
4895 	if (tmp_cb != NULL &&
4896 	    (txg - ZTEST_COMMIT_CALLBACK_THRESH) > tmp_cb->zcd_txg) {
4897 		fatal(0, "Commit callback threshold exceeded, oldest txg: %"
4898 		    PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg);
4899 	}
4900 
4901 	/*
4902 	 * Let's find the place to insert our callbacks.
4903 	 *
4904 	 * Even though the list is ordered by txg, it is possible for the
4905 	 * insertion point to not be the end because our txg may already be
4906 	 * quiescing at this point and other callbacks in the open txg
4907 	 * (from other objsets) may have sneaked in.
4908 	 */
4909 	tmp_cb = list_tail(&zcl.zcl_callbacks);
4910 	while (tmp_cb != NULL && tmp_cb->zcd_txg > txg)
4911 		tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb);
4912 
4913 	/* Add the 3 callbacks to the list */
4914 	for (i = 0; i < 3; i++) {
4915 		if (tmp_cb == NULL)
4916 			list_insert_head(&zcl.zcl_callbacks, cb_data[i]);
4917 		else
4918 			list_insert_after(&zcl.zcl_callbacks, tmp_cb,
4919 			    cb_data[i]);
4920 
4921 		cb_data[i]->zcd_added = B_TRUE;
4922 		VERIFY(!cb_data[i]->zcd_called);
4923 
4924 		tmp_cb = cb_data[i];
4925 	}
4926 
4927 	mutex_exit(&zcl.zcl_callbacks_lock);
4928 
4929 	dmu_tx_commit(tx);
4930 }
4931 
4932 /*
4933  * Visit each object in the dataset. Verify that its properties
4934  * are consistent what was stored in the block tag when it was created,
4935  * and that its unused bonus buffer space has not been overwritten.
4936  */
4937 void
4938 ztest_verify_dnode_bt(ztest_ds_t *zd, uint64_t id)
4939 {
4940 	objset_t *os = zd->zd_os;
4941 	uint64_t obj;
4942 	int err = 0;
4943 
4944 	for (obj = 0; err == 0; err = dmu_object_next(os, &obj, FALSE, 0)) {
4945 		ztest_block_tag_t *bt = NULL;
4946 		dmu_object_info_t doi;
4947 		dmu_buf_t *db;
4948 
4949 		if (dmu_bonus_hold(os, obj, FTAG, &db) != 0)
4950 			continue;
4951 
4952 		dmu_object_info_from_db(db, &doi);
4953 		if (doi.doi_bonus_size >= sizeof (*bt))
4954 			bt = ztest_bt_bonus(db);
4955 
4956 		if (bt && bt->bt_magic == BT_MAGIC) {
4957 			ztest_bt_verify(bt, os, obj, doi.doi_dnodesize,
4958 			    bt->bt_offset, bt->bt_gen, bt->bt_txg,
4959 			    bt->bt_crtxg);
4960 			ztest_verify_unused_bonus(db, bt, obj, os, bt->bt_gen);
4961 		}
4962 
4963 		dmu_buf_rele(db, FTAG);
4964 	}
4965 }
4966 
4967 /* ARGSUSED */
4968 void
4969 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id)
4970 {
4971 	zfs_prop_t proplist[] = {
4972 		ZFS_PROP_CHECKSUM,
4973 		ZFS_PROP_COMPRESSION,
4974 		ZFS_PROP_COPIES,
4975 		ZFS_PROP_DEDUP
4976 	};
4977 
4978 	rw_enter(&ztest_name_lock, RW_READER);
4979 
4980 	for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++)
4981 		(void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p],
4982 		    ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2));
4983 
4984 	rw_exit(&ztest_name_lock);
4985 }
4986 
4987 /* ARGSUSED */
4988 void
4989 ztest_remap_blocks(ztest_ds_t *zd, uint64_t id)
4990 {
4991 	rw_enter(&ztest_name_lock, RW_READER);
4992 
4993 	int error = dmu_objset_remap_indirects(zd->zd_name);
4994 	if (error == ENOSPC)
4995 		error = 0;
4996 	ASSERT0(error);
4997 
4998 	rw_exit(&ztest_name_lock);
4999 }
5000 
5001 /* ARGSUSED */
5002 void
5003 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id)
5004 {
5005 	nvlist_t *props = NULL;
5006 
5007 	rw_enter(&ztest_name_lock, RW_READER);
5008 
5009 	(void) ztest_spa_prop_set_uint64(ZPOOL_PROP_DEDUPDITTO,
5010 	    ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN));
5011 
5012 	VERIFY0(spa_prop_get(ztest_spa, &props));
5013 
5014 	if (ztest_opts.zo_verbose >= 6)
5015 		dump_nvlist(props, 4);
5016 
5017 	nvlist_free(props);
5018 
5019 	rw_exit(&ztest_name_lock);
5020 }
5021 
5022 static int
5023 user_release_one(const char *snapname, const char *holdname)
5024 {
5025 	nvlist_t *snaps, *holds;
5026 	int error;
5027 
5028 	snaps = fnvlist_alloc();
5029 	holds = fnvlist_alloc();
5030 	fnvlist_add_boolean(holds, holdname);
5031 	fnvlist_add_nvlist(snaps, snapname, holds);
5032 	fnvlist_free(holds);
5033 	error = dsl_dataset_user_release(snaps, NULL);
5034 	fnvlist_free(snaps);
5035 	return (error);
5036 }
5037 
5038 /*
5039  * Test snapshot hold/release and deferred destroy.
5040  */
5041 void
5042 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id)
5043 {
5044 	int error;
5045 	objset_t *os = zd->zd_os;
5046 	objset_t *origin;
5047 	char snapname[100];
5048 	char fullname[100];
5049 	char clonename[100];
5050 	char tag[100];
5051 	char osname[ZFS_MAX_DATASET_NAME_LEN];
5052 	nvlist_t *holds;
5053 
5054 	rw_enter(&ztest_name_lock, RW_READER);
5055 
5056 	dmu_objset_name(os, osname);
5057 
5058 	(void) snprintf(snapname, sizeof (snapname), "sh1_%llu", id);
5059 	(void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname);
5060 	(void) snprintf(clonename, sizeof (clonename),
5061 	    "%s/ch1_%llu", osname, id);
5062 	(void) snprintf(tag, sizeof (tag), "tag_%llu", id);
5063 
5064 	/*
5065 	 * Clean up from any previous run.
5066 	 */
5067 	error = dsl_destroy_head(clonename);
5068 	if (error != ENOENT)
5069 		ASSERT0(error);
5070 	error = user_release_one(fullname, tag);
5071 	if (error != ESRCH && error != ENOENT)
5072 		ASSERT0(error);
5073 	error = dsl_destroy_snapshot(fullname, B_FALSE);
5074 	if (error != ENOENT)
5075 		ASSERT0(error);
5076 
5077 	/*
5078 	 * Create snapshot, clone it, mark snap for deferred destroy,
5079 	 * destroy clone, verify snap was also destroyed.
5080 	 */
5081 	error = dmu_objset_snapshot_one(osname, snapname);
5082 	if (error) {
5083 		if (error == ENOSPC) {
5084 			ztest_record_enospc("dmu_objset_snapshot");
5085 			goto out;
5086 		}
5087 		fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
5088 	}
5089 
5090 	error = dmu_objset_clone(clonename, fullname);
5091 	if (error) {
5092 		if (error == ENOSPC) {
5093 			ztest_record_enospc("dmu_objset_clone");
5094 			goto out;
5095 		}
5096 		fatal(0, "dmu_objset_clone(%s) = %d", clonename, error);
5097 	}
5098 
5099 	error = dsl_destroy_snapshot(fullname, B_TRUE);
5100 	if (error) {
5101 		fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
5102 		    fullname, error);
5103 	}
5104 
5105 	error = dsl_destroy_head(clonename);
5106 	if (error)
5107 		fatal(0, "dsl_destroy_head(%s) = %d", clonename, error);
5108 
5109 	error = dmu_objset_hold(fullname, FTAG, &origin);
5110 	if (error != ENOENT)
5111 		fatal(0, "dmu_objset_hold(%s) = %d", fullname, error);
5112 
5113 	/*
5114 	 * Create snapshot, add temporary hold, verify that we can't
5115 	 * destroy a held snapshot, mark for deferred destroy,
5116 	 * release hold, verify snapshot was destroyed.
5117 	 */
5118 	error = dmu_objset_snapshot_one(osname, snapname);
5119 	if (error) {
5120 		if (error == ENOSPC) {
5121 			ztest_record_enospc("dmu_objset_snapshot");
5122 			goto out;
5123 		}
5124 		fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
5125 	}
5126 
5127 	holds = fnvlist_alloc();
5128 	fnvlist_add_string(holds, fullname, tag);
5129 	error = dsl_dataset_user_hold(holds, 0, NULL);
5130 	fnvlist_free(holds);
5131 
5132 	if (error == ENOSPC) {
5133 		ztest_record_enospc("dsl_dataset_user_hold");
5134 		goto out;
5135 	} else if (error) {
5136 		fatal(0, "dsl_dataset_user_hold(%s, %s) = %u",
5137 		    fullname, tag, error);
5138 	}
5139 
5140 	error = dsl_destroy_snapshot(fullname, B_FALSE);
5141 	if (error != EBUSY) {
5142 		fatal(0, "dsl_destroy_snapshot(%s, B_FALSE) = %d",
5143 		    fullname, error);
5144 	}
5145 
5146 	error = dsl_destroy_snapshot(fullname, B_TRUE);
5147 	if (error) {
5148 		fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
5149 		    fullname, error);
5150 	}
5151 
5152 	error = user_release_one(fullname, tag);
5153 	if (error)
5154 		fatal(0, "user_release_one(%s, %s) = %d", fullname, tag, error);
5155 
5156 	VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT);
5157 
5158 out:
5159 	rw_exit(&ztest_name_lock);
5160 }
5161 
5162 /*
5163  * Inject random faults into the on-disk data.
5164  */
5165 /* ARGSUSED */
5166 void
5167 ztest_fault_inject(ztest_ds_t *zd, uint64_t id)
5168 {
5169 	ztest_shared_t *zs = ztest_shared;
5170 	spa_t *spa = ztest_spa;
5171 	int fd;
5172 	uint64_t offset;
5173 	uint64_t leaves;
5174 	uint64_t bad = 0x1990c0ffeedecade;
5175 	uint64_t top, leaf;
5176 	char path0[MAXPATHLEN];
5177 	char pathrand[MAXPATHLEN];
5178 	size_t fsize;
5179 	int bshift = SPA_MAXBLOCKSHIFT + 2;
5180 	int iters = 1000;
5181 	int maxfaults;
5182 	int mirror_save;
5183 	vdev_t *vd0 = NULL;
5184 	uint64_t guid0 = 0;
5185 	boolean_t islog = B_FALSE;
5186 
5187 	mutex_enter(&ztest_vdev_lock);
5188 
5189 	/*
5190 	 * Device removal is in progress, fault injection must be disabled
5191 	 * until it completes and the pool is scrubbed.  The fault injection
5192 	 * strategy for damaging blocks does not take in to account evacuated
5193 	 * blocks which may have already been damaged.
5194 	 */
5195 	if (ztest_device_removal_active) {
5196 		mutex_exit(&ztest_vdev_lock);
5197 		return;
5198 	}
5199 
5200 	maxfaults = MAXFAULTS();
5201 	leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz;
5202 	mirror_save = zs->zs_mirrors;
5203 	mutex_exit(&ztest_vdev_lock);
5204 
5205 	ASSERT(leaves >= 1);
5206 
5207 	/*
5208 	 * Grab the name lock as reader. There are some operations
5209 	 * which don't like to have their vdevs changed while
5210 	 * they are in progress (i.e. spa_change_guid). Those
5211 	 * operations will have grabbed the name lock as writer.
5212 	 */
5213 	rw_enter(&ztest_name_lock, RW_READER);
5214 
5215 	/*
5216 	 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
5217 	 */
5218 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5219 
5220 	if (ztest_random(2) == 0) {
5221 		/*
5222 		 * Inject errors on a normal data device or slog device.
5223 		 */
5224 		top = ztest_random_vdev_top(spa, B_TRUE);
5225 		leaf = ztest_random(leaves) + zs->zs_splits;
5226 
5227 		/*
5228 		 * Generate paths to the first leaf in this top-level vdev,
5229 		 * and to the random leaf we selected.  We'll induce transient
5230 		 * write failures and random online/offline activity on leaf 0,
5231 		 * and we'll write random garbage to the randomly chosen leaf.
5232 		 */
5233 		(void) snprintf(path0, sizeof (path0), ztest_dev_template,
5234 		    ztest_opts.zo_dir, ztest_opts.zo_pool,
5235 		    top * leaves + zs->zs_splits);
5236 		(void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template,
5237 		    ztest_opts.zo_dir, ztest_opts.zo_pool,
5238 		    top * leaves + leaf);
5239 
5240 		vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0);
5241 		if (vd0 != NULL && vd0->vdev_top->vdev_islog)
5242 			islog = B_TRUE;
5243 
5244 		/*
5245 		 * If the top-level vdev needs to be resilvered
5246 		 * then we only allow faults on the device that is
5247 		 * resilvering.
5248 		 */
5249 		if (vd0 != NULL && maxfaults != 1 &&
5250 		    (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) ||
5251 		    vd0->vdev_resilver_txg != 0)) {
5252 			/*
5253 			 * Make vd0 explicitly claim to be unreadable,
5254 			 * or unwriteable, or reach behind its back
5255 			 * and close the underlying fd.  We can do this if
5256 			 * maxfaults == 0 because we'll fail and reexecute,
5257 			 * and we can do it if maxfaults >= 2 because we'll
5258 			 * have enough redundancy.  If maxfaults == 1, the
5259 			 * combination of this with injection of random data
5260 			 * corruption below exceeds the pool's fault tolerance.
5261 			 */
5262 			vdev_file_t *vf = vd0->vdev_tsd;
5263 
5264 			zfs_dbgmsg("injecting fault to vdev %llu; maxfaults=%d",
5265 			    (long long)vd0->vdev_id, (int)maxfaults);
5266 
5267 			if (vf != NULL && ztest_random(3) == 0) {
5268 				(void) close(vf->vf_vnode->v_fd);
5269 				vf->vf_vnode->v_fd = -1;
5270 			} else if (ztest_random(2) == 0) {
5271 				vd0->vdev_cant_read = B_TRUE;
5272 			} else {
5273 				vd0->vdev_cant_write = B_TRUE;
5274 			}
5275 			guid0 = vd0->vdev_guid;
5276 		}
5277 	} else {
5278 		/*
5279 		 * Inject errors on an l2cache device.
5280 		 */
5281 		spa_aux_vdev_t *sav = &spa->spa_l2cache;
5282 
5283 		if (sav->sav_count == 0) {
5284 			spa_config_exit(spa, SCL_STATE, FTAG);
5285 			rw_exit(&ztest_name_lock);
5286 			return;
5287 		}
5288 		vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)];
5289 		guid0 = vd0->vdev_guid;
5290 		(void) strcpy(path0, vd0->vdev_path);
5291 		(void) strcpy(pathrand, vd0->vdev_path);
5292 
5293 		leaf = 0;
5294 		leaves = 1;
5295 		maxfaults = INT_MAX;	/* no limit on cache devices */
5296 	}
5297 
5298 	spa_config_exit(spa, SCL_STATE, FTAG);
5299 	rw_exit(&ztest_name_lock);
5300 
5301 	/*
5302 	 * If we can tolerate two or more faults, or we're dealing
5303 	 * with a slog, randomly online/offline vd0.
5304 	 */
5305 	if ((maxfaults >= 2 || islog) && guid0 != 0) {
5306 		if (ztest_random(10) < 6) {
5307 			int flags = (ztest_random(2) == 0 ?
5308 			    ZFS_OFFLINE_TEMPORARY : 0);
5309 
5310 			/*
5311 			 * We have to grab the zs_name_lock as writer to
5312 			 * prevent a race between offlining a slog and
5313 			 * destroying a dataset. Offlining the slog will
5314 			 * grab a reference on the dataset which may cause
5315 			 * dmu_objset_destroy() to fail with EBUSY thus
5316 			 * leaving the dataset in an inconsistent state.
5317 			 */
5318 			if (islog)
5319 				rw_enter(&ztest_name_lock, RW_WRITER);
5320 
5321 			VERIFY(vdev_offline(spa, guid0, flags) != EBUSY);
5322 
5323 			if (islog)
5324 				rw_exit(&ztest_name_lock);
5325 		} else {
5326 			/*
5327 			 * Ideally we would like to be able to randomly
5328 			 * call vdev_[on|off]line without holding locks
5329 			 * to force unpredictable failures but the side
5330 			 * effects of vdev_[on|off]line prevent us from
5331 			 * doing so. We grab the ztest_vdev_lock here to
5332 			 * prevent a race between injection testing and
5333 			 * aux_vdev removal.
5334 			 */
5335 			mutex_enter(&ztest_vdev_lock);
5336 			(void) vdev_online(spa, guid0, 0, NULL);
5337 			mutex_exit(&ztest_vdev_lock);
5338 		}
5339 	}
5340 
5341 	if (maxfaults == 0)
5342 		return;
5343 
5344 	/*
5345 	 * We have at least single-fault tolerance, so inject data corruption.
5346 	 */
5347 	fd = open(pathrand, O_RDWR);
5348 
5349 	if (fd == -1) /* we hit a gap in the device namespace */
5350 		return;
5351 
5352 	fsize = lseek(fd, 0, SEEK_END);
5353 
5354 	while (--iters != 0) {
5355 		/*
5356 		 * The offset must be chosen carefully to ensure that
5357 		 * we do not inject a given logical block with errors
5358 		 * on two different leaf devices, because ZFS can not
5359 		 * tolerate that (if maxfaults==1).
5360 		 *
5361 		 * We divide each leaf into chunks of size
5362 		 * (# leaves * SPA_MAXBLOCKSIZE * 4).  Within each chunk
5363 		 * there is a series of ranges to which we can inject errors.
5364 		 * Each range can accept errors on only a single leaf vdev.
5365 		 * The error injection ranges are separated by ranges
5366 		 * which we will not inject errors on any device (DMZs).
5367 		 * Each DMZ must be large enough such that a single block
5368 		 * can not straddle it, so that a single block can not be
5369 		 * a target in two different injection ranges (on different
5370 		 * leaf vdevs).
5371 		 *
5372 		 * For example, with 3 leaves, each chunk looks like:
5373 		 *    0 to  32M: injection range for leaf 0
5374 		 *  32M to  64M: DMZ - no injection allowed
5375 		 *  64M to  96M: injection range for leaf 1
5376 		 *  96M to 128M: DMZ - no injection allowed
5377 		 * 128M to 160M: injection range for leaf 2
5378 		 * 160M to 192M: DMZ - no injection allowed
5379 		 */
5380 		offset = ztest_random(fsize / (leaves << bshift)) *
5381 		    (leaves << bshift) + (leaf << bshift) +
5382 		    (ztest_random(1ULL << (bshift - 1)) & -8ULL);
5383 
5384 		/*
5385 		 * Only allow damage to the labels at one end of the vdev.
5386 		 *
5387 		 * If all labels are damaged, the device will be totally
5388 		 * inaccessible, which will result in loss of data,
5389 		 * because we also damage (parts of) the other side of
5390 		 * the mirror/raidz.
5391 		 *
5392 		 * Additionally, we will always have both an even and an
5393 		 * odd label, so that we can handle crashes in the
5394 		 * middle of vdev_config_sync().
5395 		 */
5396 		if ((leaf & 1) == 0 && offset < VDEV_LABEL_START_SIZE)
5397 			continue;
5398 
5399 		/*
5400 		 * The two end labels are stored at the "end" of the disk, but
5401 		 * the end of the disk (vdev_psize) is aligned to
5402 		 * sizeof (vdev_label_t).
5403 		 */
5404 		uint64_t psize = P2ALIGN(fsize, sizeof (vdev_label_t));
5405 		if ((leaf & 1) == 1 &&
5406 		    offset + sizeof (bad) > psize - VDEV_LABEL_END_SIZE)
5407 			continue;
5408 
5409 		mutex_enter(&ztest_vdev_lock);
5410 		if (mirror_save != zs->zs_mirrors) {
5411 			mutex_exit(&ztest_vdev_lock);
5412 			(void) close(fd);
5413 			return;
5414 		}
5415 
5416 		if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad))
5417 			fatal(1, "can't inject bad word at 0x%llx in %s",
5418 			    offset, pathrand);
5419 
5420 		mutex_exit(&ztest_vdev_lock);
5421 
5422 		if (ztest_opts.zo_verbose >= 7)
5423 			(void) printf("injected bad word into %s,"
5424 			    " offset 0x%llx\n", pathrand, (u_longlong_t)offset);
5425 	}
5426 
5427 	(void) close(fd);
5428 }
5429 
5430 /*
5431  * Verify that DDT repair works as expected.
5432  */
5433 void
5434 ztest_ddt_repair(ztest_ds_t *zd, uint64_t id)
5435 {
5436 	ztest_shared_t *zs = ztest_shared;
5437 	spa_t *spa = ztest_spa;
5438 	objset_t *os = zd->zd_os;
5439 	ztest_od_t od[1];
5440 	uint64_t object, blocksize, txg, pattern, psize;
5441 	enum zio_checksum checksum = spa_dedup_checksum(spa);
5442 	dmu_buf_t *db;
5443 	dmu_tx_t *tx;
5444 	abd_t *abd;
5445 	blkptr_t blk;
5446 	int copies = 2 * ZIO_DEDUPDITTO_MIN;
5447 
5448 	blocksize = ztest_random_blocksize();
5449 	blocksize = MIN(blocksize, 2048);	/* because we write so many */
5450 
5451 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize,
5452 	    0, 0);
5453 
5454 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
5455 		return;
5456 
5457 	/*
5458 	 * Take the name lock as writer to prevent anyone else from changing
5459 	 * the pool and dataset properies we need to maintain during this test.
5460 	 */
5461 	rw_enter(&ztest_name_lock, RW_WRITER);
5462 
5463 	if (ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_DEDUP, checksum,
5464 	    B_FALSE) != 0 ||
5465 	    ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COPIES, 1,
5466 	    B_FALSE) != 0) {
5467 		rw_exit(&ztest_name_lock);
5468 		return;
5469 	}
5470 
5471 	dmu_objset_stats_t dds;
5472 	dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
5473 	dmu_objset_fast_stat(os, &dds);
5474 	dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
5475 
5476 	object = od[0].od_object;
5477 	blocksize = od[0].od_blocksize;
5478 	pattern = zs->zs_guid ^ dds.dds_guid;
5479 
5480 	ASSERT(object != 0);
5481 
5482 	tx = dmu_tx_create(os);
5483 	dmu_tx_hold_write(tx, object, 0, copies * blocksize);
5484 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
5485 	if (txg == 0) {
5486 		rw_exit(&ztest_name_lock);
5487 		return;
5488 	}
5489 
5490 	/*
5491 	 * Write all the copies of our block.
5492 	 */
5493 	for (int i = 0; i < copies; i++) {
5494 		uint64_t offset = i * blocksize;
5495 		int error = dmu_buf_hold(os, object, offset, FTAG, &db,
5496 		    DMU_READ_NO_PREFETCH);
5497 		if (error != 0) {
5498 			fatal(B_FALSE, "dmu_buf_hold(%p, %llu, %llu) = %u",
5499 			    os, (long long)object, (long long) offset, error);
5500 		}
5501 		ASSERT(db->db_offset == offset);
5502 		ASSERT(db->db_size == blocksize);
5503 		ASSERT(ztest_pattern_match(db->db_data, db->db_size, pattern) ||
5504 		    ztest_pattern_match(db->db_data, db->db_size, 0ULL));
5505 		dmu_buf_will_fill(db, tx);
5506 		ztest_pattern_set(db->db_data, db->db_size, pattern);
5507 		dmu_buf_rele(db, FTAG);
5508 	}
5509 
5510 	dmu_tx_commit(tx);
5511 	txg_wait_synced(spa_get_dsl(spa), txg);
5512 
5513 	/*
5514 	 * Find out what block we got.
5515 	 */
5516 	VERIFY0(dmu_buf_hold(os, object, 0, FTAG, &db,
5517 	    DMU_READ_NO_PREFETCH));
5518 	blk = *((dmu_buf_impl_t *)db)->db_blkptr;
5519 	dmu_buf_rele(db, FTAG);
5520 
5521 	/*
5522 	 * Damage the block.  Dedup-ditto will save us when we read it later.
5523 	 */
5524 	psize = BP_GET_PSIZE(&blk);
5525 	abd = abd_alloc_linear(psize, B_TRUE);
5526 	ztest_pattern_set(abd_to_buf(abd), psize, ~pattern);
5527 
5528 	(void) zio_wait(zio_rewrite(NULL, spa, 0, &blk,
5529 	    abd, psize, NULL, NULL, ZIO_PRIORITY_SYNC_WRITE,
5530 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_INDUCE_DAMAGE, NULL));
5531 
5532 	abd_free(abd);
5533 
5534 	rw_exit(&ztest_name_lock);
5535 }
5536 
5537 /*
5538  * Scrub the pool.
5539  */
5540 /* ARGSUSED */
5541 void
5542 ztest_scrub(ztest_ds_t *zd, uint64_t id)
5543 {
5544 	spa_t *spa = ztest_spa;
5545 
5546 	/*
5547 	 * Scrub in progress by device removal.
5548 	 */
5549 	if (ztest_device_removal_active)
5550 		return;
5551 
5552 	(void) spa_scan(spa, POOL_SCAN_SCRUB);
5553 	(void) poll(NULL, 0, 100); /* wait a moment, then force a restart */
5554 	(void) spa_scan(spa, POOL_SCAN_SCRUB);
5555 }
5556 
5557 /*
5558  * Change the guid for the pool.
5559  */
5560 /* ARGSUSED */
5561 void
5562 ztest_reguid(ztest_ds_t *zd, uint64_t id)
5563 {
5564 	spa_t *spa = ztest_spa;
5565 	uint64_t orig, load;
5566 	int error;
5567 
5568 	orig = spa_guid(spa);
5569 	load = spa_load_guid(spa);
5570 
5571 	rw_enter(&ztest_name_lock, RW_WRITER);
5572 	error = spa_change_guid(spa);
5573 	rw_exit(&ztest_name_lock);
5574 
5575 	if (error != 0)
5576 		return;
5577 
5578 	if (ztest_opts.zo_verbose >= 4) {
5579 		(void) printf("Changed guid old %llu -> %llu\n",
5580 		    (u_longlong_t)orig, (u_longlong_t)spa_guid(spa));
5581 	}
5582 
5583 	VERIFY3U(orig, !=, spa_guid(spa));
5584 	VERIFY3U(load, ==, spa_load_guid(spa));
5585 }
5586 
5587 static vdev_t *
5588 ztest_random_concrete_vdev_leaf(vdev_t *vd)
5589 {
5590 	if (vd == NULL)
5591 		return (NULL);
5592 
5593 	if (vd->vdev_children == 0)
5594 		return (vd);
5595 
5596 	vdev_t *eligible[vd->vdev_children];
5597 	int eligible_idx = 0, i;
5598 	for (i = 0; i < vd->vdev_children; i++) {
5599 		vdev_t *cvd = vd->vdev_child[i];
5600 		if (cvd->vdev_top->vdev_removing)
5601 			continue;
5602 		if (cvd->vdev_children > 0 ||
5603 		    (vdev_is_concrete(cvd) && !cvd->vdev_detached)) {
5604 			eligible[eligible_idx++] = cvd;
5605 		}
5606 	}
5607 	VERIFY(eligible_idx > 0);
5608 
5609 	uint64_t child_no = ztest_random(eligible_idx);
5610 	return (ztest_random_concrete_vdev_leaf(eligible[child_no]));
5611 }
5612 
5613 /* ARGSUSED */
5614 void
5615 ztest_initialize(ztest_ds_t *zd, uint64_t id)
5616 {
5617 	spa_t *spa = ztest_spa;
5618 	int error = 0;
5619 
5620 	mutex_enter(&ztest_vdev_lock);
5621 
5622 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
5623 
5624 	/* Random leaf vdev */
5625 	vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev);
5626 	if (rand_vd == NULL) {
5627 		spa_config_exit(spa, SCL_VDEV, FTAG);
5628 		mutex_exit(&ztest_vdev_lock);
5629 		return;
5630 	}
5631 
5632 	/*
5633 	 * The random vdev we've selected may change as soon as we
5634 	 * drop the spa_config_lock. We create local copies of things
5635 	 * we're interested in.
5636 	 */
5637 	uint64_t guid = rand_vd->vdev_guid;
5638 	char *path = strdup(rand_vd->vdev_path);
5639 	boolean_t active = rand_vd->vdev_initialize_thread != NULL;
5640 
5641 	zfs_dbgmsg("vd %p, guid %llu", rand_vd, guid);
5642 	spa_config_exit(spa, SCL_VDEV, FTAG);
5643 
5644 	uint64_t cmd = ztest_random(POOL_INITIALIZE_FUNCS);
5645 	error = spa_vdev_initialize(spa, guid, cmd);
5646 	switch (cmd) {
5647 	case POOL_INITIALIZE_CANCEL:
5648 		if (ztest_opts.zo_verbose >= 4) {
5649 			(void) printf("Cancel initialize %s", path);
5650 			if (!active)
5651 				(void) printf(" failed (no initialize active)");
5652 			(void) printf("\n");
5653 		}
5654 		break;
5655 	case POOL_INITIALIZE_DO:
5656 		if (ztest_opts.zo_verbose >= 4) {
5657 			(void) printf("Start initialize %s", path);
5658 			if (active && error == 0)
5659 				(void) printf(" failed (already active)");
5660 			else if (error != 0)
5661 				(void) printf(" failed (error %d)", error);
5662 			(void) printf("\n");
5663 		}
5664 		break;
5665 	case POOL_INITIALIZE_SUSPEND:
5666 		if (ztest_opts.zo_verbose >= 4) {
5667 			(void) printf("Suspend initialize %s", path);
5668 			if (!active)
5669 				(void) printf(" failed (no initialize active)");
5670 			(void) printf("\n");
5671 		}
5672 		break;
5673 	}
5674 	free(path);
5675 	mutex_exit(&ztest_vdev_lock);
5676 }
5677 
5678 /*
5679  * Verify pool integrity by running zdb.
5680  */
5681 static void
5682 ztest_run_zdb(char *pool)
5683 {
5684 	int status;
5685 	char zdb[MAXPATHLEN + MAXNAMELEN + 20];
5686 	char zbuf[1024];
5687 	char *bin;
5688 	char *ztest;
5689 	char *isa;
5690 	int isalen;
5691 	FILE *fp;
5692 
5693 	(void) realpath(getexecname(), zdb);
5694 
5695 	/* zdb lives in /usr/sbin, while ztest lives in /usr/bin */
5696 	bin = strstr(zdb, "/usr/bin/");
5697 	ztest = strstr(bin, "/ztest");
5698 	isa = bin + 8;
5699 	isalen = ztest - isa;
5700 	isa = strdup(isa);
5701 	/* LINTED */
5702 	(void) sprintf(bin,
5703 	    "/usr/sbin%.*s/zdb -bcc%s%s -G -d -U %s %s",
5704 	    isalen,
5705 	    isa,
5706 	    ztest_opts.zo_verbose >= 3 ? "s" : "",
5707 	    ztest_opts.zo_verbose >= 4 ? "v" : "",
5708 	    spa_config_path,
5709 	    pool);
5710 	free(isa);
5711 
5712 	if (ztest_opts.zo_verbose >= 5)
5713 		(void) printf("Executing %s\n", strstr(zdb, "zdb "));
5714 
5715 	fp = popen(zdb, "r");
5716 
5717 	while (fgets(zbuf, sizeof (zbuf), fp) != NULL)
5718 		if (ztest_opts.zo_verbose >= 3)
5719 			(void) printf("%s", zbuf);
5720 
5721 	status = pclose(fp);
5722 
5723 	if (status == 0)
5724 		return;
5725 
5726 	ztest_dump_core = 0;
5727 	if (WIFEXITED(status))
5728 		fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status));
5729 	else
5730 		fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status));
5731 }
5732 
5733 static void
5734 ztest_walk_pool_directory(char *header)
5735 {
5736 	spa_t *spa = NULL;
5737 
5738 	if (ztest_opts.zo_verbose >= 6)
5739 		(void) printf("%s\n", header);
5740 
5741 	mutex_enter(&spa_namespace_lock);
5742 	while ((spa = spa_next(spa)) != NULL)
5743 		if (ztest_opts.zo_verbose >= 6)
5744 			(void) printf("\t%s\n", spa_name(spa));
5745 	mutex_exit(&spa_namespace_lock);
5746 }
5747 
5748 static void
5749 ztest_spa_import_export(char *oldname, char *newname)
5750 {
5751 	nvlist_t *config, *newconfig;
5752 	uint64_t pool_guid;
5753 	spa_t *spa;
5754 	int error;
5755 
5756 	if (ztest_opts.zo_verbose >= 4) {
5757 		(void) printf("import/export: old = %s, new = %s\n",
5758 		    oldname, newname);
5759 	}
5760 
5761 	/*
5762 	 * Clean up from previous runs.
5763 	 */
5764 	(void) spa_destroy(newname);
5765 
5766 	/*
5767 	 * Get the pool's configuration and guid.
5768 	 */
5769 	VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG));
5770 
5771 	/*
5772 	 * Kick off a scrub to tickle scrub/export races.
5773 	 */
5774 	if (ztest_random(2) == 0)
5775 		(void) spa_scan(spa, POOL_SCAN_SCRUB);
5776 
5777 	pool_guid = spa_guid(spa);
5778 	spa_close(spa, FTAG);
5779 
5780 	ztest_walk_pool_directory("pools before export");
5781 
5782 	/*
5783 	 * Export it.
5784 	 */
5785 	VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE));
5786 
5787 	ztest_walk_pool_directory("pools after export");
5788 
5789 	/*
5790 	 * Try to import it.
5791 	 */
5792 	newconfig = spa_tryimport(config);
5793 	ASSERT(newconfig != NULL);
5794 	nvlist_free(newconfig);
5795 
5796 	/*
5797 	 * Import it under the new name.
5798 	 */
5799 	error = spa_import(newname, config, NULL, 0);
5800 	if (error != 0) {
5801 		dump_nvlist(config, 0);
5802 		fatal(B_FALSE, "couldn't import pool %s as %s: error %u",
5803 		    oldname, newname, error);
5804 	}
5805 
5806 	ztest_walk_pool_directory("pools after import");
5807 
5808 	/*
5809 	 * Try to import it again -- should fail with EEXIST.
5810 	 */
5811 	VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0));
5812 
5813 	/*
5814 	 * Try to import it under a different name -- should fail with EEXIST.
5815 	 */
5816 	VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0));
5817 
5818 	/*
5819 	 * Verify that the pool is no longer visible under the old name.
5820 	 */
5821 	VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
5822 
5823 	/*
5824 	 * Verify that we can open and close the pool using the new name.
5825 	 */
5826 	VERIFY3U(0, ==, spa_open(newname, &spa, FTAG));
5827 	ASSERT(pool_guid == spa_guid(spa));
5828 	spa_close(spa, FTAG);
5829 
5830 	nvlist_free(config);
5831 }
5832 
5833 static void
5834 ztest_resume(spa_t *spa)
5835 {
5836 	if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6)
5837 		(void) printf("resuming from suspended state\n");
5838 	spa_vdev_state_enter(spa, SCL_NONE);
5839 	vdev_clear(spa, NULL);
5840 	(void) spa_vdev_state_exit(spa, NULL, 0);
5841 	(void) zio_resume(spa);
5842 }
5843 
5844 static void *
5845 ztest_resume_thread(void *arg)
5846 {
5847 	spa_t *spa = arg;
5848 
5849 	while (!ztest_exiting) {
5850 		if (spa_suspended(spa))
5851 			ztest_resume(spa);
5852 		(void) poll(NULL, 0, 100);
5853 
5854 		/*
5855 		 * Periodically change the zfs_compressed_arc_enabled setting.
5856 		 */
5857 		if (ztest_random(10) == 0)
5858 			zfs_compressed_arc_enabled = ztest_random(2);
5859 
5860 		/*
5861 		 * Periodically change the zfs_abd_scatter_enabled setting.
5862 		 */
5863 		if (ztest_random(10) == 0)
5864 			zfs_abd_scatter_enabled = ztest_random(2);
5865 	}
5866 	return (NULL);
5867 }
5868 
5869 static void *
5870 ztest_deadman_thread(void *arg)
5871 {
5872 	ztest_shared_t *zs = arg;
5873 	spa_t *spa = ztest_spa;
5874 	hrtime_t delta, total = 0;
5875 
5876 	for (;;) {
5877 		delta = zs->zs_thread_stop - zs->zs_thread_start +
5878 		    MSEC2NSEC(zfs_deadman_synctime_ms);
5879 
5880 		(void) poll(NULL, 0, (int)NSEC2MSEC(delta));
5881 
5882 		/*
5883 		 * If the pool is suspended then fail immediately. Otherwise,
5884 		 * check to see if the pool is making any progress. If
5885 		 * vdev_deadman() discovers that there hasn't been any recent
5886 		 * I/Os then it will end up aborting the tests.
5887 		 */
5888 		if (spa_suspended(spa) || spa->spa_root_vdev == NULL) {
5889 			fatal(0, "aborting test after %llu seconds because "
5890 			    "pool has transitioned to a suspended state.",
5891 			    zfs_deadman_synctime_ms / 1000);
5892 			return (NULL);
5893 		}
5894 		vdev_deadman(spa->spa_root_vdev);
5895 
5896 		total += zfs_deadman_synctime_ms/1000;
5897 		(void) printf("ztest has been running for %lld seconds\n",
5898 		    total);
5899 	}
5900 }
5901 
5902 static void
5903 ztest_execute(int test, ztest_info_t *zi, uint64_t id)
5904 {
5905 	ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets];
5906 	ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test);
5907 	hrtime_t functime = gethrtime();
5908 
5909 	for (int i = 0; i < zi->zi_iters; i++)
5910 		zi->zi_func(zd, id);
5911 
5912 	functime = gethrtime() - functime;
5913 
5914 	atomic_add_64(&zc->zc_count, 1);
5915 	atomic_add_64(&zc->zc_time, functime);
5916 
5917 	if (ztest_opts.zo_verbose >= 4) {
5918 		Dl_info dli;
5919 		(void) dladdr((void *)zi->zi_func, &dli);
5920 		(void) printf("%6.2f sec in %s\n",
5921 		    (double)functime / NANOSEC, dli.dli_sname);
5922 	}
5923 }
5924 
5925 static void *
5926 ztest_thread(void *arg)
5927 {
5928 	int rand;
5929 	uint64_t id = (uintptr_t)arg;
5930 	ztest_shared_t *zs = ztest_shared;
5931 	uint64_t call_next;
5932 	hrtime_t now;
5933 	ztest_info_t *zi;
5934 	ztest_shared_callstate_t *zc;
5935 
5936 	while ((now = gethrtime()) < zs->zs_thread_stop) {
5937 		/*
5938 		 * See if it's time to force a crash.
5939 		 */
5940 		if (now > zs->zs_thread_kill)
5941 			ztest_kill(zs);
5942 
5943 		/*
5944 		 * If we're getting ENOSPC with some regularity, stop.
5945 		 */
5946 		if (zs->zs_enospc_count > 10)
5947 			break;
5948 
5949 		/*
5950 		 * Pick a random function to execute.
5951 		 */
5952 		rand = ztest_random(ZTEST_FUNCS);
5953 		zi = &ztest_info[rand];
5954 		zc = ZTEST_GET_SHARED_CALLSTATE(rand);
5955 		call_next = zc->zc_next;
5956 
5957 		if (now >= call_next &&
5958 		    atomic_cas_64(&zc->zc_next, call_next, call_next +
5959 		    ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) {
5960 			ztest_execute(rand, zi, id);
5961 		}
5962 	}
5963 
5964 	return (NULL);
5965 }
5966 
5967 static void
5968 ztest_dataset_name(char *dsname, char *pool, int d)
5969 {
5970 	(void) snprintf(dsname, ZFS_MAX_DATASET_NAME_LEN, "%s/ds_%d", pool, d);
5971 }
5972 
5973 static void
5974 ztest_dataset_destroy(int d)
5975 {
5976 	char name[ZFS_MAX_DATASET_NAME_LEN];
5977 
5978 	ztest_dataset_name(name, ztest_opts.zo_pool, d);
5979 
5980 	if (ztest_opts.zo_verbose >= 3)
5981 		(void) printf("Destroying %s to free up space\n", name);
5982 
5983 	/*
5984 	 * Cleanup any non-standard clones and snapshots.  In general,
5985 	 * ztest thread t operates on dataset (t % zopt_datasets),
5986 	 * so there may be more than one thing to clean up.
5987 	 */
5988 	for (int t = d; t < ztest_opts.zo_threads;
5989 	    t += ztest_opts.zo_datasets) {
5990 		ztest_dsl_dataset_cleanup(name, t);
5991 	}
5992 
5993 	(void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
5994 	    DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
5995 }
5996 
5997 static void
5998 ztest_dataset_dirobj_verify(ztest_ds_t *zd)
5999 {
6000 	uint64_t usedobjs, dirobjs, scratch;
6001 
6002 	/*
6003 	 * ZTEST_DIROBJ is the object directory for the entire dataset.
6004 	 * Therefore, the number of objects in use should equal the
6005 	 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself.
6006 	 * If not, we have an object leak.
6007 	 *
6008 	 * Note that we can only check this in ztest_dataset_open(),
6009 	 * when the open-context and syncing-context values agree.
6010 	 * That's because zap_count() returns the open-context value,
6011 	 * while dmu_objset_space() returns the rootbp fill count.
6012 	 */
6013 	VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs));
6014 	dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch);
6015 	ASSERT3U(dirobjs + 1, ==, usedobjs);
6016 }
6017 
6018 static int
6019 ztest_dataset_open(int d)
6020 {
6021 	ztest_ds_t *zd = &ztest_ds[d];
6022 	uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq;
6023 	objset_t *os;
6024 	zilog_t *zilog;
6025 	char name[ZFS_MAX_DATASET_NAME_LEN];
6026 	int error;
6027 
6028 	ztest_dataset_name(name, ztest_opts.zo_pool, d);
6029 
6030 	rw_enter(&ztest_name_lock, RW_READER);
6031 
6032 	error = ztest_dataset_create(name);
6033 	if (error == ENOSPC) {
6034 		rw_exit(&ztest_name_lock);
6035 		ztest_record_enospc(FTAG);
6036 		return (error);
6037 	}
6038 	ASSERT(error == 0 || error == EEXIST);
6039 
6040 	VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, zd, &os));
6041 	rw_exit(&ztest_name_lock);
6042 
6043 	ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os);
6044 
6045 	zilog = zd->zd_zilog;
6046 
6047 	if (zilog->zl_header->zh_claim_lr_seq != 0 &&
6048 	    zilog->zl_header->zh_claim_lr_seq < committed_seq)
6049 		fatal(0, "missing log records: claimed %llu < committed %llu",
6050 		    zilog->zl_header->zh_claim_lr_seq, committed_seq);
6051 
6052 	ztest_dataset_dirobj_verify(zd);
6053 
6054 	zil_replay(os, zd, ztest_replay_vector);
6055 
6056 	ztest_dataset_dirobj_verify(zd);
6057 
6058 	if (ztest_opts.zo_verbose >= 6)
6059 		(void) printf("%s replay %llu blocks, %llu records, seq %llu\n",
6060 		    zd->zd_name,
6061 		    (u_longlong_t)zilog->zl_parse_blk_count,
6062 		    (u_longlong_t)zilog->zl_parse_lr_count,
6063 		    (u_longlong_t)zilog->zl_replaying_seq);
6064 
6065 	zilog = zil_open(os, ztest_get_data);
6066 
6067 	if (zilog->zl_replaying_seq != 0 &&
6068 	    zilog->zl_replaying_seq < committed_seq)
6069 		fatal(0, "missing log records: replayed %llu < committed %llu",
6070 		    zilog->zl_replaying_seq, committed_seq);
6071 
6072 	return (0);
6073 }
6074 
6075 static void
6076 ztest_dataset_close(int d)
6077 {
6078 	ztest_ds_t *zd = &ztest_ds[d];
6079 
6080 	zil_close(zd->zd_zilog);
6081 	dmu_objset_disown(zd->zd_os, zd);
6082 
6083 	ztest_zd_fini(zd);
6084 }
6085 
6086 /*
6087  * Kick off threads to run tests on all datasets in parallel.
6088  */
6089 static void
6090 ztest_run(ztest_shared_t *zs)
6091 {
6092 	thread_t *tid;
6093 	spa_t *spa;
6094 	objset_t *os;
6095 	thread_t resume_tid;
6096 	int error;
6097 
6098 	ztest_exiting = B_FALSE;
6099 
6100 	/*
6101 	 * Initialize parent/child shared state.
6102 	 */
6103 	mutex_init(&ztest_checkpoint_lock, NULL, USYNC_THREAD, NULL);
6104 	mutex_init(&ztest_vdev_lock, NULL, USYNC_THREAD, NULL);
6105 	rw_init(&ztest_name_lock, NULL, USYNC_THREAD, NULL);
6106 
6107 	zs->zs_thread_start = gethrtime();
6108 	zs->zs_thread_stop =
6109 	    zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC;
6110 	zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop);
6111 	zs->zs_thread_kill = zs->zs_thread_stop;
6112 	if (ztest_random(100) < ztest_opts.zo_killrate) {
6113 		zs->zs_thread_kill -=
6114 		    ztest_random(ztest_opts.zo_passtime * NANOSEC);
6115 	}
6116 
6117 	mutex_init(&zcl.zcl_callbacks_lock, NULL, USYNC_THREAD, NULL);
6118 
6119 	list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t),
6120 	    offsetof(ztest_cb_data_t, zcd_node));
6121 
6122 	/*
6123 	 * Open our pool.
6124 	 */
6125 	kernel_init(FREAD | FWRITE);
6126 	VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
6127 	metaslab_preload_limit = ztest_random(20) + 1;
6128 	ztest_spa = spa;
6129 
6130 	dmu_objset_stats_t dds;
6131 	VERIFY0(dmu_objset_own(ztest_opts.zo_pool,
6132 	    DMU_OST_ANY, B_TRUE, FTAG, &os));
6133 	dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
6134 	dmu_objset_fast_stat(os, &dds);
6135 	dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
6136 	zs->zs_guid = dds.dds_guid;
6137 	dmu_objset_disown(os, FTAG);
6138 
6139 	spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN;
6140 
6141 	/*
6142 	 * We don't expect the pool to suspend unless maxfaults == 0,
6143 	 * in which case ztest_fault_inject() temporarily takes away
6144 	 * the only valid replica.
6145 	 */
6146 	if (MAXFAULTS() == 0)
6147 		spa->spa_failmode = ZIO_FAILURE_MODE_WAIT;
6148 	else
6149 		spa->spa_failmode = ZIO_FAILURE_MODE_PANIC;
6150 
6151 	/*
6152 	 * Create a thread to periodically resume suspended I/O.
6153 	 */
6154 	VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND,
6155 	    &resume_tid) == 0);
6156 
6157 	/*
6158 	 * Create a deadman thread to abort() if we hang.
6159 	 */
6160 	VERIFY(thr_create(0, 0, ztest_deadman_thread, zs, THR_BOUND,
6161 	    NULL) == 0);
6162 
6163 	/*
6164 	 * Verify that we can safely inquire about any object,
6165 	 * whether it's allocated or not.  To make it interesting,
6166 	 * we probe a 5-wide window around each power of two.
6167 	 * This hits all edge cases, including zero and the max.
6168 	 */
6169 	for (int t = 0; t < 64; t++) {
6170 		for (int d = -5; d <= 5; d++) {
6171 			error = dmu_object_info(spa->spa_meta_objset,
6172 			    (1ULL << t) + d, NULL);
6173 			ASSERT(error == 0 || error == ENOENT ||
6174 			    error == EINVAL);
6175 		}
6176 	}
6177 
6178 	/*
6179 	 * If we got any ENOSPC errors on the previous run, destroy something.
6180 	 */
6181 	if (zs->zs_enospc_count != 0) {
6182 		int d = ztest_random(ztest_opts.zo_datasets);
6183 		ztest_dataset_destroy(d);
6184 	}
6185 	zs->zs_enospc_count = 0;
6186 
6187 	tid = umem_zalloc(ztest_opts.zo_threads * sizeof (thread_t),
6188 	    UMEM_NOFAIL);
6189 
6190 	if (ztest_opts.zo_verbose >= 4)
6191 		(void) printf("starting main threads...\n");
6192 
6193 	/*
6194 	 * Kick off all the tests that run in parallel.
6195 	 */
6196 	for (int t = 0; t < ztest_opts.zo_threads; t++) {
6197 		if (t < ztest_opts.zo_datasets &&
6198 		    ztest_dataset_open(t) != 0)
6199 			return;
6200 		VERIFY(thr_create(0, 0, ztest_thread, (void *)(uintptr_t)t,
6201 		    THR_BOUND, &tid[t]) == 0);
6202 	}
6203 
6204 	/*
6205 	 * Wait for all of the tests to complete.  We go in reverse order
6206 	 * so we don't close datasets while threads are still using them.
6207 	 */
6208 	for (int t = ztest_opts.zo_threads - 1; t >= 0; t--) {
6209 		VERIFY(thr_join(tid[t], NULL, NULL) == 0);
6210 		if (t < ztest_opts.zo_datasets)
6211 			ztest_dataset_close(t);
6212 	}
6213 
6214 	txg_wait_synced(spa_get_dsl(spa), 0);
6215 
6216 	zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
6217 	zs->zs_space = metaslab_class_get_space(spa_normal_class(spa));
6218 	zfs_dbgmsg_print(FTAG);
6219 
6220 	umem_free(tid, ztest_opts.zo_threads * sizeof (thread_t));
6221 
6222 	/* Kill the resume thread */
6223 	ztest_exiting = B_TRUE;
6224 	VERIFY(thr_join(resume_tid, NULL, NULL) == 0);
6225 	ztest_resume(spa);
6226 
6227 	/*
6228 	 * Right before closing the pool, kick off a bunch of async I/O;
6229 	 * spa_close() should wait for it to complete.
6230 	 */
6231 	for (uint64_t object = 1; object < 50; object++) {
6232 		dmu_prefetch(spa->spa_meta_objset, object, 0, 0, 1ULL << 20,
6233 		    ZIO_PRIORITY_SYNC_READ);
6234 	}
6235 
6236 	spa_close(spa, FTAG);
6237 
6238 	/*
6239 	 * Verify that we can loop over all pools.
6240 	 */
6241 	mutex_enter(&spa_namespace_lock);
6242 	for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa))
6243 		if (ztest_opts.zo_verbose > 3)
6244 			(void) printf("spa_next: found %s\n", spa_name(spa));
6245 	mutex_exit(&spa_namespace_lock);
6246 
6247 	/*
6248 	 * Verify that we can export the pool and reimport it under a
6249 	 * different name.
6250 	 */
6251 	if (ztest_random(2) == 0) {
6252 		char name[ZFS_MAX_DATASET_NAME_LEN];
6253 		(void) snprintf(name, sizeof (name), "%s_import",
6254 		    ztest_opts.zo_pool);
6255 		ztest_spa_import_export(ztest_opts.zo_pool, name);
6256 		ztest_spa_import_export(name, ztest_opts.zo_pool);
6257 	}
6258 
6259 	kernel_fini();
6260 
6261 	list_destroy(&zcl.zcl_callbacks);
6262 
6263 	mutex_destroy(&zcl.zcl_callbacks_lock);
6264 
6265 	rw_destroy(&ztest_name_lock);
6266 	mutex_destroy(&ztest_vdev_lock);
6267 	mutex_destroy(&ztest_checkpoint_lock);
6268 }
6269 
6270 static void
6271 ztest_freeze(void)
6272 {
6273 	ztest_ds_t *zd = &ztest_ds[0];
6274 	spa_t *spa;
6275 	int numloops = 0;
6276 
6277 	if (ztest_opts.zo_verbose >= 3)
6278 		(void) printf("testing spa_freeze()...\n");
6279 
6280 	kernel_init(FREAD | FWRITE);
6281 	VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
6282 	VERIFY3U(0, ==, ztest_dataset_open(0));
6283 	ztest_spa = spa;
6284 
6285 	/*
6286 	 * Force the first log block to be transactionally allocated.
6287 	 * We have to do this before we freeze the pool -- otherwise
6288 	 * the log chain won't be anchored.
6289 	 */
6290 	while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) {
6291 		ztest_dmu_object_alloc_free(zd, 0);
6292 		zil_commit(zd->zd_zilog, 0);
6293 	}
6294 
6295 	txg_wait_synced(spa_get_dsl(spa), 0);
6296 
6297 	/*
6298 	 * Freeze the pool.  This stops spa_sync() from doing anything,
6299 	 * so that the only way to record changes from now on is the ZIL.
6300 	 */
6301 	spa_freeze(spa);
6302 
6303 	/*
6304 	 * Because it is hard to predict how much space a write will actually
6305 	 * require beforehand, we leave ourselves some fudge space to write over
6306 	 * capacity.
6307 	 */
6308 	uint64_t capacity = metaslab_class_get_space(spa_normal_class(spa)) / 2;
6309 
6310 	/*
6311 	 * Run tests that generate log records but don't alter the pool config
6312 	 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc).
6313 	 * We do a txg_wait_synced() after each iteration to force the txg
6314 	 * to increase well beyond the last synced value in the uberblock.
6315 	 * The ZIL should be OK with that.
6316 	 *
6317 	 * Run a random number of times less than zo_maxloops and ensure we do
6318 	 * not run out of space on the pool.
6319 	 */
6320 	while (ztest_random(10) != 0 &&
6321 	    numloops++ < ztest_opts.zo_maxloops &&
6322 	    metaslab_class_get_alloc(spa_normal_class(spa)) < capacity) {
6323 		ztest_od_t od;
6324 		ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
6325 		VERIFY0(ztest_object_init(zd, &od, sizeof (od), B_FALSE));
6326 		ztest_io(zd, od.od_object,
6327 		    ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
6328 		txg_wait_synced(spa_get_dsl(spa), 0);
6329 	}
6330 
6331 	/*
6332 	 * Commit all of the changes we just generated.
6333 	 */
6334 	zil_commit(zd->zd_zilog, 0);
6335 	txg_wait_synced(spa_get_dsl(spa), 0);
6336 
6337 	/*
6338 	 * Close our dataset and close the pool.
6339 	 */
6340 	ztest_dataset_close(0);
6341 	spa_close(spa, FTAG);
6342 	kernel_fini();
6343 
6344 	/*
6345 	 * Open and close the pool and dataset to induce log replay.
6346 	 */
6347 	kernel_init(FREAD | FWRITE);
6348 	VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
6349 	ASSERT(spa_freeze_txg(spa) == UINT64_MAX);
6350 	VERIFY3U(0, ==, ztest_dataset_open(0));
6351 	ztest_dataset_close(0);
6352 
6353 	ztest_spa = spa;
6354 	txg_wait_synced(spa_get_dsl(spa), 0);
6355 	ztest_reguid(NULL, 0);
6356 
6357 	spa_close(spa, FTAG);
6358 	kernel_fini();
6359 }
6360 
6361 void
6362 print_time(hrtime_t t, char *timebuf)
6363 {
6364 	hrtime_t s = t / NANOSEC;
6365 	hrtime_t m = s / 60;
6366 	hrtime_t h = m / 60;
6367 	hrtime_t d = h / 24;
6368 
6369 	s -= m * 60;
6370 	m -= h * 60;
6371 	h -= d * 24;
6372 
6373 	timebuf[0] = '\0';
6374 
6375 	if (d)
6376 		(void) sprintf(timebuf,
6377 		    "%llud%02lluh%02llum%02llus", d, h, m, s);
6378 	else if (h)
6379 		(void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s);
6380 	else if (m)
6381 		(void) sprintf(timebuf, "%llum%02llus", m, s);
6382 	else
6383 		(void) sprintf(timebuf, "%llus", s);
6384 }
6385 
6386 static nvlist_t *
6387 make_random_props()
6388 {
6389 	nvlist_t *props;
6390 
6391 	VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0);
6392 	if (ztest_random(2) == 0)
6393 		return (props);
6394 	VERIFY(nvlist_add_uint64(props, "autoreplace", 1) == 0);
6395 
6396 	return (props);
6397 }
6398 
6399 /*
6400  * Create a storage pool with the given name and initial vdev size.
6401  * Then test spa_freeze() functionality.
6402  */
6403 static void
6404 ztest_init(ztest_shared_t *zs)
6405 {
6406 	spa_t *spa;
6407 	nvlist_t *nvroot, *props;
6408 
6409 	mutex_init(&ztest_vdev_lock, NULL, USYNC_THREAD, NULL);
6410 	mutex_init(&ztest_checkpoint_lock, NULL, USYNC_THREAD, NULL);
6411 	rw_init(&ztest_name_lock, NULL, USYNC_THREAD, NULL);
6412 
6413 	kernel_init(FREAD | FWRITE);
6414 
6415 	/*
6416 	 * Create the storage pool.
6417 	 */
6418 	(void) spa_destroy(ztest_opts.zo_pool);
6419 	ztest_shared->zs_vdev_next_leaf = 0;
6420 	zs->zs_splits = 0;
6421 	zs->zs_mirrors = ztest_opts.zo_mirrors;
6422 	nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
6423 	    0, ztest_opts.zo_raidz, zs->zs_mirrors, 1);
6424 	props = make_random_props();
6425 	for (int i = 0; i < SPA_FEATURES; i++) {
6426 		char buf[1024];
6427 		(void) snprintf(buf, sizeof (buf), "feature@%s",
6428 		    spa_feature_table[i].fi_uname);
6429 		VERIFY3U(0, ==, nvlist_add_uint64(props, buf, 0));
6430 	}
6431 	VERIFY3U(0, ==, spa_create(ztest_opts.zo_pool, nvroot, props, NULL));
6432 	nvlist_free(nvroot);
6433 	nvlist_free(props);
6434 
6435 	VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
6436 	zs->zs_metaslab_sz =
6437 	    1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
6438 
6439 	spa_close(spa, FTAG);
6440 
6441 	kernel_fini();
6442 
6443 	ztest_run_zdb(ztest_opts.zo_pool);
6444 
6445 	ztest_freeze();
6446 
6447 	ztest_run_zdb(ztest_opts.zo_pool);
6448 
6449 	rw_destroy(&ztest_name_lock);
6450 	mutex_destroy(&ztest_vdev_lock);
6451 	mutex_destroy(&ztest_checkpoint_lock);
6452 }
6453 
6454 static void
6455 setup_data_fd(void)
6456 {
6457 	static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX";
6458 
6459 	ztest_fd_data = mkstemp(ztest_name_data);
6460 	ASSERT3S(ztest_fd_data, >=, 0);
6461 	(void) unlink(ztest_name_data);
6462 }
6463 
6464 
6465 static int
6466 shared_data_size(ztest_shared_hdr_t *hdr)
6467 {
6468 	int size;
6469 
6470 	size = hdr->zh_hdr_size;
6471 	size += hdr->zh_opts_size;
6472 	size += hdr->zh_size;
6473 	size += hdr->zh_stats_size * hdr->zh_stats_count;
6474 	size += hdr->zh_ds_size * hdr->zh_ds_count;
6475 
6476 	return (size);
6477 }
6478 
6479 static void
6480 setup_hdr(void)
6481 {
6482 	int size;
6483 	ztest_shared_hdr_t *hdr;
6484 
6485 	hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
6486 	    PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
6487 	ASSERT(hdr != MAP_FAILED);
6488 
6489 	VERIFY3U(0, ==, ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t)));
6490 
6491 	hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t);
6492 	hdr->zh_opts_size = sizeof (ztest_shared_opts_t);
6493 	hdr->zh_size = sizeof (ztest_shared_t);
6494 	hdr->zh_stats_size = sizeof (ztest_shared_callstate_t);
6495 	hdr->zh_stats_count = ZTEST_FUNCS;
6496 	hdr->zh_ds_size = sizeof (ztest_shared_ds_t);
6497 	hdr->zh_ds_count = ztest_opts.zo_datasets;
6498 
6499 	size = shared_data_size(hdr);
6500 	VERIFY3U(0, ==, ftruncate(ztest_fd_data, size));
6501 
6502 	(void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
6503 }
6504 
6505 static void
6506 setup_data(void)
6507 {
6508 	int size, offset;
6509 	ztest_shared_hdr_t *hdr;
6510 	uint8_t *buf;
6511 
6512 	hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
6513 	    PROT_READ, MAP_SHARED, ztest_fd_data, 0);
6514 	ASSERT(hdr != MAP_FAILED);
6515 
6516 	size = shared_data_size(hdr);
6517 
6518 	(void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
6519 	hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()),
6520 	    PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
6521 	ASSERT(hdr != MAP_FAILED);
6522 	buf = (uint8_t *)hdr;
6523 
6524 	offset = hdr->zh_hdr_size;
6525 	ztest_shared_opts = (void *)&buf[offset];
6526 	offset += hdr->zh_opts_size;
6527 	ztest_shared = (void *)&buf[offset];
6528 	offset += hdr->zh_size;
6529 	ztest_shared_callstate = (void *)&buf[offset];
6530 	offset += hdr->zh_stats_size * hdr->zh_stats_count;
6531 	ztest_shared_ds = (void *)&buf[offset];
6532 }
6533 
6534 static boolean_t
6535 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp)
6536 {
6537 	pid_t pid;
6538 	int status;
6539 	char *cmdbuf = NULL;
6540 
6541 	pid = fork();
6542 
6543 	if (cmd == NULL) {
6544 		cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
6545 		(void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN);
6546 		cmd = cmdbuf;
6547 	}
6548 
6549 	if (pid == -1)
6550 		fatal(1, "fork failed");
6551 
6552 	if (pid == 0) {	/* child */
6553 		char *emptyargv[2] = { cmd, NULL };
6554 		char fd_data_str[12];
6555 
6556 		struct rlimit rl = { 1024, 1024 };
6557 		(void) setrlimit(RLIMIT_NOFILE, &rl);
6558 
6559 		(void) close(ztest_fd_rand);
6560 		VERIFY3U(11, >=,
6561 		    snprintf(fd_data_str, 12, "%d", ztest_fd_data));
6562 		VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1));
6563 
6564 		(void) enable_extended_FILE_stdio(-1, -1);
6565 		if (libpath != NULL)
6566 			VERIFY(0 == setenv("LD_LIBRARY_PATH", libpath, 1));
6567 		(void) execv(cmd, emptyargv);
6568 		ztest_dump_core = B_FALSE;
6569 		fatal(B_TRUE, "exec failed: %s", cmd);
6570 	}
6571 
6572 	if (cmdbuf != NULL) {
6573 		umem_free(cmdbuf, MAXPATHLEN);
6574 		cmd = NULL;
6575 	}
6576 
6577 	while (waitpid(pid, &status, 0) != pid)
6578 		continue;
6579 	if (statusp != NULL)
6580 		*statusp = status;
6581 
6582 	if (WIFEXITED(status)) {
6583 		if (WEXITSTATUS(status) != 0) {
6584 			(void) fprintf(stderr, "child exited with code %d\n",
6585 			    WEXITSTATUS(status));
6586 			exit(2);
6587 		}
6588 		return (B_FALSE);
6589 	} else if (WIFSIGNALED(status)) {
6590 		if (!ignorekill || WTERMSIG(status) != SIGKILL) {
6591 			(void) fprintf(stderr, "child died with signal %d\n",
6592 			    WTERMSIG(status));
6593 			exit(3);
6594 		}
6595 		return (B_TRUE);
6596 	} else {
6597 		(void) fprintf(stderr, "something strange happened to child\n");
6598 		exit(4);
6599 		/* NOTREACHED */
6600 	}
6601 }
6602 
6603 static void
6604 ztest_run_init(void)
6605 {
6606 	ztest_shared_t *zs = ztest_shared;
6607 
6608 	ASSERT(ztest_opts.zo_init != 0);
6609 
6610 	/*
6611 	 * Blow away any existing copy of zpool.cache
6612 	 */
6613 	(void) remove(spa_config_path);
6614 
6615 	/*
6616 	 * Create and initialize our storage pool.
6617 	 */
6618 	for (int i = 1; i <= ztest_opts.zo_init; i++) {
6619 		bzero(zs, sizeof (ztest_shared_t));
6620 		if (ztest_opts.zo_verbose >= 3 &&
6621 		    ztest_opts.zo_init != 1) {
6622 			(void) printf("ztest_init(), pass %d\n", i);
6623 		}
6624 		ztest_init(zs);
6625 	}
6626 }
6627 
6628 int
6629 main(int argc, char **argv)
6630 {
6631 	int kills = 0;
6632 	int iters = 0;
6633 	int older = 0;
6634 	int newer = 0;
6635 	ztest_shared_t *zs;
6636 	ztest_info_t *zi;
6637 	ztest_shared_callstate_t *zc;
6638 	char timebuf[100];
6639 	char numbuf[NN_NUMBUF_SZ];
6640 	char *cmd;
6641 	boolean_t hasalt;
6642 	char *fd_data_str = getenv("ZTEST_FD_DATA");
6643 
6644 	(void) setvbuf(stdout, NULL, _IOLBF, 0);
6645 
6646 	dprintf_setup(&argc, argv);
6647 	zfs_deadman_synctime_ms = 300000;
6648 	/*
6649 	 * As two-word space map entries may not come up often (especially
6650 	 * if pool and vdev sizes are small) we want to force at least some
6651 	 * of them so the feature get tested.
6652 	 */
6653 	zfs_force_some_double_word_sm_entries = B_TRUE;
6654 
6655 	ztest_fd_rand = open("/dev/urandom", O_RDONLY);
6656 	ASSERT3S(ztest_fd_rand, >=, 0);
6657 
6658 	if (!fd_data_str) {
6659 		process_options(argc, argv);
6660 
6661 		setup_data_fd();
6662 		setup_hdr();
6663 		setup_data();
6664 		bcopy(&ztest_opts, ztest_shared_opts,
6665 		    sizeof (*ztest_shared_opts));
6666 	} else {
6667 		ztest_fd_data = atoi(fd_data_str);
6668 		setup_data();
6669 		bcopy(ztest_shared_opts, &ztest_opts, sizeof (ztest_opts));
6670 	}
6671 	ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count);
6672 
6673 	/* Override location of zpool.cache */
6674 	VERIFY3U(asprintf((char **)&spa_config_path, "%s/zpool.cache",
6675 	    ztest_opts.zo_dir), !=, -1);
6676 
6677 	ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t),
6678 	    UMEM_NOFAIL);
6679 	zs = ztest_shared;
6680 
6681 	if (fd_data_str) {
6682 		metaslab_force_ganging = ztest_opts.zo_metaslab_force_ganging;
6683 		metaslab_df_alloc_threshold =
6684 		    zs->zs_metaslab_df_alloc_threshold;
6685 
6686 		if (zs->zs_do_init)
6687 			ztest_run_init();
6688 		else
6689 			ztest_run(zs);
6690 		exit(0);
6691 	}
6692 
6693 	hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0);
6694 
6695 	if (ztest_opts.zo_verbose >= 1) {
6696 		(void) printf("%llu vdevs, %d datasets, %d threads,"
6697 		    " %llu seconds...\n",
6698 		    (u_longlong_t)ztest_opts.zo_vdevs,
6699 		    ztest_opts.zo_datasets,
6700 		    ztest_opts.zo_threads,
6701 		    (u_longlong_t)ztest_opts.zo_time);
6702 	}
6703 
6704 	cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
6705 	(void) strlcpy(cmd, getexecname(), MAXNAMELEN);
6706 
6707 	zs->zs_do_init = B_TRUE;
6708 	if (strlen(ztest_opts.zo_alt_ztest) != 0) {
6709 		if (ztest_opts.zo_verbose >= 1) {
6710 			(void) printf("Executing older ztest for "
6711 			    "initialization: %s\n", ztest_opts.zo_alt_ztest);
6712 		}
6713 		VERIFY(!exec_child(ztest_opts.zo_alt_ztest,
6714 		    ztest_opts.zo_alt_libpath, B_FALSE, NULL));
6715 	} else {
6716 		VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL));
6717 	}
6718 	zs->zs_do_init = B_FALSE;
6719 
6720 	zs->zs_proc_start = gethrtime();
6721 	zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC;
6722 
6723 	for (int f = 0; f < ZTEST_FUNCS; f++) {
6724 		zi = &ztest_info[f];
6725 		zc = ZTEST_GET_SHARED_CALLSTATE(f);
6726 		if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop)
6727 			zc->zc_next = UINT64_MAX;
6728 		else
6729 			zc->zc_next = zs->zs_proc_start +
6730 			    ztest_random(2 * zi->zi_interval[0] + 1);
6731 	}
6732 
6733 	/*
6734 	 * Run the tests in a loop.  These tests include fault injection
6735 	 * to verify that self-healing data works, and forced crashes
6736 	 * to verify that we never lose on-disk consistency.
6737 	 */
6738 	while (gethrtime() < zs->zs_proc_stop) {
6739 		int status;
6740 		boolean_t killed;
6741 
6742 		/*
6743 		 * Initialize the workload counters for each function.
6744 		 */
6745 		for (int f = 0; f < ZTEST_FUNCS; f++) {
6746 			zc = ZTEST_GET_SHARED_CALLSTATE(f);
6747 			zc->zc_count = 0;
6748 			zc->zc_time = 0;
6749 		}
6750 
6751 		/* Set the allocation switch size */
6752 		zs->zs_metaslab_df_alloc_threshold =
6753 		    ztest_random(zs->zs_metaslab_sz / 4) + 1;
6754 
6755 		if (!hasalt || ztest_random(2) == 0) {
6756 			if (hasalt && ztest_opts.zo_verbose >= 1) {
6757 				(void) printf("Executing newer ztest: %s\n",
6758 				    cmd);
6759 			}
6760 			newer++;
6761 			killed = exec_child(cmd, NULL, B_TRUE, &status);
6762 		} else {
6763 			if (hasalt && ztest_opts.zo_verbose >= 1) {
6764 				(void) printf("Executing older ztest: %s\n",
6765 				    ztest_opts.zo_alt_ztest);
6766 			}
6767 			older++;
6768 			killed = exec_child(ztest_opts.zo_alt_ztest,
6769 			    ztest_opts.zo_alt_libpath, B_TRUE, &status);
6770 		}
6771 
6772 		if (killed)
6773 			kills++;
6774 		iters++;
6775 
6776 		if (ztest_opts.zo_verbose >= 1) {
6777 			hrtime_t now = gethrtime();
6778 
6779 			now = MIN(now, zs->zs_proc_stop);
6780 			print_time(zs->zs_proc_stop - now, timebuf);
6781 			nicenum(zs->zs_space, numbuf, sizeof (numbuf));
6782 
6783 			(void) printf("Pass %3d, %8s, %3llu ENOSPC, "
6784 			    "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
6785 			    iters,
6786 			    WIFEXITED(status) ? "Complete" : "SIGKILL",
6787 			    (u_longlong_t)zs->zs_enospc_count,
6788 			    100.0 * zs->zs_alloc / zs->zs_space,
6789 			    numbuf,
6790 			    100.0 * (now - zs->zs_proc_start) /
6791 			    (ztest_opts.zo_time * NANOSEC), timebuf);
6792 		}
6793 
6794 		if (ztest_opts.zo_verbose >= 2) {
6795 			(void) printf("\nWorkload summary:\n\n");
6796 			(void) printf("%7s %9s   %s\n",
6797 			    "Calls", "Time", "Function");
6798 			(void) printf("%7s %9s   %s\n",
6799 			    "-----", "----", "--------");
6800 			for (int f = 0; f < ZTEST_FUNCS; f++) {
6801 				Dl_info dli;
6802 
6803 				zi = &ztest_info[f];
6804 				zc = ZTEST_GET_SHARED_CALLSTATE(f);
6805 				print_time(zc->zc_time, timebuf);
6806 				(void) dladdr((void *)zi->zi_func, &dli);
6807 				(void) printf("%7llu %9s   %s\n",
6808 				    (u_longlong_t)zc->zc_count, timebuf,
6809 				    dli.dli_sname);
6810 			}
6811 			(void) printf("\n");
6812 		}
6813 
6814 		ztest_run_zdb(ztest_opts.zo_pool);
6815 	}
6816 
6817 	if (ztest_opts.zo_verbose >= 1) {
6818 		if (hasalt) {
6819 			(void) printf("%d runs of older ztest: %s\n", older,
6820 			    ztest_opts.zo_alt_ztest);
6821 			(void) printf("%d runs of newer ztest: %s\n", newer,
6822 			    cmd);
6823 		}
6824 		(void) printf("%d killed, %d completed, %.0f%% kill rate\n",
6825 		    kills, iters - kills, (100.0 * kills) / MAX(1, iters));
6826 	}
6827 
6828 	umem_free(cmd, MAXNAMELEN);
6829 
6830 	return (0);
6831 }
6832