xref: /illumos-gate/usr/src/cmd/ztest/ztest.c (revision 3a4b1be9)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2016 by Delphix. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2013 Steven Hartland. All rights reserved.
26  * Copyright (c) 2014 Integros [integros.com]
27  * Copyright 2017 Joyent, Inc.
28  * Copyright 2017 RackTop Systems.
29  */
30 
31 /*
32  * The objective of this program is to provide a DMU/ZAP/SPA stress test
33  * that runs entirely in userland, is easy to use, and easy to extend.
34  *
35  * The overall design of the ztest program is as follows:
36  *
37  * (1) For each major functional area (e.g. adding vdevs to a pool,
38  *     creating and destroying datasets, reading and writing objects, etc)
39  *     we have a simple routine to test that functionality.  These
40  *     individual routines do not have to do anything "stressful".
41  *
42  * (2) We turn these simple functionality tests into a stress test by
43  *     running them all in parallel, with as many threads as desired,
44  *     and spread across as many datasets, objects, and vdevs as desired.
45  *
46  * (3) While all this is happening, we inject faults into the pool to
47  *     verify that self-healing data really works.
48  *
49  * (4) Every time we open a dataset, we change its checksum and compression
50  *     functions.  Thus even individual objects vary from block to block
51  *     in which checksum they use and whether they're compressed.
52  *
53  * (5) To verify that we never lose on-disk consistency after a crash,
54  *     we run the entire test in a child of the main process.
55  *     At random times, the child self-immolates with a SIGKILL.
56  *     This is the software equivalent of pulling the power cord.
57  *     The parent then runs the test again, using the existing
58  *     storage pool, as many times as desired. If backwards compatibility
59  *     testing is enabled ztest will sometimes run the "older" version
60  *     of ztest after a SIGKILL.
61  *
62  * (6) To verify that we don't have future leaks or temporal incursions,
63  *     many of the functional tests record the transaction group number
64  *     as part of their data.  When reading old data, they verify that
65  *     the transaction group number is less than the current, open txg.
66  *     If you add a new test, please do this if applicable.
67  *
68  * When run with no arguments, ztest runs for about five minutes and
69  * produces no output if successful.  To get a little bit of information,
70  * specify -V.  To get more information, specify -VV, and so on.
71  *
72  * To turn this into an overnight stress test, use -T to specify run time.
73  *
74  * You can ask more more vdevs [-v], datasets [-d], or threads [-t]
75  * to increase the pool capacity, fanout, and overall stress level.
76  *
77  * Use the -k option to set the desired frequency of kills.
78  *
79  * When ztest invokes itself it passes all relevant information through a
80  * temporary file which is mmap-ed in the child process. This allows shared
81  * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always
82  * stored at offset 0 of this file and contains information on the size and
83  * number of shared structures in the file. The information stored in this file
84  * must remain backwards compatible with older versions of ztest so that
85  * ztest can invoke them during backwards compatibility testing (-B).
86  */
87 
88 #include <sys/zfs_context.h>
89 #include <sys/spa.h>
90 #include <sys/dmu.h>
91 #include <sys/txg.h>
92 #include <sys/dbuf.h>
93 #include <sys/zap.h>
94 #include <sys/dmu_objset.h>
95 #include <sys/poll.h>
96 #include <sys/stat.h>
97 #include <sys/time.h>
98 #include <sys/wait.h>
99 #include <sys/mman.h>
100 #include <sys/resource.h>
101 #include <sys/zio.h>
102 #include <sys/zil.h>
103 #include <sys/zil_impl.h>
104 #include <sys/vdev_impl.h>
105 #include <sys/vdev_file.h>
106 #include <sys/spa_impl.h>
107 #include <sys/metaslab_impl.h>
108 #include <sys/dsl_prop.h>
109 #include <sys/dsl_dataset.h>
110 #include <sys/dsl_destroy.h>
111 #include <sys/dsl_scan.h>
112 #include <sys/zio_checksum.h>
113 #include <sys/refcount.h>
114 #include <sys/zfeature.h>
115 #include <sys/dsl_userhold.h>
116 #include <sys/abd.h>
117 #include <stdio.h>
118 #include <stdio_ext.h>
119 #include <stdlib.h>
120 #include <unistd.h>
121 #include <signal.h>
122 #include <umem.h>
123 #include <dlfcn.h>
124 #include <ctype.h>
125 #include <math.h>
126 #include <sys/fs/zfs.h>
127 #include <libnvpair.h>
128 #include <libcmdutils.h>
129 
130 static int ztest_fd_data = -1;
131 static int ztest_fd_rand = -1;
132 
133 typedef struct ztest_shared_hdr {
134 	uint64_t	zh_hdr_size;
135 	uint64_t	zh_opts_size;
136 	uint64_t	zh_size;
137 	uint64_t	zh_stats_size;
138 	uint64_t	zh_stats_count;
139 	uint64_t	zh_ds_size;
140 	uint64_t	zh_ds_count;
141 } ztest_shared_hdr_t;
142 
143 static ztest_shared_hdr_t *ztest_shared_hdr;
144 
145 typedef struct ztest_shared_opts {
146 	char zo_pool[ZFS_MAX_DATASET_NAME_LEN];
147 	char zo_dir[ZFS_MAX_DATASET_NAME_LEN];
148 	char zo_alt_ztest[MAXNAMELEN];
149 	char zo_alt_libpath[MAXNAMELEN];
150 	uint64_t zo_vdevs;
151 	uint64_t zo_vdevtime;
152 	size_t zo_vdev_size;
153 	int zo_ashift;
154 	int zo_mirrors;
155 	int zo_raidz;
156 	int zo_raidz_parity;
157 	int zo_datasets;
158 	int zo_threads;
159 	uint64_t zo_passtime;
160 	uint64_t zo_killrate;
161 	int zo_verbose;
162 	int zo_init;
163 	uint64_t zo_time;
164 	uint64_t zo_maxloops;
165 	uint64_t zo_metaslab_force_ganging;
166 } ztest_shared_opts_t;
167 
168 static const ztest_shared_opts_t ztest_opts_defaults = {
169 	.zo_pool = { 'z', 't', 'e', 's', 't', '\0' },
170 	.zo_dir = { '/', 't', 'm', 'p', '\0' },
171 	.zo_alt_ztest = { '\0' },
172 	.zo_alt_libpath = { '\0' },
173 	.zo_vdevs = 5,
174 	.zo_ashift = SPA_MINBLOCKSHIFT,
175 	.zo_mirrors = 2,
176 	.zo_raidz = 4,
177 	.zo_raidz_parity = 1,
178 	.zo_vdev_size = SPA_MINDEVSIZE * 4,	/* 256m default size */
179 	.zo_datasets = 7,
180 	.zo_threads = 23,
181 	.zo_passtime = 60,		/* 60 seconds */
182 	.zo_killrate = 70,		/* 70% kill rate */
183 	.zo_verbose = 0,
184 	.zo_init = 1,
185 	.zo_time = 300,			/* 5 minutes */
186 	.zo_maxloops = 50,		/* max loops during spa_freeze() */
187 	.zo_metaslab_force_ganging = 32 << 10
188 };
189 
190 extern uint64_t metaslab_force_ganging;
191 extern uint64_t metaslab_df_alloc_threshold;
192 extern uint64_t zfs_deadman_synctime_ms;
193 extern int metaslab_preload_limit;
194 extern boolean_t zfs_compressed_arc_enabled;
195 extern boolean_t zfs_abd_scatter_enabled;
196 extern boolean_t zfs_force_some_double_word_sm_entries;
197 
198 static ztest_shared_opts_t *ztest_shared_opts;
199 static ztest_shared_opts_t ztest_opts;
200 
201 typedef struct ztest_shared_ds {
202 	uint64_t	zd_seq;
203 } ztest_shared_ds_t;
204 
205 static ztest_shared_ds_t *ztest_shared_ds;
206 #define	ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d])
207 
208 #define	BT_MAGIC	0x123456789abcdefULL
209 #define	MAXFAULTS() \
210 	(MAX(zs->zs_mirrors, 1) * (ztest_opts.zo_raidz_parity + 1) - 1)
211 
212 enum ztest_io_type {
213 	ZTEST_IO_WRITE_TAG,
214 	ZTEST_IO_WRITE_PATTERN,
215 	ZTEST_IO_WRITE_ZEROES,
216 	ZTEST_IO_TRUNCATE,
217 	ZTEST_IO_SETATTR,
218 	ZTEST_IO_REWRITE,
219 	ZTEST_IO_TYPES
220 };
221 
222 typedef struct ztest_block_tag {
223 	uint64_t	bt_magic;
224 	uint64_t	bt_objset;
225 	uint64_t	bt_object;
226 	uint64_t	bt_offset;
227 	uint64_t	bt_gen;
228 	uint64_t	bt_txg;
229 	uint64_t	bt_crtxg;
230 } ztest_block_tag_t;
231 
232 typedef struct bufwad {
233 	uint64_t	bw_index;
234 	uint64_t	bw_txg;
235 	uint64_t	bw_data;
236 } bufwad_t;
237 
238 /*
239  * XXX -- fix zfs range locks to be generic so we can use them here.
240  */
241 typedef enum {
242 	RL_READER,
243 	RL_WRITER,
244 	RL_APPEND
245 } rl_type_t;
246 
247 typedef struct rll {
248 	void		*rll_writer;
249 	int		rll_readers;
250 	kmutex_t	rll_lock;
251 	kcondvar_t	rll_cv;
252 } rll_t;
253 
254 typedef struct rl {
255 	uint64_t	rl_object;
256 	uint64_t	rl_offset;
257 	uint64_t	rl_size;
258 	rll_t		*rl_lock;
259 } rl_t;
260 
261 #define	ZTEST_RANGE_LOCKS	64
262 #define	ZTEST_OBJECT_LOCKS	64
263 
264 /*
265  * Object descriptor.  Used as a template for object lookup/create/remove.
266  */
267 typedef struct ztest_od {
268 	uint64_t	od_dir;
269 	uint64_t	od_object;
270 	dmu_object_type_t od_type;
271 	dmu_object_type_t od_crtype;
272 	uint64_t	od_blocksize;
273 	uint64_t	od_crblocksize;
274 	uint64_t	od_gen;
275 	uint64_t	od_crgen;
276 	char		od_name[ZFS_MAX_DATASET_NAME_LEN];
277 } ztest_od_t;
278 
279 /*
280  * Per-dataset state.
281  */
282 typedef struct ztest_ds {
283 	ztest_shared_ds_t *zd_shared;
284 	objset_t	*zd_os;
285 	krwlock_t	zd_zilog_lock;
286 	zilog_t		*zd_zilog;
287 	ztest_od_t	*zd_od;		/* debugging aid */
288 	char		zd_name[ZFS_MAX_DATASET_NAME_LEN];
289 	kmutex_t	zd_dirobj_lock;
290 	rll_t		zd_object_lock[ZTEST_OBJECT_LOCKS];
291 	rll_t		zd_range_lock[ZTEST_RANGE_LOCKS];
292 } ztest_ds_t;
293 
294 /*
295  * Per-iteration state.
296  */
297 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id);
298 
299 typedef struct ztest_info {
300 	ztest_func_t	*zi_func;	/* test function */
301 	uint64_t	zi_iters;	/* iterations per execution */
302 	uint64_t	*zi_interval;	/* execute every <interval> seconds */
303 } ztest_info_t;
304 
305 typedef struct ztest_shared_callstate {
306 	uint64_t	zc_count;	/* per-pass count */
307 	uint64_t	zc_time;	/* per-pass time */
308 	uint64_t	zc_next;	/* next time to call this function */
309 } ztest_shared_callstate_t;
310 
311 static ztest_shared_callstate_t *ztest_shared_callstate;
312 #define	ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c])
313 
314 /*
315  * Note: these aren't static because we want dladdr() to work.
316  */
317 ztest_func_t ztest_dmu_read_write;
318 ztest_func_t ztest_dmu_write_parallel;
319 ztest_func_t ztest_dmu_object_alloc_free;
320 ztest_func_t ztest_dmu_commit_callbacks;
321 ztest_func_t ztest_zap;
322 ztest_func_t ztest_zap_parallel;
323 ztest_func_t ztest_zil_commit;
324 ztest_func_t ztest_zil_remount;
325 ztest_func_t ztest_dmu_read_write_zcopy;
326 ztest_func_t ztest_dmu_objset_create_destroy;
327 ztest_func_t ztest_dmu_prealloc;
328 ztest_func_t ztest_fzap;
329 ztest_func_t ztest_dmu_snapshot_create_destroy;
330 ztest_func_t ztest_dsl_prop_get_set;
331 ztest_func_t ztest_spa_prop_get_set;
332 ztest_func_t ztest_spa_create_destroy;
333 ztest_func_t ztest_fault_inject;
334 ztest_func_t ztest_ddt_repair;
335 ztest_func_t ztest_dmu_snapshot_hold;
336 ztest_func_t ztest_spa_rename;
337 ztest_func_t ztest_scrub;
338 ztest_func_t ztest_dsl_dataset_promote_busy;
339 ztest_func_t ztest_vdev_attach_detach;
340 ztest_func_t ztest_vdev_LUN_growth;
341 ztest_func_t ztest_vdev_add_remove;
342 ztest_func_t ztest_vdev_aux_add_remove;
343 ztest_func_t ztest_split_pool;
344 ztest_func_t ztest_reguid;
345 ztest_func_t ztest_spa_upgrade;
346 ztest_func_t ztest_device_removal;
347 ztest_func_t ztest_remap_blocks;
348 ztest_func_t ztest_spa_checkpoint_create_discard;
349 
350 uint64_t zopt_always = 0ULL * NANOSEC;		/* all the time */
351 uint64_t zopt_incessant = 1ULL * NANOSEC / 10;	/* every 1/10 second */
352 uint64_t zopt_often = 1ULL * NANOSEC;		/* every second */
353 uint64_t zopt_sometimes = 10ULL * NANOSEC;	/* every 10 seconds */
354 uint64_t zopt_rarely = 60ULL * NANOSEC;		/* every 60 seconds */
355 
356 ztest_info_t ztest_info[] = {
357 	{ ztest_dmu_read_write,			1,	&zopt_always	},
358 	{ ztest_dmu_write_parallel,		10,	&zopt_always	},
359 	{ ztest_dmu_object_alloc_free,		1,	&zopt_always	},
360 	{ ztest_dmu_commit_callbacks,		1,	&zopt_always	},
361 	{ ztest_zap,				30,	&zopt_always	},
362 	{ ztest_zap_parallel,			100,	&zopt_always	},
363 	{ ztest_split_pool,			1,	&zopt_always	},
364 	{ ztest_zil_commit,			1,	&zopt_incessant	},
365 	{ ztest_zil_remount,			1,	&zopt_sometimes	},
366 	{ ztest_dmu_read_write_zcopy,		1,	&zopt_often	},
367 	{ ztest_dmu_objset_create_destroy,	1,	&zopt_often	},
368 	{ ztest_dsl_prop_get_set,		1,	&zopt_often	},
369 	{ ztest_spa_prop_get_set,		1,	&zopt_sometimes	},
370 #if 0
371 	{ ztest_dmu_prealloc,			1,	&zopt_sometimes	},
372 #endif
373 	{ ztest_fzap,				1,	&zopt_sometimes	},
374 	{ ztest_dmu_snapshot_create_destroy,	1,	&zopt_sometimes	},
375 	{ ztest_spa_create_destroy,		1,	&zopt_sometimes	},
376 	{ ztest_fault_inject,			1,	&zopt_sometimes	},
377 	{ ztest_ddt_repair,			1,	&zopt_sometimes	},
378 	{ ztest_dmu_snapshot_hold,		1,	&zopt_sometimes	},
379 	{ ztest_reguid,				1,	&zopt_rarely	},
380 	{ ztest_spa_rename,			1,	&zopt_rarely	},
381 	{ ztest_scrub,				1,	&zopt_rarely	},
382 	{ ztest_spa_upgrade,			1,	&zopt_rarely	},
383 	{ ztest_dsl_dataset_promote_busy,	1,	&zopt_rarely	},
384 	{ ztest_vdev_attach_detach,		1,	&zopt_sometimes	},
385 	{ ztest_vdev_LUN_growth,		1,	&zopt_rarely	},
386 	{ ztest_vdev_add_remove,		1,
387 	    &ztest_opts.zo_vdevtime				},
388 	{ ztest_vdev_aux_add_remove,		1,
389 	    &ztest_opts.zo_vdevtime				},
390 	{ ztest_device_removal,			1,	&zopt_sometimes	},
391 	{ ztest_remap_blocks,			1,	&zopt_sometimes },
392 	{ ztest_spa_checkpoint_create_discard,	1,	&zopt_rarely	}
393 };
394 
395 #define	ZTEST_FUNCS	(sizeof (ztest_info) / sizeof (ztest_info_t))
396 
397 /*
398  * The following struct is used to hold a list of uncalled commit callbacks.
399  * The callbacks are ordered by txg number.
400  */
401 typedef struct ztest_cb_list {
402 	kmutex_t zcl_callbacks_lock;
403 	list_t	zcl_callbacks;
404 } ztest_cb_list_t;
405 
406 /*
407  * Stuff we need to share writably between parent and child.
408  */
409 typedef struct ztest_shared {
410 	boolean_t	zs_do_init;
411 	hrtime_t	zs_proc_start;
412 	hrtime_t	zs_proc_stop;
413 	hrtime_t	zs_thread_start;
414 	hrtime_t	zs_thread_stop;
415 	hrtime_t	zs_thread_kill;
416 	uint64_t	zs_enospc_count;
417 	uint64_t	zs_vdev_next_leaf;
418 	uint64_t	zs_vdev_aux;
419 	uint64_t	zs_alloc;
420 	uint64_t	zs_space;
421 	uint64_t	zs_splits;
422 	uint64_t	zs_mirrors;
423 	uint64_t	zs_metaslab_sz;
424 	uint64_t	zs_metaslab_df_alloc_threshold;
425 	uint64_t	zs_guid;
426 } ztest_shared_t;
427 
428 #define	ID_PARALLEL	-1ULL
429 
430 static char ztest_dev_template[] = "%s/%s.%llua";
431 static char ztest_aux_template[] = "%s/%s.%s.%llu";
432 ztest_shared_t *ztest_shared;
433 
434 static spa_t *ztest_spa = NULL;
435 static ztest_ds_t *ztest_ds;
436 
437 static kmutex_t ztest_vdev_lock;
438 static kmutex_t ztest_checkpoint_lock;
439 static boolean_t ztest_device_removal_active = B_FALSE;
440 
441 /*
442  * The ztest_name_lock protects the pool and dataset namespace used by
443  * the individual tests. To modify the namespace, consumers must grab
444  * this lock as writer. Grabbing the lock as reader will ensure that the
445  * namespace does not change while the lock is held.
446  */
447 static krwlock_t ztest_name_lock;
448 
449 static boolean_t ztest_dump_core = B_TRUE;
450 static boolean_t ztest_exiting;
451 
452 /* Global commit callback list */
453 static ztest_cb_list_t zcl;
454 
455 enum ztest_object {
456 	ZTEST_META_DNODE = 0,
457 	ZTEST_DIROBJ,
458 	ZTEST_OBJECTS
459 };
460 
461 static void usage(boolean_t) __NORETURN;
462 
463 /*
464  * These libumem hooks provide a reasonable set of defaults for the allocator's
465  * debugging facilities.
466  */
467 const char *
468 _umem_debug_init()
469 {
470 	return ("default,verbose"); /* $UMEM_DEBUG setting */
471 }
472 
473 const char *
474 _umem_logging_init(void)
475 {
476 	return ("fail,contents"); /* $UMEM_LOGGING setting */
477 }
478 
479 #define	FATAL_MSG_SZ	1024
480 
481 char *fatal_msg;
482 
483 static void
484 fatal(int do_perror, char *message, ...)
485 {
486 	va_list args;
487 	int save_errno = errno;
488 	char buf[FATAL_MSG_SZ];
489 
490 	(void) fflush(stdout);
491 
492 	va_start(args, message);
493 	(void) sprintf(buf, "ztest: ");
494 	/* LINTED */
495 	(void) vsprintf(buf + strlen(buf), message, args);
496 	va_end(args);
497 	if (do_perror) {
498 		(void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf),
499 		    ": %s", strerror(save_errno));
500 	}
501 	(void) fprintf(stderr, "%s\n", buf);
502 	fatal_msg = buf;			/* to ease debugging */
503 	if (ztest_dump_core)
504 		abort();
505 	exit(3);
506 }
507 
508 static int
509 str2shift(const char *buf)
510 {
511 	const char *ends = "BKMGTPEZ";
512 	int i;
513 
514 	if (buf[0] == '\0')
515 		return (0);
516 	for (i = 0; i < strlen(ends); i++) {
517 		if (toupper(buf[0]) == ends[i])
518 			break;
519 	}
520 	if (i == strlen(ends)) {
521 		(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n",
522 		    buf);
523 		usage(B_FALSE);
524 	}
525 	if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) {
526 		return (10*i);
527 	}
528 	(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf);
529 	usage(B_FALSE);
530 	/* NOTREACHED */
531 }
532 
533 static uint64_t
534 nicenumtoull(const char *buf)
535 {
536 	char *end;
537 	uint64_t val;
538 
539 	val = strtoull(buf, &end, 0);
540 	if (end == buf) {
541 		(void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf);
542 		usage(B_FALSE);
543 	} else if (end[0] == '.') {
544 		double fval = strtod(buf, &end);
545 		fval *= pow(2, str2shift(end));
546 		if (fval > UINT64_MAX) {
547 			(void) fprintf(stderr, "ztest: value too large: %s\n",
548 			    buf);
549 			usage(B_FALSE);
550 		}
551 		val = (uint64_t)fval;
552 	} else {
553 		int shift = str2shift(end);
554 		if (shift >= 64 || (val << shift) >> shift != val) {
555 			(void) fprintf(stderr, "ztest: value too large: %s\n",
556 			    buf);
557 			usage(B_FALSE);
558 		}
559 		val <<= shift;
560 	}
561 	return (val);
562 }
563 
564 static void
565 usage(boolean_t requested)
566 {
567 	const ztest_shared_opts_t *zo = &ztest_opts_defaults;
568 
569 	char nice_vdev_size[NN_NUMBUF_SZ];
570 	char nice_force_ganging[NN_NUMBUF_SZ];
571 	FILE *fp = requested ? stdout : stderr;
572 
573 	nicenum(zo->zo_vdev_size, nice_vdev_size, sizeof (nice_vdev_size));
574 	nicenum(zo->zo_metaslab_force_ganging, nice_force_ganging,
575 	    sizeof (nice_force_ganging));
576 
577 	(void) fprintf(fp, "Usage: %s\n"
578 	    "\t[-v vdevs (default: %llu)]\n"
579 	    "\t[-s size_of_each_vdev (default: %s)]\n"
580 	    "\t[-a alignment_shift (default: %d)] use 0 for random\n"
581 	    "\t[-m mirror_copies (default: %d)]\n"
582 	    "\t[-r raidz_disks (default: %d)]\n"
583 	    "\t[-R raidz_parity (default: %d)]\n"
584 	    "\t[-d datasets (default: %d)]\n"
585 	    "\t[-t threads (default: %d)]\n"
586 	    "\t[-g gang_block_threshold (default: %s)]\n"
587 	    "\t[-i init_count (default: %d)] initialize pool i times\n"
588 	    "\t[-k kill_percentage (default: %llu%%)]\n"
589 	    "\t[-p pool_name (default: %s)]\n"
590 	    "\t[-f dir (default: %s)] file directory for vdev files\n"
591 	    "\t[-V] verbose (use multiple times for ever more blather)\n"
592 	    "\t[-E] use existing pool instead of creating new one\n"
593 	    "\t[-T time (default: %llu sec)] total run time\n"
594 	    "\t[-F freezeloops (default: %llu)] max loops in spa_freeze()\n"
595 	    "\t[-P passtime (default: %llu sec)] time per pass\n"
596 	    "\t[-B alt_ztest (default: <none>)] alternate ztest path\n"
597 	    "\t[-o variable=value] ... set global variable to an unsigned\n"
598 	    "\t    32-bit integer value\n"
599 	    "\t[-h] (print help)\n"
600 	    "",
601 	    zo->zo_pool,
602 	    (u_longlong_t)zo->zo_vdevs,			/* -v */
603 	    nice_vdev_size,				/* -s */
604 	    zo->zo_ashift,				/* -a */
605 	    zo->zo_mirrors,				/* -m */
606 	    zo->zo_raidz,				/* -r */
607 	    zo->zo_raidz_parity,			/* -R */
608 	    zo->zo_datasets,				/* -d */
609 	    zo->zo_threads,				/* -t */
610 	    nice_force_ganging,				/* -g */
611 	    zo->zo_init,				/* -i */
612 	    (u_longlong_t)zo->zo_killrate,		/* -k */
613 	    zo->zo_pool,				/* -p */
614 	    zo->zo_dir,					/* -f */
615 	    (u_longlong_t)zo->zo_time,			/* -T */
616 	    (u_longlong_t)zo->zo_maxloops,		/* -F */
617 	    (u_longlong_t)zo->zo_passtime);
618 	exit(requested ? 0 : 1);
619 }
620 
621 static void
622 process_options(int argc, char **argv)
623 {
624 	char *path;
625 	ztest_shared_opts_t *zo = &ztest_opts;
626 
627 	int opt;
628 	uint64_t value;
629 	char altdir[MAXNAMELEN] = { 0 };
630 
631 	bcopy(&ztest_opts_defaults, zo, sizeof (*zo));
632 
633 	while ((opt = getopt(argc, argv,
634 	    "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:hF:B:o:")) != EOF) {
635 		value = 0;
636 		switch (opt) {
637 		case 'v':
638 		case 's':
639 		case 'a':
640 		case 'm':
641 		case 'r':
642 		case 'R':
643 		case 'd':
644 		case 't':
645 		case 'g':
646 		case 'i':
647 		case 'k':
648 		case 'T':
649 		case 'P':
650 		case 'F':
651 			value = nicenumtoull(optarg);
652 		}
653 		switch (opt) {
654 		case 'v':
655 			zo->zo_vdevs = value;
656 			break;
657 		case 's':
658 			zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value);
659 			break;
660 		case 'a':
661 			zo->zo_ashift = value;
662 			break;
663 		case 'm':
664 			zo->zo_mirrors = value;
665 			break;
666 		case 'r':
667 			zo->zo_raidz = MAX(1, value);
668 			break;
669 		case 'R':
670 			zo->zo_raidz_parity = MIN(MAX(value, 1), 3);
671 			break;
672 		case 'd':
673 			zo->zo_datasets = MAX(1, value);
674 			break;
675 		case 't':
676 			zo->zo_threads = MAX(1, value);
677 			break;
678 		case 'g':
679 			zo->zo_metaslab_force_ganging =
680 			    MAX(SPA_MINBLOCKSIZE << 1, value);
681 			break;
682 		case 'i':
683 			zo->zo_init = value;
684 			break;
685 		case 'k':
686 			zo->zo_killrate = value;
687 			break;
688 		case 'p':
689 			(void) strlcpy(zo->zo_pool, optarg,
690 			    sizeof (zo->zo_pool));
691 			break;
692 		case 'f':
693 			path = realpath(optarg, NULL);
694 			if (path == NULL) {
695 				(void) fprintf(stderr, "error: %s: %s\n",
696 				    optarg, strerror(errno));
697 				usage(B_FALSE);
698 			} else {
699 				(void) strlcpy(zo->zo_dir, path,
700 				    sizeof (zo->zo_dir));
701 			}
702 			break;
703 		case 'V':
704 			zo->zo_verbose++;
705 			break;
706 		case 'E':
707 			zo->zo_init = 0;
708 			break;
709 		case 'T':
710 			zo->zo_time = value;
711 			break;
712 		case 'P':
713 			zo->zo_passtime = MAX(1, value);
714 			break;
715 		case 'F':
716 			zo->zo_maxloops = MAX(1, value);
717 			break;
718 		case 'B':
719 			(void) strlcpy(altdir, optarg, sizeof (altdir));
720 			break;
721 		case 'o':
722 			if (set_global_var(optarg) != 0)
723 				usage(B_FALSE);
724 			break;
725 		case 'h':
726 			usage(B_TRUE);
727 			break;
728 		case '?':
729 		default:
730 			usage(B_FALSE);
731 			break;
732 		}
733 	}
734 
735 	zo->zo_raidz_parity = MIN(zo->zo_raidz_parity, zo->zo_raidz - 1);
736 
737 	zo->zo_vdevtime =
738 	    (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs :
739 	    UINT64_MAX >> 2);
740 
741 	if (strlen(altdir) > 0) {
742 		char *cmd;
743 		char *realaltdir;
744 		char *bin;
745 		char *ztest;
746 		char *isa;
747 		int isalen;
748 
749 		cmd = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
750 		realaltdir = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
751 
752 		VERIFY(NULL != realpath(getexecname(), cmd));
753 		if (0 != access(altdir, F_OK)) {
754 			ztest_dump_core = B_FALSE;
755 			fatal(B_TRUE, "invalid alternate ztest path: %s",
756 			    altdir);
757 		}
758 		VERIFY(NULL != realpath(altdir, realaltdir));
759 
760 		/*
761 		 * 'cmd' should be of the form "<anything>/usr/bin/<isa>/ztest".
762 		 * We want to extract <isa> to determine if we should use
763 		 * 32 or 64 bit binaries.
764 		 */
765 		bin = strstr(cmd, "/usr/bin/");
766 		ztest = strstr(bin, "/ztest");
767 		isa = bin + 9;
768 		isalen = ztest - isa;
769 		(void) snprintf(zo->zo_alt_ztest, sizeof (zo->zo_alt_ztest),
770 		    "%s/usr/bin/%.*s/ztest", realaltdir, isalen, isa);
771 		(void) snprintf(zo->zo_alt_libpath, sizeof (zo->zo_alt_libpath),
772 		    "%s/usr/lib/%.*s", realaltdir, isalen, isa);
773 
774 		if (0 != access(zo->zo_alt_ztest, X_OK)) {
775 			ztest_dump_core = B_FALSE;
776 			fatal(B_TRUE, "invalid alternate ztest: %s",
777 			    zo->zo_alt_ztest);
778 		} else if (0 != access(zo->zo_alt_libpath, X_OK)) {
779 			ztest_dump_core = B_FALSE;
780 			fatal(B_TRUE, "invalid alternate lib directory %s",
781 			    zo->zo_alt_libpath);
782 		}
783 
784 		umem_free(cmd, MAXPATHLEN);
785 		umem_free(realaltdir, MAXPATHLEN);
786 	}
787 }
788 
789 static void
790 ztest_kill(ztest_shared_t *zs)
791 {
792 	zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa));
793 	zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa));
794 
795 	/*
796 	 * Before we kill off ztest, make sure that the config is updated.
797 	 * See comment above spa_write_cachefile().
798 	 */
799 	mutex_enter(&spa_namespace_lock);
800 	spa_write_cachefile(ztest_spa, B_FALSE, B_FALSE);
801 	mutex_exit(&spa_namespace_lock);
802 
803 	zfs_dbgmsg_print(FTAG);
804 	(void) kill(getpid(), SIGKILL);
805 }
806 
807 static uint64_t
808 ztest_random(uint64_t range)
809 {
810 	uint64_t r;
811 
812 	ASSERT3S(ztest_fd_rand, >=, 0);
813 
814 	if (range == 0)
815 		return (0);
816 
817 	if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r))
818 		fatal(1, "short read from /dev/urandom");
819 
820 	return (r % range);
821 }
822 
823 /* ARGSUSED */
824 static void
825 ztest_record_enospc(const char *s)
826 {
827 	ztest_shared->zs_enospc_count++;
828 }
829 
830 static uint64_t
831 ztest_get_ashift(void)
832 {
833 	if (ztest_opts.zo_ashift == 0)
834 		return (SPA_MINBLOCKSHIFT + ztest_random(5));
835 	return (ztest_opts.zo_ashift);
836 }
837 
838 static nvlist_t *
839 make_vdev_file(char *path, char *aux, char *pool, size_t size, uint64_t ashift)
840 {
841 	char pathbuf[MAXPATHLEN];
842 	uint64_t vdev;
843 	nvlist_t *file;
844 
845 	if (ashift == 0)
846 		ashift = ztest_get_ashift();
847 
848 	if (path == NULL) {
849 		path = pathbuf;
850 
851 		if (aux != NULL) {
852 			vdev = ztest_shared->zs_vdev_aux;
853 			(void) snprintf(path, sizeof (pathbuf),
854 			    ztest_aux_template, ztest_opts.zo_dir,
855 			    pool == NULL ? ztest_opts.zo_pool : pool,
856 			    aux, vdev);
857 		} else {
858 			vdev = ztest_shared->zs_vdev_next_leaf++;
859 			(void) snprintf(path, sizeof (pathbuf),
860 			    ztest_dev_template, ztest_opts.zo_dir,
861 			    pool == NULL ? ztest_opts.zo_pool : pool, vdev);
862 		}
863 	}
864 
865 	if (size != 0) {
866 		int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666);
867 		if (fd == -1)
868 			fatal(1, "can't open %s", path);
869 		if (ftruncate(fd, size) != 0)
870 			fatal(1, "can't ftruncate %s", path);
871 		(void) close(fd);
872 	}
873 
874 	VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0);
875 	VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0);
876 	VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0);
877 	VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0);
878 
879 	return (file);
880 }
881 
882 static nvlist_t *
883 make_vdev_raidz(char *path, char *aux, char *pool, size_t size,
884     uint64_t ashift, int r)
885 {
886 	nvlist_t *raidz, **child;
887 	int c;
888 
889 	if (r < 2)
890 		return (make_vdev_file(path, aux, pool, size, ashift));
891 	child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL);
892 
893 	for (c = 0; c < r; c++)
894 		child[c] = make_vdev_file(path, aux, pool, size, ashift);
895 
896 	VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0);
897 	VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE,
898 	    VDEV_TYPE_RAIDZ) == 0);
899 	VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY,
900 	    ztest_opts.zo_raidz_parity) == 0);
901 	VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN,
902 	    child, r) == 0);
903 
904 	for (c = 0; c < r; c++)
905 		nvlist_free(child[c]);
906 
907 	umem_free(child, r * sizeof (nvlist_t *));
908 
909 	return (raidz);
910 }
911 
912 static nvlist_t *
913 make_vdev_mirror(char *path, char *aux, char *pool, size_t size,
914     uint64_t ashift, int r, int m)
915 {
916 	nvlist_t *mirror, **child;
917 	int c;
918 
919 	if (m < 1)
920 		return (make_vdev_raidz(path, aux, pool, size, ashift, r));
921 
922 	child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL);
923 
924 	for (c = 0; c < m; c++)
925 		child[c] = make_vdev_raidz(path, aux, pool, size, ashift, r);
926 
927 	VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0);
928 	VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE,
929 	    VDEV_TYPE_MIRROR) == 0);
930 	VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN,
931 	    child, m) == 0);
932 
933 	for (c = 0; c < m; c++)
934 		nvlist_free(child[c]);
935 
936 	umem_free(child, m * sizeof (nvlist_t *));
937 
938 	return (mirror);
939 }
940 
941 static nvlist_t *
942 make_vdev_root(char *path, char *aux, char *pool, size_t size, uint64_t ashift,
943     int log, int r, int m, int t)
944 {
945 	nvlist_t *root, **child;
946 	int c;
947 
948 	ASSERT(t > 0);
949 
950 	child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL);
951 
952 	for (c = 0; c < t; c++) {
953 		child[c] = make_vdev_mirror(path, aux, pool, size, ashift,
954 		    r, m);
955 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG,
956 		    log) == 0);
957 	}
958 
959 	VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0);
960 	VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0);
961 	VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN,
962 	    child, t) == 0);
963 
964 	for (c = 0; c < t; c++)
965 		nvlist_free(child[c]);
966 
967 	umem_free(child, t * sizeof (nvlist_t *));
968 
969 	return (root);
970 }
971 
972 /*
973  * Find a random spa version. Returns back a random spa version in the
974  * range [initial_version, SPA_VERSION_FEATURES].
975  */
976 static uint64_t
977 ztest_random_spa_version(uint64_t initial_version)
978 {
979 	uint64_t version = initial_version;
980 
981 	if (version <= SPA_VERSION_BEFORE_FEATURES) {
982 		version = version +
983 		    ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1);
984 	}
985 
986 	if (version > SPA_VERSION_BEFORE_FEATURES)
987 		version = SPA_VERSION_FEATURES;
988 
989 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
990 	return (version);
991 }
992 
993 static int
994 ztest_random_blocksize(void)
995 {
996 	uint64_t block_shift;
997 	/*
998 	 * Choose a block size >= the ashift.
999 	 * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks.
1000 	 */
1001 	int maxbs = SPA_OLD_MAXBLOCKSHIFT;
1002 	if (spa_maxblocksize(ztest_spa) == SPA_MAXBLOCKSIZE)
1003 		maxbs = 20;
1004 	block_shift = ztest_random(maxbs - ztest_spa->spa_max_ashift + 1);
1005 	return (1 << (SPA_MINBLOCKSHIFT + block_shift));
1006 }
1007 
1008 static int
1009 ztest_random_ibshift(void)
1010 {
1011 	return (DN_MIN_INDBLKSHIFT +
1012 	    ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1));
1013 }
1014 
1015 static uint64_t
1016 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok)
1017 {
1018 	uint64_t top;
1019 	vdev_t *rvd = spa->spa_root_vdev;
1020 	vdev_t *tvd;
1021 
1022 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1023 
1024 	do {
1025 		top = ztest_random(rvd->vdev_children);
1026 		tvd = rvd->vdev_child[top];
1027 	} while (!vdev_is_concrete(tvd) || (tvd->vdev_islog && !log_ok) ||
1028 	    tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL);
1029 
1030 	return (top);
1031 }
1032 
1033 static uint64_t
1034 ztest_random_dsl_prop(zfs_prop_t prop)
1035 {
1036 	uint64_t value;
1037 
1038 	do {
1039 		value = zfs_prop_random_value(prop, ztest_random(-1ULL));
1040 	} while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF);
1041 
1042 	return (value);
1043 }
1044 
1045 static int
1046 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value,
1047     boolean_t inherit)
1048 {
1049 	const char *propname = zfs_prop_to_name(prop);
1050 	const char *valname;
1051 	char setpoint[MAXPATHLEN];
1052 	uint64_t curval;
1053 	int error;
1054 
1055 	error = dsl_prop_set_int(osname, propname,
1056 	    (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value);
1057 
1058 	if (error == ENOSPC) {
1059 		ztest_record_enospc(FTAG);
1060 		return (error);
1061 	}
1062 	ASSERT0(error);
1063 
1064 	VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint));
1065 
1066 	if (ztest_opts.zo_verbose >= 6) {
1067 		VERIFY(zfs_prop_index_to_string(prop, curval, &valname) == 0);
1068 		(void) printf("%s %s = %s at '%s'\n",
1069 		    osname, propname, valname, setpoint);
1070 	}
1071 
1072 	return (error);
1073 }
1074 
1075 static int
1076 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value)
1077 {
1078 	spa_t *spa = ztest_spa;
1079 	nvlist_t *props = NULL;
1080 	int error;
1081 
1082 	VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0);
1083 	VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0);
1084 
1085 	error = spa_prop_set(spa, props);
1086 
1087 	nvlist_free(props);
1088 
1089 	if (error == ENOSPC) {
1090 		ztest_record_enospc(FTAG);
1091 		return (error);
1092 	}
1093 	ASSERT0(error);
1094 
1095 	return (error);
1096 }
1097 
1098 static void
1099 ztest_rll_init(rll_t *rll)
1100 {
1101 	rll->rll_writer = NULL;
1102 	rll->rll_readers = 0;
1103 	mutex_init(&rll->rll_lock, NULL, USYNC_THREAD, NULL);
1104 	cv_init(&rll->rll_cv, NULL, USYNC_THREAD, NULL);
1105 }
1106 
1107 static void
1108 ztest_rll_destroy(rll_t *rll)
1109 {
1110 	ASSERT(rll->rll_writer == NULL);
1111 	ASSERT(rll->rll_readers == 0);
1112 	mutex_destroy(&rll->rll_lock);
1113 	cv_destroy(&rll->rll_cv);
1114 }
1115 
1116 static void
1117 ztest_rll_lock(rll_t *rll, rl_type_t type)
1118 {
1119 	mutex_enter(&rll->rll_lock);
1120 
1121 	if (type == RL_READER) {
1122 		while (rll->rll_writer != NULL)
1123 			cv_wait(&rll->rll_cv, &rll->rll_lock);
1124 		rll->rll_readers++;
1125 	} else {
1126 		while (rll->rll_writer != NULL || rll->rll_readers)
1127 			cv_wait(&rll->rll_cv, &rll->rll_lock);
1128 		rll->rll_writer = curthread;
1129 	}
1130 
1131 	mutex_exit(&rll->rll_lock);
1132 }
1133 
1134 static void
1135 ztest_rll_unlock(rll_t *rll)
1136 {
1137 	mutex_enter(&rll->rll_lock);
1138 
1139 	if (rll->rll_writer) {
1140 		ASSERT(rll->rll_readers == 0);
1141 		rll->rll_writer = NULL;
1142 	} else {
1143 		ASSERT(rll->rll_readers != 0);
1144 		ASSERT(rll->rll_writer == NULL);
1145 		rll->rll_readers--;
1146 	}
1147 
1148 	if (rll->rll_writer == NULL && rll->rll_readers == 0)
1149 		cv_broadcast(&rll->rll_cv);
1150 
1151 	mutex_exit(&rll->rll_lock);
1152 }
1153 
1154 static void
1155 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type)
1156 {
1157 	rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1158 
1159 	ztest_rll_lock(rll, type);
1160 }
1161 
1162 static void
1163 ztest_object_unlock(ztest_ds_t *zd, uint64_t object)
1164 {
1165 	rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1166 
1167 	ztest_rll_unlock(rll);
1168 }
1169 
1170 static rl_t *
1171 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset,
1172     uint64_t size, rl_type_t type)
1173 {
1174 	uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1));
1175 	rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)];
1176 	rl_t *rl;
1177 
1178 	rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL);
1179 	rl->rl_object = object;
1180 	rl->rl_offset = offset;
1181 	rl->rl_size = size;
1182 	rl->rl_lock = rll;
1183 
1184 	ztest_rll_lock(rll, type);
1185 
1186 	return (rl);
1187 }
1188 
1189 static void
1190 ztest_range_unlock(rl_t *rl)
1191 {
1192 	rll_t *rll = rl->rl_lock;
1193 
1194 	ztest_rll_unlock(rll);
1195 
1196 	umem_free(rl, sizeof (*rl));
1197 }
1198 
1199 static void
1200 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os)
1201 {
1202 	zd->zd_os = os;
1203 	zd->zd_zilog = dmu_objset_zil(os);
1204 	zd->zd_shared = szd;
1205 	dmu_objset_name(os, zd->zd_name);
1206 
1207 	if (zd->zd_shared != NULL)
1208 		zd->zd_shared->zd_seq = 0;
1209 
1210 	rw_init(&zd->zd_zilog_lock, NULL, USYNC_THREAD, NULL);
1211 	mutex_init(&zd->zd_dirobj_lock, NULL, USYNC_THREAD, NULL);
1212 
1213 	for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1214 		ztest_rll_init(&zd->zd_object_lock[l]);
1215 
1216 	for (int l = 0; l < ZTEST_RANGE_LOCKS; l++)
1217 		ztest_rll_init(&zd->zd_range_lock[l]);
1218 }
1219 
1220 static void
1221 ztest_zd_fini(ztest_ds_t *zd)
1222 {
1223 	mutex_destroy(&zd->zd_dirobj_lock);
1224 
1225 	for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1226 		ztest_rll_destroy(&zd->zd_object_lock[l]);
1227 
1228 	for (int l = 0; l < ZTEST_RANGE_LOCKS; l++)
1229 		ztest_rll_destroy(&zd->zd_range_lock[l]);
1230 }
1231 
1232 #define	TXG_MIGHTWAIT	(ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT)
1233 
1234 static uint64_t
1235 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag)
1236 {
1237 	uint64_t txg;
1238 	int error;
1239 
1240 	/*
1241 	 * Attempt to assign tx to some transaction group.
1242 	 */
1243 	error = dmu_tx_assign(tx, txg_how);
1244 	if (error) {
1245 		if (error == ERESTART) {
1246 			ASSERT(txg_how == TXG_NOWAIT);
1247 			dmu_tx_wait(tx);
1248 		} else {
1249 			ASSERT3U(error, ==, ENOSPC);
1250 			ztest_record_enospc(tag);
1251 		}
1252 		dmu_tx_abort(tx);
1253 		return (0);
1254 	}
1255 	txg = dmu_tx_get_txg(tx);
1256 	ASSERT(txg != 0);
1257 	return (txg);
1258 }
1259 
1260 static void
1261 ztest_pattern_set(void *buf, uint64_t size, uint64_t value)
1262 {
1263 	uint64_t *ip = buf;
1264 	uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size);
1265 
1266 	while (ip < ip_end)
1267 		*ip++ = value;
1268 }
1269 
1270 static boolean_t
1271 ztest_pattern_match(void *buf, uint64_t size, uint64_t value)
1272 {
1273 	uint64_t *ip = buf;
1274 	uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size);
1275 	uint64_t diff = 0;
1276 
1277 	while (ip < ip_end)
1278 		diff |= (value - *ip++);
1279 
1280 	return (diff == 0);
1281 }
1282 
1283 static void
1284 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1285     uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg)
1286 {
1287 	bt->bt_magic = BT_MAGIC;
1288 	bt->bt_objset = dmu_objset_id(os);
1289 	bt->bt_object = object;
1290 	bt->bt_offset = offset;
1291 	bt->bt_gen = gen;
1292 	bt->bt_txg = txg;
1293 	bt->bt_crtxg = crtxg;
1294 }
1295 
1296 static void
1297 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1298     uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg)
1299 {
1300 	ASSERT3U(bt->bt_magic, ==, BT_MAGIC);
1301 	ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os));
1302 	ASSERT3U(bt->bt_object, ==, object);
1303 	ASSERT3U(bt->bt_offset, ==, offset);
1304 	ASSERT3U(bt->bt_gen, <=, gen);
1305 	ASSERT3U(bt->bt_txg, <=, txg);
1306 	ASSERT3U(bt->bt_crtxg, ==, crtxg);
1307 }
1308 
1309 static ztest_block_tag_t *
1310 ztest_bt_bonus(dmu_buf_t *db)
1311 {
1312 	dmu_object_info_t doi;
1313 	ztest_block_tag_t *bt;
1314 
1315 	dmu_object_info_from_db(db, &doi);
1316 	ASSERT3U(doi.doi_bonus_size, <=, db->db_size);
1317 	ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt));
1318 	bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt));
1319 
1320 	return (bt);
1321 }
1322 
1323 /*
1324  * ZIL logging ops
1325  */
1326 
1327 #define	lrz_type	lr_mode
1328 #define	lrz_blocksize	lr_uid
1329 #define	lrz_ibshift	lr_gid
1330 #define	lrz_bonustype	lr_rdev
1331 #define	lrz_bonuslen	lr_crtime[1]
1332 
1333 static void
1334 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr)
1335 {
1336 	char *name = (void *)(lr + 1);		/* name follows lr */
1337 	size_t namesize = strlen(name) + 1;
1338 	itx_t *itx;
1339 
1340 	if (zil_replaying(zd->zd_zilog, tx))
1341 		return;
1342 
1343 	itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize);
1344 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1345 	    sizeof (*lr) + namesize - sizeof (lr_t));
1346 
1347 	zil_itx_assign(zd->zd_zilog, itx, tx);
1348 }
1349 
1350 static void
1351 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object)
1352 {
1353 	char *name = (void *)(lr + 1);		/* name follows lr */
1354 	size_t namesize = strlen(name) + 1;
1355 	itx_t *itx;
1356 
1357 	if (zil_replaying(zd->zd_zilog, tx))
1358 		return;
1359 
1360 	itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize);
1361 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1362 	    sizeof (*lr) + namesize - sizeof (lr_t));
1363 
1364 	itx->itx_oid = object;
1365 	zil_itx_assign(zd->zd_zilog, itx, tx);
1366 }
1367 
1368 static void
1369 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr)
1370 {
1371 	itx_t *itx;
1372 	itx_wr_state_t write_state = ztest_random(WR_NUM_STATES);
1373 
1374 	if (zil_replaying(zd->zd_zilog, tx))
1375 		return;
1376 
1377 	if (lr->lr_length > ZIL_MAX_LOG_DATA)
1378 		write_state = WR_INDIRECT;
1379 
1380 	itx = zil_itx_create(TX_WRITE,
1381 	    sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0));
1382 
1383 	if (write_state == WR_COPIED &&
1384 	    dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length,
1385 	    ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) {
1386 		zil_itx_destroy(itx);
1387 		itx = zil_itx_create(TX_WRITE, sizeof (*lr));
1388 		write_state = WR_NEED_COPY;
1389 	}
1390 	itx->itx_private = zd;
1391 	itx->itx_wr_state = write_state;
1392 	itx->itx_sync = (ztest_random(8) == 0);
1393 
1394 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1395 	    sizeof (*lr) - sizeof (lr_t));
1396 
1397 	zil_itx_assign(zd->zd_zilog, itx, tx);
1398 }
1399 
1400 static void
1401 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr)
1402 {
1403 	itx_t *itx;
1404 
1405 	if (zil_replaying(zd->zd_zilog, tx))
1406 		return;
1407 
1408 	itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
1409 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1410 	    sizeof (*lr) - sizeof (lr_t));
1411 
1412 	itx->itx_sync = B_FALSE;
1413 	zil_itx_assign(zd->zd_zilog, itx, tx);
1414 }
1415 
1416 static void
1417 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr)
1418 {
1419 	itx_t *itx;
1420 
1421 	if (zil_replaying(zd->zd_zilog, tx))
1422 		return;
1423 
1424 	itx = zil_itx_create(TX_SETATTR, sizeof (*lr));
1425 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1426 	    sizeof (*lr) - sizeof (lr_t));
1427 
1428 	itx->itx_sync = B_FALSE;
1429 	zil_itx_assign(zd->zd_zilog, itx, tx);
1430 }
1431 
1432 /*
1433  * ZIL replay ops
1434  */
1435 static int
1436 ztest_replay_create(void *arg1, void *arg2, boolean_t byteswap)
1437 {
1438 	ztest_ds_t *zd = arg1;
1439 	lr_create_t *lr = arg2;
1440 	char *name = (void *)(lr + 1);		/* name follows lr */
1441 	objset_t *os = zd->zd_os;
1442 	ztest_block_tag_t *bbt;
1443 	dmu_buf_t *db;
1444 	dmu_tx_t *tx;
1445 	uint64_t txg;
1446 	int error = 0;
1447 
1448 	if (byteswap)
1449 		byteswap_uint64_array(lr, sizeof (*lr));
1450 
1451 	ASSERT(lr->lr_doid == ZTEST_DIROBJ);
1452 	ASSERT(name[0] != '\0');
1453 
1454 	tx = dmu_tx_create(os);
1455 
1456 	dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name);
1457 
1458 	if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1459 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1460 	} else {
1461 		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1462 	}
1463 
1464 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1465 	if (txg == 0)
1466 		return (ENOSPC);
1467 
1468 	ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid);
1469 
1470 	if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1471 		if (lr->lr_foid == 0) {
1472 			lr->lr_foid = zap_create(os,
1473 			    lr->lrz_type, lr->lrz_bonustype,
1474 			    lr->lrz_bonuslen, tx);
1475 		} else {
1476 			error = zap_create_claim(os, lr->lr_foid,
1477 			    lr->lrz_type, lr->lrz_bonustype,
1478 			    lr->lrz_bonuslen, tx);
1479 		}
1480 	} else {
1481 		if (lr->lr_foid == 0) {
1482 			lr->lr_foid = dmu_object_alloc(os,
1483 			    lr->lrz_type, 0, lr->lrz_bonustype,
1484 			    lr->lrz_bonuslen, tx);
1485 		} else {
1486 			error = dmu_object_claim(os, lr->lr_foid,
1487 			    lr->lrz_type, 0, lr->lrz_bonustype,
1488 			    lr->lrz_bonuslen, tx);
1489 		}
1490 	}
1491 
1492 	if (error) {
1493 		ASSERT3U(error, ==, EEXIST);
1494 		ASSERT(zd->zd_zilog->zl_replay);
1495 		dmu_tx_commit(tx);
1496 		return (error);
1497 	}
1498 
1499 	ASSERT(lr->lr_foid != 0);
1500 
1501 	if (lr->lrz_type != DMU_OT_ZAP_OTHER)
1502 		VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid,
1503 		    lr->lrz_blocksize, lr->lrz_ibshift, tx));
1504 
1505 	VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1506 	bbt = ztest_bt_bonus(db);
1507 	dmu_buf_will_dirty(db, tx);
1508 	ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_gen, txg, txg);
1509 	dmu_buf_rele(db, FTAG);
1510 
1511 	VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1,
1512 	    &lr->lr_foid, tx));
1513 
1514 	(void) ztest_log_create(zd, tx, lr);
1515 
1516 	dmu_tx_commit(tx);
1517 
1518 	return (0);
1519 }
1520 
1521 static int
1522 ztest_replay_remove(void *arg1, void *arg2, boolean_t byteswap)
1523 {
1524 	ztest_ds_t *zd = arg1;
1525 	lr_remove_t *lr = arg2;
1526 	char *name = (void *)(lr + 1);		/* name follows lr */
1527 	objset_t *os = zd->zd_os;
1528 	dmu_object_info_t doi;
1529 	dmu_tx_t *tx;
1530 	uint64_t object, txg;
1531 
1532 	if (byteswap)
1533 		byteswap_uint64_array(lr, sizeof (*lr));
1534 
1535 	ASSERT(lr->lr_doid == ZTEST_DIROBJ);
1536 	ASSERT(name[0] != '\0');
1537 
1538 	VERIFY3U(0, ==,
1539 	    zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object));
1540 	ASSERT(object != 0);
1541 
1542 	ztest_object_lock(zd, object, RL_WRITER);
1543 
1544 	VERIFY3U(0, ==, dmu_object_info(os, object, &doi));
1545 
1546 	tx = dmu_tx_create(os);
1547 
1548 	dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name);
1549 	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
1550 
1551 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1552 	if (txg == 0) {
1553 		ztest_object_unlock(zd, object);
1554 		return (ENOSPC);
1555 	}
1556 
1557 	if (doi.doi_type == DMU_OT_ZAP_OTHER) {
1558 		VERIFY3U(0, ==, zap_destroy(os, object, tx));
1559 	} else {
1560 		VERIFY3U(0, ==, dmu_object_free(os, object, tx));
1561 	}
1562 
1563 	VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx));
1564 
1565 	(void) ztest_log_remove(zd, tx, lr, object);
1566 
1567 	dmu_tx_commit(tx);
1568 
1569 	ztest_object_unlock(zd, object);
1570 
1571 	return (0);
1572 }
1573 
1574 static int
1575 ztest_replay_write(void *arg1, void *arg2, boolean_t byteswap)
1576 {
1577 	ztest_ds_t *zd = arg1;
1578 	lr_write_t *lr = arg2;
1579 	objset_t *os = zd->zd_os;
1580 	void *data = lr + 1;			/* data follows lr */
1581 	uint64_t offset, length;
1582 	ztest_block_tag_t *bt = data;
1583 	ztest_block_tag_t *bbt;
1584 	uint64_t gen, txg, lrtxg, crtxg;
1585 	dmu_object_info_t doi;
1586 	dmu_tx_t *tx;
1587 	dmu_buf_t *db;
1588 	arc_buf_t *abuf = NULL;
1589 	rl_t *rl;
1590 
1591 	if (byteswap)
1592 		byteswap_uint64_array(lr, sizeof (*lr));
1593 
1594 	offset = lr->lr_offset;
1595 	length = lr->lr_length;
1596 
1597 	/* If it's a dmu_sync() block, write the whole block */
1598 	if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
1599 		uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
1600 		if (length < blocksize) {
1601 			offset -= offset % blocksize;
1602 			length = blocksize;
1603 		}
1604 	}
1605 
1606 	if (bt->bt_magic == BSWAP_64(BT_MAGIC))
1607 		byteswap_uint64_array(bt, sizeof (*bt));
1608 
1609 	if (bt->bt_magic != BT_MAGIC)
1610 		bt = NULL;
1611 
1612 	ztest_object_lock(zd, lr->lr_foid, RL_READER);
1613 	rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER);
1614 
1615 	VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1616 
1617 	dmu_object_info_from_db(db, &doi);
1618 
1619 	bbt = ztest_bt_bonus(db);
1620 	ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1621 	gen = bbt->bt_gen;
1622 	crtxg = bbt->bt_crtxg;
1623 	lrtxg = lr->lr_common.lrc_txg;
1624 
1625 	tx = dmu_tx_create(os);
1626 
1627 	dmu_tx_hold_write(tx, lr->lr_foid, offset, length);
1628 
1629 	if (ztest_random(8) == 0 && length == doi.doi_data_block_size &&
1630 	    P2PHASE(offset, length) == 0)
1631 		abuf = dmu_request_arcbuf(db, length);
1632 
1633 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1634 	if (txg == 0) {
1635 		if (abuf != NULL)
1636 			dmu_return_arcbuf(abuf);
1637 		dmu_buf_rele(db, FTAG);
1638 		ztest_range_unlock(rl);
1639 		ztest_object_unlock(zd, lr->lr_foid);
1640 		return (ENOSPC);
1641 	}
1642 
1643 	if (bt != NULL) {
1644 		/*
1645 		 * Usually, verify the old data before writing new data --
1646 		 * but not always, because we also want to verify correct
1647 		 * behavior when the data was not recently read into cache.
1648 		 */
1649 		ASSERT(offset % doi.doi_data_block_size == 0);
1650 		if (ztest_random(4) != 0) {
1651 			int prefetch = ztest_random(2) ?
1652 			    DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH;
1653 			ztest_block_tag_t rbt;
1654 
1655 			VERIFY(dmu_read(os, lr->lr_foid, offset,
1656 			    sizeof (rbt), &rbt, prefetch) == 0);
1657 			if (rbt.bt_magic == BT_MAGIC) {
1658 				ztest_bt_verify(&rbt, os, lr->lr_foid,
1659 				    offset, gen, txg, crtxg);
1660 			}
1661 		}
1662 
1663 		/*
1664 		 * Writes can appear to be newer than the bonus buffer because
1665 		 * the ztest_get_data() callback does a dmu_read() of the
1666 		 * open-context data, which may be different than the data
1667 		 * as it was when the write was generated.
1668 		 */
1669 		if (zd->zd_zilog->zl_replay) {
1670 			ztest_bt_verify(bt, os, lr->lr_foid, offset,
1671 			    MAX(gen, bt->bt_gen), MAX(txg, lrtxg),
1672 			    bt->bt_crtxg);
1673 		}
1674 
1675 		/*
1676 		 * Set the bt's gen/txg to the bonus buffer's gen/txg
1677 		 * so that all of the usual ASSERTs will work.
1678 		 */
1679 		ztest_bt_generate(bt, os, lr->lr_foid, offset, gen, txg, crtxg);
1680 	}
1681 
1682 	if (abuf == NULL) {
1683 		dmu_write(os, lr->lr_foid, offset, length, data, tx);
1684 	} else {
1685 		bcopy(data, abuf->b_data, length);
1686 		dmu_assign_arcbuf(db, offset, abuf, tx);
1687 	}
1688 
1689 	(void) ztest_log_write(zd, tx, lr);
1690 
1691 	dmu_buf_rele(db, FTAG);
1692 
1693 	dmu_tx_commit(tx);
1694 
1695 	ztest_range_unlock(rl);
1696 	ztest_object_unlock(zd, lr->lr_foid);
1697 
1698 	return (0);
1699 }
1700 
1701 static int
1702 ztest_replay_truncate(void *arg1, void *arg2, boolean_t byteswap)
1703 {
1704 	ztest_ds_t *zd = arg1;
1705 	lr_truncate_t *lr = arg2;
1706 	objset_t *os = zd->zd_os;
1707 	dmu_tx_t *tx;
1708 	uint64_t txg;
1709 	rl_t *rl;
1710 
1711 	if (byteswap)
1712 		byteswap_uint64_array(lr, sizeof (*lr));
1713 
1714 	ztest_object_lock(zd, lr->lr_foid, RL_READER);
1715 	rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length,
1716 	    RL_WRITER);
1717 
1718 	tx = dmu_tx_create(os);
1719 
1720 	dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length);
1721 
1722 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1723 	if (txg == 0) {
1724 		ztest_range_unlock(rl);
1725 		ztest_object_unlock(zd, lr->lr_foid);
1726 		return (ENOSPC);
1727 	}
1728 
1729 	VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset,
1730 	    lr->lr_length, tx) == 0);
1731 
1732 	(void) ztest_log_truncate(zd, tx, lr);
1733 
1734 	dmu_tx_commit(tx);
1735 
1736 	ztest_range_unlock(rl);
1737 	ztest_object_unlock(zd, lr->lr_foid);
1738 
1739 	return (0);
1740 }
1741 
1742 static int
1743 ztest_replay_setattr(void *arg1, void *arg2, boolean_t byteswap)
1744 {
1745 	ztest_ds_t *zd = arg1;
1746 	lr_setattr_t *lr = arg2;
1747 	objset_t *os = zd->zd_os;
1748 	dmu_tx_t *tx;
1749 	dmu_buf_t *db;
1750 	ztest_block_tag_t *bbt;
1751 	uint64_t txg, lrtxg, crtxg;
1752 
1753 	if (byteswap)
1754 		byteswap_uint64_array(lr, sizeof (*lr));
1755 
1756 	ztest_object_lock(zd, lr->lr_foid, RL_WRITER);
1757 
1758 	VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1759 
1760 	tx = dmu_tx_create(os);
1761 	dmu_tx_hold_bonus(tx, lr->lr_foid);
1762 
1763 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1764 	if (txg == 0) {
1765 		dmu_buf_rele(db, FTAG);
1766 		ztest_object_unlock(zd, lr->lr_foid);
1767 		return (ENOSPC);
1768 	}
1769 
1770 	bbt = ztest_bt_bonus(db);
1771 	ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1772 	crtxg = bbt->bt_crtxg;
1773 	lrtxg = lr->lr_common.lrc_txg;
1774 
1775 	if (zd->zd_zilog->zl_replay) {
1776 		ASSERT(lr->lr_size != 0);
1777 		ASSERT(lr->lr_mode != 0);
1778 		ASSERT(lrtxg != 0);
1779 	} else {
1780 		/*
1781 		 * Randomly change the size and increment the generation.
1782 		 */
1783 		lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) *
1784 		    sizeof (*bbt);
1785 		lr->lr_mode = bbt->bt_gen + 1;
1786 		ASSERT(lrtxg == 0);
1787 	}
1788 
1789 	/*
1790 	 * Verify that the current bonus buffer is not newer than our txg.
1791 	 */
1792 	ztest_bt_verify(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode,
1793 	    MAX(txg, lrtxg), crtxg);
1794 
1795 	dmu_buf_will_dirty(db, tx);
1796 
1797 	ASSERT3U(lr->lr_size, >=, sizeof (*bbt));
1798 	ASSERT3U(lr->lr_size, <=, db->db_size);
1799 	VERIFY0(dmu_set_bonus(db, lr->lr_size, tx));
1800 	bbt = ztest_bt_bonus(db);
1801 
1802 	ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, txg, crtxg);
1803 
1804 	dmu_buf_rele(db, FTAG);
1805 
1806 	(void) ztest_log_setattr(zd, tx, lr);
1807 
1808 	dmu_tx_commit(tx);
1809 
1810 	ztest_object_unlock(zd, lr->lr_foid);
1811 
1812 	return (0);
1813 }
1814 
1815 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = {
1816 	NULL,			/* 0 no such transaction type */
1817 	ztest_replay_create,	/* TX_CREATE */
1818 	NULL,			/* TX_MKDIR */
1819 	NULL,			/* TX_MKXATTR */
1820 	NULL,			/* TX_SYMLINK */
1821 	ztest_replay_remove,	/* TX_REMOVE */
1822 	NULL,			/* TX_RMDIR */
1823 	NULL,			/* TX_LINK */
1824 	NULL,			/* TX_RENAME */
1825 	ztest_replay_write,	/* TX_WRITE */
1826 	ztest_replay_truncate,	/* TX_TRUNCATE */
1827 	ztest_replay_setattr,	/* TX_SETATTR */
1828 	NULL,			/* TX_ACL */
1829 	NULL,			/* TX_CREATE_ACL */
1830 	NULL,			/* TX_CREATE_ATTR */
1831 	NULL,			/* TX_CREATE_ACL_ATTR */
1832 	NULL,			/* TX_MKDIR_ACL */
1833 	NULL,			/* TX_MKDIR_ATTR */
1834 	NULL,			/* TX_MKDIR_ACL_ATTR */
1835 	NULL,			/* TX_WRITE2 */
1836 };
1837 
1838 /*
1839  * ZIL get_data callbacks
1840  */
1841 
1842 static void
1843 ztest_get_done(zgd_t *zgd, int error)
1844 {
1845 	ztest_ds_t *zd = zgd->zgd_private;
1846 	uint64_t object = zgd->zgd_rl->rl_object;
1847 
1848 	if (zgd->zgd_db)
1849 		dmu_buf_rele(zgd->zgd_db, zgd);
1850 
1851 	ztest_range_unlock(zgd->zgd_rl);
1852 	ztest_object_unlock(zd, object);
1853 
1854 	if (error == 0 && zgd->zgd_bp)
1855 		zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1856 
1857 	umem_free(zgd, sizeof (*zgd));
1858 }
1859 
1860 static int
1861 ztest_get_data(void *arg, lr_write_t *lr, char *buf, struct lwb *lwb,
1862     zio_t *zio)
1863 {
1864 	ztest_ds_t *zd = arg;
1865 	objset_t *os = zd->zd_os;
1866 	uint64_t object = lr->lr_foid;
1867 	uint64_t offset = lr->lr_offset;
1868 	uint64_t size = lr->lr_length;
1869 	uint64_t txg = lr->lr_common.lrc_txg;
1870 	uint64_t crtxg;
1871 	dmu_object_info_t doi;
1872 	dmu_buf_t *db;
1873 	zgd_t *zgd;
1874 	int error;
1875 
1876 	ASSERT3P(lwb, !=, NULL);
1877 	ASSERT3P(zio, !=, NULL);
1878 	ASSERT3U(size, !=, 0);
1879 
1880 	ztest_object_lock(zd, object, RL_READER);
1881 	error = dmu_bonus_hold(os, object, FTAG, &db);
1882 	if (error) {
1883 		ztest_object_unlock(zd, object);
1884 		return (error);
1885 	}
1886 
1887 	crtxg = ztest_bt_bonus(db)->bt_crtxg;
1888 
1889 	if (crtxg == 0 || crtxg > txg) {
1890 		dmu_buf_rele(db, FTAG);
1891 		ztest_object_unlock(zd, object);
1892 		return (ENOENT);
1893 	}
1894 
1895 	dmu_object_info_from_db(db, &doi);
1896 	dmu_buf_rele(db, FTAG);
1897 	db = NULL;
1898 
1899 	zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL);
1900 	zgd->zgd_lwb = lwb;
1901 	zgd->zgd_private = zd;
1902 
1903 	if (buf != NULL) {	/* immediate write */
1904 		zgd->zgd_rl = ztest_range_lock(zd, object, offset, size,
1905 		    RL_READER);
1906 
1907 		error = dmu_read(os, object, offset, size, buf,
1908 		    DMU_READ_NO_PREFETCH);
1909 		ASSERT(error == 0);
1910 	} else {
1911 		size = doi.doi_data_block_size;
1912 		if (ISP2(size)) {
1913 			offset = P2ALIGN(offset, size);
1914 		} else {
1915 			ASSERT(offset < size);
1916 			offset = 0;
1917 		}
1918 
1919 		zgd->zgd_rl = ztest_range_lock(zd, object, offset, size,
1920 		    RL_READER);
1921 
1922 		error = dmu_buf_hold(os, object, offset, zgd, &db,
1923 		    DMU_READ_NO_PREFETCH);
1924 
1925 		if (error == 0) {
1926 			blkptr_t *bp = &lr->lr_blkptr;
1927 
1928 			zgd->zgd_db = db;
1929 			zgd->zgd_bp = bp;
1930 
1931 			ASSERT(db->db_offset == offset);
1932 			ASSERT(db->db_size == size);
1933 
1934 			error = dmu_sync(zio, lr->lr_common.lrc_txg,
1935 			    ztest_get_done, zgd);
1936 
1937 			if (error == 0)
1938 				return (0);
1939 		}
1940 	}
1941 
1942 	ztest_get_done(zgd, error);
1943 
1944 	return (error);
1945 }
1946 
1947 static void *
1948 ztest_lr_alloc(size_t lrsize, char *name)
1949 {
1950 	char *lr;
1951 	size_t namesize = name ? strlen(name) + 1 : 0;
1952 
1953 	lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL);
1954 
1955 	if (name)
1956 		bcopy(name, lr + lrsize, namesize);
1957 
1958 	return (lr);
1959 }
1960 
1961 void
1962 ztest_lr_free(void *lr, size_t lrsize, char *name)
1963 {
1964 	size_t namesize = name ? strlen(name) + 1 : 0;
1965 
1966 	umem_free(lr, lrsize + namesize);
1967 }
1968 
1969 /*
1970  * Lookup a bunch of objects.  Returns the number of objects not found.
1971  */
1972 static int
1973 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count)
1974 {
1975 	int missing = 0;
1976 	int error;
1977 
1978 	ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
1979 
1980 	for (int i = 0; i < count; i++, od++) {
1981 		od->od_object = 0;
1982 		error = zap_lookup(zd->zd_os, od->od_dir, od->od_name,
1983 		    sizeof (uint64_t), 1, &od->od_object);
1984 		if (error) {
1985 			ASSERT(error == ENOENT);
1986 			ASSERT(od->od_object == 0);
1987 			missing++;
1988 		} else {
1989 			dmu_buf_t *db;
1990 			ztest_block_tag_t *bbt;
1991 			dmu_object_info_t doi;
1992 
1993 			ASSERT(od->od_object != 0);
1994 			ASSERT(missing == 0);	/* there should be no gaps */
1995 
1996 			ztest_object_lock(zd, od->od_object, RL_READER);
1997 			VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os,
1998 			    od->od_object, FTAG, &db));
1999 			dmu_object_info_from_db(db, &doi);
2000 			bbt = ztest_bt_bonus(db);
2001 			ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2002 			od->od_type = doi.doi_type;
2003 			od->od_blocksize = doi.doi_data_block_size;
2004 			od->od_gen = bbt->bt_gen;
2005 			dmu_buf_rele(db, FTAG);
2006 			ztest_object_unlock(zd, od->od_object);
2007 		}
2008 	}
2009 
2010 	return (missing);
2011 }
2012 
2013 static int
2014 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count)
2015 {
2016 	int missing = 0;
2017 
2018 	ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2019 
2020 	for (int i = 0; i < count; i++, od++) {
2021 		if (missing) {
2022 			od->od_object = 0;
2023 			missing++;
2024 			continue;
2025 		}
2026 
2027 		lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2028 
2029 		lr->lr_doid = od->od_dir;
2030 		lr->lr_foid = 0;	/* 0 to allocate, > 0 to claim */
2031 		lr->lrz_type = od->od_crtype;
2032 		lr->lrz_blocksize = od->od_crblocksize;
2033 		lr->lrz_ibshift = ztest_random_ibshift();
2034 		lr->lrz_bonustype = DMU_OT_UINT64_OTHER;
2035 		lr->lrz_bonuslen = dmu_bonus_max();
2036 		lr->lr_gen = od->od_crgen;
2037 		lr->lr_crtime[0] = time(NULL);
2038 
2039 		if (ztest_replay_create(zd, lr, B_FALSE) != 0) {
2040 			ASSERT(missing == 0);
2041 			od->od_object = 0;
2042 			missing++;
2043 		} else {
2044 			od->od_object = lr->lr_foid;
2045 			od->od_type = od->od_crtype;
2046 			od->od_blocksize = od->od_crblocksize;
2047 			od->od_gen = od->od_crgen;
2048 			ASSERT(od->od_object != 0);
2049 		}
2050 
2051 		ztest_lr_free(lr, sizeof (*lr), od->od_name);
2052 	}
2053 
2054 	return (missing);
2055 }
2056 
2057 static int
2058 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count)
2059 {
2060 	int missing = 0;
2061 	int error;
2062 
2063 	ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2064 
2065 	od += count - 1;
2066 
2067 	for (int i = count - 1; i >= 0; i--, od--) {
2068 		if (missing) {
2069 			missing++;
2070 			continue;
2071 		}
2072 
2073 		/*
2074 		 * No object was found.
2075 		 */
2076 		if (od->od_object == 0)
2077 			continue;
2078 
2079 		lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2080 
2081 		lr->lr_doid = od->od_dir;
2082 
2083 		if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) {
2084 			ASSERT3U(error, ==, ENOSPC);
2085 			missing++;
2086 		} else {
2087 			od->od_object = 0;
2088 		}
2089 		ztest_lr_free(lr, sizeof (*lr), od->od_name);
2090 	}
2091 
2092 	return (missing);
2093 }
2094 
2095 static int
2096 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size,
2097     void *data)
2098 {
2099 	lr_write_t *lr;
2100 	int error;
2101 
2102 	lr = ztest_lr_alloc(sizeof (*lr) + size, NULL);
2103 
2104 	lr->lr_foid = object;
2105 	lr->lr_offset = offset;
2106 	lr->lr_length = size;
2107 	lr->lr_blkoff = 0;
2108 	BP_ZERO(&lr->lr_blkptr);
2109 
2110 	bcopy(data, lr + 1, size);
2111 
2112 	error = ztest_replay_write(zd, lr, B_FALSE);
2113 
2114 	ztest_lr_free(lr, sizeof (*lr) + size, NULL);
2115 
2116 	return (error);
2117 }
2118 
2119 static int
2120 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2121 {
2122 	lr_truncate_t *lr;
2123 	int error;
2124 
2125 	lr = ztest_lr_alloc(sizeof (*lr), NULL);
2126 
2127 	lr->lr_foid = object;
2128 	lr->lr_offset = offset;
2129 	lr->lr_length = size;
2130 
2131 	error = ztest_replay_truncate(zd, lr, B_FALSE);
2132 
2133 	ztest_lr_free(lr, sizeof (*lr), NULL);
2134 
2135 	return (error);
2136 }
2137 
2138 static int
2139 ztest_setattr(ztest_ds_t *zd, uint64_t object)
2140 {
2141 	lr_setattr_t *lr;
2142 	int error;
2143 
2144 	lr = ztest_lr_alloc(sizeof (*lr), NULL);
2145 
2146 	lr->lr_foid = object;
2147 	lr->lr_size = 0;
2148 	lr->lr_mode = 0;
2149 
2150 	error = ztest_replay_setattr(zd, lr, B_FALSE);
2151 
2152 	ztest_lr_free(lr, sizeof (*lr), NULL);
2153 
2154 	return (error);
2155 }
2156 
2157 static void
2158 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2159 {
2160 	objset_t *os = zd->zd_os;
2161 	dmu_tx_t *tx;
2162 	uint64_t txg;
2163 	rl_t *rl;
2164 
2165 	txg_wait_synced(dmu_objset_pool(os), 0);
2166 
2167 	ztest_object_lock(zd, object, RL_READER);
2168 	rl = ztest_range_lock(zd, object, offset, size, RL_WRITER);
2169 
2170 	tx = dmu_tx_create(os);
2171 
2172 	dmu_tx_hold_write(tx, object, offset, size);
2173 
2174 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2175 
2176 	if (txg != 0) {
2177 		dmu_prealloc(os, object, offset, size, tx);
2178 		dmu_tx_commit(tx);
2179 		txg_wait_synced(dmu_objset_pool(os), txg);
2180 	} else {
2181 		(void) dmu_free_long_range(os, object, offset, size);
2182 	}
2183 
2184 	ztest_range_unlock(rl);
2185 	ztest_object_unlock(zd, object);
2186 }
2187 
2188 static void
2189 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset)
2190 {
2191 	int err;
2192 	ztest_block_tag_t wbt;
2193 	dmu_object_info_t doi;
2194 	enum ztest_io_type io_type;
2195 	uint64_t blocksize;
2196 	void *data;
2197 
2198 	VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0);
2199 	blocksize = doi.doi_data_block_size;
2200 	data = umem_alloc(blocksize, UMEM_NOFAIL);
2201 
2202 	/*
2203 	 * Pick an i/o type at random, biased toward writing block tags.
2204 	 */
2205 	io_type = ztest_random(ZTEST_IO_TYPES);
2206 	if (ztest_random(2) == 0)
2207 		io_type = ZTEST_IO_WRITE_TAG;
2208 
2209 	rw_enter(&zd->zd_zilog_lock, RW_READER);
2210 
2211 	switch (io_type) {
2212 
2213 	case ZTEST_IO_WRITE_TAG:
2214 		ztest_bt_generate(&wbt, zd->zd_os, object, offset, 0, 0, 0);
2215 		(void) ztest_write(zd, object, offset, sizeof (wbt), &wbt);
2216 		break;
2217 
2218 	case ZTEST_IO_WRITE_PATTERN:
2219 		(void) memset(data, 'a' + (object + offset) % 5, blocksize);
2220 		if (ztest_random(2) == 0) {
2221 			/*
2222 			 * Induce fletcher2 collisions to ensure that
2223 			 * zio_ddt_collision() detects and resolves them
2224 			 * when using fletcher2-verify for deduplication.
2225 			 */
2226 			((uint64_t *)data)[0] ^= 1ULL << 63;
2227 			((uint64_t *)data)[4] ^= 1ULL << 63;
2228 		}
2229 		(void) ztest_write(zd, object, offset, blocksize, data);
2230 		break;
2231 
2232 	case ZTEST_IO_WRITE_ZEROES:
2233 		bzero(data, blocksize);
2234 		(void) ztest_write(zd, object, offset, blocksize, data);
2235 		break;
2236 
2237 	case ZTEST_IO_TRUNCATE:
2238 		(void) ztest_truncate(zd, object, offset, blocksize);
2239 		break;
2240 
2241 	case ZTEST_IO_SETATTR:
2242 		(void) ztest_setattr(zd, object);
2243 		break;
2244 
2245 	case ZTEST_IO_REWRITE:
2246 		rw_enter(&ztest_name_lock, RW_READER);
2247 		err = ztest_dsl_prop_set_uint64(zd->zd_name,
2248 		    ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa),
2249 		    B_FALSE);
2250 		VERIFY(err == 0 || err == ENOSPC);
2251 		err = ztest_dsl_prop_set_uint64(zd->zd_name,
2252 		    ZFS_PROP_COMPRESSION,
2253 		    ztest_random_dsl_prop(ZFS_PROP_COMPRESSION),
2254 		    B_FALSE);
2255 		VERIFY(err == 0 || err == ENOSPC);
2256 		rw_exit(&ztest_name_lock);
2257 
2258 		VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data,
2259 		    DMU_READ_NO_PREFETCH));
2260 
2261 		(void) ztest_write(zd, object, offset, blocksize, data);
2262 		break;
2263 	}
2264 
2265 	rw_exit(&zd->zd_zilog_lock);
2266 
2267 	umem_free(data, blocksize);
2268 }
2269 
2270 /*
2271  * Initialize an object description template.
2272  */
2273 static void
2274 ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index,
2275     dmu_object_type_t type, uint64_t blocksize, uint64_t gen)
2276 {
2277 	od->od_dir = ZTEST_DIROBJ;
2278 	od->od_object = 0;
2279 
2280 	od->od_crtype = type;
2281 	od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize();
2282 	od->od_crgen = gen;
2283 
2284 	od->od_type = DMU_OT_NONE;
2285 	od->od_blocksize = 0;
2286 	od->od_gen = 0;
2287 
2288 	(void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]",
2289 	    tag, (int64_t)id, index);
2290 }
2291 
2292 /*
2293  * Lookup or create the objects for a test using the od template.
2294  * If the objects do not all exist, or if 'remove' is specified,
2295  * remove any existing objects and create new ones.  Otherwise,
2296  * use the existing objects.
2297  */
2298 static int
2299 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove)
2300 {
2301 	int count = size / sizeof (*od);
2302 	int rv = 0;
2303 
2304 	mutex_enter(&zd->zd_dirobj_lock);
2305 	if ((ztest_lookup(zd, od, count) != 0 || remove) &&
2306 	    (ztest_remove(zd, od, count) != 0 ||
2307 	    ztest_create(zd, od, count) != 0))
2308 		rv = -1;
2309 	zd->zd_od = od;
2310 	mutex_exit(&zd->zd_dirobj_lock);
2311 
2312 	return (rv);
2313 }
2314 
2315 /* ARGSUSED */
2316 void
2317 ztest_zil_commit(ztest_ds_t *zd, uint64_t id)
2318 {
2319 	zilog_t *zilog = zd->zd_zilog;
2320 
2321 	rw_enter(&zd->zd_zilog_lock, RW_READER);
2322 
2323 	zil_commit(zilog, ztest_random(ZTEST_OBJECTS));
2324 
2325 	/*
2326 	 * Remember the committed values in zd, which is in parent/child
2327 	 * shared memory.  If we die, the next iteration of ztest_run()
2328 	 * will verify that the log really does contain this record.
2329 	 */
2330 	mutex_enter(&zilog->zl_lock);
2331 	ASSERT(zd->zd_shared != NULL);
2332 	ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq);
2333 	zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq;
2334 	mutex_exit(&zilog->zl_lock);
2335 
2336 	rw_exit(&zd->zd_zilog_lock);
2337 }
2338 
2339 /*
2340  * This function is designed to simulate the operations that occur during a
2341  * mount/unmount operation.  We hold the dataset across these operations in an
2342  * attempt to expose any implicit assumptions about ZIL management.
2343  */
2344 /* ARGSUSED */
2345 void
2346 ztest_zil_remount(ztest_ds_t *zd, uint64_t id)
2347 {
2348 	objset_t *os = zd->zd_os;
2349 
2350 	/*
2351 	 * We grab the zd_dirobj_lock to ensure that no other thread is
2352 	 * updating the zil (i.e. adding in-memory log records) and the
2353 	 * zd_zilog_lock to block any I/O.
2354 	 */
2355 	mutex_enter(&zd->zd_dirobj_lock);
2356 	rw_enter(&zd->zd_zilog_lock, RW_WRITER);
2357 
2358 	/* zfsvfs_teardown() */
2359 	zil_close(zd->zd_zilog);
2360 
2361 	/* zfsvfs_setup() */
2362 	VERIFY(zil_open(os, ztest_get_data) == zd->zd_zilog);
2363 	zil_replay(os, zd, ztest_replay_vector);
2364 
2365 	rw_exit(&zd->zd_zilog_lock);
2366 	mutex_exit(&zd->zd_dirobj_lock);
2367 }
2368 
2369 /*
2370  * Verify that we can't destroy an active pool, create an existing pool,
2371  * or create a pool with a bad vdev spec.
2372  */
2373 /* ARGSUSED */
2374 void
2375 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id)
2376 {
2377 	ztest_shared_opts_t *zo = &ztest_opts;
2378 	spa_t *spa;
2379 	nvlist_t *nvroot;
2380 
2381 	/*
2382 	 * Attempt to create using a bad file.
2383 	 */
2384 	nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1);
2385 	VERIFY3U(ENOENT, ==,
2386 	    spa_create("ztest_bad_file", nvroot, NULL, NULL));
2387 	nvlist_free(nvroot);
2388 
2389 	/*
2390 	 * Attempt to create using a bad mirror.
2391 	 */
2392 	nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 2, 1);
2393 	VERIFY3U(ENOENT, ==,
2394 	    spa_create("ztest_bad_mirror", nvroot, NULL, NULL));
2395 	nvlist_free(nvroot);
2396 
2397 	/*
2398 	 * Attempt to create an existing pool.  It shouldn't matter
2399 	 * what's in the nvroot; we should fail with EEXIST.
2400 	 */
2401 	rw_enter(&ztest_name_lock, RW_READER);
2402 	nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1);
2403 	VERIFY3U(EEXIST, ==, spa_create(zo->zo_pool, nvroot, NULL, NULL));
2404 	nvlist_free(nvroot);
2405 	VERIFY3U(0, ==, spa_open(zo->zo_pool, &spa, FTAG));
2406 	VERIFY3U(EBUSY, ==, spa_destroy(zo->zo_pool));
2407 	spa_close(spa, FTAG);
2408 
2409 	rw_exit(&ztest_name_lock);
2410 }
2411 
2412 /* ARGSUSED */
2413 void
2414 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id)
2415 {
2416 	spa_t *spa;
2417 	uint64_t initial_version = SPA_VERSION_INITIAL;
2418 	uint64_t version, newversion;
2419 	nvlist_t *nvroot, *props;
2420 	char *name;
2421 
2422 	mutex_enter(&ztest_vdev_lock);
2423 	name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool);
2424 
2425 	/*
2426 	 * Clean up from previous runs.
2427 	 */
2428 	(void) spa_destroy(name);
2429 
2430 	nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0,
2431 	    0, ztest_opts.zo_raidz, ztest_opts.zo_mirrors, 1);
2432 
2433 	/*
2434 	 * If we're configuring a RAIDZ device then make sure that the
2435 	 * the initial version is capable of supporting that feature.
2436 	 */
2437 	switch (ztest_opts.zo_raidz_parity) {
2438 	case 0:
2439 	case 1:
2440 		initial_version = SPA_VERSION_INITIAL;
2441 		break;
2442 	case 2:
2443 		initial_version = SPA_VERSION_RAIDZ2;
2444 		break;
2445 	case 3:
2446 		initial_version = SPA_VERSION_RAIDZ3;
2447 		break;
2448 	}
2449 
2450 	/*
2451 	 * Create a pool with a spa version that can be upgraded. Pick
2452 	 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES.
2453 	 */
2454 	do {
2455 		version = ztest_random_spa_version(initial_version);
2456 	} while (version > SPA_VERSION_BEFORE_FEATURES);
2457 
2458 	props = fnvlist_alloc();
2459 	fnvlist_add_uint64(props,
2460 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), version);
2461 	VERIFY0(spa_create(name, nvroot, props, NULL));
2462 	fnvlist_free(nvroot);
2463 	fnvlist_free(props);
2464 
2465 	VERIFY0(spa_open(name, &spa, FTAG));
2466 	VERIFY3U(spa_version(spa), ==, version);
2467 	newversion = ztest_random_spa_version(version + 1);
2468 
2469 	if (ztest_opts.zo_verbose >= 4) {
2470 		(void) printf("upgrading spa version from %llu to %llu\n",
2471 		    (u_longlong_t)version, (u_longlong_t)newversion);
2472 	}
2473 
2474 	spa_upgrade(spa, newversion);
2475 	VERIFY3U(spa_version(spa), >, version);
2476 	VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config,
2477 	    zpool_prop_to_name(ZPOOL_PROP_VERSION)));
2478 	spa_close(spa, FTAG);
2479 
2480 	strfree(name);
2481 	mutex_exit(&ztest_vdev_lock);
2482 }
2483 
2484 static void
2485 ztest_spa_checkpoint(spa_t *spa)
2486 {
2487 	ASSERT(MUTEX_HELD(&ztest_checkpoint_lock));
2488 
2489 	int error = spa_checkpoint(spa->spa_name);
2490 
2491 	switch (error) {
2492 	case 0:
2493 	case ZFS_ERR_DEVRM_IN_PROGRESS:
2494 	case ZFS_ERR_DISCARDING_CHECKPOINT:
2495 	case ZFS_ERR_CHECKPOINT_EXISTS:
2496 		break;
2497 	case ENOSPC:
2498 		ztest_record_enospc(FTAG);
2499 		break;
2500 	default:
2501 		fatal(0, "spa_checkpoint(%s) = %d", spa->spa_name, error);
2502 	}
2503 }
2504 
2505 static void
2506 ztest_spa_discard_checkpoint(spa_t *spa)
2507 {
2508 	ASSERT(MUTEX_HELD(&ztest_checkpoint_lock));
2509 
2510 	int error = spa_checkpoint_discard(spa->spa_name);
2511 
2512 	switch (error) {
2513 	case 0:
2514 	case ZFS_ERR_DISCARDING_CHECKPOINT:
2515 	case ZFS_ERR_NO_CHECKPOINT:
2516 		break;
2517 	default:
2518 		fatal(0, "spa_discard_checkpoint(%s) = %d",
2519 		    spa->spa_name, error);
2520 	}
2521 
2522 }
2523 
2524 /* ARGSUSED */
2525 void
2526 ztest_spa_checkpoint_create_discard(ztest_ds_t *zd, uint64_t id)
2527 {
2528 	spa_t *spa = ztest_spa;
2529 
2530 	mutex_enter(&ztest_checkpoint_lock);
2531 	if (ztest_random(2) == 0) {
2532 		ztest_spa_checkpoint(spa);
2533 	} else {
2534 		ztest_spa_discard_checkpoint(spa);
2535 	}
2536 	mutex_exit(&ztest_checkpoint_lock);
2537 }
2538 
2539 
2540 static vdev_t *
2541 vdev_lookup_by_path(vdev_t *vd, const char *path)
2542 {
2543 	vdev_t *mvd;
2544 
2545 	if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0)
2546 		return (vd);
2547 
2548 	for (int c = 0; c < vd->vdev_children; c++)
2549 		if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) !=
2550 		    NULL)
2551 			return (mvd);
2552 
2553 	return (NULL);
2554 }
2555 
2556 /*
2557  * Find the first available hole which can be used as a top-level.
2558  */
2559 int
2560 find_vdev_hole(spa_t *spa)
2561 {
2562 	vdev_t *rvd = spa->spa_root_vdev;
2563 	int c;
2564 
2565 	ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV);
2566 
2567 	for (c = 0; c < rvd->vdev_children; c++) {
2568 		vdev_t *cvd = rvd->vdev_child[c];
2569 
2570 		if (cvd->vdev_ishole)
2571 			break;
2572 	}
2573 	return (c);
2574 }
2575 
2576 /*
2577  * Verify that vdev_add() works as expected.
2578  */
2579 /* ARGSUSED */
2580 void
2581 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id)
2582 {
2583 	ztest_shared_t *zs = ztest_shared;
2584 	spa_t *spa = ztest_spa;
2585 	uint64_t leaves;
2586 	uint64_t guid;
2587 	nvlist_t *nvroot;
2588 	int error;
2589 
2590 	mutex_enter(&ztest_vdev_lock);
2591 	leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz;
2592 
2593 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2594 
2595 	ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves;
2596 
2597 	/*
2598 	 * If we have slogs then remove them 1/4 of the time.
2599 	 */
2600 	if (spa_has_slogs(spa) && ztest_random(4) == 0) {
2601 		/*
2602 		 * Grab the guid from the head of the log class rotor.
2603 		 */
2604 		guid = spa_log_class(spa)->mc_rotor->mg_vd->vdev_guid;
2605 
2606 		spa_config_exit(spa, SCL_VDEV, FTAG);
2607 
2608 		/*
2609 		 * We have to grab the zs_name_lock as writer to
2610 		 * prevent a race between removing a slog (dmu_objset_find)
2611 		 * and destroying a dataset. Removing the slog will
2612 		 * grab a reference on the dataset which may cause
2613 		 * dmu_objset_destroy() to fail with EBUSY thus
2614 		 * leaving the dataset in an inconsistent state.
2615 		 */
2616 		rw_enter(&ztest_name_lock, RW_WRITER);
2617 		error = spa_vdev_remove(spa, guid, B_FALSE);
2618 		rw_exit(&ztest_name_lock);
2619 
2620 		switch (error) {
2621 		case 0:
2622 		case EEXIST:
2623 		case ZFS_ERR_CHECKPOINT_EXISTS:
2624 		case ZFS_ERR_DISCARDING_CHECKPOINT:
2625 			break;
2626 		default:
2627 			fatal(0, "spa_vdev_remove() = %d", error);
2628 		}
2629 	} else {
2630 		spa_config_exit(spa, SCL_VDEV, FTAG);
2631 
2632 		/*
2633 		 * Make 1/4 of the devices be log devices.
2634 		 */
2635 		nvroot = make_vdev_root(NULL, NULL, NULL,
2636 		    ztest_opts.zo_vdev_size, 0,
2637 		    ztest_random(4) == 0, ztest_opts.zo_raidz,
2638 		    zs->zs_mirrors, 1);
2639 
2640 		error = spa_vdev_add(spa, nvroot);
2641 		nvlist_free(nvroot);
2642 
2643 		switch (error) {
2644 		case 0:
2645 			break;
2646 		case ENOSPC:
2647 			ztest_record_enospc("spa_vdev_add");
2648 			break;
2649 		default:
2650 			fatal(0, "spa_vdev_add() = %d", error);
2651 		}
2652 	}
2653 
2654 	mutex_exit(&ztest_vdev_lock);
2655 }
2656 
2657 /*
2658  * Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
2659  */
2660 /* ARGSUSED */
2661 void
2662 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id)
2663 {
2664 	ztest_shared_t *zs = ztest_shared;
2665 	spa_t *spa = ztest_spa;
2666 	vdev_t *rvd = spa->spa_root_vdev;
2667 	spa_aux_vdev_t *sav;
2668 	char *aux;
2669 	uint64_t guid = 0;
2670 	int error;
2671 
2672 	if (ztest_random(2) == 0) {
2673 		sav = &spa->spa_spares;
2674 		aux = ZPOOL_CONFIG_SPARES;
2675 	} else {
2676 		sav = &spa->spa_l2cache;
2677 		aux = ZPOOL_CONFIG_L2CACHE;
2678 	}
2679 
2680 	mutex_enter(&ztest_vdev_lock);
2681 
2682 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2683 
2684 	if (sav->sav_count != 0 && ztest_random(4) == 0) {
2685 		/*
2686 		 * Pick a random device to remove.
2687 		 */
2688 		guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid;
2689 	} else {
2690 		/*
2691 		 * Find an unused device we can add.
2692 		 */
2693 		zs->zs_vdev_aux = 0;
2694 		for (;;) {
2695 			char path[MAXPATHLEN];
2696 			int c;
2697 			(void) snprintf(path, sizeof (path), ztest_aux_template,
2698 			    ztest_opts.zo_dir, ztest_opts.zo_pool, aux,
2699 			    zs->zs_vdev_aux);
2700 			for (c = 0; c < sav->sav_count; c++)
2701 				if (strcmp(sav->sav_vdevs[c]->vdev_path,
2702 				    path) == 0)
2703 					break;
2704 			if (c == sav->sav_count &&
2705 			    vdev_lookup_by_path(rvd, path) == NULL)
2706 				break;
2707 			zs->zs_vdev_aux++;
2708 		}
2709 	}
2710 
2711 	spa_config_exit(spa, SCL_VDEV, FTAG);
2712 
2713 	if (guid == 0) {
2714 		/*
2715 		 * Add a new device.
2716 		 */
2717 		nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL,
2718 		    (ztest_opts.zo_vdev_size * 5) / 4, 0, 0, 0, 0, 1);
2719 		error = spa_vdev_add(spa, nvroot);
2720 
2721 		switch (error) {
2722 		case 0:
2723 			break;
2724 		default:
2725 			fatal(0, "spa_vdev_add(%p) = %d", nvroot, error);
2726 		}
2727 		nvlist_free(nvroot);
2728 	} else {
2729 		/*
2730 		 * Remove an existing device.  Sometimes, dirty its
2731 		 * vdev state first to make sure we handle removal
2732 		 * of devices that have pending state changes.
2733 		 */
2734 		if (ztest_random(2) == 0)
2735 			(void) vdev_online(spa, guid, 0, NULL);
2736 
2737 		error = spa_vdev_remove(spa, guid, B_FALSE);
2738 
2739 		switch (error) {
2740 		case 0:
2741 		case EBUSY:
2742 		case ZFS_ERR_CHECKPOINT_EXISTS:
2743 		case ZFS_ERR_DISCARDING_CHECKPOINT:
2744 			break;
2745 		default:
2746 			fatal(0, "spa_vdev_remove(%llu) = %d", guid, error);
2747 		}
2748 	}
2749 
2750 	mutex_exit(&ztest_vdev_lock);
2751 }
2752 
2753 /*
2754  * split a pool if it has mirror tlvdevs
2755  */
2756 /* ARGSUSED */
2757 void
2758 ztest_split_pool(ztest_ds_t *zd, uint64_t id)
2759 {
2760 	ztest_shared_t *zs = ztest_shared;
2761 	spa_t *spa = ztest_spa;
2762 	vdev_t *rvd = spa->spa_root_vdev;
2763 	nvlist_t *tree, **child, *config, *split, **schild;
2764 	uint_t c, children, schildren = 0, lastlogid = 0;
2765 	int error = 0;
2766 
2767 	mutex_enter(&ztest_vdev_lock);
2768 
2769 	/* ensure we have a useable config; mirrors of raidz aren't supported */
2770 	if (zs->zs_mirrors < 3 || ztest_opts.zo_raidz > 1) {
2771 		mutex_exit(&ztest_vdev_lock);
2772 		return;
2773 	}
2774 
2775 	/* clean up the old pool, if any */
2776 	(void) spa_destroy("splitp");
2777 
2778 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2779 
2780 	/* generate a config from the existing config */
2781 	mutex_enter(&spa->spa_props_lock);
2782 	VERIFY(nvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE,
2783 	    &tree) == 0);
2784 	mutex_exit(&spa->spa_props_lock);
2785 
2786 	VERIFY(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child,
2787 	    &children) == 0);
2788 
2789 	schild = malloc(rvd->vdev_children * sizeof (nvlist_t *));
2790 	for (c = 0; c < children; c++) {
2791 		vdev_t *tvd = rvd->vdev_child[c];
2792 		nvlist_t **mchild;
2793 		uint_t mchildren;
2794 
2795 		if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) {
2796 			VERIFY(nvlist_alloc(&schild[schildren], NV_UNIQUE_NAME,
2797 			    0) == 0);
2798 			VERIFY(nvlist_add_string(schild[schildren],
2799 			    ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0);
2800 			VERIFY(nvlist_add_uint64(schild[schildren],
2801 			    ZPOOL_CONFIG_IS_HOLE, 1) == 0);
2802 			if (lastlogid == 0)
2803 				lastlogid = schildren;
2804 			++schildren;
2805 			continue;
2806 		}
2807 		lastlogid = 0;
2808 		VERIFY(nvlist_lookup_nvlist_array(child[c],
2809 		    ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0);
2810 		VERIFY(nvlist_dup(mchild[0], &schild[schildren++], 0) == 0);
2811 	}
2812 
2813 	/* OK, create a config that can be used to split */
2814 	VERIFY(nvlist_alloc(&split, NV_UNIQUE_NAME, 0) == 0);
2815 	VERIFY(nvlist_add_string(split, ZPOOL_CONFIG_TYPE,
2816 	    VDEV_TYPE_ROOT) == 0);
2817 	VERIFY(nvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild,
2818 	    lastlogid != 0 ? lastlogid : schildren) == 0);
2819 
2820 	VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, 0) == 0);
2821 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split) == 0);
2822 
2823 	for (c = 0; c < schildren; c++)
2824 		nvlist_free(schild[c]);
2825 	free(schild);
2826 	nvlist_free(split);
2827 
2828 	spa_config_exit(spa, SCL_VDEV, FTAG);
2829 
2830 	rw_enter(&ztest_name_lock, RW_WRITER);
2831 	error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE);
2832 	rw_exit(&ztest_name_lock);
2833 
2834 	nvlist_free(config);
2835 
2836 	if (error == 0) {
2837 		(void) printf("successful split - results:\n");
2838 		mutex_enter(&spa_namespace_lock);
2839 		show_pool_stats(spa);
2840 		show_pool_stats(spa_lookup("splitp"));
2841 		mutex_exit(&spa_namespace_lock);
2842 		++zs->zs_splits;
2843 		--zs->zs_mirrors;
2844 	}
2845 	mutex_exit(&ztest_vdev_lock);
2846 }
2847 
2848 /*
2849  * Verify that we can attach and detach devices.
2850  */
2851 /* ARGSUSED */
2852 void
2853 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
2854 {
2855 	ztest_shared_t *zs = ztest_shared;
2856 	spa_t *spa = ztest_spa;
2857 	spa_aux_vdev_t *sav = &spa->spa_spares;
2858 	vdev_t *rvd = spa->spa_root_vdev;
2859 	vdev_t *oldvd, *newvd, *pvd;
2860 	nvlist_t *root;
2861 	uint64_t leaves;
2862 	uint64_t leaf, top;
2863 	uint64_t ashift = ztest_get_ashift();
2864 	uint64_t oldguid, pguid;
2865 	uint64_t oldsize, newsize;
2866 	char oldpath[MAXPATHLEN], newpath[MAXPATHLEN];
2867 	int replacing;
2868 	int oldvd_has_siblings = B_FALSE;
2869 	int newvd_is_spare = B_FALSE;
2870 	int oldvd_is_log;
2871 	int error, expected_error;
2872 
2873 	mutex_enter(&ztest_vdev_lock);
2874 	leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz;
2875 
2876 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2877 
2878 	/*
2879 	 * If a vdev is in the process of being removed, its removal may
2880 	 * finish while we are in progress, leading to an unexpected error
2881 	 * value.  Don't bother trying to attach while we are in the middle
2882 	 * of removal.
2883 	 */
2884 	if (ztest_device_removal_active) {
2885 		spa_config_exit(spa, SCL_ALL, FTAG);
2886 		mutex_exit(&ztest_vdev_lock);
2887 		return;
2888 	}
2889 
2890 	/*
2891 	 * Decide whether to do an attach or a replace.
2892 	 */
2893 	replacing = ztest_random(2);
2894 
2895 	/*
2896 	 * Pick a random top-level vdev.
2897 	 */
2898 	top = ztest_random_vdev_top(spa, B_TRUE);
2899 
2900 	/*
2901 	 * Pick a random leaf within it.
2902 	 */
2903 	leaf = ztest_random(leaves);
2904 
2905 	/*
2906 	 * Locate this vdev.
2907 	 */
2908 	oldvd = rvd->vdev_child[top];
2909 	if (zs->zs_mirrors >= 1) {
2910 		ASSERT(oldvd->vdev_ops == &vdev_mirror_ops);
2911 		ASSERT(oldvd->vdev_children >= zs->zs_mirrors);
2912 		oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raidz];
2913 	}
2914 	if (ztest_opts.zo_raidz > 1) {
2915 		ASSERT(oldvd->vdev_ops == &vdev_raidz_ops);
2916 		ASSERT(oldvd->vdev_children == ztest_opts.zo_raidz);
2917 		oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raidz];
2918 	}
2919 
2920 	/*
2921 	 * If we're already doing an attach or replace, oldvd may be a
2922 	 * mirror vdev -- in which case, pick a random child.
2923 	 */
2924 	while (oldvd->vdev_children != 0) {
2925 		oldvd_has_siblings = B_TRUE;
2926 		ASSERT(oldvd->vdev_children >= 2);
2927 		oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)];
2928 	}
2929 
2930 	oldguid = oldvd->vdev_guid;
2931 	oldsize = vdev_get_min_asize(oldvd);
2932 	oldvd_is_log = oldvd->vdev_top->vdev_islog;
2933 	(void) strcpy(oldpath, oldvd->vdev_path);
2934 	pvd = oldvd->vdev_parent;
2935 	pguid = pvd->vdev_guid;
2936 
2937 	/*
2938 	 * If oldvd has siblings, then half of the time, detach it.
2939 	 */
2940 	if (oldvd_has_siblings && ztest_random(2) == 0) {
2941 		spa_config_exit(spa, SCL_ALL, FTAG);
2942 		error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE);
2943 		if (error != 0 && error != ENODEV && error != EBUSY &&
2944 		    error != ENOTSUP && error != ZFS_ERR_CHECKPOINT_EXISTS &&
2945 		    error != ZFS_ERR_DISCARDING_CHECKPOINT)
2946 			fatal(0, "detach (%s) returned %d", oldpath, error);
2947 		mutex_exit(&ztest_vdev_lock);
2948 		return;
2949 	}
2950 
2951 	/*
2952 	 * For the new vdev, choose with equal probability between the two
2953 	 * standard paths (ending in either 'a' or 'b') or a random hot spare.
2954 	 */
2955 	if (sav->sav_count != 0 && ztest_random(3) == 0) {
2956 		newvd = sav->sav_vdevs[ztest_random(sav->sav_count)];
2957 		newvd_is_spare = B_TRUE;
2958 		(void) strcpy(newpath, newvd->vdev_path);
2959 	} else {
2960 		(void) snprintf(newpath, sizeof (newpath), ztest_dev_template,
2961 		    ztest_opts.zo_dir, ztest_opts.zo_pool,
2962 		    top * leaves + leaf);
2963 		if (ztest_random(2) == 0)
2964 			newpath[strlen(newpath) - 1] = 'b';
2965 		newvd = vdev_lookup_by_path(rvd, newpath);
2966 	}
2967 
2968 	if (newvd) {
2969 		/*
2970 		 * Reopen to ensure the vdev's asize field isn't stale.
2971 		 */
2972 		vdev_reopen(newvd);
2973 		newsize = vdev_get_min_asize(newvd);
2974 	} else {
2975 		/*
2976 		 * Make newsize a little bigger or smaller than oldsize.
2977 		 * If it's smaller, the attach should fail.
2978 		 * If it's larger, and we're doing a replace,
2979 		 * we should get dynamic LUN growth when we're done.
2980 		 */
2981 		newsize = 10 * oldsize / (9 + ztest_random(3));
2982 	}
2983 
2984 	/*
2985 	 * If pvd is not a mirror or root, the attach should fail with ENOTSUP,
2986 	 * unless it's a replace; in that case any non-replacing parent is OK.
2987 	 *
2988 	 * If newvd is already part of the pool, it should fail with EBUSY.
2989 	 *
2990 	 * If newvd is too small, it should fail with EOVERFLOW.
2991 	 */
2992 	if (pvd->vdev_ops != &vdev_mirror_ops &&
2993 	    pvd->vdev_ops != &vdev_root_ops && (!replacing ||
2994 	    pvd->vdev_ops == &vdev_replacing_ops ||
2995 	    pvd->vdev_ops == &vdev_spare_ops))
2996 		expected_error = ENOTSUP;
2997 	else if (newvd_is_spare && (!replacing || oldvd_is_log))
2998 		expected_error = ENOTSUP;
2999 	else if (newvd == oldvd)
3000 		expected_error = replacing ? 0 : EBUSY;
3001 	else if (vdev_lookup_by_path(rvd, newpath) != NULL)
3002 		expected_error = EBUSY;
3003 	else if (newsize < oldsize)
3004 		expected_error = EOVERFLOW;
3005 	else if (ashift > oldvd->vdev_top->vdev_ashift)
3006 		expected_error = EDOM;
3007 	else
3008 		expected_error = 0;
3009 
3010 	spa_config_exit(spa, SCL_ALL, FTAG);
3011 
3012 	/*
3013 	 * Build the nvlist describing newpath.
3014 	 */
3015 	root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0,
3016 	    ashift, 0, 0, 0, 1);
3017 
3018 	error = spa_vdev_attach(spa, oldguid, root, replacing);
3019 
3020 	nvlist_free(root);
3021 
3022 	/*
3023 	 * If our parent was the replacing vdev, but the replace completed,
3024 	 * then instead of failing with ENOTSUP we may either succeed,
3025 	 * fail with ENODEV, or fail with EOVERFLOW.
3026 	 */
3027 	if (expected_error == ENOTSUP &&
3028 	    (error == 0 || error == ENODEV || error == EOVERFLOW))
3029 		expected_error = error;
3030 
3031 	/*
3032 	 * If someone grew the LUN, the replacement may be too small.
3033 	 */
3034 	if (error == EOVERFLOW || error == EBUSY)
3035 		expected_error = error;
3036 
3037 	if (error == ZFS_ERR_CHECKPOINT_EXISTS ||
3038 	    error == ZFS_ERR_DISCARDING_CHECKPOINT)
3039 		expected_error = error;
3040 
3041 	/* XXX workaround 6690467 */
3042 	if (error != expected_error && expected_error != EBUSY) {
3043 		fatal(0, "attach (%s %llu, %s %llu, %d) "
3044 		    "returned %d, expected %d",
3045 		    oldpath, oldsize, newpath,
3046 		    newsize, replacing, error, expected_error);
3047 	}
3048 
3049 	mutex_exit(&ztest_vdev_lock);
3050 }
3051 
3052 /* ARGSUSED */
3053 void
3054 ztest_device_removal(ztest_ds_t *zd, uint64_t id)
3055 {
3056 	spa_t *spa = ztest_spa;
3057 	vdev_t *vd;
3058 	uint64_t guid;
3059 	int error;
3060 
3061 	mutex_enter(&ztest_vdev_lock);
3062 
3063 	if (ztest_device_removal_active) {
3064 		mutex_exit(&ztest_vdev_lock);
3065 		return;
3066 	}
3067 
3068 	/*
3069 	 * Remove a random top-level vdev and wait for removal to finish.
3070 	 */
3071 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3072 	vd = vdev_lookup_top(spa, ztest_random_vdev_top(spa, B_FALSE));
3073 	guid = vd->vdev_guid;
3074 	spa_config_exit(spa, SCL_VDEV, FTAG);
3075 
3076 	error = spa_vdev_remove(spa, guid, B_FALSE);
3077 	if (error == 0) {
3078 		ztest_device_removal_active = B_TRUE;
3079 		mutex_exit(&ztest_vdev_lock);
3080 
3081 		while (spa->spa_vdev_removal != NULL)
3082 			txg_wait_synced(spa_get_dsl(spa), 0);
3083 	} else {
3084 		mutex_exit(&ztest_vdev_lock);
3085 		return;
3086 	}
3087 
3088 	/*
3089 	 * The pool needs to be scrubbed after completing device removal.
3090 	 * Failure to do so may result in checksum errors due to the
3091 	 * strategy employed by ztest_fault_inject() when selecting which
3092 	 * offset are redundant and can be damaged.
3093 	 */
3094 	error = spa_scan(spa, POOL_SCAN_SCRUB);
3095 	if (error == 0) {
3096 		while (dsl_scan_scrubbing(spa_get_dsl(spa)))
3097 			txg_wait_synced(spa_get_dsl(spa), 0);
3098 	}
3099 
3100 	mutex_enter(&ztest_vdev_lock);
3101 	ztest_device_removal_active = B_FALSE;
3102 	mutex_exit(&ztest_vdev_lock);
3103 }
3104 
3105 /*
3106  * Callback function which expands the physical size of the vdev.
3107  */
3108 vdev_t *
3109 grow_vdev(vdev_t *vd, void *arg)
3110 {
3111 	spa_t *spa = vd->vdev_spa;
3112 	size_t *newsize = arg;
3113 	size_t fsize;
3114 	int fd;
3115 
3116 	ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
3117 	ASSERT(vd->vdev_ops->vdev_op_leaf);
3118 
3119 	if ((fd = open(vd->vdev_path, O_RDWR)) == -1)
3120 		return (vd);
3121 
3122 	fsize = lseek(fd, 0, SEEK_END);
3123 	(void) ftruncate(fd, *newsize);
3124 
3125 	if (ztest_opts.zo_verbose >= 6) {
3126 		(void) printf("%s grew from %lu to %lu bytes\n",
3127 		    vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize);
3128 	}
3129 	(void) close(fd);
3130 	return (NULL);
3131 }
3132 
3133 /*
3134  * Callback function which expands a given vdev by calling vdev_online().
3135  */
3136 /* ARGSUSED */
3137 vdev_t *
3138 online_vdev(vdev_t *vd, void *arg)
3139 {
3140 	spa_t *spa = vd->vdev_spa;
3141 	vdev_t *tvd = vd->vdev_top;
3142 	uint64_t guid = vd->vdev_guid;
3143 	uint64_t generation = spa->spa_config_generation + 1;
3144 	vdev_state_t newstate = VDEV_STATE_UNKNOWN;
3145 	int error;
3146 
3147 	ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
3148 	ASSERT(vd->vdev_ops->vdev_op_leaf);
3149 
3150 	/* Calling vdev_online will initialize the new metaslabs */
3151 	spa_config_exit(spa, SCL_STATE, spa);
3152 	error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate);
3153 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3154 
3155 	/*
3156 	 * If vdev_online returned an error or the underlying vdev_open
3157 	 * failed then we abort the expand. The only way to know that
3158 	 * vdev_open fails is by checking the returned newstate.
3159 	 */
3160 	if (error || newstate != VDEV_STATE_HEALTHY) {
3161 		if (ztest_opts.zo_verbose >= 5) {
3162 			(void) printf("Unable to expand vdev, state %llu, "
3163 			    "error %d\n", (u_longlong_t)newstate, error);
3164 		}
3165 		return (vd);
3166 	}
3167 	ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY);
3168 
3169 	/*
3170 	 * Since we dropped the lock we need to ensure that we're
3171 	 * still talking to the original vdev. It's possible this
3172 	 * vdev may have been detached/replaced while we were
3173 	 * trying to online it.
3174 	 */
3175 	if (generation != spa->spa_config_generation) {
3176 		if (ztest_opts.zo_verbose >= 5) {
3177 			(void) printf("vdev configuration has changed, "
3178 			    "guid %llu, state %llu, expected gen %llu, "
3179 			    "got gen %llu\n",
3180 			    (u_longlong_t)guid,
3181 			    (u_longlong_t)tvd->vdev_state,
3182 			    (u_longlong_t)generation,
3183 			    (u_longlong_t)spa->spa_config_generation);
3184 		}
3185 		return (vd);
3186 	}
3187 	return (NULL);
3188 }
3189 
3190 /*
3191  * Traverse the vdev tree calling the supplied function.
3192  * We continue to walk the tree until we either have walked all
3193  * children or we receive a non-NULL return from the callback.
3194  * If a NULL callback is passed, then we just return back the first
3195  * leaf vdev we encounter.
3196  */
3197 vdev_t *
3198 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg)
3199 {
3200 	if (vd->vdev_ops->vdev_op_leaf) {
3201 		if (func == NULL)
3202 			return (vd);
3203 		else
3204 			return (func(vd, arg));
3205 	}
3206 
3207 	for (uint_t c = 0; c < vd->vdev_children; c++) {
3208 		vdev_t *cvd = vd->vdev_child[c];
3209 		if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL)
3210 			return (cvd);
3211 	}
3212 	return (NULL);
3213 }
3214 
3215 /*
3216  * Verify that dynamic LUN growth works as expected.
3217  */
3218 /* ARGSUSED */
3219 void
3220 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id)
3221 {
3222 	spa_t *spa = ztest_spa;
3223 	vdev_t *vd, *tvd;
3224 	metaslab_class_t *mc;
3225 	metaslab_group_t *mg;
3226 	size_t psize, newsize;
3227 	uint64_t top;
3228 	uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count;
3229 
3230 	mutex_enter(&ztest_checkpoint_lock);
3231 	mutex_enter(&ztest_vdev_lock);
3232 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3233 
3234 	/*
3235 	 * If there is a vdev removal in progress, it could complete while
3236 	 * we are running, in which case we would not be able to verify
3237 	 * that the metaslab_class space increased (because it decreases
3238 	 * when the device removal completes).
3239 	 */
3240 	if (ztest_device_removal_active) {
3241 		spa_config_exit(spa, SCL_STATE, spa);
3242 		mutex_exit(&ztest_vdev_lock);
3243 		mutex_exit(&ztest_checkpoint_lock);
3244 		return;
3245 	}
3246 
3247 	top = ztest_random_vdev_top(spa, B_TRUE);
3248 
3249 	tvd = spa->spa_root_vdev->vdev_child[top];
3250 	mg = tvd->vdev_mg;
3251 	mc = mg->mg_class;
3252 	old_ms_count = tvd->vdev_ms_count;
3253 	old_class_space = metaslab_class_get_space(mc);
3254 
3255 	/*
3256 	 * Determine the size of the first leaf vdev associated with
3257 	 * our top-level device.
3258 	 */
3259 	vd = vdev_walk_tree(tvd, NULL, NULL);
3260 	ASSERT3P(vd, !=, NULL);
3261 	ASSERT(vd->vdev_ops->vdev_op_leaf);
3262 
3263 	psize = vd->vdev_psize;
3264 
3265 	/*
3266 	 * We only try to expand the vdev if it's healthy, less than 4x its
3267 	 * original size, and it has a valid psize.
3268 	 */
3269 	if (tvd->vdev_state != VDEV_STATE_HEALTHY ||
3270 	    psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) {
3271 		spa_config_exit(spa, SCL_STATE, spa);
3272 		mutex_exit(&ztest_vdev_lock);
3273 		mutex_exit(&ztest_checkpoint_lock);
3274 		return;
3275 	}
3276 	ASSERT(psize > 0);
3277 	newsize = psize + psize / 8;
3278 	ASSERT3U(newsize, >, psize);
3279 
3280 	if (ztest_opts.zo_verbose >= 6) {
3281 		(void) printf("Expanding LUN %s from %lu to %lu\n",
3282 		    vd->vdev_path, (ulong_t)psize, (ulong_t)newsize);
3283 	}
3284 
3285 	/*
3286 	 * Growing the vdev is a two step process:
3287 	 *	1). expand the physical size (i.e. relabel)
3288 	 *	2). online the vdev to create the new metaslabs
3289 	 */
3290 	if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL ||
3291 	    vdev_walk_tree(tvd, online_vdev, NULL) != NULL ||
3292 	    tvd->vdev_state != VDEV_STATE_HEALTHY) {
3293 		if (ztest_opts.zo_verbose >= 5) {
3294 			(void) printf("Could not expand LUN because "
3295 			    "the vdev configuration changed.\n");
3296 		}
3297 		spa_config_exit(spa, SCL_STATE, spa);
3298 		mutex_exit(&ztest_vdev_lock);
3299 		mutex_exit(&ztest_checkpoint_lock);
3300 		return;
3301 	}
3302 
3303 	spa_config_exit(spa, SCL_STATE, spa);
3304 
3305 	/*
3306 	 * Expanding the LUN will update the config asynchronously,
3307 	 * thus we must wait for the async thread to complete any
3308 	 * pending tasks before proceeding.
3309 	 */
3310 	for (;;) {
3311 		boolean_t done;
3312 		mutex_enter(&spa->spa_async_lock);
3313 		done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks);
3314 		mutex_exit(&spa->spa_async_lock);
3315 		if (done)
3316 			break;
3317 		txg_wait_synced(spa_get_dsl(spa), 0);
3318 		(void) poll(NULL, 0, 100);
3319 	}
3320 
3321 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3322 
3323 	tvd = spa->spa_root_vdev->vdev_child[top];
3324 	new_ms_count = tvd->vdev_ms_count;
3325 	new_class_space = metaslab_class_get_space(mc);
3326 
3327 	if (tvd->vdev_mg != mg || mg->mg_class != mc) {
3328 		if (ztest_opts.zo_verbose >= 5) {
3329 			(void) printf("Could not verify LUN expansion due to "
3330 			    "intervening vdev offline or remove.\n");
3331 		}
3332 		spa_config_exit(spa, SCL_STATE, spa);
3333 		mutex_exit(&ztest_vdev_lock);
3334 		mutex_exit(&ztest_checkpoint_lock);
3335 		return;
3336 	}
3337 
3338 	/*
3339 	 * Make sure we were able to grow the vdev.
3340 	 */
3341 	if (new_ms_count <= old_ms_count) {
3342 		fatal(0, "LUN expansion failed: ms_count %llu < %llu\n",
3343 		    old_ms_count, new_ms_count);
3344 	}
3345 
3346 	/*
3347 	 * Make sure we were able to grow the pool.
3348 	 */
3349 	if (new_class_space <= old_class_space) {
3350 		fatal(0, "LUN expansion failed: class_space %llu < %llu\n",
3351 		    old_class_space, new_class_space);
3352 	}
3353 
3354 	if (ztest_opts.zo_verbose >= 5) {
3355 		char oldnumbuf[NN_NUMBUF_SZ], newnumbuf[NN_NUMBUF_SZ];
3356 
3357 		nicenum(old_class_space, oldnumbuf, sizeof (oldnumbuf));
3358 		nicenum(new_class_space, newnumbuf, sizeof (newnumbuf));
3359 		(void) printf("%s grew from %s to %s\n",
3360 		    spa->spa_name, oldnumbuf, newnumbuf);
3361 	}
3362 
3363 	spa_config_exit(spa, SCL_STATE, spa);
3364 	mutex_exit(&ztest_vdev_lock);
3365 	mutex_exit(&ztest_checkpoint_lock);
3366 }
3367 
3368 /*
3369  * Verify that dmu_objset_{create,destroy,open,close} work as expected.
3370  */
3371 /* ARGSUSED */
3372 static void
3373 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
3374 {
3375 	/*
3376 	 * Create the objects common to all ztest datasets.
3377 	 */
3378 	VERIFY(zap_create_claim(os, ZTEST_DIROBJ,
3379 	    DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0);
3380 }
3381 
3382 static int
3383 ztest_dataset_create(char *dsname)
3384 {
3385 	uint64_t zilset = ztest_random(100);
3386 	int err = dmu_objset_create(dsname, DMU_OST_OTHER, 0,
3387 	    ztest_objset_create_cb, NULL);
3388 
3389 	if (err || zilset < 80)
3390 		return (err);
3391 
3392 	if (ztest_opts.zo_verbose >= 6)
3393 		(void) printf("Setting dataset %s to sync always\n", dsname);
3394 	return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC,
3395 	    ZFS_SYNC_ALWAYS, B_FALSE));
3396 }
3397 
3398 /* ARGSUSED */
3399 static int
3400 ztest_objset_destroy_cb(const char *name, void *arg)
3401 {
3402 	objset_t *os;
3403 	dmu_object_info_t doi;
3404 	int error;
3405 
3406 	/*
3407 	 * Verify that the dataset contains a directory object.
3408 	 */
3409 	VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, FTAG, &os));
3410 	error = dmu_object_info(os, ZTEST_DIROBJ, &doi);
3411 	if (error != ENOENT) {
3412 		/* We could have crashed in the middle of destroying it */
3413 		ASSERT0(error);
3414 		ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER);
3415 		ASSERT3S(doi.doi_physical_blocks_512, >=, 0);
3416 	}
3417 	dmu_objset_disown(os, FTAG);
3418 
3419 	/*
3420 	 * Destroy the dataset.
3421 	 */
3422 	if (strchr(name, '@') != NULL) {
3423 		VERIFY0(dsl_destroy_snapshot(name, B_TRUE));
3424 	} else {
3425 		error = dsl_destroy_head(name);
3426 		/* There could be a hold on this dataset */
3427 		if (error != EBUSY)
3428 			ASSERT0(error);
3429 	}
3430 	return (0);
3431 }
3432 
3433 static boolean_t
3434 ztest_snapshot_create(char *osname, uint64_t id)
3435 {
3436 	char snapname[ZFS_MAX_DATASET_NAME_LEN];
3437 	int error;
3438 
3439 	(void) snprintf(snapname, sizeof (snapname), "%llu", (u_longlong_t)id);
3440 
3441 	error = dmu_objset_snapshot_one(osname, snapname);
3442 	if (error == ENOSPC) {
3443 		ztest_record_enospc(FTAG);
3444 		return (B_FALSE);
3445 	}
3446 	if (error != 0 && error != EEXIST) {
3447 		fatal(0, "ztest_snapshot_create(%s@%s) = %d", osname,
3448 		    snapname, error);
3449 	}
3450 	return (B_TRUE);
3451 }
3452 
3453 static boolean_t
3454 ztest_snapshot_destroy(char *osname, uint64_t id)
3455 {
3456 	char snapname[ZFS_MAX_DATASET_NAME_LEN];
3457 	int error;
3458 
3459 	(void) snprintf(snapname, sizeof (snapname), "%s@%llu", osname,
3460 	    (u_longlong_t)id);
3461 
3462 	error = dsl_destroy_snapshot(snapname, B_FALSE);
3463 	if (error != 0 && error != ENOENT)
3464 		fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error);
3465 	return (B_TRUE);
3466 }
3467 
3468 /* ARGSUSED */
3469 void
3470 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id)
3471 {
3472 	ztest_ds_t zdtmp;
3473 	int iters;
3474 	int error;
3475 	objset_t *os, *os2;
3476 	char name[ZFS_MAX_DATASET_NAME_LEN];
3477 	zilog_t *zilog;
3478 
3479 	rw_enter(&ztest_name_lock, RW_READER);
3480 
3481 	(void) snprintf(name, sizeof (name), "%s/temp_%llu",
3482 	    ztest_opts.zo_pool, (u_longlong_t)id);
3483 
3484 	/*
3485 	 * If this dataset exists from a previous run, process its replay log
3486 	 * half of the time.  If we don't replay it, then dmu_objset_destroy()
3487 	 * (invoked from ztest_objset_destroy_cb()) should just throw it away.
3488 	 */
3489 	if (ztest_random(2) == 0 &&
3490 	    dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) {
3491 		ztest_zd_init(&zdtmp, NULL, os);
3492 		zil_replay(os, &zdtmp, ztest_replay_vector);
3493 		ztest_zd_fini(&zdtmp);
3494 		dmu_objset_disown(os, FTAG);
3495 	}
3496 
3497 	/*
3498 	 * There may be an old instance of the dataset we're about to
3499 	 * create lying around from a previous run.  If so, destroy it
3500 	 * and all of its snapshots.
3501 	 */
3502 	(void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
3503 	    DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
3504 
3505 	/*
3506 	 * Verify that the destroyed dataset is no longer in the namespace.
3507 	 */
3508 	VERIFY3U(ENOENT, ==, dmu_objset_own(name, DMU_OST_OTHER, B_TRUE,
3509 	    FTAG, &os));
3510 
3511 	/*
3512 	 * Verify that we can create a new dataset.
3513 	 */
3514 	error = ztest_dataset_create(name);
3515 	if (error) {
3516 		if (error == ENOSPC) {
3517 			ztest_record_enospc(FTAG);
3518 			rw_exit(&ztest_name_lock);
3519 			return;
3520 		}
3521 		fatal(0, "dmu_objset_create(%s) = %d", name, error);
3522 	}
3523 
3524 	VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os));
3525 
3526 	ztest_zd_init(&zdtmp, NULL, os);
3527 
3528 	/*
3529 	 * Open the intent log for it.
3530 	 */
3531 	zilog = zil_open(os, ztest_get_data);
3532 
3533 	/*
3534 	 * Put some objects in there, do a little I/O to them,
3535 	 * and randomly take a couple of snapshots along the way.
3536 	 */
3537 	iters = ztest_random(5);
3538 	for (int i = 0; i < iters; i++) {
3539 		ztest_dmu_object_alloc_free(&zdtmp, id);
3540 		if (ztest_random(iters) == 0)
3541 			(void) ztest_snapshot_create(name, i);
3542 	}
3543 
3544 	/*
3545 	 * Verify that we cannot create an existing dataset.
3546 	 */
3547 	VERIFY3U(EEXIST, ==,
3548 	    dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL));
3549 
3550 	/*
3551 	 * Verify that we can hold an objset that is also owned.
3552 	 */
3553 	VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2));
3554 	dmu_objset_rele(os2, FTAG);
3555 
3556 	/*
3557 	 * Verify that we cannot own an objset that is already owned.
3558 	 */
3559 	VERIFY3U(EBUSY, ==,
3560 	    dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2));
3561 
3562 	zil_close(zilog);
3563 	dmu_objset_disown(os, FTAG);
3564 	ztest_zd_fini(&zdtmp);
3565 
3566 	rw_exit(&ztest_name_lock);
3567 }
3568 
3569 /*
3570  * Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
3571  */
3572 void
3573 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id)
3574 {
3575 	rw_enter(&ztest_name_lock, RW_READER);
3576 	(void) ztest_snapshot_destroy(zd->zd_name, id);
3577 	(void) ztest_snapshot_create(zd->zd_name, id);
3578 	rw_exit(&ztest_name_lock);
3579 }
3580 
3581 /*
3582  * Cleanup non-standard snapshots and clones.
3583  */
3584 void
3585 ztest_dsl_dataset_cleanup(char *osname, uint64_t id)
3586 {
3587 	char snap1name[ZFS_MAX_DATASET_NAME_LEN];
3588 	char clone1name[ZFS_MAX_DATASET_NAME_LEN];
3589 	char snap2name[ZFS_MAX_DATASET_NAME_LEN];
3590 	char clone2name[ZFS_MAX_DATASET_NAME_LEN];
3591 	char snap3name[ZFS_MAX_DATASET_NAME_LEN];
3592 	int error;
3593 
3594 	(void) snprintf(snap1name, sizeof (snap1name),
3595 	    "%s@s1_%llu", osname, id);
3596 	(void) snprintf(clone1name, sizeof (clone1name),
3597 	    "%s/c1_%llu", osname, id);
3598 	(void) snprintf(snap2name, sizeof (snap2name),
3599 	    "%s@s2_%llu", clone1name, id);
3600 	(void) snprintf(clone2name, sizeof (clone2name),
3601 	    "%s/c2_%llu", osname, id);
3602 	(void) snprintf(snap3name, sizeof (snap3name),
3603 	    "%s@s3_%llu", clone1name, id);
3604 
3605 	error = dsl_destroy_head(clone2name);
3606 	if (error && error != ENOENT)
3607 		fatal(0, "dsl_destroy_head(%s) = %d", clone2name, error);
3608 	error = dsl_destroy_snapshot(snap3name, B_FALSE);
3609 	if (error && error != ENOENT)
3610 		fatal(0, "dsl_destroy_snapshot(%s) = %d", snap3name, error);
3611 	error = dsl_destroy_snapshot(snap2name, B_FALSE);
3612 	if (error && error != ENOENT)
3613 		fatal(0, "dsl_destroy_snapshot(%s) = %d", snap2name, error);
3614 	error = dsl_destroy_head(clone1name);
3615 	if (error && error != ENOENT)
3616 		fatal(0, "dsl_destroy_head(%s) = %d", clone1name, error);
3617 	error = dsl_destroy_snapshot(snap1name, B_FALSE);
3618 	if (error && error != ENOENT)
3619 		fatal(0, "dsl_destroy_snapshot(%s) = %d", snap1name, error);
3620 }
3621 
3622 /*
3623  * Verify dsl_dataset_promote handles EBUSY
3624  */
3625 void
3626 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id)
3627 {
3628 	objset_t *os;
3629 	char snap1name[ZFS_MAX_DATASET_NAME_LEN];
3630 	char clone1name[ZFS_MAX_DATASET_NAME_LEN];
3631 	char snap2name[ZFS_MAX_DATASET_NAME_LEN];
3632 	char clone2name[ZFS_MAX_DATASET_NAME_LEN];
3633 	char snap3name[ZFS_MAX_DATASET_NAME_LEN];
3634 	char *osname = zd->zd_name;
3635 	int error;
3636 
3637 	rw_enter(&ztest_name_lock, RW_READER);
3638 
3639 	ztest_dsl_dataset_cleanup(osname, id);
3640 
3641 	(void) snprintf(snap1name, sizeof (snap1name),
3642 	    "%s@s1_%llu", osname, id);
3643 	(void) snprintf(clone1name, sizeof (clone1name),
3644 	    "%s/c1_%llu", osname, id);
3645 	(void) snprintf(snap2name, sizeof (snap2name),
3646 	    "%s@s2_%llu", clone1name, id);
3647 	(void) snprintf(clone2name, sizeof (clone2name),
3648 	    "%s/c2_%llu", osname, id);
3649 	(void) snprintf(snap3name, sizeof (snap3name),
3650 	    "%s@s3_%llu", clone1name, id);
3651 
3652 	error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1);
3653 	if (error && error != EEXIST) {
3654 		if (error == ENOSPC) {
3655 			ztest_record_enospc(FTAG);
3656 			goto out;
3657 		}
3658 		fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error);
3659 	}
3660 
3661 	error = dmu_objset_clone(clone1name, snap1name);
3662 	if (error) {
3663 		if (error == ENOSPC) {
3664 			ztest_record_enospc(FTAG);
3665 			goto out;
3666 		}
3667 		fatal(0, "dmu_objset_create(%s) = %d", clone1name, error);
3668 	}
3669 
3670 	error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1);
3671 	if (error && error != EEXIST) {
3672 		if (error == ENOSPC) {
3673 			ztest_record_enospc(FTAG);
3674 			goto out;
3675 		}
3676 		fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error);
3677 	}
3678 
3679 	error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1);
3680 	if (error && error != EEXIST) {
3681 		if (error == ENOSPC) {
3682 			ztest_record_enospc(FTAG);
3683 			goto out;
3684 		}
3685 		fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error);
3686 	}
3687 
3688 	error = dmu_objset_clone(clone2name, snap3name);
3689 	if (error) {
3690 		if (error == ENOSPC) {
3691 			ztest_record_enospc(FTAG);
3692 			goto out;
3693 		}
3694 		fatal(0, "dmu_objset_create(%s) = %d", clone2name, error);
3695 	}
3696 
3697 	error = dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, FTAG, &os);
3698 	if (error)
3699 		fatal(0, "dmu_objset_own(%s) = %d", snap2name, error);
3700 	error = dsl_dataset_promote(clone2name, NULL);
3701 	if (error == ENOSPC) {
3702 		dmu_objset_disown(os, FTAG);
3703 		ztest_record_enospc(FTAG);
3704 		goto out;
3705 	}
3706 	if (error != EBUSY)
3707 		fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name,
3708 		    error);
3709 	dmu_objset_disown(os, FTAG);
3710 
3711 out:
3712 	ztest_dsl_dataset_cleanup(osname, id);
3713 
3714 	rw_exit(&ztest_name_lock);
3715 }
3716 
3717 /*
3718  * Verify that dmu_object_{alloc,free} work as expected.
3719  */
3720 void
3721 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id)
3722 {
3723 	ztest_od_t od[4];
3724 	int batchsize = sizeof (od) / sizeof (od[0]);
3725 
3726 	for (int b = 0; b < batchsize; b++)
3727 		ztest_od_init(&od[b], id, FTAG, b, DMU_OT_UINT64_OTHER, 0, 0);
3728 
3729 	/*
3730 	 * Destroy the previous batch of objects, create a new batch,
3731 	 * and do some I/O on the new objects.
3732 	 */
3733 	if (ztest_object_init(zd, od, sizeof (od), B_TRUE) != 0)
3734 		return;
3735 
3736 	while (ztest_random(4 * batchsize) != 0)
3737 		ztest_io(zd, od[ztest_random(batchsize)].od_object,
3738 		    ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
3739 }
3740 
3741 /*
3742  * Verify that dmu_{read,write} work as expected.
3743  */
3744 void
3745 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id)
3746 {
3747 	objset_t *os = zd->zd_os;
3748 	ztest_od_t od[2];
3749 	dmu_tx_t *tx;
3750 	int i, freeit, error;
3751 	uint64_t n, s, txg;
3752 	bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT;
3753 	uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
3754 	uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t);
3755 	uint64_t regions = 997;
3756 	uint64_t stride = 123456789ULL;
3757 	uint64_t width = 40;
3758 	int free_percent = 5;
3759 
3760 	/*
3761 	 * This test uses two objects, packobj and bigobj, that are always
3762 	 * updated together (i.e. in the same tx) so that their contents are
3763 	 * in sync and can be compared.  Their contents relate to each other
3764 	 * in a simple way: packobj is a dense array of 'bufwad' structures,
3765 	 * while bigobj is a sparse array of the same bufwads.  Specifically,
3766 	 * for any index n, there are three bufwads that should be identical:
3767 	 *
3768 	 *	packobj, at offset n * sizeof (bufwad_t)
3769 	 *	bigobj, at the head of the nth chunk
3770 	 *	bigobj, at the tail of the nth chunk
3771 	 *
3772 	 * The chunk size is arbitrary. It doesn't have to be a power of two,
3773 	 * and it doesn't have any relation to the object blocksize.
3774 	 * The only requirement is that it can hold at least two bufwads.
3775 	 *
3776 	 * Normally, we write the bufwad to each of these locations.
3777 	 * However, free_percent of the time we instead write zeroes to
3778 	 * packobj and perform a dmu_free_range() on bigobj.  By comparing
3779 	 * bigobj to packobj, we can verify that the DMU is correctly
3780 	 * tracking which parts of an object are allocated and free,
3781 	 * and that the contents of the allocated blocks are correct.
3782 	 */
3783 
3784 	/*
3785 	 * Read the directory info.  If it's the first time, set things up.
3786 	 */
3787 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, chunksize);
3788 	ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize);
3789 
3790 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
3791 		return;
3792 
3793 	bigobj = od[0].od_object;
3794 	packobj = od[1].od_object;
3795 	chunksize = od[0].od_gen;
3796 	ASSERT(chunksize == od[1].od_gen);
3797 
3798 	/*
3799 	 * Prefetch a random chunk of the big object.
3800 	 * Our aim here is to get some async reads in flight
3801 	 * for blocks that we may free below; the DMU should
3802 	 * handle this race correctly.
3803 	 */
3804 	n = ztest_random(regions) * stride + ztest_random(width);
3805 	s = 1 + ztest_random(2 * width - 1);
3806 	dmu_prefetch(os, bigobj, 0, n * chunksize, s * chunksize,
3807 	    ZIO_PRIORITY_SYNC_READ);
3808 
3809 	/*
3810 	 * Pick a random index and compute the offsets into packobj and bigobj.
3811 	 */
3812 	n = ztest_random(regions) * stride + ztest_random(width);
3813 	s = 1 + ztest_random(width - 1);
3814 
3815 	packoff = n * sizeof (bufwad_t);
3816 	packsize = s * sizeof (bufwad_t);
3817 
3818 	bigoff = n * chunksize;
3819 	bigsize = s * chunksize;
3820 
3821 	packbuf = umem_alloc(packsize, UMEM_NOFAIL);
3822 	bigbuf = umem_alloc(bigsize, UMEM_NOFAIL);
3823 
3824 	/*
3825 	 * free_percent of the time, free a range of bigobj rather than
3826 	 * overwriting it.
3827 	 */
3828 	freeit = (ztest_random(100) < free_percent);
3829 
3830 	/*
3831 	 * Read the current contents of our objects.
3832 	 */
3833 	error = dmu_read(os, packobj, packoff, packsize, packbuf,
3834 	    DMU_READ_PREFETCH);
3835 	ASSERT0(error);
3836 	error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf,
3837 	    DMU_READ_PREFETCH);
3838 	ASSERT0(error);
3839 
3840 	/*
3841 	 * Get a tx for the mods to both packobj and bigobj.
3842 	 */
3843 	tx = dmu_tx_create(os);
3844 
3845 	dmu_tx_hold_write(tx, packobj, packoff, packsize);
3846 
3847 	if (freeit)
3848 		dmu_tx_hold_free(tx, bigobj, bigoff, bigsize);
3849 	else
3850 		dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
3851 
3852 	/* This accounts for setting the checksum/compression. */
3853 	dmu_tx_hold_bonus(tx, bigobj);
3854 
3855 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
3856 	if (txg == 0) {
3857 		umem_free(packbuf, packsize);
3858 		umem_free(bigbuf, bigsize);
3859 		return;
3860 	}
3861 
3862 	enum zio_checksum cksum;
3863 	do {
3864 		cksum = (enum zio_checksum)
3865 		    ztest_random_dsl_prop(ZFS_PROP_CHECKSUM);
3866 	} while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS);
3867 	dmu_object_set_checksum(os, bigobj, cksum, tx);
3868 
3869 	enum zio_compress comp;
3870 	do {
3871 		comp = (enum zio_compress)
3872 		    ztest_random_dsl_prop(ZFS_PROP_COMPRESSION);
3873 	} while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS);
3874 	dmu_object_set_compress(os, bigobj, comp, tx);
3875 
3876 	/*
3877 	 * For each index from n to n + s, verify that the existing bufwad
3878 	 * in packobj matches the bufwads at the head and tail of the
3879 	 * corresponding chunk in bigobj.  Then update all three bufwads
3880 	 * with the new values we want to write out.
3881 	 */
3882 	for (i = 0; i < s; i++) {
3883 		/* LINTED */
3884 		pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
3885 		/* LINTED */
3886 		bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
3887 		/* LINTED */
3888 		bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
3889 
3890 		ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
3891 		ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
3892 
3893 		if (pack->bw_txg > txg)
3894 			fatal(0, "future leak: got %llx, open txg is %llx",
3895 			    pack->bw_txg, txg);
3896 
3897 		if (pack->bw_data != 0 && pack->bw_index != n + i)
3898 			fatal(0, "wrong index: got %llx, wanted %llx+%llx",
3899 			    pack->bw_index, n, i);
3900 
3901 		if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
3902 			fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
3903 
3904 		if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
3905 			fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
3906 
3907 		if (freeit) {
3908 			bzero(pack, sizeof (bufwad_t));
3909 		} else {
3910 			pack->bw_index = n + i;
3911 			pack->bw_txg = txg;
3912 			pack->bw_data = 1 + ztest_random(-2ULL);
3913 		}
3914 		*bigH = *pack;
3915 		*bigT = *pack;
3916 	}
3917 
3918 	/*
3919 	 * We've verified all the old bufwads, and made new ones.
3920 	 * Now write them out.
3921 	 */
3922 	dmu_write(os, packobj, packoff, packsize, packbuf, tx);
3923 
3924 	if (freeit) {
3925 		if (ztest_opts.zo_verbose >= 7) {
3926 			(void) printf("freeing offset %llx size %llx"
3927 			    " txg %llx\n",
3928 			    (u_longlong_t)bigoff,
3929 			    (u_longlong_t)bigsize,
3930 			    (u_longlong_t)txg);
3931 		}
3932 		VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx));
3933 	} else {
3934 		if (ztest_opts.zo_verbose >= 7) {
3935 			(void) printf("writing offset %llx size %llx"
3936 			    " txg %llx\n",
3937 			    (u_longlong_t)bigoff,
3938 			    (u_longlong_t)bigsize,
3939 			    (u_longlong_t)txg);
3940 		}
3941 		dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx);
3942 	}
3943 
3944 	dmu_tx_commit(tx);
3945 
3946 	/*
3947 	 * Sanity check the stuff we just wrote.
3948 	 */
3949 	{
3950 		void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
3951 		void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
3952 
3953 		VERIFY(0 == dmu_read(os, packobj, packoff,
3954 		    packsize, packcheck, DMU_READ_PREFETCH));
3955 		VERIFY(0 == dmu_read(os, bigobj, bigoff,
3956 		    bigsize, bigcheck, DMU_READ_PREFETCH));
3957 
3958 		ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
3959 		ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
3960 
3961 		umem_free(packcheck, packsize);
3962 		umem_free(bigcheck, bigsize);
3963 	}
3964 
3965 	umem_free(packbuf, packsize);
3966 	umem_free(bigbuf, bigsize);
3967 }
3968 
3969 void
3970 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf,
3971     uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg)
3972 {
3973 	uint64_t i;
3974 	bufwad_t *pack;
3975 	bufwad_t *bigH;
3976 	bufwad_t *bigT;
3977 
3978 	/*
3979 	 * For each index from n to n + s, verify that the existing bufwad
3980 	 * in packobj matches the bufwads at the head and tail of the
3981 	 * corresponding chunk in bigobj.  Then update all three bufwads
3982 	 * with the new values we want to write out.
3983 	 */
3984 	for (i = 0; i < s; i++) {
3985 		/* LINTED */
3986 		pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
3987 		/* LINTED */
3988 		bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
3989 		/* LINTED */
3990 		bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
3991 
3992 		ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
3993 		ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
3994 
3995 		if (pack->bw_txg > txg)
3996 			fatal(0, "future leak: got %llx, open txg is %llx",
3997 			    pack->bw_txg, txg);
3998 
3999 		if (pack->bw_data != 0 && pack->bw_index != n + i)
4000 			fatal(0, "wrong index: got %llx, wanted %llx+%llx",
4001 			    pack->bw_index, n, i);
4002 
4003 		if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
4004 			fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
4005 
4006 		if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
4007 			fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
4008 
4009 		pack->bw_index = n + i;
4010 		pack->bw_txg = txg;
4011 		pack->bw_data = 1 + ztest_random(-2ULL);
4012 
4013 		*bigH = *pack;
4014 		*bigT = *pack;
4015 	}
4016 }
4017 
4018 void
4019 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id)
4020 {
4021 	objset_t *os = zd->zd_os;
4022 	ztest_od_t od[2];
4023 	dmu_tx_t *tx;
4024 	uint64_t i;
4025 	int error;
4026 	uint64_t n, s, txg;
4027 	bufwad_t *packbuf, *bigbuf;
4028 	uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
4029 	uint64_t blocksize = ztest_random_blocksize();
4030 	uint64_t chunksize = blocksize;
4031 	uint64_t regions = 997;
4032 	uint64_t stride = 123456789ULL;
4033 	uint64_t width = 9;
4034 	dmu_buf_t *bonus_db;
4035 	arc_buf_t **bigbuf_arcbufs;
4036 	dmu_object_info_t doi;
4037 
4038 	/*
4039 	 * This test uses two objects, packobj and bigobj, that are always
4040 	 * updated together (i.e. in the same tx) so that their contents are
4041 	 * in sync and can be compared.  Their contents relate to each other
4042 	 * in a simple way: packobj is a dense array of 'bufwad' structures,
4043 	 * while bigobj is a sparse array of the same bufwads.  Specifically,
4044 	 * for any index n, there are three bufwads that should be identical:
4045 	 *
4046 	 *	packobj, at offset n * sizeof (bufwad_t)
4047 	 *	bigobj, at the head of the nth chunk
4048 	 *	bigobj, at the tail of the nth chunk
4049 	 *
4050 	 * The chunk size is set equal to bigobj block size so that
4051 	 * dmu_assign_arcbuf() can be tested for object updates.
4052 	 */
4053 
4054 	/*
4055 	 * Read the directory info.  If it's the first time, set things up.
4056 	 */
4057 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0);
4058 	ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize);
4059 
4060 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4061 		return;
4062 
4063 	bigobj = od[0].od_object;
4064 	packobj = od[1].od_object;
4065 	blocksize = od[0].od_blocksize;
4066 	chunksize = blocksize;
4067 	ASSERT(chunksize == od[1].od_gen);
4068 
4069 	VERIFY(dmu_object_info(os, bigobj, &doi) == 0);
4070 	VERIFY(ISP2(doi.doi_data_block_size));
4071 	VERIFY(chunksize == doi.doi_data_block_size);
4072 	VERIFY(chunksize >= 2 * sizeof (bufwad_t));
4073 
4074 	/*
4075 	 * Pick a random index and compute the offsets into packobj and bigobj.
4076 	 */
4077 	n = ztest_random(regions) * stride + ztest_random(width);
4078 	s = 1 + ztest_random(width - 1);
4079 
4080 	packoff = n * sizeof (bufwad_t);
4081 	packsize = s * sizeof (bufwad_t);
4082 
4083 	bigoff = n * chunksize;
4084 	bigsize = s * chunksize;
4085 
4086 	packbuf = umem_zalloc(packsize, UMEM_NOFAIL);
4087 	bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL);
4088 
4089 	VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db));
4090 
4091 	bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL);
4092 
4093 	/*
4094 	 * Iteration 0 test zcopy for DB_UNCACHED dbufs.
4095 	 * Iteration 1 test zcopy to already referenced dbufs.
4096 	 * Iteration 2 test zcopy to dirty dbuf in the same txg.
4097 	 * Iteration 3 test zcopy to dbuf dirty in previous txg.
4098 	 * Iteration 4 test zcopy when dbuf is no longer dirty.
4099 	 * Iteration 5 test zcopy when it can't be done.
4100 	 * Iteration 6 one more zcopy write.
4101 	 */
4102 	for (i = 0; i < 7; i++) {
4103 		uint64_t j;
4104 		uint64_t off;
4105 
4106 		/*
4107 		 * In iteration 5 (i == 5) use arcbufs
4108 		 * that don't match bigobj blksz to test
4109 		 * dmu_assign_arcbuf() when it can't directly
4110 		 * assign an arcbuf to a dbuf.
4111 		 */
4112 		for (j = 0; j < s; j++) {
4113 			if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
4114 				bigbuf_arcbufs[j] =
4115 				    dmu_request_arcbuf(bonus_db, chunksize);
4116 			} else {
4117 				bigbuf_arcbufs[2 * j] =
4118 				    dmu_request_arcbuf(bonus_db, chunksize / 2);
4119 				bigbuf_arcbufs[2 * j + 1] =
4120 				    dmu_request_arcbuf(bonus_db, chunksize / 2);
4121 			}
4122 		}
4123 
4124 		/*
4125 		 * Get a tx for the mods to both packobj and bigobj.
4126 		 */
4127 		tx = dmu_tx_create(os);
4128 
4129 		dmu_tx_hold_write(tx, packobj, packoff, packsize);
4130 		dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
4131 
4132 		txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4133 		if (txg == 0) {
4134 			umem_free(packbuf, packsize);
4135 			umem_free(bigbuf, bigsize);
4136 			for (j = 0; j < s; j++) {
4137 				if (i != 5 ||
4138 				    chunksize < (SPA_MINBLOCKSIZE * 2)) {
4139 					dmu_return_arcbuf(bigbuf_arcbufs[j]);
4140 				} else {
4141 					dmu_return_arcbuf(
4142 					    bigbuf_arcbufs[2 * j]);
4143 					dmu_return_arcbuf(
4144 					    bigbuf_arcbufs[2 * j + 1]);
4145 				}
4146 			}
4147 			umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
4148 			dmu_buf_rele(bonus_db, FTAG);
4149 			return;
4150 		}
4151 
4152 		/*
4153 		 * 50% of the time don't read objects in the 1st iteration to
4154 		 * test dmu_assign_arcbuf() for the case when there're no
4155 		 * existing dbufs for the specified offsets.
4156 		 */
4157 		if (i != 0 || ztest_random(2) != 0) {
4158 			error = dmu_read(os, packobj, packoff,
4159 			    packsize, packbuf, DMU_READ_PREFETCH);
4160 			ASSERT0(error);
4161 			error = dmu_read(os, bigobj, bigoff, bigsize,
4162 			    bigbuf, DMU_READ_PREFETCH);
4163 			ASSERT0(error);
4164 		}
4165 		compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize,
4166 		    n, chunksize, txg);
4167 
4168 		/*
4169 		 * We've verified all the old bufwads, and made new ones.
4170 		 * Now write them out.
4171 		 */
4172 		dmu_write(os, packobj, packoff, packsize, packbuf, tx);
4173 		if (ztest_opts.zo_verbose >= 7) {
4174 			(void) printf("writing offset %llx size %llx"
4175 			    " txg %llx\n",
4176 			    (u_longlong_t)bigoff,
4177 			    (u_longlong_t)bigsize,
4178 			    (u_longlong_t)txg);
4179 		}
4180 		for (off = bigoff, j = 0; j < s; j++, off += chunksize) {
4181 			dmu_buf_t *dbt;
4182 			if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
4183 				bcopy((caddr_t)bigbuf + (off - bigoff),
4184 				    bigbuf_arcbufs[j]->b_data, chunksize);
4185 			} else {
4186 				bcopy((caddr_t)bigbuf + (off - bigoff),
4187 				    bigbuf_arcbufs[2 * j]->b_data,
4188 				    chunksize / 2);
4189 				bcopy((caddr_t)bigbuf + (off - bigoff) +
4190 				    chunksize / 2,
4191 				    bigbuf_arcbufs[2 * j + 1]->b_data,
4192 				    chunksize / 2);
4193 			}
4194 
4195 			if (i == 1) {
4196 				VERIFY(dmu_buf_hold(os, bigobj, off,
4197 				    FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0);
4198 			}
4199 			if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
4200 				dmu_assign_arcbuf(bonus_db, off,
4201 				    bigbuf_arcbufs[j], tx);
4202 			} else {
4203 				dmu_assign_arcbuf(bonus_db, off,
4204 				    bigbuf_arcbufs[2 * j], tx);
4205 				dmu_assign_arcbuf(bonus_db,
4206 				    off + chunksize / 2,
4207 				    bigbuf_arcbufs[2 * j + 1], tx);
4208 			}
4209 			if (i == 1) {
4210 				dmu_buf_rele(dbt, FTAG);
4211 			}
4212 		}
4213 		dmu_tx_commit(tx);
4214 
4215 		/*
4216 		 * Sanity check the stuff we just wrote.
4217 		 */
4218 		{
4219 			void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
4220 			void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
4221 
4222 			VERIFY(0 == dmu_read(os, packobj, packoff,
4223 			    packsize, packcheck, DMU_READ_PREFETCH));
4224 			VERIFY(0 == dmu_read(os, bigobj, bigoff,
4225 			    bigsize, bigcheck, DMU_READ_PREFETCH));
4226 
4227 			ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
4228 			ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
4229 
4230 			umem_free(packcheck, packsize);
4231 			umem_free(bigcheck, bigsize);
4232 		}
4233 		if (i == 2) {
4234 			txg_wait_open(dmu_objset_pool(os), 0);
4235 		} else if (i == 3) {
4236 			txg_wait_synced(dmu_objset_pool(os), 0);
4237 		}
4238 	}
4239 
4240 	dmu_buf_rele(bonus_db, FTAG);
4241 	umem_free(packbuf, packsize);
4242 	umem_free(bigbuf, bigsize);
4243 	umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
4244 }
4245 
4246 /* ARGSUSED */
4247 void
4248 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id)
4249 {
4250 	ztest_od_t od[1];
4251 	uint64_t offset = (1ULL << (ztest_random(20) + 43)) +
4252 	    (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
4253 
4254 	/*
4255 	 * Have multiple threads write to large offsets in an object
4256 	 * to verify that parallel writes to an object -- even to the
4257 	 * same blocks within the object -- doesn't cause any trouble.
4258 	 */
4259 	ztest_od_init(&od[0], ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0);
4260 
4261 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4262 		return;
4263 
4264 	while (ztest_random(10) != 0)
4265 		ztest_io(zd, od[0].od_object, offset);
4266 }
4267 
4268 void
4269 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id)
4270 {
4271 	ztest_od_t od[1];
4272 	uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) +
4273 	    (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
4274 	uint64_t count = ztest_random(20) + 1;
4275 	uint64_t blocksize = ztest_random_blocksize();
4276 	void *data;
4277 
4278 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0);
4279 
4280 	if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0)
4281 		return;
4282 
4283 	if (ztest_truncate(zd, od[0].od_object, offset, count * blocksize) != 0)
4284 		return;
4285 
4286 	ztest_prealloc(zd, od[0].od_object, offset, count * blocksize);
4287 
4288 	data = umem_zalloc(blocksize, UMEM_NOFAIL);
4289 
4290 	while (ztest_random(count) != 0) {
4291 		uint64_t randoff = offset + (ztest_random(count) * blocksize);
4292 		if (ztest_write(zd, od[0].od_object, randoff, blocksize,
4293 		    data) != 0)
4294 			break;
4295 		while (ztest_random(4) != 0)
4296 			ztest_io(zd, od[0].od_object, randoff);
4297 	}
4298 
4299 	umem_free(data, blocksize);
4300 }
4301 
4302 /*
4303  * Verify that zap_{create,destroy,add,remove,update} work as expected.
4304  */
4305 #define	ZTEST_ZAP_MIN_INTS	1
4306 #define	ZTEST_ZAP_MAX_INTS	4
4307 #define	ZTEST_ZAP_MAX_PROPS	1000
4308 
4309 void
4310 ztest_zap(ztest_ds_t *zd, uint64_t id)
4311 {
4312 	objset_t *os = zd->zd_os;
4313 	ztest_od_t od[1];
4314 	uint64_t object;
4315 	uint64_t txg, last_txg;
4316 	uint64_t value[ZTEST_ZAP_MAX_INTS];
4317 	uint64_t zl_ints, zl_intsize, prop;
4318 	int i, ints;
4319 	dmu_tx_t *tx;
4320 	char propname[100], txgname[100];
4321 	int error;
4322 	char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
4323 
4324 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0);
4325 
4326 	if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0)
4327 		return;
4328 
4329 	object = od[0].od_object;
4330 
4331 	/*
4332 	 * Generate a known hash collision, and verify that
4333 	 * we can lookup and remove both entries.
4334 	 */
4335 	tx = dmu_tx_create(os);
4336 	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4337 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4338 	if (txg == 0)
4339 		return;
4340 	for (i = 0; i < 2; i++) {
4341 		value[i] = i;
4342 		VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t),
4343 		    1, &value[i], tx));
4344 	}
4345 	for (i = 0; i < 2; i++) {
4346 		VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i],
4347 		    sizeof (uint64_t), 1, &value[i], tx));
4348 		VERIFY3U(0, ==,
4349 		    zap_length(os, object, hc[i], &zl_intsize, &zl_ints));
4350 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4351 		ASSERT3U(zl_ints, ==, 1);
4352 	}
4353 	for (i = 0; i < 2; i++) {
4354 		VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx));
4355 	}
4356 	dmu_tx_commit(tx);
4357 
4358 	/*
4359 	 * Generate a buch of random entries.
4360 	 */
4361 	ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS);
4362 
4363 	prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
4364 	(void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
4365 	(void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
4366 	bzero(value, sizeof (value));
4367 	last_txg = 0;
4368 
4369 	/*
4370 	 * If these zap entries already exist, validate their contents.
4371 	 */
4372 	error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
4373 	if (error == 0) {
4374 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4375 		ASSERT3U(zl_ints, ==, 1);
4376 
4377 		VERIFY(zap_lookup(os, object, txgname, zl_intsize,
4378 		    zl_ints, &last_txg) == 0);
4379 
4380 		VERIFY(zap_length(os, object, propname, &zl_intsize,
4381 		    &zl_ints) == 0);
4382 
4383 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4384 		ASSERT3U(zl_ints, ==, ints);
4385 
4386 		VERIFY(zap_lookup(os, object, propname, zl_intsize,
4387 		    zl_ints, value) == 0);
4388 
4389 		for (i = 0; i < ints; i++) {
4390 			ASSERT3U(value[i], ==, last_txg + object + i);
4391 		}
4392 	} else {
4393 		ASSERT3U(error, ==, ENOENT);
4394 	}
4395 
4396 	/*
4397 	 * Atomically update two entries in our zap object.
4398 	 * The first is named txg_%llu, and contains the txg
4399 	 * in which the property was last updated.  The second
4400 	 * is named prop_%llu, and the nth element of its value
4401 	 * should be txg + object + n.
4402 	 */
4403 	tx = dmu_tx_create(os);
4404 	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4405 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4406 	if (txg == 0)
4407 		return;
4408 
4409 	if (last_txg > txg)
4410 		fatal(0, "zap future leak: old %llu new %llu", last_txg, txg);
4411 
4412 	for (i = 0; i < ints; i++)
4413 		value[i] = txg + object + i;
4414 
4415 	VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t),
4416 	    1, &txg, tx));
4417 	VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t),
4418 	    ints, value, tx));
4419 
4420 	dmu_tx_commit(tx);
4421 
4422 	/*
4423 	 * Remove a random pair of entries.
4424 	 */
4425 	prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
4426 	(void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
4427 	(void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
4428 
4429 	error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
4430 
4431 	if (error == ENOENT)
4432 		return;
4433 
4434 	ASSERT0(error);
4435 
4436 	tx = dmu_tx_create(os);
4437 	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4438 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4439 	if (txg == 0)
4440 		return;
4441 	VERIFY3U(0, ==, zap_remove(os, object, txgname, tx));
4442 	VERIFY3U(0, ==, zap_remove(os, object, propname, tx));
4443 	dmu_tx_commit(tx);
4444 }
4445 
4446 /*
4447  * Testcase to test the upgrading of a microzap to fatzap.
4448  */
4449 void
4450 ztest_fzap(ztest_ds_t *zd, uint64_t id)
4451 {
4452 	objset_t *os = zd->zd_os;
4453 	ztest_od_t od[1];
4454 	uint64_t object, txg;
4455 
4456 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0);
4457 
4458 	if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0)
4459 		return;
4460 
4461 	object = od[0].od_object;
4462 
4463 	/*
4464 	 * Add entries to this ZAP and make sure it spills over
4465 	 * and gets upgraded to a fatzap. Also, since we are adding
4466 	 * 2050 entries we should see ptrtbl growth and leaf-block split.
4467 	 */
4468 	for (int i = 0; i < 2050; i++) {
4469 		char name[ZFS_MAX_DATASET_NAME_LEN];
4470 		uint64_t value = i;
4471 		dmu_tx_t *tx;
4472 		int error;
4473 
4474 		(void) snprintf(name, sizeof (name), "fzap-%llu-%llu",
4475 		    id, value);
4476 
4477 		tx = dmu_tx_create(os);
4478 		dmu_tx_hold_zap(tx, object, B_TRUE, name);
4479 		txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4480 		if (txg == 0)
4481 			return;
4482 		error = zap_add(os, object, name, sizeof (uint64_t), 1,
4483 		    &value, tx);
4484 		ASSERT(error == 0 || error == EEXIST);
4485 		dmu_tx_commit(tx);
4486 	}
4487 }
4488 
4489 /* ARGSUSED */
4490 void
4491 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id)
4492 {
4493 	objset_t *os = zd->zd_os;
4494 	ztest_od_t od[1];
4495 	uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc;
4496 	dmu_tx_t *tx;
4497 	int i, namelen, error;
4498 	int micro = ztest_random(2);
4499 	char name[20], string_value[20];
4500 	void *data;
4501 
4502 	ztest_od_init(&od[0], ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0);
4503 
4504 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4505 		return;
4506 
4507 	object = od[0].od_object;
4508 
4509 	/*
4510 	 * Generate a random name of the form 'xxx.....' where each
4511 	 * x is a random printable character and the dots are dots.
4512 	 * There are 94 such characters, and the name length goes from
4513 	 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
4514 	 */
4515 	namelen = ztest_random(sizeof (name) - 5) + 5 + 1;
4516 
4517 	for (i = 0; i < 3; i++)
4518 		name[i] = '!' + ztest_random('~' - '!' + 1);
4519 	for (; i < namelen - 1; i++)
4520 		name[i] = '.';
4521 	name[i] = '\0';
4522 
4523 	if ((namelen & 1) || micro) {
4524 		wsize = sizeof (txg);
4525 		wc = 1;
4526 		data = &txg;
4527 	} else {
4528 		wsize = 1;
4529 		wc = namelen;
4530 		data = string_value;
4531 	}
4532 
4533 	count = -1ULL;
4534 	VERIFY0(zap_count(os, object, &count));
4535 	ASSERT(count != -1ULL);
4536 
4537 	/*
4538 	 * Select an operation: length, lookup, add, update, remove.
4539 	 */
4540 	i = ztest_random(5);
4541 
4542 	if (i >= 2) {
4543 		tx = dmu_tx_create(os);
4544 		dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4545 		txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4546 		if (txg == 0)
4547 			return;
4548 		bcopy(name, string_value, namelen);
4549 	} else {
4550 		tx = NULL;
4551 		txg = 0;
4552 		bzero(string_value, namelen);
4553 	}
4554 
4555 	switch (i) {
4556 
4557 	case 0:
4558 		error = zap_length(os, object, name, &zl_wsize, &zl_wc);
4559 		if (error == 0) {
4560 			ASSERT3U(wsize, ==, zl_wsize);
4561 			ASSERT3U(wc, ==, zl_wc);
4562 		} else {
4563 			ASSERT3U(error, ==, ENOENT);
4564 		}
4565 		break;
4566 
4567 	case 1:
4568 		error = zap_lookup(os, object, name, wsize, wc, data);
4569 		if (error == 0) {
4570 			if (data == string_value &&
4571 			    bcmp(name, data, namelen) != 0)
4572 				fatal(0, "name '%s' != val '%s' len %d",
4573 				    name, data, namelen);
4574 		} else {
4575 			ASSERT3U(error, ==, ENOENT);
4576 		}
4577 		break;
4578 
4579 	case 2:
4580 		error = zap_add(os, object, name, wsize, wc, data, tx);
4581 		ASSERT(error == 0 || error == EEXIST);
4582 		break;
4583 
4584 	case 3:
4585 		VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0);
4586 		break;
4587 
4588 	case 4:
4589 		error = zap_remove(os, object, name, tx);
4590 		ASSERT(error == 0 || error == ENOENT);
4591 		break;
4592 	}
4593 
4594 	if (tx != NULL)
4595 		dmu_tx_commit(tx);
4596 }
4597 
4598 /*
4599  * Commit callback data.
4600  */
4601 typedef struct ztest_cb_data {
4602 	list_node_t		zcd_node;
4603 	uint64_t		zcd_txg;
4604 	int			zcd_expected_err;
4605 	boolean_t		zcd_added;
4606 	boolean_t		zcd_called;
4607 	spa_t			*zcd_spa;
4608 } ztest_cb_data_t;
4609 
4610 /* This is the actual commit callback function */
4611 static void
4612 ztest_commit_callback(void *arg, int error)
4613 {
4614 	ztest_cb_data_t *data = arg;
4615 	uint64_t synced_txg;
4616 
4617 	VERIFY(data != NULL);
4618 	VERIFY3S(data->zcd_expected_err, ==, error);
4619 	VERIFY(!data->zcd_called);
4620 
4621 	synced_txg = spa_last_synced_txg(data->zcd_spa);
4622 	if (data->zcd_txg > synced_txg)
4623 		fatal(0, "commit callback of txg %" PRIu64 " called prematurely"
4624 		    ", last synced txg = %" PRIu64 "\n", data->zcd_txg,
4625 		    synced_txg);
4626 
4627 	data->zcd_called = B_TRUE;
4628 
4629 	if (error == ECANCELED) {
4630 		ASSERT0(data->zcd_txg);
4631 		ASSERT(!data->zcd_added);
4632 
4633 		/*
4634 		 * The private callback data should be destroyed here, but
4635 		 * since we are going to check the zcd_called field after
4636 		 * dmu_tx_abort(), we will destroy it there.
4637 		 */
4638 		return;
4639 	}
4640 
4641 	/* Was this callback added to the global callback list? */
4642 	if (!data->zcd_added)
4643 		goto out;
4644 
4645 	ASSERT3U(data->zcd_txg, !=, 0);
4646 
4647 	/* Remove our callback from the list */
4648 	mutex_enter(&zcl.zcl_callbacks_lock);
4649 	list_remove(&zcl.zcl_callbacks, data);
4650 	mutex_exit(&zcl.zcl_callbacks_lock);
4651 
4652 out:
4653 	umem_free(data, sizeof (ztest_cb_data_t));
4654 }
4655 
4656 /* Allocate and initialize callback data structure */
4657 static ztest_cb_data_t *
4658 ztest_create_cb_data(objset_t *os, uint64_t txg)
4659 {
4660 	ztest_cb_data_t *cb_data;
4661 
4662 	cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL);
4663 
4664 	cb_data->zcd_txg = txg;
4665 	cb_data->zcd_spa = dmu_objset_spa(os);
4666 
4667 	return (cb_data);
4668 }
4669 
4670 /*
4671  * If a number of txgs equal to this threshold have been created after a commit
4672  * callback has been registered but not called, then we assume there is an
4673  * implementation bug.
4674  */
4675 #define	ZTEST_COMMIT_CALLBACK_THRESH	(TXG_CONCURRENT_STATES + 2)
4676 
4677 /*
4678  * Commit callback test.
4679  */
4680 void
4681 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id)
4682 {
4683 	objset_t *os = zd->zd_os;
4684 	ztest_od_t od[1];
4685 	dmu_tx_t *tx;
4686 	ztest_cb_data_t *cb_data[3], *tmp_cb;
4687 	uint64_t old_txg, txg;
4688 	int i, error;
4689 
4690 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0);
4691 
4692 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4693 		return;
4694 
4695 	tx = dmu_tx_create(os);
4696 
4697 	cb_data[0] = ztest_create_cb_data(os, 0);
4698 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]);
4699 
4700 	dmu_tx_hold_write(tx, od[0].od_object, 0, sizeof (uint64_t));
4701 
4702 	/* Every once in a while, abort the transaction on purpose */
4703 	if (ztest_random(100) == 0)
4704 		error = -1;
4705 
4706 	if (!error)
4707 		error = dmu_tx_assign(tx, TXG_NOWAIT);
4708 
4709 	txg = error ? 0 : dmu_tx_get_txg(tx);
4710 
4711 	cb_data[0]->zcd_txg = txg;
4712 	cb_data[1] = ztest_create_cb_data(os, txg);
4713 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]);
4714 
4715 	if (error) {
4716 		/*
4717 		 * It's not a strict requirement to call the registered
4718 		 * callbacks from inside dmu_tx_abort(), but that's what
4719 		 * it's supposed to happen in the current implementation
4720 		 * so we will check for that.
4721 		 */
4722 		for (i = 0; i < 2; i++) {
4723 			cb_data[i]->zcd_expected_err = ECANCELED;
4724 			VERIFY(!cb_data[i]->zcd_called);
4725 		}
4726 
4727 		dmu_tx_abort(tx);
4728 
4729 		for (i = 0; i < 2; i++) {
4730 			VERIFY(cb_data[i]->zcd_called);
4731 			umem_free(cb_data[i], sizeof (ztest_cb_data_t));
4732 		}
4733 
4734 		return;
4735 	}
4736 
4737 	cb_data[2] = ztest_create_cb_data(os, txg);
4738 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]);
4739 
4740 	/*
4741 	 * Read existing data to make sure there isn't a future leak.
4742 	 */
4743 	VERIFY(0 == dmu_read(os, od[0].od_object, 0, sizeof (uint64_t),
4744 	    &old_txg, DMU_READ_PREFETCH));
4745 
4746 	if (old_txg > txg)
4747 		fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64,
4748 		    old_txg, txg);
4749 
4750 	dmu_write(os, od[0].od_object, 0, sizeof (uint64_t), &txg, tx);
4751 
4752 	mutex_enter(&zcl.zcl_callbacks_lock);
4753 
4754 	/*
4755 	 * Since commit callbacks don't have any ordering requirement and since
4756 	 * it is theoretically possible for a commit callback to be called
4757 	 * after an arbitrary amount of time has elapsed since its txg has been
4758 	 * synced, it is difficult to reliably determine whether a commit
4759 	 * callback hasn't been called due to high load or due to a flawed
4760 	 * implementation.
4761 	 *
4762 	 * In practice, we will assume that if after a certain number of txgs a
4763 	 * commit callback hasn't been called, then most likely there's an
4764 	 * implementation bug..
4765 	 */
4766 	tmp_cb = list_head(&zcl.zcl_callbacks);
4767 	if (tmp_cb != NULL &&
4768 	    (txg - ZTEST_COMMIT_CALLBACK_THRESH) > tmp_cb->zcd_txg) {
4769 		fatal(0, "Commit callback threshold exceeded, oldest txg: %"
4770 		    PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg);
4771 	}
4772 
4773 	/*
4774 	 * Let's find the place to insert our callbacks.
4775 	 *
4776 	 * Even though the list is ordered by txg, it is possible for the
4777 	 * insertion point to not be the end because our txg may already be
4778 	 * quiescing at this point and other callbacks in the open txg
4779 	 * (from other objsets) may have sneaked in.
4780 	 */
4781 	tmp_cb = list_tail(&zcl.zcl_callbacks);
4782 	while (tmp_cb != NULL && tmp_cb->zcd_txg > txg)
4783 		tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb);
4784 
4785 	/* Add the 3 callbacks to the list */
4786 	for (i = 0; i < 3; i++) {
4787 		if (tmp_cb == NULL)
4788 			list_insert_head(&zcl.zcl_callbacks, cb_data[i]);
4789 		else
4790 			list_insert_after(&zcl.zcl_callbacks, tmp_cb,
4791 			    cb_data[i]);
4792 
4793 		cb_data[i]->zcd_added = B_TRUE;
4794 		VERIFY(!cb_data[i]->zcd_called);
4795 
4796 		tmp_cb = cb_data[i];
4797 	}
4798 
4799 	mutex_exit(&zcl.zcl_callbacks_lock);
4800 
4801 	dmu_tx_commit(tx);
4802 }
4803 
4804 /* ARGSUSED */
4805 void
4806 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id)
4807 {
4808 	zfs_prop_t proplist[] = {
4809 		ZFS_PROP_CHECKSUM,
4810 		ZFS_PROP_COMPRESSION,
4811 		ZFS_PROP_COPIES,
4812 		ZFS_PROP_DEDUP
4813 	};
4814 
4815 	rw_enter(&ztest_name_lock, RW_READER);
4816 
4817 	for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++)
4818 		(void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p],
4819 		    ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2));
4820 
4821 	rw_exit(&ztest_name_lock);
4822 }
4823 
4824 /* ARGSUSED */
4825 void
4826 ztest_remap_blocks(ztest_ds_t *zd, uint64_t id)
4827 {
4828 	rw_enter(&ztest_name_lock, RW_READER);
4829 
4830 	int error = dmu_objset_remap_indirects(zd->zd_name);
4831 	if (error == ENOSPC)
4832 		error = 0;
4833 	ASSERT0(error);
4834 
4835 	rw_exit(&ztest_name_lock);
4836 }
4837 
4838 /* ARGSUSED */
4839 void
4840 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id)
4841 {
4842 	nvlist_t *props = NULL;
4843 
4844 	rw_enter(&ztest_name_lock, RW_READER);
4845 
4846 	(void) ztest_spa_prop_set_uint64(ZPOOL_PROP_DEDUPDITTO,
4847 	    ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN));
4848 
4849 	VERIFY0(spa_prop_get(ztest_spa, &props));
4850 
4851 	if (ztest_opts.zo_verbose >= 6)
4852 		dump_nvlist(props, 4);
4853 
4854 	nvlist_free(props);
4855 
4856 	rw_exit(&ztest_name_lock);
4857 }
4858 
4859 static int
4860 user_release_one(const char *snapname, const char *holdname)
4861 {
4862 	nvlist_t *snaps, *holds;
4863 	int error;
4864 
4865 	snaps = fnvlist_alloc();
4866 	holds = fnvlist_alloc();
4867 	fnvlist_add_boolean(holds, holdname);
4868 	fnvlist_add_nvlist(snaps, snapname, holds);
4869 	fnvlist_free(holds);
4870 	error = dsl_dataset_user_release(snaps, NULL);
4871 	fnvlist_free(snaps);
4872 	return (error);
4873 }
4874 
4875 /*
4876  * Test snapshot hold/release and deferred destroy.
4877  */
4878 void
4879 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id)
4880 {
4881 	int error;
4882 	objset_t *os = zd->zd_os;
4883 	objset_t *origin;
4884 	char snapname[100];
4885 	char fullname[100];
4886 	char clonename[100];
4887 	char tag[100];
4888 	char osname[ZFS_MAX_DATASET_NAME_LEN];
4889 	nvlist_t *holds;
4890 
4891 	rw_enter(&ztest_name_lock, RW_READER);
4892 
4893 	dmu_objset_name(os, osname);
4894 
4895 	(void) snprintf(snapname, sizeof (snapname), "sh1_%llu", id);
4896 	(void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname);
4897 	(void) snprintf(clonename, sizeof (clonename),
4898 	    "%s/ch1_%llu", osname, id);
4899 	(void) snprintf(tag, sizeof (tag), "tag_%llu", id);
4900 
4901 	/*
4902 	 * Clean up from any previous run.
4903 	 */
4904 	error = dsl_destroy_head(clonename);
4905 	if (error != ENOENT)
4906 		ASSERT0(error);
4907 	error = user_release_one(fullname, tag);
4908 	if (error != ESRCH && error != ENOENT)
4909 		ASSERT0(error);
4910 	error = dsl_destroy_snapshot(fullname, B_FALSE);
4911 	if (error != ENOENT)
4912 		ASSERT0(error);
4913 
4914 	/*
4915 	 * Create snapshot, clone it, mark snap for deferred destroy,
4916 	 * destroy clone, verify snap was also destroyed.
4917 	 */
4918 	error = dmu_objset_snapshot_one(osname, snapname);
4919 	if (error) {
4920 		if (error == ENOSPC) {
4921 			ztest_record_enospc("dmu_objset_snapshot");
4922 			goto out;
4923 		}
4924 		fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
4925 	}
4926 
4927 	error = dmu_objset_clone(clonename, fullname);
4928 	if (error) {
4929 		if (error == ENOSPC) {
4930 			ztest_record_enospc("dmu_objset_clone");
4931 			goto out;
4932 		}
4933 		fatal(0, "dmu_objset_clone(%s) = %d", clonename, error);
4934 	}
4935 
4936 	error = dsl_destroy_snapshot(fullname, B_TRUE);
4937 	if (error) {
4938 		fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
4939 		    fullname, error);
4940 	}
4941 
4942 	error = dsl_destroy_head(clonename);
4943 	if (error)
4944 		fatal(0, "dsl_destroy_head(%s) = %d", clonename, error);
4945 
4946 	error = dmu_objset_hold(fullname, FTAG, &origin);
4947 	if (error != ENOENT)
4948 		fatal(0, "dmu_objset_hold(%s) = %d", fullname, error);
4949 
4950 	/*
4951 	 * Create snapshot, add temporary hold, verify that we can't
4952 	 * destroy a held snapshot, mark for deferred destroy,
4953 	 * release hold, verify snapshot was destroyed.
4954 	 */
4955 	error = dmu_objset_snapshot_one(osname, snapname);
4956 	if (error) {
4957 		if (error == ENOSPC) {
4958 			ztest_record_enospc("dmu_objset_snapshot");
4959 			goto out;
4960 		}
4961 		fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
4962 	}
4963 
4964 	holds = fnvlist_alloc();
4965 	fnvlist_add_string(holds, fullname, tag);
4966 	error = dsl_dataset_user_hold(holds, 0, NULL);
4967 	fnvlist_free(holds);
4968 
4969 	if (error == ENOSPC) {
4970 		ztest_record_enospc("dsl_dataset_user_hold");
4971 		goto out;
4972 	} else if (error) {
4973 		fatal(0, "dsl_dataset_user_hold(%s, %s) = %u",
4974 		    fullname, tag, error);
4975 	}
4976 
4977 	error = dsl_destroy_snapshot(fullname, B_FALSE);
4978 	if (error != EBUSY) {
4979 		fatal(0, "dsl_destroy_snapshot(%s, B_FALSE) = %d",
4980 		    fullname, error);
4981 	}
4982 
4983 	error = dsl_destroy_snapshot(fullname, B_TRUE);
4984 	if (error) {
4985 		fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
4986 		    fullname, error);
4987 	}
4988 
4989 	error = user_release_one(fullname, tag);
4990 	if (error)
4991 		fatal(0, "user_release_one(%s, %s) = %d", fullname, tag, error);
4992 
4993 	VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT);
4994 
4995 out:
4996 	rw_exit(&ztest_name_lock);
4997 }
4998 
4999 /*
5000  * Inject random faults into the on-disk data.
5001  */
5002 /* ARGSUSED */
5003 void
5004 ztest_fault_inject(ztest_ds_t *zd, uint64_t id)
5005 {
5006 	ztest_shared_t *zs = ztest_shared;
5007 	spa_t *spa = ztest_spa;
5008 	int fd;
5009 	uint64_t offset;
5010 	uint64_t leaves;
5011 	uint64_t bad = 0x1990c0ffeedecade;
5012 	uint64_t top, leaf;
5013 	char path0[MAXPATHLEN];
5014 	char pathrand[MAXPATHLEN];
5015 	size_t fsize;
5016 	int bshift = SPA_MAXBLOCKSHIFT + 2;
5017 	int iters = 1000;
5018 	int maxfaults;
5019 	int mirror_save;
5020 	vdev_t *vd0 = NULL;
5021 	uint64_t guid0 = 0;
5022 	boolean_t islog = B_FALSE;
5023 
5024 	mutex_enter(&ztest_vdev_lock);
5025 
5026 	/*
5027 	 * Device removal is in progress, fault injection must be disabled
5028 	 * until it completes and the pool is scrubbed.  The fault injection
5029 	 * strategy for damaging blocks does not take in to account evacuated
5030 	 * blocks which may have already been damaged.
5031 	 */
5032 	if (ztest_device_removal_active) {
5033 		mutex_exit(&ztest_vdev_lock);
5034 		return;
5035 	}
5036 
5037 	maxfaults = MAXFAULTS();
5038 	leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz;
5039 	mirror_save = zs->zs_mirrors;
5040 	mutex_exit(&ztest_vdev_lock);
5041 
5042 	ASSERT(leaves >= 1);
5043 
5044 	/*
5045 	 * Grab the name lock as reader. There are some operations
5046 	 * which don't like to have their vdevs changed while
5047 	 * they are in progress (i.e. spa_change_guid). Those
5048 	 * operations will have grabbed the name lock as writer.
5049 	 */
5050 	rw_enter(&ztest_name_lock, RW_READER);
5051 
5052 	/*
5053 	 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
5054 	 */
5055 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5056 
5057 	if (ztest_random(2) == 0) {
5058 		/*
5059 		 * Inject errors on a normal data device or slog device.
5060 		 */
5061 		top = ztest_random_vdev_top(spa, B_TRUE);
5062 		leaf = ztest_random(leaves) + zs->zs_splits;
5063 
5064 		/*
5065 		 * Generate paths to the first leaf in this top-level vdev,
5066 		 * and to the random leaf we selected.  We'll induce transient
5067 		 * write failures and random online/offline activity on leaf 0,
5068 		 * and we'll write random garbage to the randomly chosen leaf.
5069 		 */
5070 		(void) snprintf(path0, sizeof (path0), ztest_dev_template,
5071 		    ztest_opts.zo_dir, ztest_opts.zo_pool,
5072 		    top * leaves + zs->zs_splits);
5073 		(void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template,
5074 		    ztest_opts.zo_dir, ztest_opts.zo_pool,
5075 		    top * leaves + leaf);
5076 
5077 		vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0);
5078 		if (vd0 != NULL && vd0->vdev_top->vdev_islog)
5079 			islog = B_TRUE;
5080 
5081 		/*
5082 		 * If the top-level vdev needs to be resilvered
5083 		 * then we only allow faults on the device that is
5084 		 * resilvering.
5085 		 */
5086 		if (vd0 != NULL && maxfaults != 1 &&
5087 		    (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) ||
5088 		    vd0->vdev_resilver_txg != 0)) {
5089 			/*
5090 			 * Make vd0 explicitly claim to be unreadable,
5091 			 * or unwriteable, or reach behind its back
5092 			 * and close the underlying fd.  We can do this if
5093 			 * maxfaults == 0 because we'll fail and reexecute,
5094 			 * and we can do it if maxfaults >= 2 because we'll
5095 			 * have enough redundancy.  If maxfaults == 1, the
5096 			 * combination of this with injection of random data
5097 			 * corruption below exceeds the pool's fault tolerance.
5098 			 */
5099 			vdev_file_t *vf = vd0->vdev_tsd;
5100 
5101 			zfs_dbgmsg("injecting fault to vdev %llu; maxfaults=%d",
5102 			    (long long)vd0->vdev_id, (int)maxfaults);
5103 
5104 			if (vf != NULL && ztest_random(3) == 0) {
5105 				(void) close(vf->vf_vnode->v_fd);
5106 				vf->vf_vnode->v_fd = -1;
5107 			} else if (ztest_random(2) == 0) {
5108 				vd0->vdev_cant_read = B_TRUE;
5109 			} else {
5110 				vd0->vdev_cant_write = B_TRUE;
5111 			}
5112 			guid0 = vd0->vdev_guid;
5113 		}
5114 	} else {
5115 		/*
5116 		 * Inject errors on an l2cache device.
5117 		 */
5118 		spa_aux_vdev_t *sav = &spa->spa_l2cache;
5119 
5120 		if (sav->sav_count == 0) {
5121 			spa_config_exit(spa, SCL_STATE, FTAG);
5122 			rw_exit(&ztest_name_lock);
5123 			return;
5124 		}
5125 		vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)];
5126 		guid0 = vd0->vdev_guid;
5127 		(void) strcpy(path0, vd0->vdev_path);
5128 		(void) strcpy(pathrand, vd0->vdev_path);
5129 
5130 		leaf = 0;
5131 		leaves = 1;
5132 		maxfaults = INT_MAX;	/* no limit on cache devices */
5133 	}
5134 
5135 	spa_config_exit(spa, SCL_STATE, FTAG);
5136 	rw_exit(&ztest_name_lock);
5137 
5138 	/*
5139 	 * If we can tolerate two or more faults, or we're dealing
5140 	 * with a slog, randomly online/offline vd0.
5141 	 */
5142 	if ((maxfaults >= 2 || islog) && guid0 != 0) {
5143 		if (ztest_random(10) < 6) {
5144 			int flags = (ztest_random(2) == 0 ?
5145 			    ZFS_OFFLINE_TEMPORARY : 0);
5146 
5147 			/*
5148 			 * We have to grab the zs_name_lock as writer to
5149 			 * prevent a race between offlining a slog and
5150 			 * destroying a dataset. Offlining the slog will
5151 			 * grab a reference on the dataset which may cause
5152 			 * dmu_objset_destroy() to fail with EBUSY thus
5153 			 * leaving the dataset in an inconsistent state.
5154 			 */
5155 			if (islog)
5156 				rw_enter(&ztest_name_lock, RW_WRITER);
5157 
5158 			VERIFY(vdev_offline(spa, guid0, flags) != EBUSY);
5159 
5160 			if (islog)
5161 				rw_exit(&ztest_name_lock);
5162 		} else {
5163 			/*
5164 			 * Ideally we would like to be able to randomly
5165 			 * call vdev_[on|off]line without holding locks
5166 			 * to force unpredictable failures but the side
5167 			 * effects of vdev_[on|off]line prevent us from
5168 			 * doing so. We grab the ztest_vdev_lock here to
5169 			 * prevent a race between injection testing and
5170 			 * aux_vdev removal.
5171 			 */
5172 			mutex_enter(&ztest_vdev_lock);
5173 			(void) vdev_online(spa, guid0, 0, NULL);
5174 			mutex_exit(&ztest_vdev_lock);
5175 		}
5176 	}
5177 
5178 	if (maxfaults == 0)
5179 		return;
5180 
5181 	/*
5182 	 * We have at least single-fault tolerance, so inject data corruption.
5183 	 */
5184 	fd = open(pathrand, O_RDWR);
5185 
5186 	if (fd == -1) /* we hit a gap in the device namespace */
5187 		return;
5188 
5189 	fsize = lseek(fd, 0, SEEK_END);
5190 
5191 	while (--iters != 0) {
5192 		/*
5193 		 * The offset must be chosen carefully to ensure that
5194 		 * we do not inject a given logical block with errors
5195 		 * on two different leaf devices, because ZFS can not
5196 		 * tolerate that (if maxfaults==1).
5197 		 *
5198 		 * We divide each leaf into chunks of size
5199 		 * (# leaves * SPA_MAXBLOCKSIZE * 4).  Within each chunk
5200 		 * there is a series of ranges to which we can inject errors.
5201 		 * Each range can accept errors on only a single leaf vdev.
5202 		 * The error injection ranges are separated by ranges
5203 		 * which we will not inject errors on any device (DMZs).
5204 		 * Each DMZ must be large enough such that a single block
5205 		 * can not straddle it, so that a single block can not be
5206 		 * a target in two different injection ranges (on different
5207 		 * leaf vdevs).
5208 		 *
5209 		 * For example, with 3 leaves, each chunk looks like:
5210 		 *    0 to  32M: injection range for leaf 0
5211 		 *  32M to  64M: DMZ - no injection allowed
5212 		 *  64M to  96M: injection range for leaf 1
5213 		 *  96M to 128M: DMZ - no injection allowed
5214 		 * 128M to 160M: injection range for leaf 2
5215 		 * 160M to 192M: DMZ - no injection allowed
5216 		 */
5217 		offset = ztest_random(fsize / (leaves << bshift)) *
5218 		    (leaves << bshift) + (leaf << bshift) +
5219 		    (ztest_random(1ULL << (bshift - 1)) & -8ULL);
5220 
5221 		/*
5222 		 * Only allow damage to the labels at one end of the vdev.
5223 		 *
5224 		 * If all labels are damaged, the device will be totally
5225 		 * inaccessible, which will result in loss of data,
5226 		 * because we also damage (parts of) the other side of
5227 		 * the mirror/raidz.
5228 		 *
5229 		 * Additionally, we will always have both an even and an
5230 		 * odd label, so that we can handle crashes in the
5231 		 * middle of vdev_config_sync().
5232 		 */
5233 		if ((leaf & 1) == 0 && offset < VDEV_LABEL_START_SIZE)
5234 			continue;
5235 
5236 		/*
5237 		 * The two end labels are stored at the "end" of the disk, but
5238 		 * the end of the disk (vdev_psize) is aligned to
5239 		 * sizeof (vdev_label_t).
5240 		 */
5241 		uint64_t psize = P2ALIGN(fsize, sizeof (vdev_label_t));
5242 		if ((leaf & 1) == 1 &&
5243 		    offset + sizeof (bad) > psize - VDEV_LABEL_END_SIZE)
5244 			continue;
5245 
5246 		mutex_enter(&ztest_vdev_lock);
5247 		if (mirror_save != zs->zs_mirrors) {
5248 			mutex_exit(&ztest_vdev_lock);
5249 			(void) close(fd);
5250 			return;
5251 		}
5252 
5253 		if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad))
5254 			fatal(1, "can't inject bad word at 0x%llx in %s",
5255 			    offset, pathrand);
5256 
5257 		mutex_exit(&ztest_vdev_lock);
5258 
5259 		if (ztest_opts.zo_verbose >= 7)
5260 			(void) printf("injected bad word into %s,"
5261 			    " offset 0x%llx\n", pathrand, (u_longlong_t)offset);
5262 	}
5263 
5264 	(void) close(fd);
5265 }
5266 
5267 /*
5268  * Verify that DDT repair works as expected.
5269  */
5270 void
5271 ztest_ddt_repair(ztest_ds_t *zd, uint64_t id)
5272 {
5273 	ztest_shared_t *zs = ztest_shared;
5274 	spa_t *spa = ztest_spa;
5275 	objset_t *os = zd->zd_os;
5276 	ztest_od_t od[1];
5277 	uint64_t object, blocksize, txg, pattern, psize;
5278 	enum zio_checksum checksum = spa_dedup_checksum(spa);
5279 	dmu_buf_t *db;
5280 	dmu_tx_t *tx;
5281 	abd_t *abd;
5282 	blkptr_t blk;
5283 	int copies = 2 * ZIO_DEDUPDITTO_MIN;
5284 
5285 	blocksize = ztest_random_blocksize();
5286 	blocksize = MIN(blocksize, 2048);	/* because we write so many */
5287 
5288 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0);
5289 
5290 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
5291 		return;
5292 
5293 	/*
5294 	 * Take the name lock as writer to prevent anyone else from changing
5295 	 * the pool and dataset properies we need to maintain during this test.
5296 	 */
5297 	rw_enter(&ztest_name_lock, RW_WRITER);
5298 
5299 	if (ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_DEDUP, checksum,
5300 	    B_FALSE) != 0 ||
5301 	    ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COPIES, 1,
5302 	    B_FALSE) != 0) {
5303 		rw_exit(&ztest_name_lock);
5304 		return;
5305 	}
5306 
5307 	dmu_objset_stats_t dds;
5308 	dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
5309 	dmu_objset_fast_stat(os, &dds);
5310 	dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
5311 
5312 	object = od[0].od_object;
5313 	blocksize = od[0].od_blocksize;
5314 	pattern = zs->zs_guid ^ dds.dds_guid;
5315 
5316 	ASSERT(object != 0);
5317 
5318 	tx = dmu_tx_create(os);
5319 	dmu_tx_hold_write(tx, object, 0, copies * blocksize);
5320 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
5321 	if (txg == 0) {
5322 		rw_exit(&ztest_name_lock);
5323 		return;
5324 	}
5325 
5326 	/*
5327 	 * Write all the copies of our block.
5328 	 */
5329 	for (int i = 0; i < copies; i++) {
5330 		uint64_t offset = i * blocksize;
5331 		int error = dmu_buf_hold(os, object, offset, FTAG, &db,
5332 		    DMU_READ_NO_PREFETCH);
5333 		if (error != 0) {
5334 			fatal(B_FALSE, "dmu_buf_hold(%p, %llu, %llu) = %u",
5335 			    os, (long long)object, (long long) offset, error);
5336 		}
5337 		ASSERT(db->db_offset == offset);
5338 		ASSERT(db->db_size == blocksize);
5339 		ASSERT(ztest_pattern_match(db->db_data, db->db_size, pattern) ||
5340 		    ztest_pattern_match(db->db_data, db->db_size, 0ULL));
5341 		dmu_buf_will_fill(db, tx);
5342 		ztest_pattern_set(db->db_data, db->db_size, pattern);
5343 		dmu_buf_rele(db, FTAG);
5344 	}
5345 
5346 	dmu_tx_commit(tx);
5347 	txg_wait_synced(spa_get_dsl(spa), txg);
5348 
5349 	/*
5350 	 * Find out what block we got.
5351 	 */
5352 	VERIFY0(dmu_buf_hold(os, object, 0, FTAG, &db,
5353 	    DMU_READ_NO_PREFETCH));
5354 	blk = *((dmu_buf_impl_t *)db)->db_blkptr;
5355 	dmu_buf_rele(db, FTAG);
5356 
5357 	/*
5358 	 * Damage the block.  Dedup-ditto will save us when we read it later.
5359 	 */
5360 	psize = BP_GET_PSIZE(&blk);
5361 	abd = abd_alloc_linear(psize, B_TRUE);
5362 	ztest_pattern_set(abd_to_buf(abd), psize, ~pattern);
5363 
5364 	(void) zio_wait(zio_rewrite(NULL, spa, 0, &blk,
5365 	    abd, psize, NULL, NULL, ZIO_PRIORITY_SYNC_WRITE,
5366 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_INDUCE_DAMAGE, NULL));
5367 
5368 	abd_free(abd);
5369 
5370 	rw_exit(&ztest_name_lock);
5371 }
5372 
5373 /*
5374  * Scrub the pool.
5375  */
5376 /* ARGSUSED */
5377 void
5378 ztest_scrub(ztest_ds_t *zd, uint64_t id)
5379 {
5380 	spa_t *spa = ztest_spa;
5381 
5382 	/*
5383 	 * Scrub in progress by device removal.
5384 	 */
5385 	if (ztest_device_removal_active)
5386 		return;
5387 
5388 	(void) spa_scan(spa, POOL_SCAN_SCRUB);
5389 	(void) poll(NULL, 0, 100); /* wait a moment, then force a restart */
5390 	(void) spa_scan(spa, POOL_SCAN_SCRUB);
5391 }
5392 
5393 /*
5394  * Change the guid for the pool.
5395  */
5396 /* ARGSUSED */
5397 void
5398 ztest_reguid(ztest_ds_t *zd, uint64_t id)
5399 {
5400 	spa_t *spa = ztest_spa;
5401 	uint64_t orig, load;
5402 	int error;
5403 
5404 	orig = spa_guid(spa);
5405 	load = spa_load_guid(spa);
5406 
5407 	rw_enter(&ztest_name_lock, RW_WRITER);
5408 	error = spa_change_guid(spa);
5409 	rw_exit(&ztest_name_lock);
5410 
5411 	if (error != 0)
5412 		return;
5413 
5414 	if (ztest_opts.zo_verbose >= 4) {
5415 		(void) printf("Changed guid old %llu -> %llu\n",
5416 		    (u_longlong_t)orig, (u_longlong_t)spa_guid(spa));
5417 	}
5418 
5419 	VERIFY3U(orig, !=, spa_guid(spa));
5420 	VERIFY3U(load, ==, spa_load_guid(spa));
5421 }
5422 
5423 /*
5424  * Rename the pool to a different name and then rename it back.
5425  */
5426 /* ARGSUSED */
5427 void
5428 ztest_spa_rename(ztest_ds_t *zd, uint64_t id)
5429 {
5430 	char *oldname, *newname;
5431 	spa_t *spa;
5432 
5433 	rw_enter(&ztest_name_lock, RW_WRITER);
5434 
5435 	oldname = ztest_opts.zo_pool;
5436 	newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL);
5437 	(void) strcpy(newname, oldname);
5438 	(void) strcat(newname, "_tmp");
5439 
5440 	/*
5441 	 * Do the rename
5442 	 */
5443 	VERIFY3U(0, ==, spa_rename(oldname, newname));
5444 
5445 	/*
5446 	 * Try to open it under the old name, which shouldn't exist
5447 	 */
5448 	VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
5449 
5450 	/*
5451 	 * Open it under the new name and make sure it's still the same spa_t.
5452 	 */
5453 	VERIFY3U(0, ==, spa_open(newname, &spa, FTAG));
5454 
5455 	ASSERT(spa == ztest_spa);
5456 	spa_close(spa, FTAG);
5457 
5458 	/*
5459 	 * Rename it back to the original
5460 	 */
5461 	VERIFY3U(0, ==, spa_rename(newname, oldname));
5462 
5463 	/*
5464 	 * Make sure it can still be opened
5465 	 */
5466 	VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG));
5467 
5468 	ASSERT(spa == ztest_spa);
5469 	spa_close(spa, FTAG);
5470 
5471 	umem_free(newname, strlen(newname) + 1);
5472 
5473 	rw_exit(&ztest_name_lock);
5474 }
5475 
5476 /*
5477  * Verify pool integrity by running zdb.
5478  */
5479 static void
5480 ztest_run_zdb(char *pool)
5481 {
5482 	int status;
5483 	char zdb[MAXPATHLEN + MAXNAMELEN + 20];
5484 	char zbuf[1024];
5485 	char *bin;
5486 	char *ztest;
5487 	char *isa;
5488 	int isalen;
5489 	FILE *fp;
5490 
5491 	(void) realpath(getexecname(), zdb);
5492 
5493 	/* zdb lives in /usr/sbin, while ztest lives in /usr/bin */
5494 	bin = strstr(zdb, "/usr/bin/");
5495 	ztest = strstr(bin, "/ztest");
5496 	isa = bin + 8;
5497 	isalen = ztest - isa;
5498 	isa = strdup(isa);
5499 	/* LINTED */
5500 	(void) sprintf(bin,
5501 	    "/usr/sbin%.*s/zdb -bcc%s%s -G -d -U %s %s",
5502 	    isalen,
5503 	    isa,
5504 	    ztest_opts.zo_verbose >= 3 ? "s" : "",
5505 	    ztest_opts.zo_verbose >= 4 ? "v" : "",
5506 	    spa_config_path,
5507 	    pool);
5508 	free(isa);
5509 
5510 	if (ztest_opts.zo_verbose >= 5)
5511 		(void) printf("Executing %s\n", strstr(zdb, "zdb "));
5512 
5513 	fp = popen(zdb, "r");
5514 
5515 	while (fgets(zbuf, sizeof (zbuf), fp) != NULL)
5516 		if (ztest_opts.zo_verbose >= 3)
5517 			(void) printf("%s", zbuf);
5518 
5519 	status = pclose(fp);
5520 
5521 	if (status == 0)
5522 		return;
5523 
5524 	ztest_dump_core = 0;
5525 	if (WIFEXITED(status))
5526 		fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status));
5527 	else
5528 		fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status));
5529 }
5530 
5531 static void
5532 ztest_walk_pool_directory(char *header)
5533 {
5534 	spa_t *spa = NULL;
5535 
5536 	if (ztest_opts.zo_verbose >= 6)
5537 		(void) printf("%s\n", header);
5538 
5539 	mutex_enter(&spa_namespace_lock);
5540 	while ((spa = spa_next(spa)) != NULL)
5541 		if (ztest_opts.zo_verbose >= 6)
5542 			(void) printf("\t%s\n", spa_name(spa));
5543 	mutex_exit(&spa_namespace_lock);
5544 }
5545 
5546 static void
5547 ztest_spa_import_export(char *oldname, char *newname)
5548 {
5549 	nvlist_t *config, *newconfig;
5550 	uint64_t pool_guid;
5551 	spa_t *spa;
5552 	int error;
5553 
5554 	if (ztest_opts.zo_verbose >= 4) {
5555 		(void) printf("import/export: old = %s, new = %s\n",
5556 		    oldname, newname);
5557 	}
5558 
5559 	/*
5560 	 * Clean up from previous runs.
5561 	 */
5562 	(void) spa_destroy(newname);
5563 
5564 	/*
5565 	 * Get the pool's configuration and guid.
5566 	 */
5567 	VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG));
5568 
5569 	/*
5570 	 * Kick off a scrub to tickle scrub/export races.
5571 	 */
5572 	if (ztest_random(2) == 0)
5573 		(void) spa_scan(spa, POOL_SCAN_SCRUB);
5574 
5575 	pool_guid = spa_guid(spa);
5576 	spa_close(spa, FTAG);
5577 
5578 	ztest_walk_pool_directory("pools before export");
5579 
5580 	/*
5581 	 * Export it.
5582 	 */
5583 	VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE));
5584 
5585 	ztest_walk_pool_directory("pools after export");
5586 
5587 	/*
5588 	 * Try to import it.
5589 	 */
5590 	newconfig = spa_tryimport(config);
5591 	ASSERT(newconfig != NULL);
5592 	nvlist_free(newconfig);
5593 
5594 	/*
5595 	 * Import it under the new name.
5596 	 */
5597 	error = spa_import(newname, config, NULL, 0);
5598 	if (error != 0) {
5599 		dump_nvlist(config, 0);
5600 		fatal(B_FALSE, "couldn't import pool %s as %s: error %u",
5601 		    oldname, newname, error);
5602 	}
5603 
5604 	ztest_walk_pool_directory("pools after import");
5605 
5606 	/*
5607 	 * Try to import it again -- should fail with EEXIST.
5608 	 */
5609 	VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0));
5610 
5611 	/*
5612 	 * Try to import it under a different name -- should fail with EEXIST.
5613 	 */
5614 	VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0));
5615 
5616 	/*
5617 	 * Verify that the pool is no longer visible under the old name.
5618 	 */
5619 	VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
5620 
5621 	/*
5622 	 * Verify that we can open and close the pool using the new name.
5623 	 */
5624 	VERIFY3U(0, ==, spa_open(newname, &spa, FTAG));
5625 	ASSERT(pool_guid == spa_guid(spa));
5626 	spa_close(spa, FTAG);
5627 
5628 	nvlist_free(config);
5629 }
5630 
5631 static void
5632 ztest_resume(spa_t *spa)
5633 {
5634 	if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6)
5635 		(void) printf("resuming from suspended state\n");
5636 	spa_vdev_state_enter(spa, SCL_NONE);
5637 	vdev_clear(spa, NULL);
5638 	(void) spa_vdev_state_exit(spa, NULL, 0);
5639 	(void) zio_resume(spa);
5640 }
5641 
5642 static void *
5643 ztest_resume_thread(void *arg)
5644 {
5645 	spa_t *spa = arg;
5646 
5647 	while (!ztest_exiting) {
5648 		if (spa_suspended(spa))
5649 			ztest_resume(spa);
5650 		(void) poll(NULL, 0, 100);
5651 
5652 		/*
5653 		 * Periodically change the zfs_compressed_arc_enabled setting.
5654 		 */
5655 		if (ztest_random(10) == 0)
5656 			zfs_compressed_arc_enabled = ztest_random(2);
5657 
5658 		/*
5659 		 * Periodically change the zfs_abd_scatter_enabled setting.
5660 		 */
5661 		if (ztest_random(10) == 0)
5662 			zfs_abd_scatter_enabled = ztest_random(2);
5663 	}
5664 	return (NULL);
5665 }
5666 
5667 static void *
5668 ztest_deadman_thread(void *arg)
5669 {
5670 	ztest_shared_t *zs = arg;
5671 	spa_t *spa = ztest_spa;
5672 	hrtime_t delta, total = 0;
5673 
5674 	for (;;) {
5675 		delta = zs->zs_thread_stop - zs->zs_thread_start +
5676 		    MSEC2NSEC(zfs_deadman_synctime_ms);
5677 
5678 		(void) poll(NULL, 0, (int)NSEC2MSEC(delta));
5679 
5680 		/*
5681 		 * If the pool is suspended then fail immediately. Otherwise,
5682 		 * check to see if the pool is making any progress. If
5683 		 * vdev_deadman() discovers that there hasn't been any recent
5684 		 * I/Os then it will end up aborting the tests.
5685 		 */
5686 		if (spa_suspended(spa) || spa->spa_root_vdev == NULL) {
5687 			fatal(0, "aborting test after %llu seconds because "
5688 			    "pool has transitioned to a suspended state.",
5689 			    zfs_deadman_synctime_ms / 1000);
5690 			return (NULL);
5691 		}
5692 		vdev_deadman(spa->spa_root_vdev);
5693 
5694 		total += zfs_deadman_synctime_ms/1000;
5695 		(void) printf("ztest has been running for %lld seconds\n",
5696 		    total);
5697 	}
5698 }
5699 
5700 static void
5701 ztest_execute(int test, ztest_info_t *zi, uint64_t id)
5702 {
5703 	ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets];
5704 	ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test);
5705 	hrtime_t functime = gethrtime();
5706 
5707 	for (int i = 0; i < zi->zi_iters; i++)
5708 		zi->zi_func(zd, id);
5709 
5710 	functime = gethrtime() - functime;
5711 
5712 	atomic_add_64(&zc->zc_count, 1);
5713 	atomic_add_64(&zc->zc_time, functime);
5714 
5715 	if (ztest_opts.zo_verbose >= 4) {
5716 		Dl_info dli;
5717 		(void) dladdr((void *)zi->zi_func, &dli);
5718 		(void) printf("%6.2f sec in %s\n",
5719 		    (double)functime / NANOSEC, dli.dli_sname);
5720 	}
5721 }
5722 
5723 static void *
5724 ztest_thread(void *arg)
5725 {
5726 	int rand;
5727 	uint64_t id = (uintptr_t)arg;
5728 	ztest_shared_t *zs = ztest_shared;
5729 	uint64_t call_next;
5730 	hrtime_t now;
5731 	ztest_info_t *zi;
5732 	ztest_shared_callstate_t *zc;
5733 
5734 	while ((now = gethrtime()) < zs->zs_thread_stop) {
5735 		/*
5736 		 * See if it's time to force a crash.
5737 		 */
5738 		if (now > zs->zs_thread_kill)
5739 			ztest_kill(zs);
5740 
5741 		/*
5742 		 * If we're getting ENOSPC with some regularity, stop.
5743 		 */
5744 		if (zs->zs_enospc_count > 10)
5745 			break;
5746 
5747 		/*
5748 		 * Pick a random function to execute.
5749 		 */
5750 		rand = ztest_random(ZTEST_FUNCS);
5751 		zi = &ztest_info[rand];
5752 		zc = ZTEST_GET_SHARED_CALLSTATE(rand);
5753 		call_next = zc->zc_next;
5754 
5755 		if (now >= call_next &&
5756 		    atomic_cas_64(&zc->zc_next, call_next, call_next +
5757 		    ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) {
5758 			ztest_execute(rand, zi, id);
5759 		}
5760 	}
5761 
5762 	return (NULL);
5763 }
5764 
5765 static void
5766 ztest_dataset_name(char *dsname, char *pool, int d)
5767 {
5768 	(void) snprintf(dsname, ZFS_MAX_DATASET_NAME_LEN, "%s/ds_%d", pool, d);
5769 }
5770 
5771 static void
5772 ztest_dataset_destroy(int d)
5773 {
5774 	char name[ZFS_MAX_DATASET_NAME_LEN];
5775 
5776 	ztest_dataset_name(name, ztest_opts.zo_pool, d);
5777 
5778 	if (ztest_opts.zo_verbose >= 3)
5779 		(void) printf("Destroying %s to free up space\n", name);
5780 
5781 	/*
5782 	 * Cleanup any non-standard clones and snapshots.  In general,
5783 	 * ztest thread t operates on dataset (t % zopt_datasets),
5784 	 * so there may be more than one thing to clean up.
5785 	 */
5786 	for (int t = d; t < ztest_opts.zo_threads;
5787 	    t += ztest_opts.zo_datasets) {
5788 		ztest_dsl_dataset_cleanup(name, t);
5789 	}
5790 
5791 	(void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
5792 	    DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
5793 }
5794 
5795 static void
5796 ztest_dataset_dirobj_verify(ztest_ds_t *zd)
5797 {
5798 	uint64_t usedobjs, dirobjs, scratch;
5799 
5800 	/*
5801 	 * ZTEST_DIROBJ is the object directory for the entire dataset.
5802 	 * Therefore, the number of objects in use should equal the
5803 	 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself.
5804 	 * If not, we have an object leak.
5805 	 *
5806 	 * Note that we can only check this in ztest_dataset_open(),
5807 	 * when the open-context and syncing-context values agree.
5808 	 * That's because zap_count() returns the open-context value,
5809 	 * while dmu_objset_space() returns the rootbp fill count.
5810 	 */
5811 	VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs));
5812 	dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch);
5813 	ASSERT3U(dirobjs + 1, ==, usedobjs);
5814 }
5815 
5816 static int
5817 ztest_dataset_open(int d)
5818 {
5819 	ztest_ds_t *zd = &ztest_ds[d];
5820 	uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq;
5821 	objset_t *os;
5822 	zilog_t *zilog;
5823 	char name[ZFS_MAX_DATASET_NAME_LEN];
5824 	int error;
5825 
5826 	ztest_dataset_name(name, ztest_opts.zo_pool, d);
5827 
5828 	rw_enter(&ztest_name_lock, RW_READER);
5829 
5830 	error = ztest_dataset_create(name);
5831 	if (error == ENOSPC) {
5832 		rw_exit(&ztest_name_lock);
5833 		ztest_record_enospc(FTAG);
5834 		return (error);
5835 	}
5836 	ASSERT(error == 0 || error == EEXIST);
5837 
5838 	VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, zd, &os));
5839 	rw_exit(&ztest_name_lock);
5840 
5841 	ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os);
5842 
5843 	zilog = zd->zd_zilog;
5844 
5845 	if (zilog->zl_header->zh_claim_lr_seq != 0 &&
5846 	    zilog->zl_header->zh_claim_lr_seq < committed_seq)
5847 		fatal(0, "missing log records: claimed %llu < committed %llu",
5848 		    zilog->zl_header->zh_claim_lr_seq, committed_seq);
5849 
5850 	ztest_dataset_dirobj_verify(zd);
5851 
5852 	zil_replay(os, zd, ztest_replay_vector);
5853 
5854 	ztest_dataset_dirobj_verify(zd);
5855 
5856 	if (ztest_opts.zo_verbose >= 6)
5857 		(void) printf("%s replay %llu blocks, %llu records, seq %llu\n",
5858 		    zd->zd_name,
5859 		    (u_longlong_t)zilog->zl_parse_blk_count,
5860 		    (u_longlong_t)zilog->zl_parse_lr_count,
5861 		    (u_longlong_t)zilog->zl_replaying_seq);
5862 
5863 	zilog = zil_open(os, ztest_get_data);
5864 
5865 	if (zilog->zl_replaying_seq != 0 &&
5866 	    zilog->zl_replaying_seq < committed_seq)
5867 		fatal(0, "missing log records: replayed %llu < committed %llu",
5868 		    zilog->zl_replaying_seq, committed_seq);
5869 
5870 	return (0);
5871 }
5872 
5873 static void
5874 ztest_dataset_close(int d)
5875 {
5876 	ztest_ds_t *zd = &ztest_ds[d];
5877 
5878 	zil_close(zd->zd_zilog);
5879 	dmu_objset_disown(zd->zd_os, zd);
5880 
5881 	ztest_zd_fini(zd);
5882 }
5883 
5884 /*
5885  * Kick off threads to run tests on all datasets in parallel.
5886  */
5887 static void
5888 ztest_run(ztest_shared_t *zs)
5889 {
5890 	thread_t *tid;
5891 	spa_t *spa;
5892 	objset_t *os;
5893 	thread_t resume_tid;
5894 	int error;
5895 
5896 	ztest_exiting = B_FALSE;
5897 
5898 	/*
5899 	 * Initialize parent/child shared state.
5900 	 */
5901 	mutex_init(&ztest_checkpoint_lock, NULL, USYNC_THREAD, NULL);
5902 	mutex_init(&ztest_vdev_lock, NULL, USYNC_THREAD, NULL);
5903 	rw_init(&ztest_name_lock, NULL, USYNC_THREAD, NULL);
5904 
5905 	zs->zs_thread_start = gethrtime();
5906 	zs->zs_thread_stop =
5907 	    zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC;
5908 	zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop);
5909 	zs->zs_thread_kill = zs->zs_thread_stop;
5910 	if (ztest_random(100) < ztest_opts.zo_killrate) {
5911 		zs->zs_thread_kill -=
5912 		    ztest_random(ztest_opts.zo_passtime * NANOSEC);
5913 	}
5914 
5915 	mutex_init(&zcl.zcl_callbacks_lock, NULL, USYNC_THREAD, NULL);
5916 
5917 	list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t),
5918 	    offsetof(ztest_cb_data_t, zcd_node));
5919 
5920 	/*
5921 	 * Open our pool.
5922 	 */
5923 	kernel_init(FREAD | FWRITE);
5924 	VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
5925 	spa->spa_debug = B_TRUE;
5926 	metaslab_preload_limit = ztest_random(20) + 1;
5927 	ztest_spa = spa;
5928 
5929 	dmu_objset_stats_t dds;
5930 	VERIFY0(dmu_objset_own(ztest_opts.zo_pool,
5931 	    DMU_OST_ANY, B_TRUE, FTAG, &os));
5932 	dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
5933 	dmu_objset_fast_stat(os, &dds);
5934 	dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
5935 	zs->zs_guid = dds.dds_guid;
5936 	dmu_objset_disown(os, FTAG);
5937 
5938 	spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN;
5939 
5940 	/*
5941 	 * We don't expect the pool to suspend unless maxfaults == 0,
5942 	 * in which case ztest_fault_inject() temporarily takes away
5943 	 * the only valid replica.
5944 	 */
5945 	if (MAXFAULTS() == 0)
5946 		spa->spa_failmode = ZIO_FAILURE_MODE_WAIT;
5947 	else
5948 		spa->spa_failmode = ZIO_FAILURE_MODE_PANIC;
5949 
5950 	/*
5951 	 * Create a thread to periodically resume suspended I/O.
5952 	 */
5953 	VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND,
5954 	    &resume_tid) == 0);
5955 
5956 	/*
5957 	 * Create a deadman thread to abort() if we hang.
5958 	 */
5959 	VERIFY(thr_create(0, 0, ztest_deadman_thread, zs, THR_BOUND,
5960 	    NULL) == 0);
5961 
5962 	/*
5963 	 * Verify that we can safely inquire about any object,
5964 	 * whether it's allocated or not.  To make it interesting,
5965 	 * we probe a 5-wide window around each power of two.
5966 	 * This hits all edge cases, including zero and the max.
5967 	 */
5968 	for (int t = 0; t < 64; t++) {
5969 		for (int d = -5; d <= 5; d++) {
5970 			error = dmu_object_info(spa->spa_meta_objset,
5971 			    (1ULL << t) + d, NULL);
5972 			ASSERT(error == 0 || error == ENOENT ||
5973 			    error == EINVAL);
5974 		}
5975 	}
5976 
5977 	/*
5978 	 * If we got any ENOSPC errors on the previous run, destroy something.
5979 	 */
5980 	if (zs->zs_enospc_count != 0) {
5981 		int d = ztest_random(ztest_opts.zo_datasets);
5982 		ztest_dataset_destroy(d);
5983 	}
5984 	zs->zs_enospc_count = 0;
5985 
5986 	tid = umem_zalloc(ztest_opts.zo_threads * sizeof (thread_t),
5987 	    UMEM_NOFAIL);
5988 
5989 	if (ztest_opts.zo_verbose >= 4)
5990 		(void) printf("starting main threads...\n");
5991 
5992 	/*
5993 	 * Kick off all the tests that run in parallel.
5994 	 */
5995 	for (int t = 0; t < ztest_opts.zo_threads; t++) {
5996 		if (t < ztest_opts.zo_datasets &&
5997 		    ztest_dataset_open(t) != 0)
5998 			return;
5999 		VERIFY(thr_create(0, 0, ztest_thread, (void *)(uintptr_t)t,
6000 		    THR_BOUND, &tid[t]) == 0);
6001 	}
6002 
6003 	/*
6004 	 * Wait for all of the tests to complete.  We go in reverse order
6005 	 * so we don't close datasets while threads are still using them.
6006 	 */
6007 	for (int t = ztest_opts.zo_threads - 1; t >= 0; t--) {
6008 		VERIFY(thr_join(tid[t], NULL, NULL) == 0);
6009 		if (t < ztest_opts.zo_datasets)
6010 			ztest_dataset_close(t);
6011 	}
6012 
6013 	txg_wait_synced(spa_get_dsl(spa), 0);
6014 
6015 	zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
6016 	zs->zs_space = metaslab_class_get_space(spa_normal_class(spa));
6017 	zfs_dbgmsg_print(FTAG);
6018 
6019 	umem_free(tid, ztest_opts.zo_threads * sizeof (thread_t));
6020 
6021 	/* Kill the resume thread */
6022 	ztest_exiting = B_TRUE;
6023 	VERIFY(thr_join(resume_tid, NULL, NULL) == 0);
6024 	ztest_resume(spa);
6025 
6026 	/*
6027 	 * Right before closing the pool, kick off a bunch of async I/O;
6028 	 * spa_close() should wait for it to complete.
6029 	 */
6030 	for (uint64_t object = 1; object < 50; object++) {
6031 		dmu_prefetch(spa->spa_meta_objset, object, 0, 0, 1ULL << 20,
6032 		    ZIO_PRIORITY_SYNC_READ);
6033 	}
6034 
6035 	spa_close(spa, FTAG);
6036 
6037 	/*
6038 	 * Verify that we can loop over all pools.
6039 	 */
6040 	mutex_enter(&spa_namespace_lock);
6041 	for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa))
6042 		if (ztest_opts.zo_verbose > 3)
6043 			(void) printf("spa_next: found %s\n", spa_name(spa));
6044 	mutex_exit(&spa_namespace_lock);
6045 
6046 	/*
6047 	 * Verify that we can export the pool and reimport it under a
6048 	 * different name.
6049 	 */
6050 	if (ztest_random(2) == 0) {
6051 		char name[ZFS_MAX_DATASET_NAME_LEN];
6052 		(void) snprintf(name, sizeof (name), "%s_import",
6053 		    ztest_opts.zo_pool);
6054 		ztest_spa_import_export(ztest_opts.zo_pool, name);
6055 		ztest_spa_import_export(name, ztest_opts.zo_pool);
6056 	}
6057 
6058 	kernel_fini();
6059 
6060 	list_destroy(&zcl.zcl_callbacks);
6061 
6062 	mutex_destroy(&zcl.zcl_callbacks_lock);
6063 
6064 	rw_destroy(&ztest_name_lock);
6065 	mutex_destroy(&ztest_vdev_lock);
6066 	mutex_destroy(&ztest_checkpoint_lock);
6067 }
6068 
6069 static void
6070 ztest_freeze(void)
6071 {
6072 	ztest_ds_t *zd = &ztest_ds[0];
6073 	spa_t *spa;
6074 	int numloops = 0;
6075 
6076 	if (ztest_opts.zo_verbose >= 3)
6077 		(void) printf("testing spa_freeze()...\n");
6078 
6079 	kernel_init(FREAD | FWRITE);
6080 	VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
6081 	VERIFY3U(0, ==, ztest_dataset_open(0));
6082 	spa->spa_debug = B_TRUE;
6083 	ztest_spa = spa;
6084 
6085 	/*
6086 	 * Force the first log block to be transactionally allocated.
6087 	 * We have to do this before we freeze the pool -- otherwise
6088 	 * the log chain won't be anchored.
6089 	 */
6090 	while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) {
6091 		ztest_dmu_object_alloc_free(zd, 0);
6092 		zil_commit(zd->zd_zilog, 0);
6093 	}
6094 
6095 	txg_wait_synced(spa_get_dsl(spa), 0);
6096 
6097 	/*
6098 	 * Freeze the pool.  This stops spa_sync() from doing anything,
6099 	 * so that the only way to record changes from now on is the ZIL.
6100 	 */
6101 	spa_freeze(spa);
6102 
6103 	/*
6104 	 * Because it is hard to predict how much space a write will actually
6105 	 * require beforehand, we leave ourselves some fudge space to write over
6106 	 * capacity.
6107 	 */
6108 	uint64_t capacity = metaslab_class_get_space(spa_normal_class(spa)) / 2;
6109 
6110 	/*
6111 	 * Run tests that generate log records but don't alter the pool config
6112 	 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc).
6113 	 * We do a txg_wait_synced() after each iteration to force the txg
6114 	 * to increase well beyond the last synced value in the uberblock.
6115 	 * The ZIL should be OK with that.
6116 	 *
6117 	 * Run a random number of times less than zo_maxloops and ensure we do
6118 	 * not run out of space on the pool.
6119 	 */
6120 	while (ztest_random(10) != 0 &&
6121 	    numloops++ < ztest_opts.zo_maxloops &&
6122 	    metaslab_class_get_alloc(spa_normal_class(spa)) < capacity) {
6123 		ztest_od_t od;
6124 		ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0);
6125 		VERIFY0(ztest_object_init(zd, &od, sizeof (od), B_FALSE));
6126 		ztest_io(zd, od.od_object,
6127 		    ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
6128 		txg_wait_synced(spa_get_dsl(spa), 0);
6129 	}
6130 
6131 	/*
6132 	 * Commit all of the changes we just generated.
6133 	 */
6134 	zil_commit(zd->zd_zilog, 0);
6135 	txg_wait_synced(spa_get_dsl(spa), 0);
6136 
6137 	/*
6138 	 * Close our dataset and close the pool.
6139 	 */
6140 	ztest_dataset_close(0);
6141 	spa_close(spa, FTAG);
6142 	kernel_fini();
6143 
6144 	/*
6145 	 * Open and close the pool and dataset to induce log replay.
6146 	 */
6147 	kernel_init(FREAD | FWRITE);
6148 	VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
6149 	ASSERT(spa_freeze_txg(spa) == UINT64_MAX);
6150 	VERIFY3U(0, ==, ztest_dataset_open(0));
6151 	ztest_dataset_close(0);
6152 
6153 	spa->spa_debug = B_TRUE;
6154 	ztest_spa = spa;
6155 	txg_wait_synced(spa_get_dsl(spa), 0);
6156 	ztest_reguid(NULL, 0);
6157 
6158 	spa_close(spa, FTAG);
6159 	kernel_fini();
6160 }
6161 
6162 void
6163 print_time(hrtime_t t, char *timebuf)
6164 {
6165 	hrtime_t s = t / NANOSEC;
6166 	hrtime_t m = s / 60;
6167 	hrtime_t h = m / 60;
6168 	hrtime_t d = h / 24;
6169 
6170 	s -= m * 60;
6171 	m -= h * 60;
6172 	h -= d * 24;
6173 
6174 	timebuf[0] = '\0';
6175 
6176 	if (d)
6177 		(void) sprintf(timebuf,
6178 		    "%llud%02lluh%02llum%02llus", d, h, m, s);
6179 	else if (h)
6180 		(void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s);
6181 	else if (m)
6182 		(void) sprintf(timebuf, "%llum%02llus", m, s);
6183 	else
6184 		(void) sprintf(timebuf, "%llus", s);
6185 }
6186 
6187 static nvlist_t *
6188 make_random_props()
6189 {
6190 	nvlist_t *props;
6191 
6192 	VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0);
6193 	if (ztest_random(2) == 0)
6194 		return (props);
6195 	VERIFY(nvlist_add_uint64(props, "autoreplace", 1) == 0);
6196 
6197 	return (props);
6198 }
6199 
6200 /*
6201  * Create a storage pool with the given name and initial vdev size.
6202  * Then test spa_freeze() functionality.
6203  */
6204 static void
6205 ztest_init(ztest_shared_t *zs)
6206 {
6207 	spa_t *spa;
6208 	nvlist_t *nvroot, *props;
6209 
6210 	mutex_init(&ztest_vdev_lock, NULL, USYNC_THREAD, NULL);
6211 	mutex_init(&ztest_checkpoint_lock, NULL, USYNC_THREAD, NULL);
6212 	rw_init(&ztest_name_lock, NULL, USYNC_THREAD, NULL);
6213 
6214 	kernel_init(FREAD | FWRITE);
6215 
6216 	/*
6217 	 * Create the storage pool.
6218 	 */
6219 	(void) spa_destroy(ztest_opts.zo_pool);
6220 	ztest_shared->zs_vdev_next_leaf = 0;
6221 	zs->zs_splits = 0;
6222 	zs->zs_mirrors = ztest_opts.zo_mirrors;
6223 	nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
6224 	    0, ztest_opts.zo_raidz, zs->zs_mirrors, 1);
6225 	props = make_random_props();
6226 	for (int i = 0; i < SPA_FEATURES; i++) {
6227 		char buf[1024];
6228 		(void) snprintf(buf, sizeof (buf), "feature@%s",
6229 		    spa_feature_table[i].fi_uname);
6230 		VERIFY3U(0, ==, nvlist_add_uint64(props, buf, 0));
6231 	}
6232 	VERIFY3U(0, ==, spa_create(ztest_opts.zo_pool, nvroot, props, NULL));
6233 	nvlist_free(nvroot);
6234 	nvlist_free(props);
6235 
6236 	VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
6237 	zs->zs_metaslab_sz =
6238 	    1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
6239 
6240 	spa_close(spa, FTAG);
6241 
6242 	kernel_fini();
6243 
6244 	ztest_run_zdb(ztest_opts.zo_pool);
6245 
6246 	ztest_freeze();
6247 
6248 	ztest_run_zdb(ztest_opts.zo_pool);
6249 
6250 	rw_destroy(&ztest_name_lock);
6251 	mutex_destroy(&ztest_vdev_lock);
6252 	mutex_destroy(&ztest_checkpoint_lock);
6253 }
6254 
6255 static void
6256 setup_data_fd(void)
6257 {
6258 	static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX";
6259 
6260 	ztest_fd_data = mkstemp(ztest_name_data);
6261 	ASSERT3S(ztest_fd_data, >=, 0);
6262 	(void) unlink(ztest_name_data);
6263 }
6264 
6265 
6266 static int
6267 shared_data_size(ztest_shared_hdr_t *hdr)
6268 {
6269 	int size;
6270 
6271 	size = hdr->zh_hdr_size;
6272 	size += hdr->zh_opts_size;
6273 	size += hdr->zh_size;
6274 	size += hdr->zh_stats_size * hdr->zh_stats_count;
6275 	size += hdr->zh_ds_size * hdr->zh_ds_count;
6276 
6277 	return (size);
6278 }
6279 
6280 static void
6281 setup_hdr(void)
6282 {
6283 	int size;
6284 	ztest_shared_hdr_t *hdr;
6285 
6286 	hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
6287 	    PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
6288 	ASSERT(hdr != MAP_FAILED);
6289 
6290 	VERIFY3U(0, ==, ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t)));
6291 
6292 	hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t);
6293 	hdr->zh_opts_size = sizeof (ztest_shared_opts_t);
6294 	hdr->zh_size = sizeof (ztest_shared_t);
6295 	hdr->zh_stats_size = sizeof (ztest_shared_callstate_t);
6296 	hdr->zh_stats_count = ZTEST_FUNCS;
6297 	hdr->zh_ds_size = sizeof (ztest_shared_ds_t);
6298 	hdr->zh_ds_count = ztest_opts.zo_datasets;
6299 
6300 	size = shared_data_size(hdr);
6301 	VERIFY3U(0, ==, ftruncate(ztest_fd_data, size));
6302 
6303 	(void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
6304 }
6305 
6306 static void
6307 setup_data(void)
6308 {
6309 	int size, offset;
6310 	ztest_shared_hdr_t *hdr;
6311 	uint8_t *buf;
6312 
6313 	hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
6314 	    PROT_READ, MAP_SHARED, ztest_fd_data, 0);
6315 	ASSERT(hdr != MAP_FAILED);
6316 
6317 	size = shared_data_size(hdr);
6318 
6319 	(void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
6320 	hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()),
6321 	    PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
6322 	ASSERT(hdr != MAP_FAILED);
6323 	buf = (uint8_t *)hdr;
6324 
6325 	offset = hdr->zh_hdr_size;
6326 	ztest_shared_opts = (void *)&buf[offset];
6327 	offset += hdr->zh_opts_size;
6328 	ztest_shared = (void *)&buf[offset];
6329 	offset += hdr->zh_size;
6330 	ztest_shared_callstate = (void *)&buf[offset];
6331 	offset += hdr->zh_stats_size * hdr->zh_stats_count;
6332 	ztest_shared_ds = (void *)&buf[offset];
6333 }
6334 
6335 static boolean_t
6336 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp)
6337 {
6338 	pid_t pid;
6339 	int status;
6340 	char *cmdbuf = NULL;
6341 
6342 	pid = fork();
6343 
6344 	if (cmd == NULL) {
6345 		cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
6346 		(void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN);
6347 		cmd = cmdbuf;
6348 	}
6349 
6350 	if (pid == -1)
6351 		fatal(1, "fork failed");
6352 
6353 	if (pid == 0) {	/* child */
6354 		char *emptyargv[2] = { cmd, NULL };
6355 		char fd_data_str[12];
6356 
6357 		struct rlimit rl = { 1024, 1024 };
6358 		(void) setrlimit(RLIMIT_NOFILE, &rl);
6359 
6360 		(void) close(ztest_fd_rand);
6361 		VERIFY3U(11, >=,
6362 		    snprintf(fd_data_str, 12, "%d", ztest_fd_data));
6363 		VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1));
6364 
6365 		(void) enable_extended_FILE_stdio(-1, -1);
6366 		if (libpath != NULL)
6367 			VERIFY(0 == setenv("LD_LIBRARY_PATH", libpath, 1));
6368 		(void) execv(cmd, emptyargv);
6369 		ztest_dump_core = B_FALSE;
6370 		fatal(B_TRUE, "exec failed: %s", cmd);
6371 	}
6372 
6373 	if (cmdbuf != NULL) {
6374 		umem_free(cmdbuf, MAXPATHLEN);
6375 		cmd = NULL;
6376 	}
6377 
6378 	while (waitpid(pid, &status, 0) != pid)
6379 		continue;
6380 	if (statusp != NULL)
6381 		*statusp = status;
6382 
6383 	if (WIFEXITED(status)) {
6384 		if (WEXITSTATUS(status) != 0) {
6385 			(void) fprintf(stderr, "child exited with code %d\n",
6386 			    WEXITSTATUS(status));
6387 			exit(2);
6388 		}
6389 		return (B_FALSE);
6390 	} else if (WIFSIGNALED(status)) {
6391 		if (!ignorekill || WTERMSIG(status) != SIGKILL) {
6392 			(void) fprintf(stderr, "child died with signal %d\n",
6393 			    WTERMSIG(status));
6394 			exit(3);
6395 		}
6396 		return (B_TRUE);
6397 	} else {
6398 		(void) fprintf(stderr, "something strange happened to child\n");
6399 		exit(4);
6400 		/* NOTREACHED */
6401 	}
6402 }
6403 
6404 static void
6405 ztest_run_init(void)
6406 {
6407 	ztest_shared_t *zs = ztest_shared;
6408 
6409 	ASSERT(ztest_opts.zo_init != 0);
6410 
6411 	/*
6412 	 * Blow away any existing copy of zpool.cache
6413 	 */
6414 	(void) remove(spa_config_path);
6415 
6416 	/*
6417 	 * Create and initialize our storage pool.
6418 	 */
6419 	for (int i = 1; i <= ztest_opts.zo_init; i++) {
6420 		bzero(zs, sizeof (ztest_shared_t));
6421 		if (ztest_opts.zo_verbose >= 3 &&
6422 		    ztest_opts.zo_init != 1) {
6423 			(void) printf("ztest_init(), pass %d\n", i);
6424 		}
6425 		ztest_init(zs);
6426 	}
6427 }
6428 
6429 int
6430 main(int argc, char **argv)
6431 {
6432 	int kills = 0;
6433 	int iters = 0;
6434 	int older = 0;
6435 	int newer = 0;
6436 	ztest_shared_t *zs;
6437 	ztest_info_t *zi;
6438 	ztest_shared_callstate_t *zc;
6439 	char timebuf[100];
6440 	char numbuf[NN_NUMBUF_SZ];
6441 	spa_t *spa;
6442 	char *cmd;
6443 	boolean_t hasalt;
6444 	char *fd_data_str = getenv("ZTEST_FD_DATA");
6445 
6446 	(void) setvbuf(stdout, NULL, _IOLBF, 0);
6447 
6448 	dprintf_setup(&argc, argv);
6449 	zfs_deadman_synctime_ms = 300000;
6450 	/*
6451 	 * As two-word space map entries may not come up often (especially
6452 	 * if pool and vdev sizes are small) we want to force at least some
6453 	 * of them so the feature get tested.
6454 	 */
6455 	zfs_force_some_double_word_sm_entries = B_TRUE;
6456 
6457 	ztest_fd_rand = open("/dev/urandom", O_RDONLY);
6458 	ASSERT3S(ztest_fd_rand, >=, 0);
6459 
6460 	if (!fd_data_str) {
6461 		process_options(argc, argv);
6462 
6463 		setup_data_fd();
6464 		setup_hdr();
6465 		setup_data();
6466 		bcopy(&ztest_opts, ztest_shared_opts,
6467 		    sizeof (*ztest_shared_opts));
6468 	} else {
6469 		ztest_fd_data = atoi(fd_data_str);
6470 		setup_data();
6471 		bcopy(ztest_shared_opts, &ztest_opts, sizeof (ztest_opts));
6472 	}
6473 	ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count);
6474 
6475 	/* Override location of zpool.cache */
6476 	VERIFY3U(asprintf((char **)&spa_config_path, "%s/zpool.cache",
6477 	    ztest_opts.zo_dir), !=, -1);
6478 
6479 	ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t),
6480 	    UMEM_NOFAIL);
6481 	zs = ztest_shared;
6482 
6483 	if (fd_data_str) {
6484 		metaslab_force_ganging = ztest_opts.zo_metaslab_force_ganging;
6485 		metaslab_df_alloc_threshold =
6486 		    zs->zs_metaslab_df_alloc_threshold;
6487 
6488 		if (zs->zs_do_init)
6489 			ztest_run_init();
6490 		else
6491 			ztest_run(zs);
6492 		exit(0);
6493 	}
6494 
6495 	hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0);
6496 
6497 	if (ztest_opts.zo_verbose >= 1) {
6498 		(void) printf("%llu vdevs, %d datasets, %d threads,"
6499 		    " %llu seconds...\n",
6500 		    (u_longlong_t)ztest_opts.zo_vdevs,
6501 		    ztest_opts.zo_datasets,
6502 		    ztest_opts.zo_threads,
6503 		    (u_longlong_t)ztest_opts.zo_time);
6504 	}
6505 
6506 	cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
6507 	(void) strlcpy(cmd, getexecname(), MAXNAMELEN);
6508 
6509 	zs->zs_do_init = B_TRUE;
6510 	if (strlen(ztest_opts.zo_alt_ztest) != 0) {
6511 		if (ztest_opts.zo_verbose >= 1) {
6512 			(void) printf("Executing older ztest for "
6513 			    "initialization: %s\n", ztest_opts.zo_alt_ztest);
6514 		}
6515 		VERIFY(!exec_child(ztest_opts.zo_alt_ztest,
6516 		    ztest_opts.zo_alt_libpath, B_FALSE, NULL));
6517 	} else {
6518 		VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL));
6519 	}
6520 	zs->zs_do_init = B_FALSE;
6521 
6522 	zs->zs_proc_start = gethrtime();
6523 	zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC;
6524 
6525 	for (int f = 0; f < ZTEST_FUNCS; f++) {
6526 		zi = &ztest_info[f];
6527 		zc = ZTEST_GET_SHARED_CALLSTATE(f);
6528 		if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop)
6529 			zc->zc_next = UINT64_MAX;
6530 		else
6531 			zc->zc_next = zs->zs_proc_start +
6532 			    ztest_random(2 * zi->zi_interval[0] + 1);
6533 	}
6534 
6535 	/*
6536 	 * Run the tests in a loop.  These tests include fault injection
6537 	 * to verify that self-healing data works, and forced crashes
6538 	 * to verify that we never lose on-disk consistency.
6539 	 */
6540 	while (gethrtime() < zs->zs_proc_stop) {
6541 		int status;
6542 		boolean_t killed;
6543 
6544 		/*
6545 		 * Initialize the workload counters for each function.
6546 		 */
6547 		for (int f = 0; f < ZTEST_FUNCS; f++) {
6548 			zc = ZTEST_GET_SHARED_CALLSTATE(f);
6549 			zc->zc_count = 0;
6550 			zc->zc_time = 0;
6551 		}
6552 
6553 		/* Set the allocation switch size */
6554 		zs->zs_metaslab_df_alloc_threshold =
6555 		    ztest_random(zs->zs_metaslab_sz / 4) + 1;
6556 
6557 		if (!hasalt || ztest_random(2) == 0) {
6558 			if (hasalt && ztest_opts.zo_verbose >= 1) {
6559 				(void) printf("Executing newer ztest: %s\n",
6560 				    cmd);
6561 			}
6562 			newer++;
6563 			killed = exec_child(cmd, NULL, B_TRUE, &status);
6564 		} else {
6565 			if (hasalt && ztest_opts.zo_verbose >= 1) {
6566 				(void) printf("Executing older ztest: %s\n",
6567 				    ztest_opts.zo_alt_ztest);
6568 			}
6569 			older++;
6570 			killed = exec_child(ztest_opts.zo_alt_ztest,
6571 			    ztest_opts.zo_alt_libpath, B_TRUE, &status);
6572 		}
6573 
6574 		if (killed)
6575 			kills++;
6576 		iters++;
6577 
6578 		if (ztest_opts.zo_verbose >= 1) {
6579 			hrtime_t now = gethrtime();
6580 
6581 			now = MIN(now, zs->zs_proc_stop);
6582 			print_time(zs->zs_proc_stop - now, timebuf);
6583 			nicenum(zs->zs_space, numbuf, sizeof (numbuf));
6584 
6585 			(void) printf("Pass %3d, %8s, %3llu ENOSPC, "
6586 			    "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
6587 			    iters,
6588 			    WIFEXITED(status) ? "Complete" : "SIGKILL",
6589 			    (u_longlong_t)zs->zs_enospc_count,
6590 			    100.0 * zs->zs_alloc / zs->zs_space,
6591 			    numbuf,
6592 			    100.0 * (now - zs->zs_proc_start) /
6593 			    (ztest_opts.zo_time * NANOSEC), timebuf);
6594 		}
6595 
6596 		if (ztest_opts.zo_verbose >= 2) {
6597 			(void) printf("\nWorkload summary:\n\n");
6598 			(void) printf("%7s %9s   %s\n",
6599 			    "Calls", "Time", "Function");
6600 			(void) printf("%7s %9s   %s\n",
6601 			    "-----", "----", "--------");
6602 			for (int f = 0; f < ZTEST_FUNCS; f++) {
6603 				Dl_info dli;
6604 
6605 				zi = &ztest_info[f];
6606 				zc = ZTEST_GET_SHARED_CALLSTATE(f);
6607 				print_time(zc->zc_time, timebuf);
6608 				(void) dladdr((void *)zi->zi_func, &dli);
6609 				(void) printf("%7llu %9s   %s\n",
6610 				    (u_longlong_t)zc->zc_count, timebuf,
6611 				    dli.dli_sname);
6612 			}
6613 			(void) printf("\n");
6614 		}
6615 
6616 		/*
6617 		 * It's possible that we killed a child during a rename test,
6618 		 * in which case we'll have a 'ztest_tmp' pool lying around
6619 		 * instead of 'ztest'.  Do a blind rename in case this happened.
6620 		 */
6621 		kernel_init(FREAD);
6622 		if (spa_open(ztest_opts.zo_pool, &spa, FTAG) == 0) {
6623 			spa_close(spa, FTAG);
6624 		} else {
6625 			char tmpname[ZFS_MAX_DATASET_NAME_LEN];
6626 			kernel_fini();
6627 			kernel_init(FREAD | FWRITE);
6628 			(void) snprintf(tmpname, sizeof (tmpname), "%s_tmp",
6629 			    ztest_opts.zo_pool);
6630 			(void) spa_rename(tmpname, ztest_opts.zo_pool);
6631 		}
6632 		kernel_fini();
6633 
6634 		ztest_run_zdb(ztest_opts.zo_pool);
6635 	}
6636 
6637 	if (ztest_opts.zo_verbose >= 1) {
6638 		if (hasalt) {
6639 			(void) printf("%d runs of older ztest: %s\n", older,
6640 			    ztest_opts.zo_alt_ztest);
6641 			(void) printf("%d runs of newer ztest: %s\n", newer,
6642 			    cmd);
6643 		}
6644 		(void) printf("%d killed, %d completed, %.0f%% kill rate\n",
6645 		    kills, iters - kills, (100.0 * kills) / MAX(1, iters));
6646 	}
6647 
6648 	umem_free(cmd, MAXNAMELEN);
6649 
6650 	return (0);
6651 }
6652