xref: /illumos-gate/usr/src/cmd/ztest/ztest.c (revision 1271e4b1)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2016 by Delphix. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2013 Steven Hartland. All rights reserved.
26  * Copyright (c) 2014 Integros [integros.com]
27  */
28 
29 /*
30  * The objective of this program is to provide a DMU/ZAP/SPA stress test
31  * that runs entirely in userland, is easy to use, and easy to extend.
32  *
33  * The overall design of the ztest program is as follows:
34  *
35  * (1) For each major functional area (e.g. adding vdevs to a pool,
36  *     creating and destroying datasets, reading and writing objects, etc)
37  *     we have a simple routine to test that functionality.  These
38  *     individual routines do not have to do anything "stressful".
39  *
40  * (2) We turn these simple functionality tests into a stress test by
41  *     running them all in parallel, with as many threads as desired,
42  *     and spread across as many datasets, objects, and vdevs as desired.
43  *
44  * (3) While all this is happening, we inject faults into the pool to
45  *     verify that self-healing data really works.
46  *
47  * (4) Every time we open a dataset, we change its checksum and compression
48  *     functions.  Thus even individual objects vary from block to block
49  *     in which checksum they use and whether they're compressed.
50  *
51  * (5) To verify that we never lose on-disk consistency after a crash,
52  *     we run the entire test in a child of the main process.
53  *     At random times, the child self-immolates with a SIGKILL.
54  *     This is the software equivalent of pulling the power cord.
55  *     The parent then runs the test again, using the existing
56  *     storage pool, as many times as desired. If backwards compatibility
57  *     testing is enabled ztest will sometimes run the "older" version
58  *     of ztest after a SIGKILL.
59  *
60  * (6) To verify that we don't have future leaks or temporal incursions,
61  *     many of the functional tests record the transaction group number
62  *     as part of their data.  When reading old data, they verify that
63  *     the transaction group number is less than the current, open txg.
64  *     If you add a new test, please do this if applicable.
65  *
66  * When run with no arguments, ztest runs for about five minutes and
67  * produces no output if successful.  To get a little bit of information,
68  * specify -V.  To get more information, specify -VV, and so on.
69  *
70  * To turn this into an overnight stress test, use -T to specify run time.
71  *
72  * You can ask more more vdevs [-v], datasets [-d], or threads [-t]
73  * to increase the pool capacity, fanout, and overall stress level.
74  *
75  * Use the -k option to set the desired frequency of kills.
76  *
77  * When ztest invokes itself it passes all relevant information through a
78  * temporary file which is mmap-ed in the child process. This allows shared
79  * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always
80  * stored at offset 0 of this file and contains information on the size and
81  * number of shared structures in the file. The information stored in this file
82  * must remain backwards compatible with older versions of ztest so that
83  * ztest can invoke them during backwards compatibility testing (-B).
84  */
85 
86 #include <sys/zfs_context.h>
87 #include <sys/spa.h>
88 #include <sys/dmu.h>
89 #include <sys/txg.h>
90 #include <sys/dbuf.h>
91 #include <sys/zap.h>
92 #include <sys/dmu_objset.h>
93 #include <sys/poll.h>
94 #include <sys/stat.h>
95 #include <sys/time.h>
96 #include <sys/wait.h>
97 #include <sys/mman.h>
98 #include <sys/resource.h>
99 #include <sys/zio.h>
100 #include <sys/zil.h>
101 #include <sys/zil_impl.h>
102 #include <sys/vdev_impl.h>
103 #include <sys/vdev_file.h>
104 #include <sys/spa_impl.h>
105 #include <sys/metaslab_impl.h>
106 #include <sys/dsl_prop.h>
107 #include <sys/dsl_dataset.h>
108 #include <sys/dsl_destroy.h>
109 #include <sys/dsl_scan.h>
110 #include <sys/zio_checksum.h>
111 #include <sys/refcount.h>
112 #include <sys/zfeature.h>
113 #include <sys/dsl_userhold.h>
114 #include <sys/abd.h>
115 #include <stdio.h>
116 #include <stdio_ext.h>
117 #include <stdlib.h>
118 #include <unistd.h>
119 #include <signal.h>
120 #include <umem.h>
121 #include <dlfcn.h>
122 #include <ctype.h>
123 #include <math.h>
124 #include <sys/fs/zfs.h>
125 #include <libnvpair.h>
126 
127 static int ztest_fd_data = -1;
128 static int ztest_fd_rand = -1;
129 
130 typedef struct ztest_shared_hdr {
131 	uint64_t	zh_hdr_size;
132 	uint64_t	zh_opts_size;
133 	uint64_t	zh_size;
134 	uint64_t	zh_stats_size;
135 	uint64_t	zh_stats_count;
136 	uint64_t	zh_ds_size;
137 	uint64_t	zh_ds_count;
138 } ztest_shared_hdr_t;
139 
140 static ztest_shared_hdr_t *ztest_shared_hdr;
141 
142 typedef struct ztest_shared_opts {
143 	char zo_pool[ZFS_MAX_DATASET_NAME_LEN];
144 	char zo_dir[ZFS_MAX_DATASET_NAME_LEN];
145 	char zo_alt_ztest[MAXNAMELEN];
146 	char zo_alt_libpath[MAXNAMELEN];
147 	uint64_t zo_vdevs;
148 	uint64_t zo_vdevtime;
149 	size_t zo_vdev_size;
150 	int zo_ashift;
151 	int zo_mirrors;
152 	int zo_raidz;
153 	int zo_raidz_parity;
154 	int zo_datasets;
155 	int zo_threads;
156 	uint64_t zo_passtime;
157 	uint64_t zo_killrate;
158 	int zo_verbose;
159 	int zo_init;
160 	uint64_t zo_time;
161 	uint64_t zo_maxloops;
162 	uint64_t zo_metaslab_gang_bang;
163 } ztest_shared_opts_t;
164 
165 static const ztest_shared_opts_t ztest_opts_defaults = {
166 	.zo_pool = { 'z', 't', 'e', 's', 't', '\0' },
167 	.zo_dir = { '/', 't', 'm', 'p', '\0' },
168 	.zo_alt_ztest = { '\0' },
169 	.zo_alt_libpath = { '\0' },
170 	.zo_vdevs = 5,
171 	.zo_ashift = SPA_MINBLOCKSHIFT,
172 	.zo_mirrors = 2,
173 	.zo_raidz = 4,
174 	.zo_raidz_parity = 1,
175 	.zo_vdev_size = SPA_MINDEVSIZE * 4,	/* 256m default size */
176 	.zo_datasets = 7,
177 	.zo_threads = 23,
178 	.zo_passtime = 60,		/* 60 seconds */
179 	.zo_killrate = 70,		/* 70% kill rate */
180 	.zo_verbose = 0,
181 	.zo_init = 1,
182 	.zo_time = 300,			/* 5 minutes */
183 	.zo_maxloops = 50,		/* max loops during spa_freeze() */
184 	.zo_metaslab_gang_bang = 32 << 10
185 };
186 
187 extern uint64_t metaslab_gang_bang;
188 extern uint64_t metaslab_df_alloc_threshold;
189 extern uint64_t zfs_deadman_synctime_ms;
190 extern int metaslab_preload_limit;
191 extern boolean_t zfs_compressed_arc_enabled;
192 extern boolean_t zfs_abd_scatter_enabled;
193 
194 static ztest_shared_opts_t *ztest_shared_opts;
195 static ztest_shared_opts_t ztest_opts;
196 
197 typedef struct ztest_shared_ds {
198 	uint64_t	zd_seq;
199 } ztest_shared_ds_t;
200 
201 static ztest_shared_ds_t *ztest_shared_ds;
202 #define	ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d])
203 
204 #define	BT_MAGIC	0x123456789abcdefULL
205 #define	MAXFAULTS() \
206 	(MAX(zs->zs_mirrors, 1) * (ztest_opts.zo_raidz_parity + 1) - 1)
207 
208 enum ztest_io_type {
209 	ZTEST_IO_WRITE_TAG,
210 	ZTEST_IO_WRITE_PATTERN,
211 	ZTEST_IO_WRITE_ZEROES,
212 	ZTEST_IO_TRUNCATE,
213 	ZTEST_IO_SETATTR,
214 	ZTEST_IO_REWRITE,
215 	ZTEST_IO_TYPES
216 };
217 
218 typedef struct ztest_block_tag {
219 	uint64_t	bt_magic;
220 	uint64_t	bt_objset;
221 	uint64_t	bt_object;
222 	uint64_t	bt_offset;
223 	uint64_t	bt_gen;
224 	uint64_t	bt_txg;
225 	uint64_t	bt_crtxg;
226 } ztest_block_tag_t;
227 
228 typedef struct bufwad {
229 	uint64_t	bw_index;
230 	uint64_t	bw_txg;
231 	uint64_t	bw_data;
232 } bufwad_t;
233 
234 /*
235  * XXX -- fix zfs range locks to be generic so we can use them here.
236  */
237 typedef enum {
238 	RL_READER,
239 	RL_WRITER,
240 	RL_APPEND
241 } rl_type_t;
242 
243 typedef struct rll {
244 	void		*rll_writer;
245 	int		rll_readers;
246 	mutex_t		rll_lock;
247 	cond_t		rll_cv;
248 } rll_t;
249 
250 typedef struct rl {
251 	uint64_t	rl_object;
252 	uint64_t	rl_offset;
253 	uint64_t	rl_size;
254 	rll_t		*rl_lock;
255 } rl_t;
256 
257 #define	ZTEST_RANGE_LOCKS	64
258 #define	ZTEST_OBJECT_LOCKS	64
259 
260 /*
261  * Object descriptor.  Used as a template for object lookup/create/remove.
262  */
263 typedef struct ztest_od {
264 	uint64_t	od_dir;
265 	uint64_t	od_object;
266 	dmu_object_type_t od_type;
267 	dmu_object_type_t od_crtype;
268 	uint64_t	od_blocksize;
269 	uint64_t	od_crblocksize;
270 	uint64_t	od_gen;
271 	uint64_t	od_crgen;
272 	char		od_name[ZFS_MAX_DATASET_NAME_LEN];
273 } ztest_od_t;
274 
275 /*
276  * Per-dataset state.
277  */
278 typedef struct ztest_ds {
279 	ztest_shared_ds_t *zd_shared;
280 	objset_t	*zd_os;
281 	rwlock_t	zd_zilog_lock;
282 	zilog_t		*zd_zilog;
283 	ztest_od_t	*zd_od;		/* debugging aid */
284 	char		zd_name[ZFS_MAX_DATASET_NAME_LEN];
285 	mutex_t		zd_dirobj_lock;
286 	rll_t		zd_object_lock[ZTEST_OBJECT_LOCKS];
287 	rll_t		zd_range_lock[ZTEST_RANGE_LOCKS];
288 } ztest_ds_t;
289 
290 /*
291  * Per-iteration state.
292  */
293 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id);
294 
295 typedef struct ztest_info {
296 	ztest_func_t	*zi_func;	/* test function */
297 	uint64_t	zi_iters;	/* iterations per execution */
298 	uint64_t	*zi_interval;	/* execute every <interval> seconds */
299 } ztest_info_t;
300 
301 typedef struct ztest_shared_callstate {
302 	uint64_t	zc_count;	/* per-pass count */
303 	uint64_t	zc_time;	/* per-pass time */
304 	uint64_t	zc_next;	/* next time to call this function */
305 } ztest_shared_callstate_t;
306 
307 static ztest_shared_callstate_t *ztest_shared_callstate;
308 #define	ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c])
309 
310 /*
311  * Note: these aren't static because we want dladdr() to work.
312  */
313 ztest_func_t ztest_dmu_read_write;
314 ztest_func_t ztest_dmu_write_parallel;
315 ztest_func_t ztest_dmu_object_alloc_free;
316 ztest_func_t ztest_dmu_commit_callbacks;
317 ztest_func_t ztest_zap;
318 ztest_func_t ztest_zap_parallel;
319 ztest_func_t ztest_zil_commit;
320 ztest_func_t ztest_zil_remount;
321 ztest_func_t ztest_dmu_read_write_zcopy;
322 ztest_func_t ztest_dmu_objset_create_destroy;
323 ztest_func_t ztest_dmu_prealloc;
324 ztest_func_t ztest_fzap;
325 ztest_func_t ztest_dmu_snapshot_create_destroy;
326 ztest_func_t ztest_dsl_prop_get_set;
327 ztest_func_t ztest_spa_prop_get_set;
328 ztest_func_t ztest_spa_create_destroy;
329 ztest_func_t ztest_fault_inject;
330 ztest_func_t ztest_ddt_repair;
331 ztest_func_t ztest_dmu_snapshot_hold;
332 ztest_func_t ztest_spa_rename;
333 ztest_func_t ztest_scrub;
334 ztest_func_t ztest_dsl_dataset_promote_busy;
335 ztest_func_t ztest_vdev_attach_detach;
336 ztest_func_t ztest_vdev_LUN_growth;
337 ztest_func_t ztest_vdev_add_remove;
338 ztest_func_t ztest_vdev_aux_add_remove;
339 ztest_func_t ztest_split_pool;
340 ztest_func_t ztest_reguid;
341 ztest_func_t ztest_spa_upgrade;
342 
343 uint64_t zopt_always = 0ULL * NANOSEC;		/* all the time */
344 uint64_t zopt_incessant = 1ULL * NANOSEC / 10;	/* every 1/10 second */
345 uint64_t zopt_often = 1ULL * NANOSEC;		/* every second */
346 uint64_t zopt_sometimes = 10ULL * NANOSEC;	/* every 10 seconds */
347 uint64_t zopt_rarely = 60ULL * NANOSEC;		/* every 60 seconds */
348 
349 ztest_info_t ztest_info[] = {
350 	{ ztest_dmu_read_write,			1,	&zopt_always	},
351 	{ ztest_dmu_write_parallel,		10,	&zopt_always	},
352 	{ ztest_dmu_object_alloc_free,		1,	&zopt_always	},
353 	{ ztest_dmu_commit_callbacks,		1,	&zopt_always	},
354 	{ ztest_zap,				30,	&zopt_always	},
355 	{ ztest_zap_parallel,			100,	&zopt_always	},
356 	{ ztest_split_pool,			1,	&zopt_always	},
357 	{ ztest_zil_commit,			1,	&zopt_incessant	},
358 	{ ztest_zil_remount,			1,	&zopt_sometimes	},
359 	{ ztest_dmu_read_write_zcopy,		1,	&zopt_often	},
360 	{ ztest_dmu_objset_create_destroy,	1,	&zopt_often	},
361 	{ ztest_dsl_prop_get_set,		1,	&zopt_often	},
362 	{ ztest_spa_prop_get_set,		1,	&zopt_sometimes	},
363 #if 0
364 	{ ztest_dmu_prealloc,			1,	&zopt_sometimes	},
365 #endif
366 	{ ztest_fzap,				1,	&zopt_sometimes	},
367 	{ ztest_dmu_snapshot_create_destroy,	1,	&zopt_sometimes	},
368 	{ ztest_spa_create_destroy,		1,	&zopt_sometimes	},
369 	{ ztest_fault_inject,			1,	&zopt_sometimes	},
370 	{ ztest_ddt_repair,			1,	&zopt_sometimes	},
371 	{ ztest_dmu_snapshot_hold,		1,	&zopt_sometimes	},
372 	{ ztest_reguid,				1,	&zopt_rarely	},
373 	{ ztest_spa_rename,			1,	&zopt_rarely	},
374 	{ ztest_scrub,				1,	&zopt_rarely	},
375 	{ ztest_spa_upgrade,			1,	&zopt_rarely	},
376 	{ ztest_dsl_dataset_promote_busy,	1,	&zopt_rarely	},
377 	{ ztest_vdev_attach_detach,		1,	&zopt_sometimes	},
378 	{ ztest_vdev_LUN_growth,		1,	&zopt_rarely	},
379 	{ ztest_vdev_add_remove,		1,
380 	    &ztest_opts.zo_vdevtime				},
381 	{ ztest_vdev_aux_add_remove,		1,
382 	    &ztest_opts.zo_vdevtime				},
383 };
384 
385 #define	ZTEST_FUNCS	(sizeof (ztest_info) / sizeof (ztest_info_t))
386 
387 /*
388  * The following struct is used to hold a list of uncalled commit callbacks.
389  * The callbacks are ordered by txg number.
390  */
391 typedef struct ztest_cb_list {
392 	mutex_t	zcl_callbacks_lock;
393 	list_t	zcl_callbacks;
394 } ztest_cb_list_t;
395 
396 /*
397  * Stuff we need to share writably between parent and child.
398  */
399 typedef struct ztest_shared {
400 	boolean_t	zs_do_init;
401 	hrtime_t	zs_proc_start;
402 	hrtime_t	zs_proc_stop;
403 	hrtime_t	zs_thread_start;
404 	hrtime_t	zs_thread_stop;
405 	hrtime_t	zs_thread_kill;
406 	uint64_t	zs_enospc_count;
407 	uint64_t	zs_vdev_next_leaf;
408 	uint64_t	zs_vdev_aux;
409 	uint64_t	zs_alloc;
410 	uint64_t	zs_space;
411 	uint64_t	zs_splits;
412 	uint64_t	zs_mirrors;
413 	uint64_t	zs_metaslab_sz;
414 	uint64_t	zs_metaslab_df_alloc_threshold;
415 	uint64_t	zs_guid;
416 } ztest_shared_t;
417 
418 #define	ID_PARALLEL	-1ULL
419 
420 static char ztest_dev_template[] = "%s/%s.%llua";
421 static char ztest_aux_template[] = "%s/%s.%s.%llu";
422 ztest_shared_t *ztest_shared;
423 
424 static spa_t *ztest_spa = NULL;
425 static ztest_ds_t *ztest_ds;
426 
427 static mutex_t ztest_vdev_lock;
428 
429 /*
430  * The ztest_name_lock protects the pool and dataset namespace used by
431  * the individual tests. To modify the namespace, consumers must grab
432  * this lock as writer. Grabbing the lock as reader will ensure that the
433  * namespace does not change while the lock is held.
434  */
435 static rwlock_t ztest_name_lock;
436 
437 static boolean_t ztest_dump_core = B_TRUE;
438 static boolean_t ztest_exiting;
439 
440 /* Global commit callback list */
441 static ztest_cb_list_t zcl;
442 
443 enum ztest_object {
444 	ZTEST_META_DNODE = 0,
445 	ZTEST_DIROBJ,
446 	ZTEST_OBJECTS
447 };
448 
449 static void usage(boolean_t) __NORETURN;
450 
451 /*
452  * These libumem hooks provide a reasonable set of defaults for the allocator's
453  * debugging facilities.
454  */
455 const char *
456 _umem_debug_init()
457 {
458 	return ("default,verbose"); /* $UMEM_DEBUG setting */
459 }
460 
461 const char *
462 _umem_logging_init(void)
463 {
464 	return ("fail,contents"); /* $UMEM_LOGGING setting */
465 }
466 
467 #define	FATAL_MSG_SZ	1024
468 
469 char *fatal_msg;
470 
471 static void
472 fatal(int do_perror, char *message, ...)
473 {
474 	va_list args;
475 	int save_errno = errno;
476 	char buf[FATAL_MSG_SZ];
477 
478 	(void) fflush(stdout);
479 
480 	va_start(args, message);
481 	(void) sprintf(buf, "ztest: ");
482 	/* LINTED */
483 	(void) vsprintf(buf + strlen(buf), message, args);
484 	va_end(args);
485 	if (do_perror) {
486 		(void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf),
487 		    ": %s", strerror(save_errno));
488 	}
489 	(void) fprintf(stderr, "%s\n", buf);
490 	fatal_msg = buf;			/* to ease debugging */
491 	if (ztest_dump_core)
492 		abort();
493 	exit(3);
494 }
495 
496 static int
497 str2shift(const char *buf)
498 {
499 	const char *ends = "BKMGTPEZ";
500 	int i;
501 
502 	if (buf[0] == '\0')
503 		return (0);
504 	for (i = 0; i < strlen(ends); i++) {
505 		if (toupper(buf[0]) == ends[i])
506 			break;
507 	}
508 	if (i == strlen(ends)) {
509 		(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n",
510 		    buf);
511 		usage(B_FALSE);
512 	}
513 	if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) {
514 		return (10*i);
515 	}
516 	(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf);
517 	usage(B_FALSE);
518 	/* NOTREACHED */
519 }
520 
521 static uint64_t
522 nicenumtoull(const char *buf)
523 {
524 	char *end;
525 	uint64_t val;
526 
527 	val = strtoull(buf, &end, 0);
528 	if (end == buf) {
529 		(void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf);
530 		usage(B_FALSE);
531 	} else if (end[0] == '.') {
532 		double fval = strtod(buf, &end);
533 		fval *= pow(2, str2shift(end));
534 		if (fval > UINT64_MAX) {
535 			(void) fprintf(stderr, "ztest: value too large: %s\n",
536 			    buf);
537 			usage(B_FALSE);
538 		}
539 		val = (uint64_t)fval;
540 	} else {
541 		int shift = str2shift(end);
542 		if (shift >= 64 || (val << shift) >> shift != val) {
543 			(void) fprintf(stderr, "ztest: value too large: %s\n",
544 			    buf);
545 			usage(B_FALSE);
546 		}
547 		val <<= shift;
548 	}
549 	return (val);
550 }
551 
552 static void
553 usage(boolean_t requested)
554 {
555 	const ztest_shared_opts_t *zo = &ztest_opts_defaults;
556 
557 	char nice_vdev_size[10];
558 	char nice_gang_bang[10];
559 	FILE *fp = requested ? stdout : stderr;
560 
561 	nicenum(zo->zo_vdev_size, nice_vdev_size);
562 	nicenum(zo->zo_metaslab_gang_bang, nice_gang_bang);
563 
564 	(void) fprintf(fp, "Usage: %s\n"
565 	    "\t[-v vdevs (default: %llu)]\n"
566 	    "\t[-s size_of_each_vdev (default: %s)]\n"
567 	    "\t[-a alignment_shift (default: %d)] use 0 for random\n"
568 	    "\t[-m mirror_copies (default: %d)]\n"
569 	    "\t[-r raidz_disks (default: %d)]\n"
570 	    "\t[-R raidz_parity (default: %d)]\n"
571 	    "\t[-d datasets (default: %d)]\n"
572 	    "\t[-t threads (default: %d)]\n"
573 	    "\t[-g gang_block_threshold (default: %s)]\n"
574 	    "\t[-i init_count (default: %d)] initialize pool i times\n"
575 	    "\t[-k kill_percentage (default: %llu%%)]\n"
576 	    "\t[-p pool_name (default: %s)]\n"
577 	    "\t[-f dir (default: %s)] file directory for vdev files\n"
578 	    "\t[-V] verbose (use multiple times for ever more blather)\n"
579 	    "\t[-E] use existing pool instead of creating new one\n"
580 	    "\t[-T time (default: %llu sec)] total run time\n"
581 	    "\t[-F freezeloops (default: %llu)] max loops in spa_freeze()\n"
582 	    "\t[-P passtime (default: %llu sec)] time per pass\n"
583 	    "\t[-B alt_ztest (default: <none>)] alternate ztest path\n"
584 	    "\t[-o variable=value] ... set global variable to an unsigned\n"
585 	    "\t    32-bit integer value\n"
586 	    "\t[-h] (print help)\n"
587 	    "",
588 	    zo->zo_pool,
589 	    (u_longlong_t)zo->zo_vdevs,			/* -v */
590 	    nice_vdev_size,				/* -s */
591 	    zo->zo_ashift,				/* -a */
592 	    zo->zo_mirrors,				/* -m */
593 	    zo->zo_raidz,				/* -r */
594 	    zo->zo_raidz_parity,			/* -R */
595 	    zo->zo_datasets,				/* -d */
596 	    zo->zo_threads,				/* -t */
597 	    nice_gang_bang,				/* -g */
598 	    zo->zo_init,				/* -i */
599 	    (u_longlong_t)zo->zo_killrate,		/* -k */
600 	    zo->zo_pool,				/* -p */
601 	    zo->zo_dir,					/* -f */
602 	    (u_longlong_t)zo->zo_time,			/* -T */
603 	    (u_longlong_t)zo->zo_maxloops,		/* -F */
604 	    (u_longlong_t)zo->zo_passtime);
605 	exit(requested ? 0 : 1);
606 }
607 
608 static void
609 process_options(int argc, char **argv)
610 {
611 	char *path;
612 	ztest_shared_opts_t *zo = &ztest_opts;
613 
614 	int opt;
615 	uint64_t value;
616 	char altdir[MAXNAMELEN] = { 0 };
617 
618 	bcopy(&ztest_opts_defaults, zo, sizeof (*zo));
619 
620 	while ((opt = getopt(argc, argv,
621 	    "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:hF:B:o:")) != EOF) {
622 		value = 0;
623 		switch (opt) {
624 		case 'v':
625 		case 's':
626 		case 'a':
627 		case 'm':
628 		case 'r':
629 		case 'R':
630 		case 'd':
631 		case 't':
632 		case 'g':
633 		case 'i':
634 		case 'k':
635 		case 'T':
636 		case 'P':
637 		case 'F':
638 			value = nicenumtoull(optarg);
639 		}
640 		switch (opt) {
641 		case 'v':
642 			zo->zo_vdevs = value;
643 			break;
644 		case 's':
645 			zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value);
646 			break;
647 		case 'a':
648 			zo->zo_ashift = value;
649 			break;
650 		case 'm':
651 			zo->zo_mirrors = value;
652 			break;
653 		case 'r':
654 			zo->zo_raidz = MAX(1, value);
655 			break;
656 		case 'R':
657 			zo->zo_raidz_parity = MIN(MAX(value, 1), 3);
658 			break;
659 		case 'd':
660 			zo->zo_datasets = MAX(1, value);
661 			break;
662 		case 't':
663 			zo->zo_threads = MAX(1, value);
664 			break;
665 		case 'g':
666 			zo->zo_metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1,
667 			    value);
668 			break;
669 		case 'i':
670 			zo->zo_init = value;
671 			break;
672 		case 'k':
673 			zo->zo_killrate = value;
674 			break;
675 		case 'p':
676 			(void) strlcpy(zo->zo_pool, optarg,
677 			    sizeof (zo->zo_pool));
678 			break;
679 		case 'f':
680 			path = realpath(optarg, NULL);
681 			if (path == NULL) {
682 				(void) fprintf(stderr, "error: %s: %s\n",
683 				    optarg, strerror(errno));
684 				usage(B_FALSE);
685 			} else {
686 				(void) strlcpy(zo->zo_dir, path,
687 				    sizeof (zo->zo_dir));
688 			}
689 			break;
690 		case 'V':
691 			zo->zo_verbose++;
692 			break;
693 		case 'E':
694 			zo->zo_init = 0;
695 			break;
696 		case 'T':
697 			zo->zo_time = value;
698 			break;
699 		case 'P':
700 			zo->zo_passtime = MAX(1, value);
701 			break;
702 		case 'F':
703 			zo->zo_maxloops = MAX(1, value);
704 			break;
705 		case 'B':
706 			(void) strlcpy(altdir, optarg, sizeof (altdir));
707 			break;
708 		case 'o':
709 			if (set_global_var(optarg) != 0)
710 				usage(B_FALSE);
711 			break;
712 		case 'h':
713 			usage(B_TRUE);
714 			break;
715 		case '?':
716 		default:
717 			usage(B_FALSE);
718 			break;
719 		}
720 	}
721 
722 	zo->zo_raidz_parity = MIN(zo->zo_raidz_parity, zo->zo_raidz - 1);
723 
724 	zo->zo_vdevtime =
725 	    (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs :
726 	    UINT64_MAX >> 2);
727 
728 	if (strlen(altdir) > 0) {
729 		char *cmd;
730 		char *realaltdir;
731 		char *bin;
732 		char *ztest;
733 		char *isa;
734 		int isalen;
735 
736 		cmd = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
737 		realaltdir = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
738 
739 		VERIFY(NULL != realpath(getexecname(), cmd));
740 		if (0 != access(altdir, F_OK)) {
741 			ztest_dump_core = B_FALSE;
742 			fatal(B_TRUE, "invalid alternate ztest path: %s",
743 			    altdir);
744 		}
745 		VERIFY(NULL != realpath(altdir, realaltdir));
746 
747 		/*
748 		 * 'cmd' should be of the form "<anything>/usr/bin/<isa>/ztest".
749 		 * We want to extract <isa> to determine if we should use
750 		 * 32 or 64 bit binaries.
751 		 */
752 		bin = strstr(cmd, "/usr/bin/");
753 		ztest = strstr(bin, "/ztest");
754 		isa = bin + 9;
755 		isalen = ztest - isa;
756 		(void) snprintf(zo->zo_alt_ztest, sizeof (zo->zo_alt_ztest),
757 		    "%s/usr/bin/%.*s/ztest", realaltdir, isalen, isa);
758 		(void) snprintf(zo->zo_alt_libpath, sizeof (zo->zo_alt_libpath),
759 		    "%s/usr/lib/%.*s", realaltdir, isalen, isa);
760 
761 		if (0 != access(zo->zo_alt_ztest, X_OK)) {
762 			ztest_dump_core = B_FALSE;
763 			fatal(B_TRUE, "invalid alternate ztest: %s",
764 			    zo->zo_alt_ztest);
765 		} else if (0 != access(zo->zo_alt_libpath, X_OK)) {
766 			ztest_dump_core = B_FALSE;
767 			fatal(B_TRUE, "invalid alternate lib directory %s",
768 			    zo->zo_alt_libpath);
769 		}
770 
771 		umem_free(cmd, MAXPATHLEN);
772 		umem_free(realaltdir, MAXPATHLEN);
773 	}
774 }
775 
776 static void
777 ztest_kill(ztest_shared_t *zs)
778 {
779 	zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa));
780 	zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa));
781 
782 	/*
783 	 * Before we kill off ztest, make sure that the config is updated.
784 	 * See comment above spa_config_sync().
785 	 */
786 	mutex_enter(&spa_namespace_lock);
787 	spa_config_sync(ztest_spa, B_FALSE, B_FALSE);
788 	mutex_exit(&spa_namespace_lock);
789 
790 	zfs_dbgmsg_print(FTAG);
791 	(void) kill(getpid(), SIGKILL);
792 }
793 
794 static uint64_t
795 ztest_random(uint64_t range)
796 {
797 	uint64_t r;
798 
799 	ASSERT3S(ztest_fd_rand, >=, 0);
800 
801 	if (range == 0)
802 		return (0);
803 
804 	if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r))
805 		fatal(1, "short read from /dev/urandom");
806 
807 	return (r % range);
808 }
809 
810 /* ARGSUSED */
811 static void
812 ztest_record_enospc(const char *s)
813 {
814 	ztest_shared->zs_enospc_count++;
815 }
816 
817 static uint64_t
818 ztest_get_ashift(void)
819 {
820 	if (ztest_opts.zo_ashift == 0)
821 		return (SPA_MINBLOCKSHIFT + ztest_random(5));
822 	return (ztest_opts.zo_ashift);
823 }
824 
825 static nvlist_t *
826 make_vdev_file(char *path, char *aux, char *pool, size_t size, uint64_t ashift)
827 {
828 	char pathbuf[MAXPATHLEN];
829 	uint64_t vdev;
830 	nvlist_t *file;
831 
832 	if (ashift == 0)
833 		ashift = ztest_get_ashift();
834 
835 	if (path == NULL) {
836 		path = pathbuf;
837 
838 		if (aux != NULL) {
839 			vdev = ztest_shared->zs_vdev_aux;
840 			(void) snprintf(path, sizeof (pathbuf),
841 			    ztest_aux_template, ztest_opts.zo_dir,
842 			    pool == NULL ? ztest_opts.zo_pool : pool,
843 			    aux, vdev);
844 		} else {
845 			vdev = ztest_shared->zs_vdev_next_leaf++;
846 			(void) snprintf(path, sizeof (pathbuf),
847 			    ztest_dev_template, ztest_opts.zo_dir,
848 			    pool == NULL ? ztest_opts.zo_pool : pool, vdev);
849 		}
850 	}
851 
852 	if (size != 0) {
853 		int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666);
854 		if (fd == -1)
855 			fatal(1, "can't open %s", path);
856 		if (ftruncate(fd, size) != 0)
857 			fatal(1, "can't ftruncate %s", path);
858 		(void) close(fd);
859 	}
860 
861 	VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0);
862 	VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0);
863 	VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0);
864 	VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0);
865 
866 	return (file);
867 }
868 
869 static nvlist_t *
870 make_vdev_raidz(char *path, char *aux, char *pool, size_t size,
871     uint64_t ashift, int r)
872 {
873 	nvlist_t *raidz, **child;
874 	int c;
875 
876 	if (r < 2)
877 		return (make_vdev_file(path, aux, pool, size, ashift));
878 	child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL);
879 
880 	for (c = 0; c < r; c++)
881 		child[c] = make_vdev_file(path, aux, pool, size, ashift);
882 
883 	VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0);
884 	VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE,
885 	    VDEV_TYPE_RAIDZ) == 0);
886 	VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY,
887 	    ztest_opts.zo_raidz_parity) == 0);
888 	VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN,
889 	    child, r) == 0);
890 
891 	for (c = 0; c < r; c++)
892 		nvlist_free(child[c]);
893 
894 	umem_free(child, r * sizeof (nvlist_t *));
895 
896 	return (raidz);
897 }
898 
899 static nvlist_t *
900 make_vdev_mirror(char *path, char *aux, char *pool, size_t size,
901     uint64_t ashift, int r, int m)
902 {
903 	nvlist_t *mirror, **child;
904 	int c;
905 
906 	if (m < 1)
907 		return (make_vdev_raidz(path, aux, pool, size, ashift, r));
908 
909 	child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL);
910 
911 	for (c = 0; c < m; c++)
912 		child[c] = make_vdev_raidz(path, aux, pool, size, ashift, r);
913 
914 	VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0);
915 	VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE,
916 	    VDEV_TYPE_MIRROR) == 0);
917 	VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN,
918 	    child, m) == 0);
919 
920 	for (c = 0; c < m; c++)
921 		nvlist_free(child[c]);
922 
923 	umem_free(child, m * sizeof (nvlist_t *));
924 
925 	return (mirror);
926 }
927 
928 static nvlist_t *
929 make_vdev_root(char *path, char *aux, char *pool, size_t size, uint64_t ashift,
930     int log, int r, int m, int t)
931 {
932 	nvlist_t *root, **child;
933 	int c;
934 
935 	ASSERT(t > 0);
936 
937 	child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL);
938 
939 	for (c = 0; c < t; c++) {
940 		child[c] = make_vdev_mirror(path, aux, pool, size, ashift,
941 		    r, m);
942 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG,
943 		    log) == 0);
944 	}
945 
946 	VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0);
947 	VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0);
948 	VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN,
949 	    child, t) == 0);
950 
951 	for (c = 0; c < t; c++)
952 		nvlist_free(child[c]);
953 
954 	umem_free(child, t * sizeof (nvlist_t *));
955 
956 	return (root);
957 }
958 
959 /*
960  * Find a random spa version. Returns back a random spa version in the
961  * range [initial_version, SPA_VERSION_FEATURES].
962  */
963 static uint64_t
964 ztest_random_spa_version(uint64_t initial_version)
965 {
966 	uint64_t version = initial_version;
967 
968 	if (version <= SPA_VERSION_BEFORE_FEATURES) {
969 		version = version +
970 		    ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1);
971 	}
972 
973 	if (version > SPA_VERSION_BEFORE_FEATURES)
974 		version = SPA_VERSION_FEATURES;
975 
976 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
977 	return (version);
978 }
979 
980 static int
981 ztest_random_blocksize(void)
982 {
983 	uint64_t block_shift;
984 	/*
985 	 * Choose a block size >= the ashift.
986 	 * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks.
987 	 */
988 	int maxbs = SPA_OLD_MAXBLOCKSHIFT;
989 	if (spa_maxblocksize(ztest_spa) == SPA_MAXBLOCKSIZE)
990 		maxbs = 20;
991 	block_shift = ztest_random(maxbs - ztest_spa->spa_max_ashift + 1);
992 	return (1 << (SPA_MINBLOCKSHIFT + block_shift));
993 }
994 
995 static int
996 ztest_random_ibshift(void)
997 {
998 	return (DN_MIN_INDBLKSHIFT +
999 	    ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1));
1000 }
1001 
1002 static uint64_t
1003 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok)
1004 {
1005 	uint64_t top;
1006 	vdev_t *rvd = spa->spa_root_vdev;
1007 	vdev_t *tvd;
1008 
1009 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1010 
1011 	do {
1012 		top = ztest_random(rvd->vdev_children);
1013 		tvd = rvd->vdev_child[top];
1014 	} while (tvd->vdev_ishole || (tvd->vdev_islog && !log_ok) ||
1015 	    tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL);
1016 
1017 	return (top);
1018 }
1019 
1020 static uint64_t
1021 ztest_random_dsl_prop(zfs_prop_t prop)
1022 {
1023 	uint64_t value;
1024 
1025 	do {
1026 		value = zfs_prop_random_value(prop, ztest_random(-1ULL));
1027 	} while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF);
1028 
1029 	return (value);
1030 }
1031 
1032 static int
1033 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value,
1034     boolean_t inherit)
1035 {
1036 	const char *propname = zfs_prop_to_name(prop);
1037 	const char *valname;
1038 	char setpoint[MAXPATHLEN];
1039 	uint64_t curval;
1040 	int error;
1041 
1042 	error = dsl_prop_set_int(osname, propname,
1043 	    (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value);
1044 
1045 	if (error == ENOSPC) {
1046 		ztest_record_enospc(FTAG);
1047 		return (error);
1048 	}
1049 	ASSERT0(error);
1050 
1051 	VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint));
1052 
1053 	if (ztest_opts.zo_verbose >= 6) {
1054 		VERIFY(zfs_prop_index_to_string(prop, curval, &valname) == 0);
1055 		(void) printf("%s %s = %s at '%s'\n",
1056 		    osname, propname, valname, setpoint);
1057 	}
1058 
1059 	return (error);
1060 }
1061 
1062 static int
1063 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value)
1064 {
1065 	spa_t *spa = ztest_spa;
1066 	nvlist_t *props = NULL;
1067 	int error;
1068 
1069 	VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0);
1070 	VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0);
1071 
1072 	error = spa_prop_set(spa, props);
1073 
1074 	nvlist_free(props);
1075 
1076 	if (error == ENOSPC) {
1077 		ztest_record_enospc(FTAG);
1078 		return (error);
1079 	}
1080 	ASSERT0(error);
1081 
1082 	return (error);
1083 }
1084 
1085 static void
1086 ztest_rll_init(rll_t *rll)
1087 {
1088 	rll->rll_writer = NULL;
1089 	rll->rll_readers = 0;
1090 	VERIFY(_mutex_init(&rll->rll_lock, USYNC_THREAD, NULL) == 0);
1091 	VERIFY(cond_init(&rll->rll_cv, USYNC_THREAD, NULL) == 0);
1092 }
1093 
1094 static void
1095 ztest_rll_destroy(rll_t *rll)
1096 {
1097 	ASSERT(rll->rll_writer == NULL);
1098 	ASSERT(rll->rll_readers == 0);
1099 	VERIFY(_mutex_destroy(&rll->rll_lock) == 0);
1100 	VERIFY(cond_destroy(&rll->rll_cv) == 0);
1101 }
1102 
1103 static void
1104 ztest_rll_lock(rll_t *rll, rl_type_t type)
1105 {
1106 	VERIFY(mutex_lock(&rll->rll_lock) == 0);
1107 
1108 	if (type == RL_READER) {
1109 		while (rll->rll_writer != NULL)
1110 			(void) cond_wait(&rll->rll_cv, &rll->rll_lock);
1111 		rll->rll_readers++;
1112 	} else {
1113 		while (rll->rll_writer != NULL || rll->rll_readers)
1114 			(void) cond_wait(&rll->rll_cv, &rll->rll_lock);
1115 		rll->rll_writer = curthread;
1116 	}
1117 
1118 	VERIFY(mutex_unlock(&rll->rll_lock) == 0);
1119 }
1120 
1121 static void
1122 ztest_rll_unlock(rll_t *rll)
1123 {
1124 	VERIFY(mutex_lock(&rll->rll_lock) == 0);
1125 
1126 	if (rll->rll_writer) {
1127 		ASSERT(rll->rll_readers == 0);
1128 		rll->rll_writer = NULL;
1129 	} else {
1130 		ASSERT(rll->rll_readers != 0);
1131 		ASSERT(rll->rll_writer == NULL);
1132 		rll->rll_readers--;
1133 	}
1134 
1135 	if (rll->rll_writer == NULL && rll->rll_readers == 0)
1136 		VERIFY(cond_broadcast(&rll->rll_cv) == 0);
1137 
1138 	VERIFY(mutex_unlock(&rll->rll_lock) == 0);
1139 }
1140 
1141 static void
1142 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type)
1143 {
1144 	rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1145 
1146 	ztest_rll_lock(rll, type);
1147 }
1148 
1149 static void
1150 ztest_object_unlock(ztest_ds_t *zd, uint64_t object)
1151 {
1152 	rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1153 
1154 	ztest_rll_unlock(rll);
1155 }
1156 
1157 static rl_t *
1158 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset,
1159     uint64_t size, rl_type_t type)
1160 {
1161 	uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1));
1162 	rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)];
1163 	rl_t *rl;
1164 
1165 	rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL);
1166 	rl->rl_object = object;
1167 	rl->rl_offset = offset;
1168 	rl->rl_size = size;
1169 	rl->rl_lock = rll;
1170 
1171 	ztest_rll_lock(rll, type);
1172 
1173 	return (rl);
1174 }
1175 
1176 static void
1177 ztest_range_unlock(rl_t *rl)
1178 {
1179 	rll_t *rll = rl->rl_lock;
1180 
1181 	ztest_rll_unlock(rll);
1182 
1183 	umem_free(rl, sizeof (*rl));
1184 }
1185 
1186 static void
1187 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os)
1188 {
1189 	zd->zd_os = os;
1190 	zd->zd_zilog = dmu_objset_zil(os);
1191 	zd->zd_shared = szd;
1192 	dmu_objset_name(os, zd->zd_name);
1193 
1194 	if (zd->zd_shared != NULL)
1195 		zd->zd_shared->zd_seq = 0;
1196 
1197 	VERIFY(rwlock_init(&zd->zd_zilog_lock, USYNC_THREAD, NULL) == 0);
1198 	VERIFY(_mutex_init(&zd->zd_dirobj_lock, USYNC_THREAD, NULL) == 0);
1199 
1200 	for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1201 		ztest_rll_init(&zd->zd_object_lock[l]);
1202 
1203 	for (int l = 0; l < ZTEST_RANGE_LOCKS; l++)
1204 		ztest_rll_init(&zd->zd_range_lock[l]);
1205 }
1206 
1207 static void
1208 ztest_zd_fini(ztest_ds_t *zd)
1209 {
1210 	VERIFY(_mutex_destroy(&zd->zd_dirobj_lock) == 0);
1211 
1212 	for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1213 		ztest_rll_destroy(&zd->zd_object_lock[l]);
1214 
1215 	for (int l = 0; l < ZTEST_RANGE_LOCKS; l++)
1216 		ztest_rll_destroy(&zd->zd_range_lock[l]);
1217 }
1218 
1219 #define	TXG_MIGHTWAIT	(ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT)
1220 
1221 static uint64_t
1222 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag)
1223 {
1224 	uint64_t txg;
1225 	int error;
1226 
1227 	/*
1228 	 * Attempt to assign tx to some transaction group.
1229 	 */
1230 	error = dmu_tx_assign(tx, txg_how);
1231 	if (error) {
1232 		if (error == ERESTART) {
1233 			ASSERT(txg_how == TXG_NOWAIT);
1234 			dmu_tx_wait(tx);
1235 		} else {
1236 			ASSERT3U(error, ==, ENOSPC);
1237 			ztest_record_enospc(tag);
1238 		}
1239 		dmu_tx_abort(tx);
1240 		return (0);
1241 	}
1242 	txg = dmu_tx_get_txg(tx);
1243 	ASSERT(txg != 0);
1244 	return (txg);
1245 }
1246 
1247 static void
1248 ztest_pattern_set(void *buf, uint64_t size, uint64_t value)
1249 {
1250 	uint64_t *ip = buf;
1251 	uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size);
1252 
1253 	while (ip < ip_end)
1254 		*ip++ = value;
1255 }
1256 
1257 static boolean_t
1258 ztest_pattern_match(void *buf, uint64_t size, uint64_t value)
1259 {
1260 	uint64_t *ip = buf;
1261 	uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size);
1262 	uint64_t diff = 0;
1263 
1264 	while (ip < ip_end)
1265 		diff |= (value - *ip++);
1266 
1267 	return (diff == 0);
1268 }
1269 
1270 static void
1271 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1272     uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg)
1273 {
1274 	bt->bt_magic = BT_MAGIC;
1275 	bt->bt_objset = dmu_objset_id(os);
1276 	bt->bt_object = object;
1277 	bt->bt_offset = offset;
1278 	bt->bt_gen = gen;
1279 	bt->bt_txg = txg;
1280 	bt->bt_crtxg = crtxg;
1281 }
1282 
1283 static void
1284 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1285     uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg)
1286 {
1287 	ASSERT3U(bt->bt_magic, ==, BT_MAGIC);
1288 	ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os));
1289 	ASSERT3U(bt->bt_object, ==, object);
1290 	ASSERT3U(bt->bt_offset, ==, offset);
1291 	ASSERT3U(bt->bt_gen, <=, gen);
1292 	ASSERT3U(bt->bt_txg, <=, txg);
1293 	ASSERT3U(bt->bt_crtxg, ==, crtxg);
1294 }
1295 
1296 static ztest_block_tag_t *
1297 ztest_bt_bonus(dmu_buf_t *db)
1298 {
1299 	dmu_object_info_t doi;
1300 	ztest_block_tag_t *bt;
1301 
1302 	dmu_object_info_from_db(db, &doi);
1303 	ASSERT3U(doi.doi_bonus_size, <=, db->db_size);
1304 	ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt));
1305 	bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt));
1306 
1307 	return (bt);
1308 }
1309 
1310 /*
1311  * ZIL logging ops
1312  */
1313 
1314 #define	lrz_type	lr_mode
1315 #define	lrz_blocksize	lr_uid
1316 #define	lrz_ibshift	lr_gid
1317 #define	lrz_bonustype	lr_rdev
1318 #define	lrz_bonuslen	lr_crtime[1]
1319 
1320 static void
1321 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr)
1322 {
1323 	char *name = (void *)(lr + 1);		/* name follows lr */
1324 	size_t namesize = strlen(name) + 1;
1325 	itx_t *itx;
1326 
1327 	if (zil_replaying(zd->zd_zilog, tx))
1328 		return;
1329 
1330 	itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize);
1331 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1332 	    sizeof (*lr) + namesize - sizeof (lr_t));
1333 
1334 	zil_itx_assign(zd->zd_zilog, itx, tx);
1335 }
1336 
1337 static void
1338 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object)
1339 {
1340 	char *name = (void *)(lr + 1);		/* name follows lr */
1341 	size_t namesize = strlen(name) + 1;
1342 	itx_t *itx;
1343 
1344 	if (zil_replaying(zd->zd_zilog, tx))
1345 		return;
1346 
1347 	itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize);
1348 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1349 	    sizeof (*lr) + namesize - sizeof (lr_t));
1350 
1351 	itx->itx_oid = object;
1352 	zil_itx_assign(zd->zd_zilog, itx, tx);
1353 }
1354 
1355 static void
1356 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr)
1357 {
1358 	itx_t *itx;
1359 	itx_wr_state_t write_state = ztest_random(WR_NUM_STATES);
1360 
1361 	if (zil_replaying(zd->zd_zilog, tx))
1362 		return;
1363 
1364 	if (lr->lr_length > ZIL_MAX_LOG_DATA)
1365 		write_state = WR_INDIRECT;
1366 
1367 	itx = zil_itx_create(TX_WRITE,
1368 	    sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0));
1369 
1370 	if (write_state == WR_COPIED &&
1371 	    dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length,
1372 	    ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) {
1373 		zil_itx_destroy(itx);
1374 		itx = zil_itx_create(TX_WRITE, sizeof (*lr));
1375 		write_state = WR_NEED_COPY;
1376 	}
1377 	itx->itx_private = zd;
1378 	itx->itx_wr_state = write_state;
1379 	itx->itx_sync = (ztest_random(8) == 0);
1380 
1381 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1382 	    sizeof (*lr) - sizeof (lr_t));
1383 
1384 	zil_itx_assign(zd->zd_zilog, itx, tx);
1385 }
1386 
1387 static void
1388 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr)
1389 {
1390 	itx_t *itx;
1391 
1392 	if (zil_replaying(zd->zd_zilog, tx))
1393 		return;
1394 
1395 	itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
1396 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1397 	    sizeof (*lr) - sizeof (lr_t));
1398 
1399 	itx->itx_sync = B_FALSE;
1400 	zil_itx_assign(zd->zd_zilog, itx, tx);
1401 }
1402 
1403 static void
1404 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr)
1405 {
1406 	itx_t *itx;
1407 
1408 	if (zil_replaying(zd->zd_zilog, tx))
1409 		return;
1410 
1411 	itx = zil_itx_create(TX_SETATTR, sizeof (*lr));
1412 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1413 	    sizeof (*lr) - sizeof (lr_t));
1414 
1415 	itx->itx_sync = B_FALSE;
1416 	zil_itx_assign(zd->zd_zilog, itx, tx);
1417 }
1418 
1419 /*
1420  * ZIL replay ops
1421  */
1422 static int
1423 ztest_replay_create(ztest_ds_t *zd, lr_create_t *lr, boolean_t byteswap)
1424 {
1425 	char *name = (void *)(lr + 1);		/* name follows lr */
1426 	objset_t *os = zd->zd_os;
1427 	ztest_block_tag_t *bbt;
1428 	dmu_buf_t *db;
1429 	dmu_tx_t *tx;
1430 	uint64_t txg;
1431 	int error = 0;
1432 
1433 	if (byteswap)
1434 		byteswap_uint64_array(lr, sizeof (*lr));
1435 
1436 	ASSERT(lr->lr_doid == ZTEST_DIROBJ);
1437 	ASSERT(name[0] != '\0');
1438 
1439 	tx = dmu_tx_create(os);
1440 
1441 	dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name);
1442 
1443 	if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1444 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1445 	} else {
1446 		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1447 	}
1448 
1449 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1450 	if (txg == 0)
1451 		return (ENOSPC);
1452 
1453 	ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid);
1454 
1455 	if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1456 		if (lr->lr_foid == 0) {
1457 			lr->lr_foid = zap_create(os,
1458 			    lr->lrz_type, lr->lrz_bonustype,
1459 			    lr->lrz_bonuslen, tx);
1460 		} else {
1461 			error = zap_create_claim(os, lr->lr_foid,
1462 			    lr->lrz_type, lr->lrz_bonustype,
1463 			    lr->lrz_bonuslen, tx);
1464 		}
1465 	} else {
1466 		if (lr->lr_foid == 0) {
1467 			lr->lr_foid = dmu_object_alloc(os,
1468 			    lr->lrz_type, 0, lr->lrz_bonustype,
1469 			    lr->lrz_bonuslen, tx);
1470 		} else {
1471 			error = dmu_object_claim(os, lr->lr_foid,
1472 			    lr->lrz_type, 0, lr->lrz_bonustype,
1473 			    lr->lrz_bonuslen, tx);
1474 		}
1475 	}
1476 
1477 	if (error) {
1478 		ASSERT3U(error, ==, EEXIST);
1479 		ASSERT(zd->zd_zilog->zl_replay);
1480 		dmu_tx_commit(tx);
1481 		return (error);
1482 	}
1483 
1484 	ASSERT(lr->lr_foid != 0);
1485 
1486 	if (lr->lrz_type != DMU_OT_ZAP_OTHER)
1487 		VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid,
1488 		    lr->lrz_blocksize, lr->lrz_ibshift, tx));
1489 
1490 	VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1491 	bbt = ztest_bt_bonus(db);
1492 	dmu_buf_will_dirty(db, tx);
1493 	ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_gen, txg, txg);
1494 	dmu_buf_rele(db, FTAG);
1495 
1496 	VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1,
1497 	    &lr->lr_foid, tx));
1498 
1499 	(void) ztest_log_create(zd, tx, lr);
1500 
1501 	dmu_tx_commit(tx);
1502 
1503 	return (0);
1504 }
1505 
1506 static int
1507 ztest_replay_remove(ztest_ds_t *zd, lr_remove_t *lr, boolean_t byteswap)
1508 {
1509 	char *name = (void *)(lr + 1);		/* name follows lr */
1510 	objset_t *os = zd->zd_os;
1511 	dmu_object_info_t doi;
1512 	dmu_tx_t *tx;
1513 	uint64_t object, txg;
1514 
1515 	if (byteswap)
1516 		byteswap_uint64_array(lr, sizeof (*lr));
1517 
1518 	ASSERT(lr->lr_doid == ZTEST_DIROBJ);
1519 	ASSERT(name[0] != '\0');
1520 
1521 	VERIFY3U(0, ==,
1522 	    zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object));
1523 	ASSERT(object != 0);
1524 
1525 	ztest_object_lock(zd, object, RL_WRITER);
1526 
1527 	VERIFY3U(0, ==, dmu_object_info(os, object, &doi));
1528 
1529 	tx = dmu_tx_create(os);
1530 
1531 	dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name);
1532 	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
1533 
1534 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1535 	if (txg == 0) {
1536 		ztest_object_unlock(zd, object);
1537 		return (ENOSPC);
1538 	}
1539 
1540 	if (doi.doi_type == DMU_OT_ZAP_OTHER) {
1541 		VERIFY3U(0, ==, zap_destroy(os, object, tx));
1542 	} else {
1543 		VERIFY3U(0, ==, dmu_object_free(os, object, tx));
1544 	}
1545 
1546 	VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx));
1547 
1548 	(void) ztest_log_remove(zd, tx, lr, object);
1549 
1550 	dmu_tx_commit(tx);
1551 
1552 	ztest_object_unlock(zd, object);
1553 
1554 	return (0);
1555 }
1556 
1557 static int
1558 ztest_replay_write(ztest_ds_t *zd, lr_write_t *lr, boolean_t byteswap)
1559 {
1560 	objset_t *os = zd->zd_os;
1561 	void *data = lr + 1;			/* data follows lr */
1562 	uint64_t offset, length;
1563 	ztest_block_tag_t *bt = data;
1564 	ztest_block_tag_t *bbt;
1565 	uint64_t gen, txg, lrtxg, crtxg;
1566 	dmu_object_info_t doi;
1567 	dmu_tx_t *tx;
1568 	dmu_buf_t *db;
1569 	arc_buf_t *abuf = NULL;
1570 	rl_t *rl;
1571 
1572 	if (byteswap)
1573 		byteswap_uint64_array(lr, sizeof (*lr));
1574 
1575 	offset = lr->lr_offset;
1576 	length = lr->lr_length;
1577 
1578 	/* If it's a dmu_sync() block, write the whole block */
1579 	if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
1580 		uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
1581 		if (length < blocksize) {
1582 			offset -= offset % blocksize;
1583 			length = blocksize;
1584 		}
1585 	}
1586 
1587 	if (bt->bt_magic == BSWAP_64(BT_MAGIC))
1588 		byteswap_uint64_array(bt, sizeof (*bt));
1589 
1590 	if (bt->bt_magic != BT_MAGIC)
1591 		bt = NULL;
1592 
1593 	ztest_object_lock(zd, lr->lr_foid, RL_READER);
1594 	rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER);
1595 
1596 	VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1597 
1598 	dmu_object_info_from_db(db, &doi);
1599 
1600 	bbt = ztest_bt_bonus(db);
1601 	ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1602 	gen = bbt->bt_gen;
1603 	crtxg = bbt->bt_crtxg;
1604 	lrtxg = lr->lr_common.lrc_txg;
1605 
1606 	tx = dmu_tx_create(os);
1607 
1608 	dmu_tx_hold_write(tx, lr->lr_foid, offset, length);
1609 
1610 	if (ztest_random(8) == 0 && length == doi.doi_data_block_size &&
1611 	    P2PHASE(offset, length) == 0)
1612 		abuf = dmu_request_arcbuf(db, length);
1613 
1614 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1615 	if (txg == 0) {
1616 		if (abuf != NULL)
1617 			dmu_return_arcbuf(abuf);
1618 		dmu_buf_rele(db, FTAG);
1619 		ztest_range_unlock(rl);
1620 		ztest_object_unlock(zd, lr->lr_foid);
1621 		return (ENOSPC);
1622 	}
1623 
1624 	if (bt != NULL) {
1625 		/*
1626 		 * Usually, verify the old data before writing new data --
1627 		 * but not always, because we also want to verify correct
1628 		 * behavior when the data was not recently read into cache.
1629 		 */
1630 		ASSERT(offset % doi.doi_data_block_size == 0);
1631 		if (ztest_random(4) != 0) {
1632 			int prefetch = ztest_random(2) ?
1633 			    DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH;
1634 			ztest_block_tag_t rbt;
1635 
1636 			VERIFY(dmu_read(os, lr->lr_foid, offset,
1637 			    sizeof (rbt), &rbt, prefetch) == 0);
1638 			if (rbt.bt_magic == BT_MAGIC) {
1639 				ztest_bt_verify(&rbt, os, lr->lr_foid,
1640 				    offset, gen, txg, crtxg);
1641 			}
1642 		}
1643 
1644 		/*
1645 		 * Writes can appear to be newer than the bonus buffer because
1646 		 * the ztest_get_data() callback does a dmu_read() of the
1647 		 * open-context data, which may be different than the data
1648 		 * as it was when the write was generated.
1649 		 */
1650 		if (zd->zd_zilog->zl_replay) {
1651 			ztest_bt_verify(bt, os, lr->lr_foid, offset,
1652 			    MAX(gen, bt->bt_gen), MAX(txg, lrtxg),
1653 			    bt->bt_crtxg);
1654 		}
1655 
1656 		/*
1657 		 * Set the bt's gen/txg to the bonus buffer's gen/txg
1658 		 * so that all of the usual ASSERTs will work.
1659 		 */
1660 		ztest_bt_generate(bt, os, lr->lr_foid, offset, gen, txg, crtxg);
1661 	}
1662 
1663 	if (abuf == NULL) {
1664 		dmu_write(os, lr->lr_foid, offset, length, data, tx);
1665 	} else {
1666 		bcopy(data, abuf->b_data, length);
1667 		dmu_assign_arcbuf(db, offset, abuf, tx);
1668 	}
1669 
1670 	(void) ztest_log_write(zd, tx, lr);
1671 
1672 	dmu_buf_rele(db, FTAG);
1673 
1674 	dmu_tx_commit(tx);
1675 
1676 	ztest_range_unlock(rl);
1677 	ztest_object_unlock(zd, lr->lr_foid);
1678 
1679 	return (0);
1680 }
1681 
1682 static int
1683 ztest_replay_truncate(ztest_ds_t *zd, lr_truncate_t *lr, boolean_t byteswap)
1684 {
1685 	objset_t *os = zd->zd_os;
1686 	dmu_tx_t *tx;
1687 	uint64_t txg;
1688 	rl_t *rl;
1689 
1690 	if (byteswap)
1691 		byteswap_uint64_array(lr, sizeof (*lr));
1692 
1693 	ztest_object_lock(zd, lr->lr_foid, RL_READER);
1694 	rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length,
1695 	    RL_WRITER);
1696 
1697 	tx = dmu_tx_create(os);
1698 
1699 	dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length);
1700 
1701 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1702 	if (txg == 0) {
1703 		ztest_range_unlock(rl);
1704 		ztest_object_unlock(zd, lr->lr_foid);
1705 		return (ENOSPC);
1706 	}
1707 
1708 	VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset,
1709 	    lr->lr_length, tx) == 0);
1710 
1711 	(void) ztest_log_truncate(zd, tx, lr);
1712 
1713 	dmu_tx_commit(tx);
1714 
1715 	ztest_range_unlock(rl);
1716 	ztest_object_unlock(zd, lr->lr_foid);
1717 
1718 	return (0);
1719 }
1720 
1721 static int
1722 ztest_replay_setattr(ztest_ds_t *zd, lr_setattr_t *lr, boolean_t byteswap)
1723 {
1724 	objset_t *os = zd->zd_os;
1725 	dmu_tx_t *tx;
1726 	dmu_buf_t *db;
1727 	ztest_block_tag_t *bbt;
1728 	uint64_t txg, lrtxg, crtxg;
1729 
1730 	if (byteswap)
1731 		byteswap_uint64_array(lr, sizeof (*lr));
1732 
1733 	ztest_object_lock(zd, lr->lr_foid, RL_WRITER);
1734 
1735 	VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1736 
1737 	tx = dmu_tx_create(os);
1738 	dmu_tx_hold_bonus(tx, lr->lr_foid);
1739 
1740 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1741 	if (txg == 0) {
1742 		dmu_buf_rele(db, FTAG);
1743 		ztest_object_unlock(zd, lr->lr_foid);
1744 		return (ENOSPC);
1745 	}
1746 
1747 	bbt = ztest_bt_bonus(db);
1748 	ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1749 	crtxg = bbt->bt_crtxg;
1750 	lrtxg = lr->lr_common.lrc_txg;
1751 
1752 	if (zd->zd_zilog->zl_replay) {
1753 		ASSERT(lr->lr_size != 0);
1754 		ASSERT(lr->lr_mode != 0);
1755 		ASSERT(lrtxg != 0);
1756 	} else {
1757 		/*
1758 		 * Randomly change the size and increment the generation.
1759 		 */
1760 		lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) *
1761 		    sizeof (*bbt);
1762 		lr->lr_mode = bbt->bt_gen + 1;
1763 		ASSERT(lrtxg == 0);
1764 	}
1765 
1766 	/*
1767 	 * Verify that the current bonus buffer is not newer than our txg.
1768 	 */
1769 	ztest_bt_verify(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode,
1770 	    MAX(txg, lrtxg), crtxg);
1771 
1772 	dmu_buf_will_dirty(db, tx);
1773 
1774 	ASSERT3U(lr->lr_size, >=, sizeof (*bbt));
1775 	ASSERT3U(lr->lr_size, <=, db->db_size);
1776 	VERIFY0(dmu_set_bonus(db, lr->lr_size, tx));
1777 	bbt = ztest_bt_bonus(db);
1778 
1779 	ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, txg, crtxg);
1780 
1781 	dmu_buf_rele(db, FTAG);
1782 
1783 	(void) ztest_log_setattr(zd, tx, lr);
1784 
1785 	dmu_tx_commit(tx);
1786 
1787 	ztest_object_unlock(zd, lr->lr_foid);
1788 
1789 	return (0);
1790 }
1791 
1792 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = {
1793 	NULL,			/* 0 no such transaction type */
1794 	ztest_replay_create,	/* TX_CREATE */
1795 	NULL,			/* TX_MKDIR */
1796 	NULL,			/* TX_MKXATTR */
1797 	NULL,			/* TX_SYMLINK */
1798 	ztest_replay_remove,	/* TX_REMOVE */
1799 	NULL,			/* TX_RMDIR */
1800 	NULL,			/* TX_LINK */
1801 	NULL,			/* TX_RENAME */
1802 	ztest_replay_write,	/* TX_WRITE */
1803 	ztest_replay_truncate,	/* TX_TRUNCATE */
1804 	ztest_replay_setattr,	/* TX_SETATTR */
1805 	NULL,			/* TX_ACL */
1806 	NULL,			/* TX_CREATE_ACL */
1807 	NULL,			/* TX_CREATE_ATTR */
1808 	NULL,			/* TX_CREATE_ACL_ATTR */
1809 	NULL,			/* TX_MKDIR_ACL */
1810 	NULL,			/* TX_MKDIR_ATTR */
1811 	NULL,			/* TX_MKDIR_ACL_ATTR */
1812 	NULL,			/* TX_WRITE2 */
1813 };
1814 
1815 /*
1816  * ZIL get_data callbacks
1817  */
1818 
1819 static void
1820 ztest_get_done(zgd_t *zgd, int error)
1821 {
1822 	ztest_ds_t *zd = zgd->zgd_private;
1823 	uint64_t object = zgd->zgd_rl->rl_object;
1824 
1825 	if (zgd->zgd_db)
1826 		dmu_buf_rele(zgd->zgd_db, zgd);
1827 
1828 	ztest_range_unlock(zgd->zgd_rl);
1829 	ztest_object_unlock(zd, object);
1830 
1831 	if (error == 0 && zgd->zgd_bp)
1832 		zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1833 
1834 	umem_free(zgd, sizeof (*zgd));
1835 }
1836 
1837 static int
1838 ztest_get_data(void *arg, lr_write_t *lr, char *buf, struct lwb *lwb,
1839     zio_t *zio)
1840 {
1841 	ztest_ds_t *zd = arg;
1842 	objset_t *os = zd->zd_os;
1843 	uint64_t object = lr->lr_foid;
1844 	uint64_t offset = lr->lr_offset;
1845 	uint64_t size = lr->lr_length;
1846 	uint64_t txg = lr->lr_common.lrc_txg;
1847 	uint64_t crtxg;
1848 	dmu_object_info_t doi;
1849 	dmu_buf_t *db;
1850 	zgd_t *zgd;
1851 	int error;
1852 
1853 	ASSERT3P(lwb, !=, NULL);
1854 	ASSERT3P(zio, !=, NULL);
1855 	ASSERT3U(size, !=, 0);
1856 
1857 	ztest_object_lock(zd, object, RL_READER);
1858 	error = dmu_bonus_hold(os, object, FTAG, &db);
1859 	if (error) {
1860 		ztest_object_unlock(zd, object);
1861 		return (error);
1862 	}
1863 
1864 	crtxg = ztest_bt_bonus(db)->bt_crtxg;
1865 
1866 	if (crtxg == 0 || crtxg > txg) {
1867 		dmu_buf_rele(db, FTAG);
1868 		ztest_object_unlock(zd, object);
1869 		return (ENOENT);
1870 	}
1871 
1872 	dmu_object_info_from_db(db, &doi);
1873 	dmu_buf_rele(db, FTAG);
1874 	db = NULL;
1875 
1876 	zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL);
1877 	zgd->zgd_lwb = lwb;
1878 	zgd->zgd_private = zd;
1879 
1880 	if (buf != NULL) {	/* immediate write */
1881 		zgd->zgd_rl = ztest_range_lock(zd, object, offset, size,
1882 		    RL_READER);
1883 
1884 		error = dmu_read(os, object, offset, size, buf,
1885 		    DMU_READ_NO_PREFETCH);
1886 		ASSERT(error == 0);
1887 	} else {
1888 		size = doi.doi_data_block_size;
1889 		if (ISP2(size)) {
1890 			offset = P2ALIGN(offset, size);
1891 		} else {
1892 			ASSERT(offset < size);
1893 			offset = 0;
1894 		}
1895 
1896 		zgd->zgd_rl = ztest_range_lock(zd, object, offset, size,
1897 		    RL_READER);
1898 
1899 		error = dmu_buf_hold(os, object, offset, zgd, &db,
1900 		    DMU_READ_NO_PREFETCH);
1901 
1902 		if (error == 0) {
1903 			blkptr_t *bp = &lr->lr_blkptr;
1904 
1905 			zgd->zgd_db = db;
1906 			zgd->zgd_bp = bp;
1907 
1908 			ASSERT(db->db_offset == offset);
1909 			ASSERT(db->db_size == size);
1910 
1911 			error = dmu_sync(zio, lr->lr_common.lrc_txg,
1912 			    ztest_get_done, zgd);
1913 
1914 			if (error == 0)
1915 				return (0);
1916 		}
1917 	}
1918 
1919 	ztest_get_done(zgd, error);
1920 
1921 	return (error);
1922 }
1923 
1924 static void *
1925 ztest_lr_alloc(size_t lrsize, char *name)
1926 {
1927 	char *lr;
1928 	size_t namesize = name ? strlen(name) + 1 : 0;
1929 
1930 	lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL);
1931 
1932 	if (name)
1933 		bcopy(name, lr + lrsize, namesize);
1934 
1935 	return (lr);
1936 }
1937 
1938 void
1939 ztest_lr_free(void *lr, size_t lrsize, char *name)
1940 {
1941 	size_t namesize = name ? strlen(name) + 1 : 0;
1942 
1943 	umem_free(lr, lrsize + namesize);
1944 }
1945 
1946 /*
1947  * Lookup a bunch of objects.  Returns the number of objects not found.
1948  */
1949 static int
1950 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count)
1951 {
1952 	int missing = 0;
1953 	int error;
1954 
1955 	ASSERT(_mutex_held(&zd->zd_dirobj_lock));
1956 
1957 	for (int i = 0; i < count; i++, od++) {
1958 		od->od_object = 0;
1959 		error = zap_lookup(zd->zd_os, od->od_dir, od->od_name,
1960 		    sizeof (uint64_t), 1, &od->od_object);
1961 		if (error) {
1962 			ASSERT(error == ENOENT);
1963 			ASSERT(od->od_object == 0);
1964 			missing++;
1965 		} else {
1966 			dmu_buf_t *db;
1967 			ztest_block_tag_t *bbt;
1968 			dmu_object_info_t doi;
1969 
1970 			ASSERT(od->od_object != 0);
1971 			ASSERT(missing == 0);	/* there should be no gaps */
1972 
1973 			ztest_object_lock(zd, od->od_object, RL_READER);
1974 			VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os,
1975 			    od->od_object, FTAG, &db));
1976 			dmu_object_info_from_db(db, &doi);
1977 			bbt = ztest_bt_bonus(db);
1978 			ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1979 			od->od_type = doi.doi_type;
1980 			od->od_blocksize = doi.doi_data_block_size;
1981 			od->od_gen = bbt->bt_gen;
1982 			dmu_buf_rele(db, FTAG);
1983 			ztest_object_unlock(zd, od->od_object);
1984 		}
1985 	}
1986 
1987 	return (missing);
1988 }
1989 
1990 static int
1991 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count)
1992 {
1993 	int missing = 0;
1994 
1995 	ASSERT(_mutex_held(&zd->zd_dirobj_lock));
1996 
1997 	for (int i = 0; i < count; i++, od++) {
1998 		if (missing) {
1999 			od->od_object = 0;
2000 			missing++;
2001 			continue;
2002 		}
2003 
2004 		lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2005 
2006 		lr->lr_doid = od->od_dir;
2007 		lr->lr_foid = 0;	/* 0 to allocate, > 0 to claim */
2008 		lr->lrz_type = od->od_crtype;
2009 		lr->lrz_blocksize = od->od_crblocksize;
2010 		lr->lrz_ibshift = ztest_random_ibshift();
2011 		lr->lrz_bonustype = DMU_OT_UINT64_OTHER;
2012 		lr->lrz_bonuslen = dmu_bonus_max();
2013 		lr->lr_gen = od->od_crgen;
2014 		lr->lr_crtime[0] = time(NULL);
2015 
2016 		if (ztest_replay_create(zd, lr, B_FALSE) != 0) {
2017 			ASSERT(missing == 0);
2018 			od->od_object = 0;
2019 			missing++;
2020 		} else {
2021 			od->od_object = lr->lr_foid;
2022 			od->od_type = od->od_crtype;
2023 			od->od_blocksize = od->od_crblocksize;
2024 			od->od_gen = od->od_crgen;
2025 			ASSERT(od->od_object != 0);
2026 		}
2027 
2028 		ztest_lr_free(lr, sizeof (*lr), od->od_name);
2029 	}
2030 
2031 	return (missing);
2032 }
2033 
2034 static int
2035 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count)
2036 {
2037 	int missing = 0;
2038 	int error;
2039 
2040 	ASSERT(_mutex_held(&zd->zd_dirobj_lock));
2041 
2042 	od += count - 1;
2043 
2044 	for (int i = count - 1; i >= 0; i--, od--) {
2045 		if (missing) {
2046 			missing++;
2047 			continue;
2048 		}
2049 
2050 		/*
2051 		 * No object was found.
2052 		 */
2053 		if (od->od_object == 0)
2054 			continue;
2055 
2056 		lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2057 
2058 		lr->lr_doid = od->od_dir;
2059 
2060 		if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) {
2061 			ASSERT3U(error, ==, ENOSPC);
2062 			missing++;
2063 		} else {
2064 			od->od_object = 0;
2065 		}
2066 		ztest_lr_free(lr, sizeof (*lr), od->od_name);
2067 	}
2068 
2069 	return (missing);
2070 }
2071 
2072 static int
2073 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size,
2074     void *data)
2075 {
2076 	lr_write_t *lr;
2077 	int error;
2078 
2079 	lr = ztest_lr_alloc(sizeof (*lr) + size, NULL);
2080 
2081 	lr->lr_foid = object;
2082 	lr->lr_offset = offset;
2083 	lr->lr_length = size;
2084 	lr->lr_blkoff = 0;
2085 	BP_ZERO(&lr->lr_blkptr);
2086 
2087 	bcopy(data, lr + 1, size);
2088 
2089 	error = ztest_replay_write(zd, lr, B_FALSE);
2090 
2091 	ztest_lr_free(lr, sizeof (*lr) + size, NULL);
2092 
2093 	return (error);
2094 }
2095 
2096 static int
2097 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2098 {
2099 	lr_truncate_t *lr;
2100 	int error;
2101 
2102 	lr = ztest_lr_alloc(sizeof (*lr), NULL);
2103 
2104 	lr->lr_foid = object;
2105 	lr->lr_offset = offset;
2106 	lr->lr_length = size;
2107 
2108 	error = ztest_replay_truncate(zd, lr, B_FALSE);
2109 
2110 	ztest_lr_free(lr, sizeof (*lr), NULL);
2111 
2112 	return (error);
2113 }
2114 
2115 static int
2116 ztest_setattr(ztest_ds_t *zd, uint64_t object)
2117 {
2118 	lr_setattr_t *lr;
2119 	int error;
2120 
2121 	lr = ztest_lr_alloc(sizeof (*lr), NULL);
2122 
2123 	lr->lr_foid = object;
2124 	lr->lr_size = 0;
2125 	lr->lr_mode = 0;
2126 
2127 	error = ztest_replay_setattr(zd, lr, B_FALSE);
2128 
2129 	ztest_lr_free(lr, sizeof (*lr), NULL);
2130 
2131 	return (error);
2132 }
2133 
2134 static void
2135 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2136 {
2137 	objset_t *os = zd->zd_os;
2138 	dmu_tx_t *tx;
2139 	uint64_t txg;
2140 	rl_t *rl;
2141 
2142 	txg_wait_synced(dmu_objset_pool(os), 0);
2143 
2144 	ztest_object_lock(zd, object, RL_READER);
2145 	rl = ztest_range_lock(zd, object, offset, size, RL_WRITER);
2146 
2147 	tx = dmu_tx_create(os);
2148 
2149 	dmu_tx_hold_write(tx, object, offset, size);
2150 
2151 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2152 
2153 	if (txg != 0) {
2154 		dmu_prealloc(os, object, offset, size, tx);
2155 		dmu_tx_commit(tx);
2156 		txg_wait_synced(dmu_objset_pool(os), txg);
2157 	} else {
2158 		(void) dmu_free_long_range(os, object, offset, size);
2159 	}
2160 
2161 	ztest_range_unlock(rl);
2162 	ztest_object_unlock(zd, object);
2163 }
2164 
2165 static void
2166 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset)
2167 {
2168 	int err;
2169 	ztest_block_tag_t wbt;
2170 	dmu_object_info_t doi;
2171 	enum ztest_io_type io_type;
2172 	uint64_t blocksize;
2173 	void *data;
2174 
2175 	VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0);
2176 	blocksize = doi.doi_data_block_size;
2177 	data = umem_alloc(blocksize, UMEM_NOFAIL);
2178 
2179 	/*
2180 	 * Pick an i/o type at random, biased toward writing block tags.
2181 	 */
2182 	io_type = ztest_random(ZTEST_IO_TYPES);
2183 	if (ztest_random(2) == 0)
2184 		io_type = ZTEST_IO_WRITE_TAG;
2185 
2186 	(void) rw_rdlock(&zd->zd_zilog_lock);
2187 
2188 	switch (io_type) {
2189 
2190 	case ZTEST_IO_WRITE_TAG:
2191 		ztest_bt_generate(&wbt, zd->zd_os, object, offset, 0, 0, 0);
2192 		(void) ztest_write(zd, object, offset, sizeof (wbt), &wbt);
2193 		break;
2194 
2195 	case ZTEST_IO_WRITE_PATTERN:
2196 		(void) memset(data, 'a' + (object + offset) % 5, blocksize);
2197 		if (ztest_random(2) == 0) {
2198 			/*
2199 			 * Induce fletcher2 collisions to ensure that
2200 			 * zio_ddt_collision() detects and resolves them
2201 			 * when using fletcher2-verify for deduplication.
2202 			 */
2203 			((uint64_t *)data)[0] ^= 1ULL << 63;
2204 			((uint64_t *)data)[4] ^= 1ULL << 63;
2205 		}
2206 		(void) ztest_write(zd, object, offset, blocksize, data);
2207 		break;
2208 
2209 	case ZTEST_IO_WRITE_ZEROES:
2210 		bzero(data, blocksize);
2211 		(void) ztest_write(zd, object, offset, blocksize, data);
2212 		break;
2213 
2214 	case ZTEST_IO_TRUNCATE:
2215 		(void) ztest_truncate(zd, object, offset, blocksize);
2216 		break;
2217 
2218 	case ZTEST_IO_SETATTR:
2219 		(void) ztest_setattr(zd, object);
2220 		break;
2221 
2222 	case ZTEST_IO_REWRITE:
2223 		(void) rw_rdlock(&ztest_name_lock);
2224 		err = ztest_dsl_prop_set_uint64(zd->zd_name,
2225 		    ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa),
2226 		    B_FALSE);
2227 		VERIFY(err == 0 || err == ENOSPC);
2228 		err = ztest_dsl_prop_set_uint64(zd->zd_name,
2229 		    ZFS_PROP_COMPRESSION,
2230 		    ztest_random_dsl_prop(ZFS_PROP_COMPRESSION),
2231 		    B_FALSE);
2232 		VERIFY(err == 0 || err == ENOSPC);
2233 		(void) rw_unlock(&ztest_name_lock);
2234 
2235 		VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data,
2236 		    DMU_READ_NO_PREFETCH));
2237 
2238 		(void) ztest_write(zd, object, offset, blocksize, data);
2239 		break;
2240 	}
2241 
2242 	(void) rw_unlock(&zd->zd_zilog_lock);
2243 
2244 	umem_free(data, blocksize);
2245 }
2246 
2247 /*
2248  * Initialize an object description template.
2249  */
2250 static void
2251 ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index,
2252     dmu_object_type_t type, uint64_t blocksize, uint64_t gen)
2253 {
2254 	od->od_dir = ZTEST_DIROBJ;
2255 	od->od_object = 0;
2256 
2257 	od->od_crtype = type;
2258 	od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize();
2259 	od->od_crgen = gen;
2260 
2261 	od->od_type = DMU_OT_NONE;
2262 	od->od_blocksize = 0;
2263 	od->od_gen = 0;
2264 
2265 	(void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]",
2266 	    tag, (int64_t)id, index);
2267 }
2268 
2269 /*
2270  * Lookup or create the objects for a test using the od template.
2271  * If the objects do not all exist, or if 'remove' is specified,
2272  * remove any existing objects and create new ones.  Otherwise,
2273  * use the existing objects.
2274  */
2275 static int
2276 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove)
2277 {
2278 	int count = size / sizeof (*od);
2279 	int rv = 0;
2280 
2281 	VERIFY(mutex_lock(&zd->zd_dirobj_lock) == 0);
2282 	if ((ztest_lookup(zd, od, count) != 0 || remove) &&
2283 	    (ztest_remove(zd, od, count) != 0 ||
2284 	    ztest_create(zd, od, count) != 0))
2285 		rv = -1;
2286 	zd->zd_od = od;
2287 	VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0);
2288 
2289 	return (rv);
2290 }
2291 
2292 /* ARGSUSED */
2293 void
2294 ztest_zil_commit(ztest_ds_t *zd, uint64_t id)
2295 {
2296 	zilog_t *zilog = zd->zd_zilog;
2297 
2298 	(void) rw_rdlock(&zd->zd_zilog_lock);
2299 
2300 	zil_commit(zilog, ztest_random(ZTEST_OBJECTS));
2301 
2302 	/*
2303 	 * Remember the committed values in zd, which is in parent/child
2304 	 * shared memory.  If we die, the next iteration of ztest_run()
2305 	 * will verify that the log really does contain this record.
2306 	 */
2307 	mutex_enter(&zilog->zl_lock);
2308 	ASSERT(zd->zd_shared != NULL);
2309 	ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq);
2310 	zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq;
2311 	mutex_exit(&zilog->zl_lock);
2312 
2313 	(void) rw_unlock(&zd->zd_zilog_lock);
2314 }
2315 
2316 /*
2317  * This function is designed to simulate the operations that occur during a
2318  * mount/unmount operation.  We hold the dataset across these operations in an
2319  * attempt to expose any implicit assumptions about ZIL management.
2320  */
2321 /* ARGSUSED */
2322 void
2323 ztest_zil_remount(ztest_ds_t *zd, uint64_t id)
2324 {
2325 	objset_t *os = zd->zd_os;
2326 
2327 	/*
2328 	 * We grab the zd_dirobj_lock to ensure that no other thread is
2329 	 * updating the zil (i.e. adding in-memory log records) and the
2330 	 * zd_zilog_lock to block any I/O.
2331 	 */
2332 	VERIFY0(mutex_lock(&zd->zd_dirobj_lock));
2333 	(void) rw_wrlock(&zd->zd_zilog_lock);
2334 
2335 	/* zfsvfs_teardown() */
2336 	zil_close(zd->zd_zilog);
2337 
2338 	/* zfsvfs_setup() */
2339 	VERIFY(zil_open(os, ztest_get_data) == zd->zd_zilog);
2340 	zil_replay(os, zd, ztest_replay_vector);
2341 
2342 	(void) rw_unlock(&zd->zd_zilog_lock);
2343 	VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0);
2344 }
2345 
2346 /*
2347  * Verify that we can't destroy an active pool, create an existing pool,
2348  * or create a pool with a bad vdev spec.
2349  */
2350 /* ARGSUSED */
2351 void
2352 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id)
2353 {
2354 	ztest_shared_opts_t *zo = &ztest_opts;
2355 	spa_t *spa;
2356 	nvlist_t *nvroot;
2357 
2358 	/*
2359 	 * Attempt to create using a bad file.
2360 	 */
2361 	nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1);
2362 	VERIFY3U(ENOENT, ==,
2363 	    spa_create("ztest_bad_file", nvroot, NULL, NULL));
2364 	nvlist_free(nvroot);
2365 
2366 	/*
2367 	 * Attempt to create using a bad mirror.
2368 	 */
2369 	nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 2, 1);
2370 	VERIFY3U(ENOENT, ==,
2371 	    spa_create("ztest_bad_mirror", nvroot, NULL, NULL));
2372 	nvlist_free(nvroot);
2373 
2374 	/*
2375 	 * Attempt to create an existing pool.  It shouldn't matter
2376 	 * what's in the nvroot; we should fail with EEXIST.
2377 	 */
2378 	(void) rw_rdlock(&ztest_name_lock);
2379 	nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1);
2380 	VERIFY3U(EEXIST, ==, spa_create(zo->zo_pool, nvroot, NULL, NULL));
2381 	nvlist_free(nvroot);
2382 	VERIFY3U(0, ==, spa_open(zo->zo_pool, &spa, FTAG));
2383 	VERIFY3U(EBUSY, ==, spa_destroy(zo->zo_pool));
2384 	spa_close(spa, FTAG);
2385 
2386 	(void) rw_unlock(&ztest_name_lock);
2387 }
2388 
2389 /* ARGSUSED */
2390 void
2391 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id)
2392 {
2393 	spa_t *spa;
2394 	uint64_t initial_version = SPA_VERSION_INITIAL;
2395 	uint64_t version, newversion;
2396 	nvlist_t *nvroot, *props;
2397 	char *name;
2398 
2399 	VERIFY0(mutex_lock(&ztest_vdev_lock));
2400 	name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool);
2401 
2402 	/*
2403 	 * Clean up from previous runs.
2404 	 */
2405 	(void) spa_destroy(name);
2406 
2407 	nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0,
2408 	    0, ztest_opts.zo_raidz, ztest_opts.zo_mirrors, 1);
2409 
2410 	/*
2411 	 * If we're configuring a RAIDZ device then make sure that the
2412 	 * the initial version is capable of supporting that feature.
2413 	 */
2414 	switch (ztest_opts.zo_raidz_parity) {
2415 	case 0:
2416 	case 1:
2417 		initial_version = SPA_VERSION_INITIAL;
2418 		break;
2419 	case 2:
2420 		initial_version = SPA_VERSION_RAIDZ2;
2421 		break;
2422 	case 3:
2423 		initial_version = SPA_VERSION_RAIDZ3;
2424 		break;
2425 	}
2426 
2427 	/*
2428 	 * Create a pool with a spa version that can be upgraded. Pick
2429 	 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES.
2430 	 */
2431 	do {
2432 		version = ztest_random_spa_version(initial_version);
2433 	} while (version > SPA_VERSION_BEFORE_FEATURES);
2434 
2435 	props = fnvlist_alloc();
2436 	fnvlist_add_uint64(props,
2437 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), version);
2438 	VERIFY0(spa_create(name, nvroot, props, NULL));
2439 	fnvlist_free(nvroot);
2440 	fnvlist_free(props);
2441 
2442 	VERIFY0(spa_open(name, &spa, FTAG));
2443 	VERIFY3U(spa_version(spa), ==, version);
2444 	newversion = ztest_random_spa_version(version + 1);
2445 
2446 	if (ztest_opts.zo_verbose >= 4) {
2447 		(void) printf("upgrading spa version from %llu to %llu\n",
2448 		    (u_longlong_t)version, (u_longlong_t)newversion);
2449 	}
2450 
2451 	spa_upgrade(spa, newversion);
2452 	VERIFY3U(spa_version(spa), >, version);
2453 	VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config,
2454 	    zpool_prop_to_name(ZPOOL_PROP_VERSION)));
2455 	spa_close(spa, FTAG);
2456 
2457 	strfree(name);
2458 	VERIFY0(mutex_unlock(&ztest_vdev_lock));
2459 }
2460 
2461 static vdev_t *
2462 vdev_lookup_by_path(vdev_t *vd, const char *path)
2463 {
2464 	vdev_t *mvd;
2465 
2466 	if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0)
2467 		return (vd);
2468 
2469 	for (int c = 0; c < vd->vdev_children; c++)
2470 		if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) !=
2471 		    NULL)
2472 			return (mvd);
2473 
2474 	return (NULL);
2475 }
2476 
2477 /*
2478  * Find the first available hole which can be used as a top-level.
2479  */
2480 int
2481 find_vdev_hole(spa_t *spa)
2482 {
2483 	vdev_t *rvd = spa->spa_root_vdev;
2484 	int c;
2485 
2486 	ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV);
2487 
2488 	for (c = 0; c < rvd->vdev_children; c++) {
2489 		vdev_t *cvd = rvd->vdev_child[c];
2490 
2491 		if (cvd->vdev_ishole)
2492 			break;
2493 	}
2494 	return (c);
2495 }
2496 
2497 /*
2498  * Verify that vdev_add() works as expected.
2499  */
2500 /* ARGSUSED */
2501 void
2502 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id)
2503 {
2504 	ztest_shared_t *zs = ztest_shared;
2505 	spa_t *spa = ztest_spa;
2506 	uint64_t leaves;
2507 	uint64_t guid;
2508 	nvlist_t *nvroot;
2509 	int error;
2510 
2511 	VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
2512 	leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz;
2513 
2514 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2515 
2516 	ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves;
2517 
2518 	/*
2519 	 * If we have slogs then remove them 1/4 of the time.
2520 	 */
2521 	if (spa_has_slogs(spa) && ztest_random(4) == 0) {
2522 		/*
2523 		 * Grab the guid from the head of the log class rotor.
2524 		 */
2525 		guid = spa_log_class(spa)->mc_rotor->mg_vd->vdev_guid;
2526 
2527 		spa_config_exit(spa, SCL_VDEV, FTAG);
2528 
2529 		/*
2530 		 * We have to grab the zs_name_lock as writer to
2531 		 * prevent a race between removing a slog (dmu_objset_find)
2532 		 * and destroying a dataset. Removing the slog will
2533 		 * grab a reference on the dataset which may cause
2534 		 * dmu_objset_destroy() to fail with EBUSY thus
2535 		 * leaving the dataset in an inconsistent state.
2536 		 */
2537 		VERIFY(rw_wrlock(&ztest_name_lock) == 0);
2538 		error = spa_vdev_remove(spa, guid, B_FALSE);
2539 		VERIFY(rw_unlock(&ztest_name_lock) == 0);
2540 
2541 		if (error && error != EEXIST)
2542 			fatal(0, "spa_vdev_remove() = %d", error);
2543 	} else {
2544 		spa_config_exit(spa, SCL_VDEV, FTAG);
2545 
2546 		/*
2547 		 * Make 1/4 of the devices be log devices.
2548 		 */
2549 		nvroot = make_vdev_root(NULL, NULL, NULL,
2550 		    ztest_opts.zo_vdev_size, 0,
2551 		    ztest_random(4) == 0, ztest_opts.zo_raidz,
2552 		    zs->zs_mirrors, 1);
2553 
2554 		error = spa_vdev_add(spa, nvroot);
2555 		nvlist_free(nvroot);
2556 
2557 		if (error == ENOSPC)
2558 			ztest_record_enospc("spa_vdev_add");
2559 		else if (error != 0)
2560 			fatal(0, "spa_vdev_add() = %d", error);
2561 	}
2562 
2563 	VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2564 }
2565 
2566 /*
2567  * Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
2568  */
2569 /* ARGSUSED */
2570 void
2571 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id)
2572 {
2573 	ztest_shared_t *zs = ztest_shared;
2574 	spa_t *spa = ztest_spa;
2575 	vdev_t *rvd = spa->spa_root_vdev;
2576 	spa_aux_vdev_t *sav;
2577 	char *aux;
2578 	uint64_t guid = 0;
2579 	int error;
2580 
2581 	if (ztest_random(2) == 0) {
2582 		sav = &spa->spa_spares;
2583 		aux = ZPOOL_CONFIG_SPARES;
2584 	} else {
2585 		sav = &spa->spa_l2cache;
2586 		aux = ZPOOL_CONFIG_L2CACHE;
2587 	}
2588 
2589 	VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
2590 
2591 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2592 
2593 	if (sav->sav_count != 0 && ztest_random(4) == 0) {
2594 		/*
2595 		 * Pick a random device to remove.
2596 		 */
2597 		guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid;
2598 	} else {
2599 		/*
2600 		 * Find an unused device we can add.
2601 		 */
2602 		zs->zs_vdev_aux = 0;
2603 		for (;;) {
2604 			char path[MAXPATHLEN];
2605 			int c;
2606 			(void) snprintf(path, sizeof (path), ztest_aux_template,
2607 			    ztest_opts.zo_dir, ztest_opts.zo_pool, aux,
2608 			    zs->zs_vdev_aux);
2609 			for (c = 0; c < sav->sav_count; c++)
2610 				if (strcmp(sav->sav_vdevs[c]->vdev_path,
2611 				    path) == 0)
2612 					break;
2613 			if (c == sav->sav_count &&
2614 			    vdev_lookup_by_path(rvd, path) == NULL)
2615 				break;
2616 			zs->zs_vdev_aux++;
2617 		}
2618 	}
2619 
2620 	spa_config_exit(spa, SCL_VDEV, FTAG);
2621 
2622 	if (guid == 0) {
2623 		/*
2624 		 * Add a new device.
2625 		 */
2626 		nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL,
2627 		    (ztest_opts.zo_vdev_size * 5) / 4, 0, 0, 0, 0, 1);
2628 		error = spa_vdev_add(spa, nvroot);
2629 		if (error != 0)
2630 			fatal(0, "spa_vdev_add(%p) = %d", nvroot, error);
2631 		nvlist_free(nvroot);
2632 	} else {
2633 		/*
2634 		 * Remove an existing device.  Sometimes, dirty its
2635 		 * vdev state first to make sure we handle removal
2636 		 * of devices that have pending state changes.
2637 		 */
2638 		if (ztest_random(2) == 0)
2639 			(void) vdev_online(spa, guid, 0, NULL);
2640 
2641 		error = spa_vdev_remove(spa, guid, B_FALSE);
2642 		if (error != 0 && error != EBUSY)
2643 			fatal(0, "spa_vdev_remove(%llu) = %d", guid, error);
2644 	}
2645 
2646 	VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2647 }
2648 
2649 /*
2650  * split a pool if it has mirror tlvdevs
2651  */
2652 /* ARGSUSED */
2653 void
2654 ztest_split_pool(ztest_ds_t *zd, uint64_t id)
2655 {
2656 	ztest_shared_t *zs = ztest_shared;
2657 	spa_t *spa = ztest_spa;
2658 	vdev_t *rvd = spa->spa_root_vdev;
2659 	nvlist_t *tree, **child, *config, *split, **schild;
2660 	uint_t c, children, schildren = 0, lastlogid = 0;
2661 	int error = 0;
2662 
2663 	VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
2664 
2665 	/* ensure we have a useable config; mirrors of raidz aren't supported */
2666 	if (zs->zs_mirrors < 3 || ztest_opts.zo_raidz > 1) {
2667 		VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2668 		return;
2669 	}
2670 
2671 	/* clean up the old pool, if any */
2672 	(void) spa_destroy("splitp");
2673 
2674 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2675 
2676 	/* generate a config from the existing config */
2677 	mutex_enter(&spa->spa_props_lock);
2678 	VERIFY(nvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE,
2679 	    &tree) == 0);
2680 	mutex_exit(&spa->spa_props_lock);
2681 
2682 	VERIFY(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child,
2683 	    &children) == 0);
2684 
2685 	schild = malloc(rvd->vdev_children * sizeof (nvlist_t *));
2686 	for (c = 0; c < children; c++) {
2687 		vdev_t *tvd = rvd->vdev_child[c];
2688 		nvlist_t **mchild;
2689 		uint_t mchildren;
2690 
2691 		if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) {
2692 			VERIFY(nvlist_alloc(&schild[schildren], NV_UNIQUE_NAME,
2693 			    0) == 0);
2694 			VERIFY(nvlist_add_string(schild[schildren],
2695 			    ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0);
2696 			VERIFY(nvlist_add_uint64(schild[schildren],
2697 			    ZPOOL_CONFIG_IS_HOLE, 1) == 0);
2698 			if (lastlogid == 0)
2699 				lastlogid = schildren;
2700 			++schildren;
2701 			continue;
2702 		}
2703 		lastlogid = 0;
2704 		VERIFY(nvlist_lookup_nvlist_array(child[c],
2705 		    ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0);
2706 		VERIFY(nvlist_dup(mchild[0], &schild[schildren++], 0) == 0);
2707 	}
2708 
2709 	/* OK, create a config that can be used to split */
2710 	VERIFY(nvlist_alloc(&split, NV_UNIQUE_NAME, 0) == 0);
2711 	VERIFY(nvlist_add_string(split, ZPOOL_CONFIG_TYPE,
2712 	    VDEV_TYPE_ROOT) == 0);
2713 	VERIFY(nvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild,
2714 	    lastlogid != 0 ? lastlogid : schildren) == 0);
2715 
2716 	VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, 0) == 0);
2717 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split) == 0);
2718 
2719 	for (c = 0; c < schildren; c++)
2720 		nvlist_free(schild[c]);
2721 	free(schild);
2722 	nvlist_free(split);
2723 
2724 	spa_config_exit(spa, SCL_VDEV, FTAG);
2725 
2726 	(void) rw_wrlock(&ztest_name_lock);
2727 	error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE);
2728 	(void) rw_unlock(&ztest_name_lock);
2729 
2730 	nvlist_free(config);
2731 
2732 	if (error == 0) {
2733 		(void) printf("successful split - results:\n");
2734 		mutex_enter(&spa_namespace_lock);
2735 		show_pool_stats(spa);
2736 		show_pool_stats(spa_lookup("splitp"));
2737 		mutex_exit(&spa_namespace_lock);
2738 		++zs->zs_splits;
2739 		--zs->zs_mirrors;
2740 	}
2741 	VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2742 
2743 }
2744 
2745 /*
2746  * Verify that we can attach and detach devices.
2747  */
2748 /* ARGSUSED */
2749 void
2750 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
2751 {
2752 	ztest_shared_t *zs = ztest_shared;
2753 	spa_t *spa = ztest_spa;
2754 	spa_aux_vdev_t *sav = &spa->spa_spares;
2755 	vdev_t *rvd = spa->spa_root_vdev;
2756 	vdev_t *oldvd, *newvd, *pvd;
2757 	nvlist_t *root;
2758 	uint64_t leaves;
2759 	uint64_t leaf, top;
2760 	uint64_t ashift = ztest_get_ashift();
2761 	uint64_t oldguid, pguid;
2762 	uint64_t oldsize, newsize;
2763 	char oldpath[MAXPATHLEN], newpath[MAXPATHLEN];
2764 	int replacing;
2765 	int oldvd_has_siblings = B_FALSE;
2766 	int newvd_is_spare = B_FALSE;
2767 	int oldvd_is_log;
2768 	int error, expected_error;
2769 
2770 	VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
2771 	leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz;
2772 
2773 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2774 
2775 	/*
2776 	 * Decide whether to do an attach or a replace.
2777 	 */
2778 	replacing = ztest_random(2);
2779 
2780 	/*
2781 	 * Pick a random top-level vdev.
2782 	 */
2783 	top = ztest_random_vdev_top(spa, B_TRUE);
2784 
2785 	/*
2786 	 * Pick a random leaf within it.
2787 	 */
2788 	leaf = ztest_random(leaves);
2789 
2790 	/*
2791 	 * Locate this vdev.
2792 	 */
2793 	oldvd = rvd->vdev_child[top];
2794 	if (zs->zs_mirrors >= 1) {
2795 		ASSERT(oldvd->vdev_ops == &vdev_mirror_ops);
2796 		ASSERT(oldvd->vdev_children >= zs->zs_mirrors);
2797 		oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raidz];
2798 	}
2799 	if (ztest_opts.zo_raidz > 1) {
2800 		ASSERT(oldvd->vdev_ops == &vdev_raidz_ops);
2801 		ASSERT(oldvd->vdev_children == ztest_opts.zo_raidz);
2802 		oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raidz];
2803 	}
2804 
2805 	/*
2806 	 * If we're already doing an attach or replace, oldvd may be a
2807 	 * mirror vdev -- in which case, pick a random child.
2808 	 */
2809 	while (oldvd->vdev_children != 0) {
2810 		oldvd_has_siblings = B_TRUE;
2811 		ASSERT(oldvd->vdev_children >= 2);
2812 		oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)];
2813 	}
2814 
2815 	oldguid = oldvd->vdev_guid;
2816 	oldsize = vdev_get_min_asize(oldvd);
2817 	oldvd_is_log = oldvd->vdev_top->vdev_islog;
2818 	(void) strcpy(oldpath, oldvd->vdev_path);
2819 	pvd = oldvd->vdev_parent;
2820 	pguid = pvd->vdev_guid;
2821 
2822 	/*
2823 	 * If oldvd has siblings, then half of the time, detach it.
2824 	 */
2825 	if (oldvd_has_siblings && ztest_random(2) == 0) {
2826 		spa_config_exit(spa, SCL_VDEV, FTAG);
2827 		error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE);
2828 		if (error != 0 && error != ENODEV && error != EBUSY &&
2829 		    error != ENOTSUP)
2830 			fatal(0, "detach (%s) returned %d", oldpath, error);
2831 		VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2832 		return;
2833 	}
2834 
2835 	/*
2836 	 * For the new vdev, choose with equal probability between the two
2837 	 * standard paths (ending in either 'a' or 'b') or a random hot spare.
2838 	 */
2839 	if (sav->sav_count != 0 && ztest_random(3) == 0) {
2840 		newvd = sav->sav_vdevs[ztest_random(sav->sav_count)];
2841 		newvd_is_spare = B_TRUE;
2842 		(void) strcpy(newpath, newvd->vdev_path);
2843 	} else {
2844 		(void) snprintf(newpath, sizeof (newpath), ztest_dev_template,
2845 		    ztest_opts.zo_dir, ztest_opts.zo_pool,
2846 		    top * leaves + leaf);
2847 		if (ztest_random(2) == 0)
2848 			newpath[strlen(newpath) - 1] = 'b';
2849 		newvd = vdev_lookup_by_path(rvd, newpath);
2850 	}
2851 
2852 	if (newvd) {
2853 		newsize = vdev_get_min_asize(newvd);
2854 	} else {
2855 		/*
2856 		 * Make newsize a little bigger or smaller than oldsize.
2857 		 * If it's smaller, the attach should fail.
2858 		 * If it's larger, and we're doing a replace,
2859 		 * we should get dynamic LUN growth when we're done.
2860 		 */
2861 		newsize = 10 * oldsize / (9 + ztest_random(3));
2862 	}
2863 
2864 	/*
2865 	 * If pvd is not a mirror or root, the attach should fail with ENOTSUP,
2866 	 * unless it's a replace; in that case any non-replacing parent is OK.
2867 	 *
2868 	 * If newvd is already part of the pool, it should fail with EBUSY.
2869 	 *
2870 	 * If newvd is too small, it should fail with EOVERFLOW.
2871 	 */
2872 	if (pvd->vdev_ops != &vdev_mirror_ops &&
2873 	    pvd->vdev_ops != &vdev_root_ops && (!replacing ||
2874 	    pvd->vdev_ops == &vdev_replacing_ops ||
2875 	    pvd->vdev_ops == &vdev_spare_ops))
2876 		expected_error = ENOTSUP;
2877 	else if (newvd_is_spare && (!replacing || oldvd_is_log))
2878 		expected_error = ENOTSUP;
2879 	else if (newvd == oldvd)
2880 		expected_error = replacing ? 0 : EBUSY;
2881 	else if (vdev_lookup_by_path(rvd, newpath) != NULL)
2882 		expected_error = EBUSY;
2883 	else if (newsize < oldsize)
2884 		expected_error = EOVERFLOW;
2885 	else if (ashift > oldvd->vdev_top->vdev_ashift)
2886 		expected_error = EDOM;
2887 	else
2888 		expected_error = 0;
2889 
2890 	spa_config_exit(spa, SCL_VDEV, FTAG);
2891 
2892 	/*
2893 	 * Build the nvlist describing newpath.
2894 	 */
2895 	root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0,
2896 	    ashift, 0, 0, 0, 1);
2897 
2898 	error = spa_vdev_attach(spa, oldguid, root, replacing);
2899 
2900 	nvlist_free(root);
2901 
2902 	/*
2903 	 * If our parent was the replacing vdev, but the replace completed,
2904 	 * then instead of failing with ENOTSUP we may either succeed,
2905 	 * fail with ENODEV, or fail with EOVERFLOW.
2906 	 */
2907 	if (expected_error == ENOTSUP &&
2908 	    (error == 0 || error == ENODEV || error == EOVERFLOW))
2909 		expected_error = error;
2910 
2911 	/*
2912 	 * If someone grew the LUN, the replacement may be too small.
2913 	 */
2914 	if (error == EOVERFLOW || error == EBUSY)
2915 		expected_error = error;
2916 
2917 	/* XXX workaround 6690467 */
2918 	if (error != expected_error && expected_error != EBUSY) {
2919 		fatal(0, "attach (%s %llu, %s %llu, %d) "
2920 		    "returned %d, expected %d",
2921 		    oldpath, oldsize, newpath,
2922 		    newsize, replacing, error, expected_error);
2923 	}
2924 
2925 	VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2926 }
2927 
2928 /*
2929  * Callback function which expands the physical size of the vdev.
2930  */
2931 vdev_t *
2932 grow_vdev(vdev_t *vd, void *arg)
2933 {
2934 	spa_t *spa = vd->vdev_spa;
2935 	size_t *newsize = arg;
2936 	size_t fsize;
2937 	int fd;
2938 
2939 	ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
2940 	ASSERT(vd->vdev_ops->vdev_op_leaf);
2941 
2942 	if ((fd = open(vd->vdev_path, O_RDWR)) == -1)
2943 		return (vd);
2944 
2945 	fsize = lseek(fd, 0, SEEK_END);
2946 	(void) ftruncate(fd, *newsize);
2947 
2948 	if (ztest_opts.zo_verbose >= 6) {
2949 		(void) printf("%s grew from %lu to %lu bytes\n",
2950 		    vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize);
2951 	}
2952 	(void) close(fd);
2953 	return (NULL);
2954 }
2955 
2956 /*
2957  * Callback function which expands a given vdev by calling vdev_online().
2958  */
2959 /* ARGSUSED */
2960 vdev_t *
2961 online_vdev(vdev_t *vd, void *arg)
2962 {
2963 	spa_t *spa = vd->vdev_spa;
2964 	vdev_t *tvd = vd->vdev_top;
2965 	uint64_t guid = vd->vdev_guid;
2966 	uint64_t generation = spa->spa_config_generation + 1;
2967 	vdev_state_t newstate = VDEV_STATE_UNKNOWN;
2968 	int error;
2969 
2970 	ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
2971 	ASSERT(vd->vdev_ops->vdev_op_leaf);
2972 
2973 	/* Calling vdev_online will initialize the new metaslabs */
2974 	spa_config_exit(spa, SCL_STATE, spa);
2975 	error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate);
2976 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
2977 
2978 	/*
2979 	 * If vdev_online returned an error or the underlying vdev_open
2980 	 * failed then we abort the expand. The only way to know that
2981 	 * vdev_open fails is by checking the returned newstate.
2982 	 */
2983 	if (error || newstate != VDEV_STATE_HEALTHY) {
2984 		if (ztest_opts.zo_verbose >= 5) {
2985 			(void) printf("Unable to expand vdev, state %llu, "
2986 			    "error %d\n", (u_longlong_t)newstate, error);
2987 		}
2988 		return (vd);
2989 	}
2990 	ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY);
2991 
2992 	/*
2993 	 * Since we dropped the lock we need to ensure that we're
2994 	 * still talking to the original vdev. It's possible this
2995 	 * vdev may have been detached/replaced while we were
2996 	 * trying to online it.
2997 	 */
2998 	if (generation != spa->spa_config_generation) {
2999 		if (ztest_opts.zo_verbose >= 5) {
3000 			(void) printf("vdev configuration has changed, "
3001 			    "guid %llu, state %llu, expected gen %llu, "
3002 			    "got gen %llu\n",
3003 			    (u_longlong_t)guid,
3004 			    (u_longlong_t)tvd->vdev_state,
3005 			    (u_longlong_t)generation,
3006 			    (u_longlong_t)spa->spa_config_generation);
3007 		}
3008 		return (vd);
3009 	}
3010 	return (NULL);
3011 }
3012 
3013 /*
3014  * Traverse the vdev tree calling the supplied function.
3015  * We continue to walk the tree until we either have walked all
3016  * children or we receive a non-NULL return from the callback.
3017  * If a NULL callback is passed, then we just return back the first
3018  * leaf vdev we encounter.
3019  */
3020 vdev_t *
3021 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg)
3022 {
3023 	if (vd->vdev_ops->vdev_op_leaf) {
3024 		if (func == NULL)
3025 			return (vd);
3026 		else
3027 			return (func(vd, arg));
3028 	}
3029 
3030 	for (uint_t c = 0; c < vd->vdev_children; c++) {
3031 		vdev_t *cvd = vd->vdev_child[c];
3032 		if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL)
3033 			return (cvd);
3034 	}
3035 	return (NULL);
3036 }
3037 
3038 /*
3039  * Verify that dynamic LUN growth works as expected.
3040  */
3041 /* ARGSUSED */
3042 void
3043 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id)
3044 {
3045 	spa_t *spa = ztest_spa;
3046 	vdev_t *vd, *tvd;
3047 	metaslab_class_t *mc;
3048 	metaslab_group_t *mg;
3049 	size_t psize, newsize;
3050 	uint64_t top;
3051 	uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count;
3052 
3053 	VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
3054 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3055 
3056 	top = ztest_random_vdev_top(spa, B_TRUE);
3057 
3058 	tvd = spa->spa_root_vdev->vdev_child[top];
3059 	mg = tvd->vdev_mg;
3060 	mc = mg->mg_class;
3061 	old_ms_count = tvd->vdev_ms_count;
3062 	old_class_space = metaslab_class_get_space(mc);
3063 
3064 	/*
3065 	 * Determine the size of the first leaf vdev associated with
3066 	 * our top-level device.
3067 	 */
3068 	vd = vdev_walk_tree(tvd, NULL, NULL);
3069 	ASSERT3P(vd, !=, NULL);
3070 	ASSERT(vd->vdev_ops->vdev_op_leaf);
3071 
3072 	psize = vd->vdev_psize;
3073 
3074 	/*
3075 	 * We only try to expand the vdev if it's healthy, less than 4x its
3076 	 * original size, and it has a valid psize.
3077 	 */
3078 	if (tvd->vdev_state != VDEV_STATE_HEALTHY ||
3079 	    psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) {
3080 		spa_config_exit(spa, SCL_STATE, spa);
3081 		VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
3082 		return;
3083 	}
3084 	ASSERT(psize > 0);
3085 	newsize = psize + psize / 8;
3086 	ASSERT3U(newsize, >, psize);
3087 
3088 	if (ztest_opts.zo_verbose >= 6) {
3089 		(void) printf("Expanding LUN %s from %lu to %lu\n",
3090 		    vd->vdev_path, (ulong_t)psize, (ulong_t)newsize);
3091 	}
3092 
3093 	/*
3094 	 * Growing the vdev is a two step process:
3095 	 *	1). expand the physical size (i.e. relabel)
3096 	 *	2). online the vdev to create the new metaslabs
3097 	 */
3098 	if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL ||
3099 	    vdev_walk_tree(tvd, online_vdev, NULL) != NULL ||
3100 	    tvd->vdev_state != VDEV_STATE_HEALTHY) {
3101 		if (ztest_opts.zo_verbose >= 5) {
3102 			(void) printf("Could not expand LUN because "
3103 			    "the vdev configuration changed.\n");
3104 		}
3105 		spa_config_exit(spa, SCL_STATE, spa);
3106 		VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
3107 		return;
3108 	}
3109 
3110 	spa_config_exit(spa, SCL_STATE, spa);
3111 
3112 	/*
3113 	 * Expanding the LUN will update the config asynchronously,
3114 	 * thus we must wait for the async thread to complete any
3115 	 * pending tasks before proceeding.
3116 	 */
3117 	for (;;) {
3118 		boolean_t done;
3119 		mutex_enter(&spa->spa_async_lock);
3120 		done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks);
3121 		mutex_exit(&spa->spa_async_lock);
3122 		if (done)
3123 			break;
3124 		txg_wait_synced(spa_get_dsl(spa), 0);
3125 		(void) poll(NULL, 0, 100);
3126 	}
3127 
3128 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3129 
3130 	tvd = spa->spa_root_vdev->vdev_child[top];
3131 	new_ms_count = tvd->vdev_ms_count;
3132 	new_class_space = metaslab_class_get_space(mc);
3133 
3134 	if (tvd->vdev_mg != mg || mg->mg_class != mc) {
3135 		if (ztest_opts.zo_verbose >= 5) {
3136 			(void) printf("Could not verify LUN expansion due to "
3137 			    "intervening vdev offline or remove.\n");
3138 		}
3139 		spa_config_exit(spa, SCL_STATE, spa);
3140 		VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
3141 		return;
3142 	}
3143 
3144 	/*
3145 	 * Make sure we were able to grow the vdev.
3146 	 */
3147 	if (new_ms_count <= old_ms_count)
3148 		fatal(0, "LUN expansion failed: ms_count %llu <= %llu\n",
3149 		    old_ms_count, new_ms_count);
3150 
3151 	/*
3152 	 * Make sure we were able to grow the pool.
3153 	 */
3154 	if (new_class_space <= old_class_space)
3155 		fatal(0, "LUN expansion failed: class_space %llu <= %llu\n",
3156 		    old_class_space, new_class_space);
3157 
3158 	if (ztest_opts.zo_verbose >= 5) {
3159 		char oldnumbuf[6], newnumbuf[6];
3160 
3161 		nicenum(old_class_space, oldnumbuf);
3162 		nicenum(new_class_space, newnumbuf);
3163 		(void) printf("%s grew from %s to %s\n",
3164 		    spa->spa_name, oldnumbuf, newnumbuf);
3165 	}
3166 
3167 	spa_config_exit(spa, SCL_STATE, spa);
3168 	VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
3169 }
3170 
3171 /*
3172  * Verify that dmu_objset_{create,destroy,open,close} work as expected.
3173  */
3174 /* ARGSUSED */
3175 static void
3176 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
3177 {
3178 	/*
3179 	 * Create the objects common to all ztest datasets.
3180 	 */
3181 	VERIFY(zap_create_claim(os, ZTEST_DIROBJ,
3182 	    DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0);
3183 }
3184 
3185 static int
3186 ztest_dataset_create(char *dsname)
3187 {
3188 	uint64_t zilset = ztest_random(100);
3189 	int err = dmu_objset_create(dsname, DMU_OST_OTHER, 0,
3190 	    ztest_objset_create_cb, NULL);
3191 
3192 	if (err || zilset < 80)
3193 		return (err);
3194 
3195 	if (ztest_opts.zo_verbose >= 6)
3196 		(void) printf("Setting dataset %s to sync always\n", dsname);
3197 	return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC,
3198 	    ZFS_SYNC_ALWAYS, B_FALSE));
3199 }
3200 
3201 /* ARGSUSED */
3202 static int
3203 ztest_objset_destroy_cb(const char *name, void *arg)
3204 {
3205 	objset_t *os;
3206 	dmu_object_info_t doi;
3207 	int error;
3208 
3209 	/*
3210 	 * Verify that the dataset contains a directory object.
3211 	 */
3212 	VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, FTAG, &os));
3213 	error = dmu_object_info(os, ZTEST_DIROBJ, &doi);
3214 	if (error != ENOENT) {
3215 		/* We could have crashed in the middle of destroying it */
3216 		ASSERT0(error);
3217 		ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER);
3218 		ASSERT3S(doi.doi_physical_blocks_512, >=, 0);
3219 	}
3220 	dmu_objset_disown(os, FTAG);
3221 
3222 	/*
3223 	 * Destroy the dataset.
3224 	 */
3225 	if (strchr(name, '@') != NULL) {
3226 		VERIFY0(dsl_destroy_snapshot(name, B_TRUE));
3227 	} else {
3228 		error = dsl_destroy_head(name);
3229 		/* There could be a hold on this dataset */
3230 		if (error != EBUSY)
3231 			ASSERT0(error);
3232 	}
3233 	return (0);
3234 }
3235 
3236 static boolean_t
3237 ztest_snapshot_create(char *osname, uint64_t id)
3238 {
3239 	char snapname[ZFS_MAX_DATASET_NAME_LEN];
3240 	int error;
3241 
3242 	(void) snprintf(snapname, sizeof (snapname), "%llu", (u_longlong_t)id);
3243 
3244 	error = dmu_objset_snapshot_one(osname, snapname);
3245 	if (error == ENOSPC) {
3246 		ztest_record_enospc(FTAG);
3247 		return (B_FALSE);
3248 	}
3249 	if (error != 0 && error != EEXIST) {
3250 		fatal(0, "ztest_snapshot_create(%s@%s) = %d", osname,
3251 		    snapname, error);
3252 	}
3253 	return (B_TRUE);
3254 }
3255 
3256 static boolean_t
3257 ztest_snapshot_destroy(char *osname, uint64_t id)
3258 {
3259 	char snapname[ZFS_MAX_DATASET_NAME_LEN];
3260 	int error;
3261 
3262 	(void) snprintf(snapname, sizeof (snapname), "%s@%llu", osname,
3263 	    (u_longlong_t)id);
3264 
3265 	error = dsl_destroy_snapshot(snapname, B_FALSE);
3266 	if (error != 0 && error != ENOENT)
3267 		fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error);
3268 	return (B_TRUE);
3269 }
3270 
3271 /* ARGSUSED */
3272 void
3273 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id)
3274 {
3275 	ztest_ds_t zdtmp;
3276 	int iters;
3277 	int error;
3278 	objset_t *os, *os2;
3279 	char name[ZFS_MAX_DATASET_NAME_LEN];
3280 	zilog_t *zilog;
3281 
3282 	(void) rw_rdlock(&ztest_name_lock);
3283 
3284 	(void) snprintf(name, sizeof (name), "%s/temp_%llu",
3285 	    ztest_opts.zo_pool, (u_longlong_t)id);
3286 
3287 	/*
3288 	 * If this dataset exists from a previous run, process its replay log
3289 	 * half of the time.  If we don't replay it, then dmu_objset_destroy()
3290 	 * (invoked from ztest_objset_destroy_cb()) should just throw it away.
3291 	 */
3292 	if (ztest_random(2) == 0 &&
3293 	    dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) {
3294 		ztest_zd_init(&zdtmp, NULL, os);
3295 		zil_replay(os, &zdtmp, ztest_replay_vector);
3296 		ztest_zd_fini(&zdtmp);
3297 		dmu_objset_disown(os, FTAG);
3298 	}
3299 
3300 	/*
3301 	 * There may be an old instance of the dataset we're about to
3302 	 * create lying around from a previous run.  If so, destroy it
3303 	 * and all of its snapshots.
3304 	 */
3305 	(void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
3306 	    DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
3307 
3308 	/*
3309 	 * Verify that the destroyed dataset is no longer in the namespace.
3310 	 */
3311 	VERIFY3U(ENOENT, ==, dmu_objset_own(name, DMU_OST_OTHER, B_TRUE,
3312 	    FTAG, &os));
3313 
3314 	/*
3315 	 * Verify that we can create a new dataset.
3316 	 */
3317 	error = ztest_dataset_create(name);
3318 	if (error) {
3319 		if (error == ENOSPC) {
3320 			ztest_record_enospc(FTAG);
3321 			(void) rw_unlock(&ztest_name_lock);
3322 			return;
3323 		}
3324 		fatal(0, "dmu_objset_create(%s) = %d", name, error);
3325 	}
3326 
3327 	VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os));
3328 
3329 	ztest_zd_init(&zdtmp, NULL, os);
3330 
3331 	/*
3332 	 * Open the intent log for it.
3333 	 */
3334 	zilog = zil_open(os, ztest_get_data);
3335 
3336 	/*
3337 	 * Put some objects in there, do a little I/O to them,
3338 	 * and randomly take a couple of snapshots along the way.
3339 	 */
3340 	iters = ztest_random(5);
3341 	for (int i = 0; i < iters; i++) {
3342 		ztest_dmu_object_alloc_free(&zdtmp, id);
3343 		if (ztest_random(iters) == 0)
3344 			(void) ztest_snapshot_create(name, i);
3345 	}
3346 
3347 	/*
3348 	 * Verify that we cannot create an existing dataset.
3349 	 */
3350 	VERIFY3U(EEXIST, ==,
3351 	    dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL));
3352 
3353 	/*
3354 	 * Verify that we can hold an objset that is also owned.
3355 	 */
3356 	VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2));
3357 	dmu_objset_rele(os2, FTAG);
3358 
3359 	/*
3360 	 * Verify that we cannot own an objset that is already owned.
3361 	 */
3362 	VERIFY3U(EBUSY, ==,
3363 	    dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2));
3364 
3365 	zil_close(zilog);
3366 	dmu_objset_disown(os, FTAG);
3367 	ztest_zd_fini(&zdtmp);
3368 
3369 	(void) rw_unlock(&ztest_name_lock);
3370 }
3371 
3372 /*
3373  * Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
3374  */
3375 void
3376 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id)
3377 {
3378 	(void) rw_rdlock(&ztest_name_lock);
3379 	(void) ztest_snapshot_destroy(zd->zd_name, id);
3380 	(void) ztest_snapshot_create(zd->zd_name, id);
3381 	(void) rw_unlock(&ztest_name_lock);
3382 }
3383 
3384 /*
3385  * Cleanup non-standard snapshots and clones.
3386  */
3387 void
3388 ztest_dsl_dataset_cleanup(char *osname, uint64_t id)
3389 {
3390 	char snap1name[ZFS_MAX_DATASET_NAME_LEN];
3391 	char clone1name[ZFS_MAX_DATASET_NAME_LEN];
3392 	char snap2name[ZFS_MAX_DATASET_NAME_LEN];
3393 	char clone2name[ZFS_MAX_DATASET_NAME_LEN];
3394 	char snap3name[ZFS_MAX_DATASET_NAME_LEN];
3395 	int error;
3396 
3397 	(void) snprintf(snap1name, sizeof (snap1name),
3398 	    "%s@s1_%llu", osname, id);
3399 	(void) snprintf(clone1name, sizeof (clone1name),
3400 	    "%s/c1_%llu", osname, id);
3401 	(void) snprintf(snap2name, sizeof (snap2name),
3402 	    "%s@s2_%llu", clone1name, id);
3403 	(void) snprintf(clone2name, sizeof (clone2name),
3404 	    "%s/c2_%llu", osname, id);
3405 	(void) snprintf(snap3name, sizeof (snap3name),
3406 	    "%s@s3_%llu", clone1name, id);
3407 
3408 	error = dsl_destroy_head(clone2name);
3409 	if (error && error != ENOENT)
3410 		fatal(0, "dsl_destroy_head(%s) = %d", clone2name, error);
3411 	error = dsl_destroy_snapshot(snap3name, B_FALSE);
3412 	if (error && error != ENOENT)
3413 		fatal(0, "dsl_destroy_snapshot(%s) = %d", snap3name, error);
3414 	error = dsl_destroy_snapshot(snap2name, B_FALSE);
3415 	if (error && error != ENOENT)
3416 		fatal(0, "dsl_destroy_snapshot(%s) = %d", snap2name, error);
3417 	error = dsl_destroy_head(clone1name);
3418 	if (error && error != ENOENT)
3419 		fatal(0, "dsl_destroy_head(%s) = %d", clone1name, error);
3420 	error = dsl_destroy_snapshot(snap1name, B_FALSE);
3421 	if (error && error != ENOENT)
3422 		fatal(0, "dsl_destroy_snapshot(%s) = %d", snap1name, error);
3423 }
3424 
3425 /*
3426  * Verify dsl_dataset_promote handles EBUSY
3427  */
3428 void
3429 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id)
3430 {
3431 	objset_t *os;
3432 	char snap1name[ZFS_MAX_DATASET_NAME_LEN];
3433 	char clone1name[ZFS_MAX_DATASET_NAME_LEN];
3434 	char snap2name[ZFS_MAX_DATASET_NAME_LEN];
3435 	char clone2name[ZFS_MAX_DATASET_NAME_LEN];
3436 	char snap3name[ZFS_MAX_DATASET_NAME_LEN];
3437 	char *osname = zd->zd_name;
3438 	int error;
3439 
3440 	(void) rw_rdlock(&ztest_name_lock);
3441 
3442 	ztest_dsl_dataset_cleanup(osname, id);
3443 
3444 	(void) snprintf(snap1name, sizeof (snap1name),
3445 	    "%s@s1_%llu", osname, id);
3446 	(void) snprintf(clone1name, sizeof (clone1name),
3447 	    "%s/c1_%llu", osname, id);
3448 	(void) snprintf(snap2name, sizeof (snap2name),
3449 	    "%s@s2_%llu", clone1name, id);
3450 	(void) snprintf(clone2name, sizeof (clone2name),
3451 	    "%s/c2_%llu", osname, id);
3452 	(void) snprintf(snap3name, sizeof (snap3name),
3453 	    "%s@s3_%llu", clone1name, id);
3454 
3455 	error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1);
3456 	if (error && error != EEXIST) {
3457 		if (error == ENOSPC) {
3458 			ztest_record_enospc(FTAG);
3459 			goto out;
3460 		}
3461 		fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error);
3462 	}
3463 
3464 	error = dmu_objset_clone(clone1name, snap1name);
3465 	if (error) {
3466 		if (error == ENOSPC) {
3467 			ztest_record_enospc(FTAG);
3468 			goto out;
3469 		}
3470 		fatal(0, "dmu_objset_create(%s) = %d", clone1name, error);
3471 	}
3472 
3473 	error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1);
3474 	if (error && error != EEXIST) {
3475 		if (error == ENOSPC) {
3476 			ztest_record_enospc(FTAG);
3477 			goto out;
3478 		}
3479 		fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error);
3480 	}
3481 
3482 	error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1);
3483 	if (error && error != EEXIST) {
3484 		if (error == ENOSPC) {
3485 			ztest_record_enospc(FTAG);
3486 			goto out;
3487 		}
3488 		fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error);
3489 	}
3490 
3491 	error = dmu_objset_clone(clone2name, snap3name);
3492 	if (error) {
3493 		if (error == ENOSPC) {
3494 			ztest_record_enospc(FTAG);
3495 			goto out;
3496 		}
3497 		fatal(0, "dmu_objset_create(%s) = %d", clone2name, error);
3498 	}
3499 
3500 	error = dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, FTAG, &os);
3501 	if (error)
3502 		fatal(0, "dmu_objset_own(%s) = %d", snap2name, error);
3503 	error = dsl_dataset_promote(clone2name, NULL);
3504 	if (error == ENOSPC) {
3505 		dmu_objset_disown(os, FTAG);
3506 		ztest_record_enospc(FTAG);
3507 		goto out;
3508 	}
3509 	if (error != EBUSY)
3510 		fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name,
3511 		    error);
3512 	dmu_objset_disown(os, FTAG);
3513 
3514 out:
3515 	ztest_dsl_dataset_cleanup(osname, id);
3516 
3517 	(void) rw_unlock(&ztest_name_lock);
3518 }
3519 
3520 /*
3521  * Verify that dmu_object_{alloc,free} work as expected.
3522  */
3523 void
3524 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id)
3525 {
3526 	ztest_od_t od[4];
3527 	int batchsize = sizeof (od) / sizeof (od[0]);
3528 
3529 	for (int b = 0; b < batchsize; b++)
3530 		ztest_od_init(&od[b], id, FTAG, b, DMU_OT_UINT64_OTHER, 0, 0);
3531 
3532 	/*
3533 	 * Destroy the previous batch of objects, create a new batch,
3534 	 * and do some I/O on the new objects.
3535 	 */
3536 	if (ztest_object_init(zd, od, sizeof (od), B_TRUE) != 0)
3537 		return;
3538 
3539 	while (ztest_random(4 * batchsize) != 0)
3540 		ztest_io(zd, od[ztest_random(batchsize)].od_object,
3541 		    ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
3542 }
3543 
3544 /*
3545  * Verify that dmu_{read,write} work as expected.
3546  */
3547 void
3548 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id)
3549 {
3550 	objset_t *os = zd->zd_os;
3551 	ztest_od_t od[2];
3552 	dmu_tx_t *tx;
3553 	int i, freeit, error;
3554 	uint64_t n, s, txg;
3555 	bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT;
3556 	uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
3557 	uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t);
3558 	uint64_t regions = 997;
3559 	uint64_t stride = 123456789ULL;
3560 	uint64_t width = 40;
3561 	int free_percent = 5;
3562 
3563 	/*
3564 	 * This test uses two objects, packobj and bigobj, that are always
3565 	 * updated together (i.e. in the same tx) so that their contents are
3566 	 * in sync and can be compared.  Their contents relate to each other
3567 	 * in a simple way: packobj is a dense array of 'bufwad' structures,
3568 	 * while bigobj is a sparse array of the same bufwads.  Specifically,
3569 	 * for any index n, there are three bufwads that should be identical:
3570 	 *
3571 	 *	packobj, at offset n * sizeof (bufwad_t)
3572 	 *	bigobj, at the head of the nth chunk
3573 	 *	bigobj, at the tail of the nth chunk
3574 	 *
3575 	 * The chunk size is arbitrary. It doesn't have to be a power of two,
3576 	 * and it doesn't have any relation to the object blocksize.
3577 	 * The only requirement is that it can hold at least two bufwads.
3578 	 *
3579 	 * Normally, we write the bufwad to each of these locations.
3580 	 * However, free_percent of the time we instead write zeroes to
3581 	 * packobj and perform a dmu_free_range() on bigobj.  By comparing
3582 	 * bigobj to packobj, we can verify that the DMU is correctly
3583 	 * tracking which parts of an object are allocated and free,
3584 	 * and that the contents of the allocated blocks are correct.
3585 	 */
3586 
3587 	/*
3588 	 * Read the directory info.  If it's the first time, set things up.
3589 	 */
3590 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, chunksize);
3591 	ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize);
3592 
3593 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
3594 		return;
3595 
3596 	bigobj = od[0].od_object;
3597 	packobj = od[1].od_object;
3598 	chunksize = od[0].od_gen;
3599 	ASSERT(chunksize == od[1].od_gen);
3600 
3601 	/*
3602 	 * Prefetch a random chunk of the big object.
3603 	 * Our aim here is to get some async reads in flight
3604 	 * for blocks that we may free below; the DMU should
3605 	 * handle this race correctly.
3606 	 */
3607 	n = ztest_random(regions) * stride + ztest_random(width);
3608 	s = 1 + ztest_random(2 * width - 1);
3609 	dmu_prefetch(os, bigobj, 0, n * chunksize, s * chunksize,
3610 	    ZIO_PRIORITY_SYNC_READ);
3611 
3612 	/*
3613 	 * Pick a random index and compute the offsets into packobj and bigobj.
3614 	 */
3615 	n = ztest_random(regions) * stride + ztest_random(width);
3616 	s = 1 + ztest_random(width - 1);
3617 
3618 	packoff = n * sizeof (bufwad_t);
3619 	packsize = s * sizeof (bufwad_t);
3620 
3621 	bigoff = n * chunksize;
3622 	bigsize = s * chunksize;
3623 
3624 	packbuf = umem_alloc(packsize, UMEM_NOFAIL);
3625 	bigbuf = umem_alloc(bigsize, UMEM_NOFAIL);
3626 
3627 	/*
3628 	 * free_percent of the time, free a range of bigobj rather than
3629 	 * overwriting it.
3630 	 */
3631 	freeit = (ztest_random(100) < free_percent);
3632 
3633 	/*
3634 	 * Read the current contents of our objects.
3635 	 */
3636 	error = dmu_read(os, packobj, packoff, packsize, packbuf,
3637 	    DMU_READ_PREFETCH);
3638 	ASSERT0(error);
3639 	error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf,
3640 	    DMU_READ_PREFETCH);
3641 	ASSERT0(error);
3642 
3643 	/*
3644 	 * Get a tx for the mods to both packobj and bigobj.
3645 	 */
3646 	tx = dmu_tx_create(os);
3647 
3648 	dmu_tx_hold_write(tx, packobj, packoff, packsize);
3649 
3650 	if (freeit)
3651 		dmu_tx_hold_free(tx, bigobj, bigoff, bigsize);
3652 	else
3653 		dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
3654 
3655 	/* This accounts for setting the checksum/compression. */
3656 	dmu_tx_hold_bonus(tx, bigobj);
3657 
3658 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
3659 	if (txg == 0) {
3660 		umem_free(packbuf, packsize);
3661 		umem_free(bigbuf, bigsize);
3662 		return;
3663 	}
3664 
3665 	enum zio_checksum cksum;
3666 	do {
3667 		cksum = (enum zio_checksum)
3668 		    ztest_random_dsl_prop(ZFS_PROP_CHECKSUM);
3669 	} while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS);
3670 	dmu_object_set_checksum(os, bigobj, cksum, tx);
3671 
3672 	enum zio_compress comp;
3673 	do {
3674 		comp = (enum zio_compress)
3675 		    ztest_random_dsl_prop(ZFS_PROP_COMPRESSION);
3676 	} while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS);
3677 	dmu_object_set_compress(os, bigobj, comp, tx);
3678 
3679 	/*
3680 	 * For each index from n to n + s, verify that the existing bufwad
3681 	 * in packobj matches the bufwads at the head and tail of the
3682 	 * corresponding chunk in bigobj.  Then update all three bufwads
3683 	 * with the new values we want to write out.
3684 	 */
3685 	for (i = 0; i < s; i++) {
3686 		/* LINTED */
3687 		pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
3688 		/* LINTED */
3689 		bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
3690 		/* LINTED */
3691 		bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
3692 
3693 		ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
3694 		ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
3695 
3696 		if (pack->bw_txg > txg)
3697 			fatal(0, "future leak: got %llx, open txg is %llx",
3698 			    pack->bw_txg, txg);
3699 
3700 		if (pack->bw_data != 0 && pack->bw_index != n + i)
3701 			fatal(0, "wrong index: got %llx, wanted %llx+%llx",
3702 			    pack->bw_index, n, i);
3703 
3704 		if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
3705 			fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
3706 
3707 		if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
3708 			fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
3709 
3710 		if (freeit) {
3711 			bzero(pack, sizeof (bufwad_t));
3712 		} else {
3713 			pack->bw_index = n + i;
3714 			pack->bw_txg = txg;
3715 			pack->bw_data = 1 + ztest_random(-2ULL);
3716 		}
3717 		*bigH = *pack;
3718 		*bigT = *pack;
3719 	}
3720 
3721 	/*
3722 	 * We've verified all the old bufwads, and made new ones.
3723 	 * Now write them out.
3724 	 */
3725 	dmu_write(os, packobj, packoff, packsize, packbuf, tx);
3726 
3727 	if (freeit) {
3728 		if (ztest_opts.zo_verbose >= 7) {
3729 			(void) printf("freeing offset %llx size %llx"
3730 			    " txg %llx\n",
3731 			    (u_longlong_t)bigoff,
3732 			    (u_longlong_t)bigsize,
3733 			    (u_longlong_t)txg);
3734 		}
3735 		VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx));
3736 	} else {
3737 		if (ztest_opts.zo_verbose >= 7) {
3738 			(void) printf("writing offset %llx size %llx"
3739 			    " txg %llx\n",
3740 			    (u_longlong_t)bigoff,
3741 			    (u_longlong_t)bigsize,
3742 			    (u_longlong_t)txg);
3743 		}
3744 		dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx);
3745 	}
3746 
3747 	dmu_tx_commit(tx);
3748 
3749 	/*
3750 	 * Sanity check the stuff we just wrote.
3751 	 */
3752 	{
3753 		void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
3754 		void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
3755 
3756 		VERIFY(0 == dmu_read(os, packobj, packoff,
3757 		    packsize, packcheck, DMU_READ_PREFETCH));
3758 		VERIFY(0 == dmu_read(os, bigobj, bigoff,
3759 		    bigsize, bigcheck, DMU_READ_PREFETCH));
3760 
3761 		ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
3762 		ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
3763 
3764 		umem_free(packcheck, packsize);
3765 		umem_free(bigcheck, bigsize);
3766 	}
3767 
3768 	umem_free(packbuf, packsize);
3769 	umem_free(bigbuf, bigsize);
3770 }
3771 
3772 void
3773 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf,
3774     uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg)
3775 {
3776 	uint64_t i;
3777 	bufwad_t *pack;
3778 	bufwad_t *bigH;
3779 	bufwad_t *bigT;
3780 
3781 	/*
3782 	 * For each index from n to n + s, verify that the existing bufwad
3783 	 * in packobj matches the bufwads at the head and tail of the
3784 	 * corresponding chunk in bigobj.  Then update all three bufwads
3785 	 * with the new values we want to write out.
3786 	 */
3787 	for (i = 0; i < s; i++) {
3788 		/* LINTED */
3789 		pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
3790 		/* LINTED */
3791 		bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
3792 		/* LINTED */
3793 		bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
3794 
3795 		ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
3796 		ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
3797 
3798 		if (pack->bw_txg > txg)
3799 			fatal(0, "future leak: got %llx, open txg is %llx",
3800 			    pack->bw_txg, txg);
3801 
3802 		if (pack->bw_data != 0 && pack->bw_index != n + i)
3803 			fatal(0, "wrong index: got %llx, wanted %llx+%llx",
3804 			    pack->bw_index, n, i);
3805 
3806 		if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
3807 			fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
3808 
3809 		if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
3810 			fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
3811 
3812 		pack->bw_index = n + i;
3813 		pack->bw_txg = txg;
3814 		pack->bw_data = 1 + ztest_random(-2ULL);
3815 
3816 		*bigH = *pack;
3817 		*bigT = *pack;
3818 	}
3819 }
3820 
3821 void
3822 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id)
3823 {
3824 	objset_t *os = zd->zd_os;
3825 	ztest_od_t od[2];
3826 	dmu_tx_t *tx;
3827 	uint64_t i;
3828 	int error;
3829 	uint64_t n, s, txg;
3830 	bufwad_t *packbuf, *bigbuf;
3831 	uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
3832 	uint64_t blocksize = ztest_random_blocksize();
3833 	uint64_t chunksize = blocksize;
3834 	uint64_t regions = 997;
3835 	uint64_t stride = 123456789ULL;
3836 	uint64_t width = 9;
3837 	dmu_buf_t *bonus_db;
3838 	arc_buf_t **bigbuf_arcbufs;
3839 	dmu_object_info_t doi;
3840 
3841 	/*
3842 	 * This test uses two objects, packobj and bigobj, that are always
3843 	 * updated together (i.e. in the same tx) so that their contents are
3844 	 * in sync and can be compared.  Their contents relate to each other
3845 	 * in a simple way: packobj is a dense array of 'bufwad' structures,
3846 	 * while bigobj is a sparse array of the same bufwads.  Specifically,
3847 	 * for any index n, there are three bufwads that should be identical:
3848 	 *
3849 	 *	packobj, at offset n * sizeof (bufwad_t)
3850 	 *	bigobj, at the head of the nth chunk
3851 	 *	bigobj, at the tail of the nth chunk
3852 	 *
3853 	 * The chunk size is set equal to bigobj block size so that
3854 	 * dmu_assign_arcbuf() can be tested for object updates.
3855 	 */
3856 
3857 	/*
3858 	 * Read the directory info.  If it's the first time, set things up.
3859 	 */
3860 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0);
3861 	ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize);
3862 
3863 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
3864 		return;
3865 
3866 	bigobj = od[0].od_object;
3867 	packobj = od[1].od_object;
3868 	blocksize = od[0].od_blocksize;
3869 	chunksize = blocksize;
3870 	ASSERT(chunksize == od[1].od_gen);
3871 
3872 	VERIFY(dmu_object_info(os, bigobj, &doi) == 0);
3873 	VERIFY(ISP2(doi.doi_data_block_size));
3874 	VERIFY(chunksize == doi.doi_data_block_size);
3875 	VERIFY(chunksize >= 2 * sizeof (bufwad_t));
3876 
3877 	/*
3878 	 * Pick a random index and compute the offsets into packobj and bigobj.
3879 	 */
3880 	n = ztest_random(regions) * stride + ztest_random(width);
3881 	s = 1 + ztest_random(width - 1);
3882 
3883 	packoff = n * sizeof (bufwad_t);
3884 	packsize = s * sizeof (bufwad_t);
3885 
3886 	bigoff = n * chunksize;
3887 	bigsize = s * chunksize;
3888 
3889 	packbuf = umem_zalloc(packsize, UMEM_NOFAIL);
3890 	bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL);
3891 
3892 	VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db));
3893 
3894 	bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL);
3895 
3896 	/*
3897 	 * Iteration 0 test zcopy for DB_UNCACHED dbufs.
3898 	 * Iteration 1 test zcopy to already referenced dbufs.
3899 	 * Iteration 2 test zcopy to dirty dbuf in the same txg.
3900 	 * Iteration 3 test zcopy to dbuf dirty in previous txg.
3901 	 * Iteration 4 test zcopy when dbuf is no longer dirty.
3902 	 * Iteration 5 test zcopy when it can't be done.
3903 	 * Iteration 6 one more zcopy write.
3904 	 */
3905 	for (i = 0; i < 7; i++) {
3906 		uint64_t j;
3907 		uint64_t off;
3908 
3909 		/*
3910 		 * In iteration 5 (i == 5) use arcbufs
3911 		 * that don't match bigobj blksz to test
3912 		 * dmu_assign_arcbuf() when it can't directly
3913 		 * assign an arcbuf to a dbuf.
3914 		 */
3915 		for (j = 0; j < s; j++) {
3916 			if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
3917 				bigbuf_arcbufs[j] =
3918 				    dmu_request_arcbuf(bonus_db, chunksize);
3919 			} else {
3920 				bigbuf_arcbufs[2 * j] =
3921 				    dmu_request_arcbuf(bonus_db, chunksize / 2);
3922 				bigbuf_arcbufs[2 * j + 1] =
3923 				    dmu_request_arcbuf(bonus_db, chunksize / 2);
3924 			}
3925 		}
3926 
3927 		/*
3928 		 * Get a tx for the mods to both packobj and bigobj.
3929 		 */
3930 		tx = dmu_tx_create(os);
3931 
3932 		dmu_tx_hold_write(tx, packobj, packoff, packsize);
3933 		dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
3934 
3935 		txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
3936 		if (txg == 0) {
3937 			umem_free(packbuf, packsize);
3938 			umem_free(bigbuf, bigsize);
3939 			for (j = 0; j < s; j++) {
3940 				if (i != 5 ||
3941 				    chunksize < (SPA_MINBLOCKSIZE * 2)) {
3942 					dmu_return_arcbuf(bigbuf_arcbufs[j]);
3943 				} else {
3944 					dmu_return_arcbuf(
3945 					    bigbuf_arcbufs[2 * j]);
3946 					dmu_return_arcbuf(
3947 					    bigbuf_arcbufs[2 * j + 1]);
3948 				}
3949 			}
3950 			umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
3951 			dmu_buf_rele(bonus_db, FTAG);
3952 			return;
3953 		}
3954 
3955 		/*
3956 		 * 50% of the time don't read objects in the 1st iteration to
3957 		 * test dmu_assign_arcbuf() for the case when there're no
3958 		 * existing dbufs for the specified offsets.
3959 		 */
3960 		if (i != 0 || ztest_random(2) != 0) {
3961 			error = dmu_read(os, packobj, packoff,
3962 			    packsize, packbuf, DMU_READ_PREFETCH);
3963 			ASSERT0(error);
3964 			error = dmu_read(os, bigobj, bigoff, bigsize,
3965 			    bigbuf, DMU_READ_PREFETCH);
3966 			ASSERT0(error);
3967 		}
3968 		compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize,
3969 		    n, chunksize, txg);
3970 
3971 		/*
3972 		 * We've verified all the old bufwads, and made new ones.
3973 		 * Now write them out.
3974 		 */
3975 		dmu_write(os, packobj, packoff, packsize, packbuf, tx);
3976 		if (ztest_opts.zo_verbose >= 7) {
3977 			(void) printf("writing offset %llx size %llx"
3978 			    " txg %llx\n",
3979 			    (u_longlong_t)bigoff,
3980 			    (u_longlong_t)bigsize,
3981 			    (u_longlong_t)txg);
3982 		}
3983 		for (off = bigoff, j = 0; j < s; j++, off += chunksize) {
3984 			dmu_buf_t *dbt;
3985 			if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
3986 				bcopy((caddr_t)bigbuf + (off - bigoff),
3987 				    bigbuf_arcbufs[j]->b_data, chunksize);
3988 			} else {
3989 				bcopy((caddr_t)bigbuf + (off - bigoff),
3990 				    bigbuf_arcbufs[2 * j]->b_data,
3991 				    chunksize / 2);
3992 				bcopy((caddr_t)bigbuf + (off - bigoff) +
3993 				    chunksize / 2,
3994 				    bigbuf_arcbufs[2 * j + 1]->b_data,
3995 				    chunksize / 2);
3996 			}
3997 
3998 			if (i == 1) {
3999 				VERIFY(dmu_buf_hold(os, bigobj, off,
4000 				    FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0);
4001 			}
4002 			if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
4003 				dmu_assign_arcbuf(bonus_db, off,
4004 				    bigbuf_arcbufs[j], tx);
4005 			} else {
4006 				dmu_assign_arcbuf(bonus_db, off,
4007 				    bigbuf_arcbufs[2 * j], tx);
4008 				dmu_assign_arcbuf(bonus_db,
4009 				    off + chunksize / 2,
4010 				    bigbuf_arcbufs[2 * j + 1], tx);
4011 			}
4012 			if (i == 1) {
4013 				dmu_buf_rele(dbt, FTAG);
4014 			}
4015 		}
4016 		dmu_tx_commit(tx);
4017 
4018 		/*
4019 		 * Sanity check the stuff we just wrote.
4020 		 */
4021 		{
4022 			void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
4023 			void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
4024 
4025 			VERIFY(0 == dmu_read(os, packobj, packoff,
4026 			    packsize, packcheck, DMU_READ_PREFETCH));
4027 			VERIFY(0 == dmu_read(os, bigobj, bigoff,
4028 			    bigsize, bigcheck, DMU_READ_PREFETCH));
4029 
4030 			ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
4031 			ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
4032 
4033 			umem_free(packcheck, packsize);
4034 			umem_free(bigcheck, bigsize);
4035 		}
4036 		if (i == 2) {
4037 			txg_wait_open(dmu_objset_pool(os), 0);
4038 		} else if (i == 3) {
4039 			txg_wait_synced(dmu_objset_pool(os), 0);
4040 		}
4041 	}
4042 
4043 	dmu_buf_rele(bonus_db, FTAG);
4044 	umem_free(packbuf, packsize);
4045 	umem_free(bigbuf, bigsize);
4046 	umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
4047 }
4048 
4049 /* ARGSUSED */
4050 void
4051 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id)
4052 {
4053 	ztest_od_t od[1];
4054 	uint64_t offset = (1ULL << (ztest_random(20) + 43)) +
4055 	    (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
4056 
4057 	/*
4058 	 * Have multiple threads write to large offsets in an object
4059 	 * to verify that parallel writes to an object -- even to the
4060 	 * same blocks within the object -- doesn't cause any trouble.
4061 	 */
4062 	ztest_od_init(&od[0], ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0);
4063 
4064 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4065 		return;
4066 
4067 	while (ztest_random(10) != 0)
4068 		ztest_io(zd, od[0].od_object, offset);
4069 }
4070 
4071 void
4072 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id)
4073 {
4074 	ztest_od_t od[1];
4075 	uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) +
4076 	    (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
4077 	uint64_t count = ztest_random(20) + 1;
4078 	uint64_t blocksize = ztest_random_blocksize();
4079 	void *data;
4080 
4081 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0);
4082 
4083 	if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0)
4084 		return;
4085 
4086 	if (ztest_truncate(zd, od[0].od_object, offset, count * blocksize) != 0)
4087 		return;
4088 
4089 	ztest_prealloc(zd, od[0].od_object, offset, count * blocksize);
4090 
4091 	data = umem_zalloc(blocksize, UMEM_NOFAIL);
4092 
4093 	while (ztest_random(count) != 0) {
4094 		uint64_t randoff = offset + (ztest_random(count) * blocksize);
4095 		if (ztest_write(zd, od[0].od_object, randoff, blocksize,
4096 		    data) != 0)
4097 			break;
4098 		while (ztest_random(4) != 0)
4099 			ztest_io(zd, od[0].od_object, randoff);
4100 	}
4101 
4102 	umem_free(data, blocksize);
4103 }
4104 
4105 /*
4106  * Verify that zap_{create,destroy,add,remove,update} work as expected.
4107  */
4108 #define	ZTEST_ZAP_MIN_INTS	1
4109 #define	ZTEST_ZAP_MAX_INTS	4
4110 #define	ZTEST_ZAP_MAX_PROPS	1000
4111 
4112 void
4113 ztest_zap(ztest_ds_t *zd, uint64_t id)
4114 {
4115 	objset_t *os = zd->zd_os;
4116 	ztest_od_t od[1];
4117 	uint64_t object;
4118 	uint64_t txg, last_txg;
4119 	uint64_t value[ZTEST_ZAP_MAX_INTS];
4120 	uint64_t zl_ints, zl_intsize, prop;
4121 	int i, ints;
4122 	dmu_tx_t *tx;
4123 	char propname[100], txgname[100];
4124 	int error;
4125 	char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
4126 
4127 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0);
4128 
4129 	if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0)
4130 		return;
4131 
4132 	object = od[0].od_object;
4133 
4134 	/*
4135 	 * Generate a known hash collision, and verify that
4136 	 * we can lookup and remove both entries.
4137 	 */
4138 	tx = dmu_tx_create(os);
4139 	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4140 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4141 	if (txg == 0)
4142 		return;
4143 	for (i = 0; i < 2; i++) {
4144 		value[i] = i;
4145 		VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t),
4146 		    1, &value[i], tx));
4147 	}
4148 	for (i = 0; i < 2; i++) {
4149 		VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i],
4150 		    sizeof (uint64_t), 1, &value[i], tx));
4151 		VERIFY3U(0, ==,
4152 		    zap_length(os, object, hc[i], &zl_intsize, &zl_ints));
4153 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4154 		ASSERT3U(zl_ints, ==, 1);
4155 	}
4156 	for (i = 0; i < 2; i++) {
4157 		VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx));
4158 	}
4159 	dmu_tx_commit(tx);
4160 
4161 	/*
4162 	 * Generate a buch of random entries.
4163 	 */
4164 	ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS);
4165 
4166 	prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
4167 	(void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
4168 	(void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
4169 	bzero(value, sizeof (value));
4170 	last_txg = 0;
4171 
4172 	/*
4173 	 * If these zap entries already exist, validate their contents.
4174 	 */
4175 	error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
4176 	if (error == 0) {
4177 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4178 		ASSERT3U(zl_ints, ==, 1);
4179 
4180 		VERIFY(zap_lookup(os, object, txgname, zl_intsize,
4181 		    zl_ints, &last_txg) == 0);
4182 
4183 		VERIFY(zap_length(os, object, propname, &zl_intsize,
4184 		    &zl_ints) == 0);
4185 
4186 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4187 		ASSERT3U(zl_ints, ==, ints);
4188 
4189 		VERIFY(zap_lookup(os, object, propname, zl_intsize,
4190 		    zl_ints, value) == 0);
4191 
4192 		for (i = 0; i < ints; i++) {
4193 			ASSERT3U(value[i], ==, last_txg + object + i);
4194 		}
4195 	} else {
4196 		ASSERT3U(error, ==, ENOENT);
4197 	}
4198 
4199 	/*
4200 	 * Atomically update two entries in our zap object.
4201 	 * The first is named txg_%llu, and contains the txg
4202 	 * in which the property was last updated.  The second
4203 	 * is named prop_%llu, and the nth element of its value
4204 	 * should be txg + object + n.
4205 	 */
4206 	tx = dmu_tx_create(os);
4207 	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4208 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4209 	if (txg == 0)
4210 		return;
4211 
4212 	if (last_txg > txg)
4213 		fatal(0, "zap future leak: old %llu new %llu", last_txg, txg);
4214 
4215 	for (i = 0; i < ints; i++)
4216 		value[i] = txg + object + i;
4217 
4218 	VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t),
4219 	    1, &txg, tx));
4220 	VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t),
4221 	    ints, value, tx));
4222 
4223 	dmu_tx_commit(tx);
4224 
4225 	/*
4226 	 * Remove a random pair of entries.
4227 	 */
4228 	prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
4229 	(void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
4230 	(void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
4231 
4232 	error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
4233 
4234 	if (error == ENOENT)
4235 		return;
4236 
4237 	ASSERT0(error);
4238 
4239 	tx = dmu_tx_create(os);
4240 	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4241 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4242 	if (txg == 0)
4243 		return;
4244 	VERIFY3U(0, ==, zap_remove(os, object, txgname, tx));
4245 	VERIFY3U(0, ==, zap_remove(os, object, propname, tx));
4246 	dmu_tx_commit(tx);
4247 }
4248 
4249 /*
4250  * Testcase to test the upgrading of a microzap to fatzap.
4251  */
4252 void
4253 ztest_fzap(ztest_ds_t *zd, uint64_t id)
4254 {
4255 	objset_t *os = zd->zd_os;
4256 	ztest_od_t od[1];
4257 	uint64_t object, txg;
4258 
4259 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0);
4260 
4261 	if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0)
4262 		return;
4263 
4264 	object = od[0].od_object;
4265 
4266 	/*
4267 	 * Add entries to this ZAP and make sure it spills over
4268 	 * and gets upgraded to a fatzap. Also, since we are adding
4269 	 * 2050 entries we should see ptrtbl growth and leaf-block split.
4270 	 */
4271 	for (int i = 0; i < 2050; i++) {
4272 		char name[ZFS_MAX_DATASET_NAME_LEN];
4273 		uint64_t value = i;
4274 		dmu_tx_t *tx;
4275 		int error;
4276 
4277 		(void) snprintf(name, sizeof (name), "fzap-%llu-%llu",
4278 		    id, value);
4279 
4280 		tx = dmu_tx_create(os);
4281 		dmu_tx_hold_zap(tx, object, B_TRUE, name);
4282 		txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4283 		if (txg == 0)
4284 			return;
4285 		error = zap_add(os, object, name, sizeof (uint64_t), 1,
4286 		    &value, tx);
4287 		ASSERT(error == 0 || error == EEXIST);
4288 		dmu_tx_commit(tx);
4289 	}
4290 }
4291 
4292 /* ARGSUSED */
4293 void
4294 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id)
4295 {
4296 	objset_t *os = zd->zd_os;
4297 	ztest_od_t od[1];
4298 	uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc;
4299 	dmu_tx_t *tx;
4300 	int i, namelen, error;
4301 	int micro = ztest_random(2);
4302 	char name[20], string_value[20];
4303 	void *data;
4304 
4305 	ztest_od_init(&od[0], ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0);
4306 
4307 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4308 		return;
4309 
4310 	object = od[0].od_object;
4311 
4312 	/*
4313 	 * Generate a random name of the form 'xxx.....' where each
4314 	 * x is a random printable character and the dots are dots.
4315 	 * There are 94 such characters, and the name length goes from
4316 	 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
4317 	 */
4318 	namelen = ztest_random(sizeof (name) - 5) + 5 + 1;
4319 
4320 	for (i = 0; i < 3; i++)
4321 		name[i] = '!' + ztest_random('~' - '!' + 1);
4322 	for (; i < namelen - 1; i++)
4323 		name[i] = '.';
4324 	name[i] = '\0';
4325 
4326 	if ((namelen & 1) || micro) {
4327 		wsize = sizeof (txg);
4328 		wc = 1;
4329 		data = &txg;
4330 	} else {
4331 		wsize = 1;
4332 		wc = namelen;
4333 		data = string_value;
4334 	}
4335 
4336 	count = -1ULL;
4337 	VERIFY0(zap_count(os, object, &count));
4338 	ASSERT(count != -1ULL);
4339 
4340 	/*
4341 	 * Select an operation: length, lookup, add, update, remove.
4342 	 */
4343 	i = ztest_random(5);
4344 
4345 	if (i >= 2) {
4346 		tx = dmu_tx_create(os);
4347 		dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4348 		txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4349 		if (txg == 0)
4350 			return;
4351 		bcopy(name, string_value, namelen);
4352 	} else {
4353 		tx = NULL;
4354 		txg = 0;
4355 		bzero(string_value, namelen);
4356 	}
4357 
4358 	switch (i) {
4359 
4360 	case 0:
4361 		error = zap_length(os, object, name, &zl_wsize, &zl_wc);
4362 		if (error == 0) {
4363 			ASSERT3U(wsize, ==, zl_wsize);
4364 			ASSERT3U(wc, ==, zl_wc);
4365 		} else {
4366 			ASSERT3U(error, ==, ENOENT);
4367 		}
4368 		break;
4369 
4370 	case 1:
4371 		error = zap_lookup(os, object, name, wsize, wc, data);
4372 		if (error == 0) {
4373 			if (data == string_value &&
4374 			    bcmp(name, data, namelen) != 0)
4375 				fatal(0, "name '%s' != val '%s' len %d",
4376 				    name, data, namelen);
4377 		} else {
4378 			ASSERT3U(error, ==, ENOENT);
4379 		}
4380 		break;
4381 
4382 	case 2:
4383 		error = zap_add(os, object, name, wsize, wc, data, tx);
4384 		ASSERT(error == 0 || error == EEXIST);
4385 		break;
4386 
4387 	case 3:
4388 		VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0);
4389 		break;
4390 
4391 	case 4:
4392 		error = zap_remove(os, object, name, tx);
4393 		ASSERT(error == 0 || error == ENOENT);
4394 		break;
4395 	}
4396 
4397 	if (tx != NULL)
4398 		dmu_tx_commit(tx);
4399 }
4400 
4401 /*
4402  * Commit callback data.
4403  */
4404 typedef struct ztest_cb_data {
4405 	list_node_t		zcd_node;
4406 	uint64_t		zcd_txg;
4407 	int			zcd_expected_err;
4408 	boolean_t		zcd_added;
4409 	boolean_t		zcd_called;
4410 	spa_t			*zcd_spa;
4411 } ztest_cb_data_t;
4412 
4413 /* This is the actual commit callback function */
4414 static void
4415 ztest_commit_callback(void *arg, int error)
4416 {
4417 	ztest_cb_data_t *data = arg;
4418 	uint64_t synced_txg;
4419 
4420 	VERIFY(data != NULL);
4421 	VERIFY3S(data->zcd_expected_err, ==, error);
4422 	VERIFY(!data->zcd_called);
4423 
4424 	synced_txg = spa_last_synced_txg(data->zcd_spa);
4425 	if (data->zcd_txg > synced_txg)
4426 		fatal(0, "commit callback of txg %" PRIu64 " called prematurely"
4427 		    ", last synced txg = %" PRIu64 "\n", data->zcd_txg,
4428 		    synced_txg);
4429 
4430 	data->zcd_called = B_TRUE;
4431 
4432 	if (error == ECANCELED) {
4433 		ASSERT0(data->zcd_txg);
4434 		ASSERT(!data->zcd_added);
4435 
4436 		/*
4437 		 * The private callback data should be destroyed here, but
4438 		 * since we are going to check the zcd_called field after
4439 		 * dmu_tx_abort(), we will destroy it there.
4440 		 */
4441 		return;
4442 	}
4443 
4444 	/* Was this callback added to the global callback list? */
4445 	if (!data->zcd_added)
4446 		goto out;
4447 
4448 	ASSERT3U(data->zcd_txg, !=, 0);
4449 
4450 	/* Remove our callback from the list */
4451 	(void) mutex_lock(&zcl.zcl_callbacks_lock);
4452 	list_remove(&zcl.zcl_callbacks, data);
4453 	(void) mutex_unlock(&zcl.zcl_callbacks_lock);
4454 
4455 out:
4456 	umem_free(data, sizeof (ztest_cb_data_t));
4457 }
4458 
4459 /* Allocate and initialize callback data structure */
4460 static ztest_cb_data_t *
4461 ztest_create_cb_data(objset_t *os, uint64_t txg)
4462 {
4463 	ztest_cb_data_t *cb_data;
4464 
4465 	cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL);
4466 
4467 	cb_data->zcd_txg = txg;
4468 	cb_data->zcd_spa = dmu_objset_spa(os);
4469 
4470 	return (cb_data);
4471 }
4472 
4473 /*
4474  * If a number of txgs equal to this threshold have been created after a commit
4475  * callback has been registered but not called, then we assume there is an
4476  * implementation bug.
4477  */
4478 #define	ZTEST_COMMIT_CALLBACK_THRESH	(TXG_CONCURRENT_STATES + 2)
4479 
4480 /*
4481  * Commit callback test.
4482  */
4483 void
4484 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id)
4485 {
4486 	objset_t *os = zd->zd_os;
4487 	ztest_od_t od[1];
4488 	dmu_tx_t *tx;
4489 	ztest_cb_data_t *cb_data[3], *tmp_cb;
4490 	uint64_t old_txg, txg;
4491 	int i, error;
4492 
4493 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0);
4494 
4495 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4496 		return;
4497 
4498 	tx = dmu_tx_create(os);
4499 
4500 	cb_data[0] = ztest_create_cb_data(os, 0);
4501 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]);
4502 
4503 	dmu_tx_hold_write(tx, od[0].od_object, 0, sizeof (uint64_t));
4504 
4505 	/* Every once in a while, abort the transaction on purpose */
4506 	if (ztest_random(100) == 0)
4507 		error = -1;
4508 
4509 	if (!error)
4510 		error = dmu_tx_assign(tx, TXG_NOWAIT);
4511 
4512 	txg = error ? 0 : dmu_tx_get_txg(tx);
4513 
4514 	cb_data[0]->zcd_txg = txg;
4515 	cb_data[1] = ztest_create_cb_data(os, txg);
4516 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]);
4517 
4518 	if (error) {
4519 		/*
4520 		 * It's not a strict requirement to call the registered
4521 		 * callbacks from inside dmu_tx_abort(), but that's what
4522 		 * it's supposed to happen in the current implementation
4523 		 * so we will check for that.
4524 		 */
4525 		for (i = 0; i < 2; i++) {
4526 			cb_data[i]->zcd_expected_err = ECANCELED;
4527 			VERIFY(!cb_data[i]->zcd_called);
4528 		}
4529 
4530 		dmu_tx_abort(tx);
4531 
4532 		for (i = 0; i < 2; i++) {
4533 			VERIFY(cb_data[i]->zcd_called);
4534 			umem_free(cb_data[i], sizeof (ztest_cb_data_t));
4535 		}
4536 
4537 		return;
4538 	}
4539 
4540 	cb_data[2] = ztest_create_cb_data(os, txg);
4541 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]);
4542 
4543 	/*
4544 	 * Read existing data to make sure there isn't a future leak.
4545 	 */
4546 	VERIFY(0 == dmu_read(os, od[0].od_object, 0, sizeof (uint64_t),
4547 	    &old_txg, DMU_READ_PREFETCH));
4548 
4549 	if (old_txg > txg)
4550 		fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64,
4551 		    old_txg, txg);
4552 
4553 	dmu_write(os, od[0].od_object, 0, sizeof (uint64_t), &txg, tx);
4554 
4555 	(void) mutex_lock(&zcl.zcl_callbacks_lock);
4556 
4557 	/*
4558 	 * Since commit callbacks don't have any ordering requirement and since
4559 	 * it is theoretically possible for a commit callback to be called
4560 	 * after an arbitrary amount of time has elapsed since its txg has been
4561 	 * synced, it is difficult to reliably determine whether a commit
4562 	 * callback hasn't been called due to high load or due to a flawed
4563 	 * implementation.
4564 	 *
4565 	 * In practice, we will assume that if after a certain number of txgs a
4566 	 * commit callback hasn't been called, then most likely there's an
4567 	 * implementation bug..
4568 	 */
4569 	tmp_cb = list_head(&zcl.zcl_callbacks);
4570 	if (tmp_cb != NULL &&
4571 	    (txg - ZTEST_COMMIT_CALLBACK_THRESH) > tmp_cb->zcd_txg) {
4572 		fatal(0, "Commit callback threshold exceeded, oldest txg: %"
4573 		    PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg);
4574 	}
4575 
4576 	/*
4577 	 * Let's find the place to insert our callbacks.
4578 	 *
4579 	 * Even though the list is ordered by txg, it is possible for the
4580 	 * insertion point to not be the end because our txg may already be
4581 	 * quiescing at this point and other callbacks in the open txg
4582 	 * (from other objsets) may have sneaked in.
4583 	 */
4584 	tmp_cb = list_tail(&zcl.zcl_callbacks);
4585 	while (tmp_cb != NULL && tmp_cb->zcd_txg > txg)
4586 		tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb);
4587 
4588 	/* Add the 3 callbacks to the list */
4589 	for (i = 0; i < 3; i++) {
4590 		if (tmp_cb == NULL)
4591 			list_insert_head(&zcl.zcl_callbacks, cb_data[i]);
4592 		else
4593 			list_insert_after(&zcl.zcl_callbacks, tmp_cb,
4594 			    cb_data[i]);
4595 
4596 		cb_data[i]->zcd_added = B_TRUE;
4597 		VERIFY(!cb_data[i]->zcd_called);
4598 
4599 		tmp_cb = cb_data[i];
4600 	}
4601 
4602 	(void) mutex_unlock(&zcl.zcl_callbacks_lock);
4603 
4604 	dmu_tx_commit(tx);
4605 }
4606 
4607 /* ARGSUSED */
4608 void
4609 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id)
4610 {
4611 	zfs_prop_t proplist[] = {
4612 		ZFS_PROP_CHECKSUM,
4613 		ZFS_PROP_COMPRESSION,
4614 		ZFS_PROP_COPIES,
4615 		ZFS_PROP_DEDUP
4616 	};
4617 
4618 	(void) rw_rdlock(&ztest_name_lock);
4619 
4620 	for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++)
4621 		(void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p],
4622 		    ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2));
4623 
4624 	(void) rw_unlock(&ztest_name_lock);
4625 }
4626 
4627 /* ARGSUSED */
4628 void
4629 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id)
4630 {
4631 	nvlist_t *props = NULL;
4632 
4633 	(void) rw_rdlock(&ztest_name_lock);
4634 
4635 	(void) ztest_spa_prop_set_uint64(ZPOOL_PROP_DEDUPDITTO,
4636 	    ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN));
4637 
4638 	VERIFY0(spa_prop_get(ztest_spa, &props));
4639 
4640 	if (ztest_opts.zo_verbose >= 6)
4641 		dump_nvlist(props, 4);
4642 
4643 	nvlist_free(props);
4644 
4645 	(void) rw_unlock(&ztest_name_lock);
4646 }
4647 
4648 static int
4649 user_release_one(const char *snapname, const char *holdname)
4650 {
4651 	nvlist_t *snaps, *holds;
4652 	int error;
4653 
4654 	snaps = fnvlist_alloc();
4655 	holds = fnvlist_alloc();
4656 	fnvlist_add_boolean(holds, holdname);
4657 	fnvlist_add_nvlist(snaps, snapname, holds);
4658 	fnvlist_free(holds);
4659 	error = dsl_dataset_user_release(snaps, NULL);
4660 	fnvlist_free(snaps);
4661 	return (error);
4662 }
4663 
4664 /*
4665  * Test snapshot hold/release and deferred destroy.
4666  */
4667 void
4668 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id)
4669 {
4670 	int error;
4671 	objset_t *os = zd->zd_os;
4672 	objset_t *origin;
4673 	char snapname[100];
4674 	char fullname[100];
4675 	char clonename[100];
4676 	char tag[100];
4677 	char osname[ZFS_MAX_DATASET_NAME_LEN];
4678 	nvlist_t *holds;
4679 
4680 	(void) rw_rdlock(&ztest_name_lock);
4681 
4682 	dmu_objset_name(os, osname);
4683 
4684 	(void) snprintf(snapname, sizeof (snapname), "sh1_%llu", id);
4685 	(void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname);
4686 	(void) snprintf(clonename, sizeof (clonename),
4687 	    "%s/ch1_%llu", osname, id);
4688 	(void) snprintf(tag, sizeof (tag), "tag_%llu", id);
4689 
4690 	/*
4691 	 * Clean up from any previous run.
4692 	 */
4693 	error = dsl_destroy_head(clonename);
4694 	if (error != ENOENT)
4695 		ASSERT0(error);
4696 	error = user_release_one(fullname, tag);
4697 	if (error != ESRCH && error != ENOENT)
4698 		ASSERT0(error);
4699 	error = dsl_destroy_snapshot(fullname, B_FALSE);
4700 	if (error != ENOENT)
4701 		ASSERT0(error);
4702 
4703 	/*
4704 	 * Create snapshot, clone it, mark snap for deferred destroy,
4705 	 * destroy clone, verify snap was also destroyed.
4706 	 */
4707 	error = dmu_objset_snapshot_one(osname, snapname);
4708 	if (error) {
4709 		if (error == ENOSPC) {
4710 			ztest_record_enospc("dmu_objset_snapshot");
4711 			goto out;
4712 		}
4713 		fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
4714 	}
4715 
4716 	error = dmu_objset_clone(clonename, fullname);
4717 	if (error) {
4718 		if (error == ENOSPC) {
4719 			ztest_record_enospc("dmu_objset_clone");
4720 			goto out;
4721 		}
4722 		fatal(0, "dmu_objset_clone(%s) = %d", clonename, error);
4723 	}
4724 
4725 	error = dsl_destroy_snapshot(fullname, B_TRUE);
4726 	if (error) {
4727 		fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
4728 		    fullname, error);
4729 	}
4730 
4731 	error = dsl_destroy_head(clonename);
4732 	if (error)
4733 		fatal(0, "dsl_destroy_head(%s) = %d", clonename, error);
4734 
4735 	error = dmu_objset_hold(fullname, FTAG, &origin);
4736 	if (error != ENOENT)
4737 		fatal(0, "dmu_objset_hold(%s) = %d", fullname, error);
4738 
4739 	/*
4740 	 * Create snapshot, add temporary hold, verify that we can't
4741 	 * destroy a held snapshot, mark for deferred destroy,
4742 	 * release hold, verify snapshot was destroyed.
4743 	 */
4744 	error = dmu_objset_snapshot_one(osname, snapname);
4745 	if (error) {
4746 		if (error == ENOSPC) {
4747 			ztest_record_enospc("dmu_objset_snapshot");
4748 			goto out;
4749 		}
4750 		fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
4751 	}
4752 
4753 	holds = fnvlist_alloc();
4754 	fnvlist_add_string(holds, fullname, tag);
4755 	error = dsl_dataset_user_hold(holds, 0, NULL);
4756 	fnvlist_free(holds);
4757 
4758 	if (error == ENOSPC) {
4759 		ztest_record_enospc("dsl_dataset_user_hold");
4760 		goto out;
4761 	} else if (error) {
4762 		fatal(0, "dsl_dataset_user_hold(%s, %s) = %u",
4763 		    fullname, tag, error);
4764 	}
4765 
4766 	error = dsl_destroy_snapshot(fullname, B_FALSE);
4767 	if (error != EBUSY) {
4768 		fatal(0, "dsl_destroy_snapshot(%s, B_FALSE) = %d",
4769 		    fullname, error);
4770 	}
4771 
4772 	error = dsl_destroy_snapshot(fullname, B_TRUE);
4773 	if (error) {
4774 		fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
4775 		    fullname, error);
4776 	}
4777 
4778 	error = user_release_one(fullname, tag);
4779 	if (error)
4780 		fatal(0, "user_release_one(%s, %s) = %d", fullname, tag, error);
4781 
4782 	VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT);
4783 
4784 out:
4785 	(void) rw_unlock(&ztest_name_lock);
4786 }
4787 
4788 /*
4789  * Inject random faults into the on-disk data.
4790  */
4791 /* ARGSUSED */
4792 void
4793 ztest_fault_inject(ztest_ds_t *zd, uint64_t id)
4794 {
4795 	ztest_shared_t *zs = ztest_shared;
4796 	spa_t *spa = ztest_spa;
4797 	int fd;
4798 	uint64_t offset;
4799 	uint64_t leaves;
4800 	uint64_t bad = 0x1990c0ffeedecade;
4801 	uint64_t top, leaf;
4802 	char path0[MAXPATHLEN];
4803 	char pathrand[MAXPATHLEN];
4804 	size_t fsize;
4805 	int bshift = SPA_MAXBLOCKSHIFT + 2;
4806 	int iters = 1000;
4807 	int maxfaults;
4808 	int mirror_save;
4809 	vdev_t *vd0 = NULL;
4810 	uint64_t guid0 = 0;
4811 	boolean_t islog = B_FALSE;
4812 
4813 	VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
4814 	maxfaults = MAXFAULTS();
4815 	leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz;
4816 	mirror_save = zs->zs_mirrors;
4817 	VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
4818 
4819 	ASSERT(leaves >= 1);
4820 
4821 	/*
4822 	 * Grab the name lock as reader. There are some operations
4823 	 * which don't like to have their vdevs changed while
4824 	 * they are in progress (i.e. spa_change_guid). Those
4825 	 * operations will have grabbed the name lock as writer.
4826 	 */
4827 	(void) rw_rdlock(&ztest_name_lock);
4828 
4829 	/*
4830 	 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
4831 	 */
4832 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
4833 
4834 	if (ztest_random(2) == 0) {
4835 		/*
4836 		 * Inject errors on a normal data device or slog device.
4837 		 */
4838 		top = ztest_random_vdev_top(spa, B_TRUE);
4839 		leaf = ztest_random(leaves) + zs->zs_splits;
4840 
4841 		/*
4842 		 * Generate paths to the first leaf in this top-level vdev,
4843 		 * and to the random leaf we selected.  We'll induce transient
4844 		 * write failures and random online/offline activity on leaf 0,
4845 		 * and we'll write random garbage to the randomly chosen leaf.
4846 		 */
4847 		(void) snprintf(path0, sizeof (path0), ztest_dev_template,
4848 		    ztest_opts.zo_dir, ztest_opts.zo_pool,
4849 		    top * leaves + zs->zs_splits);
4850 		(void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template,
4851 		    ztest_opts.zo_dir, ztest_opts.zo_pool,
4852 		    top * leaves + leaf);
4853 
4854 		vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0);
4855 		if (vd0 != NULL && vd0->vdev_top->vdev_islog)
4856 			islog = B_TRUE;
4857 
4858 		/*
4859 		 * If the top-level vdev needs to be resilvered
4860 		 * then we only allow faults on the device that is
4861 		 * resilvering.
4862 		 */
4863 		if (vd0 != NULL && maxfaults != 1 &&
4864 		    (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) ||
4865 		    vd0->vdev_resilver_txg != 0)) {
4866 			/*
4867 			 * Make vd0 explicitly claim to be unreadable,
4868 			 * or unwriteable, or reach behind its back
4869 			 * and close the underlying fd.  We can do this if
4870 			 * maxfaults == 0 because we'll fail and reexecute,
4871 			 * and we can do it if maxfaults >= 2 because we'll
4872 			 * have enough redundancy.  If maxfaults == 1, the
4873 			 * combination of this with injection of random data
4874 			 * corruption below exceeds the pool's fault tolerance.
4875 			 */
4876 			vdev_file_t *vf = vd0->vdev_tsd;
4877 
4878 			if (vf != NULL && ztest_random(3) == 0) {
4879 				(void) close(vf->vf_vnode->v_fd);
4880 				vf->vf_vnode->v_fd = -1;
4881 			} else if (ztest_random(2) == 0) {
4882 				vd0->vdev_cant_read = B_TRUE;
4883 			} else {
4884 				vd0->vdev_cant_write = B_TRUE;
4885 			}
4886 			guid0 = vd0->vdev_guid;
4887 		}
4888 	} else {
4889 		/*
4890 		 * Inject errors on an l2cache device.
4891 		 */
4892 		spa_aux_vdev_t *sav = &spa->spa_l2cache;
4893 
4894 		if (sav->sav_count == 0) {
4895 			spa_config_exit(spa, SCL_STATE, FTAG);
4896 			(void) rw_unlock(&ztest_name_lock);
4897 			return;
4898 		}
4899 		vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)];
4900 		guid0 = vd0->vdev_guid;
4901 		(void) strcpy(path0, vd0->vdev_path);
4902 		(void) strcpy(pathrand, vd0->vdev_path);
4903 
4904 		leaf = 0;
4905 		leaves = 1;
4906 		maxfaults = INT_MAX;	/* no limit on cache devices */
4907 	}
4908 
4909 	spa_config_exit(spa, SCL_STATE, FTAG);
4910 	(void) rw_unlock(&ztest_name_lock);
4911 
4912 	/*
4913 	 * If we can tolerate two or more faults, or we're dealing
4914 	 * with a slog, randomly online/offline vd0.
4915 	 */
4916 	if ((maxfaults >= 2 || islog) && guid0 != 0) {
4917 		if (ztest_random(10) < 6) {
4918 			int flags = (ztest_random(2) == 0 ?
4919 			    ZFS_OFFLINE_TEMPORARY : 0);
4920 
4921 			/*
4922 			 * We have to grab the zs_name_lock as writer to
4923 			 * prevent a race between offlining a slog and
4924 			 * destroying a dataset. Offlining the slog will
4925 			 * grab a reference on the dataset which may cause
4926 			 * dmu_objset_destroy() to fail with EBUSY thus
4927 			 * leaving the dataset in an inconsistent state.
4928 			 */
4929 			if (islog)
4930 				(void) rw_wrlock(&ztest_name_lock);
4931 
4932 			VERIFY(vdev_offline(spa, guid0, flags) != EBUSY);
4933 
4934 			if (islog)
4935 				(void) rw_unlock(&ztest_name_lock);
4936 		} else {
4937 			/*
4938 			 * Ideally we would like to be able to randomly
4939 			 * call vdev_[on|off]line without holding locks
4940 			 * to force unpredictable failures but the side
4941 			 * effects of vdev_[on|off]line prevent us from
4942 			 * doing so. We grab the ztest_vdev_lock here to
4943 			 * prevent a race between injection testing and
4944 			 * aux_vdev removal.
4945 			 */
4946 			VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
4947 			(void) vdev_online(spa, guid0, 0, NULL);
4948 			VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
4949 		}
4950 	}
4951 
4952 	if (maxfaults == 0)
4953 		return;
4954 
4955 	/*
4956 	 * We have at least single-fault tolerance, so inject data corruption.
4957 	 */
4958 	fd = open(pathrand, O_RDWR);
4959 
4960 	if (fd == -1)	/* we hit a gap in the device namespace */
4961 		return;
4962 
4963 	fsize = lseek(fd, 0, SEEK_END);
4964 
4965 	while (--iters != 0) {
4966 		/*
4967 		 * The offset must be chosen carefully to ensure that
4968 		 * we do not inject a given logical block with errors
4969 		 * on two different leaf devices, because ZFS can not
4970 		 * tolerate that (if maxfaults==1).
4971 		 *
4972 		 * We divide each leaf into chunks of size
4973 		 * (# leaves * SPA_MAXBLOCKSIZE * 4).  Within each chunk
4974 		 * there is a series of ranges to which we can inject errors.
4975 		 * Each range can accept errors on only a single leaf vdev.
4976 		 * The error injection ranges are separated by ranges
4977 		 * which we will not inject errors on any device (DMZs).
4978 		 * Each DMZ must be large enough such that a single block
4979 		 * can not straddle it, so that a single block can not be
4980 		 * a target in two different injection ranges (on different
4981 		 * leaf vdevs).
4982 		 *
4983 		 * For example, with 3 leaves, each chunk looks like:
4984 		 *    0 to  32M: injection range for leaf 0
4985 		 *  32M to  64M: DMZ - no injection allowed
4986 		 *  64M to  96M: injection range for leaf 1
4987 		 *  96M to 128M: DMZ - no injection allowed
4988 		 * 128M to 160M: injection range for leaf 2
4989 		 * 160M to 192M: DMZ - no injection allowed
4990 		 */
4991 		offset = ztest_random(fsize / (leaves << bshift)) *
4992 		    (leaves << bshift) + (leaf << bshift) +
4993 		    (ztest_random(1ULL << (bshift - 1)) & -8ULL);
4994 
4995 		/*
4996 		 * Only allow damage to the labels at one end of the vdev.
4997 		 *
4998 		 * If all labels are damaged, the device will be totally
4999 		 * inaccessible, which will result in loss of data,
5000 		 * because we also damage (parts of) the other side of
5001 		 * the mirror/raidz.
5002 		 *
5003 		 * Additionally, we will always have both an even and an
5004 		 * odd label, so that we can handle crashes in the
5005 		 * middle of vdev_config_sync().
5006 		 */
5007 		if ((leaf & 1) == 0 && offset < VDEV_LABEL_START_SIZE)
5008 			continue;
5009 
5010 		/*
5011 		 * The two end labels are stored at the "end" of the disk, but
5012 		 * the end of the disk (vdev_psize) is aligned to
5013 		 * sizeof (vdev_label_t).
5014 		 */
5015 		uint64_t psize = P2ALIGN(fsize, sizeof (vdev_label_t));
5016 		if ((leaf & 1) == 1 &&
5017 		    offset + sizeof (bad) > psize - VDEV_LABEL_END_SIZE)
5018 			continue;
5019 
5020 		VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
5021 		if (mirror_save != zs->zs_mirrors) {
5022 			VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
5023 			(void) close(fd);
5024 			return;
5025 		}
5026 
5027 		if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad))
5028 			fatal(1, "can't inject bad word at 0x%llx in %s",
5029 			    offset, pathrand);
5030 
5031 		VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
5032 
5033 		if (ztest_opts.zo_verbose >= 7)
5034 			(void) printf("injected bad word into %s,"
5035 			    " offset 0x%llx\n", pathrand, (u_longlong_t)offset);
5036 	}
5037 
5038 	(void) close(fd);
5039 }
5040 
5041 /*
5042  * Verify that DDT repair works as expected.
5043  */
5044 void
5045 ztest_ddt_repair(ztest_ds_t *zd, uint64_t id)
5046 {
5047 	ztest_shared_t *zs = ztest_shared;
5048 	spa_t *spa = ztest_spa;
5049 	objset_t *os = zd->zd_os;
5050 	ztest_od_t od[1];
5051 	uint64_t object, blocksize, txg, pattern, psize;
5052 	enum zio_checksum checksum = spa_dedup_checksum(spa);
5053 	dmu_buf_t *db;
5054 	dmu_tx_t *tx;
5055 	abd_t *abd;
5056 	blkptr_t blk;
5057 	int copies = 2 * ZIO_DEDUPDITTO_MIN;
5058 
5059 	blocksize = ztest_random_blocksize();
5060 	blocksize = MIN(blocksize, 2048);	/* because we write so many */
5061 
5062 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0);
5063 
5064 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
5065 		return;
5066 
5067 	/*
5068 	 * Take the name lock as writer to prevent anyone else from changing
5069 	 * the pool and dataset properies we need to maintain during this test.
5070 	 */
5071 	(void) rw_wrlock(&ztest_name_lock);
5072 
5073 	if (ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_DEDUP, checksum,
5074 	    B_FALSE) != 0 ||
5075 	    ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COPIES, 1,
5076 	    B_FALSE) != 0) {
5077 		(void) rw_unlock(&ztest_name_lock);
5078 		return;
5079 	}
5080 
5081 	dmu_objset_stats_t dds;
5082 	dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
5083 	dmu_objset_fast_stat(os, &dds);
5084 	dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
5085 
5086 	object = od[0].od_object;
5087 	blocksize = od[0].od_blocksize;
5088 	pattern = zs->zs_guid ^ dds.dds_guid;
5089 
5090 	ASSERT(object != 0);
5091 
5092 	tx = dmu_tx_create(os);
5093 	dmu_tx_hold_write(tx, object, 0, copies * blocksize);
5094 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
5095 	if (txg == 0) {
5096 		(void) rw_unlock(&ztest_name_lock);
5097 		return;
5098 	}
5099 
5100 	/*
5101 	 * Write all the copies of our block.
5102 	 */
5103 	for (int i = 0; i < copies; i++) {
5104 		uint64_t offset = i * blocksize;
5105 		int error = dmu_buf_hold(os, object, offset, FTAG, &db,
5106 		    DMU_READ_NO_PREFETCH);
5107 		if (error != 0) {
5108 			fatal(B_FALSE, "dmu_buf_hold(%p, %llu, %llu) = %u",
5109 			    os, (long long)object, (long long) offset, error);
5110 		}
5111 		ASSERT(db->db_offset == offset);
5112 		ASSERT(db->db_size == blocksize);
5113 		ASSERT(ztest_pattern_match(db->db_data, db->db_size, pattern) ||
5114 		    ztest_pattern_match(db->db_data, db->db_size, 0ULL));
5115 		dmu_buf_will_fill(db, tx);
5116 		ztest_pattern_set(db->db_data, db->db_size, pattern);
5117 		dmu_buf_rele(db, FTAG);
5118 	}
5119 
5120 	dmu_tx_commit(tx);
5121 	txg_wait_synced(spa_get_dsl(spa), txg);
5122 
5123 	/*
5124 	 * Find out what block we got.
5125 	 */
5126 	VERIFY0(dmu_buf_hold(os, object, 0, FTAG, &db,
5127 	    DMU_READ_NO_PREFETCH));
5128 	blk = *((dmu_buf_impl_t *)db)->db_blkptr;
5129 	dmu_buf_rele(db, FTAG);
5130 
5131 	/*
5132 	 * Damage the block.  Dedup-ditto will save us when we read it later.
5133 	 */
5134 	psize = BP_GET_PSIZE(&blk);
5135 	abd = abd_alloc_linear(psize, B_TRUE);
5136 	ztest_pattern_set(abd_to_buf(abd), psize, ~pattern);
5137 
5138 	(void) zio_wait(zio_rewrite(NULL, spa, 0, &blk,
5139 	    abd, psize, NULL, NULL, ZIO_PRIORITY_SYNC_WRITE,
5140 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_INDUCE_DAMAGE, NULL));
5141 
5142 	abd_free(abd);
5143 
5144 	(void) rw_unlock(&ztest_name_lock);
5145 }
5146 
5147 /*
5148  * Scrub the pool.
5149  */
5150 /* ARGSUSED */
5151 void
5152 ztest_scrub(ztest_ds_t *zd, uint64_t id)
5153 {
5154 	spa_t *spa = ztest_spa;
5155 
5156 	(void) spa_scan(spa, POOL_SCAN_SCRUB);
5157 	(void) poll(NULL, 0, 100); /* wait a moment, then force a restart */
5158 	(void) spa_scan(spa, POOL_SCAN_SCRUB);
5159 }
5160 
5161 /*
5162  * Change the guid for the pool.
5163  */
5164 /* ARGSUSED */
5165 void
5166 ztest_reguid(ztest_ds_t *zd, uint64_t id)
5167 {
5168 	spa_t *spa = ztest_spa;
5169 	uint64_t orig, load;
5170 	int error;
5171 
5172 	orig = spa_guid(spa);
5173 	load = spa_load_guid(spa);
5174 
5175 	(void) rw_wrlock(&ztest_name_lock);
5176 	error = spa_change_guid(spa);
5177 	(void) rw_unlock(&ztest_name_lock);
5178 
5179 	if (error != 0)
5180 		return;
5181 
5182 	if (ztest_opts.zo_verbose >= 4) {
5183 		(void) printf("Changed guid old %llu -> %llu\n",
5184 		    (u_longlong_t)orig, (u_longlong_t)spa_guid(spa));
5185 	}
5186 
5187 	VERIFY3U(orig, !=, spa_guid(spa));
5188 	VERIFY3U(load, ==, spa_load_guid(spa));
5189 }
5190 
5191 /*
5192  * Rename the pool to a different name and then rename it back.
5193  */
5194 /* ARGSUSED */
5195 void
5196 ztest_spa_rename(ztest_ds_t *zd, uint64_t id)
5197 {
5198 	char *oldname, *newname;
5199 	spa_t *spa;
5200 
5201 	(void) rw_wrlock(&ztest_name_lock);
5202 
5203 	oldname = ztest_opts.zo_pool;
5204 	newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL);
5205 	(void) strcpy(newname, oldname);
5206 	(void) strcat(newname, "_tmp");
5207 
5208 	/*
5209 	 * Do the rename
5210 	 */
5211 	VERIFY3U(0, ==, spa_rename(oldname, newname));
5212 
5213 	/*
5214 	 * Try to open it under the old name, which shouldn't exist
5215 	 */
5216 	VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
5217 
5218 	/*
5219 	 * Open it under the new name and make sure it's still the same spa_t.
5220 	 */
5221 	VERIFY3U(0, ==, spa_open(newname, &spa, FTAG));
5222 
5223 	ASSERT(spa == ztest_spa);
5224 	spa_close(spa, FTAG);
5225 
5226 	/*
5227 	 * Rename it back to the original
5228 	 */
5229 	VERIFY3U(0, ==, spa_rename(newname, oldname));
5230 
5231 	/*
5232 	 * Make sure it can still be opened
5233 	 */
5234 	VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG));
5235 
5236 	ASSERT(spa == ztest_spa);
5237 	spa_close(spa, FTAG);
5238 
5239 	umem_free(newname, strlen(newname) + 1);
5240 
5241 	(void) rw_unlock(&ztest_name_lock);
5242 }
5243 
5244 /*
5245  * Verify pool integrity by running zdb.
5246  */
5247 static void
5248 ztest_run_zdb(char *pool)
5249 {
5250 	int status;
5251 	char zdb[MAXPATHLEN + MAXNAMELEN + 20];
5252 	char zbuf[1024];
5253 	char *bin;
5254 	char *ztest;
5255 	char *isa;
5256 	int isalen;
5257 	FILE *fp;
5258 
5259 	(void) realpath(getexecname(), zdb);
5260 
5261 	/* zdb lives in /usr/sbin, while ztest lives in /usr/bin */
5262 	bin = strstr(zdb, "/usr/bin/");
5263 	ztest = strstr(bin, "/ztest");
5264 	isa = bin + 8;
5265 	isalen = ztest - isa;
5266 	isa = strdup(isa);
5267 	/* LINTED */
5268 	(void) sprintf(bin,
5269 	    "/usr/sbin%.*s/zdb -bcc%s%s -G -d -U %s %s",
5270 	    isalen,
5271 	    isa,
5272 	    ztest_opts.zo_verbose >= 3 ? "s" : "",
5273 	    ztest_opts.zo_verbose >= 4 ? "v" : "",
5274 	    spa_config_path,
5275 	    pool);
5276 	free(isa);
5277 
5278 	if (ztest_opts.zo_verbose >= 5)
5279 		(void) printf("Executing %s\n", strstr(zdb, "zdb "));
5280 
5281 	fp = popen(zdb, "r");
5282 
5283 	while (fgets(zbuf, sizeof (zbuf), fp) != NULL)
5284 		if (ztest_opts.zo_verbose >= 3)
5285 			(void) printf("%s", zbuf);
5286 
5287 	status = pclose(fp);
5288 
5289 	if (status == 0)
5290 		return;
5291 
5292 	ztest_dump_core = 0;
5293 	if (WIFEXITED(status))
5294 		fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status));
5295 	else
5296 		fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status));
5297 }
5298 
5299 static void
5300 ztest_walk_pool_directory(char *header)
5301 {
5302 	spa_t *spa = NULL;
5303 
5304 	if (ztest_opts.zo_verbose >= 6)
5305 		(void) printf("%s\n", header);
5306 
5307 	mutex_enter(&spa_namespace_lock);
5308 	while ((spa = spa_next(spa)) != NULL)
5309 		if (ztest_opts.zo_verbose >= 6)
5310 			(void) printf("\t%s\n", spa_name(spa));
5311 	mutex_exit(&spa_namespace_lock);
5312 }
5313 
5314 static void
5315 ztest_spa_import_export(char *oldname, char *newname)
5316 {
5317 	nvlist_t *config, *newconfig;
5318 	uint64_t pool_guid;
5319 	spa_t *spa;
5320 	int error;
5321 
5322 	if (ztest_opts.zo_verbose >= 4) {
5323 		(void) printf("import/export: old = %s, new = %s\n",
5324 		    oldname, newname);
5325 	}
5326 
5327 	/*
5328 	 * Clean up from previous runs.
5329 	 */
5330 	(void) spa_destroy(newname);
5331 
5332 	/*
5333 	 * Get the pool's configuration and guid.
5334 	 */
5335 	VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG));
5336 
5337 	/*
5338 	 * Kick off a scrub to tickle scrub/export races.
5339 	 */
5340 	if (ztest_random(2) == 0)
5341 		(void) spa_scan(spa, POOL_SCAN_SCRUB);
5342 
5343 	pool_guid = spa_guid(spa);
5344 	spa_close(spa, FTAG);
5345 
5346 	ztest_walk_pool_directory("pools before export");
5347 
5348 	/*
5349 	 * Export it.
5350 	 */
5351 	VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE));
5352 
5353 	ztest_walk_pool_directory("pools after export");
5354 
5355 	/*
5356 	 * Try to import it.
5357 	 */
5358 	newconfig = spa_tryimport(config);
5359 	ASSERT(newconfig != NULL);
5360 	nvlist_free(newconfig);
5361 
5362 	/*
5363 	 * Import it under the new name.
5364 	 */
5365 	error = spa_import(newname, config, NULL, 0);
5366 	if (error != 0) {
5367 		dump_nvlist(config, 0);
5368 		fatal(B_FALSE, "couldn't import pool %s as %s: error %u",
5369 		    oldname, newname, error);
5370 	}
5371 
5372 	ztest_walk_pool_directory("pools after import");
5373 
5374 	/*
5375 	 * Try to import it again -- should fail with EEXIST.
5376 	 */
5377 	VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0));
5378 
5379 	/*
5380 	 * Try to import it under a different name -- should fail with EEXIST.
5381 	 */
5382 	VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0));
5383 
5384 	/*
5385 	 * Verify that the pool is no longer visible under the old name.
5386 	 */
5387 	VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
5388 
5389 	/*
5390 	 * Verify that we can open and close the pool using the new name.
5391 	 */
5392 	VERIFY3U(0, ==, spa_open(newname, &spa, FTAG));
5393 	ASSERT(pool_guid == spa_guid(spa));
5394 	spa_close(spa, FTAG);
5395 
5396 	nvlist_free(config);
5397 }
5398 
5399 static void
5400 ztest_resume(spa_t *spa)
5401 {
5402 	if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6)
5403 		(void) printf("resuming from suspended state\n");
5404 	spa_vdev_state_enter(spa, SCL_NONE);
5405 	vdev_clear(spa, NULL);
5406 	(void) spa_vdev_state_exit(spa, NULL, 0);
5407 	(void) zio_resume(spa);
5408 }
5409 
5410 static void *
5411 ztest_resume_thread(void *arg)
5412 {
5413 	spa_t *spa = arg;
5414 
5415 	while (!ztest_exiting) {
5416 		if (spa_suspended(spa))
5417 			ztest_resume(spa);
5418 		(void) poll(NULL, 0, 100);
5419 
5420 		/*
5421 		 * Periodically change the zfs_compressed_arc_enabled setting.
5422 		 */
5423 		if (ztest_random(10) == 0)
5424 			zfs_compressed_arc_enabled = ztest_random(2);
5425 
5426 		/*
5427 		 * Periodically change the zfs_abd_scatter_enabled setting.
5428 		 */
5429 		if (ztest_random(10) == 0)
5430 			zfs_abd_scatter_enabled = ztest_random(2);
5431 	}
5432 	return (NULL);
5433 }
5434 
5435 static void *
5436 ztest_deadman_thread(void *arg)
5437 {
5438 	ztest_shared_t *zs = arg;
5439 	spa_t *spa = ztest_spa;
5440 	hrtime_t delta, total = 0;
5441 
5442 	for (;;) {
5443 		delta = zs->zs_thread_stop - zs->zs_thread_start +
5444 		    MSEC2NSEC(zfs_deadman_synctime_ms);
5445 
5446 		(void) poll(NULL, 0, (int)NSEC2MSEC(delta));
5447 
5448 		/*
5449 		 * If the pool is suspended then fail immediately. Otherwise,
5450 		 * check to see if the pool is making any progress. If
5451 		 * vdev_deadman() discovers that there hasn't been any recent
5452 		 * I/Os then it will end up aborting the tests.
5453 		 */
5454 		if (spa_suspended(spa) || spa->spa_root_vdev == NULL) {
5455 			fatal(0, "aborting test after %llu seconds because "
5456 			    "pool has transitioned to a suspended state.",
5457 			    zfs_deadman_synctime_ms / 1000);
5458 			return (NULL);
5459 		}
5460 		vdev_deadman(spa->spa_root_vdev);
5461 
5462 		total += zfs_deadman_synctime_ms/1000;
5463 		(void) printf("ztest has been running for %lld seconds\n",
5464 		    total);
5465 	}
5466 }
5467 
5468 static void
5469 ztest_execute(int test, ztest_info_t *zi, uint64_t id)
5470 {
5471 	ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets];
5472 	ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test);
5473 	hrtime_t functime = gethrtime();
5474 
5475 	for (int i = 0; i < zi->zi_iters; i++)
5476 		zi->zi_func(zd, id);
5477 
5478 	functime = gethrtime() - functime;
5479 
5480 	atomic_add_64(&zc->zc_count, 1);
5481 	atomic_add_64(&zc->zc_time, functime);
5482 
5483 	if (ztest_opts.zo_verbose >= 4) {
5484 		Dl_info dli;
5485 		(void) dladdr((void *)zi->zi_func, &dli);
5486 		(void) printf("%6.2f sec in %s\n",
5487 		    (double)functime / NANOSEC, dli.dli_sname);
5488 	}
5489 }
5490 
5491 static void *
5492 ztest_thread(void *arg)
5493 {
5494 	int rand;
5495 	uint64_t id = (uintptr_t)arg;
5496 	ztest_shared_t *zs = ztest_shared;
5497 	uint64_t call_next;
5498 	hrtime_t now;
5499 	ztest_info_t *zi;
5500 	ztest_shared_callstate_t *zc;
5501 
5502 	while ((now = gethrtime()) < zs->zs_thread_stop) {
5503 		/*
5504 		 * See if it's time to force a crash.
5505 		 */
5506 		if (now > zs->zs_thread_kill)
5507 			ztest_kill(zs);
5508 
5509 		/*
5510 		 * If we're getting ENOSPC with some regularity, stop.
5511 		 */
5512 		if (zs->zs_enospc_count > 10)
5513 			break;
5514 
5515 		/*
5516 		 * Pick a random function to execute.
5517 		 */
5518 		rand = ztest_random(ZTEST_FUNCS);
5519 		zi = &ztest_info[rand];
5520 		zc = ZTEST_GET_SHARED_CALLSTATE(rand);
5521 		call_next = zc->zc_next;
5522 
5523 		if (now >= call_next &&
5524 		    atomic_cas_64(&zc->zc_next, call_next, call_next +
5525 		    ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) {
5526 			ztest_execute(rand, zi, id);
5527 		}
5528 	}
5529 
5530 	return (NULL);
5531 }
5532 
5533 static void
5534 ztest_dataset_name(char *dsname, char *pool, int d)
5535 {
5536 	(void) snprintf(dsname, ZFS_MAX_DATASET_NAME_LEN, "%s/ds_%d", pool, d);
5537 }
5538 
5539 static void
5540 ztest_dataset_destroy(int d)
5541 {
5542 	char name[ZFS_MAX_DATASET_NAME_LEN];
5543 
5544 	ztest_dataset_name(name, ztest_opts.zo_pool, d);
5545 
5546 	if (ztest_opts.zo_verbose >= 3)
5547 		(void) printf("Destroying %s to free up space\n", name);
5548 
5549 	/*
5550 	 * Cleanup any non-standard clones and snapshots.  In general,
5551 	 * ztest thread t operates on dataset (t % zopt_datasets),
5552 	 * so there may be more than one thing to clean up.
5553 	 */
5554 	for (int t = d; t < ztest_opts.zo_threads;
5555 	    t += ztest_opts.zo_datasets) {
5556 		ztest_dsl_dataset_cleanup(name, t);
5557 	}
5558 
5559 	(void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
5560 	    DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
5561 }
5562 
5563 static void
5564 ztest_dataset_dirobj_verify(ztest_ds_t *zd)
5565 {
5566 	uint64_t usedobjs, dirobjs, scratch;
5567 
5568 	/*
5569 	 * ZTEST_DIROBJ is the object directory for the entire dataset.
5570 	 * Therefore, the number of objects in use should equal the
5571 	 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself.
5572 	 * If not, we have an object leak.
5573 	 *
5574 	 * Note that we can only check this in ztest_dataset_open(),
5575 	 * when the open-context and syncing-context values agree.
5576 	 * That's because zap_count() returns the open-context value,
5577 	 * while dmu_objset_space() returns the rootbp fill count.
5578 	 */
5579 	VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs));
5580 	dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch);
5581 	ASSERT3U(dirobjs + 1, ==, usedobjs);
5582 }
5583 
5584 static int
5585 ztest_dataset_open(int d)
5586 {
5587 	ztest_ds_t *zd = &ztest_ds[d];
5588 	uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq;
5589 	objset_t *os;
5590 	zilog_t *zilog;
5591 	char name[ZFS_MAX_DATASET_NAME_LEN];
5592 	int error;
5593 
5594 	ztest_dataset_name(name, ztest_opts.zo_pool, d);
5595 
5596 	(void) rw_rdlock(&ztest_name_lock);
5597 
5598 	error = ztest_dataset_create(name);
5599 	if (error == ENOSPC) {
5600 		(void) rw_unlock(&ztest_name_lock);
5601 		ztest_record_enospc(FTAG);
5602 		return (error);
5603 	}
5604 	ASSERT(error == 0 || error == EEXIST);
5605 
5606 	VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, zd, &os));
5607 	(void) rw_unlock(&ztest_name_lock);
5608 
5609 	ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os);
5610 
5611 	zilog = zd->zd_zilog;
5612 
5613 	if (zilog->zl_header->zh_claim_lr_seq != 0 &&
5614 	    zilog->zl_header->zh_claim_lr_seq < committed_seq)
5615 		fatal(0, "missing log records: claimed %llu < committed %llu",
5616 		    zilog->zl_header->zh_claim_lr_seq, committed_seq);
5617 
5618 	ztest_dataset_dirobj_verify(zd);
5619 
5620 	zil_replay(os, zd, ztest_replay_vector);
5621 
5622 	ztest_dataset_dirobj_verify(zd);
5623 
5624 	if (ztest_opts.zo_verbose >= 6)
5625 		(void) printf("%s replay %llu blocks, %llu records, seq %llu\n",
5626 		    zd->zd_name,
5627 		    (u_longlong_t)zilog->zl_parse_blk_count,
5628 		    (u_longlong_t)zilog->zl_parse_lr_count,
5629 		    (u_longlong_t)zilog->zl_replaying_seq);
5630 
5631 	zilog = zil_open(os, ztest_get_data);
5632 
5633 	if (zilog->zl_replaying_seq != 0 &&
5634 	    zilog->zl_replaying_seq < committed_seq)
5635 		fatal(0, "missing log records: replayed %llu < committed %llu",
5636 		    zilog->zl_replaying_seq, committed_seq);
5637 
5638 	return (0);
5639 }
5640 
5641 static void
5642 ztest_dataset_close(int d)
5643 {
5644 	ztest_ds_t *zd = &ztest_ds[d];
5645 
5646 	zil_close(zd->zd_zilog);
5647 	dmu_objset_disown(zd->zd_os, zd);
5648 
5649 	ztest_zd_fini(zd);
5650 }
5651 
5652 /*
5653  * Kick off threads to run tests on all datasets in parallel.
5654  */
5655 static void
5656 ztest_run(ztest_shared_t *zs)
5657 {
5658 	thread_t *tid;
5659 	spa_t *spa;
5660 	objset_t *os;
5661 	thread_t resume_tid;
5662 	int error;
5663 
5664 	ztest_exiting = B_FALSE;
5665 
5666 	/*
5667 	 * Initialize parent/child shared state.
5668 	 */
5669 	VERIFY(_mutex_init(&ztest_vdev_lock, USYNC_THREAD, NULL) == 0);
5670 	VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0);
5671 
5672 	zs->zs_thread_start = gethrtime();
5673 	zs->zs_thread_stop =
5674 	    zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC;
5675 	zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop);
5676 	zs->zs_thread_kill = zs->zs_thread_stop;
5677 	if (ztest_random(100) < ztest_opts.zo_killrate) {
5678 		zs->zs_thread_kill -=
5679 		    ztest_random(ztest_opts.zo_passtime * NANOSEC);
5680 	}
5681 
5682 	(void) _mutex_init(&zcl.zcl_callbacks_lock, USYNC_THREAD, NULL);
5683 
5684 	list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t),
5685 	    offsetof(ztest_cb_data_t, zcd_node));
5686 
5687 	/*
5688 	 * Open our pool.
5689 	 */
5690 	kernel_init(FREAD | FWRITE);
5691 	VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
5692 	spa->spa_debug = B_TRUE;
5693 	metaslab_preload_limit = ztest_random(20) + 1;
5694 	ztest_spa = spa;
5695 
5696 	dmu_objset_stats_t dds;
5697 	VERIFY0(dmu_objset_own(ztest_opts.zo_pool,
5698 	    DMU_OST_ANY, B_TRUE, FTAG, &os));
5699 	dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
5700 	dmu_objset_fast_stat(os, &dds);
5701 	dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
5702 	zs->zs_guid = dds.dds_guid;
5703 	dmu_objset_disown(os, FTAG);
5704 
5705 	spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN;
5706 
5707 	/*
5708 	 * We don't expect the pool to suspend unless maxfaults == 0,
5709 	 * in which case ztest_fault_inject() temporarily takes away
5710 	 * the only valid replica.
5711 	 */
5712 	if (MAXFAULTS() == 0)
5713 		spa->spa_failmode = ZIO_FAILURE_MODE_WAIT;
5714 	else
5715 		spa->spa_failmode = ZIO_FAILURE_MODE_PANIC;
5716 
5717 	/*
5718 	 * Create a thread to periodically resume suspended I/O.
5719 	 */
5720 	VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND,
5721 	    &resume_tid) == 0);
5722 
5723 	/*
5724 	 * Create a deadman thread to abort() if we hang.
5725 	 */
5726 	VERIFY(thr_create(0, 0, ztest_deadman_thread, zs, THR_BOUND,
5727 	    NULL) == 0);
5728 
5729 	/*
5730 	 * Verify that we can safely inquire about about any object,
5731 	 * whether it's allocated or not.  To make it interesting,
5732 	 * we probe a 5-wide window around each power of two.
5733 	 * This hits all edge cases, including zero and the max.
5734 	 */
5735 	for (int t = 0; t < 64; t++) {
5736 		for (int d = -5; d <= 5; d++) {
5737 			error = dmu_object_info(spa->spa_meta_objset,
5738 			    (1ULL << t) + d, NULL);
5739 			ASSERT(error == 0 || error == ENOENT ||
5740 			    error == EINVAL);
5741 		}
5742 	}
5743 
5744 	/*
5745 	 * If we got any ENOSPC errors on the previous run, destroy something.
5746 	 */
5747 	if (zs->zs_enospc_count != 0) {
5748 		int d = ztest_random(ztest_opts.zo_datasets);
5749 		ztest_dataset_destroy(d);
5750 	}
5751 	zs->zs_enospc_count = 0;
5752 
5753 	tid = umem_zalloc(ztest_opts.zo_threads * sizeof (thread_t),
5754 	    UMEM_NOFAIL);
5755 
5756 	if (ztest_opts.zo_verbose >= 4)
5757 		(void) printf("starting main threads...\n");
5758 
5759 	/*
5760 	 * Kick off all the tests that run in parallel.
5761 	 */
5762 	for (int t = 0; t < ztest_opts.zo_threads; t++) {
5763 		if (t < ztest_opts.zo_datasets &&
5764 		    ztest_dataset_open(t) != 0)
5765 			return;
5766 		VERIFY(thr_create(0, 0, ztest_thread, (void *)(uintptr_t)t,
5767 		    THR_BOUND, &tid[t]) == 0);
5768 	}
5769 
5770 	/*
5771 	 * Wait for all of the tests to complete.  We go in reverse order
5772 	 * so we don't close datasets while threads are still using them.
5773 	 */
5774 	for (int t = ztest_opts.zo_threads - 1; t >= 0; t--) {
5775 		VERIFY(thr_join(tid[t], NULL, NULL) == 0);
5776 		if (t < ztest_opts.zo_datasets)
5777 			ztest_dataset_close(t);
5778 	}
5779 
5780 	txg_wait_synced(spa_get_dsl(spa), 0);
5781 
5782 	zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
5783 	zs->zs_space = metaslab_class_get_space(spa_normal_class(spa));
5784 	zfs_dbgmsg_print(FTAG);
5785 
5786 	umem_free(tid, ztest_opts.zo_threads * sizeof (thread_t));
5787 
5788 	/* Kill the resume thread */
5789 	ztest_exiting = B_TRUE;
5790 	VERIFY(thr_join(resume_tid, NULL, NULL) == 0);
5791 	ztest_resume(spa);
5792 
5793 	/*
5794 	 * Right before closing the pool, kick off a bunch of async I/O;
5795 	 * spa_close() should wait for it to complete.
5796 	 */
5797 	for (uint64_t object = 1; object < 50; object++) {
5798 		dmu_prefetch(spa->spa_meta_objset, object, 0, 0, 1ULL << 20,
5799 		    ZIO_PRIORITY_SYNC_READ);
5800 	}
5801 
5802 	spa_close(spa, FTAG);
5803 
5804 	/*
5805 	 * Verify that we can loop over all pools.
5806 	 */
5807 	mutex_enter(&spa_namespace_lock);
5808 	for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa))
5809 		if (ztest_opts.zo_verbose > 3)
5810 			(void) printf("spa_next: found %s\n", spa_name(spa));
5811 	mutex_exit(&spa_namespace_lock);
5812 
5813 	/*
5814 	 * Verify that we can export the pool and reimport it under a
5815 	 * different name.
5816 	 */
5817 	if (ztest_random(2) == 0) {
5818 		char name[ZFS_MAX_DATASET_NAME_LEN];
5819 		(void) snprintf(name, sizeof (name), "%s_import",
5820 		    ztest_opts.zo_pool);
5821 		ztest_spa_import_export(ztest_opts.zo_pool, name);
5822 		ztest_spa_import_export(name, ztest_opts.zo_pool);
5823 	}
5824 
5825 	kernel_fini();
5826 
5827 	list_destroy(&zcl.zcl_callbacks);
5828 
5829 	(void) _mutex_destroy(&zcl.zcl_callbacks_lock);
5830 
5831 	(void) rwlock_destroy(&ztest_name_lock);
5832 	(void) _mutex_destroy(&ztest_vdev_lock);
5833 }
5834 
5835 static void
5836 ztest_freeze(void)
5837 {
5838 	ztest_ds_t *zd = &ztest_ds[0];
5839 	spa_t *spa;
5840 	int numloops = 0;
5841 
5842 	if (ztest_opts.zo_verbose >= 3)
5843 		(void) printf("testing spa_freeze()...\n");
5844 
5845 	kernel_init(FREAD | FWRITE);
5846 	VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
5847 	VERIFY3U(0, ==, ztest_dataset_open(0));
5848 	spa->spa_debug = B_TRUE;
5849 	ztest_spa = spa;
5850 
5851 	/*
5852 	 * Force the first log block to be transactionally allocated.
5853 	 * We have to do this before we freeze the pool -- otherwise
5854 	 * the log chain won't be anchored.
5855 	 */
5856 	while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) {
5857 		ztest_dmu_object_alloc_free(zd, 0);
5858 		zil_commit(zd->zd_zilog, 0);
5859 	}
5860 
5861 	txg_wait_synced(spa_get_dsl(spa), 0);
5862 
5863 	/*
5864 	 * Freeze the pool.  This stops spa_sync() from doing anything,
5865 	 * so that the only way to record changes from now on is the ZIL.
5866 	 */
5867 	spa_freeze(spa);
5868 
5869 	/*
5870 	 * Because it is hard to predict how much space a write will actually
5871 	 * require beforehand, we leave ourselves some fudge space to write over
5872 	 * capacity.
5873 	 */
5874 	uint64_t capacity = metaslab_class_get_space(spa_normal_class(spa)) / 2;
5875 
5876 	/*
5877 	 * Run tests that generate log records but don't alter the pool config
5878 	 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc).
5879 	 * We do a txg_wait_synced() after each iteration to force the txg
5880 	 * to increase well beyond the last synced value in the uberblock.
5881 	 * The ZIL should be OK with that.
5882 	 *
5883 	 * Run a random number of times less than zo_maxloops and ensure we do
5884 	 * not run out of space on the pool.
5885 	 */
5886 	while (ztest_random(10) != 0 &&
5887 	    numloops++ < ztest_opts.zo_maxloops &&
5888 	    metaslab_class_get_alloc(spa_normal_class(spa)) < capacity) {
5889 		ztest_od_t od;
5890 		ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0);
5891 		VERIFY0(ztest_object_init(zd, &od, sizeof (od), B_FALSE));
5892 		ztest_io(zd, od.od_object,
5893 		    ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
5894 		txg_wait_synced(spa_get_dsl(spa), 0);
5895 	}
5896 
5897 	/*
5898 	 * Commit all of the changes we just generated.
5899 	 */
5900 	zil_commit(zd->zd_zilog, 0);
5901 	txg_wait_synced(spa_get_dsl(spa), 0);
5902 
5903 	/*
5904 	 * Close our dataset and close the pool.
5905 	 */
5906 	ztest_dataset_close(0);
5907 	spa_close(spa, FTAG);
5908 	kernel_fini();
5909 
5910 	/*
5911 	 * Open and close the pool and dataset to induce log replay.
5912 	 */
5913 	kernel_init(FREAD | FWRITE);
5914 	VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
5915 	ASSERT(spa_freeze_txg(spa) == UINT64_MAX);
5916 	VERIFY3U(0, ==, ztest_dataset_open(0));
5917 	ztest_dataset_close(0);
5918 
5919 	spa->spa_debug = B_TRUE;
5920 	ztest_spa = spa;
5921 	txg_wait_synced(spa_get_dsl(spa), 0);
5922 	ztest_reguid(NULL, 0);
5923 
5924 	spa_close(spa, FTAG);
5925 	kernel_fini();
5926 }
5927 
5928 void
5929 print_time(hrtime_t t, char *timebuf)
5930 {
5931 	hrtime_t s = t / NANOSEC;
5932 	hrtime_t m = s / 60;
5933 	hrtime_t h = m / 60;
5934 	hrtime_t d = h / 24;
5935 
5936 	s -= m * 60;
5937 	m -= h * 60;
5938 	h -= d * 24;
5939 
5940 	timebuf[0] = '\0';
5941 
5942 	if (d)
5943 		(void) sprintf(timebuf,
5944 		    "%llud%02lluh%02llum%02llus", d, h, m, s);
5945 	else if (h)
5946 		(void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s);
5947 	else if (m)
5948 		(void) sprintf(timebuf, "%llum%02llus", m, s);
5949 	else
5950 		(void) sprintf(timebuf, "%llus", s);
5951 }
5952 
5953 static nvlist_t *
5954 make_random_props()
5955 {
5956 	nvlist_t *props;
5957 
5958 	VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0);
5959 	if (ztest_random(2) == 0)
5960 		return (props);
5961 	VERIFY(nvlist_add_uint64(props, "autoreplace", 1) == 0);
5962 
5963 	return (props);
5964 }
5965 
5966 /*
5967  * Create a storage pool with the given name and initial vdev size.
5968  * Then test spa_freeze() functionality.
5969  */
5970 static void
5971 ztest_init(ztest_shared_t *zs)
5972 {
5973 	spa_t *spa;
5974 	nvlist_t *nvroot, *props;
5975 
5976 	VERIFY(_mutex_init(&ztest_vdev_lock, USYNC_THREAD, NULL) == 0);
5977 	VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0);
5978 
5979 	kernel_init(FREAD | FWRITE);
5980 
5981 	/*
5982 	 * Create the storage pool.
5983 	 */
5984 	(void) spa_destroy(ztest_opts.zo_pool);
5985 	ztest_shared->zs_vdev_next_leaf = 0;
5986 	zs->zs_splits = 0;
5987 	zs->zs_mirrors = ztest_opts.zo_mirrors;
5988 	nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
5989 	    0, ztest_opts.zo_raidz, zs->zs_mirrors, 1);
5990 	props = make_random_props();
5991 	for (int i = 0; i < SPA_FEATURES; i++) {
5992 		char buf[1024];
5993 		(void) snprintf(buf, sizeof (buf), "feature@%s",
5994 		    spa_feature_table[i].fi_uname);
5995 		VERIFY3U(0, ==, nvlist_add_uint64(props, buf, 0));
5996 	}
5997 	VERIFY3U(0, ==, spa_create(ztest_opts.zo_pool, nvroot, props, NULL));
5998 	nvlist_free(nvroot);
5999 	nvlist_free(props);
6000 
6001 	VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
6002 	zs->zs_metaslab_sz =
6003 	    1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
6004 
6005 	spa_close(spa, FTAG);
6006 
6007 	kernel_fini();
6008 
6009 	ztest_run_zdb(ztest_opts.zo_pool);
6010 
6011 	ztest_freeze();
6012 
6013 	ztest_run_zdb(ztest_opts.zo_pool);
6014 
6015 	(void) rwlock_destroy(&ztest_name_lock);
6016 	(void) _mutex_destroy(&ztest_vdev_lock);
6017 }
6018 
6019 static void
6020 setup_data_fd(void)
6021 {
6022 	static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX";
6023 
6024 	ztest_fd_data = mkstemp(ztest_name_data);
6025 	ASSERT3S(ztest_fd_data, >=, 0);
6026 	(void) unlink(ztest_name_data);
6027 }
6028 
6029 
6030 static int
6031 shared_data_size(ztest_shared_hdr_t *hdr)
6032 {
6033 	int size;
6034 
6035 	size = hdr->zh_hdr_size;
6036 	size += hdr->zh_opts_size;
6037 	size += hdr->zh_size;
6038 	size += hdr->zh_stats_size * hdr->zh_stats_count;
6039 	size += hdr->zh_ds_size * hdr->zh_ds_count;
6040 
6041 	return (size);
6042 }
6043 
6044 static void
6045 setup_hdr(void)
6046 {
6047 	int size;
6048 	ztest_shared_hdr_t *hdr;
6049 
6050 	hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
6051 	    PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
6052 	ASSERT(hdr != MAP_FAILED);
6053 
6054 	VERIFY3U(0, ==, ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t)));
6055 
6056 	hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t);
6057 	hdr->zh_opts_size = sizeof (ztest_shared_opts_t);
6058 	hdr->zh_size = sizeof (ztest_shared_t);
6059 	hdr->zh_stats_size = sizeof (ztest_shared_callstate_t);
6060 	hdr->zh_stats_count = ZTEST_FUNCS;
6061 	hdr->zh_ds_size = sizeof (ztest_shared_ds_t);
6062 	hdr->zh_ds_count = ztest_opts.zo_datasets;
6063 
6064 	size = shared_data_size(hdr);
6065 	VERIFY3U(0, ==, ftruncate(ztest_fd_data, size));
6066 
6067 	(void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
6068 }
6069 
6070 static void
6071 setup_data(void)
6072 {
6073 	int size, offset;
6074 	ztest_shared_hdr_t *hdr;
6075 	uint8_t *buf;
6076 
6077 	hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
6078 	    PROT_READ, MAP_SHARED, ztest_fd_data, 0);
6079 	ASSERT(hdr != MAP_FAILED);
6080 
6081 	size = shared_data_size(hdr);
6082 
6083 	(void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
6084 	hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()),
6085 	    PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
6086 	ASSERT(hdr != MAP_FAILED);
6087 	buf = (uint8_t *)hdr;
6088 
6089 	offset = hdr->zh_hdr_size;
6090 	ztest_shared_opts = (void *)&buf[offset];
6091 	offset += hdr->zh_opts_size;
6092 	ztest_shared = (void *)&buf[offset];
6093 	offset += hdr->zh_size;
6094 	ztest_shared_callstate = (void *)&buf[offset];
6095 	offset += hdr->zh_stats_size * hdr->zh_stats_count;
6096 	ztest_shared_ds = (void *)&buf[offset];
6097 }
6098 
6099 static boolean_t
6100 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp)
6101 {
6102 	pid_t pid;
6103 	int status;
6104 	char *cmdbuf = NULL;
6105 
6106 	pid = fork();
6107 
6108 	if (cmd == NULL) {
6109 		cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
6110 		(void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN);
6111 		cmd = cmdbuf;
6112 	}
6113 
6114 	if (pid == -1)
6115 		fatal(1, "fork failed");
6116 
6117 	if (pid == 0) {	/* child */
6118 		char *emptyargv[2] = { cmd, NULL };
6119 		char fd_data_str[12];
6120 
6121 		struct rlimit rl = { 1024, 1024 };
6122 		(void) setrlimit(RLIMIT_NOFILE, &rl);
6123 
6124 		(void) close(ztest_fd_rand);
6125 		VERIFY3U(11, >=,
6126 		    snprintf(fd_data_str, 12, "%d", ztest_fd_data));
6127 		VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1));
6128 
6129 		(void) enable_extended_FILE_stdio(-1, -1);
6130 		if (libpath != NULL)
6131 			VERIFY(0 == setenv("LD_LIBRARY_PATH", libpath, 1));
6132 		(void) execv(cmd, emptyargv);
6133 		ztest_dump_core = B_FALSE;
6134 		fatal(B_TRUE, "exec failed: %s", cmd);
6135 	}
6136 
6137 	if (cmdbuf != NULL) {
6138 		umem_free(cmdbuf, MAXPATHLEN);
6139 		cmd = NULL;
6140 	}
6141 
6142 	while (waitpid(pid, &status, 0) != pid)
6143 		continue;
6144 	if (statusp != NULL)
6145 		*statusp = status;
6146 
6147 	if (WIFEXITED(status)) {
6148 		if (WEXITSTATUS(status) != 0) {
6149 			(void) fprintf(stderr, "child exited with code %d\n",
6150 			    WEXITSTATUS(status));
6151 			exit(2);
6152 		}
6153 		return (B_FALSE);
6154 	} else if (WIFSIGNALED(status)) {
6155 		if (!ignorekill || WTERMSIG(status) != SIGKILL) {
6156 			(void) fprintf(stderr, "child died with signal %d\n",
6157 			    WTERMSIG(status));
6158 			exit(3);
6159 		}
6160 		return (B_TRUE);
6161 	} else {
6162 		(void) fprintf(stderr, "something strange happened to child\n");
6163 		exit(4);
6164 		/* NOTREACHED */
6165 	}
6166 }
6167 
6168 static void
6169 ztest_run_init(void)
6170 {
6171 	ztest_shared_t *zs = ztest_shared;
6172 
6173 	ASSERT(ztest_opts.zo_init != 0);
6174 
6175 	/*
6176 	 * Blow away any existing copy of zpool.cache
6177 	 */
6178 	(void) remove(spa_config_path);
6179 
6180 	/*
6181 	 * Create and initialize our storage pool.
6182 	 */
6183 	for (int i = 1; i <= ztest_opts.zo_init; i++) {
6184 		bzero(zs, sizeof (ztest_shared_t));
6185 		if (ztest_opts.zo_verbose >= 3 &&
6186 		    ztest_opts.zo_init != 1) {
6187 			(void) printf("ztest_init(), pass %d\n", i);
6188 		}
6189 		ztest_init(zs);
6190 	}
6191 }
6192 
6193 int
6194 main(int argc, char **argv)
6195 {
6196 	int kills = 0;
6197 	int iters = 0;
6198 	int older = 0;
6199 	int newer = 0;
6200 	ztest_shared_t *zs;
6201 	ztest_info_t *zi;
6202 	ztest_shared_callstate_t *zc;
6203 	char timebuf[100];
6204 	char numbuf[6];
6205 	spa_t *spa;
6206 	char *cmd;
6207 	boolean_t hasalt;
6208 	char *fd_data_str = getenv("ZTEST_FD_DATA");
6209 
6210 	(void) setvbuf(stdout, NULL, _IOLBF, 0);
6211 
6212 	dprintf_setup(&argc, argv);
6213 	zfs_deadman_synctime_ms = 300000;
6214 
6215 	ztest_fd_rand = open("/dev/urandom", O_RDONLY);
6216 	ASSERT3S(ztest_fd_rand, >=, 0);
6217 
6218 	if (!fd_data_str) {
6219 		process_options(argc, argv);
6220 
6221 		setup_data_fd();
6222 		setup_hdr();
6223 		setup_data();
6224 		bcopy(&ztest_opts, ztest_shared_opts,
6225 		    sizeof (*ztest_shared_opts));
6226 	} else {
6227 		ztest_fd_data = atoi(fd_data_str);
6228 		setup_data();
6229 		bcopy(ztest_shared_opts, &ztest_opts, sizeof (ztest_opts));
6230 	}
6231 	ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count);
6232 
6233 	/* Override location of zpool.cache */
6234 	VERIFY3U(asprintf((char **)&spa_config_path, "%s/zpool.cache",
6235 	    ztest_opts.zo_dir), !=, -1);
6236 
6237 	ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t),
6238 	    UMEM_NOFAIL);
6239 	zs = ztest_shared;
6240 
6241 	if (fd_data_str) {
6242 		metaslab_gang_bang = ztest_opts.zo_metaslab_gang_bang;
6243 		metaslab_df_alloc_threshold =
6244 		    zs->zs_metaslab_df_alloc_threshold;
6245 
6246 		if (zs->zs_do_init)
6247 			ztest_run_init();
6248 		else
6249 			ztest_run(zs);
6250 		exit(0);
6251 	}
6252 
6253 	hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0);
6254 
6255 	if (ztest_opts.zo_verbose >= 1) {
6256 		(void) printf("%llu vdevs, %d datasets, %d threads,"
6257 		    " %llu seconds...\n",
6258 		    (u_longlong_t)ztest_opts.zo_vdevs,
6259 		    ztest_opts.zo_datasets,
6260 		    ztest_opts.zo_threads,
6261 		    (u_longlong_t)ztest_opts.zo_time);
6262 	}
6263 
6264 	cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
6265 	(void) strlcpy(cmd, getexecname(), MAXNAMELEN);
6266 
6267 	zs->zs_do_init = B_TRUE;
6268 	if (strlen(ztest_opts.zo_alt_ztest) != 0) {
6269 		if (ztest_opts.zo_verbose >= 1) {
6270 			(void) printf("Executing older ztest for "
6271 			    "initialization: %s\n", ztest_opts.zo_alt_ztest);
6272 		}
6273 		VERIFY(!exec_child(ztest_opts.zo_alt_ztest,
6274 		    ztest_opts.zo_alt_libpath, B_FALSE, NULL));
6275 	} else {
6276 		VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL));
6277 	}
6278 	zs->zs_do_init = B_FALSE;
6279 
6280 	zs->zs_proc_start = gethrtime();
6281 	zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC;
6282 
6283 	for (int f = 0; f < ZTEST_FUNCS; f++) {
6284 		zi = &ztest_info[f];
6285 		zc = ZTEST_GET_SHARED_CALLSTATE(f);
6286 		if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop)
6287 			zc->zc_next = UINT64_MAX;
6288 		else
6289 			zc->zc_next = zs->zs_proc_start +
6290 			    ztest_random(2 * zi->zi_interval[0] + 1);
6291 	}
6292 
6293 	/*
6294 	 * Run the tests in a loop.  These tests include fault injection
6295 	 * to verify that self-healing data works, and forced crashes
6296 	 * to verify that we never lose on-disk consistency.
6297 	 */
6298 	while (gethrtime() < zs->zs_proc_stop) {
6299 		int status;
6300 		boolean_t killed;
6301 
6302 		/*
6303 		 * Initialize the workload counters for each function.
6304 		 */
6305 		for (int f = 0; f < ZTEST_FUNCS; f++) {
6306 			zc = ZTEST_GET_SHARED_CALLSTATE(f);
6307 			zc->zc_count = 0;
6308 			zc->zc_time = 0;
6309 		}
6310 
6311 		/* Set the allocation switch size */
6312 		zs->zs_metaslab_df_alloc_threshold =
6313 		    ztest_random(zs->zs_metaslab_sz / 4) + 1;
6314 
6315 		if (!hasalt || ztest_random(2) == 0) {
6316 			if (hasalt && ztest_opts.zo_verbose >= 1) {
6317 				(void) printf("Executing newer ztest: %s\n",
6318 				    cmd);
6319 			}
6320 			newer++;
6321 			killed = exec_child(cmd, NULL, B_TRUE, &status);
6322 		} else {
6323 			if (hasalt && ztest_opts.zo_verbose >= 1) {
6324 				(void) printf("Executing older ztest: %s\n",
6325 				    ztest_opts.zo_alt_ztest);
6326 			}
6327 			older++;
6328 			killed = exec_child(ztest_opts.zo_alt_ztest,
6329 			    ztest_opts.zo_alt_libpath, B_TRUE, &status);
6330 		}
6331 
6332 		if (killed)
6333 			kills++;
6334 		iters++;
6335 
6336 		if (ztest_opts.zo_verbose >= 1) {
6337 			hrtime_t now = gethrtime();
6338 
6339 			now = MIN(now, zs->zs_proc_stop);
6340 			print_time(zs->zs_proc_stop - now, timebuf);
6341 			nicenum(zs->zs_space, numbuf);
6342 
6343 			(void) printf("Pass %3d, %8s, %3llu ENOSPC, "
6344 			    "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
6345 			    iters,
6346 			    WIFEXITED(status) ? "Complete" : "SIGKILL",
6347 			    (u_longlong_t)zs->zs_enospc_count,
6348 			    100.0 * zs->zs_alloc / zs->zs_space,
6349 			    numbuf,
6350 			    100.0 * (now - zs->zs_proc_start) /
6351 			    (ztest_opts.zo_time * NANOSEC), timebuf);
6352 		}
6353 
6354 		if (ztest_opts.zo_verbose >= 2) {
6355 			(void) printf("\nWorkload summary:\n\n");
6356 			(void) printf("%7s %9s   %s\n",
6357 			    "Calls", "Time", "Function");
6358 			(void) printf("%7s %9s   %s\n",
6359 			    "-----", "----", "--------");
6360 			for (int f = 0; f < ZTEST_FUNCS; f++) {
6361 				Dl_info dli;
6362 
6363 				zi = &ztest_info[f];
6364 				zc = ZTEST_GET_SHARED_CALLSTATE(f);
6365 				print_time(zc->zc_time, timebuf);
6366 				(void) dladdr((void *)zi->zi_func, &dli);
6367 				(void) printf("%7llu %9s   %s\n",
6368 				    (u_longlong_t)zc->zc_count, timebuf,
6369 				    dli.dli_sname);
6370 			}
6371 			(void) printf("\n");
6372 		}
6373 
6374 		/*
6375 		 * It's possible that we killed a child during a rename test,
6376 		 * in which case we'll have a 'ztest_tmp' pool lying around
6377 		 * instead of 'ztest'.  Do a blind rename in case this happened.
6378 		 */
6379 		kernel_init(FREAD);
6380 		if (spa_open(ztest_opts.zo_pool, &spa, FTAG) == 0) {
6381 			spa_close(spa, FTAG);
6382 		} else {
6383 			char tmpname[ZFS_MAX_DATASET_NAME_LEN];
6384 			kernel_fini();
6385 			kernel_init(FREAD | FWRITE);
6386 			(void) snprintf(tmpname, sizeof (tmpname), "%s_tmp",
6387 			    ztest_opts.zo_pool);
6388 			(void) spa_rename(tmpname, ztest_opts.zo_pool);
6389 		}
6390 		kernel_fini();
6391 
6392 		ztest_run_zdb(ztest_opts.zo_pool);
6393 	}
6394 
6395 	if (ztest_opts.zo_verbose >= 1) {
6396 		if (hasalt) {
6397 			(void) printf("%d runs of older ztest: %s\n", older,
6398 			    ztest_opts.zo_alt_ztest);
6399 			(void) printf("%d runs of newer ztest: %s\n", newer,
6400 			    cmd);
6401 		}
6402 		(void) printf("%d killed, %d completed, %.0f%% kill rate\n",
6403 		    kills, iters - kills, (100.0 * kills) / MAX(1, iters));
6404 	}
6405 
6406 	umem_free(cmd, MAXNAMELEN);
6407 
6408 	return (0);
6409 }
6410