xref: /illumos-gate/usr/src/cmd/sgs/rtld/common/elf.c (revision dae2dfb7)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  *	Copyright (c) 1988 AT&T
24  *	  All Rights Reserved
25  *
26  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
27  * Use is subject to license terms.
28  */
29 #pragma ident	"%Z%%M%	%I%	%E% SMI"
30 
31 /*
32  * Object file dependent support for ELF objects.
33  */
34 #include	"_synonyms.h"
35 
36 #include	<stdio.h>
37 #include	<sys/procfs.h>
38 #include	<sys/mman.h>
39 #include	<sys/debug.h>
40 #include	<string.h>
41 #include	<limits.h>
42 #include	<dlfcn.h>
43 #include	<debug.h>
44 #include	<conv.h>
45 #include	"_rtld.h"
46 #include	"_audit.h"
47 #include	"_elf.h"
48 #include	"msg.h"
49 
50 /*
51  * Default and secure dependency search paths.
52  */
53 static Pnode		elf_dflt_dirs[] = {
54 #if	defined(_ELF64)
55 #ifndef	SGS_PRE_UNIFIED_PROCESS
56 	{ MSG_ORIG(MSG_PTH_LIB_64),		0,	MSG_PTH_LIB_64_SIZE,
57 		LA_SER_DEFAULT,			0,	&elf_dflt_dirs[1] },
58 #endif
59 	{ MSG_ORIG(MSG_PTH_USRLIB_64),		0,	MSG_PTH_USRLIB_64_SIZE,
60 		LA_SER_DEFAULT,			0, 0 }
61 #else
62 #ifndef	SGS_PRE_UNIFIED_PROCESS
63 	{ MSG_ORIG(MSG_PTH_LIB),		0,	MSG_PTH_LIB_SIZE,
64 		LA_SER_DEFAULT,			0,	&elf_dflt_dirs[1] },
65 #endif
66 	{ MSG_ORIG(MSG_PTH_USRLIB),		0,	MSG_PTH_USRLIB_SIZE,
67 		LA_SER_DEFAULT,			0, 0 }
68 #endif
69 };
70 
71 static Pnode		elf_secure_dirs[] = {
72 #if	defined(_ELF64)
73 #ifndef	SGS_PRE_UNIFIED_PROCESS
74 	{ MSG_ORIG(MSG_PTH_LIBSE_64),		0,	MSG_PTH_LIBSE_64_SIZE,
75 		LA_SER_SECURE,			0,	&elf_secure_dirs[1] },
76 #endif
77 	{ MSG_ORIG(MSG_PTH_USRLIBSE_64),	0,
78 		MSG_PTH_USRLIBSE_64_SIZE,
79 		LA_SER_SECURE,			0, 0 }
80 #else
81 #ifndef	SGS_PRE_UNIFIED_PROCESS
82 	{ MSG_ORIG(MSG_PTH_LIBSE),		0,	MSG_PTH_LIBSE_SIZE,
83 		LA_SER_SECURE,			0,	&elf_secure_dirs[1] },
84 #endif
85 	{ MSG_ORIG(MSG_PTH_USRLIBSE),		0,	MSG_PTH_USRLIBSE_SIZE,
86 		LA_SER_SECURE,			0, 0 }
87 #endif
88 };
89 
90 /*
91  * Defines for local functions.
92  */
93 static Pnode	*elf_fix_name(const char *, Rt_map *, uint_t);
94 static int	elf_are_u(Rej_desc *);
95 static void	elf_dladdr(ulong_t, Rt_map *, Dl_info *, void **, int);
96 static ulong_t	elf_entry_pt(void);
97 static char	*elf_get_so(const char *, const char *);
98 static Rt_map	*elf_map_so(Lm_list *, Aliste, const char *, const char *, int);
99 static int	elf_needed(Lm_list *, Aliste, Rt_map *);
100 static void	elf_unmap_so(Rt_map *);
101 static int	elf_verify_vers(const char *, Rt_map *, Rt_map *);
102 
103 /*
104  * Functions and data accessed through indirect pointers.
105  */
106 Fct elf_fct = {
107 	elf_are_u,
108 	elf_entry_pt,
109 	elf_map_so,
110 	elf_unmap_so,
111 	elf_needed,
112 	lookup_sym,
113 	elf_reloc,
114 	elf_dflt_dirs,
115 	elf_secure_dirs,
116 	elf_fix_name,
117 	elf_get_so,
118 	elf_dladdr,
119 	dlsym_handle,
120 	elf_verify_vers,
121 	elf_set_prot
122 };
123 
124 
125 /*
126  * Redefine NEEDED name if necessary.
127  */
128 static Pnode *
129 elf_fix_name(const char *name, Rt_map *clmp, uint_t orig)
130 {
131 	/*
132 	 * For ABI compliance, if we are asked for ld.so.1, then really give
133 	 * them libsys.so.1 (the SONAME of libsys.so.1 is ld.so.1).
134 	 */
135 	if (((*name == '/') &&
136 	/* BEGIN CSTYLED */
137 #if	defined(_ELF64)
138 	    (strcmp(name, MSG_ORIG(MSG_PTH_RTLD_64)) == 0)) ||
139 #else
140 	    (strcmp(name, MSG_ORIG(MSG_PTH_RTLD)) == 0)) ||
141 #endif
142 	    (strcmp(name, MSG_ORIG(MSG_FIL_RTLD)) == 0)) {
143 		/* END CSTYLED */
144 		Pnode	*pnp;
145 
146 		DBG_CALL(Dbg_file_fixname(LIST(clmp), name,
147 		    MSG_ORIG(MSG_PTH_LIBSYS)));
148 		if (((pnp = calloc(sizeof (Pnode), 1)) == 0) ||
149 		    ((pnp->p_name = strdup(MSG_ORIG(MSG_PTH_LIBSYS))) == 0)) {
150 			if (pnp)
151 				free(pnp);
152 			return (0);
153 		}
154 		pnp->p_len = MSG_PTH_LIBSYS_SIZE;
155 		pnp->p_orig = (orig & PN_SER_MASK);
156 		return (pnp);
157 	}
158 
159 	return (expand_paths(clmp, name, orig, 0));
160 }
161 
162 /*
163  * Determine if we have been given an ELF file and if so determine if the file
164  * is compatible.  Returns 1 if true, else 0 and sets the reject descriptor
165  * with associated error information.
166  */
167 static int
168 elf_are_u(Rej_desc *rej)
169 {
170 	Ehdr	*ehdr;
171 
172 	/*
173 	 * Determine if we're an elf file.  If not simply return, we don't set
174 	 * any rejection information as this test allows use to scroll through
175 	 * the objects we support (ELF, AOUT).
176 	 */
177 	if (fmap->fm_fsize < sizeof (Ehdr) ||
178 	    fmap->fm_maddr[EI_MAG0] != ELFMAG0 ||
179 	    fmap->fm_maddr[EI_MAG1] != ELFMAG1 ||
180 	    fmap->fm_maddr[EI_MAG2] != ELFMAG2 ||
181 	    fmap->fm_maddr[EI_MAG3] != ELFMAG3) {
182 		return (0);
183 	}
184 
185 	/*
186 	 * Check class and encoding.
187 	 */
188 	/* LINTED */
189 	ehdr = (Ehdr *)fmap->fm_maddr;
190 	if (ehdr->e_ident[EI_CLASS] != M_CLASS) {
191 		rej->rej_type = SGS_REJ_CLASS;
192 		rej->rej_info = (uint_t)ehdr->e_ident[EI_CLASS];
193 		return (0);
194 	}
195 	if (ehdr->e_ident[EI_DATA] != M_DATA) {
196 		rej->rej_type = SGS_REJ_DATA;
197 		rej->rej_info = (uint_t)ehdr->e_ident[EI_DATA];
198 		return (0);
199 	}
200 	if ((ehdr->e_type != ET_REL) && (ehdr->e_type != ET_EXEC) &&
201 	    (ehdr->e_type != ET_DYN)) {
202 		rej->rej_type = SGS_REJ_TYPE;
203 		rej->rej_info = (uint_t)ehdr->e_type;
204 		return (0);
205 	}
206 
207 	/*
208 	 * Verify machine specific flags, and hardware capability requirements.
209 	 */
210 	if ((elf_mach_flags_check(rej, ehdr) == 0) ||
211 	    ((rtld_flags2 & RT_FL2_HWCAP) && (hwcap_check(rej, ehdr) == 0)))
212 		return (0);
213 
214 	/*
215 	 * Verify ELF version.  ??? is this too restrictive ???
216 	 */
217 	if (ehdr->e_version > EV_CURRENT) {
218 		rej->rej_type = SGS_REJ_VERSION;
219 		rej->rej_info = (uint_t)ehdr->e_version;
220 		return (0);
221 	}
222 	return (1);
223 }
224 
225 /*
226  * The runtime linker employs lazy loading to provide the libraries needed for
227  * debugging, preloading .o's and dldump().  As these are seldom used, the
228  * standard startup of ld.so.1 doesn't initialize all the information necessary
229  * to perform plt relocation on ld.so.1's link-map.  The first time lazy loading
230  * is called we get here to perform these initializations:
231  *
232  *  o	elf_needed() is called to set up the DYNINFO() indexes for each lazy
233  *	dependency.  Typically, for all other objects, this is called during
234  *	analyze_so(), but as ld.so.1 is set-contained we skip this processing.
235  *
236  *  o	For intel, ld.so.1's JMPSLOT relocations need relative updates. These
237  *	are by default skipped thus delaying all relative relocation processing
238  * 	on every invocation of ld.so.1.
239  */
240 int
241 elf_rtld_load()
242 {
243 	Lm_list	*lml = &lml_rtld;
244 	Rt_map	*lmp = lml->lm_head;
245 
246 	if (lml->lm_flags & LML_FLG_PLTREL)
247 		return (1);
248 
249 	/*
250 	 * As we need to refer to the DYNINFO() information, insure that it has
251 	 * been initialized.
252 	 */
253 	if (elf_needed(lml, ALIST_OFF_DATA, lmp) == 0)
254 		return (0);
255 
256 #if	defined(__i386)
257 	/*
258 	 * This is a kludge to give ld.so.1 a performance benefit on i386.
259 	 * It's based around two factors.
260 	 *
261 	 *  o	JMPSLOT relocations (PLT's) actually need a relative relocation
262 	 *	applied to the GOT entry so that they can find PLT0.
263 	 *
264 	 *  o	ld.so.1 does not exercise *any* PLT's before it has made a call
265 	 *	to elf_lazy_load().  This is because all dynamic dependencies
266 	 * 	are recorded as lazy dependencies.
267 	 */
268 	(void) elf_reloc_relacount((ulong_t)JMPREL(lmp),
269 	    (ulong_t)(PLTRELSZ(lmp) / RELENT(lmp)), (ulong_t)RELENT(lmp),
270 	    (ulong_t)ADDR(lmp));
271 #endif
272 
273 	lml->lm_flags |= LML_FLG_PLTREL;
274 	return (1);
275 }
276 
277 /*
278  * Lazy load an object.
279  */
280 Rt_map *
281 elf_lazy_load(Rt_map *clmp, Slookup *slp, uint_t ndx, const char *sym)
282 {
283 	Rt_map		*nlmp, *hlmp;
284 	Dyninfo		*dip = &DYNINFO(clmp)[ndx], *pdip;
285 	uint_t		flags = 0;
286 	Pnode		*pnp;
287 	const char	*name;
288 	Lm_list		*lml = LIST(clmp);
289 	Lm_cntl		*lmc;
290 	Aliste		lmco;
291 
292 	/*
293 	 * If this dependency has already been processed, we're done.
294 	 */
295 	if (((nlmp = (Rt_map *)dip->di_info) != 0) ||
296 	    (dip->di_flags & FLG_DI_LDD_DONE))
297 		return (nlmp);
298 
299 	/*
300 	 * If we're running under ldd(1), indicate that this dependency has been
301 	 * processed (see test above).  It doesn't matter whether the object is
302 	 * successfully loaded or not, this flag simply ensures that we don't
303 	 * repeatedly attempt to load an object that has already failed to load.
304 	 * To do so would create multiple failure diagnostics for the same
305 	 * object under ldd(1).
306 	 */
307 	if (lml->lm_flags & LML_FLG_TRC_ENABLE)
308 		dip->di_flags |= FLG_DI_LDD_DONE;
309 
310 	/*
311 	 * Determine the initial dependency name.
312 	 */
313 	name = STRTAB(clmp) + DYN(clmp)[ndx].d_un.d_val;
314 	DBG_CALL(Dbg_file_lazyload(clmp, name, sym));
315 
316 	/*
317 	 * If this object needs to establish its own group, make sure a handle
318 	 * is created.
319 	 */
320 	if (dip->di_flags & FLG_DI_GROUP)
321 		flags |= (FLG_RT_SETGROUP | FLG_RT_HANDLE);
322 
323 	/*
324 	 * Lazy dependencies are identified as DT_NEEDED entries with a
325 	 * DF_P1_LAZYLOAD flag in the previous DT_POSFLAG_1 element.  The
326 	 * dynamic information element that corresponds to the DT_POSFLAG_1
327 	 * entry is free, and thus used to store the present entrance
328 	 * identifier.  This identifier is used to prevent multiple attempts to
329 	 * load a failed lazy loadable dependency within the same runtime linker
330 	 * operation.  However, future attempts to reload this dependency are
331 	 * still possible.
332 	 */
333 	if (ndx && (pdip = dip - 1) && (pdip->di_flags & FLG_DI_POSFLAG1))
334 		pdip->di_info = (void *)slp->sl_id;
335 
336 	/*
337 	 * Expand the requested name if necessary.
338 	 */
339 	if ((pnp = elf_fix_name(name, clmp, PN_SER_NEEDED)) == 0)
340 		return (0);
341 
342 	/*
343 	 * Provided the object on the head of the link-map has completed its
344 	 * relocation, create a new link-map control list for this request.
345 	 */
346 	hlmp = lml->lm_head;
347 	if (FLAGS(hlmp) & FLG_RT_RELOCED) {
348 		if ((lmc = alist_append(&lml->lm_lists, 0, sizeof (Lm_cntl),
349 		    AL_CNT_LMLISTS)) == 0) {
350 			remove_pnode(pnp);
351 			return (0);
352 		}
353 		lmco = (Aliste)((char *)lmc - (char *)lml->lm_lists);
354 	} else {
355 		lmc = 0;
356 		lmco = ALIST_OFF_DATA;
357 	}
358 
359 	/*
360 	 * Load the associated object.
361 	 */
362 	dip->di_info = nlmp =
363 	    load_one(lml, lmco, pnp, clmp, MODE(clmp), flags, 0);
364 
365 	/*
366 	 * Remove any expanded pathname infrastructure.  Reduce the pending lazy
367 	 * dependency count of the caller, together with the link-map lists
368 	 * count of objects that still have lazy dependencies pending.
369 	 */
370 	remove_pnode(pnp);
371 	if (--LAZY(clmp) == 0)
372 		LIST(clmp)->lm_lazy--;
373 
374 	/*
375 	 * Finish processing the objects associated with this request, and
376 	 * create an association between the caller and this dependency.
377 	 */
378 	if (nlmp && ((bind_one(clmp, nlmp, BND_NEEDED) == 0) ||
379 	    (analyze_lmc(lml, lmco, nlmp) == 0) ||
380 	    (relocate_lmc(lml, lmco, clmp, nlmp) == 0)))
381 		dip->di_info = nlmp = 0;
382 
383 	/*
384 	 * If this lazyload has failed, and we've created a new link-map
385 	 * control list to which this request has added objects, then remove
386 	 * all the objects that have been associated to this request.
387 	 */
388 	if ((nlmp == 0) && lmc && lmc->lc_head)
389 		remove_lmc(lml, clmp, lmc, lmco, name);
390 
391 	/*
392 	 * Finally, remove any link-map control list that was created.
393 	 */
394 	if (lmc)
395 		remove_cntl(lml, lmco);
396 
397 	/*
398 	 * If this lazy loading failed, record the fact, and bump the lazy
399 	 * counts.
400 	 */
401 	if (nlmp == 0) {
402 		dip->di_flags |= FLG_DI_LAZYFAIL;
403 		if (LAZY(clmp)++ == 0)
404 			LIST(clmp)->lm_lazy++;
405 	}
406 
407 	return (nlmp);
408 }
409 
410 /*
411  * Return the entry point of the ELF executable.
412  */
413 static ulong_t
414 elf_entry_pt(void)
415 {
416 	return (ENTRY(lml_main.lm_head));
417 }
418 
419 /*
420  * Unmap a given ELF shared object from the address space.
421  */
422 static void
423 elf_unmap_so(Rt_map *lmp)
424 {
425 	caddr_t	addr;
426 	size_t	size;
427 	Mmap	*mmaps;
428 
429 	/*
430 	 * If this link map represents a relocatable object concatenation, then
431 	 * the image was simply generated in allocated memory.  Free the memory.
432 	 *
433 	 * Note: the memory was originally allocated in the libelf:_elf_outmap
434 	 * routine and would normally have been free'd in elf_outsync(), but
435 	 * because we 'interpose' on that routine the memory  wasn't free'd at
436 	 * that time.
437 	 */
438 	if (FLAGS(lmp) & FLG_RT_IMGALLOC) {
439 		free((void *)ADDR(lmp));
440 		return;
441 	}
442 
443 	/*
444 	 * If padding was enabled via rtld_db, then we have at least one page
445 	 * in front of the image - and possibly a trailing page.
446 	 * Unmap the front page first:
447 	 */
448 	if (PADSTART(lmp) != ADDR(lmp)) {
449 		addr = (caddr_t)M_PTRUNC(PADSTART(lmp));
450 		size = ADDR(lmp) - (ulong_t)addr;
451 		(void) munmap(addr, size);
452 	}
453 
454 	/*
455 	 * Unmap any trailing padding.
456 	 */
457 	if (M_PROUND((PADSTART(lmp) + PADIMLEN(lmp))) >
458 	    M_PROUND(ADDR(lmp) + MSIZE(lmp))) {
459 		addr = (caddr_t)M_PROUND(ADDR(lmp) + MSIZE(lmp));
460 		size = M_PROUND(PADSTART(lmp) + PADIMLEN(lmp)) - (ulong_t)addr;
461 		(void) munmap(addr, size);
462 	}
463 
464 	/*
465 	 * Unmmap all mapped segments.
466 	 */
467 	for (mmaps = MMAPS(lmp); mmaps->m_vaddr; mmaps++)
468 		(void) munmap(mmaps->m_vaddr, mmaps->m_msize);
469 }
470 
471 /*
472  * Determine if a dependency requires a particular version and if so verify
473  * that the version exists in the dependency.
474  */
475 static int
476 elf_verify_vers(const char *name, Rt_map *clmp, Rt_map *nlmp)
477 {
478 	Verneed		*vnd = VERNEED(clmp);
479 	int		_num, num = VERNEEDNUM(clmp);
480 	char		*cstrs = (char *)STRTAB(clmp);
481 	Lm_list		*lml = LIST(clmp);
482 
483 	/*
484 	 * Traverse the callers version needed information and determine if any
485 	 * specific versions are required from the dependency.
486 	 */
487 	DBG_CALL(Dbg_ver_need_title(LIST(clmp), NAME(clmp)));
488 	for (_num = 1; _num <= num; _num++,
489 	    vnd = (Verneed *)((Xword)vnd + vnd->vn_next)) {
490 		Half		cnt = vnd->vn_cnt;
491 		Vernaux		*vnap;
492 		char		*nstrs, *need;
493 
494 		/*
495 		 * Determine if a needed entry matches this dependency.
496 		 */
497 		need = (char *)(cstrs + vnd->vn_file);
498 		if (strcmp(name, need) != 0)
499 			continue;
500 
501 		if ((lml->lm_flags & LML_FLG_TRC_VERBOSE) &&
502 		    ((FLAGS1(clmp) & FL1_RT_LDDSTUB) == 0))
503 			(void) printf(MSG_INTL(MSG_LDD_VER_FIND), name);
504 
505 		/*
506 		 * Validate that each version required actually exists in the
507 		 * dependency.
508 		 */
509 		nstrs = (char *)STRTAB(nlmp);
510 
511 		for (vnap = (Vernaux *)((Xword)vnd + vnd->vn_aux); cnt;
512 		    cnt--, vnap = (Vernaux *)((Xword)vnap + vnap->vna_next)) {
513 			char		*version, *define;
514 			Verdef		*vdf = VERDEF(nlmp);
515 			ulong_t		_num, num = VERDEFNUM(nlmp);
516 			int		found = 0;
517 
518 			version = (char *)(cstrs + vnap->vna_name);
519 			DBG_CALL(Dbg_ver_need_entry(lml, 0, need, version));
520 
521 			for (_num = 1; _num <= num; _num++,
522 			    vdf = (Verdef *)((Xword)vdf + vdf->vd_next)) {
523 				Verdaux		*vdap;
524 
525 				if (vnap->vna_hash != vdf->vd_hash)
526 					continue;
527 
528 				vdap = (Verdaux *)((Xword)vdf + vdf->vd_aux);
529 				define = (char *)(nstrs + vdap->vda_name);
530 				if (strcmp(version, define) != 0)
531 					continue;
532 
533 				found++;
534 				break;
535 			}
536 
537 			/*
538 			 * If we're being traced print out any matched version
539 			 * when the verbose (-v) option is in effect.  Always
540 			 * print any unmatched versions.
541 			 */
542 			if (lml->lm_flags & LML_FLG_TRC_ENABLE) {
543 				/* BEGIN CSTYLED */
544 				if (found) {
545 				    if (!(lml->lm_flags & LML_FLG_TRC_VERBOSE))
546 					continue;
547 
548 				    (void) printf(MSG_ORIG(MSG_LDD_VER_FOUND),
549 					need, version, NAME(nlmp));
550 				} else {
551 				    if (rtld_flags & RT_FL_SILENCERR)
552 					continue;
553 
554 				    (void) printf(MSG_INTL(MSG_LDD_VER_NFOUND),
555 					need, version);
556 				}
557 				/* END CSTYLED */
558 				continue;
559 			}
560 
561 			/*
562 			 * If the version hasn't been found then this is a
563 			 * candidate for a fatal error condition.  Weak
564 			 * version definition requirements are silently
565 			 * ignored.  Also, if the image inspected for a version
566 			 * definition has no versioning recorded at all then
567 			 * silently ignore this (this provides better backward
568 			 * compatibility to old images created prior to
569 			 * versioning being available).  Both of these skipped
570 			 * diagnostics are available under tracing (see above).
571 			 */
572 			if ((found == 0) && (num != 0) &&
573 			    (!(vnap->vna_flags & VER_FLG_WEAK))) {
574 				eprintf(lml, ERR_FATAL,
575 				    MSG_INTL(MSG_VER_NFOUND), need, version,
576 				    NAME(clmp));
577 				return (0);
578 			}
579 		}
580 	}
581 	DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD));
582 	return (1);
583 }
584 
585 /*
586  * Search through the dynamic section for DT_NEEDED entries and perform one
587  * of two functions.  If only the first argument is specified then load the
588  * defined shared object, otherwise add the link map representing the defined
589  * link map the the dlopen list.
590  */
591 static int
592 elf_needed(Lm_list *lml, Aliste lmco, Rt_map *clmp)
593 {
594 	Dyn		*dyn, *pdyn;
595 	ulong_t		ndx = 0;
596 	uint_t		lazy, flags;
597 	Word		lmflags = lml->lm_flags;
598 	Word		lmtflags = lml->lm_tflags;
599 
600 	/*
601 	 * Process each shared object on needed list.
602 	 */
603 	if (DYN(clmp) == 0)
604 		return (1);
605 
606 	for (dyn = (Dyn *)DYN(clmp), pdyn = NULL; dyn->d_tag != DT_NULL;
607 	    pdyn = dyn++, ndx++) {
608 		Dyninfo	*dip = &DYNINFO(clmp)[ndx];
609 		Rt_map	*nlmp = 0;
610 		char	*name;
611 		int	silent = 0;
612 		Pnode	*pnp;
613 
614 		switch (dyn->d_tag) {
615 		case DT_POSFLAG_1:
616 			dip->di_flags |= FLG_DI_POSFLAG1;
617 			continue;
618 		case DT_NEEDED:
619 		case DT_USED:
620 			lazy = flags = 0;
621 			dip->di_flags |= FLG_DI_NEEDED;
622 
623 			if (pdyn && (pdyn->d_tag == DT_POSFLAG_1)) {
624 				if ((pdyn->d_un.d_val & DF_P1_LAZYLOAD) &&
625 				    ((lmtflags & LML_TFLG_NOLAZYLD) == 0)) {
626 					dip->di_flags |= FLG_DI_LAZY;
627 					lazy = 1;
628 				}
629 				if (pdyn->d_un.d_val & DF_P1_GROUPPERM) {
630 					dip->di_flags |= FLG_DI_GROUP;
631 					flags =
632 					    (FLG_RT_SETGROUP | FLG_RT_HANDLE);
633 				}
634 			}
635 
636 			name = (char *)STRTAB(clmp) + dyn->d_un.d_val;
637 
638 			/*
639 			 * NOTE, libc.so.1 can't be lazy loaded.  Although a
640 			 * lazy position flag won't be produced when a RTLDINFO
641 			 * .dynamic entry is found (introduced with the UPM in
642 			 * Solaris 10), it was possible to mark libc for lazy
643 			 * loading on previous releases.  To reduce the overhead
644 			 * of testing for this occurrence, only carry out this
645 			 * check for the first object on the link-map list
646 			 * (there aren't many applications built without libc).
647 			 */
648 			if (lazy && (lml->lm_head == clmp) &&
649 			    (strcmp(name, MSG_ORIG(MSG_FIL_LIBC)) == 0))
650 				lazy = 0;
651 
652 			/*
653 			 * Don't bring in lazy loaded objects yet unless we've
654 			 * been asked to attempt to load all available objects
655 			 * (crle(1) sets LD_FLAGS=loadavail).  Even under
656 			 * RTLD_NOW we don't process this - RTLD_NOW will cause
657 			 * relocation processing which in turn might trigger
658 			 * lazy loading, but its possible that the object has a
659 			 * lazy loaded file with no bindings (i.e., it should
660 			 * never have been a dependency in the first place).
661 			 */
662 			if (lazy) {
663 				if ((lmflags & LML_FLG_LOADAVAIL) == 0) {
664 					LAZY(clmp)++;
665 					lazy = flags = 0;
666 					continue;
667 				}
668 
669 				/*
670 				 * Silence any error messages - see description
671 				 * under elf_lookup_filtee().
672 				 */
673 				if ((rtld_flags & RT_FL_SILENCERR) == 0) {
674 					rtld_flags |= RT_FL_SILENCERR;
675 					silent = 1;
676 				}
677 			}
678 			break;
679 		case DT_AUXILIARY:
680 			dip->di_flags |= FLG_DI_AUXFLTR;
681 			continue;
682 		case DT_SUNW_AUXILIARY:
683 			dip->di_flags |= (FLG_DI_AUXFLTR | FLG_DI_SYMFLTR);
684 			continue;
685 		case DT_FILTER:
686 			dip->di_flags |= FLG_DI_STDFLTR;
687 			continue;
688 		case DT_SUNW_FILTER:
689 			dip->di_flags |= (FLG_DI_STDFLTR | FLG_DI_SYMFLTR);
690 			continue;
691 		default:
692 			continue;
693 		}
694 
695 		DBG_CALL(Dbg_file_needed(clmp, name));
696 
697 		/*
698 		 * If we're running under ldd(1), indicate that this dependency
699 		 * has been processed.  It doesn't matter whether the object is
700 		 * successfully loaded or not, this flag simply ensures that we
701 		 * don't repeatedly attempt to load an object that has already
702 		 * failed to load.  To do so would create multiple failure
703 		 * diagnostics for the same object under ldd(1).
704 		 */
705 		if (lml->lm_flags & LML_FLG_TRC_ENABLE)
706 			dip->di_flags |= FLG_DI_LDD_DONE;
707 
708 		/*
709 		 * Establish the objects name, load it and establish a binding
710 		 * with the caller.
711 		 */
712 		if (((pnp = elf_fix_name(name, clmp, PN_SER_NEEDED)) == 0) ||
713 		    ((nlmp = load_one(lml, lmco, pnp, clmp, MODE(clmp),
714 		    flags, 0)) == 0) || (bind_one(clmp, nlmp, BND_NEEDED) == 0))
715 			nlmp = 0;
716 
717 		/*
718 		 * Clean up any infrastructure, including the removal of the
719 		 * error suppression state, if it had been previously set in
720 		 * this routine.
721 		 */
722 		if (pnp)
723 			remove_pnode(pnp);
724 		if (silent)
725 			rtld_flags &= ~RT_FL_SILENCERR;
726 
727 		if ((dip->di_info = (void *)nlmp) == 0) {
728 			/*
729 			 * If the object could not be mapped, continue if error
730 			 * suppression is established or we're here with ldd(1).
731 			 */
732 			if ((MODE(clmp) & RTLD_CONFGEN) || (lmflags &
733 			    (LML_FLG_LOADAVAIL | LML_FLG_TRC_ENABLE)))
734 				continue;
735 			else
736 				return (0);
737 		}
738 	}
739 
740 	if (LAZY(clmp))
741 		lml->lm_lazy++;
742 
743 	return (1);
744 }
745 
746 static int
747 elf_map_check(Lm_list *lml, const char *name, caddr_t vaddr, Off size)
748 {
749 	prmap_t		*maps, *_maps;
750 	int		pfd, num, _num;
751 	caddr_t		eaddr = vaddr + size;
752 	int		err;
753 
754 	/*
755 	 * If memory reservations have been established for alternative objects
756 	 * determine if this object falls within the reservation, if it does no
757 	 * further checking is required.
758 	 */
759 	if (rtld_flags & RT_FL_MEMRESV) {
760 		Rtc_head	*head = (Rtc_head *)config->c_bgn;
761 
762 		if ((vaddr >= (caddr_t)(uintptr_t)head->ch_resbgn) &&
763 		    (eaddr <= (caddr_t)(uintptr_t)head->ch_resend))
764 			return (0);
765 	}
766 
767 	/*
768 	 * Determine the mappings presently in use by this process.
769 	 */
770 	if ((pfd = pr_open(lml)) == FD_UNAVAIL)
771 		return (1);
772 
773 	if (ioctl(pfd, PIOCNMAP, (void *)&num) == -1) {
774 		err = errno;
775 		eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_PROC), name,
776 		    strerror(err));
777 		return (1);
778 	}
779 
780 	if ((maps = malloc((num + 1) * sizeof (prmap_t))) == 0)
781 		return (1);
782 
783 	if (ioctl(pfd, PIOCMAP, (void *)maps) == -1) {
784 		err = errno;
785 		eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_PROC), name,
786 		    strerror(err));
787 		free(maps);
788 		return (1);
789 	}
790 
791 	/*
792 	 * Determine if the supplied address clashes with any of the present
793 	 * process mappings.
794 	 */
795 	for (_num = 0, _maps = maps; _num < num; _num++, _maps++) {
796 		caddr_t		_eaddr = _maps->pr_vaddr + _maps->pr_size;
797 		Rt_map		*lmp;
798 		const char	*str;
799 
800 		if ((eaddr < _maps->pr_vaddr) || (vaddr >= _eaddr))
801 			continue;
802 
803 		/*
804 		 * We have a memory clash.  See if one of the known dynamic
805 		 * dependency mappings represents this space so as to provide
806 		 * the user a more meaningful message.
807 		 */
808 		if ((lmp = _caller(vaddr, 0)) != 0)
809 			str = NAME(lmp);
810 		else
811 			str = MSG_INTL(MSG_STR_UNKNOWN);
812 
813 		eprintf(lml, ERR_FATAL, MSG_INTL(MSG_GEN_MAPINUSE), name,
814 		    EC_NATPTR(vaddr), EC_OFF(size), str);
815 		return (1);
816 	}
817 	free(maps);
818 	return (0);
819 }
820 
821 /*
822  * Obtain a memory reservation.  On newer systems, both MAP_ANON and MAP_ALIGN
823  * are used to obtained an aligned reservation from anonymous memory.  If
824  * MAP_ANON isn't available, then MAP_ALIGN isn't either, so obtain a standard
825  * reservation using the file as backing.
826  */
827 static Am_ret
828 elf_map_reserve(Lm_list *lml, const char *name, caddr_t *maddr, Off msize,
829     int mperm, int fd, Xword align)
830 {
831 	Am_ret	amret;
832 	int	mflag = MAP_PRIVATE | MAP_NORESERVE;
833 
834 #if defined(MAP_ALIGN)
835 	if ((rtld_flags2 & RT_FL2_NOMALIGN) == 0) {
836 		mflag |= MAP_ALIGN;
837 		*maddr = (caddr_t)align;
838 	}
839 #endif
840 	if ((amret = anon_map(lml, maddr, msize, PROT_NONE, mflag)) == AM_ERROR)
841 		return (amret);
842 
843 	if (amret == AM_OK)
844 		return (AM_OK);
845 
846 	/*
847 	 * If an anonymous memory request failed (which should only be the
848 	 * case if it is unsupported on the system we're running on), establish
849 	 * the initial mapping directly from the file.
850 	 */
851 	*maddr = 0;
852 	if ((*maddr = mmap(*maddr, msize, mperm, MAP_PRIVATE,
853 	    fd, 0)) == MAP_FAILED) {
854 		int	err = errno;
855 		eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAP), name,
856 		    strerror(err));
857 		return (AM_ERROR);
858 	}
859 	return (AM_NOSUP);
860 }
861 
862 static void *
863 elf_map_textdata(caddr_t addr, Off flen, int mperm, int phdr_mperm, int mflag,
864     int fd, Off foff)
865 {
866 #if	defined(MAP_TEXT) && defined(MAP_INITDATA)
867 	static int	notd = 0;
868 
869 	/*
870 	 * If MAP_TEXT and MAP_INITDATA are available, select the appropriate
871 	 * flag.
872 	 */
873 	if (notd == 0) {
874 		if ((phdr_mperm & (PROT_WRITE | PROT_EXEC)) == PROT_EXEC)
875 			mflag |= MAP_TEXT;
876 		else
877 			mflag |= MAP_INITDATA;
878 	}
879 #endif
880 	if (mmap((caddr_t)addr, flen, mperm, mflag, fd, foff) != MAP_FAILED)
881 		return (0);
882 
883 #if	defined(MAP_TEXT) && defined(MAP_INITDATA)
884 	if ((notd == 0) && (errno == EINVAL)) {
885 		/*
886 		 * MAP_TEXT and MAP_INITDATA may not be supported on this
887 		 * platform, try again without.
888 		 */
889 		notd = 1;
890 		mflag &= ~(MAP_TEXT | MAP_INITDATA);
891 
892 		return (mmap((caddr_t)addr, flen, mperm, mflag, fd, foff));
893 	}
894 #endif
895 	return (MAP_FAILED);
896 }
897 
898 /*
899  * Map in a file.
900  */
901 static caddr_t
902 elf_map_it(
903 	Lm_list		*lml,		/* link-map list */
904 	const char	*name,		/* actual name stored for pathname */
905 	Off		fsize,		/* total mapping claim of the file */
906 	Ehdr		*ehdr,		/* ELF header of file */
907 	Phdr		*fphdr,		/* first loadable Phdr */
908 	Phdr		*lphdr,		/* last loadable Phdr */
909 	Phdr		**rrphdr,	/* return first Phdr in reservation */
910 	caddr_t		*rraddr,	/* return start of reservation */
911 	Off		*rrsize,	/* return total size of reservation */
912 	int		fixed,		/* image is resolved to a fixed addr */
913 	int		fd,		/* images file descriptor */
914 	Xword		align,		/* image segments maximum alignment */
915 	Mmap		*mmaps,		/* mmap information array and */
916 	uint_t		*mmapcnt)	/* 	mapping count */
917 {
918 	caddr_t		raddr;		/* reservation address */
919 	Off		rsize;		/* reservation size */
920 	Phdr		*phdr;		/* working program header poiner */
921 	caddr_t		maddr;		/* working mmap address */
922 	caddr_t		faddr;		/* working file address */
923 	size_t		padsize;	/* object padding requirement */
924 	size_t		padpsize = 0;	/* padding size rounded to next page */
925 	size_t		padmsize = 0;	/* padding size rounded for alignment */
926 	int		skipfseg;	/* skip mapping first segment */
927 	int		mperm;		/* segment permissions */
928 	Am_ret		amret = AM_NOSUP;
929 
930 	/*
931 	 * If padding is required extend both the front and rear of the image.
932 	 * To insure the image itself is mapped at the correct alignment the
933 	 * initial padding is rounded up to the nearest page.  Once the image is
934 	 * mapped the excess can be pruned to the nearest page required for the
935 	 * actual padding itself.
936 	 */
937 	if ((padsize = r_debug.rtd_objpad) != 0) {
938 		padpsize = M_PROUND(padsize);
939 		if (fixed)
940 			padmsize = padpsize;
941 		else
942 			padmsize = S_ROUND(padsize, align);
943 	}
944 
945 	/*
946 	 * Determine the initial permissions used to map in the first segment.
947 	 * If this segments memsz is greater that its filesz then the difference
948 	 * must be zeroed.  Make sure this segment is writable.
949 	 */
950 	mperm = 0;
951 	if (fphdr->p_flags & PF_R)
952 		mperm |= PROT_READ;
953 	if (fphdr->p_flags & PF_X)
954 		mperm |= PROT_EXEC;
955 	if ((fphdr->p_flags & PF_W) || (fphdr->p_memsz > fphdr->p_filesz))
956 		mperm |= PROT_WRITE;
957 
958 	/*
959 	 * Determine whether or not to let system reserve address space based on
960 	 * whether this is a dynamic executable (addresses in object are fixed)
961 	 * or a shared object (addresses in object are relative to the objects'
962 	 * base).
963 	 */
964 	if (fixed) {
965 		/*
966 		 * Determine the reservation address and size, and insure that
967 		 * this reservation isn't already in use.
968 		 */
969 		faddr = maddr = (caddr_t)M_PTRUNC((ulong_t)fphdr->p_vaddr);
970 		raddr = maddr - padpsize;
971 		rsize = fsize + padpsize + padsize;
972 
973 		if (lml_main.lm_head) {
974 			if (elf_map_check(lml, name, raddr, rsize) != 0)
975 				return (0);
976 		}
977 
978 		/*
979 		 * As this is a fixed image, all segments must be individually
980 		 * mapped.
981 		 */
982 		skipfseg = 0;
983 
984 	} else {
985 		size_t	esize;
986 
987 		/*
988 		 * If this isn't a fixed image, reserve enough address space for
989 		 * the entire image to be mapped.  The amount of reservation is
990 		 * the range between the beginning of the first, and end of the
991 		 * last loadable segment, together with any padding, plus the
992 		 * alignment of the first segment.
993 		 *
994 		 * The optimal reservation is made as a no-reserve mapping from
995 		 * anonymous memory.  Each segment is then mapped into this
996 		 * reservation.  If the anonymous mapping capability isn't
997 		 * available, the reservation is obtained from the file itself.
998 		 * In this case the first segment of the image is mapped as part
999 		 * of the reservation, thus only the following segments need to
1000 		 * be remapped.
1001 		 */
1002 		rsize = fsize + padmsize + padsize;
1003 		if ((amret = elf_map_reserve(lml, name, &raddr, rsize, mperm,
1004 		    fd, align)) == AM_ERROR)
1005 			return (0);
1006 		maddr = raddr + padmsize;
1007 		faddr = (caddr_t)S_ROUND((Off)maddr, align);
1008 
1009 		/*
1010 		 * If this reservation has been obtained from anonymous memory,
1011 		 * then all segments must be individually mapped.  Otherwise,
1012 		 * the first segment heads the reservation.
1013 		 */
1014 		if (amret == AM_OK)
1015 			skipfseg = 0;
1016 		else
1017 			skipfseg = 1;
1018 
1019 		/*
1020 		 * For backward compatibility (where MAP_ALIGN isn't available),
1021 		 * insure the alignment of the reservation is adequate for this
1022 		 * object, and if not remap the object to obtain the correct
1023 		 * alignment.
1024 		 */
1025 		if (faddr != maddr) {
1026 			(void) munmap(raddr, rsize);
1027 
1028 			rsize += align;
1029 			if ((amret = elf_map_reserve(lml, name, &raddr, rsize,
1030 			    mperm, fd, align)) == AM_ERROR)
1031 				return (0);
1032 
1033 			maddr = faddr = (caddr_t)S_ROUND((Off)(raddr +
1034 			    padpsize), align);
1035 
1036 			esize = maddr - raddr + padpsize;
1037 
1038 			/*
1039 			 * As ths image has been realigned, the first segment
1040 			 * of the file needs to be remapped to its correct
1041 			 * location.
1042 			 */
1043 			skipfseg = 0;
1044 		} else
1045 			esize = padmsize - padpsize;
1046 
1047 		/*
1048 		 * If this reservation included padding, remove any excess for
1049 		 * the start of the image (the padding was adjusted to insure
1050 		 * the image was aligned appropriately).
1051 		 */
1052 		if (esize) {
1053 			(void) munmap(raddr, esize);
1054 			raddr += esize;
1055 			rsize -= esize;
1056 		}
1057 	}
1058 
1059 	/*
1060 	 * At this point we know the initial location of the image, and its
1061 	 * size.  Pass these back to the caller for inclusion in the link-map
1062 	 * that will eventually be created.
1063 	 */
1064 	*rraddr = raddr;
1065 	*rrsize = rsize;
1066 
1067 	/*
1068 	 * The first loadable segment is now pointed to by maddr.  This segment
1069 	 * will eventually contain the elf header and program headers, so reset
1070 	 * the program header.  Pass this  back to the caller for inclusion in
1071 	 * the link-map so it can be used for later unmapping operations.
1072 	 */
1073 	/* LINTED */
1074 	*rrphdr = (Phdr *)((char *)maddr + ehdr->e_phoff);
1075 
1076 	/*
1077 	 * If padding is required at the front of the image, obtain that now.
1078 	 * Note, if we've already obtained a reservation from anonymous memory
1079 	 * then this reservation will already include suitable padding.
1080 	 * Otherwise this reservation is backed by the file, or in the case of
1081 	 * a fixed image, doesn't yet exist.  Map the padding so that it is
1082 	 * suitably protected (PROT_NONE), and insure the first segment of the
1083 	 * file is mapped to its correct location.
1084 	 */
1085 	if (padsize) {
1086 		if (amret == AM_NOSUP) {
1087 			if (dz_map(lml, raddr, padpsize, PROT_NONE,
1088 			    (MAP_PRIVATE | MAP_FIXED | MAP_NORESERVE)) ==
1089 			    MAP_FAILED)
1090 				return (0);
1091 
1092 			skipfseg = 0;
1093 		}
1094 		rsize -= padpsize;
1095 	}
1096 
1097 	/*
1098 	 * Map individual segments.  For a fixed image, these will each be
1099 	 * unique mappings.  For a reservation these will fill in the
1100 	 * reservation.
1101 	 */
1102 	for (phdr = fphdr; phdr <= lphdr;
1103 	    phdr = (Phdr *)((Off)phdr + ehdr->e_phentsize)) {
1104 		caddr_t	addr;
1105 		Off	mlen, flen;
1106 		size_t	size;
1107 
1108 		/*
1109 		 * Skip non-loadable segments or segments that don't occupy
1110 		 * any memory.
1111 		 */
1112 		if (((phdr->p_type != PT_LOAD) &&
1113 		    (phdr->p_type != PT_SUNWBSS)) || (phdr->p_memsz == 0))
1114 			continue;
1115 
1116 		/*
1117 		 * Establish this segments address relative to our base.
1118 		 */
1119 		addr = (caddr_t)M_PTRUNC((ulong_t)(phdr->p_vaddr +
1120 		    (fixed ? 0 : faddr)));
1121 
1122 		/*
1123 		 * Determine the mapping protection from the segment attributes.
1124 		 * Also determine the etext address from the last loadable
1125 		 * segment which has permissions but no write access.
1126 		 */
1127 		mperm = 0;
1128 		if (phdr->p_flags) {
1129 			if (phdr->p_flags & PF_R)
1130 				mperm |= PROT_READ;
1131 			if (phdr->p_flags & PF_X)
1132 				mperm |= PROT_EXEC;
1133 			if (phdr->p_flags & PF_W)
1134 				mperm |= PROT_WRITE;
1135 			else
1136 				fmap->fm_etext = phdr->p_vaddr + phdr->p_memsz +
1137 				    (ulong_t)(fixed ? 0 : faddr);
1138 		}
1139 
1140 		/*
1141 		 * Determine the type of mapping required.
1142 		 */
1143 		if (phdr->p_type == PT_SUNWBSS) {
1144 			/*
1145 			 * Potentially, we can defer the loading of any SUNWBSS
1146 			 * segment, depending on whether the symbols it provides
1147 			 * have been bound to.  In this manner, large segments
1148 			 * that are interposed upon between shared libraries
1149 			 * may not require mapping.  Note, that the mapping
1150 			 * information is recorded in our mapping descriptor at
1151 			 * this time.
1152 			 */
1153 			mlen = phdr->p_memsz;
1154 			flen = 0;
1155 
1156 		} else if ((phdr->p_filesz == 0) && (phdr->p_flags == 0)) {
1157 			/*
1158 			 * If this segment has no backing file and no flags
1159 			 * specified, then it defines a reservation.  At this
1160 			 * point all standard loadable segments will have been
1161 			 * processed.  The segment reservation is mapped
1162 			 * directly from /dev/null.
1163 			 */
1164 			if (nu_map(lml, (caddr_t)addr, phdr->p_memsz, PROT_NONE,
1165 			    MAP_FIXED | MAP_PRIVATE) == MAP_FAILED)
1166 				return (0);
1167 
1168 			mlen = phdr->p_memsz;
1169 			flen = 0;
1170 
1171 		} else if (phdr->p_filesz == 0) {
1172 			/*
1173 			 * If this segment has no backing file then it defines a
1174 			 * nobits segment and is mapped directly from /dev/zero.
1175 			 */
1176 			if (dz_map(lml, (caddr_t)addr, phdr->p_memsz, mperm,
1177 			    MAP_FIXED | MAP_PRIVATE) == MAP_FAILED)
1178 				return (0);
1179 
1180 			mlen = phdr->p_memsz;
1181 			flen = 0;
1182 
1183 		} else {
1184 			Off	foff;
1185 
1186 			/*
1187 			 * This mapping originates from the file.  Determine the
1188 			 * file offset to which the mapping will be directed
1189 			 * (must be aligned) and how much to map (might be more
1190 			 * than the file in the case of .bss).
1191 			 */
1192 			foff = M_PTRUNC((ulong_t)phdr->p_offset);
1193 			mlen = phdr->p_memsz + (phdr->p_offset - foff);
1194 			flen = phdr->p_filesz + (phdr->p_offset - foff);
1195 
1196 			/*
1197 			 * If this is a non-fixed, non-anonymous mapping, and no
1198 			 * padding is involved, then the first loadable segment
1199 			 * is already part of the initial reservation.  In this
1200 			 * case there is no need to remap this segment.
1201 			 */
1202 			if ((skipfseg == 0) || (phdr != fphdr)) {
1203 				int phdr_mperm = mperm;
1204 				/*
1205 				 * If this segments memsz is greater that its
1206 				 * filesz then the difference must be zeroed.
1207 				 * Make sure this segment is writable.
1208 				 */
1209 				if (phdr->p_memsz > phdr->p_filesz)
1210 					mperm |= PROT_WRITE;
1211 
1212 				if (elf_map_textdata((caddr_t)addr, flen,
1213 				    mperm, phdr_mperm,
1214 				    (MAP_FIXED | MAP_PRIVATE), fd, foff) ==
1215 				    MAP_FAILED) {
1216 					int	err = errno;
1217 					eprintf(lml, ERR_FATAL,
1218 					    MSG_INTL(MSG_SYS_MMAP), name,
1219 					    strerror(err));
1220 					return (0);
1221 				}
1222 			}
1223 
1224 			/*
1225 			 * If the memory occupancy of the segment overflows the
1226 			 * definition in the file, we need to "zero out" the end
1227 			 * of the mapping we've established, and if necessary,
1228 			 * map some more space from /dev/zero.  Note, zero'ed
1229 			 * memory must end on a double word boundary to satisfy
1230 			 * zero().
1231 			 */
1232 			if (phdr->p_memsz > phdr->p_filesz) {
1233 				caddr_t	zaddr;
1234 				size_t	zlen, zplen;
1235 				Off	fend;
1236 
1237 				foff = (Off)(phdr->p_vaddr + phdr->p_filesz +
1238 				    (fixed ? 0 : faddr));
1239 				zaddr = (caddr_t)M_PROUND(foff);
1240 				zplen = (size_t)(zaddr - foff);
1241 
1242 				fend = (Off)S_DROUND((size_t)(phdr->p_vaddr +
1243 				    phdr->p_memsz + (fixed ? 0 : faddr)));
1244 				zlen = (size_t)(fend - foff);
1245 
1246 				/*
1247 				 * Determine whether the number of bytes that
1248 				 * must be zero'ed overflow to the next page.
1249 				 * If not, simply clear the exact bytes
1250 				 * (filesz to memsz) from this page.  Otherwise,
1251 				 * clear the remaining bytes of this page, and
1252 				 * map an following pages from /dev/zero.
1253 				 */
1254 				if (zlen < zplen)
1255 					zero((caddr_t)foff, (long)zlen);
1256 				else {
1257 					zero((caddr_t)foff, (long)zplen);
1258 
1259 					if ((zlen = (fend - (Off)zaddr)) > 0) {
1260 						if (dz_map(lml, zaddr, zlen,
1261 						    mperm,
1262 						    MAP_FIXED | MAP_PRIVATE) ==
1263 						    MAP_FAILED)
1264 							return (0);
1265 					}
1266 				}
1267 			}
1268 		}
1269 
1270 		/*
1271 		 * Unmap anything from the last mapping address to this one and
1272 		 * update the mapping claim pointer.
1273 		 */
1274 		if ((fixed == 0) && ((size = addr - maddr) != 0)) {
1275 			(void) munmap(maddr, size);
1276 			rsize -= size;
1277 		}
1278 
1279 		/*
1280 		 * Retain this segments mapping information.
1281 		 */
1282 		mmaps[*mmapcnt].m_vaddr = addr;
1283 		mmaps[*mmapcnt].m_msize = mlen;
1284 		mmaps[*mmapcnt].m_fsize = flen;
1285 		mmaps[*mmapcnt].m_perm = mperm;
1286 		(*mmapcnt)++;
1287 
1288 		maddr = addr + M_PROUND(mlen);
1289 		rsize -= M_PROUND(mlen);
1290 	}
1291 
1292 	/*
1293 	 * If padding is required at the end of the image, obtain that now.
1294 	 * Note, if we've already obtained a reservation from anonymous memory
1295 	 * then this reservation will already include suitable padding.
1296 	 */
1297 	if (padsize) {
1298 		if (amret == AM_NOSUP) {
1299 			/*
1300 			 * maddr is currently page aligned from the last segment
1301 			 * mapping.
1302 			 */
1303 			if (dz_map(lml, maddr, padsize, PROT_NONE,
1304 			    (MAP_PRIVATE | MAP_FIXED | MAP_NORESERVE)) ==
1305 			    MAP_FAILED)
1306 				return (0);
1307 		}
1308 		maddr += padsize;
1309 		rsize -= padsize;
1310 	}
1311 
1312 	/*
1313 	 * Unmap any final reservation.
1314 	 */
1315 	if ((fixed == 0) && (rsize != 0))
1316 		(void) munmap(maddr, rsize);
1317 
1318 	return (faddr);
1319 }
1320 
1321 /*
1322  * A null symbol interpretor.  Used if a filter has no associated filtees.
1323  */
1324 /* ARGSUSED0 */
1325 static Sym *
1326 elf_null_find_sym(Slookup *slp, Rt_map **dlmp, uint_t *binfo)
1327 {
1328 	return ((Sym *)0);
1329 }
1330 
1331 /*
1332  * Disable filtee use.
1333  */
1334 static void
1335 elf_disable_filtee(Rt_map *lmp, Dyninfo *dip)
1336 {
1337 	dip->di_info = 0;
1338 
1339 	if ((dip->di_flags & FLG_DI_SYMFLTR) == 0) {
1340 		/*
1341 		 * If this is an object filter, free the filtee's duplication.
1342 		 */
1343 		if (OBJFLTRNDX(lmp) != FLTR_DISABLED) {
1344 			free(REFNAME(lmp));
1345 			REFNAME(lmp) = (char *)0;
1346 			OBJFLTRNDX(lmp) = FLTR_DISABLED;
1347 
1348 			/*
1349 			 * Indicate that this filtee is no longer available.
1350 			 */
1351 			if (dip->di_flags & FLG_DI_STDFLTR)
1352 				SYMINTP(lmp) = elf_null_find_sym;
1353 
1354 		}
1355 	} else if (dip->di_flags & FLG_DI_STDFLTR) {
1356 		/*
1357 		 * Indicate that this standard filtee is no longer available.
1358 		 */
1359 		if (SYMSFLTRCNT(lmp))
1360 			SYMSFLTRCNT(lmp)--;
1361 	} else {
1362 		/*
1363 		 * Indicate that this auxiliary filtee is no longer available.
1364 		 */
1365 		if (SYMAFLTRCNT(lmp))
1366 			SYMAFLTRCNT(lmp)--;
1367 	}
1368 	dip->di_flags &= ~MSK_DI_FILTER;
1369 }
1370 
1371 /*
1372  * Find symbol interpreter - filters.
1373  * This function is called when the symbols from a shared object should
1374  * be resolved from the shared objects filtees instead of from within itself.
1375  *
1376  * A symbol name of 0 is used to trigger filtee loading.
1377  */
1378 static Sym *
1379 _elf_lookup_filtee(Slookup *slp, Rt_map **dlmp, uint_t *binfo, uint_t ndx)
1380 {
1381 	const char	*name = slp->sl_name, *filtees;
1382 	Rt_map		*clmp = slp->sl_cmap;
1383 	Rt_map		*ilmp = slp->sl_imap;
1384 	Pnode		*pnp, **pnpp;
1385 	int		any;
1386 	Dyninfo		*dip = &DYNINFO(ilmp)[ndx];
1387 	Lm_list		*lml = LIST(ilmp);
1388 
1389 	/*
1390 	 * Indicate that the filter has been used.  If a binding already exists
1391 	 * to the caller, indicate that this object is referenced.  This insures
1392 	 * we don't generate false unreferenced diagnostics from ldd -u/U or
1393 	 * debugging.  Don't create a binding regardless, as this filter may
1394 	 * have been dlopen()'ed.
1395 	 */
1396 	if (name && (ilmp != clmp)) {
1397 		Word	tracing = (LIST(clmp)->lm_flags &
1398 		    (LML_FLG_TRC_UNREF | LML_FLG_TRC_UNUSED));
1399 
1400 		if (tracing || DBG_ENABLED) {
1401 			Bnd_desc 	*bdp;
1402 			Aliste		idx;
1403 
1404 			FLAGS1(ilmp) |= FL1_RT_USED;
1405 
1406 			if ((tracing & LML_FLG_TRC_UNREF) || DBG_ENABLED) {
1407 				for (APLIST_TRAVERSE(CALLERS(ilmp), idx, bdp)) {
1408 					if (bdp->b_caller == clmp) {
1409 						bdp->b_flags |= BND_REFER;
1410 						break;
1411 					}
1412 				}
1413 			}
1414 		}
1415 	}
1416 
1417 	/*
1418 	 * If this is the first call to process this filter, establish the
1419 	 * filtee list.  If a configuration file exists, determine if any
1420 	 * filtee associations for this filter, and its filtee reference, are
1421 	 * defined.  Otherwise, process the filtee reference.  Any token
1422 	 * expansion is also completed at this point (i.e., $PLATFORM).
1423 	 */
1424 	filtees = (char *)STRTAB(ilmp) + DYN(ilmp)[ndx].d_un.d_val;
1425 	if (dip->di_info == 0) {
1426 		if (rtld_flags2 & RT_FL2_FLTCFG)
1427 			dip->di_info = elf_config_flt(lml, PATHNAME(ilmp),
1428 			    filtees);
1429 
1430 		if (dip->di_info == 0) {
1431 			DBG_CALL(Dbg_file_filter(lml, NAME(ilmp), filtees, 0));
1432 			if ((lml->lm_flags &
1433 			    (LML_FLG_TRC_VERBOSE | LML_FLG_TRC_SEARCH)) &&
1434 			    ((FLAGS1(ilmp) & FL1_RT_LDDSTUB) == 0))
1435 				(void) printf(MSG_INTL(MSG_LDD_FIL_FILTER),
1436 				    NAME(ilmp), filtees);
1437 
1438 			if ((dip->di_info = (void *)expand_paths(ilmp,
1439 			    filtees, PN_SER_FILTEE, 0)) == 0) {
1440 				elf_disable_filtee(ilmp, dip);
1441 				return ((Sym *)0);
1442 			}
1443 		}
1444 	}
1445 
1446 	/*
1447 	 * Traverse the filtee list, dlopen()'ing any objects specified and
1448 	 * using their group handle to lookup the symbol.
1449 	 */
1450 	for (any = 0, pnpp = (Pnode **)&(dip->di_info), pnp = *pnpp; pnp;
1451 	    pnpp = &pnp->p_next, pnp = *pnpp) {
1452 		int	mode;
1453 		Grp_hdl	*ghp;
1454 		Rt_map	*nlmp = 0;
1455 
1456 		if (pnp->p_len == 0)
1457 			continue;
1458 
1459 		/*
1460 		 * Establish the mode of the filtee from the filter.  As filtees
1461 		 * are loaded via a dlopen(), make sure that RTLD_GROUP is set
1462 		 * and the filtees aren't global.  It would be nice to have
1463 		 * RTLD_FIRST used here also, but as filters got out long before
1464 		 * RTLD_FIRST was introduced it's a little too late now.
1465 		 */
1466 		mode = MODE(ilmp) | RTLD_GROUP;
1467 		mode &= ~RTLD_GLOBAL;
1468 
1469 		/*
1470 		 * Insure that any auxiliary filter can locate symbols from its
1471 		 * caller.
1472 		 */
1473 		if (dip->di_flags & FLG_DI_AUXFLTR)
1474 			mode |= RTLD_PARENT;
1475 
1476 		/*
1477 		 * Process any hardware capability directory.  Establish a new
1478 		 * link-map control list from which to analyze any newly added
1479 		 * objects.
1480 		 */
1481 		if ((pnp->p_info == 0) && (pnp->p_orig & PN_TKN_HWCAP)) {
1482 			Lm_cntl	*lmc;
1483 			Aliste	lmco;
1484 
1485 			if (FLAGS(lml->lm_head) & FLG_RT_RELOCED) {
1486 				if ((lmc = alist_append(&lml->lm_lists, 0,
1487 				    sizeof (Lm_cntl), AL_CNT_LMLISTS)) == 0)
1488 					return ((Sym *)0);
1489 				lmco = (Aliste)((char *)lmc -
1490 				    (char *)lml->lm_lists);
1491 			} else {
1492 				lmc = 0;
1493 				lmco = ALIST_OFF_DATA;
1494 			}
1495 
1496 			pnp = hwcap_filtees(pnpp, lmco, lmc, dip, ilmp, filtees,
1497 			    mode, (FLG_RT_HANDLE | FLG_RT_HWCAP));
1498 
1499 			/*
1500 			 * Now that any hardware capability objects have been
1501 			 * processed, remove any link-map control list.
1502 			 */
1503 			if (lmc)
1504 				remove_cntl(lml, lmco);
1505 		}
1506 
1507 		if (pnp->p_len == 0)
1508 			continue;
1509 
1510 		/*
1511 		 * Process an individual filtee.
1512 		 */
1513 		if (pnp->p_info == 0) {
1514 			const char	*filtee = pnp->p_name;
1515 			int		audit = 0;
1516 
1517 			DBG_CALL(Dbg_file_filtee(lml, NAME(ilmp), filtee, 0));
1518 
1519 			ghp = 0;
1520 
1521 			/*
1522 			 * Determine if the reference link map is already
1523 			 * loaded.  As an optimization compare the filtee with
1524 			 * our interpretor.  The most common filter is
1525 			 * libdl.so.1, which is a filter on ld.so.1.
1526 			 */
1527 #if	defined(_ELF64)
1528 			if (strcmp(filtee, MSG_ORIG(MSG_PTH_RTLD_64)) == 0) {
1529 #else
1530 			if (strcmp(filtee, MSG_ORIG(MSG_PTH_RTLD)) == 0) {
1531 #endif
1532 				/*
1533 				 * Create an association between ld.so.1 and the
1534 				 * filter.  As an optimization, a handle for
1535 				 * ld.so.1 itself (required for the dlopen()
1536 				 * family filtering mechanism) shouldn't search
1537 				 * any dependencies of ld.so.1.  Omitting
1538 				 * GPD_ADDEPS prevents the addition of any
1539 				 * ld.so.1 dependencies to this handle.
1540 				 */
1541 				nlmp = lml_rtld.lm_head;
1542 				if ((ghp = hdl_create(&lml_rtld, nlmp, ilmp,
1543 				    (GPH_LDSO | GPH_FIRST | GPH_FILTEE),
1544 				    (GPD_DLSYM | GPD_RELOC), GPD_PARENT)) == 0)
1545 					nlmp = 0;
1546 
1547 				/*
1548 				 * Establish the filter handle to prevent any
1549 				 * recursion.
1550 				 */
1551 				if (nlmp && ghp)
1552 					pnp->p_info = (void *)ghp;
1553 
1554 				/*
1555 				 * Audit the filter/filtee established.  Ignore
1556 				 * any return from the auditor, as we can't
1557 				 * allow ignore filtering to ld.so.1, otherwise
1558 				 * nothing is going to work.
1559 				 */
1560 				if (nlmp && ((lml->lm_tflags | FLAGS1(ilmp)) &
1561 				    LML_TFLG_AUD_OBJFILTER))
1562 					(void) audit_objfilter(ilmp, filtees,
1563 					    nlmp, 0);
1564 
1565 			} else {
1566 				Rej_desc	rej = { 0 };
1567 				Lm_cntl		*lmc;
1568 				Aliste		lmco;
1569 
1570 				/*
1571 				 * Establish a new link-map control list from
1572 				 * which to analyze any newly added objects.
1573 				 */
1574 				if (FLAGS(lml->lm_head) & FLG_RT_RELOCED) {
1575 					if ((lmc =
1576 					    alist_append(&lml->lm_lists, 0,
1577 					    sizeof (Lm_cntl),
1578 					    AL_CNT_LMLISTS)) == 0)
1579 						return ((Sym *)0);
1580 					lmco = (Aliste)((char *)lmc -
1581 					    (char *)lml->lm_lists);
1582 				} else {
1583 					lmc = 0;
1584 					lmco = ALIST_OFF_DATA;
1585 				}
1586 
1587 				/*
1588 				 * Load the filtee.  Note, an auditor can
1589 				 * provide an alternative name.
1590 				 */
1591 				if ((nlmp = load_path(lml, lmco, &(pnp->p_name),
1592 				    ilmp, mode, FLG_RT_HANDLE, &ghp, 0,
1593 				    &rej)) == 0) {
1594 					file_notfound(LIST(ilmp), filtee, ilmp,
1595 					    FLG_RT_HANDLE, &rej);
1596 					remove_rej(&rej);
1597 				}
1598 				filtee = pnp->p_name;
1599 
1600 				/*
1601 				 * Establish the filter handle to prevent any
1602 				 * recursion.
1603 				 */
1604 				if (nlmp && ghp) {
1605 					ghp->gh_flags |= GPH_FILTEE;
1606 					pnp->p_info = (void *)ghp;
1607 				}
1608 
1609 				/*
1610 				 * Audit the filter/filtee established.  A
1611 				 * return of 0 indicates the auditor wishes to
1612 				 * ignore this filtee.
1613 				 */
1614 				if (nlmp && ((lml->lm_tflags | FLAGS1(ilmp)) &
1615 				    LML_TFLG_AUD_OBJFILTER)) {
1616 					if (audit_objfilter(ilmp, filtees,
1617 					    nlmp, 0) == 0) {
1618 						audit = 1;
1619 						nlmp = 0;
1620 					}
1621 				}
1622 
1623 				/*
1624 				 * Finish processing the objects associated with
1625 				 * this request.  Create an association between
1626 				 * this object and the originating filter to
1627 				 * provide sufficient information to tear down
1628 				 * this filtee if necessary.
1629 				 */
1630 				if (nlmp && ghp &&
1631 				    ((analyze_lmc(lml, lmco, nlmp) == 0) ||
1632 				    (relocate_lmc(lml, lmco, ilmp, nlmp) == 0)))
1633 					nlmp = 0;
1634 
1635 				/*
1636 				 * If the filtee has been successfully
1637 				 * processed, then create an association
1638 				 * between the filter and filtee.  This
1639 				 * association provides sufficient information
1640 				 * to tear down the filter and filtee if
1641 				 * necessary.
1642 				 */
1643 				DBG_CALL(Dbg_file_hdl_title(DBG_HDL_ADD));
1644 				if (nlmp && ghp &&
1645 				    (hdl_add(ghp, ilmp, GPD_FILTER) == 0))
1646 					nlmp = 0;
1647 
1648 				/*
1649 				 * If this filtee loading has failed, and we've
1650 				 * created a new link-map control list to which
1651 				 * this request has added objects, then remove
1652 				 * all the objects that have been associated to
1653 				 * this request.
1654 				 */
1655 				if ((nlmp == 0) && lmc && lmc->lc_head)
1656 					remove_lmc(lml, clmp, lmc, lmco, name);
1657 
1658 				/*
1659 				 * Remove any link-map control list that was
1660 				 * created.
1661 				 */
1662 				if (lmc)
1663 					remove_cntl(lml, lmco);
1664 			}
1665 
1666 			/*
1667 			 * Generate a diagnostic if the filtee couldn't be
1668 			 * loaded, null out the pnode entry, and continue
1669 			 * the search.  Otherwise, retain this group handle
1670 			 * for future symbol searches.
1671 			 */
1672 			if (nlmp == 0) {
1673 				DBG_CALL(Dbg_file_filtee(lml, 0, filtee,
1674 				    audit));
1675 
1676 				pnp->p_info = 0;
1677 				pnp->p_len = 0;
1678 				continue;
1679 			}
1680 		}
1681 
1682 		ghp = (Grp_hdl *)pnp->p_info;
1683 
1684 		/*
1685 		 * If we're just here to trigger filtee loading skip the symbol
1686 		 * lookup so we'll continue looking for additional filtees.
1687 		 */
1688 		if (name) {
1689 			Grp_desc	*gdp;
1690 			Sym		*sym = 0;
1691 			Aliste		idx;
1692 			Slookup		sl = *slp;
1693 
1694 			sl.sl_flags |= LKUP_FIRST;
1695 			any++;
1696 
1697 			/*
1698 			 * Look for the symbol in the handles dependencies.
1699 			 */
1700 			for (ALIST_TRAVERSE(ghp->gh_depends, idx, gdp)) {
1701 				if ((gdp->gd_flags & GPD_DLSYM) == 0)
1702 					continue;
1703 
1704 				/*
1705 				 * If our parent is a dependency don't look at
1706 				 * it (otherwise we are in a recursive loop).
1707 				 * This situation can occur with auxiliary
1708 				 * filters if the filtee has a dependency on the
1709 				 * filter.  This dependency isn't necessary as
1710 				 * auxiliary filters are opened RTLD_PARENT, but
1711 				 * users may still unknowingly add an explicit
1712 				 * dependency to the parent.
1713 				 */
1714 				if ((sl.sl_imap = gdp->gd_depend) == ilmp)
1715 					continue;
1716 
1717 				if (((sym = SYMINTP(sl.sl_imap)(&sl, dlmp,
1718 				    binfo)) != 0) ||
1719 				    (ghp->gh_flags & GPH_FIRST))
1720 					break;
1721 			}
1722 
1723 			/*
1724 			 * If a symbol has been found, indicate the binding
1725 			 * and return the symbol.
1726 			 */
1727 			if (sym) {
1728 				*binfo |= DBG_BINFO_FILTEE;
1729 				return (sym);
1730 			}
1731 		}
1732 
1733 		/*
1734 		 * If this object is tagged to terminate filtee processing we're
1735 		 * done.
1736 		 */
1737 		if (FLAGS1(ghp->gh_ownlmp) & FL1_RT_ENDFILTE)
1738 			break;
1739 	}
1740 
1741 	/*
1742 	 * If we're just here to trigger filtee loading then we're done.
1743 	 */
1744 	if (name == 0)
1745 		return ((Sym *)0);
1746 
1747 	/*
1748 	 * If no filtees have been found for a filter, clean up any Pnode
1749 	 * structures and disable their search completely.  For auxiliary
1750 	 * filters we can reselect the symbol search function so that we never
1751 	 * enter this routine again for this object.  For standard filters we
1752 	 * use the null symbol routine.
1753 	 */
1754 	if (any == 0) {
1755 		remove_pnode((Pnode *)dip->di_info);
1756 		elf_disable_filtee(ilmp, dip);
1757 		return ((Sym *)0);
1758 	}
1759 
1760 	return ((Sym *)0);
1761 }
1762 
1763 /*
1764  * Focal point for disabling error messages for auxiliary filters.  As an
1765  * auxiliary filter allows for filtee use, but provides a fallback should a
1766  * filtee not exist (or fail to load), any errors generated as a consequence of
1767  * trying to load the filtees are typically suppressed.  Setting RT_FL_SILENCERR
1768  * suppresses errors generated by eprint(), but insures a debug diagnostic is
1769  * produced.  ldd(1) employs printf(), and here, the selection of whether to
1770  * print a diagnostic in regards to auxiliary filters is a little more complex.
1771  *
1772  *   .	The determination of whether to produce an ldd message, or a fatal
1773  *	error message is driven by LML_FLG_TRC_ENABLE.
1774  *   .	More detailed ldd messages may also be driven off of LML_FLG_TRC_WARN,
1775  *	(ldd -d/-r), LML_FLG_TRC_VERBOSE (ldd -v), LML_FLG_TRC_SEARCH (ldd -s),
1776  *	and LML_FLG_TRC_UNREF/LML_FLG_TRC_UNUSED (ldd -U/-u).
1777  *
1778  *   .	If the calling object is lddstub, then several classes of message are
1779  *	suppressed.  The user isn't trying to diagnose lddstub, this is simply
1780  *	a stub executable employed to preload a user specified library against.
1781  *
1782  *   .	If RT_FL_SILENCERR is in effect then any generic ldd() messages should
1783  *	be suppressed.  All detailed ldd messages should still be produced.
1784  */
1785 Sym *
1786 elf_lookup_filtee(Slookup *slp, Rt_map **dlmp, uint_t *binfo, uint_t ndx)
1787 {
1788 	Sym	*sym;
1789 	Dyninfo	*dip = &DYNINFO(slp->sl_imap)[ndx];
1790 	int	silent = 0;
1791 
1792 	/*
1793 	 * Make sure this entry is still acting as a filter.  We may have tried
1794 	 * to process this previously, and disabled it if the filtee couldn't
1795 	 * be processed.  However, other entries may provide different filtees
1796 	 * that are yet to be completed.
1797 	 */
1798 	if (dip->di_flags == 0)
1799 		return ((Sym *)0);
1800 
1801 	/*
1802 	 * Indicate whether an error message is required should this filtee not
1803 	 * be found, based on the type of filter.
1804 	 */
1805 	if ((dip->di_flags & FLG_DI_AUXFLTR) &&
1806 	    ((rtld_flags & (RT_FL_WARNFLTR | RT_FL_SILENCERR)) == 0)) {
1807 		rtld_flags |= RT_FL_SILENCERR;
1808 		silent = 1;
1809 	}
1810 
1811 	sym = _elf_lookup_filtee(slp, dlmp, binfo, ndx);
1812 
1813 	if (silent)
1814 		rtld_flags &= ~RT_FL_SILENCERR;
1815 
1816 	return (sym);
1817 }
1818 
1819 /*
1820  * Compute the elf hash value (as defined in the ELF access library).
1821  * The form of the hash table is:
1822  *
1823  *	|--------------|
1824  *	| # of buckets |
1825  *	|--------------|
1826  *	| # of chains  |
1827  *	|--------------|
1828  *	|   bucket[]   |
1829  *	|--------------|
1830  *	|   chain[]    |
1831  *	|--------------|
1832  */
1833 ulong_t
1834 elf_hash(const char *name)
1835 {
1836 	uint_t	hval = 0;
1837 
1838 	while (*name) {
1839 		uint_t	g;
1840 		hval = (hval << 4) + *name++;
1841 		if ((g = (hval & 0xf0000000)) != 0)
1842 			hval ^= g >> 24;
1843 		hval &= ~g;
1844 	}
1845 	return ((ulong_t)hval);
1846 }
1847 
1848 /*
1849  * If flag argument has LKUP_SPEC set, we treat undefined symbols of type
1850  * function specially in the executable - if they have a value, even though
1851  * undefined, we use that value.  This allows us to associate all references
1852  * to a function's address to a single place in the process: the plt entry
1853  * for that function in the executable.  Calls to lookup from plt binding
1854  * routines do NOT set LKUP_SPEC in the flag.
1855  */
1856 Sym *
1857 elf_find_sym(Slookup *slp, Rt_map **dlmp, uint_t *binfo)
1858 {
1859 	const char	*name = slp->sl_name;
1860 	Rt_map		*ilmp = slp->sl_imap;
1861 	ulong_t		hash = slp->sl_hash;
1862 	uint_t		ndx, htmp, buckets, *chainptr;
1863 	Sym		*sym, *symtabptr;
1864 	char		*strtabptr, *strtabname;
1865 	uint_t		flags1;
1866 	Syminfo		*sip;
1867 
1868 	/*
1869 	 * If we're only here to establish a symbols index, skip the diagnostic
1870 	 * used to trace a symbol search.
1871 	 */
1872 	if ((slp->sl_flags & LKUP_SYMNDX) == 0)
1873 		DBG_CALL(Dbg_syms_lookup(ilmp, name, MSG_ORIG(MSG_STR_ELF)));
1874 
1875 	if (HASH(ilmp) == 0)
1876 		return ((Sym *)0);
1877 
1878 	buckets = HASH(ilmp)[0];
1879 	/* LINTED */
1880 	htmp = (uint_t)hash % buckets;
1881 
1882 	/*
1883 	 * Get the first symbol on hash chain and initialize the string
1884 	 * and symbol table pointers.
1885 	 */
1886 	if ((ndx = HASH(ilmp)[htmp + 2]) == 0)
1887 		return ((Sym *)0);
1888 
1889 	chainptr = HASH(ilmp) + 2 + buckets;
1890 	strtabptr = STRTAB(ilmp);
1891 	symtabptr = SYMTAB(ilmp);
1892 
1893 	while (ndx) {
1894 		sym = symtabptr + ndx;
1895 		strtabname = strtabptr + sym->st_name;
1896 
1897 		/*
1898 		 * Compare the symbol found with the name required.  If the
1899 		 * names don't match continue with the next hash entry.
1900 		 */
1901 		if ((*strtabname++ != *name) || strcmp(strtabname, &name[1])) {
1902 			if ((ndx = chainptr[ndx]) != 0)
1903 				continue;
1904 			return ((Sym *)0);
1905 		}
1906 
1907 		/*
1908 		 * The Solaris ld does not put DT_VERSYM in the dynamic
1909 		 * section, but the GNU ld does. The GNU runtime linker
1910 		 * interprets the top bit of the 16-bit Versym value
1911 		 * (0x8000) as the "hidden" bit. If this bit is set,
1912 		 * the linker is supposed to act as if that symbol does
1913 		 * not exist. The hidden bit supports their versioning
1914 		 * scheme, which allows multiple incompatible functions
1915 		 * with the same name to exist at different versions
1916 		 * within an object. The Solaris linker does not support this
1917 		 * mechanism, or the model of interface evolution that
1918 		 * it allows, but we honor the hidden bit in GNU ld
1919 		 * produced objects in order to interoperate with them.
1920 		 */
1921 		if ((VERSYM(ilmp) != NULL) &&
1922 		    ((VERSYM(ilmp)[ndx] & 0x8000) != 0)) {
1923 			DBG_CALL(Dbg_syms_ignore_gnuver(ilmp, name,
1924 			    ndx, VERSYM(ilmp)[ndx]));
1925 			if ((ndx = chainptr[ndx]) != 0)
1926 				continue;
1927 			return ((Sym *)0);
1928 		}
1929 
1930 		/*
1931 		 * If we're only here to establish a symbols index, we're done.
1932 		 */
1933 		if (slp->sl_flags & LKUP_SYMNDX)
1934 			return (sym);
1935 
1936 		/*
1937 		 * If we find a match and the symbol is defined, return the
1938 		 * symbol pointer and the link map in which it was found.
1939 		 */
1940 		if (sym->st_shndx != SHN_UNDEF) {
1941 			*dlmp = ilmp;
1942 			*binfo |= DBG_BINFO_FOUND;
1943 			if ((FLAGS(ilmp) & FLG_RT_OBJINTPO) ||
1944 			    ((FLAGS(ilmp) & FLG_RT_SYMINTPO) &&
1945 			    is_sym_interposer(ilmp, sym)))
1946 				*binfo |= DBG_BINFO_INTERPOSE;
1947 			break;
1948 
1949 		/*
1950 		 * If we find a match and the symbol is undefined, the
1951 		 * symbol type is a function, and the value of the symbol
1952 		 * is non zero, then this is a special case.  This allows
1953 		 * the resolution of a function address to the plt[] entry.
1954 		 * See SPARC ABI, Dynamic Linking, Function Addresses for
1955 		 * more details.
1956 		 */
1957 		} else if ((slp->sl_flags & LKUP_SPEC) &&
1958 		    (FLAGS(ilmp) & FLG_RT_ISMAIN) && (sym->st_value != 0) &&
1959 		    (ELF_ST_TYPE(sym->st_info) == STT_FUNC)) {
1960 			*dlmp = ilmp;
1961 			*binfo |= (DBG_BINFO_FOUND | DBG_BINFO_PLTADDR);
1962 			if ((FLAGS(ilmp) & FLG_RT_OBJINTPO) ||
1963 			    ((FLAGS(ilmp) & FLG_RT_SYMINTPO) &&
1964 			    is_sym_interposer(ilmp, sym)))
1965 				*binfo |= DBG_BINFO_INTERPOSE;
1966 			return (sym);
1967 		}
1968 
1969 		/*
1970 		 * Undefined symbol.
1971 		 */
1972 		return ((Sym *)0);
1973 	}
1974 
1975 	/*
1976 	 * We've found a match.  Determine if the defining object contains
1977 	 * symbol binding information.
1978 	 */
1979 	if ((sip = SYMINFO(ilmp)) != 0)
1980 		sip += ndx;
1981 
1982 	/*
1983 	 * If this definition is a singleton, and we haven't followed a default
1984 	 * symbol search knowing that we're looking for a singleton (presumably
1985 	 * because the symbol definition has been changed since the referring
1986 	 * object was built), then reject this binding so that the caller can
1987 	 * fall back to a standard symbol search.
1988 	 */
1989 	if ((ELF_ST_VISIBILITY(sym->st_other) == STV_SINGLETON) &&
1990 	    (((slp->sl_flags & LKUP_STANDARD) == 0) ||
1991 	    (((slp->sl_flags & LKUP_SINGLETON) == 0) &&
1992 	    (LIST(ilmp)->lm_flags & LML_FLG_GROUPSEXIST)))) {
1993 		DBG_CALL(Dbg_bind_reject(slp->sl_cmap, ilmp, name,
1994 		    DBG_BNDREJ_SINGLE));
1995 		*binfo |= BINFO_REJSINGLE;
1996 		*binfo &= ~DBG_BINFO_MSK;
1997 		return ((Sym *)0);
1998 	}
1999 
2000 	/*
2001 	 * If this is a direct binding request, but the symbol definition has
2002 	 * disabled directly binding to it (presumably because the symbol
2003 	 * definition has been changed since the referring object was built),
2004 	 * indicate this failure so that the caller can fall back to a standard
2005 	 * symbol search.
2006 	 */
2007 	if (sip && (slp->sl_flags & LKUP_DIRECT) &&
2008 	    (sip->si_flags & SYMINFO_FLG_NOEXTDIRECT)) {
2009 		DBG_CALL(Dbg_bind_reject(slp->sl_cmap, ilmp, name,
2010 		    DBG_BNDREJ_NODIR));
2011 		*binfo |= BINFO_REJDIRECT;
2012 		*binfo &= ~DBG_BINFO_MSK;
2013 		return ((Sym *)0);
2014 	}
2015 
2016 	/*
2017 	 * Determine whether this object is acting as a filter.
2018 	 */
2019 	if (((flags1 = FLAGS1(ilmp)) & MSK_RT_FILTER) == 0)
2020 		return (sym);
2021 
2022 	/*
2023 	 * Determine if this object offers per-symbol filtering, and if so,
2024 	 * whether this symbol references a filtee.
2025 	 */
2026 	if (sip && (flags1 & (FL1_RT_SYMSFLTR | FL1_RT_SYMAFLTR))) {
2027 		/*
2028 		 * If this is a standard filter reference, and no standard
2029 		 * filtees remain to be inspected, we're done.  If this is an
2030 		 * auxiliary filter reference, and no auxiliary filtees remain,
2031 		 * we'll fall through in case any object filtering is available.
2032 		 */
2033 		if ((sip->si_flags & SYMINFO_FLG_FILTER) &&
2034 		    (SYMSFLTRCNT(ilmp) == 0))
2035 			return ((Sym *)0);
2036 
2037 		if ((sip->si_flags & SYMINFO_FLG_FILTER) ||
2038 		    ((sip->si_flags & SYMINFO_FLG_AUXILIARY) &&
2039 		    SYMAFLTRCNT(ilmp))) {
2040 			Sym	*fsym;
2041 
2042 			/*
2043 			 * This symbol has an associated filtee.  Lookup the
2044 			 * symbol in the filtee, and if it is found return it.
2045 			 * If the symbol doesn't exist, and this is a standard
2046 			 * filter, return an error, otherwise fall through to
2047 			 * catch any object filtering that may be available.
2048 			 */
2049 			if ((fsym = elf_lookup_filtee(slp, dlmp, binfo,
2050 			    sip->si_boundto)) != 0)
2051 				return (fsym);
2052 			if (sip->si_flags & SYMINFO_FLG_FILTER)
2053 				return ((Sym *)0);
2054 		}
2055 	}
2056 
2057 	/*
2058 	 * Determine if this object provides global filtering.
2059 	 */
2060 	if (flags1 & (FL1_RT_OBJSFLTR | FL1_RT_OBJAFLTR)) {
2061 		Sym	*fsym;
2062 
2063 		if (OBJFLTRNDX(ilmp) != FLTR_DISABLED) {
2064 			/*
2065 			 * This object has an associated filtee.  Lookup the
2066 			 * symbol in the filtee, and if it is found return it.
2067 			 * If the symbol doesn't exist, and this is a standard
2068 			 * filter, return and error, otherwise return the symbol
2069 			 * within the filter itself.
2070 			 */
2071 			if ((fsym = elf_lookup_filtee(slp, dlmp, binfo,
2072 			    OBJFLTRNDX(ilmp))) != 0)
2073 				return (fsym);
2074 		}
2075 
2076 		if (flags1 & FL1_RT_OBJSFLTR)
2077 			return ((Sym *)0);
2078 	}
2079 	return (sym);
2080 }
2081 
2082 /*
2083  * Create a new Rt_map structure for an ELF object and initialize
2084  * all values.
2085  */
2086 Rt_map *
2087 elf_new_lm(Lm_list *lml, const char *pname, const char *oname, Dyn *ld,
2088     ulong_t addr, ulong_t etext, Aliste lmco, ulong_t msize, ulong_t entry,
2089     ulong_t paddr, ulong_t padimsize, Mmap *mmaps, uint_t mmapcnt)
2090 {
2091 	Rt_map		*lmp;
2092 	ulong_t		base, fltr = 0, audit = 0, cfile = 0, crle = 0;
2093 	Xword		rpath = 0;
2094 	Ehdr		*ehdr = (Ehdr *)addr;
2095 
2096 	DBG_CALL(Dbg_file_elf(lml, pname, (ulong_t)ld, addr, msize, entry,
2097 	    lml->lm_lmidstr, lmco));
2098 
2099 	/*
2100 	 * Allocate space for the link-map and private elf information.  Once
2101 	 * these are allocated and initialized, we can use remove_so(0, lmp) to
2102 	 * tear down the link-map should any failures occur.
2103 	 */
2104 	if ((lmp = calloc(sizeof (Rt_map), 1)) == 0)
2105 		return (0);
2106 	if ((ELFPRV(lmp) = calloc(sizeof (Rt_elfp), 1)) == 0) {
2107 		free(lmp);
2108 		return (0);
2109 	}
2110 
2111 	/*
2112 	 * All fields not filled in were set to 0 by calloc.
2113 	 */
2114 	ORIGNAME(lmp) = PATHNAME(lmp) = NAME(lmp) = (char *)pname;
2115 	DYN(lmp) = ld;
2116 	ADDR(lmp) = addr;
2117 	MSIZE(lmp) = msize;
2118 	ENTRY(lmp) = (Addr)entry;
2119 	SYMINTP(lmp) = elf_find_sym;
2120 	ETEXT(lmp) = etext;
2121 	FCT(lmp) = &elf_fct;
2122 	LIST(lmp) = lml;
2123 	PADSTART(lmp) = paddr;
2124 	PADIMLEN(lmp) = padimsize;
2125 	THREADID(lmp) = rt_thr_self();
2126 	OBJFLTRNDX(lmp) = FLTR_DISABLED;
2127 	SORTVAL(lmp) = -1;
2128 
2129 	MMAPS(lmp) = mmaps;
2130 	MMAPCNT(lmp) = mmapcnt;
2131 	ASSERT(mmapcnt != 0);
2132 
2133 	/*
2134 	 * If this is a shared object, add the base address to each address.
2135 	 * if this is an executable, use address as is.
2136 	 */
2137 	if (ehdr->e_type == ET_EXEC) {
2138 		base = 0;
2139 		FLAGS(lmp) |= FLG_RT_FIXED;
2140 	} else
2141 		base = addr;
2142 
2143 	/*
2144 	 * Fill in rest of the link map entries with information from the file's
2145 	 * dynamic structure.
2146 	 */
2147 	if (ld) {
2148 		uint_t		dynndx = 0;
2149 		Xword		pltpadsz = 0;
2150 		Rti_desc	*rti;
2151 
2152 		/* CSTYLED */
2153 		for ( ; ld->d_tag != DT_NULL; ++ld, dynndx++) {
2154 			switch ((Xword)ld->d_tag) {
2155 			case DT_SYMTAB:
2156 				SYMTAB(lmp) = (void *)(ld->d_un.d_ptr + base);
2157 				break;
2158 			case DT_SUNW_SYMTAB:
2159 				SUNWSYMTAB(lmp) =
2160 				    (void *)(ld->d_un.d_ptr + base);
2161 				break;
2162 			case DT_SUNW_SYMSZ:
2163 				SUNWSYMSZ(lmp) = ld->d_un.d_val;
2164 				break;
2165 			case DT_STRTAB:
2166 				STRTAB(lmp) = (void *)(ld->d_un.d_ptr + base);
2167 				break;
2168 			case DT_SYMENT:
2169 				SYMENT(lmp) = ld->d_un.d_val;
2170 				break;
2171 			case DT_FEATURE_1:
2172 				ld->d_un.d_val |= DTF_1_PARINIT;
2173 				if (ld->d_un.d_val & DTF_1_CONFEXP)
2174 					crle = 1;
2175 				break;
2176 			case DT_MOVESZ:
2177 				MOVESZ(lmp) = ld->d_un.d_val;
2178 				FLAGS(lmp) |= FLG_RT_MOVE;
2179 				break;
2180 			case DT_MOVEENT:
2181 				MOVEENT(lmp) = ld->d_un.d_val;
2182 				break;
2183 			case DT_MOVETAB:
2184 				MOVETAB(lmp) = (void *)(ld->d_un.d_ptr + base);
2185 				break;
2186 			case DT_REL:
2187 			case DT_RELA:
2188 				/*
2189 				 * At this time, ld.so. can only handle one
2190 				 * type of relocation per object.
2191 				 */
2192 				REL(lmp) = (void *)(ld->d_un.d_ptr + base);
2193 				break;
2194 			case DT_RELSZ:
2195 			case DT_RELASZ:
2196 				RELSZ(lmp) = ld->d_un.d_val;
2197 				break;
2198 			case DT_RELENT:
2199 			case DT_RELAENT:
2200 				RELENT(lmp) = ld->d_un.d_val;
2201 				break;
2202 			case DT_RELCOUNT:
2203 			case DT_RELACOUNT:
2204 				RELACOUNT(lmp) = (uint_t)ld->d_un.d_val;
2205 				break;
2206 			case DT_TEXTREL:
2207 				FLAGS1(lmp) |= FL1_RT_TEXTREL;
2208 				break;
2209 			case DT_HASH:
2210 				HASH(lmp) = (uint_t *)(ld->d_un.d_ptr + base);
2211 				break;
2212 			case DT_PLTGOT:
2213 				PLTGOT(lmp) = (uint_t *)(ld->d_un.d_ptr + base);
2214 				break;
2215 			case DT_PLTRELSZ:
2216 				PLTRELSZ(lmp) = ld->d_un.d_val;
2217 				break;
2218 			case DT_JMPREL:
2219 				JMPREL(lmp) = (void *)(ld->d_un.d_ptr + base);
2220 				break;
2221 			case DT_INIT:
2222 				if (ld->d_un.d_ptr != NULL)
2223 					INIT(lmp) =
2224 					    (void (*)())(ld->d_un.d_ptr + base);
2225 				break;
2226 			case DT_FINI:
2227 				if (ld->d_un.d_ptr != NULL)
2228 					FINI(lmp) =
2229 					    (void (*)())(ld->d_un.d_ptr + base);
2230 				break;
2231 			case DT_INIT_ARRAY:
2232 				INITARRAY(lmp) = (Addr *)(ld->d_un.d_ptr +
2233 				    base);
2234 				break;
2235 			case DT_INIT_ARRAYSZ:
2236 				INITARRAYSZ(lmp) = (uint_t)ld->d_un.d_val;
2237 				break;
2238 			case DT_FINI_ARRAY:
2239 				FINIARRAY(lmp) = (Addr *)(ld->d_un.d_ptr +
2240 				    base);
2241 				break;
2242 			case DT_FINI_ARRAYSZ:
2243 				FINIARRAYSZ(lmp) = (uint_t)ld->d_un.d_val;
2244 				break;
2245 			case DT_PREINIT_ARRAY:
2246 				PREINITARRAY(lmp) = (Addr *)(ld->d_un.d_ptr +
2247 				    base);
2248 				break;
2249 			case DT_PREINIT_ARRAYSZ:
2250 				PREINITARRAYSZ(lmp) = (uint_t)ld->d_un.d_val;
2251 				break;
2252 			case DT_RPATH:
2253 			case DT_RUNPATH:
2254 				rpath = ld->d_un.d_val;
2255 				break;
2256 			case DT_FILTER:
2257 				fltr = ld->d_un.d_val;
2258 				OBJFLTRNDX(lmp) = dynndx;
2259 				FLAGS1(lmp) |= FL1_RT_OBJSFLTR;
2260 				break;
2261 			case DT_AUXILIARY:
2262 				if (!(rtld_flags & RT_FL_NOAUXFLTR)) {
2263 					fltr = ld->d_un.d_val;
2264 					OBJFLTRNDX(lmp) = dynndx;
2265 				}
2266 				FLAGS1(lmp) |= FL1_RT_OBJAFLTR;
2267 				break;
2268 			case DT_SUNW_FILTER:
2269 				SYMSFLTRCNT(lmp)++;
2270 				FLAGS1(lmp) |= FL1_RT_SYMSFLTR;
2271 				break;
2272 			case DT_SUNW_AUXILIARY:
2273 				if (!(rtld_flags & RT_FL_NOAUXFLTR)) {
2274 					SYMAFLTRCNT(lmp)++;
2275 				}
2276 				FLAGS1(lmp) |= FL1_RT_SYMAFLTR;
2277 				break;
2278 			case DT_DEPAUDIT:
2279 				if (!(rtld_flags & RT_FL_NOAUDIT))
2280 					audit = ld->d_un.d_val;
2281 				break;
2282 			case DT_CONFIG:
2283 				cfile = ld->d_un.d_val;
2284 				break;
2285 			case DT_DEBUG:
2286 				/*
2287 				 * DT_DEBUG entries are only created in
2288 				 * dynamic objects that require an interpretor
2289 				 * (ie. all dynamic executables and some shared
2290 				 * objects), and provide for a hand-shake with
2291 				 * debuggers.  This entry is initialized to
2292 				 * zero by the link-editor.  If a debugger has
2293 				 * us and updated this entry set the debugger
2294 				 * flag, and finish initializing the debugging
2295 				 * structure (see setup() also).  Switch off any
2296 				 * configuration object use as most debuggers
2297 				 * can't handle fixed dynamic executables as
2298 				 * dependencies, and we can't handle requests
2299 				 * like object padding for alternative objects.
2300 				 */
2301 				if (ld->d_un.d_ptr)
2302 					rtld_flags |=
2303 					    (RT_FL_DEBUGGER | RT_FL_NOOBJALT);
2304 				ld->d_un.d_ptr = (Addr)&r_debug;
2305 				break;
2306 			case DT_VERNEED:
2307 				VERNEED(lmp) = (Verneed *)(ld->d_un.d_ptr +
2308 				    base);
2309 				break;
2310 			case DT_VERNEEDNUM:
2311 				/* LINTED */
2312 				VERNEEDNUM(lmp) = (int)ld->d_un.d_val;
2313 				break;
2314 			case DT_VERDEF:
2315 				VERDEF(lmp) = (Verdef *)(ld->d_un.d_ptr + base);
2316 				break;
2317 			case DT_VERDEFNUM:
2318 				/* LINTED */
2319 				VERDEFNUM(lmp) = (int)ld->d_un.d_val;
2320 				break;
2321 			case DT_VERSYM:
2322 				/*
2323 				 * The Solaris ld does not produce DT_VERSYM,
2324 				 * but the GNU ld does, in order to support
2325 				 * their style of versioning, which differs
2326 				 * from ours in some ways, while using the
2327 				 * same data structures. The presence of
2328 				 * DT_VERSYM therefore means that GNU
2329 				 * versioning rules apply to the given file.
2330 				 * If DT_VERSYM is not present, then Solaris
2331 				 * versioning rules apply.
2332 				 */
2333 				VERSYM(lmp) = (Versym *)(ld->d_un.d_ptr + base);
2334 				break;
2335 			case DT_BIND_NOW:
2336 				if ((ld->d_un.d_val & DF_BIND_NOW) &&
2337 				    ((rtld_flags2 & RT_FL2_BINDLAZY) == 0)) {
2338 					MODE(lmp) |= RTLD_NOW;
2339 					MODE(lmp) &= ~RTLD_LAZY;
2340 				}
2341 				break;
2342 			case DT_FLAGS:
2343 				FLAGS2(lmp) |= FL2_RT_DTFLAGS;
2344 				if (ld->d_un.d_val & DF_SYMBOLIC)
2345 					FLAGS1(lmp) |= FL1_RT_SYMBOLIC;
2346 				if (ld->d_un.d_val & DF_TEXTREL)
2347 					FLAGS1(lmp) |= FL1_RT_TEXTREL;
2348 				if ((ld->d_un.d_val & DF_BIND_NOW) &&
2349 				    ((rtld_flags2 & RT_FL2_BINDLAZY) == 0)) {
2350 					MODE(lmp) |= RTLD_NOW;
2351 					MODE(lmp) &= ~RTLD_LAZY;
2352 				}
2353 				/*
2354 				 * Capture any static TLS use, and enforce that
2355 				 * this object be non-deletable.
2356 				 */
2357 				if (ld->d_un.d_val & DF_STATIC_TLS) {
2358 					FLAGS1(lmp) |= FL1_RT_TLSSTAT;
2359 					MODE(lmp) |= RTLD_NODELETE;
2360 				}
2361 				break;
2362 			case DT_FLAGS_1:
2363 				if (ld->d_un.d_val & DF_1_DISPRELPND)
2364 					FLAGS1(lmp) |= FL1_RT_DISPREL;
2365 				if (ld->d_un.d_val & DF_1_GROUP)
2366 					FLAGS(lmp) |=
2367 					    (FLG_RT_SETGROUP | FLG_RT_HANDLE);
2368 				if ((ld->d_un.d_val & DF_1_NOW) &&
2369 				    ((rtld_flags2 & RT_FL2_BINDLAZY) == 0)) {
2370 					MODE(lmp) |= RTLD_NOW;
2371 					MODE(lmp) &= ~RTLD_LAZY;
2372 				}
2373 				if (ld->d_un.d_val & DF_1_NODELETE)
2374 					MODE(lmp) |= RTLD_NODELETE;
2375 				if (ld->d_un.d_val & DF_1_INITFIRST)
2376 					FLAGS(lmp) |= FLG_RT_INITFRST;
2377 				if (ld->d_un.d_val & DF_1_NOOPEN)
2378 					FLAGS(lmp) |= FLG_RT_NOOPEN;
2379 				if (ld->d_un.d_val & DF_1_LOADFLTR)
2380 					FLAGS(lmp) |= FLG_RT_LOADFLTR;
2381 				if (ld->d_un.d_val & DF_1_NODUMP)
2382 					FLAGS(lmp) |= FLG_RT_NODUMP;
2383 				if (ld->d_un.d_val & DF_1_CONFALT)
2384 					crle = 1;
2385 				if (ld->d_un.d_val & DF_1_DIRECT)
2386 					FLAGS1(lmp) |= FL1_RT_DIRECT;
2387 				if (ld->d_un.d_val & DF_1_NODEFLIB)
2388 					FLAGS1(lmp) |= FL1_RT_NODEFLIB;
2389 				if (ld->d_un.d_val & DF_1_ENDFILTEE)
2390 					FLAGS1(lmp) |= FL1_RT_ENDFILTE;
2391 				if (ld->d_un.d_val & DF_1_TRANS)
2392 					FLAGS(lmp) |= FLG_RT_TRANS;
2393 #ifndef	EXPAND_RELATIVE
2394 				if (ld->d_un.d_val & DF_1_ORIGIN)
2395 					FLAGS1(lmp) |= FL1_RT_RELATIVE;
2396 #endif
2397 				/*
2398 				 * Global auditing is only meaningful when
2399 				 * specified by the initiating object of the
2400 				 * process - typically the dynamic executable.
2401 				 * If this is the initiaiting object, its link-
2402 				 * map will not yet have been added to the
2403 				 * link-map list, and consequently the link-map
2404 				 * list is empty.  (see setup()).
2405 				 */
2406 				if (ld->d_un.d_val & DF_1_GLOBAUDIT) {
2407 					if (lml_main.lm_head == 0)
2408 						FLAGS1(lmp) |= FL1_RT_GLOBAUD;
2409 					else
2410 						DBG_CALL(Dbg_audit_ignore(lmp));
2411 				}
2412 
2413 				/*
2414 				 * If this object identifies itself as an
2415 				 * interposer, but relocation processing has
2416 				 * already started, then demote it.  It's too
2417 				 * late to guarantee complete interposition.
2418 				 */
2419 				/* BEGIN CSTYLED */
2420 				if (ld->d_un.d_val &
2421 				    (DF_1_INTERPOSE | DF_1_SYMINTPOSE)) {
2422 				    if (lml->lm_flags & LML_FLG_STARTREL) {
2423 					DBG_CALL(Dbg_util_intoolate(lmp));
2424 					if (lml->lm_flags & LML_FLG_TRC_ENABLE)
2425 					    (void) printf(
2426 						MSG_INTL(MSG_LDD_REL_ERR2),
2427 						NAME(lmp));
2428 				    } else if (ld->d_un.d_val & DF_1_INTERPOSE)
2429 					FLAGS(lmp) |= FLG_RT_OBJINTPO;
2430 				    else
2431 					FLAGS(lmp) |= FLG_RT_SYMINTPO;
2432 				}
2433 				/* END CSTYLED */
2434 				break;
2435 			case DT_SYMINFO:
2436 				SYMINFO(lmp) = (Syminfo *)(ld->d_un.d_ptr +
2437 				    base);
2438 				break;
2439 			case DT_SYMINENT:
2440 				SYMINENT(lmp) = ld->d_un.d_val;
2441 				break;
2442 			case DT_PLTPAD:
2443 				PLTPAD(lmp) = (void *)(ld->d_un.d_ptr + base);
2444 				break;
2445 			case DT_PLTPADSZ:
2446 				pltpadsz = ld->d_un.d_val;
2447 				break;
2448 			case DT_SUNW_RTLDINF:
2449 				/*
2450 				 * Maintain a list of RTLDINFO structures.
2451 				 * Typically, libc is the only supplier, and
2452 				 * only one structure is provided.  However,
2453 				 * multiple suppliers and multiple structures
2454 				 * are supported.  For example, one structure
2455 				 * may provide thread_init, and another
2456 				 * structure may provide atexit reservations.
2457 				 */
2458 				if ((rti = alist_append(&lml->lm_rti, 0,
2459 				    sizeof (Rti_desc), AL_CNT_RTLDINFO)) == 0) {
2460 					remove_so(0, lmp);
2461 					return (0);
2462 				}
2463 				rti->rti_lmp = lmp;
2464 				rti->rti_info = (void *)(ld->d_un.d_ptr + base);
2465 				break;
2466 			case DT_SUNW_SORTENT:
2467 				SUNWSORTENT(lmp) = ld->d_un.d_val;
2468 				break;
2469 			case DT_SUNW_SYMSORT:
2470 				SUNWSYMSORT(lmp) =
2471 				    (void *)(ld->d_un.d_ptr + base);
2472 				break;
2473 			case DT_SUNW_SYMSORTSZ:
2474 				SUNWSYMSORTSZ(lmp) = ld->d_un.d_val;
2475 				break;
2476 			case DT_DEPRECATED_SPARC_REGISTER:
2477 			case M_DT_REGISTER:
2478 				FLAGS(lmp) |= FLG_RT_REGSYMS;
2479 				break;
2480 			case M_DT_PLTRESERVE:
2481 				PLTRESERVE(lmp) = (void *)(ld->d_un.d_ptr +
2482 				    base);
2483 				break;
2484 			}
2485 		}
2486 
2487 		if (PLTPAD(lmp)) {
2488 			if (pltpadsz == (Xword)0)
2489 				PLTPAD(lmp) = 0;
2490 			else
2491 				PLTPADEND(lmp) = (void *)((Addr)PLTPAD(lmp) +
2492 				    pltpadsz);
2493 		}
2494 
2495 		/*
2496 		 * Allocate a Dynamic Info structure.
2497 		 */
2498 		if ((DYNINFO(lmp) = calloc((size_t)dynndx,
2499 		    sizeof (Dyninfo))) == 0) {
2500 			remove_so(0, lmp);
2501 			return (0);
2502 		}
2503 		DYNINFOCNT(lmp) = dynndx;
2504 	}
2505 
2506 	/*
2507 	 * A dynsym contains only global functions. We want to have
2508 	 * a version of it that also includes local functions, so that
2509 	 * dladdr() will be able to report names for local functions
2510 	 * when used to generate a stack trace for a stripped file.
2511 	 * This version of the dynsym is provided via DT_SUNW_SYMTAB.
2512 	 *
2513 	 * In producing DT_SUNW_SYMTAB, ld uses a non-obvious trick
2514 	 * in order to avoid having to have two copies of the global
2515 	 * symbols held in DT_SYMTAB: The local symbols are placed in
2516 	 * a separate section than the globals in the dynsym, but the
2517 	 * linker conspires to put the data for these two sections adjacent
2518 	 * to each other. DT_SUNW_SYMTAB points at the top of the local
2519 	 * symbols, and DT_SUNW_SYMSZ is the combined length of both tables.
2520 	 *
2521 	 * If the two sections are not adjacent, then something went wrong
2522 	 * at link time. We use ASSERT to kill the process if this is
2523 	 * a debug build. In a production build, we will silently ignore
2524 	 * the presence of the .ldynsym and proceed. We can detect this
2525 	 * situation by checking to see that DT_SYMTAB lies in
2526 	 * the range given by DT_SUNW_SYMTAB/DT_SUNW_SYMSZ.
2527 	 */
2528 	if ((SUNWSYMTAB(lmp) != NULL) &&
2529 	    (((char *)SYMTAB(lmp) <= (char *)SUNWSYMTAB(lmp)) ||
2530 	    (((char *)SYMTAB(lmp) >=
2531 	    (SUNWSYMSZ(lmp) + (char *)SUNWSYMTAB(lmp)))))) {
2532 		ASSERT(0);
2533 		SUNWSYMTAB(lmp) = NULL;
2534 		SUNWSYMSZ(lmp) = 0;
2535 	}
2536 
2537 	/*
2538 	 * If configuration file use hasn't been disabled, and a configuration
2539 	 * file hasn't already been set via an environment variable, see if any
2540 	 * application specific configuration file is specified.  An LD_CONFIG
2541 	 * setting is used first, but if this image was generated via crle(1)
2542 	 * then a default configuration file is a fall-back.
2543 	 */
2544 	if ((!(rtld_flags & RT_FL_NOCFG)) && (config->c_name == 0)) {
2545 		if (cfile)
2546 			config->c_name = (const char *)(cfile +
2547 			    (char *)STRTAB(lmp));
2548 		else if (crle) {
2549 			rtld_flags |= RT_FL_CONFAPP;
2550 #ifndef	EXPAND_RELATIVE
2551 			FLAGS1(lmp) |= FL1_RT_RELATIVE;
2552 #endif
2553 		}
2554 	}
2555 
2556 	if (rpath)
2557 		RPATH(lmp) = (char *)(rpath + (char *)STRTAB(lmp));
2558 	if (fltr) {
2559 		/*
2560 		 * If this object is a global filter, duplicate the filtee
2561 		 * string name(s) so that REFNAME() is available in core files.
2562 		 * This cludge was useful for debuggers at one point, but only
2563 		 * when the filtee name was an individual full path.
2564 		 */
2565 		if ((REFNAME(lmp) = strdup(fltr + (char *)STRTAB(lmp))) == 0) {
2566 			remove_so(0, lmp);
2567 			return (0);
2568 		}
2569 	}
2570 
2571 	if (rtld_flags & RT_FL_RELATIVE)
2572 		FLAGS1(lmp) |= FL1_RT_RELATIVE;
2573 
2574 	/*
2575 	 * For Intel ABI compatibility.  It's possible that a JMPREL can be
2576 	 * specified without any other relocations (e.g. a dynamic executable
2577 	 * normally only contains .plt relocations).  If this is the case then
2578 	 * no REL, RELSZ or RELENT will have been created.  For us to be able
2579 	 * to traverse the .plt relocations under LD_BIND_NOW we need to know
2580 	 * the RELENT for these relocations.  Refer to elf_reloc() for more
2581 	 * details.
2582 	 */
2583 	if (!RELENT(lmp) && JMPREL(lmp))
2584 		RELENT(lmp) = sizeof (Rel);
2585 
2586 	/*
2587 	 * Establish any per-object auditing.  If we're establishing `main's
2588 	 * link-map its too early to go searching for audit objects so just
2589 	 * hold the object name for later (see setup()).
2590 	 */
2591 	if (audit) {
2592 		char	*cp = audit + (char *)STRTAB(lmp);
2593 
2594 		if (*cp) {
2595 			if (((AUDITORS(lmp) =
2596 			    calloc(1, sizeof (Audit_desc))) == 0) ||
2597 			    ((AUDITORS(lmp)->ad_name = strdup(cp)) == 0)) {
2598 				remove_so(0, lmp);
2599 				return (0);
2600 			}
2601 			if (lml_main.lm_head) {
2602 				if (audit_setup(lmp, AUDITORS(lmp), 0) == 0) {
2603 					remove_so(0, lmp);
2604 					return (0);
2605 				}
2606 				FLAGS1(lmp) |= AUDITORS(lmp)->ad_flags;
2607 				lml->lm_flags |= LML_FLG_LOCAUDIT;
2608 			}
2609 		}
2610 	}
2611 
2612 	if ((CONDVAR(lmp) = rt_cond_create()) == 0) {
2613 		remove_so(0, lmp);
2614 		return (0);
2615 	}
2616 	if (oname && ((append_alias(lmp, oname, 0)) == 0)) {
2617 		remove_so(0, lmp);
2618 		return (0);
2619 	}
2620 
2621 	/*
2622 	 * Add the mapped object to the end of the link map list.
2623 	 */
2624 	lm_append(lml, lmco, lmp);
2625 	return (lmp);
2626 }
2627 
2628 /*
2629  * Assign hardware/software capabilities.
2630  */
2631 void
2632 cap_assign(Cap *cap, Rt_map *lmp)
2633 {
2634 	while (cap->c_tag != CA_SUNW_NULL) {
2635 		switch (cap->c_tag) {
2636 		case CA_SUNW_HW_1:
2637 			HWCAP(lmp) = cap->c_un.c_val;
2638 			break;
2639 		case CA_SUNW_SF_1:
2640 			SFCAP(lmp) = cap->c_un.c_val;
2641 		}
2642 		cap++;
2643 	}
2644 }
2645 
2646 /*
2647  * Map in an ELF object.
2648  * Takes an open file descriptor for the object to map and its pathname; returns
2649  * a pointer to a Rt_map structure for this object, or 0 on error.
2650  */
2651 static Rt_map *
2652 elf_map_so(Lm_list *lml, Aliste lmco, const char *pname, const char *oname,
2653     int fd)
2654 {
2655 	int		i; 		/* general temporary */
2656 	Off		memsize = 0;	/* total memory size of pathname */
2657 	Off		mentry;		/* entry point */
2658 	Ehdr		*ehdr;		/* ELF header of ld.so */
2659 	Phdr		*phdr;		/* first Phdr in file */
2660 	Phdr		*phdr0;		/* Saved first Phdr in file */
2661 	Phdr		*pptr;		/* working Phdr */
2662 	Phdr		*fph = 0;	/* first loadable Phdr */
2663 	Phdr		*lph;		/* last loadable Phdr */
2664 	Phdr		*lfph = 0;	/* last loadable (filesz != 0) Phdr */
2665 	Phdr		*lmph = 0;	/* last loadable (memsz != 0) Phdr */
2666 	Phdr		*swph = 0;	/* program header for SUNWBSS */
2667 	Phdr		*tlph = 0;	/* program header for PT_TLS */
2668 	Phdr		*unwindph = 0;	/* program header for PT_SUNW_UNWIND */
2669 	Cap		*cap = 0;	/* program header for SUNWCAP */
2670 	Dyn		*mld = 0;	/* DYNAMIC structure for pathname */
2671 	size_t		size;		/* size of elf and program headers */
2672 	caddr_t		faddr = 0;	/* mapping address of pathname */
2673 	Rt_map		*lmp;		/* link map created */
2674 	caddr_t		paddr;		/* start of padded image */
2675 	Off		plen;		/* size of image including padding */
2676 	Half		etype;
2677 	int		fixed;
2678 	Mmap		*mmaps;
2679 	uint_t		mmapcnt = 0;
2680 	Xword		align = 0;
2681 
2682 	/* LINTED */
2683 	ehdr = (Ehdr *)fmap->fm_maddr;
2684 
2685 	/*
2686 	 * If this a relocatable object then special processing is required.
2687 	 */
2688 	if ((etype = ehdr->e_type) == ET_REL)
2689 		return (elf_obj_file(lml, lmco, pname, fd));
2690 
2691 	/*
2692 	 * If this isn't a dynamic executable or shared object we can't process
2693 	 * it.  If this is a dynamic executable then all addresses are fixed.
2694 	 */
2695 	if (etype == ET_EXEC) {
2696 		fixed = 1;
2697 	} else if (etype == ET_DYN) {
2698 		fixed = 0;
2699 	} else {
2700 		Conv_inv_buf_t inv_buf;
2701 
2702 		eprintf(lml, ERR_ELF, MSG_INTL(MSG_GEN_BADTYPE), pname,
2703 		    conv_ehdr_type(etype, 0, &inv_buf));
2704 		return (0);
2705 	}
2706 
2707 	/*
2708 	 * If our original mapped page was not large enough to hold all the
2709 	 * program headers remap them.
2710 	 */
2711 	size = (size_t)((char *)ehdr->e_phoff +
2712 	    (ehdr->e_phnum * ehdr->e_phentsize));
2713 	if (size > fmap->fm_fsize) {
2714 		eprintf(lml, ERR_FATAL, MSG_INTL(MSG_GEN_CORTRUNC), pname);
2715 		return (0);
2716 	}
2717 	if (size > fmap->fm_msize) {
2718 		fmap_setup();
2719 		if ((fmap->fm_maddr = mmap(fmap->fm_maddr, size, PROT_READ,
2720 		    fmap->fm_mflags, fd, 0)) == MAP_FAILED) {
2721 			int	err = errno;
2722 			eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAP), pname,
2723 			    strerror(err));
2724 			return (0);
2725 		}
2726 		fmap->fm_msize = size;
2727 		/* LINTED */
2728 		ehdr = (Ehdr *)fmap->fm_maddr;
2729 	}
2730 	/* LINTED */
2731 	phdr0 = phdr = (Phdr *)((char *)ehdr + ehdr->e_ehsize);
2732 
2733 	/*
2734 	 * Get entry point.
2735 	 */
2736 	mentry = ehdr->e_entry;
2737 
2738 	/*
2739 	 * Point at program headers and perform some basic validation.
2740 	 */
2741 	for (i = 0, pptr = phdr; i < (int)ehdr->e_phnum; i++,
2742 	    pptr = (Phdr *)((Off)pptr + ehdr->e_phentsize)) {
2743 		if ((pptr->p_type == PT_LOAD) ||
2744 		    (pptr->p_type == PT_SUNWBSS)) {
2745 
2746 			if (fph == 0) {
2747 				fph = pptr;
2748 			/* LINTED argument lph is initialized in first pass */
2749 			} else if (pptr->p_vaddr <= lph->p_vaddr) {
2750 				eprintf(lml, ERR_ELF,
2751 				    MSG_INTL(MSG_GEN_INVPRGHDR), pname);
2752 				return (0);
2753 			}
2754 
2755 			lph = pptr;
2756 
2757 			if (pptr->p_memsz)
2758 				lmph = pptr;
2759 			if (pptr->p_filesz)
2760 				lfph = pptr;
2761 			if (pptr->p_type == PT_SUNWBSS)
2762 				swph = pptr;
2763 			if (pptr->p_align > align)
2764 				align = pptr->p_align;
2765 
2766 		} else if (pptr->p_type == PT_DYNAMIC) {
2767 			mld = (Dyn *)(pptr->p_vaddr);
2768 		} else if ((pptr->p_type == PT_TLS) && pptr->p_memsz) {
2769 			tlph = pptr;
2770 		} else if (pptr->p_type == PT_SUNWCAP) {
2771 			cap = (Cap *)(pptr->p_vaddr);
2772 		} else if (pptr->p_type == PT_SUNW_UNWIND) {
2773 			unwindph = pptr;
2774 		}
2775 	}
2776 
2777 #if defined(MAP_ALIGN)
2778 	/*
2779 	 * Make sure the maximum page alignment is a power of 2 >= the default
2780 	 * segment alignment, for use with MAP_ALIGN.
2781 	 */
2782 	align = S_ROUND(align, M_SEGM_ALIGN);
2783 #endif
2784 
2785 	/*
2786 	 * We'd better have at least one loadable segment, together with some
2787 	 * specified file and memory size.
2788 	 */
2789 	if ((fph == 0) || (lmph == 0) || (lfph == 0)) {
2790 		eprintf(lml, ERR_ELF, MSG_INTL(MSG_GEN_NOLOADSEG), pname);
2791 		return (0);
2792 	}
2793 
2794 	/*
2795 	 * Check that the files size accounts for the loadable sections
2796 	 * we're going to map in (failure to do this may cause spurious
2797 	 * bus errors if we're given a truncated file).
2798 	 */
2799 	if (fmap->fm_fsize < ((size_t)lfph->p_offset + lfph->p_filesz)) {
2800 		eprintf(lml, ERR_FATAL, MSG_INTL(MSG_GEN_CORTRUNC), pname);
2801 		return (0);
2802 	}
2803 
2804 	/*
2805 	 * Memsize must be page rounded so that if we add object padding
2806 	 * at the end it will start at the beginning of a page.
2807 	 */
2808 	plen = memsize = M_PROUND((lmph->p_vaddr + lmph->p_memsz) -
2809 	    M_PTRUNC((ulong_t)fph->p_vaddr));
2810 
2811 	/*
2812 	 * Determine if an existing mapping is acceptable.
2813 	 */
2814 	if (interp && (lml->lm_flags & LML_FLG_BASELM) &&
2815 	    (strcmp(pname, interp->i_name) == 0)) {
2816 		/*
2817 		 * If this is the interpreter then it has already been mapped
2818 		 * and we have the address so don't map it again.  Note that
2819 		 * the common occurrence of a reference to the interpretor
2820 		 * (libdl -> ld.so.1) will have been caught during filter
2821 		 * initialization (see elf_lookup_filtee()).  However, some
2822 		 * ELF implementations are known to record libc.so.1 as the
2823 		 * interpretor, and thus this test catches this behavior.
2824 		 */
2825 		paddr = faddr = interp->i_faddr;
2826 
2827 	} else if ((fixed == 0) && (r_debug.rtd_objpad == 0) &&
2828 	    (memsize <= fmap->fm_msize) && ((fph->p_flags & PF_W) == 0) &&
2829 	    (fph == lph) && (fph->p_filesz == fph->p_memsz) &&
2830 	    (((Xword)fmap->fm_maddr % align) == 0)) {
2831 		size_t	rsize;
2832 
2833 		/*
2834 		 * If the file contains a single segment, and the mapping
2835 		 * required has already been established from the initial fmap
2836 		 * mapping, then we don't need to do anything more.  Reset the
2837 		 * fmap address so that any later files start a new fmap.  This
2838 		 * is really an optimization for filters, such as libdl.so,
2839 		 * libthread, etc. that are constructed to be a single text
2840 		 * segment.
2841 		 */
2842 		paddr = faddr = fmap->fm_maddr;
2843 
2844 		/*
2845 		 * Free any unused mapping by assigning the fmap buffer to the
2846 		 * unused region.  fmap_setup() will unmap this area and
2847 		 * establish defaults for future mappings.
2848 		 */
2849 		rsize = M_PROUND(fph->p_filesz);
2850 		fmap->fm_maddr += rsize;
2851 		fmap->fm_msize -= rsize;
2852 		fmap_setup();
2853 	}
2854 
2855 	/*
2856 	 * Allocate a mapping array to retain mapped segment information.
2857 	 */
2858 	if ((mmaps = calloc(ehdr->e_phnum, sizeof (Mmap))) == 0)
2859 		return (0);
2860 
2861 	/*
2862 	 * If we're reusing an existing mapping determine the objects etext
2863 	 * address.  Otherwise map the file (which will calculate the etext
2864 	 * address as part of the mapping process).
2865 	 */
2866 	if (faddr) {
2867 		caddr_t	base;
2868 
2869 		if (fixed)
2870 			base = 0;
2871 		else
2872 			base = faddr;
2873 
2874 		/* LINTED */
2875 		phdr0 = phdr = (Phdr *)((char *)faddr + ehdr->e_ehsize);
2876 
2877 		for (i = 0, pptr = phdr; i < (int)ehdr->e_phnum; i++,
2878 		    pptr = (Phdr *)((Off)pptr + ehdr->e_phentsize)) {
2879 			if (pptr->p_type != PT_LOAD)
2880 				continue;
2881 
2882 			mmaps[mmapcnt].m_vaddr = (pptr->p_vaddr + base);
2883 			mmaps[mmapcnt].m_msize = pptr->p_memsz;
2884 			mmaps[mmapcnt].m_fsize = pptr->p_filesz;
2885 			mmaps[mmapcnt].m_perm = (PROT_READ | PROT_EXEC);
2886 			mmapcnt++;
2887 
2888 			if (!(pptr->p_flags & PF_W)) {
2889 				fmap->fm_etext = (ulong_t)pptr->p_vaddr +
2890 				    (ulong_t)pptr->p_memsz +
2891 				    (ulong_t)(fixed ? 0 : faddr);
2892 			}
2893 		}
2894 	} else {
2895 		/*
2896 		 * Map the file.
2897 		 */
2898 		if (!(faddr = elf_map_it(lml, pname, memsize, ehdr, fph, lph,
2899 		    &phdr, &paddr, &plen, fixed, fd, align, mmaps, &mmapcnt)))
2900 			return (0);
2901 	}
2902 
2903 	/*
2904 	 * Calculate absolute base addresses and entry points.
2905 	 */
2906 	if (!fixed) {
2907 		if (mld)
2908 			/* LINTED */
2909 			mld = (Dyn *)((Off)mld + faddr);
2910 		if (cap)
2911 			/* LINTED */
2912 			cap = (Cap *)((Off)cap + faddr);
2913 		mentry += (Off)faddr;
2914 	}
2915 
2916 	/*
2917 	 * Create new link map structure for newly mapped shared object.
2918 	 */
2919 	if (!(lmp = elf_new_lm(lml, pname, oname, mld, (ulong_t)faddr,
2920 	    fmap->fm_etext, lmco, memsize, mentry, (ulong_t)paddr, plen, mmaps,
2921 	    mmapcnt))) {
2922 		(void) munmap((caddr_t)faddr, memsize);
2923 		return (0);
2924 	}
2925 
2926 	/*
2927 	 * Start the system loading in the ELF information we'll be processing.
2928 	 */
2929 	if (REL(lmp)) {
2930 		(void) madvise((void *)ADDR(lmp), (uintptr_t)REL(lmp) +
2931 		    (uintptr_t)RELSZ(lmp) - (uintptr_t)ADDR(lmp),
2932 		    MADV_WILLNEED);
2933 	}
2934 
2935 	/*
2936 	 * If this shared object contains any special segments, record them.
2937 	 */
2938 	if (swph) {
2939 		FLAGS(lmp) |= FLG_RT_SUNWBSS;
2940 		SUNWBSS(lmp) = phdr + (swph - phdr0);
2941 	}
2942 	if (tlph && (tls_assign(lml, lmp, (phdr + (tlph - phdr0))) == 0)) {
2943 		remove_so(lml, lmp);
2944 		return (0);
2945 	}
2946 
2947 	if (unwindph)
2948 		PTUNWIND(lmp) = phdr + (unwindph - phdr0);
2949 
2950 	if (cap)
2951 		cap_assign(cap, lmp);
2952 
2953 	return (lmp);
2954 }
2955 
2956 /*
2957  * Function to correct protection settings.  Segments are all mapped initially
2958  * with permissions as given in the segment header.  We need to turn on write
2959  * permissions on a text segment if there are any relocations against that
2960  * segment, and them turn write permission back off again before returning
2961  * control to the user.  This function turns the permission on or off depending
2962  * on the value of the argument.
2963  */
2964 int
2965 elf_set_prot(Rt_map *lmp, int permission)
2966 {
2967 	Mmap	*mmaps;
2968 
2969 	/*
2970 	 * If this is an allocated image (ie. a relocatable object) we can't
2971 	 * mprotect() anything.
2972 	 */
2973 	if (FLAGS(lmp) & FLG_RT_IMGALLOC)
2974 		return (1);
2975 
2976 	DBG_CALL(Dbg_file_prot(lmp, permission));
2977 
2978 	for (mmaps = MMAPS(lmp); mmaps->m_vaddr; mmaps++) {
2979 		if (mmaps->m_perm & PROT_WRITE)
2980 			continue;
2981 
2982 		if (mprotect(mmaps->m_vaddr, mmaps->m_msize,
2983 		    (mmaps->m_perm | permission)) == -1) {
2984 			int	err = errno;
2985 			eprintf(LIST(lmp), ERR_FATAL, MSG_INTL(MSG_SYS_MPROT),
2986 			    NAME(lmp), strerror(err));
2987 			return (0);
2988 		}
2989 	}
2990 	return (1);
2991 }
2992 
2993 /*
2994  * Build full pathname of shared object from given directory name and filename.
2995  */
2996 static char *
2997 elf_get_so(const char *dir, const char *file)
2998 {
2999 	static char	pname[PATH_MAX];
3000 
3001 	(void) snprintf(pname, PATH_MAX, MSG_ORIG(MSG_FMT_PATH), dir, file);
3002 	return (pname);
3003 }
3004 
3005 /*
3006  * The copy relocation is recorded in a copy structure which will be applied
3007  * after all other relocations are carried out.  This provides for copying data
3008  * that must be relocated itself (ie. pointers in shared objects).  This
3009  * structure also provides a means of binding RTLD_GROUP dependencies to any
3010  * copy relocations that have been taken from any group members.
3011  *
3012  * If the size of the .bss area available for the copy information is not the
3013  * same as the source of the data inform the user if we're under ldd(1) control
3014  * (this checking was only established in 5.3, so by only issuing an error via
3015  * ldd(1) we maintain the standard set by previous releases).
3016  */
3017 int
3018 elf_copy_reloc(char *name, Sym *rsym, Rt_map *rlmp, void *radd, Sym *dsym,
3019     Rt_map *dlmp, const void *dadd)
3020 {
3021 	Rel_copy	rc;
3022 	Lm_list		*lml = LIST(rlmp);
3023 
3024 	rc.r_name = name;
3025 	rc.r_rsym = rsym;		/* the new reference symbol and its */
3026 	rc.r_rlmp = rlmp;		/*	associated link-map */
3027 	rc.r_dlmp = dlmp;		/* the defining link-map */
3028 	rc.r_dsym = dsym;		/* the original definition */
3029 	rc.r_radd = radd;
3030 	rc.r_dadd = dadd;
3031 
3032 	if (rsym->st_size > dsym->st_size)
3033 		rc.r_size = (size_t)dsym->st_size;
3034 	else
3035 		rc.r_size = (size_t)rsym->st_size;
3036 
3037 	if (alist_append(&COPY_R(dlmp), &rc, sizeof (Rel_copy),
3038 	    AL_CNT_COPYREL) == 0) {
3039 		if (!(lml->lm_flags & LML_FLG_TRC_WARN))
3040 			return (0);
3041 		else
3042 			return (1);
3043 	}
3044 	if (!(FLAGS1(dlmp) & FL1_RT_COPYTOOK)) {
3045 		if (aplist_append(&COPY_S(rlmp), dlmp,
3046 		    AL_CNT_COPYREL) == NULL) {
3047 			if (!(lml->lm_flags & LML_FLG_TRC_WARN))
3048 				return (0);
3049 			else
3050 				return (1);
3051 		}
3052 		FLAGS1(dlmp) |= FL1_RT_COPYTOOK;
3053 	}
3054 
3055 	/*
3056 	 * If we are tracing (ldd), warn the user if
3057 	 *	1) the size from the reference symbol differs from the
3058 	 *	   copy definition. We can only copy as much data as the
3059 	 *	   reference (dynamic executables) entry allows.
3060 	 *	2) the copy definition has STV_PROTECTED visibility.
3061 	 */
3062 	if (lml->lm_flags & LML_FLG_TRC_WARN) {
3063 		if (rsym->st_size != dsym->st_size) {
3064 			(void) printf(MSG_INTL(MSG_LDD_CPY_SIZDIF),
3065 			    _conv_reloc_type(M_R_COPY), demangle(name),
3066 			    NAME(rlmp), EC_XWORD(rsym->st_size),
3067 			    NAME(dlmp), EC_XWORD(dsym->st_size));
3068 			if (rsym->st_size > dsym->st_size)
3069 				(void) printf(MSG_INTL(MSG_LDD_CPY_INSDATA),
3070 				    NAME(dlmp));
3071 			else
3072 				(void) printf(MSG_INTL(MSG_LDD_CPY_DATRUNC),
3073 				    NAME(rlmp));
3074 		}
3075 
3076 		if (ELF_ST_VISIBILITY(dsym->st_other) == STV_PROTECTED) {
3077 			(void) printf(MSG_INTL(MSG_LDD_CPY_PROT),
3078 			    _conv_reloc_type(M_R_COPY), demangle(name),
3079 			    NAME(dlmp));
3080 		}
3081 	}
3082 
3083 	DBG_CALL(Dbg_reloc_apply_val(lml, ELF_DBG_RTLD, (Xword)radd,
3084 	    (Xword)rc.r_size));
3085 	return (1);
3086 }
3087 
3088 /*
3089  * Determine the symbol location of an address within a link-map.  Look for
3090  * the nearest symbol (whose value is less than or equal to the required
3091  * address).  This is the object specific part of dladdr().
3092  */
3093 static void
3094 elf_dladdr(ulong_t addr, Rt_map *lmp, Dl_info *dlip, void **info, int flags)
3095 {
3096 	ulong_t		ndx, cnt, base, _value;
3097 	Sym		*sym, *_sym = NULL;
3098 	const char	*str;
3099 	int		_flags;
3100 	uint_t		*dynaddr_ndx;
3101 	uint_t		dynaddr_n = 0;
3102 	ulong_t		value;
3103 
3104 	/*
3105 	 * If SUNWSYMTAB() is non-NULL, then it sees a special version of
3106 	 * the dynsym that starts with any local function symbols that exist in
3107 	 * the library and then moves to the data held in SYMTAB(). In this
3108 	 * case, SUNWSYMSZ tells us how long the symbol table is. The
3109 	 * availability of local function symbols will enhance the results
3110 	 * we can provide.
3111 	 *
3112 	 * If SUNWSYMTAB() is non-NULL, then there might also be a
3113 	 * SUNWSYMSORT() vector associated with it. SUNWSYMSORT() contains
3114 	 * an array of indices into SUNWSYMTAB, sorted by increasing
3115 	 * address. We can use this to do an O(log N) search instead of a
3116 	 * brute force search.
3117 	 *
3118 	 * If SUNWSYMTAB() is NULL, then SYMTAB() references a dynsym that
3119 	 * contains only global symbols. In that case, the length of
3120 	 * the symbol table comes from the nchain field of the related
3121 	 * symbol lookup hash table.
3122 	 */
3123 	str = STRTAB(lmp);
3124 	if (SUNWSYMSZ(lmp) == NULL) {
3125 		sym = SYMTAB(lmp);
3126 		/*
3127 		 * If we don't have a .hash table there are no symbols
3128 		 * to look at.
3129 		 */
3130 		if (HASH(lmp) == 0)
3131 			return;
3132 		cnt = HASH(lmp)[1];
3133 	} else {
3134 		sym = SUNWSYMTAB(lmp);
3135 		cnt = SUNWSYMSZ(lmp) / SYMENT(lmp);
3136 		dynaddr_ndx = SUNWSYMSORT(lmp);
3137 		if (dynaddr_ndx != NULL)
3138 			dynaddr_n = SUNWSYMSORTSZ(lmp) / SUNWSORTENT(lmp);
3139 	}
3140 
3141 	if (FLAGS(lmp) & FLG_RT_FIXED)
3142 		base = 0;
3143 	else
3144 		base = ADDR(lmp);
3145 
3146 	if (dynaddr_n > 0) {		/* Binary search */
3147 		long	low = 0, low_bnd;
3148 		long	high = dynaddr_n - 1, high_bnd;
3149 		long	mid;
3150 		Sym	*mid_sym;
3151 
3152 		/*
3153 		 * Note that SUNWSYMSORT only contains symbols types that
3154 		 * supply memory addresses, so there's no need to check and
3155 		 * filter out any other types.
3156 		 */
3157 		low_bnd = low;
3158 		high_bnd = high;
3159 		while (low <= high) {
3160 			mid = (low + high) / 2;
3161 			mid_sym = &sym[dynaddr_ndx[mid]];
3162 			value = mid_sym->st_value + base;
3163 			if (addr < value) {
3164 				if ((sym[dynaddr_ndx[high]].st_value + base) >=
3165 				    addr)
3166 					high_bnd = high;
3167 				high = mid - 1;
3168 			} else if (addr > value) {
3169 				if ((sym[dynaddr_ndx[low]].st_value + base) <=
3170 				    addr)
3171 					low_bnd = low;
3172 				low = mid + 1;
3173 			} else {
3174 				_sym = mid_sym;
3175 				_value = value;
3176 				break;
3177 			}
3178 		}
3179 		/*
3180 		 * If the above didn't find it exactly, then we must
3181 		 * return the closest symbol with a value that doesn't
3182 		 * exceed the one we are looking for. If that symbol exists,
3183 		 * it will lie in the range bounded by low_bnd and
3184 		 * high_bnd. This is a linear search, but a short one.
3185 		 */
3186 		if (_sym == NULL) {
3187 			for (mid = low_bnd; mid <= high_bnd; mid++) {
3188 				mid_sym = &sym[dynaddr_ndx[mid]];
3189 				value = mid_sym->st_value + base;
3190 				if (addr >= value) {
3191 					_sym = mid_sym;
3192 					_value = value;
3193 				} else {
3194 					break;
3195 				}
3196 			}
3197 		}
3198 	} else {			/* Linear search */
3199 		for (_value = 0, sym++, ndx = 1; ndx < cnt; ndx++, sym++) {
3200 			/*
3201 			 * Skip expected symbol types that are not functions
3202 			 * or data:
3203 			 *	- A symbol table starts with an undefined symbol
3204 			 *		in slot 0. If we are using SUNWSYMTAB(),
3205 			 *		there will be a second undefined symbol
3206 			 *		right before the globals.
3207 			 *	- The local part of SUNWSYMTAB() contains a
3208 			 *		series of function symbols. Each section
3209 			 *		starts with an initial STT_FILE symbol.
3210 			 */
3211 			if ((sym->st_shndx == SHN_UNDEF) ||
3212 			    (ELF_ST_TYPE(sym->st_info) == STT_FILE))
3213 				continue;
3214 
3215 			value = sym->st_value + base;
3216 			if (value > addr)
3217 				continue;
3218 			if (value < _value)
3219 				continue;
3220 
3221 			_sym = sym;
3222 			_value = value;
3223 
3224 			/*
3225 			 * Note, because we accept local and global symbols
3226 			 * we could find a section symbol that matches the
3227 			 * associated address, which means that the symbol
3228 			 * name will be null.  In this case continue the
3229 			 * search in case we can find a global symbol of
3230 			 * the same value.
3231 			 */
3232 			if ((value == addr) &&
3233 			    (ELF_ST_TYPE(sym->st_info) != STT_SECTION))
3234 				break;
3235 		}
3236 	}
3237 
3238 	_flags = flags & RTLD_DL_MASK;
3239 	if (_sym) {
3240 		if (_flags == RTLD_DL_SYMENT)
3241 			*info = (void *)_sym;
3242 		else if (_flags == RTLD_DL_LINKMAP)
3243 			*info = (void *)lmp;
3244 
3245 		dlip->dli_sname = str + _sym->st_name;
3246 		dlip->dli_saddr = (void *)_value;
3247 	} else {
3248 		/*
3249 		 * addr lies between the beginning of the mapped segment and
3250 		 * the first global symbol. We have no symbol to return
3251 		 * and the caller requires one. We use _START_, the base
3252 		 * address of the mapping.
3253 		 */
3254 
3255 		if (_flags == RTLD_DL_SYMENT) {
3256 			/*
3257 			 * An actual symbol struct is needed, so we
3258 			 * construct one for _START_. To do this in a
3259 			 * fully accurate way requires a different symbol
3260 			 * for each mapped segment. This requires the
3261 			 * use of dynamic memory and a mutex. That's too much
3262 			 * plumbing for a fringe case of limited importance.
3263 			 *
3264 			 * Fortunately, we can simplify:
3265 			 *    - Only the st_size and st_info fields are useful
3266 			 *	outside of the linker internals. The others
3267 			 *	reference things that outside code cannot see,
3268 			 *	and can be set to 0.
3269 			 *    - It's just a label and there is no size
3270 			 *	to report. So, the size should be 0.
3271 			 * This means that only st_info needs a non-zero
3272 			 * (constant) value. A static struct will suffice.
3273 			 * It must be const (readonly) so the caller can't
3274 			 * change its meaning for subsequent callers.
3275 			 */
3276 			static const Sym fsym = { 0, 0, 0,
3277 				ELF_ST_INFO(STB_LOCAL, STT_OBJECT) };
3278 			*info = (void *) &fsym;
3279 		}
3280 
3281 		dlip->dli_sname = MSG_ORIG(MSG_SYM_START);
3282 		dlip->dli_saddr = (void *) ADDR(lmp);
3283 	}
3284 }
3285 
3286 static void
3287 elf_lazy_cleanup(APlist *alp)
3288 {
3289 	Rt_map	*lmp;
3290 	Aliste	idx;
3291 
3292 	/*
3293 	 * Cleanup any link-maps added to this dynamic list and free it.
3294 	 */
3295 	for (APLIST_TRAVERSE(alp, idx, lmp))
3296 		FLAGS(lmp) &= ~FLG_RT_TMPLIST;
3297 	free(alp);
3298 }
3299 
3300 /*
3301  * This routine is called as a last fall-back to search for a symbol from a
3302  * standard relocation.  To maintain lazy loadings goal of reducing the number
3303  * of objects mapped, any symbol search is first carried out using the objects
3304  * that already exist in the process (either on a link-map list or handle).
3305  * If a symbol can't be found, and lazy dependencies are still pending, this
3306  * routine loads the dependencies in an attempt to locate the symbol.
3307  *
3308  * Only new objects are inspected as we will have already inspected presently
3309  * loaded objects before calling this routine.  However, a new object may not
3310  * be new - although the di_lmp might be zero, the object may have been mapped
3311  * as someone elses dependency.  Thus there's a possibility of some symbol
3312  * search duplication.
3313  */
3314 Sym *
3315 elf_lazy_find_sym(Slookup *slp, Rt_map **_lmp, uint_t *binfo)
3316 {
3317 	Sym		*sym = 0;
3318 	APlist		*alist = NULL;
3319 	Aliste		idx;
3320 	Rt_map		*lmp1, *lmp = slp->sl_imap;
3321 	const char	*name = slp->sl_name;
3322 
3323 	/*
3324 	 * Generate a local list of new objects to process.  This list can grow
3325 	 * as each object supplies its own lazy dependencies.
3326 	 */
3327 	if (aplist_append(&alist, lmp, AL_CNT_LAZYFIND) == NULL)
3328 		return (NULL);
3329 	FLAGS(lmp) |= FLG_RT_TMPLIST;
3330 
3331 	for (APLIST_TRAVERSE(alist, idx, lmp1)) {
3332 		uint_t	cnt = 0;
3333 		Slookup	sl = *slp;
3334 		Dyninfo	*dip, *pdip;
3335 
3336 		/*
3337 		 * Discard any relocation index from further symbol searches.
3338 		 * This index will have already been used to trigger any
3339 		 * necessary lazy-loads, and it might be because one of these
3340 		 * lazy loads have failed that we're here performing this
3341 		 * fallback.  By removing the relocation index we don't try
3342 		 * and perform the same failed lazy loading activity again.
3343 		 */
3344 		sl.sl_rsymndx = 0;
3345 
3346 		/*
3347 		 * Loop through the lazy DT_NEEDED entries examining each object
3348 		 * for the required symbol.  If the symbol is not found, the
3349 		 * object is in turn added to the local alist, so that the
3350 		 * objects lazy DT_NEEDED entries can be examined.
3351 		 */
3352 		lmp = lmp1;
3353 		for (dip = DYNINFO(lmp), pdip = NULL; cnt < DYNINFOCNT(lmp);
3354 		    cnt++, pdip = dip++) {
3355 			Rt_map *nlmp;
3356 
3357 			if (((dip->di_flags & FLG_DI_LAZY) == 0) ||
3358 			    dip->di_info)
3359 				continue;
3360 
3361 			/*
3362 			 * If this object has already failed to lazy load, and
3363 			 * we're still processing the same runtime linker
3364 			 * operation that produced the failure, don't bother
3365 			 * to try and load the object again.
3366 			 */
3367 			if ((dip->di_flags & FLG_DI_LAZYFAIL) && pdip &&
3368 			    (pdip->di_flags & FLG_DI_POSFLAG1)) {
3369 				if (pdip->di_info == (void *)ld_entry_cnt)
3370 					continue;
3371 
3372 				dip->di_flags &= ~FLG_DI_LAZYFAIL;
3373 				pdip->di_info = NULL;
3374 			}
3375 
3376 			/*
3377 			 * Try loading this lazy dependency.  If the object
3378 			 * can't be loaded, consider this non-fatal and continue
3379 			 * the search.  Lazy loaded dependencies need not exist
3380 			 * and their loading should only turn out to be fatal
3381 			 * if they are required to satisfy a relocation.
3382 			 *
3383 			 * If the file is already loaded and relocated we must
3384 			 * still inspect it for symbols, even though it might
3385 			 * have already been searched.  This lazy load operation
3386 			 * might have promoted the permissions of the object,
3387 			 * and thus made the object applicable for this symbol
3388 			 * search, whereas before the object might have been
3389 			 * skipped.
3390 			 */
3391 			if ((nlmp = elf_lazy_load(lmp, &sl, cnt, name)) == 0)
3392 				continue;
3393 
3394 			/*
3395 			 * If this object isn't yet a part of the dynamic list
3396 			 * then inspect it for the symbol.  If the symbol isn't
3397 			 * found add the object to the dynamic list so that we
3398 			 * can inspect its dependencies.
3399 			 */
3400 			if (FLAGS(nlmp) & FLG_RT_TMPLIST)
3401 				continue;
3402 
3403 			sl.sl_imap = nlmp;
3404 			if (sym = LM_LOOKUP_SYM(sl.sl_cmap)(&sl, _lmp, binfo))
3405 				break;
3406 
3407 			/*
3408 			 * Some dlsym() operations are already traversing a
3409 			 * link-map (dlopen(0)), and thus there's no need to
3410 			 * build our own dynamic dependency list.
3411 			 */
3412 			if ((sl.sl_flags & LKUP_NODESCENT) == 0) {
3413 				if (aplist_append(&alist, nlmp,
3414 				    AL_CNT_LAZYFIND) == 0) {
3415 					elf_lazy_cleanup(alist);
3416 					return (0);
3417 				}
3418 				FLAGS(nlmp) |= FLG_RT_TMPLIST;
3419 			}
3420 		}
3421 		if (sym)
3422 			break;
3423 	}
3424 
3425 	elf_lazy_cleanup(alist);
3426 	return (sym);
3427 }
3428 
3429 /*
3430  * Warning message for bad r_offset.
3431  */
3432 void
3433 elf_reloc_bad(Rt_map *lmp, void *rel, uchar_t rtype, ulong_t roffset,
3434     ulong_t rsymndx)
3435 {
3436 	const char	*name = (char *)0;
3437 	Lm_list		*lml = LIST(lmp);
3438 	int		trace;
3439 
3440 	if ((lml->lm_flags & LML_FLG_TRC_ENABLE) &&
3441 	    (((rtld_flags & RT_FL_SILENCERR) == 0) ||
3442 	    (lml->lm_flags & LML_FLG_TRC_VERBOSE)))
3443 		trace = 1;
3444 	else
3445 		trace = 0;
3446 
3447 	if ((trace == 0) && (DBG_ENABLED == 0))
3448 		return;
3449 
3450 	if (rsymndx) {
3451 		Sym	*symref = (Sym *)((ulong_t)SYMTAB(lmp) +
3452 		    (rsymndx * SYMENT(lmp)));
3453 
3454 		if (ELF_ST_BIND(symref->st_info) != STB_LOCAL)
3455 			name = (char *)(STRTAB(lmp) + symref->st_name);
3456 	}
3457 
3458 	if (name == 0)
3459 		name = MSG_ORIG(MSG_STR_EMPTY);
3460 
3461 	if (trace) {
3462 		const char *rstr;
3463 
3464 		rstr = _conv_reloc_type((uint_t)rtype);
3465 		(void) printf(MSG_INTL(MSG_LDD_REL_ERR1), rstr, name,
3466 		    EC_ADDR(roffset));
3467 		return;
3468 	}
3469 
3470 	Dbg_reloc_error(lml, ELF_DBG_RTLD, M_MACH, M_REL_SHT_TYPE, rel, name);
3471 }
3472 
3473 /*
3474  * Resolve a static TLS relocation.
3475  */
3476 long
3477 elf_static_tls(Rt_map *lmp, Sym *sym, void *rel, uchar_t rtype, char *name,
3478     ulong_t roffset, long value)
3479 {
3480 	Lm_list	*lml = LIST(lmp);
3481 
3482 	/*
3483 	 * Relocations against a static TLS block have limited support once
3484 	 * process initialization has completed.  Any error condition should be
3485 	 * discovered by testing for DF_STATIC_TLS as part of loading an object,
3486 	 * however individual relocations are tested in case the dynamic flag
3487 	 * had not been set when this object was built.
3488 	 */
3489 	if (PTTLS(lmp) == 0) {
3490 		DBG_CALL(Dbg_reloc_in(lml, ELF_DBG_RTLD, M_MACH,
3491 		    M_REL_SHT_TYPE, rel, NULL, name));
3492 		eprintf(lml, ERR_FATAL, MSG_INTL(MSG_REL_BADTLS),
3493 		    _conv_reloc_type((uint_t)rtype), NAME(lmp),
3494 		    name ? demangle(name) : MSG_INTL(MSG_STR_UNKNOWN));
3495 		return (0);
3496 	}
3497 
3498 	/*
3499 	 * If no static TLS has been set aside for this object, determine if
3500 	 * any can be obtained.  Enforce that any object using static TLS is
3501 	 * non-deletable.
3502 	 */
3503 	if (TLSSTATOFF(lmp) == 0) {
3504 		FLAGS1(lmp) |= FL1_RT_TLSSTAT;
3505 		MODE(lmp) |= RTLD_NODELETE;
3506 
3507 		if (tls_assign(lml, lmp, PTTLS(lmp)) == 0) {
3508 			DBG_CALL(Dbg_reloc_in(lml, ELF_DBG_RTLD, M_MACH,
3509 			    M_REL_SHT_TYPE, rel, NULL, name));
3510 			eprintf(lml, ERR_FATAL, MSG_INTL(MSG_REL_BADTLS),
3511 			    _conv_reloc_type((uint_t)rtype), NAME(lmp),
3512 			    name ? demangle(name) : MSG_INTL(MSG_STR_UNKNOWN));
3513 			return (0);
3514 		}
3515 	}
3516 
3517 	/*
3518 	 * Typically, a static TLS offset is maintained as a symbols value.
3519 	 * For local symbols that are not apart of the dynamic symbol table,
3520 	 * the TLS relocation points to a section symbol, and the static TLS
3521 	 * offset was deposited in the associated GOT table.  Make sure the GOT
3522 	 * is cleared, so that the value isn't reused in do_reloc().
3523 	 */
3524 	if (ELF_ST_BIND(sym->st_info) == STB_LOCAL) {
3525 		if ((ELF_ST_TYPE(sym->st_info) == STT_SECTION)) {
3526 			value = *(long *)roffset;
3527 			*(long *)roffset = 0;
3528 		} else {
3529 			value = sym->st_value;
3530 		}
3531 	}
3532 	return (-(TLSSTATOFF(lmp) - value));
3533 }
3534 
3535 /*
3536  * If the symbol is not found and the reference was not to a weak symbol, report
3537  * an error.  Weak references may be unresolved.
3538  */
3539 int
3540 elf_reloc_error(Rt_map *lmp, const char *name, void *rel, uint_t binfo)
3541 {
3542 	Lm_list	*lml = LIST(lmp);
3543 
3544 	/*
3545 	 * Under crle(1), relocation failures are ignored.
3546 	 */
3547 	if (lml->lm_flags & LML_FLG_IGNRELERR)
3548 		return (1);
3549 
3550 	/*
3551 	 * Under ldd(1), unresolved references are reported.  However, if the
3552 	 * original reference is EXTERN or PARENT these references are ignored
3553 	 * unless ldd's -p option is in effect.
3554 	 */
3555 	if (lml->lm_flags & LML_FLG_TRC_WARN) {
3556 		if (((binfo & DBG_BINFO_REF_MSK) == 0) ||
3557 		    ((lml->lm_flags & LML_FLG_TRC_NOPAREXT) != 0)) {
3558 			(void) printf(MSG_INTL(MSG_LDD_SYM_NFOUND),
3559 			    demangle(name), NAME(lmp));
3560 		}
3561 		return (1);
3562 	}
3563 
3564 	/*
3565 	 * Otherwise, the unresolved references is fatal.
3566 	 */
3567 	DBG_CALL(Dbg_reloc_in(lml, ELF_DBG_RTLD, M_MACH, M_REL_SHT_TYPE, rel,
3568 	    NULL, name));
3569 	eprintf(lml, ERR_FATAL, MSG_INTL(MSG_REL_NOSYM), NAME(lmp),
3570 	    demangle(name));
3571 
3572 	return (0);
3573 }
3574