1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * Dump an elf file.
29  */
30 #include	<stddef.h>
31 #include	<sys/elf_386.h>
32 #include	<sys/elf_amd64.h>
33 #include	<sys/elf_SPARC.h>
34 #include	<_libelf.h>
35 #include	<dwarf.h>
36 #include	<stdio.h>
37 #include	<unistd.h>
38 #include	<errno.h>
39 #include	<strings.h>
40 #include	<debug.h>
41 #include	<conv.h>
42 #include	<msg.h>
43 #include	<_elfdump.h>
44 
45 
46 /*
47  * VERSYM_STATE is used to maintain information about the VERSYM section
48  * in the object being analyzed. It is filled in by versions(), and used
49  * by init_symtbl_state() when displaying symbol information.
50  *
51  * There are three forms of symbol versioning known to us:
52  *
53  * 1) The original form, introduced with Solaris 2.5, in which
54  *	the Versym contains indexes to Verdef records, and the
55  *	Versym values for UNDEF symbols resolved by other objects
56  *	are all set to 0.
57  * 2) The GNU form, which is backward compatible with the original
58  *	Solaris form, but which adds several extensions:
59  *	- The Versym also contains indexes to Verneed records, recording
60  *		which object/version contributed the external symbol at
61  *		link time. These indexes start with the next value following
62  *		the final Verdef index. The index is written to the previously
63  *		reserved vna_other field of the ELF Vernaux structure.
64  *	- The top bit of the Versym value is no longer part of the index,
65  *		but is used as a "hidden bit" to prevent binding to the symbol.
66  *	- Multiple implementations of a given symbol, contained in varying
67  *		versions are allowed, using special assembler pseudo ops,
68  *		and encoded in the symbol name using '@' characters.
69  * 3) Modified Solaris form, in which we adopt the first GNU extension
70  *	(Versym indexes to Verneed records), but not the others.
71  *
72  * elfdump can handle any of these cases. The presence of a DT_VERSYM
73  * dynamic element indicates a full GNU object. An object that lacks
74  * a DT_VERSYM entry, but which has non-zero vna_other fields in the Vernaux
75  * structures is a modified Solaris object. An object that has neither of
76  * these uses the original form.
77  *
78  * max_verndx contains the largest version index that can appear
79  * in a Versym entry. This can never be less than 1: In the case where
80  * there is no verdef/verneed sections, the [0] index is reserved
81  * for local symbols, and the [1] index for globals. If the original
82  * Solaris versioning rules are in effect and there is a verdef section,
83  * then max_verndex is the number of defined versions. If one of the
84  * other versioning forms is in effect, then:
85  *	1) If there is no verneed section, it is the same as for
86  *		original Solaris versioning.
87  *	2) If there is a verneed section, the vna_other field of the
88  *		Vernaux structs contain versions, and max_verndx is the
89  *		largest such index.
90  *
91  * If gnu_full is True, the object uses the full GNU form of versioning.
92  * The value of the gnu_full field is based on the presence of
93  * a DT_VERSYM entry in the dynamic section: GNU ld produces these, and
94  * Solaris ld does not.
95  *
96  * The gnu_needed field is True if the Versym contains indexes to
97  * Verneed records, as indicated by non-zero vna_other fields in the Verneed
98  * section. If gnu_full is True, then gnu_needed will always be true.
99  * However, gnu_needed can be true without gnu_full. This is the modified
100  * Solaris form.
101  */
102 typedef struct {
103 	Cache	*cache;		/* Pointer to cache entry for VERSYM */
104 	Versym	*data;		/* Pointer to versym array */
105 	int	gnu_full;	/* True if object uses GNU versioning rules */
106 	int	gnu_needed;	/* True if object uses VERSYM indexes for */
107 				/*	VERNEED (subset of gnu_full) */
108 	int	max_verndx;	/* largest versym index value */
109 } VERSYM_STATE;
110 
111 /*
112  * SYMTBL_STATE is used to maintain information about a single symbol
113  * table section, for use by the routines that display symbol information.
114  */
115 typedef struct {
116 	const char	*file;		/* Name of file */
117 	Ehdr		*ehdr;		/* ELF header for file */
118 	Cache		*cache;		/* Cache of all section headers */
119 	uchar_t		osabi;		/* OSABI to use */
120 	Word		shnum;		/* # of sections in cache */
121 	Cache		*seccache;	/* Cache of symbol table section hdr */
122 	Word		secndx;		/* Index of symbol table section hdr */
123 	const char	*secname;	/* Name of section */
124 	uint_t		flags;		/* Command line option flags */
125 	struct {			/* Extended section index data */
126 		int	checked;	/* TRUE if already checked for shxndx */
127 		Word	*data;		/* NULL, or extended section index */
128 					/*	used for symbol table entries */
129 		uint_t	n;		/* # items in shxndx.data */
130 	} shxndx;
131 	VERSYM_STATE	*versym;	/* NULL, or associated VERSYM section */
132 	Sym 		*sym;		/* Array of symbols */
133 	Word		symn;		/* # of symbols */
134 } SYMTBL_STATE;
135 
136 /*
137  * A variable of this type is used to track information related to
138  * .eh_frame and .eh_frame_hdr sections across calls to unwind_eh_frame().
139  */
140 typedef struct {
141 	Word		frame_cnt;	/* # .eh_frame sections seen */
142 	Word		frame_ndx;	/* Section index of 1st .eh_frame */
143 	Word		hdr_cnt;	/* # .eh_frame_hdr sections seen */
144 	Word		hdr_ndx;	/* Section index of 1st .eh_frame_hdr */
145 	uint64_t	frame_ptr;	/* Value of FramePtr field from first */
146 					/*	.eh_frame_hdr section */
147 	uint64_t	frame_base;	/* Data addr of 1st .eh_frame  */
148 } gnu_eh_state_t;
149 
150 /*
151  * C++ .exception_ranges entries make use of the signed ptrdiff_t
152  * type to record self-relative pointer values. We need a type
153  * for this that is matched to the ELFCLASS being processed.
154  */
155 #if	defined(_ELF64)
156 	typedef int64_t PTRDIFF_T;
157 #else
158 	typedef int32_t PTRDIFF_T;
159 #endif
160 
161 /*
162  * The Sun C++ ABI uses this struct to define each .exception_ranges
163  * entry. From the ABI:
164  *
165  * The field ret_addr is a self relative pointer to the start of the address
166  * range. The name was chosen because in the current implementation the range
167  * typically starts at the return address for a call site.
168  *
169  * The field length is the difference, in bytes, between the pc of the last
170  * instruction covered by the exception range and the first. When only a
171  * single call site is represented without optimization, this will equal zero.
172  *
173  * The field handler_addr is a relative pointer which stores the difference
174  * between the start of the exception range and the address of all code to
175  * catch exceptions and perform the cleanup for stack unwinding.
176  *
177  * The field type_block is a relative pointer which stores the difference
178  * between the start of the exception range and the address of an array used
179  * for storing a list of the types of exceptions which can be caught within
180  * the exception range.
181  */
182 typedef struct {
183 	PTRDIFF_T	ret_addr;
184 	Xword		length;
185 	PTRDIFF_T	handler_addr;
186 	PTRDIFF_T	type_block;
187 	Xword		reserved;
188 } exception_range_entry;
189 
190 /*
191  * Focal point for verifying symbol names.
192  */
193 static const char *
194 string(Cache *refsec, Word ndx, Cache *strsec, const char *file, Word name)
195 {
196 	/*
197 	 * If an error in this routine is due to a property of the string
198 	 * section, as opposed to a bad offset into the section (a property of
199 	 * the referencing section), then we will detect the same error on
200 	 * every call involving those sections. We use these static variables
201 	 * to retain the information needed to only issue each such error once.
202 	 */
203 	static Cache	*last_refsec;	/* Last referencing section seen */
204 	static int	strsec_err;	/* True if error issued */
205 
206 	const char	*strs;
207 	Word		strn;
208 
209 	if (strsec->c_data == NULL)
210 		return (NULL);
211 
212 	strs = (char *)strsec->c_data->d_buf;
213 	strn = strsec->c_data->d_size;
214 
215 	/*
216 	 * We only print a diagnostic regarding a bad string table once per
217 	 * input section being processed. If the refsec has changed, reset
218 	 * our retained error state.
219 	 */
220 	if (last_refsec != refsec) {
221 		last_refsec = refsec;
222 		strsec_err = 0;
223 	}
224 
225 	/* Verify that strsec really is a string table */
226 	if (strsec->c_shdr->sh_type != SHT_STRTAB) {
227 		if (!strsec_err) {
228 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_NOTSTRTAB),
229 			    file, strsec->c_ndx, refsec->c_ndx);
230 			strsec_err = 1;
231 		}
232 		return (MSG_INTL(MSG_STR_UNKNOWN));
233 	}
234 
235 	/*
236 	 * Is the string table offset within range of the available strings?
237 	 */
238 	if (name >= strn) {
239 		/*
240 		 * Do we have a empty string table?
241 		 */
242 		if (strs == NULL) {
243 			if (!strsec_err) {
244 				(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
245 				    file, strsec->c_name);
246 				strsec_err = 1;
247 			}
248 		} else {
249 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSTOFF),
250 			    file, refsec->c_name, EC_WORD(ndx), strsec->c_name,
251 			    EC_WORD(name), EC_WORD(strn - 1));
252 		}
253 
254 		/*
255 		 * Return the empty string so that the calling function can
256 		 * continue it's output diagnostics.
257 		 */
258 		return (MSG_INTL(MSG_STR_UNKNOWN));
259 	}
260 	return (strs + name);
261 }
262 
263 /*
264  * Relocations can reference section symbols and standard symbols.  If the
265  * former, establish the section name.
266  */
267 static const char *
268 relsymname(Cache *cache, Cache *csec, Cache *strsec, Word symndx, Word symnum,
269     Word relndx, Sym *syms, char *secstr, size_t secsz, const char *file)
270 {
271 	Sym		*sym;
272 	const char	*name;
273 
274 	if (symndx >= symnum) {
275 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_RELBADSYMNDX),
276 		    file, EC_WORD(symndx), EC_WORD(relndx));
277 		return (MSG_INTL(MSG_STR_UNKNOWN));
278 	}
279 
280 	sym = (Sym *)(syms + symndx);
281 	name = string(csec, symndx, strsec, file, sym->st_name);
282 
283 	/*
284 	 * If the symbol represents a section offset construct an appropriate
285 	 * string.  Note, although section symbol table entries typically have
286 	 * a NULL name pointer, entries do exist that point into the string
287 	 * table to their own NULL strings.
288 	 */
289 	if ((ELF_ST_TYPE(sym->st_info) == STT_SECTION) &&
290 	    ((sym->st_name == 0) || (*name == '\0'))) {
291 		(void) snprintf(secstr, secsz, MSG_INTL(MSG_STR_SECTION),
292 		    cache[sym->st_shndx].c_name);
293 		return ((const char *)secstr);
294 	}
295 
296 	return (name);
297 }
298 
299 /*
300  * Focal point for establishing a string table section.  Data such as the
301  * dynamic information simply points to a string table.  Data such as
302  * relocations, reference a symbol table, which in turn is associated with a
303  * string table.
304  */
305 static int
306 stringtbl(Cache *cache, int symtab, Word ndx, Word shnum, const char *file,
307     Word *symnum, Cache **symsec, Cache **strsec)
308 {
309 	Shdr	*shdr = cache[ndx].c_shdr;
310 
311 	if (symtab) {
312 		/*
313 		 * Validate the symbol table section.
314 		 */
315 		if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
316 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
317 			    file, cache[ndx].c_name, EC_WORD(shdr->sh_link));
318 			return (0);
319 		}
320 		if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
321 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
322 			    file, cache[ndx].c_name);
323 			return (0);
324 		}
325 
326 		/*
327 		 * Obtain, and verify the symbol table data.
328 		 */
329 		if ((cache[ndx].c_data == NULL) ||
330 		    (cache[ndx].c_data->d_buf == NULL)) {
331 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
332 			    file, cache[ndx].c_name);
333 			return (0);
334 		}
335 
336 		/*
337 		 * Establish the string table index.
338 		 */
339 		ndx = shdr->sh_link;
340 		shdr = cache[ndx].c_shdr;
341 
342 		/*
343 		 * Return symbol table information.
344 		 */
345 		if (symnum)
346 			*symnum = (shdr->sh_size / shdr->sh_entsize);
347 		if (symsec)
348 			*symsec = &cache[ndx];
349 	}
350 
351 	/*
352 	 * Validate the associated string table section.
353 	 */
354 	if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
355 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
356 		    file, cache[ndx].c_name, EC_WORD(shdr->sh_link));
357 		return (0);
358 	}
359 
360 	if (strsec)
361 		*strsec = &cache[shdr->sh_link];
362 
363 	return (1);
364 }
365 
366 /*
367  * Lookup a symbol and set Sym accordingly.
368  */
369 static int
370 symlookup(const char *name, Cache *cache, Word shnum, Sym **sym,
371     Cache *symtab, const char *file)
372 {
373 	Shdr	*shdr;
374 	Word	symn, cnt;
375 	Sym	*syms;
376 
377 	if (symtab == 0)
378 		return (0);
379 
380 	shdr = symtab->c_shdr;
381 
382 	/*
383 	 * Determine the symbol data and number.
384 	 */
385 	if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
386 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
387 		    file, symtab->c_name);
388 		return (0);
389 	}
390 	if (symtab->c_data == NULL)
391 		return (0);
392 
393 	/* LINTED */
394 	symn = (Word)(shdr->sh_size / shdr->sh_entsize);
395 	syms = (Sym *)symtab->c_data->d_buf;
396 
397 	/*
398 	 * Get the associated string table section.
399 	 */
400 	if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
401 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
402 		    file, symtab->c_name, EC_WORD(shdr->sh_link));
403 		return (0);
404 	}
405 
406 	/*
407 	 * Loop through the symbol table to find a match.
408 	 */
409 	for (cnt = 0; cnt < symn; syms++, cnt++) {
410 		const char	*symname;
411 
412 		symname = string(symtab, cnt, &cache[shdr->sh_link], file,
413 		    syms->st_name);
414 
415 		if (symname && (strcmp(name, symname) == 0)) {
416 			*sym = syms;
417 			return (1);
418 		}
419 	}
420 	return (0);
421 }
422 
423 /*
424  * Print section headers.
425  */
426 static void
427 sections(const char *file, Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi)
428 {
429 	size_t	seccnt;
430 
431 	for (seccnt = 1; seccnt < shnum; seccnt++) {
432 		Cache		*_cache = &cache[seccnt];
433 		Shdr		*shdr = _cache->c_shdr;
434 		const char	*secname = _cache->c_name;
435 
436 		/*
437 		 * Although numerous section header entries can be zero, it's
438 		 * usually a sign of trouble if the type is zero.
439 		 */
440 		if (shdr->sh_type == 0) {
441 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHTYPE),
442 			    file, secname, EC_WORD(shdr->sh_type));
443 		}
444 
445 		if (!match(MATCH_F_ALL, secname, seccnt, shdr->sh_type))
446 			continue;
447 
448 		/*
449 		 * Identify any sections that are suspicious.  A .got section
450 		 * shouldn't exist in a relocatable object.
451 		 */
452 		if (ehdr->e_type == ET_REL) {
453 			if (strncmp(secname, MSG_ORIG(MSG_ELF_GOT),
454 			    MSG_ELF_GOT_SIZE) == 0) {
455 				(void) fprintf(stderr,
456 				    MSG_INTL(MSG_GOT_UNEXPECTED), file,
457 				    secname);
458 			}
459 		}
460 
461 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
462 		dbg_print(0, MSG_INTL(MSG_ELF_SHDR), EC_WORD(seccnt), secname);
463 		Elf_shdr(0, osabi, ehdr->e_machine, shdr);
464 	}
465 }
466 
467 /*
468  * Obtain a specified Phdr entry.
469  */
470 static Phdr *
471 getphdr(Word phnum, Word *type_arr, Word type_cnt, const char *file, Elf *elf)
472 {
473 	Word	cnt, tcnt;
474 	Phdr	*phdr;
475 
476 	if ((phdr = elf_getphdr(elf)) == NULL) {
477 		failure(file, MSG_ORIG(MSG_ELF_GETPHDR));
478 		return (NULL);
479 	}
480 
481 	for (cnt = 0; cnt < phnum; phdr++, cnt++) {
482 		for (tcnt = 0; tcnt < type_cnt; tcnt++) {
483 			if (phdr->p_type == type_arr[tcnt])
484 				return (phdr);
485 		}
486 	}
487 	return (NULL);
488 }
489 
490 /*
491  * Display the contents of GNU/amd64 .eh_frame and .eh_frame_hdr
492  * sections.
493  *
494  * entry:
495  *	cache - Cache of all section headers
496  *	shndx - Index of .eh_frame or .eh_frame_hdr section to be displayed
497  *	uphdr - NULL, or unwind program header associated with
498  *		the .eh_frame_hdr section.
499  *	ehdr - ELF header for file
500  *	eh_state - Data used across calls to this routine. The
501  *		caller should zero it before the first call, and
502  *		pass it on every call.
503  *	osabi - OSABI to use in displaying information
504  *	file - Name of file
505  *	flags - Command line option flags
506  */
507 static void
508 unwind_eh_frame(Cache *cache, Word shndx, Phdr *uphdr, Ehdr *ehdr,
509     gnu_eh_state_t *eh_state, uchar_t osabi, const char *file, uint_t flags)
510 {
511 #if	defined(_ELF64)
512 #define	MSG_UNW_BINSRTAB2	MSG_UNW_BINSRTAB2_64
513 #define	MSG_UNW_BINSRTABENT	MSG_UNW_BINSRTABENT_64
514 #else
515 #define	MSG_UNW_BINSRTAB2	MSG_UNW_BINSRTAB2_32
516 #define	MSG_UNW_BINSRTABENT	MSG_UNW_BINSRTABENT_32
517 #endif
518 
519 	Cache			*_cache = &cache[shndx];
520 	Shdr			*shdr = _cache->c_shdr;
521 	uchar_t			*data = (uchar_t *)(_cache->c_data->d_buf);
522 	size_t			datasize = _cache->c_data->d_size;
523 	Conv_dwarf_ehe_buf_t	dwarf_ehe_buf;
524 	uint64_t		ndx, frame_ptr, fde_cnt, tabndx;
525 	uint_t			vers, frame_ptr_enc, fde_cnt_enc, table_enc;
526 	uint64_t		initloc, initloc0;
527 
528 
529 	/*
530 	 * Is this a .eh_frame_hdr?
531 	 */
532 	if ((uphdr && (shdr->sh_addr == uphdr->p_vaddr)) ||
533 	    (strncmp(_cache->c_name, MSG_ORIG(MSG_SCN_FRMHDR),
534 	    MSG_SCN_FRMHDR_SIZE) == 0)) {
535 		/*
536 		 * There can only be a single .eh_frame_hdr.
537 		 * Flag duplicates.
538 		 */
539 		if (++eh_state->hdr_cnt > 1)
540 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_MULTEHFRMHDR),
541 			    file, EC_WORD(shndx), _cache->c_name);
542 
543 		dbg_print(0, MSG_ORIG(MSG_UNW_FRMHDR));
544 		ndx = 0;
545 
546 		vers = data[ndx++];
547 		frame_ptr_enc = data[ndx++];
548 		fde_cnt_enc = data[ndx++];
549 		table_enc = data[ndx++];
550 
551 		dbg_print(0, MSG_ORIG(MSG_UNW_FRMVERS), vers);
552 
553 		frame_ptr = dwarf_ehe_extract(data, &ndx, frame_ptr_enc,
554 		    ehdr->e_ident, shdr->sh_addr, ndx);
555 		if (eh_state->hdr_cnt == 1) {
556 			eh_state->hdr_ndx = shndx;
557 			eh_state->frame_ptr = frame_ptr;
558 		}
559 
560 		dbg_print(0, MSG_ORIG(MSG_UNW_FRPTRENC),
561 		    conv_dwarf_ehe(frame_ptr_enc, &dwarf_ehe_buf),
562 		    EC_XWORD(frame_ptr));
563 
564 		fde_cnt = dwarf_ehe_extract(data, &ndx, fde_cnt_enc,
565 		    ehdr->e_ident, shdr->sh_addr, ndx);
566 
567 		dbg_print(0, MSG_ORIG(MSG_UNW_FDCNENC),
568 		    conv_dwarf_ehe(fde_cnt_enc, &dwarf_ehe_buf),
569 		    EC_XWORD(fde_cnt));
570 		dbg_print(0, MSG_ORIG(MSG_UNW_TABENC),
571 		    conv_dwarf_ehe(table_enc, &dwarf_ehe_buf));
572 		dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTAB1));
573 		dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTAB2));
574 
575 		for (tabndx = 0; tabndx < fde_cnt; tabndx++) {
576 			initloc = dwarf_ehe_extract(data, &ndx, table_enc,
577 			    ehdr->e_ident, shdr->sh_addr, ndx);
578 			/*LINTED:E_VAR_USED_BEFORE_SET*/
579 			if ((tabndx != 0) && (initloc0 > initloc))
580 				(void) fprintf(stderr,
581 				    MSG_INTL(MSG_ERR_BADSORT), file,
582 				    _cache->c_name, EC_WORD(tabndx));
583 			dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTABENT),
584 			    EC_XWORD(initloc),
585 			    EC_XWORD(dwarf_ehe_extract(data, &ndx,
586 			    table_enc, ehdr->e_ident, shdr->sh_addr,
587 			    ndx)));
588 			initloc0 = initloc;
589 		}
590 	} else {		/* Display the .eh_frame section */
591 		eh_state->frame_cnt++;
592 		if (eh_state->frame_cnt == 1) {
593 			eh_state->frame_ndx = shndx;
594 			eh_state->frame_base = shdr->sh_addr;
595 		} else if ((eh_state->frame_cnt >  1) &&
596 		    (ehdr->e_type != ET_REL)) {
597 			Conv_inv_buf_t	inv_buf;
598 
599 			(void) fprintf(stderr, MSG_INTL(MSG_WARN_MULTEHFRM),
600 			    file, EC_WORD(shndx), _cache->c_name,
601 			    conv_ehdr_type(osabi, ehdr->e_type, 0, &inv_buf));
602 		}
603 		dump_eh_frame(data, datasize, shdr->sh_addr,
604 		    ehdr->e_machine, ehdr->e_ident);
605 	}
606 
607 	/*
608 	 * If we've seen the .eh_frame_hdr and the first .eh_frame section,
609 	 * compare the header frame_ptr to the address of the actual frame
610 	 * section to ensure the link-editor got this right.  Note, this
611 	 * diagnostic is only produced when unwind information is explicitly
612 	 * asked for, as shared objects built with an older ld(1) may reveal
613 	 * this inconsistency.  Although an inconsistency, it doesn't seem to
614 	 * have any adverse effect on existing tools.
615 	 */
616 	if (((flags & FLG_MASK_SHOW) != FLG_MASK_SHOW) &&
617 	    (eh_state->hdr_cnt > 0) && (eh_state->frame_cnt > 0) &&
618 	    (eh_state->frame_ptr != eh_state->frame_base))
619 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADEHFRMPTR),
620 		    file, EC_WORD(eh_state->hdr_ndx),
621 		    cache[eh_state->hdr_ndx].c_name,
622 		    EC_XWORD(eh_state->frame_ptr),
623 		    EC_WORD(eh_state->frame_ndx),
624 		    cache[eh_state->frame_ndx].c_name,
625 		    EC_XWORD(eh_state->frame_base));
626 #undef MSG_UNW_BINSRTAB2
627 #undef MSG_UNW_BINSRTABENT
628 }
629 
630 /*
631  * Convert a self relative pointer into an address. A self relative
632  * pointer adds the address where the pointer resides to the offset
633  * contained in the pointer. The benefit is that the value of the
634  * pointer does not require relocation.
635  *
636  * entry:
637  *	base_addr - Address of the pointer.
638  *	delta - Offset relative to base_addr giving desired address
639  *
640  * exit:
641  *	The computed address is returned.
642  *
643  * note:
644  *	base_addr is an unsigned value, while ret_addr is signed. This routine
645  *	used explicit testing and casting to explicitly control type
646  *	conversion, and ensure that we handle the maximum possible range.
647  */
648 static Addr
649 srelptr(Addr base_addr, PTRDIFF_T delta)
650 {
651 	if (delta < 0)
652 		return (base_addr - (Addr) (-delta));
653 
654 	return (base_addr + (Addr) delta);
655 }
656 
657 /*
658  * Byte swap a PTRDIFF_T value.
659  */
660 static PTRDIFF_T
661 swap_ptrdiff(PTRDIFF_T value)
662 {
663 	PTRDIFF_T r;
664 	uchar_t	*dst = (uchar_t *)&r;
665 	uchar_t	*src = (uchar_t *)&value;
666 
667 	UL_ASSIGN_BSWAP_XWORD(dst, src);
668 	return (r);
669 }
670 
671 /*
672  * Display exception_range_entry items from the .exception_ranges section
673  * of a Sun C++ object.
674  */
675 static void
676 unwind_exception_ranges(Cache *_cache, const char *file, int do_swap)
677 {
678 	/*
679 	 * Translate a PTRDIFF_T self-relative address field of
680 	 * an exception_range_entry struct into an address.
681 	 *
682 	 * entry:
683 	 *	exc_addr - Address of base of exception_range_entry struct
684 	 *	cur_ent - Pointer to data in the struct to be translated
685 	 *
686 	 *	_f - Field of struct to be translated
687 	 */
688 #define	SRELPTR(_f) \
689 	srelptr(exc_addr + offsetof(exception_range_entry, _f), cur_ent->_f)
690 
691 #if	defined(_ELF64)
692 #define	MSG_EXR_TITLE	MSG_EXR_TITLE_64
693 #define	MSG_EXR_ENTRY	MSG_EXR_ENTRY_64
694 #else
695 #define	MSG_EXR_TITLE	MSG_EXR_TITLE_32
696 #define	MSG_EXR_ENTRY	MSG_EXR_ENTRY_32
697 #endif
698 
699 	exception_range_entry	scratch, *ent, *cur_ent = &scratch;
700 	char			index[MAXNDXSIZE];
701 	Word			i, nelts;
702 	Addr			addr, addr0, offset = 0;
703 	Addr			exc_addr = _cache->c_shdr->sh_addr;
704 
705 	dbg_print(0, MSG_INTL(MSG_EXR_TITLE));
706 	ent = (exception_range_entry *)(_cache->c_data->d_buf);
707 	nelts = _cache->c_data->d_size / sizeof (exception_range_entry);
708 
709 	for (i = 0; i < nelts; i++, ent++) {
710 		if (do_swap) {
711 			/*
712 			 * Copy byte swapped values into the scratch buffer.
713 			 * The reserved field is not used, so we skip it.
714 			 */
715 			scratch.ret_addr = swap_ptrdiff(ent->ret_addr);
716 			scratch.length = BSWAP_XWORD(ent->length);
717 			scratch.handler_addr = swap_ptrdiff(ent->handler_addr);
718 			scratch.type_block = swap_ptrdiff(ent->type_block);
719 		} else {
720 			cur_ent = ent;
721 		}
722 
723 		/*
724 		 * The table is required to be sorted by the address
725 		 * derived from ret_addr, to allow binary searching. Ensure
726 		 * that addresses grow monotonically.
727 		 */
728 		addr = SRELPTR(ret_addr);
729 		/*LINTED:E_VAR_USED_BEFORE_SET*/
730 		if ((i != 0) && (addr0 > addr))
731 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSORT),
732 			    file, _cache->c_name, EC_WORD(i));
733 
734 		(void) snprintf(index, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX),
735 		    EC_XWORD(i));
736 		dbg_print(0, MSG_INTL(MSG_EXR_ENTRY), index, EC_ADDR(offset),
737 		    EC_ADDR(addr), EC_ADDR(cur_ent->length),
738 		    EC_ADDR(SRELPTR(handler_addr)),
739 		    EC_ADDR(SRELPTR(type_block)));
740 
741 		addr0 = addr;
742 		exc_addr += sizeof (exception_range_entry);
743 		offset += sizeof (exception_range_entry);
744 	}
745 
746 #undef SRELPTR
747 #undef MSG_EXR_TITLE
748 #undef MSG_EXR_ENTRY
749 }
750 
751 /*
752  * Display information from unwind/exception sections:
753  *
754  * -	GNU/amd64 .eh_frame and .eh_frame_hdr
755  * -	Sun C++ .exception_ranges
756  *
757  */
758 static void
759 unwind(Cache *cache, Word shnum, Word phnum, Ehdr *ehdr, uchar_t osabi,
760     const char *file, Elf *elf, uint_t flags)
761 {
762 	static Word phdr_types[] = { PT_SUNW_UNWIND, PT_SUNW_EH_FRAME };
763 
764 	Word			cnt;
765 	Phdr			*uphdr = NULL;
766 	gnu_eh_state_t		eh_state;
767 
768 	/*
769 	 * Historical background: .eh_frame and .eh_frame_hdr sections
770 	 * come from the GNU compilers (particularly C++), and are used
771 	 * under all architectures. Their format is based on DWARF. When
772 	 * the amd64 ABI was defined, these sections were adopted wholesale
773 	 * from the existing practice.
774 	 *
775 	 * When amd64 support was added to Solaris, support for these
776 	 * sections was added, using the SHT_AMD64_UNWIND section type
777 	 * to identify them. At first, we ignored them in objects for
778 	 * non-amd64 targets, but later broadened our support to include
779 	 * other architectures in order to better support gcc-generated
780 	 * objects.
781 	 *
782 	 * .exception_ranges implement the same basic concepts, but
783 	 * were invented at Sun for the Sun C++ compiler.
784 	 *
785 	 * We match these sections by name, rather than section type,
786 	 * because they can come in as either SHT_AMD64_UNWIND, or as
787 	 * SHT_PROGBITS, and because the type isn't enough to determine
788 	 * how they should be interprteted.
789 	 */
790 
791 	/* Find the program header for .eh_frame_hdr if present */
792 	if (phnum)
793 		uphdr = getphdr(phnum, phdr_types,
794 		    sizeof (phdr_types) / sizeof (*phdr_types), file, elf);
795 
796 	/*
797 	 * eh_state is used to retain data used by unwind_eh_frame()
798 	 * accross calls.
799 	 */
800 	bzero(&eh_state, sizeof (eh_state));
801 
802 	for (cnt = 1; cnt < shnum; cnt++) {
803 		Cache		*_cache = &cache[cnt];
804 		Shdr		*shdr = _cache->c_shdr;
805 		int		is_exrange;
806 
807 		/*
808 		 * Skip sections of the wrong type. On amd64, they
809 		 * can be SHT_AMD64_UNWIND. On all platforms, they
810 		 * can be SHT_PROGBITS (including amd64, if using
811 		 * the GNU compilers).
812 		 *
813 		 * Skip anything other than these two types. The name
814 		 * test below will thin out the SHT_PROGBITS that don't apply.
815 		 */
816 		if ((shdr->sh_type != SHT_PROGBITS) &&
817 		    (shdr->sh_type != SHT_AMD64_UNWIND))
818 			continue;
819 
820 		/*
821 		 * Only sections with certain well known names are of interest.
822 		 * These are:
823 		 *
824 		 *	.eh_frame - amd64/GNU-compiler unwind sections
825 		 *	.eh_frame_hdr - Sorted table referencing .eh_frame
826 		 *	.exception_ranges - Sun C++ unwind sections
827 		 *
828 		 * We do a prefix comparison, allowing for naming conventions
829 		 * like .eh_frame.foo, hence the use of strncmp() rather than
830 		 * strcmp(). This means that we only really need to test for
831 		 * .eh_frame, as it's a prefix of .eh_frame_hdr.
832 		 */
833 		is_exrange =  strncmp(_cache->c_name,
834 		    MSG_ORIG(MSG_SCN_EXRANGE), MSG_SCN_EXRANGE_SIZE) == 0;
835 		if ((strncmp(_cache->c_name, MSG_ORIG(MSG_SCN_FRM),
836 		    MSG_SCN_FRM_SIZE) != 0) && !is_exrange)
837 			continue;
838 
839 		if (!match(MATCH_F_ALL, _cache->c_name, cnt, shdr->sh_type))
840 			continue;
841 
842 		if (_cache->c_data == NULL)
843 			continue;
844 
845 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
846 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_UNWIND), _cache->c_name);
847 
848 		if (is_exrange)
849 			unwind_exception_ranges(_cache, file,
850 			    _elf_sys_encoding() != ehdr->e_ident[EI_DATA]);
851 		else
852 			unwind_eh_frame(cache, cnt, uphdr, ehdr, &eh_state,
853 			    osabi, file, flags);
854 	}
855 }
856 
857 /*
858  * Print the hardware/software capabilities.  For executables and shared objects
859  * this should be accompanied with a program header.
860  */
861 static void
862 cap(const char *file, Cache *cache, Word shnum, Word phnum, Ehdr *ehdr,
863     Elf *elf)
864 {
865 	Word		cnt;
866 	Shdr		*cshdr = NULL;
867 	Cache		*ccache;
868 	Off		cphdr_off = 0;
869 	Xword		cphdr_sz;
870 
871 	/*
872 	 * Determine if a hardware/software capabilities header exists.
873 	 */
874 	if (phnum) {
875 		Phdr	*phdr;
876 
877 		if ((phdr = elf_getphdr(elf)) == NULL) {
878 			failure(file, MSG_ORIG(MSG_ELF_GETPHDR));
879 			return;
880 		}
881 
882 		for (cnt = 0; cnt < phnum; phdr++, cnt++) {
883 			if (phdr->p_type == PT_SUNWCAP) {
884 				cphdr_off = phdr->p_offset;
885 				cphdr_sz = phdr->p_filesz;
886 				break;
887 			}
888 		}
889 	}
890 
891 	/*
892 	 * Determine if a hardware/software capabilities section exists.
893 	 */
894 	for (cnt = 1; cnt < shnum; cnt++) {
895 		Cache	*_cache = &cache[cnt];
896 		Shdr	*shdr = _cache->c_shdr;
897 
898 		if (shdr->sh_type != SHT_SUNW_cap)
899 			continue;
900 
901 		if (cphdr_off && ((cphdr_off < shdr->sh_offset) ||
902 		    (cphdr_off + cphdr_sz) > (shdr->sh_offset + shdr->sh_size)))
903 			continue;
904 
905 		if (_cache->c_data == NULL)
906 			continue;
907 
908 		ccache = _cache;
909 		cshdr = shdr;
910 		break;
911 	}
912 
913 	if ((cshdr == NULL) && (cphdr_off == 0))
914 		return;
915 
916 	/*
917 	 * Print the hardware/software capabilities section.
918 	 */
919 	if (cshdr) {
920 		Word	ndx, capn;
921 		Cap	*cap = (Cap *)ccache->c_data->d_buf;
922 
923 		if ((cshdr->sh_entsize == 0) || (cshdr->sh_size == 0)) {
924 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
925 			    file, ccache->c_name);
926 			return;
927 		}
928 
929 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
930 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_CAP), ccache->c_name);
931 
932 		Elf_cap_title(0);
933 
934 		capn = (Word)(cshdr->sh_size / cshdr->sh_entsize);
935 
936 		for (ndx = 0; ndx < capn; cap++, ndx++) {
937 			if (cap->c_tag == CA_SUNW_NULL)
938 				continue;
939 
940 			Elf_cap_entry(0, cap, ndx, ehdr->e_machine);
941 
942 			/*
943 			 * An SF1_SUNW_ADDR32 software capability in a 32-bit
944 			 * object is suspicious as it has no effect.
945 			 */
946 			if ((cap->c_tag == CA_SUNW_SF_1) &&
947 			    (ehdr->e_ident[EI_CLASS] == ELFCLASS32) &&
948 			    (cap->c_un.c_val & SF1_SUNW_ADDR32)) {
949 				(void) fprintf(stderr,
950 				    MSG_INTL(MSG_WARN_INADDR32SF1),
951 				    file, ccache->c_name);
952 			}
953 		}
954 	} else
955 		(void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP1), file);
956 
957 	/*
958 	 * If this object is an executable or shared object, then the
959 	 * hardware/software capabilities section should have an accompanying
960 	 * program header.
961 	 */
962 	if (cshdr && ((ehdr->e_type == ET_EXEC) || (ehdr->e_type == ET_DYN))) {
963 		if (cphdr_off == 0)
964 			(void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP2),
965 			    file, ccache->c_name);
966 		else if ((cphdr_off != cshdr->sh_offset) ||
967 		    (cphdr_sz != cshdr->sh_size))
968 			(void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP3),
969 			    file, ccache->c_name);
970 	}
971 }
972 
973 /*
974  * Print the interpretor.
975  */
976 static void
977 interp(const char *file, Cache *cache, Word shnum, Word phnum, Elf *elf)
978 {
979 	static Word phdr_types[] = { PT_INTERP };
980 
981 
982 	Word	cnt;
983 	Shdr	*ishdr = NULL;
984 	Cache	*icache;
985 	Off	iphdr_off = 0;
986 	Xword	iphdr_fsz;
987 
988 	/*
989 	 * Determine if an interp header exists.
990 	 */
991 	if (phnum) {
992 		Phdr	*phdr;
993 
994 		phdr = getphdr(phnum, phdr_types,
995 		    sizeof (phdr_types) / sizeof (*phdr_types), file, elf);
996 		if (phdr != NULL) {
997 			iphdr_off = phdr->p_offset;
998 			iphdr_fsz = phdr->p_filesz;
999 		}
1000 	}
1001 
1002 	if (iphdr_off == 0)
1003 		return;
1004 
1005 	/*
1006 	 * Determine if an interp section exists.
1007 	 */
1008 	for (cnt = 1; cnt < shnum; cnt++) {
1009 		Cache	*_cache = &cache[cnt];
1010 		Shdr	*shdr = _cache->c_shdr;
1011 
1012 		/*
1013 		 * Scan sections to find a section which contains the PT_INTERP
1014 		 * string.  The target section can't be in a NOBITS section.
1015 		 */
1016 		if ((shdr->sh_type == SHT_NOBITS) ||
1017 		    (iphdr_off < shdr->sh_offset) ||
1018 		    (iphdr_off + iphdr_fsz) > (shdr->sh_offset + shdr->sh_size))
1019 			continue;
1020 
1021 		icache = _cache;
1022 		ishdr = shdr;
1023 		break;
1024 	}
1025 
1026 	/*
1027 	 * Print the interpreter string based on the offset defined in the
1028 	 * program header, as this is the offset used by the kernel.
1029 	 */
1030 	if (ishdr && icache->c_data) {
1031 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1032 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_INTERP), icache->c_name);
1033 		dbg_print(0, MSG_ORIG(MSG_FMT_INDENT),
1034 		    (char *)icache->c_data->d_buf +
1035 		    (iphdr_off - ishdr->sh_offset));
1036 	} else
1037 		(void) fprintf(stderr, MSG_INTL(MSG_WARN_INVINTERP1), file);
1038 
1039 	/*
1040 	 * If there are any inconsistences between the program header and
1041 	 * section information, flag them.
1042 	 */
1043 	if (ishdr && ((iphdr_off != ishdr->sh_offset) ||
1044 	    (iphdr_fsz != ishdr->sh_size))) {
1045 		(void) fprintf(stderr, MSG_INTL(MSG_WARN_INVINTERP2), file,
1046 		    icache->c_name);
1047 	}
1048 }
1049 
1050 /*
1051  * Print the syminfo section.
1052  */
1053 static void
1054 syminfo(Cache *cache, Word shnum, const char *file)
1055 {
1056 	Shdr		*infoshdr;
1057 	Syminfo		*info;
1058 	Sym		*syms;
1059 	Dyn		*dyns;
1060 	Word		infonum, cnt, ndx, symnum;
1061 	Cache		*infocache = NULL, *symsec, *strsec;
1062 
1063 	for (cnt = 1; cnt < shnum; cnt++) {
1064 		if (cache[cnt].c_shdr->sh_type == SHT_SUNW_syminfo) {
1065 			infocache = &cache[cnt];
1066 			break;
1067 		}
1068 	}
1069 	if (infocache == NULL)
1070 		return;
1071 
1072 	infoshdr = infocache->c_shdr;
1073 	if ((infoshdr->sh_entsize == 0) || (infoshdr->sh_size == 0)) {
1074 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
1075 		    file, infocache->c_name);
1076 		return;
1077 	}
1078 	if (infocache->c_data == NULL)
1079 		return;
1080 
1081 	infonum = (Word)(infoshdr->sh_size / infoshdr->sh_entsize);
1082 	info = (Syminfo *)infocache->c_data->d_buf;
1083 
1084 	/*
1085 	 * Get the data buffer of the associated dynamic section.
1086 	 */
1087 	if ((infoshdr->sh_info == 0) || (infoshdr->sh_info >= shnum)) {
1088 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHINFO),
1089 		    file, infocache->c_name, EC_WORD(infoshdr->sh_info));
1090 		return;
1091 	}
1092 	if (cache[infoshdr->sh_info].c_data == NULL)
1093 		return;
1094 
1095 	dyns = cache[infoshdr->sh_info].c_data->d_buf;
1096 	if (dyns == NULL) {
1097 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
1098 		    file, cache[infoshdr->sh_info].c_name);
1099 		return;
1100 	}
1101 
1102 	/*
1103 	 * Get the data buffer for the associated symbol table and string table.
1104 	 */
1105 	if (stringtbl(cache, 1, cnt, shnum, file,
1106 	    &symnum, &symsec, &strsec) == 0)
1107 		return;
1108 
1109 	syms = symsec->c_data->d_buf;
1110 
1111 	/*
1112 	 * Loop through the syminfo entries.
1113 	 */
1114 	dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1115 	dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMINFO), infocache->c_name);
1116 	Elf_syminfo_title(0);
1117 
1118 	for (ndx = 1, info++; ndx < infonum; ndx++, info++) {
1119 		Sym 		*sym;
1120 		const char	*needed = NULL, *name;
1121 
1122 		if ((info->si_flags == 0) && (info->si_boundto == 0))
1123 			continue;
1124 
1125 		sym = &syms[ndx];
1126 		name = string(infocache, ndx, strsec, file, sym->st_name);
1127 
1128 		if (info->si_boundto < SYMINFO_BT_LOWRESERVE) {
1129 			Dyn	*dyn = &dyns[info->si_boundto];
1130 
1131 			needed = string(infocache, info->si_boundto,
1132 			    strsec, file, dyn->d_un.d_val);
1133 		}
1134 		Elf_syminfo_entry(0, ndx, info, name, needed);
1135 	}
1136 }
1137 
1138 /*
1139  * Print version definition section entries.
1140  */
1141 static void
1142 version_def(Verdef *vdf, Word vdf_num, Cache *vcache, Cache *scache,
1143     const char *file)
1144 {
1145 	Word	cnt;
1146 	char	index[MAXNDXSIZE];
1147 
1148 	Elf_ver_def_title(0);
1149 
1150 	for (cnt = 1; cnt <= vdf_num; cnt++,
1151 	    vdf = (Verdef *)((uintptr_t)vdf + vdf->vd_next)) {
1152 		Conv_ver_flags_buf_t	ver_flags_buf;
1153 		const char		*name, *dep;
1154 		Half			vcnt = vdf->vd_cnt - 1;
1155 		Half			ndx = vdf->vd_ndx;
1156 		Verdaux	*vdap = (Verdaux *)((uintptr_t)vdf + vdf->vd_aux);
1157 
1158 		/*
1159 		 * Obtain the name and first dependency (if any).
1160 		 */
1161 		name = string(vcache, cnt, scache, file, vdap->vda_name);
1162 		vdap = (Verdaux *)((uintptr_t)vdap + vdap->vda_next);
1163 		if (vcnt)
1164 			dep = string(vcache, cnt, scache, file, vdap->vda_name);
1165 		else
1166 			dep = MSG_ORIG(MSG_STR_EMPTY);
1167 
1168 		(void) snprintf(index, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX),
1169 		    EC_XWORD(ndx));
1170 		Elf_ver_line_1(0, index, name, dep,
1171 		    conv_ver_flags(vdf->vd_flags, 0, &ver_flags_buf));
1172 
1173 		/*
1174 		 * Print any additional dependencies.
1175 		 */
1176 		if (vcnt) {
1177 			vdap = (Verdaux *)((uintptr_t)vdap + vdap->vda_next);
1178 			for (vcnt--; vcnt; vcnt--,
1179 			    vdap = (Verdaux *)((uintptr_t)vdap +
1180 			    vdap->vda_next)) {
1181 				dep = string(vcache, cnt, scache, file,
1182 				    vdap->vda_name);
1183 				Elf_ver_line_2(0, MSG_ORIG(MSG_STR_EMPTY), dep);
1184 			}
1185 		}
1186 	}
1187 }
1188 
1189 /*
1190  * Print version needed section entries.
1191  *
1192  * entry:
1193  *	vnd - Address of verneed data
1194  *	vnd_num - # of Verneed entries
1195  *	vcache - Cache of verneed section being processed
1196  *	scache - Cache of associated string table section
1197  *	file - Name of object being processed.
1198  *	versym - Information about versym section
1199  *
1200  * exit:
1201  *	The versions have been printed. If GNU style versioning
1202  *	is in effect, versym->max_verndx has been updated to
1203  *	contain the largest version index seen.
1204  *
1205  * note:
1206  * 	The versym section of an object that follows the original
1207  *	Solaris versioning rules only contains indexes into the verdef
1208  *	section. Symbols defined in other objects (UNDEF) are given
1209  *	a version of 0, indicating that they are not defined by
1210  *	this file, and the Verneed entries do not have associated version
1211  *	indexes. For these reasons, we do not display a version index
1212  *	for original-style Verneed sections.
1213  *
1214  *	The GNU versioning extensions alter this: Symbols defined in other
1215  *	objects receive a version index in the range above those defined
1216  *	by the Verdef section, and the vna_other field of the Vernaux
1217  *	structs inside the Verneed section contain the version index for
1218  *	that item. We therefore  display the index when showing the
1219  *	contents of a GNU style Verneed section. You should not
1220  *	necessarily expect these indexes to appear in sorted
1221  *	order --- it seems that the GNU ld assigns the versions as
1222  *	symbols are encountered during linking, and then the results
1223  *	are assembled into the Verneed section afterwards.
1224  */
1225 static void
1226 version_need(Verneed *vnd, Word vnd_num, Cache *vcache, Cache *scache,
1227     const char *file, VERSYM_STATE *versym)
1228 {
1229 	Word		cnt;
1230 	char		index[MAXNDXSIZE];
1231 	const char	*index_str;
1232 
1233 	Elf_ver_need_title(0, versym->gnu_needed);
1234 
1235 	for (cnt = 1; cnt <= vnd_num; cnt++,
1236 	    vnd = (Verneed *)((uintptr_t)vnd + vnd->vn_next)) {
1237 		Conv_ver_flags_buf_t	ver_flags_buf;
1238 		const char		*name, *dep;
1239 		Half			vcnt = vnd->vn_cnt;
1240 		Vernaux *vnap = (Vernaux *)((uintptr_t)vnd + vnd->vn_aux);
1241 
1242 		/*
1243 		 * Obtain the name of the needed file and the version name
1244 		 * within it that we're dependent on.  Note that the count
1245 		 * should be at least one, otherwise this is a pretty bogus
1246 		 * entry.
1247 		 */
1248 		name = string(vcache, cnt, scache, file, vnd->vn_file);
1249 		if (vcnt)
1250 			dep = string(vcache, cnt, scache, file, vnap->vna_name);
1251 		else
1252 			dep = MSG_INTL(MSG_STR_NULL);
1253 
1254 		if (vnap->vna_other == 0) {	/* Traditional form */
1255 			index_str = MSG_ORIG(MSG_STR_EMPTY);
1256 		} else {			/* GNU form */
1257 			index_str = index;
1258 			/* Format the version index value */
1259 			(void) snprintf(index, MAXNDXSIZE,
1260 			    MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(vnap->vna_other));
1261 			if (vnap->vna_other > versym->max_verndx)
1262 				versym->max_verndx = vnap->vna_other;
1263 		}
1264 		Elf_ver_line_1(0, index_str, name, dep,
1265 		    conv_ver_flags(vnap->vna_flags, 0, &ver_flags_buf));
1266 
1267 		/*
1268 		 * Print any additional version dependencies.
1269 		 */
1270 		if (vcnt) {
1271 			vnap = (Vernaux *)((uintptr_t)vnap + vnap->vna_next);
1272 			for (vcnt--; vcnt; vcnt--,
1273 			    vnap = (Vernaux *)((uintptr_t)vnap +
1274 			    vnap->vna_next)) {
1275 				dep = string(vcache, cnt, scache, file,
1276 				    vnap->vna_name);
1277 				if (vnap->vna_other > 0) {
1278 					/* Format the next index value */
1279 					(void) snprintf(index, MAXNDXSIZE,
1280 					    MSG_ORIG(MSG_FMT_INDEX),
1281 					    EC_XWORD(vnap->vna_other));
1282 					Elf_ver_line_1(0, index,
1283 					    MSG_ORIG(MSG_STR_EMPTY), dep,
1284 					    conv_ver_flags(vnap->vna_flags,
1285 					    0, &ver_flags_buf));
1286 					if (vnap->vna_other >
1287 					    versym->max_verndx)
1288 						versym->max_verndx =
1289 						    vnap->vna_other;
1290 				} else {
1291 					Elf_ver_line_3(0,
1292 					    MSG_ORIG(MSG_STR_EMPTY), dep,
1293 					    conv_ver_flags(vnap->vna_flags,
1294 					    0, &ver_flags_buf));
1295 				}
1296 			}
1297 		}
1298 	}
1299 }
1300 
1301 /*
1302  * Examine the Verneed section for information related to GNU
1303  * style Versym indexing:
1304  *	- A non-zero vna_other field indicates that Versym indexes can
1305  *		reference Verneed records.
1306  *	- If the object uses GNU style Versym indexing, the
1307  *	  maximum index value is needed to detect bad Versym entries.
1308  *
1309  * entry:
1310  *	vnd - Address of verneed data
1311  *	vnd_num - # of Verneed entries
1312  *	versym - Information about versym section
1313  *
1314  * exit:
1315  *	If a non-zero vna_other field is seen, versym->gnu_needed is set.
1316  *
1317  *	versym->max_verndx has been updated to contain the largest
1318  *	version index seen.
1319  */
1320 static void
1321 update_gnu_verndx(Verneed *vnd, Word vnd_num, VERSYM_STATE *versym)
1322 {
1323 	Word		cnt;
1324 
1325 	for (cnt = 1; cnt <= vnd_num; cnt++,
1326 	    vnd = (Verneed *)((uintptr_t)vnd + vnd->vn_next)) {
1327 		Half	vcnt = vnd->vn_cnt;
1328 		Vernaux	*vnap = (Vernaux *)((uintptr_t)vnd + vnd->vn_aux);
1329 
1330 		/*
1331 		 * A non-zero value of vna_other indicates that this
1332 		 * object references VERNEED items from the VERSYM
1333 		 * array.
1334 		 */
1335 		if (vnap->vna_other != 0) {
1336 			versym->gnu_needed = 1;
1337 			if (vnap->vna_other > versym->max_verndx)
1338 				versym->max_verndx = vnap->vna_other;
1339 		}
1340 
1341 		/*
1342 		 * Check any additional version dependencies.
1343 		 */
1344 		if (vcnt) {
1345 			vnap = (Vernaux *)((uintptr_t)vnap + vnap->vna_next);
1346 			for (vcnt--; vcnt; vcnt--,
1347 			    vnap = (Vernaux *)((uintptr_t)vnap +
1348 			    vnap->vna_next)) {
1349 				if (vnap->vna_other == 0)
1350 					continue;
1351 
1352 				versym->gnu_needed = 1;
1353 				if (vnap->vna_other > versym->max_verndx)
1354 					versym->max_verndx = vnap->vna_other;
1355 			}
1356 		}
1357 	}
1358 }
1359 
1360 /*
1361  * Display version section information if the flags require it.
1362  * Return version information needed by other output.
1363  *
1364  * entry:
1365  *	cache - Cache of all section headers
1366  *	shnum - # of sections in cache
1367  *	file - Name of file
1368  *	flags - Command line option flags
1369  *	versym - VERSYM_STATE block to be filled in.
1370  */
1371 static void
1372 versions(Cache *cache, Word shnum, const char *file, uint_t flags,
1373     VERSYM_STATE *versym)
1374 {
1375 	GElf_Word	cnt;
1376 	Cache		*verdef_cache = NULL, *verneed_cache = NULL;
1377 
1378 
1379 	/* Gather information about the version sections */
1380 	bzero(versym, sizeof (*versym));
1381 	versym->max_verndx = 1;
1382 	for (cnt = 1; cnt < shnum; cnt++) {
1383 		Cache		*_cache = &cache[cnt];
1384 		Shdr		*shdr = _cache->c_shdr;
1385 		Dyn		*dyn;
1386 		ulong_t		numdyn;
1387 
1388 		switch (shdr->sh_type) {
1389 		case SHT_DYNAMIC:
1390 			/*
1391 			 * The GNU ld puts a DT_VERSYM entry in the dynamic
1392 			 * section so that the runtime linker can use it to
1393 			 * implement their versioning rules. They allow multiple
1394 			 * incompatible functions with the same name to exist
1395 			 * in different versions. The Solaris ld does not
1396 			 * support this mechanism, and as such, does not
1397 			 * produce DT_VERSYM. We use this fact to determine
1398 			 * which ld produced this object, and how to interpret
1399 			 * the version values.
1400 			 */
1401 			if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0) ||
1402 			    (_cache->c_data == NULL))
1403 				continue;
1404 			numdyn = shdr->sh_size / shdr->sh_entsize;
1405 			dyn = (Dyn *)_cache->c_data->d_buf;
1406 			for (; numdyn-- > 0; dyn++)
1407 				if (dyn->d_tag == DT_VERSYM) {
1408 					versym->gnu_full =
1409 					    versym->gnu_needed = 1;
1410 					break;
1411 				}
1412 			break;
1413 
1414 		case SHT_SUNW_versym:
1415 			/* Record data address for later symbol processing */
1416 			if (_cache->c_data != NULL) {
1417 				versym->cache = _cache;
1418 				versym->data = _cache->c_data->d_buf;
1419 				continue;
1420 			}
1421 			break;
1422 
1423 		case SHT_SUNW_verdef:
1424 		case SHT_SUNW_verneed:
1425 			/*
1426 			 * Ensure the data is non-NULL and the number
1427 			 * of items is non-zero. Otherwise, we don't
1428 			 * understand the section, and will not use it.
1429 			 */
1430 			if ((_cache->c_data == NULL) ||
1431 			    (_cache->c_data->d_buf == NULL)) {
1432 				(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
1433 				    file, _cache->c_name);
1434 				continue;
1435 			}
1436 			if (shdr->sh_info == 0) {
1437 				(void) fprintf(stderr,
1438 				    MSG_INTL(MSG_ERR_BADSHINFO),
1439 				    file, _cache->c_name,
1440 				    EC_WORD(shdr->sh_info));
1441 				continue;
1442 			}
1443 
1444 			/* Make sure the string table index is in range */
1445 			if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
1446 				(void) fprintf(stderr,
1447 				    MSG_INTL(MSG_ERR_BADSHLINK), file,
1448 				    _cache->c_name, EC_WORD(shdr->sh_link));
1449 				continue;
1450 			}
1451 
1452 			/*
1453 			 * The section is usable. Save the cache entry.
1454 			 */
1455 			if (shdr->sh_type == SHT_SUNW_verdef) {
1456 				verdef_cache = _cache;
1457 				/*
1458 				 * Under Solaris rules, if there is a verdef
1459 				 * section, the max versym index is number
1460 				 * of version definitions it supplies.
1461 				 */
1462 				versym->max_verndx = shdr->sh_info;
1463 			} else {
1464 				verneed_cache = _cache;
1465 			}
1466 			break;
1467 		}
1468 	}
1469 
1470 	/*
1471 	 * If there is a Verneed section, examine it for information
1472 	 * related to GNU style versioning.
1473 	 */
1474 	if (verneed_cache != NULL)
1475 		update_gnu_verndx((Verneed *)verneed_cache->c_data->d_buf,
1476 		    verneed_cache->c_shdr->sh_info, versym);
1477 
1478 	/*
1479 	 * Now that all the information is available, display the
1480 	 * Verdef and Verneed section contents, if requested.
1481 	 */
1482 	if ((flags & FLG_SHOW_VERSIONS) == 0)
1483 		return;
1484 	if (verdef_cache != NULL) {
1485 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1486 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_VERDEF),
1487 		    verdef_cache->c_name);
1488 		version_def((Verdef *)verdef_cache->c_data->d_buf,
1489 		    verdef_cache->c_shdr->sh_info, verdef_cache,
1490 		    &cache[verdef_cache->c_shdr->sh_link], file);
1491 	}
1492 	if (verneed_cache != NULL) {
1493 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1494 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_VERNEED),
1495 		    verneed_cache->c_name);
1496 		/*
1497 		 * If GNU versioning applies to this object, version_need()
1498 		 * will update versym->max_verndx, and it is not
1499 		 * necessary to call update_gnu_verndx().
1500 		 */
1501 		version_need((Verneed *)verneed_cache->c_data->d_buf,
1502 		    verneed_cache->c_shdr->sh_info, verneed_cache,
1503 		    &cache[verneed_cache->c_shdr->sh_link], file, versym);
1504 	}
1505 }
1506 
1507 /*
1508  * Initialize a symbol table state structure
1509  *
1510  * entry:
1511  *	state - State structure to be initialized
1512  *	cache - Cache of all section headers
1513  *	shnum - # of sections in cache
1514  *	secndx - Index of symbol table section
1515  *	ehdr - ELF header for file
1516  *	versym - Information about versym section
1517  *	file - Name of file
1518  *	flags - Command line option flags
1519  */
1520 static int
1521 init_symtbl_state(SYMTBL_STATE *state, Cache *cache, Word shnum, Word secndx,
1522     Ehdr *ehdr, uchar_t osabi, VERSYM_STATE *versym, const char *file,
1523     uint_t flags)
1524 {
1525 	Shdr *shdr;
1526 
1527 	state->file = file;
1528 	state->ehdr = ehdr;
1529 	state->cache = cache;
1530 	state->osabi = osabi;
1531 	state->shnum = shnum;
1532 	state->seccache = &cache[secndx];
1533 	state->secndx = secndx;
1534 	state->secname = state->seccache->c_name;
1535 	state->flags = flags;
1536 	state->shxndx.checked = 0;
1537 	state->shxndx.data = NULL;
1538 	state->shxndx.n = 0;
1539 
1540 	shdr = state->seccache->c_shdr;
1541 
1542 	/*
1543 	 * Check the symbol data and per-item size.
1544 	 */
1545 	if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
1546 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
1547 		    file, state->secname);
1548 		return (0);
1549 	}
1550 	if (state->seccache->c_data == NULL)
1551 		return (0);
1552 
1553 	/* LINTED */
1554 	state->symn = (Word)(shdr->sh_size / shdr->sh_entsize);
1555 	state->sym = (Sym *)state->seccache->c_data->d_buf;
1556 
1557 	/*
1558 	 * Check associated string table section.
1559 	 */
1560 	if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
1561 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
1562 		    file, state->secname, EC_WORD(shdr->sh_link));
1563 		return (0);
1564 	}
1565 
1566 	/*
1567 	 * Determine if there is a associated Versym section
1568 	 * with this Symbol Table.
1569 	 */
1570 	if (versym->cache &&
1571 	    (versym->cache->c_shdr->sh_link == state->secndx))
1572 		state->versym = versym;
1573 	else
1574 		state->versym = NULL;
1575 
1576 
1577 	return (1);
1578 }
1579 
1580 /*
1581  * Determine the extended section index used for symbol tables entries.
1582  */
1583 static void
1584 symbols_getxindex(SYMTBL_STATE *state)
1585 {
1586 	uint_t	symn;
1587 	Word	symcnt;
1588 
1589 	state->shxndx.checked = 1;   /* Note that we've been called */
1590 	for (symcnt = 1; symcnt < state->shnum; symcnt++) {
1591 		Cache	*_cache = &state->cache[symcnt];
1592 		Shdr	*shdr = _cache->c_shdr;
1593 
1594 		if ((shdr->sh_type != SHT_SYMTAB_SHNDX) ||
1595 		    (shdr->sh_link != state->secndx))
1596 			continue;
1597 
1598 		if ((shdr->sh_entsize) &&
1599 		    /* LINTED */
1600 		    ((symn = (uint_t)(shdr->sh_size / shdr->sh_entsize)) == 0))
1601 			continue;
1602 
1603 		if (_cache->c_data == NULL)
1604 			continue;
1605 
1606 		state->shxndx.data = _cache->c_data->d_buf;
1607 		state->shxndx.n = symn;
1608 		return;
1609 	}
1610 }
1611 
1612 /*
1613  * Produce a line of output for the given symbol
1614  *
1615  * entry:
1616  *	state - Symbol table state
1617  *	symndx - Index of symbol within the table
1618  *	info - Value of st_info (indicates local/global range)
1619  *	symndx_disp - Index to display. This may not be the same
1620  *		as symndx if the display is relative to the logical
1621  *		combination of the SUNW_ldynsym/dynsym tables.
1622  *	sym - Symbol to display
1623  */
1624 static void
1625 output_symbol(SYMTBL_STATE *state, Word symndx, Word info, Word disp_symndx,
1626     Sym *sym)
1627 {
1628 	/*
1629 	 * Symbol types for which we check that the specified
1630 	 * address/size land inside the target section.
1631 	 */
1632 	static const int addr_symtype[] = {
1633 		0,			/* STT_NOTYPE */
1634 		1,			/* STT_OBJECT */
1635 		1,			/* STT_FUNC */
1636 		0,			/* STT_SECTION */
1637 		0,			/* STT_FILE */
1638 		1,			/* STT_COMMON */
1639 		0,			/* STT_TLS */
1640 		0,			/* 7 */
1641 		0,			/* 8 */
1642 		0,			/* 9 */
1643 		0,			/* 10 */
1644 		0,			/* 11 */
1645 		0,			/* 12 */
1646 		0,			/* STT_SPARC_REGISTER */
1647 		0,			/* 14 */
1648 		0,			/* 15 */
1649 	};
1650 #if STT_NUM != (STT_TLS + 1)
1651 #error "STT_NUM has grown. Update addr_symtype[]"
1652 #endif
1653 
1654 	char		index[MAXNDXSIZE];
1655 	const char	*symname, *sec;
1656 	Versym		verndx;
1657 	int		gnuver;
1658 	uchar_t		type;
1659 	Shdr		*tshdr;
1660 	Word		shndx;
1661 	Conv_inv_buf_t	inv_buf;
1662 
1663 	/* Ensure symbol index is in range */
1664 	if (symndx >= state->symn) {
1665 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSORTNDX),
1666 		    state->file, state->secname, EC_WORD(symndx));
1667 		return;
1668 	}
1669 
1670 	/*
1671 	 * If we are using extended symbol indexes, find the
1672 	 * corresponding SHN_SYMTAB_SHNDX table.
1673 	 */
1674 	if ((sym->st_shndx == SHN_XINDEX) && (state->shxndx.checked == 0))
1675 		symbols_getxindex(state);
1676 
1677 	/* LINTED */
1678 	symname = string(state->seccache, symndx,
1679 	    &state->cache[state->seccache->c_shdr->sh_link], state->file,
1680 	    sym->st_name);
1681 
1682 	tshdr = NULL;
1683 	sec = NULL;
1684 
1685 	if (state->ehdr->e_type == ET_CORE) {
1686 		sec = (char *)MSG_INTL(MSG_STR_UNKNOWN);
1687 	} else if (state->flags & FLG_CTL_FAKESHDR) {
1688 		/*
1689 		 * If we are using fake section headers derived from
1690 		 * the program headers, then the section indexes
1691 		 * in the symbols do not correspond to these headers.
1692 		 * The section names are not available, so all we can
1693 		 * do is to display them in numeric form.
1694 		 */
1695 		sec = conv_sym_shndx(state->osabi, state->ehdr->e_machine,
1696 		    sym->st_shndx, CONV_FMT_DECIMAL, &inv_buf);
1697 	} else if ((sym->st_shndx < SHN_LORESERVE) &&
1698 	    (sym->st_shndx < state->shnum)) {
1699 		shndx = sym->st_shndx;
1700 		tshdr = state->cache[shndx].c_shdr;
1701 		sec = state->cache[shndx].c_name;
1702 	} else if (sym->st_shndx == SHN_XINDEX) {
1703 		if (state->shxndx.data) {
1704 			Word	_shxndx;
1705 
1706 			if (symndx > state->shxndx.n) {
1707 				(void) fprintf(stderr,
1708 				    MSG_INTL(MSG_ERR_BADSYMXINDEX1),
1709 				    state->file, state->secname,
1710 				    EC_WORD(symndx));
1711 			} else if ((_shxndx =
1712 			    state->shxndx.data[symndx]) > state->shnum) {
1713 				(void) fprintf(stderr,
1714 				    MSG_INTL(MSG_ERR_BADSYMXINDEX2),
1715 				    state->file, state->secname,
1716 				    EC_WORD(symndx), EC_WORD(_shxndx));
1717 			} else {
1718 				shndx = _shxndx;
1719 				tshdr = state->cache[shndx].c_shdr;
1720 				sec = state->cache[shndx].c_name;
1721 			}
1722 		} else {
1723 			(void) fprintf(stderr,
1724 			    MSG_INTL(MSG_ERR_BADSYMXINDEX3),
1725 			    state->file, state->secname, EC_WORD(symndx));
1726 		}
1727 	} else if ((sym->st_shndx < SHN_LORESERVE) &&
1728 	    (sym->st_shndx >= state->shnum)) {
1729 		(void) fprintf(stderr,
1730 		    MSG_INTL(MSG_ERR_BADSYM5), state->file,
1731 		    state->secname, EC_WORD(symndx),
1732 		    demangle(symname, state->flags), sym->st_shndx);
1733 	}
1734 
1735 	/*
1736 	 * If versioning is available display the
1737 	 * version index. If not, then use 0.
1738 	 */
1739 	if (state->versym) {
1740 		Versym test_verndx;
1741 
1742 		verndx = test_verndx = state->versym->data[symndx];
1743 		gnuver = state->versym->gnu_full;
1744 
1745 		/*
1746 		 * Check to see if this is a defined symbol with a
1747 		 * version index that is outside the valid range for
1748 		 * the file. The interpretation of this depends on
1749 		 * the style of versioning used by the object.
1750 		 *
1751 		 * Versions >= VER_NDX_LORESERVE have special meanings,
1752 		 * and are exempt from this checking.
1753 		 *
1754 		 * GNU style version indexes use the top bit of the
1755 		 * 16-bit index value (0x8000) as the "hidden bit".
1756 		 * We must mask off this bit in order to compare
1757 		 * the version against the maximum value.
1758 		 */
1759 		if (gnuver)
1760 			test_verndx &= ~0x8000;
1761 
1762 		if ((test_verndx > state->versym->max_verndx) &&
1763 		    (verndx < VER_NDX_LORESERVE))
1764 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADVER),
1765 			    state->file, state->secname, EC_WORD(symndx),
1766 			    EC_HALF(test_verndx), state->versym->max_verndx);
1767 	} else {
1768 		verndx = 0;
1769 		gnuver = 0;
1770 	}
1771 
1772 	/*
1773 	 * Error checking for TLS.
1774 	 */
1775 	type = ELF_ST_TYPE(sym->st_info);
1776 	if (type == STT_TLS) {
1777 		if (tshdr &&
1778 		    (sym->st_shndx != SHN_UNDEF) &&
1779 		    ((tshdr->sh_flags & SHF_TLS) == 0)) {
1780 			(void) fprintf(stderr,
1781 			    MSG_INTL(MSG_ERR_BADSYM3), state->file,
1782 			    state->secname, EC_WORD(symndx),
1783 			    demangle(symname, state->flags));
1784 		}
1785 	} else if ((type != STT_SECTION) && sym->st_size &&
1786 	    tshdr && (tshdr->sh_flags & SHF_TLS)) {
1787 		(void) fprintf(stderr,
1788 		    MSG_INTL(MSG_ERR_BADSYM4), state->file,
1789 		    state->secname, EC_WORD(symndx),
1790 		    demangle(symname, state->flags));
1791 	}
1792 
1793 	/*
1794 	 * If a symbol with non-zero size has a type that
1795 	 * specifies an address, then make sure the location
1796 	 * it references is actually contained within the
1797 	 * section.  UNDEF symbols don't count in this case,
1798 	 * so we ignore them.
1799 	 *
1800 	 * The meaning of the st_value field in a symbol
1801 	 * depends on the type of object. For a relocatable
1802 	 * object, it is the offset within the section.
1803 	 * For sharable objects, it is the offset relative to
1804 	 * the base of the object, and for other types, it is
1805 	 * the virtual address. To get an offset within the
1806 	 * section for non-ET_REL files, we subtract the
1807 	 * base address of the section.
1808 	 */
1809 	if (addr_symtype[type] && (sym->st_size > 0) &&
1810 	    (sym->st_shndx != SHN_UNDEF) && ((sym->st_shndx < SHN_LORESERVE) ||
1811 	    (sym->st_shndx == SHN_XINDEX)) && (tshdr != NULL)) {
1812 		Word v = sym->st_value;
1813 			if (state->ehdr->e_type != ET_REL)
1814 				v -= tshdr->sh_addr;
1815 		if (((v + sym->st_size) > tshdr->sh_size)) {
1816 			(void) fprintf(stderr,
1817 			    MSG_INTL(MSG_ERR_BADSYM6), state->file,
1818 			    state->secname, EC_WORD(symndx),
1819 			    demangle(symname, state->flags),
1820 			    EC_WORD(shndx), EC_XWORD(tshdr->sh_size),
1821 			    EC_XWORD(sym->st_value), EC_XWORD(sym->st_size));
1822 		}
1823 	}
1824 
1825 	/*
1826 	 * A typical symbol table uses the sh_info field to indicate one greater
1827 	 * than the symbol table index of the last local symbol, STB_LOCAL.
1828 	 * Therefore, symbol indexes less than sh_info should have local
1829 	 * binding.  Symbol indexes greater than, or equal to sh_info, should
1830 	 * have global binding.  Note, we exclude UNDEF/NOTY symbols with zero
1831 	 * value and size, as these symbols may be the result of an mcs(1)
1832 	 * section deletion.
1833 	 */
1834 	if (info) {
1835 		uchar_t	bind = ELF_ST_BIND(sym->st_info);
1836 
1837 		if ((symndx < info) && (bind != STB_LOCAL)) {
1838 			(void) fprintf(stderr,
1839 			    MSG_INTL(MSG_ERR_BADSYM7), state->file,
1840 			    state->secname, EC_WORD(symndx),
1841 			    demangle(symname, state->flags), EC_XWORD(info));
1842 
1843 		} else if ((symndx >= info) && (bind == STB_LOCAL) &&
1844 		    ((sym->st_shndx != SHN_UNDEF) ||
1845 		    (ELF_ST_TYPE(sym->st_info) != STT_NOTYPE) ||
1846 		    (sym->st_size != 0) || (sym->st_value != 0))) {
1847 			(void) fprintf(stderr,
1848 			    MSG_INTL(MSG_ERR_BADSYM8), state->file,
1849 			    state->secname, EC_WORD(symndx),
1850 			    demangle(symname, state->flags), EC_XWORD(info));
1851 		}
1852 	}
1853 
1854 	(void) snprintf(index, MAXNDXSIZE,
1855 	    MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(disp_symndx));
1856 	Elf_syms_table_entry(0, ELF_DBG_ELFDUMP, index, state->osabi,
1857 	    state->ehdr->e_machine, sym, verndx, gnuver, sec, symname);
1858 }
1859 
1860 /*
1861  * Search for and process any symbol tables.
1862  */
1863 void
1864 symbols(Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi,
1865     VERSYM_STATE *versym, const char *file, uint_t flags)
1866 {
1867 	SYMTBL_STATE state;
1868 	Cache *_cache;
1869 	Word secndx;
1870 
1871 	for (secndx = 1; secndx < shnum; secndx++) {
1872 		Word		symcnt;
1873 		Shdr		*shdr;
1874 
1875 		_cache = &cache[secndx];
1876 		shdr = _cache->c_shdr;
1877 
1878 		if ((shdr->sh_type != SHT_SYMTAB) &&
1879 		    (shdr->sh_type != SHT_DYNSYM) &&
1880 		    ((shdr->sh_type != SHT_SUNW_LDYNSYM) ||
1881 		    (osabi != ELFOSABI_SOLARIS)))
1882 			continue;
1883 		if (!match(MATCH_F_ALL, _cache->c_name, secndx, shdr->sh_type))
1884 			continue;
1885 
1886 		if (!init_symtbl_state(&state, cache, shnum, secndx, ehdr,
1887 		    osabi, versym, file, flags))
1888 			continue;
1889 		/*
1890 		 * Loop through the symbol tables entries.
1891 		 */
1892 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1893 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMTAB), state.secname);
1894 		Elf_syms_table_title(0, ELF_DBG_ELFDUMP);
1895 
1896 		for (symcnt = 0; symcnt < state.symn; symcnt++)
1897 			output_symbol(&state, symcnt, shdr->sh_info, symcnt,
1898 			    state.sym + symcnt);
1899 	}
1900 }
1901 
1902 /*
1903  * Search for and process any SHT_SUNW_symsort or SHT_SUNW_tlssort sections.
1904  * These sections are always associated with the .SUNW_ldynsym./.dynsym pair.
1905  */
1906 static void
1907 sunw_sort(Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi,
1908     VERSYM_STATE *versym, const char *file, uint_t flags)
1909 {
1910 	SYMTBL_STATE	ldynsym_state,	dynsym_state;
1911 	Cache		*sortcache,	*symcache;
1912 	Shdr		*sortshdr,	*symshdr;
1913 	Word		sortsecndx,	symsecndx;
1914 	Word		ldynsym_cnt;
1915 	Word		*ndx;
1916 	Word		ndxn;
1917 	int		output_cnt = 0;
1918 	Conv_inv_buf_t	inv_buf;
1919 
1920 	for (sortsecndx = 1; sortsecndx < shnum; sortsecndx++) {
1921 
1922 		sortcache = &cache[sortsecndx];
1923 		sortshdr = sortcache->c_shdr;
1924 
1925 		if ((sortshdr->sh_type != SHT_SUNW_symsort) &&
1926 		    (sortshdr->sh_type != SHT_SUNW_tlssort))
1927 			continue;
1928 		if (!match(MATCH_F_ALL, sortcache->c_name, sortsecndx,
1929 		    sortshdr->sh_type))
1930 			continue;
1931 
1932 		/*
1933 		 * If the section references a SUNW_ldynsym, then we
1934 		 * expect to see the associated .dynsym immediately
1935 		 * following. If it references a .dynsym, there is no
1936 		 * SUNW_ldynsym. If it is any other type, then we don't
1937 		 * know what to do with it.
1938 		 */
1939 		if ((sortshdr->sh_link == 0) || (sortshdr->sh_link >= shnum)) {
1940 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
1941 			    file, sortcache->c_name,
1942 			    EC_WORD(sortshdr->sh_link));
1943 			continue;
1944 		}
1945 		symcache = &cache[sortshdr->sh_link];
1946 		symshdr = symcache->c_shdr;
1947 		symsecndx = sortshdr->sh_link;
1948 		ldynsym_cnt = 0;
1949 		switch (symshdr->sh_type) {
1950 		case SHT_SUNW_LDYNSYM:
1951 			if (!init_symtbl_state(&ldynsym_state, cache, shnum,
1952 			    symsecndx, ehdr, osabi, versym, file, flags))
1953 				continue;
1954 			ldynsym_cnt = ldynsym_state.symn;
1955 			/*
1956 			 * We know that the dynsym follows immediately
1957 			 * after the SUNW_ldynsym, and so, should be at
1958 			 * (sortshdr->sh_link + 1). However, elfdump is a
1959 			 * diagnostic tool, so we do the full paranoid
1960 			 * search instead.
1961 			 */
1962 			for (symsecndx = 1; symsecndx < shnum; symsecndx++) {
1963 				symcache = &cache[symsecndx];
1964 				symshdr = symcache->c_shdr;
1965 				if (symshdr->sh_type == SHT_DYNSYM)
1966 					break;
1967 			}
1968 			if (symsecndx >= shnum) {	/* Dynsym not found! */
1969 				(void) fprintf(stderr,
1970 				    MSG_INTL(MSG_ERR_NODYNSYM),
1971 				    file, sortcache->c_name);
1972 				continue;
1973 			}
1974 			/* Fallthrough to process associated dynsym */
1975 			/* FALLTHROUGH */
1976 		case SHT_DYNSYM:
1977 			if (!init_symtbl_state(&dynsym_state, cache, shnum,
1978 			    symsecndx, ehdr, osabi, versym, file, flags))
1979 				continue;
1980 			break;
1981 		default:
1982 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADNDXSEC),
1983 			    file, sortcache->c_name,
1984 			    conv_sec_type(osabi, ehdr->e_machine,
1985 			    symshdr->sh_type, 0, &inv_buf));
1986 			continue;
1987 		}
1988 
1989 		/*
1990 		 * Output header
1991 		 */
1992 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1993 		if (ldynsym_cnt > 0) {
1994 			dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMSORT2),
1995 			    sortcache->c_name, ldynsym_state.secname,
1996 			    dynsym_state.secname);
1997 			/*
1998 			 * The data for .SUNW_ldynsym and dynsym sections
1999 			 * is supposed to be adjacent with SUNW_ldynsym coming
2000 			 * first. Check, and issue a warning if it isn't so.
2001 			 */
2002 			if (((ldynsym_state.sym + ldynsym_state.symn)
2003 			    != dynsym_state.sym) &&
2004 			    ((flags & FLG_CTL_FAKESHDR) == 0))
2005 				(void) fprintf(stderr,
2006 				    MSG_INTL(MSG_ERR_LDYNNOTADJ), file,
2007 				    ldynsym_state.secname,
2008 				    dynsym_state.secname);
2009 		} else {
2010 			dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMSORT1),
2011 			    sortcache->c_name, dynsym_state.secname);
2012 		}
2013 		Elf_syms_table_title(0, ELF_DBG_ELFDUMP);
2014 
2015 		/* If not first one, insert a line of whitespace */
2016 		if (output_cnt++ > 0)
2017 			dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2018 
2019 		/*
2020 		 * SUNW_dynsymsort and SUNW_dyntlssort are arrays of
2021 		 * symbol indices. Iterate over the array entries,
2022 		 * dispaying the referenced symbols.
2023 		 */
2024 		ndxn = sortshdr->sh_size / sortshdr->sh_entsize;
2025 		ndx = (Word *)sortcache->c_data->d_buf;
2026 		for (; ndxn-- > 0; ndx++) {
2027 			if (*ndx >= ldynsym_cnt) {
2028 				Word sec_ndx = *ndx - ldynsym_cnt;
2029 
2030 				output_symbol(&dynsym_state, sec_ndx, 0,
2031 				    *ndx, dynsym_state.sym + sec_ndx);
2032 			} else {
2033 				output_symbol(&ldynsym_state, *ndx, 0,
2034 				    *ndx, ldynsym_state.sym + *ndx);
2035 			}
2036 		}
2037 	}
2038 }
2039 
2040 /*
2041  * Search for and process any relocation sections.
2042  */
2043 static void
2044 reloc(Cache *cache, Word shnum, Ehdr *ehdr, const char *file)
2045 {
2046 	Word	cnt;
2047 
2048 	for (cnt = 1; cnt < shnum; cnt++) {
2049 		Word		type, symnum;
2050 		Xword		relndx, relnum, relsize;
2051 		void		*rels;
2052 		Sym		*syms;
2053 		Cache		*symsec, *strsec;
2054 		Cache		*_cache = &cache[cnt];
2055 		Shdr		*shdr = _cache->c_shdr;
2056 		char		*relname = _cache->c_name;
2057 		Conv_inv_buf_t	inv_buf;
2058 
2059 		if (((type = shdr->sh_type) != SHT_RELA) &&
2060 		    (type != SHT_REL))
2061 			continue;
2062 		if (!match(MATCH_F_ALL, relname, cnt, type))
2063 			continue;
2064 
2065 		/*
2066 		 * Decide entry size.
2067 		 */
2068 		if (((relsize = shdr->sh_entsize) == 0) ||
2069 		    (relsize > shdr->sh_size)) {
2070 			if (type == SHT_RELA)
2071 				relsize = sizeof (Rela);
2072 			else
2073 				relsize = sizeof (Rel);
2074 		}
2075 
2076 		/*
2077 		 * Determine the number of relocations available.
2078 		 */
2079 		if (shdr->sh_size == 0) {
2080 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
2081 			    file, relname);
2082 			continue;
2083 		}
2084 		if (_cache->c_data == NULL)
2085 			continue;
2086 
2087 		rels = _cache->c_data->d_buf;
2088 		relnum = shdr->sh_size / relsize;
2089 
2090 		/*
2091 		 * Get the data buffer for the associated symbol table and
2092 		 * string table.
2093 		 */
2094 		if (stringtbl(cache, 1, cnt, shnum, file,
2095 		    &symnum, &symsec, &strsec) == 0)
2096 			continue;
2097 
2098 		syms = symsec->c_data->d_buf;
2099 
2100 		/*
2101 		 * Loop through the relocation entries.
2102 		 */
2103 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2104 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_RELOC), _cache->c_name);
2105 		Elf_reloc_title(0, ELF_DBG_ELFDUMP, type);
2106 
2107 		for (relndx = 0; relndx < relnum; relndx++,
2108 		    rels = (void *)((char *)rels + relsize)) {
2109 			Half		mach = ehdr->e_machine;
2110 			char		section[BUFSIZ];
2111 			const char	*symname;
2112 			Word		symndx, reltype;
2113 			Rela		*rela;
2114 			Rel		*rel;
2115 
2116 			/*
2117 			 * Unravel the relocation and determine the symbol with
2118 			 * which this relocation is associated.
2119 			 */
2120 			if (type == SHT_RELA) {
2121 				rela = (Rela *)rels;
2122 				symndx = ELF_R_SYM(rela->r_info);
2123 				reltype = ELF_R_TYPE(rela->r_info, mach);
2124 			} else {
2125 				rel = (Rel *)rels;
2126 				symndx = ELF_R_SYM(rel->r_info);
2127 				reltype = ELF_R_TYPE(rel->r_info, mach);
2128 			}
2129 
2130 			symname = relsymname(cache, _cache, strsec, symndx,
2131 			    symnum, relndx, syms, section, BUFSIZ, file);
2132 
2133 			/*
2134 			 * A zero symbol index is only valid for a few
2135 			 * relocations.
2136 			 */
2137 			if (symndx == 0) {
2138 				int	badrel = 0;
2139 
2140 				if ((mach == EM_SPARC) ||
2141 				    (mach == EM_SPARC32PLUS) ||
2142 				    (mach == EM_SPARCV9)) {
2143 					if ((reltype != R_SPARC_NONE) &&
2144 					    (reltype != R_SPARC_REGISTER) &&
2145 					    (reltype != R_SPARC_RELATIVE))
2146 						badrel++;
2147 				} else if (mach == EM_386) {
2148 					if ((reltype != R_386_NONE) &&
2149 					    (reltype != R_386_RELATIVE))
2150 						badrel++;
2151 				} else if (mach == EM_AMD64) {
2152 					if ((reltype != R_AMD64_NONE) &&
2153 					    (reltype != R_AMD64_RELATIVE))
2154 						badrel++;
2155 				}
2156 
2157 				if (badrel) {
2158 					(void) fprintf(stderr,
2159 					    MSG_INTL(MSG_ERR_BADREL1), file,
2160 					    conv_reloc_type(mach, reltype,
2161 					    0, &inv_buf));
2162 				}
2163 			}
2164 
2165 			Elf_reloc_entry_1(0, ELF_DBG_ELFDUMP,
2166 			    MSG_ORIG(MSG_STR_EMPTY), ehdr->e_machine, type,
2167 			    rels, relname, symname, 0);
2168 		}
2169 	}
2170 }
2171 
2172 
2173 /*
2174  * This value controls which test dyn_test() performs.
2175  */
2176 typedef enum { DYN_TEST_ADDR, DYN_TEST_SIZE, DYN_TEST_ENTSIZE } dyn_test_t;
2177 
2178 /*
2179  * Used by dynamic() to compare the value of a dynamic element against
2180  * the starting address of the section it references.
2181  *
2182  * entry:
2183  *	test_type - Specify which dyn item is being tested.
2184  *	sh_type - SHT_* type value for required section.
2185  *	sec_cache - Cache entry for section, or NULL if the object lacks
2186  *		a section of this type.
2187  *	dyn - Dyn entry to be tested
2188  *	dynsec_cnt - # of dynamic section being examined. The first
2189  *		dynamic section is 1, the next is 2, and so on...
2190  *	ehdr - ELF header for file
2191  *	file - Name of file
2192  */
2193 static void
2194 dyn_test(dyn_test_t test_type, Word sh_type, Cache *sec_cache, Dyn *dyn,
2195     Word dynsec_cnt, Ehdr *ehdr, uchar_t osabi, const char *file)
2196 {
2197 	Conv_inv_buf_t	buf1, buf2;
2198 
2199 	/*
2200 	 * These tests are based around the implicit assumption that
2201 	 * there is only one dynamic section in an object, and also only
2202 	 * one of the sections it references. We have therefore gathered
2203 	 * all of the necessary information to test this in a single pass
2204 	 * over the section headers, which is very efficient. We are not
2205 	 * aware of any case where more than one dynamic section would
2206 	 * be meaningful in an ELF object, so this is a reasonable solution.
2207 	 *
2208 	 * To test multiple dynamic sections correctly would be more
2209 	 * expensive in code and time. We would have to build a data structure
2210 	 * containing all the dynamic elements. Then, we would use the address
2211 	 * to locate the section it references and ensure the section is of
2212 	 * the right type and that the address in the dynamic element is
2213 	 * to the start of the section. Then, we could check the size and
2214 	 * entsize values against those same sections. This is O(n^2), and
2215 	 * also complicated.
2216 	 *
2217 	 * In the highly unlikely case that there is more than one dynamic
2218 	 * section, we only test the first one, and simply allow the values
2219 	 * of the subsequent one to be displayed unchallenged.
2220 	 */
2221 	if (dynsec_cnt != 1)
2222 		return;
2223 
2224 	/*
2225 	 * A DT_ item that references a section address should always find
2226 	 * the section in the file.
2227 	 */
2228 	if (sec_cache == NULL) {
2229 		const char *name;
2230 
2231 		/*
2232 		 * Supply section names instead of section types for
2233 		 * things that reference progbits so that the error
2234 		 * message will make more sense.
2235 		 */
2236 		switch (dyn->d_tag) {
2237 		case DT_INIT:
2238 			name = MSG_ORIG(MSG_ELF_INIT);
2239 			break;
2240 		case DT_FINI:
2241 			name = MSG_ORIG(MSG_ELF_FINI);
2242 			break;
2243 		default:
2244 			name = conv_sec_type(osabi, ehdr->e_machine,
2245 			    sh_type, 0, &buf1);
2246 			break;
2247 		}
2248 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_DYNNOBCKSEC), file,
2249 		    name, conv_dyn_tag(dyn->d_tag, osabi, ehdr->e_machine,
2250 		    0, &buf2));
2251 		return;
2252 	}
2253 
2254 
2255 	switch (test_type) {
2256 	case DYN_TEST_ADDR:
2257 		/* The section address should match the DT_ item value */
2258 		if (dyn->d_un.d_val != sec_cache->c_shdr->sh_addr)
2259 			(void) fprintf(stderr,
2260 			    MSG_INTL(MSG_ERR_DYNBADADDR), file,
2261 			    conv_dyn_tag(dyn->d_tag, osabi, ehdr->e_machine,
2262 			    0, &buf1), EC_ADDR(dyn->d_un.d_val),
2263 			    sec_cache->c_ndx, sec_cache->c_name,
2264 			    EC_ADDR(sec_cache->c_shdr->sh_addr));
2265 		break;
2266 
2267 	case DYN_TEST_SIZE:
2268 		/* The section size should match the DT_ item value */
2269 		if (dyn->d_un.d_val != sec_cache->c_shdr->sh_size)
2270 			(void) fprintf(stderr,
2271 			    MSG_INTL(MSG_ERR_DYNBADSIZE), file,
2272 			    conv_dyn_tag(dyn->d_tag, osabi, ehdr->e_machine,
2273 			    0, &buf1), EC_XWORD(dyn->d_un.d_val),
2274 			    sec_cache->c_ndx, sec_cache->c_name,
2275 			    EC_XWORD(sec_cache->c_shdr->sh_size));
2276 		break;
2277 
2278 	case DYN_TEST_ENTSIZE:
2279 		/* The sh_entsize value should match the DT_ item value */
2280 		if (dyn->d_un.d_val != sec_cache->c_shdr->sh_entsize)
2281 			(void) fprintf(stderr,
2282 			    MSG_INTL(MSG_ERR_DYNBADENTSIZE), file,
2283 			    conv_dyn_tag(dyn->d_tag, osabi, ehdr->e_machine,
2284 			    0, &buf1), EC_XWORD(dyn->d_un.d_val),
2285 			    sec_cache->c_ndx, sec_cache->c_name,
2286 			    EC_XWORD(sec_cache->c_shdr->sh_entsize));
2287 		break;
2288 	}
2289 }
2290 
2291 
2292 /*
2293  * There are some DT_ entries that have corresponding symbols
2294  * (e.g. DT_INIT and _init). It is expected that these items will
2295  * both have the same value if both are present. This routine
2296  * examines the well known symbol tables for such symbols and
2297  * issues warnings for any that don't match.
2298  *
2299  * entry:
2300  *	dyn - Dyn entry to be tested
2301  *	symname - Name of symbol that corresponds to dyn
2302  *	symtab_cache, dynsym_cache, ldynsym_cache - Symbol tables to check
2303  *	cache - Cache of all section headers
2304  *	shnum - # of sections in cache
2305  *	ehdr - ELF header for file
2306  *	file - Name of file
2307  */
2308 static void
2309 dyn_symtest(Dyn *dyn, const char *symname, Cache *symtab_cache,
2310     Cache *dynsym_cache, Cache *ldynsym_cache, Cache *cache,
2311     Word shnum, Ehdr *ehdr, uchar_t osabi, const char *file)
2312 {
2313 	Conv_inv_buf_t	buf;
2314 	int		i;
2315 	Sym		*sym;
2316 	Cache		*_cache;
2317 
2318 	for (i = 0; i < 3; i++) {
2319 		switch (i) {
2320 		case 0:
2321 			_cache = symtab_cache;
2322 			break;
2323 		case 1:
2324 			_cache = dynsym_cache;
2325 			break;
2326 		case 2:
2327 			_cache = ldynsym_cache;
2328 			break;
2329 		}
2330 
2331 		if ((_cache != NULL) &&
2332 		    symlookup(symname, cache, shnum, &sym, _cache, file) &&
2333 		    (sym->st_value != dyn->d_un.d_val))
2334 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_DYNSYMVAL),
2335 			    file, _cache->c_name, conv_dyn_tag(dyn->d_tag,
2336 			    osabi, ehdr->e_machine, 0, &buf),
2337 			    symname, EC_ADDR(sym->st_value));
2338 	}
2339 }
2340 
2341 
2342 /*
2343  * Search for and process a .dynamic section.
2344  */
2345 static void
2346 dynamic(Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi, const char *file)
2347 {
2348 	struct {
2349 		Cache	*symtab;
2350 		Cache	*dynstr;
2351 		Cache	*dynsym;
2352 		Cache	*hash;
2353 		Cache	*fini;
2354 		Cache	*fini_array;
2355 		Cache	*init;
2356 		Cache	*init_array;
2357 		Cache	*preinit_array;
2358 		Cache	*rel;
2359 		Cache	*rela;
2360 		Cache	*sunw_cap;
2361 		Cache	*sunw_ldynsym;
2362 		Cache	*sunw_move;
2363 		Cache	*sunw_syminfo;
2364 		Cache	*sunw_symsort;
2365 		Cache	*sunw_tlssort;
2366 		Cache	*sunw_verdef;
2367 		Cache	*sunw_verneed;
2368 		Cache	*sunw_versym;
2369 	} sec;
2370 	Word	dynsec_ndx;
2371 	Word	dynsec_num;
2372 	int	dynsec_cnt;
2373 	Word	cnt;
2374 	int	osabi_solaris = osabi == ELFOSABI_SOLARIS;
2375 
2376 	/*
2377 	 * Make a pass over all the sections, gathering section information
2378 	 * we'll need below.
2379 	 */
2380 	dynsec_num = 0;
2381 	bzero(&sec, sizeof (sec));
2382 	for (cnt = 1; cnt < shnum; cnt++) {
2383 		Cache	*_cache = &cache[cnt];
2384 
2385 		switch (_cache->c_shdr->sh_type) {
2386 		case SHT_DYNAMIC:
2387 			if (dynsec_num == 0) {
2388 				dynsec_ndx = cnt;
2389 
2390 				/* Does it have a valid string table? */
2391 				(void) stringtbl(cache, 0, cnt, shnum, file,
2392 				    0, 0, &sec.dynstr);
2393 			}
2394 			dynsec_num++;
2395 			break;
2396 
2397 
2398 		case SHT_PROGBITS:
2399 			/*
2400 			 * We want to detect the .init and .fini sections,
2401 			 * if present. These are SHT_PROGBITS, so all we
2402 			 * have to go on is the section name. Normally comparing
2403 			 * names is a bad idea, but there are some special
2404 			 * names (i.e. .init/.fini/.interp) that are very
2405 			 * difficult to use in any other context, and for
2406 			 * these symbols, we do the heuristic match.
2407 			 */
2408 			if (strcmp(_cache->c_name,
2409 			    MSG_ORIG(MSG_ELF_INIT)) == 0) {
2410 				if (sec.init == NULL)
2411 					sec.init = _cache;
2412 			} else if (strcmp(_cache->c_name,
2413 			    MSG_ORIG(MSG_ELF_FINI)) == 0) {
2414 				if (sec.fini == NULL)
2415 					sec.fini = _cache;
2416 			}
2417 			break;
2418 
2419 		case SHT_REL:
2420 			/*
2421 			 * We want the SHT_REL section with the lowest
2422 			 * offset. The linker gathers them together,
2423 			 * and puts the address of the first one
2424 			 * into the DT_REL dynamic element.
2425 			 */
2426 			if ((sec.rel == NULL) ||
2427 			    (_cache->c_shdr->sh_offset <
2428 			    sec.rel->c_shdr->sh_offset))
2429 				sec.rel = _cache;
2430 			break;
2431 
2432 		case SHT_RELA:
2433 			/* RELA is handled just like RELA above */
2434 			if ((sec.rela == NULL) ||
2435 			    (_cache->c_shdr->sh_offset <
2436 			    sec.rela->c_shdr->sh_offset))
2437 				sec.rela = _cache;
2438 			break;
2439 
2440 		/*
2441 		 * The GRAB macro is used for the simple case in which
2442 		 * we simply grab the first section of the desired type.
2443 		 */
2444 #define	GRAB(_sec_type, _sec_field) \
2445 		case _sec_type: \
2446 			if (sec._sec_field == NULL) \
2447 				sec._sec_field = _cache; \
2448 				break
2449 		GRAB(SHT_SYMTAB,	symtab);
2450 		GRAB(SHT_DYNSYM,	dynsym);
2451 		GRAB(SHT_FINI_ARRAY,	fini_array);
2452 		GRAB(SHT_HASH,		hash);
2453 		GRAB(SHT_INIT_ARRAY,	init_array);
2454 		GRAB(SHT_SUNW_move,	sunw_move);
2455 		GRAB(SHT_PREINIT_ARRAY,	preinit_array);
2456 		GRAB(SHT_SUNW_cap,	sunw_cap);
2457 		GRAB(SHT_SUNW_LDYNSYM,	sunw_ldynsym);
2458 		GRAB(SHT_SUNW_syminfo,	sunw_syminfo);
2459 		GRAB(SHT_SUNW_symsort,	sunw_symsort);
2460 		GRAB(SHT_SUNW_tlssort,	sunw_tlssort);
2461 		GRAB(SHT_SUNW_verdef,	sunw_verdef);
2462 		GRAB(SHT_SUNW_verneed,	sunw_verneed);
2463 		GRAB(SHT_SUNW_versym,	sunw_versym);
2464 #undef GRAB
2465 		}
2466 	}
2467 
2468 	/*
2469 	 * If no dynamic section, return immediately. If more than one
2470 	 * dynamic section, then something odd is going on and an error
2471 	 * is in order, but then continue on and display them all.
2472 	 */
2473 	if (dynsec_num == 0)
2474 		return;
2475 	if (dynsec_num > 1)
2476 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_MULTDYN),
2477 		    file, EC_WORD(dynsec_num));
2478 
2479 
2480 	dynsec_cnt = 0;
2481 	for (cnt = dynsec_ndx; (cnt < shnum) && (dynsec_cnt < dynsec_num);
2482 	    cnt++) {
2483 		Dyn	*dyn;
2484 		ulong_t	numdyn;
2485 		int	ndx, end_ndx;
2486 		Cache	*_cache = &cache[cnt], *strsec;
2487 		Shdr	*shdr = _cache->c_shdr;
2488 		int	dumped = 0;
2489 
2490 		if (shdr->sh_type != SHT_DYNAMIC)
2491 			continue;
2492 		dynsec_cnt++;
2493 
2494 		/*
2495 		 * Verify the associated string table section.
2496 		 */
2497 		if (stringtbl(cache, 0, cnt, shnum, file, 0, 0, &strsec) == 0)
2498 			continue;
2499 
2500 		if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
2501 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
2502 			    file, _cache->c_name);
2503 			continue;
2504 		}
2505 		if (_cache->c_data == NULL)
2506 			continue;
2507 
2508 		numdyn = shdr->sh_size / shdr->sh_entsize;
2509 		dyn = (Dyn *)_cache->c_data->d_buf;
2510 
2511 		/*
2512 		 * We expect the REL/RELA entries to reference the reloc
2513 		 * section with the lowest address. However, this is
2514 		 * not true for dumped objects. Detect if this object has
2515 		 * been dumped so that we can skip the reloc address test
2516 		 * in that case.
2517 		 */
2518 		for (ndx = 0; ndx < numdyn; dyn++, ndx++) {
2519 			if (dyn->d_tag == DT_FLAGS_1) {
2520 				dumped = (dyn->d_un.d_val & DF_1_CONFALT) != 0;
2521 				break;
2522 			}
2523 		}
2524 		dyn = (Dyn *)_cache->c_data->d_buf;
2525 
2526 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2527 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_DYNAMIC), _cache->c_name);
2528 
2529 		Elf_dyn_title(0);
2530 
2531 		for (ndx = 0; ndx < numdyn; dyn++, ndx++) {
2532 			union {
2533 				Conv_inv_buf_t		inv;
2534 				Conv_dyn_flag_buf_t	flag;
2535 				Conv_dyn_flag1_buf_t	flag1;
2536 				Conv_dyn_posflag1_buf_t	posflag1;
2537 				Conv_dyn_feature1_buf_t	feature1;
2538 			} c_buf;
2539 			const char	*name = NULL;
2540 
2541 			/*
2542 			 * Print the information numerically, and if possible
2543 			 * as a string. If a string is available, name is
2544 			 * set to reference it.
2545 			 *
2546 			 * Also, take this opportunity to sanity check
2547 			 * the values of DT elements. In the code above,
2548 			 * we gathered information on sections that are
2549 			 * referenced by the dynamic section. Here, we
2550 			 * compare the attributes of those sections to
2551 			 * the DT_ items that reference them and report
2552 			 * on inconsistencies.
2553 			 *
2554 			 * Things not currently tested that could be improved
2555 			 * in later revisions include:
2556 			 *	- We don't check PLT or GOT related items
2557 			 *	- We don't handle computing the lengths of
2558 			 *		relocation arrays. To handle this
2559 			 *		requires examining data that spans
2560 			 *		across sections, in a contiguous span
2561 			 *		within a single segment.
2562 			 *	- DT_VERDEFNUM and DT_VERNEEDNUM can't be
2563 			 *		verified without parsing the sections.
2564 			 *	- We don't handle DT_SUNW_SYMSZ, which would
2565 			 *		be the sum of the lengths of .dynsym and
2566 			 *		.SUNW_ldynsym
2567 			 *	- DT_SUNW_STRPAD can't be verified other than
2568 			 *		to check that it's not larger than
2569 			 *		the string table.
2570 			 *	- Some items come in "all or none" clusters
2571 			 *		that give an address, element size,
2572 			 *		and data length in bytes. We don't
2573 			 *		verify that there are no missing items
2574 			 *		in such groups.
2575 			 */
2576 			switch (dyn->d_tag) {
2577 			case DT_NULL:
2578 				/*
2579 				 * Special case: DT_NULLs can come in groups
2580 				 * that we prefer to reduce to a single line.
2581 				 */
2582 				end_ndx = ndx;
2583 				while ((end_ndx < (numdyn - 1)) &&
2584 				    ((dyn + 1)->d_tag == DT_NULL)) {
2585 					dyn++;
2586 					end_ndx++;
2587 				}
2588 				Elf_dyn_null_entry(0, dyn, ndx, end_ndx);
2589 				ndx = end_ndx;
2590 				continue;
2591 
2592 			/*
2593 			 * String items all reference the dynstr. The string()
2594 			 * function does the necessary sanity checking.
2595 			 */
2596 			case DT_NEEDED:
2597 			case DT_SONAME:
2598 			case DT_FILTER:
2599 			case DT_AUXILIARY:
2600 			case DT_CONFIG:
2601 			case DT_RPATH:
2602 			case DT_RUNPATH:
2603 			case DT_USED:
2604 			case DT_DEPAUDIT:
2605 			case DT_AUDIT:
2606 				name = string(_cache, ndx, strsec,
2607 				    file, dyn->d_un.d_ptr);
2608 				break;
2609 
2610 			case DT_SUNW_AUXILIARY:
2611 			case DT_SUNW_FILTER:
2612 				if (osabi_solaris)
2613 					name = string(_cache, ndx, strsec,
2614 					    file, dyn->d_un.d_ptr);
2615 				break;
2616 
2617 			case DT_FLAGS:
2618 				name = conv_dyn_flag(dyn->d_un.d_val,
2619 				    0, &c_buf.flag);
2620 				break;
2621 			case DT_FLAGS_1:
2622 				name = conv_dyn_flag1(dyn->d_un.d_val, 0,
2623 				    &c_buf.flag1);
2624 				break;
2625 			case DT_POSFLAG_1:
2626 				name = conv_dyn_posflag1(dyn->d_un.d_val, 0,
2627 				    &c_buf.posflag1);
2628 				break;
2629 			case DT_FEATURE_1:
2630 				name = conv_dyn_feature1(dyn->d_un.d_val, 0,
2631 				    &c_buf.feature1);
2632 				break;
2633 			case DT_DEPRECATED_SPARC_REGISTER:
2634 				name = MSG_INTL(MSG_STR_DEPRECATED);
2635 				break;
2636 
2637 			case DT_SUNW_LDMACH:
2638 				if (!osabi_solaris)
2639 					break;
2640 				name = conv_ehdr_mach((Half)dyn->d_un.d_val,
2641 				    0, &c_buf.inv);
2642 				break;
2643 
2644 			/*
2645 			 * Cases below this point are strictly sanity checking,
2646 			 * and do not generate a name string. The TEST_ macros
2647 			 * are used to hide the boilerplate arguments neeeded
2648 			 * by dyn_test().
2649 			 */
2650 #define	TEST_ADDR(_sh_type, _sec_field) \
2651 				dyn_test(DYN_TEST_ADDR, _sh_type, \
2652 				    sec._sec_field, dyn, dynsec_cnt, ehdr, \
2653 				    osabi, file)
2654 #define	TEST_SIZE(_sh_type, _sec_field) \
2655 				dyn_test(DYN_TEST_SIZE, _sh_type, \
2656 				    sec._sec_field, dyn, dynsec_cnt, ehdr, \
2657 				    osabi, file)
2658 #define	TEST_ENTSIZE(_sh_type, _sec_field) \
2659 				dyn_test(DYN_TEST_ENTSIZE, _sh_type, \
2660 				    sec._sec_field, dyn, dynsec_cnt, ehdr, \
2661 				    osabi, file)
2662 
2663 			case DT_FINI:
2664 				dyn_symtest(dyn, MSG_ORIG(MSG_SYM_FINI),
2665 				    sec.symtab, sec.dynsym, sec.sunw_ldynsym,
2666 				    cache, shnum, ehdr, osabi, file);
2667 				TEST_ADDR(SHT_PROGBITS, fini);
2668 				break;
2669 
2670 			case DT_FINI_ARRAY:
2671 				TEST_ADDR(SHT_FINI_ARRAY, fini_array);
2672 				break;
2673 
2674 			case DT_FINI_ARRAYSZ:
2675 				TEST_SIZE(SHT_FINI_ARRAY, fini_array);
2676 				break;
2677 
2678 			case DT_HASH:
2679 				TEST_ADDR(SHT_HASH, hash);
2680 				break;
2681 
2682 			case DT_INIT:
2683 				dyn_symtest(dyn, MSG_ORIG(MSG_SYM_INIT),
2684 				    sec.symtab, sec.dynsym, sec.sunw_ldynsym,
2685 				    cache, shnum, ehdr, osabi, file);
2686 				TEST_ADDR(SHT_PROGBITS, init);
2687 				break;
2688 
2689 			case DT_INIT_ARRAY:
2690 				TEST_ADDR(SHT_INIT_ARRAY, init_array);
2691 				break;
2692 
2693 			case DT_INIT_ARRAYSZ:
2694 				TEST_SIZE(SHT_INIT_ARRAY, init_array);
2695 				break;
2696 
2697 			case DT_MOVEENT:
2698 				TEST_ENTSIZE(SHT_SUNW_move, sunw_move);
2699 				break;
2700 
2701 			case DT_MOVESZ:
2702 				TEST_SIZE(SHT_SUNW_move, sunw_move);
2703 				break;
2704 
2705 			case DT_MOVETAB:
2706 				TEST_ADDR(SHT_SUNW_move, sunw_move);
2707 				break;
2708 
2709 			case DT_PREINIT_ARRAY:
2710 				TEST_ADDR(SHT_PREINIT_ARRAY, preinit_array);
2711 				break;
2712 
2713 			case DT_PREINIT_ARRAYSZ:
2714 				TEST_SIZE(SHT_PREINIT_ARRAY, preinit_array);
2715 				break;
2716 
2717 			case DT_REL:
2718 				if (!dumped)
2719 					TEST_ADDR(SHT_REL, rel);
2720 				break;
2721 
2722 			case DT_RELENT:
2723 				TEST_ENTSIZE(SHT_REL, rel);
2724 				break;
2725 
2726 			case DT_RELA:
2727 				if (!dumped)
2728 					TEST_ADDR(SHT_RELA, rela);
2729 				break;
2730 
2731 			case DT_RELAENT:
2732 				TEST_ENTSIZE(SHT_RELA, rela);
2733 				break;
2734 
2735 			case DT_STRTAB:
2736 				TEST_ADDR(SHT_STRTAB, dynstr);
2737 				break;
2738 
2739 			case DT_STRSZ:
2740 				TEST_SIZE(SHT_STRTAB, dynstr);
2741 				break;
2742 
2743 			case DT_SUNW_CAP:
2744 				TEST_ADDR(SHT_SUNW_cap, sunw_cap);
2745 				break;
2746 
2747 			case DT_SUNW_SYMTAB:
2748 				TEST_ADDR(SHT_SUNW_LDYNSYM, sunw_ldynsym);
2749 				break;
2750 
2751 			case DT_SYMENT:
2752 				TEST_ENTSIZE(SHT_DYNSYM, dynsym);
2753 				break;
2754 
2755 			case DT_SYMINENT:
2756 				TEST_ENTSIZE(SHT_SUNW_syminfo, sunw_syminfo);
2757 				break;
2758 
2759 			case DT_SYMINFO:
2760 				TEST_ADDR(SHT_SUNW_syminfo, sunw_syminfo);
2761 				break;
2762 
2763 			case DT_SYMINSZ:
2764 				TEST_SIZE(SHT_SUNW_syminfo, sunw_syminfo);
2765 				break;
2766 
2767 			case DT_SYMTAB:
2768 				TEST_ADDR(SHT_DYNSYM, dynsym);
2769 				break;
2770 
2771 			case DT_SUNW_SORTENT:
2772 				/*
2773 				 * This entry is related to both the symsort and
2774 				 * tlssort sections.
2775 				 */
2776 				if (osabi_solaris) {
2777 					int test_tls =
2778 					    (sec.sunw_tlssort != NULL);
2779 					int test_sym =
2780 					    (sec.sunw_symsort != NULL) ||
2781 					    !test_tls;
2782 					if (test_sym)
2783 						TEST_ENTSIZE(SHT_SUNW_symsort,
2784 						    sunw_symsort);
2785 					if (test_tls)
2786 						TEST_ENTSIZE(SHT_SUNW_tlssort,
2787 						    sunw_tlssort);
2788 				}
2789 				break;
2790 
2791 
2792 			case DT_SUNW_SYMSORT:
2793 				if (osabi_solaris)
2794 					TEST_ADDR(SHT_SUNW_symsort,
2795 					    sunw_symsort);
2796 				break;
2797 
2798 			case DT_SUNW_SYMSORTSZ:
2799 				if (osabi_solaris)
2800 					TEST_SIZE(SHT_SUNW_symsort,
2801 					    sunw_symsort);
2802 				break;
2803 
2804 			case DT_SUNW_TLSSORT:
2805 				if (osabi_solaris)
2806 					TEST_ADDR(SHT_SUNW_tlssort,
2807 					    sunw_tlssort);
2808 				break;
2809 
2810 			case DT_SUNW_TLSSORTSZ:
2811 				if (osabi_solaris)
2812 					TEST_SIZE(SHT_SUNW_tlssort,
2813 					    sunw_tlssort);
2814 				break;
2815 
2816 			case DT_VERDEF:
2817 				TEST_ADDR(SHT_SUNW_verdef, sunw_verdef);
2818 				break;
2819 
2820 			case DT_VERNEED:
2821 				TEST_ADDR(SHT_SUNW_verneed, sunw_verneed);
2822 				break;
2823 
2824 			case DT_VERSYM:
2825 				TEST_ADDR(SHT_SUNW_versym, sunw_versym);
2826 				break;
2827 #undef TEST_ADDR
2828 #undef TEST_SIZE
2829 #undef TEST_ENTSIZE
2830 			}
2831 
2832 			if (name == NULL)
2833 				name = MSG_ORIG(MSG_STR_EMPTY);
2834 			Elf_dyn_entry(0, dyn, ndx, name,
2835 			    osabi, ehdr->e_machine);
2836 		}
2837 	}
2838 }
2839 
2840 /*
2841  * Search for and process a MOVE section.
2842  */
2843 static void
2844 move(Cache *cache, Word shnum, const char *file, uint_t flags)
2845 {
2846 	Word		cnt;
2847 	const char	*fmt = NULL;
2848 
2849 	for (cnt = 1; cnt < shnum; cnt++) {
2850 		Word	movenum, symnum, ndx;
2851 		Sym	*syms;
2852 		Cache	*_cache = &cache[cnt];
2853 		Shdr	*shdr = _cache->c_shdr;
2854 		Cache	*symsec, *strsec;
2855 		Move	*move;
2856 
2857 		if (shdr->sh_type != SHT_SUNW_move)
2858 			continue;
2859 		if (!match(MATCH_F_ALL, _cache->c_name, cnt, shdr->sh_type))
2860 			continue;
2861 
2862 		/*
2863 		 * Determine the move data and number.
2864 		 */
2865 		if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
2866 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
2867 			    file, _cache->c_name);
2868 			continue;
2869 		}
2870 		if (_cache->c_data == NULL)
2871 			continue;
2872 
2873 		move = (Move *)_cache->c_data->d_buf;
2874 		movenum = shdr->sh_size / shdr->sh_entsize;
2875 
2876 		/*
2877 		 * Get the data buffer for the associated symbol table and
2878 		 * string table.
2879 		 */
2880 		if (stringtbl(cache, 1, cnt, shnum, file,
2881 		    &symnum, &symsec, &strsec) == 0)
2882 			return;
2883 
2884 		syms = (Sym *)symsec->c_data->d_buf;
2885 
2886 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2887 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_MOVE), _cache->c_name);
2888 		dbg_print(0, MSG_INTL(MSG_MOVE_TITLE));
2889 
2890 		if (fmt == NULL)
2891 			fmt = MSG_INTL(MSG_MOVE_ENTRY);
2892 
2893 		for (ndx = 0; ndx < movenum; move++, ndx++) {
2894 			const char	*symname;
2895 			char		index[MAXNDXSIZE], section[BUFSIZ];
2896 			Word		symndx, shndx;
2897 			Sym		*sym;
2898 
2899 			/*
2900 			 * Check for null entries
2901 			 */
2902 			if ((move->m_info == 0) && (move->m_value == 0) &&
2903 			    (move->m_poffset == 0) && (move->m_repeat == 0) &&
2904 			    (move->m_stride == 0)) {
2905 				dbg_print(0, fmt, MSG_ORIG(MSG_STR_EMPTY),
2906 				    EC_XWORD(move->m_poffset), 0, 0, 0,
2907 				    EC_LWORD(0), MSG_ORIG(MSG_STR_EMPTY));
2908 				continue;
2909 			}
2910 			if (((symndx = ELF_M_SYM(move->m_info)) == 0) ||
2911 			    (symndx >= symnum)) {
2912 				(void) fprintf(stderr,
2913 				    MSG_INTL(MSG_ERR_BADMINFO), file,
2914 				    _cache->c_name, EC_XWORD(move->m_info));
2915 
2916 				(void) snprintf(index, MAXNDXSIZE,
2917 				    MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(symndx));
2918 				dbg_print(0, fmt, index,
2919 				    EC_XWORD(move->m_poffset),
2920 				    ELF_M_SIZE(move->m_info), move->m_repeat,
2921 				    move->m_stride, move->m_value,
2922 				    MSG_INTL(MSG_STR_UNKNOWN));
2923 				continue;
2924 			}
2925 
2926 			symname = relsymname(cache, _cache, strsec,
2927 			    symndx, symnum, ndx, syms, section, BUFSIZ, file);
2928 			sym = (Sym *)(syms + symndx);
2929 
2930 			/*
2931 			 * Additional sanity check.
2932 			 */
2933 			shndx = sym->st_shndx;
2934 			if (!((shndx == SHN_COMMON) ||
2935 			    (((shndx >= 1) && (shndx <= shnum)) &&
2936 			    (cache[shndx].c_shdr)->sh_type == SHT_NOBITS))) {
2937 				(void) fprintf(stderr,
2938 				    MSG_INTL(MSG_ERR_BADSYM2), file,
2939 				    _cache->c_name, EC_WORD(symndx),
2940 				    demangle(symname, flags));
2941 			}
2942 
2943 			(void) snprintf(index, MAXNDXSIZE,
2944 			    MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(symndx));
2945 			dbg_print(0, fmt, index, EC_XWORD(move->m_poffset),
2946 			    ELF_M_SIZE(move->m_info), move->m_repeat,
2947 			    move->m_stride, move->m_value,
2948 			    demangle(symname, flags));
2949 		}
2950 	}
2951 }
2952 
2953 /*
2954  * parse_note_t is used to track the state used by parse_note_entry()
2955  * between calls, and also to return the results of each call.
2956  */
2957 typedef struct {
2958 	/* pns_ fields track progress through the data */
2959 	const char	*pns_file;	/* File name */
2960 	Cache		*pns_cache;	/* Note section cache entry */
2961 	size_t		pns_size;	/* # unprocessed data bytes */
2962 	Word		*pns_data;	/* # to next unused data byte */
2963 
2964 	/* pn_ fields return the results for a single call */
2965 	Word		pn_namesz;	/* Value of note namesz field */
2966 	Word		pn_descsz;	/* Value of note descsz field */
2967 	Word		pn_type;	/* Value of note type field */
2968 	const char	*pn_name;	/* if (namesz > 0) ptr to name bytes */
2969 	const char	*pn_desc;	/* if (descsx > 0) ptr to data bytes */
2970 } parse_note_t;
2971 
2972 /*
2973  * Extract the various sub-parts of a note entry, and advance the
2974  * data pointer past it.
2975  *
2976  * entry:
2977  *	The state pns_ fields contain current values for the Note section
2978  *
2979  * exit:
2980  *	On success, True (1) is returned, the state pns_ fields have been
2981  *	advanced to point at the start of the next entry, and the information
2982  *	for the recovered note entry is found in the state pn_ fields.
2983  *
2984  *	On failure, False (0) is returned. The values contained in state
2985  *	are undefined.
2986  */
2987 static int
2988 parse_note_entry(parse_note_t *state)
2989 {
2990 	size_t	pad, noteoff;
2991 
2992 	noteoff = (Word)state->pns_cache->c_data->d_size - state->pns_size;
2993 	/*
2994 	 * Make sure we can at least reference the 3 initial entries
2995 	 * (4-byte words) of the note information block.
2996 	 */
2997 	if (state->pns_size >= (sizeof (Word) * 3)) {
2998 		state->pns_size -= (sizeof (Word) * 3);
2999 	} else {
3000 		(void) fprintf(stderr, MSG_INTL(MSG_NOTE_BADDATASZ),
3001 		    state->pns_file, state->pns_cache->c_name,
3002 		    EC_WORD(noteoff));
3003 		return (0);
3004 	}
3005 
3006 	/*
3007 	 * Make sure any specified name string can be referenced.
3008 	 */
3009 	if ((state->pn_namesz = *state->pns_data++) != 0) {
3010 		if (state->pns_size >= state->pn_namesz) {
3011 			state->pns_size -= state->pn_namesz;
3012 		} else {
3013 			(void) fprintf(stderr, MSG_INTL(MSG_NOTE_BADNMSZ),
3014 			    state->pns_file, state->pns_cache->c_name,
3015 			    EC_WORD(noteoff), EC_WORD(state->pn_namesz));
3016 			return (0);
3017 		}
3018 	}
3019 
3020 	/*
3021 	 * Make sure any specified descriptor can be referenced.
3022 	 */
3023 	if ((state->pn_descsz = *state->pns_data++) != 0) {
3024 		/*
3025 		 * If namesz isn't a 4-byte multiple, account for any
3026 		 * padding that must exist before the descriptor.
3027 		 */
3028 		if ((pad = (state->pn_namesz & (sizeof (Word) - 1))) != 0) {
3029 			pad = sizeof (Word) - pad;
3030 			state->pns_size -= pad;
3031 		}
3032 		if (state->pns_size >= state->pn_descsz) {
3033 			state->pns_size -= state->pn_descsz;
3034 		} else {
3035 			(void) fprintf(stderr, MSG_INTL(MSG_NOTE_BADDESZ),
3036 			    state->pns_file, state->pns_cache->c_name,
3037 			    EC_WORD(noteoff), EC_WORD(state->pn_namesz));
3038 			return (0);
3039 		}
3040 	}
3041 
3042 	state->pn_type = *state->pns_data++;
3043 
3044 	/* Name */
3045 	if (state->pn_namesz) {
3046 		state->pn_name = (char *)state->pns_data;
3047 		pad = (state->pn_namesz +
3048 		    (sizeof (Word) - 1)) & ~(sizeof (Word) - 1);
3049 		/* LINTED */
3050 		state->pns_data = (Word *)(state->pn_name + pad);
3051 	}
3052 
3053 	/*
3054 	 * If multiple information blocks exist within a .note section
3055 	 * account for any padding that must exist before the next
3056 	 * information block.
3057 	 */
3058 	if ((pad = (state->pn_descsz & (sizeof (Word) - 1))) != 0) {
3059 		pad = sizeof (Word) - pad;
3060 		if (state->pns_size > pad)
3061 			state->pns_size -= pad;
3062 	}
3063 
3064 	/* Data */
3065 	if (state->pn_descsz) {
3066 		state->pn_desc = (const char *)state->pns_data;
3067 		/* LINTED */
3068 		state->pns_data = (Word *)(state->pn_desc +
3069 		    state->pn_descsz + pad);
3070 	}
3071 
3072 	return (1);
3073 }
3074 
3075 /*
3076  * Callback function for use with conv_str_to_c_literal() below.
3077  */
3078 /*ARGSUSED2*/
3079 static void
3080 c_literal_cb(const void *ptr, size_t size, void *uvalue)
3081 {
3082 	(void) fwrite(ptr, size, 1, stdout);
3083 }
3084 
3085 /*
3086  * Traverse a note section analyzing each note information block.
3087  * The data buffers size is used to validate references before they are made,
3088  * and is decremented as each element is processed.
3089  */
3090 void
3091 note_entry(Cache *cache, Word *data, size_t size, Ehdr *ehdr, const char *file)
3092 {
3093 	int		cnt = 0;
3094 	int		is_corenote;
3095 	int		do_swap;
3096 	Conv_inv_buf_t	inv_buf;
3097 	parse_note_t	pnstate;
3098 
3099 	pnstate.pns_file = file;
3100 	pnstate.pns_cache = cache;
3101 	pnstate.pns_size = size;
3102 	pnstate.pns_data = data;
3103 	do_swap = _elf_sys_encoding() != ehdr->e_ident[EI_DATA];
3104 
3105 	/*
3106 	 * Print out a single `note' information block.
3107 	 */
3108 	while (pnstate.pns_size > 0) {
3109 
3110 		if (parse_note_entry(&pnstate) == 0)
3111 			return;
3112 
3113 		/*
3114 		 * Is this a Solaris core note? Such notes all have
3115 		 * the name "CORE".
3116 		 */
3117 		is_corenote = (ehdr->e_type == ET_CORE) &&
3118 		    (pnstate.pn_namesz == (MSG_STR_CORE_SIZE + 1)) &&
3119 		    (strncmp(MSG_ORIG(MSG_STR_CORE), pnstate.pn_name,
3120 		    MSG_STR_CORE_SIZE + 1) == 0);
3121 
3122 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3123 		dbg_print(0, MSG_INTL(MSG_FMT_NOTEENTNDX), EC_WORD(cnt));
3124 		cnt++;
3125 		dbg_print(0, MSG_ORIG(MSG_NOTE_NAMESZ),
3126 		    EC_WORD(pnstate.pn_namesz));
3127 		dbg_print(0, MSG_ORIG(MSG_NOTE_DESCSZ),
3128 		    EC_WORD(pnstate.pn_descsz));
3129 
3130 		if (is_corenote)
3131 			dbg_print(0, MSG_ORIG(MSG_NOTE_TYPE_STR),
3132 			    conv_cnote_type(pnstate.pn_type, 0, &inv_buf));
3133 		else
3134 			dbg_print(0, MSG_ORIG(MSG_NOTE_TYPE),
3135 			    EC_WORD(pnstate.pn_type));
3136 		if (pnstate.pn_namesz) {
3137 			dbg_print(0, MSG_ORIG(MSG_NOTE_NAME));
3138 			/*
3139 			 * The name string can contain embedded 'null'
3140 			 * bytes and/or unprintable characters. Also,
3141 			 * the final NULL is documented in the ELF ABI
3142 			 * as being included in the namesz. So, display
3143 			 * the name using C literal string notation, and
3144 			 * include the terminating NULL in the output.
3145 			 * We don't show surrounding double quotes, as
3146 			 * that implies the termination that we are showing
3147 			 * explicitly.
3148 			 */
3149 			(void) fwrite(MSG_ORIG(MSG_STR_8SP),
3150 			    MSG_STR_8SP_SIZE, 1, stdout);
3151 			conv_str_to_c_literal(pnstate.pn_name,
3152 			    pnstate.pn_namesz, c_literal_cb, NULL);
3153 			dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3154 		}
3155 
3156 		if (pnstate.pn_descsz) {
3157 			int		hexdump = 1;
3158 
3159 			/*
3160 			 * If this is a core note, let the corenote()
3161 			 * function handle it.
3162 			 */
3163 			if (is_corenote) {
3164 				/* We only issue the bad arch error once */
3165 				static int	badnote_done = 0;
3166 				corenote_ret_t	corenote_ret;
3167 
3168 				corenote_ret = corenote(ehdr->e_machine,
3169 				    do_swap, pnstate.pn_type, pnstate.pn_desc,
3170 				    pnstate.pn_descsz);
3171 				switch (corenote_ret) {
3172 				case CORENOTE_R_OK:
3173 					hexdump = 0;
3174 					break;
3175 				case CORENOTE_R_BADDATA:
3176 					(void) fprintf(stderr,
3177 					    MSG_INTL(MSG_NOTE_BADCOREDATA),
3178 					    file);
3179 					break;
3180 				case CORENOTE_R_BADARCH:
3181 					if (badnote_done)
3182 						break;
3183 					(void) fprintf(stderr,
3184 					    MSG_INTL(MSG_NOTE_BADCOREARCH),
3185 					    file,
3186 					    conv_ehdr_mach(ehdr->e_machine,
3187 					    0, &inv_buf));
3188 					break;
3189 				}
3190 			}
3191 
3192 			/*
3193 			 * The default thing when we don't understand
3194 			 * the note data is to display it as hex bytes.
3195 			 */
3196 			if (hexdump) {
3197 				dbg_print(0, MSG_ORIG(MSG_NOTE_DESC));
3198 				dump_hex_bytes(pnstate.pn_desc,
3199 				    pnstate.pn_descsz, 8, 4, 4);
3200 			}
3201 		}
3202 	}
3203 }
3204 
3205 /*
3206  * Search for and process .note sections.
3207  *
3208  * Returns the number of note sections seen.
3209  */
3210 static Word
3211 note(Cache *cache, Word shnum, Ehdr *ehdr, const char *file)
3212 {
3213 	Word	cnt, note_cnt = 0;
3214 
3215 	/*
3216 	 * Otherwise look for any .note sections.
3217 	 */
3218 	for (cnt = 1; cnt < shnum; cnt++) {
3219 		Cache	*_cache = &cache[cnt];
3220 		Shdr	*shdr = _cache->c_shdr;
3221 
3222 		if (shdr->sh_type != SHT_NOTE)
3223 			continue;
3224 		note_cnt++;
3225 		if (!match(MATCH_F_ALL, _cache->c_name, cnt, shdr->sh_type))
3226 			continue;
3227 
3228 		/*
3229 		 * As these sections are often hand rolled, make sure they're
3230 		 * properly aligned before proceeding, and issue an error
3231 		 * as necessary.
3232 		 *
3233 		 * Note that we will continue on to display the note even
3234 		 * if it has bad alignment. We can do this safely, because
3235 		 * libelf knows the alignment required for SHT_NOTE, and
3236 		 * takes steps to deliver a properly aligned buffer to us
3237 		 * even if the actual file is misaligned.
3238 		 */
3239 		if (shdr->sh_offset & (sizeof (Word) - 1))
3240 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADALIGN),
3241 			    file, _cache->c_name);
3242 
3243 		if (_cache->c_data == NULL)
3244 			continue;
3245 
3246 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3247 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_NOTE), _cache->c_name);
3248 		note_entry(_cache, (Word *)_cache->c_data->d_buf,
3249 		/* LINTED */
3250 		    (Word)_cache->c_data->d_size, ehdr, file);
3251 	}
3252 
3253 	return (note_cnt);
3254 }
3255 
3256 /*
3257  * The Linux Standard Base defines a special note named .note.ABI-tag
3258  * that is used to maintain Linux ABI information. Presence of this section
3259  * is a strong indication that the object should be considered to be
3260  * ELFOSABI_LINUX.
3261  *
3262  * This function returns True (1) if such a note is seen, and False (0)
3263  * otherwise.
3264  */
3265 static int
3266 has_linux_abi_note(Cache *cache, Word shnum, const char *file)
3267 {
3268 	Word	cnt;
3269 
3270 	for (cnt = 1; cnt < shnum; cnt++) {
3271 		parse_note_t	pnstate;
3272 		Cache		*_cache = &cache[cnt];
3273 		Shdr		*shdr = _cache->c_shdr;
3274 
3275 		/*
3276 		 * Section must be SHT_NOTE, must have the name
3277 		 * .note.ABI-tag, and must have data.
3278 		 */
3279 		if ((shdr->sh_type != SHT_NOTE) ||
3280 		    (strcmp(MSG_ORIG(MSG_STR_NOTEABITAG),
3281 		    _cache->c_name) != 0) || (_cache->c_data == NULL))
3282 			continue;
3283 
3284 		pnstate.pns_file = file;
3285 		pnstate.pns_cache = _cache;
3286 		pnstate.pns_size = _cache->c_data->d_size;
3287 		pnstate.pns_data = (Word *)_cache->c_data->d_buf;
3288 
3289 		while (pnstate.pns_size > 0) {
3290 			Word *w;
3291 
3292 			if (parse_note_entry(&pnstate) == 0)
3293 				break;
3294 
3295 			/*
3296 			 * The type must be 1, and the name must be "GNU".
3297 			 * The descsz must be at least 16 bytes.
3298 			 */
3299 			if ((pnstate.pn_type != 1) ||
3300 			    (pnstate.pn_namesz != (MSG_STR_GNU_SIZE + 1)) ||
3301 			    (strncmp(MSG_ORIG(MSG_STR_GNU), pnstate.pn_name,
3302 			    MSG_STR_CORE_SIZE + 1) != 0) ||
3303 			    (pnstate.pn_descsz < 16))
3304 				continue;
3305 
3306 			/*
3307 			 * desc contains 4 32-bit fields. Field 0 must be 0,
3308 			 * indicating Linux. The second, third, and fourth
3309 			 * fields represent the earliest Linux kernel
3310 			 * version compatible with this object.
3311 			 */
3312 			/*LINTED*/
3313 			w = (Word *) pnstate.pn_desc;
3314 			if (*w == 0)
3315 				return (1);
3316 		}
3317 	}
3318 
3319 	return (0);
3320 }
3321 
3322 /*
3323  * Determine an individual hash entry.  This may be the initial hash entry,
3324  * or an associated chain entry.
3325  */
3326 static void
3327 hash_entry(Cache *refsec, Cache *strsec, const char *hsecname, Word hashndx,
3328     Word symndx, Word symn, Sym *syms, const char *file, ulong_t bkts,
3329     uint_t flags, int chain)
3330 {
3331 	Sym		*sym;
3332 	const char	*symname, *str;
3333 	char		_bucket[MAXNDXSIZE], _symndx[MAXNDXSIZE];
3334 	ulong_t		nbkt, nhash;
3335 
3336 	if (symndx > symn) {
3337 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_HSBADSYMNDX), file,
3338 		    EC_WORD(symndx), EC_WORD(hashndx));
3339 		symname = MSG_INTL(MSG_STR_UNKNOWN);
3340 	} else {
3341 		sym = (Sym *)(syms + symndx);
3342 		symname = string(refsec, symndx, strsec, file, sym->st_name);
3343 	}
3344 
3345 	if (chain == 0) {
3346 		(void) snprintf(_bucket, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INTEGER),
3347 		    hashndx);
3348 		str = (const char *)_bucket;
3349 	} else
3350 		str = MSG_ORIG(MSG_STR_EMPTY);
3351 
3352 	(void) snprintf(_symndx, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX2),
3353 	    EC_WORD(symndx));
3354 	dbg_print(0, MSG_ORIG(MSG_FMT_HASH_INFO), str, _symndx,
3355 	    demangle(symname, flags));
3356 
3357 	/*
3358 	 * Determine if this string is in the correct bucket.
3359 	 */
3360 	nhash = elf_hash(symname);
3361 	nbkt = nhash % bkts;
3362 
3363 	if (nbkt != hashndx) {
3364 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADHASH), file,
3365 		    hsecname, symname, EC_WORD(hashndx), nbkt);
3366 	}
3367 }
3368 
3369 #define	MAXCOUNT	500
3370 
3371 static void
3372 hash(Cache *cache, Word shnum, const char *file, uint_t flags)
3373 {
3374 	static int	count[MAXCOUNT];
3375 	Word		cnt;
3376 	ulong_t		ndx, bkts;
3377 	char		number[MAXNDXSIZE];
3378 
3379 	for (cnt = 1; cnt < shnum; cnt++) {
3380 		uint_t		*hash, *chain;
3381 		Cache		*_cache = &cache[cnt];
3382 		Shdr		*sshdr, *hshdr = _cache->c_shdr;
3383 		char		*ssecname, *hsecname = _cache->c_name;
3384 		Sym		*syms;
3385 		Word		symn;
3386 
3387 		if (hshdr->sh_type != SHT_HASH)
3388 			continue;
3389 
3390 		/*
3391 		 * Determine the hash table data and size.
3392 		 */
3393 		if ((hshdr->sh_entsize == 0) || (hshdr->sh_size == 0)) {
3394 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
3395 			    file, hsecname);
3396 			continue;
3397 		}
3398 		if (_cache->c_data == NULL)
3399 			continue;
3400 
3401 		hash = (uint_t *)_cache->c_data->d_buf;
3402 		bkts = *hash;
3403 		chain = hash + 2 + bkts;
3404 		hash += 2;
3405 
3406 		/*
3407 		 * Get the data buffer for the associated symbol table.
3408 		 */
3409 		if ((hshdr->sh_link == 0) || (hshdr->sh_link >= shnum)) {
3410 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
3411 			    file, hsecname, EC_WORD(hshdr->sh_link));
3412 			continue;
3413 		}
3414 
3415 		_cache = &cache[hshdr->sh_link];
3416 		ssecname = _cache->c_name;
3417 
3418 		if (_cache->c_data == NULL)
3419 			continue;
3420 
3421 		if ((syms = (Sym *)_cache->c_data->d_buf) == NULL) {
3422 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
3423 			    file, ssecname);
3424 			continue;
3425 		}
3426 
3427 		sshdr = _cache->c_shdr;
3428 		/* LINTED */
3429 		symn = (Word)(sshdr->sh_size / sshdr->sh_entsize);
3430 
3431 		/*
3432 		 * Get the associated string table section.
3433 		 */
3434 		if ((sshdr->sh_link == 0) || (sshdr->sh_link >= shnum)) {
3435 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
3436 			    file, ssecname, EC_WORD(sshdr->sh_link));
3437 			continue;
3438 		}
3439 
3440 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3441 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_HASH), hsecname);
3442 		dbg_print(0, MSG_INTL(MSG_ELF_HASH_INFO));
3443 
3444 		/*
3445 		 * Loop through the hash buckets, printing the appropriate
3446 		 * symbols.
3447 		 */
3448 		for (ndx = 0; ndx < bkts; ndx++, hash++) {
3449 			Word	_ndx, _cnt;
3450 
3451 			if (*hash == 0) {
3452 				count[0]++;
3453 				continue;
3454 			}
3455 
3456 			hash_entry(_cache, &cache[sshdr->sh_link], hsecname,
3457 			    ndx, *hash, symn, syms, file, bkts, flags, 0);
3458 
3459 			/*
3460 			 * Determine if any other symbols are chained to this
3461 			 * bucket.
3462 			 */
3463 			_ndx = chain[*hash];
3464 			_cnt = 1;
3465 			while (_ndx) {
3466 				hash_entry(_cache, &cache[sshdr->sh_link],
3467 				    hsecname, ndx, _ndx, symn, syms, file,
3468 				    bkts, flags, 1);
3469 				_ndx = chain[_ndx];
3470 				_cnt++;
3471 			}
3472 
3473 			if (_cnt >= MAXCOUNT) {
3474 				(void) fprintf(stderr,
3475 				    MSG_INTL(MSG_HASH_OVERFLW), file,
3476 				    _cache->c_name, EC_WORD(ndx),
3477 				    EC_WORD(_cnt));
3478 			} else
3479 				count[_cnt]++;
3480 		}
3481 		break;
3482 	}
3483 
3484 	/*
3485 	 * Print out the count information.
3486 	 */
3487 	bkts = cnt = 0;
3488 	dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3489 
3490 	for (ndx = 0; ndx < MAXCOUNT; ndx++) {
3491 		Word	_cnt;
3492 
3493 		if ((_cnt = count[ndx]) == 0)
3494 			continue;
3495 
3496 		(void) snprintf(number, MAXNDXSIZE,
3497 		    MSG_ORIG(MSG_FMT_INTEGER), _cnt);
3498 		dbg_print(0, MSG_INTL(MSG_ELF_HASH_BKTS1), number,
3499 		    EC_WORD(ndx));
3500 		bkts += _cnt;
3501 		cnt += (Word)(ndx * _cnt);
3502 	}
3503 	if (cnt) {
3504 		(void) snprintf(number, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INTEGER),
3505 		    bkts);
3506 		dbg_print(0, MSG_INTL(MSG_ELF_HASH_BKTS2), number,
3507 		    EC_WORD(cnt));
3508 	}
3509 }
3510 
3511 static void
3512 group(Cache *cache, Word shnum, const char *file, uint_t flags)
3513 {
3514 	Word	scnt;
3515 
3516 	for (scnt = 1; scnt < shnum; scnt++) {
3517 		Cache	*_cache = &cache[scnt];
3518 		Shdr	*shdr = _cache->c_shdr;
3519 		Word	*grpdata, gcnt, grpcnt, symnum, unknown;
3520 		Cache	*symsec, *strsec;
3521 		Sym	*syms, *sym;
3522 		char	flgstrbuf[MSG_GRP_COMDAT_SIZE + 10];
3523 
3524 		if (shdr->sh_type != SHT_GROUP)
3525 			continue;
3526 		if (!match(MATCH_F_ALL, _cache->c_name, scnt, shdr->sh_type))
3527 			continue;
3528 		if ((_cache->c_data == NULL) ||
3529 		    ((grpdata = (Word *)_cache->c_data->d_buf) == NULL))
3530 			continue;
3531 		grpcnt = shdr->sh_size / sizeof (Word);
3532 
3533 		/*
3534 		 * Get the data buffer for the associated symbol table and
3535 		 * string table.
3536 		 */
3537 		if (stringtbl(cache, 1, scnt, shnum, file,
3538 		    &symnum, &symsec, &strsec) == 0)
3539 			return;
3540 
3541 		syms = symsec->c_data->d_buf;
3542 
3543 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3544 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_GRP), _cache->c_name);
3545 		dbg_print(0, MSG_INTL(MSG_GRP_TITLE));
3546 
3547 		/*
3548 		 * The first element of the group defines the group.  The
3549 		 * associated symbol is defined by the sh_link field.
3550 		 */
3551 		if ((shdr->sh_info == SHN_UNDEF) || (shdr->sh_info > symnum)) {
3552 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHINFO),
3553 			    file, _cache->c_name, EC_WORD(shdr->sh_info));
3554 			return;
3555 		}
3556 
3557 		(void) strcpy(flgstrbuf, MSG_ORIG(MSG_STR_OSQBRKT));
3558 		if (grpdata[0] & GRP_COMDAT) {
3559 			(void) strcat(flgstrbuf, MSG_ORIG(MSG_GRP_COMDAT));
3560 		}
3561 		if ((unknown = (grpdata[0] & ~GRP_COMDAT)) != 0) {
3562 			size_t	len = strlen(flgstrbuf);
3563 
3564 			(void) snprintf(&flgstrbuf[len],
3565 			    (MSG_GRP_COMDAT_SIZE + 10 - len),
3566 			    MSG_ORIG(MSG_GRP_UNKNOWN), unknown);
3567 		}
3568 		(void) strcat(flgstrbuf, MSG_ORIG(MSG_STR_CSQBRKT));
3569 		sym = (Sym *)(syms + shdr->sh_info);
3570 
3571 		dbg_print(0, MSG_INTL(MSG_GRP_SIGNATURE), flgstrbuf,
3572 		    demangle(string(_cache, 0, strsec, file, sym->st_name),
3573 		    flags));
3574 
3575 		for (gcnt = 1; gcnt < grpcnt; gcnt++) {
3576 			char		index[MAXNDXSIZE];
3577 			const char	*name;
3578 
3579 			(void) snprintf(index, MAXNDXSIZE,
3580 			    MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(gcnt));
3581 
3582 			if (grpdata[gcnt] >= shnum)
3583 				name = MSG_INTL(MSG_GRP_INVALSCN);
3584 			else
3585 				name = cache[grpdata[gcnt]].c_name;
3586 
3587 			(void) printf(MSG_ORIG(MSG_GRP_ENTRY), index, name,
3588 			    EC_XWORD(grpdata[gcnt]));
3589 		}
3590 	}
3591 }
3592 
3593 static void
3594 got(Cache *cache, Word shnum, Ehdr *ehdr, const char *file)
3595 {
3596 	Cache		*gotcache = NULL, *symtab = NULL;
3597 	Addr		gotbgn, gotend;
3598 	Shdr		*gotshdr;
3599 	Word		cnt, gotents, gotndx;
3600 	size_t		gentsize;
3601 	Got_info	*gottable;
3602 	char		*gotdata;
3603 	Sym		*gotsym;
3604 	Xword		gotsymaddr;
3605 	uint_t		sys_encoding;
3606 
3607 	/*
3608 	 * First, find the got.
3609 	 */
3610 	for (cnt = 1; cnt < shnum; cnt++) {
3611 		if (strncmp(cache[cnt].c_name, MSG_ORIG(MSG_ELF_GOT),
3612 		    MSG_ELF_GOT_SIZE) == 0) {
3613 			gotcache = &cache[cnt];
3614 			break;
3615 		}
3616 	}
3617 	if (gotcache == NULL)
3618 		return;
3619 
3620 	/*
3621 	 * A got section within a relocatable object is suspicious.
3622 	 */
3623 	if (ehdr->e_type == ET_REL) {
3624 		(void) fprintf(stderr, MSG_INTL(MSG_GOT_UNEXPECTED), file,
3625 		    gotcache->c_name);
3626 	}
3627 
3628 	gotshdr = gotcache->c_shdr;
3629 	if (gotshdr->sh_size == 0) {
3630 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
3631 		    file, gotcache->c_name);
3632 		return;
3633 	}
3634 
3635 	gotbgn = gotshdr->sh_addr;
3636 	gotend = gotbgn + gotshdr->sh_size;
3637 
3638 	/*
3639 	 * Some architectures don't properly set the sh_entsize for the GOT
3640 	 * table.  If it's not set, default to a size of a pointer.
3641 	 */
3642 	if ((gentsize = gotshdr->sh_entsize) == 0)
3643 		gentsize = sizeof (Xword);
3644 
3645 	if (gotcache->c_data == NULL)
3646 		return;
3647 
3648 	/* LINTED */
3649 	gotents = (Word)(gotshdr->sh_size / gentsize);
3650 	gotdata = gotcache->c_data->d_buf;
3651 
3652 	if ((gottable = calloc(gotents, sizeof (Got_info))) == 0) {
3653 		int err = errno;
3654 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC), file,
3655 		    strerror(err));
3656 		return;
3657 	}
3658 
3659 	/*
3660 	 * Now we scan through all the sections looking for any relocations
3661 	 * that may be against the GOT.  Since these may not be isolated to a
3662 	 * .rel[a].got section we check them all.
3663 	 * While scanning sections save the symbol table entry (a symtab
3664 	 * overriding a dynsym) so that we can lookup _GLOBAL_OFFSET_TABLE_.
3665 	 */
3666 	for (cnt = 1; cnt < shnum; cnt++) {
3667 		Word		type, symnum;
3668 		Xword		relndx, relnum, relsize;
3669 		void		*rels;
3670 		Sym		*syms;
3671 		Cache		*symsec, *strsec;
3672 		Cache		*_cache = &cache[cnt];
3673 		Shdr		*shdr;
3674 
3675 		shdr = _cache->c_shdr;
3676 		type = shdr->sh_type;
3677 
3678 		if ((symtab == 0) && (type == SHT_DYNSYM)) {
3679 			symtab = _cache;
3680 			continue;
3681 		}
3682 		if (type == SHT_SYMTAB) {
3683 			symtab = _cache;
3684 			continue;
3685 		}
3686 		if ((type != SHT_RELA) && (type != SHT_REL))
3687 			continue;
3688 
3689 		/*
3690 		 * Decide entry size.
3691 		 */
3692 		if (((relsize = shdr->sh_entsize) == 0) ||
3693 		    (relsize > shdr->sh_size)) {
3694 			if (type == SHT_RELA)
3695 				relsize = sizeof (Rela);
3696 			else
3697 				relsize = sizeof (Rel);
3698 		}
3699 
3700 		/*
3701 		 * Determine the number of relocations available.
3702 		 */
3703 		if (shdr->sh_size == 0) {
3704 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
3705 			    file, _cache->c_name);
3706 			continue;
3707 		}
3708 		if (_cache->c_data == NULL)
3709 			continue;
3710 
3711 		rels = _cache->c_data->d_buf;
3712 		relnum = shdr->sh_size / relsize;
3713 
3714 		/*
3715 		 * Get the data buffer for the associated symbol table and
3716 		 * string table.
3717 		 */
3718 		if (stringtbl(cache, 1, cnt, shnum, file,
3719 		    &symnum, &symsec, &strsec) == 0)
3720 			continue;
3721 
3722 		syms = symsec->c_data->d_buf;
3723 
3724 		/*
3725 		 * Loop through the relocation entries.
3726 		 */
3727 		for (relndx = 0; relndx < relnum; relndx++,
3728 		    rels = (void *)((char *)rels + relsize)) {
3729 			char		section[BUFSIZ];
3730 			Addr		offset;
3731 			Got_info	*gip;
3732 			Word		symndx, reltype;
3733 			Rela		*rela;
3734 			Rel		*rel;
3735 
3736 			/*
3737 			 * Unravel the relocation.
3738 			 */
3739 			if (type == SHT_RELA) {
3740 				rela = (Rela *)rels;
3741 				symndx = ELF_R_SYM(rela->r_info);
3742 				reltype = ELF_R_TYPE(rela->r_info,
3743 				    ehdr->e_machine);
3744 				offset = rela->r_offset;
3745 			} else {
3746 				rel = (Rel *)rels;
3747 				symndx = ELF_R_SYM(rel->r_info);
3748 				reltype = ELF_R_TYPE(rel->r_info,
3749 				    ehdr->e_machine);
3750 				offset = rel->r_offset;
3751 			}
3752 
3753 			/*
3754 			 * Only pay attention to relocations against the GOT.
3755 			 */
3756 			if ((offset < gotbgn) || (offset >= gotend))
3757 				continue;
3758 
3759 			/* LINTED */
3760 			gotndx = (Word)((offset - gotbgn) /
3761 			    gotshdr->sh_entsize);
3762 			gip = &gottable[gotndx];
3763 
3764 			if (gip->g_reltype != 0) {
3765 				(void) fprintf(stderr,
3766 				    MSG_INTL(MSG_GOT_MULTIPLE), file,
3767 				    EC_WORD(gotndx), EC_ADDR(offset));
3768 				continue;
3769 			}
3770 
3771 			if (symndx)
3772 				gip->g_symname = relsymname(cache, _cache,
3773 				    strsec, symndx, symnum, relndx, syms,
3774 				    section, BUFSIZ, file);
3775 			gip->g_reltype = reltype;
3776 			gip->g_rel = rels;
3777 		}
3778 	}
3779 
3780 	if (symlookup(MSG_ORIG(MSG_SYM_GOT), cache, shnum, &gotsym, symtab,
3781 	    file))
3782 		gotsymaddr = gotsym->st_value;
3783 	else
3784 		gotsymaddr = gotbgn;
3785 
3786 	dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3787 	dbg_print(0, MSG_INTL(MSG_ELF_SCN_GOT), gotcache->c_name);
3788 	Elf_got_title(0);
3789 
3790 	sys_encoding = _elf_sys_encoding();
3791 	for (gotndx = 0; gotndx < gotents; gotndx++) {
3792 		Got_info	*gip;
3793 		Sword		gindex;
3794 		Addr		gaddr;
3795 		Xword		gotentry;
3796 
3797 		gip = &gottable[gotndx];
3798 
3799 		gaddr = gotbgn + (gotndx * gentsize);
3800 		gindex = (Sword)(gaddr - gotsymaddr) / (Sword)gentsize;
3801 
3802 		if (gentsize == sizeof (Word))
3803 			/* LINTED */
3804 			gotentry = (Xword)(*((Word *)(gotdata) + gotndx));
3805 		else
3806 			/* LINTED */
3807 			gotentry = *((Xword *)(gotdata) + gotndx);
3808 
3809 		Elf_got_entry(0, gindex, gaddr, gotentry, ehdr->e_machine,
3810 		    ehdr->e_ident[EI_DATA], sys_encoding,
3811 		    gip->g_reltype, gip->g_rel, gip->g_symname);
3812 	}
3813 	free(gottable);
3814 }
3815 
3816 void
3817 checksum(Elf *elf)
3818 {
3819 	dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3820 	dbg_print(0, MSG_INTL(MSG_STR_CHECKSUM), elf_checksum(elf));
3821 }
3822 
3823 /*
3824  * This variable is used by regular() to communicate the address of
3825  * the section header cache to sort_shdr_ndx_arr(). Unfortunately,
3826  * the qsort() interface does not include a userdata argument by which
3827  * such arbitrary data can be passed, so we are stuck using global data.
3828  */
3829 static Cache *sort_shdr_ndx_arr_cache;
3830 
3831 
3832 /*
3833  * Used with qsort() to sort the section indices so that they can be
3834  * used to access the section headers in order of increasing data offset.
3835  *
3836  * entry:
3837  *	sort_shdr_ndx_arr_cache - Contains address of
3838  *		section header cache.
3839  *	v1, v2 - Point at elements of sort_shdr_bits array to be compared.
3840  *
3841  * exit:
3842  *	Returns -1 (less than), 0 (equal) or 1 (greater than).
3843  */
3844 static int
3845 sort_shdr_ndx_arr(const void *v1, const void *v2)
3846 {
3847 	Cache	*cache1 = sort_shdr_ndx_arr_cache + *((size_t *)v1);
3848 	Cache	*cache2 = sort_shdr_ndx_arr_cache + *((size_t *)v2);
3849 
3850 	if (cache1->c_shdr->sh_offset < cache2->c_shdr->sh_offset)
3851 		return (-1);
3852 
3853 	if (cache1->c_shdr->sh_offset > cache2->c_shdr->sh_offset)
3854 		return (1);
3855 
3856 	return (0);
3857 }
3858 
3859 
3860 static int
3861 shdr_cache(const char *file, Elf *elf, Ehdr *ehdr, size_t shstrndx,
3862     size_t shnum, Cache **cache_ret, Word flags)
3863 {
3864 	Elf_Scn		*scn;
3865 	Elf_Data	*data;
3866 	size_t		ndx;
3867 	Shdr		*nameshdr;
3868 	char		*names = NULL;
3869 	Cache		*cache, *_cache;
3870 	size_t		*shdr_ndx_arr, shdr_ndx_arr_cnt;
3871 
3872 
3873 	/*
3874 	 * Obtain the .shstrtab data buffer to provide the required section
3875 	 * name strings.
3876 	 */
3877 	if (shstrndx == SHN_UNDEF) {
3878 		/*
3879 		 * It is rare, but legal, for an object to lack a
3880 		 * header string table section.
3881 		 */
3882 		names = NULL;
3883 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_NOSHSTRSEC), file);
3884 	} else if ((scn = elf_getscn(elf, shstrndx)) == NULL) {
3885 		failure(file, MSG_ORIG(MSG_ELF_GETSCN));
3886 		(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SHDR),
3887 		    EC_XWORD(shstrndx));
3888 
3889 	} else if ((data = elf_getdata(scn, NULL)) == NULL) {
3890 		failure(file, MSG_ORIG(MSG_ELF_GETDATA));
3891 		(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_DATA),
3892 		    EC_XWORD(shstrndx));
3893 
3894 	} else if ((nameshdr = elf_getshdr(scn)) == NULL) {
3895 		failure(file, MSG_ORIG(MSG_ELF_GETSHDR));
3896 		(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN),
3897 		    EC_WORD(elf_ndxscn(scn)));
3898 
3899 	} else if ((names = data->d_buf) == NULL)
3900 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_SHSTRNULL), file);
3901 
3902 	/*
3903 	 * Allocate a cache to maintain a descriptor for each section.
3904 	 */
3905 	if ((*cache_ret = cache = malloc(shnum * sizeof (Cache))) == NULL) {
3906 		int err = errno;
3907 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
3908 		    file, strerror(err));
3909 		return (0);
3910 	}
3911 
3912 	*cache = cache_init;
3913 	_cache = cache;
3914 	_cache++;
3915 
3916 	/*
3917 	 * Allocate an array that will hold the section index for
3918 	 * each section that has data in the ELF file:
3919 	 *
3920 	 *	- Is not a NOBITS section
3921 	 *	- Data has non-zero length
3922 	 *
3923 	 * Note that shnum is an upper bound on the size required. It
3924 	 * is likely that we won't use a few of these array elements.
3925 	 * Allocating a modest amount of extra memory in this case means
3926 	 * that we can avoid an extra loop to count the number of needed
3927 	 * items, and can fill this array immediately in the first loop
3928 	 * below.
3929 	 */
3930 	if ((shdr_ndx_arr = malloc(shnum * sizeof (*shdr_ndx_arr))) == NULL) {
3931 		int err = errno;
3932 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
3933 		    file, strerror(err));
3934 		return (0);
3935 	}
3936 	shdr_ndx_arr_cnt = 0;
3937 
3938 	/*
3939 	 * Traverse the sections of the file.  This gathering of data is
3940 	 * carried out in two passes.  First, the section headers are captured
3941 	 * and the section header names are evaluated.  A verification pass is
3942 	 * then carried out over the section information.  Files have been
3943 	 * known to exhibit overlapping (and hence erroneous) section header
3944 	 * information.
3945 	 *
3946 	 * Finally, the data for each section is obtained.  This processing is
3947 	 * carried out after section verification because should any section
3948 	 * header overlap occur, and a file needs translating (ie. xlate'ing
3949 	 * information from a non-native architecture file), then the process
3950 	 * of translation can corrupt the section header information.  Of
3951 	 * course, if there is any section overlap, the data related to the
3952 	 * sections is going to be compromised.  However, it is the translation
3953 	 * of this data that has caused problems with elfdump()'s ability to
3954 	 * extract the data.
3955 	 */
3956 	for (ndx = 1, scn = NULL; scn = elf_nextscn(elf, scn);
3957 	    ndx++, _cache++) {
3958 		char	scnndxnm[100];
3959 
3960 		_cache->c_ndx = ndx;
3961 		_cache->c_scn = scn;
3962 
3963 		if ((_cache->c_shdr = elf_getshdr(scn)) == NULL) {
3964 			failure(file, MSG_ORIG(MSG_ELF_GETSHDR));
3965 			(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN),
3966 			    EC_WORD(elf_ndxscn(scn)));
3967 		}
3968 
3969 		/*
3970 		 * If this section has data in the file, include it in
3971 		 * the array of sections to check for address overlap.
3972 		 */
3973 		if ((_cache->c_shdr->sh_size != 0) &&
3974 		    (_cache->c_shdr->sh_type != SHT_NOBITS))
3975 			shdr_ndx_arr[shdr_ndx_arr_cnt++] = ndx;
3976 
3977 		/*
3978 		 * If a shstrtab exists, assign the section name.
3979 		 */
3980 		if (names && _cache->c_shdr) {
3981 			if (_cache->c_shdr->sh_name &&
3982 			    /* LINTED */
3983 			    (nameshdr->sh_size > _cache->c_shdr->sh_name)) {
3984 				const char	*symname;
3985 				char		*secname;
3986 
3987 				secname = names + _cache->c_shdr->sh_name;
3988 
3989 				/*
3990 				 * A SUN naming convention employs a "%" within
3991 				 * a section name to indicate a section/symbol
3992 				 * name.  This originated from the compilers
3993 				 * -xF option, that places functions into their
3994 				 * own sections.  This convention (which has no
3995 				 * formal standard) has also been followed for
3996 				 * COMDAT sections.  To demangle the symbol
3997 				 * name, the name must be separated from the
3998 				 * section name.
3999 				 */
4000 				if (((flags & FLG_CTL_DEMANGLE) == 0) ||
4001 				    ((symname = strchr(secname, '%')) == NULL))
4002 					_cache->c_name = secname;
4003 				else {
4004 					size_t	secsz = ++symname - secname;
4005 					size_t	strsz;
4006 
4007 					symname = demangle(symname, flags);
4008 					strsz = secsz + strlen(symname) + 1;
4009 
4010 					if ((_cache->c_name =
4011 					    malloc(strsz)) == NULL) {
4012 						int err = errno;
4013 						(void) fprintf(stderr,
4014 						    MSG_INTL(MSG_ERR_MALLOC),
4015 						    file, strerror(err));
4016 						return (0);
4017 					}
4018 					(void) snprintf(_cache->c_name, strsz,
4019 					    MSG_ORIG(MSG_FMT_SECSYM),
4020 					    EC_WORD(secsz), secname, symname);
4021 				}
4022 
4023 				continue;
4024 			}
4025 
4026 			/*
4027 			 * Generate an error if the section name index is zero
4028 			 * or exceeds the shstrtab data.  Fall through to
4029 			 * fabricate a section name.
4030 			 */
4031 			if ((_cache->c_shdr->sh_name == 0) ||
4032 			    /* LINTED */
4033 			    (nameshdr->sh_size <= _cache->c_shdr->sh_name)) {
4034 				(void) fprintf(stderr,
4035 				    MSG_INTL(MSG_ERR_BADSHNAME), file,
4036 				    EC_WORD(ndx),
4037 				    EC_XWORD(_cache->c_shdr->sh_name));
4038 			}
4039 		}
4040 
4041 		/*
4042 		 * If there exists no shstrtab data, or a section header has no
4043 		 * name (an invalid index of 0), then compose a name for the
4044 		 * section.
4045 		 */
4046 		(void) snprintf(scnndxnm, sizeof (scnndxnm),
4047 		    MSG_INTL(MSG_FMT_SCNNDX), ndx);
4048 
4049 		if ((_cache->c_name = malloc(strlen(scnndxnm) + 1)) == NULL) {
4050 			int err = errno;
4051 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
4052 			    file, strerror(err));
4053 			return (0);
4054 		}
4055 		(void) strcpy(_cache->c_name, scnndxnm);
4056 	}
4057 
4058 	/*
4059 	 * Having collected all the sections, validate their address range.
4060 	 * Cases have existed where the section information has been invalid.
4061 	 * This can lead to all sorts of other, hard to diagnose errors, as
4062 	 * each section is processed individually (ie. with elf_getdata()).
4063 	 * Here, we carry out some address comparisons to catch a family of
4064 	 * overlapping memory issues we have observed (likely, there are others
4065 	 * that we have yet to discover).
4066 	 *
4067 	 * Note, should any memory overlap occur, obtaining any additional
4068 	 * data from the file is questionable.  However, it might still be
4069 	 * possible to inspect the ELF header, Programs headers, or individual
4070 	 * sections, so rather than bailing on an error condition, continue
4071 	 * processing to see if any data can be salvaged.
4072 	 */
4073 	if (shdr_ndx_arr_cnt > 1) {
4074 		sort_shdr_ndx_arr_cache = cache;
4075 		qsort(shdr_ndx_arr, shdr_ndx_arr_cnt,
4076 		    sizeof (*shdr_ndx_arr), sort_shdr_ndx_arr);
4077 	}
4078 	for (ndx = 0; ndx < shdr_ndx_arr_cnt; ndx++) {
4079 		Cache	*_cache = cache + shdr_ndx_arr[ndx];
4080 		Shdr	*shdr = _cache->c_shdr;
4081 		Off	bgn1, bgn = shdr->sh_offset;
4082 		Off	end1, end = shdr->sh_offset + shdr->sh_size;
4083 		size_t	ndx1;
4084 
4085 		/*
4086 		 * Check the section against all following ones, reporting
4087 		 * any overlaps. Since we've sorted the sections by offset,
4088 		 * we can stop after the first comparison that fails. There
4089 		 * are no overlaps in a properly formed ELF file, in which
4090 		 * case this algorithm runs in O(n) time. This will degenerate
4091 		 * to O(n^2) for a completely broken file. Such a file is
4092 		 * (1) highly unlikely, and (2) unusable, so it is reasonable
4093 		 * for the analysis to take longer.
4094 		 */
4095 		for (ndx1 = ndx + 1; ndx1 < shdr_ndx_arr_cnt; ndx1++) {
4096 			Cache	*_cache1 = cache + shdr_ndx_arr[ndx1];
4097 			Shdr	*shdr1 = _cache1->c_shdr;
4098 
4099 			bgn1 = shdr1->sh_offset;
4100 			end1 = shdr1->sh_offset + shdr1->sh_size;
4101 
4102 			if (((bgn1 <= bgn) && (end1 > bgn)) ||
4103 			    ((bgn1 < end) && (end1 >= end))) {
4104 				(void) fprintf(stderr,
4105 				    MSG_INTL(MSG_ERR_SECMEMOVER), file,
4106 				    EC_WORD(elf_ndxscn(_cache->c_scn)),
4107 				    _cache->c_name, EC_OFF(bgn), EC_OFF(end),
4108 				    EC_WORD(elf_ndxscn(_cache1->c_scn)),
4109 				    _cache1->c_name, EC_OFF(bgn1),
4110 				    EC_OFF(end1));
4111 			} else {	/* No overlap, so can stop */
4112 				break;
4113 			}
4114 		}
4115 
4116 		/*
4117 		 * In addition to checking for sections overlapping
4118 		 * each other (done above), we should also make sure
4119 		 * the section doesn't overlap the section header array.
4120 		 */
4121 		bgn1 = ehdr->e_shoff;
4122 		end1 = ehdr->e_shoff + (ehdr->e_shentsize * ehdr->e_shnum);
4123 
4124 		if (((bgn1 <= bgn) && (end1 > bgn)) ||
4125 		    ((bgn1 < end) && (end1 >= end))) {
4126 			(void) fprintf(stderr,
4127 			    MSG_INTL(MSG_ERR_SHDRMEMOVER), file, EC_OFF(bgn1),
4128 			    EC_OFF(end1),
4129 			    EC_WORD(elf_ndxscn(_cache->c_scn)),
4130 			    _cache->c_name, EC_OFF(bgn), EC_OFF(end));
4131 		}
4132 	}
4133 
4134 	/*
4135 	 * Obtain the data for each section.
4136 	 */
4137 	for (ndx = 1; ndx < shnum; ndx++) {
4138 		Cache	*_cache = &cache[ndx];
4139 		Elf_Scn	*scn = _cache->c_scn;
4140 
4141 		if ((_cache->c_data = elf_getdata(scn, NULL)) == NULL) {
4142 			failure(file, MSG_ORIG(MSG_ELF_GETDATA));
4143 			(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCNDATA),
4144 			    EC_WORD(elf_ndxscn(scn)));
4145 		}
4146 
4147 		/*
4148 		 * If a string table, verify that it has NULL first and
4149 		 * final bytes.
4150 		 */
4151 		if ((_cache->c_shdr->sh_type == SHT_STRTAB) &&
4152 		    (_cache->c_data->d_buf != NULL) &&
4153 		    (_cache->c_data->d_size > 0)) {
4154 			const char *s = _cache->c_data->d_buf;
4155 
4156 			if ((*s != '\0') ||
4157 			    (*(s + _cache->c_data->d_size - 1) != '\0'))
4158 				(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALSTR),
4159 				    file, _cache->c_name);
4160 		}
4161 	}
4162 
4163 	return (1);
4164 }
4165 
4166 
4167 
4168 /*
4169  * Generate a cache of section headers and related information
4170  * for use by the rest of elfdump. If requested (or the file
4171  * contains no section headers), we generate a fake set of
4172  * headers from the information accessible from the program headers.
4173  * Otherwise, we use the real section headers contained in the file.
4174  */
4175 static int
4176 create_cache(const char *file, int fd, Elf *elf, Ehdr *ehdr, Cache **cache,
4177     size_t shstrndx, size_t *shnum, uint_t *flags)
4178 {
4179 	/*
4180 	 * If there are no section headers, then resort to synthesizing
4181 	 * section headers from the program headers. This is normally
4182 	 * only done by explicit request, but in this case there's no
4183 	 * reason not to go ahead, since the alternative is simply to quit.
4184 	 */
4185 	if ((*shnum <= 1) && ((*flags & FLG_CTL_FAKESHDR) == 0)) {
4186 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_NOSHDR), file);
4187 		*flags |= FLG_CTL_FAKESHDR;
4188 	}
4189 
4190 	if (*flags & FLG_CTL_FAKESHDR) {
4191 		if (fake_shdr_cache(file, fd, elf, ehdr, cache, shnum) == 0)
4192 			return (0);
4193 	} else {
4194 		if (shdr_cache(file, elf, ehdr, shstrndx, *shnum,
4195 		    cache, *flags) == 0)
4196 			return (0);
4197 	}
4198 
4199 	return (1);
4200 }
4201 
4202 int
4203 regular(const char *file, int fd, Elf *elf, uint_t flags,
4204     const char *wname, int wfd, uchar_t osabi)
4205 {
4206 	enum { CACHE_NEEDED, CACHE_OK, CACHE_FAIL} cache_state = CACHE_NEEDED;
4207 	Elf_Scn		*scn;
4208 	Ehdr		*ehdr;
4209 	size_t		ndx, shstrndx, shnum, phnum;
4210 	Shdr		*shdr;
4211 	Cache		*cache;
4212 	VERSYM_STATE	versym;
4213 	int		ret = 0;
4214 	int		addr_align;
4215 
4216 	if ((ehdr = elf_getehdr(elf)) == NULL) {
4217 		failure(file, MSG_ORIG(MSG_ELF_GETEHDR));
4218 		return (ret);
4219 	}
4220 
4221 	if (elf_getshdrnum(elf, &shnum) == -1) {
4222 		failure(file, MSG_ORIG(MSG_ELF_GETSHDRNUM));
4223 		return (ret);
4224 	}
4225 
4226 	if (elf_getshdrstrndx(elf, &shstrndx) == -1) {
4227 		failure(file, MSG_ORIG(MSG_ELF_GETSHDRSTRNDX));
4228 		return (ret);
4229 	}
4230 
4231 	if (elf_getphdrnum(elf, &phnum) == -1) {
4232 		failure(file, MSG_ORIG(MSG_ELF_GETPHDRNUM));
4233 		return (ret);
4234 	}
4235 	/*
4236 	 * If the user requested section headers derived from the
4237 	 * program headers (-P option) and this file doesn't have
4238 	 * any program headers (i.e. ET_REL), then we can't do it.
4239 	 */
4240 	if ((phnum == 0) && (flags & FLG_CTL_FAKESHDR)) {
4241 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_PNEEDSPH), file);
4242 		return (ret);
4243 	}
4244 
4245 
4246 	if ((scn = elf_getscn(elf, 0)) != NULL) {
4247 		if ((shdr = elf_getshdr(scn)) == NULL) {
4248 			failure(file, MSG_ORIG(MSG_ELF_GETSHDR));
4249 			(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN), 0);
4250 			return (ret);
4251 		}
4252 	} else
4253 		shdr = NULL;
4254 
4255 	/*
4256 	 * Print the elf header.
4257 	 */
4258 	if (flags & FLG_SHOW_EHDR)
4259 		Elf_ehdr(0, ehdr, shdr);
4260 
4261 	/*
4262 	 * If the section headers or program headers have inadequate
4263 	 * alignment for the class of object, print a warning. libelf
4264 	 * can handle such files, but programs that use them can crash
4265 	 * when they dereference unaligned items.
4266 	 *
4267 	 * Note that the AMD64 ABI, although it is a 64-bit architecture,
4268 	 * allows access to data types smaller than 128-bits to be on
4269 	 * word alignment.
4270 	 */
4271 	if (ehdr->e_machine == EM_AMD64)
4272 		addr_align = sizeof (Word);
4273 	else
4274 		addr_align = sizeof (Addr);
4275 
4276 	if (ehdr->e_phoff & (addr_align - 1))
4277 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADPHDRALIGN), file);
4278 	if (ehdr->e_shoff & (addr_align - 1))
4279 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHDRALIGN), file);
4280 
4281 
4282 	/*
4283 	 * Determine the Operating System ABI (osabi) we will use to
4284 	 * interpret the object.
4285 	 */
4286 	if (flags & FLG_CTL_OSABI) {
4287 		/*
4288 		 * If the user explicitly specifies '-O none', we need
4289 		 * to display a completely generic view of the file.
4290 		 * However, libconv is written to assume that ELFOSABI_NONE
4291 		 * is equivalent to ELFOSABI_SOLARIS. To get the desired
4292 		 * effect, we use an osabi that libconv has no knowledge of.
4293 		 */
4294 		if (osabi == ELFOSABI_NONE)
4295 			osabi = ELFOSABI_UNKNOWN4;
4296 	} else {
4297 		/* Determine osabi from file */
4298 		osabi = ehdr->e_ident[EI_OSABI];
4299 		if (osabi == ELFOSABI_NONE) {
4300 			/*
4301 			 * Chicken/Egg scenario:
4302 			 *
4303 			 * Ideally, we wait to create the section header cache
4304 			 * until after the program headers are printed. If we
4305 			 * only output program headers, we can skip building
4306 			 * the cache entirely.
4307 			 *
4308 			 * Proper interpretation of program headers requires
4309 			 * the osabi, which is supposed to be in the ELF header.
4310 			 * However, many systems (Solaris and Linux included)
4311 			 * have a history of setting the osabi to the generic
4312 			 * SysV ABI (ELFOSABI_NONE). We assume ELFOSABI_SOLARIS
4313 			 * in such cases, but would like to check the object
4314 			 * to see if it has a Linux .note.ABI-tag section,
4315 			 * which implies ELFOSABI_LINUX. This requires a
4316 			 * section header cache.
4317 			 *
4318 			 * To break the cycle, we create section headers now
4319 			 * if osabi is ELFOSABI_NONE, and later otherwise.
4320 			 * If it succeeds, we use them, if not, we defer
4321 			 * exiting until after the program headers are out.
4322 			 */
4323 			if (create_cache(file, fd, elf, ehdr, &cache,
4324 			    shstrndx, &shnum, &flags) == 0) {
4325 				cache_state = CACHE_FAIL;
4326 			} else {
4327 				cache_state = CACHE_OK;
4328 				if (has_linux_abi_note(cache, shnum, file)) {
4329 					Conv_inv_buf_t	ibuf1, ibuf2;
4330 
4331 					(void) fprintf(stderr,
4332 					    MSG_INTL(MSG_INFO_LINUXOSABI), file,
4333 					    conv_ehdr_osabi(osabi, 0, &ibuf1),
4334 					    conv_ehdr_osabi(ELFOSABI_LINUX,
4335 					    0, &ibuf2));
4336 					osabi = ELFOSABI_LINUX;
4337 				}
4338 			}
4339 		}
4340 		/*
4341 		 * We treat ELFOSABI_NONE identically to ELFOSABI_SOLARIS.
4342 		 * Mapping NONE to SOLARIS simplifies the required test.
4343 		 */
4344 		if (osabi == ELFOSABI_NONE)
4345 			osabi = ELFOSABI_SOLARIS;
4346 	}
4347 
4348 	/*
4349 	 * Print the program headers.
4350 	 */
4351 	if ((flags & FLG_SHOW_PHDR) && (phnum != 0)) {
4352 		Phdr	*phdr;
4353 
4354 		if ((phdr = elf_getphdr(elf)) == NULL) {
4355 			failure(file, MSG_ORIG(MSG_ELF_GETPHDR));
4356 			return (ret);
4357 		}
4358 
4359 		for (ndx = 0; ndx < phnum; phdr++, ndx++) {
4360 			if (!match(MATCH_F_PHDR| MATCH_F_NDX | MATCH_F_TYPE,
4361 			    NULL, ndx, phdr->p_type))
4362 				continue;
4363 
4364 			dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
4365 			dbg_print(0, MSG_INTL(MSG_ELF_PHDR), EC_WORD(ndx));
4366 			Elf_phdr(0, osabi, ehdr->e_machine, phdr);
4367 		}
4368 	}
4369 
4370 	/*
4371 	 * If we have flag bits set that explicitly require a show or calc
4372 	 * operation, but none of them require the section headers, then
4373 	 * we are done and can return now.
4374 	 */
4375 	if (((flags & (FLG_MASK_SHOW | FLG_MASK_CALC)) != 0) &&
4376 	    ((flags & (FLG_MASK_SHOW_SHDR | FLG_MASK_CALC_SHDR)) == 0))
4377 		return (ret);
4378 
4379 	/*
4380 	 * Everything from this point on requires section headers.
4381 	 * If we have no section headers, there is no reason to continue.
4382 	 *
4383 	 * If we tried above to create the section header cache and failed,
4384 	 * it is time to exit. Otherwise, create it if needed.
4385 	 */
4386 	switch (cache_state) {
4387 	case CACHE_NEEDED:
4388 		if (create_cache(file, fd, elf, ehdr, &cache, shstrndx,
4389 		    &shnum, &flags) == 0)
4390 			return (ret);
4391 		break;
4392 	case CACHE_FAIL:
4393 		return (ret);
4394 	}
4395 	if (shnum <= 1)
4396 		goto done;
4397 
4398 	/*
4399 	 * If -w was specified, find and write out the section(s) data.
4400 	 */
4401 	if (wfd) {
4402 		for (ndx = 1; ndx < shnum; ndx++) {
4403 			Cache	*_cache = &cache[ndx];
4404 
4405 			if (match(MATCH_F_STRICT | MATCH_F_ALL, _cache->c_name,
4406 			    ndx, _cache->c_shdr->sh_type) &&
4407 			    _cache->c_data && _cache->c_data->d_buf) {
4408 				if (write(wfd, _cache->c_data->d_buf,
4409 				    _cache->c_data->d_size) !=
4410 				    _cache->c_data->d_size) {
4411 					int err = errno;
4412 					(void) fprintf(stderr,
4413 					    MSG_INTL(MSG_ERR_WRITE), wname,
4414 					    strerror(err));
4415 					/*
4416 					 * Return an exit status of 1, because
4417 					 * the failure is not related to the
4418 					 * ELF file, but by system resources.
4419 					 */
4420 					ret = 1;
4421 					goto done;
4422 				}
4423 			}
4424 		}
4425 	}
4426 
4427 	/*
4428 	 * If we have no flag bits set that explicitly require a show or calc
4429 	 * operation, but match options (-I, -N, -T) were used, then run
4430 	 * through the section headers and see if we can't deduce show flags
4431 	 * from the match options given.
4432 	 *
4433 	 * We don't do this if -w was specified, because (-I, -N, -T) used
4434 	 * with -w in lieu of some other option is supposed to be quiet.
4435 	 */
4436 	if ((wfd == 0) && (flags & FLG_CTL_MATCH) &&
4437 	    ((flags & (FLG_MASK_SHOW | FLG_MASK_CALC)) == 0)) {
4438 		for (ndx = 1; ndx < shnum; ndx++) {
4439 			Cache	*_cache = &cache[ndx];
4440 
4441 			if (!match(MATCH_F_STRICT | MATCH_F_ALL, _cache->c_name,
4442 			    ndx, _cache->c_shdr->sh_type))
4443 				continue;
4444 
4445 			switch (_cache->c_shdr->sh_type) {
4446 			case SHT_PROGBITS:
4447 				/*
4448 				 * Heuristic time: It is usually bad form
4449 				 * to assume the meaning/format of a PROGBITS
4450 				 * section based on its name. However, there
4451 				 * are ABI mandated exceptions. Check for
4452 				 * these special names.
4453 				 */
4454 
4455 				/* The ELF ABI specifies .interp and .got */
4456 				if (strcmp(_cache->c_name,
4457 				    MSG_ORIG(MSG_ELF_INTERP)) == 0) {
4458 					flags |= FLG_SHOW_INTERP;
4459 					break;
4460 				}
4461 				if (strcmp(_cache->c_name,
4462 				    MSG_ORIG(MSG_ELF_GOT)) == 0) {
4463 					flags |= FLG_SHOW_GOT;
4464 					break;
4465 				}
4466 				/*
4467 				 * The GNU compilers, and amd64 ABI, define
4468 				 * .eh_frame and .eh_frame_hdr. The Sun
4469 				 * C++ ABI defines .exception_ranges.
4470 				 */
4471 				if ((strncmp(_cache->c_name,
4472 				    MSG_ORIG(MSG_SCN_FRM),
4473 				    MSG_SCN_FRM_SIZE) == 0) ||
4474 				    (strncmp(_cache->c_name,
4475 				    MSG_ORIG(MSG_SCN_EXRANGE),
4476 				    MSG_SCN_EXRANGE_SIZE) == 0)) {
4477 					flags |= FLG_SHOW_UNWIND;
4478 					break;
4479 				}
4480 				break;
4481 
4482 			case SHT_SYMTAB:
4483 			case SHT_DYNSYM:
4484 			case SHT_SUNW_LDYNSYM:
4485 			case SHT_SUNW_versym:
4486 			case SHT_SYMTAB_SHNDX:
4487 				flags |= FLG_SHOW_SYMBOLS;
4488 				break;
4489 
4490 			case SHT_RELA:
4491 			case SHT_REL:
4492 				flags |= FLG_SHOW_RELOC;
4493 				break;
4494 
4495 			case SHT_HASH:
4496 				flags |= FLG_SHOW_HASH;
4497 				break;
4498 
4499 			case SHT_DYNAMIC:
4500 				flags |= FLG_SHOW_DYNAMIC;
4501 				break;
4502 
4503 			case SHT_NOTE:
4504 				flags |= FLG_SHOW_NOTE;
4505 				break;
4506 
4507 			case SHT_GROUP:
4508 				flags |= FLG_SHOW_GROUP;
4509 				break;
4510 
4511 			case SHT_SUNW_symsort:
4512 			case SHT_SUNW_tlssort:
4513 				flags |= FLG_SHOW_SORT;
4514 				break;
4515 
4516 			case SHT_SUNW_cap:
4517 				flags |= FLG_SHOW_CAP;
4518 				break;
4519 
4520 			case SHT_SUNW_move:
4521 				flags |= FLG_SHOW_MOVE;
4522 				break;
4523 
4524 			case SHT_SUNW_syminfo:
4525 				flags |= FLG_SHOW_SYMINFO;
4526 				break;
4527 
4528 			case SHT_SUNW_verdef:
4529 			case SHT_SUNW_verneed:
4530 				flags |= FLG_SHOW_VERSIONS;
4531 				break;
4532 
4533 			case SHT_AMD64_UNWIND:
4534 				flags |= FLG_SHOW_UNWIND;
4535 				break;
4536 			}
4537 		}
4538 	}
4539 
4540 
4541 	if (flags & FLG_SHOW_SHDR)
4542 		sections(file, cache, shnum, ehdr, osabi);
4543 
4544 	if (flags & FLG_SHOW_INTERP)
4545 		interp(file, cache, shnum, phnum, elf);
4546 
4547 	if ((osabi == ELFOSABI_SOLARIS) || (osabi == ELFOSABI_LINUX))
4548 		versions(cache, shnum, file, flags, &versym);
4549 
4550 	if (flags & FLG_SHOW_SYMBOLS)
4551 		symbols(cache, shnum, ehdr, osabi, &versym, file, flags);
4552 
4553 	if ((flags & FLG_SHOW_SORT) && (osabi == ELFOSABI_SOLARIS))
4554 		sunw_sort(cache, shnum, ehdr, osabi, &versym, file, flags);
4555 
4556 	if (flags & FLG_SHOW_HASH)
4557 		hash(cache, shnum, file, flags);
4558 
4559 	if (flags & FLG_SHOW_GOT)
4560 		got(cache, shnum, ehdr, file);
4561 
4562 	if (flags & FLG_SHOW_GROUP)
4563 		group(cache, shnum, file, flags);
4564 
4565 	if (flags & FLG_SHOW_SYMINFO)
4566 		syminfo(cache, shnum, file);
4567 
4568 	if (flags & FLG_SHOW_RELOC)
4569 		reloc(cache, shnum, ehdr, file);
4570 
4571 	if (flags & FLG_SHOW_DYNAMIC)
4572 		dynamic(cache, shnum, ehdr, osabi, file);
4573 
4574 	if (flags & FLG_SHOW_NOTE) {
4575 		Word	note_cnt;
4576 		size_t	note_shnum;
4577 		Cache	*note_cache;
4578 
4579 		note_cnt = note(cache, shnum, ehdr, file);
4580 
4581 		/*
4582 		 * Solaris core files have section headers, but these
4583 		 * headers do not include SHT_NOTE sections that reference
4584 		 * the core note sections. This means that note() won't
4585 		 * find the core notes. Fake section headers (-P option)
4586 		 * recover these sections, but it is inconvenient to require
4587 		 * users to specify -P in this situation. If the following
4588 		 * are all true:
4589 		 *
4590 		 *	- No note sections were found
4591 		 *	- This is a core file
4592 		 *	- We are not already using fake section headers
4593 		 *
4594 		 * then we will automatically generate fake section headers
4595 		 * and then process them in a second call to note().
4596 		 */
4597 		if ((note_cnt == 0) && (ehdr->e_type == ET_CORE) &&
4598 		    !(flags & FLG_CTL_FAKESHDR) &&
4599 		    (fake_shdr_cache(file, fd, elf, ehdr,
4600 		    &note_cache, &note_shnum) != 0)) {
4601 			(void) note(note_cache, note_shnum, ehdr, file);
4602 			fake_shdr_cache_free(note_cache, note_shnum);
4603 		}
4604 	}
4605 
4606 	if ((flags & FLG_SHOW_MOVE) && (osabi == ELFOSABI_SOLARIS))
4607 		move(cache, shnum, file, flags);
4608 
4609 	if (flags & FLG_CALC_CHECKSUM)
4610 		checksum(elf);
4611 
4612 	if ((flags & FLG_SHOW_CAP) && (osabi == ELFOSABI_SOLARIS))
4613 		cap(file, cache, shnum, phnum, ehdr, elf);
4614 
4615 	if ((flags & FLG_SHOW_UNWIND) &&
4616 	    ((osabi == ELFOSABI_SOLARIS) || (osabi == ELFOSABI_LINUX)))
4617 		unwind(cache, shnum, phnum, ehdr, osabi, file, elf, flags);
4618 
4619 
4620 	/* Release the memory used to cache section headers */
4621 done:
4622 	if (flags & FLG_CTL_FAKESHDR)
4623 		fake_shdr_cache_free(cache, shnum);
4624 	else
4625 		free(cache);
4626 
4627 	return (ret);
4628 }
4629