1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * Dump an elf file.
29  */
30 #include	<stddef.h>
31 #include	<sys/elf_386.h>
32 #include	<sys/elf_amd64.h>
33 #include	<sys/elf_SPARC.h>
34 #include	<_libelf.h>
35 #include	<dwarf.h>
36 #include	<stdio.h>
37 #include	<unistd.h>
38 #include	<errno.h>
39 #include	<strings.h>
40 #include	<debug.h>
41 #include	<conv.h>
42 #include	<msg.h>
43 #include	<_elfdump.h>
44 
45 
46 /*
47  * VERSYM_STATE is used to maintain information about the VERSYM section
48  * in the object being analyzed. It is filled in by versions(), and used
49  * by init_symtbl_state() when displaying symbol information.
50  *
51  * There are three forms of symbol versioning known to us:
52  *
53  * 1) The original form, introduced with Solaris 2.5, in which
54  *	the Versym contains indexes to Verdef records, and the
55  *	Versym values for UNDEF symbols resolved by other objects
56  *	are all set to 0.
57  * 2) The GNU form, which is backward compatible with the original
58  *	Solaris form, but which adds several extensions:
59  *	- The Versym also contains indexes to Verneed records, recording
60  *		which object/version contributed the external symbol at
61  *		link time. These indexes start with the next value following
62  *		the final Verdef index. The index is written to the previously
63  *		reserved vna_other field of the ELF Vernaux structure.
64  *	- The top bit of the Versym value is no longer part of the index,
65  *		but is used as a "hidden bit" to prevent binding to the symbol.
66  *	- Multiple implementations of a given symbol, contained in varying
67  *		versions are allowed, using special assembler pseudo ops,
68  *		and encoded in the symbol name using '@' characters.
69  * 3) Modified Solaris form, in which we adopt the first GNU extension
70  *	(Versym indexes to Verneed records), but not the others.
71  *
72  * elfdump can handle any of these cases. The presence of a DT_VERSYM
73  * dynamic element indicates a full GNU object. An object that lacks
74  * a DT_VERSYM entry, but which has non-zero vna_other fields in the Vernaux
75  * structures is a modified Solaris object. An object that has neither of
76  * these uses the original form.
77  *
78  * max_verndx contains the largest version index that can appear
79  * in a Versym entry. This can never be less than 1: In the case where
80  * there is no verdef/verneed sections, the [0] index is reserved
81  * for local symbols, and the [1] index for globals. If the original
82  * Solaris versioning rules are in effect and there is a verdef section,
83  * then max_verndex is the number of defined versions. If one of the
84  * other versioning forms is in effect, then:
85  *	1) If there is no verneed section, it is the same as for
86  *		original Solaris versioning.
87  *	2) If there is a verneed section, the vna_other field of the
88  *		Vernaux structs contain versions, and max_verndx is the
89  *		largest such index.
90  *
91  * If gnu_full is True, the object uses the full GNU form of versioning.
92  * The value of the gnu_full field is based on the presence of
93  * a DT_VERSYM entry in the dynamic section: GNU ld produces these, and
94  * Solaris ld does not.
95  *
96  * The gnu_needed field is True if the Versym contains indexes to
97  * Verneed records, as indicated by non-zero vna_other fields in the Verneed
98  * section. If gnu_full is True, then gnu_needed will always be true.
99  * However, gnu_needed can be true without gnu_full. This is the modified
100  * Solaris form.
101  */
102 typedef struct {
103 	Cache	*cache;		/* Pointer to cache entry for VERSYM */
104 	Versym	*data;		/* Pointer to versym array */
105 	int	gnu_full;	/* True if object uses GNU versioning rules */
106 	int	gnu_needed;	/* True if object uses VERSYM indexes for */
107 				/*	VERNEED (subset of gnu_full) */
108 	int	max_verndx;	/* largest versym index value */
109 } VERSYM_STATE;
110 
111 /*
112  * SYMTBL_STATE is used to maintain information about a single symbol
113  * table section, for use by the routines that display symbol information.
114  */
115 typedef struct {
116 	const char	*file;		/* Name of file */
117 	Ehdr		*ehdr;		/* ELF header for file */
118 	Cache		*cache;		/* Cache of all section headers */
119 	uchar_t		osabi;		/* OSABI to use */
120 	Word		shnum;		/* # of sections in cache */
121 	Cache		*seccache;	/* Cache of symbol table section hdr */
122 	Word		secndx;		/* Index of symbol table section hdr */
123 	const char	*secname;	/* Name of section */
124 	uint_t		flags;		/* Command line option flags */
125 	struct {			/* Extended section index data */
126 		int	checked;	/* TRUE if already checked for shxndx */
127 		Word	*data;		/* NULL, or extended section index */
128 					/*	used for symbol table entries */
129 		uint_t	n;		/* # items in shxndx.data */
130 	} shxndx;
131 	VERSYM_STATE	*versym;	/* NULL, or associated VERSYM section */
132 	Sym 		*sym;		/* Array of symbols */
133 	Word		symn;		/* # of symbols */
134 } SYMTBL_STATE;
135 
136 /*
137  * A variable of this type is used to track information related to
138  * .eh_frame and .eh_frame_hdr sections across calls to unwind_eh_frame().
139  */
140 typedef struct {
141 	Word		frame_cnt;	/* # .eh_frame sections seen */
142 	Word		frame_ndx;	/* Section index of 1st .eh_frame */
143 	Word		hdr_cnt;	/* # .eh_frame_hdr sections seen */
144 	Word		hdr_ndx;	/* Section index of 1st .eh_frame_hdr */
145 	uint64_t	frame_ptr;	/* Value of FramePtr field from first */
146 					/*	.eh_frame_hdr section */
147 	uint64_t	frame_base;	/* Data addr of 1st .eh_frame  */
148 } gnu_eh_state_t;
149 
150 /*
151  * C++ .exception_ranges entries make use of the signed ptrdiff_t
152  * type to record self-relative pointer values. We need a type
153  * for this that is matched to the ELFCLASS being processed.
154  */
155 #if	defined(_ELF64)
156 	typedef int64_t PTRDIFF_T;
157 #else
158 	typedef int32_t PTRDIFF_T;
159 #endif
160 
161 /*
162  * The Sun C++ ABI uses this struct to define each .exception_ranges
163  * entry. From the ABI:
164  *
165  * The field ret_addr is a self relative pointer to the start of the address
166  * range. The name was chosen because in the current implementation the range
167  * typically starts at the return address for a call site.
168  *
169  * The field length is the difference, in bytes, between the pc of the last
170  * instruction covered by the exception range and the first. When only a
171  * single call site is represented without optimization, this will equal zero.
172  *
173  * The field handler_addr is a relative pointer which stores the difference
174  * between the start of the exception range and the address of all code to
175  * catch exceptions and perform the cleanup for stack unwinding.
176  *
177  * The field type_block is a relative pointer which stores the difference
178  * between the start of the exception range and the address of an array used
179  * for storing a list of the types of exceptions which can be caught within
180  * the exception range.
181  */
182 typedef struct {
183 	PTRDIFF_T	ret_addr;
184 	Xword		length;
185 	PTRDIFF_T	handler_addr;
186 	PTRDIFF_T	type_block;
187 	Xword		reserved;
188 } exception_range_entry;
189 
190 /*
191  * Focal point for verifying symbol names.
192  */
193 static const char *
194 string(Cache *refsec, Word ndx, Cache *strsec, const char *file, Word name)
195 {
196 	/*
197 	 * If an error in this routine is due to a property of the string
198 	 * section, as opposed to a bad offset into the section (a property of
199 	 * the referencing section), then we will detect the same error on
200 	 * every call involving those sections. We use these static variables
201 	 * to retain the information needed to only issue each such error once.
202 	 */
203 	static Cache	*last_refsec;	/* Last referencing section seen */
204 	static int	strsec_err;	/* True if error issued */
205 
206 	const char	*strs;
207 	Word		strn;
208 
209 	if (strsec->c_data == NULL)
210 		return (NULL);
211 
212 	strs = (char *)strsec->c_data->d_buf;
213 	strn = strsec->c_data->d_size;
214 
215 	/*
216 	 * We only print a diagnostic regarding a bad string table once per
217 	 * input section being processed. If the refsec has changed, reset
218 	 * our retained error state.
219 	 */
220 	if (last_refsec != refsec) {
221 		last_refsec = refsec;
222 		strsec_err = 0;
223 	}
224 
225 	/* Verify that strsec really is a string table */
226 	if (strsec->c_shdr->sh_type != SHT_STRTAB) {
227 		if (!strsec_err) {
228 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_NOTSTRTAB),
229 			    file, strsec->c_ndx, refsec->c_ndx);
230 			strsec_err = 1;
231 		}
232 		return (MSG_INTL(MSG_STR_UNKNOWN));
233 	}
234 
235 	/*
236 	 * Is the string table offset within range of the available strings?
237 	 */
238 	if (name >= strn) {
239 		/*
240 		 * Do we have a empty string table?
241 		 */
242 		if (strs == NULL) {
243 			if (!strsec_err) {
244 				(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
245 				    file, strsec->c_name);
246 				strsec_err = 1;
247 			}
248 		} else {
249 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSTOFF),
250 			    file, refsec->c_name, EC_WORD(ndx), strsec->c_name,
251 			    EC_WORD(name), EC_WORD(strn - 1));
252 		}
253 
254 		/*
255 		 * Return the empty string so that the calling function can
256 		 * continue it's output diagnostics.
257 		 */
258 		return (MSG_INTL(MSG_STR_UNKNOWN));
259 	}
260 	return (strs + name);
261 }
262 
263 /*
264  * Relocations can reference section symbols and standard symbols.  If the
265  * former, establish the section name.
266  */
267 static const char *
268 relsymname(Cache *cache, Cache *csec, Cache *strsec, Word symndx, Word symnum,
269     Word relndx, Sym *syms, char *secstr, size_t secsz, const char *file)
270 {
271 	Sym		*sym;
272 	const char	*name;
273 
274 	if (symndx >= symnum) {
275 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_RELBADSYMNDX),
276 		    file, EC_WORD(symndx), EC_WORD(relndx));
277 		return (MSG_INTL(MSG_STR_UNKNOWN));
278 	}
279 
280 	sym = (Sym *)(syms + symndx);
281 	name = string(csec, symndx, strsec, file, sym->st_name);
282 
283 	/*
284 	 * If the symbol represents a section offset construct an appropriate
285 	 * string.  Note, although section symbol table entries typically have
286 	 * a NULL name pointer, entries do exist that point into the string
287 	 * table to their own NULL strings.
288 	 */
289 	if ((ELF_ST_TYPE(sym->st_info) == STT_SECTION) &&
290 	    ((sym->st_name == 0) || (*name == '\0'))) {
291 		(void) snprintf(secstr, secsz, MSG_INTL(MSG_STR_SECTION),
292 		    cache[sym->st_shndx].c_name);
293 		return ((const char *)secstr);
294 	}
295 
296 	return (name);
297 }
298 
299 /*
300  * Focal point for establishing a string table section.  Data such as the
301  * dynamic information simply points to a string table.  Data such as
302  * relocations, reference a symbol table, which in turn is associated with a
303  * string table.
304  */
305 static int
306 stringtbl(Cache *cache, int symtab, Word ndx, Word shnum, const char *file,
307     Word *symnum, Cache **symsec, Cache **strsec)
308 {
309 	Shdr	*shdr = cache[ndx].c_shdr;
310 
311 	if (symtab) {
312 		/*
313 		 * Validate the symbol table section.
314 		 */
315 		if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
316 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
317 			    file, cache[ndx].c_name, EC_WORD(shdr->sh_link));
318 			return (0);
319 		}
320 		if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
321 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
322 			    file, cache[ndx].c_name);
323 			return (0);
324 		}
325 
326 		/*
327 		 * Obtain, and verify the symbol table data.
328 		 */
329 		if ((cache[ndx].c_data == NULL) ||
330 		    (cache[ndx].c_data->d_buf == NULL)) {
331 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
332 			    file, cache[ndx].c_name);
333 			return (0);
334 		}
335 
336 		/*
337 		 * Establish the string table index.
338 		 */
339 		ndx = shdr->sh_link;
340 		shdr = cache[ndx].c_shdr;
341 
342 		/*
343 		 * Return symbol table information.
344 		 */
345 		if (symnum)
346 			*symnum = (shdr->sh_size / shdr->sh_entsize);
347 		if (symsec)
348 			*symsec = &cache[ndx];
349 	}
350 
351 	/*
352 	 * Validate the associated string table section.
353 	 */
354 	if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
355 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
356 		    file, cache[ndx].c_name, EC_WORD(shdr->sh_link));
357 		return (0);
358 	}
359 
360 	if (strsec)
361 		*strsec = &cache[shdr->sh_link];
362 
363 	return (1);
364 }
365 
366 /*
367  * Lookup a symbol and set Sym accordingly.
368  *
369  * entry:
370  *	name - Name of symbol to lookup
371  *	cache - Cache of all section headers
372  *	shnum - # of sections in cache
373  *	sym - Address of pointer to receive symbol
374  *	target - NULL, or section to which the symbol must be associated.
375  *	symtab - Symbol table to search for symbol
376  *	file - Name of file
377  *
378  * exit:
379  *	If the symbol is found, *sym is set to reference it, and True is
380  *	returned. If target is non-NULL, the symbol must reference the given
381  *	section --- otherwise the section is not checked.
382  *
383  *	If no symbol is found, False is returned.
384  */
385 static int
386 symlookup(const char *name, Cache *cache, Word shnum, Sym **sym,
387     Cache *target, Cache *symtab, const char *file)
388 {
389 	Shdr	*shdr;
390 	Word	symn, cnt;
391 	Sym	*syms;
392 
393 	if (symtab == 0)
394 		return (0);
395 
396 	shdr = symtab->c_shdr;
397 
398 	/*
399 	 * Determine the symbol data and number.
400 	 */
401 	if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
402 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
403 		    file, symtab->c_name);
404 		return (0);
405 	}
406 	if (symtab->c_data == NULL)
407 		return (0);
408 
409 	/* LINTED */
410 	symn = (Word)(shdr->sh_size / shdr->sh_entsize);
411 	syms = (Sym *)symtab->c_data->d_buf;
412 
413 	/*
414 	 * Get the associated string table section.
415 	 */
416 	if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
417 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
418 		    file, symtab->c_name, EC_WORD(shdr->sh_link));
419 		return (0);
420 	}
421 
422 	/*
423 	 * Loop through the symbol table to find a match.
424 	 */
425 	*sym = NULL;
426 	for (cnt = 0; cnt < symn; syms++, cnt++) {
427 		const char	*symname;
428 
429 		symname = string(symtab, cnt, &cache[shdr->sh_link], file,
430 		    syms->st_name);
431 
432 		if (symname && (strcmp(name, symname) == 0) &&
433 		    ((target == NULL) || (target->c_ndx == syms->st_shndx))) {
434 			/*
435 			 * It is possible, though rare, for a local and
436 			 * global symbol of the same name to exist, each
437 			 * contributed by a different input object. If the
438 			 * symbol just found is local, remember it, but
439 			 * continue looking.
440 			 */
441 			*sym = syms;
442 			if (ELF_ST_BIND(syms->st_info) != STB_LOCAL)
443 				break;
444 		}
445 	}
446 
447 	return (*sym != NULL);
448 }
449 
450 /*
451  * Print section headers.
452  */
453 static void
454 sections(const char *file, Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi)
455 {
456 	size_t	seccnt;
457 
458 	for (seccnt = 1; seccnt < shnum; seccnt++) {
459 		Cache		*_cache = &cache[seccnt];
460 		Shdr		*shdr = _cache->c_shdr;
461 		const char	*secname = _cache->c_name;
462 
463 		/*
464 		 * Although numerous section header entries can be zero, it's
465 		 * usually a sign of trouble if the type is zero.
466 		 */
467 		if (shdr->sh_type == 0) {
468 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHTYPE),
469 			    file, secname, EC_WORD(shdr->sh_type));
470 		}
471 
472 		if (!match(MATCH_F_ALL, secname, seccnt, shdr->sh_type))
473 			continue;
474 
475 		/*
476 		 * Identify any sections that are suspicious.  A .got section
477 		 * shouldn't exist in a relocatable object.
478 		 */
479 		if (ehdr->e_type == ET_REL) {
480 			if (strncmp(secname, MSG_ORIG(MSG_ELF_GOT),
481 			    MSG_ELF_GOT_SIZE) == 0) {
482 				(void) fprintf(stderr,
483 				    MSG_INTL(MSG_GOT_UNEXPECTED), file,
484 				    secname);
485 			}
486 		}
487 
488 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
489 		dbg_print(0, MSG_INTL(MSG_ELF_SHDR), EC_WORD(seccnt), secname);
490 		Elf_shdr(0, osabi, ehdr->e_machine, shdr);
491 	}
492 }
493 
494 /*
495  * Obtain a specified Phdr entry.
496  */
497 static Phdr *
498 getphdr(Word phnum, Word *type_arr, Word type_cnt, const char *file, Elf *elf)
499 {
500 	Word	cnt, tcnt;
501 	Phdr	*phdr;
502 
503 	if ((phdr = elf_getphdr(elf)) == NULL) {
504 		failure(file, MSG_ORIG(MSG_ELF_GETPHDR));
505 		return (NULL);
506 	}
507 
508 	for (cnt = 0; cnt < phnum; phdr++, cnt++) {
509 		for (tcnt = 0; tcnt < type_cnt; tcnt++) {
510 			if (phdr->p_type == type_arr[tcnt])
511 				return (phdr);
512 		}
513 	}
514 	return (NULL);
515 }
516 
517 /*
518  * Display the contents of GNU/amd64 .eh_frame and .eh_frame_hdr
519  * sections.
520  *
521  * entry:
522  *	cache - Cache of all section headers
523  *	shndx - Index of .eh_frame or .eh_frame_hdr section to be displayed
524  *	uphdr - NULL, or unwind program header associated with
525  *		the .eh_frame_hdr section.
526  *	ehdr - ELF header for file
527  *	eh_state - Data used across calls to this routine. The
528  *		caller should zero it before the first call, and
529  *		pass it on every call.
530  *	osabi - OSABI to use in displaying information
531  *	file - Name of file
532  *	flags - Command line option flags
533  */
534 static void
535 unwind_eh_frame(Cache *cache, Word shndx, Phdr *uphdr, Ehdr *ehdr,
536     gnu_eh_state_t *eh_state, uchar_t osabi, const char *file, uint_t flags)
537 {
538 #if	defined(_ELF64)
539 #define	MSG_UNW_BINSRTAB2	MSG_UNW_BINSRTAB2_64
540 #define	MSG_UNW_BINSRTABENT	MSG_UNW_BINSRTABENT_64
541 #else
542 #define	MSG_UNW_BINSRTAB2	MSG_UNW_BINSRTAB2_32
543 #define	MSG_UNW_BINSRTABENT	MSG_UNW_BINSRTABENT_32
544 #endif
545 
546 	Cache			*_cache = &cache[shndx];
547 	Shdr			*shdr = _cache->c_shdr;
548 	uchar_t			*data = (uchar_t *)(_cache->c_data->d_buf);
549 	size_t			datasize = _cache->c_data->d_size;
550 	Conv_dwarf_ehe_buf_t	dwarf_ehe_buf;
551 	uint64_t		ndx, frame_ptr, fde_cnt, tabndx;
552 	uint_t			vers, frame_ptr_enc, fde_cnt_enc, table_enc;
553 	uint64_t		initloc, initloc0;
554 
555 
556 	/*
557 	 * Is this a .eh_frame_hdr?
558 	 */
559 	if ((uphdr && (shdr->sh_addr == uphdr->p_vaddr)) ||
560 	    (strncmp(_cache->c_name, MSG_ORIG(MSG_SCN_FRMHDR),
561 	    MSG_SCN_FRMHDR_SIZE) == 0)) {
562 		/*
563 		 * There can only be a single .eh_frame_hdr.
564 		 * Flag duplicates.
565 		 */
566 		if (++eh_state->hdr_cnt > 1)
567 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_MULTEHFRMHDR),
568 			    file, EC_WORD(shndx), _cache->c_name);
569 
570 		dbg_print(0, MSG_ORIG(MSG_UNW_FRMHDR));
571 		ndx = 0;
572 
573 		vers = data[ndx++];
574 		frame_ptr_enc = data[ndx++];
575 		fde_cnt_enc = data[ndx++];
576 		table_enc = data[ndx++];
577 
578 		dbg_print(0, MSG_ORIG(MSG_UNW_FRMVERS), vers);
579 
580 		frame_ptr = dwarf_ehe_extract(data, &ndx, frame_ptr_enc,
581 		    ehdr->e_ident, shdr->sh_addr, ndx);
582 		if (eh_state->hdr_cnt == 1) {
583 			eh_state->hdr_ndx = shndx;
584 			eh_state->frame_ptr = frame_ptr;
585 		}
586 
587 		dbg_print(0, MSG_ORIG(MSG_UNW_FRPTRENC),
588 		    conv_dwarf_ehe(frame_ptr_enc, &dwarf_ehe_buf),
589 		    EC_XWORD(frame_ptr));
590 
591 		fde_cnt = dwarf_ehe_extract(data, &ndx, fde_cnt_enc,
592 		    ehdr->e_ident, shdr->sh_addr, ndx);
593 
594 		dbg_print(0, MSG_ORIG(MSG_UNW_FDCNENC),
595 		    conv_dwarf_ehe(fde_cnt_enc, &dwarf_ehe_buf),
596 		    EC_XWORD(fde_cnt));
597 		dbg_print(0, MSG_ORIG(MSG_UNW_TABENC),
598 		    conv_dwarf_ehe(table_enc, &dwarf_ehe_buf));
599 		dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTAB1));
600 		dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTAB2));
601 
602 		for (tabndx = 0; tabndx < fde_cnt; tabndx++) {
603 			initloc = dwarf_ehe_extract(data, &ndx, table_enc,
604 			    ehdr->e_ident, shdr->sh_addr, ndx);
605 			/*LINTED:E_VAR_USED_BEFORE_SET*/
606 			if ((tabndx != 0) && (initloc0 > initloc))
607 				(void) fprintf(stderr,
608 				    MSG_INTL(MSG_ERR_BADSORT), file,
609 				    _cache->c_name, EC_WORD(tabndx));
610 			dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTABENT),
611 			    EC_XWORD(initloc),
612 			    EC_XWORD(dwarf_ehe_extract(data, &ndx,
613 			    table_enc, ehdr->e_ident, shdr->sh_addr,
614 			    ndx)));
615 			initloc0 = initloc;
616 		}
617 	} else {		/* Display the .eh_frame section */
618 		eh_state->frame_cnt++;
619 		if (eh_state->frame_cnt == 1) {
620 			eh_state->frame_ndx = shndx;
621 			eh_state->frame_base = shdr->sh_addr;
622 		} else if ((eh_state->frame_cnt >  1) &&
623 		    (ehdr->e_type != ET_REL)) {
624 			Conv_inv_buf_t	inv_buf;
625 
626 			(void) fprintf(stderr, MSG_INTL(MSG_WARN_MULTEHFRM),
627 			    file, EC_WORD(shndx), _cache->c_name,
628 			    conv_ehdr_type(osabi, ehdr->e_type, 0, &inv_buf));
629 		}
630 		dump_eh_frame(data, datasize, shdr->sh_addr,
631 		    ehdr->e_machine, ehdr->e_ident);
632 	}
633 
634 	/*
635 	 * If we've seen the .eh_frame_hdr and the first .eh_frame section,
636 	 * compare the header frame_ptr to the address of the actual frame
637 	 * section to ensure the link-editor got this right.  Note, this
638 	 * diagnostic is only produced when unwind information is explicitly
639 	 * asked for, as shared objects built with an older ld(1) may reveal
640 	 * this inconsistency.  Although an inconsistency, it doesn't seem to
641 	 * have any adverse effect on existing tools.
642 	 */
643 	if (((flags & FLG_MASK_SHOW) != FLG_MASK_SHOW) &&
644 	    (eh_state->hdr_cnt > 0) && (eh_state->frame_cnt > 0) &&
645 	    (eh_state->frame_ptr != eh_state->frame_base))
646 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADEHFRMPTR),
647 		    file, EC_WORD(eh_state->hdr_ndx),
648 		    cache[eh_state->hdr_ndx].c_name,
649 		    EC_XWORD(eh_state->frame_ptr),
650 		    EC_WORD(eh_state->frame_ndx),
651 		    cache[eh_state->frame_ndx].c_name,
652 		    EC_XWORD(eh_state->frame_base));
653 #undef MSG_UNW_BINSRTAB2
654 #undef MSG_UNW_BINSRTABENT
655 }
656 
657 /*
658  * Convert a self relative pointer into an address. A self relative
659  * pointer adds the address where the pointer resides to the offset
660  * contained in the pointer. The benefit is that the value of the
661  * pointer does not require relocation.
662  *
663  * entry:
664  *	base_addr - Address of the pointer.
665  *	delta - Offset relative to base_addr giving desired address
666  *
667  * exit:
668  *	The computed address is returned.
669  *
670  * note:
671  *	base_addr is an unsigned value, while ret_addr is signed. This routine
672  *	used explicit testing and casting to explicitly control type
673  *	conversion, and ensure that we handle the maximum possible range.
674  */
675 static Addr
676 srelptr(Addr base_addr, PTRDIFF_T delta)
677 {
678 	if (delta < 0)
679 		return (base_addr - (Addr) (-delta));
680 
681 	return (base_addr + (Addr) delta);
682 }
683 
684 /*
685  * Byte swap a PTRDIFF_T value.
686  */
687 static PTRDIFF_T
688 swap_ptrdiff(PTRDIFF_T value)
689 {
690 	PTRDIFF_T r;
691 	uchar_t	*dst = (uchar_t *)&r;
692 	uchar_t	*src = (uchar_t *)&value;
693 
694 	UL_ASSIGN_BSWAP_XWORD(dst, src);
695 	return (r);
696 }
697 
698 /*
699  * Display exception_range_entry items from the .exception_ranges section
700  * of a Sun C++ object.
701  */
702 static void
703 unwind_exception_ranges(Cache *_cache, const char *file, int do_swap)
704 {
705 	/*
706 	 * Translate a PTRDIFF_T self-relative address field of
707 	 * an exception_range_entry struct into an address.
708 	 *
709 	 * entry:
710 	 *	exc_addr - Address of base of exception_range_entry struct
711 	 *	cur_ent - Pointer to data in the struct to be translated
712 	 *
713 	 *	_f - Field of struct to be translated
714 	 */
715 #define	SRELPTR(_f) \
716 	srelptr(exc_addr + offsetof(exception_range_entry, _f), cur_ent->_f)
717 
718 #if	defined(_ELF64)
719 #define	MSG_EXR_TITLE	MSG_EXR_TITLE_64
720 #define	MSG_EXR_ENTRY	MSG_EXR_ENTRY_64
721 #else
722 #define	MSG_EXR_TITLE	MSG_EXR_TITLE_32
723 #define	MSG_EXR_ENTRY	MSG_EXR_ENTRY_32
724 #endif
725 
726 	exception_range_entry	scratch, *ent, *cur_ent = &scratch;
727 	char			index[MAXNDXSIZE];
728 	Word			i, nelts;
729 	Addr			addr, addr0, offset = 0;
730 	Addr			exc_addr = _cache->c_shdr->sh_addr;
731 
732 	dbg_print(0, MSG_INTL(MSG_EXR_TITLE));
733 	ent = (exception_range_entry *)(_cache->c_data->d_buf);
734 	nelts = _cache->c_data->d_size / sizeof (exception_range_entry);
735 
736 	for (i = 0; i < nelts; i++, ent++) {
737 		if (do_swap) {
738 			/*
739 			 * Copy byte swapped values into the scratch buffer.
740 			 * The reserved field is not used, so we skip it.
741 			 */
742 			scratch.ret_addr = swap_ptrdiff(ent->ret_addr);
743 			scratch.length = BSWAP_XWORD(ent->length);
744 			scratch.handler_addr = swap_ptrdiff(ent->handler_addr);
745 			scratch.type_block = swap_ptrdiff(ent->type_block);
746 		} else {
747 			cur_ent = ent;
748 		}
749 
750 		/*
751 		 * The table is required to be sorted by the address
752 		 * derived from ret_addr, to allow binary searching. Ensure
753 		 * that addresses grow monotonically.
754 		 */
755 		addr = SRELPTR(ret_addr);
756 		/*LINTED:E_VAR_USED_BEFORE_SET*/
757 		if ((i != 0) && (addr0 > addr))
758 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSORT),
759 			    file, _cache->c_name, EC_WORD(i));
760 
761 		(void) snprintf(index, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX),
762 		    EC_XWORD(i));
763 		dbg_print(0, MSG_INTL(MSG_EXR_ENTRY), index, EC_ADDR(offset),
764 		    EC_ADDR(addr), EC_ADDR(cur_ent->length),
765 		    EC_ADDR(SRELPTR(handler_addr)),
766 		    EC_ADDR(SRELPTR(type_block)));
767 
768 		addr0 = addr;
769 		exc_addr += sizeof (exception_range_entry);
770 		offset += sizeof (exception_range_entry);
771 	}
772 
773 #undef SRELPTR
774 #undef MSG_EXR_TITLE
775 #undef MSG_EXR_ENTRY
776 }
777 
778 /*
779  * Display information from unwind/exception sections:
780  *
781  * -	GNU/amd64 .eh_frame and .eh_frame_hdr
782  * -	Sun C++ .exception_ranges
783  *
784  */
785 static void
786 unwind(Cache *cache, Word shnum, Word phnum, Ehdr *ehdr, uchar_t osabi,
787     const char *file, Elf *elf, uint_t flags)
788 {
789 	static Word phdr_types[] = { PT_SUNW_UNWIND, PT_SUNW_EH_FRAME };
790 
791 	Word			cnt;
792 	Phdr			*uphdr = NULL;
793 	gnu_eh_state_t		eh_state;
794 
795 	/*
796 	 * Historical background: .eh_frame and .eh_frame_hdr sections
797 	 * come from the GNU compilers (particularly C++), and are used
798 	 * under all architectures. Their format is based on DWARF. When
799 	 * the amd64 ABI was defined, these sections were adopted wholesale
800 	 * from the existing practice.
801 	 *
802 	 * When amd64 support was added to Solaris, support for these
803 	 * sections was added, using the SHT_AMD64_UNWIND section type
804 	 * to identify them. At first, we ignored them in objects for
805 	 * non-amd64 targets, but later broadened our support to include
806 	 * other architectures in order to better support gcc-generated
807 	 * objects.
808 	 *
809 	 * .exception_ranges implement the same basic concepts, but
810 	 * were invented at Sun for the Sun C++ compiler.
811 	 *
812 	 * We match these sections by name, rather than section type,
813 	 * because they can come in as either SHT_AMD64_UNWIND, or as
814 	 * SHT_PROGBITS, and because the type isn't enough to determine
815 	 * how they should be interpreted.
816 	 */
817 	/* Find the program header for .eh_frame_hdr if present */
818 	if (phnum)
819 		uphdr = getphdr(phnum, phdr_types,
820 		    sizeof (phdr_types) / sizeof (*phdr_types), file, elf);
821 
822 	/*
823 	 * eh_state is used to retain data used by unwind_eh_frame()
824 	 * across calls.
825 	 */
826 	bzero(&eh_state, sizeof (eh_state));
827 
828 	for (cnt = 1; cnt < shnum; cnt++) {
829 		Cache		*_cache = &cache[cnt];
830 		Shdr		*shdr = _cache->c_shdr;
831 		int		is_exrange;
832 
833 		/*
834 		 * Skip sections of the wrong type. On amd64, they
835 		 * can be SHT_AMD64_UNWIND. On all platforms, they
836 		 * can be SHT_PROGBITS (including amd64, if using
837 		 * the GNU compilers).
838 		 *
839 		 * Skip anything other than these two types. The name
840 		 * test below will thin out the SHT_PROGBITS that don't apply.
841 		 */
842 		if ((shdr->sh_type != SHT_PROGBITS) &&
843 		    (shdr->sh_type != SHT_AMD64_UNWIND))
844 			continue;
845 
846 		/*
847 		 * Only sections with certain well known names are of interest.
848 		 * These are:
849 		 *
850 		 *	.eh_frame - amd64/GNU-compiler unwind sections
851 		 *	.eh_frame_hdr - Sorted table referencing .eh_frame
852 		 *	.exception_ranges - Sun C++ unwind sections
853 		 *
854 		 * We do a prefix comparison, allowing for naming conventions
855 		 * like .eh_frame.foo, hence the use of strncmp() rather than
856 		 * strcmp(). This means that we only really need to test for
857 		 * .eh_frame, as it's a prefix of .eh_frame_hdr.
858 		 */
859 		is_exrange =  strncmp(_cache->c_name,
860 		    MSG_ORIG(MSG_SCN_EXRANGE), MSG_SCN_EXRANGE_SIZE) == 0;
861 		if ((strncmp(_cache->c_name, MSG_ORIG(MSG_SCN_FRM),
862 		    MSG_SCN_FRM_SIZE) != 0) && !is_exrange)
863 			continue;
864 
865 		if (!match(MATCH_F_ALL, _cache->c_name, cnt, shdr->sh_type))
866 			continue;
867 
868 		if (_cache->c_data == NULL)
869 			continue;
870 
871 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
872 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_UNWIND), _cache->c_name);
873 
874 		if (is_exrange)
875 			unwind_exception_ranges(_cache, file,
876 			    _elf_sys_encoding() != ehdr->e_ident[EI_DATA]);
877 		else
878 			unwind_eh_frame(cache, cnt, uphdr, ehdr, &eh_state,
879 			    osabi, file, flags);
880 	}
881 }
882 
883 /*
884  * Initialize a symbol table state structure
885  *
886  * entry:
887  *	state - State structure to be initialized
888  *	cache - Cache of all section headers
889  *	shnum - # of sections in cache
890  *	secndx - Index of symbol table section
891  *	ehdr - ELF header for file
892  *	versym - Information about versym section
893  *	file - Name of file
894  *	flags - Command line option flags
895  */
896 static int
897 init_symtbl_state(SYMTBL_STATE *state, Cache *cache, Word shnum, Word secndx,
898     Ehdr *ehdr, uchar_t osabi, VERSYM_STATE *versym, const char *file,
899     uint_t flags)
900 {
901 	Shdr *shdr;
902 
903 	state->file = file;
904 	state->ehdr = ehdr;
905 	state->cache = cache;
906 	state->osabi = osabi;
907 	state->shnum = shnum;
908 	state->seccache = &cache[secndx];
909 	state->secndx = secndx;
910 	state->secname = state->seccache->c_name;
911 	state->flags = flags;
912 	state->shxndx.checked = 0;
913 	state->shxndx.data = NULL;
914 	state->shxndx.n = 0;
915 
916 	shdr = state->seccache->c_shdr;
917 
918 	/*
919 	 * Check the symbol data and per-item size.
920 	 */
921 	if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
922 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
923 		    file, state->secname);
924 		return (0);
925 	}
926 	if (state->seccache->c_data == NULL)
927 		return (0);
928 
929 	/* LINTED */
930 	state->symn = (Word)(shdr->sh_size / shdr->sh_entsize);
931 	state->sym = (Sym *)state->seccache->c_data->d_buf;
932 
933 	/*
934 	 * Check associated string table section.
935 	 */
936 	if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
937 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
938 		    file, state->secname, EC_WORD(shdr->sh_link));
939 		return (0);
940 	}
941 
942 	/*
943 	 * Determine if there is a associated Versym section
944 	 * with this Symbol Table.
945 	 */
946 	if (versym && versym->cache &&
947 	    (versym->cache->c_shdr->sh_link == state->secndx))
948 		state->versym = versym;
949 	else
950 		state->versym = NULL;
951 
952 
953 	return (1);
954 }
955 
956 /*
957  * Determine the extended section index used for symbol tables entries.
958  */
959 static void
960 symbols_getxindex(SYMTBL_STATE *state)
961 {
962 	uint_t	symn;
963 	Word	symcnt;
964 
965 	state->shxndx.checked = 1;   /* Note that we've been called */
966 	for (symcnt = 1; symcnt < state->shnum; symcnt++) {
967 		Cache	*_cache = &state->cache[symcnt];
968 		Shdr	*shdr = _cache->c_shdr;
969 
970 		if ((shdr->sh_type != SHT_SYMTAB_SHNDX) ||
971 		    (shdr->sh_link != state->secndx))
972 			continue;
973 
974 		if ((shdr->sh_entsize) &&
975 		    /* LINTED */
976 		    ((symn = (uint_t)(shdr->sh_size / shdr->sh_entsize)) == 0))
977 			continue;
978 
979 		if (_cache->c_data == NULL)
980 			continue;
981 
982 		state->shxndx.data = _cache->c_data->d_buf;
983 		state->shxndx.n = symn;
984 		return;
985 	}
986 }
987 
988 /*
989  * Produce a line of output for the given symbol
990  *
991  * entry:
992  *	state - Symbol table state
993  *	symndx - Index of symbol within the table
994  *	info - Value of st_info (indicates local/global range)
995  *	symndx_disp - Index to display. This may not be the same
996  *		as symndx if the display is relative to the logical
997  *		combination of the SUNW_ldynsym/dynsym tables.
998  *	sym - Symbol to display
999  */
1000 static void
1001 output_symbol(SYMTBL_STATE *state, Word symndx, Word info, Word disp_symndx,
1002     Sym *sym)
1003 {
1004 	/*
1005 	 * Symbol types for which we check that the specified
1006 	 * address/size land inside the target section.
1007 	 */
1008 	static const int addr_symtype[] = {
1009 		0,			/* STT_NOTYPE */
1010 		1,			/* STT_OBJECT */
1011 		1,			/* STT_FUNC */
1012 		0,			/* STT_SECTION */
1013 		0,			/* STT_FILE */
1014 		1,			/* STT_COMMON */
1015 		0,			/* STT_TLS */
1016 		0,			/* 7 */
1017 		0,			/* 8 */
1018 		0,			/* 9 */
1019 		0,			/* 10 */
1020 		0,			/* 11 */
1021 		0,			/* 12 */
1022 		0,			/* STT_SPARC_REGISTER */
1023 		0,			/* 14 */
1024 		0,			/* 15 */
1025 	};
1026 #if STT_NUM != (STT_TLS + 1)
1027 #error "STT_NUM has grown. Update addr_symtype[]"
1028 #endif
1029 
1030 	char		index[MAXNDXSIZE];
1031 	const char	*symname, *sec;
1032 	Versym		verndx;
1033 	int		gnuver;
1034 	uchar_t		type;
1035 	Shdr		*tshdr;
1036 	Word		shndx;
1037 	Conv_inv_buf_t	inv_buf;
1038 
1039 	/* Ensure symbol index is in range */
1040 	if (symndx >= state->symn) {
1041 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSYMNDX),
1042 		    state->file, state->secname, EC_WORD(symndx));
1043 		return;
1044 	}
1045 
1046 	/*
1047 	 * If we are using extended symbol indexes, find the
1048 	 * corresponding SHN_SYMTAB_SHNDX table.
1049 	 */
1050 	if ((sym->st_shndx == SHN_XINDEX) && (state->shxndx.checked == 0))
1051 		symbols_getxindex(state);
1052 
1053 	/* LINTED */
1054 	symname = string(state->seccache, symndx,
1055 	    &state->cache[state->seccache->c_shdr->sh_link], state->file,
1056 	    sym->st_name);
1057 
1058 	tshdr = NULL;
1059 	sec = NULL;
1060 
1061 	if (state->ehdr->e_type == ET_CORE) {
1062 		sec = (char *)MSG_INTL(MSG_STR_UNKNOWN);
1063 	} else if (state->flags & FLG_CTL_FAKESHDR) {
1064 		/*
1065 		 * If we are using fake section headers derived from
1066 		 * the program headers, then the section indexes
1067 		 * in the symbols do not correspond to these headers.
1068 		 * The section names are not available, so all we can
1069 		 * do is to display them in numeric form.
1070 		 */
1071 		sec = conv_sym_shndx(state->osabi, state->ehdr->e_machine,
1072 		    sym->st_shndx, CONV_FMT_DECIMAL, &inv_buf);
1073 	} else if ((sym->st_shndx < SHN_LORESERVE) &&
1074 	    (sym->st_shndx < state->shnum)) {
1075 		shndx = sym->st_shndx;
1076 		tshdr = state->cache[shndx].c_shdr;
1077 		sec = state->cache[shndx].c_name;
1078 	} else if (sym->st_shndx == SHN_XINDEX) {
1079 		if (state->shxndx.data) {
1080 			Word	_shxndx;
1081 
1082 			if (symndx > state->shxndx.n) {
1083 				(void) fprintf(stderr,
1084 				    MSG_INTL(MSG_ERR_BADSYMXINDEX1),
1085 				    state->file, state->secname,
1086 				    EC_WORD(symndx));
1087 			} else if ((_shxndx =
1088 			    state->shxndx.data[symndx]) > state->shnum) {
1089 				(void) fprintf(stderr,
1090 				    MSG_INTL(MSG_ERR_BADSYMXINDEX2),
1091 				    state->file, state->secname,
1092 				    EC_WORD(symndx), EC_WORD(_shxndx));
1093 			} else {
1094 				shndx = _shxndx;
1095 				tshdr = state->cache[shndx].c_shdr;
1096 				sec = state->cache[shndx].c_name;
1097 			}
1098 		} else {
1099 			(void) fprintf(stderr,
1100 			    MSG_INTL(MSG_ERR_BADSYMXINDEX3),
1101 			    state->file, state->secname, EC_WORD(symndx));
1102 		}
1103 	} else if ((sym->st_shndx < SHN_LORESERVE) &&
1104 	    (sym->st_shndx >= state->shnum)) {
1105 		(void) fprintf(stderr,
1106 		    MSG_INTL(MSG_ERR_BADSYM5), state->file,
1107 		    state->secname, EC_WORD(symndx),
1108 		    demangle(symname, state->flags), sym->st_shndx);
1109 	}
1110 
1111 	/*
1112 	 * If versioning is available display the
1113 	 * version index. If not, then use 0.
1114 	 */
1115 	if (state->versym) {
1116 		Versym test_verndx;
1117 
1118 		verndx = test_verndx = state->versym->data[symndx];
1119 		gnuver = state->versym->gnu_full;
1120 
1121 		/*
1122 		 * Check to see if this is a defined symbol with a
1123 		 * version index that is outside the valid range for
1124 		 * the file. The interpretation of this depends on
1125 		 * the style of versioning used by the object.
1126 		 *
1127 		 * Versions >= VER_NDX_LORESERVE have special meanings,
1128 		 * and are exempt from this checking.
1129 		 *
1130 		 * GNU style version indexes use the top bit of the
1131 		 * 16-bit index value (0x8000) as the "hidden bit".
1132 		 * We must mask off this bit in order to compare
1133 		 * the version against the maximum value.
1134 		 */
1135 		if (gnuver)
1136 			test_verndx &= ~0x8000;
1137 
1138 		if ((test_verndx > state->versym->max_verndx) &&
1139 		    (verndx < VER_NDX_LORESERVE))
1140 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADVER),
1141 			    state->file, state->secname, EC_WORD(symndx),
1142 			    EC_HALF(test_verndx), state->versym->max_verndx);
1143 	} else {
1144 		verndx = 0;
1145 		gnuver = 0;
1146 	}
1147 
1148 	/*
1149 	 * Error checking for TLS.
1150 	 */
1151 	type = ELF_ST_TYPE(sym->st_info);
1152 	if (type == STT_TLS) {
1153 		if (tshdr &&
1154 		    (sym->st_shndx != SHN_UNDEF) &&
1155 		    ((tshdr->sh_flags & SHF_TLS) == 0)) {
1156 			(void) fprintf(stderr,
1157 			    MSG_INTL(MSG_ERR_BADSYM3), state->file,
1158 			    state->secname, EC_WORD(symndx),
1159 			    demangle(symname, state->flags));
1160 		}
1161 	} else if ((type != STT_SECTION) && sym->st_size &&
1162 	    tshdr && (tshdr->sh_flags & SHF_TLS)) {
1163 		(void) fprintf(stderr,
1164 		    MSG_INTL(MSG_ERR_BADSYM4), state->file,
1165 		    state->secname, EC_WORD(symndx),
1166 		    demangle(symname, state->flags));
1167 	}
1168 
1169 	/*
1170 	 * If a symbol with non-zero size has a type that
1171 	 * specifies an address, then make sure the location
1172 	 * it references is actually contained within the
1173 	 * section.  UNDEF symbols don't count in this case,
1174 	 * so we ignore them.
1175 	 *
1176 	 * The meaning of the st_value field in a symbol
1177 	 * depends on the type of object. For a relocatable
1178 	 * object, it is the offset within the section.
1179 	 * For sharable objects, it is the offset relative to
1180 	 * the base of the object, and for other types, it is
1181 	 * the virtual address. To get an offset within the
1182 	 * section for non-ET_REL files, we subtract the
1183 	 * base address of the section.
1184 	 */
1185 	if (addr_symtype[type] && (sym->st_size > 0) &&
1186 	    (sym->st_shndx != SHN_UNDEF) && ((sym->st_shndx < SHN_LORESERVE) ||
1187 	    (sym->st_shndx == SHN_XINDEX)) && (tshdr != NULL)) {
1188 		Word v = sym->st_value;
1189 			if (state->ehdr->e_type != ET_REL)
1190 				v -= tshdr->sh_addr;
1191 		if (((v + sym->st_size) > tshdr->sh_size)) {
1192 			(void) fprintf(stderr,
1193 			    MSG_INTL(MSG_ERR_BADSYM6), state->file,
1194 			    state->secname, EC_WORD(symndx),
1195 			    demangle(symname, state->flags),
1196 			    EC_WORD(shndx), EC_XWORD(tshdr->sh_size),
1197 			    EC_XWORD(sym->st_value), EC_XWORD(sym->st_size));
1198 		}
1199 	}
1200 
1201 	/*
1202 	 * A typical symbol table uses the sh_info field to indicate one greater
1203 	 * than the symbol table index of the last local symbol, STB_LOCAL.
1204 	 * Therefore, symbol indexes less than sh_info should have local
1205 	 * binding.  Symbol indexes greater than, or equal to sh_info, should
1206 	 * have global binding.  Note, we exclude UNDEF/NOTY symbols with zero
1207 	 * value and size, as these symbols may be the result of an mcs(1)
1208 	 * section deletion.
1209 	 */
1210 	if (info) {
1211 		uchar_t	bind = ELF_ST_BIND(sym->st_info);
1212 
1213 		if ((symndx < info) && (bind != STB_LOCAL)) {
1214 			(void) fprintf(stderr,
1215 			    MSG_INTL(MSG_ERR_BADSYM7), state->file,
1216 			    state->secname, EC_WORD(symndx),
1217 			    demangle(symname, state->flags), EC_XWORD(info));
1218 
1219 		} else if ((symndx >= info) && (bind == STB_LOCAL) &&
1220 		    ((sym->st_shndx != SHN_UNDEF) ||
1221 		    (ELF_ST_TYPE(sym->st_info) != STT_NOTYPE) ||
1222 		    (sym->st_size != 0) || (sym->st_value != 0))) {
1223 			(void) fprintf(stderr,
1224 			    MSG_INTL(MSG_ERR_BADSYM8), state->file,
1225 			    state->secname, EC_WORD(symndx),
1226 			    demangle(symname, state->flags), EC_XWORD(info));
1227 		}
1228 	}
1229 
1230 	(void) snprintf(index, MAXNDXSIZE,
1231 	    MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(disp_symndx));
1232 	Elf_syms_table_entry(0, ELF_DBG_ELFDUMP, index, state->osabi,
1233 	    state->ehdr->e_machine, sym, verndx, gnuver, sec, symname);
1234 }
1235 
1236 /*
1237  * Process a SHT_SUNW_cap capabilities section.
1238  */
1239 static int
1240 cap_section(const char *file, Cache *cache, Word shnum, Cache *ccache,
1241     uchar_t osabi, Ehdr *ehdr, uint_t flags)
1242 {
1243 	SYMTBL_STATE	state;
1244 	Word		cnum, capnum, nulls, symcaps;
1245 	int		descapndx, objcap, title;
1246 	Cap		*cap = (Cap *)ccache->c_data->d_buf;
1247 	Shdr		*cishdr, *cshdr = ccache->c_shdr;
1248 	Cache		*cicache, *strcache;
1249 	Capinfo		*capinfo = NULL;
1250 	Word		capinfonum;
1251 	const char	*strs = NULL;
1252 	size_t		strs_size;
1253 
1254 	if ((cshdr->sh_entsize == 0) || (cshdr->sh_size == 0)) {
1255 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
1256 		    file, ccache->c_name);
1257 		return (0);
1258 	}
1259 
1260 	/*
1261 	 * If this capabilities section is associated with symbols, then the
1262 	 * sh_link field points to the associated capabilities information
1263 	 * section.  The sh_link field of the capabilities information section
1264 	 * points to the associated symbol table.
1265 	 */
1266 	if (cshdr->sh_link) {
1267 		Cache	*scache;
1268 		Shdr	*sshdr;
1269 
1270 		/*
1271 		 * Validate that the sh_link field points to a capabilities
1272 		 * information section.
1273 		 */
1274 		if (cshdr->sh_link >= shnum) {
1275 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
1276 			    file, ccache->c_name, EC_WORD(cshdr->sh_link));
1277 			return (0);
1278 		}
1279 
1280 		cicache = &cache[cshdr->sh_link];
1281 		cishdr = cicache->c_shdr;
1282 
1283 		if (cishdr->sh_type != SHT_SUNW_capinfo) {
1284 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_INVCAP),
1285 			    file, ccache->c_name, EC_WORD(cshdr->sh_link));
1286 			return (0);
1287 		}
1288 
1289 		capinfo = cicache->c_data->d_buf;
1290 		capinfonum = (Word)(cishdr->sh_size / cishdr->sh_entsize);
1291 
1292 		/*
1293 		 * Validate that the sh_link field of the capabilities
1294 		 * information section points to a valid symbol table.
1295 		 */
1296 		if ((cishdr->sh_link == 0) || (cishdr->sh_link >= shnum)) {
1297 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
1298 			    file, cicache->c_name, EC_WORD(cishdr->sh_link));
1299 			return (0);
1300 		}
1301 		scache = &cache[cishdr->sh_link];
1302 		sshdr = scache->c_shdr;
1303 
1304 		if ((sshdr->sh_type != SHT_SYMTAB) &&
1305 		    (sshdr->sh_type != SHT_DYNSYM)) {
1306 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_INVCAPINFO1),
1307 			    file, cicache->c_name, EC_WORD(cishdr->sh_link));
1308 			return (0);
1309 		}
1310 
1311 		if (!init_symtbl_state(&state, cache, shnum,
1312 		    cishdr->sh_link, ehdr, osabi, NULL, file, flags))
1313 			return (0);
1314 	}
1315 
1316 	/*
1317 	 * If this capabilities section contains capability string entries,
1318 	 * then determine the associated string table.  Capabilities entries
1319 	 * that define names require that the capability section indicate
1320 	 * which string table to use via sh_info.
1321 	 */
1322 	if (cshdr->sh_info) {
1323 		Shdr	*strshdr;
1324 
1325 		/*
1326 		 * Validate that the sh_info field points to a string table.
1327 		 */
1328 		if (cshdr->sh_info >= shnum) {
1329 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
1330 			    file, ccache->c_name, EC_WORD(cshdr->sh_info));
1331 			return (0);
1332 		}
1333 
1334 		strcache = &cache[cshdr->sh_info];
1335 		strshdr = strcache->c_shdr;
1336 
1337 		if (strshdr->sh_type != SHT_STRTAB) {
1338 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_INVCAP),
1339 			    file, ccache->c_name, EC_WORD(cshdr->sh_info));
1340 			return (0);
1341 		}
1342 		strs = (const char *)strcache->c_data->d_buf;
1343 		strs_size = strcache->c_data->d_size;
1344 	}
1345 
1346 	dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1347 	dbg_print(0, MSG_INTL(MSG_ELF_SCN_CAP), ccache->c_name);
1348 
1349 	capnum = (Word)(cshdr->sh_size / cshdr->sh_entsize);
1350 
1351 	nulls = symcaps = 0;
1352 	objcap = title = 1;
1353 	descapndx = -1;
1354 
1355 	/*
1356 	 * Traverse the capabilities section printing each capability group.
1357 	 * The first capabilities group defines any object capabilities.  Any
1358 	 * following groups define symbol capabilities.  In the case where no
1359 	 * object capabilities exist, but symbol capabilities do, a single
1360 	 * CA_SUNW_NULL terminator for the object capabilities exists.
1361 	 */
1362 	for (cnum = 0; cnum < capnum; cap++, cnum++) {
1363 		if (cap->c_tag == CA_SUNW_NULL) {
1364 			/*
1365 			 * A CA_SUNW_NULL tag terminates a capabilities group.
1366 			 * If the first capabilities tag is CA_SUNW_NULL, then
1367 			 * no object capabilities exist.
1368 			 */
1369 			if ((nulls++ == 0) && (cnum == 0))
1370 				objcap = 0;
1371 			title = 1;
1372 		} else {
1373 			if (title) {
1374 				if (nulls == 0) {
1375 					/*
1376 					 * If this capabilities group represents
1377 					 * the object capabilities (i.e., no
1378 					 * CA_SUNW_NULL tag has been processed
1379 					 * yet), then display an object
1380 					 * capabilities title.
1381 					 */
1382 					dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1383 					dbg_print(0,
1384 					    MSG_INTL(MSG_OBJ_CAP_TITLE));
1385 				} else {
1386 					/*
1387 					 * If this is a symbols capabilities
1388 					 * group (i.e., a CA_SUNW_NULL tag has
1389 					 * already be found that terminates
1390 					 * the object capabilities group), then
1391 					 * display a symbol capabilities title,
1392 					 * and retain this capabilities index
1393 					 * for later processing.
1394 					 */
1395 					dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1396 					dbg_print(0,
1397 					    MSG_INTL(MSG_SYM_CAP_TITLE));
1398 					descapndx = cnum;
1399 				}
1400 				Elf_cap_title(0);
1401 				title = 0;
1402 			}
1403 
1404 			/*
1405 			 * Print the capabilities data.
1406 			 *
1407 			 * Note that CA_SUNW_PLAT, CA_SUNW_MACH and CA_SUNW_ID
1408 			 * entries require a string table, which should have
1409 			 * already been established.
1410 			 */
1411 			if ((strs == NULL) && ((cap->c_tag == CA_SUNW_PLAT) ||
1412 			    (cap->c_tag == CA_SUNW_MACH) ||
1413 			    (cap->c_tag == CA_SUNW_ID))) {
1414 				(void) fprintf(stderr,
1415 				    MSG_INTL(MSG_WARN_INVCAP4), file,
1416 				    EC_WORD(elf_ndxscn(ccache->c_scn)),
1417 				    ccache->c_name, EC_WORD(cshdr->sh_info));
1418 			}
1419 			Elf_cap_entry(0, cap, cnum, strs, strs_size,
1420 			    ehdr->e_machine);
1421 		}
1422 
1423 		/*
1424 		 * If this CA_SUNW_NULL tag terminates a symbol capabilities
1425 		 * group, determine the associated symbols.
1426 		 */
1427 		if ((cap->c_tag == CA_SUNW_NULL) && (nulls > 1) &&
1428 		    (descapndx != -1)) {
1429 			Capinfo	*cip;
1430 			Word	inum;
1431 
1432 			symcaps++;
1433 
1434 			/*
1435 			 * Make sure we've discovered a SHT_SUNW_capinfo table.
1436 			 */
1437 			if ((cip = capinfo) == NULL) {
1438 				(void) fprintf(stderr,
1439 				    MSG_INTL(MSG_ERR_INVCAP), file,
1440 				    ccache->c_name, EC_WORD(cshdr->sh_link));
1441 				return (0);
1442 			}
1443 
1444 			/*
1445 			 * Determine what symbols reference this capabilities
1446 			 * group.
1447 			 */
1448 			dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1449 			dbg_print(0, MSG_INTL(MSG_CAPINFO_ENTRIES));
1450 			Elf_syms_table_title(0, ELF_DBG_ELFDUMP);
1451 
1452 			for (inum = 1, cip++; inum < capinfonum;
1453 			    inum++, cip++) {
1454 				Word	gndx = (Word)ELF_C_GROUP(*cip);
1455 
1456 				if (gndx && (gndx == descapndx)) {
1457 					output_symbol(&state, inum, 0,
1458 					    inum, state.sym + inum);
1459 				}
1460 			}
1461 			descapndx = -1;
1462 			continue;
1463 		}
1464 
1465 		/*
1466 		 * An SF1_SUNW_ADDR32 software capability tag in a 32-bit
1467 		 * object is suspicious as it has no effect.
1468 		 */
1469 		if ((cap->c_tag == CA_SUNW_SF_1) &&
1470 		    (ehdr->e_ident[EI_CLASS] == ELFCLASS32) &&
1471 		    (cap->c_un.c_val & SF1_SUNW_ADDR32)) {
1472 			(void) fprintf(stderr, MSG_INTL(MSG_WARN_INADDR32SF1),
1473 			    file, ccache->c_name);
1474 		}
1475 	}
1476 
1477 	/*
1478 	 * If this is a dynamic object, with symbol capabilities, then a
1479 	 * .SUNW_capchain section should exist.  This section contains a chain
1480 	 * of symbol indexes for each capabilities family.  This is the list
1481 	 * that is searched by ld.so.1 to determine the best capabilities
1482 	 * candidate.
1483 	 *
1484 	 * Note, more than one capabilities lead symbol can point to the same
1485 	 * family chain.  For example, a weak/global pair of symbols can both
1486 	 * represent the same family of capabilities symbols.  Therefore, to
1487 	 * display all possible families we traverse the capabilities
1488 	 * information section looking for CAPINFO_SUNW_GLOB lead symbols.
1489 	 * From these we determine the associated capabilities chain to inspect.
1490 	 */
1491 	if (symcaps &&
1492 	    ((ehdr->e_type == ET_EXEC) || (ehdr->e_type == ET_DYN))) {
1493 		Capinfo		*cip;
1494 		Capchain	*chain;
1495 		Cache   	*chcache;
1496 		Shdr		*chshdr;
1497 		Word		chainnum, inum;
1498 
1499 		/*
1500 		 * Validate that the sh_info field of the capabilities
1501 		 * information section points to a capabilities chain section.
1502 		 */
1503 		if (cishdr->sh_info >= shnum) {
1504 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
1505 			    file, cicache->c_name, EC_WORD(cishdr->sh_info));
1506 			return (0);
1507 		}
1508 
1509 		chcache = &cache[cishdr->sh_info];
1510 		chshdr = chcache->c_shdr;
1511 
1512 		if (chshdr->sh_type != SHT_SUNW_capchain) {
1513 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_INVCAPINFO2),
1514 			    file, cicache->c_name, EC_WORD(cishdr->sh_info));
1515 			return (0);
1516 		}
1517 
1518 		chainnum = (Word)(chshdr->sh_size / chshdr->sh_entsize);
1519 		chain = (Capchain *)chcache->c_data->d_buf;
1520 
1521 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1522 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_CAPCHAIN), chcache->c_name);
1523 
1524 		/*
1525 		 * Traverse the capabilities information section looking for
1526 		 * CAPINFO_SUNW_GLOB lead capabilities symbols.
1527 		 */
1528 		cip = capinfo;
1529 		for (inum = 1, cip++; inum < capinfonum; inum++, cip++) {
1530 			const char	*name;
1531 			Sym		*sym;
1532 			Word		sndx, cndx;
1533 			Word		gndx = (Word)ELF_C_GROUP(*cip);
1534 
1535 			if ((gndx == 0) || (gndx != CAPINFO_SUNW_GLOB))
1536 				continue;
1537 
1538 			/*
1539 			 * Determine the symbol that is associated with this
1540 			 * capability information entry, and use this to
1541 			 * identify this capability family.
1542 			 */
1543 			sym = (Sym *)(state.sym + inum);
1544 			name = string(cicache, inum, strcache, file,
1545 			    sym->st_name);
1546 
1547 			dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1548 			dbg_print(0, MSG_INTL(MSG_CAPCHAIN_TITLE), name);
1549 			dbg_print(0, MSG_INTL(MSG_CAPCHAIN_ENTRY));
1550 
1551 			cndx = (Word)ELF_C_SYM(*cip);
1552 
1553 			/*
1554 			 * Traverse this families chain and identify each
1555 			 * family member.
1556 			 */
1557 			for (;;) {
1558 				char	_chain[MAXNDXSIZE], _symndx[MAXNDXSIZE];
1559 
1560 				if (cndx >= chainnum) {
1561 					(void) fprintf(stderr,
1562 					    MSG_INTL(MSG_ERR_INVCAPINFO3), file,
1563 					    cicache->c_name, EC_WORD(inum),
1564 					    EC_WORD(cndx));
1565 					break;
1566 				}
1567 				if ((sndx = chain[cndx]) == 0)
1568 					break;
1569 
1570 				/*
1571 				 * Determine this entries symbol reference.
1572 				 */
1573 				if (sndx > state.symn) {
1574 					(void) fprintf(stderr,
1575 					    MSG_INTL(MSG_ERR_CHBADSYMNDX), file,
1576 					    EC_WORD(sndx), chcache->c_name,
1577 					    EC_WORD(cndx));
1578 					name = MSG_INTL(MSG_STR_UNKNOWN);
1579 				} else {
1580 					sym = (Sym *)(state.sym + sndx);
1581 					name = string(chcache, sndx,
1582 					    strcache, file, sym->st_name);
1583 				}
1584 
1585 				/*
1586 				 * Display the family member.
1587 				 */
1588 				(void) snprintf(_chain, MAXNDXSIZE,
1589 				    MSG_ORIG(MSG_FMT_INTEGER), cndx);
1590 				(void) snprintf(_symndx, MAXNDXSIZE,
1591 				    MSG_ORIG(MSG_FMT_INDEX2), EC_WORD(sndx));
1592 				dbg_print(0, MSG_ORIG(MSG_FMT_CHAIN_INFO),
1593 				    _chain, _symndx, demangle(name, flags));
1594 
1595 				cndx++;
1596 			}
1597 		}
1598 	}
1599 	return (objcap);
1600 }
1601 
1602 /*
1603  * Print the capabilities.
1604  *
1605  * A .SUNW_cap section can contain one or more, CA_SUNW_NULL terminated,
1606  * capabilities groups.  The first group defines the object capabilities.
1607  * This group defines the minimum capability requirements of the entire
1608  * object file.  If this is a dynamic object, this group should be associated
1609  * with a PT_SUNWCAP program header.
1610  *
1611  * Additional capabilities groups define the association of individual symbols
1612  * to specific capabilities.
1613  */
1614 static void
1615 cap(const char *file, Cache *cache, Word shnum, Word phnum, Ehdr *ehdr,
1616     uchar_t osabi, Elf *elf, uint_t flags)
1617 {
1618 	Word		cnt;
1619 	Shdr		*cshdr = NULL;
1620 	Cache		*ccache;
1621 	Off		cphdr_off = 0;
1622 	Xword		cphdr_sz;
1623 
1624 	/*
1625 	 * Determine if a global capabilities header exists.
1626 	 */
1627 	if (phnum) {
1628 		Phdr	*phdr;
1629 
1630 		if ((phdr = elf_getphdr(elf)) == NULL) {
1631 			failure(file, MSG_ORIG(MSG_ELF_GETPHDR));
1632 			return;
1633 		}
1634 
1635 		for (cnt = 0; cnt < phnum; phdr++, cnt++) {
1636 			if (phdr->p_type == PT_SUNWCAP) {
1637 				cphdr_off = phdr->p_offset;
1638 				cphdr_sz = phdr->p_filesz;
1639 				break;
1640 			}
1641 		}
1642 	}
1643 
1644 	/*
1645 	 * Determine if a capabilities section exists.
1646 	 */
1647 	for (cnt = 1; cnt < shnum; cnt++) {
1648 		Cache	*_cache = &cache[cnt];
1649 		Shdr	*shdr = _cache->c_shdr;
1650 
1651 		/*
1652 		 * Process any capabilities information.
1653 		 */
1654 		if (shdr->sh_type == SHT_SUNW_cap) {
1655 			if (cap_section(file, cache, shnum, _cache, osabi,
1656 			    ehdr, flags)) {
1657 				/*
1658 				 * If this section defined an object capability
1659 				 * group, retain the section information for
1660 				 * program header validation.
1661 				 */
1662 				ccache = _cache;
1663 				cshdr = shdr;
1664 			}
1665 			continue;
1666 		}
1667 	}
1668 
1669 	if ((cshdr == NULL) && (cphdr_off == 0))
1670 		return;
1671 
1672 	if (cphdr_off && (cshdr == NULL))
1673 		(void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP1), file);
1674 
1675 	/*
1676 	 * If this object is an executable or shared object, and it provided
1677 	 * an object capabilities group, then the group should have an
1678 	 * accompanying PT_SUNWCAP program header.
1679 	 */
1680 	if (cshdr && ((ehdr->e_type == ET_EXEC) || (ehdr->e_type == ET_DYN))) {
1681 		if (cphdr_off == 0) {
1682 			(void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP2),
1683 			    file, EC_WORD(elf_ndxscn(ccache->c_scn)),
1684 			    ccache->c_name);
1685 		} else if ((cphdr_off != cshdr->sh_offset) ||
1686 		    (cphdr_sz != cshdr->sh_size)) {
1687 			(void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP3),
1688 			    file, EC_WORD(elf_ndxscn(ccache->c_scn)),
1689 			    ccache->c_name);
1690 		}
1691 	}
1692 }
1693 
1694 /*
1695  * Print the interpretor.
1696  */
1697 static void
1698 interp(const char *file, Cache *cache, Word shnum, Word phnum, Elf *elf)
1699 {
1700 	static Word phdr_types[] = { PT_INTERP };
1701 
1702 
1703 	Word	cnt;
1704 	Shdr	*ishdr = NULL;
1705 	Cache	*icache;
1706 	Off	iphdr_off = 0;
1707 	Xword	iphdr_fsz;
1708 
1709 	/*
1710 	 * Determine if an interp header exists.
1711 	 */
1712 	if (phnum) {
1713 		Phdr	*phdr;
1714 
1715 		phdr = getphdr(phnum, phdr_types,
1716 		    sizeof (phdr_types) / sizeof (*phdr_types), file, elf);
1717 		if (phdr != NULL) {
1718 			iphdr_off = phdr->p_offset;
1719 			iphdr_fsz = phdr->p_filesz;
1720 		}
1721 	}
1722 
1723 	if (iphdr_off == 0)
1724 		return;
1725 
1726 	/*
1727 	 * Determine if an interp section exists.
1728 	 */
1729 	for (cnt = 1; cnt < shnum; cnt++) {
1730 		Cache	*_cache = &cache[cnt];
1731 		Shdr	*shdr = _cache->c_shdr;
1732 
1733 		/*
1734 		 * Scan sections to find a section which contains the PT_INTERP
1735 		 * string.  The target section can't be in a NOBITS section.
1736 		 */
1737 		if ((shdr->sh_type == SHT_NOBITS) ||
1738 		    (iphdr_off < shdr->sh_offset) ||
1739 		    (iphdr_off + iphdr_fsz) > (shdr->sh_offset + shdr->sh_size))
1740 			continue;
1741 
1742 		icache = _cache;
1743 		ishdr = shdr;
1744 		break;
1745 	}
1746 
1747 	/*
1748 	 * Print the interpreter string based on the offset defined in the
1749 	 * program header, as this is the offset used by the kernel.
1750 	 */
1751 	if (ishdr && icache->c_data) {
1752 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1753 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_INTERP), icache->c_name);
1754 		dbg_print(0, MSG_ORIG(MSG_FMT_INDENT),
1755 		    (char *)icache->c_data->d_buf +
1756 		    (iphdr_off - ishdr->sh_offset));
1757 	} else
1758 		(void) fprintf(stderr, MSG_INTL(MSG_WARN_INVINTERP1), file);
1759 
1760 	/*
1761 	 * If there are any inconsistences between the program header and
1762 	 * section information, flag them.
1763 	 */
1764 	if (ishdr && ((iphdr_off != ishdr->sh_offset) ||
1765 	    (iphdr_fsz != ishdr->sh_size))) {
1766 		(void) fprintf(stderr, MSG_INTL(MSG_WARN_INVINTERP2), file,
1767 		    icache->c_name);
1768 	}
1769 }
1770 
1771 /*
1772  * Print the syminfo section.
1773  */
1774 static void
1775 syminfo(Cache *cache, Word shnum, const char *file)
1776 {
1777 	Shdr		*infoshdr;
1778 	Syminfo		*info;
1779 	Sym		*syms;
1780 	Dyn		*dyns;
1781 	Word		infonum, cnt, ndx, symnum;
1782 	Cache		*infocache = NULL, *symsec, *strsec;
1783 
1784 	for (cnt = 1; cnt < shnum; cnt++) {
1785 		if (cache[cnt].c_shdr->sh_type == SHT_SUNW_syminfo) {
1786 			infocache = &cache[cnt];
1787 			break;
1788 		}
1789 	}
1790 	if (infocache == NULL)
1791 		return;
1792 
1793 	infoshdr = infocache->c_shdr;
1794 	if ((infoshdr->sh_entsize == 0) || (infoshdr->sh_size == 0)) {
1795 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
1796 		    file, infocache->c_name);
1797 		return;
1798 	}
1799 	if (infocache->c_data == NULL)
1800 		return;
1801 
1802 	infonum = (Word)(infoshdr->sh_size / infoshdr->sh_entsize);
1803 	info = (Syminfo *)infocache->c_data->d_buf;
1804 
1805 	/*
1806 	 * Get the data buffer of the associated dynamic section.
1807 	 */
1808 	if ((infoshdr->sh_info == 0) || (infoshdr->sh_info >= shnum)) {
1809 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHINFO),
1810 		    file, infocache->c_name, EC_WORD(infoshdr->sh_info));
1811 		return;
1812 	}
1813 	if (cache[infoshdr->sh_info].c_data == NULL)
1814 		return;
1815 
1816 	dyns = cache[infoshdr->sh_info].c_data->d_buf;
1817 	if (dyns == NULL) {
1818 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
1819 		    file, cache[infoshdr->sh_info].c_name);
1820 		return;
1821 	}
1822 
1823 	/*
1824 	 * Get the data buffer for the associated symbol table and string table.
1825 	 */
1826 	if (stringtbl(cache, 1, cnt, shnum, file,
1827 	    &symnum, &symsec, &strsec) == 0)
1828 		return;
1829 
1830 	syms = symsec->c_data->d_buf;
1831 
1832 	/*
1833 	 * Loop through the syminfo entries.
1834 	 */
1835 	dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1836 	dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMINFO), infocache->c_name);
1837 	Elf_syminfo_title(0);
1838 
1839 	for (ndx = 1, info++; ndx < infonum; ndx++, info++) {
1840 		Sym 		*sym;
1841 		const char	*needed = NULL, *name;
1842 
1843 		if ((info->si_flags == 0) && (info->si_boundto == 0))
1844 			continue;
1845 
1846 		sym = &syms[ndx];
1847 		name = string(infocache, ndx, strsec, file, sym->st_name);
1848 
1849 		if (info->si_boundto < SYMINFO_BT_LOWRESERVE) {
1850 			Dyn	*dyn = &dyns[info->si_boundto];
1851 
1852 			needed = string(infocache, info->si_boundto,
1853 			    strsec, file, dyn->d_un.d_val);
1854 		}
1855 		Elf_syminfo_entry(0, ndx, info, name, needed);
1856 	}
1857 }
1858 
1859 /*
1860  * Print version definition section entries.
1861  */
1862 static void
1863 version_def(Verdef *vdf, Word vdf_num, Cache *vcache, Cache *scache,
1864     const char *file)
1865 {
1866 	Word	cnt;
1867 	char	index[MAXNDXSIZE];
1868 
1869 	Elf_ver_def_title(0);
1870 
1871 	for (cnt = 1; cnt <= vdf_num; cnt++,
1872 	    vdf = (Verdef *)((uintptr_t)vdf + vdf->vd_next)) {
1873 		Conv_ver_flags_buf_t	ver_flags_buf;
1874 		const char		*name, *dep;
1875 		Half			vcnt = vdf->vd_cnt - 1;
1876 		Half			ndx = vdf->vd_ndx;
1877 		Verdaux	*vdap = (Verdaux *)((uintptr_t)vdf + vdf->vd_aux);
1878 
1879 		/*
1880 		 * Obtain the name and first dependency (if any).
1881 		 */
1882 		name = string(vcache, cnt, scache, file, vdap->vda_name);
1883 		vdap = (Verdaux *)((uintptr_t)vdap + vdap->vda_next);
1884 		if (vcnt)
1885 			dep = string(vcache, cnt, scache, file, vdap->vda_name);
1886 		else
1887 			dep = MSG_ORIG(MSG_STR_EMPTY);
1888 
1889 		(void) snprintf(index, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX),
1890 		    EC_XWORD(ndx));
1891 		Elf_ver_line_1(0, index, name, dep,
1892 		    conv_ver_flags(vdf->vd_flags, 0, &ver_flags_buf));
1893 
1894 		/*
1895 		 * Print any additional dependencies.
1896 		 */
1897 		if (vcnt) {
1898 			vdap = (Verdaux *)((uintptr_t)vdap + vdap->vda_next);
1899 			for (vcnt--; vcnt; vcnt--,
1900 			    vdap = (Verdaux *)((uintptr_t)vdap +
1901 			    vdap->vda_next)) {
1902 				dep = string(vcache, cnt, scache, file,
1903 				    vdap->vda_name);
1904 				Elf_ver_line_2(0, MSG_ORIG(MSG_STR_EMPTY), dep);
1905 			}
1906 		}
1907 	}
1908 }
1909 
1910 /*
1911  * Print version needed section entries.
1912  *
1913  * entry:
1914  *	vnd - Address of verneed data
1915  *	vnd_num - # of Verneed entries
1916  *	vcache - Cache of verneed section being processed
1917  *	scache - Cache of associated string table section
1918  *	file - Name of object being processed.
1919  *	versym - Information about versym section
1920  *
1921  * exit:
1922  *	The versions have been printed. If GNU style versioning
1923  *	is in effect, versym->max_verndx has been updated to
1924  *	contain the largest version index seen.
1925  *
1926  * note:
1927  * 	The versym section of an object that follows the original
1928  *	Solaris versioning rules only contains indexes into the verdef
1929  *	section. Symbols defined in other objects (UNDEF) are given
1930  *	a version of 0, indicating that they are not defined by
1931  *	this file, and the Verneed entries do not have associated version
1932  *	indexes. For these reasons, we do not display a version index
1933  *	for original-style Verneed sections.
1934  *
1935  *	The GNU versioning extensions alter this: Symbols defined in other
1936  *	objects receive a version index in the range above those defined
1937  *	by the Verdef section, and the vna_other field of the Vernaux
1938  *	structs inside the Verneed section contain the version index for
1939  *	that item. We therefore  display the index when showing the
1940  *	contents of a GNU style Verneed section. You should not
1941  *	necessarily expect these indexes to appear in sorted
1942  *	order --- it seems that the GNU ld assigns the versions as
1943  *	symbols are encountered during linking, and then the results
1944  *	are assembled into the Verneed section afterwards.
1945  */
1946 static void
1947 version_need(Verneed *vnd, Word vnd_num, Cache *vcache, Cache *scache,
1948     const char *file, VERSYM_STATE *versym)
1949 {
1950 	Word		cnt;
1951 	char		index[MAXNDXSIZE];
1952 	const char	*index_str;
1953 
1954 	Elf_ver_need_title(0, versym->gnu_needed);
1955 
1956 	for (cnt = 1; cnt <= vnd_num; cnt++,
1957 	    vnd = (Verneed *)((uintptr_t)vnd + vnd->vn_next)) {
1958 		Conv_ver_flags_buf_t	ver_flags_buf;
1959 		const char		*name, *dep;
1960 		Half			vcnt = vnd->vn_cnt;
1961 		Vernaux *vnap = (Vernaux *)((uintptr_t)vnd + vnd->vn_aux);
1962 
1963 		/*
1964 		 * Obtain the name of the needed file and the version name
1965 		 * within it that we're dependent on.  Note that the count
1966 		 * should be at least one, otherwise this is a pretty bogus
1967 		 * entry.
1968 		 */
1969 		name = string(vcache, cnt, scache, file, vnd->vn_file);
1970 		if (vcnt)
1971 			dep = string(vcache, cnt, scache, file, vnap->vna_name);
1972 		else
1973 			dep = MSG_INTL(MSG_STR_NULL);
1974 
1975 		if (vnap->vna_other == 0) {	/* Traditional form */
1976 			index_str = MSG_ORIG(MSG_STR_EMPTY);
1977 		} else {			/* GNU form */
1978 			index_str = index;
1979 			/* Format the version index value */
1980 			(void) snprintf(index, MAXNDXSIZE,
1981 			    MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(vnap->vna_other));
1982 			if (vnap->vna_other > versym->max_verndx)
1983 				versym->max_verndx = vnap->vna_other;
1984 		}
1985 		Elf_ver_line_1(0, index_str, name, dep,
1986 		    conv_ver_flags(vnap->vna_flags, 0, &ver_flags_buf));
1987 
1988 		/*
1989 		 * Print any additional version dependencies.
1990 		 */
1991 		if (vcnt) {
1992 			vnap = (Vernaux *)((uintptr_t)vnap + vnap->vna_next);
1993 			for (vcnt--; vcnt; vcnt--,
1994 			    vnap = (Vernaux *)((uintptr_t)vnap +
1995 			    vnap->vna_next)) {
1996 				dep = string(vcache, cnt, scache, file,
1997 				    vnap->vna_name);
1998 				if (vnap->vna_other > 0) {
1999 					/* Format the next index value */
2000 					(void) snprintf(index, MAXNDXSIZE,
2001 					    MSG_ORIG(MSG_FMT_INDEX),
2002 					    EC_XWORD(vnap->vna_other));
2003 					Elf_ver_line_1(0, index,
2004 					    MSG_ORIG(MSG_STR_EMPTY), dep,
2005 					    conv_ver_flags(vnap->vna_flags,
2006 					    0, &ver_flags_buf));
2007 					if (vnap->vna_other >
2008 					    versym->max_verndx)
2009 						versym->max_verndx =
2010 						    vnap->vna_other;
2011 				} else {
2012 					Elf_ver_line_3(0,
2013 					    MSG_ORIG(MSG_STR_EMPTY), dep,
2014 					    conv_ver_flags(vnap->vna_flags,
2015 					    0, &ver_flags_buf));
2016 				}
2017 			}
2018 		}
2019 	}
2020 }
2021 
2022 /*
2023  * Examine the Verneed section for information related to GNU
2024  * style Versym indexing:
2025  *	- A non-zero vna_other field indicates that Versym indexes can
2026  *		reference Verneed records.
2027  *	- If the object uses GNU style Versym indexing, the
2028  *	  maximum index value is needed to detect bad Versym entries.
2029  *
2030  * entry:
2031  *	vnd - Address of verneed data
2032  *	vnd_num - # of Verneed entries
2033  *	versym - Information about versym section
2034  *
2035  * exit:
2036  *	If a non-zero vna_other field is seen, versym->gnu_needed is set.
2037  *
2038  *	versym->max_verndx has been updated to contain the largest
2039  *	version index seen.
2040  */
2041 static void
2042 update_gnu_verndx(Verneed *vnd, Word vnd_num, VERSYM_STATE *versym)
2043 {
2044 	Word		cnt;
2045 
2046 	for (cnt = 1; cnt <= vnd_num; cnt++,
2047 	    vnd = (Verneed *)((uintptr_t)vnd + vnd->vn_next)) {
2048 		Half	vcnt = vnd->vn_cnt;
2049 		Vernaux	*vnap = (Vernaux *)((uintptr_t)vnd + vnd->vn_aux);
2050 
2051 		/*
2052 		 * A non-zero value of vna_other indicates that this
2053 		 * object references VERNEED items from the VERSYM
2054 		 * array.
2055 		 */
2056 		if (vnap->vna_other != 0) {
2057 			versym->gnu_needed = 1;
2058 			if (vnap->vna_other > versym->max_verndx)
2059 				versym->max_verndx = vnap->vna_other;
2060 		}
2061 
2062 		/*
2063 		 * Check any additional version dependencies.
2064 		 */
2065 		if (vcnt) {
2066 			vnap = (Vernaux *)((uintptr_t)vnap + vnap->vna_next);
2067 			for (vcnt--; vcnt; vcnt--,
2068 			    vnap = (Vernaux *)((uintptr_t)vnap +
2069 			    vnap->vna_next)) {
2070 				if (vnap->vna_other == 0)
2071 					continue;
2072 
2073 				versym->gnu_needed = 1;
2074 				if (vnap->vna_other > versym->max_verndx)
2075 					versym->max_verndx = vnap->vna_other;
2076 			}
2077 		}
2078 	}
2079 }
2080 
2081 /*
2082  * Display version section information if the flags require it.
2083  * Return version information needed by other output.
2084  *
2085  * entry:
2086  *	cache - Cache of all section headers
2087  *	shnum - # of sections in cache
2088  *	file - Name of file
2089  *	flags - Command line option flags
2090  *	versym - VERSYM_STATE block to be filled in.
2091  */
2092 static void
2093 versions(Cache *cache, Word shnum, const char *file, uint_t flags,
2094     VERSYM_STATE *versym)
2095 {
2096 	GElf_Word	cnt;
2097 	Cache		*verdef_cache = NULL, *verneed_cache = NULL;
2098 
2099 
2100 	/* Gather information about the version sections */
2101 	bzero(versym, sizeof (*versym));
2102 	versym->max_verndx = 1;
2103 	for (cnt = 1; cnt < shnum; cnt++) {
2104 		Cache		*_cache = &cache[cnt];
2105 		Shdr		*shdr = _cache->c_shdr;
2106 		Dyn		*dyn;
2107 		ulong_t		numdyn;
2108 
2109 		switch (shdr->sh_type) {
2110 		case SHT_DYNAMIC:
2111 			/*
2112 			 * The GNU ld puts a DT_VERSYM entry in the dynamic
2113 			 * section so that the runtime linker can use it to
2114 			 * implement their versioning rules. They allow multiple
2115 			 * incompatible functions with the same name to exist
2116 			 * in different versions. The Solaris ld does not
2117 			 * support this mechanism, and as such, does not
2118 			 * produce DT_VERSYM. We use this fact to determine
2119 			 * which ld produced this object, and how to interpret
2120 			 * the version values.
2121 			 */
2122 			if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0) ||
2123 			    (_cache->c_data == NULL))
2124 				continue;
2125 			numdyn = shdr->sh_size / shdr->sh_entsize;
2126 			dyn = (Dyn *)_cache->c_data->d_buf;
2127 			for (; numdyn-- > 0; dyn++)
2128 				if (dyn->d_tag == DT_VERSYM) {
2129 					versym->gnu_full =
2130 					    versym->gnu_needed = 1;
2131 					break;
2132 				}
2133 			break;
2134 
2135 		case SHT_SUNW_versym:
2136 			/* Record data address for later symbol processing */
2137 			if (_cache->c_data != NULL) {
2138 				versym->cache = _cache;
2139 				versym->data = _cache->c_data->d_buf;
2140 				continue;
2141 			}
2142 			break;
2143 
2144 		case SHT_SUNW_verdef:
2145 		case SHT_SUNW_verneed:
2146 			/*
2147 			 * Ensure the data is non-NULL and the number
2148 			 * of items is non-zero. Otherwise, we don't
2149 			 * understand the section, and will not use it.
2150 			 */
2151 			if ((_cache->c_data == NULL) ||
2152 			    (_cache->c_data->d_buf == NULL)) {
2153 				(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
2154 				    file, _cache->c_name);
2155 				continue;
2156 			}
2157 			if (shdr->sh_info == 0) {
2158 				(void) fprintf(stderr,
2159 				    MSG_INTL(MSG_ERR_BADSHINFO),
2160 				    file, _cache->c_name,
2161 				    EC_WORD(shdr->sh_info));
2162 				continue;
2163 			}
2164 
2165 			/* Make sure the string table index is in range */
2166 			if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
2167 				(void) fprintf(stderr,
2168 				    MSG_INTL(MSG_ERR_BADSHLINK), file,
2169 				    _cache->c_name, EC_WORD(shdr->sh_link));
2170 				continue;
2171 			}
2172 
2173 			/*
2174 			 * The section is usable. Save the cache entry.
2175 			 */
2176 			if (shdr->sh_type == SHT_SUNW_verdef) {
2177 				verdef_cache = _cache;
2178 				/*
2179 				 * Under Solaris rules, if there is a verdef
2180 				 * section, the max versym index is number
2181 				 * of version definitions it supplies.
2182 				 */
2183 				versym->max_verndx = shdr->sh_info;
2184 			} else {
2185 				verneed_cache = _cache;
2186 			}
2187 			break;
2188 		}
2189 	}
2190 
2191 	/*
2192 	 * If there is a Verneed section, examine it for information
2193 	 * related to GNU style versioning.
2194 	 */
2195 	if (verneed_cache != NULL)
2196 		update_gnu_verndx((Verneed *)verneed_cache->c_data->d_buf,
2197 		    verneed_cache->c_shdr->sh_info, versym);
2198 
2199 	/*
2200 	 * Now that all the information is available, display the
2201 	 * Verdef and Verneed section contents, if requested.
2202 	 */
2203 	if ((flags & FLG_SHOW_VERSIONS) == 0)
2204 		return;
2205 	if (verdef_cache != NULL) {
2206 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2207 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_VERDEF),
2208 		    verdef_cache->c_name);
2209 		version_def((Verdef *)verdef_cache->c_data->d_buf,
2210 		    verdef_cache->c_shdr->sh_info, verdef_cache,
2211 		    &cache[verdef_cache->c_shdr->sh_link], file);
2212 	}
2213 	if (verneed_cache != NULL) {
2214 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2215 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_VERNEED),
2216 		    verneed_cache->c_name);
2217 		/*
2218 		 * If GNU versioning applies to this object, version_need()
2219 		 * will update versym->max_verndx, and it is not
2220 		 * necessary to call update_gnu_verndx().
2221 		 */
2222 		version_need((Verneed *)verneed_cache->c_data->d_buf,
2223 		    verneed_cache->c_shdr->sh_info, verneed_cache,
2224 		    &cache[verneed_cache->c_shdr->sh_link], file, versym);
2225 	}
2226 }
2227 
2228 /*
2229  * Search for and process any symbol tables.
2230  */
2231 void
2232 symbols(Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi,
2233     VERSYM_STATE *versym, const char *file, uint_t flags)
2234 {
2235 	SYMTBL_STATE state;
2236 	Cache *_cache;
2237 	Word secndx;
2238 
2239 	for (secndx = 1; secndx < shnum; secndx++) {
2240 		Word		symcnt;
2241 		Shdr		*shdr;
2242 
2243 		_cache = &cache[secndx];
2244 		shdr = _cache->c_shdr;
2245 
2246 		if ((shdr->sh_type != SHT_SYMTAB) &&
2247 		    (shdr->sh_type != SHT_DYNSYM) &&
2248 		    ((shdr->sh_type != SHT_SUNW_LDYNSYM) ||
2249 		    (osabi != ELFOSABI_SOLARIS)))
2250 			continue;
2251 		if (!match(MATCH_F_ALL, _cache->c_name, secndx, shdr->sh_type))
2252 			continue;
2253 
2254 		if (!init_symtbl_state(&state, cache, shnum, secndx, ehdr,
2255 		    osabi, versym, file, flags))
2256 			continue;
2257 		/*
2258 		 * Loop through the symbol tables entries.
2259 		 */
2260 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2261 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMTAB), state.secname);
2262 		Elf_syms_table_title(0, ELF_DBG_ELFDUMP);
2263 
2264 		for (symcnt = 0; symcnt < state.symn; symcnt++)
2265 			output_symbol(&state, symcnt, shdr->sh_info, symcnt,
2266 			    state.sym + symcnt);
2267 	}
2268 }
2269 
2270 /*
2271  * Search for and process any SHT_SUNW_symsort or SHT_SUNW_tlssort sections.
2272  * These sections are always associated with the .SUNW_ldynsym./.dynsym pair.
2273  */
2274 static void
2275 sunw_sort(Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi,
2276     VERSYM_STATE *versym, const char *file, uint_t flags)
2277 {
2278 	SYMTBL_STATE	ldynsym_state,	dynsym_state;
2279 	Cache		*sortcache,	*symcache;
2280 	Shdr		*sortshdr,	*symshdr;
2281 	Word		sortsecndx,	symsecndx;
2282 	Word		ldynsym_cnt;
2283 	Word		*ndx;
2284 	Word		ndxn;
2285 	int		output_cnt = 0;
2286 	Conv_inv_buf_t	inv_buf;
2287 
2288 	for (sortsecndx = 1; sortsecndx < shnum; sortsecndx++) {
2289 
2290 		sortcache = &cache[sortsecndx];
2291 		sortshdr = sortcache->c_shdr;
2292 
2293 		if ((sortshdr->sh_type != SHT_SUNW_symsort) &&
2294 		    (sortshdr->sh_type != SHT_SUNW_tlssort))
2295 			continue;
2296 		if (!match(MATCH_F_ALL, sortcache->c_name, sortsecndx,
2297 		    sortshdr->sh_type))
2298 			continue;
2299 
2300 		/*
2301 		 * If the section references a SUNW_ldynsym, then we
2302 		 * expect to see the associated .dynsym immediately
2303 		 * following. If it references a .dynsym, there is no
2304 		 * SUNW_ldynsym. If it is any other type, then we don't
2305 		 * know what to do with it.
2306 		 */
2307 		if ((sortshdr->sh_link == 0) || (sortshdr->sh_link >= shnum)) {
2308 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
2309 			    file, sortcache->c_name,
2310 			    EC_WORD(sortshdr->sh_link));
2311 			continue;
2312 		}
2313 		symcache = &cache[sortshdr->sh_link];
2314 		symshdr = symcache->c_shdr;
2315 		symsecndx = sortshdr->sh_link;
2316 		ldynsym_cnt = 0;
2317 		switch (symshdr->sh_type) {
2318 		case SHT_SUNW_LDYNSYM:
2319 			if (!init_symtbl_state(&ldynsym_state, cache, shnum,
2320 			    symsecndx, ehdr, osabi, versym, file, flags))
2321 				continue;
2322 			ldynsym_cnt = ldynsym_state.symn;
2323 			/*
2324 			 * We know that the dynsym follows immediately
2325 			 * after the SUNW_ldynsym, and so, should be at
2326 			 * (sortshdr->sh_link + 1). However, elfdump is a
2327 			 * diagnostic tool, so we do the full paranoid
2328 			 * search instead.
2329 			 */
2330 			for (symsecndx = 1; symsecndx < shnum; symsecndx++) {
2331 				symcache = &cache[symsecndx];
2332 				symshdr = symcache->c_shdr;
2333 				if (symshdr->sh_type == SHT_DYNSYM)
2334 					break;
2335 			}
2336 			if (symsecndx >= shnum) {	/* Dynsym not found! */
2337 				(void) fprintf(stderr,
2338 				    MSG_INTL(MSG_ERR_NODYNSYM),
2339 				    file, sortcache->c_name);
2340 				continue;
2341 			}
2342 			/* Fallthrough to process associated dynsym */
2343 			/* FALLTHROUGH */
2344 		case SHT_DYNSYM:
2345 			if (!init_symtbl_state(&dynsym_state, cache, shnum,
2346 			    symsecndx, ehdr, osabi, versym, file, flags))
2347 				continue;
2348 			break;
2349 		default:
2350 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADNDXSEC),
2351 			    file, sortcache->c_name,
2352 			    conv_sec_type(osabi, ehdr->e_machine,
2353 			    symshdr->sh_type, 0, &inv_buf));
2354 			continue;
2355 		}
2356 
2357 		/*
2358 		 * Output header
2359 		 */
2360 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2361 		if (ldynsym_cnt > 0) {
2362 			dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMSORT2),
2363 			    sortcache->c_name, ldynsym_state.secname,
2364 			    dynsym_state.secname);
2365 			/*
2366 			 * The data for .SUNW_ldynsym and dynsym sections
2367 			 * is supposed to be adjacent with SUNW_ldynsym coming
2368 			 * first. Check, and issue a warning if it isn't so.
2369 			 */
2370 			if (((ldynsym_state.sym + ldynsym_state.symn)
2371 			    != dynsym_state.sym) &&
2372 			    ((flags & FLG_CTL_FAKESHDR) == 0))
2373 				(void) fprintf(stderr,
2374 				    MSG_INTL(MSG_ERR_LDYNNOTADJ), file,
2375 				    ldynsym_state.secname,
2376 				    dynsym_state.secname);
2377 		} else {
2378 			dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMSORT1),
2379 			    sortcache->c_name, dynsym_state.secname);
2380 		}
2381 		Elf_syms_table_title(0, ELF_DBG_ELFDUMP);
2382 
2383 		/* If not first one, insert a line of white space */
2384 		if (output_cnt++ > 0)
2385 			dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2386 
2387 		/*
2388 		 * SUNW_dynsymsort and SUNW_dyntlssort are arrays of
2389 		 * symbol indices. Iterate over the array entries,
2390 		 * dispaying the referenced symbols.
2391 		 */
2392 		ndxn = sortshdr->sh_size / sortshdr->sh_entsize;
2393 		ndx = (Word *)sortcache->c_data->d_buf;
2394 		for (; ndxn-- > 0; ndx++) {
2395 			if (*ndx >= ldynsym_cnt) {
2396 				Word sec_ndx = *ndx - ldynsym_cnt;
2397 
2398 				output_symbol(&dynsym_state, sec_ndx, 0,
2399 				    *ndx, dynsym_state.sym + sec_ndx);
2400 			} else {
2401 				output_symbol(&ldynsym_state, *ndx, 0,
2402 				    *ndx, ldynsym_state.sym + *ndx);
2403 			}
2404 		}
2405 	}
2406 }
2407 
2408 /*
2409  * Search for and process any relocation sections.
2410  */
2411 static void
2412 reloc(Cache *cache, Word shnum, Ehdr *ehdr, const char *file)
2413 {
2414 	Word	cnt;
2415 
2416 	for (cnt = 1; cnt < shnum; cnt++) {
2417 		Word		type, symnum;
2418 		Xword		relndx, relnum, relsize;
2419 		void		*rels;
2420 		Sym		*syms;
2421 		Cache		*symsec, *strsec;
2422 		Cache		*_cache = &cache[cnt];
2423 		Shdr		*shdr = _cache->c_shdr;
2424 		char		*relname = _cache->c_name;
2425 		Conv_inv_buf_t	inv_buf;
2426 
2427 		if (((type = shdr->sh_type) != SHT_RELA) &&
2428 		    (type != SHT_REL))
2429 			continue;
2430 		if (!match(MATCH_F_ALL, relname, cnt, type))
2431 			continue;
2432 
2433 		/*
2434 		 * Decide entry size.
2435 		 */
2436 		if (((relsize = shdr->sh_entsize) == 0) ||
2437 		    (relsize > shdr->sh_size)) {
2438 			if (type == SHT_RELA)
2439 				relsize = sizeof (Rela);
2440 			else
2441 				relsize = sizeof (Rel);
2442 		}
2443 
2444 		/*
2445 		 * Determine the number of relocations available.
2446 		 */
2447 		if (shdr->sh_size == 0) {
2448 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
2449 			    file, relname);
2450 			continue;
2451 		}
2452 		if (_cache->c_data == NULL)
2453 			continue;
2454 
2455 		rels = _cache->c_data->d_buf;
2456 		relnum = shdr->sh_size / relsize;
2457 
2458 		/*
2459 		 * Get the data buffer for the associated symbol table and
2460 		 * string table.
2461 		 */
2462 		if (stringtbl(cache, 1, cnt, shnum, file,
2463 		    &symnum, &symsec, &strsec) == 0)
2464 			continue;
2465 
2466 		syms = symsec->c_data->d_buf;
2467 
2468 		/*
2469 		 * Loop through the relocation entries.
2470 		 */
2471 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2472 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_RELOC), _cache->c_name);
2473 		Elf_reloc_title(0, ELF_DBG_ELFDUMP, type);
2474 
2475 		for (relndx = 0; relndx < relnum; relndx++,
2476 		    rels = (void *)((char *)rels + relsize)) {
2477 			Half		mach = ehdr->e_machine;
2478 			char		section[BUFSIZ];
2479 			const char	*symname;
2480 			Word		symndx, reltype;
2481 			Rela		*rela;
2482 			Rel		*rel;
2483 
2484 			/*
2485 			 * Unravel the relocation and determine the symbol with
2486 			 * which this relocation is associated.
2487 			 */
2488 			if (type == SHT_RELA) {
2489 				rela = (Rela *)rels;
2490 				symndx = ELF_R_SYM(rela->r_info);
2491 				reltype = ELF_R_TYPE(rela->r_info, mach);
2492 			} else {
2493 				rel = (Rel *)rels;
2494 				symndx = ELF_R_SYM(rel->r_info);
2495 				reltype = ELF_R_TYPE(rel->r_info, mach);
2496 			}
2497 
2498 			symname = relsymname(cache, _cache, strsec, symndx,
2499 			    symnum, relndx, syms, section, BUFSIZ, file);
2500 
2501 			/*
2502 			 * A zero symbol index is only valid for a few
2503 			 * relocations.
2504 			 */
2505 			if (symndx == 0) {
2506 				int	badrel = 0;
2507 
2508 				if ((mach == EM_SPARC) ||
2509 				    (mach == EM_SPARC32PLUS) ||
2510 				    (mach == EM_SPARCV9)) {
2511 					if ((reltype != R_SPARC_NONE) &&
2512 					    (reltype != R_SPARC_REGISTER) &&
2513 					    (reltype != R_SPARC_RELATIVE))
2514 						badrel++;
2515 				} else if (mach == EM_386) {
2516 					if ((reltype != R_386_NONE) &&
2517 					    (reltype != R_386_RELATIVE))
2518 						badrel++;
2519 				} else if (mach == EM_AMD64) {
2520 					if ((reltype != R_AMD64_NONE) &&
2521 					    (reltype != R_AMD64_RELATIVE))
2522 						badrel++;
2523 				}
2524 
2525 				if (badrel) {
2526 					(void) fprintf(stderr,
2527 					    MSG_INTL(MSG_ERR_BADREL1), file,
2528 					    conv_reloc_type(mach, reltype,
2529 					    0, &inv_buf));
2530 				}
2531 			}
2532 
2533 			Elf_reloc_entry_1(0, ELF_DBG_ELFDUMP,
2534 			    MSG_ORIG(MSG_STR_EMPTY), ehdr->e_machine, type,
2535 			    rels, relname, symname, 0);
2536 		}
2537 	}
2538 }
2539 
2540 
2541 /*
2542  * This value controls which test dyn_test() performs.
2543  */
2544 typedef enum { DYN_TEST_ADDR, DYN_TEST_SIZE, DYN_TEST_ENTSIZE } dyn_test_t;
2545 
2546 /*
2547  * Used by dynamic() to compare the value of a dynamic element against
2548  * the starting address of the section it references.
2549  *
2550  * entry:
2551  *	test_type - Specify which dyn item is being tested.
2552  *	sh_type - SHT_* type value for required section.
2553  *	sec_cache - Cache entry for section, or NULL if the object lacks
2554  *		a section of this type.
2555  *	dyn - Dyn entry to be tested
2556  *	dynsec_cnt - # of dynamic section being examined. The first
2557  *		dynamic section is 1, the next is 2, and so on...
2558  *	ehdr - ELF header for file
2559  *	file - Name of file
2560  */
2561 static void
2562 dyn_test(dyn_test_t test_type, Word sh_type, Cache *sec_cache, Dyn *dyn,
2563     Word dynsec_cnt, Ehdr *ehdr, uchar_t osabi, const char *file)
2564 {
2565 	Conv_inv_buf_t	buf1, buf2;
2566 
2567 	/*
2568 	 * These tests are based around the implicit assumption that
2569 	 * there is only one dynamic section in an object, and also only
2570 	 * one of the sections it references. We have therefore gathered
2571 	 * all of the necessary information to test this in a single pass
2572 	 * over the section headers, which is very efficient. We are not
2573 	 * aware of any case where more than one dynamic section would
2574 	 * be meaningful in an ELF object, so this is a reasonable solution.
2575 	 *
2576 	 * To test multiple dynamic sections correctly would be more
2577 	 * expensive in code and time. We would have to build a data structure
2578 	 * containing all the dynamic elements. Then, we would use the address
2579 	 * to locate the section it references and ensure the section is of
2580 	 * the right type and that the address in the dynamic element is
2581 	 * to the start of the section. Then, we could check the size and
2582 	 * entsize values against those same sections. This is O(n^2), and
2583 	 * also complicated.
2584 	 *
2585 	 * In the highly unlikely case that there is more than one dynamic
2586 	 * section, we only test the first one, and simply allow the values
2587 	 * of the subsequent one to be displayed unchallenged.
2588 	 */
2589 	if (dynsec_cnt != 1)
2590 		return;
2591 
2592 	/*
2593 	 * A DT_ item that references a section address should always find
2594 	 * the section in the file.
2595 	 */
2596 	if (sec_cache == NULL) {
2597 		const char *name;
2598 
2599 		/*
2600 		 * Supply section names instead of section types for
2601 		 * things that reference progbits so that the error
2602 		 * message will make more sense.
2603 		 */
2604 		switch (dyn->d_tag) {
2605 		case DT_INIT:
2606 			name = MSG_ORIG(MSG_ELF_INIT);
2607 			break;
2608 		case DT_FINI:
2609 			name = MSG_ORIG(MSG_ELF_FINI);
2610 			break;
2611 		default:
2612 			name = conv_sec_type(osabi, ehdr->e_machine,
2613 			    sh_type, 0, &buf1);
2614 			break;
2615 		}
2616 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_DYNNOBCKSEC), file,
2617 		    name, conv_dyn_tag(dyn->d_tag, osabi, ehdr->e_machine,
2618 		    0, &buf2));
2619 		return;
2620 	}
2621 
2622 
2623 	switch (test_type) {
2624 	case DYN_TEST_ADDR:
2625 		/* The section address should match the DT_ item value */
2626 		if (dyn->d_un.d_val != sec_cache->c_shdr->sh_addr)
2627 			(void) fprintf(stderr,
2628 			    MSG_INTL(MSG_ERR_DYNBADADDR), file,
2629 			    conv_dyn_tag(dyn->d_tag, osabi, ehdr->e_machine,
2630 			    0, &buf1), EC_ADDR(dyn->d_un.d_val),
2631 			    sec_cache->c_ndx, sec_cache->c_name,
2632 			    EC_ADDR(sec_cache->c_shdr->sh_addr));
2633 		break;
2634 
2635 	case DYN_TEST_SIZE:
2636 		/* The section size should match the DT_ item value */
2637 		if (dyn->d_un.d_val != sec_cache->c_shdr->sh_size)
2638 			(void) fprintf(stderr,
2639 			    MSG_INTL(MSG_ERR_DYNBADSIZE), file,
2640 			    conv_dyn_tag(dyn->d_tag, osabi, ehdr->e_machine,
2641 			    0, &buf1), EC_XWORD(dyn->d_un.d_val),
2642 			    sec_cache->c_ndx, sec_cache->c_name,
2643 			    EC_XWORD(sec_cache->c_shdr->sh_size));
2644 		break;
2645 
2646 	case DYN_TEST_ENTSIZE:
2647 		/* The sh_entsize value should match the DT_ item value */
2648 		if (dyn->d_un.d_val != sec_cache->c_shdr->sh_entsize)
2649 			(void) fprintf(stderr,
2650 			    MSG_INTL(MSG_ERR_DYNBADENTSIZE), file,
2651 			    conv_dyn_tag(dyn->d_tag, osabi, ehdr->e_machine,
2652 			    0, &buf1), EC_XWORD(dyn->d_un.d_val),
2653 			    sec_cache->c_ndx, sec_cache->c_name,
2654 			    EC_XWORD(sec_cache->c_shdr->sh_entsize));
2655 		break;
2656 	}
2657 }
2658 
2659 /*
2660  * There are some DT_ entries that have corresponding symbols
2661  * (e.g. DT_INIT and _init). It is expected that these items will
2662  * both have the same value if both are present. This routine
2663  * examines the well known symbol tables for such symbols and
2664  * issues warnings for any that don't match.
2665  *
2666  * entry:
2667  *	dyn - Dyn entry to be tested
2668  *	symname - Name of symbol that corresponds to dyn
2669  *	symtab_cache, dynsym_cache, ldynsym_cache - Symbol tables to check
2670  *	target_cache - Section the symname section is expected to be
2671  *		associated with.
2672  *	cache - Cache of all section headers
2673  *	shnum - # of sections in cache
2674  *	ehdr - ELF header for file
2675  *	osabi - OSABI to apply when interpreting object
2676  *	file - Name of file
2677  */
2678 static void
2679 dyn_symtest(Dyn *dyn, const char *symname, Cache *symtab_cache,
2680     Cache *dynsym_cache, Cache *ldynsym_cache, Cache *target_cache,
2681     Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi, const char *file)
2682 {
2683 	Conv_inv_buf_t	buf;
2684 	int		i;
2685 	Sym		*sym;
2686 	Cache		*_cache;
2687 
2688 	for (i = 0; i < 3; i++) {
2689 		switch (i) {
2690 		case 0:
2691 			_cache = symtab_cache;
2692 			break;
2693 		case 1:
2694 			_cache = dynsym_cache;
2695 			break;
2696 		case 2:
2697 			_cache = ldynsym_cache;
2698 			break;
2699 		}
2700 
2701 		if ((_cache != NULL) &&
2702 		    symlookup(symname, cache, shnum, &sym, target_cache,
2703 		    _cache, file) && (sym->st_value != dyn->d_un.d_val))
2704 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_DYNSYMVAL),
2705 			    file, _cache->c_name, conv_dyn_tag(dyn->d_tag,
2706 			    osabi, ehdr->e_machine, 0, &buf),
2707 			    symname, EC_ADDR(sym->st_value));
2708 	}
2709 }
2710 
2711 /*
2712  * Search for and process a .dynamic section.
2713  */
2714 static void
2715 dynamic(Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi, const char *file)
2716 {
2717 	struct {
2718 		Cache	*symtab;
2719 		Cache	*dynstr;
2720 		Cache	*dynsym;
2721 		Cache	*hash;
2722 		Cache	*fini;
2723 		Cache	*fini_array;
2724 		Cache	*init;
2725 		Cache	*init_array;
2726 		Cache	*preinit_array;
2727 		Cache	*rel;
2728 		Cache	*rela;
2729 		Cache	*sunw_cap;
2730 		Cache	*sunw_capinfo;
2731 		Cache	*sunw_capchain;
2732 		Cache	*sunw_ldynsym;
2733 		Cache	*sunw_move;
2734 		Cache	*sunw_syminfo;
2735 		Cache	*sunw_symsort;
2736 		Cache	*sunw_tlssort;
2737 		Cache	*sunw_verdef;
2738 		Cache	*sunw_verneed;
2739 		Cache	*sunw_versym;
2740 	} sec;
2741 	Word	dynsec_ndx;
2742 	Word	dynsec_num;
2743 	int	dynsec_cnt;
2744 	Word	cnt;
2745 	int	osabi_solaris = osabi == ELFOSABI_SOLARIS;
2746 
2747 	/*
2748 	 * Make a pass over all the sections, gathering section information
2749 	 * we'll need below.
2750 	 */
2751 	dynsec_num = 0;
2752 	bzero(&sec, sizeof (sec));
2753 	for (cnt = 1; cnt < shnum; cnt++) {
2754 		Cache	*_cache = &cache[cnt];
2755 
2756 		switch (_cache->c_shdr->sh_type) {
2757 		case SHT_DYNAMIC:
2758 			if (dynsec_num == 0) {
2759 				dynsec_ndx = cnt;
2760 
2761 				/* Does it have a valid string table? */
2762 				(void) stringtbl(cache, 0, cnt, shnum, file,
2763 				    0, 0, &sec.dynstr);
2764 			}
2765 			dynsec_num++;
2766 			break;
2767 
2768 
2769 		case SHT_PROGBITS:
2770 			/*
2771 			 * We want to detect the .init and .fini sections,
2772 			 * if present. These are SHT_PROGBITS, so all we
2773 			 * have to go on is the section name. Normally comparing
2774 			 * names is a bad idea, but there are some special
2775 			 * names (i.e. .init/.fini/.interp) that are very
2776 			 * difficult to use in any other context, and for
2777 			 * these symbols, we do the heuristic match.
2778 			 */
2779 			if (strcmp(_cache->c_name,
2780 			    MSG_ORIG(MSG_ELF_INIT)) == 0) {
2781 				if (sec.init == NULL)
2782 					sec.init = _cache;
2783 			} else if (strcmp(_cache->c_name,
2784 			    MSG_ORIG(MSG_ELF_FINI)) == 0) {
2785 				if (sec.fini == NULL)
2786 					sec.fini = _cache;
2787 			}
2788 			break;
2789 
2790 		case SHT_REL:
2791 			/*
2792 			 * We want the SHT_REL section with the lowest
2793 			 * offset. The linker gathers them together,
2794 			 * and puts the address of the first one
2795 			 * into the DT_REL dynamic element.
2796 			 */
2797 			if ((sec.rel == NULL) ||
2798 			    (_cache->c_shdr->sh_offset <
2799 			    sec.rel->c_shdr->sh_offset))
2800 				sec.rel = _cache;
2801 			break;
2802 
2803 		case SHT_RELA:
2804 			/* RELA is handled just like RELA above */
2805 			if ((sec.rela == NULL) ||
2806 			    (_cache->c_shdr->sh_offset <
2807 			    sec.rela->c_shdr->sh_offset))
2808 				sec.rela = _cache;
2809 			break;
2810 
2811 		/*
2812 		 * The GRAB macro is used for the simple case in which
2813 		 * we simply grab the first section of the desired type.
2814 		 */
2815 #define	GRAB(_sec_type, _sec_field) \
2816 		case _sec_type: \
2817 			if (sec._sec_field == NULL) \
2818 				sec._sec_field = _cache; \
2819 				break
2820 		GRAB(SHT_SYMTAB,	symtab);
2821 		GRAB(SHT_DYNSYM,	dynsym);
2822 		GRAB(SHT_FINI_ARRAY,	fini_array);
2823 		GRAB(SHT_HASH,		hash);
2824 		GRAB(SHT_INIT_ARRAY,	init_array);
2825 		GRAB(SHT_SUNW_move,	sunw_move);
2826 		GRAB(SHT_PREINIT_ARRAY,	preinit_array);
2827 		GRAB(SHT_SUNW_cap,	sunw_cap);
2828 		GRAB(SHT_SUNW_capinfo,	sunw_capinfo);
2829 		GRAB(SHT_SUNW_capchain,	sunw_capchain);
2830 		GRAB(SHT_SUNW_LDYNSYM,	sunw_ldynsym);
2831 		GRAB(SHT_SUNW_syminfo,	sunw_syminfo);
2832 		GRAB(SHT_SUNW_symsort,	sunw_symsort);
2833 		GRAB(SHT_SUNW_tlssort,	sunw_tlssort);
2834 		GRAB(SHT_SUNW_verdef,	sunw_verdef);
2835 		GRAB(SHT_SUNW_verneed,	sunw_verneed);
2836 		GRAB(SHT_SUNW_versym,	sunw_versym);
2837 #undef GRAB
2838 		}
2839 	}
2840 
2841 	/*
2842 	 * If no dynamic section, return immediately. If more than one
2843 	 * dynamic section, then something odd is going on and an error
2844 	 * is in order, but then continue on and display them all.
2845 	 */
2846 	if (dynsec_num == 0)
2847 		return;
2848 	if (dynsec_num > 1)
2849 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_MULTDYN),
2850 		    file, EC_WORD(dynsec_num));
2851 
2852 
2853 	dynsec_cnt = 0;
2854 	for (cnt = dynsec_ndx; (cnt < shnum) && (dynsec_cnt < dynsec_num);
2855 	    cnt++) {
2856 		Dyn	*dyn;
2857 		ulong_t	numdyn;
2858 		int	ndx, end_ndx;
2859 		Cache	*_cache = &cache[cnt], *strsec;
2860 		Shdr	*shdr = _cache->c_shdr;
2861 		int	dumped = 0;
2862 
2863 		if (shdr->sh_type != SHT_DYNAMIC)
2864 			continue;
2865 		dynsec_cnt++;
2866 
2867 		/*
2868 		 * Verify the associated string table section.
2869 		 */
2870 		if (stringtbl(cache, 0, cnt, shnum, file, 0, 0, &strsec) == 0)
2871 			continue;
2872 
2873 		if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
2874 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
2875 			    file, _cache->c_name);
2876 			continue;
2877 		}
2878 		if (_cache->c_data == NULL)
2879 			continue;
2880 
2881 		numdyn = shdr->sh_size / shdr->sh_entsize;
2882 		dyn = (Dyn *)_cache->c_data->d_buf;
2883 
2884 		/*
2885 		 * We expect the REL/RELA entries to reference the reloc
2886 		 * section with the lowest address. However, this is
2887 		 * not true for dumped objects. Detect if this object has
2888 		 * been dumped so that we can skip the reloc address test
2889 		 * in that case.
2890 		 */
2891 		for (ndx = 0; ndx < numdyn; dyn++, ndx++) {
2892 			if (dyn->d_tag == DT_FLAGS_1) {
2893 				dumped = (dyn->d_un.d_val & DF_1_CONFALT) != 0;
2894 				break;
2895 			}
2896 		}
2897 		dyn = (Dyn *)_cache->c_data->d_buf;
2898 
2899 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2900 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_DYNAMIC), _cache->c_name);
2901 
2902 		Elf_dyn_title(0);
2903 
2904 		for (ndx = 0; ndx < numdyn; dyn++, ndx++) {
2905 			union {
2906 				Conv_inv_buf_t		inv;
2907 				Conv_dyn_flag_buf_t	flag;
2908 				Conv_dyn_flag1_buf_t	flag1;
2909 				Conv_dyn_posflag1_buf_t	posflag1;
2910 				Conv_dyn_feature1_buf_t	feature1;
2911 			} c_buf;
2912 			const char	*name = NULL;
2913 
2914 			/*
2915 			 * Print the information numerically, and if possible
2916 			 * as a string. If a string is available, name is
2917 			 * set to reference it.
2918 			 *
2919 			 * Also, take this opportunity to sanity check
2920 			 * the values of DT elements. In the code above,
2921 			 * we gathered information on sections that are
2922 			 * referenced by the dynamic section. Here, we
2923 			 * compare the attributes of those sections to
2924 			 * the DT_ items that reference them and report
2925 			 * on inconsistencies.
2926 			 *
2927 			 * Things not currently tested that could be improved
2928 			 * in later revisions include:
2929 			 *	- We don't check PLT or GOT related items
2930 			 *	- We don't handle computing the lengths of
2931 			 *		relocation arrays. To handle this
2932 			 *		requires examining data that spans
2933 			 *		across sections, in a contiguous span
2934 			 *		within a single segment.
2935 			 *	- DT_VERDEFNUM and DT_VERNEEDNUM can't be
2936 			 *		verified without parsing the sections.
2937 			 *	- We don't handle DT_SUNW_SYMSZ, which would
2938 			 *		be the sum of the lengths of .dynsym and
2939 			 *		.SUNW_ldynsym
2940 			 *	- DT_SUNW_STRPAD can't be verified other than
2941 			 *		to check that it's not larger than
2942 			 *		the string table.
2943 			 *	- Some items come in "all or none" clusters
2944 			 *		that give an address, element size,
2945 			 *		and data length in bytes. We don't
2946 			 *		verify that there are no missing items
2947 			 *		in such groups.
2948 			 */
2949 			switch (dyn->d_tag) {
2950 			case DT_NULL:
2951 				/*
2952 				 * Special case: DT_NULLs can come in groups
2953 				 * that we prefer to reduce to a single line.
2954 				 */
2955 				end_ndx = ndx;
2956 				while ((end_ndx < (numdyn - 1)) &&
2957 				    ((dyn + 1)->d_tag == DT_NULL)) {
2958 					dyn++;
2959 					end_ndx++;
2960 				}
2961 				Elf_dyn_null_entry(0, dyn, ndx, end_ndx);
2962 				ndx = end_ndx;
2963 				continue;
2964 
2965 			/*
2966 			 * String items all reference the dynstr. The string()
2967 			 * function does the necessary sanity checking.
2968 			 */
2969 			case DT_NEEDED:
2970 			case DT_SONAME:
2971 			case DT_FILTER:
2972 			case DT_AUXILIARY:
2973 			case DT_CONFIG:
2974 			case DT_RPATH:
2975 			case DT_RUNPATH:
2976 			case DT_USED:
2977 			case DT_DEPAUDIT:
2978 			case DT_AUDIT:
2979 				name = string(_cache, ndx, strsec,
2980 				    file, dyn->d_un.d_ptr);
2981 				break;
2982 
2983 			case DT_SUNW_AUXILIARY:
2984 			case DT_SUNW_FILTER:
2985 				if (osabi_solaris)
2986 					name = string(_cache, ndx, strsec,
2987 					    file, dyn->d_un.d_ptr);
2988 				break;
2989 
2990 			case DT_FLAGS:
2991 				name = conv_dyn_flag(dyn->d_un.d_val,
2992 				    0, &c_buf.flag);
2993 				break;
2994 			case DT_FLAGS_1:
2995 				name = conv_dyn_flag1(dyn->d_un.d_val, 0,
2996 				    &c_buf.flag1);
2997 				break;
2998 			case DT_POSFLAG_1:
2999 				name = conv_dyn_posflag1(dyn->d_un.d_val, 0,
3000 				    &c_buf.posflag1);
3001 				break;
3002 			case DT_FEATURE_1:
3003 				name = conv_dyn_feature1(dyn->d_un.d_val, 0,
3004 				    &c_buf.feature1);
3005 				break;
3006 			case DT_DEPRECATED_SPARC_REGISTER:
3007 				name = MSG_INTL(MSG_STR_DEPRECATED);
3008 				break;
3009 
3010 			case DT_SUNW_LDMACH:
3011 				if (!osabi_solaris)
3012 					break;
3013 				name = conv_ehdr_mach((Half)dyn->d_un.d_val,
3014 				    0, &c_buf.inv);
3015 				break;
3016 
3017 			/*
3018 			 * Cases below this point are strictly sanity checking,
3019 			 * and do not generate a name string. The TEST_ macros
3020 			 * are used to hide the boiler plate arguments neeeded
3021 			 * by dyn_test().
3022 			 */
3023 #define	TEST_ADDR(_sh_type, _sec_field) \
3024 				dyn_test(DYN_TEST_ADDR, _sh_type, \
3025 				    sec._sec_field, dyn, dynsec_cnt, ehdr, \
3026 				    osabi, file)
3027 #define	TEST_SIZE(_sh_type, _sec_field) \
3028 				dyn_test(DYN_TEST_SIZE, _sh_type, \
3029 				    sec._sec_field, dyn, dynsec_cnt, ehdr, \
3030 				    osabi, file)
3031 #define	TEST_ENTSIZE(_sh_type, _sec_field) \
3032 				dyn_test(DYN_TEST_ENTSIZE, _sh_type, \
3033 				    sec._sec_field, dyn, dynsec_cnt, ehdr, \
3034 				    osabi, file)
3035 
3036 			case DT_FINI:
3037 				dyn_symtest(dyn, MSG_ORIG(MSG_SYM_FINI),
3038 				    sec.symtab, sec.dynsym, sec.sunw_ldynsym,
3039 				    sec.fini, cache, shnum, ehdr, osabi, file);
3040 				TEST_ADDR(SHT_PROGBITS, fini);
3041 				break;
3042 
3043 			case DT_FINI_ARRAY:
3044 				TEST_ADDR(SHT_FINI_ARRAY, fini_array);
3045 				break;
3046 
3047 			case DT_FINI_ARRAYSZ:
3048 				TEST_SIZE(SHT_FINI_ARRAY, fini_array);
3049 				break;
3050 
3051 			case DT_HASH:
3052 				TEST_ADDR(SHT_HASH, hash);
3053 				break;
3054 
3055 			case DT_INIT:
3056 				dyn_symtest(dyn, MSG_ORIG(MSG_SYM_INIT),
3057 				    sec.symtab, sec.dynsym, sec.sunw_ldynsym,
3058 				    sec.init, cache, shnum, ehdr, osabi, file);
3059 				TEST_ADDR(SHT_PROGBITS, init);
3060 				break;
3061 
3062 			case DT_INIT_ARRAY:
3063 				TEST_ADDR(SHT_INIT_ARRAY, init_array);
3064 				break;
3065 
3066 			case DT_INIT_ARRAYSZ:
3067 				TEST_SIZE(SHT_INIT_ARRAY, init_array);
3068 				break;
3069 
3070 			case DT_MOVEENT:
3071 				TEST_ENTSIZE(SHT_SUNW_move, sunw_move);
3072 				break;
3073 
3074 			case DT_MOVESZ:
3075 				TEST_SIZE(SHT_SUNW_move, sunw_move);
3076 				break;
3077 
3078 			case DT_MOVETAB:
3079 				TEST_ADDR(SHT_SUNW_move, sunw_move);
3080 				break;
3081 
3082 			case DT_PREINIT_ARRAY:
3083 				TEST_ADDR(SHT_PREINIT_ARRAY, preinit_array);
3084 				break;
3085 
3086 			case DT_PREINIT_ARRAYSZ:
3087 				TEST_SIZE(SHT_PREINIT_ARRAY, preinit_array);
3088 				break;
3089 
3090 			case DT_REL:
3091 				if (!dumped)
3092 					TEST_ADDR(SHT_REL, rel);
3093 				break;
3094 
3095 			case DT_RELENT:
3096 				TEST_ENTSIZE(SHT_REL, rel);
3097 				break;
3098 
3099 			case DT_RELA:
3100 				if (!dumped)
3101 					TEST_ADDR(SHT_RELA, rela);
3102 				break;
3103 
3104 			case DT_RELAENT:
3105 				TEST_ENTSIZE(SHT_RELA, rela);
3106 				break;
3107 
3108 			case DT_STRTAB:
3109 				TEST_ADDR(SHT_STRTAB, dynstr);
3110 				break;
3111 
3112 			case DT_STRSZ:
3113 				TEST_SIZE(SHT_STRTAB, dynstr);
3114 				break;
3115 
3116 			case DT_SUNW_CAP:
3117 				TEST_ADDR(SHT_SUNW_cap, sunw_cap);
3118 				break;
3119 
3120 			case DT_SUNW_CAPINFO:
3121 				TEST_ADDR(SHT_SUNW_capinfo, sunw_capinfo);
3122 				break;
3123 
3124 			case DT_SUNW_CAPCHAIN:
3125 				TEST_ADDR(SHT_SUNW_capchain, sunw_capchain);
3126 				break;
3127 
3128 			case DT_SUNW_SYMTAB:
3129 				TEST_ADDR(SHT_SUNW_LDYNSYM, sunw_ldynsym);
3130 				break;
3131 
3132 			case DT_SYMENT:
3133 				TEST_ENTSIZE(SHT_DYNSYM, dynsym);
3134 				break;
3135 
3136 			case DT_SYMINENT:
3137 				TEST_ENTSIZE(SHT_SUNW_syminfo, sunw_syminfo);
3138 				break;
3139 
3140 			case DT_SYMINFO:
3141 				TEST_ADDR(SHT_SUNW_syminfo, sunw_syminfo);
3142 				break;
3143 
3144 			case DT_SYMINSZ:
3145 				TEST_SIZE(SHT_SUNW_syminfo, sunw_syminfo);
3146 				break;
3147 
3148 			case DT_SYMTAB:
3149 				TEST_ADDR(SHT_DYNSYM, dynsym);
3150 				break;
3151 
3152 			case DT_SUNW_SORTENT:
3153 				/*
3154 				 * This entry is related to both the symsort and
3155 				 * tlssort sections.
3156 				 */
3157 				if (osabi_solaris) {
3158 					int test_tls =
3159 					    (sec.sunw_tlssort != NULL);
3160 					int test_sym =
3161 					    (sec.sunw_symsort != NULL) ||
3162 					    !test_tls;
3163 					if (test_sym)
3164 						TEST_ENTSIZE(SHT_SUNW_symsort,
3165 						    sunw_symsort);
3166 					if (test_tls)
3167 						TEST_ENTSIZE(SHT_SUNW_tlssort,
3168 						    sunw_tlssort);
3169 				}
3170 				break;
3171 
3172 
3173 			case DT_SUNW_SYMSORT:
3174 				if (osabi_solaris)
3175 					TEST_ADDR(SHT_SUNW_symsort,
3176 					    sunw_symsort);
3177 				break;
3178 
3179 			case DT_SUNW_SYMSORTSZ:
3180 				if (osabi_solaris)
3181 					TEST_SIZE(SHT_SUNW_symsort,
3182 					    sunw_symsort);
3183 				break;
3184 
3185 			case DT_SUNW_TLSSORT:
3186 				if (osabi_solaris)
3187 					TEST_ADDR(SHT_SUNW_tlssort,
3188 					    sunw_tlssort);
3189 				break;
3190 
3191 			case DT_SUNW_TLSSORTSZ:
3192 				if (osabi_solaris)
3193 					TEST_SIZE(SHT_SUNW_tlssort,
3194 					    sunw_tlssort);
3195 				break;
3196 
3197 			case DT_VERDEF:
3198 				TEST_ADDR(SHT_SUNW_verdef, sunw_verdef);
3199 				break;
3200 
3201 			case DT_VERNEED:
3202 				TEST_ADDR(SHT_SUNW_verneed, sunw_verneed);
3203 				break;
3204 
3205 			case DT_VERSYM:
3206 				TEST_ADDR(SHT_SUNW_versym, sunw_versym);
3207 				break;
3208 #undef TEST_ADDR
3209 #undef TEST_SIZE
3210 #undef TEST_ENTSIZE
3211 			}
3212 
3213 			if (name == NULL)
3214 				name = MSG_ORIG(MSG_STR_EMPTY);
3215 			Elf_dyn_entry(0, dyn, ndx, name,
3216 			    osabi, ehdr->e_machine);
3217 		}
3218 	}
3219 }
3220 
3221 /*
3222  * Search for and process a MOVE section.
3223  */
3224 static void
3225 move(Cache *cache, Word shnum, const char *file, uint_t flags)
3226 {
3227 	Word		cnt;
3228 	const char	*fmt = NULL;
3229 
3230 	for (cnt = 1; cnt < shnum; cnt++) {
3231 		Word	movenum, symnum, ndx;
3232 		Sym	*syms;
3233 		Cache	*_cache = &cache[cnt];
3234 		Shdr	*shdr = _cache->c_shdr;
3235 		Cache	*symsec, *strsec;
3236 		Move	*move;
3237 
3238 		if (shdr->sh_type != SHT_SUNW_move)
3239 			continue;
3240 		if (!match(MATCH_F_ALL, _cache->c_name, cnt, shdr->sh_type))
3241 			continue;
3242 
3243 		/*
3244 		 * Determine the move data and number.
3245 		 */
3246 		if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
3247 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
3248 			    file, _cache->c_name);
3249 			continue;
3250 		}
3251 		if (_cache->c_data == NULL)
3252 			continue;
3253 
3254 		move = (Move *)_cache->c_data->d_buf;
3255 		movenum = shdr->sh_size / shdr->sh_entsize;
3256 
3257 		/*
3258 		 * Get the data buffer for the associated symbol table and
3259 		 * string table.
3260 		 */
3261 		if (stringtbl(cache, 1, cnt, shnum, file,
3262 		    &symnum, &symsec, &strsec) == 0)
3263 			return;
3264 
3265 		syms = (Sym *)symsec->c_data->d_buf;
3266 
3267 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3268 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_MOVE), _cache->c_name);
3269 		dbg_print(0, MSG_INTL(MSG_MOVE_TITLE));
3270 
3271 		if (fmt == NULL)
3272 			fmt = MSG_INTL(MSG_MOVE_ENTRY);
3273 
3274 		for (ndx = 0; ndx < movenum; move++, ndx++) {
3275 			const char	*symname;
3276 			char		index[MAXNDXSIZE], section[BUFSIZ];
3277 			Word		symndx, shndx;
3278 			Sym		*sym;
3279 
3280 			/*
3281 			 * Check for null entries
3282 			 */
3283 			if ((move->m_info == 0) && (move->m_value == 0) &&
3284 			    (move->m_poffset == 0) && (move->m_repeat == 0) &&
3285 			    (move->m_stride == 0)) {
3286 				dbg_print(0, fmt, MSG_ORIG(MSG_STR_EMPTY),
3287 				    EC_XWORD(move->m_poffset), 0, 0, 0,
3288 				    EC_LWORD(0), MSG_ORIG(MSG_STR_EMPTY));
3289 				continue;
3290 			}
3291 			if (((symndx = ELF_M_SYM(move->m_info)) == 0) ||
3292 			    (symndx >= symnum)) {
3293 				(void) fprintf(stderr,
3294 				    MSG_INTL(MSG_ERR_BADMINFO), file,
3295 				    _cache->c_name, EC_XWORD(move->m_info));
3296 
3297 				(void) snprintf(index, MAXNDXSIZE,
3298 				    MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(symndx));
3299 				dbg_print(0, fmt, index,
3300 				    EC_XWORD(move->m_poffset),
3301 				    ELF_M_SIZE(move->m_info), move->m_repeat,
3302 				    move->m_stride, move->m_value,
3303 				    MSG_INTL(MSG_STR_UNKNOWN));
3304 				continue;
3305 			}
3306 
3307 			symname = relsymname(cache, _cache, strsec,
3308 			    symndx, symnum, ndx, syms, section, BUFSIZ, file);
3309 			sym = (Sym *)(syms + symndx);
3310 
3311 			/*
3312 			 * Additional sanity check.
3313 			 */
3314 			shndx = sym->st_shndx;
3315 			if (!((shndx == SHN_COMMON) ||
3316 			    (((shndx >= 1) && (shndx <= shnum)) &&
3317 			    (cache[shndx].c_shdr)->sh_type == SHT_NOBITS))) {
3318 				(void) fprintf(stderr,
3319 				    MSG_INTL(MSG_ERR_BADSYM2), file,
3320 				    _cache->c_name, EC_WORD(symndx),
3321 				    demangle(symname, flags));
3322 			}
3323 
3324 			(void) snprintf(index, MAXNDXSIZE,
3325 			    MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(symndx));
3326 			dbg_print(0, fmt, index, EC_XWORD(move->m_poffset),
3327 			    ELF_M_SIZE(move->m_info), move->m_repeat,
3328 			    move->m_stride, move->m_value,
3329 			    demangle(symname, flags));
3330 		}
3331 	}
3332 }
3333 
3334 /*
3335  * parse_note_t is used to track the state used by parse_note_entry()
3336  * between calls, and also to return the results of each call.
3337  */
3338 typedef struct {
3339 	/* pns_ fields track progress through the data */
3340 	const char	*pns_file;	/* File name */
3341 	Cache		*pns_cache;	/* Note section cache entry */
3342 	size_t		pns_size;	/* # unprocessed data bytes */
3343 	Word		*pns_data;	/* # to next unused data byte */
3344 
3345 	/* pn_ fields return the results for a single call */
3346 	Word		pn_namesz;	/* Value of note namesz field */
3347 	Word		pn_descsz;	/* Value of note descsz field */
3348 	Word		pn_type;	/* Value of note type field */
3349 	const char	*pn_name;	/* if (namesz > 0) ptr to name bytes */
3350 	const char	*pn_desc;	/* if (descsx > 0) ptr to data bytes */
3351 } parse_note_t;
3352 
3353 /*
3354  * Extract the various sub-parts of a note entry, and advance the
3355  * data pointer past it.
3356  *
3357  * entry:
3358  *	The state pns_ fields contain current values for the Note section
3359  *
3360  * exit:
3361  *	On success, True (1) is returned, the state pns_ fields have been
3362  *	advanced to point at the start of the next entry, and the information
3363  *	for the recovered note entry is found in the state pn_ fields.
3364  *
3365  *	On failure, False (0) is returned. The values contained in state
3366  *	are undefined.
3367  */
3368 static int
3369 parse_note_entry(parse_note_t *state)
3370 {
3371 	size_t	pad, noteoff;
3372 
3373 	noteoff = (Word)state->pns_cache->c_data->d_size - state->pns_size;
3374 	/*
3375 	 * Make sure we can at least reference the 3 initial entries
3376 	 * (4-byte words) of the note information block.
3377 	 */
3378 	if (state->pns_size >= (sizeof (Word) * 3)) {
3379 		state->pns_size -= (sizeof (Word) * 3);
3380 	} else {
3381 		(void) fprintf(stderr, MSG_INTL(MSG_NOTE_BADDATASZ),
3382 		    state->pns_file, state->pns_cache->c_name,
3383 		    EC_WORD(noteoff));
3384 		return (0);
3385 	}
3386 
3387 	/*
3388 	 * Make sure any specified name string can be referenced.
3389 	 */
3390 	if ((state->pn_namesz = *state->pns_data++) != 0) {
3391 		if (state->pns_size >= state->pn_namesz) {
3392 			state->pns_size -= state->pn_namesz;
3393 		} else {
3394 			(void) fprintf(stderr, MSG_INTL(MSG_NOTE_BADNMSZ),
3395 			    state->pns_file, state->pns_cache->c_name,
3396 			    EC_WORD(noteoff), EC_WORD(state->pn_namesz));
3397 			return (0);
3398 		}
3399 	}
3400 
3401 	/*
3402 	 * Make sure any specified descriptor can be referenced.
3403 	 */
3404 	if ((state->pn_descsz = *state->pns_data++) != 0) {
3405 		/*
3406 		 * If namesz isn't a 4-byte multiple, account for any
3407 		 * padding that must exist before the descriptor.
3408 		 */
3409 		if ((pad = (state->pn_namesz & (sizeof (Word) - 1))) != 0) {
3410 			pad = sizeof (Word) - pad;
3411 			state->pns_size -= pad;
3412 		}
3413 		if (state->pns_size >= state->pn_descsz) {
3414 			state->pns_size -= state->pn_descsz;
3415 		} else {
3416 			(void) fprintf(stderr, MSG_INTL(MSG_NOTE_BADDESZ),
3417 			    state->pns_file, state->pns_cache->c_name,
3418 			    EC_WORD(noteoff), EC_WORD(state->pn_namesz));
3419 			return (0);
3420 		}
3421 	}
3422 
3423 	state->pn_type = *state->pns_data++;
3424 
3425 	/* Name */
3426 	if (state->pn_namesz) {
3427 		state->pn_name = (char *)state->pns_data;
3428 		pad = (state->pn_namesz +
3429 		    (sizeof (Word) - 1)) & ~(sizeof (Word) - 1);
3430 		/* LINTED */
3431 		state->pns_data = (Word *)(state->pn_name + pad);
3432 	}
3433 
3434 	/*
3435 	 * If multiple information blocks exist within a .note section
3436 	 * account for any padding that must exist before the next
3437 	 * information block.
3438 	 */
3439 	if ((pad = (state->pn_descsz & (sizeof (Word) - 1))) != 0) {
3440 		pad = sizeof (Word) - pad;
3441 		if (state->pns_size > pad)
3442 			state->pns_size -= pad;
3443 	}
3444 
3445 	/* Data */
3446 	if (state->pn_descsz) {
3447 		state->pn_desc = (const char *)state->pns_data;
3448 		/* LINTED */
3449 		state->pns_data = (Word *)(state->pn_desc +
3450 		    state->pn_descsz + pad);
3451 	}
3452 
3453 	return (1);
3454 }
3455 
3456 /*
3457  * Callback function for use with conv_str_to_c_literal() below.
3458  */
3459 /*ARGSUSED2*/
3460 static void
3461 c_literal_cb(const void *ptr, size_t size, void *uvalue)
3462 {
3463 	(void) fwrite(ptr, size, 1, stdout);
3464 }
3465 
3466 /*
3467  * Traverse a note section analyzing each note information block.
3468  * The data buffers size is used to validate references before they are made,
3469  * and is decremented as each element is processed.
3470  */
3471 void
3472 note_entry(Cache *cache, Word *data, size_t size, Ehdr *ehdr, const char *file)
3473 {
3474 	int		cnt = 0;
3475 	int		is_corenote;
3476 	int		do_swap;
3477 	Conv_inv_buf_t	inv_buf;
3478 	parse_note_t	pnstate;
3479 
3480 	pnstate.pns_file = file;
3481 	pnstate.pns_cache = cache;
3482 	pnstate.pns_size = size;
3483 	pnstate.pns_data = data;
3484 	do_swap = _elf_sys_encoding() != ehdr->e_ident[EI_DATA];
3485 
3486 	/*
3487 	 * Print out a single `note' information block.
3488 	 */
3489 	while (pnstate.pns_size > 0) {
3490 
3491 		if (parse_note_entry(&pnstate) == 0)
3492 			return;
3493 
3494 		/*
3495 		 * Is this a Solaris core note? Such notes all have
3496 		 * the name "CORE".
3497 		 */
3498 		is_corenote = (ehdr->e_type == ET_CORE) &&
3499 		    (pnstate.pn_namesz == (MSG_STR_CORE_SIZE + 1)) &&
3500 		    (strncmp(MSG_ORIG(MSG_STR_CORE), pnstate.pn_name,
3501 		    MSG_STR_CORE_SIZE + 1) == 0);
3502 
3503 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3504 		dbg_print(0, MSG_INTL(MSG_FMT_NOTEENTNDX), EC_WORD(cnt));
3505 		cnt++;
3506 		dbg_print(0, MSG_ORIG(MSG_NOTE_NAMESZ),
3507 		    EC_WORD(pnstate.pn_namesz));
3508 		dbg_print(0, MSG_ORIG(MSG_NOTE_DESCSZ),
3509 		    EC_WORD(pnstate.pn_descsz));
3510 
3511 		if (is_corenote)
3512 			dbg_print(0, MSG_ORIG(MSG_NOTE_TYPE_STR),
3513 			    conv_cnote_type(pnstate.pn_type, 0, &inv_buf));
3514 		else
3515 			dbg_print(0, MSG_ORIG(MSG_NOTE_TYPE),
3516 			    EC_WORD(pnstate.pn_type));
3517 		if (pnstate.pn_namesz) {
3518 			dbg_print(0, MSG_ORIG(MSG_NOTE_NAME));
3519 			/*
3520 			 * The name string can contain embedded 'null'
3521 			 * bytes and/or unprintable characters. Also,
3522 			 * the final NULL is documented in the ELF ABI
3523 			 * as being included in the namesz. So, display
3524 			 * the name using C literal string notation, and
3525 			 * include the terminating NULL in the output.
3526 			 * We don't show surrounding double quotes, as
3527 			 * that implies the termination that we are showing
3528 			 * explicitly.
3529 			 */
3530 			(void) fwrite(MSG_ORIG(MSG_STR_8SP),
3531 			    MSG_STR_8SP_SIZE, 1, stdout);
3532 			conv_str_to_c_literal(pnstate.pn_name,
3533 			    pnstate.pn_namesz, c_literal_cb, NULL);
3534 			dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3535 		}
3536 
3537 		if (pnstate.pn_descsz) {
3538 			int		hexdump = 1;
3539 
3540 			/*
3541 			 * If this is a core note, let the corenote()
3542 			 * function handle it.
3543 			 */
3544 			if (is_corenote) {
3545 				/* We only issue the bad arch error once */
3546 				static int	badnote_done = 0;
3547 				corenote_ret_t	corenote_ret;
3548 
3549 				corenote_ret = corenote(ehdr->e_machine,
3550 				    do_swap, pnstate.pn_type, pnstate.pn_desc,
3551 				    pnstate.pn_descsz);
3552 				switch (corenote_ret) {
3553 				case CORENOTE_R_OK:
3554 					hexdump = 0;
3555 					break;
3556 				case CORENOTE_R_BADDATA:
3557 					(void) fprintf(stderr,
3558 					    MSG_INTL(MSG_NOTE_BADCOREDATA),
3559 					    file);
3560 					break;
3561 				case CORENOTE_R_BADARCH:
3562 					if (badnote_done)
3563 						break;
3564 					(void) fprintf(stderr,
3565 					    MSG_INTL(MSG_NOTE_BADCOREARCH),
3566 					    file,
3567 					    conv_ehdr_mach(ehdr->e_machine,
3568 					    0, &inv_buf));
3569 					break;
3570 				}
3571 			}
3572 
3573 			/*
3574 			 * The default thing when we don't understand
3575 			 * the note data is to display it as hex bytes.
3576 			 */
3577 			if (hexdump) {
3578 				dbg_print(0, MSG_ORIG(MSG_NOTE_DESC));
3579 				dump_hex_bytes(pnstate.pn_desc,
3580 				    pnstate.pn_descsz, 8, 4, 4);
3581 			}
3582 		}
3583 	}
3584 }
3585 
3586 /*
3587  * Search for and process .note sections.
3588  *
3589  * Returns the number of note sections seen.
3590  */
3591 static Word
3592 note(Cache *cache, Word shnum, Ehdr *ehdr, const char *file)
3593 {
3594 	Word	cnt, note_cnt = 0;
3595 
3596 	/*
3597 	 * Otherwise look for any .note sections.
3598 	 */
3599 	for (cnt = 1; cnt < shnum; cnt++) {
3600 		Cache	*_cache = &cache[cnt];
3601 		Shdr	*shdr = _cache->c_shdr;
3602 
3603 		if (shdr->sh_type != SHT_NOTE)
3604 			continue;
3605 		note_cnt++;
3606 		if (!match(MATCH_F_ALL, _cache->c_name, cnt, shdr->sh_type))
3607 			continue;
3608 
3609 		/*
3610 		 * As these sections are often hand rolled, make sure they're
3611 		 * properly aligned before proceeding, and issue an error
3612 		 * as necessary.
3613 		 *
3614 		 * Note that we will continue on to display the note even
3615 		 * if it has bad alignment. We can do this safely, because
3616 		 * libelf knows the alignment required for SHT_NOTE, and
3617 		 * takes steps to deliver a properly aligned buffer to us
3618 		 * even if the actual file is misaligned.
3619 		 */
3620 		if (shdr->sh_offset & (sizeof (Word) - 1))
3621 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADALIGN),
3622 			    file, _cache->c_name);
3623 
3624 		if (_cache->c_data == NULL)
3625 			continue;
3626 
3627 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3628 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_NOTE), _cache->c_name);
3629 		note_entry(_cache, (Word *)_cache->c_data->d_buf,
3630 		/* LINTED */
3631 		    (Word)_cache->c_data->d_size, ehdr, file);
3632 	}
3633 
3634 	return (note_cnt);
3635 }
3636 
3637 /*
3638  * The Linux Standard Base defines a special note named .note.ABI-tag
3639  * that is used to maintain Linux ABI information. Presence of this section
3640  * is a strong indication that the object should be considered to be
3641  * ELFOSABI_LINUX.
3642  *
3643  * This function returns True (1) if such a note is seen, and False (0)
3644  * otherwise.
3645  */
3646 static int
3647 has_linux_abi_note(Cache *cache, Word shnum, const char *file)
3648 {
3649 	Word	cnt;
3650 
3651 	for (cnt = 1; cnt < shnum; cnt++) {
3652 		parse_note_t	pnstate;
3653 		Cache		*_cache = &cache[cnt];
3654 		Shdr		*shdr = _cache->c_shdr;
3655 
3656 		/*
3657 		 * Section must be SHT_NOTE, must have the name
3658 		 * .note.ABI-tag, and must have data.
3659 		 */
3660 		if ((shdr->sh_type != SHT_NOTE) ||
3661 		    (strcmp(MSG_ORIG(MSG_STR_NOTEABITAG),
3662 		    _cache->c_name) != 0) || (_cache->c_data == NULL))
3663 			continue;
3664 
3665 		pnstate.pns_file = file;
3666 		pnstate.pns_cache = _cache;
3667 		pnstate.pns_size = _cache->c_data->d_size;
3668 		pnstate.pns_data = (Word *)_cache->c_data->d_buf;
3669 
3670 		while (pnstate.pns_size > 0) {
3671 			Word *w;
3672 
3673 			if (parse_note_entry(&pnstate) == 0)
3674 				break;
3675 
3676 			/*
3677 			 * The type must be 1, and the name must be "GNU".
3678 			 * The descsz must be at least 16 bytes.
3679 			 */
3680 			if ((pnstate.pn_type != 1) ||
3681 			    (pnstate.pn_namesz != (MSG_STR_GNU_SIZE + 1)) ||
3682 			    (strncmp(MSG_ORIG(MSG_STR_GNU), pnstate.pn_name,
3683 			    MSG_STR_CORE_SIZE + 1) != 0) ||
3684 			    (pnstate.pn_descsz < 16))
3685 				continue;
3686 
3687 			/*
3688 			 * desc contains 4 32-bit fields. Field 0 must be 0,
3689 			 * indicating Linux. The second, third, and fourth
3690 			 * fields represent the earliest Linux kernel
3691 			 * version compatible with this object.
3692 			 */
3693 			/*LINTED*/
3694 			w = (Word *) pnstate.pn_desc;
3695 			if (*w == 0)
3696 				return (1);
3697 		}
3698 	}
3699 
3700 	return (0);
3701 }
3702 
3703 /*
3704  * Determine an individual hash entry.  This may be the initial hash entry,
3705  * or an associated chain entry.
3706  */
3707 static void
3708 hash_entry(Cache *refsec, Cache *strsec, const char *hsecname, Word hashndx,
3709     Word symndx, Word symn, Sym *syms, const char *file, ulong_t bkts,
3710     uint_t flags, int chain)
3711 {
3712 	Sym		*sym;
3713 	const char	*symname, *str;
3714 	char		_bucket[MAXNDXSIZE], _symndx[MAXNDXSIZE];
3715 	ulong_t		nbkt, nhash;
3716 
3717 	if (symndx > symn) {
3718 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_HSBADSYMNDX), file,
3719 		    EC_WORD(symndx), EC_WORD(hashndx));
3720 		symname = MSG_INTL(MSG_STR_UNKNOWN);
3721 	} else {
3722 		sym = (Sym *)(syms + symndx);
3723 		symname = string(refsec, symndx, strsec, file, sym->st_name);
3724 	}
3725 
3726 	if (chain == 0) {
3727 		(void) snprintf(_bucket, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INTEGER),
3728 		    hashndx);
3729 		str = (const char *)_bucket;
3730 	} else
3731 		str = MSG_ORIG(MSG_STR_EMPTY);
3732 
3733 	(void) snprintf(_symndx, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX2),
3734 	    EC_WORD(symndx));
3735 	dbg_print(0, MSG_ORIG(MSG_FMT_HASH_INFO), str, _symndx,
3736 	    demangle(symname, flags));
3737 
3738 	/*
3739 	 * Determine if this string is in the correct bucket.
3740 	 */
3741 	nhash = elf_hash(symname);
3742 	nbkt = nhash % bkts;
3743 
3744 	if (nbkt != hashndx) {
3745 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADHASH), file,
3746 		    hsecname, symname, EC_WORD(hashndx), nbkt);
3747 	}
3748 }
3749 
3750 #define	MAXCOUNT	500
3751 
3752 static void
3753 hash(Cache *cache, Word shnum, const char *file, uint_t flags)
3754 {
3755 	static int	count[MAXCOUNT];
3756 	Word		cnt;
3757 	ulong_t		ndx, bkts;
3758 	char		number[MAXNDXSIZE];
3759 
3760 	for (cnt = 1; cnt < shnum; cnt++) {
3761 		uint_t		*hash, *chain;
3762 		Cache		*_cache = &cache[cnt];
3763 		Shdr		*sshdr, *hshdr = _cache->c_shdr;
3764 		char		*ssecname, *hsecname = _cache->c_name;
3765 		Sym		*syms;
3766 		Word		symn;
3767 
3768 		if (hshdr->sh_type != SHT_HASH)
3769 			continue;
3770 
3771 		/*
3772 		 * Determine the hash table data and size.
3773 		 */
3774 		if ((hshdr->sh_entsize == 0) || (hshdr->sh_size == 0)) {
3775 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
3776 			    file, hsecname);
3777 			continue;
3778 		}
3779 		if (_cache->c_data == NULL)
3780 			continue;
3781 
3782 		hash = (uint_t *)_cache->c_data->d_buf;
3783 		bkts = *hash;
3784 		chain = hash + 2 + bkts;
3785 		hash += 2;
3786 
3787 		/*
3788 		 * Get the data buffer for the associated symbol table.
3789 		 */
3790 		if ((hshdr->sh_link == 0) || (hshdr->sh_link >= shnum)) {
3791 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
3792 			    file, hsecname, EC_WORD(hshdr->sh_link));
3793 			continue;
3794 		}
3795 
3796 		_cache = &cache[hshdr->sh_link];
3797 		ssecname = _cache->c_name;
3798 
3799 		if (_cache->c_data == NULL)
3800 			continue;
3801 
3802 		if ((syms = (Sym *)_cache->c_data->d_buf) == NULL) {
3803 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
3804 			    file, ssecname);
3805 			continue;
3806 		}
3807 
3808 		sshdr = _cache->c_shdr;
3809 		/* LINTED */
3810 		symn = (Word)(sshdr->sh_size / sshdr->sh_entsize);
3811 
3812 		/*
3813 		 * Get the associated string table section.
3814 		 */
3815 		if ((sshdr->sh_link == 0) || (sshdr->sh_link >= shnum)) {
3816 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
3817 			    file, ssecname, EC_WORD(sshdr->sh_link));
3818 			continue;
3819 		}
3820 
3821 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3822 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_HASH), hsecname);
3823 		dbg_print(0, MSG_INTL(MSG_ELF_HASH_INFO));
3824 
3825 		/*
3826 		 * Loop through the hash buckets, printing the appropriate
3827 		 * symbols.
3828 		 */
3829 		for (ndx = 0; ndx < bkts; ndx++, hash++) {
3830 			Word	_ndx, _cnt;
3831 
3832 			if (*hash == 0) {
3833 				count[0]++;
3834 				continue;
3835 			}
3836 
3837 			hash_entry(_cache, &cache[sshdr->sh_link], hsecname,
3838 			    ndx, *hash, symn, syms, file, bkts, flags, 0);
3839 
3840 			/*
3841 			 * Determine if any other symbols are chained to this
3842 			 * bucket.
3843 			 */
3844 			_ndx = chain[*hash];
3845 			_cnt = 1;
3846 			while (_ndx) {
3847 				hash_entry(_cache, &cache[sshdr->sh_link],
3848 				    hsecname, ndx, _ndx, symn, syms, file,
3849 				    bkts, flags, 1);
3850 				_ndx = chain[_ndx];
3851 				_cnt++;
3852 			}
3853 
3854 			if (_cnt >= MAXCOUNT) {
3855 				(void) fprintf(stderr,
3856 				    MSG_INTL(MSG_HASH_OVERFLW), file,
3857 				    _cache->c_name, EC_WORD(ndx),
3858 				    EC_WORD(_cnt));
3859 			} else
3860 				count[_cnt]++;
3861 		}
3862 		break;
3863 	}
3864 
3865 	/*
3866 	 * Print out the count information.
3867 	 */
3868 	bkts = cnt = 0;
3869 	dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3870 
3871 	for (ndx = 0; ndx < MAXCOUNT; ndx++) {
3872 		Word	_cnt;
3873 
3874 		if ((_cnt = count[ndx]) == 0)
3875 			continue;
3876 
3877 		(void) snprintf(number, MAXNDXSIZE,
3878 		    MSG_ORIG(MSG_FMT_INTEGER), _cnt);
3879 		dbg_print(0, MSG_INTL(MSG_ELF_HASH_BKTS1), number,
3880 		    EC_WORD(ndx));
3881 		bkts += _cnt;
3882 		cnt += (Word)(ndx * _cnt);
3883 	}
3884 	if (cnt) {
3885 		(void) snprintf(number, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INTEGER),
3886 		    bkts);
3887 		dbg_print(0, MSG_INTL(MSG_ELF_HASH_BKTS2), number,
3888 		    EC_WORD(cnt));
3889 	}
3890 }
3891 
3892 static void
3893 group(Cache *cache, Word shnum, const char *file, uint_t flags)
3894 {
3895 	Word	scnt;
3896 
3897 	for (scnt = 1; scnt < shnum; scnt++) {
3898 		Cache		*_cache = &cache[scnt];
3899 		Shdr		*shdr = _cache->c_shdr;
3900 		Word		*grpdata, gcnt, grpcnt, symnum, unknown;
3901 		Cache		*symsec, *strsec;
3902 		Sym		*syms, *sym;
3903 		char		flgstrbuf[MSG_GRP_COMDAT_SIZE + 10];
3904 		const char	*grpnam;
3905 
3906 		if (shdr->sh_type != SHT_GROUP)
3907 			continue;
3908 		if (!match(MATCH_F_ALL, _cache->c_name, scnt, shdr->sh_type))
3909 			continue;
3910 		if ((_cache->c_data == NULL) ||
3911 		    ((grpdata = (Word *)_cache->c_data->d_buf) == NULL))
3912 			continue;
3913 		grpcnt = shdr->sh_size / sizeof (Word);
3914 
3915 		/*
3916 		 * Get the data buffer for the associated symbol table and
3917 		 * string table.
3918 		 */
3919 		if (stringtbl(cache, 1, scnt, shnum, file,
3920 		    &symnum, &symsec, &strsec) == 0)
3921 			return;
3922 
3923 		syms = symsec->c_data->d_buf;
3924 
3925 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3926 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_GRP), _cache->c_name);
3927 		dbg_print(0, MSG_INTL(MSG_GRP_TITLE));
3928 
3929 		/*
3930 		 * The first element of the group defines the group.  The
3931 		 * associated symbol is defined by the sh_link field.
3932 		 */
3933 		if ((shdr->sh_info == SHN_UNDEF) || (shdr->sh_info > symnum)) {
3934 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHINFO),
3935 			    file, _cache->c_name, EC_WORD(shdr->sh_info));
3936 			return;
3937 		}
3938 
3939 		(void) strcpy(flgstrbuf, MSG_ORIG(MSG_STR_OSQBRKT));
3940 		if (grpdata[0] & GRP_COMDAT) {
3941 			(void) strcat(flgstrbuf, MSG_ORIG(MSG_GRP_COMDAT));
3942 		}
3943 		if ((unknown = (grpdata[0] & ~GRP_COMDAT)) != 0) {
3944 			size_t	len = strlen(flgstrbuf);
3945 
3946 			(void) snprintf(&flgstrbuf[len],
3947 			    (MSG_GRP_COMDAT_SIZE + 10 - len),
3948 			    MSG_ORIG(MSG_GRP_UNKNOWN), unknown);
3949 		}
3950 		(void) strcat(flgstrbuf, MSG_ORIG(MSG_STR_CSQBRKT));
3951 		sym = (Sym *)(syms + shdr->sh_info);
3952 
3953 		/*
3954 		 * The GNU assembler can use section symbols as the signature
3955 		 * symbol as described by this comment in the gold linker
3956 		 * (found via google):
3957 		 *
3958 		 *	It seems that some versions of gas will create a
3959 		 *	section group associated with a section symbol, and
3960 		 *	then fail to give a name to the section symbol.  In
3961 		 *	such a case, use the name of the section.
3962 		 *
3963 		 * In order to support such objects, we do the same.
3964 		 */
3965 		grpnam = string(_cache, 0, strsec, file, sym->st_name);
3966 		if (((sym->st_name == 0) || (*grpnam == '\0')) &&
3967 		    (ELF_ST_TYPE(sym->st_info) == STT_SECTION))
3968 			grpnam = cache[sym->st_shndx].c_name;
3969 
3970 		dbg_print(0, MSG_INTL(MSG_GRP_SIGNATURE), flgstrbuf,
3971 		    demangle(grpnam, flags));
3972 
3973 		for (gcnt = 1; gcnt < grpcnt; gcnt++) {
3974 			char		index[MAXNDXSIZE];
3975 			const char	*name;
3976 
3977 			(void) snprintf(index, MAXNDXSIZE,
3978 			    MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(gcnt));
3979 
3980 			if (grpdata[gcnt] >= shnum)
3981 				name = MSG_INTL(MSG_GRP_INVALSCN);
3982 			else
3983 				name = cache[grpdata[gcnt]].c_name;
3984 
3985 			(void) printf(MSG_ORIG(MSG_GRP_ENTRY), index, name,
3986 			    EC_XWORD(grpdata[gcnt]));
3987 		}
3988 	}
3989 }
3990 
3991 static void
3992 got(Cache *cache, Word shnum, Ehdr *ehdr, const char *file)
3993 {
3994 	Cache		*gotcache = NULL, *symtab = NULL;
3995 	Addr		gotbgn, gotend;
3996 	Shdr		*gotshdr;
3997 	Word		cnt, gotents, gotndx;
3998 	size_t		gentsize;
3999 	Got_info	*gottable;
4000 	char		*gotdata;
4001 	Sym		*gotsym;
4002 	Xword		gotsymaddr;
4003 	uint_t		sys_encoding;
4004 
4005 	/*
4006 	 * First, find the got.
4007 	 */
4008 	for (cnt = 1; cnt < shnum; cnt++) {
4009 		if (strncmp(cache[cnt].c_name, MSG_ORIG(MSG_ELF_GOT),
4010 		    MSG_ELF_GOT_SIZE) == 0) {
4011 			gotcache = &cache[cnt];
4012 			break;
4013 		}
4014 	}
4015 	if (gotcache == NULL)
4016 		return;
4017 
4018 	/*
4019 	 * A got section within a relocatable object is suspicious.
4020 	 */
4021 	if (ehdr->e_type == ET_REL) {
4022 		(void) fprintf(stderr, MSG_INTL(MSG_GOT_UNEXPECTED), file,
4023 		    gotcache->c_name);
4024 	}
4025 
4026 	gotshdr = gotcache->c_shdr;
4027 	if (gotshdr->sh_size == 0) {
4028 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
4029 		    file, gotcache->c_name);
4030 		return;
4031 	}
4032 
4033 	gotbgn = gotshdr->sh_addr;
4034 	gotend = gotbgn + gotshdr->sh_size;
4035 
4036 	/*
4037 	 * Some architectures don't properly set the sh_entsize for the GOT
4038 	 * table.  If it's not set, default to a size of a pointer.
4039 	 */
4040 	if ((gentsize = gotshdr->sh_entsize) == 0)
4041 		gentsize = sizeof (Xword);
4042 
4043 	if (gotcache->c_data == NULL)
4044 		return;
4045 
4046 	/* LINTED */
4047 	gotents = (Word)(gotshdr->sh_size / gentsize);
4048 	gotdata = gotcache->c_data->d_buf;
4049 
4050 	if ((gottable = calloc(gotents, sizeof (Got_info))) == 0) {
4051 		int err = errno;
4052 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC), file,
4053 		    strerror(err));
4054 		return;
4055 	}
4056 
4057 	/*
4058 	 * Now we scan through all the sections looking for any relocations
4059 	 * that may be against the GOT.  Since these may not be isolated to a
4060 	 * .rel[a].got section we check them all.
4061 	 * While scanning sections save the symbol table entry (a symtab
4062 	 * overriding a dynsym) so that we can lookup _GLOBAL_OFFSET_TABLE_.
4063 	 */
4064 	for (cnt = 1; cnt < shnum; cnt++) {
4065 		Word		type, symnum;
4066 		Xword		relndx, relnum, relsize;
4067 		void		*rels;
4068 		Sym		*syms;
4069 		Cache		*symsec, *strsec;
4070 		Cache		*_cache = &cache[cnt];
4071 		Shdr		*shdr;
4072 
4073 		shdr = _cache->c_shdr;
4074 		type = shdr->sh_type;
4075 
4076 		if ((symtab == 0) && (type == SHT_DYNSYM)) {
4077 			symtab = _cache;
4078 			continue;
4079 		}
4080 		if (type == SHT_SYMTAB) {
4081 			symtab = _cache;
4082 			continue;
4083 		}
4084 		if ((type != SHT_RELA) && (type != SHT_REL))
4085 			continue;
4086 
4087 		/*
4088 		 * Decide entry size.
4089 		 */
4090 		if (((relsize = shdr->sh_entsize) == 0) ||
4091 		    (relsize > shdr->sh_size)) {
4092 			if (type == SHT_RELA)
4093 				relsize = sizeof (Rela);
4094 			else
4095 				relsize = sizeof (Rel);
4096 		}
4097 
4098 		/*
4099 		 * Determine the number of relocations available.
4100 		 */
4101 		if (shdr->sh_size == 0) {
4102 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
4103 			    file, _cache->c_name);
4104 			continue;
4105 		}
4106 		if (_cache->c_data == NULL)
4107 			continue;
4108 
4109 		rels = _cache->c_data->d_buf;
4110 		relnum = shdr->sh_size / relsize;
4111 
4112 		/*
4113 		 * Get the data buffer for the associated symbol table and
4114 		 * string table.
4115 		 */
4116 		if (stringtbl(cache, 1, cnt, shnum, file,
4117 		    &symnum, &symsec, &strsec) == 0)
4118 			continue;
4119 
4120 		syms = symsec->c_data->d_buf;
4121 
4122 		/*
4123 		 * Loop through the relocation entries.
4124 		 */
4125 		for (relndx = 0; relndx < relnum; relndx++,
4126 		    rels = (void *)((char *)rels + relsize)) {
4127 			char		section[BUFSIZ];
4128 			Addr		offset;
4129 			Got_info	*gip;
4130 			Word		symndx, reltype;
4131 			Rela		*rela;
4132 			Rel		*rel;
4133 
4134 			/*
4135 			 * Unravel the relocation.
4136 			 */
4137 			if (type == SHT_RELA) {
4138 				rela = (Rela *)rels;
4139 				symndx = ELF_R_SYM(rela->r_info);
4140 				reltype = ELF_R_TYPE(rela->r_info,
4141 				    ehdr->e_machine);
4142 				offset = rela->r_offset;
4143 			} else {
4144 				rel = (Rel *)rels;
4145 				symndx = ELF_R_SYM(rel->r_info);
4146 				reltype = ELF_R_TYPE(rel->r_info,
4147 				    ehdr->e_machine);
4148 				offset = rel->r_offset;
4149 			}
4150 
4151 			/*
4152 			 * Only pay attention to relocations against the GOT.
4153 			 */
4154 			if ((offset < gotbgn) || (offset >= gotend))
4155 				continue;
4156 
4157 			/* LINTED */
4158 			gotndx = (Word)((offset - gotbgn) /
4159 			    gotshdr->sh_entsize);
4160 			gip = &gottable[gotndx];
4161 
4162 			if (gip->g_reltype != 0) {
4163 				(void) fprintf(stderr,
4164 				    MSG_INTL(MSG_GOT_MULTIPLE), file,
4165 				    EC_WORD(gotndx), EC_ADDR(offset));
4166 				continue;
4167 			}
4168 
4169 			if (symndx)
4170 				gip->g_symname = relsymname(cache, _cache,
4171 				    strsec, symndx, symnum, relndx, syms,
4172 				    section, BUFSIZ, file);
4173 			gip->g_reltype = reltype;
4174 			gip->g_rel = rels;
4175 		}
4176 	}
4177 
4178 	if (symlookup(MSG_ORIG(MSG_SYM_GOT), cache, shnum, &gotsym, NULL,
4179 	    symtab, file))
4180 		gotsymaddr = gotsym->st_value;
4181 	else
4182 		gotsymaddr = gotbgn;
4183 
4184 	dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
4185 	dbg_print(0, MSG_INTL(MSG_ELF_SCN_GOT), gotcache->c_name);
4186 	Elf_got_title(0);
4187 
4188 	sys_encoding = _elf_sys_encoding();
4189 	for (gotndx = 0; gotndx < gotents; gotndx++) {
4190 		Got_info	*gip;
4191 		Sword		gindex;
4192 		Addr		gaddr;
4193 		Xword		gotentry;
4194 
4195 		gip = &gottable[gotndx];
4196 
4197 		gaddr = gotbgn + (gotndx * gentsize);
4198 		gindex = (Sword)(gaddr - gotsymaddr) / (Sword)gentsize;
4199 
4200 		if (gentsize == sizeof (Word))
4201 			/* LINTED */
4202 			gotentry = (Xword)(*((Word *)(gotdata) + gotndx));
4203 		else
4204 			/* LINTED */
4205 			gotentry = *((Xword *)(gotdata) + gotndx);
4206 
4207 		Elf_got_entry(0, gindex, gaddr, gotentry, ehdr->e_machine,
4208 		    ehdr->e_ident[EI_DATA], sys_encoding,
4209 		    gip->g_reltype, gip->g_rel, gip->g_symname);
4210 	}
4211 	free(gottable);
4212 }
4213 
4214 void
4215 checksum(Elf *elf)
4216 {
4217 	dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
4218 	dbg_print(0, MSG_INTL(MSG_STR_CHECKSUM), elf_checksum(elf));
4219 }
4220 
4221 /*
4222  * This variable is used by regular() to communicate the address of
4223  * the section header cache to sort_shdr_ndx_arr(). Unfortunately,
4224  * the qsort() interface does not include a userdata argument by which
4225  * such arbitrary data can be passed, so we are stuck using global data.
4226  */
4227 static Cache *sort_shdr_ndx_arr_cache;
4228 
4229 
4230 /*
4231  * Used with qsort() to sort the section indices so that they can be
4232  * used to access the section headers in order of increasing data offset.
4233  *
4234  * entry:
4235  *	sort_shdr_ndx_arr_cache - Contains address of
4236  *		section header cache.
4237  *	v1, v2 - Point at elements of sort_shdr_bits array to be compared.
4238  *
4239  * exit:
4240  *	Returns -1 (less than), 0 (equal) or 1 (greater than).
4241  */
4242 static int
4243 sort_shdr_ndx_arr(const void *v1, const void *v2)
4244 {
4245 	Cache	*cache1 = sort_shdr_ndx_arr_cache + *((size_t *)v1);
4246 	Cache	*cache2 = sort_shdr_ndx_arr_cache + *((size_t *)v2);
4247 
4248 	if (cache1->c_shdr->sh_offset < cache2->c_shdr->sh_offset)
4249 		return (-1);
4250 
4251 	if (cache1->c_shdr->sh_offset > cache2->c_shdr->sh_offset)
4252 		return (1);
4253 
4254 	return (0);
4255 }
4256 
4257 
4258 static int
4259 shdr_cache(const char *file, Elf *elf, Ehdr *ehdr, size_t shstrndx,
4260     size_t shnum, Cache **cache_ret, Word flags)
4261 {
4262 	Elf_Scn		*scn;
4263 	Elf_Data	*data;
4264 	size_t		ndx;
4265 	Shdr		*nameshdr;
4266 	char		*names = NULL;
4267 	Cache		*cache, *_cache;
4268 	size_t		*shdr_ndx_arr, shdr_ndx_arr_cnt;
4269 
4270 
4271 	/*
4272 	 * Obtain the .shstrtab data buffer to provide the required section
4273 	 * name strings.
4274 	 */
4275 	if (shstrndx == SHN_UNDEF) {
4276 		/*
4277 		 * It is rare, but legal, for an object to lack a
4278 		 * header string table section.
4279 		 */
4280 		names = NULL;
4281 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_NOSHSTRSEC), file);
4282 	} else if ((scn = elf_getscn(elf, shstrndx)) == NULL) {
4283 		failure(file, MSG_ORIG(MSG_ELF_GETSCN));
4284 		(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SHDR),
4285 		    EC_XWORD(shstrndx));
4286 
4287 	} else if ((data = elf_getdata(scn, NULL)) == NULL) {
4288 		failure(file, MSG_ORIG(MSG_ELF_GETDATA));
4289 		(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_DATA),
4290 		    EC_XWORD(shstrndx));
4291 
4292 	} else if ((nameshdr = elf_getshdr(scn)) == NULL) {
4293 		failure(file, MSG_ORIG(MSG_ELF_GETSHDR));
4294 		(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN),
4295 		    EC_WORD(elf_ndxscn(scn)));
4296 
4297 	} else if ((names = data->d_buf) == NULL)
4298 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_SHSTRNULL), file);
4299 
4300 	/*
4301 	 * Allocate a cache to maintain a descriptor for each section.
4302 	 */
4303 	if ((*cache_ret = cache = malloc(shnum * sizeof (Cache))) == NULL) {
4304 		int err = errno;
4305 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
4306 		    file, strerror(err));
4307 		return (0);
4308 	}
4309 
4310 	*cache = cache_init;
4311 	_cache = cache;
4312 	_cache++;
4313 
4314 	/*
4315 	 * Allocate an array that will hold the section index for
4316 	 * each section that has data in the ELF file:
4317 	 *
4318 	 *	- Is not a NOBITS section
4319 	 *	- Data has non-zero length
4320 	 *
4321 	 * Note that shnum is an upper bound on the size required. It
4322 	 * is likely that we won't use a few of these array elements.
4323 	 * Allocating a modest amount of extra memory in this case means
4324 	 * that we can avoid an extra loop to count the number of needed
4325 	 * items, and can fill this array immediately in the first loop
4326 	 * below.
4327 	 */
4328 	if ((shdr_ndx_arr = malloc(shnum * sizeof (*shdr_ndx_arr))) == NULL) {
4329 		int err = errno;
4330 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
4331 		    file, strerror(err));
4332 		return (0);
4333 	}
4334 	shdr_ndx_arr_cnt = 0;
4335 
4336 	/*
4337 	 * Traverse the sections of the file.  This gathering of data is
4338 	 * carried out in two passes.  First, the section headers are captured
4339 	 * and the section header names are evaluated.  A verification pass is
4340 	 * then carried out over the section information.  Files have been
4341 	 * known to exhibit overlapping (and hence erroneous) section header
4342 	 * information.
4343 	 *
4344 	 * Finally, the data for each section is obtained.  This processing is
4345 	 * carried out after section verification because should any section
4346 	 * header overlap occur, and a file needs translating (ie. xlate'ing
4347 	 * information from a non-native architecture file), then the process
4348 	 * of translation can corrupt the section header information.  Of
4349 	 * course, if there is any section overlap, the data related to the
4350 	 * sections is going to be compromised.  However, it is the translation
4351 	 * of this data that has caused problems with elfdump()'s ability to
4352 	 * extract the data.
4353 	 */
4354 	for (ndx = 1, scn = NULL; scn = elf_nextscn(elf, scn);
4355 	    ndx++, _cache++) {
4356 		char	scnndxnm[100];
4357 
4358 		_cache->c_ndx = ndx;
4359 		_cache->c_scn = scn;
4360 
4361 		if ((_cache->c_shdr = elf_getshdr(scn)) == NULL) {
4362 			failure(file, MSG_ORIG(MSG_ELF_GETSHDR));
4363 			(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN),
4364 			    EC_WORD(elf_ndxscn(scn)));
4365 		}
4366 
4367 		/*
4368 		 * If this section has data in the file, include it in
4369 		 * the array of sections to check for address overlap.
4370 		 */
4371 		if ((_cache->c_shdr->sh_size != 0) &&
4372 		    (_cache->c_shdr->sh_type != SHT_NOBITS))
4373 			shdr_ndx_arr[shdr_ndx_arr_cnt++] = ndx;
4374 
4375 		/*
4376 		 * If a shstrtab exists, assign the section name.
4377 		 */
4378 		if (names && _cache->c_shdr) {
4379 			if (_cache->c_shdr->sh_name &&
4380 			    /* LINTED */
4381 			    (nameshdr->sh_size > _cache->c_shdr->sh_name)) {
4382 				const char	*symname;
4383 				char		*secname;
4384 
4385 				secname = names + _cache->c_shdr->sh_name;
4386 
4387 				/*
4388 				 * A SUN naming convention employs a "%" within
4389 				 * a section name to indicate a section/symbol
4390 				 * name.  This originated from the compilers
4391 				 * -xF option, that places functions into their
4392 				 * own sections.  This convention (which has no
4393 				 * formal standard) has also been followed for
4394 				 * COMDAT sections.  To demangle the symbol
4395 				 * name, the name must be separated from the
4396 				 * section name.
4397 				 */
4398 				if (((flags & FLG_CTL_DEMANGLE) == 0) ||
4399 				    ((symname = strchr(secname, '%')) == NULL))
4400 					_cache->c_name = secname;
4401 				else {
4402 					size_t	secsz = ++symname - secname;
4403 					size_t	strsz;
4404 
4405 					symname = demangle(symname, flags);
4406 					strsz = secsz + strlen(symname) + 1;
4407 
4408 					if ((_cache->c_name =
4409 					    malloc(strsz)) == NULL) {
4410 						int err = errno;
4411 						(void) fprintf(stderr,
4412 						    MSG_INTL(MSG_ERR_MALLOC),
4413 						    file, strerror(err));
4414 						return (0);
4415 					}
4416 					(void) snprintf(_cache->c_name, strsz,
4417 					    MSG_ORIG(MSG_FMT_SECSYM),
4418 					    EC_WORD(secsz), secname, symname);
4419 				}
4420 
4421 				continue;
4422 			}
4423 
4424 			/*
4425 			 * Generate an error if the section name index is zero
4426 			 * or exceeds the shstrtab data.  Fall through to
4427 			 * fabricate a section name.
4428 			 */
4429 			if ((_cache->c_shdr->sh_name == 0) ||
4430 			    /* LINTED */
4431 			    (nameshdr->sh_size <= _cache->c_shdr->sh_name)) {
4432 				(void) fprintf(stderr,
4433 				    MSG_INTL(MSG_ERR_BADSHNAME), file,
4434 				    EC_WORD(ndx),
4435 				    EC_XWORD(_cache->c_shdr->sh_name));
4436 			}
4437 		}
4438 
4439 		/*
4440 		 * If there exists no shstrtab data, or a section header has no
4441 		 * name (an invalid index of 0), then compose a name for the
4442 		 * section.
4443 		 */
4444 		(void) snprintf(scnndxnm, sizeof (scnndxnm),
4445 		    MSG_INTL(MSG_FMT_SCNNDX), ndx);
4446 
4447 		if ((_cache->c_name = malloc(strlen(scnndxnm) + 1)) == NULL) {
4448 			int err = errno;
4449 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
4450 			    file, strerror(err));
4451 			return (0);
4452 		}
4453 		(void) strcpy(_cache->c_name, scnndxnm);
4454 	}
4455 
4456 	/*
4457 	 * Having collected all the sections, validate their address range.
4458 	 * Cases have existed where the section information has been invalid.
4459 	 * This can lead to all sorts of other, hard to diagnose errors, as
4460 	 * each section is processed individually (ie. with elf_getdata()).
4461 	 * Here, we carry out some address comparisons to catch a family of
4462 	 * overlapping memory issues we have observed (likely, there are others
4463 	 * that we have yet to discover).
4464 	 *
4465 	 * Note, should any memory overlap occur, obtaining any additional
4466 	 * data from the file is questionable.  However, it might still be
4467 	 * possible to inspect the ELF header, Programs headers, or individual
4468 	 * sections, so rather than bailing on an error condition, continue
4469 	 * processing to see if any data can be salvaged.
4470 	 */
4471 	if (shdr_ndx_arr_cnt > 1) {
4472 		sort_shdr_ndx_arr_cache = cache;
4473 		qsort(shdr_ndx_arr, shdr_ndx_arr_cnt,
4474 		    sizeof (*shdr_ndx_arr), sort_shdr_ndx_arr);
4475 	}
4476 	for (ndx = 0; ndx < shdr_ndx_arr_cnt; ndx++) {
4477 		Cache	*_cache = cache + shdr_ndx_arr[ndx];
4478 		Shdr	*shdr = _cache->c_shdr;
4479 		Off	bgn1, bgn = shdr->sh_offset;
4480 		Off	end1, end = shdr->sh_offset + shdr->sh_size;
4481 		size_t	ndx1;
4482 
4483 		/*
4484 		 * Check the section against all following ones, reporting
4485 		 * any overlaps. Since we've sorted the sections by offset,
4486 		 * we can stop after the first comparison that fails. There
4487 		 * are no overlaps in a properly formed ELF file, in which
4488 		 * case this algorithm runs in O(n) time. This will degenerate
4489 		 * to O(n^2) for a completely broken file. Such a file is
4490 		 * (1) highly unlikely, and (2) unusable, so it is reasonable
4491 		 * for the analysis to take longer.
4492 		 */
4493 		for (ndx1 = ndx + 1; ndx1 < shdr_ndx_arr_cnt; ndx1++) {
4494 			Cache	*_cache1 = cache + shdr_ndx_arr[ndx1];
4495 			Shdr	*shdr1 = _cache1->c_shdr;
4496 
4497 			bgn1 = shdr1->sh_offset;
4498 			end1 = shdr1->sh_offset + shdr1->sh_size;
4499 
4500 			if (((bgn1 <= bgn) && (end1 > bgn)) ||
4501 			    ((bgn1 < end) && (end1 >= end))) {
4502 				(void) fprintf(stderr,
4503 				    MSG_INTL(MSG_ERR_SECMEMOVER), file,
4504 				    EC_WORD(elf_ndxscn(_cache->c_scn)),
4505 				    _cache->c_name, EC_OFF(bgn), EC_OFF(end),
4506 				    EC_WORD(elf_ndxscn(_cache1->c_scn)),
4507 				    _cache1->c_name, EC_OFF(bgn1),
4508 				    EC_OFF(end1));
4509 			} else {	/* No overlap, so can stop */
4510 				break;
4511 			}
4512 		}
4513 
4514 		/*
4515 		 * In addition to checking for sections overlapping
4516 		 * each other (done above), we should also make sure
4517 		 * the section doesn't overlap the section header array.
4518 		 */
4519 		bgn1 = ehdr->e_shoff;
4520 		end1 = ehdr->e_shoff + (ehdr->e_shentsize * ehdr->e_shnum);
4521 
4522 		if (((bgn1 <= bgn) && (end1 > bgn)) ||
4523 		    ((bgn1 < end) && (end1 >= end))) {
4524 			(void) fprintf(stderr,
4525 			    MSG_INTL(MSG_ERR_SHDRMEMOVER), file, EC_OFF(bgn1),
4526 			    EC_OFF(end1),
4527 			    EC_WORD(elf_ndxscn(_cache->c_scn)),
4528 			    _cache->c_name, EC_OFF(bgn), EC_OFF(end));
4529 		}
4530 	}
4531 
4532 	/*
4533 	 * Obtain the data for each section.
4534 	 */
4535 	for (ndx = 1; ndx < shnum; ndx++) {
4536 		Cache	*_cache = &cache[ndx];
4537 		Elf_Scn	*scn = _cache->c_scn;
4538 
4539 		if ((_cache->c_data = elf_getdata(scn, NULL)) == NULL) {
4540 			failure(file, MSG_ORIG(MSG_ELF_GETDATA));
4541 			(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCNDATA),
4542 			    EC_WORD(elf_ndxscn(scn)));
4543 		}
4544 
4545 		/*
4546 		 * If a string table, verify that it has NULL first and
4547 		 * final bytes.
4548 		 */
4549 		if ((_cache->c_shdr->sh_type == SHT_STRTAB) &&
4550 		    (_cache->c_data->d_buf != NULL) &&
4551 		    (_cache->c_data->d_size > 0)) {
4552 			const char *s = _cache->c_data->d_buf;
4553 
4554 			if ((*s != '\0') ||
4555 			    (*(s + _cache->c_data->d_size - 1) != '\0'))
4556 				(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALSTR),
4557 				    file, _cache->c_name);
4558 		}
4559 	}
4560 
4561 	return (1);
4562 }
4563 
4564 
4565 
4566 /*
4567  * Generate a cache of section headers and related information
4568  * for use by the rest of elfdump. If requested (or the file
4569  * contains no section headers), we generate a fake set of
4570  * headers from the information accessible from the program headers.
4571  * Otherwise, we use the real section headers contained in the file.
4572  */
4573 static int
4574 create_cache(const char *file, int fd, Elf *elf, Ehdr *ehdr, Cache **cache,
4575     size_t shstrndx, size_t *shnum, uint_t *flags)
4576 {
4577 	/*
4578 	 * If there are no section headers, then resort to synthesizing
4579 	 * section headers from the program headers. This is normally
4580 	 * only done by explicit request, but in this case there's no
4581 	 * reason not to go ahead, since the alternative is simply to quit.
4582 	 */
4583 	if ((*shnum <= 1) && ((*flags & FLG_CTL_FAKESHDR) == 0)) {
4584 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_NOSHDR), file);
4585 		*flags |= FLG_CTL_FAKESHDR;
4586 	}
4587 
4588 	if (*flags & FLG_CTL_FAKESHDR) {
4589 		if (fake_shdr_cache(file, fd, elf, ehdr, cache, shnum) == 0)
4590 			return (0);
4591 	} else {
4592 		if (shdr_cache(file, elf, ehdr, shstrndx, *shnum,
4593 		    cache, *flags) == 0)
4594 			return (0);
4595 	}
4596 
4597 	return (1);
4598 }
4599 
4600 int
4601 regular(const char *file, int fd, Elf *elf, uint_t flags,
4602     const char *wname, int wfd, uchar_t osabi)
4603 {
4604 	enum { CACHE_NEEDED, CACHE_OK, CACHE_FAIL} cache_state = CACHE_NEEDED;
4605 	Elf_Scn		*scn;
4606 	Ehdr		*ehdr;
4607 	size_t		ndx, shstrndx, shnum, phnum;
4608 	Shdr		*shdr;
4609 	Cache		*cache;
4610 	VERSYM_STATE	versym;
4611 	int		ret = 0;
4612 	int		addr_align;
4613 
4614 	if ((ehdr = elf_getehdr(elf)) == NULL) {
4615 		failure(file, MSG_ORIG(MSG_ELF_GETEHDR));
4616 		return (ret);
4617 	}
4618 
4619 	if (elf_getshdrnum(elf, &shnum) == -1) {
4620 		failure(file, MSG_ORIG(MSG_ELF_GETSHDRNUM));
4621 		return (ret);
4622 	}
4623 
4624 	if (elf_getshdrstrndx(elf, &shstrndx) == -1) {
4625 		failure(file, MSG_ORIG(MSG_ELF_GETSHDRSTRNDX));
4626 		return (ret);
4627 	}
4628 
4629 	if (elf_getphdrnum(elf, &phnum) == -1) {
4630 		failure(file, MSG_ORIG(MSG_ELF_GETPHDRNUM));
4631 		return (ret);
4632 	}
4633 	/*
4634 	 * If the user requested section headers derived from the
4635 	 * program headers (-P option) and this file doesn't have
4636 	 * any program headers (i.e. ET_REL), then we can't do it.
4637 	 */
4638 	if ((phnum == 0) && (flags & FLG_CTL_FAKESHDR)) {
4639 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_PNEEDSPH), file);
4640 		return (ret);
4641 	}
4642 
4643 
4644 	if ((scn = elf_getscn(elf, 0)) != NULL) {
4645 		if ((shdr = elf_getshdr(scn)) == NULL) {
4646 			failure(file, MSG_ORIG(MSG_ELF_GETSHDR));
4647 			(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN), 0);
4648 			return (ret);
4649 		}
4650 	} else
4651 		shdr = NULL;
4652 
4653 	/*
4654 	 * Print the elf header.
4655 	 */
4656 	if (flags & FLG_SHOW_EHDR)
4657 		Elf_ehdr(0, ehdr, shdr);
4658 
4659 	/*
4660 	 * If the section headers or program headers have inadequate
4661 	 * alignment for the class of object, print a warning. libelf
4662 	 * can handle such files, but programs that use them can crash
4663 	 * when they dereference unaligned items.
4664 	 *
4665 	 * Note that the AMD64 ABI, although it is a 64-bit architecture,
4666 	 * allows access to data types smaller than 128-bits to be on
4667 	 * word alignment.
4668 	 */
4669 	if (ehdr->e_machine == EM_AMD64)
4670 		addr_align = sizeof (Word);
4671 	else
4672 		addr_align = sizeof (Addr);
4673 
4674 	if (ehdr->e_phoff & (addr_align - 1))
4675 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADPHDRALIGN), file);
4676 	if (ehdr->e_shoff & (addr_align - 1))
4677 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHDRALIGN), file);
4678 
4679 
4680 	/*
4681 	 * Determine the Operating System ABI (osabi) we will use to
4682 	 * interpret the object.
4683 	 */
4684 	if (flags & FLG_CTL_OSABI) {
4685 		/*
4686 		 * If the user explicitly specifies '-O none', we need
4687 		 * to display a completely generic view of the file.
4688 		 * However, libconv is written to assume that ELFOSABI_NONE
4689 		 * is equivalent to ELFOSABI_SOLARIS. To get the desired
4690 		 * effect, we use an osabi that libconv has no knowledge of.
4691 		 */
4692 		if (osabi == ELFOSABI_NONE)
4693 			osabi = ELFOSABI_UNKNOWN4;
4694 	} else {
4695 		/* Determine osabi from file */
4696 		osabi = ehdr->e_ident[EI_OSABI];
4697 		if (osabi == ELFOSABI_NONE) {
4698 			/*
4699 			 * Chicken/Egg scenario:
4700 			 *
4701 			 * Ideally, we wait to create the section header cache
4702 			 * until after the program headers are printed. If we
4703 			 * only output program headers, we can skip building
4704 			 * the cache entirely.
4705 			 *
4706 			 * Proper interpretation of program headers requires
4707 			 * the osabi, which is supposed to be in the ELF header.
4708 			 * However, many systems (Solaris and Linux included)
4709 			 * have a history of setting the osabi to the generic
4710 			 * SysV ABI (ELFOSABI_NONE). We assume ELFOSABI_SOLARIS
4711 			 * in such cases, but would like to check the object
4712 			 * to see if it has a Linux .note.ABI-tag section,
4713 			 * which implies ELFOSABI_LINUX. This requires a
4714 			 * section header cache.
4715 			 *
4716 			 * To break the cycle, we create section headers now
4717 			 * if osabi is ELFOSABI_NONE, and later otherwise.
4718 			 * If it succeeds, we use them, if not, we defer
4719 			 * exiting until after the program headers are out.
4720 			 */
4721 			if (create_cache(file, fd, elf, ehdr, &cache,
4722 			    shstrndx, &shnum, &flags) == 0) {
4723 				cache_state = CACHE_FAIL;
4724 			} else {
4725 				cache_state = CACHE_OK;
4726 				if (has_linux_abi_note(cache, shnum, file)) {
4727 					Conv_inv_buf_t	ibuf1, ibuf2;
4728 
4729 					(void) fprintf(stderr,
4730 					    MSG_INTL(MSG_INFO_LINUXOSABI), file,
4731 					    conv_ehdr_osabi(osabi, 0, &ibuf1),
4732 					    conv_ehdr_osabi(ELFOSABI_LINUX,
4733 					    0, &ibuf2));
4734 					osabi = ELFOSABI_LINUX;
4735 				}
4736 			}
4737 		}
4738 		/*
4739 		 * We treat ELFOSABI_NONE identically to ELFOSABI_SOLARIS.
4740 		 * Mapping NONE to SOLARIS simplifies the required test.
4741 		 */
4742 		if (osabi == ELFOSABI_NONE)
4743 			osabi = ELFOSABI_SOLARIS;
4744 	}
4745 
4746 	/*
4747 	 * Print the program headers.
4748 	 */
4749 	if ((flags & FLG_SHOW_PHDR) && (phnum != 0)) {
4750 		Phdr	*phdr;
4751 
4752 		if ((phdr = elf_getphdr(elf)) == NULL) {
4753 			failure(file, MSG_ORIG(MSG_ELF_GETPHDR));
4754 			return (ret);
4755 		}
4756 
4757 		for (ndx = 0; ndx < phnum; phdr++, ndx++) {
4758 			if (!match(MATCH_F_PHDR| MATCH_F_NDX | MATCH_F_TYPE,
4759 			    NULL, ndx, phdr->p_type))
4760 				continue;
4761 
4762 			dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
4763 			dbg_print(0, MSG_INTL(MSG_ELF_PHDR), EC_WORD(ndx));
4764 			Elf_phdr(0, osabi, ehdr->e_machine, phdr);
4765 		}
4766 	}
4767 
4768 	/*
4769 	 * If we have flag bits set that explicitly require a show or calc
4770 	 * operation, but none of them require the section headers, then
4771 	 * we are done and can return now.
4772 	 */
4773 	if (((flags & (FLG_MASK_SHOW | FLG_MASK_CALC)) != 0) &&
4774 	    ((flags & (FLG_MASK_SHOW_SHDR | FLG_MASK_CALC_SHDR)) == 0))
4775 		return (ret);
4776 
4777 	/*
4778 	 * Everything from this point on requires section headers.
4779 	 * If we have no section headers, there is no reason to continue.
4780 	 *
4781 	 * If we tried above to create the section header cache and failed,
4782 	 * it is time to exit. Otherwise, create it if needed.
4783 	 */
4784 	switch (cache_state) {
4785 	case CACHE_NEEDED:
4786 		if (create_cache(file, fd, elf, ehdr, &cache, shstrndx,
4787 		    &shnum, &flags) == 0)
4788 			return (ret);
4789 		break;
4790 	case CACHE_FAIL:
4791 		return (ret);
4792 	}
4793 	if (shnum <= 1)
4794 		goto done;
4795 
4796 	/*
4797 	 * If -w was specified, find and write out the section(s) data.
4798 	 */
4799 	if (wfd) {
4800 		for (ndx = 1; ndx < shnum; ndx++) {
4801 			Cache	*_cache = &cache[ndx];
4802 
4803 			if (match(MATCH_F_STRICT | MATCH_F_ALL, _cache->c_name,
4804 			    ndx, _cache->c_shdr->sh_type) &&
4805 			    _cache->c_data && _cache->c_data->d_buf) {
4806 				if (write(wfd, _cache->c_data->d_buf,
4807 				    _cache->c_data->d_size) !=
4808 				    _cache->c_data->d_size) {
4809 					int err = errno;
4810 					(void) fprintf(stderr,
4811 					    MSG_INTL(MSG_ERR_WRITE), wname,
4812 					    strerror(err));
4813 					/*
4814 					 * Return an exit status of 1, because
4815 					 * the failure is not related to the
4816 					 * ELF file, but by system resources.
4817 					 */
4818 					ret = 1;
4819 					goto done;
4820 				}
4821 			}
4822 		}
4823 	}
4824 
4825 	/*
4826 	 * If we have no flag bits set that explicitly require a show or calc
4827 	 * operation, but match options (-I, -N, -T) were used, then run
4828 	 * through the section headers and see if we can't deduce show flags
4829 	 * from the match options given.
4830 	 *
4831 	 * We don't do this if -w was specified, because (-I, -N, -T) used
4832 	 * with -w in lieu of some other option is supposed to be quiet.
4833 	 */
4834 	if ((wfd == 0) && (flags & FLG_CTL_MATCH) &&
4835 	    ((flags & (FLG_MASK_SHOW | FLG_MASK_CALC)) == 0)) {
4836 		for (ndx = 1; ndx < shnum; ndx++) {
4837 			Cache	*_cache = &cache[ndx];
4838 
4839 			if (!match(MATCH_F_STRICT | MATCH_F_ALL, _cache->c_name,
4840 			    ndx, _cache->c_shdr->sh_type))
4841 				continue;
4842 
4843 			switch (_cache->c_shdr->sh_type) {
4844 			case SHT_PROGBITS:
4845 				/*
4846 				 * Heuristic time: It is usually bad form
4847 				 * to assume the meaning/format of a PROGBITS
4848 				 * section based on its name. However, there
4849 				 * are ABI mandated exceptions. Check for
4850 				 * these special names.
4851 				 */
4852 
4853 				/* The ELF ABI specifies .interp and .got */
4854 				if (strcmp(_cache->c_name,
4855 				    MSG_ORIG(MSG_ELF_INTERP)) == 0) {
4856 					flags |= FLG_SHOW_INTERP;
4857 					break;
4858 				}
4859 				if (strcmp(_cache->c_name,
4860 				    MSG_ORIG(MSG_ELF_GOT)) == 0) {
4861 					flags |= FLG_SHOW_GOT;
4862 					break;
4863 				}
4864 				/*
4865 				 * The GNU compilers, and amd64 ABI, define
4866 				 * .eh_frame and .eh_frame_hdr. The Sun
4867 				 * C++ ABI defines .exception_ranges.
4868 				 */
4869 				if ((strncmp(_cache->c_name,
4870 				    MSG_ORIG(MSG_SCN_FRM),
4871 				    MSG_SCN_FRM_SIZE) == 0) ||
4872 				    (strncmp(_cache->c_name,
4873 				    MSG_ORIG(MSG_SCN_EXRANGE),
4874 				    MSG_SCN_EXRANGE_SIZE) == 0)) {
4875 					flags |= FLG_SHOW_UNWIND;
4876 					break;
4877 				}
4878 				break;
4879 
4880 			case SHT_SYMTAB:
4881 			case SHT_DYNSYM:
4882 			case SHT_SUNW_LDYNSYM:
4883 			case SHT_SUNW_versym:
4884 			case SHT_SYMTAB_SHNDX:
4885 				flags |= FLG_SHOW_SYMBOLS;
4886 				break;
4887 
4888 			case SHT_RELA:
4889 			case SHT_REL:
4890 				flags |= FLG_SHOW_RELOC;
4891 				break;
4892 
4893 			case SHT_HASH:
4894 				flags |= FLG_SHOW_HASH;
4895 				break;
4896 
4897 			case SHT_DYNAMIC:
4898 				flags |= FLG_SHOW_DYNAMIC;
4899 				break;
4900 
4901 			case SHT_NOTE:
4902 				flags |= FLG_SHOW_NOTE;
4903 				break;
4904 
4905 			case SHT_GROUP:
4906 				flags |= FLG_SHOW_GROUP;
4907 				break;
4908 
4909 			case SHT_SUNW_symsort:
4910 			case SHT_SUNW_tlssort:
4911 				flags |= FLG_SHOW_SORT;
4912 				break;
4913 
4914 			case SHT_SUNW_cap:
4915 				flags |= FLG_SHOW_CAP;
4916 				break;
4917 
4918 			case SHT_SUNW_move:
4919 				flags |= FLG_SHOW_MOVE;
4920 				break;
4921 
4922 			case SHT_SUNW_syminfo:
4923 				flags |= FLG_SHOW_SYMINFO;
4924 				break;
4925 
4926 			case SHT_SUNW_verdef:
4927 			case SHT_SUNW_verneed:
4928 				flags |= FLG_SHOW_VERSIONS;
4929 				break;
4930 
4931 			case SHT_AMD64_UNWIND:
4932 				flags |= FLG_SHOW_UNWIND;
4933 				break;
4934 			}
4935 		}
4936 	}
4937 
4938 
4939 	if (flags & FLG_SHOW_SHDR)
4940 		sections(file, cache, shnum, ehdr, osabi);
4941 
4942 	if (flags & FLG_SHOW_INTERP)
4943 		interp(file, cache, shnum, phnum, elf);
4944 
4945 	if ((osabi == ELFOSABI_SOLARIS) || (osabi == ELFOSABI_LINUX))
4946 		versions(cache, shnum, file, flags, &versym);
4947 
4948 	if (flags & FLG_SHOW_SYMBOLS)
4949 		symbols(cache, shnum, ehdr, osabi, &versym, file, flags);
4950 
4951 	if ((flags & FLG_SHOW_SORT) && (osabi == ELFOSABI_SOLARIS))
4952 		sunw_sort(cache, shnum, ehdr, osabi, &versym, file, flags);
4953 
4954 	if (flags & FLG_SHOW_HASH)
4955 		hash(cache, shnum, file, flags);
4956 
4957 	if (flags & FLG_SHOW_GOT)
4958 		got(cache, shnum, ehdr, file);
4959 
4960 	if (flags & FLG_SHOW_GROUP)
4961 		group(cache, shnum, file, flags);
4962 
4963 	if (flags & FLG_SHOW_SYMINFO)
4964 		syminfo(cache, shnum, file);
4965 
4966 	if (flags & FLG_SHOW_RELOC)
4967 		reloc(cache, shnum, ehdr, file);
4968 
4969 	if (flags & FLG_SHOW_DYNAMIC)
4970 		dynamic(cache, shnum, ehdr, osabi, file);
4971 
4972 	if (flags & FLG_SHOW_NOTE) {
4973 		Word	note_cnt;
4974 		size_t	note_shnum;
4975 		Cache	*note_cache;
4976 
4977 		note_cnt = note(cache, shnum, ehdr, file);
4978 
4979 		/*
4980 		 * Solaris core files have section headers, but these
4981 		 * headers do not include SHT_NOTE sections that reference
4982 		 * the core note sections. This means that note() won't
4983 		 * find the core notes. Fake section headers (-P option)
4984 		 * recover these sections, but it is inconvenient to require
4985 		 * users to specify -P in this situation. If the following
4986 		 * are all true:
4987 		 *
4988 		 *	- No note sections were found
4989 		 *	- This is a core file
4990 		 *	- We are not already using fake section headers
4991 		 *
4992 		 * then we will automatically generate fake section headers
4993 		 * and then process them in a second call to note().
4994 		 */
4995 		if ((note_cnt == 0) && (ehdr->e_type == ET_CORE) &&
4996 		    !(flags & FLG_CTL_FAKESHDR) &&
4997 		    (fake_shdr_cache(file, fd, elf, ehdr,
4998 		    &note_cache, &note_shnum) != 0)) {
4999 			(void) note(note_cache, note_shnum, ehdr, file);
5000 			fake_shdr_cache_free(note_cache, note_shnum);
5001 		}
5002 	}
5003 
5004 	if ((flags & FLG_SHOW_MOVE) && (osabi == ELFOSABI_SOLARIS))
5005 		move(cache, shnum, file, flags);
5006 
5007 	if (flags & FLG_CALC_CHECKSUM)
5008 		checksum(elf);
5009 
5010 	if ((flags & FLG_SHOW_CAP) && (osabi == ELFOSABI_SOLARIS))
5011 		cap(file, cache, shnum, phnum, ehdr, osabi, elf, flags);
5012 
5013 	if ((flags & FLG_SHOW_UNWIND) &&
5014 	    ((osabi == ELFOSABI_SOLARIS) || (osabi == ELFOSABI_LINUX)))
5015 		unwind(cache, shnum, phnum, ehdr, osabi, file, elf, flags);
5016 
5017 
5018 	/* Release the memory used to cache section headers */
5019 done:
5020 	if (flags & FLG_CTL_FAKESHDR)
5021 		fake_shdr_cache_free(cache, shnum);
5022 	else
5023 		free(cache);
5024 
5025 	return (ret);
5026 }
5027